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Résumé

Des barrages et des digues sont construits à travers le monde afin d’assurer la pro-
duction d’énergie et la sécurité des populations. De telles constructions peuvent avoir
des tailles conséquentes, s’étendant sur des kilomètres, et sont souvent construites
avec des matériaux granulaires. Leur comportement découle de mécanismes com-
plexes ayant lieu à l’échelle du grain et s’en trouve difficile à décrire. Les lois consti-
tutives utilisées habituellement pour d’autres matériaux plus homogènes, tels que
l’acier, peinent à reproduire le comportement des matériaux granulaires pour des
chemins de chargement quelconques. Des modèles plus précis ont été mis au point
en se basant sur une description non continue du matériau à l’échelle du grain,
permettant ainsi la prise en compte de phénomènes microscopiques importants.
Parmi ces modèles, la Méthode des Éléments Discrets (DEM) décrit le comportement
des matériaux granulaires avec une bonne précision en modélisant directement l’en-
semble des grains qu’il contient. Le coût numérique de cette méthode est cependant
assez élevé, un mètre cube de matériau granulaire pouvant contenir des dizaines
de milliards de grains, ce qui nécessiterait des années de calculs sur la plupart des
super-ordinateurs actuels. La DEM ne permet donc pas d’accéder à l’échelle des
ouvrages.

Cette thèse propose une façon d’utiliser la DEM pour décrire le comportement de
matériaux granulaires au sein d’une méthode basée sur la continuité du matériau,
la Méthode du Point Matériel (MPM), remplaçant ainsi de fait la loi constitutive phé-
noménologique. Un tel couplage MPMxDEM peut-être envisagé pour modéliser de
grands ouvrages avec la précision de la DEM, même dans les cas où des déformations
importantes empêcheraient la Méthode des Éléments Finis (FEM) de poursuivre
son calcul.

Dans une première partie, deux études DEM sont menées à l’aide du logiciel open-
source YADE sur un matériau réel et concernent d’abord l’angle de repos formé
par un empilement de grains soumis à la gravité puis l’implication des "rattlers"
(particules avec 0 ou 1 contact) dans la description de l’état critique en l’absence de
gravité. Ensuite, une analyse des paramètres fondamentaux de la formulation de la
MPM est menée, dans le cadre de l’utilisation du code open source CB-Geo MPM.
La dissipation excessive d’énergie que présentent certains schémas MPM est mise
en évidence dans le cas simple d’un cube élastique qui rebondit.

Dans une seconde partie, le couplage MPMxDEM est formulé explicitement, en
détaillant l’hypothèse de quasi-staticité faite à l’échelle microscopique. Différents
aspects de notre implémentation MPMxDEM sont discutés, notamment l’intégration
de l’interface Python de YADE dans le code C++ de CB-Geo MPM. Cela inclut la
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présentation d’un module Python, développé dans le cadre de cette thèse, qui sert
d’interface à CB-Geo MPM en intégrant les spécificités du couplage MPMxDEM.
Une analyse des performances de notre implémentation montre par la suite que,
si judicieusement paramétrée, une parallélisation du code peut considérablement
accélérer les simulations MPMxDEM. Notre implémentation MPMxDEM est ensuite
validée sur la base de résultats d’un essai triaxial pur DEM, réalisé sur un modèle
numérique du sable de Camargue.

Le cas de l’effondrement d’une colonne de sable est finalement étudié, en pure
MPM avec le modèle de Mohr-Coulomb et en MPMxDEM. Une analyse de la défor-
mation imposée par la MPM pour le calcul local DEM démontre que notre hypothèse
de quasi-staticité est indispensable afin de réaliser une telle simulation en un temps
raisonnable. Il est observé que la MPM ralentit excessivement la chute de la co-
lonne, par rapport à des résultats expérimentaux mais aussi numériques, obtenus
avec d’autres méthodes. Cependant, l’étalement final obtenu pour nos colonnes
MPMxDEM est en accord raisonnable avec les résultats produits à l’aide d’une autre
approche multi-échelles similaire.

Mots clés : Multi-échelles, DEM, MPM, matériaux granulaires
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Abstract

Throughout the world, dam and dikes are constructed to ensure energy produc-
tion and security of the populations. Such hydraulic structures can be quite large,
spanning over kilometers, and are often made of granular materials. The study of
the latter has long been challenging because their behaviour emerges from complex
phenomena occurring between grains, at the microscopic scale. Usual constitutive
laws used for other materials, e.g. for steel, thus struggle to handle the variety of
loading paths a granular material may be subjected to. More accurate models were
developed by considering a non-continuous description of the material at the grain
scale, making possible the inclusion of important microscopic phenomena. For
instance, Discrete Element Method (DEM) directly models all constitutive grains,
resulting in an expensive but also very accurate description of any granular material.
Indeed, a cubic meter of granular material can contain tens of billions particles,
requiring years of calculation on most super-computers. The structure scale is thus
unreachable with DEM simulations.

This thesis demonstrates how DEM can be used to describe the behaviour of
granular materials within a continuum-based method, the Material Point Method
(MPM), thus replacing the usual constitutive laws. Such a MPMxDEM coupling can
be implemented to model earth dams and dikes at large scales with a DEM accuracy,
even when deformations reach a point where the traditional Finite Element Method
(FEM) is unable to continue the simulation.

First, two DEM studies are performed on an artificial real-life material using the
open-source software YADE. The angle of repose formed by a heap of particles and
the role of rattlers at critical state are therein examined through the execution of
many simulations. As for the MPM, a parametric study is performed after detailing
its formulation, which is linked to the MPM open-source code used in this thesis
(CB-Geo MPM). More precisely, the excessive dissipative properties of PIC-based
MPM velocity update strategies are highlighted in the simple case of a bouncing
elastic cube.

A MPMxDEM formulation is next provided, including specifics of the quasi-static
assumption made at the microscopic scale. Technical aspects on how our MPMx-
DEM implementation embeds the Python user interface available in YADE into the
C++ source code of CB-Geo MPM are discussed. In particular, details are given on
how a Python module developed during this thesis implements an interface for CB-
Geo MPM and the MPMxDEM framework. A speed-up analysis of our MPMxDEM
implementation performed on a server machine then assesses its performances,
demonstrating that simulations can be considerably accelerated through paral-
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lelization. Our MPMxDEM implementation is shown to be capable of reproducing
accurately pure DEM results in the case of a one cell triaxial test, performed on a
numerical replica of Camargue’s sand.

The well-known case of the collapse of a granular column is finally investigated,
using both pure MPM with the Mohr-Coulomb constitutive law and the MPMxDEM
coupling, the latter using the best set of parameters determined in the former. An
analysis of the deformation involved at each MPM iteration establishes that our
quasi-static assumption is necessary to perform a MPMxDEM simulation at this scale,
within a reasonable amount of time. It is highlighted that using MPM unrealistically
decreases the collapse rate of the column, compared to experimental results as well
as results obtained with other numerical methods. However, the final run-out of
the collapsed column is found to be in accordance with the values obtained in the
literature using a similar multi-scale model.

Keywords: Multi-scale, DEM, MPM, granular materials
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Introduction

Necessity of modeling heavily loaded granular materials
at large scale

Human activities such as industries, agriculture, or simply dwelling lead to the
necessity for energy production, irrigation, and security. Dams fulfill these needs
by serving as energy production facilities and flow regulator on rivers, while dikes
protect habitations and roads to insure the people’s security. Such constructions may
be subject to harsh environmental loading conditions that would threaten the safety
of populations, making the accuracy of their study a crucial challenge. These large
structures are often made of granular materials and the prediction of their behaviour
requires an understanding of the microscopic mechanisms inside the material that
can be very challenging to grasp. Moreover, the weight and environment of such
constructions solicit them at a point where common mechanical models suited for
small deformations are not efficient enough to provide an accurate prediction.

(a) A dam
https://images.app.goo.gl/
6LiVsFbFfHb4KqAm8

(b) A dike
https://images.app.goo.gl/
GVJnDuYNaVLpzQBC7

FIGURE 0.1. – Example of large hydraulic constructions

Example of the Teton dam

The Teton dam in Idaho (United States of America) is an example of a large hy-
draulic construction (spanning over almost 1 km and 93 m hight) that collapsed,
causing many human and material damages (see figure 0.2). This dam’s construction
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began in February 1972 and was completed in November 1975, after which it was
impounded. The 5t h June 1976 as the filling was almost complete, a leak was found
to contain sediment, which means that the dam began to be internally eroded. Two
hours later, the water flowed through the leak at an alarming rate of more than half a
cubic meter every second. Less than five hours after the leak was first noticed, the
dam had collapsed.

(a) Leak has started
https://en.wikipedia.org/
wiki/File:Teton_Dam_Sequence_
00.jpg

(b) Leak has grown wider
https://en.wikipedia.org/wiki/
File:Teton_Dam_Sequence_13.jpg

(c) Dam has collapsed
https://en.wikipedia.org/wiki/
File:Teton_Dam_failure.jpg

FIGURE 0.2. – Teton dam collapse

The failure was attributed to a lack of impermeability which led to the internal
erosion of the dam: water flowing through the leak teared some grains out of the dam,
making the leak wider and wider, until failure. The collapse of the Teton dam killed
16 people, and cost approximately billions dollars, which is 20 times its construction
cost. A better understanding of the phenomena occurring within the dam at the
microscopic scale would have certainly help preventing such a catastrophe, making
essential the study of granular materials used for geotechnical structures.
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Modelling methods

In mechanics, the behaviour of materials is modelled using constitutive laws, i.e.
equations connecting the stress path the material follows to its deformation state.
However, the behaviour of most of the materials used in civil engineering depends
on the history they went through, meaning that their constitutive laws have to in-
clude a description of the material’s current state, leading to the addition of several
parameters. In the case of granular materials, the numerous possible arrangements
the grains can have between each other make considerably harder the determination
of a set of parameters adequate to characterize the material’s state. Indeed, the huge
variability in microstructural configurations leads to very different macroscopic
behaviours and can change the conclusions of a study. Naturally, using a larger set
of parameters improves the state characterization, but these extra parameters often
prove difficult to interpret in terms of material properties, and they can hardly ma-
nage various loading conditions. An accurate description of a granular material’s
state thus requires an efficient modelling of its microstructure, involving a limited
number of parameters compared to the variety of cases it can handle.

A great efficiency can be reached by considering a set of interacting discrete ele-
ments, representing the granular assembly directly at the microscopic scale and thus
automatically accounting for the material’s history. However, because the grain scale
is significantly smaller than the structure scale, an tremendous amount of discrete
elements have to be accounted for civil engineering problems. In practice, nowadays’
computers are far from capable of modelling an entire geotechnical structure with a
microscopic resolution, thus imposing the use of a constitutive law.

Traditionally, the evolution of a structure under a specific loading condition is
determined by assuming the continuity of the material it is made of, and then com-
puting its behaviour only at a finite set of points. Recent approaches aimed to replace
the usual constitutive law by an accurate microscopic model for the material’s beha-
viour, such as the one mentioned in the previous paragraph. The resulting method
can be qualified as multi-scale, since it describes both the material at the microsco-
pic scale and the structure, at a much larger scale. This technique makes possible the
modelling of an entire geotechnical structure on nowadays’ computers, while retai-
ning valuable microscopic insights, necessary to the accurate description of granular
materials. However, such models are still quite new and only a very limited amount
of studies have implemented them, specially in the case of large deformations.

This thesis aims to study the accuracy of a multi-scale method when large defor-
mations are involved, a situation of great interest for geotechnical structures.

Outline

The chapter 1 of this manuscript gives an overview of the current numerical me-
thods suitable to granular materials. The influence of microscopic parameters on
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the global behaviour of granular materials is then investigated using the Discrete
Element Method (DEM) in chapter 2, first by considering the angle of repose formed
by an unconstrained sample of granular material, second by determining its shear
resistance. A formulation of the Material Point Method (MPM), capable of handling
large deformations at large scales, is then given and linked to the C++ open source
code (CB-Geo MPM [Kumar, Salmond, Kularathna, et al. 2019]) in chapter 3. In this
chapter, the dissipative nature of the MPM is also determined with respect to dif-
ferent choices in the formulation, for the simple case of an elastic cube bouncing on
the floor. The multi-scale coupling of the MPM and DEM methods is formulated in
chapter 4, where technical details on how CB-Geo MPM was combined with the DEM
open-source code YADE [Smilauer et al. 2021] are given as well. Finally, a study on
the collapse of a granular column is performed using pure MPM simulations and a
MPMxDEM simulation in chapter 5, taking advantage of the multi-scale possibilities
offered by the coupling.
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1. Literature review – 1.1. Granular materials’ modelling with the Discrete Element
Method

1.1. Granular materials’ modelling with the Discrete
Element Method

The microscopic insights necessary to predict the behaviour of a granular material
are usually captured either by establishing a complex mathematical model or by
directly modelling the material at the microscopic scale. Both approaches require a
time discretization, although the former is traditionally based on the assumption that
the material is continuous, which introduces the need for a spatial discretization. This
operation is often assured by a mesh that provides a decomposition of the domain
into many elements where the governing equations can be solved. A numerical
implementation of these methods is essential to perform the enormous quantity of
operations necessary to obtain a useful and reliable result.

The Discrete Element Method (DEM) is a microscopic model able to account
for all interactions between the grains constituting a granular sample, making it
very suitable to describe the behaviour of such materials. It was first developed in
[Cundall and Strack 1979], where a DEM analysis was found to be in accordance
with experiments performed on photo-elastic discs [De Josselin de Jong 1969]. It
has since been extensively used and improved to predict the behaviour of more
probable granular assemblies, such as soils or industrial powders [Ketterhagen and
Wassgren 2022] ; [Mori and Sakai 2022]. Indeed, DEM is able to describe accurately
the material’s microscopic features such as grain shape, grain’s contact properties or
even complex interactions beyond the simple physical contact.

1.1.1. Grain’s shape

The use of spheres as grain shape is an evident choice to simplify the computation:
contacts are detected based on the vector connecting the centers of the two grains
considered, i.e. the branch vector, whose norm is compared to the sum of the grain’s
radii. The contact’s normal direction simply is the branch vector’s direction. This very
basic model was first employed and is still widely used today [Bono and McDowell
2022] ; [Hilse, Kriegeskorte, Illana, et al. 2022]. However, it finds its limitations when
modelling realistic materials such as sand, in which grains are non-spherical and
can have very sharp edges that prevent them to roll against each other. A simple but
efficient improvement is to form grains using several spheres clumped together, i.e.
clumps [Kafashan, Wiącek, Abd Rahman, et al. 2019] ; [Sibille, Villard, Darve, et al.
2019]. This effectively suppress the excessive rolling between the grains, at the cost
of a minor increased computation time for the contacts’ detection.

Another shape model is the polyhedron model, able to model sharp grains more
accurately. A contact detection formulation is given in [Gilbert, Johnson, and Keerthi
1988], although it is limited to convex shapes it still gives accurate results [Mohamed,
Duriez, Veylon, et al. 2022]. A more recent formulation for rounded 2D polygons and
3D polyhedrons is given and experimentally validated on a packing containing a
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variety of polyhedral objects in [Langston, Ai, and Yu 2013] ; [Mack, Langston, Webb,
et al. 2011]. More advanced polyhedron models were developed to extend capabilities
to non-convex polyhedron. For instance, [Smeets, Odenthal, Vanmaercke, et al. 2015]
proposed a surface mesh based contact detection procedure that is able to handle
independently multiple contact points between arbitrarily shaped polyhedra. Efforts
were made in [Rakotonirina, Delenne, and Wachs 2017] and in [Govender, Wilke,
Wu, et al. 2018] to extend the exclusively convex polyhedron model to non-convex
particles using a convex decomposition of the particles’ geometry, at the cost of
higher memory requirements.

A more complex shape model is the "potential particles" model [Boon, Houlsby,
and Utili 2013] ; [Houlsby 2009], giving angular particles with rounded edges. It
actually constructs the grains as a combination between a sphere and a polyhedron,
restricting its shape to convex particles. More recently, a generic shape description
was formulated for DEM, namely the Level Set DEM (LS-DEM), which is able to
describe any shape at a reasonable computational cost [Duriez and Galusinski 2021] ;
[Kawamoto, Andò, Viggiani, et al. 2016]. This shape model uses a finite number of

nodes on a particle’s surface along with a distance function to determine the contact
existence and geometry. It was found to benefit from an OpenMP parallelization
(presented in section 1.1.5) with a speedup to number of threads ratio of almost 0.5
[Duriez and Bonelli 2021], making this shape model a good compromise between a
realistic description of the grain’s geometry and computational cost.

Figure 1.1 shows an example of particles created using each of these shape models.

1.1.2. Contact model

The contact between two grains is usually based on a simple elastic contact, with
the resulting force being proportional to the inter-particle displacement, but can also
include different phenomena like friction or viscosity. Basically, two springs in the
normal and tangential directions describe the elastic part of the contact, while a sli-
ding condition in the tangential direction represents its frictional part. A description
of the contact’s geometry is thus necessary and can be quite difficult to obtain de-
pending on the grain’s shape. For a contact between two spheres, [Cundall and Strack
1979] computes the normal and tangential displacements incrementally, which is
indispensable for the tangential direction but not necessary for the normal direction.
Indeed, in many DEM formulations, discrete elements are allowed to overlap each
other so the normal displacement is simply the difference between the radii’s sum

1. Mohamed, Duriez, Veylon, et al. 2022.
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(a) Sphere (b) Clump (c) Polyhedron 1

(d) Potential particles (e) Level set grain (cour-
tesy of J. Duriez)

FIGURE 1.1. – Several particle’s shape models used in DEM

and the branch vector’s norm. This overlap mitigates the effects of using a rigid body
description for the discrete elements. The frictional force is limited through the
consideration of the Coulomb criterion using a friction coefficient that depends on
the involved particles’ material, defining a threshold above which particles can slide
against each other. This basic contact model can be summarized by the following
expressions for the contact force:

Fn = Kn un (1.1)

Ft =min
�

Kt ut , Fn tanϕ
�

(1.2)

With Fn , Ft the magnitudes of the normal and tangential contact forces, un , ut the
normal and tangential displacements, tanϕ the friction coefficient defined using the
inter-body friction angle ϕ, Kn the normal stiffness, and Kt the tangential stifness.

However, using such a model doesn’t dampen significantly the granular assem-
bly, leading to almost never ending scenarios where particles oscillate around an
expected final position. The addition of damping is thus necessary in most cases
and can be done in different ways: by considering a constant, arbitrarily defined,
damping coefficient for all contacts, or by introducing viscous dissipation in the
contact model. The former is usually denoted as "Cundall’s damping" and is easy
to implement but relies on a non-physical parameter, making the results harder to
interpret. Indeed, it increases or decreases the overall contact force applied to each
particle component-wise, by a fraction of its value, depending on the orientation of
the forces with respect to the particle’s velocity. As a contrast to Cundall’s damping,
viscous damping is considered directly in the contact model by adding to the normal
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force a velocity-dependent term, whose importance is determined by a physical
viscous coefficient cn . The sketch in figure 1.2 illustrates such a visco-elastic contact
model.

FIGURE 1.2. – Visco-elastic contact model

The contact model can also include rolling and twisting resistances, which effecti-
vely solves the excessive rolling between spheres [Sibille, Villard, Darve, et al. 2019].
The resistance is modelled through the addition of a rolling (or twisting) moment
opposed to the particles’ relative rotation, computed incrementally with a rolling (or
twisting) stiffness parameter. A threshold above which plastic rolling (or twisting)
occurs should also be defined using a Coulomb-like criterion.

Since DEM simulates all grains in the material, more complex configurations can
be easily modelled. For instance, some specific pair of grains can have different
contact properties, accounting for the diversity of the grains’ properties. One could
then consider a material composed of a mixture of grains having different stiffnesses
or friction angle. In addition, it is possible to incorporate some randomness, even-
tually from a series of experimental measurements on the grains’ contact properties
given as a distribution. Indeed, pairs of grains can be carefully associated with a
contact property value so the overall distribution in the DEM assembly matches the
one experimentally measured.

1.1.3. Multiphysics capability

Describing the material at the microscopic scale allows the inclusion of different
physics in the model, without the need for a complex macroscopic description of
the phenomena in question.

A simple way to incorporate a relevant mechanism to a DEM simulation is to
consider an additional interaction along with the contact interaction. The cohesion
of some granular materials can for instance be accounted for by adding an adhesive
force to each contact, depending on relevant parameters for the physical origin of
the cohesion. An example of additional cohesive force is the one that arises from the
capillary pressure in partially saturated soils. Such an interaction force depends on

26



1. Literature review – 1.1. Granular materials’ modelling with the Discrete Element
Method

the shapes of the capillary bridges of water, linking together neighboring particles
and described by the Laplace-Young equation, studied for spheres, e.g. in [Duriez
and Wan 2017]. Figure 1.3 shows the general shape of a capillary bridge inducing an
attractive force. This model requires a criterion to determine between which grain
such water bridges are formed, typically a maximum distance above which a bridge
cannot be created.

FIGURE 1.3. – Capillary bridge as described in [Duriez and Wan 2017]

Another example is the consideration of a fluid flowing through the porous space
between the grains, making possible the description of internal erosion and per-
meability. Ideally, the fluid should be modelled with a high space resolution, far
below the grain scale, to make possible the direct resolution of the fluid’s governing
equations (i.e. Navier-Stokes equations) through a Direct Numerical Simulation
(DNS), using for instance the Lattice-Boltzmann Method (LBM) [He and Luo 1997]
or the Finite Volume Method (FVM) [Eymard, Gallouët, and Herbin 2000]. This ap-
proach requires a huge amount of computational ressources and thus limits the
maximum sample size to a couple hundred particles on standard desktop machines
[Chareyre, Cortis, Catalano, et al. 2012]. Using an upscaled model reduces effectively
the computational cost while still keeping an accurate description of the fluid, e.g.
the continuum-discrete model based on Darcy’s law whose formulation is given
in [Goodarzi, Kwok, and Tham 2015]. The idea is to model the fluid continuously
using an Eulerian mesh where the fluid’s density, velocity and pressure are evaluated
in each cell. The movements of the grains create a pressure gradient, inducing the
fluid flow as well as a drag force on the solid phase. Since the equation of the solid
and fluid phases are solved separately, this is considered to be a partially coupled
approach. A more accurate description of the fluid/solid interactions was developed
in [Chareyre, Cortis, Catalano, et al. 2012], based on the geometry of the pore net-
work separated in many sub-domains using a regular Delaunay triangulation from
spheres’ centers and radii. Such a model is able to accurately determine the forces on
each grain, and to quantify the permeability of the material. An even better accuracy
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can be reached using LBM to describe the fluid’s motion through the sample and
its interactions with the solid phase. In [Han and Cundall 2013], it has been showed
able to reproduce qualitatively phenomena observed during experiments, such as
buoyancy. Note however that, in some simple situations as during undrained test
simulations, the presence of water can be modelled simply by considering a constant
sample’s volume [Aboul Hosn, Sibille, Benahmed, et al. 2017].

The multi-physics possibilities of DEM are not limited to the addition of interac-
tions between grains. For instance, more complex phenomena like grain breakage
can be accounted for [Zhu and Zhao 2019]. Indeed, depending on the granular
assembly’s loading conditions, some grains might be subject to enough stress for
them to break, leading to a noticeable change in important parameters such as the
porosity or the particle size distribution.

1.1.4. Periodic boundary conditions

Some DEM simulations might suffer from the existence of boundary effects, such
as an excess of voids near a sample’s bounding wall, or a uniform contact orientation
on the boundary. These issues can be addressed by considering the simulated sample
to be the smallest pattern of a material presenting a periodic microscopic structure
[Radjai 2018], making the simulation a sort of window on an infinite sample. All
particles in the simulation are contained in a main parallelepipedic cell, defined
by three base vectors, and their motion originates either from their interactions or
from the deformation of the cell. The cell and all the particles it contains can then be
reproduced indefinitely, creating an infinite number of particles which are images of
the particles in the main cell. The cell’s deformations induce an affine velocity field
on all particles, which cannot be periodic, thus an extra attention has to be given
when considering the relative velocity of a contact involving an image particle.

FIGURE 1.4. – Cell flipping in a periodic DEM simulation [Smilauer et al. 2021]

When excessive shearing occurs, the main cell might be distorted at a point where
some particles span over more than half the cell, preventing the simulation to conti-
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nue. In such scenarios, it is possible to take advantage of the periodicity to rotate
the cell’s base vectors when the angle between two of them is too low, allowing to
indefinitely shear the sample [Kraynik and Reinelt 1992] ; [Smilauer et al. 2021]. In-
deed, the vertices of the main cell form an infinite regularly spaced grid on which
the cell’s base vectors can be conveniently redefined. Figure 1.4 shows in 2D how
the blue cell can be flipped into the black cell by linear combinations of the base
vectors. Limiting the flip to grid points ensures that no particle are duplicated or
erased during the flipping process.

1.1.5. Computational aspects

The obvious strength of DEM is its ability to simulate all grains constituting a
system and thus derive all microscopic data. However, this comes at a very expensive
cost due to the necessity of looping repeatedly over a huge number of particles.

Computational complexity
Contacts’ detection is the most expensive step in the DEM procedure. Indeed, the

geometries of all particles have to be tested against each other to assess the existence
of contacts, which requires a double loop with a complexity ofO (N 2

p ), where Np is the
number of particles in the sample. Efforts have been made to improve the efficiency
of this nested loop, for instance the so-called sweep and prune algorithm [Cohen,
Lin, Manocha, et al. 1995] performs a first approximative detection to reduce the
complexity to roughly O (Np log Np )[Smilauer et al. 2021]. Basically, all particles are
enclosed in conveniently oriented boxes (i.e. axis aligned bounding boxes) which
are sorted in each direction at each time step using an aperiodic insertion sorting
algorithm. It is possible to decrease even more the complexity of the contact detection
by enlarging each bounding box: if a particle stays inside its enlarged bounding box
between two iterations, there is no need to test it again against all other boxes at the
second iteration. The resulting complexity depends on how many particles move
in the simulation. If for instance all particles stay in their initial enlarged bounding
boxes, the set of possible contacts are determined only at the first step and the
complexity is thus linear with respect to Np . Using the sweep and prune technique
with enlarged bounding boxes, the contact detection’s complexity is thus bounded
between O (Np ) and O (Np

2).
Advanced shape models can increase contacts’ detection cost because of the

necessity for additional operations for each couple of particles, like in LS-DEM
which uses a Discrete Function Representation (DFR) [Williams and O’Connor 1995]
to compare complex particle shapes, see figure 1.5. This requires to loop over all
surface nodes of a particle, increasing the maximum complexity of the sample-wide
contact detection to O (Np log Np ) +O (Np s Nc ), with Np s the number of points on the
particles’ surface and Nc the number of contacts in the simulation.

Another expensive task is the integration of the equation of motion for all particles.
Indeed, all particles have to be moved independently according to their contacts,
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FIGURE 1.5. – LS-DEM contact detection using boundary nodes and a distance func-
tion [Duriez and Galusinski 2021]

adding a complexity of O (Np ). Along with the contacts’ detection, these two DEM
steps accounts for most of the computation time. Indeed, benchmark simulations 2

performed with the open source code YADE [Smilauer et al. 2021] were found to
spend more than 90% of their computation time only on the contact detection and
the motion integration. The overall complexity of a DEM simulation using the sweep
and prune method with enlarged bounding boxes is thus bounded between O (Np )
and O (Np (Np +1)).
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FIGURE 1.6. – DEM computational time cost with respect to Np

2. See performance scripts in YADE’s source code git revision f890b0, examples/test/performan-
ce/checkPerf.py
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Figure 1.6 shows the total DEM computational time cost Tc o mp for a gravity set-
tlement simulation performed sequentially with different number of particles over
7.5 ·105 iterations using a time step of 10−7 s, repeated 5 times for each Np . The initial
state is a cloud of non-overlapping spheres subject to a uniform gravity field, descri-
bed by the particle size distribution and contact model calibrated on Camargue’s
sand in [Aboul Hosn, Sibille, Benahmed, et al. 2017]. The DEM results obtained with
the calibrated parameters were found to be in great agreement with experiments,
see figure 1.7. A model based on the DEM complexity can be determined for the
evolution of the computational time cost with respect to Np :

Tc o mp = a Np

�

N b
p + c

�

(1.3)

(a) Deviatoric stress (b) Volumetric strain

FIGURE 1.7. – Triaxial tests results performed in drained conditions on Camargue’s
sand [Aboul Hosn, Sibille, Benahmed, et al. 2017]

Where a and c are greater than zero, and b is in the interval [0,1], specifically
b ≈ 0.44 in the present example. Note that b = 1 without the sweep and prune
technique, and b = 0 with the sweep and prune technique when particles never
leave their enlarged bounding boxes.

Parallelization
These expensive steps can be speeded up using different multiprocessing ap-

proaches. For instance the strategy implemented in the OpenMP API (Open Multi-
Processing Application Programming Interface) [Dagum and Menon 1998] splits the
loops over the particles into several chunks, each fed to a CPU thread. The efficiency
of this strategy rests on how the chunks of iterations are determined: when many
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threads are available, the loop splitting operation has more importance with respect
to the DEM operations, the optimum number of threads to be used thus strongly
depends on the simulation. Also, the inter-dependency of the operations performed
at each iteration in a split loop can limit the OpenMP efficiency. Indeed, if two itera-
tions managed by two different threads require access to the same global variable at
the same time, one of the thread has to wait. This procedure is called "process syn-
chronization" and can be quite solicited in OpenMP-parallelized DEM simulations,
for instance during the interaction loop, where each iteration requires access to the
particle’s data. In [Duriez and Bonelli 2021], it was shown that a LS-DEM triaxial test
containing 8000 discrete elements doesn’t benefit from using more than ≈ 50 CPU
threads on a 104 threads machine, where the speedup reaches ≈ 22. However, the
same model was used to simulate the settling of a cloud of particles on the same
machine in [Duriez and Galusinski 2021] and no maximum speedup was observed.
The former study also shows that using more than 60 threads on a classical DEM
simulation, with spheres, results in a slowdown (i.e. a speedup less than 1).

Another strategy is the Message Passing Interface (MPI), which splits the simulation
into several subdomains attributed to different threads or even different machines,
all managed by a "master" process. For DEM simulations, the contact detection
and motion integration steps are thus performed individually in each subdomain,
limiting the complexity to O (N s u b

p (log N s u b
p +1)), with N s u b

p the number of particle
in the subdomains. The decomposition into subdomains procedure has then a
critical role in the MPI efficiency: N s u b

p must be of the same magnitude in each
subdomains in order for every processes to work for the same duration. The MPI
strategy also alleviates the process synchronization difficulties since less data is
common to several threads, i.e. the data at the subdomains interfaces, and it is
managed only by the master process. In [Rakotonirina and Wachs 2018], the MPI
implementation in the Grains3D DEM code was found to give a linearly increasing
speedup with respect to the number of CPU cores, at a rate of 0.91. By its linear
evolution, MPI’s performances are boundless when OpenMP’s performances quickly
finds a peak [Duriez and Bonelli 2021], MPI offers thus a better scalability for DEM
simulations. Another advantage of MPI is that it allows to relatively easily distribute
a simulation to several machines within a cluster, in order to optimize the utilization
of the available hardware. Many implementations of this strategy exists, among them
the open source code OpenMPI [Graham, Woodall, and Squyres 2005] is one of the
most popular.

