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Chapter 1

Introduction

This dissertation studies integrable systems through the geometry of Frobenius manifolds and
cohomological field theories. After a superficial look at the definitions and first properties of these
three objects, one might naively think that they are completely unrelated. However, as is often
the case, seemingly unrelated concepts arising from different areas of Mathematics share deep
connections, and it is the rigorous study of those connections that expands our mathematical
knowledge, getting us closer to understanding the “true nature” of the original objects.

By exploring the interplay between integrable systems, Frobenius manifolds and cohomologi-
cal field theories, this thesis aims to bring new insights into this fascinating subject, lying at the
intersection of mathematical physics, differential geometry, and algebraic geometry.

1.1 Integrable systems

The main objects of interest of this thesis are integrable systems. However, despite the high
volume of research on the topic, there is no mathematical consensus on what integrable systems
are, as the very notion of integrability is vaguely defined across the literature, varying from
example to example, and sometimes even from author to author. As a consequence, instead of
proposing an artificial definition for the integrable systems studied in this text, we will introduce
the prime example of an integrable system: the Korteweg-de Vries hierarchy.

1.1.1 Korteweg—de Vries hierarchy
Korteweg—de Vries equation and its symmetries

The Korteweg—de Vries (KdV) equation is a non-linear PDE first introduced by Boussinesq
[8] and later rediscovered by Korteweg and de Vries [77]' to model the propagation of shallow
water waves. It reads

Up = ULy + g aaa- (1.1.1)

Note that the coefficients of wu, and wu,,, can be made arbitrary by rescaling ¢, x, and u.
Equations of the form u; = K (u) where K is a differential operator in 0, are called evolutionary
equations. In principle, solving non-linear equations like (1.1.1) can prove very difficult and one
must often resort to numerical approximations. However, Gardner et al. [54, 55] provided a
method, known as inverse scattering, to solve the KdV equation by relating it to the Schrodinger
equation

(02 + 2u)w = k*w. (1.1.2)

1See [66] for a historical account.
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Understanding why this method works or, in a more precise language, why the KdV equation
is integrable, became a main focus of research. This culminated in the theory of integrable
hierarchies, largely due to Lax [78], Zakharov and Faddeev [127], Ablowitz et al. [1, 2] and the
Kyoto school led by Sato [105, 69].

In essence, the KdV equation is integrable because of its high degree of symmetry. Let us
try to understand what symmetry means in the context of evolutionary equations, and what
the relation between (1.1.1) and (1.1.2) is.?

Definition 1.1.1. We say that

us = K (u), (1.1.3)
is a symmetry of
u = K(u) (1.1.4)
if the flows 0/0t and 0/0s commute, i.e.,
0 J -
—K(u) = —K(u). 1.1.
I K(w) = 9 R (115)

Condition (1.1.5) is equivalent to the existence of a common solution u = u(z,t,s) to (1.1.3)
and (1.1.4) for any given initial condition ug = u(z,t = 0,s = 0). It turns out that the KdV
equation has infinitely many commuting® symmetries of ascending order

ut() = Uy, (116)
1
Ut1 = Uly + Eummma (117)
~ Lz, 4L . P (1.1.8)
Uty = U U + ZUallr + 5 Ulaae + 5 s, 1.

where we have identified ¢y = z, t; = ¢. The system of equations consisting of the KdV equation
and its commuting symmetries is called the Korteweg—de Vries (KdV) hierarchy.

Lax formulation of the KdV hierarchy

To encode all the equations of the KdV hierarchy, it is convenient to use Lax representation
[78]. For that, we need to introduce pseudodifferential operators, a generalization of differential
operators constructed by formally inverting the symbol 0,.

Definition 1.1.2. Let o € Z. A pseudodifferential operator of order « is a formal sum
X=> foe. (1.1.9)
=0

The set of pseudodifferential operators forms a ring with the composition rule

oo f = io (?) (& f) 007, (?) _nnzl. n=j+l) (1.1.10)

!

2We follow [92, 5, 34], mostly the latter.

3Not only symmetries of KdV, but also of one another. The KdV equation also has infinitely many non-
commuting symmetries, given by wvertex operators, infinitesimal transformations mapping one solution of the
hierarchy into another.
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defining the associative product. Given a pseudodifferential operator X (1.1.9), we define the
projections

Xp=>» fiod7,  X_=X-X,. (1.1.11)
7=0

Let L be a pseudodifferential operator of the form L = 0, + 372, f70,7 such that it squares
to the Schrodinger operator

L? = (02 + 2u). (1.1.12)

L is known as the Laz operator. It is important to note that its square L? appears on the
left-hand side of the Schrédinger equation (1.1.2), hence its name. Condition (1.1.12) determines
all the functions f!, f2,... in terms of u. Now it is possible to write down the KdV hierarchy
in Lax form.

Definition 1.1.3. The Korteweg—de Vries hierarchy is the following system of nonlinear evolu-
tionary PDEs:

ou 1 ,

— = ——[(L¥*"),, L? =0,1,... 1.1.13

8tj (2] + 1>”[< )+7 ]7 J L] ( )

It is possible to show that the flows 0/0t; and 0/0t; above commute for any k, j. As one can

expect, the first few equations coincide with the symmetries of the KdV equation (1.1.6)-(1.1.8).
Thanks to the Lax formulation, the relation between the KdV (1.1.1) and the Schrédinger
(1.1.2) equations because of which the KdV equation is solvable can be precisely established.

Proposition 1.1.4. The KdV hierarchy is the system of compatibility conditions of the linear
system

L*w = K*w, (1.1.14)
ow - 1 2j+1

Bi-Hamiltonian recursion

The Lax formulation is not the only way to realize the KdV hierarchy; its equations can also be
recast in Hamiltonian form.* Consider the pair of Poisson operators

1
P, =0, Py = 2u0, + uy + Zaﬁ. (1.1.16)

We say h = h(u; Uz, Uz, . .. ) is a Casimir of the Poisson operator P if P o % = 0, where the
variational derivative is defined as

o - 0
= > (=00 5 (1.1.17)
p=0 P

The function h_;(u) = u is a Casimir of P, but not of P, as P, o %(h,l) = u,. In this
situation, it is possible to apply a bi-Hamiltonian recursion algorithm [85] to define a family

4We follow the summary in [7]. For a rigorous approach to the Hamiltonian formalism of integrable systems,
we refer the reader to [4] for the finite-dimensional case, and to [46] and the references therein, in particular
[43], for the infinite-dimensional case. The following definitions have been adapted to simplify this introductory
exposition, and the general framework will be precisely established in Chapter 3.
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{hp(Ww; Uy, Uy, - .. ) }pso Of differential polynomials, i.e., polynomials in u and its derivatives, via
the formula

oh 1 0hy,_ 1
Plo—t = Ldney 1.1.18
1o ou  2p+1 2° ou ( )
For example, to obtain hgy, we have to solve
dhg
Op 0 — = Uy, 1.1.19
o~ =u ( )
so, up to a constant, which we always take to be 0 in this procedure,
dho
— = 1.1.20
511/ u7 ( )
and
1 1
ho = ~u* + — Uy, 1.1.21
Similarly, one obtains
1 1 1 1
hy = —u® + —utty, + —uZ + — 1.1.22
PR T e Tt Tt (1.1.22)
1 1 1 1 1 1 1
hy = —ut + — Py, + —uu’ + — —u, —u? 1.1.23
2= gq F gg et gt T gt T pgtetis T gt e (1123)
and, recursively, h, = h,(u;u, ..., ugpy2), allowing us to define an integrable hierarchy.

Definition 1.1.5. The KdV hierarchy in Hamiltonian form is the following system of PDEs

ou oh
— =0, 0 —2. 1.1.24
ot, ° su ( )
One can prove that the two formulations of the KdV hierarchy (1.1.13) and (1.1.24) coincide
indeed. Integrability of the KdV hierarchy, i.e., commutativity of the flows 0/0t, as in Definition
1.1.1, follows immediately from its bi-Hamiltonian formulation, see [85].

Remark 1.1.6. Note that 6% o6, = 0, so the function h, obtained from solving (1.1.18) is defined
up to a d,-exact term, which does not affect the equations of the hierarchy (1.1.24) nor the
recursive equations for hyiq, hyyo,.... Given a differential polynomial f = f(u;uy, sy, ... ),
denote by f the corresponding local functional, i.e, the class of f in the quotient space of
differential polynomials modulo constants and 0,-exact terms.

We call the local functionals Bp above Hamiltonians and their representatives h,, in the space
of differential polynomials, Hamiltonian densities.

Tau-function

When solving the bi-Hamiltonian recursion equations (1.1.18), we have made a particular choice
of Hamiltonian densities, which is not the most natural one, e.g. hg = su® solves (1.1.20) as
well and is simpler than (1.1.21). The reason behind this seemingly unnatural choice is that,
while the equations of the integrable hierarchy (1.1.24) depend only on the Hamiltonians h,,
there is a favored choice of Hamiltonian densities such that they satisfy tau-symmetry

Ohg—1  Ohyy
ot, oty

Vp,q=0,1,... (1.1.25)
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Tau-symmetry implies the existence of a family of differential polynomials in u, the tau-structure
or 2-point correlators €2, ,, defined by

0,0, = Mot

ToEp,q T at ? P,q
q

- Qq,pa Qp70 - hp—l- (1126)

They satisfy the following property: the functions

04

1.1.2
Y (1.1.27)

are invariant under any permutation of p, ¢, and r. Therefore, given a solution of the hierarchy,
the 2-point correlators €, , can be written as second derivatives of a function F' = F(ty,ts,...)

0*F

_ _ 1.1.28
PE o0t ( )

which is known as the (logarithm of the) tau-function.® Tau-functions depend on the solution of
the hierarchy u = u(z;ty,ts,...) through the relation

u = 0°F. (1.1.29)

There exists a particular solution, the topological solution u'*® = u'°P(x;t1,ts,...), determined
by the initial condition

ut(’p(x;tl =ty ="--- :0> =, (1130)

whose corresponding tau-function is the unique tau-function satisfying the string equation [119]

OF & OF 1
5 = > L] (1.1.31)
p=0 p

Remark 1.1.7 (Lax formulation). The Hamiltonian densities and 2-point correlators of the KdV
hierarchy can also be written in terms of the Lax operators. Namely®

1
byt = T e L, (1.1.32)
_ 1 2q+1 2p+1
aIprq - (2]? n 1)”<2q i 1)” ReSaw[(L ).,.,L ]7 (1'1'33)

where the residue of a pseudodifferential operator is defined as the coefficient of 9, 1.

1.1.2 Kadomtsev—Petviashvili hierarchy

The KdV hierarchy is embedded in a larger integrable system, called the Kadomtsev—Petviashuvili
(KP) hierarchy.

Definition 1.1.8. Let L = 0, + Y >, f/9,7 be the Lax operator. The Kadomtsev-Petviashvili
hierarchy in Lax form is given by
oL 1
= L™, L. 1.1.34

5Originally introduced in [106] as a way to systematically apply Hirota’s bilinearization method [63].
6See e.g. [7].
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Note that for a fixed m, (1.1.34) is an infinite system of equations in = and ¢, for the
dependent variables {f7},-;. Despite the existence of infinitely many dependent variables
compared to only one in the KdV hierarchy, they share multiple similarities:

e The KP hierarchy (1.1.34) is the system of compatibility conditions of the linear system

Lw = kw, (1.1.35)
ow 1 "
v (m+1>!(L L. (1.1.36)

e The KP hierarchy is bi-Hamiltonian, with Poisson operators [27]

n—1 m—1
(- —1
Prm= — ( , ”) frmlol 43 (mg )aﬁ o frim=t=t, (1.1.37)
£=0

£=0

ppr= N Km; 1) (;k) Frastt o f (1.1.38)

5,420 k>—1
s+4>m
st+t+k+L+1=n+m

B (m—j—l)(m—ﬁ;s—l)JMftka;]

n—1m—1 {—n m—1 n—{€as+4—1 m—s
—ZZ( ( )( s >f ool

(=1 s=1
where f~! =1 and f° = 0. In particular, it is integrable.

e The KP hierarchy is tau-symmetric, with the Hamiltonian densities given by

1
h, = ) Resy, L™ (1.1.39)

The Kadomtsev—Petviashvili equation

Although the KP hierarchy satisfies all desirable properties as seen above, the fact that for each
m, (1.1.34) is a system with infinitely many variables makes the study of the hierarchy much
more complex at the level of equations. However, it is possible to rewrite the KP hierarchy in a
more manageable way using the following result.

Proposition 1.1.9. The KP hierarchy (1.1.34) implies

O @My o (L) [y (L)
Oty (n+ 1)1 Ot (m +1)! (m+1!" (n+ 1)’

n,m=0,1,2,... (1.1.40)

Equations (1.1.40) are called Zakharov-Shabat equations [128]. For each pair n > m, (1.1.40)
is a closed system consisting of n equations in the dependent variables f!, f2,..., f*. There are
three independent variables, x, t,, and t,,; that is why integrable systems like the KP hierarchy
are often called 2+1 systems.

Example 1.1.10. Let n = 2, m = 1. Let us work out the corresponding Zakharov—Shabat
equations (1.1.40). First, we compute

L3 =02+ 2f, (1.1.41)
L3 =02+ 3f'0,+ (3f*+ f), (1.1.42)
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Thus, the equations are given by

1

Uy = _Eum + Vg, (1.1.44)
1 1 1 1 1
Uy F Glay = Ut = JVa0 = laws — 5 UL, (1.1.45)
where y = t;, t = to, u = f! and v = f2. Eliminating v yields
1 1 1 1
§Uyy = <U/t - §U'qu - ﬁuzxx + éugjy)m y (1146)

which is known as the Kadomtsev—Petviashvili (KP) equation.” Note that imposing u, = 0
yields the KdV equation (1.1.1), albeit with a different normalization, thus realizing the KP
equation as a generalization of KAV to two spatial dimensions.

Gelfand—Dickey hierarchies

In order to recover the KdV hierarchy (1.1.13) from KP (1.1.34), one must impose an extra
condition on the Lax operator

(L*)- =0, (1.1.47)

or, equivalently, require that L squares to the Schrodinger operator (1.1.12). In this case, it is
easy to see that all the functions f7 can be expressed in terms of the single dependent variable
u and that E?t—fn = 0 for m odd. After relabeling t5,, — t,,, we recover the KdV hierarchy.

Remark 1.1.11. The fact that this reduction from KP to KdV is allowed is far from trivial,
and it involves proving that the vector fields given by the flows 9/0t,, on the manifold of
pseudodifferential operators restrict to the submanifold defined by (1.1.47). Similarly, to show
that KdV inherits the bi-Hamiltonian structure, one must prove that this submanifold is a
Poisson submanifold with respect to both Poisson brackets.

This reduction from KP to KdV after imposing condition (1.1.47) motivates the following
definition

Definition 1.1.12. Let N > 2. The N-Gelfand—Dickey (GD) hierarchy is the reduction of the
KP hierarchy (1.1.34) given by the extra condition

(L™M)_ =o. (1.1.48)
Remark 1.1.13. Explicitly,
LN =0 4+ V720N 2 o uto, 1, (1.1.49)
and all the functions f7 of the Lax operator can be expressed in terms of the N — 1 dependent
variables v, u', ..., uVN "2,

As it was the case with the KdV hierarchy, the GD hierarchies are all tau-symmetric and
bi-Hamiltonian. The proofs are analogous to those explained in Remark 1.1.11.

"As it was the case with the KdV equation, the origins of the KP equation lie in Physics, where it was derived
[68] to model the propagation of shallow waves in two-dimensions. Thus, from the physical point of view it also
makes sense that it reduces to KdV when u, = 0.
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1.1.3 What is an integrable system?

After Section 1.1.1, we can affirm that the KdV hierarchy is a tau-symmetric bi-Hamiltonian
system of evolutionary PDEs. So are the GD hierarchies, and the KP hierarchy, with the caveat
that the latter is a 2 + 1 system.

However, it would not be adequate to define integrable systems as tau-symmetric bi-

Hamiltonian systems of evolutionary PDEs. For instance, it does not suit Burgers’ equation
[11]

Up = Uy + Ugy, (1.1.50)

which does not admit a Hamiltonian formulation. Another counterargument to this proposed
definition is the Camassa—Holm equation [24]

U + 2KUy — Ugpr + SUUE = 2UplUyy + Ullpyy, (1.1.51)

which is not evolutionary. Finally, consider the Toda lattice [116], a two-dimensional bi-
Hamiltonian integrable system whose first non-trivial pair of equations is

D= e—(q(n,t)—q(n—l,t)) o e—(Q(n+17t)_‘Z(”7t))’ (1152)

g = p- (1.1.53)

These are not PDEs, but differential-difference equations.
Bearing this in mind, the approach to integrable systems taken in this dissertation is based
on the properties of the examples considered here: all integrable hierarchies discussed in this

thesis are tau-symmetric and Hamiltonian, and most of them bi-Hamiltonian, so we will make
use of these structures to study them.®

1.2 Cohomological field theories

1.2.1 Moduli spaces of stable curves

In this section, we introduce the moduli spaces of stable curves without delving too deeply into
the geometric technicalities.® First, let us precisely define the geometric objects we want to
parameterize via moduli spaces.

Definition 1.2.1. Let g,n > 0 be such that 29 — 2+ n > 0. A stable curve of genus g with n
marked points is a tuple (C,z1, ..., z,), where:

1. C'is a complex, compact, algebraic curve of arithmetic genus g.
2. The only singularities of C' are simple nodes.
3. x1,...,x, € C are pairwise distinct and do not coincide with the nodes.

4. Let C4,...,C, be the connected components of the normalization!® of C, and let g
and n; denote the genus and the number of special points'! of C;, respectively. Then
2g; — 24+ mn; > 0 for all 7.

8See [102] for a very similar approach to integrable systems.

9We follow [131, 108].

10Defined as a possibly disconnected smooth curve v : C — C, where the morphism v is an isomorphism over
the smooth locus of C, and each node of C has exactly two preimages.

1 Marked points and preimages of nodes.
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Condition 4 is equivalent to stable curves having finite automorphism groups.'? Definition
1.2.1 comes with a natural notion of isomorphism, necessary for the construction of moduli
spaces. We say that two stable curves are isomorphic

(Cixy,y..yxn) ~ (Dyy1, .-y Yn) (1.2.1)

if there exists an isomorphism f : C' — D such that f(z;) = yx for all k. We denote the
equivalence class of (C,xy,...,2,) by [C,x1,...,2,].

Definition 1.2.2. Let g,n > 0 be such that 29 — 2+ n > 0. The moduli space of stable curves
of genus g with n marked points is defined as

Myn ={(Cyz1,...,2,)} ~. (1.2.2)

Definition 1.2.2 conceives the moduli spaces Hg,n merely as sets. However, they have a rich
algebro-geometric structure, evidenced by the proposition below.

Proposition 1.2.3 ([33, 74]). Let g,n > 0 be such that 2g —2+n > 0. The moduli space M,
is a proper smooth (3g — 2 + n)-dimensional Deligne—Mumford stack.

Remark 1.2.4 (On the definition and the geometry of M,.,).

1. The theory of Deligne-Mumford stacks or, in general, algebraic stacks is of little importance
to us. For this dissertation, we only need one fact: the moduli spaces M, ,, from the point
of view of intersection theory, behave as if they were compact, smooth algebraic varieties,
e.g., they have finite-dimensional cohomology rings which satisfy Poincaré duality.!3

2. It is possible to construct the moduli spaces of unstable curves MO,O? Mo,h MQ’Q, and Mm
as sets, analogously to Definition 1.2.2, but they cannot be realized as Deligne—-Mumford
stacks, as unstable curves have infinite automorphism groups.

3. The moduli space of smooth curves M, is an open dense subspace of ﬂgm. The space
oMy, = My, \ Mgy, is a codimension 1 subspace of My, called the boundary of M,
which parameterizes singular curves.

Dual graphs and stratification

To effectively work with stable curves and their moduli spaces, it is convenient to use stable
graphs, which provide a useful decomposition of the moduli space of curves.

Definition 1.2.5. A stable graph is a tuple I' = (V, H, E, L, 1, v, g) where
1. V. =V(I') is a finite set, the vertices of T',
2. H = H(T) is a finite set, the half-edges of T,

3. ¢: H— H is an involution,

W

. L = L(T"), the set of legs, consists of the fixed points of ¢,
5. E = E(I'), the set of edges, consists of pairs {hy, hy} of half-edges exchanged by ¢,

6. v: H — V associates to each h € H the vertex incident to h, v(h),

12Gee [52] for the proof.
13For the details, see [114].
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7. g:V — Zs¢ associates a genus g(v) to the vertex v,
8. the graph (V| F) is connected,

9. for any vertex v € V', the stability condition
2g(v) =2+ n(v) > 0, (1.2.3)
where n(v) = #H(v) for H(v) = {h € H| v(h) = v}, is satisfied.

Given a stable curve [C,x1,...,z,| € ﬂg,n, its dual graph T'¢ is a stable graph constructed
as follows:

e Each irreducible component C, of C' corresponds to a vertex v decorated by its geometric
genus.

e Each node connecting two irreducible components C, and C, corresponds to an edge
connecting v and w. Similarly, each nodal self-intersection of C, corresponds to an edge
connecting C, with itself.

e Each marked point z; € C, corresponds to a numbered leg attached to the vertex v.

The subset of M.,
Mr = {[C7x17'-'7xn] emg,n‘rczr}; (124)

consisting of stable curves whose dual graph is (isomorphic to)!* T is called I'-stratum. For

example, M, , is the /@\ -stratum. The decomposition
177

n

My =| M, (1.2.5)
T

where gamma runs through isomorphism classes of genus g stable graphs'® with n legs is called
stratification.

Example 1.2.6 (Explicit computation of some moduli spaces).

1. g = 0, n = 3. The only genus 0 Riemann surface up to isomorphism is the complex
projective line CP!. Its group of automorphisms is

PSL(2,C) = {A € My(C)|det A = 1} /{1, —1}, (1.2.6)

whose action on CP! is given by

a b az+b
(c d>z_cz+d' (1.2.7)

Then for any three distinct points 1, 22, z3 € CP! there exists a unique A € PSL(2,C)
such that Axy =0, Azy = 1, and Axz = co. Therefore,

M(),g = M073 = {[(CPI, 0, 1, OO]} = {point}. (1,2_8)

4 There is a precise notion of isomorphism of stable graphs, which effectively translates to: “two stable graphs
are isomorphic if and only if they are drawn the same”. In this thesis, graphs are never described by giving the
tuples (V, H,E, L,t,v,g), but are drawn instead, thus implicitly representing isomorphism classes.

"The genus of a stable graph is defined as g(T') = > .\, g(v) + 1 + #E — #V.
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2.9g=0,n=4. Let 1,29, 23,24 € CP'. After sending z;, x5 and 3 to 0, 1 and oo
via A € PSL(2,C) as before, the curve is completely determined by the point ¢t = Axy.
Therefore

Mo = {[CP',0,1,00,t]|t € CP*\ {0,1,00}} = CP' \ {0, 1, 00}. (1.2.9)

Its (Deligne-Mumford) compactification Mo 4 is obtained by adding the singular curves
appearing as the limits when ¢ — 0,1, 00

0 o0 1 o] 0 o)
000 . 00l . D000 (1.210)
Therefore,

My = CP. (1.2.11)

3. g =1, n=1. Recall that every elliptic curve E is isomorphic to the quotient of C by a
rank 2 lattice L, where the marked point of E is the image of 0 under the quotient map
C — E, and that E is isomorphic to E’ if and only if L = aL’ for some constant a € C*.
Here by rank 2 lattice we mean an additive subgroup L = aZ + bZ, where a,b € C span C
as a vector space over R. Therefore, M;; = {lattices}/C*. Let {\1, A2} be a basis of L
such that 7 = Ay/A; lies in the upper half-plane H. Multiplying L by 1/A; yields a lattice
with basis {1,7}, 7 € H. On the other hand, note that the changes of basis of lattices are
given by the matrix group SL(2,Z) = {A € My(Z)|det A = 1}. This group of changes of
basis, which naturally leaves lattices invariant, induces: a PSL(2,Z)-action on H given
by formula (1.2.7), and the involution of the elliptic curve, induced by the action of —1.
Therefore,

My = H/SL(2,Z). (1.2.12)

As in the previous example, in order to obtain Mm, we have to add the singular curve

1-00) (1.2.13)

to ./\/l171.16

Forgetful and gluing maps

Now that the moduli spaces of curves and their geometric structure are defined, let us define
the natural maps between them:

1. The forgetful map m: My pni1 — M, is defined as

([Cox1, .., T, Tny1]) = [Cra, .. 2], (1.2.14)
where the stabilization of a curve [C,x1,...,x,]* is defined by contracting the unstable
genus 0 irreducible components, i.e., the genus 0 components with less than 3 special

points.

2. The gluing map of separating kind p : My, pys1 X Mgy nyt1 — Mg, gpmiin, is defined by
identifying the marked points with numbers n; + 1 and ns + 1 into a node.

3. The gluing map of nonseparating kind o : My_1 12 — M, is defined by identifying the
marked points with numbers n + 1 and n + 2.

16See [60] for a detailed account of this example.
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1.2.2 Intersection theory

As stated before in Remark 1.2.4, the moduli spaces of stable curves have finite-dimensional
cohomology rings H*(M,,) = H*(M,,;Q). Since their structure can be very complicated,
especially for high genera, it is convenient to study simpler subrings that contain the most
important cohomology classes, for instance, those arising as Chern classes of natural vector
bundles on M, ,, or the fundamental classes corresponding to stable graphs.

Definition 1.2.7. The minimal family of subalgebras RH*(M,,,) C H*(M,,) stable under
push-forwards of 7, p and o is called the family of tautological rings of the moduli spaces of
stable curves. The m-th tautological ring is RH™(M,,) = RH*(M,,) N H*™(M,,,).

By definition, the tautological ring must contain 1 = [M,,,] € H°(M,,), since it is a subring.
As an immediate consequence, the classes represented by boundary strata [Mr] € HAEMI(M, )
also lie in the tautological ring, as they are the images of 1 under the pushforwards with respect
to the gluing maps. Let us now define some cohomology classes coming from vector bundles on

M,

Definition 1.2.8. For i = 1,...,n, let L; — ﬂgm denote the cotangent line bundle, whose
fiber over a point'” [C,x1,...,x,] € M,, is the cotangent space of C' at ;. The v-classes are
defined as the first Chern classes of L;,

Vi = c1(L;) € HA(M,,,). (1.2.15)
For m > 0, the m-th k-class is defined by
Km = T (YH) € H*™(M,,,). (1.2.16)

Let A — Mg,n denote the Hodge bundle, a rank g vector bundle whose fiber over a point!”
[C,xy,...,1,] € M, is the space of meromorphic differentials of C' which have at most simple
poles with opposite residues on the two branches at each node and are holomorphic everywhere
else.!® For i =1,..., ¢, the i-th \-class is defined as the i-th Chern class of A

Ai = ci(A) € H(M,.,). (1.2.17)

These classes can be combined together with the strata into decorated stratum classes. Let
us show how to construct them. Let I" be a genus g stable graph with n marked points, and let

&0 ([Co, (qn)nemw)])oevr) € H 0 [Cop1y . pa) € My (1.2.18)

veV (T

be its associated gluing map, where the curve C'is obtained by gluing all pairs of points {qn,, qn, }
corresponding to the same edge of T', i.e., {hy, ho} € E(T), and the marked points p; are the
numbered images under & of the points g, corresponding to the legs, i.e., g, with h € L(T).

Definition 1.2.9. Let I' be a stable graph. A decoration on I' is a class

H mo, € H ([ My (1.2.19)

veV(T veV(T)

7Tt is not enough to know the fibers at every point to fully describe a vector bundle. However, the definition
of IL; requires some algebro-geometric constructions involving the universal curve of ﬂg’n beyond the scope of
this thesis. The same applies to A.

8For each irreducible component of g, the residues of a meromorphic form must add to zero, so there are less
degrees of freedom than nodes for the possible singularities. In particular, if the dual graph of C is a tree, the
fiber of A at C consists of holomorphic differentials.
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where 7, : HweV(F) Mg(w),n(w) — /Vg(v),n(v) denotes the projection and a, € H*(/Vg(v),n(v)) is a
monomial in ¢ and k-classes.
The decorated stratum class [T, o is defined as the pushforward

T, o) = (&) € H*(M,,), (1.2.20)
where « is a decoration on I'.

From the previous definition, it is clear that if the 1) and x-classes are tautological, so will
the decorated stratum classes. The next proposition guarantees this.

Proposition 1.2.10. The v, k and A-classes are tautological, i.e., V;, ki, \i € RH*(Myg,,).
Moreover, RH*(M,,) is finitely generated by the decorated stratum classes [T, ] as a Q-vector
space.

Despite all these natural classes lying in RH*(M,,,), the equality RH*(M,,,) = H*(M,..),
which is true for g = 0 [72], does not hold in general. In fact, it is already false for g = 1,
as tautological classes only exist in even degrees and H''(M ;) = Q (see [58]). The weaker
statement of all cohomological classes in even degrees being tautological, which is true for
g = 1 [98], was proved not to hold in higher genera in [58] via an explicit counterexample
in the cohomology group H 22<M2720>. However, as this paper evidences, constructions of

non-tautological cohomology classes are quite involved.

Double ramification cycles

Other important cohomology classes are double ramification cycles. Let us recall their definition.'

Let ay,...,a, be integers such that >, a; = 0, and let ny, ng, and n_ denote the number of
positive, zero, and negative a;’s, respectively. The positive and negative a;’s define partitions
f=(p1,. .. pn,) and v = (1,...,v,_) of the same integer d = 3 3" |a;|. Consider the moduli
space

~

Mg;ah.--,an =M

97”07%”(

CP',0, c0) (1.2.21)

of degree d rubber holomorphic maps f : C — CP!, where C is a stable curve of genus g with
no marked points and f has ramification profiles 1 and v above 0 and oo, respectively. Here
rubber means we factor out the C*-action on CP!. There is a forgetful map

P Mgay...an — Mg, (1.2.22)
defined by taking preimages at 0 and oo
P([f : (Crar, s ag) = CPY) = [Cuny g (O} AF (00} (1.2.23)

Definition 1.2.11. The Poincaré¢ dual of the push-forward under p of the virtual funda-
mental class (M., o, ]""" is called double ramification cycle or DR-cycle and denoted by

DR,(a1,...,an).

Proposition 1.2.12 ([50]). DR,(ay,...,a,) € RHI(M,,).

19We follow [23].
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Tautological relations

Proposition 1.2.10 gives a set of generators for RH*(M,,,). In order to know its algebraic
structure, it is also necessary to know its relations, called tautological relations, whose study and
derivation constitute a prominent research direction. One important application of tautological
relations is computing intersection numbers, as the following example demonstrates.

Example 1.2.13. Let i,j,k € {1,...,n} be pairwise distinct, and let J;;x be the divisor of
M, ,, consisting of stable genus 0 curves with a node separating the i-th marked point from the
j-th and k-th marked points. An example of tautological relation is

Vi = [0;56] € RH' (Mo, (1.2.24)

for any 7, k. For n = 4 it takes the form

U1 = [O1j3) = { }eRHl(MoA), (1.2.25)

allowing us to compute the intersection number

P = 1. (1.2.26)
Mo4

Partition function

Let us now compute another intersection number, namely

/ K3, (1.2.27)
ﬂo,s

Recall the projection formula?® for a proper morphism of smooth varieties f : X — Y

/X af*(8) = /Y fu(@)B, (1.2.28)

and the pullback formulas for x and -classes

T Ky = K — U (1.2.29)
TP =" + (= [6ina])™, (1.2.30)

where 0; ,,41 is the divisor of mgmﬂ consisting of stable curves containing a g = 0 irreducible
component with exactly three special points: a node and the i-th and (n + 1)-th marked points.
We have

[ow= [ we-va= [ e[ w (1231

Mo,e Mo,z Mo,e

where we have used v¢7[0; 7] = 0. Using (1.2.24) as in Example 1.2.13, we can conclude

/ K] = 5. (1.2.32)
Mo

It turns out the procedure to obtain (1.2.31) generalizes: given any polynomial @ in k-classes, we
can apply (1.2.28), (1.2.29) and (1.2.30) to rewrite the integral fM @ as a linear combination
of intersection numbers of products of ¢-classes. Thus, it is posmble to encode the intersection
theory of the tautological rings, which by Proposition 1.2.10 are generated by strata decorated
by 1 and k-classes, in terms of integrals of v-classes. This motivates the following definition

208ee [53].
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Definition 1.2.14. The Witten—Kontsevich partition function is a formal power series in the
variables {t;}q=0 given by

FW(ty,ty,...) = Z Y HTd thz, (1.2.33)

g,n=0 dl, Ldn>=>0 i=1
2g—24n>0

where the correlation functions are defined by

S / H¢ (1.2.34)

9"1 1

1.2.3 Cohomological field theories

The Witten-Kontsevich partition function is not the only way to encode the intersection theory
of M, .. In fact, its construction can be generalized by considering correlation functions resulting
from the integration of other cohomology classes. Cohomological field theories (CohFTs)?! are
coherent choices of classes in the cohomology rings H *(mgm) compatible with the forgetful and
gluing maps.

Definition 1.2.15 (CohFT). Let V be an N-dimensional vector space over C equipped with a
scalar product (-, -). Choose a basis {e,...,ex} of V, and let 1,5 = (eq, €5), with inverse 7.
A cohomological field theory with unit ey is a collection of linear homomorphisms

Com VI = H* (Myn;C),  29—2+n>0 (1.2.35)
such that

® ¢,, is S,-equivariant, where S, acts on V®" by permutation of the factors and on
H* (/\/lg,n; (C) by permutation of the marked points.

e For any gluing map p: My, n,41 X Mg, o1 — Mg, 4gonitn0s

P C1tgamitne (V1 @+ @ Uy ipy) = (1.2.36)
Cghnl-&-l(vl X QUpy @ ea)naﬁcm,nz-ﬁ-l(vnl—&-l @ QUpy @ 6/5’)'

e For any gluing map o : M, 1,12 — Mgy,,

0 Cgn(V1 @ - Q) = Cyoini2(V1 ® - @V, Veg ® eﬁ)no‘ﬁ. (1.2.37)

e For any forgetful map  : Mg,nﬂ — Mgm,

7T*cg7n(1)1 R ® Un) = Cg,n-l—l(vl R ® Up, ® 61) (1.2.38)

® 6073(1)1 X (%) 0% 61) = (’Ul,Ug)

We associate to a CohFT {c,,} a formal power series in the variables {tfj}}éggN . First,
define the correlation functions as

) XN B aS) | g2 (1.2:39

Myg,n i=1

ntroduced by Kontsevich and Manin in [76].
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Define the (logarithm of the) partition function as

PN r,  Be= Y % S ([raleads [Tt (1.2.40)
=1

g=0 n>0 T 1<on, . om <N i=1
2g—2+n>0 dy,...,dn>0

where € is a formal parameter to keep track of the genus.
Example 1.2.16.

1. Let V' be 1-dimensional. The expression ¢;,, = 1 defines a CohFT, called the trivial
CohFT. Its associated partition function is the Witten—Kontsevich one (1.2.33).

2. Let r € Zso, and let V' be the C-span of {eg, ..., e, o} endowed with the scalar product
(€ar€s) = Outpr. Witten’s r-spin CohFT** W,, is the unique CohFT with unit eq
satisfying the initial conditions

WO73(€0J €b, ec) = 5a+b+c,r—27 (1241)

! [point]. (1.2.42)

W0,4(€1, €1, €r—2, 67«72) = ;

Note Witten’s 2-spin CohF'T is the trivial one.

1.3 Frobenius manifolds

1.3.1 From WDVYV to Frobenius manifolds.

Frobenius manifolds, also known as Dubrovin-Frobenius manifolds, were originally introduced
by Dubrovin [37, 38] as a way to study the Witten—Dijkgraaf—Verlinde—Verlinde (WDVV)
associativity equations [118; 35] in a coordinate-free way. Besides two-dimensional topological
field theory, from where the WDVV equations originate, the geometry of Frobenius manifolds
underlies many mathematical structures: integrable systems and CohFTs are the two cases
treated in this thesis, but there are many more. For instance, in the survey [87], Manin studies
and compares Frobenius manifolds arising from quantum cohomology [86], Saito’s singularity
theory [103, 104] and mirror symmetry of Calabi—Yau 3-folds [120].

Before giving a formal definition of Frobenius manifolds and studying their main properties,
let us recall the WDVV equations: we look for a function F(t) = F(¢!,...,t"), a constant
symmetric non-degenerate matrix 7*?, and numbers qi, ..., ¢n,71,...,7n,d such that

PF(t) ,, PF(t) PE(t) OE(t)

= A WDVV1
DDPO " Do ot PO oot ote ( )

for any «, 8,7v,0 = 1,...,n. In other words, the functions

PR
Y — A= 7N
casl) =" 5 g am

(1.3.1)

are the structure constants of an associative commutative algebra A, for all ¢. F'(t) must also
satisfy

PE(t)
oreowror 1
22For more details, see [122] for Witten’s original construction in terms of intersection theory of the moduli

1/r

g,n>

(WDVV?2)

spaces of r-spin curves M and [97] and the references therein for the modern formulation of Wy ,, as a

CohFT.
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where 7,5 is the inverse matrix of 7*?. Equation (WDVV2) implies the algebras A; have a
t-independent unit e = 9/dt'. Finally, let us introduce the Fuler vector field

E=> [(1—qu)t"+ ra]%. (1.3.2)

We require the function F(t) to satisfy the (quasi)homogeneity condition
LpF(t) = (3—d)F(t) + %Aaﬁt%ﬁ + Bot® + C, (WDVV3)
for some constants A,s, By, C. The numbers g,, 7, must satisfy the normalization condition
g1 =0, ro # 0 only if ¢, = 1. (1.3.3)

The implicit geometric structure of a solution to the system (WDVV1)-(WDVV3) is captured
in the definition of Frobenius manifolds, which we recall below.?

