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Chapter 1

Introduction

This dissertation studies integrable systems through the geometry of Frobenius manifolds and
cohomological field theories. After a superficial look at the definitions and first properties of these
three objects, one might naively think that they are completely unrelated. However, as is often
the case, seemingly unrelated concepts arising from different areas of Mathematics share deep
connections, and it is the rigorous study of those connections that expands our mathematical
knowledge, getting us closer to understanding the “true nature” of the original objects.

By exploring the interplay between integrable systems, Frobenius manifolds and cohomologi-
cal field theories, this thesis aims to bring new insights into this fascinating subject, lying at the
intersection of mathematical physics, differential geometry, and algebraic geometry.

1.1 Integrable systems

The main objects of interest of this thesis are integrable systems. However, despite the high
volume of research on the topic, there is no mathematical consensus on what integrable systems
are, as the very notion of integrability is vaguely defined across the literature, varying from
example to example, and sometimes even from author to author. As a consequence, instead of
proposing an artificial definition for the integrable systems studied in this text, we will introduce
the prime example of an integrable system: the Korteweg–de Vries hierarchy.

1.1.1 Korteweg–de Vries hierarchy

Korteweg–de Vries equation and its symmetries

The Korteweg–de Vries (KdV) equation is a non-linear PDE first introduced by Boussinesq
[8] and later rediscovered by Korteweg and de Vries [77]1 to model the propagation of shallow
water waves. It reads

ut = uux +
1

12
uxxx. (1.1.1)

Note that the coefficients of uux and uxxx can be made arbitrary by rescaling t, x, and u.
Equations of the form ut = K(u) where K is a differential operator in ∂x are called evolutionary
equations. In principle, solving non-linear equations like (1.1.1) can prove very difficult and one
must often resort to numerical approximations. However, Gardner et al. [54, 55] provided a
method, known as inverse scattering, to solve the KdV equation by relating it to the Schrödinger
equation

(∂2
x + 2u)w = k2w. (1.1.2)

1See [66] for a historical account.

1



2 Chapter 1. Introduction

Understanding why this method works or, in a more precise language, why the KdV equation
is integrable, became a main focus of research. This culminated in the theory of integrable
hierarchies, largely due to Lax [78], Zakharov and Faddeev [127], Ablowitz et al. [1, 2] and the
Kyoto school led by Sato [105, 69].

In essence, the KdV equation is integrable because of its high degree of symmetry. Let us
try to understand what symmetry means in the context of evolutionary equations, and what
the relation between (1.1.1) and (1.1.2) is.2

Definition 1.1.1. We say that

us = K̂(u), (1.1.3)

is a symmetry of

ut = K(u) (1.1.4)

if the flows ∂/∂t and ∂/∂s commute, i.e.,

∂

∂s
K(u) =

∂

∂t
K̂(u). (1.1.5)

Condition (1.1.5) is equivalent to the existence of a common solution u = u(x, t, s) to (1.1.3)
and (1.1.4) for any given initial condition u0 = u(x, t = 0, s = 0). It turns out that the KdV
equation has infinitely many commuting3 symmetries of ascending order

ut0 = ux, (1.1.6)

ut1 = uux +
1

12
uxxx, (1.1.7)

ut2 =
1

2
u2ux +

1

6
uxuxx +

1

12
uuxxx +

1

240
u5, (1.1.8)

...

where we have identified t0 = x, t1 = t. The system of equations consisting of the KdV equation
and its commuting symmetries is called the Korteweg–de Vries (KdV) hierarchy.

Lax formulation of the KdV hierarchy

To encode all the equations of the KdV hierarchy, it is convenient to use Lax representation
[78]. For that, we need to introduce pseudodifferential operators, a generalization of differential
operators constructed by formally inverting the symbol ∂x.

Definition 1.1.2. Let α ∈ Z. A pseudodifferential operator of order α is a formal sum

X =
∞∑
j=0

fj∂
α−j
x . (1.1.9)

The set of pseudodifferential operators forms a ring with the composition rule

∂nx ◦ f =
∞∑
j=0

(
n

j

)
(∂jxf) ◦ ∂n−jx ,

(
n

j

)
=
n(n− 1) . . . (n− j + 1)

j!
(1.1.10)

2We follow [92, 5, 34], mostly the latter.
3Not only symmetries of KdV, but also of one another. The KdV equation also has infinitely many non-

commuting symmetries, given by vertex operators, infinitesimal transformations mapping one solution of the
hierarchy into another.



1.1. Integrable systems 3

defining the associative product. Given a pseudodifferential operator X (1.1.9), we define the
projections

X+ =
α∑
j=0

fj∂
α−j
x , X− = X −X+. (1.1.11)

Let L be a pseudodifferential operator of the form L = ∂x +
∑∞

j=1 f
j∂−jx such that it squares

to the Schrödinger operator

L2 = (∂2
x + 2u). (1.1.12)

L is known as the Lax operator. It is important to note that its square L2 appears on the
left-hand side of the Schrödinger equation (1.1.2), hence its name. Condition (1.1.12) determines
all the functions f 1, f 2, . . . in terms of u. Now it is possible to write down the KdV hierarchy
in Lax form.

Definition 1.1.3. The Korteweg–de Vries hierarchy is the following system of nonlinear evolu-
tionary PDEs:

∂u

∂tj
=

1

(2j + 1)!!
[(L2j+1)+, L

2], j = 0, 1, . . . (1.1.13)

It is possible to show that the flows ∂/∂tk and ∂/∂tj above commute for any k, j. As one can
expect, the first few equations coincide with the symmetries of the KdV equation (1.1.6)-(1.1.8).
Thanks to the Lax formulation, the relation between the KdV (1.1.1) and the Schrödinger
(1.1.2) equations because of which the KdV equation is solvable can be precisely established.

Proposition 1.1.4. The KdV hierarchy is the system of compatibility conditions of the linear
system

L2w = k2w, (1.1.14)

∂w

∂tj
=

1

(2j + 1)!!
(L2j+1)+w. (1.1.15)

Bi-Hamiltonian recursion

The Lax formulation is not the only way to realize the KdV hierarchy; its equations can also be
recast in Hamiltonian form.4 Consider the pair of Poisson operators

P1 = ∂x, P2 = 2u∂x + ux +
1

4
∂3
x. (1.1.16)

We say h = h(u;ux, uxx, . . . ) is a Casimir of the Poisson operator P if P ◦ δh
δu

= 0, where the
variational derivative is defined as

δ

δu
=
∞∑
p=0

(−∂x)p ◦
∂

∂up
. (1.1.17)

The function h−1(u) = u is a Casimir of P1, but not of P2, as P2 ◦ δ
δu

(h−1) = ux. In this
situation, it is possible to apply a bi-Hamiltonian recursion algorithm [85] to define a family

4We follow the summary in [7]. For a rigorous approach to the Hamiltonian formalism of integrable systems,
we refer the reader to [4] for the finite-dimensional case, and to [46] and the references therein, in particular
[43], for the infinite-dimensional case. The following definitions have been adapted to simplify this introductory
exposition, and the general framework will be precisely established in Chapter 3.
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{hp(u;ux, uxx, . . . )}p>0 of differential polynomials, i.e., polynomials in u and its derivatives, via
the formula

P1 ◦
δhp
δu

=
1

2p+ 1
P2 ◦

δhp−1

δu
. (1.1.18)

For example, to obtain h0, we have to solve

∂x ◦
δh0

δu
= ux, (1.1.19)

so, up to a constant, which we always take to be 0 in this procedure,

δh0

δu
= u, (1.1.20)

and

h0 =
1

2
u2 +

1

12
uxx. (1.1.21)

Similarly, one obtains

h1 =
1

6
u3 +

1

12
uuxx +

1

24
u2
x +

1

240
u4, (1.1.22)

h2 =
1

24
u4 +

1

24
u2uxx +

1

24
uu2

x +
1

240
uu4 +

1

120
uxu3 +

1

160
u2
xx +

1

6720
u6, (1.1.23)

and, recursively, hp = hp(u;u1, . . . , u2p+2), allowing us to define an integrable hierarchy.

Definition 1.1.5. The KdV hierarchy in Hamiltonian form is the following system of PDEs

∂u

∂tp
= ∂x ◦

δhp
δu

. (1.1.24)

One can prove that the two formulations of the KdV hierarchy (1.1.13) and (1.1.24) coincide
indeed. Integrability of the KdV hierarchy, i.e., commutativity of the flows ∂/∂tp as in Definition
1.1.1, follows immediately from its bi-Hamiltonian formulation, see [85].

Remark 1.1.6. Note that δ
δu
◦ δx = 0, so the function hp obtained from solving (1.1.18) is defined

up to a ∂x-exact term, which does not affect the equations of the hierarchy (1.1.24) nor the
recursive equations for hp+1, hp+2, . . . . Given a differential polynomial f = f(u;ux, uxx, . . . ),
denote by f̄ the corresponding local functional, i.e, the class of f in the quotient space of
differential polynomials modulo constants and ∂x-exact terms.

We call the local functionals h̄p above Hamiltonians and their representatives hp in the space
of differential polynomials, Hamiltonian densities.

Tau-function

When solving the bi-Hamiltonian recursion equations (1.1.18), we have made a particular choice
of Hamiltonian densities, which is not the most natural one, e.g. h0 = 1

2
u2 solves (1.1.20) as

well and is simpler than (1.1.21). The reason behind this seemingly unnatural choice is that,
while the equations of the integrable hierarchy (1.1.24) depend only on the Hamiltonians h̄p,
there is a favored choice of Hamiltonian densities such that they satisfy tau-symmetry

∂hq−1

∂tp
=
∂hp−1

∂tq
, ∀p, q = 0, 1, . . . (1.1.25)
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Tau-symmetry implies the existence of a family of differential polynomials in u, the tau-structure
or 2-point correlators Ωp,q, defined by

∂xΩp,q =
∂hp−1

∂tq
, Ωp,q = Ωq,p, Ωp,0 = hp−1. (1.1.26)

They satisfy the following property: the functions

∂Ωp,q

∂tr
(1.1.27)

are invariant under any permutation of p, q, and r. Therefore, given a solution of the hierarchy,
the 2-point correlators Ωp,q can be written as second derivatives of a function F = F (t1, t2, . . . )

Ωp,q =
∂2F

∂tp∂tq
, (1.1.28)

which is known as the (logarithm of the) tau-function.5 Tau-functions depend on the solution of
the hierarchy u = u(x; t1, t2, . . . ) through the relation

u = ∂2
xF. (1.1.29)

There exists a particular solution, the topological solution utop = utop(x; t1, t2, . . . ), determined
by the initial condition

utop(x; t1 = t2 = · · · = 0) = x, (1.1.30)

whose corresponding tau-function is the unique tau-function satisfying the string equation [119]

∂F

∂t0
=
∞∑
p=0

tp+1
∂F

∂tp
+

1

2
t20. (1.1.31)

Remark 1.1.7 (Lax formulation). The Hamiltonian densities and 2-point correlators of the KdV
hierarchy can also be written in terms of the Lax operators. Namely6

hp−1 =
1

(2p+ 1)!!
Res∂x L

2p+1, (1.1.32)

∂xΩp,q =
1

(2p+ 1)!!(2q + 1)!!
Res∂x [(L

2q+1)+, L
2p+1], (1.1.33)

where the residue of a pseudodifferential operator is defined as the coefficient of ∂−1
x .

1.1.2 Kadomtsev–Petviashvili hierarchy

The KdV hierarchy is embedded in a larger integrable system, called the Kadomtsev–Petviashvili
(KP) hierarchy.

Definition 1.1.8. Let L = ∂x +
∑∞

j=1 f
j∂−jx be the Lax operator. The Kadomtsev–Petviashvili

hierarchy in Lax form is given by

∂L

∂tm
=

1

(m+ 1)!
[(Lm+1)+, L]. (1.1.34)

5Originally introduced in [106] as a way to systematically apply Hirota’s bilinearization method [63].
6See e.g. [7].
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Note that for a fixed m, (1.1.34) is an infinite system of equations in x and tm for the
dependent variables {f j}j>1. Despite the existence of infinitely many dependent variables
compared to only one in the KdV hierarchy, they share multiple similarities:

• The KP hierarchy (1.1.34) is the system of compatibility conditions of the linear system

Lw = kw, (1.1.35)

∂w

∂tm
=

1

(m+ 1)!
(Lm+1)+w. (1.1.36)

• The KP hierarchy is bi-Hamiltonian, with Poisson operators [27]

P nm
1 = −

n−1∑
`=0

(
`− n
`

)
fn+m−`−1∂`x +

m−1∑
`=0

(
m− 1

`

)
∂`x ◦ fn+m−`−1, (1.1.37)

P nm
2 =

∑
s,t>0 k,`>−1

s+`>m
s+t+k+`+1=n+m

[(
m− 1

s

)(
−k
t

)
fk∂s+tx ◦ f ` (1.1.38)

−
(
m− `− 1

s

)(
m− `− s− 1

t

)
f `fkt ∂

s
x

]
−

n−1∑
`=1

m−1∑
s=1

(
`− n
`

)(
m− 1

s

)
fn−`∂s+`−1

x ◦ fm−s,

where f−1 = 1 and f 0 = 0. In particular, it is integrable.

• The KP hierarchy is tau-symmetric, with the Hamiltonian densities given by

hn =
1

(n+ 2)!
Res∂x L

n+2. (1.1.39)

The Kadomtsev–Petviashvili equation

Although the KP hierarchy satisfies all desirable properties as seen above, the fact that for each
m, (1.1.34) is a system with infinitely many variables makes the study of the hierarchy much
more complex at the level of equations. However, it is possible to rewrite the KP hierarchy in a
more manageable way using the following result.

Proposition 1.1.9. The KP hierarchy (1.1.34) implies

∂

∂tm

(Ln+1)+

(n+ 1)!
− ∂

∂tn

(Lm+1)+

(m+ 1)!
=

[
(Lm+1)+

(m+ 1)!
,
(Ln+1)+

(n+ 1)!

]
, n,m = 0, 1, 2, . . . (1.1.40)

Equations (1.1.40) are called Zakharov–Shabat equations [128]. For each pair n > m, (1.1.40)
is a closed system consisting of n equations in the dependent variables f 1, f 2, . . . , fn. There are
three independent variables, x, tn, and tm; that is why integrable systems like the KP hierarchy
are often called 2+1 systems.

Example 1.1.10. Let n = 2, m = 1. Let us work out the corresponding Zakharov–Shabat
equations (1.1.40). First, we compute

L2
+ = ∂2

x + 2f 1, (1.1.41)

L3
+ = ∂3

x + 3f 1∂x + (3f 2 + f 1
x), (1.1.42)

[L2
+, L

3
+] = (6f 2

x − f 1
xx)∂x + (3f 2

xx − f 1
xxx − 6f 1fx). (1.1.43)
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Thus, the equations are given by

uy = −1

6
uxx + vx, (1.1.44)

1

2
vy +

1

6
uxy − ut =

1

4
vxx −

1

12
uxxx −

1

2
uux, (1.1.45)

where y = t1, t = t2, u = f 1 and v = f 2. Eliminating v yields

1

2
uyy =

(
ut −

1

2
uux −

1

24
uxxx +

1

6
uxy

)
x

, (1.1.46)

which is known as the Kadomtsev–Petviashvili (KP) equation.7 Note that imposing uy = 0
yields the KdV equation (1.1.1), albeit with a different normalization, thus realizing the KP
equation as a generalization of KdV to two spatial dimensions.

Gelfand–Dickey hierarchies

In order to recover the KdV hierarchy (1.1.13) from KP (1.1.34), one must impose an extra
condition on the Lax operator

(L2)− = 0, (1.1.47)

or, equivalently, require that L squares to the Schrödinger operator (1.1.12). In this case, it is
easy to see that all the functions f j can be expressed in terms of the single dependent variable
u and that ∂L

∂tm
= 0 for m odd. After relabeling t2m → tm, we recover the KdV hierarchy.

Remark 1.1.11. The fact that this reduction from KP to KdV is allowed is far from trivial,
and it involves proving that the vector fields given by the flows ∂/∂tm on the manifold of
pseudodifferential operators restrict to the submanifold defined by (1.1.47). Similarly, to show
that KdV inherits the bi-Hamiltonian structure, one must prove that this submanifold is a
Poisson submanifold with respect to both Poisson brackets.

This reduction from KP to KdV after imposing condition (1.1.47) motivates the following
definition

Definition 1.1.12. Let N > 2. The N -Gelfand–Dickey (GD) hierarchy is the reduction of the
KP hierarchy (1.1.34) given by the extra condition

(LN)− = 0. (1.1.48)

Remark 1.1.13. Explicitly,

LN = ∂Nx + uN−2∂N−2
x + · · ·+ u1∂x + u0, (1.1.49)

and all the functions f j of the Lax operator can be expressed in terms of the N − 1 dependent
variables u0, u1, . . . , uN−2.

As it was the case with the KdV hierarchy, the GD hierarchies are all tau-symmetric and
bi-Hamiltonian. The proofs are analogous to those explained in Remark 1.1.11.

7As it was the case with the KdV equation, the origins of the KP equation lie in Physics, where it was derived
[68] to model the propagation of shallow waves in two-dimensions. Thus, from the physical point of view it also
makes sense that it reduces to KdV when uy = 0.
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1.1.3 What is an integrable system?

After Section 1.1.1, we can affirm that the KdV hierarchy is a tau-symmetric bi-Hamiltonian
system of evolutionary PDEs. So are the GD hierarchies, and the KP hierarchy, with the caveat
that the latter is a 2 + 1 system.

However, it would not be adequate to define integrable systems as tau-symmetric bi-
Hamiltonian systems of evolutionary PDEs. For instance, it does not suit Burgers’ equation
[11]

ut = uux + uxx, (1.1.50)

which does not admit a Hamiltonian formulation. Another counterargument to this proposed
definition is the Camassa–Holm equation [24]

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, (1.1.51)

which is not evolutionary. Finally, consider the Toda lattice [116], a two-dimensional bi-
Hamiltonian integrable system whose first non-trivial pair of equations is

pt = e−(q(n,t)−q(n−1,t)) − e−(q(n+1,t)−q(n,t)), (1.1.52)

qt = p. (1.1.53)

These are not PDEs, but differential-difference equations.
Bearing this in mind, the approach to integrable systems taken in this dissertation is based

on the properties of the examples considered here: all integrable hierarchies discussed in this
thesis are tau-symmetric and Hamiltonian, and most of them bi-Hamiltonian, so we will make
use of these structures to study them.8

1.2 Cohomological field theories

1.2.1 Moduli spaces of stable curves

In this section, we introduce the moduli spaces of stable curves without delving too deeply into
the geometric technicalities.9 First, let us precisely define the geometric objects we want to
parameterize via moduli spaces.

Definition 1.2.1. Let g, n > 0 be such that 2g − 2 + n > 0. A stable curve of genus g with n
marked points is a tuple (C, x1, . . . , xn), where:

1. C is a complex, compact, algebraic curve of arithmetic genus g.

2. The only singularities of C are simple nodes.

3. x1, . . . , xn ∈ C are pairwise distinct and do not coincide with the nodes.

4. Let C1, . . . , Ck be the connected components of the normalization10 of C, and let gi
and ni denote the genus and the number of special points11 of Ci, respectively. Then
2gi − 2 + ni > 0 for all i.

8See [102] for a very similar approach to integrable systems.
9We follow [131, 108].

10Defined as a possibly disconnected smooth curve ν : C̃ → C, where the morphism ν is an isomorphism over
the smooth locus of C, and each node of C has exactly two preimages.

11Marked points and preimages of nodes.
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Condition 4 is equivalent to stable curves having finite automorphism groups.12 Definition
1.2.1 comes with a natural notion of isomorphism, necessary for the construction of moduli
spaces. We say that two stable curves are isomorphic

(C, x1, . . . , xn) ∼ (D, y1, . . . , yn) (1.2.1)

if there exists an isomorphism f : C → D such that f(xk) = yk for all k. We denote the
equivalence class of (C, x1, . . . , xn) by [C, x1, . . . , xn].

Definition 1.2.2. Let g, n > 0 be such that 2g − 2 + n > 0. The moduli space of stable curves
of genus g with n marked points is defined as

Mg,n = {(C, x1, . . . , xn)}/ ∼ . (1.2.2)

Definition 1.2.2 conceives the moduli spaces Mg,n merely as sets. However, they have a rich
algebro-geometric structure, evidenced by the proposition below.

Proposition 1.2.3 ([33, 74]). Let g, n > 0 be such that 2g− 2 +n > 0. The moduli space Mg,n

is a proper smooth (3g − 2 + n)-dimensional Deligne–Mumford stack.

Remark 1.2.4 (On the definition and the geometry of Mg,n).

1. The theory of Deligne–Mumford stacks or, in general, algebraic stacks is of little importance
to us. For this dissertation, we only need one fact: the moduli spacesMg,n, from the point
of view of intersection theory, behave as if they were compact, smooth algebraic varieties,
e.g., they have finite-dimensional cohomology rings which satisfy Poincaré duality.13

2. It is possible to construct the moduli spaces of unstable curvesM0,0,M0,1,M0,2, andM1,1

as sets, analogously to Definition 1.2.2, but they cannot be realized as Deligne–Mumford
stacks, as unstable curves have infinite automorphism groups.

3. The moduli space of smooth curves Mg,n is an open dense subspace of Mg,n. The space
∂Mg,n =Mg,n \Mg,n is a codimension 1 subspace of Mg,n called the boundary of Mg,n,
which parameterizes singular curves.

Dual graphs and stratification

To effectively work with stable curves and their moduli spaces, it is convenient to use stable
graphs, which provide a useful decomposition of the moduli space of curves.

Definition 1.2.5. A stable graph is a tuple Γ = (V,H,E, L, ι, v, g) where

1. V = V (Γ) is a finite set, the vertices of Γ,

2. H = H(Γ) is a finite set, the half-edges of Γ,

3. ι : H → H is an involution,

4. L = L(Γ), the set of legs, consists of the fixed points of ι,

5. E = E(Γ), the set of edges, consists of pairs {h1, h2} of half-edges exchanged by ι,

6. v : H → V associates to each h ∈ H the vertex incident to h, v(h),

12See [52] for the proof.
13For the details, see [114].
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7. g : V → Z>0 associates a genus g(v) to the vertex v,

8. the graph (V,E) is connected,

9. for any vertex v ∈ V , the stability condition

2g(v)− 2 + n(v) > 0, (1.2.3)

where n(v) = #H(v) for H(v) = {h ∈ H| v(h) = v}, is satisfied.

Given a stable curve [C, x1, . . . , xn] ∈Mg,n, its dual graph ΓC is a stable graph constructed
as follows:

• Each irreducible component Cv of C corresponds to a vertex v decorated by its geometric
genus.

• Each node connecting two irreducible components Cv and Cw corresponds to an edge
connecting v and w. Similarly, each nodal self-intersection of Cv corresponds to an edge
connecting Cv with itself.

• Each marked point xi ∈ Cv corresponds to a numbered leg attached to the vertex v.

The subset of Mg,n

MΓ = {[C, x1, . . . , xn] ∈Mg,n |ΓC = Γ}, (1.2.4)

consisting of stable curves whose dual graph is (isomorphic to)14 Γ is called Γ-stratum. For

example, Mg,n is the g
1 n. . .

-stratum. The decomposition

Mg,n =
⊔
Γ

MΓ, (1.2.5)

where gamma runs through isomorphism classes of genus g stable graphs15 with n legs is called
stratification.

Example 1.2.6 (Explicit computation of some moduli spaces).

1. g = 0, n = 3. The only genus 0 Riemann surface up to isomorphism is the complex
projective line CP1. Its group of automorphisms is

PSL(2,C) = {A ∈ M2(C)| det A = 1} /{1,−1}, (1.2.6)

whose action on CP1 is given by (
a b
c d

)
z =

az + b

cz + d
. (1.2.7)

Then for any three distinct points x1, x2, x3 ∈ CP1 there exists a unique A ∈ PSL(2,C)
such that Ax1 = 0, Ax2 = 1, and Ax3 =∞. Therefore,

M0,3 =M0,3 = {[CP1, 0, 1,∞]} = {point}. (1.2.8)

14There is a precise notion of isomorphism of stable graphs, which effectively translates to: “two stable graphs
are isomorphic if and only if they are drawn the same”. In this thesis, graphs are never described by giving the
tuples (V,H,E,L, ι, v, g), but are drawn instead, thus implicitly representing isomorphism classes.

15The genus of a stable graph is defined as g(Γ) =
∑

v∈V g(v) + 1 + #E −#V .



1.2. Cohomological field theories 11

2. g = 0, n = 4. Let x1, x2, x3, x4 ∈ CP1. After sending x1, x2 and x3 to 0, 1 and ∞
via A ∈ PSL(2,C) as before, the curve is completely determined by the point t = Ax4.
Therefore

M0,4 = {[CP1, 0, 1,∞, t] | t ∈ CP1 \ {0, 1,∞}} ∼= CP1 \ {0, 1,∞}. (1.2.9)

Its (Deligne–Mumford) compactification M0,4 is obtained by adding the singular curves
appearing as the limits when t→ 0, 1,∞

0
0

t
0

∞

1
, 0

1

t
0

∞

0
, 0

0

1
0

∞

t
. (1.2.10)

Therefore,

M0,4
∼= CP1. (1.2.11)

3. g = 1, n = 1. Recall that every elliptic curve E is isomorphic to the quotient of C by a
rank 2 lattice L, where the marked point of E is the image of 0 under the quotient map
C→ E, and that E is isomorphic to E ′ if and only if L = aL′ for some constant a ∈ C∗.
Here by rank 2 lattice we mean an additive subgroup L = aZ+ bZ, where a, b ∈ C span C
as a vector space over R. Therefore, M1,1

∼= {lattices}/C∗. Let {λ1, λ2} be a basis of L
such that τ = λ2/λ1 lies in the upper half-plane H. Multiplying L by 1/λ1 yields a lattice
with basis {1, τ}, τ ∈ H. On the other hand, note that the changes of basis of lattices are
given by the matrix group SL(2,Z) = {A ∈ M2(Z)| det A = 1}. This group of changes of
basis, which naturally leaves lattices invariant, induces: a PSL(2,Z)-action on H given
by formula (1.2.7), and the involution of the elliptic curve, induced by the action of −1.
Therefore,

M1,1
∼= H/SL(2,Z). (1.2.12)

As in the previous example, in order to obtain M1,1, we have to add the singular curve

01 (1.2.13)

to M1,1.16

Forgetful and gluing maps

Now that the moduli spaces of curves and their geometric structure are defined, let us define
the natural maps between them:

1. The forgetful map π :Mg,n+1 →Mg,n is defined as

π([C, x1, . . . , xn, xn+1]) = [C, x1, . . . , xn]st, (1.2.14)

where the stabilization of a curve [C, x1, . . . , xn]st is defined by contracting the unstable
genus 0 irreducible components, i.e., the genus 0 components with less than 3 special
points.

2. The gluing map of separating kind ρ :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 is defined by
identifying the marked points with numbers n1 + 1 and n2 + 1 into a node.

3. The gluing map of nonseparating kind σ :Mg−1,n+2 →Mg,n is defined by identifying the
marked points with numbers n+ 1 and n+ 2.

16See [60] for a detailed account of this example.
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1.2.2 Intersection theory

As stated before in Remark 1.2.4, the moduli spaces of stable curves have finite-dimensional
cohomology rings H∗(Mg,n) = H∗(Mg,n;Q). Since their structure can be very complicated,
especially for high genera, it is convenient to study simpler subrings that contain the most
important cohomology classes, for instance, those arising as Chern classes of natural vector
bundles on Mg,n or the fundamental classes corresponding to stable graphs.

Definition 1.2.7. The minimal family of subalgebras RH∗(Mg,n) ⊂ H∗(Mg,n) stable under
push-forwards of π, ρ and σ is called the family of tautological rings of the moduli spaces of
stable curves. The m-th tautological ring is RHm(Mg,n) = RH∗(Mg,n) ∩H2m(Mg,n).

By definition, the tautological ring must contain 1 = [Mg,n] ∈ H0(Mg,n), since it is a subring.
As an immediate consequence, the classes represented by boundary strata [MΓ] ∈ H2|E(Γ)|(Mg,n)
also lie in the tautological ring, as they are the images of 1 under the pushforwards with respect
to the gluing maps. Let us now define some cohomology classes coming from vector bundles on
Mg,n.

Definition 1.2.8. For i = 1, . . . , n, let Li → Mg,n denote the cotangent line bundle, whose
fiber over a point17 [C, x1, . . . , xn] ∈Mg,n is the cotangent space of C at xi. The ψ-classes are
defined as the first Chern classes of Li,

ψi = c1(Li) ∈ H2(Mg,n). (1.2.15)

For m > 0, the m-th κ-class is defined by

κm = π∗(ψ
m+1
n+1 ) ∈ H2m(Mg,n). (1.2.16)

Let Λ → Mg,n denote the Hodge bundle, a rank g vector bundle whose fiber over a point17

[C, x1, . . . , xn] ∈Mg,n is the space of meromorphic differentials of C which have at most simple
poles with opposite residues on the two branches at each node and are holomorphic everywhere
else.18 For i = 1, . . . , g, the i-th λ-class is defined as the i-th Chern class of Λ

λi = ci(Λ) ∈ H2i(Mg,n). (1.2.17)

These classes can be combined together with the strata into decorated stratum classes. Let
us show how to construct them. Let Γ be a genus g stable graph with n marked points, and let

ξΓ : ([Cv, (qh)h∈H(v)])v∈V (Γ) ∈
∏

v∈V (Γ)

Mg(v),n(v) 7−→ [C, p1, . . . , pn] ∈Mg,n (1.2.18)

be its associated gluing map, where the curve C is obtained by gluing all pairs of points {qh1 , qh2}
corresponding to the same edge of Γ, i.e., {h1, h2} ∈ E(Γ), and the marked points pi are the
numbered images under ξΓ of the points qh corresponding to the legs, i.e., qh with h ∈ L(Γ).

Definition 1.2.9. Let Γ be a stable graph. A decoration on Γ is a class

α =
∏

v∈V (Γ)

π∗vαv ∈ H∗
(∏
v∈V (Γ)

Mg(v),n(v)

)
, (1.2.19)

17It is not enough to know the fibers at every point to fully describe a vector bundle. However, the definition
of Li requires some algebro-geometric constructions involving the universal curve of Mg,n beyond the scope of
this thesis. The same applies to Λ.

18For each irreducible component of g, the residues of a meromorphic form must add to zero, so there are less
degrees of freedom than nodes for the possible singularities. In particular, if the dual graph of C is a tree, the
fiber of Λ at C consists of holomorphic differentials.



1.2. Cohomological field theories 13

where πv :
∏

w∈V (Γ)Mg(w),n(w) →Mg(v),n(v) denotes the projection and αv ∈ H∗(Mg(v),n(v)) is a
monomial in ψ and κ-classes.

The decorated stratum class [Γ, α] is defined as the pushforward

[Γ, α] = (ξΓ)∗α ∈ H∗(Mg,n), (1.2.20)

where α is a decoration on Γ.

From the previous definition, it is clear that if the ψ and κ-classes are tautological, so will
the decorated stratum classes. The next proposition guarantees this.

Proposition 1.2.10. The ψ, κ and λ-classes are tautological, i.e., ψi, κi, λi ∈ RH∗(Mg,n).
Moreover, RH∗(Mg,n) is finitely generated by the decorated stratum classes [Γ, α] as a Q-vector
space.

Despite all these natural classes lying in RH∗(Mg,n), the equality RH∗(Mg,n) = H∗(Mg,n),
which is true for g = 0 [72], does not hold in general. In fact, it is already false for g = 1,
as tautological classes only exist in even degrees and H11(M1,11) ∼= Q (see [58]). The weaker
statement of all cohomological classes in even degrees being tautological, which is true for
g = 1 [98], was proved not to hold in higher genera in [58] via an explicit counterexample
in the cohomology group H22(M2,20). However, as this paper evidences, constructions of
non-tautological cohomology classes are quite involved.

Double ramification cycles

Other important cohomology classes are double ramification cycles. Let us recall their definition.19

Let a1, . . . , an be integers such that
∑

i ai = 0, and let n+, n0, and n− denote the number of
positive, zero, and negative ai’s, respectively. The positive and negative ai’s define partitions
µ = (µ1, . . . , µn+) and ν = (ν1, . . . , νn−) of the same integer d = 1

2

∑
i |ai|. Consider the moduli

space

Mg;a1,...,an :=M∼
g,n0,µ,ν

(CP1, 0,∞) (1.2.21)

of degree d rubber holomorphic maps f : C → CP1, where C is a stable curve of genus g with
n0 marked points and f has ramification profiles µ and ν above 0 and ∞, respectively. Here
rubber means we factor out the C∗-action on CP1. There is a forgetful map

p :Mg;a1,...,an −→Mg,n, (1.2.22)

defined by taking preimages at 0 and ∞

p([f : (C, x1, . . . , xn0)→ CP1]) =
[
C, x1, . . . , xn0 , {f−1(0)}, {f−1(∞)}

]
. (1.2.23)

Definition 1.2.11. The Poincaré dual of the push-forward under p of the virtual funda-
mental class [Mg;a1,...,an ]virt is called double ramification cycle or DR-cycle and denoted by
DRg(a1, . . . , an).

Proposition 1.2.12 ([50]). DRg(a1, . . . , an) ∈ RHg(Mg,n).

19We follow [23].
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Tautological relations

Proposition 1.2.10 gives a set of generators for RH∗(Mg,n). In order to know its algebraic
structure, it is also necessary to know its relations, called tautological relations, whose study and
derivation constitute a prominent research direction. One important application of tautological
relations is computing intersection numbers, as the following example demonstrates.

Example 1.2.13. Let i, j, k ∈ {1, . . . , n} be pairwise distinct, and let δi|jk be the divisor of
M0,n consisting of stable genus 0 curves with a node separating the i-th marked point from the
j-th and k-th marked points. An example of tautological relation is

ψi = [δi|jk] ∈ RH1(M0,n), (1.2.24)

for any j, k. For n = 4 it takes the form

ψ1 = [δ1|23] =

[
0

1

4
0

2

3

]
∈ RH1(M0,4), (1.2.25)

allowing us to compute the intersection number∫
M0,4

ψ1 = 1. (1.2.26)

Partition function

Let us now compute another intersection number, namely∫
M0,5

κ2
1. (1.2.27)

Recall the projection formula20 for a proper morphism of smooth varieties f : X → Y∫
X

αf ∗(β) =

∫
Y

f∗(α)β, (1.2.28)

and the pullback formulas for κ and ψ-classes

π∗κm = κm − ψmn+1, (1.2.29)

π∗ψmi = ψmi + (−[δi,n+1])m, (1.2.30)

where δi,n+1 is the divisor of Mg,n+1 consisting of stable curves containing a g = 0 irreducible
component with exactly three special points: a node and the i-th and (n+ 1)-th marked points.
We have ∫

M0,5

κ2
1 =

∫
M0,6

ψ2
6(κ1 − ψ6) =

∫
M0,7

ψ2
7ψ

2
6 −

∫
M0,6

ψ3
6, (1.2.31)

where we have used ψ7[δi,7] = 0. Using (1.2.24) as in Example 1.2.13, we can conclude∫
M0,5

κ2
1 = 5. (1.2.32)

It turns out the procedure to obtain (1.2.31) generalizes: given any polynomial Q in κ-classes, we
can apply (1.2.28), (1.2.29) and (1.2.30) to rewrite the integral

∫
Mg,n

Q as a linear combination

of intersection numbers of products of ψ-classes. Thus, it is possible to encode the intersection
theory of the tautological rings, which by Proposition 1.2.10 are generated by strata decorated
by ψ and κ-classes, in terms of integrals of ψ-classes. This motivates the following definition

20See [53].
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Definition 1.2.14. The Witten–Kontsevich partition function is a formal power series in the
variables {td}d>0 given by

FWK(t1, t2, . . . ) =
∑
g,n>0

2g−2+n>0

1

n!

∑
d1,...,dn>0

〈
n∏
i=1

τdi〉g
n∏
i=1

tdi , (1.2.33)

where the correlation functions are defined by

〈
n∏
i=1

τdi〉g =

∫
Mg,n

n∏
i=1

ψdii . (1.2.34)

1.2.3 Cohomological field theories

The Witten–Kontsevich partition function is not the only way to encode the intersection theory
ofMg,n. In fact, its construction can be generalized by considering correlation functions resulting
from the integration of other cohomology classes. Cohomological field theories (CohFTs)21 are
coherent choices of classes in the cohomology rings H∗(Mg,n) compatible with the forgetful and
gluing maps.

Definition 1.2.15 (CohFT). Let V be an N -dimensional vector space over C equipped with a
scalar product (·, ·). Choose a basis {e1, . . . , eN} of V , and let ηαβ = (eα, eβ), with inverse ηαβ.
A cohomological field theory with unit e1 is a collection of linear homomorphisms

cg,n : V ⊗n → H2∗ (Mg,n;C
)
, 2g − 2 + n > 0 (1.2.35)

such that

• cg,n is Sn-equivariant, where Sn acts on V ⊗n by permutation of the factors and on
H2∗ (Mg,n;C

)
by permutation of the marked points.

• For any gluing map ρ :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 ,

ρ∗cg1+g2,n1+n2(v1 ⊗ · · · ⊗ vn1+n2) = (1.2.36)

cg1,n1+1(v1 ⊗ · · · ⊗ vn1 ⊗ eα)ηαβcg2,n2+1(vn1+1 ⊗ · · · ⊗ vn2 ⊗ eβ).

• For any gluing map σ :Mg−1,n+2 →Mg,n,

σ∗cg,n(v1 ⊗ · · · ⊗ vn) = cg−1,n+2(v1 ⊗ · · · ⊗ vn ⊗ eα ⊗ eβ)ηαβ. (1.2.37)

• For any forgetful map π :Mg,n+1 →Mg,n,

π∗cg,n(v1 ⊗ · · · ⊗ vn) = cg,n+1(v1 ⊗ · · · ⊗ vn ⊗ e1) (1.2.38)

• c0,3(v1 ⊗ v2 ⊗ e1) = (v1, v2)

We associate to a CohFT {cg,n} a formal power series in the variables {tαd}
16α6N
d>0 . First,

define the correlation functions as

〈
n∏
i=1

τdi(vi)〉g :=

∫
Mg,n

cg,n(⊗ni=1vi)
n∏
i=1

ψdii . (1.2.39)

21Introduced by Kontsevich and Manin in [76].
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Define the (logarithm of the) partition function as

F :=
∑
g>0

ε2gFg, Fg :=
∑
n>0

2g−2+n>0

1

n!

∑
16α1,...,αn6N
d1,...,dn>0

〈
n∏
i=1

τdi(eαi)〉g
n∏
i=1

tαidi , (1.2.40)

where ε is a formal parameter to keep track of the genus.

Example 1.2.16.

1. Let V be 1-dimensional. The expression cg,n = 1 defines a CohFT, called the trivial
CohFT. Its associated partition function is the Witten–Kontsevich one (1.2.33).

2. Let r ∈ Z>2, and let V be the C-span of {e0, . . . , er−2} endowed with the scalar product
(eα, eβ) = δα+β,r−2. Witten’s r-spin CohFT22 Wg,n is the unique CohFT with unit e0

satisfying the initial conditions

W0,3(ea, eb, ec) = δa+b+c,r−2, (1.2.41)

W0,4(e1, e1, er−2, er−2) =
1

r
[point]. (1.2.42)

Note Witten’s 2-spin CohFT is the trivial one.

1.3 Frobenius manifolds

1.3.1 From WDVV to Frobenius manifolds.

Frobenius manifolds, also known as Dubrovin–Frobenius manifolds, were originally introduced
by Dubrovin [37, 38] as a way to study the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV)
associativity equations [118, 35] in a coordinate-free way. Besides two-dimensional topological
field theory, from where the WDVV equations originate, the geometry of Frobenius manifolds
underlies many mathematical structures: integrable systems and CohFTs are the two cases
treated in this thesis, but there are many more. For instance, in the survey [87], Manin studies
and compares Frobenius manifolds arising from quantum cohomology [86], Saito’s singularity
theory [103, 104] and mirror symmetry of Calabi–Yau 3-folds [120].

Before giving a formal definition of Frobenius manifolds and studying their main properties,
let us recall the WDVV equations: we look for a function F (t) = F (t1, . . . , tn), a constant
symmetric non-degenerate matrix ηαβ, and numbers q1, . . . , qn, r1, . . . , rn, d such that

∂3F (t)

∂tα∂tβ∂tλ
ηλµ

∂3F (t)

∂tµ∂tγ∂tδ
=

∂3F (t)

∂tδ∂tβ∂tλ
ηλµ

∂3F (t)

∂tµ∂tγ∂tα
(WDVV1)

for any α, β, γ, δ = 1, . . . , n. In other words, the functions

cγαβ(t) = ηγλ
∂3F (t)

∂tλ∂tα∂tβ
(1.3.1)

are the structure constants of an associative commutative algebra At for all t. F (t) must also
satisfy

∂3F (t)

∂tα∂tβ∂t1
= ηαβ, (WDVV2)

22For more details, see [122] for Witten’s original construction in terms of intersection theory of the moduli

spaces of r-spin curves M1/r

g,n , and [97] and the references therein for the modern formulation of Wg,n as a
CohFT.
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where ηαβ is the inverse matrix of ηαβ. Equation (WDVV2) implies the algebras At have a
t-independent unit e = ∂/∂t1. Finally, let us introduce the Euler vector field

E =
n∑

α=1

[(1− qα)tα + rα]
∂

∂tα
. (1.3.2)

We require the function F (t) to satisfy the (quasi)homogeneity condition

LEF (t) = (3− d)F (t) +
1

2
Aαβt

αtβ +Bαt
α + C, (WDVV3)

for some constants Aαβ, Bα, C. The numbers qα, rα must satisfy the normalization condition

q1 = 0, rα 6= 0 only if qα = 1. (1.3.3)

The implicit geometric structure of a solution to the system (WDVV1)-(WDVV3) is captured
in the definition of Frobenius manifolds, which we recall below.23

Definition 1.3.1. A Frobenius algebra is a pair (A, 〈 , 〉), where A is a commutative associative
unital algebra (over C), and 〈 , 〉 is a symmetric, non-degenerate bilinear form on A satisfying
the invariance condition

〈a · b, c〉 = 〈a, b · c〉 (1.3.4)

for any a, b, c ∈ A.

Definition 1.3.2. A (smooth, analytic) Frobenius structure of charge d on the manifold M is
a structure of Frobenius algebra on the tangent spaces TtM = (At, 〈 , 〉) depending (smoothly,
analytically) on the point t ∈M and satisfying the following axioms

FM1. The (not necessarily positive definite) metric on M induced by the invariant bilinear
form 〈 , 〉 is flat. Let ∇ be the corresponding Levi-Civita connection. The unit vector
field e must be flat, i.e.,

∇e = 0. (1.3.5)

FM2. Let c be the symmetric trilinear form on TM

c(x, y, z) = 〈x · y, z〉. (1.3.6)

The 4-tensor

(∇wc)(x, y, z) (1.3.7)

must be symmetric in (x, y, z, w).

FM3. A linear vector field E must be fixed on M , i.e.,

∇∇E = 0, (1.3.8)

such that

[E, x · y]− [E, x] · y − x · [E, y] = x · y, (1.3.9)

E〈x, y〉 − 〈[E, x], y〉 − 〈x, [E, y]〉 = (2− d)〈x, y〉. (1.3.10)

23The rest of this section follows [39, 40, 46]. Other excellent references on the theory of Frobenius manifolds
are [41, 64, 86].
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The correspondence between solutions of the WDVV equations and Frobenius manifolds is
made rigorous in the following lemma.

Lemma 1.3.3 ([40]). Locally a Frobenius manifold with diagonalizable ∇E is described by an
analytic solution of WDVV and vice versa.

As a consequence of the lemma above, we will often make no distinction between solutions
of the WDVV equations and (local charts of) Frobenius manifolds. Under this correspondence,
we call the function F (t) satisfying the WDVV system (WDVV1)-(WDVV3) the (pre)potential
of the corresponding Frobenius manifold. It can be computed as follows: first, choose a local
system of flat coordinates (t1, . . . , tn) with respect to the metric 〈 , 〉 with ∂/∂t1 = e, and let

ηαβ = 〈∂α, ∂β〉 , ∂α =
∂

∂tα
(1.3.11)

be the corresponding constant Gram matrix. The existence of such a system is guaranteed by
axiom FM1. Second, compute the structure constants

cγαβ(t) = ηγλ 〈∂λ · ∂α, ∂β〉 , (1.3.12)

which, by axiom FM2, can be represented as third derivatives of a function F (t) as in (1.3.1).
This function is the prepotential of the Frobenius manifold M . Observe that neither the flat
coordinates nor the prepotential are unique. Throughout this section, given a Frobenius manifold
M , we will use the standard notations tα, ∂α, ηαβ, cγαβ and F as introduced above.

An important property of Frobenius manifolds, which is required for the correspondences
shown in Sections 1.5 and 1.6 to work, is semisimplicity.