The use of graphical processing units (GPU) for DEM is tempting because of the
large number of threads they make available. However, since GPUs cores are slower
and less adaptable than traditional central processing units (CPU), the efficiency
difference is difficult to determine. Yet, there are some remarkable implementation
of GPU parallelization in the literature. As an example, in [Govender, Wilke, and Kok
2015]more than 32 ·106 polyhedrons are simulated on a NVIDIA Quadro K6000 GPU
using BlazeDEM3D-GPU with a contact detection cost of less than 14 seconds per
iteration.
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Computer
Sample size 1 m3

(5.471 ·1010 particles)
Teton dam - 2.27 ·107 m3

(4.05 ·1018 particles)

Desktop
≈ 1.25 ·1011 FLOPS/core 3 1.82 ·106 years 7.37 ·1016 years

Jean Zay supercomputer
≈ 2.8 ·1016 FLOPS 4 8 years and 46 days 3.29 ·1011 years

Frontier supercomputer
≈ 1.685 ·1018 FLOPS 5 49 days 5.47 ·109 years

TABLE 1.1. – DEM’s roughly estimated computational time cost on large sample of
settling Camargue’s sand, assuming a perfect parallelization speedup

Reaching large scales
In order to be able to perform a DEM simulation in a reasonable time, samples

are limited to a few thousands particles [Aboul Hosn, Sibille, Benahmed, et al. 2017] ;
[Duverger, Duriez, Philippe, et al. 2021] ; [Mohamed, Duriez, Veylon, et al. 2022] ;
[Sibille, Villard, Darve, et al. 2019], which is usually enough to constitute a Represen-
tative Volume Element (RVE). However, some valuable insights provided by DEM on
the microscopic mechanisms might not be captured because force chains within
the granular medium thus are limited in size, preventing the emergence of large
scale phenomena. Combined with powerful computers, the MPI parallelization
strategy mentioned above allows for larger scale simulations: [Gardner, Kolb, and
Sitar 2017] performs simulations on 8.192 ·106 polyhedrons of various shapes, [Yan
and Regueiro 2018]models 107 polydisperse ellipsoidal particles, [Rakotonirina and
Wachs 2018] is able to consider more than 2.3 ·108 mono-dispersed spheres. These
performances are encouraging, however modelling a large construction scale such
as a dam or a dike in its entirety is still out of reach. For the emblematic case of
the Teton dam, table 1.1 shows extrapolated DEM computational costs using the
results presented in figure 1.6. Denoting Vs a mp l e the sample’s volume, the estimated
number of particles necessary to model a given volume of material is computed
from the ratio Np/Vs a mp l e = 5.471 · 1010 particles ·m−3, the latter being measured
in the case of Np = 8,000 particles. The Teton dam shape was approximated by an
extruded isosceles triangle, with a height, width and length of 93 m, 520 m and 940
m respectively. Note that these estimations assume an optimum speedup: the full
performance of supercomputers can only be attained by using all the processing
units they make available, the observed performances then strongly depend on the
parallelization’s efficiency.

3. As measured with a "single presicion general matrix multiply" algorithm, see https://
browser.geekbench.com/v4/cpu/compare/16316142?baseline=16316142

4. Currently best French Supercomputer, see https://www.cnrs.fr/en/
jean-zay-frances-most-powerful-supercomputer-research

5. Currently best supercomputer worldwide, see https://en.wikipedia.org/wiki/
Frontier_(supercomputer)
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1.2. Modelling of granular materials as a continuous
medium

While DEM is quite handy because of its accuracy, adaptability and robustness,
its use at large scales seems yet out of reach. Indeed, as shown in the previous
section, performing a DEM simulation on a 1 m3 sample is conceivable on the best
supercomputers but the dam’s scale is still inaccessible. Besides, it does not appear
necessary to have a complete microscopic description of the grain scale data for
most practical applications. Other methods such as the Finite Element Method
(FEM) relies on a model of a material’s behaviour, i.e. constitutive law, to determine
the reaction of a supposedly continuous sample to some loading conditions. The
continuous assumption makes possible the modelisation of large size of samples:
the behaviour of the material is computed on a finite number of points often defined
by a mesh, whose fineness depends on the desired resolution.

1.2.1. Constitutive laws

The constitutive law is the part of the numerical model that describes how the
material reacts to a specific loading condition, in the form of a stress-strain relation
that depends on the nature of the material in question. The behaviour of purely elastic
materials can be characterized using simply Hooke’s law, which requires only two
parameters for an isotropic homogeneous media. However, materials cannot usually
be considered as purely elastic since many applications bring the materials beyond
their elasticity limits. A description of the material’s plasticity thus has to be included
in the constitutive laws. For instance, the behaviour of most metallic materials can
be modelled using a stress-strain relation based on the von Mises yield surface
[Kobayashi 1982] ; [Krieg and Krieg 1977], and Newtonian fluids’ behaviour can be
modelled using a state equation [Pironneau 1989]. As for granular materials, plasticity
is accounted for in constitutive laws by considering either Tresca or Mohr-Coulomb
yield surface [Brinkgreve 2005] ; [Sloan and Booker 1992] ; [Ti, Huat, Noorzaei, et
al. 2009]. The latter leads to the Mohr-Coulomb model which is widely used in
engineering applications, due to its relative simplicity. A basic implementation of
the Mohr-Coulomb model requires only 5 parameters:

— two elastic moduli, to describe the stiffness of the material and the directional
repartition of its deformations (e.g. Young’s modulus and Poisson’s ratio) ;

— the dilatancy angle, to describe the sample’s volume evolution under plastic
shearing ;

— the friction angle, to define the Mohr-Coulomb yield surface ;
— the cohesive strength, to account for cohesion in the Mohr-Coulomb yield

surface.
The Mohr-Coulomb yield surface has a hexagonal shape in the principal stress

space. If the problem involves a single stress path, the yield surface can alternatively
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be approximated by a simple cone (see figure 1.8), this model is referred to as the
Drucker-Prager model [Drucker and Prager 1952]; [Brinkgreve 2005].

(a) Mohr-Coulomb (b) Drucker-Prager

FIGURE 1.8. – Yields surfaces [Brinkgreve 2005]

Non-linear models have also been developed in order to describe soils with a better
accuracy. For instance the Duncan-Chang model [Duncan and Chang 1970] assumes
the stiffness to vary with the stress according to a power law. This consideration
improves the model’s efficiency before failure, but is unable to describe dilatancy
and irreversibility [Brinkgreve 2005]. The critical state theory, which states that at
some point a soil sample can be subject to further shear deformations without stress
or volume variation, is at the basis of the Cam-Clay model [Schofield and Wroth
1968]. Note that a modification of this model aimed at incorporating a logarithmic
relationship between the effective mean stress and the void ratio, which leads to
a stress dependant stiffness. This model is denoted as Modified Cam-Clay model
[Brinkgreve 2005] ; [Burland 1965]. The Nor-sand model [Jefferies 1993] is also based
on the critical state theory through the use of the so-called state parameterψ [Been
and Jefferies 1985], supposed to account for the stress and void configuration of
a granular material. It requires however 8 soil-dependent parameters and several
triaxial tests to be fully calibrated [Jefferies 1993].

1.2.2. Large scale modelling with the Finite Element Method

FEM’s development began even before the invention of electronic digital compu-
ters [Courant 1943] ; [Hrennikoff 1941] and is today at the basis of many studies. Its
applications are :

— civil engineering, for instance to determine the hydrodynamics around bridges
[Selvam, Tarini, and Larsen 1998], or to study the propagation of cracks in
concrete constructions [Gerstle and Xie 1992];

— geotechnical engineering, for instance to investigate the soil-structure inter-
actions of large constructions [Ellis and Springman 2001], to study the soil’s
failure process under seismic solicitations [Ma, Liao, Dang, et al. 2021];

35



1. Literature review – 1.2. Modelling of granular materials as a continuous medium

— metallurgical engineering, for instance to model metal forming [Chung, Cho,
and Belytschko 1998] or metal casting [Venkatesan, Gopinath, and Rajadurai
2005];

— others, including nuclear engineering to model nuclear reactors [Oku, Akiba,
Suzuki, et al. 2010] and electrical engineering to study high-voltage devices
erosion [Soldera, Lasagni, Mücklich, et al. 2005].

Procedure
FEM splits the object to be modelled into several elements on which the gover-

ning equations are solved. The resulting set of all elements and their connections is
called the mesh and follows the material as it deforms, making FEM a Lagrangian
method. Mesh’s elements can be of any shape: hexahedrons [Cifuentes and Kalbag
1992] ; [Schneiders and Bünten 1995], tetrahedrons [Cifuentes and Kalbag 1992] ;
[Nguyen-Thoi, Liu, Vu-Do, et al. 2009], or even a combination of prisms and te-

trahedrons [Yamakawa and Shimada 2009]. Elements can be all identical, forming
then a structured mesh, or they can have different dimensions to fit better systems
with peculiar geometries, forming then an unstructured mesh [Zavattieri, Dari, and
Buscaglia 1996]. Unstructured meshes make possible the refinement of the grid
around a zone of interest to optimize the resolution versus computational cost ratio.
Furthermore, mesh’s refinement can be performed dynamically, as the simulation
runs and the zones of interest move [Lo 2002]. Such a meshing technique is qualified
as adaptative.

The resolution of the governing equations involves integrating some quantities
over all elements for each element. However, these quantities can only be known at
a finite set of points in an element. FEM thus requires a quadrature rule to correctly
compute the integral after choosing for these points appropriate locations and
weights, compensating the infinity of points missing for the integration. For instance,
the approximate integration of f on an interval [−1, 1] can be written as follows:

∫ 1

−1

f (x )d x ≈
n
∑

p=1

wp f (xp ) (1.4)

where {wp ; i ∈ ¹1, nº} are the weights attributed to the values of f at the points
{xp ; i ∈ ¹1, nº}. Typically, {xp ; i ∈ ¹1, nº} are chosen as the roots of Legendre’s poly-
nomial, the quadrature is then denoted "Gauss-Legendre quadrature" [Bathe and
Saunders 1984] ; [Rathod, Venkatesudu, and Nagaraja 2006]. Depending on the
integrand’s characteristics, it might be necessary to use a different set of points
and weights. The Gauss-Jacobi quadrature [Ralston and Rabinowitz 2001] ; [Yang,
Wang, Yuan, et al. 2022] and the Chebyshev-Gauss quadrature [Yan, Mi, and Liu
2019] are examples of other popular quadrature rules used on the interval [−1,1].
For multi-dimensional problems, the weight can be obtained simply by multiplying
the one-dimensional weights computed in each direction. The mesh elements being
deformed, their vertices coordinates can be transformed onto the interval [−1,1]
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for the quadrature rule to be directly applied. The points {xp ;p ∈ ¹1, nº} are cal-
led integration points, or Gauss’ points, and correspond to the locations where the
behaviour of the material is determined using the constitutive law.

Traditionally, data such as the velocity or the mass density is stored on the grid
points. As a consequence, it is necessary to frequently transport quantities from grid
points to Gauss’ points and vice versa. Shape functions Si defined at every grid point
i ensure this interpolation procedure, the simplest ones being linear:

Si (x ) =



















x − xi−1

xi − xi−1
if x ∈ [xi−1, xi ]

xi+1− x

xi+1− xi
if x ∈ [xi , xi+1]

0 otherwise

(1.5)

with {xi } the set of all the grid points’ positions.
Elements deformations are a consequence of the grid points displacements, driven

by their velocities. Shape functions thus have to be recomputed at each iteration.

Limitations of the FEM
Although FEM is efficient for simple problems, it suffers from inaccuracies when

dealing with complex systems. For instance, the presence of discontinuities in the
material due to cracks or simply their nature (e.g. granular materials) requires the
mesh to match the interfaces and track them as they move. In the case of cracks
propagation, an expensive remeshing step is often necessary. The extended finite
element method (XFEM) [Chessa, Smolinski, and Belytschko 2002] ; [Moës, Dolbow,
and Belytschko 1999] aims to solve this problem by representing discontinuities
independently of the mesh, based on the Partition of Unity Finite Element Method
(PUFEM) [Melenk and Babuška 1996]. The latter brings the possibility to include an
approximation of the solution locally, which is used in XFEM along shape functions
to account for cracks in the simulated object. Even though XFEM is suitable to
study discontinuities, it still suffers from the fact that non-continuous materials, as
granular materials, require complex constitutive laws being often hard to calibrate
and generalize poorly to different loading paths.

Another issue is the mesh resolution necessary to solve some problems. Indeed,
even though FEM is able to reach large scales, it might be necessary to capture some
lower scale features of the material with precision, limiting the maximum size of the
mesh’s elements. FEM’s convergence toward the solution of the continuous governing
equations is often studied [Garau, Morin, and Zuppa 2011] ; [Gwinner 2013] ; [Shi
1987], and several variations of the FEM are found to achieve better convergence
rates than classical FEM. The hp-FEM [Babuška and Guo 1992] for instance, uses
various element sizes and shape function order to reach an exponential convergence
rate [Ainsworth and Parker 2021] ; [Melenk and Xenophontos 2016].

An important problem with the FEM is a consequence of its fully Lagrangian
nature: when the material is subject to high deformations, elements may be highly
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distorted, which leads to inaccurate solutions or even the impossibility to continue
the computation. Many variations of the FEM aim to solve this problem by releasing
it from its mesh dependance. Among them, the Smoothed Finite Element Method
(SFEM) [Zeng and Liu 2018], based on the mesh-free Smoothed Point Interpolation
Method (SPIM) [Khoshghalb, Shafee, Tootoonchi, et al. 2020] ; [Liu and Zhang 2013],
takes advantage of FEM’s mesh without its drawbacks. Basically, it smooths the
derivatives of the field functions over the whole mesh, and beyond, to modify the
strain field. The Particle Finite Element Method (PFEM) [Oñate, Idelsohn, Del Pin,
et al. 2004] was developed in order to handle the large deformations involved in
the case of fluid-structure interactions. It solves the high distortion problem by
remeshing at the end of each step if some elements are too severely deformed. While
managing to preserve the Lagrangian nature of the FEM, PFEM is quite expensive
due to the frequent remeshing and the detection of the free surfaces that has to be
performed at each iteration. A numerical method worth mentioning is the mesh-free
Smoothed Particle Hydrodynamics method (SPH). This method was first developed
to study stellar motions [Gingold and Monaghan 1977] ; [Lucy 1977] and was later
adapted to different research domains, including geomechanics [Bui and Nguyen
2021] ; [Chambon, Bouvarel, Laigle, et al. 2011]. It considers the material as a finite
set of points which interact over a specific domain defined by a kernel function, and
move according to the governing equation solution. This purely Lagrangian mesh-
free method handles well large deformations and is specially efficient for problems
involving free surfaces, however the imposition of boundary condition is challenging
[Shadloo, Oger, and Le Touzé 2016].

Pursuing the idea of making FEM more robust in the case of large deformations,
several hybrid Eulerian-Lagrangian methods were proposed. The Finite Element Me-
thod with Lagrangian Integration Points (FEMLIP) [Dufour 2002] ; [Moresi, Dufour,
and Mühlhaus 2003] is one of them. It consists in keeping the mesh fixed during the
whole simulation, but allowing the integration points to move, even to switch from
an element to another. This consideration allows to track the material’s deformations
while keeping the resolution of the motion equation on an immobile background
mesh, bringing the Eulerian aspect to the method. The unpredictable positions of
the integration points in their mesh element complexifies considerably the determi-
nation of the integration weights: the usual quadrature rules in FEM being defined
at specific positions in the elements, FEMLIP thus requires a general expression of
the quadrature to compute the integration weights for any integration points layout.
Such a task is carried out by an algorithm which iteratively determines the values
of the weights, based on a set of constraints which arise from equation 1.4 when
considering a specific form for the integrated function. A simple choice could be to
consider the function linear according to each dimension, which leads to great sim-
plifications. In parallel to the FEMLIP, a rather similar hybrid Eulerian-Lagrangian
method was developed: the Material Point Method (MPM).
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1.2.3. The Material Point Method

The MPM was first formulated in [Sulsky, Chen, and Schreyer 1994] as a hybrid
Eulerian-Lagrangian method, based on the Particle In Cell method (PIC) [Harlow
1962]. In this method, the material is represented by a set of material points where
mechanical parameters are stored along with history-dependent parameters neces-
sary to compute for instance a granular material’s behaviour. These material points
move according to the velocity obtained by resolving the equation of motion on a
fixed "background" mesh, where the quantities are transported at each time step.
The Lagrangian part of the formulation thus comes from the material points that
follows the material as it deforms, while the Eulerian part comes from the fixed mesh,
unaffected by the material deformations.

The material points correspond to FEM’s Gauss’ points, with the difference that
their location and number inside each mesh element is unknown as they freely
move within the mesh. The usual quadratures used in FEM are thus not usable in
the MPM, raising the need for an arguable assumption: the integration weights are
considered to be equal to a "volume" attributed to each material point. In its most
basic formulation [Sulsky, Chen, and Schreyer 1994], a common volume is initially
assigned to all material points in the same cell, no matter their location. Efforts have
been made since to improve this weight computation [Bardenhagen and Kober 2004] ;
[Vaucorbeil, Nguyen, Sinaie, et al. 2020] through the attribution of a specific domain
to each material point, described by a so-called particle characteristic function.
Such a variation of the MPM is in fact a generalization of the method, hence called
Generalized Interpolation Material Point method (GIMP), and can be declined into
several sub-methods depending on the material points’ domain description (e.g.
contiguous particle GIMP, fuzzy particle GIMP, . . . [Bardenhagen and Kober 2004]).
This generalization is a substantial improvement for the MPM, however, the difficulty
to describe the evolution of the material point’s domain often requires the use of
simplifications such as the consideration of a constant volume.

Because of the numerous transportation of the information between grid points
and material points, the MPM relies strongly on the shape functions. In the classical
MPM, these shape functions are linear by parts, their derivative are thus not conti-
nuous (as illustrated in figure 1.9 (a )) which induces a drastic change in the internal
force when material points cross cells, possibly leading to ringing instabilities. The
use of higher order shape functions, such as B-splines of order at least 2 [Steffen,
Kirby, and Berzins 2008] ; [Vaucorbeil, Nguyen, Sinaie, et al. 2020], addresses this
problem. Indeed, B-spline functions are very suitable to MPM since their k −2 first
derivatives are continuous (k being the order of the B-spline) and are equal to 0
outside the domain of interest. Also, because of their definition by parts, the deter-
mination of overlapping B-spline functions such that they form a partition of unity
of space is straightforward, see figure 1.9 (b ).

Another important choice in the MPM formulation is the velocity transportation
strategy, from grid points to material points after solving the equation of motion. Clas-
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(a) Linear shape functions (b) Cubic B-spline shape functions

FIGURE 1.9. – Shape functions used in MPM and their first derivative [Steffen, Kirby,
and Berzins 2008]

sical MPM transports directly the new velocity to the material point the same way PIC
does, which is known to be highly dissipative. Many alternatives have been proposed,
such as the so-called FLIP strategy which was implemented in the FLuid Implicit Par-
ticle method [Brackbill and Ruppel 1986]where the acceleration is transported rather
than the velocity. This small change effectively corrects the excessive energy dissipa-
tion, but it makes the method more subject to instabilities and usually requires a
smaller time step. Combining the FLIP and PIC strategies is a common practice to
dissipate artificially the energy and thus mitigate instabilities. Also, FLIP can lead to
spurious results as the velocities used to move the material points are different from
the one assigned to them, to be used at the next iteration. This was addressed in
[Stomakhin, Schroeder, Chai, et al. 2013], resulting in a variation of the FLIP strategy
called Naturally-modified FLIP (NFLIP) in [Fei, Guo, Wu, et al. 2021]. Another alter-
native is the Affine Particle In Cell (APIC) strategy [Jiang, Schroeder, Selle, et al. 2015],
based on the PIC approach, which aims to conserve angular momentum during
the transport operation. The latter was generalized into the Polynomial PIC strategy
(PolyPIC) [Fu, Guo, Gast, et al. 2017] to improve its energy conservation with a low
computational cost. Basically, it considers during the interpolation process a general
expression for the velocity at material points, where APIC only considers affine forms.
The PolyPIC velocity update strategy was even further generalized with the Moving
Least Square method (MLS) [Hu, Fang, Ge, et al. 2018], which essentially adds to the

40



1. Literature review – 1.3. Multiscale modelling

shape functions a dependency on the momentum, based on a certain polynomial
basis. More recently, other strategies were proposed in [Fei, Guo, Wu, et al. 2021]
with the goal of reducing artificial diffusion and viscosity for simulating brittle ma-
terials. These NFLIP-based strategies, namely SFLIP (Separable FLIP) and ASFLIP
(Affine-augmented Separable FLIP), aim to make the displacements of the material
points less dependent on the velocities of other material points in the same mesh
cell. This task is carried out through the consideration of an additional parameter
defined for each material point, the so-called trap-breaking ratio.

1.3. Multiscale modelling

Although it is possible to overcome FEM’s sensibility to large deformations, the
lack of adaptability and precision of constitutive laws hinders the accurate modelling
of materials displaying complex microscopic structures, such as granular materials.
Indeed, the non-continuous nature of granular materials makes it difficult to deter-
mine a direct relation between the material’s stress and deformation increments.
Recent progress in the matter are based on the incorporation of microscopic features
in these macroscale relations, providing a concise description of relevant parameters
such as contact orientation or void repartition.

1.3.1. Microscopically-inspired constitutive models

A first step toward incorporating microscopic details into a constitutive law is to
express the dependance of granular material’s macroscopic parameters in terms of
grain’s properties, such as inter-particle friction or particle stiffness. For instance,
the constitutive model presented in [Wan and Guo 1998] allows to include a simple
depiction of the particle shape in the void ratio description, which is taken into
account in the stress-dilatancy relation. It is able to reflect sand’s behaviour both for
compression and extension triaxial tests, but requires 11 parameters. The constitutive
model proposed in [Sun and Sundaresan 2011] describes the behaviour of granular
materials in quasi-static conditions, based on a DEM-inspired stress expression
accounting for the microscopic fabric and average coordination number. It was
found to accurately handle flow problems, using DEM simulations as reference,
when the trace of the normalized rate of deformation tensor is negligible with respect
to 1. Another microscopically enriched constitutive model presented in [Chang and
Hicher 2005] takes into account inter-particle forces and displacements. It was shown
able to reproduce the main features of granular materials during drained triaxial
tests performed from various initial states.

A more advanced model, proposed in [Nicot and Darve 2011] and based on the
"microdirectional model" [Nicot 2003], simulates the interactions between several
grains arranged in plausible ways to reach a scale slightly higher than the micro-
scopic scale: the so-called mesoscale. Although simple, the hexagonal arrangement
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FIGURE 1.10. – Hexagonal arrangement of particles for the H model [Nicot and Darve
2011]

between 6 grains (in 2D, see figure 1.10) was found to allow the emergence of complex
kinematic mechanisms, this model was consistently coined as the "H model". It
relies on a homogenization scheme which involves the determination of a global
stress given a set of contacts through the Love formula [Love 1892]. It was shown to
be able to give an accurate quantitative prediction of granular materials where the
microdirectional model gave only a qualitative prediction.

1.3.2. DEM as a microscopic model

The H model takes advantage of a direct description of the granular material
at a mesoscale to accurately predict a granular material’s behaviour without the
need to determine complex global parameters, but it considers only one particles
arrangement. Going further with this idea, a whole DEM simulation can be used as
constitutive model for granular materials. Indeed, DEM is the most straightforward
way to account for all complex phenomena occurring inside a granular material
without the need to thoroughly understand them. When used as a material’s beha-
viour descriptor, a DEM sample must be large enough for all global variables to be
independent of the number of particles in the assembly. However, it is also preferred
to use samples as small as possible in order to keep a reasonable computation time
cost. Such a sample is referred to as a Representative Volume Element (RVE).

Similarly to the H model, a homogenization process is necessary to determine a
global stress valueσg l o b given a set of interacting particles. A demonstration of such
a formula is available in [Nicot, Hadda, Guessasma, et al. 2013] for both static and
dynamic granular assemblies. For the latter, the expression of the global stress tensor
corresponds to Love-Weber formula with additional terms, based on the rotational
velocity of all grains:
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with Einstein’s notation and:
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s g n (a j −ai ); the Levi-Civita symbol,

χ
p
i j =

∫

Vp

ρri r j d V ; the inertia matrix,

Ωp : the spin velocity of the particle p ,

{p} : the set of all particles in the RVE,

Nc : the number of contacts in the granular assembly,

f c : the interaction force of the contact c ,

l c : the branch vector of the contact c .

Regarding the deformations, the strain rate can be seen as a velocity gradient
applied to the all particles, which is directly prescribed when using periodic boun-
dary conditions in DEM. Figure 1.11 summarizes the coupling algorithm: loading
conditions computed at a Gauss’ point (denoted material point on the figure) are
applied to a DEM granular assembly on which a global stress tensor is determined
and sent back to the FEM.

FIGURE 1.11. – Multiscale FEMxDEM procedure [Nguyen, Desrues, Vo, et al. 2022]

Such a FEMxDEM coupling is proposed in [Nitka, Combe, Dascalu, et al. 2011] for
fully 2D simulations, where the coupling results were consistent with pure DEM si-
mulations. It has been generalized to include 3D DEM [Nguyen, Claramunt, Caillerie,
et al. 2017] ; [Nguyen, Desrues, Vo, et al. 2022] and shown capable of modelling strain
localization. Another fully 2D implementation of the multiscale FEMxDEM coupling
was proposed in [Kien, Trung, and Hoang 2021], and found to be in agreement with

43



1. Literature review – 1.3. Multiscale modelling

pure DEM simulations in the case of a biaxial elementary test. However, this study
highlights the FEM mesh dependency on a hollow cylinder simulation where strain
localization occurs.

1.3.3. The MPMxDEM coupling

Replacing the FEM by the MPM is an immediate improvement to the mesh de-
pendance problem. Such a coupling was developed in [Liang and Zhao 2019] using
the open source softwares NairnMPM [Nairn 2011] for the MPM part and YADE
[Smilauer et al. 2021] for the DEM part of the model. It reveals that the MPMxDEM
coupling is also able to capture strain localization on biaxial tests, but it suffers from
a lack of accuracy when the mesh is not fine enough, or when the number of material
points per mesh element is too low. This mentioned study also takes advantage of
the coupling capacity to describe different soil states: various initial void ratios were
used to perform footing problem simulations, and different failure mechanisms
were observed. It also includes a dynamic simulation of the collapse of a granular
column.
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2. Two studies using the Discrete
Element Method

The DEM offers the possibility for complex phenomena to emerge from an assem-
bly of discrete objects using only a characterization of the microstructure, making it
probably the most accurate model for granular materials. As a consequence, DEM
is a promising candidate to represent the behaviour of granular materials within
continuum-based (FEM-like) methods, instead of the traditional constitutive laws,
and this motivates the present thesis work. In fact, DEM can even be used as an
alternative to experiments when investigating the intricacies of the microstructures
of a granular assembly, which would require experimentally some advanced and
expensive techniques (e.g. X-ray tomography). This chapter starts this thesis with two
studies applying only DEM, both investigating the properties of an artificial material
made of non spherical grains. The latter was created by the Japanese Geotechnical
Society in the context of a DEM benchmark in which we participated.

The first study, "Methodological and physical aspects of angle of repose studies"
was motivated by the observation that the angle of repose formed by an unconstrai-
ned granular heap depends on its geometry. Eventually, it led to a collaboration with
another team participating to the same benchmark, namely Vasileios Angelidakis,
Sadegh Nadimi and Stefano Utili, from the School of Engineering, Newcastle Univer-
sity (Newcastle upon Tyne, United Kingdom), who used a completely convex model
(the potential particles model) for the grain shape. As first author of this study, I ran
all the simulations which are presented, and redacted the first draft. I also improved
the implementation of the visco-elastic contact model for potential particles, in the
open source code YADE.

The second study, "Rattlers’ involvement for possibly looser critical states under
higher mean stress", presented at the international conference "Powders & Grains
2021", aimed to characterize the previous artificial material using many triaxial tests.
This study highlights the limitations of the DEM when serving as a substitute to
experiments, in the case where the material has reached the critical state.
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Abstract

The repose of granular materials is investigated using two Discrete Element Me-
thod (DEM) formulations in comparison with an experimental reference recently
proposed as a benchmark by the Japanese Geotechnical Society. On a methodolo-
gical standpoint, a rigorous measurement method of the angle of repose (AOR) is
first proposed for plane-strain and axial-symmetric conditions. Additionally, two
systematic procedures are designed in order to also access the void ratio of the heap,
as a fundamental property of granular matter possibly influencing the AOR. From a
physical point of view, a discussion is developed on the description of particle shape,
that differs in the two DEM modelling approaches, adopting non-convex multi-
spheres aggregates i.e. clumps and potential particles as a convex simplification of
the physical particles. In the comparison with experiments, the clump approach
sucessfully predicted the AOR within a 8% tolerance, whereas the potential particles
approach logically underestimated to a greater extent the AOR due to the artificial
convexity. While the physical particle has a convexity value of C = 0.954, neglecting
its local concavities brings down the AOR from 35.95±0.88◦ to 31.26±0.95◦. The AOR
is eventually shown here to bear no constitutive nature. It is for instance independent
of initial void ratio but still different than the critical friction angle. The latter may
actually serve as a lower bound for the process-dependent AOR. The conclusions are
drawn from a statistical analysis of a large set of results, accounting for the random
nature of the microscopic arrangement in the studied process.

Keywords: Angle of repose ; Granular materials ; Discrete Element Method ; Non-spherical
particles



2. Two studies using the Discrete Element Method – 2.1. Introduction

2.1. Introduction

Under loading, particulate matter strains in the form of a fluid-like flow as long as the ap-
plied load is high enough. Then, once loading no longer prevails against internal dissipation
in terms of energy input, particulate matter comes at rest in a solid-like heap configuration.
The corresponding slope, expressed in terms of an angle of repose (AOR), rules the spatial ex-
tents of the deposit for a given matter quantity. The AOR is therefore of interest for countless
applications involving particulate materials, for instance the design of industrial facilities
for granular-conveying processes, or the prediction of the coverage of natural deposits after
e.g. snow or rock avalanches. Several standardised measurement procedures have been
proposed in the literature to measure the AOR of granular materials employing empirical
and geometrical concepts [Geldart, Abdullah, Hassanpour, et al. 2006] ; [Al-Hashemi and
Al-Amoudi 2018] but they unfortunately often lead to differing results, as demonstrated in
[Rousé 2014]. As such, a one-to-one correlation of AOR to theoretically-established mechani-
cal material properties is not always demonstrated even though it may be often assumed, e.g.
in [Bolton 1986] in Geotechnics. A part of the complexity certainly stems from an influence
of non-constitutive parameters such as the heap construction history [Matuttis, Luding,
and Herrmann 2000] and possible geometrical effects [Matsuo, Nishiura, and Sakaguchi
2014] ; [Zhou, Xu, Yu, et al. 2001]. The latter adds to the more natural influence of physical
parameters pertaining to the micro-, respectively meso-, scale properties such as particle
shape [Chen, Zhao, and Zhou 2020] ; [Pöschel and Buchholtz 1993], contact friction [Chen,
Zhao, and Zhou 2020] ; [Pöschel and Buchholtz 1993] ; [Zhou, Xu, Yu, et al. 2001], respectively
fabric [Chen, Zhao, and Zhou 2020]. Last, it should be noted that granular heaps may not
systematically conform a linear slope [Akbar, Yuliza, Amalia, et al. 2022] ; [Topić, Gallas, and
Pöschel 2012]which may prevent one to define a single-valued AOR.

Following up on these previous works, the aim of the present manuscript is twofold. First,
rigorous simulation and measurement methods are proposed in order to ease evergoing AOR
studies. Second, with the help of these methods, an analysis is conducted in order to gain
further insights on the AOR variations with respect to physical and non-physical parameters.
The present analysis combines the use of two Discrete Element Method (DEM) approaches
and experimental results recently proposed by the Japanese Geotechnical Society (JGS) as
part of a round robin series of tests [Japanase Geotechnical Society 2021].