Definition 1.3.1. A Frobenius algebra is a pair (A, { , )), where A is a commutative associative
unital algebra (over C), and ( , ) is a symmetric, non-degenerate bilinear form on A satisfying
the wnvariance condition

(a-b,c)={a,b-c) (1.3.4)
for any a,b,c € A.

Definition 1.3.2. A (smooth, analytic) Frobenius structure of charge d on the manifold M is
a structure of Frobenius algebra on the tangent spaces T, M = (A, (, )) depending (smoothly,
analytically) on the point ¢ € M and satisfying the following axioms

FM1. The (not necessarily positive definite) metric on M induced by the invariant bilinear
form (, ) is flat. Let V be the corresponding Levi-Civita connection. The unit vector
field e must be flat, i.e.,

Ve = 0. (1.3.5)

FM2. Let ¢ be the symmetric trilinear form on T'M
c(x,y,z) = (x-y,2). (1.3.6)
The 4-tensor
(Vuwe)(z,y, 2) (1.3.7)
must be symmetric in (z,y, z, w).

FM3. A linear vector field £ must be fixed on M, i.e.,

VVE =0, (1.3.8)

such that
B,z -yl —[E,a]l-y—a-[Eyl =z-y, (1.3.9)
E{z,y) —([E,z],y) — (=, [E,y]) = (2 = d){z,y). (1.3.10)

23The rest of this section follows [39, 40, 46]. Other excellent references on the theory of Frobenius manifolds
are [41, 64, 86].
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The correspondence between solutions of the WDVV equations and Frobenius manifolds is
made rigorous in the following lemma.

Lemma 1.3.3 ([40]). Locally a Frobenius manifold with diagonalizable VE is described by an
analytic solution of WDV'V and vice versa.

As a consequence of the lemma above, we will often make no distinction between solutions
of the WDVV equations and (local charts of) Frobenius manifolds. Under this correspondence,
we call the function F(t) satisfying the WDVV system (WDVV1)-(WDVV3) the (pre)potential
of the corresponding Frobenius manifold. It can be computed as follows: first, choose a local
system of flat coordinates (¢!,..., ") with respect to the metric (, ) with 9/9t' = e, and let

0
Nap = <aaa8/5> ) Oo = %

be the corresponding constant Gram matrix. The existence of such a system is guaranteed by
axiom FM1. Second, compute the structure constants

Clﬂ(t) = 777)\ <a)\ : acw 8,3> ) (1312)

(1.3.11)

which, by axiom FMZ2, can be represented as third derivatives of a function F'(¢) as in (1.3.1).
This function is the prepotential of the Frobenius manifold M. Observe that neither the flat
coordinates nor the prepotential are unique. Throughout this section, given a Frobenius manifold
M, we will use the standard notations %, 0y, a3, clﬁ and F' as introduced above.

An important property of Frobenius manifolds, which is required for the correspondences
shown in Sections 1.5 and 1.6 to work, is semisimplicity.

Definition 1.3.4. Let M be a Frobenius manifold. A point ¢t € M is called semisimple if the
algebra T; M is semisimple, i.e., if it has no nilpotents.

Unless stated otherwise, all Frobenius manifolds considered in this thesis are semisimple,
i.e., a generic point t € M is semisimple.
1.3.2 Differential geometry of Frobenius manifolds

Frobenius manifolds have a very rich geometry, which we recall in this section.

The second metric

Let M be a Frobenius manifold. The second metric on T'M is defined as follows: let n, : TM —
T*M be the isomorphism induced by the metric ( , ), which in turn induces the product

whw® =0 (w') -t (w?)) (1.3.13)
for w!, w? € T*M, where n* = (1,)~!. This lets us define the intersection form
(Whw?) = ig(w' - w?) (1.3.14)

on T*M, where ip is the contraction with the Euler vector field . The components of the
intersection form in the flat coordinates t“ are given by

g (t) = (dt®, dt”) = EMt)SP (1), (1.3.15)

where E*(t) are the components of the Euler vector field. Note g*?(¢) is not constant. On the
open subset of M where ¢*? is non-degenerate, the intersection form defines a second metric
on TM, given by the inverse matrix (g.5) = (¢**)~'. One can check this new metric ( , ) is
related to (, ) by the formula

(E - u,v) = (u,v). (1.3.16)
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Proposition 1.3.5 ([39]). The second contravariant metric g°° of a Frobenius manifold is flat.
Furthermore, the pair of metrics n°?, g®® of a Frobenius manifold forms a flat pencil, i.e., the
metric

n*? + Ag*? (1.3.17)
1s flat for arbitrary A\, and its Christoffel symbols are given by

I+ ALY (1.3.18)

2>

where F?,f and F%ﬁ are the Christoffel symbols of n and g, respectively.

Canonical coordinates

Besides the flat coordinates ¢, which make the Gram matrix 7,4 of the metric (, ) constant,
there is another special set of coordinates whose coordinate vector fields are the idempotents of
the algebras T; M.

n

Lemma 1.3.6 ([39]). In the semisimple case, there exist local coordinates u', ..., u™, unique up
to permutation, such that
g 0 0
out  Ou’ T Oul ( )
We call ', ..., u" canonical coordinates.

It is immediate from the definition that both metrics take a diagonal form in the canonical
coordinates. The following proposition shows the close relation between the canonical coordinates
and the Euler vector field.

Proposition 1.3.7 ([39]). Let U : TM — TM denote the operator of multiplication by the
Euler vector field, i.e.,

Uz)=E -z (1.3.20)

The eigenvalues of U coincide with the canonical coordinates.

Deformed flat connection

Another important geometric structure of Frobenius manifolds is the deformed flat connection,
whose flatness is roughly equivalent to the axioms of Frobenius manifolds.

Definition 1.3.8. Let M be a Frobenius manifold. The deformed flat connection on M x C*
is defined by

V.y=V,y+zx -y, (1.3.21)
~ 1
Vdiy =0,y +Uy — ;Vy, (1.3.22)
~ d =~ d
i — = 1.3.2
“dz Vi dz 0 (1.3.23)

for any x,y € TM, z € C*, where V is the grading operator, defined as

V= Z%d — VE. (1.3.24)
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Definition 1.3.8 induces a connection on the cotangent space, also denoted by V. A function
f(t; z) defined on a domain in M x C* is called deformed flat if its differential is horizontal with
respect to %, ie., §~df =0.

The flatness of V is equivalent to the existence of n independent deformed flat functions,
called deformed flat coordinates. To compute them, let

€ =&t +0 dz (1.3.25)

be horizontal with respect to V. One can show the functions &, satisfy the Dubrovin equations

Oap = 2¢) 58, (1.3.26)
1
0,85 = (L{g + ;Vg) &y, (1.3.27)
for all o, 8 = 1,...,n. The study of the Dubrovin equations and their solutions is one of

the main topics in Frobenius manifolds theory.?* Although we will not delve deeper in this
introduction, let the following proposition show how important understanding the Dubrovin
equations is

Proposition 1.3.9 ([39]). Compatibility of the Dubrovin equations is equivalent to WDV'V.

1.3.3 A, Frobenius manifold and superpotentials

Let us conclude this section by presenting an important class of examples, whose generalization
to infinite-dimensional Frobenius manifolds will be studied in Chapter 5.
Let M be the space of all polynomials of the form

M={\p)=p"" +ap" '+ +a] ay...,a, € C}. (1.3.28)
We identify the tangent space of M with the algebra of truncated polynomials via the isomorphism

ThM = C[p] /(N (p)) (1.3.29)
9+ d(A(p))

The bilinear form is defined by the residue formula

: O(A(p)dp) ' (A(p)dp)
= _ 1.3.
(0,0 = Respeoo ) , (1.3.30)
whose invariance is clear from
O(Ap)dp) &' (A(p)dp) 0" (A(p)dp)
/oar
(0-0,0")x = Respeno dpd\(p) : (1.3.31)
The unit vector field e and the Euler vector field E are given by
0 1O o)
_ 7 E = — 7+ 1Da; —. 1.3.32
€= u n+1;(n i+Daig (1.3.32)
The second metric is given by
1 (1
(9, — Res,o. O(log A(p)dp) 9'(log A(p)dp) (13.33)

dlog A(p)

24See e.g. [59] and the references therein.
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Let ¢%, ..., q" be the critical points of A(p), i.e., N'(¢?) = 0. Then the critical values u’ = \(¢’)
define local canonical coordinates on M near the points where A(p) has no multiple roots.
The flat coordinates for the metric ( , ) are given by the residue formulas

n + 1 n—a+1
—m Resp:oo A il (p)dp (1334)

1o =

The construction above, known as the A,, Frobenius manifold, generalizes from polynomials
to rational functions [45, 26] and to even more general functions, known as Landau-Ginzburg
superpotentials [39, 40, 47].

1.4 Integrable systems and CohFT's

1.4.1 The Witten—Kontsevich theorem

The first link between the apparently unconnected realms of integrable systems and moduli spaces
of curves was conjectured by Witten [119] and proved by Kontsevich [75]. The breakthrough
theorem reads

Theorem 1.4.1. The Witten—Kontsevich partition function (1.2.33) is the string tau-function
of the KdV hierarchy (1.1.24).

Kontsevich proved this theorem using the Strebel-Penner ribbon graph model of the moduli
spaces of curves, and later on more proofs have appeared. Mirzakhani [91] used symplectic
reduction for the Weil-Peterson volumes of the moduli spaces, and Okounkov and Pandhari-
pande [96] and Kazarian and Lando [71] used the ELSV formula, which connects intersection
theory and Hurwitz numbers. There are more papers where the Witten—Kontsevich theorem
is proved (see e. g. [95, 93, 70, 73, 30, 121]), but on the geometric side they all use one of the
ideas mentioned above: the Strebel-Penner ribbon graph model, symplectic reduction, or the
ELSV formula for Hurwitz numbers. Chapter 2 provides a new proof based on the geometry of
double ramification cycles.

1.4.2 Generalizations

The connections between CohFTs and integrable systems are not limited to the Witten—
Kontsevich theorem, which relates the simplest CohF'T, the trivial one, to the simplest integrable
system, the KdV hierarchy. One generalization is Witten’s r-spin conjecture, proposed by Witten
[122] and proved by Faber, Shadrin and Zvonkhine [51]. It reads

Theorem 1.4.2. The partition function associated with Witten’s r-spin CohF'T is the string
tau-function of the r-GD hierarchy.?

More generally, there are two constructions that associate an integrable system to a given
CohFT. The first one, which can be applied under the semisimplicity?® assumption, is the
Buryak—Posthuma—Shadrin realization [17, 18] of the Dubrovin—Zhang (DZ) hierarchy [46], a
tau-symmetric Hamiltonian integrable system whose string tau-function is the partition function
of the CohFT. It will be studied in full detail in Chapter 3.

The second one, even more general as it does not require semisimplicity, is the double ramifi-
cation (DR) hierarchy [12], a Hamiltonian, tau-symmetric integrable system. It is conjectured

25 After some rescaling of the times.
26 A CohFT is semisimple if its underlying (non-conformal) formal Frobenius manifold is semisimple at the
origin, see Section 1.6.
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in [14] that, for a semisimple CohFT, the DR and DZ hierarchies are related by a change of
variables called Miura transformation. This conjecture has been reduced in [16] to proving a
system of tautological relations, the simplest of which will be refined and tested against a variety
of natural properties in Chapter 4.

1.5 Integrable systems and Frobenius manifolds

Let us try to sketch the close relation between integrable systems and Frobenius manifolds.?”

From integrable systems to Frobenius manifolds

Given a tau-symmetric bi-Hamiltonian integrable system, consider its dispersionless limit,
obtained by setting the higher derivatives of the dependent variables u2 ,u% ... to zero. The

xx) Trer) ”

resulting system is also tau-symmetric, bi-Hamiltonian, and can be written as

% ay 0hs.q
ots

= 1.5.1
/’7 81'0 5/1,67 ) ( 5 )

where hg,, are the dispersionless limits of the Hamiltonians of the original hierarchy. Consider
the two-point correlators €2, p.5.,(u), defined by

Ohop-1
ots

&EQ&,p;ﬂ,q = ) Qa,p;ﬁ,q = Qﬁ,q;a,pv Qa,p;l,o = ha,p—l- (1-5-2)

For p = ¢ = 0 they can be recast as the second derivatives of a function F'(u)

0*F(u
QQ,O?[?%O(U’) = auofuﬁ)7 (153)

which satisfies (WDVV1) and (WDVV2). In order to construct the Euler vector field, consider
the second Poisson operator, which can be written as [43]

g*P0, + 200, (1.5.4)

with det g®® # 0. The components E* of the Euler vector field £ = E“% can be uniquely
determined from the expression
PF

af _ pavpfv pu )
g e ourouYouv

(1.5.5)

With respect to this E, F' satisfies (WDVV3).

Example 1.5.1. Starting with the KdV hierarchy (1.1.13), we obtain the 1-dimensional Frobe-
nius manifold, given by the potential F'(u) = u?/6.

From Frobenius manifolds to integrable systems

Let M be a Frobenius manifold with local flat coordinates u®. By the results of Section 1.3, it
is equipped with a pencil of flat metrics n*? 4+ A\g®®. This defines a pair of compatible Poisson
operators of hydrodynamic type by the formulas

P =0, P’ =g*0, + T, (1.5.6)

27See [39, 46] for the details.



1.6. Frobenius manifolds and CohFTs 23

where F;‘B are the Christoffel symbols of ¢g*?. As it was done in Section 1.1.1, starting from the
Casimirs h,, 1 = 1,,u”, we can apply a bi-Hamiltonian recursion algorithm to obtain a series of
Hamiltonians {%, 4} >0, which define a Hamiltonian hierarchy, called principal hierarchy

ou® ay 5%[3 q
— = —. 1.5.7
atqg 1 Su ( )
Example 1.5.2. Starting from the 1-dimensional Frobenius manifold given by the potential
F(t) = t3/6, the above procedure yields the Riemann hierarchy

1

2
Uty = Uy, Uy = Ulg, Up, = §u Ug, . .. (1.5.8)

which is the dispersionless limit of the KdV hierarchy (1.1.24).

Remark 1.5.3. These two processes are not inverses of one another. In fact, the actual corre-
spondence is between Frobenius manifolds and dispersionless tau-symmetric bi-Hamiltonian
hierarchies?®, so any two integrable systems with the same dispersionless limit will have the
same underlying Frobenius manifold.

Obtaining a dispersive hierarchy as a suitable? deformation of a dispersionless one, e.g. KdV
from Riemann, is a much more involved process. In Chapter 3, we will study a tau-symmetric,
Hamiltonian, and conjecturally®® bi-Hamiltonian deformation of the principal hierarchy of a
Frobenius manifold: the Dubrovin-Zhang hierarchy [46].

1.6 Frobenius manifolds and CohFTs

In view of Sections 1.4 and 1.5, it should now be evident that Frobenius manifolds and CohFT's
are closely connected. This connection was made explicit by Teleman [115] using Givental’s
group action [57]. In non-technical language, the Givental-Teleman classification theorem
reads: “Semisimple, conformal CohF'Ts are equivalent to local charts of Frobenius manifolds at
a semisimple point”. Without reproducing the proof nor defining the concept of equivalence
above in full detail, let us briefly examine the main ideas behind this correspondence.

From CohFTs to Frobenius manifolds

Let ¢y, be a CohFT and let F' = F(t5;€) be its partition function. First, set the higher genera
components to zero; second, keep only those correlation functions without ¢-classes. In other
words, consider the function

FFrob — F(]

3020 = Flemtg, . (1.6

Then F'°P is a formal power series in the variables t* = t§ satisfying (WDVV1) and (WDVV?2),
thus defining a non-conformal Frobenius structure, i.e., a Frobenius manifold without an Euler
vector field. Furthermore, it is a formal Frobenius manifold, as the potential F™°P is not in
general an analytic function.

Conformality of the CohFT, roughly speaking (see Chapter 3 for the precise formulation), is
equivalent to the existence of a linear vector field E on the big phase space, i.e., in the coordinates

28More precisely, a Frobenius manifold together with a Legendre transformation is equivalent to a dispersionless
flat exact bi-Hamiltonian structure. The choice of calibration of the Frobenius manifold corresponds to the
tau-structure. See [42] for the details.

29Preserving desirable properties like tau-symmetry or bi-Hamiltonian structure.

30Tt has been recently proved in [80]. However, this article came after the results of Chapter 3, which will be
presented as originally intended: strong evidence to support this conjecture.
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ty for all p > 0, and a constant d such that EF = (3—d)F up to quadratic terms. This condition,
when substituting e = 2, = 0, implies (WDVV3) for F*°" with respect to the Euler vector

field £ = E|—e o

From Frobenius manifolds to CohFTs

Recovering a CohFT from its underlying Frobenius manifold is a much more complicated
procedure, beyond the scope of this thesis. We refer the reader to the original works of Givental
and Teleman [57, 115], where they reconstruct the CohFT from a Frobenius manifold invariant
called the R-matriz.

1.7 Outline and originality

This dissertation is organized in the following way:

Chapter 2 (based on [132]): We identify the formulas of Buryak and Okounkov for the
n-point functions of the intersection numbers of 1)-classes on the moduli spaces of curves. This
allows us to combine the earlier known results and this one into a principally new proof of
the famous Witten-Kontsevich theorem, where the link between intersection theory of moduli
spaces and integrable systems is established via the geometry of double ramification cycles.

Chapter 3 (based on [135]): The Dubrovin—Zhang hierarchy is a Hamiltonian infinite-
dimensional integrable system associated with a semi-simple cohomological field theory or,
alternatively, with a semi-simple Dubrovin—Frobenius manifold. Under an extra assumption of
homogeneity, Dubrovin and Zhang conjectured that there exists a second Poisson bracket that
endows their hierarchy with a bi-Hamiltonian structure. More precisely, they gave a construction
for the second bracket, but the polynomiality of its coefficients in the dispersion parameter
expansion is yet to be proved. In this chapter, we use the bi-Hamiltonian recursion and a
set of relations in the tautological rings of the moduli spaces of curves derived by Liu and
Pandharipande in order to analyze the second Poisson bracket of Dubrovin and Zhang. We
give a new proof of a theorem of Dubrovin and Zhang that the coefficients of the dispersion
parameter expansion of the second bracket are rational functions with prescribed singularities.
We also prove that all terms in the expansion of the second bracket in the dispersion parameter
that cannot be realized by polynomials because they have negative degree do vanish, thus partly
confirming the conjecture of Dubrovin and Zhang.

Chapter 4 (based on [133]): We propose a conjectural formula for DR, (a, —a)A, and check
all its expected properties. This formula refines the one point case of a similar conjecture made
by Buryak, Guéré and Rossi, and we prove that the two conjectures are in fact equivalent,
though in a quite non-trivial way.

Chapter 5 (based on [134]): We study the Dubrovin equation of the infinite-dimensional
2D Toda Dubrovin—Frobenius manifold at its irregular singularity. We first revisit the definition
of the canonical coordinates, proving that they emerge naturally as generalized eigenvalues
of the operator of multiplication by the Euler vector field. We then show that the formal
solutions to the Dubrovin equation with exponential type behavior at the irregular singular
point are not uniquely determined by their leading order, but instead depend on an infinite
number of parameters, contrary to what happens in the finite-dimensional case. Next, we
obtain a large family of solutions to the Dubrovin equation given by integrals along the unit
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circle of certain combinations of the superpotentials. Observing that such a family is not
complete and has trivial monodromy, we study a larger family of weak solutions obtained via
Borel resummation of some distinguished formal solutions. These resummed solutions naturally
appear in monodromy-related pairs, finally allowing us to compute the infinite-dimensional
analogue of the Stokes matrices.

Chapters are self-contained and can be read independently. To each of the papers on which
this dissertation is based, all authors contributed equally.






Chapter 2

Buryak—Okounkov formula for the
n-point function and a new proof of the Witten
conjecture

2.1 Introduction

The symbol ([, 74,), denotes the intersection number fﬂ H?Zl wjj . It can be non-zero only
g,n

ifg>20,n>1,29g—2+n>0,dy,...,d, >0, and Z?Zldj :3g—3+n:dimﬂg7n. Witten
conjectured [119] that the generating function of these intersection numbers defined as

)

is the logarithm of the string tau-function of the Korteweg-de Vries (KdV) hierachy. It is easy
to prove it satisfies the string equation, see [119], so the main part of the conjecture is the
equations of the KdV hierarchy, first proved by Kontsevich in [75].

In this chapter we give a new proof of the Witten conjecture based on a completely
different geometric idea than any of the earlier existing proofs: the intersection theory of double
ramification cycles. More precisely, the full proof explained here consists of four big steps:

1. In [23] Buryak et al. fully described the intersection numbers of the monomials of psi-classes
with the double ramification cycles.

2. In [13] Buryak used the previous result and a relation between the double ramification
cycles and the fundamental cycles of the moduli spaces of curves to describe explicitly the

n-point function Fp = Fp(T1, .. ) = 300 2 ar a0l Licy 7,28, n > 1.

.....

3. In [95] Okounkov proved a different explicit formula for the n-point functions F,, and
he showed in Section 3 of op. cit. that the generating function of their coefficients is the
logarithm of the string tau-function of the KdV hierarchy.

4. In this chapter we identify Buryak’s and Okounkov’s formulas for the n-point function,
making the sequence [23] — [13] — the present chapter — [95, Section 3] a new proof of
the Witten conjecture.

Let us say a few words about the geometric techniques used in [23] and [13]. A double
ramification cycle DRy(a1, ..., a,), a; € Z, Y »_, a; = 0 is the class of a certain compactification
of the locus of the isomorphism classes of smooth curves with marked points [Cy, z1,...,2,] €
M, such that "7 | a;x; is the divisor of a meromorphic function C, — CP!, see Definition

27
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1.2.11. These cycles inherit rich geometry of the space of maps to CP! and this allows to
express the psi-classes restricted to these cycles in terms of the double ramification cycles of
smaller dimension, which is in principle enough to compute all intersection numbers of psi-classes
with the double ramification cycles. Next, observe that under the projection M, 1, — M,
that forgets g marked points the push-forward of a double ramification cycle is a multiple of
the fundamental cycle of M,,,. This relates the intersection numbers of psi-classes on double
ramification cycles to ([, 74,)4. There is, of course, a long way from these computational
ideas to the nice closed formulas derived in [23] and [13].

Let us stress that in the approach of [13, Section 3.2] it is sufficient to assume that all
weights of marked points in double ramification cycles are non-zero integers (for instance, assume
that all integer numbers chosen arbitrarily in the beginning of the argument of Buryak are
positive). This allows to use only part of the results of [23] that concerns the intersection
numbers of psi-classes with the double ramification cycles with only non-zero weights. This
part of the computation in [23] uses nothing but the factorization rules for psi-classes at the
points of non-zero weights on double ramification cycles, which work equally well for the double
ramification cycles defined via relative stable maps to CP! and the double ramification cycles of
admissible covers [65] (cf. a discussion in [23, Section 2.3]).

This idea of computation of the intersection numbers has been used in a number of earlier
papers, cf. [109, 110, 111, 112, 22], and these papers might serve a good source of examples
of particular computations. In particular, an explicit algorithm for the computation of all
intersection numbers ([}, 74,)4 is given in [113]. Exactly the same idea of computation of the
intersection numbers of 1-classes is proposed in [31, Section 9]. It is mentioned in [31, Section
1.3] that for further applications of these results a necessary first step is to give a new proof
of Witten’s conjecture [119] using the technique developed there. This is precisely what the
present chapter (combined with [23], [13], and [95]) does.

Finally, to conclude the introduction, let us mention that the n-point functions for the
intersection numbers of psi-classes have recently been studied from different points of view,
see [49, 79, 129, 7, 130, 9, 10, 3]. The comparison of different formulas and recursive relations
for their coefficients is very interesting and usually highly non-trivial, and this chapter can also
be considered as a step towards unification (see also [130]) of the variety of formulas for the
n-point functions.

2.1.1 Organization of the chapter

In Section 2.2 we recall the formulas of Buryak and Okounkov and some statements about these
formulas, and state our main results. In Section 2.3 we derive an equivalent form of the Buryak
formula. In Section 2.4 we prove that the principal terms in the Buryak and Okounkov formulas
coincide. In Section 2.5 we prove that all other terms, namely the diagonal terms needed for a
regularization of the principal ones, also coincide in the Buryak and Okounkov formulas.

2.2 Buryak and Okounkov formulas

In this section we recall the formulas for the n-point functions in [13] and [95]. It is convenient
to append the two unstable cases ¢ = 0 and n = 1,2 to the intersection numbers. Namely, let
<Zd1>0 lex‘fl>0 = 27? and <Zd1 dy>0 lexflrd2x§2>0 = (21 + x9)7!, and add these terms to F;

and JF», respectively.
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2.2.1 Formula of Buryak

Let ((z) := e"/? — ¢=%/2. Define the functions P,(a1,...,an;21,...,7,) by Pi(ar;2;) = xil and
for n > 2 we have

n—1 n—1 J J
I1 z-¢) 1:[ ¢ (Z Gr(k)) Tr(jp1) — Qr(j+1) (k; wT(k)))

P.(ay,...,an;x1,. .., 2,) = = =1 — =l
ey [ (@r(yTr(ia1) = r(rnTe(y)
J:
(2.2.1)
Though it is not obvious from the definition, P, is a formal power series in all its variables,
which is invariant with respect to the diagonal action of the symmetric group S, on (aq, ..., a,)
and (x1,...,x,), see [23, Remarks 1.5 and 1.6].
Define the function FBU = FBur(x;, ... z,) as the Gaussian integral
(Saas)’ /24 no_d
j=1%7 _ 4
FBU (2, ... 1) = S / [He *ida; | Py(iay, ... iap; 21, .., 2p)
<Zj:1 Ij) [Tj=y v/2ma; T2 i
Theorem 2.2.1 (Buryak [13]). For n > 1 we have F,, = F2'.
2.2.2 Formula of Okounkov
Define the function £(z1, ..., z,) as
(Z L ad)/12 n . . .
Elxr, . ) = el e Hdsj exp ( 8]+1 1 (81+83+1)m> :
where s,,; denotes s;. Then the function £°(zy, ..., x,) defined as

(90(371,...,33”) = Z g(xg(l),...,wg(n)>

Uesn/Zn
is invariant under the S,-action on (xy,...,x,).
Denote by II,, the set of all partitions of the set {1,...,n} into a disjoint union of unordered
nonempty subsets I_IJ I, forall £ =1,2...,n. Let x; = Zje[xj7 Ic{1,...,n}, I # @.

Define the function G(z1,...,x,) as

G(x1,...,x,) = Z (=) E ... 2,)

ui_ el
and the function Fok = FOX(xy, ..., x,) as
n/2
Ok _ _(2m) < 1 Tn )
]:n (.171, s 73371) = H?:l /_ij 21/37 """ 91/3 )¢

Theorem 2.2.2 (Okounkov [95]). The generating function of the coefficients of FOK, n > 1, is
the logarithm of the string tau-function of the KdV hierarchy.
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2.2.3 Main theorem

We are ready to state our main result.
Theorem 2.2.3. We have: F2U" = FO% n > 1.

The rest of the chapter is devoted to the proof of this theorem. An immediate corollary of
Theorems 2.2.1, 2.2.2, and 2.2.3 is the following;:

Corollary 2.2.4. The Witten conjecture is true, that is, the function exp(F') is the string
tau-function of the KdV hierarchy.

As explained in the introduction, the real importance of this new proof of the Witten
conjecture is that it uses a new way to relate the intersection theory of the moduli space of
curves to the theory of integrable hierarchies, based on the geometry of double ramification
cycles. Otherwise, though Theorem 2.2.3 is interesting by itself, the identity F, = F° has an
alternative proof in [95, Section 2].

2.3 Buryak formula revisited

Our first goal is to translate the cumbersome formula of Buryak into something more manageable.
Let wji, = (ajzr — apz;)/2 and wjy, = a;/z; — ag/xy.

Proposition 2.3.1. Forn > 1 we have:

| 1 exp (ZK]- wo(i)o(j)>
y Ip) = n n—1 :
[lm v S5 TS toteGe

P.(ay,...,ap;xq,. .. (2.3.1)

It is clearly true for n = 1 and we prove it below for n > 2. Now the function P, is manifestly
invariant with respect to the diagonal action of the symmetric group S, on (ay,...,a,) and

(T1,. .., Tp).
Corollary 2.3.2. We have:

3
1 n
51 (Z Ij)
e NI

Bur __
FoU =

n *%d exp (é > ik Qo(i)To(k) — aa(k)%(j)>
- He 7 aa; Z 1" (m _ aa(j+1)) '
: o€Sy j=1 T (5) ZTo(j41)

(2.3.2)

2.3.1 Proof of Proposition 2.3.1

Assume that n > 2. Expanding the definition of the function { allows us to rewrite Equa-
tion (2.2.1) for P, = P,(a1,...,an;%1,...,2,) as

1 (_1)|J| exp <Zz€[ Ze 1 Wr(o)r(i) — ZjEJ Zé: wT(f)T(j))
P, = T, Z Z . (2:3.3)

n—1
=Y o5 o= Hj:l Ur(5)7(j+1)
T(l):1 {2,,7’7,}
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Exponential terms in the numerators

In order to identify Equations (2.3.1) and (2.3.3), we consider for each particular fixed sequence
of signs sgn(w,s) = £1, r < s, all terms in Equations (2.3.1) and (2.3.3) where the numerator is
equal to exp(A), A=), _ sgn(w,s)w,,, and prove that the total coefficient of exp(A) coincides
in both formulas. The symbols w;;, 1 < 7, j < n, are understood in the rest of the proof as just
formal variables satisfying the relations w;; + w;; = 0.

Let [2,n] denote the set {2,...,n}. For 0 € S, and I U J = [2,n] we define

i—1 j—1
AT ;=30 ooty — D D Wet)oly)-

iel (=1 jeJ e=1

It is a convenient way to keep track of signs in the exponential terms in the numerators of (2.3.1)
and (2.3.3). It is easy to see that

e In Equation (2.3.1) the numerators are indexed by exp(A?, . ), for all o € S,;

[2,n],2

e In Equation (2.3.3) the numerators are indexed by exp(A7 ;), for all 7 € S, such that
7(1) =1 and for all 7 U J = [2,n].

Thus, we have to obtain a full description of all o, 7, and LI J as above such that exp(AfZ’nL@) =
exp(A7 ;).

Notation for the symmetric group

Decompose S, as S, 1 U(L5S,_1(1,4)), where S,,_1 C S,, denotes the subgroup of permutations
7 such that 7(1) = 1.

Denote by C,,, m > 2, the cyclic permutation (1,m,m — 1,...,2). Consider the subset
T C S, defined as T := {id} U (U7 {C, - Crm, | 2 < my < --- <m; < n}). The following
lemma implies that it is in fact a disjoint union.

Lemma 2.3.3. We have: TN S,_1 = {id}, and
TN(Sh1(1,2) ={Cpny - Cmy, | 2<my <---<my_y <n}, >2.

Proof. Observe that T'= (T'N S,—1) U (W57 N (S,-1(1,4))). Hence it is enough to show that
{id} € S,,—1 (which is obvious) and {C,, -+ - Cpp,, | 2<my < -+- <my—1 < n} C (Sp-1(1,17)),
1> 2.

The latter fact we can prove by induction. For ¢ = 2 we see that C,, = (2,m,m—1,...,3)(1,2).
Assume we know that for any 2 <my < --- < m;_1 < n the product Cy,, --- C,,,_, is equal to
7(1,4) for some 7 € S,,_1. Then for any 2 < m; < -+ < m; < n we have:

Cry o Cry =7(1,0)Cry, = 7(2,0,0— 1,...,3) (@ + L,my,my — 1,000+ 2)(1,i 4+ 1)

=7(1,i+ 1),
where 7/ € S, _1. Thus Cy,, -+ - Cpp, € Sp—1(1,0 4+ 1). O
Ap 0 versus A7

The full description of the correspondences between A‘[’Q’n]’g, o € Sy, and A7 ;, T € Sy,
I'UJ =[2,n], is given by the following lemma.
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Lemma 2.3.4. (1) For any 7 € S,_1, I UJ = [2,n], there exists a o € S,, such that Ab e =
A/?I—J-

(2) For any o € S, the only combination of (1,1,J), where 7 € S,_1 and I U J = [2,n],
such that A} ; = Af, ., is given by 7 =0, I = 2,n], J=0.

(8) For any o € S,_1(1,1), i > 2, the complete list of the combinations (1,1,J), where
T € Sp_1 and I UJ = [2,n], such that A} ; = Af, . is indezed by the sequences 2 < my <
--m;_1 < n, where

T = UC;L}_l ol T =120\ {my,...,mis Y J={my,...,mi_1}.

mi)

Comparison of the coefficients

The symbols u;;, 1 < 4,7 < n, are understood in the rest of the proof as just formal variables
satisfying the relations u;; + uj; = 0 and w;; + uj, + up; = 0 for all ¢, j, k. For o € S,, n > 2,
the symbol (o) denotes

1

Us(1)o(2)Uo(2)a(3) - + - Uo(n—1)o(n) '

Qo) =

Up to a factor 1/ [, z; (which is a common factor for (2.3.1) and (2.3.3)), the coefficient
of exp(Af, 1 ) in (2.3.1) is equal to Q(c). Up to the same factor, the coefficient of exp(A7 ;) is

(2,n],o

equal to (—1)1Q(7).

Lemma 2.3.5. For any o € S,,_1(1,i), 2 < i < n, we have:

Qo) = (-1)" > QoC,, - Cy)- (2.3.4)

2<m1<--<m;_1<n

Lemma 2.3.4 and Lemma 2.3.5 together imply that the right hand side of Equation (2.3.1) is
equal to the right hand side of Equation (2.3.3), which completes the proof of Proposition 2.3.1.

2.3.2 Technical lemmas

In this section we prove Lemma 2.3.4 and Lemma 2.3.5 used in the proof of Proposition 2.3.1.

Proof of Lemma 2.3.4

The proof is based on several observations. First, observe the left invariance of the identities for
AF 5

Lemma 2.3.6. We have: Af, = A, implies Af;n]’@ = A7 ; for any p € S,.
Proof. Direct inspection of signs. m

Second, we have uniqueness:

Lemma 2.3.7. The equality A‘[’an = Aifi, considered as an equation for o has at most one
solution.

Proof. Assume we have two solutions, ¢ and p, that is, A‘[’2 ]

Lemma 2.3.6 twice, we obtain: A&niz = A?:,l = A}S,n],@-

o= AR, = Al 0+ Applying

Hence p~to = id. O

Finally, we can solve this equation:
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Cmy ++Crm,

Lemma 2.3.8. For any 2 < m; < --- < m; < n, we have A[2 .o

{ml, ce ,mi}.

= A where J =

Proof. We prove it by induction on i. The base case i = 0 is trivial. Assume we know it for .
Then, for 7 + 1 we have:

AC”H'”C’WH — le
[2,n],2 [2,n]\{m2,....mit1},{ma,....,mit1}
jg{mQa“-vmi#»l} je{’H’LQ,...,mi+1}
k<j k<j
Since Cy,, acts only on 1,...,m;, it doesn’t affect the second sum and the part of the first

sum for j > my. Since it is a cycle, the only terms when k& < j and C,,, (k) > C,,, () hold
simultaneously are the terms with £ = 1. Hence this total expression is equal to

_ 4id
E Wg,j — E Wk,my — E Wk,j = A[Q,n]\{ml,...,mi_,.l},{ml,4..,mi+1}’

j&€{mi,ma,..,miy1} k<mq je€{ma,....,m;y1}
k<j k<j
O
Now we are ready to prove Lemma 2.3.4. The first statement follows from Lemmas 2.3.6
and 2.3.8. Then, note that Lemmas 2.3.8 and 2.3.7 imply that the equality AE’2 o = A7

can hold only for 770 = C,,, -+ - Cp,,, where J = {m; < --- <m;} (and 77 'oc =id if J = @).
Hence 7 = oC,!--- C)L.

Proof of Lemma 2.3.5

First, observe that the basic properties of u;; imply the following identity that we will use in
the proof (one can prove it by induction on r, for instance):
n—1
Z UL, r+1Um,m+1 4 U r41
Um,1UL,m+1 Unp,1

= 1. (2.3.5)

m=r-+1

Second, observe that Equation (2.3.4) is invariant under the left products with any p € S,,,
so it is sufficient to prove it for ¢ = id. We, however, prove a more general statement. Namely,
for any 1 <7 < b < n we prove that

Yoo, o=

2<my <---<mi_1<b

(—1)1Q(d) %t b <,

UL, b1

{(—Di*@(id) b=n;

This can be proved by induction on i, with the case ¢ = 1 being obvious. Assume this statement
is proved for i. Then for i + 1 we have (the computation is completely analogous in the cases
b=mn and b < n, so we perform it only in the first case):

n
-1 -1\ __ 1,1 —1
2<m1<<mz<n mZ:H-l 2<m1<~~<m¢_1<mi—1
n

. Ue=10. 0= (m ' n—1 '
= Z (_1)1—1Q(O;3)M — (_1)’5—1Q(1d) ( Z U1, 2Um; ,m;+1 + ULQ) Ui+1,1

— Ut (1),Cmt (my) mymig1 dmilWmit1 o Und Jo U210

= (—-1)'Q(id).

Here the second equality is the induction assumption, and the final equality follows from
Equation (2.3.5).
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2.4 The principal terms

Recall a reformulation of the formula for 2% proposed in [95, Equation (3.3)]:

(_1)n+1(2ﬂ_)n/2 - ( )
TRV T

The idea behind this formula is that the whole expression for F°k can be considered as the
regularization of its principal part, which is the first summand on the right hand side of
Equation (2.4.1), by the terms that are Laplace transforms of distributions supported on the
diagonals, see [95, Sections 2.6.3 and 3.1.4].

