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Diplôme National - Arrêté du 25 Mai 2016
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Modèles de type EDP pour la croissance de tumeurs

gliales

Directeur de Thèse :

Alain MIRANVILLE
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Introduction générale
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1.1. Modèles de séparation de phase

1.1 Modèles de séparation de phase
En tant que représentant des équations aux dérivées partielles non linéaires, les mo-

dèles de séparation de phase qui ont été initialement proposés en science des matériaux
puis ont été largement utilisés dans de nombreux domaines différents au cours des der-
nières décennies, par exemple la biologie, l’écologie, l’astronomie ou encore le traite-
ment d’images. De plus, l’équation de Cahn-Hilliard, proposée par J.W. Cahn et J.E.
Hilliard en 1958 (voir [12]), est une équation de physique mathématique qui décrit le
processus de séparation de phase, par lequel les deux composants d’un fluide binaire se
séparent spontanément et forment des domaines purs dans chaque composant.

1.1.1 Les équations de Cahn-Hilliard
Le système de Cahn-Hilliard

∂u
∂t

= κ∆µ, κ > 0,

µ = −α∆u + f (u), α > 0,
(1.1)

est généralement réécrit, de manière équivalente, sous la forme d’une équation parabo-
lique du quatrième ordre en espace

∂u
∂t

+ ακ∆2u − κ∆ f (u) = 0, (1.2)

qui est précisément l’équation connue sous le nom d’équation de Cahn-Hilliard. Ces
équations jouent un rôle essentiel dans la science des matériaux et décrivent des carac-
téristiques qualitatives importantes des systèmes à deux phases liées aux processus de
séparation de phase, en supposant une isotropie et une température constante. Cela peut
être observé, par exemple, lorsqu’un alliage binaire (par exemple, Aluminium/Zinc (voir
[112]) ou Fer/Chrome (voir [80, 81, 82]) est suffisamment refroidi . Dans la première
étape, dite de décomposition spinodale : le matériau initialement homogène devient ra-
pidement inhomogène, d’où une microstructure très finement dispersée. La deuxième
étape, appelée grossissement, se produit à une échelle de temps plus lente. De tels
phénomènes jouent un rôle essentiel dans les propriétés mécaniques du matériau, par
exemple la résistance, la dureté, la rupture, la ténacité et la ductilité. Nous renvoyons le
lecteur, par exemple, à [11, 12, 65, 67, 76, 77, 102, 103] pour plus de détails.

Ici, u est le paramètre d’ordre (nous considérerons une densité d’atomes redimen-
sionnée ou concentration d’un des composants du matériau qui prend des valeurs com-
prises entre −1 et 1, les valeurs −1 et 1 correspondant aux états purs. La densité du
deuxième composant est −u, ce qui signifie que la densité totale est une quantité conser-
vée) et µ est le potentiel chimique (plus précisément, la différence de potentiels chi-
miques entre les deux composants). De plus, f est la dérivée d’un potentiel de double

3



Chapitre 1. Introduction générale

puits F. Un potentiel thermodynamiquement pertinent F est la fonction logarithmique
suivante qui découle d’un modèle de champ moyen :

F(s) =
θc

2
(1− s2)+

θ

2
[(1− s) ln(

1 − s
2

)+(1+ s) ln(
1 + s

2
)], s ∈ (−1, 1), 0 < θ < θc, (1.3)

c’est-à-dire,

f (s) = −θcs +
θ

2
ln

1 + s
1 − s

, (1.4)

bien que cette fonction soit très souvent approximée par des fonctions régulières (voir
[25, 26, 37, 38]), typiquement,

F(s) =
1
4

(s2 − 1)2, (1.5)

c’est-à-dire,
f (s) = s3 − s, (1.6)

plus généralement, on peut prendre F(s) = 1
4 (s2 − β2)2, β ∈ R. Dans ce cas, si un terme

source non linéaire est ajouté dans l’équation (1.2), on n’a plus la conservation de la
moyenne spatiale du paramètre d’ordre u, l’existence d’une solution globale en temps
devient un problème. Pire encore, on peut avoir une explosion en temps fini lorsque l’on
considère des termes non linéaires réguliers (voir [28, 36]), ce qui est problématique
au vu des applications. Néanmoins, il a été prouvé dans [73, 89, 96] que, dans certains
cas particuliers, l’existence de solutions globales en temps peut être prouvée lorsque
l’on considère plutôt un terme non linéaire logarithmique. Voir Figure 1.1 pour une
comparaison entre les deux potentiels.

s
-1.5 -1 -0.5 0 0.5 1 1.5

F
(s

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Polynomial Potential
Logarithmic Potential

Figure 1.1 – Le potentiel logarithmique et le potentiel polynomial.

4



1.1. Modèles de séparation de phase

Les termes logarithmiques dans (1.3) correspondent à l’entropie du mélange, et θ
et θc sont respectivement proportionnels à la température absolue (supposée constante
pendant le processus) et à une température critique ; la condition θ < θc garantit que
F a une forme à double puits et qu’une séparation de phase peut se produire. Notez
également que l’approximation polynomiale est raisonnable lorsque la trempe est peu
profonde, c’est-à-dire lorsque la température absolue est proche de la température cri-
tique. Enfin, κ est la mobilité et α est lié à la tension superficielle à l’interface. Nous
renvoyons le lecteur à [15, 16, 46, 91, 92, 94, 99] pour plus de détails.

D’un point de vue phénoménologique, le système de Cahn-Hilliard peut être dérivé
comme suit.

On considère l’énergie libre (totale) suivante, appelée énergie libre de Ginzburg-
Landau :

ΨΩ(u,∇u) =

∫
Ω

(
α

2
|∇u|2 + F(u))dx, α > 0, (1.7)

où Ω ⊂ Rn, n = 1, 2 ou 3, est le domaine occupé par le matériau. Le terme de gradient
dans (1.7) a été proposé dans [12] afin de modéliser l’énergie de surface de l’interface
(c’est-à-dire la capillarité ; notez que ces gradients remontent à J.D. van der Waals (voir
[115]) ; F est aussi appelée énergie libre homogène.

On a alors le bilan de masse
∂u
∂t

= − div h,

où h est le flux massique qui est lié au potentiel chimique µ par l’équation constitutive
suivante (postulée) qui ressemble à la loi de Fick :

h = −κ∇µ.

La définition habituelle du potentiel chimique est qu’il s’agit de la dérivée de l’énergie
libre par rapport au paramètre d’ordre. Ici, une telle définition est incompatible avec la
présence de ∇u dans l’énergie libre. Au lieu de cela, µ est défini comme une dérivée va-
riationnelle de l’énergie libre par rapport à u, ce qui donne (en supposant des conditions
aux limites appropriées)

µ = −α∆u + f (u);

le système de Cahn-Hilliard s’ensuit alors. Cette dérivée variationnelle peut être (for-
mellement) vue en écrivant que, pour une petite variation,

δΨΩ =

∫
Ω

(α∇u · ∇δu + f (u)δu)dx,

où · désigne le produit scalaire euclidien habituel. En supposant des conditions aux
limites compatibles et en intégrant par parties, cela donne

δΨΩ =

∫
Ω

(−α∆u + f (u))δudx,

5



Chapitre 1. Introduction générale

d’où découle la définition.
Le système de Cahn-Hilliard, dans un domaine borné et régulier Ω, est généralement

associé à des conditions aux limites de Neumann, à savoir,

∂µ

∂ν
= 0 sur Γ,

ce qui signifie qu’il n’y a pas de flux de masse aux bords du domaine (notez que h · ν =

−κ ∂µ
∂ν

), et
∂u
∂ν

= 0 sur Γ,

qui est une condition aux limites variationnelle naturelle (par naturelle, nous enten-
dons qu’elle permet d’écrire une formulation variationnelle/faible convenable en vue
de l’analyse mathématique du problème ; cette condition aux limites entraîne également
que l’interface est orthogonale aux bords). Ici, Γ = ∂Ω et ν est la normale unitaire ex-
térieure des bords du domaine. En particulier, il découle de la première condition aux
limites que l’on a la conservation de la masse, c’est-à-dire de la moyenne spatiale du
paramètre d’ordre, obtenue en intégrant (formellement) la première équation de (1.1)
sur Ω,

〈u(t)〉 ≡
1

Vol(Ω)

∫
Ω

u(x, t)dx = 〈u(0)〉, ∀t ≤ 0. (1.8)

Si nous avons à l’esprit l’équation de Cahn-Hilliard du quatrième ordre en espace, nous
pouvons réécrire ces conditions aux limites, de manière équivalente, comme

∂u
∂ν

=
∂∆u
∂ν

= 0 sur Γ. (1.9)

Notez que nous ne considérons généralement pas les conditions aux limites de Diri-
chlet, en raison précisément du fait qu’elles ne donnent pas la conservation de la masse,
bien que de telles conditions aux limites simplifient certainement l’analyse mathéma-
tique. Par ailleurs, on peut aussi considérer des conditions aux limites périodiques (au-
quel cas Ω =

∏n
i=1(0, Li), Li > 0, i = 1, · · · , n) ; dans ce cas, on a toujours la conser-

vation de la masse. De plus, dans le cas de l’hydromécanique, par exemple pour les
mélanges de deux fluides non miscibles, l’angle de contact est dynamique, en raison des
mouvements des fluides. L’étude de l’équation de Cahn-Hilliard munie de conditions
aux limites dynamiques se trouve dans [29, 62, 83, 101, 119].

1.1.2 Les variantes de l’équation de Cahn-Hilliard
Notez que l’équation de Cahn-Hilliard et certaines de ses variantes sont également

pertinentes pour d’autres phénomènes que la séparation de phase, par exemple le désal-
liage (ceci peut être observé dans les processus de corrosion (voir [34])) ; dynamique

6



1.1. Modèles de séparation de phase

des populations (voir [13]) ; croissance tumorale (voir [6, 63]) ; films bactériens (voir
[64]) ; couches minces (voir [106, 113]) ; chimie (voir [116]) ; traitement d’images (voir
[8, 9, 18, 23, 33]) ; l’astronomie, avec même les anneaux de Saturne (voir [114]) ; et
l’écologie (par exemple, le regroupement des moules peut être parfaitement décrit par
l’équation de Cahn-Hilliard (voir [75]).

En particulier, plusieurs de ces phénomènes peuvent être modélisés par l’équation
généralisée de Cahn-Hilliard :

∂u
∂t

+ ακ∆2u − κ∆ f (u) + g(x, u) = 0, α, κ > 0 (1.10)

(ici, α et κ n’ont pas nécessairement la même signification physique que dans l’équation
originale de Cahn-Hilliard). Nous renvoyons le lecteur à [84, 87, 95] (voir aussi [6, 24,
28, 35, 108]) pour plus d’études sur l’équation (1.10). En particulier, l’équation générale
contient les modèles suivants.
(i) Système mixte Allen-Cahn/Cahn-Hilliard. Dans ce cas, on considère le système
d’équations 

∂u
∂t

= ε2D∆µ − µ, D, ε > 0,

µ = −∆u +
f (u)
ε2 ,

qui peut s’écrire, de façon équivalente, comme

∂u
∂t

+ ε2D∆2u − ∆(D f (u) + u) +
f (u)
ε2 = 0,

et est bien de la forme ci-dessus. En particulier, sans le terme ε2D∆µ dans la première
équation, nous avons l’équation d’Allen-Cahn (qui décrit l’ordre des atomes pendant le
processus de séparation de phases ; voir [4]), et, sans le terme −µ, nous avons l’équa-
tion de Cahn-Hilliard. Ces équations sont proposées pour tenir compte des mécanismes
microscopiques tels que la diffusion de surface et l’adsorption/désorption, c’est-à-dire
l’adhésion d’atomes à une surface/la libération d’une substance depuis ou à travers une
surface (voir [57, 59, 60, 79]) et sont étudiés dans [53, 54, 55, 56, 58].
(ii) Équation de Cahn-Hilliard-Oono. Dans ce cas,

g(x, s) = g(s) = βs, β > 0.

Cette fonction a été proposée dans [105] pour tenir compte des interactions à longue
portée (c’est-à-dire non locales) dans la séparation de phase et également pour simplifier
les simulations numériques, car nous n’avons pas à tenir compte de la conservation de
la masse, bien qu’il semble que cette équation n’est pas considérée dans les simulations.

Une variante de ce modèle, proposée dans [31] pour modéliser la séparation de mi-
crophases des copolymères diblocs, consiste à prendre

g(x, s) = g(s) = β(s −
1

Vol(Ω)

∫
Ω

u0(x)dx), β > 0,
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où u0 est la condition initiale. Dans ce cas, nous avons la conservation de la masse ; des
simulations efficaces sont effectuées dans [5, 20]. Cette variante de l’équation de Cahn-
Hilliard-Oono peut également être couplée aux équations incompressibles de Navier-
Stokes pour modéliser un fluide binaire réagissant chimiquement (voir [51, 52] ; voir
aussi [10] pour l’analyse mathématique). Nous renvoyons le lecteur à [30, 88, 118] pour
plus d’études sur l’équation de Cahn-Hilliard-Oono.
(iii) Terme de prolifération. Dans ce cas,

g(x, s) = g(s) = βs(s − 1), β > 0.

Cette fonction a été proposée dans [63] en vue d’applications biologiques et, plus pré-
cisément, pour modéliser la cicatrisation et la croissance tumorale (dans une dimen-
sion spatiale) et le regroupement des cellules tumorales cérébrales malignes (dans deux
dimensions spatiales) ; voir aussi [116] pour d’autres fonctions quadratiques avec des
applications chimiques et [6, 28, 89] pour d’autres polynômes avec des applications
biologiques.
(iv) Terme de fidélité. Dans ce cas,

g(x, s) = λ0χΩ\D(x)(s − h(x)), λ0 > 0, D ⊂ Ω, h ∈ L2(Ω),

où χ désigne la fonction indicatrice, et on considère l’équation

∂u
∂t

+ ε∆2u −
1
ε

∆ f (u) + g(x, t) = 0, ε > 0.

Ainsi écrit, ε correspond à l’épaisseur de l’interface. Cette fonction g est proposée dans
[8, 9] en vue d’applications à l’inpainting d’images binaires (c’est-à-dire des images en
noir et blanc). Ici, h est une image donnée (endommagée) et D est la région d’inpainting
(c’est-à-dire endommagée). De plus, le terme de fidélité g(x, u) est ajouté pour garder la
solution proche de l’image en dehors de la région d’inpainting. L’idée de ce modèle est
de résoudre l’équation jusqu’à l’état stationnaire pour obtenir une version peinte (c’est-
à-dire restaurée) u(x) de h(x). Nous renvoyons le lecteur à [23, 24] pour plus d’études.

Dans cette thèse, nous étudions quelques autres variantes de l’équation de Cahn-
Hilliard, qui sont pratiquement appliquées en biologie et en segmentation d’images.

1.2 Problèmes et cadre
Les cellules gliales sont des cellules non neuronales du système nerveux central (cer-

veau et moelle épinière) et du système nerveux périphérique, qui comprennent différents
types de cellules (voir Figure 1.2). En plus de maintenir l’homéostasie et de fournir un
soutien et une protection aux neurones, ils ont également de nombreuses autres fonc-
tions, par exemple, fournir des nutriments et de l’oxygène aux neurones, détruire les
agents pathogènes et éliminer les neurones morts, etc.
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1.2. Problèmes et cadre

Figure 1.2 – Cellules gliales.

Un gliome est un type de tumeur qui prend naissance dans les cellules gliales du
cerveau ou de la colonne vertébrale. Les gliomes représentent environ 30 pour cent de
toutes les tumeurs cérébrales et du système nerveux central, et 80 pour cent de toutes
les tumeurs cérébrales malignes. Comme expliqué dans [45], l’hypoxie est une carac-
téristique des gliomes et une faible concentration en oxygène déclenche une transition
proliférative à invasive. Il est important d’étudier la biologie du point de vue des mo-
dèles mathématiques. Dans la première partie de cette thèse, nous appliquons plusieurs
modèles différentiels partiels non linéaires pour analyser les problèmes ci-dessus.

De plus, dans la deuxième partie de cette thèse, nous étudions des modèles de type
Cahn-Hilliard pour la segmentation d’image, qui vise à partitionner une image donnée
en régions afin de reconnaître et d’analyser différents objets. La segmentation d’image
joue un rôle important dans le traitement d’image et la vision par ordinateur, plus préci-
sément, les applications pratiques de la segmentation d’image incluent l’imagerie mé-
dicale, la vision artificielle, la détection d’objets, la vidéosurveillance, etc.

1.2.1 Modèles de Cahn-Hilliard pour les cellules gliales

Nous considérons tout d’abord dans le chapitre 3 un modèle de Cahn-Hilliard avec
un terme symport, qui est proposé pour modéliser certains mécanismes énergétiques
dans les cellules gliales, et

∂u
∂t

+ ∆2u − ∆ f (u) +
ku

k′ + u
= J, k, k′ > 0, (1.11)
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∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (1.12)

u|t=0 = u0, (1.13)

où u correspond à une concentration, kx
k′+x est appelé terme symport et prend en compte

les échanges, par exemple, d’une cellule vers son environnement. Une difficulté cruciale
ici est de prouver l’existence d’une solution biologiquement pertinente, pour surmon-
ter cela, nous prenons f logarithmique plutôt qu’un terme non linéaire régulier (typi-
quement cubique), qui peut rendre u négatif et le terme symport singulier. On obtient
l’existence d’une solution faible locale en temps, à savoir,

Théorème 1.2.1. Nous supposons que u0 est donné tel que u0 ∈ H1(Ω), 0 < 〈u0〉 < 1
et 0 < u0(x) < 1, a.e. x ∈ Ω. Alors, il existe T0 = T0(u0) > 0 et une solution faible
u de (1.11)-(1.13) sur [0,T0] telle que u dans C([0,T0]; H1(Ω)w) ∩ L∞(0,T0; H1(Ω)) ∩
L2(0,T0; H2(Ω)) et ∂u

∂t ∈ L2(0,T0; H−1(Ω)), où w désigne la topologie faible. De plus,
0 < u(x, t) < 1, a.e. (x, t) ∈ Ω × (0,T0).

De plus, sous l’hypothèse de 0 ≤ J k′+1
k ≤ 1, la solution faible locale en temps obte-

nue dans le Théorème 1.2.1 peut être globale en temps, c’est-à-dire, défini sur [0,T ],
∀T > 0. On en déduit alors la régularité des solutions, qui est cruciale pour prouver une
séparation stricte du paramètre d’ordre u (et pas seulement sa moyenne spatiale) des
états purs 0 et 1 (voir [96]) . Plus précisément, nous avons ce qui suit.

Théorème 1.2.2. On suppose que n = 1 ou 2, Alors, il existe δ ∈ (0, 1) dépendant de la
norme H1(Ω) de u0 tel que

δ ≤ u(x, t) ≤ 1 − δ, pour presque tout (x, t), x ∈ Ω, t ≥ r,

r > 0 donné.

De plus, nous travaillons sur l’équation de Cahn-Hilliard-Oono avec les termes lo-
garithmiques non linéaires :

∂u
∂t

+ ∆2u − ∆ f (u) + αu +
ku

k′ + u
= J, α, k, k′ > 0, (1.14)

∂u
∂ν

=
∂∆u
∂ν

= 0 sur Γ, (1.15)

u|t=0 = u0, (1.16)

et nous avons le

Théorème 1.2.3. Nous supposons que u0 est donné tel que u0 ∈ H1(Ω), 0 < 〈u0〉 < 1
et 0 < u0(x) < 1, a.e. x ∈ Ω. Alors, il existe T0 = T0(u0) > 0 et une solution faible
u de (1.14)-(1.16) sur [0,T0] telle que u dans C([0,T0]; H1(Ω)w) ∩ L∞(0,T0; H1(Ω)) ∩
L2(0,T0; H2(Ω)) et ∂u

∂t ∈ L2(0,T0; H−1(Ω)). De plus, 0 < u(x, t) < 1, a.e. (x, t) ∈ Ω ×

(0,T0).
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1.2. Problèmes et cadre

De même, sous l’hypothèse de 0 ≤ J ≤ α, la solution faible locale en temps obtenue
dans le Théorème 1.2.3 peut être globale en temps. Nous avons enfin ce qui suit.

Théorème 1.2.4. On suppose que n = 1 ou 2, Alors, il existe δ ∈ (0, 1) dépendant de la
norme H1(Ω) de u0 tel que

δ ≤ u(x, t) ≤ 1 − δ, pour presque tout (x, t), x ∈ Ω, t ≥ r,

r > 0 donné.

1.2.2 Un modèle de Cahn-Hilliard couplé pour les cellules de gliome
hypoxiques

Nous étudions ensuite un modèle couplé pour la transition proliférative à invasive
des cellules de gliome hypoxique, qui est comme suit

∂u
∂t
− ∆u = h(σ)u(α − u), (1.17)

∂σ

∂t
− ∆σ +

uσ
1 + σ

= γ(β − σ), (1.18)

où u représente la densité des cellules tumorales, σ représente la concentration en oxy-
gène et h est le taux de prolifération défini comme

h(s) = a[
s
β

+ b(1 −
s
β

)].

Le terme h(σ)u(α−u) dans l’équation (1.17) représente la croissance dite logistique qui
suppose que les cellules tumorales prolifèrent jusqu’à atteindre la densité cellulaire α.
La constante α est appelée capacité de charge, β représente la concentration en oxygène
dans les vaisseaux sanguins, γ, a, b sont des paramètres biologiques positifs et b ∼ 0, 6 <
1 (ici, on a fixé plusieurs autres paramètres biologiques égaux à un et se référer à [45]
pour plus de détails). De plus, le terme ∆σ dans l’équation (1.18) représente la diffusion
isotrope de l’oxygène, le terme non linéaire uσ

1+σ
représente la consommation d’oxygène

par les cellules tumorales, en supposant une cinétique de Michaelis-Menten, et le terme
γ(β − σ) considère le fait que l’oxygène est libéré des vaisseaux sanguins à une vitesse
linéaire.

Nous travaillons dans un premier temps sur une équation de type Cahn-Hilliard pour
l’oxygène dans le modèle couplé dans le chapitre 4, plus précisément,

∂u
∂t
− ∆u = h(σ)u(α − u), (1.19)

∂σ

∂t
+ ∆2σ − ∆ f (σ) +

uσ
1 + σ

+ γσ = γβ, (1.20)
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∂u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (1.21)

u|t=0 = u0, σ|t=0 = σ0. (1.22)

Ici, nous prenons f logarithmique pour la même raison que dans la section 1.2.1. Nous
déduisons ensuite les estimations a priori pour le problème et la régularité d’une unique
solution faible, à savoir,

Théorème 1.2.5. Nous supposons que (u0, σ0) ∈ L2(Ω)×H1(Ω), u0 ≥ 0 a.e., 0 < σ0 < β
a.e. et 0 < 〈σ0〉 < β. Alors (1.19)-(1.22) possède au moins une solution faible locale en
temps (u, σ) tel que, pour un certain T0 > 0,

u ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),
∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)).

En outre,
u ≥ 0, 0 < σ < β pour presque tout (x, t) ∈ Ω × [0,T0].

Nous prouvons en outre que la solution locale en temps donnée ci-dessus est globale en
temps.

Nous travaillons ensuite sur une équation de type Cahn-Hilliard pour la cellule tu-
morale dans le modèle couplé dans le chapitre 5, plus précisément,

∂u
∂t

+ ∆2u − ∆ f (u) = h(σ)u(α − u), α > 0, (1.23)

∂σ

∂t
− ∆σ + γσ +

uσ
1 + σ

= γβ, γ, β > 0, (1.24)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
= 0 sur Γ, (1.25)

u|t=0 = u0, σ|t=0 = σ0. (1.26)

Ici, le terme non linéaire f est de type logarithmique. Nous avons alors

Théorème 1.2.6. On suppose que (u0, σ0) ∈ H1(Ω) × L2(Ω) satisfait u0 ∈ (0, α), σ0 ∈

[0, β] a.e., et le terme non linéaire h(s) ≥ 0, s ≥ 0 est borné et Lipschitz continu sur
�. Alors, (1.23)-(1.26) possède une solution faible locale en temps (u, σ), définie sur
[0,T0], T0 > 0, telle que

u ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),

∂u
∂t
∈ L2(0,T0; H−1(Ω)),
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σ ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),

∂σ

∂t
∈ L2(0,T0; H−1(Ω)),

u(t) ∈ (0, α), σ(t) ∈ [0, β] pour presque tout t ∈ [0,T0]

et il existe une constante δ ∈ (0, α) telle que

δ ≤ 〈u(t)〉 ≤ α − δ pour presque tout t ∈ [0,T0].

Nous prouvons en outre que la solution locale en temps donnée par le Théorème 1.2.6
est globale en temps. Nous étudions également la permanence de la tumeur, et donnons
éventuellement des simulations numériques.

On considère enfin des équations de type Cahn-Hilliard à la fois pour la densité
tumorale et la concentration en oxygène dans le Chapitre 6, le modèle se réécrit alors
comme suit :

∂u
∂t

+ ∆2u − ∆ f1(u) = h(σ)u(α − u), (1.27)

∂σ

∂t
+ ∆2σ − ∆ f2(σ) +

uσ
1 + σ

+ γσ = γβ, (1.28)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 sur Γ, (1.29)

u|t=0 = u0, σ|t=0 = σ0. (1.30)

Ici, les termes non linéaires fi(s), i = 1, 2 sont tous deux de type logarithmique. Nous
avons alors

Théorème 1.2.7. Nous supposons que (u0, σ0) ∈ H1(Ω) × H1(Ω), et u0 ∈ (0, α), σ0 ∈

(0, β) a.e. Alors (1.27)-(1.30) possède au moins une solution faible locale en temps (u, σ)
définie sur [0,T0] , pour un certain T0 > 0, telle que

u ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)).

De plus,
0 < u < α, 0 < σ < β pour presque tout(x, t) ∈ Ω × [0,T0].

De plus, sous l’hypothèse de γ ≥ α
β+1 , la solution faible locale en temps donnée par le

Théorème 1.2.7 est globale en temps.
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1.2.3 Sur un modèle de type Cahn-Hilliard pour la segmentation
d’images

Nous considérons dans le chapitre 7 un modèle de Cahn-Hilliard pour la segmenta-
tion d’images, qui est comme suit

∂u
∂t

+ ∆2u − ∆ f (u) +
h(x)

1 + (u − 1
2 )2

= 0, (1.31)

∂u
∂ν

=
∂∆u
∂ν

= 0 sur Γ, (1.32)

u|t=0 = u0, (1.33)

Ici, nous prenons f un terme cubique non linéaire. Nous avons alors ce qui suit.

Théorème 1.2.8. Nous supposons que u0 ∈ H1(Ω). Alors, (1.31)-(1.33) possède une
unique solution faible u telle que

u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω))

et
∂u
∂t
∈ L2(0,T ; H−1(Ω)),

∀T > 0.

Nous prouvons également qu’il existe des solutions qui ne sont pas bornées lorsque le
temps tend vers l’infini. Pour pallier cela, nous proposons une variante du modèle, basée
sur le modèle de Cahn-Hilliard-Oono, qui assure la bornitude globale dans le temps des
solutions. Plus précisément,

∂u
∂t

+ αu + ∆2u − ∆ f (u) +
h(x)

1 + (u − 1
2 )2

= 0, (1.34)

∂u
∂ν

=
∂∆u
∂ν

= 0 sur Γ, (1.35)

u|t=0 = u0. (1.36)

Ce qui nous permet de réaliser des simulations numériques qui illustrent les résultats
théoriques.

Dans le chapitre 8, nous étudions en profondeur le modèle de Cahn-Hilliard-Oono
ci-dessus pour la segmentation d’images. Dans le cas où f est un polynôme cubique,
nous prouvons tout d’abord que le problème est bien posé, à savoir,
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Théorème 1.2.9. Pour tout u0 ∈ H1(Ω) et tout T > 0, (1.34)-(1.36) possède une unique
solution faible u telle que

u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)) ∩ L4(0,T ; L4(Ω)),

∂u
∂t
∈ L2(0,T ; H−1(Ω)).

Nous définissons ensuite le semi-groupe et prouvons l’existence de l’attracteur expo-
nentiel, qui garantit que le semi-groupe possède l’attracteur global de dimension finie.

Dans le cas où f est logarithmique, on prouve d’abord l’existence d’une solution
faible, à savoir

Théorème 1.2.10. Nous supposons que u0 est donné tel que u0 ∈ H1(Ω), 0 < u0(x) < 1
et 0 < 〈u0〉 < 1, a.e. x ∈ Ω. Alors il existe T0 = T0(u0) > 0, (1.34)-(1.36) possède une
solution faible u sur [0,T0] telle que

u ∈ C([0,T0]; H1(Ω)W) ∩ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),

∂u
∂t
∈ L2(0,T0; H−1(Ω)).

Par ailleurs, 0 < u(x, t) < 1, a.e (x, t) ∈ Ω × (0,T0).

Nous prouvons ensuite la régularité supplémentaire des solutions et la séparation des
états purs dans les dimensions 1 et 2, et enfin nous prouvons l’existence d’un attracteur
exponentiel et la dimensionnalité fractale finie de l’attracteur global.

Enfin, le contenu et les conclusions du chapitre 3 au chapitre 8 ont été publiées dans
des revues, plus d’informations peuvent être trouvées dans [68, 69, 70, 71, 72, 73].
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2.1. Phase separation models

2.1 Phase separation models
As a representative of nonlinear partial differential equations, phase separation mo-

dels which were originally proposed in materials science, and have been extensively
used in many different areas, e.g., biology, ecology, astronomy and image processing
in the past decades. Furthermore, the Cahn-Hilliard equation, proposed by J.W. Cahn
and J.E. Hilliard in 1958 (see [12]), is an equation of mathematical physics which des-
cribes the process of phase separation, by which the two components of a binary fluid
spontaneously separate and form domains pure in each component.

2.1.1 The Cahn-Hilliard equations
The Cahn-Hilliard system

∂u
∂t

= κ∆µ, κ > 0,

µ = −α∆u + f (u), α > 0,
(2.1)

is usually rewritten, equivalently, as the forth-order-in-space parabolic equation

∂u
∂t

+ ακ∆2u − κ∆ f (u) = 0, (2.2)

which is precisely the equation known as the Cahn-Hilliard equation. Theses equations
play an essential role in materials science and describe important qualitative features
of two-phase systems related to phase separation processes, assuming isotropy and a
constant temperature. This can be observed, e.g., when a binary alloy (e.g., Alumi-
nium/Zinc (see [112]) or Iron/Chromium (see [80, 81, 82]) is cooled down sufficiently.
In the first stage, which is known as spinodal decomposition : the initially homoge-
neous material quickly becomes inhomogeneous, resulting in a very finely dispersed
microstructure. In the second stage, which is called coarsening and occurs at a slower
time scale. Such phenomena play an essential role in the mechanical properties of the
material, e.g., strength, hardness, fracture, toughness and ductility. We refer the reader
to, e.g., [11, 12, 65, 67, 76, 77, 102, 103] for more details.

Here, u is the order parameter (we will consider a rescaled density of atoms or
concentration of one of the material’s components which takes values between −1 and
1, with the values −1 and 1 corresponding to the pure states. The density of the second
component is −u, meaning that the total density is a conserved quantity) and µ is the
chemical potential (more precisely, the difference of chemical potentials between the
two components). Furthermore, f is the derivative of a double-well potential F. A ther-
modynamically relevant potential F is the following logarithmic function which follows
from a mean-field model :

F(s) =
θc

2
(1− s2)+

θ

2
[(1− s) ln(

1 − s
2

)+(1+ s) ln(
1 + s

2
)], s ∈ (−1, 1), 0 < θ < θc, (2.3)
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i.e.,

f (s) = −θcs +
θ

2
ln

1 + s
1 − s

, (2.4)

although this function is very often approximated by regular ones (see [25, 26, 37, 38]),
typically,

F(s) =
1
4

(s2 − 1)2, (2.5)

i.e.,
f (s) = s3 − s, (2.6)

more generally, we can take F(s) = 1
4 (s2 − β2)2, β ∈ R. In that case, if a nonlinear

source term is added in equation (2.2), one no longer has the conservation of the spatial
average of the order parameter u, the existence of a global in time solutions becomes a
challenging problem. Even worse, one can have blow up in finite time when considering
regular nonlinear terms (see [28, 36]), which is problematic in view of applications.
Nevertheless, it was proved in [73, 89, 96] that, in some particular cases, the existence of
global in time solutions can be proved when we consider instead a logarithmic nonlinear
term. See Figure 2.1 for a comparison between the two potentials.

s
-1.5 -1 -0.5 0 0.5 1 1.5

F
(s

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Polynomial Potential
Logarithmic Potential

Figure 2.1 – The logarithmic potential and the polynomial potential.

The logarithmic terms in (2.3) correspond to the entropy of mixing, and θ and θc are
proportional to the absolute temperature (assumed constant during the process) and a
critical temperature, respectively ; the condition θ < θc ensures that F has a double-well
form and that phase separation can occur. Also note that the polynomial approximation
is reasonable when the quench is shallow, i.e., when the absolute temperature is close
to the critical one. Finally, κ is the mobility and α is related to the surface tension at the
interface. We refer the reader to [15, 16, 46, 91, 92, 94, 99] for more details.
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From a phenomenological point of view, the Cahn-Hilliard system can be derived as
follows.

One considers the following (total) free energy, called Ginzburg-Landau free energy :

ΨΩ(u,∇u) =

∫
Ω

(
α

2
|∇u|2 + F(u))dx, α > 0, (2.7)

where Ω ⊂ Rn, n = 1, 2 or 3, is the domain occupied by the material. The gradient term
in (2.7) has been proposed in [12] in order to model the surface energy of the interface
(i.e., capillarity ; note that such gradients go back to J.D. van der Waals (see [115]) ; F
is also called homogeneous free energy.

One then has the mass balance

∂u
∂t

= − div h,

where h is the mass flux which is related to the chemical potential µ by the following
(postulated) constitutive equation which resembles the Fick’s law :

h = −κ∇µ.

The usual definition of the chemical potential is that it is the derivative of the free energy
with respect to the order parameter. Here, such a definition is incompatible with the
presence of ∇u in the free energy. Instead, µ is defined as a variational derivative of the
free energy with respect to u, which yields (assuming proper boundary conditions)

µ = −α∆u + f (u);

the Cahn-Hilliard system then follows. This variational derivative can be (formally) seen
by writing that, for a small variation,

δΨΩ =

∫
Ω

(α∇u · ∇δu + f (u)δu)dx,

where · denotes the usual Euclidean scalar product. Assuming compatible boundary
conditions and integrating by parts, this yields

δΨΩ =

∫
Ω

(−α∆u + f (u))δudx,

from which the definition follows.
The Cahn-Hilliard system, in a bounded and regular domain Ω, usually is associated

with Neumann boundary conditions, namely,

∂µ

∂ν
= 0 on Γ,

21



Chapitre 2. General introduction

meaning that there is no mass flux at the boundary (note that h · ν = −κ ∂µ
∂ν

), and

∂u
∂ν

= 0 on Γ,

which is a natural variational boundary condition (by natural, we mean that it allows to
write down a convenient variational/weak formulation in view of the mathematical ana-
lysis of the problem; this boundary condition also yields that the interface is orthogonal
to the boundary). Here, Γ = ∂Ω and ν is the unit outer normal to the boundary. In parti-
cular, it follows from the first boundary condition that we have the conservation of mass,
i.e., of the spatial average of the order parameter, obtained by (formally) integrating the
first equation of (2.1) over Ω,

〈u(t)〉 ≡
1

Vol(Ω)

∫
Ω

u(x, t)dx = 〈u(0)〉, ∀t ≤ 0. (2.8)

If we have in mind the fourth-order in space Cahn-Hilliard equation, we can rewrite
these boundary conditions, equivalently, as

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ. (2.9)

Note that we generally do not consider Dirichlet boundary conditions, due preci-
sely to the fact that they do not yield the conservation of mass, although such boundary
conditions certainly simplify the mathematical analysis. Besides, We can also consider
periodic boundary conditions (in which case Ω =

∏n
i=1(0, Li), Li > 0, i = 1, · · · , n) ; in

that case, we still have the conservation of mass. Furthermore, in the case of hydrome-
chanics, e.g., for mixtures of two immiscible fluids, the contact angle is dynamic, due
to the movements of the fluids. The study of the Cahn-Hilliard equation endowed with
dynamic boundary conditions can be found in [29, 62, 83, 101, 119].

2.1.2 The variants of the Cahn-Hilliard equation
Note that the Cahn-Hilliard equation and some of its variants are also relevant to

other phenomena other than phase separation, for instance, dealloying (this can be ob-
served in corrosion processes (see [34])) ; population dynamics (see [13]) ; tumor growth
(see [6, 63]) ; bacterial films (see [64]) ; thin films (see [106, 113]) ; chemistry (see
[116]) ; image processing (see [8, 9, 18, 23, 33]) ; astronomy, with even the rings of
Saturn (see [114]) ; and ecology (for instance, the clustering of mussels can be perfectly
well described by the Cahn-Hilliard equation (see [75]).

