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Rémi Flamary
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Abstract

Optimal transport (OT) plays an increasingly important role in machine learning
(ML) to compare probability distributions. The OT problem has been used in many
applications, and stated with a wide variety of formulations. Among these the
Monge ansatz and the Kantorovich linear program stand out. The former involves
finding an efficient push-forward map that can morph a measure onto another, while
the latter relax the matching of the measures by allowing the splitting of masses.
Kantorovich OT is far more amenable to computations and has been the main focus
in data sciences. Yet, it poses, in its original form, several challenges when used
for applied problems: (i) computing OT between discrete distributions amounts to
solving a large and expensive network flow problem which requires a supercubic
complexity in the number of points; (ii) estimating OT using sampled measures
is doomed by the curse of dimensionality. These issues can be mitigated using
an entropic regularization, solved with the Sinkhorn algorithm, which improves
on both statistical and computational aspects. While much faster, entropic OT
still requires a quadratic complexity with respect to the number of points and
therefore remains prohibitive for large-scale problems. Seizing this opportunity, I
devoted a significant part of my thesis to work on scalable approaches to OT, which
led to my line of work on the introduction of low-rank optimal transport (LOT).
I also realized that the fundamental idea proposed by Kantorovich to relax OT
could be applied in other settings, and I proposed new approaches using this very
same idea to tackle the fair division problem and the adversarial attacks problem
through the lens of OT. This thesis is therefore divided in two main parts. In the
first part, I present new regularization approaches for the OT problem, as well
as its quadratic extension, the Gromov-Wasserstein (GW) problem, by imposing
low-rank structures on couplings. This yields a linear complexity both in time and
memory with respect to the number of points. In my first attempt towards that
goal, I proposed to approximate the iterations of the Sinkhorn algorithm solving
entropic OT by forcing a specific low-rank factorization of the kernel involved,
resulting in a low non-negative rank factorization of the optimal coupling. Then I
propose to generalize this idea and to directly solve the OT problem as well as the
GW problem under low non-negative rank constraints on the admissible couplings.
We show that these new regularization schemes have better computational and
statistical performances compared to the entropic approach and that they can
even reach a linear complexity under low-rank assumptions on the ground cost
matrices. These new computational schemes pave the way for the use of OT in the
large-scale setting. In a second part, I present two settings where the fundamental
idea proposed by Kantorovich to relax the OT problem can also be applied, offering



new perspective on longstanding ML problems. More precisely, we propose to
relax and lift the fair division problem between multiple agents into the space of
distributions by allowing the splitting of resource masses in the partition. By doing
so, we show that it is always possible to obtain a fair partition of the resources and
we obtain a generalization of the OT problem when multiple costs are involved.
We also tackle the problem of adversarial examples using OT. In this problem, the
attacker can be represented as a deterministic map that push forward the data
distribution towards an adversarial one that aims at maximizing the risk of the
classifier. By relaxing the definition of the attacker to be a coupling, we obtain
a variational formulation of the adversarial risk which allows us to interpret the
adversarial risk minimization problem as a two-player zero-sum game and we study
the question of the existence of Nash equilibria in this game.



Résumé

Le transport optimal (TO) joue un rôle de plus en plus important en apprentissage
automatique (AA) pour comparer des mesures de probabilités. Le problème du TO a
été utilisé dans de nombreuses applications et formulé de plusieurs manières. Parmi
ces formulations, le problème de Monge et le programme linéaire de Kantorovich
se démarquent. La première implique de trouver une transformation efficace pour
envoyer une mesure sur une autre, tandis que la seconde relâche la contrainte
qu’impose Monge pour faire correspondre des mesures en autorisant la division
des masses. Le TO de Kantorovich est beaucoup plus accessible aux calculs et a
été la formulation la plus exploitée en sciences des données. Cependant, elle pose,
dans sa forme originale, plusieurs défis lorsqu’elle est utilisée pour des problèmes
appliqués : (i) calculer le TO entre des distributions discrètes équivaut à résoudre
un programme linéaire large et coûteux qui nécessite une complexité super-cubique
par rapport aux nombre de points; (ii) estimer le TO en utilisant des mesures
échantillonnées est voué à l’échec en raison de la malédiction de la dimensionnalité.
Ces problèmes peuvent être atténués en utilisant une régularisation entropique,
résolue avec l’algorithme Sinkhorn, qui améliore à la fois les aspects statistiques
et computationnels. Bien que beaucoup plus rapide, le TO entropique nécessite
toujours une complexité quadratique par rapport au nombre de points et reste donc
prohibitif pour les problèmes à grande échelle. Profitant de cette opportunité, j’ai
consacré une partie importante de ma thèse à travailler sur des nouvelles approches
de calculs pour le TO, ce qui a conduit à ma ligne de travail sur l’introduction du
transport optimal de faible rang. J’ai également réalisé que l’idée fondamentale
proposée par Kantorovich pour relaxer le TO pouvait être appliquée dans d’autres
contextes, et j’ai proposé de nouvelles approches en utilisant cette même idée pour
aborder le problème de la division équitable et le problème des attaques adverses à
travers le prisme du TO. Cette thèse est donc divisée en deux parties principales.
Dans la première partie, je présente de nouvelles approches de régularisation pour
le problème du TO, ainsi que son extension quadratique, le problème de Gromov-
Wasserstein (GW), en imposant des structures de faible rang sur les couplages.
Les algorithmes obtenus possèdent une complexité linéaire à la fois en temps et
en mémoire par rapport au nombre de points et permettent donc l’application du
transport et ses extensions dans le regime d’un très grands nombre de points. Dans
ma première tentative vers cet objectif, je propose d’approcher les itérations de
Sinkhorn résolvant le TO entropique en imposant une factorisation de faible rang
spécifique du noyau associé, ce qui donne une factorisation de rang non négatif
faible du couplage optimal. Ensuite, je propose de généraliser cette idée et de
résoudre le problème du TO ainsi que le problème GW en imposant directement



une contrainte de rang non négatif faible sur les couplages admissibles dans le
problème d’optimisation du transport. Nous montrons que ces nouveaux schémas
de régularisation ont de meilleures performances computationnelles et statistiques
que l’approche entropique et qu’ils peuvent même atteindre une complexité linéaire
sous des hypothèses de rang faible sur les matrices de coûts associés au problème
de transport. Ces nouveaux schémas de calcul ouvrent la voie à l’utilisation du TO
à grande échelle. Dans une deuxième partie, je présente deux contextes où l’idée
fondamentale proposée par Kantorovich pour résoudre le problème de l’OT peut
également être appliquée, offrant ainsi une nouvelle perspective sur des problèmes
de ML de longue date. Plus précisément, nous proposons de relaxer le problème
de division équitable entre plusieurs agents dans l’espace des distributions en
permettant la division des masses de ressources dans leur repartition. Ce faisant,
nous montrons qu’il est toujours possible d’obtenir une partition équitable des
ressources et nous obtenons une généralisation du problème du TO lorsqu’il y a
plusieurs coûts impliqués. Nous abordons également le problème des exemples
adverses à l’aide du TO. Dans ce problème, l’attaquant est représenté sous forme
d’une fonction déterministe qui projette la distribution des données vers une
distribution adverse visant à maximiser le risque du classificateur. En relaxant la
définition de l’attaquant pour qu’il soit non plus une fonction mais un couplage,
nous obtenons une formulation variationnelle du risque adverse qui nous permet
d’interpréter le problème de minimisation du risque adverse comme un jeu à somme
nulle à deux joueurs et nous étudions la question de l’existence d’équilibres de Nash
dans ce jeu.
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Outline and Contributions

The ability to compare and manipulate probability distributions is omnipresent in
machine learning (ML). For example, supervised learning methods [12] heavily rely
on such comparisons to measure the risk. In classification [13], ML practitioners
often train a classifier by minimizing the cross-entropy loss [14] between the true
conditional distributions of the labels and the learned conditional distributions
over the classes. In the regression setting [15], the risk of the prediction is also
measured by comparing the true conditional distribution of the data with the
learned one under Gaussian assumptions. More generally, maximum likelihood
estimation (MLE) [16], which is a standard technique to estimate parameters of a
probability distribution that best describes the observed data, aims at minimizing
the Kullblack-Leibler (KL) divergence between the true and the modeled distribu-
tion. All these fundamental techniques, widely used in ML, rely on the comparison
of distributions in order to quantify the uncertainty of the predictions. Being able
to compare distributions is also essential in other areas of ML such as in statistical
testing [17, 18] or causal discovery [19, 20]. In recent years, this need has received
even more attention in the ML community with the development of new generative
models capable of solving increasingly complex tasks. Variational Autoencoders [21]
are a class of generative models that learn to approximate a target distribution by
encoding the data into a lower-dimensional space and involve minimizing a diver-
gence measure between the latent distribution and a prior distribution. Generative
Adversarial Networks (GAN) [22] are another popular class of generative models
that learn to generate samples by comparing in an adversarial manner the generated
probability distribution with the target one. Normalizing flows [23] can be used for
both generative modeling as well as density estimation and are learned using MLE.
Diffusion models [24] transform a simple base distribution into a more complex
target distribution using a sequence of diffusion steps and measure the sequential
errors using KL divergences between the generated and the true distributions.
Finally, the most illustrative example of this literature is certainly the emergence of
transformers [25] which are today one of the most efficient architectures for a wide
range of problems in computer vision [26] and natural language processing [27]
and aim at treating data as probability distributions. In particular, transformers
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deal with signals such as images and sentences by representing them respectively
as discrete distributions of patches and words after having encoded the spatial
structure of these objects using positional embeddings [28]. Therefore, being able
to compare and deal with distributions is becoming an increasingly important
challenge in ML and it is in this context that optimal transport (OT) has become
a widely used tool.

OT in data sciences. When it comes to comparing distributions, the statistics
literature provides a rich class of divergence functions to measure the discrepancy
between two probability distributions, such as the KL divergence, the total varia-
tion (TV) distance, or more generally the family of ϕ-divergences [29]. Yet, these
divergences rely on comparing density functions pointwise, and saturate or diverge
when the supports of the probability measures are disjoint limiting their applica-
tions only for the comparison of histograms or continuous probability distributions.
OT [30] has become an increasingly important alternative in ML thanks to its
versatility of applications to compare probability measures. Starting from a cost
function (e.g. a distance) on the space on which measures are supported, OT
consists in finding a mapping [31] or coupling [32] between both measures that
is optimal with respect to that cost. In other words, OT naturally extends the
ground cost between two points to a discrepancy function between histograms of
points, or probability measures, in the form of an optimization problem. As a
result, OT provides a simple and comprehensive framework to compare probability
distributions and has inspired many developments in machine learning [33]. A flurry
of works have recently connected it to other trending topics, such as normalizing
flows or convex neural networks [34, 35, 36], while the scope of its applications
has now reached several fields of science such as computed vision [37], signal pro-
cessing [38, 39, 40], single-cell biology [41], imaging [42, 43], neuroscience [44, 45],
graphics [46, 47, 48], or generative modeling [49, 50, 51]. Another major feature of
OT is the optimal coupling obtained when solving it which provides an optimal
alignment of the probability measures at hand. Such an object, specific to OT and
at least as important as the OT cost itself, has found numerous applications in
ML to align word embeddings [52, 53, 54], to reconstruct cell trajectories [55, 56],
for domain adaptation [57, 58] or even for encoding discrete distributions as in
transformers [25] using barycentric projections [59]. In addition, the versatility of
the OT framework goes beyond the comparison of probability measures supported
on the same space. [60] propose a quadratic version of OT, namely the Gromov-
Wasserstein (GW) distance that aims at comparing point clouds or probability
measures living in incomparable spaces. While OT seeks an optimal matching
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according to a ground cost by minimizing a linear score associated to that cost,
GW seeks an assignment that is as close to an isometry as possible, as quantified by
a quadratic score. Several problems in ML require comparing datasets that live in
heterogeneous spaces. This situation arises typically when realigning two distinct
views (or features) from points sampled from similar sources. Recent applications to
single-cell genomics [61, 62] provide a case in point: Thousands of cells taken from
the same tissue are split in two groups, each processed with a different experimental
protocol, resulting in two distinct sets of heterogeneous feature vectors; Despite
this heterogeneity, one expects to find a mapping registering points from the first
to the second set, since they contain similar overall information. GW has also been
used in supervised learning [63], generative modeling [64], domain adaptation [65],
structured prediction [66], quantum chemistry [47] and alignment layers [67].

Challenges of OT in ML. Solving optimal transport problems at scale poses,
however, formidable challenges. The most obvious among them is computational:
Instantiating the Kantorovich [32] problem on discrete measures of size n can be
solved with a linear program (LP) of complexity O(n3 log n) [68, 69, 70]. A second
and equally important challenge lies in the statistical performance of using that
LP to estimate OT between densities: the LP solution between i.i.d. samples
converges exponentially slowly with respect to the ambient dimension to that
between densities [71]. [72, 73] obtained refined results and show that estimating
OT requires an exponential number of samples w.r.t. the intrinsic dimensionality
of the support. It is now increasingly clear that regularizing OT in some way
or another is the only way to mitigate these two issues [51, 74, 75]. A popular
approach consists in penalizing the OT problem with a strongly convex function
of the coupling [76, 77], and some more specific uses of an entropic penalty, to
recover so called Sinkhorn divergences [78]. Entropic OT is cheaper to compute
than regular OT [79, 80], smooth and programmatically differentiable in their
inputs [46, 55], and have a better sample complexity [81, 82]. While entropic OT
solvers do lower computational costs from supercubic down to an embarrassingly-
parallel quadratic cost, using to compare measures that have more than a few
tens of thousands of points remains a challenge. These computational limitations
are even more critical in GW, a non-convex quadratic generalization of the OT
problem that is NP-hard to solve in general [83]. As OT, GW can be regularized
using entropy [84, 85] and [47] propose to apply a mirror descent (MD) scheme to
approximate the entropic GW cost that consists in solving a sequence of nested
entropic OT problems. Although this heuristic achieves low GW costs, it remains
considerably limited in practice due to its cubic complexity w.r.t. the number of

17



points. Only two broad approaches are known to achieve tractable running times:
(i) Solve related, yet significantly different, proxies of the GW energy, either by
embedding points as univariate measures [86, 87], by using a sliced mechanism
when restricted to Euclidean settings [88] or by considering tree metrics for supports
of each probability measure [89], (ii) Reduce the size of the GW problem through
quantization of input measures [90] or recursive clustering approaches [91, 62].
However none of these works have tried to accelerate the MD scheme proposed
in [47] to approximate GW.

OT and ML Applications. Although the OT cost or its solution have been
used directly as a loss [49] or in order to align distributions [92] in various ML
applications, many links between OT and applied problems remain to be discovered.
The origin of the OT theory can be traced back to the 18th century when the
French mathematician Gaspard Monge [31] introduced the problem of finding
the most efficient way to transport a probability distribution towards another
using push forward maps. Although Monge’s mathematical formulation of optimal
transport was groundbreaking, it was soon discovered that his approach had
limitations due to the lack of a provable solution to the problem. It wasn’t until
150 years later that significant progress was made in the field of OT theory [93],
thanks to the fundamental idea of Kantorovich [32]: He proposed a relaxation of
the OT problem by considering probabilistic maps that allowed for the splitting
of mass in the matching process. In fact, the limitation encountered by the
Monge formulation of OT can be found in several problems which at first sight
seem to be unrelated to OT. Fair division [94] has been widely studied by the
artificial intelligence [95] and economics [96] communities. It consists in partitioning
diverse resources among agents according to some fairness criteria. One of the
standard problems in fair division is the fair cake-cutting problem [97, 98]. The
cake is an heterogeneous resource, and the agents have heterogeneous preferences
over different parts of the cake. Hence, taking into account these preferences,
one might share the cake fairly between the agents. This problem has many
variants such as the cake-cutting with two cakes [99], or the Multi Type Resource
Allocation [100, 101]. However, in all these models it is assumed that there is only
one indivisible unit per type of resource available, and therefore partitioning the
resources amounts to defining a deterministic map that assigns to each type of
resources a unique agent. The constraint on the partition limits considerably the
resolution of the fair division problem as it might not admit a solution and yet,
no relaxation of the problem has been proposed. Adversarial attacks [102, 103]
is also another setting where deterministic maps between distributions appear.
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State of the art classifiers are sensitive to imperceptible perturbations of their
inputs that make them fail. Last years, research have concentrated on proposing
new defense methods [104, 105, 106] and building more and more sophisticated
attacks [107, 108, 109, 110]. So far, most defense strategies proved to be vulnerable
to these new attacks or are computationally intractable. This asks the following
question: can we build classifiers that are robust against any adversarial attack?
The answer to this question might be mainly limited due to the restricted definition
of the attacker: as defined in adversarial risk, adversarial attacks are defined
as argsupermum of the loss over balls centered in the datapoints. Therefore,
adversarial attacks can be viewed as deterministic maps that push forward the
data distribution toward adversarial distributions. Interestingly, no work has, to
our knowledge, tried yet to relax the definition of the adversary to give a principled
answer to the above question.

Contributions of this thesis. This thesis, started in 2019 under the supervision
of Marco Cuturi, makes a few contributions on new computational approaches
to tackle large-scale optimal transport problems in machine learning, and studies
new methodologies applying optimal transport to solve longstanding challenges
in robust optimization and algorithmic fairness. More precisely, the contribu-
tions of this thesis are divided into two main parts. In a first part, we present
our contributions concerning the algorithmic and theoretical development of new
regularization schemes based on low-rank methods to allow the application of
optimal transport and its quadratic variant in the large-scale setting. In a second
part we present our contributions where optimal transport is used as a tool to un-
derstand and study the fair division problem and the problem of adversarial attacks.

In Part II, we present the following four contributions.

• In [6], we propose to speed-up the resolution of entropy regularized OT with
the Sinkhorn algorithm by considering a specific low-rank factorization of the
kernel matrix K = exp(−C/ε) involved in the Sinkhorn iterations. Our low-
rank approximation of the kernel K is obtained using parameterized feature
maps which associate to any point in the support of the measures a vector in
the positive orthant and therefore forces the positiveness of the factorization.
We show that our approach can be used to approximate the entropic OT
with common cost functions such as the square Euclidean distance. We also
illustrate the versatility of our method by extending previously proposed
OT-GAN to a new approach that learns adversarially a kernel induced from
a positive feature map. This approach is fully differentiable in the feature
map and can be used to train a GAN at scale with linear time iterations.
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• In [3], we propose a new regularization scheme of the OT problem, called Low-
rank Optimal Transport (LOT), which constrains the admissible couplings
to have a low nonnegative rank. Instead of factorizing the kernel involved
in the Sinkhorn iterations with positive factors, we directly impose a low
nonnegative rank constraint on the feasible set of couplings considered in
OT problems, with no approximations on the cost or kernel matrices. We
introduce a generic approach that can solve the OT problem under low-rank
constraints with arbitrary costs. Couplings with low nonnegative rank have a
natural low-rank factorization as a product of sub-couplings with a common
marginal, which is used to optimize jointly on sub-couplings and the common
marginal distribution using a mirror-descent approach. We prove the non-
asymptotic stationary convergence of our algorithm, and show that the time
complexity of the algorithm is generally quadratic but can become linear when
exploiting low rank assumptions on the cost (not the kernel which strongly
depends on the regularization parameter ε) involved in the OT problem.

• In [1], we aim at improving our knowledge and practical ability to use low-
rank factorizations in optimal transport. The paper focuses on the theoretical
and practical aspects of low-rank OT (LOT). We generalize the definition of
LOT to general probability measures, and derives the rate of convergence of
LOT to the true OT for both discrete and general probability measures. We
also provides an upper-bound for the statistical error made when estimating
LOT using empirical measures and show that it has a parametric rate that is
independent of the dimension. We establish links between the bias induced
by the low-rank constraints on OT and clustering methods. We introduce a
debiased version of LOT that metrizes weak convergence and is suitable for
large-scale comparison of measures in machine learning. Finally we propose
practical strategies to tune the step-length and initialization of the LOT
algorithm, making it a generic and automatized method for the choice of
hyperparameters.

• In [2], we focus on the computational aspects of Gromov-Wasserstein and
propose a new regularization scheme of the problem based on low-rank
constraints. More precisely, we exploit a low-rank factorization of the two
input cost matrices to reduce the complexity of recomputing the cost at
each iteration of the entropic GW scheme from cubic to quadratic, thereby
lowering its total complexity. We show that the low-rank approach for
couplings can be used in the GW pipeline to achieve a O(n2) strategy with
no prior assumption on input cost matrices. We also explain why methods
that exploit the geometrical properties of the kernels are of little use in a
GW setup. We combine both low-rank assumptions on costs and couplings to
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achieve GW approximation with linear complexity in time and memory, and
demonstrate the effectiveness of our method on simulated and real datasets.

In Part III, we present the following two contributions.

• In our work [5], we introduce EOT (Equitable and Optimal Transport),
which is a relaxed version of the fair division problem. In the fair division
problem, there are multiple agents who aim to share one or multiple sets
of resources, by finding a fair partition of these sets. Here we propose to
relax the problem and consider the case where resources are no more sets but
rather distributions on these sets where a certain amount of divisible mass
is associated to each of the elements. EOT is defined as linear optimization
problem under linear constraints that maximizes the minimum of individual
utilities. We show that the partition obtained by EOT is equitable, optimal,
and proportional, and derive the dual formulation of EOT with strong duality
results. We also show that EOT is related to some usual Integral Probability
Metrics, and propose an entropic regularized version of the problem with an
efficient algorithm similar to the Sinkhorn algorithm to approximate EOT.

• In our work [4], we obtain a game theoretic point of view of the adversarial
risk minimization problem using optimal transport. We show that it can be
reformulated as a distributionally robust optimization problem over specific
Wasserstein balls and we study the existence of Nash equilibria. More precisely,
by relaxing the adversary to be a coupling instead of a deterministic map in
its original formulation, we obtain a variational formulation of the adversarial
risk for deterministic as well as random classifiers, and show that in both
settings, the adversarial risk minimization problems can be reformulated as
two-players zero-sum games. We show that in the case of mixed strategies, it
is always possible to approximate a Nash Equilibrium (and even reach it under
some assumptions), meaning that adding randomness in the choice of the
classifiers allows to learn a random classifier that is robust to any adversarial
perturbations. We also design an algorithm that efficiently learn a finite
mixture of classifiers and show empirically improved adversarial robustness
over classical deterministic defenses.

We now turn to a more detailed presentation of the chapters constituting this
thesis.
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Chapter 1. Optimal Transport: From Monge to
Kantorovich

This chapter introduces the key concepts and results on optimal transport on
which this thesis builds upon. Because of our focus on ML applications, we state
these results for measures supported on Rd. We first present the original Monge
formulation of the OT problem and its main limitations, then we present the
Kantorovich relaxation and the links between these two formulations, finally we
expose some fundamental properties of the Kantorovich OT.

Monge Optimal Transport. The original formulation of optimal transport
was proposed by Gaspard Monge in 1781, and is known as the Monge problem.
Given two measures of equal mass µ and ν living in P(Rd) and a cost function
c : Rd × Rd → R+, Monge raised the problem of transporting µ to ν optimally
w.r.t. c. More formally, this problem can be stated as

inf
T :T#µ=ν

∫
Rd

c(x, T (x))dµ(x)

where T#µ is the pushforward measure of µ by T , defined by T#µ(A) := µ(T−1(A))
for all µ-measurable sets. When it exists, a transport map satisfying the constraint
T#µ = ν assigns to each point x in the support of the initial measure µ a point
T (x) in the support of the target measure ν, and it transports all the mass of µ
located at x to T (x). The Monge problem aims at finding among all these transport
maps, one that minimizes the total transportation cost. A sufficient condition for
the existence of a transport map is that µ is atomless, but even when transport
maps exist, there may be none that is optimal. More generally, the Monge problem
is not always well-posed and even when it is, it can be very hard to solve as both
the objective and the constraints are non-convex.

Kantorovich Optimal Transport. The Kantorovich formulation of the optimal
transport problem relax the Monge problem by seeking instead to minimize the
transportation cost over a set of probabilistic maps that specify how much mass
is moved from each point in the source distribution to each point in the target
distribution. More formally, instead of considering deterministic maps T , Kan-
torovich proposed to consider probabilistic map, i.e. measures over the product
space Rd × Rd that have µ and ν as marginals:

inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)
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where Π(µ, ν) = {γ ∈ P(Rd × Rd) s.t. π1#γ = µ, π2#γ = ν} is the set of
transportation plans, and π1 : (x, y) → x, π2 : (x, y) → y are the canonical
projections. The minimizers of this problem are called optimal transport plans
between µ and ν. The Kantorovich formulation is much easier to handle than
the Monge problem as it is a linear optimization problem, and a solution to the
Kantorovich formulation always exists under weak conditions on the cost function
c. This new formulatiom of OT is much more flexible as it can handle more general
scenarios, including cases where the two distributions have different shapes and
sizes, or when one distribution has atoms.

Links between the Two Formulations. The relaxation proposed by Kan-
torovich is in fact a tight extension of the Monge problem. When the initial measure
is atomless, [111] shows that the Monge and the Kantorovich formulations coincide,
i.e. the two optimal costs are equal. Therefore, the Kantorovich formulation can
be seen as the minimal extension of the original Monge problem, which admits a
minimizer. We also present some general cases where an optimal Monge map exists
and coincide with an optimal coupling solving the Kantorovich optimal transport
problem. Specifically, we present the case where the ground cost is of the form
c(x, y) = h(x − y) with h a strictly convex function and the initial measure µ is
absolutely continious for which Monge and Kantorivich formulations admit the
same unique minimizer. We also present an important special case of the above
result, that is when c is the squared Euclidean distance. As shown by Brenier in
his seminal paper, the optimal Monge map can be characterized as the gradient of
a convex function.

Some Useful Properties. Some of the main properties of the Kantorovich
optimal transport are also discussed. We introduce the Wasserstein distances that
are special cases of the Kantorovich OT when the ground cost is a distance d(x, y) on
Rd to a power p ≥ 1. These objects define metrics to measure the distance between
two probability distributions µ and ν with moments of order p. The Wasserstein
distance satisfies all three metric axioms and it metrizes the weak convergence. We
also present the dual formulation of OT defined as an optimization problem that
aims to find the supremum cost

∫
Rd fdµ+

∫
Rd gdν over all possible bounded and

continuous functions f and g that satisfy the cost constraint f ⊕ g ≤ c, given µ
and ν that are probability distributions. More formally the dual OT problem is
defined as:

sup

{∫
Rd

fdµ+

∫
Rd

gdν : s.t. f, g ∈ Cb(Rd) and f ⊕ g ≤ c

}
.

We recall a sufficient condition for the existence of a solution for the dual formulation,
which requires that µ and ν are compactly and c is continuous. Then under the

23



same assumption, we present a strong duality result that shows that both the dual
and the primal formulation of OT are equal.

Chapter 2. Optimal Transport: Challenges in Ma-
chine Learning

This chapter introduces the practical challenges of applying optimal transport
(OT) on data for machine learning applications. The focus is on discrete and finite
probability measures, which is the main setting of OT application in machine
learning. In particular, the chapter focuses on the discrete formulation of the
Monge problem and the challenges in solving it due to its degeneracy. It also covers
the discrete formulation of the Kantorovich relaxation, highlighting its limitations
in terms of both computational complexity and statistical aspects. Additionally,
the chapter introduces the entropy-regularized OT as an approximation of OT that
offers improved complexity and faster statistical convergence rates.

Discrete Optimal Transport. The discrete optimal transport problem aims at
solving OT between probability measures that are discrete (and finite), meaning
each measure is a weighted sum of Dirac measures supported on finitely many points.
When considering the Monge formulation of OT in the discrete setting which seeks
a map minimizing the transportation cost by associating to each point of the initial
measure a single point that must push the mass of one measure toward the mass of
another, one can encode this map using indices and formulate it as a generalization
of the optimal assignment problem. However, both the discrete Monge OT and the
assignment problem are limited in that the former is in general degenerate while
the latter can only compare uniform histograms of the same size. Additionally,
the feasible set for the Monge problem is non-convex, making it difficult to solve
in its original formulation. When considering the Kantorovich’s approach in the
discrete setting which relax the deterministic nature of transportation, allowing
mass at a source point to be potentially dispatched across several locations, one
can reformulate the OT problem as a simple linear program using the formalism
of matrices. This approach defines a valid coupling as a matrix to encode the
flexibility of probabilistic transport, which is always symmetric, and the resulting
optimal transport problem can be solved using the network simplex algorithm.
However solving the problem remains coostly as it requires a supercubic complexity
with respect to the number of points and therefore can only be applied for small
problems of size smaller than a few thousands of points. The problem of estimating
the optimal transport cost between two distributions, µ and ν, using only samples
drawn from these distributions is also presented. A common estimator for the
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unknown distance between the true distributions is to compute it between the
empirical measures. The rate of convergence of the estimated distance to the true
distance is often referred to as the "sample complexity". The sample complexity of
the p-Wasserstein distance is presented, which states that the expected value of the
absolute difference between the estimated and true distances is of order n−1/d. This
rate is tight in Rd if one of the measures has a density with respect to the Lebesgue
measure, but it can be refined if the measures are supported on low-dimensional
subdomains.

Entropic Optimal Transport. Computing exactly the optimal transport cost
in the discrete setting requires solving a costly linear program with a supercubic
complexity. Moreover, OT suffers from the curse of dimensionality and is therefore
likely to be meaningless when used on samples from high-dimensional densities. To
alleviate these issues, Cuturi proposes to regularize the OT problem by adding an
entropic penalty to the objective. By doing so, one can solve exactly this regularized
OT problem using a simple alternate minimization scheme, called the Sinkhorn
algorithm, that relies only on matrix/vector products and therefore obtains an
improved quadratic complexity in terms of time and memory. More specifically, the
optimal coupling solving the entropic OT has the form P = diag(u)K diag(v) and
the scaling vectors u and v are updated at each iteration of the Sinkhorn algorithm
using simple rescaling operations. The regularization also helps overcome the
curse of dimensionality to have good statistical performances. If enough entropy is
added, then entropic OT between empirical measures converges towards the unkown
entropic OT cost between the true measures with a parametric rate. However,
when the entropic penalty is not large enough, the estimation of entropic OT still
suffers from the curse of the dimension.

Chapter 3. Gromov-Wasserstein: Quadratic Optimal
Transport

This chapter presents the Gromov-Wasserstein (GW) problem, which can be seen
as the quadratic variant of optimal transport. One of the main motivation of
GW is that it allows the comparison of probability measures even if they are
supported on incomparable sets. In this chapter, we recall the principal definitions
and properties of the GW problem, discuss the computational aspects of the GW
problem, including its connections to the Quadratic Assignment Problem (QAP)
and its NP-hard nature and present an alternative heuristic based on entropic
regularization in order to approximate the solution of the GW problem.
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Introduction to Gromov-Wasserstein. The Gromov-Wasserstein (GW) prob-
lem is an alternative to the Optimal Transport (OT) problem, and is used for
situations where probability measures have supports in incomparable spaces. The
GW problem involves finding an optimal coupling between two probability measures
on two Polish spaces, based on a ℓp distance between the costs of the two spaces.
More formally, Let cX : X×X → R and cY : Y ×Y → R be continuous measurable
functions, and µ ∈ P(X), ν ∈ P(Y ) be probability measures on X, Y two Polish
spaces. The Gromov-Wasserstein problem is defined as:

GWp((µ, cX), (ν, cY )) = inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y
|cX(x, x′)− cY (y, y′)|p dγdγ

) 1
p

.

The GW objective is constructed so that if an optimal coupling γ maps x to y and
x′ to y′, then the couple (x, x′) should be "as similar" in X according to cx as (y, y′)
in Y according to cY . When cX , cY are distances, it implies that x, x′ are as close in
X as y, y′ in Y . The GW problem always admits a solution given certain regularity
assumptions on the costs. In addition, the GW problem defines a distance between
(equivalence classes of) metric measure spaces that are triplet including a Polish
space, a metric, and a Borel probability measure. GW is invariant with respect
to a large class of transformation such as rotations, translations or permutations
which is particularly useful when it comes to compare shapes.

Computational Aspects of Gromov-Wasserstein. When applied on dis-
crete probability measures, the GW problem can be reformulated as a quadratic
non-convex optimization problem over the set of nonnegative matrices satysfing
linear constraints. This problem is NP-hard in general and notoriuously hard to
approximate. When the discrete measures under considations admits the same
support size and are uniforms, then GW can be viewed as a relaxation of the
Quardratic Assignment Problem (QAP). Indeed, by restricting the admissible
couplings to be those which are supported on a graph of a function, that are in fact
the permutations matrices, one recovers exactly the QAP. Due to its computational
limitations, Peyré et al. [47] propose to regularize the GW problem by adding
an entropic penalty to the objective. By doing so, the authors obtain a simple
heuristic of the GW problem which consists in solving iteratively nested entropic
OT problems. This computational scheme, while allowing one to compute an
efficient approximation of the GW problem remains very costly as it requires in
the best case scenario a cubic complexity with respect to the number of points.
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Chapter 4. Linear Time Sinkhorn Divergences using
Positive Features

This chapter is based on [6].

Because of the statistical and computational hurdles of OT, its applications
in ML often rely on some form of regularization to smooth the OT problem, and
some more specific uses of an entropic penalty, to recover so called Sinkhorn
divergences [112]. These divergences are cheaper to compute than regular OT [79,
80], smooth and programmatically differentiable in their inputs [46, 55], and
have a better sample complexity [81] while still defining convex and definite
pseudometrics [113]. While Sinkhorn divergences do lower OT costs from supercubic
down to an embarassingly parallel quadratic cost, using them to compare measures
that have more than a few tens of thousands of points in forward mode remains
a challenge. The purpose of this chapter is to introduce an new approximation
scheme of the Sinkhorn algorithm which can be computed in linear time with
respect to the number of points, opening new perspectives to apply entropic OT at
scale.

Related work. The definition of Sinkhorn divergences usually starts from that
of the ground cost on observations. That cost is often chosen by default to be a
q-norm between vectors, or a shortest-path distance on a graph when considering
geometric domains [114, 115, 116, 44]. Given two measures supported respectively
on n and m points, entropic OT instantiates first a n×m pairwise matrix of costs
C, to solve a minimization problem of a linear objective penalized by the coupling’s
entropy. This can be rewritten as a Kullback-Leibler minimization:

min
couplings P

⟨C,P ⟩ − εH(P ) = ε min
couplings P

KL(P,K) , (1)

where matrix K is defined as K := exp(−C/ε), the elementiwe neg-exponential of a
rescaled cost C. This problem can then be solved using Sinkhorn’s algorithm, which
only requires applying repeatedly kernel K to vectors. While faster optimization
schemes to compute regularized OT have been been investigated [117, 118, 119],
the Sinkhorn algorithm remains, because of its robustness and simplicity of its
parallelism, the workhorse of choice to solve entropic OT. Since Sinkhorn’s algorithm
cost is driven by the cost of applying K to a vector, speeding up that evaluation is
the most impactful way to speedup Sinkhorn’s algorithm. This is the case when
using separable costs on grids (applying K boils down to carrying out a convolution
at cost (n1+1/d) [120, Remark 4.17]) or when using shortest path metrics on graph
in which case applying K can be approximated using a heat-kernel [121]. While it
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is tempting to use low-rank matrix approximations of the kernel K using standard
techniques, applying them within Sinkhorn iterations requires that the application
of the approximated kernel guarantees the positiveness of the output. Indeed, if
some values of the kernel K are close to 0 and the approximation of each entry are
not sufficiently precise, then the approximate kernel might have an negative entries
which is enough to make the Sinkhorn algorithm diverge. In [122], the authors
propose to use the Nyström method in order to approximate the kernel K and
decrease the complexity of the Sinkhorn algorithm, however, in order to guarantee
positivity of the entries of the approximate kernel, their method requires ε to be
sufficiently large and and a tolerance error to be very low.

Our contributions. Because regularized OT can be carried out using only
the definition of a kernel K with positive entries, we focus instead on kernels
K that are guaranteed to have positive entries by design. Indeed, rather than
choosing a cost to define a kernel next, we consider instead ground costs of the
form c(x, y) = −ε log⟨φ(x), φ(y)⟩ where φ is a map from the ground space onto the
positive orthant in Rr. This choice ensures that both the Sinkhorn algorithm itself
(which can approximate optimal primal and dual variables for the OT problem)
and the evaluation of Sinkhorn divergences can be computed exactly with an effort
scaling linearly in r and in the number of points, opening new perspectives to
apply OT at scale. Starting from the kernel instead of the cost to approximate the
entropic OT, our contributions are three fold:

• We introduce a general family of kernels admitting a positive and random
feature expansion and prove under some regularity assumptions on the positive
feature map that our method is able to reach a δ-approximation of the entropic
OT cost in O(rn) time and memory, where n is the number of samples and
r is the number of positive random features considered to approximate the
true kernel, as soon as r scales in log(n)/δ2.

• We show that kernels built from our positive feature expansions can be used
to approximate some usual cost functions including the square Euclidean
distance. We provide for each of these usual costs an explicit formulation of
the positive feature map associated.

• We illustrate the versatility of our approach by extending previously proposed
OT-GAN approaches [50, 81], that focused on learning adversarially cost
functions cθ and incurred therefore a quadratic cost, to a new approach that
learns instead adversarially a kernel kθ induced from a positive feature map
φθ. We leverage here the fact that our approach is fully differentiable in the
feature map to train a GAN at scale, with linear time iterations.
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Chapter 5. Low-Rank Optimal Transport: an Algo-
rithmic Approach

This chapter is based on [3].

It is now increasingly clear that regularizing OT in some way or another is the
only way to mitigate the computational as well as the statistical issues [51, 74, 75]
of OT. A popular approach consists in penalizing the OT problem with a strongly
convex function of the coupling [76, 77]. The most popular regularization scheme
for OT remains the entropic approach due to its simplicity and high parallelization
capability on GPUs. However its quadratic complexity both in term of time and
memory remains a major issue when one wants to apply OT on problems with
more than a few tens of thousands of points. A key observation when entropy
is added to the coupling is that the more entropy is added, the lower the rank
(actually the nonnegative rank). Based on this observation, we explore in this work
an alternative, and more direct approach to add regularity in the OT problem: we
restrict, instead of adding entropy, the set of feasible couplings to have a small
nonnegative rank.

Related work. Low-rank factorizations are not new to regularized OT. They
have been used to speed-up the resolution of entropy regularized OT with the
Sinkhorn algorithm, pending some approximations: Given a data-dependent n×m
cost matrix C, the Sinkhorn iterations consist in matrix-vector products of the
form Kv or KTu where K := exp(−C/ε) and u, v are n,m- vectors. Altschuler
et al. [122] and Altschuler and Boix-Adsera [123] have proposed to approximate
the kernel K with a product of thin rank r matrices, K̃ = ABT . Naturally, the
ability to approximate K with a low-rank K̃ degrades as ε decreases, making this
approach valid only for sufficiently large ε. Thanks to this approximation, however,
each Sinkhorn iteration is linear in n or m (O(n + m)r)) as long as r ≪ n,m,
and the coupling outputted by the Sinkorn algorithm is of the form P̃ = CDT

where C = diag(u)A, D = diag(v)B. This approximation results therefore in a
low-rank solution that is not, however, rigorously optimal for the original problem
as defined by K but rather that defined by K̃. The solution obtained with K̃
can be arbitrary close to the true solution by increasing the rank r considered at
the cost of a higher complexity. Similarly, in Scetbon and Cuturi [6] we consider
instead nonnegative low-rank approximations for K of the form K̃ = QRT where
Q,R > 0 coordinate-wise. The positivity is key here as it ensures the convergence
of the approximate Sinkhorn scheme and so for any choice of ε. By doing so, we
ends up with a coupling approximating the optimal solution of the entropic OT
and of the form P = EF T where E ∈ Rn×r

+ and F ∈ Rm×r
+ . Therefore the coupling
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outputted by this scheme admits a nonnegative-rank of at most r. However, among
all the couplings admitting a nonnegative rank smaller than r, the solution obtained
by this method is in general not the one that reaches the smallest OT cost, and
therefore is not optimal in this respect. To our knowledge, only Forrow et al. [124]
have used low rank considerations for couplings, rather than costs or kernels. Their
work studies the case where the ground cost is the squared Euclidean distance. They
obtain for that cost a proxy for rank-constrained OT problems using 2-Wasserstein
barycenters [125]. Their algorithm blends those in [126, 127] and results in an
intuitive mass transfer plan that goes through a small number of r points, where r
is the coupling’s nonnegative rank.

Our Contributions. In this work, we propose a new alternative to entropic OT
to regularize the OT problem by directly constraining the non-negative rank of
admissible couplings. Our approach borrows ideas from [124] but is generic as it
applies to all ground costs. Here, we constrain the nonnegative rank of the coupling
solution P in the OT problem, rather than relying on a low rank approximation K̃
for kernel K = e−C/ε. This is a crucial point, because the ability to approximate
K with a low rank K̃ depends implicitly on the choice of ε which can decrease as
ε goes to 0. By contrast, our approach applies to all ranks, small and large. To
tackle this problem, we propose to repamatrize the optimization problem and show
that couplings admitting a nonnegative rank smaller than r can be expressed as
couplings of the form P = Q diag(1/g)RT decomposed as the product of two thin
sub-couplings Q ∈ Rn×r

+ and R ∈ Rm×r
+ with common right marginal g, and left-

marginal given by those of P on each side. Each of these sub-couplings minimizes a
transport cost that involves the original cost matrix C and the other sub-coupling.
We handle this problem by optimizing jointly on Q, R and g using a mirror-descent
approach. We prove the non-asymptotic stationary convergence of this approach.
Interestingly, we also show that a low-rank assumption on the cost matrix (not
on the kernel) can also be leveraged, providing therefore a “best of both worlds”
scenario in which both the coupling ’s and the cost ’s (not the kernel) low rank
properties can be enforced and exploited. Indeed we show that the time complexity
of our algorithm can become linear when exploiting low rank assumptions on the
cost involved in the OT problem. Finally, a useful parallel can be drawn between
our approach and that of the vanilla Sinkhorn algorithm, in the sense that they
propose different regularization schemes. Indeed, the (discrete) path of solutions
obtained by our algorithm when varying r between 1 and min(n,m) can be seen
as an alternative to the entropic regularization path. Both paths contain at their
extremes the original OT solution (maximal rank and minimal entropy) and the
product of marginals (minimal rank and maximal entropy).
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Chapter 6. Low-rank Optimal Transport: Theoreti-
cal Properties

This chapter is based on [1].

While it is always intuitively possible to reduce the size of measures (e.g. using
k-means) prior to solving an OT between them, a promising line of work proposes to
combine both [128, 3, 2]. Conceptually, the low-rank approach solve simultaneously
both an optimal clustering/aggregation strategy with the computation of an effective
transport. This intuition rests on an explicit factorization of couplings into two
sub-couplings. This has several computational benefits, since its computational
cost becomes linear in n if the ground cost matrix seeded to the OT problem has
itself a low-rank. While these computational improvements, mostly demonstrated
empirically, hold several promises, the theoretical properties of these methods are
not yet well established. This stands in stark contrast to the Sinkhorn approach,
which is comparatively much better understood. In this chapter, we target main
theoretical properties and practical aspects of the low-rank approach introduced
in [3] in order to cement the impact of low-rank approaches in computational OT.

Related work. In an applied setting, we often assume that we only have access
to samples drawn from the distributions of interest. An important statistical
problem in optimal transport is to approximate the (usually unknown) optimal
transport cost between µ ∈ P(Rd) and ν ∈ P(Rd) using only samples (xi)

n
i=1 from

µ and (yj)
m
j=1 from ν. These samples are assumed to be independently identically

distributed from their respective distributions. For optimal transport costs, a
straightforward estimator of the unknown distance between the true distributions
is to compute it directly between the empirical measures µ̂ := 1

n

∑n
i=1 δxi and

ν̂ := 1
n

∑m
j=1 δxj , hoping ideally that one can control the rate of convergence of

the latter to the former. Note that here both ν̂ and µ̂ are random measures, so
OT (µ̂, ν̂) is a random number. An important question is the speed of convergence
of OT (µ̂, ν̂) toward OT (µ, ν) , and this rate is often called the “sample complexity”.
It is well known that standard OT suffers from the curse of dimensionality [129]: Its
sample complexity scales in O(n−1/d) and therefore is exponential in the dimension
of the ambient space. Although it was recently proved that this result can be
refined to consider the implicit dimension of data [72], the sample complexity of
OT appears now to be the major bottleneck for the use of OT in high-dimensional
machine learning problems. When entropy is added to the objective of the optimal
transport problem, it allows also to improve the statistical rates of OT. It has
been shown in [51, 82] that entropic OT enjoys a parametric rates O

(
ε−d/2
√
n

)
with respect to the number of samples. Therefore, when ε is sufficiently large,
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then the plug-in estimator OTε(µ̂, ν̂) enjoys a fast rate of convergence towards
the true quantity OTε(µ, ν), however when ε goes to 0, entropic OT still suffers
from the curse of dimensionality with respect to its hyperparameter ε. Although
all theoretical contributions converge towards the fact that in practice entropic
transport is much more suitable than true OT when it comes to comparing discrete
probability measures, a remaining question concerns which quantity to use to
measure the difference between two distributions based on the entropic plans.
Indeed, entropic OT is symmetric but it is no longer a distance as it does not
satisfy the triangle inequality, nor a divergence as it is not positive, nor even able
to separate distributions as in general the entropic OT cost between a measure and
itself in not 0. To alleviate these issues, Genevay et al. [78] proposed to subtract
debiasing terms from entropic OT, defining the Sinkhorn divergence. Feydy et al.
[130] then proved that the Sinkhorn divergence defines a suitable divergence able
to interpolate between the Maximum Mean Discrepency (MMD) and OT when
varying ε.

Our Contributions. The goal of this paper is to advance our knowledge, under-
standing and practical ability to leverage low-rank factorizations in OT. This paper
provides five contributions, targeting theoretical and practical properties of LOT:

• We generalize the definition of Low-rank OT (LOT), introduced in [3] in the
discrete case, for general probability measures and study the bias induced by
the low-rank constraints. We derive the rate of convergence of the low-rank
OT to the true OT for both discrete and general probability measures with
respect to the non-nnegative rank parameter.

• We make a first step towards a better understanding of the statistical com-
plexity of LOT by providing an upper-bound of the statistical error, made
when estimating LOT using the plug-in estimator. Given samples drawn inde-
pendently from general probability measures supported on compact subsets of
Rd, we show that the empirical version of the LOT cost can be upper-bounded
by the LOT cost between the true measures and an additional error term
that enjoys a parametric rate O(

√
r/n) that is independent of the dimension

d.

• We exhibit links between the bias induced by the low-rank factorization
and clustering methods. Because the nonnegative rank constaint induces a
bias on the OT problem, the LOT cost between a measure and itself is not
necessarily 0. This value and the low nonnegtaive-rank coupling solving this
LOT problem reflect geometrical information about the measure: LOT cost
tells us how much a measure can be clustered in r clusters according to the
ground cost c while the optimal coupling provides the clustering of the points
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according to this geometry. Therefore LOT offers a new clustering method
and so for any geometry c. As a special case, when c = ∥ · − · ∥22 we recover
the classical k-means clustering method.

• We introduce a debiased version of LOT: as the Sinkhorn divergence [130],
we show that debiased LOT is nonnegative, equal to 0 if and only if the
two measures are the same, that it metrizes the weak convergence, and
that it interpolates between the maximum mean discrepancy [18] and OT
when varying the nonnegative rank r. While the debiased LOT has all
the desirable geometric properties in order to be used as a loss function to
compare distributions, it still retains the favorable computational complexity
of LOT and therefore is a suitable choice for large-scale application in ML
when one aims at learning a distribution as in generative modeling.

• We propose practical strategies to tune the step-length and the initialization
of the algorithm presented in [3] allowing to have a generic and automatized
method for the choice of these hyperparameters, leaving only one hyperpa-
rameter to be chosen by the user, namely the choice of the nonnegative rank
r, like the choice of ε in the entropic OT.

Chapter 7. Low-rank Gromov Wasserstein Distances
This chapter is based on [2].

The ability to align points across two related yet incomparable point clouds
(e.g. living in different spaces) plays an important role in machine learning. The
Gromov-Wasserstein (GW) framework provides an increasingly popular answer to
such problems, by seeking a low-distortion, geometry-preserving assignment between
these points. As a non-convex, quadratic generalization of optimal transport (OT),
GW is NP-hard. Much like OT is a relaxation of the optimal assignment problem,
GW is a relaxation of the quadratic assignment problem (QAP). Both GW and
QAP are NP-hard [131]. While practitioners often resort to solving a regularized
version of GW as a nested sequence of entropy-regularized OT problems, the cubic
complexity (in the number n of samples) of that approach is a roadblock. We show
in this chapter how our recent variant of the OT problem that restricts the set of
admissible couplings to those having a low-rank factorization [3] is remarkably well
suited to the resolution of GW.

Related work. The GW problem replaces the linear objective in OT by a non-
convex, quadratic, objective QA,B(P ) := cst − 2⟨APB,P ⟩ parameterized by two
square cost matrices A and B. In practice, linearizing iteratively QA,B works
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well [84, 85]: recompute a synthetic cost Ct := APt−1B, use Sinkhorn to get
Pt := argminP ⟨Ct, P ⟩ + εreg(P ), repeat. This leads to a computational scheme
that scales in cubic time and requires a quadratic memory space with respect to
the number of samples. Several obstacles stand in the way of speeding up this
entropic GW scheme. The re-computation of the cost matrix involved at each outer
iteration is an issue, since it requires O(n3) operations [47, Prop. 1]. We only know
of two broad approaches that achieve tractable running times: (i) Solve related,
yet significantly different, proxies of the GW energy, either by embedding points
as univariate measures [86, 87], by using a sliced mechanism when restricted to
Euclidean settings [88] or by considering tree metrics for supports of each probability
measure [89], (ii) Reduce the size of the GW problem through quantization of
input measures [90] or recursive clustering approaches [91, 62]). Interestingly, no
work has, to our knowledge, tried yet to accelerate Sinkhorn iterations withing
GW.

Our contributions. Our method addresses the problem of approximating the
GW using the new regularization scheme proposed in [3] based on low-rank con-
straints. Our method overcomes limitations that arises from updating the cost
matrix Ct at a cubic cost and solving the nested entropic OT problems requiring a
quadratic complexity.

• We show that a low-rank factorization (or approximation) of the two input
cost matrices that define GW, one for each measure, can be exploited to
lower the complexity of recomputing Ct from cubic to quadratic. By doing
we do, we are also able to reduce the total complexity of the entropic GW
scheme from cubic to quadratic.

• We show next, independently, that using the low-rank approach for couplings
advocated by [3] to solve OT can be inserted in the GW pipeline and result
in a O(n2) strategy for GW, with no prior assumption on input cost matrices.
We also briefly explain why methods that exploit the geometrical properties
of C (or its kernel K = e−C) to obtain faster iterations are of little use in a
GW setup, because of the necessity to re-instantiate a new cost Ct at each
outer iteration.

• Finally, we show that both low-rank assumptions (on costs and couplings)
can be combined to shave yet another factor and reach GW approximation
with linear complexity in time and memory. We provide experiments, on
simulated and real datasets, which show that our approach has comparable
performance to entropic-regularized GW and its practical ability to reach
“good” local minima to GW, for a considerably cheaper computational price,

34



and with a conceptually different regularization path, yet can scale to millions
of points.

Chapter 8. Equitable and Optimal Transport with
Multiple Agent

This chapter is based on [5].

Fair division [94] has been widely studied by the artificial intelligence [95] and
economics [96] communities. Fair division consists in partitioning diverse resources
among agents according to some fairness criteria. One of the standard problems in
fair division is the fair cake-cutting problem [97, 98]. The cake is an heterogeneous
resource, such as a cake with different toppings, and the agents have heterogeneous
preferences over different parts of the cake, i.e., some people prefer the chocolate
toppings, some prefer the cherries, others just want a piece as large as possible.
Hence, taking into account these preferences, one might share the cake equitably
between the agents. A generalization of this problem, for which achieving fairness
constraints is more challenging, is when the splitting involves several heterogeneous
cakes, and where the agents have linked preferences over the different parts of the
cakes. This problem has many variants such as the cake-cutting with two cakes [99],
or the Multi Type Resource Allocation [100, 101]. In all these models it is assumed
that there is only one indivisible unit per type of resource available in each cake,
and once an agent choose it, he or she has to take it all. In this setting, the cake
can be seen as a set where each element of the set represents a type of resource, for
instance each element of the cake represents a topping. A natural relaxation of these
problems is when a divisible quantity of each type of resources is available. Based
on the fundamental idea of Kantorovich to relax the OT problem, we introduce in
this chapter EOT (Equitable and Optimal Transport), a formulation that solves
both the cake-cutting and the cake-cutting with two cakes problems when the
resources are divisible.

Related work. Fair division of goods has a long standing history in economics
and computational choice. A classical problem is the fair cake-cutting that consists
in splitting the cake between N individuals according to their heterogeneous
preferences. The cake X , viewed as a set, is divided in X1, . . . ,XN disjoint sets
among the N individuals. The utility for a single individual i for a slice S is denoted
Vi(S). It is often assumed that Vi(X ) = 1 and that Vi is additive for disjoint sets.
There exists many criteria to assess fairness for a partition X1, . . . ,XN such as
proportionality (Vi(Xi) ≥ 1/N), envy-freeness (Vi(Xi) ≥ Vi(Xj)) or equitability
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(Vi(Xi) = Vj(Xj)). The cake-cutting problem has applications in many fields such
as dividing land estates, advertisement space or broadcast time. An extension of
the cake-cutting problem is the cake-cutting with two cakes problem [99] where two
heterogeneous cakes are involved. In this problem, preferences of the agents can be
coupled over the two cakes. The slice of one cake that an agent prefers might be
influenced by the slice of the other cake that he or she might also obtain. The goal
is to find a partition of the cakes that satisfies fairness conditions for the agents
sharing the cakes. Cloutier et al. [99] studied the envy-freeness partitioning. Both
the cake-cutting and the cake-cutting with two cakes problems assume that there
is only one indivisible unit of supply per element x ∈ X of the cake(s). Therefore
sharing the cake(s) consists in obtaining a paritition of the set(s). However in
this setting, the problem might not be well posed, and even if it is, solving the
problem can be hard in practice. In this chapter, we also establish the links of
EOT with some integral probability metrics. IPMs are (semi-)metrics on the space
of probability measures. For a set of functions F and two probability distributions
µ and ν, they are defined as

IPMF(µ, ν) = sup
f∈F

∫
fdµ−

∫
fdν.

For instance, when F is chosen to be the set of bounded functions with uniform
norm less or equal than 1, we recover the Total Variation distance [132] (TV).
They recently regained interest in the ML community thanks to their application
to Generative Adversarial Networks (GANs) [22] where IPMs are natural metrics
for the discriminator [133, 134, 135, 136]. They also helped to build consistent
two-sample tests [18, 137]. However when a closed form of the IPM is not available,
exact computation of IPMs between discrete distributions may not be possible
or can be costful. For instance, the Dudley metric can be written as a Linear
Program [138] which has at least the same complexity as standard OT.

Our Contributions. In this paper we introduce EOT an extension of Optimal
Transport which aims at finding an equitable and optimal transportation strategy
between multiple agents. We make the following contributions.

• We introduce the EOT which aims at finding an equitable and optimal
coupled partition of the resources according the heterogeneous preferences of
the agents. Each agent in the problem is represented as an utility (or cost)
function, and the resources allocated to each agent is a sub-coupling such
that their sum is a valid coupling of the resources satisfying the marginal
constraints. Formally, EOT is finding the partition that maximize the smallest
utilities among the agents. From a transport point of view, EOT aims at
splitting the transportation task from a probabilities measures toward another
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between multiples workers (or agents) represented as cost functions in order
to obtain a partition of the task that is equitable and optimal. Here EOT is
trying to minimize the most expensive total transportation cost among the
workers.

• We show that EOT solves a fair division problem where heterogeneous
resources have to be shared among multiple agents. More precisely, we show
that the EOT always admit a solution and that at optimality, the total
utility or cost of the agents are equal and optimal. As a by-product, we also
show that the partition obtained is not only equitable and optimal but also
proportional which is another important fairness criteria.

• EOT is a linear optimization problem under linear constraints. We derive
its dual and prove that strong duality holds. As a by-product, we show that
EOT is related to some usual IPMs families and in particular the widely
known Dudley metric.To the best of our knowledge, this is the first time
a link is given between the Dudley metric and Optimal Transport. As a
consequence, we also derive sufficient conditions on the cost functions for
EOT to metrize the weak convergence.

• We also tackle the computational aspects of EOT and propose an entropic
regularized version of the problem, derive its dual formulation, obtain strong
duality. We then provide an efficient algorithm to approximate EOT.

Chapter 9. Mixed Nash Equilibria in the Adversarial
Examples Game
This chapter is based on [4].

Adversarial examples [102, 103] are one of the most dizzling problems in machine
learning: state of the art classifiers are sensitive to imperceptible perturbations of
their inputs that make them fail. This asks the following question: can we build
classifiers that are robust against any adversarial attack? Assuming that one can
reformulate the adversarial risk minimization problem as a min-max problem, then
the above question is equivalent to ask for the existence of a Nash Equilibrium.
Showing the existence of such equilibrium would ensure that it is possible to learn
a classifier that is robust against any small pertubation of the data, i.e. against any
attack that happens after having learned the classifier. In this chapter, we tackles
the problem of adversarial examples from a game theoretic point of view using
tools from optimal transport and study the open question of the existence of mixed
Nash equilibria in the zero-sum game formed by the attacker and the classifier.
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Related work. A recent line of research argued that randomized classifiers
could help countering adversarial attacks [139, 140, 141, 142]. Along this line,
[143] demonstrated, using game theory, that randomized classifiers are indeed
more robust than deterministic ones against regularized adversaries. However, the
findings of these previous works depends on the definition of considered adversary.
In particular, they did not investigate scenarios where the adversary also uses
randomized strategies, which is essential to account for if we want to give a
principled answer to the question on the existence of a classifier that is robust
against any adversarial attack. Previous works studying adversarial examples from
the scope of game theory investigated the randomized framework (for both the
classifier and the adversary) in restricted settings where the adversary is either
parametric or has a finite number of strategies [144, 145, 146]. Adversarial examples
have been studied under the notions of Stackelberg game in [147], and zero-sum
game in [144, 145, 146]. These works considered restricted settings (convex loss,
parametric adversaries, etc.) that do not comply with the nature of the problem.
Indeed, it has been proven that no convex loss can be a good surrogate for the 0/1
loss in the adversarial setting [148, 149], narrowing the scope of these results. If
one can show that for sufficiently separated conditional distributions, an optimal
deterministic classifier always exists, necessary and sufficient conditions for the
need of randomization are still to be established. Pinot et al. [143] studied partly
this question for regularized deterministic adversaries, leaving the general setting of
randomized adversaries and mixed equilibria unanswered, which is the very scope
of this paper. Bhagoji et al. [150] and Pydi and Jog [151] investigated classifier-
agnostic lower bounds on the adversarial risk of any deterministic classifier using OT.
These works only evaluate lower bounds on the primal deterministic formulation of
the problem, while we study the existence of mixed Nash equilibria. Note that Pydi
and Jog [151] started to investigate a way to formalize the adversary using Markov
kernels, but did not investigate the impact of randomized strategies on the game.
Another line of works [152, 153, 154] studied the problem of adversarial examples
through the scope of distributionally robust optimization. In these frameworks, the
set of adversarial distributions is defined using an ℓp Wasserstein ball (the adversary
is allowed to have an average perturbation of at most ε in ℓp norm). This however
does not match the usual adversarial attack problem, where the adversary cannot
move any point by more than ε.

Ours Contributions. In this work, we study the adversarial example game from
a game theoretic point of view thanks to optimal transport. More precisely we
make the following contributions.

• In the standard formulation of the adversarial risk, the adversary is defined
as a function that maps each point of the dataset to an adversary point
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restricted to live in a ball centered in the datapoint that maximizes the loss.
Using the fundamental idea of Kantorovich, we extend the work of [151] and
relax this formulation in order to allow the adversary to be instead a coupling
between the data distribution and the adversarial one. This relaxation is
in fact tight as we show that both formulation are equal while the latter
can be formulated as an optimization problem. Indeed we show that the
adversarial risk can be reformulated as a linear maximization problem over
distributions restricted to live in a specific Wasserstein ball centered on the
data distribution.

• Using our variational formulation of the adversarial risk, we show that the
adversarial risk minimization problem can casted as a Distributionally Robust
Optimization (DRO) [155]. This formulation naturally leads us to analyze
adversarial risk minimization as two-player a zero-sum game.

• We show that in general a Nash equilibrium in such game does not exists
and we provide a simple example showing the necessity for using randomized
strategies both with the attacker and the classifier. Then we show that in
the adversarial example game when both the adversary and the classifier
can use randomized strategies, it is always possible to reach a Mixed Nash
equilibrium.

• Finally we design efficient algorithms to learn a finite mixture of classifiers.
Taking inspiration from robust optimization [152] and subgradient meth-
ods [156], we derive a first oracle algorithm to optimize a finite mixture.
Then, following the line of work of [76], we introduce an entropic regulariza-
tion to effectively compute an approximation of the optimal mixture. We
validate our findings with experiments on simulated and real datasets, namely
CIFAR-10 an CIFAR-100 [157].
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Contributions de cette Thèse

La comparaison et la manipulation de mesures de probabilités sont des tâches
omniprésentes en apprentissage automatique (AA). Par exemple, les méthodes
d’apprentissage supervisé [12] s’appuient fortement sur ces comparaisons pour
mesurer le risque. En classification [13], les praticiens de l’AA apprennent un
classifieur en minimisant la fonction perte d’entropie croisée [14] entre les vraies
distributions conditionnelles des étiquettes et les distributions conditionnelles ap-
prises sur les classes. Dans le cadre de la régression [15], le risque de la prédiction
est également mesuré en comparant la vraie distribution conditionnelle des données
avec celle apprise sous des hypothèses gaussiennes. Plus généralement, l’estimation
du maximum de vraisemblance (EMV) [16], qui est une technique standard pour
estimer les paramètres d’une distribution de probabilité qui décrit le mieux les
données observées, vise à minimiser la divergence de Kullblack-Leibler (KL) entre
la vraie distribution et la distribution modélisée. Toutes ces techniques fondamen-
tales, largement utilisées en AA, reposent sur la comparaison des distributions afin
de quantifier l’incertitude des prédictions. Il est également essentiel de pouvoir
comparer les distributions dans d’autres domaines de la science des données, comme
par exemple pour la conception de tests statistiques [17, 18] ou la découverte de
causes [19, 20]. Ces dernières années, ce besoin a reçu encore plus d’attention de
la part de la communauté de l’AA grâce au développement de nouveaux modèles
génératifs capables de résoudre des tâches de plus en plus complexes. Les autoen-
codeurs variationnels [21] sont une classe de modèles génératifs qui apprennent
à approximer une distribution cible en encodant les données dans un espace de
dimension inférieure et impliquent la minimisation d’une mesure de divergence entre
la distribution latente et une distribution a priori. Les réseaux adverses génératifs
(GAN) [22] sont une autre classe populaire de modèles génératifs qui apprennent
à générer des échantillons en comparant de manière adverse la distribution de
probabilité générée avec la distribution cible. Les flux de normalisation [23] peuvent
être utilisés pour la modélisation générative ainsi que pour l’estimation de la densité
et sont appris à l’aide de l’EMV. Les modèles de diffusion [24] transforment une
distribution de base simple en une distribution cible plus complexe à l’aide d’une
séquence d’étapes de diffusion et mesurent les erreurs séquentielles à l’aide des
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divergences KL entre les distributions générées et les distributions réelles. Enfin,
l’exemple le plus illustratif de cette littérature est certainement l’émergence des
transformers [25] qui sont aujourd’hui l’une des architectures les plus efficaces
pour résoudre un large éventail de problèmes en vision par ordinateur [26] et en
traitement du langage naturel [27]. Ces nouvelles architectures visent à traiter les
données comme des distributions de probabilité. En particulier, les transformers
traitent des signaux tels que des images et des phrases en les représentant respective-
ment comme des distributions discrètes de "patchs" et de mots après avoir encodé
la structure spatiale de ces objets à l’aide de représentations positionnelles [28].
Par conséquent, être capable de comparer et de traiter les distributions devient un
défi de plus en plus important en AA et c’est dans ce contexte que le transport
optimal (TO) est devenu un outil largement utilisé.

TO dans la science des données. Lorsqu’il s’agit de comparer des distribu-
tions, la littérature statistique fournit une riche classe de fonctions de divergence
pour mesurer l’écart entre deux distributions de probabilité, telles que la diver-
gence de KL, la distance de variation totale (VT), ou plus généralement la famille
des ϕ-divergences [29]. Cependant, ces divergences reposent sur la comparaison
ponctuelle des fonctions de densité et saturent ou divergent lorsque les supports des
mesures de probabilité sont disjoints, ce qui limite leur application à la comparaison
d’histogrammes ou de distributions de probabilité continues de même support.
Le TO [30] est devenu une alternative de plus en plus importante en AA grâce
à la polyvalence de son utilisation pour comparer les mesures de probabilité. À
partir d’une fonction de coût (par exemple, une distance) sur l’espace sur lequel
les mesures sont supportées, le TO consiste à trouver une correspondance [31] ou
un couplage [32] entre les deux mesures qui est optimal par rapport à ce coût.
En d’autres termes, le TO étend naturellement le coût au sol entre deux points à
une fonction de divergence entre des histogrammes de points, ou des mesures de
probabilité, sous la forme d’un problème d’optimisation. En conséquence, le TO
fournit un cadre simple et complet pour comparer les distributions de probabilité et
a inspiré de nombreux développements dans l’apprentissage automatique [33]. Une
multitude de travaux l’ont récemment relié à d’autres sujets d’actualité, tels que la
normalisation des flux ou les réseaux neuronaux convexes [34, 35, 36], tandis que
la portée de ses applications a maintenant atteint plusieurs domaines de la science
tels que la vision par ordinateur [37], le traitement du signal [38, 39, 40], la biologie
unicellulaire [41], l’imagerie [42, 43], les neurosciences [44, 45], ou modélisation
générative [49, 50, 51]. Une autre caractéristique majeure du TO est le couplage
optimal obtenu lors de sa résolution, qui fournit un alignement optimal des mesures
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de probabilité à disposition. Un tel objet, spécifique au TO et au moins aussi impor-
tant que le coût du TO lui-même, a aussi de nombreuses applications en AA pour
aligner des representations de mots [52, 53, 54], pour reconstruire les trajectoires
cellulaires [55, 56], pour l’adaptation de domaines [57, 58] ou même pour encoder
des distributions discrètes comme dans les transformers [25] à l’aide de projections
barycentriques [59]. En outre, la polyvalence du cadre du TO va au-delà de la com-
paraison des mesures de probabilité supportées sur le même espace. [60] propose une
version quadratique du TO, à savoir la distance de Gromov-Wasserstein (GW) qui
vise à comparer des nuages de points ou des mesures de probabilité supportées sur
des espaces incomparables. Alors que le TO recherche une correspondance optimale
en fonction d’un coût au sol en minimisant un score linéaire associé à ce coût, GW
recherche une correspondance qui soit aussi proche que possible d’une isométrie,
quantifiée par un score quadratique. Plusieurs problèmes en AA nécessitent de
comparer des ensembles de données qui vivent dans des espaces hétérogènes. Cette
situation se produit généralement lors du réalignement de deux vues distinctes de
points échantillonnés à partir de sources similaires. Les applications récentes à la
génomique des cellules uniques [61, 62] en sont un bon exemple: Des milliers de
cellules prélevées dans le même tissu sont réparties en deux groupes, chacune étant
traitée selon un protocole expérimental différent, ce qui donne deux ensembles
distincts de vecteurs de caractéristiques hétérogènes. Malgré cette hétérogénéité,
on s’attend à trouver une correspondance entre les points du premier et du second
ensemble, car ils contiennent des informations globales similaires. GW a égale-
ment été utilisé dans l’apprentissage supervisé [63], la modélisation générative [64],
l’adaptation au domaine [65], la prédiction structurée [66], la chimie quantique [47]
et l’alignement de couches [67].

Défis du TO en AA. La résolution des problèmes de transport optimal à l’échelle
pose cependant des défis redoutables. Le plus évident d’entre eux est d’ordre com-
putationel: l’instanciation du problème Kantorovich [32] sur des mesures discrètes
de taille n peut être résolue à l’aide d’un programme linéaire (PL) de complexité
O(n3 log n) [68, 69, 70]. Un deuxième défi, tout aussi important, réside dans la per-
formance statistique de l’utilisation de ce PL pour estimer le TO entre les densités:
la solution du PL entre les échantillons i.i.d. converge exponentiellement lentement
par rapport à la dimension ambiante vers celle entre les densités [71]. [72, 73]
ont obtenu des résultats fins et montrent que l’estimation du TO nécessite un
nombre exponentiel d’échantillons par rapport à la dimensionnalité intrinsèque du
support. Il est maintenant de plus en plus clair que la régularisation du TO d’une
manière ou d’une autre est le seul moyen d’atténuer ces deux problèmes [51, 74, 75].
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Une approche populaire consiste à pénaliser le problème du TO avec une fonction
fortement convexe du couplage [76, 77], et certaines utilisations plus spécifiques
d’une pénalité entropique, pour récupérer les divergences dites de Sinkhorn [78].
Le TO entropique est moins coûteux à calculer que le TO ordinaire [79, 80], lisse
et différentiable dans ses entrées [46, 55], et a une meilleure complexité statis-
tique [81, 82]. Bien que les solveurs entropiques du TO réduisent le coût de calcul
de supercubique à un coût quadratique parallèlisable, son utilisation pour comparer
des mesures qui sont supportées sur plus de quelques dizaines de milliers de points
reste un défi. Ces limitations de calcul sont encore plus critiques dans le cas de
GW, une généralisation quadratique non convexe du problème TO, qui est NP-hard
à résoudre en général [83]. Comme le TO, GW peut être régularisé en utilisant
l’entropie [84, 85] et [47] proposent d’appliquer un schéma de descente en miroir
(DM) pour approcher le coût entropique de GW consistant à résoudre une séquence
de problèmes de TO entropiques imbriqués. Bien que cette heuristique permette
d’obtenir des coûts GW faibles, elle reste considérablement limitée en pratique
en raison de sa complexité cubique par rapport au nombre de points. Seules
deux approches générales permettent d’obtenir des temps d’exécution raisonnables
: (i) Résoudre des approximations reliées, mais significativement différentes, de
l’énergie de GW, soit en intégrant les points comme des mesures univariées [86, 87],
soit en utilisant un mécanisme en tranches limité au cas euclidien [88], soit en
considérant des métriques arborescentes pour les supports de chaque mesure de
probabilité [89], (ii) Réduire la taille du problème de GW par la quantification des
mesures d’entrée [90] ou par des approches de regroupement récursif [91, 62]. Toute-
fois, aucun de ces travaux n’a tenté d’accélérer le schéma DM proposé dans [47]
pour approximer GW.

TO et applications AA. Bien que le coût du TO ou sa solution aient été utilisés
directement comme fonction de perte [49] ou pour aligner les distributions [92]
dans diverses applications de l’AA, de nombreux liens entre le TO et les problèmes
appliqués restent à découvrir. L’origine de la théorie du TO remonte au XVIIIe
siècle, lorsque le mathématicien français Gaspard Monge [31] a introduit le problème
de la recherche de la manière la plus efficace de transporter une distribution de
probabilités vers une autre en utilisant des transformations capable d’envoyer une
distribution vers une autre. Bien que la formulation mathématique du transport
optimal de Monge ait été révolutionnaire, on a rapidement découvert que son
approche avait des limites en raison de l’absence de garentie d’existence d’une
solution au problème. Ce n’est que 150 ans plus tard que des progrès significatifs
ont été réalisés dans le domaine de la théorie du transport optimal, grâce à l’idée
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fondamentale de Kantorovich [32]: Il a proposé une relaxation du problème du TO
en considérant des couplages, plutôt que des transformations deterministes, pour
faire correspondre les distributions et autorisant ainsi la division des masses dans
le processus d’appariement. Il s’avère que la limitation de la formulation de Monge
du TO peut se retrouver dans plusieurs problèmes qui, à première vue, ne semblent
pas liés au TO. Un premier exemple est le problème de la répartition équitable [94].
Ce problème a été largement étudiée par les communautés de l’intelligence artifi-
cielle [95] et de l’économie [96]. Elle consiste à répartir diverses ressources entre
des agents en respectant un ou plusieurs critères d’équité. L’un des problèmes
classiques de la répartition équitable est le problème de la découpe équitable d’un
gâteau [97, 98]. Le gâteau est une ressource hétérogène, et les agents ont des
préférences hétérogènes sur les différentes parties du gâteau. Ainsi, en tenant
compte de ces préférences, on voudrait partager le gâteau équitablement entre les
agents. Ce problème a de nombreuses variantes, telles que le découpage de gâteau
avec deux gâteaux ou l’allocation de ressources de type multiple [100, 101]. Cepen-
dant, dans tous ces modèles, on suppose qu’il n’y a qu’une seule unité indivisible
par type de ressource disponible et que, par conséquent, la partition des ressources
revient à définir une transformation déterministe qui attribue à chaque type de
ressource un agent unique. La contrainte sur la partition limite considérablement
la résolution du problème de la répartition équitable, car il est possible qu’il n’y
ait pas de solution, et aucun assouplissement du problème n’a encore été proposé.
Un second problème où l’on retrouve des transformations déterministes entre des
distributions est celui des attaques adverses [102, 103]. Ce problème cherche à
trouver des classifieurs capablent d’avoir des bonnes propriètés de généralisation
malgrè des pertubations imperceptibles de la donnée. En effet, les classifieurs
actuels sont sensibles à ces perturbations imperceptibles et échouent fatalement en
cas d’attaques. Ces dernières années, la recherche s’est concentrée sur la proposition
de nouvelles méthodes de défense [104, 105, 106] et sur la construction d’attaques
de plus en plus sophistiquées [107, 108, 109, 110]. Jusqu’à présent, la plupart des
stratégies de défense se sont révélées vulnérables à ces nouvelles attaques ou sont
difficiles à calculer. Cela pose la question suivante: pouvons-nous construire des
classifieurs qui sont robustes contre toute attaque adverse ? La réponse à cette
question pourrait être principalement limitée en raison de la définition restreinte de
l’attaquant: les attaques adverses sont définies comme la solution d’un problème
d’optimisation visant à maximiser la fonction de perte sur les boules centrées sur les
points de données. Par conséquent, les attaques adverses peuvent être considérées
comme des fonctions déterministes qui envoient la distribution des données vers
des distributions adverses. Par ailleurs, à notre connaissance, aucun travail n’a
encore essayé d’assouplir la définition de l’adversaire pour donner une réponse de
principe à la question posée.
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Contributions de cette thèse. Cette thèse, commencée en 2019 sous la direc-
tion de Marco Cuturi, apporte quelques contributions sur de nouvelles approches
computationelles pour aborder les problèmes de transport optimal à grande échelle
en apprentissage automatique, et étudie de nouvelles méthodologies appliquant le
transport optimal pour résoudre des défis de longue date dans l’optimisation robuste
et l’équité algorithmique. Plus précisément, les contributions de cette thèse sont
divisées en deux parties principales. Dans une première partie, nous présentons nos
contributions concernant le développement algorithmique et théorique de nouveaux
schémas de régularisation basés sur des méthodes de faible rang pour permettre
l’application du transport optimal et de sa variante quadratique dans un cadre à
grande échelle. Dans une deuxième partie, nous présentons nos contributions où le
transport optimal est utilisé comme outil pour comprendre et étudier le problème
de la division équitable et le problème des attaques adverses.

Dans la partie II, nous présentons les quatre contributions suivantes.

• Dans [6], nous proposons d’accélérer la résolution du TO régularisé par
l’entropie avec l’algorithme de Sinkhorn en considérant une factorisation
spécifique de faible rang de la matrice du noyau K = exp(−C/ε) impliquée
dans les itérations de Sinkhorn. Notre approximation de faible rang du noyau
K est obtenue en utilisant des représentations paramétrées qui associent à
tout point du support des mesures un vecteur dans l’orthant positif et forcent
donc la positivité de la factorisation. Le couplage obtenu admets donc par
construction une factorization de faible rang non négatif. Nous montrons
que notre approche peut être utilisée pour approcher le TO entropique avec
des fonctions de coût courantes telles que la distance euclidienne au carrée.
Nous illustrons également la polyvalence de notre méthode en étendant le
TO-GAN précédemment proposé à une nouvelle approche qui apprend de
manière adverse un noyau induit à partir de representations positives. Cette
approche est entièrement différentiable et peut être utilisée pour apprendre
un GAN à l’échelle avec des itérations en temps linéaire.

• Dans [3], nous proposons un nouveau schéma de régularisation du problème de
TO, appelé "Low-rank Optimal Transport" (LOT), qui contraint les couplages
admissibles à avoir un rang non négatif faible. Au lieu de factoriser le noyau
impliqué dans les itérations de Sinkhorn avec des facteurs positifs, nous
imposons directement une contrainte de rang non négatif faible sur l’ensemble
des couplages admissibles dans le problème de TO, sans approximation sur
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les matrices de coût ou de noyau. Nous introduisons une approche générique
qui peut résoudre le problème de TO sous des contraintes de faible rang
avec des coûts arbitraires. Les couplages de faible rang non négatif ont
une factorisation naturelle de faible rang qui s’écrit comme un produit de
sous-couplages avec une marge commune et qu’on exploite pour optimiser
conjointement les sous-couplages et la distribution marginale commune à
l’aide d’une approche de descente en miroir. Nous prouvons la convergence
non asymptotique vers un point stationnaire de notre algorithme et montrons
que la complexité en temps et en mémoire de l’algorithme est généralement
quadratique mais peut devenir linéaire lorsqu’on exploite des hypothèses de
faible rang sur le coût (pas le noyau qui dépend fortement du paramètre de
régularisation ε) impliqué dans le problème du TO.

• Dans [1], nous visons à améliorer nos connaissances et notre capacité pratique
à utiliser les factorisations de faible rang dans le transport optimal. L’article
se concentre sur les aspects théoriques et pratiques du TO de faible rang
(LOT). Nous généralisons la définition de LOT aux mesures de probabilité
générales et dérivons la vitesse de convergence de LOT vers le véritable
TO pour les mesures de probabilité discrètes et générales. Nous fournissons
également une borne supérieure pour l’erreur statistique commise lors de
l’estimation de LOT à l’aide de mesures empiriques et montrons qu’elle a
un vitesse paramétrique indépendante de la dimension. Nous établissons
des liens entre le biais induit par les contraintes de faible rang sur le TO
et les méthodes de clustering. Nous introduisons une version débiaisée de
LOT qui métrise la convergence faible et convient à la comparaison à grande
échelle de mesures dans l’apprentissage automatique. Enfin, nous proposons
des stratégies pratiques pour ajuster le pas de gradient dans la descente
mirroire et l’initialisation de l’algorithme de LOT, ce qui en fait une méthode
générique et automatisée pour le choix des hyperparamètres.

• Dans [2], nous nous concentrons sur les aspects computationel de Gromov-
Wasserstein et proposons un nouveau schéma de régularisation du problème
basé sur des contraintes de faible rang. Plus précisément, nous exploitons
une factorisation de faible rang des deux matrices de coût d’entrée pour
réduire la complexité du calcul du coût, à chaque itération du schéma GW
entropique, de cubique à quadratique, diminuant ainsi sa complexité totale.
Nous montrons que l’approche de faible rang pour les couplages, proposée
initialement pour résoudre le problème de TO, peut être utilisée pour GW et
nous obtenons une complexité quadratique sans hypothèse sur les matrices
de coût d’entrée. Nous expliquons également pourquoi les méthodes qui
exploitent les propriétés géométriques des noyaux sont peu utiles dans le
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problème de GW. Nous combinons les hypothèses de faible rang sur les coûts
et les couplages pour obtenir une approximation de GW avec une complexité
linéaire en temps et en mémoire, et nous démontrons l’efficacité de notre
méthode sur des ensembles de données simulées et réelles.

Dans la partie III, nous présentons les deux contributions suivantes.

• Dans notre travail [5], nous introduisons EOT (Equitable and Optimal
Transport), qui est une version relaxée du problème de la répartition équitable.
Dans ce problème, plusieurs agents cherchent à partager un ou plusieurs
ensembles de ressources, en trouvant une partition équitable de ces ensembles.
Nous proposons ici d’assouplir le problème et de considérer le cas où les
ressources ne sont plus des ensembles mais plutôt des distributions sur
ces ensembles où une certaine quantité de masse divisible est associée à
chacun des éléments de ces ensembles. EOT est défini comme un problème
d’optimisation linéaire sous contraintes linéaires qui maximise le minimum
des utilités individuelles. Nous montrons que la partition obtenue par EOT
est équitable, optimale et proportionnelle, et nous dérivons la formulation
duale de EOT avec des résultats de forte dualité. Nous montrons également
que EOT est lié à certaines métriques sur l’espace des mesures, comme la
métrique de Dudley, et nous proposons une version régularisée du problème
avec un algorithme efficace similaire à l’algorithme de Sinkhorn pour calculer
EOT.

• Dans notre travail [4], nous obtenons une reformulation du problème de min-
imisation du risque adverse en utilisant le transport optimal. Nous montrons
qu’il peut être reformulé comme un problème d’optimisation robuste distribu-
tionnel sur des boules de Wasserstein spécifiques et nous étudions l’existence
d’équilibres de Nash. Plus précisément, en assouplissant l’adversaire pour
qu’il soit un couplage au lieu d’une transformation déterministe de la distribu-
tion des données vers la distribution adverse, nous obtenons une formulation
variationnelle du risque adverse pour des classifieurs déterministes et aléa-
toires, et nous montrons que dans les deux cas, les problèmes de minimisation
du risque adverse peuvent être reformulés comme des jeux à somme nulle
à deux joueurs. Nous montrons que dans le cas de stratégies mixtes, il est
toujours possible d’approcher un équilibre de Nash (et même de l’atteindre
sous certaines hypothèses), ce qui signifie que l’ajout d’aléas dans le choix des
classifieurs permet d’apprendre une mixture de classsifieurs qui est robuste
à toutes perturbations adverses. Nous concevons également un algorithme
qui permet d’apprendre efficacement un mélange fini de classifieurs et nous
montrons une amélioration empirique de la robustesse contre des attaques
adverses usuelles par rapport aux défenses déterministes classiques.
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Nous allons maintenant présenter plus en détail les chapitres qui constituent
cette thèse.