The formula of Buryak, in the form of Equation (2.3.2), can also be represented as the sum of
its principal part and the regularizing terms supported on the diagonals. First, we interpret the
integrals as Cauchy principal values in order to interchange fR” and ) . s, in Equation (2.3.2).
We obtain:

FOk = 2:1;/3) + diagonal terms. (2.4.1)

3
2 anx) i
- 624 <j:1 J n Qi exp (5 Zj<k Ao (N To(k) — ag(k)l’g(j))
Fn - ZS: N n 3 / i1 ‘ H@_l i (M _ aU(Hl)) .
e Zl%‘ (2m)2 [T 5'3]2 = =L\ Teg) To(in)
J:
(2.4.2)

Here the expressions under the sign of the integral have poles along the diagonals defined as
Uo(j)/To@) — Ao(j+1)/Toi+1) = 0, 7 = 1,...,n — 1. Recall the integrals should be understood
as the Cauchy principal value integrals, that is, we exclude the tubular neighborhood of the
divisor of poles of the radius r, integrate, and take the » — 0 limit of the resulting expression.
Similarly to Okounkov’s formula, they can be decomposed into a principal part without poles
and a diagonal part by applying the Sokhotski-Plemelj formula.

Lemma 2.4.1. The right hand side of Equation (2.4.2) decomposes in a similar way to the
right hand side of Equation (2.4.1), that is, into a sum of its principal part and some diagonal
reqularization terms. The principal parts of the right hand sides of Equations (2.4.1) and (2.4.2)
are equal.

Proof. Fix o € S, and consider the corresponding summand on the right hand of Equation (2.4.2).
We apply the following change of the variables aq, ..., a,:

Ao (j) = b (>+ IU]) ( > o )+me)>
0<j r>j
With this change of variables we have:
as ;
- _ _J
Zx]xk + = Z TRty + 5 Z Qo) Tot) = Go0Tol) = D5 == D 50
g;ék ]<k<t k;<t j=1 =7 j=1 "7

and

i (aam B aa(j+1>) _; (bau) B bo(j+1>) (2o +$a<j+1>)_

To(j)  To(j+1) To()  To(j+1) 2
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Thus, the right hand side of Equation (2.4.2) is equal to

n b2

J
n T2z .
[l e " db;

e /
n n — . bos by(s (xg(')+wg(~+1)>
oE€Sh | | i < o(4) U(J+1)> J j
(Z x]) (2m)2 ] 1 ] = [ To()  To(j+1) 2

n b2-

—__J
S L
- 3

ceSnsZ, (2T)2 H;Ll x; /R H?:l {i <ba(j> _ bo(j+1)) _ (%<a'>+%<j+1>)]

To()  To(j+1) 2

+ diagonal terms

(2.4.3)

+ diagonal terms,

where in the second line o(n + 1) denotes o(1). The diagonal terms are half-residues arising as a
result of translating the contour of the b,()’s back to R", removing the diagonal singularities in
the process. An explicit expression for the diagonal terms will be computed in the next section
using the Sokhotski-Plemelj formula.

Remark 2.4.2. Let us note that Equation (2.4.3) is similar to the expressions for the n-point
functions obtained by Brézin and Hikami in [9, 10].

Since we got a sum over o € S, /Z,, as in the principal part of the right hand side of
Equation (2.4.1), it is sufficient to prove for each o € S,,/Z,, that the corresponding summands
are equal. Without loss of generality we can assume that o = [id]. Then we have to prove that

n b2.

Ep e dh
B e 7=t Hj:le 7 ab;
3
pen 5 Jre T | (0 birr ) _ (@itEie)
(2m)2 Hj:l Zj Hj:l [' (zj Ti1 2

n T 3
(—1)"*+(2m)"/2 eégl(ﬁ) - - —si01) (55 + 8501)7;
= - : / Hdsjexp + 1/3 5
j

= v [T}, /47 (575) /R0 j=1 =1 21/3)

or, equivalently, if we cancel the common factors and rescale s; by 27

(2.4.4)

13 we have to prove that

b2

| [Le”
3 1/ ? D o (2.4.5)
1_[(2”1‘]')5 e H [—i <—J + ”1) + (xa+§y+1)]

Zj Zj+1

) /n [ﬁ dsj] e (_zn: ((Sj —QZ‘H)Q + (sj+ ;jJrl)in)) .

j=1

-1
To this end, we use the following trick. Replace [—i (% + b’“) + (xﬁ;j“)} by

Tj4+1

b b; , :
/ dsjy1€xp (5j+1 {i <_J + JH) G s %H)D 7

where s, 1 denotes s1, change the order of integration and take the Gaussian average with
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respect to the variables b;. We see that the left hand side of the equation (2.4.5) is equal to

/ [H dSJ] / TLJL Hexp (-— (bJQ —i2a;55541 + i2ajsj) — (; + le)SHl)
RZ0 [j=1 " H(Zﬂ'x])% j=1 QIj 2
j=1
(2.4.6)
- - (isj - i5j+1>2 (Sj + 5j+1)13j
— /Rn [H de] exp <Z ( ij - 9 3
> Jj=1 j=1

which is precisely the right hand side of Equation (2.4.5). This computation proves Equa-
tion (2.4.5), and, therefore, completes the proof of the lemma. H

Remark 2.4.3. The argument of Okounkov in [95, Section 3.1] implies that it is sufficient to
compare the principal terms of B and FO* in order to prove the coincidence of these formulas,
since the diagonal terms only compensate for the non-regular terms in the principal part detected
by the wrong powers of 7 (it is also the case for 2" where this property is evident from the
Sokhotski—Plemelj formula). So, Lemma 2.4.1 implies Theorem 2.2.3. However, we can explicitly
identify the diagonal terms in FEU and FOK, and we do this in the next section.

2.5 Diagonal contributions

We represent Buryak’s formula in the following way:.

Theorem 2.5.1. (1) We have:

¢ 7
1 3 T .
51 > TT. £ 2o, df;
n on 24 2 e T Y1
FBur _ (27T) 2 Z —e =7 HJ_I ry (2 5 1)
n = n 1 Y . ) ) rr.4xr, o
3 (27) re TTY fi Ji+1 PRSI
H x] (=1 [Ilu"'l—uﬁ] Hj=1 | Ty, Ty, 1 2
j=1 ={1,...,n} J it

Ilw"alé#g

Here we take the sum over the cyclicly ordered partitions of {1,...,n}, that is, [I; U --- U 1] is
identified with [Iy L ---U I, U 1], and 141 denotes I and foyq denotes fi.

(2) For every cyclicly ordered partitions of {1,...,n}, [Iy U---U I, where I,..., I, # @,
we have:

¢ 7
P [T, e ™ L
. = —”5( T Z>. 9.5.2
(27T)é /R( HZ . [I (f_J B fi+1 > _ x1j+:c1j+1] ( ) 21/3 21/3 ( )
I= r1; Tlitq 2

This theorem is a refinement of Lemma 2.4.1 that includes now all the diagonal terms and
we have an explicit term-wise identification. It immediately implies Theorem 2.2.3. We devote
the rest of this section to the proof of Theorem 2.5.1, whose main part consists of a careful
application of the Sokhotski-Plemelj formula, and the further steps just repeat the computations
in the proof of Lemma 2.4.1.
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2.5.1 Structure of the Sokhotski—Plemelj formula

Let us discuss explicitly how to apply the Sokhotski—Plemelj formula to Equation (2.3.2). In
principle, one can just directly iteratively apply it, but we first discuss the structure of the
formula since it greatly simplifies computations.

Fix a particular o € S,, and consider the corresponding term in the variables

" X; u a; Qg (i Qo (i .
) e
n - ZT;

To(i) Lo (i41)
In these variables the shift of a;’s that we applied in the previous section looks like

i .
_<x0(i)+xa(i+1))7 1=1,...,n—1.

D001 T N o
f—>f—2—an(22—1—n)xa(i), 9 = 9i — 5

i=1

The denominator of the expression under the integral is equal to gy - - - ¢g,_1. Since there is no
pole in f, its shift is neglectable. Assuming x1,...,x, to be small positive real numbers, we
move the contour of integration for each g; to the lower half-plane, and then can deform it
back to the real line with excluded interval around g; = 0 and a half-circle around it in the
lower half-plane, which in the limit gives the sum of the principal part and the half-residue at
g; = 0. This is exactly the Sokhotski—Plemelj formula applied now to the product of simple
poles g1+ gn—1.

The whole integral expression is then split into 2"~ summands for each o, since we have to
make a choice for each g; whether we take the principal part or the residue part of its contour.
If we choose for all g;’s the principal part of the integral, we exactly obtain the principal terms
considered in the previous section. More generally, the full system of choices is controlled by
pairs (o, US_,I;), where 0 € S, and U{_,[; = {1,...,n}, I1,...,I; # @,and I} < --- < I, in the
sense that for any n; € I;;, j = 1,2, i1 < iy implies n; < ny. Once we fixed a pair (o, Ui, ), we
choose the residue option for all g,(;y’s with ¢ € I; \ {max(I;)}, j =1,...,¢, and the principal
option for all g,;)’s with ¢ = max(l;), j=1,...,¢0—1.

Note that the integrals for the pairs (op,U‘_ 1), p(I;) = I; for i = 1,...,{, coincide.
Moreover, each of them contributes Hle 1/]L|! to the product of negative residues since the
contour of integration in the plane Z]EIZ, as(j)/To@y) = 0, @ =1,...,/, is the intersection of the
torus around the origin with the Weyl chamber selected by the inequalities aop(j,)/Top(jr) <
Uop(ia)/ Top(ia) fOT J1, 72 € I;, 1 < jo. Thus the residue part of the integral in the sum over all
p € S, such that p(I;) = I; for i = 1,..., ¢ is the product of the full residues around zero in the
planes ), o(j)/To(j) =0, i =1,..., ¢, with coefficient Hf:1(27ri)u"|*1.

Now we are ready to perform the computation. For simplicity we take ¢ =1id, ¢ = 1, and
I = {1,...,n}, and treat the general case as an ¢(-fold iteration of the same computation, with
the indices adjusted with respect to a general o.

Computation for (id, {1,...,n})

Inthe case o =idand ¢ =1, I; = {1,...,n}, we take the sum over all p € S,,. The corresponding
residue term is equal to

3
1
21| mi) 2 i . — A
e <g 1 / [n _2aj. daj exp (2 E i<k Ui Tk akx9>
74 | | e “i— .
. “1.(a; as
n 1 JRJ(sH)n-1 | X Hn |<_J _ ]+1)
n n 3 j=1 =1 ) ;
(z ) (2m)% [T, =t e T
J

NgE

—1
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Note that — Z] ) % =—f2/2 (Z?:l :)sj> +0(g1, -+ Gn-1), Zj<k ajxr—arr; = O(g1, ... Gn-1),
and [[7_, da;/z; = Hj;l dg;df / (Z? LT ) This allows us to rewrite the residue as

3
1 n
z4<Z wj)
e V=t

/e (xjm) &
(z) (m) [y a? PR

(2m)"

Jj=1"7
Jj=1

Computation for ¢ = id, general partition

Recall that we denote by 7, I C {1,...,n}, I # @, the sum ), _; x;. In the case of a general
partition I_Ileli, Iy, ..., I, # @, it is more convenient to work in the coordinates

(Za—j> gy =2 _SHL Gy 0 je T\ {max(L)}.
JEI

Tj Tj+1

J=1"\z;  zjs

- / % [n Z%] P <%2j<kaﬂ7k—akx]~)
(Zn: )( ]1] R J(S1)n =1 Z;j Hn_li(ﬁ—aji> ,

where the integral over R’ is the Cauchy principle value integral (except for the diagonal
direction, where it is a converging integral). In the new coordinates, we have:

j=1

TT ((Omax(r)  Gmax(r) . (fi f
. max(1; max(/;)+1 . 7 i+1
- =TI (2 - Olgi):
ITi( ) =TT (£~ L) < oy

Tmax(I;) Tmax(I;)+1

i=1 i=1 i i+l
Z ajmk — CLk[L‘j = Z fjmlk — kalj + O(g”)
i<k <k

This allows us to rewrite the residue formula as

3
¢ 214<Z_31"L"j> ¢ 72 (i - fexg — )
[[em " e = %] =2 2 g it )
N e o T e p
- > ;) (2m)2 H;L:1$]2 =\
=1

j=1

The diagonal terms of this expression will be transferred to the partitions of {1,...,n} with
¢ < [ terms, so we have to take the principal part:

1
4 24

S TR " iy
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General o, general partition

If we have a general o, it just means that we no longer have to assume that the subsets I, ..., I,
satisfy the property that for any n; € I;;, j = 1,2, i1 <y implies n; < ny. That is, we obtain
the same formula as Equation (2.5.4), with arbitrary ordered sequence [,..., I, such that
U Li={1,...,n}, I1,..., I, # @. We have:

¢ 2

H 6_2::]1]‘ & !
1 :

S I ) -]

j=1 J x5+1

. 2
VDI
=1 Ii---UI X2
:1{17"'7'”[} ]11_

Sl N3
VR
M= |
M& <.
~_| I
~ <
=)
=
T
<
Il

(2.5.5)

The theorem follows by direct comparison of this last expression with the principal part of
FPu (2, ..., z5) which, by Section 2.4, is related to £ (;1%, cee ;1%)

Final remarks

We relate Equations (2.5.1) and (2.5.5) exactly in the same way as the two sides of Equa-
tion (2.4.3), see the first half of the proof of Lemma 2.4.1. The proof of Equation (2.5.2)
repeats exactly the proof of Equation (2.4.4) after replacing the symbols n, (b1,...,b,), and
(x1,...,x,) in that argument by ¢, (f1,..., fe), and (zp,,...,z1,), see the second half of the
proof of Lemma 2.4.1.






Chapter 3

Bi-Hamiltonian recursion, Liu—
Pandharipande relations, and vanishing terms
of the second Dubrovin—-Zhang bracket

3.1 Introduction

In [39] the relation between Dubrovin-Frobenius manifolds, topological field theories (TFTs)

and integrable systems is first explored: namely, starting from a Dubrovin—Frobenius manifold,

one can obtain a dispersionless hierarchy of the form (see Section 1.5)
6Ua . Pa75ﬁﬁ’q.

In [46], Dubrovin and Zhang further explore the relationship between Dubrovin—Frobenius
manifolds and integrable systems and deform this hierarchy via a quasi-Miura transformation

w® :UaJrZngQ;‘(v,vl,...,vgg) (3.1.2)
g=1

given by weighted homogeneous differential rational functions @ to obtain a full dispersive
hierarchy, which is known as the Dubrovin-Zhang (DZ) hierarchy. They conjecture in [46]
that the transformed equations, Hamiltonians and brackets are differential polynomials in the
coordinates w®.

In [17, 18] this conjecture is partially proved in a more general setting: the DZ hierarchy is
constructed from a semi-simple cohomological field theory (CohFT), without an assumption of
homogeneity. It is proved in op. cit. that the equations, Hamiltonians, tau structure, and first
bracket of the DZ hierarchy are polynomial.

The main goal of this chapter is to analyze the second Poisson bracket of the Dubrovin—
Zhang hierarchy. We start with a conformal semi-simple cohomological field theory, thus the
construction of Dubrovin applied to the underlying Dubrovin—Frobenius manifold gives the
second Poisson bracket in the dispersionless limit, and the quasi-Miura transformation (3.1.2)
produces a possibly singular Poisson structure. We have two tools to analyze it: the bi-
Hamiltonian recursion and the tautological relations in cohomology of the moduli spaces of
curves or, more precisely, the differential equations that they imply on various structures of the
Dubrovin—Zhang hierarchies.

The bi-Hamiltonian recursion appears to be sufficient to uniquely determine the second
Dubrovin-Zhang bracket, and we also use it to give a new proof of a structural result of Dubrovin
and Zhang on its possible singularities. Bi-Hamiltonian recursion also implies that the constant
term of the second Dubrovin—Zhang bracket is a differential polynomial.

41
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As a source of suitable tautological relations we use the work of Liu and Pandharipande [83].
The relations that they derive there appear to be exactly enough to prove the vanishing of all
terms in the second Dubrovin—Zhang bracket whose standard degree is negative. Remarkably,
the dimensional inequalities of the Liu—Pandharipande relations match exactly the standard
degree count for the terms of the second Dubrovin—Zhang bracket in the equations that we
derive from the bi-Hamiltonian recursion, so the Liu—Pandharipande relations say nothing about
the non-negative standard degree terms of the second bracket.

3.1.1 Organization of the chapter

In Section 3.2 we set the appropriate formalism to work with Hamiltonian and bi-Hamiltonian
structures. In Section 3.3 we recall the construction of the principal Dubrovin-Zhang hierarchy
from a CohFT and endow it with a Hamiltonian structure of hydrodynamic type. We then
deform it to the full hierarchy and show that it inherits a Hamiltonian structure. In Section 3.4
we prove that in the case the underlying CohFT is conformal, the DZ hierarchy is also bi-
Hamiltonian, with the second Hamiltonian structure having singularities of a very particular
type (we reprove a result of Dubrovin and Zhang on that) and being uniquely determined by
the bi-Hamiltonian recursion relation. In particular, we prove that the constant term of the
second bracket is polynomial. In Section 3.5 we recall the Liu—Pandharipande relations in the
tautological ring, and summarize the most important corollaries. In Section 3.6 we prove that
all terms that must vanish for degree reasons once the conjecture of Dubrovin and Zhang on
polynomiality of the second bracket holds actually do vanish.

3.2 Hamiltonian structures

In this section, we explain the §-formalism first introduced in [56] and further developed in [82]
and [42] to work with Hamiltonian and bi-Hamiltonian structures. The main addition to their
theory is the completion of the differential polynomial algebra to allow certain singularities.

Let M be a formal germ of an N-dimensional smooth manifold. We define a formal
supermanifold M by describing its ring of functions. A system of local coordinates on M is
given by {ul,...,u™N 0y,...,0x}, where {u!,... uN} is a system of local coordinates of M and
{6y,...,0n} are the corresponding dual coordinates. Note the latter are Grassmann variables,
i. e, 0,03+ 030, =0 for all a, 5.

Consider now the infinite jet space of M, J®(M). A system of local coordinates in J* (M)

is given by {ug, Qg}fgi%@, and we identify uy = u® and ° =0,, a =1,..., N.

Definition 3.2.1. The differential polynomial algebra A is defined as

A=Cl[ud = u u ug, ..., 0° =0,,01.6%, ... | 1<a<N]. (3.2.1)

oy Yoy Vo

The term differential polynomial in u (respectively, in u, ) means for us a polynomial in u,
s > 1, (respectively, in u$, s > 1, and 02, s > 0) with formal power series in u® as coefficients.

The differential polynomial algebra admits two gradations: the standard gradation
deguy = deg0 = s, s >0, (3.2.2)

and the super gradation

WV
o

degt’ =1, degul =0, s (3.2.3)
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Let AP and .,le be the degree p components of A with respect to the super and standard
gradations, respectively. Let AP = Ar 0 A,. Note that A = A° is the differential polynomial
algebra on M. In the following, Einstein’s summation convention applies to Greek indices, but
not to Latin ones. The space A is endowed with a total derivative

0 9
0p =Y (%Ha—ug + eﬁﬂa—@g) ) (3.2.4)

p=20

which preserves the super gradation on A and increases the standard gradation by 1

Definition 3.2.2. The space of polyvector fields F is defined as the quotient space of A by
0, A and the constant functions.

The projection map is denoted by [ : A — F. Since 9, is homogeneous with respect to

the gradations, the subspaces F?, F, and .7:'3 are well defined. The elements of F? are called
p-vectors. It is possible to write a p-vector as a sum of its homogeneous components in the
standard degree: for f € FP, we write

f=l+h+f+..., fr € FP. (3.2.5)

It will be useful later to introduce a formal parameter € (the dispersion parameter) to keep track
of the degree by rescaling = +— ex. That is, if s = min{k|fy # 0}, then we write

f:fs+€fs+1+€2fs+2+--., ka./—:?j (3.2.6)

Having defined the functionals, the goal is to define a graded Lie bracket on J (M) that
extends the usual Schouten bracket on M, given by

OP 0Q oP 0Q
P _ - v _1\Y_—_—— 2.
POl = g aue T TV e e, (38.27)
for P € A{; and @) € flg. For this purpose, define the variational derivatives of f & A:
of » Of
— = — —. 2.
Z (‘39’” ouY Z( %) ouy (328)
p=0 p=0
Since 59 00, = == 00d, =0, the operators above can be defined on the space of functionals F.
Now we can deﬁne the bracket
[ ] FPx FO—s Frie! (3.2.9)
B 0P 0Q) 0P 6Q)
(P, Q) — [P, Q] = / (Edm +( ].) 5ua (59 > dZL' (3210)

which we call the Schouten bracket on J OO(M ). The next theorem shows that this bracket gives
F a graded Lie algebra structure:

Theorem 3.2.3 ([81]). Let P € F*,Q € F*,R € F". Then
o [PQ] = (=1)™MQ, P].
o (=DMP, QL Bl + (=1)™[|Q, R], P} + (=1)"[[R, P], Q] = 0.

Finally, we are ready to define Hamiltonian and bi-Hamiltonian structures.
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Definition 3.2.4. A Poisson bivector or Hamiltonian structure is a bivector P € F? such
that [P, P] = 0. A bi-Hamiltonian structure is a pair (P, P,) of Poisson bivectors satisfying
[Ph PQ] - 0

Remark 3.2.5 (Poisson bivectors, Poisson brackets, Poisson operators). A Poisson bivector P
defines a Poisson bracket on F°

{ Y p FOx FO— 7 (3.2.11)

(F,G)— {F,G}p = [P, F],G]. (3.2.12)

On the other hand, given a Poisson bracket {-,-}p, there exist unique P* € A satisfying

> eno PEP05 =30 Lo (—1)*T1 95 PP such that the Poisson operator P*% =% _ P*#95 gives the
bracket

oF oG
{F,G}p oo P &Lﬁdx. (3.2.13)
It is clear that for
1 1
_ = a3 _ = a3 s
P = 5 /GaP (0g)dx = 5 SE>0 / P{P0.,05dx (3.2.14)

both definitions of {-,-}p coincide. Thus, we will use the terms Poisson bivector, Poisson
operator and Poisson bracket interchangeably from this point.

Example 3.2.6. Particularly interesting examples of Poisson bivectors are those of hydrodynamic
type, i.e., those of the standard degree 1. P € F? is a Poisson bivector of hydrodynamic type if
and only if it takes the form (see [43])

1
P = 5 /(gaﬂ(u)é’aﬁé + TP (u)u]0,05)dx, (3.2.15)
where ¢ is a flat metric on M and Fg‘ﬁ are the contravariant Christoffel symbols of its Levi-Civita
connection.

The Poisson bivectors considered in this chapter will be deformations in even degrees of
Poisson bivectors of hydrodynamic type, i.e., P € F? such that P|._ is a Poisson bracket

of hydrodynamic type. For any such P, we can find unique Pngf € Aygi1-s satisfying
S 20t paBgs = S22 (1)+192 PP such that P can be written as

g, zt g,s

2g+1

1 - (67 S
P =3 / D ey Pelo,05da. (3.2.16)
g=0 =0

3.2.1 Changes of coordinates

We want the Schouten bracket to remain invariant under changes of coordinates. First, we
introduce the groups of transformations that will be considered.

Definition 3.2.7. A Miura transformation is a formal change of coordinates u* — u® of the
form

ﬁa:ua—{—ZekF,f‘(u;ul,...,uk) (3.2.17)

00
k=1

where F € Ay.
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In the literature, Miura transformations of the form (3.2.17) with an arbitrary diffeomorphism
F§'(u) as the leading term are often considered. However, all (quasi-)Miura transformations
studied in this chapter have F§*(u) = u®, thus justifying our more restricted definition, usually
known as Miura transformations close to the identity. It is important to study the behavior of
the Schouten bracket under Miura transformations:

Proposition 3.2.8 ([81]). A Miura transformation (3.2.17) u® — a* induces a change of
variables

ou® ~
05 = —0,)° | —=6, 3.2.18
’ ;( ) (auf ) ( )
such that the Schouten bracket remains invariant.

Proof. Let us sketch the proof with the help of the formulas given in [81]. The change for the
variational derivatives is given by

o 9
g _ _AY s 2 2.1
=3 (et o (3219
p=0
Analogously,
—Z )t aef 52. (3.2.20)
0o =0 99, B

From (3.2.18), we get

005 _ <s + t) i
— , 3.2.21
00}, 2; % <0uf+t) (322

6o - s+E\ s ou” Oi
%_Zax Z( . >( ;) < E ) 5 (3.2.22)

>0 50 Ougy

SO

Let P,Q € F. The result follows after replacing (3.2.19) and (3.2.22) in the expression

5P §
[P, Q) =/5 aMQd : (3.2.23)

]

Example 3.2.9 (Transformation rule for Poisson brackets). Let P = 1 [ 6,P*?(63) be a Poisson
bivector, and consider the change of variables (3.2.17). In the new coordinates, P takes the form

/Z (gﬁfl v) pe? (Z(—&c)t (g—g@)) do (3.2.24)

520 t=>0

Therefore, the transformed Poisson operator P is given by

oY 5 o Paﬁ o (_ax)t

P — |
Jue aus

s,t=0

(3.2.25)
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3.2.2 Differential rational functions

For applications in enumerative geometry the spaces A and F are too restrictive. We will
complete them by allowing certain singularities.

Definition 3.2.10. A differential rational function of type (1,1) is a function f of the form

f=fitefer+€E€fcat .., (3.2.26)
where the functions f; only depend on finitely many derivatives u, uy, ..., u, and take the form
= P
1\k k1
= 3.2.27
Jie = (uq) - (ul)! ( )

with Py, = Py l(u 02) is a homogeneous differential polynomial of standard degree [ that does
not depend on u}. The space of differential rational functions of type (1, 1) is denoted by B.
The space of rational polyvector fields of type (1, 1) is defined as the quotient of B by 9,8 and
the constant functions and denoted by Q

The next step is to enlarge the Miura group to allow transformations given by differential
rational functions.

Definition 3.2.11. A quasi-Miura transformation is a change of variables of the form

o0
ua—i-Zeka U ULy ey Uy ) (3.2.28)
k=1
where the functions F}' are homogeneous rational functions in the derivatives uy, ..., u,, of

standard degree k. A quasi-Miura transformation is of (1, 1)-type if it takes the form

> O (us Uy, Uy,
=u"+ ) (eup)* Y ks k), (3.2.29)
=0

st (u)!

[e3

where F) is a differential polynomial of degree [ with Fl = 0.
Uy
Remark 3.2.12. e The key aspect of the space Q is that all notions introduced before for
F are still well-defined for Q variational derivatives, the Schouten bracket and both
gradations. It is also possible to define Hamiltonian and bi-Hamiltonian structures of type
(1,1) in the same way it was done for their polynomial analogues.

e Note the proof of Proposition 3.2.8 does not use polynomiality at any point. The
only requirement is that the variational derivatives still make sense for the transformed
polyvector fields, so it still holds if we consider quasi-Miura transformations of type (1, 1)
instead of Miura transformations.

e Applying (3.2.29) to an element of F7 yields an element of O". The key question is
whether this new element is polynomial in the variables .

3.3 Dubrovin—Zhang hierarchy

In this section we recall the construction of the DZ hierarchy as done in [46, 18, 17] as well as
some of its most important properties. For the full details, we refer the reader to those articles.
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3.3.1 Universal differential equations for CohFTs

Let V be an N-dimensional vector space over C equipped with a scalar product (-,-). Choose
a basis {e1,ea,...,en} of V and let 1,5 = (€q,€5). In the rest of the chapter we use 7,5 to
lower indices and its inverse n®? to raise them. Let Com V" - H 2 (Hgm; (C) be a CohFT
with unit ey, and let F' = > 450 €29 F, be its associated partition function, see Section 1.2.3. The
following identities satisfied by the partition function will be used in the text (see e. g. [119]):

e String equation

oF . OF 1 N
ol th“é)ta + 5 esly 510 + ¢ (mo(e)h- (3.3.1)
p=0
e Dilaton equation
(9F (9F o N
o1 = 2O _oF 3.2
Z tp 8ta e 24 (3 3 )

e WDVV (associativity) equations

— - . 3.3.3
8td118td228t8n atgsatg:atg Oty oty 3675“7] atgllatfl‘:atg ( )
e Topological recursion relation in genus 0 (TRR-0)
PF O0*F, PF
0 = 0_ b LR— (3.3.4)

Otg! 10t 0t Otg10tg " Oty oty ots?

e The Liu—Pandharipande relations. We recall them in Section 3.5.

There are many other universal differential equations for Fj, g > 0. Basically, any relation in
the tautological ring of the moduli space of curves implies such an equation. For instance, the
functions Fy, g > 0 satisfy the property called tameness, see e. g. [56, 17]. We do not use it in
this chapter directly, but it is needed for the validity of Proposition 3.3.4 below.

Remark 3.3.1. In fact, the results of this chapter are applicable in more general situations
than the partition functions of CohFTs. All properties mentioned above (including the Liu—
Pandharipande relations and the tameness) hold for the total descendant potentials of analytic
conformal semi-simple Frobenius manifolds, see [46, 51]. We choose, however, to start with a
CohFT since some of the computations below get some extra geometric meaning.

3.3.2 The principal hierarchy

From now on, all CohFTs considered in this chapter are semi-simple, i. e., the functions

N N 83FFrob
— M
where FTob — Foles =0 give the structure constants of a semi-simple associative algebra at ¢ = 0.
Let ¢t} — t§ + x. Consider the two-point correlators in genus g
[9] _ 0*F,
a7p757q at?at?

(3.3.6)

and the variables
aQFO a /3

= —, vg, v = O, 3.3.7
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Proposition 3.3.2 ([39, 17]). The two point correlators in genus 0 are given by

0 0
SlLLE5H<tO’t1’t2"") ::Szggyiq(v7oaoa--') (3.3.8)
As a consequence of the tau-symmetry of Q[Oi]p; 54> 1€, the expression
9 g
a_tzQa,p;,B,q (339)

being invariant under any permutation of («, p) <> (5, q) <> (7,r), the variables v® satisfy the
system of equations

ov® o [0]
37’5 - 781(9%0;/3@)'
The goal is to rewrite the equations (3.3.10) in Hamiltonian form. First, define the Hamiltonian
densities

(3.3.10)

hap(v) = (3.3.11)

Consider the Poisson operator of hydrodynamic type P* = n*%0, or, equivalently by Re-
mark 3.2.5, the Poisson bivector

1, . .
P= 5/%77 POLdx € F7. (3.3.12)
Proposition 3.3.3 (39, 17]). The Hamiltonians hap = [ hapde satisfy:
‘W_layp o 556#1 [0]
W v 8IW = (9zQa7p+1;67q. (3313)

In particular, they Poisson-commute {hap, hg,}p = 0 and the system (3.3.10) can be rewritten
as a Hamiltonian system, called the principal or dispersionless Dubrovin—Zhang hierarchy:

o™ o (SFL@Q
o = vam_(m (3.3.14)

3.3.3 The full hierarchy

The principal hierarchy constructed above “forgets” the information of the CohF'T carried by
F, for g > 1, in other words, no information is lost if we set € = 0 at the beginning. Here we
construct the full hierarchy. Consider the variables w and the two point correlators:

O*F O*F -
a _ . af _ _ 29 lq]
w® = S Qupgg = LN gl 3.3.15
U atgatg_) PiByq at%@tqﬂ Z :p;Byq ( )

g=0
As a consequence of the tau-symmetry of €2, .34, i.€., the expression

0

8_1529“’1”5"1 (3.3.16)

being invariant under any permutation of («, p) <> (8, q) <> (v, 1), the variables w® satisfy the
system of equations

ow® N
7 = 0"10:(0,80), (3.3.17)
otq
known as the Dubrovin—Zhang hierarchy. The goal is to endow the system (3.3.17) with a
Hamiltonian structure as it was done for the principal hierarchy in Section 3.3.2. For this, we
recall an important result, known as the (3g — 2)-property:
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Proposition 3.3.4 (sce e. g. [17]). For g > 1, there exist functions P, . .. ,P;ZLQ such that
Fylto,tr,...) = Fy(PY (v, 1, ), oo P (0,01, 03g9),0,0,...). (3.3.18)

As a consequence of the (3g—2)-property, Q9 only depends on v, vy, . . . , V34, SO the expansion
of w in terms of v takes the form

&= o +naﬁz 900 | (v, v, ..., vsg). (3.3.19)

The next proposition shows that the string and dilaton equations give (3.3.19) the required
regularity to use the framework developed in Section 3.2.

Proposition 3.3.5 (see [15]). The transformation v* — w* is a quasi-Miura transformation
of (1,1)-type.

Proof. Dilaton equation (3.3.2) implies the following relation between the coefficients of F,

o 29 — 3+ 0)d! 1o .o
qIeE = (ég —+n J)r 7l o (t1) ] Fy. (3.3.20)
J Ti=1

This allows us to rewrite Fy, (¢ > 2) in the following form:

1 - - (29 —3+n+d)!
ngz:g D | EACW); ggt 29 3 1)l (t1)? (3.3.21)

n>0  1<ay,...,an<N i=1
dy,da,...,dn >0
(ag.di)#(1,1)

1 1 2g—24+n
:Za Z HTd €a2 Htgl(]_—tl>
1

n>0  1<aq,...,an<N i=1 i=1
dy,da,...,dn >0
(ak,di)#(1,1)

- (1_1%)2!] 22 > ﬁTdi(e% gﬁ(l_‘“tl)

n>0 " 1<on, ., an<N i=1 i=1
d17d27 7dn20
(o, di)#(1,1)

For F, and F; we have to mind the unstable correlation functions:

1 - - to‘l 1 1 1\d+1
R= o 2 (lmle) IH(Hl) Egm«ﬁ(el))dwtl)d

n>1l  1<ar,...,an<N i=1 i=1
dy,d2,...,dn, >0
(e, di)#(1,1)
(3.3.22)
- - tgl 1 1\d+1
_Z Z HTdi<eo¢i) 1H(1_t1> +<T1(61)>1Z(d+1)(t1)
n>1 T 1<, o <N =1 i=1 d=0
dy,d2,...,dn >0

(ork,di)#(1,1)

_Z > ﬁm(eaz 112[(1—%2?1) ﬁlog(l—lt%);

n>1 1<a1, Lan<N =1 =1
d17d2a 7dn>0
(o, di)#(1,1)

(1—t1) Z > Hrd Ca:) OH(l—tl)’ (3.3.23)

n>3 1<a1, Lan <N =1
d17d27 7dn>0
(ak,dr)#(1,1)
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where the last formula follows from the fact that (74, (€, )7a, (€ay)T1(€1))0 = 0 for all ay, ag, dy, ds.
By the string equation (3.3.1) we have

0*F,
a _ af 0 a,B o _ 2
= &+ =tg + O(t7), 3.3.24
" oo Zp>0 T gy g o+ O (3.3.24)

83 8SE
1 1 Z g 18 Fy } : o 18 0 1 2
vy =1+t + tit —_— 4 t —— =1+t —I—Ot . 3.3.25
1 1 pi 1 p+177 Stgﬁ?tg?tﬁ o~ p+177 5t(1) atg 315; 1 ( ) ( )

To get the dependence of v on ¢t} we compute

(93F n n toé.i
11 o ) ) o |
e M@téf@té@t}) 1 t1 Z > M mledmn(e) HTdi(eai»oH (1 — t{) ;
1<(X1 7777 an<N =1 i=1
di,d2;...,drn >0
(O‘Imdk)?é(LI)
(3.3.26)
P E 1 1
g0 — oth Ot Ot |15 =0 Tz i (ro(en)T0(€1) )0 T (3.3.27)
(a,p);ﬁ(l,l) (a p);ﬁ(l 1)

Therefore, from (3.3.25) and (3.3.27), we get:

1 t
”%:1—@ <1+O(1—t1))' (3.3.28)

Taking k derivatives of (3.3.24), we have:

02 F, 1L \"[ & £\
_ aByy o _ k - 1,1).
= T (1-@) (1—tﬁ0(1_ﬂ) ) (@ k) # (L1)

p=0
(3.3.29)
Thus,
v o o\’
k k .
= o|l——) . 3.3.30
o=t ter) (3:3:30
In conclusion, the functions
O0*F,
Q9 () g (3.3.31)
a,p;p, o
ria oteoty
are of the form (v])*S, where S is a formal power series in v$/(v7)P. Since we know they only
depend on v, vy,...,v3, as a consequence of Proposition 3.3.4, we can conclude
i ey L (3.3.32)
apiBg — \71 (,Ul)k e
k>0 1
for Ry a differential polynomial depending on v, v1,...,vs, but not on v of standard degree .
Thus, we can write the transformation (3.3.19) as
e STc PTG ) ) i (L AL St PP
b ; b ]- k ) : :
g=1 g>1 k>0 (v1)

where R, is a differential polynomial in v not depending on v of standard degree k. O]
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Remark 3.3.6. Another consequence of Proposition 3.3.4 is that we can equivalently define the
Hamiltonian densities (3.3.11) in terms of the full two-point correlators €2, since they differ by a
total derivative:

= ,, OF
hap(w, .. 7w39) = Qa p+1;1,0 — Q[a(z)]p+1'1 0 + 836 ( 629—g> . (3334)
P P 1Ly 5 3L ata
g:l p+1
For the particular case p = —1, this means
w* = v+ 9, | n* 209%s 3.3.35

so [v¥dx = [wdx
We can now write the full hierarchy in Hamiltonian form. The transformation (3.3.19)

induces a transformation on the Poisson bracket P (3.3.12) as explained in Example 3.2.9.
Explicitly, the deformed Poisson bracket is given by

ow® ow”
af __ afqgs .__ f
AW = E> ASPO; = DoF o(—=0;) o o7 (3.3.36)
$>0 e,f>0
The Dubrovin—Zhang hierarchy (3.3.17) is thus given by
ow™ (Sﬁﬁ
=AY 1, 3.

o S0 (3.3.37)

Finally, we are ready to state the main result of [17]:

Theorem 3.3.7 ([17]). o The functions Q2 p.p, are differential polynomials in w, that is,
QopiBig = D _geo 900 5 (W, way), where QY is a differential polynomial in w of
standard degree 2g.

e The Poisson bracket of the full hierarchy A = ZOO €9 Zng AYB02 s polynomial in

g,s7x
w, i.e., the functions A% are differential polynomials in w of standard degree 2g +1 — s.

g,8

As an immediate consequence of this theorem together with Remark 3.3.6, the Hamiltonian
densities are polynomial in w, and so are the equations of the full hierarchy (3.3.37).