Definition 1.3.4. Let M be a Frobenius manifold. A point t ∈M is called semisimple if the
algebra TtM is semisimple, i.e., if it has no nilpotents.

Unless stated otherwise, all Frobenius manifolds considered in this thesis are semisimple,
i.e., a generic point t ∈M is semisimple.

1.3.2 Differential geometry of Frobenius manifolds

Frobenius manifolds have a very rich geometry, which we recall in this section.

The second metric

Let M be a Frobenius manifold. The second metric on TM is defined as follows: let η∗ : TM →
T ∗M be the isomorphism induced by the metric 〈 , 〉, which in turn induces the product

ω1 · ω2 = η∗(η
∗(ω1) · η∗(ω2)) (1.3.13)

for ω1, ω2 ∈ T ∗M , where η∗ = (η∗)
−1. This lets us define the intersection form

(ω1, ω2) = iE(ω1 · ω2) (1.3.14)

on T ∗M , where iE is the contraction with the Euler vector field E. The components of the
intersection form in the flat coordinates tα are given by

gαβ(t) = (dtα, dtβ) = Eλ(t)cαβλ (t), (1.3.15)

where Eλ(t) are the components of the Euler vector field. Note gαβ(t) is not constant. On the
open subset of M where gαβ is non-degenerate, the intersection form defines a second metric
on TM , given by the inverse matrix (gαβ) = (gαβ)−1. One can check this new metric ( , ) is
related to 〈 , 〉 by the formula

(E · u, v) = 〈u, v〉. (1.3.16)



1.3. Frobenius manifolds 19

Proposition 1.3.5 ([39]). The second contravariant metric gαβ of a Frobenius manifold is flat.
Furthermore, the pair of metrics ηαβ, gαβ of a Frobenius manifold forms a flat pencil, i.e., the
metric

ηαβ + λgαβ (1.3.17)

is flat for arbitrary λ, and its Christoffel symbols are given by

Γαβ1γ + λΓαβ2γ , (1.3.18)

where Γαβ1γ and Γαβ2γ are the Christoffel symbols of η and g, respectively.

Canonical coordinates

Besides the flat coordinates tα, which make the Gram matrix ηαβ of the metric 〈 , 〉 constant,
there is another special set of coordinates whose coordinate vector fields are the idempotents of
the algebras TtM .

Lemma 1.3.6 ([39]). In the semisimple case, there exist local coordinates u1, . . . , un, unique up
to permutation, such that

∂

∂ui
· ∂

∂uj
= δij

∂

∂ui
(1.3.19)

We call u1, . . . , un canonical coordinates.

It is immediate from the definition that both metrics take a diagonal form in the canonical
coordinates. The following proposition shows the close relation between the canonical coordinates
and the Euler vector field.

Proposition 1.3.7 ([39]). Let U : TM → TM denote the operator of multiplication by the
Euler vector field, i.e.,

U(x) = E · x. (1.3.20)

The eigenvalues of U coincide with the canonical coordinates.

Deformed flat connection

Another important geometric structure of Frobenius manifolds is the deformed flat connection,
whose flatness is roughly equivalent to the axioms of Frobenius manifolds.

Definition 1.3.8. Let M be a Frobenius manifold. The deformed flat connection on M × C∗
is defined by

∇̃xy = ∇xy + zx · y, (1.3.21)

∇̃ d
dz
y = ∂zy + Uy − 1

z
Vy, (1.3.22)

∇̃x
d

dz
= ∇̃ d

dz

d

dz
= 0, (1.3.23)

for any x, y ∈ TM, z ∈ C∗, where V is the grading operator, defined as

V =
2− d

2
−∇E. (1.3.24)
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Definition 1.3.8 induces a connection on the cotangent space, also denoted by ∇̃. A function
f(t; z) defined on a domain in M ×C∗ is called deformed flat if its differential is horizontal with

respect to ∇̃, i.e., ∇̃df = 0.
The flatness of ∇̃ is equivalent to the existence of n independent deformed flat functions,

called deformed flat coordinates. To compute them, let

ξ = ξαdt
α + 0 dz (1.3.25)

be horizontal with respect to ∇̃. One can show the functions ξα satisfy the Dubrovin equations

∂αξβ = zcγαβξγ, (1.3.26)

∂zξβ =

(
Uγβ +

1

z
Vγβ
)
ξγ, (1.3.27)

for all α, β = 1, . . . , n. The study of the Dubrovin equations and their solutions is one of
the main topics in Frobenius manifolds theory.24 Although we will not delve deeper in this
introduction, let the following proposition show how important understanding the Dubrovin
equations is

Proposition 1.3.9 ([39]). Compatibility of the Dubrovin equations is equivalent to WDVV.

1.3.3 An Frobenius manifold and superpotentials

Let us conclude this section by presenting an important class of examples, whose generalization
to infinite-dimensional Frobenius manifolds will be studied in Chapter 5.

Let M be the space of all polynomials of the form

M = {λ(p) = pn+1 + anp
n−1 + · · ·+ a1| a1, . . . , an ∈ C}. (1.3.28)

We identify the tangent space ofM with the algebra of truncated polynomials via the isomorphism

TλM ∼= C[p]/(λ′(p)) (1.3.29)

∂ 7→ ∂(λ(p))

The bilinear form is defined by the residue formula

〈∂, ∂′〉λ = Resp=∞
∂(λ(p)dp) ∂′(λ(p)dp)

dλ(p)
, (1.3.30)

whose invariance is clear from

〈∂ · ∂′, ∂′′〉λ = Resp=∞
∂(λ(p)dp) ∂′(λ(p)dp) ∂′′(λ(p)dp)

dp dλ(p)
. (1.3.31)

The unit vector field e and the Euler vector field E are given by

e =
∂

∂a1

, E =
1

n+ 1

n∑
i=1

(n− i+ 1)ai
∂

∂ai
. (1.3.32)

The second metric is given by

(∂, ∂′)λ = Resp=∞
∂(log λ(p)dp) ∂′(log λ(p)dp)

d log λ(p)
. (1.3.33)

24See e.g. [59] and the references therein.
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Let q1, . . . , qn be the critical points of λ(p), i.e., λ′(qj) = 0. Then the critical values uj = λ(qj)
define local canonical coordinates on M near the points where λ(p) has no multiple roots.

The flat coordinates for the metric 〈 , 〉 are given by the residue formulas

tα = − n+ 1

n− α + 1
Resp=∞ λ

n−α+1
n+1 (p)dp. (1.3.34)

The construction above, known as the An Frobenius manifold, generalizes from polynomials
to rational functions [45, 26] and to even more general functions, known as Landau–Ginzburg
superpotentials [39, 40, 47].

1.4 Integrable systems and CohFTs

1.4.1 The Witten–Kontsevich theorem

The first link between the apparently unconnected realms of integrable systems and moduli spaces
of curves was conjectured by Witten [119] and proved by Kontsevich [75]. The breakthrough
theorem reads

Theorem 1.4.1. The Witten–Kontsevich partition function (1.2.33) is the string tau-function
of the KdV hierarchy (1.1.24).

Kontsevich proved this theorem using the Strebel–Penner ribbon graph model of the moduli
spaces of curves, and later on more proofs have appeared. Mirzakhani [91] used symplectic
reduction for the Weil–Peterson volumes of the moduli spaces, and Okounkov and Pandhari-
pande [96] and Kazarian and Lando [71] used the ELSV formula, which connects intersection
theory and Hurwitz numbers. There are more papers where the Witten–Kontsevich theorem
is proved (see e. g. [95, 93, 70, 73, 30, 121]), but on the geometric side they all use one of the
ideas mentioned above: the Strebel–Penner ribbon graph model, symplectic reduction, or the
ELSV formula for Hurwitz numbers. Chapter 2 provides a new proof based on the geometry of
double ramification cycles.

1.4.2 Generalizations

The connections between CohFTs and integrable systems are not limited to the Witten–
Kontsevich theorem, which relates the simplest CohFT, the trivial one, to the simplest integrable
system, the KdV hierarchy. One generalization is Witten’s r-spin conjecture, proposed by Witten
[122] and proved by Faber, Shadrin and Zvonkhine [51]. It reads

Theorem 1.4.2. The partition function associated with Witten’s r-spin CohFT is the string
tau-function of the r-GD hierarchy.25

More generally, there are two constructions that associate an integrable system to a given
CohFT. The first one, which can be applied under the semisimplicity26 assumption, is the
Buryak–Posthuma–Shadrin realization [17, 18] of the Dubrovin–Zhang (DZ) hierarchy [46], a
tau-symmetric Hamiltonian integrable system whose string tau-function is the partition function
of the CohFT. It will be studied in full detail in Chapter 3.

The second one, even more general as it does not require semisimplicity, is the double ramifi-
cation (DR) hierarchy [12], a Hamiltonian, tau-symmetric integrable system. It is conjectured

25After some rescaling of the times.
26A CohFT is semisimple if its underlying (non-conformal) formal Frobenius manifold is semisimple at the

origin, see Section 1.6.
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in [14] that, for a semisimple CohFT, the DR and DZ hierarchies are related by a change of
variables called Miura transformation. This conjecture has been reduced in [16] to proving a
system of tautological relations, the simplest of which will be refined and tested against a variety
of natural properties in Chapter 4.

1.5 Integrable systems and Frobenius manifolds

Let us try to sketch the close relation between integrable systems and Frobenius manifolds.27

From integrable systems to Frobenius manifolds

Given a tau-symmetric bi-Hamiltonian integrable system, consider its dispersionless limit,
obtained by setting the higher derivatives of the dependent variables uαxx, u

α
xxx, . . . to zero. The

resulting system is also tau-symmetric, bi-Hamiltonian, and can be written as

∂uα

∂tβq
= ηαγ∂x ◦

δh̄β,q
δuγ

, (1.5.1)

where h̄β,q are the dispersionless limits of the Hamiltonians of the original hierarchy. Consider
the two-point correlators Ωα,p;β;q(u), defined by

∂xΩα,p;β,q =
∂hα,p−1

∂tβq
, Ωα,p;β,q = Ωβ,q;α,p, Ωα,p;1,0 = hα,p−1. (1.5.2)

For p = q = 0 they can be recast as the second derivatives of a function F (u)

Ωα,0;β;0(u) =
∂2F (u)

∂uαuβ
, (1.5.3)

which satisfies (WDVV1) and (WDVV2). In order to construct the Euler vector field, consider
the second Poisson operator, which can be written as [43]

gαβ∂x + Γαβγ uγx, (1.5.4)

with det gαβ 6= 0. The components Eµ of the Euler vector field E = Eµ ∂
∂uµ

can be uniquely
determined from the expression

gαβ = ηαγηβνEµ ∂3F

∂uµ∂uγ∂uν
. (1.5.5)

With respect to this E, F satisfies (WDVV3).

Example 1.5.1. Starting with the KdV hierarchy (1.1.13), we obtain the 1-dimensional Frobe-
nius manifold, given by the potential F (u) = u3/6.

From Frobenius manifolds to integrable systems

Let M be a Frobenius manifold with local flat coordinates uα. By the results of Section 1.3, it
is equipped with a pencil of flat metrics ηαβ + λgαβ. This defines a pair of compatible Poisson
operators of hydrodynamic type by the formulas

Pαβ
1 = ηαβ∂x, Pαβ

2 = gαβ∂x + Γαβγ uγx, (1.5.6)

27See [39, 46] for the details.
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where Γαβγ are the Christoffel symbols of gαβ. As it was done in Section 1.1.1, starting from the
Casimirs hγ,−1 = ηγαu

γ , we can apply a bi-Hamiltonian recursion algorithm to obtain a series of
Hamiltonians {h̄γ,q}q>0, which define a Hamiltonian hierarchy, called principal hierarchy

∂uα

∂tβq
= Pαγ

1 ◦
δh̄β,q
δuγ

. (1.5.7)

Example 1.5.2. Starting from the 1-dimensional Frobenius manifold given by the potential
F (t) = t3/6, the above procedure yields the Riemann hierarchy

ut0 = ux, ut1 = uux, ut2 =
1

2
u2ux, . . . (1.5.8)

which is the dispersionless limit of the KdV hierarchy (1.1.24).

Remark 1.5.3. These two processes are not inverses of one another. In fact, the actual corre-
spondence is between Frobenius manifolds and dispersionless tau-symmetric bi-Hamiltonian
hierarchies28, so any two integrable systems with the same dispersionless limit will have the
same underlying Frobenius manifold.

Obtaining a dispersive hierarchy as a suitable29 deformation of a dispersionless one, e.g. KdV
from Riemann, is a much more involved process. In Chapter 3, we will study a tau-symmetric,
Hamiltonian, and conjecturally30 bi-Hamiltonian deformation of the principal hierarchy of a
Frobenius manifold: the Dubrovin–Zhang hierarchy [46].

1.6 Frobenius manifolds and CohFTs

In view of Sections 1.4 and 1.5, it should now be evident that Frobenius manifolds and CohFTs
are closely connected. This connection was made explicit by Teleman [115] using Givental’s
group action [57]. In non-technical language, the Givental–Teleman classification theorem
reads: “Semisimple, conformal CohFTs are equivalent to local charts of Frobenius manifolds at
a semisimple point”. Without reproducing the proof nor defining the concept of equivalence
above in full detail, let us briefly examine the main ideas behind this correspondence.

From CohFTs to Frobenius manifolds

Let cg,n be a CohFT and let F = F (tαp ; ε) be its partition function. First, set the higher genera
components to zero; second, keep only those correlation functions without ψ-classes. In other
words, consider the function

FFrob = F0|tα>0=0 = F |ε=tα>0=0. (1.6.1)

Then FFrob is a formal power series in the variables tα = tα0 satisfying (WDVV1) and (WDVV2),
thus defining a non-conformal Frobenius structure, i.e., a Frobenius manifold without an Euler
vector field. Furthermore, it is a formal Frobenius manifold, as the potential FFrob is not in
general an analytic function.

Conformality of the CohFT, roughly speaking (see Chapter 3 for the precise formulation), is
equivalent to the existence of a linear vector field Ẽ on the big phase space, i.e., in the coordinates

28More precisely, a Frobenius manifold together with a Legendre transformation is equivalent to a dispersionless
flat exact bi-Hamiltonian structure. The choice of calibration of the Frobenius manifold corresponds to the
tau-structure. See [42] for the details.

29Preserving desirable properties like tau-symmetry or bi-Hamiltonian structure.
30It has been recently proved in [80]. However, this article came after the results of Chapter 3, which will be

presented as originally intended: strong evidence to support this conjecture.
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tαp for all p > 0, and a constant d such that ẼF = (3−d)F up to quadratic terms. This condition,
when substituting ε = tα>1 = 0, implies (WDVV3) for FFrob with respect to the Euler vector

field E = Ẽ|ε=tα>0=0.

From Frobenius manifolds to CohFTs

Recovering a CohFT from its underlying Frobenius manifold is a much more complicated
procedure, beyond the scope of this thesis. We refer the reader to the original works of Givental
and Teleman [57, 115], where they reconstruct the CohFT from a Frobenius manifold invariant
called the R-matrix.

1.7 Outline and originality

This dissertation is organized in the following way:

Chapter 2 (based on [132]): We identify the formulas of Buryak and Okounkov for the
n-point functions of the intersection numbers of ψ-classes on the moduli spaces of curves. This
allows us to combine the earlier known results and this one into a principally new proof of
the famous Witten–Kontsevich theorem, where the link between intersection theory of moduli
spaces and integrable systems is established via the geometry of double ramification cycles.

Chapter 3 (based on [135]): The Dubrovin–Zhang hierarchy is a Hamiltonian infinite-
dimensional integrable system associated with a semi-simple cohomological field theory or,
alternatively, with a semi-simple Dubrovin–Frobenius manifold. Under an extra assumption of
homogeneity, Dubrovin and Zhang conjectured that there exists a second Poisson bracket that
endows their hierarchy with a bi-Hamiltonian structure. More precisely, they gave a construction
for the second bracket, but the polynomiality of its coefficients in the dispersion parameter
expansion is yet to be proved. In this chapter, we use the bi-Hamiltonian recursion and a
set of relations in the tautological rings of the moduli spaces of curves derived by Liu and
Pandharipande in order to analyze the second Poisson bracket of Dubrovin and Zhang. We
give a new proof of a theorem of Dubrovin and Zhang that the coefficients of the dispersion
parameter expansion of the second bracket are rational functions with prescribed singularities.
We also prove that all terms in the expansion of the second bracket in the dispersion parameter
that cannot be realized by polynomials because they have negative degree do vanish, thus partly
confirming the conjecture of Dubrovin and Zhang.

Chapter 4 (based on [133]): We propose a conjectural formula for DRg(a,−a)λg and check
all its expected properties. This formula refines the one point case of a similar conjecture made
by Buryak, Guéré and Rossi, and we prove that the two conjectures are in fact equivalent,
though in a quite non-trivial way.

Chapter 5 (based on [134]): We study the Dubrovin equation of the infinite-dimensional
2D Toda Dubrovin–Frobenius manifold at its irregular singularity. We first revisit the definition
of the canonical coordinates, proving that they emerge naturally as generalized eigenvalues
of the operator of multiplication by the Euler vector field. We then show that the formal
solutions to the Dubrovin equation with exponential type behavior at the irregular singular
point are not uniquely determined by their leading order, but instead depend on an infinite
number of parameters, contrary to what happens in the finite-dimensional case. Next, we
obtain a large family of solutions to the Dubrovin equation given by integrals along the unit
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circle of certain combinations of the superpotentials. Observing that such a family is not
complete and has trivial monodromy, we study a larger family of weak solutions obtained via
Borel resummation of some distinguished formal solutions. These resummed solutions naturally
appear in monodromy-related pairs, finally allowing us to compute the infinite-dimensional
analogue of the Stokes matrices.

Chapters are self-contained and can be read independently. To each of the papers on which
this dissertation is based, all authors contributed equally.





Chapter 2

Buryak–Okounkov formula for the
n-point function and a new proof of the Witten
conjecture

2.1 Introduction

The symbol 〈
∏n

i=1 τdi〉g denotes the intersection number
∫
Mg,n

∏n
j=1 ψ

dj
j . It can be non-zero only

if g > 0, n > 1, 2g − 2 + n > 0, d1, . . . , dn > 0, and
∑n

j=1 dj = 3g − 3 + n = dimMg,n. Witten
conjectured [119] that the generating function of these intersection numbers defined as

F :=
n∑
g=0

〈
exp

(
∞∑
d=0

τdtd

)〉
g

is the logarithm of the string tau-function of the Korteweg-de Vries (KdV) hierachy. It is easy
to prove it satisfies the string equation, see [119], so the main part of the conjecture is the
equations of the KdV hierarchy, first proved by Kontsevich in [75].

In this chapter we give a new proof of the Witten conjecture based on a completely
different geometric idea than any of the earlier existing proofs: the intersection theory of double
ramification cycles. More precisely, the full proof explained here consists of four big steps:

1. In [23] Buryak et al. fully described the intersection numbers of the monomials of psi-classes
with the double ramification cycles.

2. In [13] Buryak used the previous result and a relation between the double ramification
cycles and the fundamental cycles of the moduli spaces of curves to describe explicitly the
n-point function Fn = Fn(x1, . . . , xn) :=

∑
g>0

∑
d1,...,dn>0〈

∏n
i=1 τdix

di
i 〉g, n > 1.

3. In [95] Okounkov proved a different explicit formula for the n-point functions Fn and
he showed in Section 3 of op. cit. that the generating function of their coefficients is the
logarithm of the string tau-function of the KdV hierarchy.

4. In this chapter we identify Buryak’s and Okounkov’s formulas for the n-point function,
making the sequence [23] → [13] → the present chapter → [95, Section 3] a new proof of
the Witten conjecture.

Let us say a few words about the geometric techniques used in [23] and [13]. A double
ramification cycle DRg(a1, . . . , an), ai ∈ Z,

∑n
i=1 ai = 0 is the class of a certain compactification

of the locus of the isomorphism classes of smooth curves with marked points [Cg, x1, . . . , xn] ∈
Mg,n such that

∑n
i=1 aixi is the divisor of a meromorphic function Cg → CP1, see Definition

27
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1.2.11. These cycles inherit rich geometry of the space of maps to CP1 and this allows to
express the psi-classes restricted to these cycles in terms of the double ramification cycles of
smaller dimension, which is in principle enough to compute all intersection numbers of psi-classes
with the double ramification cycles. Next, observe that under the projection Mg,n+g →Mg,n

that forgets g marked points the push-forward of a double ramification cycle is a multiple of
the fundamental cycle of Mg,n. This relates the intersection numbers of psi-classes on double
ramification cycles to 〈

∏n
i=1 τdi〉g. There is, of course, a long way from these computational

ideas to the nice closed formulas derived in [23] and [13].

Let us stress that in the approach of [13, Section 3.2] it is sufficient to assume that all
weights of marked points in double ramification cycles are non-zero integers (for instance, assume
that all integer numbers chosen arbitrarily in the beginning of the argument of Buryak are
positive). This allows to use only part of the results of [23] that concerns the intersection
numbers of psi-classes with the double ramification cycles with only non-zero weights. This
part of the computation in [23] uses nothing but the factorization rules for psi-classes at the
points of non-zero weights on double ramification cycles, which work equally well for the double
ramification cycles defined via relative stable maps to CP1 and the double ramification cycles of
admissible covers [65] (cf. a discussion in [23, Section 2.3]).

This idea of computation of the intersection numbers has been used in a number of earlier
papers, cf. [109, 110, 111, 112, 22], and these papers might serve a good source of examples
of particular computations. In particular, an explicit algorithm for the computation of all
intersection numbers 〈

∏n
i=1 τdi〉g is given in [113]. Exactly the same idea of computation of the

intersection numbers of ψ-classes is proposed in [31, Section 9]. It is mentioned in [31, Section
1.3] that for further applications of these results a necessary first step is to give a new proof
of Witten’s conjecture [119] using the technique developed there. This is precisely what the
present chapter (combined with [23], [13], and [95]) does.

Finally, to conclude the introduction, let us mention that the n-point functions for the
intersection numbers of psi-classes have recently been studied from different points of view,
see [49, 79, 129, 7, 130, 9, 10, 3]. The comparison of different formulas and recursive relations
for their coefficients is very interesting and usually highly non-trivial, and this chapter can also
be considered as a step towards unification (see also [130]) of the variety of formulas for the
n-point functions.

2.1.1 Organization of the chapter

In Section 2.2 we recall the formulas of Buryak and Okounkov and some statements about these
formulas, and state our main results. In Section 2.3 we derive an equivalent form of the Buryak
formula. In Section 2.4 we prove that the principal terms in the Buryak and Okounkov formulas
coincide. In Section 2.5 we prove that all other terms, namely the diagonal terms needed for a
regularization of the principal ones, also coincide in the Buryak and Okounkov formulas.

2.2 Buryak and Okounkov formulas

In this section we recall the formulas for the n-point functions in [13] and [95]. It is convenient
to append the two unstable cases g = 0 and n = 1, 2 to the intersection numbers. Namely, let
〈
∑

d1>0 τd1x
d1
1 〉0 := x−2

1 and 〈
∑

d1,d2>0 τd1x
d1
1 τd2x

d2
2 〉0 := (x1 + x2)

−1, and add these terms to F1

and F2, respectively.
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2.2.1 Formula of Buryak

Let ζ(x) := ex/2 − e−x/2. Define the functions Pn(a1, . . . , an;x1, . . . , xn) by P1(a1;x1) := 1
x1

and
for n > 2 we have

Pn(a1, . . . , an;x1, . . . , xn) :=
∑
τ∈Sn
τ(1)=1

n−1∏
j=2

xτ(j)

n−1∏
j=1

ζ

((
j∑

k=1

aτ(k)

)
xτ(j+1) − aτ(j+1)

(
j∑

k=1

xτ(k)

))
n−1∏
j=1

(
aτ(j)xτ(j+1) − aτ(j+1)xτ(j)

) .

(2.2.1)

Though it is not obvious from the definition, Pn is a formal power series in all its variables,
which is invariant with respect to the diagonal action of the symmetric group Sn on (a1, . . . , an)
and (x1, . . . , xn), see [23, Remarks 1.5 and 1.6].

Define the function FBur
n = FBur

n (x1, . . . , xn) as the Gaussian integral

FBur
n (x1, . . . , xn) :=

e(
∑n
j=1 xj)

3
/24(∑n

j=1 xj

)∏n
j=1

√
2πxj

∫
Rn

[
n∏
j=1

e
−
a2j
2xj daj

]
Pn(ia1, . . . , ian;x1, . . . , xn).

Theorem 2.2.1 (Buryak [13]). For n > 1 we have Fn = FBur
n .

2.2.2 Formula of Okounkov

Define the function E(x1, . . . , xn) as

E(x1, . . . , xn) :=
e(
∑n
j=1 x

3
j)/12∏n

j=1

√
4πxj

∫
Rn>0

[
n∏
j=1

dsj

]
exp

(
−

n∑
j=1

(
(sj − sj+1)2

4xj
+

(sj + sj+1)xj
2

))
,

where sn+1 denotes s1. Then the function E	(x1, . . . , xn) defined as

E	(x1, . . . , xn) :=
∑

σ∈Sn/Zn

E(xσ(1), . . . , xσ(n))

is invariant under the Sn-action on (x1, . . . , xn).

Denote by Πn the set of all partitions of the set {1, . . . , n} into a disjoint union of unordered
nonempty subsets t`j=1Ij, for all ` = 1, 2 . . . , n. Let xI :=

∑
j∈I xj, I ⊂ {1, . . . , n}, I 6= ∅.

Define the function G(x1, . . . , xn) as

G(x1, . . . , xn) :=
∑

t`j=1Ij∈Πn

(−1)`+1E	(xI1 , . . . , xI`)

and the function FOk
n = FOk

n (x1, . . . , xn) as

FOk
n (x1, . . . , xn) :=

(2π)n/2∏n
j=1

√
xj
G
( x1

21/3
, . . . ,

xn
21/3

)
.

Theorem 2.2.2 (Okounkov [95]). The generating function of the coefficients of FOk
n , n > 1, is

the logarithm of the string tau-function of the KdV hierarchy.
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2.2.3 Main theorem

We are ready to state our main result.

Theorem 2.2.3. We have: FBur
n = FOk

n , n > 1.

The rest of the chapter is devoted to the proof of this theorem. An immediate corollary of
Theorems 2.2.1, 2.2.2, and 2.2.3 is the following:

Corollary 2.2.4. The Witten conjecture is true, that is, the function exp(F ) is the string
tau-function of the KdV hierarchy.

As explained in the introduction, the real importance of this new proof of the Witten
conjecture is that it uses a new way to relate the intersection theory of the moduli space of
curves to the theory of integrable hierarchies, based on the geometry of double ramification
cycles. Otherwise, though Theorem 2.2.3 is interesting by itself, the identity Fn = FOk

n has an
alternative proof in [95, Section 2].

2.3 Buryak formula revisited

Our first goal is to translate the cumbersome formula of Buryak into something more manageable.
Let wjk := (ajxk − akxj)/2 and ujk := aj/xj − ak/xk.

Proposition 2.3.1. For n > 1 we have:

Pn(a1, . . . , an;x1, . . . , xn) =
1∏n
i=1 xi

∑
σ∈Sn

exp
(∑

i<j wσ(i)σ(j)

)
∏n−1

j=1 uσ(j)σ(j+1)

. (2.3.1)

It is clearly true for n = 1 and we prove it below for n > 2. Now the function Pn is manifestly
invariant with respect to the diagonal action of the symmetric group Sn on (a1, . . . , an) and
(x1, . . . , xn).

Corollary 2.3.2. We have:

FBur
n =

e
1
24

(
n∑
j=1

xj

)3

(
n∑
j=1

xj

)
(2π)

n
2

∏n
j=1 x

3
2
j

∫
Rn

[
n∏
j=1

e
−
a2j
2xj daj

] ∑
σ∈Sn

exp
(

i
2

∑
j<k aσ(j)xσ(k) − aσ(k)xσ(j)

)
∏n−1

j=1 i
(
aσ(j)
xσ(j)
− aσ(j+1)

xσ(j+1)

) .

(2.3.2)

2.3.1 Proof of Proposition 2.3.1

Assume that n > 2. Expanding the definition of the function ζ allows us to rewrite Equa-
tion (2.2.1) for Pn = Pn(a1, . . . , an;x1, . . . , xn) as

Pn =
1∏n
i=1 xi

∑
τ∈Sn
τ(1)=1

∑
ItJ=
{2,...,n}

(−1)|J | exp
(∑

i∈I
∑i−1

`=1 wτ(`)τ(i) −
∑

j∈J
∑j−1

`=1 wτ(`)τ(j)

)
∏n−1

j=1 uτ(j)τ(j+1)

. (2.3.3)
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Exponential terms in the numerators

In order to identify Equations (2.3.1) and (2.3.3), we consider for each particular fixed sequence
of signs sgn(wrs) = ±1, r < s, all terms in Equations (2.3.1) and (2.3.3) where the numerator is
equal to exp(A), A =

∑
r<s sgn(wrs)wrs, and prove that the total coefficient of exp(A) coincides

in both formulas. The symbols wij, 1 6 i, j 6 n, are understood in the rest of the proof as just
formal variables satisfying the relations wij + wji = 0.

Let [2, n] denote the set {2, . . . , n}. For σ ∈ Sn and I t J = [2, n] we define

AσI,J :=
∑
i∈I

i−1∑
`=1

wσ(`)σ(i) −
∑
j∈J

j−1∑
`=1

wσ(`)σ(j).

It is a convenient way to keep track of signs in the exponential terms in the numerators of (2.3.1)
and (2.3.3). It is easy to see that

• In Equation (2.3.1) the numerators are indexed by exp(Aσ[2,n],∅), for all σ ∈ Sn;

• In Equation (2.3.3) the numerators are indexed by exp(AτI,J), for all τ ∈ Sn such that
τ(1) = 1 and for all I t J = [2, n].

Thus, we have to obtain a full description of all σ, τ , and I tJ as above such that exp(Aσ[2,n],∅) =

exp(AτI,J).

Notation for the symmetric group

Decompose Sn as Sn−1t(tni=2Sn−1(1, i)), where Sn−1 ⊂ Sn denotes the subgroup of permutations
τ such that τ(1) = 1.

Denote by Cm, m > 2, the cyclic permutation (1,m,m − 1, . . . , 2). Consider the subset
T ⊂ Sn defined as T := {id} ∪

(
∪n−1
i=1 {Cm1 · · ·Cmi | 2 6 m1 < · · · < mi 6 n}

)
. The following

lemma implies that it is in fact a disjoint union.

Lemma 2.3.3. We have: T ∩ Sn−1 = {id}, and

T ∩ (Sn−1(1, i)) = {Cm1 · · ·Cmi−1
| 2 6 m1 < · · · < mi−1 6 n}, i > 2.

Proof. Observe that T = (T ∩ Sn−1) t (tni=2T ∩ (Sn−1(1, i))). Hence it is enough to show that
{id} ⊂ Sn−1 (which is obvious) and {Cm1 · · ·Cmi−1

| 2 6 m1 < · · · < mi−1 6 n} ⊂ (Sn−1(1, i)),
i > 2.

The latter fact we can prove by induction. For i = 2 we see that Cm = (2,m,m−1, . . . , 3)(1, 2).
Assume we know that for any 2 6 m1 < · · · < mi−1 6 n the product Cm1 · · ·Cmi−1

is equal to
τ(1, i) for some τ ∈ Sn−1. Then for any 2 6 m1 < · · · < mi 6 n we have:

Cm1 · · ·Cmi = τ(1, i)Cmi = τ(2, i, i− 1, . . . , 3)(i+ 1,mi,mi − 1, . . . , i+ 2)(1, i+ 1)

= τ ′(1, i+ 1),

where τ ′ ∈ Sn−1. Thus Cm1 · · ·Cmi ∈ Sn−1(1, i+ 1).

Aσ[2,n],∅ versus AτI,J

The full description of the correspondences between Aσ[2,n],∅, σ ∈ Sn, and AτI,J , τ ∈ Sn−1,

I t J = [2, n], is given by the following lemma.
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Lemma 2.3.4. (1) For any τ ∈ Sn−1, I t J = [2, n], there exists a σ ∈ Sn such that Aσ[2,n],∅ =
AτI,J .

(2) For any σ ∈ Sn−1 the only combination of (τ, I, J), where τ ∈ Sn−1 and I t J = [2, n],
such that AτI,J = Aσ[2,n],∅ is given by τ = σ, I = [2, n], J = ∅.

(3) For any σ ∈ Sn−1(1, i), i > 2, the complete list of the combinations (τ, I, J), where
τ ∈ Sn−1 and I t J = [2, n], such that AτI,J = Aσ[2,n],∅ is indexed by the sequences 2 6 m1 <
· · ·mi−1 6 n, where

τ = σC−1
mi−1
· · ·C−1

m1
; I = [2, n] \ {m1, . . . ,mi−1}; J = {m1, . . . ,mi−1}.

Comparison of the coefficients

The symbols uij, 1 6 i, j 6 n, are understood in the rest of the proof as just formal variables
satisfying the relations uij + uji = 0 and uij + ujk + uki = 0 for all i, j, k. For σ ∈ Sn, n > 2,
the symbol Q(σ) denotes

Q(σ) :=
1

uσ(1)σ(2)uσ(2)σ(3) . . . uσ(n−1)σ(n)

.

Up to a factor 1/
∏n

i=1 xi (which is a common factor for (2.3.1) and (2.3.3)), the coefficient
of exp(Aσ[2,n],∅) in (2.3.1) is equal to Q(σ). Up to the same factor, the coefficient of exp(AτI,J) is

equal to (−1)|J |Q(τ).

Lemma 2.3.5. For any σ ∈ Sn−1(1, i), 2 6 i 6 n, we have:

Q(σ) = (−1)i−1
∑

26m1<···<mi−16n

Q(σC−1
mi−1
· · ·C−1

m1
). (2.3.4)

Lemma 2.3.4 and Lemma 2.3.5 together imply that the right hand side of Equation (2.3.1) is
equal to the right hand side of Equation (2.3.3), which completes the proof of Proposition 2.3.1.

2.3.2 Technical lemmas

In this section we prove Lemma 2.3.4 and Lemma 2.3.5 used in the proof of Proposition 2.3.1.

Proof of Lemma 2.3.4

The proof is based on several observations. First, observe the left invariance of the identities for
AσI,J :

Lemma 2.3.6. We have: Aσ[2,n],∅ = Aid
I,J implies Aρσ[2,n],∅ = AρI,J for any ρ ∈ Sn.

Proof. Direct inspection of signs.

Second, we have uniqueness:

Lemma 2.3.7. The equality Aσ[2,n],∅ = Aid
I,J considered as an equation for σ has at most one

solution.

Proof. Assume we have two solutions, σ and ρ, that is, Aσ[2,n],∅ = Aid
I,J = Aρ[2,n],∅. Applying

Lemma 2.3.6 twice, we obtain: Aρ
−1σ

[2,n],∅ = Aρ
−1

I,J = Aid
[2,n],∅. Hence ρ−1σ = id.

Finally, we can solve this equation:
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Lemma 2.3.8. For any 2 6 m1 < · · · < mi 6 n, we have A
Cm1 ···Cmi
[2,n],∅ = Aid

I,J , where J =

{m1, . . . ,mi}.

Proof. We prove it by induction on i. The base case i = 0 is trivial. Assume we know it for i.
Then, for i+ 1 we have:

A
Cm1 ···Cmi+1

[2,n],∅ = A
Cm1

[2,n]\{m2,...,mi+1},{m2,...,mi+1}

=
∑

j 6∈{m2,...,mi+1}
k<j

wCm1 (k),Cm1 (j) −
∑

j∈{m2,...,mi+1}
k<j

wCm1 (k),Cm1 (j).

Since Cm1 acts only on 1, . . . ,m1, it doesn’t affect the second sum and the part of the first
sum for j > m1. Since it is a cycle, the only terms when k < j and Cm1(k) > Cm1(j) hold
simultaneously are the terms with k = 1. Hence this total expression is equal to∑

j 6∈{m1,m2,...,mi+1}
k<j

wk,j −
∑
k<m1

wk,m1 −
∑

j∈{m2,...,mi+1}
k<j

wk,j = Aid
[2,n]\{m1,...,mi+1},{m1,...,mi+1}.

Now we are ready to prove Lemma 2.3.4. The first statement follows from Lemmas 2.3.6
and 2.3.8. Then, note that Lemmas 2.3.8 and 2.3.7 imply that the equality Aσ[2,n],∅ = AτI,J
can hold only for τ−1σ = Cm1 · · ·Cmi , where J = {m1 < · · · < mi} (and τ−1σ = id if J = ∅).
Hence τ = σC−1

mi
· · ·C−1

m1
.

Proof of Lemma 2.3.5

First, observe that the basic properties of uij imply the following identity that we will use in
the proof (one can prove it by induction on r, for instance):

n−1∑
m=r+1

u1,r+1um,m+1

um,1u1,m+1

+
u1,r+1

un,1
= −1. (2.3.5)

Second, observe that Equation (2.3.4) is invariant under the left products with any ρ ∈ Sn,
so it is sufficient to prove it for σ = id. We, however, prove a more general statement. Namely,
for any 1 6 i 6 b 6 n we prove that∑

26m1<···<mi−16b

Q(C−1
mi−1
· · ·C−1

m1
) =

{
(−1)i−1Q(id) b = n;

(−1)i−1Q(id)
ui,b+1

u1,b+1
b < n.

This can be proved by induction on i, with the case i = 1 being obvious. Assume this statement
is proved for i. Then for i+ 1 we have (the computation is completely analogous in the cases
b = n and b < n, so we perform it only in the first case):∑

26m1<···<mi6n

Q(C−1
mi
· · ·C−1

m1
) =

n∑
mi=i+1

∑
26m1<···<mi−16mi−1

Q(C−1
mi
C−1
mi−1
· · ·C−1

m1
)

=
n∑

mi=i+1

(−1)i−1Q(C−1
mi

)
uC−1

mi
(i),C−1

mi
(mi)

uC−1
mi

(1),C−1
mi

(mi)

= (−1)i−1Q(id)

(
n−1∑

mi=i+1

u1,2umi,mi+1

umi,1u1,mi+1

+
u1,2

un,1

)
ui+1,1

u2,1

= (−1)iQ(id).

Here the second equality is the induction assumption, and the final equality follows from
Equation (2.3.5).
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2.4 The principal terms

Recall a reformulation of the formula for FOk
n proposed in [95, Equation (3.3)]:

FOk
n =

(−1)n+1(2π)n/2∏n
j=1

√
xj

E	
( x1

21/3
, . . . ,

xn
21/3

)
+ diagonal terms. (2.4.1)

The idea behind this formula is that the whole expression for FOk
n can be considered as the

regularization of its principal part, which is the first summand on the right hand side of
Equation (2.4.1), by the terms that are Laplace transforms of distributions supported on the
diagonals, see [95, Sections 2.6.3 and 3.1.4].

The formula of Buryak, in the form of Equation (2.3.2), can also be represented as the sum of
its principal part and the regularizing terms supported on the diagonals. First, we interpret the
integrals as Cauchy principal values in order to interchange

∫
Rn and

∑
σ∈Sn in Equation (2.3.2).

We obtain:

FBur
n =

∑
σ∈Sn

e
1
24

(
n∑
j=1

xj

)3

(
n∑
j=1

xj

)
(2π)

n
2

∏n
j=1 x

3
2
j

∫
Rn

[
n∏
j=1

e
−
a2j
2xj daj

]
exp

(
i
2

∑
j<k aσ(j)xσ(k) − aσ(k)xσ(j)

)
∏n−1

j=1 i
(
aσ(j)
xσ(j)
− aσ(j+1)

xσ(j+1)

) .

(2.4.2)

Here the expressions under the sign of the integral have poles along the diagonals defined as
aσ(j)/xσ(j) − aσ(j+1)/xσ(j+1) = 0, j = 1, . . . , n − 1. Recall the integrals should be understood
as the Cauchy principal value integrals, that is, we exclude the tubular neighborhood of the
divisor of poles of the radius r, integrate, and take the r → 0 limit of the resulting expression.
Similarly to Okounkov’s formula, they can be decomposed into a principal part without poles
and a diagonal part by applying the Sokhotski-Plemelj formula.

Lemma 2.4.1. The right hand side of Equation (2.4.2) decomposes in a similar way to the
right hand side of Equation (2.4.1), that is, into a sum of its principal part and some diagonal
regularization terms. The principal parts of the right hand sides of Equations (2.4.1) and (2.4.2)
are equal.

Proof. Fix σ ∈ Sn and consider the corresponding summand on the right hand of Equation (2.4.2).
We apply the following change of the variables a1, . . . , an:

aσ(j) = bσ(j) +
i

2
xσ(j)

(
−
∑
`<j

xσ(`) +
∑
r>j

xσ(r)

)
.

With this change of variables we have:

1

8

∑
j 6=k

xjx
2
k +

1

4

∑
j<k<t

xjxkxt +
i

2

∑
k<t

(
aσ(k)xσ(t) − aσ(t)xσ(k)

)
−

n∑
j=1

a2
j

2xj
= −

n∑
j=1

b2
j

2xj
,

and

i

(
aσ(j)

xσ(j)

−
aσ(j+1)

xσ(j+1)

)
= i

(
bσ(j)

xσ(j)

−
bσ(j+1)

xσ(j+1)

)
−
(
xσ(j) + xσ(j+1)

)
2

.
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Thus, the right hand side of Equation (2.4.2) is equal to

∑
σ∈Sn

e
1
24

n∑
j=1

x3j(
n∑
j=1

xj

)
(2π)

n
2

∏n
j=1 x

3
2
j

∫
Rn

∏n
j=1 e

−
b2j
2xj dbj∏n−1

j=1

[
i
(
bσ(j)
xσ(j)
− bσ(j+1)

xσ(j+1)

)
− (xσ(j)+xσ(j+1))

2

] + diagonal terms

(2.4.3)

= −
∑

σ∈Sn/Zn

e
1
24

n∑
j=1

x3j

(2π)
n
2

∏n
j=1 x

3
2
j

∫
Rn

∏n
j=1 e

−
b2j
2xj dbj∏n

j=1

[
i
(
bσ(j)
xσ(j)
− bσ(j+1)

xσ(j+1)

)
− (xσ(j)+xσ(j+1))

2

] + diagonal terms,

where in the second line σ(n+ 1) denotes σ(1). The diagonal terms are half-residues arising as a
result of translating the contour of the bσ(k)’s back to Rn, removing the diagonal singularities in
the process. An explicit expression for the diagonal terms will be computed in the next section
using the Sokhotski-Plemelj formula.

Remark 2.4.2. Let us note that Equation (2.4.3) is similar to the expressions for the n-point
functions obtained by Brézin and Hikami in [9, 10].

Since we got a sum over σ ∈ Sn/Zn, as in the principal part of the right hand side of
Equation (2.4.1), it is sufficient to prove for each σ ∈ Sn/Zn that the corresponding summands
are equal. Without loss of generality we can assume that σ = [id]. Then we have to prove that

− e
1
24

n∑
j=1

x3j

(2π)
n
2

∏n
j=1 x

3
2
j

∫
Rn

∏n
j=1 e

−
b2j
2xj dbj∏n

j=1

[
i
(
bj
xj
− bj+1

xj+1

)
− (xj+xj+1)

2

] (2.4.4)

=
(−1)n+1(2π)n/2∏n

j=1

√
xj

e
1
12

n∑
j=1

(
xj

21/3

)3
∏n

j=1

√
4π
( xj

21/3

) ∫
Rn>0

n∏
j=1

dsj exp

(
−

n∑
j=1

(
(sj − sj+1)2

4
( xj

21/3

) +
(sj + sj+1)xj

24/3

))
,

or, equivalently, if we cancel the common factors and rescale sj by 2−1/3, we have to prove that

1
n∏
j=1

(2πxj)
1
2

∫
Rn

n∏
j=1

e
−

b2j
2xj dbj

n∏
j=1

[
−i
(
bj
xj

+
bj+1

xj+1

)
+

(xj+xj+1)

2

] (2.4.5)

=

∫
Rn>0

[
n∏
j=1

dsj

]
exp

(
−

n∑
j=1

(
(sj − sj+1)2

2xj
+

(sj + sj+1)xj
2

))
.

To this end, we use the following trick. Replace
[
−i
(
bj
xj

+
bj+1

xj+1

)
+

(xj+xj+1)

2

]−1

by

∫
R>0

dsj+1 exp

(
sj+1

[
i

(
bj
xj

+
bj+1

xj+1

)
− (xj + xj+1)

2

])
,

where sn+1 denotes s1, change the order of integration and take the Gaussian average with
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respect to the variables bj. We see that the left hand side of the equation (2.4.5) is equal to

∫
Rn>0

[
n∏
j=1

dsj

]∫
Rn

n∏
j=1

dbj

n∏
j=1

(2πxj)
1
2

n∏
j=1

exp

(
− 1

2xj

(
b2
j − i2ajsj+1 + i2ajsj

)
− (xj + xj+1)sj+1

2

)
(2.4.6)

=

∫
Rn>0

[
n∏
j=1

dsj

]
exp

(
n∑
j=1

(
(isj − isj+1)2

2xj
− (sj + sj+1)xj

2

))
,

which is precisely the right hand side of Equation (2.4.5). This computation proves Equa-
tion (2.4.5), and, therefore, completes the proof of the lemma.

