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Integrable systems, Frobenius manifolds and cohomological field theories

Assuming π 2 * (DR g (1, -1)λ g ) = π 2 * B g , the equality DR g (1, -1)λ g = B g immediately follows from formula (4.3.42) by the induction on g. This completes the proof of the theorem.

Chapter 1 Introduction

This dissertation studies integrable systems through the geometry of Frobenius manifolds and cohomological field theories. After a superficial look at the definitions and first properties of these three objects, one might naively think that they are completely unrelated. However, as is often the case, seemingly unrelated concepts arising from different areas of Mathematics share deep connections, and it is the rigorous study of those connections that expands our mathematical knowledge, getting us closer to understanding the "true nature" of the original objects.

By exploring the interplay between integrable systems, Frobenius manifolds and cohomological field theories, this thesis aims to bring new insights into this fascinating subject, lying at the intersection of mathematical physics, differential geometry, and algebraic geometry.

Integrable systems

The main objects of interest of this thesis are integrable systems. However, despite the high volume of research on the topic, there is no mathematical consensus on what integrable systems are, as the very notion of integrability is vaguely defined across the literature, varying from example to example, and sometimes even from author to author. As a consequence, instead of proposing an artificial definition for the integrable systems studied in this text, we will introduce the prime example of an integrable system: the Korteweg-de Vries hierarchy.

Korteweg-de Vries hierarchy Korteweg-de Vries equation and its symmetries

The Korteweg-de Vries (KdV) equation is a non-linear PDE first introduced by Boussinesq [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF] and later rediscovered by Korteweg and de Vries [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] 1 to model the propagation of shallow water waves. It reads

u t = uu x + 1 12 u xxx . (1.1.1)
Note that the coefficients of uu x and u xxx can be made arbitrary by rescaling t, x, and u.

Equations of the form u t = K(u) where K is a differential operator in ∂ x are called evolutionary equations. In principle, solving non-linear equations like (1.1.1) can prove very difficult and one must often resort to numerical approximations. However, Gardner et al. [START_REF] Gardner | Method for Solving the Korteweg-deVries Equation[END_REF][START_REF] Gardner | Korteweg-deVries equation and generalizations. VI. Methods for exact solution[END_REF] provided a method, known as inverse scattering, to solve the KdV equation by relating it to the Schrödinger equation

(∂ 2 x + 2u)w = k 2 w. (1.1.2)
1 See [START_REF] Jager | On the origin of the Korteweg-de Vries equation[END_REF] for a historical account.

Understanding why this method works or, in a more precise language, why the KdV equation is integrable, became a main focus of research. This culminated in the theory of integrable hierarchies, largely due to Lax [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF], Zakharov and Faddeev [START_REF] Zakharov | The Korteweg-de Vries equation is a fully integrable Hamiltonian system[END_REF], Ablowitz et al. [START_REF] Ablowitz | Nonlinear-evolution equations of physical significance[END_REF][START_REF] Ablowitz | The inverse scattering transform-Fourier analysis for nonlinear problems[END_REF] and the Kyoto school led by Sato [START_REF] Sato | Holonomic quantum fields. I[END_REF][START_REF] Kashiwara | Transformation groups for soliton equations. I. The τ function of the Kadomtsev-Petviashvili equation[END_REF].

In essence, the KdV equation is integrable because of its high degree of symmetry. Let us try to understand what symmetry means in the context of evolutionary equations, and what the relation between (1.1.1) and (1.1.2) is. 2Definition 1.1.1. We say that u s = K(u), (1.1.3) is a symmetry of

u t = K(u) (1.1.4)
if the flows ∂/∂t and ∂/∂s commute, i.e.,

∂ ∂s K(u) = ∂ ∂t K(u).
(1.1.5)

Condition (1.1.5) is equivalent to the existence of a common solution u = u(x, t, s) to (1.1.3) and (1.1.4) for any given initial condition u 0 = u(x, t = 0, s = 0). It turns out that the KdV equation has infinitely many commuting 3 symmetries of ascending order

u t 0 = u x , (1.1.6) 
u t 1 = uu x + 1 12 u xxx , (1.1.7) 
u t 2 = 1 2 u 2 u x + 1 6 u x u xx + 1 12 uu xxx + 1 240 u 5 , (1.1.8) 
. . .

where we have identified t 0 = x, t 1 = t. The system of equations consisting of the KdV equation and its commuting symmetries is called the Korteweg-de Vries (KdV) hierarchy.

Lax formulation of the KdV hierarchy

To encode all the equations of the KdV hierarchy, it is convenient to use Lax representation [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF]. For that, we need to introduce pseudodifferential operators, a generalization of differential operators constructed by formally inverting the symbol ∂ x .

Definition 1.1.2. Let α ∈ Z. A pseudodifferential operator of order α is a formal sum

X = ∞ j=0 f j ∂ α-j x .
(1.1.9)

The set of pseudodifferential operators forms a ring with the composition rule

∂ n x • f = ∞ j=0 n j (∂ j x f ) • ∂ n-j
x , n j = n(n -1) . . . (n -j + 1) j! (1. 1.10) defining the associative product. Given a pseudodifferential operator X (1.1.9), we define the projections

X + = α j=0 f j ∂ α-j
x , X -= X -X + .

(1. 1.11) Let L be a pseudodifferential operator of the form

L = ∂ x + ∞ j=1 f j ∂ -j
x such that it squares to the Schrödinger operator

L 2 = (∂ 2
x + 2u).

(1.1.12)

L is known as the Lax operator. It is important to note that its square L 2 appears on the left-hand side of the Schrödinger equation (1.1.2), hence its name. Condition (1.1.12) determines all the functions f 1 , f 2 , . . . in terms of u. Now it is possible to write down the KdV hierarchy in Lax form.

Definition 1.1.3. The Korteweg-de Vries hierarchy is the following system of nonlinear evolutionary PDEs:

∂u ∂t j = 1 (2j + 1)!! [(L 2j+1 ) + , L 2 ], j = 0, 1, . . . (1.1.13)
It is possible to show that the flows ∂/∂t k and ∂/∂t j above commute for any k, j. As one can expect, the first few equations coincide with the symmetries of the KdV equation (1.1.6)- (1.1.8). Thanks to the Lax formulation, the relation between the KdV (1.1.1) and the Schrödinger (1.1.2) equations because of which the KdV equation is solvable can be precisely established. 

Bi-Hamiltonian recursion

The Lax formulation is not the only way to realize the KdV hierarchy; its equations can also be recast in Hamiltonian form. 4 Consider the pair of Poisson operators

P 1 = ∂ x , P 2 = 2u∂ x + u x + 1 4 ∂ 3 
x .

(1. 1.16) We say h = h(u; u x , u xx , . . . ) is a Casimir of the Poisson operator P if P • δh δu = 0, where the variational derivative is defined as

δ δu = ∞ p=0 (-∂ x ) p • ∂ ∂u p .
(1.1.17)

The function h -1 (u) = u is a Casimir of P 1 , but not of P 2 , as P 2 • δ δu (h -1 ) = u x . In this situation, it is possible to apply a bi-Hamiltonian recursion algorithm [START_REF] Magri | A simple model of the integrable Hamiltonian equation[END_REF] to define a family {h p (u; u x , u xx , . . . )} p 0 of differential polynomials, i.e., polynomials in u and its derivatives, via the formula

P 1 • δh p δu = 1 2p + 1 P 2 • δh p-1 δu .
(1. 1.18) For example, to obtain h 0 , we have to solve

∂ x • δh 0 δu = u x , (1.1.19) 
so, up to a constant, which we always take to be 0 in this procedure, 

δh 0 δu = u, ( 1 
and, recursively, h p = h p (u; u 1 , . . . , u 2p+2 ), allowing us to define an integrable hierarchy. One can prove that the two formulations of the KdV hierarchy (1.1.13) and (1.1.24) coincide indeed. Integrability of the KdV hierarchy, i.e., commutativity of the flows ∂/∂t p as in Definition 1.1.1, follows immediately from its bi-Hamiltonian formulation, see [START_REF] Magri | A simple model of the integrable Hamiltonian equation[END_REF].

Remark 1.1.6. Note that δ δu • δ x = 0, so the function h p obtained from solving (1.1.18) is defined up to a ∂ x -exact term, which does not affect the equations of the hierarchy (1.1.24) nor the recursive equations for h p+1 , h p+2 , . . . . Given a differential polynomial f = f (u; u x , u xx , . . . ), denote by f the corresponding local functional, i.e, the class of f in the quotient space of differential polynomials modulo constants and ∂ x -exact terms.

We call the local functionals hp above Hamiltonians and their representatives h p in the space of differential polynomials, Hamiltonian densities.

Tau-function

When solving the bi-Hamiltonian recursion equations (1.1.18), we have made a particular choice of Hamiltonian densities, which is not the most natural one, e.g. h 0 = 1 2 u 2 solves (1.1.20) as well and is simpler than (1.1.21). The reason behind this seemingly unnatural choice is that, while the equations of the integrable hierarchy (1.1.24) depend only on the Hamiltonians hp , there is a favored choice of Hamiltonian densities such that they satisfy tau-symmetry ∂h q-1 ∂t p = ∂h p-1 ∂t q , ∀p, q = 0, 1, . . . (1.1.25) Tau-symmetry implies the existence of a family of differential polynomials in u, the tau-structure or 2-point correlators Ω p,q , defined by ∂ x Ω p,q = ∂h p-1 ∂t q , Ω p,q = Ω q,p , Ω p,0 = h p-1 .

(1. 1.26) They satisfy the following property: the functions ∂Ω p,q ∂t r (1. 1.27) are invariant under any permutation of p, q, and r. Therefore, given a solution of the hierarchy, the 2-point correlators Ω p,q can be written as second derivatives of a function F = F (t 1 , t 2 , . . . ) Ω p,q = ∂ 2 F ∂t p ∂t q , (1. 1.28) which is known as the (logarithm of the) tau-function. 5 Tau-functions depend on the solution of the hierarchy u = u(x; t 1 , t 2 , . . . ) through the relation

u = ∂ 2 x F. ( 1 

.1.29)

There exists a particular solution, the topological solution u top = u top (x; t 1 , t 2 , . . . ), determined by the initial condition

u top (x; t 1 = t 2 = • • • = 0) = x, (1.1.30) 
whose corresponding tau-function is the unique tau-function satisfying the string equation [ 

∂ x Ω p,q = 1 (2p + 1)!!(2q + 1)!! Res ∂x [(L 2q+1 ) + , L 2p+1 ],
(1. 1.33) where the residue of a pseudodifferential operator is defined as the coefficient of ∂ -1

x .

Kadomtsev-Petviashvili hierarchy

The KdV hierarchy is embedded in a larger integrable system, called the Kadomtsev-Petviashvili (KP) hierarchy.

Definition 1.1.8.

Let L = ∂ x + ∞ j=1 f j ∂ -j
x be the Lax operator. The Kadomtsev-Petviashvili hierarchy in Lax form is given by

∂L ∂t m = 1 (m + 1)! [(L m+1 ) + , L].
(1. 1.34) Note that for a fixed m, (1.1.34) is an infinite system of equations in x and t m for the dependent variables {f j } j 1 . Despite the existence of infinitely many dependent variables compared to only one in the KdV hierarchy, they share multiple similarities:

• The KP hierarchy (1.1.34) is the system of compatibility conditions of the linear system Lw = kw, (1.1.35) ∂w ∂t m = 1 (m + 1)! (L m+1 ) + w.

(1.1.36)

• The KP hierarchy is bi-Hamiltonian, with Poisson operators [27] P nm

1 = - n-1 =0 -n f n+m--1 ∂ x + m-1 =0 m -1 ∂ x • f n+m--1 ,
(1.1.37)

P nm 2 = s,t 0 k, -1 s+ m s+t+k+ +1=n+m m -1 s -k t f k ∂ s+t x • f (1.1.38) - m --1 s m --s -1 t f f k t ∂ s x - n-1 =1 m-1 s=1 -n m -1 s f n-∂ s+ -1 x • f m-s ,
where f -1 = 1 and f 0 = 0. In particular, it is integrable.

• The KP hierarchy is tau-symmetric, with the Hamiltonian densities given by

h n = 1 (n + 2)!
Res ∂x L n+2 .

(1.1.39)

The Kadomtsev-Petviashvili equation

Although the KP hierarchy satisfies all desirable properties as seen above, the fact that for each m, (1.1.34) is a system with infinitely many variables makes the study of the hierarchy much more complex at the level of equations. However, it is possible to rewrite the KP hierarchy in a more manageable way using the following result.

Proposition 1.1.9. The KP hierarchy (1.1.34) implies

∂ ∂t m (L n+1 ) + (n + 1)! - ∂ ∂t n (L m+1 ) + (m + 1)! = (L m+1 ) + (m + 1)! , (L n+1 ) + (n + 1)!
, n, m = 0, 1, 2, . . . (1.1.40) Equations (1.1.40) are called Zakharov-Shabat equations [START_REF] Zakharov | Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II[END_REF]. For each pair n > m, (1.1.40) is a closed system consisting of n equations in the dependent variables f 1 , f 2 , . . . , f n . There are three independent variables, x, t n , and t m ; that is why integrable systems like the KP hierarchy are often called 2+1 systems.

Example 1.1.10. Let n = 2, m = 1. Let us work out the corresponding Zakharov-Shabat equations (1.1.40). First, we compute

L 2 + = ∂ 2 x + 2f 1 , (1.1.41) L 3 + = ∂ 3 x + 3f 1 ∂ x + (3f 2 + f 1 x ), (1.1.42) [L 2 + , L 3 + ] = (6f 2 x -f 1 xx )∂ x + (3f 2 xx -f 1 xxx -6f 1 f x ). (1.1.43)
Thus, the equations are given by which is known as the Kadomtsev-Petviashvili (KP) equation. 7 Note that imposing u y = 0 yields the KdV equation (1.1.1), albeit with a different normalization, thus realizing the KP equation as a generalization of KdV to two spatial dimensions.

u y = - 1 6 u xx + v x , (1.1 

Gelfand-Dickey hierarchies

In order to recover the KdV hierarchy (1.1.13) from KP (1.1.34), one must impose an extra condition on the Lax operator

(L 2 ) -= 0, (1.1.47) 
or, equivalently, require that L squares to the Schrödinger operator (1.1.12). In this case, it is easy to see that all the functions f j can be expressed in terms of the single dependent variable u and that ∂L ∂tm = 0 for m odd. After relabeling t 2m → t m , we recover the KdV hierarchy. Remark 1.1.11. The fact that this reduction from KP to KdV is allowed is far from trivial, and it involves proving that the vector fields given by the flows ∂/∂t m on the manifold of pseudodifferential operators restrict to the submanifold defined by (1.1.47). Similarly, to show that KdV inherits the bi-Hamiltonian structure, one must prove that this submanifold is a Poisson submanifold with respect to both Poisson brackets. This reduction from KP to KdV after imposing condition (1.1.47) motivates the following definition Definition 1.1.12. Let N 2. The N -Gelfand-Dickey (GD) hierarchy is the reduction of the KP hierarchy (1.1.34) given by the extra condition (L N ) -= 0.

(1.1.48)

Remark 1.1.13. Explicitly,

L N = ∂ N x + u N -2 ∂ N -2 x + • • • + u 1 ∂ x + u 0 , (1.1.49)
and all the functions f j of the Lax operator can be expressed in terms of the N -1 dependent variables u 0 , u 1 , . . . , u N -2 .

As it was the case with the KdV hierarchy, the GD hierarchies are all tau-symmetric and bi-Hamiltonian. The proofs are analogous to those explained in Remark 1.1.11.

What is an integrable system?

After Section 1.1.1, we can affirm that the KdV hierarchy is a tau-symmetric bi-Hamiltonian system of evolutionary PDEs. So are the GD hierarchies, and the KP hierarchy, with the caveat that the latter is a 2 + 1 system. However, it would not be adequate to define integrable systems as tau-symmetric bi-Hamiltonian systems of evolutionary PDEs. For instance, it does not suit Burgers' equation [START_REF] Burgers | A mathematical model illustrating the theory of turbulence[END_REF] u t = uu x + u xx ,

(1. 1.50) which does not admit a Hamiltonian formulation. Another counterargument to this proposed definition is the Camassa-Holm equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] u t + 2κu x -u xxt + 3uu x = 2u x u xx + uu xxx , (1. 1.51) which is not evolutionary. Finally, consider the Toda lattice [START_REF] Toda | Vibration of a Chain with Nonlinear Interaction[END_REF], a two-dimensional bi-Hamiltonian integrable system whose first non-trivial pair of equations is p t = e -(q(n,t)-q(n-1,t)) -e -(q(n+1,t)-q(n,t)) , (1.1.52) q t = p.

(1.1.53)

These are not PDEs, but differential-difference equations.

Bearing this in mind, the approach to integrable systems taken in this dissertation is based on the properties of the examples considered here: all integrable hierarchies discussed in this thesis are tau-symmetric and Hamiltonian, and most of them bi-Hamiltonian, so we will make use of these structures to study them. 8 

Cohomological field theories 1.2.1 Moduli spaces of stable curves

In this section, we introduce the moduli spaces of stable curves without delving too deeply into the geometric technicalities. 9 First, let us precisely define the geometric objects we want to parameterize via moduli spaces. Definition 1.2.1. Let g, n 0 be such that 2g -2 + n > 0. A stable curve of genus g with n marked points is a tuple (C, x 1 , . . . , x n ), where: 1. C is a complex, compact, algebraic curve of arithmetic genus g.

2.

The only singularities of C are simple nodes.

3. x 1 , . . . , x n ∈ C are pairwise distinct and do not coincide with the nodes. 4. Let C 1 , . . . , C k be the connected components of the normalization 10 of C, and let g i and n i denote the genus and the number of special points 11 of C i , respectively. Then 2g i -2 + n i > 0 for all i.

8 See [START_REF] Rossi | Integrability, Quantization and Moduli Spaces of Curves[END_REF] for a very similar approach to integrable systems. 9 We follow [START_REF] Zvonkine | An introduction to moduli spaces of curves and their intersection theory[END_REF][START_REF] Schmitt | The moduli space of curves[END_REF]. 10 Defined as a possibly disconnected smooth curve ν : C → C, where the morphism ν is an isomorphism over the smooth locus of C, and each node of C has exactly two preimages. 11 Marked points and preimages of nodes.

Condition 4 is equivalent to stable curves having finite automorphism groups. 12 Definition 1.2.1 comes with a natural notion of isomorphism, necessary for the construction of moduli spaces. We say that two stable curves are isomorphic (C, x 1 , . . . , x n ) ∼ (D, y 1 , . . . , y n ) (1.2.1)

if there exists an isomorphism f : C → D such that f (x k ) = y k for all k. We denote the equivalence class of (C, x 1 , . . . , x n ) by [C, x 1 , . . . , x n ].

Definition 1.2.2. Let g, n 0 be such that 2g -2 + n > 0. The moduli space of stable curves of genus g with n marked points is defined as

M g,n = {(C, x 1 , . . . , x n )}/ ∼ . (1.2.2)
Definition 1.2.2 conceives the moduli spaces M g,n merely as sets. However, they have a rich algebro-geometric structure, evidenced by the proposition below.

Proposition 1. 2.3 ([33, 74]). Let g, n 0 be such that 2g -2 + n > 0. The moduli space M g,n is a proper smooth (3g -2 + n)-dimensional Deligne-Mumford stack. Remark 1.2.4 (On the definition and the geometry of M g,n ).

1. The theory of Deligne-Mumford stacks or, in general, algebraic stacks is of little importance to us. For this dissertation, we only need one fact: the moduli spaces M g,n , from the point of view of intersection theory, behave as if they were compact, smooth algebraic varieties, e.g., they have finite-dimensional cohomology rings which satisfy Poincaré duality. 13 2. It is possible to construct the moduli spaces of unstable curves M 0,0 , M 0,1 , M 0,2 , and M 1,1 as sets, analogously to Definition 1.2.2, but they cannot be realized as Deligne-Mumford stacks, as unstable curves have infinite automorphism groups.

3. The moduli space of smooth curves M g,n is an open dense subspace of M g,n . The space ∂M g,n = M g,n \ M g,n is a codimension 1 subspace of M g,n called the boundary of M g,n , which parameterizes singular curves.

Dual graphs and stratification

To effectively work with stable curves and their moduli spaces, it is convenient to use stable graphs, which provide a useful decomposition of the moduli space of curves.

Definition 1.2.5. A stable graph is a tuple Γ = (V, H, E, L, ι, v, g) where

1. V = V (Γ) is a finite set, the vertices of Γ, 2. H = H(Γ) is a finite set, the half-edges of Γ, 3. ι : H → H is an involution, 4. L = L(Γ)
, the set of legs, consists of the fixed points of ι,

5. E = E(Γ), the set of edges, consists of pairs {h 1 , h 2 } of half-edges exchanged by ι,

6. v : H → V associates to each h ∈ H the vertex incident to h, v(h),
12 See [START_REF] Farkas | Riemann surfaces. Second[END_REF] for the proof. 13 For the details, see [114].

7. g : V → Z 0 associates a genus g(v) to the vertex v, 8. the graph (V, E) is connected, 9. for any vertex v ∈ V , the stability condition

2g(v) -2 + n(v) > 0, (1.2.3)
where

n(v) = #H(v) for H(v) = {h ∈ H| v(h) = v}, is satisfied.
Given a stable curve [C, x 1 , . . . , x n ] ∈ M g,n , its dual graph Γ C is a stable graph constructed as follows:

• Each irreducible component C v of C corresponds to a vertex v decorated by its geometric genus.

• Each node connecting two irreducible components C v and C w corresponds to an edge connecting v and w. Similarly, each nodal self-intersection of C v corresponds to an edge connecting C v with itself.

• Each marked point x i ∈ C v corresponds to a numbered leg attached to the vertex v.

The subset of M g,n

M Γ = {[C, x 1 , . . . , x n ] ∈ M g,n | Γ C = Γ}, (1.2.4) 
consisting of stable curves whose dual graph is (isomorphic to) 14 Γ is called Γ-stratum. For example, M g,n is the g

1 n . . . -stratum. The decomposition M g,n = Γ M Γ , (1.2.5) 
where gamma runs through isomorphism classes of genus g stable graphs 15 with n legs is called stratification.

Example 1.2.6 (Explicit computation of some moduli spaces).

1. g = 0, n = 3. The only genus 0 Riemann surface up to isomorphism is the complex projective line CP 1 . Its group of automorphisms is

PSL(2, C) = {A ∈ M 2 (C)| det A = 1} /{1, -1}, (1.2.6) 
whose action on CP 1 is given by

a b c d z = az + b cz + d . (1.2.7)
Then for any three distinct points x 1 , x 2 , x 3 ∈ CP 1 there exists a unique A ∈ PSL(2, C) such that Ax 1 = 0, Ax 2 = 1, and Ax 3 = ∞. Therefore,

M 0,3 = M 0,3 = {[CP 1 , 0, 1, ∞]} = {point}. ( 1 

.2.8)

14 There is a precise notion of isomorphism of stable graphs, which effectively translates to: "two stable graphs are isomorphic if and only if they are drawn the same". In this thesis, graphs are never described by giving the tuples (V, H, E, L, ι, v, g), but are drawn instead, thus implicitly representing isomorphism classes. 15 The genus of a stable graph is defined as

g(Γ) = v∈V g(v) + 1 + #E -#V .
2. g = 0, n = 4. Let x 1 , x 2 , x 3 , x 4 ∈ CP 1 . After sending x 1 , x 2 and x 3 to 0, 1 and ∞ via A ∈ PSL(2, C) as before, the curve is completely determined by the point t = Ax 4 . Therefore

M 0,4 = {[CP 1 , 0, 1, ∞, t] | t ∈ CP 1 \ {0, 1, ∞}} ∼ = CP 1 \ {0, 1, ∞}. (1.2.9)
Its (Deligne-Mumford) compactification M 0,4 is obtained by adding the singular curves appearing as the limits when t → 0, 1, ∞ 

0 0 t 0 ∞ 1 , 0 1 t 0 ∞ 0 , 0 0 1 0 ∞ t . ( 1 

Forgetful and gluing maps

Now that the moduli spaces of curves and their geometric structure are defined, let us define the natural maps between them:

1. The forgetful map π : M g,n+1 → M g,n is defined as

π([C, x 1 , . . . , x n , x n+1 ]) = [C, x 1 , . . . , x n ] st , (1.2.14)
where the stabilization of a curve [C, x 1 , . . . , x n ] st is defined by contracting the unstable genus 0 irreducible components, i.e., the genus 0 components with less than 3 special points.

2. The gluing map of separating kind ρ :

M g 1 ,n 1 +1 × M g 2 ,n 2 +1 → M g 1 +g 2
,n 1 +n 2 is defined by identifying the marked points with numbers n 1 + 1 and n 2 + 1 into a node.

3. The gluing map of nonseparating kind σ : M g-1,n+2 → M g,n is defined by identifying the marked points with numbers n + 1 and n + 2.

Intersection theory

As stated before in Remark 1.2.4, the moduli spaces of stable curves have finite-dimensional cohomology rings H * (M g,n ) = H * (M g,n ; Q). Since their structure can be very complicated, especially for high genera, it is convenient to study simpler subrings that contain the most important cohomology classes, for instance, those arising as Chern classes of natural vector bundles on M g,n or the fundamental classes corresponding to stable graphs.

Definition 1.2.7. The minimal family of subalgebras RH * (M g,n ) ⊂ H * (M g,n ) stable under push-forwards of π, ρ and σ is called the family of tautological rings of the moduli spaces of stable curves. The m-th tautological ring is

RH m (M g,n ) = RH * (M g,n ) ∩ H 2m (M g,n ).
By definition, the tautological ring must contain 1 = [M g,n ] ∈ H 0 (M g,n ), since it is a subring. As an immediate consequence, the classes represented by boundary strata

[M Γ ] ∈ H 2|E(Γ)| (M g,n )
also lie in the tautological ring, as they are the images of 1 under the pushforwards with respect to the gluing maps. Let us now define some cohomology classes coming from vector bundles on M g,n .

Definition 1.2.8. For i = 1, . . . , n, let L i → M g,n denote the cotangent line bundle, whose fiber over a point17 [C, x 1 , . . . , x n ] ∈ M g,n is the cotangent space of C at x i . The ψ-classes are defined as the first Chern classes of L i ,

ψ i = c 1 (L i ) ∈ H 2 (M g,n ). (1.2.15)
For m 0, the m-th κ-class is defined by

κ m = π * (ψ m+1 n+1 ) ∈ H 2m (M g,n ). (1.2.16) 
Let Λ → M g,n denote the Hodge bundle, a rank g vector bundle whose fiber over a point 17 [C, x 1 , . . . , x n ] ∈ M g,n is the space of meromorphic differentials of C which have at most simple poles with opposite residues on the two branches at each node and are holomorphic everywhere else. 18 For i = 1, . . . , g, the i-th λ-class is defined as the i-th Chern class of Λ

λ i = c i (Λ) ∈ H 2i (M g,n ).
(1.2.17)

These classes can be combined together with the strata into decorated stratum classes. Let us show how to construct them. Let Γ be a genus g stable graph with n marked points, and let

ξ Γ : ([C v , (q h ) h∈H(v) ]) v∈V (Γ) ∈ v∈V (Γ) M g(v),n(v) -→ [C, p 1 , . . . , p n ] ∈ M g,n (1.2.18)
be its associated gluing map, where the curve C is obtained by gluing all pairs of points {q h 1 , q h 2 } corresponding to the same edge of Γ, i.e., {h 1 , h 2 } ∈ E(Γ), and the marked points p i are the numbered images under ξ Γ of the points q h corresponding to the legs, i.e., q h with h ∈ L(Γ).

Definition 1.2.9. Let Γ be a stable graph. A decoration on Γ is a class

α = v∈V (Γ) π * v α v ∈ H * v∈V (Γ) M g(v),n(v) , (1.2.19) 
where π v : w∈V (Γ) M g(w),n(w) → M g(v),n(v) denotes the projection and

α v ∈ H * (M g(v),n(v)
) is a monomial in ψ and κ-classes.

The decorated stratum class [Γ, α] is defined as the pushforward

[Γ, α] = (ξ Γ ) * α ∈ H * (M g,n ), (1.2.20)
where α is a decoration on Γ.

From the previous definition, it is clear that if the ψ and κ-classes are tautological, so will the decorated stratum classes. The next proposition guarantees this. Proposition 1.2.10. The ψ, κ and λ-classes are tautological, i.e., ψ i , κ i , λ i ∈ RH * (M g,n ). Moreover, RH * (M g,n ) is finitely generated by the decorated stratum classes [Γ, α] as a Q-vector space.

Despite all these natural classes lying in RH * (M g,n ), the equality RH * (M g,n ) = H * (M g,n ), which is true for g = 0 [START_REF] Keel | Intersection theory of moduli space of stable n-pointed curves of genus zero[END_REF], does not hold in general. In fact, it is already false for g = 1, as tautological classes only exist in even degrees and H 11 (M 1,11 ) ∼ = Q (see [START_REF] Graber | Constructions of nontautological classes on moduli spaces of curves[END_REF]). The weaker statement of all cohomological classes in even degrees being tautological, which is true for g = 1 [START_REF] Petersen | The structure of the tautological ring in genus one[END_REF], was proved not to hold in higher genera in [START_REF] Graber | Constructions of nontautological classes on moduli spaces of curves[END_REF] via an explicit counterexample in the cohomology group H 22 (M 2,20 ). However, as this paper evidences, constructions of non-tautological cohomology classes are quite involved.

Double ramification cycles

Other important cohomology classes are double ramification cycles. Let us recall their definition. 19Let a 1 , . . . , a n be integers such that i a i = 0, and let n + , n 0 , and n -denote the number of positive, zero, and negative a i 's, respectively. The positive and negative a i 's define partitions µ = (µ 1 , . . . , µ n + ) and ν = (ν 1 , . . . , ν n -) of the same integer d = 1 2 i |a i |. Consider the moduli space

M g;a 1 ,...,an := M ∼ g,n 0 ,µ,ν (CP 1 , 0, ∞) (1.2.21)
of degree d rubber holomorphic maps f : C → CP 1 , where C is a stable curve of genus g with n 0 marked points and f has ramification profiles µ and ν above 0 and ∞, respectively. Here rubber means we factor out the C * -action on CP 1 . There is a forgetful map

p : M g;a 1 ,...,an -→ M g,n , (1.2.22) 
defined by taking preimages at 0 and ∞ . In order to know its algebraic structure, it is also necessary to know its relations, called tautological relations, whose study and derivation constitute a prominent research direction. One important application of tautological relations is computing intersection numbers, as the following example demonstrates.

p([f : (C, x 1 , . . . , x n 0 ) → CP 1 ]) = C, x 1 , . . . , x n 0 , {f -1 (0)}, {f -1 (∞)} . ( 1 
Example 1.2.13. Let i, j, k ∈ {1, . . . , n} be pairwise distinct, and let δ i|jk be the divisor of M 0,n consisting of stable genus 0 curves with a node separating the i-th marked point from the j-th and k-th marked points. An example of tautological relation is

ψ i = [δ i|jk ] ∈ RH 1 (M 0,n ), (1.2.24)
for any j, k. For n = 4 it takes the form

ψ 1 = [δ 1|23 ] = 0 1 4 0 2 3 ∈ RH 1 (M 0,4 ), (1.2.25)
allowing us to compute the intersection number

M 0,4 ψ 1 = 1. (1.2.26)

Partition function

Let us now compute another intersection number, namely

M 0,5 κ 2 1 . (1.2.27) 
Recall the projection formula 20 for a proper morphism of smooth varieties f :

X → Y X αf * (β) = Y f * (α)β, (1.2.28)
and the pullback formulas for κ and ψ-classes

π * κ m = κ m -ψ m n+1 , (1.2.29) π * ψ m i = ψ m i + (-[δ i,n+1 ]) m , (1.2.30) 
where δ i,n+1 is the divisor of M g,n+1 consisting of stable curves containing a g = 0 irreducible component with exactly three special points: a node and the i-th and (n + 1)-th marked points. We have 

M 0,5 κ 2 1 = M 0,6 ψ 2 6 (κ 1 -ψ 6 ) = M 0,7 ψ 2 7 ψ 2 6 - M 0,6 ψ 3 6 , (1.2 
F WK (t 1 , t 2 , . . . ) = g,n 0 2g-2+n>0 1 n! d 1 ,...,dn 0 n i=1 τ d i g n i=1 t d i , (1.2.33)
where the correlation functions are defined by

n i=1 τ d i g = Mg,n n i=1 ψ d i i .
(1.2.34)

Cohomological field theories

The Witten-Kontsevich partition function is not the only way to encode the intersection theory of M g,n . In fact, its construction can be generalized by considering correlation functions resulting from the integration of other cohomology classes. Cohomological field theories (CohFTs) 21 are coherent choices of classes in the cohomology rings H * (M g,n ) compatible with the forgetful and gluing maps.

Definition 1.2.15 (CohFT). Let V be an N -dimensional vector space over C equipped with a scalar product (•, •). Choose a basis {e 1 , . . . , e N } of V , and let η αβ = (e α , e β ), with inverse η αβ . A cohomological field theory with unit e 1 is a collection of linear homomorphisms

c g,n : V ⊗n → H 2 * M g,n ; C , 2g -2 + n > 0 (1.2.35)
such that

• c g,n is S n -equivariant, where S n acts on V ⊗n by permutation of the factors and on H 2 * M g,n ; C by permutation of the marked points.

• For any gluing map ρ :

M g 1 ,n 1 +1 × M g 2 ,n 2 +1 → M g 1 +g 2 ,n 1 +n 2 , ρ * c g 1 +g 2 ,n 1 +n 2 (v 1 ⊗ • • • ⊗ v n 1 +n 2 ) = (1.2.36) c g 1 ,n 1 +1 (v 1 ⊗ • • • ⊗ v n 1 ⊗ e α )η αβ c g 2 ,n 2 +1 (v n 1 +1 ⊗ • • • ⊗ v n 2 ⊗ e β ).
• For any gluing map σ :

M g-1,n+2 → M g,n , σ * c g,n (v 1 ⊗ • • • ⊗ v n ) = c g-1,n+2 (v 1 ⊗ • • • ⊗ v n ⊗ e α ⊗ e β )η αβ .
(1.2.37)

• For any forgetful map π :

M g,n+1 → M g,n , π * c g,n (v 1 ⊗ • • • ⊗ v n ) = c g,n+1 (v 1 ⊗ • • • ⊗ v n ⊗ e 1 ) (1.2.38) • c 0,3 (v 1 ⊗ v 2 ⊗ e 1 ) = (v 1 , v 2 )
We associate to a CohFT {c g,n } a formal power series in the variables

{t α d } 1 α N d 0
. First, define the correlation functions as

n i=1 τ d i (v i ) g := Mg,n c g,n (⊗ n i=1 v i ) n i=1 ψ d i i . (1.2.39)
Define the (logarithm of the) partition function as

F := g 0 2g F g , F g := n 0 2g-2+n>0 1 n! 1 α 1 ,...,αn N d 1 ,...,dn 0 n i=1 τ d i (e α i ) g n i=1 t α i d i , (1.2.40)
where is a formal parameter to keep track of the genus.

Example 1.2.16. Frobenius manifolds, also known as Dubrovin-Frobenius manifolds, were originally introduced by Dubrovin [START_REF] Dubrovin | Integrable systems in topological field theory[END_REF][START_REF] Dubrovin | Integrable systems and classification of 2-dimensional topological field theories[END_REF] as a way to study the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) associativity equations [START_REF] Witten | On the structure of the topological phase of two-dimensional gravity[END_REF][START_REF] Dijkgraaf | Topological strings in d < 1[END_REF] in a coordinate-free way. Besides two-dimensional topological field theory, from where the WDVV equations originate, the geometry of Frobenius manifolds underlies many mathematical structures: integrable systems and CohFTs are the two cases treated in this thesis, but there are many more. For instance, in the survey [START_REF] Manin | Three constructions of Frobenius manifolds: a comparative study[END_REF], Manin studies and compares Frobenius manifolds arising from quantum cohomology [START_REF] Manin | Frobenius manifolds, quantum cohomology, and moduli spaces[END_REF], Saito's singularity theory [START_REF] Saito | Primitive forms for a universal unfolding of a function with an isolated critical point[END_REF][START_REF] Saito | Period mapping associated to a primitive form[END_REF] and mirror symmetry of Calabi-Yau 3-folds [START_REF] Witten | Mirror manifolds and topological field theory[END_REF]. Before giving a formal definition of Frobenius manifolds and studying their main properties, let us recall the WDVV equations: we look for a function F (t) = F (t 1 , . . . , t n ), a constant symmetric non-degenerate matrix η αβ , and numbers q 1 , . . . , q n , r 1 , . . . , r n , d such that

1. Let V be 1-dimensional.
∂ 3 F (t) ∂t α ∂t β ∂t λ η λµ ∂ 3 F (t) ∂t µ ∂t γ ∂t δ = ∂ 3 F (t) ∂t δ ∂t β ∂t λ η λµ ∂ 3 F (t) ∂t µ ∂t γ ∂t α (WDVV1)
for any α, β, γ, δ = 1, . . . , n. In other words, the functions

c γ αβ (t) = η γλ ∂ 3 F (t) ∂t λ ∂t α ∂t β (1.3.1)
are the structure constants of an associative commutative algebra A t for all t. F (t) must also satisfy

∂ 3 F (t) ∂t α ∂t β ∂t 1 = η αβ , ( WDVV2 
) 22 For more details, see [START_REF] Witten | Algebraic geometry associated with matrix models of two-dimensional gravity[END_REF] for Witten's original construction in terms of intersection theory of the moduli spaces of r-spin curves M 1/r g,n , and [START_REF] Pandharipande | Relations on M g,n via 3-spin structures[END_REF] and the references therein for the modern formulation of W g,n as a CohFT.

where η αβ is the inverse matrix of η αβ . Equation (WDVV2) implies the algebras A t have a t-independent unit e = ∂/∂t 1 . Finally, let us introduce the Euler vector field

E = n α=1 [(1 -q α )t α + r α ] ∂ ∂t α . (1.3.2)
We require the function F (t) to satisfy the (quasi)homogeneity condition

L E F (t) = (3 -d)F (t) + 1 2 A αβ t α t β + B α t α + C, (WDVV3) 
for some constants A αβ , B α , C. The numbers q α , r α must satisfy the normalization condition

q 1 = 0, r α = 0 only if q α = 1. (1.3.3)
The implicit geometric structure of a solution to the system (WDVV1)-(WDVV3) is captured in the definition of Frobenius manifolds, which we recall below. 