Section 2.2 first presents the JGS experiments and the two DEM formulations both execu-
ted within the YADE code [Smilauer et al. 2021]while they differ in terms of their particle
shape description. Section 2.3 then introduces new methods enhancing AOR studies, namely
a systematic definition of the AOR value after detection of the external slope and versatile
measurement methods of the compacity (void ratio) of the heap since the latter is a funda-
mental property of granular matter. It also provides a discussion on computational aspects
of the two DEM approaches used to simulate the same JGS experiments. Section 2.4 finally
provides new insights on the role of some physical and non-physical parameters on the AOR
value, after conducting a large number of DEM simulations interpreted in a statistics fashion
for robustness of the conclusions.
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2.2. Reference benchmark experiments and DEM
formulations

2.2.1. Reference benchmark experiments

Measurements of AOR data have been recently proposed by the JGS as part of a round ro-
bin test organised within the activities of Technical Committee 105 (TC105: Geo-Mechanics
from Micro to Macro) of the International Society for Soil Mechanics and Geotechnical Engi-
neering (ISSMGE) [Japanase Geotechnical Society 2021]. In a first step, data only included an
experimental characterization of the granular material at hand, together with properties of
the two experimental setups used for AOR measurement, before that blind DEM predictions
of the AOR values could be proposed by international participants to the round robin and
compared with experimental values.

An artificial granular material was considered with non-spherical particles made of 3D-
printing resin. Particles constituting the mono-dispersed material resemble a tetrahedral
arrangement of four spheres clumped together (see figure 2.1). Individual spheres have a
radius of rs = 0.3101 c m , while each global particle is inscribed in a radius rc l ump = 0.5 c m .

FIGURE 2.1. – Physical particle made of 4 clumped spheres.

The newly proposed AOR setups employ two devices in the form of either a cylindrical (see
figure 2.2) or cuboidal (see figure 2.3) container with acrylic walls, aiming to compare how the
AOR varies for heaps of different shapes. For the cylindrical case forming an axial-symmetric
configuration, the container encloses the particles before the surrounding wall is lowered
until a small, final, height of 1 cm. For the second device corresponding to a plane-strain
configuration of the repose state, the cuboidal box encloses the particles initially, until one
of the side walls is removed upwards, leaving eventually only a fixed 0.5 cm ridge to retain
the lowest particles on that side. The reference number of particles, walls’ velocity and boxes’
dimensions are given in table 2.1 for both configurations, as per the specifications of the
round robin test. These parameters were set to different values for some series of simulations
in this study, see sections B and 2.4.5.
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FIGURE 2.2. – Initial (left) and final (right) states of the heap in the axisymmetric
configuration.

TABLE 2.1. – Default configuration of AOR simulations

Configuration Initial number of particles Side wall’s velocity Container’s height Container’s width

Axial-symmetric Np a r t = 2468 Vc y l = 6,67 ·10−4 m/s Hc y l = 9 ·10−2 m Rc y l = 8 ·10−2 m
Plane strain Np a r t = 2150 Vp a r = 4,3 ·10−2 m/s Hp a r = 1,9 ·10−1 m Lp a r = 1 ·10−1 m

2.2.2. DEM shape description with clump and potential particles
approaches

2.2.2.1. Clumps of spheres

In line with the physical particles at hand (see figure 2.1), a first DEM approach adopts the
traditional multi-sphere technique to simulate non-spherical particles. A rigid agglomeration
of four spheres is created to reflect the particle morphology as a so-called clump, e.g. as
shown in [Angelidakis, Nadimi, Otsubo, et al. 2021]. This technique leads to an increased
total number of discrete elements in a simulation, compared to the number of physical
particles, however it benefits from the low computational cost of collision detection among
spheres. To define the inertial properties of a clump, many DEM codes still simply add the
masses of the clump members and directly combine their inertia matrices, which leads to
an overestimation in the case of clumps with overlapping members, like the one adopted
to simulate the present 3D-printed particle. To mitigate this issue, methods to adjust the
density of each sphere-member have been proposed in the literature, such as the one of
Ferellec and McDowell [Ferellec and McDowell 2010] to correct mass and inertia at the cost
of some pre-processing efforts. YADE, along with PFC, provide an alternative solution, where
a three-dimensional grid of voxels is generated in the bounding box of the particle, and it
is evaluated for each voxel whether it belongs to at least one sphere-member of the clump.
For the particles at hand in this study, a grid size of 1000× 1000× 1000 voxels is used to

49



2. Two studies using the Discrete Element Method – 2.2. Reference benchmark
experiments and DEM formulations

FIGURE 2.3. – Initial (left) and final (right) state of the heap in the plane strain confi-
guration.

estimate the volume (and thus the mass) and inertia tensor, with negligible discretisation
error induced by the grid resolution, since finer grids led to the same inertial properties.

2.2.2.2. Potential particles

While the above clump approach is a straightforward DEM strategy for describing the
physical particles at hand (figure 2.1), a comparison is carried out with a second approach
using the so-called “potential particles" introduced by Houlsby [Houlsby 2009], and extended
to three-dimensions by Boon et al. [Boon, Houlsby, and Utili 2013]. The potential particles
are generalised convex non-spherical particles, assembled as a combination of 2nd degree
polynomial functions and a fraction of a sphere, while their edges are rounded with a user-
defined radius. In line with their inherent restriction to convexity, rather common in DEM
with complex shapes, e.g. as in [Matuttis, Luding, and Herrmann 2000], the additional
consideration of using potential particles will illustrate the mechanical implications of
neglecting the concavity of the physical particles to the AOR.

For the exact definition of a potential particle, as detailed in Boon et al. [Boon, Houlsby,
and Utili 2013], a set of N planes are assembled such that their normal vectors point outwards,
with their interior forming a convex polytope. These planes are summed quadratically and
expanded by a distance r , which is also related to the radius of the curvature at the corners.
Furthermore, a ’shadow’ spherical term is added, where R is its radius and 0< k ≤ 1 denotes
the fraction of sphericity of the particle. A value of k ≈ 0 corresponds to a nearly sharp
polyhedron, while k = 1 corresponds to a perfectly spherical particle.

A potential particle is eventually defined by a potential function f as in equation 2.1:
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f (x , y , z ) = (1−k )

� N
∑

i=1

〈ai x + bi y + ci z −di 〉2

r 2
−1

�

+k

�

x 2+ y 2+ z 2

R 2
−1

�

(2.1)

where:

(ai , bi , ci ) = is the normal vector of the i t h plane in local particle coordinates ;
di = is the distance of the plane to the local origin ;
〈 〉 = are Macaulay brackets, i.e., 〈x 〉= x for x > 0 ; 〈x 〉= 0 for x ≤ 0.

This potential function takes zero values ( f = 0) on the particle surface, negative values
( f < 0) inside the particle and positive values ( f > 0) outside the particle. The contact point
between two potential particles is found as the optimal point of a Second Order Conic
optimisation Problem (SOCP) describing the contact detection problem, representing a
point nearest to both the particles, based on their potential functions. The concept of using
a potential measured from the particle surface for contact detection purposes can also
been found in the Level-Set Discrete Element Method (LS-DEM) [Duriez and Bonelli 2021] ;
[Duriez and Galusinski 2021] ; [Kawamoto, Andò, Viggiani, et al. 2016]where the potential is
the actual distance function, with no need for a closed-form potential function and being
possibly adapted to concave particle morphologies.

Here, the mathematical formulation of the potential particles enables one to approximate
the given particle shape by a rounded tetrahedron. To decide which planes to use in order to
assemble the potential particle of the 3D-printed material, two criteria were considered, a
physical and a practical one, with the latter aiming to achieve post-processing convenience:
(1) First, the potential particle should capture the morphology of the physical particle as
faithfully as possible in terms of size, surface curvature, mass and inertia of the given physical
particle, or other shape descriptors such as the sphericity ; (2) To achieve comparable results
with the clump models, for the evaluation of the AOR, it is convenient for each potential
particle to be monitored via four points being located at the same positions than the centroids
of the four spheres making the tetrahedron. Thus, it is sought that the potential particle
has a straightforward analogy to this format. To satisfy these criteria, the planes used to
assemble the potential particle were chosen as the faces of the tetrahedron connecting the
centroids of the spheres making the physical particle (see table 2.2). This approach can
be generalised to approximate any convex shape, given a tessellation of its surface, or a
multi-sphere representation of a particle made of spheres with equal radii.

To match the local surface curvature of the physical particle, a radius r = rs was chosen
in equation 2.1 to control the roundness of the edges and corners of the potential particle
consistently with the rs radius of each individual sphere in the physical particle. The radius
of the shadow particle was assigned to R =

p
2 · rs , to capture the curvature of faces of the

given particle shape.The remaining parameter needed to be calibrated in order to match
the given particle shape was the parameter k , which controls the curvature of the faces. A
value of k = 0.65 led to a good match with the target geometry, i.e. it achieves an adequate
representation of both the overall form of the real particle and features such as its main
dimensions, while also approximating its curvature. The parameters r , R and k were chosen
via a trial-and-error procedure. Figure 2.4 demonstrates visually the geometrical faithfulness
of the generated potential particle to the shape of the real, physical particle.
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TABLE 2.2. – Coefficients defining the planes making the faces of the tetrahedral
potential particle as described in equation 2.1.

Plane
coefficient

Plane 1 Plane 2 Plane 3 Plane 4

a 0
p

2/3 0 −
p

2/3
b 0

p
2/3 2

p
2/3

p
2/3

c -1 1/3 1/3 1/3
d (m) 0.00063299 0.00063299 0.00063299 0.00063299

FIGURE 2.4. – Clumped tetrahedral particle (left) ; fitted potential particle (middle) ;
overlap of the two (right).

In addition to modelling the rounded, tetrahedral-like particles, the potential particles
also serve to simulate cuboidal elements of various sizes, making the moving and still parts
of the plane-strain and axial-symmetric devices, enabling one to build YADE models using a
single, unified approach and contact detection algorithm.

2.2.2.3. Particle shape characterization

As demonstrated in figure 2.4, the selected potential particle can approximate the mor-
phology of the physical particle faithfully, as it qualitatively represents the main dimensions
of the particle, determining particle form, along with the curvatures of its edges/corners,
relating to particle roundness. However, the potential particles modelling approach cannot
represent the concavity of the physical particle. A quantitative characterization of particle
form was also performed using SHAPE [Angelidakis, Nadimi, and Utili 2021], an open-source
shape analysation software for three-dimensional particles, in order to quantify in the table
2.3 the similarity between the the physical particle and its numerical description(s). For
doing so, the surface mesh of the physical particle was first tessellated from its corresponding
DEM clump, using the surface extraction module of CLUMP [Angelidakis, Nadimi, Otsubo,
et al. 2021], an open-source code for the generation and processing of multi-sphere particles.
Particle shape was characterized in terms of volume, surface area, principal inertia values,
convexity and sphericity. Convexity is calculated in [0;1] as the ratio of the volume of each
particle divided by the volume of its convex hull, while sphericity, also in [0 ;1], corresponds
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TABLE 2.3. – Shape parameters of the physical particle in comparison with various
DEM approaches

Shape
characteristics

(1) (2)
(2)-(1)

(1)

(3)
(3)-(1)

(1)Physical particle
or present clump approach

Potential
Particle

Clump approach with
non-uniform density

Volume (m3) 3.3304 · 10-7 3.9248 10-7 17.85% 4.9965 · 10-7 50.03%
Surface area (m2) 2.491 · 10-4 2.632 · 10-4 5.66% 2.491 · 10-4 0

Inertia
tensor/ρ (m5)





2.584 0 0
0 2.584 0
0 0 2.584



 · 10-12





3.286 0 0
0 3.286 0
0 0 3.286



 · 10-12 27.17%





3.123 0 0
0 3.123 0
0 0 3.123



 · 10-12 20.86%

Convexity 0.954 1 4.82% 0.954 0
Sphericity 0.9328 0.9849 5.59% 0.9328 0

to the so called “degree of true sphericity", i.e. the ratio of the surface area of a sphere with
equal volume to the surface area of the particle [Wadell 1932]. It becomes evident from
table 2.3 that both the physical and the potential particle take high values of convexity and
sphericity (>0.90). It may furthermore be noted that both the multi-sphere and the potential
particle share the same minimal bounding box and thus main particle dimensions, resul-
ting to the same flatness and elongation values considering indices that rely on these main
particle dimensions. Therefore, flatness and elongation were not monitored in this study, as
convexity and sphericity were the two differentiating factors between the two studied particle
representations, from a morphological standpoint. Table 2.3 also offers a comparison with
a so-called "non-uniform density" clump approach that would count multiple times the
overlapping parts of the sphere-members in the calculation of volume and inertia, which
would correspond to density showing a spatial increase at areas where spheres overlap.

As expected, the considered potential particle has larger values of volume and geometric
inertia. The effect of the resulting increased particle’s mass is investigated in section 2.4.1 by
scaling down their density so the potential particle has the same mass as the real particle, i.e.
ρr e s c a l e d =ρ 3.3304 ·10−7/3.9248 ·10−7 ≈ 943 k g /m 3.

Bringing the error on mass down to zero through this scaling, the error in inertia values
for potential particles drops from 27.17 % down to 7.96 %. It is interesting to note that using
overlapping spheres with no correction for uniform density i.e. inner overlaps would lead to
an error of 50.03 % for the volume and 20.86 % for the eigenvalues of the principal inertia
tensor.

2.2.3. DEM contact formulation

The geometry of each contact is defined with the normal and tangential relative displace-
ments of the particles, un and ut respectively. For the clump model, contacts are detected
between spheres belonging to different clumps and un is computed as the norm of the
branch vector to the spheres’ radii, while ut is computed incrementally, see e.g. [Duriez and
Bonelli 2021]. For the potential particle model, un is computed using a bracketed line-search
algorithm as detailed in Boon et al. [Boon, Houlsby, and Utili 2013], deployed along the
contact normal direction and starting from the contact point, to detect two points on the
surface of each particle, forming a branch vector, the norm of which is considered as the
sought approaching distance. The shear increment of ut is calculated in a similar manner as
for spheres, i.e. via time integration of the shear component of the relative velocity during

53



2. Two studies using the Discrete Element Method – 2.2. Reference benchmark
experiments and DEM formulations

contact.
The same contact model applies to these kinematic quantities for both the clump and the

potential particle approaches, accounting for linear visco-elasticity and friction (figure 2.5):

FIGURE 2.5. – Contact model with visco-elasticity and friction.

— in the normal direction: a spring with normal stiffness Kn is associated in parallel
with a viscous damper of viscosity cn , see Eq. 2.2. The viscous damper ensures the
stabilisation of the simulations without the need for Cundall’s (local) damping.

— in the tangential direction: a spring with tangential stiffness Kt is associated in series
with a frictional slider (contact friction angle ϕ), see Eq. 2.3.

Fn =max(Kn un + cn u̇n , 0) (2.2)

|Ft |=min(Kt |ut |, Fn tan(ϕ)) (2.3)

One should note that different YADE classes implement the above Eqs. 2.2-2.3 for clumps
and potential particles with different methods of expressing the viscosity coefficient cn . For
the clump approach (through, e.g.,Ip2_ViscElMat_ViscElMat_ViscElPhys andLaw2_-
ScGeom_ViscElPhys_BasicYADE classes), cn is computed from a given normal restitution
coefficient en according to the mass-dependent expression of [Schwager and Pöschel 2007].
For the potential particles approach (through, e.g., Ip2_FrictMat_FrictMat_KnKsPhys
and Law2_SCG_KnKsPhys_KnKsLaw classes), a viscous damping parameter βn serves as
input for deriving cn , consistently with a desired en and [Antypov and Elliott 2011]. Never-
theless figure 2.6 illustrates the common dissipative behavior of both models in the case
of two colliding spheres (obtained after using k = 1 in equation 2.1 for the PP approach)
with an initial relative normal velocity V , and demonstrates the consistency of the two
implementations of visco-elasticity.

In the framework of the round robin test, the JGS measured the contact friction angle
ϕ and the normal restitution coefficient en for resin against acrylic contacts and for resin
against resin contacts, as well as the normal stiffness Kn for resin spheres. Experimental
measurements exhibited a variability and are thus given as distributions (see figure 2.7). The
DEM simulations are defined accordingly, with the values of ϕ and cn used for each contact
respecting those experimental distributions for all clump simulations, unless specified
otherwise.
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FIGURE 2.6. – Contact behaviour for different impact velocities in the two DEM ap-
proaches.

2.2.4. DEM simulation workflow

Generating DEM samples starts with random definitions of initial particles positions inside
the cuboidal or cylindrical containers mentioned in the above section 2.2.1, so as to form
a extremely loose assembly of non-overlapping particles. The assembly is then deposited
under its own weight until it becomes stable, and is saved to be subsequently used under
different conditions. Different samples can be obtained starting from different initial particle
arrangements. For this first step with no experimental counterpart, an extra, non-physical,
damping source is added in the local, non-viscous, form to speed up the generation.

The actual AOR simulation starts from this initial state by displacing the moving parts of
the container in an equivalent manner to the experiments. Particles leaving the container
are erased and the simulation continues until the sample finds a new equilibrium in the
form of a heap. It is then possible to measure the angle between its exterior surface and the
horizontal plane following the procedures discussed below.

The default set of parameters for these boundary conditions is the experimental one
previously given in figure 2.1.

2.3. Methodological discussion

2.3.1. Computational aspects of each modelling approach

In order to provide an overlook of the computational implications of the two considered
DEM strategies for shape description, figure 2.8 gives a comparison of the effective com-
putation speed during 30 different simulations with both modelling approaches. These
simulations, presented in detail in section 2.4.3, were run sequentially using a Intel® Xeon®

Platinum 8270 CPU @ 2.70GHz with approximately 1.51 TB of RAM available. Note that
during all series of simulations in this paper the CPU’s cache wasn’t controlled. Its capacity
of 35.75 MB may thus not have been used as much over all simulations, making the time
measurements somewhat biased.

Note that not all heaps finished stabilising at the same simulated time ; as a consequence,
less and less values were available to compute the mean and standard deviation, until
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FIGURE 2.7. – Distributions of contact properties as experimentally measured by the
JGS (adapted from [])

eventually there was only one. The results show that for these simulations, the clump model
is approximately 100 times faster than the potential particle model. Considering that the
present physical particles are simple to describe in a clump approach, using only 4 spherical
members, the increased effort in computational time when using potential particles is in a
classical order of magnitude for DEM approaches for non-spherical particles [Duriez and
Bonelli 2021].

2.3.2. A systematic determination of the angle of repose

This section proposes two rigorous methods to measure the AOR, first, by defining an
outer surface of particles and second, by computing an angle from these particles positions.

2.3.2.1. Outer surface detection

In the axisymmetric case (respectively plane strain case), the 3D space is discretized in
several subdomains {r ;θ ∈ [θa ,θb ]; z ∈ [za , zb ]} (respectively {x ∈ [xa , xb ]; y ∈ [ya , yb ], z }),
giving an intersection with the outer surface at max(r ) (respectively max(z )) in each subdo-
main. The extent of each interval is selected such that only one particle should be therein
detected as belonging to the outer surface. For such a purpose, length scales Lη are used for
the coordinates θ , z in the axisymmetric case and x , y in the plane strain case. The letter η

56



2. Two studies using the Discrete Element Method – 2.3. Methodological discussion

0 1 2 3 4 5
Model time t (s)

100

101

102

S 
(it

er
at

io
n/

s)

Potential Particles
Clumps

FIGURE 2.8. – Computation speed statistics during 30 simulations with each DEM
approach for the potential particles and clump simulations (see sec-
tion 2.4.3 for details). Dots represent the mean speed value with the
surrounding filled area corresponding to its standard deviation.

can represent each of these coordinates. The number of intervals on each coordinate is then:

Nη =
Lη

dc l ump
−1 with Lθ = 2πRc y l ; Lz =Hc y l ; L x = Lp a r ; L y =Hp a r

(2.4)
And the limits of each interval are:

θ i
a = i

2π

Nθ
; θ i

b = (i +1)
2π

Nθ
with i ∈ ¹0, Nθ º (2.5)

ηi
a = i

Lη
Nη

; ηi
b = (i +1)

Lη
Nη

with i ∈ ¹0, Nηº, η ∈ {x , y , z } (2.6)

Figure 2.9 shows all the particles detected as belonging to the outer surface in both confi-
gurations. Note that gravity has the opposite orientation of the z-axis.

2.3.2.2. Angle of repose measurement

From this point the method is the same in both heap configurations except for the orien-
tation of the horizontal axis. The coordinates (ex , ey , ez ) will thus denote respectively (−r , z ,
θ ) in the axisymmetric case or (x , z , y ) in the plane strain case. The width of the container
exb o x for instance stands for Rc y l in the axisymmetric case and Lp a r in the plane strain case.

Assuming a ez -invariance of the heaps, we project the spheres on the (ex , ey ) planes (see
figure 2.10) and perform a linear regression on the resulting points to determine the AOR
α. Letting the linear regression be ey1 = a1ex + b1 and considering that the slope a1 is here
negative, one has:
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FIGURE 2.9. – Outer surface in the axisymmetric (a) and plane strain configurations
(b).

α= arctan(a1) (2.7)

Consistent to [Akbar, Yuliza, Amalia, et al. 2022], one can notice that the surface isn’t
exactly flat but slightly curved (especially in the axis-symmetric configuration). It can thus
be useful to compute a second degree regression as well in order to fit the outer surface in
the best possible way. Letting the second degree regression be ey2 = a2ex

2+ b2ex + c2, one can
compute a local angle:

α(ex ) = arctan(2a2ex + b2) (2.8)

To make the measurement more meaningful, one could perform it only on a part of the
heap: the particles considered in the regressions would only be the ones inside an interval
[exmi n , exma x ]. Indeed, the lower particles may be abruptly blocked by the bottom ridge of the
container devices and should be excluded from the measurement. Also, particles with a high
ex , away from the opened boundary, could be unaffected by the discharge and still form a
horizontal surface, specially in the axisymmetric configuration.

Excluding from the bottom of the heap the few particles that are stuck by the ridge, and
only those, is obtained choosing: exmi n = 0.32dc l ump . An appropriate value for exma x is sought
by measuring α for several exma x . The best exma x is the smallest for which the measurement
doesn’t change. The error on the measurement is also a criterion to choose the best exma x .
This method should be specially relevant in the axisymmetric case since the outer surface is
curved, but it should work on the plane strain heap as well.

2.3.2.3. Error on the measurement

For a given heap, the dispersion of the data points induces some error on the linear
regression and the measurement of α. As an alternative to the correlation coefficient R 2, this
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error can be quantified from a standard deviation on the slope a1 of the fitting line, StD(a1).
If N is the number of points and (exi , eyi ) are the coordinates of the i t h point, one has:

StD(a1) =

√

√

√

√

1

N −2

∑N
i=1(a1exi + b1− eyi )2
∑N

i=1(exi − ex )2
(2.9)

(2.10)

which gives the standard deviation on the angle, StD(α), considering equation 2.7:

StD(α) =
StD(a1)
1+a1

2
(2.11)

Figure 2.10 shows the regressions made on the projection of the outer surface in both
configurations and the resulting angle for exma x /exb o x = 0.4, with exb o x ∈ {Rc y l , Lp a r }. Figure
2.11 shows measurements performed for several exma x in both configurations. The error bars
represent the error computed with equation 2.11. One can see that the AOR increases with
exma x , except for very high values of exma x where the part of the outer surface considered is
very small compared to its size. This may be caused by the ridge on the bottom of the open
container that maintains some particles, affecting the shape of the outer surface. The error
on the measurement is very low but increases with exma x . The measurement is more stable
for low exma x , specially in the axisymmetric case. From now on, the measurements will be
performed on most of the outer surface, using exmi n = 0.32dc l ump and exma x = exb o x .

2.3.2.4. Error due to repeatability

The simulations performed with the clump model include two sources of randomness.
The first one is the initial configuration of the sample, with random positions for the par-
ticles in the initial cloud. The second source lies in the statistical distribution of contact
properties. Indeed, the use of distributions for ϕ and en implies choosing a different value
for each contact, all values being randomly chosen according to the probability defined by
the distribution. If one was to swap the values of two contacts, the distribution would still be
respected, but the conditions of the simulation would be different, introducing randomness.

In order to quantify the repeatability error, a series of simulations was performed with
the clump model using 30 different values for the seed parameter, the particles in the initial
samples of each simulation thus have different positions and contact properties. This series
will be called CLP1 and uses the default parameters, see table 2.4. Note that all samples have
approximately the same initial densities. figure 2.12 shows the AOR measured using CLP1
heaps, one can see that the variation in the measurement is lower that 3%. Even though the
repeatability error is low, it will be systematically given for all series of simulations in this
paper as error bars on the AOR axis.
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FIGURE 2.10. – Outer surface regressions for an intermediate exmi n and the associated
measurement ((a), (c)) in both configurations.

2.3.3. Measuring the void ratio for any shape of assembly

With respect to the objective of discussing the possible constitutive nature of the AOR
determined as per section 2.3.2, it is interesting to characterize the state of the heap in terms
of density or void ratio e , as a fundamental parameter of granular materials. This density
characterization is not straightforward because of the irregular shapes of the heap along its
free surface, and possible bias caused by an excess of void near the walls

As such, two methods are now proposed to compute the void ratio inside a granular
assembly with a complex shape, while avoiding the boundary effects: a so-called "tetrahedron
method" and a "sub-volume method". Both methods may output local values for e and rely
on the Monte Carlo method’s to compute volume proportions, in addition to, straightforward
here, tests to determine whether a random point in space is inside a physical particle. The
following differences still exist, though:

— the tetrahedron method applies for any shape of sample with no requirements on the
geometry. It is based on a triangulation of the sample.

— the sub-volume method requires to define a sub-volume inside the sample, which can
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FIGURE 2.11. – Average slope as measured for different values of exma x .

TABLE 2.4. – Parameters for heap simulations investigating repeatability (CLP1 series,
60 simulations in total).

Configuration Np a r t
Kn Ks/Kn

ρ
∆t (s ) ϕ e0

Number
(N .m−1) (k g .m−3) of samples

Plane strain 2150
58 250 0,37 1111 7.86 ·10−5 see 0.622±0.012

30
Axial-symmetric 2468 figure 2.7 0.744±0.028

be difficult if the latter has a peculiar shape. However, it is faster than the tetrahedron
method.

2.3.3.1. The tetrahedron method

For computing a void ratio on a heap conforming any shape, the tetrahedron method’s
starts by a triangulation of the heap. The Monte Carlo method is then used to determine the
proportion of particles inside each tetrahedron, leading to an expression for the void ratio.

Triangulating the heap

This is done using Delaunay’s triangulation on the centers of all particles, although it
could be done using another set of relevant points (e.g. the center of all spheres for clump
simulations). Also, one should keep in mind that when triangulating using the center of the
particles a small part of the sample is ignored: all particles on the outer surfaces are cut by
the boundary’s tetrahedron. This should effectively remove the excess of void near the walls
of any sample. The set of all tetrahedrons will be denoted {t e t }.
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FIGURE 2.12. – Distributions of measured angles of repose when investigating repea-
tability in the CLP1 configurations of table 2.4.

Detecting which particle may be partially inside each tetrahedron

All particle’s bounding boxes are tested to determine if they overlap a tetrahedron’s boun-
ding box. If so, the particle is further checked for intersected volume with the Monte Carlo
method, forming a set of particles that is denoted {p}c u t . This step is not necessary but it
drastically reduces the computation time.

Computing the total volume of particle inside each tetrahedron

In this step, Nm c points {xi , i ∈ ¹1, Nm c º} are uniformly drawn inside the tetrahedron,
following [Rocchini and Cignoni 2000]. Each point is tested to determine if it is inside any of
the particles potentially cut {p}c u t . Denoting :

— V t e t the volume of the tetrahedron t e t , computed using its vertices’ coordinates
— χp (x ) the Boolean function equal to 1 if the point x is inside the particle p , 0 otherwise
— H (n ) the Heaviside function

, the Monte-Carlo method gives the total volume of particle inside the tetrahedron:

V t e t
p a r t =

∑Nm c
i=1 H

�

∑

{p}c u t χp (x i )
�

Nm c
×V t e t (2.12)

A local void ratio can then be computed for the tetrahedron:

e t e t =
V t e t −V t e t

p a r t

V t e t
p a r t

(2.13)
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And globally:

Vp a r t =
∑

{t e t }
V t e t

p a r t (2.14)

Vt o t =
∑

{t e t }
V t e t (2.15)

e =
Vt o t −Vp a r t

Vp a r t
(2.16)

Taking advantage of the independence between operations in each tetrahedron, the
proposed implementation of this method is parallel with an almost optimal speed-up: the
increase in execution speed is close to the number of processes running at the same time.

2.3.3.2. The sub-volume method

The sub-volume method mainly consists in three steps.

Defining the sub-volume

This step is illustrated using the samples’ geometries presented in this paper. The sub-
volume is chosen as a homothetic transformation of the heap centered in the sample, for
both configurations. The sub-volume and the total volume of the sample will be denoted
Vs u b and V respectively. At the final state, the geometry of the sample is assumed to be a
half parallelepiped (respectively a cone) for the plane strain (respectively axial-symmetric)
configuration. The sub-volume is defined using a parameter C that pilots the homothetic
transformation. The coordinates of the sub-volume’s axis aligned bounding box are denoted
�

xmi n , ymi n , zmi n

�

and
�

xma x , yma x , zma x

�

and depend on the coordinates of the

sample’s axis aligned bounding box:
�

Xmi n , Ymi n , Zmi n

�

and
�

Xma x , Yma x , Zma x

�

.
In the case of the plane strain configuration, the homothetic sub-volume can be determi-

ned as follows (figure 2.13):

∀(s ,S ) ∈ {(x , X ), (y , Y ), (z , Z )}
∀C ∈]0.5, 1] :

smi n = (1−C )(Sma x −Smi n ) +Smi n (2.17)

sma x =C (Sma x −Smi n ) +Smi n (2.18)

In the case of the axisymmetric configuration, one has to compute the x and y coordinates
of the center, xΩ and yΩ respectively, and the maximum radius rc of the cone (figure 2.13).
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(a) C = 0.6 (b) C = 0.75 (c) C = 0.9

FIGURE 2.13. – Illustration of sub-volume for several C values in the plane strain
configuration.

The homothetic sub-volume then is:

∀(s ,S ) ∈ {(x , X ), (y , Y )}
∀C ∈]0.5, 1] :

zmi n = (1−C )(Zma x −Zmi n ) +Zmi n (2.19)

zma x =C (Zma x −Zmi n ) +Zmi n (2.20)

sΩ =
Smi n +Sma x

2
(2.21)

rc = (2C −1)
Xma x −Xmi n +Yma x −Ymi n

4
(2.22)

(2.23)

(a) C = 0.6 (b) C = 0.75 (c) C = 0.9

FIGURE 2.14. – Illustration of sub-volume for several C values in the axial-symmetric
case.
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Counting the volume of particles completely inside the sub-volume

During this step, the 8 vertices x
p
i of a particle’s axis aligned bounding box are tested to

determine if they are part of the sub-volume. Using the χ s u b (x ) function, the number of
vertices inside the sub-volume for a particle p is:

N
p

i n =
8
∑

i=1

χ s u b (x p
i ) (2.24)

If N
p

i n = 8 the particle p is completely inside the sub-volume, if N
p

i n = 0 the particle p is
completely outside the sub-volume.