Chapitre 1. Transport Optimal: de Monge à Kan-
torovich

Ce chapitre introduit les concepts et résultats clés sur le transport optimal sur
lesquels cette thèse s’appuie. En raison de notre intérêt pour les applications en AA,
nous énonçons ces résultats pour des mesures supportées sur Rd. Nous présentons
d’abord la formulation originale de Monge du problème du transport optimal et
ses principales limitations, puis nous présentons la relaxation de Kantorovich et
les liens entre ces deux formulations, et enfin nous exposons quelques propriétés
fondamentales du transport optimal de Kantorovich.

Transport optimal de Monge. La formulation originale du transport optimal
a été proposée par Gaspard Monge en 1781 et est connue sous le nom de problème
de Monge. Étant donné deux mesures de masse égale µ et ν vivant dans P(Rd) et
une fonction de coût c : Rd×Rd → R+, Monge a proposé le problème du transport
optimal de µ à ν en fonction de c. Plus formellement, ce problème peut être énoncé
comme suit

inf
T :T#µ=ν

∫
Rd

c(x, T (x))dµ(x)

où T#µ est la mesure pushforward de µ par T , définie par T#µ(A) := µ(T−1(A))
pour tous les ensembles mesurables de µ. Lorsqu’elle existe, une transformation de
transport satisfaisant la contrainte T#µ = ν, assigne à chaque point x du support
de la mesure initiale µ un point T (x) du support de la mesure cible ν, et transporte
toute la masse de µ située à x vers T (x). Le problème de Monge vise à trouver,
parmi toutes ces transformations de transport, celle qui minimise le coût total
du transport. Une condition suffisante pour l’existence d’une transformation de
transport est que µ soit sans atome, mais même lorsque des tranformations de
transport existent, il se peut qu’aucune ne soit optimale. Plus généralement, le
problème de Monge n’est pas toujours bien posé et même lorsqu’il l’est, il peut être
très difficile à résoudre car l’objectif et les contraintes ne sont pas convexes.

Transport optimal de Kantorovich. La formulation de Kantorovich du prob-
lème de transport optimal assouplit le problème de Monge en cherchant à minimiser
le coût de transport sur un ensemble de transformations probabilistes qui spécifient
la quantité de masse déplacée de chaque point de la distribution source à chaque
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point de la distribution cible. Plus formellement, au lieu de considérer des trans-
formations déterministes T , Kantorovich a proposé de considérer des mesures sur
l’espace produit Rd × Rd qui ont µ et ν comme marginales :

OT(µ, ν) := inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)

où Π(µ, ν) = {γ ∈ P(Rd × Rd) s.t. π1#γ = µ, π2#γ = ν} est l’ensemble des plans
de transport, et π1 : (x, y)→ x, π2 : (x, y)→ y sont les projections canoniques. Les
minimiseurs de ce problème sont appelés plans de transport optimaux entre µ et ν.
La formulation de Kantorovich est beaucoup plus facile à traiter que le problème
de Monge car il s’agit d’un problème d’optimisation linéaire, et une solution à
la formulation de Kantorovich existe toujours sous des conditions faibles sur la
fonction de coût c. Cette nouvelle formulation du TO est beaucoup plus flexible
car elle peut traiter des scénarios plus généraux, y compris des cas où les deux
distributions ont des formes et des tailles différentes, ou lorsqu’une distribution a
des atomes.

Liens entre les deux formulations. La relaxation proposée par Kantorovich
est en fait une extension étroite du problème de Monge. Lorsque la mesure initiale
est sans atome, [111] montre que les formulations de Monge et de Kantorovich
coïncident, c’est-à-dire que les deux coûts optimaux sont égaux. Par conséquent,
la formulation de Kantorovich peut être considérée comme l’extension minimale
du problème de Monge original, qui admet un minimiseur. Nous présentons
également quelques cas généraux où une transformation de Monge optimale existe
et coïncide avec un couplage optimal résolvant le problème de transport optimal
de Kantorovich. En particulier, nous présentons le cas où le coût au sol est de
la forme c(x, y) = h(x− y) avec h une fonction strictement convexe et la mesure
initiale µ est absolument continue pour laquelle les formulations de Monge et de
Kantorivich admettent le même minimiseur unique. Nous présentons également un
cas particulier important du résultat ci-dessus, à savoir lorsque c est le carré de
la distance euclidienne. Comme l’a montré Brenier dans son article fondateur, la
transformtion de Monge optimale peut être caractérisée comme le gradient d’une
fonction convexe.

Certaines propriétés utiles. Certaines des principales propriétés du transport
optimal de Kantorovich sont également discutées. Nous introduisons les distances
de Wasserstein qui sont des cas particuliers du transport optimal de Kantorovich
lorsque le coût au sol est une distance d(x, y) sur Rd à une puissance p ≥ 1. Ces
objets définissent des métriques pour mesurer la distance entre deux distributions
de probabilité µ et ν avec des moments d’ordre p. La distance de Wasserstein
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satisfait les trois axiomes métriques et elle métrie la convergence faible. Nous
présentons également la formulation duale du TO, définie comme un problème
d’optimisation visant à trouver le coût maximisant

∫
Rd fdµ +

∫
Rd gdν sur toutes

les fonctions bornées et continues possibles f et g qui satisfont la contrainte de
coût f ⊕ g ≤ c, étant donné µ et ν qui sont des distributions de probabilités. Plus
formellement, le problème dual d’TO est défini comme suit :

sup

{∫
Rd

fdµ+

∫
Rd

gdν : s.t. f, g ∈ Cb(Rd) and f ⊕ g ≤ c

}
.

Nous rappelons une condition suffisante pour l’existence d’une solution pour la
formulation duale, qui requiert que µ et ν soient supportées sur des compacts et
que µ soit continue. Ensuite, sous la même hypothèse, nous présentons un résultat
de dualité forte qui montre que la formulation duale et la formulation primale du
TO sont égales.

Chapitre 2. Transport Optimal: Les Défis en Ap-
prentissage Automatique

Ce chapitre présente les défis pratiques de l’application du transport optimal sur les
données pour les applications en apprentissage automatique. L’accent est mis sur
les mesures de probabilité discrètes et finies, qui constituent le cadre principal de
l’application du transport optimal dans l’apprentissage automatique. En particulier,
le chapitre se concentre sur la formulation discrète du problème de Monge et sur
les difficultés à le résoudre en raison de sa dégénérescence. Il couvre également
la formulation discrète de la relaxation de Kantorovich, en soulignant ses limites
en termes de complexité de calcul et d’aspects statistiques. En outre, le chapitre
présente le TO régularisé par l’entropie comme une approximation du TO qui offre
une complexité améliorée et des taux de convergence statistique plus rapides.

Transport optimal discret. Le problème du transport optimal discret vise
à résoudre TO entre des mesures de probabilité qui sont discrètes (et finies), ce
qui signifie que chaque mesure est une somme pondérée de mesures de Dirac
supportées sur un nombre fini de points. Si l’on considère la formulation de Monge
du TO dans le cadre discret qui cherche une transformation minimisant le coût
de transport en associant à chaque point de la mesure initiale un point unique de
la mesure d’arrivée et qui doit respecter les contraintes de masses, on peut coder
cette transformation à l’aide d’indices et la formuler comme une généralisation
du problème de l’assignement optimale. Cependant, le TO de Monge discret et le
problème d’assignement sont tous deux limités dans la mesure où le premier est
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en général dégénéré tandis que le second ne peut comparer que des histogrammes
uniformes de même taille. En outre, l’ensemble réalisable du problème de Monge
n’est pas convexe, ce qui le rend difficile à résoudre dans sa formulation originale.
En considérant l’approche de Kantorovich dans un cadre discret qui relâche la
nature déterministe du transport, permettant à une masse associée à un point
d’origine d’être potentiellement répartie sur plusieurs sites, on peut reformuler
le problème TO comme un simple programme linéaire en utilisant le formalisme
des matrices. Cette approche définit un couplage valide comme une matrice pour
encoder la flexibilité du transport probabiliste, qui est toujours symétrique, et le
problème de transport optimal qui en résulte peut être résolu à l’aide de l’algorithme
"network simplex". Cependant, la résolution du problème reste difficile car elle
nécessite une complexité supercubique par rapport au nombre de points et ne
peut donc être appliquée qu’à de petits problèmes de taille inférieure à quelques
milliers de points. Le problème de l’estimation du coût de transport optimal
entre deux distributions, µ et ν, en utilisant uniquement des échantillons tirés de
ces distributions est également présenté. Un estimateur courant de la distance
de transport inconnue entre les vraies distributions consiste à la calculer entre
les mesures empiriques. Le taux de convergence de la distance estimée vers la
distance réelle est souvent appelé "complexité de l’échantillon". La complexité
de l’échantillon de la distance p-Wasserstein est présentée et l’erreur moyenne
entre la distance estimée et la distance réelle est de l’ordre de n−1/d. Cette vitesse
est optimale dans Rd si l’une des mesures a une densité par rapport à la mesure
de Lebesgue, mais elle peut être raffinée si les mesures sont supportées sur des
sous-domaines de faible dimension.

Transport optimal entropique. Le calcul exact du coût de transport optimal
dans le cadre discret nécessite la résolution d’un programme linéaire coûteux
d’une complexité supercubique. En outre, le TO souffre de la malédiction de la
dimensionnalité et est donc susceptible d’être dénué de sens lorsqu’il est utilisé sur
des échantillons de densités à haute dimension. Pour remédier à ces problèmes,
Cuturi propose de régulariser le problème de TO en ajoutant une pénalité entropique
à l’objectif. Ce faisant, il est possible de résoudre exactement ce problème du TO
régularisé à l’aide d’un schéma de minimisation alternatif simple, appelé algorithme
de Sinkhorn, qui repose uniquement sur les produits matriciels/vectoriels et obtient
donc une complexité quadratique améliorée en termes de temps et de mémoire.
Plus précisément, le couplage optimal résolvant le TO entropique a la forme
P = diag(u)K diag(v) et les vecteurs d’échelle u et v sont mis à jour à chaque
itération de l’algorithme de Sinkhorn à l’aide de simples opérations de remise à
l’échelle. La régularisation permet également de surmonter la malédiction de la
dimensionnalité pour obtenir de bonnes performances statistiques. Si l’on ajoute
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suffisamment d’entropie, le TO entropique entre les mesures empiriques converge
vers le coût de TO entropique inconnu entre les mesures réelles avec un taux
paramétrique. Toutefois, lorsque la pénalité entropique n’est pas assez importante,
l’estimation du TO entropique souffre toujours de la malédiction de la dimension.

Chapitre 3. Gromov-Wasserstein: Transport Opti-
mal Quadratique
Ce chapitre présente le problème de Gromov-Wasserstein (GW), qui peut être
considéré comme la variante quadratique du transport optimal. L’une des princi-
pales motivations du problème GW est qu’il permet de comparer des mesures de
probabilité même si elles sont supportées par des ensembles incomparables. Dans
ce chapitre, nous rappelons les principales définitions et propriétés du problème
GW, nous discutons des aspects computationels du problème GW, y compris ses
liens avec le problème d’assignement quadratique (PAQ) et sa nature NP-hard, et
nous présentons une heuristique alternative basée sur la régularisation entropique
afin d’approcher la solution du problème GW.

Introduction à Gromov-Wasserstein. Le problème de Gromov-Wasserstein
(GW) est une alternative au problème de transport optimal (TO) et est utilisé
dans les situations où les mesures de probabilité ont des supports dans des espaces
incomparables. Le problème GW consiste à trouver un couplage optimal entre
deux mesures de probabilité, sur la base d’une distance ℓp entre les coûts des
deux espaces. De manière plus formelle, supposons que cX : X × X → R et
cY : Y × Y → R soient des fonctions continues mesurables, et que µ ∈ P(X),
ν ∈ P(Y ) soient des mesures de probabilités sur X, Y deux espaces polonais. Le
problème de Gromov-Wasserstein est défini comme suit:

GWp((µ, cX), (ν, cY )) = inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y
|cX(x, x′)− cY (y, y′)|p dπ(x, y)dπ(x′, y′)

)1/p

.

L’objectif de GW est construit de tel sorte que si un couplage optimal γ fait
correspondre x à y et x′ à y′, alors le couple (x, x′) doit être "aussi similaire" dans
X selon cx que (y, y′) dans Y selon cY . Lorsque cX , cY sont des distances, cela
implique que x, x′ sont aussi proches dans X que y, y′ dans Y . Le problème GW
admet toujours une solution compte tenu de certaines hypothèses de régularité
sur les coûts. De plus, le problème GW définit une distance entre (des classes
d’équivalence d’espaces de mesure métrique qui sont des triplets comprenant un
espace polonais, une métrique et une mesure de probabilité. GW est invariant par
rapport à une large classe de transformations telles que les rotations, les translations
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ou les permutations, ce qui est particulièrement utile lorsqu’il s’agit de comparer
des formes.

Aspects informatiques de Gromov-Wasserstein. Lorsqu’il est appliqué à
des mesures de probabilité discrètes, le problème GW peut être reformulé comme un
problème d’optimisation quadratique non convexe sur l’ensemble des matrices non
négatives satisfaisant des contraintes linéaires. Ce problème est NP-hard en général
et notoirement difficile à approcher. Lorsque les mesures discrètes considérées
admettent la même taille de support et sont uniformes, le GW peut être considéré
comme une relaxation du problème d’assignement quadratique (PAQ). En effet,
en restreignant les couplages admissibles à ceux qui sont supportés sur le graphe
d’une transformation, qui sont en fait les matrices de permutations, on retrouve
exactement le PAQ. En raison de ses limitations calculatoires, Peyré et al. [47]
proposent de régulariser le problème GW en ajoutant une pénalité entropique à
l’objectif. Ce faisant, les auteurs obtiennent une heuristique simple du problème
GW qui consiste à résoudre itérativement des problèmes TO entropiques imbriqués.
Ce schéma de calcul, bien qu’il permette de calculer une approximation efficace
du problème GW, reste très coûteux car il nécessite, dans le meilleur des cas, une
complexité cubique par rapport au nombre de points.

Chapitre 4. Divergences de Sinkhorn en Temps
Linéaire

Ce chapitre est basé sur [6].

En raison des obstacles statistiques et calculatoires du TO, ses applications en
AA reposent souvent sur une forme de régularisation pour lisser le problème du
TO, et sur certaines utilisations plus spécifiques d’une pénalité entropique, pour
récupérer les divergences dites de Sinkhorn [112]. Ces divergences sont moins coû-
teuses à calculer que le TO normal [79, 80], lisses et différentiables par programme
dans leurs entrées [46, 55], et ont une meilleure complexité d’échantillonnage [81]
tout en définissant toujours des pseudométries convexes et définies [113]. Bien que
les divergences de Sinkhorn réduisent les coûts du TO de supercubique à un coût
quadratique parallèlisable, son utilisation pour comparer des mesures qui ont plus
que quelques dizaines de milliers de points en mode direct reste un défi. L’objectif
de ce chapitre est d’introduire un nouveau schéma d’approximation de l’algorithme
de Sinkhorn qui peut être calculé en temps linéaire par rapport au nombre de
points, ce qui ouvre de nouvelles perspectives pour l’application du TO entropique
à l’échelle.

54



Travaux liés. La définition des divergences de Sinkhorn commence généralement
par celle du coût au sol des observations. Ce coût est souvent choisi par défaut
pour être une norme q entre les vecteurs, ou une distance du plus court chemin sur
un graphe lorsqu’on considère des domaines géométriques [114, 115, 116, 44]. Étant
donné deux mesures supportées respectivement sur n et m points, le TO entropique
instancie d’abord une matrice de coûts C par paire n foism, pour résoudre un
problème de minimisation d’un objectif linéaire pénalisé par l’entropie du couplage.
Ce problème peut être réécrit comme une minimisation de Kullback-Leibler :

min
couplings P

⟨C,P ⟩ − εH(P ) = ε min
couplings P

KL(P,K) , (2)

où la matrice K est définie comme K := exp(−C/ε), la fonction nég-exponentielle
par coordonnée d’un coût rééchelonné C. Ce problème peut ensuite être résolu à
l’aide de l’algorithme de Sinkhorn, qui ne nécessite que l’application répétée du
noyau K à vecteurs de mise à l’échelle. Bien que des schémas d’optimisation plus
rapides pour calculer le TO régularisé aient été étudiés [117, 118, 119], l’algorithme
de Sinkhorn reste, en raison de sa robustesse et de la simplicité de son parallélisme,
le choix le plus répendu pour résoudre le TO entropique. Comme le coût de
l’algorithme de Sinkhorn est déterminé par le coût de l’application de K à un
vecteur, l’accélération de cette évaluation est le moyen le plus efficace d’accélérer
l’algorithme de Sinkhorn. C’est le cas lorsque l’on utilise des coûts séparables sur
des grilles (appliquer K revient à effectuer une convolution au coût de (n1+1/d) [120,
Remark 4.17]) ou lorsque l’on utilise la métrique du plus court chemin sur un
graphe, auquel cas l’application de K peut être approximée à l’aide d’un noyau
thermique [121]. Bien qu’il soit tentant d’utiliser des approximations matricielles
de faible rang du noyau K à l’aide de techniques standard, leur application dans le
cadre des itérations de Sinkhorn nécessite que l’application du noyau approximé
garantisse la positivité de la sortie. En effet, si certaines valeurs du noyau K
sont proches de 0 et que l’approximation de chaque entrée n’est pas suffisamment
précise, alors le noyau approximé peut avoir une entrée négative, ce qui suffit à
faire diverger l’algorithme de Sinkhorn. Dans [122], les auteurs proposent d’utiliser
la méthode de Nyström afin d’approximer le noyau K et de diminuer la complexité
de l’algorithme de Sinkhorn, cependant, afin de garantir la positivité des entrées du
noyau approximé, leur méthode nécessite que ε soit suffisamment grand et d’avoir
une erreur de tolérance très faible pour l’approximation du noyau.

Nos contributions. Parce que le TO régularisé peut être effectué en utilisant
seulement la définition d’un noyau K avec des entrées positives, nous nous concen-
trons plutôt sur les noyaux K qui sont garantis d’avoir des entrées positives par
conception. En effet, plutôt que de choisir un coût pour définir ensuite un noyau,
nous considérons plutôt des coûts de base de la forme c(x, y) = −ε log⟨φ(x), φ(y)⟩
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où φ est une representation de l’espace de base sur l’orthant positif dans Rr. Ce
choix garantit que l’algorithme de Sinkhorn lui-même (qui peut approcher les
solutions primales et duales optimales du problème de TO) et l’évaluation des diver-
gences de Sinkhorn peuvent être calculés exactement avec un effort s’échelonnant
linéairement en le nombre de points et en r, ce qui ouvre de nouvelles perspectives
pour l’application du TO à l’échelle. En partant du noyau au lieu du coût pour
approximer le TO entropique, nos contributions sont de trois ordres:

• Nous introduisons une famille générale de noyaux admettant une expansion
positive et aléatoire et prouvons, sous certaines hypothèses de régularité sur les
representations positives des points, que notre méthode est capable d’atteindre
une approximation δ du coût entropique TO en O(rn) temps et mémoire, où
n est le nombre d’échantillons et r est le nombre de caractéristiques aléatoires
positives considérées pour approcher le vrai noyau, dès que r s’échelonne en
log(n)/δ2.

• Nous montrons que les noyaux construits à partir de nos expansions positives
peuvent être utilisés pour approximer certaines fonctions de coût habituelles,
y compris la distance euclidienne carrée. Nous fournissons pour chacun de
ces coûts habituels une formulation explicite de la representation positive
associée.

• Nous illustrons la polyvalence de notre approche en étendant les approches TO-
GAN précédemment proposées [50, 81], qui se concentraient sur l’apprentissage
adverse des fonctions de coût cθ et encouraient donc un coût quadratique,
à une nouvelle approche qui apprend plutôt de façon adverse un noyau kθ
induit à partir d’une representation positive φθ. Nous tirons parti du fait
que notre approche est entièrement différentiable dans la representation pour
entraîner un GAN à l’échelle, avec des itérations en temps linéaire.

Chapitre 5. Transport Optimal de Rang Faible:
Approche Algorithmique
Ce chapitre est basé sur [3].

Il est maintenant de plus en plus clair que la régularisation du TO d’une
manière ou d’une autre est le seul moyen d’atténuer les problèmes calculatoires
et statistiques [51, 74, 75] du TO. Une approche populaire consiste à pénaliser le
problème TO avec une fonction fortement convexe du couplage [76, 77]. Le schéma
de régularisation le plus populaire pour TO reste l’approche entropique en raison
de sa simplicité et de sa grande capacité de parallélisation sur les GPU. Cependant
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sa complexité quadratique à la fois en termes de temps et de mémoire reste un
problème majeur quand on veut appliquer le TO sur des problèmes avec plus de
quelques dizaines de milliers de points. Une observation clé lorsque l’entropie est
ajoutée au couplage est que plus l’entropie est ajoutée, plus le rang est bas (en
fait le rang non négatif). Sur la base de cette observation, nous explorons dans ce
travail une approche alternative et plus directe pour ajouter de la régularité au
problème TO: nous restreignons l’ensemble des couplages réalisables pour qu’ils
aient un rang non négatif faible.

Travaux liés. Les factorisations de bas rang ne sont pas nouvelles pour le TO
régularisé. Elles ont été utilisées pour accélérer la résolution du TO régularisé par
l’entropie avec l’algorithme de Sinkhorn, sous réserve de certaines approximations:
Étant donné une matrice de coût C dépendante des données, les itérations de
Sinkhorn consistent en des produits matrice-vecteur de la forme Kv ou KTu où
K := exp(−C/ε) et u, v sont des vecteurs n,m. Altschuler et al. [122] et Altschuler
and Boix-Adsera [123] ont proposé d’approximer le noyau K avec un produit de
matrices fines de rang r, K̃ = ABT . Naturellement, la capacité d’approximerK avec
une K̃ de faible rang se dégrade lorsque ε diminue, ce qui fait que cette approche
n’est valable que pour des ε suffisamment grands. Grâce à cette approximation,
cependant, chaque itération de Sinkhorn est linéaire en n ou m (O(n+m)r)) tant
que r ≪ n,m, et le couplage produit par l’algorithme de Sinkorn est de la forme
P̃ = CDT où C = diag(u)A, D = diag(v)B. Cette approximation aboutit donc
à une solution faible rang qui n’est cependant pas rigoureusement optimale pour
le problème original tel qu’il est défini par K mais plutôt celui défini par K̃. La
solution obtenue avec K̃ peut être arbitrairement proche de la vraie solution en
augmentant le rang r considéré au prix d’une plus grande complexité. De même,
dans Scetbon and Cuturi [6], nous considérons plutôt une factorisation de faible
rang non négatif pour K de la forme K̃ = QRT où Q,R > 0 coordonnée par
coordonnée. La positivité est essentielle ici car elle garantit la convergence du
schéma de Sinkhorn approximatif, et ce pour tout choix de ε. Ce faisant, nous
obtenons un couplage qui se rapproche de la solution optimale du TO entropique
et de la forme P = EF T où E ∈ Rn×r

+ et F ∈ Rm×r
+ . Par conséquent, le couplage

produit par ce schéma admet un rang non négatif d’au plus r. Cependant, parmi
tous les couplages admettant un rang non négatif inférieur à r, la solution obtenue
par cette méthode n’est en général pas celle qui atteint le coût TO le plus faible, et
n’est donc pas optimale à cet égard. À notre connaissance, seuls Forrow et al. [124]
ont utilisé des considérations de faible rang pour les couplages, plutôt que sur les
coûts ou les noyaux. Leur travail étudie le cas où le coût au sol est le carré de la
distance euclidienne. Ils obtiennent pour ce coût une approximation des problèmes
du TO de faible rangs en utilisant des barycentres de 2-Wasserstein [125]. Leur
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algorithme combine ceux de [126, 127] et aboutit à un plan de transfert de masse
intuitif qui passe par un petit nombre de r points, où r est le rang non négatif du
couplage.

Nos contributions. Dans ce travail, nous proposons une nouvelle alternative au
TO entropique pour régulariser le problème du TO en contraignant directement le
rang non négatif des couplages admissibles. Notre approche emprunte des idées
à [124] mais est générique car elle s’applique à tous les coûts de base. Ici, nous
contraignons le rang non négatif de la solution de couplage P dans le problème
TO, plutôt que de nous appuyer sur une approximation de faible rang K̃ pour
le noyau K = e−C/ε. Il s’agit d’un point crucial, car la capacité d’approximer K
avec une approximation de faible rang K̃ dépend implicitement du choix de ε qui
peut diminuer lorsque ε tend vers 0. En revanche, notre approche s’applique à
tous les rangs, petits et grands. Pour résoudre ce problème, nous exploitons une
reformulation des couplages de faible rang non négatif: ces couplages peuvent être
exprimés comme des des couplages de la forme P = Q diag(1/g)RT décomposés
comme le produit de deux sous-couplages fins Q ∈ Rn×r

+ et R ∈ Rm×r
+ avec une

marge droite commune g, et une marge gauche donnée par celles de P de chaque
côté. Chacun de ces sous-couplages minimise un coût de transport qui implique la
matrice de coût originale C et l’autre sous-couplage. Nous traitons ce problème
en optimisant conjointement Q, R et g à l’aide d’une approche de descente miroir.
Nous prouvons la convergence stationnaire non asymptotique de cette approche.
Il est intéressant de noter que nous montrons également qu’une hypothèse de
faible rang sur la matrice de coût (et non sur le noyau) peut également être
exploitée, fournissant ainsi un scénario du "meilleur des deux mondes" dans lequel
les propriétés de faible rang du couplage et du coût (et non du noyau) peuvent être
mises en œuvre et exploitées. En effet, nous montrons que la complexité temporelle
de notre algorithme peut devenir linéaire lorsqu’on exploite des hypothèses de faible
rang sur le coût impliqué dans le problème du TO. Enfin, un parallèle utile peut
être établi entre notre approche et celle de l’algorithme vanille de Sinkhorn, dans le
sens où ils proposent des schémas de régularisation différents. En effet, le chemin
(discret) des solutions obtenues par notre algorithme lorsque l’on fait varier r entre 1
et min(n,m) peut être considéré comme une alternative au chemin de régularisation
entropique. Les deux chemins contiennent à leurs extrêmes la solution TO originale
(rang maximal et entropie minimale) et le produit des marginaux (rang minimal et
entropie maximale).
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Chapitre 6. Transport Optimal de Rang Faible:
Propriétés Théoriques

Ce chapitre est basé sur [1].

Bien qu’il soit toujours intuitivement possible de réduire la taille des mesures
(par exemple en utilisant k-means) avant de résoudre un problème de TO entre elles,
une ligne de travail prometteuse propose de combiner les deux [128, 3, 2]. D’un point
de vue conceptuel, l’approche de faible rang permet de résoudre simultanément
une stratégie optimale de regroupement/agrégation et le calcul d’un transport
efficace. Cette intuition repose sur une factorisation explicite des couplages en deux
sous-couplages. Cette méthode présente plusieurs avantages sur le plan du calcul,
puisque son coût devient linéaire en n si la matrice de coût au sol utilisée pour le
problème TO est elle-même de faible rang. Bien que ces améliorations en matière
de calcul, pour la plupart démontrées de manière empirique, soient prometteuses,
les propriétés théoriques de ces méthodes ne sont pas encore bien établies. Cela
contraste fortement avec l’approche de Sinkhorn, qui est comparativement beaucoup
mieux comprise. Dans ce chapitre, nous ciblons les principales propriétés théoriques
et les aspects pratiques de l’approche de bas rang introduite dans [3] afin de cimenter
l’impact des approches de bas rang dans l’TO computationnelle.

Travaux liés. Dans un contexte appliqué, nous supposons souvent que nous
n’avons accès qu’à des échantillons tirés des distributions qui nous intéressent. Un
problème statistique important dans le domaine du transport optimal consiste
à estimer le coût de transport optimal (généralement inconnu) entre µ ∈ P(Rd)
et ν ∈ P(Rd) en utilisant uniquement des échantillons (xi)

n
i=1 de µ et (yj)

m
j=1

de ν. Ces échantillons sont supposés être distribués de manière indépendante et
identique à partir de leurs distributions respectives. Pour les coûts de transport
optimaux, un estimateur simple de la distance inconnue entre les vraies distributions
consiste à la calculer directement entre les mesures empiriques µ̂ := 1

n

∑n
i=1 δxi et

ν̂ := 1
n

∑m
j=1 δxj , en espérant idéalement pouvoir contrôler le taux de convergence

du second vers le premier. Notons qu’ici, ν̂ et ν̂ sont des mesures aléatoires, de sorte
que TO(ν̂, ν̂) est un nombre aléatoire. Une question importante est la vitesse de
convergence de TO(µ̂, ν̂) vers TO(µ, ν) , et ce taux est souvent appelé "complexité
de l’échantillon". Il est bien connu que le TO standard souffre de la malédiction de
la dimensionnalité [129]: Sa complexité d’échantillon s’échelonne en O(n−1/d) et
est donc exponentielle dans la dimension de l’espace ambiant. Bien qu’il ait été
récemment prouvé que ce résultat pouvait être affiné pour prendre en compte la
dimension implicite des données, la complexité d’échantillonnage du TO semble
maintenant être la principal limitation d’utilisation du TO dans les problèmes
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d’apprentissage automatique à haute dimension. Lorsque l’entropie est ajoutée
à l’objectif du problème de transport optimal, elle permet également d’améliorer
les taux statistiques du TO. Il a été montré dans [51, 82] que le TO entropique
bénéficie d’un taux paramétrique O

(
ε−d/2
√
n

)
par rapport au nombre d’échantillons.

Par conséquent, lorsque ε est suffisamment grand, l’estimateur TOε(µ̂, ν̂) bénéficie
d’un taux de convergence rapide vers la quantité réelle TOε(µ, ν), mais lorsque ε
tend vers 0, le TO entropique souffre toujours de la malédiction de la dimensionnalité
par rapport à son hyperparamètre ε. Bien que toutes les contributions théoriques
convergent vers le fait qu’en pratique, le transport entropique est beaucoup plus
approprié que le véritable TO lorsqu’il s’agit de comparer des mesures de probabilité
discrètes, une question subsiste quant à la quantité à utiliser pour mesurer la
différence entre deux distributions basées sur les plans entropiques. En effet, le
transport entropique est symétrique mais ce n’est plus une distance car il ne satisfait
pas l’inégalité triangulaire, ni une divergence car il n’est pas positif, ni même capable
de séparer des distributions car en général le coût du transport entropique entre une
mesure et elle-même n’est pas de 0. Pour pallier ces problèmes, Genevay et al. [78]
a proposé de soustraire les termes de débiaisage du TO entropique, définissant ainsi
la divergence de Sinkhorn. Feydy et al. [130] ont ensuite prouvé que la divergence de
Sinkhorn définit une divergence appropriée capable d’interpoler entre la discrépance
moyenne maximale (DMM) et le TO lorsque l’on fait varier ε.

Nos contributions. L’objectif de cet article est de faire progresser notre connais-
sance, notre compréhension et notre capacité pratique à exploiter les factorisations
de faible rang dans le TO. Cette partie présente cinq contributions, ciblant les
propriétés théoriques et pratiques de LOT:

• Nous généralisons la définition du TO à faible rang (LOT), introduite dans [3]
dans le cas discret, pour des mesures de probabilité générales et nous étudions
le biais induit par les contraintes de faible rang. Nous dérivons le taux
de convergence du TO de faible rang vers le vrai TO pour les mesures de
probabilité discrètes et générales par rapport au paramètre de rang non
négatif r.

• Nous faisons un premier pas vers une meilleure compréhension de la complexité
statistique du LOT en fournissant une borne supérieure de l’erreur statistique
commise lors de l’estimation de LOT à l’aide de l’estimateur plug-in. Étant
donné des échantillons tirés indépendamment de mesures de probabilité
générales supportées sur des sous-ensembles compacts de Rd, nous montrons
que la version empirique du coût de LOT peut être borné par le coût de LOT
entre les vraies mesures et un terme d’erreur supplémentaire qui bénéficie
d’un taux paramétrique O(

√
r/n) qui est indépendant de la dimension d.
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• Nous montrons des liens entre le biais induit par la factorisation de bas rang
et les méthodes de clustering. Parce que la contriante de rang non négatif
induit un biais sur le problème du TO, le coût LOT entre une mesure et
elle-même n’est pas nécessairement 0. Cette valeur et le couplage de rang non
négatif faible qui permet de résoudre ce problème reflètent des informations
géométriques sur la mesure: Le coût de LOT indique dans quelle mesure une
probabilité peut être regroupée en r groupes en fonction du coût de base c,
tandis que le couplage optimal permet de regrouper les points en fonction de
cette géométrie. LOT offre donc une nouvelle méthode de clustering, et ce
pour toute géométrie c. Dans un cas particulier, lorsque c = ∥ · − · ∥22 nous
retrouvons la méthode classique de clustering k-means.

• Nous introduisons une version débiaisée de LOT: comme la divergence de
Sinkhorn [130], nous montrons que LOT débiaisée est non négative, égale à 0 si
et seulement si les deux mesures sont les mêmes, qu’elle métrise la convergence
faible, et qu’elle interpole entre la divergence moyenne maximale [18] et le
TO lorsque l’on fait varier le rang non négatif r. LOT débiaisé possède
donc toutes les propriétés géométriques souhaitables pour être utilisé comme
fonction de perte pour comparer des distributions, et bénéficie des bonnes
propriétés calculatoire du transport de faible rang pour être appliqué à grande
échelle.

• Nous proposons des stratégies pratiques pour ajuster le pas de gradient
et l’initialisation de l’algorithme présenté dans [3] permettant d’avoir une
méthode générique et automatisée pour le choix de ces hyperparamètres, ne
laissant qu’un seul hyperparamètre à choisir par l’utilisateur, à savoir le choix
du rang non négatif r, comme le choix de ε dans le TO entropique.

Chapter 7. Les Distances de Gromov Wasserstein
de Rang Faible

This chapter is based on [2].

La capacité à aligner des nuages points d’espaces incomparables (par exemple,
vivant dans des espaces différents) joue un rôle important dans l’apprentissage
automatique. Le cadre de Gromov-Wasserstein (GW) fournit une réponse de plus
en plus populaire à de tels problèmes, en recherchant un assignement à faible
distorsion et préservant la géométrie entre ces points. En tant que généralisation
non convexe et quadratique du transport optimal, GW est NP-hard. Tout comme
TO est une relaxation du problème d’assignement optimale, GW est une relaxation
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du problème d’assignement quadratique. Le GW et le PAQ sont tous deux NP-
hard [131]. Bien que les praticiens aient souvent recours à la résolution d’une
version régularisée de GW sous la forme d’une séquence imbriquée de problèmes de
TO régularisés par l’entropie, la complexité cubique (en nombre n d’échantillons)
de cette approche constitue un véritable obstacle en pratique. Nous montrons
dans ce chapitre comment notre récente variante du problème de TO qui restreint
l’ensemble des couplages admissibles à ceux ayant une factorisation de faible rang
non négatif est remarquablement bien adaptée à la résolution de GW.

Travaux Liés. Le problème GW remplace l’objectif linéaire dans l’TO par un
objectif non convexe, quadratique, QA,B(P ) := cst − 2⟨APB,P ⟩ paramétré par
deux matrices de coût carrées A et B. En pratique, la linéarisation itérative de
QA,B fonctionne bien [84, 85]: recalculer un coût synthétique Ct := APt−1B, utiliser
Sinkhorn pour obtenir Pt := argminP ⟨Ct, P ⟩+ εreg(P ), répéter. Cela conduit à un
schéma de calcul qui s’étend en temps cubique et nécessite un espace quadratique
en mémoire par rapport au nombre de points. Plusieurs obstacles s’opposent à
l’accélération de ce schéma du GW entropique. Le recalcul de la matrice de coût
impliquée à chaque itération extérieure est un problème, car il nécessite O(n3)
opérations [47, Prop. 1]. Nous ne connaissons que deux approches générales
qui permettent d’obtenir des temps d’exécution raisonnables: (i) Résoudre des
approximations liées, mais significativement différentes, de l’énergie GW, soit en
intégrant des points comme des mesures univariées [86, 87], soit en utilisant un
mécanisme en tranches pour des problèmes euclidiens [88], soit en considérant des
métriques arborescentes pour les supports de chaque mesure de probabilité [89], (ii)
Réduire la taille du problème GW par la quantification des mesures d’entrée [90]
ou par des approches de clustering récursif [91, 62]. Il est intéressant de noter
qu’à notre connaissance, aucun travail n’a encore tenté d’accélérer les itérations de
Sinkhorn dans le cadre de GW.

Nos contributions. Notre méthode aborde le problème de l’approximation du
coût de GW en utilisant le nouveau schéma de régularisation proposé dans [3] basé
sur des contraintes de faible rang. Notre méthode surmonte les limitations liées à
la mise à jour de la matrice de coût Ct qui demande une complexité cubique et à la
résolution des problèmes de TO entropiques imbriqués nécessitant une complexité
quadratique.

• Nous montrons qu’une factorisation (ou approximation) de faible rang des
deux matrices de coût d’entrée qui définissent GW, une pour chaque mesure,
peut être exploitée pour réduire la complexité du calcul de Ct de cubique à
quadratique. Ce faisant, nous sommes également en mesure de réduire la
complexité totale du schéma de GW entropique de cubique à quadratique.
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• Nous montrons ensuite, de manière indépendante, que l’utilisation de l’approche
de faible rang pour les couplages préconisée par [3] pour résoudre le TO peut
être insérée dans le pipeline GW et donner lieu à une stratégie en O(n2) pour
GW, sans hypothèse préalable sur les matrices de coût d’entrée. Nous ex-
pliquons aussi brièvement pourquoi les méthodes qui exploitent les propriétés
géométriques de Ct (ou de son noyau Kt = e−Ct) pour obtenir des itérations
plus rapides sont peu utiles dans une configuration GW, en raison de la
nécessité de réinstancier un nouveau coût Ct à chaque itération extérieure.

• Enfin, nous montrons que les deux hypothèses de faible rang (sur les coûts
et les couplages) peuvent être combinées pour réduire encore un facteur et
atteindre une approximation de GW avec une complexité linéaire en temps et
en mémoire. Nous présentons des expériences, sur des ensembles de données
simulées et réelles, qui montrent que notre approche a des performances
comparables à celles de la méthode entropique et sa capacité pratique à
atteindre de "bons" minima locaux de la méthode GW, pour un prix de
calcul considérablement moins élevé, et avec un chemin de régularisation
conceptuellement différent, tout en pouvant s’étendre à des millions de points.

Chapitre 8. Transport Equitable et Optimal avec
des Agents Multiples

Ce chapitre est basé sur [5].

La répartition équitable [94] a été largement étudiée par les communautés de
l’intelligence artificielle [95] et de l’économie [96]. La division équitable consiste à
répartir diverses ressources entre les agents en fonction de certains critères d’équité.
L’un des problèmes classiques de la répartition équitable est le problème de la
découpe équitable d’un gâteau [97, 98]. Le gâteau est une ressource hétérogène,
comme un gâteau avec différentes garnitures, et les agents ont des préférences
hétérogènes sur les différentes parties du gâteau, c’est-à-dire que certaines personnes
préfèrent les garnitures au chocolat, d’autres préfèrent les cerises, d’autres encore
veulent juste une part aussi grande que possible. Par conséquent, en tenant compte
de ces préférences, on peut partager le gâteau équitablement entre les agents.
Une généralisation de ce problème, pour lequel il est plus difficile d’obtenir des
contraintes d’équité, est le cas où le partage concerne plusieurs gâteaux hétérogènes
et où les agents ont des préférences liées sur les différentes parties des gâteaux.
Ce problème a de nombreuses variantes, comme le découpage de gâteaux avec
deux gâteaux [99], ou l’allocation de ressources multi-types [100, 101]. Dans tous
ces modèles, on suppose qu’il n’y a qu’une seule unité indivisible par type de
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ressource disponible dans chaque gâteau, et qu’une fois qu’un agent l’a choisie,
il doit la prendre en entier. Dans ce cadre, le gâteau peut être considéré comme
un ensemble dont chaque élément représente un type de ressource, par exemple
chaque élément du gâteau représente un nappage. Ces problèmes sont naturellement
assouplis lorsqu’une quantité divisible de chaque type de ressources est disponible.
Sur la base de l’idée fondamentale de Kantorovich d’assouplir le problème du
TO, nous introduisons dans ce chapitre EOT (Equitable and Optimal Transport),
une formulation qui résout à la fois les problèmes de découpage de gâteau et de
découpage de gâteau avec deux gâteaux lorsque les ressources sont divisibles.

Travaux liés. Le partage équitable des biens a une longue histoire en économie
et informatique. Un problème classique est celui du partage équitable du gâteau
qui consiste à partager le gâteau entre N individus en fonction de leurs préférences
hétérogènes. Le gâteau X , considéré comme un ensemble, est divisé en X1, . . . ,XN
ensembles disjoints entre les N individus. L’utilité d’un seul individu i pour une
tranche S ⊂ X est notée Vi(S). On suppose souvent que Vi(X ) = 1 et que Vi est
additif pour les ensembles disjoints. Il existe de nombreux critères pour évaluer
l’équité d’une partition X1, . . . ,XN tels que la proportionnalité (Vi(Xi) ≥ 1/N),
l’absence d’envie (Vi(Xi) ≥ Vi(Xj)) ou l’équitabilité (Vi(Xi) = Vj(Xj)). Le problème
de la découpe du gâteau a des applications dans de nombreux domaines tels que la
division des propriétés foncières, l’espace publicitaire ou le temps de diffusion. Une
extension du problème du cake-cutting est le problème du cake-cutting avec deux
gâteaux [99] où deux gâteaux hétérogènes sont impliqués. Dans ce problème, les
préférences des agents peuvent être couplées sur les deux gâteaux. La part d’un
gâteau qu’un agent préfère peut être influencée par la part de l’autre gâteau qu’il
peut également obtenir. L’objectif est de trouver une partition des gâteaux qui
satisfasse les conditions d’équité pour les agents partageant les gâteaux. Cloutier
et al. [99] ont étudié la partition sans envie. Les problèmes de découpage de gâteau
et de découpage de gâteau avec deux gâteaux supposent qu’il n’y a qu’une seule
unité indivisible de ressource par élément x ∈ X du (des) gâteau(x). Par conséquent,
partager le(s) gâteau(x) consiste à obtenir une partition de l’ensemble. Cependant,
dans ce contexte, le problème peut ne pas être bien posé, et même s’il l’est, sa
résolution peut s’avérer difficile en pratique. Dans ce chapitre, nous établissons
également les liens de EOT avec certaines métriques intégrales de probabilité
(MIP). Les MIP sont des (semi-)métriques sur l’espace des mesures de probabilité.
Pour un ensemble de fonctions F et deux distributions de probabilité µ et ν, elles
sont définies comme MIPF(µ, ν) = supf∈F

∫
fdµ−

∫
fdν. Par exemple, lorsque F

est choisi comme étant l’ensemble des fonctions bornées dont la norme infini est
inférieure ou égale à 1, nous retrouvons la distance de variation totale (VT) [132].
Ces métriques ont récemment regagné l’intérêt de la communauté de l’AA grâce
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à leur application aux Generative Adversarial Networks (GANs) [22] où les MIP
sont des métriques naturelles pour le discriminateur [133, 134, 135, 136]. Ils ont
également contribué à l’élaboration de tests à deux échantillons cohérents [18, 137].
Cependant, lorsqu’une forme explicite de l’MIP n’est pas disponible, le calcul exact
des MIP entre les distributions discrètes peut ne pas être possible ou peut très
coûteux. Par exemple, la métrique de Dudley peut être écrite sous la forme d’un
programme linéaire [138] qui a au moins la même complexité que le TO standard.

Nos contributions. Dans cet article, nous présentons EOT une extension du
Transport Optimal qui vise à trouver une stratégie de transport équitable et
optimale entre plusieurs agents. Nous apportons les contributions suivantes.

• Nous introduisons EOT qui vise à trouver une partition couplée équitable et
optimale des ressources en fonction des préférences hétérogènes des agents.
Chaque agent du problème est représenté par une fonction d’utilité (ou de
coût), et les ressources allouées à chaque agent sont un sous-couplage tel que
leur somme est un couplage valide des ressources satisfaisant les contraintes
marginales. Formellement, EOT consiste à trouver la partition qui maximise
les plus petites utilités parmi les agents. Du point de vue du transport, EOT
vise à diviser la tâche de transport d’une mesure de probabilité vers une autre
entre plusieurs travailleurs (ou agents) représentés comme des fonctions de
coût afin d’obtenir une partition de la tâche qui soit équitable et optimale.
Ici, EOT essaie de minimiser le coût total de transport le plus élevé parmi
les travailleurs.

• Nous montrons que EOT résout un problème de division équitable où des
ressources hétérogènes doivent être partagées entre plusieurs agents. Plus
précisément, nous montrons que les EOT admettent toujours une solution et
qu’à l’optimalité, l’utilité totale ou le coût des agents sont égaux et optimaux.
Comme sous-produit, nous montrons également que la partition obtenue est
non seulement équitable et optimale, mais aussi proportionnelle, qui est un
autre critère d’équité important.

• EOT est un problème d’optimisation linéaire sous contraintes linéaires. Nous
dérivons son dual et prouvons que la dualité est forte. Comme sous-produit,
nous montrons que EOT est lié à certaines familles habituelles de MIP et en
particulier à la métrique de Dudley. En conséquence, nous dérivons également
des conditions suffisantes sur les fonctions de coût pour que EOT métrise la
convergence faible.

• Nous abordons également les aspects calculatoires de EOT et proposons une
version régularisée entropique du problème, dérivons sa formulation duale,
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obtenons une dualité forte. Nous fournissons ensuite un algorithme efficace
pour approximer EOT.

Chapitre 9. Équilibres de Nash mixtes dans le jeu
des exemples adverses

Ce chapitre est basé sur [4].

Les exemples d’attaques adverses [102, 103] constituent l’un des problèmes des
plus complexes de l’apprentissage automatique: les classifieurs les plus performants
sont sensibles à des perturbations imperceptibles de leurs entrées qui les font
échouer. Cela pose la question suivante: peut-on construire des classificateurs
qui soient robustes face à n’importe quelle attaque adverse ? En supposant que
l’on puisse reformuler le problème de minimisation du risque adverse comme un
problème min-max, la question ci-dessus reviendrait à demander l’existence d’un
équilibre de Nash. Démontrer l’existence d’un tel équilibre garantirait qu’il est
possible d’apprendre un classifieur robuste à toute petite perturbation des données,
c’est-à-dire à toute attaque qui se produit après l’apprentissage du classificateur.
Dans ce chapitre, nous abordons le problème des exemples adverses du point de vue
de la théorie des jeux en utilisant les outils du transport optimal et nous étudions
la question ouverte de l’existence d’équilibres de Nash mixtes dans le jeu à somme
nulle formé par l’attaquant et le classifieur.

Travaux liés. Une ligne de recherche récente a soutenu que les classifieurs
randomisés pourraient aider à contrer les attaques adverses [139, 140, 141, 142].
Dans le même ordre d’idées, [143] a démontré, à l’aide de la théorie des jeux, que les
classifieurs randomisés sont en effet plus robustes que les classifieurs déterministes
face à des adversaires régularisés. Toutefois, les conclusions de ces travaux antérieurs
dépendent de la définition de l’adversaire considéré. En particulier, ils n’ont
pas étudié les scénarios dans lesquels l’adversaire utilise également des stratégies
aléatoires, ce qui est essentiel si nous voulons donner une réponse de principe à
la question de l’existence d’un classifieur robuste contre toute attaque adverse.
Les travaux antérieurs qui étudient les exemples adverses dans le cadre de la
théorie des jeux ont examiné le cadre aléatoire (à la fois pour le classifieur et
l’adversaire) dans des contextes restreints où l’adversaire est soit paramétrique, soit
dispose d’un nombre fini de stratégies [144, 145, 146]. Des exemples d’adversaires
ont été étudiés sous les notions de jeu de Stackelberg dans [147], et de jeu à
somme nulle dans [144, 145, 146]. Ces travaux ont pris en compte des paramètres
restreints (perte convexe, adversaires paramétriques, etc.) qui ne correspondent
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pas à la nature du problème. En effet, il a été prouvé qu’aucune perte convexe
ne peut être un bon substitut pour la perte 0/1 dans le cadre adverse [148, 149],
ce qui réduit le champ d’application de ces résultats. Si l’on peut montrer que
pour des distributions conditionnelles suffisamment séparées, un classificateur
déterministe optimal existe toujours, des conditions nécessaires et suffisantes pour
la nécessité de la randomisation restent à établir. Pinot et al. [143] ont étudié
en partie cette question pour des adversaires déterministes régularisés, laissant le
cadre général des adversaires randomisés et des équilibres mixtes sans réponse,
ce qui est la portée même de cet article. Bhagoji et al. [150] et Pydi and Jog
[151] ont étudié les limites inférieures du risque adverse de tout classificateur
déterministe en utilisant le TO. Ces travaux n’évaluent que les limites inférieures
de la formulation déterministe primaire du problème, alors que nous étudions
l’existence d’équilibres de Nash mixtes. Notons que Pydi and Jog [151] a commencé
à étudier un moyen de formaliser l’adversaire en utilisant des noyaux de Markov,
mais n’a pas étudié l’impact des stratégies aléatoires sur le jeu. Une autre ligne de
travaux [152, 153, 154] a étudié le problème des exemples adverses dans le cadre
de l’optimisation distributionnellement robuste. Dans ces cadres, l’ensemble des
distributions adverses est défini à l’aide d’une boule de Wasserstein ℓp (l’adversaire
est autorisé à avoir une perturbation moyenne d’au plus ε dans la norme ℓp).
Cependant, cela ne correspond pas au problème habituel de l’attaque adverse, où
l’adversaire ne peut déplacer aucun point de plus de ε.

Nos contributions. Dans ce chapitre, nous étudions le problème des exemples
adverses en le formulant comme un jeu à somme nulle grâce au transport optimal.
Plus précisément, nous apportons les contributions suivantes.

• Dans la formulation standard du risque adverse, l’adversaire est défini comme
une fonction qui fait correspondre chaque point de l’ensemble de données à un
point adverse restreint à vivre dans une boule centrée sur le point de données
maximisant la fonction perte. En utilisant l’idée fondamentale de Kantorovich,
nous étendons le travail de [151] et assouplissons cette formulation afin de
permettre à l’adversaire d’être à la place un couplage entre la distribution des
données et celle de l’adversaire. Cette relaxation est en fait étroite puisque
nous montrons que les deux formulations sont égales alors que la dernière peut
être formulée comme un problème d’optimisation. En effet, nous montrons
que le risque adverse peut être reformulé comme un problème linéaire de
maximisation sur des distributions restreintes à vivre dans une boule de
Wasserstein spécifique centrée sur la distribution des données.

• En utilisant notre formulation variationnelle du risque adverse, nous montrons
que le problème de minimisation du risque adverse peut être reformulé comme
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un problème d’optimisation distributionnellement robuste (ODR) [155]. Cette
formulation nous amène naturellement à analyser la minimisation du risque
adverse comme un jeu à deux joueurs et à somme nulle.

• Nous montrons qu’en général, il n’existe pas d’équilibre de Nash dans ce type
de jeu et nous fournissons un exemple simple montrant la nécessité d’utiliser
des stratégies aléatoires à la fois pour l’attaquant et pour le classifieur. Nous
montrons ensuite que dans ce jeu, lorsque l’adversaire et le classifieur sont
tous deux autoriser à utiliser des stratégies aléatoires, il est toujours possible
d’atteindre un équilibre de Nash.

• Enfin, nous concevons des algorithmes efficaces pour apprendre un mélange
fini de classificateurs. En nous inspirant de l’optimisation robuste [152] et
des méthodes de sous-gradient [156], nous dérivons un algorithme oracle pour
optimiser un mélange fini. Ensuite, en suivant la ligne de travail de [76],
nous introduisons une régularisation entropique pour calculer efficacement
une approximation du mélange optimal. Nous validons nos résultats par
des expériences sur des ensembles de données simulées et réelles, à savoir
CIFAR-10 et CIFAR-100 [157].
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Notations

Operations

π1 : (x, y) 7→ x The canonical projection on the first variable

π2 : (x, y) 7→ y The canonical projection on the second variable

µ≪ ν µ is absolutely continuous w.r.t. ν

µ⊗ ν The tensor product of the measures µ and ν

A⊙B The Hadamard product of the matrices A and B

f ⊕ g The tensor sum of the vectors f and g

f ∈ O(g) f ≤ Cg for a universal constant C

f ∈ Ω(g) g ≤ Qf for a universal constant Q

g#µ The pushforward measure of µ by an application g

Spaces

∆n The probability simplex of size n

∆+
n The probability simplex of size n of positive histograms

M(X ) The set of Radon measures on X

M+(X ) The sets of positive Radon measures on X

P(X ) The power of probability measures on X

X A Polish space

C+(X × Y) The space of non-negative continuous functions on X × Y

C−
∗ (X × Y) The set of negative continuous functions on X × Y
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LSC(X × Y) The space of lower semi-continuous functions on X × Y

LSC+(X × Y) The space of non-negative lower semi-continuous functions
on X × Y

LSC−
∗ (X × Y) The set of negative bounded below lower semi-continuous

functions on X × Y

R The set of real numbers

Cb(X ) the vector space of bounded continuous functions on X

Other symbols

1n the vector of dimension n with only 1 as entries

∥ · ∥2 the Euclidean norm

70



Part I

Background on Optimal Transport
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In this part, we introduce the key results and concepts from the OT theory on
which this thesis will rely. This presentation puts the accent on the computational
aspects of OT, with the end goal of applying OT tools to ML problems.

We start by presenting the original Monge formulation of OT and its Kantorovich
relaxation in Chapter 1. More precisely, we start by introducing the original OT
problem as introduced by Monge and present its main limitations. Monge defines
the OT problem as the minimal cost of transporting a probability measure to
another according to a ground cost function c(x, y) measuring the cost of moving
one unit of mass from the location x to the location y. In his formulation, Monge
only allows transporting distributions according to maps T that send each point of
the initial measure to a point T (x) in the support of the target measure. There-
fore the Monge problem is defined as an optimization problem over those maps
that are effectively able to transport exactly the probability measures, however,
this constraint on the transportation task makes the problem ill-posed sometimes
and even when it is well-posed, it is in general hard to solve. To alleviate these
issues, Kantorovich proposes to relax the transportation strategy by replacing
these deterministic mappings using instead probabilistic ones, or couplings. By
doing so, Kantorovich allows that one point x from the initial measure to be
mapped to several points in the target measure by splitting the mass associated
to the point x. This relaxation admits (almost) always a solution, and can be
seen as the minimal convex relaxation of the OT problem admitting a minimizer.
Finally, we also present some fundamental properties of this new formulation of
OT such as the existence of a dual, or metric properties on the space of distributions.

In Chapter 2, we delve into the practical challenges of applying OT on data
for ML applications. We only focus on the application of OT on discrete and finite
probability measures which is the main setting of application of OT in ML. More
specifically, we first introduce the discrete formulation of the Monge problem and
emphasize on the degeneracy as well as the difficulty to solve this formulation in
the discrete setting. We then consider the discrete formulation of the Kantorovich
relaxation and introduce the analysis on the computational as well as the statistical
aspect of OT when dealing with discrete and finite probability measures. While the
discrete Monge formulation cannot be solve in general, the discrete Kantorovich one
always admits a solution. However solving the Kantorovich OT problem requires
to solve a network flow problem with a super-cubic complexity with respect to
the number of points, limiting its applications in ML for only small size problems.
In addition when the discrete measures at hands are in fact empirical measures
associated to two distributions supported on a subset of Rd, an important sta-
tistical question is to control the convergence rate of the plug-in estimator using
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these empirical measures. Once again, OT is not adapted for high-dimensional
applications as its statistical rate suffers from the curse of dimensionality. Then
we present entropy-regularized OT initially introduced as an approximation of OT
with improved complexity using Sinkhorn’s algorithm. Indeed, when some entropy
is added to the objective of the OT problem, then this regularized version of OT
can be solved in quadratic time with respect to the number of points. In addition,
this regularization enjoys fast statistical rate of convergence when enough entropy is
added and so even in the high-dimensional setting. However, this new formulation
of the transport, although much more advantageous than the unregularized version
when working with data, still does not allow the use of OT in large scale problems
because of its quadratic complexity.

In Chapter 3, we present the quadratic version of optimal transport, namely
the Gromov-Wasserstein problem. We first recall the definition of the problem
and its the major properties. GW can be viewed as the quadractic version of the
Kantorovich formulation of OT and is deeply connected to the Gromov-Hausdorff
distance. Indeed, GW is a relaxed version of the latter where metric spaces have
been endowed with a probability measures in order to be compared. Similar to
the Kantorovich formulation of OT, GW is defined as a minimization problem and
always admit a solution. One of the most important feature of the GW problem
is that it defines a distance over a set of very structured objects, namely the set
metric measure spaces (quotiented by isomorphisms). These objects are richer that
probabilities as they also contains a metric information on the points where are
supported the measures. This metric structure added to the measures allows the
comparison of probability measures even if they are supported on incomparable
sets (e.g. living in different spaces). Additionally, GW is invariant with respect to
a large class of transformations such as rotations, translation or permutations and
therefore provides an increasingly popular answer to compare shapes. Then we dive
in the computational aspects of the GW problem. In the discrete setting, one can
establish strong connections between GW and the Quadratic Assignment Problem
(QAP). While GW allows the search of the optimal matching between measures
on the set of all couplings satisfying the marginal constraints, the QAP restrict
its search to deterministic maps only. QAP can be seen as the Monge formulation
of GW problem. Although GW is very linked to OT, because of its quadratic
formulation, the problem is in general non-convex and NP-hard. Since GW is an
NP-hard problem, all its applications rely on heuristics, the most popular being
the entropic regularization. Adding an entropic term to the objective allows to
derive a simple algorithm that takes advantage of the Sinkhorn scheme by solving a
sequence of nested entropy-regularized OT problems. However, that approximation
remains costly, requiring O(n3) operations when dealing with two datasets of n
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samples, preventing the use of GW for problems larger than few thousand points.
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Chapter 1

Optimal Transport: From Monge to
Kantorovich

Optimal transport is a branch of mathematics that studies the problem of finding
the most efficient way to move one distribution to another. The notion of optimal
transport can be traced back to the work of Gaspard Monge in the late 18th
century, who studied the problem of transporting soil from one location to another
in order to level the ground. In the 20th century, the problem was rediscovered
and formalized mathematically, and has since found numerous applications in
mathematics, physics, economics, and computer science. In this chapter, we give
an introduction to optimal transport and present the main results upon which this
thesis is built. Inspired by the reference books of Villani [30, 158], Santambrogio
[159], and Peyré and Cuturi [33], we provide a general presentation of the optimal
transport problem as originally introduced by Monge [31] and further relaxed
by Kantorovich [32].

1.1 Monge Optimal Transport

The original formulation of optimal transport was proposed by Gaspard Monge
in 1781, and is known as the Monge problem. Given two measures of equal mass
µ and ν living in P(Rd) and a cost function c : Rd × Rd → R+, Monge raised the
problem of transporting µ to ν optimally w.r.t. c. More formally, this problem can
be stated as

inf
T : T#µ=ν

∫
Rd

c(x, T (x))dµ(x) (1.1)

where T#µ is the pushforward measure of µ by T , defined by T#µ(A) := µ(T−1(A))
for all µ-measurable sets. A map T satisfying the constraint T#µ = ν is called
a transport map between µ and ν and assigns to each point x in the support of
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the initial measure µ a point T (x) in the support of the target measure ν, and
transports also all the (infinitesimal) mass of µ located at x to T (x). When it
exists, an optimal transport map solving (1.1) is called a Monge map. However,
the Monge problem may not always be well-defined, and even when it is, it can be
challenging to solve the optimization problem.

A transport map might not even exists. As an example, consider the case
where µ is a Dirac distribution. Then, T#µ is necessarily also a Dirac distribution,
hence there can be no transport in Monge’s sense if ν is not a Dirac distribution
as well. This also highlights the intrinsic asymmetry of (1.1), as conversely, it
is always possible to find a Monge map going to a Dirac measure δy, by setting
∀x, T (x) = y. Santambrogio [111] proposes a simple sufficient condition for the
existence of a transport map: atomeless measure µ guarentees that the constraint
space of the Monge problem (1.1) is non-empty.

Theorem 1.1.1 ([111]). If µ, ν are two probability measures on Rd and µ is
atomless, then there exists at least a transport map T such that T#µ = ν.

However, even if a transport map exists, there may be none that is opti-
mal... In [111], the author propose a simple example where the set of constraint
T#µ = ν is not empty, however the infimum cannot be reached by such maps.
Indeed, Santambrogio [111] proposes to consider the case where c(x, y) = ∥x− y∥2
in R2, µ is the uniform probability measure on {0} × [0, 1] and ν is the mixture of
two uniform probability measures, ν1 and ν2, with equal weights 1/2 on respectively
{−1}× [0, 1] and {1}× [0, 1], that is ν = 1

2
(ν1 + ν2) (see Figure 1.1). The existence

of maps satisfying the constraint of the Monge problem, i.e. T#µ = ν is clear
as one can simply split the initial measure µ in two such that each sub-measure
have same total mass, and then sends one towards ν1 and the other towards ν2.
However none of these maps are able to reach the infimum of the Monge problem
because this would imply that a map can send horizontally each point x which is
not possible.

In the next section, we present the fundamental relaxation of the Monge problem
introduced by Kantorovich [32] in order to overcome the difficulties of solving the
Monge problem (1.1).

1.2 Kantorovich Optimal Transport

In order to overcome these difficulties, Kantorovich proposed a relaxation of the
Monge problem, which is now known as the Kantorovich formulation. In this
formulation, instead of seeking a transport map that moves all the mass from each
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Figure 1.1: Two measures µ, ν ∈ P(R2) where ν = 1
2
(ν1 + ν2) such that there exists

an infinite number of maps T satisfying T#µ = ν, however none of them realizes
the infimum of the Monge problem 1.1.

point of the source distribution to the target distribution, one seeks a transport plan
that specify how much mass is moved from each point in the source distribution
to each point in the target distribution. The cost function is then minimized
over this set of transport plans, which is often easier to compute. More formally,
instead of considering deterministic maps T , Kantorovich proposed to consider
probabilistic map, i.e. measures γ over the product space Rd ×Rd that have µ and
ν as marginals:

OTc(µ, ν) := inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y) (1.2)

where Π(µ, ν) = {γ ∈ P(Rd × Rd) s.t. π1#γ = µ, π2#γ = ν} is the set of
transportation plans, and π1 : (x, y) → x, π2 : (x, y) → y are the canonical
projections. These probability measures over X × Y are an alternative way to
describe the displacement of the particles of µ: we specify for each pair of measurable
sets (A,B) how much mass goes from A to B. More precisely, the value γ(A×B)
denotes the amount of mass moving from A to B. It is clear that this description
allows for more general movements, since from a single point x, masses can a
priori move to different destinations y. If multiple destinations really occur, then
this movement cannot be described through a map T . Note that the constraints
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on γ(A× Rd) and γ(Rd × B) exactly mean that we restrict our attention to the
movements that really take the distribution µ and move it onto the distribution ν.
The minimizers for this problem are called optimal transport plans between µ and
ν.

If an optimal transport plan γ is of the form (id,×T )#µ for a measurable map
T : X → Y (i.e., when no splitting of the mass occurs), the map T would be called
the optimal transport map from µ to ν. It can be easily checked that (id, T )#µ
belongs to Π(µ, ν) i.f.f T pushes µ onto ν and the objective of the Kantorovich
problem (1.2) takes the form

∫
Rd c(x, T (x))dµ(x), thus generalizing the Monge

problem (1.1). This generalized problem proposed by Kantorovich is much easier
to handle than the original one proposed by Monge: it is a linear optimization
problem under linear constraints and there always exist transport plans in Π(µ, ν)
(for instance, µ⊗ ν ∈ Π(µ, ν)). Another key advantage of this formulation is that
a solution to (1.2) exists under weak conditions on the cost function c.

Theorem 1.2.1 (Santambrogio [111]). Let µ, ν ∈ P(Rd) and c : Rd×Rd → [0,+∞]
be a lower semi-continuous ground cost. Then (1.2) admits a solution.

Therefore the Kantorovich formulation can handle more general scenarios,
including cases where the two distributions have different shapes and sizes, or
when one distribution has atoms. Then if one is concerned with the Monge
problem, a natural inquiry arises: is the minimum cost obtained in the Kantorovich
problem equivalent to the minimum cost in the Monge problem? Furthermore,
if this equivalence holds, can the minimum transportation plan γ obtained in
the Kantorovich problem be realized by a transport map T? The next section
explores the interconnections between these two approaches to the optimal transport
problem.

1.3 Links Between the Two Formulations

Kantorovich and Monge coincide. From the definitions (1.1), (1.2), we already
know that

inf
T : T#µ=ν

∫
Rd

c(x, T (x))dµ(x) ≥ inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)

because any transport map T induces a valid coupling γ. In fact, as soon as the
initial measure µ is atomeless, then both quantities coincides.

Theorem 1.3.1 (Santambrogio [111]). Let µ, ν ∈ P(Rd) compactly supported and
c : Rd × Rd → [0,+∞] be a lower semi-continuous ground cost. Then if µ is
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atomeless then we have:

inf
T : T#µ=ν

∫
Rd

c(x, T (x))dµ(x) = min
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)

Therefore the Kantorovich formulation (1.2) can be seen as the minimal exten-
sion of the original problem formulated by Monge (1.1) which admits a minimizer.
In light of this consideration, it is now natural to ask when an optimal map
solving (1.1) exists in order for the solutions of the problems to coincide.

On the existence of a Monge map. For an absolutely continuous measure µ,
Theorems 1.3.2 and 1.3.3 below show that under conditions on the cost function and
compactness assumptions, solution to (1.1) exists and coincides with the solution
of (1.2) in the coupling formalism.

Theorem 1.3.2 (Santambrogio [111]). Let µ, ν ∈ P(Rd) be compactly supported,
and such that µ is a.c. Consider a cost function c(x, y) = h(x − y) where h is a
strictly convex function. Then, there exists a unique optimal transport map T and
a unique optimal coupling γ, and T and γ are related by γ = (id, T )#µ.

Hence, under the conditions of Theorem 1.3.2, an optimal Monge map exists
and can equivalently be described as an optimal transportation plan supported
on its graph. In particular, for absolutely continuous and compactly supported µ
and ν, Theorem 1.3.2 holds when c(x, y) = ∥x− y∥p with p > 1. The p = 2 case
holds a particular place in the optimal transport theory, as shown by Brenier in
his seminal paper [160].

Theorem 1.3.3 (Brenier [160]). Let µ, ν ∈ P(Rd) such that µ is a.c., and c(x, y) =
∥x − y∥2. Then, problem (1.1) admits a unique solution, which is characterized
(among all transport maps) as being the gradient of a convex function ϕ : ∀x ∈
Rd, T (x) = ∇ϕ(x).

Compared to Theorem 1.3.2, the major contribution of Theorem 1.3.3 is the
unique characterization of the transport map as the gradient of a convex function.
As an example, it implies the following immediate corollary.

Corollary 1.3.1. Let µ ∈ P(Rd) be a.c., c(x, y) = ∥x − y∥2 and ϕ : Rd → R a
convex function. Then, ∇ϕ is the unique optimal Monge map from µ to ∇ϕ.

Now that we have seen that the Kantorovich and the Monge formulation can be
identified in a very general setting, we explore in the next section some important
properties of the Kantorovich relaxation.
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1.4 Some Useful Properties
Wasserstein distances. When the ground cost c is actually a distance d(x, y)
on Rd to a power p ≥ 1 and when µ, ν have moments of order p, the Wasserstein
distances can be defined from (1.2).

Definition 1.4.1 (Wasserstein Distances). Let p ≥ 1 and µ, ν ∈ Pp(Rd). The
p-Wasserstein distance is defined as

Wp(µ, ν) := inf
γ∈Π(µ,ν)

(∫
Rd×Rd

d(x, y)pdγ(x, y))

)1/p

(1.3)

Wasserstein distances satisfy all three metric axioms on Pp(Rd) Santambrogio
[111, Prop 5.1], and metrize weak convergence plus convergence of moments of
order p Santambrogio [111, Thm 5.11]. In machine learning, the metrization of
weak convergence is a crucial requirement for measure discrepancies, as we are often
interested in minimizing the value of a loss function integrated against probability
distributions.

A dual formulation of OT. The problem (1.2) is a linear optimization under
convex constraints, given by linear equalities or inequalities. Hence, an important
tool will be duality theory, which is typically used for convex problems. For now
let us just introduce the following optimization problem.

Definition 1.4.2. Given µ ∈ P(Rd), ν ∈ P(Rd), and the cost function c : Rd ×
Rd → [0,+∞], we consider the problem:

Dc(µ, ν) = sup

{∫
Rd

fdµ+

∫
Rd

gdν : s.t. f, g ∈ Cb(Rd) and f ⊕ g ≤ c

}
(1.4)

First of all, we notice that

D(µ, ν) ≤ inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y) ,

as it is enough to integrate the condition f ⊕ g ≤ c according to γ to get∫
Rd

fdµ+

∫
Rd

gdν ≤
∫
Rd×Rd

cdγ .

This is valid for every admissible (f, g) and every admissible γ and proves the
desired inequality. Yet, (1.4) does not admit a straightforward existence result, since
the class of admissible functions lacks compactness. In the following proposition,
we present a sufficient condition for existence of solutions for (1.4)
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Proposition 1.4.1. (Santambrogio [111]) Let µ, ν ∈ P(Rd) and suppose that µ and
ν are compactly and c is continuous. Then there exists a solution to problem (1.4).

We can now present the main theorem showed in [159, Theorem 1.39] stating
that the problem defined in (1.4) is the dual of the Kantorovich formulation (1.2)
and that strong duality holds under some regularity assumptions on the cost c.

Theorem 1.4.1. (Strong Duality) Let µ, ν ∈ P(Rd) and suppose that µ and ν are
compactly and c is continuous. Then strong duality holds and we have:

max

{∫
Rd

fdµ+

∫
Rd

gdν : s.t. f, g ∈ Cb(Rd) and f ⊕ g ≤ c

}
= min

γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)) .

(1.5)

This fundamental idea proposed by Kantorovich to relax the Monge problem will
be largely exploited in Part III in order to analyze longstanding ML problems
using optimal transport.
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Chapter 2

Optimal Transport: Challenges in
Machine Learning

In practice, we often work with finite sets of data, which implies that we have access
only to discrete empirical measures. Thus, to solve optimal transport problems,
we need to consider the discrete setting, where the measures are approximated by
finite sets of points. In this case, we have a finite number of mass points, and we
need to find an optimal transport plan/map that assigns each point of the source
measure to a (or multiple) point(s) of the target measure, minimizing the total
cost of transport. This is known as the discrete optimal transport problem, which
has become increasingly popular in recent years due to its numerous applications
in data analysis, computer vision, machine learning, and other fields. The discrete
setting presents some particular challenges, such as computational efficiency and
the effect of the discretization of the measures on the statistical properties of OT.
This chapter puts the accent on these two challenges, with the end goal of applying
OT tools to machine learning (ML) problems.

2.1 Discrete Optimal Transport

Discrete optimal transport deals with the case where the measure spaces are discrete.
In this case, each measure is a weighted sum of Dirac measures supported on finitely
many points. That is, if µ is a measure on a set {x1, . . . , xn} ⊂ Rd, then we can
write it as µ =

∑n
i=1 aiδxi , where ai > 0 and

∑n
i=1 ai = 1. Similarly, if ν is a

measure on a set {y1, . . . , ym}, then we can write it as ν =
∑m

j=1 bjδyj .

Discrete Monge optimal transport. For discrete measures µ =
∑n

i=1 aiδxi
and ν =

∑m
j=1 bjδyj , the Monge problem (1.1) seeks a map that associates to each

point xi a single point yj and which must push the mass of µ toward the mass of ν.
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Formally, the Monge problem considers map T : {x1, . . . , xn} → {y1, . . . , ym} that
must verify that

∀j ∈ 1, . . . ,m, bj =
∑

i:T (xi)=yj

ai .

Then the Monge map should minimize the total transportation cost,

min
T

{∑
i

c(xi, T (xi)) : T#µ = ν

}
. (2.1)

If all x’s and y’s are distinct, a map between discrete points can be represented
using indices σ : [|n|]→ [|m|], where j = σ(i). The mass conservation is expressed
as ∀j ∈ 1, . . . ,m, bj =

∑
i∈σ−1(j) ai, where σ−1(j) denotes the preimage set of

j. When n = m and all weights are uniform (ai = bj = 1/n), then the mass
conservation constraint implies that T is a bijection, and the Monge problem is
equivalent to the optimal assignment problem, which seeks to find the optimal
permutation σ T (xi) = yσ(i):

min
σ∈Perm(n)

1

n

∑
i

Ci,σ(i) (2.2)

where Perm(n) is the set of all permutations on [|n|] and Ci,σ(i) = c(xi, yσi). Note
that when the number of points in the target measure is greater than the number
of points in the source measure (n < m), there may not even exist a transport
map between the two measures, regardless of optimality. This is due to the weight
vectors of the measures being incompatible.

Limitation of the discrete Monge problem. The classical assignment prob-
lem (2.2) and its extension to the Monge problem (2.1) are not always adapted to
discrete measures in practical problems. One limitation of the former is that the
assignment problem can only compare uniform histograms of the same size, and
thus does not account for nonuniform weights. Although Monge’s push-forward
map formulation can generalize to measures with nonuniform weights and different
sizes, it may also become infeasible if mass conservation is not satisfied. Moreover,
both the assignment problem and Monge’s formulation are combinatorial, and the
feasible set of the Monge problem is nonconvex, which makes them challenging to
solve in their original form.

Discrete Kantorovich optimal transport. Kantorovich introduced a key idea
in transportation theory, as described in [32], which relaxes the requirement that
a source point xi must be assigned to a unique location yσi or T (xi). Instead,

86



mass at any point xi can be split and distributed across multiple locations. This
flexibility is achieved by using a coupling matrix P ∈ Rn×m

+ to describe the amount
of mass flowing from xi to yj , rather than a permutation σ or a map T . Admissible
couplings are easier to characterize than Monge maps:

Πa,b :=
{
P ∈ Rn×m

+ : P1m = a, P⊤1n = b
}
.

Kantorovich’s optimal transport problem now reads

OTc(µ, ν) := min
P∈Πa,b

⟨C,P ⟩ =
∑
i,j

Ci,jPi,j (2.3)

where ∀ i, j Ci,j := c(xi, yj). This is a linear program, and as is usually the
case with such programs, its optimal solutions are not necessarily unique. The
problem can be algorithmically solved using the network simplex algorithm, in
O(n + m)nm log(n + m) time [161]. Hence, although it is tractable, discrete
optimal transport can be computationally expensive. However, discrete OT plans
are sparse, which is a valuable property in matching-based applications such as
domain adaptation [57]. This sparsity comes from the fact that there always exists
an optimal plan lying on a vertex of Πa,b: such a plan has at most n+m nonzero
entries. Finally, the discrete Kantorovich problem 2.3 can be naturally paired with
its dual formulation, which is also a linear program.

Proposition 2.1.1. The discrete Kantorovich problem 2.3 admits a dual and strong
duality holds, that is

OTc(µ, ν) = max {⟨f, a⟩+ ⟨g, b⟩ : f ∈ Rn, g ∈ Rm and ∀i, j fi + gj ≤ c(xi, yj)}

Note also that Kantorovich’s relaxed formulation is always symmetric, in the
sense that OTc(µ, ν) = OTc(ν, µ) whereas the Monge formulation was intrisically
asymmetric.

From Monge to Kantorovich in the discrete setting. As in the general set-
ting we can relate the discrete Monge and Kantorovich formulations as in the follow-
ing proposition. For that purpose, let us denote for any permutation σ ∈ Perm(n),
the permutation matrix associated Pσ defined as ∀(i, j) ∈ {1, 2, . . . , n}, ; (Pσ)i,j = 1
if j = σ(i) and 0 otherwise.

Proposition 2.1.2. If m = n and a = b = 1
n
1n, then there exists an optimal

solution for Problem (2.3) Pσ∗, which is a permutation matrix associated to an
optimal permutation σ∗ ∈ Perm(n) for Problem (2.1).
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Statistical Considerations. In an applied setting, we often assume that we
only have access to samples drawn from the distributions of interest. An important
statistical problem in optimal transport is to approximate the (usually unknown)
optimal transport cost between µ ∈ P(Rd) and ν ∈ P(Rd) using only samples
(xi)

n
i=1 from µ and (yj)

m
j=1 from ν. These samples are assumed to be independently

identically distributed from their respective distributions. For optimal transport
costs, a straightforward estimator of the unknown distance between the true distri-
butions is to compute it directly between the empirical measures µ̂ := 1

n

∑n
i=1 δxi

and ν̂ := 1
n

∑m
j=1 δxj . An important question for statistical considerations is to

control the speed of convergence of OTc(µ̂, ν̂) towards OTc(µ, ν), often called the
“sample complexity”. In the following theorem, we present the sample complexity
of the p-Wasserstein distance Wp as defined in 1.3.

Theorem 2.1.1. (Rates for OT Dudley [129]) Let µ, ν ∈ P(Rd) supported on a
bounded domain, then for any d > 2 and 1 ≤ p < +∞

E(|Wp(µ̂, ν̂)−Wp(µ, ν)|) = O(n−1/d)

This rate is tight in Rd if one of the two measures has a density with respect to
the Lebesgue measure. This rate can be refined when the measures are supported on
low-dimensional subdomains: Weed et al. [72] show that, indeed, the rate depends
on the intrinsic dimensionality of the support. Therefore the estimation of OT
using the simple plug-in estimator suffers from the curse of dimensionality, meaning
that if the samples come from probabilities supported on a high dimensional space,
the empirical OT is likely to be meaningless.

Limitations of discrete OT. In practice, optimal transport has two major
limitations that prevent its use in machine learning. Indeed, it is computationally
expensive as it requires a supercubic complexity with respect to the number of
points which prevents its application to problems larger than few thousands of
points. Second, optimal transport suffers from the curse of dimensionality, which
means that its performance degrades exponentially as the number of dimensions
increases. As a result, although optimal transport has many useful applications, it
is not always feasible to use in practice, and alternative approaches may need to
be considered.

2.2 Entropic Optimal Transport
In this section, we present the most commonly used numerical schemes for approxi-
mating solutions to the Kantorovich formulation of optimal transport introduced
by Cuturi [76]. This approach involves adding an entropic penalty to the original
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problem, which provides several important advantages, making it a highly useful
tool. The regularization allows for the minimization of the regularized problem
using a simple alternate minimization scheme, which requires only quadratic time
and memory complexity. The scheme translates into iterations that involve simple
matrix-vector products, making it highly suitable for execution on GPUs. The
regularity brought by the entropy also helps to overcome the curse of dimensionality
(at least to some extent), thereby enabling good statistical performance. The
discrete entropy of a coupling matrix is defined as

H(P ) := −
∑
i,j

Pi,j(log(Pi,j)− 1) .

Note that H is 1-strongly concave, and the entropic regularization uses −εH, where
ε monitors the strengh of entropy added to the problem, as a regularizing function
to obtain approximate solutions to the original transport problem.

OTc,ε(µ, ν) := min
P∈Πa,b

⟨P,C⟩ − εH(P ) (2.4)

Since the objective is an ε-strongly convex function, Problem (2.4) has a unique
optimal solution. A direct interpretation of this regularization can be obtained
by simply reformulating the objective. Defining the Kullback–Leibler divergence
between couplings as

KL(P,K) := −
∑
i,j

Pi,j

(
log

(
Pi,j
Ki,j

)
− 1

)
+Ki,j

the unique solution Pε of (2.4) is the projection onto Πa,b of the kernel associated
to the cost matrix C defined as Ki,j := exp(−Ci,j/ε). Indeed one has that using
the definition above

Pε = argmin
P∈Πa,b

KL(P,K) . (2.5)

Therefore entropic OT is seeking for the coupling satisfying the marginal constraints
that is the closest to the kernel K w.r.t KL divergence. In addition, as for the
discrete OT, the entropic OT enjoys a dual formulation.

Proposition 2.2.1. Let µ =
∑n

i=1 aiδxi and ν =
∑m

j=1 bjδyj two discrete probability
measures. Then one has

OTc,ε(µ, ν) = max
f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩ − ε⟨exp(f/ε), K exp(g/ε)⟩ (2.6)

where exp(·) is a coordinate-wise operator.
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Sinkhorn Algorithm. In order to solve either (2.4) or (2.6), Cuturi [76] propose
to use the Sinkhorn algorithm [162]. Using the first order condition for optimality,
one obtains that the optimal coupling has to be of the form Pε = diag(u)K diag(v)
where u ∈ Rn

+ and v ∈ Rm
+ . Then the Sinkhorn algorithm, starting at u(0) = 1n and

v(0) = 1m, simply updates the scaling vectors u and v at each iteration as follows:

u(ℓ+1) =
a

Kv(ℓ)
, and v(ℓ+1) =

b

K⊤u(ℓ+1)
. (2.7)

In fact this very simple algorithm has two interpretations depending on whether
we apply it on the primal or the dual problem. When applied on (2.4) or (2.5),
the Sinkhorn algorithm is equivalent to the iterative Bregman projection (IBP)
algorithm [163]. Indeed by splitting the constraints into two linear constraint spaces
that are

Ca := {P ∈ Rn×m : P1m = a} and Cb := {P ∈ Rn×m : P⊤1n = b}

the IBP algorithm starts at P (0) := K and consists in performing the following
operations at each iteration:

P (ℓ+1) = argmin
P∈Ca

KL(P, P (ℓ)), P (ℓ+2) = argmin
P∈Cb

KL(P, P (ℓ+1))

which is exactly equivalent to perform the operations presented in (2.7). Another
interpretation of the Sinkhorn algorithm is that when it is applied on the dual
formulation of the entropic OT (2.6), we obtain a simple coordinate gradient ascent
scheme on f and g. Indeed, starting from f (0) = 0n and g(0) = 0m, at each iteration
the coordinate gradient ascent algorithm performs:

f (ℓ+1) = ε log(a)− ε log(K exp(g(ℓ)/ε)) and

g(ℓ+1) = ε log(b)− ε log(K⊤ exp(f (ℓ+1)/ε))

Then by defining u(ℓ) := exp(f (ℓ)/ε) and v(ℓ) := exp(g(ℓ)/ε), we recovers the
updates (2.7).