E, x • y] -[E, x] • y -x • [E, y] = x • y, (1.3.9) E x, y -[E, x], y -x, [E, y] = (2 -d) x, y .
(1. 3.10) The correspondence between solutions of the WDVV equations and Frobenius manifolds is made rigorous in the following lemma.

Lemma 1. 3.3 ([40]). Locally a Frobenius manifold with diagonalizable ∇E is described by an analytic solution of WDVV and vice versa.

As a consequence of the lemma above, we will often make no distinction between solutions of the WDVV equations and (local charts of) Frobenius manifolds. Under this correspondence, we call the function F (t) satisfying the WDVV system (WDVV1)-(WDVV3) the (pre)potential of the corresponding Frobenius manifold. It can be computed as follows: first, choose a local system of flat coordinates (t 1 , . . . , t n ) with respect to the metric , with ∂/∂t 1 = e, and let

η αβ = ∂ α , ∂ β , ∂ α = ∂ ∂t α (1.3.11)
be the corresponding constant Gram matrix. The existence of such a system is guaranteed by axiom FM1. Second, compute the structure constants 

c γ αβ (t) = η γλ ∂ λ • ∂ α , ∂ β , (1.3 

Differential geometry of Frobenius manifolds

Frobenius manifolds have a very rich geometry, which we recall in this section.

The second metric

Let M be a Frobenius manifold. The second metric on T M is defined as follows: let η * : T M → T * M be the isomorphism induced by the metric , , which in turn induces the product

ω 1 • ω 2 = η * (η * (ω 1 ) • η * (ω 2 )) (1.3.13)
for ω 1 , ω 2 ∈ T * M , where η * = (η * ) -1 . This lets us define the intersection form

(ω 1 , ω 2 ) = i E (ω 1 • ω 2 ) (1.3.14)
on T * M , where i E is the contraction with the Euler vector field E. The components of the intersection form in the flat coordinates t α are given by

g αβ (t) = (dt α , dt β ) = E λ (t)c αβ λ (t), (1.3.15)
where E λ (t) are the components of the Euler vector field. Note g αβ (t) is not constant. On the open subset of M where g αβ is non-degenerate, the intersection form defines a second metric on T M , given by the inverse matrix (g αβ ) = (g αβ ) -1 . One can check this new metric ( , ) is related to , by the formula

(E • u, v) = u, v . (1.3.16)
Proposition 1. 3.5 ([39]). The second contravariant metric g αβ of a Frobenius manifold is flat. Furthermore, the pair of metrics η αβ , g αβ of a Frobenius manifold forms a flat pencil, i.e., the metric

η αβ + λg αβ (1.3.17)
is flat for arbitrary λ, and its Christoffel symbols are given by

Γ αβ 1γ + λΓ αβ 2γ , (1.3.18) 
where Γ αβ 1γ and Γ αβ 2γ are the Christoffel symbols of η and g, respectively.

Canonical coordinates

Besides the flat coordinates t α , which make the Gram matrix η αβ of the metric , constant, there is another special set of coordinates whose coordinate vector fields are the idempotents of the algebras T t M .

Lemma 1. 3.6 ([39]). In the semisimple case, there exist local coordinates u 1 , . . . , u n , unique up to permutation, such that

∂ ∂u i • ∂ ∂u j = δ ij ∂ ∂u i (1.3.19)
We call u 1 , . . . , u n canonical coordinates.

It is immediate from the definition that both metrics take a diagonal form in the canonical coordinates. The following proposition shows the close relation between the canonical coordinates and the Euler vector field. Proposition 1. 3.7 ([39]). Let U : T M → T M denote the operator of multiplication by the Euler vector field, i.e.,

U(x) = E • x. (1.3.20)
The eigenvalues of U coincide with the canonical coordinates.

Deformed flat connection

Another important geometric structure of Frobenius manifolds is the deformed flat connection, whose flatness is roughly equivalent to the axioms of Frobenius manifolds. for any x, y ∈ T M, z ∈ C * , where V is the grading operator, defined as

V = 2 -d 2 -∇E. (1.3.24)
Definition 1.3.8 induces a connection on the cotangent space, also denoted by ∇. A function f (t; z) defined on a domain in M × C * is called deformed flat if its differential is horizontal with respect to ∇, i.e., ∇df = 0.

The flatness of ∇ is equivalent to the existence of n independent deformed flat functions, called deformed flat coordinates. To compute them, let

ξ = ξ α dt α + 0 dz (1.3.25)
be horizontal with respect to ∇. One can show the functions ξ α satisfy the Dubrovin equations

∂ α ξ β = zc γ αβ ξ γ , (1.3.26) 
∂ z ξ β = U γ β + 1 z V γ β ξ γ , (1.3.27) 
for all α, β = 1, . . . , n. The study of the Dubrovin equations and their solutions is one of the main topics in Frobenius manifolds theory. 24 Although we will not delve deeper in this introduction, let the following proposition show how important understanding the Dubrovin equations is Proposition 1.3.9 ( [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF]). Compatibility of the Dubrovin equations is equivalent to WDVV.

A n Frobenius manifold and superpotentials

Let us conclude this section by presenting an important class of examples, whose generalization to infinite-dimensional Frobenius manifolds will be studied in Chapter 5.

Let M be the space of all polynomials of the form

M = {λ(p) = p n+1 + a n p n-1 + • • • + a 1 | a 1 , . . . , a n ∈ C}. (1.3.28)
We identify the tangent space of M with the algebra of truncated polynomials via the isomorphism

T λ M ∼ = C[p]/(λ (p)) (1.3.29) ∂ → ∂(λ(p))
The bilinear form is defined by the residue formula

∂, ∂ λ = Res p=∞ ∂(λ(p)dp) ∂ (λ(p)dp) dλ(p) , (1.3.30) 
whose invariance is clear from

∂ • ∂ , ∂ λ = Res p=∞ ∂(λ(p)dp) ∂ (λ(p)dp) ∂ (λ(p)dp) dp dλ(p) . (1.3.31)
The unit vector field e and the Euler vector field E are given by

e = ∂ ∂a 1 , E = 1 n + 1 n i=1 (n -i + 1)a i ∂ ∂a i . (1.3.32)
The second metric is given by

(∂, ∂ ) λ = Res p=∞ ∂(log λ(p)dp) ∂ (log λ(p)dp) d log λ(p) . (1.3.33)
Let q 1 , . . . , q n be the critical points of λ(p), i.e., λ (q j ) = 0. Then the critical values u j = λ(q j ) define local canonical coordinates on M near the points where λ(p) has no multiple roots. The flat coordinates for the metric , are given by the residue formulas

t α = - n + 1 n -α + 1 Res p=∞ λ n-α+1 n+1 (p)dp. (1.3.34)
The construction above, known as the A n Frobenius manifold, generalizes from polynomials to rational functions [START_REF] Dubrovin | Extended affine Weyl groups and Frobenius manifolds[END_REF][START_REF] Carlet | The extended bigraded Toda hierarchy[END_REF] and to even more general functions, known as Landau-Ginzburg superpotentials [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF][START_REF] Dubrovin | Painlevé transcendents in two-dimensional topological field theory[END_REF][START_REF] Dunin-Barkowski | Dubrovin's superpotential as a global spectral curve[END_REF].

Integrable systems and CohFTs 1.4.1 The Witten-Kontsevich theorem

The first link between the apparently unconnected realms of integrable systems and moduli spaces of curves was conjectured by Witten [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] and proved by Kontsevich [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF]. The breakthrough theorem reads Kontsevich proved this theorem using the Strebel-Penner ribbon graph model of the moduli spaces of curves, and later on more proofs have appeared. Mirzakhani [START_REF] Mirzakhani | Weil-Petersson volumes and intersection theory on the moduli space of curves[END_REF] used symplectic reduction for the Weil-Peterson volumes of the moduli spaces, and Okounkov and Pandharipande [START_REF] Okounkov | Gromov-Witten theory, Hurwitz numbers, and matrix models[END_REF] and Kazarian and Lando [START_REF] Kazarian | An algebro-geometric proof of Witten's conjecture[END_REF] used the ELSV formula, which connects intersection theory and Hurwitz numbers. There are more papers where the Witten-Kontsevich theorem is proved (see e. g. [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF][START_REF] Mulase | Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy[END_REF][START_REF] Kazarian | KP hierarchy for Hodge integrals[END_REF][START_REF] Kim | Virasoro constraints and Hurwitz numbers through asymptotic analysis[END_REF][START_REF] Chen | Localization, Hurwitz numbers and the Witten conjecture[END_REF][START_REF] Witten | On the Kontsevich model and other models of two-dimensional gravity[END_REF]), but on the geometric side they all use one of the ideas mentioned above: the Strebel-Penner ribbon graph model, symplectic reduction, or the ELSV formula for Hurwitz numbers. Chapter 2 provides a new proof based on the geometry of double ramification cycles.

Generalizations

The connections between CohFTs and integrable systems are not limited to the Witten-Kontsevich theorem, which relates the simplest CohFT, the trivial one, to the simplest integrable system, the KdV hierarchy. One generalization is Witten's r-spin conjecture, proposed by Witten [START_REF] Witten | Algebraic geometry associated with matrix models of two-dimensional gravity[END_REF] and proved by Faber, Shadrin and Zvonkhine [START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF]. It reads Theorem 1.4.2. The partition function associated with Witten's r-spin CohFT is the string tau-function of the r-GD hierarchy. 25More generally, there are two constructions that associate an integrable system to a given CohFT. The first one, which can be applied under the semisimplicity26 assumption, is the Buryak-Posthuma-Shadrin realization [START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF][START_REF] Buryak | On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket[END_REF] of the Dubrovin-Zhang (DZ) hierarchy [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF], a tau-symmetric Hamiltonian integrable system whose string tau-function is the partition function of the CohFT. It will be studied in full detail in Chapter 3.

The second one, even more general as it does not require semisimplicity, is the double ramification (DR) hierarchy [START_REF] Buryak | Double ramification cycles and integrable hierarchies[END_REF], a Hamiltonian, tau-symmetric integrable system. It is conjectured in [START_REF] Buryak | Tau-structure for the double ramification hierarchies[END_REF] that, for a semisimple CohFT, the DR and DZ hierarchies are related by a change of variables called Miura transformation. This conjecture has been reduced in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF] to proving a system of tautological relations, the simplest of which will be refined and tested against a variety of natural properties in Chapter 4.

Integrable systems and Frobenius manifolds

Let us try to sketch the close relation between integrable systems and Frobenius manifolds. 27 From integrable systems to Frobenius manifolds Given a tau-symmetric bi-Hamiltonian integrable system, consider its dispersionless limit, obtained by setting the higher derivatives of the dependent variables u α xx , u α xxx , . . . to zero. The resulting system is also tau-symmetric, bi-Hamiltonian, and can be written as

∂u α ∂t β q = η αγ ∂ x • δ hβ,q δu γ , (1.5.1) 
where hβ,q are the dispersionless limits of the Hamiltonians of the original hierarchy. Consider the two-point correlators Ω α,p;β;q (u), defined by

∂ x Ω α,p;β,q = ∂h α,p-1 ∂t β q , Ω α,p;β,q = Ω β,q;α,p , Ω α,p;1,0 = h α,p-1 . (1.5.2) 
For p = q = 0 they can be recast as the second derivatives of a function F (u)

Ω α,0;β;0 (u) = ∂ 2 F (u) ∂u α u β , (1.5.3) 
which satisfies (WDVV1) and (WDVV2). In order to construct the Euler vector field, consider the second Poisson operator, which can be written as [START_REF] Dubrovin | Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method[END_REF] 

g αβ ∂ x + Γ αβ γ u γ x , (1.5.4) 
with det g αβ = 0. The components E µ of the Euler vector field E = E µ ∂ ∂u µ can be uniquely determined from the expression

g αβ = η αγ η βν E µ ∂ 3 F ∂u µ ∂u γ ∂u ν .
(1.5.5)

With respect to this E, F satisfies (WDVV3).

Example 1.5.1. Starting with the KdV hierarchy (1.1.13), we obtain the 1-dimensional Frobenius manifold, given by the potential F (u) = u 3 /6.

From Frobenius manifolds to integrable systems

Let M be a Frobenius manifold with local flat coordinates u α . By the results of Section 1.3, it is equipped with a pencil of flat metrics η αβ + λg αβ . This defines a pair of compatible Poisson operators of hydrodynamic type by the formulas

P αβ 1 = η αβ ∂ x , P αβ 2 = g αβ ∂ x + Γ αβ γ u γ x , (1.5.6) 
where Γ αβ γ are the Christoffel symbols of g αβ . As it was done in Section 1.1.1, starting from the Casimirs h γ,-1 = η γα u γ , we can apply a bi-Hamiltonian recursion algorithm to obtain a series of Hamiltonians { hγ,q } q 0 , which define a Hamiltonian hierarchy, called principal hierarchy

∂u α ∂t β q = P αγ 1 •
δ hβ,q δu γ .

(1.5.7)

Example 1.5.2. Starting from the 1-dimensional Frobenius manifold given by the potential F (t) = t 3 /6, the above procedure yields the Riemann hierarchy

u t 0 = u x , u t 1 = uu x , u t 2 = 1 2 u 2 u x , . . . (1.5.8)
which is the dispersionless limit of the KdV hierarchy (1.1.24).

Remark 1.5.3. These two processes are not inverses of one another. In fact, the actual correspondence is between Frobenius manifolds and dispersionless tau-symmetric bi-Hamiltonian hierarchies 28 , so any two integrable systems with the same dispersionless limit will have the same underlying Frobenius manifold. Obtaining a dispersive hierarchy as a suitable 29 deformation of a dispersionless one, e.g. KdV from Riemann, is a much more involved process. In Chapter 3, we will study a tau-symmetric, Hamiltonian, and conjecturally30 bi-Hamiltonian deformation of the principal hierarchy of a Frobenius manifold: the Dubrovin-Zhang hierarchy [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF].

Frobenius manifolds and CohFTs

In view of Sections 1.4 and 1.5, it should now be evident that Frobenius manifolds and CohFTs are closely connected. This connection was made explicit by Teleman [START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF] using Givental's group action [START_REF]Gromov-Witten invariants and quantization of quadratic Hamiltonians[END_REF]. In non-technical language, the Givental-Teleman classification theorem reads: "Semisimple, conformal CohFTs are equivalent to local charts of Frobenius manifolds at a semisimple point". Without reproducing the proof nor defining the concept of equivalence above in full detail, let us briefly examine the main ideas behind this correspondence.

From CohFTs to Frobenius manifolds

Let c g,n be a CohFT and let F = F (t α p ; ) be its partition function. First, set the higher genera components to zero; second, keep only those correlation functions without ψ-classes. In other words, consider the function

F Frob = F 0 | t α >0 =0 = F | =t α >0 =0 . (1.6.1)
Then F Frob is a formal power series in the variables t α = t α 0 satisfying (WDVV1) and (WDVV2), thus defining a non-conformal Frobenius structure, i.e., a Frobenius manifold without an Euler vector field. Furthermore, it is a formal Frobenius manifold, as the potential F Frob is not in general an analytic function.

Conformality of the CohFT, roughly speaking (see Chapter 3 for the precise formulation), is equivalent to the existence of a linear vector field Ẽ on the big phase space, i.e., in the coordinates t α p for all p 0, and a constant d such that ẼF = (3 -d)F up to quadratic terms. This condition, when substituting = t α 1 = 0, implies (WDVV3) for F Frob with respect to the Euler vector field E = Ẽ| =t α >0 =0 .

From Frobenius manifolds to CohFTs

Recovering a CohFT from its underlying Frobenius manifold is a much more complicated procedure, beyond the scope of this thesis. We refer the reader to the original works of Givental and Teleman [START_REF]Gromov-Witten invariants and quantization of quadratic Hamiltonians[END_REF][START_REF] Teleman | The structure of 2D semi-simple field theories[END_REF], where they reconstruct the CohFT from a Frobenius manifold invariant called the R-matrix.

Outline and originality

This dissertation is organized in the following way:

Chapter 2 (based on [START_REF] Alexandrov | Buryak-Okounkov Formula for the n-Point Function and a New Proof of the Witten Conjecture[END_REF]): We identify the formulas of Buryak and Okounkov for the n-point functions of the intersection numbers of ψ-classes on the moduli spaces of curves. This allows us to combine the earlier known results and this one into a principally new proof of the famous Witten-Kontsevich theorem, where the link between intersection theory of moduli spaces and integrable systems is established via the geometry of double ramification cycles.

Chapter 3 (based on [START_REF] Hernández Iglesias | Bi-Hamiltonian recursion, Liu-Pandharipande relations, and vanishing terms of the second Dubrovin-Zhang bracket[END_REF]): The Dubrovin-Zhang hierarchy is a Hamiltonian infinitedimensional integrable system associated with a semi-simple cohomological field theory or, alternatively, with a semi-simple Dubrovin-Frobenius manifold. Under an extra assumption of homogeneity, Dubrovin and Zhang conjectured that there exists a second Poisson bracket that endows their hierarchy with a bi-Hamiltonian structure. More precisely, they gave a construction for the second bracket, but the polynomiality of its coefficients in the dispersion parameter expansion is yet to be proved. In this chapter, we use the bi-Hamiltonian recursion and a set of relations in the tautological rings of the moduli spaces of curves derived by Liu and Pandharipande in order to analyze the second Poisson bracket of Dubrovin and Zhang. We give a new proof of a theorem of Dubrovin and Zhang that the coefficients of the dispersion parameter expansion of the second bracket are rational functions with prescribed singularities. We also prove that all terms in the expansion of the second bracket in the dispersion parameter that cannot be realized by polynomials because they have negative degree do vanish, thus partly confirming the conjecture of Dubrovin and Zhang.

Chapter 4 (based on [START_REF] Buryak | A conjectural formula for DR g (a, -a)λ g[END_REF]): We propose a conjectural formula for DR g (a, -a)λ g and check all its expected properties. This formula refines the one point case of a similar conjecture made by Buryak, Guéré and Rossi, and we prove that the two conjectures are in fact equivalent, though in a quite non-trivial way.

Chapter 5 (based on [START_REF] Carlet | Infinite-dimensional Dubrovin-Frobenius manifolds and the Stokes phenomenon[END_REF]): We study the Dubrovin equation of the infinite-dimensional 2D Toda Dubrovin-Frobenius manifold at its irregular singularity. We first revisit the definition of the canonical coordinates, proving that they emerge naturally as generalized eigenvalues of the operator of multiplication by the Euler vector field. We then show that the formal solutions to the Dubrovin equation with exponential type behavior at the irregular singular point are not uniquely determined by their leading order, but instead depend on an infinite number of parameters, contrary to what happens in the finite-dimensional case. Next, we obtain a large family of solutions to the Dubrovin equation given by integrals along the unit circle of certain combinations of the superpotentials. Observing that such a family is not complete and has trivial monodromy, we study a larger family of weak solutions obtained via Borel resummation of some distinguished formal solutions. These resummed solutions naturally appear in monodromy-related pairs, finally allowing us to compute the infinite-dimensional analogue of the Stokes matrices.

Chapters are self-contained and can be read independently. To each of the papers on which this dissertation is based, all authors contributed equally.

Chapter 2

Buryak-Okounkov formula for the n-point function and a new proof of the Witten conjecture

Introduction

The symbol

n i=1 τ d i g denotes the intersection number Mg,n n j=1 ψ d j j . It can be non-zero only if g 0, n 1, 2g -2 + n > 0, d 1 , . . . , d n 0, and n j=1 d j = 3g -3 + n = dim M g,n .
Witten conjectured [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] that the generating function of these intersection numbers defined as

F := n g=0 exp ∞ d=0 τ d t d g
is the logarithm of the string tau-function of the Korteweg-de Vries (KdV) hierachy. It is easy to prove it satisfies the string equation, see [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF], so the main part of the conjecture is the equations of the KdV hierarchy, first proved by Kontsevich in [START_REF] Kontsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF].

In this chapter we give a new proof of the Witten conjecture based on a completely different geometric idea than any of the earlier existing proofs: the intersection theory of double ramification cycles. More precisely, the full proof explained here consists of four big steps:

1. In [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF] Buryak et al. fully described the intersection numbers of the monomials of psi-classes with the double ramification cycles.

2. In [START_REF] Buryak | Double ramification cycles and the n-point function for the moduli space of curves[END_REF] Buryak used the previous result and a relation between the double ramification cycles and the fundamental cycles of the moduli spaces of curves to describe explicitly the n-point function

F n = F n (x 1 , . . . , x n ) := g 0 d 1 ,...,dn 0 n i=1 τ d i x d i i g , n 1.
3. In [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF] Okounkov proved a different explicit formula for the n-point functions F n and he showed in Section 3 of op. cit. that the generating function of their coefficients is the logarithm of the string tau-function of the KdV hierarchy. Let us say a few words about the geometric techniques used in [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF] and [START_REF] Buryak | Double ramification cycles and the n-point function for the moduli space of curves[END_REF]. A double ramification cycle DR g (a 1 , . . . , a n ), a i ∈ Z, n i=1 a i = 0 is the class of a certain compactification of the locus of the isomorphism classes of smooth curves with marked points [C g , x 1 , . . . ,

x n ] ∈ M g,n such that n i=1 a i x i is the divisor of a meromorphic function C g → CP 1 , see Definition
Chapter 2. Buryak-Okounkov formula for the n-point function 1.2.11. These cycles inherit rich geometry of the space of maps to CP 1 and this allows to express the psi-classes restricted to these cycles in terms of the double ramification cycles of smaller dimension, which is in principle enough to compute all intersection numbers of psi-classes with the double ramification cycles. Next, observe that under the projection M g,n+g → M g,n that forgets g marked points the push-forward of a double ramification cycle is a multiple of the fundamental cycle of M g,n . This relates the intersection numbers of psi-classes on double ramification cycles to

n i=1 τ d i g .
There is, of course, a long way from these computational ideas to the nice closed formulas derived in [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF] and [START_REF] Buryak | Double ramification cycles and the n-point function for the moduli space of curves[END_REF].

Let us stress that in the approach of [13, Section 3.2] it is sufficient to assume that all weights of marked points in double ramification cycles are non-zero integers (for instance, assume that all integer numbers chosen arbitrarily in the beginning of the argument of Buryak are positive). This allows to use only part of the results of [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF] that concerns the intersection numbers of psi-classes with the double ramification cycles with only non-zero weights. This part of the computation in [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF] uses nothing but the factorization rules for psi-classes at the points of non-zero weights on double ramification cycles, which work equally well for the double ramification cycles defined via relative stable maps to CP 1 and the double ramification cycles of admissible covers [START_REF] Ionel | Topological recursive relations in H 2g (M g,n )[END_REF] (cf. a discussion in [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF]Section 2.3]).

This idea of computation of the intersection numbers has been used in a number of earlier papers, cf. [START_REF] Shadrin | Geometry of meromorphic functions and intersections on moduli spaces of curves[END_REF][START_REF] Shadrin | Hurwitz numbers of generalized polynomials, and cycles of two-point branchings[END_REF][START_REF] Shadrin | Some relations for double Hurwitz numbers[END_REF][START_REF] Shadrin | Combinatorics of binomial decompositions of the simplest Hodge integrals[END_REF][START_REF] Buryak | A new proof of Faber's intersection number conjecture[END_REF], and these papers might serve a good source of examples of particular computations. In particular, an explicit algorithm for the computation of all intersection numbers n i=1 τ d i g is given in [START_REF] Shadrin | Intersection numbers with Witten's top Chern class[END_REF]. Exactly the same idea of computation of the intersection numbers of ψ-classes is proposed in [START_REF] Costello | Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products[END_REF]Section 9]. It is mentioned in [START_REF] Costello | Higher genus Gromov-Witten invariants as genus zero invariants of symmetric products[END_REF]Section 1.3] that for further applications of these results a necessary first step is to give a new proof of Witten's conjecture [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] using the technique developed there. This is precisely what the present chapter (combined with [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF], [START_REF] Buryak | Double ramification cycles and the n-point function for the moduli space of curves[END_REF], and [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF]) does.

Finally, to conclude the introduction, let us mention that the n-point functions for the intersection numbers of psi-classes have recently been studied from different points of view, see [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Liu | The n-point functions for intersection numbers on moduli spaces of curves[END_REF][START_REF] Zhou | Topological recursions of Eynard-Orantin type for intersection numbers on moduli spaces of curves[END_REF][START_REF] Bertola | Correlation functions of the KdV hierarchy and applications to intersection numbers over M g,n[END_REF][START_REF] Zhou | Emergent Geometry and Mirror Symmetry of A Point[END_REF][START_REF] Brézin | Intersection numbers of Riemann surfaces from Gaussian matrix models[END_REF][START_REF] Brézin | Vertices from replica in a random matrix theory[END_REF][START_REF] Alexandrov | Partition functions of matrix models as the first special functions of string theory. II. Kontsevich model[END_REF]. The comparison of different formulas and recursive relations for their coefficients is very interesting and usually highly non-trivial, and this chapter can also be considered as a step towards unification (see also [START_REF] Zhou | Emergent Geometry and Mirror Symmetry of A Point[END_REF]) of the variety of formulas for the n-point functions.

Organization of the chapter

In Section 2.2 we recall the formulas of Buryak and Okounkov and some statements about these formulas, and state our main results. In Section 2.3 we derive an equivalent form of the Buryak formula. In Section 2.4 we prove that the principal terms in the Buryak and Okounkov formulas coincide. In Section 2.5 we prove that all other terms, namely the diagonal terms needed for a regularization of the principal ones, also coincide in the Buryak and Okounkov formulas.

Buryak and Okounkov formulas

In this section we recall the formulas for the n-point functions in [START_REF] Buryak | Double ramification cycles and the n-point function for the moduli space of curves[END_REF] and [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF]. It is convenient to append the two unstable cases g = 0 and n = 1, 2 to the intersection numbers. Namely, let

d 1 0 τ d 1 x d 1 1 0 := x -2 1 and d 1 ,d 2 0 τ d 1 x d 1 1 τ d 2 x d 2 2 0 := (x 1 + x 2 ) -1
, and add these terms to F 1 and F 2 , respectively.

Formula of Buryak

Let ζ(x) := e x/2 -e -x/2 . Define the functions P n (a 1 , . . . , a n ; x 1 , . . . , x n ) by P 1 (a 1 ; x 1 ) := 1

x 1 and for n 2 we have

P n (a 1 , . . . , a n ; x 1 , . . . , x n ) := τ ∈Sn τ (1)=1 n-1 j=2 x τ (j) n-1 j=1 ζ j k=1 a τ (k) x τ (j+1) -a τ (j+1) j k=1 x τ (k) n-1 j=1 a τ (j) x τ (j+1) -a τ (j+1) x τ (j) . (2.2.1)
Though it is not obvious from the definition, P n is a formal power series in all its variables, which is invariant with respect to the diagonal action of the symmetric group S n on (a 1 , . . . , a n ) and (x 1 , . . . , x n ), see [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF]Remarks 1.5 and 1.6].

Define the function

F Bur n = F Bur n (x 1 , . . . , x n ) as the Gaussian integral F Bur n (x 1 , . . . , x n ) := e ( n j=1 x j ) 3 /24 n j=1 x j n j=1 2πx j R n n j=1 e - a 2 j 2x j da j P n (ia 1 , . . . , ia n ; x 1 , . . . , x n ).
Theorem 2.2.1 (Buryak [START_REF] Buryak | Double ramification cycles and the n-point function for the moduli space of curves[END_REF]). For n 1 we have

F n = F Bur n .

Formula of Okounkov

Define the function E(x 1 , . . . , x n ) as

E(x 1 , . . . , x n ) := e ( n j=1 x 3 j )/12 n j=1 4πx j R n 0 n j=1 ds j exp - n j=1 (s j -s j+1 ) 2 4x j + (s j + s j+1 )x j 2 ,
where s n+1 denotes s 1 . Then the function E (x 1 , . . . , x n ) defined as

E (x 1 , . . . , x n ) := σ∈Sn/Zn E(x σ(1) , . . . , x σ(n) )
is invariant under the S n -action on (x 1 , . . . , x n ). Denote by Π n the set of all partitions of the set {1, . . . , n} into a disjoint union of unordered nonempty subsets j=1 I j , for all = 1, 2 . . . , n. Let

x I := j∈I x j , I ⊂ {1, . . . , n}, I = ∅. Define the function G(x 1 , . . . , x n ) as G(x 1 , . . . , x n ) := j=1 I j ∈Πn (-1) +1 E (x I 1 , . . . , x I ) and the function F Ok n = F Ok n (x 1 , . . . , x n ) as F Ok n (x 1 , . . . , x n ) := (2π) n/2 n j=1 √ x j G x 1 2 1/3 , . . . , x n 2 1/3 .
Theorem 2.2.2 (Okounkov [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF]). The generating function of the coefficients of F Ok n , n 1, is the logarithm of the string tau-function of the KdV hierarchy.

Main theorem

We are ready to state our main result.

Theorem 2.2.3. We have:

F Bur n = F Ok n , n 1.
The rest of the chapter is devoted to the proof of this theorem. An immediate corollary of Theorems 2.2.1, 2.2.2, and 2.2.3 is the following: Corollary 2.2.4. The Witten conjecture is true, that is, the function exp(F ) is the string tau-function of the KdV hierarchy.

As explained in the introduction, the real importance of this new proof of the Witten conjecture is that it uses a new way to relate the intersection theory of the moduli space of curves to the theory of integrable hierarchies, based on the geometry of double ramification cycles. Otherwise, though Theorem 2.2.3 is interesting by itself, the identity F n = F Ok n has an alternative proof in [95, Section 2].

Buryak formula revisited

Our first goal is to translate the cumbersome formula of Buryak into something more manageable. Let w jk := (a j x k -a k x j )/2 and u jk := a j /x j -a k /x k . Proposition 2.3.1. For n 1 we have:

P n (a 1 , . . . , a n ; x 1 , . . . , x n ) = 1 n i=1 x i σ∈Sn exp i<j w σ(i)σ(j) n-1 j=1 u σ(j)σ(j+1) . (2.3.1)
It is clearly true for n = 1 and we prove it below for n 2. Now the function P n is manifestly invariant with respect to the diagonal action of the symmetric group S n on (a 1 , . . . , a n ) and (x 1 , . . . , x n ).

Corollary 2.3.2. We have:

F Bur n = e 1 24 n j=1 x j 3 n j=1 x j (2π) n 2 n j=1 x 3 2 j R n n j=1 e - a 2 j 2x j da j σ∈Sn exp i 2 j<k a σ(j) x σ(k) -a σ(k) x σ(j) n-1 j=1 i a σ(j)
x σ(j) -

a σ(j+1) x σ(j+1)
.

(2.3.2)

Proof of Proposition 2.3.1

Assume that n 2. Expanding the definition of the function ζ allows us to rewrite Equation (2.2.1) for P n = P n (a 1 , . . . , a n ; x 1 , . . . , x n ) as

P n = 1 n i=1 x i τ ∈Sn τ (1)=1 I J= {2,...,n} (-1) |J| exp i∈I i-1 =1 w τ ( )τ (i) -j∈J j-1 =1 w τ ( )τ (j) n-1 j=1 u τ (j)τ (j+1) . (2.3.3)

Exponential terms in the numerators

In order to identify Equations (2.3.1) and (2.3.3), we consider for each particular fixed sequence of signs sgn(w rs ) = ±1, r < s, all terms in Equations (2.3.1) and (2.3.3) where the numerator is equal to exp(A), A = r<s sgn(w rs )w rs , and prove that the total coefficient of exp(A) coincides in both formulas. The symbols w ij , 1 i, j n, are understood in the rest of the proof as just formal variables satisfying the relations w ij + w ji = 0.

Let [2, n] denote the set {2, . . . , n}. For σ ∈ S n and I J = [2, n] we define

A σ I,J := i∈I i-1 =1 w σ( )σ(i) - j∈J j-1 =1 w σ( )σ(j) .
It is a convenient way to keep track of signs in the exponential terms in the numerators of ( 2 ), for all τ ∈ S n such that τ (1) = 1 and for all

I J = [2, n].
Thus, we have to obtain a full description of all σ, τ , and I J as above such that exp

(A σ [2,n],∅ ) = exp(A τ I,J ).
Notation for the symmetric group

Decompose S n as S n-1 ( n i=2 S n-1 (1, i))
, where S n-1 ⊂ S n denotes the subgroup of permutations τ such that τ (1) = 1.

Denote by C m , m 2, the cyclic permutation (1, m, m -1, . . . , 2). Consider the subset T ⊂ S n defined as

T := {id} ∪ ∪ n-1 i=1 {C m 1 • • • C m i | 2 m 1 < • • • < m i n} .
The following lemma implies that it is in fact a disjoint union.

Lemma 2.3.3. We have: T ∩ S n-1 = {id}, and

T ∩ (S n-1 (1, i)) = {C m 1 • • • C m i-1 | 2 m 1 < • • • < m i-1 n}, i 2. Proof. Observe that T = (T ∩ S n-1 ) ( n i=2 T ∩ (S n-1 (1, i))). Hence it is enough to show that {id} ⊂ S n-1 (which is obvious) and {C m 1 • • • C m i-1 | 2 m 1 < • • • < m i-1 n} ⊂ (S n-1 (1, i)), i 2.
The latter fact we can prove by induction. For i = 2 we see that

C m = (2, m, m-1, . . . , 3)(1, 2). Assume we know that for any 2 m 1 < • • • < m i-1 n the product C m 1 • • • C m i-1 is equal to τ (1, i) for some τ ∈ S n-1 . Then for any 2 m 1 < • • • < m i n we have: C m 1 • • • C m i = τ (1, i)C m i = τ (2, i, i -1, . . . , 3)(i + 1, m i , m i -1, . . . , i + 2)(1, i + 1) = τ (1, i + 1), where τ ∈ S n-1 . Thus C m 1 • • • C m i ∈ S n-1 (1, i + 1). A σ [2,n],∅ versus A τ I,J
The full description of the correspondences between A σ [2,n],∅ , σ ∈ S n , and

A τ I,J , τ ∈ S n-1 , I J = [2, n]
, is given by the following lemma. 

∈ S n-1 , I J = [2, n], there exists a σ ∈ S n such that A σ [2,n],∅ = A τ I,J .
(2) For any σ ∈ S n-1 the only combination of (τ, I, J), where τ ∈ S n-1 and

I J = [2, n], such that A τ I,J = A σ [2,n],∅ is given by τ = σ, I = [2, n], J = ∅. (3) For any σ ∈ S n-1 (1, i), i
2, the complete list of the combinations (τ, I, J), where τ ∈ S n-1 and

I J = [2, n], such that A τ I,J = A σ [2,n],∅ is indexed by the sequences 2 m 1 < • • • m i-1 n, where τ = σC -1 m i-1 • • • C -1 m 1 ; I = [2, n] \ {m 1 , . . . , m i-1 }; J = {m 1 , . . . , m i-1 }.

Comparison of the coefficients

The symbols u ij , 1 i, j n, are understood in the rest of the proof as just formal variables satisfying the relations u ij + u ji = 0 and

u ij + u jk + u ki = 0 for all i, j, k. For σ ∈ S n , n 2, the symbol Q(σ) denotes Q(σ) := 1 u σ(1)σ(2) u σ(2)σ(3) . . . u σ(n-1)σ(n)
.

Up to a factor 1/ n i=1 x i (which is a common factor for (2.3.1) and (2. 

3.3)), the coefficient of exp(A σ [2,n],∅ ) in (2.3.1) is equal to Q(σ). Up to the same factor, the coefficient of exp(A τ I,J ) is equal to (-1) |J| Q(τ ). Lemma 2.3.5. For any σ ∈ S n-1 (1, i), 2 i n, we have: Q(σ) = (-1) i-1 2 m 1 <•••<m i-1 n Q(σC -1 m i-1 • • • C -1 m 1 ). ( 2 

Technical lemmas

In this section we prove Lemma 2.3.4 and Lemma 2.3.5 used in the proof of Proposition 2.3.1.

Proof of Lemma 2.3.4

The proof is based on several observations. First, observe the left invariance of the identities for A σ I,J :

Lemma 2.3.6. We have: A σ [2,n],∅ = A id I,J implies A ρσ [2,n],∅ = A ρ I,J for any ρ ∈ S n .
Proof. Direct inspection of signs.

Second, we have uniqueness:

Lemma 2.3.7. The equality A σ [2,n],∅ = A id I,J considered as an equation for σ has at most one solution.