Denoting V p the volume of the particle p , the total volume of particles completely inside
the sub-volume is:

V i n
p a r t =

∑

{p | N
p

i n=8}

V p (2.25)

Counting the volume of particles partially inside the sub-volume

If 0 < N
p

i n < 8, the particle may be cut by the faces of the sub-volume. The proportion
of the particle’s volume inside the sub-volume is again determined using the Monte Carlo
method: Nm c points, {xi , i ∈ ¹1, Nm c º}, are uniformly drawn inside the particle’s bounding

box and tested to determine if they are both inside the sub-volume (test function χ s u b (x i ))
and inside the particle (test function χp (x i ). The proportion of a particle’s volume being
also part of the sub-volume is then:

V
p

i n =

∑Nm c
i=1 χ

s u b (x i )χ
p (x i )

Nm c
×V p (2.26)

The total volume of particles partially inside the sub-volume is:

V c u t
p a r t =

∑

{p | 0<N
p

i n<8}

V
p

i n (2.27)

The total volume of particle inside the sub-volume is then :

Vp a r t =V i n
p a r t +V c u t

p a r t (2.28)

Finally, the void ratio is:

e =
Vs u b −Vp a r t

Vp a r t
(2.29)

For the simplest sub-volume’s geometries the expression of Vs u b is trivial, for other cases
it can be determined using once again the Monte Carlo method inside the sub-volume’s
bounding box:
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V b b
s u b = (xma x − xmi n )(yma x − ymi n )(zma x − zmi n ) (2.30)

Vs u b =

∑Nm c
i=1 χ

s u b (x i )
Nm c

×V b b
s u b (2.31)

Both methods can be optimized when used with simple shapes (e.g. spheres): one could
detect more precisely which particle may be cut. Also, one may be able to draw uniformly
points directly inside the particle instead of the bounding box, the function χp would then
be not necessary and the Monte Carlo method would be more accurate.

2.3.3.3. Examples of void ratio measurements

Local void ratio

The tetrahedron method makes it possible to establish directly a local representation
of the void ratio, see figure 2.15 for one of the plane strain final heap. One can notice that
the shape of the final heap is accurately captured by the triangulation, giving a rounded
half parallelepipedic boundary surface. The density range is quite wide: some tetrahedrons
located on the outer surface, where the particles moved, contain approximately 1000 times
more voids than other tetrahedrons located where the particles almost didn’t move. Note
that this figure represents the void ratio directly interpolated from the centroid of each
tetrahedron and thus should be interpreted carefully.

FIGURE 2.15. – Local void ratio in a plane strain final heap as measured with the
tetrahedron method.

Executing the tetrahedron method in parallel

The independence of the processing of each tetrahedron makes it possible to parallelize
this method. A series of measurements was performed on 30 of the clump initial samples
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using different numbers of CPU’s cores on the same machine previously used in section
2.3.1. The speed-up S and its standard deviation∆S was computed from the computation
times TNc o r e s

±∆TNc o r e s
as follows:

S =
T1

TNc o r e s

(2.32)

∆S = S

�

∆T1

T1
+
∆TNc o r e s

TNc o r e s

�

(2.33)

Since the CPU’s cache wasn’t controlled, the total CPU’s load had an influence on the
computation speed, which might lead to a speed-up seemingly above perfection in the
eventuality of the CPU’s cache being full during the measurement on 1 core and not for more
cores.

0 20 40 60 80 100
Number of CPU cores Ncores

0

20

40

60

80

100

S

Perfect speed-up
(S = Ncores)

FIGURE 2.16. – Parallelization speed-up for the tetrahedron method.

Figure 2.16 shows the speed-up for Nc o r e s ∈ {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The
speed-up doesn’t improve starting from Nc o r e s = 50, which is probably due an over usage
of the CPU. A better control of the CPU could give more accurate speed-up measurements.
Nevertheless, for Nc o r e s < 50 the parallelization is optimum: S ≈Nc o r e s .

Sub-volume and tetrahedron methods comparison

Void ratio measurements were performed for the clump model on all initial samples of a
plane-strain series of simulations, discussed in more details in section 2.4.3. Because of the
simple parallelepipedic shape of these granular assemblies, a reference void ratio can be
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easily computed using the sample’s bounding box:

Vt o t = (Xma x −Xmi n )(Yma x −Ymi n )(Zma x −Zmi n ) (2.34)

Vp a r t =
∑

{p}
V p , with {p} the set of all particles (2.35)

e R E F =
Vt o t −Vp a r t

Vp a r t
(2.36)

Figure 2.17 (a) illustrates the comparison between the mean values and standard deviation
over the 30 samples of e R E F , e T E T for the tetrahedron method, and e SU B for the sub-volume
method. The latter has been computed for 3 values of Nm c and 40 values of C .

For C = 1, the sub-volume method, by definition, gives the exact same values for void
ratio than when using the global bounding box: e SU B = e R E F . On the other hand, for the
lowest values of C , the measured void ratio varies a lot among the 30 simulations and in
function of Nm c . Between C ≈ 0.7 and C ≈ 0.9, e SU B is constant and its standard deviation get
lower, being furthermore little dependent on Nm c . For C > 0.9, its mean value and standard
deviation finally start to increase as expected due to the rigid boundaries constraining the
granular assembly and favoring voids to form near the outer surfaces.

The tetrahedron method gives a e T E T measurement being close to e SU B when 0.7<C <
0.9, which suggests that it successfully excludes the excess of void from the computation.

As for the computational costs, figure 2.17 (b) shows the corresponding execution times,
t SU B , t T E T and t R E F , while e T E T was computed using parallelization on 3 cores. One
observes that, in spite of parallelization, the tetrahedron method is here significantly slower
than the sub-volume method. Regarding the sub-volume method, using Nm c = 1000 instead
of Nm c = 100 slows down considerably the computation for a measure being no more
accurate, especially for high values of C .

In view of these results, subsequent measurements of void ratio will be obtained using the
sub-volume method with Nm c = 100 and C = 0.8.

2.4. Physical discussion

This section analyses the dependence of AOR on several parameters: the particle’s shape,
the initial void ratio and the sample’s size. Experimental results obtained by the JGS are also
provided.

2.4.1. Parametric study

2.4.1.1. (Non-)Sensitivity to the tangential stiffness

A first series of simulations investigates the role of tangential stiffness when using the
potential particles model and two different values of Ks : 240 N /m and 444 N /m (see sets B
and C of table 2.5).

Results are given in figure 2.18 for what concerns the initial and final states of the samples.
Most importantly, the two different values of tangential stiffness are shown to result in
virtually the same AOR distribution. The Ks = 240N .m−1 value will thus be kept in the
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FIGURE 2.17. – Void ratio measurements with both methods for a parallelepipedic
initial sample. On figure (b ), the y axis is broken at two places: first
between 40 n s and 50 m s , and second between 250 s and 5200 s .
The three parts of the y axis don’t have the same scale.

TABLE 2.5. – Material properties for the parametric study with potential particles -
series PP1.

Set id Configuration Kn (N .m−1) Ks/Kn ρ (k g .m−3) ∆t (s ) µp p µp w βn Number of samples

A
Plane strain 1200

0.2 1111 8.52 ·10−5

0,713 0,514 0,071 30B 0.2 943 7.86 ·10−5

C 0.37 943 7.86 ·10−5

remainder of the sequel for it results in a higher critical time step. One may furthermore note
that the initial coordination number is slightly lower with a higher Ks , which is expected
since stiff particles tend to be further away from each other, even when constrained. However,
at the final state the average coordination number is unaffected by Ks , certainly because
they are not constrained enough for their relative distance to depend on Ks .

2.4.1.2. (Non-)Sensitivity to the particle’s mass density

While the AOR α refers to a static condition, the mass density of particles ρ physically
affects the prior dynamic evolutions of the system. On the other hand, from a computational
standpoint, the density also controls the critical time step of the present explicit DEM scheme
and the total time cost. Other series of simulations with different ρ are thus proposed to
check whether a variation from the experimental reference ρ = 1111 k g /m 3 would affect
the AOR results.

Using potential particles, two values for the particle’s density are considered in the fra-
mework of the PP1 series (sets A and B of table 2.5): the experimental one, ρ = 1111 k g /m 3,
and ρ = 943 k g /m 3 that would confer the potential particle the same mass as the physi-
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FIGURE 2.18. – Macro-scale and micro-scale results of the parametric analysis with
potential particles (PP1 series, table 2.5).

cal particle in spite of the volume differences discussed in the above section 2.2.2.3. Using
clumps in a CLP2 series, four to seven different values for ρ ∈ [100 k g /m 3; 10 000 k g /m 3]
are considered, with 10 different initial samples in each case. Corresponding parameters are
all given in table 2.6.

Figure 2.19 shows the resulting angles of repose in the CLP2 and PP1 series, together with
time costs of CLP1 series measured for a sequential execution on the same machine presented
in previous section 2.3.1. The dots correspond to the mean measurement over all samples
for a given particle’s density and the error bars represent the standard deviation. One can see
that all error bars share a common zone for a given shape description. As such, it is herein
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TABLE 2.6. – Parameters of heap simulations investigating ρ influence (CLP2 series,
110 simulations in total).

Configuration Np a r t ρ e0 Number of samples

Plane-strain 2150

100 k g /m 3 0.652±0.011

10

500 k g /m 3 0.6325±0.010
1111 k g /m 3 0.6225±0.009
2000 k g /m 3 0.618±0.010
4000 k g /m 3 0.607±0.011
8000 k g /m 3 0.603±0.012

10 000 k g /m 3 0.603±0.010

Axial-symmetric 2468

1111 k g /m 3 0.743±0.022
4000 k g /m 3 0.723±0.015
8000 k g /m 3 0.709±0.019

10 000 k g /m 3 0.694±0.010

concluded, consistent to [Zhou, Xu, Yu, et al. 2001], that particle’s density doesn’t impact the
AOR. During DEM simulations, one can thus adopt, when necessary, an artificial ρ = 10 000

k g /m 3, multiplying the critical time step by a factor of

s

10000

1111
≈ 3 and reducing as much

the total time cost of the simulation (figure 2.19b) until the heap stabilizes. In the figure
2.19b, one can finally note a longer computation time for the axisymmetric configuration
because of a lower velocity of the descending wall in the reference experiments.

2.4.2. Numerical angle of repose vs experimental one

The numerical simulations are now compared with the experimental results provided at
the end of the JGS round-robin. In this framework, a simpler method is adopted to compute
the AOR, considering only the highest particle instead of the whole external surface as in
previous section 2.3.2, for sake of simplicity during the experiments. In the axial-symmetric
configuration, slopes are actually determined in many directions being not exactly radial
and their average is used compute the AOR, while in the plane strain configuration the AOR
is computed using only one slope direction in the plane. This one particle measurement
assumes a flat shape for the outer surface of the heap, which is found to be curved later in
the current study (see figure 2.10)

In this subsection, the exact same method is adopted to interpret numerical results for a
consistent comparison. The set of parameters used for the clump model is the same as for
CLP1 (see table 2.4), and the set of parameters used for the potential particle model is given
in table 2.7.

Table 2.8 compares the obtained experimental and numerical results. In the plane strain
configuration, the experimental AOR is approximately 8% higher than the one obtained for
the clump model and 16% higher than the one obtained for the potential particle model.
In the axial-symmetric configuration, the experimental AOR is approximately 4% higher
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FIGURE 2.19. – Particle’s density influence on the angle of repose and on the time
cost - CLP2 and PP1 series

TABLE 2.7. – Material properties used in the potential particles models.

Kn (N .m−1) Ks/Kn ρ (k g .m−3) ∆t (s ) µp p µp w βn

1200 0.773 943 7.86 ·10−5 0.713 0.514 0.071

than the one obtained with the clump model and 16% higher than the one obtained for the
potential particle model. Also, one should notice that in the plane strain configuration the
JGS’s method measures an AOR higher than the method presented in this paper, and lower
in the axial-symmetric configuration (see figure 2.12). This changes the conclusion on the
influence of the configuration: with our measurement method both configurations gives the
same AOR (difference of approximately 1% with the clump model), while the JGS’s method
gives a difference of approximately 11%.

2.4.3. Role of particle concavity

The differences in AOR observed in table 2.8 between the clump and potential particle
(PP) models, with a higher discrepancy for PP towards experiments, certainly arise from the
convex simplification of potential particles, with respect to the concavities of the physical
particles which allow them to interlock better. In order to gain more insights into the influence
of particle concavity, a rigorous comparison between the two numerical models is led in
this subsection, adopting the same parameters for both models (except for the time step
for computational efficiency) and determining the AOR using the more reliable method
presented in section 2.3.2. This series is called PP-CLP, with all parameters being listed in
tables 2.9 and 2.10.

Figure 2.20 characterizes the initial and final states of these PP-CLP simulations. First and
foremost, it is to notice that the AOR is approximately 14% lower with the potential particle
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TABLE 2.8. – Angle of repose as per the JGS measurement method.
Number of

samples
Average (◦)

Standard
Deviation

(◦) Minimum (◦) Maximum (◦)

Plane strain configuration

Experiments [Japanase Geotechnical Society 2021] 400 41.4 1.28 38.3 46.3
Clumps 100 38.1 1.14 35.0 41.3
Potential particles 18 34.8 1.61 32.5 38.0

Axial-symmetric configuration

Experiments [] 50 35.3 0.9 33.3 37.3
Clumps 100 33.9 0.8 32.0 36.1
Potential particles 19 29.7 0.78 28.5 31.2

TABLE 2.9. – Contact parameters of the PP-CLP series focusing on particle concavity

Model Kn Ks en ϕp a r t /p a r t ϕp a r t /w a l l

Clump
1.2 k N .m−1 0.24 k N .m−1 0.8 35.5◦ 27.2◦

Potential particle

TABLE 2.10. – Other simulation’s parameters of the PP-CLP series on particle conca-
vity.

Model Configuration ρ ∆t Number of samples

Clump
Plane strain 1111 k g .m−3 ≈ 78.5 n s

30
Potential particle ≈ 85.2 n s

73



2. Two studies using the Discrete Element Method – 2.4. Physical discussion

model. This difference can be considered as significant and is even greater with respect to
experiments even though the physical particles show a fairly high convexity of 0.954. In line
with additional possibilities of interlocking for non-convex particles, while convex particles
fall more easily from the heap, the number of lost particles is approximately 23% lower with
the clump model. One can also note that the final void ratio is approximately the same with
both models and that the final average number of interactions is approximately 25% lower
with the potential particle model since two convex particles can form only one contact point,
unlike the concave clump.
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FIGURE 2.20. – Characterization of the PP-CLP series in terms of initial and final
states

It is worth noticing that the experimental measurement method gives a gap between
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the axisymmetric and plane strain configurations’ angle of repose. The curvature of the
axisymmetric heap explains the lower measurement obtained with the JGS method.

Looking at initial stages, one observes that the initial void ratio is approximately 5% lower
with the clump model. The difference between the void ratio at the initial state and final
state is interesting: at the initial state the sample is constrained by four side walls and one
bottom wall, while at the final state one of the four side of the sample is free. This suggests
that concave particles are more likely to fill the voids when there are surrounded by walls
(parallel to the gravity axis), but when they are free to move, they don’t fill the voids better
than convex particles. On the other hand, the difference on the average coordination number
however is approximately the same at the initial and final states.

2.4.4. (Non-)Constitutive nature of the angle of repose

Searching for a possible constitutive nature of the AOR, the latter should be compared with
shear strength properties of the granular material. Generally speaking in solid-like granular
mechanics, these shear strength properties may refer either to a critical state or a state of
maximum stress ratio, the two being possibly different depending on initial porosity.

Here, it is first determined whether the AOR α evolves with respect to the initial void
ratio e0, which would rule out the comparison with critical state properties. This is done by
performing a “CLP4” series of simulations with the clump model using several samples at
different initial porosities, whose parameters are given in table 2.11. The initial void ratio e0

is set by altering the inter-particle friction angle during the generation of the sample, ϕg e n ,
whereby lower ϕg e n -values give denser packings, see figure 2.21 (a) where the error bars
represent the standard deviation of e0 on all 10 simulations performed at the same ϕg e n .
Figure 2.21 (b) shows α against e0 and some decreasing tendency of α for e0 < 0.55 in both
configurations that would be more consistent with an interpretation of the AOR in terms of
a porosity-dependent maximum friction angle. However, the significant dispersion of the
results prompt the need for further investigations in the following.
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FIGURE 2.21. – Influence of the initial void ratio e0 - CLP4 series
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TABLE 2.11. – Parameters used when investigating a possible influence of e0 (CLP4
series, 200 simulations in total)

Configuration Np a r t ρ e0 Number of samples for each e0

Plane strain 2150

10 000 k g /m 3

0.414±0.010

10

0.459±0.009
0.480±0.008
0.495±0.006
0.504±0.008
0.528±0.006
0.536±0.008
0.553±0.010
0.567±0.012
0.574±0.007

Axial-symmetric 2468

0.419±0.006
0.486±0.006
0.525±0.009
0.553±0.006
0.577±0.011
0.607±0.018
0.626±0.014
0.632±0.010
0.655±0.012
0.671±0.016
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Moreover the possible independence of αwith respect to initial porosity, a critical state
interpretation of the repose would impose a correlation between final porosity (or void ratio)
and mean pressure p in the form of a critical state line (CSL). Assuming, likewise to void
ratio e , that an average, i.e. global, stress tensor is a meaningfull quantity to characterize
the heap in spite of gravity, the Appendix A recalls the expression of the latter tensor and
the corresponding mean stress p , see equation .14. The final states (e , p ) of a large set of
400 heaps simulated in the previous series CLP1, CLP4 together with a forthcoming CLP5
(grouped under a CLPX notation) are then compared in figure 2.22 with the CSL of the present
granular material, previously determined in [Duverger, Duriez, Philippe, et al. 2021] from
DEM triaxial tests. It is to note the the latter study showed that it is more relevant to consider
rattlers (particles having at most 1 contact) as voids when determining the CSL of a granular
material, to avoid an unphysical increase of the CSL in the (e , p ) plane for low p . This is
especially important here since body weights are the only external forces present in the CLPX
series, making the average mean stress possibly quite low (≈ 100 P a ), depending on mass
density. Also, gravity was neglected for the triaxial simulations of [ibid.] but it makes the
presence of rattlers very unlikely in the present study since particles can really be stable only
if they have at least 3 contacts.
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FIGURE 2.22. – Heaps’ states compared to the critical state line as determined in []
from a large set of triaxial tests with different initial states in terms of
void ratio and/or confining pressure Pc

From the comparison in figure 2.22, one can first note that the mechanical states in the
CLPX series regroup around two different mean pressures: 126±18 P a and 1444±471 P a ,
in connection with the two different values used for the particle’s density throughout the
CLPX series. Whatever the mass density, the mean pressure in axisymmetric heaps is lower
than the mean pressure in plane strain heaps, and the dispersion in final void ratio is smaller.
Most importantly, the heap states are clearly not consistent with the blue-colored (rattlers
excluded) CSL serving as reference, which already suffices to exclude the assumption that a
heap of particles under gravity is at critical state.
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For completeness, the angle of repose of these CLPX series is still furthermore directly
compared in figure 2.23 with the critical state friction angleφc r i t and the (porosity ;mean
stress)-dependent peak friction angle φp e a k of the material, determined on the triaxial
simulations from []. The AOR is therein shown to be significantly different (higher from
approx. 10 degrees) than φc r i t . It actually lies in the observed interval for φp e a k , even
though both are observed to be essentially different.
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FIGURE 2.23. – Angle of reposeα and triaxial properties,φc r i t andφp e a k , with respect
to e0

From the observations that the repose states are not consistent with the shear strength
properties of the granular material, neither the critical one nor the maximum one, the AOR

is concluded to bear no constitutive nature. Interpreting the repose stress stateσ
g l o b
i j with

its extreme principal stresses σ
g l o b
1 ≥ σg l o b

3 in terms of a mobilized friction angle φmo b ,
given in equation 2.37 using the soil mechanics sign convention:

φmo b = arctan





σ
g l o b
1 −σg l o b

3

2
Ç

σ
g l o b
3 σ

g l o b
1



 (2.37)

, no obvious correlation is actually found in figure 2.24, no matter the shape model, between
the mechanics of the heap,φmo b , and its geometry, α, which would have been necessary for
a constitutive interpretation.

2.4.5. Effect of the sample’s size on the angle of repose

Since the default number of particles in both configurations is low compared e.g. to the
number of particles necessary to constitute a REV for the triaxial tests with rigid boundaries
(7500 in [ibid.]), it is finally investigated to which extent the sample’s size does affect the
present discussion, performing a last “CLP5” series with the clump model and an evolving
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FIGURE 2.24. – Angle of repose α against mobilized friction angleφmo b for heaps of
the PP-CLP series.

number of particles Np a r t (see table 2.12 for all parameters). Doing so, the dimensions of
the container are homothetically modified according to Np a r t

1/3.
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FIGURE 2.25. – Effect of the sample’s size on the angle of repose - CLP5 series

Figure 2.25 shows the AOR obtained in this CLP5 series, with error bars for the standard
deviation computed on the ten simulations performed for each value of Np a r t . An exponen-
tional model is proposed to fit the data and extrapolate the value of α for an infinite number
of particles:

αmo d e l (Np a r t ) = a + b e c Np a r t (2.38)

with a , b and c the three model parameters. Figure 2.25 (a) illustrates that a common AOR
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Configuration Np a r t ρ e0 Number of samples

Plane strain
2150
2468
5000

10 000
20 000
30 000
50 000

10 000 k g /m 3

0.603±0.010

10

0.604±0.009
0.596±0.005
0.596±0.003
0.594±0.002
0.591±0.003
0.588±0.001

Axial-symmetric

0.705±0.011
0.693±0.010
0.729±0.017
0.741±0.006
0.758±0.008
0.746±0.016
0.736±0.004

TABLE 2.12. – Parameters of heap simulations investigating the influence of Np a r t

(CLP5 series, 140 simulations in total)

in both configurations appears only for Np a r t = 2150. On figure 2.25 (b) the horizontal axis

represents N
r e f

p a r t , the number of particle along one dimension of the base of the box:

N
r e f

p a r t =
�Np a r t

Vb o x

�

1

3 Lη with Vb o x ∈ {Vc y l , Vp a r } and Lη ∈ {Rc y l , Lp a r } (2.39)

For bigger systems with a higher Np a r t a clear difference appears, with a negligible stan-
dard deviation. According to the exponential decay model, an asymptotic difference diffe-
rence between the two configurations would be 1.19◦ which corresponds to approximately
3.59% of the measurement in the plane strain configuration.

The present dependency to Np a r t constitutes a last argument against the constitutive
nature of the AOR, making fortuitous the similarity of α initially observed between two
configurations.

2.5. Conclusion

In the framework of a round-robin activity providing an experimental reference, the
angle of repose of a granular material has been studied with DEM, adopting two distinct
characterizations for particle shape: concave clumps of spheres and convex-simplified
potential particles, with a quantification of the morphological differences between the two
(and the experimental reference), in terms e.g. of convexity and sphericity.

A methodological discussion has then been first proposed for generic angle of repose stu-
dies, designing systematic measurement procedures of the slope angle and of the void ratio
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of the heap, the latter being a possible factor of influence onto the former, as a fundamental
property of granular matter.

Physically, a thorough analysis provided a number of consistent observations that the
AOR does not bear a constitutive nature but is instead also process-dependent. In the com-
parison with experiments, while adopting a simpler measurement method of the AOR due
to experimental limitations, the clump approach sucessfully predicted the AOR within a 8%
tolerance. On the other hand, the potential particles underestimated to a greater extent the
AOR, as expected due to their artificial convexity. Even though the material particles had a
fairly high convexity value (C = 0.954), neglecting their local concavities brought down the
AOR from 35.95±0.88◦ to 31.26±0.95◦.

It is interesting to note that both the clump and the potential particle shape description
share the same dimensions in terms of a minimal bounding box and thus the same flatness
and elongation values, prompting the need for a systematic investigation of particle-scale
shape indices that would possibly affect the AOR.

Data availability

All YADE scripts used to perform the PP-CLP series are available online at https://
forgemia.inra.fr/sacha.duverger/aor_nc_aix.
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Rattlers’ involvement for possibly looser critical
states under higher mean stress
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Abstract

The critical state of a granular material made of rounded tetrahedral particles is studied
through DEM simulations of triaxial compressions. A minimum number of 7500 particles
is first obtained as the representative volume element (RVE) for the present triaxial simula-
tions. Then, the macroscopic critical state line (CSL) is shown to be increasing in the (stress,
density) space for low confining pressures. Such an unexpected behaviour is explained by
the existence of a significant proportion of rattlers. Considering rattlers as voids indeed
reinstates a classically decreasing CSL.



2. Two studies using the Discrete Element Method – 2.6. Introduction

TABLE 2.13. – Contact parameters as measured by the JGS1 - Intervals give the range
of the distribution used for the parameter

type of contact normal stiffness Kn stiffness ratio Kt /Kn internal friction angle ϕ restitution coefficient en

resin against resin 58 250 N m−1 0.37 ∈ [28°, 44°] ∈ [0.74, 0.84]
resin against acrylic 77 666 N m−1 0.37 0° ∈ [0.70, 0.82]

2.6. Introduction

The ability of granular materials to sustain increasing shear strains under constant volume
and constant shear stress has long been recognised as one of their salient features. From a
soil mechanics point of view, such a deformation mechanism has been coined as "critical
state" [Roscoe, Schofield, and Wroth 1958] and laid the basis for countless constitutive
relations [Duriez and Vincens 2015]. Experiments [Bandini and Coop 2011] ; [Chu 1995] ;
[Verdugo and Ishihara 1996] have shown that a critical state line (CSL) exists in the (log(p ), e )
plane (with p the mean pressure and e the void ratio) and that this CSL is decreasing. These
observations were mostly confirmed numerically in [Sitharam and Vinod 2009] ; [Verdugo
and Ishihara 1996] ; [Zhou, Liu, Ma, et al. 2017], using Discrete Element Methods (DEM)
with spherical particles and the Hertz-Mindlin contact model. The parametric analysis led
in [Huang, Hanley, O’Sullivan, et al. 2014] nevertheless has shown that the slope of the CSL
depends on the inter-particle friction angle, and a positive slope was actually observed
therein in some cases. This striking result was interpreted considering that, for high values
of inter-particle friction angle, fewer particles are needed to maintain the static equilibrium
of the packing and that several particles become "rattlers", having less than two contacts.
Rattlers being strangers to the force chains, they do not really form part of the solid phase,
and may bias the determination of the CSL, up to getting a positive slope.

The present study pursues the investigation into a possibly increasing CSL in DEM, that
would contradict experiments. The granular material adopted herein is different from [ibid.],
in terms of shape and contact model. Our numerical triaxial tests are indeed performed
on a material made of tetrahedral particles interacting according to a visco-elastic contact
model with friction. Note that gravity is not considered in this study. These simulations are
conducted using the open source code YADE [Smilauer et al. 2021].

2.7. Material

The material studied in this paper is constituted of identical tetrahedral particles (figure
2.26). Each particle is a clump of four spheres with the same radius Rs p h = 3.101 mm, being
inscribed in an outer sphere of diameter Dc l p = 10 mm. These particles have a density ofρ =
1111 kg m−3 so as to coincide with resin and the same holds for the other material parameters
reported in table 2.13. The triaxial tests are performed using six infinite walls made of acrylic
which interact with the particles but not with each other. These materials were actually used
experimentally by the Japanese Geotechnical Society (JGS) for an ongoing round-robin test 1.
The relevant contact parameters used in DEM were measured experimentally by the JGS (see
table 2.13). The internal friction angle ϕ was determined by performing sliding tests with

1. http://geotech.civil.yamaguchi-u.ac.jp/tc105/
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FIGURE 2.26. – Tetrahedral particle made of clumped spheres

resinous cubes against boards made of resin or acrylic. The normal restitution coefficient en

was measured by performing drop tests with resinous spheres on boards made of resin or
acrylic. Lastly, the normal stiffness Kn was determined on single spheres as the slope of the
loading-displacement relation on the third cycle of compression tests. As for the tangential
stiffness Kt , it was determined by setting arbitrarily the stiffness ratio Kt /Kn .

2.8. Contact model

The contact model accounts for friction through the inter-particle friction angle ϕ, used
during the computation of the tangential force Ft . It also accounts for visco-elasticity through
the restitution coefficient en , used during the computation of the normal force Fn . Indeed
en can be expressed according to a damping coefficient cn [Schwager and Pöschel 2007].
This damping coefficient can be determined using the Newton-Raphson method and then
be used directly in the computation of Fn . Denoting un and ut the normal and tangential
relative displacements respectively, the normal and tangential forces finally read:

Fn = Kn un + cn u̇n (2.40)

|Ft |=min(Kt |ut |, Fn tan(ϕ)) (2.41)

Since the visco-elasticity already stabilizes the simulation an additional numerical dam-
ping is not necessary and was not introduced in the simulations.

2.9. Triaxial tests

The triaxial tests workflow is the following:

1. A cloud of particles is created by selecting the positions of the clump centers randomly.
In order to eliminate this source of variability, the random number generation seed
was fixed so that every triaxial tests begin with the same cloud of particles.

2. Six walls are created around the sample, they are then moved toward each other so
the sample is isotropically compacted to a nominal confining pressure Pc . During this
step, the inter-particle friction angle ϕc o mp can be set between 0.01° and 27° to reach
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different initial packing densities. This method has already been used successfully in
[Chareyre, Briançon, and Villard 2002] for 2D simulations and in [Tong, Catalano, and
Chareyre 2012] for 3D simulations.

3. Once the sample is stable and the mean pressure on the walls Pw verifies 0.995Pc <
Pw < 1.005Pc , the compaction is considered over and ϕ is set to the value given in
table 2.13. The sample stability is measured using the unbalanced force uF , defined in
[Smilauer et al. 2021]. The chosen condition for sample stability is uF < 10−2.

4. Pc is then maintained on the side walls and one axial wall is moved such that a strain
rate ε̇a x is imposed to the sample. Denoting the inertial number In = 2× 10−4, low
enough to ensure quasi-staticity, ε̇a x is computed using the expression proposed in
[GDR MiDi 2004]:

ε̇a x = In

√

√

√

Pc

ρR 2
s p h

(2.42)

5. The triaxial test is stopped when the axial strain εa x reaches 0.8. The critical state is
considered to be reached at εa x = 0.6, which is enough according to [Bandini and
Coop 2011] ; [Chu 1995] ; [Sitharam and Vinod 2009] ; [Verdugo and Ishihara 1996] ;
[Zhou, Liu, Ma, et al. 2017] and figure 2.27. For any quantity s , its critical value sc r i t

will thus be computed as its average over εa x ∈ [0.6, 0.8].

2.9.1. RVE determination

This section aims to determine the size for the representative volume element (RVE) in
the present configuration by performing triaxial tests with different number of particles:
Np a r t ∈ {500× i ; i ∈ ¹1, 20º}. A reference triaxial test obtained for N ma x

p a r t = 20 000 will be used
to compute the root mean square error (RMS error) of each simulation. For a quantity s , the
RMS error s e r r over all the Np t s points of the shearing phase is computed as follows:

s e r r (Np a r t ) =

√

√

√

1

Np t s

∑

0≤εa x≤0.8

�

s (Np a r t ,εa x )− s (N ma x
p a r t ,εa x )

�2
(2.43)

This serie will be called S1. All the triaxial tests in this serie are performed with Pc = 100
kPa. A target initial void ratio is set by slowly reducing the inter-particle friction angle during
the isotropic compaction (as in [Chareyre, Briançon, and Villard 2002]), all samples thus
start the shearing phase with e0 ≈ 0.60.