Computational Complexity. When applying the Sinkhorn algorithm, one
needs to apply at each iteration a matrix/vector product which requires a quadrac-
tic complexity with respect to the number of samples that is O(nm) algebraic
operations. Note also that a simple implementation of the Sinkhorn algorithm
would also requires a quadratic memory space as one would need to store in memory
the kernel K. In addition, Franklin and Lorenz [164] proved the that Sinkhorn
algorithm enjoys a linear convergence rate to the global minimizer w.r.t the Hilbert
metric.
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On the sample complexity of the entropic OT. When entropy is added
to the objective of the optimal transport problem, it allows also to improve the
statistical rates of OT. In order to present the result, we need first to introduce a
generalized version of the entropic OT which is defined for any probability measures
µ, ν ∈ P(Rd) as

OTc,ε(µ, ν) := min
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ + εKL(γ, µ⊗ ν) (2.8)

where we have generalized the definition of KL to any coupling as follows:

KL(γ, ζ) :=

{∫
Rd×Rd log

(
dγ
dζ

)
dγ +

∫
Rd×Rd dζ −

∫
Rd×Rd dγ, if γ ≪ ζ

+∞, otherwise

This is the exact generalization of the discrete case presented earlier in (2.4),
as in the discrete setting, one obtains that KL(γ, µ ⊗ ν) =

∑
i,j γi,j(log(γi,j) −

1) +
∑

i,j aibj + H(a) + H(b) = H(γ) + c where c is a constant independent of
γ. Therefore the discrete entropic OT introduces in (2.4) and its generalized
version (2.8) evaluated on the same discrete measures admits the exact same
solution. Let us now consider two distributions µ ∈ P(Rd) and ν ∈ P(Rd) and let
us denote µ̂ and ν̂ their associated empirical versions of size n, then it has been
shown in [51, 82] that entropic OT enjoys a parametric rates with respect to the
number of samples.

Theorem 2.2.1. Let µ, ν ∈ P(Rd) supported on a bounded set and let us assume
that the cost c is C∞ and L-lipschitz on that domain. Then one has

E(|OTc,ε(µ̂, ν̂)−OTc,ε(µ, ν)|) = O
(
ε−d/2√
n

)
Therefore, when ε is sufficiently large, then the plug-in estimator OTc,ε(µ̂, ν̂)

enjoys a fast rate of convergence towards the true quantity OTc,ε(µ, ν), however
when ε goes to 0, entropic OT still suffers from the curse of dimensionality as the
rate still has an exponential dependency in the dimension w.r.t the entropic strengh
ε.

Debiased Sinkhorn divergence. When it comes to compare probabilities
measures, entropic OT might not be adapted especially when ε is not sufficiently
small: it is no longer a distance as it does not satisfy the triangle inequality, nor a
divergence as it is not positive, nor even able to separate distributions as in general
OTc,ε(µ, µ) ̸= 0. To alleviate these issues, Genevay et al. [78] proposed to subtract
debiasing terms from OTc,ε, defining the Sinkhorn divergence:

Sc,ε(µ, ν) := OTc,ε(µ, ν)−
1

2
(OTc,ε(µ, µ) + OTc,ε(ν, ν)) . (2.9)
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Feydy et al. [130] then proved that the Sinkhorn divergence defines a suitable
divergence able to interpolate between the Maximum Mean Discrepency (MMD) [18]
and OT.

Proposition 2.2.2. Let c(x, y) = |x−y|p, p > 1. Then for all compactly supported
measures µ, ν ∈ P(Rd), Sε(µ, ν) defines a symmetric positive definite divergence
which is convex in µ or ν, and metrizes weak convergence. In addition we have that

Sc,ε(µ, ν) −−−−→
ε→+∞

1

2
MMD−c(µ, ν)

Sc,ε(µ, ν) −−−→
ε→0+

OTc(µ, ν)

where

MMDk(µ, ν) =

∫
Rd×Rd

(k(x, x′) + k(y, y′)− 2k(x, y)) dµ(x)dµ(x′)dν(y)dν(y′)

Entropic OT cannot be applied in the large-scale setting... Entropic
optimal transport is a regularized form of OT that helps to overcome many practical
issues associated with the original Kantorovich formulation of OT when working
with data and it is backed with a lot of theoretical properties which facilitate its
use. In particular, it offers improved computational efficiency and better statistical
rates. However, despite these benefits, the quadratic complexity of its numerical
algorithm still presents a challenge in the application of OT to large-scale datasets
with hundreds of thousands of points. Therefore, there is a growing need to develop
scalable OT algorithms that can handle such massive datasets.

In part II, we will exploit similar ideas and propose new regularization schemes
of the optimal transport problem based on low-rank constraints in order to make
it applicable in the large-scale setting.
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Chapter 3

Gromov-Wasserstein: Quadratic
Optimal Transport

The ability to align points across two related yet incomparable point clouds (e.g.
living in different spaces) plays an important role in machine learning. This
situation arises typically when realigning two distinct views (or features) from
points sampled from similar sources. Despite this heterogeneity, one expects to find
a mapping registering points from the first to the second set, since they contain
similar overall information. That realignment is usually carried out using the
Gromov-Wasserstein (GW) machinery proposed by Memoli [165], Mémoli [86]. GW
seeks a relaxed assignment matrix that is as close to an isometry as possible, as
quantified by a quadratic score. This chapter presents the main definitions and
properties of the GW problem and emphisizes on the computational challenges
behind this problem.

3.1 Introduction to Gromov-Wasserstein

Applying OT can be challenging when dealing with probability measures whose
supports lie in incomparable spaces, e.g. when the supports of the measures are
not part of a common ground metric space. Defining a meaningful cost function
to compare the two measures can be difficult in such cases, and the Wasserstein
distance, which offers a natural geometry on the set of distributions supported on
the same metric space, may not be applicable. This is particularly true when the
dimensions of the two spaces are different, as the distance between a point in one
space and a point in the other cannot be defined. Additionally, OT is not invariant
to certain transformations, such as rotations or translations, making it less useful
when it comes to compare shapes. The Gromov-Wasserstein (GW) framework offers
a solution to these issues by using a quadratic optimal transport problem instead
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of a linear one, and quantifying the metric distortion when transporting points
between spaces. This section introduces the GW problem, its metric properties,
and standard numerical solvers. For further details, we recommend referring to
[166, 86, 167].

Gromov-Wasserstein Problem. Let (X, dX), (Y, dY ) be two Polish spaces,
cX : X ×X → R and cY : Y × Y → R two continuous measurable functions, and
let us consider µ ∈ P(X), ν ∈ P(Y ) two probability measures on respectively X, Y .
The Gromov-Wasserstein problem aims at finding:

GWp((µ, cX), (ν, cY )) = inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y
|cX(x, x′)− cY (y, y′)|p dγdγ

) 1
p

,

(3.1)

for p ≥ 1. The choice of costs cX and cY between points in spaces X and Y is a
crucial component in the Gromov-Wasserstein problem. One common approach
is to use intrinsic metrics dX and dY to define a metric between metric measure
spaces, represented as triplets (X, dX , µ), which has been studied extensively in
prior works like [86, 166]. The objective of the GW problem is to find an optimal
coupling γ that maps points from X to Y such that pairs of points (x, x′) are
"similar" in X with respect to cX as pairs of points (y, y′) are in Y with respect to
cY . When cX and cY are distances, this implies that points x and x′ are as close in
X as y and y′ are in Y .

Properties of GW. As for the Kantorovich formulation of OT, the equation (3.1)
always admits a solution under some regularity assumptions on the costs. This
result can be seen as a corollary of the one presented in [111] for OT.

Theorem 3.1.1. Let X and Y be two Polish spaces, cX and cY two continuous
cost functions and p ≥ 1. Assuming that∫
X×X

cX(x, x
′)pdµ(x)⊗ µ(x′) < +∞ and

∫
Y×Y

cY (y, y
′)pdν(y)⊗ ν(y′) < +∞

then the Gromov-Wasserstein problem introduced in (3.1) is finite and admits a
minimizer.

A key feature of the Gromov-Wasserstein problem is its ability to compare
probability measures that have supports in distinct and potentially unrelated spaces.
This is achieved by evaluating the entire metric measure spaces associated with
each probability measure.
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Definition 1 (Metric measure space). A metric measure space is a triplet (X, dX , µ)
where

• (X, dX) is a Polish space

• µ is a Borel probability measure on X.

In order to present the metric properties of GW on the set of metric measure
spaces, we need first to introduce a notion of equivalence of two metric measure
spaces. This can be done thanks to the notion of isomorphism.

Definition 2 (Isomorphism). Let (X, dX) and (Y, dY ) be Polish spaces and µ ∈
P(X), ν ∈ P(Y ). We say that (X, dX , µ) is isomorphic to (Y, dY , ν) if there exists
a bijection φ : supp(µ)→ supp(ν) such that:

1. φ is an isometry, i.e. dY (φ(x), φ(x′)) = dX(x, x
′) for all x, x′ ∈ supp(µ).

2. φ pushes µ forward to ν, i.e. φ#µ = ν.

The following theorem is fundamental for GW and aims to unify the metric
properties of GW given in [86, 166]. It proves that GW defines a metric w.r.t. the
isomorphism notion.

Theorem 3.1.2 (Mémoli [86]). Let (X, dX), (Y, dY ) be Polish spaces and p ≥ 1.
Then, the GWp is symmetric, positive and satisfies the triangle inequality. More
precisely, given (X, dX , µ), (Y, dY , ν) and (Z, dZ ,m) GWp satisfies:

GWp((µ, dX), (ν, dY )) ≤ GWp((µ, dX), (m, dZ)) + GWp((m, dZ), (ν, dY )).

Moreover, the GWp characterizes isomorphisms: GWp(µ, ν) = 0 if and only if
(X, dX , µ) and (Y, dY , ν) are isomorphic.

This theorem allows to endow the set of all the metric measure spaces of the form
(X, cX , µ) with a distance defined by GW, which, however, requires the finiteness
of GW. More precisely we define Xp to be the space of all metric measure spaces
with finite Lp cost, i.e., Xp := {(X, dX , µ) |

∫
X×X dX(x, x

′)pdµ(x) < +∞} where
(X, dX) is a Polish space and µ ∈ P(X).

Theorem 3.1.3 (Mémoli [86]). GWp is a distance on Xp quotiented by isomor-
phisms.

The implications of the above theorem are numerous. First, it endows the space
of all metric measure spaces with a topology and geometric structure, induced by
Gromov-Wasserstein. Second, it suggests that Gromov-Wasserstein is well-suited
for comparing objects with respect to a large class of invariants, such as rotations,
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translations, or permutations. This property is particularly important for shape
comparison, where the orientation of a shape does not define its nature. Finally, if
the Gromov-Wasserstein distance vanishes, it necessarily implies that the objects
are isomorphic, which is valuable for detecting such cases. Gromov-Wasserstein
is also deeply connected to the Gromov-Hausdorff distance, which measures how
far (X, dX) and (Y, dY ) are from being isometric and can be used for studying the
convergence of metric spaces. However, computing the Gromov-Hausdorff distance
results in a highly non-convex optimization problem whose global solution is not
tractable. As shown in [86], the introduction of the measures allows to relax the
definition of the Gromov-Hausdorff distance and leads to the Gromov-Wasserstein
distance.

3.2 Computational Aspects of Gromov-Wasserstein
In this section we focus on the computational aspects of the GW problem. In the
following µ =

∑n
i=1 aiδxi ∈ P (X), ν =

∑m
j=1 bjδyj ∈ P (Y ) are discrete probability

measures over respectively (X, dX), (Y, dY ). We also note A, B the matrices of
pair-to-pair distances inside each space, i.e. ∀(i, k) ∈ [n]2, Ai.i′ = dX(xi, xi′) and
∀(j, j) ∈ [m]2, Bj,j′ = dY (yj, yj′). The discrete GW problem aims at solving:

GWp
p((a,A), (b, B)) = min

P∈Πa,b

∑
i,i′,j,j′

|Ai,i′ −Bj,j′|pPi,jPi,j (3.2)

The optimization problem 3.2 is a non-convex Quadratic Program (QP), NP-hard in
general [83] and can be notoriously hard to approximate. When p = 2, equation 3.2
can be recast as

GW2
2((a,A), (b, B)) = min

P∈Πa,b

⟨A⊙2a, a⟩+ ⟨B⊙2b, b⟩ − 2⟨APB,P ⟩ (3.3)

where ⊙ is the Hadamard (elementwise) product or power. Even in that case, GW
is in general non-convex and NP-hard.

Relationship with the Quadratic Assignment Problem. The GW problem
is in fact closely related to the so-called Quadratic Assignment Problem (QAP).
This problem was first introduced by Koopmans and Beckmann [168] to model a
plant location problem and plays many roles in optimization today. Given two
matrices A = (Ai,j)i,j∈[n] and B = (Bi,j)i,j∈[n], the standard form for the QAP
reads:

max
σ∈Perm(n)

n∑
i=1

n∑
j=1

Aσ(i),σ(j)Bi,j. (3.4)
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Unfortunately the QAP is NP-Hard in general and only few special cases are
known to be computable in polynomial time. The QAP can be seen as the Monge
formulation of the GW problem when p = 2 and the measures are both uniform
on their respective supports and have the number of points n. Indeed in that case
using equation 3.3, and allowing only couplings that come from a transport map,
we obtain that the Monge formulation of the GW (MGW) problem is defined as:

MGW2
2(µ, ν) = min

σ∈Perm(n)
⟨A⊙2a, a⟩+ ⟨B⊙2b, b⟩ − 2

n∑
i=1

n∑
j=1

Aσ(i),σ(j)Bi,j; (3.5)

which admits the exact same solution(s) as the QAP defined in (3.4).

Entropic Regularization. The original GW problem (3.1) can be regularized
using entropy [84, 85], leading to problem:

GWp
p,ε((a,A), (b, B)) = min

P∈Πa,b

∑
i,i′,j,j′

|Ai,i′ −Bj,j′ |pPi,jPi,j − εH(P ) , (3.6)

Peyré et al. [47] propose to solve the entropic GW problem using a mirror descent
(MD) scheme w.r.t. the KL divergence. Their algorithm boils down to solving a
sequence of regularized OT problems. When p = 2 the algorithm can be even more
simplified: in that case, starting at P (0) = abT , the proposed algorithm solves at
each iteration the following problem:

P (ℓ+1) = argmin
P∈Πa,b

KL(P,K(ℓ)
ε ) where K(ℓ)

ε := exp(4AP (ℓ)B/ε)

which is an entropic OT problem and can be solved efficiently using the Sinkhorn
algorithm [76]. The algorithm proposed by the authors recovers therefore as a
special case the "softassign quadratic assignment" algorithm introduced in prior
work [169, 170]. However, the convergence proof provided in [169] is limited to
the convergence of functional values, rather than the convergence of the iterates.
Additionally, the proof only applies to convex functions being minimized in the
optimization problem defined in (3.6), which is not the case for all matrices (A,B).
From a computational point of view, this algorithm requires in general (for general
p) O(n2m2) algebraic operations per iteration and O(n2) memory space while in the
case of p = 2, the time complexity can be reduced to O(nm(n+m)) per iteration.

Gromov-Wassertein remains too costly. The original GW problem is a non-
convex and NP-hard problem and has to rely on some approximations in order to
be used in practice. Entropic GW is one of the most successful attempt towards
this goal which allows to obtain an approximation of the GW cost as well as the
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optimal coupling solving it in cubic time. However, despite its good performance
in practice and its improved complexity, the entropic approach can only be applied
for small problems of order of one thousand points. Therefore, there is a need to
develop scalable GW algorithms that can handle larger datasets (and hopefully
massive ones).

In part II, we will exploit similar ideas and propose new regularization schemes
of the Gromov-Wasserstein problem based on low-rank constraints in order to
reach a linear complexity both in time and memory.
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Part II

Low-rank Optimal Transport
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In this part, we propose new regularization schemes of the OT problem and
its quadratic variant, namely the Gromov-Wasserstein problem, by considering
low-rank factorization of both the underlying cost and the coupling solving the OT
problem itself. These new computational schemes pave the way for the use of OT
in the large-scale setting. This part is divided in four contributions.

• In a first contribution, we propose to approximate the iterations of the
Sinkhorn algorithm solving the entropic OT problem by using ground costs
of the form c(x, y) = − log⟨φ(x), φ(y)⟩ where φ is a map from the ground
space onto the positive orthant Rr

+, with r ≪ n where n is the number of
samples. By doing so, we obtain a low nonnegative rank approximation
of the optimal coupling solving the entropic OT problem and ensures that
the cost of Sinkhorn iterations scales linearly w.r.t the number of samples.
We show that usual cost functions can be approximated using this form
and propose explicit embedding φ for each of them. The positivity of the
feature embedding φ is essential here as it guarantees the convergence of the
Sinkhorn algorithm. Additionally, we take advantage of the fact that our
approach yields approximation that remain fully differentiable with respect
to input distributions, as opposed to previously proposed adaptive low-rank
approximations, to train a faster variant of OT-GAN.

• In a second contribution, instead of approximating the optimal coupling of
the entropic OT problem using a low nonnegative rank approximation, we
introduce a new regularization scheme of the OT problem by constraining
directly the nonnegative rank of the couplings. We then propose a generic
approach that aims at solving, in full generality, the OT problem under
low-nonnegative rank constraints with arbitrary costs. Our algorithm relies
on an explicit factorization of low-rank couplings as a product of sub-coupling
factors linked by a common marginal; similar to an NMF approach, we
alternatively updates these factors. Our algorithm enjoys a linear complexity
as soon as one has access to a low rank approximation of the cost matrix,
which is always the case for distance matrices.

• In a third contribution, we focus on the theoretical properties of the low-rank
optimal transport (LOT) approach advocated in our previous contribution.
LOT restricts the search for low-cost couplings to those that have a low-
nonnegative rank, yielding linear time algorithms in cases of interest. However,
these promises can only be fulfilled if the LOT approach is seen as a legitimate
contender to entropic regularization when compared on properties of inter-
est, where the scorecard typically includes theoretical properties (statistical
complexity and relation to other methods) or practical aspects (debiasing,
hyperparameter tuning, initialization). We target each of these areas in
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this contribution in order to cement the impact of low-rank approaches in
computational OT.

• To conclude this part, we also present a fourth contribution where we show
that the low-rank approach can be also particularly beneficial for the Gromov-
Wasserstein (GW) problem. The Gromov-Wasserstein (GW) framework
provides an increasingly popular answer to the alignment problem of points
across two related yet incomparable point clouds (e.g. living in different
spaces), by seeking a low-distortion, geometry-preserving assignment between
these points. As a non-convex, quadratic generalization of OT, the GW
problem is NP-hard. While practitioners often resort to solving GW approxi-
mately as a nested sequence of entropy-regularized OT problems, the cubic
complexity ((O(n3) where n in the number of samples) of that approach is a
roadblock. We show in this work how our recent variant of the OT problem
that restricts the set of admissible couplings to those having a low-rank
factorization is remarkably well suited to the resolution of GW: when applied
to GW, we show that this approach is not only able to compute a stationary
point of the GW problem in time O(n2), but also uniquely positioned to
benefit from the knowledge that the initial cost matrices are low-rank, to
yield a linear time O(n) GW approximation. Our approach yields similar
results, yet orders of magnitude faster computation than the SoTA entropic
GW approaches, on both simulated and real data.
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Chapter 4

Linear Time Sinkhorn Divergences
using Positive Features

Although Sinkhorn divergences are now routinely used in data sciences to com-
pare probability distributions, the computational effort required to compute them
remains expensive, growing in general quadratically in the size n of the support
of these distributions. Indeed, solving optimal transport (OT) with an entropic
regularization requires computing a n× n kernel matrix (the neg-exponential of
a n× n pairwise ground cost matrix) that is repeatedly applied to a vector. We
propose to use instead ground costs of the form c(x, y) = − log⟨φ(x), φ(y)⟩ where
φ is a map from the ground space onto the positive orthant Rr

+, with r ≪ n. This
choice yields, equivalently, a kernel k(x, y) = ⟨φ(x), φ(y)⟩, and ensures that the cost
of Sinkhorn iterations scales as O(nr). We show that usual cost functions can be
approximated using this form. Additionally, we take advantage of the fact that our
approach yields approximation that remain fully differentiable with respect to input
distributions, as opposed to previously proposed adaptive low-rank approximations
of the kernel matrix, to train a faster variant of OT-GAN [50].

This chapter is based on [6].
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4.1 Introduction
Optimal transport (OT) theory [171] plays an increasingly important role in machine
learning to compare probability distributions, notably point clouds, discrete mea-
sures or histograms [120]. As a result, OT is now often used in graphics [46, 47, 48],
neuroimaging [44], to align word embeddings [52, 53, 54], reconstruct cell trajec-
tories [55, 41, 56], domain adaptation [57, 58] or estimation of generative mod-
els [49, 50, 51]. Yet, in their original form, as proposed by Kantorovich [32], OT
distances are not a natural fit for applied problems: they minimize a network flow
problem, with a supercubic complexity (n3 log n) [172] that results in an output
that is not differentiable with respect to the measures’ locations or weights [173,
§5]; they suffer from the curse of dimensionality [129, 71] and are therefore likely
to be meaningless when used on samples from high-dimensional densities.

Because of these statistical and computational hurdles, all of the works quoted above
do rely on some form of regularization to smooth the OT problem, and some more
specific uses of an entropic penalty, to recover so called Sinkhorn divergences [112].
These divergences are cheaper to compute than regular OT [79, 80], smooth and
programmatically differentiable in their inputs [46, 55], and have a better sample
complexity [81] while still defining convex and definite pseudometrics [113]. While
Sinkhorn divergences do lower OT costs from supercubic down to an embarassingly
parallel quadratic cost, using them to compare measures that have more than a few
tens of thousands of points in forward mode (less obviously if backward execution
is also needed) remains a challenge.

Entropic regularization: starting from ground costs. The definition of
Sinkhorn divergences usually starts from that of the ground cost on observations.
That cost is often chosen by default to be a q-norm between vectors, or a shortest-
path distance on a graph when considering geometric domains [114, 115, 116, 44].
Given two measures supported respectively on n and m points, regularized OT
instantiates first a n ×m pairwise matrix of costs C, to solve a linear program
penalized by the coupling’s entropy. This can be rewritten as a Kullback-Leibler
minimization:

min
couplings P

⟨C,P ⟩ − εH(P ) = ε min
couplings P

KL(P,K) , (4.1)

where matrix K appearing in Eq. (4.1) is defined as K := exp(−C/ε), the ele-
mentiwe neg-exponential of a rescaled cost C.As described in more detail in §4.2,
this problem can then be solved using Sinkhorn’s algorithm, which only requires
applying repeatedly kernel K to vectors. While faster optimization schemes to
compute regularized OT have been been investigated [117, 118, 119], the Sinkhorn
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algorithm remains, because of its robustness and simplicity of its parallelism, the
workhorse of choice to solve entropic OT. Since Sinkhorn’s algorithm cost is driven
by the cost of applying K to a vector, speeding up that evaluation is the most
impactful way to speedup Sinkhorn’s algorithm. This is the case when using
separable costs on grids (applying K boils down to carrying out a convolution at
cost (n1+1/d) [120, Remark 4.17]) or when using shortest path metrics on graph
in which case applying K can be approximated using a heat-kernel [121]. While
it is tempting to use low-rank matrix factorization, using them within Sinkhorn
iterations requires that the application of the approximated kernel guarantees the
positiveness of the output. As shown by [122] this can only be guaranteed, when
using the Nyström method, when regularization is high and tolerance very low.

Starting instead from the Kernel. Because regularized OT can be carried
out using only the definition of a kernel K, we focus instead on kernels K that
are guaranteed to have positive entries by design. Indeed, rather than choosing
a cost to define a kernel next, we consider instead ground costs of the form
c(x, y) = −ε log⟨φ(x), φ(y)⟩ where φ is a map from the ground space onto the
positive orthant in Rr. This choice ensures that both the Sinkhorn algorithm itself
(which can approximate optimal primal and dual variables for the OT problem)
and the evaluation of Sinkhorn divergences can be computed exactly with an effort
scaling linearly in r and in the number of points, opening new perspectives to apply
OT at scale.

Our contributions are two fold: (i) We show that kernels built from positive
features can be used to approximate some usual cost functions including the square
Euclidean distance using random expansions. (ii) We illustrate the versatility
of our approach by extending previously proposed OT-GAN approaches [50, 81],
that focused on learning adversarially cost functions cθ and incurred therefore
a quadratic cost, to a new approach that learns instead adversarially a kernel
kθ induced from a positive feature map φθ. We leverage here the fact that our
approach is fully differentiable in the feature map to train a GAN at scale, with
linear time iterations.

4.2 Regularized Optimal Transport

Sinkhorn Divergence. Let µ =
∑n

i=1 aiδxi and ν =
∑m

j=1 bjδyj be two discrete
probability measures. The Sinkhorn divergence [174, 175, 50] between µ and ν is,
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given a constant ε > 0, equal to

Sc,ε(µ, ν) := OTc,ε(µ, ν)−
1

2
(OTc,ε(µ, µ) + OTc,ε(ν, ν)) , where (4.2)

OTc,ε(µ, ν) := min
P∈Rn×m

+

P1m=a,PT 1n=b

⟨P,C⟩ − εH(P ). (4.3)

Here C := [c(xi, yj)]ij andH is the Shannon entropy, H(P ) := −
∑

ij Pij(logPij−1).
Because computing and differentiating Sc,ε is equivalent to doing so for three
evaluations of OTc,ε (neglecting the third term in the case where only µ is a
variable) [120, §4], we focus on OTc,ε in what follows.

Primal Formulation. Problem (4.3) is ε-strongly convex and admits therefore
a unique solution Pε which, writing first order conditions for problem (4.3), admits
the following factorization:

∃u⋆ ∈ Rn
+, v

⋆ ∈ Rm
+ s.t. Pε = diag(u⋆)Kdiag(v⋆), where K := exp(−C/ε). (4.4)

These scalings u⋆, v⋆ can be computed using Sinkhorn’s algorithm, which consists
in initializing u to any arbitrary positive vector in Rm, to apply then fixed point
iteration described in Alg. 3.

Algorithm 1 Sinkhorn
Inputs: K, a, b, δ, u repeat

v ← b/KTu, u← a/Kv
until ∥v ◦KTu− b∥1 < δ;
Result: u, v

These two iterations require together 2nm opera-
tions if K is stored as a matrix and applied directly.
The number of Sinkhorn iterations needed to con-
verge to a precision δ (monitored by the difference
between the column-sum of diag(u)Kdiag(v) and
b) is controlled by the scale of elements in C rela-
tive to ε [164]. That convergence deteriorates with
smaller ε, as studied in more detail by [72, 176].

Dual Formulation. The dual of (4.3) plays an
important role in our analysis [120, §4.4]:

OTc,ε(µ, ν) = max
α∈Rn,β∈Rm

aTα + bTβ − ε(eα/ε)TKeβ/ε = ε
(
aT log uε + bT log vε − 1

)
(4.5)

where we have introduced, next to its definition, its evaluation using optimal
scalings u⋆ and v⋆ described above. This equality comes from that fact that (i) one
can show that α⋆ := ε log u⋆, β⋆ := ε log v⋆, (ii) the term (eα/ε)TKeβ/ε = uTKv is
equal to 1, whenever the Sinkhorn loop has been applied even just once, since these
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sums describe the sum of a coupling (a probability distribution of size n×m). As
a result, given the outputs u, v of Alg. 3 we estimate (4.3) using

ÔTc,ε(µ, ν)=ε
(
aT log u+ bT log v − 1

)
. (4.6)

Approximating OTc,ε(µ, ν) can be therefore carried using exclusively calls to the
Sinkhorn algorithm, which requires instantiating kernel K, in addition to computing
inner product between vectors, which can be computed in O(n + m) algebraic
operations; the instantiation of C is never needed, as long as K is given. Using
this dual formulation(4.3) we can now focus on kernels that can be evaluated with
a linear cost to achieve linear time Sinkhorn divergences.

4.3 Linear Sinkhorn with Positive Features

The usual flow in transport dictates to choose a cost first c(x, y) to define a
kernel k(x, y) := exp(−c(x, y)/ε) next, and adjust the temperature ε depending
on the level of regularization that is adequate for the task. We propose in this
work to do exactly the opposite, by choosing instead parameterized feature maps
φθ : X 7→ (R∗

+)
r which associate to any point in X a vector in the positive orthant.

With such maps, we can therefore build the corresponding positive-definite kernel kθ
as kθ(x, y) := φθ(x)

Tφθ(y) which is a positive function. Therefore as a by-product
and by positivity of the feature map, we can define for all (x, y) ∈ X × X the
following cost function

cθ(x, y) := −ε logφθ(x)Tφθ(y). (4.7)

Remark 1 (Transport on the Positive Sphere.). Defining a cost as the log of
a dot-product as described in (4.7) has already played a role in the recent OT
literature. In [177], the author defines a cost c on the sphere Sd, as c(x, y) =
− log xTy, if xTy > 0, and ∞ otherwise. The cost is therefore finite whenever two
normal vectors share the same halfspace, and infinite otherwise. When restricted to
the the positive sphere, the kernel associated to this cost is the linear kernel. See
App. 4.7 for an illustration.

More generally, the above procedure allows us to build cost functions on any
cartesian product spaces X × Y by defining cθ,γ(x, y) := −ε logφθ(x)Tψγ(y) where
ψγ : Y 7→ (R∗

+)
r is a parametrized function which associates to any point Y also a

vector in the same positive orthant as the image space of φθ but this is out of the
scope of this paper.
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4.3.1 Achieving linear time Sinkhorn iterations with Positive
Features.

Choosing a cost function cθ as in (4.7) greatly simplifies computations, by design,
since one has, writing for the matrices of features for two set of points x1, . . . , xn
and y1, . . . , ym

ξ :=
[
φθ(x1), . . . , φθ(xn)

]
∈ (R∗

+)
r×n, ζ :=

[
φθ(y1), . . . , φθ(ym)

]
∈ (R∗

+)
r×m,

that the resulting sample kernel matrix Kθ corresponding to the cost cθ is Kθ =[
e−cθ(xi,yj)/ε

]
i,j

= ξT ζ. Moreover thanks to the positivity of the entries of the kernel
matrix Kθ there is no duality gap and we obtain that

OTcθ,ε(µ, ν) = max
α∈Rn,β∈Rm

aTα + bTβ − ε(ξeα/ε)T ζeβ/ε. (4.8)

Therefore the Sinkhorn iterations in Alg. 3 can be carried out in exactly r(n+m)
operations. The main question remains on how to choose the mapping φθ. In the
following, we show that, for some well chosen mappings φθ, we can approximate
the entropic OT for some classical costs in linear time.

4.3.2 Approximation properties of Positive Features.

Let U be a metric space and ρ a probability measure on U . We consider kernels on
X of the form:

for (x, y) ∈ X 2, k(x, y) =

∫
u∈U

φ(x, u)Tφ(y, u)dρ(u). (4.9)

Here φ : X × U → (R∗
+)

p is such that for all x ∈ X , u ∈ U → ∥φ(x, u)∥2 is square
integrable (for the measure dρ). Given such kernel and a regularization ε we define
the cost function c(x, y) := −ε log(k(x, y)). In fact, we will see in the following that
for some usual cost functions c̃, e.g. the square Euclidean cost, the Gibbs kernel
associated k̃(x, y) = exp(−ε−1c̃(x, y)) admits a decomposition of the form Eq.(4.9).
To obtain a finite-dimensional representation, one can approximate the integral
with a weighted finite sum. Let r ≥ 1 and θ := (u1, ..., ur) ∈ U r from which we
define the following positive feature map

φθ(x) :=
1√
r
(φ(x, u1), ..., φ(x, ur)) ∈ Rp×r

and a new kernel as kθ(x, y) := ⟨φθ(x), φθ(y)⟩. When the (ui)1≤i≤r are sampled
independently from ρ, kθ may approximates the kernel k arbitrary well if the
number of random features r is sufficiently large. For that purpose let us now
introduce some assumptions on the kernel k.
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Assumption 1. There exists a constant ψ > 0 such that for all x, y ∈ X :

|φ(x, u)Tφ(y, u)/k(x, y)| ≤ ψ (4.10)

Assumption 2. There exists a κ > 0 such that for ally x, y ∈ X , k(x, y) ≥ κ > 0
and φ is differentiable there exists V > 0 such that:

sup
x∈X

Eρ
(
∥∇xφ(x, u)∥2

)
≤ V (4.11)

We can now present our main result on our proposed approximation scheme of
OTc,ε which is obtained in linear time with high probability. See Appendix 4.5.1
for the proof.

Theorem 4.3.1. Let δ > 0 and r ≥ 1. Then the Sinkhorn Alg. 3 with inputs Kθ,
a and b outputs (uθ, vθ) such that

|OTcθ,ε−ÔTcθ,ε| ≤
δ

2

in O

(
nεr
δ

[
Qθ − logmin

i,j
(ai, bj)

]2)
operations where Qθ = − logmin

i,j
kθ(xi, yj).

Moreover if Assumptions 1 and 2 hold then for τ > 0,

r ∈ Ω

(
ψ2

δ2

[
min

(
dε−1∥C∥2∞ + d log

(
ψV D

τδ

)
, log

(n
τ

))])
(4.12)

and u1, ..., ur drawn independently from ρ, with a probability 1−τ , Qθ ≤ ε−1∥C∥2∞+
log (2 + δε−1) and it holds

|OTc,ε−ÔTcθ,ε| ≤ δ (4.13)

Therefore with a probability 1− τ , Sinkhorn Alg. 3 with inputs Kθ, a and b
output a δ-approximation of the entropic OT distance in Õ

(
n
εδ3
∥C∥4∞ψ2

)
algebraic

operation where the notation Õ(.) omits polylogarithmic factors depending on
R,D, ε, n and δ.

It worth noting that for every r ≥ 1 and θ, Sinkhorn Alg. 3 using kernel matrix Kθ

will converge towards the solution of the entropic OT problem associated with the
cost function cθ in linear time thanks to the positivity of the feature maps used.
Moreover, to ensure with high probability that the solution obtained approximate
an optimal solution for the entropic OT problem associated with the cost function
c, we need, if the features are chosen randomly, to ensure a minimum number
of them. In contrast such result is not possible in [122]. Indeed in their works,

109



the number of random features r cannot be chosen arbitrarily as they need to
ensure the positiveness of the all the coefficients of the approximated kernel matrix
obtained by the Nyström algorithm of [178] to run the Sinkhorn iterations and
therefore need a very high precision which requires a certain number of random
features r.

Remark 2 (Acceleration.). It is worth noting that our method can also be applied
in combination with the accelerated version of the Sinkhorn algorithm proposed in
[179]. Indeed for τ > 0, applying our approximation scheme to their algorithm
leads with a probability 1− τ to a δ/2-approximation of OTc,ε in O

(
nr√
δ
[
√
ε−1Aθ]

)
algebraic operations where Aθ = inf

(α,β)∈Θθ

∥(α, β)∥2, Θθ is the set of optimal dual

solutions of (4.8) and r satisfying Eq.(4.12). See the full statement and the proof
in Appendix 4.5.2.

The number of random features prescribed in Theorem 4.3.1 ensures with
high probability that ÔTcθ,ε approximates OTc,ε well when u1, . . . , ur are drawn
independently from ρ. Indeed, to control the error due to the approximation made
through the Sinkhorn iterations, we need to control the error of the approximation
of K by Kθ relatively to K. In the next proposition we show with high probability
that for all (x, y) ∈ X × X ,

(1− δ)k(x, y) ≤ kθ(x, y) ≤ (1 + δ)k(x, y) (4.14)

for an arbitrary δ > 0 as soon as the number of random features r is large enough.
See Appendix 4.5.3 for the proof.

Proposition 4.3.1. Let X ⊂ Rd compact, n ≥ 1, X = {x1, ..., xn} and Y =
{y1, ..., yn} such that X, Y ⊂ X , δ > 0. If u1, ..., ur are drawn independently from
ρ then under Assumption 1 we have

P

(
sup

(x,y)∈X×Y

∣∣∣∣kθ(x, y)k(x, y)
− 1

∣∣∣∣ ≥ δ

)
≤ 2n2 exp

(
− rδ

2

2ψ2

)
Moreover if in addition Assumption 2 holds then we have

P

(
sup

(x,y)∈X×X

∣∣∣∣kθ(x, y)k(x, y)
− 1

∣∣∣∣ ≥ δ

)
≤ (κ−1D)2Cψ,V,r

δ2
exp

(
− rδ2

2ψ2(d+ 1)

)

where Cψ,V,r = 29ψ(4 + ψ2/r)V sup
x∈X

k(x, x) and D = sup
(x,y)∈X×X

∥(x, y)∥2.
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Remark 3 (Ratio Approximation.). The uniform bound obtained here to control
the ratio gives naturally a control of the form Eq.(4.14). In comparison, in [180], the
authors obtain a uniform bound on their difference which leads with high probability
to a uniform control of the form

k(x, y)− τ ≤ kθ(x, y) ≤ k(x, y) + τ (4.15)

where τ is a decreasing function with respect to r the number of random features
required. To be able to recover Eq.(4.14) from the above control, one may consider
the case when τ = infx,y∈X×Y k(x, y)δ which can considerably increases the number
of of random features r needed to ensure the result with at least the same probability.
For example if the kernel is the Gibbs kernel associated to a cost function c, then

inf
x,y∈X×Y

k(x, y) = exp(−∥C∥∞/ε). More details are left in Appendix 4.5.3.

In the following, we provides examples of some usual kernels k that admits a
decomposition of the form Eq.(4.9), satisfy Assumptions 1 and 2 and hence for
which Theorem 4.3.1 can be applied.

Arc-cosine Kernels. Arc-cosine kernels have been considered in several works,
starting notably from [181], [182] and [183]. The main idea behind arc-cosine
kernels is that they can be written using positive maps for vectors x, y in Rd and
the signs (or higher exponent) of random projections µ = N (0, Id)

ks(x, y) =

∫
Rd

Θs(u
Tx)Θs(u

Ty)dµ(u)

where Θs(w) =
√
2max(0, w)s is a rectified polynomial function. In fact from these

formulations, we build a perturbed version of ks which admits a decomposition of
the form Eq.(4.9) that satisfies the required assumptions. See Appendix 4.5.5 for
the full statement and the proof.

Gaussian kernel. The Gaussian kernel is in fact an important example as it is
both a very widely used kernel on its own and its cost function associated is the
square Euclidean metric. A decomposition of the form (4.9) has been obtained in
([184]) for the Gaussian kernel but it does not satisfies the required assumptions.
In the following lemma, we built a feature map of the Gaussian kernel that satisfies
them. See Appendix 4.5.4 for the proof.

Lemma 1. Let d ≥ 1, ε > 0 and k be the kernel on Rd such that for all x, y ∈ Rd,
k(x, y) = e−∥x−y∥22/ε. Let R > 0, q = R2

2εdOT0(R2/εd)
where OT0 is the Lambert
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function, σ2 = qε/4, ρ = N (0, σ2Id) and let us define for all x, u ∈ Rd the
following map

φ(x, u) = (2q)d/4 exp
(
−2ε−1∥x− u∥22

)
exp

(
ε−1∥u∥22

1
2
+ ε−1R2

)
Then for any x, y ∈ Rd we have k(x, y) =

∫
u∈Rd φ(x, u)φ(y, u)dρ(u). Moreover if

x, y ∈ B(0, R) and u ∈ Rd we have k(x, y) ≥ exp(−4ε−1R2) > 0,

|φ(x, u)φ(y, u)/k(x, y)| ≤ 2d/2+1qd/2 and

sup
x∈B(0,R)

E(∥∇xφ∥22) ≤ 2d/2+3qd/2
[
(R/ε)2 +

q

4ε

]
.

4.3.3 Constructive approach to Designing Positive Features:
Differentiability

In this section we consider a constructive way of building feature map φθ which may
be chosen arbitrary, or learned accordingly to an objective defined as a function of
the entropic OT distance, e.g. OT-GAN objectives [50, 185]. For that purpose, we
want to be able to compute the gradient of OTcθ,ε(µ, ν) with respect to the kernel
Kθ, or more specifically with respect to the parameter θ and the locations of the
input measures. In the next proposition we show that this entropic OT distance is
differentiable with respect to the kernel matrix. See Appendix 4.6 for the proof.

Proposition 4.3.2. Let ϵ > 0, (a, b) ∈ ∆n ×∆m and let us also define for any
K ∈ (R∗

+)
n×m with positive entries the following function:

G(K) := sup
(α,β)∈Rn×Rm

⟨α, a⟩+ ⟨β, a⟩ − ε(eα/ε)TKeβ/ε. (4.16)

Then G is differentiable on (R∗
+)

n×m and its gradient is given by

∇G(K) = −εeα⋆/ε(eβ
⋆/ε)T (4.17)

where (α⋆, β⋆) are optimal solutions of Eq.(4.16).

Note that when c is the square euclidean metric, the differentiability of the
above objective has been obtained in [126]. We can now provide the formula for
the gradients of interest. For all X :=

[
x1, . . . , xn

]
∈ Rd×n, we denote µ(X) =∑n

i=1 aiδxi and OTcθ,ε = OTcθ,ε(µ(X), ν). Assume that θ is a M -dimensional vector
for simplicity and that (x, θ) ∈ Rd × RM → φθ(x) ∈ (R∗

+)
r is a differentiable map.
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Then from proposition 4.3.2 and by applying the chain rule theorem, we obtain
that

∇θOTcθ,ε =− ε

((
∂ξ

∂θ

)T
u⋆θ(ζv

⋆
θ)
T +

(
∂ζ

∂θ

)T
v⋆θ(ξu

⋆
θ)
T

)
,

∇X OTcθ,ε = −ε
(
∂ξ

∂X

)T
u⋆θ(ζv

⋆
θ)
T

where (u∗θ, v
∗
θ) are optimal solutions of (4.5) associated to the kernel matrix Kθ.

Note that
(
∂ξ
∂θ

)T
,
(
∂ζ
∂θ

)T
and

(
∂ξ
∂X

)T
can be evaluated using simple differentiation if

φθ is a simple random feature, or, more generally, using automatic differentiation
if φθ is the output of a neural network.

Discussion. Our proposed method defines a kernel matrix Kθ and a parametrized
entropic OT distance OTcθ,ε which are differentiable with respect to the input
measures and the parameter θ. These proprieties are important and used in many
applications, e.g. GANs. However such operations may not be allowed when using
a data-dependent method to approximate the kernel matrix such as the Nyström
method used in [122]. Indeed there, the approximated kernel K̃ and the entropic
OT distance OTε,c̃ associated are not well defined on a neighbourhood of the
locations of the inputs measures and therefore are not differentiable.

4.4 Experiments

Efficiency vs. Approximation trade-off using positive features. In Fig-
ures 8.8,4.3 we plot the deviation from ground truth, defined as D := 100 ×
OTc,ε−ÔT c,ε

|OTc,ε| + 100, and show the time-accuracy tradeoff for our proposed method
RF, Nystrom Nys [122] and Sinkhorn Sin [112], for a range of regularization
parameters ε (each corresponding to a different ground truth OTε,c) and approxi-
mation with r random features in two settings. In particular, we show that our
method obtains very high accuracy with order of magnitude faster than Sin in a
larger regime of regularizations than Nys. In Figure 4.5 in Appendix 4.7, we also
show the time-accuracy tradeoff in the high dimensional setting.

Using positive features to learn adversarial kernels in GANs. Let PX
a given distribution on X ⊂ RD, (Z,A, ζ) an arbitrary probability space and let
gρ : Z → X a parametric function where the parameter ρ lives in a topological
space O. The function gρ allows to generate a distribution on X by considering the
push forward operation through gρ. Indeed gρ♯ζ is a distribution on X and if the
function space F = {gρ: ρ ∈ O} is large enough, we may be able to recover PX for
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Figure 4.1: In this experiment, we draw 40000 samples from two normal distributions
and we plot the deviation from ground truth for different regularizations. These
two normal distributions are in R2. One of them has mean (1, 1)T and identity
covariance matrix I2. The other has 0 mean and covariance 0.1× I2. We compare
the results obtained for our proposed method (RF) with the one proposed in [122]
(Nys) and with the Sinkhorn algorithm (Sin) proposed in [112]. The cost function
considered here is the square Euclidean metric and the feature map used is that
presented in Lemma 1. The number of random features (or rank) chosen varies
from 100 to 2000. We repeat for each problem 50 times the experiment. Note that
curves in the plot start at different points corresponding to the time required for
initialization. Right : when the regularization is sufficiently large both Nys and
RF methods obtain very high accuracy with order of magnitude faster than Sin.
Middle right, middle left : Nys fails to converge while RF works for any given
random features and provides very high accuracy of the entropic OT cost with
order of magnitude faster than Sin. Left : when the regularization is too small all
the methods failed as the Nystrom method cannot be computed, the accuracy of
the RF method is of order of 10% and Sinkhorn algorithm may be too costly.

a well chosen ρ. The goal is to learn ρ∗ such that gρ∗♯ ζ is the closest possible to PX
according to a specific metric on the space of distributions. Here we consider the
Sinkhorn distance as introduced in Eq.(4.2). One difficulty when using such metric
is to define a well behaved cost to measure the distance between distributions in
the ground space. We decide to learn an adversarial cost by embedding the native
space X into a low-dimensional subspace of Rd thanks to a parametric function fγ .
Therefore by defining hγ(x, y) := (fγ(x), fγ(y)) and given a fixed cost function c on
Rd, we can define a parametric cost function on X as c ◦ hγ(x, y) := c(fγ(x), fγ(y)).
To train a Generative Adversarial Network (GAN), one may therefore optimizes
the following objective:

min
ρ

max
γ

Sc◦hγ ,ε(gρ#ζ, PX )

Indeed, taking the max of the Sinkhorn distance according to γ allows to learn a
discriminative cost c ◦ hγ [185, 50]. However in practice, we do not have access
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Figure 4.2: Here we show the two distributions con-
sidered in the experiment presented in Figure 4.3 to
compare the time-accuracy tradeoff between the dif-
ferent methods. All the points are drawn on the unit
sphere in R3, and uniform distributions are consid-
ered respectively on the red dots and on the blue dots.
There are 10000 samples for each distribution.

Figure 4.3: In this experiment, we draw 20000 samples from two distributions
on the sphere (see Figure 4.2) and we plot the deviation from ground truth for
different regularizations. We compare the results obtained for our proposed method
(RF) with the one proposed in [122] (Nys) and with the Sinkhorn algorithm (Sin)
proposed in [112]. The cost function considered here is the square Euclidean metric
and the feature map used is that presented in Lemma 1. The number of random
features (or rank) chosen varies from 100 to 2000. We repeat for each problem
10 times the experiment. Note that curves in the plot start at different points
corresponding to the time required for initialization. Right : when the regularization
is sufficiently large both Nys and RF methods obtain very high accuracy with
order of magnitude faster than Sin. Middle right, middle left, left : Nys fails to
converge while RF works for any given random features and provides very high
accuracy of the entropic OT cost with order of magnitude faster than Sin.

to the distribution of the data PX , but only to its empirical version P̂X , where
P̂X := 1

n

∑n
i=1 δxi and X := {x1, ..., xn} are the n i.i.d samples drawn from PX .

By sampling independently n samples Z := {z1, ..., zn} from ζ and denoting
ζ̂ := 1

q

∑q
i=1 δzi we obtain the following approximation:

min
ρ

max
γ

Sc◦hγ ,ε(gρ# ζ̂ , P̂X)

However as soon as n gets too large, the above objective, using the classic Sinkhorn
Alg. 3 is very costly to compute as the cost of each iteration of Sinkhorn is quadratic
in the number of samples. Therefore one may instead split the data and consider

115



B ≥ 1 mini-batches Z = (Zb)Bb=1 and X = (Xb)Bb=1 of size s = n
B

, and obtain
instead the following optimisation problem:

min
ρ

max
γ

1

B

B∑
b=1

Sc◦hγ ,ε(gρ# ζ̂
b, P̂ b

X)

where ζ̂b := 1
s

∑s
i=1 δzbi and P̂ b

X := 1
s

∑s
i=1 δxbi . However the smaller the batches

are, the less precise the approximation of the objective is. To overcome this
issue we propose to apply our method and replace the cost function c by an
approximation defined as cθ(x, y) = −ϵ logφθ(x)Tφθ(y) and consider instead the
following optimisation problem:

min
ρ

max
γ

1

B

B∑
b=1

Sε,cθ◦hγ (gρ# ζ̂
b, P̂ b

X).

Indeed in that case, the Gibbs kernel associated to the cost function cθ ◦ hγ is still
factorizafable as we have cθ ◦hγ(x, y) = −ϵ logφθ(fγ(x))Tφθ(fγ(y)). Such procedure
allows us to compute the objective in linear time and therefore to largely increase
the size of the batches. Note that we keep the batch formulation as we still need
it because of memory limitation on GPUs. Moreover, we may either consider a
random approximation by drawing θ randomly for a well chosen distribution or we
could learn the random features θ. In the following we decide to learn the features
θ in order to obtain a cost function cθ ◦ hγ even more discriminative. Finally our
objective is:

min
ρ

max
γ,θ

1

B

B∑
b=1

Sε,cθ◦hγ (gρ# ζ̂
b, P̂ b

X) (4.18)

Therefore here we aim to learn an embedding from the input space into the
feature space thanks to two operations. The first one consists in taking a sample
and embedding it into a latent space thanks to the mapping fγ and the second one
is an embedding of this latent space into the feature space thanks to the feature map
φθ. From now on we assume that gρ and fγ are neural networks. More precisely we
take the exact same functions used in [186, 187] to define gρ and fγ . Moreover, φθ
is the feature map associated to the Gaussian kernel defined in Lemma 1 where θ is
initialised with a normal distribution. The number of random features considered
has been fixed to be r = 600 in the following. The training procedure is the same as
[175, 187] and consists in alterning nc optimisation steps to train the cost function
cθ ◦ hγ and an optimisation step to train the generator gρ. The code is available at
github.com/meyerscetbon/LinearSinkhorn.

116

https://github.com/meyerscetbon/LinearSinkhorn


kθ(fγ(x), fγ(z)) Image x Noise z
Image x 1802× 1e12 2961× 1e5
Noise z 2961× 1e5 48.65

Table 4.1: Comparison of the learned kernel kθ, trained on CIFAR-10 by optimizing
the objective (4.18), between images taken from CIFAR-10 and random noises
sampled in the native of space of images. The values shown are averages obtained
between 5 noise and/or image samples. As we can see the cost learned has well
captured the structure of the image space.

Figure 4.4: Images generated by two learned generative models trained by optimizing
the objective (4.18) where we set the number of batches s = 7000, the regularization
ε = 1, and the number of features r = 600. Left, right: samples obtained from the
proposed generative model trained on respectively CIFAR-10 [188] and celebA [189].

Optimisation. Thanks to proposition 4.3.2, the objective is differentiable with
respect to θ, γ and ρ. We obtain the gradient by computing an approximation of
the gradient thanks to the approximate dual variables obtained by the Sinkhorn
algorithm. We refers to section 4.3.3 for the expression of the gradient. This
strategy leads to two benefits. First it is memory efficient as the computation
of the gradient at this stage does not require to keep track of the computations
involved in the Sinkhorn algorithm. Second it allows, for a given regularization, to
compute with very high accuracy the Sinkhorn distance. Therefore, our method
may be applied also for small regularization.

Results. We train our GAN models on a Tesla K80 GPU for 84 hours on two
different datasets, namely CIFAR-10 dataset [188] and CelebA dataset [189] and
learn both the proposed generative model and the adversarial cost function cθ
derived from the adversarial kernel kθ. Figure 4.4 illustrates the generated samples
and Table 4.1 displays the geometry captured by the learned kernel.
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Discussion. Our proposed method has mainly two advantages compared to
the other Wasserstein GANs (W-GANs) proposed in the literature. First, the
computation of the Sinkhorn divergence is linear with respect to the number of
samples which allow to largely increase the batch size when training a W-GAN
and obtain a better approximation of the true Sinkhorn divergence. Second, our
approach is fully differentiable and therefore we can directly compute the gradient
of the Sinhkorn divergence with respect the parameters of the network. In [50] the
authors do not differentiate through the Wasserstein cost to train their network. In
[185] the authors do differentiate through the iterations of the Sinkhorn algorithm
but this strategy require to keep track of the computation involved in the Sinkhorn
algorithm and can be applied only for large regularizations as the number of
iterations cannot be too large.
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Supplementary materials
Outline. In Sec. 4.5 we provide the proofs related to the approximation proprieties
of our proposed method. In Sec. 4.6 we show the differentiability of the constructive
approach. Finally in Sec. 4.7 we add more experiments and illustrations of our
proposed method.

4.5 Approximation via Random Fourier Features

4.5.1 Proof of Theorem 4.3.1

In the following we denote K = (k(xi, yj))
n
i,j=1 Kθ = (kθ(xi, yj))

n
i,j=1 the two gram

matrices associated with k and kθ respectively. By duality and from these two
matrices we can define the two objectives to maximize to obtain OTc,ε and OTcθ,ε:

OTc,ε = max
α,β

f(α, β) := ⟨α, a⟩+ ⟨β, b⟩ − ε⟨eα/ε, Keβ/ε⟩

OTcθ,ε = max
α,β

fθ(α, β) := ⟨α, a⟩+ ⟨β, b⟩ − ε⟨eα/ε, Kθe
β/ε⟩

Moreover as k and φ are assumed to be positive, there exists unique (up to a
scalar translation) (α∗, β∗) and (α∗

θ, β
∗
θ ) respectively solutions of maxα,β f(α, β) and

maxα,β fθ(α, β).

Proof. Let us first show the following proposition:

Proposition 1. Let δ > 0 and r ≥ 1. Assume that for all (x, y) ∈ X × Y ,∣∣∣∣k(x, y)− kθ(x, y)k(x, y)

∣∣∣∣ ≤ δε−1

2 + δε−1
(4.19)

then Sinkhorn Alg. 3 with inputs a, b,Kθ outputs (αθ, βθ) in

O

(
nr

δε−1

[
log

(
1

ι

)
+ log

(
2 + δε−1

)
+ ε−1R2

]2)

where

ι = min
i,j

(ai, bj) and R = max
(x,y)∈X×Y

c(x, y). (4.20)

such that:

|OTc,ε−fθ(αθ, βθ)| ≤ δ

119



Proof. We remark that:

|f(α∗, β∗)− fθ(αθ, βθ)| ≤ |f(α∗, β∗)− f(α∗
θ, β

∗
θ )|

+ |f(α∗
θ, β

∗
θ )− fθ(α∗

θ, β
∗
θ )|

+ |fθ(α∗
θ, β

∗
θ )− fθ(αθ, βθ)|

Moreover we have that:

|f(α∗, β∗)− f(α∗
θ, β

∗
θ )| = f(α∗, β∗)− f(α∗

θ, β
∗
θ )

= f(α∗, β∗)− fθ(α∗
θ, β

∗
θ ) + fθ(α

∗
θ, β

∗
θ )− f(α∗

θ, β
∗
θ )

≤ |f(α∗, β∗)− fθ(α∗, β∗)|+ |fθ(α∗
θ, β

∗
θ )− f(α∗

θ, β
∗
θ )|

Therefore we obtain that:

|f(α∗, β∗)− fθ(αθ, βθ)| ≤ 2|f(α∗
θ, β

∗
θ )− fθ(α∗

θ, β
∗
θ )|+ |f(α∗, β∗)− fθ(α∗, β∗)|

+ |fθ(α∗
θ, β

∗
θ )− fθ(αθ, βθ)|

Let us now introduce the following lemma:

Lemma 2. Let 1 > τ > 0 and let us assume that for all (x, y) ∈ X × Y ,∣∣∣∣k(x, y)− kθ(x, y)k(x, y)

∣∣∣∣ ≤ τ

then for any α, β ∈ Rn it holds

|f(α, β)− fθ(α, β)| ≤ ετ [⟨eε−1α, Keε
−1β⟩] (4.21)

and

|f(α, β)− fθ(α, β)| ≤ ε
τ

1− τ
[⟨eε−1α, Kθe

ε−1β⟩] (4.22)

Proof. Let α, β ∈ Rn. We remarks that:

f(α, β)− fθ(α, β) = ε[⟨eε−1α, (Kθ −K)eε
−1β⟩]

Therefore we obtain that:

|f(α, β)− fθ(α, β)| ≤ ε

n∑
i,j=1

eε
−1αieε

−1βj |[Kθ]i,j −Ki,j|

And the first inequality follows from the fact that |[Kθ]i,j −Ki,j| ≤ τ |Ki,j| for all
i, j ∈ {1, ..., n} and that k is positive. Moreover from the same inequality we obtain
that:

|[Kθ]i,j −Ki,j| ≤
τ

1− τ
[Kθ]i,j

Therefore the second inequality follows.
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Therefore thanks to lemma 2, we obtain that:

|f(α∗
θ, β

∗
θ )− fθ(α∗

θ, β
∗
θ )| ≤ ε

τ

1− τ
[⟨eε−1α∗

θ , Kθe
ε−1β∗

θ ⟩]

But as (α∗
θ, β

∗
θ ) is the optimum of fθ, the first order conditions give us that

⟨eε−1α∗
θ , Kθe

ε−1β∗
θ ⟩ = 1 and finally we have:

|f(α∗
θ, β

∗
θ )− fθ(α∗

θ, β
∗
θ )| ≤ ε

τ

1− τ

Thanks to lemma 2, we also deduce that:

|f(α∗, β∗)− fθ(α∗, β∗)| ≤ ετ

Let us now introduce the following theorem:

Theorem 4.5.1. ([118]) Given Kθ ∈ Rn×n with positive entries and a, b ∈ ∆n the
Sinkhorn Alg. 3 computes (αθ, βθ) such that

|fθ(α∗
θ, β

∗
θ )− fθ(αθ, βθ)| ≤

δ

2

in O
(
δ−1ε log

(
1

ιmini,j [Kθ]i,j

)2)
iterations where ι = min

i,j
(ai, bj) and each of which

requires O(1) matrix-vector products with Kθ and O(n) additional processing time.

Moreover from Eq. (4.19) we have that

[Kθ]i,j ≥ (1− τ)Ki,j

where τ = δε−1

2+δε−1 , therefore log
(

1
mini,j [Kθ]i,j

)
≤ log

(
1

(1−τ)mini,j Ki,j

)
≤ log

(
1

1−τ

)
+

ε−1R2 where R = max
(x,y)∈X×Y

c(x, y) and we obtain that

|f(α∗, β∗)− fθ(αθ, βθ)| ≤ 2ε
τ

1− τ
+ ετ +

δ

2

By replacing τ by its value, we obtain the desired result.

We are now ready to prove the theorem. Let r ≥ 1. From theorem 4.5.1, we
obtain directly that:

|f(α∗, β∗)− fθ(αθ, βθ)| ≤
δ

2
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in O
(
nr
δ

[
log
(
1
ι

)
+Qθ

]2) algebric operations. Moreover let τ > 0 and

r ∈ Ω

(
ψ2

δ2

[
min

(
dε−1R2 + d log

(
ψV D

τδ

)
, log

(n
τ

))])
and u1, ..., ur drawn independently from ρ. Then from Proposition 4.3.1 we obtain
that with a probability of at least 1− δ it holds for all (x, y) ∈ X × Y ,∣∣∣∣k(x, y)− kθ(x, y)k(x, y)

∣∣∣∣ ≤ δε−1

2 + δε−1

and the result follows from Proposition 1.

4.5.2 Accelerated Version

[179] show that one can accelarated the Sinkhorn algorithm (see Alg. 2) and obtain
a δ-approximation of the ROT distance. For that purpose, [179] introduce a
reformulation of the dual problem (4.8) and obtain

OTcθ,ε = sup
η1,η2

Fθ(η1, η2) := ε [⟨η1, a⟩+ ⟨η2, b⟩ − log (⟨eη2 , Kθe
η2⟩)]

which can be shown to be an L-smooth function ([190]) where L ≤ 2ε−1. Let us
now present our result using the accelerated Sinkhorn algorithm.

Theorem 4.5.2. Let δ > 0 and r ≥ 1. Then the Accelerated Sinkhorn Alg. 2 with
inputs Kθ, a and b outputs (αθ, βθ) such that

|OTcθ,ε−Fθ(αθ, βθ)| ≤
δ

2

in O
(
nr√
δ
[
√
ε−1Aθ]

)
algebraic operations where Aθ = inf

(α,β)∈Θθ

∥(α, β)∥2 and Θθ is

the set of optimal dual solutions of (4.8). Moreover let τ > 0,

r ∈ Ω

(
ψ2

δ2

[
min

(
dε−1∥C∥2∞ + d log

(
ψV D

δδ

)
, log

(n
δ

))])
and u1, ..., ur drawn independently from ρ, then with a probability 1− τ it holds

|OTc,ε−Fθ(αθ, βθ)| ≤ δ

Proof. Let us first introduce the theorem presented in [179]:
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Algorithm 2 Accelerated Sinkhorn Algorithm.
Input: Initial estimate of the Lipschitz constant L0, a, b, and K
Init: A0 = α0 = 0, η0 = ζ0 = λ0 = 0.
for k ≥ 0 do

Lk+1 = Lk/2
while True do

Set Lk+1 = Lk/2

Set ak+1 =
1

2Lk+1
+
√

1
4L2

k+1
+ a2k

Lk

Lk+1

Set τk = 1
ak+1Lk+1

Set λk = τkζ
k + (1− τk)ζk

Choose ik = argmax
i∈{1,2}

∥∇iϕ(λ
k)∥2

if ik = 1 then
ηk+1
1 = λk1 + log(a)− log(eλ

k
1 ◦Keλk2 )

ηk+1
2 = λk+1

2

else
ηk+1
1 = λk+1

1

ηk+1
2 = λk2 + log(b)− log(eλ

k
2 ◦KT eλ

k
1 )

end
end
Set ζk+1 = ζk − ak+1∇Fθ(λk)
if ϕ(ηk + 1) ≤ ϕ(λk)− ∥∇Fθ(λ

k)∥2
2Lk+1

then
Set z = Diag(eλk1 ) ◦K ◦Diag(eλk2 )
Set c = ⟨eλk1 , Keλk2 ⟩
Set x̂k+1 =

ak+1c
−1z+Lka

2
kx̂

k

Lk+1a
2
k+1

Break
end
Set Lk+1 = 2Lk+1

end
end
Result: Transport Plan x̂k+1 and dual points ηk+1 = (ηk+1

1 , ηk+1
2 )T

Theorem 4.5.3. Given Kθ ∈ Rn×n with positive entries and a, b ∈ ∆n the Accel-
erated Sinkhorn Alg. (2) computes (αθ, βθ) such that

|OTcθ,ε−Fθ(αθ, βθ)| ≤ δ

in O
(√

η
δ
Aθ
)

iterations where Aθ = inf
(α∗

θ ,β
∗
θ )∈Θ∗

∥(α∗
θ, β

∗
θ )∥2 and Θ∗ is the set of
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optimal dual solutions. Moreover each of which requires O(1) matrix-vector products
with Kθ and O(n).

From the above result and applying an analogue proof of Theorem 4.5.1, we
obtain the desired result.

4.5.3 Proof of Proposition 4.3.1

Proof. The proof is given for p = 1 but it hold also for any p ≥ 1 after making
some simple modifications. To obtain the first inequality we remarks that

P

(
sup

(x,y)∈X×X

∣∣∣∣kθ(x, y)k(x, y)
− 1

∣∣∣∣ ≥ δ

)
≤

∑
(x,y)∈X×Y

P
(∣∣∣∣kθ(x, y)k(x, y)

− 1

∣∣∣∣ ≥ δ

)

Moreover as Eρ
(
φ(x,u)φ(y,u)

k(x,y)

)
= 1, the result follows by applying Hoeffding’s inequal-

ity.

To show the second inequality, we follow the same strategy adopted in [180].
Let us denote f(x, y) = kθ(x,y)

k(x,y)
− 1 and M := X × X . First we remarks that

|f(x, y)| ≤ K + 1 and Eρ(f) = 0. As M is a compact, we can find an µ-net that

covers M with N (M, µ) =
(

4R
µ

)2d
where R = sup(x,y) ∥(x, y)∥2 balls of radius δ.

Let us denote z1, ..., zN (M,µ) ∈M the centers of these balls, and let Lf denote the
Lipschitz constant of f . As f is differentiable We have therefore Lf = sup

z∈M
∥∇f(z)∥2.

Moreover we have:

∇f(z) = ∇kθ(z)
k(z)

− kθ(z)

k(z)
∇k(z)

=
1

k(z)

[
(∇kθ(z)−∇k(z)) +∇k(z)

(
1− kθ(z)

k(z)

)]
Therefore we have

E(∥∇f(z)∥2) ≤ 2

k(z)2

[
E(∥∇kθ(z)−∇k(z)∥2) + ∥∇k(z)∥2E

(
1− kθ(z)

k(z)

)2
]

But for any z ∈M we have from Eq. (4.15) :

E
(
1− kθ(z)

k(z)

)2

=

∫
t≥0

P

((
1− kθ(z)

k(z)

)2

≥ t

)
(4.23)

≤ K2

r
(4.24)
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Moreover, we have:

∇kθ(z) =
1

r

r∑
i=1

∇xφ(x, ui)φ(y, ui) + φ(x, ui)∇yφ(y, ui)

Therefore we have:

∥∇kθ(z)∥2 =
1

r2

r∑
i,j=1

⟨∇xφ(x, ui),∇xφ(x, uj)⟩φ(y, ui)φ(y, uj)

+
1

r2

r∑
i,j=1

∇yφ(y, ui),∇yφ(y, uj)⟩φ(x, ui)φ(x, uj)

+
2

r2

r∑
i,j=1

∇xφ(x, ui),∇yφ(x, uj)⟩φ(y, ui)φ(x, uj)

Moreover as:

|φ(y, ui)φ(x, uj)| ≤
φ(y, ui)

2 + φ(x, uj)
2

2
≤ K sup

x∈X
k(x, x)

And:

|⟨∇xφ(x, ui),∇yφ(y, uj)⟩| ≤ ∥∇xφ(x, ui)∥∥∇yφ(y, uj)∥

≤ ∥∇xφ(x, ui)∥2 + ∥∇yφ(y, uj)∥2

2

And by denoting:

V := sup
x∈X

Eρ
(
∥∇xφ(x, u)∥2

)
Therefore we have:

E (|⟨∇xφ(x, ui),∇yφ(y, uj)⟩|) ≤ V (4.25)

We can now derive the following upper bound:

E(∥∇kθ(z)−∇k(z)∥2) = E(∥∇kθ(z)∥2)− ∥∇k(z)∥2 ≤ 4V K sup
x∈X

k(x, x)

Moreover by convexity of the ℓ2 square norm, we also obtain that:

∥∇k(z)∥2 ≤ V K sup
x∈X

k(x, x)
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Therefore we have

E(∥∇f(z)∥2) ≤ 2κ−2V K sup
x∈X

k(x, x)

[
4 +

K2

r

]
Then by applying Markov inequality we obtain that:

P
(
Lf ≥

δ

2µ

)
≤ 2κ−2V K sup

x∈X
k(x, x)

[
4 +

K2

r

](
2µ

δ

)2

(4.26)

Moreover, the union bound followed by Hoeffding’s inequality applied to the anchors
in the µ-net gives

P
(
∪N (M,µ)
i=1 |f(zi)| ≥ δ

)
≤ 2N (M, µ) exp

(
− rδ2

2K2

)
(4.27)

Then by combining Eq. (4.26) and Eq.(4.27) we obtain that:

P
(
sup
z∈M
|f(z)| ≥ δ

)
≤2
(
4R

µ

)2d

exp

(
− rδ2

2K2

)
+ 2κ−2V K sup

x∈X
k(x, x)

[
4 +

K2

r

](
2µ

δ

)2

Therefore by denoting

A1 := 2 (4R)2d exp

(
− rδ2

2K2

)
A2 := 2κ−2V K sup

x∈X
k(x, x)

[
4 +

K2

r

](
2

δ

)2

and by choosing µ = A1

A2

1
2d+2 , we obtain that:

P
(
sup
z∈M
|f(z)| ≥ δ

)
≤29

κ−2KV supx∈X k(x, x)
[
4 + K2

r

]
R2

δ2


× exp

(
− rδ2

2K2(d+ 1)

)
Ratio Approximation. Let us assume here that p = 1 for simplicity. The
uniform bound obtained on the ratio gives naturally a control of the form Eq.(4.14)
with a prescribed number of random features r. This result allows to control the
error when using the kernel matrix Kθ instead of the true kernel matrix K in
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the Sinkhorn iterations. In the proposition above, we obtain such a result with a
probability of at least 1−2n2 exp

(
− rδ2

2ψ2

)
where r is the number of random features

and ψ is defined as

ψ := sup
u∈U

sup
(x,y)∈X×Y

∣∣∣∣φ(x, u)φ(y, u)k(x, y)

∣∣∣∣ .
In comparison, in [180], the authors obtain a uniform bound on their difference
and by denoting

ϕ = sup
u∈U

sup
(x,y)∈X×Y

|φ(x, u)φ(y, u)| ,

one obtains that with a probability of at least 1− 2n2 exp
(
− rτ2

2ϕ2

)
for all (x, y) ∈

X × Y

k(x, y)− τ ≤ kθ(x, y) ≤ k(x, y) + τ (4.28)

To be able to recover Eq.(4.14) from the above control, we need to take τ =
inf

x,y∈X×Y
k(x, y)δ and by denoting ϕ′ = ϕ

inf
x,y∈X×Y

k(x,y)
we obtain that with a probability

of at least 1− 2n2 exp
(
− rδ2

2ϕ′2

)
for all (x, y) ∈ X × Y

(1− δ)k(x, y) ≤ kθ(x, y) ≤ (1 + δ)k(x, y)

Therefore the number of random features needed to guarantee Eq.(4.14) from a
control between the difference of the two kernels with at least a probability 1− δ
has to be larger than

(
ϕ′

ψ

)2
times the number of random features needed from

the control of Proposition 4.3.1 to guarantee Eq.(4.14) with at least the same
probability 1− δ. But we always have that

ψ = sup
u∈U

sup
(x,y)∈X×Y

∣∣∣∣φ(x, u)φ(y, u)k(x, y)

∣∣∣∣ ≤
sup
u∈U

sup
(x,y)∈X×Y

|φ(x, u)φ(y, u)|

inf
x,y∈X×Y

k(x, y)
= ϕ′

and in some cases the ratio
(
ϕ′

ψ

)2
can be huge. Indeed, as we will see in the

following, for the Gaussian kernel,

k(x, y) = exp(−ε−1∥x− y∥22)

there exists φ and U such that for all x, y and u ∈ U :

φ(x, u)φ(y, u) = k(x, y)h(u, x, y)
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where for all (x0, y0) ∈ X × Y ,

sup
u∈U
|h(u, x0, y0)| = sup

u∈U
sup

(x,y)∈X×Y
|h(u, x, y)|.

Therefore by denoting M = sup
(x,y)∈X×Y

∥x − y∥2 and m = inf
(x,y)∈X×Y

∥x − y∥2 , we

obtain that

(
ϕ′

ψ

)2

=

 sup
x,y∈X×Y

k(x, y)

inf
x,y∈X×Y

k(x, y)

2

= exp
(
2ε−1[M2 −m2]

)

4.5.4 Proof of Lemma 1

Proof. Let ε > 0 and x, y ∈ Rd. We have that:

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥y − u∥22

)
= exp

(
−ε−1∥x− y∥22

)
× exp

(
−4ε−1

∥∥∥∥u− (x+ y

2

)∥∥∥∥2
2

)

And as the LHS is integrable we have:

∫
u∈Rd

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥y − u∥22

)
du

=

∫
u∈Rd

e−ε
−1∥x−y∥22 exp

(
−4ε−1

∥∥∥∥u− (x+ y

2

)∥∥∥∥2
2

)
du

Therefore we obtain that:

e−ε
−1∥x−y∥22 =

(
4

πε

)d/2 ∫
u∈Rd

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥y − u∥22

)
du

Now we want to transform the above expression as the one stated in 4.9. To do so,
let q > 0 and let us denote fq the probability density function associated with the
multivariate Gaussian distribution ρq ∼ N

(
0, q

4ε−1 Id
)
. We can rewrite the RHS of

128



the above equation as the following:(
4

πε

)d/2 ∫
u∈Rd

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥x− u∥22

)
du

=

(
4

πε

)d/2 ∫
u∈Rd

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥x− u∥22

) fq(u)
fq(u)

d(u)

=

(
4

πε

)d/2 ∫
u∈Rd

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥x− u∥22

)
×
[(

2π
q

4ε−1

)d/2
e

2ε−1∥u∥22
q

]
dρq(u)

= (2q)d/2
∫
u∈Rd

exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥x− u∥22

)
e

2ε−1∥u∥22
q dρq(u)

Therefore for each q > 0, we obtain a feature map of k in L2(dρq) which is defined
as:

φ(x, u) = (2q)d/4 exp
(
−2ε−1∥x− u∥22

)
e

ε−1∥u∥22
q .

Moreover we have also:

φ(x, u)φ(y, u) = (2q)d/2 exp
(
−2ε−1∥x− u∥22

)
exp

(
−2ε−1∥y − u∥22

)
e

2ε−1∥u∥22
q

= (2q)d/2 exp
(
−ε−1∥x− y∥22

)
exp

(
−4ε−1

∥∥∥∥u− (x+ y

2

)∥∥∥∥2
2

)
e

2ε−1∥u∥22
q

Therefore we have:

φ(x, u)φ(y, u)

k(x, y)
= (2q)d/2 exp

(
−4ε−1

∥∥∥∥u− (x+ y

2

)∥∥∥∥2
2

)
e

2ε−1∥u∥22
q

= (2q)d/2 exp

(
−4ε−1

(
1− 1

2q

)∥∥∥∥u− (1− 1

2q

)(
x+ y

2

)∥∥∥∥2
2

)

exp

(
4ε−1

2q − 1

∥∥∥∥(x+ y

2

)∥∥∥∥2
2

)
Finally by choosing

q =
ε−1R2

2dW
(
ε−1R2

d

)
where W is the positive real branch of the Lambert function, we obtain that for any
x, y ∈ B(0, R):

0 ≤ φ(x, u)φ(y, u)

k(x, y)
≤ 2× (2q)d/2
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Moreover we have:

φ(x, u) = (2q)d/4 exp
(
−2ε−1∥x− u∥22

)
e

ε−1∥u∥22
q

Therefore φ is differentiable with respect to x and we have:

∥∇xφ∥22 = 4ε−2∥x− u∥22φ(x, u)2

≤ 4ε−2ψ sup
x∈X

k(x, x)∥x− u∥22

where ψ = 2×(2q)d/2. But by definition of the kernel we have supx∈B(0,R) k(x, x) = 1
and finally we have that for all x ∈ B(0, R):

E(∥∇xφ∥22) ≤ 4ε−2ψ
[
R2 +

q

4ε−1

]
4.5.5 Another example: Arc-cosine kernel

Lemma 3. Let d ≥ 1, s ≥ 0, κ > 0 and ks,κ be the perturbed arc-cosine kernel
on Rd defined as for all x, y ∈ Rd, ks,κ(x, y) = ks(x, y) + κ. Let also σ > 1,
ρ = N (0, σ2Id) and let us define for all x, u ∈ Rd the following map:

φ(x, u) =

(
σd/2
√
2max(0, uTx)s exp

(
−∥u∥

2

4

[
1− 1

σ2

])
,
√
κ

)T
Then for any x, y ∈ Rd we have:

ks,κ(x, y) =

∫
u∈Rd

φ(x, u)Tφ(y, u)dρ(u)

Moreover we have for all x, y ∈ Rd ks,κ(x, y) ≥ κ > 0 and for any compact X ⊂ Rd

we have:

sup
u∈Rd

sup
(x,y)∈X×X

∣∣∣∣φ(x, u)φ(y, u)k(x, y)

∣∣∣∣ < +∞ and sup
x∈X

E(∥∇xφ∥22) < +∞

Proof. Let s ≥ 0. From [182], we have that:

ks(x, y) =

∫
Rd

Θs(u
Tx)Θs(u

Ty)
e−

∥u∥22
2

(2π)d/2
du

where Θs(w) = max(0, w)s. Let σ > 1 and fσ the probability density function
associated with the distribution N (0, σ2Id). Therefore we have that

ks(x, y) =

∫
Rd

Θs(u
Tx)Θs(u

Ty)
e−

∥u∥22
2

(2π)d/2
fσ(u)

fσ(u)
du

= σd
∫
Rd

Θs(u
Tx)Θs(u

Ty) exp

(
−∥u∥

2

2

[
1− 1

σ2

])
dρ(u)
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where ρ = N (0, σ2Id). And by defining for all x, u ∈ Rd the following map:

φ(x, u) =

(
σd/2
√
2max(0, uTx)s exp

(
−∥u∥

2

4

[
1− 1

σ2

])
,
√
κ

)T
we obtain that any x, y ∈ Rd:∫
u∈Rd

φ(x, u)Tφ(y, u)dρ(u) = κ+ σd
∫
Rd

Θs(u
Tx)Θs(u

Ty) exp

(
−∥u∥

2

2

[
1− 1

σ2

])
dρ

= κ+ ks(x, y)

= ks,κ(x, y)

Moreover from the definition of the feature map φ, it is clear that ks,κ ≥ κ > 0,

sup
u∈Rd

sup
(x,y)∈X×X

∣∣∣∣φ(x, u)φ(y, u)k(x, y)

∣∣∣∣ < +∞ and sup
x∈X

E(∥∇xφ∥22) < +∞.

4.6 Constructive Method: Differentiability

4.6.1 Proof of Proposition 4.3.2

Proof. Let us first introduce the following Lemma:

Lemma 4. Let (α∗, β∗) solution of (4.5), then we have

max
i
α∗
i −min

i
α∗
i ≤ εR(K)

max
j
β∗
j −min

j
β∗
j ≤ εR(K)

where R(K) = − log

(
ι
min
i,j

Ki,j

max
i,j

Ki,j

)
with ι := min

i,j
(ai, bj).

Proof 4.6.1. Indeed at optimality, the primal-dual relationship between optimal
variables gives us that for all i = 1, ..., n:

eα
∗
i /ε⟨Ki,:, e

β∗/ε⟩ = ai ≤ 1

Moreover we have that

min
i,j

Ki,j⟨1, eβ
∗/ε⟩ ≤ ⟨Ki,:, e

β∗/ε⟩ ≤ max
i,j

Ki,j⟨1, eβ
∗/ε⟩

Therefore we obtain that

max
i
α∗
i ≤ ε log

 1

min
i,j

Ki,j⟨1, eβ∗/ε⟩
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and

min
i
α∗
i ≥ ε log

 ι

⟨1, eβ∗/ε⟩max
i,j

Ki,j


Therefore we obtain that

max
i
α∗
i −min

i
α∗
i ≥ −ε log

ιmin
i,j

Ki,j

max
i,j

Ki,j


An analogue proof for β∗ leads to similar result.

Let us now define for any K ∈ (R∗
+)

n×m with positive entries the following
objective function:

F (K,α, β) := ⟨α, a⟩+ ⟨β, a⟩ − ε(eα/ε)TKeβ/ε.

Let us first show that

G(K) := sup
(α,β)∈Rn×Rm

F (K,α, β) (4.29)

is differentiable on (R∗
+)

n×m. For that purpose let us introduce for any γ1, γ2 > 0,
the following objective function:

Gγ1,γ2(K) := sup
(α,β)∈Bn

∞(0,γ1)×Bm
∞(0,γ2)

αT e1=0

F (K,α, β)

where Bn
∞(0, γ) denote the ball of radius γ according to the infinite norm and

e1 = (1, 0, ....0)T ∈ Rn. In the following we denote by

Sγ1,γ2 :=
{
(α, β) ∈ Bn

∞(0, γ1)×Bm
∞(0, γ2) : αT e1 = 0

}
.

Let us now introduce the following Lemma:

Lemma 5. Let ε > 0, (a, b) ∈ ∆n×∆m, K ∈ (R∗
+)

n×m with positive entries. Then

max
α∈Rn,β∈Rm

aTα + bTβ − ε(eα/ε)TKeβ/ε

admits a unique solution (α∗, β∗) such that αT e1 = 0, ∥α∗∥∞ ≤ εR1(K), and ,

∥β∗∥∞ ≤ ε[R1(K)+R2(K)] where R1(K) = − log

(
ι
min
i,j

Ki,j

max
i,j

Ki,j

)
, R2(K) = log

(
n

max
i,j

Ki,j

ι

)
and ι := min

i,j
(ai, bj).
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Proof 4.6.2. In fact the existence and uncity up to a scalar transformation is
a well known result. See for example [112]. Therefore there is a unique solution
(α0, β0) such that (α0)T e1 = 0. Moreover thanks to Lemma 4, we have that for any
(α∗, β∗) optimal solution that

max
i
α∗
i −min

i
α∗
i ≤ εR(K) (4.30)

max
j
β∗
j −min

j
β∗
j ≤ εR(K) (4.31)

Therefore we have ∥α0∥∞ ≤ maxi α
0
i −mini α

0
i ≤ εR(K). Moreover, the first order

optimality conditions for the dual variables (α, β) implies that for all j = 1, ..,m

β0
j = −ε log

(
n∑
i=1

Ki,j

bj
exp

(
α0
i

ε

))
Therefore we have that:

∥β0∥∞ ≤ ∥α0∥∞ + ε log

(
n
max
i,j

Ki,j

ι

)
and the result follows.