Remark 2.4.3. The argument of Okounkov in [95, Section 3.1] implies that it is sufficient to
compare the principal terms of FBur

n and FOk
n in order to prove the coincidence of these formulas,

since the diagonal terms only compensate for the non-regular terms in the principal part detected
by the wrong powers of π (it is also the case for FBur

n , where this property is evident from the
Sokhotski–Plemelj formula). So, Lemma 2.4.1 implies Theorem 2.2.3. However, we can explicitly
identify the diagonal terms in FBur

n and FOk
n , and we do this in the next section.

2.5 Diagonal contributions

We represent Buryak’s formula in the following way.

Theorem 2.5.1. (1) We have:

FBur
n =

(2π)
n
2

n∏
j=1

x
1
2
j

n∑
`=1

∑
[I1t···tI`]
={1,...,n}
I1,...,I` 6=∅

−e
1
24

∑̀
j=1

x3Ij

(2π)`

∫
R`

∏`
j=1 e

−
f2j

2xIj
dfj
xIj∏`

j=1

[
i
(
fj
xIj
− fj+1

xIj+1

)
− xIj+xIj+1

2

] . (2.5.1)

Here we take the sum over the cyclicly ordered partitions of {1, . . . , n}, that is, [I1 t · · · t I`] is
identified with [I2 t · · · t I` t I1], and I`+1 denotes I1 and f`+1 denotes f1.

(2) For every cyclicly ordered partitions of {1, . . . , n}, [I1 t · · · t I`], where I1, . . . , I` 6= ∅,
we have:

e
1
24

∑̀
j=1

x3Ij

(2π)`

∫
R`

∏`
j=1 e

−
f2j

2xIj
dfj
xIj∏`

j=1

[
i
(
fj
xIj
− fj+1

xIj+1

)
− xIj+xIj+1

2

] = (−1)`E
( xI1

21/3
, . . . ,

xI`
21/3

)
. (2.5.2)

This theorem is a refinement of Lemma 2.4.1 that includes now all the diagonal terms and
we have an explicit term-wise identification. It immediately implies Theorem 2.2.3. We devote
the rest of this section to the proof of Theorem 2.5.1, whose main part consists of a careful
application of the Sokhotski-Plemelj formula, and the further steps just repeat the computations
in the proof of Lemma 2.4.1.
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2.5.1 Structure of the Sokhotski–Plemelj formula

Let us discuss explicitly how to apply the Sokhotski–Plemelj formula to Equation (2.3.2). In
principle, one can just directly iteratively apply it, but we first discuss the structure of the
formula since it greatly simplifies computations.

Fix a particular σ ∈ Sn and consider the corresponding term in the variables

f =

∑n
i=1 xi
n

(
n∑
i=1

ai
xi

)
, gi =

aσ(i)

xσ(i)

−
aσ(i+1)

xσ(i+1)

, i = 1, . . . , n− 1.

In these variables the shift of ai’s that we applied in the previous section looks like

f → f − i
∑n

i=1 xi
2n

n∑
i=1

(2i− 1− n)xσ(i), gi → gi −
i

2
(xσ(i) + xσ(i+1)), i = 1, . . . , n− 1.

The denominator of the expression under the integral is equal to g1 · · · gn−1. Since there is no
pole in f , its shift is neglectable. Assuming x1, . . . , xn to be small positive real numbers, we
move the contour of integration for each gi to the lower half-plane, and then can deform it
back to the real line with excluded interval around gi = 0 and a half-circle around it in the
lower half-plane, which in the limit gives the sum of the principal part and the half-residue at
gi = 0. This is exactly the Sokhotski–Plemelj formula applied now to the product of simple
poles g1 · · · gn−1.

The whole integral expression is then split into 2n−1 summands for each σ, since we have to
make a choice for each gi whether we take the principal part or the residue part of its contour.
If we choose for all gi’s the principal part of the integral, we exactly obtain the principal terms
considered in the previous section. More generally, the full system of choices is controlled by
pairs (σ,t`i=1Ii), where σ ∈ Sn and t`i=1Ii = {1, . . . , n}, I1, . . . , I` 6= ∅, and I1 < · · · < I` in the
sense that for any nj ∈ Iij , j = 1, 2, i1 < i2 implies n1 < n2. Once we fixed a pair (σ,t`i=1Ii), we
choose the residue option for all gσ(i)’s with i ∈ Ij \ {max(Ij)}, j = 1, . . . , `, and the principal
option for all gσ(i)’s with i = max(Ij), j = 1, . . . , `− 1.

Note that the integrals for the pairs (σρ,t`i=1Ii), ρ(Ii) = Ii for i = 1, . . . , `, coincide.
Moreover, each of them contributes

∏`
i=1 1/|Ii|! to the product of negative residues since the

contour of integration in the plane
∑

j∈Ii aσ(j)/xσ(j) = 0, i = 1, . . . , `, is the intersection of the
torus around the origin with the Weyl chamber selected by the inequalities aσρ(j1)/xσρ(j1) <
aσρ(j2)/xσρ(j2) for j1, j2 ∈ Ii, j1 < j2. Thus the residue part of the integral in the sum over all
ρ ∈ Sn such that ρ(Ii) = Ii for i = 1, . . . , ` is the product of the full residues around zero in the
planes

∑
j∈Ii aσ(j)/xσ(j) = 0, i = 1, . . . , `, with coefficient

∏`
i=1(2πi)|Ii|−1.

Now we are ready to perform the computation. For simplicity we take σ = id, ` = 1, and
I1 = {1, . . . , n}, and treat the general case as an `-fold iteration of the same computation, with
the indices adjusted with respect to a general σ.

Computation for (id, {1, . . . , n})

In the case σ = id and ` = 1, I1 = {1, . . . , n}, we take the sum over all ρ ∈ Sn. The corresponding
residue term is equal to

e
1
24

(
n∑
j=1

xj

)3

(
n∑
j=1

xj

)
(2π)

n
2

∏n
j=1 x

1
2
j

∫
R

∮
(S1)n−1

[
n∏
j=1

e
−
a2j
2xj
daj
xj

]
exp

(
i
2

∑
j<k ajxk − akxj

)
∏n−1

j=1 i
(
aj
xj
− aj+1

xj+1

) .



38 Chapter 2. Buryak–Okounkov formula for the n-point function

Note that−
∑n

j=1

a2j
2xj

= −f 2/2
(∑n

j=1 xj

)
+O(g1, . . . , gn−1),

∑
j<k ajxk−akxj = O(g1, . . . , gn−1),

and
∏n

j=1 daj/xj =
∏n−1

j=1 dgjdf/
(∑n

j=1 xj

)
. This allows us to rewrite the residue as

(2π)n−1 e
1
24

(
n∑
j=1

xj

)3

(
n∑
j=1

xj

)
(2π)

n
2

∏n
j=1 x

1
2
j

∫
R
e−f

2/(2
∑n
j=1 xj) df

n∑
j=1

xj

.

Computation for σ = id, general partition

Recall that we denote by xI , I ⊂ {1, . . . , n}, I 6= ∅, the sum
∑

i∈I xi. In the case of a general
partition t`i=1Ii, I1, . . . , I` 6= ∅, it is more convenient to work in the coordinates

fi =
xIi
|Ii|

(∑
j∈Ii

aj
xj

)
, gij =

aj
xj
− aj+1

xj+1

, i = 1, . . . , `, j ∈ Ii \ {max(Ii)}.

The corresponding residue term is equal to the principal part of

e
1
24

(
n∑
j=1

xj

)3

(
n∑
j=1

xj

)
(2π)

n
2

∏n
j=1 x

1
2
j

∫
R`

∮
(S1)n−`

[
n∏
j=1

e
−
a2j
2xj
daj
xj

]
exp

(
i
2

∑
j<k ajxk − akxj

)
∏n−1

j=1 i
(
aj
xj
− aj+1

xj+1

) ,

where the integral over R` is the Cauchy principle value integral (except for the diagonal
direction, where it is a converging integral). In the new coordinates, we have:

−
n∑
j=1

a2
j

2xj
= −

∑̀
i=1

f 2
i

2xIi
+O(gij);

n∏
j=1

daj
xj

=
∏̀
i=1

|Ii|−1∏
j=1

dgij
∏̀
i=1

dfi
xIi

;

`−1∏
i=1

i

(
amax(Ii)

xmax(Ii)

−
amax(Ii)+1

xmax(Ii)+1

)
=

`−1∏
i=1

i

(
fi
xIi
− fi+1

xIi+1

)
+O(gij);∑

j<k

ajxk − akxj =
∑
j<k

fjxIk − fkxIj +O(gij).

This allows us to rewrite the residue formula as

∏̀
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(2π)|Ii|−1 e
1
24
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e
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f2j
2xIj
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xIj

]
exp
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j<k fjxIk − fkxIj

)
∏`−1

j=1 i
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fj
xIj
− fj+1

xIj+1

) . (2.5.3)

The diagonal terms of this expression will be transferred to the partitions of {1, . . . , n} with
`′ < ` terms, so we have to take the principal part:

∏̀
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(2π)|Ii|−1 e
1
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1

`−1∏
j=1
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i
(
fj
xIj
− fj+1

xIj+1

)
− xIj+xIj+1

2

] .
(2.5.4)
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General σ, general partition

If we have a general σ, it just means that we no longer have to assume that the subsets I1, . . . , I`
satisfy the property that for any nj ∈ Iij , j = 1, 2, i1 < i2 implies n1 < n2. That is, we obtain
the same formula as Equation (2.5.4), with arbitrary ordered sequence I1, . . . , I` such that
t`i=1Ii = {1, . . . , n}, I1, . . . , I` 6= ∅. We have:

FBur
n =

n∑
`=1

∑
I1t···tI`
={1,...,n}

(2π)
n
2

n∏
j=1

x
1
2
j

e
1
24

∑̀
j=1

x3Ij(
n∑
j=1

xj

)
(2π)`

∫
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[∏̀
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e
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f2j
2xIj

dfj
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]
1

`−1∏
j=1

[
i
(
fj
xIj
− fj+1

xIj+1

)
− xIj+xIj+1

2

] .
(2.5.5)

The theorem follows by direct comparison of this last expression with the principal part of
FBur
l (xI1 , . . . , xIl) which, by Section 2.4, is related to E

( xI1
21/3

, . . . ,
xI`
21/3

)
.

Final remarks

We relate Equations (2.5.1) and (2.5.5) exactly in the same way as the two sides of Equa-
tion (2.4.3), see the first half of the proof of Lemma 2.4.1. The proof of Equation (2.5.2)
repeats exactly the proof of Equation (2.4.4) after replacing the symbols n, (b1, . . . , bn), and
(x1, . . . , xn) in that argument by `, (f1, . . . , f`), and (xI1 , . . . , xI`), see the second half of the
proof of Lemma 2.4.1.





Chapter 3

Bi-Hamiltonian recursion, Liu–
Pandharipande relations, and vanishing terms
of the second Dubrovin–Zhang bracket

3.1 Introduction

In [39] the relation between Dubrovin–Frobenius manifolds, topological field theories (TFTs)
and integrable systems is first explored: namely, starting from a Dubrovin–Frobenius manifold,
one can obtain a dispersionless hierarchy of the form (see Section 1.5)

∂vα

∂tβq
= Pαγ δh̄β,q

δvγ
. (3.1.1)

In [46], Dubrovin and Zhang further explore the relationship between Dubrovin–Frobenius
manifolds and integrable systems and deform this hierarchy via a quasi-Miura transformation

wα = vα +
∞∑
g=1

ε2gQα
g (v, v1, . . . , v3g) (3.1.2)

given by weighted homogeneous differential rational functions Qα
g to obtain a full dispersive

hierarchy, which is known as the Dubrovin–Zhang (DZ) hierarchy. They conjecture in [46]
that the transformed equations, Hamiltonians and brackets are differential polynomials in the
coordinates wα.

In [17, 18] this conjecture is partially proved in a more general setting: the DZ hierarchy is
constructed from a semi-simple cohomological field theory (CohFT), without an assumption of
homogeneity. It is proved in op. cit. that the equations, Hamiltonians, tau structure, and first
bracket of the DZ hierarchy are polynomial.

The main goal of this chapter is to analyze the second Poisson bracket of the Dubrovin–
Zhang hierarchy. We start with a conformal semi-simple cohomological field theory, thus the
construction of Dubrovin applied to the underlying Dubrovin–Frobenius manifold gives the
second Poisson bracket in the dispersionless limit, and the quasi-Miura transformation (3.1.2)
produces a possibly singular Poisson structure. We have two tools to analyze it: the bi-
Hamiltonian recursion and the tautological relations in cohomology of the moduli spaces of
curves or, more precisely, the differential equations that they imply on various structures of the
Dubrovin–Zhang hierarchies.

The bi-Hamiltonian recursion appears to be sufficient to uniquely determine the second
Dubrovin–Zhang bracket, and we also use it to give a new proof of a structural result of Dubrovin
and Zhang on its possible singularities. Bi-Hamiltonian recursion also implies that the constant
term of the second Dubrovin–Zhang bracket is a differential polynomial.

41
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As a source of suitable tautological relations we use the work of Liu and Pandharipande [83].
The relations that they derive there appear to be exactly enough to prove the vanishing of all
terms in the second Dubrovin–Zhang bracket whose standard degree is negative. Remarkably,
the dimensional inequalities of the Liu–Pandharipande relations match exactly the standard
degree count for the terms of the second Dubrovin–Zhang bracket in the equations that we
derive from the bi-Hamiltonian recursion, so the Liu–Pandharipande relations say nothing about
the non-negative standard degree terms of the second bracket.

3.1.1 Organization of the chapter

In Section 3.2 we set the appropriate formalism to work with Hamiltonian and bi-Hamiltonian
structures. In Section 3.3 we recall the construction of the principal Dubrovin-Zhang hierarchy
from a CohFT and endow it with a Hamiltonian structure of hydrodynamic type. We then
deform it to the full hierarchy and show that it inherits a Hamiltonian structure. In Section 3.4
we prove that in the case the underlying CohFT is conformal, the DZ hierarchy is also bi-
Hamiltonian, with the second Hamiltonian structure having singularities of a very particular
type (we reprove a result of Dubrovin and Zhang on that) and being uniquely determined by
the bi-Hamiltonian recursion relation. In particular, we prove that the constant term of the
second bracket is polynomial. In Section 3.5 we recall the Liu–Pandharipande relations in the
tautological ring, and summarize the most important corollaries. In Section 3.6 we prove that
all terms that must vanish for degree reasons once the conjecture of Dubrovin and Zhang on
polynomiality of the second bracket holds actually do vanish.

3.2 Hamiltonian structures

In this section, we explain the θ-formalism first introduced in [56] and further developed in [82]
and [42] to work with Hamiltonian and bi-Hamiltonian structures. The main addition to their
theory is the completion of the differential polynomial algebra to allow certain singularities.

Let M be a formal germ of an N -dimensional smooth manifold. We define a formal
supermanifold M̂ by describing its ring of functions. A system of local coordinates on M̂ is
given by {u1, . . . , uN , θ1, . . . , θN}, where {u1, . . . , uN} is a system of local coordinates of M and
{θ1, . . . , θN} are the corresponding dual coordinates. Note the latter are Grassmann variables,
i. e., θαθβ + θβθα = 0 for all α, β.

Consider now the infinite jet space of M̂ , J∞(M̂). A system of local coordinates in J∞(M̂)
is given by {uαp , θ

q
β}

p,q>0
16α,β6N and we identify uα0 = uα and θ0

α = θα, α = 1, . . . , N .

Definition 3.2.1. The differential polynomial algebra Â is defined as

Â = C[[uα0 = uα, uα1 , u
α
2 , . . . , θ

0
α = θα, θ

1
α, θ

2
α, . . . | 1 6 α 6 N ]]. (3.2.1)

The term differential polynomial in u (respectively, in u, θ) means for us a polynomial in uαs ,
s > 1, (respectively, in uαs , s > 1, and θsα, s > 0) with formal power series in uα as coefficients.

The differential polynomial algebra admits two gradations: the standard gradation

deg uαs = deg θsα = s, s > 0, (3.2.2)

and the super gradation

deg θsα = 1, deg uαs = 0, s > 0. (3.2.3)
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Let Âp and Âp be the degree p components of Â with respect to the super and standard

gradations, respectively. Let Âpd = Âp ∩ Âd. Note that A = Â0 is the differential polynomial
algebra on M . In the following, Einstein’s summation convention applies to Greek indices, but
not to Latin ones. The space Â is endowed with a total derivative

∂x =
∑
p>0

(
uαp+1

∂

∂uαp
+ θp+1

α

∂

∂θpα

)
, (3.2.4)

which preserves the super gradation on Â and increases the standard gradation by 1.

Definition 3.2.2. The space of polyvector fields F̂ is defined as the quotient space of Â by
∂xÂ and the constant functions.

The projection map is denoted by
∫

: Â → F̂ . Since ∂x is homogeneous with respect to

the gradations, the subspaces F̂p, F̂d and F̂pd are well defined. The elements of F̂p are called
p-vectors. It is possible to write a p-vector as a sum of its homogeneous components in the
standard degree: for f ∈ F̂p, we write

f = f0 + f1 + f2 + . . . , fk ∈ F̂pk . (3.2.5)

It will be useful later to introduce a formal parameter ε (the dispersion parameter) to keep track
of the degree by rescaling x 7→ εx. That is, if s = min{k|fk 6= 0}, then we write

f = fs + εfs+1 + ε2fs+2 + . . . , fk ∈ F̂pk (3.2.6)

Having defined the functionals, the goal is to define a graded Lie bracket on J∞(M̂) that
extends the usual Schouten bracket on M̂ , given by

[P,Q] =
∂P

∂θα

∂Q

∂uα
+ (−1)p

∂P

∂uα
∂Q

∂θα
(3.2.7)

for P ∈ Âp0 and Q ∈ Âq0. For this purpose, define the variational derivatives of f ∈ Â:

δf

δθγ
=
∑
p>0

(−∂x)p
∂f

∂θpγ
,

δf

δuγ
=
∑
p>0

(−∂x)p
∂f

∂uγp
. (3.2.8)

Since δ
δθγ
◦ ∂x = δ

δuγ
◦ ∂x = 0, the operators above can be defined on the space of functionals F̂ .

Now we can define the bracket

[·, ·] : F̂p × F̂ q −→ F̂p+q−1 (3.2.9)

(P,Q) 7−→ [P,Q] =

∫ (
δP

δθα

δQ

δuα
+ (−1)p

δP

δuα
δQ

δθα

)
dx, (3.2.10)

which we call the Schouten bracket on J∞(M̂). The next theorem shows that this bracket gives
F̂ a graded Lie algebra structure:

Theorem 3.2.3 ([81]). Let P ∈ F̂p, Q ∈ F̂ q, R ∈ F̂ r. Then

• [P,Q] = (−1)pq[Q,P ].

• (−1)pr[[P,Q], R] + (−1)qp[[Q,R], P ] + (−1)rq[[R,P ], Q] = 0.

Finally, we are ready to define Hamiltonian and bi-Hamiltonian structures.
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Definition 3.2.4. A Poisson bivector or Hamiltonian structure is a bivector P ∈ F̂2 such
that [P, P ] = 0. A bi-Hamiltonian structure is a pair (P1, P2) of Poisson bivectors satisfying
[P1, P2] = 0.

Remark 3.2.5 (Poisson bivectors, Poisson brackets, Poisson operators). A Poisson bivector P
defines a Poisson bracket on F̂0

{·, ·}P : F̂0 × F̂0 −→ F̂0 (3.2.11)

(F,G) 7−→ {F,G}P = [[P, F ], G]. (3.2.12)

On the other hand, given a Poisson bracket {·, ·}P , there exist unique Pαβ
s ∈ A satisfying∑

s>0 P
αβ
s ∂sx =

∑
s>0(−1)s+1∂sxP

βα
s such that the Poisson operator Pαβ =

∑
s>0 P

αβ
s ∂sx gives the

bracket

{F,G}P =

∫
δF

δuα
Pαβ δG

δuβ
dx. (3.2.13)

It is clear that for

P =
1

2

∫
θαP

αβ(θβ)dx =
1

2

∑
s>0

∫
Pαβ
s θαθ

s
βdx (3.2.14)

both definitions of {·, ·}P coincide. Thus, we will use the terms Poisson bivector, Poisson
operator and Poisson bracket interchangeably from this point.

Example 3.2.6. Particularly interesting examples of Poisson bivectors are those of hydrodynamic
type, i.e., those of the standard degree 1. P ∈ F̂2

1 is a Poisson bivector of hydrodynamic type if
and only if it takes the form (see [43])

P =
1

2

∫
(gαβ(u)θαθ

1
β + Γαβγ (u)uγ1θαθβ)dx, (3.2.15)

where g is a flat metric on M and Γαβγ are the contravariant Christoffel symbols of its Levi-Civita
connection.

The Poisson bivectors considered in this chapter will be deformations in even degrees of
Poisson bivectors of hydrodynamic type, i.e., P ∈ F̂2 such that P |ε=0 is a Poisson bracket
of hydrodynamic type. For any such P , we can find unique Pαβ

g,s ∈ A2g+1−s satisfying∑2g+1
s=0 Pαβ

g,s ∂
s
x =

∑2g+1
s=0 (−1)s+1∂sxP

βα
g,s such that P can be written as

P =
1

2

∫ ∞∑
g=0

ε2g
2g+1∑
s=0

Pαβ
g,s θαθ

s
βdx. (3.2.16)

3.2.1 Changes of coordinates

We want the Schouten bracket to remain invariant under changes of coordinates. First, we
introduce the groups of transformations that will be considered.

Definition 3.2.7. A Miura transformation is a formal change of coordinates uα → ũα of the
form

ũα = uα +
∞∑
k=1

εkFα
k (u;u1, . . . , uk) (3.2.17)

where Fα
k ∈ Ak.
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In the literature, Miura transformations of the form (3.2.17) with an arbitrary diffeomorphism
Fα

0 (u) as the leading term are often considered. However, all (quasi-)Miura transformations
studied in this chapter have Fα

0 (u) = uα, thus justifying our more restricted definition, usually
known as Miura transformations close to the identity. It is important to study the behavior of
the Schouten bracket under Miura transformations:

Proposition 3.2.8 ([81]). A Miura transformation (3.2.17) uα → ũα induces a change of
variables

θβ =
∑
s>0

(−∂x)s
(
∂ũα

∂uβs
θ̃α

)
(3.2.18)

such that the Schouten bracket remains invariant.

Proof. Let us sketch the proof with the help of the formulas given in [81]. The change for the
variational derivatives is given by

δ

δũα
=
∑
p>0

(−∂x)p ◦
∂uβ

∂ũαp
◦ δ

δuβ
, (3.2.19)

Analogously,

δ

δθ̃α
=
∑
t>0

(−∂x)t ◦
∂θβ

∂θ̃tα
◦ δ

δθβ
. (3.2.20)

From (3.2.18), we get

∂θβ

∂θ̃tα
= (−1)t

∑
s>0

(
s+ t
t

)
(−∂x)s

(
∂ũα

∂uβs+t

)
, (3.2.21)

so

δ

δθ̃α
=
∑
t>0

∂tx ◦
∑
s>0

(
s+ t
t

)
(−∂x)s

(
∂ũα

∂uβs+t

)
◦ δ

δθβ
. (3.2.22)

Let P,Q ∈ F̂ . The result follows after replacing (3.2.19) and (3.2.22) in the expression

[P,Q] =

∫
δP

δũα
δQ

δθ̃α
dx. (3.2.23)

Example 3.2.9 (Transformation rule for Poisson brackets). Let P = 1
2

∫
θαP

αβ(θβ) be a Poisson
bivector, and consider the change of variables (3.2.17). In the new coordinates, P takes the form

P =
1

2

∫ ∑
s>0

(−∂x)s
(
∂ũγ

∂uαs
θ̃γ

)
Pαβ

(∑
t>0

(−∂x)t
(
∂ũσ

∂uβs
θ̃σ

))
dx (3.2.24)

=
1

2

∫ ∑
s,t>0

θ̃γ
∂ũγ

∂uαs
∂sx ◦ Pαβ ◦ (−∂x)t ◦

∂ũσ

∂uβs
(θ̃σ)dx.

Therefore, the transformed Poisson operator P̃ γσ is given by

P̃ γσ =
∑
s,t>0

∂ũγ

∂uαs
∂sx ◦ Pαβ ◦ (−∂x)t ◦

∂ũσ

∂uβs
. (3.2.25)
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3.2.2 Differential rational functions

For applications in enumerative geometry the spaces Â and F̂ are too restrictive. We will
complete them by allowing certain singularities.

Definition 3.2.10. A differential rational function of type (1, 1) is a function f of the form

f = fs + εfs+1 + ε2fs+2 + . . . , (3.2.26)

where the functions fk only depend on finitely many derivatives u, u1, . . . , ur and take the form

fk = (u1
1)k

∞∑
l=0

Pk,l
(u1

1)l
(3.2.27)

with Pk,l = Pk,l(u
•
•, θ
•
•) is a homogeneous differential polynomial of standard degree l that does

not depend on u1
1. The space of differential rational functions of type (1, 1) is denoted by B̂.

The space of rational polyvector fields of type (1, 1) is defined as the quotient of B̂ by ∂xB̂ and
the constant functions and denoted by Q̂.

The next step is to enlarge the Miura group to allow transformations given by differential
rational functions.

Definition 3.2.11. A quasi-Miura transformation is a change of variables of the form

ũα = uα +
∞∑
k=1

εkFα
k (u;u1, . . . , unk). (3.2.28)

where the functions Fα
k are homogeneous rational functions in the derivatives u1, . . . , unk of

standard degree k. A quasi-Miura transformation is of (1, 1)-type if it takes the form

ũα = uα +
∞∑
k=1

(εu1
1)k

∞∑
l=0

Fα
k,l(u;u1, . . . , unk)

(u1
1)l

, (3.2.29)

where Fα
k,l is a differential polynomial of degree l with

∂Fαk,l
∂u11

= 0.

Remark 3.2.12. • The key aspect of the space Q̂ is that all notions introduced before for
F̂ are still well-defined for Q̂: variational derivatives, the Schouten bracket and both
gradations. It is also possible to define Hamiltonian and bi-Hamiltonian structures of type
(1, 1) in the same way it was done for their polynomial analogues.

• Note the proof of Proposition 3.2.8 does not use polynomiality at any point. The
only requirement is that the variational derivatives still make sense for the transformed
polyvector fields, so it still holds if we consider quasi-Miura transformations of type (1, 1)
instead of Miura transformations.

• Applying (3.2.29) to an element of F̂ r yields an element of Q̂r. The key question is
whether this new element is polynomial in the variables ũ.

3.3 Dubrovin–Zhang hierarchy

In this section we recall the construction of the DZ hierarchy as done in [46, 18, 17] as well as
some of its most important properties. For the full details, we refer the reader to those articles.
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3.3.1 Universal differential equations for CohFTs

Let V be an N -dimensional vector space over C equipped with a scalar product (·, ·). Choose
a basis {e1, e2, . . . , eN} of V and let ηαβ = (eα, eβ). In the rest of the chapter we use ηαβ to
lower indices and its inverse ηαβ to raise them. Let cg,n : V ⊗n → H2∗ (Mg,n;C

)
be a CohFT

with unit e1, and let F =
∑

g>0 ε
2gFg be its associated partition function, see Section 1.2.3. The

following identities satisfied by the partition function will be used in the text (see e. g. [119]):

• String equation

∂F

∂t10
=
∑
p>0

tαp+1

∂F

∂tαp
+

1

2
ηαβt

α
0 t
β
0 + ε2〈τ0(e1)〉1. (3.3.1)

• Dilaton equation

∂F

∂t11
= ε

∂F

∂ε
+
∑
p>0

tαp
∂F

∂tαp
− 2F + ε2

N

24
. (3.3.2)

• WDVV (associativity) equations

∂3F0

∂tα1
d1
∂tα2
d2
∂tα0

ηαβ
∂3F0

∂tα3
d3
∂tα4
d4
∂tβ0

=
∂3F0

∂tα2
d2
∂tα3
d3
∂tα0

ηαβ
∂3F0

∂tα1
d1
∂tα4
d4
∂tβ0

. (3.3.3)

• Topological recursion relation in genus 0 (TRR-0)

∂3F0

∂tα1
d1+1∂t

α2
d2
∂tα3
d3

=
∂2F0

∂tα1
d1
∂tα0

ηαβ
∂3F0

∂tβ0∂t
α2
d2
∂tα3
d3

. (3.3.4)

• The Liu–Pandharipande relations. We recall them in Section 3.5.

There are many other universal differential equations for Fg, g > 0. Basically, any relation in
the tautological ring of the moduli space of curves implies such an equation. For instance, the
functions Fg, g > 0 satisfy the property called tameness, see e. g. [56, 17]. We do not use it in
this chapter directly, but it is needed for the validity of Proposition 3.3.4 below.

Remark 3.3.1. In fact, the results of this chapter are applicable in more general situations
than the partition functions of CohFTs. All properties mentioned above (including the Liu–
Pandharipande relations and the tameness) hold for the total descendant potentials of analytic
conformal semi-simple Frobenius manifolds, see [46, 51]. We choose, however, to start with a
CohFT since some of the computations below get some extra geometric meaning.

3.3.2 The principal hierarchy

From now on, all CohFTs considered in this chapter are semi-simple, i. e., the functions

cλαβ(t) = ηλγ
∂3FFrob

∂tγ∂tα∂tβ
, (3.3.5)

where FFrob = F0|t•>1=0 give the structure constants of a semi-simple associative algebra at t = 0.

Let t10 7→ t10 + x. Consider the two-point correlators in genus g

Ω
[g]
α,p;β,q =

∂2Fg

∂tαp∂t
β
q

(3.3.6)

and the variables

vβ =
∂2F0

∂tβ0∂t
1
0

, vα = ηαβvβ, vαk = ∂kxv
α. (3.3.7)
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Proposition 3.3.2 ([39, 17]). The two point correlators in genus 0 are given by

Ω
[0]
α,p;β,q(t0, t1, t2, . . . ) = Ω

[0]
α,p;β,q(v, 0, 0, . . . ) (3.3.8)

As a consequence of the tau-symmetry of Ω
[g]
α,p;β,q, i.e., the expression

∂

∂tγr
Ω

[g]
α,p;β,q (3.3.9)

being invariant under any permutation of (α, p)↔ (β, q)↔ (γ, r), the variables vα satisfy the
system of equations

∂vα

∂tβq
= ηαγ∂x(Ω

[0]
γ,0;β,q). (3.3.10)

The goal is to rewrite the equations (3.3.10) in Hamiltonian form. First, define the Hamiltonian
densities

hα,p(v) := Ω
[0]
α,p+1;1,0. (3.3.11)

Consider the Poisson operator of hydrodynamic type Pαβ = ηαβ∂x or, equivalently by Re-
mark 3.2.5, the Poisson bivector

P =
1

2

∫
θαη

αβθ1
βdx ∈ F̂2

1 . (3.3.12)

Proposition 3.3.3 ([39, 17]). The Hamiltonians h̄α,p =
∫
hα,pdx satisfy:

δh̄α,p
δvγ

ηγσ∂x
δh̄β,q
δvσ

= ∂xΩ
[0]
α,p+1;β,q. (3.3.13)

In particular, they Poisson-commute {h̄α,p, h̄β,q}P = 0 and the system (3.3.10) can be rewritten
as a Hamiltonian system, called the principal or dispersionless Dubrovin–Zhang hierarchy:

∂vα

∂tβq
= ηαγ∂x

δh̄β,q
δvγ

(3.3.14)

3.3.3 The full hierarchy

The principal hierarchy constructed above “forgets” the information of the CohFT carried by
Fg for g > 1, in other words, no information is lost if we set ε = 0 at the beginning. Here we
construct the full hierarchy. Consider the variables w and the two point correlators:

wα = ηαβ
∂2F

∂tβ0∂t
1
0

, Ωα,p;β,q =
∂2F

∂tαp∂t
β
q

=
∞∑
g=0

ε2gΩ
[g]
α,p;β,q. (3.3.15)

As a consequence of the tau-symmetry of Ωα,p;β,q, i.e., the expression

∂

∂tγr
Ωα,p;β,q (3.3.16)

being invariant under any permutation of (α, p)↔ (β, q)↔ (γ, r), the variables wα satisfy the
system of equations

∂wα

∂tβq
= ηαγ∂x(Ωγ,0;β,q), (3.3.17)

known as the Dubrovin–Zhang hierarchy. The goal is to endow the system (3.3.17) with a
Hamiltonian structure as it was done for the principal hierarchy in Section 3.3.2. For this, we
recall an important result, known as the (3g − 2)-property:
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Proposition 3.3.4 (see e. g. [17]). For g > 1, there exist functions P
[g]
0 , . . . , P

[g]
3g−2 such that

Fg(t0, t1, . . . ) = Fg(P
[g]
0 (v, v1, . . . , v3g−2), . . . , P

[g]
3g−2(v, v1, . . . , v3g−2), 0, 0, . . . ). (3.3.18)

As a consequence of the (3g−2)-property, Ω[g] only depends on v, v1, . . . , v3g, so the expansion
of w in terms of v takes the form

wα = vα + ηαβ
∞∑
g=1

ε2gΩ
[g]
β,0;1,0(v, v1, . . . , v3g). (3.3.19)

The next proposition shows that the string and dilaton equations give (3.3.19) the required
regularity to use the framework developed in Section 3.2.

Proposition 3.3.5 (see [15]). The transformation vα → wα is a quasi-Miura transformation
of (1, 1)-type.

Proof. Dilaton equation (3.3.2) implies the following relation between the coefficients of Fg

[
n∏
i=1

tαidi ]Fg =
(2g − 3 + n)!d!

(2g − 3 + n+ d)!
[
n∏
i=1

tαidi (t
1
1)d]Fg. (3.3.20)

This allows us to rewrite Fg (g > 2) in the following form:

Fg =
∑
n>0

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

〈
n∏
i=1

τdi(eαi)〉g
n∏
i=1

tαidi

∑
d>0

(2g − 3 + n+ d)!

(2g − 3 + n)!d!
(t11)d (3.3.21)

=
∑
n>0

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

〈
n∏
i=1

τdi(eαi)〉g
n∏
i=1

tαidi

(
1

1− t11

)2g−2+n

=

(
1

1− t11

)2g−2∑
n>0

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk) 6=(1,1)

〈
n∏
i=1

τdi(eαi)〉g
n∏
i=1

(
tαidi

1− t11

)
.

For F0 and F1 we have to mind the unstable correlation functions:

F1 =
∑
n>1

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

〈
n∏
i=1

τdi(eαi)〉1
n∏
i=1

(
tαidi

1− t11

)
+
∑
d>0

1

(d+ 1)!
〈(τ1(e1))d+1〉1(t11)d+1

(3.3.22)

=
∑
n>1

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

〈
n∏
i=1

τdi(eαi)〉1
n∏
i=1

(
tαidi

1− t11

)
+ 〈τ1(e1)〉1

∑
d>0

1

(d+ 1)
(t11)d+1

=
∑
n>1

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

〈
n∏
i=1

τdi(eαi)〉1
n∏
i=1

(
tαidi

1− t11

)
+
N

24
log

(
1

1− t11

)
;

F0 =
(
1− t11

)2
∑
n>3

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

〈
n∏
i=1

τdi(eαi)〉0
n∏
i=1

(
tαidi

1− t11

)
, (3.3.23)
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where the last formula follows from the fact that 〈τd1(eα1)τd2(eα2)τ1(e1)〉0 = 0 for all α1, α2, d1, d2.
By the string equation (3.3.1) we have

vα = ηαβ
∂2F0

∂tβ0∂t
1
0

= tα0 +
∑
p>0

ηαβtγp+1

∂2F0

∂tγp∂t
β
0

= tα0 +O(t2), (3.3.24)

v1
1 = 1 + t11 +

∑
p>0

tγ1t
µ
p+1η

1β ∂3F0

∂tγ0∂t
β
0∂t

µ
p

+
∑
p>1

tγp+1η
1β ∂3F0

∂t10∂t
β
0∂t

γ
p

= 1 + t11 +O(t2). (3.3.25)

To get the dependence of v1
1 on t11 we compute

v1
1 = η1µ ∂3F0

∂tµ0∂t
1
0∂t

1
0

=
1

1− t11

∑
n>0

1

n!

∑
16α1,...,αn6N
d1,d2,...,dn>0
(αk,dk)6=(1,1)

η1µ〈τ0(eµ)τ0(e1)2

n∏
i=1

τdi(eαi)〉0
n∏
i=1

(
tαidi

1− t11

)
;

(3.3.26)

v1
1

∣∣∣∣tαp=0

(α,p)6=(1,1)

= η1µ ∂3F0

∂tµ0∂t
1
0∂t

1
0

∣∣∣∣tαp=0

(α,p) 6=(1,1)

= η1µ 1

1− t11
〈τ0(eµ)τ0(e1)2〉0 =

1

1− t11
. (3.3.27)

Therefore, from (3.3.25) and (3.3.27), we get:

v1
1 =

1

1− t11

(
1 +O

(
t··

1− t11

))
. (3.3.28)

Taking k derivatives of (3.3.24), we have:

vαk =
∑
p>0

ηαβtγp+1

∂k+2F0

∂tγp∂t
β
0∂(t10)k

=

(
1

1− t11

)k(
tαk

1− t11
+O

(
t··

1− t11

)2
)
, (α, k) 6= (1, 1).

(3.3.29)

Thus,

vαk
(v1

1)k
=

tαk
1− t11

+O
(

t··
1− t11

)2

. (3.3.30)

In conclusion, the functions

Ω
[g]
α,p;β,q(v) :=

∂2Fg

∂tαp∂t
β
q

(3.3.31)

are of the form (v1
1)2gS, where S is a formal power series in vαp /(v

1
1)p. Since we know they only

depend on v, v1, . . . , v3g as a consequence of Proposition 3.3.4, we can conclude

Ω
[g]
α,p;β,q = (v1

1)2g
∑
k>0

Rk

(v1
1)k

(3.3.32)

for Rk a differential polynomial depending on v, v1, . . . , v3g but not on v1
1 of standard degree k.

Thus, we can write the transformation (3.3.19) as

wα = vα + ηαβ
∞∑
g=1

ε2gΩ
[g]
β,0;1,0 = vα +

∑
g>1

(εv1
1)2g

∑
k>0

Rα
g,k(v, v1, . . . , v3g)

(v1
1)k

, (3.3.33)

where Rα
g,k is a differential polynomial in v not depending on v1

1 of standard degree k.
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Remark 3.3.6. Another consequence of Proposition 3.3.4 is that we can equivalently define the
Hamiltonian densities (3.3.11) in terms of the full two-point correlators Ω, since they differ by a
total derivative:

hα,p(w, . . . , w3g) = Ωα,p+1;1,0 = Ω
[0]
α,p+1;1,0 + ∂x

(
∞∑
g=1

ε2g
∂Fg
∂tαp+1

)
. (3.3.34)

For the particular case p = −1, this means

wα = vα + ∂x

(
ηαβ

∞∑
g=1

ε2g
∂Fg

∂tβ0

)
, (3.3.35)

so
∫
vαdx =

∫
wαdx.

We can now write the full hierarchy in Hamiltonian form. The transformation (3.3.19)
induces a transformation on the Poisson bracket P (3.3.12) as explained in Example 3.2.9.
Explicitly, the deformed Poisson bracket is given by

Aαβ =
∑
s>0

Aαβs ∂sx :=
∑
e,f>0

∂wα

∂vµe
∂ex ◦ P µν ◦ (−∂x)f ◦

∂wβ

∂vνf
. (3.3.36)

The Dubrovin–Zhang hierarchy (3.3.17) is thus given by

∂wα

∂tβq
= Aαγ

δh̄β,q
δwγ

. (3.3.37)

Finally, we are ready to state the main result of [17]:

Theorem 3.3.7 ([17]). • The functions Ωα,p;β,q are differential polynomials in w, that is,
Ωα,p;β,q =

∑∞
g=0 ε

2gΩg
α,p;β,q(w, . . . , w2g), where Ωg

α,p;β,q is a differential polynomial in w of
standard degree 2g.

• The Poisson bracket of the full hierarchy Aαβ =
∑∞

g=0 ε
2g
∑2g+1

s=0 Aαβg,s∂
s
x is polynomial in

w, i.e., the functions Aαβg,s are differential polynomials in w of standard degree 2g + 1− s.

As an immediate consequence of this theorem together with Remark 3.3.6, the Hamiltonian
densities are polynomial in w, and so are the equations of the full hierarchy (3.3.37).

Remark 3.3.8. Note that Ω0
α,p;β,q(w) = Ω

[0]
α,p;β,q(v)|vα=wα , but the relation between the higher

genera two point correlators Ωg
α,p;β,q(w, . . . , w2g) and Ω

[g]
α,p;β,q(v, . . . , v3g) is much more involved.

3.4 The second bracket

3.4.1 Conformality and bi-Hamiltonian recursion

In Section 3.3.2 we have constructed an integrable hierarchy whose solutions are generated
from the partition function of a CohFT. CohFTs are designed to capture the universal basic
properties of Gromov–Witten theories, and it is possible to introduce an extra homogeneity
property, which is designed to reflect the computation of the degrees of the Gromov–Witten
classes.

For the purposes of this chapter, we rewrite the homogeneity condition explicitly as the
conformality of the CohFT (as it is done in e. g. [20]), and this extra condition implies the
existence of another Hamiltonian structure K of hydrodynamic type compatible with P , i.e.,
[K,P ] = 0, for which the Hamiltonians h̄α,p are bi-Hamiltonian conserved quantities, i.e., they
satisfy [K, [P, h̄α,p]] = 0.
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Definition 3.4.1. A CohFT {cg,n} is called conformal if there exist constants qαβ , bα and d
such that qα1 = δα1 , qαβ + ηαµqνµηνβ = (2− d)δαβ , and(

1

2
deg−(g − 1)d−m

)
cg,m(⊗mi=1eβi) +

m∑
i=1

qµβicg,m(⊗i−1
j=1eβj ⊗ eµ ⊗⊗mj=i+1eβj) (3.4.1)

+ π∗cg,m+1(⊗mi=1eβi ⊗ bγeγ) = 0,

where deg acts on the k-th cohomology by multiplication by k and π : Mg,m+1 →Mg,m is the
standard map forgetting the last marked point.

In terms of the logarithm of the partition function F = ε2 log τ =
∑∞

g=0 ε
2gFg, this means(∑

d>0

(qγµ − dδγµ)tµd
∂

∂tγd
+ bγ

∂

∂tγ0
−
∑
d>0

ηαµbβ〈τ0(eα)τ0(eβ)τ0(eγ)〉0tγd+1

∂

∂tµd
+

(3− d)

2
ε
∂

∂ε

)
F

(3.4.2)

= (3− d)F +
1

2
bγ〈τ0(eα)τ0(eβ)τ0(eγ)〉0tα0 t

β
0 + ε2bγ〈τ0(eγ)〉1.

It is convenient to introduce notation for a part of this equation which is a vector field on the
big phase space:

Ẽ :=
∑
d>0

(qγµ − dδγµ)tµd
∂

∂tγd
+ bγ

∂

∂tγ0
−
∑
d>0

ηαµbβ〈τ0(eα)τ0(eβ)τ0(eγ)〉0tγd+1

∂

∂tµd
. (3.4.3)

Also, let us define the matrices

R̃α
β :=

d− 1

2
δαβ + qαβ ; (3.4.4)

Mα
β := ηαµbγ〈τ0(eµ)τ0(eβ)τ0(eγ)〉0.

By direct computation we obtain the following useful lemma that explains the action of Ẽ
on the double derivatives of F ,

Ω
[g]
α,0;β,p :=

∂2Fg

∂tα0∂t
β
p

; Ω
[g]
α,0;β,−1 := ηαβδg,0. (3.4.5)

Lemma 3.4.2. We have:

ẼΩ
[g]
α,0;β,p + (g(3− d)− 1)Ω

[g]
α,0;β,p + R̃γ

αΩ
[g]
γ,0;β,p = (p+ 1− R̃)γβΩ

[g]
α,0;γ,p +Mγ

βΩ
[g]
α,0;γ,p−1; (3.4.6)

Ẽ∂xΩ
[g]
α,0;β,p + g(3− d)∂xΩ

[g]
α,0;β,p + R̃γ

α∂xΩ
[g]
γ,0;β,p = (p+ 1− R̃)γβ∂xΩ

[g]
α,0;γ,p +Mγ

β∂xΩ
[g]
α,0;γ,p−1.