Proof. Assume we have two solutions, σ and ρ, that is,

A σ [2,n],∅ = A id I,J = A ρ [2,n],∅ . Applying Lemma 2.3.6 twice, we obtain: A ρ -1 σ [2,n],∅ = A ρ -1 I,J = A id [2,n],∅ . Hence ρ -1 σ = id.
Finally, we can solve this equation:

Lemma 2.3.8. For any 2 m 1 < • • • < m i n, we have A Cm 1 •••Cm i [2,n],∅ = A id I,J , where J = {m 1 , . . . , m i }.
Proof. We prove it by induction on i. The base case i = 0 is trivial. Assume we know it for i. Then, for i + 1 we have:

A Cm 1 •••Cm i+1 [2,n],∅ = A Cm 1 [2,n]\{m 2 ,...,m i+1 },{m 2 ,...,m i+1 } = j ∈{m 2 ,...,m i+1 } k<j w Cm 1 (k),Cm 1 (j) - j∈{m 2 ,...,m i+1 } k<j w Cm 1 (k),Cm 1 (j) .
Since C m 1 acts only on 1, . . . , m 1 , it doesn't affect the second sum and the part of the first sum for j > m 1 . Since it is a cycle, the only terms when k < j and C m 1 (k) > C m 1 (j) hold simultaneously are the terms with k = 1. Hence this total expression is equal to 

j ∈{m 1 ,m 2 ,...,m i+1 } k<j w k,j - k<m 1 w k,m 1 - j∈{m 2 ,...,m i+1 } k<j w k,j = A id [2,n]\{m 1 ,...,m i+1 },{m 1 ,...,
σ [2,n],∅ = A τ I,J can hold only for τ -1 σ = C m 1 • • • C m i , where J = {m 1 < • • • < m i } (and τ -1 σ = id if J = ∅). Hence τ = σC -1 m i • • • C -1 m 1 .
Proof of Lemma 2.3.5

First, observe that the basic properties of u ij imply the following identity that we will use in the proof (one can prove it by induction on r, for instance):

n-1 m=r+1 u 1,r+1 u m,m+1 u m,1 u 1,m+1 + u 1,r+1 u n,1 = -1. (2.3.5)
Second, observe that Equation (2.3.4) is invariant under the left products with any ρ ∈ S n , so it is sufficient to prove it for σ = id. We, however, prove a more general statement. Namely, for any 1 i b n we prove that

2 m 1 <•••<m i-1 b Q(C -1 m i-1 • • • C -1 m 1 ) = (-1) i-1 Q(id) b = n; (-1) i-1 Q(id) u i,b+1 u 1,b+1 b < n.
This can be proved by induction on i, with the case i = 1 being obvious. Assume this statement is proved for i. Then for i + 1 we have (the computation is completely analogous in the cases b = n and b < n, so we perform it only in the first case):

2 m 1 <•••<m i n Q(C -1 m i • • • C -1 m 1 ) = n m i =i+1 2 m 1 <•••<m i-1 m i -1 Q(C -1 m i C -1 m i-1 • • • C -1 m 1 ) = n m i =i+1 (-1) i-1 Q(C -1 m i ) u C -1 m i (i),C -1 m i (m i ) u C -1 m i (1),C -1 m i (m i ) = (-1) i-1 Q(id) n-1 m i =i+1 u 1,2 u m i ,m i +1 u m i ,1 u 1,m i +1 + u 1,2 u n,1 u i+1,1 u 2,1 = (-1) i Q(id).
Here the second equality is the induction assumption, and the final equality follows from Equation (2.3.5).

The principal terms

Recall a reformulation of the formula for F Ok n proposed in [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF]Equation (3.3)]:

F Ok n = (-1) n+1 (2π) n/2 n j=1 √ x j E x 1 2 1/3 , . . . , x n 2 1/3 + diagonal terms. (2.4.1)
The idea behind this formula is that the whole expression for F Ok n can be considered as the regularization of its principal part, which is the first summand on the right hand side of Equation (2.4.1), by the terms that are Laplace transforms of distributions supported on the diagonals, see [START_REF] Okounkov | Generating functions for intersection numbers on moduli spaces of curves[END_REF]Sections 2.6.3 and 3.1.4].

The formula of Buryak, in the form of Equation (2.3.2), can also be represented as the sum of its principal part and the regularizing terms supported on the diagonals. First, we interpret the integrals as Cauchy principal values in order to interchange R n and σ∈Sn in Equation (2.3.2). We obtain:

F Bur n = σ∈Sn e 1 24 n j=1 x j 3 n j=1 x j (2π) n 2 n j=1 x 3 2 j R n n j=1 e - a 2 j 2x j da j exp i 2 j<k a σ(j) x σ(k) -a σ(k) x σ(j) n-1 j=1 i a σ(j)
x σ(j) -

a σ(j+1) x σ(j+1)
.

(

Here the expressions under the sign of the integral have poles along the diagonals defined as a σ(j) /x σ(j) -a σ(j+1) /x σ(j+1) = 0, j = 1, . . . , n -1. Recall the integrals should be understood as the Cauchy principal value integrals, that is, we exclude the tubular neighborhood of the divisor of poles of the radius r, integrate, and take the r → 0 limit of the resulting expression.

Similarly to Okounkov's formula, they can be decomposed into a principal part without poles and a diagonal part by applying the Sokhotski-Plemelj formula. We apply the following change of the variables a 1 , . . . , a n :

a σ(j) = b σ(j) + i 2 x σ(j) - <j x σ( ) + r>j x σ(r) .
With this change of variables we have:

1 8 j =k x j x 2 k + 1 4 j<k<t x j x k x t + i 2 k<t a σ(k) x σ(t) -a σ(t) x σ(k) - n j=1 a 2 j 2x j = - n j=1 b 2 j 2x j , and 
i a σ(j) x σ(j) - a σ(j+1) x σ(j+1) = i b σ(j) x σ(j) - b σ(j+1) x σ(j+1) - x σ(j) + x σ(j+1) 2 .
Thus, the right hand side of Equation ( 2 x j (2π)

n 2 n j=1 x 3 2 j R n n j=1 e - b 2 j 2x j db j n-1 j=1 i b σ(j) x σ(j) - b σ(j+1)
x σ(j+1) -

(xσ(j)+xσ(j+1)) 2 + diagonal terms (2.4.3) = - σ∈Sn/Zn e 1 24 n j=1 x 3 j (2π) n 2 n j=1 x 3 2 j R n n j=1 e - b 2 j 2x j db j n j=1 i b σ(j) x σ(j) - b σ(j+1)
x σ(j+1) -

(xσ(j)+xσ(j+1)) 2 + diagonal terms,
where in the second line σ(n + 1) denotes σ(1). The diagonal terms are half-residues arising as a result of translating the contour of the b σ(k) 's back to R n , removing the diagonal singularities in the process. An explicit expression for the diagonal terms will be computed in the next section using the Sokhotski-Plemelj formula.

Remark 2.4.2. Let us note that Equation (2.4.3) is similar to the expressions for the n-point functions obtained by Brézin and Hikami in [START_REF] Brézin | Intersection numbers of Riemann surfaces from Gaussian matrix models[END_REF][START_REF] Brézin | Vertices from replica in a random matrix theory[END_REF].

Since we got a sum over σ ∈ S n /Z n , as in the principal part of the right hand side of Equation (2.4.1), it is sufficient to prove for each σ ∈ S n /Z n that the corresponding summands are equal. Without loss of generality we can assume that σ = [id]. Then we have to prove that e

1 24 n j=1 x 3 j (2π) n 2 n j=1 x 3 2 j R n n j=1 e - b 2 j 2x j db j n j=1 i b j x j - b j+1 x j+1 - (x j +x j+1 ) 2 (2.4.4) = (-1) n+1 (2π) n/2 n j=1 √ x j e 1 12 n j=1 x j 2 1/3 3 n j=1 4π x j 2 1/3 R n 0 n j=1 ds j exp - n j=1 (s j -s j+1 ) 2 4 x j 2 1/3 + (s j + s j+1 )x j 2 4/3 ,
or, equivalently, if we cancel the common factors and rescale s j by 2 -1/3 , we have to prove that

1 n j=1 (2πx j ) 1 2 R n n j=1 e - b 2 j 2x j db j n j=1 -i b j x j + b j+1 x j+1 + (x j +x j+1 ) 2 (2.4.5) = R n 0 n j=1 ds j exp - n j=1 (s j -s j+1 ) 2 2x j + (s j + s j+1 )x j 2 .
To this end, we use the following trick. Replace -i

b j x j + b j+1 x j+1 + (x j +x j+1 ) 2 -1 by R 0 ds j+1 exp s j+1 i b j x j + b j+1 x j+1 - (x j + x j+1 ) 2 ,
where s n+1 denotes s 1 , change the order of integration and take the Gaussian average with respect to the variables b j . We see that the left hand side of the equation (2.4.5) is equal to

R n 0 n j=1 ds j R n n j=1 db j n j=1 (2πx j ) 1 2 n j=1 exp - 1 2x j b 2 j -i2a j s j+1 + i2a j s j - (x j + x j+1 )s j+1 2 (2.4.6) = R n 0 n j=1 ds j exp n j=1 (is j -is j+1 ) 2 2x j - (s j + s j+1 )x j 2 ,
which is precisely the right hand side of Equation (2.4.5). This computation proves Equation (2.4.5), and, therefore, completes the proof of the lemma.

Remark 2.4.3. The argument of Okounkov in [95, Section 3.1] implies that it is sufficient to compare the principal terms of F Bur n and F Ok n in order to prove the coincidence of these formulas, since the diagonal terms only compensate for the non-regular terms in the principal part detected by the wrong powers of π (it is also the case for F Bur n , where this property is evident from the Sokhotski-Plemelj formula). So, Lemma 2.4.1 implies Theorem 2.2.3. However, we can explicitly identify the diagonal terms in F Bur n and F Ok n , and we do this in the next section.

Diagonal contributions

We represent Buryak's formula in the following way.

Theorem 2.5.1.

(1) We have:

F Bur n = (2π) n 2 n j=1 x 1 2 j n =1 [I 1 ••• I ] ={1,...,n} I 1 ,...,I =∅ -e 1 24 j=1
x 3

I j (2π) R j=1 e - f 2 j 2x I j df j x I j j=1 i f j x I j - f j+1 x I j+1 - x I j +x I j+1 2 .
(2.5.1)

Here we take the sum over the cyclicly ordered partitions of {1, . . . , n}, that is,

[I 1 • • • I ] is identified with [I 2 • • • I I 1 ]
, and I +1 denotes I 1 and f +1 denotes f 1 .

(2) For every cyclicly ordered partitions of {1, . . . , n},

[I 1 • • • I ],
where I 1 , . . . , I = ∅, we have:

e 1 24 j=1
x 3

I j (2π) R j=1 e - f 2 j 2x I j df j x I j j=1 i f j x I j - f j+1 x I j+1 - x I j +x I j+1 2 = (-1) E x I 1 2 1/3 , . . . , x I 2 1/3 . (2.5.2)
This theorem is a refinement of Lemma 2.4.1 that includes now all the diagonal terms and we have an explicit term-wise identification. It immediately implies Theorem 2.2.3. We devote the rest of this section to the proof of Theorem 2.5.1, whose main part consists of a careful application of the Sokhotski-Plemelj formula, and the further steps just repeat the computations in the proof of Lemma 2.4.1.

Structure of the Sokhotski-Plemelj formula

Let us discuss explicitly how to apply the Sokhotski-Plemelj formula to Equation (2.3.2). In principle, one can just directly iteratively apply it, but we first discuss the structure of the formula since it greatly simplifies computations.

Fix a particular σ ∈ S n and consider the corresponding term in the variables

f = n i=1 x i n n i=1 a i x i , g i = a σ(i) x σ(i) - a σ(i+1) x σ(i+1) , i = 1, . . . , n -1.
In these variables the shift of a i 's that we applied in the previous section looks like

f → f - i n i=1 x i 2n n i=1 (2i -1 -n)x σ(i) , g i → g i - i 2 (x σ(i) + x σ(i+1) ), i = 1, . . . , n -1.
The denominator of the expression under the integral is equal to

g 1 • • • g n-1 .
Since there is no pole in f , its shift is neglectable. Assuming x 1 , . . . , x n to be small positive real numbers, we move the contour of integration for each g i to the lower half-plane, and then can deform it back to the real line with excluded interval around g i = 0 and a half-circle around it in the lower half-plane, which in the limit gives the sum of the principal part and the half-residue at g i = 0. This is exactly the Sokhotski-Plemelj formula applied now to the product of simple poles

g 1 • • • g n-1 .
The whole integral expression is then split into 2 n-1 summands for each σ, since we have to make a choice for each g i whether we take the principal part or the residue part of its contour. If we choose for all g i 's the principal part of the integral, we exactly obtain the principal terms considered in the previous section. More generally, the full system of choices is controlled by pairs (σ, i=1 I i ), where σ ∈ S n and i=1 I i = {1, . . . , n}, I 1 , . . . , I = ∅, and I 1 < • • • < I in the sense that for any n j ∈ I i j , j = 1, 2, i 1 < i 2 implies n 1 < n 2 . Once we fixed a pair (σ, i=1 I i ), we choose the residue option for all g σ(i) 's with i ∈ I j \ {max(I j )}, j = 1, . . . , , and the principal option for all g σ(i) 's with i = max(I j ), j = 1, . . . , -1.

Note that the integrals for the pairs (σρ, i=1 I i ), ρ(I i ) = I i for i = 1, . . . , , coincide. Moreover, each of them contributes i=1 1/|I i |! to the product of negative residues since the contour of integration in the plane j∈I i a σ(j) /x σ(j) = 0, i = 1, . . . , , is the intersection of the torus around the origin with the Weyl chamber selected by the inequalities a σρ(j 1 ) /x σρ(j 1 ) < a σρ(j 2 ) /x σρ(j 2 ) for j 1 , j 2 ∈ I i , j 1 < j 2 . Thus the residue part of the integral in the sum over all ρ ∈ S n such that ρ(I i ) = I i for i = 1, . . . , is the product of the full residues around zero in the planes j∈I i a σ(j) /x σ(j) = 0, i = 1, . . . , , with coefficient i=1 (2πi

) |I i |-1 .
Now we are ready to perform the computation. For simplicity we take σ = id, = 1, and I 1 = {1, . . . , n}, and treat the general case as an -fold iteration of the same computation, with the indices adjusted with respect to a general σ.

Computation for (id, {1, . . . , n})

In the case σ = id and = 1, I 1 = {1, . . . , n}, we take the sum over all ρ ∈ S n . The corresponding residue term is equal to

e 1 24 n j=1 x j 3 n j=1 x j (2π) n 2 n j=1 x 1 2 j R (S 1 ) n-1 n j=1 e - a 2 j 2x j da j x j exp i 2 j<k a j x k -a k x j n-1 j=1 i a j x j - a j+1 x j+1
.

Chapter 2. Buryak-Okounkov formula for the n-point function

Note that -n j=1 a 2 j 2x j = -f 2 /2 n j=1 x j +O(g 1 , . . . , g n-1 ), j<k a j x k -a k x j = O(g 1 , . . . , g n-1
), and n j=1 da j /x j = n-1 j=1 dg j df / n j=1 x j . This allows us to rewrite the residue as

(2π) n-1 e 1 24 n j=1 x j 3 n j=1 x j (2π) n 2 n j=1 x 1 2 j R e -f 2 /(2 n j=1 x j ) df n j=1 x j
.

Computation for σ = id, general partition

Recall that we denote by x I , I ⊂ {1, . . . , n}, I = ∅, the sum i∈I x i . In the case of a general partition i=1 I i , I 1 , . . . , I = ∅, it is more convenient to work in the coordinates

f i = x I i |I i | j∈I i a j x j , g ij = a j x j - a j+1 x j+1 , i = 1, . . . , , j ∈ I i \ {max(I i )}.
The corresponding residue term is equal to the principal part of x j (2π)

n 2 n j=1 x 1 2 j R (S 1 ) n- n j=1 e - a 2 j 2x j da j x j exp i 2 j<k a j x k -a k x j n-1 j=1 i a j x j - a j+1 x j+1
, where the integral over R is the Cauchy principle value integral (except for the diagonal direction, where it is a converging integral). In the new coordinates, we have:

- n j=1 a 2 j 2x j = - i=1 f 2 i 2x I i + O(g ij ); n j=1 da j x j = i=1 |I i |-1 j=1 dg ij i=1 df i x I i ; -1 i=1 i a max(I i ) x max(I i ) - a max(I i )+1 x max(I i )+1 = -1 i=1 i f i x I i - f i+1 x I i+1 + O(g ij ); j<k a j x k -a k x j = j<k f j x I k -f k x I j + O(g ij ).
This allows us to rewrite the residue formula as

i=1 (2π) |I i |-1 e 1 24 n j=1 x j 3 n j=1 x j (2π) n 2 n j=1 x 1 2 j R j=1 e - f 2 j 2x I j df j x I j exp i 2 j<k f j x I k -f k x I j -1 j=1 i f j x I j - f j+1 x I j+1 . (2.5.3)
The diagonal terms of this expression will be transferred to the partitions of {1, . . . , n} with < terms, so we have to take the principal part:

i=1 (2π) |I i |-1 e 1 24 j=1
x 3

I j n j=1 x j (2π) n 2 n j=1 x 1 2 j R j=1 e - f 2 j 2x I j df j x I j 1 -1 j=1 i f j x I j - f j+1 x I j+1 - x I j +x I j+1 2 .
(2.5.4)

General σ, general partition

If we have a general σ, it just means that we no longer have to assume that the subsets I 1 , . . . , I satisfy the property that for any

n j ∈ I i j , j = 1, 2, i 1 < i 2 implies n 1 < n 2 .
That is, we obtain the same formula as Equation (2.5.4), with arbitrary ordered sequence I 1 , . . . , I such that i=1 I i = {1, . . . , n}, I 1 , . . . , I = ∅. We have: x 3

F Bur n = n =1 I 1 ••• I ={1,...,n} (2π) 
I j n j=1 x j (2π) R j=1 e - f 2 j 2x I j df j x I j 1 -1 j=1 i f j x I j - f j+1 x I j+1 - x I j +x I j+1 2 .
(2.5.5)

The theorem follows by direct comparison of this last expression with the principal part of F Bur l (x I 1 , . . . , x I l ) which, by Section 2.4, is related to

E x I 1 2 1/3 , . . . , x I 2 1/3 .

Final remarks

We relate Equations (2.5. 

Chapter 3

Bi-Hamiltonian recursion, Liu-Pandharipande relations, and vanishing terms of the second Dubrovin-Zhang bracket

Introduction

In [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF] the relation between Dubrovin-Frobenius manifolds, topological field theories (TFTs) and integrable systems is first explored: namely, starting from a Dubrovin-Frobenius manifold, one can obtain a dispersionless hierarchy of the form (see Section 1.5)

∂v α ∂t β q = P αγ δ hβ,q δv γ . (3.1.1)
In [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF], Dubrovin and Zhang further explore the relationship between Dubrovin-Frobenius manifolds and integrable systems and deform this hierarchy via a quasi-Miura transformation

w α = v α + ∞ g=1 2g Q α g (v, v 1 , . . . , v 3g ) (3.1.2)
given by weighted homogeneous differential rational functions Q α g to obtain a full dispersive hierarchy, which is known as the Dubrovin-Zhang (DZ) hierarchy. They conjecture in [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF] that the transformed equations, Hamiltonians and brackets are differential polynomials in the coordinates w α .

In [START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF][START_REF] Buryak | On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket[END_REF] this conjecture is partially proved in a more general setting: the DZ hierarchy is constructed from a semi-simple cohomological field theory (CohFT), without an assumption of homogeneity. It is proved in op. cit. that the equations, Hamiltonians, tau structure, and first bracket of the DZ hierarchy are polynomial.

The main goal of this chapter is to analyze the second Poisson bracket of the Dubrovin-Zhang hierarchy. We start with a conformal semi-simple cohomological field theory, thus the construction of Dubrovin applied to the underlying Dubrovin-Frobenius manifold gives the second Poisson bracket in the dispersionless limit, and the quasi-Miura transformation (3.1.2) produces a possibly singular Poisson structure. We have two tools to analyze it: the bi-Hamiltonian recursion and the tautological relations in cohomology of the moduli spaces of curves or, more precisely, the differential equations that they imply on various structures of the Dubrovin-Zhang hierarchies.

The bi-Hamiltonian recursion appears to be sufficient to uniquely determine the second Dubrovin-Zhang bracket, and we also use it to give a new proof of a structural result of Dubrovin and Zhang on its possible singularities. Bi-Hamiltonian recursion also implies that the constant term of the second Dubrovin-Zhang bracket is a differential polynomial.

As a source of suitable tautological relations we use the work of Liu and Pandharipande [START_REF] Liu | New topological recursion relations[END_REF]. The relations that they derive there appear to be exactly enough to prove the vanishing of all terms in the second Dubrovin-Zhang bracket whose standard degree is negative. Remarkably, the dimensional inequalities of the Liu-Pandharipande relations match exactly the standard degree count for the terms of the second Dubrovin-Zhang bracket in the equations that we derive from the bi-Hamiltonian recursion, so the Liu-Pandharipande relations say nothing about the non-negative standard degree terms of the second bracket.

Organization of the chapter

In Section 3.2 we set the appropriate formalism to work with Hamiltonian and bi-Hamiltonian structures. In Section 3.3 we recall the construction of the principal Dubrovin-Zhang hierarchy from a CohFT and endow it with a Hamiltonian structure of hydrodynamic type. We then deform it to the full hierarchy and show that it inherits a Hamiltonian structure. In Section 3.4 we prove that in the case the underlying CohFT is conformal, the DZ hierarchy is also bi-Hamiltonian, with the second Hamiltonian structure having singularities of a very particular type (we reprove a result of Dubrovin and Zhang on that) and being uniquely determined by the bi-Hamiltonian recursion relation. In particular, we prove that the constant term of the second bracket is polynomial. In Section 3.5 we recall the Liu-Pandharipande relations in the tautological ring, and summarize the most important corollaries. In Section 3.6 we prove that all terms that must vanish for degree reasons once the conjecture of Dubrovin and Zhang on polynomiality of the second bracket holds actually do vanish.

Hamiltonian structures

In this section, we explain the θ-formalism first introduced in [START_REF] Getzler | A Darboux theorem for Hamiltonian operators in the formal calculus of variations[END_REF] and further developed in [START_REF] Liu | Bihamiltonian cohomologies and integrable hierarchies I: A special case[END_REF] and [START_REF] Dubrovin | Bihamiltonian cohomologies and integrable hierarchies II: The tau structures[END_REF] to work with Hamiltonian and bi-Hamiltonian structures. The main addition to their theory is the completion of the differential polynomial algebra to allow certain singularities.

Let M be a formal germ of an N -dimensional smooth manifold. We define a formal supermanifold M by describing its ring of functions. A system of local coordinates on M is given by {u 1 , . . . , u N , θ 1 , . . . , θ N }, where {u 1 , . . . , u N } is a system of local coordinates of M and {θ 1 , . . . , θ N } are the corresponding dual coordinates. Note the latter are Grassmann variables, i. e., θ α θ β + θ β θ α = 0 for all α, β.

Consider now the infinite jet space of M , J ∞ ( M ). A system of local coordinates in J ∞ ( M ) is given by {u α p , θ q β } p,q 0 1 α,β N and we identify u α 0 = u α and θ 0 α = θ α , α = 1, . . . , N .

Definition 3.2.1. The differential polynomial algebra  is defined as

 = C[[u α 0 = u α , u α 1 , u α 2 , . . . , θ 0 α = θ α , θ 1 α , θ 2 α , . . . | 1 α N ]]. (3.2.1)
The term differential polynomial in u (respectively, in u, θ) means for us a polynomial in u α s , s 1, (respectively, in u α s , s 1, and θ s α , s 0) with formal power series in u α as coefficients.

The differential polynomial algebra admits two gradations: the standard gradation

deg u α s = deg θ s α = s, s 0, (3.2.2)
and the super gradation

deg θ s α = 1, deg u α s = 0, s 0. (3.2.3)
Let Âp and Âp be the degree p components of  with respect to the super and standard gradations, respectively. Let Âp d = Âp ∩ Âd . Note that A = Â0 is the differential polynomial algebra on M . In the following, Einstein's summation convention applies to Greek indices, but not to Latin ones. The space  is endowed with a total derivative

∂ x = p 0 u α p+1 ∂ ∂u α p + θ p+1 α ∂ ∂θ p α , (3.2.4) 
which preserves the super gradation on  and increases the standard gradation by 1.

Definition 3.2.2. The space of polyvector fields F is defined as the quotient space of  by ∂ x  and the constant functions.

The projection map is denoted by : Â → F. Since ∂ x is homogeneous with respect to the gradations, the subspaces Fp , Fd and Fp d are well defined. The elements of Fp are called p-vectors. It is possible to write a p-vector as a sum of its homogeneous components in the standard degree: for f ∈ Fp , we write

f = f 0 + f 1 + f 2 + . . . , f k ∈ Fp k . (3.2.5)
It will be useful later to introduce a formal parameter (the dispersion parameter) to keep track of the degree by rescaling x → x. That is, if s = min{k|f k = 0}, then we write

f = f s + f s+1 + 2 f s+2 + . . . , f k ∈ Fp k (3.2.6)
Having defined the functionals, the goal is to define a graded Lie bracket on J ∞ ( M ) that extends the usual Schouten bracket on M , given by

[P, Q] = ∂P ∂θ α ∂Q ∂u α + (-1) p ∂P ∂u α ∂Q ∂θ α (3.2.7)
for P ∈ Âp 0 and Q ∈ Âq 0 . For this purpose, define the variational derivatives of f ∈ Â:

δf δθ γ = p 0 (-∂ x ) p ∂f ∂θ p γ , δf δu γ = p 0 (-∂ x ) p ∂f ∂u γ p . (3.2.8) Since δ δθγ • ∂ x = δ δu γ • ∂ x = 0,
the operators above can be defined on the space of functionals F. Now we can define the bracket

[•, •] : Fp × Fq -→ Fp+q-1 (3.2.9) (P, Q) -→ [P, Q] = δP δθ α δQ δu α + (-1) p δP δu α δQ δθ α dx, (3.2.10) 
which we call the Schouten bracket on J ∞ ( M ). The next theorem shows that this bracket gives F a graded Lie algebra structure:

Theorem 3.2.3 ([81]). Let P ∈ Fp , Q ∈ Fq , R ∈ Fr . Then • [P, Q] = (-1) pq [Q, P ]. • (-1) pr [[P, Q], R] + (-1) qp [[Q, R], P ] + (-1) rq [[R, P ], Q] = 0.
Finally, we are ready to define Hamiltonian and bi-Hamiltonian structures. [START_REF] Dubrovin | Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method[END_REF])

P = 1 2 (g αβ (u)θ α θ 1 β + Γ αβ γ (u)u γ 1 θ α θ β )dx, (3.2.15)
where g is a flat metric on M and Γ αβ γ are the contravariant Christoffel symbols of its Levi-Civita connection.

The Poisson bivectors considered in this chapter will be deformations in even degrees of Poisson bivectors of hydrodynamic type, i.e., P ∈ F2 such that P | =0 is a Poisson bracket of hydrodynamic type. For any such P , we can find unique P αβ g,s ∈ A 2g+1-s satisfying 2g+1 s=0 P αβ g,s ∂ s x = 2g+1 s=0 (-1) s+1 ∂ s x P βα g,s such that P can be written as

P = 1 2 ∞ g=0 2g 2g+1 s=0 P αβ g,s θ α θ s β dx. (3.2.16)

Changes of coordinates

We want the Schouten bracket to remain invariant under changes of coordinates. First, we introduce the groups of transformations that will be considered.

Definition 3.2.7. A Miura transformation is a formal change of coordinates u α → ũα of the form

ũα = u α + ∞ k=1 k F α k (u; u 1 , . . . , u k ) (3.2.17)
where

F α k ∈ A k .
In the literature, Miura transformations of the form (3.2.17) with an arbitrary diffeomorphism F α 0 (u) as the leading term are often considered. However, all (quasi-)Miura transformations studied in this chapter have F α 0 (u) = u α , thus justifying our more restricted definition, usually known as Miura transformations close to the identity. It is important to study the behavior of the Schouten bracket under Miura transformations: Proposition 3.2.8 ( [START_REF] Liu | Jacobi structures of evolutionary partial differential equations[END_REF]). A Miura transformation (3.2.17) u α → ũα induces a change of variables

θ β = s 0 (-∂ x ) s ∂ ũα ∂u β s θα (3.2.18)
such that the Schouten bracket remains invariant.

Proof. Let us sketch the proof with the help of the formulas given in [START_REF] Liu | Jacobi structures of evolutionary partial differential equations[END_REF]. The change for the variational derivatives is given by

δ δũ α = p 0 (-∂ x ) p • ∂u β ∂ ũα p • δ δu β , (3.2.19) 
Analogously, θ α P αβ (θ β ) be a Poisson bivector, and consider the change of variables (3.2.17). In the new coordinates, P takes the form

δ δ θα = t 0 (-∂ x ) t • ∂θ β ∂ θt α • δ δθ β . ( 3 
P = 1 2 s 0 (-∂ x ) s ∂ ũγ ∂u α s θγ P αβ t 0 (-∂ x ) t ∂ ũσ ∂u β s θσ dx (3.2.24) = 1 2 s,t 0 θγ ∂ ũγ ∂u α s ∂ s x • P αβ • (-∂ x ) t • ∂ ũσ ∂u β s ( θσ )dx.
Therefore, the transformed Poisson operator P γσ is given by

P γσ = s,t 0 ∂ ũγ ∂u α s ∂ s x • P αβ • (-∂ x ) t • ∂ ũσ ∂u β s . (3.2.25)

Differential rational functions

For applications in enumerative geometry the spaces  and F are too restrictive. We will complete them by allowing certain singularities.

Definition 3.2.10. A differential rational function of type (1, 1) is a function f of the form

f = f s + f s+1 + 2 f s+2 + . . . , (3.2.26) 
where the functions f k only depend on finitely many derivatives u, u 1 , . . . , u r and take the form

f k = (u 1 1 ) k ∞ l=0 P k,l (u 1 1 ) l (3.2.27) with P k,l = P k,l (u • • , θ • •
) is a homogeneous differential polynomial of standard degree l that does not depend on u 1 1 . The space of differential rational functions of type (1, 1) is denoted by B. The space of rational polyvector fields of type (1, 1) is defined as the quotient of B by ∂ x B and the constant functions and denoted by Q. The next step is to enlarge the Miura group to allow transformations given by differential rational functions. 

= u α + ∞ k=1 k F α k (u; u 1 , . . . , u n k ). (3.2.28) 
where the functions F α k are homogeneous rational functions in the derivatives u 1 , . . . , u n k of standard degree k. A quasi-Miura transformation is of (1, 1)-type if it takes the form

ũα = u α + ∞ k=1 ( u 1 1 ) k ∞ l=0 F α k,l (u; u 1 , . . . , u n k ) (u 1 1 ) l , (3.2.29) 
where F α k,l is a differential polynomial of degree l with

∂F α k,l ∂u 1 1 = 0.
Remark 3.2.12.

• The key aspect of the space Q is that all notions introduced before for F are still well-defined for Q: variational derivatives, the Schouten bracket and both gradations. It is also possible to define Hamiltonian and bi-Hamiltonian structures of type [START_REF] Ablowitz | Nonlinear-evolution equations of physical significance[END_REF][START_REF] Ablowitz | Nonlinear-evolution equations of physical significance[END_REF] in the same way it was done for their polynomial analogues.

• Note the proof of Proposition 3.2.8 does not use polynomiality at any point. The only requirement is that the variational derivatives still make sense for the transformed polyvector fields, so it still holds if we consider quasi-Miura transformations of type (1, 1) instead of Miura transformations.

• Applying (3.2.29) to an element of Fr yields an element of Qr . The key question is whether this new element is polynomial in the variables ũ.

Dubrovin-Zhang hierarchy

In this section we recall the construction of the DZ hierarchy as done in [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF][START_REF] Buryak | On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket[END_REF][START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF] as well as some of its most important properties. For the full details, we refer the reader to those articles.

Universal differential equations for CohFTs

Let V be an N -dimensional vector space over C equipped with a scalar product (•, •). Choose a basis {e 1 , e 2 , . . . , e N } of V and let η αβ = (e α , e β ). In the rest of the chapter we use η αβ to lower indices and its inverse η αβ to raise them. Let c g,n : V ⊗n → H 2 * M g,n ; C be a CohFT with unit e 1 , and let F = g 0 2g F g be its associated partition function, see Section 1.2.3. The following identities satisfied by the partition function will be used in the text (see e. g. [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF]):

• String equation ∂F ∂t 1 0 = p 0 t α p+1 ∂F ∂t α p + 1 2 η αβ t α 0 t β 0 + 2 τ 0 (e 1 ) 1 . (3.3.1)
• Dilaton equation

∂F ∂t 1 1 = ∂F ∂ + p 0 t α p ∂F ∂t α p -2F + 2 N 24 . (3.3.2)
• WDVV (associativity) equations

∂ 3 F 0 ∂t α 1 d 1 ∂t α 2 d 2 ∂t α 0 η αβ ∂ 3 F 0 ∂t α 3 d 3 ∂t α 4 d 4 ∂t β 0 = ∂ 3 F 0 ∂t α 2 d 2 ∂t α 3 d 3 ∂t α 0 η αβ ∂ 3 F 0 ∂t α 1 d 1 ∂t α 4 d 4 ∂t β 0 . (3.3.3)
• Topological recursion relation in genus 0 (TRR-0)

∂ 3 F 0 ∂t α 1 d 1 +1 ∂t α 2 d 2 ∂t α 3 d 3 = ∂ 2 F 0 ∂t α 1 d 1 ∂t α 0 η αβ ∂ 3 F 0 ∂t β 0 ∂t α 2 d 2 ∂t α 3 d 3 . (3.3.4) 
• The Liu-Pandharipande relations. We recall them in Section 3.5.

There are many other universal differential equations for F g , g 0. Basically, any relation in the tautological ring of the moduli space of curves implies such an equation. For instance, the functions F g , g 0 satisfy the property called tameness, see e. g. [START_REF] Getzler | A Darboux theorem for Hamiltonian operators in the formal calculus of variations[END_REF][START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]. We do not use it in this chapter directly, but it is needed for the validity of Proposition 3.3.4 below. Remark 3.3.1. In fact, the results of this chapter are applicable in more general situations than the partition functions of CohFTs. All properties mentioned above (including the Liu-Pandharipande relations and the tameness) hold for the total descendant potentials of analytic conformal semi-simple Frobenius manifolds, see [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF][START_REF] Faber | Tautological relations and the r-spin Witten conjecture[END_REF]. We choose, however, to start with a CohFT since some of the computations below get some extra geometric meaning.

The principal hierarchy

From now on, all CohFTs considered in this chapter are semi-simple, i. e., the functions

c λ αβ (t) = η λγ ∂ 3 F Frob ∂t γ ∂t α ∂t β , (3.3.5) 
where

F Frob = F 0 | t • 1 =0
give the structure constants of a semi-simple associative algebra at t = 0. Let t 1 0 → t 1 0 + x. Consider the two-point correlators in genus g

Ω [g] α,p;β,q = ∂ 2 F g ∂t α p ∂t β q (3.3.6)
and the variables [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF][START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]). The two point correlators in genus 0 are given by

v β = ∂ 2 F 0 ∂t β 0 ∂t 1 0 , v α = η αβ v β , v α k = ∂ k x v α . (3.3.7) Proposition 3.3.2 ([
Ω [0]
α,p;β,q (t 0 , t 1 , t 2 , . . . ) = Ω

[0] α,p;β,q (v, 0, 0, . . .

) (3.3.8)
As a consequence of the tau-symmetry of Ω

[g] α,p;β,q , i.e., the expression ∂ ∂t γ r Ω

[g] α,p;β,q (3.3.9) being invariant under any permutation of (α, p) ↔ (β, q) ↔ (γ, r), the variables v α satisfy the system of equations 

∂v α ∂t β q = η αγ ∂ x (Ω [0] γ,0;β,q ). ( 3 
P = 1 2 θ α η αβ θ 1 β dx ∈ F2 1 .
(3.3.12) [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF][START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]). The Hamiltonians hα,p = h α,p dx satisfy:

Proposition 3.3.3 ([
δ hα,p δv γ η γσ ∂ x δ hβ,q δv σ = ∂ x Ω [0] α,p+1;β,q . (3.3.13) 
In particular, they Poisson-commute { hα,p , hβ,q } P = 0 and the system (3.3.10) can be rewritten as a Hamiltonian system, called the principal or dispersionless Dubrovin-Zhang hierarchy:

∂v α ∂t β q = η αγ ∂ x δ hβ,q δv γ (3.3.14)

The full hierarchy

The principal hierarchy constructed above "forgets" the information of the CohFT carried by F g for g 1, in other words, no information is lost if we set = 0 at the beginning. Here we construct the full hierarchy. Consider the variables w and the two point correlators:

w α = η αβ ∂ 2 F ∂t β 0 ∂t 1 0 , Ω α,p;β,q = ∂ 2 F ∂t α p ∂t β q = ∞ g=0 2g Ω [g] α,p;β,q . (3.3.15)
As a consequence of the tau-symmetry of Ω α,p;β,q , i.e., the expression

∂ ∂t γ r Ω α,p;β,q (3.3.16)
being invariant under any permutation of (α, p) ↔ (β, q) ↔ (γ, r), the variables w α satisfy the system of equations

∂w α ∂t β q = η αγ ∂ x (Ω γ,0;β,q ), (3.3.17) 
known as the Dubrovin-Zhang hierarchy. The goal is to endow the system (3.3.17) with a Hamiltonian structure as it was done for the principal hierarchy in Section 3.3.2. For this, we recall an important result, known as the (3g -2)-property:

Proposition 3.3.4 (see e. g. [START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]). For g 1, there exist functions P

[g] 0 , . . . , P

[g] 3g-2 such that

F g (t 0 , t 1 , . . . ) = F g (P [g] 0 (v, v 1 , . . . , v 3g-2 ), . . . , P [g] 3g-2 (v, v 1 , . . . , v 3g-2 ), 0, 0, . . . ). (3.3.18)
As a consequence of the (3g -2)-property, Ω [g] only depends on v, v 1 , . . . , v 3g , so the expansion of w in terms of v takes the form

w α = v α + η αβ ∞ g=1 2g Ω [g] β,0;1,0 (v, v 1 , . . . , v 3g ). (3.3.19)
The next proposition shows that the string and dilaton equations give (3.3.19) the required regularity to use the framework developed in Section 3.2.