In particular, several such phenomena can be modeled by the generalized Cahn-
Hilliard equation :

∂u
∂t

+ ακ∆2u − κ∆ f (u) + g(x, u) = 0, α, κ > 0 (2.10)
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(here, α and κ do not necessarily have the same physical meaning as in the original Cahn-
Hilliard equation). We refer the reader to [84, 87, 95] (see also [6, 24, 28, 35, 108])
for more studies on equation (2.10). In particular, the general equation contains the
following models.
(i) Mixed Allen-Cahn/Cahn-Hilliard system. In this case, we consider the system of
equations 

∂u
∂t

= ε2D∆µ − µ, D, ε > 0,

µ = −∆u +
f (u)
ε2 ,

which can be written, equivalently, as

∂u
∂t

+ ε2D∆2u − ∆(D f (u) + u) +
f (u)
ε2 = 0,

and is indeed of the form above. In particular, without the term ε2D∆µ in the first equa-
tion, we have the Allen-Cahn equation (which describes the ordering of atoms during
the phase separation process ; see [4]), and, without the term −µ, we have the Cahn-
Hilliard equation. These equations are proposed to account for microscopic mecha-
nisms such as surface diffusion and adsorption/desorption, i.e., adhesion of atoms to
a surface/release of a substance from or through a surface (see [57, 59, 60, 79]) and are
studied in [53, 54, 55, 56, 58].
(ii) Cahn-Hilliard-Oono equation. In this case,

g(x, s) = g(s) = βs, β > 0.

This function is proposed in [105] to account for long-ranged (i.e., nonlocal) interactions
in phase separation and also to simplify numerical simulations, because we do not have
to account for the conservation of mass, although it seems that this equation is not
considered in simulations.

A variant of this model, proposed in [31] to model microphase separation of diblock
copolymers, consists of taking

g(x, s) = g(s) = β(s −
1

Vol(Ω)

∫
Ω

u0(x)dx), β > 0,

where u0 is the initial condition. In this case, we have the conservation of mass ; efficient
simulations are performed in [5, 20]. This variant of the Cahn-Hilliard-Oono equation
can also be coupled with the incompressible Navier-Stokes equations to model a che-
mically reacting binary fluid (see [51, 52] ; see also [10] for the mathematical analysis).
We refer the reader to [30, 88, 118] for more studies on Cahn-Hilliard-Oono equation.
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(iii) Proliferation term. In this case,

g(x, s) = g(s) = βs(s − 1), β > 0.

This function was proposed in [63] in view of biological applications and, more pre-
cisely, to model wound healing and tumor growth (in one space dimension) and the
clustering of malignant brain tumor cells (in two space dimensions) ; see also [116] for
other quadratic functions with chemical applications and [6, 28, 89] for other polyno-
mials with biological applications.
(iv) Fidelity term. In this case,

g(x, s) = λ0χΩ\D(x)(s − h(x)), λ0 > 0, D ⊂ Ω, h ∈ L2(Ω),

where χ denotes the indicator function, and we consider the equation

∂u
∂t

+ ε∆2u −
1
ε

∆ f (u) + g(x, t) = 0, ε > 0.

Written in this way, ε corresponds to the interface thickness. This function g is proposed
in [8, 9] in view of applications to binary image inpainting (i.e., black and white images).
Here, h is a given (damaged) image and D is the inpainting (i.e., damaged) region.
Furthermore, the fidelity term g(x, u) is added to keep the solution close to the image
outside the inpainting region. The idea in this model is to solve the equation up to steady
state to obtain an inpainted (i.e., restored) version u(x) of h(x). We refer the reader to
[23, 24] for more studies.

In this thesis, we study some other variants of Cahn-Hilliard equation, which are
practically applied in biology and image segmentation.

2.2 Problems and framework
Glial cells are non-neuronal cells in the central nervous system (brain and spinal

cord) and the peripheral nervous system, which include different types of cells (see
Figure 2.2). In addition to maintain homeostasis, and provide support and protection
for neurons, they also have many other functions, for instance, to supply nutrients and
oxygen to neurons, to destroy pathogens and remove dead neurons, etc.

A glioma is a type of tumor that starts in the glial cells of the brain or the spine.
Gliomas comprise about 30 percent of all brain tumors and central nervous system tu-
mors, and 80 percent of all malignant brain tumors. As explained in [45], hypoxia is a
hallmark of gliomas and low oxygen concentration triggers a proliferative-to-invasive
transition. It is significant to study biology from the perspective of mathematical mo-
dels. In the first part of this thesis, we apply several nonlinear partial differential models
to analyze the above issues.
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Figure 2.2 – Glial cells.

Moreover, in the second part of this thesis, we study Cahn-Hilliard type models
for image segmentation, which aims to partition a given image into regions in order
to recognize and analyze different objects. Image segmentation plays an important role
in image processing and computer vision, more precisely, the practical applications of
image segmentation include medical imaging, machine vision, object detection, video
surveillance and so on.

2.2.1 Cahn-Hilliard models for glial cells
We consider firstly in Chapter 3 a Cahn-Hilliard model with a symport term, which

is proposed to model some energy mechanisms in glial cells, and reads

∂u
∂t

+ ∆2u − ∆ f (u) +
ku

k′ + u
= J, k, k′ > 0, (2.11)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (2.12)

u|t=0 = u0, (2.13)

where u corresponds to a concentration, kx
k′+x is known as symport term and accounts for

exchanges, e.g., from a cell to its environment. One crucial difficulty here is to prove the
existence of a biologically relevant solution, to overcome this, we take f logarithmic
rather than a regular (typically, cubic) nonlinear term, which can drive u to become
negative and the symport term become singular. We obtain the existence of a local in
time weak solution, namely,
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Theorem 2.2.1. We assume that u0 is given such that u0 ∈ H1(Ω), 0 < 〈u0〉 < 1 and 0 <
u0(x) < 1, a.e. x ∈ Ω. Then, there exists T0 = T0(u0) > 0 and a weak solution u to (2.11)-
(2.13) on [0,T0] such that u ∈ C([0,T0]; H1(Ω)w)∩ L∞(0,T0; H1(Ω))∩ L2(0,T0; H2(Ω))
and ∂u

∂t ∈ L2(0,T0; H−1(Ω)), where w denotes the weak topology. Furthermore, 0 <
u(x, t) < 1, a.e. (x, t) ∈ Ω × (0,T0).

Additionally, under the assumption of 0 ≤ J k′+1
k ≤ 1, the local in time weak solution

obtained in Theorem 2.2.1 can be global in time, i.e., defined on [0,T ], ∀T > 0. We
then deduce the regularity of the solutions, which is the key to prove a strict separation
of the order parameter u (and not just its spatial average) from the pure states 0 and 1
(see [96]). More precisely, we have the following.

Theorem 2.2.2. We assume that n = 1 or 2, Then, there exists δ ∈ (0, 1) depending on
the H1(Ω)-norm of u0 such that

δ ≤ u(x, t) ≤ 1 − δ, f or almost all (x, t), x ∈ Ω, t ≥ r,

r > 0 given.

Moreover, we work on the Cahn-Hilliard-Oono equation with the logarithmic non-
linear terms :

∂u
∂t

+ ∆2u − ∆ f (u) + αu +
ku

k′ + u
= J, α, k, k′ > 0, (2.14)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (2.15)

u|t=0 = u0, (2.16)

and have the

Theorem 2.2.3. We assume that u0 is given such that u0 ∈ H1(Ω), 0 < 〈u0〉 < 1 and 0 <
u0(x) < 1, a.e. x ∈ Ω. Then, there exists T0 = T0(u0) > 0 and a weak solution u to (2.14)-
(2.16) on [0,T0] such that u ∈ C([0,T0]; H1(Ω)w)∩ L∞(0,T0; H1(Ω))∩ L2(0,T0; H2(Ω))
and ∂u

∂t ∈ L2(0,T0; H−1(Ω)). Furthermore, 0 < u(x, t) < 1, a.e. (x, t) ∈ Ω × (0,T0).

Similarly, under the assumption of 0 ≤ J ≤ α, the local in time weak solution obtained
in Theorem 2.2.3 can be global in time. We finally have the following.

Theorem 2.2.4. We assume that n = 1 or 2, Then, there exists δ ∈ (0, 1) depending on
the H1(Ω)-norm of u0 such that

δ ≤ u(x, t) ≤ 1 − δ, f or almost all (x, t), x ∈ Ω, t ≥ r,

r > 0 given.
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2.2.2 A coupled Cahn-Hilliard model for hypoxic glioma cells
We then study a coupled model for the proliferative-to-invasive transition of hypoxic

glioma cells, which reads

∂u
∂t
− ∆u = h(σ)u(α − u), (2.17)

∂σ

∂t
− ∆σ +

uσ
1 + σ

= γ(β − σ), (2.18)

where u accounts for the tumor cell density, σ accounts for the oxygen concentration
and h is proliferation rate defined as

h(s) = a[
s
β

+ b(1 −
s
β

)].

The term h(σ)u(α− u) in equation (2.17) represents the so-called logistic growth which
assumes that tumor cells proliferate until they reach the cell density α. The constant α
is known as carrying capacity, β represents the oxygen concentration in blood vessels,
γ, a, b are positive biological parameters and b ∼ 0.6 < 1 (here, we have set several other
biological parameters equal to one and refer to [45] for more details). Furthermore, the
term ∆σ in equation (2.18) accounts for the isotropic diffusion of oxygen, the nonlinear
term uσ

1+σ
accounts for the oxygen uptake by tumor cells, assuming a Michaelis-Menten

kinetics, and the term γ(β − σ) considers that oxygen is released from blood vessels at
a linear rate.

We firstly work on a Cahn-Hilliard type equation for the oxygen in the coupled
model in Chapter 4, more precisely,

∂u
∂t
− ∆u = h(σ)u(α − u), (2.19)

∂σ

∂t
+ ∆2σ − ∆ f (σ) +

uσ
1 + σ

+ γσ = γβ, (2.20)

∂u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (2.21)

u|t=0 = u0, σ|t=0 = σ0. (2.22)

Here, we take f logarithmic with the same reason in Section 2.2.1. We then derive the a
priori estimates for the problem and the regularity of a unique weak solution, namely,

Theorem 2.2.5. We assume that (u0, σ0) ∈ L2(Ω) × H1(Ω), u0 ≥ 0 a.e., 0 < σ0 < β a.e.
and 0 < 〈σ0〉 < β. Then (2.19)-(2.22) possesses at least one local in time weak solution
(u, σ) such that, for some T0 > 0,

u ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),
∂u
∂t
∈ L2(0,T0; H−1(Ω)),
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σ ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)).

Furthermore,

u ≥ 0, 0 < σ < β f or almost all (x, t) ∈ Ω × [0,T0].

We further prove the local in time solution as given above is global in time.
We next work on a Cahn-Hilliard type equation for the tumor cell in the coupled

model in Chapter 5, more precisely,

∂u
∂t

+ ∆2u − ∆ f (u) = h(σ)u(α − u), α > 0, (2.23)

∂σ

∂t
− ∆σ + γσ +

uσ
1 + σ

= γβ, γ, β > 0, (2.24)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
= 0 on Γ, (2.25)

u|t=0 = u0, σ|t=0 = σ0. (2.26)

Here, the nonlinear term f is of logarithmic type. We then have

Theorem 2.2.6. We assume that (u0, σ0) ∈ H1(Ω) × L2(Ω) satisfies u0 ∈ (0, α), σ0 ∈

[0, β] a.e., and the nonlinear term h(s) ≥ 0, s ≥ 0 is bounded and Lipschitz continuous
on �. Then, (2.23)-(2.26) possesses a local in time weak solution (u, σ), defined on
[0,T0], T0 > 0, such that

u ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),

∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)),

u(t) ∈ (0, α), σ(t) ∈ [0, β] f or almost all t ∈ [0,T0]

and there exists a constant δ ∈ (0, α) such that

δ ≤ 〈u(t)〉 ≤ α − δ f or almost all t ∈ [0,T0].

We further prove the local in time solution given by Theorem 2.2.6 is global in time. We
also study permanence of the tumor, and eventually give some numerical simulations.

We finally consider Cahn-Hilliard type equations for both the tumor density and the
oxygen concentration in Chapiter 6, the model then rewrite as following :

∂u
∂t

+ ∆2u − ∆ f1(u) = h(σ)u(α − u), (2.27)

28



2.2. Problems and framework

∂σ

∂t
+ ∆2σ − ∆ f2(σ) +

uσ
1 + σ

+ γσ = γβ, (2.28)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (2.29)

u|t=0 = u0, σ|t=0 = σ0. (2.30)

Here, the nonlinear terms fi(s), i = 1, 2 are both of logarithmic type. We then have

Theorem 2.2.7. We assume that (u0, σ0) ∈ H1(Ω) × H1(Ω), and u0 ∈ (0, α), σ0 ∈ (0, β)
a.e. Then (2.27)-(2.30) possesses at least one local in time weak solution (u, σ) defined
on [0,T0] , for some T0 > 0, such that

u ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)).

Furthermore,

0 < u < α, 0 < σ < β f or almost all (x, t) ∈ Ω × [0,T0].

Additionally, under the assumption of γ ≥ α
β+1 , then the local in time weak solution

given by Theorem 2.2.7 is global in time.

2.2.3 On a Cahn-Hilliard type model for image segmentation
We consider in Chapter 7 a Cahn-Hilliard model for image segmentation, which

reads
∂u
∂t

+ ∆2u − ∆ f (u) +
h(x)

1 + (u − 1
2 )2

= 0, (2.31)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (2.32)

u|t=0 = u0, (2.33)

Here, we take f a cubic nonlinear term. We then have the following.

Theorem 2.2.8. We assume that u0 ∈ H1(Ω). Then, (2.31)-(2.33) possesses a unique
weak solution u such that

u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω))

and
∂u
∂t
∈ L2(0,T ; H−1(Ω)),

∀T > 0.
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We also prove that there exist solutions which are unbounded as time goes to infinity.
To overcome this, we propose a variant of the model, based on the Cahn-Hilliard-Oono
model, which ensures the global in time boundedness of the solutions. More precisely,

∂u
∂t

+ αu + ∆2u − ∆ f (u) +
h(x)

1 + (u − 1
2 )2

= 0, (2.34)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (2.35)

u|t=0 = u0. (2.36)

Which allows us to performe numerical simulations which illustrate the theoretical re-
sults.

In Chapter 8, we deeply study the above Cahn-Hilliard-Oono model for image seg-
mentation. In the case of f is cubic polynomial, we firstly prove the well-posedness,
namely,

Theorem 2.2.9. For everty u0 ∈ H1(Ω) and every T > 0, (2.34)-(2.36) possesses a
unique weak solution u such that

u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)) ∩ L4(0,T ; L4(Ω)),

∂u
∂t
∈ L2(0,T ; H−1(Ω)).

We then define the semigroup and prove the existence of the exponential attractor, which
ensures that the semigroup possesses the finite-dimensional global attractor.

In the case of f is logarithmic, we firstly prove the existence of a weak solution,
namely

Theorem 2.2.10. We assume that u0 is given such that u0 ∈ H1(Ω), 0 < u0(x) < 1 and
0 < 〈u0〉 < 1, a.e. x ∈ Ω. Then there exists T0 = T0(u0) > 0, (2.34)-(2.36) possesses a
weak solution u on [0,T0] such that

u ∈ C([0,T0]; H1(Ω)W) ∩ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),

∂u
∂t
∈ L2(0,T0; H−1(Ω)).

Furthermore, 0 < u(x, t) < 1, a.e (x, t) ∈ Ω × (0,T0).

We next prove the further regularity of solutions and separation from the pure states
in 1 and 2 dimensions, and finally prove the existence of an exponential attractor and
the finite fractal dimensionality of the global attractor.

Last but not least, the content and conclusions from Chapter 3 to Chapter 8 have
been published in journals, more information can be found in [68, 69, 70, 71, 72, 73].
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Cahn-Hilliard Models for Glial Cells

3.1 Introduction
We are interested in this paper in the analysis of PDEs models for energy mecha-

nisms in the brain.
ODEs of the form

x′ +
kx

k′ + x
= J(x, t), k, k′ > 0, J ≥ 0,

are often relevant in such situations. We can mention, e.g., lactate or oxygen exchanges
in glial cells (see [7, 17, 107]). Such ODEs were also proposed in [49] to model brain
metabolites concentrations in the circadian rhythm. Here, kx

k′+x is known as symport term
and accounts for exchanges, e.g., from a cell to its environment (see [61]).

Now, in all these mechanisms, one should also account for spatial diffusion, having
in mind different zones in the brain or in cells. In particular, we studied in [85] (see also
[48]) a reaction-diffusion equation of the form

∂u
∂t
− ∆u +

ku
k′ + u

= J(x, t)

(we can more generally consider a source term of the form J = J(u, x, t)). Such an
equation also appears in models in [16, 45, 78].

In this paper, we consider instead a Cahn-Hilliard type fourth-order equation, na-
mely,

∂u
∂t

+ ∆2u − ∆ f (u) +
ku

k′ + u
= J(x, t).

The original Cahn-Hilliard equation,

∂u
∂t

+ ∆2u − ∆ f (u) = 0,

was initially proposed to model phase separation processes in binary alloys (see [11,
12]). Since then, this equation, or some of its variants, were successfully applied to many
other applications than just phase separation in alloys. We can mention, for instance,
dealloying (this can be observed in corrosion processes ; see [34]), population dynamics
(see [13]), tumor growth (see [6, 39, 40, 63, 98]), bacterial films (see [64]), thin films
(see [106]), chemistry (see [34]), image processing (see [9, 18, 33]) and even astronomy,
with the rings of Saturn (see [114]), and ecology (for instance, the clustering of mussels
can be perfectly well described by the Cahn-Hilliard equation ; see [75]). We refer the
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interested reader to [96, 103] for reviews on the Cahn-Hilliard equation and some of its
variants, as well as their mathematical analysis.

In view of the energy metabolism in the brain and in glial cells, one interest in
considering a Cahn-Hilliard type model is that, in addition to spatial diffusion, we can
also account for the phase separation process (having again in mind different zones in
the brain or in cells in which, typically, the concentration of a metabolite may be high
or very low) and clustering effects.

Compared to the reaction-diffusion model, one essential difficulty is to prove that
the order parameter u remains nonnegative ; recall indeed that u generally corresponds
to a concentration (of a metabolite) and should belong to [0, 1]. This is due to the fact
that we no longer have the maximum principle/comparison principle. Also note that the
symport term ku

k′+u can become singular when u is negative.

The original Cahn-Hilliard equation usually is associated with a regular (typically,
cubic) nonlinear term. However, as we will see below, the order parameter can indeed
become negative in that case, preventing us from proving a global in time existence
result. To overcome this, we instead consider a logarithmic nonlinear term f . Actually,
as far as the original Cahn-Hilliard equation is concerned, a logarithmic nonlinear term
is the one which is thermodynamically relevant ; it is thus natural to also consider such a
nonlinear term for our model. In addition, we consider a modified problem to avoid the
symport term to become singular. A second major difficulty is to prove a strict separation
property of the order parameter from the singular points of f . This necessitates further
regularity on the time derivative of u which is in general not known for variants of the
Cahn-Hilliard equation of the form

∂u
∂t

+ ∆2u − ∆ f (u) + h(x, u) = 0.

Surprisingly, this is already challenging for the simple linear term h(x, s) = αs, α > 0,
when considering logarithmic nonlinear terms f (see [44]) ; in that case, one has the
Cahn-Hilliard-Oono equation, proposed in [105] to account for nonlocal effects in phase
separation processes. In our case, we are able to prove such a regularity under conditions
on the parameters.

This paper is organized as follows. We first define the mathematical setting for our
problem. We then prove the existence of a local in time biologically relevant solution
which is global under (unfortunately rather restrictive) conditions on the parameters. We
next prove further regularity on the solutions, allowing us to prove the strict separation
in one and two space dimensions. We finally consider a second model, based on the
Cahn-Hilliard-Oono equation, and obtain similar results, this time under more realistic
conditions on the parameters.
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3.2 Setting of the problem
We assume in what follows that J is a constant. We will however discuss the exten-

sion of some our results to more general functions J = J(x, t).
We consider the following initial and boundary value problem, in a bounded and

regular domain Ω of �n, n = 1, 2 or 3, with boundary Γ :

∂u
∂t

+ ∆2u − ∆ f (u) +
ku

k′ + u
= J, k, k′ > 0, (3.1)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (3.2)

u|t=0 = u0. (3.3)

Remark 3.2.1. As mentioned in the introduction, u corresponds to a concentration. It is
thus important to ensure that this quantity takes values between 0 and 1. Furthermore,
as mentioned in the introduction, one usually takes regular (typically, cubic) nonlinear
terms with Cahn-Hilliard type models. Unfortunately, such nonlinear terms do not en-
sure biologically relevant solutions. Let us indeed take J = 0, f (s) = (s − 1

2 )3 − (s − 1
2 )

and consider the one-dimentional equation

ut + uxxxx − ( f (u))xx +
ku

k′ + u
= 0,

with obvious notation. Let us now take u0 smooth enough satisfying the Neumann boun-
dary conditions and such that u0 ∈ [0, 1] and u0(x) = (x − 1

2 )4 in a neighborhood of
1
2 . Thus, we easily see that u0( 1

2 ) = u′0(1
2 ) = u′′0 ( 1

2 ) = 0, so that ( f (u))xx( 1
2 , 0) = 0, and

u(iv)
0 ( 1

2 ) = 24. It thus follows that ut(1
2 , 0) = −24 and

u(
1
2
, t) = −24t + o(t),

for t close to 0. This yields that u can indeed become negative, which is problematic
here, as the equation may become singular if u approaches −k′.

In view of the above remark, we take f logarithmic, namely,

f (s) = −c0(s −
1
2

) + θ ln
s

1 − s
, c0, θ > 0, s ∈ (0, 1).

Remark 3.2.2. In the case of the original Cahn-Hilliard equation, one further takes
θ < c0

4 to ensure that f is the derivative of a double-well potential F and that phase
separation can occur.
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We can note that f is of class C∞ and satisfies

f ′ ≥ −c0. (3.4)

Furthermore, the following holds, for s, m ∈ (0, 1) :

f (s)(s − m) ≥ cm(| f (s)| + F(s)) − c′m, cm > 0, c′m ≥ 0, (3.5)

where F(s) =
∫ s

1
2

F(ξ) dξ and cm and c′m depend continuously on m. We refer the reader
to, e.g., [96] for the proof. Note that, there, the order parameter u takes values in (−1, 1) ;
we can come back to (0, 1) by a proper rescaling.

In order to prove the existence of solutions, we consider the following modified
problem :

∂u
∂t

+ ∆2u − ∆ f (u) + g(u) = J, (3.6)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (3.7)

u|t=0 = u0, (3.8)

where g(s) = ks
k′+|s| . Note that g is of class C1, with g′(s) = kk′

(k′+|s|)2 , so that g is (strictly)
monotone increasing and maps � onto [−k, k]. Here, the only difficulty occurs at s = 0
and note that

g(s) − g(0)
s

=
k

k′ + |s|
→

k
k′

as s→ 0.

Furthermore, if s > 0, then

g′(s) =
kk′

(k′ + s)2 =
kk′

(k′ + |s|)2 →
k
k′

as s→ 0+,

while, if s < 0,

g′(s) =
kk′

(k′ − s)2 =
kk′

(k′ + |s|)2 →
k
k′

as s→ 0−.

Notation
We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also

set ‖ · ‖−1 = ‖(−∆)−
1
2 · ‖, where (−∆)−1 denotes the inverse of the minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null spatial
average. More generally, we denote by ‖ · ‖X the norm on the Banach space X.

We set 〈·〉 = 1
Vol(Ω)

∫
Ω
· dx, being understood that, if v ∈ H−1(Ω) = H1(Ω)′, then

〈v〉 = 1
Vol(Ω)〈v, 1〉H−1(Ω),H1(Ω). We also set, whenever this makes sense, v = v − 〈v〉.

We note that
v 7→ (‖v‖2−1 + 〈v〉2)

1
2 , v 7→ (‖v‖2 + 〈v〉2)

1
2 ,
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v 7→ (‖∇v‖2 + 〈v〉2)
1
2 and v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces ; furthermore, ‖ · ‖−1 is a norm on {v ∈ H−1(Ω), 〈v〉 = 0}
which is equivalent to the usual H−1-norm.

Throughout this paper, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line.

3.3 Existence of solutions
We first prove a local in time existence result.

Theorem 3.3.1. We assume that u0 is given such that u0 ∈ H1(Ω), 0 < 〈u0〉 < 1 and 0 <
u0(x) < 1, a.e. x ∈ Ω. Then, there exists T0 = T0(u0) > 0 and a weak solution u to (3.1)-
(3.3) on [0,T0] such that u ∈ C([0,T0]; H1(Ω)w) ∩ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω))
and ∂u

∂t ∈ L2(0,T0; H−1(Ω)), where w denotes the weak topology. Furthermore, 0 <
u(x, t) < 1, a.e. (x, t) ∈ Ω × (0,T0).

Proof.
We actually prove the existence of a local in time solution to the auxiliary problem

(3.6)-(3.8) satisfying the regularity and weak separation property stated in the theorem.
Then, since u > 0 almost everywhere, it immediately follows that it is solution to the
original problem.

The idea, to prove existence, is to approximate the singular nonlinear term f by
regularized ones defined on the whole real line and then pass to the limit in the approxi-
mated problems. For instance, one can consider the following C1-functions defined on
the real line and having a linear growth at infinity, N ∈ � :

fN(s) =


f (1 − 1

N ) + f ′(1 − 1
N )(s − 1 + 1

N ), s > 1 − 1
N ,

f (s), s ∈ [ 1
N , 1 −

1
N ],

f ( 1
N ) + f ′( 1

N )(s − 1
N ), s < 1

N ,

and replace f by fN in the equations. As this procedure is now standard for the Cahn–
Hilliard equation, we will not detail it here and will instead work directly on the original
equation (3.6) and refer the interested reader to [96]. Note that the approximated func-
tions satisfy (3.4), as well as a property similar to (3.5), with constants which are inde-
pendent of the approximation parameter N, at least when N is large enough (see [96]).
Therefore, the constants which appear below are independent of the approximation pa-
rameter when considering approximated solutions. Also note that, as the approximated
functions go to infinity as s goes to infinity, the solutions to the approximated problems
may also exit [0, 1] and may, in particular, become negative, as mentioned above. This
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explains why one only has a local in time existence result when considering this scheme.
We finally mention that the crucial step is to prove that f (u) belongs to L2(Ω × (0,T0)),
for some T0 > 0 (this allows to pass to the limit in the nonlinear term in the approxima-
ted problems).

That said, we rewrite (3.6) in the following equivalent weaker form :

(−∆)−1∂u
∂t
− ∆u + f (u) + (−∆)−1g(u) = 0, (3.9)

d〈u〉
dt

+ 〈g(u)〉 = J, (3.10)

∂u
∂ν

= 0 on Γ, (3.11)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (3.12)

Note that (3.10) is obtained by formally integrating (3.6) over Ω and integrating by
parts.

The a priori estimates derived below will be formal. Note that, on the approximated
problems level, they can easily be justified by a standard Galerkin scheme.

First, note that
−k ≤ 〈g(u)〉 ≤ k

(note indeed that g is bounded, so that so is 〈g(u)〉), so that

〈u0〉 + (J − k)t ≤ 〈u(t)〉 ≤ 〈u0〉 + (J + k)t,

as long as it exists. Assume that

2δ ≤ 〈u0〉 ≤ 1 − 2δ, δ ∈ (0,
1
2

).

It then follows from the above that there exists T0 = T0(δ, u0) > 0 such that

δ ≤ u(t) ≤ 1 − δ, t ∈ [0,T0]. (3.13)

Let us emphasize that, when working with the approximated problems, T0 can be cho-
sen independent of the approximation parameter, which is essential to pass to the limit.
Indeed, the equation for the spatial average of the approximated solutions (i.e., the equi-
valent of (3.10)) would be the same, so that the constants in the corresponding estimates
would also be the same.

We assume from now on that t ∈ [0,T0].
Let us multiply (3.9) by u and integrate over Ω and by parts. This gives

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 + (( f (u), u)) + (((−∆)−1g(u), u)) = 0. (3.14)
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Note that it follows from (3.5) and (3.13) that

(( f (u), u)) = (( f (u), u)) ≥ c(‖ f (u)‖L1(Ω) +

∫
Ω

F(u) dx) − c′, c > 0, (3.15)

where the above constants depend on δ. Furthermore, we have

|(((−∆)−1g(u), u))| ≤ c‖g(u)‖‖u‖ ≤ c‖∇u‖. (3.16)

We deduce from (3.14)-(3.16) that

d
dt
‖u‖2−1 + c(‖∇u‖2 + ‖ f (u)‖L1(Ω) +

∫
Ω

F(u) dx) ≤ c′, c > 0. (3.17)

Let us next multiply (3.9) by ∂u
∂t to obtain

1
2

d
dt
‖∇u‖2 + ‖

∂u
∂t
‖2−1 + (( f (u),

∂u
∂t

)) + (((−∆)−1g(u),
∂u
∂t

)) = 0. (3.18)

Note that

(( f (u),
∂u
∂t

)) = (( f (u),
∂u
∂t

))

=
d
dt

∫
Ω

F(u) dx − (( f (u),
d〈u〉
dt

))

=
d
dt

∫
Ω

F(u) dx + Vol(Ω)(〈g(u)〉 − J)〈 f (u)〉

≥
d
dt

∫
Ω

F(u) dx − c‖ f (u)‖L1(Ω), (3.19)

recalling that g is bounded. Furthermore,

|(((−∆)−1g(u),
∂u
∂t

))| = ((g(u), (−∆)−1∂u
∂t

))|

≤ c‖g(u)‖‖
∂u
∂t
‖−1

≤ c‖
∂u
∂t
‖−1. (3.20)

It thus follows from (3.18)-(3.20) that

d
dt

(‖∇u‖2 + 2
∫

Ω

F(u) dx) + ‖
∂u
∂t
‖2−1 ≤ c‖ f (u)‖L1(Ω) + c′. (3.21)

Let us now add (3.17) and (3.21), multiplied by δ1 > 0 small enough, to find a
differential inequality of the form

dE1

dt
+ c(E1 + ‖ f (u)‖L1(Ω) + ‖

∂u
∂t
‖2−1) ≤ c′, c > 0, (3.22)
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where
E1 = ‖u‖2−1 + δ1(‖∇u‖2 + 2

∫
Ω

F(u) dx)

satisfies
E1 ≥ c‖∇u‖2 − c′, c > 0.

Multiplying (3.9) by −∆u, we find, employing (3.4),

1
2

d
dt
‖u‖2 + ‖∆u‖2 ≤ c0‖∇u‖2 − ((g(u), u)), (3.23)

which yields, noting that
|((g(u), u))| ≤ c‖u‖2 + c′,

the differential inequality

d
dt
‖u‖2 + ‖∆u‖2 ≤ c‖u‖2 + c′. (3.24)

Here, we have also used the fact that

‖∇u‖2 ≤
1
2
‖∆u‖2 + c‖u‖2,

which follows from standard elliptic regularity results and a proper interpolation inequa-
lity.

Next, we deduce from (3.10) and (3.13) that

d
dt
〈u〉2 + 〈u〉2 ≤ c. (3.25)

Furthermore, it follows from (3.24) that

d
dt
‖u‖2 + c‖u‖2H2(Ω) ≤ c′(‖u‖2 + 〈u〉2) + c′′, c > 0. (3.26)

Summing finally (3.22), (3.25) and (3.26), multiplied by δ2 > 0 small enough, we
have a differential inequality of the form

dE2

dt
+ c(E2 + ‖u‖2H2(Ω) + ‖

∂u
∂t
‖2H−1(Ω) + ‖ f (u)‖L1(Ω)) ≤ c′, c > 0, (3.27)

where
E2 = E1 + 〈u〉2 + δ2‖u‖2

satisfies
E2 ≥ c‖u‖2H1(Ω) − c′, c > 0.

42



3.3. Existence of solutions

Note indeed that it follows from (3.10) and the boundedness of g that d〈u〉
dt is bounded.

Having this, we note that (3.9) yields

f (u) = ∆u − (−∆)−1∂u
∂t
− (−∆)−1g(u),

so that
‖ f (u)‖ ≤ c(‖∆u‖ + ‖

∂u
∂t
‖−1 + 1) (3.28)

and
‖ f (u)‖2L2(0,T0;L2(Ω)) ≤ cE2(0). (3.29)

Next, taking s = u and m = 〈u〉 in (3.5), it follows from (3.13) that

|〈 f (u)〉| ≤ c(( f (u), u)) + c′

= c(( f (u), u)) + c′

≤ c‖ f (u)‖‖u‖ + c′,

where the above constants depend on δ. Therefore,

Vert f (u)‖2L2(0,T0;L2(Ω)) ≤ c(‖ f (u)‖2L2(0,T0;L2(Ω)) +

∫ T0

0
〈 f (u)〉2 dt)

≤ cE2(0) + c′E2(0)‖u‖2L∞(0,T0;L2(Ω)) + c′′

≤ cE2
2(0) + c′

and
‖ f (u)‖L2(0,T0;L2(Ω)) ≤ c(E2(0) + 1). (3.30)

As mentioned above, (3.30) is the crucial estimate to pass to the limit in the nonlinear
term and prove the existence of a local in time solution. The rest of the proof is standard
and we omit the details.

�

Remark 3.3.1. The separation property from the singular points 0 and 1 given in the
above theorem says that there will be no zone where the metabolite under study is totally
absent ; there will always be at least some trace of it.

Remark 3.3.2. For a regular, in particular, cubic, nonlinear term f , we can similarly
prove the existence, and also the uniqueness, of the local in time solution. Note however
that, as already mentioned, the solution may become negative (or strictly larger than
one), in which case, the equation may become singular. Consequently, we are not able
to prove a global in time existence result in that case.

Theorem 3.3.1 can be extended to more general functions J = J(x, t) as follows.
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Theorem 3.3.2. We assume that the assumptions of Theorem 3.3.1 hold and that J ∈
L∞(Ω × (0,T )), T > 0. Then, the assertions of Theorem 3.3.1 still hold.

Proof.
Note that the weaker formulation of the problem now reads

(−∆)−1∂u
∂t
− ∆u + f (u) + (−∆)−1g(u) = (−∆)−1J, (3.31)

d〈u〉
dt

+ 〈g(u)〉 = 〈J〉, (3.32)

∂u
∂ν

= 0 on Γ, (3.33)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (3.34)

We can then repeat the estimates made above, with minor changes. In particular,
when estimating the spatial average of u, we obtain

〈u0〉 − (‖J‖L∞(Ω×(0,T )) + k)t ≤ 〈u(t)〉 ≤ 〈u0〉 + (‖J‖L∞(Ω×(0,T )) + k)t.

Also note that, e.g., when multiplying (3.31) by ∂u
∂t , we have to estimate the term (((−∆)−1J, ∂u

∂t )).
To do so, we write

(((−∆)−1J,
∂u
∂t

)) = (((−∆)−
1
2 J, (−∆)−

1
2
∂u
∂t

))

≤ c‖J‖‖
∂u
∂t
‖−1

≤ ε‖
∂u
∂t
‖2−1 + cε, ∀ε > 0.

�
We then have the following.

Theorem 3.3.3. Let us assume that 0 ≤ J k′+1
k ≤ 1 and let u be a local in time weak

solution as in Theorem 3.3.1. Then, it is global in time, i.e., defined on [0,T ], ∀T > 0.

Proof.
Let u be a local in time weak solution on [0,T ], T > 0 given, and T? be its maximal

time of existence. Let us assume that T? < T . Then, necessarily, u belongs to [0, 1] for
t ∈ [0,T?). In particular, this yields

ku
k′ + 1

≤ g(u) ≤
ku
k′

and
J −

k
k′
〈u〉 ≤ J − 〈g(u)〉 ≤ J −

k
k′ + 1

〈u〉.
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Therefore, noting that J is nonnegative and recalling that J k′+1
k ≤ 1,

〈u0〉e−
k
k′ t ≤ 〈u(t)〉 ≤ 〈u0〉e−

k
k′+1 t + J

k′ + 1
k

(1 − e−
k

k′+1 t)

≤ 〈u0〉e−
k

k′+1 t + 1 − e−
k

k′+1 t, t ∈ [0,T?). (3.35)

Finally, it follows from (3.35) that there exists δ ∈ (0, 1) (which can be taken inde-
pendent of T?) such that

δ < 〈u(t)〉 < 1 − δ, ∀t ∈ [0,T?).

Note indeed that, setting

ϕ(t) = 〈u0〉e−
k

k′+1 t + 1 − e−
k

k′+1 t,

then
ϕ′(t) =

k
k′ + 1

(1 − 〈u0〉)e−
k

k′+1 t ≥ 0.

Therefore, ϕ is monotone increasing and takes values in [ϕ(0), ϕ(T )] = [〈u0〉, (〈u0〉 −

1)e−
k

k′+1 T + 1] ⊂ (0, 1). The lower bound is straightforward. This yields that, necessarily,
the solution is global in time, since, otherwise, owing to continuity, it can be extended
(recall that T? < T ).

�

Remark 3.3.3. (i) Note that the above argument does not work for the approximated
problems (and regular nonlinear terms f ).
(ii) In the case of lactate exchanges in glial cells, possible biologically relevant values
are (see, e.g., [47] and the references therein)

k = 0.01mM.s−1, k′ = 3.5mM,

J = 5.7.10−3mM.s−1,

so that the condition J k′+1
k ≤ 1 is a restrictive one. It is however satisfied if one consi-

ders a sufficiently small external flux J. Note nevertheless that our equation should be
regarded as only a very simplified model in this situation. More concrete models should
account for different energy mechanisms (e.g., glucose and glutamate/glutamine) or for
the tumor growth in case of cancerous cells. Such more elaborate models will be studied
elsewhere.
(iii) Note that, since g is monotone increasing,

d〈u〉
dt
∈ [J −

k
k′ + 1

, J].