Remark 3.3.8. Note that QO 5 (w) = Q[Ovpﬁq( )|va=we, but the relation between the higher

genera two point correlators Q27 . (w, ..., way) and 5];) 3.4(V;s - -+, U3g) is much more involved.

a,piB,q

3.4 The second bracket

3.4.1 Conformality and bi-Hamiltonian recursion

In Section 3.3.2 we have constructed an integrable hierarchy whose solutions are generated
from the partition function of a CohFT. CohFTs are designed to capture the universal basic
properties of Gromov-Witten theories, and it is possible to introduce an extra homogeneity
property, which is designed to reflect the computation of the degrees of the Gromov—Witten
classes.

For the purposes of this chapter, we rewrite the homogeneity condition explicitly as the
conformality of the CohFT (as it is done in e. g. [20]), and this extra condition implies the
existence of another Hamiltonian structure K of hydrodynamic type compatible with P, i.e.,
[K, P] =0, for which the Hamiltonians Ba,p are bi-Hamiltonian conserved quantities, i.e., they
satisfy [K, [P, ha,p)] = 0.
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Definition 3.4.1. A CohFT {c,,} is called conformal if there exist constants q3, b® and d
such that qf = 47, q§ + n**q;n.,s = (2 — d)dg, and

]' m - i— m
(e (o= Dd = m) ynlotiaen) + Y dheom(eien B, 80 0ne) G

i=1
+ TeComi1 (R €5 @ bTey) =0,

where deg acts on the k-th cohomology by multiplication by k and m: M, i1 — My, is the
standard map forgetting the last marked point.

In terms of the logarithm of the partition function F = e?log T = Z;O:o €29 F,, this means

0 B X 0 (3-d) 8
(Z( — A5+ = S e el Mot g + %)F

d=0 0 4>0

(3.4.2)

=(B-d)F + 2b7(To(ea)70(65)70(67)>0t0t'B + b7 (7o(e4))1-

It is convenient to introduce notation for a part of this equation which is a vector field on the
big phase space:

~ 0 o 0
E = Z( d(YY)th + byat7 Zn '“‘bﬁ 7'0 ’7'0(6/3)’7'0(6V)> tg_i_la—tg. (343)
d=0 d=0
Also, let us define the matrices

_d-1

Mg = naubv<7'0(€u)7'0(66)7'0(67)>0'

By direct computation we obtain the following useful lemma that explains the action of E
on the double derivatives of F,

82
Qo 0 3.4.5
a,0;8,p ° 8ta6tp «,0;8,—1 NaB9g,0 ( )
Lemma 3.4.2. We have:
EQYL , + (93 —d) —1)QY .+ RIOY . = (p+1-RQY +MIQY 1 (3.4.6)
EO Q[gloﬁp 9(3 = d)d, anﬁﬁma Qvoﬁp (p+1—R)}0, Qg1ow+M7a Ot
(3.4.7)

Let FTrob — Fplis =0 As a consequence of the string equation (3.3.1), v¥|;s —o = t5. We

have the following system of equations for F™°P  derived from the homogeneity (3.4.2) and
WDVV (3.3.3) equations:

83 FFrob of 83 FFrob B 83 FFrob of 83 FFrob (3 A 8)
v rea e ! s I Ol B R N DT D o
0
(qpv* + b”)av Ffob = (3 — d)Ffreb 4 2b'y<7'0(6a)7'0(66)7'0(€7>>0’v VP, (3.4.9)
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FFrob

The system above realizes the function as the potential of a Dubrovin—Frobenius manifold,

identifying
E% = q%vH + b* 3.4.10
m

with the coefficients of the Euler vector field. For the theory of Dubrovin—Frobenius manifolds,
we refer the reader to [39, 40]. For the purposes of this chapter, we only need the following
result

Proposition 3.4.3 ([39)]). If FI™"(v) satisfies the system (3.4.8)-(3.4.9), there exists a non-
degenerate flat metric ¢®® with Christoffel symbols bg‘ﬁ such that the Poisson operator of
hydrodynamic type

K = ¢*?0, + b3%v] (3.4.11)
is compatible with P = n*?0,. Moreover, the explicit expressions of g and b are given by:
g = Er ey, 057 = °R). (3.4.12)

Remark 3.4.4. Under the conformality assumption, the principal hierarchy shown in section 3.3.2
as constructed in [17] coincides with the Dubrovin-Zhang construction of the principal hierarchy
starting from a Dubrovin—Frobenius manifold in [46], for a particular choice of calibration.

For the two compatible Poisson brackets, P and K, we have a bi-Hamiltonian recursion

relation:

Proposition 3.4.5 (see e. g. [44]). The following equations hold:

{-hs -1}k = {- huotr(1 — R} (3.4.13)
{ hsatr = hparitp(d+2 — R+ {- huatp MY, d>0. (3.4.14)
Proof. All the arguments in this chapter are based on the bi-Hamiltonian recursion relation
above, which is the central piece to prove the main results of the text. That is why, despite its

proof being well-known, we reproduce it here. We compute the Hamiltonian vector fields of
(3.4.13) term by term: the LHS (after multiplication by n®?) becomes

7o, (gg) + 0 gz — Py = RecMu]. (3.4.15)

On the other hand, the RHS equals:

o wa [(Ohu B, v z
= Tiaﬁnwcywv?(l R)B - Cu’yvl nuﬁRﬂ Ra )\Bvlv (3.4.17)

where we have used that Rgnm + Rgnaﬂ = n*7. Thus, both sides are equal and the relation
(3.4.13) holds. To prove (3.4.14), first note that

g0, + b5Hv] = 0, 0 g™ — b ). (3.4.18)
Thus, the LHS equals
anelo A 0
0u(9™ o) — O (RSN 1), (3.4.19)
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where the second summand comes from the computation
pDQ 0 D 0 o 0 D 0 o
R néeam(Q,[B,]d+1;9,0) = Rj§ nMQ,[B,]d;)\,onA 3x9¢[,,}0;9,o = Rj§ ndeﬂ[g,]d;A,onA CU@WUY (3.4.20)
~OL )\6 0 )\a 0
= Rsc) Umg,]d;xo =05 ""mg,]d;x,(r

Here we have used TRR-0 (3.3.4) in the first equality. Thus, equation (3.4.14) is equivalent to

apl0 So 0 af [0 5 af [0
g HQ[B,]d;u,O — Rj 77599&3,]#1;0,0 =n GQL,]dH;e,o(d +2-R)j+n GQL,]d;e,oMg- (3.4.21)
First, using TRR-0 (3.3.4), we compute the first summand:
0 0
« 0 v, a 0 0 @ 0
9 HQ[Bv]dUMO =L n eavl/ Q[H,]O;)\,OHHAQ,[B,}dW,O =1 GEM%Q[ﬂy]d+l;970- (3422)
Second, we set € = 1%, = 0 in (3.4.6):
d 0 O () S\ [0 0
B W00~ Yoo + B30 = (d+2 = RFOT o + M. (34.23)

Combining this last equation with the identity ﬁ’gnm + Rgnaﬁ = n* we see that (3.4.21)

holds. O]
As before, we can apply the transformation (3.3.19) to obtain a deformed bracket:
ow® ow”
af _ aBgys . e v (_Aa\f
B =) " Bo; = o 0 0 K" (—0,) o o (3.4.24)
520 e,f=0

Since (3.3.19) is a quasi-Miura transformation of (1,1) type by Proposition 3.3.5, and it only
has terms of even degree in €, the second bracket admits an e-expansion of the form

3g9+1

BP =3 "€y B0, (3.4.25)
g=0 =0

where ng is a homogeneous differential rational function of type (1,1) and degree 2g + 1 — s.
Note that the max s for a given g is 3g + 1 as a consequence of Proposition 3.3.4.
Equations (3.4.13) and (3.4.14) can be reformulated in terms of the Hamiltonian vector

fields:
(K, hga] = [P, hyapa](d+2 — R)S + [P h MY, d>—1. (3.4.26)

Moreover, as a consequence of Proposition 3.3.5, the Schouten bracket invariance proved in
Proposition 3.2.8 still holds and the system (3.4.26) can be rewritten as

(B, hga) = [A, hyan)(d+2 — R + [A hd MY, d>—1. (3.4.27)

It is illustrative to see how the bi-Hamiltonian recursion relation is preserved in terms of

operators instead of the Schouten bracket. Let Lf =}, Gur 9 and (L*)8 = Zf(—@)f o %,
e 7
then:

[ 5 7 a v * 5 7
B B(;w_ﬂ(h%d) = LYo K" o (L") o 5.5 () (3.4.28)
a v 5 A
= LN o K'u o W(h%d)
) . _
— LZ‘ o P* o W ((d +2— R)?y\h/A,d+1 + Mﬂi\h,\vd>
= Lo P o (L) o - ((d +2— R haais + Mm,d)

5 o -
= Aaﬁ(Sw_ﬁ <(d +2— R);h)\,dJrl + M«;\hkd> :
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In other words, B®” is an operator of the form (3.4.25) satisfying (3.4.28). These are the
main equations that we are going to use in the rest of the chapter, recycling the same idea thrice.
First, we will show that these two conditions determine B*? uniquely. Second, we will show
that the functions B are of the form By = C2% / det(n~'9,Q°)"»+, where ny, € Zzo and C%
is a differential polynomial in w, thus giving an alternative proof to [46, Theorem 4.2.14] for the
second bracket without resorting to the loop equations. Finally, we will prove the vanishing
Bgf =0 for 2g +2 < s < 3g + 1, which is a necessary condition for B* to be polynomial.

3.4.2 Uniqueness theorem

Theorem 3.4.6. Let C*P = Y% % St CoB95 be a Poisson operator of type (1,1) in
w-coordinates satisfying

[C.hpa) = [A hyan](d+2 — RS+ [A hy MY, d>—1. (3.4.29)
Then C' = B.
Proof. Let D = C — B. Then we have
(D, hgal =0, (3.4.30)

or, equivalently,

+

3g

00 1 T
Sh
> ey D x(ﬁ) =0, (3.4.31)

g=0 s

I
o

forall1<B<N,d>—1.

Genus 0

Expanding (3.4.31) in € and taking the g = 0 term, we have that

only, only),
Do (auﬁ ) + Dg10: (aw; > =0, (3.4.32)

where hg 4 = = A0 L e2pl 4 s the genus expansion of hg 4 in the w coordinates. Note that we
B, B.d B.d B,

have replaced the variational derivatives (55[6% /dw? by the partial derivatives ahgj}d /Ow?™ because

the Hamiltonian density hg),}d

8]1[0]_ . Oh [0]_ .
DO,?) ( 816077 + Dozax 857 = Dognﬁ'y =0, (3.4.33)

so we can conclude that Dgy = 0. We are left with

only!
Dg0, ( S| =0 (3.4.34)

does not depend on w$,. For d = —1

Recall that the dispersionless Hamiltonians hf}d(w) = hod(V)|passwe satisfy TRR-0 (3.3.4),
which implies that
0 0
O*hgy _ Ohg

ow*owy ¥ Jwe

(3.4.35)
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where ¢, =7’ %L}aﬁwa. Now
ah[O] ah[o]
o 8,0 a ~o B,—1 o ~o
D10, (W = Dgjwi'es, S = DG wY'e, mes = 0, (3.4.36)
SO
Dijuie, =0, A=1,...,N. (3.4.37)

To show that the last equation implies Dg] = 0, we need the following lemma:

Lemma 3.4.7. The matriz n~'0,Q°, written with indices as ¢, w} = 770‘58969%70;%0, is invertible

in the (1,1) class.

T
Proof. The string equation implies that 6?;#10? — 5?;11)% is a differential polynomial that does not
depend on wy. O

So, we can conclude that Dg7 = 0.

Induction on g

We proceed by induction on g. The case g = 0 has already been proven. Assume D;?‘f = 0 for
all? < g—1and for all s =0,...,3r + 1. The coefficient of €% in (3.4.31) is

g—1 3r+1 5h[g 7] 39+1 5h[0]
> > bo; Z D2os =0. (3.4.38)
r=0

s=0

By induction hypothesis, the first summand vanishes, so

3g-+1 . ah[o]
ZDQS N 8w’Y =0. (3.4.39)

First, choosing d = —1 implies that Dg 0 =20, so

FaN ay Qs ah[ﬁo]d
> Do; =] =0 (3.4.40)

s=1

Second, by the chain rule

8h[°] s am—i-lh 0]
s B,d .
ar < ow" Z OwYOwH . _aw#m BPs,m ) (3.4.41)

where BP/'}+#™ is a homogeneous differential polynomial of degree s in the variables wf, where
=fy ...y and p=1,... s —m+ 1. For this proof, we only need the explicit form of

BPts = witwi® . wl (3.4.42)
Iterating (3.4.35) m times yields

m-+17, [0] [0]
dw oWk .. Owhm W“ Hm Cowr

(3.4.43)
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where BQ%{}?}L is a function in w that can be written in terms of the functions ¢, and their
partial derivatives. For this proof, we only need the explicit form of

BQUEMA — g @a G (3.4.44)

VL Hm i1 X1 Am—1pm”

Inserting (3.4.41) and (3.4.43) in (3.4.40), and changing the order of summation yields

3g+1 /3g+1 /3g+1 6@?}
@ e lbm m,k),A d—k
S (3 (S mpmrmen mogen ) Bt <0 g
k=1 \m=k \s=m
Choosing d = 0 kills all terms except the one with £ = 1, so
39+1 /3g+1
o ol m,1),A  __
> (Z D21 BPM ) BQUMA =0, (3.4.46)
m=1 \s=m
vanishes and so does
3g+1 /3g+1 /3g+1 ah[O}
o o bm m,k),A Bd—k __
5 (5 (S mmmene ) o ) St <o
k=2 \m=k \s=m
Choosing d = 1,2, ... 3g in the same way shows that
3g+1 /3g+1
> <Z D;;BP;f;,;Mm) BN =0,  k=1,...,3g+1. (3.4.48)
m=k \s=m
Let k =3¢+ 1. By (3.4.42) and (3.4.44), we have
DYt . @ 6§3gyﬂgg+l =0. (3.4.49)
Regrouping the terms
o ~ ~ A -
Dyt &L wi&2 o wi™E e =0 (3.4.50)
By Lemma 3.4.7, the factor w} 3g+15§39’ jiggs CALL be canceled out, meaning the remaining terms
must be zero Dy} wi' & wi® Eif N ~:\\2§71’ g, = 0 Iterating these cancellations shows
that
Dy, =0. (3.4.51)
Replacing this in (3.4.48) yields
39 39
> (Z D;;BP;;;-M) BQUMMA =0,  k=1,...,3q. (3.4.52)
m=k \s=m

ay

5.30 — 0. Repeating for

Taking the k = 3¢ term implies, by the same argument as before, that D
k=3g—1,3g—2,...,1 shows
D7 =0, s=0,1,...,3g+ 1, (3.4.53)

g7s

which completes the proof. O
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3.4.3 Dubrovin—Zhang structural theorem

An argument based on bi-Hamiltonian recursion as in the proof of Theorem 3.4.6 is insufficient
to show that the functions B;f are polynomial. However, it is enough to derive a new proof
of the following weaker structural result, which has been already proved in [46] using the loop
equation.

Theorem 3.4.8. The second Poisson operator of the Dubrovin-Zhang hierarchy B*® can be
expanded as

3g9+1

B = Z 29 Z B2%os, (3.4.54)

where B;f is a homogeneous differential rational function in the variables w of degree 29+ 1 — s
of the form

h= 92 (3.4.55)

where D = D(w;w;) = det(&),wy) = det(n™'0,°), C3% is a differential polynomial not divisible
by D and ng s € Z.

Proof. Recall B satisfies equation (3.4.28)

5 - J
af af _ 7
B (hya) =A 5u0?

= ((d +2— R hyais + M,jl_lw) , (3.4.56)

whose right hand side is polynomial as a consequence of Theorem 3.3.7. We know that the
g = 0 term of the expansion of B equals K| a_,,a, which is polynomial, but we will proceed
analogously to Theorem 3.4.6 even from g = 0 to illustrate the methods of the proof. Expanding
the expression

= oh
Z 20N" Bo: (—5 Uf’j) : (3.4.57)

g=0 s=0

which is polynomial, and taking the g = 0 term implies that

ony), ony),
Bgy (8 7) By10, (8 7) (3.4.58)
is polynomial. Choosing d = —1 shows immediately that Bj is polynomial, so we know
le" 8h[O]d
B30, < 5 uf% (3.4.59)

is polynomial. As in the proof of Theorem 3.4.6, we apply a corollary of TRR-0 (3.4.35) and
choose d = 0 to show that

Biiuhd, (3.4.60)

is polynomial. By Lemma 3.4.7, the matrix (n~'9,Q°)) = w{'@), is invertible. We can write its
inverse as ((n7'9,Q%)71)} = & T;, where T3 is the transpose of the adjugate of n7'9,0°, hence

a differential polynomial, and D = det(w1 w) is its determinant. Therefore, multlplymg the
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polynomial expression (3.4.60) by (77'0,Q°)~" implies B{] can be written as the quotient of a
differential polynomial by D. In other words, we can write

o ol
Byl = S (3.4.61)
for Cg] a differential polynomial not divisible by D and ng; < 1. Assume
(O
B = = 3.4.62
Dnr s ( )

with C’,?‘f a differential polynomial not divisible by D for all » < g — 1 and for all s < 3r + 1.

Let n = max o<r<g—1 (ny5). The coefficient of €% in (3.4.57) is
0<s<3r+1

g—1 3r+1 55[ - 3g+1 53[0]
B10s By | 21 3.4.63
55 () S e (52), 3..63)

s=0

which is polynomial. By induction hypothesis, the first summand is a differential polynomial
divided by D", and so is

39+1Ba’y . 8]1[0] Lol
Z o | 5| (3.4.64)

Choosing d = —1 implies

c)
B;g = Dr‘:o (3.4.65)
with ngo < n, so
3g+1 ah[ﬂ()]d
> B S (3.4.66)
s=1

can be written as a differential polynomial divided by D™ as well. As in the proof of Theorem
3.4.6, we apply iteratively the chain rule (3.4.41), TRR-0 (3.4.43) and choose d = 0,1,...,3¢ to
conclude that

3g+1 /3g+1
) (Z BS,ZBPS‘,%”’”> BQUM, (3.4.67)

m=k \s=m

is a differential polynomial divided by D™ for all k =1,...,3g+ 1. Let Kk = 3g + 1, then

Ry
H1 A1 ), 12 ~A2 H3g+1 ~\ _ 739,39+1
Bg 3g+1w1 C’Y}Llwl C)\ULQ ° wl C)\ggugq+1 - Dn 9 (3468)

where R? 3911 is a differential polynomial. As before, multiplying this identity by the matrix
((n~1o QO) N1 = 5TV from the right 3g + 1 times yields

0373 +1
o 9,99
Bg gg—‘,—l Dng,3g+1 ) (3469)

where C3 /3 ., is a differential polynomial and 73,41 < n+3g + 1.
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Taking the k£ = 3¢ term in (3.4.67) shows that

oy 1~ 12 ~A2 U3g ~A3g
By sqwi" &, w1 EN; - W O (3.4.70)
oy M55 H43g (39,39)A M1 fh3g41 (39+1,39)A
+ Bg,39+1 (BP39+1739 BQWL.-usg + BP39+1739+1BQ%MLW»#SQ

is a differential polynomial divided by D". Therefore,

R3)
ay LA M2 <A2 H3g ~A3g _ 39,39
By gwy’ € wiPEys,, - wy O = Drtag i’ (3.4.71)

where R55 is a differential polynomial. Multiplying this by the matrix ((n™19,9Q°)7")] = 577
from the right 3¢g times, we obtain that

Cgs
« 9,99
Bg,gg—f—l - m, (3472)

where (3,34 is a differential polynomial and ng3, < n + 6g + 1.
Repeating this argument for £k = 3g — 1,39 — 2, ..., 1 shows

ay
Byl = D% (3.4.73)
with C7'7 a differential polynomial not divisible by D. m

Remark 3.4.9. Tt is easy to track through the proof of Theorem 3.4.8 an estimate for the degrees
of the denominators n,,. To make these estimates sharper, one can use the polynomiality
in genus 0 and 1 [44], and the result of Theorem 3.6.8 below, which states that B;f = 0 for
s = 2g + 2. But, of course, the conjecture of Dubrovin and Zhang suggests that ng, < 0.

Remark 3.4.10. The combinatorics of the argument in the proofs of Theorem 3.4.6 and Theo-
rem 3.4.8 basically reflects what happens when one replaces the -classes by their pull-backs
from the moduli spaces with less number of marked points (cf. [17, Equation 3] or [83, Proof of
Theorem 4]). We make this point precise in Section 3.6.

Let us also formulate one extra bit of polynomiality of the second Dubrovin—-Zhang bracket
that follows directly from the proof of Theorem 3.4.8:

Theorem 3.4.11. The constant term of the second Poisson operator of the Dubrovin—Zhang

hierarchy, 0" ngBgO‘g, is a differential polynomial.

3.5 Liu—Pandharipande relations

3.5.1 Relation among the tautological classes

Fix sets of indices [ and I such that I; U, = {1,...,n}. Let Ay 4, C Hg,n denote a divisor
in /\_AM whose generic points are represented by two-component curves intersecting at a node,
where the two components have genera ¢, go and contain the points with the indices I, I5,
respectively. Note that if g; = 0, then |I;| must be at least 2, for the stability condition.

Let ny = |I1], ny = |Iy]. For each A,, ,, we consider the map ty, 4,1 Mg, o1 X Mgy npr1 —
M, that glues the last marked points into a node and whose image is A, 4. Let 9o
(respectively, 1)o2) denote the psi classes at the marked points on the first (respectively, second)
component that are glued into the node.
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Proposition 3.5.1 ([83, Proposition 1}). For any g >0, n >4, I and Iy such that I Ul I =
{1,....n} and |I1],|I2| = 2, and an arbitrary r > 0 we have:

S () ) tus = 0. (3.5.1)

91,9220  a1,a220
gi+g2=9g a1 +a2:
29—3+n+r

Letn=Fk+1, 1 ={1,. —1}, I, = {k,k+ 1}, and consider the map 7: ./\/lg kel — ./\/lgk
that forgets the last marked pomt. We apply the push-forward 7, to the left hand side of
(3.5.1) and to the left hand side of (3.5.1) multiplied by 1%, in order to obtain the following
corollaries.

Corollary 3.5.2. Forany g >0,k >3, 1, ={1,...,k—1} and I, = {k}, and an arbitrary

r > 0 we have:
Z Z 92(=1)" (tg1,90)«¥ai a3 = 0. (3.5.2)

9120,g2>0 a1,a2>0
gi1+g2=g aitaz=
29—2+k+r

Corollary 3.5.3. Forany g >0, k >3, I = {1,...,k — 1} and I, = {k}, and an arbitrary
r > 0 we have:

(DR T ST (1) (1,005 0 = 0. (3.5.3)

9120,92>0 ai1,a2>0
g1+g92=9 a1+a2:
2g—3+k+r

Taking yet another pushforward, we have the following corollary:

Corollary 3.5.4 ([83, Proposition 2]). For any g > 1, I = {1}, Iy = {2}, and an arbitrary
r > 0 we have:

T (ST Y Y (1) (1)U = 0. (3.5.4)

g120,92>0 a1,a2>0
g1t+g2=g ai1tazx=
2g—1+r

3.5.2 Implications for J.-derivatives of two-point functions

Equations (3.5.2) and (3.5.3) imply a number of identities for the functions 8SQa 0:5,0° In order
to formulate these identities in a useful way for the computational scheme presented in Section
3.4, we 1ntroduce a new notation.

Let 8599050 8;Q£foﬁ0, > 0, and for p > 1 we set
8 8 v 0]
ax aOﬁp _aac aOﬁp Z a()uqnu Qyolﬁp q—1 (355)

In other words, in the expansion of GSQ[Q w0.pp We use the pull-back of ¢ from Mg si2 at the
point with the primary field 5.

Lemma 3.5.5. For s > 1, p > 29 + s we have:

) 292 D10505 Qs =0, (3.5.6)

9120,92>0 ¢=0
g1+g2=g
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Lemma 3.5.6. For s > 1, p > 29 + s we have:

;ngﬁp Z Z - 1653 Oloyﬂq,r]'uuQ[BgQO]y,p qg—1° (357)

9120,92>0 g=0
91+g2=g

Recall also the notation 859 00:5.—1 = 0500g,0Map. We set 859[91 ~ = 8595}0;57_1 and for

7 767
p=0
p—1
syld] 50) sldl vl0]
8179040/3]3 - a aO,Bp Z 8$Qo¢0,uq g Q1/0,/3’,10 q—1- (358)
q=-—1
Of course, if ¢ > 0 or s > 0, then 8895]061) 8;9[5]0619, but for g = s = 0 and p > 0,
920 = 0. With this extra piece of notation we can include the case s = 0 in Lemma 3.5.6

" %a,0;8,p )
in the following way:

Lemma 3.5.7. For s >0, p > 29 + s we have:

[9] 1950) [g1] wv (ylg2]
O, aO,/o’,p Z Z Rt aqun Qﬁ,O;u,p—q—r (3.5.9)
9120,92>0 g=—1
g1+g92=g

Lemmata 3.5.5, 3.5.6, and 3.5.7 are direct corollaries of Corollaries 3.5.2, 3.5.3, and 3.5.4,
respectively. It is a rather standard translation of tautological relations into differential equations
for the coefficients of the genus expansion of the logarithm of the partition function, see e. g. [83,
Proof of Theorem 4]. Another exposition of a detailed step-by-step instruction how one can
translate a tautological relation into a PDE is presented in [51, Section 2.1.3].

3.5.3 Variation for E

In fact, as it is explained in [83, Proof of Theorem 4], all lemmata in the previous section work
without any change once we replace the operator 07 with an arbitrary s-vector field on the big
phase space. The actual result that we use below is a variation of Lemma 3.5.6 that is related
to the vector field E

Let E@xﬁf}o 50" = Ed, Qa 05,00 and for p =1 we set
p—1
E0,Q 55 = E0.00 5 — > E0Q O, (3.5.10)

In other words, in the expansion of Ed, Q[g] 0.5 We use the pull-back of ¢” from MQA at the
point with the primary field 5.

Lemma 3.5.8. For p > 2g + 2 we have:

Ea anﬁ,p Z Z - 1Ea anyﬂqanQﬁQQO]V,p q—1° (3511)

9120,92>0 ¢=0
g1+g92=9



3.6. Vanishing terms of the second bracket 63

3.6 Vanishing terms of the second bracket

The goal of this section is to prove that all terms of the second Dubrovin—-Zhang bracket that
have negative degree, and therefore cannot be polynomial, do vanish. The argument goes as
follows.

We start with two essential steps to simplify the problem. First, we replace the operator B
with a different operator B that has equivalent vanishing properties but satisfies a simplified
version of the bi-Hamiltonian recursion. Second, we employ a triangular structure with respect
to the e-degree of the change of variables from v coordinates to w coordinates in order to reduce
the problem to the vanishing of the negative degree terms of the operator B in the v coordinates.

The latter observation allows us to consider the simplified version of the bi-Hamiltonian
recursion in the v coordinates, for which the e-expansion of the {2-functions has geometric
meaning, as it coincides with the expansion in the ¢ variables. This lets us apply various
geometric observations from Section 3.5 and homogeneity properties from Section 3.4 to derive
the desired vanishing statement about B.

3.6.1 Equivalent form without the variational derivative

Recall the bi-Hamiltonian recursion:

) 3
Ba,@é_ﬁ Ql Oq/p-l-ldx = Aaﬁ 5w5 </ Ql 0,u7p+2dZL‘ (p + 2 — R) /Ql 0; Mp-i-ldiE MM)
) ) (36.1)
for p > —1. Note that A® = 9, 0 A% where A = % + O(€*) = Do € S, Ag‘g@;’, where

flaﬂ are differential polynomials in the coordinates w, and the standard gradation of AO‘E is

deg Aaﬁ = 2¢g — s. Consider the inverse operator, fla_é. It has exactly the same properties as
AP, namely, it expands as A} = a5 + O(e?) = D e €79 S22 ~gs)aﬁa where (A1), are
differential polynomials, and the standard gradation of (Ag Dag 18 deg(A Dag = 29 — s. Define

B8 .= Bor A w} v This operator satisfies a simplified version of bi- Hamﬂtonian recursion:

Lemma 3.6.1. We have:

B0y = 1770, (QB,OW,,,H (p+2— R + Qo M;L) . (3.6.2)

Proof. The way the operator A%? acts on the variational derivatives of the Hamiltonians implies
that

J

Aaﬁé E /QLO%WHCI:C:UO‘BQﬁ,On,pa (3.6.3)

hence the statement of the lemma. O

Recall that B* = 3772 €% S 9t Bas, with deg B2S = 2g + 1 — s. It is easy to see that

B has e~xpansion with exactly the same properties, namely, B = Z;O:O €% Z3g+1 nga;,
with deg Bgo‘fj =29+ 1 — s. Moreover,

Lemma 3.6.2. (1) The coefficients of the operator B®® are differential polynomials if and only
if the coefficients of the operator B*? are differential polynomials.

(2) The coeﬂficzents B;f, g=20,29+4+2<s<3g+ 1, vanish if and only if the coefficients
Bas, g=>0,29+2<s<3g+ 1, vanish.

Proof. Both statements follow from the polynomiality of fl;ﬁl. O]



64 Chapter 3.  Vanishing terms of the second Dubrovin—Zhang bracket

Finally, it is a bit easier to work in the v coordinates instead of the w coordinates, but
then, of course, all polynomiality properties are destroyed. The vanishing properties are,
however, preserved. Namely, consider the expansion of the operator B*? in the v coordinates:

Baﬂ — ZOO €29 239-‘1-1 [g]

Lemma 3.6.3. The coefficients Bgs, g=20,29+2<s <39+ 1, vanish if and only if the

coefficients B[ }ﬂ , 920,294+ 2<s<3g+ 1, vanish.

Proof. Indeed, the change of variables from w to v in B**(w(v, €), €) does not affect the terms Bg’f
such that B;,ﬁ . =0 for all ¢ < g. More precisely, under this condition B[O;]ﬁ J(v) = B;f(wﬂw:q}.
The same argument applies also to the change of variables from v to w.

Now we prove the lemma by induction on g The base of induction is obvious, and if we
prove the equivalence of the vanishings for any g < g, then for any g’ < g the top non-vanishing
terms in w (respectively, v) coordinates are B . (respectively, B[ 53} ) with s = 2¢’ + 1. Since

29" +1 < 2g+ 2 for any ¢’ < g, the vanishin of BO‘/B7 s = 2g + 2 is equivalent to the vanishing
g g vy <g g of By

ofBO"BS,3229+2. O

Remark 3.6.4. Assume that the vanishing of B > (or, equivalently, B[g’]g ,) is proved for g > 0,
s = 2g+2. Then the same argument as in the proof of Lemma 3. 6 3 1mphes that the polynomiality
of B;gg and BO‘QQ 41 1s equivalent to the polynomiality of B[g] 5 and B8 respectively, for
any g = 0.

l9],29+1°

3.6.2 Vanishing terms

Consider the expansion of the operator B*? in the v coordinates:

[%9) 39+1

pafB __ 2 Hof s

B =3¢y B or. (3.6.4)
g=0 s=0

Proposition 3.6.5. We have B[ s = =0fors>29+2,9g=>0.

Before we proceed with the proof of Proposition 3.6.5, let us note that the equation that

determines Bfg‘f . (once éﬁ]ﬁ . are known for h < g and for h = g, t > s), i.e., what corresponds to

the s-th summand of (3.4.48) in the proof of Theorem 3.4.6 or, analogously, the s-th summand
of (3.4.67) in the proof of Theorem 3.4.8, can be compactly written as follows:

Lemma 3.6.6. We have:
Z Baﬁ ot Q[QQ] _ naﬁRua Qg]

(91t %78 0:y,5—1 #,037,8

+9(3 — d)p*?a,0l

_'_Enaﬁa Qg] B0 5

503 (3.6.5)

g1,92,t=0
gi1+g2=g

Proof. Consider the genus g component of Equation (3.6.2) with p = s — 1 (recall that we use
the v coordinates for all ingredients of the formula):

paB ot lo] _ [
Z B[gl ta; 59720 v.s—1 18895 <ng $L,S (8 +1- R)'u + Q@ O;p,8—1 Mf;) . (366)
s

Then we apply (3.4.7) with p = s. We obtain:

S B O =0 RE0,Q

gltx 577751

+ En*?9 Qﬁms+g(3—d) By Q[glw

(3.6.7)

1,057y,
91,92,t=0
91+92=9
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Let us prove that Equation (3.6.7) implies the statement of the lemma by induction on s. The
base is the case s = 0; in this case Equations (3.6.5) and (3.6.7) are equivalent. Assume the
lemma is proved for all s < S. Then, for s = S we have:

92] _ aB pp lg] _ E,aB lg] o . af lq]
> B[gl]t W o R — B0, 93— d)*0.27 < (3.6.8)
>0
ntezg
afB aB B 9] @ 9] o
Z Bgl]tafs /3075 17 'BRgaxQ;io;%s - E77 & Qﬁgms g(3—d)n 'Ba QBOwS
s
S—1
[g aﬁ M g]
N (ZBgltfv 520 1 N RaQuouq
q=0 \ g1,92,t=0
g1+92=g

Oé (6% v 0
58 Q,[BQ]OHCI <3 d) 66 Qﬁg]o,uq) a QIE%’YS q—1-

This equality follows from directly from the definitions (3.5.5), (3.5.8), and (3.5.10). Now, the
right hand side of this equality is equal to zero: the first line by Equation (3.6.7), and the sum
over ¢ by the induction assumption. This implies that (3.6.5) holds for s = S and completes
the inductive proof of the lemma. O

Proof of Proposition 5.6.5. We assume that using the computational scheme in Theorems 3.4.6
and 3.4.8 we already proved by induction the vanishing of BE;‘L/]B , for h < g,t>2h+ 2 and for

h=g,t>s. Also, recall that B*” 8tQ[g2] —=0for 0 <? < s— 3g, for dimensional reasons

[1]t7z" "5 0
(1732~ vanishes on M, ;12), which we use below for gy = g and g2 = 0. Then we have:
g—1 2h+1
of [g2] 3% 550) af ot olg—h]
2;>OB[91] D7 =By a0l 607 2 ;B taxfzﬁm : (3.6.9)
0=y
g—1 s—2 2h1+1
RY8 950 afl gt oylhe] v (ylg—h]
B[g sax ,307 Z Z ZB taﬂfﬂﬁﬁ;ﬁ Q’yOVs
h=0 7’——1 h1 h2>0 t=0
h1+ho=h
g—1 s-2
naf 50) —r af P& af [h]
B[g Ol 50,%N+ZZ ( R@Q€OM+1+E77 aQﬁOuH—l
h=0 r=-1

= o
Here for the second equality we use Lemma 3.5.7, and for the third equality we use Equa-
tion (3.6.5) for g = h and s = r + 1. Note that the condition of Lemma 3.5.7 is indeed satisfied:
since t < 2h + 1 and 29 + 2 < s, we have 2(g — h) +t < s — 1.
On the other hand, for s > 2g + 2 (this inequality is crucially important for the second
summand, for the first and the third ones s > 2g + 1 would be sufficient), we have from
Lemmata 3.5.6 and 3.5.8 the following:

+En"?0,08).

aﬁRMa Q[g]

©,0;y,8

+9(3 — d)*?9,9%) (3.6.10)

Q

-1 s—1
= <—1>H—1( RS0+ B0+ 9(3 = )0 Qﬁow)nwdg"”

v,0;v,8—1—
h=0 r=0
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Substituting this expression and Equation (3.6.9) in Equation (3.6.5), we obtain:

g—1 s—1
paf 5Q) [0] af s r— 1 vylg—h]
By 02—~ =(3—dn > ) (-1 (9 —h)o, Qmw“Q%OW?H. (3.6.11)
h=0 r=0

For s —1 > 29 + 1 the right hand side of this equation is equal to zero by Lemma 3.5.5. Note
that

T7"B,0;5y,5—1

s—1
0 =gy H R | K (3.6.12)
=1 =1

(we prove it below in Lemma 3.6.7).
Now, since 8;(2/[;}0'78/:1 as given by (3.6.12) is invertible, we can use the vanishing of the

right hand side of Equation (3.6.11) to conclude that B[O;fs =0. O
Lemma 3.6.7. Equation (3.6.12) holds for s > 0.