(3.4.7)

Let FFrob = F0|t•>1=0. As a consequence of the string equation (3.3.1), vα|t•>1=0 = tα0 . We

have the following system of equations for FFrob, derived from the homogeneity (3.4.2) and
WDVV (3.3.3) equations:

∂3FFrob

∂vα1∂vα2∂vα
ηαβ

∂3FFrob

∂vα3∂vα4∂vβ0
=

∂3FFrob

∂vα2∂vα3∂vα
ηαβ

∂3FFrob

∂vα1∂vα4∂vβ
, (3.4.8)

(qγµv
µ + bγ)

∂

∂vγ
FFrob = (3− d)FFrob +

1

2
bγ〈τ0(eα)τ0(eβ)τ0(eγ)〉0vαvβ. (3.4.9)
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The system above realizes the function FFrob as the potential of a Dubrovin–Frobenius manifold,
identifying

Eα = qαµv
µ + bα (3.4.10)

with the coefficients of the Euler vector field. For the theory of Dubrovin–Frobenius manifolds,
we refer the reader to [39, 40]. For the purposes of this chapter, we only need the following
result

Proposition 3.4.3 ([39]). If FFrob(v) satisfies the system (3.4.8)-(3.4.9), there exists a non-
degenerate flat metric gαβ with Christoffel symbols bαβγ such that the Poisson operator of
hydrodynamic type

Kαβ = gαβ∂x + bαβγ vγ1 (3.4.11)

is compatible with Pαβ = ηαβ∂x. Moreover, the explicit expressions of g and b are given by:

gαβ = ηαγηβνEµcµγν , bαβγ = cαδγ R̃
β
δ . (3.4.12)

Remark 3.4.4. Under the conformality assumption, the principal hierarchy shown in section 3.3.2
as constructed in [17] coincides with the Dubrovin–Zhang construction of the principal hierarchy
starting from a Dubrovin–Frobenius manifold in [46], for a particular choice of calibration.

For the two compatible Poisson brackets, P and K, we have a bi-Hamiltonian recursion
relation:

Proposition 3.4.5 (see e. g. [44]). The following equations hold:

{·, h̄β,−1}K = {·, h̄µ,0}P (1− R̃)µβ (3.4.13)

{·, h̄β,d}K = {·, h̄µ,d+1}P (d+ 2− R̃)µβ + {·, h̄µ,d}PMµ
β , d > 0. (3.4.14)

Proof. All the arguments in this chapter are based on the bi-Hamiltonian recursion relation
above, which is the central piece to prove the main results of the text. That is why, despite its
proof being well-known, we reproduce it here. We compute the Hamiltonian vector fields of
(3.4.13) term by term: the LHS (after multiplication by ηαβ) becomes

gλν∂x

(
δvα

δvν

)
+ bλνγ v

γ
1

δvα

δvν
= bλαγ v

γ
1 = R̃α

δ c
λδ
γ v

γ
1 . (3.4.15)

On the other hand, the RHS equals:

ηαβηλν∂x

(
δh̄µ,0
δvν

)
(1− R̃)µβ = ηαβηλν∂x

(
Ω

[0]
µ,0;ν,0

)
(1− R̃)µβ (3.4.16)

= ηαβηλνcµνγv
γ
1 (1− R̃)µβ = cλµγv

γ
1η

µβR̃α
β = R̃α

βc
λβ
γ v

γ
1 , (3.4.17)

where we have used that R̃α
βη

βγ + R̃γ
βη

αβ = ηαγ. Thus, both sides are equal and the relation
(3.4.13) holds. To prove (3.4.14), first note that

gαµ∂x + bαµγ vγ1 = ∂x ◦ gαµ − bµαγ vγ1 . (3.4.18)

Thus, the LHS equals

∂x(g
αµΩ

[0]
β,d;µ,0)− ∂x(R̃α

δ η
δθΩ

[0]
β,d+1;θ,0), (3.4.19)
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where the second summand comes from the computation

R̃α
δ η

δθ∂x(Ω
[0]
β,d+1;θ,0) = R̃α

δ η
δθΩ

[0]
β,d;λ,0η

λσ∂xΩ
[0]
σ,0;θ,0 = R̃α

δ η
δθΩ

[0]
β,d;λ,0η

λσcσθγv
γ
1 (3.4.20)

= R̃α
δ c

λδ
γ v

γ
1 Ω

[0]
β,d;λ,0 = bλαγ v

γ
1 Ω

[0]
β,d;λ,0.

Here we have used TRR-0 (3.3.4) in the first equality. Thus, equation (3.4.14) is equivalent to

gαµΩ
[0]
β,d;µ,0 − R̃

α
δ η

δθΩ
[0]
β,d+1;θ,0 = ηαθΩ

[0]
µ,d+1;θ,0(d+ 2− R̃)µβ + ηαθΩ

[0]
µ,d;θ,0M

µ
β . (3.4.21)

First, using TRR-0 (3.3.4), we compute the first summand:

gαµΩ
[0]
β,d;µ,0 = Eνηαθ

∂

∂vν
Ω

[0]
θ,0;λ,0η

µλΩ
[0]
β,d;µ,0 = ηαθEµ ∂

∂vµ
Ω

[0]
β,d+1;θ,0. (3.4.22)

Second, we set ε = t•>1 = 0 in (3.4.6):

Eµ ∂

∂vµ
Ω

[0]
β,d+1;θ,0 − Ω

[0]
β,d+1;θ,0 + R̃γ

θΩ
[0]
β,d+1;γ,0 = (d+ 2− R̃)γβΩ

[0]
γ,d+1;θ,0 +Mγ

βΩ
[0]
γ,d;θ,0. (3.4.23)

Combining this last equation with the identity R̃α
βη

βγ + R̃γ
βη

αβ = ηαγ we see that (3.4.21)
holds.

As before, we can apply the transformation (3.3.19) to obtain a deformed bracket:

Bαβ =
∑
s>0

Bαβ
s ∂sx :=

∑
e,f>0

∂wα

∂vµe
∂ex ◦Kµν ◦ (−∂x)f ◦

∂wβ

∂vνf
. (3.4.24)

Since (3.3.19) is a quasi-Miura transformation of (1, 1) type by Proposition 3.3.5, and it only
has terms of even degree in ε, the second bracket admits an ε-expansion of the form

Bαβ =
∞∑
g=0

ε2g
3g+1∑
s=0

Bαβ
g,s∂

s
x, (3.4.25)

where Bαβ
g,s is a homogeneous differential rational function of type (1, 1) and degree 2g + 1− s.

Note that the max s for a given g is 3g + 1 as a consequence of Proposition 3.3.4.
Equations (3.4.13) and (3.4.14) can be reformulated in terms of the Hamiltonian vector

fields:

[K, h̄β,d] = [P, h̄µ,d+1](d+ 2− R̃)µβ + [P, h̄µ,d]M
µ
β , d > −1. (3.4.26)

Moreover, as a consequence of Proposition 3.3.5, the Schouten bracket invariance proved in
Proposition 3.2.8 still holds and the system (3.4.26) can be rewritten as

[B, h̄β,d] = [A, h̄µ,d+1](d+ 2− R̃)µβ + [A, h̄µ,d]M
µ
β , d > −1. (3.4.27)

It is illustrative to see how the bi-Hamiltonian recursion relation is preserved in terms of
operators instead of the Schouten bracket. Let Lαµ =

∑
e
∂wα

∂vµe
∂ex and (L∗)βν =

∑
f(−∂x)f ◦

∂wβ

∂vνf
,

then:

Bαβ δ

δwβ
(h̄γ,d) = Lαµ ◦Kµν ◦ (L∗)βν ◦

δ

δwβ
(h̄γ,d) (3.4.28)

= Lαµ ◦Kµν ◦ δ

δvν
(h̄γ,d)

= Lαµ ◦ P µν ◦ δ

δvν

(
(d+ 2− R̃)λγ h̄λ,d+1 +Mλ

γ h̄λ,d

)
= Lαµ ◦ P µν ◦ (L∗)βν ◦

δ

δwβ

(
(d+ 2− R̃)λγ h̄λ,d+1 +Mλ

γ h̄λ,d

)
= Aαβ

δ

δwβ

(
(d+ 2− R̃)λγ h̄λ,d+1 +Mλ

γ h̄λ,d

)
.
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In other words, Bαβ is an operator of the form (3.4.25) satisfying (3.4.28). These are the
main equations that we are going to use in the rest of the chapter, recycling the same idea thrice.
First, we will show that these two conditions determine Bαβ uniquely. Second, we will show
that the functions Bαβ

g,s are of the form Bαβ
g,s = Cαβ

g,s/ det(η−1∂xΩ
0)ng,s , where ng,s ∈ Z>0 and Cαβ

g,s

is a differential polynomial in w, thus giving an alternative proof to [46, Theorem 4.2.14] for the
second bracket without resorting to the loop equations. Finally, we will prove the vanishing
Bαβ
g,s = 0 for 2g + 2 6 s 6 3g + 1, which is a necessary condition for Bαβ to be polynomial.

3.4.2 Uniqueness theorem

Theorem 3.4.6. Let Cαβ =
∑∞

g=0 ε
2g
∑3g+1

s=0 Cαβ
g,s∂

s
x be a Poisson operator of type (1, 1) in

w-coordinates satisfying

[C, h̄β,d] = [A, h̄µ,d+1](d+ 2− R̃)µβ + [A, h̄µ,d]M
µ
β , d > −1. (3.4.29)

Then C = B.

Proof. Let D = C −B. Then we have

[D, h̄β,d] = 0, (3.4.30)

or, equivalently,

∞∑
g=0

ε2g
3g+1∑
s=0

Dαγ
g,s∂

s
x

(
δh̄β,d
δwγ

)
= 0, (3.4.31)

for all 1 6 β 6 N , d > −1.

Genus 0

Expanding (3.4.31) in ε and taking the g = 0 term, we have that

Dαγ
0,0

(
∂h

[0]
β,d

∂wγ

)
+Dαγ

0,1∂x

(
∂h

[0]
β,d

∂wγ

)
= 0, (3.4.32)

where hβ,d = h
[0]
β,d+ ε2h

[1]
β,d+ . . . is the genus expansion of hβ,d in the w coordinates. Note that we

have replaced the variational derivatives δh̄
[0]
β,d/δw

γ by the partial derivatives ∂h
[0]
β,d/∂w

γ because

the Hamiltonian density h
[0]
β,d does not depend on w•>1. For d = −1

Dαγ
0,0

(
∂h

[0]
β,−1

∂wγ

)
+Dαγ

0,1∂x

(
∂h

[0]
β,−1

∂wγ

)
= Dαγ

0,0ηβγ = 0, (3.4.33)

so we can conclude that Dαγ
0,0 = 0. We are left with

Dαγ
0,1∂x

(
∂h

[0]
β,d

∂wγ

)
= 0. (3.4.34)

Recall that the dispersionless Hamiltonians h
[0]
α,d(w) = hα,d(v)|vα→wα satisfy TRR-0 (3.3.4),

which implies that

∂2h
[0]
β,d

∂wα∂wγ
= c̃σαγ

∂h
[0]
β,d−1

∂wσ
, (3.4.35)
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where c̃σαγ = ησβ ∂3FFrob

∂vµ∂vν∂vγ
|vα→wα . Now

Dαγ
0,1∂x

(
∂h

[0]
β,0

∂wγ

)
= Dαγ

0,1w
µ
1 c̃
σ
γµ

∂h
[0]
β,−1

∂wσ
= Dαγ

0,1w
µ
1 c̃
σ
γµηβσ = 0, (3.4.36)

so

Dαγ
0,1w

µ
1 c̃
λ
γµ = 0, λ = 1, . . . , N. (3.4.37)

To show that the last equation implies Dαγ
0,1 = 0, we need the following lemma:

Lemma 3.4.7. The matrix η−1∂xΩ
0, written with indices as c̃αγµw

µ
1 = ηαβ∂xΩ

0
β,0;γ,0, is invertible

in the (1, 1) class.

Proof. The string equation implies that c̃αγµw
µ
1 − δαγw1

1 is a differential polynomial that does not
depend on w1

1.

So, we can conclude that Dαγ
0,1 = 0.

Induction on g

We proceed by induction on g. The case g = 0 has already been proven. Assume Dαβ
r,s = 0 for

all r 6 g − 1 and for all s = 0, . . . , 3r + 1. The coefficient of ε2g in (3.4.31) is

g−1∑
r=0

3r+1∑
s=0

Dαγ
r,s∂

s
x

(
δh̄

[g−r]
β,d

δwγ

)
+

3g+1∑
s=0

Dαγ
g,s∂

s
x

(
δh̄

[0]
β,d

δwγ

)
= 0. (3.4.38)

By induction hypothesis, the first summand vanishes, so

3g+1∑
s=0

Dαγ
g,s∂

s
x

(
∂h

[0]
β,d

∂wγ

)
= 0. (3.4.39)

First, choosing d = −1 implies that Dαγ
g,0 = 0, so

3g+1∑
s=1

Dαγ
g,s∂

s
x

(
∂h

[0]
β,d

∂wγ

)
= 0. (3.4.40)

Second, by the chain rule

∂sx

(
∂h

[0]
β,d

∂wγ

)
=

s∑
m=1

∂m+1h
[0]
β,d

∂wγ∂wµ1 . . . ∂wµm
BP µ1...µm

s,m , (3.4.41)

where BP µ1...µm
s,m is a homogeneous differential polynomial of degree s in the variables wµp , where

µ = µ1 . . . µm and p = 1, . . . , s−m+ 1. For this proof, we only need the explicit form of

BP µ1...µs
s,s = wµ11 w

µ2
1 . . . wµs1 . (3.4.42)

Iterating (3.4.35) m times yields

∂m+1h
[0]
β,d

∂wγ∂wµ1 . . . ∂wµm
=

m∑
k=1

BQ(m,k),λ
γµ1...µm

∂h
[0]
β,d−k

∂wλ
, (3.4.43)
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where BQ
(m,k),λ
γµ1...µm is a function in w that can be written in terms of the functions c̃αβγ and their

partial derivatives. For this proof, we only need the explicit form of

BQ(m,m),λ
γµ1...µm

= c̃λ1γµ1 c̃
λ2
λ1µ2

. . . c̃λλm−1µm
. (3.4.44)

Inserting (3.4.41) and (3.4.43) in (3.4.40), and changing the order of summation yields

3g+1∑
k=1

(
3g+1∑
m=k

(
3g+1∑
s=m

Dαγ
g,sBP

µ1...µm
s,m

)
BQ(m,k),λ

γµ1...µm

)
∂h

[0]
β,d−k

∂wλ
= 0. (3.4.45)

Choosing d = 0 kills all terms except the one with k = 1, so

3g+1∑
m=1

(
3g+1∑
s=m

Dαγ
g,sBP

µ1...µm
s,m

)
BQ(m,1),λ

γµ1...µm
= 0, (3.4.46)

vanishes and so does

3g+1∑
k=2

(
3g+1∑
m=k

(
3g+1∑
s=m

Dαγ
g,sBP

µ1...µm
s,m

)
BQ(m,k),λ

γµ1...µm

)
∂h

[0]
β,d−k

∂wλ
= 0. (3.4.47)

Choosing d = 1, 2, . . . 3g in the same way shows that

3g+1∑
m=k

(
3g+1∑
s=m

Dαγ
g,sBP

µ1...µm
s,m

)
BQ(m,k),λ

γµ1...µm
= 0, k = 1, . . . , 3g + 1. (3.4.48)

Let k = 3g + 1. By (3.4.42) and (3.4.44), we have

Dαγ
g,3g+1w

µ1
1 . . . w

µ3g+1

1 c̃λ1γµ1 c̃
λ2
λ1µ2

. . . c̃λλ3g,µ3g+1
= 0. (3.4.49)

Regrouping the terms

Dαγ
g,3g+1w

µ1
1 c̃

λ1
γµ1
wµ21 c̃

λ2
λ1µ2

. . . w
µ3g
1 c̃

λ3g
λ3g−1,µ3g

w
µ3g+1

1 c̃λλ3g ,µ3g+1
= 0. (3.4.50)

By Lemma 3.4.7, the factor w
µ3g+1

1 c̃λλ3g ,µ3g+1
can be canceled out, meaning the remaining terms

must be zero Dαγ
g,3g+1w

µ1
1 c̃

λ1
γµ1
wµ21 c̃

λ2
λ1µ2

. . . w
µ3g
1 c̃

λ3g
λ3g−1,µ3g

= 0. Iterating these cancellations shows
that

Dαγ
g,3g+1 = 0. (3.4.51)

Replacing this in (3.4.48) yields

3g∑
m=k

(
3g∑
s=m

Dαγ
g,sBP

µ1...µm
s,m

)
BQ(m,k),λ

γµ1...µm
= 0, k = 1, . . . , 3g. (3.4.52)

Taking the k = 3g term implies, by the same argument as before, that Dαγ
g,3g = 0. Repeating for

k = 3g − 1, 3g − 2, . . . , 1 shows

Dαγ
g,s = 0, s = 0, 1, . . . , 3g + 1, (3.4.53)

which completes the proof.
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3.4.3 Dubrovin–Zhang structural theorem

An argument based on bi-Hamiltonian recursion as in the proof of Theorem 3.4.6 is insufficient
to show that the functions Bαβ

g,s are polynomial. However, it is enough to derive a new proof
of the following weaker structural result, which has been already proved in [46] using the loop
equation.

Theorem 3.4.8. The second Poisson operator of the Dubrovin–Zhang hierarchy Bαβ can be
expanded as

Bαβ =
∞∑
g=0

ε2g
3g+1∑
s=0

Bαβ
g,s∂

s
x, (3.4.54)

where Bαβ
g,s is a homogeneous differential rational function in the variables w of degree 2g+ 1− s

of the form

Bαβ
g,s =

Cαβ
g,s

Dng,s
, (3.4.55)

where D = D(w;w1) = det(c̃λγµw
µ
1 ) = det(η−1∂xΩ

0), Cαβ
g,s is a differential polynomial not divisible

by D and ng,s ∈ Z.

Proof. Recall B satisfies equation (3.4.28)

Bαβ δ

δwβ
(h̄γ,d) = Aαβ

δ

δwβ

(
(d+ 2− R̃)λγ h̄λ,d+1 +Mλ

γ h̄λ,d

)
, (3.4.56)

whose right hand side is polynomial as a consequence of Theorem 3.3.7. We know that the
g = 0 term of the expansion of B equals Kαβ|vα→wα , which is polynomial, but we will proceed
analogously to Theorem 3.4.6 even from g = 0 to illustrate the methods of the proof. Expanding
the expression

∞∑
g=0

ε2g
3g+1∑
s=0

Bαγ
g,s∂

s
x

(
δh̄β,d
δwγ

)
, (3.4.57)

which is polynomial, and taking the g = 0 term implies that

Bαγ
0,0

(
∂h

[0]
β,d

∂wγ

)
+Bαγ

0,1∂x

(
∂h

[0]
β,d

∂wγ

)
(3.4.58)

is polynomial. Choosing d = −1 shows immediately that Bαγ
0,0 is polynomial, so we know

Bαγ
0,1∂x

(
∂h

[0]
β,d

∂wγ

)
(3.4.59)

is polynomial. As in the proof of Theorem 3.4.6, we apply a corollary of TRR-0 (3.4.35) and
choose d = 0 to show that

Bαγ
0,1w

µ
1 c̃
λ
γµ (3.4.60)

is polynomial. By Lemma 3.4.7, the matrix (η−1∂xΩ
0)λγ = wµ1 c̃

λ
γµ is invertible. We can write its

inverse as ((η−1∂xΩ
0)−1)γλ = 1

D
T γλ , where T γλ is the transpose of the adjugate of η−1∂xΩ

0, hence
a differential polynomial, and D = det(wµ1 c̃

λ
γµ) is its determinant. Therefore, multiplying the
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polynomial expression (3.4.60) by (η−1∂xΩ
0)−1 implies Bαγ

0,1 can be written as the quotient of a
differential polynomial by D. In other words, we can write

Bαγ
0,1 =

Cαγ
0,1

Dn0,1
(3.4.61)

for Cαγ
0,1 a differential polynomial not divisible by D and n0,1 6 1. Assume

Bαβ
r,s =

Cαβ
r,s

Dnr,s
(3.4.62)

with Cαβ
r,s a differential polynomial not divisible by D for all r 6 g − 1 and for all s 6 3r + 1.

Let n = max 06r6g−1
06s63r+1

(nr,s). The coefficient of ε2g in (3.4.57) is

g−1∑
r=0

3r+1∑
s=0

Bαγ
r,s∂

s
x

(
δh̄

[g−r]
β,d

δwγ

)
+

3g+1∑
s=0

Bαγ
g,s∂

s
x

(
δh̄

[0]
β,d

δwγ

)
, (3.4.63)

which is polynomial. By induction hypothesis, the first summand is a differential polynomial
divided by Dn, and so is

3g+1∑
s=0

Bαγ
g,s∂

s
x

(
∂h

[0]
β,d

∂wγ

)
. (3.4.64)

Choosing d = −1 implies

Bαγ
g,0 =

Cαγ
g,0

Dng,0
(3.4.65)

with ng,0 6 n, so

3g+1∑
s=1

Bαγ
g,s∂

s
x

(
∂h

[0]
β,d

∂wγ

)
(3.4.66)

can be written as a differential polynomial divided by Dn as well. As in the proof of Theorem
3.4.6, we apply iteratively the chain rule (3.4.41), TRR-0 (3.4.43) and choose d = 0, 1, . . . , 3g to
conclude that

3g+1∑
m=k

(
3g+1∑
s=m

Bαγ
g,sBP

µ1...µm
s,m

)
BQ(m,k),λ

γµ1...µm
(3.4.67)

is a differential polynomial divided by Dn for all k = 1, . . . , 3g + 1. Let k = 3g + 1, then

Bαγ
g,3g+1w

µ1
1 c̃

λ1
γµ1
wµ21 c̃

λ2
λ1µ2

. . . w
µ3g+1

1 c̃λλ3gµ3g+1
=
Rαγ

3g,3g+1

Dn
, (3.4.68)

where Rαγ
3g,3g+1 is a differential polynomial. As before, multiplying this identity by the matrix

((η−1∂xΩ
0)−1)γλ = 1

D
T γλ from the right 3g + 1 times yields

Bαγ
g,3g+1 =

Cαγ
3g,3g+1

Dng,3g+1
, (3.4.69)

where Cαγ
3g,3g+1 is a differential polynomial and ng,3g+1 6 n+ 3g + 1.
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Taking the k = 3g term in (3.4.67) shows that

Bαγ
g,3gw

µ1
1 c̃

λ1
γµ1
wµ21 c̃

λ2
λ1µ2

. . . w
µ3g
1 c̃

λ3g
λ3g−1µ3g

(3.4.70)

+Bαγ
g,3g+1

(
BP

µ1,...,µ3g
3g+1,3g BQ

(3g,3g)λ
γµ1...µ3g

+BP
µ1...µ3g+1

3g+1,3g+1BQ
(3g+1,3g)λ
γ,µ1,...,µ3g

)
is a differential polynomial divided by Dn. Therefore,

Bαγ
g,3gw

µ1
1 c̃

λ1
γµ1
wµ21 c̃

λ2
λ1µ2

. . . w
µ3g
1 c̃

λ3g
λ3g−1µ3g

=
Rαγ

3g,3g

Dn+3g+1
, (3.4.71)

where Rαγ
3g,3g is a differential polynomial. Multiplying this by the matrix ((η−1∂xΩ

0)−1)γλ = 1
D
T γλ

from the right 3g times, we obtain that

Bαγ
g,3g+1 =

Cαγ
3g,3g

Dng,3g
, (3.4.72)

where C3g,3g is a differential polynomial and ng,3g 6 n+ 6g + 1.
Repeating this argument for k = 3g − 1, 3g − 2, . . . , 1 shows

Bαγ
g,s =

Cαγ
g,s

Dng,s
(3.4.73)

with Cαγ
g,s a differential polynomial not divisible by D.

Remark 3.4.9. It is easy to track through the proof of Theorem 3.4.8 an estimate for the degrees
of the denominators ng,s. To make these estimates sharper, one can use the polynomiality
in genus 0 and 1 [44], and the result of Theorem 3.6.8 below, which states that Bαβ

g,s = 0 for
s > 2g + 2. But, of course, the conjecture of Dubrovin and Zhang suggests that ng,s 6 0.

Remark 3.4.10. The combinatorics of the argument in the proofs of Theorem 3.4.6 and Theo-
rem 3.4.8 basically reflects what happens when one replaces the ψ-classes by their pull-backs
from the moduli spaces with less number of marked points (cf. [17, Equation 3] or [83, Proof of
Theorem 4]). We make this point precise in Section 3.6.

Let us also formulate one extra bit of polynomiality of the second Dubrovin–Zhang bracket
that follows directly from the proof of Theorem 3.4.8:

Theorem 3.4.11. The constant term of the second Poisson operator of the Dubrovin–Zhang
hierarchy,

∑∞
g=0 ε

2gBαβ
g,0, is a differential polynomial.

3.5 Liu–Pandharipande relations

3.5.1 Relation among the tautological classes

Fix sets of indices I1 and I2 such that I1 t I2 = {1, . . . , n}. Let ∆g1,g2 ⊂Mg,n denote a divisor
in Mg,n whose generic points are represented by two-component curves intersecting at a node,
where the two components have genera g1, g2 and contain the points with the indices I1, I2,
respectively. Note that if gi = 0, then |Ii| must be at least 2, for the stability condition.

Let n1 = |I1|, n2 = |I2|. For each ∆g1,g2 we consider the map ιg1,g2 : Mg1,n1+1 ×Mg2,n2+1 →
Mg,n that glues the last marked points into a node and whose image is ∆g1,g2 . Let ψ◦1
(respectively, ψ◦2) denote the psi classes at the marked points on the first (respectively, second)
component that are glued into the node.
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Proposition 3.5.1 ([83, Proposition 1]). For any g > 0, n > 4, I1 and I2 such that I1 t I2 =
{1, . . . , n} and |I1|, |I2| > 2, and an arbitrary r > 0 we have:∑

g1,g2>0
g1+g2=g

∑
a1,a2>0
a1+a2=

2g−3+n+r

(−1)a1(ιg1,g2)∗ψ
a1
◦1ψ

a2
◦2 = 0. (3.5.1)

Let n = k+ 1, I1 = {1, . . . , k− 1}, I2 = {k, k+ 1}, and consider the map π : Mg,k+1 →Mg,k

that forgets the last marked point. We apply the push-forward π∗ to the left hand side of
(3.5.1) and to the left hand side of (3.5.1) multiplied by ψk+1 in order to obtain the following
corollaries.

Corollary 3.5.2. For any g > 0, k > 3, I1 = {1, . . . , k − 1} and I2 = {k}, and an arbitrary
r > 0 we have: ∑

g1>0,g2>0
g1+g2=g

∑
a1,a2>0
a1+a2=

2g−2+k+r

g2(−1)a1(ιg1,g2)∗ψ
a1
◦1ψ

a2
◦2 = 0. (3.5.2)

Corollary 3.5.3. For any g > 0, k > 3, I1 = {1, . . . , k − 1} and I2 = {k}, and an arbitrary
r > 0 we have:

(−1)k+rψ2g−2+k+r
k +

∑
g1>0,g2>0
g1+g2=g

∑
a1,a2>0
a1+a2=

2g−3+k+r

(−1)a1(ιg1,g2)∗ψ
a1
◦1ψ

a2
◦2 = 0. (3.5.3)

Taking yet another pushforward, we have the following corollary:

Corollary 3.5.4 ([83, Proposition 2]). For any g > 1, I1 = {1}, I2 = {2}, and an arbitrary
r > 0 we have:

−ψ2g+r
1 + (−1)rψ2g+r

2 +
∑

g1>0,g2>0
g1+g2=g

∑
a1,a2>0
a1+a2=
2g−1+r

(−1)a1(ιg1,g2)∗ψ
a1
◦1ψ

a2
◦2 = 0. (3.5.4)

3.5.2 Implications for ∂x-derivatives of two-point functions

Equations (3.5.2) and (3.5.3) imply a number of identities for the functions ∂sxΩ
[g]
α,0;β,p. In order

to formulate these identities in a useful way for the computational scheme presented in Section
3.4, we introduce a new notation.

Let ∂sxΩ
[g]

α,0;β,0
:= ∂sxΩ

[g]
α,0;β,0, s > 0, and for p > 1 we set

∂sxΩ
[g]
α,0;β,p := ∂sxΩ

[g]
α,0;β,p −

p−1∑
q=0

∂sxΩ
[g]
α,0;µ,qη

µνΩ
[0]
ν,0;β,p−q−1. (3.5.5)

In other words, in the expansion of ∂sxΩ
[g]
α,0;β,p we use the pull-back of ψp from Mg,s+2 at the

point with the primary field β.

Lemma 3.5.5. For s > 1, p > 2g + s we have:

∑
g1>0,g2>0
g1+g2=g

p∑
q=0

g2(−1)q∂sxΩ
[g1]
α,0;µ,qη

µνΩ
[g2]

β,0;ν,p−q = 0. (3.5.6)
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Lemma 3.5.6. For s > 1, p > 2g + s we have:

∂sxΩ
[g]
α,0;β,p =

∑
g1>0,g2>0
g1+g2=g

p−1∑
q=0

(−1)p−q−1∂sxΩ
[g1]
α,0;µ,qη

µνΩ
[g2]

β,0;ν,p−q−1
. (3.5.7)

Recall also the notation ∂sxΩ
[g]
α,0;β,−1 := δs,0δg,0ηαβ. We set ∂sxΩ

[g]

α,0;β,−̃1
:= ∂sxΩ

[g]
α,0;β,−1 and for

p > 0

∂sxΩ
[g]
α,0;β,p̃ := ∂sxΩ

[g]
α,0;β,p −

p−1∑
q=−1

∂sxΩ
[g]
α,0;µ,q̃η

µνΩ
[0]
ν,0;β,p−q−1. (3.5.8)

Of course, if g > 0 or s > 0, then ∂sxΩ
[g]
α,0;β,p̃ = ∂sxΩ

[g]
α,0;β,p, but for g = s = 0 and p > 0,

∂sxΩ
[g]
α,0;β,p̃ = 0. With this extra piece of notation we can include the case s = 0 in Lemma 3.5.6

in the following way:

Lemma 3.5.7. For s > 0, p > 2g + s we have:

∂sxΩ
[g]
α,0;β,p̃ =

∑
g1>0,g2>0
g1+g2=g

p−1∑
q=−1

(−1)p−q−1∂sxΩ
[g1]
α,0;µ,q̃η

µνΩ
[g2]

β,0;ν,p−q−1
. (3.5.9)

Lemmata 3.5.5, 3.5.6, and 3.5.7 are direct corollaries of Corollaries 3.5.2, 3.5.3, and 3.5.4,
respectively. It is a rather standard translation of tautological relations into differential equations
for the coefficients of the genus expansion of the logarithm of the partition function, see e. g. [83,
Proof of Theorem 4]. Another exposition of a detailed step-by-step instruction how one can
translate a tautological relation into a PDE is presented in [51, Section 2.1.3].

3.5.3 Variation for Ẽ

In fact, as it is explained in [83, Proof of Theorem 4], all lemmata in the previous section work
without any change once we replace the operator ∂sx with an arbitrary s-vector field on the big
phase space. The actual result that we use below is a variation of Lemma 3.5.6 that is related
to the vector field Ẽ.

Let Ẽ∂xΩ
[g]

α,0;β,0
:= Ẽ∂xΩ

[g]
α,0;β,0, and for p > 1 we set

Ẽ∂xΩ
[g]
α,0;β,p := Ẽ∂xΩ

[g]
α,0;β,p −

p−1∑
q=0

Ẽ∂xΩ
[g]
α,0;µ,qη

µνΩ
[0]
ν,0;β,p−q−1. (3.5.10)

In other words, in the expansion of Ẽ∂xΩ
[g]
α,0;β,p we use the pull-back of ψp from Mg,4 at the

point with the primary field β.

Lemma 3.5.8. For p > 2g + 2 we have:

Ẽ∂xΩ
[g]
α,0;β,p =

∑
g1>0,g2>0
g1+g2=g

p−1∑
q=0

(−1)p−q−1Ẽ∂xΩ
[g1]
α,0;µ,qη

µνΩ
[g2]

β,0;ν,p−q−1
. (3.5.11)
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3.6 Vanishing terms of the second bracket

The goal of this section is to prove that all terms of the second Dubrovin–Zhang bracket that
have negative degree, and therefore cannot be polynomial, do vanish. The argument goes as
follows.

We start with two essential steps to simplify the problem. First, we replace the operator B
with a different operator B̃ that has equivalent vanishing properties but satisfies a simplified
version of the bi-Hamiltonian recursion. Second, we employ a triangular structure with respect
to the ε-degree of the change of variables from v coordinates to w coordinates in order to reduce
the problem to the vanishing of the negative degree terms of the operator B̃ in the v coordinates.

The latter observation allows us to consider the simplified version of the bi-Hamiltonian
recursion in the v coordinates, for which the ε-expansion of the Ω-functions has geometric
meaning, as it coincides with the expansion in the t variables. This lets us apply various
geometric observations from Section 3.5 and homogeneity properties from Section 3.4 to derive
the desired vanishing statement about B̃.

3.6.1 Equivalent form without the variational derivative

Recall the bi-Hamiltonian recursion:

Bαβ δ

δwβ

∫
Ω1,0;γ,p+1dx = Aαβ

δ

δwβ

(∫
Ω1,0;µ,p+2dx (p+ 2− R̃)µγ +

∫
Ω1,0;µ,p+1dxM

µ
γ

)
(3.6.1)

for p > −1. Note that Aαβ = ∂x ◦ Ãαβ, where Ãαβ = ηαβ +O(ε2) =
∑∞

g=0 ε
2g
∑2g

s=0 Ã
αβ
g,s∂

s
x, where

Ãαβg,s are differential polynomials in the coordinates w, and the standard gradation of Ãαβg,s is

deg Ãαβg,s = 2g − s. Consider the inverse operator, Ã−1
αβ . It has exactly the same properties as

Ãαβ, namely, it expands as Ã−1
αβ = ηαβ +O(ε2) =

∑∞
g=0 ε

2g
∑2g

s=0(Ã−1
g,s)αβ∂

s
x, where (Ã−1

g,s)αβ are

differential polynomials, and the standard gradation of (Ã−1
g,s)αβ is deg(Ã−1

g,s)αβ = 2g − s. Define

B̃αβ := BαµÃ−1
µν η

νβ. This operator satisfies a simplified version of bi-Hamiltonian recursion:

Lemma 3.6.1. We have:

B̃αβΩβ,0;γ,p = ηαβ∂x

(
Ωβ,0;µ,p+1 (p+ 2− R̃)µγ + Ωβ,0;µ,pM

µ
γ

)
. (3.6.2)

Proof. The way the operator Aαβ acts on the variational derivatives of the Hamiltonians implies
that

Ãαβ
δ

δwβ

∫
Ω1,0;γ,p+1dx = ηαβΩβ,0;γ,p, (3.6.3)

hence the statement of the lemma.

Recall that Bαβ =
∑∞

g=0 ε
2g
∑3g+1

s=0 Bαβ
g,s∂

s
x, with degBαβ

g,s = 2g + 1− s. It is easy to see that

B̃αβ has expansion with exactly the same properties, namely, B̃αβ =
∑∞

g=0 ε
2g
∑3g+1

s=0 B̃αβ
g,s∂

s
x,

with deg B̃αβ
g,s = 2g + 1− s. Moreover,

Lemma 3.6.2. (1) The coefficients of the operator Bαβ are differential polynomials if and only
if the coefficients of the operator B̃αβ are differential polynomials.

(2) The coefficients Bαβ
g,s , g > 0, 2g + 2 6 s 6 3g + 1, vanish if and only if the coefficients

B̃αβ
g,s , g > 0, 2g + 2 6 s 6 3g + 1, vanish.

Proof. Both statements follow from the polynomiality of Ã−1
αβ .
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Finally, it is a bit easier to work in the v coordinates instead of the w coordinates, but
then, of course, all polynomiality properties are destroyed. The vanishing properties are,
however, preserved. Namely, consider the expansion of the operator B̃αβ in the v coordinates:
B̃αβ =

∑∞
g=0 ε

2g
∑3g+1

s=0 B̃αβ
[g],s∂

s
x.

Lemma 3.6.3. The coefficients B̃αβ
g,s , g > 0, 2g + 2 6 s 6 3g + 1, vanish if and only if the

coefficients B̃αβ
[g],s, g > 0, 2g + 2 6 s 6 3g + 1, vanish.

Proof. Indeed, the change of variables from w to v in B̃αβ(w(v, ε), ε) does not affect the terms B̃αβ
g,s

such that B̃αβ
g′,s = 0 for all g′ < g. More precisely, under this condition B̃αβ

[g],s(v) = B̃αβ
g,s(w)|w=v.

The same argument applies also to the change of variables from v to w.
Now we prove the lemma by induction on g. The base of induction is obvious, and if we

prove the equivalence of the vanishings for any g′ < g, then for any g′ < g the top non-vanishing
terms in w (respectively, v) coordinates are B̃αβ

g′,s (respectively, B̃αβ
[g′],s) with s = 2g′ + 1. Since

2g′ + 1 < 2g + 2 for any g′ < g, the vanishing of B̃αβ
g,s , s > 2g + 2 is equivalent to the vanishing

of B̃αβ
[g],s, s > 2g + 2.

Remark 3.6.4. Assume that the vanishing of B̃αβ
g,s (or, equivalently, B̃αβ

[g],s) is proved for g > 0,
s > 2g+2. Then the same argument as in the proof of Lemma 3.6.3 implies that the polynomiality
of B̃αβ

g,2g and B̃αβ
g,2g+1 is equivalent to the polynomiality of B̃αβ

[g],2g and B̃αβ
[g],2g+1, respectively, for

any g > 0.

3.6.2 Vanishing terms

Consider the expansion of the operator B̃αβ in the v coordinates:

B̃αβ =
∞∑
g=0

ε2g
3g+1∑
s=0

B̃αβ
[g],s∂

s
x. (3.6.4)

Proposition 3.6.5. We have B̃αβ
[g],s = 0 for s > 2g + 2, g > 0.

Before we proceed with the proof of Proposition 3.6.5, let us note that the equation that
determines B̃αβ

[g],s (once B̃αβ
[h],t are known for h < g and for h = g, t > s), i.e., what corresponds to

the s-th summand of (3.4.48) in the proof of Theorem 3.4.6 or, analogously, the s-th summand
of (3.4.67) in the proof of Theorem 3.4.8, can be compactly written as follows:

Lemma 3.6.6. We have:∑
g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]

β,0;γ,s̃−1
= ηαβR̃µ

β∂xΩ
[g]
µ,0;γ,s + Ẽηαβ∂xΩ

[g]
β,0;γ,s + g(3− d)ηαβ∂xΩ

[g]
β,0;γ,s. (3.6.5)

Proof. Consider the genus g component of Equation (3.6.2) with p = s− 1 (recall that we use
the v coordinates for all ingredients of the formula):∑

g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]
β,0;γ,s−1 = ηαβ∂x

(
Ω

[g]
β,0;µ,s (s+ 1− R̃)µγ + Ω

[g]
β,0;µ,s−1M

µ
γ

)
. (3.6.6)

Then we apply (3.4.7) with p = s. We obtain:∑
g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]
β,0;γ,s−1 = ηαβR̃µ

β∂xΩ
[g]
µ,0;γ,s + Ẽηαβ∂xΩ

[g]
β,0;γ,s + g(3− d)ηαβ∂xΩ

[g]
β,0;γ,s. (3.6.7)
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Let us prove that Equation (3.6.7) implies the statement of the lemma by induction on s. The
base is the case s = 0; in this case Equations (3.6.5) and (3.6.7) are equivalent. Assume the
lemma is proved for all s < S. Then, for s = S we have:∑

g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]

β,0;γ,S̃−1
− ηαβR̃µ

β∂xΩ
[g]

µ,0;γ,S
− Ẽηαβ∂xΩ

[g]

β,0;γ,S
− g(3− d)ηαβ∂xΩ

[g]

β,0;γ,S
(3.6.8)

=
∑

g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]
β,0;γ,S−1 − η

αβR̃µ
β∂xΩ

[g]
µ,0;γ,S − Ẽηαβ∂xΩ

[g]
β,0;γ,S − g(3− d)ηαβ∂xΩ

[g]
β,0;γ,S

−
S−1∑
q=0

( ∑
g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]

β,0;µ,q̃−1
− ηαβR̃µ

β∂xΩ
[g]
µ,0;µ,q

− Ẽηαβ∂xΩ
[g]
β,0;µ,q − g(3− d)ηαβ∂xΩ

[g]
β,0;µ,q

)
ηµνΩ

[0]
ν,0;γ,S−q−1.

This equality follows from directly from the definitions (3.5.5), (3.5.8), and (3.5.10). Now, the
right hand side of this equality is equal to zero: the first line by Equation (3.6.7), and the sum
over q by the induction assumption. This implies that (3.6.5) holds for s = S and completes
the inductive proof of the lemma.

Proof of Proposition 3.6.5. We assume that using the computational scheme in Theorems 3.4.6
and 3.4.8 we already proved by induction the vanishing of B̃αβ

[h],t for h < g, t > 2h+ 2 and for

h = g, t > s. Also, recall that B̃αβ
[g1],t∂

t
xΩ

[g2]

β,0;γ,s̃−1
= 0 for 0 6 t < s− 3g2 for dimensional reasons

(ψ>3g2−1+t
t+2 vanishes on Mg2,t+2), which we use below for g1 = g and g2 = 0. Then we have:

∑
g1,g2,t>0
g1+g2=g

B̃αβ
[g1],t∂

t
xΩ

[g2]

β,0;γ,s̃−1
= B̃αβ

[g],s∂
s
xΩ

[0]

β,0;γ,s̃−1
+

g−1∑
h=0

2h+1∑
t=0

B̃αβ
[h],t∂

t
xΩ

[g−h]

β,0;γ,s̃−1
(3.6.9)

= B̃αβ
[g],s∂

s
xΩ

[0]

β,0;γ,s̃−1
+

g−1∑
h=0

s−2∑
r=−1

(−1)s−r
∑

h1,h2>0
h1+h2=h

2h1+1∑
t=0

B̃αβ
[h1],t∂

t
xΩ

[h2]
β,0;µ,r̃η

µνΩ
[g−h]

γ,0;ν,s−2−r

= B̃αβ
[g],s∂

s
xΩ

[0]

β,0;γ,s̃−1
+

g−1∑
h=0

s−2∑
r=−1

(−1)s−r

(
ηαβR̃ξ

β∂xΩ
[h]

ξ,0;µ,r+1
+ Ẽηαβ∂xΩ

[h]

β,0;µ,r+1

+ h(3− d)ηαβ∂xΩ
[h]

β,0;µ,r+1

)
ηµνΩ

[g−h]

γ,0;ν,s−2−r.

Here for the second equality we use Lemma 3.5.7, and for the third equality we use Equa-
tion (3.6.5) for g = h and s = r + 1. Note that the condition of Lemma 3.5.7 is indeed satisfied:
since t 6 2h+ 1 and 2g + 2 6 s, we have 2(g − h) + t 6 s− 1.

On the other hand, for s > 2g + 2 (this inequality is crucially important for the second
summand, for the first and the third ones s > 2g + 1 would be sufficient), we have from
Lemmata 3.5.6 and 3.5.8 the following:

ηαβR̃µ
β∂xΩ

[g]
µ,0;γ,s + Ẽηαβ∂xΩ

[g]
β,0;γ,s + g(3− d)ηαβ∂xΩ

[g]
β,0;γ,s (3.6.10)

=

g−1∑
h=0

s−1∑
r=0

(−1)s−r−1

(
ηαβR̃ξ

β∂xΩ
[h]
ξ,0;µ,r + Ẽηαβ∂xΩ

[h]
β,0;µ,r + g(3− d)ηαβ∂xΩ

[h]
β,0;µ,r

)
ηµνΩ

[g−h]

γ,0;ν,s−1−r.
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Substituting this expression and Equation (3.6.9) in Equation (3.6.5), we obtain:

B̃αβ
[g],s∂

s
xΩ

[0]

β,0;γ,s̃−1
= (3− d)ηαβ

g−1∑
h=0

s−1∑
r=0

(−1)s−r−1(g − h)∂xΩ
[h]
β,0;µ,rη

µνΩ
[g−h]

γ,0;ν,s−1−r. (3.6.11)

For s− 1 > 2g + 1 the right hand side of this equation is equal to zero by Lemma 3.5.5. Note
that

∂sxΩ
[0]

β,0;γ,s̃−1
= δµ1β δ

νs
γ

s∏
i=1

∂xΩ
[0]
µi,0;νi,0

s−1∏
i=1

ηνiµi+1 . (3.6.12)

(we prove it below in Lemma 3.6.7).

Now, since ∂sxΩ
[0]

β,0;γ,s̃−1
as given by (3.6.12) is invertible, we can use the vanishing of the

right hand side of Equation (3.6.11) to conclude that B̃αβ
[g],s = 0.

Lemma 3.6.7. Equation (3.6.12) holds for s > 0.