Therefore, if J = 0, then 〈u〉 is monotone decreasing and, since it belongs to [0, 1], it
converges to some limit. A similar situation arises when J − k

k′+1 ≥ 0, in which case 〈u〉
is monotone increasing. Also note that it follows from (3.35) that, when J = 0, then 〈u〉
converges to 0 as time goes to +∞, as expected.
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We also have the following result, for nonconstant functions J = J(x, t).

Theorem 3.3.4. We assume that the assumptions of Theorem 3.3.2 hold and that J ∈
[0, J?], where J? k′+1

k ≤ 1. Then, a solution as in Theorem 3.3.2 is global in time, i.e.,
defined on [0,T ].

Proof.
The proof is similar to that of Theorem 3.3.3, noting that we now have

−
k
k′
〈u〉 ≤ J − 〈g(u)〉 ≤ J? −

k
k′ + 1

〈u〉,

so that

〈u0〉e−
k
k′ t ≤ 〈u(t)〉 ≤ 〈u0〉e−

k
k′+1 t + J?

k′ + 1
k

(1 − e−
k

k′+1 t)

≤ 〈u0〉e−
k

k′+1 t + 1 − e−
k

k′+1 t.

�

Remark 3.3.4. In the study of brain metabolites concentrations in the circadian rhythm,
one considers in [49] functions J of the form

J = a sin2(bt + c), a, b, c > 0.

The condition in Theorem 3.3.4 on the parameters is again restrictive when compared
to the numerical values taken in [49].

Remark 3.3.5. In the case of a logarithmic nonlinear term f , uniqueness is an open
problem (see however the next section below for a partial uniqueness result).

3.4 Regularity of solutions
We assume in this section that J is a constant.
We have the following.

Theorem 3.4.1. We assume that the assumptions of Theorem 3.3.3 hold and that 0 <
J k′+1

k < 1. Then, any weak solution u to (3.1)-(3.3) satisfies

∂u
∂t
∈ L∞(r,+∞; H−1(Ω)) ∩ L2(r,T ; H1(Ω)),

∀r < T, r > 0 and T > 0 given.
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Proof.
The estimates below are again formal, but they can also be justified within a Galerkin

scheme for the approximated problems.
Rewrite the equations in the equivalent form

∂u
∂t

+ g(u) − J = ∆µ, (3.36)

µ = −∆u + f (u), (3.37)
∂u
∂ν

=
∂µ

∂ν
= 0 on Γ. (3.38)

First, note that it follows from (3.37) that

〈µ〉 = 〈 f (u)〉,

so that, owing to the regularity obtained in the previous section, µ ∈ L2(0,T ; H1(Ω)),
since

µ = −(−∆)−1∂u
∂t
− (−∆)−1g(u). (3.39)

Next, let us multiply (3.36) by ∂µ

∂t to have

((
∂u
∂t
,
∂µ

∂t
)) = −

1
2

d
dt
‖∇µ‖2 − ((g(u) − J,

∂µ

∂t
)). (3.40)

Let us then differentiate (3.37) with respect to time to obtain

∂µ

∂t
= −∆

∂u
∂t

+ f ′(u)
∂u
∂t
. (3.41)

Multiply (3.41) by ∂u
∂t to find

((
∂u
∂t
,
∂µ

∂t
)) = ‖∇

∂u
∂t
‖2 + (( f ′(u)

∂u
∂t
,
∂u
∂t

))

≥ ‖∇
∂u
∂t
‖2 − c0‖

∂u
∂t
‖2, (3.42)

owing to (3.4). Combine (3.40) and (3.42) to have

1
2

d
dt
‖∇µ‖2 + ‖∇

∂u
∂t
‖2 + ((g(u) − J,

∂µ

∂t
)) ≤ c0‖

∂u
∂t
‖2

≤
1
2
‖∇
∂u
∂t
‖2 + c(‖

∂u
∂t
‖2−1 + 〈

∂u
∂t
〉2), (3.43)

owing to a proper interpolation inequality. Now, note that

((g(u) − J,
∂µ

∂t
)) =

d
dt

((g(u) − J, µ)) − ((g′(u)
∂u
∂t
, µ)). (3.44)
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Let us then combine (3.43) and (3.44) to obtain

d
dt

(‖∇µ‖2 + ((g(u) − J, µ))) + ‖∇
∂u
∂t
‖2 ≤ c‖

∂u
∂t
‖2H−1(Ω) + c′‖

∂u
∂t
‖‖µ‖

≤
1
2
‖∇
∂u
∂t
‖2 + c(‖

∂u
∂t
‖2H−1(Ω) + ‖µ‖2),

noting that g′ is bounded, so that

d
dt

(‖∇µ‖2 + ((g(u) − J, µ))) +
1
2
‖∇
∂u
∂t
‖2 ≤ c(‖

∂u
∂t
‖2H−1(Ω) + ‖µ‖2). (3.45)

Set finally
Λ = ‖∇µ‖2 + ((g(u) − J, µ)).

Note that, since g′ ≥ 0,

((g(u) − J, µ)) = ((g(u) − J,−∆u + f (u)))
= ((g′(u)∇u,∇u)) + ((g(u) − J, f (u))
≥ ((g(u) − J, f (u))).

Also note that

g(u) − J =
k − J
k′ + u

(u −
Jk′

k − J
),

so that it follows from (3.5) (indeed, 0 < J k′+1
k < 1 implies that k > J and 0 < Jk′

k−J < 1)
that

((g(u) − J, f (u))) ≥ c
∫

Ω

F(u) dx − c′, c > 0.

Therefore,
Λ ≥ ‖∇µ‖2 − c, c ≥ 0,

and an application of the uniform Gronwall’s lemma yields that

µ ∈ L∞(r,+∞; H1(Ω)),

r > 0 given, owing also to (3.27) and (3.39) which allow to see that the assumptions of
this lemma indeed hold.

The result finally follows from (3.39), recalling that d〈u〉
dt is uniformly bounded.

�
The regularity obtained in Theorem 3.4.1 is the key regularity for proving a strict

separation of the order parameter u (and not just its spatial average) from the pure states
0 and 1 (see [96]). More precisely, we have the following.
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Theorem 3.4.2. We assume that n = 1 or 2 and that the assumptions of theorems 3.3.3
and 3.4.1 hold. Then, there exists δ ∈ (0, 1) depending on the H1(Ω)-norm of u0 such
that

δ ≤ u(x, t) ≤ 1 − δ, for almost all (x, t), x ∈ Ω, t ≥ r,

r > 0 given.

The proof of this theorem is very similar to those given in [96], Chapter 4 (see also
[44, 99]), and we omit the details.

Remark 3.4.1. (i) This result says that, as soon as time is positive, the nonlinear term
becomes regular (and also bounded). Note that this then allows to prove additional
regularity on u and, in particular, that the solution is strong as soon as time is positive.
(ii) The strict separation is not known in three space dimensions, already for the origi-
nal Cahn–Hilliard equation, unless we make some growth assumptions on the singular
nonlinear term f which are not satisfied by the relevant logarithmic ones (see [99]).

Remark 3.4.2. From a biological point of view, the strict separation property says that,
in the phase separation process, there is always some amount (and not just some trace)
of the metabolite in, say, all regions of the cell.

A consequence of the above results is the following.

Corollary 1. We assume that n = 1 or 2 and that u0 ∈ H3(Ω), with ∂u0
∂ν

= 0 on Γ and
δ ≤ u0(x) ≤ 1 − δ, a.e. x ∈ Ω, δ ∈ (0, 1). Then, a solution as given in Theorem 3.4.1 is
unique.

Proof.
We first note that the regularity on u0 implies that ∂u

∂t (0) ∈ H−1(Ω) and, thus, µ(0) ∈
H1(Ω), allowing us to take r = 0 in the above results.

Next, having the strict separation property, we can essentially proceed as for the
original Cahn-Hilliard equation with a regular nonlinear term to prove uniqueness, as
well as the continuous dependence with respect to the initial data (say, with respect
to the H−1(Ω)-norm). Let us just mention that the difference, when compared to the
original Cahn-Hilliard equation, is that we have to handle a term of the form

(( f (u1) − f (u2), 〈u1 − u2〉)),

where u1 and u2 are two solutions which satisfy the strict separation property (in the case
of the original Cahn-Hilliard equation, this term does not appear, due to the conservation
of the spatial average of the order parameter ; see [96], also for several other variants of
the Cahn-Hilliard equation). Without the strict separation property, we would not know
how to estimate this term, whereas, here, noting that the nonlinear term f is globally
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Lipschitz continuous when considering two solutions which are strictly separated from
the pure states, we can write

| f (u1) − f (u2)| ≤ c|u1 − u2|.

�

Remark 3.4.3. (i) Having the strict separation property and uniqueness, we can study
the asymptotic behavior of the associated dynamical system. In particular, we can prove
the existence of finite dimensional attractors, meaning, roughly speaking, that the limit
dynamics can be described by a finite number of degrees of freedom. We refer the inter-
ested reader to, e.g., [96, 100, 111] for discussions on this.
(ii) Another interesting problem is the convergence of single trajectories to steady states.
Not that, already for the original Cahn-Hilliard equation, such a question is not a trivial
one, since one may have a continuum of steady states (see [109]). Here, due to the
additional symport term, the problem is particularly challenging and we cannot proceed
as in [109].
(iii) When k > J, one has a unique spatially homogeneous equilibrium given by

ue =
k′J

k − J
.

In particular, when J = 0, ue = 0 and we already saw that 〈u(t)〉 tends to 0 as t goes to
+∞. Proving a full stability result is however challenging and will be studied elsewhere.

3.5 A second model
We consider in this section the following initial and boundary value problem :

∂u
∂t

+ ∆2u − ∆ f (u) + αu +
ku

k′ + u
= J, α, k, k′ > 0, (3.46)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (3.47)

u|t=0 = u0. (3.48)

We again assume that J is a constant. When the symport term does not appear and J = 0,
we recover the Cahn-Hilliard-Oono equation.

Considering again a modified problem, namely,

∂u
∂t

+ ∆2u − ∆ f (u) + αu + g(u) = J, (3.49)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (3.50)

u|t=0 = u0, (3.51)

we can prove the following.
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Theorem 3.5.1. We assume that u0 is given such that u0 ∈ H1(Ω), 0 < 〈u0〉 < 1 and 0 <
u0(x) < 1, a.e. x ∈ Ω. Then, there exists T0 = T0(u0) > 0 and a weak solution u to (3.46)-
(3.48) on [0,T0] such that u ∈ C([0,T0]; H1(Ω)w)∩ L∞(0,T0; H1(Ω))∩ L2(0,T0; H2(Ω))
and ∂u

∂t ∈ L2(0,T0; H−1(Ω)). Furthermore, 0 < u(x, t) < 1, a.e. (x, t) ∈ Ω × (0,T0).

Proof.
We first note that the equation for the spatial average of the order parameter now

reads
d〈u〉
dt

+ α〈u〉 = J − 〈g(u)〉,

which yields

〈u0〉e−αt +
J − k
α

(1 − e−αt) ≤ 〈u(t)〉 ≤ 〈u0〉e−αt +
J + k
α

(1 − e−αt), (3.52)

allowing us to deduce the existence of T0 > 0 such that, for t ∈ [0,T0],

δ ≤ 〈u(t)〉 ≤ 1 − δ, δ ∈ (0,
1
2

).

Here, we again assume that 2δ ≤ 〈u0〉 ≤ 1 − 2δ.
We then consider the weaker formulation

(−∆)−1∂u
∂t
− ∆u + f (u) + α(−∆)−1u + (−∆)−1g(u) = 0, (3.53)

∂u
∂ν

= 0 on Γ, (3.54)

u|t=0 = u0. (3.55)

Let us multiply (3.53) by ∂u
∂t to obtain, for t ∈ [0,T0],

1
2

d
dt
‖∇u‖2 + ‖

∂u
∂t
‖2−1 + (( f (u),

∂u
∂t

)) +
α

2
d
dt
‖u‖2−1 + (((−∆)−1g(u),

∂u
∂t

)) = 0. (3.56)

Note that

(( f (u),
∂u
∂t

)) = (( f (u),
∂u
∂t

))

=
d
dt

∫
Ω

F(u) dx − (( f (u),
d〈u〉
dt

))

=
d
dt

∫
Ω

F(u) dx + Vol(Ω)(〈g(u)〉 + α〈u〉 − J)〈 f (u)〉

≥
d
dt

∫
Ω

F(u) dx − c‖ f (u)‖L1(Ω), (3.57)
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since 〈u〉 belongs to [0, 1]. It thus follows from (3.56)-(3.57) that, for t ∈ [0,T0],

d
dt

(‖∇u‖2 + α‖u‖2−1 + 2
∫

Ω

F(u) dx) + ‖
∂u
∂t
‖2−1 ≤ c‖ f (u)‖L1(Ω) + c′. (3.58)

The rest of the proof is similar to that of Theorem 3.3.1 and we omit the details.
�

Remark 3.5.1. (i) Note that if J ≥ k and J + k ≤ α, then it follows from (3.52) that
δ ≤ 〈u(t)〉 ≤ 1 − δ for all times (in a finite time interval), so that the solution is actually
global in time.
(ii) When k = J = 0, it follows from (3.52) that 〈u〉 ∈ (0, 1) for all times and we
recover the global in time existence for the Cahn-Hilliard-Oono equation. This slightly
simplifies the proof given in [96].

We then have the following theorem which improves the global existence result
mentioned in the above remark.

Theorem 3.5.2. Let us assume that 0 ≤ J ≤ α and let u be a local in time weak solution
as in Theorem 3.5.1. Then, it is global in time.

Proof.
We proceed as in the proof of Theorem 3.3.3.
Let again u be a local in time weak solution on [0,T ], T > 0 given, and T? be its

maximal time of existence. Assume that T? < T . Noting once more that u belongs to
[0, 1] for t ∈ [0,T?), it follows that

0 ≤ g(u) ≤
k

k′ + 1
,

so that, proceeding as above,

〈u0〉e−αt +
1
α

(J −
k

k′ + 1
)(1 − e−αt) ≤ 〈u(t)〉 ≤ 〈u0〉e−αt +

J
α

(1 − e−αt),

which allows us to conclude when J k′+1
k ≥ 1, i.e., J ≥ k

k′+1 . When J k′+1
k ≤ 1, we can

write
−(

k
k′

+ α)〈u〉 ≤ J − α〈u〉 − 〈g(u)〉 ≤ J −
k

k′ + 1
〈u〉,

yielding

〈u0〉e−( k
k′ +α)t ≤ 〈u(t)〉 ≤ 〈u0〉e−

k
k′+1 t + J

k′ + 1
k

(1 − e−
k

k′+1 t).

We can again conclude as in the proof of Theorem 3.3.3.
�
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Remark 3.5.2. Note that the value of J given in Remark 3.3.3, (ii), is compatible with
the condition J ≤ α, for a rather small value of α. This is no longer the case for the
values considered in [49], with a proper extension of the results when J is nonconstant,
as in Section 3. In that case, indeed, α should be large, i.e., less but close to 1. It is
interesting to note here that, as far as the original Cahn-Hilliard theory is concerned,
the dynamics of the Cahn-Hilliard-Oono equation is close, in a proper sense, to that of
the Cahn-Hilliard equation when α is small (see [96]).

We next have the following.

Theorem 3.5.3. We assume that the assumptions of Theorem 3.5.2 hold and that k > εJ,
0 < εJk′

k−εJ < 1 and (1 − ε)J < α, ε ∈ (0, 1). Then, any weak solution u to (3.46)-(3.48)
satisfies

∂u
∂t
∈ L∞(r,+∞; H−1(Ω)) ∩ L2(r,T ; H1(Ω)),

∀r < T, r > 0 and T > 0 given.

Proof.
We proceed as in the proof of theorem 3.4.1. The only difference here is that

Λ = ‖∇µ‖2 + ((g(u) + αu − J, µ))

and we have to estimate
((g(u) + αu − J, f (u)))

from below. Writing

g(u) + αu − J = g(u) − εJ + α(u − (1 − ε)
J
α

),

it follows that

((g(u) + αu − J, f (u))) ≥ c
∫

Ω

F(u) dx − c′, c > 0,

which finishes the proof.
�

We finally have the following.

Theorem 3.5.4. We assume that n = 1 or 2 and that the assumptions of theorems 3.5.2
and 3.5.3 hold. Then, there exists δ ∈ (0, 1) depending on the H1(Ω)-norm of u0 such
that

δ ≤ u(x, t) ≤ 1 − δ, for almost all (x, t), x ∈ Ω, t ≥ r,

r > 0 given.
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Remark 3.5.3. Let us assume that J = 0 and let us consider the spatially homogeneous
equilibrium ue = 0. Then, multiplying (3.46) by u, we obtain

1
2

d
dt
‖u‖2 + ‖∆u‖2 + α‖u‖2 ≤ c0‖∇u‖2 +

k
k′
‖u‖2.

Let λ1 be the first eigenvalue of the operator −∆ associated with Neumann boundary
conditions and acting on functions with null spatial average. Writing (see, e.g., [96,
111])

‖∆u‖2 = ‖(−∆)u‖2 ≥ λ1‖(−∆)
1
2 u‖2 = λ1‖∇u‖2,

we find
1
2

d
dt
‖u‖2 + (λ1 − c0)‖∇u‖2 + (α −

k
k′

)‖u‖2 ≤ 0.

Therefore, if c0 ≤ λ1 and k
k′ ≤ α, then 0 is stable. Furthermore, if k

k′ < α, then we have a
differential inequality of the form

d
dt
‖u‖2 + c‖u‖2 ≤ 0, c > 0,

and it follows from Gronwall’s lemma that 0 is asymptotically stable. Note however that
the condition c0 ≤ λ1 is a restrictive one.
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A coupled Cahn-Hilliard model for the
proliferative-to-invasive transition of

hypoxic glioma cells

Un modèle couplé de Cahn-Hilliard pour la
transition proliférative à invasive des cellules

de gliome hypoxique
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A coupled Cahn-Hilliard model for the
proliferative-to-invasive transition of hypoxic glioma

cells

4.1 Introduction
We consider in this article a Cahn-Hilliard type model for the proliferative-to-invasive

transition of hypoxic glioma cells.
Gliomas are highly invasive brain tumors and constitute the most prevalent mali-

gnant brain tumors. In particular, low-grade gliomas are diffuse tumors and have an un-
common growth. More precisely, one observes an inexorable slow growth without any
symptom, followed by a changeover to high-grade gliomas [66]. Studying and curing
such tumors involve several difficulties. On the one hand, as it is hidden in the brain, ha-
ving an idea of the glioma stage and size requires the use of imaging techniques such as
MRI (magnetic resonance imaging) or PET-scan (positron-emission tomography scan).
On the other hand, a glioma is highly diffusive, so that it is difficult to define it with
certainty or to remove all of it with a simple resection without affecting normal tissues.

In [45], H. Gomez proposed a model for the proliferative-to-invasive transition of
hypoxic glioma cells. As explained in [45], hypoxia is a hallmark of gliomas that is
often associated with poor prognosis and resistance to therapies. Furthermore, an insuf-
ficient oxygen supply reduces the proliferation rate of tumor cells, which contributes
to a slower progression of the lesion, but also increases the invasiveness of the tumor,
making it more aggressive. The model reads

∂u
∂t
− ∆u = h(σ)u(α − u),

∂σ

∂t
− ∆σ +

uσ
1 + σ

= γ(β − σ),

where α, β and γ are positive biological parameters (here, we have set several other
biological parameters equal to one and refer to [45] for more details) and

h(s) = a[
s
β

+ b(1 −
s
β

)],

with a, b > 0 and b ∼ 0.6 < 1 ; note that, in our analysis, we will actually take h
bounded, as in [16] (see also [98]). These equations account for the tumor and oxygen
dynamics and assume that the rate of change of the tumor cells density is given by
the net migration of the tumor cells plus the proliferation of the cancerous cells. In
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particular, u is the tumor cells density and σ is the oxygen concentration. The nonlinear
term in the first equation represents the so-called logistic growth which assumes that
tumor cells proliferate until they reach the cell density α. The constant α is known as
carrying capacity. Furthermore, the nonlinear term uσ

1+σ
in the second equation accounts

for the oxygen uptake by tumor cells, assuming a Michaelis-Menten kinetics.
In this paper, we consider instead a Cahn-Hilliard type equation for the oxygen,

namely,

∂σ

∂t
+ ∆2σ − ∆ f (σ) +

uσ
1 + σ

+ γσ = γβ.

Actually, more precisely, in view of the term γσ, γ > 0, one has here a Cahn-Hilliard-
Oono type equation ; the Cahn-Hilliard-Oono equation was proposed in [105] to also
account for long-ranged effects.

The original Cahn-Hilliard equation,

∂u
∂t

+ ∆2u − ∆ f (u) = 0,

was initially proposed to model phase separation processes in binary alloys (see [11,
12]). Since then, this equation, or some of its variants, were successfully applied to
many other applications than just phase separation in alloys. We refer the interested
reader to [96, 103] for reviews on the Cahn-Hilliard equation and some of its variants,
as well as their mathematical analysis.

In particular, Cahn-Hilliard type models in the context of tumor growth and energy
metabolism in the brain can be found in, e.g., [6, 28, 39, 40, 63, 73, 89, 98].

One interest in considering a Cahn-Hilliard type model here is that, in addition to
spatial diffusion, we can also account for the phase separation process, having in mind
different zones in the cells in which, typically, the concentration of oxygen may be high
or very low.

Our aim in this paper is to prove the existence of weak solutions. Compared to the
reaction-diffusion model, one essential difficulty is to prove that the order parameter σ
remains nonnegative ; recall indeed that σ corresponds to the concentration of oxygen.
This is due to the fact that we no longer have the maximum principle/comparison prin-
ciple for Cahn-Hilliard type equations. Also note that the term uσ

1+σ
can become singular

when σ is negative. To overcome this, we consider a logarithmic nonlinear term f in
the above system. Actually, as far as the original Cahn-Hilliard equation is concerned,
a logarithmic nonlinear term is the one which is thermodynamically relevant ; it is thus
natural to also consider such a nonlinear term in our model. In addition, we consider a
modified problem to avoid the second nonlinear term uσ

1+σ
to become singular.
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4.2 Setting of the problem
We consider the following initial and boundary value problem, in a bounded and

regular domain Ω ⊂ �n, n = 1, 2 or 3, with boundary Γ :

∂u
∂t
− ∆u = h(σ)u(α − u), (4.1)

∂σ

∂t
+ ∆2σ − ∆ f (σ) +

uσ
1 + σ

+ γσ = γβ, (4.2)

∂u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (4.3)

u|t=0 = u0, σ|t=0 = σ0. (4.4)

Here, α, β and γ are positive (biological) parameters and h : � → � is a bounded and
globally Lipschitz continuous function such that

h(s) ≥ 0, s ≥ 0.

Furthermore, f is of logarithmic type,

f (s) = −c0(s −
β

2
) + θ ln

s
β − s

, s ∈ (0, β), 0 < θ <
βc0

4

(the condition 0 < θ < βc0
4 is made to ensure that we indeed have a double-well form for

the corresponding potential and that phase separation can occur when considering the
original Cahn-Hilliard equation). Note that

f ′ ≥ −c0. (4.5)

Besides, there holds, for s, m ∈ (0, β),

f (s)(s − m) ≥ cm(| f (s)| + F(s)) − c′m, cm > 0, c′m ≥ 0, (4.6)

where
F(s) =

∫ s

β
2

f (ξ) dξ

corresponds to the potential and cm and c′m depend continuously on m (see [96] ; actually,
there, f is defined on (−1, 1), but we can make a rescaling).

Remark 4.2.1. The original Cahn-Hilliard equation is often associated with a cubic
nonlinear term, typically, f (s) = s3 − s. However, in that case, the order parameter
may not remain in the relevant interval. In particular, it can become negative. In our
case, this may be problematic, as the nonlinear term uσ

1+σ
may become singular. On the

contrary, as we will see below, logarithmic nonlinear terms ensure that σ remains in the
relevant interval.
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In order to study the existence of solutions, we introduce the following auxiliary
problem :

∂u
∂t
− ∆u = h(σ)u(α − u), (4.7)

∂σ

∂t
+ ∆2σ − ∆ f (σ) +

uσ
1 + |σ|

+ γσ = γβ, (4.8)

∂u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (4.9)

u|t=0 = u0, σ|t=0 = σ0. (4.10)

Note that the nonlinear term uσ
1+|σ|

can not become singular. However, taking f cubic may
still lead to a negative σ.

Next, we approximate the singular function f by the following C1-functions defined
on the real line, N ∈ � :

fN(s) =


f (β − 1

N ) + f ′(β − 1
N )(s − β + 1

N ), s > β − 1
N ,

f (s), s ∈ [ 1
N , β −

1
N ],

f ( 1
N ) + f ′( 1

N )(s − 1
N ), s < 1

N .

Note that, for every N ∈ �,
f ′N ≥ −c0 (4.11)

and, for s ∈ �, m ∈ (0, β) and N large enough,

fN(s)(s − m) ≥ cm(| fN(s)| + FN(s)) − c′m, cm > 0, c′m ≥ 0, (4.12)

where
FN(s) =

∫ s

β
2

fN(ξ) dξ

and cm and c′m depend continuously on m and are independent of N (see [96]).
We then consider the following approximated problems, for N ∈ � :

∂uN

∂t
− ∆uN = h(σN)uN(α − uN), (4.13)

∂σN

∂t
+ ∆2σN − ∆ fN(σN) +

uNσN

1 + |σN |
+ γσN = γβ, (4.14)

∂uN

∂ν
=
∂σN

∂ν
=
∂∆σN

∂ν
= 0 on Γ, (4.15)

uN |t=0 = u0, σN |t=0 = σ0. (4.16)

Note that, for a given N ∈ �, we can prove, via a standard Galerkin scheme, the local
in time existence (as well as the uniqueness) of a solution (uN , σN), on some interval
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[0,TN), TN > 0 (see also the estimates in the next section below). Note indeed that
s 7→ s

1+|s| is globally Lipschitz continuous on �, with derivative s 7→ 1
(1+|s|)2 .

We set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫
Ω

v dx

and, for v ∈ H−1(Ω),

〈v〉 =
1

Vol(Ω)
〈v, 1〉H−1(Ω),H1(Ω).

We finally set, whenever it makes sense,

v = v − 〈v〉.

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also set
‖ · ‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse of the minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null spatial
average. More generally, we denote by ‖ · ‖X the norm on the Banach space X.

We note that
v 7→ (‖v‖2−1 + 〈v〉2)

1
2 , v 7→ (‖v‖2 + 〈v〉2)

1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 and v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces. Furthermore, ‖ · ‖−1 is a norm on {v ∈ H−1(Ω), 〈v〉 = 0}
which is equivalent to the usual H−1-norm.

Throughout this paper, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line.

4.3 A priori estimates
We assume that there exists δ ∈ (0, β2 ) such that

2δ ≤ 〈σ0〉 ≤ β − 2δ. (4.17)

The estimates below are formal, but they can be justified within a standard Galerkin
scheme. Furthermore, all constants below are independent of the approximation para-
meter N.

That said, we rewrite the problem in the following equivalent weak form :

∂uN

∂t
− ∆uN = h(σN)uN(α − uN), (4.18)

(−∆)−1∂σN

∂t
− ∆σN + fN(σN) + (−∆)−1 uNσN

1 + |σN |
+ γ(−∆)−1σN = 0, (4.19)
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d〈σN〉

dt
+ 〈

uNσN

1 + |σN |
〉 = γβ, (4.20)

∂uN

∂ν
=
∂σN

∂ν
= 0 on Γ, (4.21)

uN |t=0 = u0, σN |t=0 = σ0, (4.22)

with
σN = σN + 〈σN〉.

We multiply (4.18) by uN and have, integrating over Ω and by parts and recalling
that h is bounded,

1
2

d
dt
‖uN‖

2 + ‖∇uN‖
2 =

∫
Ω

h(σN)u2
N(α − uN)dx

≤ c
∫

Ω

|uN |
2(α + |uN |)dx

≤ c(‖uN‖
2 + ‖uN‖

3
L3(Ω)),

which yields, noting that it follows from interpolation that (see [16])

‖uN‖
3
L3(Ω) ≤

1
2

(‖∇uN‖
2 + ‖uN‖

2) + c‖uN‖
6,

the differential inequality

d
dt
‖uN‖

2 + ‖∇uN‖
2 ≤ c(1 + ‖uN‖

6), (4.23)

where we have also employed Young’s inequality.
In particular, it follows from (4.23) that

d
dt
‖uN‖

2 ≤ c(1 + ‖uN‖
6), (4.24)

which yields, owing to the comparison principle, that there exists T1 > 0 independent
of N such that

‖uN‖ ≤ c1, t ∈ [0,T1], (4.25)

where we emphasize that the constant c1 is independent of N. Note indeed that the
constant in (4.24) is independent of N. Moreover, within a Galerkin scheme, we would
have the same constants and time T1.

Having this, it follows from (4.20) that

〈σN(t)〉 = e−γt〈σ0〉 + e−γt
∫ t

0
eγt(γβ − 〈

uNσN

1 + |σN |
〉)ds
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and, for t ∈ [0,T1] and owing to (4.25),

|e−γt
∫ t

0
eγt(γβ − 〈

uNσN

1 + |σN |
〉)ds| ≤ e−γt

∫ t

0
eγt(γβ + c2)ds

≤ (β +
c2

γ
)(1 − e−γt),

where c2 is independent of N. We thus deduce that

e−γt〈σ0〉 − c3(1 − e−γt) ≤ 〈σN(t)〉 ≤ e−γt〈σ0〉 + c3(1 − e−γt), t ∈ [0,T1], (4.26)

where c3 is independent of N. It follows from (4.17) and (4.26) that there exists T2 > 0,
T2 ≤ T1, independent of N (but depending on δ) such that

δ ≤ 〈σN(t)〉 ≤ β − δ, t ∈ [0,T2]. (4.27)

We assume from now on that t ∈ [0,T2].
We multiply (4.19) by σN and obtain

1
2

d
dt
‖σN‖

2
−1 + ‖∇σN‖

2 + γ‖σN‖
2
−1 + (( fN(σN), σN)) + (((−∆)−1 uNσN

1 + |σN |
, σN)) = 0.

Note that, owing to (4.12) and (4.27) and for N large enough,

(( fN(σN), σN)) ≥ c(‖ fN(σN)‖L1(Ω) +

∫
Ω

FN(σN) dx) − c′, c > 0,

where c and c′ depend on δ. Furthermore, owing to (4.25),

|(((−∆)−1 uNσN

1 + |σN |
, σN))| = |((

uNσN

1 + |σN |
, (−∆)−1σN))

≤ c‖uN‖‖σN‖−1

≤ γ‖σN‖
2
−1 + c‖uN‖

2

≤ γ‖σN‖
2
−1 + c.

We thus deduce from the above the differential inequality

d
dt
‖σN‖

2
−1 + c(‖∇σN‖

2 + ‖ fN(σN)‖L1(Ω) +

∫
Ω

FN(σN) dx) ≤ c′, c > 0. (4.28)

We now multiply (4.19) by ∂σN
∂t and find

1
2

d
dt

(‖∇σN‖
2 + γ‖σN‖

2
−1) + ‖

∂σN

∂t
‖2−1 + (( fN(σN),

∂σN

∂t
)) + ((

uNσN

1 + |σN |
, (−∆)−1∂σN

∂t
)) = 0.
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Note that

|((
uNσN

1 + |σN |
, (−∆)−1∂σN

∂t
))| ≤ c‖uN‖‖

∂σN

∂t
‖−1

≤ c‖
∂σN

∂t
‖−1

and
(( fN(σN),

∂σN

∂t
)) =

d
dt

∫
Ω

FN(σN) dx − Vol(Ω)〈 fN(σN)〉〈
∂σN

∂t
〉.

Furthermore, it follows from (4.20) and (4.25) that

|〈
∂σN

∂t
〉| ≤ c(1 + ‖uN‖) ≤ c,

which yields

(( fN(σN),
∂σN

∂t
)) ≥

d
dt

∫
Ω

FN(σN) dx − c‖ fN(σN)‖L1(Ω).

It follows from the above that we have the following differential inequality :

d
dt

(‖∇σN‖
2 + γ‖σN‖

2
−1 + 2

∫
Ω

FN(σN) dx) + ‖
∂σN

∂t
‖2−1 ≤ c‖ fN(σN)‖L1(Ω) + c′. (4.29)

We finally multiply (4.19) by −∆σN and have

1
2

d
dt
‖σN‖

2 + ‖∆σN‖
2 + γ‖σN‖

2 + (( f ′N(σN)∇σN ,∇σN)) + ((
uNσN

1 + |σN |
, σN)) = 0,

which yields, owing to (4.11) and noting that

|((
uNσN

1 + |σN |
, σN))| ≤ c‖σN‖,

the differential inequality

d
dt
‖σN‖

2 + ‖∆σN‖
2 + γ‖σN‖

2 ≤ c(1 + ‖∇σN‖
2). (4.30)

Summing (4.28), η1 times (4.29) and η2 times (4.30), η1, η2 > 0 small enough, we
obtain a differential inequality of the form

dE
dt

+ c(E + ‖∆σN‖
2 + ‖

∂σN

∂t
‖2−1 + ‖ fN(σN)‖L1(Ω)) ≤ c′, c > 0, (4.31)

where

E = ‖σN‖
2
−1 + η1(‖∇σN‖

2 + γ‖σN‖
2
−1 + 2

∫
Ω

FN(σN) dx) + η2‖σN‖
2
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satisfies
E ≥ c‖∇σN‖

2 − c′, c > 0. (4.32)

It now follows from (4.19) that

fN(σN) = −(−∆)−1∂σN

∂t
+ ∆σN − γ(−∆)−1σN − (−∆)−1 uNσN

1 + |σN
,

so that
‖ fN(σN)‖ ≤ c(‖

∂σN

∂t
‖−1 + ‖∆σN‖ + 1). (4.33)

Combining (4.31) and (4.33) gives the differential inequality

dE
dt

+ c(E + ‖∆σN‖
2 + ‖

∂σN

∂t
‖2−1 + ‖ fN(σN)‖L1(Ω) + ‖ fN(σN)‖2) ≤ c′, c > 0. (4.34)

In particular, it follows from (4.34) that

‖ fN(σN)‖2L2(0,T2;L2(Ω) ≤ c(E(0) + 1). (4.35)

Then, taking s = σN and m = 〈σN〉 in (4.12), we find

|〈 fN(σN)〉| ≤ c(( fN(σN), σN)) + c′

= c(( fN(σN), σN)) + c′

≤ c‖ fN(σN)‖‖σN‖ + c′

≤ c‖ fN(σN)‖(E(0) + 1)
1
2 + c′,

so that
‖ fN(σN)‖L2(0,T2;L2(Ω) ≤ c(E(0) + 1). (4.36)

4.4 Existence of solutions
We have the following.

Theorem 4.4.1. We assume that (u0, σ0) ∈ L2(Ω) × H1(Ω), u0 ≥ 0 a.e., 0 < σ0 < β a.e.
and 0 < 〈σ0〉 < β. Then (4.1)-(4.4) possesses at least one local in time weak solution
(u, σ) such that, for some T0 > 0,

u ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),
∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)).

Furthermore,

u ≥ 0, 0 < σ < β for almost all (x, t) ∈ Ω × [0,T0].
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Proof. The passage to the limit in the approximated problems, as well as the separation
property for σ from the singular values 0 and β, are based on the a priori estimates
derived in the previous section and standard techniques (see, e.g., [16] and [96] for
details). This yields in particular a local in time weak solution to the auxiliary problem
(4.7)-(4.10). Noting then that σ > 0 a.e., this solution actually is a local in time weak
solution to the original problem (4.1)-(4.4).

There only remains to prove that u ≥ 0 a.e.. This can be proved, as in [16], by
multiplying (4.1) by −u−, where

u = u+ − u−, u+ = max(u, 0), u− = −min(0, u),

noting that h is nonnegative for s ≥ 0 (recall indeed that σ > 0 a.e.). Note that such a
multiplication is compatible with a Galerkin scheme.

�

Remark 4.4.1. Considering logarithmic nonlinear terms allows to directly ensure that
σ satisfies the biologically relevant condition

0 < σ < β a.e..

Furthermore, assuming that u0 further satisfies

u0 ≤ α a.e.

allows to have the further biologically relevant condition

0 ≤ u ≤ α a.e.,

as long as the solution exists. Indeed, this immediately follows by multiplying (4.1) by
(u − α)+ (see also [16]).

Let T∗ > 0 be the maximal time of existence of a local in time weak solution as
given in Theorem 4.4.1.

We then have the following.

Theorem 4.4.2. We further assume that u0 ∈ [0, α] a.e.,

h(s) ≥ H, H > 0, s ≥ 0,

and
γ ≥

α

β + 1
.