Let K0 ∈ (R∗
+)

n×m, and let us denote M0 = max
i,j

K0[i, j], m0 = min
i,j

K0[i, j] and

Aω :=
{
K ∈ (R∗

+)
n×m such that ∥K −K0∥∞ < ω

}
By considering ω0 =

m0

2
, we obtain that for any K ∈ Aω0,

R1(K) ≤ log

(
1

ι

2M0 +m0

m0

)
R2(K) ≤ log

(
n
2M0 +m0

2ι

)
Therefore by denoting

γ01 = ε log

(
1

ι

2M0 +m0

m0

)
γ02 = ε

[
log

(
1

ι

2M0 +m0

m0

)
+ log

(
n
2M0 +m0

2ι

)]
Therefore, from Lemma 5, we have that for all K ∈ Aω0 there exists a unique
optimal solution (α, β) ∈ Bn

∞(0, γ01)×Bm
∞(0, γ02) satisfying αT e1 = 0. Therefore we

have first that for all K ∈ Aω0

Gγ01 ,γ
0
2
(K) = G(K) (4.32)
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and moreover for all K ∈ Aω0, the following set

ZK :=

(α, β) ∈ Sγ01 ,γ02 such that F (K,α, β) = sup
(α,β)∈S

γ01 ,γ02

F (K,α, β)


is a singleton. Let us now consider the restriction of F on Aω0 × Sγ01 ,γ02 denoted
F0. It is clear from their definition that Aω0 is an open convex set, and Sγ01 ,γ02 is
compact. Moreover F0 is clearly continuous, and for any (α, β) ∈ Sγ01 ,γ02 , F0(·, α, β)
is convex. Moreover for any K ∈ Aω0 the set ZK is a singleton, therefore from
Danskin theorem [191], we deduce that Gγ01 ,γ

0
2

is convex and differentiable on Aω0

and we have for all K ∈ Aω0

∇Gγ01 ,γ
0
2
(K) = −εeα∗/ε(eβ

∗/ε)T (4.33)

where (α∗, β∗) ∈ ZK . Note that any solutions of Eq.(4.29) can be used to evaluated
∇Gγ01 ,γ

0
2
(K). Moreover thanks to Eq.(4.32), we deduce also that G is also differ-

entiable on Aω0. Finally the reasoning hold for any K0 ∈ (R∗
+)

n×m, therefore G is
differentiable and we have:

∇G(K) = −εeα∗/ε(eβ
∗/ε)T (4.34)

4.7 Illustrations and Experiments
In Figure 4.5, we show the time-accuracy tradeoff in the high dimensional setting.
Here the samples are taken from the higgs dataset1 [192] where the sample lives in
R28. This dataset contains two class of signals: a signal process which produces
Higgs bosons and a background process which does not. We take randomly 5000
samples from each of these two distributions.

1https://archive.ics.uci.edu/ml/datasets/HIGGS
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Figure 4.5: In this experiment, we take randomly 10000 samples from the two
distributions of the higgs dataset and we plot the deviation from ground truth for
different regularizations. We compare the results obtained for our proposed method
(RF) with the one proposed in [122] (Nys) and with the Sinkhorn algorithm (Sin)
proposed in [112]. The cost function considered here is the square Euclidean metric
and the feature map used is that presented in Lemma 1. The number of random
features (or rank) chosen varies from 100 to 2000. We repeat for each problem
10 times the experiment. Note that curves in the plot start at different points
corresponding to the time required for initialization. Right, middle right : when
the regularization is sufficiently large both Nys and RF methods obtain very high
accuracy with order of magnitude faster than Sin. Middle left : both methods
manage to obtain high accuracy of the ROT with order of magnitude faster than
Sin. Note that Nys performs better in this setting than our proposed method.
Left : both methods fail to obtain a good approximation of the ROT.

In Figure 4.6, we consider a discretization of the positive sphere using 502 =
2, 500 points and generate three simple histograms of blurred pixels located in the
three corners of the simplex.
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(a) (b) (c) (d) (e) K = XTX

Figure 4.6: Using a discretization of the positive sphere with 502 = 2, 500 points
we generate three simple histograms (a,b,c) located in the three corners of the
simplex. (d) Wasserstein barycenter with a cost c(x, y) = − log(xTy) using the
method by [127]. (e) Soft-max with temperature 1000 of that barycenter (strongly
increasing the relative influence of peaks) reveals that mass is concentrated in areas
that would make sense from the more usual c(x, y) = arccosxTy distance on the
sphere. The kernel corresponding to that cost, here the simple outer product of a
matrix X of dimsension 3× 2500.
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Chapter 5

Low-Rank Optimal Transport: an
Algorithmic Approach

Several recent applications of optimal transport (OT) theory to machine learning
have relied on regularization, notably entropy and the Sinkhorn algorithm. Because
matrix-vector products are pervasive in the Sinkhorn algorithm, several works have
proposed to approximate kernel matrices appearing in its iterations using low-rank
factors. Another route lies instead in imposing low-nonnegative rank constraints on
the feasible set of couplings considered in OT problems, with no approximations on
cost nor kernel matrices. This route was first explored by Forrow et al. [124], who
proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy
objective that can be solved through the machinery of regularized 2-Wasserstein
barycenters. Building on this, we introduce in this work a generic approach that
aims at solving, in full generality, the OT problem under low-nonnegative rank
constraints with arbitrary costs. Our algorithm relies on an explicit factorization
of low-rank couplings as a product of sub-coupling factors linked by a common
marginal; similar to an NMF approach, we alternatively updates these factors. We
prove the non-asymptotic stationary convergence of this algorithm and illustrate
its efficiency on benchmark experiments.

This chapter is based on [3].
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Figure 5.1: Two Gaussian mixture densities evaluated on n = 200 and m = 220
sized grids in 1D, displayed as blue/red curves. Between them, n × m optimal
coupling matrices obtained by our proposed low-rank OT method for varying rank
constraint values r (in increasing order, bottom row) and the Sinkhorn algorithm,
for various ε (in decreasing order, top row). The ground cost is the 1.5-norm.

5.1 Introduction

By providing a simple and comprehensive framework to compare probability distri-
butions, optimal transport (OT) theory has inspired many developments in machine
learning [33]. A flurry of works have recently connected it to other trending topics,
such as normalizing flows or convex neural networks [34, 35, 36], while the scope
of its applications has now reached several fields of science such as single-cell
biology [41, 56], imaging [42, 43] or neuroscience [44, 45].

Challenges when computing OT. Solving optimal transport problems at
scale poses, however, formidable challenges. The most obvious among them is
computational: Instantiating the Kantorovich [32] problem on discrete measures
of size n can be solved with a linear program (LP) of complexity O(n3 log n). A
second and equally important challenge lies in the statistical performance of using
that LP to estimate OT between densities: the LP solution between i.i.d samples
converges very slowly to that between densities [71]. It is now increasingly clear
that regularizing OT in some way or another is the only way to mitigate these two
issues [51, 74, 75]. A popular approach consists in penalizing the OT problem with
a strongly convex function of the coupling [76, 77]. We explore in this work an
alternative, and more direct approach to add regularity: we restrict, instead, the
set of feasible couplings to have a small nonnegative rank.
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Low-Rank Kernel Factorization. Low-rank factorizations are not new to
regularized OT. They have been used to speed-up the resolution of entropy regu-
larized OT with the Sinkhorn algorithm, pending some approximations: Given a
data-dependent n ×m cost matrix C, the Sinkhorn iterations consist in matrix-
vector products of the form Kv or KTu where K := exp(−C/ε) and u, v are
n,m- vectors. Altschuler et al. [122] and Altschuler and Boix-Adsera [123] have
proposed to approximate the kernel K with a product of thin rank r matrices,
K̃ = ABT . Naturally, the ability to approximate K with a low-rank K̃ degrades
as ε decreases, making this approach valid only for sufficiently large ε. Thanks
to this approximation, however, each Sinkhorn iteration is linear in n or m, and
the coupling outputted by the Sinkorn algorithm is of the form P̃ = CDT where
C = diag(u)A, D = diag(v)B. This approximation results therefore in a low-rank
solution that is not, however, rigorously optimal for the original problem as defined
by K but rather that defined by K̃. However the solution obtained with K̃ can be
arbitrary close to the true solution by increasing the rank considered. Similarly,
Scetbon and Cuturi [6] consider instead nonnegative low-rank approximations for
K of the form K̃ = QRT where Q,R > 0.

Low-Nonnegative Rank Couplings. To our knowledge, only Forrow et al. [124]
have used low rank considerations for couplings, rather than costs or kernels. Their
work studies the case where the ground cost is the squared Euclidean distance. They
obtain for that cost a proxy for rank-constrained OT problems using 2-Wasserstein
barycenters [125]. Their algorithm blends those in [126, 127] and results in an
intuitive mass transfer plan that goes through a small number of r points, where r
is the coupling’s nonnegative rank.

Our Contributions. In this work, we tackle directly the low-rank problem
formulated by [124] but make no assumption on the cost matrix; we address
instead the low-rank OT problem in its full generality. We consider couplings
P = Q diag(1/g)RT decomposed as the product of two sub-couplings Q,R, with
common right marginal g, and left-marginal given by those of P on each side. Each of
these sub-couplings minimizes a transport cost that involves the original cost matrix
C and the other sub-coupling. We handle this problem by optimizing jointly on Q,
R and g using a mirror-descent approach. We prove the non-asymptotic stationary
convergence of this approach. In addition, we show that the time complexity of
our algorithm can become linear when exploiting low rank assumptions on the cost
(not the kernel) involved in the OT problem.

Differences with previous work. Our approach borrows ideas from [124] but is
generic as it applies to all ground costs. Our approach constrains the non-negative

139



rank of the coupling solution P by construction, rather than relying on a low rank
approximation K̃ for kernel K = e−C/ε. This is a crucial point, because the ability
to approximate K with a low rank K̃ significantly degrades as ε decreases. By
contrast, our approach applies to all ranks, small and large. Interestingly, we also
show that a low-rank assumption on the cost matrix (not on the kernel) can also
be leveraged, providing therefore a “best of both worlds” scenario in which both
the coupling ’s and the cost ’s (not the kernel) low rank properties can be enforced
and exploited. Finally, a useful parallel can be drawn between our approach and
that of the vanilla Sinkhorn algorithm, in the sense that they propose different
regularization schemes. Indeed, the (discrete) path of solutions obtained by our
algorithm when varying r between 1 and min(n,m) can be seen as an alternative to
the entropic regularization path. Both paths contain at their extremes the original
OT solution (maximal rank and minimal entropy) and the product of marginals
(minimal rank and maximal entropy), as illustrated in Fig. 5.1.

5.2 Discrete Optimal Transport
OT as a linear program. Let a and b be two histograms in ∆n,∆m, the
probability simplices of respective size n,m. Assuming a > 0 and b > 0, set
X := {x1, . . . , xn} and Y := {y1, . . . , ym} two families of points taken each within
arbitrary sets, and define discrete distributions µ :=

∑n
i=1 aiδxi and ν :=

∑m
j=1 bjδyj .

The set of couplings with marginals a, b is:

Πa,b := {P ∈ Rn×m
+ s.t. P1m = a, P T1n = b} .

Given a cost function c defined on pairs of points in X, Y and writing C :=
[c(xi, yj)]i,j its associated matrix, the optimal transport (OT) problem can be
written as follows:

OT(µ, ν) := min
P∈Πa,b

⟨C,P ⟩ . (5.1)

Entropic regularization. Several works have shown recently [51, 74] that when
X and Y are sampled from a continuous space, it is preferable to regularize (5.1)
using, for instance, an entropic regularizer [76] to achieve both better computational
and statistical efficiency,

OTε(µ, ν) := min
P∈Πa,b

⟨C,P ⟩ − εH(P ) . (5.2)

where ε ≥ 0 andH is the Shannon entropy defined asH(P ) := −
∑

ij Pij(logPij−1).
If ε goes to 0, one recovers the classical OT problem and for any ε > 0, Eq. (5.2)
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becomes ε-strongly convex on Πa,b and admits a unique solution Pε, of the form

∃u⋆ ∈ Rn
+, v

⋆ ∈ Rm
+ s.t. Pε = diag(u⋆)Kdiag(v⋆) (5.3)

where K := exp(−C/ε). Cuturi [76] shows that the scaling vectors u⋆ and v⋆ can
be obtained efficiently thanks to the Sinkhorn algorithm (see Alg. 3, where ⊙ and /
denote entry-wise operation). Each iteration can be performed in O(nm) algebraic
operations as it involves only matrix-vector products. The number of Sinkhorn
iterations needed to converge to a precision δ (monitored by the difference between
the column-sum of diag(u)Kdiag(v) and b) is controlled by the scale of elements in
C relative to ε [164]. That convergence deteriorates with smaller ε, as studied in
more detail by [117, 176].

Algorithm 3 Sinkhorn(K, a, b, δ)
Inputs: K, a, b, δ, u
repeat

v ← b/KTu, u← a/Kv
until ∥u⊙Kv − a∥1 + ∥v ⊙KTu− b∥1 < δ;
Result: u, v

Mirror descent and ε schedule. A possible interpretation of the entropic
regularization in the OT problem is that it can be seen as the kε-th update of
a Mirror Descent (MD) algorithm applied to the objective (5.1) where kε ≥ 1
depends on ε and the gradient steps used in the MD. Several works have proposed
such links between a gradual decrease in ε to obtain a better approximation of
the unregularized OT problem [193, 119, 194]. More precisely, the MD algorithm
associated to the Kullback–Leibler divergence (KL) applied to the objective (5.1)
makes for all k ≥ 0 the following update:

Qk+1 := argmin
Q∈Πa,b

⟨C,Q⟩+ 1

γk
KL(Q,Qk) (5.4)

where (γk)k≥0 is a sequence of positive real numbers, Q0 ∈ Πa,b is an initial point
and KL is the Kullback–Leibler divergence defined asw. If Q0 := abT , then one
obtains that for all k ≥ 0, updating the coupling according to Eq. (5.4) is the same
as solving

Qk+1 := argmin
Q∈Πa,b

⟨C,Q⟩ − εkH(Q)

where εk := (
∑k

j=0 γj)
−1. Therefore the MD algorithm applied to (5.1) produces

the sequence (Pεk)k≥0 of optimal couplings according to the objective (5.2). We
show next that this viewpoint can be applied when one adds also some structures
to the couplings considered in the OT problem (5.1), leading to a new regularized
approach.
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5.3 Nonnegative Factorization of the Optimal Cou-
pling

Here we aim at regularizing the OT problem by decomposing the couplings involved
into a product of two low-rank couplings. We introduce the associated non-convex
problem and develop a mirror-descent algorithm which operates by solving a
succession of convex programs.

5.3.1 Low-Rank and Factored Couplings

We introduce low rank couplings and explain how they can be parameterized as
factored couplings.

Definition 5.3.1. Given M ∈ Rn×m
+ , the nonnegative rank of M is the smallest

number of nonnegative rank-one matrices into which the matrix can be decomposed
additively:

rk+(M) := min

{
q|M =

q∑
i=1

Ri,∀i, rk(Ri) = 1, Ri ≥ 0

}
.

Let r ≥ 1, and let us denote

Πa,b(r) := {P ∈ Πa,b, rk+(P ) ≤ r}.

From Definition 6.2.1, one can write Πa,b(r) as{ r∑
i=1

giqir
T
i s.t. ∀ i qi ∈ ∆n, ri ∈ ∆m, g ∈ ∆r,

r∑
i=1

giqi = a ,
r∑
i=1

giri = b
}

from which we deduce directly that Πa,b(r) is compact. Moreover for g ∈ ∆∗
r :=

{h ∈ ∆r: ∀i hi > 0}, we write

Πa,g,b :=
{
P ∈ Rn×m

+ , P = Q diag(1/g)RT , Q ∈ Πa,g, and R ∈ Πb,g

}
.

Note that Πa,g,b is compact and a subset of Πa,b(r) since for all P ∈ Πa,g,b, P ∈ Πa,b

and one has rk(P ) ≤ rk+(P ) ≤ r. Moreover, for any P ∈ Πa,b such that rk+(P ) ≤ r,
there exists g ∈ ∆∗

r, Q ∈ Πa,g and R ∈ Πb,g such that P = Q diag(1/g)RT [195].
Therefore ⋃

g∈∆∗
r

Πa,g,b = Πa,b(r). (5.5)

We exploit next this identity to build an efficient algorithm in order to solve
the optimal transport problem under low nonnegative rank constraints.
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5.3.2 The Low-rank OT Problem (LOT)

The problem of interest in this work is:

LOTr(µ, ν) := min
P∈Πa,b(r)

⟨C,P ⟩. (5.6)

Here the minimum is always attained as Πa,b(r) is nonempty and compact and the
objective is continuous. Thanks to (5.5), problem (5.6) is equivalent to

min
(Q,R,g)∈C(a,b,r)

⟨C,Q diag(1/g)RT ⟩ (5.7)

where C(a, b, r) := C1(a, b, r) ∩ C2(r), with

C1(a, b, r) :=
{
(Q,R, g) ∈ Rn×r

+ × Rm×r
+ × (R∗

+)
r s.t. Q1r = a,R1r = b

}
C2(r) :=

{
(Q,R, g) ∈ Rn×r

+ × Rm×r
+ × Rr

+ s.t. QT1n = RT1m = g
}
.

In the following, we also consider regularized version of the problem (6.4) by adding
an entropic term to the objective which leads for all ε ≥ 0 to the following problem

LOTr,ε(µ, ν) := inf
(Q,R,g)∈C(a,b,r)

⟨C,Q diag(1/g)RT ⟩ − εH((Q,R, g)). (5.8)

Here the entropy of (Q,R, g) is to be understood as that of the values of the three
respective entropies evaluated for each term. We will see that adding an entropic
term to the objective allows to stabilize the MD scheme employed to solve (5.6).
For all ε ≥ 0, the objective function defined in (5.8) is lower semi-continuous, and
admits therefore a minimum in C1(a, b, r) ∩ C2(r) where C1(a, b, r) is the closure of
C1(a, b, r). However, the existence of a solution for problem (5.8) requires more
care, as shown in the following proposition.

Proposition 5.3.1. If ε = 0 then the infimum of (5.8) is always attained. If ε > 0,
then if r = 1, the infimum of (5.8) is attained and for r ≥ 2, problem (5.8) admits
a minimum if LOTr,ε(µ, ν) < LOTr−1,ε(µ, ν).

Stabilized Formulation using Lower Bounds In order to ensure stability
of the mirror descent method, and enable its theoretical analysis, we introduce
a lower bound α on the weight vector g. Let us assume in the following that we
consider (r, ε) satisfying the conditions of Proposition 5.3.1. In particular if ε = 0,
r can be arbitrarily chosen and we recover the problem defined in (5.6). Under this
assumption, there exists (Q∗

ε, R
∗
ε, g

∗
ε) ∈ C1(a, b, r) ∩ C2(r) solution of Eq. (5.8) from
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which follows the existence of 1
r
≥ α∗ > 0, such that g∗ε ≥ α∗ coordinate-wise. Let

us now define for any 1
r
≥ α > 0, the following set

C1(a, b, r, α) :=
{
(Q,R, g) ∈ Rn×r

+ × Rm×r
+ × Rr

+ s.t. Q1r = a,R1r = b, g ≥ α
}
.

Then if α is sufficiently small (i.e. α ≤ α∗) we have that the problem (5.8) is
equivalent to

LOTr,ε,α(µ, ν) = min
(Q,R,g)∈C(a,b,r,α)

⟨C,Q diag(1/g)RT ⟩ − εH((Q,R, g)), (5.9)

where C(a, b, r, α) := C1(a, b, r, α) ∩ C2(r). Note that for any 1
r
≥ α > 0, the set of

constraints is not empty, compact and the minimum always exists.

5.3.3 Mirror Descent Optimization Scheme

Mirror descent outer loop. We propose to use a Mirror Descent scheme with
a KL divergence to solve Eq. (5.9). It leads, for all k ≥ 0, to the following updates
which necessitate the solution of a convex problem at each step

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C(a,b,r,α)

KL(ζ, ξk) (5.10)

where (Q0, R0, g0) ∈ C(a, b, r, α) is an initial point such that Q0 > 0 and R0 > 0,
ξk := (ξ

(1)
k , ξ

(2)
k , ξ

(3)
k ), ξ(1)k := exp(−γkCRk diag(1/gk) − (γkε − 1) log(Qk)), ξ

(2)
k :=

exp(−γkCTQk diag(1/gk)−(γkε−1) log(Rk)), ξ
(3)
k := exp(γkωk/g

2
k−(γkε−1) log(gk))

with [ωk]i := [QT
kCRk]i,i for all i ∈ {1, . . . , r} and (γk)k≥0 is a sequence of positive

step sizes. Note that for all k ≥ 0, (Qk, Rk, gk) live in (R∗
+)

n×r × (R∗
+)

m×r × (R∗
+)

r,
and therefore ξk is well defined and lives also in (R∗

+)
n×r × (R∗

+)
m×r × (R∗

+)
r.

Dykstra’s inner loop. In order to solve Eq. (6.7), we use the Dykstra’s Algo-
rithm [196]. Given a closed convex set C ⊂ Rn×r

+ × Rm×r
+ × Rr

+, we denote for all
ξ ∈ (R∗

+)
n×r × (R∗

+)
m×r × (R∗

+)
r the projection according to the Kullback-Leibler

divergence as

PKL
C (ξ) := argmin

ζ∈C
KL(ζ, ξ).
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Starting from ζ0 := ξ and q0 = q−1 = (1, 1, 1) ∈ Rn×r
+ ×Rm×r

+ ×Rr
+, the Dykstra’s

Algorithm consists in computing for all j ≥ 0,

ζ2j+1 = PKL
C1(a,b,r,α)(ζ2j ⊙ q2j−1)

q2j+1 = q2j−1 ⊙
ζ2j
ζ2j+1

ζ2j+2 = PKL
C2(r)(ζ2j+1 ⊙ q2j)

q2j+2 = q2j ⊙
ζ2j+1

ζ2j+2

.

As C1(a, b, r, α) and C2(r) are closed convex subspaces and ξ ∈ (R∗
+)

n×r×(R∗
+)

m×r×
(R∗

+)
r, one can show that (ζj)j≥0 converges towards the unique solution of Eq. (6.7), [197].

The following propositions detail how to compute the relevant projections involved
in the Dykstra’s Algorithm.

Proposition 5.3.2. For ξ̃ := (Q̃, R̃, g̃) ∈ (R∗
+)

n×r × (R∗
+)

n×r × (R∗
+)

r, one has,
denoting ĝ := max(g̃, α)

PKL
C1(a,b,r,α)(ξ̃) =

(
diag

(
a

Q̃1r

)
Q̃, diag

(
b

R̃1r

)
R̃, ĝ

)
.

Let us now show the solution of the projection on C2(r).

Proposition 5.3.3. For ξ̃ := (Q̃, R̃, g̃) ∈ (R∗
+)

n×r×(R∗
+)

n×r×(R∗
+)

r, the projection
(Q,R, g) = PKL

C2(r)(ξ̃) satisfies

Q = Q̃ diag(g/Q̃T1n), R = R̃ diag(g/R̃T1m), g = (g̃ ⊙ Q̃T1n ⊙ R̃T1m)
1/3.

Efficient computation of the updates. The projection obtained in Propo-
sition 5.3.2, 5.3.3 lead to simple updates of the couplings. Indeed, starting with
ζ0 := ξ = (ξ(1), ξ(2), ξ(3)) the Dysktra’s Algorithm applied to our problem (6.7)
needs only to compute scaling vectors as presented in Alg. 4. More precisely,
the Dykstra’s Algorithm produces the iterates (ζj)j≥0 which satisfy for all j ≥ 0
ζj = (Qj, Rj, gj) where

Qj = diag(u1j)ξ
(1) diag(v1j ), Rj = diag(u2j)ξ

(2) diag(v2j )
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for the sequences (uij, v
i
j)j≥0 initialized as, ui0 := 1n, vi0 := 1m for all i ∈ {1, 2},

q
(3)
0,1 = q

(3)
0,2 = q

(1)
0 = q

(2)
0 = 1r and computed with the iterations

uk,in+1 =
pi

ξikv
k,i
n

g̃n+1 = max(α, gn ⊙ q(3)n,1), q
(3)
n+1,1 = (gn ⊙ q(3)n,1)/g̃n+1

gn+1 = (g̃n+1 ⊙ q(3)n,2)
1/3

2∏
i=1

(vk,in ⊙ q(i)n ⊙ (ξik)
Tuk,in )1/3

vk,in+1 =
gn+1

(ξik)
Tuk,in

q
(i)
n+1 = (vk,in ⊙ q(i)n )/vk,in+1, q

(3)
n+1,2 = (g̃n+1 ⊙ q(3)n,2)/gn+1

where we have denoted p1 := a and p2 := b to simplify the notations.

Algorithm 4 LR-Dykstra((ξ(i))1≤i≤3, p1, p2, α, δ)

Inputs: ξ(1), ξ(2), g̃ := ξ(3), p1, p2, α, δ, q
(3)
1 = q

(3)
2 = 1r,∀i ∈ {1, 2}, ṽ(i) = 1r, q

(i) =
1r
repeat

u(i) ← pi/ξ
(i)ṽ(i) ∀i ∈ {1, 2},

g ← max(α, g̃ ⊙ q(3)1 ), q
(3)
1 ← (g̃ ⊙ q(3)1 )/g, g̃ ← g,

g ← (g̃ ⊙ q(3)2 )1/3
∏2

i=1(v
(i) ⊙ q(i) ⊙ (ξ(i))Tu(i))1/3,

v(i) ← g/(ξ(i))Tu(i) ∀i ∈ {1, 2},
q(i) ← (ṽ(i) ⊙ q(i))/v(i) ∀i ∈ {1, 2}, q(3)2 ← (g̃ ⊙ q(3)2 )/g,
ṽ(i) ← v(i) ∀i ∈ {1, 2}, g̃ ← g

until
∑2

i=1 ∥u(i) ⊙ ξ(i)v(i) − pi∥1 < δ;
Q← diag(u(1))ξ(1) diag(v(1))
R← diag(u(2))ξ(2) diag(v(2))
Result: Q,R, g

Let us now introduce the proposed MD algorithm applied to (5.9). By denoting
D(·) the operator extracting the diagonal of a square matrix we obtain Alg. 5.
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Algorithm 5 LOT(C, a, b, r, α, δ)

Inputs: C, a, b, (γk)k≥0, Q,R, g, α, δ
for k = 1, . . . do

ξ(1) ← exp(−γkCR diag(1/g)− (γkε− 1) log(Q)),
ξ(2) ← exp(−γkCTQ diag(1/g)− (γkε− 1) log(R)),
ω ← D(QTCR),
ξ(3) ← exp(γkω/g

2 − (γkε− 1) log(g)),
Q,R, g ← LR-Dykstra((ξ(i))1≤i≤3, a, b, α, δ) (Alg. 4)

end
Result: ⟨C,Q diag(1/g)RT ⟩

Computational Cost. Note that (ξ(i))1≤i≤3 considered in Alg. 5 live in Rn×r
+ ×

Rm×r
+ ×Rr

+ and therefore given those matrices, each iteration of Alg. 4 requiresO((n+
m)r) algebraic operations, since it involves only matrix/vector multiplications of
the form ξ(i)vi and (ξ(i))Tui. However without any assumption on the cost matrix
C, computing (ξ(i))1≤i≤3 requires O(nmr) algebraic operations since CR and CTQ
must be evaluated. We show in §5.3.5 how to reduce the quadratic cost of computing
(ξ(i))1≤i≤3 to a linear cost with respect to the number of samples if one assumes that
the considered cost matrix can be factored, either exactly (ensured with a squared
Euclidean distance cost) or approximately if that cost is a distance. Writing N the
number of iterations of the MD scheme and T the number of iterations considered
in Algorithm 4 at each step of the MD, we end up with a total computational cost
of O(NT (n+m)r +Nnmr).

Remark 4. Note that our algorithm can be applied in the specific case where ε = 0
in order to solve Eq. (5.6). Moreover, our algorithm can be applied for an arbitrary
choice of the cost function. For example in Figure 5.4, we run our algorithm on
graphs where the distance considered in the shortest-path distance.

5.3.4 Convergence of the Mirror Descent

Even if the objective (5.9) is not convex in (Q,R, g), we obtain the non-asymptotic
stationary convergence of the MD algorithm in this setting. For that purpose we
introduce a stronger convergence criterion than the one presented in [198] to obtain
non-asymptotic stationary convergence of the MD scheme. Indeed let Fε be the
objective function of the problem (5.9) defined on C(a, b, r, α) and let us denotes
for any γ > 0 and ξ ∈ C(a, b, r, α)

Gε,α(ξ, γ) := argmin
ζ∈C(a,b,r,α)

{⟨∇Fε(ξ), ζ⟩+
1

γ
KL(ζ, ξ)}.
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Then the criteron used in [198] to show the stationary convergence of the MD
scheme is defined as the square norm of the following vector:

PC(a,b,r,α)(ξ, γ) :=
1

γ
(ξ − Gε,α(ξ, γ)).

This vector can be seen as a generalized projected gradient of Fε at ξ. Indeed
if X = Rd and by replacing the Bregman Divergence KL(u, x) by 1

2
∥u − x∥22, we

would have PX(x, γ) = ∇Fε(x). Here we consider instead the following criterion to
establish convergence:

∆ε,α(ξ, γ) :=
1

γ2
(KL(ξ,Gε,α(ξ, γ)) + KL(Gε,α(ξ, γ), ξ)).

Such criterion is in fact stronger than the one used in [198] as we have

∆ε,α(ξ, γ) =
1

γ2
(⟨∇h(Gε,α(ξ, γ))−∇h(ξ),Gε,α(ξ, γ)− ξ⟩

≥ 1

2γ2
∥Gε,α(ξ, γ)− ξ∥21

=
1

2
∥PC(a,b,r,α)(ξ, γ)∥21

where h denotes the minus entropy function and the last inequality comes from the
strong convexity of h on C(a, b, r, α). For any 1

r
≥ α > 0, we show in the following

proposition the non-asymptotic stationary convergence of the MD scheme applied
to the problem (5.9). To prove this result, we show that for any ε ≥ 0, the objective
is smooth relatively to the negative entropy function [199] and we extend the proof
of [198] to this case.

Proposition 5.3.4. Let ε ≥ 0, 1
r
≥ α > 0 and N ≥ 1. By denoting

Lε,α :=

√√√√3

(
2
∥C∥22
α4

+

(
ε+

2∥C∥2
α3

)2
)

and by considering a constant stepsize in the MD scheme (6.7) such that for all
k = 1, . . . , N γk =

1
2Lε,α

, we obtain that

min
1≤k≤N

∆ε,α((Qk, Rk, gk), γk) ≤
4Lε,αD0

N
.

where D0 := Fε(Q0, R0, g0) − LOTr,ε,α is the distance of the initial value to the
optimal one.
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Thanks to Proposition 7.4.2, for α sufficiently small (i.e. α ≤ α∗), we have
LOTr,ε,α = LOTr,ε and therefore we obtain a stationary point of (5.8). In particular,
if ε = 0, the proposed algorithm converges towards a stationary point of (5.6).

Remark 5. We also propose an algorithm to directly solve (5.8). The main
difference is that the updates of the MD can be solved using the Iterative Bregman
Projections (IBP) Algorithm. See Appendix 5.10 for more details.

Remark 6. For all ε ≥ 0, the MD scheme implies that each iteration k of our
proposed algorithm outputs (Qk, Rk, gk) ∈ C1(a, b, r, α) ∩ C2(r), and therefore the
matrix obtained a each iteration P LOT

k = Qk diag(1/gk)R
T
k is a coupling which

sastifies the marginal constraints while in the Sinkhorn algorithm, the matrix
defined at each iteration by P Sin

k = diag(uk)K diag(vk) becomes a coupling which
satisfies the marginal constraints only at convergence.

In the following section, we aim at accelerating our method in order to obtain
a linear time algorithm to solve (5.8).

5.3.5 Linear time approximation of the Low-Rank Optimal
Transport

Here we aim at obtaining the optimal solution of Eq. (5.8) in linear time with
respect to the number of samples. For that purpose let us introduce our main
assumption on the cost matrix C.

Assumption 1. Assume that C admits a low-rank factorization, that is there exists
A ∈ Rn×d and B ∈ Rm×d such that C = ABT .

From the Assumption 1 one can in fact accelerate the computation in the
iterations of the proposed Alg. (5) and obtain a linear time algorithm with respect
to the number of samples. Indeed recall that given ξ = (ξ(i))1≤i≤3, each iteration
of the Dykstra’s Alg. (4) can be performed in linear time. Moreover, thanks to
Assumption 1, the computation of ξ, which requires to compute both CR and CTQ
can be performed in O((n+m)dr) algebraic operations and thus Alg. (5) requires
only a linear number of algebraic operations with respect to the number of samples
at each iteration.

Let us now justify why the Assumption 1 of a low-rank factorization for the
cost matrix is well suited in the problem of computing the Optimal Transport.

Squared Euclidean Metric. In the specific case where C is a Square Euclidean
distance matrix, it admits a low-rank decomposition. Indeed let X := [x1, . . . , xn] ∈
Rd×n, let Y := [y1, . . . , ym] ∈ Rd×m and let D := (∥xi − yj∥22)i,j. Then by denoting
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Figure 5.2: In this experiment, we consider two Gaussian distributions evaluated
on n = m = 5000 in 2D. The first one has a mean of (1, 1)T and identity covariance
matrix I2 while the other has 0 mean and covariance 0.1×I2. The ground cost is the
squared Euclidean distance. Note that for this cost, an exact low-rank factorization
of the cost is available, and therefore all low-rank methods, including ours, have
a linear time complexity. Left: we show that when ε = 0 our method is able to
quickly obtain the exact OT by forcing the nonnegative rank of the coupling to be
relatively small compared to the number of samples. Note that in this setting, all
the other methods cannot be applied. Middle left, middle right: In these plots, we
show that our method can obtain high accuracy for either estimate the true OT
or its regularized version with order of magnitude faster than the other low-rank
methods for any rank r. Moreover, our methods outperforms Sin in these regimes
of small regularizations. Note that Sin does not converge for ε = 0.001 as we
do not consider its stabilized version using log-sum-exp function but rather its
classical version which is less costly to compute. Right: Here we change the scale
of the y-axis of the plot. We see that the regime of the entropic regularizations for
the Sinkhorn algorithm and our method differs. Indeed, the Sinkhorn algorithm
has a larger range of ε such that it provides an efficient approximation of the OT,
whereas LOT is regularizing twice, namely with respect to both rank and entropy.

p = [∥x1∥22, . . . , ∥xn∥22]T ∈ Rn and q = [∥y1∥22, . . . , ∥ym∥22]T ∈ Rm we can rewrite D
as the following:

D = p1Tm + 1nq
T − 2XTY.

Therefore by denoting A = [p,1n,−2XT ] ∈ Rn×(d+2) and B = [1m, q, Y
T ] ∈

Rn×(d+2) we obtain that

D = ABT .

General Case: Distance Matrix. In the following we denote a distance matrix
D ∈ Rn×m, any matrix such that there exists a metric space (X , d), {xi}ni=1 ∈
X n and {yj}mj=1 ∈ Xm which satisfy for all i, j, Di,j = d(xi, yj). In fact it is
always possible to obtain a low-rank approximation of a distance matrix in linear
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time. In [200, 201], the authors proposed an algorithm such that for any distance
matrix D ∈ Rn×m and γ > 0 it outputs matrices M ∈ Rn×d, N ∈ Rm×d in
O((m+ n)poly( d

γ
)) algebraic operations such that with probability at least 0.99

we have

∥D −MNT∥2F ≤ ∥D −Dd∥2F + γ∥D∥2F

where Dd denotes the best rank-d approximation to D. Therefore one can always
obtain a low-rank factorization of a distance matrix in linear time with respect to
the number of samples. See Appendix 5.8 for more details.

5.4 Numerical Results

Figure 5.3: Here we consider two Gaussian mixture densities sampled with n =
m = 10000 points in 2D (See Appendix 5.11 for more details). The ground cost is
the Euclidean distance. As this cost is a distance, we can apply our linear version
of the algorithm and we denote LOT Quad to refer to its quadratic counterpart.
We see that LOT and LOT Quad provide similar results while LOT is faster.
All kernel-based methods (Nys, RF) fail to converge in this setting. As in Fig. 5.2,
we see that our method is able to approximate faster than Sin the true OT thanks
to the low-rank constraint.

5.4.1 Comparison with other regularization schemes

We consider three synthetic problems in which we study the time-accuracy trade-off
as well as the couplings obtained, by comparing our method with other low-rank
methods, as well as Sinkhorn’s algorithm. More precisely, we compare our proposed
method, LOT, with the factored Optimal Transport [124], FactoredOT, the
Nystrom-based method [122], Nys, the random features-based method [6], RF
and the Sinkhorn algorithm [76], Sin. For LOT, we set the lower bound on g to
α = 10−5.
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Time-accuracy Tradeoff We consider two problems where the ground cost
involved in the OT problem is either the squared Euclidean distance or the Euclidean
distance. In the first one, we consider measures supported on n = 5000 points in
R2, while the second we consider n = 10000 samples in R2. The method proposed
by [124] can only be used with the squared Euclidean distance (2-Wasserstein) while
ours works for any cost. For all the low-ranks methods, we vary the ranks between
10 and 500. For all the randomized methods, we consider the mean over 10 runs
to estimate the OT. In Fig. 5.2, 5.3 we plot the ratio w.r.t. the (non-regularized)
optimal transport cost defined as R := ⟨C, P̃ ⟩/⟨C,P ∗⟩ where P̃ is the coupling
obtained by the method considered and P ∗ is the ground truth (we ensure this
optimal cost is large enough to avoid spurious divisions by 0). We present the
time-accuracy tradeoffs of the methods for different regularizations ε and ranks r.
We show that our method provides consistently a better approximation of the OT
while being much faster than the other low-rank methods for various targeted rank
values r. We also show that our method is able to approximate arbitrarily well the
OT and so faster than the Sinkhorn algorithm thanks to the low-rank constraints.
We compare the methods in the same setting but we increase the dimensionality
of the problems considered and we observe similar results. See Appendix 5.11 for
more details.

Remark 7. Adding an entropic regularization in our objective allows to stabilize
the MD scheme and therefore obtain faster convergence. Indeed if ε > 0, then the
number of iterations required to solve each iteration of the MD scheme (6.7) by
Algorithm (4) is monitored by ε given a certain precision δ while in the case where
ε = 0, the number of iterations required for Algorithm 4 to reach the precision δ
increases as the number of iterations in the MD scheme increases.

Comparison of the Couplings Seeking to take a deeper look at the phe-
nomenon highlighted in Fig. 5.1, we study differences in the regularization paths of
LOT and Sin. We consider distributions supported on graphs of n = 1000 nodes,
endowed with the shortest path distance [202]. We consider LOT with no entropic
regularization (i.e. ε = 0 in Eq. (5.9)) against Sin for various pairs of regularizers.
Results are displayed in Fig. 5.4, where the discrete path of regularizations parame-
terized by the rank r of LOT is compared with that obtained by Sin when varying
ε. The gaps in couplings (in ℓ1) between the two methods are displayed. Both
methods are able to approximate arbitrarily well the OT but offer two different
paths to interpolate from the independent coupling abT of rank 1 to the optimal
one. More precisely, we see that the range of ε for which the entropic OT provides
an efficient approximation of the true coupling is very localized, while the rank r
needed for LOT to obtain such approximation is wider. Moreover, we see that the
decay of the ratio of LOT with respect to r is faster than the decay of Sin w.r.t.
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Figure 5.4: We illustrate in this plot the gaps between the couplings reached by
Sin and LOT for varying regularization strengths. Measures were sampled on
a complete graph obtained by sampling 2n = 2000 points from a 2-D standard
normal distribution, the edge weights set to their squared Euclidean distances.
The supports are obtained by randomly splitting the nodes of the graphs into two
subsets of same size. We vary the entropic regularization ε and the nonnegative
rank r. We consider ε in log-scale ranging from 0.001 to 1 and r ranging from 1
to 1000, represented as a fraction of n. The blue (resp. red) curve stands for Sin
(resp. LOT). We plot the ℓ1 distance between their respective couplings.
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ε.

Remark 8. A comparative advantage of using the low-rank parameterization of OT
over the Sinkhorn approach lies in the simple bounds that r admits, between 1 and
n, and the fact that r encodes directly, through an integer, a direct property of the
resulting coupling. In that sense, the same value r can be used across experiments
that compare measures of various sizes and supports. By contrast, selecting a
suitable regularization strength ε in the Sinkhorn algorithm is usually challenging,
as the parameter is continuous and its magnitude depends directly on the cost matrix
values, making a common choice across experiments difficult.

Figure 5.5: Here we compare the paths recovered by both the Sinkhorn algorithm
with ε = 5, and our method with γ = 1/ε and r500. Each sub-optimal transport
problem between two temporal snapchots contains n ≃ 5000 cells.
Real World Application In Figure 5.5 we consider the single-cell trajectory
inference problem [41] where the goal is to infer the ancestors of some specific cells
(iPSCs) from temporal snapshots sampled several times a day for a period of 18
days. We apply the exact same pre-processing suggested by [41], and we obtain
that our proposed method is able to recover a similar path as the one obtained by
the Sinkhorn algorithm.

5.4.2 On the non-convexity of LOT

As our problem (5.6) is non-convex, we investigate the effect of the initialization as
well as the choice of the gradient step γ in the proposed MD scheme. In addition,
we consider a specific situation where the optimal coupling solution of (5.1) admits
a nonnegative low-rank to see if our method is able to recover the global minimum
in such situation. In the following experiments we set ε = 0 and the lower bound
on g to α = 10−5.
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Figure 5.6: In this experiment, we con-
sider the same situation as in Figure 5.2
with n = m = 1000 varying γ for r = 50
or 500.

Effect of γ. In Figure 5.6, we plot
the ratio on the same experiment pre-
sented in Figure 5.2 when varing γ. We
show that our algorithm is robust to the
choice of γ as it manages to converge
for a large range of γ. Moreover if the
rank is large enough, our method is able
to find the optimal solution of the true
OT problem (5.1).

Effect of the Initialization. In Fig-
ure 5.7 we plot the ratios to LP solution
of LOT costs, with 50 random initial-

izations (Gaussian entries for Q,R, rescaled to have left/right marginals a and
b). We show that our method is robust to the choice of the initialization. We
also design an OT problem where the ground truth OT solution of Eq. (5.1) has
low nonnegative rank. Indeed, by fixing z1, . . . , zr ∈ Rd anchors and by defining
the cost c(x, y) = mink∈1,..,r ∥x − zk∥ + ∥zk − y∥, we show that the true optimal
coupling has a low nonnegative rank r. Our algorithm recovers consistently the OT
coupling for multiple random initializations. See Appendix 5.12 for more details.

Figure 5.7: Same setting as in Figure 5.6.

Conclusion We proposed a new ap-
proach to regularize the OT problem by
restricting solutions to have a small non-
negative rank. Our algorithm leverages
both low-rank constraints and entropic
smoothing. Our method can leverage
the factorization of the ground cost (and
not that of the kernel usually associated
to Sinkhorn) to propose a linear time
complexity alternative to solve OT prob-
lems.
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Supplementary material
In Sec. 5.5, we introduce some important notions linked to the mirror-descent
scheme. We also prove in this section a general result which states the non-
asymptotic stationary convergence of the mirror-descent according to a specific
criterion introcuded in this work. In Sec. 5.6, we detail the computation of the
Dykstra’s algorithm 4 for which we have obtained a simple expression of the
updates of the couplings. In Sec. 7.7, we provides all the proofs of the Propositions
introduced in this work in the main text. In Sec 5.8, we detail the algorithm
presented in [201]. In Sec. 5.9, 5.10, we give two variants of our algorithm when
either the marginal g is fixed or when no lower bound is provided on the coordinates
of g. In Sec. 5.11, we provides more experiment to illustrate our method.

5.5 Mirror Descent Algorithm
Let X a closed convex subset in a Euclidean space Rq, f : X → R continuously
differentiable and let us consider the following problem

min
x∈X

f(x). (5.11)

Given a convex function h : X → R continuously differentiable, one can define the
Bregman Divergence associated to h as

Dh(x, z) := h(x)− h(z)− ⟨∇h(z), x− z⟩.

To solve Eq. (5.11), one can employ the mirror-descent (MD) algorithm. Given an
initial point x0 ∈ X and a sequence of positive step-size (γk)k≥0, the mirror-descent
scheme associated to the prox-function Dh computes

xk+1 = argmin
x∈X

⟨∇f(xk), x⟩+
1

γk
Dh(x, xk).

In the following, we need to introduce two notions of relative strong convexity and
relative smoothness in order to prove non-asymptotic stationary convergence of
the MD scheme.

Definition (Relative smoothness.). Let L > 0 and f continuously differentiable on
X . f is said to be L-smooth relatively to h if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ LDh(y, x)

Definition (Relative strong convexity). Let α > 0 and f continuously differentiable
on X . f is said to be α-strongly convex relatively to h if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ αDh(y, x) ∀ x, y ∈ X
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Note that h is always 1-strongly convex relatively to h. Let us now prove a
general result to show non-asymptotic stationary convergence of the MD scheme.
For that purpose, we introduce for all k ≥ 0 the following criterion to establish
convergence:

∆k :=
1

γ2k
(Dh(xk, xk+1) +Dh(xk+1, xk)).

Proposition 5.5.1. Let N ≥ 1, f continuously differentiable on X which is L-
smooth relatively to h. By considering for all k = 1, . . . , N , γk = 1/2L, and by
denoting D0 = f(x0)−minx∈X f(x), we have

min
0≤k≤N−1

∆k ≤
4LD0

N
.

Proof. Let k ≥ 0, then by L-smoothness of f , we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ LDh(xk+1, xk),

and by optimality of xk+1, we have for all x ∈ X ,

⟨∇f(xk) +
1

γk
[∇h(xk+1)−∇h(xk)], x− xk+1⟩ ≥ 0,

which implies, by taking x = xk, that

⟨∇f(xk), xk − xk+1⟩ ≥
1

γk
[−⟨∇h(xk+1), xk − xk+1⟩ − ⟨∇h(xk), xk+1 − xk⟩]

≥ 1

γk
[Dh(xk, xk+1) +Dh(xk+1, xk)].

Then we have

f(xk+1) ≤ f(xk)−
1

γk
[Dh(xk, xk+1) +Dh(xk+1, xk)] + LDh(xk+1, xk) + LDh(xk, xk+1)

where the last term is added by positivity of Dh(·, ·) (as h is supposed to be convex
on X ). Finally we obtain that(

N−1∑
k=0

γk(1− γkL)∆k

)
≤ f(x0)− f(xN) ≤ D0,

and as soon as γk < 1
L
, we have

min
0≤k≤N−1

∆k ≤
D0(∑N−1

k=0 γk(1− γkL)
) .

Then by taking γk = 1
2L

, the result follows.
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In this paper, we consider h to be the negative entropy function defined on ∆∗
q

as

h(x) =

q∑
i=1

xi log(xi). (5.12)

Therefore the prox-function associated is just the Kullback–Leibler divergence (KL)
defined as,

KL(x, z) =
q∑
i=1

xi log(xi/zi).

Moreover if X ⊂
∏p

i=1 ∆
∗
qi

for p ≥ 1, we consider instead

h((x(1), . . . , x(p))) :=

p∑
i=1

qi∑
j=1

x
(i)
j log(x

(i)
j )

where the associated prox-function is

Dh((x
(1), . . . , x(p)), (z(1), . . . , z(p))) =

p∑
i=1

KL(x(i), z(i)).

5.6 The Dykstra’s Algorithm
In order to solve Eq. (6.7), we use the Dykstra’s Algorithm [196]. Given a closed
convex set C ⊂ Rn×r

+ ×Rm×r
+ ×Rr

+, we denote for all ξ ∈ (R∗
+)

n×r×(R∗
+)

m×r×(R∗
+)

r

the projection according to the Kullback-Leibler divergence as

PKL
C (ξ) := argmin

ζ∈C
KL(ζ, ξ).

Starting from ζ0 := ξ and q0 = q−1 = (1, 1, 1) ∈ Rn×r
+ ×Rm×r

+ ×Rr
+, the Dykstra’s

Algorithm 4 applied to our problem consists in computing for all j ≥ 0,

ζ2j+1 = PKL
C1(a,b,r,α)(ζ2j ⊙ q2j−1)

q2j+1 = q2j−1 ⊙
ζ2j
ζ2j+1

ζ2j+2 = PKL
C2(r)(ζ2j+1 ⊙ q2j)

q2j+2 = q2j ⊙
ζ2j+1

ζ2j+2

.
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In fact these operations can be simplified to simple matrix/vector multiplications.
More precisely, the Dykstra’s Algorithm produces the iterates (ζj)j≥0 which satisfy
for all j ≥ 0 ζj = (Qj, Rj, gj) where

Qj = diag(u1j)ξ
(1) diag(v1j )

Rj = diag(u2j)ξ
(2) diag(v2j )

for the sequences (uij, v
i
j)j≥0 initialized as, ui0 := 1n, vi0 := 1m for all i ∈ {1, 2},

q
(3)
0,1 = q

(3)
0,2 = q

(1)
0 = q

(2)
0 = 1r and computed with the iterations

uk,in+1 =
pi

ξikv
k,i
n

g̃n+1 = max(α, gn ⊙ q(3)n,1), q
(3)
n+1,1 = (gn ⊙ q(3)n,1)/g̃n+1

gn+1 = (g̃n+1 ⊙ q(3)n,2)
1/3

2∏
i=1

(vk,in ⊙ q(i)n ⊙ (ξik)
Tuk,in )1/3

vk,in+1 =
gn+1

(ξik)
Tuk,in

q
(i)
n+1 = (vk,in ⊙ q(i)n )/vk,in+1, q

(3)
n+1,2 = (g̃n+1 ⊙ q(3)n,2)/gn+1

5.7 Proofs

5.7.1 Proof of Proposition 5.3.1

Proof. The case when ε = 0 is clear. Assume now that ε > 0. When r = 1, note
that C1(a, b, r) ∩ C2(r) is closed as g = 1 and bounded, therefore and by continuity
of the objective the mininum exists. Let r ≥ 2. First remarks that we always
have LOTr,ε(µ, ν) ≤ LOTr−1,ε(µ, ν). Let us assume that (5.8) does not admits
a minimum. Because the objective Fε is a lower semi-continuous function on
C1(a, b, r) ∩ C2(r), and by compacity of C1(a, b, r) ∩ C2(r), the objective function
admits a minimum (Q,R, g) ∈ C1(a, b, r) ∩ C2(r) and we have LOTr,ε(µ, ν) =
Fε(Q,R, g). But as the minimum is not attained on C1(a, b, r)∩C2(r), it means that
there exists at least one coordinate i ∈ {1, . . . , r} such that gi = 0. Then because
the constraints, Q and R both admit a column which is the null vector. By deleting
these coordinates in Q,R, g, we obtain that LOTr,ε(µ, ν) = LOTr−1,ε(µ, ν).
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5.7.2 Proof of Proposition 5.3.2

Proof. The first oder conditions of the projection gives that there exists (λ1, λ2, λ3) ∈
Rn × Rm × Rr

+ such that

log(Q/Q̃) + λ11
T = 0

log(R/R̃) + λ21
T = 0

log(g/g̃) + λ3 = 0

Moreover the conditions Q1 = a, R1 = b and g ≥ α imply that

Q = Diag(a/Q̃1)Q̃

R = Diag(b/R̃1)R̃
g = max(α, g̃).

5.7.3 Proof of Proposition 5.3.3

Proof. The first order conditions of the projection states that there exists (λ1, λ2) ∈
Rr × Rr such that

log(Q/Q̃) + 1nλ
T
1 = 0

log(R/R̃) + 1mλ
T
2 = 0

log(g/g̃)− (λ1 + λ2) = 0

Moreover the conditions QT1n = RT1m = g imply that

Q = Q̃Diag(g/Q̃T1n)

R = R̃Diag(g/R̃T1m)

g3 = g̃ ⊙ Q̃T1n ⊙ R̃T1m

from which the result follows.

5.7.4 Proof of Proposition 7.4.2

Proof. To show the result, we just need to show that

Fε : (Q,R, g) ∈ C(a, b, r, α)→ ⟨C,Q diag(1/g)RT ⟩ − εH(Q,R, g)
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is smooth relatively to

H(Q,R, g) :=
∑
i,j

Qi,j log(Qi,j) +
∑
i,j

Ri,j log(Ri,j) +
∑
j

gj log(gj),

then by applying Proposition 7.7.1, the result will follow. Let us now show that Fε
is Lε,α-smooth. To do so, it is enough to show that [203, 204]

∥∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)∥2 ≤ Lε,α∥H(Q1, R1, g1)−H(Q2, R2, g2)∥2.

We first have that

∇QFε = CR diag(1/g) + ε(logQ+ 1

∇RFε = CTQ diag(1/g) + ε(logR + 1

∇gFε = −D(QTRC)/g2 + ε(log g + 1)

Now we have,

∥∇Fε(Q1)−∇Fε(Q2)∥22 ≤ ∥CR1 diag(1/g1)− CR2 diag(1/g2)∥22 + ε2∥ logQ1 − logQ2∥22
+ 2ε∥ logQ1 − logQ2∥2∥CR1 diag(1/g1)− CR2 diag(1/g2)∥2
≤ ∥C∥22∥(R1 −R2) diag(1/g1) + (diag(1/g1)− diag(1/g2))R2∥22
+ ε2∥ logQ1 − logQ2∥22
+ 2ε∥ logQ1 − logQ2∥2∥CR1 diag(1/g1)− CR2 diag(1/g2)∥2

≤ ∥C∥22
[
∥R1 −R2∥22

α2
+ ∥1/g1 − 1/g2∥22 +

∥R1 −R2∥∥1/g1 − 1/g2∥2
α

]
+ ε2∥ logQ1 − logQ2∥22
+ 2ε∥ logQ1 − logQ2∥2∥CR1 diag(1/g1)− CR2 diag(1/g2)∥2.

As Q→ H(Q) is 1-strongly convex w.r.t to the ℓ2-norm on ∆n×r, we have

∥Q1 −Q2∥22 ≤ ⟨logQ1 − logQ2, Q1 −Q2⟩
≤ ∥ logQ1 − logQ2∥2∥Q1 −Q2∥2

from which follows that

∥Q1 −Q2∥2 ≤ logQ1 − logQ2∥2.

Moreover we have

∥1/g1 − 1/g2∥2 ≤
∥g1 − g2∥2

α2
≤ ∥∥ log g1 − log g2∥2

α2
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Therefore we obtain that

∥∇Fε(Q1)−∇Fε(Q2)∥22

≤
(
∥C∥2
α
∥ logR1 − logR2∥2 +

∥C∥2
α2
∥ log g1 − log g2∥2 + ε∥ logQ1 − logQ2∥2

)2

.

An analogue proof leads to

∥∇Fε(R1)−∇Fε(R2)∥22

≤
(
∥C∥2
α
∥ logQ1 − logQ2∥2 +

∥C∥2
α2
∥ log g1 − log g2∥2 + ε∥ logR1 − logR2∥2

)2

.

Let us now consider smoothness of Fε w.r.t g,

∥∇Fε(g1)−∇Fε(g2)∥22 ≤
∥∥∥∥D(QT

1CR1)

g21
− D(Q

T
2CR2)

g22

∥∥∥∥2
2

+ ε2∥ log g1 − log g2∥22

+ 2ε

∥∥∥∥D(QT
1CR1)

g21
− D(Q

T
2CR2)

g22

∥∥∥∥
2

∥ log g1 − log g2∥2.

but we have that∥∥∥∥D(QT
1CR1)

g21
− D(Q

T
2CR2)

g22

∥∥∥∥2
2

≤ ∥(1/g21 − 1/g22) diag(Q
T
1CR1)∥22+

∥D(QT
1CR1)−D(QT

2CR2)/g
2
2∥22

+ 2∥(1/g21 − 1/g22) diag(Q
T
1CR1)∥2

∥D(QT
1CR1)−D(QT

2CR2)/g
2
2∥2

≤
(
2∥C∥2
α3
∥ log g1 − log g2∥2 +W

)2

,

where

W =
∥C∥2
α2

[
∥Q1 −Q2∥22 + ∥R1 −R2∥2

]
Therefore we obtain that

∥∇Fε(g1)−∇Fε(g2)∥22

≤
((

ε+
2∥C∥2
α3

)
∥ log g1 − log g2∥2 +

∥C∥
α2
∥Q1 −Q2∥2 ++

∥C∥
α2
∥R1 −R2∥2

)2
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Finally we obtain that

∥∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)∥22

≤ 3

(
∥C∥22
α2

+
∥C∥22
α4

+ ε2
)
[∥ logQ1 − logQ2∥22 + ∥ logR1 − logR2∥22]

+ 3

(
2∥C∥22
α4

+

(
ε+

2∥C∥2
α3

)2
)
∥ log g1 − log g2∥22

Thus we obtain that

∥∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)∥2 ≤ Lε,α∥∇H(Q1, R1, g1)−∇H(Q2, R2, g2)∥2

and the result follows.

5.8 Low-Rank Factorization of Distance Matrix
In this section we present the algorithm used to perform a low-rank approximation
of a distance matrix [200, 201]. Given a metric space (X , d), X = {xi}ni=1 ∈ X n and
Y = {yj}mj=1 ∈ Xm we aim at obtaining a low-rank approximation of the distance
matrix D = (d(xi, yj))i,j with a precision γ > 0. Let us now present the algorithm
considered where we have denoted t = ⌊r/γ⌋.

Algorithm 6 LR-Distance(X, Y, r, γ)
Inputs: X, Y, r, γ
Choose i∗ ∈ {1, . . . , n}, and j∗{1, . . . ,m} uniformly at random.
For i = 1, . . . , n, pi ← d(xi, y

∗
j )

2 + d(x∗i , y
∗
j )

2 + 1
m

∑m
j=1 d(x

∗
i , yj)

2.
Independently choose i(1), . . . , i(t) according (p1, . . . , pn).
X(t) ← [xi(1) , . . . , xi(t) ], P

(t) ← [
√
tpi(1) , . . . ,

√
tpi(t) ], S ← d(X(t), Y )/P (t)

Denote S = [S(1), . . . , S(m)],
For j = 1, . . . ,m, qj ← ∥S(j)∥22/∥S∥2F
Independently choose j(1), . . . , j(t) according (q1, . . . , qm).
S(t) ← [Sj

(1)
, . . . , Sj

(t)
], Q(t) ← [

√
tqj(1) , . . . ,

√
tqj(t) ], W ← S(t)/Q(t)

U1, D1, V1 ← SVD(W ) (decreasing order of singular values).
N ← [U1(1), . . . , U

(r)
1 ], N ← STN/∥W TN∥F

Choose j(1), . . . , j(t) uniformly at random in {1, . . . ,m}.
Y (t) ← [yj(1) , . . . , yj(t) ], D

(t) ← d(X, Y (t))/
√
t.

U2, D2, V2 = SVD(NTN), U2 ← U2/D2, N
(t) ← [(NT )(j

(1)), . . . , (NT )(j
(t))], B ←

UT
2 N

(t)/
√
t, A← (BBT )−1.

Z ← AB(D(t))T , M ← ZTUT
2

Result: M,N
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5.9 Positive low-rank factorization with fixed marginal

Let g ∈ ∆∗
r, and let us for now consider the following problem

LOTr,g(µ, ν) := min
P∈Πa,g,b

⟨C,P ⟩. (5.13)

By definition of Πa,g,b, this problem can be formulated as follows:

LOTr,g(µ, ν) = min
Q∈Πa,g

R∈Πb,g

⟨C,QDiag(1/g)RT ⟩. (5.14)

As in the classical OT problem, one can extend the above objective and consider
for any ε ≥ 0 an entropic version of the problem defined as

LOTr,g,ε(µ, ν) := min
Q∈Πa,g

R∈Πb,g

⟨C,QDiag(1/g)RT ⟩ − εH((Q,R))
(5.15)

Note that for any ε ≥ 0, the minimum always exists as the objective is continuous
and Πa,g,b is compact. Moreover we clearly have that LOTr,g,0(µ, ν) = LOTr,g(µ, ν).
Applying a MD method to the objective (5.14) leads for all k ≥ 0 to the following
updates

Qk+1 := argmin
Q∈Πa,g

⟨C(1)
k , Q⟩ − 1

γk
H(Q)

Rk+1 := argmin
R∈Πa,g

⟨C(2)
k R⟩ − 1

γk
H(R)

where, (Q0, R0) ∈ Πa,g × Πb,g is an initial point, C(1)
k := CRkDiag(1/g) + (ε −

1
γk
) log(Qk), C

(2)
k := CTQkDiag(1/g) + (ε − 1

γk
) log(Rk) and γk is a sequence of

positive real numbers. Therefore a MD method bowls down to solve at each
iteration two regularized OT problems which can be done efficiently using the
Sinkhorn algorithm (3).

Convergence of the Mirror Descent. Even if the objective (5.14) is not convex
in (Q,R), one can obtain the non-asymptotic stationary convergence of the MD
algorithm in this setting.

Let fε be the objective function of the problem (5.15) defined on X := Πa,g×Πb,g

and let us denotes for any γ > 0 and x ∈ X

Gε(x, γ) := argmin
u∈X

{⟨∇fε(x), u⟩+
1

γ
KL(u, x)}.
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Let us now define the following criterion to establish convergence:

∆ε(x, γ) :=
1

γ2
(KL(x,Gε(x, γ)) +KL(Gε(x, γ), x)).

To show the non-asymptotic stationary convergence, we show that for any ε ≥ 0,
the objective is smooth relative to the entropy function [199] and we extend the
proof of [198] to this case.

Proposition. Let ε ≥ 0 and N ≥ 1. By denoting Lε :=
√
2(∥C∥22∥Diag(1/g)∥22 + ε2)

and by considering a constant stepsize in the MD scheme such that for all k =
1, . . . , N γk =

1
Lε

, we obtain that

min
1≤k≤N

∆ε((Qk, Rk), γk) ≤
2LεD0

N
.

where D0 := fε(Q0, R0)− LOTr,g,ε is the distance of the initial value to the optimal
one.

Proof. A similar proof of the one given for Proposition 7.4.2 gives that fε is
Lε-smooth relatively to H.

Let us now introduce our first algorithm (7) to compute a positive low-rank
factorization of the optimal coupling. Here we consider the case where g := 1r/r.
Before introducing our algorithm it is worth noting that a trivial initialization
may lead to a trivial fixed point in the MD updates. Indeed if one initialize
Q := agT and R := bgT , then CRDiag(1/g) = Ca1T and CTQDiag(1/g) = CT b1T

and therefore (Q,R) is a fixed point of the MD. To avoid this, we initialize
our algorithm in the following way: let λ := mini,j,k(ai, bj, gk)/2, a1 ∈ ∆∗

n\{a},
a2 := (a−λa1)/(1−λ), b1 ∈ ∆∗

n\{b}, b2 := (b−λb1)/(1−λ), g1 ∈ ∆∗
r\{g} and g2 :=

(g−λg1)/(1−λ). We can now define our initialization as Q := λa1g
T
1 +(1−λ)a2gT2 ,

R := λb1g
T
1 + (1− λ)b2gT2 .
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Algorithm 7 LOT-F(C, a, b, δ)
Inputs: C, a, b, δ, Q,R, g, γ, δS
repeat

Qold ← Q, Rold ← R
C(1) ← CRDiag(1/g)− 1

γ
log(Q),

C(2) ← CTQDiag(1/g)− 1
γ
log(R),

K(1) ← exp(−γC(1)),
K(2) ← exp(−γC(2)),
u, v ← Sinkhorn(K(1), a, g, δS) (Algorithm (3)),
Q← Diag(u)K(1)Diag(v),
u, v ← Sinkhorn(K(2), a, g, δS) (Algorithm (3)),
R← Diag(u)K(2)Diag(v)

until ∆((Q,R), γ) < δ;
Result: Q,R

Computational Cost. Note that the kernels (K(i))1≤i≤2 considered in algo-
rithm (7) live in Rn×r

+ × Rm×r
+ and therefore each iteration of both Sinkhorn

algorithms can be computed either in O(nr) or in O(mr) algebraic operations
as it involves only matrix/vector multiplications of the form K(i)v and (K(i))Tu.
However without any assumption on the cost matrix C, computing (K(i))1≤i≤2

costs O(nmr) algebraic operations as it requires to compute both CR and CTQ at
each iteration. Thanks to assumption 1, such multiplications can be performed in
O((n+m)dr) algebraic operations and thus algorithm (7) requires only a linear
number of algebraic operations with respect to the number of samples at each
iteration.

In the following, we will see that if we do not fix the marginal, the problem can
also be solved efficiently as each iteration of the MD algorithm can be seen as a
wasserstein barycenter problem.

5.10 A Positive low-rank factorization with free
marginal

Applying a MD method to the objective (5.8) leads, for all k ≥ 0, to the following
updates

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C1(a,b,r)∩C2(r)

KL(ζ, ξk) (5.16)

where (Q0, R0, g0) ∈ C1(a, b, r)∩C2(r) is an initial point, ξk := (ξ
(1)
k , ξ

(2)
k , ξ

(3)
k ), ξ(1)k :=

exp(−γkCRkDiag(1/gk)k − (γkε− 1) log(Qk)), ξ
(2)
k := exp(−γkCTQkDiag(1/gk)−
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(γkε− 1) log(Rk)), ξ
(3)
k := exp(γkωk/g

2
k− (γkε− 1) log(gk)) with [ωk]i := [QT

kCRk]i,i
for all i ∈ {1, . . . , r} and (γk)k≥0 is a sequence of positive real numbers.

Eq. (5.16) is well defined. Indeed as the kernels (ξ(i)k ) are matrices with positive
coefficients, the infimum is attained in C1(a, b, r) ∩ C2(r) and the problem admits a
unique solution. Moreover solving Eq. (5.16) bowls down to solve

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C1(a,b,r)∩C2(r)

KL(ζ, ξk) (5.17)

In order to solve Eq. (5.17), we consider the Iterative Bregman Projections (IBP)
algorithm. Starting from ζ

(k)
0 := ξk, the IBP algorithm consists in computing for

all j ≥ 0,

ζ
(k)
2j+1 = PKL

C1(a,b,r)
(ζ

(k)
2j )

ζ
(k)
2j+2 = PKL

C2(r)(ζ
(k)
2j+1).

As C1(a, b, r) and C2(r) are affine subspaces (note that nonnegativity constraints are
already in the definition of the objective) one can show that ζ(k)

j converges towards
the unique solution of Eq. (5.17), [163]. Remarks that the projection on C1(a, b, r)
can be computed very easily as one has for any ξ̃ := (Q̃, R̃, g̃) ∈ Rn×r

+ ×Rn×r
+ ×Rr

+,

PKL
C1(a,b,r)

(ξ̃) =

(
Diag

(
a

Q̃1r

)
Q̃,Diag

(
b

R̃1r

)
R̃, g̃

)
and the solution of the projection on C2(r) is already given in Proposition 5.3.3.

Efficient computation of the updates. For all k ≥ 0, starting with ζ
(k)
0 := ξk

the IBP algorithm leads to a simple algorithm (8) which computes only scaling
vectors. More precisely, the IBP algorithm produces the iterates (ζ(k)

n )n≥0 which
satisfy for all n ≥ 0 ζ

(k)
n = (Q

(k)
n , R

(k)
n , g

(k)
n ) where

Q(k)
n = Diag(uk,1n )ξ1kDiag(vk,1n )

R(k)
n = Diag(uk,2n )ξ2kDiag(vk,2n )

for the sequences (uk,in , v
k,i
n ) initialized as vk,i0 := 1 for all i ∈ {1, 2} and computed

with the iterations

uk,in =
pi

ξikv
k,i
n

g
(k)
n+1 = (g(k)n )1/3

2∏
i=1

(vk,in ⊙ (ξik)
Tuk,in )1/3

vk,in+1 =
g
(k)
n+1

(ξik)
Tuk,in
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where we have denoted p1 := a and p2 := b to simplify the notations.

Algorithm 8 LR-IBP((ξ(i))1≤i≤3, p1, p2, δ)

Inputs: ξ(1), ξ(2), g := ξ(3), p1, p2, δ, v
(i)

repeat
u(i) ← pi/ξ

(i)v(i) ∀i ∈ {1, 2},
g ← (g)1/3

∏2
i=1(v

(i) ⊙ (ξ(i))Tu(i))1/3,
v(i) ← g/(ξ(i))Tu(i) ∀i ∈ {1, 2}

until
∑2

i=1 ∥u(i) ⊙ ξ(i)v(i) − pi∥1 < δ;
Q← Diag(u(1))ξ(1)k Diag(v(1))
R← Diag(u(2))ξ(2)k Diag(v(2))
Result: Q,R, g

Let us now introduce the proposed MD algorithm applied to (6.4). By denoting
D(·) the operator extracting the diagonal of a square matrix we obtain the following
algorithm (9) to solve Eq. (5.6). We initialize our algorithm with the exact same
procedure as in algorithm (7).

Algorithm 9 LOT(C, a, b, r, δ)

Inputs: C, a, b, (γk)k≥0, Q,R, g, δ
for k = 1, . . . do

ξ(1) ← exp(−γkCRDiag(1/g)− (γkε− 1) log(Q)),
ξ(2) ← exp(−γkCTQDiag(1/g)− (γkε− 1) log(R)),
ω ← D(QTCR), ξ(3) ← exp(γkω/g

2 − (γkε− 1) log(g)),
Q,R, g ← LR-IBP((ξ(i))1≤i≤3, a, b, δ) (Algorithm (8))

end
Result: ⟨C,QDiag(1/g)RT ⟩

Computational Cost. Note that (ξ(i))1≤i≤3 considered in algorithm (9) lives in
Rn×r

+ ×Rm×r
+ ××Rr

+ and therefore each iteration of algorithm (8) can be computed in
O((n+m)r) algebraic operations as it involves only matrix/vector multiplications
of the form ξ(i)vi and (ξ(i))Tui. However without any assumption on the cost
matrix C, computing (ξ(i))1≤i≤3 costs O(nmr) algebraic operations as it requires
to compute both CR and CTQ at each iteration. Thanks to assumption 1, such
multiplications can be performed in O((n+m)dr) algebraic operations and thus
algorithm (9) requires only a linear number of algebraic operations with respect to
the number of samples at each iterations.
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Figure 5.8: Plot of the Gaussian mixtures considered in Fig. 5.3.

5.11 Addiational Experiments
In Fig. 5.3, we compare two Gaussian mixture densities sampled with n = m =
10000 points in 2D. The two densities considered are

fX(x) =
1

3

exp
(
(x− µ1)

TΣ−1(x− µ1)
)√

2π|Σ|
+

1

3

exp
(
(x− µ2)

TΣ−1(x− µ2)
)√

2π|Σ|

+
1

3

exp
(
(x− µ3)

TΣ−1(x− µ3)
)√

2π|Σ|

fY (x) =
1

2

exp
(
(x− ν1)TΣ−1(x− ν1)

)√
2π|Σ|

+
1

2

exp
(
(x− ν2)TΣ−1(x− ν2)

)√
2π|Σ|

where

µ1 = [0, 0], µ2 = [0, 1], µ3 = [1, 1],

ν1 = [0.5, 0.5], ν2 = [−0.5, 0.5], Σ = 0.05× Id2.

We show in Fig. 5.8 a plot of the two distributions considered. In Fig. 5.9, we
consider the exact same setting as the one presented in Fig. 5.3 but we increase
the dimension of the problem. More precisely we consider two Gaussian mixture
densities samples with n = m = 10000 points in 10D where

µ1 = [0, . . . , 0], µ2 = [0, 1, 0, . . . , 0], µ3 = [1, 1, 0, . . . , 0],

ν1 = [0.5, 0.5, 0, . . . , 0], ν2 = [−0.5, 0.5, 0, . . . , 0],
Σ = 0.05× Id10.

Similarly as in Fig. 5.3, we observe that LOT and LOT Quad provide similar
results while LOT is faster. All kernel-based methods fail to converge in this
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setting. Moreover we see that for small regularizations ε, our method is able to
approximate faster than Sin the true OT thanks to the low-rank constraint. Note
also that we observe again a difference between the two entropic regularizations of
the Sin objective and LOT objective. Indeed the range of ε where Sin provides
an efficient approximation of the true OT is larger than the one of LOT. Indeed
recall that for LOT, we regularize twice as we constraint the nonnegative rank of
the couplings and we add an entropic term to regularize the objective.

Figure 5.9: Comparison of the time-accuracy tradeoff for different methods for
estimating the OT or its regularized version between two mixture of gaussians in
10D.

In Fig. 5.2, we compare the time-accuracy tradeoff for different methods on
a synthetic problem where we aim at estimating either the OT or its regularized
version between two gaussians in 2D. Here we consider the exact same setting but
we increase the dimension of the problem: d = 10. As in Fig. 5.2, our proposed
method obtains an efficient approximation of the OT or its regularized version for
all rank r faster than other low-rank methods in the regime of small ε. We also see
that for all low-rank methods, a rank of r = 500 is not enough in this setting to
obtain the exact OT, but as the rank increases, the approximation gets better.

Figure 5.10: In this experiment, we consider two Gaussian distributions evaluated
on n = m = 5000 in 10D. The first one has a mean of (1, . . . , 1)T ∈ R10 and identity
covariance matrix I10 while the other has 0 mean and covariance 0.1 × I10. The
ground cost is the squared Euclidean distance.
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5.12 Tight solution

Let X = (x1, . . . , xn), Y = (y1, . . . , ym), a, b ∈ Σn,Σm be probability weights, and
Z = (z1, . . . , zk) be points in a set endowed with a cost c. We consider the network
problem from sources X to target Y passing through Z. This is equivalent to solving
the regular n ×m OT problem with cost matrix Cij = mink c(xi, zk) + c(zk, yj).
We write kij = argmink c(xi, zk) + c(zk, yj), D = [c(xi, zk)]ik and D′ = [c(zk, yj)]kj.

Lemma 6. Let P ⋆ be an optimal solution for the problem minP∈U(a,b)⟨P,C⟩. Write

g∗k =
∑
i,j

Pij1k=kij , U
∗
ik =

∑
j

Pij1k=kij , V
∗
kj =

∑
i

Pij1k=kij

Then matrices U∗ ∈ U(a, g∗), V ∗ ∈ U(g∗, b) and are respectively optimal for the
OT problems with costs D and D′ respectively. Additionally, ⟨P ⋆, C⟩ = ⟨U∗, D⟩+
⟨V ∗, D′⟩.

Proof. It is easy to check that U∗ ∈ U(a, g∗), V ∗ ∈ U(g∗, b) and that we have:

⟨P ⋆, C⟩ = ⟨U∗, D⟩+ ⟨V ∗, D′⟩

Moreover let U ∈ U(a, g∗), V ∈ U(g∗, b), then we have

⟨P ⋆, C⟩ ≤ ⟨C,UD(1/g∗)V ⟩ =
∑
k

1

g∗k

∑
ij

CijUikVkj

=
∑
k

1

g∗k

∑
i,j

min
k′

(Dik′ +Dk′j)UikVkj

≤
∑
k

1

g∗k

∑
i,j

(Dik +Dkj)UikVkj

≤
∑
k

1

g∗k

∑
i,j

DikUikVkj +
∑
i,j

DkjUikVkj

≤
∑
k

∑
i

DikUik +
∑
j

DkjVkj

= ⟨U,D⟩+ ⟨V,D′⟩

Therefore for any U ∈ U(a, g), V ∈ U(g, b) we have

⟨U∗, D⟩+ ⟨V ∗, D′⟩ ≤ ⟨U,D⟩+ ⟨V,D′⟩

from which follows the optimality of U∗ and V ∗.
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Figure 5.11: Here we consider the same setting as in Figure 5.9 where the cost
functions is defined as c(x, y) = mink∈1,..,r ∥x− zk∥+ ∥zk − y∥ and z1, . . . , zr ∈ R10

are fixed anchors.

Proposition 5.12.1. U∗D(1/g∗)V ∗ is optimal for the OT problem between X and
Y with costs C.

Proof. Obviously U∗D(1/g∗)V ∗ has the right marginals. Moreover from the com-
putation obtained in the proof of Lemma 6, we have

⟨C,U∗D(1/g∗)V ∗⟩ ≤ ⟨U∗, D⟩+ ⟨V ∗, D′⟩ = ⟨P ⋆, C⟩

from which follows the optimality of U∗D(1/g∗)V ∗.

In the following experiment we aim at showing that our method is able to
recover the exact true solution of Eq. (5.1) when the optimal coupling admits
a low nonnegative rank. Moreover we show that our algorithm is robust to the
choice of the initialization. Indeed in Figure 5.11, we plot both the histograms of
the ratios to the LP solution of LOT costs and the ℓ2 distance between the true
optimal coupling and the coupling obtained by our algorithm for multiple random
initializations. We show that our method is able to recover consistenly the true
optimal coupling.
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Chapter 6

Low-rank Optimal Transport:
Theoretical Properties

The matching principles behind optimal transport (OT) play an increasingly impor-
tant role in machine learning, a trend which can be observed when OT is used to
disambiguate datasets in applications (e.g. single-cell genomics) or used to improve
more complex methods (e.g. balanced attention in transformers or self-supervised
learning). To scale to more challenging problems, there is a growing consensus
that OT requires solvers that can operate on millions, not thousands, of points.
The low-rank optimal transport (LOT) approach advocated in [3] holds several
promises in that regard, and was shown to complement more established entropic
regularization approaches, being able to insert itself in more complex pipelines,
such as quadratic OT. LOT restricts the search for low-cost couplings to those that
have a low-nonnegative rank, yielding linear time algorithms in cases of interest.
However, these promises can only be fulfilled if the LOT approach is seen as a
legitimate contender to entropic regularization when compared on properties of
interest, where the scorecard typically includes theoretical properties (statistical
complexity and relation to other methods) or practical aspects (debiasing, hyper-
parameter tuning, initialization). We target each of these areas in this paper in
order to cement the impact of low-rank approaches in computational OT.

This chapter is based on [1].
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6.1 Introduction

Optimal transport (OT) is used across data-science to put in correspondence
different sets of observations. These observations may come directly from datasets,
or, in more advanced applications, depict intermediate layered representations of
data. OT theory provides a single grammar to describe and solve increasingly
complex matching problems (linear, quadratic, regularized, unbalanced, etc...),
making it gain a stake in various areas of science such as as single-cell biology [41,
56, 205], imaging [42, 43, 206] or neuroscience [44, 45].

Regularized approaches to OT. Solving OT problems at scale poses, however,
formidable challenges. The most obvious among them is computational: the [32]
problem on discrete measures of size n is a linear program that requires O(n3 log n)
operations to be solved. A second and equally important challenge lies in the
estimation of OT in high-dimensional settings, since it suffers from the curse-
of-dimensionality [71]. The advent of regularized approaches, such as entropic
regularization [76], has pushed these boundaries thanks for faster algorithms [74, 75]
and improved statistical aspects [51]. Despite these clear strengths, regularized OT
solvers remain, however, costly as they typically scale quadratically in the number
of observations.

Scaling up OT using low-rank couplings. While it is always intuitively
possible to reduce the size of measures (e.g. using k-means) prior to solving an
OT between them, a promising line of work proposes to combine both [128, 3, 2].
Conceptually, these low-rank approaches solve simultaneously both an optimal
clustering/aggregation strategy with the computation of an effective transport.
This intuition rests on an explicit factorization of couplings into two sub-couplings.
This has several computational benefits, since its computational cost becomes linear
in n if the ground cost matrix seeded to the OT problem has itself a low-rank. While
these computational improvements, mostly demonstrated empirically, hold several
promises, the theoretical properties of these methods are not yet well established.
This stands in stark contrast to the Sinkhorn approach, which is comparatively
much better understood.

Our Contributions. The goal of this paper is to advance our knowledge, under-
standing and practical ability to leverage low-rank factorizations in OT. This paper
provides five contributions, targeting theoretical and practical properties of LOT:
(i) We derive the rate of convergence of the low-rank OT to the true OT with respect
to the non-nnegative rank parameter. (ii) We make a first step towards a better
understanding of the statistical complexity of LOT by providing an upper-bound of
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the statistical error, made when estimating LOT using the plug-in estimator; that
upper-bound has a parametric rate O(

√
1/n) that is independent of the dimension.

(iii) We introduce a debiased version of LOT: as the Sinkhorn divergence [130],
we show that debiased LOT is nonnegative, metrizes the weak convergence, and
that it interpolates between the maximum mean discrepancy [18] and OT. (iv) We
exhibit links between the bias induced by the low-rank factorization and clustering
methods. (v) We propose practical strategies to tune the step-length and the
initialization of the algorithm in [3].

6.2 Background on Low-rank Optimal Transport
Let µ ∈M+

1 (X ), ν ∈M+
1 (Y) and c : X × Y → R+ a nonnegative and continuous

function. The Kantorovitch formulation of optimal transport between µ and ν is
defined by

OTc(µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) , (6.1)

where the feasible set is the set of distributions over the product space X ×Y with
marginals µ and ν:

Π(µ, ν) :=
{
π ∈M+

1 (X × Y) s.t. P1#π = µ, P2#π = ν
}
,

with P1#π (resp. P2#π), the pushforward probability measure of π using the
projection maps P1(x, y) = x (resp. P2(x, y) = y). When there exists an optimal
coupling solution of (6.1) supported on a graph of a function, we call such function
a Monge map. In the discrete setting, one can reformulate the optimal transport
problem as a linear program over the space of nonnegative matrices satisfying the
marginal constraints. More precisely, let a and b be respectively elements of ∆∗

n

and ∆∗
m and let also X := {x1, . . . , xn} and Y := {y1, . . . , ym} be respectively two

subsets of X and Y. By denoting µa,X :=
∑n

i=1 aiδxi and νb,Y :=
∑m

j=1 bjδyj the
two discrete distributions associated and writing C := [c(xi, yj)]i,j, the discrete
optimal transport problem can be formulated as

OTc(µa,X , νb,Y ) = min
P∈Πa,b

⟨C,P ⟩ where Πa,b := {P ∈ Rn×m
+ s.t. P1m = a, P T1n = b} .

(6.2)

Scetbon et al. [3] propose to constrain the discrete optimal transport problem to
couplings that have a low-nonnegative rank:

Definition 6.2.1. Given M ∈ Rn×m
+ , the nonnegative rank of M is defined by:

rk+(M) := min{q|M =
∑q

i=1Ri,∀i, rk(Ri) = 1, Ri ≥ 0} .
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Note that for any M ∈ Rn×m
+ , we always have that rk+(M) ≤ min(n,m).