Proof. We prove it by induction on s. The full induction statement is the following. For any
s > 0

∂txΩ
[0]

β,0;γ,s̃−1
=

{
δµ1β δ

νs
γ

∏s
i=1 ∂xΩ

[0]
µi,0;νi,0

∏s−1
i=1 η

νiµi+1 t = s;

0 0 6 t < s.
(3.6.13)

For s = 0 it is the definition of Ω
[0]

β,0;γ,−̃1
. For the induction step we have to recall the topological

recursion relation in genus 0 (3.3.4), which implies that for p > 0

∂xΩ
[0]
α,0;β,p = ∂xΩ

[0]
α,0;µ,0η

µνΩ
[0]
ν,0;β,p−1, (3.6.14)

and, therefore,

∂xΩ
[0]
α,0;β,p̃ = ∂xΩ

[0]
α,0;µ,0η

µνΩ
[0]

ν,0;β,p̃−1
; (3.6.15)

Assume (3.6.13) is proved for s 6 S. Then for t = 0 and s = S+1 the required vanishing follows
directly from the induction assumption applied to the right hand side of Equation (3.5.8). If
t > 1, then for s = S + 1 we use (3.6.15) to obtain

∂txΩ
[0]

β,0;γ,S̃
= ∂t−1

x

(
∂xΩ

[0]
β,0;ξ,0η

ξζΩ
[0]

ζ,0;γ,S̃−1

)
=

t−1∑
u=0

(
t− 1

u

)
∂u+1
x Ω

[0]
β,0;ξ,0η

ξζ∂t−1−u
x Ω

[0]

ζ,0;γ,S̃−1
.

(3.6.16)

If 1 6 t 6 S, then t−1−u < S for any u = 0, . . . , t−1, and then this expression is equal to zero
by the induction assumption. Let t = S + 1. Then t− 1− u = S − u < S for u = 1, . . . , t− 1,
and therefore the corresponding summands are equal to zero by the induction assumption. Thus
for t = S + 1 we have

∂S+1
x Ω

[0]

β,0;γ,S̃
= ∂xΩ

[0]
β,0;ξ,0η

ξζ∂SxΩ
[0]

ζ,0;γ,S̃−1
. (3.6.17)

Substitution of the non-vanishing case of the Equation (3.6.13) for s = S into this formula
proves the non-vanishing case of the Equation (3.6.13) for s = S + 1, which completes the step
of induction and proves the lemma.

Now we are ready to state and prove our main theorem, which appears to be a direct corollary
of Proposition 3.6.5.

Theorem 3.6.8. Consider the ε-expansion of the second Dubrovin–Zhang bracket in the coordi-
nates w: Bαβ =

∑∞
g=0 ε

2g
∑3g+1

s=0 Bαβ
g,s∂

s
x. We have Bαβ

g,s = 0 for g > 0, s > 2g + 2.

Proof. Lemmata 3.6.2 and 3.6.3 imply that the statement of the theorem is equivalent to the
statement of Proposition 3.6.5.



Chapter 4

A conjectural formula for DRg(a,−a)λg

4.1 Introduction

In [12] Buryak defined double ramification hierarchies, associated with cohomological field theo-
ries, and conjectured they are Miura equivalent to the Dubrovin–Zhang hierarchies constructed
in [46, 17]. This conjecture is further refined and made more explicit in [14], and in [16] it
is reduced to a system of conjectural relations between some explicitly defined classes in the
tautological ring of the moduli space of curves R∗(Mg,n).

The one point case of the conjecture in [16] gives a surprisingly simple expression for the
product of the top Chern class of the Hodge bundle λg ∈ Rg(Mg,1) and the push-forward of
the double ramification cycle DRg(a,−a) ∈ Rg(Mg,2) under the map that forgets the second
marked point. For the definition of the double ramification cycle and general information on
the tautological rings of the moduli spaces of curves, see Section 1.2 and the references therein,
in particular [23, 108].

In this chapter we propose a refinement of the one point case of the conjecture in [16]. We
conjecture a formula for DRg(a,−a)λg ∈ R2g(Mg,2) in terms of a very simple linear combination
of natural strata equipped with psi classes of the same type as in [16]. We analyze this formula in
detail and prove it satisfies virtually all properties one might expect from the class DRg(a,−a)λg
including the intersections with all natural boundary divisors in Mg,2 and with the psi classes,
and finally using these properties we also show that our conjecture is in fact equivalent to the
one point case of the conjecture in [16].

4.1.1 Organization of the chapter

In Section 4.2 we formulate the main conjecture, explain its relation to the one point case of
the conjecture in [16], and state the expected properties of our formula. In Section 4.3 we
introduce our main tools, a variety of corollaries of the Liu–Pandharipande relations among the
tautological classes [83], and prove all properties stated before.

4.2 Conjectural formula and its properties

4.2.1 Notation

LetMg,n be the Deligne–Mumford compactification of the moduli space of curves with n marked
points. There is a natural action of the symmetric group Sn on Mg,n by relabeling the points.
In particular, for n = 2 we will use the morphism that permutes the first and second marked
points that we denote by (12)∗ : R∗(Mg,2)→ R∗(Mg,2).

67
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Let σ : Mg1,2 ×Mg2,2 → Mg1+g2,2 glue the second marked point of Mg1,2 and the first
marked point of Mg2,2 into a node and identify the first marked point in Mg1,2 (respectively,
the second marked point in Mg2,2) with the first (respectively, the second) marked point in
Mg1+g2,2. Let c1 ∈ R∗(Mg1,2), c2 ∈ R∗(Mg2,2). It is convenient for us to denote throughout the
text c1 � c2 := σ∗(c1 ⊗ c2) and we use � as an associative operation on classes in moduli spaces
with two marked points.

With the first two points distinguished, we can extend the notation � to the push-forwards of
the morphisms σ : Mg1,2 ×Mg2,2+n →Mg1+g2,2+n that glue the second marked point of Mg1,2

with the first marked point of Mg2,2+n into a node and identify the first marked point in Mg1,2

(respectively, the second marked point inMg2,2+n) with the first (respectively, the second) marked
point in Mg1+g2,2+n. We can do the same for the similar morphisms σ : Mg1,2+n ×Mg2,2 →
Mg1+g2,2+n.

4.2.2 Conjectural formula

For g1, . . . , gk, g ≥ 1 and d1, . . . , dk ≥ 0 such that
∑
gi = g, let cg1,...,gkd1,...,dk

∈ Rd1+···+dk+k−1(Mg,2)
be the class represented by the bamboo

g11
ψd1 g2

ψd2 g3
ψd3 gk 2

ψdk = ψd12 |Mg1,2
� ψd22 |Mg2,2

� · · · � ψdk2 |Mgk,2
.

Denote
⇁
c
g

d | k :=
∑

g1,...,gk
d1,...,dk

cg1,...,gkd1,...,dk
∈ Rd(Mg,2),

where the sum is taken over all g1 + · · ·+ gk = g and all d1 + · · ·+ dk + k − 1 = d satisfying the
inequalities

d1 + · · ·+ d` + `− 1 6 2(g1 + · · ·+ g`)− 1, ` = 1, . . . , k.

Note that by the definition
⇁
c
g

d | k = 0 if k > g or d ≥ 2g. (4.2.1)

Let

Bg := ψ2g
2 |Mg,2

+
∑

g1+g2=g
d1+d2=2g−1

g1∑
k=1

(−1)k
⇁
c
g1

d1 | k � ψ
d2
2 |Mg2,2

(4.2.2)

=

g∑
k=1

(−1)k−1
∑

d1,...,dk
g1,...,gk

ψd12 |Mg1,2
� ψd22 |Mg2,2

� · · · � ψdk2 |Mgk,2
∈ R2g(Mg,2),

where the last sum is taken over all g1 + · · ·+gk = g, g1, . . . , gk > 1, and d1 + · · ·+dk+k−1 = 2g,
d1, . . . , dk > 0, with the extra condition that for any 1 6 ` 6 k−1 we have d1 + · · ·+d`+ `−1 6
2(g1 + · · ·+ g`)− 1.

Conjecture 4.2.1. We have a−2gDRg(a,−a)λg = Bg.

Note that the left-hand side of this equation can be expressed in the tautological classes
using the formula of Janda–Pandharipande–Pixton–Zvonkine [67], or, taking into account the
factor λg, it is sufficient to use the Hain formula [61] (see an explanation, e.g., in [19, Section 2]).
However, the resulting expressions are much more complicated than the one we conjecture here.
Observe that the right-hand side is independent of a, which is consistent with Hain’s formula,
which states that the compact-type part of DRg(a,−a) is a homogeneous polynomial in a of
degree 2g. Thus, it is enough to prove the conjecture for the case a = 1.

Remark 4.2.2. Schmitt has checked the conjecture above in genera 1 and 2, as well as in the
Gorenstein quotient in genus 3, with the program admcycles [32].
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4.2.3 Relation to an earlier conjecture for the push-forwards

Conjecture 4.2.1 is a refinement of the one point case of a conjecture of Buryak, Guéré and
Rossi [16, Conjecture 2.5]. Indeed, recall the definition of the class Bg

2g−1 ∈ R2g−1(Mg,1) in [16].
We have:

Bg
2g−1 :=

g∑
k=1

(−1)k−1
∑

g1,...,gk
a1,...,ak

g1
ψa1 g2

ψa2 g3
ψa3 gk 1

ψak ,

where the sum is taken over all g1 + · · ·+ gk = g, g1, . . . , gk > 1, and a1, . . . , ak > 0 such that
a1 + · · ·+ ak + k− 1 = 2g− 1 and a1 + · · ·+ a` + `− 1 6 2(g1 + · · ·+ g`)− 2 for ` = 1, . . . , k− 1.

Let π : Mg,2 →Mg,1 be the map that forgets the second marked point. In the one point
case the conjecture from [16, Conjecture 2.5] is reduced to the identity

a−2gπ∗(DRg(a,−a)λg) = Bg
2g−1,

see [16, Section 4.2]. On the other hand, we have the following statement.

Proposition 4.2.3. We have π∗ (12)∗ Bg = Bg
2g−1.

Proof. It follows from the fact that π∗(ψ
d
1) = ψd−1

1 for d > 1 and π∗(ψ
0
1) = 0. Thus all terms

with d1 = 0 in (4.2.2) vanish under the push-forward, and all other terms are in one-to-one
correspondence with a1 = d1 − 1 and ai = di for i = 2, . . . , k, k = 1, . . . , g.

Remark 4.2.4. Note that an expected property of a−2gDRg(a,−a)λg is that it is invariant under
(12)∗, and indeed we prove below that (12)∗ Bg = Bg, g > 1, so in fact we can reformulate the
statement of Proposition 4.2.3 as π∗B

g = Bg
2g−1.

In fact, it is also possible to prove a much stronger statement than Proposition 4.2.3.

Theorem 4.2.5. The two conjectural formulas, namely a−2gπ∗(DRg(a,−a)λg) = Bg
2g−1 and

a−2gDRg(a,−a)λg = Bg, are equivalent.

The first formula follows from the second one by Proposition 4.2.3. The implication in the
other direction is quite non-trivial, and we postpone its proof until Section 4.3.8.

4.2.4 Properties

We write down a list of properties of Bg.

Theorem 4.2.6. We have:

(12)∗ Bg = Bg; (4.2.3)

Bg · g-1
1

2
= 0; (4.2.4)

Bg · g1

1

2

g2 = 0, g1 + g2 = g, g2 > 1; (4.2.5)

Bg · g11 g2 2 = Bg1 � Bg2 , g1 + g2 = g, g1, g2 > 1; (4.2.6)

π∗(Bg) · ψ1 = Bg � 1|M0,3
+

∑
g1+g2=g
g1,g2>1

Bg1 � π∗(Bg2); (4.2.7)

Bg · ψ1 =
∑

g1+g2=g
g1,g2>1

g2

g
Bg1 � Bg2 , (4.2.8)

where π : Mg,3 →Mg,2, g > 1, in (4.2.7) is the projection that forgets the third marked point.
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The proof of this theorem is given in Section 4.3.

Remark 4.2.7. All these properties are satisfied by DRg(1,−1)λg = a−2gDRg(a,−a)λg, namely:

• DRg(1,−1)λg = DRg(−1, 1)λg is immediate from Hain’s formula [61].

• DRg(1,−1)λg · g-1
1

2
= 0, as λg restricts to zero on g-1

1

2
.

• DRg(1,−1)λg · g1

1

2

g2 = 0, as the classes DRg(1,−1) and λg respectively restrict to

DRg1(1,−1, 0) ⊗ DRg2(0) and λg1 ⊗ λg2 on Mg1,3 ×Mg2,1. The vanishing follows after
observing DRg2(0)λg2 = (−1)g2λ2

g2
= 0.

• DRg(1,−1)λg · g11 g2 2 = DRg1(1,−1)λg1 �DRg2(1,−1)λg2 , as DRg(1,−1) and λg
respectively restrict to DRg1(1,−1)⊗DRg2(1,−1) and λg1 ⊗ λg2 on Mg1,2 ×Mg2,2.

• π∗(DRg(1,−1)λg) · ψ1 = DRg(1,−1)λg � 1|M0,3
+
∑

g1+g2=g
g1,g2>1

DRg1λg1 � π∗(DRg2λg2) follows

from [23, Theorem 5]: one should use that π∗DRg(1,−1) = DRg(1,−1, 0), apply the
formula of [23, Theorem 5] with s = 1 and n = l = 3, and then multiply the result by λg
noting that the terms with p ≥ 2 will vanish after that.

• DRg(1,−1)λg ·ψ1 =
∑

g1+g2=g
g1,g2>1

g2
g

DRg1(1,−1)λg1 �DRg2(1,−1)λg2 follows from the formula

of [23, Theorem 4] multiplied by λg, where one should again note that the terms with
p ≥ 2 vanish after this multiplication.

4.3 Proofs

4.3.1 Liu–Pandharipande relations

Fix sets of indices I1 and I2 such that I1t I2 = {1, . . . , n}. Let ∆g1,g2 ⊂Mg,n denote the divisor
in Mg,n whose generic points are represented by two-component curves intersecting at a node,
where the two components have genera g1, g2 and contain the points with the indices I1, I2,
respectively. Note that if gi = 0, then |Ii| must be at least 2, for the stability condition.

For each ∆g1,g2 we consider the map ιg1,g2 : Mg1,|I1|+1 ×Mg2,|I2|+1 → Mg,n that glues the
last marked points into a node and whose image is ∆g1,g2 . Let ψ◦1 (respectively, ψ◦2) denote the
psi classes at the marked points on the first (respectively, second) component that are glued
into the node.

Proposition 4.3.1 ([83, Proposition 1]). For any g > 0, n > 4, I1 and I2 such that I1 t I2 =
{1, . . . , n} and |I1|, |I2| > 2, and an arbitrary r > 0 we have:∑

g1,g2>0
g1+g2=g

∑
a1,a2>0
a1+a2=

2g−3+n+r

(−1)a1(ιg1,g2)∗ψ
a1
◦1ψ

a2
◦2 = 0 ∈ R2g−2+n+r(Mg,n). (4.3.1)

This relation has the following corollaries.

Corollary 4.3.2. For any g, n > 1, r > 0 we have the following relations in R2g+n+r(Mg,n+2)

(−1)2g+n+rψ2g+n+r
2 +

∑
g1>0, g2>0
g1+g2=g

∑
a1,a2>0

a1+a2=2g−1+n+r

(−1)a1ψa12 |Mg1,2+n
� ψa21 |Mg2,2

= 0, (4.3.2)

and
−ψ2g+n+r

1 +
∑

g1>0, g2>0
g1+g2=g

∑
a1,a2>0

a1+a2=2g−1+n+r

(−1)a1ψa12 |Mg1,2
� ψa21 |Mg2,2+n

= 0. (4.3.3)
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Corollary 4.3.3 ([83, Proposition 2]). For any g > 1, r > 0 we have:

−ψ2g+r
1 + (−1)2g+rψ2g+r

2 +
∑

g1,g2>0
g1+g2=g

∑
a1,a2>0

a1+a2=2g−1+r

(−1)a1ψa12 |Mg1,2
� ψa21 |Mg2,2

= 0 ∈ R2g+r(Mg,2).

(4.3.4)

All corollaries are proved by taking suitable push-forwards of the relations (4.3.1) under the
maps forgetting the marked points, see [83] and Chapter 3.

4.3.2 The symmetry property

Denote
↽
c
g

d | k := (12)∗
⇁
c
g

d | k. We will use the following conventions to simplify notation:
⇁
c

0

−1 | 0 �
ψd2 |Mg,2

:= ψd2 |Mg,2
, and ψd1 |Mg,2

� ↽c
0

−1 | 0 := ψd1 |Mg,2
. Note that there is the following recursion

relation for the classes
⇁
c
g

d | k:

⇁
c
g

d | k+1 =
∑

g1+g2=g
d1+d2=d−1

⇁
c
g1

d1 | k � ψ
d2
2 |Mg2,2

, k ≥ 0, d ≤ 2g − 1,

where d1 = −1 is allowed in the sum to include the case k = 0, as explained before. Let us now
prove equation (4.2.3). Let

E := Bg − (12)∗ Bg =
∑

g1+g2=g
d1+d2=2g−1

06k6g1

(−1)k
⇁
c
g1

d1 | k � ψ
d2
2 |Mg2,2

−
∑

g1+g2=g
d1+d2=2g−1

06k6g2

(−1)kψd11 |Mg1,2
� ↽c

g2

d2 | k.

Let E` denote the terms of E consisting of exactly ` components, i.e.,

E` :=
∑

g1+g2=g
d1+d2=2g−1

(−1)`−1⇁c
g1

d1 | `−1 � ψ
d2
2 |Mg2,2

−
∑

g1+g2=g
d1+d2=2g−1

(−1)`−1ψd11 |Mg1,2
� ↽c

g2

d2 | `−1.

Lemma 4.3.4. We can write E1 + · · ·+ E` as an expression involving only graphs with `+ 1
vertices. In particular:

E1 + · · ·+ E` = (−1)`+1
∑

r+s=`−1
g1+g2+g3+g4=g

d1+d2+d3+d4=2g−3

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s.

Proof. We prove the lemma by induction. The base of induction is the ` = 1 case, which follows
immediately from (4.3.4):

E1 = ψ2g
2 |Mg,2

− ψ2g
1 |Mg,2

= −
∑

g1+g2=g
d1+d2=2g−1

(−1)d1
⇁
c

0

−1 | 0 � ψ
d1
2 |Mg1,2

� ψd21 |Mg2,2
� ↽c

0

−1 | 0.

In order to prove the step of induction, assume the lemma is true for ` > 1. Then

E1 + · · ·+ E`+1 =(−1)`+1
∑

r+s=`−1
g1+g2+g3+g4=g

d1+d2+d3+d4=2g−3

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s

(4.3.5)

+
∑

g1+g2=g
d1+d2=2g−1

(−1)`
⇁
c
g1

d1 | ` � ψ
d2
2 |Mg2,2

−
∑

g1+g2=g
d1+d2=2g−1

(−1)`ψd11 |Mg1,2
� ↽c

g2

d2 | `.

We can split the first summand into two in the following way:
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• d1 + d2 6 2(g1 + g2)− 2 and d3 + d4 > 2(g3 + g4)− 1;

• d1 + d2 > 2(g1 + g2)− 1 and d3 + d4 6 2(g3 + g4)− 2.

Thus, the summand with d1 + d2 6 2(g1 + g2)− 2 takes the form

(−1)`+1
∑

r+s=`−1
g1+g2+g3+g4=g

d1+d2+d3+d4=2g−3
d1+d262(g1+g2)−2

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s

=(−1)`
∑

r+s=`, r>1
g1+g2+g3=g

d1+d2+d3=2g−2

(−1)d1
⇁
c
g1

d1 | r � ψ
d2
1 |Mg2,2

� ↽c
g3

d3 | s.

Note that the third summand of (4.3.5) corresponds to the missing terms with r = 0 in the last
expression. Similarly, for the terms with d3 + d4 6 2(g3 + g4)− 2

(−1)`+1
∑

r+s=`−1
g1+g2+g3+g4=g

d1+d2+d3+d4=2g−3
d3+d462(g3+g4)−2

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s

= −(−1)`
∑

r+s=`, s>1
g1+g2+g3=g

d1+d2+d3=2g−2

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ↽c
g3

d3 | s.

Again, the second summand of (4.3.5) corresponds to the missing terms with s = 0 in the last
expression. Putting everything together

E1 + · · ·+ E`+1 = (−1)`
∑
r+s=`

g1+g2+g3=g
d1+d2+d3=2g−2

(−1)d1
⇁
c
g1

d1 | r �
(
ψd21 − (−1)d2ψd22

)∣∣
Mg2,2

� ↽c
g3

d3 | s.

Using (4.2.1) we see that a term in the last sum is equal to zero unless d2 ≥ 2g2. Then the
result follows after applying (4.3.4) to the last expression.

Applying the lemma above to E = E1 + · · ·+ Eg proves equation (4.2.3).

4.3.3 Intersections with divisors of two types

Here we prove equations (4.2.4) and (4.2.5). It is convenient to use the following notations for
the classes of the divisors under consideration:

δg := g-1
1

2
, δ′g :=

 g-h
1

2
h , if g > h;

0, if g < h,

where we fixed h ≥ 1. So let us prove that

ωgB
g = 0 if ωg = δg or ωg = δ′g. (4.3.6)

We will use the following property: ωg1+g2(α �β) = ωg1α �β+α �ωg2β, where α ∈ R∗(Mg1,2)
and β ∈ R∗(Mg2,2). We decompose

ωgB
g =

∑
k≥1

Ek, where Ek := (−1)k−1
∑

g1+g2=g
d1+d2=2g−1

ωg

(
⇁
c
g1

d1 | k−1 � ψ
d2
2 |Mg2,2

)
.
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Lemma 4.3.5. We have:

E1 + · · ·+ Ek = (−1)k+1
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−3

r+s=k−1

(−1)d1+d2ωg1+g2

(
⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

)
� ψd31 |Mg3,2

� ↽c
g4

d4 | s.

(4.3.7)

Proof. We prove the lemma by induction. The base of induction is the k = 1 case, which reads:

E1 = ωgψ
2g
2 |Mg,2

= −
∑

g1+g2=g
d1+d2=2g−1

(−1)d1ωg1ψ
d1
2 |Mg1,2

� ψd21 |Mg2,2
.

If ωi = δi, then this equation follows from the genus g − 1 case of (4.3.2) with n = 2 and r = 0,
after taking the push-forward under the map that glues two marked points. If ωi = δ′i, then
the equation follows from the genus g − h case of (4.3.2) with n = 1 and an appropriate r,
after taking the product with 1 ∈ R0(Mh,1) and then the push-forward under the gluing map
Mg−h,3 ×Mh,1 →Mg,2.

Let us now assume that the lemma holds for k > 1. Then for k + 1 we have

E1 + · · ·+ Ek+1 =(−1)k+1
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−3

r+s=k−1

(−1)d1+d2ωg1+g2

(
⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

)
� ψd31 |Mg3,2

� ↽c
g4

d4 | s

(4.3.8)

+ (−1)k
∑

g1+g2=g
d1+d2=2g−1

ωg

(
⇁
c
g1

d1 | k � ψ
d2
2 |Mg2,2

)
.

As in the proof of symmetry, we split the first summand in the following way:

• d1 + d2 6 2(g1 + g2)− 2 and d3 + d4 > 2(g3 + g4)− 1;

• d1 + d2 > 2(g1 + g2)− 1 and d3 + d4 6 2(g3 + g4)− 2.

The terms with d1 + d2 6 2(g1 + g2)− 2 combine in the following way:

(−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−2

r+s=k

(−1)d1ωg1
⇁
c
g1

d1 | r � ψ
d2
1 |Mg2,2

� ↽c
g3

d3 | s.

Note that we do not explicitly impose the condition r > 1 because we adopt the convention

ω0
⇁
c

0

−1 | 0 := 0. On the other hand, for the terms with d3 + d4 6 2(g3 + g4)− 2 we obtain

(−1)k+1
∑

g1+g2+g3=g
d1+d2+d3=2g−2
r+s=k, s>1

(−1)d1+d2ωg1+g2

(
⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

)
� ↽c

g3

d3 | s.

Note that the missing terms with s = 0 are exactly the ones in the last line of (4.3.8), i.e., those
corresponding to Ek+1. Putting everything together

E1 + · · ·+ Ek+1 = (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−2

r+s=k

(−1)d1ωg1
⇁
c
g1

d1 | r �
(
ψd21 − (−1)d2ψd22

)∣∣
Mg2,2

� ↽c
g3

d3 | s

+ (−1)k+1
∑

g1+g2+g3=g
d1+d2+d3=2g−2

r+s=k

(−1)d1+d2⇁c
g1

d1 | r � ωg2ψ
d2
2 |Mg2,2

� ↽c
g3

d3 | s.

The result follows from applying (4.3.4) to the first summand and (4.3.2) to the second one in
the expression above.
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Equation (4.3.6) follows after applying the previous lemma to E1 + · · · + Eg = ωgB
g and

noting that the right-hand side of (4.3.7) vanishes in this case because of (4.2.1).

Remark 4.3.6. Note that properties (4.2.4) and (4.2.5) can be equivalently stated as

gl1∗(gl∗1B
g) = 0, gl2∗(gl∗2B

g) = 0,

where gl1 : Mg−1,4 →Mg,2 is the gluing map identifying the last two marked points on a curve
from Mg−1,4, and gl2 : Mg1,3 ×Mg2,1 →Mg,2 is the map gluing the third marked point on a
curve from Mg1,3 with the marked point on a curve from Mg2,1. Actually, the arguments from
this section can be slightly modified in order to show that gl∗1B

g = 0 and gl∗2B
g = 0, which

is stronger than what we have proved. The corresponding properties for the DR cycle are
clearly true: gl∗1(DRg(1,−1)λg) = 0 and gl∗2(DRg(1,−1)λg) = 0. This observation belongs to
the anonymous referee of [133] and we thank him for sharing it with us.

4.3.4 Intersection with a divisor of curves with marked points on
different components

The goal of this section is to prove equation (4.2.6). To this end, we need a new notation. Let
g > h > g1, k > 1. Denote

⇁
a
h

d|k :=
∑

d1+d2=d

g1∑
m=1

(−1)m
⇁
c
g1

d1 |m �

 ∑
i1,...,ik
a1,...,ak

ci1,...,ika1,...,ak
+ ψ1

∑
j1,...,jk
b1,...,bk

cj1,...,jkb1,...,bk

 ,

where the first sum in the parentheses is taken over all i1, . . . , ik > 1 such that i1+· · ·+ik = h−g1

and all a1, . . . , ak > 0 such that a1 + · · · + ak + k = d2 and for any ` = 1, . . . , k we have
d1 + a1 + · · ·+ a` + ` 6 2(g1 + i1 + · · ·+ i`). The second sum in the parentheses is taken over all
j1, . . . , jk > 1 such that j1+· · ·+jk = h−g1 and all b1, . . . , bk > 0 such that b1+· · ·+bk+k+1 = d2

and for any ` = 1, . . . , k we have d1 + b1 + · · ·+ b` + ` 6 2(g1 + j1 + · · ·+ j`)− 1. In particular,

⇁
a
h

d|k = 0 if k > h− g1 or d > 2h, (4.3.9)

and

⇁
a
h

d|1 =
∑

d1+d2=d

g1∑
m=1

(−1)m
⇁
c
g1

d1 |m �
(
ψd2−1

2 + ψ1ψ
d2−2
2

)∣∣
Mh−g1,2

, d ≤ 2g,

⇁
a
h

d|k+1 =
∑

g1<f<h
d1+d2=d−1

⇁
a
f

d1|k � ψ
d2
2 |Mh−f,2

, d ≤ 2g, k ≥ 1.

It is convenient to set
⇁
a
h

d|k := 0 for h 6 g1.

Lemma 4.3.7. We have:

Bg · g11 g2 2 = Bg1 � Bg2 (4.3.10)

+
∑

d1+d2=2g

g1∑
m=1

(−1)m+1⇁c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mg2,2

+
∑

g1<h<g
d1+d2=2g

g2−1∑
k=1

(−1)k+1⇁a
h

d1 | k � ψ
d2
2 |Mg−h,2

.
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Proof. This lemma follows directly from the excess intersection formula [58, Section A.4]. Let
g = g1 + g2 = f1 + · · ·+ fm for some m > 1. We have:

cf1,...,fma1,...,am
· g11 g2 2 (4.3.11)

=

c
f1,...,fi−1,f

′
i ,f
′′
i ,fi+1,...,fm

a1,...,ai−1,0,ai,ai+1,...,am
,

if g1 = f1+· · ·+fi−1+f ′i and
fi = f ′i +f ′′i , where f ′i , f

′′
i >

1

;

−cf1,...,fma1,...,ai−1,ai+1,ai+1,...,am
− cf1,...,fia1,...,ai

� ψ1c
fi+1,...,fm
ai+1,...,am , if f1 + · · ·+ fi = g1.

Recall that in the formula (4.2.2) for Bg we have only cf1,...,fma1,...,am
satisfying the conditions

a1 + · · ·+ ai + i− 1 6 2(f1 + · · ·+ fi)− 1 for i = 1, . . . ,m− 1 and a1 + · · ·+ am +m− 1 = 2g.
We apply equation (4.3.11) to all terms of the formula for Bg and we distinguish the following
cases:

1. There exists i such that f1+· · ·+fi = g1 and in addition a1+· · ·+ai+i−1 = 2(f1+· · ·+fi)−1.
The first summands in (4.3.11) applied to these terms form Bg1 � Bg2 .

2. There exists i such that f1+· · ·+fi = g1 and in addition a1+· · ·+ai+i−1 < 2(f1+· · ·+fi)−1.
The first summands in (4.3.11) applied to these terms contribute either to the second (if
i = m− 1) or the third line (if i < m− 1) of (4.3.10). More precisely, we can say that in

both cases we get terms of the type c
j1,...,jp
t1,...,tp such that j1 + · · · + jq = g1 for some q < p,

with an extra requirement that tq > 0. If q = p− 1 (respectively, q < p− 1), these terms
land in the second (respectively, third) line of (4.3.10).

3. We have f1 + · · ·+ fq−1 < g1 < f1 + · · ·+ fq for some 1 6 q 6 m. Apply (4.3.11). We get
exactly the same terms as in the previous case, but now with an extra requirement that
tq = 0. This and the previous cases deliver together all terms in the second and the third
lines of (4.3.10) that do not contain ψ1.

4. There exists i such that f1 + · · ·+ fi = g1 and a1 + · · ·+ ai + i− 1 6 2(f1 + · · ·+ fi)− 1.
The second summands in (4.3.11) applied to these terms form the summands with ψ1 in
the second and the third lines of (4.3.10).

So our goal is to prove that the sum of the second and the third lines of equation (4.3.10)
vanishes. To this end, we have a more general statement. Let

E := Bg · g11 g2 2 − Bg1 � Bg2 =
∑
`≥1

E`,

where

E` :=
∑

d1+d2=2g
16m6g1

(−1)m+1⇁c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mg2,2

· δ`,1 +
∑

g1<h<g
d1+d2=2g

(−1)`+1⇁a
h

d1 | ` � ψ
d2
2 |Mg−h,2

.

Lemma 4.3.8. For any ` > 1 we have:

E1 + · · ·+ E` = (−1)`
∑

f1+f2=g2
d1+d2+d3=2g−1

(−1)d3
g1∑
m=1

(−1)m
⇁
c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mf1,2

� ↽c
f2

d3 | `

(4.3.12)

+ (−1)`
∑

g1<h<g
f1+f2=g−h

d1+d2+d3=2g−1

(−1)d3
∑̀
k=1

⇁
a
h

d1 | k �
(
ψd22 − (−1)d2ψd21

)∣∣
Mf1,2

� ↽c
f2

d3 | `−k.
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Proof. We prove the lemma by induction. The base of induction is ` = 1, and it is equivalent to
the following equation:

∑
d1+d2=2g

g1∑
m=1

(−1)m+1⇁c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mg2,2

= (4.3.13)

−
∑

f1+f2=g2
d1+d2+d3=2g−1

(−1)d3
g1∑
m=1

(−1)m
⇁
c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mf1,2

� ↽c
f2

d3 | 1

−
∑

g1<h<g
d1+d2=2g

(−1)d2
⇁
a
h

d1 | 1 � ψ
d2
1 |Mg−h,2

.

We rewrite ψd22 + ψ1ψ
d2−1
2 in the first line of (4.3.13) as

(−1)d2−1ψd21 + ψd22 − ψ1

(
(−1)d2−1ψd2−1

1 − ψd2−1
2

)
.

Noting that d1 6 2g1 − 1 implies d2 − 1 > 2g2, we apply identity (4.3.4) twice to obtain(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mg2,2

=
∑

f1+f2=g2
a1+a2=d2−1

(−1)a2
(
ψ1ψ

a1−1
2 + ψa12

)∣∣
Mf1,2

� ψa21 |Mf2,2
, d2 ≥ 2g2 + 1.

(4.3.14)
If a2 6 2f2 − 1 (in both summands), then we obtain the second line in (4.3.13), and if a2 > 2f2,
then we obtain the third line in (4.3.13).

The induction step is equivalent to the following equation:

(−1)`
∑

f1+f2=g2
d1+d2+d3=2g−1

(−1)d3
g1∑
m=1

(−1)m
⇁
c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mf1,2

� ↽c
f2

d3 | ` (4.3.15)

+ (−1)`
∑

g1<h<g
f1+f2=g−h

d1+d2+d3=2g−1

(−1)d3
∑̀
k=1

⇁
a
h

d1 | k �
(
ψd22 − (−1)d2ψd21

)∣∣
Mf1,2

� ↽c
f2

d3 | `−k (4.3.16)

=(−1)`+1
∑

f1+f2=g2
d1+d2+d3=2g−1

(−1)d3
g1∑
m=1

(−1)m
⇁
c
g1

d1 |m �
(
ψd22 + ψ1ψ

d2−1
2

)∣∣
Mf1,2

� ↽c
f2

d3 | `+1 (4.3.17)

− (−1)`+1
∑

g1<h<g
f1+f2=g−h

d1+d2+d3=2g−1

(−1)d3
`+1∑
k=1

⇁
a
h

d1 | k � (−1)d2ψd21 |Mf1,2
� ↽c

f2

d3 | `+1−k (4.3.18)

+ (−1)`+1
∑

g1<h<g
f1+f2=g−h

d1+d2+d3=2g−1

(−1)d3
`+1∑
k=1

⇁
a
h

d1 | k � ψ
d2
2 |Mf1,2

� ↽c
f2

d3 | `+1−k (4.3.19)

+ (−1)`+1
∑

g1<h<g
d1+d2=2g

⇁
a
h

d1 | `+1 � ψ
d2
2 |Mg−h,2

, (4.3.20)

where ` ≥ 1.
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In line (4.3.15) we have d1 6 2g1 − 1 and d3 6 2f2 − 1, hence d2 − 1 > 2f1 and by (4.3.14)
the expression in line (4.3.15) is equal to

(−1)`
∑

f1+f2=g2
d1+d2+d3=2g−1

∑
h1+h2=f1
a1+a2=d2−1

16m6g1

(−1)m(−1)a2+d3⇁c
g1

d1 |m �
(
ψa12 + ψ1ψ

a1−1
2

)∣∣
Mh1,2

� ψa21 |Mh2,2
� ↽c

f2

d3 | `.

The part of this sum with a2 + d3 ≤ 2(h2 + f2) − 2 is equal to the expression in line (4.3.17)
while the part with a2 + d3 ≥ 2(h2 + f2) − 1 is equal to the k = 1 term of the expression in
line (4.3.18).

In line (4.3.16) we have d1 6 2h and d3 6 2f2−1, hence d2 > 2f1 and applying identity (4.3.4)
we get

(−1)`
∑

g1<h<g
f1+f2=g−h

d1+d2+d3=2g−1

∑
a1+a2=d2−1
h1+h2=f1

∑̀
k=1

(−1)a2+d3⇁a
h

d1 | k � ψ
a1
2 |Mh1,2

� ψa21 |Mh2,2
� ↽c

f2

d3 | `−k.

The part of this sum with a2 +d3 ≤ 2(h2 +f2)−2 is equal to the part of (4.3.19) with k = 1, . . . , `
while the part with a2 + d3 ≥ 2(h2 + f2)− 1 is equal to the part of (4.3.18) with k = 2, . . . , `+ 1.

Finally the part of (4.3.19) with k = `+ 1 is equal exactly to (4.3.20) with the opposite sign.
This completes the proof of the induction step and the proof of the lemma.

Equation (4.2.6) follows after applying the above lemma to E = E1 + · · ·+ Eg2 and noting
that the right-hand side of (4.3.12) vanishes for ` = g2 because of (4.2.1) and (4.3.9).

4.3.5 Evaluation of psi class on a pull-back

To prove (4.2.7), let us introduce the notation

↽

d
g

d | k :=
k∑
`=1

∑
g1,...,gk
d1,...,dk

ψdk1 |Mgk,2
� ψdk−1

1 |Mgk−1,2
� · · · � ψd`1 |Mg`,3

� · · · � ψd11 |Mg1,2
, k ≥ 1,

where the sum is taken over all g1, . . . , gk > 1 and d1, . . . , dk > 0 satisfying g1 + · · · + gk = g,
d1 + · · · + dk + k − 1 = d, and d1 + · · · + ds + s − 1 6 2(g1 + · · · + gs) − 1 for all 1 6 s 6 k.
Similarly, for k > 1, we define

↽
e
g

d | k :=
k∑
`=1

∑
g1,...,gk
d1,...,dk

ψdk1 |Mgk,2
� · · · � ψd`+1

1 |Mg`+1,2
� 1|M0,3

� ψd`−1

1 |Mg`−1,2
� · · · � ψd11 |Mg1,2

,

where the sum is taken over all g1, . . . , g`−1, g`+1, . . . , gk > 1 and d1, . . . , dk > 0 satisfying
g1 + · · ·+ gk = g, d1 + · · ·+ dk + k − 1 = d, and d1 + · · ·+ ds + s− 1 6 2(g1 + · · ·+ gs)− 1 for

all 1 6 s 6 k. Note that in particular d` = g` = 0. Note also that
↽
e
g

d | 1 = 0. We will adopt the

convention
↽

d
g

d | 0 =
↽
e
g

d | 0 := 0.
Using

π∗(ψa1 |Mg,2
) = ψa1 |Mg,3

− 1|M0,3
� ψa−1

1 |Mg,2
, a ≥ 1,

it is straightforward to see that

π∗(
↽
c
g

d | k) =
↽

d
g

d | k −
↽
e
g

d | k+1. (4.3.21)
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As before, let

E :=π∗(Bg)ψ1 − Bg � 1|M0,3
−

∑
g1+g2=g

Bg1 � π∗(Bg2)

=
∑

g1+g2=g
d1+d2=2g−1

g2+1∑
k=0

(−1)k
(
ψd1+1

1 |Mg1,3
� ↽c

g2

d2 | k + ψd1+1
1 |Mg1,2

�
(
↽

d
g2

d2 | k +
↽
e
g2

d2 | k

))

−
∑

g1+g2=g
d1+d2=2g−1

g1∑
k=0

(−1)k
⇁
c
g1

d1 | k � ψ
d2
2 |Mg2,2

� 1|M0,3
(4.3.22)

−
∑

g1+g2+g3+g4=g
d1+d2=2(g1+g2)−1
d3+d4=2(g3+g4)−1

s>1 if g3=0

g1∑
r=0

g4∑
s=0

(−1)r+s
⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,3
� ↽c

g4

d4 | s (4.3.23)

−
∑

g1+g2+g3+g4=g
d1+d2=2(g1+g2)−1
d3+d4=2(g3+g4)−1

g1∑
r=0

g4+1∑
s=0

(−1)r+s
⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
�
(
↽

d
g4

d4 | s +
↽
e
g4

d4 | s

)
.

where we have used the already proven symmetry (4.2.3) and the corresponding mirror formula
of (4.2.2)

Bg =
∑

g1+g2=g
d1+d2=2g−1

g2∑
k=0

(−1)kψd11 |Mg1,2
� ↽c

g2

d2 | k

for the factors on the right-hand side of �. Note that (4.3.22) is exactly the forbidden case
g3 = 0 and s = 0 in (4.3.23). Let Ek denote the terms in the expression above that have k
components, i.e.,

Ek :=

(−1)k−1
∑

g1+g2=g
d1+d2=2g−1

(
ψd1+1

1 |Mg1,3
� ↽c

g2

d2 | k−1 + ψd1+1
1 |Mg1,2

�
(
↽

d
g2

d2 | k−1 +
↽
e
g2

d2 | k−1

))
(4.3.24)

+ (−1)k−1
∑

g1+g2+g3+g4=g
d1+d2=2(g1+g2)−1
d3+d4=2(g3+g4)−1

r+s=k−2

⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

�
(
ψd31 |Mg3,3

� ↽c
g4

d4 | s + ψd31 |Mg3,2
�
(
↽

d
g4

d4 | s +
↽
e
g4

d4 | s

))
.

(4.3.25)

The following inductive lemma will immediately imply equation (4.2.7).

Lemma 4.3.9. We can write E1 + E2 + · · ·+ Ek as an expression involving only graphs with
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k + 1 vertices. More precisely, we have:

E1 + E2 + · · ·+ Ek = (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
�
↽

d
g4

d4 | s

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽e

g4

d4 | s

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,3
� ↽c

g4

d4 | s

Proof. We proceed by induction on k. The case k = 1 is clear, as

E1 = ψ2g+1
1 |Mg,3

=
∑

g1+g2=g
d1+d2=2g

(−1)d1ψd12 |Mg1,2
� ψd21 |Mg2,3

=
∑

g2+g3=g
d2+d3=2g

(−1)d2
⇁
c

0

−1 | 0 � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,3
� ↽c

0

−1 | 0

by (4.3.3).

Assume the lemma holds for k > 1, then we split E1 + · · ·+Ek into three kinds of summands,
according to the powers of the psi classes:

• d1 + d2 < 2(g1 + g2)− 1 and d3 + d4 > 2(g3 + g4)− 1;

• d1 + d2 > 2(g1 + g2)− 1 and d3 + d4 < 2(g3 + g4)− 1;

• d1 + d2 = 2(g1 + g2)− 1 and d3 + d4 = 2(g3 + g4)− 1.

Note that the summands of the third kind cancel out with (4.3.25) for Ek+1. We rewrite the
terms with d1 + d2 < 2(g1 + g2)− 1 as

(−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1
d1+d2<2(g1+g2)−1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
�
(
↽

d
g4

d4 | s +
↽
e
g4

d4 | s

)

+(−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1
d1+d2<2(g1+g2)−1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,3
� ↽c

g4

d4 | s

=(−1)k+1
∑

g1+g2+g3=g
d1+d2+d3=2g−1
r+s=k, r>1

(−1)d1
⇁
c
g1

d1 | r �
(
ψd21 |Mg2,2

�
(
↽

d
g3

d3 | s +
↽
e
g3

d3 | s

)
+ ψd21 |Mg2,3

� ↽c
g3

d3 | s

)
.

Note that the expression in line (4.3.24) for Ek+1 consists exactly of those terms with r = 0.
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Similarly, for the terms with d3 + d4 < 2(g3 + g4)− 1:

(−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1
d3+d4<2(g3+g4)−1

g3>1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

�
(
ψd31 |Mg3,2

�
↽

d
g4

d4 | s + ψd31 |Mg3,3
� ↽c

g4

d4 | s

)

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1
d3+d4<2(g3+g4)−1

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

�
(
ψd31 |Mg3,2

� ↽e
g4

d4 | s + δg3,01|M0,3
� ↽c

g4

d4 | s

)

=− (−1)k+1
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

�
(
↽

d
g3

d3 | s +
↽
e
g3

d3 | s

)
.

Putting everything together, we get

E1 + · · ·+ Ek+1 =(−1)k+1
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k

(−1)d1
⇁
c
g1

d1 | r �
(
ψd21 − (−1)d2ψd22

)∣∣
Mg2,2

�
(
↽

d
g3

d3 | s +
↽
e
g3

d3 | s

)

+ (−1)k+1
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k

(−1)d1
⇁
c
g1

d1 | r � ψ
d2
1 |Mg2,3

� ↽c
g3

d3 | s.

We apply (4.3.4) to the first summand and (4.3.3) to the second one to obtain

E1 + · · ·+ Ek+1 =(−1)k+1
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
�
↽

d
g4

d4 | s

+ (−1)k+1
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽e

g4

d4 | s

+ (−1)k+1
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k

(−1)d1+d2⇁c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,3
� ↽c

g4

d4 | s,

which concludes the proof.

Equation (4.2.7) follows from applying the above lemma to E = E1 + · · ·+Eg+1, again using
(4.2.1).

4.3.6 Evaluation of psi class

Here we prove equation (4.2.8). We derive it from equation (4.2.7). For I ⊂ {1, . . . , n} with
|I| ≥ 2 denote by δI0 ∈ R1(Mg,n) the class of the closure of the subset of stable curves fromMg,n

having exactly one node separating a genus 0 component carrying the points marked by I and a
genus g component carrying the points marked by {1, . . . , n} \ I. Denote by π(g) : Mg,3 →Mg,2

the map that forgets the third marked point. Multiplying equation (4.2.7) by ψ3 and taking the
push-forward by π(g), we obtain

π(g)
∗
(
ψ3ψ1 · π(g)∗Bg

)
=

∑
g1+g2=g
g1,g2>1

Bg1 � π(g2)
∗
(
ψ3 · π(g2)∗Bg2

)
.
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Noting that ψ3ψ1 = ψ3

(
π(g)∗ψ1 + δ

{1,3}
0

)
= ψ3π

(g)∗ψ1 and π
(g)
∗ ψ3 = 2g, we get 2gψ1 · Bg =∑

g1+g2=g
g1,g2>1

2g2B
g1 � Bg2 , as required.