Then, for any T > 0, a local in time solution as given above is global in time, i.e.,
defined on [0,T ].
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Proof. First, multiply (4.1) by u to obtain

1
2

d
dt
‖u‖2 + ‖∇u‖2 = α

∫
Ω

h(σ)u2 dx −
∫

Ω

h(σ)u3 dx.

Note that, since u ≥ 0 and σ > 0 a.e.,∫
Ω

h(σ)u3 dx ≥ H‖u‖3L3(Ω).

Furthermore, owing to interpolation and Young’s inequality,

|α

∫
Ω

h(σ)u2 dx| ≤ c‖u‖2 ≤ c‖u‖‖u‖H1(Ω)

≤
1
2
‖∇u‖2 + c(‖u‖2 + 〈u〉2)

≤
1
2
‖∇u‖2 + c‖u‖2

≤
1
2
‖∇u‖2 +

H
2
‖u‖3L3(Ω) + c.

We thus deduce from the above the differential inequality

d
dt
‖u‖2 + ‖∇u‖2 + H‖u‖3L3(Ω) ≤ c. (4.37)

In particular, it follows from (4.37) and Young’s inequality that

d
dt
‖u‖2 + c‖u‖2 ≤ c′, c > 0,

which yields, employing Gronwall’s lemma, the global in time estimate (compare with
(4.25))

‖u‖ ≤ c, (4.38)

as long as the solution exists, where the constant c only depends on u0. Therefore, owing
to continuity, we can extend u.

Now, in order to extend σ, we note that the crucial point is to prove that 〈σ〉 remains
in (0, β) for all times.

Note that σ satisfies

d〈σ〉
dt

+ γ〈σ〉 + 〈
uσ

1 + σ
〉 = γβ,

so that, since u ∈ [0, α] a.e. and σ ∈ [0, β] a.e. and as long as the solution exists (note
that here we need to work on the original equations, not on the approximated ones),

γβ −
αβ

1 + β
≤

d〈σ〉
dt

+ γ〈σ〉 ≤ γβ.
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It thus follows from Gronwall’s lemma that

〈σ0〉e−γt +
β

γ
(γ −

α

1 + β
)(1 − e−γt) ≤ 〈σ(t)〉 ≤ 〈σ0〉e−γt + β(1 − e−γt), (4.39)

as long as it exists.
Let us consider the function

ϕ(t) = 〈σ0〉e−γt + β(1 − e−γt).

Noting that ϕ(0) = 〈σ0〉 ∈ (0, β) and limt→+∞ ϕ(t) = β, we easily see that

〈ϕ(t)〉 ∈ (δ, β − δ), δ ∈ (0, β), t ∈ [0,T ],

since ϕ is monotone. Proceeding similarly for the left-hand side of (4.39), we deduce
that there exists δ ∈ (0, β) depending only on T , such that

〈ϕ(t)〉 ∈ (δ, β − δ), δ ∈ (0, β), t ∈ [0,T ].

Therefore, we can also extend σ, owing again to continuity, which finishes the proof of
the theorem.

�

Remark 4.4.2. (i) Actually, when u0 ∈ [0, α], the condition H > 0 is not necessary,
since we immediately have

‖u‖ ≤ α
√

Vol(Ω),

as long as it exists, and can extend u. Also note that we actually have a solution defined
on �+.
(ii) If we do not assume that u ≤ α a.e., we have, owing to (4.38),

|〈
uσ

1 + σ
〉| ≤ c‖u‖ ≤ c′,

where the constant c′ only depends on the initial datum u0, the biological parameters of
the problem and the domain Ω. Therefore,

〈σ0〉e−γt + (β −
c′

γ
)(1 − e−γt) ≤ 〈σ(t)〉 ≤ 〈σ0〉e−γt + β(1 − e−γt),

and we deduce that the solution is global in time, provided that

β ≥
c′

γ
⇐⇒ γ ≥

c′

β
.
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This condition is however stronger than the one in Theorem 4.4.2 in general. Also note
that, if we again take H = 0, then we obtain a differential inequality of the form

d
dt
‖u‖2 ≤ c‖u‖2,

yielding, owing to Gronwall’s lemma,

‖u‖2 ≤ ecT ,

as long as it exists. We thus find an estimate of the form

|〈
uσ

1 + σ
〉| ≤ c‖u‖ ≤ cec′T ,

which does not allow to extend σ when T is large.

Remark 4.4.3. Uniqueness and further regularity (in particular, the existence of strong
solutions) are open problems. The difficulty here comes from the Cahn-Hilliard type
equation and already appears without any coupling (see [96]).
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Chapitre 5

A Cahn-Hilliard model with a
proliferation term for the

proliferative-to-invasive transition of
hypoxic glioma cells

Un modèle de Cahn-Hilliard avec un terme de
prolifération pour la transition proliférative à

invasive des cellules de gliome hypoxique

71





A Cahn-Hilliard model with a proliferation term for the
proliferative-to-invasive transition of hypoxic glioma

cells

5.1 Introduction
Our aim in this paper is to prove the existence of solutions for the following pro-

blem :
∂u
∂t

+ ∆2u − ∆ f (u) = h(σ)u(α − u),

∂σ

∂t
− ∆σ + γσ +

uσ
1 + σ

= γβ.

This system of equations is a variant of the following one :

∂u
∂t
− ∆u = h(σ)u(α − u),

∂σ

∂t
− ∆σ +

uσ
1 + σ

= γ(β − σ),

proposed in [45] to model the proliferative-to-invasive transition of hypoxic glioma
cells.

Gliomas are highly invasive brain tumors and constitute the most prevalent mali-
gnant brain tumors. In particular, low-grade gliomas are diffuse tumors and have an
uncommon growth. More precisely, one observes an inexorable slow growth without
any symptom, followed by a changeover to high-grade gliomas (see [66]). Studying and
curing such tumors involve several difficulties. On the one hand, as it is hidden in the
brain, having an idea of the glioma stage and size requires the use of imaging techniques
such as MRI (magnetic resonance imaging) or PET-scan (positron-emission tomogra-
phy scan). On the other hand, a glioma is highly diffusive, so that it is difficult to define
it with certainty or to remove all of it with a simple resection without affecting normal
tissues. Furthermore, as explained in [45], hypoxia is a hallmark of gliomas that is of-
ten associated with poor prognosis and resistance to therapies. An insufficient oxygen
supply reduces the proliferation rate of tumor cells, which contributes to a slower pro-
gression of the lesion, but also increases the invasiveness of the tumor, making it more
aggressive.

In the above equations, α, β and γ are positive biological parameters (here, we have
set several other biological parameters equal to one and refer to [45] for more details)
and

h(s) = a[
s
β

+ b(1 −
s
β

)], (5.1)
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with a, b > 0 such that h(s) > 0 for s ∈ [0, β]. Note that, in our analysis, we will actually
take h bounded, as in [16] (see also [98]). These equations account for the tumor and
oxygen dynamics and assume that the rate of change of the tumor cells density is given
by the net migration of the tumor cells plus the proliferation of the cancerous cells. In
particular, u is the tumor cells density and σ is the oxygen concentration. The nonlinear
term in the right-hand side of the first equation of each system represents the so-called
logistic growth which assumes that tumor cells proliferate until they reach the cell den-
sity α. The constant α is known as carrying capacity. Furthermore, the nonlinear term
uσ

1+σ
accounts for the oxygen uptake by tumor cells, assuming a Michaelis-Menten kine-

tics. Finally, the nonlinear term f in the equation for the tumor cells density considered
in this paper, which is of Cahn-Hilliard type, is the derivative of a double-well poten-
tial F. Such a nonlinear term, which is already present in the original Cahn-Hilliard
equation, allows to account for phase separation and clustering processes, which are
processes that we also wish to model here (see below).

The original Cahn-Hilliard equation,

∂u
∂t

+ ∆2u − ∆ f (u) = 0,

was initially proposed to model phase separation processes in binary alloys (see [11,
12]). Since then, this equation, or some of its variants, were successfully applied to
many other applications than just phase separation in alloys. We refer the interested
reader to [96, 103] for reviews on the Cahn-Hilliard equation and some of its variants,
as well as their mathematical analysis.

In particular, Cahn-Hilliard type models in the context of tumor growth can be found
in, e.g., [6, 28, 39, 40, 63, 73, 72, 89, 98]. One interest in considering a Cahn-Hilliard
type model is that, in addition to spatial diffusion, we can also account for the phase
separation process. Indeed, in the phase separation of binary alloys, one ends up with
zones (separated by a diffuse interface) in which one of the alloys is dominant. By ana-
logy, Cahn-Hilliard type equations in tumor growth were proposed to separate, e.g.,
different zones in the tumor such as quiescent and proliferative cells. In particular, this
allows to have the same equation in both zones. Furthermore, Cahn-Hilliard type equa-
tions also model clustering effects which are indeed observed in tumors (we can think
for instance of the clustering of brain tumor cells ; see, e.g., the concluding section in
[63]). Note that such effects cannot be modeled by a reaction-diffusion equation.

The reaction-diffusion system proposed in [45] was studied in [16] in which, in
particular, existence and uniqueness of biologically relevant solutions are obtained, i.e.,
solutions such that u ∈ [0, α] and σ ∈ [0, β] almost everywhere.

Taking a Cahn-Hilliard type model for the tumor growth is more challenging, due
to the nonlinear term h(σ)u(α − u), called proliferation term in [63] (for a constant h).
Indeed, as observed in [28], for a constant h, one can have blow up in finite time when
considering a cubic nonlinear term f ; this blow up can be avoided by considering a
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logarithmic nonlinear term f (see [89]). Furthermore, again for a cubic nonlinear term
and a constant h, an example of a solution which instantaneously becomes negative
was constructed in [96] in one space dimension, meaning that the solution cannot be
biologically relevant.

In this paper, in order to prove the existence of global in time biologically relevant
solutions, we take a logarithmic nonlinear term and consider an auxiliary system in
which the nonlinear term uσ

1+σ
is replaced by uσ

1+|σ|
. In this way, this nonlinear term cannot

be singular when approximating the logarithmic nonlinear term by regular ones. We
then prove the existence of a local in time solution to the approximated problems. We
are next able to pass to the limit in the approximated problems and prove the existence
of a local in time biologically relevant solution to the original problem. We finally prove
that this solution is global in time.

We can note that, contrary to the reaction-diffusion system proposed in [45], we
no longer have a maximum principle which allows us to immediately deduce that both
the tumor cells density and the oxygen concentration are bounded and that local in
time solutions are global (see [16]). This, together with the possibility of blow up in
finite time for approximated solutions, makes the proof of existence of a solution more
complicated. Furthermore, even though we still have the boundedness of the oxygen
concentration (indeed, we still have a reaction-diffusion equation for the oxygen), pro-
ving the boundedness of the tumor cells density and, thus, the existence of a global in
time solution, requires a more involved analysis. On the other hand, we studied in [?]
a model in which the oxygen concentration is modeled by a Cahn-Hilliard equation,
while the equation for the tumor is of reaction-diffusion type. In that case, the analysis
is simpler, since the maximum principle allows to have the boundedness of the tumor
cells density. Consequently, the additional nonlinear source term in the Cahn-Hilliard
equation is bounded, contrary to what we have here in the equation for the tumor. Note
that having such a bounded source term allows, e.g., to avoid blow up in finite time. It
is also interesting to note that considering the sole Cahn-Hilliard equation with such a
bounded source term allows to prove additional regularity and uniqueness results in two
space dimensions (see [72]) ; this seems much more involved with an unbounded one.

Another important question is to predict the tumor evolution. We give a sufficient
condition ensuring permanence of the solutions, meaning that the tumor cannot disap-
pear.

We finally give some numerical simulations.
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5.2 Setting of the problem
We consider the following initial and boundary value problem, in a bounded and

regular domain Ω ⊂ �n, n = 1, 2 or 3, with boundary Γ :

∂u
∂t

+ ∆2u − ∆ f (u) = h(σ)u(α − u), α > 0, (5.2)

∂σ

∂t
− ∆σ + γσ +

uσ
1 + σ

= γβ, γ, β > 0, (5.3)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
= 0 on Γ, (5.4)

u|t=0 = u0, σ|t=0 = σ0. (5.5)

We make the following assumptions.
(H1) The initial datum (u0, σ0) belongs to H1(Ω) × L2(Ω) and satisfies

u0 ∈ (0, α), σ0 ∈ [0, β] a.e..

(H2) The nonlinear term h is bounded and Lipschitz continuous on � and satisfies

h(s) ≥ 0, s ≥ 0.

We set h? = max[0,β] h.

Remark 5.2.1. Since we are interested in biologically relevant (and thus bounded) so-
lutions, taking h bounded is reasonable. For instance, we can take h as in (??) in [0, β]
and truncate outside this interval.

(H3) The nonlinear term f is of logarithmic type,

f (s) = −θ0(s −
α

2
) + θ1 ln

s
α − s

, s ∈ (0, α), 0 < θ1 <
αθ0

4
.

In particular, there holds
f ′ ≥ −θ0 (5.6)

and there exist constants cm > 0 and c′m ≥ 0 which depend continuously on m such that

f (s)(s − m) ≥ cm(| f (s)| + F(s)) − c′m, s, m ∈ (0, α), (5.7)

where

F(s) :=
∫ s

α
2

f (ξ) dξ

= −
θ0

2
(s −

α

2
)2 + θ1((α − s) ln(

2(α − s)
α

) + s ln(
2s
α

)), s ∈ (0, α).

76



5.2. Setting of the problem

Note that there exists a constant c1 ≥ 0 such that

F ≥ −c1. (5.8)

Furthermore, the condition 0 < θ1 < αθ0
4 is made to ensure that F has a double-well

form and that phase separation can occur. Note however that it was observed in [63]
that, when h is a positive constant, then phase separation can also occur even if F does
not have a double-well structure.

In order to avoid the nonlinear term uσ
1+σ

to become singular, we introduce the follo-
wing auxiliary problem :

∂u
∂t

+ ∆2u − ∆ f (u) = h(σ)u(α − u), (5.9)

∂σ

∂t
− ∆σ + γσ +

uσ
1 + |σ|

= γβ, (5.10)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
= 0 on Γ, (5.11)

u|t=0 = u0, σ|t=0 = σ0. (5.12)

Next, we approximate the singular function f by smooth functions fN defined on
the whole real line. Actually, we also need to approximate the potential F and, more
precisely, its convex part F1, defined by

F1(s) := θ1((α − s) ln(
2(α − s)

α
) + s ln(

2s
α

)).

We thus have
F(s) = −

θ0

2
(s −

α

2
)2 + F1(s)

and we can write, similarly,

f (s) = −θ0(s −
α

2
) + f1(s),

where
f1(s) := F′1(s) = θ1 ln

s
α − s

.

We then approximate, for N ∈ � large enough, the function F1 by the functions F1,N

of class C4 defined by

F(4)
1,N(s) :=


F(4)

1 (α − 1
N ), s > α − 1

N ,

F(4)
1 (s), s ∈ [ 1

N , α −
1
N ],

F(4)
1 ( 1

N ), s < 1
N ,
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F(k)
1,N(

α

2
) = F(k)

1 (
α

2
), k = 0, ..., 3.

This yields that

F1,N(s) =



4∑
k=0

1
k! F

(k)
1 (α − 1

N )(s − α + 1
N )k, s > α − 1

N ,

F1(s), s ∈ [ 1
N , α −

1
N ],

4∑
k=0

1
k! F

(k)
1 ( 1

N )(s − 1
N )k, s < 1

N ,

and we can introduce the functions f1,N defined as follows :

f1,N(s) := F′1,N(s) =



3∑
k=0

1
k! f (k)

1 (α − 1
N )(s − α + 1

N )k, s > α − 1
N ,

f1(s), s ∈ [ 1
N , α −

1
N ],

3∑
k=0

1
k! f (k)

1 ( 1
N )(s − 1

N )k, s < 1
N .

Note in particular that f1,N has a cubic growth at infinity and is of class C3. We finally
define the approximated potentials and nonlinear terms as follows :

FN(s) := −
θ0

2
(s −

α

2
)2 + F1,N(s),

fN(s) := F′N(s) = −θ0(s −
α

2
) + f1,N(s),

respectively.
Adapting the proofs given in [96], we can prove that these approximated functions

satisfy, for N large enough,
f ′N ≥ −θ0, FN ≥ −c1, (5.13)

there exist constants cm > 0 and c′m ≥ 0 which depend continuously on m such that

fN(s)(s − m) ≥ cm(| fN(s)| + FN(s)) − c′m, s ∈ �, m ∈ (0, α), (5.14)

and there exist constants c2 > 0 and c3 ≥ 0 which are independent of s and m such that

( fN(s + m) − fN(m))s ≥ c2(s4 + m2s2) − c3, s, m ∈ �. (5.15)

Furthermore, all constants are independent of N.
We finally introduce the following approximated problems, for N ∈ � large enough :

∂uN

∂t
+ ∆2uN − ∆ fN(uN) = h(σN)uN(α − uN), (5.16)
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∂σN

∂t
− ∆σN + γσN +

uNσN

1 + |σN |
= γβ, (5.17)

∂uN

∂ν
=
∂∆uN

∂ν
=
∂σN

∂ν
= 0 on Γ, (5.18)

uN |t=0 = u0, σN |t=0 = σ0. (5.19)

We set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫
Ω

v dx

and, for v ∈ H−1(Ω),

〈v〉 =
1

Vol(Ω)
〈v, 1〉H−1(Ω),H1(Ω).

We finally set, whenever it makes sense,

v = v − 〈v〉.

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also
set ‖ · ‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse of the minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null spatial
average. More generally, we denote by ‖ · ‖X the norm on the Banach space X.

We note that
v 7→ (‖v‖2−1 + 〈v〉2)

1
2 , v 7→ (‖v‖2 + 〈v〉2)

1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 and v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces. Furthermore, ‖ · ‖−1 is a norm on {v ∈ H−1(Ω), 〈v〉 = 0}
which is equivalent to the usual H−1-norm.

Throughout this paper, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line.

5.3 Local well-posedness of the approximated problems
We can note that (5.16)-(5.19) is associated with the following weak (variational)

formulation :
Given (u0, σ0) ∈ H2(Ω) × H1(Ω), find (uN , σN) : [0,T ]→ H2(Ω) × H1(Ω) such that

d
dt

((uN , v)) + ((∆uN ,∆v)) − (( fN(uN),∆v)) = ((h(σN)uN(α − uN), v))

inD′(0,T ), ∀v ∈ H2(Ω),
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d
dt

((σN ,w)) + ((∇σN ,∇w)) + γ((σN ,w)) + ((
uNσN

1 + |σN |
,w)) = ((γβ,w))

inD′(0,T ), ∀w ∈ H1(Ω),

uN |t=0 = u0, σN |t=0 = σ0,

for a given T > 0, whereD′ denotes the space of distributions.
We will actually work with the following equivalent formulation of (5.16)-(5.19) :

(−∆)−1∂uN

∂t
− ∆uN + fN(uN) = (−∆)−1h(σN)uN(α − uN), (5.20)

d〈uN〉

dt
= 〈h(σN)uN(α − uN)〉, (5.21)

∂σN

∂t
− ∆σN + γσN +

uNσN

1 + |σN |
= γβ, (5.22)

∂uN

∂ν
=
∂σN

∂ν
= 0 on Γ, (5.23)

uN |t=0 = u0, σN |t=0 = σ0, (5.24)

where uN = uN + 〈uN〉. These equations are associated with the following weak formu-
lation :

Given (u0, σ0) ∈ H1(Ω) × H1(Ω), find (uN , σN) : [0,T ]→ H1(Ω) × H1(Ω) such that

d
dt

(((−∆)−
1
2 uN , (−∆)−

1
2 v)) + ((∇uN ,∇v)) + (( fN(uN), v)) = (((−∆)−1h(σN)uN(α − uN), v))

inD′(0,T ), ∀v ∈ H1(Ω), 〈v〉 = 0,

d〈uN〉

dt
= 〈h(σN)uN(α − uN)〉 inD′(0,T ),

d
dt

((σN ,w)) + ((∇σN ,∇w)) + γ((σN ,w)) + ((
uNσN

1 + |σN |
,w)) = ((γβ,w))

inD′(0,T ), ∀w ∈ H1(Ω),

uN |t=0 = u0, σN |t=0 = σ0,

for a given T > 0, where uN = uN + 〈uN〉. We can note that this second variational
formulation is weaker than the first one, in the sense that it is defined under weaker re-
gularity on uN . However, they are equivalent for regular enough solutions and a solution
to (5.20)-(5.24) will be considered as a weak solution to (5.16)-(5.19) (being understood
that we consider here solutions to the associated variational formulations).

We have the following.
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Theorem 5.3.1. We assume that (H1)-(H3) hold. Then, there exists T0 > 0 and a unique
weak solution (uN , σN) to (5.16)-(5.19) such that

uN ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂uN

∂t
∈ L2(0,T0; H−1(Ω)),

σN ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),
∂σN

∂t
∈ L2(0,T0; H−1(Ω)).

Remark 5.3.1. Actually, here, the conditions u0 ∈ (0, α) and σ0 ∈ [0, β] a.e. are not
necessary. When h is constant, as mentioned in the introduction, we can observe blow
up in finite time, so that we do not expect a global in time existence result. Furthermore,
again when h is constant, we can construct solutions to (5.16) which instantaneously
exit the relevant interval [0, α], even if u0 ∈ [0, α].

Proof.
Existence : The proof of existence can be carried out via a standard Galerkin scheme
associated with (5.20)-(5.24) and appropriate a priori estimates. In what follows, we
only give formal estimates.

We multiply (5.20) by −∆uN , integrate over Ω and by parts and multiply (5.21) by
Vol(Ω)〈uN〉. Summing then the resulting differential equalities, we obtain, noting that
‖ · ‖2 = ‖·‖2 + Vol(Ω)〈·〉2 (also note that this amounts to multiplying (5.16) by uN),

1
2

d
dt
‖uN‖

2 + ‖∆uN‖
2 + (( f ′N(uN)∇uN ,∇uN)) =

∫
Ω

h(σN)u2
N(α − uN) dx. (5.25)

Note that it follows from (5.13) that

(( f ′N(uN)∇uN ,∇uN)) ≥ −θ0‖∇uN‖
2

≥ −
1
4
‖∆uN‖

2 − c‖uN‖
2, (5.26)

since, owing to interpolation and standard elliptic regularity results,

‖∇uN‖
2 ≤ c‖uN‖‖uN‖H2(Ω)

≤ c‖uN‖‖(‖∆uN‖ + ‖uN‖).

Furthermore, since h is bounded,

|

∫
Ω

h(σN)u2
N(α − uN)dx| ≤ c(‖uN‖

2 + ‖uN‖
3
L3(Ω))

≤ c(‖uN‖
2 + ‖uN‖

3
H1(Ω))

≤ c(‖uN‖
2 + ‖uN‖

3
2 ‖uN‖

3
2
H2(Ω))

≤ c(1 + ‖uN‖
6) +

1
4
‖∆uN‖

2, (5.27)
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where we have employed Young’s inequality and interpolation again. It follows from
(5.25)-(5.27) that

d
dt
‖uN‖

2 + ‖∆uN‖
2 ≤ c(1 + ‖uN‖

6). (5.28)

In particular,
d
dt
‖uN‖

2 ≤ c(1 + ‖uN‖
6). (5.29)

We deduce from (5.29) and the comparison principle that there exists T0 > 0 such that

‖uN(t)‖ ≤ c, t ∈ [0,T0]. (5.30)

We assume from now on that t ∈ [0,T0].
First, note that

|〈
∂uN

∂t
〉| ≤ c(1 + ‖uN‖

2) ≤ c. (5.31)

We multiply (5.20) by ∂uN
∂t and have, noting that 〈∂uN

∂t 〉 = 0,

1
2

d
dt
‖∇uN‖

2 + ‖
∂uN

∂t
‖2−1 + (( fN(uN),

∂uN

∂t
)) = ((h(σN)uN(α − uN), (−∆)−1∂uN

∂t
)). (5.32)

Note that

(( fN(uN),
∂uN

∂t
)) =

d
dt

∫
Ω

FN(uN) dx − (( fN(uN),
d〈uN〉

dt
)).

Furthermore, owing to the expression of fN (recall that fN has a cubic growth at infinity),
Young’s inequality, (5.21) and (5.30)-(5.31),

|(( fN(uN),
d〈uN〉

dt
))| = |

∫
Ω

fN(uN) dx
d〈uN〉

dt
|

≤ c(1 + ‖uN‖
3
L3(Ω))

and, owing to the continuous embedding H
1
2 (Ω) ⊂ L3(Ω) and the interpolation inequa-

lity

‖uN‖H
1
2 (Ω)
≤ c‖uN‖

1
2 ‖uN‖

1
2
H1(Ω)

(we consider the most complicated case n = 3),

‖uN‖
3
L3(Ω) ≤ c‖uN‖

3
2 ‖uN‖

3
2
H1(Ω) ≤ c‖uN‖

3
2
H1(Ω),

so that, owing to (5.30),

|(( fN(uN),
d〈uN〉

dt
))| ≤ c(1 + ‖uN‖

3
2
H1(Ω)) ≤ c(1 + ‖∇uN‖

2). (5.33)
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Finally,

|((h(σN)uN(α − uN), (−∆)−1∂uN

∂t
))| ≤ c‖(−∆)−1∂uN

∂t
‖L3(Ω)(

∫
Ω

(|uN |
3 + 1) dx)

2
3

≤ c‖
∂uN

∂t
‖−1(

∫
Ω

(|uN |
3 + 1) dx)

2
3

≤
1
2
‖
∂uN

∂t
‖2−1 + c(1 + ‖∇uN‖

2), (5.34)

proceeding as above and noting that the embedding H1(Ω) ⊂ L3(Ω) is continuous. It
thus follows from (5.32)-(5.34) that

d
dt

(‖∇uN‖
2 + 2

∫
Ω

FN(uN) dx) + ‖
∂uN

∂t
‖2−1 ≤ c(1 + ‖∇uN‖

2). (5.35)

We now multiply (5.22) by σN and obtain, owing to (5.30) and noting that | s
1+|s| | ≤ 1,

1
2

d
dt
‖σN‖

2 + ‖∇σN‖
2 + γ‖σN‖

2 ≤ ((γβ, σN)) +

∫
Ω

|
uNσ

2
N

1 + |σN |
| dx

≤
γ

2
‖σN‖

2 + c(1 + ‖uN‖
2)

≤
γ

2
‖σN‖

2 + c,

so that
d
dt
‖σN‖

2 + ‖∇σN‖
2 + γ‖σN‖

2 ≤ c. (5.36)

The regularity stated in the theorem follows from the second of (5.13), (5.28)-(5.30)
and (5.35)-(5.36) (the regularity on ∂σN

∂t can be read from (5.22)). Furthermore, the pas-
sage to the limit in the Galerkin scheme follows from the above estimates and classical
Aubin–Lions compactness results (see also [16]).

Uniqueness : Let (u1, σ1) and (u2, σ2) (for simplicity, we drop the index N) be two local
in time solutions with initial data (u1,0, σ1,0) and (u2,0, σ2,0), respectively, and assume that
they are defined on a common time interval [0,T0]. Then, (u, σ) = (u1, σ1) − (u2, σ2)
and (u0, σ0) = (u1,0, σ1,0) − (u2,0, σ2,0) satisfy

(−∆)−1∂u
∂t
−∆u+ fN(u1) − fN(u2) = (−∆)−1(h(σ1)u1(α − u1) − h(σ2)u2(α − u2)), (5.37)

d〈u〉
dt

= 〈h(σ1)u1(α − u1) − h(σ2)u2(α − u2)〉, (5.38)

∂σ

∂t
− ∆σ + γσ +

u1σ1

1 + |σ1|
−

u2σ2

1 + |σ2|
= 0, (5.39)
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∂u
∂ν

=
∂σ

∂ν
= 0 on Γ, (5.40)

u|t=0 = u0, σ|t=0 = σ0. (5.41)

We multiply (5.37) by u and obtain

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 + (( fN(u1) − fN(u2), u))

= ((h(σ1)u1(α − u1) − h(σ2)u2(α − u2), (−∆)−1u)). (5.42)

Note that, owing to (5.13),

(( fN(u1) − fN(u2), u)) = (( fN(u1) − fN(u2), u)) − (( fN(u1) − fN(u2), 〈u〉))

≥ −θ0‖u‖2 − (( fN(u1) − fN(u2), 〈u〉)).

Furthermore, owing to the continuous embedding H1(Ω) ⊂ L4(Ω) and recalling that fN

has a cubic growth at infinity,

|(( fN(u1) − fN(u2), 〈u〉))| ≤ c|〈u〉|
∫

Ω

(|u3
1 − u3

2| + |u
2
1 − u2

2| + |u|) dx

≤ c|〈u〉|
∫

Ω

(u2
1 + u2

2 + 1)|u| dx

≤ c(‖u1‖
2
L4(Ω) + ‖u2‖

2
L4(Ω) + 1)‖u‖|〈u〉|

≤ c(‖u1‖
2
H1(Ω) + ‖u2‖

2
H1(Ω) + 1)‖u‖|〈u〉|

≤ cT0‖u‖|〈u〉|.

Note that all constants above depend on N. It thus follows that

(( fN(u1) − fN(u2), u)) ≥ −cT0(‖u‖
2 + 〈u〉2). (5.43)

We also note that, since h is bounded and globally Lipschitz continuous,

|((h(σ1)u1(α − u1) − h(σ2)u2(α − u2), (−∆)−1u))|

≤ |(((h(σ1) − h(σ2))u1(α − u1), (−∆)−1u))|

+ |((h(σ2)(u1(α − u1) − u2(α − u2)), (−∆)−1u))|

≤ c(
∫

Ω

|σ|(u2
1 + 1)|(−∆)−1u| dx +

∫
Ω

(u2
1 + u2

2 + 1)|u||(−∆)−1u| dx)

≤ c(‖u1‖
2
L6(Ω) + ‖u2‖

2
L6(Ω) + 1)(‖u‖ + ‖σ‖)‖(−∆)−1u‖L6(Ω)

≤ c(‖u1‖
2
H1(Ω) + ‖u2‖

2
H1(Ω) + 1)(‖u‖ + ‖σ‖)‖u‖−1

≤ cT0(‖u‖ + ‖σ‖)‖u‖−1

≤ cT0(‖u‖
2 + ‖σ‖2), (5.44)
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where we have used the continuous embedding H1(Ω) ⊂ L6(Ω). It thus follows from
(5.42)-(5.44) that

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 ≤ cT0(‖u‖

2 + 〈u〉2 + ‖σ‖2),

which yields, employing the interpolation inequality ‖u‖2 ≤ c‖u‖−1‖∇u‖,

d
dt
‖u‖2−1 + ‖∇u‖2 ≤ cT0(‖u‖

2
−1 + 〈u〉2 + ‖σ‖2). (5.45)

Multiplying then (5.38) by 〈u〉 and proceeding in a similar way, we find

d〈u〉2

dt
≤ cT0(‖u‖

2
−1 + 〈u〉2 + ‖σ‖2) +

1
2
‖∇u‖2. (5.46)

We now multiply (5.39) by σ and have

1
2

d
dt
‖σ‖2 + ‖∇σ‖2 + γ‖σ‖2 + ((

u1σ1

1 + |σ1|
−

u2σ2

1 + |σ2|
, σ)) = 0. (5.47)

We note that, since s 7→ s
1+|s| is globally Lipschitz continuous,

|((
u1σ1

1 + |σ1|
−

u2σ2

1 + |σ2|
, σ))| ≤ ‖((

uσ1

1 + |σ1|
, σ))| + |((u2(

σ1

1 + |σ1|
−

σ2

1 + |σ2|
), σ))|

≤ ‖u‖‖σ‖ + c
∫

Ω

|u2||σ|
2 dx

≤ ‖u‖‖σ‖ + c‖u2‖L3(Ω)‖σ‖
2
L3(Ω)

≤ ‖u‖‖σ‖ + cT0‖σ‖
2
L3(Ω).

Let us again consider the most difficult case n = 3. Recall that we have the continuous
embedding H

1
2 (Ω) ⊂ L3(Ω), as well as the interpolation inequality

‖σ‖
H

1
2 (Ω)
≤ c‖σ‖

1
2 ‖σ‖

1
2
H1(Ω).

Therefore,

|((
u1σ1

1 + |σ1|
−

u2σ2

1 + |σ2|
, σ))|

≤ ‖u‖‖σ‖ + cT0‖σ‖‖σ‖H1(Ω)

≤ (‖∇σ‖2 + γ‖σ‖2) +
1
2
‖∇u‖2 + cT0(‖u‖

2
−1 + 〈u〉2 + ‖σ‖2),

which yields
d
dt
‖σ‖2 ≤ cT0(‖u‖

2
−1 + 〈u〉2 + ‖σ‖2) +

1
2
‖∇u‖2. (5.48)
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Summing finally (5.45)-(5.46) and (5.48), we find a differential inequality of the
form

dE1

dt
≤ cT0 E1, (5.49)

where
E1 = ‖u‖2−1 + 〈u〉2 + ‖σ‖2.

This yields, employing Gronwall’s lemma,

E1(t) ≤ ecT0 tE1(0), t ∈ [0,T0], (5.50)

and the uniqueness, as well as the continuous dependence with respect to the initial data
in the H−1(Ω) × L2(Ω)-norm, follow.

�

Remark 5.3.2. (i) In general, the Cahn–Hilliard equation is considered with a cubic
nonlinear term, typically, f (s) = s3 − s. The estimates above also yield a local in time
well-posedness result in that case, for the auxiliary problem. However, we again men-
tion that we cannot rule out the possibility of blow up in finite time, nor the fact that
u can instantaneously become negative. Therefore, we cannot ensure that σ remains
nonnegative, so that this does not yield a local in time solution to the original problem.

Figure 5.1 – Unbounded function h.

(ii) Numerical simulations show that we can have blow up in finite time in the original
problem (5.2)-(5.5) with a cubic nonlinear term (see Figures 5.1-5.2). In these simula-
tions, we take Ω = (0, 5) × (0, 1), α = 1, β = 1.5, γ = 0.1, f (s) = (s − 0.5)3 − (s − 0.5),
u0(x1, x2) = 0.2

(x6
1+1)(x5

2+0.5)
and σ0 randomly distributed between 0.3 and 0.8. In Figure 5.1,

h is as given as in [45], h(s) = s
β

+ 0.6(1 − s
β
), while, in Figure 5.2, h(s) = 0.6 if s < 0,

h(s) = s
β

+ 0.6(1 − s
β
) if 0 ≤ s ≤ β and h(s) = 1 if s > 1, so that (H1) is satisfied. In both

cases, we observe blow up at tmax = 5.68. Also note that σ remains positive, while u
becomes negative. In the figures, umax (resp., umin) and sigma-max (resp., sigma-min)
denote the maximal (resp., minimal) values of u and σ, respectively.
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Figure 5.2 – Truncated function h.

Remark 5.3.3. Note that the constants in (5.26)-(5.30) and (5.36) are independent of
N, so that the same holds for T0 which only depends on the initial data u0 and σ0.
However, the estimates on the time derivative of uN depend on N. In the next section, we
will derive estimates which are independent of N, allowing us to pass to the limit in the
approximated problems.

5.4 Existence of solutions to the original problem
We can note that (5.2)-(5.5) is associated with the following weak formulation :
Given (u0, σ0) ∈ H2(Ω) × H1(Ω), find (u, σ) : [0,T ]→ H2(Ω) × H1(Ω) such that

d
dt

((u, v)) + ((∆u,∆v)) − (( f (u),∆v)) = ((h(σ)u(α − u), v))

inD′(0,T ), ∀v ∈ H2(Ω),
d
dt

((σ,w)) + ((∇σ,∇w)) + γ((σ,w)) + ((
uσ

1 + σ
,w)) = ((γβ,w))

inD′(0,T ), ∀w ∈ H1(Ω),

u|t=0 = u0, σ|t=0 = σ0,

for a given T > 0.
We also consider the following equivalent formulation of (5.2)-(5.5) :

(−∆)−1∂u
∂t
− ∆u + f (u) = (−∆)−1h(σ)u(α − u), (5.51)

d〈u〉
dt

= 〈h(σ)u(α − u)〉, (5.52)
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∂σ

∂t
− ∆σ + γσ +

uσ
1 + σ

= γβ, (5.53)

∂u
∂ν

=
∂σ

∂ν
= 0 on Γ, (5.54)

u|t=0 = u0, σ|t=0 = σ0, (5.55)

where u = u+〈u〉. These equations are associated with the following weak formulation :
Given (u0, σ0) ∈ H1(Ω) × H1(Ω), find (u, σ) : [0,T ]→ H1(Ω) × H1(Ω) such that

d
dt

(((−∆)−
1
2 u, (−∆)−

1
2 v)) + ((∇u,∇v)) + (( f (u), v))

= (((−∆)−1h(σ)u(α − u), v)) inD′(0,T ), ∀v ∈ H1(Ω), 〈v〉 = 0,

d〈u〉
dt

= 〈h(σ)u(α − u)〉 inD′(0,T ),

d
dt

((σ,w)) + ((∇σ,∇w)) + γ((σ,w)) + ((
uσ

1 + σ
,w)) = ((γβ,w))

inD′(0,T ), ∀w ∈ H1(Ω),

u|t=0 = u0, σ|t=0 = σ0,

for a given T > 0, where u = u + 〈u〉.
As in the previous section, a solution to (5.51)-(5.55) will be called a weak solution

to (5.2)-(5.5) (by solution, we again mean a solution to the corresponding variational
formulation).