Figure 2.27 shows q and εV during all the simulations of S1. The deviatoric stress q is
defined as the difference between the stress on the shearing axis and the lateral stress. The
volumetric strain εV is defined as the trace of the true strain tensor. The RMS error based on
equation 2.43 was plotted for q and εV on figure 2.28. One can see that q e r r and εe r r

V are
decreasing for Np a r t ≤ 7000 and then progressively reach a plateau. In addition, figure 2.29
shows the time cost Tc of all the simulations in S1, being run sequentially on a processor
Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz. Obviously Tc increases almost linearly with
Np a r t . Considering the results given in figure 2.28 and figure 2.29, the best compromise
between precision and time cost is met for Np a r t = 7500.
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2.9.2. Critical state and rattlers’ influence

Using now 7500 particles, another serie of triaxial tests (called S2) was performed using 7
different confining pressures Pc and 15 different initial void ratios e0, constituting a large
collection of 105 triaxial tests to plot the CSL. As already explained, the initial density was
set by modifying the inter-particle friction angle during the isotropic compaction. In table
2.14 the values used for Pc are given alongside the minimum and maximum initial void ratio
obtained for each Pc , namely e mi n

0 and e ma x
0 . Figure 2.30 shows the e0 obtained for each

ϕc o mp under all Pc .
The red lines on figure 2.31, fitted to the critical states for Pc < 40 kPa and Pc ≥ 40 kPa,

represent the obtained CSL ec r i t (p ). One can see that for Pc < 40 kPa the CSL is increasing,
such a counter-intuitive behaviour is also observed in [Huang, Hanley, O’Sullivan, et al. 2014]
for ϕ > 26°. The inter-particle friction angle indeed helps stabilising the force chains and
makes some particles unnecessary to maintain the static equilibrium of the packing. Such a
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FIGURE 2.29. – Time costs for all S1 simulations

TABLE 2.14. – Parameters of S2
Pc (kPa) e mi n

0 e ma x
0

0.250 0.473 0.722
2 0.473 0.730
10 0.466 0.718
40 0.451 0.703
100 0.426 0.665
200 0.392 0.615
400 0.339 0.529

passive particle is called a rattler and is considered to be so if it has only 0 or 1 contact. Their
number, Nr a t t l e r s , is depicted in figure 2.32. It can be stated that the lower Pc , the higher
and noisier Nr a t t l e r s , and that a critical (e0-independent) value is also eventually obtained.
Beside, Nr a t t l e r s stabilises faster for loose samples but slower for high Pc , except if Pc is
high enough for rattlers to be too rare (Pc > 100 kPa). Figure 2.33 shows the critical mean
coordination number Z c r i t

c against the critical number of rattlers N c r i t
r a t t l e r s normalised by

the number of particles. It is noticeable that Z c r i t
c is strongly correlated with N c r i t

r a t t l e r s and
decreases linearly for Pc ≤ 40 kPa.

The great proportion of rattlers at low Pc (around 20%) shows that the CSL is biased by
these passive particles and suggests that they could be preferably counted as voids. To this
end, a void ratio "without rattlers" e W O R was computed following []. Denoting Vv o i d the
volume of all the voids in the sample, Vp a r t the volume of all the particles in the samples
and Vc l p the volume of one particle, it comes:

e W O R =
Vv o i d +Nr a t t l e r s Vc l p

Vp a r t −Nr a t t l e r s Vc l p
(2.44)
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FIGURE 2.31. – Critical state lines for all S2 simulations with rattlers (red symbols)
and without (blue symbols).

The blue lines plotted on figure 2.31 corresponds to the CSL obtained by considering e W O R
c r i t

instead of ec r i t . Obviously, this consideration is enough to obtain a classical decreasing CSL
at low Pc .

2.10. Conclusion

In this paper, triaxial tests were performed on tetrahedral particles using a visco-elastic
contact model with friction and no gravity. It was first determined that 7500 particles is an
appropriate sample size to constitute a RVE for the present triaxial analysis. Then, the critical
states reached with triaxial tests performed at several confining pressures and initial packing
densities showed that rattlers should be considered as void, specially for confining pressures
lower than 40 kPa. Indeed, including rattlers into the computation of the critical packing
density makes the critical state line to unexpectedly become increasing at low confining
pressures. One could investigate further in the matter by performing triaxial tests under
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gravity, which should in principe reduce substantially the number of rattlers at low pressure.
It is worth noting that the material studied here only contains identical particles, the results
might differ for more classical granular materials. Indeed small and coarse particles, usually
present in granular materials, should increase the number of rattlers even for high confining
pressures.
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Conclusion on DEM

This chapter showed through many simulations that the DEM is well-suited to investigate
the properties of granular materials, although in some extreme cases additional considera-
tions are necessary to preserve the consistency with experiments. Indeed, the exhaustive
description of the microstructure offered by the DEM gives access to important insights on
the granular assembly such as the precise location and geometry of each grain, allowing
for accurate measurements (e.g. angle of repose, void ratio). Also, the numerical nature of
the DEM gives an absolute control over the test’s parameters, making possible the study of
some important parameters’ influence such as the grain shape. However, one should make
sure that all significant phenomena have been accounted for, even with a basic model. For
instance, in the case of DEM triaxial tests, the effects of gravity are often neglected since
they are not relevant to the material’s behaviour and not significant at traditional confining
pressures. Nevertheless, when considering low confining pressures, the configuration of
the force chains were found to be unrealistic at the critical state, causing an error on the
description of the material’s state. Although, considering isolated grains as void somewhat
corrects the microstructure model and effectively compensate this error.

To conclude, DEM is very capable of describing the behaviour of granular materials, but
some caution has to be given in order to stay within the domain of validity of the model.
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3. The Material Point Method – 3.1. Introduction

3.1. Introduction

The last chapter has shown how performant DEM is to model granular materials, but
it is unfortunately prohibitively expensive at large scales (see table 1.1). Traditionally, and
at a reasonable computational time cost, large structures are modelled using continuum-
based methods such as the FEM (or its variations), requiring the knowledge of the material’s
behaviour only at a finite set of points, i.e. the integration points. However, when large displa-
cements are involved, the Lagrangian mesh many of these methods rely on quickly becomes
unsuitable for the numerical procedure, preventing the resolution of the governing equations.
Among the FEM’s variations which try to solve this issue, the hybrid Eulerian-Lagrangian
Material Point Method is well-suited for granular materials because it was developed for
history-dependent materials [Sulsky, Chen, and Schreyer 1994].

This chapter first presents the MPM formulation, including the equations to be solved and
the numerical procedure used to do so. The formulation is illustrated with links to the open
source CB-Geo MPM [Kumar, Salmond, Kularathna, et al. 2019] implementation, available
on GitHub. In a second part, this chapter investigates the influence of the motion integration
strategy in the simple case of a cube bouncing in a translational motion.

3.2. Notations

This section regroups the notation used in this chapter. Since quantities can be expressed
at material points, grid points or for a whole mesh cell, a superscript is used to denote where
the quantity is taken, i.e. ·p , ·i and · j respectively. The domain is denoted Ω and its boundary
∂ Ω.

Sets:

{p}: Set containing the indices of all material points
{i }: Set containing the indices of all grid points
{ j }: Set containing the indices of all cells

Scalar quantities:

Nd i m : The number of dimensions considered in the simulation
(2 for 2D, 3 for 3D)

N
j

mp : The number of material points in the cell j
j (p ): Index of the cell containing the material point p

v : Volume, of either a cell or a material point
ρ: Mass density
eN

j
i : Local shape function for the i t h node of the cell j

m : Mass, taken either at material points or at grid points
V i

k

�

�

l i m
: Imposed velocity on the grid point i in the direction k

Pi n t : Internal work
Pe x t : external work
∆t : MPM time step, denoted∆t M P M in the next chapters
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3. The Material Point Method – 3.3. Governing equations

Vector quantities:

g : Acceleration due to gravity

V : Velocity anywhere in the solid
eV : Velocity solution to the equation of motion

a i : Acceleration at node i
V ∗: Admissible velocity

∇ eN
j
i or ( eN j

i ,k ) ∀k ∈ ¹1, 3º: Gradient of the local shape function for the i t h node of the cell j

∇N
j
i or (N j

i ,k ) ∀k ∈ ¹1, 3º: Gradient of the global shape function for the i t h node of the cell j
τ: traction on ∂ Ω
ex : Position of a point in local coordinates

l j : Dimensions of the cell j
c j : Position of the center of the cell j
n : Vector normal to ∂ Ω

f i
no d e

: User imposed force on node i

f i
e x t

: External force on node i

f i
i n t

: Force representing internal efforts on node i

f i : Total force on node i

cws: Coefficient wise sign function, defined in equation 3.24
U : Vector containing the constitutive law’s parameters

Matrix quantities:

σ(x , t ): Stress at point x in the solid at time t

ε(x , t ): Strain at point x in the solid at time t

J : Jacobian of the transformation from global to local coordinates system

X j : Coordinates of the nodes of the cell j

A simple subscript is used to denote a vector’s component:

vec= (veck )k∈¹1,Nd i m º
for vec any vector quantity

A double subscript is used to denote a 2nd order tensor’s component:

tens= (tensk l )(k ,l )∈¹1,Nd i m º
2 for tens any 2nd order tensor quantity

The subscript ·,k is used on space dependent variables to denote the partial derivative
with respect to the k t h component.

3.3. Governing equations

Let us consider the case of a deformable solid being continuously present in the domainΩ.
All variables are space and time dependent, however for the sake of simplicity the parameters
(x , t )will be omitted in the next equations.
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Considering that during any deformation or rigid movement of the body its mass is always
conserved, the following equation is true at any point x in Ω:

∂ ρ

∂ t
+ρdiv(V ) = 0 (3.1)

The momentum is also assumed conserved:

ρ
∂ V

∂ t
= div(σ) +ρg (3.2)

Considering that any admissible velocity field V ∗(x , t ) is applied on the system, the virtual
work principle is recovered. Indeed, the following equation is valid at each instant t :

∫

Ω

V ∗ρ
∂ V

∂ t
dΩ=

∫

Ω

V ∗div(σ)dΩ+

∫

Ω

V ∗ρg dΩ (3.3)

The term on the left side of eq. (3.3) corresponds to inertial terms. The first term on the
right side of the equation can be decomposed with an integration by parts:

∫

Ω

V ∗div(σ)dΩ=

∫

Ω

div(V ∗σ)dΩ−
∫

Ω

∇V ∗ :σdΩ

=

∫

∂ Ω

V ∗(σn )d (∂ Ω)−
∫

Ω

∇V ∗ :σdΩ

(3.4)

With n the unit vector normal to ∂ Ω, the surface of Ω. The traction on ∂ Ω appears as
τ=σn . The variation of internal and external work, i.e. the internal and external powers
Pi n t andPe x t respectively, can then be identified:

Pi n t =−
∫

Ω

∇V ∗ :σdΩ (3.5)

Pe x t =

∫

Ω

V ∗ρg dΩ+

∫

∂ Ω

V ∗τd (∂ Ω) (3.6)

Finally, the weak form of the virtual work principle is:

∫

Ω

V ∗ρ
∂ V

∂ t
dΩ=

∫

Ω

V ∗ρg dΩ+

∫

∂ Ω

V ∗τd (∂ Ω)−
∫

Ω

∇V ∗ :σdΩ (3.7)

3.4. Numerical procedure

This section describes the MPM implementation used for the simulations presented in
this manuscript, i.e. the one from the open source code CB-Geo MPM []. The source code is
referred to as an illustration for all the operations in the MPM workflow.

The domain Ω is discretized using a mesh constituted of identical cells on which equation
3.7 is solved. The temporal evolution of the quantities involved is described using a finite
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difference scheme on a regularly spaced time axis, with a time step of∆t :

∂ f

∂ t
≈

f (t +∆t )− f (t )
∆t

for any quantity f (3.8)

CB-Geo MPM supports 3D and 2D plane strain simulations without rigid body rotations.
As a consequence, vector quantities have either 2 or 3 components and the strain and
stress tensors are always represented by a 6 components vector. Mesh elements are either
quadrilaterals in 2D or hexahedrons in 3D, see figure 3.1. In order to keep this section simple
but complete, only the 3D form of the equations for 8-noded hexahedrons is presented.

0 1

23

4 5

67

e 1

e 2

e 3

FIGURE 3.1. – Node numbering in an 8-noded hexahedron

3.4.1. Simulation setup

At the beginning of the simulation, the material points’ volumes are computed based on

their number in each cell N
j

mp :

v p (t = 0) =
v j (p )

N
j (p )

mp

(3.9)

The following grey box provides a link toward the source code of CB-Geo MPM, where the
computation of the preceding equation is implemented. Such grey boxes will illustrate the
equations throughout section 3.4.

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 489, compute_volume

Note that this assumes that each material point in the same cell has the same volume no
matter their location. This assumption leads to an inaccurate determination of the integration
weights mentioned earlier and highlighted latter in this section. A good practice is thus to set
the material points initially regularly spaced in their cell, so the uniform volume assumption
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is meaningful at the beginning of the simulation. Note however that even though the volume
of each material point corresponds to the region of space a simple tesselation would attribute
to it (e.g. decomposition into Voronoi cells), it does not correspond to the weights computed
with the usual Gaussian quadratures. GIMP methods [Bardenhagen and Kober 2004] aim to
mitigate this issue through the definition of a particle domain that serves as an influence
zone when the weights are computed.

3.4.2. Main loop

At each iteration of the main loop, material points most certainly move with respect to the

fixed mesh, it is thus necessary to compute their new local positions ex . Noting l j = (l j
1 , l

j
2 , l

j
3 )

the length of a cell j in each direction and c j the position of its center of gravity, one has:

exk = 2
xk − c

j
k

l
j

k

∈ [−1; 1] (3.10)

In CB-Geo MPM, git revision 27086f :
include cell.tcc line 471, local_coordinates_point

The values of the shape functions can then be evaluated at the new material points’
positions. In the cell j , the shape function of the i t h node (i ∈ ¹0; 7º) in local coordinates is

denoted eN
j

i (ex ). Figure 3.1 gives the node numbering in any cell. The shape functions of a
cell j can be written as 8-components vector:

eN
j
(ex ) =



































eN
j

0 (ex )

eN
j

1 (ex )

eN
j

2 (ex )

eN
j

3 (ex )
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5 (ex )

eN
j
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j
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(3.11)

In CB-Geo MPM, git revision 27086f :
include elements 3d hexahedron_element.tcc line 20, shapefn

Their gradient can be written as a 8×3 matrix. Denoting ·,k the derivative with respect to
the k t h direction, one has:
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∇ eN
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(ex ) =



































eN
j

0,1(ex ) eN
j

0,2(ex ) eN
j

0,3(ex )

eN
j

1,1(ex ) eN
j

1,2(ex ) eN
j

1,3(ex )

eN
j

2,1(ex ) eN
j

2,2(ex ) eN
j

2,3(ex )

eN
j

3,1(ex ) eN
j

3,2(ex ) eN
j

3,3(ex )

eN
j

4,1(ex ) eN
j

4,2(ex ) eN
j

4,3(ex )

eN
j

5,1(ex ) eN
j

5,2(ex ) eN
j

5,3(ex )

eN
j

6,1(ex ) eN
j

6,2(ex ) eN
j

6,3(ex )

eN
j

7,1(ex ) eN
j

7,2(ex ) eN
j

7,3(ex )



































(3.12)

=





































− 1
8 (1− ex2)(1− ex3) − 1

8 (1− ex1)(1− ex3) − 1
8 (1− ex1)(1− ex2)

1
8 (1− ex2)(1− ex3) − 1

8 (1+ ex1)(1− ex3) − 1
8 (1+ ex1)(1− ex2)

1
8 (1+ ex2)(1− ex3)

1
8 (1+ ex1)(1− ex3) − 1

8 (1+ ex1)(1+ ex2)

− 1
8 (1+ ex2)(1− ex3)

1
8 (1− ex1)(1− ex3) − 1

8 (1− ex1)(1+ ex2)

− 1
8 (1− ex2)(1+ ex3) − 1

8 (1− ex1)(1+ ex3)
1
8 (1− ex1)(1− ex2)

1
8 (1− ex2)(1+ ex3) − 1

8 (1+ ex1)(1+ ex3)
1
8 (1+ ex1)(1− ex2)

1
8 (1+ ex2)(1+ ex3)

1
8 (1+ ex1)(1+ ex3)

1
8 (1+ ex1)(1+ ex2)

− 1
8 (1+ ex2)(1+ ex3)

1
8 (1− ex1)(1+ ex3)

1
8 (1− ex1)(1+ ex2)





































(3.13)

The shape functions and their gradients are plotted in figure 1.9 (a). Note that using
cubic B-spline shape functions (as described in figure 1.9 (b)) instead would be a significant
improvement since their gradients are continuous.

In CB-Geo MPM, git revision 27086f :
include elements 3d hexahedron_element.tcc line 42,
grad_shapefn

Equation 3.7 requires the gradient of the shape functions to be expressed in global coordi-
nates, the Jacobian of the transformation from global to local coordinates J thus has to be

computed:

J = (∇ eN
j
)ᵀX j (3.14)

With X j the 8×3 matrix that contains the coordinates of the 8 nodes belonging to the j t h

cell. Since all cells are identical, their Jacobian is the same.

In CB-Geo MPM, git revision 27086f :
include elements 3d hexahedron_element.tcc line 267, jacobian

Note that CB-Geo MPM computes the Jacobian using the gradient of the shape functions
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and the nodal coordinates in equation 3.14, while using equation 3.15 is enough and more
efficient:

J =





x1,1(ex ) x1,2(ex ) x1,3(ex )

x2,1(ex ) x2,2(ex ) x2,3(ex )

x3,1(ex ) x3,2(ex ) x3,3(ex )



=

















l
j

1

2
0 0

0
l

j
2

2
0

0 0
l

j
3

2

















(3.15)

The gradient of the shape functions in global coordinates∇N can then be computed:

∇N j =∇ eN
j
(J −1)ᵀ (3.16)

In CB-Geo MPM, git revision 27086f :
include elements 3d hexahedron_element.tcc line 306, dn_dx

The resulting space dependent matrix ∇N j also has a 8× 3 dimension, its value at the
position of the material point p will be denoted∇N p .

The mass and velocity quantities can be transported from material points to grid points
using the shape functions. For a specific grid point, data is gathered from the material points
inside all cells the grid point belongs to, at most 8 in 3D and 4 in 2D. The set denoted { j }i
contains all the indexes of the cells the grid point i belongs to, and the set denoted {p}i
contains all the indexes of the material points whose data should be gathered at the grid
point i . The mass is conserved through its transportation, performed as follows:

m i =
∑

p∈{p}i
m p

eN
j

i (ex
p ) (3.17)

The velocity is transported so the linear momentum is also conserved:

V i =

∑

p∈{p}i
m p V p

eN
j

i (ex
p )

m i
(3.18)

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 521,
map_mass_momentum_to_nodes

The boundary conditions are then imposed on some specified grid points, in a given
direction k . The grid points on which a velocity V i

k

�

�

l i m
is imposed also have their acceleration

a i
k set to zero:
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V i
k = V i

k

�

�

l i m
(3.19)

a i
k = 0 (3.20)

In CB-Geo MPM, git revision 27086f :
include node.tcc line 314, apply_velocity_constraints

The total external force f
e x t

has to be expressed on grid points, which is immediate

for forces imposed directly on nodes τi , but requires another transportation operation for
gravitational forces:

f i
e x t
= f i

no d e
+

∑

p∈{p}i
m p g eN

j (p )
i (3.21)

Note that the user has to determine f i
no d e

based on the desired imposed traction:

f i
no d e

=

∫

∂ Ω

N
j

i τd (∂ Ω) (3.22)

with j the appropriate mesh cell for the current location on ∂ Ω.

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 677, map_body_force
and
include node.tcc line 100, apply_concentrated_force

The force representative of the internal efforts f
i n t

is computed on grid points from the
stress carried by the material points, this is where the volume attributed to the material
points serves as an integration weight:

f i
i n t
(t ) =

¨

−
∑

p∈{p}i v p∇N
p
i σ

p (t ) if stress update scheme is Update Stress Last (USL)

−
∑

p∈{p}i v p∇N
p
i σ

p (t +∆t ) if stress update scheme is Update Stress First (USF)

(3.23)

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 715, map_internal_force

Note that in equation 3.23 the stress tensor is either taken before accounting for the
response to the current strain increment (USL scheme), or after (USF scheme).

The equation of motion can then be solved on each grid point to determine the new
velocities. CB-Geo MPM supports the addition of a Cundall’s damping, which requires the
choice of a parameter D ≥ 0 and the definition of the following "coefficient wise sign"
function:
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cwsk (u ) =
uk

|uk |
for any vector u (3.24)

It thus comes:

f i (t ) = f i
i n t
(t ) + f i

e x t
(t ) (3.25)

a i (t +∆t ) =
1

m i

�

f i (t )−D || f i (t )||cws(V i (t ))
�

(3.26)

eV
i
(t +∆t ) =V i (t ) +a i (t +∆t )×∆t (3.27)

In CB-Geo MPM, git revision 27086f :
include node.tcc line 257, compute_acceleration_velocity_cundall

Here the velocity eV
i
(t +∆t ) is only temporary since it will be replaced at the beginning of

the next iteration by V i (t +∆t ), computed with equation 3.18.

The velocities’ boundary conditions are then re-imposed at each node using equations
3.19 and 3.20.

3.4.3. Material points’ displacement

The positions of all material points are updated according to a velocity computed from the
solution of the motion equation (equation 3.27) located on grid points. Different strategies
exist, the original one found in [Sulsky, Chen, and Schreyer 1994] was first used in the
Particle In Cell method and is denoted PIC. With this strategy, the velocity used to move the
material points is also the one stored at the material point for the next iteration. It is directly
transported from grid points to material points:

V
p
P I C (t +∆t ) =

∑

i∈{i }p
eV

i
(t +∆t ) eN j (p )

i (t ) (3.28)

x
p
P I C (t +∆t ) = x p (t ) +V

p
P I C (t +∆t )×∆t (3.29)

This strategy has been shown to be highly dissipative due to the important error during the
interpolation process [Bardenhagen 2002]. Efforts have been made to reduce this artificial
damping brought by the PIC strategy. For instance, the FLIP strategy, originally used in the
FLuid Implicit Particle method, computes the velocity for the next iteration incrementally,
by interpolating the acceleration from grid points to material points [Brackbill and Ruppel
1986]. However, the velocity used to move the material points is still V

p
P I C :

V
p
F L I P (t +∆t ) =V p (t ) +

∑

i∈{i }p
a i (t +∆t ) eN j (p )

i (t )×∆t (3.30)

x
p
F L I P (t +∆t ) = x

p
P I C (t +∆t ) (3.31)
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This inconsistency can lead to unrealistic behaviour, since the material point is displaced
using a velocity different from the one assigned to it. An alternative, the Naturally modified
FLIP strategy (NFLIP) addresses this issue by using V

p
F L I P to move the material point:

x
p
N F L I P (t +∆t ) = x p (t ) +V

p
F L I P (t +∆t )×∆t (3.32)

The FLIP and NFLIP strategies efficiently solve the high dissipation issues, they are however
more likely to be subject to instabilities. While using a small time step reduces the effects of
this issue, another strategy has emerged to stabilize artificially the simulations: the FLIPX
strategy. It consists in blending V

p
P I C and V

p
F L I P with a specific proportion PF L I P , which is

the "X" in "FLIPX" and spans over the interval [0, 1]:

V
p
F L I P X = (1−PF L I P )V

p
P I C +PF L I P V

p
F L I P (3.33)

Similarly, the NFLIPX strategy can be constructed:

x
p
N F L I P X (t +∆t ) = x p (t ) +V

p
F L I P X (t +∆t )×∆t (3.34)

Another strategy aims to conserve the angular momentum during the interpolation pro-
cess: the Affine Particle In Cell (APIC) method, detailed in [Jiang, Schroeder, Selle, et al. 2015].
Basically, it adds to the linear momentum in equation 3.18 a term corresponding to the
angular momentum, which is assumed equal to 0 in the classical MPM formulation.

Table 3.1 summarizes the different velocities involved in the velocity update strategies
mentioned above.

In CB-Geo MPM, git revision 27086f :
(Only for PIC (velocity_update set to true) and FLIP (velocity_update set to false))
include particles particle.tcc line 778,
compute_updated_position

3.4.4. Strain computation

The strain increment imposed on the material has to be computed at each material point
in order to determine its reaction, in terms of stress variation. This is done in CB-Geo by
computing the strain rate ε̇p from the velocities at nodes and the gradient of the shape
functions. Noting {i }p the set containing all the nodes of the cell in which the material point
p is located, it comes:
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Velocity update
strategy

Relevant
variables

V p x p

PIC
V p

P I C

see equation 3.28
x p

P I C

see equation 3.29

FLIP
V p

F L I P

see equation 3.30
x p

P I C

see equation 3.29

NFLIP
V p

F L I P

see equation 3.30
x p

N F L I P

see equation 3.32

FLIPX (1−PF L I P )V
p
P I C +PF L I P V p

F L I P
x p

P I C

see equation 3.29

NFLIPX (1−PF L I P )V
p
P I C +PF L I P V p

F L I P
x p

N F L I P X

see equation 3.34

APIC
V p

P I C

with modified eq. 3.18
x p

P I C

with modified eq. 3.18

TABLE 3.1. – Material points velocities and displacements for different update strate-
gies

ε̇p =







ε̇
p
11 γ̇

p
12 γ̇

p
13

γ̇
p
12 ε̇

p
22 γ̇

p
23

γ̇
p
13 γ̇

p
23 ε̇

p
33






(3.35)

=
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∇N
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∇N
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1 +∇N
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i ;1(ex
p )V i
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�
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�

∇N
j
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�
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∇N
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�
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i ;3(ex
p )V i

2 +∇N
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i ;2(ex
p )V i
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�
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∇N

j
i ;3(ex

p )V i
3













(3.36)

Note that when using ε̇p , one should mind the 0.5 coefficient on the non diagonal terms,
which is not included in the tensor.

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 623, compute_strain_rate

The strain at each material point εp can then be computed incrementally:
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∆εp (t +∆t ) = ε̇p (t +∆t )∆t (3.37)

εp (t +∆t ) = εp (t ) +∆εp (t +∆t ) (3.38)

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 623, compute_strain

The volume of each material point v p is then updated using the strain rate computed
at the center of each cell ε̇ j . The computation is the same as in equation 3.36 except that

∇N j (0) is used instead of∇N j (ex p ). The updated volume is thus:

ε̇
j
c e n t e r = Tr

�

ε̇ j
�

(3.39)

v p (t +∆t ) = v p (t )
�

1+∆t × ε̇ j
c e n t e r

�

(3.40)

In CB-Geo MPM, git revision 27086f :
include particles particle.tcc line 498, update_volume

3.4.5. Stress computation

The stress computation is the only step in the MPM formulation where the behaviour of
the material is accounted for: it is determined from the strain increment using an appropriate
constitutive law. For instance, if CL denotes a constitutive law and U a vector containing its
parameters, one has:

∆σp (t +∆t ) =CL(∆εp ,U ) (3.41)

σp (t +∆t ) =σp (t ) +∆σp (t +∆t ) =





σ11 τ12 τ13

τ12 σ22 τ23

τ13 τ23 σ33



 (3.42)

In CB-Geo MPM, git revision 27086f :
(e.g. for the Mohr-Coulomb constitutive law)
include materials mohr_coulomb.tcc line 329, compute_stress

3.4.6. Deletion of material points outside the mesh

This is the last step of the MPM iteration: if a material point gets out of the mesh, it is
deleted. Note that CB-Geo MPM offers the possibility to automatically stop the simulation
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when a material point is deleted.

In CB-Geo MPM, git revision 27086f :
include solvers mpm_scheme mpm_scheme.tcc line 201,
locate_particles

3.5. Influence of the MPM scheme and velocity update
strategy

As mentioned in the previous section, a couple of choices can be made when choosing
a MPM formulation: the stress update scheme (see equation 3.23) and the velocity update
strategy (see table 3.1). In this section, the influence of these choices is investigated using
a basic MPM simulation. Note that the APIC, FLIPX, NFLIP and NFLIPX strategies are not
available in CB-Geo MPM, all were added in a modified version developed during this thesis.

3.5.1. Simulation setup

The simulation models a cube of material falling under gravity until it reaches a floor and
bounces several times. The mesh comports only two cubic cells stacked vertically, with a
side of c = 1 m, and 27 material points are initially regularly spaced in the top cell. Nodal
velocities are imposed equal to 0 in the directions normal to the boundary it represents, see
figure 3.2. Note that this figure is in fact a 2D projection of the 3D pure MPM simulation. The
constitutive law used assumes the material to have a purely linear-elastic behaviour, with a
Young’s modulus of E = 52.6 MPa and a Poisson’s ratio of ν= 0.3. The density of the material
is set to ρ = 750 kg ·m−3. For all simulations in this section Cundall’s damping is set to 0, as a
consequence the energy dissipation observed in these results is uncontrolled. The time step,
computed from E , ρ and c , reads:

∆t = c

s

ρ

E
×5 ·10−2 ≈ 1.888 ·10−4 s (3.43)

Several variables are monitored during the simulation, in particular:
— the height of the highest material point:

Zma x =maxp∈{p}(x
p
3 ) (3.44)

— the elastic energy summed over all material points (with Einstein’s notation and δi j

the Kronecker’s symbol):

Ee l =
∑

p∈{p}

v p

2

�

σi jε
T
i j

�

(3.45)
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FIGURE 3.2. – Simulation setup (plane view of the 3D model)

with εT the true strain tensor, which can be expressed using the identity matrix I :

εT = ε−
1

2

�

ε−ε I
�

(3.46)

— the kinetic energy summed over all material points:

Ek =
∑

p∈{p}

1

2
m p



V p




2
(3.47)

— and the gravitational energy summed over all material points:

Ep =
∑

p∈{p}
m p g x

p
3 (3.48)

3.5.2. Results

Figure 3.3 shows the Zma x obtained during several bounces for different formulation
choices. Figure 3.4 shows the corresponding total energy Et o t = Ee l +Ek+Ep , and all energies
are plotted separately in figure 3.5. The columns (a) of these figures present the results
obtained with the USL stress update scheme, and the columns (b) present the ones obtained
with the USF scheme. In both columns, the influence of several velocity update schemes
is investigated: PIC, FLIP, NFLIP, FLIP0.9, NFLIP0.9 and APIC. Note that Ee l is equal to 0 J
before the first impact, hence the absence of points on the first steps of the log-linear graphs
on figure 3.5 (a) and (b).

A first observation is that the USL scheme always includes an artificial energy dissipation
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that can be observed both on Et o t and Zma x . Indeed, the maximum height the cube reaches
decreases after each bounce: some energy is dissipated when the cube gets deformed upon
impact on the floor. This artificial damping is quite important when using the PIC or APIC
velocity update scheme. The energy dissipation is less important for all FLIP-based schemes,
NFLIP being the most dissipative of them. It is worth noting that NFLIP0.9 is more conser-
vative than NFLIP and PIC, which is surprising since it is a combination of both. Figure 3.5
shows that the deformation of the cube occurs essentially upon the impact with the floor
for all schemes that include a PIC strategy (i.e. PIC, FLIP0.9, NFLIP0.9 and APIC). However,
with the NFLIP and FLIP strategies the cube continues to get further deformed, after it lost
contact with the floor and moves upward.

These results show that the USF scheme is more conservative: when combined with the
FLIP velocity update scheme, Et o t is almost constant during the whole simulation. The
PIC and APIC strategies also preserve better the energy with the USF scheme. However,
the FLIP0.9 and NFLIP0.9 strategies are both more dissipative than when combined with
the USL scheme. A more intriguing result is the one obtained for NFLIP: Et o t is globally
increasing as the simulation goes but Zma x is significantly decreasing after each bounce.
Such a unexpected behaviour can be explained with the evolution of Ee l . Indeed, after the
first impact the cube is subjected to a deformation which oscillates at a specific frequency,
certainly different from the bouncing frequency. As a consequence, the height at which the
cube bounces back is strongly affected by the synchronicity between these two frequencies.
The cube is also continuously deformed between two impacts with the FLIP strategy. With
the PIC and APIC strategies, the cube’s deformation last longer when using USF rather than
USL, but it stops before the next impact. Surprisingly, for both the FLIP0.9 and NFLIP0.9
schemes no additional deformations occurs between impacts.