For r ≥ 1, we consider the set of couplings satisfying marginal constaints with
nonnegative-rank of at most r as Πa,b(r) := {P ∈ Πa,b, rk+(P ) ≤ r}. The discrete
Low-rank Optimal Transport (LOT) problem is defined by:

LOTc,r(µa,X , νb,Y ) := min
P∈Πa,b(r)

⟨C,P ⟩ . (6.3)

To solve this problem, [3] show that Problem (6.3) is equivalent to

min
(Q,R,g)∈C1(a,b,r)∩C2(r)

⟨C,Q diag(1/g)RT ⟩ , (6.4)

where C1(a, b, r) :=
{
(Q,R, g) ∈ Rn×r

+ ×Rm×r
+ × (R∗

+)
r s.t. Q1r = a,R1r = b

}
and

C2(r) :=
{
(Q,R, g) ∈ Rn×r

+ × Rm×r
+ × Rr

+ s.t. QT1n = RT1m = g
}
. They propose

to solve it using a mirror descent scheme and prove the non-asymptotic stationary
convergence of their algorithm. While [3] only focus on the discrete setting, we
consider here its extension for arbitrary probability measures. Following [128], we
define the set Πr(µ, ν) of rank-r couplings satisfying marginal constraints by:

{π ∈ Π(µ, ν) : ∃(µi)ri=1 ∈M+
1 (X )r, (νi)ri=1 ∈M+

1 (Y)r, λ ∈ ∆∗
r s.t. π =

r∑
i=1

λiµi⊗νi} .

This more general definition of LOT between µ ∈M+
1 (X ) and ν ∈M+

1 (Y) reads:

LOTc,r(µ, ν) := inf
π∈Πr(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) . (6.5)

Note that this definition of LOTc,r is consistent as it coincides with the one defined
in (6.3) on discrete probability measures. Observe also that Πr(µ, ν) is compact for
the weak topology and therefore the infimum in (6.5) is attained. See Appendix 6.8
for more details.

6.3 Approximation Error of LOT to original OT as
a function of rank

Our goal in this section is to obtain a control of the error induced by the low-
rank constraint when trying to approximate the true OT cost. We provide first a
control of the approximation error in the discrete setting. The proof is given in
Appendix 6.9.1.
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Proposition 6.3.1. Let n,m ≥ 2, X := {x1, . . . , xn} ⊂ X , Y := {y1, . . . , ym} ⊂ Y
and a ∈ ∆∗

n and b ∈ ∆∗
m. Then for 2 ≤ r ≤ min(n,m), we have that

|LOTr,c(µa,X , νb,Y )−OTc(µa,X , νb,Y )| ≤ ∥C∥∞ ln(min(n,m)/(r − 1))

Remark 9. Note that this result improves the control obtained in [207], where they
obtain that |LOTr,c(µa,X , νb,Y )−OTc(µa,X , νb,Y )| ≲ ∥C∥∞

√
nm(min(n,m)− r) as

we have for any z, z′ ≥ 1, | ln(z)− ln(z′)| ≤ |z − z′|.

It is in fact possible to obtain another control of the approximation error by
partitioning the space where the measures are supported. Let us now introduce
the notion of entropy numbers.

Definition 6.3.1. Let (Z, d) a metric space, W ⊂ Z and k ≥ 1 an integer. Then
by denoting BZ(z, ε) := {y ∈ Z : d(z, y) ≤ ε}, we define the k-th (dyadic) entropy
number of W as

Nk(W , d) := inf{ε s.t. ∃ z1, . . . , z2k ∈ Z : W ⊂ ∪2ki=1BZ(zi, ε)} .

For example, any compact set W of Rd admits finite entropy numbers, and by
denoting R := supw∈W ∥w∥2, we have Nk(W , ∥ · ∥2) ≤ 4R/2k/d. We obtain next a
control of the approximation error of LOTc,r to the true OT cost using entropy
numbers (see proof in Appendix 6.9.2).

Proposition 6.3.2. Let µ ∈M+
1 (X ), ν ∈M+

1 (Y) and assume that c is L-Lipschitz
w.r.t. x and y. Then for any r ≥ 1, we have

|LOTc,r(µ, ν)−OTc(µ, ν)| ≤ 2Lmax(N⌊log2(⌊
√
r⌋)⌋(X , dX ),N⌊log2(⌊

√
r⌋)⌋(Y , dY))

This results in the following bound for the p-Wasserstein distance for any p ≥ 1
on Rd.

Corollary 6.3.1. Let d ≥ 1, p ≥ 1, X a compact subspace of Rd and µ, ν ∈M+
1 (X ).

By denoting R := supx∈X ∥x∥2, we obtain that for any r ≥ 1,

|LOT∥·∥p2,r(µ, ν)−OT∥·∥p2(µ, ν)| ≤ 4dp
(8R2)p

rp/2d
.

As per the Proof of Proposition 6.3.2 we can provide a tighter control, assuming
a Monge map exists.

Corollary 6.3.2. Under the same assumptions of Proposition 6.3.2 and by assum-
ing in addition that there exists a Monge map solving OTc(µ, ν), we obtain that for
any r ≥ 1,

|LOTc,r(µ, ν)−OTc(µ, ν)| ≤ LN⌊log2(r)⌋(Y , dY) .
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When X = Y are a subspaces of Rd, a sufficient condition for a Monge map to
exists is that either µ or ν is absolutely continuous with respect to the Lebesgue
measure and that c is of the form h(x− y) where h : X → R+ is a strictly convex
function [111, Theorem 1.17]. Therefore if µ is absolutely continuous with respect
to the Lebesgue measure, we obtain for any r ≥ 1 and p > 1

|LOT∥·∥p2,r(µ, ν)−OT∥·∥p2(µ, ν)| ≤ 2dp
(8R2)p

rp/d
.

6.4 Sample Complexity of LOT
We now focus on the statistical performance of the plug-in estimator for LOT.
In the following we assume that X = Y for simplicity. Given µ, ν ∈ M+

1 (X ), we
denote the empirical measures associated µ̂n := 1

n

∑n
i=1 δXi

and ν̂n := 1
n

∑n
i=1 δYi ,

where (Xi, Yi)
n
i=1 are sampled independently from µ⊗ ν. We consider the plug-in

estimator defined as LOTc,r(µ̂n, ν̂n), and we aim at quantifying the rate at which
it converges towards the true low-rank optimal transport cost LOTc,r(µ, ν). Before
doing so, in the next Proposition we show that this estimator is consistent on
compact spaces. The proof is given in Appendix 6.9.3.

Proposition 6.4.1. Let r ≥ 1 and µ, ν ∈ M+
1 (X ), then LOTc,r(µ̂n, ν̂n) −−−−→

n→+∞
LOTc,r(µ, ν) a.s.

Next we aim at obtaining the convergence rates of our plug-in estimator. In the
following Proposition, we obtain a non-asymptotic upper-bound of the statistical
error. See Appendix 6.9.4 for the proof.

Proposition 6.4.2. Let r ≥ 1 and µ, ν ∈M+
1 (X ). Then, there exists a constant

Kr such that for any δ > 0 and n ≥ 1, we have, with a probability of at least 1− 2δ,
that

LOTc,r(µ̂n, ν̂n) ≤LOTc,r(µ, ν) + 11∥c∥∞
√
r

n

+Kr∥c∥∞

[√
log(40/δ)

n
+

√
r log(40/δ)

n

]
.

This result is, to the best of our knowledge, the first attempt at providing a
statistical control of low-rank optimal transport. We provide an upper-bound of the
plug-in estimator which converges towards LOTc,r at a parametric rate and which
is independent of the dimension on general compact metric spaces. While we fall
short of providing a lower bound that could match that upper bound, and therefore
provide a complete statistical complexity result, we believe this result might provide

178



a first explanation on why, in practice, LOTc,r displays better statistical properties
than unregularized OT and its curse of dimensionality [129]. In addition, that
upper bound compares favorably to known results on entropic optimal transport.
The rate of entropy regularized OT does not depend on the ambient dimension
with respect to n, but carries an exponential dependence in dimension with respect
to the regularization parameter ε [82]. By contrast, the term associated with the
nonnegative rank r in our bound has no direct dependence on dimension.

Our next aim is to obtain an explicit rate with respect to r and n. In Propo-
sition 6.4.2, we cannot control explicitly Kr in the general setting. Indeed, in
our proof, we obtain that Kr := 14/mini λ

∗
i where (λ∗i )

r
i=1 ∈ ∆∗

r are the weights
involved in the decomposition of one optimal solution of the true LOTc,r(µ, ν).
Therefore the control of Kr requires additional assumptions on the optimal solutions
of LOTc,r(µ, ν). In the following Proposition, we obtain an explicit upper-bound
of the plug-in estimator with respect to r and n in the asymptotic regime.
Proposition 6.4.3. Let r ≥ 1, δ > 0 and µ, ν ∈ M+

1 (X ). Then there exists a
constant Nr,δ such that if n ≥ Nr,δ then with a probability of at least 1−2δ, we have

LOTc,r(µ̂n, ν̂n) ≤ LOTc,r(µ, ν) + 11∥c∥∞
√
r

n
+ 77∥c∥∞

√
log(40/δ)

n
.

Note that one cannot recover the result obtained in Proposition 6.4.3 from the
one obtained in Proposition 6.4.2 as we have that Kr ≥ 14r −−−−→

r→+∞
+∞. In order

to prove the above result, we use an extension of the McDiarmid’s inequality when
differences are bounded with high probability [208]. See proof in Appendix 6.9.5
for more details.

6.5 Debiased Formulation of LOT
We introduce here the debiased formulation of LOTc,r and show that it is able to
distinguish two distributions, metrize the convergence in law and can be used as
a new objective in order to learn distributions. We focus next on the debiasing
terms involving measures with themselves LOTc,r(µ, µ) in this new divergence, and
show that they can be interpreted as defining a new clustering method generalizing
k-means for any geometry.

6.5.1 On the Proprieties of the Debiased Low-rank Optimal
Transport

When it comes to learn (or generate) a distribution in ML applications given
samples, it is crucial to consider a divergence that is able to distinguish between
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two distributions and metrize the convergence in law. In general, LOTc,r(µ, µ) ̸= 0
and the minimum of LOTc,r(ν, µ) with respect to ν will not necessarily recover µ.
In order to alleviate this issue we propose a debiased version of LOTc,r defined for
any µ, ν ∈M+

1 (X ) as

DLOTc,r(µ, ν) := LOTc,r(µ, ν)−
1

2
[LOTc,r(µ, µ) + LOTc,r(ν, ν)] .

Note that DLOTc,r(ν, ν) = 0. In the next Proposition, we show that, as the
Sinkhorn divergence [209, 130], DLOTc,r interpolates between the Maximum Mean
Discrepancy (MMD) and OT. See proof in Appendix 6.9.6.

Proposition 6.5.1. Let µ, ν ∈M+
1 (X ). Let us assume that c is symmetric, then

we have
DLOT1,c(µ, ν) =

1

2

∫
X 2

−c(x, y)d[µ− ν]⊗ d[µ− ν](x, y) .

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have

DLOTc,r(µ, ν) −−−−→
r→+∞

OTc(µ, ν) .

Next, we aim at showing some useful properties of the debiased low-rank OT for
machine learning applications. For that purpose, let us first recall some definitions.

Definition 6.5.1. We say that the cost c : X ×X → R+ is a semimetric on X if for
all x, x′ ∈ X , c(x, x′) = c(x′, x) and c(x, x′) = 0 if and only if x = x′. In addition
we say that c has a negative type if ∀n ≥ 2, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R
such that

∑n
i=1 αi = 0,

∑n
i,j=1 αiαjc(xi, xj) ≤ 0. We say also that c has a strong

negative type if for all µ, ν ∈M+
1 (X ), µ ≠ ν =⇒

∫
X 2 c(x, y)d[µ− ν]⊗ [µ− ν] < 0.

Note that if c has a strong negative type, then c has a negative type too. For
example, all Euclidean spaces and even separable Hilbert spaces endowed with the
metric induced by their inner products have strong negative type. Also, on Rd,
the squared Euclidean distance has a negative type [210]. We can now provide
stronger geometric guarantees for DLOTc,r. In the next Proposition, we show that
for a large class of cost functions, DLOTc,r is nonnegative, able to distinguish
two distributions, and metrizes the convergence in law. The proof is given in
Appendix 6.9.8.

Proposition 6.5.2. Let r ≥ 1, and let us assume that c is a semimetric of negative
type. Then for all µ, ν ∈M+

1 (X ), we have that

DLOTc,r(µ, ν) ≥ 0 .
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In addition, if c has strong negative type then we have also that

DLOTc,r(µ, ν) = 0 ⇐⇒ µ = ν and
µn → µ ⇐⇒ DLOTc,r(µn, µ)→ 0 .

where the convergence of the sequence of probability measures considered is the
convergence in law.

Observe that when c has strong negative type, ν → DLOTc,r(ν, µ) ≥ 0 and
it admits a unique global minimizer at ν = µ. Therefore, DLOTc,r has desirable
properties to be used as a loss.It is also worth noting that, in order to obtain the
metrization of the convergence in law, we show the following Proposition. See proof
in Appendix 6.9.7.

Proposition 6.5.3. Let r ≥ 1 and (µn)n≥0 and (νn)n≥0 two sequences of probability
measures such that µn → µ and νn → ν with respect to the convergence in law.
Then we have that

LOTc,r(µn, νn)→ LOTc,r(µ, ν) .

6.5.2 Low-Rank Transport Bias and Clustering

We turn next to the debiasing terms appearing in DLOT and exhibit links between
LOT and clustering methods. Indeed, in the discrete setting, the low-rank bias of a
probability measure µ defined as LOTc,k(µ, µ) can be seen as a generalized version
of the k-means method for any geometry. In the next Proposition we obtain a new
formulation of LOTc,k(µ, µ) viewed as a general clustering method on arbitrary
metric space. See proof in Appendix 6.9.9.

Proposition 6.5.4. Let n ≥ k ≥ 1, X := {x1, . . . , xn} ⊂ X and a ∈ ∆∗
n. If c is a

semimetric of negative type, then by denoting C = (c(xi, xj))i,j, we have that

LOTc,k(µa,X , µa,X) = min
Q
⟨C,Qdiag(1/QT1n)Q

T ⟩ : Q ∈ Rn×k
+ , Q1k = a . (6.6)

Let us now explain in more details the link between (6.6) and k-means. When
X is a subspace of Rd, c is the squared Euclidean distance and a = 1n, we recover
exactly the k-means algorithm.

Corollary 6.5.1. Let n ≥ k ≥ 1 and X := {x1, . . . , xn} ⊂ Rd. We have that

LOT∥·∥22,k(µ1n,X , µa,X)

2
= min

Q,z1,...,zk

n∑
i=1

k∑
q=1

Qi,q∥xi − zq∥22 : Q ∈ {0, 1}n×k, Q1k = 1n .

In the general setting, solving LOTc,k(µa,X , µa,X) for a given geometry c, and a
prescribed histrogram a offers a new clustering method where the assignment of
the points to the clusters is determined by the matrix Q∗ solution of (6.6).

181



6.6 Computing LOT: Adaptive Stepsizes and Bet-
ter Initializations

We target in this section practical issues that arises when using [3, Algo.3] to
solve (6.4). Scetbon et al. [3] propose to apply a mirror descent scheme with respect
to the Kullback-Leibler divergence which boils down to solve at each iteration
k ≥ 0 the following convex problem using the Dykstra’s Algorithm [196]:

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C1(a,b,r)∩C2(r)

KL(ζ, ξk) . (6.7)

where (Q0, R0, g0) ∈ C1(a, b, r) ∩ C2(r), ξk := (ξ
(1)
k , ξ

(2)
k , ξ

(3)
k ),

ξ
(1)
k := Qk ⊙ exp(−γkCRk diag(1/gk)), ξ

(2)
k := Rk ⊙ exp(−γkCTQk diag(1/gk)),

ξ
(3)
k := gk⊙exp(γkωk/g2k) with [ωk]i := [QT

kCRk]i,i for all i ∈ {1, . . . , r}, KL(w, r) :=∑
iwi log(wi/ri) and (γk)k≥0 is a sequence of positive step sizes. In the general

setting, each iteration of their algorithm requires O(nmr) operations and when
the ground cost matrix C admits a low-rank factorization of the form C = ABT

where A ∈ Rn×q and B ∈ Rm×q with q ≪ min(n,m), then the total complexity
per iteration becomes linear O((n+m)rq). Note that for the squared Euclidean
cost on Rd, we have that q = d+ 2. In the following we investigate two practical
aspects of the algorithm: the choice of the step sizes and the initialization.

Adaptive choice of γk. [3] show experimentally that the choice of (γk)k≥0 does
not impact the solution obtained upon convergence, but rather the speed at which
it is attained. Indeed the larger γk is, the faster the algorithm will converge. As a
result, their algorithm simply relies on a fixed γ schedule. However, the range of
admissible γ depends on the problem considered and it may vary from one problem
to another. Indeed, the algorithm might fail to converge as one needs to ensure at
each iteration k of the mirror descent scheme that the kernels ξk do not admit 0
entries in order to solve (6.7) using the Dykstra’s Algorithm. Such a situation can
occur when the terms involved in the exponentials become too large which may
depend on the problem considered. Therefore, it may be of particular interest for
practitioners to have a generic range of admissible values for γ independently of
the considered problem, in order to alleviate parameter tuning issues. We propose
to consider instead an adaptive choice of (γk)k≥0 along iterations. [211, 212] have
proposed adaptive mirror descent schemes where, at each iteration, the step-size is
normalized by the squared dual-norm of the gradient. Applying such a strategy in
our case amounts to consider at each iteration

γk =
γ

∥ (CR diag(1/g), CTQ diag(1/g),−D(QTRC)/g2) ∥2∞
, (6.8)
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where the initial γ > 0 is fixed. By doing so, we are able to guarantee a lower-bound
of the exponential terms involved in the expression of the kernels ξk at each iteration
and prevent them from having 0 entries. We recommend to set such as global
γ ∈ [1, 10], and observe that this range works whatever the problem considered.

On the choice of the initialization. As LOTc,r (6.4) is a non-convex optimiza-
tion problem, the question of choosing an efficient initialization arises in practice. [3]
show experimentally that the convergence of the algorithm does not depend on
the initalization chosen if no stopping criterion is used. Indeed, their experimental
findings support that only well behaved local minimas are attractive. However, in
practice one needs to use a stopping criterion in order to terminate the algorithm.
We do observe in many instances that using trivial initializers may result in spuri-
ous local minima, which trigger the stopping criterion early on and prevent the
algorithm to reach a good solution. Based on various experimentations, we propose
to consider a novel initialization of the algorithm. Our initialization aims at being
close to a well-behaved local minimum by clustering the input measures. When the
measures are supported on Euclidean space, we propose to find r centroids (zi)

r
i=1

of one of the two input discrete probability measures using k-means and to solve
the following convex barycenter problem:

min
Q,R
⟨CX,Z , Q⟩+ ⟨CY,Z , R⟩ − εH(Q)− εH(R) s.t.

Q1n = a, R1n = b, QT1r = RT1r ,
(6.9)

where CX,Z = (c(xi, zj))i,j , CY,Z = (c(yi, zj))i,j , andH(P ) = −
∑

i,j Pi,j(log(Pi,j−1).
In practice we fix ε = 1/10 and we then initialize LOTc,r using (Q,R) solution of
(6.9) and g := QT1r(= RT1r). Note that (Q,R, g) is an admissible initialization
and finding the centroids as well as solving (6.9) requires O((n+m)r) algebraic
operations. Therefore such initialization does not change the total complexity
of the algorithm. In the general (non-Euclidean) case, we propose to initialize
the algorithm by applying our generalized k-means approach defined in (6.6) on
each input measure where we fix the common marginal to be g = 1r/r. More
precisely, by denoting CX,X = (c(xi, xj))i,j and CY,Y = (c(yi, yj))i,j, we initialize
the algorithm by solving:

Q ∈ argmin
Q
⟨CX,X , Qdiag(1/QT1n)Q

T ⟩ s.t. Q ∈ Rn×k
+ , Q1k = a, QT1n = 1r/r .

R ∈ argmin
R
⟨CY,Y , Rdiag(1/RT1m)R

T ⟩ s.t. R ∈ Rm×k
+ , R1k = b, RT1n = 1r/r .

(6.10)

Note that again the (Q,R, g) obtained is an admissible initialization and the
complexity of solving (6.10) is of the same order as solving (6.4), thus the total
complexity of the algorithm remains the same.
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Figure 6.1: In this experiment, we consider a mixture of 10 anisotropic Gaussians
supported on Rd and we plot the value of DLOTc,r between two independent
empirical measures associated to this mixture when varying the number of samples
n and the dimension d for multiple ranks r. The ground cost considered is the
squared Euclidean distance. Note that LOTr(µ, µ) ̸= 0 and therefore we use
DLOTc,r(µ, µ) instead to evaluate the rates. Each point has been obtained by
repeating 10 times the experiment. We compare the empirical rates obtained with
the theoretical one derived in Proposition 6.4.2 for r = 1. We observe that our
theoretical results match the empirical ones and, as expected, the rates do not
depend on d.

6.7 Experiments

In this section, we illustrate experimentally our theoretical findings and show how
our initialization provide practical improvements. For that purpose we consider 3
synthetic problems and one real world dataset to: (i) provide illustrations on the
statistical rates of LOTc,r, (ii) exhibit the gradient flow of the debiased formulation
DLOTc,r, (iii) use the clustering method induced by LOTc,r, and (iv) show the
effect of the initialization. All experiments were run on a MacBook Pro 2019 laptop.

Statistical rates. We aim at showing the statistical rates of the plug-in estimator
of LOTc,r. As LOTc,r(µ, µ) ̸= 0 and as we do not have access to this value given
samples from µ, we consider instead the debiased version of the low-rank optimal
transport, DLOTc,r. In figure 6.1, we show that the empiricial rates match the
theoretical bound obtained in Proposition 6.4.2. In particular, we show that that
these rates does not depend on the dimension of the ground space. Note also that
we recover our theoretical dependence with respect to the rank r: the higher the
rank, the slower the convergence.

Gradient Flows using DLOT. We illustrate here a practical use of DLOT
for ML application. In figure 6.6, we consider Y1, . . . , Yn independent samples
from a moon shape distribution in 2D, and by denoting ν̂n the empirical measure
associated, we show the iterations obtained by a gradient descent scheme on the
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Figure 6.2: We compare the gradient flows (µt)t≥0 (in red) starting from a Gaussian
distribution, µ0, to a moon shape distribution (in blue), ν, in 2D when minimizing
either L(µ) := DLOTc,r(µ, ν) or L(µ) := LOTc,r(µ, ν). The ground cost is the
squared Euclidean distance and we fix r = 100. We consider 1000 samples from
each distribution and and we plot the evolution of the probability measure obtained
along the iterations of a gradient descent scheme. We also display in green the
vector field in the descent direction. We show that the debiased version allows to
recover the target distribution while LOTc,r is learning a biased version with a
low-rank structure.

following optimization problem:

min
X∈Rn×2

DLOTc,r(µ1n/n,X, ν̂n) .

We initialize the algorithm using n = 1000 samples drawn from a Gaussian
distribution. We show that the gradient flow of our debiased version is able to
recover the target distribution. We also compare it with the gradient flow of the
biased version (LOT) and show that it fails to reproduce the target distribution as
it is learning a biased one with a low-rank structure.

Application to Clustering. In this experiment we show some applications of
the clustering method induced by LOTc,r. In figure 6.3, we consider 6 datasets with
different structure and we aim at recovering the clusters using (6.6) for some well
chosen costs. We compare the clusters obtained when considering either the squared
Euclidean cost (which amounts at applying the k-means) and the shortest-path
distance on the data viewed as a graph. We show that our method is able to recover
the clusters on these settings for well chosen costs and therefore the proposed
algorithm in [3] can be seen as a new alternative in order to clusterize data.

Effect of the Initialization. Our goal here is to show the effect of the initial-
ization. In figure 6.4, we display the evolution of the cost as well as the value of
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Figure 6.3: In this experiment, we draw 1000 samples from multiple distributions
from the python package scikit-learn [213] and we apply the method proposed
in (6.6) for two different costs: in the top row we consider the squared Euclidean
distance while in the bottom row, we consider the shortest path distance on the
graph associated with the ground cost c(x, y) = 1− k(x, y) where k is a Gaussian
kernel. In the two first problem (starting from the left), we fix r = 2, in the next
three problem we fix r = 3 and in the last one we fix r = 4. We observe that the
flexibility of our method allows to recover the clustering for a well chosen ground
cost.

the stopping criterion along the iterations of the MD scheme solving (6.4) when
considering different initialization. The x-axis corresponds to the total number of
algebraic operations. This number is computed at each iteration of the outer loop
of the algorithm proposed in [3] and is obtained by computing the complexity of
all the operations involved in their algorithm to reach it. We consider this notion
of time instead of CPU/GPU time as we do not want to be architecture/machine
dependent. Recall also that the stopping criterion ∆k introduced in [3] is defined
for all k ≥ 1 by

1

γ2k
(KL((Qk, Rk, gk), (Qk−1, Rk−1, gk−1)) + KL((Qk−1, Rk−1, gk−1), (Qk, Rk, gk))),

where ((Qk, Rk, gk))k≥0 is the sequence solution of (6.7). First, we show that
whatever the initialization chosen, the algorithm manages to converge to an efficient
solution if no stopping criterion is used. However, the choice of the initialization
may impact the termination of the algorithm as some initialization might be too
close to some spurious local minima. Indeed, the initial points obtained using
a “rank 2” or random initialization can be close to spurious and non-attractive
local minima, which may trigger the stopping criterion too early and prevent the
algorithm from continuing to run in order to converge towards an attractive and
well behaved local minimum. We show also that the initialization we propose
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Figure 6.4: In this experiment, we consider the Newsgroup20 dataset [213] con-
stituted of texts and we embed them into distributions in 50D using the same
pre-processing steps as in [214]. We compare different initialization when applying
the algorithm of [3] to compare random texts viewed as distributions for multiple
choices of rank r. The ground cost considered in the squared Euclidean distance.
We repeat the experiments 50 times by sampling randomly multiple problems of
similar size (≃ 250 samples). We normalize the cost matrix by its maximum value
in order to have comparable LOT cost. We consider 4 different initialization: the
one using k-means algorithm (6.9), the one using the generalized k-means (6.10),
the rank-2 initialization [3] and a random initialization where Q,R and g are drawn
from Gaussians. We compare both the cost value and the criterion value (∆k) along
the iterations of the MD scheme. Note that the curves obtained do not start at the
same point in time as we start plotting the curves after obtaining the initial point
which in some case requires more algebraic operations (e.g. kmeans methods). First
we observe that whatever the initialization considered, the algorithm converges
toward the same value. In addition, we observe that both k-means and general
k-means are able to initialize well the algorithm by avoiding bad local minima at
initialization while the two other initialization are close to spurious local minima
at initialization.

in (6.9) and (6.10) are sufficiently far away from bad local minima and allow the
algorithm to converge directly toward the desired solution. The right figure of Fig.4
shows two main observations: (i) that the initial point obtained using a “rank 2”
or random initialization can be close to spurious and non-attractive local minima,
which may trigger the stopping criterion too early and prevent the algorithm from
continuing to run in order to converge towards an attractive and well behaved
local minimum. (ii) When initialiazing the algorithm using kmeans methods, we
show that our stopping criterion is a decreasing function of time meaning that the
algorithm converges directly towards the desired solution.
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Conclusion. We assembled in this work theoretical and practical arguments
to support low-rank factorizations for OT. We have presented two controls: one
concerning the approximation error to the true optimal transport and another
concerning the statistical rates of the plug-in estimator. The latter is showed to be
independent of the dimension, which is of particular interest when studying OT in
ML settings. We have motivated further the use of LOT as a loss by introducing its
debiased version and showed that it possesses desirable properties: positivity and
metrization of the convergence in law. We have also presented the links between the
bias induced by such regularization and clustering methods, and studied empirically
the effects of hyperparameters involved in the practical estimation of LOT. The
strong theoretical foundations provided in this paper motivate further studies of
the empirical behaviour of LOT estimator, notably on finding suitable local minima
and on improvements on the convergence of the MD scheme using other adaptive
choices for step sizes.
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Supplementary materials

6.8 On the Definition of LOTc,r

Let (X , dX ) and (Y , dY) two nonempty compact Polish spaces, µ ∈ M+
1 (X ), ν ∈

M+
1 (Y) two probability measures on these spaces and c : X×Y → R+ a nonnegative

and continuous function. We define the generalized low-rank optimal transport
between µ and ν as

LOTc,r(µ, ν) := inf
π∈Πr(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) .

where Πr(µ, ν) is defined as

{π ∈ Π(µ, ν) : ∃(µi)ri=1 ∈M+
1 (X )r, (νi)ri=1 ∈M+

1 (Y)r, λ ∈ ∆∗
r s.t. π =

r∑
i=1

λiµi⊗νi} .

As X and Y are compact, Πr(µ, ν) is tight, then Prokhorov’s theorem applies and
the closure of Πr(µ, ν) is sequentially compact. Let us now show that Πr(µ, ν) is
closed. Indeed, Let (πn)n≥0 a sequence of Πr(µ, ν) converging towards π∗. Then
by definition there exists for all k ∈ [|1, r|], (µ(k)

n )n≥0, (ν
(k)
n )n≥0 and (λ

(k)
n )n≥0 such

that for all n ≥ 0

πn =
r∑
i=1

λ(k)n µ(k)
n ⊗ ν(k)n .

However, (µ(k)
n )n≥0 and (ν

(k)
n )n≥0 are also tight, and Prokhorov’s theorem applies,

therefore we can extract a common subsequence such that for all k,

µ(k)
n → µ(k)

∗ and ν(k)n → ν(k)∗

In addition as (λn)n≥0 live in the simplex ∆r, we can also extract a sub-sequence,
such that λn → λ∗ ∈ ∆r. Finally by unicity of the limit we obtain that

π∗ =
r∑

k=1

λ(k)∗ µ(k)
∗ ⊗ ν(k)∗ .

Finally, by denoting I := {k : λ
(k)
∗ > 0}, and by considering i∗ ∈ I, we obtain that

π∗ =
r∑

i∈I\{i∗}

λ(i)∗ µ
(i)
∗ ⊗ ν(i)∗ +

r−|I|+1∑
j=1

λ
(i∗)
∗

r − |I|+ 1
µ(i∗)
∗ ⊗ ν(i∗)∗ .

from which follows that π∗ ∈ Πr(µ, ν).
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6.9 Proofs

6.9.1 Proof of Proposition 6.3.1

Proposition. Let n,m ≥ 2, X := {x1, . . . , xn} ⊂ X , Y := {y1, . . . , ym} ⊂ Y and
a ∈ ∆∗

n and b ∈ ∆∗
m. Then for 2 ≤ r ≤ min(n,m), we have that

|LOTc,r(µa,X , νb,Y )−OTc(µa,X , νb,Y )| ≤ ∥C∥∞ ln(min(n,m)/(r − 1))

Proof. Let P ∈ argminP∈Πa,b
⟨C,P ⟩. As P is a nonnegative matrix, its nonnegative

rank cannot exceed min(n,m). Assume for simplicity, that n = m, then there
exists (Ri)

n
i=1 nonnegative matrices of rank 1 such that

P =
n∑
i=1

Ri .

As for all i ∈ [|1, n|], Ri is a rank 1 matrix, there exist q̃i, r̃i ∈ Rn
+ such that

Ri = q̃ir̃
T
i . Then by denoting qi = q̃i/|q̃i|, ri = r̃i/|r̃i| and λi = |q̃i||r̃i| where for

any h ∈ Rn |h| :=
∑n

i=1 hi, we obtain that

P =
n∑
i=1

λiqir
T
i .

Without loss of generality, we can consider the case where λ1 ≥ · · · ≥ λn. Let us
now denote λ := (λ1, . . . , λn), and by using the fact the P is a coupling we obtain
that λ ∈ ∆n. Also, by definition of λ, we have that for all k ∈ [|1, n|], λk ≤ 1/k.
Let us now define

P̃ :=
r−1∑
i=1

λiqir
T
i +

(
n∑
i=r

λi

)
αrβ

T
r

where

αr :=

∑n
i=r λiqi∑n
i=r λi

βr :=

∑n
i=r λiri∑n
i=r λi
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Remark that P̃ ∈ Πa,b(r), therefore we obtain that

|LOTc,r(µa,X , νb,Y )−OTc(µa,X , νb,Y )| = LOTc,r(µa,X , νb,Y )−OTx(µa,X , νb,Y )

≤ ⟨C, P̃ ⟩ − ⟨C,P ⟩

≤ ⟨C,

(
n∑
i=r

λi

)
αrβ

T
r ⟩ − ⟨C,

n∑
i=r

λiqir
T
i ⟩

≤ ⟨C,

(
n∑
i=r

λi

)
αrβ

T
r ⟩

≤ ∥C∥∞
n∑
i=r

λi ≤ ∥C∥∞
n∑
i=r

1

i
≤ ∥C∥∞ ln(n/(r − 1))

6.9.2 Proof of Proposition 6.3.2

Proposition 6.9.1. Let µ ∈ M+
1 (X ), ν ∈ M+

1 (Y) and let us assume that c is
L-Lipschitz w.r.t. x and y . Then for any r ≥ 1, we have

|LOTc,r(µ, ν)−OTc(µ, ν)| ≤ 2Lmax(N⌊log2(⌊
√
r⌋)⌋(X , dX ),N⌊log2(⌊

√
r⌋)⌋(Y , dY))

Proof. As X and Y are compact, N⌊log2(⌊
√
r⌋)⌋(X , d),N⌊log2(⌊

√
r⌋)⌋(Y , d) < +∞ and

then by denoting εX := N⌊log2(⌊
√
r⌋)⌋(X , dX ), there exists x1, . . . , x⌊√r⌋ ∈ X , such

that X ⊂
⋃r
i=1 BX (xi, ε) from which we can extract a partition (Si,X )

⌊
√
r⌋

i=1 of X such
that for all i ∈ [|1, ⌊

√
r⌋|], and x, y ∈ Si,X , dX (x, y) ≤ εX . Similarly we can build a

partition (Si,Y)
⌊
√
r⌋

i=1 of Y . Let us now define for all k ∈ [|1, ⌊
√
r⌋|],

µk :=
µ|Sk,X

µ(Sk,X )
and νk :=

ν|Sk,Y

ν(Sk,Y)

with the convention that 0
0
= 0, we can define

πr :=

⌊
√
r⌋∑

i,j=1

π∗(Si,X × Sj,Y)νj ⊗ µi .
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First remarks that πr ∈ Πr(µ, ν). Indeed we have for any measurable set B

πr(X ×B) =

⌊
√
r⌋2∑

j=1

νj(B)
r∑
i=1

π∗(Si,X × Sj,Y)

=

⌊
√
r⌋∑

j=1

νj(B)ν(Sj,Y)

=

⌊
√
r⌋∑

j=1

ν|Sj,X (B)

= ν(B) ,

similarly πr(A×Y) = µ(A) and we have that ⌊
√
r⌋2 ≤ r. Therefore we obtain that

|LOTc,r(µ, ν)−OTc(µ, ν)| = LOTc,r(µ, ν)−OTc(µ, ν)

≤
∫
X×Y

c(x, y)dπr(x, y)−
∫
X×Y

c(x, y)dπ∗(x, y)

≤
⌊
√
r⌋∑

i,j=1

∫
Si,X×Sj,Y

c(x, y)d[πr(x, y)− π∗(x, y)]

≤
⌊
√
r⌋∑

i,j=1

π∗(Si,X × Sj,Y)

× [ sup
(x,y)∈Si,X×Sj,Y

c(x, y)− inf
(x,y)∈Si,X×Sj,Y

c(x, y)]

≤ L[εX + εY ]

from which the result follows.

Corollary. Under the same assumptions of Proposition 6.3.2 and by assuming in
addition that there exists a Monge map solving OTc(µ, ν), we obtain that for any
r ≥ 1,

|LOTc,r(µ, ν)−OTc(µ, ν)| ≤ LN⌊log2(r)⌋(Y , dY)

Proof. Let us denote T a Monge map solution of OTc(µ, ν) and as in the proof
above, let us consider a partition of (Si,Y)ri=1 of Y such that for all i ∈ [|1, r|], and
x, y ∈ Si,Y , dY(x, y) ≤ εY with εY := N⌊log2(r)⌋(Y , dY). Let us now define for all
k ∈ [|1, ⌊

√
r⌋|],

µk :=
µ|T−1(Sk,Y )

µ(T−1(Sk,Y))
and νk :=

ν|Sk,Y

ν(Sk,Y)
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with the convention that 0
0
= 0, we can define

πr :=
r∑

k=1

π∗(T−1(Sk,Y)× Sk,Y)νk ⊗ µk .

Again we have that πr ∈ Πr(µ, ν), and we obtain that

|LOTc,r(µ, ν)−OTc(µ, ν)| = LOTc,r(µ, ν)−OTc(µ, ν)

≤
∫
X×Y

c(x, y)dπr(x, y)−
∫
X×Y

c(x, y)dπ∗(x, y)

≤
r∑

k=1

π∗(T−1(Sk,Y)× Sk,Y)
∫
T−1(Sk,Y )×Sk,Y

c(x, y)dµk(y)⊗ νk(y)

−
r∑

k=1

∫
T−1(Sk,Y )

c(x, T (x))dµ(x)

≤
r∑

k=1

π∗(T−1(Sk,Y)× Sk,Y)
∫
T−1(Sk,Y )×Sk,Y

c(x, y)dµk(y)⊗ νk(y)

−
r∑

k=1

π∗(T−1(Sk,Y)× Sk,Y)
∫
T−1(Sk,Y )×Sk,Y

c(x, T (x))dµk(x)⊗ νk(y)

≤
r∑

k=1

π∗(T−1(Sk,Y)× Sk,Y)
∫
T−1(Sk,Y )×Sk,Y

[c(x, y)− c(x, T (x))]dµk ⊗ νk

≤ LεY

from which the result follows. Note that to obtain the above inequalities, we use
the fact that π∗ is supported on the graph of T , and therefore we have have for all
k ∈ [|1, r|],

π∗(T−1(Sk,Y)× Sk,Y) = µ(T−1(Sk,Y)) = ν(Sk,Y).

6.9.3 Proof of Proposition 6.4.1

Proposition. Let r ≥ 1 and µ, ν ∈M+
1 (X ), then

LOTc,r(µ̂n, ν̂n) −−−−→
n→+∞

LOTc,r(µ, ν) a.s.

Proof. Let π∗ solution of LOTc,r(µ, ν). Then there exists λ∗ ∈ ∆∗
r, (µ∗

i )
r
i=1, (ν

∗
i )
r
i=1 ∈

M+
1 (X )r such that

π∗ =
r∑
i=1

λ∗iµ
∗
i ⊗ ν∗i .
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Note that by definition, we have that

µ =
r∑
i=1

λ∗iµ
∗
i and ν =

r∑
i=1

λ∗i ν
∗
i .

Let us now define πµ and πµ both elements ofM+
1 (X × [|1, r|]) as follows:

πµ(A× {k}) := λkµk(A) and πν(A× {k}) := λkνk(A)

for any measurable set A and k ∈ [|1, r|]. Observe that the right marginals of πµ
and πν is the same and we will denote it ρ. We can now define for all x, y ∈ X the
family of kernels (kµ(·, x))x∈X ∈ M+

1 ([|1, r|])X and (kν(·, y))y∈X ∈ M+
1 ([|1, r|])X

corresponding to the disintegration with respect to the projection of respectively
µ and ν. Let us now consider n independent samples (Zµ

i )
n
i=1 and (Zν

i )
n
i=1 such

that for all i ∈ [|1, n|], Zµ
i ∼ kµ(·, Xi) and Zν

i ∼ kν(·, Yi) and let us define for all
k ∈ [|1, r|]

µ̃k :=
1

n

n∑
i=1

1Zµ
i =k

δXi
and ν̃k :=

1

n

n∑
i=1

1Zν
i =k

δYi .

Let us now define

π̃ :=
r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k||ν̃k|

µ̃k ⊗ ν̃k

+
1

1−
∑r−1

k=1 min(|µ̃k|, |ν̃k|)

[
µ̂−

r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k|

µ̃k

]
⊗

[
ν̂ −

r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|ν̃k|

ν̃k

]

with the convention that 0
0
= 0. Now it is easy to check that π̃ ∈ Πr(µ̂, ν̂), indeed

we have that

π̃(A×X ) =
r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k|

µ̃k(A)

+
1

1−
∑r−1

k=1min(|µ̃k|, |ν̃k|)

[
µ̂(A)−

r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k|

µ̃k(A)

]

×

[
1−

r−1∑
k=1

min(|µ̃k|, |ν̃k|)

]
= µ̂(A)
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in addition by construction we have that∣∣∣∣∣µ̂−
r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k|

µ̃k

∣∣∣∣∣ =
∣∣∣∣∣ν̂ −

r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|ν̃k|

ν̃k

∣∣∣∣∣ = 1−
r−1∑
k=1

min(|µ̃k|, |ν̃k|)

and both µ̂−
∑r−1

k=1
min(|µ̃k|,|ν̃k|)

|µ̃k|
µ̃k and ν̂ −

∑r−1
k=1

min(|µ̃k|,|ν̃k|)
|ν̃k|

ν̃k are positive measures.
Therefore we obtain that

LOTc,r(µ̂, ν̂) ≤
∫
X 2

c(x, y)dπ̃(x, y)

Now we aim at showing at
∫
X 2 c(x, y)dπ̃(x, y) → LOTc,r(µ, ν) a.s.. Indeed first

observe that from the law of large numbers we have that for all k ∈ [|1, r|], |µ̃k| → λ∗k
and similarly |ν̃k| → λ∗k. In addition, for all k, q we have that almost surely, µ̃k⊗ ν̃q
converges weakly towards λ∗kλ∗qµk⊗νq. Indeed one can consider the following algebra
F := {(x, y) ∈ X 2 → f(x)g(y) f, g ∈ C(X )}, and then by Stone-Weierstrass, one
obtains by density the desired result. Now remark that∫

X 2

c(x, y)dπ̃(x, y) =
r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k||ν̃k|

∫
X 2

c(x, y)dµ̃k ⊗ ν̃k

+
1

λ̃r

∫
Z2

c(x, y)dµ̃r ⊗ ν̃r

+
1

λ̃r

r−1∑
k=1

(
1− min(|µ̃k|, |ν̃k|)

|ν̃k|

)∫
X 2

c(x, y)dµ̃r ⊗ ν̃k

+
1

λ̃r

r−1∑
k=1

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)∫
X 2

c(x, y)dµ̃k ⊗ ν̃r

+
1

λ̃r

r−1∑
k,q=1

∫
X 2

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)
×
(
1− min(|µ̃q|, |ν̃q|)

|ν̃q|

)
c(x, y)dµ̃k(x)dν̃q(y)

from which follows directly that
∫
X 2 c(x, y)dπ̃(x, y) → LOTc,r(µ, ν) a.s. Let us

now denote for all n ≥ 1, πn a solution of LOTc,r(µ̂, ν̂). Let ω ∈ Ω an element of
the probability space where live the random variables (Xi)i≥0 and (Yi)i≥0 such that∫
X 2 c(x, y)dπ̃

(ω)(x, y) → LOTc,r(µ, ν). As X is compact Thanks to Prokhorov’s
Theorem, we can extract a sequence such that (π

(ω)
n )n≥0 converge weakly towards

π(ω) ∈ Πr(µ, ν). In addition we have that for all n ≥ 1∫
X 2

c(x, y)dπ(ω)
n (x, y) ≤

∫
X 2

c(x, y)dπ̃(ω)(x, y)
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And by considering the limit we obtain that∫
c(x, y)dπ(ω)(x, y) ≤ LOTc,r(µ, ν)

However π(ω) ∈ Πr(µ, ν) and by optimality we obtain that∫
c(x, y)dπ(ω)(x, y) = LOTc,r(µ, ν)

This holds for an arbitrary subsequence of (π
(ω)
n )n≥0, from which follows that∫

c(x, y)dπ
(ω)
n (x, y)→ LOTc,r(µ, ν). Finally this holds almost surely and the result

follows.

6.9.4 Proof of Proposition 6.4.2

Proposition. Let r ≥ 1 and µ, ν ∈ M+
1 (X ). Then, there exists a constant Kr

such that for any δ > 0 and n ≥ 1, we have, with a probability of at least 1− 2δ,
that

LOTc,r(µ̂n, ν̂n)− LOTc,r(µ, ν) ≤ 11∥c∥∞
√
r

n
+Kr∥c∥∞

[√
log(40/δ)

n
+

√
r log(40/δ)

n

]

Proof. We reintroduce the same notation as in the proof of Proposition 6.4.1. Let
π∗ solution of LOTc,r(µ, ν). Then there exists λ∗ ∈ ∆∗

r, (µ∗
i )
r
i=1, (ν

∗
i )
r
i=1 ∈M+

1 (Z)r
such that

π∗ =
r∑
i=1

λ∗iµ
∗
i ⊗ ν∗i .

As before let us also consider πµ and πµ defined as πµ(A×{k}) := λkµk(A) and πν(A×
{k}) := λkνk(A) for any measurable set A and k ∈ [|1, r|] and denote ρ their com-
mon right marginal. We also consider n independent samples (Zµ

i )
n
i=1 and (Zν

i )
n
i=1

such that for all i ∈ [|1, n|], Zµ
i ∼ kµ(·, Xi) and Zν

i ∼ kν(·, Yi) and we denote for all
k ∈ [|1, r|]

µ̃k :=
1

n

n∑
i=1

1Zµ
i =k

δXi
and ν̃k :=

1

n

n∑
i=1

1Zν
i =k

δYi

Let us now define

π̂ :=
r∑
i=1

1

λ∗k
µ̃k ⊗ ν̃k .
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Our goal is to control the following quantity:∣∣∣∣LOTc,r(µ, ν)−
∫
Z2

c(x, y)dπ̂(x, y)

∣∣∣∣ ,
First observe that

E
[∫

Z2

c(x, y)dπ̂(x, y)

]
=

r∑
i=1

1

λ∗k
E
[∫

Z2

c(x, y)dµ̃k(x)dν̃k(y)

]
=

r∑
i=1

1

λ∗kn
2
×
∑
i,j

E
[
c(Xi, Yj)1Zµ

i =k
1Zν

j =k

]
Moreover, we have that

E
[
c(Xi, Yj)1Zµ

i =k
1Zν

j =k

]
=

∫
(Z×[|1,r|])2

c(x, y)1z=k1z′=kdπµ(x, z)dπν(y, z
′)

=

∫
(Z×[|1,r|])2

c(x, y)1z=k1z′=kdµz(x)dνz′(y)dρ(z)dρ(z
′)

= λ2k

∫
Z2

c(x, y)dµk(x)dνk(y)

from which follows that

E
[∫

Z2

c(x, y)dπ̂(x, y)

]
=

r∑
i=1

λ∗k

∫
Z2

c(x, y)dµk(x)dνk(y) = LOTc,r(µ, ν)

Now let us define for all (xi, zi)ni=1, (yi, z
′
i) ∈ (Z × [|1, r|])n,

g((x1, z1), . . . , (xn, zn), (y1, z
′
1), . . . , (yn, z

′
n)) :=

r∑
q=1

1

λ∗qn
2

∑
i,j

c(xi, yj)1zi=q1z′j=q ,

since Z is compact and c is continuous, we have that

|g(. . . , (xk, zk), . . . )− g(. . . , (x̃k, z̃k), . . . )| =∣∣∣∣∣
r∑
q=1

1

λ∗qn
2

∑
j

[c(xk, yj)1zk=q − c(x̃k, yj)1z̃k=q]1z′j=q

∣∣∣∣∣
=

∣∣∣∣∣ 1

λ∗zkn
2

n∑
j=1

c(xk, yj)1z′j=zk −
1

λ∗z̃kn
2

n∑
j=1

c(x̃k, yj)1z′j=z̃k

∣∣∣∣∣
≤ ∥c∥∞

n2

[∑n
j=1 1z′j=zk

λ∗zk
+

∑n
j=1 1z′j=z̃k

λ∗z̃k

]

≤ 2∥c∥∞
min
1≤q≤r

λ∗q

1

n
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Then by applying the McDiarmid’s inequality we obtain that for δ > 0, with a
probability at least of 1− δ, we have

∣∣∣∣LOTc,r(µ, ν)−
∫
Z2

c(x, y)dπ̂(x, y)

∣∣∣∣ ≤ 2∥c∥∞
min
1≤q≤r

λ∗q

√
log(2/δ)

n

Now we aim at building a coupling π̃ ∈ Πr(µ̂, ν̂) from π̂. Let us consider the same
as the one introduce in the proof of Proposition 6.9.3, that is

π̃ :=
r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k||ν̃k|

µ̃k ⊗ ν̃k

+
1

1−
∑r−1

k=1 min(|µ̃k|, |ν̃k|)

[
µ̂−

r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k|

µ̃k

]
⊗

[
ν̂ −

r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|ν̃k|

ν̃k

]

with the convention that 0
0
= 0. Let us now expand the above expression, and by

denoting λ̃r = 1−
∑r−1

k=1 min(|µ̃k|, |ν̃k|) we obtain that

π̃ =
r−1∑
k=1

min(|µ̃k|, |ν̃k|)
|µ̃k||ν̃k|

µ̃k ⊗ ν̃k

+
1

λ̃r
µ̃r ⊗ ν̃r

+
1

λ̃r
µ̃r ⊗

[
r−1∑
k=1

(
1− min(|µ̃k|, |ν̃k|)

|ν̃k|

)
ν̃k

]

+
1

λ̃r

[
r−1∑
k=1

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)
µ̃k

]
⊗ ν̃r

+
1

λ̃r

[
r−1∑
k=1

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)
µ̃k

]
⊗

[
r−1∑
k=1

(
1− min(|µ̃k|, |ν̃k|)

|ν̃k|

)
ν̃k

]

Now we aim at controlling the following quantity
∣∣∫

Z2 c(x, y)dπ̂(x, y)−
∫
Z2 c(x, y)dπ̃(x, y)

∣∣
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and we observe that

∫
Z2

c(x, y)d[π̂(x, y)− π̃(x, y)] (6.11)

=
r−1∑
k=1

∫
Z2

c(x, y)

[
1

λ∗k
− min(|µ̃k|, |ν̃k|)

|µ̃k||ν̃k|

]
dµ̃k(x)ν̃k(y) (6.12)

+

∫
Z2

c(x, y)

[
1

λ∗r
− 1

λ̃r

]
dµ̃r(x)ν̃r(y) (6.13)

+
1

λ̃r

r−1∑
k=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|ν̃k|

)
c(x, y)dµ̃r(x)dν̃k(y) (6.14)

+
1

λ̃r

r−1∑
k=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)
c(x, y)dµ̃k(x)dν̃r(y) (6.15)

+
1

λ̃r

r−1∑
k,q=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)(
1− min(|µ̃q|, |ν̃q|)

|ν̃q|

)
c(x, y)dµ̃kdν̃q (6.16)

Let us now control each term of the RHS of the above equality. Let us first consider
the term in Eq. 6.12, remark that we have

∣∣∣∣∫
Z2

c(x, y)

[
1

λ∗k
− min(|µ̃k|, |ν̃k|)

|µ̃k||ν̃k|

]
dµ̃k(x)ν̃k(y)

∣∣∣∣
≤
∣∣∣∣[ 1

λ∗k
− min(|µ̃k|, |ν̃k|)

|µ̃k||ν̃k|

]∣∣∣∣ ∥c∥∞|µ̃k||ν̃k|
≤
∣∣∣∣[ |µ̃k||ν̃k|λ∗k

−min(|µ̃k|, |ν̃k|)
]∣∣∣∣ ∥c∥∞

≤ min(|µ̃k|, |ν̃k|)
∣∣∣∣max(|µ̃k|, |ν̃k|)

λ∗k
− 1

∣∣∣∣ ∥c∥∞
≤ min(|µ̃k|, |ν̃k|)

λ∗k
|max(|µ̃k|, |ν̃k|)− λ∗k|∥c∥∞

≤ min(|µ̃k|, |ν̃k|)
λ∗k

max(∥λ̃µ − λ∗∥∞, ∥λ̃ν − λ∗∥∞)∥c∥∞

≤ ∥c∥∞ max

(∥∥∥ λ̃µ
λ∗

∥∥∥
∞
,
∥∥∥ λ̃ν
λ∗

∥∥∥
∞

)
max(∥λ̃µ − λ∗∥∞, ∥λ̃ν − λ∗∥∞)
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where we have denoted λ̃µ := (|µ̃k|)rk=1 and λ̃ν := (|ν̃k|)rk=1. Now observe that

P
(
max(∥λ̃µ − λ∗∥∞, ∥λ̃ν − λ∗∥∞) ≥ t

)
≤ 2P

(
∥λ̃µ − λ∗∥∞ ≥ t

)
≤ P

(
dK(λ

∗, λ̃µ) ≥
t

2

)
≤ 4 exp(−nt2/2)

where dK is the Kolmogorov distance. In addition we have

max

(∥∥∥ λ̃µ
λ∗

∥∥∥
∞
,
∥∥∥ λ̃ν
λ∗

∥∥∥
∞

)
≤ 1 +

1

min
1≤i≤r

λ∗i
max

(
∥λ̃µ − λ∗∥∞, ∥λ̃ν − λ∗∥∞

)
Combining the two above controls, we obtain that for all δ > 0, with a probability

of at least 1− δ,∣∣∣∣∫
Z2

c(x, y)

[
1

λ∗k
− min(|µ̃k|, |ν̃k|)

|µ̃k||ν̃k|

]
dµ̃k(x)ν̃k(y)

∣∣∣∣ ≤ ∥c∥∞
√

2 ln 8/δ

n
+
∥c∥∞
n

2 ln 8/δ

min
1≤i≤r

λ∗i

Let us now consider the term in Eq. 6.13, we have that∣∣∣∣∫
Z2

c(x, y)

[
1

λ∗r
− 1

λ̃r

]
dµ̃r(x)ν̃r(y)

∣∣∣∣ ≤ |µ̃r||ν̃r|λ∗rλ̃r

∣∣∣∣∣1−
r∑
i=1

min(|µ̃k|, |ν̃k|)− λr

∣∣∣∣∣ ∥c∥∞
≤ max

(∥∥∥ λ̃µ
λ∗

∥∥∥
∞
,
∥∥∥ λ̃ν
λ∗

∥∥∥
∞

)
r−1∑
k=1

|λ∗k −min(|µ̃k|, |ν̃k|)| ∥c∥∞

≤ max

(∥∥∥ λ̃µ
λ∗

∥∥∥
∞
,
∥∥∥ λ̃ν
λ∗

∥∥∥
∞

)
∥c∥∞(∥λ∗ − λ̃µ∥1 + ∥λ∗ − λ̃ν∥1)

≤ 2∥c∥∞ max

(∥∥∥ λ̃µ
λ∗

∥∥∥
∞
,
∥∥∥ λ̃ν
λ∗

∥∥∥
∞

)
max(∥λ∗ − λ̃µ∥1, ∥λ∗ − λ̃ν∥1)

However we have that

P
(
max(∥λ∗ − λ̃µ∥1, ∥λ∗ − λ̃ν∥1) ≥ t

)
≤ 2P

(
∥λ∗ − λ̃µ∥1 ≥ t

)
In addition we have that E(∥λ∗ − λ̃µ∥1) ≤

√
r
n

and by applying the McDiarmid’s
Inequality, we obtain that for all δ > 0, with a probability of 1− δ

∥λ∗ − λ̃µ∥1 ≤
√
r

n
+

√
2 ln(2/δ)

n
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Therefore we obtain that with a probability of at least 1− δ,∣∣∣∣∫
Z2

c(x, y)

[
1

λ∗r
− 1

λ̃r

]
dµ̃r(x)ν̃r(y)

∣∣∣∣ ≤
2∥c∥∞

√ r

n
+

√
2 ln(8/δ)

n
+

2 ln(8/δ) +
√
2r ln(8/δ)

n× min
1≤i≤r

λ∗i


For the term in Eq. 6.14 and 6.15, we obtain that∣∣∣∣∣ 1λ̃r

r−1∑
k=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|ν̃k|

)
c(x, y)dµ̃r(x)dν̃k(y)

∣∣∣∣∣
≤ |µ̃r|

λ̃r

r−1∑
k=1

(|ν̃k| −min(|µ̃k|, |ν̃k|)) ∥c∥∞

≤ |µ̃r|
λ̃r

[λ̃r − |ν̃r|]∥c∥∞

≤ [|λ̃r − λ∗r|+ |λ∗r − ν̃r|]∥c∥∞
≤ 3∥c∥∞ max(∥λ∗ − λ̃µ∥1, ∥λ∗ − λ̃ν∥1)

Therefore we obtain that with a probability of at least 1− δ,∣∣∣∣∣ 1λ̃r
r−1∑
k=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|ν̃k|

)
c(x, y)dµ̃r(x)dν̃k(y)

∣∣∣∣∣
≤ 3∥c∥∞

[√
r

n
+

√
2 ln(2/δ)

n

]

Finally the last term in Eq. 6.16 can be controlled as the following:∣∣∣∣∣ 1λ̃r
r−1∑
k,q=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)(
1− min(|µ̃q|, |ν̃q|)

|ν̃q|

)
c(x, y)dµ̃k(x)dν̃q(y)

∣∣∣∣∣
≤ ∥c∥∞

λ̃r

r−1∑
k,q=1

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)(
1− min(|µ̃q|, |ν̃q|)

|ν̃q|

)
|µ̃k||ν̃q|

≤ ∥c∥∞
λ̃r

r−1∑
k=1

(|µ̃k| −min(|µ̃k|, |ν̃k|))
r−1∑
k=1

(|ν̃k| −min(|µ̃k|, |ν̃k|))

≤ 3∥c∥∞ max(∥λ∗ − λ̃µ∥1, ∥λ∗ − λ̃ν∥1)
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and we obtain that with a probability of at least 1− δ,∣∣∣∣∣ 1λ̃r
r−1∑
k,q=1

∫
Z2

(
1− min(|µ̃k|, |ν̃k|)

|µ̃k|

)(
1− min(|µ̃q|, |ν̃q|)

|ν̃q|

)
c(x, y)dµ̃k(x)dν̃q(y)

∣∣∣∣∣
≤ 3∥c∥∞

[√
r

n
+

√
2 ln(2/δ)

n

]

Then by applying a union bound we obtain that with a probability of at least 1− δ∣∣∣∣∫
Z2

c(x, y)d[π̂(x, y)− π̃(x, y)]
∣∣∣∣ ≤

∥c∥∞

11√ r

n
+ 12

√
2 ln 40/δ

n
+

6 ln(40/δ) + 2
√

2r ln(40/δ)

n× min
1≤i≤r

λ∗i


Now observe that

LOTc,r(µ̂, ν̂)− LOTc,r(µ, ν) ≤
∫
Z2

c(x, y)dπ̃(x, y)−
∫
Z2

c(x, y)dπ∗(x, y)

≤
∫
Z2

c(x, y)d[π̃ − π̂](x, y) +
∫
Z2

c(x, y)d[π̂ − π∗](x, y)

and by combining the two control we obtain that with a probability of at least
1− 2δ,

LOTc,r(µ̂, ν̂)− LOTc,r(µ, ν)

≤ ∥c∥∞

[
11

√
r

n
+ 12

√
2 ln 40/δ

n
+

1

α

(
2

√
log(2/δ)

n
+

6 ln(40/δ) + 2
√

2r ln(40/δ)

n

)]

≤ 11∥c∥∞
√
r

n
+

14∥c∥∞
α

√
log(40/δ)

n
+

2∥c∥∞ max(6,
√
2r) log(40/δ)

nα

where α := min
1≤i≤r

λ∗i and the result follows.

6.9.5 Proof Proposition 6.4.3

Proposition. Let r ≥ 1, δ > 0 and µ, ν ∈M+
1 (X ). Then there exists a constant

Nr,δ such that if n ≥ Nr,δ then with a probability of at least 1− 2δ, we have

LOTc,r(µ̂n, ν̂n)− LOTc,r(µ, ν) ≤ 11∥c∥∞
√
r

n
+ 77∥c∥∞

√
log(40/δ)

n
.
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Proof. We consider the same notations as in the proof of Proposition 6.4.2. In
particular let us define for all (xi, zi)ni=1, (yi, z

′
i) ∈ (Z × [|1, r|])n,

g((x1, z1), . . . , (xn, zn), (y1, z
′
1), . . . , (yn, z

′
n)) :=

r∑
q=1

1

λ∗qn
2

∑
i,j

c(xi, yj)1zi=q1z′j=q ,

Recall that we have

|g(. . . , (xk, zk), . . . )− g(. . . , (x̃k, z̃k), . . . )| ≤
∥c∥∞
n2

[∑n
j=1 1z′j=zk

λ∗zk
+

∑n
j=1 1z′j=z̃k

λ∗z̃k

]

≤ 2∥c∥∞
n

max

(∥∥∥ λ̃µ
λ∗

∥∥∥
∞
,
∥∥∥ λ̃ν
λ∗

∥∥∥
∞

)

≤ 2∥c∥∞
n

+
2∥c∥∞

n× min
1≤i≤r

λ∗i
max

(
∥λ̃µ − λ∗∥∞, ∥λ̃ν − λ∗∥∞

)
In fact if we have a control in probability of the bounded difference we can use an
extension of the McDiarmid’s Inequality. For that purpose let us first introduce
the following definition.

Definition 6.9.1. Let (Xi)
m
i=1, m independent random variables and g a measurable

function. We say that g is weakly difference-bounded with respect to (Xi)
m
i=1 by

(b, β, δ) if

P (|g(X1, . . . , Xm)− g(X ′
1, . . . , X

′
m)| ≤ β) ≥ 1− δ

with X ′
i = Xi except for one coordinate k where X ′

k is an independent copy of Xk.
Furthermore for any (xi)

m
i=1 and (x′i)

m
i=1 where for all coordinate except on xj = x′j

|g(x1, . . . , xm)− g(x′1, . . . , x′m)| ≤ b .

Let us now introduce an extension of McDiarmid’s Inequality [208].

Theorem 6.9.1. Let (Xi)
m
i=1, m independent random variables and g a mea-

surable function which is weakly difference-bounded with respect to (Xi)
m
i=1 by

(b, β/m, exp(−Km)), then if 0 < τ ≤ T (b, β,K) and m ≥M(b, β,K, τ), then

P(|g(X1, . . . , Xm)− E(g(X1, . . . , Xm))| ≥ τ) ≤ 4 exp

(
−τ 2m
8β2

)
where

T (b, β,K) := min

(
14c

2
, 4β
√
K,

β2K

b

)
M(b, β,K, τ) := max

(
b

β
, β
√
40, 3

(
24

K
+ 3

)
log

(
24

K
+ 3

)
,
1

τ

)
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Given the above Theroem we can obtain an asymptotic control of the deviation
of g from its mean. Let δ′ > 0 and let us denote

m := 2n

b :=
2∥c∥∞

n× min
1≤i≤r

λ∗i

K :=
log(1/δ′)

2n

β := 4∥c∥∞

1 + 1

min
1≤i≤r

λ∗i

√
2 log(4/δ′)

n



Observe now that with a probability of at least 1− exp(−Km)

|g(. . . , (xk, zk), . . . )− g(. . . , (x̃k, z̃k), . . . )| ≤
2∥c∥∞
n

1 + 1

min
1≤i≤r

λ∗i

√
2 log(4/δ′)

n


Let us now fix δ > 0 and let us choose δ′ such that δ′ := 4/n and τ := β

√
4 log(4/δ)

n
,

then we obtain that for n sufficiently large (such that n ≥ M(b, β,K, τ)/2 and
τ ≤ T (b, β,K)), we have that with a probability of at least 1− δ∣∣∣∣LOTc,r(µ, ν)−

∫
Z2

c(x, y)dπ̂(x, y)

∣∣∣∣ ≤ 4∥c∥∞

1 + 1

min
1≤i≤r

λ∗i

√
2 log(n)

n

√4 log(4/δ)

n

≤ 4∥c∥∞

√
4 log(4/δ)

n
+

16
√
5∥c∥∞

√
log(n) log(4/δ)

n× min
1≤i≤r

λ∗i

Recall also from the proof of Proposition 6.4.2, that we have with a probability of
at least 1− δ∣∣∣∣∫

Z2

c(x, y)d[π̂(x, y)− π̃(x, y)]
∣∣∣∣

≤ ∥c∥∞

11√ r

n
+ 12

√
2 ln 40/δ

n
+

6 ln(40/δ) + 2
√

2r ln(40/δ)

n× min
1≤i≤r

λ∗i


Finally by imposing in addition that√

n

log(n)
≥ 1

min
1≤i≤r

λ∗i
,
√
n ≥

√
log(40/δ)

min
1≤i≤r

λ∗i
and

√
n ≥

√
r

min
1≤i≤r
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we obtain that for n is large enough (such that (such that n ≥M(b, β,K, τ)/2 and
τ ≤ T (b, β,K)) and satysfing the above inequalities, we have with a probability of
at least 1− 2δ that

LOTc,r(µ̂, ν̂)− LOTc,r(µ, ν) ≤ 11∥c∥∞
√
r

n
+ 77∥c∥∞

√
log(40/δ)

n

6.9.6 Proof Proposition 6.5.1

Proposition. Let µ, ν ∈ M+
1 (X ). Let us assume that c is symmetric, then we

have
DLOT1,c(µ, ν) =

1

2

∫
X 2

−c(x, y)d[µ− ν]⊗ d[µ− ν](x, y) .

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have

DLOTc,r(µ, ν) −−−−→
r→+∞

OTc(µ, ν) .

Proof. When r = 1, it is clear that for any µ, ν ∈M+
1 (X ), Πr(µ, ν) = {µ⊗ ν} and

thanks to the symmetry of c, we have directly that

DLOT1,c(µ, ν) =
1

2

∫
X 2

−c(x, y)d[µ− ν]⊗ d[µ− ν](x, y) = 1

2
MMD−c(µ, ν) .

The limit is a direct consequence of Proposition 6.3.2.

6.9.7 Proof of Proposition 6.5.3

Proposition. Let r ≥ 1 and (µn)n≥0 and (νn)n≥0 two sequences of probability
measures such that µn → µ and νn → ν with respect to the convergence in law.
Then we have that

LOTc,r(µn, νn)→ LOTc,r(µ, ν) .

Proof. Let us denote π an optimal solution of LOTc,r(µ, ν) and let us denote
(µ(i))ri=1, (ν(i))ri=1 and (λ(i))ri=1 the decomposition associated. In the following
Lemma, we aim at building specific decompositions of the sequences (µn)n≥0 and
(νn)n≥0.

Lemma 7. Let r ≥ 1, µ ∈ M+
1 (X ) and (µ(i))ri=1 ∈ M+

1 (X ) and (λ(i))ri=1 ∈ ∆∗
r

such that µ =
∑r

i=1 λiµ
(i). Then for any sequence of probability measures (µn)≥0
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such that µn → µ, there exist for all i ∈ [|1, r|] a sequence of nonnegative measures
(µ

(i)
n )n≥0 such that

µ(i)
n → λiµ

(i) for all i ∈ [|1, r|] and
r∑
i=1

µ(i)
n = µn for all n ≥ 0

Proof. For r = 1 the result is clear. Let us now show the result for r = 2. Let
us denote (µ̃

(1)
n ) a sequence converging weakly towards λ1µ(1). Then by denoting

µ
(1)
n := µn − (µn − µ̃(1)

n )+ where (·)+ correspond to the non-negative part of the
measure, we have that

µ(1)
n ≥ 0, µ(1)

n → λ1µ
(1),

µ(2)
n := µn − µ(1)

n ≥ 0, µ(2)
n → λ2µ

(2) and

µn = µ(1)
n + µ(2)

n for all n ≥ 0

which is the result. Let r ≥ 2 and let us assume that the result holds for all
1 ≤ k ≤ r. Let us now consider a decomposition of µ such that µ =

∑r+1
i=1 λiµ

(i).
By denoting µ̃(1) :=

∑r
i=1 λiµ

(i)∑r
i=1 λi

, we obtain that

µ =

(
r∑
i=1

λi

)
µ̃(1) + λr+1µ

(r+1) .

Then by recursion we have that there exists sequences of nonnegative measures
(µ̃

(1)
n ) and (µ

(r+1)
n ) such that

µ̃(1)
n →

(
r∑
i=1

λi

)
µ̃(1), µ(r+1)

n → λr+1µ
(r+1) and µn = µ̃(1)

n + µ(r+1)
n for all n ≥ 0

Now observe that µ̃
(1)
n

|µ̃(1)n |
→ µ̃(1) =

∑r
i=1

λi∑r
i=1 λi

µ(i). Therefore applying the recursion

on this problem allows us to obtain a decomposition of µ̃(1)
n of the form

µ̃
(1)
n

|µ̃(1)
n |

=
r∑
i=1

µ(i)
n where

µ(i)
n ≥ 0 and µ(i)

n →
λi∑r
i=1 λi

µ(i) .
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Therefore we obtain that

µn =
r∑
i=1

|µ̃(1)
n |µ(i)

n + µ(r+1)
n where

µ(i)
n ≥ 0, |µ̃(1)

n |µ(i)
n → λiµ

(i) for all i ∈ [|1, r|] and

µ(r+1)
n ≥ 0, µ(r+1)

n → λr+1µ
(r+1)

from which follows the result.

Let us now consider such decompositions of (µn)n≥0 and (νn)n≥0 such that
each factor converges toward the target decomposition of µ. Now let us build the
following coupling:

π̃n :=
r−1∑
k=1

min(|µ(k)
n |, |ν(k)n |)

|µ(k)
n ||ν(k)n |

µ(k)
n ⊗ µ(k)

n

+
1

1−
∑r−1

k=1min(|µ(k)
n |, |ν(kn |)[

|µn| −
r−1∑
k=1

min(|µ(k)
n |, |ν(k)n |)
|µ(k)
n |

µ(k)
n

]
⊗

[
νn −

r−1∑
k=1

min(|µ(k)
n |, |ν(k)n |)
|ν(k)n |

ν(k)n

]
with the convention that 0

0
= 0. Now it is easy to check that π̃n ∈ Πr(µn, νn), and

we have that

LOTc,r(µn, νn) ≤
∫
X 2

d(x, y)dπ̃n(x, y)→ LOTc,r(µ, ν)

and by Prokhorov’s theorem and the optimality of the limit of (π̃n)n≥0 (up to an
extraction) we obtain that LOTc,r(µn, νn)→ LOTc,r(µ, ν).

6.9.8 Proof Proposition 6.5.2

Proposition. Let r ≥ 1, and let us assume that c is a semimetric of negative type.
Then for all µ, ν ∈M+

1 (X ), we have that

DLOTc,r(µ, ν) ≥ 0 .

In addition, if c has strong negative type then we have also that

DLOTc,r(µ, ν) = 0 ⇐⇒ µ = ν and
µn → µ ⇐⇒ DLOTc,r(µn, µ)→ 0 .

where the convergence of the sequence of probability measures considered is the
convergence in law.
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Proof. Let π∗ solution of LOTc,r(µ, ν). Then there exists λ∗ ∈ ∆∗
r, (µ∗

i )
r
i=1, (ν

∗
i )
r
i=1 ∈

M+
1 (X )r such that

π∗ =
r∑
i=1

λ∗iµ
∗
i ⊗ ν∗i .

Note that by definition, we have that

µ =
r∑
i=1

λ∗iµ
∗
i and ν =

r∑
i=1

λ∗i ν
∗
i ,

By definition we have also that

LOTc,r(µ, µ) ≤
r∑

k=1

λ∗k

∫
X 2

c(x, y)dµ∗
k ⊗ µ∗

k

similarly for LOTc,r(ν, ν) we have

LOTc,r(ν, ν) ≤
r∑

k=1

λ∗k

∫
X 2

c(x, y)dν∗k ⊗ ν∗k

Therefore we have

DLOTc,r(µ, ν) ≥
r∑

k=1

λ∗k

(∫
X 2

c(x, y)dµ∗
k ⊗ ν∗k −

1

2

[∫
X 2

c(x, y)dµ∗
k ⊗ µ∗

k +

∫
X 2

c(x, y)dν∗k ⊗ ν∗k
])

≥
r∑

k=1

λ∗k

∫
X 2

−c(x, y)d[µ∗
k − ν∗k ]⊗ [µ∗

k − ν∗k ]

≥
r∑

k=1

λ∗k
2
Dc(µ

∗
k, ν

∗
k)

where for any any probability measures α, β on X we define

Dc(α, β) := 2

∫
X 2

c(x, y)dα⊗ β −
∫
X 2

c(x, y)dα⊗ α−
∫
X 2

c(x, y)dβ ⊗ β

However, as c is assumed to have a negative type, we have that

Dc(µ
∗
k, ν

∗
k) ≥ 0 ∀k

In addition if we assume that c has a strong negative type, then we obtain directly
that

DLOTc,r(µ, ν) = 0 =⇒ µ∗
k = ν∗k ∀k .
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Let us now show that DLOTc,r metrize the convergence in law. The direct implica-
tion is a direct consequence of the Proposition 6.5.3. Conversely, if DLOTc,r(µn, µ)→
0, then by compacity of X and thanks to the Prokhorov’s theorem we can extract
a subsequence of µn → µ∗, and thanks to Proposition 6.5.3, we also obtain that
DLOTc,r(µn, µ) → DLOTc,r(µ

∗, µ). Finally we deduce that DLOTc,r(µ
∗, µ) = 0

and µ∗ = µ.

6.9.9 Proof Proposition 6.5.4

Proposition. Let n ≥ k ≥ 1, X := {x1, . . . , xn} ⊂ X and a ∈ ∆∗
n. If c is a

semimetric of negative type, then by denoting C = (c(xi, xj))i,j, we have that

LOTc,k(µa,X , µa,X) = min
Q
⟨C,Qdiag(1/QT1n)Q

T ⟩ s.t. Q ∈ Rn×k
+ , Q1k = a .

(6.17)

Proof. First remarks that one can reformulate the DLOTc,k problem as

DLOTc,k(µ, µ) := min
g∈∆∗

k

min
(X,Y )∈K2

a,g

k∑
i=1

XT
i CYi
gi

where

Ka,g := {X ∈ Rnk s.t. AX = [a, g]T , X ≥ 0}

A :=

(
1Tn ⊗ Ik
ITn ⊗ 1k

)
and

Xi := [x(i−1)×n+1, . . . , xi×n]
T , Yi := [y(i−1)×n+1, . . . , yi×n]

T for all i ∈ [|1, k|]

Indeed the above optimization problem is just a reformulation of DLOTc,k(µ, µ)
where we have vectorized the couplings in a column-wise order. Let us now show
the following lemma from which the result will follow.

Lemma 8. Under the same assumption of Proposition 6.5.4 we have that for all
g ∈ ∆∗

k

min
(X,Y )∈K2

a,g

k∑
i=1

XT
i CYi
gi

= min
X∈Ka,g

k∑
i=1

XT
i CXi

gi
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Proof. Let (X∗, Y ∗) solution of the LHS optimization problem. Then we have that

k∑
i=1

(X∗
i )
TCX∗

i

gi
≥

k∑
i=1

(X∗
i )
TCY ∗

i

gi

k∑
i=1

(Y ∗
i )

TCY ∗
i

gi
≥

k∑
i=1

(X∗
i )
TCY ∗

i

gi

Therefore we obtain that

0 ≤
k∑
i=1

(X∗
i )
TCX∗

i

gi
−

k∑
i=1

(X∗
i )
TCY ∗

i

gi
=

k∑
i=1

(X∗
i )
TC(X∗

i − Y ∗
i )

gi

0 ≤
k∑
i=1

(Y ∗
i )

TCY ∗
i

gi
−

k∑
i=1

(X∗
i )
TCY ∗

i

gi
=

k∑
i=1

(Y ∗
i −X∗

i )
TCY ∗

i

gi

Then by symmetry of C, we obtain by adding the two terms that

k∑
i=1

(X∗
i − Y ∗

i )
TC(X∗

i − Y ∗
i )

gi
≥ 0

However, thanks to the linear constraints, we have that for all i ∈ [|1, k|],

n−1∑
q=0

x∗(i−1)×n+1+q =
n−1∑
q=0

y∗(i−1)×n+1+q = gi

Therefore (X∗
i − Y ∗

i )
T1n = 0 and thanks to the negativity of the cost function c we

obtain that

(X∗
i − Y ∗

i )
TC(X∗

i − Y ∗
i ) ≤ 0

Therefore we have that

(Xi − Yi)TC(Xi − Yi) = 0

from which follows that

k∑
i=1

(X∗
i )
TCX∗

i

gi
=

k∑
i=1

(X∗
i )
TCY ∗

i

gi
=

k∑
i=1

(Y ∗
i )

TCY ∗
i

gi

and the result follows.
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As the above result holds for any g ∈ ∆∗
k, we obtain that

DLOTc,k(µ, µ) = min
g∈∆∗

k

min
X∈Ka,g

k∑
i=1

(X∗
i )
TCX∗

i

gi

Then by formulating back this problem in term of matrices, we obtain that

DLOTc,k(µ, µ) = min
g∈∆∗

k

min
Q∈Πa,g

⟨C,Qdiag(1/g)QT ⟩

from which the result follows.

6.10 Additional Experiments

6.10.1 Comparison of the γ schedules

Figure 6.5: In this experiment, we compare two strategies for the choice of the
step-size in the MD scheme proposed by [3] on two different problems. More
precisely, we compare the constant γ schedule with the proposed adaptive one and
compare them when the distributions are sampled from either uniform distributions
(left) or mixtures of anisotropic Gaussians (right). We show that the range of
admissible γ when considering a constant schedule varies from one problem to
another. Indeed, in the right plot, we observe that the algorithm converges only
when γ ≤ 1, while in the left plot, the algorithm manages to converge for γ ≤ 100.
We also observe that our adaptive strategy allows to have a consistent choice of
admissible values for γ whatever the problem considered. It is worth noticing that
whatever the γ chosen, the algorithm converges towards the same value, however
the larger γ is chosen in its admissible range, the faster the algorithm converges.

6.10.2 Gradient Flows between two Moons
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Figure 6.6: We compare the gradient flows (µt)t≥0 (in red) starting from a moon
shape distribution, µ0, to another moon shape distribution (in blue), ν, in 2D when
minimizing either L(µ) := DLOTc,r(µ, ν) or L(µ) := LOTc,r(µ, ν). The ground cost
is the squared Euclidean distance and we fix r = 100. We consider 1000 samples
from each distribution and and we plot the evolution of the probability measure
obtained along the iterations of a gradient descent scheme. We also display in
green the vector field in the descent direction. We show that the debiased version
allows to recover the target distribution while LOTc,r is learning a biased version
with a low-rank structure.
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Chapter 7

Low-rank Gromov Wasserstein
Distances

The ability to align points across two related yet incomparable point clouds (e.g.
living in different spaces) plays an important role in machine learning. The Gromov-
Wasserstein (GW) framework provides an increasingly popular answer to such
problems, by seeking a low-distortion, geometry-preserving assignment between
these points. As a non-convex, quadratic generalization of optimal transport (OT),
GW is NP-hard. While practitioners often resort to solving GW approximately
as a nested sequence of entropy-regularized OT problems, the cubic complexity
(in the number n of samples) of that approach is a roadblock. We show in this
work how a recent variant of the OT problem that restricts the set of admissible
couplings to those having a low-rank factorization is remarkably well suited to the
resolution of GW: when applied to GW, we show that this approach is not only
able to compute a stationary point of the GW problem in time O(n2), but also
uniquely positioned to benefit from the knowledge that the initial cost matrices
are low-rank, to yield a linear time O(n) GW approximation. Our approach yields
similar results, yet orders of magnitude faster computation than the SoTA entropic
GW approaches, on both simulated and real data.

This chapter is based on [2].
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7.1 Introduction

Example 1 Example 2

Figure 7.1: Two examples where we compare the low-rank regularization with the
entropic one for the GW problem. For each example we describe the structure of
the associated figure in the following. Top row: Two curves in 2D and 3D, with
n = 5000 points. Bottom row: coupling and GW loss obtained with the SoTA
O(n3) entropic approach [47] (left) and with our linear O(n) method (right) when
using the squared Euclidean distances as the ground costs. See Appendix 7.11.1
for more details.

Increasing interest for Gromov-Wasserstein... Several problems in machine
learning require comparing datasets that live in heterogeneous spaces. This situation
arises typically when realigning two distinct views (or features) from points sampled
from similar sources. Recent applications to single-cell genomics [61, 62] provide
a case in point: Thousands of cells taken from the same tissue are split in two
groups, each processed with a different experimental protocol, resulting in two
distinct sets of heterogeneous feature vectors; Despite this heterogeneity, one
expects to find a mapping registering points from the first to the second set,
since they contain similar overall information. That realignment is usually carried
out using the Gromov-Wasserstein (GW) machinery proposed by [86] . GW
seeks a relaxed assignment matrix that is as close to an isometry as possible,
as quantified by a quadratic score. GW has practical appeal: It has been used
in supervised learning [63], generative modeling [64], domain adaptation [65],
structured prediction [66], quantum chemistry [47] and alignment layers [67].

...despite being hard to solve. Since GW is an NP-hard problem, all appli-
cations above rely on heuristics, the most popular being the sequential resolution
of nested entropy-regularized OT problems. That approximation remains costly,
requiring O(n3) operations when dealing with two datasets of n samples. Our goal
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is to reduce that complexity, by exploiting and/or enforcing low-rank properties of
matrices arising both in data and variables of the GW problem.

OT: from cubic to linear complexity. Compared to GW, aligning two
populations embedded in the same space is far simpler, and corresponds to the
usual optimal transport (OT) problem [33].Given a n × m cost matrix C and
two marginals, the OT problem minimizes LC(P ) := ⟨C,P ⟩ w.r.t. a coupling
matrix P satisfying these marginal constraints. For computational and statistical
reasons, most practitioners rely on regularized approaches LεC(P ) := ⟨C,P ⟩ +
εreg(P ). When reg is the neg-entropy, Sinkhorn algorithm [215] can be efficiently
employed [76, 117, 216]. The Sinkhorn iteration has O(nm) complexity, but this
can be sped-up using either a low-rank factorizations (or approximations) of the
kernel matrix K := e−C/ε [121, 122, 217, 6], or, alternatively and as proposed
by [3, 128], by imposing a low-rank constraint on the coupling P . A goal in this
paper is to show that this latter route is remarkably well suited to the GW problem.