We have the following.

Theorem 5.4.1. We assume that (H1)-(H3) hold. Then, (5.2)-(5.5) possesses a local in
time weak solution (u, σ), defined on [0,T0], T0 > 0, such that

u ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),

∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; L2(Ω)) ∩ L2(0,T0; H1(Ω)),

∂σ

∂t
∈ L2(0,T0; H−1(Ω)),

u(t) ∈ (0, α), σ(t) ∈ [0, β] for a.a. t ∈ [0,T0]

and there exists a constant δ ∈ (0, α) such that

δ ≤ 〈u(t)〉 ≤ α − δ for a.a. t ∈ [0,T0].
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Proof.
All constants below are independent of N.
First, note that it follows from (H1) that there exists δ ∈ (0, α2 ) such that

2δ ≤ 〈u0〉 ≤ α − 2δ. (5.56)

Then, considering again the equivalent formulation (5.20)-(5.24), recall that

‖uN(t)‖ ≤ c, t ∈ [0,T0], (5.57)

for T0 > 0 independent of N.
Noting that it follows from (5.21) that

|
d〈uN〉

dt
| ≤ |〈h(σN)uN(α − uN)〉|

≤ c(1 + ‖uN‖
2)

≤ c, (5.58)

we can assume, taking if necessary T0 smaller and still independent of N, that

δ ≤ 〈uN(t)〉 ≤ α − δ, t ∈ [0,T0]. (5.59)

We assume from now on that t ∈ [0,T0].
We next multiply (5.20) by uN to obtain

1
2

d
dt
‖uN‖

2
−1 + ‖∇uN‖

2 + (( fN(uN), uN)) = ((h(σN)uN(α − uN), (−∆)−1uN)). (5.60)

We write

(( fN(uN), uN)) =
1
2

(( fN(uN), uN)) +
1
2

(( fN(uN) − f (〈uN〉), uN)),

so that, employing (5.14) (with s = uN and m = 〈uN〉 ; also recall (5.59)) and (5.15)
(with s = uN and m = 〈uN〉), we find

(( fN(uN), uN)) ≥ c(‖ fN(uN)‖L1(Ω) +

∫
Ω

FN(uN) dx

+

∫
Ω

(u4
N + u2

N〈uN〉
2) dx) − c′, c > 0. (5.61)

Furthermore,

|((h(σN)uN(α − uN), (−∆)−1uN))| ≤ c(
∫

Ω

(u4
N + 1)dx)

1
2 ‖uN‖−1

≤ c(
∫

Ω

(u4
N + 〈uN〉

4 + 1) dx)
1
2 ‖uN‖

≤ ε

∫
Ω

u4
N dx + cε(1 + ‖uN‖

4)

≤ ε

∫
Ω

u4
N dx + cε, ∀ε > 0, (5.62)
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owing to (5.57) and Young’s inequality. It thus follows from (5.60)-(5.62) that there
exist constants c > 0 and c′ ≥ 0 such that

d
dt
‖uN‖

2
−1+c(‖∇uN‖

2+‖ fN(uN)‖L1(Ω)+

∫
Ω

FN(uN) dx+

∫
Ω

(u4
N +u2

N〈uN〉
2) dx) ≤ c′. (5.63)

We now multiply (5.20) by ∂uN
∂t and obtain

1
2

d
dt
‖∇uN‖

2 + ‖
∂uN

∂t
‖2−1 + (( fN(uN),

∂uN

∂t
)) = ((h(σN)uN(α − uN), (−∆)−1∂uN

∂t
)). (5.64)

We note that

(( fN(uN),
∂uN

∂t
)) =

d
dt

∫
Ω

FN(uN) dx − Vol(Ω)〈 fN(uN)〉〈
∂uN

∂t
〉

≥
d
dt

∫
Ω

FN(uN) dx − c‖ fN(uN)‖L1(Ω), (5.65)

owing to (5.58). Furthermore,

|((h(σN)uN(α − uN), (−∆)−1∂uN

∂t
))| ≤ c(

∫
Ω

(u4
N + 1) dx)

1
2 ‖
∂uN

∂t
‖−1

≤
1
2
‖
∂uN

∂t
‖2−1 + c

∫
Ω

(u4
N + 〈uN〉

4 + 1) dx

≤
1
2
‖
∂uN

∂t
‖2−1 + c(

∫
Ω

u4
N dx + 1). (5.66)

It thus follows from (5.64)-(5.66) that

d
dt

(‖∇uN‖
2 + 2

∫
Ω

FN(uN) dx) + ‖
∂uN

∂t
‖2−1 ≤ c(‖ fN(uN)‖L1(Ω) +

∫
Ω

u4
N dx + 1). (5.67)

We sum the differential inequality

d
dt
‖uN‖

2 + ‖∆uN‖
2 ≤ c

which holds here (see (5.28) and recall (5.57)), (5.63) and δ times (5.67), δ > 0 small
enough. This yields, taking ε small enough, that there exist constants c > 0 and c′ ≥ 0
such that we have a differential inequality of the form

dE2

dt
+ c(E2 + ‖uN‖

2
H2(Ω) + ‖ fN(uN)‖L1(Ω) + ‖

∂uN

∂t
‖2H−1(Ω)) ≤ c′, t ∈ [0,T0], (5.68)

where
E2 = ‖uN‖

2 + ‖uN‖
2
−1 + δ(‖∇uN‖

2 + 2
∫

Ω

FN(uN) dx)
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satisfies
E2 ≥ c‖uN‖

2
H1(Ω) − c′, c > 0.

Here we have also used the fact that

〈uN〉
2 ≤ c, 〈

∂uN

∂t
〉2 ≤ c, t ∈ [0,T0].

Having this, we note that

fN(uN) = −(−∆)−1∂uN

∂t
+ ∆uN + (−∆)−1h(σN)uN(α − uN),

which yields

‖ fN(uN)‖ ≤ c(‖
∂uN

∂t
‖H−1(Ω) + ‖uN‖H2(Ω) + 1). (5.69)

Note indeed that

‖(−∆)−1h(σN)uN(α − uN)‖ ≤ c(‖uN‖
2
L4(Ω) + ‖uN‖)

≤ c(‖uN‖
2
H1(Ω) + 1)

≤ c(‖uN‖‖uN‖H2(Ω) + 1)
≤ c(‖uN‖H2(Ω) + 1).

Combining (5.68) and (5.69) and also summing with (5.36) (which holds here), we
find a differential inequality of the form

dE3

dt
+ c(E3 + ‖uN‖

2
H2(Ω) + ‖σN‖

2
H1(Ω) + ‖ fN(uN)‖L1(Ω) + ‖ fN(uN)‖2 (5.70)

+‖
∂uN

∂t
‖2H−1(Ω)) ≤ c′, t ∈ [0,T0],

for proper constants c > 0 and c′ ≥ 0, where

E3 = E2 + ‖σN‖
2

satisfies
E3 ≥ c(‖uN‖

2
H1(Ω) + ‖σN‖

2) − c′, c > 0.

In particular, it follows from (5.70) that

‖ fN(uN)‖2L2(0,T0;L2(Ω) ≤ c(E3(0) + 1). (5.71)

Next, employing once more (5.14), with s = uN and m = 〈uN〉, we see that

|〈 fN(uN)〉| ≤ c|(( fN(uN), uN))| + c′

= c|(( fN(uN), uN))| + c′

≤ c‖ fN(uN)‖‖uN‖ + c′,
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so that
|〈 fN(uN)〉| ≤ c‖ fN(uN)‖(E3(0) + 1)

1
2 + c′

and
‖ fN(uN)‖L2(0,T0;L2(Ω) ≤ c(E3(0) + 1). (5.72)

The regularity stated in the theorem follows from (5.70) and (5.72). Furthermore,
these estimates allow to pass to the limit and have a weak solution (u, σ) to (5.9)-(5.12)
in a standard way (see [16, 96] for details) satisfying

0 < u(x, t) < α for almost all (x, t) ∈ Ω × (0,T0).

Finally, since u ≥ 0 a.e., we easily prove that

0 ≤ σ(x, t) ≤ β for almost all (x, t) ∈ Ω × (0,T0),

multiplying (5.10) by −σ− and (σ − β)+, respectively, where

x = x+ − x−, x+ = max(x, 0), x− = −min(0, x).

Indeed, multiplying (5.10) by −σ−, we obtain

1
2

d
dt
‖σ−‖2 + ‖∇σ−‖2 + γ‖σ−‖2 +

∫
Ω

u|σ−|2

1 + |σ|
dx = −γβ

∫
Ω

σ− dx ≤ 0,

so that
d
dt
‖σ−‖2 ≤ 0 and ‖σ−(t)‖2 ≤ ‖σ−0 ‖

2 for a.a. t ∈ [0,T0].

Note that, since σ0 ∈ [0, β] a.e., then σ−0 = 0 a.e. and σ− = 0 for almost all (x, t) ∈
Ω × (0,T0). Therefore, σ ≥ 0 for almost all (x, t) ∈ Ω × (0,T0). We proceed in a similar
way for the upper bound on σ. In particular, this yields that (u, σ) actually is a solution
to the original problem (5.2)-(5.5).

�
We then have the following.

Theorem 5.4.2. Under the assumptions of Theorem 5.4.1, the local in time weak solu-
tion (u, σ) is global in time.

Proof.
Let T? be the maximal existence time of a local in time solution given by Theorem

5.4.1 and assume that T? < +∞.
Then, one has, immediately,

‖u(t)‖ ≤ ‖α‖ = Vol(Ω)
1
2α, t ∈ [0,T?), (5.73)
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meaning that the upper bound on ‖u‖ is now independent of T?.
However, in order to extend the solution, we need to make sure that

〈u(t)〉 ∈ [δ, α − δ], t ∈ [0,T?),

holds for some δ ∈ (0, α) (having this, we can repeat all estimates in the proof of Theo-
rem 5.4.1, for the limit solution, and see that they hold for t ∈ [0,T?)).

To do so, note that
d〈u〉
dt

= 〈h(σ)u(α − u)〉,

which yields, since u ∈ [0, α] and σ ∈ [0, β], as long as the solution exists,

0 ≤
d〈u〉
dt
≤ h?〈u(α − u)〉.

Therefore,

0 ≤
d〈u〉
dt

+ h?α〈u〉 ≤ h?〈−u2 + 2αu〉 ≤ h?α2,

so that
〈u0〉e−h?αt ≤ 〈u(t)〉 ≤ 〈u0〉e−h?αt + α(1 − e−h?αt). (5.74)

It immediately follows from (5.74) that

〈u(t)〉 ∈ [δ, α − δ], t ∈ [0,T?),

where δ ∈ (0, α). Indeed, setting

ϕ(s) = 〈u0〉e−h?αs + α(1 − e−h?αs),

it is easy to see that ϕ takes values in such an interval, noting that ϕ is monotone increa-
sing.

Having this, we can extend the solution by continuity, which finishes the proof.
�

Remark 5.4.1. Further regularity, in particular the existence of a strong solution, and
uniqueness are open problems. Actually, multiplying (5.3) by −∆σ, we obtain

1
2

d
dt
‖∇σ‖2 + ‖∆σ‖2 + γ‖∇σ‖2 ≤

∫
Ω

|u||∆σ| dx,

which yields
d
dt
‖∇σ‖2 + ‖∆σ‖2 + γ‖∇σ‖2 ≤ ‖u‖2.

We can thus have more regularity on σ. The difficulty is to derive additional regularity
on u. Note that this is already an open problem for (5.2) with h constant.
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5.5 Permanence of the solutions
We have the following.

Theorem 5.5.1. We assume that ‖u0 − α‖ < ‖α‖ and θ0 ≤ λ1, where λ1 is the first ei-
genvalue of the minus Laplace operator associated with Neumann boundary conditions
and acting on functions with vanishing average. Then, for any solution to (5.2)-(5.5) as
given in Theorem 5.4.2, there exists a constant c > 0 such that

‖u(t)‖ ≥ c, t ≥ 0,

meaning that there cannot be extinction of the tumor, even as time goes to +∞.

Proof.
Set v = u − α. Then, v solves

∂v
∂t

+ ∆2v − ∆ f (u) = −h(σ)uv, (5.75)

∂v
∂ν

=
∂∆v
∂ν

= 0 on Γ, (5.76)

v|t=0 = v0 := u0 − α. (5.77)

Multiplying (5.75) by v, we obtain, owing to (5.6) and noting that h(σ) ≥ 0 and
u ≥ 0,

1
2

d
dt
‖v‖2 + ‖∆v‖2 ≤ θ0‖∇v‖2.

Writing
‖∆v‖2 = ‖(−∆)v‖2 ≥ λ1‖(−∆)

1
2 v‖2 = λ1‖∇v‖2,

we find
1
2

d
dt
‖v‖2 + (λ1 − θ0)‖∇v‖2 ≤ 0,

so that
‖v(t)‖ ≤ ‖u0 − α‖, t ≥ 0.

Finally,
‖u(t)‖ ≥ ‖α‖ − ‖v(t)‖ ≥ ‖α‖ − ‖u0 − α‖ > 0, t ≥ 0,

which finishes the proof.
�

Remark 5.5.1. We can also take θ0 = 0, meaning that f is convex. In that case, one
always has permanence of the solutions given by Theorem 5.4.2. Note that, when h is a
positive constant, then one can also observe phase separation in that case (see [63]).
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Remark 5.5.2. Let us consider the spatially homogeneous solutions u = u(t), σ = σ(t)
to (5.2)-(5.5), i.e., the system of ODEs

u′ = h(σ)u(α − u), (5.78)

σ′ + γσ +
uσ

1 + σ
= γβ, (5.79)

u(0) = u0 ∈ [0, α], σ(0) = σ0 ∈ [0, β]. (5.80)

Then, when (H3) holds, this system is a particular instance of the reaction-diffusion
system considered in [16] and one has the global in time existence and uniqueness of
biologically relevant solutions. Let us now take h as in (5.1) and assume that u0 ∈ (0, α)
(the cases u0 = 0 and u0 = α are straightforward). Then, h is no longer bounded and
only locally Lipschitz continuous. However, the Cauchy–Lipschitz theorem yields the
existence and uniqueness of the maximal solution (u, σ) on [0, t?), t? > 0. Note that if,
for t ∈ [0, t?), σ(t) = 0, then it follows from (5.79) that

σ′(t) = γβ > 0.

Therefore, σ cannot become negative and σ(t) ≥ 0, t ∈ [0, t?). Let now 0 < t? ≤ t? be
the maximal time such that u(t) ∈ (0, α), t ∈ [0, t?). Then, for t ∈ [0, t?),

u′

u(α − u)
= h(σ). (5.81)

Note that h is monotone increasing and invertible, with

h−1(s) =
β

1 − b
(

s
a
− b).

Furthermore, for t ∈ [0, t?),

u′

u(α − u)
= ϕ(t), h(σ) = ϕ(t),

for some continuous function ϕ, which yields

u(t)
α − u(t)

=
u0

α − u0
eα

∫ t
0 ϕ(s) ds, σ(t) = h−1(ϕ(t)), t ∈ [0, t?). (5.82)

Recall that σ(t) ≥ 0, which is equivalent to

ϕ(t) ≥ ab, t ∈ (0, t?). (5.83)

Therefore, it follows from (5.82) that

u(t)
α − u(t)

≥
u0

α − u0
eαabt, t ∈ [0, t?). (5.84)
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In particular, this yields that there is no blow up in finite time and that u remains in
(0, α). Consequently, if, for some t ∈ [0, t?), σ(t) = β, then it follows from (5.79) that

σ′(t) = −
u(t)β
1 + β

< 0.

We thus conclude that t? = t? = +∞ and that the solution is global in time, with
(u(t), σ(t)) ∈ (0, α) × [0, β], t ∈ [0,+∞). It is also interesting to note that it follows from
(5.84) that

lim
t→+∞

u(t) = α

and that this convergence is exponentially fast (this also holds, for h bounded, if h(s) ≥
h? > 0, s ≥ 0). This is in agreement with the results obtained in [16] and above,
i.e., permanence of the tumor. However, here, we can be more precise, since the tumor
reaches its maximal size exponentially fast.

5.6 Numerical simulations
As far as the numerical simulations are concerned, we slightly modify the equations,

following [45], and consider the following system of equations :

∂u
∂t

+ ∆(div(D(σ)∇u)) − ∆ f (u) =
1
α

h(σ)u(α − u),

∂σ

∂t
− D0∆σ +

A0uσ
k0 + ασ

= γ(β − σ),

where D(σ) = 0.02(σ
β

+ 0.9(1 − σ
β
)) and h(σ) = 2(σ

β
+ 0.6(1 − σ

β
)). Note in particular

that, contrary to the analysis performed in the previous sections, the function h is no
longer bounded. However, as mentioned in Remark 5.2.1, since the relevant solutions
are expected to be bounded, this will not affect the simulations. We also consider, as in
[45] for the reaction-diffusion model, a more general nonconstant diffusion coefficient
D for the tumor growth and note that, since σ is expected to take values in [0, β], D
is bounded and positive. These modifications will allow us to compare some of our
simulations with those in [45].

Then, we write the above system in the following equivalent way :

∂u
∂t
− ∆w =

1
α

h(σ)u(α − u),

w = −div(D(σ)∇u) + f (u),
∂σ

∂t
− D0∆σ +

A0uσ
k0 + ασ

= γ(β − σ),
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which has the advantage of splitting the fourth-order (in space) equation into a system of
two second-order ones. This allows us to consider a P1 finite element approach for the
space discretization, together with an implicit but linearized Euler time discretization.
More precisely, let Th be the triangulation of Ω̄ and Vh = {vh ∈ C0(Ω̄), vh

|K ∈ P1, ∀K ∈
Th}. The discrete variational formulation reads :

Let ui
h, σ

i
h ∈ Vh, for i = 0, 1, ..., n. Find (un+1

h ,wn+1
h , σn+1

h ) ∈ (Vh)3 such that



1
δt

((un+1
h , φ)) + ((∇wn+1

h ,∇φ)) −
1
α

((h(σn
h)un+1

h (α − un+1
h ), φ)) =

1
δt

((un
h, φ)),

((wn+1
h , ϕ)) − ((D(σn

h)∇un+1
h ,∇ϕ)) − (( f (un+1

h ), ϕ)) = 0,

1
δt

((σn+1
h , ζ)) + D0((∇σn+1

h ,∇ζ)) + ((
A0un+1

h σn+1
h

k0 + ασn+1
h

, ζ)) = γ(((β − σn+1
h ), ζ)),

for all ϕ, φ, ζ ∈ Vh.
For simplicity and in order to reduce the computation times, the scheme is linearized,

except for the computations in Figure 5.4, in the sense that each nonlinear implicit term
G(un+1

h ), where G is a nonlinear function, is approximated by :

G(un+1
h ) ∼ G(un

h) + (un+1
h − un

h)G′(un
h).

We make the following choices :

Ω = (0, 2) × (0, 1.5), α = 2, β = 0.5, f (s) = −2(s −
α

2
) + 0.25 ln

s
α − s

,

D0 = 0.01, A0 = 5, k0 = 1, γ = 1.3, δh = 0.02,

where δh is the meshsize.

5.6.1 The initial conditions are constants or small perturbations of
constants

We first take constant (spatially homogeneous) initial conditions, namely, u0 ≡ 1.3
and σ0 ≡ 0.25. The stepsize δt is taken as 0.002. The solutions u and σ remain spatially
homogeneous for every t > 0, as expected, and their behavior is given in Figure 5.3.
The tumor concentration increases and tends to α = 2, while the oxygen concentration
σ decreases and tends to σ∗, solution to the equilibrium problem A0uσ

k0+ασ
= γ(β − σ). Our

choices of parameters lead to σ∗ approximately equal to 0.0639.
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Figure 5.3 – Constant initial conditions : u0 ≡ 1.3 and σ0 ≡ 0.25.

Next, we take u0 randomly distributed between 1.3 and 1.5 and σ0 randomly dis-
tributed between 0.25 and 0.35. We use the non-linearized scheme in that case, since
the minimal value of the tumor cells density comes very close to 0 and the linearized
scheme is not satisfactory. The stepsize δt is taken as 0.0005. We can note that this
is a rather small stepsize. Actually, one often takes a small stepsize in simulations for
Cahn-Hilliard type models ; here and also below, since we do not have any information
on the stability of our scheme (also note that the scheme should be at best of order one
in time and we consider a P1 finite element), we voluntarily took an even smaller one.
The oxygen concentration still decreases, but the behavior of the tumor concentration
changes drastically (see Figure 5.4). Note that we observe a phase separation here, si-
milar to what is obtained with the original Cahn-Hilliard equation. As mentioned in the
introduction, this cannot be observed with the reaction-diffusion model.
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Figure 5.4 – Tumor concentration at t = 0.15 (left), t = 0.25 (middle) and t = 0.35
(right), u0 = randomly distributed between 1.3 et 1.5 and σ0 randomly distributed bet-
ween 0.25 et 0.35.
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5.6.2 Modeling of tumor growth and hypoxia
In our last test, we take u0 = 0.85αe(−20((x−2)2+y2)) + 0.05 and σ0 = β(1 − 0.9u0

α
), as

displayed in Figure 5.5. The stepsize δt is taken as 0.0005.
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Figure 5.5 – Tumor at t = 0 (left), Oxygen at t = 0 (right).

The tumor and oxygen concentrations corresponding to t = 0.15 and 0.4 are dis-
played in Figures 5.6 and 5.7, respectively. We can note that the tumor spreads and
proliferates, with the area under acute hypoxia increasing. The behavior of the tumor
and the oxygen is consistent with what is observed in [45].
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Figure 5.6 – Tumor at t = 0.15 (left) and at t = 0.4 (right).
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Figure 5.7 – Oxygen at t = 0.15 (left) and at t = 0.4 (right).
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Chapitre 6

On a coupled
Cahn-Hilliard/Cahn-Hilliard model for
the proliferative-to-invasive transition

of hypoxic glioma cells

Sur un modèle couplé de
Cahn-Hilliard/Cahn-Hilliard pour la transition

proliférative à invasive des cellules de gliome
hypoxique
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On a coupled Cahn–Hilliard/Cahn–Hilliard model for
the proliferative-to-invasive transition of hypoxic glioma

cells

6.1 Introduction
Glioma is a common malignant primary brain tumor, which is used to describe can-

cerous tumors that stem from glial cells. In particular, compared with low-grade glioma,
high-grade glioma is characterized by high-rate proliferation and diffuse invasion. Ba-
sed on the Fisher-Kolmogorov theory, H. Gomes extended the classical proliferation-
invasion mathematical model by introducing an equation that governs the oxygen dyna-
mics (see [45]). Since hypoxia is a hallmark of gliomas and low oxygen concentration
triggers a proliferative-to-invasive transition, this model accounts for the dependence on
the proliferation rate and the diffusion coefficient of tumor cells on oxygen concentra-
tion. The model reads

∂u
∂t
− ∆u = h(σ)u(α − u),

∂σ

∂t
− ∆σ +

uσ
1 + σ

= γ(β − σ),

where u is the tumor cell density, σ is the oxygen concentration and h is proliferation
rate defined as

h(s) = a[
s
β

+ b(1 −
s
β

)].

The term h(σ)u(α−u) in the first equation represents the so-called logistic growth which
assumes that tumor cells proliferate until they reach the cell density α. The constant α
is known as carrying capacity, β represents the oxygen concentration in blood vessels,
γ, a, b are positive biological parameters and b ∼ 0.6 < 1 (here, we have set several
other biological parameters equal to one and refer to [45] for more details). Further-
more, the term ∆σ in the second equation accounts for the isotropic diffusion of oxy-
gen, the nonlinear term uσ

1+σ
accounts for the oxygen uptake by tumor cells, assuming

a Michaelis-Menten kinetics, and the term γ(β − σ) considers that oxygen is released
from blood vessels at a linear rate.

Note that, we will actually take h bounded, as in [16] (see also [98]). The model
accounts for the tumor and oxygen dynamics and assume that the rate of change of
tumor cells density is given by the net migration of the tumor cells plus the proliferation
of the cancerous cells.

The model above is modeled by standard reaction-diffusion equations. In this paper,
we consider instead Cahn-Hilliard type equations for both the tumor density and the
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oxygen concentration, i.e.

∂u
∂t

+ ∆2u − ∆ f1(u) = h(σ)u(α − u),

∂σ

∂t
+ ∆2σ − ∆ f2(σ) +

uσ
1 + σ

+ γσ = γβ.

In view of the term γσ, γ > 0 in the second equation, we actually have a Cahn-Hilliard-
Oono type equation. The Cahn-Hilliard-Oono equation was proposed in [105] to also
account for long-ranged effects.

The original Cahn-Hilliard equation,

∂u
∂t

+ ∆2u − ∆ f (u) = 0,

was initially proposed to model phase separation processes in binary alloys (see [11,
12]). Since then, this equation, or some of its variants, were successfully applied to
many other applications than just phase separation in alloys. We refer the interested
reader to [96, 103] for reviews on the Cahn-Hilliard equation and some of its variants,
as well as their mathematical analysis.

In particular, Cahn-Hilliard type models in the context of tumor growth and energy
metabolism in the brain can be found in, e.g., [6, 28, 39, 40, 63, 73, 89, 98]. For the
study of the model for proliferative-to-invasive transition of hypoxic glioma cells, ac-
tually, there are two special cases have already been addressed. In [72], we consider
the equations that consist of the coupling of a reaction-diffusion equation for the tumor
density and a Cahn-Hilliard type equation for the oxygen concentration. For the Cahn-
Hilliard type equation one accounts for the phase separation process (e.g. different zones
in the cells in which, typically, the concentration of oxygen may be high or very low).
In this case, we have proved the existence of weak solutions. In [70], we take into ac-
count the equations that consist of the coupling of a Cahn-Hilliard type equation for the
tumor density and of a reaction-diffusion equation for the oxygen concentration. For the
Cahn-Hilliard type equation one accounts for phase separation processes (e.g. different
zones in the tumor) and clustering effects in tumor growth. In this case, we have pro-
ved the existence of weak solutions, studied permanence of the tumor and given some
numerical simulations.

In this paper, we consider two Cahn-Hilliard type equations in the model for the
proliferative-to-invasive transition of hypoxic glioma cells. Our aim is to prove the exis-
tence of a local in time biologically relevant solution, which means we need to ensure
the solution won’t blow up or go to negative. Note that the nonlinear term h(σ)u(α − u)
is one of the challenges to conquer. For a constant h, blow up could occur in finite time
when we consider a cubic nonlinear term f (see [28]). To avoid this, we consider a
logarithmic nonlinear term f1 (see [89]) for the first equation. Another challenge is to

104



6.2. Setting of the problem

prove the order parameter σ remains nonnegative. This is due to the fact that we no lon-
ger have the maximum principle/comparison principle for Cahn-Hilliard type equations.
Also note that the term uσ

1+σ
can become singular when σ is negative. To overcome this,

we also consider a logarithmic nonlinear term f2 for the second equation. Actually, as
far as the original Cahn-Hilliard equation is concerned, the logarithmic nonlinear term
is the one which is thermodynamically relevant ; it is thus natural to also consider these
nonlinear terms in our model. In addition, we consider a modified problem to avoid the
second nonlinear term uσ

1+σ
to become singular. Otherwise, we prove the existence of a

local in time biologically relevant solution which is conditionally global in time.

6.2 Setting of the problem
We consider the following initial and boundary value problem, in a bounded and

regular domain Ω⊂Rn, n=1, 2 or 3, with boundary Γ :

∂u
∂t

+ ∆2u − ∆ f1(u) = h(σ)u(α − u), (6.1)

∂σ

∂t
+ ∆2σ − ∆ f2(σ) +

uσ
1 + σ

+ γσ = γβ, (6.2)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (6.3)

u|t=0 = u0, σ|t=0 = σ0. (6.4)

Here, α, β and γ are positive (biological) parameters and h : R → R is a bounded and
globally Lipschitz continuous function such that

h(s) ≥ 0, s ≥ 0.

Furthermore, the nonlinear terms f1 and f2 are of logarithmic type, precisely

f1(s) = −θ0(s −
α

2
) + θ1 ln

s
α − s

, s ∈ (0, α), 0 < θ1 <
αθ0

4
,

f2(s) = −κ0(s −
β

2
) + κ1 ln

s
β − s

, s ∈ (0, β), 0 < κ1 <
βκ0

4
,

where the conditions 0 < θ1 <
αθ0
4 and 0 < κ1 <

βκ0
4 are made to ensure that we indeed

have the double-well forms for the corresponding potentials and that phase separation
can occur when considering the original Cahn-Hilliard equation.

Note that

f ′1 ≥ −θ0, (6.5)
f ′2 ≥ −κ0 (6.6)
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respectively. Furthermore, there hold, for s, m ∈ (0, α),

f1(s)(s − m) ≥ c1m
(
| f1(s)| + F1(s)

)
− c′1m, c1m > 0, c′1m ≥ 0, (6.7)

while for s, m ∈ (0, β),

f2(s)(s − m) ≥ c2m
(
| f2(s)| + F2(s)

)
− c′2m, c2m > 0, c′2m ≥ 0, (6.8)

where c1m, c′1m, c2m and c′2m depend continuously on m (see [96]) and

F1(s) =

∫ s

α
2

f1(ξ) dξ, F2(s) =

∫ s

β
2

f2(ξ) dξ.

Remark 6.2.1. The original Cahn-Hilliard equation is often associated with a cubic
nonlinear term, typically, f (s) = s3 − s. However, in that case, the order parameter may
not remain in the relevant interval. In particular, it can become negative. In our case,
u could blow up in finite time, and the nonlinear term uσ

1+σ
may become singular when

σ becomes negative. In fact, as we will see below, these problems can be avoided by
taking logarithmic nonlinear terms.

We consider the following auxiliary problem :

∂u
∂t

+ ∆2u − ∆ f1(u) = h(σ)u(α − u), (6.9)

∂σ

∂t
+ ∆2σ − ∆ f2(σ) +

uσ
1 + |σ|

+ γσ = γβ, (6.10)

∂u
∂ν

=
∂∆u
∂ν

=
∂σ

∂ν
=
∂∆σ

∂ν
= 0 on Γ, (6.11)

u|t=0 = u0, σ|t=0 = σ0. (6.12)

Next, we approximate the singular function f1 by the following approximated func-
tions of class C4 and C3 defined on the whole real line :

F1,N = −
θ0

2
(s −

α

2
)2 + F11,N(s),

f1,N = F′1,N = −θ0(s −
α

2
) + f11,N(s),

where F1,N(s) =
∫ s
β
2

f1,N(ξ) dξ and f11,N = F′11,N is the approximated function of f11 =

θ1 ln s
α−s . We have

F(4)
11,N(s) =


F(4)

11 (α − 1
N ), s > α − 1

N ,

F(4)
11 (s), s ∈ [ 1

N , α −
1
N ],

F(4)
11 ( 1

N ), s < 1
N ,

F(k)
11,N(

α

2
) = F(k)

11 (
α

2
), k = 0, ..., 3.
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This yields that

F11,N(s) =


Σ4

k=0
1
k! F

(k)
11 (α − 1

N )(s − α + 1
N )k, s > α − 1

N ,

F11(s), s ∈ [ 1
N , α −

1
N ],

Σ4
k=0

1
k! F

(k)
11 ( 1

N )(s − 1
N )k, s < 1

N ,

and

f11,N(s) =


Σ3

k=0
1
k! f (k)

11 (α − 1
N )(s − α + 1

N )k, s > α − 1
N ,

f11(s), s ∈ [ 1
N , α −

1
N ],

Σ3
k=0

1
k! f (k)

11 ( 1
N )(s − 1

N )k, s < 1
N .

Note in particular that f11,N has a cubic growth at infinity. And for N large enough, these
approximated functions satisfy

f ′1,N ≥ − θ0, (6.13)
f1,N(s)(s − m) ≥c1

(
| f1,N(s)| + F1,N(s)

)
− c′1, s ∈ R, m ∈ (0, α), (6.14)

where c1 > 0 and c′1 ≥ 0 depend continuously on m, and(
f1,N(s)(s + m) − f1,N(m)

)
s ≥ c2(s4 + m2s2) − c′2, s,m ∈ R, (6.15)

where c2 > 0 and c′2 ≥ 0 are independent of s and m. Moreover, all constants are
independent of N. We refer the reader to [96] for the proof.

The singular function f2 can be approximated in a similar way by the following
C1-functions defined on the real line, N ∈ N :

f2,N(s) =


f2(β − 1

N ) + f ′2(β − 1
N )(s − β + 1

N ), s > β − 1
N ,

f2(s), s ∈ [ 1
N , β −

1
N ],

f2( 1
N ) + f ′2( 1

N )(s − 1
N ), s < 1

N .

Note that, for every N ∈ N,
f ′2,N ≥ −κ0 (6.16)

and for N large enough,

f2,N(s)(s − m) ≥ c3
(
| f2,N(s)| + F2,N(s)

)
− c′3, s ∈ R,m ∈ (0, β), (6.17)

where F2,N(s) =
∫ s
β
2

f2,N(ξ) dξ, c3 > 0 and c′3 ≥ 0 depend continuously on m and are
independent of N (see [96]).

We then consider the following approximated problems, for N ∈ N :

∂uN

∂t
+ ∆2uN − ∆ f1,N(uN) = h(σN)uN(α − uN), (6.18)
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∂σN

∂t
+ ∆2σN − ∆ f2,N(σN) +

uNσN

1 + |σN |
+ γσN = γβ, (6.19)

∂uN

∂ν
=
∂∆uN

∂ν
=
∂σN

∂ν
=
∂∆σN

∂ν
= 0 on Γ, (6.20)

uN |t=0 = u0, σN |t=0 = σ0. (6.21)

Note that, for a given N ∈ N, we can prove, via a standard Galerkin scheme, the local
in time existence (as well as the uniqueness) of a solution (uN , σN), on some interval
[0,TN), TN > 0 (see also the estimates in the next section below). Note indeed that
s 7→ s

1+|s| is globally Lipschitz continuous on R, with derivative s 7→ 1
(1+|s|)2 .

We set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫
Ω

v dx

and, for v ∈ H−1(Ω),

〈v〉 =
1

Vol(Ω)
〈v, 1〉H−1(Ω),H1(Ω).

We finally set, whenever it makes sense,

v = v − 〈v〉.

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also set
‖ · ‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse of the minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null spatial
average. More generally, we denote by ‖ · ‖X the norm on the Banach space X.

We note that

v 7→ (‖v‖2−1 + 〈v〉2)
1
2 , v 7→ (‖v‖2 + 〈v〉2)

1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 , v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces. Furthermore, ‖ · ‖−1 is a norm on {v ∈ H−1(Ω), 〈v〉 = 0}
which is equivalent to the usual H−1-norm.

Throughout this paper, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line.

6.3 Existence of a local weak solution
Theorem 6.3.1. We assume that (u0, σ0) ∈ H1(Ω) × H1(Ω), and u0 ∈ (0, α), σ0 ∈ (0, β)
a.e. Then (6.1)-(6.4) possesses at least one local in time weak solution (u, σ) defined on
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[0,T0] , for some T0 > 0, such that

u ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂u
∂t
∈ L2(0,T0; H−1(Ω)),

σ ∈ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),
∂σ

∂t
∈ L2(0,T0; H−1(Ω)).

Furthermore,

0 < u < α, 0 < σ < β for almost all (x, t) ∈ Ω × [0,T0].

Proof. The proof of existence can be carried out via a standard Galerkin method and ap-
propriate priori estimates. In what follows, we only give formal estimates. Furthermore,
all constants below are independent of the approximation parameter N.

We first multiply (6.18) by uN and have, integrating over Ω and by parts

1
2

d
dt
‖uN‖

2 + ‖∆uN‖
2 + (( f ′1,N(uN)∇uN ,∇uN)) =

∫
Ω

h(σN)u2
N(α − uN)dx. (6.22)

Note that it follows from (6.13) that

(( f ′1,N(uN)∇uN ,∇uN)) ≥ −θ0‖∇uN‖
2 ≥ −

1
4
‖∆uN‖

2 − c‖uN‖
2, (6.23)

since proper interpolation and standard elliptic regularity results that

‖∇uN‖
2 ≤ c‖uN‖‖uN‖H2(Ω) ≤ c‖uN‖(‖∆uN‖ + ‖uN‖).