Proposition 3.3.5 (see [START_REF] Buryak | Integrable systems of double ramification type[END_REF]). The transformation v α → w α is a quasi-Miura transformation of (1, 1)-type.

Proof. Dilaton equation (3.3.2) implies the following relation between the coefficients of F g

[ n i=1 t α i d i ]F g = (2g -3 + n)!d! (2g -3 + n + d)! [ n i=1 t α i d i (t 1 1 ) d ]F g . (3.3.20)
This allows us to rewrite F g (g 2) in the following form:

F g = n 0 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) g n i=1 t α i d i d 0 (2g -3 + n + d)! (2g -3 + n)!d! (t 1 1 ) d (3.3.21) = n 0 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) g n i=1 t α i d i 1 1 -t 1 1 2g-2+n = 1 1 -t 1 1 2g-2 n 0 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) g n i=1 t α i d i 1 -t 1 1 .
For F 0 and F 1 we have to mind the unstable correlation functions:

F 1 = n 1 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) 1 n i=1 t α i d i 1 -t 1 1 + d 0 1 (d + 1)! (τ 1 (e 1 )) d+1 1 (t 1 1 ) d+1 (3.3.22) = n 1 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) 1 n i=1 t α i d i 1 -t 1 1 + τ 1 (e 1 ) 1 d 0 1 (d + 1) (t 1 1 ) d+1 = n 1 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) 1 n i=1 t α i d i 1 -t 1 1 + N 24 log 1 1 -t 1 1 ; F 0 = 1 -t 1 1 2 n 3 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) n i=1 τ d i (e α i ) 0 n i=1 t α i d i 1 -t 1 1 , (3.3.23) 
where the last formula follows from the fact that τ d 1 (e α 1 )τ d 2 (e α 2 )τ 1 (e 1 ) 0 = 0 for all α 1 , α 2 , d 1 , d 2 .

By the string equation (3.3.1) we have

v α = η αβ ∂ 2 F 0 ∂t β 0 ∂t 1 0 = t α 0 + p 0 η αβ t γ p+1 ∂ 2 F 0 ∂t γ p ∂t β 0 = t α 0 + O(t 2 ), (3.3.24) v 1 1 = 1 + t 1 1 + p 0 t γ 1 t µ p+1 η 1β ∂ 3 F 0 ∂t γ 0 ∂t β 0 ∂t µ p + p 1 t γ p+1 η 1β ∂ 3 F 0 ∂t 1 0 ∂t β 0 ∂t γ p = 1 + t 1 1 + O(t 2 ). (3.3.25)
To get the dependence of v 1 1 on t 1 1 we compute

v 1 1 = η 1µ ∂ 3 F 0 ∂t µ 0 ∂t 1 0 ∂t 1 0 = 1 1 -t 1 1 n 0 1 n! 1 α 1 ,...,αn N d 1 ,d 2 ,...,dn 0 (α k ,d k ) =(1,1) η 1µ τ 0 (e µ )τ 0 (e 1 ) 2 n i=1 τ d i (e α i ) 0 n i=1 t α i d i 1 -t 1 1 ; (3.3.26) v 1 1 t α p =0 (α,p) =(1,1) = η 1µ ∂ 3 F 0 ∂t µ 0 ∂t 1 0 ∂t 1 0 t α p =0 (α,p) =(1,1) = η 1µ 1 1 -t 1 1 τ 0 (e µ )τ 0 (e 1 ) 2 0 = 1 1 -t 1 1 . (3.3.27)
Therefore, from (3.3.25) and (3.3.27), we get:

v 1 1 = 1 1 -t 1 1 1 + O t • • 1 -t 1 1 . (3.3.28) 
Taking k derivatives of (3.3.24), we have:

v α k = p 0 η αβ t γ p+1 ∂ k+2 F 0 ∂t γ p ∂t β 0 ∂(t 1 0 ) k = 1 1 -t 1 1 k t α k 1 -t 1 1 + O t • • 1 -t 1 1 2 , (α, k) = (1, 1). (3.3.29)
Thus,

v α k (v 1 1 ) k = t α k 1 -t 1 1 + O t • • 1 -t 1 1 2 . (3.3.30)
In conclusion, the functions

Ω [g] α,p;β,q (v) := ∂ 2 F g ∂t α p ∂t β q (3.3.31)
are of the form (v 1 1 ) 2g S, where S is a formal power series in v α p /(v 1 1 ) p . Since we know they only depend on v, v 1 , . . . , v 3g as a consequence of Proposition 3.3.4, we can conclude

Ω [g] α,p;β,q = (v 1 1 ) 2g k 0 R k (v 1 1 ) k (3.3.32)
for R k a differential polynomial depending on v, v 1 , . . . , v 3g but not on v 1 1 of standard degree k. Thus, we can write the transformation (3.3.19) as For the particular case p = -1, this means 

w α = v α + η αβ ∞ g=1 2g Ω [g] β,0;1,0 = v α + g 1 ( v 1 1 ) 2g k 0 R α g,k (v, v 1 , . . . , v 3g ) (v 1 1 ) k , ( 3 
w α = v α + ∂ x η αβ ∞ g=1 2g ∂F g ∂t β 0 , (3.3 
A αβ = s 0 A αβ s ∂ s x := e,f 0 ∂w α ∂v µ e ∂ e x • P µν • (-∂ x ) f • ∂w β ∂v ν f . (3.3.36)
The Dubrovin-Zhang hierarchy (3.3.17) is thus given by

∂w α ∂t β q = A αγ δ hβ,q δw γ . (3.3.37) 
Finally, we are ready to state the main result of [START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]: [START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]).

Theorem 3.3.7 ([
• The functions Ω α,p;β,q are differential polynomials in w, that is, Ω α,p;β,q = ∞ g=0 2g Ω g α,p;β,q (w, . . . , w 2g ), where Ω g α,p;β,q is a differential polynomial in w of standard degree 2g.

• The Poisson bracket of the full hierarchy

A αβ = ∞ g=0 2g 2g+1
s=0 A αβ g,s ∂ s x is polynomial in w, i.e., the functions A αβ g,s are differential polynomials in w of standard degree 2g + 1 -s. As an immediate consequence of this theorem together with Remark 3.3.6, the Hamiltonian densities are polynomial in w, and so are the equations of the full hierarchy (3.3.37). Remark 3.3.8. Note that Ω 0 α,p;β,q (w) = Ω

[0] α,p;β,q (v)| v α =w α , but the relation between the higher genera two point correlators Ω g α,p;β,q (w, . . . , w 2g ) and Ω

[g] α,p;β,q (v, . . . , v 3g ) is much more involved.

The second bracket 3.4.1 Conformality and bi-Hamiltonian recursion

In Section 3.3.2 we have constructed an integrable hierarchy whose solutions are generated from the partition function of a CohFT. CohFTs are designed to capture the universal basic properties of Gromov-Witten theories, and it is possible to introduce an extra homogeneity property, which is designed to reflect the computation of the degrees of the Gromov-Witten classes.

For the purposes of this chapter, we rewrite the homogeneity condition explicitly as the conformality of the CohFT (as it is done in e. g. [START_REF] Buryak | Towards a bihamiltonian structure for the double ramification hierarchy[END_REF]), and this extra condition implies the existence of another Hamiltonian structure K of hydrodynamic type compatible with P , i.e., [K, P ] = 0, for which the Hamiltonians hα,p are bi-Hamiltonian conserved quantities, i.e., they satisfy [K, [P, hα,p ]] = 0. Definition 3.4.1. A CohFT {c g,n } is called conformal if there exist constants q α β , b α and d such that q α 1 = δ α 1 , q α β + η αµ q ν µ η νβ = (2 -d)δ α β , and

1 2 deg -(g -1)d -m c g,m (⊗ m i=1 e β i ) + m i=1 q µ β i c g,m (⊗ i-1 j=1 e β j ⊗ e µ ⊗ ⊗ m j=i+1 e β j ) (3.4.1) + π * c g,m+1 (⊗ m i=1 e β i ⊗ b γ e γ ) = 0,
where deg acts on the k-th cohomology by multiplication by k and π : M g,m+1 → M g,m is the standard map forgetting the last marked point.

In terms of the logarithm of the partition function

F = 2 log τ = ∞ g=0 2g F g , this means d 0 (q γ µ -dδ γ µ )t µ d ∂ ∂t γ d + b γ ∂ ∂t γ 0 - d 0 η αµ b β τ 0 (e α )τ 0 (e β )τ 0 (e γ ) 0 t γ d+1 ∂ ∂t µ d + (3 -d) 2 ∂ ∂ F (3.4.2) = (3 -d)F + 1 2 b γ τ 0 (e α )τ 0 (e β )τ 0 (e γ ) 0 t α 0 t β 0 + 2 b γ τ 0 (e γ ) 1 .
It is convenient to introduce notation for a part of this equation which is a vector field on the big phase space:

Ẽ := d 0 (q γ µ -dδ γ µ )t µ d ∂ ∂t γ d + b γ ∂ ∂t γ 0 - d 0 η αµ b β τ 0 (e α )τ 0 (e β )τ 0 (e γ ) 0 t γ d+1 ∂ ∂t µ d . (3.4.3) 
Also, let us define the matrices

Rα β := d -1 2 δ α β + q α β ; (3.4.4)
M α β := η αµ b γ τ 0 (e µ )τ 0 (e β )τ 0 (e γ ) 0 .

By direct computation we obtain the following useful lemma that explains the action of Ẽ on the double derivatives of F ,

Ω [g] α,0;β,p := ∂ 2 F g ∂t α 0 ∂t β p ; Ω [g]
α,0;β,-1 := η αβ δ g,0 .

(3.4.5) Lemma 3.4.2. We have:

ẼΩ [g] α,0;β,p + (g(3 -d) -1)Ω [g] α,0;β,p + Rγ α Ω [g] γ,0;β,p = (p + 1 -R) γ β Ω [g] α,0;γ,p + M γ β Ω [g] α,0;γ,p-1 ; (3.4.6) Ẽ∂ x Ω [g] α,0;β,p + g(3 -d)∂ x Ω [g] α,0;β,p + Rγ α ∂ x Ω [g] γ,0;β,p = (p + 1 -R) γ β ∂ x Ω [g] α,0;γ,p + M γ β ∂ x Ω [g] α,0;γ,p-1 . (3.4.7) Let F Frob = F 0 | t • 1 =0 . As a consequence of the string equation (3.3.1), v α | t • 1 =0 = t α 0 .
We have the following system of equations for F Frob , derived from the homogeneity (3.4.2) and WDVV (3.3.3) equations:

∂ 3 F Frob ∂v α 1 ∂v α 2 ∂v α η αβ ∂ 3 F Frob ∂v α 3 ∂v α 4 ∂v β 0 = ∂ 3 F Frob ∂v α 2 ∂v α 3 ∂v α η αβ ∂ 3 F Frob ∂v α 1 ∂v α 4 ∂v β , (3.4.8) (q γ µ v µ + b γ ) ∂ ∂v γ F Frob = (3 -d)F Frob + 1 2 b γ τ 0 (e α )τ 0 (e β )τ 0 (e γ ) 0 v α v β .
(3.4.9)

The system above realizes the function F Frob as the potential of a Dubrovin-Frobenius manifold, identifying

E α = q α µ v µ + b α (3.4.10)
with the coefficients of the Euler vector field. For the theory of Dubrovin-Frobenius manifolds, we refer the reader to [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF][START_REF] Dubrovin | Painlevé transcendents in two-dimensional topological field theory[END_REF]. For the purposes of this chapter, we only need the following result 

K αβ = g αβ ∂ x + b αβ γ v γ 1 (3.4.11)
is compatible with P αβ = η αβ ∂ x . Moreover, the explicit expressions of g and b are given by:

g αβ = η αγ η βν E µ c µγν , b αβ γ = c αδ γ Rβ δ .
(3.4.12)

Remark 3.4.4. Under the conformality assumption, the principal hierarchy shown in section 3.3.2 as constructed in [START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF] coincides with the Dubrovin-Zhang construction of the principal hierarchy starting from a Dubrovin-Frobenius manifold in [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF], for a particular choice of calibration.

For the two compatible Poisson brackets, P and K, we have a bi-Hamiltonian recursion relation: Proposition 3.4.5 (see e. g. [START_REF] Dubrovin | Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation[END_REF]). The following equations hold:

{•, hβ,-1 } K = {•, hµ,0 } P (1 -R) µ β (3.4.13) {•, hβ,d } K = {•, hµ,d+1 } P (d + 2 -R) µ β + {•, hµ,d } P M µ β , d 0. (3.4.14)
Proof. All the arguments in this chapter are based on the bi-Hamiltonian recursion relation above, which is the central piece to prove the main results of the text. That is why, despite its proof being well-known, we reproduce it here. We compute the Hamiltonian vector fields of (3.4.13) term by term: the LHS (after multiplication by η αβ ) becomes

g λν ∂ x δv α δv ν + b λν γ v γ 1 δv α δv ν = b λα γ v γ 1 = Rα δ c λδ γ v γ 1 . (3.4.15)
On the other hand, the RHS equals:

η αβ η λν ∂ x δ hµ,0 δv ν (1 -R) µ β = η αβ η λν ∂ x Ω [0] µ,0;ν,0 (1 -R) µ β (3.4.16) = η αβ η λν c µνγ v γ 1 (1 -R) µ β = c λ µγ v γ 1 η µβ Rα β = Rα β c λβ γ v γ 1 , (3.4.17) 
where we have used that Rα β η βγ + Rγ β η αβ = η αγ . Thus, both sides are equal and the relation (3.4.13) holds. To prove (3.4.14), first note that

g αµ ∂ x + b αµ γ v γ 1 = ∂ x • g αµ -b µα γ v γ 1 . (3.4.18)
Thus, the LHS equals

∂ x (g αµ Ω [0] β,d;µ,0 ) -∂ x ( Rα δ η δθ Ω [0] β,d+1;θ,0 ), (3.4.19)
where the second summand comes from the computation

Rα δ η δθ ∂ x (Ω [0] β,d+1;θ,0 ) = Rα δ η δθ Ω [0] β,d;λ,0 η λσ ∂ x Ω [0] σ,0;θ,0 = Rα δ η δθ Ω [0] β,d;λ,0 η λσ c σθγ v γ 1 (3.4.20) = Rα δ c λδ γ v γ 1 Ω [0] β,d;λ,0 = b λα γ v γ 1 Ω [0]
β,d;λ,0 . Here we have used TRR-0 (3.3.4) in the first equality. Thus, equation (3.4.14) is equivalent to

g αµ Ω [0] β,d;µ,0 -Rα δ η δθ Ω [0] β,d+1;θ,0 = η αθ Ω [0] µ,d+1;θ,0 (d + 2 -R) µ β + η αθ Ω [0] µ,d;θ,0 M µ β . (3.4.21)
First, using TRR-0 (3.3.4), we compute the first summand:

g αµ Ω [0] β,d;µ,0 = E ν η αθ ∂ ∂v ν Ω [0] θ,0;λ,0 η µλ Ω [0] β,d;µ,0 = η αθ E µ ∂ ∂v µ Ω [0] β,d+1;θ,0 . (3.4.22)
Second, we set = t • 1 = 0 in (3.4.6):

E µ ∂ ∂v µ Ω [0] β,d+1;θ,0 -Ω [0] β,d+1;θ,0 + Rγ θ Ω [0] β,d+1;γ,0 = (d + 2 -R) γ β Ω [0] γ,d+1;θ,0 + M γ β Ω [0] γ,d;θ,0 . (3.4.23)
Combining this last equation with the identity Rα β η βγ + Rγ β η αβ = η αγ we see that (3.4.21) holds.

As before, we can apply the transformation (3.3.19) to obtain a deformed bracket:

B αβ = s 0 B αβ s ∂ s x := e,f 0 ∂w α ∂v µ e ∂ e x • K µν • (-∂ x ) f • ∂w β ∂v ν f . (3.4.24) Since (3.3.19
) is a quasi-Miura transformation of (1, 1) type by Proposition 3.3.5, and it only has terms of even degree in , the second bracket admits an -expansion of the form

B αβ = ∞ g=0 2g 3g+1 s=0 B αβ g,s ∂ s x , (3.4.25) 
where B αβ g,s is a homogeneous differential rational function of type (1, 1) and degree 2g + 1 -s. Note that the max s for a given g is 3g + 1 as a consequence of Proposition 3. 

) β ν = f (-∂ x ) f • ∂w β ∂v ν f , then: B αβ δ δw β ( hγ,d ) = L α µ • K µν • (L * ) β ν • δ δw β ( hγ,d ) (3.4.28) = L α µ • K µν • δ δv ν ( hγ,d ) = L α µ • P µν • δ δv ν (d + 2 -R) λ γ hλ,d+1 + M λ γ hλ,d = L α µ • P µν • (L * ) β ν • δ δw β (d + 2 -R) λ γ hλ,d+1 + M λ γ hλ,d = A αβ δ δw β (d + 2 -R) λ γ hλ,d+1 + M λ γ hλ,d .
In other words, B αβ is an operator of the form (3.4.25) satisfying (3.4.28). These are the main equations that we are going to use in the rest of the chapter, recycling the same idea thrice. First, we will show that these two conditions determine B αβ uniquely. Second, we will show that the functions B αβ g,s are of the form B αβ g,s = C αβ g,s / det(η -1 ∂ x Ω 0 ) ng,s , where n g,s ∈ Z 0 and C αβ g,s is a differential polynomial in w, thus giving an alternative proof to [46, Theorem 4.2.14] for the second bracket without resorting to the loop equations. Finally, we will prove the vanishing B αβ g,s = 0 for 2g + 2 s 3g + 1, which is a necessary condition for B αβ to be polynomial. 

D αγ 0,0 ∂h [0] β,-1 ∂w γ + D αγ 0,1 ∂ x ∂h [0] β,-1 ∂w γ = D αγ 0,0 η βγ = 0, (3.4.33)
so we can conclude that D αγ 0,0 = 0. We are left with

D αγ 0,1 ∂ x ∂h [0] β,d ∂w γ = 0. (3.4.34)
Recall that the dispersionless Hamiltonians h

[0] α,d (w) = h α,d (v)| v α →w α satisfy TRR-0 (3.3.4), which implies that ∂ 2 h [0] β,d ∂w α ∂w γ = cσ αγ ∂h [0] β,d-1 ∂w σ , (3.4.35) 
where cσ To show that the last equation implies D αγ 0,1 = 0, we need the following lemma: Lemma 3.4.7. The matrix η -1 ∂ x Ω 0 , written with indices as cα γµ w µ 1 = η αβ ∂ x Ω 0 β,0;γ,0 , is invertible in the (1, 1) class.

αγ = η σβ ∂ 3 F Frob ∂v µ ∂v ν ∂v γ | v α →w α . Now D αγ 0,1 ∂ x ∂h [0] β,0 ∂w γ = D αγ 0,1 w µ 1 cσ γµ ∂h [0] β,-1 ∂w σ = D αγ 0,1 w µ 1 cσ γµ η βσ = 0, ( 3 
Proof. The string equation implies that cα γµ w µ 1 -δ α γ w 1 1 is a differential polynomial that does not depend on w 1 1 .

So, we can conclude that D αγ 0,1 = 0.

Induction on g

We proceed by induction on g. The case g = 0 has already been proven. Assume D αβ r,s = 0 for all r g -1 and for all s = 0, . . . , 3r + 1. The coefficient of 2g in (3.4.31) is Second, by the chain rule

g-1 r=0 3r+1 s=0 D αγ r,s ∂ s x δ h[g-r] β,d δw γ + 3g+1 s=0 D αγ g,s ∂ s x δ h[0]
∂ s x ∂h [0] β,d ∂w γ = s m=1 ∂ m+1 h [0] β,d ∂w γ ∂w µ 1 . . . ∂w µm BP µ 1 ...µm s,m , (3.4.41) 
where BP µ 1 ...µm s,m is a homogeneous differential polynomial of degree s in the variables w µ p , where µ = µ 1 . . . µ m and p = 1, . . . , s -m + 1. For this proof, we only need the explicit form of where BQ (m,k),λ γµ 1 ...µm is a function in w that can be written in terms of the functions cα βγ and their partial derivatives. For this proof, we only need the explicit form of Regrouping the terms

BP µ 1 ...µs s,s = w µ 1 1 w µ 2 1 . . .
BQ (m,m),λ γµ 1 ...µm = cλ 1 γµ 1 cλ 2 λ 1 µ 2 . . . cλ λ m-1 µm . ( 3 
D αγ g,3g+1 w µ 1 1 cλ 1 γµ 1 w µ 2 1 cλ 2 λ 1 µ 2 . . . w µ 3g 1 cλ 3g λ 3g-1 ,µ 3g w µ 3g+1 1 cλ λ 3g ,µ 3g+1 = 0. (3.4.50)
By Lemma 3.4.7, the factor w µ 3g+1 1 cλ λ 3g ,µ 3g+1 can be canceled out, meaning the remaining terms must be zero D αγ g,3g+1 w µ 1 which completes the proof.

1 cλ 1 γµ 1 w µ 2 1 cλ 2 λ 1 µ 2 . . . w µ 3g 1 cλ 3g λ 3g-1 ,µ 3g = 0.

Dubrovin-Zhang structural theorem

An argument based on bi-Hamiltonian recursion as in the proof of Theorem 3.4.6 is insufficient to show that the functions B αβ g,s are polynomial. However, it is enough to derive a new proof of the following weaker structural result, which has been already proved in [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF] using the loop equation. where B αβ g,s is a homogeneous differential rational function in the variables w of degree 2g + 1 -s of the form

B αβ g,s = C αβ g,s D ng,s , (3.4.55) 
where D = D(w; w 1 ) = det(c λ γµ w µ 1 ) = det(η -1 ∂ x Ω 0 ), C αβ g,s is a differential polynomial not divisible by D and n g,s ∈ Z.

Proof. Recall B satisfies equation (3.4.28)

B αβ δ δw β ( hγ,d ) = A αβ δ δw β (d + 2 -R) λ γ hλ,d+1 + M λ γ hλ,d , (3.4.56) 
whose right hand side is polynomial as a consequence of Theorem 3.3.7. We know that the g = 0 term of the expansion of B equals K αβ | v α →w α , which is polynomial, but we will proceed analogously to Theorem 3.4.6 even from g = 0 to illustrate the methods of the proof. Expanding the expression

∞ g=0 2g 3g+1 s=0 B αγ g,s ∂ s x δ hβ,d δw γ , (3.4.57) 
which is polynomial, and taking the g = 0 term implies that

B αγ 0,0 ∂h [0] β,d ∂w γ + B αγ 0,1 ∂ x ∂h [0] β,d ∂w γ (3.4.58)
is polynomial. Choosing d = -1 shows immediately that B αγ 0,0 is polynomial, so we know is polynomial. By Lemma 3.4.7, the matrix (η

B αγ 0,1 ∂ x ∂h [0] β,d ∂w γ (3.
-1 ∂ x Ω 0 ) λ γ = w µ 1 cλ
γµ is invertible. We can write its inverse as ((η

-1 ∂ x Ω 0 ) -1 ) γ λ = 1 D T γ λ ,
where T γ λ is the transpose of the adjugate of η -1 ∂ x Ω 0 , hence a differential polynomial, and D = det(w µ 1 cλ γµ ) is its determinant. Therefore, multiplying the polynomial expression (3.4.60) by (η -1 ∂ x Ω 0 ) -1 implies B αγ 0,1 can be written as the quotient of a differential polynomial by D. In other words, we can write

B αγ 0,1 = C αγ 0,1 D n 0,1 (3.4.61)
for C αγ 0,1 a differential polynomial not divisible by D and n 0,1 1. Assume

B αβ r,s = C αβ r,s D nr,s (3.4.62)
with C αβ r,s a differential polynomial not divisible by D for all r g -1 and for all s 3r + 1. Let n = max 0 r g-1

0 s 3r+1 (n r,s ). The coefficient of 2g in (3.4.57) is g-1 r=0 3r+1 s=0 B αγ r,s ∂ s x δ h[g-r] β,d δw γ + 3g+1 s=0 B αγ g,s ∂ s x δ h[0] β,d δw γ , (3.4.63)
which is polynomial. By induction hypothesis, the first summand is a differential polynomial divided by D n , and so is 

3g+1 s=0 B αγ g,s ∂ s x ∂h [0] β,d ∂w γ . ( 3 
B αγ g,3g+1 w µ 1 1 cλ 1 γµ 1 w µ 2 1 cλ 2 λ 1 µ 2 . . . w µ 3g+1 1 cλ λ 3g µ 3g+1 = R αγ 3g,3g+1 D n , (3.4.68)
where R αγ 3g,3g+1 is a differential polynomial. As before, multiplying this identity by the matrix ((η -1 ∂ x Ω 0 ) -1 ) γ λ = 1 D T γ λ from the right 3g + 1 times yields

B αγ g,3g+1 = C αγ 3g,3g+1 D n g,3g+1 , (3.4.69)
where C αγ 3g,3g+1 is a differential polynomial and n g,3g+1 n + 3g + 1.

Taking the k = 3g term in (3.4.67) shows that

B αγ g,3g w µ 1 1 cλ 1 γµ 1 w µ 2 1 cλ 2 λ 1 µ 2 . . . w µ 3g 1 cλ 3g λ 3g-1 µ 3g (3.4.70) + B αγ g,3g+1 BP µ 1 ,...,µ 3g 3g+1,3g BQ (3g,3g)λ γµ 1 ...µ 3g + BP µ 1 ...µ 3g+1 3g+1,3g+1 BQ (3g+1,3g)λ γ,µ 1 ,...,µ 3g
is a differential polynomial divided by D n . Therefore,

B αγ g,3g w µ 1 1 cλ 1 γµ 1 w µ 2 1 cλ 2 λ 1 µ 2 . . . w µ 3g 1 cλ 3g λ 3g-1 µ 3g = R αγ 3g,3g D n+3g+1 , (3.4.71)
where R αγ 3g,3g is a differential polynomial. Multiplying this by the matrix ((η

-1 ∂ x Ω 0 ) -1 ) γ λ = 1 D T γ λ
from the right 3g times, we obtain that

B αγ g,3g+1 = C αγ 3g,3g D n g,3g , (3.4.72)
where C 3g,3g is a differential polynomial and n g,3g n + 6g + 1.

Repeating this argument for k = 3g -1, 3g -2, . . . , 1 shows

B αγ g,s = C αγ g,s D ng,s (3.4.73)
with C αγ g,s a differential polynomial not divisible by D.

Remark 3.4.9. It is easy to track through the proof of Theorem 3.4.8 an estimate for the degrees of the denominators n g,s . To make these estimates sharper, one can use the polynomiality in genus 0 and 1 [START_REF] Dubrovin | Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation[END_REF], and the result of Theorem 3.6.8 below, which states that B αβ g,s = 0 for s 2g + 2. But, of course, the conjecture of Dubrovin and Zhang suggests that n g,s 0. 

Liu-Pandharipande relations

Relation among the tautological classes

Fix sets of indices I 1 and I 2 such that I 1 I 2 = {1, . . . , n}. Let ∆ g 1 ,g 2 ⊂ M g,n denote a divisor in M g,n whose generic points are represented by two-component curves intersecting at a node, where the two components have genera g 1 , g 2 and contain the points with the indices I 1 , I 2 , respectively. Note that if g i = 0, then |I i | must be at least 2, for the stability condition.

Let

n 1 = |I 1 |, n 2 = |I 2 |.
For each ∆ g 1 ,g 2 we consider the map ι g 1 ,g 2 : M g 1 ,n 1 +1 × M g 2 ,n 2 +1 → M g,n that glues the last marked points into a node and whose image is ∆ g 1 ,g 2 . Let ψ •1 (respectively, ψ •2 ) denote the psi classes at the marked points on the first (respectively, second) component that are glued into the node. Proposition 3.5.1 ([83, Proposition 1]). For any g 0, n 4, I 1 and I 2 such that I 1 I 2 = {1, . . . , n} and |I 1 |, |I 2 | 2, and an arbitrary r 0 we have:

g 1 ,g 2 0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 = 2g-3+n+r (-1) a 1 (ι g 1 ,g 2 ) * ψ a 1 •1 ψ a 2 •2 = 0. (3.5.1)
Let n = k + 1, I 1 = {1, . . . , k -1}, I 2 = {k, k + 1}, and consider the map π : M g,k+1 → M g,k that forgets the last marked point. We apply the push-forward π * to the left hand side of (3.5.1) and to the left hand side of (3.5.1) multiplied by ψ k+1 in order to obtain the following corollaries.

Corollary 3.5.2. For any g 0, k 3, I 1 = {1, . . . , k -1} and I 2 = {k}, and an arbitrary r 0 we have:

g 1 0,g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 = 2g-2+k+r g 2 (-1) a 1 (ι g 1 ,g 2 ) * ψ a 1 •1 ψ a 2 •2 = 0. (3.5.2)
Corollary 3.5.3. For any g 0, k 3, I 1 = {1, . . . , k -1} and I 2 = {k}, and an arbitrary r 0 we have:

(-1) k+r ψ 2g-2+k+r k + g 1 0,g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 = 2g-3+k+r (-1) a 1 (ι g 1 ,g 2 ) * ψ a 1 •1 ψ a 2 •2 = 0. (3.5.3)
Taking yet another pushforward, we have the following corollary:

Corollary 3.5.4 ([83, Proposition 2]). For any g 1, I 1 = {1}, I 2 = {2}, and an arbitrary r 0 we have: 3) imply a number of identities for the functions ∂ s

-ψ 2g+r 1 + (-1) r ψ 2g+r 2 + g 1 0,g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 = 2g-1+r (-1) a 1 (ι g 1 ,g 2 ) * ψ a 1 •1 ψ a 2 •2 = 0. ( 3 
x Ω

[g] α,0;β,p . In order to formulate these identities in a useful way for the computational scheme presented in Section 3.4, we introduce a new notation.

Let

∂ s x Ω [g] α,0;β,0 := ∂ s x Ω [g]
α,0;β,0 , s 0, and for p 1 we set

∂ s x Ω [g] α,0;β,p := ∂ s x Ω [g] α,0;β,p - p-1 q=0 ∂ s x Ω [g] α,0;µ,q η µν Ω [0]
ν,0;β,p-q-1 .

(3.5.5)

In other words, in the expansion of ∂ s

x Ω

[g] α,0;β,p we use the pull-back of ψ p from M g,s+2 at the point with the primary field β. Lemma 3.5.5. For s 1, p 2g + s we have:

g 1 0,g 2 >0 g 1 +g 2 =g p q=0 g 2 (-1) q ∂ s x Ω [g 1 ] α,0;µ,q η µν Ω [g 2 ]
β,0;ν,p-q = 0. (3.5.6) Lemma 3.5.6. For s 1, p 2g + s we have:

∂ s x Ω [g] α,0;β,p = g 1 0,g 2 >0 g 1 +g 2 =g p-1 q=0 (-1) p-q-1 ∂ s x Ω [g 1 ] α,0;µ,q η µν Ω [g 2 ]
β,0;ν,p-q-1 .

(3.5.7)

Recall also the notation ∂ s

x Ω

[g] α,0;β,-1 := δ s,0 δ g,0 η αβ . We set ∂ s

x Ω

[g] α,0;β, -1 := ∂ s

x Ω

[g] α,0;β,-1 and for p 0

∂ s x Ω [g] α,0;β, p := ∂ s x Ω [g] α,0;β,p - p-1 q=-1 ∂ s x Ω [g] α,0;µ, q η µν Ω [0] ν,0;β,p-q-1 . (3.5.8) Of course, if g > 0 or s > 0, then ∂ s x Ω [g] α,0;β, p = ∂ s x Ω [g]
α,0;β,p , but for g = s = 0 and p 0,

∂ s x Ω [g]
α,0;β, p = 0. With this extra piece of notation we can include the case s = 0 in Lemma 3.5.6 in the following way: Lemma 3.5.7. For s 0, p 2g + s we have:

∂ s x Ω [g] α,0;β, p = g 1 0,g 2 >0 g 1 +g 2 =g p-1 q=-1 (-1) p-q-1 ∂ s x Ω [g 1 ] α,0;µ, q η µν Ω [g 2 ]
β,0;ν,p-q-1 .

(3.5.9) Lemmata 3.5.5, 3. 

Variation for Ẽ

In fact, as it is explained in [83, Proof of Theorem 4], all lemmata in the previous section work without any change once we replace the operator ∂ s x with an arbitrary s-vector field on the big phase space. The actual result that we use below is a variation of Lemma 3.5.6 that is related to the vector field Ẽ.

Let Ẽ∂ x Ω

[g] α,0;β,0 := Ẽ∂ x Ω

[g] α,0;β,0 , and for p 1 we set

Ẽ∂ x Ω [g] α,0;β,p := Ẽ∂ x Ω [g] α,0;β,p - p-1 q=0 Ẽ∂ x Ω [g] α,0;µ,q η µν Ω [0]
ν,0;β,p-q-1 .

(3.5.10)

In other words, in the expansion of Ẽ∂ x Ω

[g] α,0;β,p we use the pull-back of ψ p from M g,4 at the point with the primary field β. Lemma 3.5.8. For p 2g + 2 we have:

Ẽ∂ x Ω [g] α,0;β,p = g 1 0,g 2 >0 g 1 +g 2 =g p-1 q=0 (-1) p-q-1 Ẽ∂ x Ω [g 1 ] α,0;µ,q η µν Ω [g 2 ]
β,0;ν,p-q-1 .

(3.5.11)

Vanishing terms of the second bracket

The goal of this section is to prove that all terms of the second Dubrovin-Zhang bracket that have negative degree, and therefore cannot be polynomial, do vanish. The argument goes as follows.

We start with two essential steps to simplify the problem. First, we replace the operator B with a different operator B that has equivalent vanishing properties but satisfies a simplified version of the bi-Hamiltonian recursion. Second, we employ a triangular structure with respect to the -degree of the change of variables from v coordinates to w coordinates in order to reduce the problem to the vanishing of the negative degree terms of the operator B in the v coordinates.

The latter observation allows us to consider the simplified version of the bi-Hamiltonian recursion in the v coordinates, for which the -expansion of the Ω-functions has geometric meaning, as it coincides with the expansion in the t variables. This lets us apply various geometric observations from Section 3.5 and homogeneity properties from Section 3.4 to derive the desired vanishing statement about B.

Equivalent form without the variational derivative

Recall the bi-Hamiltonian recursion: Lemma 3.6.1. We have: , respectively, for any g 0.

B αβ δ δw β Ω 1,0;γ,p+1 dx = A αβ δ δw β Ω 1,0;µ,p+2 dx (p + 2 -R) µ γ + Ω 1,0;µ,p+1 dx M µ γ (3.6.1) for p -1. Note that A αβ = ∂ x • Ãαβ , where Ãαβ = η αβ + O( 2 ) = ∞ g=0 2g 2g s=0 Ãαβ g,s ∂ s x ,
Bαβ Ω β,0;γ,p = η αβ ∂ x Ω β,0;µ,p+1 (p + 2 -R) µ γ + Ω β,0;µ,p M µ γ . ( 3 

Vanishing terms

Consider the expansion of the operator Bαβ in the v coordinates:

Bαβ = ∞ g=0 2g 3g+1 s=0

Bαβ

[g],s ∂ s x .

(3.6.4) Proposition 3.6.5. We have Bαβ [g],s = 0 for s 2g + 2, g 0. Before we proceed with the proof of Proposition 3.6.5, let us note that the equation that determines Bαβ

[g],s (once Bαβ [h],t are known for h < g and for h = g, t > s), i.e., what corresponds to the s-th summand of (3.4.48) in the proof of Theorem 3.4.6 or, analogously, the s-th summand of (3.4.67) in the proof of Theorem 3.4.8, can be compactly written as follows: Lemma 3.6.6. We have:

g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;γ, s-1 = η αβ Rµ β ∂ x Ω [g] µ,0;γ,s + Ẽη αβ ∂ x Ω [g] β,0;γ,s + g(3 -d)η αβ ∂ x Ω [g]
β,0;γ,s . (3.6.5)

Proof. Consider the genus g component of Equation (3.6.2) with p = s -1 (recall that we use the v coordinates for all ingredients of the formula):

g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;γ,s-1 = η αβ ∂ x Ω [g] β,0;µ,s (s + 1 -R) µ γ + Ω [g] β,0;µ,s-1 M µ γ . (3.6.6)
Then we apply (3.4.7) with p = s. We obtain:

g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;γ,s-1 = η αβ Rµ β ∂ x Ω [g] µ,0;γ,s + Ẽη αβ ∂ x Ω [g] β,0;γ,s + g(3 -d)η αβ ∂ x Ω [g] β,0;γ,s . (3.6.7)
Let us prove that Equation (3.6.7) implies the statement of the lemma by induction on s. The base is the case s = 0; in this case Equations (3.6.5) and (3.6.7) are equivalent. Assume the lemma is proved for all s < S. Then, for s = S we have:

g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;γ, S-1 -η αβ Rµ β ∂ x Ω [g] µ,0;γ,S -Ẽη αβ ∂ x Ω [g] β,0;γ,S -g(3 -d)η αβ ∂ x Ω [g] β,0;γ,S (3.6.8) = g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;γ,S-1 -η αβ Rµ β ∂ x Ω [g] µ,0;γ,S -Ẽη αβ ∂ x Ω [g] β,0;γ,S -g(3 -d)η αβ ∂ x Ω [g] β,0;γ,S - S-1 q=0 g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;µ, q-1 -η αβ Rµ β ∂ x Ω [g] µ,0;µ,q -Ẽη αβ ∂ x Ω [g] β,0;µ,q -g(3 -d)η αβ ∂ x Ω [g] β,0;µ,q η µν Ω [0]
ν,0;γ,S-q-1 .