Proof. We prove it by induction on s. The full induction statement is the following. For any
s=>0

M1 SUs S [0] s—1 Vz i
ool = % 07 it 0o Ly et 1= (3.6.13)
BO'y 5— 0 0<t<s.
For s = 0 it is the definition of Q . For the induction step we have to recall the topological
recursion relation in genus 0 (3. 3 4) Wthh implies that for p > 0
0] 0 vl
0,0 5 = 0,900 o (3.6.14)
and, therefore,
[0] o [0] v 0]
9220 0.5 = 000,01 “Qyoﬁp 1 (3.6.15)

Assume (3.6.13) is proved for s < S. Then for ¢t = 0 and s = S+ 1 the required vanishing follows
directly from the induction assumption applied to the right hand side of Equation (3.5.8). If
t > 1, then for s = S+ 1 we use (3.6.15) to obtain

t—1
t (0] t—1 [0] £l u+t1 ¢ at—1—uy[0]
aﬂEQﬂo =0, (8(2 0507) ¢,077,5— 1) Z( >8 Q605077 Oy QCOWS 1

- (3.6.16)

1<t S thent—1—u < Sforany u =0,...,t—1, and then this expression is equal to zero
by the induction assumption. Let t =S5+ 1. Thent—1—-u=5—-u< Sforu=1,...,t—1,
and therefore the corresponding summands are equal to zero by the induction assumption. Thus
for t =5 + 1 we have

S+1[0] _ £CaSI0]
0, QBO 3 89 5.0:.0 8:09(07?/1 (3.6.17)

Substitution of the non-vanishing case of the Equation (3.6.13) for s = S into this formula
proves the non-vanishing case of the Equation (3.6.13) for s = S + 1, which completes the step
of induction and proves the lemma. O

Now we are ready to state and prove our main theorem, which appears to be a direct corollary
of Proposition 3.6.5.

Theorem 3.6.8. Consider the e-expansion of the second Dubrovin-Zhang bracket in the coordi-
nates w: B =37 €% S BABgs. We have B =0 forg>0,s>2g+2.

g,s-x"

Proof. Lemmata 3.6.2 and 3.6.3 imply that the statement of the theorem is equivalent to the
statement of Proposition 3.6.5. ]



Chapter 4

A conjectural formula for DR,(a, —a),

4.1 Introduction

In [12] Buryak defined double ramification hierarchies, associated with cohomological field theo-
ries, and conjectured they are Miura equivalent to the Dubrovin—Zhang hierarchies constructed
in [46, 17]. This conjecture is further refined and made more explicit in [14], and in [16] it
is reduced to a system of conjectural relations between some explicitly defined classes in the
tautological ring of the moduli space of curves R*(M,,).

The one point case of the conjecture in [16] gives a surprisingly simple expression for the

product of the top Chern class of the Hodge bundle \; € R9(M,;) and the push-forward of
the double ramification cycle DR,(a, —a) € R9(M, ) under the map that forgets the second
marked point. For the definition of the double ramification cycle and general information on
the tautological rings of the moduli spaces of curves, see Section 1.2 and the references therein,
in particular [23, 108].

In this chapter we propose a refinement of the one point case of the conjecture in [16]. We
conjecture a formula for DR, (a, —a)\, € R?9(M, ;) in terms of a very simple linear combination
of natural strata equipped with psi classes of the same type as in [16]. We analyze this formula in
detail and prove it satisfies virtually all properties one might expect from the class DR,y(a, —a)),
including the intersections with all natural boundary divisors in Mg,g and with the psi classes,
and finally using these properties we also show that our conjecture is in fact equivalent to the
one point case of the conjecture in [16].

4.1.1 Organization of the chapter

In Section 4.2 we formulate the main conjecture, explain its relation to the one point case of
the conjecture in [16], and state the expected properties of our formula. In Section 4.3 we
introduce our main tools, a variety of corollaries of the Liu—Pandharipande relations among the
tautological classes [83], and prove all properties stated before.

4.2 Conjectural formula and its properties

4.2.1 Notation

Let M, ,, be the Deligne-Mumford compactification of the moduli space of curves with n marked
points. There is a natural action of the symmetric group .S, on My, by relabeling the points.
In particular, for n = 2 we will use the morphism that permutes the first and second marked

points that we denote by (12).: R*(M2) — R*(M,2).

67
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Let 0: My, 2 X My,2 — Mgy g2 glue the second marked point of M,, » and the first
marked point of Mm,g into a node and identify the first marked point in Mghg (respectively,
the second marked point in M, ») with the first (respectively, the second) marked point in
My, g0 Let ¢ € R (Mg, 2), ca € R*(M,,2). It is convenient for us to denote throughout the
text ¢; ¢ ¢y = 0.(c1 ® ¢2) and we use ¢ as an associative operation on classes in moduli spaces
with two marked points.

With the first two points distinguished, we can extend the notation ¢ to the push-forwards of
the morphisms o: ./\/lg1 9 X /\/lg2 24n — ./\/lglﬂ,2 24n that glue the second marked point of /\/lg1 2
with the first marked point of Mg2,2+n into a node and identify the first marked point in ./\/lgl,g
(respectively, the second marked point in M, 5., ) with the first (respectively, the second) marked
point in My, 4, 24n. We can do the same for the similar morphisms o: M, o1, X My, 2 —

M91 +g2,2+n-

4.2.2 Conjectural formula

For gi,...,gr,g > 1 and dy, ..., dx > 0 such that )7 g; = g, let ¢l % € RO+ +dths Y(M,2)
be the class represented by the bamboo

d d d d
____‘2162 = 21’ﬂg1,2<> 22’M92,20“.0w2k|m9kv2'

Denote

91,59k d
Cd|k = § o € RY(My),
915---,9k
d1,...,dg

where the sum is taken over all gy +---+ g = g and all dy + - - -+ di + k — 1 = d satisfying the
inequalities

di+-+d+0—-1<2(g1 4 +g) — 1, (=1,...,k
Note that by the definition
=0 if k>gordz>2g (4.2.1)
Let
2 —rgl
B!J = ng’ﬂg,g + Z Z Cd1 |k ¢ wQ ‘Mg2 2 (422)
91+g92=9 =
d1+da=2g— 1
g
_ d _
=) DD U L 0, 0 0 ¥ I, . € B (M),
k=1 di,edp,
g1,---,9k

where the last sum is taken over all g1 +---+gxr = ¢, ¢1,---,9xr = 1, and dy+- - - +dp+k—1 = 2g,
dy,...,dr > 0, with the extra condition that for any 1 </ < k—1wehaved;+---+d;+{—1 <
21+ +g0) — 1.

Conjecture 4.2.1. We have a=*DR,(a, —a)\, = BY.

Note that the left-hand side of this equation can be expressed in the tautological classes
using the formula of Janda—Pandharipande-Pixton—Zvonkine [67], or, taking into account the
factor \,, it is sufficient to use the Hain formula [61] (see an explanation, e.g., in [19, Section 2]).
However, the resulting expressions are much more complicated than the one we conjecture here.
Observe that the right-hand side is independent of a, which is consistent with Hain’s formula,
which states that the compact-type part of DR,(a, —a) is a homogeneous polynomial in a of
degree 2¢g. Thus, it is enough to prove the conjecture for the case a = 1.

Remark 4.2.2. Schmitt has checked the conjecture above in genera 1 and 2, as well as in the
Gorenstein quotient in genus 3, with the program admcycles [32].
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4.2.3 Relation to an earlier conjecture for the push-forwards

Conjecture 4.2.1 is a refinement of the one point case of a conjecture of Buryak, Guéré and
Rossi [16, Conjecture 2.5]. Indeed, recall the definition of the class B, | € R*¥~'(M,,) in [16].
We have:

g

Bl =2 (U7 D @@ @@

k=1 g1;---,9k
at,...,ak

where the sum is taken over all g1 +---+gx =9, g1,...,9x = 1, and aq,...,a; = 0 such that
aj+---+art+k—1=29g—landay+---+a,+0—1<2(q1+---+gg) —2for =1,..., k—1.

Let 7: ngg — Mg,l be the map that forgets the second marked point. In the one point
case the conjecture from [16, Conjecture 2.5] is reduced to the identity

a*2gﬂ.*(DRg<a7 _Q)Ag) = ngfh
see [16, Section 4.2]. On the other hand, we have the following statement.
Proposition 4.2.3. We have 7, 12).BY = B3 _,.

Proof. Tt follows from the fact that 7, (¥{) = 9! for d > 1 and 7,(«/?) = 0. Thus all terms
with d; = 0 in (4.2.2) vanish under the push-forward, and all other terms are in one-to-one
correspondence with a1 =dy — 1 and a; =d; fori =2,...,k, k=1,...,9. O

Remark 4.2.4. Note that an expected property of a=*DRy(a, —a)), is that it is invariant under
(12)., and indeed we prove below that (12). B9 = BY, g > 1, so in fact we can reformulate the
statement of Proposition 4.2.3 as 7.B? = By, ;.

In fact, it is also possible to prove a much stronger statement than Proposition 4.2.3.

Theorem 4.2.5. The two conjectural formulas, namely a=?97.(DR,(a, —a))\,) = By _, and

29—
a~ DR, (a, —a)\, = BY, are equivalent.

The first formula follows from the second one by Proposition 4.2.3. The implication in the
other direction is quite non-trivial, and we postpone its proof until Section 4.3.8.

4.2.4 Properties
We write down a list of properties of BY.
Theorem 4.2.6. We have:
(12). BY = BY; (4.2.3)

1

B =Y 424
, T =0 (4.2.4)
1

B 2 =0, G+to=9 9221 (4.2.5)

BY. 1 2 = B9 o B%, a+tg=g9g, g1,920 > 1; (4.2.6)

m(BY) by =BYollx,, + > B o (B”); (4.2.7)
g1+g2=9g
91,9221
B -y = Y 2BuoBe (4.2.8)
g1+g92=9g
9179221

where T: Hg,;; — Mg,g, g =1, in (4.2.7) is the projection that forgets the third marked point.
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The proof of this theorem is given in Section 4.3.
Remark 4.2.7. All these properties are satisfied by DR, (1, —1)\, = a=*DR,(a, —a))\,, namely:
e DR,(1,—1)\, = DR,(—1,1)\, is immediate from Hain’s formula [61].
1

1
e DR,(1,-1))\,- Xg-I) ) =0, as )\, restricts to zero on ) ).

2

1
e DR (1, —1)\,- , =0, as the classes DR,(1, —1) and ), respectively restrict to

DRy, (1,—1,0) ® DR,,(0) and )\, ® )\, on M, 3 x Mg, ;. The vanishing follows after
observing DRy, (0)Ag, = (—1)%X2, = 0.

e DR (1,—-1))\, - 1 2 = DR, (1, =1)A\y, © DR, (1, —1)Ay,, as DRy(1, —1) and A,

respectively restrict to DRgl( -1)® DRQQ( —1) and Ay, ® Ay, on My, 9 X My, .
o 7*(DRy(L,~1)Ag) -y = DRy(1, ~1)A, © 1fsg, + Tty DRy g 07 (DR ) Fllows

1,92>
from [23, Theorem 5]: one should use that 7*DR ( —1) = DR,(1,—-1,0), apply the
formula of [23, Theorem 5] with s = 1 and n = [ = 3, and then multiply the result by A,
noting that the terms with p > 2 will vanish after that.

e DR,(1,—1)),- Zgl+92 9 DRy, (1, =1)Ag, ©DRg, (1, —1)A,, follows from the formula
91,9221
of [23, Theorem 4] multiplied by A,, where one should again note that the terms with

p > 2 vanish after this multiplication.

4.3 Proofs

4.3.1 Liu—Pandharipande relations

Fix sets of indices I; and Iy such that Iy U I, = {1,...,n}. Let A, ,, C M, denote the divisor
in ./\_/lgm whose generic points are represented by two-component curves intersecting at a node,
where the two components have genera ¢, go and contain the points with the indices I, I5,
respectively. Note that if g; = 0, then |[;] must be at least 2, for the stability condition.

For each A, 4, we consider the map ¢y, 4,0 My, 1141 X Mg, 41 — Mg, that glues the
last marked points into a node and whose image is Ay, 4,. Let 1,1 (respectively, 1) denote the
psi classes at the marked points on the first (respectively, second) component that are glued
into the node.

Proposition 4.3.1 ([83, Proposition 1}). For any g >0, n >4, I, and Iy such that I Ul I =
{1,....n} and |I1],|12| = 2, and an arbitrary r > 0 we have:

D) (D) (g g)e 2B =0 € RO (M, ). (4.3.1)

91,9220 a1,a2>0
g1+g92=g a1 +a2=
29—34+n+r

This relation has the following corollaries.

Corollary 4.3.2. For any g,n > 1, r > 0 we have the following relations in R29+”+T(Mg7n+2)
(-1)29+n+r,¢§g+n+7’ + Z Z <_1)(l1 wgl |m9172+n o ¢il2 |mgz,2 — 07 (432)

9120, 92>0 a1,a2>0
g1+g92=9 ai+az=2g—1+n+r

and

2g+n+r + Z Z ( )a1¢ 1|./\/lgl . (112|ﬂg2,2+n =0. (433)

g1>0, 9220 a1,a2=0
g1t+g2=g ai+azx=2g—1+n+r
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Corollary 4.3.3 ([83, Proposition 2]). For any g > 1, r > 0 we have:
—OIT (ST S Y (D) U . 0V, = 0 € BT (M),

91,92>0 ai,a2=0
g1+92=9g a1+az=2g—1+r

(4.3.4)

All corollaries are proved by taking suitable push-forwards of the relations (4.3.1) under the
maps forgetting the marked points, see [83] and Chapter 3.

4.3.2 The symmetry property

A 7. . . . . . . _’0
Denote cf”k = (12). cf”k. We will use the following conventions to simplify notation: ¢_; 4 ¢
‘70 . . .
VS, ., = V3l 50 and Uil , © €y o == ¥l ,- Note that there is the following recursion

. —9
relation for the classes ¢

—9 - —91 d2
Cd|ht1 = E Cay |k Vo IR, .0 k20, d<29—1,
g1+g2=g
di+do=d—1
where d; = —1 is allowed in the sum to include the case £ = 0, as explained before. Let us now
prove equation (4.2.3). Let
e RY9 g __ . k91 da) . _ k di) ~—92
bE=B—@).B = E (=1)"Cay k0 V2% M, (=1 7, . © Canpr
g1+g92=9 91+g92=g
d1+d2=2g—1 d1+d2=2g—1
0<k<gn 0<k<g2
Let E, denote the terms of E consisting of exactly ¢ components, i.e.,
L (—1—=91 do| 0—1 ,dy)_ ~—92
Ly = § (=1)" cay o1 0y |Mg2,2 N E : (=1)"" |Mgb2 © Cdyle-1-
g1+g2=g g1+g2=9g
di+da=2g—1 di+da=2g—1

Lemma 4.3.4. We can write £y + --- + E; as an expression involving only graphs with ¢ + 1
vertices. In particular:

o 0+1 di+dy 79t da| dy|__ P
Ei+- -+ E=(-1) § (=1) Cd1|r<>¢2 |Mg2,2<>¢1 |Mg3,2<>cd4\s-
r4+s=0—1
91+92+93+g4=g
d1+da+d3+das=2g—3
Proof. We prove the lemma by induction. The base of induction is the £ = 1 case, which follows

immediately from (4.3.4):

2 2 d; =0 d d —0
Ey = 1/)2g|ﬂg,2 - ¢1g|ﬂg,2 == Z (=)= C_10 0¢21’ﬂg1’2 °¢12|M9272 ¢ C_qjo-
+ =
d1$dzg:229g—1

In order to prove the step of induction, assume the lemma is true for £ > 1. Then

—91 ~—94
Ei+---+ Ef—i-l :(_1>£+1 Z <_1)d1+d2 Cay|r < 1/132|ﬂg2,2 © wil3|ﬂgg,2 © Cdyls

r4+s=~0—1
91+92+93+g94=g
d1+ds +d3 +d4:2g—3

(4.3.5)
—J1
+ Z (—1)"Cay o0 05 My,

g1+92=g
d1+da=2g—1

¢ d ~—3g2
- E (-1) ¢11W91,2 © Cy e
g1+g2=9g
d1+d2=2g—1

We can split the first summand into two in the following way:



72 Chapter 4. A conjectural formula for DRy(a, —a)A,

o di+dy <2(g91 +92) —2and ds + dy = 2(g3 + g4) — 1;

o dy+dy>2(g1+g2) — 1 and d3 + dy < 2(g3 + g4) — 2.
Thus, the summand with d; + dy < 2(g; + ¢2) — 2 takes the form

/41 d1+d2_’gl da) d3| ~—94
(_1) § : ( 1) Cd1|7‘<>w2 |M9272 Owl ‘MgS,Q < Cd4|s
r4s=~—1
g1+9g2+9g3+ga=g
di+do+dz+ds=29—3
d1+d2<2(g91+92)—2

¢ d; =791 d ~—93
:(_1) Z ( 1) lcdl\rowIQ‘mg2,2<>cd3|s'
r4+s=L4,r>1
g1+92+93=g
di+da+ds=2g—2
Note that the third summand of (4.3.5) corresponds to the missing terms with = 0 in the last
expression. Similarly, for the terms with ds 4+ dy < 2(g3 + g4) — 2

041 d1+d2_'91 day d3| ~—94
(1) § (—1) Cay|r ©¥2 |M92,2 oY |Mg3,2 © Cdyls
r+s=~0—1
g1+9g2+9g3+ga=g
d1+d2+d3+d4=29—3
ds+da<2(g3+9g4)—2

—91 33
= _(_]-)E Z ( 1>d1+d2 Cd1 |7 Owgz mg%g o Cd3|s'

r4+s=£,s5>1
g1+92+9g3=g
d1+da+d3=2g—2

Again, the second summand of (4.3.5) corresponds to the missing terms with s = 0 in the last
expression. Putting everything together

—91 \793
E1+...+E£+1:(—1)€ Z (—1)d1Cd1‘T<>( (112_( )d2¢ )|M922 Cdy s
r+s=¢

g1+g2+g3=g
d1+da+d3=2g—2

Using (4.2.1) we see that a term in the last sum is equal to zero unless dy > 2¢g5. Then the
result follows after applying (4.3.4) to the last expression. ]

Applying the lemma above to E = E; + - - - + E,; proves equation (4.2.3).

4.3.3 Intersections with divisors of two types

Here we prove equations (4.2.4) and (4.2.5). It is convenient to use the following notations for
the classes of the divisors under consideration:

1

1 , ifg=hy
=D, g, D@
2 .
0, if g < h,
where we fixed h > 1. So let us prove that
wyB? =0 if wy =9, or w, = 7, (4.3.6)

We will use the following property: wg, 14,(a ¢ 8) = wy, a0 S+ aowy, B, where a € R*(M,, 2)
and € R*(Myg,2). We decompose

_ —9g
wyB? = ZEk’ where By = (—1)*! Z (Cd1|k 1Ow22|M922>'

k>1 91+92=9g
d1+d2=2g—1
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Lemma 4.3.5. We have:
~—3g4

—g1 d
Ei+- + Ep = (—1)F! Z (—1)"* %0, 4, (Cd1 1 O U5 ™, 2) OUT |, 5 © Cay s

g1+92+93+g94=g
d1+da+d3+ds=2g—3

r+s=k—1
(4.3.7)
Proof. We prove the lemma by induction. The base of induction is the £ = 1 case, which reads:
2 d d d
by = Wg¢2g’ﬂg,2 = Z (—1) 1wgl¢21’ﬂgl,2 °¢12|ﬂg2,2-
91+92=g
d1+da=2g—1

If w; = §;, then this equation follows from the genus g — 1 case of (4.3.2) with n =2 and r = 0,
after taking the push-forward under the map that glues two marked points. If w; = 4, then
the equation follows from the genus g — h case of (4.3.2) with n = 1 and an appropriate r,
after taking the product with 1 € R%(M,, 1) and then the push-forward under the gluing map
My sz x Mpy — Mgo.

Let us now assume that the lemma holds for £ > 1. Then for k£ + 1 we have

_ k1 d1+dy -9 ds| 94
Ei+- o+ B =(-1) E (-1) Wa1+ga (Cd1 | o 5 ‘MQQ ,) ot ‘M9372 © Cdyls
g1+92+93+g94=g
di+do+dz+ds=29—3
r+s=k—1

FF E (@)

g1+g2=g
d1+da=2g—1

(4.3.8)

As in the proof of symmetry, we split the first summand in the following way:

° d1+d2<2(gl+g2)—2and d3+d4>2(93+g4)_1;

° d1+d2> ( 1—1—92)—1andd3+d4<2(gg—|—g4)—2
The terms with d; + dy < 2(g1 + g2) — 2 combine in the following way:
1)

k dy —91 ~—33
(— E (—1) ngcdl\r°¢1 |Mg 29 Cdg s
g1+g2+g3=g
d14do+d3z=2g—2
r+s=~k

Note that we do not explicitly impose the condition » > 1 because we adopt the convention
—0
wo€_qo := 0. On the other hand, for the terms with d3 + dy < 2(gs + g4) — 2 we obtain

k+1 d do —g1 ~—93
<_1) * Z <_1) i CL)g1+g2 (Cd1|7‘ OwQ |Mg 2) < cdg‘s‘
g1+92+93=g
di+do+d3z=2g—2
r4+s=k,s>1
Note that the missing terms with s = 0 are exactly the ones in the last line of (4.3.8), i.e., those

corresponding to Ej.1. Putting everything together

—g1 *93
E1+---—|—Ek+1:(—].)k Z (_1>d Wgy Cgy |7 © ( (1i2_( )d2¢) )|/\/tg 2 © Cagls

91+g92+g3=g
d1+da+d3=2g—2
r+s=k

k41 Z di+ds 7 v 93
+(_]‘) ( 1) Cd1|'r<>w92¢2 |,/\/l <>Cd3|s'
91+9g2+9g3=g
d1+d2+d3=2g—2
r+s=k

The result follows from applying (4.3.4) to the first summand and (4.3.2) to the second one in
the expression above. O
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Equation (4.3.6) follows after applying the previous lemma to £ + - -- + E, = w,BY and
noting that the right-hand side of (4.3.7) vanishes in this case because of (4.2.1).

Remark 4.3.6. Note that properties (4.2.4) and (4.2.5) can be equivalently stated as
g11*<ngBg) = Oa ng*(glng) = 07

where gl : Mg 14— M 2 is the gluing map identifying the last two marked points on a curve
from M, 14, and gl,: /\/lg1 3 X My,1 — M, is the map gluing the third marked point on a
curve from M,, 5 with the marked point on a curve from M, ;. Actually, the arguments from
this section can be slightly modified in order to show that gljBY = 0 and gl;BY = 0, which
is stronger than what we have proved. The corresponding properties for the DR cycle are
clearly true: glj(DR,(1,—1)),) = 0 and gl3(DR,(1, —1)\;) = 0. This observation belongs to
the anonymous referee of [133] and we thank him for sharing it with us.

4.3.4 Intersection with a divisor of curves with marked points on
different components

The goal of this section is to prove equation (4.2.6). To this end, we need a new notation. Let
g>h> g, k>1. Denote

g1
—h —91 . . . .
— § § _1\™m E 21050k E WARTRRY)
ad‘k T ( 1) Cd1 |m < Cal,...,ak + ¢1 Cbl,...,bk )

d1+da=d m=1 T1yeenylk TlseesJk
at,...,ak bl, bk
where the first sum in the parentheses is taken over all 41, ...,7; > 1 such that i1+-- -+, = h—¢;

and all aq,...,a; > 0 such that a1+---—|—ak+k = dy and for any ¢ = 1,...,k we have
dy+ay+--+ar+0<2(g; +14 + -+ 1). The second sum in the parentheses is taken over all
J1y .-+, Jr = 1such that j1+---+j, = h—gy and all by, ..., by > 0such that by+- - -+by+k+1 = ds
and for any £ =1,... k we have d; + by + -+ by + 0 < 2(g1 +j1 + -+ + jo) — 1. In particular,

h

gd‘k =0 if k>h—g, ord>2h, (4.3.9)
and
h g1 g
g m 791 do—1 do—2
ad\l: Z Z(_l) Cd1|m<>( 22 +¢¢2 )‘ h79127 d§2g7
di+do=d m=1 ’
—h —f
Agkt1 = Z adl\ko% %, o d<2g, k=1
g <f<h
di+do=d—1

—h
It is convenient to set a g, := 0 for h < g1

Lemma 4.3.7. We have:
BY. 1 2 = B% ¢ B (4.3.10)
g1
Y S o (U v

d1+d2=2g m=1
g2—1

k+1_’ d
+ Z Z ad1|k0w22‘mg—h,2'

g1<h<g k=1
d1+d2=2g
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Proof. This lemma follows directly from the excess intersection formula [58, Section A.4]. Let
g=g1+g=fi+---+ fm for some m > 1. We have:

gg; 15;;;. 1 2 (4.3.11)

if g = e f "and
fl""vf’i*l7fi/’fi"7f7:+1$"'7fm gl f1+ +fz 1+fZ

ol " o~
_ Caryns@im1,0,5,@5 41 50O Ji= fz +Jis where fi; fz =5
1
fh ofm fi,sfi Jit1seesfm . _
Caryesaio1,ai+1, it 1yeens@m Caly-n,azi © wlcai+1,...,am, if fl et fz = g1

Recall that in the formula (4.2.2) for BY we have only c/t/m satisfying the conditions
ap+-+a+i—1<2(fi+--+fi)—1lfori=1,.... m—Tlanda;+---+a, +m—1=2g.
We apply equation (4.3.11) to all terms of the formula for B? and we distinguish the following
cases:

1. There exists ¢ such that fi+- - -+ f; = ¢1 and in addition a;+- - -+a;+i—1 = 2(fi+- - -+ fi)—
The first summands in (4.3.11) applied to these terms form B9 o B9,

2. There exists i such that f;+-- -+ f; = g1 and in addition a1+ - -+a;+i—1 < 2(f1+- - -+ f;)—
The first summands in (4.3.11) applied to these terms contribute either to the second (if
i =m — 1) or the third line (if i < m — 1) of (4.3.10). More precisely, we can say that in
both cases we get terms of the type cﬁ’ iﬁ such that j; +--- + j, = g1 for some g < p,
with an extra requirement that ¢, > 0. If q = p — 1 (respectively, ¢ < p — 1), these terms
land in the second (respectively, third) line of (4.3.10).

3. Wehave fi+---+ fm1 < g1 < fi+---+ f, for some 1 < ¢ < m. Apply (4.3.11). We get
exactly the same terms as in the previous case, but now with an extra requirement that
ty = 0. This and the previous cases deliver together all terms in the second and the third
lines of (4.3.10) that do not contain ;.

4. There exists i such that fi+---+ fi=¢granda; +--+a; +1—-1<2(fi +---+ f;) — L.
The second summands in (4.3.11) applied to these terms form the summands with ¢, in
the second and the third lines of (4.3.10).

O

So our goal is to prove that the sum of the second and the third lines of equation (4.3.10)
vanishes. To this end, we have a more general statement. Let

E:=B' 1 -@)—@)—2-B"oB” =) E,

>1
where
m+1791 —
D S G R (N | TR SN G D - FRPRRT S
d1+da=2g g1<h<g
1<m<g d1+d2=2g
Lemma 4.3.8. For any ¢ > 1 we have:
g1
m—=9 —f
B4+ E = (—1) S (=B ()" o (V57 s 1)!*17 o Cay e
fi+fa=g2 m=1
di+da+d3z=2g—1
(4.3.12)
¢
—,h er
+(=D" D (DB a0 (U8 - (—1)d2¢f2)|mh,2 O C iy =k

g1<h<g k=1
fitfa=g—h
d1+da+d3=2g—1
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Proof. We prove the lemma by induction. The base of induction is £ = 1, and it is equivalent to
the following equation:

g1
Do DT o (U5 g ) = (4.3.13)

di+do =2g m=1
g1
_ —f:
— > I YD g e (08 ) [, 0 T

J1+f2=g2 m=1
d1+da+d3=2g—1

h
do 7 d
- E (=1)%ay, °¢12|ﬂg,h,2'
<h<
di]ii-dzzgg

We rewrite ¥92 + 192! in the first line of (4.3.13) as

(L)% + gt — gy (1)t — ).

Noting that d; < 2¢; — 1 implies dy — 1 > 2gs, we apply identity (4.3.4) twice to obtain

Wty gy, = D (D™ (s ) |y ol da 220+ 1.

fi+fa=g2
ai1+tazs=da—1

(4.3.14)
If as < 2f, — 1 (in both summands), then we obtain the second line in (4.3.13), and if ay > 25,
then we obtain the third line in (4.3.13).
The induction step is equivalent to the following equation:

g1

L S 8 ) N o ) IR (e O g, 4 Cate (4.3.15)

J1t+fa=g2 m=1
d1+da+d3=2g—1

V4
—h —f2
+ (—=1)* Z (—1)% Z ag, K ( 32 _ (_1)d2w?2) ‘Mfl L9 Cay -k (4.3.16)
g1<h<g k=1 ’

fi+fe=g—h
d1+da+d3=2g—1

m 79 7
=(-1) Z (1% > (-1 Cd1|m<> ( 2 T 1)’7“2 © Cdj,\f+1 (4.3.17)

fit+f2=g2 m=1
d1+da+d3=2g—1

+1
/+1 d d d —f2
- (_1) Z BZ aall\k<> 2¢12|Mf12<> Cd3|£+1_k (4318)
g1<h<g
fit+fo=g—h
d1+da+dz=2g—1
/+1 " P
/+1 d- — d —f2
+(=1) Z (=1)® Z ag, 1k V2’7, , © Cager1ok (4.3.19)
g1<h<g k=1
fi+fa=g—h
di+do+dz=2g—1
h
041 - d:
+(=1) Z g, 001 OV’ M,y (4.3.20)
g1<h<g
di1+d2=2g

where ¢ > 1.
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In line (4.3.15) we have d; < 291 — 1 and d3 < 2fs — 1, hence dy — 1 > 2f; and by (4.3.14)
the expression in line (4.3.15) is equal to

m a —91 a a — /2
(—1)f Z Z (=1)™(-1) 2+d3cd1\m (% + 1yt 1)| . <>¢12’Mh2,2<> Caz| e
f1+f2=g2 h1+ho=f1
di+d2+d3=2g—1 a1 +az=d2—1
1<m<gqr
The part of this sum with ay + d3 < 2(he + f2) — 2 is equal to the expression in line (4.3.17)
while the part with as + d3 > 2(hs + f2) — 1 is equal to the k£ = 1 term of the expression in
line (4.3.18).
In line (4.3.16) we have d; < 2h and d3 < 2f,—1, hence dy > 2f; and applying identity (4.3.4)
we get

ﬁf2
(_1)£ Z Z Z aQ—i_d3adl|k<>w2 |Mh 2 ¢?2|Mh 2 © Cay |-k

g1<h<g ai1tas=ds—1 k=1
fitfe=g—h  hitha=f1
di+da+d3z=2g—1
The part of this sum with as+ds < 2(hy+ f2) —2 is equal to the part of (4.3.19) with k=1,...,¢
while the part with as + d3 > 2(hy + fo) — 1 is equal to the part of (4.3.18) with k =2,... ¢+ 1.
Finally the part of (4.3.19) with k = ¢+ 1 is equal exactly to (4.3.20) with the opposite sign.
This completes the proof of the induction step and the proof of the lemma. m

Equation (4.2.6) follows after applying the above lemma to £ = E; + - - - + E,, and noting
that the right-hand side of (4.3.12) vanishes for ¢ = g5 because of (4.2.1) and (4.3.9).

4.3.5 Evaluation of psi class on a pull-back

To prove (4.2.7), let us introduce the notation

~—9
. d d d
ddlk _Z Z ¢1k|'/\/[gk2 k 1|ﬂgk_1’2<>”‘<>,¢)1e|ﬂg£73<>...<>77Z}11|ﬂ91’27 k: 2 1,

=1 915+
d

where the sum is taken over all g;,...,9x > 1 and dy,...,dy > 0 satisfying g1 + -+ 4+ g = ¢,
i+ +di+k—1=d,anddy + - +ds+s—1<2(g1+---+gs) —1forall<s<k.
Similarly, for £ > 1, we define

dk oo d€+l —_ —_ dzil —_ o e dl —_
ed|k’ - E E : wl |M9k2 Owl ’M92+172<>1|M073<>w1 ‘Mgé7172<> Owl |M91v2’
=1 91,
Lyeesy dk
where the sum is taken over all gi,...,90-1,9041,...,9r = 1 and dy,...,dr = 0 satisfying

g+ +tgp=9g di+--+dit+tk—1=d,andd; +---+ds+5s— 1<2(g1—i— -+ gs) — 1 for

all 1 < s < k. Note that in particular d, = g, = 0. Note also that ed‘l = 0. We will adopt the
9 —9
convention d ;o = ey := 0.

Using

ﬂ—*(,[?b(ll’ﬂgyg) = w?‘mgﬁ - ]“Mo,g Owﬁ_lyﬂgg’ a Z 1’

it is straightforward to see that

—9 9 —9

T (Cape) = dajp — €ajpr- (4.3.21)
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As before, let

E:=r*(B) —Bollg,, — » B on"(B®)

g1+g92=9
g2+1 . . ,
— di+1|__ s 92 +1) Ty —92
= Z Z ( 1w, . 0 Cd2|k+¢11 7,2 © <dd2|k+ ed2k>)
g1+g92=g9 k=0
d1+da=2g—1
=91
- > Z ) Cank o V5 3y, 5 © Ut (4.3.22)
g1+g2=g9 k=0
di+do= 2g 1
91 ga 9 g
+s 791 d d ~ 94
_ Z (_1)7’ s d1|7“<>¢22|ﬂ92,2 <>1p13|ﬂ93’3 o Cd4|s (4323)

g1t+9g2+9g3+ga=g r=0 s=0
di+d2=2(g1+g2)—1
d3+dy=2(g3+g4)—1

s=1 if ga=0

g1 94t ! ~—94

B 2 : . 1"—}-3_’91 dzi ds|__ =
§ , § ( Cdl\r 2 |Mg2,2<> 1 |Mg32 dd4|s+ed4\s :

g1+g2+9g3+ga=g r=0 s=0
d1+d2=2(g1+g2)—1
d3+dy=2(g3+ga)—1

where we have used the already proven symmetry (4.2.3) and the corresponding mirror formula
of (4.2.2)

d ~—92
BY = Z Z ¢11|M912 Cd2|k

g1+g2=9 k=
d1+d2=2g— 1

for the factors on the right-hand side of ¢. Note that (4.3.22) is exactly the forbidden case
g3 = 0 and s = 0 in (4.3.23). Let E) denote the terms in the expression above that have k
components, i.e.,

Ek =
k-1 di+1 92 di+1 i —92
(—1) E 1 |ﬂ913 Cay k-1 T U |M912 dayje1t €y h1 (4.3.24)
g1+g2=g
di1+d2=2g—1

~—3g4
k—1 —9J1 d3 . ~—9g4 —3g4
+(-1) E Cay |r O V52 I, © (% My, 0 Cd4\s‘|‘¢1 My © | datafs T €ayps | ) -
91+92+g3+94=g
d1+d2=2(g1+g2)—1
d3+ds=2(gs+g4)—1
r4+s=k—2

(4.3.25)

The following inductive lemma will immediately imply equation (4.2.7).

Lemma 4.3.9. We can write 4 + Fy + - - - + Ex as an expression involving only graphs with
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k + 1 vertices. More precisely, we have:

—g N
El -+ E2 44 Ek = (—1)k Z (—]_)d1+d2 Cdll |7 & ¢32|m9272 wa3|ﬂgs,2 O dd4|s

g1+92+9g3+ga=g
di+da+dz+ds=2g—2

r+s=k—1
k di+d —91 d d ~—94
+(_]‘) : : (_]‘> ! 2Cd1|7’<>1/}22’mg2’20¢13|Mg372<> ed4‘s
91+92+93+ga=g
di+do+ds+ds=2g9—2
r4+s=k—1
k di+d —91 d d ~—94
+(=1) § (=D cy, 0¢22|ﬂg2?2 <>¢13|Mg3’3 © Cayls

g1+g92+9g3+g4=g
dq +d2+d3+d4=29—2
r4+s=k—1

Proof. We proceed by induction on k. The case k =1 is clear, as

2g+1 d d
Ev =", = Y, (CD)" 08 w0 vl

g1+92=9

di+d2=2g
- (1% govily L o Uflg 0T
- —-1|0 2 ,/\/lg2,2 1 Mg3,3 —-1|0
g2+9g3=g

d2+d3=2g

by (4.3.3).
Assume the lemma holds for k£ > 1, then we split F; + - - -+ F}, into three kinds of summands,
according to the powers of the psi classes:

° d1+d2<2(gl—|—92)—1andd3+d4>2<g3+g4)_1;
° d1+d2>2(gl—}-92)—1andd3+d4<2(93+94)_1;
o dy+dy=2(g1 + g2) — 1 and ds + dy = 2(gs + g4) — 1.