3.5.3. Discussion

These results are in agreement with the analytical observations in [Bardenhagen 2002],
where the USF scheme is found to be more likely to conserve energy than the USL scheme. A
great combination would be to use the FLIP velocity update scheme combined with the USF
stress update scheme, along with Cundall’s damping, which can be controlled. An alternative
to Cundall’s damping could be to use another, dissipative, combination of schemes offered
by the MPM formulation. For the presented simulation, the NFLIP strategy was shown to
add energy to the system, certainly leading to instabilities, while the FLIP strategy conserves
it. The PIC and APIC strategies were found to be highly dissipative, at a point where the
deformation wave in the bouncing cube is completely aperiodic.
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(a) USL

(b) USF

FIGURE 3.3. – Maximum height for different MPM schemes
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(a) USL

(b) USF

FIGURE 3.4. – Total energy for different MPM schemes
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(a) USL (b) USF

FIGURE 3.5. – Ee l , Ek and Eg for different MPM schemes
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3.6. Conclusion on the MPM

The Eulerian-Lagrangian formulation of the MPM gives robustness to the numerical
procedure, allowing the computation to continue even when large displacements would
stop the FEM computation. For this reason, the MPM is a great candidate to fullfil our goal
of modelling geotechnical structures under severe loading. However, the motion integration
strategy has to be carefully chosen in order to conserve as much as possible the energy
through the numerous transportation of the momentum and velocity between grid points
and integration points. Moreover, the MPM still relies on a constitutive law to represent
the behaviour of the material, which as mentioned in section 1.3, often struggles to handle
various loading scenarios requiring several parameters hard to calibrate.

110



4. MPMxDEM multi-scale coupling

Sommaire

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 RVE deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.2 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Technical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.1 Base softwares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1.1 YADE, a DEM software . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.1.2 CB-Geo MPM, an MPM software . . . . . . . . . . . . . . . . . . 114
4.3.1.3 PyCBG, a Python module for CB-Geo MPM . . . . . . . . . . 115

4.3.2 Coupling implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.2.1 Embeding Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3.2.2 Using DEM as a constitutive law . . . . . . . . . . . . . . . . . . . 118
4.3.2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Test case : one cell triaxial test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.1 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Conclusion on the multi-scale coupling procedure . . . . . . . . . . . . . . . . . . . 125

111
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4.1. Introduction

As mentioned in section 1.3.2, DEM can completely replace traditional constitutive laws
to describe the behaviour of granular materials within a continuum-based method. Such a
consideration grants access to the structure scale, while taking advantage of the effective
and complete material’s description offered by the DEM. Indeed, DEM requires only a few
parameters (compared to usual constitutive laws) which have a direct meaning microscopi-
cally, making DEM capable of handling various loading conditions with little efforts. The
choice of using DEM within the MPM continuum-based method thus seems as a promising
approach to model geotechnical structures subject to severe loading conditions.

This chapter presents a formulation of the MPMxDEM coupling, including details on
the time discretization consistency between the two methods, technical specificities, and a
validation case on a simple triaxial test.

4.2. Formulation

The scale separation allows some simplifications in the microscopic model: the behaviour
of the material is assumed independent of gravitational and inertial effects, which are thus
accounted for only at the large scale, by the MPM. The former assumption allows to consider
the granular assembly to be deformed at a quasi-static rate, which most of the time results
in a lower computation time cost.

The granular assembly should be large enough for the global values to be independent of
the number of grains, but it should also be small enough to keep the computational time cost
low. The DEM model associated to each material point is then designated as a Representative
Volume Element (RVE). The MPM strain increment determined at each material point∆ε for
each MPM iteration is applied to the whole RVE with a strain-rate being chosen small enough
for quasi-staticity to hold. This section details how the microscopic quasi-static assumption
is incorporated in the process of deforming the RVE. In this chapter, the superscript p is left
out as all variables are given for a specific material point.

4.2.1. RVE deformation

From the MPM point of view, the strain increment is imposed during a MPM time step,
∆t M P M . However, because of our quasi-static consideration at the microscopic scale, this
deformation time is not relevant to the RVE. The time during which the RVE is deformed is
denoted T ε and is determined considering a low inertial number In ≤ 10−2 [GDR MiDi 2004],
which ensures quasi-staticity:

T ε =
|∆ε|ma x

ε̇
=
|∆ε|ma x

In

√

√ρl 2

P
(4.1)

with |∆ε|ma x the maximum absolute eigenvalue of the strain increment, ρ the grain density,
l the characteristic grain size and P the RVE mean stress. Typically, T ε is much lower than
∆t M P M . However, because it depends on both |∆ε|ma x and P , it can be quite high when a
RVE in a low stress state is subject to important deformations. Besides, the lack of gravity at
the microscopic scale introduces the possibility to loose all contacts in the granular assembly,

112



4. MPMxDEM multi-scale coupling – 4.2. Formulation

which leads to P = 0. Indeed, the stress state of a RVE is computed using Love-Weber formula,
which is depends only on the contacts of the granular assembly (more details are given in
section 4.2.2). A threshold for P is thus set to the expected stress at the bottom of the RVE if
it were subject to gravity. This threshold, denoted P mi n , is computed from the weight the
RVE would have W RV E , and the bottom surface of its periodic cell S RV E :

P mi n =
W RV E

S RV E
(4.2)

Note that as S RV E varies as the RVE deforms, P mi n should thus be recomputed at each
MPM iteration. The mean stress used in equation 4.1 reads:

P =max

� |Tr(σ)|
3

, P mi n

�

(4.3)

Since the ratio of T ε and the DEM time step ∆t D E M is not necessarily an integer, an
extra attention has to be given when imposing the deformation to the RVE. Two strategies
can be used to ensure that ∆ε is exactly applied to the RVE during a specific number of

DEM iterations N D E M
i t : 1) preserving T ε and momentarily adjusting∆t D E M , 2) preserving

∆t D E M and momentarily adjusting T ε. With the first strategy, a temporary time step Ý∆t
D E M

has to be determined:

Ý∆t
D E M

= T ε−∆t D E M ×floor
�

T ε

∆t D E M

�

(4.4)

with floor(x ) equal to the nearest integer lower than x .

During the first N D E M
i t −1 iterations∆t D E M is used, and for the last iteration Ý∆t

D E M
is

used. Note that in the eventuality of T ε being smaller than∆t D E M , only one DEM iteration
is performed during the entire MPM iteration. This scenario is likely to happen if the material
point is not subject to important deformations, or if it is highly constrained. This strategy
thus adds a safety margin to the critical DEM time step used, in the eventuality where only
one DEM iteration per MPM iteration is required.

With the second strategy,∆t D E M is kept constant during the whole MPM iteration, but T ε

is increased so it is exactly an integer times∆t D E M . This new deformation time is computed
as follows:

T D E M =∆t D E M × ceil
�

T ε

∆t D E M

�

(4.5)

with ceil(x ) equal to the nearest integer higher than x .
This strategy adds a safety margin to the quasi-static criterion, as T D E M corresponds to

the DEM deformation time obtained with a In lower than the one used to compute T ε. For
the sake of simplicity, the deformation time applied to the RVE will always be denoted T D E M ,
even with the first strategy where it is equal to T ε.

The microscopic strain rate is then:

ε̇=
∆ε

T D E M
(4.6)

It is applied to the RVE as a velocity gradient∇V , on top of the velocities induced by the
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contact forces.

4.2.2. Homogenization

After applying the deformation to the RVE, its stress state changes according to the nume-
rous rearrangements in the sample and should thus be determined after each deformation. In
order to do so, the geometries and total forces of all interactions between grains have to be ac-
counted for. When considering quasi-static assemblies of particles interacting only through
their contact forces, such a homogenization process can be done using the Love-Weber
formula, given in equation 4.7:

σ
g l o b
i j =

1

V

Nc
∑

c=1

f c
i l c

j (4.7)

where Nc is the number of contacts in the granular assembly, f c is the interaction force of
the contact c , and l c is the branch vector of the interaction.

4.3. Technical aspects

As mentioned in section , the coupling was implemented based on two already existing
C++ softwares: CB-Geo MPM for the Material Point Method and YADE for the Discrete
Element Method. This section introduces these softwares and their features before providing
more details on the coupling implementation.

4.3.1. Base softwares

This section presents the softwares used to implement the MPMxDEM coupling.

4.3.1.1. YADE, a DEM software

YADE (Yet Another Dynamic Engine) [Smilauer et al. 2021] is an
open-source software available on GitLab 1, actively developed since
2005. It includes a Python interface which allows users to easily se-
tup complex simulations while keeping the great performances of the
C++ programing language. YADE offers the possibility of using several
shape models (clumps, polyhedra, potential particles, level-set, . . .)
and also different contact laws (accounting for viscosity, cohesion, rolling resistance, capilla-
rity, . . .). Users can easily customize the DEM main loop to add for instance an interaction
based on a non-native model. Also, simulations can be run interactively, offering the possi-
bility to tweak or monitor all parameters on the fly. A batch mode is also available to easily
perform parametric studies.

4.3.1.2. CB-Geo MPM, an MPM software

1. https://gitlab.com/yade-dev/trunk
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CB-Geo MPM [Kumar, Salmond, Kularathna, et al. 2019] is an open-
source software available on GitHub 2, developed by the Computa-
tional Geomechanics Research Group 3. It is capable of performing
2D simulations with triangles or quadrilaterals as mesh elements, and 3D simulations with
hexahedrons as mesh elements. CB-Geo MPM supports both the USF and USL stress update
strategies and includes a variety of constitutive laws (linear-elastic, Newtonian fluid, Mohr-
Coulomb, Modified Cam Clay, Nor-sand). Each constitutive law has its own C++ class, such
a class will be denoted as a "material class" in the rest of this chapter.

This study uses a modified version of the CB-Geo MPM code, developed during this thesis,
with several additional features, including:

— the possibility to use other MPM velocity update strategies (APIC, FLIPX, NFLIP,
NFLIPX),

— the possibility to impose non-constant velocity constraints,
— other minor modifications, such as the addition of a verbosity parameter (the quantity

of line outputed) or the change in the data file format (from HDF5 to CSV)

4.3.1.3. PyCBG, a Python module for CB-Geo MPM

Unlike YADE, simulations in CB-Geo MPM are launched through several input files using
different file formats (JSON for the parameters, CSV for initial values, MSH-like for the mesh).
As a consequence, the preparation of a simulation can be quite tedious even for simple
configurations. A Python module named PyCBG [Duverger and Duriez 2021]was developed
in order to simplify the generation of these files, taking advantage of Python’s simplicity to
perform complex simulation setups (e.g. to add material points at specific locations, or to
initialize stresses and velocities based on their positions). Its documentation is available on
ReadTheDocs 4 or can be built locally by the user.

Through its preprocessing sub-module, PyCBG is able to generate all CB-Geo input files
necessary for a basic simulation (4 files, 226 lines in total) using only a 16 lines Python script 5.
It provides the user with a command line interface (CLI) which allows the user to setup a
simulation interactively. Here is the help output of PyCBG’s CLI:

2. https://github.com/cb-geo/mpm
3. https://www.cb-geo.com
4. https://pycbg.readthedocs.io/en/latest/index.html
5. See the "Examples" section of the Simulation object in PyCBG’s documentation4
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Features
Software

CB-Geo MPM YADE DEM

Availability Open-source Open-source
Programing language C++ C++

OpenMP parallelization Yes Yes
MPI parallelization Yes Yes
Supported number

of dimensions
2D and 3D 3D

User interface
Input JSON files, or

Python through PyCBG
Python

Interactive run No Yes
Batch mode Through PyCBG Yes

TABLE 4.1. – Features of the coupled MPM and DEM softwares

$ pycbg -h

usage: pycbg [-h] [-v] [-p] [-i] [-n] [-d [BUILD_DIR]] [PYCBG_SCRIPT]

Manage CB-Geo MPM simulations using PyCBG Python module

positional arguments:
PYCBG_SCRIPT pycbg script to be run. By default, the following import lines are added at the top of the

file: ‘from pycbg.preprocessing import *‘, ‘from pycbg.postprocessing import *‘ and ‘from
pycbg.MPMxDEM import *‘. To deactivate this behaviour, use the -n (or --no-import) option

optional arguments:
-h, --help show this help message and exit
-v, --version print pycbg version
-p, --pip-show alias for ‘pip show pycbg‘
-i, --interactive run in an interactive IPython session. Using both the -i and -n options simply creates a

IPython interactive session
-n, --no-import deactivates automatic import of pycbg
-d [BUILD_DIR], --build-doc [BUILD_DIR]

build pycbg’s documentation in BUILD_DIR, its path being relative to the current working
directory. If BUILD_DIR isn’t specified, it will be set to ‘${PWD}/pycbg_doc‘. If BUILD_DIR
is ‘..‘, it is set to ‘../pycbg_doc‘. If -d and PYCBG_SCRIPT are specified, the
documentation is build before running the script

PyCBG also offers the possibility to easily setup and launch a batch of simulations, by just
requiring the user to provide a base script and a list of parameters sets (or a list of parameters,
automatically combined into all possible parameters sets).

Another sub-module was developed in order to facilitate the postprocessing operations.
Basically, it loads the post-simulation CSV files and arranges them into Python’s NumPy
arrays, all data can thus be easily accessed and postprocessed with all Python’s capabilities.
This sub-module is specially convenient when postprocessing a batch of simulations.

A third sub-module was added to provide a user interface to the MPMxDEM coupling.
Details about its features are given in the next section.

Table 4.1 summarizes the main features of YADE and CB-Geo MPM.

4.3.2. Coupling implementation

The coupling framework requires the main CB-Geo MPM simulation to be able to launch
a YADE simulation for each material point. Such a task could be done by directly integrating
YADE’s C++ backend into the CB-Geo C++ code, stripping YADE from its Python interface.
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Doing so would considerably complexify the access to most of YADE’s features, as it is
intended to be used through the Python interface. Instead, the Python interface is directly
integrated into the CB-Geo MPM C++ code, preserving the possibility to setup the DEM
simulation with a user-friendly Python script (see figure 4.1). The operation of integrating
Python into a C++ program was performed following the instructions provided by Python’s
documentation 6.

CB-Geo MPM

C++

Material 
Point 1

Material 
Point 2

Material 
Point Nmp

Input files
JSON, CSV, MSH

PyCBG
Python 

PyCBG script + YADE law script

YADE
Python

C++

Generates

Create an instance

FIGURE 4.1. – Coupling framework

4.3.2.1. Embeding Python

Python’s embedding into CB-Geo MPM was done inside a new generic material class
(denoted PythonModel ), making the usage of a user-defined constitutive law almost trans-

parent to a regular CB-Geo MPM user. It only requires a Python script (denoted PyModel
script) containing a callable object with a specific signature, which will be used to determine
the material’s behaviour (it can for instance be a function, denoted compute_stress ). At

each MPM iteration, compute_stress is called with the 6 components of the deformation

increment tensor as input and should return the 6 components of the stress increment tensor.
Additional variables can be included into the inputs (and outputs) of compute_stress in

6. https://docs.python.org/3/extending/embedding.html#
embedding-python-in-c
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order to keep track of history-dependant parameters (denoted state variables). Note that
DEM isn’t integrated into PythonModel yet: one could implement any constitutive law

in Python and use this class to try it out in CB-Geo MPM. As convenient as this possibility
may be, it should be noted that performing operations through Python inside a C++ code is
considerably slower than performing them directly in C++.

4.3.2.2. Using DEM as a constitutive law

In order to complete the coupling, a DEM simulation has to be performed from the
PyModel script. This section details how an instance of YADE can be created from any

Python script and describes how PyCBG can be used to easily perform the tedious task of
setting up a YADE PyModel script.

Using YADE from the PyModel script
YADE was intended to be used through its CLI. As a consequence starting a YADE simula-

tion from any Python script is not straightforward. Indeed, YADE’s executable is a Python
script containing more than 400 lines that sets up everything needed to perform a simulation.
It should thus be imported by the PyModel script, paying a particular attention to which

variable scope the imported variables will be added to. The YADE part of the PyModel script

should create a granular assembly and be capable of deforming it according to a velocity
gradient.

Using PyCBG to setup a YADE PyModel script

The MPMxDEM sub-module included in PyCBG provides a function (denoted setup_yade )

to launch YADE from Python. The user can choose which YADE executable to run, offering
the possibility to use a specific or modified version of YADE. This sub-module also pro-
vides a ready-to-use definition of the callable object (denoted DefineCallable ) required

by the PyModel script. Over all, turning a pure YADE script into a PyModel script for a

MPMxDEM simulation consists in adding only two lines: the setup_yade line, and the

DefineCallable line. The latter requires one parameter and can be tuned using several
others, offering different possibilities. The mandatory parameter is the strain rate at which
the DEM cell will be deformed (ε̇ in equation 4.1), while optional parameters can be used
to keep track of microscopic variables directly in the MPM result files. Basically, the user
can pass a list of Python expressions to be evaluated from the YADE session and returned to
CB-Geo MPM. Another parameter offers the possibility to save VTK files of the YADE simula-
tions at a specified frequency, providing an easy way to visualize the temporal evolution of
microscopic data at each material point.

When used alongside the preprocessing sub-module, PyCBG’s MPMxDEM module auto-
matically logs the used version of YADE and its dependencies into a file. When used in batch
mode, CB-Geo MPM and PyCBG versions are also logged into files, simplifying the tracking
of bugs and improving the repeatability of the results.
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4.3.2.3. Parallelization

While embedding Python into CB-Geo MPM’s C++ source code has the advantage of
preserving YADE’s user-friendly interface, it also brings technical difficulties for running
a simulation in parallel. Indeed, when using the OpenMP parallelization in CB-Geo MPM,
several material points must have access to their YADE session at the same time. However,
if Python is embedded directly into the main MPM process, only one material point can
have access to the Python session at the same time. This behaviour was intended by Python’s
developers: it assures that the same object is not modified at the same time by different
threads (see Python’s documentation on the Global Interpreter Lock 7 for more details).

CB-Geo MPM

C++

Material 
Point 1

Material 
Point 2

Material 
Point Nmp

C++
YADE

Python

C++

C++
YADE

Python

C++

C++
YADE

Python

C++

SpawnsIPC IPC Spawns SpawnsIPC

FIGURE 4.2. – Coupling parallelization

Using a sub-process for each material point
A workaround is to create as many Python sessions as material points, which requires

the main MPM C++ process to spawn a new process for each material point. Typically, this
is done using the Unix-exclusive operation fork combined with the execve function.
The main MPM process should be able to call the compute_stress function of each sub-

process, it is thus necessary to ensure the Inter-Process Communication (IPC) between the
main process and the forked ones. Several different strategies are available 8, our MPMxDEM
implementation uses the named pipes strategies (also referred to as FIFOs for "First In First
Out") which are basically files in which several processes can write or read data. Note that

7. https://wiki.python.org/moin/GlobalInterpreterLock
8. https://en.wikipedia.org/wiki/Inter-process_communication
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named pipes are considerably slower than some other IPC strategies, specially the shared
memory strategy (see the benchmarking results 9 obtained with the open source software
IPC-Bench 10). However, it was observed that the IPC is not the most expensive step in our
MPMxDEM implementation, the RVE deformation is. Indeed, IPC is used only twice for
each MPM step (once from MPM to DEM, and once from DEM to MPM) but many DEM
iterations are performed. Still, depending on their configurations some RVE simulations
might be fast enough for the IPC time cost to be non negligible compare to the DEM time
cost. Replacing the named pipes strategy with the shared memory strategy in our MPMxDEM
implementation is thus a great possibility to improve its performances. Figure 4.2 summarizes
how the issues brought by the Python embedding were addressed.

Parallelization performances
A measure of the parallelization performances was performed on a simple MPMxDEM

triaxial test, whose configuration is detailed in the next section. Basically, a one cell MPM
mesh contains a specific number of regularly spaced material points Nmp . The OpenMP
parallelization strategy being used at the MPM level, a material point is thus assigned to a
specific CPU core on which computations are performed sequentially. Figure 4.3 shows the
speedup S obtained on a server machine with 2 Intel® Xeon® Platinum 8270 CPU @ 2.70GHz
processors and 1536 GiB of RAM available. Note that for this measurement Intel’s hyper-
threading was enabled, making a total of 104 CPU threads available. Denoting Nt h r e a d s the
number of CPU threads used, and T (Nt h r e a d s ) the computational time cost for a specific
number of thread, the speedup is computed as follows:

S =
T (Nt h r e a d s )

T (1)
(4.8)

0 20 40 60 80 100
Nthreads

0
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15

20

25

S

S = Nthreads

8 material points
27 material points
64 material points
125 material points
216 material points

FIGURE 4.3. – OpenMP speedup for a one cell triaxial test using various Nmp

9. https://stackoverflow.com/a/54164058
10. https://github.com/goldsborough/ipc-bench
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One can notice that for 27 material points, using 15 threads gives an almost perfect spee-
dup: S ≈ 15. The best speedups are achieved when using more than 8 material points and
reaches S ≈ 24, except for Nmp = 64 where the speedup does not exceed 20. A global decrea-
sing tendency is observed for Nt h r e a d s > 50, which is probably due to the hyper-threading
technology. Indeed, these results suggest that the overall performances drop when the CPU
is heavily loaded. Also, note that a speedup higher than 8 was measured for some simulations
containing only 8 material points, which is supposedly impossible since there should be at
most 8 CPU threads working in parallel. This strange result can be explained by the variation
of the server’s CPU load: it must have been higher when performing the reference simulation
with Nt h r e a d s = 1.

4.4. Test case: one cell triaxial test

This section is a partial inclusion of a communication published in the 25t h edition of the
Congrès Français de Mécanique in 2022.

4.4.1. Simulations and results

A simple element test triaxial test is performed in order to ascertain the MPMxDEM
capacity to accurately model granular materials. The only MPM cell is a cube with a length
l = 1 m , in which 8 material points (more precisely RVEs) are regularly spaced. In the x
and y directions, forces are imposed on all nodes oriented towards the sample in order
to maintain the confining pressure σl a t = 100 k P a . In the z direction, the bottom nodes
velocities are forced to be nil, while on the top nodes a velocity is imposed downwards. This
velocity respects quasi-staticity as it is computed from the previously introduced inertial
number In :

V z
v =−In

√

√ σl a t

ρRV E
(4.9)

with ρRV E the mass density of the granular assembly, which accounts for the voids in the
RVE.

Note that since a constant velocity is imposed on all nodes in the z direction, vertical
acceleration is nil everywhere in the domain and thus material points only move horizontally.
Also, even though the initial velocity on the top nodes is not zero, the initial velocity of the
material points is. That is in fact a trick to moderate the material points’ displacement in
order to keep the computation of the internal efforts as correct as possible. The physical
meaning of the simulation does not suffer from such a trick since the MPM considers the
material to be present in the whole MPM cell as long as material points are inside. Their
positions are then not relevant to determine the material’s behaviour, which requires only
a consistent value for ε̇

p
, whose evaluation still depends on x p , as prescribed by equation

3.36.
As a reference, a pure DEM simulation was performed on a sample of 30, 000 spheres, to

allow the analysis of the coupling’s accuracy as well as its efficiency for this simple 8 material
points simulation. The pure DEM triaxial test uses the same conditions as each RVE of the
previous MPM calculation: both are periodic simulations and their particle size distribution,

121



4. MPMxDEM multi-scale coupling – 4.4. Test case: one cell triaxial test

Number of particles Initial void ratio Computational time cost
Pure DEM 30, 000 0.563 ≈ 6 hours 43 minutes

MPMxDEM 8×1, 000 0.558 ≈ 55 minutes

TABLE 4.2. – Initial conditions and computational time cost for both simulations

contact model and sample’s initial density are identical. The initial density was measured
inside a sub-volume within the sample, see section 2.3.3.2. The deformation rate imposed in
pure DEM is the same as the one imposed by the MPM on all RVEs, i.e., the one computed
with In = 2.5 ·10−4. Note that this is not usually the case, this equality is however justified by
the quasi-static assumption considered both in DEM and MPM. Both simulations were run
independently on the same machine having an Intel® Xeon® Platinum 8270 CPU @ 2.70GHz
with 1.5 TiB of RAM available, using OpenMP parallelization on 8 CPU cores.

FIGURE 4.4. – Mean deviator stress q and volumetric strain εV against mean axial
strain εa x

Table 4.2 summarizes the initial conditions and computation times for both the pure
DEM and MPMxDEM simulations. Figure 4.4 (a) shows the mean deviatoric stress q and
mean volumetric strain εV over all RVEs for the MPMxDEM simulation, or computed using
the stress tensor and cell deformation for the pure DEM simulation. For this triaxial test,
MPMxDEM is approximately 7.3 times faster than pure DEM. As for the accuracy, figure 4.4
shows that the deviatoric stress is almost the same for both simulations, particularly during
the low deformations part. However, beyond the maximum stress state the MPMxDEM εV

progressively deviates downwards from the pure DEM εV , but it seems to reach more clearly
the critical state. Comparing these mean values, results are consistent since the MPMxDEM
is in close agreement with pure DEM regarding the stress response while the computational
cost is significantly lower.

However, figure 4.5 (a) shows that during the MPMxDEM simulation (see figure 4.5 (d)
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(a) Principal stressesσi i against axial strain εa x
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FIGURE 4.5. – Results obtained for each RVE

for the RVEs colors and initial position), the control of the lateral stress is lost. Indeed, after
the maximum stress state is reached, half of the RVEs have their lateral stresses decreasing,
the other half have them increasing. An interesting point to notice is that none of the RVEs
behaves as one of its closest neighbor, and yet there is only two different types of behaviours.
This curious arrangement is probably simply the expression of some gradient shape functions’
geometrical property, which are bi-odd functions. Figure 4.5 (c) shows that the ratio between
the axial and lateral stresses remain homogeneous for all RVEs during the whole test.

Figure 4.6 shows each particle’s mean stress for two neighbor RVEs (n◦1 and n◦3). RVE n◦3
supports no stress while RVE n◦1 is strongly stressed.

Contrary to the stress tensor, the average coordination number Z c is homogeneous in
the MPM cell, as shown on figure 4.5 (b): all RVEs share about the same Z c , exactly for low
deformations and more approximately for higher deformations.
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FIGURE 4.6. – Two RVEs final stress states. The left picture shows a RVE whose lateral
stress increases (RVE n◦3), the right picture shows a RVE whose late-
ral stress decreases (RVE n◦1). Each particle is colored according to
its mean stress p following the classical continuum mechanics’ sign
convention.

The incapacity of MPMxDEM to keep the lateral stress constant, as shown in figure 4.5 (a), is
most probably due to the horizontal displacement of the RVEs that increases the "numerical
integration’s weights" error. Indeed, as the particles move, their attributed volume becomes
more and more biased and the computation of the internal efforts gets progressively false.

4.4.2. Conclusion

This study presented a formulation of the MPMxDEM coupling that, even though it suffers
from the MPM’s imperfect description of the stress tensor, is able to accurately predict the
behaviour a granular material subject to high deformations (over 0.3 as strain). The obtained
deviatoric stress corresponds exactly to the pure DEM response. Other MPM formulations
could certainly be considered to improve this coupling, in particular to simulate more
dynamic problems.

Data was tracked for all RVEs, giving insights on how the critical stress is sustained by the
sample: it appears that less than half the DEM particles are enough to maintain the stress
within the sample. The axial and lateral stress ratio as well as the coordination number were
shown to be homogeneous between all RVEs. The computational efficiency of the MPMxDEM
is quite remarkable considering its accuracy. Indeed, the MPMxDEM simulation presented
in this study is approximately 7.3 times faster than a pure DEM reference simulation. A more
complex simulation would probably show an even better performance of MPMxDEM with
respect to DEM, taking advantage of the scale range MPM makes accessible.
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4.5. Conclusion on the multi-scale coupling procedure

This chapter presented how the DEM can be incorporated within the MPM in order to
improve the description of granular materials, compared to traditional constitutive laws.
It was demonstrated that a quasi-static assumption for the microscopic deformation can
significantly decrease the number of DEM iterations to perform for each MPM iteration in all
the granular assemblies considered. Moreover, the coupling was shown capable of accurately
reproducing the results of a pure DEM triaxial test, confirming the validity of our MPMxDEM
implementation. Nonetheless, the performances of the latter is yet to be assessed for large
scales simulations, closer to the scale of geotechnical structures.
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5.1. Introduction

The case of the granular column collapse is widely studied in the science of granular
materials [Crosta, Imposimato, and Roddeman 2009] ; [Girolami, Hergault, Vinay, et al.
2012] ; [Lajeunesse, Monnier, and Homsy 2005] ; [Xiong, Yin, Nicot, et al. 2021], and it
involves a considerable amount of deformations. Besides, it is quite similar to cases of
interest in the study of geotechnical structures (e.g. dam break) and other geological studies
(e.g. landslides). Naturally, it comes that the granular column collapse is a great test case to
validate the MPMxDEM coupling at a larger scale.

In this chapter, the dynamics occurring during the collapse of a 1 meter wide granular
column is investigated for several aspect ratios, namely 0.6, 1, 2.4, and 3. First, several series
of pure MPM simulations are performed to determine the dependance of the results on both
the discretization parameters and the velocity update scheme, for different aspect ratios of
the initial column. A MPMxDEM simulation is then performed using the best parameters
set determined from these pure MPM simulations.
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5.2. Simulation description

The simulation being 2D plane strain, the stress is computed along the third direction,
where the strain is equal to 0. Moreover, the "volume" attributed to each material point is
here in fact a surface (see equation 3.9), as a consequence all energies will be given in J/m.
Such a consideration is common in the literature [Crosta, Imposimato, and Roddeman 2009] ;
[Lube, Huppert, Sparks, et al. 2005] ; [Staron and Hinch 2005]. The simulation is performed

in two steps: the settling of the constrained column and its subsequent collapse, following
the release of the constraint. At the beginning of the settling phase, the stresses of all material
points are uniformly initialized to 250 Pa. This first step thus consists in computing the final
stress gradient in the column, as a consequence of the presence of gravity. For the collapse
step, the consolidated column is placed on the left of a wider mesh, introducing a collapse
of the column on its right side.

5.2.1. Geometry of the problem

The width of the column spans over the x -axis while its height spans over the y -axis.
The aspect ratio AR is defined as the column initial height L i ni t

y divided by its initial width

L i ni t
x = 1 m, the latter being the same for all simulations.

Mesh
The mesh consists of cubic elements with a side of lc e l l ∈ {10 cm, 7.69 cm, 5.88 cm,

5 cm}. For the initial settling phase, it has as many cells in the x and y directions as required
by the aspect ratio:

W
s e t t l i ng

me s h = L i ni t
x (5.1)

Hme s h = AR ×W
s e t t l i ng

me s h (5.2)

with W
s e t t l i ng

me s h the width of the mesh during the settling phase and Hme s h its height for the
whole simulation. Taking advantage of the mesh independency of MPM, another mesh is
used during collapse, which is in fact a substantial enlargement of the settling mesh:

W
c o l l a p s e

me s h = 6×Hme s h (5.3)

These parameters ensure a fairly fine discretization of this 2D geometry as they split the
column in at least 100 cells (and up to 400 cells) and let it collapse in a mesh 6 times larger
(from 600 to 2, 400 cells).

A nil velocity is imposed at the left, right and bottom boundary nodes, in the direction
orthogonal to the boundary. The left and right boundaries are thus denoted as walls, while
the bottom boundary is denoted as floor. A friction condition is imposed on the floor, driven
by a friction coefficient µ= 0.3.