This equality follows from directly from the definitions (3.5.5), (3.5.8), and (3.5.10). Now, the right hand side of this equality is equal to zero: the first line by Equation (3.6.7), and the sum over q by the induction assumption. This implies that (3.6.5) holds for s = S and completes the inductive proof of the lemma.

Proof of Proposition 3.6.5. We assume that using the computational scheme in Theorems 3.4.6 and 3.4.8 we already proved by induction the vanishing of Bαβ [h],t for h < g, t 2h + 2 and for h = g, t > s. Also, recall that Bαβ

[g 1 ],t ∂ t x Ω [g 2 ] β,0;γ, s-1 = 0 for 0 t < s -3g 2 for dimensional reasons (ψ >3g 2 -1+t t+2 vanishes on M g 2 ,t+2
), which we use below for g 1 = g and g 2 = 0. Then we have:

g 1 ,g 2 ,t 0 g 1 +g 2 =g Bαβ [g 1 ],t ∂ t x Ω [g 2 ] β,0;γ, s-1 = Bαβ [g],s ∂ s x Ω [0] β,0;γ, s-1 + g-1 h=0 2h+1 t=0 Bαβ [h],t ∂ t x Ω [g-h] β,0;γ, s-1 (3.6.9) = Bαβ [g],s ∂ s x Ω [0] β,0;γ, s-1 + g-1 h=0 s-2 r=-1 (-1) s-r h 1 ,h 2 0 h 1 +h 2 =h 2h 1 +1 t=0 Bαβ [h 1 ],t ∂ t x Ω [h 2 ] β,0;µ, r η µν Ω [g-h] γ,0;ν,s-2-r = Bαβ [g],s ∂ s x Ω [0] β,0;γ, s-1 + g-1 h=0 s-2 r=-1 (-1) s-r η αβ Rξ β ∂ x Ω [h] ξ,0;µ,r+1 + Ẽη αβ ∂ x Ω [h] β,0;µ,r+1 + h(3 -d)η αβ ∂ x Ω [h] β,0;µ,r+1 η µν Ω [g-h] γ,0;ν,s-2-r .
Here for the second equality we use Lemma 3.5.7, and for the third equality we use Equation (3.6.5) for g = h and s = r + 1. Note that the condition of Lemma 3.5.7 is indeed satisfied: since t 2h + 1 and 2g + 2 s, we have 2(g -h) + t s -1.

On the other hand, for s 2g + 2 (this inequality is crucially important for the second summand, for the first and the third ones s 2g + 1 would be sufficient), we have from Lemmata 3.5.6 and 3.5.8 the following:

η αβ Rµ β ∂ x Ω [g] µ,0;γ,s + Ẽη αβ ∂ x Ω [g] β,0;γ,s + g(3 -d)η αβ ∂ x Ω [g] β,0;γ,s (3.6.10) = g-1 h=0 s-1 r=0 (-1) s-r-1 η αβ Rξ β ∂ x Ω [h] ξ,0;µ,r + Ẽη αβ ∂ x Ω [h] β,0;µ,r + g(3 -d)η αβ ∂ x Ω [h] β,0;µ,r η µν Ω [g-h]
γ,0;ν,s-1-r .

Substituting this expression and Equation (3.6.9) in Equation (3.6.5), we obtain:

Bαβ [g],s ∂ s x Ω [0] β,0;γ, s-1 = (3 -d)η αβ g-1 h=0 s-1 r=0 (-1) s-r-1 (g -h)∂ x Ω [h] β,0;µ,r η µν Ω [g-h]
γ,0;ν,s-1-r .

(3.6.11)

For s -1 2g + 1 the right hand side of this equation is equal to zero by Lemma 3.5.5. Note that

∂ s x Ω [0] β,0;γ, s-1 = δ µ 1 β δ νs γ s i=1 ∂ x Ω [0] µ i ,0;ν i ,0 s-1 i=1 η ν i µ i+1 .
(3.6.12)

(we prove it below in Lemma 3.6.7). Now, since ∂ s

x Ω

[0] β,0;γ, s-1 as given by (3.6.12) is invertible, we can use the vanishing of the right hand side of Equation (3.6.11) to conclude that Bαβ

[g],s = 0. Lemma 3.6.7. Equation (3.6.12) holds for s 0.

Proof. We prove it by induction on s. The full induction statement is the following. For any s 0

∂ t x Ω [0] β,0;γ, s-1 = δ µ 1 β δ νs γ s i=1 ∂ x Ω [0] µ i ,0;ν i ,0 s-1 i=1 η ν i µ i+1 t = s; 0 0 t < s. (3.6.13)
For s = 0 it is the definition of Ω

[0] β,0;γ, -1 . For the induction step we have to recall the topological recursion relation in genus 0 (3.3.4), which implies that for p 0

∂ x Ω [0] α,0;β,p = ∂ x Ω [0] α,0;µ,0 η µν Ω [0] ν,0;β,p-1 , (3.6.14) 
and, therefore,

∂ x Ω [0] α,0;β, p = ∂ x Ω [0] α,0;µ,0 η µν Ω [0]
ν,0;β, p-1 ;

(3.6.15) Assume (3.6.13) is proved for s S. Then for t = 0 and s = S + 1 the required vanishing follows directly from the induction assumption applied to the right hand side of Equation (3.5.8). If t 1, then for s = S + 1 we use (3.6.15) to obtain

∂ t x Ω [0] β,0;γ, S = ∂ t-1 x ∂ x Ω [0] β,0;ξ,0 η ξζ Ω [0] ζ,0;γ, S-1 = t-1 u=0 t -1 u ∂ u+1 x Ω [0] β,0;ξ,0 η ξζ ∂ t-1-u x Ω [0] ζ,0;γ, S-1 . (3.6.16) 
If 1 t S, then t -1 -u < S for any u = 0, . . . , t -1, and then this expression is equal to zero by the induction assumption. Let t = S + 1. Then t -1 -u = S -u < S for u = 1, . . . , t -1, and therefore the corresponding summands are equal to zero by the induction assumption. Thus for t = S + 1 we have ∂ S+1

x

Ω [0] β,0;γ, S = ∂ x Ω [0] β,0;ξ,0 η ξζ ∂ S x Ω [0]
ζ,0;γ, S-1 .

(3.6.17)

Substitution of the non-vanishing case of the Equation (3.6.13) for s = S into this formula proves the non-vanishing case of the Equation (3.6.13) for s = S + 1, which completes the step of induction and proves the lemma. Now we are ready to state and prove our main theorem, which appears to be a direct corollary of Proposition 3.6.5. Theorem 3.6.8. Consider the -expansion of the second Dubrovin-Zhang bracket in the coordinates w:

B αβ = ∞ g=0 2g 3g+1 s=0 B αβ g,s ∂ s x .
We have B αβ g,s = 0 for g 0, s 2g + 2. Proof. Lemmata 3.6.2 and 3.6.3 imply that the statement of the theorem is equivalent to the statement of Proposition 3.6.5.

Introduction

In [START_REF] Buryak | Double ramification cycles and integrable hierarchies[END_REF] Buryak defined double ramification hierarchies, associated with cohomological field theories, and conjectured they are Miura equivalent to the Dubrovin-Zhang hierarchies constructed in [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF][START_REF] Buryak | A polynomial bracket for the Dubrovin-Zhang hierarchies[END_REF]. This conjecture is further refined and made more explicit in [START_REF] Buryak | Tau-structure for the double ramification hierarchies[END_REF], and in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF] it is reduced to a system of conjectural relations between some explicitly defined classes in the tautological ring of the moduli space of curves R * (M g,n ).

The one point case of the conjecture in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF] gives a surprisingly simple expression for the product of the top Chern class of the Hodge bundle λ g ∈ R g (M g,1 ) and the push-forward of the double ramification cycle DR g (a, -a) ∈ R g (M g,2 ) under the map that forgets the second marked point. For the definition of the double ramification cycle and general information on the tautological rings of the moduli spaces of curves, see Section 1.2 and the references therein, in particular [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF][START_REF] Schmitt | The moduli space of curves[END_REF].

In this chapter we propose a refinement of the one point case of the conjecture in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF]. We conjecture a formula for DR g (a, -a)λ g ∈ R 2g (M g,2 ) in terms of a very simple linear combination of natural strata equipped with psi classes of the same type as in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF]. We analyze this formula in detail and prove it satisfies virtually all properties one might expect from the class DR g (a, -a)λ g including the intersections with all natural boundary divisors in M g,2 and with the psi classes, and finally using these properties we also show that our conjecture is in fact equivalent to the one point case of the conjecture in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF].

Organization of the chapter

In Section 4.2 we formulate the main conjecture, explain its relation to the one point case of the conjecture in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF], and state the expected properties of our formula. In Section 4.3 we introduce our main tools, a variety of corollaries of the Liu-Pandharipande relations among the tautological classes [START_REF] Liu | New topological recursion relations[END_REF], and prove all properties stated before.

Conjectural formula and its properties 4.2.1 Notation

Let M g,n be the Deligne-Mumford compactification of the moduli space of curves with n marked points. There is a natural action of the symmetric group S n on M g,n by relabeling the points. In particular, for n = 2 we will use the morphism that permutes the first and second marked points that we denote by [START_REF] Buryak | Double ramification cycles and integrable hierarchies[END_REF] 

* : R * (M g,2 ) → R * (M g,2 ).
Let σ : M g 1 ,2 × M g 2 ,2 → M g 1 +g 2 ,2 glue the second marked point of M g 1 ,2 and the first marked point of M g 2 ,2 into a node and identify the first marked point in M g 1 ,2 (respectively, the second marked point in M g 2 ,2 ) with the first (respectively, the second) marked point in

M g 1 +g 2 ,2 . Let c 1 ∈ R * (M g 1 ,2 ), c 2 ∈ R * (M g 2 ,2
). It is convenient for us to denote throughout the text c 1 c 2 := σ * (c 1 ⊗ c 2 ) and we use as an associative operation on classes in moduli spaces with two marked points.

With the first two points distinguished, we can extend the notation to the push-forwards of the morphisms σ : M g 1 ,2 × M g 2 ,2+n → M g 1 +g 2 ,2+n that glue the second marked point of M g 1 ,2 with the first marked point of M g 2 ,2+n into a node and identify the first marked point in M g 1 ,2 (respectively, the second marked point in M g 2 ,2+n ) with the first (respectively, the second) marked point in M g 1 +g 2 ,2+n . We can do the same for the similar morphisms σ :

M g 1 ,2+n × M g 2 ,2 → M g 1 +g 2 ,2+n .

Conjectural formula

For g 1 , . . . , g k , g ≥ 1 and d 1 , . . . , d k ≥ 0 such that

g i = g, let c g 1 ,...,g k d 1 ,...,d k ∈ R d 1 +•••+d k +k-1 (M g,2
) be the class represented by the bamboo

g 1 1 ψ d 1 g 2 ψ d 2 g 3 ψ d 3 g k 2 ψ d k = ψ d 1 2 | M g 1 ,2 ψ d 2 2 | M g 2 ,2 • • • ψ d k 2 | M g k ,2 . Denote c g d | k := g 1 ,...,g k d 1 ,...,d k c g 1 ,...,g k d 1 ,...,d k ∈ R d (M g,2 ),
where the sum is taken over all

g 1 + • • • + g k = g and all d 1 + • • • + d k + k -1 = d satisfying the inequalities d 1 + • • • + d + -1 2(g 1 + • • • + g ) -1, = 1, . . . , k.
Note that by the definition

c g d | k = 0 if k > g or d ≥ 2g. (4.2.1) Let B g := ψ 2g 2 | M g,2 + g 1 +g 2 =g d 1 +d 2 =2g-1 g 1 k=1 (-1) k c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 (4.2.2) 
= g k=1 (-1) k-1 d 1 ,...,d k g 1 ,...,g k ψ d 1 2 | M g 1 ,2 ψ d 2 2 | M g 2 ,2 • • • ψ d k 2 | M g k ,2 ∈ R 2g (M g,2 ),
where the last sum is taken over all g 1 +• • •+g k = g, g 1 , . . . , g k 1, and

d 1 +• • •+d k +k -1 = 2g, d 1 , . . . , d k 0, with the extra condition that for any 1 k -1 we have d 1 + • • • + d + -1 2(g 1 + • • • + g ) -1. Conjecture 4.2.1. We have a -2g DR g (a, -a)λ g = B g .
Note that the left-hand side of this equation can be expressed in the tautological classes using the formula of Janda-Pandharipande-Pixton-Zvonkine [START_REF] Janda | Double ramification cycles on the moduli spaces of curves[END_REF], or, taking into account the factor λ g , it is sufficient to use the Hain formula [START_REF] Hain | Normal functions and the geometry of moduli spaces of curves[END_REF] (see an explanation, e.g., in [START_REF] Buryak | Quadratic double ramification integrals and the noncommutative KdV hierarchy[END_REF]Section 2]). However, the resulting expressions are much more complicated than the one we conjecture here. Observe that the right-hand side is independent of a, which is consistent with Hain's formula, which states that the compact-type part of DR g (a, -a) is a homogeneous polynomial in a of degree 2g. Thus, it is enough to prove the conjecture for the case a = 1. Remark 4.2.2. Schmitt has checked the conjecture above in genera 1 and 2, as well as in the Gorenstein quotient in genus 3, with the program admcycles [START_REF] Delecroix | admcycles -a Sage package for calculations in the tautological ring of the moduli space of stable curves[END_REF].

4.2.3

Relation to an earlier conjecture for the push-forwards Conjecture 4.2.1 is a refinement of the one point case of a conjecture of Buryak, Guéré and Rossi [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF]Conjecture 2.5]. Indeed, recall the definition of the class B g 2g-1 ∈ R 2g-1 (M g,1 ) in [START_REF] Buryak | DR/DZ equivalence conjecture and tautological relations[END_REF]. We have:

B g 2g-1 := g k=1 (-1) k-1 g 1 ,...,g k a 1 ,...,a k g 1 ψ a 1 g 2 ψ a 2 g 3 ψ a 3 g k 1 ψ a k ,
where the sum is taken over all g 1 + • • • + g k = g, g 1 , . . . , g k 1, and a 1 , . . . , a k 0 such that

a 1 + • • • + a k + k -1 = 2g -1 and a 1 + • • • + a + -1 2(g 1 + • • • + g ) -2 for = 1, . . . , k -1.
Let π : M g,2 → M g,1 be the map that forgets the second marked point. In the one point case the conjecture from [16, Conjecture 2.5] is reduced to the identity

a -2g π * (DR g (a, -a)λ g ) = B g 2g-1 , see [16, Section 4.2].
On the other hand, we have the following statement.

Proposition 4.2.3. We have π * (12) * B g = B g 2g-1 .

Proof. It follows from the fact that π * (ψ d 1 ) = ψ d-1

1
for d 1 and π * (ψ 0 1 ) = 0. Thus all terms with d 1 = 0 in (4.2.2) vanish under the push-forward, and all other terms are in one-to-one correspondence with a 1 = d 1 -1 and a i = d i for i = 2, . . . , k, k = 1, . . . , g. Remark 4.2.4. Note that an expected property of a -2g DR g (a, -a)λ g is that it is invariant under (12) * , and indeed we prove below that (12) * B g = B g , g 1, so in fact we can reformulate the statement of Proposition 4.2.3 as π * B g = B g 2g-1 . In fact, it is also possible to prove a much stronger statement than Proposition 4.2.3. Theorem 4.2.5. The two conjectural formulas, namely a -2g π * (DR g (a, -a)λ g ) = B g 2g-1 and a -2g DR g (a, -a)λ g = B g , are equivalent.

The first formula follows from the second one by Proposition 4.2.3. The implication in the other direction is quite non-trivial, and we postpone its proof until Section 4.3.8.

Properties

We write down a list of properties of B g . Theorem 4.2.6. We have:

(12) * B g = B g ; (4.2.3) B g • g-1 1 2 = 0; (4.2.4) B g • g 1 1 2 g 2 = 0, g 1 + g 2 = g, g 2 1; 
(4.2.5)

B g • g 1 1 g 2 2 = B g 1 B g 2 , g 1 + g 2 = g, g 1 , g 2 1; (4.2.6) π * (B g ) • ψ 1 = B g 1| M 0,3 + g 1 +g 2 =g g 1 ,g 2 1 B g 1 π * (B g 2 ); (4.2.7) B g • ψ 1 = g 1 +g 2 =g g 1 ,g 2 1 g 2 g B g 1 B g 2 , (4.2.8) 
where π :

M g,3 → M g,2 , g 1, in (4.2.7
) is the projection that forgets the third marked point.

The proof of this theorem is given in Section 4.3. Remark 4.2.7. All these properties are satisfied by DR g (1, -1)λ g = a -2g DR g (a, -a)λ g , namely:

• DR g (1, -1)λ g = DR g (-1, 1)λ g is immediate from Hain's formula [START_REF] Hain | Normal functions and the geometry of moduli spaces of curves[END_REF].

• DR g (1, -1)λ g • g-1 1 2
= 0, as λ g restricts to zero on g-1

1 2 . • DR g (1, -1)λ g • g 1 1 2
g 2 = 0, as the classes DR g (1, -1) and λ g respectively restrict to

DR g 1 (1, -1, 0) ⊗ DR g 2 (0) and λ g 1 ⊗ λ g 2 on M g 1 ,3 × M g 2 ,1
. The vanishing follows after observing DR g 2 (0)λ g 2 = (-1)

g 2 λ 2 g 2 = 0. • DR g (1, -1)λ g • g 1 1 g 2 2 = DR g 1 (1, -1)λ g 1 DR g 2 (1, -1)λ g 2 , as DR g (1, -1) and λ g respectively restrict to DR g 1 (1, -1) ⊗ DR g 2 (1, -1) and λ g 1 ⊗ λ g 2 on M g 1 ,2 × M g 2 ,2 . • π * (DR g (1, -1)λ g ) • ψ 1 = DR g (1, -1)λ g 1| M 0,3 + g 1 +g 2 =g g 1 ,g 2 1 DR g 1 λ g 1 π * (DR g 2 λ g 2 ) follows
from [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF]Theorem 5]: one should use that π * DR g (1, -1) = DR g (1, -1, 0), apply the formula of [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF]Theorem 5] with s = 1 and n = l = 3, and then multiply the result by λ g noting that the terms with p ≥ 2 will vanish after that. [START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF]Theorem 4] multiplied by λ g , where one should again note that the terms with p ≥ 2 vanish after this multiplication.

• DR g (1, -1)λ g • ψ 1 = g 1 +g 2 =g g 1 ,g 2 1 g 2 g DR g 1 (1, -1)λ g 1 DR g 2 (1, -1)λ g 2 follows from the formula of

Proofs

Liu-Pandharipande relations

Fix sets of indices I 1 and I 2 such that I 1 I 2 = {1, . . . , n}. Let ∆ g 1 ,g 2 ⊂ M g,n denote the divisor in M g,n whose generic points are represented by two-component curves intersecting at a node, where the two components have genera g 1 , g 2 and contain the points with the indices I 1 , I 2 , respectively. Note that if g i = 0, then |I i | must be at least 2, for the stability condition.

For each ∆ g 1 ,g 2 we consider the map ι g 1 ,g 2 :

M g 1 ,|I 1 |+1 × M g 2 ,|I 2 |+1
→ M g,n that glues the last marked points into a node and whose image is ∆ g 1 ,g 2 . Let ψ •1 (respectively, ψ •2 ) denote the psi classes at the marked points on the first (respectively, second) component that are glued into the node. 

g 1 ,g 2 0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 = 2g-3+n+r (-1) a 1 (ι g 1 ,g 2 ) * ψ a 1 •1 ψ a 2 •2 = 0 ∈ R 2g-2+n+r (M g,n ). (4.3.1)
This relation has the following corollaries.

Corollary 4.3.2. For any g, n 1, r 0 we have the following relations in R 2g+n+r (M g,n+2 )

(-1) 2g+n+r ψ 2g+n+r 2 + g 1 0, g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 =2g-1+n+r (-1) a 1 ψ a 1 2 | M g 1 ,2+n ψ a 2 1 | M g 2 ,2 = 0, (4.3.2) 
and -ψ 2g+n+r 1 Proposition 2]). For any g 1, r 0 we have:

+ g 1 >0, g 2 0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 =2g-1+n+r (-1) a 1 ψ a 1 2 | M g 1 ,2 ψ a 2 1 | M g 2 ,2+n = 0. (4.3.3) Corollary 4.3.3 ([83,
-ψ 2g+r 1 + (-1) 2g+r ψ 2g+r 2 + g 1 ,g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 =2g-1+r (-1) a 1 ψ a 1 2 | M g 1 ,2 ψ a 2 1 | M g 2 ,2 = 0 ∈ R 2g+r (M g,2 ). (4.3.4) 
All corollaries are proved by taking suitable push-forwards of the relations (4.3.1) under the maps forgetting the marked points, see [START_REF] Liu | New topological recursion relations[END_REF] and Chapter 3. 

The symmetry property

ψ d 2 | M g,2 := ψ d 2 | M g,2
, and

ψ d 1 | M g,2 c 0 -1 | 0 := ψ d 1 | M g,2 .
Note that there is the following recursion relation for the classes c

g d | k : c g d | k+1 = g 1 +g 2 =g d 1 +d 2 =d-1 c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 , k ≥ 0, d ≤ 2g -1,
where d 1 = -1 is allowed in the sum to include the case k = 0, as explained before. Let us now prove equation (4.2.3). Let

E := B g -(12) * B g = g 1 +g 2 =g d 1 +d 2 =2g-1 0 k g 1 (-1) k c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 - g 1 +g 2 =g d 1 +d 2 =2g-1 0 k g 2 (-1) k ψ d 1 1 | M g 1 ,2 c g 2 d 2 | k .
Let E denote the terms of E consisting of exactly components, i.e.,

E := g 1 +g 2 =g d 1 +d 2 =2g-1 (-1) -1 c g 1 d 1 | -1 ψ d 2 2 | M g 2 ,2 - g 1 +g 2 =g d 1 +d 2 =2g-1 (-1) -1 ψ d 1 1 | M g 1 ,2 c g 2 d 2 | -1 .
Lemma 4.3.4. We can write E 1 + • • • + E as an expression involving only graphs with + 1 vertices. In particular:

E 1 + • • • + E = (-1) +1 r+s= -1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-3 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s .
Proof. We prove the lemma by induction. The base of induction is the = 1 case, which follows immediately from (4.3.4):

E 1 = ψ 2g 2 | M g,2 -ψ 2g 1 | M g,2 = - g 1 +g 2 =g d 1 +d 2 =2g-1 (-1) d 1 c 0 -1 | 0 ψ d 1 2 | M g 1 ,2 ψ d 2 1 | M g 2 ,2 c 0 -1 | 0 .
In order to prove the step of induction, assume the lemma is true for 1. Then

E 1 + • • • + E +1 =(-1) +1 r+s= -1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-3 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s (4.3.5) + g 1 +g 2 =g d 1 +d 2 =2g-1 (-1) c g 1 d 1 | ψ d 2 2 | M g 2 ,2
-

g 1 +g 2 =g d 1 +d 2 =2g-1 (-1) ψ d 1 1 | M g 1 ,2 c g 2 d 2 | .
We can split the first summand into two in the following way:

• d 1 + d 2 2(g 1 + g 2 ) -2 and d 3 + d 4 2(g 3 + g 4 ) -1; • d 1 + d 2 2(g 1 + g 2 ) -1 and d 3 + d 4 2(g 3 + g 4 ) -2.
Thus, the summand with

d 1 + d 2 2(g 1 + g 2 ) -2 takes the form (-1) +1 r+s= -1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-3 d 1 +d 2 2(g 1 +g 2 )-2 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s =(-1) r+s= , r 1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 (-1) d 1 c g 1 d 1 | r ψ d 2 1 | M g 2 ,2 c g 3 d 3 | s .
Note that the third summand of (4.3.5) corresponds to the missing terms with r = 0 in the last expression. Similarly, for the terms with

d 3 + d 4 2(g 3 + g 4 ) -2 (-1) +1 r+s= -1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-3 d 3 +d 4 2(g 3 +g 4 )-2 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s = -(-1) r+s= , s 1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 c g 3 d 3 | s .
Again, the second summand of (4.3.5) corresponds to the missing terms with s = 0 in the last expression. Putting everything together

E 1 + • • • + E +1 = (-1) r+s= g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 (-1) d 1 c g 1 d 1 | r ψ d 2 1 -(-1) d 2 ψ d 2 2 M g 2 ,2 c g 3 d 3 | s .
Using (4.2.1) we see that a term in the last sum is equal to zero unless d 2 ≥ 2g 2 . Then the result follows after applying (4.3.4) to the last expression.

Applying the lemma above to

E = E 1 + • • • + E g proves equation (4.2.3).

Intersections with divisors of two types

Here we prove equations (4.2.4) and (4.2.5). It is convenient to use the following notations for the classes of the divisors under consideration:

δ g := g-1 1 2 , δ g :=    g-h 1 2 h , if g h; 0, if g < h,
where we fixed h ≥ 1. So let us prove that

ω g B g = 0 if ω g = δ g or ω g = δ g . (4.3.6) 
We will use the following property:

ω g 1 +g 2 (α β) = ω g 1 α β + α ω g 2 β, where α ∈ R * (M g 1 ,2 ) and β ∈ R * (M g 2 ,2
). We decompose

ω g B g = k≥1 E k , where E k := (-1) k-1 g 1 +g 2 =g d 1 +d 2 =2g-1 ω g c g 1 d 1 | k-1 ψ d 2 2 | M g 2 ,2 .
Lemma 4.3.5. We have:

E 1 + • • • + E k = (-1) k+1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-3 r+s=k-1 (-1) d 1 +d 2 ω g 1 +g 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s . (4.3.7) 
Proof. We prove the lemma by induction. The base of induction is the k = 1 case, which reads:

E 1 = ω g ψ 2g 2 | M g,2 = - g 1 +g 2 =g d 1 +d 2 =2g-1 (-1) d 1 ω g 1 ψ d 1 2 | M g 1 ,2 ψ d 2 1 | M g 2 ,2 .
If ω i = δ i , then this equation follows from the genus g -1 case of (4.3.2) with n = 2 and r = 0, after taking the push-forward under the map that glues two marked points. If ω i = δ i , then the equation follows from the genus g -h case of (4.3.2) with n = 1 and an appropriate r, after taking the product with 1 ∈ R 0 (M h,1 ) and then the push-forward under the gluing map

M g-h,3 × M h,1 → M g,2 .
Let us now assume that the lemma holds for k 1. Then for k + 1 we have

E 1 + • • • + E k+1 =(-1) k+1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-3 r+s=k-1 (-1) d 1 +d 2 ω g 1 +g 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s (4.3.8) + (-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 ω g c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 .
As in the proof of symmetry, we split the first summand in the following way:

• d 1 + d 2 2(g 1 + g 2 ) -2 and d 3 + d 4 2(g 3 + g 4 ) -1;

• d 1 + d 2 2(g 1 + g 2 ) -1 and d 3 + d 4 2(g 3 + g 4 ) -2.
The terms with d 1 + d 2 2(g 1 + g 2 ) -2 combine in the following way:

(-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 r+s=k (-1) d 1 ω g 1 c g 1 d 1 | r ψ d 2 1 | M g 2 ,2 c g 3 d 3 | s .
Note that we do not explicitly impose the condition r 1 because we adopt the convention ω 0 c 0 -1 | 0 := 0. On the other hand, for the terms with d 3 + d 4 2(g 3 + g 4 ) -2 we obtain

(-1) k+1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 r+s=k, s 1 (-1) d 1 +d 2 ω g 1 +g 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 c g 3 d 3 | s .
Note that the missing terms with s = 0 are exactly the ones in the last line of (4.3.8), i.e., those corresponding to E k+1 . Putting everything together

E 1 + • • • + E k+1 = (-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 r+s=k (-1) d 1 ω g 1 c g 1 d 1 | r ψ d 2 1 -(-1) d 2 ψ d 2 2 M g 2 ,2 c g 3 d 3 | s + (-1) k+1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-2 r+s=k (-1) d 1 +d 2 c g 1 d 1 | r ω g 2 ψ d 2 2 | M g 2 ,2 c g 3 d 3 | s .
The result follows from applying (4.3.4) to the first summand and (4.3.2) to the second one in the expression above.

Equation (4.3.6) follows after applying the previous lemma to E 1 + • • • + E g = ω g B g and noting that the right-hand side of (4.3.7) vanishes in this case because of (4.2.1). Remark 4.3.6. Note that properties (4.2.4) and (4.2.5) can be equivalently stated as

gl 1 * (gl * 1 B g ) = 0, gl 2 * (gl * 2 B g ) = 0,
where gl 1 : M g-1,4 → M g,2 is the gluing map identifying the last two marked points on a curve from M g-1,4 , and gl 2 : M g 1 ,3 × M g 2 ,1 → M g,2 is the map gluing the third marked point on a curve from M g 1 ,3 with the marked point on a curve from M g 2 ,1 . Actually, the arguments from this section can be slightly modified in order to show that gl * 1 B g = 0 and gl * 2 B g = 0, which is stronger than what we have proved. The corresponding properties for the DR cycle are clearly true: gl * 1 (DR g (1, -1)λ g ) = 0 and gl * 2 (DR g (1, -1)λ g ) = 0. This observation belongs to the anonymous referee of [START_REF] Buryak | A conjectural formula for DR g (a, -a)λ g[END_REF] and we thank him for sharing it with us.

Intersection with a divisor of curves with marked points on different components

The goal of this section is to prove equation (4.2.6). To this end, we need a new notation. Let

g > h > g 1 , k 1. Denote a h d|k := d 1 +d 2 =d g 1 m=1 (-1) m c g 1 d 1 | m     i 1 ,...,i k a 1 ,...,a k c i 1 ,...,i k a 1 ,...,a k + ψ 1 j 1 ,...,j k b 1 ,...,b k c j 1 ,...,j k b 1 ,...,b k     ,
where the first sum in the parentheses is taken over all i 1 , . . . , i k 1 such that i 1 +• • •+i k = h-g 1 and all a 1 , . . . , a k 0 such that a 1 + • • • + a k + k = d 2 and for any = 1, . . . , k we have

d 1 + a 1 + • • • + a + 2(g 1 + i 1 + • • • + i ).
The second sum in the parentheses is taken over all j 1 , . . . , j k 1 such that j 1 +• • •+j k = h-g 1 and all b 1 , . . . , b k 0 such that b 1 +• • •+b k +k+1 = d 2 and for any = 1, . . . , k we have

d 1 + b 1 + • • • + b + 2(g 1 + j 1 + • • • + j ) -1.
In particular,

a h d|k = 0 if k > h -g 1 or d > 2h, (4.3.9) 
and

a h d|1 = d 1 +d 2 =d g 1 m=1 (-1) m c g 1 d 1 | m ψ d 2 -1 2 + ψ 1 ψ d 2 -2 2 M h-g 1 ,2 , d ≤ 2g, a h d|k+1 = g 1 <f <h d 1 +d 2 =d-1 a f d 1 |k ψ d 2 2 | M h-f,2 , d ≤ 2g, k ≥ 1.
It is convenient to set a h d|k := 0 for h g 1 . Lemma 4.3.7. We have:

B g • g 1 1 g 2 2 = B g 1 B g 2 (4.3.10) + d 1 +d 2 =2g g 1 m=1 (-1) m+1 c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M g 2 ,2 + g 1 <h<g d 1 +d 2 =2g g 2 -1 k=1 (-1) k+1 a h d 1 | k ψ d 2 2 | M g-h,2 .
Proof. This lemma follows directly from the excess intersection formula [START_REF] Graber | Constructions of nontautological classes on moduli spaces of curves[END_REF]Section A.4]. Let g = g 1 + g 2 = f 1 + • • • + f m for some m 1. We have:

c f 1 ,...,fm a 1 ,...,am • g 1 1 g 2 2 (4.3.11) =      c f 1 ,...,f i-1 ,f i ,f i ,f i+1 ,.
..,fm a 1 ,...,a i-1 ,0,a i ,a i+1 ,...,am ,

if g 1 = f 1 +• • •+f i-1 +f i and f i = f i + f i , where f i , f i 1 ; -c f 1 ,.
..,fm a 1 ,...,a i-1 ,a i +1,a i+1 ,...,am -c f 1 ,...,f i a 1 ,...,a i ψ 1 c f i+1 ,...,fm a i+1 ,...,am , if

f 1 + • • • + f i = g 1 .
Recall that in the formula (4.2.2) for B g we have only c f 1 ,...,fm a 1 ,...,am satisfying the conditions

a 1 + • • • + a i + i -1 2(f 1 + • • • + f i ) -1 for i = 1, . . . , m -1 and a 1 + • • • + a m + m -1 = 2g.
We apply equation (4.3.11) to all terms of the formula for B g and we distinguish the following cases:

1. There exists i such that

f 1 +• • •+f i = g 1 and in addition a 1 +• • •+a i +i-1 = 2(f 1 +• • •+f i )-1.
The first summands in (4.3.11) applied to these terms form B g 1 B g 2 .

2. There exists i such that

f 1 +• • •+f i = g 1 and in addition a 1 +• • •+a i +i-1 < 2(f 1 +• • •+f i )-1.
The first summands in (4.3.11) applied to these terms contribute either to the second (if i = m -1) or the third line (if i < m -1) of (4.3.10). More precisely, we can say that in both cases we get terms of the type c j 1 ,...,jp t 1 ,...,tp such that j 1 + • • • + j q = g 1 for some q < p, with an extra requirement that t q > 0. If q = p -1 (respectively, q < p -1), these terms land in the second (respectively, third) line of (4.3.10).

We have

f 1 + • • • + f q-1 < g 1 < f 1 + • • • + f q
for some 1 q m. Apply (4.3.11). We get exactly the same terms as in the previous case, but now with an extra requirement that t q = 0. This and the previous cases deliver together all terms in the second and the third lines of (4.3.10) that do not contain ψ 1 .

4. There exists i such that

f 1 + • • • + f i = g 1 and a 1 + • • • + a i + i -1 2(f 1 + • • • + f i ) -1.
The second summands in (4.3.11) applied to these terms form the summands with ψ 1 in the second and the third lines of (4.3.10).

So our goal is to prove that the sum of the second and the third lines of equation (4.3.10) vanishes. To this end, we have a more general statement. Let

E := B g • g 1 1 g 2 2 -B g 1 B g 2 = ≥1 E ,
where

E := d 1 +d 2 =2g 1 m g 1 (-1) m+1 c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M g 2 ,2 • δ ,1 + g 1 <h<g d 1 +d 2 =2g (-1) +1 a h d 1 | ψ d 2 2 | M g-h,2 .
Lemma 4.3.8. For any 1 we have:

E 1 + • • • + E = (-1) f 1 +f 2 =g 2 d 1 +d 2 +d 3 =2g-1 (-1) d 3 g 1 m=1 (-1) m c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M f 1 ,2 c f 2 d 3 |
(4.3.12) + (-1)

g 1 <h<g f 1 +f 2 =g-h d 1 +d 2 +d 3 =2g-1 (-1) d 3 k=1 a h d 1 | k ψ d 2 2 -(-1) d 2 ψ d 2 1 M f 1 ,2 c f 2 d 3 | -k .
Proof. We prove the lemma by induction. The base of induction is = 1, and it is equivalent to the following equation:

d 1 +d 2 =2g g 1 m=1 (-1) m+1 c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M g 2 ,2 = (4.3.13) - f 1 +f 2 =g 2 d 1 +d 2 +d 3 =2g-1 (-1) d 3 g 1 m=1 (-1) m c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M f 1 ,2 c f 2 d 3 | 1 - g 1 <h<g d 1 +d 2 =2g (-1) d 2 a h d 1 | 1 ψ d 2 1 | M g-h,2 .
We rewrite

ψ d 2 2 + ψ 1 ψ d 2 -1 2
in the first line of (4.3.13) as

(-1) d 2 -1 ψ d 2 1 + ψ d 2 2 -ψ 1 (-1) d 2 -1 ψ d 2 -1 1 -ψ d 2 -1 2 .
Noting that d 1 2g 1 -1 implies d 2 -1 2g 2 , we apply identity (4.3.4) twice to obtain

ψ d 2 2 + ψ 1 ψ d 2 -1 2 M g 2 ,2 = f 1 +f 2 =g 2 a 1 +a 2 =d 2 -1 (-1) a 2 ψ 1 ψ a 1 -1 2 + ψ a 1 2 M f 1 ,2 ψ a 2 1 | M f 2 ,2 , d 2 ≥ 2g 2 + 1.
(4.3.14) If a 2 2f 2 -1 (in both summands), then we obtain the second line in (4.3.13), and if a 2 2f 2 , then we obtain the third line in (4.3.13).