Note that the summands of the third kind cancel out with (4.3.25) for Ej.;. We rewrite the
terms with dy + dy < 2(g1 + ¢2) — 1 as

~—94
k dl_i_dzﬁgl da o ds L ~—94
(—1) E (=1) Cay|r @ W2 |Mg2,2<>¢1 |Mg3,2<> dg, s+ €ay s
g1+92+93+9a=g
di+do+d3z+ds=29—2
r+s=k—1
d1+d2<2(g1+g2)—1
~—9g4

—91 d d
+(=1)F Z (1)t Cap|r© ¢22|ﬂg2,2 < ¢13|ﬂg3’3 ©Cayls

g1+92+9g3+ga=g
di+ds +d3 +d4=29—2
r4+s=k—1
d1+d2<2(g1+g2)—1

~—93
. k+1 dl—zgl day ~—33 day ~—93
_<_]‘) E : (_1> Cd1|7‘<> 1 |M92,2<> ddg‘s—i_ ed3‘s +¢1 |M92,3<>Cd3|8 .
g1+g2+g3=g

d1+da+d3=2g—1
r4+s=k,r>1

Note that the expression in line (4.3.24) for Ej1 consists exactly of those terms with r = 0.
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Similarly, for the terms with d3 + dy < 2(g3 + g4) — 1:

—9g4
k di+ds —91 do ds ds ~—94
S D D G AR Y (SR MR LA

91t92+9g3+9ga=g

dy+da+d3+di=2g—2

r+s=k—1
dz+ds<2(g3+ga)—1
g3=1

k d1+d2_’gl da| d3| ~—9g4 - ~—9g4
+ (_1> E : (_1> Cd1|r<>w2 ’Mggygo wl |M93,2<> ed4|8+593701|./\/10’3<> Cd4‘s
g1+92+93+g94=g
d1+da+d3+ds=2g—2
r4+s=k—1
d3+ds<2(g3+ga)—1

33 .
_ k1 di+do 791 dy)__ P
=—(-1) E (—1) Caylr V2% [ Ry,0 @ | dagps T €as)s | -
91+92+93=g
d1+da+d3=2g—1
r4+s=k
Putting everything together, we get
k+1 dl_’gl do do 1.da 93 ~—93
Ey+ -+ By =(-1) § (=1) Cd1|r<>( v (=1 ¢2)}* Ol dy st €qys
Mgy 2
g1+92+93=g
di+d2+dz=2g—1
r4+s=k
k41 dy —J1 day ~—3g3
+(_1) E <_1) Cdl\rowl |M92,3<> Cd3|s‘
91+92+93=g
d1+d2+d3=29—1
r4+s=k
We apply (4.3.4) to the first summand and (4.3.3) to the second one to obtain
k1 di+dp 79 da ds o
Eid -+ By =(—1) ) (=)™ =y, 0V R, 0 © VP IRy © dau s
9g1+92+93+g94=g
di+do+d3z+ds=29—2
r+s=~k
k41 d1+d2"gl da) d3| ~—94
+(=1) E (-1) Cay[r OV |M92,2 oYy |/v153,2 ©€ayls
g1+92+93+ga=g
di1+da+d3+ds=29—2
r4s=k
k41 d1+d2—r91 do L d3 L ~—94
+(=1) E (-1) Cay[r OV |Mg2,2<>¢1 ‘Mgs,go Cdy|s
91+92+93+g4=g
d1+do+d3+ds=2g—2
r+s=k
which concludes the proof. O

Equation (4.2.7) follows from applying the above lemma to £ = Ey + - - - + E,,;, again using
(4.2.1).

4.3.6 Evaluation of psi class

Here we prove equation (4.2.8). We derive it from equation (4.2.7). For I C {1,...,n} with
|I| > 2 denote by 8} € R*(M,,,) the class of the closure of the subset of stable curves from M,
having exactly one node separating a genus 0 component carrying the points marked by I and a
genus g component carrying the points marked by {1,...,n}\ I. Denote by 79 : M, 5 — M,
the map that forgets the third marked point. Multiplying equation (4.2.7) by 3 and taking the
push-forward by 79, we obtain

7r£9) (¢3¢1 . 7r(g)*Bg) — Z BY! o ﬂigz) (77/]3 . 7r(92)*|392) ‘

g1+g2=9g
g1,92=1
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Noting that ¥sth; = ¥ (w@)*z/;l + 531’3}> — g @, and 19s = 29, we get 2gi - BI =

> g1+g2=g 2g2B9* © B2, as required.
91,9221

4.3.7 Evaluation of psi class: an alternative proof

It is also possible to prove (4.2.8) employing the same scheme as in the other proofs of the
paper. For that, we need the following corollary of Proposition 4.3.1:

Corollary 4.3.10. For any g > 1, r > 0 we have:

2g+1+r g2 a1 a1 az|__ B
+ Z § _(_1> % ’M9172 02/)1 ‘Mgzﬁ =0 (4326)
91,92>0  a1,a220 g
91+92=9g a1+a2=2g+r
and
2g+1+r,/2g+1+7r g1 a1 pa1|_ as|__ .
(=1) ¥ + ) Y (D) g, 0 Yl = O (4.3.27)
g1,92>0  a1,a220 g
g1+tg92=g a1+az=2g+r
Let
2
E=8"-¢;— Y Lpuope (4.3.28)
g1+g2=9g
g1, 9221
— § E d1+1| EgQ
o Mgl 2 da | k
g1+g2=g =
di+da=2g— 1
g + q g1 94 g .
3 4 T+S —J1 d2 L d3 o —g4
o Z ZZ Cd1|r<>w2 ’Mg2’2<>¢1 ’Mgg,rod4‘s'
g1+92+9g3+ga=g r=0 s=0

di+d2=2(g1+g2)—1
d3+da=2(g3+g4)—1

Let E} denote the terms in the expression above that have & components, i.e.,

_ ~—9g2
Eo= (D" > g, 0 Sy a (4.3.29)

9g1+g92=g
d1+d2=2g—1

_ 93+ 94 —g1 o TH
+<_1)k ' Z Z Ca |r<>¢32|./\/lg 2 2/}1 |./\/l Cdy|s

91+92+93+94=9g g r+s=k—2
d1+d2=2(g1+g2)—1
da+ds=2(g3+g4)—1

The following inductive lemma will immediately imply equation (4.2.8).

Lemma 4.3.11. We can write Fy + E5 + - - - + Ej as an expression tnvolving only graphs with
k + 1 vertices. In particular:

g3 + g4 —g1 d d 94
E1 + -+ Ek; = (_1)k Z —(_1)d1+d2 Cd1 | r 0w22|ﬂg}2 0w13|ﬁ93,2 © Cd4\8'

91+92+93+g4=g g
di+do+d3z+ds=29—2
r+s=k—1

(4.3.30)
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Proof. We proceed by induction. The case k = 1 follows from applying the Liu—Pandharipande

relation (4.3.26) to £y = fg+1|ﬂg2. For the inductive step, assume (4.3.30) holds for some

k > 1. Then

d ~—92
By 4+ Epyy = (—1)F E wlﬁ_llﬂgl& O Caylk (4.3.31)
g1+9g2=9g
d1+d2=2g—1
§ : g3+ g4 —91 —g4
+ (_1)k q E : Cd1|r0w32’ﬂg272 wa3|mg372 < cd4|s

g1+92+93+g94=g
d1+d2=2(g1+g2)—1
d3+ds=2(g3+ga)—1

i g3+ ga dit+dy =9 ds ds 94
+(=1) § Ty (1) Cay v O V2" R, 0 VT IRy, 2 © Caa s
g1+92+9g3+ga=g
di+do+d3z+ds=29g—2
r+s=k—1

r4+s=k—1

We can split the third summand of the above expression into three, given by the conditions:
o di+dy=2(g1+¢go) —land ds+dy =2(g3+¢g4) — 1
o di+dy>2(g1+go) —land ds+dy <2(g3+gs) — 1
o di+dy<2(g1+go)—land ds+dy >2(g3+¢gs) — 1

Note the first summand cancels with the second summand of (4.3.31). Thus, we are left with

Ei+- 4 Epq (4.3.32)
d ~—9g2
= (—1)F Z 1/)11+1’Hg1’2 ©Ciy |k
91+g92=g
d1+da=2g—1
93+ g4 —0 d d 94
+ (—1)" Z T(_I)d1+d2 Carlr© U923, 5 © ¢13|ﬂ93,2 © Cyyls

g1+92+93+9a=g
di+dz+ds+da=2g—2
di+d2>2(g1+g2)—1
r4+s=k—1

k 93 + 94 d1+ds —Jg1 do L ds ~—94
+(=1) E Ty (—1) Cay |r © V5 |Mg2’2 o1y |ﬂ93,2 ©Cayls
g1+92+93+9a=g
d1+d2+d3+d4=2g—2
di1+d2<2(g1+g2)—1
r+s=k—1
~—92

= (- > VI, 5 0 S (4.3.33)

g1t+g2=g
d1+da=2g—1
k gg di+d —J1 d ~—33
+(=1) > (DI o U, L © Cay et (4.3.34)
g1+92+9g3=g g

d1+da+dz=2g—1
r+s=k—1

g2 + g3 —g1 —93
—(=nF > =D oY |xz, L © Cay s (4.3.35)
g1+g2+9g3=g

di+dso +d3 =2g—1
r+s=k—1

Note that in both summands dy > 29 4+ 1, so we can apply the Liu-Pandharipande relations
(4.3.4), (4.3.26) and (4.3.27). It is convenient to single out the terms with r = 0 and s = 0 so
that the term with r = 0 of (4.3.34) will combine with (4.3.33) and the terms of (4.3.34) with
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r # 0 will be put together with the terms with s # 0 of (4.3.35) as in (4.3.4). In other words,

E]. + “ e + Ek?+1 = (4.3-36)
k di+1 d di+1 <92
(03 (0 e~ GO ) 0 Tl
dlildtgi;gg*l
gl d ~3g2
— (—=F Z _(—1)d1¢21+1‘mgl,2 ©Cdylk
g1+g92=9 g
d1+d2=2971
D Bt o (VR U, — ¥, ) © T
dy |r+1 2 Mg, 2 1 Mgy 2 ds|s+1
dl‘?l*lj;gf;lzgi;gg*l
r+s=k—2
92 dy —91 d ~—33
- <_1)k Z E(_l) ' Ca, | r+1 Owlﬂﬂgzw? ¢ Cd3‘5+1
d1$£$;3£;q{1
r4+s=k—2
gs —9J1 d
- (—1)k Z _(—1)d1 Cd1|k<>1/’12+1‘M92,2'
g1+92=9g g
d1+d2=2g—1

Applying the corresponding Liu—Pandharipande relations (4.3.4), (4.3.26) and (4.3.27), we have:

Ei+ - 4+ Eppq (4.3.37)

k di,.d d ~93
= (-1 Z (=1) 1¢21|ﬂ91,2 0¢12|ﬂ92,2 ©Cayk
g1+92+93=g
di+da+dz=2g—1
k 91 di,d d <93
- (=1 Z =(-1) 1¢21|M91,2 0¢12|ﬂg2,2 © Caylk
91+92+93=g 9
di+da+d3=2g—1
k g4 dy+dy 791 d d 94
— (=1 Z g(_l) T C e 0¢22|ﬂg272 © ¢13|ﬂ93,2 © Caylst+1
g1+9g2+9g3+ga=g

d1+d2+d3+d4=29—2
r+s=k—2
k g3 dy+dy 791 do) d3|__ ~94
—(=1) > g(—l) Cay 1ra1 @ V2 Wy, 0 © VT My 0 © Caa) st
g1+9g2+9g3+ga=g

dq +d2+d3+d4=29—2
r+s=k—2

k g3 di+dy 79 d d
—(-1) E E(_D Tk °¢22|ﬂ92,2 °¢13|ﬂ93,2
91+92+93=g
d1+da+dz=2g—1

~—g4

g3+ g4
=(-DF Y () e, L, 0 Uy, © Caals (4.3.38)

92+93+g4=g g
d2+d3+d4=2g7 1

k 93+ ga dytdy =91 d d s
St Y B ol vl 0T, (4339
g1+92+93+g4=g
di+do+dz+ds=29—2

r4+s=k
r,s>1

gg —91
S0 Y By e o vl o U (4:3.40)
g1+g2+g3=g
d1+da+d3=2g—1
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Now note that (4.3.38) and (4.3.40) are (4.3.39) for r = 0 and s = 0, respectively. Therefore,
Byt oot By = (4.3.41)

k+1 E g3+ 94 di+dy 791 da|__ ds|__ o
(_1) g <_1) Cd1"r'<>w2 ‘M9272 Owl ‘M93,2<> Cd4|s'
91+92+93+ga=g
d1+da+ds+ds=2g—2
r+s==k

O
The proof of (4.2.8) follows immediately by applying the previous lemma to E = Ey+- - -+ E,.

4.3.8 Equivalence of the conjectural formulas

In this section we prove Theorem 4.2.5.

Lemma 4.3.12. Suppose C9 = DRy(1,—1)\, or C9 = B9. Then for g > 1 we have

C9 = - mmp 09— Y C% omym,C®, (4.3.42)

g1t+g2=g
91,92>1

where my: th — Mm is the map forgetting the second marked point.

Proof. The proof is based on properties (4.2.3)—(4.2.8), which are also true for the class
DR,(1,—1)A,. Consider the following diagram of forgetful maps:

T2
Mgys—— Mgy,

S

0 L,
Mgo—— Mgy,

where the subindices denote the number of the point that a map forgets. Note that under the
map 7 the third marked point on a curve from M, 3 becomes the second marked point on the
resulting curve from M, ,. We then compute

U1 w3 O =y - MR CY = by T FCY = ma. (i - F3C) = ma. (w0 — o8) - F00)
=1, (Y1 - F5C9) — 75 (531’3} : %;cg)

U2 <Cg ollgg, + Y. C%o %;C”) — T3 (55173} .%;Og>

gi+g2=g
91,92>1

—C7 4+ Y O om O — . (8- FC0)

g1+g2=9g
91,9221

=CY + Z C9' o 3T, C9 — T3, (551’3} '%50g> v

gi1+g92=9g
91,9221

and it is sufficient to check that 551’3} -5 C9 = 0.

Indeed, for Cy = DR,(1, —1)A, we have 68"% . 73(DR, (1, —=1)A,) = 68" - DR, (1,0, —1)), =
1|m073 o DR, (0,0)\, = (—1)91\ﬂ0,3 o )\3 =0.

In the case C9 = BY, from (4.3.21) it is easy to see that the class ;B9 — w%g is supported
on the stratum in ﬂ%g that doesn’t intersect the divisor corresponding to (531’3}. Therefore,
5({)1’3}-(7?;‘ BY—7%) = 0, but we also obviously have 5({)1’3}-2@9 = 0, which gives 551’3}-%’; BY=0. O
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Assuming 7y, (DRy(1, —1)\,) = m2.BY, the equality DRy(1, —1)\, = BY immediately follows
from formula (4.3.42) by the induction on g. This completes the proof of the theorem.






Chapter 5

Infinite-dimensional Frobenius manifolds and
the Stokes phenomenon

5.1 Introduction

Dubrovin-Frobenius manifolds were introduced by B. Dubrovin in [39] to provide a coordinate-
free description of the WDVV associativity equations [118, 35] of two-dimensional topological
field theory. While on the one hand Dubrovin—Frobenius manifolds provide the leading invariant
in the reconstruction of higher-genus generating functions of several enumerative objects, on the
other hand they have proven valuable in the classification and study of a large class of integrable
hierarchies with one spatial variable [46].

The program of extending the tools of Dubrovin—Frobenius manifold theory to integrable
hierarchies in two spatial variables, that is, 2 + 1 integrable systems, started in [28] with
the definition of an infinite-dimensional Dubrovin—Frobenius manifold M, associated with the
dispersionless limit of the bi-Hamiltonian structure [25] of the 2D Toda lattice due to Ueno
and Takasaki [117]. In [29] the Dubrovin equation of M, was derived and studied, in particular
by obtaining a Levelt basis of solutions near its regular singular point at ( ~ 0. This yields a
canonical basis of Hamiltonian densities for the principal hierarchy of Mj, which constitutes a
non-trivial extension of the dispersionless 2D Toda lattice.

In recent years, several other examples of infinite-dimensional Dubrovin—Frobenius manifolds
have been constructed. In [126] a family M of infinite-dimensional Dubrovin—Frobenius
manifolds, all of them underlying the dispersionless 2D Toda lattice and coinciding with M,
for n = m = 1, was defined. A similar infinite family for the dispersionless two-component
BKP hierarchy was discussed in [125]. Other remarkable examples are the infinite-dimensional
Dubrovin-Frobenius manifold associated with the dispersionless KP hierarchy, defined in [100],
and a family of infinite-dimensional Dubrovin—Frobenius manifolds underlying the Whitham
hierarchy, recently obtained in [84].

The existence of a theory in full genera associated with these infinite-dimensional Dubrovin—
Frobenius manifolds is still not clear. In this direction, a partial cohomological field theory of
infinite rank has been recently defined in [21]. Its associated Hamiltonian integrable hierarchy,
in a certain reduction, has been shown to coincide with the KP hierarchy.

In this chapter we continue the study of the Frobenius manifold M, associated with the 2D
Toda hierarchy.

First, we revisit the definition of the canonical coordinates introduced in [28], showing that
the continuous family u, has to be supplemented by a finite number of discrete coordinates u;,
@; given by the critical values of the two superpotentials A, A, in analogy to the usual description
of canonical coordinates for finite-dimensional Frobenius manifolds given by a superpotential.
To give a better justification for the somewhat ad hoc definition of the canonical coordinates u,,

87
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we study the spectrum of the operator & of multiplication by the Euler vector field. We show
that the continuous canonical coordinates wu, coincide with the generalized eigenvalues of U,
while the standard eigenvalues are given by the critical values u;, %;. To give a more accurate
and rigorous description of the tangent and cotangent spaces to My, here we make a distinction
between the cotangent space and its representable (via the metric) subspace. This is necessary
to deal with the non-representable differentials of several basic functionals on M, including
those of the canonical coordinates.

We then consider the Dubrovin equation at its irregular singularity at ¢ ~ oo. We reformulate
it as an equation on the cotangent space to M, rather than on its representable subspace, to
allow for sufficiently large families of solutions. We study the formal solutions of the Dubrovin
equation at the irregular singularity, remarkably finding that such formal solutions are not
uniquely determined by their leading order, unlike in the finite-dimensional case, but depend on
a large set of parameters.

Our final aim is to describe the Stokes phenomenon for the irregular singularity of the
Dubrovin equation and, in particular, to compute its Stokes matrices. We obtain an infinite
family of solutions given by integrals along the unit circle and compute their asymptotics. We
are however faced with the problem that such a family has trivial monodromy around ¢ ~ oo and
cannot be considered as the analogue of a fundamental solution in the finite-dimensional case
or, in other words, it is not complete. To solve this problem, we apply the theory of resurgent
functions to certain formal solutions for which we have an explicit description, namely those
obtained as asymptotic series from the integral solutions. What we find in the resummation
process is a large family of solutions which are nevertheless weak, i.e., they do not extend to
linear functionals defined on the whole tangent space. For such a family, we explicitly compute
the Stokes matrices. For simplicity, this last part of the chapter is conducted restricting to a
two-dimensional locus in M, where the superpotentials have a particularly simple form.

5.1.1 Organization of the chapter

In Section 5.2 we recall the definition of the 2D Toda Dubrovin—Frobenius manifold M, given
in [28, 29]. In Section 5.3 we revisit the canonical coordinates and prove they coincide with the
(generalized) eigenvalues of the operator U of multiplication by Euler vector field. In Section 5.4
we derive the Dubrovin equation on the cotangent spaces. In Section 5.5 we find the formal
solutions to the Dubrovin equation at co. In Section 5.6 we study an infinite, albeit incomplete,
family of integral solutions to the Dubrovin equation with suitable asymptotic expansions at co.
Finally, in Section 5.7 we apply the resurgence procedure to the formal solutions which arise as
asymptotic expansions of the integral solutions, obtaining this way a family of weak solutions
parameterized by the unit circle S*. These solutions appear naturally in monodromy-related
pairs, allowing us to study the Stokes phenomenon in a similar fashion to the finite-dimensional
case. The section ends with the explicit computation of the infinite-dimensional analogue of the
Stokes matrices.

5.2 The 2D Toda Dubrovin—Frobenius manifold

In this section, we recall the definition of the 2D Toda Frobenius manifold from [28, 29].

5.2.1 The manifold M and its tangent bundle

Let Dg be the closed unit disc in the Riemann sphere, D, the closure of its complement and
S = Dy N Dy, the unit circle. For a compact subset K of the Riemann sphere, we denote by
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H(K) the space of holomorphic functions on K, i.e., functions which extend holomorphically to
an open neighborhood of K.
We define the infinite-dimensional manifold M as the affine space

M = {(\2),M2)) € 2H(Dw) & %’H(Do) | A(2) = 2+ O(1)}. (5.2.1)

A point A = (A(2),A(z)) € M can be represented by the Laurent series at oo and 0 of its
components

ANz)=2z+ Zukzk, Mz) = Z 2" (5.2.2)

k<0 k>—1

We identify the tangent space at a point A with the vector space underlying the affine space M

T\M = H(Dax) & TH(Dy). (52.3)

5.2.2 The manifold M,

We define M as the open subset of M consisting of the pairs (A(2), A(2)) satisfying the following
conditions:

(T1) The leading coefficient #_; of A(2) is nonzero.
(T2) The derivative of w(z) := A(z) + A(z) does not vanish on S?.

(T3) The curve parameterized by w(z) for z € S! is positively oriented, non-self-intersecting
and encircles the origin w = 0.

(T4) The map o(z) := W);f/-\)@ has non-vanishing derivative on S*.

(T5) The functions \'(z), N'(z) are non-vanishing for z € S*; equivalently, the curve o : S* — C
does not pass through the points 0 and 1.

Remark 5.2.1. These conditions were introduced in the literature in different places [28, 126,
29], mainly to avoid non-generic cases and to simplify some of the definitions and the proofs.
Conditions (T2) and (T3) are used in the definition of the metric and the flat coordinates.
Conditions (T4) and (T5) are used in the definition of canonical coordinates and in the
computation of the spectrum of the operator U.

5.2.3 The w-coordinates

Sometimes it is more convenient to represent M, as a two-dimensional bundle over the space
M,eq C H(S') of parameterized simple analytic curves:

MO — Mred eCeC
(A(2), A(2)) — (w(2),v,u),

where w(2) = A\(2) + A(2), v = 1ip = (\)p and e = @i_; = (\);. The map can be inverted by

Mz2) = weo(2) +2—v—e“z7", Mz) = ws1(2) — 2z +v+e27 (5.2.4)
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We refer to the triples (w(z),v,u) as w-coordinates. In these coordinates the tangent vectors
are represented as elements of H(S') @ C? via the map

T5M = H(Dy,) & EH(DO) — H(S") @ C?
(X(2), X(2)) = (W(2), Xy, Xu),

(5.2.5)

where

X X (Z)a XU - XO) Xu = e_uX—la
X(2) =We(2) = Xy, —e"Xuz ', X(2) = Wai(2) + X, +e" X2t

Remark 5.2.2. Recall that the projections ()s, : H(S') — 2PH(Dy), ()<p-1 : H(ST) —
2711 (D) and (), : H(S') — C are defined by

2 wf(w)

(f)sp(2) = kz>p szk = o .t mdw, (5.2.8)
_ _ 2 w? f(w)
(Nep-1(2) = Ig:lszk =i P o (5.2.9)
1 d
e =to=15_ ]{_1 f(Z)z‘p;Z, (5.2.10)

where f(z) = >,z fu2" and p € Z.

5.2.4 The metric and the cotangent bundle

On the tangent spaces we define a symmetric non-degenerate bilinear form 7, called the metric,
by

A 1 X(2)Y(z)
X vy —¢ 2BV Xy, XY, 5.2.11
(X, Y) 27 Jio 220'(2) “t + ( )

where X,Y € T 5 M are represented as triples in H(S') @ C?. By explicitly constructing the flat
coordinates, it was proved in [28] that the metric 7 is flat.

The cotangent space T)i\"M is defined as the algebraic dual of the tangent space, i.e., as the
space (T5M)* of all linear functionals on T5M. The metric defines an injection 7, of T5M into
T M by

A

X o (X)) = (X, ). (5.2.12)

A cotangent vector £ € T' M that is in the image of 7, is called representable, and we denote
§eTM™P.

Remark 5.2.3. In this work we take a rather different approach to the cotangent bundle compared
to [28, 29]. This is motivated by the fact that we need to consider functionals on M, whose
differentials are not representable. For example, the differentials d\(p), d\(p) and du, are not
representable.
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5.2.5 The associative product

The product on the tangent spaces is defined by

V() Y(2) e ( Y (2)

2w'(2)

v (X(Z) (Y>0(2) — (2w'(2))>0

(X (2) Y(z) ) + XY, + XM)

2w'(z)

for X,V € T M represented as triples in H(S') @ C2. It was proved in [28] that the product
is commutative, associative, with a unit vector field given by e = (—1,1) or, equivalently, by
e = (0,1,0). Moreover, it is compatible with the metric 7, namely

nX-Y,Z)=n(X,Y-2) (5.2.14)

for any X, Y, Z € T5 M. If follows that n(X,Y) = (X -Y) for £ € Ty M™P, with & = n.(e) = du.

Remark 5.2.4. Expression (5.2.13) for the product of tangent vectors corrects a sign mistake in
the literature, c.f. [29, Lemma 15].

Finally, the Euler vector field is defined by
E = (\z2) — 2N (2),A(z) — 2N (2)), or E=(w(z)—z2u'(2),v,2). (5.2.15)
In [28] it is proved that

Theorem 5.2.5. (Mo, n,, e, E) is an infinite-dimensional Frobenius manifold of charge d = 1.

5.2.6 The operators U/ and V

The operator U : T5M — T5M of multiplication by the Euler vector field is defined on each
tangent space as U(X) = E - X. Using (5.2.13), one obtains

UK) = ((w(z) —a/(2)) (X>0(Z) ()02 XD & ( Xz) Xu) n XU)

2w'(z)  w(z) oz \zw'(z)

+ zu'(2) (((w(z) — 2w'(2))>0 X(2) )<0 - ((w(z) —20(2))<o e )20

2w’ (z)

+2§ ( X(2) +Xu> 4 XE) ) , (5.2.16)




92 Chapter 5. Stokes phenomenon and Frobenius manifolds

The grading operator V : T\ M — T5M is defined as

1
V= -VE (5.2.17)

where V is the Levi-Civita connection of the metric . Explicitly, see [29], it is given by

V(X) = (—@ + 20, <X(2>Z§”UE2)) —X7 %) . (5.2.18)

5.2.7 At a special point

To simplify computations, we will specialize certain constructions to a two-dimensional subman-
ifold of M, given by the points A\ of the form

M(2) =2z —v—e'z ! M(2) =v+e'z7t (5.2.19)

or, written as a triple,

~

Ao = (2,v,u). (5.2.20)

Notice that conditions (T1)-(T5) are satisfied if [e"| # 1.
At )\ the operators U and V have the simpler form

UKX) = ((v+ 227X (2) + 2" X, 2¢"X1 +vX,, 2X, +vX,), (5.2.21)
. X X, X
V(X) = (—% + 2X'(2), —7”, 7“) : (5.2.22)

5.3 Spectrum of / and canonical coordinates

In this section, we compute the spectrum of the operator U at an arbitrary point of the Frobenius
manifold and we show that the generalized eigenvalues correspond to the continuous canonical
coordinates introduced in [28], while the discrete spectrum is given by the critical values of A

and \.

5.3.1 Canonical coordinates

For a semisimple finite dimensional Frobenius manifold with superpotential A(z), the canonical
coordinates are typically given by the critical values of A(z). In the case of the infinite dimensional
Frobenius manifold M, however, it is not immediately clear what should take the place of the
critical values, since one expects an infinite number of canonical coordinates and, instead of a
single superpotential, there are two: A(z) and A(z).

In [28] it was suggested to consider the following linear combination of the two superpotentials

Ao (2) = oA(2) + (0 — 1)A(2) € H(S") (5.3.1)

for a parameter 0 € C. One should then look for the critical points of A,(z) that are located on
St. The condition X (z) = 0 for z € S* defines a curve 3 = {o(z)| z € S'}, parameterized by

N(z)

EESIE) € H(SY), (5.3.2)

o(z) =
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which is holomorphic on S! as the denominator is non-vanishing for A € My, and is non-singular,
ie. 0'(z) # 0, if and only if
NN (2) = N'(2)N(2) #0 (5.3.3)

for = € S'. For non self-intersecting 3, we define the (continuous part of the) canonical
coordinates at the point A as the set of critical values

Uy = Ao (2(0)) (5.3.4)

for 0 € 3, where z(0) : ¥ — S is the inverse of o(z), which is a critical point of \,(z). Since
¥ is parameterized by z € S!, we might as well index these coordinates by p € S, denoting

Up = Ug(p) = Aa(p)(D)-

In the following, we show that this seemingly ad hoc definition of canonical coordinates
emerges naturally from the spectrum of the operator . Indeed, the generalized eigenvalues of
U are exactly given by the canonical coordinates defined above.

The operator U turns out to also have standard eigenvalues, which are given by the critical
values of the superpotentials —\(z) and A(z) on their respective domains of definition, D, and
Dy. More precisely, consider a point of My at which A(z), resp. A(z), has n, resp. 7, critical
points in D, resp. Dy. We define the following critical values:

u; = —A(2), /\/(Zz‘) =0, 2 € Do, i=1,...,n,
U = M), N(z) =0, z; € Do, i=1...,n

The canonical coordinates on M, are given by the set of all critical values as defined above:
{tp, Uiy Uj }pest izt,...nj=1,..7- (5.3.7)
The differentials of the discrete canonical coordinates w;, @; are
du; = —d\(z;), di; = d\(%), (5.3.8)

which can be represented as vectors in 75 M via the injection 7, as follows

du; = (zw’(z) il ’e_’ 1) , du; = (zw’(z) i , ‘ ,1> : (5.3.9)

22— 2 Z Z2—Z Z

We will show below that these differentials are actually the eigenvectors corresponding to the
eigenvalues u; and @; of U.

It turns out that the generalized eigenvectors of U, corresponding to the continuous family
of canonical coordinates u,, are given by

duy, := dX\(p)|o=o(p) = (o(p) — 1)dN(p) + o (p)dA(p), (5.3.10)

for p € St

Remark 5.3.1. Notice that in the previous definition we have slightly abused the notation, since
the last formula does not represent the differential of u,, but the differential of A,(z) for fixed
o, later evaluated at o = o(p). This is consistent with the fact that, as in the case of discrete
canonical coordinates, the critical point should be allowed to vary as we differentiate along the
Frobenius manifold, but on the contrary it would be fixed at a point of S! if we differentiated
directly wu,.
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Remark 5.3.2. The formula for the continuous canonical coordinates might be understood as the
Legendre transform of the function A(w) = A(z(w)), where z(w) is the inverse of the function
w(z) = X\(z) + A(z) defined on S*. Denote by w(o) the inverse of

oA N (z)

o(w) = 8_w(w) = N(z(w))' (w) = NEESIE] (5.3.11)

e=z(w)
The Legendre transform of A(w) is indeed
ow(o) — AMw(o)) = ow(z(0)) — Mw(z(0))) (5.3.12)
— [0\ + A2) = M) gy = M(2(0)) =

where z(0) is the inverse of (5.3.2).

5.3.2 Spectrum of U

Let us consider the operator ¢ of multiplication by the Euler vector field E, see (5.2.16), at an
arbitrary point A in M:

U: Tj\M — T;\M. (5313)
The generalized spectrum of the operator i is defined as the spectrum of the transpose
U T5M — TS M, (5.3.14)

defined by < U*¢, X >=< {UX > for all X € TyM. Explicitly, we say that { € T; M is a
generalized eigenvector corresponding to the generalized eigenvalue p if

<EUX >=pu<&X > (5.3.15)

for all X € T5M. Since U is symmetric w.r.t. the metric 1, a standard eigenvector X e M
with eigenvalue p is mapped by the injection 7, to a generalized eigenvector for the same
eigenvalue .

Notice that a family £ C T M of cotangent vectors defines a map from T5M to the space
of functions over E. We say that E is complete if this map is injective, i.e., if it defines an
isomorphism of T5M with the space of functions £’ given by its image.

Proposition 5.3.3. At an arbitrary point A of My, the spectrum of the operator U is given by

1. the eigenvalues u; with eigenvectors du; fori=1,...,n,
2. the eigenvalues u; with eigenvectors du; for j =1,...,7n, and

3. the generalized eigenvalues u, with generalized eigenvectors du, for p € S*.
Moreover, the set of all eigenvectors {du,, du;, du;} is a complete family in I5M.
Actually, the completeness of the set of eigenvectors is realized via an explicit isomorphism
V:To\M — H(SHYeC' e C”
X — ((dus, X), (du;, X), (dij, X)). (5.3.16)

Corollary 5.3.4. The operator U in the representation given by ¥, i.e. U := WYV, is
diagonal

U:H(SHeC'aC" — H(SHeC aC"
V= (V) Y it AV ) = UY) = (Y () i (@) (53.17)

..........

We now proceed to prove Proposition 5.3.3 first by an explicit approach at the special point
in the following section, then in the general case in Section 5.3.5. In Section 5.3.4 we prove a
key lemma that will also be used in later sections.
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5.3.3 Proof at the special point

At the special point Ay = (2, v, u), the operator U takes the simpler form (5.2.21). This allows
us to give an explicit proof of the proposition. It is evident in this proof that the formula for
the canonical coordinates emerges from and is uniquely determined by the form of the operator
U. The first part of Proposition 5.3.3 can be restated as

Lemma 5.3.5. The operator U acting on T5 M = H(S) @ C? has the following eigenvalues
and eigenvectors

Uy = v =+ 2ie"/?, dus = (£2(z £ie"?)71 F1,ie”?), (5.3.18)
iff |€"] > 1 and the following generalized eigenvalues and eigenvectors

2 u R u u
Uy = v+ %, (du,, X) = ;—ZX(p) + Xo(p) + X, + %Xu, (5.3.19)

for p e Sh.

Proof. First, let us compute the eigenvalues and eigenvectors. The equation U (X ) = ,uX takes
the explicit form

(v+2e"27 )X (2) +2e“ X, = uX(2), (5.3.20)
2" X +vX, = pX,, (5.3.21)
2X, + vX, = pX,. (5.3.22)

For ;1 = v the system becomes

2 X(2)+ X, =0, (5.3.23)
X, =0, (5.3.24)
X, =0. (5.3.25)

The first equation implies that the only possibly non-zero coefficient of the Laurent expansion
X(2) =D rez X2" is X, which is zero by the second equation. Thus, X,, also vanishes and

~

X =0, so i = v is not an eigenvalue. Therefore, we can assume p # v.
Let p = % The system becomes

(2 = p)X(2) = ple 2 X, (5.3.26)
pXy = Xy, (5.3.27)
ple X, = X,. (5.3.28)

We rewrite the first equation as

X(z) ple X,
2 z—p

(5.3.29)

If |p| = 1, the function X (z) defined as above would have a single pole at p, so it would not be

an element of H(S!). Extracting the zeroth coefficient of the Laurent expansion of the left-hand

side yields

1 Semv d
re %= (5.3.30)

:ﬁ =1 Z —D 2

1
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If |p| < 1, the two poles of the integrand lie inside the unit circle, so the integral vanishes and
the equation admits no solutions. If |p| > 1, we obtain ¢* = —p?, which has two solutions iff
le¥| > 1, namely py = Fie*/2, which correspond to the eigenvalues uy and the eigenvectors du..

Let us now compute the generalized eigenvalues. Let p = p — v, then the generalized
eigenvalue equation takes the form

(w,, (2e"271 — p) X (2) + 2" X)) + (wy, 26" X — pX,)) + (Wu, 2X, — pX,,) = 0, (5.3.31)
for a functional w = w, + w, + w,. If p = 0, then the previous equation becomes
(w,, 2 27 X (2) + 2" X)) + (wy, 26" X1) + {wy, 2X,) = 0. (5.3.32)

Choosing X = (0, X, 0) implies w,, = 0. Choosing X = (0,0, X,) implies w, is zero on constants.
Then choosing X = (X;2,0,0) shows that (w.,2e"27'X(2)) = (w.,2¢“X;) = 0 because the
argument is constant, so we can conclude that w, = 0. Finally, we choose X = (X(2),0,0),
which shows w, = 0. Therefore, we can assume p # 0.

Let p = %. Substituting in the equation above, we obtain

(o (B = 1) X(2) + pXo) + (w0, pXs = X0) + (w0, 67pX,, = X,) = 0. (5.3.33)
z

Choosing X = (0,0, X,) implies w, = p(w,, 1). Choosing X = (0, X, 0) implies w, = e “pw, =

A

e “p*{w,, 1). Substituting and setting X = (X(z),0,0) yields
(wor (E=1) X(2)) + e X (s 1) = 0. (5.3.34)
z

Consider first the case |p| # 1. Multiplication by (2 — 1) is then invertible in H(S"), so we
obtain

z

p—=z

(w., X(2)) = —e “p? ( X(Z)) (w., 1). (5.3.35)

1

Clearly w, = 0 iff (w,,1) = 0. Thus, we can assume (w,, 1) # 0 and, without loss of generality,
take (w,, 1) = 1. Setting X (z) = 1 gives the equation

1
1=—e"p’ ( : ) = —e Up? ( > . (5.3.36)
p—=z 1 p—=z 0

If |p| < 1, the right-hand side vanishes, so there is no solution. If |p| > 1, the equation becomes
p? = —e*, which admits the solutions p+ = Fie*/? when |e*| > 1. The generalized eigenvectors
w4 associated with p. have eigenvalues uy and correspond to the eigenvectors duy computed
above, more precisely n,duy = —ie "/ ?wy.