GW: from NP-hard to cubic approximations. The GW problem replaces
the linear objective in OT by a non-convex, quadratic, objective QA,B(P ) :=
cst− 2⟨APB,P ⟩ parameterized by two square cost matrices A and B. Much like
OT is a relaxation of the optimal assignment problem, GW is a relaxation of the
quadratic assignment problem (QAP). Both GW and QAP are NP-hard [131]. In
practice, linearizing iteratively QA,B works well [84, 85]: recompute a synthetic
cost Ct := APt−1B, use Sinkhorn to get Pt := argminP ⟨Ct, P ⟩ + εreg(P ), repeat.
This is akin to a mirror-descent scheme [47], interpreted as a bi-linear relaxation in
certain cases [218].

Challenges to speed up GW. Several obstacles stand in the way of speeding up
GW. The re-computation of Ct = APt−1B at each outer iteration is an issue, since it
requires O(n3) operations [47, Prop. 1]. We only know of two broad approaches that
achieve tractable running times: (i) Solve related, yet significantly different, proxies
of the GW energy, either by embedding points as univariate measures [86, 87], by
using a sliced mechanism when restricted to Euclidean settings [88] or by considering
tree metrics for supports of each probability measure [89], (ii) Reduce the size
of the GW problem through quantization of input measures [90]. or recursive
clustering approaches [91, 62]). Interestingly, no work has, to our knowledge, tried
yet to accelerate Sinkhorn iterations withing GW.

Our contributions: a quadratic to linear GW approximation. Our method
addresses the problem by taking the GW as it is, overcoming limitations that may
arise from a changing cost matrix Ct. We show first that a low-rank factorization
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(or approximation) of the two input cost matrices that define GW, one for each
measure, can be exploited to lower the complexity of recomputing Ct from cubic
to quadratic. We show next, independently, that using the low-rank approach for
couplings advocated by [3] to solve OT can be inserted in the GW pipeline and result
in a O(n2) strategy for GW, with no prior assumption on input cost matrices. We
also briefly explain why methods that exploit the geometrical properties of C (or its
kernel K = e−C) to obtain faster iterations are of little use in a GW setup, because
of the necessity to re-instantiate a new cost Ct at each outer iteration. Finally, we
show that both low-rank assumptions (on costs and couplings) can be combined to
shave yet another factor and reach GW approximation with linear complexity in
time and memory. We provide experiments, on simulated and real datasets, which
show that our approach has comparable performance to entropic-regularized GW
and its practical ability to reach “good” local minima to GW, for a considerably
cheaper computational price, and with a conceptually different regularization path
(see examples in Fig. 7.1), yet can scale to millions of points.

7.2 Background on Gromov-Wasserstein
Comparing metric measure spaces. Let (X , dX ) and (Y , dY) be two metric
spaces, and µ :=

∑n
i=1 aiδxi and ν :=

∑m
i=j bjδyj two discrete probability measures,

where n,m ≥ 1; a, b are probability vectors in the simplicies ∆n,∆m of size n
and m; and (x1, . . . , xn), (y1, . . . , ym) are families in X and Y. Given q ≥ 1, the
following square pairwise cost matrices encode the geometry within µ and ν,

A := [dqX (xi, xi′)]1≤i,i′≤n, B := [dqY(xj, xj′)]1≤i,i′≤m

The GW discrepancy between these two discrete metric measure spaces (µ, dX ) and
(ν, dY) is the solution of the following non-convex quadratic problem, written for
simplicity as a function of (a,A) and (b, B):

GW((a,A), (b, B)) = min
P∈Πa,b

QA,B(P ), (7.1)

where Πa,b := {P ∈ Rn×m
+ |P1m = a, P T1n = b},

and the energy QA,B is a quadratic function of P designed to measure the distortion
of the assignment:

QA,B(P ) :=
∑
i,j,i′,j′

(Ai,i′ −Bj,j′)
2Pi,jPi′,j′ . (7.2)

[86] proves that GW
1
2 defines a distance on the space of metric measure spaces

quotiented by measure-preserving isometries. (7.2) can be evaluated in O(n2m+
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nm2) operations, rather than using n2m2 terms:

QA,B(P ) = ⟨A⊙2a, a⟩+ ⟨B⊙2b, b⟩ − 2⟨APB,P ⟩ , (7.3)

where ⊙ is the Hadamard (elementwise) product or power.

Entropic Gromov-Wasserstein. The original GW problem (7.1) can be regu-
larized using entropy [84, 85], leading to problem:

GWε((a,A), (b, B)) = min
P∈Πa,b

QA,B(P )− εH(P ) , (7.4)

where H(P ) := −
∑

i,j Pi,j(log(Pi,j)− 1) is P ’s entropy. [47] propose to solve that
problem using mirror descent (MD), w.r.t. the KL divergence. Their algorithm
boils down to solving a sequence of regularized OT problems, as in Algo. 10: Each
KL projection in Line 5 is solved efficiently with the Sinkhorn algorithm [76].

Algorithm 10 Entropic-GW
Input : a ∈ ∆n, A ∈ Rn×n, b ∈ ∆m, B ∈ Rm×m, ε > 0

1 P = abT nm
2 for t = 0, . . . do
3 C ← −4APB nm(n+m)
4 Kε ← exp(−C/ε) nm
5 P ← argmin

P∈Π(a,b)

KL(P,Kε) O(nm)

6 GW = QA,B(P ) nm(n+m)
Result: GW

Computational complexity. Given a cost matrix C, the KL projection of Kε

onto the polytope Π(a, b), where KL(P,Q) = ⟨P, log(P/Q) − 1⟩, is carried out
in Line 5 of the inner loop of Algo. 10 using the Sinkhorn algorithm, through
matrix-vector products. This quadratic complexity (in red) is dominated by the
cost of updating matrix C at each iteration in Line 3, which requires O(n2m+nm2)
algebraic operations (cubic, in violet). As noted above, evaluating the objective
QA,B(P ) in Line 6 is also cubic.

Step-by-step guide to reaching linearity. We show next in §7.3 that these
iterations can be sped up when the distance matrices are low-rank (or have low-rank
approximations), in which case the cubic updates in C and evaluation of QA,B
in Lines 3, 6 become quadratic. Independently, we show in §7.4 that, with no
assumption on these cost matrices, replacing the Sinkhorn call in Line 5 with a
low-rank approach [3] can lower the cost of Lines 3, 6 to quadratic (while also
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making Line 5 linear). Remarkably, we show in §7.5 that these two approaches
can be combined in Lines 3, 6, to yield, to the best of our knowledge, the first
linear time/memory algorithm able to match the performance of the Entropic-GW
approach.

7.3 Low-rank (Approximated) Costs
Exact factorization for distance matrices. consider
Assumption 2. A and B admit a low-rank factorization: there exists A1, A2 ∈
Rn×d and B1, B2 ∈ Rm×d′ s.t. A = A1A

T
2 and B = B1B

T
2 , where d≪ n, d′ ≪ m.

A case in point is when both A and B are squared Euclidean distance matrices,
with a sample size that is much larger than ambient dimension. This case is highly
relevant in practice, since it covers most applications of OT to ML. Indeed, the
d ≪ n assumption usually holds, since cases where d ≫ n fall in the “curse of
dimensionality” regime where OT is less useful [219, 72]. Writing X = [x1, . . . , xn] ∈
Rd×n, if A = [∥xi − xj∥22]i,j, then one has, writing z = (X⊙2)T1d ∈ Rn that
A = z1Tn + 1nz

T − 2XTX. Therefore by denoting A1 = [z,1n,−
√
2XT ] ∈ Rn×(d+2)

and A2 = [1n, z,
√
2XT ] ∈ Rn×(d+2) we obtain the factorization above. Under

Assumption 2, the complexity of Algo. 10 is reduced to O(n2): Line 3 reduces to:

C = −4A1A
T
2 PB1B

T
2 ,

in nm(d+d′)+dd′(n+m) algebraic operations, while Line 6, using the reformulation
of QA,B(P ) in (7.3), becomes quadratic as well. Indeed, writing G1 := AT1 PB2 and
G2 := AT2 PB1, both in Rd×d′ , one has ⟨APB,P ⟩ = 1Td (G1 ⊙ G2)1d′ . Computing
G1, G2 given P requires only 2(nmd +mdd′), and computing their dot product
adds dd′ algebraic operations. The overall complexity to compute QA,B(P ) is
O(nmd+mdd′).

General distance matrices. When the original cost matrices A,B are not
low-rank but describe distances, we build upon recent works that output their
low-rank approximation in linear time [200, 201]. These algorithms produce, for
any distance matrix A ∈ Rn×m and τ > 0, matrices A1 ∈ Rn×d, A2 ∈ Rm×d in
O((m+ n)poly( d

τ
)) operations such that, with probability at least 0.99,

∥A− A1A
T
2 ∥2F ≤ ∥A− Ad∥2F + τ∥A∥2F ,

where Ad denotes the best rank-d approximation to A in the Frobenius sense. The
rank d should be selected to trade off approximation of A and speed-ups for the
method, e.g. such that d/τ ≪ m+ n. We fall back on this approach to obtain a
low-rank factorization of a distance matrix in linear time whenever needed, aware
that this incurs an additional approximation (see Appendix 7.9).
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Algorithm 11 Quadratic Entropic-GW
Input :A1, A2 ∈ Rn×d, B1, B2,∈ Rm×d′a, b, ε

1 P = abT nm
2 for t = 0, . . . do
3 G2 ← AT2 PB1 nmd + mdd’
4 C ← −4A1G2B

T
2 nmd’ + ndd’

5 Kε ← exp(−C/ε) nm
6 P ← argmin

P∈Π(a,b)

KL(P,Kε) O(nm)

7 c1 ← aT (A1A
T
2 )

⊙2a+ bT (B1B
T
2 )

⊙2b n²d’+m²d’
8 G2 ← AT2 PB1 nmd + mdd’
9 G1 ← AT1 PB2 nmd + mdd’

10 c2 ← −21Td (G1 ⊙G2)1d′ dd’
11 QA,B(P )← c1 + c2
12 Return: QA,B(P )

7.4 Low-rank Constraints for Couplings
In this section, we shift our attention to a different opportunity for speed-ups,
without Assumption 2: we consider the GW problem on couplings that are low-rank,
in the sense that they are factorized using two low-rank couplings linked by a
common marginal g in ∆∗

r, the interior of ∆r (all entries positive). Writing the set
of couplings with a nonnegative rank smaller than r [3, §3.1]:

Πa,b(r) :=
{
P ∈ Rn×m

+ ,∃g ∈ ∆∗
r s.t. P = Q diag(1/g)RT , Q ∈ Πa,g, and R ∈ Πb,g

}
,

we can define the low-rank GW problem, written GW-LR(r)((a,A), (b, B)) as
the solution of

min
(Q,R,g)∈C(a,b,r)

QA,B(Q diag(1/g)RT ) , (7.5)

where C(a, b, r) := C1(a, b, r) ∩ C2(r), with

C1(a, b, r) :=
{
(Q,R, g) ∈ Rn×r

+ × Rm×r
+ × (R∗

+)
r s.t. Q1r = a,R1r = b

}
,

C2(r) :=
{
(Q,R, g) ∈ Rn×r

+ × Rm×r
+ × Rr

+ s.t. QT1n = RT1m = g
}
.

Mirror Descent Scheme. We propose to use a MD scheme with respect to the
generalized KL divergence to solve (7.5). If one chooses (Q0, R0, g0) ∈ C(a, b, r) an
initial point such that Q0 > 0 and R0 > 0, this results in,

(Qk+1, Rk+1, gk+1) :=argmin
ζ∈C(a,b,r)

KL(ζ,Kk) , (7.6)
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where the three matrices Kk := (K
(1)
k , K

(2)
k , K

(3)
k ) are

K
(1)
k := exp(4γAPkBRk diag(1/gk) + log(Qk))

K
(2)
k := exp(4γBP T

k AQk diag(1/gk) + log(Rk))

K
(3)
k := exp(−4γωk/g2k + log(gk))

with [ωk]i := [QT
kAPkBRk]i,i for all i ∈ {1, . . . , r} and γ > 0 is a step size.

Solving (7.6) can be done efficiently thanks to Dykstra’s Algorithm as proposed
in [3]. See Algo. 12 and Appendix 7.10.

Avoiding vanishing components. As in k-means optimization, the algorithm
above might run into cases in which entries of the histogram g vanish to 0. Following
[3] we can avoid this by setting a lower bound α on the weight vector g, such
that g ≥ α coordinate-wise. Practically, we introduce truncated feasible sets
C(a, b, r, α) := C1(a, b, r, α)∩C2(r) where C1(a, b, r, α) := C1(a, b, r)∩{(Q,R, g) | g ≥
α}.

Initialization. To initialize our algorithm, we adapt the first lower bound of [86]
to the low-rank setting and prove the following Proposition (see appendix 7.7 for
proof).

Proposition 7.4.1. Let us denote x̃ = A⊙2a ∈ Rn, ỹ = B⊙2b ∈ Rm and C̃ =
(|
√
x̃i −

√
ỹj|2)i,j ∈ Rn×m. Then for all r ≥ 1 we have,

GW-LR(r)
α ((a,A), (b, B)) ≥ LOT(r)

α (C̃, a, b),where

LOT(r)
α (C̃, a, b) := min

(Q,R,g)∈C(a,b,r,α)
⟨C̃, Q diag(1/g)RT ⟩ .

LOT(r)
α (C̃, a, b) can be solved with [3]. The cost C̃ is the squared Euclidean

distance between two families {x̃1, . . . , x̃n} and {ỹ1, . . . , ỹm} in 1-D, which admits
a trivial rank 2 factorization. We can therefore apply the linear-time version of
their algorithm to compute the lower bound. Algo. 12 summarizes this, where D(·)
denotes the operator extracting the diagonal of a square matrix. In practice we
observe that such initialization outperforms trivial or random initializations (see
Section 7.6).

Computational Cost. Our initialization requires x̃ and ỹ, obtained inO(n2+m2)
operations. Running [3, Algo.3] with a squared Euclidean distances between two
families in 1-D has cost O((n+m)r). Solving the barycenter problem as defined
in (7.6) can be done efficiently thanks to Dykstra’s Algorithm. Indeed, each iteration
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of [3, Algo. 2], assuming (K
(1)
k , K

(2)
k , K

(3)
k ) is given, requires only O((n + m)r)

algebraic operations. However, computing kernel matrices (K
(1)
k , K

(2)
k , K

(3)
k ) at

each iteration of Algorithm 12 requires a quadratic complexity with respect to the
number of samples. Overall the proposed algorithm, while faster than the cubic
implementation proposed in [47], still needs O((n2 +m2)r) operations per iteration.

Dykstra Iterations. In our complexity analysis, we do not take into account
the number of iterations required to terminate Dykstra’s Algorithm. We show
experimentally (see Fig. 7.2) that, as usually observed for Sinkhorn [76, Fig. 5],
this number does not depend on problem size n,m, but rather on the geometric
characteristics of A,B and γ.

Convergence of MD. Although objective (7.5) is not convex in (Q,R, g), we
obtain the non-asymptotic stationary convergence of our proposed method. In [3],
the authors study the convergence of the MD scheme when applied to the low-rank
formulation of OT. In the GW setting, such strategy makes even more sense as the
GW problem is a NP-hard non-convex problem and obtaining global guarantees is
out of reach in a general framework. Therefore we follow the strategy proposed
in [3] and consider the following convergence criterion,

∆α(ξ, γ) :=
1

γ2
(KL(ξ,Gα(ξ, γ)) + KL(Gα(ξ, γ), ξ))

where Gα(ξ, γ) := argminζ∈C(a,b,r,α){⟨∇QA,B(ξ), ζ⟩+ 1
γ
KL(ζ, ξ)}. This convergence

criterion is in fact stronger than the one using the (generalized) projected gradient
presented in [198] to obtain non-asymptotic stationary convergence of the MD
scheme. Indeed the criterion used there is defined as the square norm of the
following vector:

PC(a,b,r,α)(ξ, γ) :=
1

γ
(ξ − Gα(ξ, γ)) ,

which can be seen as a generalized projected gradient of QA,B at ξ. By denoting
X := Rd and by replacing the Bregman Divergence KL(ζ, ξ) by 1

2
∥ζ − ξ∥22 in the

MD scheme, we would have PX(ξ, γ) = ∇QA,B(ξ). Now observe that we have

∆α(ξ, γ) =
1

γ2
(⟨∇h(Gα(ξ, γ))−∇h(ξ),Gα(ξ, γ)− ξ⟩

≥ 1

2γ2
∥Gα(ξ, γ)− ξ∥21

=
1

2
∥PC(a,b,r,α)(ξ, γ)∥21
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where h denotes the minus entropy function and the last inequality comes from the
strong convexity of h on C(a, b, r, α). Therefore ∆α(ξ, γ) dominates ∥PC(a,b,r,α)(ξ, γ)∥1
and characterizes a stronger convergence.

For any 1/r ≥ α > 0, Proposition 7.4.2 shows the non-asymptotic stationary
convergence of the MD scheme for Problem (7.5). See Appendix 7.7 for the proof.

Proposition 7.4.2. Let 1
r
≥ α > 0, N ≥ 1 and Lα := 27(∥A∥2∥B∥2/α4). Con-

sider a constant stepsize γ = 1
2Lα

in the MD scheme (7.6). Writing D0 :=

QA,B(Q0 diag(1/g0)R
T
0 ) − GW-LR(r)

α ((a,A), (b, B)) the gap between initial value
and optimum, one has

min
1≤k≤N

∆α((Qk, Rk, gk), γ) ≤
4LαD0

N
.

Since for α small enough, GW-LR(r)
α ((a,A), (b, B)) = GW-LR(r)((a,A), (b, B)),

Proposition 7.4.2 shows that our algorithm reaches a stationary point of (7.5).
This Proposition claims that within at most N iterations the minimum of the
(∆α((Qt, Rt, gt), γ))1≤t≤N is of order O(1/N). Note that this is a standard way
to obtain the stationary convergence (see e.g. [198]. In practice, this is sufficient
to define a stopping criteria, as one could simply compute at each iteration the
criterion and keep only in memory the smallest value at each iteration.

7.5 Double Low-rank GW
Almost all operations in Algorithm 12 only require linear memory storage and
time, except for the computations of x̃ = A⊙2a and ỹ = B⊙2b in Line 1, and the
four updates involving C1 and C2 in Lines 6,7,14,15 which all require a quadratic
number of algebraic operations. When adding Assumption 2 from §7.3 to the rank
constrained approach from §7.4, we show that the strengths of both approaches can
work hand in hand, both in easier initial evaluations of x̃, ỹ, but, most importantly,
at each new recomputation of a factorized linearization of the quadratic objective:

Linear-time Norms in Line 1 Because A admits a low-rank factorization,
one can obtain a low-rank factorization for A⊙2 pending the condition d2 ≪ n.
Indeed, remark that for u, v ∈ Rd, ⟨u, v⟩2 = ⟨uuT , vvT ⟩. Therefore, if one describes
A1 := [u1; . . . ;un] and A2 := [v1; . . . ; vn] row-wise, and one uses the flattened
out-product operator ψ(u) := vec(uuT ) ∈ Rd2 where vec(·) flattens a matrix,

A⊙2 = Ã1Ã2
T

where Ã1 = [ψ(u1; . . . ;ψ(un)],

Ã2 = [ψ(v1); . . . ;ψ(vn)] .
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Algorithm 12 Low-Rank GW
Input :A,B, a, b, r, α, γ

1 x̃← A⊙2a, ỹ ← B⊙2b m2 + n2

2 z1 ← x̃⊙2, z2 ← ỹ⊙2 m+ n

3 C̃1 ← [z1,1n,−
√
2x̃], C̃2 ← [1m, z2,

√
2ỹ]T n+ m

4 (Q,R, g)← LOT(r)
α (C̃1C̃2, a, b) O((n+ m)r)

5 for t = 1, . . . do
6 C1 ← −AQ diag(1/g) O(n2r)
7 C2 ← RTB O(m2r)
8 K(1) ← Q⊙ e4γC1C2R diag(1/g) O((m+ n)r2)

9 K(2) ← R⊙ e4γCT
2 C

T
1 Qdiag(1/g) O((m+ n)r2)

10 ω ← D(QTC1C2R) O(nr2)
11 K(3) ← g ⊙ e−4γω/g2 O(r)
12 Q,R, g ← argmin

ζ∈C(a,b,r,α)
KL(ζ,K) O((m+ n)r)

13 c1 ← ⟨x̃, a⟩+ ⟨ỹ, b⟩ n+ m

14 C1 ← −AQ diag(1/g) O(n2r)
15 C2 ← RTB O(m2r)
16 G← C2R, G← C1G O((m+ n)r2)
17 c2 ← −2⟨Q,G diag(1/g)⟩ O(nr)
18 Q ← c1 + c2
19 Return: Q
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Line 1 in Algo. 12 can be replaced by x̃ ← Ã1Ã2
T
a and ỹ ← B̃1B̃2

T
b. Pending

the condition d2 ≪ n, d′2 ≪ m, this results in nd2 +m(d′)2 operations. Note that
Algo. 11 (line 7) can also benefit from this factorization, however as its complexity
is already quadratic, the linearization of this operation has no effect on the global
computational cost.

Linearization of Lines 6,7,14,15. The critical step in Algo. 10 that requires
updating C at each outer iteration is cubic. As described earlier in Algo. 12 and
Algo. 11, a low-rank constraint on the coupling or a low-rank assumption on costs
A and B reduce this cost to quadratic. Remarkably, both can be combined to yield
linear time by replacing in Algo. 12, Lines 6, 7, 14, 15 by

C1 ← −A1A
T
2Q diag(1/g) and C2 ← RTB2B

T
1 .

Note that this speed-up would not be achieved using other approaches that output
a low rank approximation of the transport plan [217, 122, 6]. The crucial obstacle
to using these methods here is that the cost matrix C in GW changes throughout
iterations, and is synthetic–the output of a matrix product APB involving the
very last transport P . This stands in stark contrast with the requirements in
[217, 122, 6] that the kernel matrix corresponding to Kε = e−C/ε admits favorable
properties, such as being p.s.d or admitting an explicit (random or not) finite
dimensional feature approximation.

Linear time GW. We have shown that (red) quadratic operations appearing in
Algo. (12) can be replaced by linear alternatives. The iterations that have not been
modified had an overall complexity of O(mr(r+ d′) +nr(r+ d)). The initialization
and linearization steps can now be performed in linear time and complexity,
respectively in O(n(r + d2) +m((d′)2 + r)) and O((nr(r + d) +mr(r + d′)).

7.6 Experiments

Our goal in this section is to provide practical guidance on how to use our method
(to set stepsize γ, lower bound α on entries of g and rank r) and compare its
practical performance with other baselines, both in terms of running times and
relevance, on 5 simulated datasets and 2 real world applications. We consider
our quadratic approach LR (Algo. 12) and its linear time counterpart Lin LR
(§7.5). We compare them with Ent, the cubic implementation of [47], and its
improved quadratic version Quad Ent introduced in this paper (Algo. 11). We
also use MREC as implemented in [62]. Because all these approaches admit
different hyperparameters, we evaluate them by stressing GW loss as a function
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Figure 7.2: We consider samples of a mixture of 10 anisotropic Gaussians in resp.
10 and 15-D endowed with the squared Eucl. metric. The number of iterations of
Dykstra’s algorithm required to reach a precision of δ = 1e− 3 along the iterations
of the Algo. 12 is not impacted significantly by varying n, the sample size.

of computational effort, as well as performance in downstream metrics. Because
the couplings obtained by MREC do not satisfy marginal constraints, comput-
ing its GW loss is irrelevant, but its matching can be used in the single cell
genomics experiments we consider. Experiments were run on a MacBook Pro
2019 laptop, and data from github.com/rsinghlab/SCOT. The code is available
at https://github.com/meyerscetbon/LinearGromov.

Initialization. For a fair comparison with the entropic approach, we adapt the
first lower bound of [86, Def. 6.1] to the entropic case to initialize it. In all
experiments displaying time-accuracy tradeoffs, we report computation budget as
number of operations. Accuracy is measured by evaluating the ground-truth energy
QA,B (even in scenarios when the method uses a low rank approximation for A,B
at optimization time). We repeat all experiments 10 times on random resampling
of the measures in all synthetic problems, to obtain error bars.

On the iterations of Dykstra’s Algorithm. In this experiment, we show that
the number of iterations involved in the Dykstra’s Algorithm does not depends
on n the number of samples when applying Algo. 12. In Fig. 7.2, we consider
samples of mixtures of (10 and 15) anisotropic Gaussians in resp. 10 and 15-D
and report the number of iterations of the Dykstra’s Algorithm required to reach a
precision δ = 1e− 3 along the iterations of Algo. 12. We observe that the number
of iterations in Dykstra does not depend on n the number of samples considered.
Note that for all the sample sizes considered, we need far fewer iterations (usually
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≤ 25) for the outer loop to converge: the plots show a larger x-axis than what is
observed in practice.

Figure 7.3: We consider two n = m = 1000 samples of mixtures of (2 and 3)
Gaussians in resp. 5 and 10-D, endowed with the squared Euclidean metric,
compared with Lin LR. The time/loss tradeoff illustrated in these plots show that
our method is only mildly impacted by step size γ for both ranks r = n/100 and
n/10.

Sensitity to γ and α. We study how optimization parameters γ and α impact
results. We consider n = m = 1000 samples drawn from two mixtures of (2 and 3)
anisotropic Gaussians in respectively 5-D and 10-D (details in Appendix 7.11.2).
Fig. 7.3, reports the time vs. GW loss tradeoff of our method when varying γ,
both for r = n/100 or n/10 illustrating its robustness to that choice. Fig. 7.11 in
Appendix 7.11.2 shows similar conclusions with respect to α. Recall that α was
only used to lower bound the weights of barycenter g, to ensure no collapse. In
all other experiments, we always set γ = 100 and α = 10−10 for our methods, and
only focus on rank r.

Effect of the rank. We study the impact of rank
r on our method. We consider samples from two
Gaussian mixtures, with respectively 10 and 20
centers in 10-D and 15-D and n = m = 5000. We
compute the GW cost obtained by Lin LR in the
squared Euclidean setting as a function of r the
rank. We observe that the loss decreases as the rank
increases until the rank r reaches 20 (the largest
number of clusters in our mixtures). Therefore, our
method is able to capture the clustered structure
of data (See Appendix 7.11.3). In practice r should
be selected such that it corresponds to the number of clusters in the data.
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Figure 7.4: We sample n = m = 5000 points from two anisotropic Gaussian
blobs, respectively in 10 and 15-D, with either 10 or 30 clusters, endowed with the
Euclidean distance. We compare our quadratic method LR with the cubic Entropic
GW Ent, which requires instantiating matrices A and B. We vary both r (our
method) and ε (entropic). Our method obtains similar GW loss, while being orders
of magnitude faster. Note the gap in performance between r = 10 and r = 50 when
the input measures have 30 clusters: the GW loss decreases as the rank r increases
until it reaches the number of clusters in the data.

Synthetic low-rank problem. We consider two anisotropic Gaussian blobs
with the same number of blobs in respectively 10-D and 15-D. We constrain the
distance between the centroids of the clusters to be larger than the dimension (see
Appendix 7.11.4 for illustrations). In Figures 7.4 and 7.6, when the underlying
cost is the (not squared) Euclidean distance, our methods manage to consistently
obtain similar GW loss that those obtained by entropic methods, using very low
rank r = n/100, while being orders of magnitude faster. Fig. 7.7 explores the
more favorable case where the underlying cost is the squared Euclidean distance,
reaching similar conclusions.

Large scale experiment. In this experiment, we show that our method is able
to compute an approximation of the GW cost in the large sample setting. In
Fig. 7.5, we samples n = m = 1e5 samples from the unit square in 2-D and we
compare the time/loss tradeoff when varying the rank r. We show that our method
is the only one able to approach the GW cost in such regimes.

Experiments on Single Cell Genomics Data. We reproduce the single-
cell alignment experiments introduced in [61]. The datasets consist in single-cell
multi-omics data generated by co-assays, provided with a ground truth one–to-one
correspondence, which can be used to benchmark GW strategies. The SNAREseq
dataset [220], with n = m = 1047 points in R19, describes a real-world experiment;
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Figure 7.5: We sample n = 1e5 points from the unit square in 2-D. The underlying
cost considered is the squared Euclidean cost. In this regime, only Lin GW-LR
can be computed. We plot the time/loss tradeoff when varying r.

Figure 7.6: Same setting as Fig. 7.4, using a low-rank approximation of the
Euclidean distance (see §7.3) to introduce our linear method Lin LR and compare
it with Quad Ent. The rank of their factorizations is set to d = d′ = 100. We
vary ε and rank r to reach similar conclusions to those outlined in Fig. 7.4. Note
also that both Lin LR and Quad Ent reach similar GW loss as those obtained
by their full-rank counterparts, while being orders of magnitude faster.

the Splatter dataset [221] with n = m = 5000 points in R500 is synthetic. We use the
pre-processing from [61] to prepare intra-domain distance matrices A and B using
a k-NN graph based on correlations, to compute shortest path distances. Note that
in that case, one cannot obtain directly in linear time a low-rank factorization of A
and B using [200, 201], since the shortest path distances need to be computed first.
Therefore, we only use our quadratic approach LR and the cubic implementation
of the entropic method Ent, along with MREC. In Fig. 7.8 we compare both the
time/GW loss tradeoffs and the alignment performances through the “fraction of
samples closer than the true match” (FOSCTTM) error introduced in [222]. Note
that we cannot compare the time-accuracy tradeoff of MREC with our method
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Figure 7.7: Setting as in Fig. 7.4, with n = m = 10000 samples from anisotropic
Gaussian blobs of 5 or 20 clusters, endowed with the squared Eucl. distance. We
compare Lin LR and Quad Ent using exact factorizations of A and B.

as the coupling obtained does not satisfy the marginal constraints. LR reaches
similar loss, while being orders of magnitude faster than Ent, even for a very small
rank r = n/100.

Experiment on BRAIN. We reproduce the experiment proposed in [62]. We
consider the dataset introduced in [223] of single cells sampled from the human
brain with eight different cell labels. The dataset contains two groups with different
representations: one contains n = 34079 cells represented by their genes expressions,
while the second contains m = 27906 cells represented by their DNA region
accessibilities. We reuse the preprocessing in [62], by applying the method proposed
in [224] and available in Scanpy [225] to the first group and a TF-IDF representation
to the second one. A PCA is then performed on each group to reduce dimensions to
50, endowed with the squared Euclidean distance. These datasets are too large to
be handled with entropic approaches, and show the potential of our linear approach
Lin LR to handle larger scale problems. To compare Lin LR with MREC, we
measure the accuracy of their matchings, as proposed in [62], by computing the
fraction of points in the first group whose associated points under the matching
given by the method share the same label in the second group. In Figure 7.9, we
plot the accuracy against the rank (or the number of clusters in MREC) for both
Lin LR and MREC. We also consider multiple versions of MREC by varying its
entropic regularization parameter, ε, involved in the inner matching of the recursive
method. Our method obtains consistently better accuracy than that obtained by
MREC.

Discussion. While the factorization introduced in [3] held the promise to speed
up classic OT, we show in this work that it delivers an even larger impact when
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Figure 7.8: We consider both the SNAREseq dataset (left, middle-right) which
consists in two point clouds of n = m = 1047 samples in respectively 10-D and
19-D and the Splatter dataset (middle-left, right) composed of two point clouds
of n = m = 5000 samples in respectively 50-D and 500-D. The cost considered
is the shortest-path distance of a k − NN graph. We compare both the time-
accuracy tradeoffs of our method with the Entropic-GW (left, middle-left) and
the FOSCTTMs ranked in the increasing order of LR, Ent and MREC when
varying their hyperparameters (middle-right, right). Because the coupling returned
by MREC does not satisfy marginal constraints, we do not include it in left plots.
Our method reaches similar accuracy while being order of magnitude faster than
Ent even for a small rank r = n/100. We notice that the alignments obtained by
our method are robust to the choice of r, with similar performance for all methods.

applied to GW: indeed, the combination of low-rank Sinkhorn factorization with-
low rank cost matrices is the only one, to our knowledge, that achieves linear
time/memory complexity for the Gromov-Wasserstein problem. The GW problem
is NP-hard, its optimal solution out of reach and approximate solutions can only
be reached using an inductive bias. Here we propose to compute efficiently a
coupling whose GW cost is low. By adding low-rank constraints, our goal is no
longer to approach the optimal coupling, but rather to promote low-rank solutions
among many that have a low GW cost. Our low-rank constraint obtains similar
performance as the entropic regularization, the current default approach, while
being much faster to compute. We show in experiments that low-rank couplings
can reach low GW costs, and that they are directly useful in real-world tasks. Our
approach has, however, a few limitations compared to the entropic one: setting γ,
while not problematic in most of our experiments, could require a bit of tuning
in order to obtain faster runs in challenging situations. Our assumptions to reach
linearity, as discussed in §7.4 and 7.5 mostly rests on two important assumptions:
the rank of distance matrices (the intrisic dimensionality of data points) must be
such that d, d′ are dominated by n,m and that a small enough rank r be able to
capture the configuration of the input measures. Pending these constraints, which
are valid in most relevant experimental setups we know of, we have demonstrated
that our approach is versatile, remains faithful to the original GW formulation,
and scales to sizes that are out of reach for the SoTA entropic solver.
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Figure 7.9: Using the BRAIN dataset (two point clouds of n = 34079 andm = 27906
samples in 50-D, endowed with squared Euclidean distance) we compare the GW
loss against the rank (or the number of clusters) for both Lin LR and MREC for
multiple choices of ε in MREC. We show that our method is robust to the choice
of the rank and obtains consistently better accuracy than MREC.
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Supplementary material

7.7 Proofs

7.7.1 Proof of Proposition 7.4.1

Proof. Let (Q,R, g) ∈ C(a, b, r, α), P := Q diag(1/g)RT . Remarks that for all i, j,

√∑
i′,j′

|Ai,i′ −Bj,j′|2Pi′,j′ ≥

∣∣∣∣∣∣
√∑

i′,j′

|Ai,i′|2Pi′,j′ −
√∑

i′,j′

|Bj,j′|2Pi′,j′

∣∣∣∣∣∣
≥ |
√
x̃i −

√
ỹj|

Therefore we have√∑
i,i′,j,j′

|Ai,i′ −Bj,j′|2Pi′,j′Pi,j =
√∑

i,j

∑
i′,j′

|Ai,i′ −Bj,j′|2Pi′,j′Pi,j

≥
√∑

i,j

|
√
x̃i −

√
ỹj|2Pi,j

Finally we obtain that∑
i,i′,j,j′

|Ai,i′ −Bj,j′|2Pi′,j′Pi,j − εH(Q,R, g) ≥
∑
i,j

|
√
x̃i −

√
ỹj|2Pi,j − εH(Q,R, g)

and by taking the infimum over all (Q,R, g) ∈ C(a, b, r, α), the results follows.

7.7.2 Proof of Proposition 7.4.2

To show the result, we first need to recall some notions linked to the relative
smoothness. Let X a closed convex subset in a Euclidean space Rq. Given a convex
function H : X → R continuously differentiable, one can define the Bregman
divergence associated to H as

DH(x, z) := H(x)−H(z)− ⟨∇H(z), x− z⟩.

Let us now introduce the definition of the relative smoothness with respect the H.

Definition 7.7.1 (Relative smoothness.). Let L > 0 and f continuously differen-
tiable on X . f is said to be L-smooth relatively to H if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ LDH(y, x)

232



In [3], the authors show the following general result on the non-asymptotic
stationary convergence of the mirror-descent scheme defined by the following
recursion:

xk+1 = argmin
x∈X

⟨∇f(xk), x⟩+
1

γk
Dh(x, xk)

where (γk) a sequence of positive step-size.

Proposition 7.7.1 ([3]). Let N ≥ 1, f continuously differentiable on X which is
L-smooth relatively to H. By considering for all k = 1, . . . , N , γk = 1/2L, and by
denoting D0 = f(x0)−minx∈X f(x), we have

min
0≤k≤N−1

∆k ≤
4LD0

N
.

where for all k = 1, . . . , N

∆k :=
1

γ2k
(DH(xk, xk+1) +DH(xk+1, xk)).

Let us now show that our objective function is relatively smooth with respect
the the KL divergence [203, 204]. The result of Propostion 7.4.2 will then follow
from Proposition 7.7.1. Here X = C(a, b, r, α), H is the negative entropy defined as

H(Q,R, g) :=
∑
i,j

Qi,j(log(Qi,j)− 1) +
∑
i,j

Ri,j(log(Ri,j)− 1) +
∑
j

gj(log(gj)− 1),

and let us define for all (Q,R, g) ∈ C(a, b, r, α)

Fε(Q,R, g) := −2⟨AQ diag(1/g)RTB,Q diag(1/g)RT ⟩+ εH(Q,R, g) .

Let us now show the following proposition.

Proposition 7.7.2. Let ε ≥ 0, 1
r
≥ α > 0 and let us denote Lε,α := 27(∥A∥2∥B∥2/α4+

ε). Then for all (Q1, R1, g1), (Q2, R2, g2) ∈ C(a, b, r, α), we have

∥∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)∥2 ≤ Lε,α∥H(Q1, R1, g1)−H(Q2, R2, g2)∥2

Proof. Let (Q,R, g) ∈ C(a, b, r, α) and let us denote P = Q diag(1/g)RT . We first
have that

∇Fε(Q,R, g) = (∇QFε(Q,R, g),∇RFε(Q,R, g),∇gFε(Q,R, g))
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where

∇QFε(Q,R, g) := −4APBR diag(1/g) + ε logQ

∇RFε(Q,R, g) := −4BP TAQ diag(1/g) + ε logR

∇gFε(Q,R, g) := −4D(QTAPBR)/g2 + ε log g

First remarks that

∥∇QFε(Q1, R1, g1)−∇QFε(Q2, R2, g2)∥2 ≤ 4∥AP1BR1 diag(1/g1)− AP2BR2 diag(1/g2)∥2
+ ε∥ logQ1 − logQ2∥2 .

Moreover we have

AP1BR1 diag(1/g1)− AP2BR2 diag(1/g2) = A((P1 − P2)BR1 diag(1/g1)

+ P2B(R1 diag(1/g1)−R2 diag(1/g2))

where

P1 − P2 = (Q1 −Q2) diag(1/g1)R
T
1 +Q2(diag(1/g1)R

T
1 − diag(1/g2)R

T
2 )

and

R1 diag(1/g1)−R2 diag(1/g2) = (R1 −R2) diag(1/g1) +R2(diag(1/g1)− diag(1/g2)) .

Moreover we have

∥AP1BR1 diag(1/g1)− AP2BR2 diag(1/g2)∥ ≤∥A∥∥B∥∥P1 − P2∥/α
+ ∥A∥∥B∥∥R1 diag(1/g1)−R2 diag(1/g2)∥

then remark that

∥P1 − P2∥ ≤ ∥Q1 −Q2∥/α + ∥R1 diag(1/g1)−R2 diag(1/g2)∥

and
∥R1 diag(1/g1)−R2 diag(1/g2)∥ ≤ ∥R1 −R2∥/α + ∥1/g1 − 1/g2∥

from which follows that

∥AP1BR1 diag(1/g1)− AP2BR2 diag(1/g2)∥

≤ ∥A∥∥B∥
α

(
∥Q1 −Q2∥

α
+
∥R1 −R2∥

α
+ ∥1/g1 − 1/g2∥

)
+ ∥A∥∥B∥

(
∥R1 −R2∥

α
+ ∥1/g1 − 1/g2∥

)
.
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As Q→ H(Q) is 1-strongly convex w.r.t to the ℓ2-norm on ∆n×r, we have

∥Q1 −Q2∥22 ≤ ⟨logQ1 − logQ2, Q1 −Q2⟩
≤ ∥ logQ1 − logQ2∥2∥Q1 −Q2∥2

from which follows that

∥Q1 −Q2∥2 ≤ ∥ logQ1 − logQ2∥2.

Moreover we have

∥1/g1 − 1/g2∥2 ≤
∥g1 − g2∥2

α2
≤ ∥ log g1 − log g2∥2

α2

Then we obtain that

∥∇QFε(Q1, R1, g1)−∇QFε(Q2, R2, g2)∥2 ≤
(
4∥A∥∥B∥

α2
+ ε

)
∥ logQ1 − logQ2∥2

+ (1 + 1/α)
4∥A∥∥B∥

α
∥ logR1 − logR2∥2

(1 + 1/α)
4∥A∥∥B∥

α2
∥ log g1 − log g2∥2

Similarly we obtain that Then we obtain that

∥∇RFε(Q1, R1, g1)−∇RFε(Q2, R2, g2)∥2 ≤
(
4∥A∥∥B∥

α2
+ ε

)
∥ logR1 − logR2∥2

+ (1 + 1/α)
4∥A∥∥B∥

α
∥ logQ1 − logQ2∥2

(1 + 1/α)
4∥A∥∥B∥

α2
∥ log g1 − log g2∥2

Moreover we have

∥∇gFε(Q1, R1, g1)−∇gFε(Q2, R2, g2)∥2 ≤4∥D(QT
1AP1BR1)/g

2
1 −D(QT

2AP2BR2)/g
2
2∥

+ ε∥ log g1 − log g2∥

and

D(QT
1AP1BR1)/g

2
1 −D(QT

2AP2BR2)/g
2
2 =(1/g21 − 1/g22)D(QT

1AP1BR1)

+
1

g22
(D(QT

1AP1BR1)−D(QT
2AP2BR2)); .

Note also that

∥(1/g21 − 1/g22)D(QT
1AP1BR1)∥ ≤

2∥A∥∥B∥
α3

∥ log g1 − log g2∥
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and

QT
1AP1BR1 −QT

2AP2BR2 = (QT
1 −QT

2 )AP1BR1 +QT
2A(P1BR1 − P2BR2)

= (QT
1 −QT

2 )AP1BR1 +QT
2A((P1 − P2)BR1 + P2B(R1 −R2))

from which follows that

∥ 1
g22

(D(QT
1AP1BR1)−D(QT

2AP2BR2))∥ ≤
∥A∥∥B∥
α2

(∥ logQ1 − logQ2∥+ ∥ logR1 − logR2∥)

+
∥A∥∥B∥
α2

∥P1 − P2∥

and we obtain that

∥∇gFε(Q1, R1, g1)−∇gFε(Q2, R2, g2)∥2 ≤
(
4∥A∥∥B∥

α2
+

1

α

)
∥ logQ1 − logQ2∥

+

(
4∥A∥∥B∥

α2
+

1

α

)
∥ logR1 − logR2∥

+

(
4∥A∥∥B∥

α4
+

8∥A∥∥B∥
α3

+ ε

)
∥ log g1 − log g2∥

Finally we have

∥∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)∥22

≤ 3

[(
4∥A∥∥B∥

α2
+ ε

)2

+ (1 + 1/α)2
16∥A∥2∥B∥2

α2
+

(
4∥A∥∥B∥

α2
+

1

α

)2
]

×
(
∥ logQ1 − logQ2∥2 + ∥ logR1 − logR2∥2

)
+ 3

[
2(1 + 1/α)2

16∥A∥∥2B∥2

α4
+

(
4∥A∥∥B∥

α4
+

8∥A∥∥B∥
α3

+ ε

)2
]
∥ log g1 − log g2∥2

from which we obtain that

∥∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)∥22 ≤ L2
ε,α

(
∥ logQ1 − logQ2∥2 + ∥ logR1 − logR2∥2

)
+ L2

ε,α∥ log g1 − log g2∥2

and the result follows.

7.8 Double Regularization Scheme
Another way to stabilize the method is by considering a double regularization
scheme as proposed in [3] where in addition of constraining the nonnegative rank
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of the coupling, we regularize the objective by adding an entropic term in (Q,R, g),
which is to be understood as that of the values of the three respective entropies
evaluated for each term.

GW-LR(r)
ε,α((a,A), (b, B)) := min

(Q,R,g)∈C(a,b,r,α)
EA,B(Q diag(1/g)RT )− εH((Q,R, g)) .

(7.7)

Mirror Descent Scheme. We propose to use a MD scheme with respect
to the KL divergence to approximate GW-LR(r)

ε,α defined in (7.7). More precisely,
for any ε ≥ 0, the MD scheme leads for all k ≥ 0 to the following updates which
require solving a convex barycenter problem per step:

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C(a,b,r,α)

KL(ζ,Kk) (7.8)

where (Q0, R0, g0) ∈ C(a, b, r) is an initial point such that Q0 > 0 and R0 > 0, Pk :=
Qk diag(1/gk)R

T
k , Kk := (K

(1)
k , K

(2)
k , K

(3)
k ), K(1)

k := exp(4γAPkBRk diag(1/gk) −
(γε− 1) log(Qk)),
K

(2)
k := exp(4γBP T

k DQk diag(1/gk)− (γε− 1) log(Rk)), K
(3)
k := exp(−4γωk/g2k −

(γε − 1) log(gk)) with [ωk]i := [QT
kAPkBRk]i,i for all i ∈ {1, . . . , r} and γ is a

positive step size. Solving (7.6) can be done efficiently thanks to the Dykstra’s
Algorithm as showed in [3]. See Appendix 7.10 for more details.

Convergence of the mirror descent. Even if the objective (7.7) is not
convex in (Q,R, g), we obtain the non-asymptotic stationary convergence of the
MD algorithm in this setting. For that purpose we consider the same convergence
criterion as the one proposed in [3] to obtain non-asymptotic stationary convergence
of the MD scheme defined as

∆ε,α(ξ, γ) :=
1

γ2
(KL(ξ,Gε,α(ξ, γ)) + KL(Gε,α(ξ, γ), ξ))

where Gε,α(ξ, γ) := argminζ∈C(a,b,r,α){⟨∇EA,B(ξ), ζ⟩ + 1
γ
KL(ζ, ξ)}. For any 1/r ≥

α > 0, we show in the following proposition the non-asymptotic stationary conver-
gence of the MD scheme applied to the problem (7.7). See Appendix 7.7 for the
proof.

Proposition 7.8.1. Let ε ≥ 0, 1
r
≥ α > 0 and N ≥ 1. By denoting Lε,α :=

27(∥A∥2∥B∥2/α4+ε) and by considering a constant stepsize in the MD scheme (7.6)
γ = 1

2Lε,α
, we obtain that

min
1≤k≤N

∆ε,α((Qk, Rk, gk), γ) ≤
4Lε,αD0

N
.

where D0 := EA,B(Q0 diag(1/g0R
T
0 ) − GW-LR(r)((a,A), (b, B)) is the distance of

the initial value to the optimal one.
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7.9 Low-rank Approximation of Distance Matrices

Here we recall the algorithm used to perform a low-rank approximation of a distance
matrix [200, 201]. We use the implementation of [3].

Algorithm 13 LR-Distance(X, Y, r, γ) [200, 201]
Inputs: X, Y, r, γ
Choose i∗ ∈ {1, . . . , n}, and j∗{1, . . . ,m} uniformly at random.
For i = 1, . . . , n, pi ← d(xi, y

∗
j )

2 + d(x∗i , y
∗
j )

2 + 1
m

∑m
j=1 d(x

∗
i , yj)

2.
Independently choose i(1), . . . , i(t) according (p1, . . . , pn).
X(t) ← [xi(1) , . . . , xi(t) ], P

(t) ← [
√
tpi(1) , . . . ,

√
tpi(t) ], S ← d(X(t), Y )/P (t)

Denote S = [S(1), . . . , S(m)],
For j = 1, . . . ,m, qj ← ∥S(j)∥22/∥S∥2F
Independently choose j(1), . . . , j(t) according (q1, . . . , qm).
S(t) ← [Sj

(1)
, . . . , Sj

(t)
], Q(t) ← [

√
tqj(1) , . . . ,

√
tqj(t) ], W ← S(t)/Q(t)

U1, D1, V1 ← SVD(W ) (decreasing order of singular values).
N ← [U1(1), . . . , U

(r)
1 ], N ← STN/∥W TN∥F

Choose j(1), . . . , j(t) uniformly at random in {1, . . . ,m}.
Y (t) ← [yj(1) , . . . , yj(t) ], D

(t) ← d(X, Y (t))/
√
t.

U2, D2, V2 = SVD(NTN), U2 ← U2/D2, N
(t) ← [(NT )(j

(1)), . . . , (NT )(j
(t))], B ←

UT
2 N

(t)/
√
t, A← (BBT )−1.

Z ← AB(D(t))T , M ← ZTUT
2

Result: M,N

7.10 Nonnegative Low-rank Factorization of the
Couplings

In this section, we recall the algorithm presented in [3] to solve problem (7.6) where
we denote p1 := a and p2 := b.
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Algorithm 14 LR-Dykstra((K(i))1≤i≤3, p1, p2, α, δ) [3]

Inputs: K(1), K(2), g̃ := K(3), p1, p2, α, δ, q
(3)
1 = q

(3)
2 = 1r,∀i ∈ {1, 2}, ṽ(i) =

1r, q
(i) = 1r

repeat
u(i) ← pi/K

(i)ṽ(i) ∀i ∈ {1, 2},
g ← max(α, g̃ ⊙ q(3)1 ), q

(3)
1 ← (g̃ ⊙ q(3)1 )/g, g̃ ← g,

g ← (g̃ ⊙ q(3)2 )1/3
∏2

i=1(v
(i) ⊙ q(i) ⊙ (K(i))Tu(i))1/3,

v(i) ← g/(K(i))Tu(i) ∀i ∈ {1, 2},
q(i) ← (ṽ(i) ⊙ q(i))/v(i) ∀i ∈ {1, 2}, q(3)2 ← (g̃ ⊙ q(3)2 )/g,
ṽ(i) ← v(i) ∀i ∈ {1, 2}, g̃ ← g

until
∑2

i=1 ∥u(i) ⊙K(i)v(i) − pi∥1 < δ;
Q← diag(u(1))K(1) diag(v(1))
R← diag(u(2))K(2) diag(v(2))
Result: Q,R, g

7.11 Additional Experiements

7.11.1 Illustration

In Fig. 7.10, we show the time-accuracy tradeoffs of the two methods presented in
Figure 7.1 on the same example. We see that our method, Lin GW-LR, manages
to obtain similar accuracy as the one obtained by Quad Entropic-GW even when
the rank r = n/1000 while being much faster with order of magnitude.

Figure 7.10: Here n = m = 10000, and the ground cost considered is the squared
Euclidean distance. Note that for in that case we have an exact low-rank factor-
ization of the cost. Therefore we compare only Quad Entropic-GW and Lin
GW-LR. We plot the time-accuracy tradeoff when varying γ for multiple ranks r.
ε = 1/γ for Quad Entropic-GW and ε = 0 for Lin GW-LR.
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7.11.2 Effect of γ and α

In Fig. 5.6 and 7.11, we consider two Gaussian mixture densities in respectively
5-D and 10-D where we generate randomly the mean and covariance matrice of
each Gaussian density using the wishart distribution.

Figure 7.11: We consider n = m = 5000 samples of mixtures of (2 and 3) Gaussians
in resp. 5 and 10-D, endowed with the squared Euclidean metric, compared with
Lin LR. The time/loss tradeoff illustrated in these plots show that our method is
not impacted by step size α for both ranks r = n/100 and n/10.

7.11.3 Effect of the Rank

In this experiment we compare two isotropic Gaussian blobs with respectively 10
and 20 centers in 10-D and 15-D and n = m = 5000 samples. In Fig. 7.12, we show
the two first coordinates of the dataset considered.

7.11.4 Low-rank Problem

In Fig. 7.4, 7.6 and 7.7, we consider two distributions in respectively 10-D and
15-D where the support is a concatenation of clusters of points. In Fig. 7.13, we
show an illustration of the distributions considered in smaller dimensions.

7.11.5 Ground Truth Experiment

In this experiment we aim at comparing the different methods when the optimal
coupling solving the GW problem has a full rank. For that purpose we consider a
certain shape in 2-D which corresponds to the support of the source distribution
and we apply two isometric transformations to it, which are a rotation and a
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Figure 7.12: We consider two isotropic Gaussian blobs with respectively 10 and
20 centers in 10-D and 15-D and n = m = 5000 samples and we plot their 2 first
coordinates.

Figure 7.13: The source distribution and the target distribution live respectively in
R2 and R3. Both distributions have the same number of samples n = m = 10000,
the same number of clusters which is set to be 10 here, the same number of points
in each cluster, and we force the distance between the centroids of the cluster to
be larger than β = 10 in each distribution.

translation to obtain the support the target distribution. See Figure 7.14 (left)
for an illustration of the dataset. Here we set a and b to be uniform distributions
and the underlying cost is the squared Euclidean distance. Therefore the optimal
coupling solution of the GW problem is the identity matrix and the GW loss must
be 0. In Figure 7.15, we compare the time-accuracy tradeoffs, and we show that
even in that case, our methods obtain a better time-accuracy tradeoffs for all γ.
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Figure 7.14: We compare the couplings obtained when the ground truth is the
identity matrix in the same setting as in Figure 7.10. Here the comparison is done
when γ = 250. Left: illustration of the dataset considered. Middle left: we show
the coupling as well as the GW loss obtained by Quad Entropic-GW. Middle
right, right: we show the couplings and the GW losses obtained by Lin GW-LR
when the rank is respectively r = 10 and r = 100.

See also Figure 7.14 for a comparison of the couplings obtained by the different
methods.

Figure 7.15: The ground truth here is the identity matrix and the true GW loss to
achieve is 0. We set the number of samples to be n = m = 10000. As we consider
the squared Euclidean distance, only Quad Entropic-GW and Lin GW-LR are
compared. We plot the time-accuracy tradeoff when varying γ for multiple choices
of rank r. ε = 1/γ for Quad Entropic-GW and ε = 0 for Lin GW-LR.
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Part III

Applications of OT in Machine
Learning
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In this part, we show that OT can also offer new perspective on longstanding
ML problems once lifted into the set of distributions. We adopt this point of view
on two applied problems in fairness and robustness respectively and propose new
approaches to tackle them using OT. This part consists of two contributions.

• In a fifth contribution, we propose to relax and lift the fair cake-cutting
problem into the space of distributions and introduce an extension of the
OT problem when multiple costs are involved. Considering each cost (or
utility) as an agent, we aim to partition equitably resources between agents
according to their heterogeneous preferences. To do so, we aim to maximize
the utility of the least advantaged agent. This is a fair division problem. A
transportation point of view of this problem is when the goal is to share
equally between agents the work of transporting one distribution to another.
Here we minimize the transportation cost of the agent who works the most.
Like optimal transport, the problem can be cast as a linear optimization
problem. When there is only one agent, we recover OT. When two agents are
considered, we are able to recover Integral Probability Metrics (IPMs) defined
by α-Hölder functions, which include the widely-known Dudley metric. To
the best of our knowledge, this is the first time a link is given between the
Dudley metric and Optimal Transport.

• Finally in a sixth contribution, we tackles the problem of adversarial examples
using OT. By lifting the attacker into the space of distributions, we obtain
a variational formulation of the adversarial risk for deterministic as well
as random classifiers where the adversary is restricted to live in a specific
wasserstein ball. This new formulation of the adversarial risk allows us to
interpret the adversarial risk minimization problem as a two-player zero-sum
game between the attacker and the classifier. We then study the open question
of the existence of mixed Nash equilibria in this zero-sum game. While
previous works usually allow only one player to use randomized strategies, we
show the necessity of considering randomization for both the classifier and
the attacker. We demonstrate that this game has no duality gap, meaning
that it always admits approximate Nash equilibria. We also provide the first
optimization algorithms to learn a mixture of a finite number of classifiers
that approximately realizes the value of this game, i.e. procedures to build
an optimally robust randomize classifier.
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Chapter 8

Equitable and Optimal Transport
with Multiple Agents

We introduce an extension of the Optimal Transport problem when multiple costs
are involved. Considering each cost as an agent, we aim to share equally between
agents the work of transporting one distribution to another. To do so, we minimize
the transportation cost of the agent who works the most. Another point of view is
when the goal is to partition equitably goods between agents according to their
heterogeneous preferences. Here we aim to maximize the utility of the least advan-
taged agent. This is a fair division problem. Like Optimal Transport, the problem
can be cast as a linear optimization problem. When there is only one agent, we
recover the Optimal Transport problem. When two agents are considered, we are
able to recover Integral Probability Metrics defined by α-Hölder functions, which
include the widely-known Dudley metric. To the best of our knowledge, this is the
first time a link is given between the Dudley metric and Optimal Transport. We
provide an entropic regularization of that problem which leads to an alternative
algorithm faster than the standard linear program.

This chapter is based on [5].
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8.1 Introduction

Optimal Transport (OT) has gained interest last years in machine learning with
diverse applications in neuroimaging [44], generative models [134, 50], supervised
learning [92], word embeddings [226], reconstruction cell trajectories [56, 41] or
adversarial examples [227]. The key to use OT in these applications lies in the gain
of computation efficiency thanks to regularizations that smoothes the OT problem.
More specifically, when one uses an entropic penalty, one recovers the so called
Sinkhorn distances [76]. In this paper, we introduce a new family of variational prob-
lems extending the optimal transport problem when multiple costs are involved with
various applications in fair division of goods/work and operations research problems.

Fair division [94] has been widely studied by the artificial intelligence [95] and
economics [96] communities. Fair division consists in partitioning diverse resources
among agents according to some fairness criteria. One of the standard problems in
fair division is the fair cake-cutting problem [97, 98]. The cake is an heterogeneous
resource, such as a cake with different toppings, and the agents have heterogeneous
preferences over different parts of the cake, i.e., some people prefer the chocolate
toppings, some prefer the cherries, others just want a piece as large as possible.
Hence, taking into account these preferences, one might share the cake equitably
between the agents. A generalization of this problem, for which achieving fairness
constraints is more challenging, is when the splitting involves several heterogeneous
cakes, and where the agents have linked preferences over the different parts of the
cakes. This problem has many variants such as the cake-cutting with two cakes
[99], or the Multi Type Resource Allocation [100, 101]. In all these models it is
assumed that there is only one indivisible unit per type of resource available in
each cake, and once an agent choose it, he or she has to take it all. In this setting,
the cake can be seen as a set where each element of the set represents a type of
resource, for instance each element of the cake represents a topping. A natural
relaxation of these problems is when a divisible quantity of each type of resources is
available. We introduce EOT (Equitable and Optimal Transport), a formulation
that solves both the cake-cutting and the cake-cutting with two cakes problems in
this setting.

Our problem expresses as an optimal transportation problem. Hence, we prove
duality results and provide fast computation based on Sinkhorn algorithm. As
interesting properties, some Integral Probability Metrics (IPMs) [228] as Dudley
metric [219], or standard Wasserstein metric [30] are particular cases of the EOT
problem.
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Contributions. In this paper we introduce EOT an extension of Optimal Trans-
port which aims at finding an equitable and optimal transportation strategy between
multiple agents. We make the following contributions:

• In Section 8.3, we introduce the problem and show that it solves a fair division
problem where heterogeneous resources have to be shared among multiple
agents. We derive its dual and prove strong duality results. As a by-product,
we show that EOT is related to some usual IPMs families and in particular
the widely known Dudley metric.

• In Section 8.4, we propose an entropic regularized version of the problem,
derive its dual formulation, obtain strong duality. We then provide an efficient
algorithm to compute EOT. Finally we propose other applications of EOT
for Operations Research problems.

8.2 Related Work

Optimal Transport. Optimal transport aims to move a distribution towards
another at lowest cost. More formally, if c is a cost function on the ground space
X ×Y , then the relaxed Kantorovich formulation of OT is defined for µ and ν two
distributions as

OTc(µ, ν) := inf
γ

∫
X×Y

c(x, y)dγ(x, y)

where the infimum is taken over all distributions γ with marginals µ and ν. Kan-
torovich theorem states the following strong duality result under mild assump-
tions [30]

OTc(µ, ν) = sup
f,g

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)

where the supremum is taken over continuous bounded functions satisfying for
all x, y, f(x) + g(y) ≤ c(x, y). The question of considering an optimal transport
problem when multiple costs are involved has already been raised in recent works.
For instance, [229] proposed a robust Wasserstein distance where the distributions
are projected on a k-dimensional subspace that maximizes their transport cost. In
that sense, they aim to choose the most expensive cost among Mahalanobis square
distances with kernels of rank k. In articles [230, 231], the authors aim to learn a
cost given observed matchings by inversing the optimal transport problem [232].
In [233] the authors study “feature-robust” optimal transport, which can be also
seen as a robust cost selection for optimal transport. In articles [78, 6], the authors
learn an adversarial cost to train a generative adversarial network. Here, we do not
aim to consider a worst case scenario among the available costs but rather consider
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that the costs work together in order to split equitably the transportation problem
among them at lowest cost.

Entropic Relaxation of OT. Computing exactly the optimal transport cost
requires solving a linear program with a supercubic complexity (n3 log n) [172] that
results in an output that is not differentiable with respect to the measures’ locations
or weights [173]. Moreover, OT suffers from the curse of dimensionality [129, 71] and
is therefore likely to be meaningless when used on samples from high-dimensional
densities. Following the line of work introduced by [76], we propose an approximated
computation of our problem by regularizing it with an entropic term. Such
regularization in OT accelerates the computation, makes the problem differentiable
with regards to the distributions [130] and reduces the curse of dimensionality [51].
Taking the dual of the approximation, we obtain a smooth and convex optimization
problem under a simplicial constraint.

Fair Division. Fair division of goods has a long standing history in economics
and computational choice. A classical problem is the fair cake-cutting that consists
in splitting the cake between N individuals according to their heterogeneous
preferences. The cake X , viewed as a set, is divided in X1, . . . ,XN disjoint sets
among the N individuals. The utility for a single individual i for a slice S is denoted
Vi(S). It is often assumed that Vi(X ) = 1 and that Vi is additive for disjoint sets.
There exists many criteria to assess fairness for a partition X1, . . . ,XN such as
proportionality (Vi(Xi) ≥ 1/N), envy-freeness (Vi(Xi) ≥ Vi(Xj)) or equitability
(Vi(Xi) = Vj(Xj)). The cake-cutting problem has applications in many fields such
as dividing land estates, advertisement space or broadcast time. An extension of
the cake-cutting problem is the cake-cutting with two cakes problem [99] where two
heterogeneous cakes are involved. In this problem, preferences of the agents can be
coupled over the two cakes. The slice of one cake that an agent prefers might be
influenced by the slice of the other cake that he or she might also obtain. The goal
is to find a partition of the cakes that satisfies fairness conditions for the agents
sharing the cakes. Cloutier et al. [99] studied the envy-freeness partitioning. Both
the cake-cutting and the cake-cutting with two cakes problems assume that there
is only one indivisible unit of supply per element x ∈ X of the cake(s). Therefore
sharing the cake(s) consists in obtaining a paritition of the set(s). In this paper, we
show that EOT is a relaxation of the cutting cake and the cake-cutting with two
cakes problems, when there is a divisible amount of each element of the cake(s). In
that case, cakes are no more sets but distributions that we aim to divide between
the agents according to their coupled preferences.

250



Integral Probability Metrics. In our work, we make links with some integral
probability metrics. IPMs are (semi-)metrics on the space of probability measures.
For a set of functions F and two probability distributions µ and ν, they are defined
as

IPMF(µ, ν) = sup
f∈F

∫
fdµ−

∫
fdν.

For instance, when F is chosen to be the set of bounded functions with uniform
norm less or equal than 1, we recover the Total Variation distance [132] (TV).
They recently regained interest in the Machine Learning community thanks to
their application to Generative Adversarial Networks (GANs) [22] where IPMs are
natural metrics for the discriminator [133, 134, 135, 136]. They also helped to build
consistent two-sample tests [18, 137]. However when a closed form of the IPM is
not available, exact computation of IPMs between discrete distributions may not
be possible or can be costful. For instance, the Dudley metric can be written as
a Linear Program [138] which has at least the same complexity as standard OT.
Here, we show that the Dudley metric is in fact a particular case of our problem
and obtain a faster approximation thanks to the entropic regularization.

8.3 Equitable and Optimal Transport

Notations. Let Z be a Polish space, we denoteM(Z) the set of Radon measures
on Z. We callM+(Z) the sets of positive Radon measures, and P(Z) the set of
probability measures. We denote Cb(Z) the vector space of bounded continuous
functions on Z. Let X and Y be two Polish spaces. We denote for µ ∈M(X ) and
ν ∈M(Y), µ⊗ν the tensor product of the measures µ and ν, and µ≪ ν means that
ν dominates µ. We denote π1 : (x, y) ∈ X × Y 7→ x and π2 : (x, y) ∈ X × Y 7→ y
respectively the projections on X and Y, which are continuous applications. For
an application g and a measure µ, we denote g#µ the pushforward measure of µ
by g. For X and Y two Polish spaces, we denote LSC(X × Y) the space of lower
semi-continuous functions on X ×Y , LSC+(X ×Y) the space of non-negative lower
semi-continuous functions on X ×Y and LSC−

∗ (X ×Y) the set of negative bounded
below lower semi-continuous functions on X × Y . We also denote C+(X × Y) the
space of non-negative continuous functions on X × Y and C−

∗ (X × Y) the set of
negative continuous functions on X × Y. Let N ≥ 1 be an integer and denote
∆+
N := {λ ∈ RN

+ s.t.
∑N

i=1 λi = 1}, the probability simplex of RN . For two positive
measures of same mass µ ∈M+(X ) and ν ∈M+(Y), we define the set of couplings
with marginals µ and ν:

Π(µ, ν) := {γ s.t. π1#γ = µ , π2#γ = ν} .
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Figure 8.1: Equitable and optimal division of the resources between N = 3 different
negative costs (i.e. utilities) given by EOT. Utilities have been normalized. Blue
dots and red squares represent the different elements of resources available in each
cake. We consider the case where there is exactly one unit of supply per element
in the cakes, which means that we consider uniform distributions. Note that the
partition between the agents is equitable (i.e. utilities are equal) and proportional
(i.e. utilities are larger than 1/N).

We introduce the subset of (M+(X )×M+(Y))N representing marginal decompo-
sition:

ΥN(µ, ν) :=
{
(µi, νi)

N
i=1 s.t.

∑
i

µi = µ,
∑
i

νi = ν and ∀i, µi(X ) = νi(Y)
}
.

We also define the following subset ofM+(X ×Y)N corresponding to the coupling
decomposition:

ΓN(µ, ν) :=
{
(γi)

N
i=1 s.t. π1#

∑
γi = µ , π2#

∑
γi = ν

}
.

8.3.1 Primal Formulation

Consider a fair division problem where several agents aim to share two sets of
resources, X and Y , and assume that there is a divisible amount of each resource
x ∈ X (resp. y ∈ Y) that is available. Formally, we consider the case where
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resources are no more sets but rather distributions on these sets. Denote µ and
ν the distribution of resources on respectively X and Y. For example, one might
think about a situation where agents want to share fruit juices and ice creams and
there is a certain volume of each type of fruit juices and a certain mass of each type
of ice creams available. Moreover each agent defines his or her paired preferences
for each couple (x, y) ∈ X × Y . Formally, each person i is associated to an upper
semi-continuous mapping ui : X × Y −→ R+ corresponding to his or her preference
for any given pair (x, y). For example, one may prefer to eat chocolate ice cream
with apple juice, but may prefer pineapple juice when it comes with vanilla ice
cream. The total utility for an individual i and a pairing γi ∈M+(X × Y) is then
given by Vi(γi) :=

∫
uidγi. To partition fairly among individuals, we maximize the

minimum of individual utilities.

From a transport point of view, let assume that there are N workers available to
transport a distribution µ to another one ν. The cost of a worker i to transport
a unit mass from location x to the location y is ci(x, y). To partition the work
among the N workers fairly, we minimize the maximum of individual costs.

These problems are in fact the same where the utility ui, defined in the fair
division problem, might be interpreted as the opposite of the cost ci defined in the
transportation problem, i.e. for all i, ci = −ui. The two above problem motivate
the introduction of EOT defined as follows.

Definition 3 (Equitable and Optimal Transport). Let X and Y be Polish spaces.
Let c := (ci)1≤i≤N be a family of bounded below lower semi-continuous cost functions
on X × Y, and µ ∈ P(X ) and ν ∈ P(Y). We define the equitable and optimal
transport primal problem:

EOTc(µ, ν) := inf
(γi)

N
i=1∈ΓN (µ,ν)

max
i

∫
cidγi . (8.1)

We prove along with Theorem 8.3.1 that the problem is well defined and the
infimum is attained. Lower-semi continuity is a standard assumption in OT. In
fact, it is the weakest condition to prove Kantorovich duality [30, Chap. 1]. Note
that the problem defined here is a linear optimization problem and when N = 1
we recover standard optimal transport. Figure 8.1 illustrates the equitable and
optimal transport problem we consider. Figure 8.5 in Appendix 8.9 shows an
illustration with respect to the transport viewpoint in the exact same setting, i.e.
ci = −ui. As expected, the couplings obtained in the two situations are not the
same. We now show that in fact, EOT optimum satisfies equality constraints in
case of constant sign costs, i.e. total utility/cost of each individual are equal in the
optimal partition. See Appendix 8.6.2 for the proof.
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Proposition 8.3.1 (EOT solves the problem under equality constraints). Let X
and Y be Polish spaces. Let c := (ci)1≤i≤N ∈ LSC+(X × Y)N ∪ LSC−

∗ (X × Y)N ,
µ ∈ P(X ) and ν ∈ P(Y). Then the following are equivalent:

• (γ∗i )
N
i=1 ∈ ΓN(µ, ν) is solution of Eq. (8.1),

• (γ∗i )
N
i=1 ∈ argmin

(γi)
N
i=1∈ΓN (µ,ν)

{
t s.t. ∀i

∫
cidγi = t

}
.

Moreover, we have that

EOTc(µ, ν) = min
(γi)

N
i=1∈ΓN (µ,ν)

{
t s.t. ∀i

∫
cidγi = t

}
.

This property highly relies on the sign of the costs. For instance if two costs are
considered, one always positive and the other always negative, then the constraints
cannot be satisfied. When the cost functions are non-negatives, EOT refers to
a transportation problem while when the costs are all negatives, costs become
utilities and EOT refers to a fair division problem. The two points of view are
concordant, but proofs and interpretations rely on the sign of the costs.

8.3.2 An Equitable and Proportional Division

When the cost functions considered ci are all negatives, EOT become a fair division
problem where the utility functions are defined as ui := −ci. Indeed according to
Proposition 8.3.1, EOT solves

max
(γi)

N
i=1∈ΓN (µ,ν)

{
t s.t. ∀i,

∫
uidγi = t

}
.

Recall that in our model, the total utility of the agent i is given by Vi(γi) :=
∫
uidγi.

Therefore EOT aims to maximize the total utility of each agent i while ensuring
that they are all equal. Let us now analyze which fairness conditions the partition
induced by EOT verifies. Assume that the utilities are normalized, i.e., ∀i, there
exists γi ∈ P(X × Y) such that Vi(γi) = 1. For example one might consider
the cases where ∀i, γi = µ ⊗ ν or γi ∈ argminγ∈Πµ,ν

∫
cidγ. Then any solution

(γ∗i )
N
i=1 ∈ ΓNµ,ν of EOT satisfies:

• Proportionality: for all i, Vi(γ∗i ) ≥ 1/N ,

• Equitablity: for all i, j, Vi(γ∗i ) = Vj(γ
∗
j ).

Proportionality is a standard fair division criterion for which a resource is divided
among N agents, giving each agent at least 1/N of the heterogeneous resource by
his/her own subjective valuation. Therefore here, this situation corresponds to
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the case where the normalized utility of each agent is at least 1/N . Moreover, an
equitable division is a division of an heterogeneous resource, in which each partner
is equally happy with his/her share. Here this corresponds to the case where the
utility of each agent are all equal. The problem solved by EOT is a fair division
problem where heterogeneous resources have to be shared among multiple agents
according to their preferences. This problem is a relaxation of the two cake-cutting
problem when there are a divisible amount of each item of the cakes. In that case,
cakes are distributions and EOT makes a proportional and equitable partition of
them. Details are left in Appendix 8.6.2.

Fair Cake-cutting. Consider the case where the cake is an heterogeneous resource
and there is a certain divisible quantity of each type of resource available. For
example chocolate and vanilla are two types of resource present in the cake for
which a certain mass is available. In that case, each type of resource in the cake is
pondered by the actual quantity present in the cake. Up to a normalization, the
cake is no more the set X but rather a distribution on this set. Note that for the
two points of view to coincide, it suffices to assume that there is exactly the same
amount of mass for each type of resources available in the cake. In that case, the
cake can be represented by the uniform distribution over the set X , or equivalently
the set X itself. When cakes are distributions, the fair cutting cake problem can
be interpreted as a particular case of EOT when the utilities of the agents do not
depend on the variable y ∈ Y . In short, we consider that utilities are functions of
the form ui(x, y) = vi(x) for all (x, y) ∈ X × Y . The normalization of utilities can
be cast as follows: ∀i, Vi(µ) =

∫
vi(x)dµ(x) = 1. Then Proposition 8.3.1 shows

that the partition of the cake made by EOT is proportional and equitable. Note
that for EOT to coincide with the classical cake-cutting problem, one needs to
consider that the uniform masses of the cake associated to each type of resource
cannot be splitted. This can be interpreted as a Monge formulation [30] of EOT
which is out of the scope of this paper.

8.3.3 Optimality of EOT

We next investigate the coupling obtained by solving EOT. In the next proposition,
we show that under the same assumptions of Proposition 8.3.1, EOT solutions are
optimal transportation plans. See Appendix 8.6.3 for the proof.

Proposition 8.3.2 (EOT realizes optimal plans). Under the same conditions of
Proposition 8.3.1, for any (γ∗i )

N
i=1 ∈ ΓN(µ, ν) solution of Eq. (8.1), we have for all

i ∈ {1, . . . , N}

γ∗i ∈ argmin
γ∈Π(µ∗i ,ν

∗
i )

∫
cidγ where µ∗

i := π1#γ
∗
i , ν

∗
i := Π2#γ

∗
i , (8.2)
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and
EOTc(µ, ν) = min

(µi,νi)
N
i=1∈ΥN (µ,ν)

t s.t. ∀i OTci(µi, νi) = t . (8.3)

Given the optimal matchings (γ∗i )
N
i=1 ∈ ΓN(µ, ν), one can easily obtain the

partition of the agents of each marginals. Indeed for all i, µ∗
i := π1#γ

∗
i and

ν∗i := π2#γ
∗
i represent respectively the portion of the agent i from distributions µ

and ν.

Remark 10 (Utilitarian and Optimal Transport). To contrast with EOT, an
alternative problem is to maximize the sum of the total utilities of agents, or
equivalently minimize the sum of the total costs of agents. This problem can be cast
as follows:

inf
(γi)

N
i=1∈ΓN (µ,ν)

∑
i

∫
cidγi (8.4)

Here one aims to maximize the total utility of all the agents, while in EOT we aim
to maximize the total utility per agent under egalitarian constraint. The solution
of (8.4) is not fair among agents and one can show that this problem is actually
equal to OTmini(ci)(µ, ν). Details can be found in Appendix 8.8.1.

8.3.4 Dual Formulation

Let us now introduce the dual formulation of the problem and show that strong
duality holds under some mild assumptions. See Appendix 8.6.4 for the proof.

Theorem 8.3.1 (Strong Duality). Let X and Y be Polish spaces. Let c := (ci)
N
i=1

be bounded below lower semi-continuous costs. Then strong duality holds, i.e. for
(µ, ν) ∈ P(X )× P(Y):

EOTc(µ, ν) = sup
λ∈∆+

N

(f,g)∈Fλ
c

∫
fdµ+

∫
gdν (8.5)

where Fλc := {(f, g) ∈ Cb(X )× Cb(Y) s.t. ∀i ∈ {1, ..., N}, f ⊕ g ≤ λici}.

This theorem holds under the same hypothesis and follows the same reasoning as
the one in [30, Theorem 1.3]. While the primal formulation of the problem is easy to
understand, we want to analyse situations where the dual variables also play a role.
For that purpose we show in the next proposition a simple characterisation of the
primal-dual optimality in case of constant sign cost functions. See Appendix 8.6.5
for the proof.
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Figure 8.2: Left, middle left, middle right : the size of dots and squares is pro-
portional to the weight of their representing atom in the distributions µ∗

k and ν∗k
respectively. The utilities f ∗

k and g∗k for each point in respectively µ∗
k and ν∗k are

represented by the color of dots and squares according to the color scale on the right
hand side. The gray dots and squares correspond to the points that are ignored by
agent k in the sense that there is no mass or almost no mass in distributions µ∗

k or
ν∗k . Right : the size of dots and squares are uniform since they correspond to the
weights of uniform distributions µ and ν respectively. The values of f ∗ and g∗ are
given also by the color at each point. Note that each agent gets exactly the same
total utility, corresponding exactly to EOT. This value can be computed using
dual formulation (8.5) and for each figure it equals the sum of the values (encoded
with colors) multiplied by the weight of each point (encoded with sizes).

Proposition 8.3.3. Let X and Y be compact Polish spaces. Let c := (ci)1≤i≤N ∈
C+(X ×Y)N ∪C−

∗ (X ×Y)N , µ ∈ P(X ) and ν ∈ P(Y). Let also (γk)
N
k=1 ∈ ΓN (µ, ν)

and (λ, f, g) ∈ ∆+
n × Cb(X ) × Cb(Y). Then Eq. (8.5) admits a solution and the

following are equivalent:

• (γk)
N
k=1 is a solution of Eq. (8.1) and (λ, f, g) is a solution of Eq. (8.5).

• 1. ∀i ∈ {1, ..., N}, f ⊕ g ≤ λici

2. ∀i, j ∈ {1, ..., N}
∫
cidγi =

∫
cjdγj

3. f ⊕ g = λici γi-a.e.

Remark 11. It is worth noting that when we assume that c := (ci)1≤i≤N ∈ C+
∗ (X ×

Y)N ∪C−
∗ (X ×Y)N , then we can refine the second point of the equivalence presented

in Proposition 8.3.3 by adding the following condition: ∀i ∈ {1, ..., N} λi ̸= 0.

Given two distributions of resources represented by the measures µ and ν, and
N utility functions denoted (ui)

N
i=1, we want to find an equitable and stable partition

among the agents in case of transferable utilities. Let k be an agent. We say that
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his or her utility is transferable when once x ∈ X and y ∈ Y get matched, he or she
has to decide how to split his or her associated utility uk(x, y) . She or he divides
uk(x, y) into a quantity fk(x) which can be seen as the utility of having x and gk(y)
for having y. Therefore in that problem we ask for (γk, fk, gk)

N
k=1 such that

uk(x, y) = fk(x) + gk(y) γk-a.e. (8.6)

Moreover, for the partition to be stable [234], we want to ensure that, for every
agent k, none of the resources x ∈ X and y ∈ Y that have not been matched
together for this agent would increase their utilities, fk(x) and gk(y), if there
were matched together in the current matching instead. Formally we ask that for
k ∈ {1, . . . , N} and all (x, y) ∈ X × Y ,

fk(x) + gk(y) ≥ uk(x, y) . (8.7)

Indeed if there exist k, x and y such that uk(x, y) > fk(x) + gk(y), then x and y
will not be matched together in the share of the agent k and he can improve his
utility for both x and y by matching x with y.

Finally we aim to share equitably the resources among the agents which boils
down to ask

∀i, j ∈ {1, ..., N}
∫
uidγi =

∫
ujdγj (8.8)

Thanks to Proposition 8.3.3, finding (γk, fk, gk)
N
k=1 satisfying (8.6), (8.7) and (8.8)

can be done by solving Eq. (8.1) and Eq. (8.5). Indeed let (γk)
N
k=1 an optimal

solution of Eq. (8.1) and (λ, f, g) an optimal solution of Eq. (8.5). Then by denoting
for all k = 1, . . . , N , fk = f

λk
and gk = g

λk
, we obtain that (γk, fk, gk)

N
k=1 solves the

equitable and stable partition problem in case of transferable utilities. Note that
again, we end up with equality constraints for the optimal dual variables. Indeed, for
all i, j ∈ {1, . . . , N}, at optimality we have

∫
fi + gidγi =

∫
fj + gjdγj . Figure 8.2

illustrates this formulation of the problem with dual potentials. Figure 8.7 in
Appendix 8.9 shows the dual solutions with respect to the transport viewpoint in
the exact same setting, i.e. ci = −ui. Once again, the obtained solutions differ.

8.3.5 Link with other Probability Metrics

In this section, we provide some topological properties on the object defined by the
EOT problem. In particular, we make links with other known probability metrics,
such as Dudley and Wasserstein metrics and give a tight upper bound.

When N = 1, recall from the definition (8.1) that the problem considered is
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exactly the standard OT problem. Moreover any EOT problem with k ≤ N costs
can always be rewritten as a EOT problem with N costs. See Appendix 8.8.2 for
the proof. From this property, it is interesting to note that, for any N ≥ 1, EOT
generalizes standard Optimal Transport.

Optimal Transport. Given a cost function c, if we consider the problem EOT
with N costs such that, for all i, ci = N × c then, the problem EOTc is exactly
OTc. See Appendix 8.8.2 for the proof.

Now we have seen that all standard OT problems are sub-cases of the EOT
problem, one may ask whether EOT can recover other families of metrics different
from standard OT. Indeed we show that the EOT problem recovers an important
family of IPMs with supremum taken over the space of α-Hölder functions with
α ∈ (0, 1]. See Appendix 8.6.6 for the proof.

Proposition 8.3.4. Let X be a Polish space. Let d be a metric on X 2 and α ∈ (0, 1].
Denote c1 = 2 × 1x ̸=y, c2 = dα and c := (c1, (N − 1) × c2, ..., (N − 1) × c2) ∈
LSC(X × X )N then for any (µ, ν) ∈ P(X )× P(X )

EOTc(µ, ν) = sup
f∈Bdα (X )

∫
X
fdµ−

∫
X
fdν (8.9)

where Bdα(X ) :=
{
f ∈ Cb(X ): ∥f∥∞ + ∥f∥α ≤ 1

}
and ∥f∥α := supx ̸=y

|f(x)−f(y)|
dα(x,y)

.