The induction step is equivalent to the following equation:

( -1)

f 1 +f 2 =g 2 d 1 +d 2 +d 3 =2g-1 (-1) d 3 g 1 m=1 (-1) m c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M f 1 ,2 c f 2 d 3 | (4.3.15)
+ (-1)

g 1 <h<g f 1 +f 2 =g-h d 1 +d 2 +d 3 =2g-1 (-1) d 3 k=1 a h d 1 | k ψ d 2 2 -(-1) d 2 ψ d 2 1 M f 1 ,2 c f 2 d 3 | -k (4.3.16) =(-1) +1 f 1 +f 2 =g 2 d 1 +d 2 +d 3 =2g-1 (-1) d 3 g 1 m=1 (-1) m c g 1 d 1 | m ψ d 2 2 + ψ 1 ψ d 2 -1 2 M f 1 ,2 c f 2 d 3 | +1 (4.3.17) -(-1) +1 g 1 <h<g f 1 +f 2 =g-h d 1 +d 2 +d 3 =2g-1 (-1) d 3 +1 k=1 a h d 1 | k (-1) d 2 ψ d 2 1 | M f 1 ,2 c f 2 d 3 | +1-k (4.3.18) + (-1) +1 g 1 <h<g f 1 +f 2 =g-h d 1 +d 2 +d 3 =2g-1 (-1) d 3 +1 k=1 a h d 1 | k ψ d 2 2 | M f 1 ,2 c f 2 d 3 | +1-k (4.3.19) + (-1) +1 g 1 <h<g d 1 +d 2 =2g a h d 1 | +1 ψ d 2 2 | M g-h,2 , (4.3.20) 
where ≥ 1.

In 

f 1 +f 2 =g 2 d 1 +d 2 +d 3 =2g-1 h 1 +h 2 =f 1 a 1 +a 2 =d 2 -1 1 m g 1 (-1) m (-1) a 2 +d 3 c g 1 d 1 | m ψ a 1 2 + ψ 1 ψ a 1 -1 2 M h 1 ,2 ψ a 2 1 | M h 2 ,2 c f 2 d 3 | .
The part of this sum with -1)

a 2 + d 3 ≤ 2(h 2 + f 2 ) -2
g 1 <h<g f 1 +f 2 =g-h d 1 +d 2 +d 3 =2g-1 a 1 +a 2 =d 2 -1 h 1 +h 2 =f 1 k=1 (-1) a 2 +d 3 a h d 1 | k ψ a 1 2 | M h 1 ,2 ψ a 2 1 | M h 2 ,2 c f 2 d 3 | -k .
The part of this sum with a 2 +d 3 ≤ 2(h 2 +f 2 )-2 is equal to the part of ( This completes the proof of the induction step and the proof of the lemma.

Equation (4.2.6) follows after applying the above lemma to E = E 1 + • • • + E g 2 and noting that the right-hand side of (4.3.12) vanishes for = g 2 because of (4.2.1) and (4.3.9).

Evaluation of psi class on a pull-back

To prove (4.2.7), let us introduce the notation

d g d | k := k =1 g 1 ,...,g k d 1 ,...,d k ψ d k 1 | M g k ,2 ψ d k-1 1 | M g k-1 ,2 • • • ψ d 1 | M g ,3 • • • ψ d 1 1 | M g 1 ,2 , k ≥ 1,
where the sum is taken over all g 1 , . . . , g k 1 and d 1 , . . . , d k 0 satisfying

g 1 + • • • + g k = g, d 1 + • • • + d k + k -1 = d, and d 1 + • • • + d s + s -1 2(g 1 + • • • + g s ) -1 for all 1 s k.
Similarly, for k 1, we define

e g d | k := k =1 g 1 ,...,g k d 1 ,...,d k ψ d k 1 | M g k ,2 • • • ψ d +1 1 | M g +1 ,2 1| M 0,3 ψ d -1 1 | M g -1 ,2 • • • ψ d 1 1 | M g 1 ,2 ,
where the sum is taken over all g 1 , . . . , g -1 , g +1 , . . . , g k 1 and d 1 , . . . , d k 0 satisfying 

g 1 + • • • + g k = g, d 1 + • • • + d k + k -1 = d, and d 1 + • • • + d s + s -1 2(g 1 + • • • + g s ) -
π * (ψ a 1 | M g,2 ) = ψ a 1 | M g,3 -1| M 0,3 ψ a-1 1 | M g,2 , a ≥ 1,
it is straightforward to see that

π * ( c g d | k ) = d g d | k -e g d | k+1 . (4.3.21)
As before, let

E :=π * (B g )ψ 1 -B g 1| M 0,3 - g 1 +g 2 =g B g 1 π * (B g 2 ) = g 1 +g 2 =g d 1 +d 2 =2g-1 g 2 +1 k=0 (-1) k ψ d 1 +1 1 | M g 1 ,3 c g 2 d 2 | k + ψ d 1 +1 1 | M g 1 ,2 d g 2 d 2 | k + e g 2 d 2 | k - g 1 +g 2 =g d 1 +d 2 =2g-1 g 1 k=0 (-1) k c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 1| M 0,3 (4.3.22) 
-

g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 =2(g 1 +g 2 )-1 d 3 +d 4 =2(g 3 +g 4 )-1 s 1 if g 3 =0 g 1 r=0 g 4 s=0 (-1) r+s c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,3 c g 4 d 4 | s (4.3.23) - g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 =2(g 1 +g 2 )-1 d 3 +d 4 =2(g 3 +g 4 )-1 g 1 r=0 g 4 +1 s=0 (-1) r+s c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 d g 4 d 4 | s + e g 4 d 4 | s .
where we have used the already proven symmetry (4.2.3) and the corresponding mirror formula of (4.2.2)

B g = g 1 +g 2 =g d 1 +d 2 =2g-1 g 2 k=0 (-1) k ψ d 1 1 | M g 1 ,2 c g 2 d 2 | k
for the factors on the right-hand side of . Note that (4.3.22) is exactly the forbidden case g 3 = 0 and s = 0 in (4.3.23). Let E k denote the terms in the expression above that have k components, i.e., The following inductive lemma will immediately imply equation (4.2.7).

E k := (-1) k-1 g 1 +g 2 =g d 1 +d 2 =2g-1 ψ d 1 +1 1 | M g 1 ,3 c g 2 d 2 | k-1 + ψ d 1 +1 1 | M g 1 ,2 d g 2 d 2 | k-1 + e g 2 d 2 | k-1 (4.3.24) + (-1) k-1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 =2(g 1 +g 2 )-1 d 3 +d 4 =2(g 3 +g 4 )-1 r+s=k-2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,3 c g 4 d 4 | s + ψ d 3 1 | M g 3 ,2 d g 4 d 4 | s + e
Lemma 4.3.9. We can write E 1 + E 2 + • • • + E k as an expression involving only graphs with k + 1 vertices. More precisely, we have:

E 1 + E 2 + • • • + E k = (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 d g 4 d 4 | s + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 e g 4 d 4 | s + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,3 c g 4 d 4 | s
Proof. We proceed by induction on k. The case k = 1 is clear, as

E 1 = ψ 2g+1 1 | M g,3 = g 1 +g 2 =g d 1 +d 2 =2g (-1) d 1 ψ d 1 2 | M g 1 ,2 ψ d 2 1 | M g 2 ,3 = g 2 +g 3 =g d 2 +d 3 =2g (-1) d 2 c 0 -1 | 0 ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,3 c 0 -1 | 0 by (4.3.3).
Assume the lemma holds for k 1, then we split E 1 + • • • + E k into three kinds of summands, according to the powers of the psi classes:

• d 1 + d 2 < 2(g 1 + g 2 ) -1 and d 3 + d 4 > 2(g 3 + g 4 ) -1; • d 1 + d 2 > 2(g 1 + g 2 ) -1 and d 3 + d 4 < 2(g 3 + g 4 ) -1; • d 1 + d 2 = 2(g 1 + g 2 ) -1 and d 3 + d 4 = 2(g 3 + g 4 ) -1.
Note that the summands of the third kind cancel out with (4.3.25) for E k+1 . We rewrite the terms with

d 1 + d 2 < 2(g 1 + g 2 ) -1 as (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 d 1 +d 2 <2(g 1 +g 2 )-1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 d g 4 d 4 | s + e g 4 d 4 | s +(-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 d 1 +d 2 <2(g 1 +g 2 )-1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,3 c g 4 d 4 | s =(-1) k+1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k, r 1 (-1) d 1 c g 1 d 1 | r ψ d 2 1 | M g 2 ,2 d g 3 d 3 | s + e g 3 d 3 | s + ψ d 2 1 | M g 2 ,3 c g 3 d 3 | s .
Note that the expression in line (4.3.24) for E k+1 consists exactly of those terms with r = 0.

Similarly, for the terms with d 3 + d 4 < 2(g 3 + g 4 ) -1:

(-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 d 3 +d 4 <2(g 3 +g 4 )-1 g 3 1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 d g 4 d 4 | s + ψ d 3 1 | M g 3 ,3 c g 4 d 4 | s + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 d 3 +d 4 <2(g 3 +g 4 )-1 (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 e g 4 d 4 | s + δ g 3 ,0 1| M 0,3 c g 4 d 4 | s = -(-1) k+1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 d g 3 d 3 | s + e g 3 d 3 | s .
Putting everything together, we get

E 1 + • • • + E k+1 =(-1) k+1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k (-1) d 1 c g 1 d 1 | r ψ d 2 1 -(-1) d 2 ψ d 2 2 M g 2 ,2 d g 3 d 3 | s + e g 3 d 3 | s + (-1) k+1 g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k (-1) d 1 c g 1 d 1 | r ψ d 2 1 | M g 2 ,3 c g 3 d 3 | s .
We apply (4.3.4) to the first summand and (4.3.3) to the second one to obtain

E 1 + • • • + E k+1 =(-1) k+1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 d g 4 d 4 | s + (-1) k+1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 e g 4 d 4 | s + (-1) k+1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,3 c g 4 d 4 | s ,
which concludes the proof.

Equation (4.2.7) follows from applying the above lemma to E = E 1 + • • • + E g+1 , again using (4.2.1).

Evaluation of psi class

Here we prove equation (4.2.8). We derive it from equation (4.2.7). For I ⊂ {1, . . . , n} with |I| ≥ 2 denote by δ I 0 ∈ R 1 (M g,n ) the class of the closure of the subset of stable curves from M g,n having exactly one node separating a genus 0 component carrying the points marked by I and a genus g component carrying the points marked by {1, . . . , n} \ I. Denote by π (g) : M g,3 → M g,2 the map that forgets the third marked point. Multiplying equation (4.2.7) by ψ 3 and taking the push-forward by π (g) , we obtain

π (g) * ψ 3 ψ 1 • π (g) * B g = g 1 +g 2 =g g 1 ,g 2 1 B g 1 π (g 2 ) * ψ 3 • π (g 2 ) * B g 2 . 4.3. Proofs 81 Noting that ψ 3 ψ 1 = ψ 3 π (g) * ψ 1 + δ {1,3} 0 = ψ 3 π (g) * ψ 1 and π (g) * ψ 3 = 2g, we get 2gψ 1 • B g = g 1 +g 2 =g g 1 ,g 2 1
2g 2 B g 1 B g 2 , as required.

Evaluation of psi class: an alternative proof

It is also possible to prove (4.2.8) employing the same scheme as in the other proofs of the paper. For that, we need the following corollary of Proposition 4.3.1: Corollary 4.3.10. For any g 1, r 0 we have:

-ψ 2g+1+r 1 + g 1 ,g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 =2g+r g 2 g (-1) a 1 ψ a 1 2 | M g 1 ,2 ψ a 2 1 | M g 2 ,2 = 0 (4.3.26)
and

(-1) 2g+1+r ψ 2g+1+r 2 + g 1 ,g 2 >0 g 1 +g 2 =g a 1 ,a 2 0 a 1 +a 2 =2g+r g 1 g (-1) a 1 ψ a 1 2 | M g 1 ,2 ψ a 2 1 | M g 2 ,2 = 0. (4.3.27) Let E = B g • ψ 1 - g 1 +g 2 =g g 1 ,g 2 1 g 2 g B g 1 B g 2 (4.3.28) = g 1 +g 2 =g d 1 +d 2 =2g-1 g 2 k=0 (-1) k ψ d 1 +1 1 | M g 1 ,2 c g 2 d 2 | k - g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 =2(g 1 +g 2 )-1 d 3 +d 4 =2(g 3 +g 4 )-1 g 3 + g 4 g g 1 r=0 g 4 s=0 (-1) r+s c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s .
Let E k denote the terms in the expression above that have k components, i.e.,

E k = (-1) k-1 g 1 +g 2 =g d 1 +d 2 =2g-1 ψ d 1 +1 1 | M g 1 ,2 c g 2 d 2 | k-1 (4.3.29) + (-1) k-1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 =2(g 1 +g 2 )-1 d 3 +d 4 =2(g 3 +g 4 )-1 g 3 + g 4 g r+s=k-2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s .
The following inductive lemma will immediately imply equation (4.2.8).

Lemma 4.3.11. We can write E 1 + E 2 + • • • + E k as an expression involving only graphs with k + 1 vertices. In particular:

E 1 + • • • + E k = (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 g 3 + g 4 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s . (4.3.30)
Proof. We proceed by induction. The case k = 1 follows from applying the Liu-Pandharipande relation (4.3.26) to

E 1 = ψ 2g+1 1 | M g,2 .
For the inductive step, assume (4.3.30) holds for some k 1. Then

E 1 + • • • + E k+1 = (-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 ψ d 1 +1 1 | M g 1 ,2 c g 2 d 2 | k (4.3.31) + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 =2(g 1 +g 2 )-1 d 3 +d 4 =2(g 3 +g 4 )-1 g 3 + g 4 g r+s=k-1 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-1 g 3 + g 4 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s .
We can split the third summand of the above expression into three, given by the conditions:

• d 1 + d 2 = 2(g 1 + g 2 ) -1 and d 3 + d 4 = 2(g 3 + g 4 ) -1 • d 1 + d 2 > 2(g 1 + g 2 ) -1 and d 3 + d 4 < 2(g 3 + g 4 ) -1 • d 1 + d 2 < 2(g 1 + g 2 ) -1 and d 3 + d 4 > 2(g 3 + g 4 ) -1
Note the first summand cancels with the second summand of (4.3.31). Thus, we are left with 27). It is convenient to single out the terms with r = 0 and s = 0 so that the term with r = 0 of (4.3.34) will combine with (4.3.33) and the terms of (4.3.34) with r = 0 will be put together with the terms with s = 0 of (4. 3.35) as in (4.3.4). In other words,

E 1 + • • • + E k+1 (4.3.32) = (-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 ψ d 1 +1 1 | M g 1 ,2 c g 2 d 2 | k + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 d 1 +d 2 >2(g 1 +g 2 )-1 r+s=k-1 g 3 + g 4 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s + (-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 d 1 +d 2 <2(g 1 +g 2 )-1 r+s=k-1 g 3 + g 4 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s = (-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 ψ d 1 +1 1 | M g 1 ,2 c g 2 d 2 | k (4.3.33) + (-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k-1 g 3 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 c g 3 d 3 | s+1 (4.3.34) -(-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k-1 g 2 + g 3 g (-1) d 1 c g 1 d 1 | r+1 ψ d 2 1 | M g 2 ,2 c g 3 d 3 | s . ( 4 
E 1 + • • • + E k+1 = (4.3.36) (-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 ψ d 1 +1 1 | M g 1 ,2 -(-1) d 1 +1 ψ d 1 +1 2 | M g 1 ,2 c g 2 d 2 | k -(-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 g 1 g (-1) d 1 ψ d 1 +1 2 | M g 1 ,2 c g 2 d 2 | k + (-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k-2 g 3 g (-1) d 1 c g 1 d 1 | r+1 (-1) d 2 ψ d 2 2 | M g 2 ,2 -ψ d 2 1 | M g 2 ,2 c g 3 d 3 | s+1 -(-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 r+s=k-2 g 2 g (-1) d 1 c g 1 d 1 | r+1 ψ d 2 1 | M g 2 ,2 c g 3 d 3 | s+1 -(-1) k g 1 +g 2 =g d 1 +d 2 =2g-1 g 2 g (-1) d 1 c g 1 d 1 | k ψ d 2 +1 1 | M g 2 ,2 .
Applying the corresponding Liu-Pandharipande relations (4.3.4), (4.3.26) and (4.3.27), we have: ) for r = 0 and s = 0, respectively. Therefore,

E 1 + • • • + E k+1 (4.3.37) = (-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 (-1) d 1 ψ d 1 2 | M g 1 ,2 ψ d 2 1 | M g 2 ,2 c g 3 d 3 | k -(-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 g 1 g (-1) d 1 ψ d 1 2 | M g 1 ,2 ψ d 2 1 | M g 2 ,2 c g 3 d 3 | k -(-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-2 g 4 g (-1) d 1 +d 2 c g 1 d 1 | r+1 ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g d | s+1 -(-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k-2 g 3 g (-1) d 1 +d 2 c g 1 d 1 | r+1 ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g d | s+1 -(-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 g 3 g (-1) d 1 +d 2 c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 = (-1) k g 2 +g 3 +g 4 =g d 2 +d 3 +d 4 =2g-1 g 3 + g 4 g (-1) d 2 ψ d 2 2 | M g 1 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | k (4.3.38) -(-1) k g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k r,s 1 g 3 + g 4 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s (4.3.39) -(-1) k g 1 +g 2 +g 3 =g d 1 +d 2 +d 3 =2g-1 g 3 g (-1) d 1 +d 2 c g 1 d 1 | k ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 . ( 4 
E 1 + • • • + E k+1 = (4.3.41) (-1) k+1 g 1 +g 2 +g 3 +g 4 =g d 1 +d 2 +d 3 +d 4 =2g-2 r+s=k g 3 + g 4 g (-1) d 1 +d 2 c g 1 d 1 | r ψ d 2 2 | M g 2 ,2 ψ d 3 1 | M g 3 ,2 c g 4 d 4 | s .
The proof of (4.2.8) follows immediately by applying the previous lemma to

E = E 1 +• • •+E g .

Equivalence of the conjectural formulas

In this section we prove Theorem 4.2.5.

Lemma 4.3.12. Suppose C g = DR g (1, -1)λ g or C g = B g . Then for g 1 we have 

C g = ψ 1 • π * 2 π 2 * C g - g 1 +g 2 =g g 1 ,g 2 1 C g 1 π * 2 π 2 * C g 2 , ( 4 
M g,3 π 3 π 2 / / M g,2 π 2 M g,2 π 2 / / M g,1
where the subindices denote the number of the point that a map forgets. Note that under the map π 2 the third marked point on a curve from M g,3 becomes the second marked point on the resulting curve from M g,2 . We then compute

ψ 1 • π * 2 π 2 * C g =ψ 1 • π * 2 π 2 * C g = ψ 1 • π 3 * π * 2 C g = π 3 * (π * 3 ψ 1 • π * 2 C g ) = π 3 * ψ 1 -δ {1,3} 0 • π * 2 C g =π 3 * (ψ 1 • π * 2 C g ) -π 3 * δ {1,3} 0 • π * 2 C g (4.2.7) = π 3 * C g 1| M 0,3 + g 1 +g 2 =g g 1 ,g 2 1 C g 1 π * 2 C g 2 -π 3 * δ {1,3} 0 • π * 2 C g =C g + g 1 +g 2 =g g 1 ,g 2 1 C g 1 π 3 * π * 2 C g 2 -π 3 * δ {1,3} 0 • π * 2 C g =C g + g 1 +g 2 =g g 1 ,g 2 1 C g 1 π * 2 π 2 * C g 2 -π 3 * δ {1,3} 0 • π * 2 C g ,
and it is sufficient to check that δ

{1,3} 0 • π * 2 C g = 0. Indeed, for C g = DR g (1, -1)λ g we have δ {1,3} 0 • π * 2 (DR g (1, -1)λ g ) = δ {1,3} 0 
• DR g (1, 0, -1)λ g = 1| M 0,3 DR g (0, 0)λ g = (-1) g 1| M 0,3 λ 2 g = 0. In the case C g = B g , from (4.3.21) it is easy to see that the class π * 2 B g -ψ 2g 1 is supported on the stratum in M g,3 that doesn't intersect the divisor corresponding to δ

{1,3} 0 . Therefore, δ {1,3} 0 •( π * 2 B g -ψ 2g 
1 ) = 0, but we also obviously have δ

{1,3} 0 •ψ 2g 1 = 0, which gives δ {1,3} 0 • π * 2 B g = 0.
Chapter 5

Infinite-dimensional Frobenius manifolds and the Stokes phenomenon

Introduction

Dubrovin-Frobenius manifolds were introduced by B. Dubrovin in [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF] to provide a coordinatefree description of the WDVV associativity equations [START_REF] Witten | On the structure of the topological phase of two-dimensional gravity[END_REF][START_REF] Dijkgraaf | Topological strings in d < 1[END_REF] of two-dimensional topological field theory. While on the one hand Dubrovin-Frobenius manifolds provide the leading invariant in the reconstruction of higher-genus generating functions of several enumerative objects, on the other hand they have proven valuable in the classification and study of a large class of integrable hierarchies with one spatial variable [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF].

The program of extending the tools of Dubrovin-Frobenius manifold theory to integrable hierarchies in two spatial variables, that is, 2 + 1 integrable systems, started in [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF] with the definition of an infinite-dimensional Dubrovin-Frobenius manifold M 0 associated with the dispersionless limit of the bi-Hamiltonian structure [START_REF] Carlet | The Hamiltonian structures of the two-dimensional Toda lattice and Rmatrices[END_REF] of the 2D Toda lattice due to Ueno and Takasaki [START_REF] Ueno | Toda lattice hierarchy[END_REF]. In [START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF] the Dubrovin equation of M 0 was derived and studied, in particular by obtaining a Levelt basis of solutions near its regular singular point at ζ ∼ 0. This yields a canonical basis of Hamiltonian densities for the principal hierarchy of M 0 , which constitutes a non-trivial extension of the dispersionless 2D Toda lattice.

In recent years, several other examples of infinite-dimensional Dubrovin-Frobenius manifolds have been constructed. In [START_REF] Wu | Infinite-dimensional Frobenius manifolds underlying the Toda lattice hierarchy[END_REF] a family M n,m 0 of infinite-dimensional Dubrovin-Frobenius manifolds, all of them underlying the dispersionless 2D Toda lattice and coinciding with M 0 for n = m = 1, was defined. A similar infinite family for the dispersionless two-component BKP hierarchy was discussed in [START_REF] Wu | A class of infinite-dimensional Frobenius manifolds and their submanifolds[END_REF]. Other remarkable examples are the infinite-dimensional Dubrovin-Frobenius manifold associated with the dispersionless KP hierarchy, defined in [START_REF] Raimondo | Frobenius manifold for the dispersionless Kadomtsev-Petviashvili equation[END_REF], and a family of infinite-dimensional Dubrovin-Frobenius manifolds underlying the Whitham hierarchy, recently obtained in [START_REF] Ma | Infinite-dimensional Frobenius manifolds underlying an extension of the dispersionless Kadomtsev-Petviashvili hierarchy[END_REF].

The existence of a theory in full genera associated with these infinite-dimensional Dubrovin-Frobenius manifolds is still not clear. In this direction, a partial cohomological field theory of infinite rank has been recently defined in [START_REF] Buryak | Moduli spaces of residueless meromorphic differentials and the KP hierarchy[END_REF]. Its associated Hamiltonian integrable hierarchy, in a certain reduction, has been shown to coincide with the KP hierarchy.

In this chapter we continue the study of the Frobenius manifold M 0 associated with the 2D Toda hierarchy.

First, we revisit the definition of the canonical coordinates introduced in [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF], showing that the continuous family u p has to be supplemented by a finite number of discrete coordinates u i , ūi given by the critical values of the two superpotentials λ, λ, in analogy to the usual description of canonical coordinates for finite-dimensional Frobenius manifolds given by a superpotential. To give a better justification for the somewhat ad hoc definition of the canonical coordinates u p , we study the spectrum of the operator U of multiplication by the Euler vector field. We show that the continuous canonical coordinates u p coincide with the generalized eigenvalues of U, while the standard eigenvalues are given by the critical values u i , ūi . To give a more accurate and rigorous description of the tangent and cotangent spaces to M 0 , here we make a distinction between the cotangent space and its representable (via the metric) subspace. This is necessary to deal with the non-representable differentials of several basic functionals on M 0 , including those of the canonical coordinates.

We then consider the Dubrovin equation at its irregular singularity at ζ ∼ ∞. We reformulate it as an equation on the cotangent space to M 0 , rather than on its representable subspace, to allow for sufficiently large families of solutions. We study the formal solutions of the Dubrovin equation at the irregular singularity, remarkably finding that such formal solutions are not uniquely determined by their leading order, unlike in the finite-dimensional case, but depend on a large set of parameters.

Our final aim is to describe the Stokes phenomenon for the irregular singularity of the Dubrovin equation and, in particular, to compute its Stokes matrices. We obtain an infinite family of solutions given by integrals along the unit circle and compute their asymptotics. We are however faced with the problem that such a family has trivial monodromy around ζ ∼ ∞ and cannot be considered as the analogue of a fundamental solution in the finite-dimensional case or, in other words, it is not complete. To solve this problem, we apply the theory of resurgent functions to certain formal solutions for which we have an explicit description, namely those obtained as asymptotic series from the integral solutions. What we find in the resummation process is a large family of solutions which are nevertheless weak, i.e., they do not extend to linear functionals defined on the whole tangent space. For such a family, we explicitly compute the Stokes matrices. For simplicity, this last part of the chapter is conducted restricting to a two-dimensional locus in M 0 where the superpotentials have a particularly simple form.

Organization of the chapter

In Section 5.2 we recall the definition of the 2D Toda Dubrovin-Frobenius manifold M 0 given in [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF][START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF]. In Section 5.3 we revisit the canonical coordinates and prove they coincide with the (generalized) eigenvalues of the operator U of multiplication by Euler vector field. In Section 5.4 we derive the Dubrovin equation on the cotangent spaces. In Section 5.5 we find the formal solutions to the Dubrovin equation at ∞. In Section 5.6 we study an infinite, albeit incomplete, family of integral solutions to the Dubrovin equation with suitable asymptotic expansions at ∞. Finally, in Section 5.7 we apply the resurgence procedure to the formal solutions which arise as asymptotic expansions of the integral solutions, obtaining this way a family of weak solutions parameterized by the unit circle S 1 . These solutions appear naturally in monodromy-related pairs, allowing us to study the Stokes phenomenon in a similar fashion to the finite-dimensional case. The section ends with the explicit computation of the infinite-dimensional analogue of the Stokes matrices.

The 2D Toda Dubrovin-Frobenius manifold

In this section, we recall the definition of the 2D Toda Frobenius manifold from [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF][START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF].

The manifold M and its tangent bundle

Let D 0 be the closed unit disc in the Riemann sphere, D ∞ the closure of its complement and S 1 = D 0 ∩ D ∞ the unit circle. For a compact subset K of the Riemann sphere, we denote by H(K) the space of holomorphic functions on K, i.e., functions which extend holomorphically to an open neighborhood of K.

We define the infinite-dimensional manifold M as the affine space

M = {(λ(z), λ(z)) ∈ zH(D ∞ ) ⊕ 1 z H(D 0 ) | λ(z) = z + O(1)}. ( 5 

.2.1)

A point λ = (λ(z), λ(z)) ∈ M can be represented by the Laurent series at ∞ and 0 of its components

λ(z) = z + k 0 u k z k , λ(z) = k -1 ūk z k . (5.2.2)
We identify the tangent space at a point λ with the vector space underlying the affine space M (T5) The functions λ (z), λ (z) are non-vanishing for z ∈ S 1 ; equivalently, the curve σ : S 1 → C does not pass through the points 0 and 1.

T λM = H(D ∞ ) ⊕ 1 z H(D 0 ). ( 5 
Remark 5.2.1. These conditions were introduced in the literature in different places [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF][START_REF] Wu | Infinite-dimensional Frobenius manifolds underlying the Toda lattice hierarchy[END_REF][START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF], mainly to avoid non-generic cases and to simplify some of the definitions and the proofs. Conditions (T2) and (T3) are used in the definition of the metric and the flat coordinates. Conditions (T4) and (T5) are used in the definition of canonical coordinates and in the computation of the spectrum of the operator U.

The w-coordinates

Sometimes it is more convenient to represent M 0 as a two-dimensional bundle over the space M red ⊂ H(S 1 ) of parameterized simple analytic curves:

M 0 -→ M red ⊕ C ⊕ C (λ(z), λ(z)) -→ (w(z), v, u),
where w(z) = λ(z) + λ(z), v = ū0 = ( λ) 0 and e u = ū-1 = ( λ) 1 . The map can be inverted by

λ(z) = w 0 (z) + z -v -e u z -1 , λ(z) = w 1 (z) -z + v + e u z -1 .
(5.2.4)

Remark 5.3.2. The formula for the continuous canonical coordinates might be understood as the Legendre transform of the function λ(w) = λ(z(w)), where z(w) is the inverse of the function w(z) = λ(z) + λ(z) defined on S 1 . Denote by w(σ) the inverse of

σ(w) = ∂λ ∂w (w) = λ (z(w))z (w) = λ (z) λ (z) + λ (z) z=z(w)
.

(5.3.11)

The Legendre transform of λ(w) is indeed

σw(σ) -λ(w(σ)) = σw(z(σ)) -λ(w(z(σ))) (5.3.12) = σ(λ(z) + λ(z)) -λ(z) z=z(σ) = λ σ (z(σ)) = u σ ,
where z(σ) is the inverse of (5.3.2).

Spectrum of U

Let us consider the operator U of multiplication by the Euler vector field E, see (5.2.16), at an arbitrary point λ in M 0 : U : T λM → T λM.

(5.3.13)

The generalized spectrum of the operator U is defined as the spectrum of the transpose

U * : T * λ M → T * λ M, (5.3.14) 
defined by < U * ξ, X >=< ξ, U X > for all X ∈ T λM . Explicitly, we say that ξ ∈ T * λ M is a generalized eigenvector corresponding to the generalized eigenvalue µ if

< ξ, U X >= µ < ξ, X > (5.3.15) 
for all X ∈ T λM . Since U is symmetric w.r.t. the metric η, a standard eigenvector X ∈ T λM with eigenvalue µ is mapped by the injection η * to a generalized eigenvector for the same eigenvalue µ.

Notice that a family E ⊂ T * λ M of cotangent vectors defines a map from T λM to the space of functions over E. We say that E is complete if this map is injective, i.e., if it defines an isomorphism of T λM with the space of functions E given by its image.

Proposition 5.3.3. At an arbitrary point λ of M 0 , the spectrum of the operator U is given by 1. the eigenvalues u i with eigenvectors du i for i = 1, . . . , n, 2. the eigenvalues ūj with eigenvectors dū j for j = 1, . . . , n, and 3. the generalized eigenvalues u p with generalized eigenvectors du p for p ∈ S 1 .

Moreover, the set of all eigenvectors {du p , du i , dū j } is a complete family in T * λ M . Actually, the completeness of the set of eigenvectors is realized via an explicit isomorphism

Ψ : T λM -→ H(S 1 ) ⊕ C n ⊕ C n X -→ ( du z , X , du i , X , dū j , X ).
(5.3.16)

Corollary 5.3.4. The operator U in the representation given by Ψ, i.e. U := ΨUΨ -1 , is diagonal

U : H(S 1 ) ⊕ C n ⊕ C n -→ H(S 1 ) ⊕ C n ⊕ C n Ŷ = (Y (z), {Y i } i=1,...,n , { Ȳj } j=1,...,n ) -→ U ( Ŷ ) = (u z Y (z), {u i Y i } i , {ū j Ȳj } j ).
(5.3.17)

We now proceed to prove Proposition 5.3.3 first by an explicit approach at the special point in the following section, then in the general case in Section 5.3.5. In Section 5.3.4 we prove a key lemma that will also be used in later sections.

The fact that the functionals dλ(z i ), d λ(z i ) and dλ σ (p) for σ = σ(p) are generalized eigenvectors of U simply follows from Lemma 5.3.7. Indeed, let z i be one of the critical points of λ(z), i.e. λ (z i ) = 0; substituting σ = 0 and z = z i in (5.3.40), we get at once that dλ(z i ), U X = -λ(z i ) dλ(z i ), X (5.3.47) for all X, namely dλ(z i ) is a generalized eigenvector corresponding to the eigenvalue u i = -λ(z i ). One can easily check that du i and dū i are representable as (5.3.9), therefore they are eigenvectors.

Let us now prove that this family of generalized eigenvectors is complete. For that, we will prove that the map Ψ : T λM -→ H(S 1 ) ⊕ C n ⊕ C n (5.3.49) X -→ ( du p , X , du i , X , dū j , X )

(5. (5.3.56)

To conclude, we notice that the (generalized) eigenvalues of U coincide with those of U , the eigenvectors being related by the isomorphism Ψ. Notice that, since λ σ (p) = 0 for σ = σ(p), we have du p dp = σ (p)w(p). (5.3.57) Therefore, because of axioms (T3) and (T4), dup dp is non-vanishing on S 1 . This implies that the generalized eigenspaces are only those given in the proposition, see the following remarks for further details.

As before, we use formulas (5. where Π + , resp. Π -, is the sector containing the direction φ, resp. φ + π.

Notice that the columns of a fundamental solution give a basis of solutions of the Dubrovin equation. In the infinite-dimensional case, we might consider the family of integral solutions {dy σ } σ∈Σ∪{0,1} obtained in the previous section. Such family, however, is not complete and moreover has trivial monodromy, see Remarks 5.6.6 and 5.6.7, therefore it cannot be used to obtain the analogues of the Stokes matrices. To find a larger family of solutions we adopt a different strategy, using resurgence theory to associate a family of "weak" solutions to a family of formal solutions like those studied in Section 5.5. More precisely, we consider the family of formal solutions given by the asymptotic expansions of the integral solutions and we apply to it the Borel resummation procedure.

Resurgence theory [START_REF] Hardy | Divergent series. With a preface[END_REF][START_REF] Écalle | Les fonctions résurgentes[END_REF][START_REF] Ramis | Séries divergentes et théories asymptotiques[END_REF][START_REF] Balser | From divergent power series to analytic functions[END_REF] provides a method to associate analytic functions to formal series which are not convergent. The resummation procedure of a formal power series ϕ(ζ) = k 0 a k ζ -k can be summarized, for our aims, in three steps: computation of the sum of its Borel transform ϕ(χ) obtained by the substitution ζ -k → χ k /k!, analytic continuation and identification of the resurgent structure of ϕ(χ), namely of its behavior at singular points, and resummation to a function s θ (ϕ)(ζ) via Laplace transform. For recent expositions of these methods we refer the reader to [START_REF] Mariño | Three lectures on resurgence and quantum topology[END_REF][START_REF] Sauzin | Introduction to 1-summability and resurgence[END_REF][START_REF] Dorigoni | An introduction to resurgence, trans-series and alien calculus[END_REF][START_REF] Martínez-Seara | Resumació de Borel i Teoria de la Ressurgencia[END_REF].

For simplicity, we restrict to the special point λ0 in M 0 . We also require |e u | < 1 so that there are no discrete canonical coordinates to consider.

Weak solutions

Recall that the cotangent space T * λ M at a point λ ∈ M 0 is given by the algebraic dual of T λM . Given a cotangent vector ξ ∈ T * λ M , we define its coefficients as the numbers ξ, e m obtained by acting on the elements e m ∈ H(S 1 ) ⊕ C 2 , given by e m = (z m , 0, 0), e v = (0, 1, 0), and e u = (0, 0, 1), (5.7.3) where m ∈ Z ∪ {v, u}. In general, an arbitrary choice of coefficients C m does not define a cotangent vector ξ with C m = ξ, e m . However, it always defines an element in T * λ0 M weak , which is the algebraic dual of and is given by In dit proefschrift bestuderen we de onderliggende meetkunde van integreerbare systemen, waarbij we vooral de nadruk zullen leggen op tau-symmetrische bi-Hamiltoniaanse hiërarchieën van evolutionaire partieële differentiaalvergelijkingen. We beginnen met het bestuderen van het nauwe verband tussen de integreerbare systemen en algebraïsche meetkunde door een nieuw bewijs te geven van het Witten vermoeden, dit construeert de snaar tau-functie van de Korteweg-de Vries hiërarchie via de doorsnijdings theorie van de moduli ruimtes van stabiele krommes met gemerkte punten. Dit nieuwe bewijs is gebaseerd op de meetkunde van dubbel vertakte cykels, tautologische klassen waarvan het gedrag onder terugtrekkingen van de plak-en vergeetachtige afbeeldingen de berekening van de doorsnijdings getallen mogelijk maken.

T λ0 M test = { X = (X(z), X v , X u ) ∈ T λ0 M | X(z) ∈ C[z, z -1 ]} ∼ = C[z, z -1 ] ⊕ C 2 ,
ϕ m p (χ) = 1 √ π 2 F 1 1 2 -m, 1 2 + m; 1; pχ 4e u , (5.7.17 
Als tweede bestuderen we de Dubrovin-Zhang hiërarchie, een integreerbaar systeem geconstrueerd uit een Frobenius variëteit door zijn geassocieerde bi-Hamiltoniaanse structuur van het hydrodynamische type te vervormen. Er wordt bewezen dat deze integreerbare hiërarchie Hamiltonisch en tau-symmetrisch is en vermoeden dat hij verder bi-Hamiltonisch is. We bewijzen een stelling van verdwijnen voor de negatieve graad termen van het tweede Poisson haakje en geven daarmee een sterke aanwijzing dat dit vermoeden waar is. Het bewijs van deze stelling laat de gevolgen zien van de bi-Hamiltonische recursie relatie en de tautologische relaties in de cohomologie ringen van de moduli ruimtes van stabiele krommen op de bi-Hamiltonische structuur van de Dubrovin-Zhang hiërarchie.