Finally, let us consider the case |p| = 1. One can check that the functional given by

(w2, X(2)) = e"p* Xz (p) + X (p) (5.3.37)

satisfies (w,,1) = 1 and equation (5.3.34). Let us now show that it is the only solution for fixed
p with |p| = 1. Let «, be a solution of (5.3.34) with (., 1) = 0. Then «, is zero on the subspace
(2 —1) H(S"), which is the subspace of H(S') of functions vanishing at z = p. Therefore,

{0z, X(2)) = {az, X(p)) + (@, (X(2) = X(p))) = X(p){z, 1) = 0, (5.3.38)

so a, = 0. Now let w. be a solution of (5.3.34) with (w’,1) # 0. We can renormalize it and
consider the case (w’,1) = 1. Then w, — w/, is a solution of (5.3.34) vanishing on 1, so it must
be identically zero, hence w’ = w,. The result follows by noting that w = e “pdu,. O]
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Remark 5.3.6. Notice that in this case we have

u

~ e¥ e e
<dup, X> = <(]¥ + 1) X) + ]?Xgo + ?(Xl + Xu) + (XU + 6”X2). (5.3.39)
>1

In the case |¢“| < 1, one can easily check that knowing Y (p) = (du,, X) is sufficient to reconstruct
X, showing completeness. However, in the case |e*| > 1, we also need to know Y = (dus, X)
to invert (5.3.16). In Section 5.3.5, we will give a general formula for U1

5.3.4 A key lemma

The following lemma will be used in the general proof of Proposition 5.3.3 and also in Section

5.6.
Lemma 5.3.7. Let X = (X(2), X,, X,) € H(SY) & C2. The function

w(z)

(A (2),UX) — Ao (2)(dAo (2), X) + 2N, (2) <d)\g(z), ( X(2),0, —XU>> (5.3.40)

zw'(z)

is a scalar multiple of z\. (z), namely it is equal to

AN (2) [((1 - ZZ”U(”;;)) X(z))o - Xv] . (5.3.41)

Proof. Let us rewrite \,(z) as a triple in H(S1) @ C?

u

Ao(2) = (0 — Dw(2) + wsi(2) — 2 +v + % (5.3.42)
(A (2), X) = (0 — 1)X(2) + Xon(2) + X, + %Xu. (5.3.43)

We proceed componentwise. Let E(z) denote expression (5.3.40), and let us expand F(z) for
X =(X(2),0,0)

B(2) (o - D(w(z) - 2w'()) (X>1<z>—<zw’<z>>>l LXE) e

2w’ (2)

(o —1)zw'(2) (((w(z) ) )<0 ) (“”(Z) ) Z‘“'“))@z);’(zz)))w)

u

Ho—1) (2%)((2) +UX(z)) + (Q%X(z) +vX(z))>

# (0 - 20 (Xor6) = e 5 XU S >)

2w'(z) W
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It is immediate to see that the terms with (o — 1)2, v, and (o — 1)e* cancel out. First, we
simplify the rest of the terms with e*, which equal

2 2)),

Second, one can similarly see that the terms with (¢ — 1) equal

(0 — 1)2w'(2) ((1 - ZZ”U((ZQ)) X(z))o.

Third, we split the remaining terms of F(z) into two groups, the first one being

Xar(e) - 2 (24 X<2))>1 v (52 X@Ll — (X ()1

2w'(z) w'(2)

(282 x0).

Finally, we are left with

—w>1(2)X>1(2) + (w(2) X21(2))21 + (20(2))1 (

Putting everything together,

(&

B(z) = ((a — 1) (2) + (2 (2))s1 — 2 — —u) <(1 _ (@) ) X(z))o (5.3.44)

— 2N\ (2) <<1 - ;:U(z)) X(z))o.

Let X = (0,1,0). In this case, it is immediate to see

E(z) = —2)\ (2). (5.3.45)
Finally, for X = (0,0, 1), it is also a straightforward computation to check
E(z) =0, (5.3.46)

concluding the proof. O]

5.3.5 Proof of Proposition 5.3.3 and Corollary 5.3.4

Let A = (A(2), A(2)) € My be such that A(z) has n critical points in the interior of Dy and A(2)
has 7 critical points in the interior of Dy. We take X\ to be generic, i.e., none of the critical
points is degenerate.
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The fact that the functionals d\(z;), dA(%;) and d\,(p) for 0 = o(p) are generalized eigen-
vectors of U simply follows from Lemma 5.3.7. Indeed, let z; be one of the critical points of
A(z), i.e. N(z) = 0; substituting 0 = 0 and z = z; in (5.3.40), we get at once that

(dX\(2),UX) = —=X(z){d\(z), X) (5.3.47)

for all X, namely dA(z;) is a generalized eigenvector corresponding to the eigenvalue u; = —A(2;).
Similarly, setting o =1 and z = Zz;, resp. o = o(p) and z = p, we obtain the analogous statement
for dA(%;) and u;, resp. (dAo(p))|o=o(p) and u,. By (5.3.8) and (5.3.10), we have

du; = d\(2:), du; = d\(z), duy = dAo(p)|o=a(p)- (5.3.48)

One can easily check that du; and du; are representable as (5.3.9), therefore they are eigenvectors.
Let us now prove that this family of generalized eigenvectors is complete. For that, we will
prove that the map

UM — H(SHYeC e C? (5.3.49)
X — ((duy, X), (du;, X), (di;, X)) (5.3.50)

A

defines an isomorphism of vector spaces. Let us consider tangent vectors as pairs X =
(X(2), X(2)) € H(Dwx) & SH(Dy), and let

A — ~

Y(p) = (duy, X), Y= {(du;, X), Y= (du;,X). (5.3.51)

Explicitly,

X)) gy AN X(» v (s
Y0) = 5o O W Y@ Y= XE), Vi=XE). (35

It is enough to observe that the inverse U~! is given by

X(p) = XN(p) [M{/(p) + (%Y@)) ] : (5.3.53)

X(p) = -V () [—mp) + (ST ) ] , (5:354)

where

n Y; D - 4 P
| . - . 9.3.95
fiy(p) Z ZiN' (i) 2 — D ; % | |

i—1 7 7 ”(Ei) 21 —p

>~ ~

Let Y = (Y (p),Y;, Vi) € H(SY) @ C* & C™ and X = UV, Corollary 5.3.4 follows from
observing that

VUX = ((duy,UX), (du;,UX), (di;, UX)) = (u,Y (p), u;Yi, T, ). (5.3.56)

To conclude, we notice that the (generalized) eigenvalues of U coincide with those of U, the
eigenvectors being related by the isomorphism W. Notice that, since A (p) = 0 for 0 = o(p), we
have

d
dipp =o' (p)w(p). (5.3.57)
Therefore, because of axioms (T3) and (T4), % is non-vanishing on S*. This implies that the

generalized eigenspaces are only those given in the proposition, see the following remarks for
further details. O
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Remark 5.3.8. Consider the operator U on H(S*) @ C" @ C" given in Corollary 5.3.4, namely

for u, € H(S'). Clearly, the set of generalized and standard eigenvalues corresponds to the set
of u,, w; and 4;, namely

77777

Proof. From the diagonal form of U, it is immediately clear that the standard eigenvalues
are {u; }i=1, n and {4;};—1 5 with eigenvectors (0,e;,0) and (0,0, e;), respectively, where e;
denotes the canonical basis vector which is 1 at the i-th entry and 0 everywhere else.

In order to find its generalized eigenvalues, we look for A € C, 0 # ¢ € T; M such that

€, ((us = NX(2), (wi — N X, (@ — N X;)) =0, VX eH(S)@C@C"  (53.59)
Consider the decomposition £ = (£,,&;,&;) given by
(6X) = (6, X(2) + D) Xulbie) + ) Xi(§oey)- (5.3.60)
i=1 j=1
For p € S', one can check that w, is a generalized eigenvalue with generalized eigenvector
(evy,0,0), where the functional ev, is defined by
(evy, X(2)) = X(p). (5.3.61)

Finally, let A # u;, i, u, for any 4, j, p. Since \ # w;, @;, then we have & = &; = 0 for all 4, j,
so we are left with

(& (u, —NX(2) =0, VX e H(SH. (5.3.62)

Since A # u,, for any p € S*, then multiplication by (u, — ) is an invertible operator in H(S'),
so &, = 0, hence A is not an eigenvalue. O

dé‘z does not
Z

Let us now compute the dimension of the (generalized) eigenspaces. Since
vanish on S', we have the following

Lemma 5.3.10. Suppose ezxactly s + k + ¢ generalized eigenvalues coincide, namely

Upy = o0 = Up, = Ujy =+ = Uy, = Uy, =+ = Ujp. (5.3.63)

Then the corresponding eigenspace is s + k 4+ £ dimensional.

Proof. Let X\ denote (5.3.63). Then the generalized eigenspace of A splits into two subspaces,
the (k + ¢)-dimensional subspace corresponding to the eigenvectors {(0,¢;,,0), (0, ¢;,, ())}lelg,g
mentioned before, and the subspace given by £ = (£,,0,0) with &, satisfying equation (5.3.62).
Let us compute the latter for s > 1. By (5.3.57) and axioms (T3) and (T4), the function 9

dz
does not vanish on S*, so u, — A does not have double zeros on S, i.e.,

Uy, —A=(z2—p1)...(2 —ps)g(2), (5.3.64)

where g(z) is a non-vanishing holomorphic function on S*. Therefore, since multiplication by
g(z) is invertible on H(S"), equation (5.3.62) becomes

& (z=p1)... (2 = ps)X(2)) =0, VX € H(SY), (5.3.65)
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or, equivalently, £, vanishes on the subspace of H(S') given by functions with zeros at the

distinct points py, ..., ps. It is clear that the functionals evy,, ..., ev,, defined in (5.3.61) are
linearly independent and solve (5.3.65). Let us show that they span the whole space of solutions
of (5.3.65).

For that, we need the following decomposition formula: for any X € H(S'), s > 1, we can
write

Xz)=Xp)+E—p 1+ (E—p)(z—p)Yo+ -+ (z—p1)... (2 —ps)Ys,  (5.3.66)

where Y_, € C, Y, € H(S"). This statement can be easily proved by induction. For s = 1, it is
clear by taking

) = = (X() — X (o). (5367

Assuming it holds for s — 1 > 1, we write

Xz)=Xp)+(—p)Yi+z—p)(z—p)Yat-+(z=p1). .. (2= ps_1)Yer1(2)
=Xp)+E-p)Vi+(z—p)z-—p)Yot -+ (z=p1). . (2 = ps—1)Ys1(ps)
Yi1(2) = Yso1(ps)

+(z=p1)...(z—ps) p— ,

where we have split

Vo (2) = Yalp) + (2 — p) 1) :;/:_1(,9 23 (5.3.68)

Applying (5.3.66), we write

(6, X(2) = X(p)(EL D)+ Y&z —p) + -+ Y& (z—p1) ... (2 —ps1)) (5.3.69)
+ (& (2 = p1) - (2 — ps)Ys(2))-

The last summand vanishes because &, satisfies equation (5.3.65). Therefore, &, is completely
determined by the numbers

(€1), (6 2), -, (6, 2°7h), (5.3.70)

so the space of solutions of (5.3.65) is at most s-dimensional, hence it must be the span of
€Vpys ..., €V

[]

Remark 5.3.11. Notice that relaxing the axioms (T3) and (T4) in the definition of My would
imply, by relation (5.3.57), dropping the non-vanishing assumption of the derivative of u, on S'.
In such case the function u, — A might have higher order zeros, i.e.,

u, — A= (z—p)M(z—p)™ .. (2 —ps)Vg(2) (5.3.71)

with N; > 1. Then the subspace determined by equation (5.3.62) is (Ny + - - - + N,)-dimensional,
generated by the functionals

= jz—m X(2), m=0,...,N; — 1. (5.3.72)

Z=Dpi
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5.3.6 Metric in canonical coordinates

Thanks to the explicit expression for ¥ !, we can derive the following diagonal form of the
metric in canonical coordinates:

Proposition 5.3.12. The metric n in the representation given by W, that is, ﬁ(X,Y) =
n(U=1X, U~Y), has the diagonal form

5 1 w'(2)

. dz & 1 " 1
n(X,Y)=—— ——X(2)Y(2)— — —X,Y; —— X, Y. (5.3.73
7]( ) ) 27_“ =1 )\/(Z))\/(Z) (Z> (Z) 22 z_zl 212)\”(22) + ]Zl Z?A//(ZJ) 77 ( )

for X,Y e H(S") @ C" @ C".

Proof. First, using (5.2.11), (5.3.53)—(5.3.54) and (5.2.6), we compute

(0, 5, 0), (0, €5, 0)) = L <1 74|1w'(z) Lt (5.3.74)

X' (2)2 ) (2)) % G—zz—z
- 08),08) - GR).E5))

Notice that z(z; — 2) = (2(2; — 2))>1 and N (2) = —e“272 + (N (2))s0, therefore

2N(2) S G N(2) SN G (5.3.75)
z%—2), z—2), 22’ z—2) 4 z%—2) 2z o

On the other hand, we can split the integral of (5.3.74) by decomposing w'(z) = N (z) + X(2).
The first summand equals

1 < 1 1 < 1 1
— N(z dz = Res,—o X' (2) (5.3.76)
27 J = 2i— 22 — 2 2, — 22— Z
1 1 1 LA 1
= _eu Resz:() —2 == — € (— + —) .
ReZy— RZj— X ZiZj Zi Zj
Plugging (5.3.75) and (5.3.76) in (5.3.74) yields
1 1 1 1
n((0,e;,0),(0,e;,0)) = — N d 5.3.77
10,600, 0.0,0) = Sgsigan f MOt (6T
. 1 — Resz:zi A/(Z) le_z Zjl_z - Resz:z]- /\I(Z) Zil_z Zjl_za i 7é .]
a zi/\”(zi)zj/\”(zj) - Resz:zi )\,<Z> (ziiz)?" 1=]
_ )0 P F ]
— (Zi/\//(zi))Q _/\//(Zi); i :j
1
= ———0;j.
2N (z) 7
Analogously, one obtains
7((0,€;,0),(0,0,¢e;)) = 7((0,0,€),(0,e;,0)) =0, (5.3.78)
1
71((0,0,¢;),(0,0,¢5)) = =04 (5.3.79)

Z2N(z)
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As before, we use formulas (5.2.11), (5.3.53)—(5.3.54) and (5.2.6) to compute

AN NN

w'Y w' X w'Y dz
Y/ (Z) + I/ (Z> "/ (Z> 2
NA >1 NA -1 NA <0 z

w'(2)

(
P E)e) (GR)e) (GE)e) GRe) |

AN
Since X(2) = —e“272 + (N(2))s0, we have

() = (), (o 58)) (63

(5.3.80)
e Prer () 6 () e e () 0 () 0

— 5.3.81
Y NN ) . ( )
and the same for Y(z). Let us consider the integral in (5.3.80). We can rewrite the first
summand as

1 w' X w'Y dz
— N "(z) = XN = 5.3.82
i f_ e =36 (55) 0 (5x) O (5.3.82

G (RS- S () () o

Notice the first summand on the right-hand side vanishes because N (z) = (N(2))<o, so the
integrand has no residue. Similarly,

1 y w' X w'Y dz
27 X' (33 5.3.83
271 J 2121 =) (/\’/\') (=) (X/\’) (1)22w '(2) ( )
L v (U5 o) (YY) (ode - L YEXE) (wXY Y
" oni ¥ (M’) 2 (A’A’) )%~ 20 ) B o ) (B)dz.
|z|=1 >1 z | |z|=1 290 (Z) M >1 M >1
The first summand on the right-hand side equals

1 ev

w5 () >(»§)£f>i?=—e“[(“’?<)2( v+ G, (o))

By replacing (5.3.82) and

<0(2)Bz1(2) + A21(2) Boo(2) +

which cancels out with the third line of (5.3.80)
(5.3.83) in (5.3.80) and noting that A(z)B(z) = A<y(2)B
A-1(2)Bs1(z) for any A, B € H(S'), we have

\_/U‘
—~
ot
OJ
o)
—_

~—

H((X(2),0,0),(¥(2),0,0) = — 3 I%XW@_

r (5.3.84)
Finally, let us compute

(X (2),0,0), (0, e:,0)) = %(Z) (%7{#1 N(: )(‘;’f) o L& (s
1

, w' X 1 dz e [1 (WX w' X
—p Ve (S )eo—Z+S - (55 ) + (5 ) |)
27i I2|=1 NN w Zi—ZZ zi Lz \ NN /4 NN ),
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where we have used (5.3.75) and (5.3.81). Note |z;]| > 1, so

1 1S g
==y (3) : (5.3.86)
2 — & Zi Z;
k=0

)

and the first integral of (5.3.85) becomes

1 e (WX 1 dz .1 (WX 1 (WX
“an ﬂ:lﬁ(W)if)zi—z?__e EGw) i) ) e

which cancels with the third summand of (5.3.85). The remaining term

L () e () 0 s

: N T 3\ R
2mi NA w0 %% % N A 0 ZiTZZ

vanishes because \'(z;) = 0, so 77((X(z),0,0),(0,e;,0)) = 0. Analogously, one obtains
ﬁ((X<Z)7 0, 0)’ (O’ 0, 6j)) = ﬁ((ov €i, 0)7 (Y(Z)7 0, 0)) = ﬁ((07 0, 6i)7 (Y(Z), 0, 0)) =0, (5389)
concluding the proof. O]

5.4 Dubrovin equation

It is well known that the geometric structure of a Frobenius manifold is (almost) completely
encoded in the flatness of the so-called deformed flat connection 6, which is an extension to
My x C* of the Levi-Civita connection of the metric 1 obtained by deforming it using the
associative product on the tangent bundle. In our case, if V denotes the Levi-Civita connection
of the metric 7, then the deformed flat connection V on My x C* is defined by [29]

VeV = ViV +(X Y, (5.4.1)
~ ~ ~ N 1 ~
VaX=0X +U(X) - ZV(X), (5.4.2)
~ d < d

I L A.
deC vd%d( 0, (5.4.3)

for X,Y € Ty M, where the operators & and V are given by (5.2.16) and (5.2.18), respectively.

In Frobenius manifold theory, one is interested in looking for functions y whose differentials
dy € TS M are covariantly constant w.r.t. the deformed flat connection V. A basis of solutions
adapted to ¢ ~ 0 provides a family of so-called deformed flat coordinates, the coefficients of
which define the Hamiltonian densities of the principal hierarchy associated with the Frobenius
manifold. See [46] for the general construction and [29] for the derivation of the principal
hierarchy of M.

In this chapter, we focus on the Dubrovin equation, i.e., the flatness equation in the d%
direction, corresponding to (5.4.2) in the definition of the deformed flat connection. The
covariant derivative w.r.t. % on an element of the cotangent space o € M depending on the
deformation parameter ( is given by

Vai(a)=0a—Ua+ %V*&, (5.4.4)

d

o~

where U* and V* denote the transposes of & and V. In other words, the cotangent vector Y 4 (a)
is defined by

(V. (), X) = (o, X) — (a, (u — %v) X), (5.4.5)

a¢



5.5. Formal solutions 105

for all X € T5M.
The Dubrovin equation V 4 (o) = 0 is therefore given by

dcla, X) = (a, (u - %v) X), (5.4.6)

for all X € T3 M. We look for deformed flat functionals y(¢) : My x C* — C, namely those

whose differential dy(() € T/{‘M is covariantly constant w.r.t. V. In particular, they are solutions
of the Dubrovin equation (5.4.6).

As expected, if the cotangent vector « is representable, o = 7]*2 for Z € T M, then (5.4.6)
is written as

0.2, X) =n(Z, (u — %v) X), (5.4.7)

which implies, since U is symmetric and V antisymmetric with respect to the metric 7, the usual
form of Dubrovin equation

7 = (u + %V) Z, (5.4.8)

cf. [29, equation 20b].

5.5 Formal solutions

Let us solve equation (5.4.6) perturbatively at co. Recall that in the finite-dimensional case,
the Dubrovin equation has a fundamental formal solution of the form (see [40])

Z(C) =T 'R(Q)eYS, R(C)=Td+ R '+ R+ ..., (5.5.1)

where U denotes the change of coordinates matrix from flat to normalized canonical. In
the infinite-dimensional case, there is no natural analogue of the fundamental matrix =, but
nonetheless we can write functionals that generalize its columns, given by

&) =€ () + v +0), (5.5.2)
where u; is the j-th canonical coordinate and v;‘? are constant column vectors.

Proposition 5.5.1. The following statements hold at any point X € My:

1. For each discrete canonical coordinate u;, there exists a unique representable formal solution
of the Dubrovin equation (5.4.6) of the form

omal(¢) = ey ket ri = du;, v € (T M), (5.5.3)
k=0

2. For each discrete canonical coordinate u;, there exists a unique representable formal solution
of the Dubrovin equation (5.4.6) of the form

gemlQ) = ey et ) = duy, T e (TEM)™. (5.5.4)

)
k=0
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3. For each p € S*, the Dubrovin equation (5.4.6) admits formal solutions of the form

gg”m“l(g) = U Z'r’fj{’k, 7’2 = duy, 'r’ﬁ € T; M. (5.5.5)
k=0
These solutions are given by the functionals
k
rh= @Ak — 1= V) As(k—2- V)" As(n—V)'du,,  ap=1,  (5.5.6)
n=0

where A, is the left-inverse of u, —U with A,(0,1,0) =0, and depend on the choice of
complex constants a, € C forn € Z;.

Proof. To prove items 1 and 2, let us solve (5.4.8) perturbatively at co. First, we apply the
change of variables Y = Wdy, where ¥ is defined as in Proposition 5.3.3, and obtain

Y, = (U + %V) Y, (5.5.7)

where V = UVU~! and U = WYV~ which takes the diagonal form (5.3.17). We propose an
Ansatz of the form

yiformal _ (Cui (Y;’ PV ) . VreH(SHecCrach (5.5.8)

which yields the recursion
(w; — U)(Y?) =0, (5.5.9)
(u; — U) (Y = (k+V)(YF), k>0 (5.5.10)

We will show that these equations have a unique solution up to normalization. Let e; denote the
canonical basis vector which is 1 at the i-th entry and 0 everywhere else. Then ker(u; — U) =
((0,€;,0)), so we choose

Y = (0, =22\ (z1)es, 0), (5.5.11)
which satisfies
THY0) = du,. (5.5.12)

Let us move on to the next equation, namely
(w = U)(V) = V(YY) (5.5.13)

This equation is solvable if and only if V' (0,e;,0) € im(u; — U). Note the diagonal form of U
(5.3.17) allows us to decompose the space as H(S') ® C" & C" = ker(u; — U) ® im(u; — U), so it
is enough to show that the projection of V(0,¢;,0) to the subspace ker(u; — U) is 0. We prove
it as an auxiliary lemma:

Lemma 5.5.2. The operator

V=uWi ! HS)eC'aC" — H(SHeC" e C" (5.5.14)
satisfies

P; o V(0,e;,0) = 0, i=1,...,n (5.5.15)

P; o V(0,0,¢;) =0, j=1,...,n, (5.5.16)

where P; is the projection to the i-th entry of the second component, and @j 15 the projection to
the j-th entry of the third component.
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Proof. The proofs of (5.5.15) and (5.5.16) are analogous, so we only perform the former. First,
we compute

1 2w'(z) e 1 1

U1(0,e;,0) = ,——,—— | = ————du,, 5.5.17
(0, €:,0) 2N (z;) (zz -z 22 zl) 22N (z;) “ ( )

- _ 1 1 zw'(z) zw(z) le* 11
Y = VU 10,e,0) = - i——— 5.5.18
(0.e:,0) 2N (%) (2 2 — 2 * (zi — 2)27 222" 2z ( )

To conclude the proof, we have to show that
(dus, VY = —Yeo(z) + Yy + SV, = 0. (5.5.19)
%

It is clear that Y, + %Yu = 0. Let us compute

Yeo(z:) = ﬁ(z) (é% 7{021 %dm + % 7%:1 %dm) =0, (5.5.20)

where we have used integration by parts. O]

~ As an immediate corollary, V(Y?) € im(u; — U) and equation (5.5.13) admits solutions for
Y;!. Regarding uniqueness, it is clear that two different solutions of (5.5.13) must differ by an
element of ker(u; — U). Therefore, we write

V=R +alY?  R!cim(u; —U), ol €C. (5.5.21)
Consider the second equation
(w5 — U)(V2) = (1+ V)(¥7), (5.5.22
which has a solution for Y} if and only if (1 + V)(Y;') € im(u; — U), which happens when
alY? + P, o V(R!) = 0. (5.5.23)

This uniquely fixes the constant a} and ensures that (5.5.22) has a solution, which, as before,
can be written as Yf = }?12 + a??;o. Iterating gives a unique Yif"rmal, which concludes the proof
of item 1 of the proposition. The proof of item 2 is completely analogous, and we will not do it
explicitly here.

To prove item 3, we insert the Ansatz (5.5.5) in the Dubrovin equation (5.4.6) and obtain
the following recursion for the functionals 7‘}’;:

(rd, (u, —U)X) =0, VX € H(SY) @ C? (5.5.24)
(bt (up —U)X) = (r}, (k= V)X), VX e H(S) B C? k=0 (5.5.25)

Equation (5.5.24) is the eigenspace equation for the eigenvalue u,. By the results of Section 5.3,
we have rg = du,. Note that u, — U is injective (one can directly see this from the diagonal
form (5.3.17), noting (T4) excludes the degenerate case of all the canonical coordinates u, being
equal), but it fails to be surjective, as

im(u, —U) = {V € H(S") & C?| (du,,Y) = 0} (5.5.26)
is a subspace of H(S')@®C? of codimension 1. Therefore, the operator u, —U admits left-inverses.

Let B,, le) be two left-inverses of u, — . Then

(B, — B))(X) = (B, — B)) ((X — {duy, X)(0, 1, 0)) + (duy, X)(0, 1, 0)> (5.5.27)

= (duy, X)(B, = B,)(0,1,0), (5.5.28)
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where we have used that X — (du,, X)(0,1,0) € im(u, — U). Therefore, a left-inverse of
u, — U is completely determined by its action on (0,1,0), and we choose A, to be the one
with A,(0,1,0) = 0. Back to the system (5.5.25), it is now clear that the recursively defined
functionals

7y = duy, (5.5.29)
(i X) = (7, (k= V)A,X) (5.5.30)

solve it. Written in terms of transpose operators, the functionals

~k * * Ak * * *
tp = Ak =1 =V) A (k—2-V)".. . A(=V)"du, (5.5.31)
give a formal solution of the form (5.5.5) to equation (5.4.6). Let us now study the uniqueness
of solutions. Let 79 = du,, 7}, ...,y be given, and suppose both si*! and %! solve (5.5.25) for
it Then
(s —h 1 (u, —U)X) =0, (5.5.32)

SO SI;H — t’;“ must be a scalar multiple of du,. Thus, the most general solution of the next
recursive step is

rtt = Ak — V) + alduy, (5.5.33)

p
with a¥*! € C. From (5.5.33) we can deduce the most general form of the functionals, (5.5.6),

thus completing the proof.
O

Remark 5.5.3. Since A,(0,1,0) = 0 and (du,, (0,1,0)) = 1, it is easy to write the functionals of
any given formal solution (5.5.5) in the form (5.5.6) by setting

ab = (rk,(0,1,0)). (5.5.34)

p

Remark 5.5.4. At the special point 5\0, we can compute the operator A, explicitly

4,% = (% (3-1) @@ -x6) -3 (Gx0)+1), —ée—wp))  (55.3)

Remark 5.5.5 (Uniqueness of formal solutions). Let us explain why the functionals 7% in the
expansion of £ are uniquely determined, whereas 7 in the expansion of ™! they are not.

Assume we have 70, r! ... 7571 and let ¥ be such that
A5 (u; —U)X) = (¥ (k=1 -V)X). (5.5.36)
Then the general solution of
rf, (w —U)X) = (rF 1 (k—1-V)X) (5.5.37)
is given by r¥ = t¥ + a¥du;. To fix the constant aF we consider the next equation
(rit, (u; — U)X) = (tF + aldu;, (k — V)X), (5.5.38)

and choose X to be the vector representative of du;, i.e., n*(f( ) = du; (here we do not denote
X = du; as usual because it might lead to confusion). In particular, X € ker(u; —U), which
gives
t* (k=W)X

a¥ = — (i ( ) A> : (5.5.39)
Note that the denominator does not vanish since V(X) € im(u; — U) and X ¢ im(u; — ). On
the other hand, it is impossible to repeat this procedure to fix the constants appearing in 5;01”“&1,
as the operator (u, —U) is injective.
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5.6 Integral solutions and their asymptotics

In this section, we find a family of solutions to the Dubrovin equation defined in terms of
an exponential integral along the unit circle in the complex plane. We derive the asymptotic
behavior of such solutions at { ~ oo, obtaining this way formal solutions in the sense of the
previous section.

5.6.1 Integral solutions

We define a family of functionals y,(¢) on My x C and we prove explicitly that their differentials
dy,(¢) solve the Dubrovin equation (5.4.6).

Proposition 5.6.1. Let 0 € C and consider the functionals

-1
0o(Q) = & - }{_1 (el &2 (5.6.1)

271 z

Their differentials dy,(C) are solutions of the Dubrovin equation (5.4.6).
Proof. The differentials dy,(¢) € Ty M are given by

C1/2
" 2mi

dz

(dy,(¢), X) %_1 PG AN, (2), X)—. (5.6.2)

2
Plugging (5.6.2) in (5.4.6) yields

. . 1/2 . N
@00 (U= 29) ) = 0. X0 = Sz f O (D005 = d2) N (2),

#2) (), (45X G0.-X) ) )2

which vanishes by Lemma 5.3.7. [

Remark 5.6.2. The differentials dy,(() are actually representable, see Remark 5.6.5 below. We
can therefore use Propositiong() in [29] to prove that they are covariantly constant w.r.t. the
full deformed flat connection V.

5.6.2 Asymptotics

Let us study the asymptotics of the solutions dy,(¢) for |(| — oo. The usual approach to find
the asymptotics of integrals of the form (5.6.1) or (5.6.2) is by applying the steepest descent
method, first by expressing the path of integration as a combination of the steepest descent
paths passing through the critical points of the superpotential A,(z), and then by computing
saddle point asymptotics, see e.g. [123].

In our case, however, for generic values of o, the path of integration cannot be deformed
away from the domain of definition of \,(z), namely a neighborhood of S'. We will therefore
restrict our analysis to those values of o such that the critical points of A,(¢) belong to S*, and
to o = 0 and 1, for which )\, coincides with —\ and )\, respectively.

Let us consider a point A = (A, A) in the Frobenius manifold M, such that A and A have n
and 7 critical points, respectively. Denote by z; and z; the critical points and by w; and u; the
critical values of —\ and )\, respectively, as in (5.3.5)-(5.3.6). Recall that we define a curve ¥
via the function o(z) on S!, see (5.3.2). For every o € ¥ the superpotential \,(z) has a finite
number of critical points py, ..., ps, which are non-degenerate because of (5.3.3).
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For o belonging to the curve ¥, the path of integration S! passes through the points
p1,--.,ps. For |C| — oo in a generic direction in the (-plane, the asymptotics of the integral
will be dominated by the saddle point asymptotics of one of such points. More precisely, let
us consider the lines in C passing through the origin and given by R({(u,, — u,,)) = 0 for
i,j =1,...,s. These lines divide the (-plane in sectors S(u,,) for j = 1,..., s such that in the
sector S(up,) the exponential ¢*"?i has the dominant asymptotic behavior as |¢| — oco.

For o = 0, the critical points z; of the exponent —A(z) belong to the exterior of the unit
disc. In this case, however, the integrand is holomorphic in D, so we can deform the path
of integration in such a way that it passes through all the critical points. As above, in each
of the sectors S(u;) for j = 1,...,n determined by removing the lines R({(u; — u;)) = 0 for
i,7=1,...,n from C, the critical value u; will determine the asymptotics.

Similarly, for o = 1, the path of integration can be deformed in such a way that it passes
through all the critical points z; in the interior of Dy and the critical value %; will dominate the
asymptotics in a sector S(@;), among the sectors obtained by removing the lines R(¢(@; —u;)) = 0
fori,j =1,...,n from the {-plane.

For any XeT 5 M we have the following asymptotic behavior

Proposition 5.6.3. For o € ¥ and p = p; one of the critical points of A\, we have

A

G L1 [ (AN().X) e . }
e )~ 3 e St oo, e Sly),

2mi U(g)_up)kJrz z
(5.6.3)

For 0 =0 and z; one of the critical points of A\, we have

(o X) =Y s f SEPELT L o, (S

2T (5 — k) 2mi —A(z) —u,)+tz
(5.6.4)
For o =1 and %; one of the critical points of A, we have
> 1 (dN\(2),X) dz _, _
<d’y1, K % = — 1 g ) |C| — 00, geS(U’])
kz:; 2T (5 — k) 27 S5, (A(2) — )3 2
(5.6.5)

In the above formulas the symbol fz denotes integration along a small counterclockwise
simple path around z.

Proof. Expression (5.6.3) follows from Lemma 5.A.1 applied to (dy,, X). For (5.6.4), note the
integrand of (dyo, X) is holomorphic on Dy, \ {00}, so we can deform the path of integration to
one that passes through all critical points of A, and then apply again Lemma 5.A.1. Finally, for
(5.6.5), we deform the path so that it passes through all critical points of A, and then we apply
Lemma 5.A.1. ]

Proposition 5.6.4. The asymptotic expansions of {dy,}sexuqo1y at || — oo given in Proposi-
tion 5.6.3 are formal solutions of the Dubrovin equation.

Proof. Let us prove that (5.6.3) defines a formal solution of the Dubrovin equation of the form
(5.5.5) with 7% given by

b ooy 1 1 (d\y(2), X)  dz
e X0 = —k)2_m7£<xa<z>—up>k+%7 00
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For that, we need to prove that the cotangent vectors 7’]’; satisfy the recursion relations (5.5.24)-
(5.5.25). Let us first show (5.5.24). We have

A 1 1 A, (2),UX) — uy(d\,(2), X) d
(0, (U = up)X) = —— —.f< (2),UX) ~up(dAo(2), X) dz (5.6.7)
2r (5) 21 Jp (Ao (2) —up)?
By adding and subtracting a term proportional to A,(z), the previous expression equals
1 i}’{ (dXg(2),UX) — Ay (2)(dNo(2), X) dz L}{(Ao(z) — ) (dAs(2), X) dz

1
2" (3) 2mi (Ao(2) — )7 2" (3) 2 (Ao(2) —wp)2 2
(5.6.8)

1
2

The second summand equals

11 o Cde
or (1) 2ni f{(Af’("’) =)Ao (2), X)— (5.6.9)

which vanishes because the integrand is holomorphic at p. By Lemma 5.3.7,
(A (2),UX) — Ao (2)(dNs(2), X) = (g(2) + C)2N.(2), (5.6.10)

where C' is a constant and

g(z) = — <d/\g(z), < W) yi)0, —Xu>> (5.6.11)

2w’ (z)

is holomorphic at p. Therefore, the first summand of (5.6.8) equals
1 1 N 1 1
7{ WO, 11 7{9'<z)(Aa(z) )iz, (5.6.12)
2r ( ) 2mi (Ao (2) —up)2 r (5) 2mi

which again vanishes by holomorphicity at p of the integrand. To prove (5.5.25), observe that
by a computation similar to the previous one, we can write

(L (U —up)X) — (i, (k= V)X) = QF(% (5.6.13)
N (g (2),UX) — Ao ()dDo (2), X) + 2L < ( (2),0, —Xu) > 0z
2mi J,, (Ao (2) — up) +3 ’

which vanishes by Lemma 5.3.7. The proofs for (5.6.4) and (5.6.5) are completely analogous. []

Remark 5.6.5. The 1-forms (5.6.2) are representable for any o € C, i.e. dy,(¢) € T5M™, with
their representative in the tangent given by

dy, = C'/? (azw’(z)ec’\”(z) —zw'(2) (eCA(’(Z)) ,L]{ eg&,(@i%’ i eo‘“(z)%) .
|z|=1

207 27ri z oz 27 Jim z

Notice, however, that the functionals r]’; in the asymptotic expansion are in general not repre-
sentable, in particular the leading term 7’2 is proportional to the non-representable functional
du,.

Remark 5.6.6. The family of solutions {dy,(¢)}sesuqo,1} is not complete. For example, at the
special point 5\0, the tangent vector

X = ((1 - 6—4%) 2,0, —1) (5.6.14)

satisfies (dy,(¢), X) = 0 for all o.

Remark 5.6.7. The monodromy of the solutions dy,(() is trivial since it just originates from the
¢1/2 factor

dya(<€27ri) = —dy,(()- (5.6.15)
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5.7 Resurgence and Stokes phenomena

In this section, we study the Stokes phenomenon at the irregular singularity ¢ ~ oo of the
Dubrovin equation.

In the finite dimensional case [40], the Dubrovin equation (written in the normalized canonical
frame) has a unique formal fundamental solution of the following form

Yiormat(¢) = (Id + Ri¢C 4+ Ry 2 + .. )eY, (5.7.1)

where U = diag(uy, -+ ,u,) with u; # u; for i # j. An admissible line ¢ through the origin
in C is given by the choice of its positive direction ¢ such that it satisfies R(e'?(u; — u;)) # 0
for any i # 7. It can be shown that, given a choice of admissible line ¢ in C, there exists a
unique fundamental solution Yign, (resp. Yie) which is asymptotic to Yiormar for ¢ ~ 0o on the
open sector IIf, (resp. II{ ) of opening slightly larger than 7 containing the right (resp. left)
half-plane delimited by ¢. The Stokes matrices Si relate such fundamental solutions on the
intersection ITf.,¢ N IT g = I UL, namely

Vi(¢) = Yr(()S:, ¢ €I, (5.7.2)

where II%, resp. II¢, is the sector containing the direction ¢, resp. ¢ + .

Notice that the columns of a fundamental solution give a basis of solutions of the Dubrovin
equation. In the infinite-dimensional case, we might consider the family of integral solutions
{dys}oesufo,1y obtained in the previous section. Such family, however, is not complete and
moreover has trivial monodromy, see Remarks 5.6.6 and 5.6.7, therefore it cannot be used to
obtain the analogues of the Stokes matrices. To find a larger family of solutions we adopt a
different strategy, using resurgence theory to associate a family of “weak” solutions to a family
of formal solutions like those studied in Section 5.5. More precisely, we consider the family of
formal solutions given by the asymptotic expansions of the integral solutions and we apply to it
the Borel resummation procedure.

Resurgence theory [62, 48, 101, 6] provides a method to associate analytic functions to
formal series which are not convergent. The resummation procedure of a formal power series
©(¢) = D k=0 ay(~* can be summarized, for our aims, in three steps: computation of the sum
of its Borel transform () obtained by the substitution (=% — y*/k!, analytic continuation
and identification of the resurgent structure of p(), namely of its behavior at singular points,
and resummation to a function sy(¢)(¢) via Laplace transform. For recent expositions of these
methods we refer the reader to [88, 107, 36, 89].