4.3.7 Evaluation of psi class: an alternative proof

It is also possible to prove (4.2.8) employing the same scheme as in the other proofs of the
paper. For that, we need the following corollary of Proposition 4.3.1:

Corollary 4.3.10. For any g > 1, r > 0 we have:

−ψ2g+1+r
1 +

∑
g1,g2>0
g1+g2=g

∑
a1,a2>0

a1+a2=2g+r

g2

g
(−1)a1ψa12 |Mg1,2

� ψa21 |Mg2,2
= 0 (4.3.26)

and

(−1)2g+1+rψ2g+1+r
2 +

∑
g1,g2>0
g1+g2=g

∑
a1,a2>0

a1+a2=2g+r

g1

g
(−1)a1ψa12 |Mg1,2

� ψa21 |Mg2,2
= 0. (4.3.27)

Let

E = Bg · ψ1 −
∑

g1+g2=g
g1,g2>1

g2

g
Bg1 � Bg2 (4.3.28)

=
∑

g1+g2=g
d1+d2=2g−1

g2∑
k=0

(−1)kψd1+1
1 |Mg1,2

� ↽c
g2

d2 | k

−
∑

g1+g2+g3+g4=g
d1+d2=2(g1+g2)−1
d3+d4=2(g3+g4)−1

g3 + g4

g

g1∑
r=0

g4∑
s=0

(−1)r+s
⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s.

Let Ek denote the terms in the expression above that have k components, i.e.,

Ek = (−1)k−1
∑

g1+g2=g
d1+d2=2g−1

ψd1+1
1 |Mg1,2

� ↽c
g2

d2 | k−1 (4.3.29)

+ (−1)k−1
∑

g1+g2+g3+g4=g
d1+d2=2(g1+g2)−1
d3+d4=2(g3+g4)−1

g3 + g4

g

∑
r+s=k−2

⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s.

The following inductive lemma will immediately imply equation (4.2.8).

Lemma 4.3.11. We can write E1 + E2 + · · ·+ Ek as an expression involving only graphs with
k + 1 vertices. In particular:

E1 + · · ·+ Ek = (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1

g3 + g4

g
(−1)d1+d2 ⇁

c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s.

(4.3.30)
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Proof. We proceed by induction. The case k = 1 follows from applying the Liu–Pandharipande
relation (4.3.26) to E1 = ψ2g+1

1 |Mg,2
. For the inductive step, assume (4.3.30) holds for some

k > 1. Then

E1 + · · ·+ Ek+1 = (−1)k
∑

g1+g2=g
d1+d2=2g−1

ψd1+1
1 |Mg1,2

� ↽c
g2

d2 | k (4.3.31)

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2=2(g1+g2)−1
d3+d4=2(g3+g4)−1

g3 + g4

g

∑
r+s=k−1

⇁
c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−1

g3 + g4

g
(−1)d1+d2 ⇁

c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s.

We can split the third summand of the above expression into three, given by the conditions:

• d1 + d2 = 2(g1 + g2)− 1 and d3 + d4 = 2(g3 + g4)− 1

• d1 + d2 > 2(g1 + g2)− 1 and d3 + d4 < 2(g3 + g4)− 1

• d1 + d2 < 2(g1 + g2)− 1 and d3 + d4 > 2(g3 + g4)− 1

Note the first summand cancels with the second summand of (4.3.31). Thus, we are left with

E1 + · · ·+ Ek+1 (4.3.32)

= (−1)k
∑

g1+g2=g
d1+d2=2g−1

ψd1+1
1 |Mg1,2

� ↽c
g2

d2 | k

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2
d1+d2>2(g1+g2)−1

r+s=k−1

g3 + g4

g
(−1)d1+d2 ⇁

c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s

+ (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2
d1+d2<2(g1+g2)−1

r+s=k−1

g3 + g4

g
(−1)d1+d2 ⇁

c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s

= (−1)k
∑

g1+g2=g
d1+d2=2g−1

ψd1+1
1 |Mg1,2

� ↽c
g2

d2 | k (4.3.33)

+ (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k−1

g3

g
(−1)d1+d2 ⇁

c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ↽c
g3

d3 | s+1 (4.3.34)

− (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k−1

g2 + g3

g
(−1)d1

⇁
c
g1

d1 | r+1 � ψ
d2
1 |Mg2,2

� ↽c
g3

d3 | s. (4.3.35)

Note that in both summands d2 > 2g + 1, so we can apply the Liu–Pandharipande relations
(4.3.4), (4.3.26) and (4.3.27). It is convenient to single out the terms with r = 0 and s = 0 so
that the term with r = 0 of (4.3.34) will combine with (4.3.33) and the terms of (4.3.34) with
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r 6= 0 will be put together with the terms with s 6= 0 of (4.3.35) as in (4.3.4). In other words,

E1 + · · ·+ Ek+1 = (4.3.36)

(−1)k
∑

g1+g2=g
d1+d2=2g−1

(
ψd1+1

1 |Mg1,2
− (−1)d1+1ψd1+1

2 |Mg1,2

)
� ↽c

g2

d2 | k

− (−1)k
∑

g1+g2=g
d1+d2=2g−1

g1

g
(−1)d1ψd1+1

2 |Mg1,2
� ↽c

g2

d2 | k

+ (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k−2

g3

g
(−1)d1

⇁
c
g1

d1 | r+1 �
(

(−1)d2 ψd22 |Mg2,2
− ψd21 |Mg2,2

)
� ↽c

g3

d3 | s+1

− (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

r+s=k−2

g2

g
(−1)d1

⇁
c
g1

d1 | r+1 � ψ
d2
1 |Mg2,2

� ↽c
g3

d3 | s+1

− (−1)k
∑

g1+g2=g
d1+d2=2g−1

g2

g
(−1)d1

⇁
c
g1

d1 | k � ψ
d2+1
1 |Mg2,2

.

Applying the corresponding Liu–Pandharipande relations (4.3.4), (4.3.26) and (4.3.27), we have:

E1 + · · ·+ Ek+1 (4.3.37)

= (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

(−1)d1ψd12 |Mg1,2
� ψd21 |Mg2,2

� ↽c
g3

d3 | k

− (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

g1

g
(−1)d1ψd12 |Mg1,2

� ψd21 |Mg2,2
� ↽c

g3

d3 | k

− (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−2

g4

g
(−1)d1+d2 ⇁c

g1

d1 | r+1 � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s+1

− (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k−2

g3

g
(−1)d1+d2 ⇁c

g1

d1 | r+1 � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s+1

− (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

g3

g
(−1)d1+d2 ⇁c

g1

d1 | k � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2

= (−1)k
∑

g2+g3+g4=g
d2+d3+d4=2g−1

g3 + g4

g
(−1)d2ψd22 |Mg1,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | k (4.3.38)

− (−1)k
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k
r,s>1

g3 + g4

g
(−1)d1+d2 ⇁c

g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s (4.3.39)

− (−1)k
∑

g1+g2+g3=g
d1+d2+d3=2g−1

g3

g
(−1)d1+d2 ⇁c

g1

d1 | k � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
. (4.3.40)
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Now note that (4.3.38) and (4.3.40) are (4.3.39) for r = 0 and s = 0, respectively. Therefore,

E1 + · · ·+ Ek+1 = (4.3.41)

(−1)k+1
∑

g1+g2+g3+g4=g
d1+d2+d3+d4=2g−2

r+s=k

g3 + g4

g
(−1)d1+d2 ⇁

c
g1

d1 | r � ψ
d2
2 |Mg2,2

� ψd31 |Mg3,2
� ↽c

g4

d4 | s.

The proof of (4.2.8) follows immediately by applying the previous lemma to E = E1+· · ·+Eg.

4.3.8 Equivalence of the conjectural formulas

In this section we prove Theorem 4.2.5.

Lemma 4.3.12. Suppose Cg = DRg(1,−1)λg or Cg = Bg. Then for g > 1 we have

Cg = ψ1 · π∗2π2∗C
g −

∑
g1+g2=g
g1,g2>1

Cg1 � π∗2π2∗C
g2 , (4.3.42)

where π2 : Mh,2 →Mh,1 is the map forgetting the second marked point.

Proof. The proof is based on properties (4.2.3)–(4.2.8), which are also true for the class
DRg(1,−1)λg. Consider the following diagram of forgetful maps:

Mg,3

π3
��

π̃2 //Mg,2

π̂2
��

Mg,2
π2 //Mg,1

where the subindices denote the number of the point that a map forgets. Note that under the
map π̃2 the third marked point on a curve from Mg,3 becomes the second marked point on the
resulting curve from Mg,2. We then compute

ψ1 · π∗2π2∗C
g =ψ1 · π∗2π̂2∗C

g = ψ1 · π3∗π̃
∗
2C

g = π3∗ (π∗3ψ1 · π̃∗2Cg) = π3∗

((
ψ1 − δ{1,3}0

)
· π̃∗2Cg

)
=π3∗ (ψ1 · π̃∗2Cg)− π3∗

(
δ
{1,3}
0 · π̃∗2Cg

)
(4.2.7)

= π3∗

(
Cg � 1|M0,3

+
∑

g1+g2=g
g1,g2>1

Cg1 � π̃∗2Cg2

)
− π3∗

(
δ
{1,3}
0 · π̃∗2Cg

)
=Cg +

∑
g1+g2=g
g1,g2>1

Cg1 � π3∗π̃
∗
2C

g2 − π3∗

(
δ
{1,3}
0 · π̃∗2Cg

)
=Cg +

∑
g1+g2=g
g1,g2>1

Cg1 � π∗2π̂2∗C
g2 − π3∗

(
δ
{1,3}
0 · π̃∗2Cg

)
,

and it is sufficient to check that δ
{1,3}
0 · π̃∗2Cg = 0.

Indeed, for Cg = DRg(1,−1)λg we have δ
{1,3}
0 · π̃∗2(DRg(1,−1)λg) = δ

{1,3}
0 ·DRg(1, 0,−1)λg =

1|M0,3
�DRg(0, 0)λg = (−1)g1|M0,3

� λ2
g = 0.

In the case Cg = Bg, from (4.3.21) it is easy to see that the class π̃∗2B
g − ψ2g

1 is supported

on the stratum in Mg,3 that doesn’t intersect the divisor corresponding to δ
{1,3}
0 . Therefore,

δ
{1,3}
0 ·(π̃∗2Bg−ψ

2g
1 ) = 0, but we also obviously have δ

{1,3}
0 ·ψ2g

1 = 0, which gives δ
{1,3}
0 ·π̃∗2Bg = 0.
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Assuming π2∗ (DRg(1,−1)λg) = π2∗B
g, the equality DRg(1,−1)λg = Bg immediately follows

from formula (4.3.42) by the induction on g. This completes the proof of the theorem.





Chapter 5

Infinite-dimensional Frobenius manifolds and
the Stokes phenomenon

5.1 Introduction

Dubrovin–Frobenius manifolds were introduced by B. Dubrovin in [39] to provide a coordinate-
free description of the WDVV associativity equations [118, 35] of two-dimensional topological
field theory. While on the one hand Dubrovin–Frobenius manifolds provide the leading invariant
in the reconstruction of higher-genus generating functions of several enumerative objects, on the
other hand they have proven valuable in the classification and study of a large class of integrable
hierarchies with one spatial variable [46].

The program of extending the tools of Dubrovin–Frobenius manifold theory to integrable
hierarchies in two spatial variables, that is, 2 + 1 integrable systems, started in [28] with
the definition of an infinite-dimensional Dubrovin–Frobenius manifold M0 associated with the
dispersionless limit of the bi-Hamiltonian structure [25] of the 2D Toda lattice due to Ueno
and Takasaki [117]. In [29] the Dubrovin equation of M0 was derived and studied, in particular
by obtaining a Levelt basis of solutions near its regular singular point at ζ ∼ 0. This yields a
canonical basis of Hamiltonian densities for the principal hierarchy of M0, which constitutes a
non-trivial extension of the dispersionless 2D Toda lattice.

In recent years, several other examples of infinite-dimensional Dubrovin–Frobenius manifolds
have been constructed. In [126] a family Mn,m

0 of infinite-dimensional Dubrovin–Frobenius
manifolds, all of them underlying the dispersionless 2D Toda lattice and coinciding with M0

for n = m = 1, was defined. A similar infinite family for the dispersionless two-component
BKP hierarchy was discussed in [125]. Other remarkable examples are the infinite-dimensional
Dubrovin–Frobenius manifold associated with the dispersionless KP hierarchy, defined in [100],
and a family of infinite-dimensional Dubrovin–Frobenius manifolds underlying the Whitham
hierarchy, recently obtained in [84].

The existence of a theory in full genera associated with these infinite-dimensional Dubrovin–
Frobenius manifolds is still not clear. In this direction, a partial cohomological field theory of
infinite rank has been recently defined in [21]. Its associated Hamiltonian integrable hierarchy,
in a certain reduction, has been shown to coincide with the KP hierarchy.

In this chapter we continue the study of the Frobenius manifold M0 associated with the 2D
Toda hierarchy.

First, we revisit the definition of the canonical coordinates introduced in [28], showing that
the continuous family up has to be supplemented by a finite number of discrete coordinates ui,
ūi given by the critical values of the two superpotentials λ, λ̄, in analogy to the usual description
of canonical coordinates for finite-dimensional Frobenius manifolds given by a superpotential.
To give a better justification for the somewhat ad hoc definition of the canonical coordinates up,
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we study the spectrum of the operator U of multiplication by the Euler vector field. We show
that the continuous canonical coordinates up coincide with the generalized eigenvalues of U ,
while the standard eigenvalues are given by the critical values ui, ūi. To give a more accurate
and rigorous description of the tangent and cotangent spaces to M0, here we make a distinction
between the cotangent space and its representable (via the metric) subspace. This is necessary
to deal with the non-representable differentials of several basic functionals on M0, including
those of the canonical coordinates.

We then consider the Dubrovin equation at its irregular singularity at ζ ∼ ∞. We reformulate
it as an equation on the cotangent space to M0, rather than on its representable subspace, to
allow for sufficiently large families of solutions. We study the formal solutions of the Dubrovin
equation at the irregular singularity, remarkably finding that such formal solutions are not
uniquely determined by their leading order, unlike in the finite-dimensional case, but depend on
a large set of parameters.

Our final aim is to describe the Stokes phenomenon for the irregular singularity of the
Dubrovin equation and, in particular, to compute its Stokes matrices. We obtain an infinite
family of solutions given by integrals along the unit circle and compute their asymptotics. We
are however faced with the problem that such a family has trivial monodromy around ζ ∼ ∞ and
cannot be considered as the analogue of a fundamental solution in the finite-dimensional case
or, in other words, it is not complete. To solve this problem, we apply the theory of resurgent
functions to certain formal solutions for which we have an explicit description, namely those
obtained as asymptotic series from the integral solutions. What we find in the resummation
process is a large family of solutions which are nevertheless weak, i.e., they do not extend to
linear functionals defined on the whole tangent space. For such a family, we explicitly compute
the Stokes matrices. For simplicity, this last part of the chapter is conducted restricting to a
two-dimensional locus in M0 where the superpotentials have a particularly simple form.

5.1.1 Organization of the chapter

In Section 5.2 we recall the definition of the 2D Toda Dubrovin–Frobenius manifold M0 given
in [28, 29]. In Section 5.3 we revisit the canonical coordinates and prove they coincide with the
(generalized) eigenvalues of the operator U of multiplication by Euler vector field. In Section 5.4
we derive the Dubrovin equation on the cotangent spaces. In Section 5.5 we find the formal
solutions to the Dubrovin equation at ∞. In Section 5.6 we study an infinite, albeit incomplete,
family of integral solutions to the Dubrovin equation with suitable asymptotic expansions at ∞.
Finally, in Section 5.7 we apply the resurgence procedure to the formal solutions which arise as
asymptotic expansions of the integral solutions, obtaining this way a family of weak solutions
parameterized by the unit circle S1. These solutions appear naturally in monodromy-related
pairs, allowing us to study the Stokes phenomenon in a similar fashion to the finite-dimensional
case. The section ends with the explicit computation of the infinite-dimensional analogue of the
Stokes matrices.

5.2 The 2D Toda Dubrovin–Frobenius manifold

In this section, we recall the definition of the 2D Toda Frobenius manifold from [28, 29].

5.2.1 The manifold M and its tangent bundle

Let D0 be the closed unit disc in the Riemann sphere, D∞ the closure of its complement and
S1 = D0 ∩D∞ the unit circle. For a compact subset K of the Riemann sphere, we denote by
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H(K) the space of holomorphic functions on K, i.e., functions which extend holomorphically to
an open neighborhood of K.

We define the infinite-dimensional manifold M as the affine space

M = {(λ(z), λ̄(z)) ∈ zH(D∞)⊕ 1

z
H(D0) | λ(z) = z +O(1)}. (5.2.1)

A point λ̂ = (λ(z), λ̄(z)) ∈ M can be represented by the Laurent series at ∞ and 0 of its
components

λ(z) = z +
∑
k60

ukz
k, λ̄(z) =

∑
k>−1

ūkz
k. (5.2.2)

We identify the tangent space at a point λ̂ with the vector space underlying the affine space M

Tλ̂M = H(D∞)⊕ 1

z
H(D0). (5.2.3)

5.2.2 The manifold M0

We define M0 as the open subset of M consisting of the pairs (λ(z), λ̄(z)) satisfying the following
conditions:

(T1) The leading coefficient ū−1 of λ̄(z) is nonzero.

(T2) The derivative of w(z) := λ(z) + λ̄(z) does not vanish on S1.

(T3) The curve parameterized by w(z) for z ∈ S1 is positively oriented, non-self-intersecting
and encircles the origin w = 0.

(T4) The map σ(z) := λ′(z)
λ′(z)+λ̄′(z)

has non-vanishing derivative on S1.

(T5) The functions λ′(z), λ̄′(z) are non-vanishing for z ∈ S1; equivalently, the curve σ : S1 → C
does not pass through the points 0 and 1.

Remark 5.2.1. These conditions were introduced in the literature in different places [28, 126,
29], mainly to avoid non-generic cases and to simplify some of the definitions and the proofs.
Conditions (T2) and (T3) are used in the definition of the metric and the flat coordinates.
Conditions (T4) and (T5) are used in the definition of canonical coordinates and in the
computation of the spectrum of the operator U .

5.2.3 The w-coordinates

Sometimes it is more convenient to represent M0 as a two-dimensional bundle over the space
Mred ⊂ H(S1) of parameterized simple analytic curves:

M0 −→Mred ⊕ C⊕ C
(λ(z), λ̄(z)) 7−→ (w(z), v, u),

where w(z) = λ(z) + λ̄(z), v = ū0 = (λ̄)0 and eu = ū−1 = (λ̄)1. The map can be inverted by

λ(z) = w60(z) + z − v − euz−1, λ̄(z) = w>1(z)− z + v + euz−1. (5.2.4)



90 Chapter 5. Stokes phenomenon and Frobenius manifolds

We refer to the triples (w(z), v, u) as w-coordinates. In these coordinates the tangent vectors
are represented as elements of H(S1)⊕ C2 via the map

Tλ̂M = H(D∞)⊕ 1

z
H(D0) −→ H(S1)⊕ C2

(X(z), X̄(z)) 7−→ (W (z), Xv, Xu),
(5.2.5)

where

W (z) = X(z) + X̄(z), Xv = X̄0, Xu = e−uX̄−1, (5.2.6)

X(z) = W60(z)−Xv − euXuz
−1, X̄(z) = W>1(z) +Xv + euXuz

−1. (5.2.7)

Remark 5.2.2. Recall that the projections ( )>p : H(S1) → zpH(D0), ( )6p−1 : H(S1) →
zp−1H(D∞) and ( )p : H(S1)→ C are defined by

(f)>p(z) =
∑
k>p

fkz
k =

zp

2πi

∮
|z|<|w|

w−pf(w)

w − z
dw, (5.2.8)

(f)6p−1(z) =
∑
k6p−1

fkz
k = − zp

2πi

∮
|z|>|w|

w−pf(w)

w − z
dw, (5.2.9)

(f)p = fp =
1

2πi

∮
|z|=1

f(z)z−p
dz

z
, (5.2.10)

where f(z) =
∑

k∈Z fkz
k and p ∈ Z.

5.2.4 The metric and the cotangent bundle

On the tangent spaces we define a symmetric non-degenerate bilinear form η, called the metric,
by

η(X̂, Ŷ ) =
1

2πi

∮
|z|=1

X(z)Y (z)

z2w′(z)
dz +XvYu +XuYv, (5.2.11)

where X̂, Ŷ ∈ Tλ̂M are represented as triples in H(S1)⊕ C2. By explicitly constructing the flat
coordinates, it was proved in [28] that the metric η is flat.

The cotangent space T ∗
λ̂
M is defined as the algebraic dual of the tangent space, i.e., as the

space (Tλ̂M)∗ of all linear functionals on Tλ̂M . The metric defines an injection η∗ of Tλ̂M into
T ∗
λ̂
M by

X̂ 7→ η∗(X̂) = η(X̂, ·). (5.2.12)

A cotangent vector ξ ∈ T ∗
λ̂
M that is in the image of η∗ is called representable, and we denote

ξ ∈ T ∗
λ̂
M rep.

Remark 5.2.3. In this work we take a rather different approach to the cotangent bundle compared
to [28, 29]. This is motivated by the fact that we need to consider functionals on M0 whose
differentials are not representable. For example, the differentials dλ(p), dλ̄(p) and dup are not
representable.
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5.2.5 The associative product

The product on the tangent spaces is defined by

X̂ · Ŷ =

(
X(z)

(
Y>0(z)− (zw′(z))>0

Y (z)

zw′(z)
+
Y (z)

w′(z)
+
eu

z

(
Y (z)

zw′(z)
+ Yu

)
+ Yv

)
(5.2.13)

+ zw′(z)

((
X>0(z)

Y (z)

zw′(z)

)
<0

−
(
X60(z)

Y (z)

zw′(z)

)
>0

+
eu

z
Xu

(
Y (z)

zw′(z)
+ Yu

)
+Xv

Y (z)

zw′(z)

)
,(

eu(X(z) + zw′(z)Xu)

(
Y (z)

zw′(z)
+ Yu

))
1

− euXuYu +XvYv,(
X(z)

Y (z)

zw′(z)

)
0

+XuYv +XvYu

)

for X̂, Ŷ ∈ Tλ̂M represented as triples in H(S1)⊕ C2. It was proved in [28] that the product
is commutative, associative, with a unit vector field given by e = (−1, 1) or, equivalently, by
e = (0, 1, 0). Moreover, it is compatible with the metric η, namely

η(X̂ · Ŷ , Ẑ) = η(X̂, Ŷ · Ẑ) (5.2.14)

for any X̂, Ŷ , Ẑ ∈ Tλ̂M . If follows that η(X̂, Ŷ ) = ξ(X̂ · Ŷ ) for ξ ∈ T ∗
λ̂
M rep, with ξ = η∗(e) = du.

Remark 5.2.4. Expression (5.2.13) for the product of tangent vectors corrects a sign mistake in
the literature, c.f. [29, Lemma 15].

Finally, the Euler vector field is defined by

E = (λ(z)− zλ′(z), λ̄(z)− zλ̄′(z)), or E = (w(z)− zw′(z), v, 2). (5.2.15)

In [28] it is proved that

Theorem 5.2.5. (M0, η, ·, e, E) is an infinite-dimensional Frobenius manifold of charge d = 1.

5.2.6 The operators U and V
The operator U : Tλ̂M → Tλ̂M of multiplication by the Euler vector field is defined on each

tangent space as U(X̂) = E · X̂. Using (5.2.13), one obtains

U(X̂) =

(
(w(z)− zw′(z))

(
X>0(z)− (zw′(z))>0

X(z)

zw′(z)
+
X(z)

w′(z)
+
eu

z

(
X(z)

zw′(z)
+Xu

)
+Xv

)

+ zw′(z)

((
(w(z)− zw′(z))>0

X(z)

zw′(z)

)
<0

−
(

(w(z)− zw′(z))60
X(z)

zw′(z)

)
>0

+2
eu

z

(
X(z)

zw′(z)
+Xu

)
+ v

X(z)

zw′(z)

)
, (5.2.16)(

eu(w(z) + zw′(z))

(
X(z)

zw′(z)
+Xu

))
1

− 2euXu + vXv,(
(w(z)− zw′(z))

X(z)

zw′(z)

)
0

+ 2Xv + vXu

)
.



92 Chapter 5. Stokes phenomenon and Frobenius manifolds

The grading operator V : Tλ̂M → Tλ̂M is defined as

V =
1

2
−∇E, (5.2.17)

where ∇ is the Levi-Civita connection of the metric η. Explicitly, see [29], it is given by

V(X̂) =

(
−X(z)

2
+ z∂z

(
X(z)

w(z)

zw′(z)

)
,−Xv

2
,
Xu

2

)
. (5.2.18)

5.2.7 At a special point

To simplify computations, we will specialize certain constructions to a two-dimensional subman-
ifold of M0 given by the points λ̂0 of the form

λ0(z) = z − v − euz−1, λ̄0(z) = v + euz−1 (5.2.19)

or, written as a triple,

λ̂0 = (z, v, u). (5.2.20)

Notice that conditions (T1)-(T5) are satisfied if |eu| 6= 1.
At λ̂0 the operators U and V have the simpler form

U(X̂) =
(
(v + 2euz−1)X(z) + 2euXu, 2euX1 + vXv, 2Xv + vXu

)
, (5.2.21)

V(X̂) =

(
−X(z)

2
+ zX ′(z),−Xv

2
,
Xu

2

)
. (5.2.22)

5.3 Spectrum of U and canonical coordinates

In this section, we compute the spectrum of the operator U at an arbitrary point of the Frobenius
manifold and we show that the generalized eigenvalues correspond to the continuous canonical
coordinates introduced in [28], while the discrete spectrum is given by the critical values of λ
and λ̄.

5.3.1 Canonical coordinates

For a semisimple finite dimensional Frobenius manifold with superpotential λ(z), the canonical
coordinates are typically given by the critical values of λ(z). In the case of the infinite dimensional
Frobenius manifold M0, however, it is not immediately clear what should take the place of the
critical values, since one expects an infinite number of canonical coordinates and, instead of a
single superpotential, there are two: λ(z) and λ̄(z).

In [28] it was suggested to consider the following linear combination of the two superpotentials

λσ(z) = σλ̄(z) + (σ − 1)λ(z) ∈ H(S1) (5.3.1)

for a parameter σ ∈ C. One should then look for the critical points of λσ(z) that are located on
S1. The condition λ′σ(z) = 0 for z ∈ S1 defines a curve Σ = {σ(z)| z ∈ S1}, parameterized by

σ(z) =
λ′(z)

λ′(z) + λ̄′(z)
∈ H(S1), (5.3.2)
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which is holomorphic on S1 as the denominator is non-vanishing for λ̂ ∈M0, and is non-singular,
i.e. σ′(z) 6= 0, if and only if

λ′(z)λ̄′′(z)− λ′′(z)λ̄′(z) 6= 0 (5.3.3)

for z ∈ S1. For non self-intersecting Σ, we define the (continuous part of the) canonical
coordinates at the point λ̂ as the set of critical values

uσ = λσ(z(σ)) (5.3.4)

for σ ∈ Σ, where z(σ) : Σ→ S1 is the inverse of σ(z), which is a critical point of λσ(z). Since
Σ is parameterized by z ∈ S1, we might as well index these coordinates by p ∈ S1, denoting
up = uσ(p) = λσ(p)(p).

In the following, we show that this seemingly ad hoc definition of canonical coordinates
emerges naturally from the spectrum of the operator U . Indeed, the generalized eigenvalues of
U are exactly given by the canonical coordinates defined above.

The operator U turns out to also have standard eigenvalues, which are given by the critical
values of the superpotentials −λ(z) and λ̄(z) on their respective domains of definition, D∞ and
D0. More precisely, consider a point of M0 at which λ(z), resp. λ̄(z), has n, resp. n̄, critical
points in D∞, resp. D0. We define the following critical values:

ui = −λ(zi), λ′(zi) = 0, zi ∈ D∞, i = 1, . . . , n, (5.3.5)

ūi = λ̄(z̄i), λ̄′(z̄i) = 0, z̄i ∈ D0, i = 1, . . . , n̄. (5.3.6)

The canonical coordinates on M0 are given by the set of all critical values as defined above:

{up, ui, ūj}p∈S1,i=1,...,n,j=1,...,n̄. (5.3.7)

The differentials of the discrete canonical coordinates ui, ūj are

dui = −dλ(zi), dūi = dλ̄(z̄i), (5.3.8)

which can be represented as vectors in Tλ̂M via the injection η∗ as follows

dui =

(
zw′(z)

zi
z − zi

,
eu

zi
, 1

)
, dūi =

(
zw′(z)

z̄i
z − z̄i

,
eu

z̄i
, 1

)
. (5.3.9)

We will show below that these differentials are actually the eigenvectors corresponding to the
eigenvalues ui and ūj of U .

It turns out that the generalized eigenvectors of U , corresponding to the continuous family
of canonical coordinates up, are given by

dup := dλσ(p)|σ=σ(p) = (σ(p)− 1)dλ(p) + σ(p)dλ̄(p), (5.3.10)

for p ∈ S1.

Remark 5.3.1. Notice that in the previous definition we have slightly abused the notation, since
the last formula does not represent the differential of up, but the differential of λσ(z) for fixed
σ, later evaluated at σ = σ(p). This is consistent with the fact that, as in the case of discrete
canonical coordinates, the critical point should be allowed to vary as we differentiate along the
Frobenius manifold, but on the contrary it would be fixed at a point of S1 if we differentiated
directly up.
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Remark 5.3.2. The formula for the continuous canonical coordinates might be understood as the
Legendre transform of the function λ(w) = λ(z(w)), where z(w) is the inverse of the function
w(z) = λ(z) + λ̄(z) defined on S1. Denote by w(σ) the inverse of

σ(w) =
∂λ

∂w
(w) = λ′(z(w))z′(w) =

λ′(z)

λ′(z) + λ̄′(z)

∣∣∣∣
z=z(w)

. (5.3.11)

The Legendre transform of λ(w) is indeed

σw(σ)− λ(w(σ)) = σw(z(σ))− λ(w(z(σ))) (5.3.12)

=
[
σ(λ(z) + λ̄(z))− λ(z)

]
z=z(σ)

= λσ(z(σ)) = uσ,

where z(σ) is the inverse of (5.3.2).

5.3.2 Spectrum of U
Let us consider the operator U of multiplication by the Euler vector field E, see (5.2.16), at an
arbitrary point λ̂ in M0:

U : Tλ̂M → Tλ̂M. (5.3.13)

The generalized spectrum of the operator U is defined as the spectrum of the transpose

U∗ : T ∗
λ̂
M → T ∗

λ̂
M, (5.3.14)

defined by < U∗ξ, X̂ >=< ξ,UX̂ > for all X̂ ∈ Tλ̂M . Explicitly, we say that ξ ∈ T ∗
λ̂
M is a

generalized eigenvector corresponding to the generalized eigenvalue µ if

< ξ,UX̂ >= µ < ξ, X̂ > (5.3.15)

for all X̂ ∈ Tλ̂M . Since U is symmetric w.r.t. the metric η, a standard eigenvector X̂ ∈ Tλ̂M
with eigenvalue µ is mapped by the injection η∗ to a generalized eigenvector for the same
eigenvalue µ.

Notice that a family E ⊂ T ∗
λ̂
M of cotangent vectors defines a map from Tλ̂M to the space

of functions over E. We say that E is complete if this map is injective, i.e., if it defines an
isomorphism of Tλ̂M with the space of functions E ′ given by its image.

Proposition 5.3.3. At an arbitrary point λ̂ of M0, the spectrum of the operator U is given by

1. the eigenvalues ui with eigenvectors dui for i = 1, . . . , n,

2. the eigenvalues ūj with eigenvectors dūj for j = 1, . . . , n̄, and

3. the generalized eigenvalues up with generalized eigenvectors dup for p ∈ S1.

Moreover, the set of all eigenvectors {dup, dui, dūj} is a complete family in T ∗
λ̂
M .

Actually, the completeness of the set of eigenvectors is realized via an explicit isomorphism

Ψ : Tλ̂M −→ H(S1)⊕ Cn ⊕ Cn̄

X̂ 7−→ (〈duz, X̂〉, 〈dui, X̂〉, 〈dūj, X̂〉). (5.3.16)

Corollary 5.3.4. The operator U in the representation given by Ψ, i.e. U := ΨUΨ−1, is
diagonal

U : H(S1)⊕ Cn ⊕ Cn̄ −→ H(S1)⊕ Cn ⊕ Cn̄

Ŷ = (Y (z), {Yi}i=1,...,n, {Ȳj}j=1,...,n̄) 7−→ U(Ŷ ) = (uzY (z), {uiYi}i, {ūjȲj}j). (5.3.17)

We now proceed to prove Proposition 5.3.3 first by an explicit approach at the special point
in the following section, then in the general case in Section 5.3.5. In Section 5.3.4 we prove a
key lemma that will also be used in later sections.
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5.3.3 Proof at the special point

At the special point λ̂0 = (z, v, u), the operator U takes the simpler form (5.2.21). This allows
us to give an explicit proof of the proposition. It is evident in this proof that the formula for
the canonical coordinates emerges from and is uniquely determined by the form of the operator
U . The first part of Proposition 5.3.3 can be restated as

Lemma 5.3.5. The operator U acting on Tλ̂0M
∼= H(S1)⊕ C2 has the following eigenvalues

and eigenvectors

u± = v ± 2ieu/2, du± = (±z(z ± ieu/2)−1,∓1, ie−u/2), (5.3.18)

iff |eu| > 1 and the following generalized eigenvalues and eigenvectors

up = v +
2eu

p
, 〈dup, X̂〉 =

eu

p2
X(p) +X>1(p) +Xv +

eu

p
Xu, (5.3.19)

for p ∈ S1.

Proof. First, let us compute the eigenvalues and eigenvectors. The equation U(X̂) = µX̂ takes
the explicit form

(v + 2euz−1)X(z) + 2euXu = µX(z), (5.3.20)

2euX1 + vXv = µXv, (5.3.21)

2Xv + vXu = µXu. (5.3.22)

For µ = v the system becomes

z−1X(z) +Xu = 0, (5.3.23)

X1 = 0, (5.3.24)

Xv = 0. (5.3.25)

The first equation implies that the only possibly non-zero coefficient of the Laurent expansion
X(z) =

∑
k∈ZXkz

k is X1, which is zero by the second equation. Thus, Xu also vanishes and

X̂ = 0, so µ = v is not an eigenvalue. Therefore, we can assume µ 6= v.
Let p = 2eu

µ−v . The system becomes

(z − p)X(z) = p3e−uzX1, (5.3.26)

pX1 = Xv, (5.3.27)

p2e−uX1 = Xu. (5.3.28)

We rewrite the first equation as

X(z)

z
=
p3e−uX1

z − p
. (5.3.29)

If |p| = 1, the function X(z) defined as above would have a single pole at p, so it would not be
an element of H(S1). Extracting the zeroth coefficient of the Laurent expansion of the left-hand
side yields

1 =
1

2πi

∮
|z|=1

p3e−u

z − p
dz

z
. (5.3.30)
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If |p| < 1, the two poles of the integrand lie inside the unit circle, so the integral vanishes and
the equation admits no solutions. If |p| > 1, we obtain eu = −p2, which has two solutions iff
|eu| > 1, namely p± = ∓ieu/2, which correspond to the eigenvalues u± and the eigenvectors du±.

Let us now compute the generalized eigenvalues. Let ρ = µ − v, then the generalized
eigenvalue equation takes the form

〈ωz, (2euz−1 − ρ)X(z) + 2euXu〉+ 〈ωv, 2euX1 − ρXv〉+ 〈ωu, 2Xv − ρXu〉 = 0, (5.3.31)

for a functional ω = ωz + ωv + ωu. If ρ = 0, then the previous equation becomes

〈ωz, 2euz−1X(z) + 2euXu〉+ 〈ωv, 2euX1〉+ 〈ωu, 2Xv〉 = 0. (5.3.32)

Choosing X̂ = (0, Xv, 0) implies ωu = 0. Choosing X̂ = (0, 0, Xu) implies ωz is zero on constants.
Then choosing X̂ = (X1z, 0, 0) shows that 〈ωz, 2euz−1X(z)〉 = 〈ωz, 2euX1〉 = 0 because the
argument is constant, so we can conclude that ωv = 0. Finally, we choose X̂ = (X(z), 0, 0),
which shows ωz = 0. Therefore, we can assume ρ 6= 0.

Let p = 2eu

ρ
. Substituting in the equation above, we obtain〈

ωz,
(p
z
− 1
)
X(z) + pXu

〉
+ 〈ωv, pX1 −Xv〉+ 〈ωu, e−upXv −Xu〉 = 0. (5.3.33)

Choosing X̂ = (0, 0, Xu) implies ωu = p〈ωz, 1〉. Choosing X̂ = (0, Xv, 0) implies ωv = e−upωu =
e−up2〈ωz, 1〉. Substituting and setting X̂ = (X(z), 0, 0) yields〈

ωz,
(p
z
− 1
)
X(z)

〉
+ e−up3X1〈ωz, 1〉 = 0. (5.3.34)

Consider first the case |p| 6= 1. Multiplication by
(
p
z
− 1
)

is then invertible in H(S1), so we
obtain

〈ωz, X(z)〉 = −e−up3

(
z

p− z
X(z)

)
1

〈ωz, 1〉. (5.3.35)

Clearly ωz = 0 iff 〈ωz, 1〉 = 0. Thus, we can assume 〈ωz, 1〉 6= 0 and, without loss of generality,
take 〈ωz, 1〉 = 1. Setting X(z) = 1 gives the equation

1 = −e−up3

(
z

p− z

)
1

= −e−up3

(
1

p− z

)
0

. (5.3.36)

If |p| < 1, the right-hand side vanishes, so there is no solution. If |p| > 1, the equation becomes
p2 = −eu, which admits the solutions p± = ∓ieu/2 when |eu| > 1. The generalized eigenvectors
ω± associated with p± have eigenvalues u± and correspond to the eigenvectors du± computed
above, more precisely η∗du± = −ie−u/2ω±.

Finally, let us consider the case |p| = 1. One can check that the functional given by

〈ωz, X(z)〉 = e−up2X>1(p) +X(p) (5.3.37)

satisfies 〈ωz, 1〉 = 1 and equation (5.3.34). Let us now show that it is the only solution for fixed
p with |p| = 1. Let αz be a solution of (5.3.34) with 〈αz, 1〉 = 0. Then αz is zero on the subspace(
p
z
− 1
)
H(S1), which is the subspace of H(S1) of functions vanishing at z = p. Therefore,

〈αz, X(z)〉 = 〈αz, X(p)〉+ 〈αz, (X(z)−X(p))〉 = X(p)〈αz, 1〉 = 0, (5.3.38)

so αz = 0. Now let ω′z be a solution of (5.3.34) with 〈ω′z, 1〉 6= 0. We can renormalize it and
consider the case 〈ω′z, 1〉 = 1. Then ωz − ω′z is a solution of (5.3.34) vanishing on 1, so it must
be identically zero, hence ω′z = ωz. The result follows by noting that ω = e−up2dup.
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Remark 5.3.6. Notice that in this case we have

〈dup, X̂〉 =

((
eu

p2
+ 1

)
X

)
>1

+
eu

p2
X60 +

eu

p
(X1 +Xu) + (Xv + euX2). (5.3.39)

In the case |eu| < 1, one can easily check that knowing Y (p) = 〈dup, X̂〉 is sufficient to reconstruct

X̂, showing completeness. However, in the case |eu| > 1, we also need to know Y± = 〈du±, X̂〉
to invert (5.3.16). In Section 5.3.5, we will give a general formula for Ψ−1.

5.3.4 A key lemma

The following lemma will be used in the general proof of Proposition 5.3.3 and also in Section
5.6.

Lemma 5.3.7. Let X̂ = (X(z), Xv, Xu) ∈ H(S1)⊕ C2. The function

〈dλσ(z),UX̂〉 − λσ(z)〈dλσ(z), X̂〉+ zλ′σ(z)

〈
dλσ(z),

(
w(z)

zw′(z)
X(z), 0,−Xu

)〉
(5.3.40)

is a scalar multiple of zλ′σ(z), namely it is equal to

zλ′σ(z)

[((
1− w(z)

zw′(z)

)
X(z)

)
0

−Xv

]
. (5.3.41)

Proof. Let us rewrite λσ(z) as a triple in H(S1)⊕ C2

λσ(z) = (σ − 1)w(z) + w>1(z)− z + v +
eu

z
, (5.3.42)

〈dλσ(z), X̂〉 = (σ − 1)X(z) +X>1(z) +Xv +
eu

z
Xu. (5.3.43)

We proceed componentwise. Let E(z) denote expression (5.3.40), and let us expand E(z) for
X̂ = (X(z), 0, 0)

E(z) =(σ − 1)(w(z)− zw′(z))

(
X>1(z)− (zw′(z))>1

X(z)

zw′(z)
+
X(z)

w′(z)
+
eu

z

X(z)

zw′(z)

)
+(σ − 1)zw′(z)

((
(w(z)− zw′(z))>0

X(z)

zw′(z)

)
<0

−
(

(w(z)− zw′(z))60
X(z)

zw′(z)

)
>0

)

+(σ − 1)

(
2
eu

z
X(z) + vX(z)

)
+

(
2
eu

z
X(z) + vX(z)

)
>1

+

(
(w(z)− zw′(z))

(
X>1(z)− (zw′(z))>1

X(z)

zw′(z)
+
X(z)

w′(z)
+
eu

z

X(z)

zw′(z)

))
>1

+

(
zw′(z)

((
(w(z)− zw′(z))>0

X(z)

zw′(z)

)
<0

−
(

(w(z)− zw′(z))60
X(z)

zw′(z)

)
>0

))
>1

+eu
(

(w(z) + zw′(z))
X(z)

zw′(z)

)
1

+
eu

z

(
(w(z)− zw′(z))

X(z)

zw′(z)

)
0

−
(

(σ − 1)w(z) + w>1(z)− z + v +
eu

z

)
((σ − 1)X(z) +X>1(z))

+

(
(σ − 1)zw′(z) + (zw′(z))>1 − z −

eu

z

)(
(σ − 1)

w(z)

zw′(z)
X(z) +

(
w(z)

zw′(z)
X(z)

)
>1

)
.
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It is immediate to see that the terms with (σ − 1)2, v, and (σ − 1)eu cancel out. First, we
simplify the rest of the terms with eu, which equal

−e
u

z

((
1− w(z)

zw′(z)

)
X(z)

)
0

.

Second, one can similarly see that the terms with (σ − 1) equal

(σ − 1)zw′(z)

((
1− w(z)

zw′(z)

)
X(z)

)
0

.

Third, we split the remaining terms of E(z) into two groups, the first one being

zX>1(z)− z
(
w(z)

zw′(z)
X(z)

)
>1

+

(
w(z)

w′(z)
X(z)

)
>1

− (zX(z))>1

= −z
((

1− w(z)

zw′(z)

)
X(z)

)
0

.

Finally, we are left with

−w>1(z)X>1(z) + (w(z)X>1(z))>1 + (zw′(z))>1

(
w(z)

zw′(z)
X(z)

)
>1

−
(

(zw′(z))>1
w(z)

zw′(z)
X(z)

)
>1

− (zw′(z)X(z))>1 + ((zw′(z))>1X(z))>1

+

(
zw′(z)

((
(w(z)− zw′(z))>0

X(z)

zw′(z)

)
<0

−
(

(w(z)− zw′(z))60
X(z)

zw′(z)

)
>0

))
>1

=(zw′(z))>1

((
1− w(z)

zw′(z)

)
X(z)

)
0

.

Putting everything together,

E(z) =

(
(σ − 1)zw′(z) + (zw′(z))>1 − z −

eu

z

)((
1− w(z)

zw′(z)

)
X(z)

)
0

(5.3.44)

= zλ′σ(z)

((
1− w(z)

zw′(z)

)
X(z)

)
0

.

Let X̂ = (0, 1, 0). In this case, it is immediate to see

E(z) = −zλ′σ(z). (5.3.45)

Finally, for X̂ = (0, 0, 1), it is also a straightforward computation to check

E(z) = 0, (5.3.46)

concluding the proof.