Dudley Metric. When α = 1, then for (µ, ν) ∈ P(X )× P(X ), we have

EOTc(µ, ν) = EOT(c1,d)(µ, ν) = βd(µ, ν)

where βd is the Dudley Metric [219]. In other words, the Dudley metric can be
interpreted as an equitable and optimal transport between the measures with
the trivial cost and a metric d. We acknowledge that [235] made a link between
Unbalanced Optimal Transport and the “flat metric”, an IPM close to the Dudley
metric, defined on the space {f : ∥f∥∞ ≤ 1, ∥f∥1 ≤ 1}.

Weak Convergence. When d is an unbounded metric on X , it is well known
that OTdp with p ∈ (0,+∞) metrizes a convergence a bit stronger than weak
convergence [30, Chap. 7]. A sufficient condition for Wasserstein distances to
metrize weak convergence on the space of distributions is that the metric d is
bounded. In contrast, metrics defined by Eq. (8.9) do not require such assumptions
and EOT(1x ̸=y ,dα) metrizes the weak convergence of probability measures [30, Chap.
1-7].
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For an arbitrary choice of costs (ci)1≤i≤N , we obtain a tight upper control of
EOT and show how it is related to the OT problem associated to each cost
involved. See Appendix 8.6.7 for the proof.

Proposition 8.3.5. Let X and Y be Polish spaces. Let c := (ci)1≤i≤N be a family
of nonnegative lower semi-continuous costs. For any (µ, ν) ∈ P(X )× P(Y)

EOTc(µ, ν) ≤

(
N∑
i=1

1

OTci(µ, ν)

)−1

(8.10)

Proposition 8.3.5 means that the minimal cost to transport all goods under
the constraint that all workers contribute equally is lower than the case where
agents share equitably and optimally the transport with distributions µi and νi
respectively proportional to µ and ν, which equals the harmonic sum written in
Equation (8.10).

Example. Applying the above result in the case of the Dudley metric recovers the
following inequality [138, Proposition 5.1]

βd(µ, ν) ≤
TV(µ, ν)OTd(µ, ν)

TV(µ, ν) + OTd(µ, ν)
.

8.4 Entropic Relaxation

In their original form, as proposed by Kantorovich [32], Optimal Transport distances
are not a natural fit for applied problems: they minimize a network flow problem,
with a supercubic complexity (n3 log n) [172]. Following the work of [76], we propose
an entropic relaxation of EOT, obtain its dual formulation and derive an efficient
algorithm to compute an approximation of EOT.

8.4.1 Primal-Dual Formulation

Let us first extend the notion of Kullback-Leibler divergence for positive Radon
measures. Let Z be a Polish space, for µ, ν ∈M+(Z), we define the generalized
Kullback-Leibler divergence as KL(µ, ν) =

∫
log dµ

dν
dµ+

∫
dν −

∫
dµ if µ≪ ν, and

+∞ otherwise. We introduce the following regularized version of EOT.

Definition 4 (Entropic relaxed primal problem). Let X and Y be two Polish
spaces, c := (ci)1≤i≤N a family of bounded below lower semi-continuous costs lower
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semi-continuous costs on X × Y and ε := (εi)1≤i≤N be non negative real numbers.
For (µ, ν) ∈ P(X )× P(Y), we define the EOT regularized primal problem:

EOTε
c(µ, ν) := inf

γ∈ΓN (µ,ν)
max
i

∫
cidγi +

N∑
j=1

εjKL(γj, µ⊗ ν)

Note that here we sum the generalized Kullback-Leibler divergences since
our objective is function of N measures in M+(X × Y). This problem can be
compared with the one from standard regularized OT. In the case where N = 1,
we recover the standard regularized OT. For N ≥ 1, the underlying problem is∑N

i=1 εi−strongly convex. Moreover, we prove the essential property that as ε→ 0,
the regularized problem converges to the standard problem. See Appendix 8.8.3
for the full statement and the proof. As a consequence, entropic regularization is a
consistent approximation of the original problem we introduced in Section 8.3.1.
Next theorem shows that strong duality holds for lower semi-continuous costs and
compact spaces. This is the basis of the algorithm we will propose in Section 8.4.2.
See Appendix 8.6.8 for the proof.

Theorem 8.4.1 (Duality for the regularized problem). Let X and Y be two compact
Polish spaces, c := (ci)1≤i≤N a family of bounded below lower semi-continuous costs
on X ×Y and ε := (εi)1≤i≤N be non negative numbers. For (µ, ν) ∈ P(X )×P(Y),
strong duality holds:

EOTε
c(µ, ν) = sup

λ∈∆+
N

sup
f∈Cb(X )
g∈Cb(Y)

∫
fdµ+

∫
gdν (8.11)

−
N∑
i=1

εi

(∫
e

f(x)+g(y)−λici(x,y)

εi dµ(x)dν(y)− 1

)
and the infimum of the primal problem is attained.

As in standard regularized optimal transport there is a link between primal
and dual variables at optimum. Let γ∗ solving the reguralized primal problem and
(f ∗, g∗, λ∗) solving the dual one:

∀i, γ∗i = exp

(
f ∗ + g∗ − λ∗i ci

εi

)
· µ⊗ ν

.
8.4.2 Proposed Algorithms

We can now present algorithms obtained from entropic relaxation to approximately
compute the solution of EOT. Let µ =

∑n
i=1 aiδxi and ν =

∑m
j=1 bjδyj be discrete
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Algorithm 15 Projected Alternating Maximization
Input: C = (Ci)1≤i≤N , a, b, ε, Lλ
Init: f 0 ← 1n; g0 ← 1m; λ0 ← (1/N, ..., 1/N) ∈ RN

for k = 1, 2, ... do

Kk ←
∑N

i=1K
λk−1
i

i ,
ck ← ⟨fk−1, Kkgk−1⟩, fk ← cka

Kkgk−1 ,

dk ← ⟨fk, Kkgk−1⟩, gk ← dkb
(Kk)T fk

,

λk ← Proj∆+
N

(
λk−1 + 1

Lλ
∇λF

ε
C(λ

k−1, fk, gk)
)
.

end
Result: λ, f, g

probability measures where a ∈ ∆+
n , b ∈ ∆+

m, {x1, ..., xn} ⊂ X and {y1, ..., ym} ⊂ Y .
Moreover for all i ∈ {1, . . . , N} and λ > 0, define C := (Ci)1≤i≤N ∈ (Rn×m)

N with
Ci := (ci(xk, yl))k,l the N cost matrices and Kλ

i := exp (−λCi/ε). Assume that
ε1 = · · · = εN = ε. Compared to the standard regularized OT, the main difference
here is that the problem contains an additional variable λ ∈ ∆+

N . When N = 1,
one can use Sinkhorn algorithm. However when N ≥ 2, we do not have a closed
form for updating λ when the other variables of the problem are fixed. In order
to enjoy from the strong convexity of the primal formulation, we consider instead
the dual associated with the equivalent primal problem given when the additional
trivial constraint 1Tn (

∑
i Pi)1m = 1 is considered. In that the dual obtained is

EOTε
c(µ, ν) = sup

λ∈∆+
N

f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩ − ε

[
log

(∑
i

⟨ef/ε, Kλi
i e

g/ε⟩

)
+ 1

]

We show that the new objective obtained above is smooth w.r.t (λ, f, g). See
Appendix 8.8.4 for the proof. One can apply the accelerated projected gradient
ascent [236, 237] which enjoys an optimal convergence rate for first order methods
of O(k−2) for k iterations.

It is also possible to adapt Sinkhorn algorithm to our problem. See Algorithm 15.
We denoted by Proj∆+

N
the orthogonal projection on ∆+

N [238], whose complex-
ity is in O(N logN). The smoothness constant in λ in the algorithm is Lλ =
maxi ∥Ci∥2∞/ε. In practice Alg. 15 gives better results than the accelerated gradient
descent. Note that the proposed algorithm differs from the Sinkhorn algorithm in
many points and therefore the convergence rates cannot be applied here. Analyzing
the rates of a projected alternating maximization method is, to the best of our
knowledge, an unsolved problem. Further work will be devoted to study the con-
vergence of this algorithm. We illustrate Algorithm 15 by showing the convergence
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Figure 8.3: Comparison of the time-accuracy tradeoffs between the different pro-
posed algorithms. Left: we consider the case where the number of days is N = 2,
the size of support for both measures is n = m = 100 and we vary ε from 0.005 to
0.5. Middle: we fix n = m = 100 and the regularization ε = 0.05 and we vary the
number of days N from 3 to 5. Right: the setting considered is the same as in the
figure in the middle, however we increase the sample size such that n = m = 500.
Note that in that case, LP is too costly to be computed.

of the regularized version of EOT towards the ground truth when ε → 0 in the
case of the Dudley Metric. See Figure 8.8 in Appendix 8.9.

8.5 Other applications of EOT

Minimal Transportation Time. Assume there are N internet service providers
who propose different debits to transport data across locations, and one needs to
transfer data from multiple servers to others, the fastest as possible. We assume
that ci(x, y) ≥ 0 corresponds to the transportation time needed by provider i
to transport one unit of data from a server x to a server y. For instance, the
unit of data can be one Megabit. Then

∫
cidγi corresponds the time taken by

provider i to transport µi = Π1♯γi to νi = Π2♯γi. Assuming the transportation
can be made in parallel and given a partition of the transportation task (γi)

N
i=1,

maxi
∫
cidγi corresponds to the total time of transport the data µ = Π1♯

∑
γi to the

locations ν = Π2♯

∑
γi according to this partition. Then EOT, which minimizes

maxi
∫
cidγi, is finding the fastest way to transport the data from µ to ν by splitting

the task among the N internet service providers. Note that at optimality, all the
internet service providers finish their transportation task at the same time (see
Proposition 8.3.1).

Sequential Optimal Transport. Consider the situation where an agent aims
to transport goods from some stocks to some stores in the next N days. The cost
to transport one unit of good from a stock located at x to a store located at y
may vary across the days. For example the cost of transportation may depend on
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the price of gas, or the daily weather conditions. Assuming that he or she has a
good knowledge of the daily costs of the N coming days, he or she may want a
transportation strategy such that his or her daily cost is as low as possible. By
denoting ci the cost of transportation the i-th day, and given a strategy (γi)

N
i , the

maximum daily cost is then maxi
∫
cidγi, and EOT therefore finds the cheapest

strategy to spread the transport task in the next N days such that the maximum
daily cost is minimized. Note that at optimality he or she has to spend the exact
same amount everyday.

In Figure 8.3 we aim to simulate the Sequential OT problem and compare the
time-accuracy trade-offs of the proposed algorithms. Let us consider a situation
where one wants to transport merchandises from µ = 1

n

∑n
i=1 δxi to ν = 1

m

∑m
j=1 δyj

in N days. Here we model the locations {xi} and {yj} by drawing them inde-
pendently from two Gaussian distributions in R2: ∀i, xi ∼ N (( 3

3 ), (
0 1
1 0 )) and

∀j, yj ∼ N
(
( 4
4 ),
(

1 −.2
−.2 1

))
. We assume that everyday there is wind modeled

by a vector w ∼ U(B(0, 1)) where B(0, 1) is the unit ball in R2 that is per-
fectly known in advance. We define the cost of transportation on day i as
ci(x, y) = ∥y − x∥ − 0.7⟨wi, y − x⟩ to model the effect of the wind on the trans-
portation cost. In the following figures we plot the estimates of EOT obtained
from the proposed algorithms in function of the runtime for various sample sizes n,
number of days N and regularizations ε. PAM denotes Alg. 15, APGA denotes
Alg. 16 (See Appendix C.4), LP denotes the linear program which solves exactly
the primal formulation of the EOT problem. Note that when LP is computable
(i.e. n ≤ 100), it is therefore the ground truth. We show that in all the settings,
PAM performs better than APGA and provides very high accuracy with order of
magnitude faster than LP.
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Supplementary material

8.6 Proofs

8.6.1 Notations

Let Z be a Polish space, we denoteM(Z) the set of Radon measures on Z endowed
with total variation norm: ∥µ∥TV = µ+(Z) + µ−(Z) with (µ+, µ−) is the Dunford
decomposition of the signed measure µ. We callM+(Z) the sets of positive Radon
measures, and P(Z) the set of probability measures. We denote Cb(Z) the vector
space of bounded continuous functions on Z endowed with ∥·∥∞ norm. We recall
the Riesz-Markov theorem: if Z is compact,M(Z) is the topological dual of Cb(Z).
Let X and Y be two Polish spaces. It is immediate that X × Y is a Polish space.
We denote for µ ∈M(X ) and ν ∈M(Y), µ⊗ ν the tensor product of the measures
µ and ν, and µ≪ ν means that ν dominates µ. We denote π1 : (x, y) ∈ X ×Y 7→ x
and π2 : (x, y) ∈ X × Y 7→ y respectively the projections on X and Y, which are
continuous applications. For an application g and a measure µ, we denote g♯µ
the pushforward measure of µ by g. For f : X → R and g : Y → R, we denote
f ⊕ g : (x, y) ∈ X × Y 7→ f(x) + g(y) the tensor sum of f and g. For X and
Y two Polish spaces, we denote LSC(X × Y) the space of lower semi-continuous
functions on X ×Y , LSC+(X ×Y) the space of non-negative lower semi-continuous
functions on X × Y and LSC−

∗ (X × Y) the set of negative bounded below lower
semi-continuous functions on X × Y . Let N ≥ 1 be an integer and denote
∆+
N := {λ ∈ RN

+ s.t.
∑N

i=1 λi = 1}, the probability simplex of RN . For two positive
measures of same mass µ ∈M+(X ) and ν ∈M+(Y), we define the set of couplings
with marginals µ and ν:

Π(µ, ν) := {γ s.t. π1♯γ = µ , π2♯γ = ν} .
For µ ∈ P(X ) and ν ∈ P(Y), we introduce the subset of (M+(X ) ×M+(Y))N
representing marginal decomposition:

ΥN(µ, ν) :=
{
(µi, νi)

N
i=1 s.t.

∑
i µi = µ,

∑
i νi = ν and ∀i, µi(X ) = νi(Y)

}
.

We also define the following subset ofM+(X ×Y)N corresponding to the coupling
decomposition:

ΓN(µ, ν) :=

{
(γi)

N
i=1 s.t. π1♯

∑
i

γi = µ , π2♯
∑
i

γi = ν

}
.

8.6.2 Proof of Proposition 8.3.1

Proof. First, it is clear that EOTc(µ, ν) ≥ infγ∈ΓN (µ,ν){t s.t. ∀i, t =
∫
cidγi}. Let

us now show that in fact it is an equality. Thanks to Theorem 8.3.1, the infimum
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is attained for infγ∈Γµ,ν maxi
∫
cidγi. Indeed recall that ΓN(µ, ν) is compact and

that the objective is lower semi-continuous. Let γ∗ be such a minimizer. Let I be
the set of indices i such that

∫
cidγ

∗
i = EOTc(µ, ν). Assume that there exists j

such that, EOTc(µ, ν) >
∫
cjdγ

∗
j .

In case of costs of LSC+(X × Y), for all i ∈ I, there exists (xi, yi) ∈ Supp(γ∗i )
such that ci(xi, yi) > 0. Let us denote A(xi,yi) measurable sets such that (xi, yi) ∈
A(xi,yi) and let us denote γ̃ defined as for all k /∈ I ∪ {j}, γ̃k = γ∗k, for i ∈ I,
γ̃i = γ∗i − ϵ1A(xi,yi)

γ∗i and γ̃j = γ∗j +
∑

i∈I ϵ1A(xi,yi)
γ∗i for ϵ sufficiently small so

that γ̃ ∈ ΓN(µ, ν). Now, maxk
∫
ckdγ

∗
k > maxk

∫
ckdγ̃k, which contradicts that

γ∗ is a minimizer. Then for i, j,
∫
cidγ

∗
i =

∫
cjdγ

∗
j . And then: EOTc(µ, ν) =

infγ∈ΓN (µ,ν) maxi
∫
cidγi.

In case of costs in LSC−
∗ (X × Y), there exists (x0, y0) ∈ Supp(γ∗j ) such that

cj(x0, y0) < 0. Let us denote A(x0,y0) a measurable set such that (x0, y0) ∈ A(x0,y0)

and let us denote γ̃ defined as for all k /∈ I ∪ {j}, γ̃k = γ∗k and for all i ∈ I,
γ̃i = γ∗i +

ϵ
|I|1A(x0,y0)

γ∗j and γ̃j = γ∗j − ϵ1A(x0,y0)
γ∗j for ϵ sufficiently small so that

γ̃ ∈ ΓN(µ, ν). Now, maxk
∫
ckdγ

∗
k > maxk

∫
ckdγ̃i, which contradicts that γ∗

is a minimizer. Then for i, j,
∫
cidγ

∗
i =

∫
cjdγ

∗
j . And then: EOTc(µ, ν) =

infγ∈ΓN (µ,ν) maxi
∫
cidγi.

It is clear that equitability is verified thanks to the previous proof. For pro-
portionality, assume the normalization: ∀i, there exists γi ∈ P(X × Y) such that
Vi(γi) = 1. Then for each i, Vi(γi/N) = 1/N and (γi)i ∈ ΓN(µ, ν). Then at
optimum: ∀i, Vi(γ∗i ) ≥ 1/N and proportionality is verified.

8.6.3 Proof of Proposition 8.3.2

Proof. We prove along with Theorem 8.3.1 that the infimum defining EOTc(µ, ν)
is attained. Let γ∗ be this infimum. Then at optimum we have shown that for all
i, j,

∫
cidγ

∗
i =

∫
cjdγ

∗
j = t. Let denote for all i, µi = π1♯γ

∗
i and νi = π2♯γ

∗
i .

Let assume there exists i such that
∫
cidγ

∗
i > OTci(µi, νi). Let γ′i realising

the infimum of OTci(µi, νi). Let ϵ > 0 be sufficiently small, then let define γ̃
as follows: for all j ̸= i, γ̃j = (1 − ϵ)γ∗j . and γ̃i = γ′i + ϵ

∑
j ̸=i γ

∗
j . Then for all

j ̸= i,
∫
cjdγ̃j = (1 − ϵ)t and

∫
cidγ̃i = OTci(µi, νi) + ϵ

∑
j ̸=i
∫
cidγ

∗
j . It is clear

that γ̃ ∈ ΓN(µ, ν). For ϵ > 0 sufficiently small, maxi
∫
cidγ̃i = (1− ϵ)t < t, which

contradicts the optimality of γ∗.
A possible reformulation for EOT is:

EOTc(µ, ν) = min
(µi,νi)

N
i=1∈ΥN (µ,ν)

∀i, γi∈π(µ,ν)

{
t s.t.

∫
cidγi = t

}
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We previously show that at optimum the couplings are optimal transport plans,
then:

EOTc(µ, ν) = min
(µi,νi)

N
i=1∈ΥN (µ,ν)

{t s.t. ∀i, OTci(µi, νi) = t}

which concludes the proof.

8.6.4 Proof of Theorem 8.3.1

To prove this theorem, one need to prove the three following technical lemmas.
The first one shows the weak compacity of ΓN(µ, ν).

Lemma 9. Let X and Y be Polish spaces, and µ and ν two probability measures
respectively on X and Y. Then ΓN(µ, ν) is sequentially compact for the weak
topology induced by ∥γ∥ = max

i=1,..,N
∥γi∥TV.

Proof. Let (γn)n≥0 a sequence in ΓN(µ, ν), and let us denote for all n ≥ 0, γn =
(γni )

N
i=1. We first remark that for all i ∈ {1, ..., N} and n ≥ 0, ∥γni ∥TV ≤ 1 therefore

for all i ∈ {1, ..., N}, (γni )n≥0 is uniformly bounded. Moreover as {µ} and {ν} are
tight, for any δ > 0, there exist K ⊂ X and L ⊂ Y compact sets such that

µ(Kc) ≤ δ

2
and ν(Lc) ≤ δ

2
. (8.12)

Therefore, we obtain that for any for all i ∈ {1, ..., N},

γni (K
c × Lc) ≤

N∑
k=1

γnk (K
c × Lc) (8.13)

≤
N∑
k=1

γnk (K
c × Y) + γnk (X × Lc) (8.14)

≤ µ(Kc) + ν(Lc) = δ. (8.15)

Therefore, for all i ∈ {1, ..., N}, (γni )n≥0 is tight and uniformly bounded and
Prokhorov’s theorem [239, Theorem A.3.15] guarantees for all i ∈ {1, ..., N}, (γni )n≥0

admits a weakly convergent subsequence. By extracting a common convergent
subsequence, we obtain that (γn)n≥0 admits a weakly convergent subsequence.
By continuity of the projection, the limit also lives in ΓN(µ, ν) and the result
follows.

Next lemma generalizes Rockafellar-Fenchel duality to our case.
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Lemma 10. Let V be a normed vector space and V ∗ its topological dual. Let
V1, ..., VN be convex functions and lower semi-continuous on V and E a convex
function on V . Let V ∗

1 , ...V
∗
N , E

∗ be the Fenchel-Legendre transforms of V1, ...VN , E.
Assume there exists z0 ∈ V such that for all i, Vi(z0) <∞, E(z0) <∞, and for all
i, Vi is continuous at z0. Then:

inf
u∈V

∑
i

Vi(u) + E(u) = sup
γ1...,γN ,γ∈V ∗∑

i γi=γ

−
∑
i

V ∗
i (−γi)− E∗(γ)

Proof. This Lemma is an immediate application of Rockafellar-Fenchel duality
theorem [240, Theorem 1.12] and of Fenchel-Moreau theorem [240, Theorem 1.11].

Indeed, V =
N∑
i=1

Vi(u) is a convex function, lower semi-continuous and its Legendre-

Fenchel transform is given by:

V ∗(γ∗) = inf
N∑
i=1

γ∗i =γ
∗

N∑
i=1

V ∗
i (γ

∗
i ). (8.16)

Last lemma is an application of Sion’s Theorem to this problem.

Lemma 11. Let X and Y be Polish spaces. Let c = (ci)1≤i≤N be a family of
bounded below lower semi-continuous costs on X × Y, then for µ ∈ P(X ) and
ν ∈ P(Y), we have

EOTc(µ, ν) = sup
λ∈∆+

N

inf
γ∈ΓN

µ,ν

N∑
i=1

λi

∫
X×Y

ci(x, y)dγi(x, y) (8.17)

and the infimum is attained.

Proof. Taking for granted that a minmax principle can be invoked, we have

sup
λ∈∆+

N

inf
γ∈ΓN

µ,ν

N∑
i=1

λi

∫
X×Y

ci(x, y)dγi(x, y) = inf
γ∈ΓN

µ,ν

sup
λ∈∆+

N

N∑
i=1

λi

∫
X×Y

ci(x, y)dγi(x, y)

= EOTc(µ, ν)

But thanks to Lemma 9, we have that ΓNµ,ν is compact for the weak topology. And
∆+
N is convex. Moreover the objective function f : (λ, γ) ∈ ∆+

N × ΓN(µ, ν) 7→∑N
i=1 λi

∫
X×Y c

n
i dγi is bilinear, hence convex and concave in its variables, and

continuous with respect to λ. Moreover, let (cni )n be non-decreasing sequences of
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bounded cost functions such that ci = supn c
n
i . By monotone convergence, we get

f(λ, γ) = supn
∑

i λi
∫
cni dγi, f(λ, .). So f the supremum of continuous functions,

then f is lower semi-continuous with respect to γ, therefore Sion’s minimax theorem
[241] holds.

We are now able to prove Theorem 8.3.1.

Proof. Let X and Y be two Polish spaces. For all i ∈ {1, .., N}, we define ci :
X ×Y → R a bounded below lower-semi cost function. The proof follows the exact
same steps as those in the proof of [30, Theorem 1.3]. First we suppose that X
and Y are compact and that for all i, ci is continuous, then we show that it can be
extended to X and Y non compact and finally to ci only lower semi continuous.

First, let assume X and Y are compact and that for all i, ci is continuous. Let
fix λ ∈ ∆+

N . We recall the topological dual of the space of bounded continuous
functions Cb(X × Y) endowed with ∥.∥∞ norm, is the space of Radon measures
M(X × Y) endowed with total variation norm. We define, for u ∈ Cb(X × Y):

V λ
i (u) =

{
0 if u ≥ −λici

+∞ else

and:

E(u) =

{∫
fdµ+

∫
gdν if ∃(f, g) ∈ Cb(X )× Cb(Y), u = f + g

+∞ else

One can show that for all i, V λ
i is convex and lower semi-continuous (as the sublevel

sets are closed) and Eλ is convex. More over for all i, these functions continuous
in u0 ≡ 1 the hypothesis of Lemma 10 are satisfied.

Let now compute the Fenchel-Legendre transform of these function. Let γ ∈
M(X × Y) :

V λ∗
i (−γ) = sup

u∈Cb(X×Y)

{
−
∫
udγ; u ≥ −λici

}
=

{∫
λicidγ if γ ∈M+(X × Y)
+∞ otherwise

On the other hand:

Eλ∗(γ) =

{
0 if ∀(f, g) ∈ Cb(X )× Cb(Y),

∫
fdµ+

∫
gdν =

∫
(f + g)dγ

+∞ else

269



This dual function is finite and equals 0 if and only if that the marginals of the
dual variable γ are µ and ν.

Applying Lemma 10, we get:

inf
u∈Cb(X×Y)

∑
i

V λ
i (u) + E(u) = sup

γ1,...,γN ,γ∈M(X×Y)∑
γi=γ

∑
−V λ∗

i (γi)− Eλ∗(−γ)

Hence, we have shown that, when X and Y are compact sets, and the costs
(ci)i are continuous:

sup
(f,g)∈Fλ

c

∫
fdµ+

∫
gdν = inf

γ∈ΓN (µ,ν)

∑
i

λi

∫
cidγi

Let now prove the result holds when the spaces X and Y are not compact. We
still suppose that for all i, ci is uniformly continuous and bounded. We denote
∥c∥∞ := supi sup(x,y)∈X×Y |ci(x, y)|. Let define Iλ(γ) :=

∑
i λi
∫
X×Y cidγi

Let γ∗ ∈ ΓN(µ, ν) such that Iλ(γ∗) = minγ∈ΓN (µ,ν) I
λ(γ). The existence of the

minimum comes from the lower-semi continuity of Iλ and the compacity of ΓN (µ, ν)
for weak topology.

Let fix δ ∈ (0, 1). X and Y are Polish spaces then ∃X0 ⊂ X ,Y0 ⊂ Y compacts
such that µ(X c

0 ) ≤ δ and µ(Yc0) ≤ δ. It follows that ∀i, γ∗i ((X0 × Y0)
c) ≤ 2δ. Let

define γ∗0 such that for all i, γ∗0i =
1X0×Y0∑

i γ
∗
i (X0×Y0)

γ∗i . We define µ0 = π1#
∑

i γ
∗0
i and

ν0 = π2#
∑

i γ
∗0
i . We then naturally define

ΓN0 (µ0, ν0) :=

{
(γi)1≤i≤N ∈M+(X0 × Y0)

N s.t. π1#
∑
i

γi = µ0 and π2#
∑
i

γi = ν0

}
and

Iλ0 (γ0) :=
∑
i

λi

∫
X0×Y0

cidγ0,i forγ0 ∈ ΓN0 (µ0, ν0)

.
Let γ̃0 verifying Iλ0 (γ̃0) = minγ0∈ΓN

0 (µ0,ν0) I
λ
0 (γ0). Let γ̃ = (

∑
i γ

∗
i (X0 × Y0)) γ̃0 +

1(X0×Y0)cγ
∗ ∈ ΓN(µ, ν). Then we get

Iλ(γ̃) ≤ min
γ0∈ΓN

0,µ0,ν0

Iλ0 (γ0) + 2
∑
|λi|∥c∥∞δ

We have already proved that:

sup
(f,g)∈Fλ

0,c

Jλ0 (f, g) = inf
γ0∈ΓN

0,µ0,ν0

Iλ0 (γ0)
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with Jλ0 (f, g) =
∫
fdµ0 +

∫
gdν0 and Fλ0,c is the set of (f, g) ∈ Cb(X0)× Cb(Y0)

satisfying, for every i, f ⊕ g ≤ mini λici. Let (f̃0, g̃0) ∈ Fλ0,c such that :

Jλ0 (f̃0, g̃0) ≥ sup
(f,g)∈Fλ

0,c

Jλ0 (f, g)− δ

Since Jλ0 (0, 0) = 0, we get sup Jλ0 ≥ 0 and then, Jλ0 (f̃0, g̃0) ≥ δ ≥ −1. For every
γ0 ∈ ΓN0,µ0,ν0 :

Jλ0 (f̃0, g̃0) =

∫
(f̃0(x) + g̃0(y))dγ0(x, y)

then we have the existence of (x0, y0) ∈ X0 × Y0 such that : f̃0(x0) + g̃0(y0) ≥ −1.
If we replace (f̃0, g̃0) by (f̃0 − s, g̃0 + s) for an accurate s, we get that: f̃0(x0) ≥ 1

2

and g̃0(y0) ≥ 1
2
, and then ∀(x, y) ∈ X0 × Y0:

f̃0(x) ≤ c′(x, y0)− g̃0(y0) ≤ c′(x, y0) +
1

2

g̃0(y) ≤ c′(x0, y)− f̃0(x0) ≤ c′(x0, y) +
1

2

where c′ := mini λici. Let define f̄0(x) = infy∈Y0 c
′(x, y)− g̃0(y) for x ∈ X . Then

f̃0 ≤ f̄0 on X0. We then get Jλ0 (f̄0, g̃0) ≥ Jλ0 (f̃0, g̃0) and f̄0 ≤ c′(., y0) +
1
2

on X . Let
define ḡ0(y) = infx∈X c

′(x, y)− f̄0(y). By construction (f0, g0) ∈ Fλc since the costs
are uniformly continuous and bounded and Jλ0 (f̄0, ḡ0) ≥ Jλ0 (f̄0, g̃0) ≥ Jλ0 (f̃0, g̃0).
We also have ḡ0 ≥ c′(x0, .) +

1
2

on Y . Then we have in particular: ḡ0 ≥ −∥c∥∞ − 1
2

on X and f̄0 ≥ −∥c∥∞ − 1
2

on Y . Finally:

271



Jλ(f̄0, ḡ0) :=

∫
X0

f̄dµ0 +

∫
Y0

ḡ0dν

=
∑
i

γ∗i (X0 × Y0)

∫
X0×Y0

(f̄0(x) + ḡ0(y))d

(∑
i

γ∗0i (x, y)

)

+

∫
(X0×Y0)c

f̄0(x) + ḡ0(y)d

(∑
i

γ∗i (x, y)

)

≥ (1− 2δ)

(∫
X0

f̄0dµ0 +

∫
Y0

ḡ0dν0

)
− (2∥c∥∞ + 1)

∑
i

γ∗((X0 × Y0)
c)

≥ (1− 2δ)Jλ0 (f̄0, ḡ0)− 2
∑
|λi|(2∥c∥∞ + 1)δ

≥ (1− 2δ)Jλ0 (f̃0, g̃0)− 2
∑
|λi|(2∥c∥∞ + 1)δ

≥ (1− 2δ)(inf Iλ0 − δ)− 2
∑
|λi|(2∥c∥∞ + 1)δ

≥ (1− 2δ)(inf Iλ − (2
∑
|λi|∥c∥∞ + 1)δ)− 2

∑
|λi|(2∥c∥∞ + 1)δ

This being true for arbitrary small δ, we get sup Jλ ≥ inf Iλ. The other sens is
always true then:

sup
(f,g)∈Fλ

c

∫
fdµ+

∫
gdν = inf

γ∈ΓN (µ,ν)

∑
i

λi

∫
cidγi

for ci uniformly continuous and X and Y non necessarily compact.

Let now prove that the result holds for lower semi-continuous costs. Let c := (ci)i
be a collection of lower semi-continuous costs. Let (cni )n be non-decreasing sequences
of bounded below cost functions such that ci = supn c

n
i . Let fix λ ∈ ∆+

N . From last
step, we have shown that for all n:

inf
γ∈ΓN (µ,ν)

Iλn(γ) = sup
(f,g)∈Fλ

cn

∫
fdµ+

∫
gdν (8.18)

where Iλn(γ) =
∑

i λi
∫
cni dγi. First it is clear that:

sup
(f,g)∈Fλ

c

∫
fdµ+

∫
gdν ≤ sup

(f,g)∈Fλ
cn

∫
fdµ+

∫
gdν (8.19)

Let show that:

inf
γ∈ΓN (µ,ν)

Iλ(γ) = sup
n

inf
γ∈ΓN (µ,ν)

Iλn(γ) = lim
n

inf
γ∈ΓN (µ,ν)

Iλn(γ)
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where Iλ(γ) =
∑

i λi
∫
cidγi.

Let (γn,k)k a minimizing sequence of ΓN (µ, ν) for the problem infγ∈ΓN (µ,ν)

∑
i λi
∫
cni dγi.

By Lemma 9, up to an extraction, there exists γn ∈ ΓN(µ, ν) such that (γn,k)k
converges weakly to γn. Then:

inf
γ∈ΓN (µ,ν)

Iλn(γ) = Iλn(γ
n)

Up to an extraction, there also exists γ∗ ∈ ΓN (µ, ν) such that γn converges weakly
to γ∗. For n ≥ m, Iλn(γn) ≥ Iλm(γ

n) ≥ Iλm(γ
m), so by continuity of Iλm:

lim
n
Iλn(γ

n) ≥ lim sup
n

Iλm(γ
n) ≥ Iλm(γ

∗)

By monotone convergence, Iλm(γ∗)→ Iλ(γ∗) and limn I
λ
n(γn) ≥ Iλ(γ∗) ≥ infγ∈ΓN (µ,ν) I

λ(γ).
Along with Eqs. 8.18 and 8.19, we get that:

inf
γ∈ΓN (µ,ν)

Iλ(γ) ≤ sup
(f,g)∈Fλ

c

∫
fdµ+

∫
gdν

The other sens being always true, we have then shown that, in the general case we
still have:

inf
γ∈ΓN (µ,ν)

Iλ(γ) = sup
(f,g)∈Fλ

c

∫
fdµ+

∫
gdν

To conclude, we apply Lemma 11, and we get:

sup
λ∈∆+

N

sup
(f,g)∈Fλ

c

∫
fdµ+

∫
gdν = sup

λ∈∆+
N

inf
γ∈ΓN (µ,ν)

Iλ(γ)

= EOTc(µ, ν)

8.6.5 Proof of Proposition 8.3.3

Proof. Let recall that, from standard optimal transport results:

EOTc(µ, ν) = sup
u∈Φc

∫
udµdν

with Φc :=
{
u ∈ Cb(X × Y) s.t. ∃λ ∈ ∆+

N , ∃ϕ ∈ Cb(X ), u = ϕcc ⊕ ϕc with c = mini λici
}

where ϕc is the c-transform of ϕ, i.e. for y ∈ Y , ϕc(y) = infx∈X c(x, y)− ϕ(x).
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Let denote ω1, . . . , ωN the continuity modulii of c1, ..., cN . The existence of
continuity modulii is ensured by the uniform continuity of c1, . . . , cN on the compact
sets X ×Y (Heine’s theorem). Then a modulus of continuity for mini λici is

∑
i λiωi.

As ϕc and ϕcc share the same modulus of continuity than c = mini λici, for u is
Φc, a common modulus of continuity is 2×

∑
i ωi. More over, it is clear that for

all x, y, {u(x, y) s.t. u ∈ Φc} is compact. Then, applying Ascoli’s theorem, we get,
that Φc is compact for ∥.∥∞ norm. By continuity of u→

∫
udµdν, the supremum

is attained, and we get the existence of the optimum u∗. The existence of optima
(λ∗, f ∗, g∗) immediately follows.

Let first assume that (γk)Nk=1 is a solution of Eq. (8.1) and (λ, f, g) is a solution
of Eq. (8.5). Then it is clear that for all i, j, f ⊕ g ≤ λici, (γk)Nk=1 ∈ ΓN(µ, ν)
and

∫
cjdγj =

∫
cidγi (by Proposition 8.3.1). Let k ∈ {1, . . . , N}. Moreover, by

Theorem 8.3.1:

0 =

∫
fdµ+

∫
gdν −

∫
cidγi

=
∑∫

(f(x) + g(y))dγi(x, y)−
∑
i

λi

∫
ci(x, y)dγi(x, y)

=
∑∫

(f(x) + g(y)− λici(x, y))dγi(x, y)

Since f ⊕ g ≤ λici and γi are positive measures then f ⊕ g = λici, γi-almost
everywhere.

Reciprocally, let assume that there exist (γk)Nk=1 ∈ ΓN (µ, ν) and (λ, f, g) ∈ ∆+
n ×

Cb(X )× Cb(Y) such that ∀i ∈ {1, ..., N}, f ⊕ g ≤ λici, ∀i, j ∈ {1, ..., N}
∫
cidγi =∫

cjdγj and f ⊕ g = λici γi-a.e.. Then, for any k:

∫
ckdγk =

∑
i

λi

∫
cidγi

=
∑
i

∫
(f(x) + g(y))dγi(x, y)

=

∫
f(x)dµ(x) +

∫
g(y)dν(y)

≤ EOTc(µ, ν) by Theorem 8.3.1

then γk is solution of the primal problem. We also have for any k:
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∫
fdµ+

∫
gdν =

∑
i

∫
(f(x) + g(y))dγi(x, y)

=
∑
i

∫
λicidγi

=

∫
ckdγk

≥ EOTc(µ, ν)

then, thanks to Theorem 8.3.1, (λ, f, g) is solution of the dual problem.
Let now proof the result stated in Remark 11. Let assume the costs are strictly

positive or strictly negative. If there exist i such that λi = 0, thanks to the
condition f ⊕ g ≤ λici, we get f ⊕ g ≤ 0 and then f ⊕ g = 0 which contradicts the
conditions f ⊕ g = λkck for all k.

8.6.6 Proof of Proposition 8.3.4

Before proving the result let us first introduce the following lemma.

Lemma 12. Let X and Y be Polish spaces. Let c := (ci)1≤i≤N a family of bounded
below continuous costs. For (x, y) ∈ X × Y and λ ∈ ∆+

N , we define

cλ(x, y) := min
i=1,...,N

(λici(x, y))

then for any (µ, ν) ∈ P(X )× P(Y)

EOTc(µ, ν) = sup
λ∈∆+

N

OTcλ(µ, ν) (8.20)

Proof. Let (µ, ν) ∈ P(X )×P(Y) and c := (ci)1≤i≤N cost functions on X ×Y . Let
λ ∈ ∆+

N , then by Proposition 8.3.1:

EOTc(µ, ν) = sup
λ∈∆+

N

sup
(f,g)∈Fλ

c

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)

Therefore by denoting cλ := mini(λici) which is a continuous. The dual form of
the classical Optimal Transport problem gives that:

sup
(f,g)∈Fλ

c

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y) = OTcλ(µ, ν)

and the result follows.
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Let us now prove the result of Proposition 8.3.4.

Proof. Let µ and ν be two probability measures. Let α ∈ (0, 1]. Note that if d is a
metric then dα too. Therefore in the following we consider d a general metric on
X × X . Let c1 : (x, y)→ 2× 1x ̸=y and c2 = dα. For all λ ∈ [0, 1):

cλ(x, y) := min(λc1(x, y), (1− λ)c2(x, y)) = min(2λ, (1− λ)d(x, y))

defines a distance on X × X . Then according to [30, Theorem 1.14]:

OTcλ(µ, ν) = sup
f s.t. f 1−cλ Lipschitz

∫
fdµ−

∫
fdν

Then thanks to Lemma 12 we have

EOT(c1,c2)(µ, ν) = sup
λ∈[0,1],f s.t. f 1−cλ Lipschitz

∫
fdµ−

∫
fdν

Let now prove that in this case: EOT(c1,c2)(µ, ν) = βd(µ, ν). Let λ ∈ [0, 1)
and f a cλ Lipschitz function. f is lower bounded: let m = inf f and (un)n
a sequence satisfying f(un) → m. Then for all x, y, f(x) − f(y) ≤ 2λ and
f(x)− f(y) ≤ (1− λ)d(x, y). Let define g = f −m− λ. For x fixed and for all n,
f(x)− f(un) ≤ 2λ, so taking the limit in n we get f(x)−m ≤ 2λ. So we get that
for all x, y, g(x) ∈ [−λ,+λ] and g(x) − g(y) ∈ [−(1 − λ)d(x, zy), (1 − λ)d(x, y)].
Then , g,∞≤ λ and , g,d≤ 1− λ. By construction, we also have

∫
fdµ−

∫
fdν =∫

gdµ−
∫
gdν.Then , g,∞ +, g,d≤ 1. So we get that EOT(c1,c2)(µ, ν) ≤ βd(µ, ν).

Reciprocally, let g be a function satisfying , g,∞ +, g,d≤ 1. Let define f = g+, g,∞
and λ =, g,∞. Then, for all x, y, f(x) ∈ [0, 2λ] and so f(x) − f(y) ≤ 2λ. It
is immediate that f(x) − f(y) ∈ [−(1 − λ)d(x, y), (1 − λ)d(x, y)]. Then we get
f(x)− f(y) ≤ min(λ, (1− λ)d(x, y)). And by construction, we still have

∫
fdµ−∫

fdν =
∫
gdµ−

∫
gdν. So EOT(c1,c2)(µ, ν) ≥ βd(µ, ν).

Finally we get EOT(c1,c2)(µ, ν) = βd(µ, ν) when c1 : (x, y) → 2 × 1x ̸=y and
c2 = d a distance on X × X .

8.6.7 Proof of Proposition 8.3.5

Lemma 13. Let x1, . . . , xN ≥ 0, then:

sup
λ∈∆+

N

min
i
λixi =

1∑
i

1
xi

Proof. First if there exists i such that xi = 0, we immediately have supλ∈∆+
N
mini λixi =

0.
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g : λ 7→ mini λixi is a continuous function on the compact set λ ∈ ∆+
N . Let denote

λ∗ the maximum of g.
Let show that for all i, j, λ∗ixi = λ∗jxj. Let denote i0, . . . , ik the indices such that
λ∗ilxil = mini λ

∗
ixi. Let assume there exists j0 such that: λ∗j0xj0 > mini λ

∗
ixi, and

that all other indices i have a larger λ∗ixi ≥ λ∗j0xj0 . Then for ϵ > 0 sufficiently
small, let λ̃ defined as: λ̃j0 = λ∗j0 − ϵ, λ̃il = λ∗il + ϵ/k for all l ∈ {1, . . . , k} and
λ̃i = λ∗i for all other indices. Then λ̃ ∈ ∆+

N and g(λ∗) < g(λ̃), which contradicts
that λ∗ is the maximum.
Then at the optimum for all i, j, λ∗ixi = λ∗jxj. So λ∗ixi = C for a certain constant
C. Moreover

∑
i λ

∗
i = 1. Then 1/C =

∑
i 1/xi. Finally, for all i,

λ∗i =
1/xi∑
i 1/xi

and then:

sup
λ∈∆+

N

min
i
λixi =

1∑
i

1
xi

.

Proof. Let µ and ν be two probability measures respectively on X and Y. Let
c := (ci)i be a family of cost functions. Let define for λ ∈ ∆+

N , cλ(x, y) :=
mini(λici(x, y)). We have, by linearity OTcλ(µ, ν) ≤ mini(λiOTci(µ, ν)). So we
deduce by Lemma 12:

EOTc(µ, ν) = sup
λ∈∆+

N

OTcλ(µ, ν)

≤ sup
λ∈∆+

N

min
i
λiOTci(µ, ν)

=
1∑

i
1

OTci (µ,ν)

by Lemma 13

which concludes the proof.

8.6.8 Proof of Theorem 8.4.1

Proof. To show the strong duality of the regularized problem, we use the same
sketch of proof as for the strong duality of the original problem. Let first assume
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that, for all i, ci is continuous on the compact set X × Y. Let fix λ ∈ ∆+
N . We

define, for all u ∈ Cb(X × Y):

V λ
i (u) = εi

(∫
(x,y)∈X×Y

exp
−u(x, y)− λici(x, y)

εi
dµ(x)dν(y)− 1

)
and:

E(u) =

{∫
fdµ+

∫
gdν if ∃(f, g) ∈ Cb(X )× Cb(Y), u = f + g

+∞ else

Let compute the Fenchel-Legendre transform of these functions. Let γ ∈M(X×Y):

V λ∗
i (−γ) = sup

u∈Cb(X×Y)

−
∫
udγ − εi

(∫
(x,y)∈X×Y

exp
−u(x, y)− λici(x, y)

εi
dµ(x)dν(y)− 1

)
However, by density of Cb(X × Y) in L1

dµ⊗ν(X × Y), the set of integrable functions
for µ⊗ ν measure, we deduce that

V λ∗
i (−γ) = sup

u∈L1
dµ⊗ν(X×Y)

−
∫
udγ − εi

(∫
(x,y)∈X×Y

exp
−u(x, y)− λici(x, y)

εi
dµ(x)dν(y)− 1

)
This supremum equals +∞ if γ is not positive and not absolutely continuous with
regard to µ⊗ ν. Let us now denote

Fγ,λ(u) := −
∫
udγ − εi

(∫
(x,y)∈X×Y

exp
−u(x, y)− λici(x, y)

εi
dµ(x)dν(y)− 1

)
.

Fγ,λ∗ is Fréchet differentiable and its maximum is attained for u∗ = εi log
(

dγ
dµ⊗ν

)
+

λici. Therefore we obtain that

V λ∗
i (−γ) = εi

(∫
log

(
dγ

dµ⊗ ν

)
dγ + 1− γ(X × Y)

)
+ λi

∫
cidγ

= λi

∫
cidγ + εiKL(γi, µ× ν)

Thanks to the compactness of X × Y , all the V λ
i for i ∈ {1, ..., N} are continuous

on Cb(X × Y). Therefore by applying Lemma 10, we obtain that:

inf
u∈Cb(X×Y)

∑
i

V λ
i (u) + E(u) = sup

γ1...,γN ,γ∈M(X×Y)∑
i γi=γ

−
∑
i

V λ∗
i (γi)− E∗(−γ)
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sup
f∈Cb(X ), g∈Cb(Y)

∫
fdµ+

∫
gdν

−
N∑
i=1

εi

(∫
(x,y)∈X×Y

exp
f(x) + g(y)− λici(x, y)

εi
dµ(x)dν(y)− 1

)

= inf
γ∈ΓN (µ,ν)

N∑
i=1

λi

∫
cidγi + εiKL(γi, µ⊗ ν)

Therefore by considering the supremum over the λ ∈ ∆N , we obtain that

sup
λ∈∆+

N

sup
f∈Cb(X ), g∈Cb(Y)

∫
fdµ+

∫
gdν

−
N∑
i=1

εi

(∫
(x,y)∈X×Y

exp
f(x) + g(y)− λici(x, y)

εi
dµ(x)dν(y)− 1

)

= sup
λ∈∆+

N

inf
γ∈ΓN (µ,ν)

N∑
i=1

λi

∫
cidγi + εiKL(γi, µ⊗ ν)

Let f : (λ, γ) ∈ ∆+
N ×ΓN (µ, ν) 7→

∑N
i=1 λi

∫
cidγi+ εiKL(γi, µ⊗ ν). f is clearly

concave and continuous in λ. Moreover γ 7→ KL(γi, µ ⊗ ν) is convex and lower
semi-continuous for weak topology [239, Lemma 1.4.3]. Hence f is convex and
lower-semi continuous in γ. ∆+

N is convex, and ΓN(µ, ν) is compact for weak
topology (see Lemma 9). So by Sion’s theorem, we get the expected result:

min
γ∈ΓN (µ,ν)

sup
λ∈∆+

N

∑
i

λi

∫
cidγi +

∑
i

εiKL(γi, µ⊗ ν)

= sup
λ∈∆+

N

sup
(f,g)∈Cb(X )×Cb(Y)

∫
X
f(x)dµ(x) +

∫
Y
g(y)dν(y)

−
N∑
i=1

εi

(∫
X×Y

e
f(x)+g(y)−λici(x,y)

εi dµ(x)dν(y)− 1

)
Moreove by fixing γ ∈ ΓN(µ, ν), we have

sup
λ∈∆+

N

∑
i

λi

∫
cidγi +

∑
i

εiKL(γi, µ⊗ ν)

= max
i

∫
cidγi +

∑
j

εjKL(γj, µ⊗ ν)
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which concludes the proof in case of continuous costs. A similar proof as the one
of the Theorem 8.4.1 allows to extend the results for lower semi-continuous cost
functions.
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8.7 Discrete cases

8.7.1 Exact discrete case

Let a ∈ ∆+
N and b ∈ ∆+

m and C := (Ci)1≤i≤N ∈ (Rn×m)
N be N cost matrices. Let

also X := {x1, ..., xn} and Y := {y1, ..., ym} two subset of X and Y respectively.
Moreover we define the two following discrete measure µ =

∑n
i=1 aiδxi and ν =∑n

i=1 biδyi and for all i, Ci = (ci(xk, yl))1≤k≤n,1≤l≤m where (ci)
N
i=1 a family of cost

functions. The discretized multiple cost optimal transport primal problem can be
written as follows:

EOTc(µ, ν) = inf
P∈ΓN

a,b

max
i
⟨Pi, Ci⟩

where ΓNa,b :=
{
(Pi)1≤i≤N ∈

(
Rn×m

+

)N s.t. (
∑

i Pi)1m = a and (
∑

i P
T
i )1n = b

}
. As

in the continuous case, strong duality holds and we can rewrite the dual in the
discrete case also.

Proposition 8.7.1 (Duality for the discrete problem). Let a ∈ ∆+
N and b ∈ ∆+

m

and C := (Ci)1≤i≤N ∈ (Rn×m)
N be N cost matrices. Strong duality holds for the

discrete problem and

EOTc(µ, ν) = sup
λ∈∆+

N

sup
(f,g)∈Fλ

C

⟨f, a⟩+ ⟨g, b⟩.

where FλC := {(f, g) ∈ Rn
+ × Rm

+ s.t. ∀i ∈ {1, ..., N}, f1Tm + 1ng
T ≤ λiCi}.

8.7.2 Entropic regularized discrete case

We now extend the regularization in the discrete case. Let a ∈ ∆+
n and b ∈ ∆+

m and
C := (Ci)1≤i≤N ∈ (Rn×m)

N be N cost matrices and ε = (εi)1≤i≤N be nonnegative
real numbers. The discretized regularized primal problem is:

EOTε
c(µ, ν) = inf

P∈ΓN
a,b

max
i
⟨Pi, Ci⟩ −

N∑
i=1

εiH(Pi)

where H(P ) =
∑

i,j Pi,j(logPi,j − 1) for P = (Pi,j)i,j ∈ Rn×m
+ is the discrete entropy.

In the discrete case, strong duality holds thanks to Lagrangian duality and Slater
sufficient conditions:

Proposition 8.7.2 (Duality for the discrete regularized problem). Let a ∈ ∆+
n

and b ∈ ∆+
m and C := (Ci)1≤i≤N ∈ (Rn×m)

N be N cost matrices and ε := (εi)1≤i≤N
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be non negative reals. Strong duality holds and by denoting Kλi
i = exp (−λiCi/εi),

we have

EOTε
c(µ, ν) = sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩ −
N∑
i=1

εi⟨ef/εi , Kλi
i e

g/εi⟩.

The objective function for the dual problem is strictly concave in (λ, f, g) but
is neither smooth or strongly convex.

Proof. The proofs in the discrete case are simpler and only involves Lagrangian
duality [242, Chapter 5]. Let do the proof in the regularized case, the one for the
standard problem follows exactly the same path.

Let a ∈ ∆+
N and b ∈ ∆+

m and C := (Ci)1≤i≤N ∈ (Rn×m)
N be N cost matrices.

EOTε
c(µ, ν) = inf

P∈ΓN
a,b

max
1≤i≤N

⟨Pi, Ci⟩ −
N∑
i=1

εiH(Pi)

= inf
(t,P )∈R×(Rn×m

+ )
N

(
∑

i Pi)1m=a

(
∑

i P
T
i )1n=b

∀j, ⟨Pj ,Cj⟩≤t

t−
N∑
i=1

εiH(Pi)

= inf
(t,P )∈R×(Rn×m

+ )
N

sup
f∈Rn, g∈Rm, λ∈RN

+

t+
N∑
j=1

λj(⟨Pj, Cj⟩ − t)−
N∑
i=1

εiH(Pi)

+ fT

(
a−

∑
i

Pi1m

)
+ gT

(
b−

∑
i

P T
i 1n

)

The constraints are qualified for this convex problem, hence by Slater’s sufficient
condition [242, Section 5.2.3], strong duality holds and:

EOTε
c(µ, ν) = sup

f∈Rn, g∈Rm, λ∈RN
+

inf
(t,P )∈R×(Rn×m

+ )
N
t+

N∑
j=1

λj(⟨Pj, Cj⟩ − t)−
N∑
j=1

εjH(Pj)

+ fT

(
a−

N∑
j=1

Pi1m

)
+ gT

(
b−

N∑
j=1

P T
i 1n

)

= sup
f∈Rn

g∈Rm

λ∈∆+
N

⟨f, a⟩+ ⟨g, b⟩+
N∑
j=1

inf
Pj∈Rn×m

+

(
⟨Pj, λjCj − f1Tn − 1mg

T ⟩ − εjH(Pj)
)
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But for every i = 1, .., N the solution of

inf
Pj∈Rn×m

+

(
⟨Pj, λjCj − f1Tn − 1mg

T ⟩ − εjH(Pj)
)

is

Pj = exp

(
f1Tn + 1mg

T − λjCj
εi

)
Finally we obtain that

EOTε
c(µ, ν) = sup

f∈Rn, g∈Rm, λ∈∆+
N

⟨f, a⟩+ ⟨g, b⟩ −
N∑
k=1

εk
∑
i,j

exp

(
fi + gj − λkCi,j

k

εk

)
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8.8 Other results

8.8.1 Utilitarian and Optimal Transport

Proposition 8.8.1. Let X and Y be Polish spaces. Let c := (ci)1≤i≤N be a family
of bounded below continuous cost functions on X ×Y, and µ ∈ P(X ) and ν ∈ P(Y).
Then we have:

inf
(γi)

N
i=1∈ΓN (µ,ν)

∑
i

∫
cidγi = OTmini(ci)(µ, ν) (8.21)

Proof. The proof is a by-product of the proof of Theorem 8.3.1. The continuity of
the costs is necessary since mini(ci) is not necessarily lower semi-continuous when
the costs are supposed lower semi-continuous.

Remark 12. We thank an anonymous reviewer for noticing that the utilitarian
problem can be written also as an Optimal Transport on the space Z = (X ×
{1, . . . , N})× (Y × {1, . . . , N}):

min
γ∈Γ̃(µ,ν)

∫
x,i,y,j

c((x, i), (y, j))dγ(x, i, y, j)

where the constraint space is Γ̃(µ, ν) :=
{
γ ∈M+

1 (Z) s.t. πXγ = µ, πYγ = ν
}
.

8.8.2 MOT generalizes OT

Proposition 8.8.2. Let X and Y be Polish spaces. Let N ≥ 0, c = (ci)1≤i≤N
be a family of nonnegative lower semi-continuous costs and let us denote for all
k ∈ {1, . . . , N}, ck = (ci)1≤i≤k. Then for all k ∈ {1, . . . , N}, there exists a family
of costs dk ∈ LSC(X × Y)N such that

EOTdk
(µ, ν) = EOTck(µ, ν) (8.22)

Proof. For all k ∈ {1, ..., N}, we define dk := (c1, ..., (N − k + 1)× ck, ..., (N − k +
1)× ck). Therefore, thanks to Lemma 12 we have

EOTdk
(µ, ν) = sup

λ∈∆+
N

OTcλ(µ, ν) (8.23)

= sup
(λ,γ)∈∆k

n

inf
γ∈Γµ,ν

∫
X×Y

min(λ1c1, .., λk−1ck−1, λkck)dγ (8.24)
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where ∆k
n := {(λ, γ) ∈ ∆+

N × R+: γ = (N − k + 1) × min(λk, ..., λN)}. First
remarks that

γ = 1−
k−1∑
i=1

λi ⇐⇒ (N − k + 1)×min(λk, ..., λN) =
N∑
i=k

λi (8.25)

⇐⇒ λk = ... = λN (8.26)

But in that case (λ1, ..., λk−1, γ) ∈ ∆k and therefore we obtain that

EOTdk
(µ, ν) ≥ sup

λ∈∆k

inf
γ∈Γµ,ν

∫
X×Y

min(λ1c1, .., λk−1ck−1, γck)dγ = EOTck(µ, ν)

Finally by definition we have γ ≤
∑N

i=k λi = 1−
∑k−1

i=1 λi and therefore∫
X×Y

min(λ1c1, .., λk−1ck−1, γck)dγ ≤
∫
X×Y

min

(
λ1c1, .., λk−1ck−1,

(
1−

k−1∑
i=1

λi

)
ck

)
Then we obtain that

EOTdk
(µ, ν) ≤ EOTck(µ, ν)

and the result follows.

Proposition 8.8.3. Let X and Y be Polish spaces and c := (ci)1≤i≤N a family
of nonnegative lower semi-continuous costs on X × Y. We suppose that, for all i,
ci = N × c1. Then for any (µ, ν) ∈ P(X )× P(Y)

EOTc(µ, ν) = EOTc1(µ, ν) = OTc1(µ, ν). (8.27)

Proof. Let c := (ci)1≤i≤N such that for all i, ci = c1. for all (x, y) ∈ X × Y and
λ ∈ ∆+

N , we have:

cλ(x, y) := min
i
(λici(x, y)) = min

i
(λi)c1(x, y)

Therefore we obtain from Lemma 12 that

EOTc(µ, ν) = sup
λ∈∆+

N

OTcλ(µ, ν) (8.28)

But we also have that:

OTcλ(µ, ν) = inf
γ∈Γ(µ,ν)

∫
X×Y

min
i
(λici(x, y))dγ(x, y)

= min
i
(λi) inf

γ∈Γ(µ,ν)

∫
X×Y

c1(x, y)dγ(x, y)

= min
i
(λi)OTc1(µ, ν)

Finally by taking the supremum over λ ∈ ∆+
N we conclude the proof.
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8.8.3 Regularized EOT tends to EOT

Proposition 8.8.4. For (µ, ν) ∈ P(X ) × P(Y) we have lim
ε→0

EOTε
c(µ, ν) =

EOTc(µ, ν).

Proof. Let (εl = (εl,1, . . . , εl,N ))l a sequence converging to 0. Let γl = (γl,1, . . . , γl,N )
be the optimum of EOTεl

c (µ, ν). By Lemma 9, up to an extraction, γl → γ⋆ =
(γ⋆1 , . . . , γ

⋆
N) ∈ ΓN(µ, ν). Let now γ = (γ1, . . . , γN) be the optimum of EOTc(µ, ν).

By optimality of γ and γl, for all i:

0 ≤
∫
cidγl,i −

∫
cidγi ≤

∑
i

εl,i (KL(γi, µ⊗ ν)−KL(γl,i, µ⊗ ν))

By lower semi continuity of KL(., µ⊗ ν) and by taking the limit inferior as l→∞,
we get for all i, lim infℓ→∞

∫
cidγl,i =

∫
cidγi. Moreover by continuity of γ →

∫
cidγi

we therefore obtain that for all i,
∫
cidγ

⋆
i ≤

∫
cidγi. Then by optimality of γ the

result follows.

8.8.4 Projected Accelerated Gradient Descent

Proposition 8.8.5. Let a ∈ ∆+
N and b ∈ ∆+

m and C := (Ci)1≤i≤N ∈ (Rn×m)
N

be N cost matrices and ε := (ε, ..., ε) where ε > 0. Then by denoting Kλi
i =

exp (−λiCi/ε), we have

EOTε
c(µ, ν) = sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

F ε
C(λ, f, g),

where

F ε
C(λ, f, g) := ⟨f, a⟩+ ⟨g, b⟩ − ε

[
log

(
N∑
i=1

⟨ef/ε, Kλi
i e

g/ε⟩

)
+ 1

]

Moreover, F ε
C is concave, differentiable and ∇F is

max

(
max

1≤i≤N
∥Ci∥2∞,2N

)
ε

Lipschitz-
continuous on RN × Rn × Rm.

Proof. Let Q :=
{
P := (P1, ..., PN) ∈ (Rn×m

+ )N :
∑N

k=1

∑
i,j P

i,j
k = 1

}
. Note that
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ΓNa,b ⊂ Q, therefore from the primal formulation of the problem we have that

EOTε
c(µ, ν) = sup

λ∈∆+
N

inf
P∈ΓN

a,b

N∑
i=1

λi⟨Pi, Ci⟩ − εH(Pi)

= sup
λ∈∆+

N

inf
P∈Q

sup
f∈Rn, g∈Rm

N∑
i=1

λi⟨Pi, Ci⟩ − εH(Pi)

+ fT

(
a−

∑
i

Pi1m

)
+ gT

(
b−

∑
i

P T
i 1n

)

The constraints are qualified for this convex problem, hence by Slater’s sufficient
condition [242, Section 5.2.3], strong duality holds. Therefore we have

EOTε
c(µ, ν) = sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

inf
P∈Q

N∑
i=1

λi⟨Pi, Ci⟩ − εH(Pi)

+ fT

(
a−

∑
i

Pi1m

)
+ gT

(
b−

∑
i

P T
i 1n

)
= sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩

+ inf
P∈Q

N∑
k=1

∑
i,j

P i,j
k

(
λkC

i,j
k + ε

(
log(P i,j

k )− 1
)
− fi − gj

)

Let us now focus on the following problem:

inf
P∈Q

N∑
k=1

∑
i,j

P i,j
k

(
λkC

i,j
k + ε

(
log(P i,j

k )− 1
)
− fi − gj

)
Note that for all i, j, k and some small δ,

P i,j
k

(
λkC

i,j
k − ε

(
log(P i,j

k )− 1
)
− fi − gj

)
< 0

if P i,j
k ∈ (0, δ) and this quantity goes to 0 as P i,j

k goes to 0. Therefore P i,j
k > 0 and

the problem becomes

inf
P>0

sup
ν∈R

N∑
k=1

∑
i,j

P i,j
k

(
λkC

i,j
k + ε

(
log(P i,j

k )− 1
)
− fi − gj

)
+ ν

(
N∑
k=1

∑
i,j

P i,j
k − 1

)
.
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The solution to this problem is for all k ∈ {1, .., N},

Pk =
exp

(
f1T

n+1mgT−λkCk

ε

)
∑N

k=1

∑
i,j exp

(
fi+gj−λkCi,j

k

ε

)
Therefore we obtain that

EOTε
c(µ, ν) = sup

λ∈∆+
N

sup
f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩

− ε
N∑
k=1

∑
i,j

P i,j
k

[
log

(
N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,j

k

ε

))
+ 1

]

= sup
λ∈∆+

N

sup
f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩ − ε

[
log

(
N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,j

k

ε

))
+ 1

]
.

From now on, we denote for all λ ∈ ∆+
N

EOTε,λ
c (µ, ν) := inf

P∈ΓN
a,b

N∑
i=1

λi⟨Pi, Ci⟩ − εH(Pi)

EOTε,λ
c (µ, ν) := sup

f∈Rn, g∈Rm

⟨f, a⟩+ ⟨g, b⟩ − ε

[
log

(
N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,j

k

ε

))
+ 1

]
which has just been shown to be dual and equal. Thanks to [190, Theorem 1], as
for all λ ∈ RN , P ∈ ΓNa,b →

∑N
i=1 λi⟨Pi, Ci⟩ − εH(Pi) is ε-strongly convex, then for

all λ ∈ RN , (f, g)→ ∇(f,g)F (λ, f, g) is ∥A∥21→2

ε
Lipschitz-continuous where A is the

linear operator of the equality constraints of the primal problem. Moreover this
norm is equal to the maximum Euclidean norm of a column of A. By definition,
each column of A contains only 2N non-zero elements, which are equal to one.
Hence, ∥A∥1→2 =

√
2N . Let us now show that for all (f, g) ∈ Rn × Rm λ ∈ RN →

∇λF (λ, f, g) is also Lipschitz-continuous. Indeed we remarks that
∂2F

∂λq∂λk
=

1

εν2
[σq,1(λ)σk,1(λ)− ν(σk,2(λ)11k=q)]

where 11k=q = 1 iff k = q and 0 otherwise, for all k ∈ {1, ..., N} and p ≥ 1

σk,p(λ) =
∑
i,j

(Ci,j
k )p exp

(
fi + gj − λkCi,j

k

ε

)

ν =
N∑
k=1

∑
i,j

exp

(
fi + gj − λkCi,j

k

ε

)
.
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Let v ∈ RN , and by denoting ∇2
λF the Hessian of F with respect to λ for fixed f, g

we obtain first that

vT∇2
λFv =

1

εν2

( N∑
k=1

vkσq,1(λ)

)2

− ν
N∑
k=1

v2kσk,2


≤ 1

εν2

(
N∑
k=1

vkσq,1(λ)

)2

− 1

εν2

 N∑
k=1

|vk|

√√√√∑
i,j

exp

(
fi + gj − λkCi,j

k

ε

)√√√√∑
i,j

(Ci,j
k )2 exp

(
fi + gj − λkCi,j

k

ε

)2

≤ 1

εν2

( N∑
k=1

vkσq,1(λ)

)2

−

(
N∑
k=1

|vk|
∑
i,j

|Ci,j
k | exp

(
fi + gj − λkCi,j

k

ε

))2


≤ 0

Indeed the last two inequalities come from Cauchy Schwartz. Moreover we have

1

εν2

( N∑
k=1

vkσq,1(λ)

)2

− ν
N∑
k=1

v2kσk,2

 = vT∇2
λFv ≤ 0

−
∑N

k=1 v
2
kσk,2

εν
≤

−

∑N
k=1 v

2
k max
1≤i≤N

(∥Ci∥2∞)

ε
≤

Therefore we deduce that λ ∈ RN → ∇λF (λ, f, g) is
max

1≤i≤N
(∥Ci∥2∞)

ε
Lipschitz-

continuous, hence ∇F (λ, f, g) is
max

(
max

1≤i≤N
∥Ci∥2∞,2N

)
ε

Lipschitz-continuous on RN ×
Rn × Rm.

Denote L :=
max

(
max

1≤i≤N
∥Ci∥2∞,2N

)
ε

the Lipschitz constant of F ε
C. Moreover for all

λ ∈ RN , let Proj∆+
N
(λ) the unique solution of the following optimization problem

min
x∈∆+

N

∥x− λ∥22. (8.29)

Let us now introduce the following algorithm.
[236, 237] give us that the accelerated projected gradient ascent algorithm

achieves the optimal rate for first order methods of O(1/k2) for smooth functions.
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Algorithm 16 Accelerated Projected Gradient Ascent Algorithm
Input: C = (Ci)1≤i≤N , a, b, ε, L
Init: f−1 = f 0 ← 0n; g−1 = g0 ← 0m; λ−1 = λ0 ← (1/N, ..., 1/N) ∈ RN

for k = 1, 2, ... do
(v, w, z)T ← (λk−1, fk−1, gk−1)T+k−2

k+1

(
(λk−1, fk−1, gk−1)T − (λk−2, fk−2, gk−2)T

)
;

λk ← Proj∆+
N

(
v + 1

L
∇λF

ε
C(v, w, z)

)
;

(gk, fk)T ← (w, z)T + 1
L
∇(f,g)F

ε
C(v, w, z).

end
Result: λ, f, g

To perform the projection we use the algorithm proposed in [238] which finds the
solution of (8.29) after O(N log(N)) algebraic operations [243].

8.8.5 Fair cutting cake problem

Let X , be a set representing a cake. The aim of the cutting cake problem is to
divide it in X1, . . . ,XN disjoint sets among the N individuals. The utility for a
single individual i for a slice S is denoted Vi(S). It is often assumed that Vi(X ) = 1
and that Vi is additive for disjoint sets. There exists many criteria to assess fairness
for a partition X1, . . . ,XN such as proportionality (Vi(Xi) ≥ 1/N), envy-freeness
(Vi(Xi) ≥ Vi(Xj)) or equitability (Vi(Xi) = Vj(Xj)). A possible problem to solve
equitability and proportionality in the cutting cake problem is the following:

inf
X1,...,XN

⊔N
i=1Xi=X

max
i
Vi(Xi) (8.30)

Note that here we do not want to solve the problem under equality constraints
since the problem might not be well defined. Moreover the existence of the optimum
is not immediate. A natural relaxation of this problem is when there is a divisible
quantity of each element of the cake (x ∈ X ). In that case, the cake is no more
a set but rather a distribution on this set µ. Following the primal formulation of
EOT, it is clear that it is a relaxation of the cutting cake problem where the goal
is to divide the cake viewed as a distribution. For the cutting cake problem with
two cakes X and Y , the problem can be cast as follows:

inf
X1,...,XN s.t. ⊔N

i=1Xi=X
Y1,...,YN s.t. ⊔N

i=1Yi=Y

max
i
Vi(Xi,Yi) (8.31)

Here EOT is the relaxation of this problem where we split the cakes viewed as
distributions instead of sets themselves. Note that in this problem, the utility of
the agents are coupled.

290



8.9 Illustrations and Experiments

8.9.1 Primal Formulation

Here we show the couplings obtained when we consider three negative costs c̃i which
corresponds to the situation where we aim to obtain a fair division of goods between
three agents. Moreover we show the couplings obtained according to the transport
viewpoint where we consider the opposite of these three negative cost functions,
i.e. ci := −c̃i. We can see that the couplings obtained in the two situations are
completely different, which is expected. Indeed in the fair division problem, we aim
at finding couplings which maximize the total utility of each agent (

∫
cidγ

1
i ) while

ensuring that their are equal while in the other case, we aim at finding couplings
which minimize the total transportation cost of each agent (

∫
cidγ

2
i ) while ensuring

that their are equal. Obviously we always have that

∀i
∫
cidγ

2
i ≤

∫
cidγ

1
i .

Figure 8.4: Comparison of the optimal couplings obtained from standard OT for
three different costs and EOT in case of negative costs (i.e. utilities). Blue dots
and red squares represent the locations of two discrete uniform measures. Left,
middle left, middle right : Kantorovich couplings between the two measures for
negative Euclidean cost (−∥ · ∥2), negative square Euclidean cost (−∥ · ∥22) and
negative 1.5 L1 norm (−∥ · ∥1.51 ) respectively. Right : Equitable and optimal division
of the resources between the N = 3 different negative costs (i.e. utilities) given
by EOT. Note that the partition between the agents is equitable (i.e. utilities are
equal) and proportional (i.e. utilities are larger than 1/N .
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Figure 8.5: Comparison of the optimal couplings obtained from standard OT for
three different costs and EOT in case of postive costs. Blue dots and red squares
represent the locations of two discrete uniform measures. Left, middle left, middle
right : Kantorovich couplings between the two measures for Euclidean cost (∥ · ∥2),
square Euclidean cost (∥·∥22) and 1.5 L1 norm (∥·∥1.51 ) respectively. Right : transport
couplings of EOT solving Eq. (8.1). Note that each cost contributes equally and
its contribution is lower than the smallest OT cost.

8.9.2 Dual Formulation

Here we show the dual variables obtained in the exact same settings as in the
primal illustrations. Figure 8.6 shows the dual associated to the primal problem
exposed in Figure 8.4 and Figure 8.7 shows the dual associated to the primal
problem exposed in Figure 8.5.

Transport viewpoint of the Dual Formulation. Assume that the N agents
are not able to solve the primal problem (8.1) which aims at finding the cheapest
equitable partition of the work among theN agents for transporting the distributions
of goods µ to the distributions of stores ν. Moreover assume that there is an external
agent who can do the transportation work for them with the following pricing
scheme: he or she splits the logistic task into that of collecting and then delivering
the goods, and will apply a collection price f̃(x) for one unit of good located
at x (no matter where that unit is sent to), and a delivery price g̃(y) for one
unit to the location y (no matter from which place that unit comes from). Then
the external agent for transporting some goods µ to some stores ν will charge∫
x∈X f̃(x)dµ(x) +

∫
y∈Y g̃(y)dν(y). However he or she has the constraint that the

pricing must be equitable among the agents and therefore wants to ensure that each
agent will pay exactly 1

N

∫
x∈X f̃(x)dµ(x) +

∫
y∈Y g̃(y)dν(y). Denote f = f̃

N
, g = g̃

N

and therefore the price paid by each agent becomes
∫
x∈X f(x)dµ(x)+

∫
y∈Y g(y)dν(y).

Moreover, to ensure that each agent will not pay more than he would if he was
doing the job himself or herself, he or she must guarantee that for all λ ∈ ∆+

N , the
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Figure 8.6: Left, middle left, middle right : the size of dots and squares is pro-
portional to the weight of their representing atom in the distributions µ∗

k and ν∗k
respectively. The utilities f ∗

k and g∗k for each point in respectively µ∗
k and ν∗k are

represented by the color of dots and squares according to the color scale on the right
hand side. The gray dots and squares correspond to the points that are ignored by
agent k in the sense that there is no mass or almost no mass in distributions µ∗

k or
ν∗k . Right : the size of dots and squares are uniform since they correspond to the
weights of uniform distributions µ and ν respectively. The values of f ∗ and g∗ are
given also by the color at each point. Note that each agent gets exactly the same
total utility, corresponding exactly to EOT. This value can be computed using
dual formulation (8.5) and for each figure it equals the sum of the values (encoded
with colors) multiplied by the weight of each point (encoded with sizes).

pricing scheme (f ,g) satisfies:

f ⊕ g ≤ min(λici).

Indeed under this constraint, it is easy for the agents to check that they will never
pay more than what they would pay if they were doing the transportation task as
we have ∫

x∈X
f(x)dµ(x) +

∫
y∈Y

g(y)dν(y) ≤
∫
X×Y

min
i
(λici)dγ

which holds for every γ in particular for γ∗ =
∑N

i=1 γ
∗
i optimal solution of the

primal problem (8.1) from which follows∫
x∈X

f(x)dµ(x) +

∫
y∈Y

g(y)dν(y) ≤
N∑
i=1

∫
X×Y

min
i
(λici)dγ

∗
i

≤
N∑
i=1

λi

∫
X×Y

cidγ
∗
i

= EOTc(µ, ν)
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Therefore the external agent aims to maximise his or her selling price under the
above constraints which is exactly the dual formulation of our problem.

Another interpretation of the dual problem when the cost are non-negative can
be expressed as follows. Let us introduce the subset of (Cb(X )× Cb(Y))N :

GNc :=
{
(fk, gk)

N
k=1 s.t. ∀k, fk ⊕ gk ≤ ck

}
Let us now show the following reformulation of the problem. See Appendix 8.9.2

for the proof.

Proposition 8.9.1. Under the same assumptions of Proposition 8.3.1, we have

EOTc(µ, ν) = sup
(fk,gk)

N
k=1∈GN

c

inf
t∈R

(µk,νk)
N
k=1∈Υ

N (µ,ν)

t (8.32)

s.t. ∀k,
∫
fkdµk +

∫
gkdνk = t

Proof. Let us first introduce the following Lemma which guarantees that compacity
of ΥN(µ, ν) for the weak topology.

Lemma 14. Let X and Y be Polish spaces, and µ and ν two probability measures
respectively on X and Y. Then ΥN(µ, ν) is sequentially compact for the weak
topology induced by ∥γ∥ = max

i=1,..,N
∥µi∥TV + ∥νi∥TV.

Proof. Let (γn)n≥0 a sequence in ΥN(µ, ν), and let us denote for all n ≥ 0, γn =
(µni , ν

n
i )
N
i=1. We first remarks that for all i ∈ {1, ..., N} and n ≥ 0, ∥µni ∥TV ≤ 1

and ∥νni ∥TV ≤ 1 therefore for all i ∈ {1, ..., N}, (µni )n≥0 and (νni )n≥0 are uniformly
bounded. Moreover as {µ} and {ν} are tight, for any δ > 0, there exists K ⊂ X
and L ⊂ Y compact such that µ(Kc) ≤ δ and ν(Lc) ≤ δ. Then, we obtain
that for any for all i ∈ {1, ..., N}, µni (Kc) ≤ δ and νni (L

c) ≤ δ. Therefore,
for all i ∈ {1, ..., N}, (µni )n≥0 and (νni )n≥0 are tight and uniformly bounded and
Prokhorov’s theorem [239, Theorem A.3.15] guarantees for all i ∈ {1, ..., N},
(µni )n≥0 and (νni )n≥0 admit a weakly convergent subsequence. By extracting a
common convergent subsequence, we obtain that (γn)n≥0 admits a weakly convergent
subsequence. By continuity of the projection, the limit also lives in ΥN

µ,ν and the
result follows.

We can now prove the Proposition. We have that for any λ ∈ ∆N

sup
(f,g)∈Fλ

c

∫
x∈X

f(x)dµ(x) +

∫
y∈Y

g(y)dν(y)

≤ sup
(fk,gk)

N
k=1∈GN

c

inf
(µk,νk)

N
i=1∈ΥN (µ,ν)

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]
≤ EOTc(µ, ν)
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Then by taking the supremum over λ ∈ ∆N , and by applying Theorem 8.3.1 we
obtain that

EOTc(µ, ν) = sup
λ∈∆N

sup
(fk,gk)

N
k=1∈GN

c

inf
(µk,νk)

N
k=1∈ΥN (µ,ν)

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]
Let GNc and ΥN(µ, ν) be endowed respectively with the uniform norm and the
norm defined in Lemma 14. Note that the objective is linear and continuous with
respect to (µk, νk)

N
k=1 and also (fk, gk)

N
k=1. Moreover the spaces GNc and ΥN(µ, ν)

are clearly convex. Finally thanks to Lemma 14, ΥN (µ, ν) is compact with respect
to the weak topology we can apply Sion’s theorem [241] and we obtain that

EOTc(µ, ν) = sup
(fk,gk)

N
k=1∈GN

c

inf
(µk,νk)

N
k=1∈ΥN (µ,ν)

sup
λ∈∆N

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]
Let us now fix (fk, gk)

N
k=1 ∈ GNc and (µk, νk)

N
k=1 ∈ ΥN(µ, ν), therefore we have:

sup
λ∈∆N

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]

= sup
λ

inf
t
t×

(
1−

N∑
i=1

λi

)
+

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)

]

= inf
t
sup
λ
t+

N∑
k=1

λk

[∫
x∈X

fk(x)dµk(x) +

∫
y∈Y

gk(y)dνk(y)− t
]

= inf
t

{
t s.t. ∀k,

∫
fkdµk +

∫
gkdνk = t

}
where the inversion is possible as the Slater’s conditions are satisfied and the result
follows.
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Figure 8.7: Left, middle left, middle right : the size of dots and squares is pro-
portional to the weight of their representing atom in the distributions µ∗

k and
ν∗k respectively. The collection “cost” f ∗

k for each point in µ∗
k, and its delivery

counterpart g∗k in ν∗k are represented by the color of dots and squares according to
the color scale on the right hand side. The gray dots and squares correspond to
the points that are ignored by agent k in the sense that there is no mass or almost
no mass in distributions µ∗

k or ν∗k . Right : the size of dots and squares are uniform
since they corresponds to the weights of uniform distributions µ and ν respectively.
The values of f ∗ and g∗ are given also by the color at each point. Note that each
agent earns exactly the same amount of money, corresponding exactly EOT cost.
This value can be computed using dual formulation (8.5) or its reformulation (8.32)
and for each figure it equals the sum of the values (encoded with colors) multiplied
by the weight of each point (encoded with sizes).

8.9.3 Approximation of the Dudley Metric

Figure 8.8 illustrates the convergence of the entropic regularization approximation
when ϵ→ 0. To do so we plot the relative error from the ground truth defined as
RE := EOTε

c−βd
βd

for different regularizations where βd is obtained by solving the
exact linear program and EOTε

c is obtained by our proposed Alg. 15.
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Figure 8.8: In this experiment, we draw 100 samples from two normal distributions
and we plot the relative error from ground truth for different regularizations. We
consider the case where two costs are involved: c1 = 2× 1x ̸=y, and c2 = d where d
is the Euclidean distance. This case corresponds exactly to the Dudley metric (see
Proposition 8.3.4). We remark that as ε→ 0, the approximation error goes also to
0.
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Chapter 9

Mixed Nash Equilibria in the
Adversarial Examples Game

This paper tackles the problem of adversarial examples from a game theoretic point
of view. We study the open question of the existence of mixed Nash equilibria
in the zero-sum game formed by the attacker and the classifier. While previous
works usually allow only one player to use randomized strategies, we show the
necessity of considering randomization for both the classifier and the attacker. We
demonstrate that this game has no duality gap, meaning that it always admits
approximate Nash equilibria. We also provide the first optimization algorithms to
learn a mixture of a finite number of classifiers that approximately realizes the value
of this game, i.e. procedures to build an optimally robust randomized classifier.

This chapter is based on [4].

299



9.1 Introduction

Adversarial examples [102, 103] are one of the most dizzling problems in machine
learning: state of the art classifiers are sensitive to imperceptible perturbations of
their inputs that make them fail. Last years, research have concentrated on propos-
ing new defense methods [104, 105, 106] and building more and more sophisticated
attacks [107, 108, 109, 110]. So far, most defense strategies proved to be vulnerable
to these new attacks or are computationally intractable. This asks the following
question: can we build classifiers that are robust against any adversarial attack?

A recent line of research argued that randomized classifiers could help countering
adversarial attacks [139, 140, 141, 142]. Along this line, [143] demonstrated, using
game theory, that randomized classifiers are indeed more robust than deterministic
ones against regularized adversaries. However, the findings of these previous works
depends on the definition of considered adversary. In particular, they did not
investigate scenarios where the adversary also uses randomized strategies, which
is essential to account for if we want to give a principled answer to the above
question. Previous works studying adversarial examples from the scope of game
theory investigated the randomized framework (for both the classifier and the
adversary) in restricted settings where the adversary is either parametric or has a
finite number of strategies [144, 145, 146]. Our framework does not assume any
constraint on the definition of the adversary, making our conclusions independent
on the adversary the classifiers are facing. More precisely, we answer the following
questions.

Question 1. Is it always possible to reach a Mixed Nash equilibrium in the
adversarial example game when both the adversary and the classifier can use
randomized strategies?