Furthermore, since h is bounded, we have

|

∫
Ω

h(σN)u2
N(α − uN)dx| ≤ c(‖uN‖

2 + ‖uN‖
3
L3(Ω))

≤ c(‖uN‖
2 + ‖uN‖

3
H1(Ω))

≤ c(‖uN‖
2 + ‖uN‖

3
2 ‖uN‖

3
2
H2(Ω))

≤ c(1 + ‖uN‖
6) +

1
4
‖∆uN‖

2, (6.24)

owing to the continuous embedding H1(Ω) ⊂ L3(Ω), interpolation inequality and young’s
inequality. It follows from (6.22)-(6.24) that

d
dt
‖uN‖

2 + ‖∆uN‖
2 ≤ c(1 + ‖uN‖

6). (6.25)

In particular,
d
dt
‖uN‖

2+ ≤ c(1 + ‖uN‖
6). (6.26)
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We deduce from (6.26) and the comparison principle that there exists T1 > 0, which is
independent of N, such that

‖uN(t)‖2 ≤ c, t ∈ [0,T1]. (6.27)

We assume from now on that t ∈ [0,T1].
Now we rewrite the problem in the following equivalent weak form :

(−∆)−1∂uN

∂t
− ∆uN + f1,N(uN) = (−∆)−1h(σN)uN(α − uN), (6.28)

(−∆)−1∂σN

∂t
− ∆σN + f2,N(σN) + (−∆)−1 uNσN

1 + |σN |
+ γ(−∆)−1σN = 0, (6.29)

d〈uN〉

dt
= 〈h(σN)uN(α − uN)〉, (6.30)

d〈σN〉

dt
+ 〈

uNσN

1 + |σN |
〉 = γβ, (6.31)

∂uN

∂ν
=
∂σN

∂ν
= 0 on Γ, (6.32)

uN |t=0 = u0, σN |t=0 = σ0, (6.33)

where uN = uN + 〈uN〉 and σN = σN + 〈σN〉.
We assume that there exist δ1 ∈ (0, α2 ) and δ2 ∈ (0, β2 ) such that

2δ1 ≤ 〈u0〉 ≤ α − 2δ1, (6.34)
2δ2 ≤ 〈σ0〉 ≤ β − 2δ2. (6.35)

Then, we recall (6.27) and it follows from (6.30) that

|
d〈uN〉

dt
| ≤ |〈h(σN)uN(α − uN)〉| ≤ c(1 + ‖uN‖

2) ≤ c. (6.36)

We can deduce that, for t ∈ [0,T1]

δ1 ≤ 〈uN(t)〉 ≤ α − δ1, t ∈ [0,T1]. (6.37)

Similarly, it follows from (6.31) that

〈σN(t)〉 = e−γt〈σ0〉 + e−γt
∫ t

0
eγt(γβ − 〈

uNσN

1 + |σN |
〉)ds,

owing to (6.27) again,

|e−γt
∫ t

0
eγt(γβ − 〈

uNσN

1 + |σN |
〉)ds| ≤ e−γt

∫ t

0
eγt(γβ + c2)ds ≤ (β +

c2

γ
)(1 − e−γt),
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where c2 is independent of N. We thus deduce that

e−γt〈σ0〉 − c3(1 − e−γt) ≤ 〈σN(t)〉 ≤ e−γt〈σ0〉 + c3(1 − e−γt), t ∈ [0,T1], (6.38)

where c3 is independent of N. It follows from (6.35) and (6.38) that there exists 0 <
T2 ≤ T1, which is independent of N (but depending on δ2), such that

δ2 ≤ 〈σN(t)〉 ≤ β − δ2, t ∈ [0,T2]. (6.39)

We assume from now on that t ∈ [0,T2].
We multiply (6.28) by uN and have

1
2

d
dt
‖uN‖

2
−1 + ‖∇u‖2 + (( f1,N(uN), uN)) = ((h(σN)uN(α − uN), (−∆)−1uN)).

We write

(( f1,N(uN), uN)) =
1
2

(( f1,N(uN), uN)) +
1
2

(( f1,N(uN) − f1(〈uN〉), uN)),

so that, employing (6.14) (with s = uN and m = 〈uN〉, also recall (6.37)) and (6.15) (with
s = uN and m = 〈uN〉), we have

(( f1,N(uN), uN)) ≥ c
(
‖ f1,N(uN)‖L1(Ω) +

∫
Ω

F1,N(uN)dx +

∫
Ω

(u4
N + u2

N〈uN〉
2)dx

)
− c′, c > 0.

Furthermore,

|((h(σN)uN(α − uN), (−∆)−1uN))| ≤ c
( ∫

Ω

(u4
N + 1)dx

) 1
2 ‖uN‖−1

≤ c
( ∫

Ω

(u4
N + 〈uN〉

4 + 1)dx
) 1

2 ‖uN‖

≤ ε

∫
Ω

u4
Ndx + cε(1 + ‖uN‖

2)

≤ ε

∫
Ω

u4
Ndx + cε, ∀ε > 0,

since (6.27) and Young’s inequality. It thus deduces from above that

d
dt
‖uN‖

2
−1 + c

(
‖∇u‖2 + ‖ f1,N(uN)‖L1(Ω) +

∫
Ω

F1,N(uN)dx

+

∫
Ω

(u4
N + u2

N〈uN〉
2)dx

)
≤ c′, c > 0. (6.40)
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We now multiply (6.28) by ∂uN
∂t and obtain

1
2

d
dt
‖∇uN‖

2 + ‖
∂uN

∂t
‖2−1 + (( f1,N(uN),

∂uN

∂t
)) = ((h(σN)uN(α − uN), (−∆)−1∂uN

∂t
)). (6.41)

Note that

(( f1,N(uN),
∂uN

∂t
)) =

d
dt

∫
Ω

F1,N(uN)dx − Vol(Ω)〈 f1,N(uN)〉〈
∂uN

∂t
〉

≥
d
dt

∫
Ω

F1,N(uN)dx − c‖ f1,N(uN)‖L1(Ω),

owing to (6.36). Furthermore,

|((h(σN)uN(α − uN), (−∆)−1∂uN

∂t
))|

≤ c
( ∫

Ω

(u4
N + 1)dx

) 1
2 ‖
∂uN

∂t
‖−1 ≤

1
2
‖
∂uN

∂t
‖2−1 + c

∫
Ω

(u4
N + 〈uN〉

4 + 1)dx

≤
1
2
‖
∂uN

∂t
‖2−1 + c(

∫
Ω

u4
Nd + 1).

It thus follows from above that

d
dt

(
‖∇uN‖

2 + 2
∫

Ω

F1,N(uN)dx
)

+ ‖
∂uN

∂t
‖2−1

≤ c
(
‖ f1,N(uN)‖L1(Ω) +

∫
Ω

u4
Ndx + 1

)
. (6.42)

Summing (6.25), (6.40) and (6.42) times η1, η1 small enough, we have, taking ε small
enough, a differential inequality of the form

dE1

dt
+ c

(
E1 + ‖uN‖

2
H2(Ω) + ‖ f1,N(uN)‖L1(Ω) + ‖

∂uN

∂t
‖2−1

)
≤ c′, (6.43)

where c > 0, t ∈ [0,T1] and

E1 = ‖uN‖
2 + ‖uN‖

2
−1 + η1

(
‖∇uN‖

2 + 2
∫

Ω

F1,N(uN)dx
)

satisfies
E1 ≥ c‖uN‖

2
H1(Ω) − c′, c > 0.

Here we have also used the fact that

〈uN〉
2 ≤ c, 〈

∂uN

∂t
〉2 ≤ c, t ∈ [0,T1].
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Having this, we note that

f1,N(uN) = −(−∆)−1∂uN

∂t
+ ∆uN + (−∆)−1h(σN)uN(α − uN),

which yields

‖ f1,N(uN)‖ ≤ c(‖
∂uN

∂t
‖2−1 + ‖uN‖

2
H2(Ω) + 1). (6.44)

Note indeed that

‖(−∆)−1h(σN)uN(α − uN)‖ ≤ c(‖uN‖
2
L4(Ω) + ‖uN‖)

≤ c(‖uN‖
2
H1(Ω) + 1)

≤ c(‖uN‖‖uN‖H2(Ω) + 1)
≤ c(‖uN‖H2(Ω) + 1).

Combining (6.43) and (6.44), we obtain a differential inequality of the form

dE1

dt
+ c

(
E1 + ‖uN‖

2
H2(Ω) + ‖ f1,N(uN)‖L1(Ω) + ‖ f1,N(uN)‖2 + ‖

∂uN

∂t
‖2−1

)
≤ c′. (6.45)

It follows from (6.45) that

‖ f1,N(uN)‖2L2(0,T1;L2(Ω)) ≤ c(E1(0) + 1),

using (6.14) again, with s = uN and m = 〈uN〉, we have

|〈 f1,N(uN)〉| ≤ c|(( f1,N(uN), uN))| + c′

= c|(( f1,N(uN), uN))| + c′

≤ c‖ f1,N(uN)‖‖uN‖ + c′

≤ c‖ f1,N(uN)‖(E1(0) + 1)
1
2 + c′,

so that
‖ f1,N(uN)‖2L2(0,T1;L2(Ω)) ≤ c(E1(0) + 1). (6.46)

These estimates allow to pass to the limit of (6.28) to have a weak solution.
We next multiply (6.29) by σN and obtain

1
2

d
dt
‖σN‖

2
−1 + ‖∇σN‖

2 + γ‖σN‖
2
−1 + (( f2,N(σN), σN)) + (((−∆)−1 uNσN

1 + |σN |
, σN)) = 0.

Note that, owing to (6.17) and (6.35) and for N large enough,

(( f2,N(σN), σN)) ≥ c
(
‖ f2,N(σN)‖L1(Ω) +

∫
Ω

F2,N(σN)dx
)
− c′, c > 0,
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where c and c′ depend on δ. Furthermore, owing to (6.27),

|(((−∆)−1 uNσN

1 + |σN |
, σN))| = |((

uNσN

1 + |σN |
, (−∆)−1σN))|

≤ c‖uN‖‖σN‖−1

≤ γ‖σN‖
2
−1 + c‖uN‖

2

≤ γ‖σN‖
2
−1 + c.

We thus deduce from the above that

d
dt
‖σN‖

2
−1 + c

(
‖∇σN‖

2 + ‖ f2,N(σN)‖L1(Ω) +

∫
Ω

F2,N(σN)dx
)
≤ c′, c > 0. (6.47)

We then multiply (6.29) by ∂σN
∂t and have

1
2

d
dt

(‖∇σN‖
2 + γ‖σN‖

2
−1) + ‖

∂σN

∂t
‖2−1 + (( f2,N(σN),

∂σN

∂t
)) + ((

uNσN

1 + |σN |
, (−∆)−1∂σN

∂t
)) = 0.

Note that
|((

uNσN

1 + |σN |
, (−∆)−1∂σN

∂t
))| ≤ c‖uN‖‖

∂σN

∂t
‖−1 ≤ c‖

∂σN

∂t
‖−1

and
(( f2,N(σN),

∂σN

∂t
)) =

d
dt

∫
Ω

F2,N(σN)dx − Vol(Ω)〈 f2,N(σN)〉〈
∂σN

∂t
〉.

Furthermore, it follows from (6.27) and (6.30) that

|〈
∂σN

∂t
〉| ≤ c(1 + ‖uN‖) ≤ c,

which yields

(( f2,N(σN),
∂σN

∂t
)) ≥

d
dt

∫
Ω

F2,N(σN)dx − c‖ f2,N(σN)‖L1(Ω).

It deduces from the above that

d
dt

(
‖∇σN‖

2 + γ‖σN‖
2
−1 + 2

∫
Ω

F2,N(σN)dx
)

+ ‖
∂σN

∂t
‖2−1 ≤ c‖ f2,N(σN)‖L1(Ω) + c′. (6.48)

We finally multiply (6.29) by −∆σN and have

1
2

d
dt
‖σN‖

2 + ‖∆σN‖
2 + γ‖σN‖

2 + (( f ′2,N(σN)∇σN ,∇σN)) + ((
uNσN

1 + |σN |
, σN)) = 0,

which yields, owing to (6.16) and noting that

|((
uNσN

1 + |σN |
, σN))| ≤ c‖σN‖,
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the differential inequality

d
dt
‖σN‖

2 + ‖∆σN‖
2 + γ‖σN‖

2 ≤ c(1 + ‖∇σN‖
2). (6.49)

Summing (6.47), η2 times (6.48) and η3 times (6.49), η2, η3 > 0 small enough, we obtain
a differential inequality of the form

dE2

dt
+ c

(
E2 + ‖∆σN‖

2 + ‖
∂σN

∂t
|2−1 + ‖ f2,N(σN)‖L1(Ω)

)
≤ c′, c > 0, (6.50)

where

E2 = ‖σN‖
2
−1 + η2

(
‖∇σN‖

2 + γ‖σN‖
2
−1 + 2

∫
Ω

F2,N(σN)dx
)

+ η3‖σN‖
2

satisfies
E2 ≥ c‖∇σN‖

2 − c′, c > 0.

It now follows from (6.29) that

f2,N(σN) = −(−∆)−1∂σN

∂t
+ ∆σN − γ(−∆)−1σN − (−∆)−1 uNσN

1 + |σN |
,

so that
‖ f2,N(σN)‖ ≤ c(‖

∂σN

∂t
‖−1 + ‖∆σN‖ + 1). (6.51)

Combining (6.50) and (6.51) gives the differential inequality

dE2

dt
+ c

(
E2 + ‖∆σN‖

2 + ‖
∂σN

∂t
‖2−1 + ‖ f2,N(σN)‖L1(Ω) + ‖ f2,N(σN)‖2

)
≤ c′, c > 0. (6.52)

It follows from (6.52) that

‖ f2,N(σN)‖2L2(0,T2;L2(Ω) ≤ c(E2(0) + 1).

Then, taking s = σN and m = 〈σN〉 in (6.17), we have

|〈 f2,N(σN)〉| ≤ c(( f2,N(σN), σN)) + c′

= c(( f2,N(σN), σN)) + c′

≤ c‖ f2,N(σN)‖‖σN‖ + c′

≤ c‖ f2,N(σN)‖(E2(0) + 1)
1
2 + c′,

so that
‖ f2,N(σN)‖L2(0,T2;L2(Ω) ≤ c(E2(0) + 1). (6.53)
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The estimates above allow us to pass to the limit of (6.29) to obtain a weak solution. The
regularity stated in the theorem follows from (6.45), (6.46), (6.52) and (6.53). Further-
more, we have a local in time weak solution (u, σ) to the auxiliary problem (6.9)-(6.12)
in a standard way (see [16, 96] for details) satisfying

0 < u(x, t) < α, 0 < σ(x, t) < β for almost all (x, t) ∈ Ω × (0,T0),

where T0 = min{T1,T2}. Noting that u ≥ 0 and σ > 0 a.e., which yields that (u, σ) is
also a local in time weak solution to the original problem (6.1)-(6.4). �

Remark 6.3.1. When we consider logarithmic nonlinear terms with the Chan-Hilliard
type equations, which allows to directly ensure that u, σ satisfy the biologically relevant
conditions

0 < u < α, 0 < σ < β a.e.

These are crucial to make sure that (u, σ) actually is a solution to the original problem.

We then show that a local in time weak solution is conditionally global in time.

Theorem 6.3.2. Under the assumptions of Theorem 6.3.1, for h(s) ≥ 0, s ≥ 0, if we set

h∗ = max
[0,β]

h,

and assume that
γ ≥

α

β + 1
.

Then a local in time weak solution (u, σ) is global in time.

Proof. Let T ∗ be the maximal time of existence of a local in time weak solution as
given in Theorem 6.3.1 and assume that T ∗ < ∞.

Then, we have
‖u(t)‖ ≤ ‖α‖ = Vol(Ω)

1
2α, t ∈ [0,T∗),

which means the upper bound on ‖u‖ is now independent of T ∗.
In order to extend the local in time weak solution (u, σ), it’s critical that proving 〈u〉

and 〈σ〉 remain in (0, α) and (0, β), respectively, for all times. Note that the following
estimates are working on the original equations rather than the approximated ones, but
we can repeat all preceding estimates for the limit solution, which hold for t ∈ [0,T ∗).

Then we have
d〈u〉
dt

= 〈h(σ)u(α − u)〉,

which yields, since u ∈ [0, α] and σ ∈ [0, β], as long as the solution exists,

0 ≤
d〈u〉
dt
≤ h∗〈u(α − u)〉.
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Therefore,

0 ≤
d〈u〉
dt

+ h∗α〈u〉 ≤ h∗〈−u2 + 2αu〉 ≤ h∗α2.

It thus follows from Gronwall’s lemma that

〈u0〉e−h∗αt ≤ 〈u(t)〉 ≤ 〈u0〉e−h∗αt + α(1 − e−h∗αt).

It immediately follows from above that

〈u(t)〉 ∈ [δ1, α − δ1], t ∈ [0,T ∗),

where δ1 ∈ (0, α). Indeed, setting

ϕ(t) = 〈u0〉e−h∗αt + α(1 − e−h∗αt),

it’s easy to see that ϕ takes values in such an interval, noting that ϕ is monotone increa-
sing.

Similarly, we have
d〈σ〉

dt
+ γ〈σ〉 + 〈

uσ
1 + σ

〉 = γβ,

and then
γβ −

αβ

1 + β
≤

d〈σ〉
dt

+ γ〈σ〉 ≤ γβ.

It also follows from Gronwall’s lemma that

〈σ0〉e−γt +
β

γ
(γ −

α

1 + β
)(1 − e−γt) ≤ 〈σ(t)〉 ≤ 〈σ0〉e−γt + β(1 − e−γt) (6.54)

as long as it exists.
Let us consider the function

φ(t) = 〈σ0〉e−γt + β(1 − e−γt).

Noting that φ(0) = 〈σ0〉 ∈ (0, β) and lim
t→+∞

φ(t) = β, we easily see that

〈φ(t)〉 ∈ (δ2, β − δ2), δ2 ∈ (0, β), t ∈ [0,T ∗],

since φ is monotone. Proceeding similarly for the left-hand side of (6.54), we deduce
that there exists δ2 ∈ (0, β) depending only on T ∗, such that the same conclusion can be
obtained.

Having this, we can extend the solution (u, σ) by continuity, which finishes the proof.
�

Remark 6.3.2. Uniqueness and further regularity, in particular the existence of strong
solutions, are open problems. Note that the difficulty here comes from the Cahn-Hilliard
type equation and already appears without any coupling (see [96]).
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Deuxième partie

Modèles pour la segmentation d’images
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Chapitre 7

On a Cahn-Hilliard model for image
segmentation

Sur un modèle de Cahn-Hilliard pour la
segmentation d’images
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On a Cahn-Hilliard model for image segmentation

7.1 Introduction
Image segmentation plays an important role in image processing and computer vi-

sion. More precisely, its aim is the partition of a given image into regions in order to
recognize different objects. It has a wide range of applications, including medical ima-
ging, object detection and video surveillance.

During the last decades, several approaches have been proposed to handle this pro-
blem. These include clustering methods, graph partitioning methods, statistics based
methods, variational methods and PDEs based methods. We refer the reader to, e.g.,
[19, 104, 117, 120, 121] and references therein for more details.

In particular, in [120], the authors proposed the following Cahn-Hilliard type model
for image segmentation :

∂u
∂t

+ ε1∆
2u −

1
ε1

∆ f (u) +
ε2h(x)

ε2
2 + (u − 1

2 )2
= 0,

where f is a cubic nonlinear term and

h(x) =
1
π

(λ1(i(x) − c1)2 − λ2(i(x) − c2)2).

Here, ε1, ε2, λ1 and λ2 are positive constants and i is a given image taking values in
[0, 1]. Such a model takes advantage of the favorable features of high-order PDEs and
is also easier to handle than Euler’s elastica based models. We can note that Euler’s
elastica models lead to the minimization of some functional. However, the associated
Euler-Lagrange equations are highly nonlinear, which make numerical simulations deli-
cate. By comparison, the highest order term in the Cahn-Hilliard model is linear, which
significantly reduces the difficulty of developing effective numerical schemes and also
makes the analysis of the equation possible. We refer the interested reader to [120, 121]
and references therein for more details.

The authors in [120] proposed the following strategy in view of numerical simula-
tions. Solve first the equation up to steady state, taking, say, c1 = 1 and c2 = 0. Then,
modify c1 and c2, depending now on the above steady state, as follows :

c1 =

∫
Ω

( 1
2 + 1

π
arctan(u− 1

2
ε2

))i dx∫
Ω

(1
2 + 1

π
arctan(u− 1

2
ε2

)) dx
,
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c2 =

∫
Ω

( 1
2 −

1
π

arctan(u− 1
2

ε2
))i dx∫

Ω
( 1

2 −
1
π

arctan(u− 1
2

ε2
)) dx

and repeat the procedure until c1 and c2 converge.
The original Cahn-Hilliard equation,

∂u
∂t

+ ∆2u − ∆ f (u) = 0,

was initially proposed to model phase separation processes in binary alloys (see [11,
12]). Since then, this equation, or some of its variants, were successfully applied to
many other applications than just phase separation in alloys. We refer the interested
reader to [96, 103] for reviews on the Cahn-Hilliard equation and some of its variants,
as well as their mathematical analysis.

In particular, Cahn-Hilliard type models in the context of image processing can be
found in, e.g., [9, 18, 24, 21, 22, 33]. The authors in [120] studied the existence of
solutions for their model. However, their proof is strongly based on the fact that the
solution u remains in the relevant interval [0, 1]. However, as we will see below, there
exist solutions which are unbounded as time goes to infinity, which could be problematic
in view of numerical simulations.

In this paper, we give a proof of existence and uniqueness of solutions which does
not require such a strong assumption. We also propose a modification of the model pro-
posed in [120], based on the Cahn-Hilliard-Oono equation proposed in [105] to account
for long-ranged interactions in the phase separation processes and to simplify numeri-
cal simulations. In particular, this modification of the model ensures the global in time
boundedness of the solutions. We finally give numerical simulations which illustrate our
theoretical results.

7.2 Setting of the problem
We consider the following initial and boundary value problem :

∂u
∂t

+ ∆2u − ∆ f (u) +
h(x)

1 + (u − 1
2 )2

= 0, (7.1)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (7.2)

u|t=0 = u0, (7.3)

in a bounded and regular domain Ω ⊂ �n, n = 1, 2 or 3, with boundary Γ. Here, we
have set several constants equal to 1.
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We assume that h ∈ L∞(Ω), which is consistent with what is considered in [120].
We further take, for simplicity,

f (s) = s3 − s,

though we can more generally consider any cubic polynomial with positive leading
term, or even any regular function with such a cubic growth at infinity. Note in particular
that

f ′ ≥ −1, F ≥ −c, c ≥ 0, (7.4)

where
F(s) =

∫ s

0
f (ξ) dξ =

1
4

s4 −
1
2

s2.

We finally set

g(s) =
1

1 + (s − 1
2 )2

and note that g is nonnegative and bounded by 1.
We set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫
Ω

v(x) dx

and, for v ∈ H−1(Ω),

〈v〉 =
1

Vol(Ω)
〈v, 1〉H−1(Ω),H1(Ω).

Furthermore, we set, whenever it makes sense,

v = v − 〈v〉.

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also
set ‖ · ‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse of the minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null spatial
average. More generally, we denote by ‖ · ‖X the norm on the Banach space X.

We note that
v 7→ (‖v‖2−1 + 〈v〉2)

1
2 , v 7→ (‖v‖2 + 〈v〉2)

1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 and v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces. Furthermore, ‖ · ‖−1 is a norm on {v ∈ H−1(Ω), 〈v〉 = 0}
which is equivalent to the usual H−1-norm.

We recall several inequalities (see, e.g., [96]) which we will frequently employ be-
low.
• The Poincaré-Wirtinger inequality :

‖v‖ ≤ c‖∇v‖, ∀v ∈ H1(Ω). (7.5)
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Note that a consequence of this inequality is that

‖(−∆)−1v‖ ≤ c‖v‖−1, ∀v ∈ H−1(Ω), 〈v〉 = 0. (7.6)

• An interpolation inequality :

‖v‖ ≤ c‖v‖
1
2
−1‖∇v‖

1
2 , ∀v ∈ H1(Ω), 〈v〉 = 0. (7.7)

Throughout this paper, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line.

7.3 Existence of unbounded solutions
One crucial question, in many applications of Cahn-Hilliard type models, and es-

pecially in view of applications to image segmentation, is whether or not the solutions
remain in the relevant interval, say, [0, 1]. Note that, in the case of the original Cahn-
Hilliard equation, one can construct simple counterexamples showing that the solutions
can leave the relevant interval. However, one can prove, assuming that the initial data are
regular enough, that the solutions are globally (in time) bounded. We refer the interested
reader to, e.g., [96] for details.

Here, we cannot prove a similar result. Indeed, we have the following.

Proposition 7.3.1. Assume that h ≡ h? is a nonvanishing constant. Then (7.1)-(7.3)
possesses unbounded solutions.

Proof. Let us look for spatially homogeneous solutions, u(x, t) ≡ y(t), so that the
boundary conditions are automatically satisfied. We thus have to solve the separable
ODE

y′ +
h?

1 + (y − 1
2 )2

= 0,

which is equivalent to

y′ + y′(y −
1
2

)2 = −h?.

This yields
1
3

y3 −
1
2

y2 +
5
4

y = c(y0) − h?t,

where y0 is the initial datum. It immediately follows that
• limt→+∞ y(t) = +∞ when h? < 0,
• limt→+∞ y(t) = −∞ when h? > 0,
which finishes the proof.

�
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Remark 7.3.1. Also note that

y′ = −
h?

1 + (y − 1
2 )2

has the opposite sign of h?, so that y is monotone increasing (resp., decreasing) when
h? < 0 (resp., h? > 0).

Remark 7.3.2. Of course, taking h constant is restrictive in view of applications to
image segmentation. In particular, in the iterative algorithm considered in [120], this
may only happen in the first iteration for a trivial image ; indeed, in the subsequent
ones, the only possible constant h would be 0, meaning that one has the original Cahn-
Hilliard equation, for which one has bounded solutions under proper regularity as-
sumptions on the initial data. Note however that the idea in this algorithm is to solve
the equation up to steady state at each iteration. We also note that, in view of the nume-
rical simulations performed below, one may have unbounded solutions also when h is
nonconstant. One should thus be careful with the first iteration to avoid having an un-
bounded solution, even though the numerical simulations suggest that the convergence
to infinity is slow.

7.4 Existence and uniqueness of solutions
We have the following.

Theorem 7.4.1. We assume that u0 ∈ H1(Ω). Then, (7.1)-(7.3) possesses a unique weak
solution u such that

u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω))

and
∂u
∂t
∈ L2(0,T ; H−1(Ω)),

∀T > 0.

Proof. Note that, integrating (7.1) over Ω, we have

d〈u〉
dt

+ 〈h(x)g(u)〉 = 0.

We introduce the following weaker formulation of (7.1)-(7.3) :

(−∆)−1∂u
∂t
− ∆u + f (u) + (−∆)−1h(x)g(u) = 0, (7.8)
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d〈u〉
dt

+ 〈h(x)g(u)〉 = 0, (7.9)

∂u
∂ν

= 0 on Γ, (7.10)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉, (7.11)

where u = u + 〈u〉. This formulation is associated with the following variational formu-
lation : Find u : [0,T ]→ H1(Ω) such that

d
dt

(((−∆)−1u, v)) + ((∇u,∇v)) + (( f (u), v)) + (((−∆)−1h(x)g(u), v)) = 0 inD′(0,T ),

∀v ∈ H1(Ω), 〈v〉 = 0,
d〈u〉
dt

+ 〈h(x)g(u)〉 = 0 inD′(0,T ),

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉,

where u = u + 〈u〉.
Existence : The proof of existence can be carried out via a standard Galerkin scheme

based on the above variational formulation. Here below, we only give formal estimates
which can be justified by the aforementioned scheme.

Note that, since g is bounded by 1 and h ∈ L∞(Ω),

|〈h(x)g(u)〉| ≤ c, (7.12)

so that, in view of (7.9),

|〈
∂u
∂t
〉| ≤ c. (7.13)

Furthermore, it follows from (7.9) and Young’s inequality that

d〈u〉2

dt
+ 〈u〉2 ≤ c〈u〉2 + 1. (7.14)

Multiply (7.8) by ∂u
∂t and integrate over Ω and by parts to obtain

1
2

d
dt

(‖∇u‖2 + 2
∫

Ω

F(u) dx) + ‖
∂u
∂t
‖2−1 − (( f (u), 〈

∂u
∂t
〉))

+((h(x)g(u), (−∆)−1∂u
∂t

)) = 0. (7.15)

We note that, owing to (7.13) and Young’s inequality,

|(( f (u), 〈
∂u
∂t
〉))| ≤ c

∫
Ω

| f (u)| dx

≤ η

∫
Ω

u4 dx + cη, ∀η > 0. (7.16)
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Furthermore, it follows from the properties of g and h, the Poincaré-Wirtinger inequality
(7.6) and Young’s inequality that

|((h(x)g(u), (−∆)−1∂u
∂t

))| ≤ c‖
∂u
∂t
‖−1

≤
1
2
‖
∂u
∂t
‖2−1 + c. (7.17)

Combining (7.15)-(7.17), we arrive at

d
dt

(‖∇u‖2 + 2
∫

Ω

F(u) dx) + ‖
∂u
∂t
‖2−1 ≤ η

∫
Ω

u4 dx + cη, ∀η > 0. (7.18)

Next, multiplying (7.8) by u, we find

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 + (( f (u), u)) + ((h(x)g(u), (−∆)−1u)) = 0. (7.19)

We note that, recalling that u = u + 〈u〉,

(( f (u), u)) = (( f (u) − f (〈u〉), u))

=

∫
Ω

(u4
+ 3u3

〈u〉 + 3u2
〈u〉2) dx − ‖u‖2

≥

∫
Ω

(u4
+ 3u2

〈u〉2)dx − 3
∫

Ω

|u|3|〈u〉|dx − ‖u‖2

≥ c0

∫
Ω

(u4
+ u2
〈u〉2) dx − ‖u‖2, c0 > 0, (7.20)

owing to Young’s inequality. Furthermore, recalling that g is bounded, employing the
Poincaré-Wirtinger inequality (7.6) and noting that the embedding L2(Ω) ⊂ H−1(Ω) is
continuous, we have

|((h(x)g(u), (−∆)−1u))| ≤ c‖u‖2 + c′. (7.21)

It thus follows from (7.19)-(7.21) that

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 + c0

∫
Ω

(u4
+ u2
〈u〉2) dx ≤ c‖u‖2 + c′,

so that, owing to the interpolation inequality (7.7) and Young’s inequality,

d
dt
‖u‖2−1 + ‖∇u‖2 + c0

∫
Ω

(u4
+ u2
〈u〉2)dx ≤ c. (7.22)

We finally multiply (7.8) by u to obtain

1
2

d
dt
‖u‖2 + ‖∆u‖2 + (( f ′(u)∇u,∇u)) + ((h(x)g(u), u)) = 0,
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which yields, recalling (7.4) and noting that, employing the Poincaré-Wirtinger inequa-
lity (7.5),

|((h(x)g(u), u))| ≤ c‖u‖ ≤ c‖∇u‖,

the differential inequality

d
dt
‖u‖2 + ‖∆u‖2 ≤ c‖∇u‖2 + c′. (7.23)

Summing (7.14), (7.18), (7.22) and δ times (7.23), δ > 0 small enough, we find the
differential inequality

dE
dt

+ c(‖u‖2H2(Ω) +

∫
Ω

(u4
+ u2
〈u〉2) dx + ‖

∂u
∂t
‖2−1) ≤ c′(1 + 〈u〉4), c > 0, (7.24)

where
E = 〈u〉2 + ‖u‖2−1 + δ‖u‖2 + ‖∇u‖2 + 2

∫
Ω

F(u)dx

satisfies
E ≥ c‖u‖2H1(Ω) − c′, c > 0. (7.25)

Also note that, owing to Hölder’s and Young’s inequalities,

〈u〉4 ≤ c
∫

Ω

u4 dx ≤ c(
∫

Ω

F(u)dx + 1),

so that it follows from (7.24) that

dE
dt
≤ c(E + 1). (7.26)

These estimates allow to deduce the existence results, passing to the limit in the
Galerkin approximations by standard techniques.

Uniqueness : Let u1 and u2 be two solutions with initial data u1,0 and u2,0, respecti-
vely. We set u = u1 − u2 and u0 = u1,0 − u2,0. Then, u satisfies the following initial and
boundary value problem :

(−∆)−1∂u
∂t
− ∆u + f (u1) − f (u2) + (−∆)−1h(x)(g(u1) − g(u2)) = 0, (7.27)

d〈u〉
dt

+ 〈h(x)(g(u1) − g(u2)〉 = 0, (7.28)

∂u
∂ν

= 0 on Γ, (7.29)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (7.30)
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Multiply (7.27) by u to obtain, owing to (7.4),

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 − Vol(Ω)〈 f (u1) − f (u2)〉〈u〉

+((h(x)(g(u1) − g(u2)), (−∆)−1u)) ≤ ‖u‖2. (7.31)

Note that

g(u1) − g(u2) = −
(u1 + u2 − 1)u

(1 + (u1 −
1
2 )2)(1 + (u2 −

1
2 )2)

,

which yields
|h(x)(g(u1) − g(u2))| ≤ c|u|. (7.32)

It thus follows from (7.32) that

|((h(x)(g(u1) − g(u2)), (−∆)−1u))| ≤ c‖u‖‖u‖−1

≤
1
4
‖∇u‖2 + c(‖u‖2−1 + 〈u〉2), (7.33)

where we have also employed the Poincaré-Wirtinger inequality (7.6) and the interpo-
lation inequality (7.7), together with Young’s inequality. Furthermore,

|

∫
Ω

( f (u1) − f (u2))dx| ≤ c
∫

Ω

(u2
1 + u2

2 + 1)|u|dx

≤ c(‖u1‖
2
L4(Ω) + ‖u2‖

2
L4(Ω) + 1)‖u‖

≤ c(‖u1‖
2
H1(Ω) + ‖u2‖

2
H1(Ω) + 1)‖u‖

≤ cT ‖u‖, (7.34)

where, here and below, cT denotes a constant depending on the final time T , in view of
the regularity of u1 and u2, which may change from line to line. Note that we have used
the Cauchy-Schwartz inequality and the Sobolev embedding H1(Ω) ⊂ L4(Ω). We de-
duce from (7.31)-(7.34), employing again the interpolation inequality (7.7) and Young’s
inequality to handle (7.34), that

d
dt
‖u‖2−1 + ‖∇u‖2 ≤ cT (‖u‖2−1 + 〈u〉2). (7.35)

Next, proceeding as above, it follows from (7.28) that

d〈u〉2

dt
≤ c‖u‖|〈u〉|

≤ ‖∇u‖2 + c(‖u‖2−1 + 〈u〉2). (7.36)
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Summing finally (7.35) and (7.36), we have

d
dt

(‖u‖2−1 + 〈u〉2) ≤ cT (‖u‖2−1 + 〈u〉2), (7.37)

which yields, employing Gronwall’s lemma, the continuous dependence with respect to
the initial data in the H−1-topology, as well as the uniqueness.

�

Remark 7.4.1. It follows from the regularity stated in the above theorem and Lions-
Magenes’s theorem (see [74] ; see also [96]) that u ∈ C([0,T ]; H

1
2 (Ω)). It also follows

from Strauss’s lemma (see [110]) that u ∈ C([0,T ]; H1(Ω)w), where the index w denotes
the weak topology.

We then have the following.

Theorem 7.4.2. We further assume that u0 ∈ H2(Ω), with ∂u0
∂ν

= 0 on Γ. Then, the
solution u given in Theorem 7.4.1 satisfies

u ∈ C([0,T ]; H2(Ω)) ∩ L2(0,T ; H4(Ω))

and
∂u
∂t
∈ L2(0,T ; L2(Ω)),

∀T > 0.

Proof. We again derive formal estimates.
Multiplying (7.1) by ∆2u, we obtain

1
2

d
dt
‖∆u‖2 + ‖∆2u‖2 − ((∆ f (u),∆2u)) + ((h(x)g(u),∆2u)) = 0. (7.38)

We note that
|((h(x)g(u),∆2u))| ≤ c‖∆2u‖ ≤

1
4
‖∆2u‖2 + c. (7.39)

Furthermore, we can prove that, say, for n = 3 (see [96], Chapter 3, inequality (3.35) ;
this inequality is derived by properly employing the Agmon and several interpolation
inequalities),

|((∆ f (u),∆2u))| ≤
1
4
‖∆2u‖2 + c(1 + ‖u‖14

H1(Ω)). (7.40)

It thus follows from (7.38)-(7.40) that

d
dt
‖∆u‖2 + ‖∆2u‖2 ≤ c(1 + ‖u‖14

H1(Ω)). (7.41)

This allows us to conclude. In particular, the continuity again follows from Lions-
Magenes’s theorem.

�
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Remark 7.4.2. Note that it follows from Proposition 7.3.1 that we cannot expect to have
uniform in time estimates on the solutions. Actually, in view of the proof of Theorem
7.4.1, we can be more precise. Indeed, we can have a global in time estimate on u in
L2(Ω), combining (7.22) and (7.23). However, as 〈u〉 can indeed go to infinity as t goes
to infinity, (7.24) shows that we cannot expect a global in time estimate on u.

Remark 7.4.3. (i) One way to have a model which ensures global in time boundedness
is to consider the following modified boundary value problem :

∂u
∂t

+ ε1∆
2u + αu −

1
ε1

∆ f (u) +
ε2h(x)

ε2
2 + (u − 1

2 )2
= 0, α > 0, (7.42)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ. (7.43)

Here, when h ≡ 0, we obtain the Cahn–Hilliard–Oono equation (see [105]). Integrating
(7.42) over Ω (we again set ε1 and ε2 equal to 1), we find

d〈u〉
dt

+ α〈u〉 + 〈h(x)g(u)〉 = 0. (7.44)

This yields that

〈u〉 = 〈u(0)〉e−αt + e−αt
∫ t

0
eαs〈h(x)g(u)〉 ds,

so that

|〈u(t)〉| ≤ |〈u(0)〉|e−αt +
‖h‖L∞(Ω)

α
(1 − e−αt), t ≥ 0. (7.45)

In particular,

|〈u(t)〉| ≤ |〈u(0)〉| +
‖h‖L∞(Ω)

α
, t ≥ 0. (7.46)

Therefore, the spatial average of u is bounded, uniformly with respect to time. Pro-
ceeding then as in the proofs of Theorems 7.4.1 and 7.4.2, we can use this to deduce
that u ∈ L∞(�+; H1(Ω)) and u ∈ L∞(�+; H2(Ω)), respectively, employing the uniform
Gronwall lemma in the latter case.