5.3.5 Proof of Proposition 5.3.3 and Corollary 5.3.4

Let λ̂ = (λ(z), λ̄(z)) ∈M0 be such that λ(z) has n critical points in the interior of D∞ and λ̄(z)
has n̄ critical points in the interior of D0. We take λ̂ to be generic, i.e., none of the critical
points is degenerate.
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The fact that the functionals dλ(zi), dλ̄(z̄i) and dλσ(p) for σ = σ(p) are generalized eigen-
vectors of U simply follows from Lemma 5.3.7. Indeed, let zi be one of the critical points of
λ(z), i.e. λ′(zi) = 0; substituting σ = 0 and z = zi in (5.3.40), we get at once that

〈dλ(zi),UX̂〉 = −λ(zi)〈dλ(zi), X̂〉 (5.3.47)

for all X̂, namely dλ(zi) is a generalized eigenvector corresponding to the eigenvalue ui = −λ(zi).
Similarly, setting σ = 1 and z = z̄i, resp. σ = σ(p) and z = p, we obtain the analogous statement
for dλ̄(z̄i) and ūi, resp. (dλσ(p))|σ=σ(p) and up. By (5.3.8) and (5.3.10), we have

dui = dλ(zi), dūi = dλ̄(z̄i), dup = dλσ(p)|σ=σ(p). (5.3.48)

One can easily check that dui and dūi are representable as (5.3.9), therefore they are eigenvectors.
Let us now prove that this family of generalized eigenvectors is complete. For that, we will

prove that the map

Ψ : Tλ̂M −→ H(S1)⊕ Cn ⊕ Cn̄ (5.3.49)

X̂ 7−→ (〈dup, X̂〉, 〈dui, X̂〉, 〈dūj, X̂〉) (5.3.50)

defines an isomorphism of vector spaces. Let us consider tangent vectors as pairs X̂ =
(X(z), X̄(z)) ∈ H(D∞)⊕ 1

z
H(D0), and let

Y (p) = 〈dup, X̂〉, Yi = 〈dui, X̂〉, Ȳi = 〈dūi, X̂〉. (5.3.51)

Explicitly,

Y (p) =
λ′(p)

λ′(p) + λ̄′(p)
X̄(p)− λ̄′(p)

λ′(p) + λ̄′(p)
X(p), Yi = −X(zi), Ȳi = X̄(z̄i). (5.3.52)

It is enough to observe that the inverse Ψ−1 is given by

X̄(p) = λ̄′(p)

[
µŶ (p) +

(
λ′(p) + λ̄′(p)

λ′(p)λ̄′(p)
Y (p)

)
>1

]
, (5.3.53)

X(p) = −λ′(p)

[
−µŶ (p) +

(
λ′(p) + λ̄′(p)

λ′(p)λ̄′(p)
Y (p)

)
60

]
, (5.3.54)

where

µŶ (p) =
n∑
i=1

Yi
ziλ′′(zi)

p

zi − p
−

n̄∑
i=1

Ȳi
z̄iλ̄′′(z̄i)

p

z̄i − p
. (5.3.55)

Let Ŷ = (Y (p), Yi, Ȳi) ∈ H(S1) ⊕ Cn ⊕ Cn̄ and X̂ = Ψ−1Ŷ . Corollary 5.3.4 follows from
observing that

ΨUX̂ = (〈dup,UX̂〉, 〈dui,UX̂〉, 〈dūj,UX̂〉) = (upY (p), uiYi, ūjȲj). (5.3.56)

To conclude, we notice that the (generalized) eigenvalues of U coincide with those of U , the
eigenvectors being related by the isomorphism Ψ. Notice that, since λ′σ(p) = 0 for σ = σ(p), we
have

dup
dp

= σ′(p)w(p). (5.3.57)

Therefore, because of axioms (T3) and (T4), dup
dp

is non-vanishing on S1. This implies that the
generalized eigenspaces are only those given in the proposition, see the following remarks for
further details.
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Remark 5.3.8. Consider the operator U on H(S1)⊕ Cn ⊕ Cn̄ given in Corollary 5.3.4, namely

U(X(z), Xi, X̄j) = (uzX(z), uiXi, ūjX̄j) (5.3.58)

for uz ∈ H(S1). Clearly, the set of generalized and standard eigenvalues corresponds to the set
of up, ui and ūj, namely

Lemma 5.3.9. The spectrum of U is given by {up, ui, ūj}p∈S1,i=1,...,n,j=1,...,n̄.

Proof. From the diagonal form of U , it is immediately clear that the standard eigenvalues
are {ui}i=1,...,n and {ūj}j=1,...,n̄ with eigenvectors (0, ei, 0) and (0, 0, ej), respectively, where ei
denotes the canonical basis vector which is 1 at the i-th entry and 0 everywhere else.

In order to find its generalized eigenvalues, we look for λ ∈ C, 0 6= ξ ∈ T ∗
λ̂
M such that

〈ξ,
(
(uz − λ)X(z), (ui − λ)Xi, (ūj − λ)X̄j

)
〉 = 0, ∀X̂ ∈ H(S1)⊕ Cn ⊕ Cn̄. (5.3.59)

Consider the decomposition ξ = (ξz, ξi, ξ̄j) given by

〈ξ, X̂〉 = 〈ξz, X(z)〉+
n∑
i=1

Xi〈ξi, ei〉+
n̄∑
j=1

X̄j〈ξ̄j, ej〉. (5.3.60)

For p ∈ S1, one can check that up is a generalized eigenvalue with generalized eigenvector
(evp, 0, 0), where the functional evp is defined by

〈evp, X(z)〉 = X(p). (5.3.61)

Finally, let λ 6= ui, ūj, up for any i, j, p. Since λ 6= ui, ūj , then we have ξi = ξ̄j = 0 for all i, j,
so we are left with

〈ξz, (uz − λ)X(z)〉 = 0, ∀X ∈ H(S1). (5.3.62)

Since λ 6= up for any p ∈ S1, then multiplication by (uz − λ) is an invertible operator in H(S1),
so ξz = 0, hence λ is not an eigenvalue.

Let us now compute the dimension of the (generalized) eigenspaces. Since duz
dz

does not
vanish on S1, we have the following

Lemma 5.3.10. Suppose exactly s+ k + ` generalized eigenvalues coincide, namely

up1 = · · · = ups = ui1 = · · · = uik = ūj1 = · · · = ūj` . (5.3.63)

Then the corresponding eigenspace is s+ k + ` dimensional.

Proof. Let λ denote (5.3.63). Then the generalized eigenspace of λ splits into two subspaces,
the (k + `)-dimensional subspace corresponding to the eigenvectors {(0, eir , 0), (0, ejl , 0)}l=1,...,`

r=1,...,k

mentioned before, and the subspace given by ξ = (ξz, 0, 0) with ξz satisfying equation (5.3.62).
Let us compute the latter for s > 1. By (5.3.57) and axioms (T3) and (T4), the function duz

dz

does not vanish on S1, so uz − λ does not have double zeros on S1, i.e.,

uz − λ = (z − p1) . . . (z − ps)g(z), (5.3.64)

where g(z) is a non-vanishing holomorphic function on S1. Therefore, since multiplication by
g(z) is invertible on H(S1), equation (5.3.62) becomes

〈ξz, (z − p1) . . . (z − ps)X(z)〉 = 0, ∀X ∈ H(S1), (5.3.65)
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or, equivalently, ξz vanishes on the subspace of H(S1) given by functions with zeros at the
distinct points p1, . . . , ps. It is clear that the functionals evp1 , . . . , evps defined in (5.3.61) are
linearly independent and solve (5.3.65). Let us show that they span the whole space of solutions
of (5.3.65).

For that, we need the following decomposition formula: for any X ∈ H(S1), s > 1, we can
write

X(z) = X(p1) + (z − p1)Y1 + (z − p1)(z − p2)Y2 + · · ·+ (z − p1) . . . (z − ps)Ys, (5.3.66)

where Y<s ∈ C, Ys ∈ H(S1). This statement can be easily proved by induction. For s = 1, it is
clear by taking

Y1(z) =
1

z − p1

(X(z)−X(p1)) . (5.3.67)

Assuming it holds for s− 1 > 1, we write

X(z) = X(p1) + (z − p1)Y1 + (z − p1)(z − p2)Y2 + · · ·+ (z − p1) . . . (z − ps−1)Ys−1(z)

= X(p1) + (z − p1)Y1 + (z − p1)(z − p2)Y2 + · · ·+ (z − p1) . . . (z − ps−1)Ys−1(ps)

+ (z − p1) . . . (z − ps)
Ys−1(z)− Ys−1(ps)

z − ps
,

where we have split

Ys−1(z) = Ys−1(ps) + (z − ps)
Ys−1(z)− Ys−1(ps)

z − ps
. (5.3.68)

Applying (5.3.66), we write

〈ξz, X(z)〉 = X(p1)〈ξz, 1〉+ Y1〈ξz, z − p1〉+ · · ·+ Ys−1〈ξz, (z − p1) . . . (z − ps−1)〉 (5.3.69)

+ 〈ξz, (z − p1) . . . (z − ps)Ys(z)〉.

The last summand vanishes because ξz satisfies equation (5.3.65). Therefore, ξz is completely
determined by the numbers

〈ξz, 1〉, 〈ξz, z〉, . . . , 〈ξz, zs−1〉, (5.3.70)

so the space of solutions of (5.3.65) is at most s-dimensional, hence it must be the span of
evp1 , . . . , evps .

Remark 5.3.11. Notice that relaxing the axioms (T3) and (T4) in the definition of M0 would
imply, by relation (5.3.57), dropping the non-vanishing assumption of the derivative of uz on S1.
In such case the function uz − λ might have higher order zeros, i.e.,

uz − λ = (z − p1)N1(z − p2)N2 . . . (z − ps)Nsg(z) (5.3.71)

with Ni > 1. Then the subspace determined by equation (5.3.62) is (N1 + · · ·+Ns)-dimensional,
generated by the functionals

〈ev(m)
pi
, X(z)〉 =

dm

dzm

∣∣∣∣
z=pi

X(z), m = 0, . . . , Ni − 1. (5.3.72)
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5.3.6 Metric in canonical coordinates

Thanks to the explicit expression for Ψ−1, we can derive the following diagonal form of the
metric in canonical coordinates:

Proposition 5.3.12. The metric η in the representation given by Ψ, that is, η̃(X̂, Ŷ ) :=
η(Ψ−1X̂,Ψ−1Ŷ ), has the diagonal form

η̃(X̂, Ŷ ) = − 1

2πi

∮
|z|=1

w′(z)

λ′(z)λ̄′(z)
X(z)Y (z)

dz

z2
−

n∑
i=1

1

z2
i λ
′′(zi)

XiYi +
n̄∑
j=1

1

z̄2
j λ̄
′′(z̄j)

X̄jȲj (5.3.73)

for X̂, Ŷ ∈ H(S1)⊕ Cn ⊕ Cn̄.

Proof. First, using (5.2.11), (5.3.53)–(5.3.54) and (5.2.6), we compute

η̃((0, ei, 0), (0, ej, 0)) =
1

ziλ′′(zi)zjλ′′(zj)

(
1

2πi

∮
|z|=1

w′(z)
1

zi − z
1

zj − z
dz (5.3.74)

+ e−u
[(

zλ̄′(z)

zi − z

)
0

(
zλ̄′(z)

zj − z

)
−1

+

(
zλ̄′(z)

zi − z

)
−1

(
zλ̄′(z)

zj − z

)
0

])
.

Notice that z(zi − z) = (z(zi − z))>1 and λ̄′(z) = −euz−2 + (λ̄′(z))>0, therefore(
zλ̄′(z)

zi − z

)
0

= −eu
(

z

zi − z

)
2

= −e
u

z2
i

,

(
zλ̄′(z)

zi − z

)
−1

= −eu
(

z

zi − z

)
1

= −e
u

zi
. (5.3.75)

On the other hand, we can split the integral of (5.3.74) by decomposing w′(z) = λ̄′(z) + λ′(z).
The first summand equals

1

2πi

∮
|z|=1

λ̄′(z)
1

zi − z
1

zj − z
dz = Resz=0 λ̄

′(z)
1

zi − z
1

zj − z
(5.3.76)

= −eu Resz=0
1

z2

1

zi − z
1

zj − z
= − eu

zizj

(
1

zi
+

1

zj

)
.

Plugging (5.3.75) and (5.3.76) in (5.3.74) yields

η̃((0, ei, 0), (0, ej, 0)) =
1

ziλ′′(zi)zjλ′′(zj)

1

2πi

∮
|z|=1

λ′(z)
1

zi − z
1

zj − z
dz (5.3.77)

=
1

ziλ′′(zi)zjλ′′(zj)

{
−Resz=zi λ

′(z) 1
zi−z

1
zj−z − Resz=zj λ

′(z) 1
zi−z

1
zj−z , i 6= j

−Resz=zi λ
′(z) 1

(zi−z)2 , i = j

=
1

(ziλ′′(zi))2

{
0, i 6= j

−λ′′(zi), i = j

= − 1

z2
i λ
′′(zi)

δij.

Analogously, one obtains

η̃((0, ei, 0), (0, 0, ej)) = η̃((0, 0, ei), (0, ej, 0)) = 0, (5.3.78)

η̃((0, 0, ei), (0, 0, ej)) =
1

z̄2
i λ̄
′′(z̄i)

δij. (5.3.79)
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As before, we use formulas (5.2.11), (5.3.53)–(5.3.54) and (5.2.6) to compute

η̃((X(z), 0, 0), (Y (z), 0, 0)) (5.3.80)

=
1

2πi

∮
|z|=1

[
λ′(z)2

(
w′X

λ′λ̄′

)
60

(z)

(
w′Y

λ′λ̄′

)
60

(z) + λ̄′(z)2

(
w′X

λ′λ̄′

)
>1

(z)

(
w′Y

λ′λ̄′

)
>1

(z)

− λ′(z)λ̄′(z)

((
w′X

λ′λ̄′

)
60

(z)

(
w′Y

λ′λ̄′

)
>1

(z) +

(
w′X

λ′λ̄′

)
>1

(z)

(
w′Y

λ′λ̄′

)
60

(z)

)]
dz

z2w′(z)

+ e−u

[(
λ̄′
(
w′X

λ′λ̄′

)
>1

(z)

)
0

(
λ̄′
(
w′Y

λ′λ̄′

)
>1

(z)

)
−1

+

(
λ̄′
(
w′X

λ′λ̄′

)
>1

(z)

)
−1

(
λ̄′
(
w′Y

λ′λ̄′

)
>1

(z)

)
0

]
.

Since λ̄′(z) = −euz−2 + (λ̄′(z))>0, we have(
λ̄′(z)

(
w′X

λ′λ̄′

)
>1

(z)

)
0

= −eu
(
w′X

λ′λ̄′

)
2

,

(
λ̄′(z)

(
w′X

λ′λ̄′

)
>1

(z)

)
−1

= −eu
(
w′X

λ′λ̄′

)
1

, (5.3.81)

and the same for Y (z). Let us consider the integral in (5.3.80). We can rewrite the first
summand as

1

2πi

∮
|z|=1

λ′(z)(w′(z)− λ̄′(z))

(
w′X

λ′λ̄′

)
60

(z)

(
w′Y

λ′λ̄′

)
60

(z)
dz

z2w′(z)
(5.3.82)

=
1

2πi

∮
|z|=1

λ′(z)

(
w′X

λ′λ̄′

)
60

(z)

(
w′Y

λ′λ̄′

)
60

(z)
dz

z2
− 1

2πi

∮
|z|=1

λ′(z)λ̄′(z)

z2w′(z)

(
w′X

λ′λ̄′

)
60

(z)

(
w′Y

λ′λ̄′

)
60

(z)dz.

Notice the first summand on the right-hand side vanishes because λ′(z) = (λ′(z))60, so the
integrand has no residue. Similarly,

1

2πi

∮
|z|=1

λ̄′(z)2

(
w′X

λ′λ̄′

)
>1

(z)

(
w′Y

λ′λ̄′

)
>1

(z)
dz

z2w′(z)
(5.3.83)

=
1

2πi

∮
|z|=1

λ̄′(z)

(
w′X

λ′λ̄′

)
>1

(z)

(
w′Y

λ′λ̄′

)
>1

(z)
dz

z2
− 1

2πi

∮
|z|=1

λ′(z)λ̄′(z)

z2w′(z)

(
w′X

λ′λ̄′

)
>1

(z)

(
w′Y

λ′λ̄′

)
>1

(z)dz.

The first summand on the right-hand side equals

− 1

2πi

∮
|z|=1

eu

z2

(
w′X

λ′λ̄′

)
>1

(z)

(
w′Y

λ′λ̄′

)
>1

(z)
dz

z2
= −eu

[(
w′X

λ′λ̄′

)
2

(
w′Y

λ′λ̄′

)
1

+

(
w′X

λ′λ̄′

)
1

(
w′Y

λ′λ̄′

)
2

]
,

which cancels out with the third line of (5.3.80) by (5.3.81). By replacing (5.3.82) and
(5.3.83) in (5.3.80) and noting that A(z)B(z) = A60(z)B60(z)+A60(z)B>1(z)+A>1(z)B60(z)+
A>1(z)B>1(z) for any A,B ∈ H(S1), we have

η̃((X(z), 0, 0), (Y (z), 0, 0)) = − 1

2πi

∮
|z|=1

w′(z)

λ′(z)λ̄′(z)
X(z)Y (z)

dz

z2
. (5.3.84)

Finally, let us compute

η̃((X(z), 0, 0), (0, ei, 0)) =
1

ziλ′′(zi)

(
1

2πi

∮
|z|=1

λ̄′(z)

(
w′X

λ′λ̄′

)
>1

(z)
1

zi − z
dz

z
(5.3.85)

− 1

2πi

∮
|z|=1

λ′(z)

(
w′X

λ′λ̄′

)
60

(z)
1

zi − z
dz

z
+
eu

zi

[
1

zi

(
w′X

λ′λ̄′

)
1

+

(
w′X

λ′λ̄′

)
2

])
,
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where we have used (5.3.75) and (5.3.81). Note |zi| > 1, so

1

zi − z
=

1

zi

∞∑
k=0

(
z

zi

)k
, (5.3.86)

and the first integral of (5.3.85) becomes

− 1

2πi

∮
|z|=1

eu

z2

(
w′X

λ′λ̄′

)
>1

(z)
1

zi − z
dz

z
= −eu

[
1

z2
i

(
w′X

λ′λ̄′

)
1

+
1

zi

(
w′X

λ′λ̄′

)
2

]
, (5.3.87)

which cancels with the third summand of (5.3.85). The remaining term

− 1

2πi

∮
|z|=1

λ′(z)

(
w′X

λ′λ̄′

)
60

(z)
1

zi − z
dz

z
= Resz=zi λ

′(z)

(
w′X

λ′λ̄′

)
60

(z)
1

zi − z
1

z
(5.3.88)

vanishes because λ′(zi) = 0, so η̃((X(z), 0, 0), (0, ei, 0)) = 0. Analogously, one obtains

η̃((X(z), 0, 0), (0, 0, ej)) = η̃((0, ei, 0), (Y (z), 0, 0)) = η̃((0, 0, ei), (Y (z), 0, 0)) = 0, (5.3.89)

concluding the proof.

5.4 Dubrovin equation

It is well known that the geometric structure of a Frobenius manifold is (almost) completely

encoded in the flatness of the so-called deformed flat connection ∇̃, which is an extension to
M0 × C∗ of the Levi-Civita connection of the metric η obtained by deforming it using the
associative product on the tangent bundle. In our case, if ∇ denotes the Levi-Civita connection
of the metric η, then the deformed flat connection ∇̃ on M0 × C∗ is defined by [29]

∇̃X̂ Ŷ = ∇X̂ Ŷ + ζX̂ · Ŷ , (5.4.1)

∇̃ d
dζ
X̂ = ∂ζX̂ + U(X̂)− 1

ζ
V(X̂), (5.4.2)

∇̃X̂

d

dζ
= ∇̃ d

dζ

d

dζ
= 0, (5.4.3)

for X̂, Ŷ ∈ Tλ̂M , where the operators U and V are given by (5.2.16) and (5.2.18), respectively.
In Frobenius manifold theory, one is interested in looking for functions y whose differentials

dy ∈ T ∗
λ̂
M are covariantly constant w.r.t. the deformed flat connection ∇̃. A basis of solutions

adapted to ζ ∼ 0 provides a family of so-called deformed flat coordinates, the coefficients of
which define the Hamiltonian densities of the principal hierarchy associated with the Frobenius
manifold. See [46] for the general construction and [29] for the derivation of the principal
hierarchy of M0.

In this chapter, we focus on the Dubrovin equation, i.e., the flatness equation in the d
dζ

direction, corresponding to (5.4.2) in the definition of the deformed flat connection. The
covariant derivative w.r.t. d

dζ
on an element of the cotangent space α ∈ T ∗

λ̂
M depending on the

deformation parameter ζ is given by

∇̃ d
dζ

(α) = ∂ζα− U∗α +
1

ζ
V∗α, (5.4.4)

where U∗ and V∗ denote the transposes of U and V . In other words, the cotangent vector ∇̃ d
dζ

(α)

is defined by

〈∇̃ d
dζ

(α), X̂〉 = ∂ζ〈α, X̂〉 − 〈α,
(
U − 1

ζ
V
)
X̂〉, (5.4.5)
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for all X̂ ∈ Tλ̂M .

The Dubrovin equation ∇̃ d
dζ

(α) = 0 is therefore given by

∂ζ〈α, X̂〉 = 〈α,
(
U − 1

ζ
V
)
X̂〉, (5.4.6)

for all X̂ ∈ Tλ̂M . We look for deformed flat functionals y(ζ) : M0 × C∗ → C, namely those

whose differential dy(ζ) ∈ T ∗
λ̂
M is covariantly constant w.r.t. ∇̃. In particular, they are solutions

of the Dubrovin equation (5.4.6).
As expected, if the cotangent vector α is representable, α = η∗Ẑ for Ẑ ∈ Tλ̂M , then (5.4.6)

is written as

η(∂ζẐ, X̂) = η(Ẑ,

(
U − 1

ζ
V
)
X̂), (5.4.7)

which implies, since U is symmetric and V antisymmetric with respect to the metric η, the usual
form of Dubrovin equation

∂ζẐ =

(
U +

1

ζ
V
)
Ẑ, (5.4.8)

cf. [29, equation 20b].

5.5 Formal solutions

Let us solve equation (5.4.6) perturbatively at ∞. Recall that in the finite-dimensional case,
the Dubrovin equation has a fundamental formal solution of the form (see [40])

Ξ(ζ) = Ψ−1R(ζ)eUζ , R(ζ) = Id +R1ζ
−1 +R2ζ

−2 + . . . , (5.5.1)

where Ψ denotes the change of coordinates matrix from flat to normalized canonical. In
the infinite-dimensional case, there is no natural analogue of the fundamental matrix Ξ, but
nonetheless we can write functionals that generalize its columns, given by

ξj(ζ) = eζuj
(
v0
j + v1

j ζ
−1 + . . .

)
, (5.5.2)

where uj is the j-th canonical coordinate and vkj are constant column vectors.

Proposition 5.5.1. The following statements hold at any point λ̂ ∈M0:

1. For each discrete canonical coordinate ui, there exists a unique representable formal solution
of the Dubrovin equation (5.4.6) of the form

ξformal
i (ζ) = eζui

∞∑
k=0

rki ζ
−k, r0

i = dui, r
k
i ∈ (T ∗

λ̂
M)rep. (5.5.3)

2. For each discrete canonical coordinate ūi, there exists a unique representable formal solution
of the Dubrovin equation (5.4.6) of the form

ξ̄formal
i (ζ) = eζūi

∞∑
k=0

r̄ki ζ
−k, r̄0

i = dūi, r̄
k
i ∈ (T ∗

λ̂
M)rep. (5.5.4)
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3. For each p ∈ S1, the Dubrovin equation (5.4.6) admits formal solutions of the form

ξformal
p (ζ) = eζup

∞∑
k=0

rkpζ
−k, r0

p = dup, r
k
p ∈ T ∗λ̂M. (5.5.5)

These solutions are given by the functionals

rkp =
k∑

n=0

anpA
∗
p(k − 1− V)∗A∗p(k − 2− V)∗ . . . A∗p(n− V)∗dup, a0

p = 1, (5.5.6)

where Ap is the left-inverse of up − U with Ap(0, 1, 0) = 0, and depend on the choice of
complex constants anp ∈ C for n ∈ Z>1.

Proof. To prove items 1 and 2, let us solve (5.4.8) perturbatively at ∞. First, we apply the
change of variables Ŷ = Ψdy, where Ψ is defined as in Proposition 5.3.3, and obtain

Ŷζ =

(
U +

1

ζ
V

)
Ŷ , (5.5.7)

where V = ΨVΨ−1 and U = ΨUΨ−1, which takes the diagonal form (5.3.17). We propose an
Ansatz of the form

Ŷ formal
i = eζui

(
Ŷ 0
i + Ŷ 1

i ζ
−1 + . . .

)
, Ŷ k

i ∈ H(S1)⊕ Cn ⊕ Cn̄, (5.5.8)

which yields the recursion

(ui − U)(Ŷ 0
i ) = 0, (5.5.9)

(ui − U)(Ŷ k+1
i ) = (k + V )(Ŷ k

i ), k > 0. (5.5.10)

We will show that these equations have a unique solution up to normalization. Let ei denote the
canonical basis vector which is 1 at the i-th entry and 0 everywhere else. Then ker(ui − U) =
〈(0, ei, 0)〉, so we choose

Ŷ 0
i = (0,−z2

i λ
′′(zi)ei, 0), (5.5.11)

which satisfies

Ψ−1(Ŷ 0
i ) = dui. (5.5.12)

Let us move on to the next equation, namely

(ui − U)(Ŷ 1
i ) = V (Ŷ 0

i ). (5.5.13)

This equation is solvable if and only if V (0, ei, 0) ∈ im(ui − U). Note the diagonal form of U
(5.3.17) allows us to decompose the space as H(S1)⊕Cn⊕Cn̄ = ker(ui−U)⊕ im(ui−U), so it
is enough to show that the projection of V (0, ei, 0) to the subspace ker(ui − U) is 0. We prove
it as an auxiliary lemma:

Lemma 5.5.2. The operator

V = ΨVΨ−1 : H(S1)⊕ Cn ⊕ Cn̄ −→ H(S1)⊕ Cn ⊕ Cn̄ (5.5.14)

satisfies

Pi ◦ V (0, ei, 0) = 0, i = 1, . . . , n (5.5.15)

Pj ◦ V (0, 0, ej) = 0, j = 1, . . . , n̄, (5.5.16)

where Pi is the projection to the i-th entry of the second component, and Pj is the projection to
the j-th entry of the third component.
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Proof. The proofs of (5.5.15) and (5.5.16) are analogous, so we only perform the former. First,
we compute

Ψ−1(0, ei, 0) =
1

ziλ′′(zi)

(
zw′(z)

zi − z
,−e

u

z2
i

,− 1

zi

)
= − 1

z2
i λ
′′(zi)

dui, (5.5.17)

Ŷ = VΨ−1(0, ei, 0) =
1

ziλ′′(zi)

(
1

2

zw′(z)

zi − z
+

zw(z)

(zi − z)2
,
1

2

eu

z2
i

,−1

2

1

zi

)
. (5.5.18)

To conclude the proof, we have to show that

〈dui, Ŷ 〉 = −Y60(zi) + Yv +
eu

zi
Yu = 0. (5.5.19)

It is clear that Yv + eu

zi
Yu = 0. Let us compute

Y60(zi) =
1

ziλ′′(zi)

(
1

2

zi
2πi

∮
|x|=1

w′(x)

(zi − x)2
dx+

zi
2πi

∮
|x|=1

w(x)

(zi − x)3
dx

)
= 0, (5.5.20)

where we have used integration by parts.

As an immediate corollary, V (Ŷ 0
i ) ∈ im(ui − U) and equation (5.5.13) admits solutions for

Ŷ 1
i . Regarding uniqueness, it is clear that two different solutions of (5.5.13) must differ by an

element of ker(ui − U). Therefore, we write

Ŷ 1
i = R̂1

i + a1
i Ŷ

0
i , R̂1

i ∈ im(ui − U), a1
i ∈ C. (5.5.21)

Consider the second equation

(ui − U)(Ŷ 2
i ) = (1 + V )(Ŷ 1

i ), (5.5.22)

which has a solution for Ŷ 2
i if and only if (1 + V )(Ŷ 1

i ) ∈ im(ui − U), which happens when

a1
i Ŷ

0
i + Pi ◦ V (R̂1

i ) = 0. (5.5.23)

This uniquely fixes the constant a1
i and ensures that (5.5.22) has a solution, which, as before,

can be written as Ŷ 2
i = R̂2

i + a2
i Ŷ

0
i . Iterating gives a unique Ŷ formal

i , which concludes the proof
of item 1 of the proposition. The proof of item 2 is completely analogous, and we will not do it
explicitly here.

To prove item 3, we insert the Ansatz (5.5.5) in the Dubrovin equation (5.4.6) and obtain
the following recursion for the functionals rkp :

〈r0
p, (up − U)X̂〉 = 0, ∀X̂ ∈ H(S1)⊕ C2 (5.5.24)

〈rk+1
p , (up − U)X̂〉 = 〈rkp , (k − V)X̂〉, ∀X̂ ∈ H(S1)⊕ C2, k > 0 (5.5.25)

Equation (5.5.24) is the eigenspace equation for the eigenvalue up. By the results of Section 5.3,
we have r0

p = dup. Note that up − U is injective (one can directly see this from the diagonal
form (5.3.17), noting (T4) excludes the degenerate case of all the canonical coordinates up being
equal), but it fails to be surjective, as

im(up − U) = {Ŷ ∈ H(S1)⊕ C2| 〈dup, Ŷ 〉 = 0} (5.5.26)

is a subspace of H(S1)⊕C2 of codimension 1. Therefore, the operator up−U admits left-inverses.
Let Bp, B

′
p be two left-inverses of up − U . Then

(Bp −B′p)(X̂) = (Bp −B′p)
((
X̂ − 〈dup, X̂〉(0, 1, 0)

)
+ 〈dup, X̂〉(0, 1, 0)

)
(5.5.27)

= 〈dup, X̂〉(Bp −B′p)(0, 1, 0), (5.5.28)
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where we have used that X̂ − 〈dup, X̂〉(0, 1, 0) ∈ im(up − U). Therefore, a left-inverse of
up − U is completely determined by its action on (0, 1, 0), and we choose Ap to be the one
with Ap(0, 1, 0) = 0. Back to the system (5.5.25), it is now clear that the recursively defined
functionals

r̂0
p = dup, (5.5.29)

〈r̂k+1
p , X̂〉 = 〈r̂kp , (k − V)ApX̂〉 (5.5.30)

solve it. Written in terms of transpose operators, the functionals

r̂kp = A∗p(k − 1− V)∗A∗p(k − 2− V)∗ . . . A∗p(−V)∗dup (5.5.31)

give a formal solution of the form (5.5.5) to equation (5.4.6). Let us now study the uniqueness
of solutions. Let r0

p = dup, r
1
p, . . . , r

k
p be given, and suppose both sk+1

p and tk+1
p solve (5.5.25) for

rk+1
p . Then

〈sk+1
p − tk+1

p , (up − U)X̂〉 = 0, (5.5.32)

so sk+1
p − tk+1

p must be a scalar multiple of dup. Thus, the most general solution of the next
recursive step is

rk+1
p = A∗p(k − V)∗rkp + ak+1

p dup, (5.5.33)

with ak+1
p ∈ C. From (5.5.33) we can deduce the most general form of the functionals, (5.5.6),

thus completing the proof.

Remark 5.5.3. Since Ap(0, 1, 0) = 0 and 〈dup, (0, 1, 0)〉 = 1, it is easy to write the functionals of
any given formal solution (5.5.5) in the form (5.5.6) by setting

akp = 〈rkp , (0, 1, 0)〉. (5.5.34)

Remark 5.5.4. At the special point λ̂0, we can compute the operator Ap explicitly

ApX̂ =

(
1

2
e−u

(
1

p
− 1

z

)−1

(X(z)−X(p)), −1

2

(
1

p
X(p) + Yu

)
, −1

2
e−uX(p)

)
. (5.5.35)

Remark 5.5.5 (Uniqueness of formal solutions). Let us explain why the functionals rki in the
expansion of ξformal

i are uniquely determined, whereas rkp in the expansion of ξformal
p they are not.

Assume we have r0
i , r

1
i , . . . , r

k−1
i and let tki be such that

〈tki , (ui − U)X̂〉 = 〈rk−1
i , (k − 1− V)X̂〉. (5.5.36)

Then the general solution of

〈rki , (ui − U)X̂〉 = 〈rk−1
i , (k − 1− V)X̂〉 (5.5.37)

is given by rki = tki + aki dui. To fix the constant aki we consider the next equation

〈rk+1
i , (ui − U)X̂〉 = 〈tki + aki dui, (k − V)X̂〉, (5.5.38)

and choose X̂ to be the vector representative of dui, i.e., η∗(X̂) = dui (here we do not denote
X̂ = dui as usual because it might lead to confusion). In particular, X̂ ∈ ker(ui − U), which
gives

aki = − 〈t
k
i , (k − V)X̂〉

〈dui, (k − V)X̂〉
. (5.5.39)

Note that the denominator does not vanish since V(X̂) ∈ im(ui − U) and X̂ /∈ im(ui − U). On
the other hand, it is impossible to repeat this procedure to fix the constants appearing in ξformal

p ,
as the operator (up − U) is injective.
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5.6 Integral solutions and their asymptotics

In this section, we find a family of solutions to the Dubrovin equation defined in terms of
an exponential integral along the unit circle in the complex plane. We derive the asymptotic
behavior of such solutions at ζ ∼ ∞, obtaining this way formal solutions in the sense of the
previous section.

5.6.1 Integral solutions

We define a family of functionals yσ(ζ) on M0×C and we prove explicitly that their differentials
dyσ(ζ) solve the Dubrovin equation (5.4.6).

Proposition 5.6.1. Let σ ∈ C and consider the functionals

yσ(ζ) =
ζ−1/2

2πi

∮
|z|=1

eζλσ(z)dz

z
. (5.6.1)

Their differentials dyσ(ζ) are solutions of the Dubrovin equation (5.4.6).

Proof. The differentials dyσ(ζ) ∈ T ∗
λ̂
M are given by

〈dyσ(ζ), X̂〉 =
ζ1/2

2πi

∮
|z|=1

eζλσ(z)〈dλσ(z), X̂〉dz
z
. (5.6.2)

Plugging (5.6.2) in (5.4.6) yields

〈dyσ(ζ),

(
U − 1

ζ
V
)
X̂〉 − 〈dyσ(ζ), X̂〉ζ =

ζ1/2

2πi

∮
|z|=1

eζλσ(z)

(
〈dλσ(z),UX̂〉 − λσ(z)〈dλσ(z), X̂〉

+ zλ′σ(z)

〈
dλσ(z),

(
w(z)

zw′(z)
X(z), 0,−Xu

)〉)
dz

z
,

which vanishes by Lemma 5.3.7.

Remark 5.6.2. The differentials dyσ(ζ) are actually representable, see Remark 5.6.5 below. We
can therefore use Proposition 20 in [29] to prove that they are covariantly constant w.r.t. the

full deformed flat connection ∇̃.

5.6.2 Asymptotics

Let us study the asymptotics of the solutions dyσ(ζ) for |ζ| → ∞. The usual approach to find
the asymptotics of integrals of the form (5.6.1) or (5.6.2) is by applying the steepest descent
method, first by expressing the path of integration as a combination of the steepest descent
paths passing through the critical points of the superpotential λσ(z), and then by computing
saddle point asymptotics, see e.g. [123].

In our case, however, for generic values of σ, the path of integration cannot be deformed
away from the domain of definition of λσ(z), namely a neighborhood of S1. We will therefore
restrict our analysis to those values of σ such that the critical points of λσ(ζ) belong to S1, and
to σ = 0 and 1, for which λσ coincides with −λ and λ̄, respectively.

Let us consider a point λ̂ = (λ, λ̄) in the Frobenius manifold M0 such that λ and λ̄ have n
and n̄ critical points, respectively. Denote by zi and z̄j the critical points and by ui and ūj the
critical values of −λ and λ̄, respectively, as in (5.3.5)-(5.3.6). Recall that we define a curve Σ
via the function σ(z) on S1, see (5.3.2). For every σ ∈ Σ the superpotential λσ(z) has a finite
number of critical points p1, . . . , ps, which are non-degenerate because of (5.3.3).
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For σ belonging to the curve Σ, the path of integration S1 passes through the points
p1, . . . , ps. For |ζ| → ∞ in a generic direction in the ζ-plane, the asymptotics of the integral
will be dominated by the saddle point asymptotics of one of such points. More precisely, let
us consider the lines in C passing through the origin and given by <(ζ(upi − upj)) = 0 for
i, j = 1, . . . , s. These lines divide the ζ-plane in sectors S(upj) for j = 1, . . . , s such that in the

sector S(upj) the exponential eζupj has the dominant asymptotic behavior as |ζ| → ∞.
For σ = 0, the critical points zi of the exponent −λ(z) belong to the exterior of the unit

disc. In this case, however, the integrand is holomorphic in D∞, so we can deform the path
of integration in such a way that it passes through all the critical points. As above, in each
of the sectors S(uj) for j = 1, . . . , n determined by removing the lines <(ζ(ui − uj)) = 0 for
i, j = 1, . . . , n from C, the critical value uj will determine the asymptotics.

Similarly, for σ = 1, the path of integration can be deformed in such a way that it passes
through all the critical points z̄i in the interior of D0 and the critical value ūj will dominate the
asymptotics in a sector S(ūj), among the sectors obtained by removing the lines <(ζ(ūi−ūj)) = 0
for i, j = 1, . . . , n̄ from the ζ-plane.

For any X̂ ∈ Tλ̂M we have the following asymptotic behavior

Proposition 5.6.3. For σ ∈ Σ and p = pj one of the critical points of λσ, we have

〈dyσ, X̂〉 ∼ eζup
∞∑
k=0

1

2Γ
(

1
2
− k
) 1

2πi

∮
p

〈dλσ(z), X̂〉
(λσ(z)− up)k+ 1

2

dz

z
ζ−k, |ζ| → ∞, ζ ∈ S(up).

(5.6.3)

For σ = 0 and zj one of the critical points of λ, we have

〈dy0, X̂〉 ∼ −eζuj
∞∑
k=0

1

2Γ
(

1
2
− k
) 1

2πi

∮
zj

〈dλ(z), X̂〉
(−λ(z)− uj)k+ 1

2

dz

z
ζ−k, |ζ| → ∞, ζ ∈ S(uj).

(5.6.4)

For σ = 1 and z̄j one of the critical points of λ̄, we have

〈dy1, X̂〉 ∼ eζūj
∞∑
k=0

1

2Γ
(

1
2
− k
) 1

2πi

∮
z̄j

〈dλ̄(z), X̂〉
(λ̄(z)− ūj)k+ 1

2

dz

z
ζ−k, |ζ| → ∞, ζ ∈ S(ūj).

(5.6.5)

In the above formulas the symbol
∮
z

denotes integration along a small counterclockwise
simple path around z.

Proof. Expression (5.6.3) follows from Lemma 5.A.1 applied to 〈dyσ, X̂〉. For (5.6.4), note the
integrand of 〈dy0, X̂〉 is holomorphic on D∞ \ {∞}, so we can deform the path of integration to
one that passes through all critical points of λ, and then apply again Lemma 5.A.1. Finally, for
(5.6.5), we deform the path so that it passes through all critical points of λ̄, and then we apply
Lemma 5.A.1.

Proposition 5.6.4. The asymptotic expansions of {dyσ}σ∈Σ∪{0,1} at |ζ| → ∞ given in Proposi-
tion 5.6.3 are formal solutions of the Dubrovin equation.

Proof. Let us prove that (5.6.3) defines a formal solution of the Dubrovin equation of the form
(5.5.5) with rkp given by

〈rkp , X̂〉 =
1

2Γ
(

1
2
− k
) 1

2πi

∮
p

〈dλσ(z), X̂〉
(λσ(z)− up)k+ 1

2

dz

z
. (5.6.6)
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For that, we need to prove that the cotangent vectors rkp satisfy the recursion relations (5.5.24)-
(5.5.25). Let us first show (5.5.24). We have

〈r0
p, (U − up)X̂〉 =

1

2Γ
(

1
2

) 1

2πi

∮
p

〈dλσ(z),UX̂〉 − up〈dλσ(z), X̂〉
(λσ(z)− up)

1
2

dz

z
. (5.6.7)

By adding and subtracting a term proportional to λσ(z), the previous expression equals

1

2Γ
(

1
2

) 1

2πi

∮
p

〈dλσ(z),UX̂〉 − λσ(z)〈dλσ(z), X̂〉
(λσ(z)− up)

1
2

dz

z
+

1

2Γ
(

1
2

) 1

2πi

∮
p

(λσ(z)− up)〈dλσ(z), X̂〉
(λσ(z)− up)

1
2

dz

z
.

(5.6.8)

The second summand equals

1

2Γ
(

1
2

) 1

2πi

∮
p

(λσ(z)− up)1/2〈dλσ(z), X̂〉dz
z
, (5.6.9)

which vanishes because the integrand is holomorphic at p. By Lemma 5.3.7,

〈dλσ(z),UX̂〉 − λσ(z)〈dλσ(z), X̂〉 = (g(z) + C)zλ′σ(z), (5.6.10)

where C is a constant and

g(z) = −
〈
dλσ(z),

(
w(z)

zw′(z)
X(z), 0,−Xu

)〉
(5.6.11)

is holomorphic at p. Therefore, the first summand of (5.6.8) equals

1

2Γ
(

1
2

) 1

2πi

∮
p

(g(z) + C)λ′σ(z)

(λσ(z)− up)
1
2

dz = − 1

Γ
(

1
2

) 1

2πi

∮
p

g′(z)(λσ(z)− up)
1
2dz, (5.6.12)

which again vanishes by holomorphicity at p of the integrand. To prove (5.5.25), observe that
by a computation similar to the previous one, we can write

〈rk+1
p , (U − up)X̂〉 − 〈rkp , (k − V)X̂〉 =

1

2Γ
(
−k − 1

2

) (5.6.13)

× 1

2πi

∮
p

〈dλσ(z),UX̂〉 − λσ(z)〈dλσ(z), X̂〉+ zλ′σ(z)
〈
dλσ(z),

(
w(z)
zw′(z)

X(z), 0,−Xu

)〉
(λσ(z)− up)k+ 3

2

dz

z
,

which vanishes by Lemma 5.3.7. The proofs for (5.6.4) and (5.6.5) are completely analogous.

Remark 5.6.5. The 1-forms (5.6.2) are representable for any σ ∈ C, i.e. dyσ(ζ) ∈ T ∗
λ̂
M rep, with

their representative in the tangent given by

dyσ = ζ1/2

(
σzw′(z)eζλσ(z) − zw′(z)

(
eζλσ(z)

)
>0
,

1

2πi

∮
|z|=1

eζλσ(z) e
u

z

dz

z
,

1

2πi

∮
|z|=1

eζλσ(z)dz

z

)
.

Notice, however, that the functionals rkp in the asymptotic expansion are in general not repre-
sentable, in particular the leading term r0

p is proportional to the non-representable functional
dup.

Remark 5.6.6. The family of solutions {dyσ(ζ)}σ∈Σ∪{0,1} is not complete. For example, at the

special point λ̂0, the tangent vector

X̂ =
((

1− e−ζ
eu

z

)
z, 0,−1

)
(5.6.14)

satisfies 〈dyσ(ζ), X̂〉 = 0 for all σ.

Remark 5.6.7. The monodromy of the solutions dyσ(ζ) is trivial since it just originates from the
ζ1/2 factor

dyσ(ζe2πi) = −dyσ(ζ). (5.6.15)
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5.7 Resurgence and Stokes phenomena

In this section, we study the Stokes phenomenon at the irregular singularity ζ ∼ ∞ of the
Dubrovin equation.

In the finite dimensional case [40], the Dubrovin equation (written in the normalized canonical
frame) has a unique formal fundamental solution of the following form

Yformal(ζ) = (Id +R1ζ
−1 +R2ζ

−2 + . . . )eζU , (5.7.1)

where U = diag(u1, · · · , un) with ui 6= uj for i 6= j. An admissible line ` through the origin
in C is given by the choice of its positive direction φ such that it satisfies <(eiφ(ui − uj)) 6= 0
for any i 6= j. It can be shown that, given a choice of admissible line ` in C, there exists a
unique fundamental solution Yright (resp. Yleft) which is asymptotic to Yformal for ζ ∼ ∞ on the
open sector Πε

right (resp. Πε
left) of opening slightly larger than π containing the right (resp. left)

half-plane delimited by `. The Stokes matrices S± relate such fundamental solutions on the
intersection Πε

right ∩ Πε
left = Πε

+ ∪ Πε
−, namely

YL(ζ) = YR(ζ)S±, ζ ∈ Πε
±, (5.7.2)

where Πε
+, resp. Πε

−, is the sector containing the direction φ, resp. φ+ π.
Notice that the columns of a fundamental solution give a basis of solutions of the Dubrovin

equation. In the infinite-dimensional case, we might consider the family of integral solutions
{dyσ}σ∈Σ∪{0,1} obtained in the previous section. Such family, however, is not complete and
moreover has trivial monodromy, see Remarks 5.6.6 and 5.6.7, therefore it cannot be used to
obtain the analogues of the Stokes matrices. To find a larger family of solutions we adopt a
different strategy, using resurgence theory to associate a family of “weak” solutions to a family
of formal solutions like those studied in Section 5.5. More precisely, we consider the family of
formal solutions given by the asymptotic expansions of the integral solutions and we apply to it
the Borel resummation procedure.