Als derde stellen we een formule voor waarvan we vermoeden dat het het simpelste niet triviale product van dubbele vertakkings cykels DR g (1, -1)λ g is in termen van cohomologie klassen die gerepresenteerd worden door strata. Alhoewel er bekende formules zijn die de dubbele vertakkimgs cykels aan elkaar relateren, meer natuurlijke tautologische klassen, zijn zij veel ingewikkelder dan degene die hier vermoed worden. Dit vermoeden verfijnt het één punts geval van de Buryak-Guéré-Rossi vermoedelijke tautologische relaties, deze zijn equivalent aan het bestaan van een Miura transformatie die Buryak's dubbele vertakkings hiërarchieën relateerd aan de Dubrovin-Zhang hiërarchieën.

Als laatste analyzeren we de differentiaal meetkunde van (2 + 1) integreerbare systemen via oneindig dimensionale Frobnius variëteiten. Concreter, we bestuderen, formeel en analytisch, de Dubrovin vergelijking van de 2D Toda Frobenius variëteit bij zijn irreguliere singulariteit. Het feit dat dit oneindig dimensionaal is impliceert een kwalitatief anders gedrag dan zijn eindig dimensionale versie, de onderliggende Frobennius variëteit van de uitgebreide Toda hiërarchie. De twee meest opmerkelijke verschillen zijn de niet uniekheid van de formele oplossingen van de Dubrovin vergelijking en de incompleteheid van de analytische oplossingen. Deze eigenschappen maken de analyze van het Stokes fenomeen veel ingewikkelder, dat we bestuderen door de ruimte van oplossing in oneindig veel twee dimensionale deelruimtes op te splitsen.

Trefwoorden: Integreerbaar systeem, Frobenius variëteit, moduli ruimte van stabiele krommes, cohomologische veldentheorie, Dubrovin-Zhang hiërarchie, dubbel vertakte cykels.

Résumé

Dans cette thèse, nous étudions la géométrie sous-jacente des systèmes intégrables. Nous nous intéressons particulièrement aux hiérarchies d'EDPs d'évolution, tau-symétriques et bi-Hamiltoniennes.

D'abord, nous explorons la relation étroite entre les champs des systèmes intégrables et la géométrie algébrique en donnant une nouvelle démonstration de la conjecture de Witten, qui construit la string tau-fonction de la hiérarchie de Korteweg-de Vries par théorie d'intersection des espaces de modules des courbes stables avec des points marqués. Cette nouvelle démonstration se base sur la géométrie des cycles de ramification double, des classes tautologiques dont le comportement sous des pullbacks des applications forgetful et gluing facilitent le calcul des nombres d'intersection des psi classes.

Dans un deuxième temps, nous examinons la hiérarchie de Dubrovin et Zhang, un système intégrable construit en déformant la structure bi-Hamiltonienne de type hydrodynamique associée à une variété de Frobenius. Cette hiérarchie intégrable est Hamiltonienne et tau-symétrique, et est conjecturée bi-Hamiltonienne. Nous démontrons un théorème d'annulation des termes de degrés négatifs du deuxième crochet de Poisson qui fournit des preuves fortes pour soutenir cette conjecture. La démonstration de ce théorème illustre les implications que la récursivité bi-Hamiltonienne et les relations tautologiques en cohomologie des espaces de modules des courbes stables ont sur la structure bi-Hamiltonienne des hiérarchies de Dubrovin et Zhang.

Dans un troisième temps, nous conjecturons une formule pour le plus simple des produits non triviaux des cycles de ramification double DR g (1, -1)λ g en termes des classes de cohomologie réprésentées par les strates standards. Malgré l'existence de formules qui mettent en relation des cycles de ramification double avec autres classes tautologiques plus naturelles, elles sont beaucoup plus compliquées que celle proposée ici. Cette conjecture précise dans le cas d'un point les relations tautologiques conjecturales de Buryak, Guéré et Rossi, qui sont équivalentes à l'existence d'une transformation de Miura qui relie la hiérarchie de ramification double de Buryak et celle de Dubrovin et Zhang.

Finalement, nous analysons la géométrie différentielle des systèmes intégrables en (2 + 1) dimensions par variétés de Frobenius de dimension infinie. Plus concrètement, nous étudions, formèlement et analytiquement, l'équation de Dubrovin de la variété de Frobenius de la hiérarchie de Toda bidimensionnelle à sa singularité irrégulière. Le fait qu'elle est de dimension infinie implique un comportement qualitativement différent de celui de son analogue en dimension finie, la variété de Frobenius sous-jacente à la hiérarchie de Toda élargie. Les deux différences les plus rémarcables sont que les solutions formèles de l'équation de Dubrovin ne sont pas uniques et que les solutions analytiques ne forment pas un système complet. Conjointement ces deux caractéristiques compliquent l'analyse du phénomène de Stokes, que nous réalisons en divisant l'espace des solutions en une infinité des sous-espaces de dimension deux.

Proposition 1 . 1 . 4 .

 114 The KdV hierarchy is the system of compatibility conditions of the linear system L 2 w = k 2 w,

Definition 1 . 1 . 5 .

 115 The KdV hierarchy in Hamiltonian form is the following system of PDEs∂u ∂t p = ∂ x • δh p δu . (1.1.24) 

Theorem 1 . 4 . 1 .

 141 The Witten-Kontsevich partition function (1.2.33) is the string tau-function of the KdV hierarchy (1.1.24).

4 .

 4 In this chapter we identify Buryak's and Okounkov's formulas for the n-point function, making the sequence [23] → [13] → the present chapter → [95, Section 3] a new proof of the Witten conjecture.

Chapter 2 .

 2 Buryak-Okounkov formula for the n-point function Lemma 2.3.4. (1) For any τ

.3. 4 )

 4 Lemma 2.3.4 and Lemma 2.3.5 together imply that the right hand side of Equation (2.3.1) is equal to the right hand side of Equation (2.3.3), which completes the proof of Proposition 2.3.1.

Lemma 2 . 4 . 1 .

 241 The right hand side of Equation (2.4.2) decomposes in a similar way to the right hand side of Equation (2.4.1), that is, into a sum of its principal part and some diagonal regularization terms. The principal parts of the right hand sides of Equations (2.4.1) and (2.4.2) are equal.Proof. Fix σ ∈ S n and consider the corresponding summand on the right hand of Equation (2.4.2).

Definition 3 . 2 . 11 .

 3211 A quasi-Miura transformation is a change of variables of the form ũα

.3. 10 ) 11 )

 1011 The goal is to rewrite the equations(3.3.10) in Hamiltonian form. First, define the Hamiltonian densities h α,p (v) := Ω Consider the Poisson operator of hydrodynamic type P αβ = η αβ ∂ x or, equivalently by Remark 3.2.5, the Poisson bivector

Proposition 3 . 4 . 3 (

 343 [START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF]). If F Frob (v) satisfies the system (3.4.8)-(3.4.9), there exists a nondegenerate flat metric g αβ with Christoffel symbols b αβ γ such that the Poisson operator of hydrodynamic type

3 . 4 .

 34 Equations (3.4.13) and (3.4.14) can be reformulated in terms of the Hamiltonian vector fields: [K, hβ,d ] = [P, hµ,d+1 ](d + 2 -R) µ β + [P, hµ,d ]M µ β , d -1. (3.4.26) Moreover, as a consequence of Proposition 3.3.5, the Schouten bracket invariance proved in Proposition 3.2.8 still holds and the system (3.4.26) can be rewritten as [B, hβ,d ] = [A, hµ,d+1 ](d + 2 -R) µ β + [A, hµ,d ]M µ β , d -1. (3.4.27) It is illustrative to see how the bi-Hamiltonian recursion relation is preserved in terms of operators instead of the Schouten bracket. Let L α µ = e ∂w α ∂v µ e ∂ e x and (L *

3. 4 . 2

 42 Uniqueness theorem Theorem 3.4.6. Let C αβ = ∞ g=0 2g 3g+1 s=0 C αβ g,s ∂ s x be a Poisson operator of type (1, 1) in w-coordinates satisfying [C, hβ,d ] = [A, hµ,d+1 ](d + 2 -R) µ β + [A, hµ,d ]M µ β , d -1. (3.4.29) Then C = B. Proof. Let D = C -B. Then we have [D, hβ,d ] = 031) in and taking the g = 0 term, we have that + . . . is the genus expansion of h β,d in the w coordinates. Note that we have replaced the variational derivatives δ h[0] β,d /δw γ by the partial derivatives ∂h [0] β,d /∂w γ because the Hamiltonian density h [0] β,d does not depend on w • 1 . For d = -1

  d = -1 implies that D αγ g,0 = 0, so

w µs 1 .

 1 (3.4.42) Iterating(3.4.35) m times yields∂ m+1 h [0] β,d ∂w γ ∂w µ 1 . . . ∂w µm = m k=1 BQ (m,k),λ γµ 1 ...µm ∂h [0] β,d-k ∂w λ ,(3.4.43) 

.4. 44 ) 45 )

 4445 Inserting(3.4.41) and(3.4.43) in(3.4.40), and changing the order of summation yields Choosing d = 0 kills all terms except the one with k= 1BP µ 1 ...µm s,m BQ (m,k),λ γµ 1 ...µm ∂h [0] β,d-k ∂w λ = 0. (3.4.47) Choosing d = 1, 2, . . . 3g in the same way shows that 3g+1 m=k 3g+1 s=m D αγ g,s BP µ 1 ...µm s,m BQ (m,k),λ γµ 1 ...µm = 0, k = 1, . . . , 3g + 1. (3.4.48) Let k = 3g + 1. By (3.4.42) and (3.4.44), we have

  BP µ 1 ...µm s,m BQ (m,k),λ γµ 1 ...µm = 0, k = 1, . . . , 3g. (3.4.52)Taking the k = 3g term implies, by the same argument as before, that D αγ g,3g = 0. Repeating for k = 3g -1, 3g -2, . . . , 1 shows D αγ g,s = 0, s = 0, 1, . . . , 3g + 1,(3.4.53) 

Theorem 3 . 4 . 8 .

 348 The second Poisson operator of the Dubrovin-Zhang hierarchy B αβ can be expanded as

4 . 59 )

 459 is polynomial. As in the proof of Theorem 3.4.6, we apply a corollary of TRR-0 (3.4.35) and choose d = 0 to show that B αγ 0,1 w µ 1 cλ γµ (3.4.60)

  as a differential polynomial divided by D n as well. As in the proof of Theorem 3.4.6, we apply iteratively the chain rule (3.4.41), TRR-0 (3.4.43) and choose d = 0, 1, . . . , 3g to conclude that polynomial divided by D n for all k = 1, . . . , 3g + 1. Let k = 3g + 1, then

Remark 3 . 4 . 10 .

 3410 The combinatorics of the argument in the proofs of Theorem 3.4.6 and Theorem 3.4.8 basically reflects what happens when one replaces the ψ-classes by their pull-backs from the moduli spaces with less number of marked points (cf. [17, Equation 3] or [83, Proof of Theorem 4]). We make this point precise in Section 3.6. Let us also formulate one extra bit of polynomiality of the second Dubrovin-Zhang bracket that follows directly from the proof of Theorem 3.4.8: Theorem 3.4.11. The constant term of the second Poisson operator of the Dubrovin-Zhang hierarchy, ∞ g=0 2g B αβ g,0 , is a differential polynomial.

.5. 4 ) 3 . 5 . 2

 4352 Implications for ∂ x -derivatives of two-point functions Equations (3.5.2) and (3.5.

5 . 6 ,

 56 and 3.5.7 are direct corollaries of Corollaries 3.5.2, 3.5.3, and 3.5.4, respectively. It is a rather standard translation of tautological relations into differential equations for the coefficients of the genus expansion of the logarithm of the partition function, see e. g. [83, Proof of Theorem 4]. Another exposition of a detailed step-by-step instruction how one can translate a tautological relation into a PDE is presented in [51, Section 2.1.3].

  where Ãαβ g,s are differential polynomials in the coordinates w, and the standard gradation of Ãαβ g,s is deg Ãαβ g,s = 2g -s. Consider the inverse operator, Ã-1 αβ . It has exactly the same properties as Ãαβ , namely, it expands as Ã-1 αβ = η αβ + O( 2 ) = ∞ g=0 2g 2g s=0 ( Ã-1 g,s ) αβ ∂ s x , where ( Ã-1 g,s ) αβ are differential polynomials, and the standard gradation of ( Ã-1 g,s ) αβ is deg( Ã-1 g,s ) αβ = 2g -s. Define Bαβ := B αµ Ã-1 µν η νβ . This operator satisfies a simplified version of bi-Hamiltonian recursion:

Proposition 4 . 3 . 1 ([ 83 ,

 43183 Proposition 1]). For any g 0, n 4, I 1 and I 2 such that I 1 I 2 = {1, . . . , n} and |I 1 |, |I 2 | 2, and an arbitrary r 0 we have:

  k := (12) * c g d | k . We will use the following conventions to simplify notation: c 0 -1 | 0

1 for all 1

 1 s k. Note that in particular d = g = 0. Note also that e g d | 1 = 0. We will adopt the convention d g d | 0 = e g d | 0 := 0. Using

.2. 3 ) 5 . 2 . 2

 3522 The manifold M 0 We define M 0 as the open subset of M consisting of the pairs (λ(z), λ(z)) satisfying the following conditions: (T1) The leading coefficient ū-1 of λ(z) is nonzero. (T2) The derivative of w(z) := λ(z) + λ(z) does not vanish on S 1 . (T3) The curve parameterized by w(z) for z ∈ S 1 is positively oriented, non-self-intersecting and encircles the origin w = 0. (T4) The map σ(z) := λ (z) λ (z)+ λ (z) has non-vanishing derivative on S 1 .

  Similarly, setting σ = 1 and z = zi , resp. σ = σ(p) and z = p, we obtain the analogous statement for d λ(z i ) and ūi , resp. (dλ σ (p))| σ=σ(p) and u p . By(5.3.8) and (5.3.10), we havedu i = dλ(z i ), dū i = d λ(z i ), du p = dλ σ (p)| σ=σ(p) .(5.3.48) 

1 ,

 1 3.50) defines an isomorphism of vector spaces. Let us consider tangent vectors as pairs X = (X(z), X(z)) ∈ H(D ∞ ) ⊕ 1 z H(D 0 ), and letY (p) = du p , X , Y i = du i , X , Ȳi = dū i , X . (5.3.51)Explicitly,Y (p) = λ (p) λ (p) + λ (p) X(p) -λ (p) λ (p) + λ (p) X(p), Y i = -X(z i ), Ȳi = X(z i ). (5.3.52)It is enough to observe that the inverse Ψ -1 is given byX(p) = λ (p) µ Ŷ (p) + λ (p) + λ (p) λ (p) λ (p) Y (p) (5.3.53) X(p) = -λ (p) -µ Ŷ (p) + λ (p) + λ (p) λ (p) λ (p) Y (p) (Y (p), Y i , Ȳi ) ∈ H(S 1 ) ⊕ C n ⊕ C n and X = Ψ -1 Ŷ . Corollary 5.3.4 follows from observing that ΨU X = ( du p , U X , du i , U X , dū j , U X ) = (u p Y (p), u i Y i , ūj Ȳj ).

. 1 = -e u w X λ λ 1 , 2 , 2 , 5 . 7

 112257 2.11),(5.3.53)-(5.3.54) and(5.2.6) to compute η((X(z), 0, 0), (Y (z), 0, 0Since λ (z) = -e u z -2 + ( λ (z)) 0 , we have λ(5.3.81) and the same for Y (z). Let us consider the integral in(5.3.80). We can rewrite the first summand as1 2πi |z|=1 λ (z)(w (z) -λ (z))summand on the right-hand side vanishes because λ (z) = (λ (z)) 0 , so the integrand has no residue. Similarly, which cancels out with the third line of (5.3.80) by(5.3.81). By replacing (5.3.82) and (5.3.83) in (5.3.80) and noting thatA(z)B(z) = A 0 (z)B 0 (z) + A 0 (z)B 1 (z) + A 1 (z)B 0 (z) + A 1 (z)B 1 (z) for any A, B ∈ H(S 1 ), we have η((X(z), 0, 0), (Y (z), 0, 0)) =us compute η((X(z), 0, 0), (0, e i , 0)) = 1 z i λ (z i ) Resurgenceand Stokes phenomenaIn this section, we study the Stokes phenomenon at the irregular singularity ζ ∼ ∞ of the Dubrovin equation.In the finite dimensional case[START_REF] Dubrovin | Painlevé transcendents in two-dimensional topological field theory[END_REF], the Dubrovin equation (written in the normalized canonical frame) has a unique formal fundamental solution of the following formY formal (ζ) = (Id + R 1 ζ -1 + R 2 ζ -2 + . . . )e ζU ,(5.7.1)where U = diag(u 1 , • • • , u n ) with u i = u j for i = j. An admissible line through the origin in C is given by the choice of its positive direction φ such that it satisfies (e iφ (u i -u j )) = 0 for any i = j. It can be shown that, given a choice of admissible line in C, there exists a unique fundamental solution Y right (resp. Y left ) which is asymptotic to Y formal for ζ ∼ ∞ on the open sector Π right (resp. Π left ) of opening slightly larger than π containing the right (resp. left) half-plane delimited by . The Stokes matrices S ± relate such fundamental solutions on the intersection Π right ∩ Π left = Π + ∪ Π -, namely Y L (ζ) = Y R (ζ)S ± , ζ ∈ Π ± , (5.7.2)

Remark 5 . 7 . 2 .

 572 Notice that(5.7.11) is a nowhere convergent formal power series in ζ -1 .5.7.3 Borel transform and resurgent structureRecall that a formal power series ϕ(ζ) = k 0 a k ζ -k at ζ ∼ ∞ is called Gevrey-1 if |a k | C k k!for all k > 0 for some positive constant C. In such case, its Borel transform, namely the seriesϕ(χ) = k 0 a k k! χ k , (5.7.16) is convergent in a neighborhood of χ ∼ 0. The formal integral solutions ϕ m p (ζ) are clearly Gevrey-1 and we can explicitly identify their Borel transform: Proposition 5.7.3. The Borel transform of ϕ m p (ζ) converges for |χ| 4e u p

  )

where 2 F 19 ) 21 )

 21921 1 (a, b; c; z) denotes the Gauss hypergeometric function. Proof. Applying ζ -k → χ k /k! to (5.7.11) yields The desired result follows immediately from Lemma 5.B.1, see Appendix 5.B.2. Let us now consider the so-called resurgent structure of the Borel transform. The Borel transform ϕ m p (χ) has a singularity at χ p = 4e u /p corresponding to the logarithmic branch point at z = 1 of the hypergeometric function 2 F 1 (a, b; a + b; z), see (5.B.20). Near the singularity it takes the form ϕ m p (χ p + ξ) pξ 4e u + f reg (ξ), (5.7.20) where f reg (ξ) is holomorphic near ξ ∼ 0. Here we have used the identity It is important to notice that the function multiplying the logarithm ϕ m -p (ξ) 1; -pξ 4e u , (5.7.22) is actually the Borel transform of the formal solution ϕ m -p (ζ) above for a different sign of p.

  Remark 1.1.7 (Lax formulation). The Hamiltonian densities and 2-point correlators of the KdV hierarchy can also be written in terms of the Lax operators. Namely 6

										119]
		∂F ∂t 0	=	∞ p=0	t p+1	∂F ∂t p	+	1 2	t 2 0 .	(1.1.31)
	h p-1 =	1 (2p + 1)!!	Res ∂x L 2p+1 ,				(1.1.32)

  = t 1 , t = t 2 , u = f 1 and v = f 2 . Eliminating v yields

												.44)
	1 2	v y +	1 6	u xy -u t =	1 4	v xx -	1 12	u xxx -	1 2	uu x ,	(1.1.45)
	where y 1 2	u yy = u t -	1 2	uu x -	1 24	u xxx +	1 6	u xy	x	,	(1.1.46)

  = 1, n = 1. Recall that every elliptic curve E is isomorphic to the quotient of C by a rank 2 lattice L, where the marked point of E is the image of 0 under the quotient map

		.2.10)
	Therefore,	
	M 0,4 ∼ = CP 1 .	(1.2.11)
	3. g	

C → E, and that E is isomorphic to E if and only if L = aL for some constant a ∈ C * . Here by rank 2 lattice we mean an additive subgroup L = aZ + bZ, where a, b ∈ C span C as a vector space over R. Therefore, M 1,1 ∼ = {lattices}/C * . Let {λ 1 , λ 2 } be a basis of L such that τ = λ 2 /λ 1 lies in the upper half-plane H. Multiplying L by 1/λ 1 yields a lattice with basis {1, τ }, τ ∈ H. On the other hand, note that the changes of basis of lattices are given by the matrix group SL(2, Z) = {A ∈ M 2 (Z)| det A = 1}. This group of changes of basis, which naturally leaves lattices invariant, induces: a PSL(2, Z)-action on H given by formula (1.2.7), and the involution of the elliptic curve, induced by the action of -1. Therefore,

M 1,1 ∼ = H/SL(2, Z).

(1.2.12) As in the previous example, in order to obtain M 1,1 , we have to add the singular curve 0 1

(1.2.13)

to M 1,1 .
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  The expression c g,n = 1 defines a CohFT, called the trivial CohFT. Its associated partition function is the Witten-Kontsevich one (1.2.33). 2. Let r ∈ Z 2 , and let V be the C-span of {e 0 , . . . , e r-2 } endowed with the scalar product (e α , e β ) = δ α+β,r-2 . Witten's r-spin CohFT 22 W g,n is the unique CohFT with unit e 0 satisfying the initial conditions W 0,3 (e a , e b , e c ) = δ a+b+c,r-2 , (1.2.41)

W 0,4 (e 1 , e 1 , e r-2 , e r-2 ) = 1 r [point]. (1.2.42) Note Witten's 2-spin CohFT is the trivial one. 1.3 Frobenius manifolds 1.3.1 From WDVV to Frobenius manifolds.

  .12) which, by axiom FM2, can be represented as third derivatives of a function F (t) as in(1.3.1). This function is the prepotential of the Frobenius manifold M . Observe that neither the flat coordinates nor the prepotential are unique. Throughout this section, given a Frobenius manifold M , we will use the standard notations t α , ∂ α , η αβ , c γ αβ and F as introduced above. An important property of Frobenius manifolds, which is required for the correspondences shown in Sections 1.[START_REF] Babelon | Introduction to classical integrable systems[END_REF] and 1.6 to work, is semisimplicity. Definition 1.3.4. Let M be a Frobenius manifold. A point t ∈ M is called semisimple if the algebra T t M is semisimple, i.e., if it has no nilpotents.

	Unless stated otherwise, all Frobenius manifolds considered in this thesis are semisimple,
	i.e., a generic point t ∈ M is semisimple.

  .3.1) and (2.3.3). It is easy to see that • In Equation (2.3.1) the numerators are indexed by exp(A

σ [2,n],∅ ), for all σ ∈ S n ; • In Equation (2.3.3) the numerators are indexed by exp(A τ I,J

  m i+1 } . Now we are ready to prove Lemma 2.3.4. The first statement follows from Lemmas 2.3.6 and 2.3.8. Then, note that Lemmas 2.3.8 and 2.3.7 imply that the equality A

  Definition 3.2.4. A Poisson bivector or Hamiltonian structure is a bivector P ∈ F2 such that [P, P ] = 0. A bi-Hamiltonian structure is a pair (P 1 , P 2 ) of Poisson bivectors satisfying [P 1 , P 2 ] = 0.

	Remark 3.2.5 (Poisson bivectors, Poisson brackets, Poisson operators). A Poisson bivector P
	defines a Poisson bracket on F0					
	{•, •} P : F0 × F0 -→ F0				(3.2.11)
			(F, G) -→ {F, G} P = [[P, F ], G].	(3.2.12)
	On the other hand, given a Poisson bracket {•, •} P , there exist unique P αβ s	∈ A satisfying
	s 0 P αβ s ∂ s x = s 0 (-1) s+1 ∂ s x P βα s	such that the Poisson operator P αβ = s 0 P αβ s ∂ s x gives the
	bracket						
		{F, G} P =	δF δu α P αβ δG δu β dx.	(3.2.13)
	It is clear that for						
	P =	1 2	θ α P αβ (θ β )dx =	1 2	s 0	P αβ s θ α θ s β dx	(3.2.14)

both definitions of {•, •} P coincide. Thus, we will use the terms Poisson bivector, Poisson operator and Poisson bracket interchangeably from this point. Example 3.2.6. Particularly interesting examples of Poisson bivectors are those of hydrodynamic type, i.e., those of the standard degree 1. P ∈ F2 1 is a Poisson bivector of hydrodynamic type if and only if it takes the form (see

  Remark 3.3.6. Another consequence of Proposition 3.3.4 is that we can equivalently define the Hamiltonian densities(3.3.11) in terms of the full two-point correlators Ω, since they differ by a total derivative: h α,p (w, . . . , w 3g ) = Ω α,p+1;1,0 = Ω

	[0] α,p+1;1,0 + ∂ x	∞ g=1	2g ∂F g p+1 ∂t α	.	(3.3.34)

.

3.33) 

where R α g,k is a differential polynomial in v not depending on v 1 1 of standard degree k.

  .35) so v α dx = w α dx. We can now write the full hierarchy in Hamiltonian form. The transformation (3.3.19) induces a transformation on the Poisson bracket P (3.3.12) as explained in Example 3.2.9. Explicitly, the deformed Poisson bracket is given by

  The way the operator A αβ acts on the variational derivatives of the Hamiltonians implies that Finally, it is a bit easier to work in the v coordinates instead of the w coordinates, but then, of course, all polynomiality properties are destroyed. The vanishing properties are, however, preserved. Namely, consider the expansion of the operator Bαβ in the v coordinates: (w)| w=v . The same argument applies also to the change of variables from v to w.Now we prove the lemma by induction on g. The base of induction is obvious, and if we prove the equivalence of the vanishings for any g < g, then for any g < g the top non-vanishing terms in w (respectively, v) coordinates are Bαβ

	Bαβ = ∞ g=0	2g	3g+1 s=0	Bαβ [g],s ∂ s x .
	Lemma 3.6.3. The coefficients Bαβ g,s , g	0, 2g + 2 s 3g + 1, vanish if and only if the
	coefficients Bαβ [g],s , g 0, 2g + 2 s 3g + 1, vanish.
	Proof. Indeed, the change of variables from w to v in Bαβ (w(v, ), ) does not affect the terms Bαβ g,s
	such that Bαβ g ,s = 0 for all g < g. More precisely, under this condition Bαβ [g],s (v) = Bαβ g,s g ,s (respectively, Bαβ [g ],s ) with s = 2g + 1. Since
	2g + 1 < 2g + 2 for any g < g, the vanishing of Bαβ g,s , s 2g + 2 is equivalent to the vanishing
	of Bαβ [g],s , s 2g + 2.	
	Remark 3.6.4. Assume that the vanishing of Bαβ g,s (or, equivalently, Bαβ [g],s ) is proved for g 0,
	s 2g+2. Then the same argument as in the proof of Lemma 3.6.3 implies that the polynomiality
	of Bαβ g,2g and Bαβ g,2g+1 is equivalent to the polynomiality of Bαβ [g],2g and Bαβ [g],2g+1
					Ãαβ δ δw β	Ω 1,0;γ,p+1 dx = η αβ Ω β,0;γ,p ,	(3.6.3)
	hence the statement of the lemma.
	Recall that B αβ = ∞ g=0	2g	3g+1 s=0 B αβ g,s ∂ s x , with deg B αβ g,s = 2g + 1 -s. It is easy to see that
	Bαβ has expansion with exactly the same properties, namely, Bαβ = ∞ g=0	2g	3g+1 s=0	Bαβ g,s ∂ s x ,
	with deg Bαβ g,s = 2g + 1 -s. Moreover,

.6.2) Proof. Lemma 3.6.2. (1) The coefficients of the operator B αβ are differential polynomials if and only if the coefficients of the operator Bαβ are differential polynomials.

(2) The coefficients B αβ g,s , g 0, 2g + 2 s 3g + 1, vanish if and only if the coefficients Bαβ g,s , g 0, 2g + 2 s 3g + 1, vanish.

Proof. Both statements follow from the polynomiality of Ã-1 αβ .

  line (4.3.15) we have d 1 2g 1 -1 and d 3 2f 2 -1, hence d 2 -1 2f 1 and by (4.3.14) the expression in line (4.3.15) is equal to

	(-1)

  is equal to the expression in line (4.3.17) while the part with a 2 + d 3 ≥ 2(h 2 + f 2 ) -1 is equal to the k = 1 term of the expression in line(4.3.18).In line (4.3.16) we have d 1 2h and d 3 2f 2 -1, hence d 2 2f 1 and applying identity (4.3.4) we get (

  4.3.19) with k = 1, . . . , while the part with a 2 + d 3 ≥ 2(h 2 + f 2 ) -1 is equal to the part of (4.3.18) with k = 2, . . . , + 1. Finally the part of (4.3.19) with k = + 1 is equal exactly to (4.3.20) with the opposite sign.

  .3.40) Now note that (4.3.38) and (4.3.40) are (4.3.39

  .3.42) where π 2 : M h,2 → M h,1 is the map forgetting the second marked point.Proof. The proof is based on properties (4.2.3)-(4.2.8), which are also true for the class DR

g (1, -1)λ g . Consider the following diagram of forgetful maps:

We follow[92, 5, 

[START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF], mostly the latter.[START_REF] Alexandrov | Partition functions of matrix models as the first special functions of string theory. II. Kontsevich model[END_REF] Not only symmetries of KdV, but also of one another. The KdV equation also has infinitely many noncommuting symmetries, given by vertex operators, infinitesimal transformations mapping one solution of the hierarchy into another.

We follow the summary in[START_REF] Bertola | Correlation functions of the KdV hierarchy and applications to intersection numbers over M g,n[END_REF]. For a rigorous approach to the Hamiltonian formalism of integrable systems, we refer the reader to[4] for the finite-dimensional case, and to[START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF] and the references therein, in particular[START_REF] Dubrovin | Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method[END_REF], for the infinite-dimensional case. The following definitions have been adapted to simplify this introductory exposition, and the general framework will be precisely established in Chapter 3.

Originally introduced in[START_REF] Sato | Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold[END_REF] as a way to systematically apply Hirota's bilinearization method[START_REF] Hirota | The direct method in soliton theory[END_REF].

See e.g.[START_REF] Bertola | Correlation functions of the KdV hierarchy and applications to intersection numbers over M g,n[END_REF].

As it was the case with the KdV equation, the origins of the KP equation lie in Physics, where it was derived[START_REF] Kadomtsev | On the Stability of Solitary Waves in Weakly Dispersing Media[END_REF] to model the propagation of shallow waves in two-dimensions. Thus, from the physical point of view it also makes sense that it reduces to KdV when u y = 0.

See[START_REF] Hain | Lectures on moduli spaces of elliptic curves[END_REF] for a detailed account of this example.

It is not enough to know the fibers at every point to fully describe a vector bundle. However, the definition of L i requires some algebro-geometric constructions involving the universal curve of M g,n beyond the scope of this thesis. The same applies to Λ.

For each irreducible component of g, the residues of a meromorphic form must add to zero, so there are less degrees of freedom than nodes for the possible singularities. In particular, if the dual graph of C is a tree, the fiber of Λ at C consists of holomorphic differentials.

We follow[START_REF] Buryak | Integrals of ψ-classes over double ramification cycles[END_REF].

See[START_REF] Fulton | Introduction to intersection theory in algebraic geometry[END_REF].

Introduced by Kontsevich and Manin in[START_REF] Kontsevich | Gromov-Witten classes, quantum cohomology, and enumerative geometry[END_REF].

The rest of this section follows[START_REF] Dubrovin | Geometry of 2D topological field theories[END_REF][START_REF] Dubrovin | Painlevé transcendents in two-dimensional topological field theory[END_REF][START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF]. Other excellent references on the theory of Frobenius manifolds are[START_REF] Dubrovin | WDVV Equations and Frobenius Manifolds[END_REF][START_REF] Hitchin | Frobenius manifolds[END_REF][START_REF] Manin | Frobenius manifolds, quantum cohomology, and moduli spaces[END_REF].

See e.g.[START_REF] Guzzetti | Isomonodromic Laplace transform with coalescing eigenvalues and confluence of Fuchsian singularities[END_REF] and the references therein.

After some rescaling of the times.

A CohFT is semisimple if its underlying (non-conformal) formal Frobenius manifold is semisimple at the origin, see Section 1.6.

More precisely, a Frobenius manifold together with a Legendre transformation is equivalent to a dispersionless flat exact bi-Hamiltonian structure. The choice of calibration of the Frobenius manifold corresponds to the tau-structure. See[START_REF] Dubrovin | Bihamiltonian cohomologies and integrable hierarchies II: The tau structures[END_REF] for the details.

Preserving desirable properties like tau-symmetry or bi-Hamiltonian structure.

It has been recently proved in[START_REF] Liu | Linearization of Virasoro symmetries associated with semisimple Frobenius manifolds[END_REF]. However, this article came after the results of Chapter 3, which will be presented as originally intended: strong evidence to support this conjecture.
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We refer to the triples (w(z), v, u) as w-coordinates. In these coordinates the tangent vectors are represented as elements of H(S 1 ) ⊕ C 2 via the map

(X(z), X(z)) -→ (W (z), X v , X u ), (5.2.5) where W (z) = X(z) + X(z), X v = X0 , X u = e -u X-1 , (5.2.6)

(5.2.7)

Remark 5.2.2. Recall that the projections ( ) p : H(S 1 ) → z p H(D 0 ), ( ) p-1 : H(S 1 ) → z p-1 H(D ∞ ) and ( ) p : H(S 1 ) → C are defined by

where f (z) = k∈Z f k z k and p ∈ Z.

The metric and the cotangent bundle

On the tangent spaces we define a symmetric non-degenerate bilinear form η, called the metric, by

where X, Ŷ ∈ T λM are represented as triples in H(S 1 ) ⊕ C 2 . By explicitly constructing the flat coordinates, it was proved in [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF] that the metric η is flat.

The cotangent space T * λ M is defined as the algebraic dual of the tangent space, i.e., as the space (T λM ) * of all linear functionals on T λM . The metric defines an injection η * of T λM into T * λ M by X → η * ( X) = η( X, •).

(5.2.12)

A cotangent vector ξ ∈ T * λ M that is in the image of η * is called representable, and we denote ξ ∈ T * λ M rep .

Remark 5.2.3. In this work we take a rather different approach to the cotangent bundle compared to [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF][START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF]. This is motivated by the fact that we need to consider functionals on M 0 whose differentials are not representable. For example, the differentials dλ(p), d λ(p) and du p are not representable.

The associative product

The product on the tangent spaces is defined by

for X, Ŷ ∈ T λM represented as triples in H(S 1 ) ⊕ C 2 . It was proved in [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF] that the product is commutative, associative, with a unit vector field given by e = (-1, 1) or, equivalently, by e = (0, 1, 0). Moreover, it is compatible with the metric η, namely

for any X, Ŷ , Ẑ ∈ T λM . If follows that η( X, Ŷ ) = ξ( X • Ŷ ) for ξ ∈ T * λ M rep , with ξ = η * (e) = du. Remark 5.2.4. Expression (5.2.13) for the product of tangent vectors corrects a sign mistake in the literature, c.f. [29, Lemma 15]. Finally, the Euler vector field is defined by E = (λ(z) -zλ (z), λ(z) -z λ (z)), or E = (w(z) -zw (z), v, 2).

(5.2.15)

In [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF] it is proved that Theorem 5.2.5. (M 0 , η, •, e, E) is an infinite-dimensional Frobenius manifold of charge d = 1.

The operators U and V

The operator U : T λM → T λM of multiplication by the Euler vector field is defined on each tangent space as U( X) = E • X. Using (5.2.13), one obtains

e u (w(z) + zw (z))

The grading operator V : T λM → T λM is defined as

.17)

where ∇ is the Levi-Civita connection of the metric η. Explicitly, see [START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF], it is given by

(5.2.18)

At a special point

To simplify computations, we will specialize certain constructions to a two-dimensional submanifold of M 0 given by the points λ0 of the form

(5.2. [START_REF] Buryak | Quadratic double ramification integrals and the noncommutative KdV hierarchy[END_REF] or, written as a triple, λ0 = (z, v, u).

(5.2.20)

Notice that conditions (T1)-(T5) are satisfied if |e u | = 1. At λ0 the operators U and V have the simpler form

(5.2.22)

Spectrum of U and canonical coordinates

In this section, we compute the spectrum of the operator U at an arbitrary point of the Frobenius manifold and we show that the generalized eigenvalues correspond to the continuous canonical coordinates introduced in [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF], while the discrete spectrum is given by the critical values of λ and λ.

Canonical coordinates

For a semisimple finite dimensional Frobenius manifold with superpotential λ(z), the canonical coordinates are typically given by the critical values of λ(z). In the case of the infinite dimensional Frobenius manifold M 0 , however, it is not immediately clear what should take the place of the critical values, since one expects an infinite number of canonical coordinates and, instead of a single superpotential, there are two: λ(z) and λ(z).