It is proved in [96] that, when α is small, then the dynamics of the Cahn-Hilliard-
Oono equation is close to that of the original Cahn-Hillard equation, in the sense that
one can construct exponential attractors for the Cahn-Hilliard-Oono equation conver-
ging to exponential attractors for the Cahn-Hilliard equation as α goes to 0+. This
suggests that the Cahn-Hilliard-Oono segmentation model could also be relevant for
applications to image segmentation, when α is small, even though we cannot construct
such robust attractors here, since the limit model has unbounded solutions. In that case,
however, the upper bound (7.46) is large. Nevertheless, we do not have unbounded solu-
tions, avoiding the drawbacks mentioned in Remark 7.3.2. Then, for a large α, we lose
the good properties of the model for image segmentation, as suggested by the numerical
simulations below.
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7.5 Numerical simulations
We emphasize that the theoretical results, obtained in the previous sections for ε1 =

ε2 = 1, are still valid for arbitrary positive ε1 and ε2.
As far as the numerical simulations are concerned, we rewrite the equation in the

equivalent form
∂u
∂t
− ∆w + h(x)g(u) = 0,

w = −ε1∆u +
1
ε1

f (u),

∂u
∂ν

=
∂w
∂ν

= 0 on Γ,

which has the advantage of splitting the fourth-order (in space) equation into a system
of two second-order ones. Then, we consider a P1 finite element approach for the space
discretization. When ε1 = 1, the computations are performed with a semi-implicit Euler
time discretization (implicit for the linear terms and explicit for the nonlinear ones).
However, when ε1 = 0.2, the semi-implicit scheme becomes unstable and we use instead
a linearized implicit scheme for the time discretization. The numerical simulations are
performed with the software Freefem++ (see [50]).

In the simulations below, we set Ω = (0, 1) × (0, 1), f (s) = 4s3 − 6s2 + 2s (i.e., f is
the derivative of the double-well potential F(s) = s2(s − 1)2) and g(s) = ε2

ε2
2+(s− 1

2 )2 , with
ε2 = 0.1. The triangulation is obtained by dividing Ω into 100 × 100 squares and by
dividing each square along the same diagonal. The time step is taken as δt = 0.01.

7.5.1 The function h has constant sign
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Figure 7.1 – ε1 = 1, h = h1 positive (left), h = h2 negative (right)
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We first test the problem for h1(x1, x2) = x1
x2+0.2 (hence, h1 is positive) and take u0

randomly distributed between 0.5 and 1. The time evolution of the spatial average of
the solution is displayed in the left part of Figure 7.1. We note that 〈u〉 is monotone
decreasing and seems to tend to −∞ as t tends to +∞.

In the right part of Figure 7.1, we set h2(x1, x2) = − x1
x2+0.2 (hence, h2 is negative) and

take u0 randomly distributed between 0.25 and 0.75. In that case, the spatial average 〈u〉
is monotone increasing and seems to tend to +∞.

These results are consistent with our theoretical results.

7.5.2 The function h does not have a constant sign
We set Ω+ = {x ∈ Ω, h(x) ≥ 0} and Ω− = {x ∈ Ω, h(x) ≤ 0}.
In the left part of Figure 7.2, we choose u0 randomly distributed between 0.25 and

0.75 and take h3(x1, x2) = (x1 − 0.2)(x2 − 0.2), meaning that h3 does not have a constant
sign. Also note that, in that case, Vol(Ω+) > Vol(Ω−). The spatial average 〈u〉 is mono-
tone decreasing and seems to tend to −∞.

On the contrary, in the right part of Figure 7.2, we choose u0 randomly distributed
between 0.25 and 0.75 and take h4(x1, x2) = x1(x2−0.8). In that case, we have Vol(Ω+) <
Vol(Ω−). The spatial average 〈u〉 is monotone increasing and seems to tend to +∞.
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Figure 7.2 – ε1 = 1, h = h3, Vol(Ω+) > Vol(Ω−) (left), h = h4, Vol(Ω+) < Vol(Ω−)
(right)

We finally choose u0(x1, x2) = 0.6 sin2(2πx1)| sin(2πx2)| and take h5,η(x1, x2) = 0.5
on (0, 1)× (0, η), h5,η(x1, x2) = −0.5 on (0, 1)× (η, 1). In Figure 7.3, we make η vary so as
to compare the cases Vol(Ω+) > Vol(Ω−), Vol(Ω+) = Vol(Ω−) and Vol(Ω+) < Vol(Ω−).
We can see that the solution u reaches a steady state when Vol(Ω+) = Vol(Ω−) or when
Vol(Ω+) is slightly larger than Vol(Ω−), but not in general.

The time evolution of the maximal, averaged and minimal values of the solution are
displayed in Figure 7.4, when η = 0.5 (hence, Vol(Ω+) = Vol(Ω−)). In the left part of
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the figure, ε1 is taken equal to 1 and, in the right part, ε1 is taken equal to 0.2. In these
two cases, the solution reaches a steady state.
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Figure 7.3 – Evolution of 〈u〉 when ε1 = 1 , h = h5,η ; η takes the values 0.25, 0.4, 0.5,
0.53 and 0.6
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Figure 7.4 – h = h5, 1
2
. Evolution of umax, 〈u〉, umin when ε1 = 1 (left), ε1 = 0.2 (right)

7.5.3 Comparison with the Cahn-Hilliard-Oono type model

Since the first model can be seen as a particular case of the second one, with α = 0,
we now compare the previous numerical results based on equation (7.1) with those
based on equation (7.42), for α = 0.1. The results are consistent with Remark 7.4.3, (ii).
Although the solution to (7.1) seems to tend to −∞ (left part of Figures 7.5 and 7.6) or
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Figure 7.5 – ε1 = 1, h = h1 positive (left), h = h2 negative (right)
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Figure 7.6 – h = h3, ε1 = 1, Vol(Ω+) > Vol(Ω−) (left), h = h4, ε1 = 1, Vol(Ω+) <
Vol(Ω−) (right)

to +∞ (right part of Figures 7.5 and 7.6), the solution to (7.42) with α = 0.1 behaves as
that to (7.1), but seems to remain bounded.

In Figure 7.7, we take h = h5,η, with η = 1
2 . Moreover, we take ε1 = 1 in the left part

of the figure, ε1 = 0.2 in the right part and make α vary. We observe that, in both cases,
the steady state is reached for small values of α, but this is no longer true for larger
values of α. Figure 7.8 displays the maximal and minimal values of the solution when
h = h5, 1

2
, ε1 = 0.2 and for different values of α (the average 〈u〉 is displayed in the right

part of Figure 7.7).
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Figure 7.7 – Evolution of 〈u〉 when ε1 = 1 (left) and ε1 = 0.2 (right)
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On a Cahn-Hilliard-Oono model for image segmentation

8.1 Introduction
Image segmentation is the process of partitioning a image into multiple segments,

which plays an significant role in image processing and computer vision. More preci-
sely, it aims to partition a given image into regions in order to recognize and analyze
different objects. The practical applications of image segmentation involve medical ima-
ging, machine vision, object detection, video surveillance and so on. In the past few
decades, a range of approaches have been proposed to deal with this problem, which
include clustering methods, graph partitioning methods, statistics based methods, varia-
tional methods and PDEs based methods. We refer the reader to [19, 104, 117, 120, 121]
and references therein for more details. And Cahn-Hilliard type models in the context
of image processing can be found in [9, 18, 24, 21, 22, 33, 71].

In particular, a Cahn-Hilliard type model for image segmentation has been proposed
and studied in [120], the authors prove the existence and uniqueness of solutions for the
model, but their conclusion is based on the precondition that the solution u remains in
the relevant interval [0, 1]. However, we have presented in [71] that there exist solutions
which are unbounded when time goes to infinity, nevertheless, we can not obtain a
global in time estimate on u. To overcome this, we consider a modified boundary value
problem :

∂u
∂t

+ αu + ε1∆
2u −

1
ε1

∆ f (u) +
ε2h(x)

ε2
2 + (u − 1

2 )2
= 0, α > 0, (8.1)

where f is a cubic nonlinear term and

h(x) =
1
π

(
λ1(i(x) − c1)2 − λ2(i(x) − c2)2).

Here, ε1, ε2, λ1 and λ2 are positive constants and i is a given image taking values in [0, 1].
We will set εi = 1, i = 1, 2 in this paper for simplicity. Such a model takes advantage
of the favorable features of high-order PDEs and is also easier to handle than Euler’s
elastica based models.

Furthermore, if we take h(x) = 0, the equation (8.1) will turn into the well-known
Cahn-Hilliard equation when α = 0, and the equation (8.1) will reduce to the Cahn-
Hilliard-Oono equation when α > 0. Note that the Cahn-Hilliard-Oono equation is
proposed in [105] to account for long-ranged (i.e., nonlocal) interactions in the phase
separation processes and also to simplify numerical simulations. We refer the interested
reader to [11, 12, 97, 103] for reviews on the Cahn-Hilliard equation and some of its
variants, as well as their mathematical analysis.
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In this paper, we propose a modification of the model proposed in [120], based on
the Cahn-Hilliard-Oono equation, which ensures the global in time boundedness of the
solutions. We work on this model in two cases : f (u) is a classic cubic term; f (u) is
a logarithmic term. We study the well-posedness and the asymptotic behavior of these
models in different cases.

8.2 Setting of the problem
We consider the following initial and boundary value problem, in a bounded and

regular domain Ω ⊂ �n, n = 1, 2 or 3, with boundary Γ :

∂u
∂t

+ αu + ∆2u − ∆ f (u) +
h(x)

1 + (u − 1
2 )2

= 0, (8.2)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (8.3)

u|t=0 = u0. (8.4)

We assume that h ∈ L∞(Ω), which is consistent with what is considered in [120].
We further take

f (s) = s3 − s

for simplicity, though we can more generally consider any cubic polynomial with posi-
tive leading term, or even any regular function with such a cubic growth at infinity. Note
in particular that the above nonlinear term satisfies the dissipativity properties

f ′ ≥ −1 (8.5)

and
F ≥ −c, c ≥ 0,

where

F(s) =

∫ s

0
f (ξ) dξ =

1
4

s4 −
1
2

s2.

We then set
g(s) =

1
1 + (s − 1

2 )2

and note that g is nonnegative and bounded by 1.
We finally set, for v ∈ L1(Ω),

〈v〉 =
1

Vol(Ω)

∫
Ω

v(x) dx
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and, for v ∈ H−1(Ω),

〈v〉 =
1

Vol(Ω)
〈v, 1〉H−1(Ω),H1(Ω).

Furthermore, we set, whenever it makes sense,

v = v − 〈v〉.

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also
set ‖·‖−1 = ‖(−∆)−

1
2 ·‖, where (−∆)−1 denotes the inverse of the negative Laplace operator

associated with Neumann boundary conditions and acting on functions with null spatial
average. More generally, we denote by ‖ · ‖X the norm on the Banach space X.

We note that
v 7→ (‖v‖2−1 + 〈v〉2)

1
2 , v 7→ (‖v‖2 + 〈v〉2)

1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 and v 7→ (‖∆v‖2 + 〈v〉2)

1
2

are norms on H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are equivalent to
the usual norms on these spaces. Furthermore, ‖ · ‖−1 is a norm on {v ∈ H−1(Ω), 〈v〉 = 0}
which is equivalent to the usual H−1-norm.

At last, we recall several inequalities (see [71, 96]), which will be frequently applied
below.
• The Poincaré-Wirtinger inequality :

‖v‖ ≤ c‖∇v‖, ∀v ∈ H1(Ω). (8.6)

Note that a consequence of this inequality is that

‖(−∆)−1v‖ ≤ c‖v‖−1, ∀v ∈ H−1(Ω), 〈v〉 = 0. (8.7)

• An interpolation inequality :

‖v‖ ≤ c‖v‖
1
2
−1‖∇v‖

1
2 , ∀v ∈ H1(Ω), 〈v〉 = 0. (8.8)

Throughout this paper, the same coefficients c and c′ denote (generally positive)
constants which may change from line to line, or even in the same line.

8.3 The first model with cubic term

8.3.1 The well-posedness results
We first present the well-posedness result of the problem (8.2)-(8.4), which allows

us to construct the dissipative semigroup so that we can prove the existence of the global
attractor. The proof of existence is based on a standard Galerkin scheme.
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Theorem 8.3.1. For everty u0 ∈ H1(Ω) and every T > 0, (8.2)-(8.4) possesses a unique
weak solution u such that

u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)) ∩ L4(0,T ; L4(Ω)),

∂u
∂t
∈ L2(0,T ; H−1(Ω)).

Proof.
Integrating (8.2) over Ω to have

d〈u〉
dt

+ α〈u〉 + 〈h(x)g(u)〉 = 0, (8.9)

then it follows from (8.2) and (8.9) that

∂u
∂t

+ αu + ∆2u − ∆ f (u) + h(x)g(u) = 0, (8.10)

where u = u + 〈u〉. We can rewrite in the equivalent weaker form of (8.2)-(8.4) :

(−∆)−1∂u
∂t

+ α(−∆)−1u − ∆u + f (u) + (−∆)−1h(x)g(u) = 0, (8.11)

∂u
∂ν

= 0 on Γ, (8.12)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (8.13)

Existence : The proof of existence is based on a standard Galerkin scheme and the
a priori estimates. We consider the following approximated problem : for m ∈ N given,
{ωi}(i = 1, ...,m) forms an orthogonal in V basis, we set Vm = span(ω1, ..., ωm) and find
um =

∑m
i=1 ui,mωi, such that

d
dt

(((−∆)−1um, v)) + α(((∆)−1um, v)) + ((um, v))V + (( f (um), v))

+ (((−∆)−1h(x)g(um), v)) = 0 inD′(0,T ),∀v ∈ Vm, (8.14)

d〈um〉

dt
+ α〈um〉 + 〈h(x)g(um)〉 = 0 inD′(0,T ), (8.15)

um|t=0 = u0, 〈um〉|t=0 = 〈u0〉, (8.16)

where um = um + 〈um〉 and D′ denotes the space of distributions. In view of (8.15),
employing the Gronwall’s lemma to have

〈um(t)〉 = 〈u0〉e−αt + e−αt
∫ t

0
eαs〈h(x)g(um)〉 ds,
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so that

|〈um(t)〉| ≤ |〈u0〉|e−αt +
‖h‖L∞(Ω)

α
(1 − e−αt), t ≥ 0.

We further assume that |〈u0〉| ≤ M,M ≥ 0, in particular, we obtain that

|〈um(t)〉| ≤ |〈u0〉| +
‖h‖L∞(Ω)

α
≤ M′, ∀t ≥ 0, (8.17)

which means the spatial average of um is bounded, uniformly with respect to time.
Taking v = ωi in (8.14), multiplying the resulting equality by ui,m and summing over

i = 1, ...,m to have

1
2

d
dt
‖um‖

2
−1 + α‖um‖

2
−1 + ‖∇um‖

2 + (( f (um), um)) + ((h(x)g(um), (−∆)−1um)) = 0.

Noting that,employing the Young’s inequality, we have

(( f (um), um)) ≥
3
4
‖um‖

4
L4(Ω) − c,

|〈um〉

∫
Ω

f (um)dx| ≤
1
4
‖um‖

4
L4(Ω) + cM′ ,

and recalling that h ∈ L∞(Ω), g is bounded by 1, we have

|((h(x)g(um), (−∆)−1um))| ≤ c‖um‖ ≤
1
2
‖um‖

2 + c

by employing the Poincaré-Wirtinger inequality, Young’s inequality and the embedding
L2(Ω) ↪→ H−1(Ω) is continuous.

We deduce from the above that

d
dt
‖um‖

2
−1 + 2α‖um‖

2
−1 + ‖∇um‖

2 + 2‖um‖
4
L4(Ω) ≤ c, (8.18)

where c is may depend on M′, we omit the subscript M′ of constant c here and in the
following.

In view of (8.15), we have

d〈um〉
2

dt
+ α〈um〉

2 ≤ c〈um〉
2 + 1, (8.19)

recalling (8.17) to deduce that

d
dt

(‖um‖
2
−1 + 〈um〉

2) + α(‖um‖
2
−1 + 〈um〉

2) + ‖∇um‖
2 + 2‖um‖

4
L4(Ω) ≤ c. (8.20)
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Recalling that V 7→ (‖u‖2
−1 +〈v〉2)

1
2 is a norm on H−1(Ω), which is equivalent to the usual

H−1(Ω)-norm. It thus follows from (8.20) and the Gronwall’s lemma that um is bounded,
independent of m, in L∞(0,T ; H−1(Ω)) ∩ L4(0,T ; L4(Ω)).

We then take v = ωi in (8.14) and multiply the resulting equation by λiui,m to find

1
2

d
dt
‖um‖

2 + α‖um‖
2 + ‖∆um‖

2 + (( f ′(u)∇um,∇um)) + ((h(x)g(um), um)) = 0,

employing the Poincaré–Wirtinger inequality again, we have

|((h(x)g(um), um))| ≤ c‖um‖ ≤ c‖∇um‖,

it thus follows from (8.5),(8.19),(8.20) to obtain that

1
2

d
dt
‖um‖

2 + α‖um‖
2 + ‖∆um‖

2 ≤ c‖∇um‖
2 + c′, (8.21)

it follows from (8.20),(8.21) and the uniform Gronwall’s lemma that um is bounded,
independent of m, in L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω)).

Finally, taking v = ωi in (8.14) and multiply the resulting equation by dui,m

dt to have

d
dt

(α‖um‖
2
−1 + ‖∇um‖

2 + 2
∫

Ω

F(um)dx) + 2‖
∂um

∂t
‖2−1 − (( f (um), 〈

∂um

∂t
〉))

+((h(x)g(um), (−∆)−1∂um

∂t
)) = 0.

We note that, recalling (8.15),(8.17) and the properties of h and g, we have

−(( f (um), 〈
∂um

∂t
〉)) = (( f (um), α〈um〉)) + (( f (um), 〈h(x)g(um)〉))

≤ c
∫

Ω

u4
mdx + c′

and

|((h(x)g(um), (−∆)−1∂um

∂t
))| ≤ c‖

∂um

∂t
‖−1 ≤

1
2
‖
∂um

∂t
‖2−1 + c.

Recalling (8.19), it thus follows from the above that

d
dt

(α‖um‖
2
−1 + ‖∇um‖

2 + 2
∫

Ω

F(um)dx) + ‖
∂um

∂t
‖2−1 ≤ c

∫
Ω

u4
mdx + c′, (8.22)

which yields that um and ∂um
∂t are bounded, independent of m, in L∞(0,T ; H1(Ω)) and

L2(0,T ; H−1(Ω)), respectively.

146



8.3. The first model with cubic term

It follows from the above and the Aubin-Lions compactness results that there exists
u ∈ L∞(0,T ; H1(Ω)) ∩ L2(0,T ; H2(Ω)) ∩ L4(0,T ; L4(Ω)), with ∂um

∂t ∈ L2(0,T ; H−1(Ω))
such that

um
∗
⇀ u in L∞(0,T ; H1(Ω)),

um ⇀ u in L2(0,T ; H2(Ω)),

um
a.e.
−→ u in L4(0,T ; L4(Ω)),

∂um

∂t
⇀

∂u
∂t

in L2(0,T ; H−1(Ω)),

passing to the limit in the linear terms is straightforward, the existence results can be
deduced by the estimates above.

Uniqueness : Let u1 and u2 be two solutions with initial data u1,0 and u2,0, respecti-
vely, such that 〈u1,0〉 = 〈u2,0〉. We set u = u1 − u2 and u0 = u1,0 − u2,0. We then have the
following systerm :

∂u
∂t

+ αu + ∆2u − ∆( f (u1) − f (u2)) + h(x)(g(u1) − g(u2)) = 0, (8.23)

d〈u〉
dt

+ α〈u〉 + 〈h(x)(g(u1) − g(u2)〉 = 0, (8.24)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (8.25)

u|t=0 = u0. (8.26)

Proceeding as in the previous subsection, we can rewrite (8.23) in the equivalent weaker
form

(−∆)−1∂u
∂t

+ α(−∆)−1u − ∆u + f (u1) − f (u2) + (−∆)−1h(x)(g(u1) − g(u2)) = 0. (8.27)

Multiplying (8.27) by u to have

1
2

d
dt
‖u‖2−1 + α‖u‖2−1 + ‖∇u‖2 + (( f (u1) − f (u2), u)) + ((h(x)(g(u1) − g(u2)), (−∆)−1u)) = 0.

Noting that

(( f (u1) − f (u2), u)) ≥ −‖u‖2 − 〈u〉
∫

Ω

f (u1) − f (u2)dx

and

|〈u〉
∫

Ω

f (u1) − f (u2)dx| ≤ c|〈u〉|
∫

Ω

|u|(u2
1 + u2

2 + 1)dx

≤ c(‖u‖2 + (‖u1‖
4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)〈u〉2)

≤
1
4
‖∇u‖2 + c(‖u1‖

4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)(‖u‖2−1 + 〈u〉2).
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Furthermore, we note that

g(u1) − g(u2) = −
(u1 + u2 − 1)u

(1 + (u1 −
1
2 )2)(1 + (u2 −

1
2 )2)

,

which yields
|h(x)(g(u1) − g(u2))| ≤ c|u|

and

|((h(x)(g(u1) − g(u2)), (−∆)−1u))| ≤ c‖u‖‖u‖−1 ≤
1
4
‖∇u‖2 + c(‖u‖2−1 + 〈u〉2).

We then deduce from the above that

d
dt
‖u‖2−1 + 2α‖u‖2−1 + ‖∇u‖2 ≤ c(‖u1‖

4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)(‖u‖2−1 + 〈u〉2).

In view of (8.9), we have
|〈u(t)〉| ≤ M′, ∀t ≥ 0, (8.28)

and
d〈u〉2

dt
+ 2α〈u〉2 ≤ c〈u〉2, (8.29)

to deduce that

d
dt

(‖u‖2−1 + 〈u〉2) + 2α(‖u‖2−1 + 〈u〉2) + ‖∇u‖2

≤ c(‖u1‖
4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)(‖u‖2−1 + 〈u〉2). (8.30)

It follows from (8.20), (8.30) and the Gronwall’s lemma that

‖u1(t) − u2(t)‖−1 ≤ cec′t‖u0,1 − u0,2‖−1, 0 ≤ t ≤ T, (8.31)

which yields the uniqueness, as well as the continuous dependence with respect to the
initial data in the H−1 topology. �

Remark 8.3.1. It follows from the Lions-Magenes theorem (see[74, 96]) that if u ∈
L2(0,T ; H2(Ω)) and du

dt ∈ L2(0,T ; H−1(Ω)), then u ∈ C([0,T ]; H
1
2 (Ω)). It also follows

from Strauss’s lemma (see[110]) that if u ∈ C([0,T ]; H
1
2 (Ω)) ∩ L∞(0,T ; H1(Ω)), then

u ∈ C([0,T ]; H1
w(Ω)), where the index w denotes the weak topology.
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8.3.2 Further a priori estimates
We need to derive higher regularities of the solutions and show that absorbing sets

exist before we prove the existences of the attractors. We first write

d
dt
‖u‖2−1 + 2α‖u‖2−1 + ‖∇u‖2 + 2‖u‖4L4(Ω) ≤ c, (8.32)

it follows from (8.32) and the Gronwall’s lemma that

‖u‖2−1 ≤ e−αt‖u0‖
2
−1 + c, c > 0. (8.33)

We deduce from (8.33) that exists a bounded subset B of H−1(Ω) and t0 such that u0 ∈ B
and t ≥ t0 implies u(t) ∈ B0, where B0 = {φ ∈ H−1(Ω), |〈φ〉| ≤ M′, ‖φ‖2H−1(Ω) ≤ c} is
the bounded absorbing set for the associated dynamical system on H−1(Ω), then we can
rewrite (8.33) as

‖u(t)‖−1 ≤ c, (8.34)

and deduce from (8.32) that∫ t+r

t
‖∇u‖2ds ≤ cr, t ≥ t0, r > 0, (8.35)

∫ t+r

t
‖u‖4L4(Ω)ds ≤ cr, t ≥ t0, r > 0. (8.36)

We next write
1
2

d
dt
‖u‖2 + α‖u‖2 + ‖∆u‖2 ≤ c‖∇u‖2 + c′. (8.37)

Noting that
‖u‖2 ≤ 2(‖u‖2 + 〈u〉2) ≤ c(‖∇u‖2 + M′2),

we deduce from (8.35),(8.37) and the uniform Gronwall’s lemma that

‖u(t)‖ ≤ c, t ≥ t1(≥ t0), (8.38)∫ t+r

t
‖∆u‖2ds ≤ cr, t ≥ t1, (8.39)

which yields the existence of a bounded absorbing set for the associated dynamical
system on L2(Ω).

Similarly, we write

d
dt

(α‖u‖2−1 + ‖∇u‖2 + 2
∫

Ω

F(u)dx) + ‖
∂u
∂t
‖2−1 ≤ c

∫
Ω

u4dx + c′, (8.40)
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and then deduce from (8.40) and the uniform Gronwall’s lemma that

‖u(t)‖H1(Ω) ≤ c, t ≥ t2(≥ t1), (8.41)

which yields the existence of a bounded absorbing set for the associated dynamical
system in H1(Ω).

We note that all estimates derived from these differential inequalities are justified
within the above Galerkin scheme, passing to the (weak lower) limit.

We finally multiply (8.2) by ∆2u to obtain

1
2

d
dt
‖∆u‖2 + α‖∆u‖2 + ‖∆2u‖2 − ((∆ f (u),∆2u)) + ((h(x)g(u),∆2u)) = 0,

employing the interpolation inequality and Young’s inequality, we have (see [96])

|((∆ f (u),∆2u))| ≤ ‖∆ f (u)‖‖∆2u‖

≤ c(1 + ‖u‖
7
3

H1(Ω))‖∆
2u‖

5
3

≤
1
4
‖∆2u‖2 + c(1 + ‖u‖14

H1(Ω)).

We further have

|((h(x)g(u),∆2u))| ≤ c‖∆2u‖ ≤
1
4
‖∆2u‖2 + c,

hence, owing to (8.29), we have

d
dt

(‖∆u‖2 + 〈u〉2) + α(‖∆u‖2 + 〈u〉2) + ‖∆2u‖2 ≤ c(1 + ‖u‖14
H1(Ω) + 〈u〉2),

and, owing to (8.28) and (8.41), ∃t1 such that, ∀t ≥ t1, we have

d
dt

(‖∆u‖2 + 〈u〉2) + α(‖∆u‖2 + 〈u〉2) + ‖∆2u‖2 ≤ c, (8.42)

We deduce from (8.42) and the uniform Gronwall’s lemma that

‖u(t)‖H2(Ω) ≤ c, t ≥ t1, (8.43)∫ t+r

t
‖∆2u‖2ds ≤ cr, t ≥ t1, (8.44)

which yields the existence of a bounded absorbing set for the associated dynamical
system in H2(Ω).

We then obtain the following theorem :
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8.3. The first model with cubic term

Theorem 8.3.2. We assume that u0 ∈ H2(Ω), with ∂u0
∂ν

= 0 on Γ. Then, the solution u
given in Theorem 8.3.1 satisfies

u ∈ C([0,T ]; H2(Ω)) ∩ L2(0,T ; H4(Ω))

and
∂u
∂t
∈ L2(0,T ; L2(Ω)), ∀T > 0.

Remark 8.3.2. (i) Here we can more generally consider any cubic polynomial with
positive leading coefficient or even any regular function with such a cubic growth at
infinity, but with restrictions on the degree in two or three space dimensions. In two
space dimensions, noting that the embedding H

2
3 (Ω) ⊂ L6(Ω) is continuous and em-

ploying the interpolation inequality ‖v‖
H

2
3 (Ω)
≤ c‖v‖

2
3 ‖v‖

1
3

H2(Ω),∀v ∈ H
2
3 (Ω), we can see

that f (u) ∈ L2(0,T ; H), which yields the strong continuity in H ; In three space di-
mensions, noting that the embedding H1(Ω) ⊂ L6(Ω) and employing the interpolation
inequality ‖v‖H1(Ω) ≤ c‖v‖

1
2 ‖v‖

1
2
H2(Ω),∀v ∈ H1(Ω), it follows that f (u) ∈ L

4
3 (0,T ; H) and

du
dt ∈ L

4
3 (0,T ; D(A−1)), which yields the weak continuity of u in H.

(ii) In particular, we can consider polynomials of degree 2p + 1, p ∈ N, with positive
leading coefficient in three space dimensions. We further note the following assumptions
on the nonlinear term f :

f is of class C2, f (0) = 0,

f ′(s) ≥ −c0, c0 ≥ 0, s ∈ R,

| f (s)| ≤ εF(s) + cε, ∀ε > 0, s ∈ R,

f (s)(s − κ) ≥ c1F(s) − c2, F(s) ≥ −c3, κ = 〈s〉, c1 > 0, c2, c3 ≥ 0, s ∈ R,

where F(s) =
∫ s

0
f (ξ)dξ. We can differentiate (8.13) with respect to time and obtain the

H2−estimate of u, which is globally in time, by steps. And prove the uniqueness, as well
as the continuous dependence with respect to the initial data for V−norm, without any
restriction on p in three space dimensions. The proof is essentially the same as that for
the classical Cahn-Hilliard equation, more details can be found in [96].

8.3.3 Asymptotic behavior
We first give the preliminary materials and prove the existence of the global attractor.

Proposition 8.3.1. We have the continuous (with respect to the H−1-norm) semigroup
S (t) defined as

S (t) : L2(Ω)→ L2(Ω), u0 7→ u(t), t ≥ 0.
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The proposition directly follows from Section 8.3.1. Furthermore, it follows from
Section 8.3.2 that S (t) possesses a bounded absorbing set B′0 which is compact in L2(Ω)
and bounded in H2(Ω), i.e.,

S (t) : L2(Ω)→ H2(Ω), t > 0.

Setting
ΦM′ = {v ∈ L2(Ω), |〈v〉| ≤ M′}, M′ ≥ 0,

it follows from the uniform estimates obtained in Section 8.3 that we have the dissipative
semigroup (still denoted by S (t)) acting on the phase space ΦM′ ,

S (t) : ΦM′ → ΦM′ , t ≥ 0.

Finally, it is deduced from standard results that we have the following theorem.

Theorem 8.3.3. The semigoup S (t) possesses a global attractorA such thatA is com-
pact in L2(Ω) and bounded in H2(Ω).

Remark 8.3.3. It is easy to see that we can assume, without loss of generality, that B′0
is positively invariant by S (t), i.e. S (t)B′0 ⊂ B

′
0, ∀t ≥ 0.

We next give the definition of the fractal dimension, and prove that the dimension of
the global attractor is finite in the next section.

Definition 8.3.1. Let X ⊂ E be a (relatively) compact set. For ε > 0, let Nε(X) (if it is
necessary to make the topology precise, we will also use the notation Nε(X, E)) be the
minimal number of balls of radius ε which are necessary to cover X. Then, the fractal
dimension of X is the quantity (which belongs to [0,+∞])

dimF X = lim sup
ε→0+

log2 Nε(X)
log2

1
ε

(
= lim sup

ε→0+

ln Nε(X)
ln 1

ε

)
.

Furthermore, the quantity Hε(X)(= Hε(X, E)) = log2 Nε(X) is called the Kolmogorov
ε−entropy of X.

Theorem 8.3.4. Let X be a compact subset of E. We assume that there exist a Banach
space E1, with norm ‖ · ‖E1 , such that E1 is compactly embedded in E, and a mapping
L : X → X such that L(X) = X and L satisfies the following smoothing property on the
difference of two solutions :

‖Lx1 − Lx2‖E1 ≤ η‖x1 − x2‖E, ∀x1, x2 ∈ X, c > 0.

Then, the fractal dimension of X is finite and satisfies

dimF X ≤ H 1
4η

(BE1(0, 1), E),

where BE1(0, 1) is the unit ball in E1 (note that it is relatively compact in E, so that its
1
4η−entropy is finite).
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Proof. We recommend [96, 111] to interested readers for more details about the proof.
�

We again consider the initial and boundary value problem (8.23)-(8.26), and it is
sufficient here to take initial data belonging to the bounded absorbing set B′0 defined in
the previous section. We first derive a smoothing property on the difference of the two
solutions, which is vital to prove the existence of exponential attractors.

Multiplying (8.23) by tu to have

d
dt

(t‖u‖2) + αt‖u‖2 + t‖∆u‖2 ≤ ‖u‖2 + ct‖∇u‖2, (8.45)

noting that
|((h(x)(g(u1) − g(u2)), tu))| ≤ ct‖u‖2 ≤ ct‖∇u‖2

and

((∇ f (u1) − ∇ f (u2),∇u)) = (( f ′(u1)∇u,∇u)) + ((( f ′(u1) − f ′(u2))∇u2,∇u)),

where
(( f ′(u1)∇u,∇u)) ≥ −‖∇u‖2

and

|((( f ′(u1) − f ′(u2))∇u2,∇u))| = 3
∫

Ω

(u2
1 − u2

2)∇u2 · ∇udx ≤ c‖∇u‖2

by employing (8.5), the generalized Hölder inequality, interpolation inequality and Theo-
rem 8.3.1.

Integrating (8.30) between 0 and t, it follows from (8.31) that∫ t

0
‖∇u‖2ds ≤ cec′t‖u0,1 − u0,2‖

2
−1.

Recalling again
‖u‖2H1(Ω) ≤ c(‖∇u‖2 + 〈u〉2)

so that ∫ t

0
‖u‖2H1(Ω)ds ≤ cec′t‖u0,1 − u0,2‖

2
−1.

Owing to (8.29), we deduce from the above that

d
dt

(t‖u‖2 + t〈u〉2) ≤ ‖u‖2 + 〈u〉2 + ct(‖∇u‖2 + 〈u〉2), (8.46)

Integrating (8.46) between 0 and t, we obtain

‖u(t)‖2 ≤ c
1 + t

t

∫ t

0
‖u‖2H1(Ω)ds ≤ c

1 + t
t

ec′t‖u0,1 − u0,2‖
2
−1, (8.47)
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where the constants c and c′ are depend on M′.
We finally derive a Hölder (both with respect to space and time) estimate. Actually,

the Hölder continuity with respect to x follows from (8.31). To prove the Hölder conti-
nuity with respect to t, we have

‖u(t1) − u(t2)‖−1 = ‖

∫ t2

t1

∂u
∂t

dτ‖−1 ≤ |t1 − t2|
1
2
∣∣∣ ∫ t2

t1
‖
∂u
∂t
‖2−1dτ

∣∣∣ 1
2 ,

we note that, owing to (8.40), ∣∣∣ ∫ t2

t1
‖
∂u
∂t
‖2−1dτ

∣∣∣ ≤ c,

where the constant c depends on B′0 and T such that t1, t2 ∈ [0,T ] and

‖u(t1) − u(t2)‖−1 ≤ c|t1 − t2|
1
2 . (8.48)

We finally deduce from (8.31), (8.47) and (8.48) the following results.

Theorem 8.3.5. The semigroup S (t) possesses an exponential attractorM ⊂ B′0, i.e.
(i)M is compact in H−1(Ω) ;
(ii)M is positively invariant, S (t)M ⊂M,∀t ≥ 0 ;
(iii)M has finite fractal dimension in H−1(Ω) ;
(iv)M attracts exponentially fast the bounded subsets of L2(Ω), ∀B ⊂ L2(Ω) bounded,

distH−1(Ω)(S (t)B,M) ≤ Q(‖B‖L2(Ω))e−ct, c > 0, t ≥ 0,

where the constant c is independent of B and distH−1(Ω) denotes the Hausdorff semidis-
tance between sets defined by

distH−1(Ω)(A, B) = sup
a∈A

inf
b∈B
‖a − b‖H−1(Ω).

Corollary 2. The semigroup S (t) possesses the finite-dimensional global attractorA ⊂
B′0.

Proof. According to Theorem 8.3.4 and (8.47), the conclusion follows immediately. �

Remark 8.3.4. It follows from Theorem 8.3.4 and (8.47) that η is monotonically increa-
sing with respect to M′. Owing to (8.17), one can easily deduce that η→ +∞ as α→ 0,
which means 1

4η → 0 and it is then clear that the estimate on the dimension goes to +∞.