Material points
All cells contain initially Nmp p c material points, located at the roots of Legendre’s polyno-

mials (in local coordinates, see equation 3.10), given in [Lowan, Davids, and Levenson 1942].
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For instance, the roots of the second Legendre’s polynomial are the local positions of the
points in each direction for Nmp p c = 4:

es =±
1
p

3
, ∀s ∈ {x , y } (5.4)

The initial volume of each material points (which is here in fact a surface, due to the 2D
formulation) thus corresponds to the integration weight of the Gauss-Legendre quadrature,
making the MPM formulation initially accurate for this specific case, Nmp p c = 4. In this study,
Nmp p c ranges between 1 and 49. All material points are subject to the same gravitational
acceleration of magnitude g = 9.81 m/s2.

Figure 5.1 summarizes the initial configuration of the simulation for AR = 1, Nmp p c = 4
and lc e l l = 10 cm.

1m

g

x

y

z

FIGURE 5.1. – Initial column

5.2.2. Numerical parameters of the simulation

Following the results presented in section 3.5.2, the influence of the discretization para-
meters is investigated using the USF stress update scheme combined with the FLIP velocity
update strategy. This choice ensures that no artificial energy dissipation is brought by the
MPM, at the cost of a higher sensitivity to instabilities.

Cundall’s damping is used during the settling step in order to dissipate the energy in a
controlled way, with a damping coefficient D = 0.1. During the collapse, D is reset to zero,
allowing the energy to dissipate naturally through the friction imposed on the floor.

The material’s behaviour is described with the Mohr-Coulomb constitutive law. The va-
lues of the model’s parameters were determined from a pure DEM simulation performed
with a contact model calibrated on a real sample of Camargue’s sand [Aboul Hosn, Sibille,
Benahmed, et al. 2017], see table 5.1.

The time step is computed as a fraction of the characteristic time given by the material’s
and mesh parameters:

∆t M P M = aτ× lc e l l

s

ρ

E
(5.5)
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Mass density
ρ

Young’s modulus
E

Poisson’s ratio
ν

Friction angle
φ

Dilatancy angle
ψ

Cohesive strength
C

Cutoff tension
Tc u t

1,748 kg m−3 ≈ 1.28 ·107 Pa 0.16 33.75 ◦ 0 ◦ 1 Pa −
C

tanφ

TABLE 5.1. – Parameters used with the Mohr-Coulomb model

The coefficient aτ was determined empirically to ensure a stable simulation. It was found
equal to 1.25 ·10−3 for the FLIP velocity update strategy, which gives a time step of∆t M P M ≈
1.46 ·10−6 s when lc e l l = 10 cm. Note that other velocity update strategies (namely PIC, APIC
and NFLIP0.9) are capable of accommodating a time step 4 times higher.

5.2.3. Quantities of interest

In order to compare the influence of some parameters on the dynamics of the column
collapse, several quantities are monitored during the simulation.

Width of the collapsing column
During the collapse, the column is confined by a wall on its left, the left edge is thus always

located at x = 0 m. However, since the right edge of the column is free, it can spread up

to x =W
c o l l a p s e

me s h m. The evolution of its position during the simulation is a major insight
on how the collapse unfolds. Because the left edge does not move during the collapse, it is
simply equal to the width of the column, L x , and can be computed as follows:

L x = floor

�

maxp∈{p}(x p )

lc e l l
+1

�

lc e l l (5.6)

This expression assumes the material to have a "voxelized" geometry: the material is
considered present in a whole cell as long as at least one material point is inside. As a
consequence, L x increases by steps of lc e l l as the column spreads to the right.

Note that L x is directly related to the so-called runout distance dr :

dr = L x − L i ni t
x (5.7)

Granular spreading length
A normalized spreading length eL and collapse time et are commonly used to describe the

dynamics of the collapse independently of the column dimensions. Both are computed as in
[Utili, Zhao, and Houlsby 2015]:

eL =
dr

L i ni t
x

(5.8)

et =
t

√

√

√
AR × L i ni t

x

g

(5.9)
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Total kinetic energy
Monitoring the total kinetic energy of the column Ek is a way to characterize the dynamics

occurring during the collapse of the column. It is computed using equation 3.47. Note that
in this equation, the kinetic energies of all material points are summed, the resulting Ek can
thus be used to investigate MPM’s dependance on the number of material points. Indeed, if
the material point-based discretization is accurate, Ek should not depend on the number of
material points used to represent a specific volume.

Mechanical energy
Monitoring the different types of energies involved in the simulation is a convenient way

to interpret the dissipation observed in MPM simulations. However, the simulations in this
chapter include two sources of energy dissipation: one originates from the friction on the
floor, the other from the material’s behaviour, modeled either with the Mohr-Coulomb consti-
tutive law or with DEM. As a consequence, the dissipative nature of some MPM formulations
cannot be as easily observed as in section 3.5. In the latter, the mechanical energy Eme c h was
the only energy involved in the simulation, and was thus denoted Et o t . Here, it is denoted
Eme c h but it is still computed from equations 3.45, 3.47 and 3.48:

Eme c h = Ee l +Ek +Ep (5.10)

Deviatoric strain
The deviatoric part of the strain tensor at each material point is monitored to determine

where and how much the column is sheared. It is reduced to a scalar using the Frobenius
norm:

εp
d e v
= εp −

tr(εp )

3
I3 (5.11)

εD =




εp
d e v





=
√

√

√

∑

i∈¹1,3º

∑

j∈¹1,3º

(εd e v )i j
2 (5.12)

5.2.4. MPMxDEM specificities

The MPMxDEM simulation requires some additional parameters, specific to the coupling.

Microscopic description of the material
The material used is a numerical replicate of Camargue’s sand, as calibrated in [Aboul

Hosn, Sibille, Benahmed, et al. 2017]. It is the exact same material’s description that was
used to determine the parameters of the Mohr-Coulomb model, see table 5.1. The grains are
modeled using spheres of different sizes, the minimum, maximum and median diameters
being respectively dmi n = 9.90·10−5 m, dma x = 2.99·10−4 m, and d50 = 2·10−4 m. The contact
law accounts for friction through the inter-particle friction angle ϕ, but also rolling and
twisting resistance, which effectively mimics the effect of the non-angular shape of the grains.
The latter is computed using three additional parameters: two to determine a rolling and
twisting stiffness based on the tangential stiffness (denoted αr and αt respectively), and
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G (Pa) αs αr αt ϕ ηr

2.8 ·108 Pa 0.2 7.5 0.2 25 ◦ 0.22

TABLE 5.2. – Contact parameters (microscopic scale), as determined in [Aboul Hosn,
Sibille, Benahmed, et al. 2017]

one to describe the resistance’s limit (denoted ηr ). The tangential stiffness is computed as a
fraction αs of the normal stiffness, which is computed from the elastic modulus G and the
spheres radii. Table 5.2 provides the values of these parameters. The density of the grain is
denoted ρg and is equal to 2,650 kg m−3. Cundall’s damping is not used in the RVE, energy
dissipation at the microscopic scale thus only originates from inter-particle friction and
rolling resistance.

Initial RVE
The RVE is initially identical for all material points. It is prepared by compacting a cloud of

2, 000 particles until the desired confining pressure Pi ni t is reached, namely Pi ni t = 250 Pa. In
this study, the inter-particle friction angle is intentionally decreased during this compaction
phase to ϕ/100 in order to reach dense initial samples, as was done in [Chareyre, Briançon,
and Villard 2002]. During the collapse, many RVEs are extensively stretched in the x direction
and compressed in the y direction, but the periodic representation of the material at the
microscopic scale requires the height of a RVE to be at least equal to the largest radius of
the sphere assembly. The initial dimensions of the RVE are thus chosen according to these
anticipated deformations: its height is 20 times larger than its initial width. The void ratio
of this initial RVE, common to all material points, is e0 ≈ 0.5284. Its average coordination
number is Zc 0 ≈ 5.85. The DEM time step is set to∆t D E M ≈ 1.869 ·10−9 s and kept constant
during the whole simulation.

Strain rate
The rate at which the deformation required by the MPM is applied to the RVE is determined

when computing T D E M , see equations 4.1 and 4.5. Using an inertial number In = 10−2, the
initial strain rate applied to a RVE is given by:

ε̇0 = In

√

√

√

Pi ni t

ρg d 2
50

≈ 15.4 s−1 (5.13)

Note that the mean stress P varies during the simulation, and is maintained above a
threshold determined using equation 4.2. Initially this threshold is roughly equal to the
confining pressure, i.e. P mi n

i ni t ≈ 250 Pa, but it is fated to decrease during the collapse as S RV E

increases.

Monitored microscopic variables
The average coordination number of each RVE is tracked during the whole simulation. It

is computed as follows:
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lc e l l Nmp p c ∆t M P M aτ AR Velocity update

10 cm 4

2.92 ·10−6 s 2.25 ·10−3

1 FLIP
1.46 ·10−6 s 1.25 ·10−3

3.65 ·10−7 s 3.125 ·10−4

1.46 ·10−7 s 1.25 ·10−4

7.29 ·10−8 s 6.25 ·10−5

TABLE 5.3. – Parameters used to investigate the time step influence (series S1)

Zc =
Nc o n t a c t s −Nr a t t l e r s

Np a r t i c l e s −Nr a t t l e r s −Nf l o a t e r s
(5.14)

with Nc o n t a c t s the number of contacts in the RVE, Nr a t t l e r s the number of particles having
only 1 contact, Nf l o a t e r s the number of particles having 0 contact, and Np a r t i c l e s the total
number of particles in the RVE. Note that this expression of Zc excludes the grains that do
not belong in any force chain in the structure of the samples, i.e. the so-called rattlers and
floaters.

The density of each RVE is also monitored during the whole simulation, through the void
ratio e given by:

e =
Vc e l l −Vp a r t i c l e s

Vp a r t i c l e s
(5.15)

with Vp a r t i c l e s the total volume occupied by the particles in the RVE and Vc e l l the volume
of the DEM periodic cell, i.e. the RVE volume.

5.3. Pure MPM results

In this section, several series of simulations are performed in order to ascertain the conver-
gence of the results with respect to the discretization parameters being:

— the MPM time step∆t M P M ,
— the number of particles per cell Nmp p c ,
— the length of the cubic cells lc e l l .
Another series of simulation then determines the influence of the velocity update scheme

for this simulation. It is compared to both experimental and numerical results from the
literature.

5.3.1. Temporal convergence

A first series of simulations, denoted S1, is performed using several values for ∆t M P M .
The latter is adjusted by changing the value of aτ from 6.25 · 10−5 to 2.5 · 10−3. The other
discretization parameters are fixed to lc e l l = 10 cm and Nmp p c = 4, as indicated in table 5.3.
Note that these simulations have to perform a specific number of steps, different for each
∆t M P M , in order to reach the same simulated time.
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Settling

(a)σy y at the final stage for∆t M P M = 2.92 ·10−6 (b)σy y at the final stage for∆t M P M = 7.29 ·10−8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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0.5
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 (J

/m
)

t=7.29e-08 s
t=1.46e-07 s
t=3.65e-07 s
t=1.46e-06 s
t=2.92e-06 s

(c) Ek

FIGURE 5.2. – Settling step for different∆t M P M (series S1)

Figures 5.2 (a) and (b) shows the vertical main stressσy y across all material points just
before the collapse, for∆t M P M = 2.92 ·10−6 s and∆t M P M = 7.29 ·10−8 s respectively. These
results demonstrate that the expected stress is obtained. However, σy y is slightly more
dispersed when using a low∆t M P M .

On figure 5.2 (c), one can see that Ek oscillates several times before reaching a stable
state. Different values of∆t M P M lead to exactly the same Ek but only over the first pseudo-
period. Then the maximum reached during the following oscillations slightly increases with
decreasing values of∆t M P M : the difference is at most 6%. A progressive desynchronization
is also observed: the columns modeled using a high∆t M P M oscillate faster, as evidenced
after a few pseudo-periods when the difference accumulates. These results suggest that
more energy is dissipated with a higher∆t M P M . However, the variations of Ek are not great
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enough to be considered significant.

Collapse

(a)∆t M P M = 2.92 ·10−6 s

(b)∆t M P M = 7.29 ·10−8 s

FIGURE 5.3. – Deviatoric strain after collapse (series S1)

The final geometry of the column is given by the deviatoric strain εD on figure 5.3. One
can notice that the material points located in the bottom-left half of the initial column do
not significantly move, as opposed to those in the other half which are largely displaced
and extensively sheared. For the highest∆t M P M , the maximum εD is approximately 15.3%
higher than with a low∆t M P M .

Figure 5.4 (a) shows the evolution of L x during the whole simulation. The final position
of the right edge increases of approximately 5% from the minimal to the maximal values of
∆t M P M tested. However, during the first half of the collapse, the value of∆t M P M has virtually
no influence on L x . As for Ek , plotted on figure 5.4 (b), it appears completely independent
of the∆t M P M value.

Conclusion
In view of these results, choosing∆t M P M = 1.46 ·10−6 s seems to be a good compromise

between the computation accuracy and the computational time cost which depends on
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FIGURE 5.4. – Right edge position and total kinetic energy during collapse for dif-
ferent∆t M P M (series S1)

lc e l l Nmp p c ∆t M P M aτ AR Velocity update
10 cm

4 1.46 ·10−6 s

1.25 ·10−3

1 FLIP
7.69 cm 1.625 ·10−3

5.88 cm 2.125 ·10−3

5 cm 2.5 ·10−3

TABLE 5.4. – Parameters used to investigate the influence of the cell size (series S2)

the number of steps to be performed to reach a specific time. The corresponding time step
coefficient is thus aτ = 1.25 ·10−3.

5.3.2. Spatial convergence

Two other series of simulations are carried out to investigate the influence of the spatial
discretization. Since the MPM models the material using both a mesh and a particle descrip-
tion, the fineness of each has to be verified. In the series denoted S2, the influence of lc e l l is
determined using four values between 5 cm and 10 cm. For this series, the time step is set
to the same value for all simulations, therefore aτ has different values. The series denoted
S3 uses seven different values of Nmp p c , the squared values of the first seven integers, to
check the precision of the particle-based discretization. As mentioned in section 5.2.1, the
material points are placed within their cell at the roots of the Legendre’s polynomial in local
coordinates. The parameters of both series are summarized in tables 5.4 and 5.5.

Settling
The vertical main stress observed on figure 5.5 is consistent with the theoretical expecta-

tions (i.e. linear profile). However, on can notice on figure 5.5 (b) thatσy y is approximately
the same for all material points within a cell, which is certainly due to the use of linear shape
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lc e l l Nmp p c ∆t M P M aτ AR Velocity update

10 cm

1

1.46 ·10−6 s 1.25 ·10−3 1 FLIP

4
9

16
25
36
49

TABLE 5.5. – Parameters used to investigate the influence of the number of particle
per cell (series S3)

functions. Indeed, such a choice for the shape functions makes their gradient constant over
each cell, the force computed in equation 3.23 thus remains the same for all material points
inside a specific cell. Because of this, using a more refined mesh results in a smoother final
stress gradient, as seen in figure 5.5 (d).

The evolution of Ek during the settling, plotted on figure 5.6, is almost the same for all
the values of Nmp p c and lc e l l tested. Only slight differences are observed for Nmp p c = 1
and different values of lc e l l when Ek gets below 10−1 J, which is approximately 3% of the
maximum total kinetic energy E ma x

k . This becomes more noticeable when Ek drops under
10−3 J, thanks to the vertical logarithmic scale. The simulation with Nmp p c = 1 and lc e l l = 10
cm has the highest Ek and stands out compared to other simulations. Using Nmp p c ≥ 4 gives
about the same stabilization rate for lc e l l = 10 cm. However, Ek decreases faster as the mesh
resolution increases. These differences are nonetheless smaller than 10−3 J (roughly 0.03%
of E ma x

k ), and can thus be considered negligible.
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(a)σy y for Nmp p c = 1 and lc e l l = 10 cm (b)σy y for Nmp p c = 49 and lc e l l = 10 cm

(c)σy y for Nmp p c = 4 and lc e l l = 10 cm (d)σy y for Nmp p c = 4 and lc e l l = 5 cm

FIGURE 5.5. – Vertical stress at the end of the settling step for different spatial discre-
tization parameters (series S2 and S3)

Collapse
Figure 5.7 (a) shows that the final spreading length L x strongly depends on the spatial

discretization parameters. Indeed, the L x obtained for Nmp p c = 1 is roughly half the one
obtained for Nmp p c = 49. The mesh resolution has a less significant impact: L x for lc e l l = 7.69
cm is approximately 7% lower than the one obtained with lc e l l = 5 cm. Although the evolution
of L x with respect to lc e l l is not exactly monotonous, a decreasing tendency can be guessed.
The trend is much more pronounced for L x with respect to Nmp p c , which is monotonously
increasing at a rather similar rate for Nmp p c > 1. It appears that the influence of Nmp p c is less
important for Nmp p c ≥ 16, but it seems still far from convergence. Note that this important
difference might be caused by the voxelized point of view of the material’s geometry, not
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FIGURE 5.6. – Kinetic energy during the settling step for different spatial discretiza-
tion parameters (series S2 and S3)

only by the dependance of the MPM to Nmp p c .
Figure 5.7 (b) shows the total kinetic energy Ek during the collapse. Once again, the result

obtained with Nmp p c = 1 stands out: it has globally a higher and noisier Ek than any other
Nmp p c (notably between t = 1 s and t = 1.5 s). For Nmp p c ≥ 4, Ek is still a little noisy but
the difference with respect to Nmp p c = 49 is acceptable (at most 10% of the maximum Ek ).
Starting from Nmp p c = 9, Ek seems no more significantly impacted by Nmp p c . As a contrast
with the settling phase, Ek during the collapse reaches higher values for lower of lc e l l : the
maximum Ek is roughly 18% higher for lc e l l = 5 cm than for lc e l l = 10 cm. Overall, Ek is less
impacted than L x by the spatial discretization parameters.

Figure 5.8 gives the final configuration of the collapsed column for the extremum of Nmp p c

and lc e l l . One can see that for Nmp p c = 1 the final height of the column is 0.7 times the initial
one, while for Nmp p c ≥ 4 the column keeps the same height through the collapse. This
observation suggest that using Nmp p c = 1 is not enough for the collapse. Also, the deviatoric
strain εD increases with the fineness of the spatial discretization, i.e. for increasing Nmp p c

and decreasing lc e l l . Such an observation can be explained by the density of material points
in the column: it is more likely that some are located at extensively sheared areas when
Nmp p c increases.

Conclusion
These series of simulations showed that the spacial discretization parameters have no

significant influence on the settling phase, where material points are almost immobile. This
is certainly because the computation of the integration weights remains plausible during
the whole phase.

During the collapse, the number of material points per cell has a great impact on the final
runout distance. The use of Nmp p c = 1 is an extreme case which should be avoided, as it
strikingly differs from the results obtained for more material points. The mesh fineness also
affects the runout distance, although the effect is smaller than the one caused by Nmp p c .
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(a) L x

(b) Ek

FIGURE 5.7. – Right edge position and total kinetic energy during collapse for dif-
ferent spatial discretization parameters (series S2 and S3)
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(a) Nmp p c = 1 and lc e l l = 10 cm

(b) Nmp p c = 49 and lc e l l = 10 cm

(c) Nmp p c = 4 and lc e l l = 10 cm

(d) Nmp p c = 4 and lc e l l = 5 cm

FIGURE 5.8. – Deviatoric strain after collapse for different spatial discretization para-
meters (series S2 and S3) 140
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5.3.3. Influence of the velocity update scheme

As demonstrated in section 3.5, the strategy used to update the material points velocities
and positions affects the dissipative properties of the MPM. As a consequence, it has a great
impact on the dynamics involved in the collapse of the column. A series of simulations
is performed in order to ascertain the validity of our observations in section 3.5, which
concluded that the FLIP velocity update strategy leads to more realistic results. In this series,
denoted S4, 4 different velocity update schemes are tested with 4 values of AR . Table 5.6
presents the parameters used in this series. Note that because the FLIP velocity update
strategy is more sensitive to instabilities, the time step is set 4 times lower than with the three
other strategies.

Settling
Figure 5.9 shows the evolution of Ek during the settling, which is dampened differently

depending on the velocity update scheme. Two types of behaviours are observed: both FLIP-
based strategies oscillates several times before stabilization, and both PIC-based strategies
reach a stable state in an aperiodic fashion. When using FLIP-based strategies, Ek oscillates
at different frequencies depending on AR , which is expected since the material’s properties
are the same for all values of AR . Indeed, the velocity wave goes through the column at
the same speed no matter the columns geometry while the height of the column increases
proportionally with AR , a pseudo period is thus longer for high values of AR .

The final vertical stress obtained with PIC-based strategies differs significantly from the
one expected theoretically, as shown on figure 5.10. Indeed, PIC and APIC give a value of
σy y at the bottom of the column approximately 7% lower and 23% higher, respectively.Such
a difference was also observed for lower aspect ratios, it is thus probably related to the
observations made on Ek . The value ofσy y obtained for FLIP-based strategies is much more
consistent with the one expected, even if it is slightly dispersed for FLIP at the bottom of the
column. This might be due to a small instability that seems to arise only starting at a certain
value ofσy y : this inaccuracy is not observed for lower AR , as seen for instance figure on 5.5.

Collapse
The results of the collapse are presented in figure 5.11, where the last positions of the

material points are plotted, and figure 5.12, where Ek , Eme c h , and L x are shown. Note that
the collapse was considerably faster with the FLIP strategy, whereas the simulation had to
continue until a higher simulated time for PIC, APIC and NFLIP0.9 (8 times higher). Even
then, the column has not fully collapsed for PIC and NFLIP0.9, and it is still not stable for

lc e l l Nmp p c ∆t M P M aτ AR Velocity update

10 cm 4

1.46 ·10−6 s 1.25 ·10−3

0.6, 1, 2.4 and 3

FLIP

5.83 ·10−6 s 5 ·10−3
PIC

APIC
NFLIP0.9

TABLE 5.6. – Parameters used to investigate the influence of the velocity update
scheme (series S4)
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FIGURE 5.9. – Kinetic energy during the settling step for different velocity update
schemes and AR (series S4)

APIC. Figure 5.12 (a) shows that the collapse is specially slow for the PIC strategy whose Ek

is the lowest and decreases at the slowest rate. This can also be observed in figure 5.11 (b)
where the shape of the column is still almost the initial one, meaning that the collapse has
not yet really begun. The column simulated with NFLIP0.9 is further advanced in its collapse
(see figure 5.11 (c)), but it still has not reached a stable state (see figure 5.12 (a)). One can
guess that this significantly slow rate is brought by the 10% of PIC in the NFLIP0.9 velocity
computation. Surprisingly, the APIC strategy does not suffer that much from its PIC origin:
it can be observed on figure 5.12 (a) that the material points initially reach about the same
velocities than NFLIP0.9, but they then decrease at a slower rate. However, the collapse is
still too slow for our simulation to capture the fully collapsed column. Still, the final shape of
the column given in figure 5.11 (d) seems unrealistic because of its flat top. One should also
keep in mind that the value ofσy y obtained during the settling was not accurate, giving less
chances for the column to collapse in a natural way.

A common observation to all velocity update strategies is that the collapse speed is higher
for higher AR . Indeed, as the column’s height increases with AR , the total gravitational energy
to be converted into kinetic energy also increases. The APIC strategy behaves differently for
AR = 3 and for AR ≤ 2.4: log(Ek ) decreases at a constant rate and L x increases linearly for
low values of AR , but for AR = 3 the evolution of Ek is significantly noisier and L x seems
to reach a plateau. Again, this might be caused by the wrong value ofσy y obtained at the
end of the settling, which is likely to have a more important impact for AR = 3 sinceσy y is
higher.

As for the evolution of the mechanical energy during the collapse, all velocity update
schemes dissipate energy at a different rate. The dissipation rates observed are consistent
with the collapse rates:
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(a) FLIP (b) PIC

(c) NFLIP0.9 (d) APIC

FIGURE 5.10. –σy y during the settling step for different velocity update schemes and
AR = 3 (series S4)

Indeed, the plasticity of the Mohr-Coulomb model as well as the friction imposed on the
floor are more and more solicited as the column collapses, Eme c h thus necessarily depends
on the advancement of the collapse. Note however that the results for APIC with AR = 3 once
again display an uncommon evolution for Eme c h . More precisely, it is the only simulation for
which Eme c h increases at some point, right before drastically decreasing. Since this series of
simulations does not reach the fully collapsed state for most velocity update strategies, it
cannot be used to characterize the dissipative nature of the velocity update strategy. None-
theless, results are clear about the dynamics of the collapse: the velocities are unnaturally
dampened with PIC, NFLIP0.9 and APIC. The results for FLIP are comparable to the ones
from literature, as will be presented in the forthcoming section about the MPMxDEM results.
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(a) FLIP, at t ≈ 3.63 s (b) PIC, at t ≈ 29 s

(c) NFLIP0.9, at t ≈ 29 s (d) APIC, at t ≈ 29 s

FIGURE 5.11. – Deviatoric strain at the last collapse step for different velocity update
schemes and AR = 3 (series S4)
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(a) Ek
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FIGURE 5.12. – Energies and right edge position during collapse for different velocity
update schemes and AR (series S4)
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5.4. MPMxDEM results

A unique MPMxDEM simulation was performed in this study, using the discretization
parameters and velocity update strategies determined in the previous sections, giving a great
compromise between accuracy and computational time cost. Table 5.7 summarizes these
parameters.

Settling
Figures 5.13 (a), (b), and (c) show the mean values of the vertical stressσy y , the average

coordination number Zc , and the void ratio e at the end of the settling step. The stress
gradient is in accordance with the theoretical expectations as well as with the pure MPM
simulations. Naturally, this gradient echos on e which also decreases in a linear fashion from
top to bottom, but with a very slight variation of approximately 0.1%. It is worth noticing
that the RVEs on top kept their initial e , certainly because they were not solicited enough
for their density to change. As a contrast, the linear evolution ofσy y is not reflected on Zc ,
which is quite dispersed for the RVEs in the top mesh cells. Indeed, from y = 0.9 m and y = 1
m, Zc decreases horizontally by about 10%. This horizontal dispersion can also be observed
in the layer below, down to y = 0.8 m, but Zc then reaches a value close to the one it has for
the RVEs at the bottom of the column. Over the whole column Zc varies of approximately
16%, but as opposed to e , Zc decreased for all RVEs with respect to their initial state (for
which Zc ≈ 5.85). In particular, the RVEs on top are the ones where Zc changed the most,
of approximately 18%. The results presented in figure 2.33 (chapter 2) are consistent with
these observations: when the stress state of a granular assembly is low, the value of Zc is less
correlated to its stress state. These variations must then be caused by the randomness with
which grains get rearranged during the deformations waves the column is subjected to, see
figure 5.13 (d). These results thus show that the MPMxDEM coupling is able to capture the
chaotic nature of granular materials at the large scale.

Comparing the evolution of the total kinetic energy on figure 5.13 (d) with the ones from
pure MPM simulations, one can notice some quantitative differences: the column is stabilized
approximately two times faster in MPMxDEM, and the maximum kinetic energy is 80% lower.
This difference can be explained by the purely elastic behaviour of the Mohr-Coulomb model
for such low solicitations, for which the DEM model already begins to accumulate plastic
deformations because of rearrangements between grains.

lc e l l Nmp p c ∆t M P M aτ AR Velocity update
10 cm 4 1.46 ·10−6 s 1.25 ·10−3 1 FLIP

TABLE 5.7. – Parameters used to perform the MPMxDEM simulation
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(a)σy y (b) Zc

(c) e

(d) Ek

FIGURE 5.13. – Settling step for the MPMxDEM simulation
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Collapse
Unlike during pure MPM simulations, Ek has two peaks (see figure 5.14): the first peak, at

Ek ≈ 550 J for t ≈ 0.5 s, corresponds to the pure MPM peak, but Ek then sharply decreases
before increasing again until it reaches a second peak at Ek ≈ 400 J for t ≈ 0.8 s. Here again,
the purely elastic behaviour the Mohr-Coulomb model assumes for many material points
explains this difference in the collapse rate.

Figure 5.15 shows εD , Zc , P and e when the column has completely collapsed, and the
velocities of all material points during the collapse are given in figure 5.16. The repartition
of εD throughout the column is similar to the one in pure MPM simulations, although it
reaches values approximately 6% lower. This can be explained by the higher spreading length
obtained with pure MPM, specially since the most sheared RVEs are the ones that have been
spread on the right of the column.

Both Zc and P present the same pattern: in the cells where the material points have not
significantly moved, the material point at the bottom right is where Zc and P are the highest.
Other material points have in fact become a granular cloud, for which the mean stress is
equal to 0 because there is no contact, prohibiting the use of the Love-Weber formula (see
equation 4.7). This observation is intriguing because the state of these RVEs should not be
affected as strongly by the collapse. This spurious lost of contacts can only be explained by
the propagation of a velocity wave which periodically dilates these RVEs. Indeed, since the
equation of motion is solved on grid points after transporting the velocities of the material
points, any disturbance is automatically propagated to the neighboring mesh cells. RVEs in
the bottom left part of the column are then slightly dilated horizontally but, since the weight
of the column above them decreased, they never get sufficiently constrained to recover their
contacts.

This inconsistency between the deformations of a RVE and its location in the column is also
causing non-physical behaviours for the material points subject to important displacements.
The example of the RVE n◦386, initially located on the right edge of the column (see figure
5.17), is a good illustration of this issue. From t ≈ 1.66 s, when it finds itself alone in its
mesh cell with the neighboring cells being empty, its velocity is abnormally pointing upward
because the material point is still in the process of "bouncing" on the ground (see figure
5.16). Even though this phenomena was also observed in pure MPM, this RVE is so much
deformed that eventually the usual microscopic characterization parameters take aberrant
values. Figure 5.18 emphasized this point with a visualization of the RVE n◦386 at different
times during the collapse. Indeed, the void ratio in this RVE starts to oscillate at t ≈ 1.7 s to
reach enormous values, up to e ≈ 63, see figure 5.19. On this figure, one can observe that
when the RVE n◦386 gets isolated, its void ratio starts to have the same evolution as the height
of a bouncing object, which is consistent with figure 5.16. Note however that the simulation
stopped before e had a chance to stabilize for this RVE, and the value it tends toward is
rather plausible (e ≈ 0.696). The FLIP velocity update strategy is certainly responsible for
this extreme state the RVE n◦386 is in: the velocity attributed to the material point is different
from the one used to move it (see table 3.1). As a consequence, the strain rate computed in
equation 3.36 is not perfectly consistent with the location of the material point. A solution
to address this problem could be to use the actual displacement velocity of the material
point to compute the stress rate imposed to the RVE in equation 3.36, instead of the velocity
attributed to it for the next MPM iteration.
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(a) Ek

(b) L x

FIGURE 5.14. – Kinetic energy and right edge position during collapse for the
MPMxDEM simulation

Computational aspects
This simulation, containing in total 800, 000 discrete elements, ran for approximately 44

days on a server machine equipped with 2 Intel® Xeon® Platinum 8270 CPUs @ 2.70GHz
offering a number of 104 CPU cores, and 1.51 TB of RAM. In terms of memory, a simulation
of this scale is not significantly expensive, as it requires roughly 48 GB of RAM. As for the
computation time, it directly depends on the amount of deformation imposed to all RVEs.
Indeed, the latter determines the number of DEM iterations to perform in order to keep
the deformation at a specific quasi-static threshold In , equal to 10−2 for the simulation
presented here (see equation 4.1). Figure 5.20 illustrates this dependance by comparing the
deformation a RVE should reach at a specific time (red stars) with the maximum deformation
it can reach in one DEM iteration (blue dots). One can see that the RVE n◦0, located at the
bottom left of the column (see figure 5.17), is almost never deformed enough to require more
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than 1 DEM iteration per MPM iteration. As a contrast, the previous RVE n◦386 often has to
perform many DEM iterations in order to reach the goal imposed by the MPM, approximately
103 DEM iterations per MPM iteration. Moreover, this RVE n◦386 being a cloud during a
substantial part of the simulation, the maximum strain rate usable within the quasi-static
limits is set to the lowest value (see equation 4.3). The influence of P on the strain rate can
be observed on figure 5.20: the RVE n◦0 always reaches higher deformations during 1 DEM
iteration because it is significantly more constrained than RVE n◦386 (as a reminder, both
use the same∆t D E M ).