In [START_REF] Carlet | Infinite-dimensional Frobenius manifolds for 2 + 1 integrable systems[END_REF] it was suggested to consider the following linear combination of the two superpotentials λ σ (z) = σ λ(z) + (σ -1)λ(z) ∈ H(S 1 ) (5.3.1)

for a parameter σ ∈ C. One should then look for the critical points of λ σ (z) that are located on S 1 . The condition λ σ (z) = 0 for z ∈ S 1 defines a curve Σ = {σ(z)| z ∈ S 1 }, parameterized by

which is holomorphic on S 1 as the denominator is non-vanishing for λ ∈ M 0 , and is non-singular, i.e. σ (z) = 0, if and only if λ (z) λ (z) -λ (z) λ (z) = 0 (5.3.3) for z ∈ S 1 . For non self-intersecting Σ, we define the (continuous part of the) canonical coordinates at the point λ as the set of critical values

for σ ∈ Σ, where z(σ) : Σ → S 1 is the inverse of σ(z), which is a critical point of λ σ (z). Since Σ is parameterized by z ∈ S 1 , we might as well index these coordinates by p ∈ S 1 , denoting

In the following, we show that this seemingly ad hoc definition of canonical coordinates emerges naturally from the spectrum of the operator U. Indeed, the generalized eigenvalues of U are exactly given by the canonical coordinates defined above.

The operator U turns out to also have standard eigenvalues, which are given by the critical values of the superpotentials -λ(z) and λ(z) on their respective domains of definition, D ∞ and D 0 . More precisely, consider a point of M 0 at which λ(z), resp. λ(z), has n, resp. n, critical points in D ∞ , resp. D 0 . We define the following critical values:

The canonical coordinates on M 0 are given by the set of all critical values as defined above:

{u p , u i , ūj } p∈S 1 ,i=1,...,n,j=1,...,n .

(5.3.7)

The differentials of the discrete canonical coordinates u i , ūj are

which can be represented as vectors in T λM via the injection η * as follows

(5.3.9)

We will show below that these differentials are actually the eigenvectors corresponding to the eigenvalues u i and ūj of U.

It turns out that the generalized eigenvectors of U, corresponding to the continuous family of canonical coordinates u p , are given by (5.3.10) for p ∈ S 1 .

Remark 5.3.1. Notice that in the previous definition we have slightly abused the notation, since the last formula does not represent the differential of u p , but the differential of λ σ (z) for fixed σ, later evaluated at σ = σ(p). This is consistent with the fact that, as in the case of discrete canonical coordinates, the critical point should be allowed to vary as we differentiate along the Frobenius manifold, but on the contrary it would be fixed at a point of S 1 if we differentiated directly u p .

Proof at the special point

At the special point λ0 = (z, v, u), the operator U takes the simpler form (5.2.21). This allows us to give an explicit proof of the proposition. It is evident in this proof that the formula for the canonical coordinates emerges from and is uniquely determined by the form of the operator U. The first part of Proposition 5.3.3 can be restated as Lemma 5.3.5. The operator U acting on T λ0 M ∼ = H(S 1 ) ⊕ C 2 has the following eigenvalues and eigenvectors

), (5.3.18) iff |e u | > 1 and the following generalized eigenvalues and eigenvectors

)

Proof. First, let us compute the eigenvalues and eigenvectors. The equation U( X) = µ X takes the explicit form

For µ = v the system becomes z -1 X(z) + X u = 0, (5.3.23) X 1 = 0, (5.3.24) X v = 0.

(5.3.25)

The first equation implies that the only possibly non-zero coefficient of the Laurent expansion X(z) = k∈Z X k z k is X 1 , which is zero by the second equation. Thus, X u also vanishes and X = 0, so µ = v is not an eigenvalue. Therefore, we can assume µ = v.

(5.3.28)

We rewrite the first equation as

.3.29)

If |p| = 1, the function X(z) defined as above would have a single pole at p, so it would not be an element of H(S 1 ). Extracting the zeroth coefficient of the Laurent expansion of the left-hand side yields

(5.3.30)

If |p| < 1, the two poles of the integrand lie inside the unit circle, so the integral vanishes and the equation admits no solutions. If |p| > 1, we obtain e u = -p 2 , which has two solutions iff |e u | > 1, namely p ± = ∓ie u/2 , which correspond to the eigenvalues u ± and the eigenvectors du ± .

Let us now compute the generalized eigenvalues. Let ρ = µ -v, then the generalized eigenvalue equation takes the form

for a functional ω = ω z + ω v + ω u . If ρ = 0, then the previous equation becomes

Choosing X = (0, X v , 0) implies ω u = 0. Choosing X = (0, 0, X u ) implies ω z is zero on constants.

Then choosing X = (X 1 z, 0, 0) shows that ω z , 2e u z -1 X(z) = ω z , 2e u X 1 = 0 because the argument is constant, so we can conclude that ω v = 0. Finally, we choose X = (X(z), 0, 0), which shows ω z = 0. Therefore, we can assume ρ = 0. Let p = 2e u ρ . Substituting in the equation above, we obtain

Substituting and setting X = (X(z), 0, 0) yields

Consider first the case |p| = 1. Multiplication by p z -1 is then invertible in H(S 1 ), so we obtain

Clearly ω z = 0 iff ω z , 1 = 0. Thus, we can assume ω z , 1 = 0 and, without loss of generality, take ω z , 1 = 1. Setting X(z) = 1 gives the equation

If |p| < 1, the right-hand side vanishes, so there is no solution. If |p| > 1, the equation becomes p 2 = -e u , which admits the solutions p ± = ∓ie u/2 when |e u | > 1. The generalized eigenvectors ω ± associated with p ± have eigenvalues u ± and correspond to the eigenvectors du ± computed above, more precisely η * du ± = -ie -u/2 ω ± . Finally, let us consider the case |p| = 1. One can check that the functional given by ω z , X(z) = e -u p 2 X 1 (p) + X(p) (5.3.37) satisfies ω z , 1 = 1 and equation (5.3.34). Let us now show that it is the only solution for fixed p with |p| = 1. Let α z be a solution of (5.3.34) with α z , 1 = 0. Then α z is zero on the subspace p z -1 H(S 1 ), which is the subspace of H(S 1 ) of functions vanishing at z = p. Therefore, α z , X(z) = α z , X(p) + α z , (X(z) -X(p)) = X(p) α z , 1 = 0, (5.3.38) so α z = 0. Now let ω z be a solution of (5.3.34) with ω z , 1 = 0. We can renormalize it and consider the case ω z , 1 = 1. Then ω z -ω z is a solution of (5.3.34) vanishing on 1, so it must be identically zero, hence ω z = ω z . The result follows by noting that ω = e -u p 2 du p .

Remark 5.3.6. Notice that in this case we have

(5.3.39)

In the case |e u | < 1, one can easily check that knowing Y (p) = du p , X is sufficient to reconstruct X, showing completeness. However, in the case |e u | > 1, we also need to know Y ± = du ± , X to invert (5.3.16). In Section 5.3.5, we will give a general formula for Ψ -1 .

A key lemma

The following lemma will be used in the general proof of Proposition 5.3.3 and also in Section 5.6.

is a scalar multiple of zλ σ (z), namely it is equal to

(5.3.41)

dλ σ (z), X = (σ -1)X(z) + X 1 (z) + X v + e u z X u .

(5.3.43)

We proceed componentwise. Let E(z) denote expression (5.3.40), and let us expand E(z) for X = (X(z), 0, 0)

It is immediate to see that the terms with (σ -1) 2 , v, and (σ -1)e u cancel out. First, we simplify the rest of the terms with e u , which equal

Second, one can similarly see that the terms with (σ -1) equal

Third, we split the remaining terms of E(z) into two groups, the first one being

Finally, we are left with

Putting everything together,

Let X = (0, 1, 0). In this case, it is immediate to see

Finally, for X = (0, 0, 1), it is also a straightforward computation to check Let λ = (λ(z), λ(z)) ∈ M 0 be such that λ(z) has n critical points in the interior of D ∞ and λ(z) has n critical points in the interior of D 0 . We take λ to be generic, i.e., none of the critical points is degenerate.

Remark 5.3.8. Consider the operator U on H(S 1 ) ⊕ C n ⊕ C n given in Corollary 5.3.4, namely U (X(z), X i , Xj ) = (u z X(z), u i X i , ūj Xj ) (5.3.58) for u z ∈ H(S 1 ). Clearly, the set of generalized and standard eigenvalues corresponds to the set of u p , u i and ūj , namely Lemma 5.3.9. The spectrum of U is given by {u p , u i , ūj } p∈S 1 ,i=1,...,n,j=1,...,n .

Proof. From the diagonal form of U , it is immediately clear that the standard eigenvalues are {u i } i=1,...,n and {ū j } j=1,...,n with eigenvectors (0, e i , 0) and (0, 0, e j ), respectively, where e i denotes the canonical basis vector which is 1 at the i-th entry and 0 everywhere else.

In order to find its generalized eigenvalues, we look for λ ∈ C,

(5.3.59)

Consider the decomposition ξ = (ξ z , ξ i , ξj ) given by ξ, X = ξ z , X(z)

Xj ξj , e j .

(5.3.60)

For p ∈ S 1 , one can check that u p is a generalized eigenvalue with generalized eigenvector (ev p , 0, 0), where the functional ev p is defined by

Finally, let λ = u i , ūj , u p for any i, j, p. Since λ = u i , ūj , then we have ξ i = ξj = 0 for all i, j, so we are left with

∀X ∈ H(S 1 ).

(5.3.62)

Since λ = u p for any p ∈ S 1 , then multiplication by (u z -λ) is an invertible operator in H(S 1 ), so ξ z = 0, hence λ is not an eigenvalue.

Let us now compute the dimension of the (generalized) eigenspaces. Since duz dz does not vanish on S 1 , we have the following Lemma 5.3.10. Suppose exactly s + k + generalized eigenvalues coincide, namely

Then the corresponding eigenspace is s + k + dimensional.

Proof. Let λ denote (5.3.63). Then the generalized eigenspace of λ splits into two subspaces, the (k + )-dimensional subspace corresponding to the eigenvectors {(0, e ir , 0), (0, e j l , 0)} l=1,..., r=1,...,k mentioned before, and the subspace given by ξ = (ξ z , 0, 0) with ξ z satisfying equation (5.3.62).

Let us compute the latter for s 1. By (5.3.57) and axioms (T3) and (T4), the function duz dz does not vanish on S 1 , so u z -λ does not have double zeros on S 1 , i.e.,

where g(z) is a non-vanishing holomorphic function on S 1 . Therefore, since multiplication by g(z) is invertible on H(S 1 ), equation (5.3.62) becomes

or, equivalently, ξ z vanishes on the subspace of H(S 1 ) given by functions with zeros at the distinct points p 1 , . . . , p s . It is clear that the functionals ev p 1 , . . . , ev ps defined in (5.3.61) are linearly independent and solve (5.3.65). Let us show that they span the whole space of solutions of (5.3.65).

For that, we need the following decomposition formula: for any X ∈ H(S 1 ), s 1, we can write

where

). This statement can be easily proved by induction. For s = 1, it is clear by taking

Assuming it holds for s -1 1, we write

where we have split

Applying (5.3.66), we write

The last summand vanishes because ξ z satisfies equation (5.3.65). Therefore, ξ z is completely determined by the numbers

so the space of solutions of (5.3.65) is at most s-dimensional, hence it must be the span of ev p 1 , . . . , ev ps .

Remark 5.3.11. Notice that relaxing the axioms (T3) and (T4) in the definition of M 0 would imply, by relation (5.3.57), dropping the non-vanishing assumption of the derivative of u z on S 1 . In such case the function u z -λ might have higher order zeros, i.e.,

with N i 1. Then the subspace determined by equation ( 5

(5.3.72)

Metric in canonical coordinates

Thanks to the explicit expression for Ψ -1 , we can derive the following diagonal form of the metric in canonical coordinates:

Proposition 5.3.12. The metric η in the representation given by Ψ, that is, η( X, Ŷ ) :=

Proof. First, using (5.2.11), (5.3.53)-(5.3.54) and (5.2.6), we compute η((0, e i , 0), (0, e j , 0)) = 1

On the other hand, we can split the integral of (5.3.74) by decomposing w (z) = λ (z) + λ (z). The first summand equals

Plugging (5.3.75) and (5.3.76) in (5.3.74) yields η((0, e i , 0), (0, e j , 0)

Analogously, one obtains η((0, e i , 0), (0, 0, e j )) = η((0, 0, e i ), (0, e j , 0)) = 0, (5.3.78) η((0, 0, e i ), (0, 0,

where we have used (5.3.75) and (5.3.81). Note

and the first integral of (5.3.85) becomes

which cancels with the third summand of (5.3.85). The remaining term

vanishes because λ (z i ) = 0, so η((X(z), 0, 0), (0, e i , 0)) = 0. Analogously, one obtains η((X(z), 0, 0), (0, 0, e j )) = η((0, e i , 0), (Y (z), 0, 0)) = η((0, 0, e i ), (Y (z), 0, 0)) = 0, (5.3.89) concluding the proof.

Dubrovin equation

It is well known that the geometric structure of a Frobenius manifold is (almost) completely encoded in the flatness of the so-called deformed flat connection ∇, which is an extension to M 0 × C * of the Levi-Civita connection of the metric η obtained by deforming it using the associative product on the tangent bundle. In our case, if ∇ denotes the Levi-Civita connection of the metric η, then the deformed flat connection

for X, Ŷ ∈ T λM , where the operators U and V are given by (5.2.16) and (5.2.18), respectively. In Frobenius manifold theory, one is interested in looking for functions y whose differentials dy ∈ T * λ M are covariantly constant w.r.t. the deformed flat connection ∇. A basis of solutions adapted to ζ ∼ 0 provides a family of so-called deformed flat coordinates, the coefficients of which define the Hamiltonian densities of the principal hierarchy associated with the Frobenius manifold. See [START_REF] Dubrovin | Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov -Witten invariants[END_REF] for the general construction and [START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF] for the derivation of the principal hierarchy of M 0 .

In this chapter, we focus on the Dubrovin equation, i.e., the flatness equation in the 

where U * and V * denote the transposes of U and V. In other words, the cotangent vector ∇ d dζ (α) is defined by

for all X ∈ T λM . The Dubrovin equation ∇ d dζ (α) = 0 is therefore given by As expected, if the cotangent vector α is representable, α = η * Ẑ for Ẑ ∈ T λM , then (5.4.6) is written as

which implies, since U is symmetric and V antisymmetric with respect to the metric η, the usual form of Dubrovin equation 

Formal solutions

Let us solve equation (5.4.6) perturbatively at ∞. Recall that in the finite-dimensional case, the Dubrovin equation has a fundamental formal solution of the form (see [START_REF] Dubrovin | Painlevé transcendents in two-dimensional topological field theory[END_REF])

where Ψ denotes the change of coordinates matrix from flat to normalized canonical. In the infinite-dimensional case, there is no natural analogue of the fundamental matrix Ξ, but nonetheless we can write functionals that generalize its columns, given by

where u j is the j-th canonical coordinate and v k j are constant column vectors.

Proposition 5.5.1. The following statements hold at any point λ ∈ M 0 :

1. For each discrete canonical coordinate u i , there exists a unique representable formal solution of the Dubrovin equation (5.4.6) of the form

(5.5.3)

2. For each discrete canonical coordinate ūi , there exists a unique representable formal solution of the Dubrovin equation (5.4.6) of the form 

(5.5.5)

These solutions are given by the functionals

where A p is the left-inverse of u p -U with A p (0, 1, 0) = 0, and depend on the choice of complex constants a n p ∈ C for n ∈ Z 1 . Proof. To prove items 1 and 2, let us solve (5.4.8) perturbatively at ∞. First, we apply the change of variables Ŷ = Ψdy, where Ψ is defined as in Proposition 5.3.3, and obtain

where V = ΨVΨ -1 and U = ΨUΨ -1 , which takes the diagonal form (5.3.17). We propose an Ansatz of the form

which yields the recursion

(5.5.10)

We will show that these equations have a unique solution up to normalization. Let e i denote the canonical basis vector which is 1 at the i-th entry and 0 everywhere else. Then ker(u i -U ) = (0, e i , 0) , so we choose Ŷ 0 i = (0, -z 2 i λ (z i )e i , 0), (5.5.11) which satisfies

(5.5.12)

Let us move on to the next equation, namely

This equation is solvable if and only if V (0, e i , 0) ∈ im(u i -U ). Note the diagonal form of U (5.3.17) allows us to decompose the space as

, so it is enough to show that the projection of V (0, e i , 0) to the subspace ker(u i -U ) is 0. We prove it as an auxiliary lemma:

Lemma 5.5.2. The operator

P j • V (0, 0, e j ) = 0, j = 1, . . . , n, (5.5.16)

where P i is the projection to the i-th entry of the second component, and P j is the projection to the j-th entry of the third component.

Proof. The proofs of (5.5.15) and (5.5.16) are analogous, so we only perform the former. First, we compute

.5.18)

To conclude the proof, we have to show that

where we have used integration by parts.

As an immediate corollary, V ( Ŷ 0 i ) ∈ im(u i -U ) and equation (5.5.13) admits solutions for Ŷ 1 i . Regarding uniqueness, it is clear that two different solutions of (5.5.13) must differ by an element of ker(u i -U ). Therefore, we write

Consider the second equation

which has a solution for Ŷ 2 i if and only if .5.23) This uniquely fixes the constant a 1 i and ensures that (5.5.22) has a solution, which, as before, can be written as

Iterating gives a unique Ŷ formal i , which concludes the proof of item 1 of the proposition. The proof of item 2 is completely analogous, and we will not do it explicitly here.

To prove item 3, we insert the Ansatz (5.5.5) in the Dubrovin equation (5.4.6) and obtain the following recursion for the functionals r k p :

Equation (5.5.24) is the eigenspace equation for the eigenvalue u p . By the results of Section 5.3, we have r 0 p = du p . Note that u p -U is injective (one can directly see this from the diagonal form (5.3.17), noting (T4) excludes the degenerate case of all the canonical coordinates u p being equal), but it fails to be surjective, as

is a subspace of H(S 1 ) ⊕ C 2 of codimension 1. Therefore, the operator u p -U admits left-inverses. Let B p , B p be two left-inverses of u p -U. Then

where we have used that X -du p , X (0, 1, 0) ∈ im(u p -U). Therefore, a left-inverse of u p -U is completely determined by its action on (0, 1, 0), and we choose A p to be the one with A p (0, 1, 0) = 0. Back to the system (5.5.25), it is now clear that the recursively defined functionals r0 p = du p , (5.5.29) rk+1 p , X = rk p , (k -V)A p X (5.5.30) solve it. Written in terms of transpose operators, the functionals

give a formal solution of the form (5. 

with a k+1 p ∈ C. From (5.5.33) we can deduce the most general form of the functionals, (5.5.6), thus completing the proof.

Remark 5.5.3. Since A p (0, 1, 0) = 0 and du p , (0, 1, 0) = 1, it is easy to write the functionals of any given formal solution (5.5.5) in the form (5.5.6) by setting

Remark 5.5.4. At the special point λ0 , we can compute the operator A p explicitly and let t k i be such that

Then the general solution of

To fix the constant a k i we consider the next equation

and choose X to be the vector representative of du i , i.e., η * ( X) = du i (here we do not denote X = du i as usual because it might lead to confusion). In particular, X ∈ ker(u i -U), which gives

(5.5.39)

Note that the denominator does not vanish since V( X) ∈ im(u i -U) and X / ∈ im(u i -U). On the other hand, it is impossible to repeat this procedure to fix the constants appearing in ξ formal p , as the operator (u p -U) is injective.

Integral solutions and their asymptotics

In this section, we find a family of solutions to the Dubrovin equation defined in terms of an exponential integral along the unit circle in the complex plane. We derive the asymptotic behavior of such solutions at ζ ∼ ∞, obtaining this way formal solutions in the sense of the previous section.

Integral solutions

We define a family of functionals y σ (ζ) on M 0 × C and we prove explicitly that their differentials dy σ (ζ) solve the Dubrovin equation (5.4.6).

Proposition 5.6.1. Let σ ∈ C and consider the functionals

2πi |z|=1 e ζλσ(z) dz z .

(5.6.1)

Their differentials dy σ (ζ) are solutions of the Dubrovin equation (5.4.6).

Proof. The differentials dy σ (ζ) ∈ T * λ M are given by

2πi |z|=1 e ζλσ(z) dλ σ (z), X dz z .

(5.6.2) Plugging (5.6.2) in (5.4.6) yields

which vanishes by Lemma 5.3.7.

Remark 5.6.2. The differentials dy σ (ζ) are actually representable, see Remark 5.6.5 below. We can therefore use Proposition 20 in [START_REF] Carlet | Principal hierarchies of infinite-dimensional Frobenius manifolds: the extended 2D Toda lattice[END_REF] to prove that they are covariantly constant w.r.t. the full deformed flat connection ∇.

Asymptotics

Let us study the asymptotics of the solutions dy σ (ζ) for |ζ| → ∞. The usual approach to find the asymptotics of integrals of the form (5.6.1) or (5.6.2) is by applying the steepest descent method, first by expressing the path of integration as a combination of the steepest descent paths passing through the critical points of the superpotential λ σ (z), and then by computing saddle point asymptotics, see e.g. [123].

In our case, however, for generic values of σ, the path of integration cannot be deformed away from the domain of definition of λ σ (z), namely a neighborhood of S 1 . We will therefore restrict our analysis to those values of σ such that the critical points of λ σ (ζ) belong to S 1 , and to σ = 0 and 1, for which λ σ coincides with -λ and λ, respectively.

Let us consider a point λ = (λ, λ) in the Frobenius manifold M 0 such that λ and λ have n and n critical points, respectively. Denote by z i and zj the critical points and by u i and ūj the critical values of -λ and λ, respectively, as in (5.3.5)- (5.3.6). Recall that we define a curve Σ via the function σ(z) on S 1 , see (5.3.2). For every σ ∈ Σ the superpotential λ σ (z) has a finite number of critical points p 1 , . . . , p s , which are non-degenerate because of (5.3.3).

Chapter 5. Stokes phenomenon and Frobenius manifolds

For σ belonging to the curve Σ, the path of integration S 1 passes through the points p 1 , . . . , p s . For |ζ| → ∞ in a generic direction in the ζ-plane, the asymptotics of the integral will be dominated by the saddle point asymptotics of one of such points. More precisely, let us consider the lines in C passing through the origin and given by (ζ(u p i -u p j )) = 0 for i, j = 1, . . . , s. These lines divide the ζ-plane in sectors S(u p j ) for j = 1, . . . , s such that in the sector S(u p j ) the exponential e ζup j has the dominant asymptotic behavior as |ζ| → ∞.

For σ = 0, the critical points z i of the exponent -λ(z) belong to the exterior of the unit disc. In this case, however, the integrand is holomorphic in D ∞ , so we can deform the path of integration in such a way that it passes through all the critical points. As above, in each of the sectors S(u j ) for j = 1, . . . , n determined by removing the lines (ζ(u i -u j )) = 0 for i, j = 1, . . . , n from C, the critical value u j will determine the asymptotics.

Similarly, for σ = 1, the path of integration can be deformed in such a way that it passes through all the critical points zi in the interior of D 0 and the critical value ūj will dominate the asymptotics in a sector S(ū j ), among the sectors obtained by removing the lines (ζ(ū i -ūj )) = 0 for i, j = 1, . . . , n from the ζ-plane.

For any X ∈ T λM we have the following asymptotic behavior Proposition 5.6.3. For σ ∈ Σ and p = p j one of the critical points of λ σ , we have

(5.6.3)

For σ = 0 and z j one of the critical points of λ, we have

(5.6.4)

For σ = 1 and zj one of the critical points of λ, we have

(5.6.5)

In the above formulas the symbol z denotes integration along a small counterclockwise simple path around z.

Proof. Expression (5.6.3) follows from Lemma 5.A.1 applied to dy σ , X . For (5.6.4), note the integrand of dy 0 , X is holomorphic on D ∞ \ {∞}, so we can deform the path of integration to one that passes through all critical points of λ, and then apply again Lemma 5.A.1. Finally, for (5.6.5), we deform the path so that it passes through all critical points of λ, and then we apply Lemma 5.A.1. Proposition 5.6.4. The asymptotic expansions of {dy σ } σ∈Σ∪{0,1} at |ζ| → ∞ given in Proposition 5.6.3 are formal solutions of the Dubrovin equation.

Proof. Let us prove that (5.6.3) defines a formal solution of the Dubrovin equation of the form (5.5.5) with r k p given by

(5.6.6)

For that, we need to prove that the cotangent vectors r k p satisfy the recursion relations (5.5.24)-(5.5.25). Let us first show (5.5.24). We have

(5.6.7)

By adding and subtracting a term proportional to λ σ (z), the previous expression equals

(5.6.8)

The second summand equals

(5.6.9) which vanishes because the integrand is holomorphic at p. By Lemma 5.3.7,

where C is a constant and

is holomorphic at p. Therefore, the first summand of (5.6.8) equals

which again vanishes by holomorphicity at p of the integrand. To prove (5.5.25), observe that by a computation similar to the previous one, we can write

which vanishes by Lemma 5.3.7. The proofs for (5.6.4) and (5.6.5) are completely analogous.

Remark 5.6.5. The 1-forms (5.6.2) are representable for any σ ∈ C, i.e. dy σ (ζ) ∈ T * λ M rep , with their representative in the tangent given by

Notice, however, that the functionals r k p in the asymptotic expansion are in general not representable, in particular the leading term r 0 p is proportional to the non-representable functional du p . Remark 5.6.6. The family of solutions {dy σ (ζ)} σ∈Σ∪{0,1} is not complete. For example, at the special point λ0 , the tangent vector (5.6.15)

namely the subset of T λ0 M consisting of Laurent polynomials in z, by the formula

The motivation for introducing T * λ0 M weak is that we are going to obtain solutions to the Dubrovin equation by Borel resummation of the coefficients of the formal integral solutions, which will turn out not to be in T * λ0 M . Notice that, since the operators U and V at the special point preserve the subspace T λ0 M test , it is possible to define weak solutions to the Dubrovin equation (5.4.6)

(5.7.5)

Formal integral solutions

At the special point, we can give an explicit formula for the coefficients of the formal solutions corresponding to the asymptotic expansion of the integral solutions obtained in Section 5.6, namely (recall Proposition 5.6.3) where

(5.7.11)

Proof. The coefficients in (5.7.6) are proportional to the integrals

(5.7.12)

Since at the special point σ(p) = 1 + e u p 2 , we have that defines an analytic function in the sector where the real part of the exponential is negative, i.e., the half-plane

(5.7.25)

Moreover, Observe that s(ϕ m p )(ζ) is asymptotic to ϕ m p (ζ) for |ζ| → ∞ in any sector where it is given by an integral representation as above. Denoting θ 0 = θ St + π, this happens whenever θ = θ St , namely when θ ∈ (θ 0 -π, θ 0 + π). Therefore

i.e., when ζ belongs to the sector of opening 3π given by

(5.7.29)

The monodromy of the multivalued function s(ϕ m p ) is determined by the resurgent structure of the Borel transform. Indeed, for ζ ∈ Π θ St we have

where H is the clockwise Hankel contour around the singular point χ p = 4e u /p coming from infinity along the direction θ St . By substituting (5.7.20) and performing the change of variable of integration χ = χ p + ξ, we find it equals

where H 0 is the Hankel contour H translated to 0. This in turn is equal to

(5.7.32)

Therefore, the monodromy in ζ of s(ϕ m p ) is given by

Let us now explicitly compute the function s(ϕ m p )(ζ). Letting χ = te iθ , t ∈ R + and using the Laplace transform formula (5.B.21), we have

where K m (z) is the modified Bessel function of the second kind, see Appendix 5.B.1. Clearly this identity extends to the analytic continuations of the functions on the plane cut at e -iθ St R + , therefore we have 

where θ 0 = π + arg e u -arg p. Their monodromy is given by

where ds -p = ds e -iπ p .

Remark 5.7.6. The solution above is actually multivalued in the parameter p. We will see that any choice of range [φ 0 , φ 0 + 2π) for arg p gives a complete family of solutions. Notice that the family of solutions with arg e u -θ arg p arg e u -θ + 2π will have the formal asymptotics for ζ in the open half-plane Π θ , see (5.7.25). Remark 5.7.7. The asymptotic expansion (5.B.13) of K m (z) for m → ±∞ implies that

for positive constants α ± , β ± . Therefore the weak functionals ds p (ζ) defined by the coefficients above do not extend to cotangent vectors in T * λ0 M .

While the weak functional ds p (ζ) do not define elements in the dual to T λ0 M , i.e., they are not cotangent vectors, the difference ds p -ds -p is not only an element of T * λ0 M , but is actually representable. More precisely, Proposition 5.7.8. For σ = σ(p), we have that

(5.7.44)

Proof. The coefficients of the integral solutions defined in Section 5.6, i.e.,

obtained by acting on the elements e m where m ∈ Z ∪ {v, u}, see (

, are given by Bessel functions of the first kind Despite the fact that the weak functionals ds p (ζ) do not extend to T λ0 M as explained above, we can still ask the question about their completeness as a family of functionals on T λ0 M test for fixed ζ. It is indeed the case that the map

that associates to X ∈ T λ0 M test a function of p with |p| = 1 and arg p ∈ [φ 0 , φ 0 + 2π) for some fixed φ 0 is injective, as proved in the following Proposition 5.7.9. The map (5.7.52) associated with the family of functionals {ds p (ζ)} is injective.

(5.7.53)

Then from (5.7.36)-(5.7.39) we get

By (5.B.4), the expression above is an expansion in {p 2m , p 2n log(-ζe u p -1 )} n,m∈Z . Assume ds p (ζ), X = 0 for all p. To show completeness, we need to prove X = 0. By (5.B.4), the coefficient of p 2r of (5.7.54) equals X r 1 2 (-ζe u ) -r (r -1)!, (5.7.55) which must be zero, so X r = 0. Repeating this argument with the coefficients of p 2r-2 , . . . , p 2 shows X r-1 = • • • = X 1 = 0. We are left with

The coefficient of log(-ζe u p -1 ) of (5.7.56) equals -X v , so X v = 0. The constant coefficient equals e u X u (-ζ2e u ) -1 , (5.7.57) so X u = 0. Extracting the coefficients of log(-ζe u p -1 )p -2 , . . . , log(-ζe u p -1 )p -2s-2 in an analogous manner shows that X 0 = • • • = X -s = 0.

Stokes matrices for pairs of solutions

In this section, we restrict to pairs of solutions and we compute the partial Stokes matrix that describes their monodromy.

Let ds p and ds -p be the solutions corresponding to arguments arg p and arg p-π, respectively. Recall their formal asymptotics as |ζ| → ∞ ds p (ζ) ∼ dy formal p = e ζup (r 0 p + r ). We choose an admissible line not coinciding with the Stokes line, in this case the positive direction of is of argument θ with θ = θ 0 + π 2 mod π. For a small > 0, we define two sectors containing the half-planes separated by as follows

(5.7.61)

(5.7.62)

The intersection of Π right and Π left has two connected components

(5.7.64)

Let us assume that the argument θ of the admissible line has been chosen in such a way that ds ±p (ζ) is dominant in Π ∓ ; this amounts to θ ∈ (-θ 0 -π 2 , -θ 0 + π 2 ). Let us define the following "matrix" solutions on Π right/left

where we have chosen the appropriate branch cuts that guarantee the formal asymptotics in the half-plane where they are defined. 

where the Stokes matrices S ± are given by

Proof. The theorem follows from Proposition 5.7.5. for ζ ∈ Π -.

Stokes matrices

Remark 5.7.12. We can formally express the relation between Y right and Y left in terms of kernels S ± by writing

where the integral is taken on the points q in S 1 with argument in [arg e u + θ -π 2 , arg e u + θ + 3π 2 ). The kernels representing the analogues of the Stokes matrices are then written as (S + ) qp = δ(q -p) -2χ(q)δ(q -e πi p),

(5.7.77) (S -) qp = δ(q -p) -2χ(p)δ(p -e πi q), (5.7.78)

where χ(p) is the function equal to one when arg p is in (arg e u + θ + π 2 , arg e u + θ + 3π 2 ) and zero otherwise, and the delta function satisfies the usual relation

(5.7.79)

Notice that the two kernels S + and S -are the transposes of one another, namely (S + ) pq = (S -) qp .

(5.7.80)

Appendix 5.A Saddle point asymptotics

Let us recall the proof of the following lemma, which can be seen as a simple application of Perron's method [START_REF] Wong | Asymptotic approximations of integrals[END_REF] to our particular case.

Lemma 5.A.1. Let f and g be holomorphic functions defined in a neighborhood of a point z where f has a simple critical point and let C be a path passing through z such that the real part of e iψ f (z) restricted to C has a maximum at z . Then the function of ζ defined by

admits the asymptotic expansion

(5.A.3)

Proof. By shifting the variable of integration and renaming f and g we can assume that f and g are analytic in a neighborhood of z = 0 with f (0) = f (0) = 0 and f (0) = 0. We write

By deforming the path C, we can make it coincide with a steepest descent path in a sufficiently small neighborhood of the critical point. We can moreover restrict the integral to a part of the path arbitrarily close to the critical point without changing the asymptotic expansion, as the difference will be exponentially vanishing.

We will therefore assume that C is steepest descent path defined as the preimage of the path χ(t) = -e -iψ t for t ∈ [0, T ] via f (z) with the appropriate orientation. Denote by C + the part of the path C leaving the critical point and by C -the one arriving at the critical point.

Let w(z) be the unique square root of c -1 f (z) with w(z) = z + O(z 2 ). The function w(z) is biholomorphic, so we can use it to change the variable of integration; denoting the inverse by z(w), we get 

The integral is explicitly given by 

A.9)

for any complex valued smooth function a(t) defined in a neighborhood of [0, T ]. Clearly,

A.10) so we obtain the asymptotic expansion

(5.A.11)

We can finally compute the coefficients s n as residues

(5.A.12)

Expressing w(z) as square root of c -1 f (z), we obtain the desired result.

Remark 5.A.2. We choose the branches of the roots of c and e iψ such that the sign in the final expression is +1.

Appendix 5.B Special functions

5.B.1 Modified Bessel functions

In this appendix, we go over the definition and some properties of the modified Bessel functions.

For more details, we refer the reader to [94,]. The modified Bessel functions of the first kind are defined by

(5.B.1)

The modified Bessel functions of the second kind are defined by

.B.3)

For n ∈ Z, I n (z) is entire and K n (z) is multivalued with a branch cut on R -. Its multivaluedness becomes clear from the expansion at z = 0 The following properties will be used in the text:

B.7)

(5.B.9)

The monodromy of K n (z) is given by

.B.11)

It is also useful to keep in mind their asymptotic expansions for large n

B.12)

and for large z which converges for all t ∈ C * .

5.B.2 Gauss hypergeometric functions

The definition and properties of the Gauss hypergeometric functions presented below are taken from [94,Chapter 15]. For more details, we refer the reader to that source. The Gauss hypergeometric function is defined by the power series in the disk |z| < 1 and by analytic continuation elsewhere, where (q) n = q(q + 1) . . . (q + n -1) (5.B. [START_REF] Buryak | Quadratic double ramification integrals and the noncommutative KdV hierarchy[END_REF] denotes the rising factorial. At z = 1, they have a logarithmic branch point of the form The following Laplace transform will be used in the text, see [START_REF] Prudnikov | Direct Laplace transforms[END_REF]: for c, q > 0, | arg ω| < π, we have Proof. We write we can write 

Summary

In this dissertation, we study the underlying geometry of integrable systems, in particular tausymmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations. First, we explore the close connection between the realms of integrable systems and algebraic geometry by giving a new proof of the Witten conjecture, which constructs the string taufunction of the Korteweg-de Vries hierarchy via intersection theory of the moduli spaces of stable curves with marked points. This novel proof is based on the geometry of double ramification cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps facilitate the computation of intersection numbers of psi classes.

Second, we examine the Dubrovin-Zhang hierarchy, an integrable system constructed from a Frobenius manifold by deforming its associated pencil of Poisson structures of hydrodynamic type. This integrable hierarchy was proved to be Hamiltonian and tau-symmetric, and conjectured to be bi-Hamiltonian. We prove a vanishing theorem for the negative degree terms of the second Poisson bracket, thus providing strong evidence to support this conjecture. The proof of this theorem demonstrates the implications the bi-Hamiltonian recursion relation and tautological relations in the cohomology rings of the moduli spaces of stable curves have on the bi-Hamiltonian structure of the Dubrovin-Zhang hierarchies.

Third, we propose a conjectural formula for the simplest non-trivial product of double ramification cycles DR g (1, -1)λ g in terms of cohomology classes represented by standard strata. Although there are known formulas relating double ramification cycles to other, more natural tautological classes, they are much more complicated than the one conjectured here. This conjecture refines the one point case of the Buryak-Guéré-Rossi conjectural tautological relations, which are equivalent to the existence of a Miura transformation relating Buryak's double ramification hierarchies and the Dubrovin-Zhang ones.

Finally, we analyze the differential geometry of (2 + 1) integrable systems through infinitedimensional Frobenius manifolds. More concretely, we study, both formally and analytically, the Dubrovin equation of the 2D Toda Frobenius manifold at its irregular singularity. The fact that it is infinite-dimensional implies a qualitatively different behavior than its finite-dimensional analogue, the Frobenius manifold underlying the extended Toda hierarchy. The two most remarkable differences are non-uniqueness of formal solutions to the Dubrovin equation and non-completeness of the analytic ones. These features together greatly complicate the analysis of Stokes phenomenon, which we perform by splitting the space of solutions into infinitely many two-dimensional subspaces. Keywords: Integrable system, Frobenius manifold, moduli space of stable curves, cohomological field theory, Dubrovin-Zhang hierarchy, double ramification cycles.