Remark 8.3.5. A. Miranville has proved in [96, 86] that the dynamics of the Cahn-
Hilliard-Oono equation is close to that of the original Cahn-Hilliard equation when α
is small. In another word, we can construct exponential attractors for the Cahn-Hilliard-
Oono equation converging to the exponential attractors for Cahn-Hilliard equation as
α→ 0+. However, the conclusion is not valid in our case, we can not obtain the robust-
ness here, since the solutions to the Cahn-Hilliard type model for image segmentation
would be unbounded as time goes to infinity, and we can not obtain a global in time
estimate on u.
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8.4 The second model with logarithmic term
In this section, we study the Cahn-Hilliard-Oono equation with logarithmic terms as

following
∂u
∂t

+ αu + ∆2u − ∆ f (u) + h(x)g(u) = 0, α > 0, (8.49)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (8.50)

u|t=0 = u0, (8.51)

where

f (s) = −c0(s −
1
2

) + θ ln
s

1 − s
, s ∈ (0, 1), 0 < θ <

c0

4
,

we can note that f is of class C∞, which satisfies

f ′ ≥ −c0 (8.52)

and

f (s)(s − m) ≥ cm
(
| f (s)| + F(s)

)
− c′m, s ∈ R,m ∈ (0, 1), cm > 0, c′m ≥ 0, (8.53)

where F(s) =
∫ s

1
2

f (ξ) dξ and cm and c′m depend continuously on m. Furthermore, we can
write

f (s) = f1(s) − c0s, f ′1 ≥ 0.

The function f also enjoys the above properties.

8.4.1 The well-posedness results
We again employ a Galerkin scheme. The crucial step, to prove the existence of a

solution to the above problem, consists of deriving an a priori estimate independent of N
on the approximated logarithmic term fN(uN) so that we can pass to the limit N → +∞

in the following approximated problems.

Theorem 8.4.1. We assume that u0 is given such that u0 ∈ H1(Ω), 0 < u0(x) < 1 and
0 < 〈u0〉 < 1, a.e. x ∈ Ω. Then there exists T0 = T0(u0) > 0, (8.49)-(8.51) possesses a
weak solution u on [0,T0] such that

u ∈ C([0,T0]; H1(Ω)W) ∩ L∞(0,T0; H1(Ω)) ∩ L2(0,T0; H2(Ω)),

∂u
∂t
∈ L2(0,T0; H−1(Ω)).

Furthermore, 0 < u(x, t) < 1, a.e (x, t) ∈ Ω × (0,T0).
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Proof. We first define, for N ∈ N, the approximated functions fN ∈ C
1(R) as

fN(s) =


f (−1 + 1

N ) + f ′(−1 + 1
N )(s + 1 − 1

N ), s < −1 + 1
N ,

f (s), |s| ≤ 1 − 1
N ,

f (1 − 1
N ) + f ′(1 − 1

N )(s − 1 + 1
N ), s > 1 − 1

N .

We easily see that fN also satisfies

f ′N ≥ −c0, (8.54)

and, for s ∈ R,m ∈ (0, 1) and N large enough, fN also enjoys the following inequality

fN(s)(s − m) ≥ cm
(
| fN(s)| + FN(s)

)
− c′m, cm > 0, c′m ≥ 0, (8.55)

where FN(s) =
∫ s

1
2

fN(ξ) dξ and the constants are independent of N, we refer the reader
to, e.g., [96] for the proof.

We then rewrite (8.49) in the following approximated form, for N ∈ N :

∂uN

∂t
+ αuN + ∆2uN − ∆ fN(uN) + h(x)g(uN) = 0, (8.56)

∂uN

∂ν
=
∂∆uN

∂ν
= 0 on Γ, (8.57)

uN |t=0 = u0, (8.58)

We first integrate (8.56) over Ω and integrate by parts to have

〈
∂uN

∂t
〉 + α〈uN〉 + 〈h(x)g(uN)〉 = 0, (8.59)

which yields that

〈uN〉 = 〈u0〉e−αt + e−αt
∫ t

0
eαs〈h(x)g(uN)〉ds, (8.60)

so that

|〈uN(t)〉| ≤ 〈u0〉e−αt +
‖h‖L∞(Ω)

α
(1 − e−αt), (8.61)

it then follows from the above that there exists T0 = T0(δ, u0) > 0 such that, for t ∈
[0,T0],

|〈uN(t)〉| ≤ 1 − δ, δ ∈ (0,
1
2

). (8.62)
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Here, we assume that 2δ < 〈u0〉 ≤ 1 − 2δ. Noting that T0 can be chosen independent of
the approximation parameter, which is essential to pass to the limit.

Then we rewrite (8.56) in the following equivalent form :

∂uN

∂t
+ αuN + ∆2uN − ∆ fN(uN) + h(x)g(uN) = 0, (8.63)

∂uN

∂ν
=
∂∆uN

∂ν
= 0 on Γ, (8.64)

uN |t=0 = u0. (8.65)

Let us multiply (8.63) by (−∆)−1uN to obtain

1
2

d
dt
‖uN‖

2
−1 + α‖uN‖

2
−1 + ‖∇uN‖

2 + (( fN(uN), uN)) + ((h(x)g(uN), (−∆)−1uN)) = 0.

It follows from (8.55), where we assume that s = uN and m = 〈uN〉 to have

(( fN(uN), uN)) = (( fN(uN), uN)) ≥ c
(
‖ fN(uN)‖L1(Ω) +

∫
Ω

FN(uN)dx
)
− c′, c > 0,

and noting that

|((h(x)g(uN), (−∆)−1uN))| ≤ c‖uN‖−1 ≤
α

2
‖∇uN‖

2
−1 + c.

We deduce from the above that

d
dt
‖uN‖

2
−1 + α‖uN‖

2
−1 + 2‖∇uN‖

2 + c
(
‖ fN(uN)‖L1(Ω) +

∫
Ω

FN(uN)dx
)
≤ c′, c > 0.

In view of (8.59), we have

d〈uN〉
2

dt
+ α〈uN〉

2 ≤ c〈uN〉
2 (8.66)

and

d
dt

(‖uN‖
2
−1 + 〈uN〉

2) + α(‖uN‖
2
−1 + 〈uN〉

2) + 2‖∇uN‖
2

+c
(
‖ fN(uN)‖L1(Ω) +

∫
Ω

FN(uN)dx
)
≤ +〈uN〉

2 + c′, c > 0. (8.67)

It follows from the above and the uniform Gronwall lemma that uN is bounded, inde-
pendent of N, in L∞(0,T ; H−1(Ω)) ∩ L2(0,T ; H1(Ω)).
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Let us next multiply (8.63) by (−∆)−1 ∂uN
∂t to have

1
2

d
dt

(
‖∇uN‖

2 + α‖uN‖
2
−1

)
+ ‖

∂uN

∂t
‖2−1 + (( fN(uN),

∂uN

∂t
)) + ((h(x)g(uN), (−∆)−1∂uN

∂t
)) = 0.

Noting that

(( fN(uN),
∂uN

∂t
)) = (( fN(uN),

∂uN

∂t
))

=
d
dt

∫
Ω

FN(uN)dx − (( fN(uN),
d〈uN〉

dt
))

≥
d
dt

∫
Ω

FN(uN)dx − c‖ fN(uN)‖L1(Ω)

and

((h(x)g(uN), (−∆)−1∂uN

∂t
)) ≤ c‖

∂uN

∂t
‖−1 ≤

1
2
‖
∂uN

∂t
‖2−1 + c.

We obtain that

d
dt

(
‖∇uN‖

2 + α‖uN‖
2
−1 + 2

∫
Ω

FN(uN)dx
)

+ ‖
∂uN

∂t
‖2−1 ≤ c‖ fN(uN)‖L1(Ω) + c′. (8.68)

It thus follows from (8.66)-(8.68) and the uniform Gronwall’s lemma that uN and ∂u
∂t are

bounded, independent of N, in L∞(0,T ; H1(Ω)) and L2(0,T ; H−1(Ω)), respectively.
We finally multiply (8.63) by uN to have

1
2

d
dt
‖uN‖

2 + α‖uN‖
2 + ‖∆uN‖

2 + (( f ′(u)∇uN ,∇uN)) + ((h(x)g(uN), uN)) = 0,

it follows from (8.54) that

(( f ′N(uN)∇uN ,∇uN)) ≥ −c0‖∇uN‖
2,

and noting that

‖((h(x)g(uN), uN))‖ ≤ c‖uN‖ ≤ c′‖∇uN‖,

and considering the inequality

‖∇uN‖
2 ≤

1
2
‖∆uN‖

2 + c‖uN‖
2 + c′,

which follows from standard elliptic regularity results and a proper interpolation inequa-
lity. Combining the inequalities above to deduce

d
dt
‖uN‖

2 + ‖∆uN‖
2 ≤ c‖uN‖

2 + c′. (8.69)
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It follows from (8.66), (8.69) and the uniform Gronwall’s lemma that uN is bounded,
independent of N, in L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H2(Ω)).

Summing (8.67),(8.68),(8.69) multiplied by δ > 0 small enough and (8.66), we
finally obtain the energy inequality as following

dEN

dt
+ c(EN + ‖uN‖

2
H2(Ω) + ‖

∂uN

∂t
‖2−1 + ‖ fN(uN)‖L1(Ω)) ≤ c′, c′ > 0,

where

EN = 〈uN〉
2 + ‖uN‖

2
−1 + ‖∇uN‖

2 + 2
∫

Ω

FN(uN)dx + δ‖uN‖
2

satisfies

EN ≥ c‖uN‖
2
H1(Ω) − c′, c > 0.

We also note that the dissipative estimate follows immediately by employing the Gron-
wall lemma

EN(t) ≤ e−ctEN(0) + c′, c > 0, t ≥ 0, (8.70)

which yields

‖uN(t)‖H1(Ω) ≤ ce−c′t(EN(0) + 1), c′ > 0, t ≥ 0, (8.71)

Note indeed that (8.63) yields

fN(uN) = ∆uN − (−∆)−1αuN − (−∆)−1∂uN

∂t
− (−∆)−1h(x)g(uN),

so that

‖ fN(uN)‖ ≤ c(‖∆uN‖ + ‖uN‖−1 + ‖
∂uN

∂t
‖−1 + 1)

and

‖ fN(uN)‖L2(Ω×(0,T0) ≤ cEN(0). (8.72)

Next, taking s = uN and 〈uN〉 in (8.55), it follows from (8.62) that

|〈 fN(uN)〉| ≤ c(( fN(uN), uN)) + c′

= c(( fN(uN), uN)) + c′

≤ c‖ fN(uN)‖‖uN‖ + c′, (8.73)
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where the above constants depend on δ and 〈u0〉. Therefore,

‖ fN(uN)‖2L2(Ω×(0,T0) ≤ c(‖ fN(uN)‖2L2(Ω×(0,T0) +

∫ T0

0
〈 fN(uN)〉2dt)

≤ cE2
N(0) + c′EN(0)‖uN‖

2 + c′′

≤ cE2
N(0) + c′

so that

‖ fN(uN)‖L2(Ω×(0,T0)) ≤ c(E(0) + 1). (8.74)

As mentioned above, (8.74) is the crucial estimate to pass to the limit in the nonlinear
term. Since the above estimates are independent of N, the solution of the approximated
problems converges to a limit function u in the sense

uN
∗
⇀ u in L∞(0,T0; H1(Ω)),

uN ⇀ u in L2(0,T0; H2(Ω)),
∂uN

∂t
⇀

∂u
∂t

in L2(0,T0; H−1(Ω)),

fN ⇀ f in L2(Ω × (0,T0))

and

uN
a.e.
−→ u in C([0,T0]; H1

W(Ω))

by using the Aubin-Lions compactness results and W.A. Strauss lemma. We thus finish
the proof of the existence.

The uniqueness follows instantly. Let u1 and u2 be two solutions with initial data u1,0

and u2,0, respectively, such that 〈u1,0〉 = 〈u2,0〉. Setting u = u1 − u2, u0 = u1,0 − u2,0, we
then have

(−∆)−1∂u
∂t

+ α(−∆)−1u − ∆u + f (u1) − f (u2) + (−∆)−1h(x)(g(u1) − g(u2)) = 0, (8.75)

d〈u〉
dt

+ α〈u〉 + 〈h(x)(g(u1) − g(u2)〉 = 0, (8.76)

∂u
∂ν

=
∂∆u
∂ν

= 0 on Γ, (8.77)

u|t=0 = u0. (8.78)

Multiplying (8.75) by u, we obtain

1
2

d
dt
‖u‖2−1 + α‖u‖2−1 + ‖∇u‖2 + (( f (u1) − f (u2), u)) + ((h(x)(g(u1) − g(u2)), (−∆)−1u)) = 0,
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in view of (8.52), employing the interpolation inequality, which yields

(( f (u1) − f (u2), u)) ≥ −c0‖u‖2 ≥ −c0‖u‖−1‖∇u‖,

and noting that
|h(x)(g(u1) − g(u2))| ≤ c|u|

so that

|((h(x)(g(u1) − g(u2)), (−∆)−1u))| ≤ c‖u‖‖u‖−1 ≤
1
4
‖∇u‖2 + c(‖u‖2−1 + 〈u〉2)

by using interpolation inequality and Poincaré-Wirtinger inequality. It follows from
(8.76) that

d〈u〉2

dt
+ 2α〈u〉2 ≤ c〈u〉2, (8.79)

we then deduce from the above that

d
dt

(‖u‖2−1 + 〈u〉2) + 2α(‖u‖2−1 + 〈u〉2) + ‖∇u‖2 ≤ c(‖u‖2−1 + 〈u〉2), (8.80)

employing the uniform Gronwall’s lemma, we obtain

‖u1(t) − u2(t)‖−1 ≤ cec′t‖u1,0 − u2,0‖−1, 0 ≤ t ≤ T, (8.81)

which yields the uniqueness, as well as the continuous dependence with respect to the
initial data in the H−1 topology. �

Remark 8.4.1. (i) Note that if ‖h‖L∞(Ω) ≤ α, then it follows from (8.61) that δ ≤ 〈uN(t)〉 ≤
1 − δ for all times, so that the solution is actually global in time.
(ii) When ‖h‖L∞(Ω) = 0, it follows from (8.61) that 〈u〉 ∈ (0, 1) holds for all times, and
the global in time existence of the solution for the Cahn-Hilliard-Oono equation can be
obtained easily.

8.4.2 Regularity and separation from the pure states
We have the following results.

Proposition 8.4.1. The solution u to (8.49)-(8.51) given in Theorem8.4.1 satisfies

∂u
∂t
∈ L∞(r,+∞; H−1(Ω)) ∩ L2(r,T ; H1(Ω))

∀r < T, where r > 0 and T > 0 are given.
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Proof. We recall that we have the equation

(−∆)−1∂u
∂t

+ α(−∆)−1u − ∆u + f (u) + (−∆)−1h(x)g(u) = 0. (8.82)

Differentiating (8.82) with respect to time, we have

(−∆)−1 ∂

∂t
∂u
∂t

+ α(−∆)−1∂u
∂t
− ∆

∂u
∂t

+ f ′(u)
∂u
∂t

+ (−∆)−1h(x)g′(u)
∂u
∂t

= 0, (8.83)

multiplying (8.83) by ∂u
∂t , we obtain

1
2

d
dt
‖
∂u
∂t
‖2−1 + α‖

∂u
∂t
‖2−1 + ‖∇

∂u
∂t
‖2 + (( f ′(u)

∂u
∂t
,
∂u
∂t

)) + ((h(x)g′(u)
∂u
∂t
, (−∆)−1∂u

∂t
)) = 0,

recalling the properties of h, g and (8.52), we write instead

|((h(x)g′(u)
∂u
∂t
, (−∆)−1∂u

∂t
))| ≤ c‖

∂u
∂t
‖‖
∂u
∂t
‖−1

and

(( f ′(u)
∂u
∂t
,
∂u
∂t

)) = (( f ′(u)
∂u
∂t
,
∂u
∂t

)) −
d〈u〉
dt

(( f ′(u)
∂u
∂t
, 1))

≥ −c0‖
∂u
∂t
‖2 −

d〈u〉
dt

d
dt

∫
Ω

F(u)dx

= −c0‖
∂u
∂t
‖2 −

d
dt

(d〈u〉
dt

∫
Ω

F(u)dx
)

+
d2〈u〉
dt2

∫
Ω

F(u)dx.

Setting

Λ =
1
2
‖
∂u
∂t
‖2−1 −

d〈u〉
dt

∫
Ω

F(u)dx,

we deduce from the above that
dΛ

dt
+ α‖

∂u
∂t
‖2−1 +

1
2
‖∇
∂u
∂t
‖2 ≤ c

(
‖
∂u
∂t
‖2−1 + |

d〈u〉
dt
|2
)
−

d2〈u〉
dt2

∫
Ω

F(u)dx (8.84)

by employing proper interpolation inequalities.
Recalling (8.60) and (8.70), we can see that Λ is bounded from below :

Λ ≥
1
2
‖
∂u
∂t
‖2−1 − c.

Similarly, it is easy to prove that the last two terms on the right-hand side of (8.84) are
bounded from the above. We finally obtain the differential inequality of the form

dΛ

dt
+ α‖

∂u
∂t
‖2−1 +

1
2
‖∇
∂u
∂t
‖2 ≤ c

(
‖
∂u
∂t
‖2−1 + 〈u0〉

2 + E(0)2 + 1
)
, (8.85)

where E is the equivalent of EN for u, the resulte follows from (8.66) and (8.85) by
using the uniform Gronwall’s lemma. �
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Proposition 8.4.2. We assume that 2 ≤ p < +∞ when n = 2 and 2 ≤ p ≤ 6 when n = 3.
Then, the solution u further satisfies

‖ f (u)‖L∞(r,t;Lp(Ω)) ≤ c, ‖u(t)‖W2,p(Ω) ≤ c

∀t ≥ r, r > 0 given, where the constant c depends on the H1(Ω)-norm of u0.

Proof. We rewrite (8.82) as an elliptic equation :

−∆u + f1(u) = −(−∆)−1∂u
∂t

+ 〈 f (u)〉 + c0u − α(−∆)−1u − (−∆)−1h(x)g(u)

≡ hu. (8.86)

Recall that f (s) = f1(s) − c0s, f ′1 ≥ 0, (8.72) and (8.73) for u and f and note that, owing
to Proposition8.4.1, f (u) ∈ L∞(r, t; L2(Ω)), so that

〈 f (u)〉 ∈ L∞(r, t).

Then, it follows from the above that

‖hu‖H1(Ω) ≤ ‖(−∆)−1∂u
∂t
‖H1(Ω) + |〈 f (u)〉| + c0‖u‖H1(Ω) + α‖(−∆)−1u‖H1(Ω)

+ |(−∆)−1h(x)g(u)|

≤ c
(
‖
∂u
∂t
‖−1 + |〈 f (u)〉| + ‖u‖H1(Ω) + ‖u‖−1

)
≤ c, t ≥ r,

so that

‖hu‖L∞(r,t;H1(Ω)) ≤ c, t ≥ r, (8.87)

where the constant c depends on the H1(Ω)-norm of u0.
We then multiply (8.86) by | f1(u)|p−2 f1(u) to obtain

−

∫
Ω

∆u| f1(u)|p−2 f1(u)dx +

∫
Ω

| f1(u)|pdx =

∫
Ω

hu| f1(u)|p−2 f1(u)dx.

We note that

−

∫
Ω

∆u| f1(u)|p−2 f1(u)dx = (p − 1)
∫

Ω

| f1(u)|p−2 f ′1(u)|∇u|2dx ≥ 0,

since f ′1 ≥ 0. Furthermore, we obtain, employing Young’s inequality and proper Sobolev
embedding theorems,

|

∫
Ω

hu| f1(u)|p−2 f1(u)dx| ≤
1
2
‖ f1(u)‖p

Lp(Ω) + ‖hu‖
p
Lp(Ω)

≤
1
2
‖ f1(u)‖p

Lp(Ω) + ‖hu‖
p
H1(Ω).
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It thus follows that

‖ f1(u)‖p
Lp(Ω) ≤ c‖hu‖

p
H1(Ω),

so that

‖ f (u)‖Lp(Ω) ≤ c(‖hu‖H1(Ω) + ‖u‖H1(Ω)). (8.88)

We finally deduce from (8.87)-(8.88) (and (8.70) again) that

‖ f (u)‖L∞(r,t;Lp(Ω)) ≤ c, t ≥ r. (8.89)

Having this, it follows from standard elliptic regularity results applied to (8.86) and
(8.87) that

‖u‖L∞(r,t;W2,p(Ω)) ≤ c, t ≥ r,

which finishes the proof, recalling that u ∈ C([0,T ]; H1(Ω)),∀T > 0. �
As a consequence of (8.89) we have the following result.

Theorem 8.4.2. We assume that n = 1. Then, there exists δ ∈ (0, 1) depending on the
H1(Ω)-norm of u0 such that

‖u(t)‖L∞(Ω) ≤ 1 − δ, t ≥ r,

where r > 0 is given.

Proof. We can pass to the limit p → +∞ in (8.89) (see [1, 3]) and conclude the proof,
owing to the continuity of u with respect to time. �

Remark 8.4.2. The separation property from the pure states given in Theorem 8.4.1
means, roughly speaking, that we never completely reach the pure states during the
phase separation process : there always remains at least some trace of the other com-
ponent. The above strict separation property says that not only can we never completely
reach the pure states, but also there remains some given quantity of the other component.

Proving the strict separation property in two space dimensions is more involved and
is based on the following result.

Proposition 8.4.3. We assume that n = 2. Then, the following holds for every t ≥ r, r > 0
given, and for every p ∈ N :

‖ f ′(u)‖Lp(Ω×(r,t)) ≤ c,

where the constant c depends on p.
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Proof. We also need to deal with the elliptic equation (8.86), the tricks we use here are
similar to those in Proposition 8.4.2, we recommend to readers [96] for more details. �

Then we can prove additional regularity on the time derivative of u.

Proposition 8.4.4. We assume that n = 2. Then, the weak solution u to (8.49)-(8.51)
further satisfies

∂u
∂t
∈ L∞(r,+∞; L2(Ω)) ∩ L2(r,T ; H2(Ω))

∀r < T, where r > 0 and T > 0 are given.

Proof. We multiply (8.83) by −∆∂u
∂t to obtain

1
2

d
dt
‖
∂u
∂t
‖2 + α‖

∂u
∂t
‖2 + ‖∆

∂u
∂t
‖2 + (( f ′(u)

∂u
∂t
,∆
∂u
∂t

)) + (((−∆)−1h(x)g′(u)
∂u
∂t
,−∆

∂u
∂t

)) = 0,

in view of the properties of h and g again, we have

(((−∆)−1h(x)g′(u)
∂u
∂t
,−∆

∂u
∂t

)) ≤ c‖
∂u
∂t
‖2

and

|(( f ′(u)
∂u
∂t
,∆
∂u
∂t

))| ≤ ‖ f ′(u)‖L4(Ω)‖
∂u
∂t
‖L4(Ω)‖∆

∂u
∂t
‖

≤ c‖ f ′(u)‖L4(Ω)‖
∂u
∂t
‖

1
2 ‖∆

∂u
∂t
‖

3
2

≤
1
2
‖∆
∂u
∂t
‖2 + c‖ f ′(u)‖4L4(Ω)‖

∂u
∂t
‖2.

by employing the Hölder, Ladyzhenskaya, and Young inequalities. In view of (8.66), it
is deduced from the above that

d
dt
‖
∂u
∂t
‖2 + ‖∆

∂u
∂t
‖2 ≤ (c‖ f ′(u)‖4L4(Ω) + c′)‖

∂u
∂t
‖2,

we can conclude by applying the uniform Gronwall’s lemma, with (8.84) and Proposi-
tion 8.4.3 (for p = 4). �

Remark 8.4.3. This regularity also holds in one space dimension, owing to the strict
separation property given in Theorem 8.4.2.

We then obtain the following result.

Theorem 8.4.3. We assume that n = 2. Then, there exists δ ∈ (0, 1) depending on the
H1(Ω)-norm of u0 such that

‖u(t)‖L∞(Ω) ≤ 1 − δ, t ≥ r,

where r > 0 is given.
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Proof. We note that, owing to the regularity given in Proposition 8.4.4, the right-hand
side hu in (8.86) satisfies

‖hu‖L∞(Ω×(r,t)) ≤ c, t ≥ r.

Having this, we can proceed as in the proof of Proposition 8.4.4 �

Remark 8.4.4. (i) The strict separation property is still open in the three space dimen-
sion.
(ii) Having the strict separation property also allows us to prove the finite fractal di-
mensionality of the global attractor.

8.4.3 Asymptotic behavior
Based on the dissipative estimations in Section 8.4.1, we set

Φ = {v ∈ H1(Ω) ∩ L∞(Ω), 0 < v(x) < 1a.e., |〈v〉| < 1},

we can define the continuous (for the H−1(Ω)-norm) semigroup

S α(t) : Φ→ Φ, u0, t ≥ 0.

It follows from (8.71) that S α(t) is dissipative inΦ, i.e., it possesses a bounded absorbing
set B1 ⊂ Φ. We then obtain the following result.

Theorem 8.4.4. The semigoup S α(t) possesses a global attractor Aα such that Aα is
compact in Φ.

Furthermore, we have the existence of a uniform (with respect to α) absorbing set
B′1 ⊂ Φ ∩ H2(Ω), i.e., ∀B ⊂ Φ bounded, ∃t0 = t0(B) independent of α such that

S α(t)B ⊂ B′1, t ≥ t0,

it thus sufficient to construct the exponential attractorsMα.

Theorem 8.4.5. The semigroup S α(t) possesses an exponential attractorMα on B′1.

Proof. We again consider the initial and boundary value problem (8.75)-(8.78), and
derive a smoothing property on the difference of the two solutions, which is the crucial
step to prove the existence of exponential attractors.

We next multiply (8.75) by t ∂u
∂t to have

1
2

d
dt

(αt‖u‖2−1 + t‖∇u‖2) + t‖
∂u
∂t
‖2−1 + t

((
f (u1) − f (u2),

∂u
∂t

))
+t

((
(−∆)−1h(x)(g(u1) − g(u2)),

∂u
∂t

))
=
α

2
‖u‖2−1 +

1
2
‖∇u‖2.
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We note that

(( f (u1) − f (u2),
∂u
∂t

)) ≤ c‖∇( f (u1) − f (u2))‖‖
∂u
∂t
‖−1

≤ c‖∇(
∫ 1

0
f ′(u1 + s(u2 − u1))dsu)‖‖

∂u
∂t
‖−1

≤ c‖
∫ 1

0
f ′(u1 + s(u2 − u1))ds∇u‖‖

∂u
∂t
‖−1

+ ‖u
∫ 1

0
f ′′(u1 + s(u2 − u1))(∇u1 + s∇(u2 − u1))ds‖‖

∂u
∂t
‖−1

≤ c(‖∇u‖ + ‖|u||∇u1|‖ + ‖|u||∇u2|‖)‖
∂u
∂t
‖−1

≤ c‖u‖2H1(Ω) +
1
4
‖
∂u
∂t
‖2−1

and

|
((

(−∆)−1h(x)(g(u1) − g(u2)),
∂u
∂t

))
| ≤ c‖u‖‖

∂u
∂t
‖−1 ≤ c‖∇u‖2 +

1
4
‖
∂u
∂t
‖2−1

by employing Hölder, Young, Poincaré inequality and continuous embedding, where
the constant c only depends on B′1. We have

d
dt

(αt‖u‖2−1 + t‖∇u‖2) + t‖
∂u
∂t
‖2−1 ≤ α‖u‖

2
−1 + ct‖u‖2H1(Ω) + c′t‖∇u‖2.

Owing to (8.79), we further obtain

d
dt

(αt‖u‖2−1 + t‖∇u‖2 + t〈u〉2) + t‖
∂u
∂t
‖2−1 + α〈u〉2

≤ α(‖u‖2−1 + 〈u〉2) + ct(‖u‖2H1(Ω) + 〈u〉2) + c′t(‖∇u‖2 + 〈u〉2). (8.90)

Integrating (8.80) over (0, t), we get∫ t

0
‖∇u‖2ds ≤ cec′t‖u0,1 − u0,2‖

2
−1, (8.91)

where the constant c′ only depends on B′1, hence∫ t

0
‖u‖2H1(Ω)ds ≤ cec′t‖u0,1 − u0,2‖

2
−1. (8.92)

Owing to (8.81), (8.90)-(8.92) and the uniform Gronwall’s lemma, we have

‖u1 − u2‖
2
H1(Ω) ≤ cec′t‖u0,1 − u0,2‖

2
−1, ∀t > 0. (8.93)
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We finally derive a Hölder (both with respect to space and time) estimate. Actually,
the Hölder continuity with respect to x follows from (8.81). To prove the Hölder conti-
nuity with respect to t, we have

‖u(t1) − u(t2)‖−1 = ‖

∫ t2

t1

∂u
∂t

dτ‖−1 ≤ |t1 − t2|
1
2
∣∣∣ ∫ t2

t1
‖
∂u
∂t
‖2−1dτ

∣∣∣ 1
2 ,

we note, owing to Proposition 8.4.1, that

∣∣∣ ∫ t2

t1
‖
∂u
∂t
‖2−1dτ

∣∣∣ ≤ c,

where the constant c depends on B′1 and T such that t1, t2 ∈ [0,T ] and

‖u(t1) − u(t2)‖−1 ≤ c|t1 − t2|
1
2 . (8.94)

The conclusion is finally deduced from (8.81), (8.93) and (8.94). �

Corollary 3. The semigroup S α(t) possesses the finite-dimensional global attractorAα.

Proof. It follows immediately in view of Theorem 8.3.4 and Theorem 8.4.5. �

Remark 8.4.5. Because of the same reason we explained in Remark 8.3.5, we do not
have the robustness of exponential attractor in this case.
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Chapitre 9

Conclusion générale et perspectives

We introduced the phase separation models associated with regular potential and
logarithmic potential, and we focused on the mathematical analysis of the applications
of Cahn-Hilliard type equations in biology and image processing. Results from these
studies have led to a deeper understanding about tumor growth and image segmentation.
We conclude our achievements as following :

In our study of Cahn-Hilliard models for glial cells, which was proposed to model
some energy mechanisms in glial cells. We considered a thermodynamically relevant
logarithmic nonlinear term to prove the existence of a biologically relevant solution, and
obtained a strict separation from the pure states 0 and 1 in one and two space dimensions
by proving additional regularity on the solutions. We further approached a second model
based on the Chan-Hilliard-Oono equation with the same idea.

We next studied a coupled reaction-diffusion system, which accounts for the tumor
and oxygen dynamics. By analogy, Cahn-Hilliard type equations in tumor growth were
proposed to separate, e.g., different zones in the tumor such as quiescent and prolifera-
tive cells. Moreover, Cahn-Hilliard type equations also model clustering of brain tumor
cells. Note that such effects can not be modeled by a reaction-diffusion equation. There-
fore, we dealt with three variants of the coupled model for the proliferative-to-invasive
transition of hypoxic glioma cells : In [72], we considered a Cahn-Hilliard type equation
for the oxygen concentration, which accounts for the phase separation processes (e.g.,
different zones in the cells in which, typically, the concentration of oxygen may be high
or very low) ; In [70], we considered a Cahn-Hilliard type equation for the tumor density,
which accounts for phase separation processes (e.g., different zones in the tumor) and
clustering effects in tumor growth. In[69], we considered Cahn-Hilliard type equations
for both the tumor density and the oxygen concentration. We proved the existence of
a biologically relevant solution by considering a modified model and taking a logarith-
mic nonlinear term in the Cahn-Hilliard equation. In particular, we studied permanence
of the tumor, and gave some numerical simulations. Recall that a cubic nonlinear term
can not prevent the solution becomes negative, which means the solution can not be

169



Chapitre 9. Conclusion générale et perspectives

biologically relevant.
Note that the proof of existence is based on a standard Galerkin scheme, more pre-

cisely, deriving uniform (with respect to N) a priori estimates on the solution uN to the
approximated problems and passing to the limit N → ∞. Compared with the regular po-
tential, it is more difficult to pass to the limit of the approximated logarithmic potential,
we need to take advantage of the properties of the logarithmic potential (see [32, 90, 96]
for more informations), which indeed ensures the boundedness of solutions. As we ex-
plained in the above, logarithmic potential is thermodynamically relevant, it is nature to
consider such a nonlinear term in certain models.

The last model was proposed for image segmentation. We firstly studied on a Cahn-
Hilliard type model, the well-posedness have been derived, however, there exist solu-
tions which are unbounded as time goes to infinity, this could be problematic in view
of numerical simulations. To overcome this, we proposed a variant of the model, ba-
sed on the Cahn-Hilliard-Oono equation proposed in [105] to account for long-ranged
interactions in the phase separation processes and to simplify numerical simulations.
In this case, the global in time boundedness of the solutions can be ensured, we then
gave numerical simulations which illustrate the theoretical results. We further studied
the well-posedness and the asymptotic behavior of a Cahn-Hilliard-Oono type model
for image segmentation in two cases. In the case of a regular potential, the existences
of the global attractor and the exponential attractor have been proved, and it shows that
the fractal dimension of the global attractor will tend to infinity as α → 0. In the case
of a logarithmic potential, we proved a strict separation from the pure states 0 and 1 in
one and two space dimensions, and showed that the dimension of the global attractor is
finite by proving the existence of the exponential attractor.

According to the conclusions we have obtained, we further present some perspec-
tives on these models.

For the Cahn-Hilliard model with a symport term for glial cells, having the strict se-
paration property and uniqueness, we can further study the asymptotic behavior of the
associated dynamical system. In particular, we can prove the existence of finite dimen-
sional attractors, meaning, roughly speaking, that the limit dynamics can be described
by a finite number of degrees of freedom. We refer the interested reader to [96, 100, 111]
for more discussions on this. Another interesting problem is the convergence of single
trajectories to steady states. Not that, already for the original Cahn-Hilliard equation,
such a question is not a trivial one, since one may have a continuum of steady states
(see [109]). Here, due to the additional symport term, the problem is particularly chal-
lenging and we cannot proceed as in [109].

For the coupled Cahn-Hilliard model for the proliferative-to-invasive transition of
hypoxic glioma cells, uniqueness and further regularity (in particular, the existence of
strong solutions) are open problems, the difficulty comes from the Cahn-Hilliard type
equation and already appears without any coupling (see [96]). Besides, taking into ac-
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count the practical significance of the model, it is also necessary to study this model
endowed with dynamic boundary conditions (see [14, 27, 42, 43, 93, 101]), as well as
the numerical simulations.

For the image segmentation models, the robustness of exponential attractor of the
model in [68], like A. Miranville presented in [86], can not be derived owing to the limi-
tations of the Cahn-Hilliard type model for image segmentation, which we have studied
in [71]. Moreover, since the long-ranged interactions have been taken into account, the
next step is to apply the models to real images. In addition, we also note that it is ob-
served in [24] that, when considering a logarithmic nonlinear term in the Cahn-Hilliard
model for image inpainting, one has better results and convergence times. Hence, the
performance of a Cahn-Hilliard-Oono model for image inpainting is desirable as well.
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Résumé : Cette thèse vise à approfondir les applications des modèles de type Cahn-Hilliard
en biologie et en traitement d’images. Dans la première partie, nous étudions dans un premier
temps un modèle de Cahn-Hilliard pour les cellules gliales, nous prouvons l’existence d’une
solution biologiquement pertinente et une stricte séparation des états purs en 1D et 2D. Nous
considérons ensuite un modèle de Cahn-Hilliard-Oono et en déduisons des conclusions simi-
laires. De plus, nous étudions un modèle couplé pour la transition proliférative à invasive des
cellules de gliome hypoxiques, nous considérons les équations de type Cahn-Hilliard dans trois
cas, et prouvons principalement l’existence de solutions globales en temps, en particulier, nous
étudions la permanence de la tumeur, et donnons quelques simulations numériques dans certains
cas. Dans la deuxième partie, nous étudions un modèle de Cahn-Hilliard pour la segmentation
d’images, le caractère bien-posé a été abordé, étant donné que la solution pourrait être non bor-
née quand le temps tend vers l’infini, nous considérons un modèle de Cahn-Hilliard-Oono pour
pouvoir effectuer des simulations numériques qui illustrent les résultats théoriques. Nous étu-
dions ensuite le comportement asymptotique des modèles de type Cahn-Hilliard-Oono à terme
non linéaire cubique et terme non linéaire logarithmique, plus précisément, l’existence d’attrac-
teurs de dimension finie.
Mots clés : modèle de Cahn-Hilliard, cellules gliales, solution biologiquement pertinente, sé-
paration stricte, modèle de Cahn-Hilliard-Oono, cellules de gliome hypoxiques, simulations
numériques, segmentation d’image, caractère bien-posé, comportement asymptotique

Abstract : This Thesis aim to delve the applications of Cahn-Hilliard type models in biology
and image processing. In the first part, we initially study a Cahn-Hilliard model for glial cells,
we prove the existence of a biologically relevant solution and a strict separation from the pure
states in 1D and 2D. We further consider a Cahn-Hilliard-Oono model and deduce the simi-
lar conclusions. Moreover, we study a coupled model for the proliferative-to-invasive transi-
tion of hypoxic glioma cells, we consider the Cahn-Hilliard type equations in three cases, and
mainly prove the existence of global in time solutions, in particular, we study permanence of
the tumor, and give some numerical simulations in certain case. In the second part, we study
a Cahn-Hilliard model for image segmentation, the well-posedness has been addressed, since
the solution could be unbounded as time goes to infinity, we consider a Cahn-Hilliard-Oono
model so that we can perform numerical simulations which illustrate the theoretical results. We
further study the asymptotic behavior of the Cahn-Hilliard-Oono type models with cubic non-
linear term and logarithmic nonlinear term, more precisely, the existence of finite dimensional
attractors.
Keywords : Cahn-Hilliard model, glial cells, biologically relevant solution, strict separation,
Cahn-Hilliard-Oono model, hypoxic glioma cells, numerical simulations, image segmentation,
well-posedness, asymptotic behavior
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