On this same figure, the deformation achievable per DEM iteration is also plotted for
an inertial number of In = 10−3 (orange dots) and for the strain rate imposed by the MPM
(green diamonds), which would correspond to dropping out the assumption of quasi-staticity
at the microscopic scale. One can see that if In = 10−3 was used instead of In = 10−2, the
computation would have been considerably longer since RVEs would have had to perform 10
times as many DEM iterations. Although, this is not always the case: RVEs like the n◦0 have
at the very beginning and at the end of the simulation a deformation goal so low that even
In = 10−3 is high enough to achieve it in 1 DEM iteration. Nonetheless, using the MPM strain
rate would have been even slower for most of the computation, specially when deformations
are low. An exception can somewhat be observed for our RVE n◦386 between t ≈ 1 s and t ≈ 3
s. Indeed, when P is low and∆εma x high, the strain rate obtained for In = 10−2 is sometimes
slightly lower than the MPM strain rate. The In = 10−2 assumption at the microscopic scale
thus does not significantly change the strain rate for extensively deformed RVEs, and it is
considerably cheaper to impose it for other RVEs.

The computation speed Sc (in MPM iterations per second) is plotted on figure 5.21 along-
side the average number of DEM iterations the RVEs performed between two data points

∆N D E M
i t , which corresponds to 12, 500 MPM iterations. The effect the quantity of deforma-

tion has on Sc is particularly noticeable for t ≤ 0.5 s, where the number of DEM iterations to
be performed increases from 0 to approximately 160 DEM iterations per MPM iterations,
and Sc dwindles from about 5.5 iter/s to roughly 0.25 iter/s. Speed of this magnitude are
observed until t ≈ 2 s, which corresponds to the time at which the velocities become negli-
gible compared to their maximum, see figure 5.14 (a). Figure 5.22 shows that Ek is closely

related to∆N D E M
i t , which could be intuitively guessed by comparing the DEM and MPM

computational time costs. However, two distinct trends can be observed: one for t ≤ 0.5 s, as
Ek increases because the column collapses, and one for t > 0.5 s, as Ek decreases when the
column stabilizes.

150



5. Multi-scale granular column collapse – 5.4. MPMxDEM results

(a) εD

(b) Zc , the grey color indicates that there is no contact

(c) P

(d) e
FIGURE 5.15. – Final measurement on the collapsed column for the MPMxDEM si-

mulation
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(a) t ≈ 0.201 s

(b) t ≈ 0.602 s

(c) t ≈ 0.802 s

(d) t ≈ 1.70 s

(e) t ≈ 3.63 s

FIGURE 5.16. – Material points velocities during the collapse for the MPMxDEM si-
mulation
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(a) Inital positions

(b) Final positions

FIGURE 5.17. – Locations of RVEs n◦0 and n◦386 within the column

(a) t = 0 s (b) t ≈ 0.346 s (c) t ≈ 2.41 s (d) t ≈ 3.63 s

FIGURE 5.18. – RVE n◦386 at different times during the collapse
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FIGURE 5.19. – Void ratio of the RVE n◦386 during the collapse

(a) For RVE n◦0 (b) For RVE n◦386

FIGURE 5.20. – Deformation reachable with 1 DEM step for different conditions,
compared to the deformation goal
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(a) Computation speed Sc (b) Number of DEM iterations between each data point avera-

ged over all material points∆N D E M
i t

FIGURE 5.21. – Computation speed and number of DEM iterations performed during
the collapse

FIGURE 5.22. – Ek with respect to∆N D E M
i t during collapse
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literature

5.5. Comparison with results from the literature

The spreading lengths obtained with FLIP in pure MPM (series S4) are plotted alongside
the one obtained in MPMxDEM and compared to results from the literature in figure 5.23.
The latter include:

— experimental results conducted on glass beads in [Lajeunesse, Monnier, and Homsy
2005];

— numerical results performed in [Crosta, Imposimato, and Roddeman 2009]with a FEM-
based hybrid Eulerian-Lagrangian method, in conjunction with the Mohr-Coulomb
model ;

— numerical results obtained in [Girolami, Hergault, Vinay, et al. 2012] using a 3D DEM
model, with a viscous elasto-plastic contact law ;

— numerical results from [Xiong, Yin, Nicot, et al. 2021], obtained with the SPH method
and the micromechanical 3D-H model (denoted in this thesis SPHx3D-H).

A first observation is that our columns take approximately 20% more time to reach their
final length, both with pure MPM and MPMxDEM. The MPM might be to blame for this delay,
considering that its other formulations (i.e. different velocity update strategies) lead to even
longer spreading times, as previously shown in figure 5.12 (c). As a matter of fact, this lower
collapse rate might originate from the lack of conservation of the angular momentum that
FLIP necessarily suffers from, according to the creators of the APIC strategy [Jiang, Schroeder,
Selle, et al. 2015]. This paper states that even though FLIP effectively eliminates most of the
energy dissipation observed with PIC, it cannot fully conserve the angular momentum. The
different collapse rates observed in figure 5.12 are consistent with the conclusions of [Jiang,
Schroeder, Selle, et al. 2015], where the APIC strategy is found to conserve the energy better
than PIC but not as much as FLIP. The APIC-inspired ASFLIP strategy, mentioned in [Fei,
Guo, Wu, et al. 2021], should accurately conserve the angular momentum and thus may be a
solution to eliminate this artificial damping observed with the MPM.

Figure 5.23 also shows that the final spreading length is overestimated in MPM, with
respect to collapses performed with other numerical models for the same AR . For instance,
with AR = 1, the pure MPM simulation gives a final length approximately 55% higher than the
results presented in [Crosta, Imposimato, and Roddeman 2009], while the results from [Xiong,
Yin, Nicot, et al. 2021] are only approximately 23% higher. The final length observed with
the MPMxDEM model are closer to the results from [Crosta, Imposimato, and Roddeman
2009], although it is still 38% higher, and 19% higher than the results from [Xiong, Yin, Nicot,
et al. 2021]. The relatively similar final lengths obtained with the MPMxDEM model and the
SPHx3D-H model is quite comforting, since both are based on a description of the material
at the grain scale. Moreover, these SPHx3D-H results are in great agreement with the pure
DEM results from [Girolami, Hergault, Vinay, et al. 2012] for both AR = 1 and AR = 3, even
though pure DEM columns seems to stabilize faster and thus lead to a slightly lower final eL
(at most 7.5%). However, during the collapse, both the SPHx3D-H and pure DEM columns
are wider than the MPMxDEM ones, until et ≈ 4. In fact, the widths of the former are closer
to the pure MPM column until et ≈ 2.5. It is worth noting that our simulation uses the same
friction coefficient on the floor than [Xiong, Yin, Nicot, et al. 2021], which is µ= 0.3. Here
again, the non-physical dissipation present in MPM simulations might be the cause of this
difference.

According to the experimental results from [Lajeunesse, Monnier, and Homsy 2005], the
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real collapsing columns are clearly thinner than the pure MPM ones, more precisely 41%
thinner for AR = 3. However, for AR = 0.6, this difference is restricted to approximately 13%,
and the experimental eL is higher than the pure MPM one for the most part of the collapse.
Note that our measurement of eL includes all material points in the initial column, even if
they get separated from the rest of the column (see for instance figure 5.16 (d) at x = 2.6
m). This choice could possibly lead to some over-estimation compared to the experiments
where isolated grains are not considered.
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Lajeunesse et al. 2004
(experimental, with glass beads)
Crosta et al. 2009
(FEM-based Eulerian-Lagrangian method
with the Mohr-Coulomb model)
Girolami et al. 2012
(Pure 3D-DEM)
Xiong et al. 2021
(SPH with the 3D-H model)
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(MPM with the Mohr-Coulomb model, FLIP)
This study
(MPMxDEM, FLIP)
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AR=2.4
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FIGURE 5.23. – Spreading length of the collapsing column compared to literature

5.6. Conclusion

This chapter presented the performances of the MPMxDEM coupling in the case of a large
scale granular column collapse, after pointing out the significant importance of some MPM
parameters (i.e. the number of material point per mesh cell and the motion integration stra-
tegy). The latter should be carefully selected in order to limit the spurious energy dissipation
observed in MPM, and tend toward a result independent of the spatial discretization. Overall,
the use of DEM as a descriptor for the material’s behaviour is quite promising thanks to its
efficient representation of the material and the microscopic insights it makes available. Such
an approach would certainly benefit the study of geotechnical structures subject to large
deformations, although it still requires a considerable amount of computing ressources.
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Conclusion

This study has numerically investigated granular materials’ behaviour using two numerical
methods, namely DEM and MPM. Both are described and used in different configurations,
where DEM’s capability to accurately describe granular materials is highlighted. A coupling
of both methods is then presented, and shown able to reach large scales thanks to MPM’s
continuous media assumption, while keeping the DEM precision to determine the material’s
behaviour.

DEM and MPM separate studies

First, DEM was used to determine the sensibility of the angle of repose formed by a heap of
grains with respect to several microscopic parameters for two different geometries. For such
a purpose, numerical methods were developed to compute automatically and accurately
the angle of repose and the void ratio in complex granular assemblies. The grains convexity
has been found to have a substantial impact on the angle of repose: if the grains have some
concavities, they are more likely to interlock with each others, leading to a higher angle
of repose (14% in this study). The number of grains in the heap was also found to have a
significant influence on the angle of repose. Indeed, the latter decreases as the number of
particles increases, even for more than 10,000 particles which is usually considered enough
to constitute a RVE. On the contrary, the geometry of the heap has a small impact on the final
angle of repose: cylindrical heaps give a lower angle of repose than cubical heaps, but only by
approximately 3.59% in this study. Therefore the angle of repose is not an accurate description
of the material properties and should not be used to characterize the material’s behaviour.
It also has been shown that the grain’s density and inter-particle tangential stiffness have
no significant influence on the angle of repose. Its determination can thus be performed by
using more convenient values for these parameters, i.e. those giving a higher time step. The
material used to investigate the angle of repose was also characterized through a series of
triaxial tests, under different confining pressures and for various initial densities. Particles
having 0 or 1 contact, the rattlers, are shown to hinder the determination of the state of a
granular material and should be considered as void, as suggested in the literature.

Second, the formulation of the MPM as implemented in CB-Geo MPM was recalled,
presenting different formulation choices, namely the stress and velocity update strategies.
The conservative nature of the MPM was investigated energy-wise, for different formulation
choices. The USL stress update scheme was found to be more dissipative than the USF
scheme, which is in agreement with the literature. As for the velocity update strategy, the
FLIP scheme was found able to conserve the energy where other PIC-based schemes were
significantly dissipative. As for the NFLIP strategy, it was found to increase the global energy
in the investigated configuration. Ultimately, the best combination of MPM schemes were
determined to be the USF stress update scheme used alongside the FLIP velocity update

158



5. Multi-scale granular column collapse – 5.6. Conclusion

strategy.
These observations were confirmed on granular column collapse simulations performed

with the Mohr-Coulomb model. First, the best set of MPM discretization parameters were
determined through a convergence study, then a series of simulations was performed in
order to observe the effect of the velocity update strategies on the collapse. The dissipative
properties of PIC-based strategies are shown to considerably decrease the collapse rate of
the column. Although the FLIP strategy was found to lead to collapse rate almost similar to
the ones found in the literature (for both numerical and experimental results), it allows the
column to spread to significantly larger lengths (at best 19% larger).

MPMxDEM coupling

A formulation of a multi-scale MPMxDEM coupling was given for both quasi-static and
dynamic problems, which was implemented during this thesis. As part of this implementa-
tion, a Python module was developed to simplify CB-Geo MPM’s user interface for both pure
MPM and MPMxDEM simulations. Deeper technical aspects on how the MPM and DEM
codes were combined together are given, with details on the implementation of the paralleli-
zation. Our code is next characterized in terms of performances on a 104 CPU threads server
machine, considering the speed-up obtained in various situations. It is shown that the best
speed-up for our MPMxDEM implementation is 24 when using 30 CPU threads, in the case
of a simple 27 material points simulation.

A validation of the coupling is also performed on a one cell MPMxDEM triaxial test,
for which global results are almost perfectly in accordance with pure DEM simulations in
terms of deviatoric stress. As for volumetric deformations, the MPMxDEM model is able to
describe their evolution although it overestimates them by approximately 20%. These results
also revealed that the main stresses were not homogenous between the material points.
However, the average number of coordination and the ratio of the axial and lateral stresses
are homogenous throughout the sample.

Finally, a rather large MPMxDEM granular column collapse simulation was performed
over 44 days on a server machine, with the best set of parameters determined on pure
MPM simulations. The results highlight an inconsistency between the deformations a RVE is
subjected to and its location in the column, which is certainly caused by the FLIP velocity
update strategy. This issue causes many RVEs to reach unrealistic states, turning them into
a contact-less cloud of particles. However, the final column width is closer to results from
the literature than pure MPM results, confirming the interest of using DEM, rich in micro-
mechanical information, to describe the material’s behaviour. Incidentally, an analysis of
the computational cost is also provided. Indeed, because of the quasi-static assumption
made at the microscopic scale, the computational time strongly depends on the amount of
deformations involved in the simulation, through the number of DEM iteration each RVE
has to perform. As a matter of fact, when RVEs are not significantly solicited the computation
can be approximately 20 faster than when they are extensively deformed.
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5. Multi-scale granular column collapse – 5.6. Conclusion

Perspectives

An optimization of the MPMxDEM performances would allow to use a better MPM dis-
cretization, in terms of mesh fineness and number of material points per cell, for the same
computational time. For instance, a better parallelization could be achieved by testing out
in several configurations the available parallelization strategies (i.e. OpenMP and MPI) with
different parameters. The best performances might be obtained using parallelization both
at the MPM and DEM scales, with a suitable CPU threads repartition.

Future work could focus on combining DEM as a descriptor of the material’s behaviour
with improved MPM formulations. The latter includes for instance the GIMP methods, or
the B-spline shape functions, both able to make the method more accurate by preserving the
continuity of the material points’ stress contribution to grid nodes through a cell-crossing
event. The use of a better velocity update strategy could also significantly improve the
MPMxDEM coupling, as issues with the granular collapse simulations were attributed to
the FLIP strategy. A promising candidate is the ASFLIP strategy, which preserves the angular
momentum while based on the FLIP strategy, unlike the APIC scheme. The capacity of
MPM to handle large deformations could also be strengthened by considering an objective
stress rate, such as the Jaumann or Green-Naghdi stress rate. Indeed, in our current MPM
implementation the stress rate depends on the frame used to describe it when rigid body
rotations occurs, which is obviously non-physical.

Another possible improvement to our coupling could be to replace MPM by an alternative
large scale method, for instance the FEMLIP method, also capable of handling large defor-
mations. Its advantage over MPM lies in its use of a generalized formulation of the Gaussian
quadrature in each element, giving precise values to the integration weights. Such a method
combined with DEM is expected to give accurate results even in simulations where material
points are subject to important displacements.

160



Bibliographie

Aboul Hosn, Rodaina, Luc Sibille, Nadia Benahmed, et al. (2017). “Discrete numerical
modeling of loose soil with spherical particles and interparticle rolling friction”.
In: Granular matter 19.1, pp. 1–12 (cit. on pp. 28, 31, 33, 128, 130, 131).

Ainsworth, Mark and Charles Parker (2021). “Mass conserving mixed hp-FEM ap-
proximations to Stokes flow. Part II: Optimal convergence”. In: SIAM Journal on
Numerical Analysis 59.3, pp. 1245–1272 (cit. on p. 37).

Akbar, Fathan, Elfi Yuliza, Nadya Amalia, et al. (2022). “The slope of dry granular
materials surface is generally curved”. In: Granular Matter 24.2, pp. 1–11 (cit. on
pp. 47, 58).

Angelidakis, Vasileios, Sadegh Nadimi, Masahide Otsubo, et al. (2021). “CLUMP:
a code library to generate universal multi-sphere particles”. In: SoftwareX 15,
p. 100735 (cit. on pp. 49, 52).

Angelidakis, Vasileios, Sadegh Nadimi, and Stefano Utili (2021). “SHape Analyser
for Particle Engineering (SHAPE): Seamless characterisation and simplification of
particle morphology from imaging data”. In: Computer Physics Communications
265, p. 107983 (cit. on p. 52).

Antypov, D and JA Elliott (2011). “On an analytical solution for the damped Hertzian
spring”. In: EPL (Europhysics Letters) 94.5, p. 50004 (cit. on p. 54).

Babuška, Ivo and BQ Guo (1992). “The h, p and hp version of the finite element
method; basis theory and applications”. In: Advances in Engineering Software
15.3-4, pp. 159–174 (cit. on p. 37).

Bandini, V and Matthew Richard Coop (2011). “The influence of particle breakage
on the location of the critical state line of sands”. In: Soils and foundations 51.4,
pp. 591–600 (cit. on pp. 83, 85).

Bardenhagen, Scott G and Edward M Kober (2004). “The generalized interpolation
material point method”. In: Computer Modeling in Engineering and Sciences 5.6,
pp. 477–496 (cit. on pp. 39, 96).

Bardenhagen, SG (2002). “Energy conservation error in the material point method
for solid mechanics”. In: Journal of Computational Physics 180.1, pp. 383–403
(cit. on pp. 100, 106).

Bathe, KJ and H Saunders (1984). “Finite Element Procedures in Engineering Analy-
sis”. In: (cit. on p. 36).

Been, Ken and Mike G Jefferies (1985). “A state parameter for sands”. In: Géotech-
nique 35.2, pp. 99–112 (cit. on p. 35).

Bolton, MD (1986). “The strength and dilatancy of sands”. In: Geotechnique 36.1,
pp. 65–78 (cit. on p. 47).

161



Bibliographie

Bono, John P de and Glenn R McDowell (2022). “Some important aspects of mod-
elling clay platelet interactions using DEM”. In: Powder Technology 398, p. 117056
(cit. on p. 23).

Boon, CW, GT Houlsby, and S Utili (2013). “A new contact detection algorithm for
three-dimensional non-spherical particles”. In: Powder technology 248, pp. 94–
102 (cit. on pp. 24, 50, 53).

Brackbill, Jeremiah U and Hans M Ruppel (1986). “FLIP: A method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimensions”. In: Journal
of Computational physics 65.2, pp. 314–343 (cit. on pp. 40, 100).

Brinkgreve, Ronald BJ (2005). “Selection of soil models and parameters for geotech-
nical engineering application”. In: Soil constitutive models: Evaluation, selection,
and calibration, pp. 69–98 (cit. on pp. 34, 35).

Bui, Ha H and Giang D Nguyen (2021). “Smoothed particle hydrodynamics (SPH)
and its applications in geomechanics: From solid fracture to granular behaviour
and multiphase flows in porous media”. In: Computers and Geotechnics 138,
p. 104315 (cit. on p. 38).

Burland, JB (1965). “The yieding and dilation of clay”. In: correspondence, Géotech-
nique 15.1, pp. 211–214 (cit. on p. 35).

Chambon, Guillaume, R Bouvarel, D Laigle, et al. (2011). “Numerical simulations of
granular free-surface flows using smoothed particle hydrodynamics”. In: Journal
of Non-Newtonian Fluid Mechanics 166.12-13, pp. 698–712 (cit. on p. 38).

Chang, CS and P-Y Hicher (2005). “An elasto-plastic model for granular materi-
als with microstructural consideration”. In: International journal of solids and
structures 42.14, pp. 4258–4277 (cit. on p. 41).

Chareyre, B, L Briançon, and Pascal Villard (2002). “Theoretical versus experimental
modeling of the anchorage capacity of geotextiles in trenches”. In: Geosynthetics
International 9.2, pp. 97–123 (cit. on pp. 85, 131).

Chareyre, Bruno, Andrea Cortis, Emanuele Catalano, et al. (2012). “Pore-scale mod-
eling of viscous flow and induced forces in dense sphere packings”. In: Transport
in porous media 94.2, pp. 595–615 (cit. on p. 27).

Chen, Hao, Shiwei Zhao, and Xiaowen Zhou (2020). “DEM investigation of angle
of repose for super-ellipsoidal particles”. In: Particuology 50, pp. 53–66 (cit. on
p. 47).

Chessa, Jack, Patrick Smolinski, and Ted Belytschko (2002). “The extended finite
element method (XFEM) for solidification problems”. In: International Journal
for Numerical Methods in Engineering 53.8, pp. 1959–1977 (cit. on p. 37).

Chu, J (1995). “An experimental examination of the critical state and other similar
concepts for granular soils”. In: Canadian Geotechnical Journal 32.6, pp. 1065–
1075 (cit. on pp. 83, 85).

Chung, WJ, JW Cho, and T Belytschko (1998). “On the dynamic effects of explicit FEM
in sheet metal forming analysis”. In: Engineering Computations (cit. on p. 36).

162



Bibliographie

Cifuentes, AO and A Kalbag (1992). “A performance study of tetrahedral and hexa-
hedral elements in 3-D finite element structural analysis”. In: Finite Elements in
Analysis and Design 12.3-4, pp. 313–318 (cit. on p. 36).

Cohen, Jonathan D, Ming C Lin, Dinesh Manocha, et al. (1995). “I-collide: An in-
teractive and exact collision detection system for large-scale environments”. In:
Proceedings of the 1995 symposium on Interactive 3D graphics, 189–ff (cit. on p. 29).

Courant, R (1943). “Variational methods for the solution of problems of equilibrium
and vibrations”. In: Bulletin of the American Mathematical Society 49.1, pp. 1–23
(cit. on p. 35).

Crosta, GB, S Imposimato, and D Roddeman (2009). “Numerical modeling of 2-
D granular step collapse on erodible and nonerodible surface”. In: Journal of
Geophysical Research: Earth Surface 114.F3 (cit. on pp. 126, 127, 156).

Cundall, Peter A and Otto DL Strack (1979). “A discrete numerical model for granular
assemblies”. In: Géotechnique 29.1, pp. 47–65 (cit. on pp. 23, 24).

Dagum, Leonardo and Ramesh Menon (1998). “OpenMP: an industry standard API
for shared-memory programming”. In: IEEE computational science and engineer-
ing 5.1, pp. 46–55 (cit. on p. 31).

De Josselin de Jong, G (1969). “Etude photoelastique d’un empilement de disques”.
In: Cah. Grpe fr. Etud. Rheol. 2, pp. 73–86 (cit. on p. 23).

Drucker, Daniel Charles and William Prager (1952). “Soil mechanics and plastic
analysis or limit design”. In: Quarterly of applied mathematics 10.2, pp. 157–165
(cit. on p. 35).

Dufour, Frédéric (2002). “Développements de la méthode des éléments finis avec des
points d’intégration Lagrangiens: Applications à la géomécanique”. PhD thesis.
Ecole Centrale de Nantes (ECN); Université de Nantes (cit. on p. 38).

Duncan, James M and Chin-Yung Chang (1970). “Nonlinear analysis of stress and
strain in soils”. In: Journal of the soil mechanics and foundations division 96.5,
pp. 1629–1653 (cit. on p. 35).

Duriez, Jerome and É Vincens (2015). “Constitutive modelling of cohesionless soils
and interfaces with various internal states: An elasto-plastic approach”. In: Com-
puters and Geotechnics 63, pp. 33–45 (cit. on p. 83).

Duriez, Jérôme and Stéphane Bonelli (2021). “Precision and computational costs of
Level Set-Discrete Element Method (LS-DEM) with respect to DEM”. In: Comput-
ers and Geotechnics 134, p. 104033 (cit. on pp. 24, 32, 51, 53, 56).

Duriez, Jérôme and Cédric Galusinski (2021). “A Level Set-Discrete Element Method
in YADE for numerical, micro-scale, geomechanics with refined grain shapes”. In:
Computers & Geosciences 157, p. 104936 (cit. on pp. 24, 30, 32, 51).

Duriez, Jérôme and Richard Wan (2017). “Contact angle mechanical influence in
wet granular soils”. In: Acta Geotechnica 12.1, pp. 67–83 (cit. on p. 27).

Duverger, Sacha, Vasileios Angelidakis, Jérôme Duriez, et al. (2023). “Methodological
and physical aspects of angle of repose studies”. In: To be decided. En phase de
finalisation (cit. on p. 3).

163



Bibliographie

Duverger, Sacha and Jérôme Duriez (Aug. 2021). PyCBG, a python module for gener-
ating CB-Geo MPM input files. Version 1.1.4. DOI: 10.5281/zenodo.5179973
(cit. on pp. 3, 115).

Duverger, Sacha, Jérôme Duriez, Pierre Philippe, et al. (2021). “Rattlers’ involve-
ment for possibly looser critical states under higher mean stress”. In: EPJ Web of
Conferences. Vol. 249. EDP Sciences, p. 11002 (cit. on pp. 3, 33, 77, 78).

– (2022). “Multi-scale granular mechanics using MPM x DEM”. In: Congrès Français
de Mécanique (CFM-2022) (cit. on p. 3).

Ellis, EA and SM Springman (2001). “Modelling of soil–structure interaction for a
piled bridge abutment in plane strain FEM analyses”. In: Computers and Geotech-
nics 28.2, pp. 79–98 (cit. on p. 35).

Eymard, Robert, Thierry Gallouët, and Raphaèle Herbin (2000). “Finite volume
methods”. In: Handbook of numerical analysis 7, pp. 713–1018 (cit. on p. 27).

Fei, Yun, Qi Guo, Rundong Wu, et al. (2021). “Revisiting integration in the material
point method: a scheme for easier separation and less dissipation”. In: ACM
Transactions on Graphics (TOG) 40.4, pp. 1–16 (cit. on pp. 40, 41, 156).

Ferellec, Jean-Francois and Glenn R McDowell (2010). “A method to model realistic
particle shape and inertia in DEM”. In: Granular Matter 12.5, pp. 459–467 (cit. on
p. 49).

Fu, Chuyuan, Qi Guo, Theodore Gast, et al. (2017). “A polynomial particle-in-cell
method”. In: ACM Transactions on Graphics (TOG) 36.6, pp. 1–12 (cit. on p. 40).

Garau, Eduardo M, Pedro Morin, and Carlos Zuppa (2011). “Convergence of an adap-
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A. A global stress tensor accounting for gravity

In order to know the stress state of the heap, one has to compute the stress tensor from the
contact forces of all the contacts. Moreover, gravity is present in the simulations and is the
origin of the movement, gravitational forces should thus be accounted for. In this subsection:

— S is the set containing all particles
— Ce x t is the set containing all the contacts between particles and boundaries
— the upper-script ·p specifies that the quantity is taken for a particle p
— the upper-script ·c specifies that the quantity is taken for a contact c
— the sub-script ·,xi

denotes the derivative with respect to xi

— the total volume of the heap is noted V and can be split: V =
⋃

p∈SV p

— the number of underline denotes the order of a tensor (· for vectors and · for matrices)

— the Kronecker symbol δi j and Einstein’s notation will be used
— classical sign convention for stress is adopted, where the traction vector t =σ.n applies

onto the system for an outwards normal n
The global stress tensorσg l o b can be expressed according to the local stress tensorσ:

σg l o b =
1

V

∫

V

σd V (.1)

One can compute σ using the divergence of the third order tensor σ ⊗ x (with x the
position of any point in V with respect to a given, even though arbitrary, origin):

�

σi k x j

�

,k
=σi k ,k x j +σi k x j ,k (.2)

Since the measurement is made when the heap is at the equilibrium, one has the following
equation, noting g the gravitational acceleration and ρ the particle’s density:

σi j , j =−ρg i (.3)

Moreover, x j ,k =δ j k , thus:
σi k x j ,k =σi j (.4)

By replacing equation .3 and equation .4 in equation .2 one gets:

σi j =
�

σi k x j

�

,k
+ρg i x j (.5)

Equation .1 then gives:

σ
g l o b
i j =

1

V

∫

V

�

�

σi k x j

�

,k
+ρg i x j

�

d V (.6)

=
1

V

∑

p∈S

∫

V p

�

�

σi k x j

�

,k
+ρg i x j

�

d V because V =
⋃

p∈S
V p (.7)

=
1

V

∑

p∈S

∫

V p

�

σi k x j

�

,k
d V

︸ ︷︷ ︸

σC
i j

+
1

V

∑

p∈S

∫

V p

ρg i x j d V

︸ ︷︷ ︸

σG
i j

(.8)
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Particles having an homogeneous density, one furthermore has, with m p and x p the mass
and center of p :

∫

V p

ρx j d V =m p x
p
j (.9)

The part ofσ due to gravity (σG
i j ) can thus be written:

σG
i j =

1

V

∑

p∈S
m p g i x

p
j (.10)

As for the part due to contacts (σC
i j ), Green-Ostrogradski theorem gives:

σC
i j =

1

V

∑

p∈S

∫

∂ V p

σi k x j nk d S (.11)

Considering the traction vector t =σ.n , one has:

σC
i j =

1

V

∑

p∈S

∫

∂ V p

ti x j d S (.12)

The traction vector is not nil only on contact points. Since the system is closed, contact
forces between particles cancel each other leaving only forces comming from outside of V .
As a consequence, one can only consider the contact forces between particles and walls. For
these contacts f c denotes the contact force exerted by the wall on the particle and x c the
contact point. One has:

σC
i j =

1

V

∑

c∈Ce x t

f c
i x c

j (.13)

Finally, the global stress tensor for a stable heap of particles made of homogeneous par-
ticles and subjected to gravity is:

σ
g l o b
i j =

1

V

∑

c∈Ce x t

f c
i x c

j +
1

V

∑

p∈V

m p g i x
p
j (.14)

The mean stress can then be computed as p =
Tr(σg l o b )

3
.

B. Wall’s velocity influence

In both configurations a wall holding the particles moves in order to let them fall. The
way particles fall depends on the velocity at which the wall moves, but once the heap is
stabilized the measurement of the AOR could be the same no matter the velocity. This could
allow the increase of the wall’s velocity Vw a l l and thus the decrease of the time cost. To
know the influence of Vw a l l on the AOR, a series of simulations, CLP3, is performed with the
clump model. Its parameters are given in table .1. For each value of the speed-up factor, 10
simulations are performed.
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Configuration Np a r t ρ Vw a l l /V
r e f e0 Number of samples

Plane strain 2150
10 000 k g /m 3 10i for i ∈ ¹−2, 4º 0.603±0.010

10
Axisymmetric 2468 10i for i ∈ ¹0, 4º 0.693±0.010

TABLE .1. – Parameters of heap simulations investigating Vw a l l influence (CLP3 series,
120 simulations in total)
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10−2 10−1 100 101 102 103 104

Vwall/V
ref
wall

103

104

105

T
co
m
p

(s
)

Plane strain

Axisymmetric

(b) Time cost

FIGURE .1. – Wall’s velocity influence on the angle of repose and on the time cost -
CLP3

Figure .1 shows the results of CLP3. The dots correspond to the mean measurement over
the 10 simulations performed with the same Vw a l l and the error bars represent the standard
deviation. One can see that in the plane strain configuration Vw a l l doesn’t have an effect on

α. However, in the axisymmetric configuration α decreases sharply on 10<Vw a l l /V
r e f

w a l l <

100. In the plane strain configuration, one can thus use Vw a l l /V
r e f

w a l l = 10 000 but in the

axisymmetric configuration one should settle for Vw a l l /V
r e f

w a l l = 10. Table .2 gives a summary
of the value of Vw a l l used throughout all AOR simulation in this paper.

Series CLP1 CLP2 CLP4 CLP5 PP1 PP-CLP

Vc y l /V
r e f

c y l 1 1 10 10 - -
Vp a r /V

r e f
p a r 1 1 104 104 103 103

TABLE .2. – Wall velocity for all series of simulations
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