Resurgence theory [62, 48, 101, 6] provides a method to associate analytic functions to
formal series which are not convergent. The resummation procedure of a formal power series
ϕ(ζ) =

∑
k>0 akζ

−k can be summarized, for our aims, in three steps: computation of the sum

of its Borel transform ϕ̂(χ) obtained by the substitution ζ−k 7→ χk/k!, analytic continuation
and identification of the resurgent structure of ϕ̂(χ), namely of its behavior at singular points,
and resummation to a function sθ(ϕ)(ζ) via Laplace transform. For recent expositions of these
methods we refer the reader to [88, 107, 36, 89].

For simplicity, we restrict to the special point λ̂0 in M0. We also require |eu| < 1 so that
there are no discrete canonical coordinates to consider.

5.7.1 Weak solutions

Recall that the cotangent space T ∗
λ̂
M at a point λ̂ ∈M0 is given by the algebraic dual of Tλ̂M .

Given a cotangent vector ξ ∈ T ∗
λ̂
M , we define its coefficients as the numbers 〈ξ, em̂〉 obtained by

acting on the elements em̂ ∈ H(S1)⊕ C2, given by

em = (zm, 0, 0), ev = (0, 1, 0), and eu = (0, 0, 1), (5.7.3)

where m̂ ∈ Z ∪ {v, u}. In general, an arbitrary choice of coefficients Cm̂ does not define a
cotangent vector ξ with Cm̂ = 〈ξ, em̂〉. However, it always defines an element in T ∗

λ̂0
Mweak, which

is the algebraic dual of

Tλ̂0M
test = {X̂ = (X(z), Xv, Xu) ∈ Tλ̂0M | X(z) ∈ C[z, z−1]} ∼= C[z, z−1]⊕ C2,
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namely the subset of Tλ̂0M consisting of Laurent polynomials in z, by the formula

〈ξ, (X(z), Xv, Xu)〉 =
∑
n

XnCn +XvCv +XuCu (5.7.4)

for X(z) =
∑
Xnz

n ∈ C[z, z−1].
The motivation for introducing T ∗

λ̂0
Mweak is that we are going to obtain solutions to the

Dubrovin equation by Borel resummation of the coefficients of the formal integral solutions,
which will turn out not to be in T ∗

λ̂0
M . Notice that, since the operators U and V at the special

point preserve the subspace Tλ̂0M
test, it is possible to define weak solutions to the Dubrovin

equation (5.4.6), i.e., ξ = ξ(ζ) ∈ T ∗
λ̂0
Mweak such that

〈ξ, X̂〉ζ = 〈ξ,
(
U − 1

ζ
V
)
X̂〉, ∀X̂ ∈ Tλ̂0M

test. (5.7.5)

5.7.2 Formal integral solutions

At the special point, we can give an explicit formula for the coefficients of the formal solutions
corresponding to the asymptotic expansion of the integral solutions obtained in Section 5.6,
namely (recall Proposition 5.6.3)

〈dyformal
p , X̂〉 = eζup

∞∑
k=0

1

2Γ
(

1
2
− k
) 1

2πi

∮
p

〈dλσ(z), X̂〉
(λσ(z)− up)k+ 1

2

dz

z
ζ−k. (5.7.6)

Lemma 5.7.1. The coefficients of the formal integral solutions are given by

〈dyformal
p , em〉 = eζup

1

2
σ(p)pm

√
p

eu
ϕmp (ζ), m > 1 (5.7.7)

〈dyformal
p , em〉 = eζup

1

2
(σ(p)− 1)pm

√
p

eu
ϕmp (ζ), m 6 0 (5.7.8)

〈dyformal
p , ev〉 = eζup

1

2

√
p

eu
ϕ0
p(ζ), (5.7.9)

〈dyformal
p , eu〉 = eζup

1

2

√
eu

p
ϕ−1
p (ζ), (5.7.10)

where

ϕmp (ζ) =
∞∑
k=0

1

Γ
(

1
2
− k
)(m+ k − 1/2

2k

)(
p

ζeu

)k
. (5.7.11)

Proof. The coefficients in (5.7.6) are proportional to the integrals

Ik,m =
1

2πi

∮
p

zm

(λσ(p)(z)− λσ(p)(p))
k+ 1

2

dz

z
. (5.7.12)

Since at the special point σ(p) = 1 + eu

p2
, we have that

λσ(p)(z)− λσ(p)(p) =
eu

z

(
z

p
− 1

)2

, (5.7.13)
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therefore

Ik,m =
p2k+1

e(k+1/2)u

1

2πi

∮
p

zm+k−1/2

(z − p)2k+1
dz =

p2k+1

e(k+1/2)u

1

2πi

∮
0

(z + p)m+k−1/2

z2k+1
dz. (5.7.14)

Expanding the numerator and computing the residue at 0 gives

Ik,m =

(
m+ k − 1/2

2k

)( p
eu

)k+1/2

pm, (5.7.15)

from which the lemma follows immediately.

Remark 5.7.2. Notice that (5.7.11) is a nowhere convergent formal power series in ζ−1.

5.7.3 Borel transform and resurgent structure

Recall that a formal power series ϕ(ζ) =
∑

k>0 akζ
−k at ζ ∼ ∞ is called Gevrey-1 if |ak| 6 Ckk!

for all k > 0 for some positive constant C. In such case, its Borel transform, namely the series

ϕ̂(χ) =
∑
k>0

ak
k!
χk, (5.7.16)

is convergent in a neighborhood of χ ∼ 0.
The formal integral solutions ϕmp (ζ) are clearly Gevrey-1 and we can explicitly identify their

Borel transform:

Proposition 5.7.3. The Borel transform of ϕmp (ζ) converges for |χ| 6
∣∣∣4eup ∣∣∣ and is given by

ϕ̂mp (χ) =
1√
π

2F1

(
1

2
−m, 1

2
+m; 1;

pχ

4eu

)
, (5.7.17)

where 2F1(a, b; c; z) denotes the Gauss hypergeometric function.

Proof. Applying ζ−k → χk/k! to (5.7.11) yields

ϕ̂mp (χ) =
∞∑
k=0

1

k!Γ
(

1
2
− k
)(m+ k − 1/2

2k

)(pχ
eu

)k
(5.7.18)

=
1√
π

∞∑
k=0

(
−1/2

k

)(
m+ k − 1/2

2k

)(pχ
eu

)k
. (5.7.19)

The desired result follows immediately from Lemma 5.B.1, see Appendix 5.B.2.

Let us now consider the so-called resurgent structure of the Borel transform. The Borel
transform ϕ̂mp (χ) has a singularity at χp = 4eu/p corresponding to the logarithmic branch point
at z = 1 of the hypergeometric function 2F1(a, b; a+ b; z), see (5.B.20). Near the singularity it
takes the form

ϕ̂mp (χp + ξ) =
(−1)m+1

π
log

(
− pξ

4eu

)
1√
π

2F1

(
1

2
−m, 1

2
+m, 1;− pξ

4eu

)
+ freg(ξ), (5.7.20)

where freg(ξ) is holomorphic near ξ ∼ 0. Here we have used the identity

Γ

(
1

2
−m

)
Γ

(
1

2
+m

)
=

π

sin
(

1
2

+m
)
π

= (−1)mπ. (5.7.21)

It is important to notice that the function multiplying the logarithm

ϕ̂m−p(ξ) =
1√
π

2F1

(
1

2
−m, 1

2
+m, 1;− pξ

4eu

)
, (5.7.22)

is actually the Borel transform of the formal solution ϕm−p(ζ) above for a different sign of p.
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5.7.4 Borel resummation

The Borel resummation sθ(ϕ)(ζ) of the formal series ϕ(ζ) is defined as the Laplace transform of
its Borel transform

sθ(ϕ)(ζ) = ζ

∫
Cθ
ϕ̂(χ)e−ζχdχ, (5.7.23)

where the integral is along a ray Cθ = eiθR+ that does not contain any singularity of ϕ̂(χ). The
function sθ(ϕ)(ζ) is holomorphic on the sector in C∗ given by those ζ such that |e−ζχ| → 0 for
χ→∞ along Cθ and it is asymptotic to the formal series ϕ(ζ) for ζ ∼ ∞. The above integral
representation of the (possibly multivalued) analytic continuation of sθ(ϕ)(ζ) also holds outside
the sector, provided the path of integration is deformed accordingly.

Denote CθSt the ray passing through the logarithmic singularity of ϕ̂mp (χ) at χp = 4eu/p,
corresponding to θSt = arg eu − arg p. For any ray Cθ = eiθR+ with θ 6= θSt, the Borel
resummation

sθ(ϕ
m
p )(ζ) = ζ

∫
Cθ
ϕ̂mp (χ)e−ζχdχ (5.7.24)

defines an analytic function in the sector where the real part of the exponential is negative, i.e.,
the half-plane

Πθ =
{
ζ ∈ C| − θ − π

2
< arg ζ < −θ +

π

2

}
. (5.7.25)

Moreover,

sθ(ϕ
m
p )(ζ) ∼ ϕmp (ζ), (5.7.26)

for |ζ| → ∞ in the sector Πθ.
Denote s(ϕmp )(ζ) the multivalued analytic continuation of sθ(ϕ

m
p )(ζ) on C∗. Notice that one

obtains the same function by analytically continuing sθ′(ϕ
m
p )(ζ) for θ′ 6= θ in the appropriate

direction.
Observe that s(ϕmp )(ζ) is asymptotic to ϕmp (ζ) for |ζ| → ∞ in any sector where it is given

by an integral representation as above. Denoting θ0 = θSt + π, this happens whenever θ 6= θSt,
namely when θ ∈ (θ0 − π, θ0 + π). Therefore

s(ϕmp )(ζ) ∼ ϕmp (ζ) (5.7.27)

for
ζ ∈

⋃
θ∈(θ0−π,θ0+π)

Πθ, (5.7.28)

i.e., when ζ belongs to the sector of opening 3π given by

−θ0 −
3π

2
< arg ζ < −θ0 +

3π

2
. (5.7.29)

The monodromy of the multivalued function s(ϕmp ) is determined by the resurgent structure
of the Borel transform. Indeed, for ζ ∈ ΠθSt we have

s(ϕmp )(e2πiζ)− s(ϕmp )(ζ) = ζ

∫
H
ϕ̂mp (χ)e−ζχdχ, (5.7.30)

where H is the clockwise Hankel contour around the singular point χp = 4eu/p coming from
infinity along the direction θSt. By substituting (5.7.20) and performing the change of variable
of integration χ = χp + ξ, we find it equals

−(−1)me−ζ
4eu

p ζ
1

π

∫
H0

log

(
− pξ

4eu

)
ϕ̂m−p(ξ)e

−ζξdξ, (5.7.31)
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where H0 is the Hankel contour H translated to 0. This in turn is equal to

−2i(−1)me−ζ
4eu

p ζ

∫
CθSt

ϕ̂m−p(ξ)e
−ζξdξ. (5.7.32)

Therefore, the monodromy in ζ of s(ϕmp ) is given by

s(ϕmp )(e2πiζ)− s(ϕmp )(ζ) = 2i(−1)m+1e−ζ
4eu

p sθSt(ϕ
m
−p)(ζ). (5.7.33)

Let us now explicitly compute the function s(ϕmp )(ζ). Letting χ = teiθ, t ∈ R+ and using
the Laplace transform formula (5.B.21), we have

sθ(ϕ
m
p )(ζ) =

1√
π
eiθζ

∫ ∞
0

2F1

(
1

2
−m, 1

2
+m, 1;

eiθp

4eu
t

)
e−e

iθζtdt

=
2

iπ

√
eu

p
e−ζ

2eu

p ζ
1
2Km

(
−ζ 2eu

p

)
,

(5.7.34)

where Km(z) is the modified Bessel function of the second kind, see Appendix 5.B.1. Clearly
this identity extends to the analytic continuations of the functions on the plane cut at e−iθStR+,
therefore we have

s(ϕmp )(ζ) =
2

iπ

√
eu

p
e−ζ

2eu

p ζ
1
2Km

(
−ζ 2eu

p

)
. (5.7.35)

Remark 5.7.4. Equation (5.7.35) is actually an identity between functions defined on the universal
covering of C∗ and formula (5.B.15) for the asymptotics of Kn(z) on a sector of opening 3π
induces the asymptotic formula (5.7.27).

Let us now define the resummed weak functionals dsp(ζ) ∈ T ∗
λ̂0
Mweak for p ∈ S1 by replacing

the formal series ϕmp with their Borel resummations s(ϕmp ) in (5.7.7)-(5.7.10):

〈dsp(ζ), em〉 =
1

iπ

(
eu

p2
+ 1

)
pmeζvζ1/2Km

(
−ζ 2eu

p

)
, m > 1 (5.7.36)

〈dsp(ζ), em〉 =
1

iπ

eu

p2
pmeζvζ1/2Km

(
−ζ 2eu

p

)
, m 6 0 (5.7.37)

〈dsp(ζ), ev〉 =
1

iπ
eζvζ1/2K0

(
−ζ 2eu

p

)
, (5.7.38)

〈dsp(ζ), eu〉 =
1

iπ

eu

p
eζvζ1/2K1

(
−ζ 2eu

p

)
. (5.7.39)

One can easily check that the weak functionals dsp(ζ) solve the Dubrovin equation by a direct
computation using the formulas for the derivatives of Km given in Appendix 5.B.1.

By replacing (5.B.11) (or, equivalently, (5.7.33)) in (5.7.36)–(5.7.39), one can easily compute
the monodromy of the weak functionals dsp. We summarize the results proved so far in the
following Proposition:

Proposition 5.7.5. The weak functionals dsp(ζ) solve the Dubrovin equation (5.4.6), and
satisfy

dsp(ζ) ∼ dyformal
p (ζ), for | arg ζ + θ0| <

3π

2
, (5.7.40)

where θ0 = π + arg eu − arg p. Their monodromy is given by

dsp(ζe
2πi) = dsp(ζ)− 2ds−p(ζ), (5.7.41)

ds−p(ζe
−2πi) = ds−p(ζ)− 2dsp(ζ), (5.7.42)

where ds−p = dse−iπp.
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Remark 5.7.6. The solution above is actually multivalued in the parameter p. We will see that
any choice of range [φ0, φ0 + 2π) for arg p gives a complete family of solutions. Notice that the
family of solutions with arg eu − θ 6 arg p 6 arg eu − θ + 2π will have the formal asymptotics
for ζ in the open half-plane Πθ, see (5.7.25).

Remark 5.7.7. The asymptotic expansion (5.B.13) of Km(z) for m→ ±∞ implies that

|〈dsp(ζ), em〉| ∼ β±|m|−1/2(α±|m|)|m| (5.7.43)

for positive constants α±, β±. Therefore the weak functionals dsp(ζ) defined by the coefficients
above do not extend to cotangent vectors in T ∗

λ̂0
M .

While the weak functional dsp(ζ) do not define elements in the dual to Tλ̂0M , i.e., they are
not cotangent vectors, the difference dsp − ds−p is not only an element of T ∗

λ̂0
M , but is actually

representable. More precisely,

Proposition 5.7.8. For σ = σ(p), we have that

dyσ(ζ) = dsp(ζ)− ds−p(ζ). (5.7.44)

Proof. The coefficients of the integral solutions defined in Section 5.6, i.e.,

〈dyσ, X̂〉 =
ζ1/2

2πi

∮
|z|=1

eζλσ(z)〈dλσ(z), X̂〉dz
z
, (5.7.45)

obtained by acting on the elements em̂ where m̂ ∈ Z ∪ {v, u}, see (5.7.3), are given by Bessel
functions of the first kind

〈dyσ, em〉 =

(
eu

p2
+ 1

)
ζ

1
2 eζvpmIm

(
ζ

2eu

p

)
, m > 1 (5.7.46)

〈dyσ, em〉 =
eu

p2
ζ

1
2 eζvpmIm

(
ζ

2eu

p

)
, m 6 0 (5.7.47)

〈dyσ, ev〉 = ζ
1
2 eζvI0

(
ζ

2eu

p

)
, (5.7.48)

〈dyσ, eu〉 =
eu

p
ζ

1
2 eζvI1

(
ζ

2eu

p

)
, (5.7.49)

where p = p(σ). Let us illustrate how to obtain the coefficients (5.7.46)–(5.7.49) by proving
(5.7.46). Let m > 1, then

〈dyσ, em〉 = σeζvζ
1
2

1

2πi

∮
|z|=1

eζ
eu

p ( zp+ p
z )zm

dz

z
(5.7.50)

=

(
eu

p2
+ 1

)
eζvζ

1
2pm

1

2πi

∮
|w|=1

e
1
2
ζ 2eu

p (w+ 1
w)wm

dw

w
(5.7.51)

where in the second line we replaced w = z/p. Equation (5.7.46) follows by noting that the
integral is a residue of the generating function (5.B.17). The proposition follows by applying
the monodromy identity (5.B.10) to (5.7.46)–(5.7.49) and (5.7.36)–(5.7.39).

Despite the fact that the weak functionals dsp(ζ) do not extend to Tλ̂0M as explained above,
we can still ask the question about their completeness as a family of functionals on Tλ̂0M

test for
fixed ζ. It is indeed the case that the map

X̂ 7−→ 〈dsp(ζ), X̂〉, (5.7.52)

that associates to X̂ ∈ Tλ̂0M
test a function of p with |p| = 1 and arg p ∈ [φ0, φ0 + 2π) for some

fixed φ0 is injective, as proved in the following



118 Chapter 5. Stokes phenomenon and Frobenius manifolds

Proposition 5.7.9. The map (5.7.52) associated with the family of functionals {dsp(ζ)} is
injective.

Proof. Let X̂ = (X(z), Xv, Xu) ∈ Tλ̂0M
test with

X(z) = X−sz
−s + · · ·+X−1z

−1 +X0 +X1z + . . . Xrz
r ∈ C[z, z−1]. (5.7.53)

Then from (5.7.36)–(5.7.39) we get

iπeζvζ−
1
2 〈dsp(ζ), X̂〉 = X−se

up−s−2Ks

(
−ζ 2eu

p

)
+ · · ·+X0e

up−2K0

(
−ζ 2eu

p

)
(5.7.54)

+X1

(
eup−2 + 1

)
pK1

(
−ζ 2eu

p

)
+ · · ·+Xr

(
eup−2 + 1

)
prKr

(
−ζ 2eu

p

)
+XvK0

(
−ζ 2eu

p

)
+Xue

up−1K1

(
−ζ 2eu

p

)
.

By (5.B.4), the expression above is an expansion in {p2m, p2n log(−ζeup−1)}n,m∈Z. Assume

〈dsp(ζ), X̂〉 = 0 for all p. To show completeness, we need to prove X̂ = 0. By (5.B.4), the
coefficient of p2r of (5.7.54) equals

Xr
1

2
(−ζeu)−r(r − 1)!, (5.7.55)

which must be zero, so Xr = 0. Repeating this argument with the coefficients of p2r−2, . . . , p2

shows Xr−1 = · · · = X1 = 0. We are left with

X−se
up−s−2Ks

(
−ζ 2eu

p

)
+ · · ·+X0e

up−2K0

(
−ζ 2eu

p

)
(5.7.56)

+XvK0

(
−ζ 2eu

p

)
+Xue

up−1K1

(
−ζ 2eu

p

)
= 0.

The coefficient of log(−ζeup−1) of (5.7.56) equals −Xv, so Xv = 0. The constant coefficient
equals

euXu (−ζ2eu)−1 , (5.7.57)

so Xu = 0. Extracting the coefficients of log(−ζeup−1)p−2, . . . , log(−ζeup−1)p−2s−2 in an
analogous manner shows that X0 = · · · = X−s = 0.

5.7.5 Stokes matrices for pairs of solutions

In this section, we restrict to pairs of solutions and we compute the partial Stokes matrix that
describes their monodromy.

Let dsp and ds−p be the solutions corresponding to arguments arg p and arg p−π, respectively.
Recall their formal asymptotics as |ζ| → ∞

dsp(ζ) ∼ dyformal
p = eζup(r0

p + r1
pζ
−1 + . . . ), arg ζ ∈ (−θ0 −

3π

2
,−θ0 +

3π

2
), (5.7.58)

ds−p(ζ) ∼ dyformal
−p = eζu−p(r0

−p + r1
−pζ

−1 + . . . ), arg ζ ∈ (−θ0 −
5π

2
,−θ0 +

π

2
), (5.7.59)

where dyformal
p is given by (5.7.6), and θ0 = π + arg eu − arg p.
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The Stokes line `St separates the two halves of the complex plane where eζup and eζu−p are
respectively dominant for |ζ| → ∞. It is given by

`St =
{
ζ ∈ C

∣∣∣ < (ζup) = < (ζu−p)
}
, (5.7.60)

namely the line of argument θ0 + π
2

mod π. Notice that the exponential eζup dominates eζu−p if
arg ζ ∈ (−θ0 + π

2
,−θ0 + 3π

2
).

We choose an admissible line ` not coinciding with the Stokes line, in this case the positive
direction of ` is of argument θ with θ 6= θ0 + π

2
mod π.

For a small ε > 0, we define two sectors containing the half-planes separated by ` as follows

Πε
right = {ζ ∈ C | θ − π − ε < arg ζ < θ + ε}, (5.7.61)

Πε
left = {ζ ∈ C | θ − ε < arg ζ < θ + π + ε}. (5.7.62)

The intersection of Πε
right and Πε

left has two connected components

Πε
+ = {ζ ∈ C | θ − ε < arg ζ < θ + ε}, (5.7.63)

Πε
− = {ζ ∈ C | θ + π − ε < arg ζ < θ + π + ε}. (5.7.64)

Let us assume that the argument θ of the admissible line ` has been chosen in such a way that
ds±p(ζ) is dominant in Πε

∓; this amounts to θ ∈ (−θ0 − π
2
,−θ0 + π

2
).

Let us define the following “matrix” solutions on Πε
right/left

Yright(ζ) = (dsp(ζ), ds−p(ζ)) , θ − π − ε < arg ζ < θ + ε, (5.7.65)

Yleft(ζ) =
(
dsp(ζ), ds−p(ζe

−2πi)
)
, θ − ε < arg ζ < θ + π + ε, (5.7.66)

where we have chosen the appropriate branch cuts that guarantee the formal asymptotics in the
half-plane where they are defined.

Theorem 5.7.10. The solutions Yright(ζ) and Yleft(ζ) defined above have the formal asymptotics

Yleft/right(ζ) ∼
(
dyformal

p (ζ), dyformal
−p (ζ)

)
(5.7.67)

for |ζ| → ∞ in their respective domains of definition Πε
right/left. On their common domains of

definition Πε
± they are related by

Yleft(ζ) = Yright(ζ)S+, ζ ∈ Πε
+, (5.7.68)

Yleft(ζ) = Yright(ζ)S−, ζ ∈ Πε
−, (5.7.69)

where the Stokes matrices S± are given by

S− =

(
1 0
−2 1

)
, S+ =

(
1 −2
0 1

)
. (5.7.70)

Proof. The theorem follows from Proposition 5.7.5.

5.7.6 Stokes matrices

Let us fix θ ∈ R and define two open half-planes Πright/left as follows

Πright = {ζ ∈ C | θ − π < arg ζ < θ}, (5.7.71)

Πleft = {ζ ∈ C | θ < arg ζ < θ + π}. (5.7.72)
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Let us define two families of solutions Yright and Yleft of the Dubrovin equation with formal
asymptotics in the half-planes Πright/left respectively. These can be seen as the analogues of the
fundamental solutions in the finite-dimensional case.

The family Yright is defined on Πright by

(Yright(ζ))p = dsp(ζ) for arg p ∈ [arg eu + θ − π

2
, arg eu + θ +

3π

2
), (5.7.73)

where θ − π < arg ζ < θ; the family Yleft is defined on Πleft by

(Yleft(ζ))p =

{
dsp(ζ), arg p ∈ (arg eu + θ + π

2
, arg eu + θ + 3π

2
)

dsp(e
−2πiζ), arg p ∈ (arg eu + θ − π

2
, arg eu + θ + π

2
)
, (5.7.74)

where θ < arg ζ < θ + π.
While the fundamental solutions Yright/left have formal asymptotics only in the domains

Πright/left, they can be nevertheless analytically continued beyond those sectors and therefore
compared, defining operators that are infinite-dimensional analogues of the Stokes matrices. We
summarize these observations and we compute the Stokes operators in the following theorem.

Theorem 5.7.11. The families of solutions Yright and Yleft have the formal asymptotics(
Yright/left(ζ)

)
p
∼ dyformal

p (ζ) (5.7.75)

for |ζ| → ∞ in the half-planes Πright/left.
On the sectors Πε

± they are related by

(Yleft(ζ))p = (Yright(ζ))p − 2

{
0, arg p ∈ (arg eu + θ + π

2
, arg eu + θ + 3π

2
)

(Yright(ζ))eπip , arg p ∈ (arg eu + θ − π
2
, arg eu + θ + π

2
)

for ζ ∈ Πε
+, and

(Yleft(ζ))p = (Yright(ζ))p − 2

{
(Yright(ζ))e−πip , arg p ∈ (arg eu + θ + π

2
, arg eu + θ + 3π

2
)

0, arg p ∈ (arg eu + θ − π
2
, arg eu + θ + π

2
)

for ζ ∈ Πε
−.

Remark 5.7.12. We can formally express the relation between Yright and Yleft in terms of kernels
S± by writing

(Yleft(ζ))p =

∫
S1

(Yright(ζ))q (S±)qpdq, (5.7.76)

where the integral is taken on the points q in S1 with argument in [arg eu+θ− π
2
, arg eu+θ+ 3π

2
).

The kernels representing the analogues of the Stokes matrices are then written as

(S+)qp = δ(q − p)− 2χ(q)δ(q − eπip), (5.7.77)

(S−)qp = δ(q − p)− 2χ(p)δ(p− eπiq), (5.7.78)

where χ(p) is the function equal to one when arg p is in (arg eu + θ + π
2
, arg eu + θ + 3π

2
) and

zero otherwise, and the delta function satisfies the usual relation∫
S1

f(q)δ(q − p)dq = f(p). (5.7.79)

Notice that the two kernels S+ and S− are the transposes of one another, namely

(S+)pq = (S−)qp. (5.7.80)
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Appendix 5.A Saddle point asymptotics

Let us recall the proof of the following lemma, which can be seen as a simple application of
Perron’s method [124] to our particular case.

Lemma 5.A.1. Let f and g be holomorphic functions defined in a neighborhood of a point z′

where f has a simple critical point and let C be a path passing through z′ such that the real part
of eiψf(z) restricted to C has a maximum at z′. Then the function of ζ defined by

I = ζ1/2

∫
C
eζf(z)g(z)dz (5.A.1)

admits the asymptotic expansion

I ∼ eζf(z′)
∑
n>0

dnζ
−n, (5.A.2)

for ζ = |ζ|eiψ, |ζ| → +∞, with

dn = i(−1)nΓ(n+ 1/2) Resz=z′
g(z)

(f(z)− f(z′))n+1/2
dz. (5.A.3)

Proof. By shifting the variable of integration and renaming f and g we can assume that f and
g are analytic in a neighborhood of z = 0 with f(0) = f ′(0) = 0 and f ′′(0) 6= 0. We write

f(z) = cz2 +O(z3) with c = f ′′(0)
2
∈ C∗.

By deforming the path C, we can make it coincide with a steepest descent path in a sufficiently
small neighborhood of the critical point. We can moreover restrict the integral to a part of the
path arbitrarily close to the critical point without changing the asymptotic expansion, as the
difference will be exponentially vanishing.

We will therefore assume that C is steepest descent path defined as the preimage of the path
χ(t) = −e−iψt for t ∈ [0, T ] via f(z) with the appropriate orientation. Denote by C+ the part of
the path C leaving the critical point and by C− the one arriving at the critical point.

Let w(z) be the unique square root of c−1f(z) with w(z) = z +O(z2). The function w(z) is
biholomorphic, so we can use it to change the variable of integration; denoting the inverse by
z(w), we get

I = ζ1/2

∫
C
eζcw

2

s(w)dw, (5.A.4)

where s(w) = g(z(w))
w′(z(w))

is holomorphic at w = 0 with Taylor expansion s(w) =
∑

n>0 snw
n.

Let C̃ be the path η(t) = −e−iψc−1t for t ∈ [0, T ]. Let
√
η be the branch of the square root

that maps C̃ to C+ (we choose a branch cut for the square root that does not coincide with C̃).
The other branch −√η maps C̃ to −C−. Splitting the integral in the two parts corresponding to
C+ and C− and changing the variable of integration with w =

√
η and w = −√η respectively,

we obtain

I = ζ1/2

∫
C̃
eζcηs̃(η)

dη
√
η
, (5.A.5)

where

s̃(η) =
1

2
(s(
√
η) + s(−√η)) =

∑
n>0

s2nη
n. (5.A.6)

The integral is explicitly given by

I = ζ1/2

∫ T

0

e−|ζ|tt−1/2a(t)dt, (5.A.7)
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with

a(t) =

√
−e
−iψ

c
s̃

(
−e
−iψ

c
t

)
. (5.A.8)

According to Watson’s Lemma (see [90, Proposition 2.1]), we have the following asymptotic
expansion as |ζ| → ∞∫ T

0

e−|ζ|tt−1/2a(t)dt ∼
∑
n>0

Γ(n+ 1/2)
a(n)(0)

n!
|ζ|−n−1/2, (5.A.9)

for any complex valued smooth function a(t) defined in a neighborhood of [0, T ]. Clearly,

a(n)(0) = n!s2n

(
−e
−iψ

c

)n+1/2

, (5.A.10)

so we obtain the asymptotic expansion

I ∼ i
∑
n>0

Γ(n+ 1/2)
s2n

cn+1/2
(−ζ)−n. (5.A.11)

We can finally compute the coefficients sn as residues

sn = Resw=0
g(z(w))

w′(z(w))

dw

wn+1
= Resz=0

g(z)

w(z)n+1
dz. (5.A.12)

Expressing w(z) as square root of c−1f(z), we obtain the desired result.

Remark 5.A.2. We choose the branches of the roots of c and eiψ such that the sign in the final
expression is +1.

Appendix 5.B Special functions

5.B.1 Modified Bessel functions

In this appendix, we go over the definition and some properties of the modified Bessel functions.
For more details, we refer the reader to [94, Sections 10.25-10.46]. The modified Bessel functions
of the first kind are defined by

Iν(z) =
∞∑
k=0

1

Γ (k + ν + 1) k!

(z
2

)2k+ν

. (5.B.1)

The modified Bessel functions of the second kind are defined by

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(πν)
, ν /∈ Z, (5.B.2)

Km(z) = lim
µ→m

Kµ(z), m ∈ Z. (5.B.3)

For n ∈ Z, In(z) is entire and Kn(z) is multivalued with a branch cut on R−. Its multivaluedness
becomes clear from the expansion at z = 0

Kn(z) =
1

2

(z
2

)−n n−1∑
k=0

(n− k − 1)!

k!

(
−1

4
z2

)k
+ (−1)n+1 log

(z
2

)
In(z) (5.B.4)

+ (−1)n
1

2

(z
2

)n ∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))

(
z
2

)2k

k!(n+ k)!
,
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where

ψ(z) =
∞∑
k=1

(
1

k
− 1

k + z − 1

)
− γ, (5.B.5)

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
. (5.B.6)

The following properties will be used in the text:

In(−z) = (−1)nIn(z), (5.B.7)

I ′n(z) = In−1(z)− n

z
In(z), (5.B.8)

K ′n(z) = −Kn−1(z)− n

z
Kn(z). (5.B.9)

The monodromy of Kn(z) is given by

Kn(zemπi) = (−1)mnKn(z)− (−1)n(m−1)mπiIn(z), (5.B.10)

Kn(zemπi) = (−1)n(m−1)mKn(zeπi)− (−1)nm(m− 1)Kn(z). (5.B.11)

It is also useful to keep in mind their asymptotic expansions for large n

In(z) ∼ 1√
2πn

( ez
2n

)n
, (5.B.12)

Kn(z) ∼
√

π

2n

(
2n

ez

)n
, (5.B.13)

and for large z

In(z) ∼ ez√
2πz

∞∑
k=0

(−1)kak(n)z−k, | arg z| < 1

2
π, |z| → ∞, (5.B.14)

Kn(z) ∼ e−z
√

π

2z

∞∑
k=0

ak(n)z−k, | arg z| < 3

2
π, |z| → ∞, (5.B.15)

where a0(n) = 0, and

ak(n) =
(4n2 − 12)(4n2 − 32) . . . (4n2 − (2k − 1)2)

k!8k
. (5.B.16)

The In can be encoded together in a generating function

e
1
2
z(t+t−1) =

∞∑
n=−∞

tnIn(z), (5.B.17)

which converges for all t ∈ C∗.

5.B.2 Gauss hypergeometric functions

The definition and properties of the Gauss hypergeometric functions presented below are taken
from [94, Chapter 15]. For more details, we refer the reader to that source. The Gauss
hypergeometric function is defined by the power series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n

n!(c)n
zn, (5.B.18)
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in the disk |z| < 1 and by analytic continuation elsewhere, where

(q)n = q(q + 1) . . . (q + n− 1) (5.B.19)

denotes the rising factorial. At z = 1, they have a logarithmic branch point of the form

2F1(a, b, a+ b; z) = − Γ(a+ b)

Γ(a)Γ(b)
log(1− z) 2F1(a, b, a+ b; 1− z) (5.B.20)

+
∞∑
k=0

(a)k(b)k

k!2
(2ψ(k + 1)− ψ(a+ k)− ψ(b+ k)) (1− z)k,

where the function ψ is defined by (5.B.5)–(5.B.6).
The following Laplace transform will be used in the text, see [99]: for <c,<q > 0, | argω| < π,

we have ∫ ∞
0

2F1(a, 1− a; c;−ωx)e−qxdx =
q

1
2
−c

√
πω

Γ(c)e
q
2ωKa− 1

2

( q

2ω

)
, (5.B.21)

where Kν(z) is the modified Bessel function of the second kind, defined in Appendix 5.B.1.
Finally, we state and prove a technical lemma necessary for the Borel resummation procedure

performed in Section 5.7.

Lemma 5.B.1. For |z| < 4, the power series

f(z) =
∞∑
k=0

(
−1/2

k

)(
m+ k − 1/2

2k

)
zk (5.B.22)

converges and coincides with the Gauss hypergeometric function

f(z) = 2F1

(
1

2
−m, 1

2
+m, 1;

z

4

)
. (5.B.23)

Proof. We write (
−1

2

k

)
=

(−1)k(1
2
)(k)

k!
, (5.B.24)(

m+ k − 1
2

2k

)
=

(m+ 1
2
)(k)(m− 1

2
)(k)

(2k)!
, (5.B.25)

where (a)(n) is the rising factorial and (a)(n) is the falling factorial, given by

(a)(n) = a(a− 1)(a− 2) . . . (a− n+ 1), (5.B.26)

(a)(n) = a(a+ 1)(a+ 2) . . . (a+ n− 1). (5.B.27)

Using the property

(a)(n) = (−1)n(−a)(n), (5.B.28)

we can write

f(z) =
∞∑
k=0

(1
2
)(k)(m+ 1

2
)(k)(1

2
−m)(k)

(2k)!k!
zk. (5.B.29)
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Comparing this expression to the power series expansion (5.B.18) of the hypergeometric function
reduces the lemma to proving the identity

4kk!(1/2)(k) = (2k)!, k = 0, 1, . . . , (5.B.30)

which, after noting (2k)! = k!(k + 1)(k), further reduces to

(k + 1)(k) = 4k(1/2)(k). (5.B.31)

To prove (5.B.31), we proceed via induction. For k = 0, 1 it is clear that it holds. Assume it is
true for k > 1. Then

(k + 2)(k+1) = (k + 2)(k)(2k + 2) =
(k + 1)(k+1)

k + 1
(2k + 2) = 2(k + 1)(k+1) (5.B.32)

= 2(k + 1)(k)(2k + 1) = 4k(1/2)(k)2(2k + 1) = 4k+1(1/2)(k)(k + 1/2)

= 4k+1(1/2)(k+1).
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Summary

In this dissertation, we study the underlying geometry of integrable systems, in particular tau-
symmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations.

First, we explore the close connection between the realms of integrable systems and algebraic
geometry by giving a new proof of the Witten conjecture, which constructs the string tau-
function of the Korteweg–de Vries hierarchy via intersection theory of the moduli spaces of stable
curves with marked points. This novel proof is based on the geometry of double ramification
cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps
facilitate the computation of intersection numbers of psi classes.

Second, we examine the Dubrovin–Zhang hierarchy, an integrable system constructed from a
Frobenius manifold by deforming its associated pencil of Poisson structures of hydrodynamic type.
This integrable hierarchy was proved to be Hamiltonian and tau-symmetric, and conjectured to
be bi-Hamiltonian. We prove a vanishing theorem for the negative degree terms of the second
Poisson bracket, thus providing strong evidence to support this conjecture. The proof of this
theorem demonstrates the implications the bi-Hamiltonian recursion relation and tautological
relations in the cohomology rings of the moduli spaces of stable curves have on the bi-Hamiltonian
structure of the Dubrovin–Zhang hierarchies.

Third, we propose a conjectural formula for the simplest non-trivial product of double
ramification cycles DRg(1,−1)λg in terms of cohomology classes represented by standard
strata. Although there are known formulas relating double ramification cycles to other, more
natural tautological classes, they are much more complicated than the one conjectured here.
This conjecture refines the one point case of the Buryak–Guéré–Rossi conjectural tautological
relations, which are equivalent to the existence of a Miura transformation relating Buryak’s
double ramification hierarchies and the Dubrovin–Zhang ones.

Finally, we analyze the differential geometry of (2 + 1) integrable systems through infinite-
dimensional Frobenius manifolds. More concretely, we study, both formally and analytically, the
Dubrovin equation of the 2D Toda Frobenius manifold at its irregular singularity. The fact that
it is infinite-dimensional implies a qualitatively different behavior than its finite-dimensional
analogue, the Frobenius manifold underlying the extended Toda hierarchy. The two most
remarkable differences are non-uniqueness of formal solutions to the Dubrovin equation and
non-completeness of the analytic ones. These features together greatly complicate the analysis
of Stokes phenomenon, which we perform by splitting the space of solutions into infinitely many
two-dimensional subspaces.

Keywords: Integrable system, Frobenius manifold, moduli space of stable curves, cohomolog-
ical field theory, Dubrovin–Zhang hierarchy, double ramification cycles.
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Samenvatting

In dit proefschrift bestuderen we de onderliggende meetkunde van integreerbare systemen,
waarbij we vooral de nadruk zullen leggen op tau-symmetrische bi-Hamiltoniaanse hiërarchieën
van evolutionaire partieële differentiaalvergelijkingen.

We beginnen met het bestuderen van het nauwe verband tussen de integreerbare systemen
en algebräısche meetkunde door een nieuw bewijs te geven van het Witten vermoeden, dit
construeert de snaar tau-functie van de Korteweg–de Vries hiërarchie via de doorsnijdings
theorie van de moduli ruimtes van stabiele krommes met gemerkte punten. Dit nieuwe bewijs
is gebaseerd op de meetkunde van dubbel vertakte cykels, tautologische klassen waarvan het
gedrag onder terugtrekkingen van de plak- en vergeetachtige afbeeldingen de berekening van de
doorsnijdings getallen mogelijk maken.

Als tweede bestuderen we de Dubrovin–Zhang hiërarchie, een integreerbaar systeem gecon-
strueerd uit een Frobenius variëteit door zijn geassocieerde bi-Hamiltoniaanse structuur van
het hydrodynamische type te vervormen. Er wordt bewezen dat deze integreerbare hiërarchie
Hamiltonisch en tau-symmetrisch is en vermoeden dat hij verder bi-Hamiltonisch is. We bewijzen
een stelling van verdwijnen voor de negatieve graad termen van het tweede Poisson haakje en
geven daarmee een sterke aanwijzing dat dit vermoeden waar is. Het bewijs van deze stelling
laat de gevolgen zien van de bi-Hamiltonische recursie relatie en de tautologische relaties in
de cohomologie ringen van de moduli ruimtes van stabiele krommen op de bi-Hamiltonische
structuur van de Dubrovin–Zhang hiërarchie.

Als derde stellen we een formule voor waarvan we vermoeden dat het het simpelste niet
triviale product van dubbele vertakkings cykels DRg(1,−1)λg is in termen van cohomologie
klassen die gerepresenteerd worden door strata. Alhoewel er bekende formules zijn die de dubbele
vertakkimgs cykels aan elkaar relateren, meer natuurlijke tautologische klassen, zijn zij veel
ingewikkelder dan degene die hier vermoed worden. Dit vermoeden verfijnt het één punts geval
van de Buryak–Guéré–Rossi vermoedelijke tautologische relaties, deze zijn equivalent aan het
bestaan van een Miura transformatie die Buryak’s dubbele vertakkings hiërarchieën relateerd
aan de Dubrovin–Zhang hiërarchieën.

Als laatste analyzeren we de differentiaal meetkunde van (2 + 1) integreerbare systemen via
oneindig dimensionale Frobnius variëteiten. Concreter, we bestuderen, formeel en analytisch, de
Dubrovin vergelijking van de 2D Toda Frobenius variëteit bij zijn irreguliere singulariteit. Het
feit dat dit oneindig dimensionaal is impliceert een kwalitatief anders gedrag dan zijn eindig
dimensionale versie, de onderliggende Frobennius variëteit van de uitgebreide Toda hiërarchie.
De twee meest opmerkelijke verschillen zijn de niet uniekheid van de formele oplossingen van de
Dubrovin vergelijking en de incompleteheid van de analytische oplossingen. Deze eigenschappen
maken de analyze van het Stokes fenomeen veel ingewikkelder, dat we bestuderen door de ruimte
van oplossing in oneindig veel twee dimensionale deelruimtes op te splitsen.
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Trefwoorden: Integreerbaar systeem, Frobenius variëteit, moduli ruimte van stabiele krommes,
cohomologische veldentheorie, Dubrovin–Zhang hiërarchie, dubbel vertakte cykels.



Résumé

Dans cette thèse, nous étudions la géométrie sous-jacente des systèmes intégrables. Nous
nous intéressons particulièrement aux hiérarchies d’EDPs d’évolution, tau-symétriques et bi-
Hamiltoniennes.

D’abord, nous explorons la relation étroite entre les champs des systèmes intégrables et la
géométrie algébrique en donnant une nouvelle démonstration de la conjecture de Witten, qui
construit la string tau-fonction de la hiérarchie de Korteweg–de Vries par théorie d’intersection des
espaces de modules des courbes stables avec des points marqués. Cette nouvelle démonstration
se base sur la géométrie des cycles de ramification double, des classes tautologiques dont le
comportement sous des pullbacks des applications forgetful et gluing facilitent le calcul des
nombres d’intersection des psi classes.

Dans un deuxième temps, nous examinons la hiérarchie de Dubrovin et Zhang, un système
intégrable construit en déformant la structure bi-Hamiltonienne de type hydrodynamique associée
à une variété de Frobenius. Cette hiérarchie intégrable est Hamiltonienne et tau-symétrique,
et est conjecturée bi-Hamiltonienne. Nous démontrons un théorème d’annulation des termes
de degrés négatifs du deuxième crochet de Poisson qui fournit des preuves fortes pour soutenir
cette conjecture. La démonstration de ce théorème illustre les implications que la récursivité
bi-Hamiltonienne et les relations tautologiques en cohomologie des espaces de modules des
courbes stables ont sur la structure bi-Hamiltonienne des hiérarchies de Dubrovin et Zhang.

Dans un troisième temps, nous conjecturons une formule pour le plus simple des produits non
triviaux des cycles de ramification double DRg(1,−1)λg en termes des classes de cohomologie
réprésentées par les strates standards. Malgré l’existence de formules qui mettent en relation
des cycles de ramification double avec autres classes tautologiques plus naturelles, elles sont
beaucoup plus compliquées que celle proposée ici. Cette conjecture précise dans le cas d’un
point les relations tautologiques conjecturales de Buryak, Guéré et Rossi, qui sont équivalentes
à l’existence d’une transformation de Miura qui relie la hiérarchie de ramification double de
Buryak et celle de Dubrovin et Zhang.

Finalement, nous analysons la géométrie différentielle des systèmes intégrables en (2 + 1)
dimensions par variétés de Frobenius de dimension infinie. Plus concrètement, nous étudions,
formèlement et analytiquement, l’équation de Dubrovin de la variété de Frobenius de la hiérarchie
de Toda bidimensionnelle à sa singularité irrégulière. Le fait qu’elle est de dimension infinie
implique un comportement qualitativement différent de celui de son analogue en dimension finie,
la variété de Frobenius sous-jacente à la hiérarchie de Toda élargie. Les deux différences les
plus rémarcables sont que les solutions formèles de l’équation de Dubrovin ne sont pas uniques
et que les solutions analytiques ne forment pas un système complet. Conjointement ces deux
caractéristiques compliquent l’analyse du phénomène de Stokes, que nous réalisons en divisant
l’espace des solutions en une infinité des sous-espaces de dimension deux.
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théorie cohomologique des champs, hiérarchie de Dubrovin et Zhang, cycles de ramification
double.
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