Answer 1. We answer positively to this question. First we motivate in Section 9.2
the necessity for using randomized strategies both with the attacker and the classifier.
Then, we extend the work of [151], by rigorously reformulating the adversarial risk
as a linear optimization problem over distributions. In fact, we cast the adversarial
risk minimization problem as a Distributionally Robust Optimization (DRO) [155]
problem for a well suited cost function. This formulation naturally leads us, in
Section 9.3, to analyze adversarial risk minimization as a zero-sum game. We
demonstrate that, in this game, the duality gap always equals 0, meaning that it
always admits approximate mixed Nash equilibria.
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Question 2. Can we design efficient algorithms to learn an optimally robust
randomized classifier?

Answer 2. To answer this question, we focus on learning a finite mixture of
classifiers. Taking inspiration from robust optimization [152] and subgradient
methods [156], we derive in Section 9.4 a first oracle algorithm to optimize a
finite mixture. Then, following the line of work of [76], we introduce an entropic
regularization to effectively compute an approximation of the optimal mixture.
We validate our findings with experiments on simulated and real datasets, namely
CIFAR-10 an CIFAR-100 [157].

‘

Figure 9.1: Motivating example: blue distribution represents label −1 and the
red one, label +1. The height of columns represents their mass. The red and
blue arrows represent the attack on the given classifier. On left: deterministic
classifiers (f1 on the left, f2 in the middle) for whose, the blue point can always be
attacked. On right: a randomized classifier, where the attacker has a probability
1/2 of failing, regardless of the attack it selects.

9.2 The Adversarial Attack Problem

9.2.1 A Motivating Example

Consider the binary classification task illustrated in Figure 9.1. We assume that
all input-output pairs (X, Y ) are sampled from a distribution P defined as follows

P (Y = ±1) = 1/2 and
{

P (X = 0 | Y = −1) = 1
P (X = ±1 | Y = 1) = 1/2

Given access to P, the adversary aims to maximize the expected risk, but can
only move each point by at most 1 on the real line. In this context, we study two
classifiers: f1(x) = −x− 1/2 and f2(x) = x− 1/21. Both f1 and f2 have a standard

1(X,Y ) ∼ P is misclassified by fi if and only if fi(X)Y ≤ 0

301



risk of 1/4. In the presence of an adversary, the risk (a.k.a. the adversarial risk)
increases to 1. Here, using a randomized classifier can make the system more
robust. Consider f where f = f1 w.p. 1/2 and f2 otherwise. The standard risk of
f remains 1/4 but its adversarial risk is 3/4 < 1. Indeed, when attacking f , any
adversary will have to choose between moving points from 0 to 1 or to −1. Either
way, the attack only works half of the time; hence an overall adversarial risk of 3/4.
Furthermore, if f knows the strategy the adversary uses, it can always update the
probability it gives to f1 and f2 to get a better (possibly deterministic) defense.
For example, if the adversary chooses to always move 0 to 1, the classifier can set
f = f1 w.p. 1 to retrieve an adversarial risk of 1/2 instead of 3/4.

Now, what happens if the adversary can use randomized strategies, meaning
that for each point it can flip a coin before deciding where to move? In this case,
the adversary could decide to move points from 0 to 1 w.p. 1/2 and to −1 otherwise.
This strategy is still optimal with an adversarial risk of 3/4 but now the classifier
cannot use its knowledge of the adversary’s strategy to lower the risk. We are in a
state where neither the adversary nor the classifier can benefit from unilaterally
changing its strategy. In the game theory terminology, this state is called a Mixed
Nash equilibrium.

9.2.2 General setting

Let us consider a classification task with input space X and output space Y . Let
(X , d) be a proper (i.e. closed balls are compact) Polish (i.e. completely separable)
metric space representing the inputs space2. Let Y = {1, . . . , K} be the labels set,
endowed with the trivial metric d′(y, y′) = 1y ̸=y′ . Then the space (X × Y , d⊕ d′)
is a proper Polish space. For any Polish space Z, we denote P(Z) the Polish
space of Borel probability measures on Z. Let us assume the data is drawn from
P ∈ P(X ×Y). Let (Θ, dΘ) be a Polish space (not necessarily proper) representing
the set of classifier parameters (for instance neural networks). We also define a loss
function: l : Θ× (X × Y)→ [0,∞) satisfying the following set of assumptions.

Assumption 3 (Loss function). 1) The loss function l is a non negative Borel
measurable function. 2) For all θ ∈ Θ, l(θ, ·) is upper-semi continuous. 3) There
exists M > 0 such that for all θ ∈ Θ, (x, y) ∈ X × Y, 0 ≤ l(θ, (x, y)) ≤M .

It is usual to assume upper-semi continuity when studying optimization over
distributions [30, 155]. Furthermore, considering bounded (and positive) loss func-
tions is also very common in learning theory [244] and is not restrictive.

In the adversarial examples framework, the loss of interest is the 0/1 loss, for
whose surrogates are misunderstood [149, 148]; hence it is essential that the 0/1

2For instance, for any norm ∥·∥, (Rd, ∥·∥) is a proper Polish metric space.
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loss satisfies Assumption 3. In the binary classification setting (i.e. Y = {−1,+1})
the 0/1 loss writes l0/1(θ, (x, y)) = 1yfθ(x)≤0. Then, assuming that for all θ, fθ(·) is
continuous and for all x, f·(x) is continuous, the 0/1 loss satisfies Assumption 3. In
particular, it is the case for neural networks with continuous activation functions.

9.2.3 Adversarial Risk Minimization

The standard risk for a single classifier θ associated with the loss l satisfying
Assumption 3 writes: R(θ) := E(x,y)∼P [l(θ, (x, y))]. Similarly, the adversarial risk
of θ at level ε associated with the loss l is defined as3

Rε
adv(θ) := E(x,y)∼P

[
sup

x′∈X , d(x,x′)≤ε
l(θ, (x′, y))

]
.

It is clear that R0
adv(θ) = R(θ) for all θ. We can generalize these notions with

distributions of classifiers. In other terms the classifier is then randomized according
to some distribution µ ∈ P(Θ). A classifier is randomized if for a given input,
the output of the classifier is a probability distribution. The standard risk of a
randomized classifier µ writes R(µ) = Eθ∼µ [R(θ)]. Similarly, the adversarial risk
of the randomized classifier µ at level ε is4

Rε
adv(µ) := E(x,y)∼P

[
sup

x′∈X , d(x,x′)≤ε
Eθ∼µ [l(θ, (x′, y))]

]
.

For instance, for the 0/1 loss, the inner maximization problem, consists in max-
imizing the probability of misclassification for a given couple (x, y). Note that
R(δθ) = R(θ) and Rε

adv(δθ) = Rε
adv(θ). In the remainder of the paper, we study

the adversarial risk minimization problems with randomized and deterministic
classifiers and denote

Vεrand := inf
µ∈P(Θ)

Rε
adv(µ), Vεdet := inf

θ∈Θ
Rε
adv(θ) (9.1)

Remark 13. We can show (see Appendix 9.11) that the standard risk infima are
equal : V0

rand = V0
det. Hence, no randomization is needed for minimizing the standard

risk. Denoting V this common value, we also have the following inequalities for
any ε > 0, V ≤ Vεrand ≤ Vεdet.

3For the well-posedness, see Lemma 18 in Appendix.
4This risk is also well posed (see Lemma 18 in the Appendix).
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9.2.4 Distributional Formulation of the Adversarial Risk

To account for the possible randomness of the adversary, we rewrite the adversarial
attack problem as a convex optimization problem over distributions. Let us first
introduce the set of adversarial distributions.

Definition 5 (Set of adversarial distributions). Let P be a Borel probability dis-
tribution on X × Y and ε > 0. We define the set of adversarial distributions
as

Aε(P) :=
{
Q ∈ P(X × Y) | ∃γ ∈ P

(
(X × Y)2

)
,

d(x, x′) ≤ ε, y = y′ γ-a.s., π1♯γ = P, π2♯γ = Q}

where πi denotes the projection on the i-th component, and g♯ the push-forward
measure by a measurable function g.

An attacker that can move the initial distribution P anywhere in Aε(P) is not
applying a point-wise deterministic perturbation as considered in the standard
adversarial risk. In other words, for a point (x, y) ∼ P, the attacker could choose a
distribution q(· | (x, y)) whose support is included in {(x′, y′) | d(x, x′) ≤ ϵ, y = y′}
from which he will sample the adversarial attack. In this sense, we say the attacker
is allowed to be randomized.

Link with DRO. Adversarial examples have been studied in the light of DRO
by former works [152, 154], but an exact reformulation of the adversarial risk
as a DRO problem has not been made yet. When (Z, d) is a Polish space and
c : Z2 → R+ ∪ {+∞} is a lower semi-continuous function, for P,Q ∈ P(Z) , the
primal Optimal Transport problem is defined as

OTc(P,Q) := inf
γ∈ΓP,Q

∫
Z2

c(z, z′)dγ(z, z′)

with Π(P,Q) := {γ ∈ P(Z2) | π1♯γ = P, π2♯γ = Q}. When η > 0 and for P ∈
P(Z), the associated Wasserstein uncertainty set is defined as:

Bc(P, η) := {Q ∈ P(Z) | OTc(P,Q) ≤ η}

A DRO problem is a linear optimization problem over Wasserstein uncertainty sets
supQ∈Bc(P,η)

∫
g(z)dQ(z) for some upper semi-continuous function g [245]. For an

arbitrary ε > 0, we define the cost cε as follows

cε((x, y), (x
′, y′)) :=

{
0 if d(x, x′) ≤ ε and y = y′

+∞ otherwise.

This cost is lower semi-continuous and penalizes to infinity perturbations that change
the label or move the input by a distance greater than ε. As Proposition 9.2.1
shows, the Wasserstein ball associated with cε is equal to Aε(P).
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Proposition 9.2.1. Let P be a Borel probability distribution on X × Y and ε > 0
and η ≥ 0, then Bcε(P, η) = Aε(P). Moreover, Aε(P) is convex and compact for the
weak topology of P(X × Y).

Thanks to this result, we can reformulate the adversarial risk as the value of a
convex problem over Aε(P).

Proposition 9.2.2. Let P be a Borel probability distribution on X × Y and µ
a Borel probability distribution on Θ. Let l : Θ × (X × Y) → [0,∞) satisfying
Assumption 3. Let ε > 0. Then:

Rε
adv(µ) = sup

Q∈Aε(P)
E(x′,y′)∼Q,θ∼µ [l(θ, (x

′, y′))] . (9.2)

The supremum is attained. Moreover Q∗ ∈ Aε(P) is an optimum of Problem (9.2)
if and only if there exists γ∗ ∈ P ((X × Y)2) such that: Π1♯γ

∗ = P, Π2♯γ
∗ = Q∗,

d(x, x′) ≤ ε, y = y′ and l(x′, y′) = supu∈X ,d(x,u)≤ε l(u, y) γ
∗-almost surely.

The adversarial attack problem is a DRO problem for the cost cε. Proposi-
tion 9.2.2 means that, against a fixed classifier µ, the randomized attacker that
can move the distribution in Aε(P) has exactly the same power as an attacker that
moves every single point x in the ball of radius ε. By Proposition 9.2.2, we also
deduce that the adversarial risk can be casted as a linear optimization problem
over distributions.

Remark 14. In a recent work, [151] proposed a similar adversary using Markov
kernels but left as an open question the link with the classical adversarial risk,
due to measurability issues. Proposition 9.2.2 solves these issues. The result is
similar to [155]. Although we believe its proof might be extended for infinite valued
costs, [155] did not treat that case. We provide an alternative proof in this special
case.

9.3 Nash Equilibria in the Adversarial Game

9.3.1 Adversarial Attacks as a Zero-Sum Game

Thanks to Proposition 9.2, the adversarial risk minimization problem can be seen
as a two-player zero-sum game that writes as follows,

inf
µ∈P(Θ)

sup
Q∈Aε(P)

E(x,y)∼Q,θ∼µ [l(θ, (x, y))] . (9.3)

In this game the classifier objective is to find the best distribution µ ∈ P(Θ) while
the adversary is manipulating the data distribution. For the classifier, solving the
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infimum problem in Equation (9.3) simply amounts to solving the adversarial risk
minimization problem – Problem (9.1), whether the classifier is randomized or not.
Then, given a randomized classifier µ ∈ P(Θ), the goal of the attacker is to find
a new data-set distribution Q in the set of adversarial distributions Aε(P) that
maximizes the risk of µ. More formally, the adversary looks for

Q ∈ argmax
Q∈Aε(P)

E(x,y)∼Q,θ∼µ [l(θ, (x, y))] .

In the game theoretic terminology, Q is also called the best response of the attacker
to the classifier µ.

Remark 15. Note that for a given classifier µ there always exists a “deterministic”
best response, i.e. every single point (x, y) is mapped to another single point T (x, y).
Let T : X × Y → X be defined such that for all (x, y) ∈ X × Y, l(T (x, y), y) =
supx′, d(x,x′)≤ε l(x

′, y). Thanks to [246, Proposition 7.50], (T, id) is P-measurable.
Moreover, we get that Q = (T, id)♯P belongs to the best response to µ. Therefore,
T is the optimal “deterministic” attack against the classifier µ.

9.3.2 Dual Formulation of the Game

Every zero sum game has a dual formulation that allows a deeper understanding of
the framework. Here, from Proposition 9.2.2, we can define the dual problem of
adversarial risk minimization for randomized classifiers. This dual problem also
characterizes a two-player zero-sum game that writes as follows,

sup
Q∈Aε(P)

inf
µ∈P(Θ)

E(x,y)∼Q,θ∼µ [l(θ, (x, y))] . (9.4)

In this dual game problem, the adversary plays first and seeks an adversarial
distribution that has the highest possible risk when faced with an arbitrary classifier.
This means that it has to select an adversarial perturbation for every input x,
without seeing the classifier first. In this case, as pointed out by the motivating
example in Section 9.2.1, the attack can (and should) be randomized to ensure
maximal harm against several classifiers. Then, given an adversarial distribution,
the classifier objective is to find the best possible classifier on this distribution.
Let us denote Dε the value of the dual problem. Since the weak duality is always
satisfied, we get

Dε ≤ Vεrand ≤ Vεdet. (9.5)

Inequalities in Equation (9.5) mean that the lowest risk the classifier can get
(regardless of the game we look at) is Dε. In particular, this means that the primal
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version of the game, i.e. the adversarial risk minimization problem, will always
have a value greater or equal to Dε. As we discussed in Section 9.2.1, this lower
bound may not be attained by a deterministic classifier. As we will demonstrate
in the next section, optimizing over randomized classifiers allows to approach Dε
arbitrary closely.

Remark 16. Note that, we can always define the dual problem when the classifier
is deterministic,

sup
Q∈Aε(P)

inf
θ∈Θ

E(x,y)∼Q [l(θ, (x, y))] .

Furthermore, we can demonstrate that the dual problems for deterministic and ran-
domized classifiers have the same value 5; hence the inequalities in Equation (9.5).

9.3.3 Nash Equilibria for Randomized Strategies

In the adversarial examples game, a Nash equilibrium is a couple (µ∗,Q∗) ∈
P(Θ) × Aε(P) where both the classifier and the attacker have no incentive to
deviate unilaterally from their strategies µ∗ and Q∗. More formally, (µ∗,Q∗) is a
Nash equilibrium of the adversarial examples game if (µ∗,Q∗) is a saddle point of
the objective function

(µ,Q) 7→ E(x,y)∼Q,θ∼µ [l(θ, (x, y))] .

Alternatively, we can say that (µ∗,Q∗) is a Nash equilibrium if and only if µ∗ solves
the adversarial risk minimization problem – Problem (9.1), Q∗ the dual problem –
Problem (9.6), and Dε = Vεrand. In our problem, Q∗ always exists but it might not
be the case for µ∗. Then for any δ > 0, we say that (µδ,Q∗) is a δ-approximate
Nash equilibrium if Q∗ solves the dual problem and µδ satisfies Dε ≥ Rε

adv(µδ)− δ.
We now state our main result: the existence of approximate Nash equilibria

in the adversarial examples game when both the classifier and the adversary can
use randomized strategies. More precisely, we demonstrate that the duality gap
between the adversary and the classifier problems is zero, which gives as a corollary
the existence of Nash equilibria.

Theorem 9.3.1. Let P ∈ P(X × Y). Let ε > 0. Let l : Θ × (X × Y) → [0,∞)
satisfying Assumption 3. Then strong duality always holds in the randomized
setting:

inf
µ∈P(Θ)

max
Q∈Aε(P)

Eθ∼µ,(x,y)∼Q [l(θ, (x, y))] (9.6)

= max
Q∈Aε(P)

inf
µ∈P(Θ)

Eθ∼µ,(x,y)∼Q [l(θ, (x, y))]

5See Appendix 9.11 for more details
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The supremum is always attained. If Θ is a compact set, and for all (x, y) ∈ X ×Y,
l(·, (x, y)) is lower semi-continuous, the infimum is also attained.

Corollary 1. Under Assumption 3, for any δ > 0, there exists a δ-approximate
Nash-Equibilrium (µδ,Q∗). Moreover, if the infimum is attained, there exists a
Nash equilibrium (µ∗,Q∗) to the adversarial examples game.

Theorem 9.3.1 shows that Dε = Vεrand. From a game theoretic perspective,
this means that the minimal adversarial risk for a randomized classifier against
any attack (primal problem) is the same as the maximal risk an adversary can
get by using an attack strategy that is oblivious to the classifier it faces (dual
problem). This suggests that playing randomized strategies for the classifier could
substantially improve robustness to adversarial examples. In the next section, we
will design an algorithm that efficiently learn a randomized classifier and show
improved adversarial robustness over classical deterministic defenses.

Remark 17. Theorem 9.3.1 remains true if one replaces Aε(P) with any other
Wasserstein compact uncertainty sets (see [245] for conditions of compactness).

9.4 Finding the Optimal Classifiers

9.4.1 An Entropic Regularization

Let {(xi, yi)}Ni=1 samples independently drawn from P and denote P̂ := 1
N

∑N
i=1 δ(xi,yi)

the associated empirical distribution. One can show the adversarial empirical risk
minimization can be casted as:

R̂ε,∗
adv := inf

µ∈P(Θ)

N∑
i=1

sup
Qi∈Γi,ε

E(x,y)∼Qi,θ∼µ [l(θ, (x, y))]

where Γi,ε is defined as :

Γi,ε :=
{
Qi |

∫
dQi =

1

N
,

∫
cε((xi, yi), ·)dQi = 0

}
.

More details on this decomposition are given in Appendix 9.11. In the following, we
regularize the above objective by adding an entropic term to each inner supremum
problem. Let α := (αi)

N
i=1 ∈ RN

+ such that for all i ∈ {1, . . . , N}, and let us
consider the following optimization problem:

R̂ε,∗
adv,α := inf

µ∈P(Θ)

N∑
i=1

sup
Qi∈Γi,ε

EQi,µ [l(θ, (x, y))]− αiKL
(
Qi

∣∣∣∣∣∣ 1
N
U(xi,yi)

)
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where U(x,y) is an arbitrary distribution of support equal to:

S
(ε)
(x,y) :=

{
(x′, y′) : s.t. cε((x, y), (x′, y′)) = 0

}
,

and for all Q,U ∈M+(X × Y),

KL(Q,U) :=
{ ∫

log(dQ
dU )dQ+ |U| − |Q| if Q≪ U

+∞ otherwise.

Note that when α = 0, we recover the problem of interest R̂ε,∗
adv,α = R̂ε,∗

adv. Moreover,
we show the regularized supremum tends to the standard supremum when α→ 0.

Proposition 9.4.1. For µ ∈ P(Θ), one has

lim
αi→0

sup
Qi∈Γi,ε

EQi,µ [l(θ, (x, y))]− αiKL
(
Q,

1

N
U(xi,yi)

)
= sup

Qi∈Γi,ε

E(x,y)∼Qi,θ∼µ [l(θ, (x, y))] .

By adding an entropic term to the objective, we obtain an explicit formulation
of the supremum involved in the sum: as soon as α > 0 (which means that
each αi > 0), each sub-problem becomes just the Fenchel-Legendre transform of
KL(·,U(xi,yi)/N) which has the following closed form:

sup
Qi∈Γi,ε

EQi,µ [l(θ, (x, y))]− αiKL
(
Qi,

1

N
U(xi,yi)

)
=
αi
N

log

(∫
X×Y

exp

(
Eθ∼µ [l(θ, (x, y))]

αi

)
dU(xi,yi)

)
.

Finally, we end up with the following problem:

inf
µ∈P(Θ)

N∑
i=1

αi
N

log

(∫
exp

Eµ [l(θ, (x, y))]
αi

dU(xi,yi)

)
.

In order to solve the above problem, one needs to compute the integral involved
in the objective. To do so, we estimate it by randomly sampling mi ≥ 1 samples
(u

(i)
1 , . . . , u

(i)
mi) ∈ (X × Y)mi from U(xi,yi) for all i ∈ {1, . . . , N} which leads to the

following optimization problem

inf
µ∈P(Θ)

N∑
i=1

αi
N

log

 1

mi

mi∑
j=1

exp
Eµ
[
l(θ, u

(i)
j )
]

αi

 (9.7)
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denoted R̂ε,m
adv,α where m := (mi)

N
i=1 in the following. Now we aim at controlling

the error made with our approximations. We decompose the error into two terms

|R̂ε,m
adv,α − R̂

ε,∗
adv| ≤ |R̂

ε,∗
adv,α − R̂

ε,m
adv,α|+ |R̂

ε,∗
adv,α − R̂

ε,∗
adv|

where the first one corresponds to the statistical error made by our estimation
of the integral, and the second to the approximation error made by the entropic
regularization of the objective. First, we show a control of the statistical error
using Rademacher complexities [244].

Proposition 9.4.2. Let m ≥ 1 and α > 0 and denote α := (α, . . . , α) ∈ RN

and m := (m, . . . ,m) ∈ RN . Then by denoting M̃ = max(M, 1), we have with a
probability of at least 1− δ

|R̂ε,∗
adv,α − R̂

ε,m
adv,α| ≤

2eM/α

N

N∑
i=1

Ri + 6M̃eM/α

√
log(4

δ
)

2mN

where Ri :=
1
m
Eσ

[
supθ∈Θ

∑m
j=1 σjl(θ, u

(i)
j )
]

and σ := (σ1, . . . , σm) with σi i.i.d.
sampled as P[σi = ±1] = 1/2.

We deduce from the above Proposition that in the particular case where Θ is
finite such that |Θ| = L, with probability of at least 1− δ

|R̂ε,∗
adv,α − R̂

ε,m
adv,α| ∈ O

(
MeM/α

√
log(L)

m

)
.

This case is of particular interest when one wants to learn the optimal mixture of
some given classifiers in order to minimize the adversarial risk. In the following
proposition, we control the approximation error made by adding an entropic term
to the objective.

Proposition 9.4.3. Denote for β > 0, (x, y) ∈ X × Y and µ ∈ P(Θ), A(x,y)
β,µ :=

{u| sup
v∈S(ε)

(x,y)

Eµ[l(θ, v)] ≤ Eµ[l(θ, u)] + β}. If there exists Cβ such that for all

(x, y) ∈ X × Y and µ ∈ P(Θ), U(x,y)

(
A

(x,y)
β,µ

)
≥ Cβ then we have

|R̂ε,∗
adv,α − R̂

ε,∗
adv| ≤ 2α| log(Cβ)|+ β.

The assumption made in the above Proposition states that for any given random
classifier µ, and any given point (x, y), the set of β-optimal attacks at this point has
at least a certain amount of mass depending on the β chosen. This assumption is
always met when β is sufficiently large. However in order to obtain a tight control
of the error, a trade-off exists between β and the smallest amount of mass Cβ of
β-optimal attacks. Now that we have shown that solving (9.7) allows to obtain an
approximation of the true solution R̂ε,∗

adv, we next aim at deriving an algorithm to
compute it.
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9.4.2 Proposed Algorithms

From now on, we focus on finite class of classifiers. Let Θ = {θ1, . . . , θL}, we aim
to learn the optimal mixture of classifiers in this case. The adversarial empirical
risk is therefore defined as:

R̂ε
adv(λ) =

N∑
i=1

sup
Qi∈Γi,ε

E(x,y)∼Qi

[
L∑
k=1

λkl(θk, (x, y))

]

for λ ∈ ∆L := {λ ∈ RL
+ s.t.

∑L
i=1 λi = 1}, the probability simplex of RL. One

can notice that R̂ε
adv(·) is a continuous convex function, hence minλ∈∆L

Rε
adv(λ) is

attained for a certain λ∗. Then there exists a non-approximate Nash equilibrium
(λ∗,Q∗) in the adversarial game when Θ is finite. Here, we present two algorithms
to learn the optimal mixture of the adversarial risk minimization problem.

Algorithm 17 Oracle-based Algorithm
λ0 =

1L
L ;T ; η = 2

M
√
LT

for t = 1, . . . , T do
Q̃ s.t. ∃Q∗ ∈ Aε(P) best response to λt−1 and for all k ∈ [L], |EQ̃(l(θk, (x, y))) −
EQ∗(l(θk, (x, y)))| ≤ δ

gt =
(
EQ̃(l(θ1, (x, y)), . . . ,EQ̃(l(θL, (x, y))

)T
λt = Π∆L

(λt−1 − ηgt)
end

Figure 9.2: On left, 40 data samples with their set of possible attacks represented
in shadow and the optimal randomized classifier, with a color gradient representing
the probability of the classifier. In the middle, convergence of the oracle (α = 0)
and regularized algorithm for different values of regularization parameters. On
right, in-sample and out-sample risk for randomized and deterministic minimum
risk in function of the perturbation size ε. In the latter case, the randomized
classifier is optimized with oracle Algorithm 17.
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An Entropic Relaxation. Using the results from Section 9.4.1, adding an
entropic term to the objective allows to have a simple reformulation of the problem,
as follows:

inf
λ∈∆L

N∑
i=1

εi
N

log

(
1

mi

mi∑
j=1

exp

(∑L
k=1 λkl(θk, u

(i)
j )

εi

))

Note that in λ, the objective is convex and smooth. One can apply the accelerated
PGD [236, 237] which enjoys an optimal convergence rate for first order methods
of O(T−2) for T iterations.

A First Oracle Algorithm. Indepedently from the entropic regularization,we
present an oracle-based algorithm inspired from [152] and the convergence of
projected sub-gradient methods [156]. The computation of the inner supremum
problem is usually NP-hard 6, but one may assume the existence of an approximate
oracle to this supremum. The algorithm is presented in Algorithm 17. We get the
following guarantee for this algorithm.

Proposition 9.4.4. Let l : Θ× (X × Y)→ [0,∞) satisfying Assumption 3. Then,
Algorithm 17 satisfies:

min
t∈[T ]
R̂ε
adv(λt)− R̂

ε,∗
adv ≤ 2δ +

2M
√
L√

T

The main drawback of the above algorithm is that one needs to have access to
an oracle to guarantee the convergence of the proposed algorithm. In the following
we present its regularized version in order to approximate the solution and propose
a simple algorithm to solve it.

9.4.3 A General Heuristic Algorithm

So far, our algorithms are not easily practicable in the case of deep learning.
Adversarial examples are known to be easily transferrable from one model to
another [247, 248]. So we aim at learning diverse models. To this end, and support
our theoretical claims, we propose an heuristic algorithm (see Algorithm 18) to
train a robust mixture of L classifiers. We alternatively train these classifiers with
adversarial examples against the current mixture and update the probabilities of
the mixture according to the algorithms we proposed in Section 9.4.2. More details
on this algorithm are available in Appendix 9.10.

6See Appendix 9.11 for details.

312



Algorithm 18 Adversarial Training for Mixtures
L: number of models, T : number of iterations,
Tθ: number of updates for the models θ,
Tλ: number of updates for the mixture λ,
λ0 = (λ1

0, . . . λ
L
0 ), θ0 = (θ10, . . . θ

L
0 )

for t = 1, . . . , T do
Let Bt be a batch of data.
if t mod (TθL+ 1) ̸= 0 then

k sampled uniformly in {1, . . . , L}
B̃t ← Attack of images in Bt for the model (λt,θt)
θtk ← Update θt−1

k with B̃t for fixed λt with a SGD step
else

λt ←Update λt−1 on Bt for fixed θt with oracle-based or regularized algorithm
with Tλ iterations.

end
end

9.5 Experiments

9.5.1 Synthetic Dataset

To illustrate our theoretical findings, we start by testing our learning algorithm on
the following synthetic two-dimensional problem. Let us consider the distribution
P defined as P (Y = ±1) = 1/2, P (X | Y = −1) = N (0, I2) and P (X | Y = 1) =
1
2
[N ((−3, 0), I2) +N ((3, 0), I2)]. We sample 1000 training points from this distri-

bution and randomly generate 10 linear classifiers that achieves a standard training
risk lower than 0.4. To simulate an adversary with budget ε in ℓ2 norm, we proceed
as follows. For every sample (x, y) ∼ P we generate 1000 points uniformly at
random in the ball of radius ε and select the one maximizing the risk for the 0/1
loss. Figure 9.2 (left) illustrates the type of mixture we get after convergence of
our algorithms. Note that in this toy problem, we are likely to find the optimal
adversary with this sampling strategy if we sample enough attack points.

To evaluate the convergence of our algorithms, we compute the adversarial risk
of our mixture for each iteration of both the oracle and regularized algorithms.
Figure 9.2 illustrates the convergence of the algorithms w.r.t the regularization
parameter. We observe that the risk for both algorithms converge. Moreover, they
converge towards the oracle minimizer when the regularization parameter α goes
to 0.

Finally, to demonstrate the improvement randomized techniques offer against
deterministic defenses, we plot in Figure 9.2 (right) the minimum adversarial risk
for both randomized and deterministic classifiers w.r.t. ε. The adversarial risk is
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Models Acc. APGDCE APGDDLR Rob. Acc.
1 81.9% 47.6% 47.7% 45.6%
2 81.9% 49.0% 49.6% 47.0%
3 81.7% 49.0% 49.3% 46.9%
4 82.6% 49.7% 49.8% 47.2%

Adversarial Training, CIFAR-10 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.
1 79.6% 50.9% 48.9% 48.3%
2 80.3% 52.3% 51.2% 50.2%
3 80.7% 52.8% 51.7% 50.7%
4 80.9% 53.0% 51.8% 50.8%

TRADES, CIFAR-10 dataset results

Models Acc. APGDCE APGDDLR Rob. Acc.
1 55.2% 24.1% 23.8% 22.5%
2 55.2% 25.3% 26.1% 23.6%
3 55.4% 25.7% 26.8% 24.2%
4 55.3% 26.0% 27.5% 24.5%

Adversarial Training, CIFAR-100 dataset results

Figure 9.3: Upper plots: Adversarial Training, CIFAR-10 dataset results. Middle
plots: TRADES, CIFAR-10 dataset results. Bottom plots: CIFAR-100 dataset
results. On left: Comparison of our algorithm with a standard adversarial training
(one model). We reported the results for the model with the best robust accuracy
obtained over two independent runs because adversarial training might be unstable.
Standard and Robust accuracy (respectively in the middle and on right) on CIFAR-
10 test images in function of the number of epochs per classifier with 1 to 3 ResNet18
models. The performed attack is PGD with 20 iterations and ε = 8/255.

strictly better for randomized classifier whenever the adversarial budget ε is bigger
than 2. This illustration validates our analysis of Theorem 9.3.1, and motivates a
in depth study of a more challenging framework, namely image classification with
neural networks.

9.5.2 CIFAR Datasets

Experimental Setup. We now implement our heuristic algorithm (Alg. 18)
on CIFAR-10 and CIFAR-100 datasets for both Adversarial Traning [104] and
TRADES [249] loss. To evaluate the performance of Algorithm 18, we trained
from 1 to 4 ResNet18 [250] models on 200 epochs per model7. We study the

7L× 200 epochs in total, where L is the number of models.
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robustness with regards to ℓ∞ norm and fixed adversarial budget ε = 8/255. The
attack we used in the inner maximization of the training is an adapted (adaptative)
version of PGD for mixtures of classifiers with 10 steps. Note that for one single
model, Algorithm 18 exactly corresponds to adversarial training [104] or TRADES.
For each of our setups, we made two independent runs and select the best one.
The training time of our algorithm is around four times longer than a standard
Adversarial Training (with PGD 10 iter.) with two models, eight times with three
models and twelve times with four models. We trained our models with a batch
of size 1024 on 8 Nvidia V100 GPUs. We give more details on implementation in
Appendix 9.10.

Evaluation Protocol. At each epoch, we evaluate the current mixture on test
data against PGD attack with 20 iterations. To select our model and avoid
overfitting [251], we kept the most robust against this PGD attack. To make a
final evaluation of our mixture of models, we used an adapted version of AutoPGD
untargeted attacks [110] for randomized classifiers with both Cross-Entropy (CE)
and Difference of Logits Ratio (DLR) loss. For both attacks, we made 100 iterations
and 5 restarts.

Results. The results are presented in Figure 9.3. We remark our algorithm
outperforms a standard adversarial training in all the cases by more 1% on CIFAR-
10 and CIFAR-100, without additional loss of standard accuracy as it is attested
by the left figures. On TRADES, the gain is even more important by more than
2% in robust accuracy. Moreover, it seems our algorithm, by adding more and
more models, reduces the overfitting of adversarial training. It also appears that
robustness increases as the number of models increases. So far, experiments are
computationally very costful and it is difficult to raise precise conclusions. Further,
hyperparameter tuning [252] such as architecture, unlabeled data [253] or activation
function may still increase the results.

9.6 Related Work and Discussions

Distributionally Robust Optimization. Several recent works [152, 153, 154]
studied the problem of adversarial examples through the scope of distributionally
robust optimization. In these frameworks, the set of adversarial distributions is
defined using an ℓp Wasserstein ball (the adversary is allowed to have an average
perturbation of at most ε in ℓp norm). This however does not match the usual
adversarial attack problem, where the adversary cannot move any point by more
than ε. In the present work, we introduce a cost function allowing us to cast
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the adversarial example problem as a DRO one, without changing the adversary
constraints.

Optimal Transport (OT). Bhagoji et al. [150] and Pydi and Jog [151] investi-
gated classifier-agnostic lower bounds on the adversarial risk of any deterministic
classifier using OT. These works only evaluate lower bounds on the primal deter-
ministic formulation of the problem, while we study the existence of mixed Nash
equilibria. Note that Pydi and Jog [151] started to investigate a way to formalize the
adversary using Markov kernels, but did not investigate the impact of randomized
strategies on the game. We extended this work by rigorously reformulating the
adversarial risk as a linear optimization problem over distributions and we study
this problem from a game theoretic point of view.

Game Theory. Adversarial examples have been studied under the notions of
Stackelberg game in [147], and zero-sum game in [144, 145, 146]. These works
considered restricted settings (convex loss, parametric adversaries, etc.) that do
not comply with the nature of the problem. Indeed, we prove in Appendix 9.9.3
that when the loss is convex and the set Θ is convex, the duality gap is zero
for deterministic classifiers. However, it has been proven that no convex loss
can be a good surrogate for the 0/1 loss in the adversarial setting [148, 149],
narrowing the scope of this result. If one can show that for sufficiently separated
conditional distributions, an optimal deterministic classifier always exists (see
Appendix 9.11 for a clear statement), necessary and sufficient conditions for the
need of randomization are still to be established. [143] studied partly this question
for regularized deterministic adversaries, leaving the general setting of randomized
adversaries and mixed equilibria unanswered, which is the very scope of this paper.
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Supplementary material

9.7 Notations

Let (Z, d) be a Polish metric space (i.e. complete and separable). We say that (Z, d)
is proper if for all z0 ∈ Z and R > 0, B(z0, R) := {z | d(z, z0) ≤ R} is compact.
For (Z, d) a Polish space, we denote P(Z) the set of Borel probability measures
on Z endowed with ∥·∥TV strong topology. We recall the notion of weak topology:
we say that a sequence (µn)n of P(Z) converges weakly to µ ∈ P(Z) if and only
if for every bounded continuous function f on Z,

∫
fdµn →n→∞

∫
fdµ. Endowed

with its weak topology, P(Z) is a Polish space. For µ ∈ P(Z), we define L1(µ)
the set of integrable functions with respect to µ. We denote π1 : (z, z′) ∈ Z2 7→ z
and π2 : (z, z′) ∈ Z2 7→ z′ respectively the projections on the first and second
component, which are continuous applications. For a measure µ and a measurable
mapping µ, we denote g♯µ the pushforward measure of µ by g. Let L ≥ 1 be an
integer and denote ∆L := {λ ∈ RL

+ s.t.
∑L

k=1 λk = 1}, the probability simplex of
RL.

9.8 Useful Lemmas

Lemma 15 (Fubini’s theorem). Let l : Θ× (X × Y)→ [0,∞) satisfying Assump-
tion 3. Then for all µ ∈ P(Θ),

∫
l(θ, ·)dµ(θ) is Borel measurable; for Q ∈ P(X×Y),∫

l(·, (x, y))dQ(x, y) is Borel measurable. Moreover:
∫
l(θ, (x, y))dµ(θ)dQ(x, y) =∫

l(θ, (x, y))dQ(x, y)dµ(θ)

Lemma 16. Let l : Θ× (X × Y)→ [0,∞) satisfying Assumption 3. Then for all
µ ∈ P(Θ), (x, y) 7→

∫
l(θ, (x, y))dµ(θ) is upper semi-continuous and hence Borel

measurable.

Proof. Let (xn, yn)n be a sequence of X × Y converging to (x, y) ∈ X × Y . For all
θ ∈ Θ, M − l(θ, ·) is non negative and lower semi-continuous. Then by Fatou’s
Lemma applied:∫

M − l(θ, (x, y))dµ(θ) ≤
∫

lim inf
n→∞

M − l(θ, (xn, yn))dµ(θ)

≤ lim inf
n→∞

∫
M − l(θ, (xn, yn))dµ(θ)

Then we deduce that:
∫
M − l(θ, ·)dµ(θ) is lower semi-continuous and then∫

l(θ, ·)dµ(θ) is upper-semi continuous.
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Lemma 17. Let l : Θ × (X × Y) → [0,∞) satisfying Assumption 3 Then for
all µ ∈ P(Θ), Q 7→

∫
l(θ, (x, y))dµ(θ)dQ(x, y) is upper semi-continuous for weak

topology of measures.

Proof. −
∫
l(θ, ·)dµ(θ) is lower semi-continuous from Lemma 16. Then M −∫

l(θ, ·)dµ(θ) is lower semi-continuous and non negative. Let denote v this function.
Let (vn)n be a non-decreasing sequence of continuous bounded functions such that
vn → v. Let (Qk)k converging weakly towards Q. Then by monotone convergence:

∫
vdQ = lim

n

∫
vndQ = lim

n
lim
k

∫
vndQk ≤ lim inf

k

∫
vdQk

Then Q 7→
∫
vdQ is lower semi-continuous and then Q 7→

∫
l(θ, (x, y))dµ(θ)dQ(x, y)

is upper semi-continuous for weak topology of measures.

Lemma 18. Let l : Θ × (X × Y) → [0,∞) satisfying Assumption 3. Then
for all µ ∈ P(Θ), (x, y) 7→ sup(x′,y′),d(x,x′)≤ε,y=y′

∫
l(θ, (x′, y′))dµ(θ) is universally

measurable (i.e. measurable for all Borel probability measures). And hence the
adversarial risk is well defined.

Proof. Let ϕ : (x, y) 7→ sup(x′,y′),d(x,x′)≤ε,y=y′
∫
l(θ, (x′, y′))dµ(θ). Then for u ∈ R̄:

{ϕ(x, y) > u} = Proj1

{
((x, y), (x′, y′)) |

∫
l(θ, (x′, y′))dµ(θ)− cε((x, y), (x′, y′)) > u

}
By Lemma 17: ((x, y), (x′, y′)) 7→

∫
l(θ, (x′, y′))dµ(θ)− cε((x, y), (x′, y′)) is upper-

semicontinuous hence Borel measurable. So its level sets are Borel sets, and by [246,
Proposition 7.39], the projection of a Borel set is analytic. And then {ϕ(x, y) > u}
universally measurable thanks to [246, Corollary 7.42.1]. We deduce that ϕ is
universally measurable.

9.9 Proofs

9.9.1 Proof of Proposition 9.2.1

Proof. Let η > 0. Let Q ∈ Aε(P). There exists γ ∈ P ((X × Y)2) such that,
d(x, x′) ≤ ε, y = y′ γ-almost surely, and π1♯γ = P, and π2♯γ = Q. Then

∫
cεdγ =

0 ≤ η. Then, we deduce that OTcε(P,Q) ≤ η, and Q ∈ Bcε(P, η). Reciprocally, let
Q ∈ Bcε(P, η). Then, since the infimum is attained in the Wasserstein definition,
there exists γ ∈ P ((X × Y)2) such that

∫
cεdγ ≤ η. Since cε((x, x′), (y, y′)) = +∞

when d(x, x′) > ε and y ̸= y′, we deduce that, d(x, x′) ≤ ε and y = y′, γ-almost
surely. Then Q ∈ Aε(P). We have then shown that: Aε(P) = Bcε(P, η).
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The convexity of Aε(P) is then immediate from the relation with the Wasserstein
uncertainty set.

Let us show first that Aε(P) is relatively compact for weak topology. To do
so we will show that Aε(P) is tight and apply Prokhorov’s theorem. Let δ > 0,
(X × Y , d ⊕ d′) being a Polish space, {P} is tight then there exists Kδ compact
such that P(Kδ) ≥ 1− δ. Let K̃δ := {(x′, y′) | ∃(x, y) ∈ Kδ, d(x

′, x) ≤ ε, y = y′}.
Recalling that (X , d) is proper (i.e. the closed balls are compact), so K̃δ is compact.
Moreover for Q ∈ Aε(P), Q(K̃δ) ≥ P(Kδ) ≥ 1− δ. And then, Prokhorov’s theorem
holds, and Aε(P) is relatively compact for weak topology.

Let us now prove that Aε(P) is closed to conclude. Let (Qn)n be a sequence
of Aε(P) converging towards some Q for weak topology. For each n, there exists
γn ∈ P(X × Y) such that d(x, x′) ≤ ε and y = y′ γn-almost surely and π1♯γn = P,
π2♯γn = Qn. {Qn, n ≥ 0} is relatively compact, then tight, then

⋃
n ΓP,Qn is tight,

then relatively compact by Prokhorov’s theorem. (γn)n ∈
⋃
n ΓP,Qn , then up to

an extraction, γn → γ. Then d(x, x′) ≤ ε and y = y′ γ-almost surely, and by
continuity, π1♯γ = P and by continuity, π2♯γ = Q. And hence Aε(P) is closed.

Finally Aε(P) is a convex compact set for the weak topology.

9.9.2 Proof of Proposition 9.2.2

Proof. Let µ ∈ P(Θ). Let f̃ : ((x, y), (x′, y′)) 7→ Eθ∼µ [l(θ, (x, y))]−cε((x, y), (x′, y′)).
f̃ is upper-semi continuous, hence upper semi-analytic. Then, by upper semi con-
tinuity of Eθ∼µ [l(θ, ·)] on the compact {(x′, y′) | d(x, x′) ≤ ε, y = y′} and [246,
Proposition 7.50], there exists a universally measurable mapping T such that
Eθ∼µ [l(θ, T (x, y))] = sup(x′,y′), d(x,x′)≤ε,y=y′ Eθ∼µ [l(θ, (x, y))]. Let Q = T♯P, then
Q ∈ Aε(P). And then

E(x,y)∼P

[
sup

(x′,y′), d(x,x′)≤ε,y=y′
Eθ∼µ [l(θ, (x′, y′))]

]
≤ sup

Q∈Aε(P)
E(x,y)∼Q [Eθ∼µ [l(θ, (x, y))]]

.
Reciprocally, let Q ∈ Aε(P). There exists γ ∈ P((X × Y)2), such that

d(x, x′) ≤ ε and y = y′ γ-almost surely, and, π1♯γ = P and π2♯γ = Q. Then:
Eθ∼µ [l(θ, (x′, y′))] ≤ sup(u,v), d(x,u)≤ε,y=v Eθ∼µ [l(θ, (u, v))] γ-almost surely. Then,
we deduce that:

E(x′,y′)∼Q [Eθ∼µ [l(θ, (x′, y′))]] = E(x,y,x′,y′)∼γ [Eθ∼µ [l(θ, (x′, y′))]]

≤ E(x,y,x′,y′)∼γ

[
sup

(u,v), d(x,u)≤ε,y=v
Eθ∼µ [l(θ, (u, v))]

]

≤ E(x,y)∼P

[
sup

(u,v), d(x,u)≤ε,y=v
Eθ∼µ [l(θ, (u, v))]

]
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Then we deduce the expected result:

Rε
adv(µ) = sup

Q∈Aε(P)
E(x,y)∼Q [Eθ∼µ [l(θ, (x, y))]]

Let us show that the optimum is attained. Q 7→ E(x,y)∼Q [Eθ∼µ [l(θ, (x, y))]] is upper
semi continuous by Lemma 17 for the weak topology of measures, and Aε(P) is
compact by Proposition 9.2.1, then by [246, Proposition 7.32], the supremum is
attained for a certain Q∗ ∈ Aε(P).

9.9.3 Proof of Theorem 9.3.1

Let us first recall the Fan’s Theorem.

Theorem 9.9.1. Let U be a compact convex Haussdorff space and V be convex
space (not necessarily topological). Let ψ : U ×V → R be a concave-convex function
such that for all v ∈ V , ψ(·, v) is upper semi-continuous then:

inf
v∈V

max
u∈U

ψ(u, v) = max
u∈U

inf
v∈V

ψ(u, v)

We are now set to prove Theorem 9.3.1.

Proof. Aε(P), endowed with the weak topology of measures, is a Hausdorff compact
convex space, thanks to Proposition 9.2.1. Moreover, P(Θ) is clearly convex and
(Q, µ) 7→

∫
ldµdQ is bilinear, hence concave-convex. Moreover thanks to Lemma 17,

for all µ, Q 7→
∫
ldµdQ is upper semi-continuous. Then Fan’s theorem applies and

strong duality holds.

In the related work (Section 9.6), we mentioned a particular form of Theo-
rem 9.3.1 for convex cases. As mentioned, this result has limited impact in the
adversarial classification setting. It is still a direct corollary of Fan’s theorem. This
theorem can be stated as follows:

Theorem 9.9.2. Let P ∈ P(X × Y), ε > 0 and Θ a convex set. Let l be a loss
satisfying Assumption 3, and also, (x, y) ∈ X × Y, l(·, (x, y)) is a convex function,
then we have the following:

inf
θ∈Θ

sup
Q∈Aε(P)

EQ [l(θ, (x, y))] = sup
Q∈Aε(P)

inf
θ∈Θ

EQ [l(θ, (x, y))]

The supremum is always attained. If Θ is a compact set then, the infimum is also
attained.
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9.9.4 Proof of Proposition 9.4.1

Proof. Let us first show that for α ≥ 0, supQi∈Γi,ε
EQi,µ [l(θ, (x, y))]−αKL

(
Qi,

1
N
U(xi,yi)

)
admits a solution. Let α ≥ 0, (Qn

α,i)n≥0 a sequence such that

EQn
α,i,µ

[l(θ, (x, y))]− αKL
(
Qn
α,i,

1

N
U(xi,yi)

)
−−−−→
n→+∞

sup
Qi∈Γi,ε

EQi,µ [l(θ, (x, y))]

− αKL
(
Qi,

1

N
U(xi,yi)

)
.

As Γi,ε is tight ((X , d) is a proper metric space therefore all the closed ball are com-
pact) and by Prokhorov’s theorem, we can extract a subsequence which converges to-
ward Q∗

α,i. Moreover, l is upper semi-continuous (u.s.c), thus Q→ EQ,µ [l(θ, (x, y))]

is also u.s.c.8 Moreover Q → −αKL
(
Q, 1

N
U(xi,yi)

)
is also u.s.c. 9, therefore, by

considering the limit superior as n goes to infinity we obtain that

lim sup
n→+∞

EQn
α,i,µ

[l(θ, (x, y))]− αKL
(
Qn
α,i,

1

N
U(xi,yi)

)
= sup

Qi∈Γi,ε

EQi,µ [l(θ, (x, y))]− αKL
(
Qi,

1

N
U(xi,yi)

)
≤ EQ∗

α,i,µ
[l(θ, (x, y))]− αKL

(
Q∗
α,i,

1

N
U(xi,yi)

)
from which we deduce that Q∗

α,i is optimal.

Let us now show the result. We consider a positive sequence of (α(ℓ)
i )ℓ≥0 such that

α
(ℓ)
i → 0. Let us denote Q∗

α
(ℓ)
i ,i

and Q∗
i the solutions of maxQi∈Γi,ε

EQi,µ [l(θ, (x, y))]−

α
(ℓ)
i KL

(
Qi,

1
N
U(xi,yi)

)
and maxQi∈Γi,ε

EQi,µ [l(θ, (x, y))] respectively. Since Γi,ε is
tight, (Q∗

α
(ℓ)
i ,i

)ℓ≥0 is also tight and we can extract by Prokhorov’s theorem a subse-
quence which converges towards Q∗. Moreover we have

EQ∗
i ,µ

[l(θ, (x, y))]− α(ℓ)
i KL

(
Q∗
i ,

1

N
U(xi,yi)

)
≤EQ∗

α
(ℓ)
i

,i
,µ [l(θ, (x, y))]

− α(ℓ)
i KL

(
Q∗
α
(ℓ)
i ,i
,
1

N
U(xi,yi)

)
8Indeed by considering a decreasing sequence of continuous and bounded functions which

converge towards Eµ [l(θ, (x, y))] and by definition of the weak convergence the result follows.
9for α = 0 the result is clear, and if α > 0, note that KL

(
·, 1

NU(xi,yi)

)
is lower semi-continuous
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from which follows that

0 ≤ EQ∗
i ,µ

[l(θ, (x, y))]− EQ∗
α
(ℓ)
i

,i
,µ [l(θ, (x, y))] ≤ α

(ℓ)
i KL

(
Q∗
i ,

1

N
U(xi,yi)

)
− α(ℓ)

i KL
(
Q∗
α
(ℓ)
i ,i
,
1

N
U(xi,yi)

)
Then by considering the limit superior we obtain that

lim sup
ℓ→+∞

EQ∗
α
(ℓ)
i

,i
,µ [l(θ, (x, y))] = EQ∗

i ,µ
[l(θ, (x, y))] .

from which follows that

EQ∗
i ,µ

[l(θ, (x, y))] ≤ EQ∗,µ [l(θ, (x, y))]

and by optimality of Q∗
i we obtain the desired result.

9.9.5 Proof of Proposition 9.4.2

Proof. Let us denote for all µ ∈ P(Θ),

R̂ε,m
adv,α(µ) :=

N∑
i=1

αi
N

log

 1

mi

mi∑
j=1

exp
Eµ
[
l(θ, u

(i)
j )
]

αi

 .

Let also consider (µ
(m)
n )n≥0 and (µn)n≥0 two sequences such that

R̂ε,m
adv,α(µ

(m)
n ) −−−−→

n→+∞
R̂ε,m
adv,α, R̂ε

adv,α(µn) −−−−→
n→+∞

R̂ε,∗
adv,α.

We first remarks that

R̂ε,m
adv,α − R̂

ε,∗
adv,α ≤ R̂

ε,m
adv,α − R̂

ε,m
adv,α(µn) + R̂

ε,m
adv,α(µn)− R̂

ε
adv,α(µn) + R̂ε

adv,α(µn)− R̂
ε,∗
adv,α

≤ sup
µ∈P(Θ)

∣∣∣R̂ε,m
adv,α(µ)− R̂

ε
adv,α(µ)

∣∣∣+ R̂ε
adv,α(µn)− R̂

ε,∗
adv,α,

and by considering the limit, we obtain that

R̂ε,m
adv,α − R̂

ε,∗
adv,α ≤ sup

µ∈P(Θ)

∣∣∣R̂ε,m
adv,α(µ)− R̂

ε
adv,α(µ)

∣∣∣
Simarly we have that

R̂ε,∗
adv,α − R̂

ε,m
adv,α ≤ R̂

ε,∗
adv,α − R̂

ε
adv,α(µ

(m)
n ) + R̂ε

adv,α(µ
(m)
n )− R̂ε,m

adv,α(µ
(m)
n )

+ R̂ε,m
adv,α(µ

(m)
n )− R̂ε,m

adv,α
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from which follows that

R̂ε,∗
adv,α − R̂

ε,m
adv,α ≤ sup

µ∈P(Θ)

∣∣∣R̂ε,m
adv,α(µ)− R̂

ε
adv,α(µ)

∣∣∣
Therefore we obtain that∣∣∣R̂ε,∗

adv,α − R̂
ε,m
adv,α

∣∣∣ ≤ N∑
i=1

α

N
sup

µ∈P(Θ)

∣∣∣ log
 1

mi

mi∑
j=1

exp

Eθ∼µ
[
l(θ, u

(i)
j ))

]
α


− log

(∫
X×Y

exp

(
Eθ∼µ [l(θ, (x, y))]

α

)
dU(xi,yi)

) ∣∣∣.
Observe that l ≥ 0, therefore because the log function is 1-Lipschitz on [1,+∞),
we obtain that∣∣∣R̂ε,∗

adv,α − R̂
ε,m
adv,α

∣∣∣ ≤
N∑
i=1

α

N
sup

µ∈P(Θ)

∣∣∣ 1
mi

mi∑
j=1

exp

Eθ∼µ
[
l(θ, u

(i)
j ))

]
α

− ∫
X×Y

exp

(
Eθ∼µ [l(θ, (x, y))]

α

)
dU(xi,yi)

∣∣∣.
Let us now denote for all i = 1, . . . , N ,

R̂i(µ,u
(i)) :=

mi∑
j=1

exp

Eθ∼µ
[
l(θ, u

(i)
j ))

]
α


Ri(µ) :=

∫
X×Y

exp

(
Eθ∼µ [l(θ, (x, y))]

α

)
dU(xi,yi).

and let us define

f(u(1), . . . ,u(N)) :=
N∑
i=1

α

N
sup

µ∈P(Θ)

∣∣∣R̂i(µ)−Ri(µ)
∣∣∣

where u(i) := (u
(i)
1 , . . . , u

(m)
1 ). By denoting z(i) = (u

(i)
1 , . . . , u

(i)
k−1, z, u

(i)
k+1, . . . , u

(i)
m ),

we have that

|f(u(1), . . . ,u(N))− f(u(1), . . . ,u(i−1), z(i),u(i+1), . . . ,u(N))|

≤ α

N

∣∣∣ sup
µ∈P(Θ)

∣∣∣R̂i(µ,u
(i))−Ri(µ)

∣∣∣− sup
µ∈P(Θ)

∣∣∣R̂i(µ, z
(i))−Ri(µ)

∣∣∣∣∣∣
≤ α

N

∣∣∣ 1
m

exp
Eθ∼µ

[
l(θ, u

(i)
k ))

]
α

− exp

(
Eθ∼µ

[
l(θ, z(i)))

]
α

) ∣∣∣
≤ 2 exp(M/α)

Nm
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where the last inequality comes from the fact that the loss is upper bounded by
l ≤ M . Then by appling the McDiarmid’s Inequality, we obtain that with a
probability of at least 1− δ,∣∣∣R̂ε,∗

adv,α − R̂
ε,m
adv,α

∣∣∣ ≤ E(f(u(1), . . . ,u(N))) +
2 exp(M/α)√

mN

√
log(2/δ)

2
.

Thanks to [254, Lemma 26.2], we have for all i ∈ {1, . . . , N}

E(f(u(1), . . . ,u(N))) ≤ 2E(Rad(Fi ◦ u(i)))

where for any class of function F defined on Z and point z : (z1, . . . , zq) ∈ Zq

F ◦ z :=
{
(f(z1), . . . , f(zq)), f ∈ F

}
, Rad(F ◦ z) := 1

q
Eσ∼{±1}

[
sup
f∈F

q∑
i=1

σif(zi)

]

Fi :=
{
u→ exp

(
Eθ∼µ [l(θ, u))]

α

)
, µ ∈ P(Θ)

}
.

Moreover as x → exp(x/α) is exp(M/α)
α

-Lipstchitz on (−∞,M ], by [254, Lemma
26.9], we have

Rad(Fi ◦ u(i)) ≤ exp(M/α)

α
Rad(Hi ◦ u(i))

where

Hi :=
{
u→ Eθ∼µ [l(θ, u))] , µ ∈ P(Θ)

}
.

Let us now define

g(u(1), . . . ,u(N)) :=
N∑
j=1

2 exp(M/α)

N
Rad(Hj ◦ u(j)).

We observe that

|g(u(1), . . . ,u(N))− g(u(1), . . . ,u(i−1), z(i),u(i+1), . . . ,u(N))|

≤ 2 exp(M/α)

N
|Rad(Hi ◦ u(i))− Rad(Hi ◦ z(i))|

≤ 2 exp(M/α)

N

2M

m
.

By Applying the McDiarmid’s Inequality, we have that with a probability of at
least 1− δ

E(g(u(1), . . . ,u(N))) ≤ g(u(1), . . . ,u(N)) +
4 exp(M/α)M√

mN

√
log(2/δ)

2
.
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Remarks also that

Rad(Hi ◦ u(i)) =
1

m
Eσ∼{±1}

[
sup

µ∈P(Θ)

m∑
j=1

σiEµ(l(θ, u(i)j ))

]

=
1

m
Eσ∼{±1}

[
sup
θ∈Θ

m∑
j=1

σil(θ, u
(i)
j )

]

Finally, applying a union bound leads to the desired result.

9.9.6 Proof of Proposition 9.4.3

Proof. Following the same steps than the proof of Proposition 9.4.2, let (µεn)n≥0

and (µn)n≥0 two sequences such that

R̂ε
adv,α(µ

ε
n) −−−−→

n→+∞
R̂ε,∗
adv,α, R̂ε

adv(µn) −−−−→
n→+∞

R̂ε,∗
adv.

Remarks that

R̂ε,∗
adv,α − R̂

ε,∗
adv ≤ R̂

ε,∗
adv,α − R̂

ε
adv,α(µn) + R̂ε

adv,α(µn)− R̂ε
adv(µn) + R̂ε

adv(µn)− R̂
ε,∗
adv

≤ sup
µ∈P(Θ)

∣∣∣R̂ε
adv,α(µ)− R̂ε

adv(µ)
∣∣∣+ R̂ε

adv(µn)− R̂
ε,∗
adv

Then by considering the limit we obtain that

R̂ε,∗
adv,α − R̂

ε,∗
adv ≤ sup

µ∈P(Θ)

∣∣∣R̂ε
adv,α(µ)− R̂ε

adv(µ)
∣∣∣.

Similarly, we obtain that

R̂ε,∗
adv − R̂

ε,∗
adv,α ≤ sup

µ∈P(Θ)

∣∣∣R̂ε
adv,α(µ)− R̂ε

adv(µ)
∣∣∣,

from which follows that

∣∣∣R̂ε,∗
adv,α − R̂

ε,∗
adv

∣∣∣ ≤ 1

N

N∑
i=1

sup
µ∈P(Θ)

∣∣∣α log

(∫
X×Y

exp

(
Eµ[l(θ, (x, y))]

α

)
dU(xi,yi)

)
− sup

u∈Sε
(xi,yi)

Eµ[l(θ, u)]
∣∣∣.
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Let µ ∈ P(Θ) and i ∈ {1, . . . , N}, then we have∣∣∣α log

(∫
X×Y

exp

(
Eµ[l(θ, (x, y))]

α

)
dU(xi,yi)

)
− sup

u∈Sε
(xi,yi)

Eµ[l(θ, u)]
∣∣∣

=
∣∣∣α log

(∫
X×Y

exp

(Eµ[l(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[l(θ, u)]

α

)
dU(xi,yi)

)∣∣∣
= α

∣∣∣ log(∫
A

(xi,yi)

β,µ

exp

(Eµ[l(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[l(θ, u)]

α

)
dU(xi,yi)

+

∫
(A

(xi,yi)

β,µ )c
exp

(Eµ[l(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[l(θ, u)]

α

)
dU(xi,yi)

)∣∣∣
≤ α

∣∣∣ log (exp(−β/α)U(xi,yi)

(
A

(xi,yi)
β,µ

)) ∣∣∣
+ α

∣∣∣ log
1 +

exp(β/α)

U(xi,yi)

(
A

(xi,yi)
β,µ

) ∫
(A

(xi,yi)

β,µ )c
EdU(xi,yi)

∣∣∣
≤ α log(1/Cβ) + β +

α

Cβ

≤ 2α log(1/Cβ) + β

where

E = exp

(Eµ[l(θ, (x, y))]− supu∈Sε
(xi,yi)

Eµ[l(θ, u)]

α

)
,

finally we obtain that∣∣∣α log

(∫
X×Y

exp

(
Eµ[l(θ, (x, y))]

α

)
dU(xi,yi)

)
− sup

u∈Sε
(xi,yi)

Eµ[l(θ, u)]
∣∣∣

≤ α log(1/Cβ) + β +
α

Cβ

≤ 2α log(1/Cβ) + β

9.9.7 Proof of Proposition 9.4.4

Proof. Thanks to Danskin theorem, if Q∗ is a best response to λ, then

g∗ := (EQ∗ [l(θ1, (x, y))] , . . . ,EQ∗ [l(θL, (x, y))])
T
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is a subgradient of λ→ Rε
adv(λ). Let η ≥ 0 be the learning rate. Then we have

for all t ≥ 1:

∥λt − λ∗∥2 ≤ ∥λt−1 − ηgt − λ∗∥2

= ∥λt−1 − λ∗∥2 − 2η⟨gt,λt−1 − λ∗⟩+ η2∥gt∥2

≤ ∥λt−1 − λ∗∥2 − 2η⟨g∗
t ,λt−1 − λ∗⟩+ 2η⟨g∗

t − gt,λt−1 − λ∗⟩+ η2M2L

≤ ∥λt−1 − λ∗∥2 − 2η (Rε
adv(λt)−Rε

adv(λ
∗)) + 4ηδ + η2M2L

We then deduce by summing:

2η
T∑
t=1

Rε
adv(λt)−Rε

adv(λ
∗) ≤ 4δηT + ∥λ0 − λ∗∥2 + η2M2LT

Then we have:

min
t∈[T ]
Rε
adv(λt)−Rε

adv(λ
∗) ≤ 2δ +

4

ηT
+M2Lη

The left-hand term is minimal for η = 2
M

√
LT

, and for this value:

min
t∈[T ]
Rε
adv(λt)−Rε

adv(λ
∗) ≤ 2δ +

2M
√
L√

T

.

9.10 Additional Experimental Results

9.10.1 Experimental setting.

Optimizer. For each of our models, The optimizer we used in all our implemen-
tations is SGD with learning rate set to 0.4 at epoch 0 and is divided by 10 at half
training then by 10 at the three quarters of training. The momentum is set to 0.9
and the weight decay to 5× 10−4. The batch size is set to 1024.

Adaptation of Attacks. Since our classifier is randomized, we need to adapt
the attack accordingly. To do so we used the expected loss:

l̃ ((λ,θ), (x, y)) =
L∑
k=1

λkl(θk, (x, y))

to compute the gradient in the attacks, regardless the loss (DLR or cross-entropy).
For the inner maximization at training time, we used a PGD attack on the cross-
entropy loss with ε = 0.03. For the final evaluation, we used the untargeted DLR
attack with default parameters.
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Regularization in Practice. The entropic regularization in higher dimensional
setting need to be adapted to be more likely to find adversaries. To do so, we
computed PGD attacks with only 3 iterations with 5 different restarts instead
of sampling uniformly 5 points in the ℓ∞-ball. In our experiments in the main
paper, we use a regularization parameter α = 0.001. The learning rate for the
minimization on λ is always fixed to 0.001.

Alternate Minimization Parameters. Algorithm 18 implies an alternate
minimization algorithm. We set the number of updates of θ to Tθ = 50 and, the
update of λ to Tλ = 25.

9.10.2 Effect of the Regularization

In this subsection, we experimentally investigate the effect of the regularization. In
Figure 9.4, we notice, that the regularization has the effect of stabilizing, reducing
the variance and improving the level of the robust accuracy for adversarial training
for mixtures (Algorithm 18). The standard accuracy curves are very similar in
both cases.

Figure 9.4: On left and middle-left: Standard accuracies over epochs with respec-
tively no regularization and regularization set to α = 0.001. On middle right and
right: Robust accuracies for the same parameters against PGD attack with 20
iterations and ε = 0.03.

9.10.3 Additional Experiments on WideResNet28x10

We now evaluate our algorithm on WideResNet28x10 [255] architecture. Due
to computation costs, we limit ourselves to 1 and 2 models, with regularization
parameter set to 0.001 as in the paper experiments section. Results are reported
in Figure 9.5. We remark this architecture can lead to more robust models,
corroborating the results from [252].
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Models Acc. APGDCE APGDDLR Rob. Acc.
1 85.2% 49.9% 50.2% 48.5%
2 86.0% 51.5% 52.1% 49.6%

Figure 9.5: On left: Comparison of our algorithm with a standard adversarial
training (one model) on WideResNet28x10. We reported the results for the
model with the best robust accuracy obtained over two independent runs because
adversarial training might be unstable. Standard and Robust accuracy (respectively
in the middle and on right) on CIFAR-10 test images in function of the number
of epochs per classifier with 1 and 2 WideResNet28x10 models. The performed
attack is PGD with 20 iterations and ε = 8/255.

9.10.4 Overfitting in Adversarial Robustness

We further investigate the overfitting of our heuristic algorithm. We plotted in
Figure 9.6 the robust accuracy on ResNet18 with 1 to 5 models. The most robust
mixture of 5 models against PGD with 20 iterations arrives at epoch 198, i.e. at
the end of the training, contrary to 1 to 4 models, where the most robust mixture
occurs around epoch 101. However, the accuracy against AGPD with 100 iterations
in lower than the one at epoch 101 with global robust accuracy of 47.6% at epoch
101 and 45.3% at epoch 198. This strange phenomenon would suggest that the
more powerful the attacks are, the more the models are subject to overfitting. We
leave this question to further works.

9.11 Additional Results

9.11.1 Equality of Standard Randomized and Deterministic
Minimal Risks

Proposition 9.11.1. Let P be a Borel probability distribution on X × Y, and l a
loss satisfying Assumption 3, then:

inf
µ∈P(Θ)

R(µ) = inf
θ∈Θ
R(θ)

Proof. It is clear that: infµ∈P(Θ)R(µ) ≤ infθ∈ΘR(θ). Now, let µ ∈ P(Θ), then:

R(µ) = Eθ∼µ(R(θ)) ≥ essinf
µ

Eθ∼µ (R(θ))

≥ inf
θ∈Θ
R(θ).

329



Figure 9.6: Standard and Robust accuracy (respectively on left and on right) on
CIFAR-10 test images in function of the number of epochs per classifier with 1 to 5
ResNet18 models. The performed attack is PGD with 20 iterations and ε = 8/255.
The best mixture for 5 models occurs at the end of training (epoch 198).

where essinf denotes the essential infimum.

We can deduce an immediate corollary.

Corollary 2. Under Assumption 3, the dual for randomized and deterministic
classifiers are equal.

9.11.2 Decomposition of the Empirical Risk for Entropic
Regularization

Proposition 9.11.2. Let P̂ := 1
N

∑N
i=1 δ(xi,yi). Let l be a loss satisfying Assump-

tion 3. Then we have:

1

N

N∑
i=1

sup
x, d(x,xi)≤ε

Eθ∼µ [l(θ, (x, y))] =
N∑
i=1

sup
Qi∈Γi,ε

E(x,y)∼Qi,θ∼µ [l(θ, (x, y))]

where Γi,ε is defined as :

Γi,ε :=
{
Qi |

∫
dQi =

1

N
,

∫
cε((xi, yi), ·)dQi = 0

}
.

Proof. This proposition is a direct application of Proposition 9.2.2 for diracs
δ(xi,yi).
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9.11.3 On the NP-Hardness of Attacking a Mixture of Clas-
sifiers

In general, the problem of finding a best response to a mixture of classifiers is
in general NP-hard. Let us justify it on a mixture of linear classifiers in binary
classification: fθk(x) = ⟨θ, x⟩ for k ∈ [L] and λ = 1L/L. Let us consider the ℓ2
norm and x = 0 and y = 1. Then the problem of attacking x is the following:

sup
τ, ∥τ∥≤ε

1

L

L∑
k=1

1⟨θk,τ⟩≤0

This problem is equivalent to a linear binary classification problem on τ , which is
known to be NP-hard.

9.11.4 Case of Separated Conditional Distribtions

Proposition 9.11.3. Let Y = {−1,+1}. Let P ∈ P(X × Y). Let ε > 0. For
i ∈ Y, let us denote Pi the distribution of P conditionally to y = i. Let us
assume that dX (supp(P1+1), supp(P−1)) > 2ε. Let us consider the nearest neighbor
deterministic classifier : f(x) = d(x, supp(P+1))− d(x, supp(P−1)) and the 0/1 loss
l(f, (x, y)) = 1yf(x)≤0. Then f satisfies both optimal standard and adversarial risks:
R(f) = 0 and Rε

adv(f) = 0.

Proof. Let Let denote pi = P(y = i). Then we have

Rε
adv(f) = p+1EP+1

[
sup

x′, d(x,x′)≤ε
1f(x′)≤0

]
+ p−1EP−1

[
sup

x′, d(x,x′)≤ε
1f(x′)≥0

]

For x ∈ supp(P+1), we have, for all x′ such that d(x, x′) ̸= 0, f(x′) > 0, then:
EP+1

[
supx′, d(x,x′)≤ε 1f(x′)≤0

]
= 0. Similarly, we have EP−1

[
supx′, d(x,x′)≤ε 1f(x′)≥0

]
=

0. We then deduce the result.
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Conclusion

In this thesis, we proposed new regularization schemes of the OT problem using
low-rank methods and studied two ML problems in fairness and robustness using the
OT formalism. More precisely, we proposed contributions lying at the intersection
of the entropic OT and low-rank methods, and two applications of the Kantorovich
relaxation for the fair division problem and the adversarial attack problem, which
we summarize below.

Low-rank Optimal Transport

In chapter 4, we proposed a new approach to speeding up the resolution of entropy
regularized OT with the Sinkhorn algorithm by considering a low nonnegative rank
factorization of the kernel matrix. By incorporating parameterized feature maps,
we are able to approximate the entropic OT with common cost functions while
maintaining the positiveness of the factorization. Furthermore, we showed that
our approach is highly versatile and can be used as a successful extension to the
OT-GAN framework for training GANs at scale with linear time iterations. Our
contributions represent a significant step towards improving the computational
efficiency of optimal transport methods, with potential applications in a range of
fields such as computer vision and natural language processing.

In chapter 5, we introduced a new regularization scheme for optimal transport
problems, called Low-rank Optimal Transport (LOT), which imposes a low nonneg-
ative rank constraint on the feasible set of couplings. By directly constraining the
couplings rather than approximating the kernel, our approach can solve the OT
problem under low-rank constraints with arbitrary costs. This is achieved through
a generic approach that optimizes jointly on sub-couplings and a common marginal
distribution using a mirror-descent approach. We showed that our algorithm is
guaranteed to converge and can achieve linear time complexity when low rank
assumptions are exploited on the cost matrix. Overall, LOT provides a promising
new direction for optimal transport regularization that can lead to more efficient
and scalable solutions for a wide range of applications.
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In chapter 6, we assembled theoretical and practical arguments to support low-
rank factorizations for OT. We have presented two controls: one concerning the
approximation error to the true optimal transport and another concerning the
statistical rates of the plug-in estimator. The latter is showed to be independent of
the dimension, which is of particular interest when studying OT in ML settings.
We have motivated further the use of LOT as a loss by introducing its debiased
version and showed that it possesses desirable properties: positivity and metriza-
tion of the convergence in law. We have also presented the links between the bias
induced by such regularization and clustering methods, and studied empirically
the effects of hyperparameters involved in the practical estimation of LOT. The
strong theoretical foundations provided in this paper motivate further studies of
the empirical behaviour of LOT estimator, notably on finding suitable local minima
and on improvements on the convergence of the MD scheme using other adaptive
choices for step sizes.

In chapter 7, we showed that the factorization introduced in [3] to speed up classic
OT delivers an even larger impact when applied to GW: indeed, the combination of
low-rank couplings with-low rank cost matrices is the only one, to our knowledge,
that achieves linear time/memory complexity for the Gromov-Wasserstein problem.
By adding low-rank constraints, our goal is no longer to approach the optimal
coupling, but rather to promote low-rank solutions among many that have a low
GW cost. We showed in experiments that low-rank couplings can reach low GW
costs with similar performance as the entropic regularization, the current default
approach, while being much faster to compute and that they are directly useful in
real-world tasks. Our assumptions to reach linearity mostly rest on two important
assumptions: the rank of distance matrices (the intrinsic dimensionality of data
points) must be dominated by the number of points and that a small enough
rank r is able to capture the configuration of the input measures. Pending these
constraints, which are valid in most relevant experimental setups we know of, we
have demonstrated that our approach is versatile, remains faithful to the original
GW formulation, and scales to sizes that are out of reach for the SoTA entropic
solver.

Applications of OT in Machine Learning

In chapter 8, we proposed a relaxed version of the fair division problem, called
EOT (Equitable and Optimal Transport), using the fundamental idea of Kan-
torovich in order to relax the optimal transport problem intially defined by Monge.
By considering resources as distributions rather than sets, we showed that EOT
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exploits the divisibility of the resources and provides an equitable, optimal, and
proportional partition of the resources by maximizing the minimum of individual
utilities. The dual formulation of EOT is derived, along with strong duality results.
We established the relationship between EOT and some common Integral Proba-
bility Metrics and proposed an entropic regularized version of the problem, which
can be approximated using an efficient algorithm similar to the Sinkhorn algo-
rithm. Our work contributes to the growing literature on fair resource allocation and
opens new perspectives on the application of optimal transport for applied problems.

In chapter 9, we have presented a novel game-theoretic perspective of the ad-
versarial risk minimization problem using the fundamental principle introduced by
Kantorovich [32] to relax the Monge formulation of optimal transport. By viewed
the adversary as a coupling rather than a deterministic map, we showed that the
adversarial risk minimization problem can be reformulated as a distributionally
robust optimization problem over Wasserstein balls. We the studied the existence
of Nash equilibria in this two-players zero-sum game and showed its existence when
we allow the classifier to be random. We also proposed a framework for learning a
robust mixture of classifiers which leads to improved robustness against adversarial
attacks. The results demonstrate the effectiveness of our method and its potential
for practical applications in the field of adversarial machine learning.
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Titre : Avancées en Transport Optimal : Structures de Faible Rang et Applications à l’Apprentissage Automa-
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Résumé : Le transport optimal (TO) joue un rôle de
plus en plus important en apprentissage automatique
(AA) pour comparer des mesures de probabilités. Le
problème du TO a été utilisé dans de nombreuses
applications et formulé de plusieurs manières. Parmi
ces formulations, le problème de Monge et le pro-
gramme linéaire de Kantorovich se démarquent. La
première implique de trouver une transformation ef-
ficace pour envoyer une mesure sur une autre, tan-
dis que la seconde relâche la contrainte qu’impose
Monge pour faire correspondre des mesures en au-
torisant la division des masses. Le TO de Kantoro-
vich est beaucoup plus accessible aux calculs et a
été la formulation la plus exploitée en sciences des
données. Cependant, elle pose, dans sa forme origi-
nale, plusieurs défis lorsqu’elle est utilisée pour des
problèmes appliqués : (i) calculer le TO entre des
distributions discrètes équivaut à résoudre un pro-
gramme linéaire large et coûteux qui nécessite une
complexité super-cubique par rapport aux nombre de
points; (ii) estimer le TO en utilisant des mesures
échantillonnées est voué à l’échec en raison de la
malédiction de la dimensionnalité. Ces problèmes
peuvent être atténués en utilisant une régularisation
entropique, résolue avec l’algorithme Sinkhorn, qui
améliore à la fois les aspects statistiques et compu-
tationnels. Bien que beaucoup plus rapide, le TO en-
tropique nécessite toujours une complexité quadra-
tique par rapport au nombre de points et reste donc
prohibitif pour les problèmes à grande échelle. Profi-
tant de cette opportunité, j’ai consacré une partie im-
portante de ma thèse à travailler sur des nouvelles
approches de calculs pour le TO, ce qui a conduit
à ma ligne de travail sur l’introduction du transport
optimal de faible rang. J’ai également réalisé que
l’idée fondamentale proposée par Kantorovich pour
relaxer le TO pouvait être appliquée dans d’autres
contextes, et j’ai proposé de nouvelles approches en
utilisant cette même idée pour aborder le problème
de la division équitable et le problème des attaques
adverses à travers le prisme du TO. Cette thèse est
donc divisée en deux parties principales. Dans la
première partie, je présente de nouvelles approches
de régularisation pour le problème du TO, ainsi que
son extension quadratique, le problème de Gromov-
Wasserstein (GW), en imposant des structures de
faible rang sur les couplages. Les algorithmes obte-

nus possèdent une complexité linéaire à la fois en
temps et en mémoire par rapport au nombre de points
et permettent donc l’application du transport et ses
extensions dans le regime d’un très grands nombre
de points. Dans ma première tentative vers cet objec-
tif, je propose d’approcher les itérations de Sinkhorn
résolvant le TO entropique en imposant une factorisa-
tion de faible rang spécifique du noyau associé, ce qui
donne une factorisation de rang non négatif faible du
couplage optimal. Ensuite, je propose de généraliser
cette idée et de résoudre le problème du TO ainsi
que le problème GW en imposant directement une
contrainte de rang non négatif faible sur les couplages
admissibles dans le problème d’optimisation du trans-
port. Nous montrons que ces nouveaux schémas de
régularisation ont de meilleures performances com-
putationnelles et statistiques que l’approche entro-
pique et qu’ils peuvent même atteindre une com-
plexité linéaire sous des hypothèses de rang faible
sur les matrices de coûts associés au problème de
transport. Ces nouveaux schémas de calcul ouvrent
la voie à l’utilisation du TO à grande échelle. Dans
une deuxième partie, je présente deux contextes où
l’idée fondamentale proposée par Kantorovich pour
résoudre le problème de l’OT peut également être ap-
pliquée, offrant ainsi une nouvelle perspective sur des
problèmes de ML de longue date. Plus précisément,
nous proposons de relaxer le problème de division
équitable entre plusieurs agents dans l’espace des
distributions en permettant la division des masses
de ressources dans leur repartition. Ce faisant, nous
montrons qu’il est toujours possible d’obtenir une par-
tition équitable des ressources et nous obtenons une
généralisation du problème du TO lorsqu’il y a plu-
sieurs coûts impliqués. Nous abordons également le
problème des exemples adverses à l’aide du TO.
Dans ce problème, l’attaquant est représenté sous
forme d’une fonction déterministe qui projette la dis-
tribution des données vers une distribution adverse
visant à maximiser le risque du classificateur. En re-
laxant la définition de l’attaquant pour qu’il soit non
plus une fonction mais un couplage, nous obtenons
une formulation variationnelle du risque adverse qui
nous permet d’interpréter le problème de minimisa-
tion du risque adverse comme un jeu à somme nulle
à deux joueurs et nous étudions la question de l’exis-
tence d’équilibres de Nash dans ce jeu.
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Abstract : Optimal transport (OT) plays an increasin-
gly important role in machine learning (ML) to com-
pare probability distributions. The OT problem has
been used in many applications, and stated with a
wide variety of formulations. Among these the Monge
ansatz and the Kantorovich linear program stand out.
The former involves finding an efficient push-forward
map that can morph a measure onto another, while
the latter relax the matching of the measures by al-
lowing the splitting of masses. Kantorovich OT is far
more amenable to computations and has been the
main focus in data sciences. Yet, it poses, in its ori-
ginal form, several challenges when used for applied
problems: (i) computing OT between discrete distribu-
tions amounts to solving a large and expensive net-
work flow problem which requires a supercubic com-
plexity in the number of points; (ii) estimating OT using
sampled measures is doomed by the curse of dimen-
sionality. These issues can be mitigated using an en-
tropic regularization, solved with the Sinkhorn algo-
rithm, which improves on both statistical and compu-
tational aspects. While much faster, entropic OT still
requires a quadratic complexity with respect to the
number of points and therefore remains prohibitive for
large-scale problems. Seizing this opportunity, I devo-
ted a significant part of my thesis to work on scalable
approaches to OT, which led to my line of work on
the introduction of low-rank optimal transport (LOT). I
also realized that the fundamental idea proposed by
Kantorovich to relax OT could be applied in other set-
tings, and I proposed new approaches using this very
same idea to tackle the fair division problem and the
adversarial attacks problem through the lens of OT.
This thesis is therefore divided in two main parts. In
the first part, I present new regularization approaches
for the OT problem, as well as its quadratic extension,
the Gromov-Wasserstein (GW) problem, by imposing
low-rank structures on couplings. This yields a linear

complexity both in time and memory with respect to
the number of points. In my first attempt towards that
goal, I proposed to approximate the iterations of the
Sinkhorn algorithm solving entropic OT by forcing a
specific low-rank factorization of the kernel involved,
resulting in a low non-negative rank factorization of
the optimal coupling. Then I propose to generalize
this idea and to directly solve the OT problem as
well as the GW problem under low non-negative rank
constraints on the admissible couplings. We show that
these new regularization schemes have better com-
putational and statistical performances compared to
the entropic approach and that they can even reach
a linear complexity under low-rank assumptions on
the ground cost matrices. These new computational
schemes pave the way for the use of OT in the large-
scale setting. In a second part, I present two settings
where the fundamental idea proposed by Kantorovich
to relax the OT problem can also be applied, offe-
ring new perspective on longstanding ML problems.
More precisely, we propose to relax and lift the fair di-
vision problem between multiple agents into the space
of distributions by allowing the splitting of resource
masses in the partition. By doing so, we show that
it is always possible to obtain a fair partition of the
resources and we obtain a generalization of the OT
problem when multiple costs are involved. We also ta-
ckle the problem of adversarial examples using OT. In
this problem, the attacker can be represented as a de-
terministic map that push forward the data distribution
towards an adversarial one that aims at maximizing
the risk of the classifier. By relaxing the definition of
the attacker to be a coupling, we obtain a variational
formulation of the adversarial risk which allows us to
interpret the adversarial risk minimization problem as
a two-player zero-sum game and we study the ques-
tion of the existence of Nash equilibria in this game.
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