For simplicity, we restrict to the special point Ao in My. We also require |e*| < 1 so that
there are no discrete canonical coordinates to consider.

5.7.1 Weak solutions

Recall that the cotangent space T;‘M at a point A e M, is given by the algebraic dual of T5 M.
Given a cotangent vector £ € ITM, we define its coefficients as the numbers (£, e;) obtained by
acting on the elements e; € H(S!) @ C?, given by

em = (2M,0,0), e,=1(0,1,0), and e, =(0,0,1), (5.7.3)

where m € Z U {v,u}. In general, an arbitrary choice of coefficients Cy, does not define a
cotangent vector & with Cy, = (£, e5). However, it always defines an element in T3 M¥ek which
is the algebraic dual of

Ty M*t = {X = (X(2),X,,X,) € T3, M| X(z) € Clz,z7 ']} 2 Clz,27 ]| C?,
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namely the subset of 75 M consisting of Laurent polynomials in z, by the formula

(€ (X(2), X0, X)) = Y XuC + X,C, + X,C,, (5.7.4)

for X(2) =3 X,,2" € Clz, 27 1].

The motivation for introducing I% M weak js that we are going to obtain solutions to the
Dubrovin equation by Borel resummatlon of the coefficients of the formal integral solutions,
which will turn out not to be in T* M. Notice that, since the operators U4 and V at the special

point preserve the subspace T5 M teSt, it is possible to define weak solutions to the Dubrovin
equation (5.4.6), i.e., & = £(() E T"‘OMWeak such that

(€ X)e = (€, (M - %V) X), VX eTy M (5.7.5)

5.7.2 Formal integral solutions

At the special point, we can give an explicit formula for the coefficients of the formal solutions
corresponding to the asymptotic expansion of the integral solutions obtained in Section 5.6,
namely (recall Proposition 5.6.3)

<dy£0rmal,X> _ eCup ZI;L% <d)\g<2),Xk> i % C—k. (576)
Py (3 —k) 21 J, (A (2) - up)"TE 2

Lemma 5.7.1. The coefficients of the formal integral solutions are given by

<dyformal7 m> = @Culﬂ%g(p)p [@?(C) m=1 (577)

orma, U 1 m p m

(dyy ™, em) = e 2 (a(p) = D™y [ 67 (C), m <0 (5.7.8)
orma U 1 p

(dyfrm e,) = e '3 ej%?;((% (5.7.9)
formal Cu 1 e -1

(dyy ™ eu) = €5 P (€, (5.7.10)

where

—; (m“;k_ 1/2) (C%)k (5.7.11)

£
Il
o

S
Sk
o
I
()¢
-
|
N

Ty = — = (5.7.12)

Since at the special point o(p) =1 + ;—Z, we have that

z

Ao(p) (2) = Ao () = % (5 - 1) 7 (5.7.13)
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therefore
2k+1 1 m+k—1/2 2k+1 1 m+k—1/2
[ A S G M SR N § b ) dz. (5.7.14)
) e(+1/20w 2 | (2 — p)2ktl e(H1/2)u 27 J 52k+1
p
Expanding the numerator and computing the residue at 0 gives
m+k—1/2\ /p\kt1/2
T = (—) m 5.7.15
* ( 2k > et b ( )
from which the lemma follows immediately. O]

Remark 5.7.2. Notice that (5.7.11) is a nowhere convergent formal power series in .

5.7.3 Borel transform and resurgent structure

Recall that a formal power series () = .- apC~* at ¢ ~ oo is called Gevrey-1 if |a;| < CFk!
for all £ > 0 for some positive constant C. In such case, its Borel transform, namely the series

P00 =) %x’“, (5.7.16)

k>0

is convergent in a neighborhood of y ~ 0.
The formal integral solutions ¢7'(¢) are clearly Gevrey-1 and we can explicitly identify their

Borel transform:

4e*

Proposition 5.7.3. The Borel transform of ¢}'(C) converges for |x| < |=~| and is given by

1 1 1 bX

where o F(a, b; ¢; 2) denotes the Gauss hypergeometric function.

Proof. Applying (7% — x*/k! to (5.7.11) yields

Gr(x) = 3 ;<m+k‘—1/2) (px>k (5.7.18)

= EIT (5 — k) 2k ev
1 = (—1/2\ (m+k—1/2 px>k
= — e 7.1
A0 7
The desired result follows immediately from Lemma 5.B.1, see Appendix 5.B.2. O]

Let us now consider the so-called resurgent structure of the Borel transform. The Borel
transform ©;"(x) has a singularity at x, = 4e"/p corresponding to the logarithmic branch point
at z = 1 of the hypergeometric function o F(a, b;a + b; z), see (5.B.20). Near the singularity it
takes the form

—1)m+t 1 1 1
@T(Xp +¢&) = %log (—%) ﬁ o F (5 —m, 5 +m,1; —%) + free(§),  (5.7.20)

where freg(§) is holomorphic near £ ~ 0. Here we have used the identity

r (% - m) r (% + m) = m = (-1)"7. (5.7.21)

It is important to notice that the function multiplying the logarithm

1 1 1 pé
P (8) = NG 2 Fy (5 —m, 5 +m 1 —@) : (5.7.22)

is actually the Borel transform of the formal solution ¢™ (¢) above for a different sign of p.
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5.7.4 Borel resummation

The Borel resummation s¢(p)(¢) of the formal series ¢(() is defined as the Laplace transform of
its Borel transform

(€)= ¢ [ Bln)e sty (5.723)

where the integral is along a ray C? = ¢?R, that does not contain any singularity of (). The
function sg(¢)(¢) is holomorphic on the sector in C* given by those ¢ such that |e=¢X| — 0 for
x — oo along C? and it is asymptotic to the formal series (¢) for ( ~ oo. The above integral
representation of the (possibly multivalued) analytic continuation of sg¢()(¢) also holds outside
the sector, provided the path of integration is deformed accordingly.

Denote C?%:t the ray passing through the logarithmic singularity of o7 (x) at xp, = 4e"/p,
corresponding to fg, = arge® — argp. For any ray C? = R, with § # 6, the Borel
resummation

()0 = ¢ [ 0oy (5720

defines an analytic function in the sector where the real part of the exponential is negative, i.e.,
the half-plane

ng{cem —9—g<argg<—0+g}. (5.7.25)

Moreover,

so(p ) (C) ~ ¢ (C), (5.7.26)

for [(| — oo in the sector Ily.

Denote s(¢7")(¢) the multivalued analytic continuation of sy(;")(¢) on C*. Notice that one
obtains the same function by analytically continuing sy (¢5')(¢) for 6" # 0 in the appropriate
direction.

Observe that s(p;")(¢) is asymptotic to ¢p'(¢) for [(| — oo in any sector where it is given
by an integral representation as above. Denoting 6y = 0, + 7, this happens whenever 6 # O,
namely when 0 € (6 — 7,6y + 7). Therefore

s(p)(€) ~ ¢’ (¢) (5.7.27)

for
ce |J T (5.7.28)
96(90771’,904»70

i.e., when ( belongs to the sector of opening 37 given by

3
0, — 7” <arg( < 0 + - (5.7.29)
The monodromy of the multivalued function s(p}") is determined by the resurgent structure

of the Borel transform. Indeed, for ¢ € Ily,, we have

S(Em)(E0) — s(em)(€) = ¢ /H Zr (e Xy, (5.7.30)

where #H is the clockwise Hankel contour around the singular point y, = 4e*/p coming from
infinity along the direction fs;. By substituting (5.7.20) and performing the change of variable
of integration x = x, + &, we find it equals

4e™ pf

P [ o (<15 ) o< (5.731)
T Ja, 4ev

(e
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where H is the Hankel contour H translated to 0. This in turn is equal to
gi(—1)me e / o (©)e . (5.7.32)
st
Therefore, the monodromy in ¢ of s(¢}') is given by
4e¥

s(p)(€710) = s(9)) () = 2i(=1)™ e 7 sgq,(7,) (C)- (5.7.33)

Let us now explicitly compute the function s(¢")(¢). Letting x = te’’, t € R, and using
the Laplace transform formula (5 B.21), we have

1 e'p 0
_ 19 —e(t
so(2p)(C) (/ ( —m, 2—|—m,1,—4eut)e dt

2 2 2e"
=2 S e, (<),
i p P

where K,,(z) is the modified Bessel function of the second kind, see Appendix 5.B.1. Clearly
this identity extends to the analytic continuations of the functions on the plane cut at e ¥stR,

therefore we have
2 ev  _ r2e% 1
s(ep')(C) = i VK, ( C—) (5.7.35)

Remark 5.7.4. Equation (5.7.35) is actually an identity between functions defined on the universal
covering of C* and formula (5.B.15) for the asymptotics of K,(z) on a sector of opening 37
induces the asymptotic formula (5.7.27).

(5.7.34)

Let us now define the resummed weak functionals ds,(¢) € T;\‘O Mveak for p € St by replacing
the formal series ¢} with their Borel resummations s(p) in (5.7.7)-(5.7.10):

(dsp(C), em) = % (;—Z + 1> P2 (—4‘2%”) : m > 1 (5.7.36)
1 e 2t

(dsp(C), em) = ;Ep "MK, (—C%) : m <0 (5.7.37)

(d5,(), ) = = ¢V, (—<2i") , (5.7.38)
I D

(dsp(C), €u) = %%uec”(mfﬁ (—C%) : (5.7.39)

One can easily check that the weak functionals ds,(() solve the Dubrovin equation by a direct
computation using the formulas for the derivatives of K, given in Appendix 5.B.1.

By replacing (5.B.11) (or, equivalently, (5.7.33)) in (5.7.36)—(5.7.39), one can easily compute
the monodromy of the weak functionals ds,. We summarize the results proved so far in the
following Proposition:

Proposition 5.7.5. The weak functionals ds,(¢) solve the Dubrovin equation (5.4.6), and
satisfy

dsy(C) ~ dyl™™ (), for  |arg( + 6, < 3;, (5.7.40)

where 0y = w4 arge* — argp. Their monodromy is given by
ds,(Ce*™) = ds,(¢) — 2ds_,(C), (5.7.41)
ds_p(Ce™*™) = ds_,(C) — 2ds,(C), (5.7.42)

where ds_, = ds,—ix),.
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Remark 5.7.6. The solution above is actually multivalued in the parameter p. We will see that
any choice of range [¢o, ¢o + 2m) for argp gives a complete family of solutions. Notice that the
family of solutions with arge" — 6 < argp < arge" — 6 + 27 will have the formal asymptotics
for ¢ in the open half-plane Iy, see (5.7.25).

Remark 5.7.7. The asymptotic expansion (5.B.13) of K,,(2) for m — oo implies that
(dsp(C), em)| ~ Belm| ™ (avx|m])™ (5.7.43)

for positive constants ay, fi. Therefore the weak functionals ds,(() defined by the coefficients
above do not extend to cotangent vectors in T’ M.
0

While the weak functional ds,(() do not define elements in the dual to 15, M, ie., they are
not cotangent vectors, the difference ds, — ds_,, is not only an element of T;OM , but is actually
representable. More precisely,

Proposition 5.7.8. For o = o(p), we have that
dy5(C) = dsylC) — ds p(0). (5.7.44)

Proof. The coefficients of the integral solutions defined in Section 5.6, i.e.,

. 1/2 o d
=S b 0%

AYo, X) = +— 74
(dyo, X) = 35 : (5.7.45)

obtained by acting on the elements e; where m € Z U {v,u}, see (5.7.3), are given by Bessel
functions of the first kind

u 2 u
(dyy, em) = (269—2 + 1) C2eSp™m T, (g%) , m>1 (5.7.46)
u 1 2 u
(Yo, €m) = 6_2C§€<vpm[m (Ci) , m <0 (5.7.47)
p p
1 2e"
(dyo, e0) = 2T (C%) : (5.7.48)
u 2 u
(dyo, €4) = (31, (Ci> : (5.7.49)
p p

where p = p(0). Let us illustrate how to obtain the coefficients (5.7.46)—(5.7.49) by proving
(5.7.46). Let m > 1, then

1 ez p dz
Ay, €)= 0€SU(CT — ¢ (5+8) ,m 22 5.7.50
(o ) = oc'Cha § ST (5750)
e Cv L m 1 lCQCM (’LUJrL) m dw
— - +1]e g2p — e2> p w /) — (5751)
p 271 Jyw)=1 w

where in the second line we replaced w = z/p. Equation (5.7.46) follows by noting that the
integral is a residue of the generating function (5.B.17). The proposition follows by applying
the monodromy identity (5.B.10) to (5.7.46)—(5.7.49) and (5.7.36)—(5.7.39).

O

Despite the fact that the weak functionals ds,(() do not extend to T5, M as explained above,
we can still ask the question about their completeness as a family of functionals on T5 M test for
fixed (. It is indeed the case that the map

X — (dsy(¢), X), (5.7.52)

that associates to X € T5,M*" a function of p with |p| = 1 and argp € [¢o, do + 27) for some
fixed ¢q is injective, as proved in the following
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Proposition 5.7.9. The map (5.7.52) associated with the family of functionals {ds,(¢)} is
mjective.

Proof. Let X = (X (2), X,, X,,) € Ty, M'** with
X2)=X_ 2%+ + X 12"+ Xg+ X1z + ... X,2" € Clz, 271 (5.7.53)
Then from (5.7.36)—(5.7.39) we get
1 5 2e"
ime’¢72(ds,(¢), X) = X_.e"p " ?K, (—Ci) -+ Xoe'p? ( C—) (5.7.54)
p
u, —2 2e" . -2 , 2e
+ X (e"p 4+ 1) pK, —§7 +o+ X (e P4 1) P K, _CT
2e 2e
X, K, (—gi) + X, etp K (—gi) .
p p
By (5.B.4), the expression above is an expansion in {p*" p**log(—Ce"p™')}mez. Assume

(dsp((’),f() — 0 for all p. To show completeness, we need to prove X = 0. By (5.B.4), the
coefficient of p?" of (5.7.54) equals

1
5( ey "(r = 1), (5.7.55)
which must be zero, so X, = 0. Repeating this argument with the coefficients of p?"~2, ..., p?
shows X,_; = --- = X; = 0. We are left with
u, —s—2 26u
X'y 2K, (=25 ) e Xpep? g— (5.7.56)
p

2e" 2e
+ X, Ko (—Ci) + Xue'p 'Ky (—C—) =0.
p p

The coefficient of log(—Ce*p™!) of (5.7.56) equals —X,, so X,, = 0. The constant coefficient
equals

"X, (—¢2e") 7, (5.7.57)
so X, = 0. Extracting the coefficients of log(—Ce“p™')p~2, ..., log(—Ce*p™ )p™*~2 in an
analogous manner shows that Xo =--- = X_; =0.

O

5.7.5 Stokes matrices for pairs of solutions

In this section, we restrict to pairs of solutions and we compute the partial Stokes matrix that
describes their monodromy.

Let ds, and ds_, be the solutions corresponding to arguments arg p and arg p—, respectively.
Recall their formal asymptotics as |(| — oo

3 3

ds,(¢) ~ dy;Ormal — eCup(rg + r;gfl +...), arg ¢ € (—0y — > —0y + 7), (5.7.58)
om
ds_p(g) ~ dyformal Cufp (ro_p + Tl_pc_l 4+ ... ), argg € (—90 — 2 —90 + 2), (5759)

where dyf™! is given by (5.7.6), and ) = 7 + arg e — arg p.
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The Stokes line /g, separates the two halves of the complex plane where e¢*» and e*“-» are
respectively dominant for |(| — oco. It is given by

lg, = {g eC ‘ R (Cu,) = R (gu_p)} , (5.7.60)

namely the line of argument 6y + 5 mod 7. Notice that the exponential e dominates eS*—» if
arg € (—90 + %, —0y + 37”)

We choose an admissible line ¢ not coinciding with the Stokes line, in this case the positive
direction of £ is of argument 6 with 6 # 6 + 5 mod 7.

For a small € > 0, we define two sectors containing the half-planes separated by ¢ as follows

Mg ={CE€C|0—m—e<arg( <0+e}, (5.7.61)
I ={CeC|0—ec<arg( <0+m+ ¢} (5.7.62)

The intersection of IIf,, and I has two connected components

I, ={CeC|0—-e<arg( <0 +e}, (5.7.63)
I ={CeCll+m—e<arg( <O+m+e} (5.7.64)

Let us assume that the argument 0 of the admissible line ¢ has been chosen in such a way that
ds+p(¢) is dominant in TI<; this amounts to 6 € (=t — 5, =0y + 3).
Let us define the following “matrix” solutions on II¢ aht /left

Yiignt (C) = (dsp(€), ds—,(C)), 0 —m—e<arg( <6+e, (5.7.65)
Yiett (¢) = (ds,,({), ds,p(Ce’z’Ti)) , 0—e<arg( <O+m—+e, (5.7.66)

where we have chosen the appropriate branch cuts that guarantee the formal asymptotics in the
half-plane where they are defined.

Theorem 5.7.10. The solutions Yyign(C) and Yien(C) defined above have the formal asymptotics
Yiesrignt(C) ~ (dylo™(Q),  dy’y™(()) (5.7.67)

for |C| — oo in their respective domains of definition Hj"ight/left' On their common domains of
definition 115 they are related by

leeft(C) = Yright(<)5+7 C S Hi, (5768)
}/left(C) = Ym’ght(C)S—y C S HE—v (5769)

where the Stokes matrices Sy are given by

S = (_12 (1)) : Sy = ((1) _12> : (5.7.70)

Proof. The theorem follows from Proposition 5.7.5.

O
5.7.6 Stokes matrices
Let us fix # € R and define two open half-planes Iligpn/ier; as follows
Mgt = {C € C | 0 — 71 < arg( < 6}, (5.7.71)

1L = {C: eC | 0 < arg( <0+ 71'}. (5772)
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Let us define two families of solutions Yjgnt and Yieg of the Dubrovin equation with formal
asymptotics in the half-planes IL;gn/iefe Tespectively. These can be seen as the analogues of the
fundamental solutions in the finite-dimensional case.

The family Yigne is defined on ILigne by

3
(Vigni(€)), = ds,(C) for argp € [arge” +6 — Z arge” +6+ ), (5.7.73)
where ¢ — 7 < arg ¢ < 0; the family Y is defined on Il by
dsp(Q), argp € (arge" + 0+ Z,arge” + 0 + 2)

' ; 5.7.74
d8p<6_2mC), argp € (arg e* + 6 — g’ arg et + 2] + %) ( )

(Yiee(€)), = {

where 6 < arg( < 6 + 7.

While the fundamental solutions Yjigpe/1ere have formal asymptotics only in the domains
ILignt/teft, they can be nevertheless analytically continued beyond those sectors and therefore
compared, defining operators that are infinite-dimensional analogues of the Stokes matrices. We
summarize these observations and we compute the Stokes operators in the following theorem.

Theorem 5.7.11. The families of solutions Y,ign: and Y have the formal asymptotics

(Yright/left(o)p ~ dyzf,ormal(o (5.7.75)

for |C| = oo in the half-planes Il ight /ief:-
On the sectors 115 they are related by

0, argp € (arge" + 0+ I, arge" + 0 + )

(), = Q) =2 {(x@ight@))emp Carap € (ange” + 0~ Zarget +0+3)

for ¢ € 11, and

(Yeignt (€))p—mi, » argp € (arge" + 60+ 5 arge" + 0 + )
0, argp € (arge" +6 — 5, arge* + 6+ 7)

(Ve (), = (Viignt (), — 2 {
for ¢ € II°..

Remark 5.7.12. We can formally express the relation between Yiign: and Yie in terms of kernels
S+ by writing

(Vinl€)), = [ Vaaul0), (S (5.7.76)

Sl
where the integral is taken on the points ¢ in S' with argument in [arg e* + 6 — 5,arge’ +0+ 37“)
The kernels representing the analogues of the Stokes matrices are then written as

(S4)ap = (g — p) — 2x(q)d(q — €™p), (5.7.77)
(S )gp = (g — p) — 2x(p)d(p — €™q), (5.7.78)

where x(p) is the function equal to one when argp is in (arge” + 0 + %, arge* 4+ 0 + &) and
zero otherwise, and the delta function satisfies the usual relation

J(@)d(a —p)da = f(p). (5.7.79)
s
Notice that the two kernels S, and S_ are the transposes of one another, namely

(S+)pg = (5-)gp- (5.7.80)
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Appendix 5.A Saddle point asymptotics

Let us recall the proof of the following lemma, which can be seen as a simple application of
Perron’s method [124] to our particular case.

Lemma 5.A.1. Let f and g be holomorphic functions defined in a neighborhood of a point 2’
where f has a simple critical point and let C be a path passing through z' such that the real part
of €Y f(z) restricted to C has a mazimum at 2. Then the function of ¢ defined by

I= Cl/z/egf(z)g(z)dz (5.A.1)
c
admits the asymptotic expansion
T~ eEN d (5.A.2)
n=0
for ¢ =[¢le", ¢ = 400, with
d, = i(—1)"T'(n + 1/2) Res,_., 9(2) dz (5.A.3)

(f(z) = f())mer

Proof. By shifting the variable of integration and renaming f and g we can assume that f and
g are analytic in a neighborhood of z = 0 with f(0) = f/(0) = 0 and f”(0) # 0. We write
f(z) = cz? + O(z%) with ¢ = @ e C~.

By deforming the path C, we can make it coincide with a steepest descent path in a sufficiently
small neighborhood of the critical point. We can moreover restrict the integral to a part of the
path arbitrarily close to the critical point without changing the asymptotic expansion, as the
difference will be exponentially vanishing.

We will therefore assume that C is steepest descent path defined as the preimage of the path
x(t) = —e ¥t for t € [0,T] via f(z) with the appropriate orientation. Denote by C, the part of
the path C leaving the critical point and by C_ the one arriving at the critical point.

Let w(z) be the unique square root of ¢! f(z) with w(z) = 2z + O(2?). The function w(z) is
biholomorphic, so we can use it to change the variable of integration; denoting the inverse by
z(w), we get

7= Cl/z/eccwgs(w)dw, (5.A.4)
c

where s(w) = lgff;(ww)))) is holomorphic at w = 0 with Taylor expansion s(w) = »_ _, s,w".
Let C be the path n(t) = —e ¢ 't for t € [0,T]. Let \/ be the branch of the square root
that maps C to C; (we choose a branch cut for the square root that does not coincide with C).

The other branch —,/7 maps C to —C_. Splitting the integral in the two parts corresponding to

C, and C_ and changing the variable of integration with w = /n and w = —, /1 respectively,
we obtain p
~ n
7= Cl/Q/e@”s(n)—, (5.A.5)
¢ V1

where

) = 5 (V) + 5(—y/) = 3 s (5A6)

The integral is explicitly given by

T
I:CI/Q/ e"dtt_l/za(t)dt, (5.A.7)
0
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- (-2, oas

According to Watson’s Lemma (see [90, Proposition 2.1]), we have the following asymptotic
expansion as |(| — oo

with

T
/ e =1 2q(t)dt ~ Y "T(n + 1/2)% ( )|g|—n 12, (5.A.9)
0 n=0
for any complex valued smooth function a(t) defined in a neighborhood of [0, T]. Clearly,
o= n+1/2
a™(0) = nlsy, <——> : (5.A.10)
c

so we obtain the asymptotic expansion
I~iY T(n+1/2) +1/2( o)™ (5.A.11)

n=0

We can finally compute the coefficients s,, as residues

_ 9(z(w)) dw 9(2)
s, = Resyw—o T Res,— e )anz (5.A.12)
Expressing w(z) as square root of ¢! f(z), we obtain the desired result. O

Remark 5.A.2. We choose the branches of the roots of ¢ and e such that the sign in the final
expression is +1.

Appendix 5.B Special functions

5.B.1 Modified Bessel functions

In this appendix, we go over the definition and some properties of the modified Bessel functions.
For more details, we refer the reader to [94, Sections 10.25-10.46]. The modified Bessel functions
of the first kind are defined by

o0

1 2\ 2k4v
L(2) :;r(lwuﬂ)k! (5) ‘ (5B.1)

The modified Bessel functions of the second kind are defined by
ml,(2) = L(2)
2 sin(nv)

Kn(z) = l}l_gln K, (z), m € Z. (5.B.3)

K, (z) = : v¢Z, (5.B.2)

Forn € Z, I,,(z) is entire and K,(z) is multivalued with a branch cut on R_. Its multivaluedness
becomes clear from the expansion at z =0

Ko(z) = % (g)_"ni W (—%Q)k (1) og (2) 1u2) (5.B.4)
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where

Y(z) = i (% - ﬁ) -, (5.B.5)

k=1
. —~ 1
v = nh_g)lo Z i logn | . (5.B.6)
k=1
The following properties will be used in the text:
In(=z) = (=1)"In(2), (5.B.7)
I'(2) = I,_1(2) — gln(z), (5.B.8)
K'(2) = —Kp_1(2) — gKn(z). (5.B.9)
The monodromy of K, (z) is given by
K, (ze™™) = (=1)™"K,(2) — (=1)""™ Ymril,,(2), (5.B.10)
K, (ze™™) = (=)™ VK, (ze™) — (=1)"™(m — 1)K, (). (5.B.11)
It is also useful to keep in mind their asymptotic expansions for large n
1 ez\"
() ~ (—) , 5.B.12
()~ 75— 12, ( )

Kn(Z)N\/;(zn) : (5.B.13)

and for large z

e? 0 1
, arg z| < —m, |z| = 00, 5.B.14
= jarg 2] < 7, | (5:8.14)

3
K,(2) E ar(n)z~*, |arg z| < 2™ 2| = o0, (5.B.15)

where ag(n) = 0, and
4n? —12)(4n% — 3%) ... (4n% — (2k — 1)?

ap(n) = U= D)n7 =37 (" = ( ). (5.B.16)

K!8k
The I,, can be encoded together in a generating function

e2*(tH7") = i "I (2), (5.B.17)

n=—0oo

which converges for all t € C*.

5.B.2 Gauss hypergeometric functions

The definition and properties of the Gauss hypergeometric functions presented below are taken
from [94, Chapter 15]. For more details, we refer the reader to that source. The Gauss
hypergeometric function is defined by the power series

0 n b
o Fi(a,b;¢; 2) Z ol i)r)l (5.B.18)
n=0 ’
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in the disk |z| < 1 and by analytic continuation elsewhere, where
(@)"=4qlg+1)...(g+n—1) (5.B.19)

denotes the rising factorial. At z = 1, they have a logarithmic branch point of the form

oFi(a,b,a+b;z) = 0g(1—2) oFi(a,b,a+b;1 — z) (5.B.20)

Tla+?),
“Tar@)
+Z( k'2) 2ok +1) = p(a+k) = b+ k) (1 - 2),

k=0

where the function v is defined by (5.B.5)—(5.B.6).
The following Laplace transform will be used in the text, see [99]: for ¢, Rg > 0, | argw| < ,
we have

o 1,
/ oFi(a,1 — a;c; —wx)e” ¥dr = &F(c)eiKa_; (i> : (5.B.21)
0 2

W 2w

where K, (z) is the modified Bessel function of the second kind, defined in Appendix 5.B.1.
Finally, we state and prove a technical lemma necessary for the Borel resummation procedure
performed in Section 5.7.

Lemma 5.B.1. For |z| < 4, the power series
=N (—1/2\ (m+k—1/2\ ,
= 5.B.22
1) Z( () (5.8.22)

converges and coincides with the Gauss hypergeometric function

1 1
Proof. We write
SN (C1)E(LY®
2) = 27 .B.24
() - (5821
mtk =3\ _ (m+35)W0m—3)w
( o ) = ol , (5.B.25)

(@) =ala—1)(a—2)...(a —n+1), (5.B.26)
()™ =ala+1)(a+2)...(a+n—1). (5.B.27)
Using the property
(@)™ = (=1)"(=a) (), (5.B.28)
we can write
> (HE (m + LB (L = )®
flz) =Y ()7 (2;)%5 ) 2* (5.B.29)
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Comparing this expression to the power series expansion (5.B.18) of the hypergeometric function
reduces the lemma to proving the identity

4k E1(1/2)P = (2k),,  k=0,1,..., (5.B.30)
which, after noting (2k)! = k!(k 4+ 1)), further reduces to
(k+1)® = 4k(1/2)®). (5.B.31)

To prove (5.B.31), we proceed via induction. For k = 0,1 it is clear that it holds. Assume it is
true for £k > 1. Then

k+2)* D = (k 4+ 2)®) 2k 2:—(
(k+2) (k+2)W 2k +2) = ===

=2k +1)® 2k +1) = 45(1/2) P22k 4+ 1) = 4*1(1/2)P (k +1/2)
_ 4k+1<1/2)(k+1).

(2k +2) = 2(k + 1)+ (5.B.32)
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Summary

In this dissertation, we study the underlying geometry of integrable systems, in particular tau-
symmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations.

First, we explore the close connection between the realms of integrable systems and algebraic
geometry by giving a new proof of the Witten conjecture, which constructs the string tau-
function of the Korteweg—de Vries hierarchy via intersection theory of the moduli spaces of stable
curves with marked points. This novel proof is based on the geometry of double ramification
cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps
facilitate the computation of intersection numbers of psi classes.

Second, we examine the Dubrovin-Zhang hierarchy, an integrable system constructed from a
Frobenius manifold by deforming its associated pencil of Poisson structures of hydrodynamic type.
This integrable hierarchy was proved to be Hamiltonian and tau-symmetric, and conjectured to
be bi-Hamiltonian. We prove a vanishing theorem for the negative degree terms of the second
Poisson bracket, thus providing strong evidence to support this conjecture. The proof of this
theorem demonstrates the implications the bi-Hamiltonian recursion relation and tautological
relations in the cohomology rings of the moduli spaces of stable curves have on the bi-Hamiltonian
structure of the Dubrovin-Zhang hierarchies.

Third, we propose a conjectural formula for the simplest non-trivial product of double
ramification cycles DRy(1,—1)), in terms of cohomology classes represented by standard
strata. Although there are known formulas relating double ramification cycles to other, more
natural tautological classes, they are much more complicated than the one conjectured here.
This conjecture refines the one point case of the Buryak—Guéré—Rossi conjectural tautological
relations, which are equivalent to the existence of a Miura transformation relating Buryak’s
double ramification hierarchies and the Dubrovin—Zhang ones.

Finally, we analyze the differential geometry of (2 4+ 1) integrable systems through infinite-
dimensional Frobenius manifolds. More concretely, we study, both formally and analytically, the
Dubrovin equation of the 2D Toda Frobenius manifold at its irregular singularity. The fact that
it is infinite-dimensional implies a qualitatively different behavior than its finite-dimensional
analogue, the Frobenius manifold underlying the extended Toda hierarchy. The two most
remarkable differences are non-uniqueness of formal solutions to the Dubrovin equation and
non-completeness of the analytic ones. These features together greatly complicate the analysis
of Stokes phenomenon, which we perform by splitting the space of solutions into infinitely many
two-dimensional subspaces.

Keywords: Integrable system, Frobenius manifold, moduli space of stable curves, cohomolog-
ical field theory, Dubrovin—Zhang hierarchy, double ramification cycles.
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Samenvatting

In dit proefschrift bestuderen we de onderliggende meetkunde van integreerbare systemen,
waarbij we vooral de nadruk zullen leggen op tau-symmetrische bi-Hamiltoniaanse hiérarchieén
van evolutionaire partieéle differentiaalvergelijkingen.

We beginnen met het bestuderen van het nauwe verband tussen de integreerbare systemen
en algebraische meetkunde door een nieuw bewijs te geven van het Witten vermoeden, dit
construeert de snaar tau-functie van de Korteweg—de Vries hiérarchie via de doorsnijdings
theorie van de moduli ruimtes van stabiele krommes met gemerkte punten. Dit nieuwe bewijs
is gebaseerd op de meetkunde van dubbel vertakte cykels, tautologische klassen waarvan het
gedrag onder terugtrekkingen van de plak- en vergeetachtige afbeeldingen de berekening van de
doorsnijdings getallen mogelijk maken.

Als tweede bestuderen we de Dubrovin—Zhang hiérarchie, een integreerbaar systeem gecon-
strueerd uit een Frobenius variéteit door zijn geassocieerde bi-Hamiltoniaanse structuur van
het hydrodynamische type te vervormen. Er wordt bewezen dat deze integreerbare hiérarchie
Hamiltonisch en tau-symmetrisch is en vermoeden dat hij verder bi-Hamiltonisch is. We bewijzen
een stelling van verdwijnen voor de negatieve graad termen van het tweede Poisson haakje en
geven daarmee een sterke aanwijzing dat dit vermoeden waar is. Het bewijs van deze stelling
laat de gevolgen zien van de bi-Hamiltonische recursie relatie en de tautologische relaties in
de cohomologie ringen van de moduli ruimtes van stabiele krommen op de bi-Hamiltonische
structuur van de Dubrovin-Zhang hiérarchie.

Als derde stellen we een formule voor waarvan we vermoeden dat het het simpelste niet
triviale product van dubbele vertakkings cykels DR, (1, —1)\, is in termen van cohomologie
klassen die gerepresenteerd worden door strata. Alhoewel er bekende formules zijn die de dubbele
vertakkimgs cykels aan elkaar relateren, meer natuurlijke tautologische klassen, zijn zij veel
ingewikkelder dan degene die hier vermoed worden. Dit vermoeden verfijnt het één punts geval
van de Buryak—Guéré-Rossi vermoedelijke tautologische relaties, deze zijn equivalent aan het
bestaan van een Miura transformatie die Buryak’s dubbele vertakkings hiérarchieén relateerd
aan de Dubrovin—Zhang hiérarchieén.

Als laatste analyzeren we de differentiaal meetkunde van (2 + 1) integreerbare systemen via
oneindig dimensionale Frobnius variéteiten. Concreter, we bestuderen, formeel en analytisch, de
Dubrovin vergelijking van de 2D Toda Frobenius variéteit bij zijn irreguliere singulariteit. Het
feit dat dit oneindig dimensionaal is impliceert een kwalitatief anders gedrag dan zijn eindig
dimensionale versie, de onderliggende Frobennius variéteit van de uitgebreide Toda hiérarchie.
De twee meest opmerkelijke verschillen zijn de niet uniekheid van de formele oplossingen van de
Dubrovin vergelijking en de incompleteheid van de analytische oplossingen. Deze eigenschappen
maken de analyze van het Stokes fenomeen veel ingewikkelder, dat we bestuderen door de ruimte
van oplossing in oneindig veel twee dimensionale deelruimtes op te splitsen.
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Trefwoorden: Integreerbaar systeem, Frobenius variéteit, moduli ruimte van stabiele krommes,
cohomologische veldentheorie, Dubrovin—Zhang hiérarchie, dubbel vertakte cykels.



Résumé

Dans cette these, nous étudions la géométrie sous-jacente des systemes intégrables. Nous
nous intéressons particulierement aux hiérarchies d’EDPs d’évolution, tau-symétriques et bi-
Hamiltoniennes.

D’abord, nous explorons la relation étroite entre les champs des systemes intégrables et la
géométrie algébrique en donnant une nouvelle démonstration de la conjecture de Witten, qui
construit la string tau-fonction de la hiérarchie de Korteweg—de Vries par théorie d’intersection des
espaces de modules des courbes stables avec des points marqués. Cette nouvelle démonstration
se base sur la géométrie des cycles de ramification double, des classes tautologiques dont le
comportement sous des pullbacks des applications forgetful et gluing facilitent le calcul des
nombres d’intersection des psi classes.

Dans un deuxieme temps, nous examinons la hiérarchie de Dubrovin et Zhang, un systeme
intégrable construit en déformant la structure bi-Hamiltonienne de type hydrodynamique associée
a une variété de Frobenius. Cette hiérarchie intégrable est Hamiltonienne et tau-symétrique,
et est conjecturée bi-Hamiltonienne. Nous démontrons un théoreme d’annulation des termes
de degrés négatifs du deuxieme crochet de Poisson qui fournit des preuves fortes pour soutenir
cette conjecture. La démonstration de ce théoreme illustre les implications que la récursivité
bi-Hamiltonienne et les relations tautologiques en cohomologie des espaces de modules des
courbes stables ont sur la structure bi-Hamiltonienne des hiérarchies de Dubrovin et Zhang.

Dans un troisieéme temps, nous conjecturons une formule pour le plus simple des produits non
triviaux des cycles de ramification double DR, (1, —1)A, en termes des classes de cohomologie
réprésentées par les strates standards. Malgré 'existence de formules qui mettent en relation
des cycles de ramification double avec autres classes tautologiques plus naturelles, elles sont
beaucoup plus compliquées que celle proposée ici. Cette conjecture précise dans le cas d'un
point les relations tautologiques conjecturales de Buryak, Guéré et Rossi, qui sont équivalentes
a l'existence d’une transformation de Miura qui relie la hiérarchie de ramification double de
Buryak et celle de Dubrovin et Zhang.

Finalement, nous analysons la géométrie différentielle des systémes intégrables en (2 + 1)
dimensions par variétés de Frobenius de dimension infinie. Plus concretement, nous étudions,
formelement et analytiquement, I’équation de Dubrovin de la variété de Frobenius de la hiérarchie
de Toda bidimensionnelle a sa singularité irréguliere. Le fait qu’elle est de dimension infinie
implique un comportement qualitativement différent de celui de son analogue en dimension finie,
la variété de Frobenius sous-jacente a la hiérarchie de Toda élargie. Les deux différences les
plus rémarcables sont que les solutions formeles de 1’équation de Dubrovin ne sont pas uniques
et que les solutions analytiques ne forment pas un systeme complet. Conjointement ces deux
caractéristiques compliquent ’analyse du phénomene de Stokes, que nous réalisons en divisant
I’espace des solutions en une infinité des sous-espaces de dimension deux.
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