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Introduction

This thesis falls within the context of Inertial Confinement Fusion (ICF). The principle behind
ICF is to rapidly compress a small capsule containing fusible materials so as to reach conditions
suitable to thermonuclear fusion. To achieve this compression, intense laser beams can either be
focused directly onto the capsule or can be used indirectly to produce X-rays, in a cavity, that
will irradiate and compress the capsule. In both cases, absorption of laser beams is a critical part
and its understanding paramount to ICF.

ICF experiments have been carried out at the National Ignition Facility in the USA for more
than 10 years and yet many problems related to absorption have eluded our understanding.
Numerical simulations using radiation hydrodynamics codes such as troll at CEA or hydra
at LLNL have beeen carried out to design and reproduce those experiments. In the literature,
comparisons of experimental results with simulations have shown that the description of laser
absorption in the codes is not completely faithful to experiments.

This is why, in this thesis, we investigate one of the main absorption mechanism of laser
beams by a plasma: inverse bremsstrahlung (IB) absorption. It occurs when radiation propagates
through a plasma and the associated electric field induces a coherent oscillating motion of the
electrons of the plasma. Meanwhile, the ions of the plasma are almost motionless as compared
to the electrons, due to their mass difference. Collisions between ions and oscillating electrons
tend to transfer some of the radiation energy to the plasma.

It follows that the frequency at which electrons and ions interact with each other, which is
called the electron-ion collision frequency is a very important parameter for the description of IB
heating, and it has been extensively studied in the literature since the 1950s. Still, a consensus
on the modelling of the electron-ion collision frequency has not yet been reached. While multiple
models exist that take into account different effects (strong laser field, quantum effects, etc.), the
inclusion of collective effects, has proven to be difficult.

One possible way to account for these collective effects is to resort to Classical Molecular
Dynamics Simulations (CMDS). Indeed, in these simulations, trajectories of all particles of the
plasma are calculated using Newton’s law of motion with the interaction of each particle with
every other along with the laser electric field. On the one hand, because of the multitude of inter-
actions that are taken into account (and of finite computational means), domains of simulation
are limited to very small volumes. But on the other hand, for the very same reason, CMDS take
into account collective effects and are perfectly suited to the measurement of local quantities such
as the IB heating rate.

3



Introduction

In this work, multiple series of CMDS have been carried out to measure the IB heating rate
for a vast range of plasmas and laser conditions. Two sets of simulations can be distinguished. In
the first set, plasmas with degree of ionization Z = 1 were simulated in conditions where electron
velocity distributions are Maxwellian. This is a common assumption of IB heating models in
the literature and these simulations were used to discriminate these models. The second set of
CMDS used plasmas with a higher degree of ionization (Z = 10), which is a known condition to
get distorted electron velocity distributions. This non-Maxwellian effect, known as the Langdon
effect, has been predicted to affect the IB heating rate.

These series of CMDS allowed us to elaborate a new IB heating model that was implemented
in the radiation hydrodynamics code troll. Since this new model was devised from theoretical
considerations and numerical simulations, it needed to be confronted to experiments. This was
one of the objective of a campaign that took place at the GCLT installation at CEA/DAM in
october 2021 as part of this tesis. In this campaign, an intense laser beam (1.053 µm wavelength,
40 J total energy with duration of the pulse ranging from 4 ns to 10 ns and intensity comprised
between 1 TW/cm2 and 80 TW/cm2) was focused onto slabs of pure elements of the periodic
table at a 45° angle. The time-resolved incident and reflected power profiles were measured.
Since absorption and reflection are complementary (in these conditions, backscattered energy
was evaluated as negligible), this provided data about the absorption rate of lasers at multiple
intensities for a wide class of plasmas. Additionnally, a streak and a CCD camera monitored the
induced plasma, in order to better calibrate radiation hydrodynamics simulations. Preliminary
comparisons of troll simulations, using the IB heating model devised from CMDS, with these
experimental measurements are discussed.

As a practical guide to this manuscript, chapter 1 explains why ICF is a promising technique to
achieve a controlled self-sustained fusion reaction, and presents the modelling of laser propagation
and IB absorption, of interest to this thesis, which are implemented in radiation hydrodynamics
codes. Chapter 2 expands upon the theoretical modelling of the electron-ion collision frequency,
and in particular why collective effects, through the Coulomb logarithm, are difficult to take
into account. Chapter 3 presents the first set of CMDS, and the development of our IB heating
model. In chapter 4, the second set of CMDS is detailed. They improve the characterization of
the Langdon effect and how it impacts the IB heating rate. Chapter 5 first reviews experiments
from the literature similar to our campaign before explaining the details of our experimental
setup. Finally, the experimental results of the campaign are shown in chapter 6, and preliminary
comparisons of these results with simulations carried out with troll, configured with our new
IB model, are laid out.
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On the importance of laser
absorption in inertial confinement
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Chapter 1
Inertial confinement fusion and its numerical
modelling

Contents
1.1 From nuclear fusion to inertial confinement fusion . . . . . . . 8

1.1.1 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Inertial Confinement Fusion . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Past experiments at the National Ignition Facility . . . . . . . . . 12

1.2 The modelling of lasers in codes used to design ICF experiments 18
1.2.1 Presentation of radiation hydrodynamics codes . . . . . . . . . . . 18
1.2.2 Laser modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Ray-tracing and inverse bremsstrahlung absorption in codes . . . . 31

1.3 A simple ad hoc model to evaluate the importance of the
Coulomb logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35

This chapter describes the context of this thesis. In its first part, section 1.1.1, we will
expand on what nuclear fusion is, and why it is so difficult to control and sustain. Despite the
arduous conditions required, the first laboratory fusion reactions were observed by Cockroft and
Walton in 1932 [Atzeni & Meyer-ter Vehn, 2004]. Nowadays, the objective of laboratory fusion
experiments is for the experiment to release more energy than what was provided to reach fusion
conditions. One of the promising methods to do so, inertial confinement fusion (ICF) will be
presented in section 1.1.2. Indeed, a 2021 ICF experiment released 70 % as much energy as the
laser energy used to initiate it [LLNL, 2021]. A short literature review on past ICF experiments
in section 1.1.3 will then expand upon the progress that has been made in the understanding of
the physics involved in ICF, and upon the progress that remains to be made, particularly in the
description of laser absorption.

In this thesis, we will shed some new light on laser absorption by plasmas. This is why, in
the second part of this chapter, we will first describe the viewpoint from the literature. After a
succint presentation of radiation hydrodynamics codes, we will explain how laser propagation and
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inverse bremsstrahlung absorption are typically modelled in radiation hydrodynamics codes, in
order to show the underlying approximations (especially within the so called Coulomb logarithm).

Finally, in the last part of this first chapter, we will present a simple way to get insight on
the variability of radiation hydrodynamics simulations outcomes due to an uncertainty of the
Coulomb logarithm.

1.1 From nuclear fusion to inertial confinement fusion

1.1.1 Nuclear Fusion

Nuclear fusion happens when multiple nuclei combine together to form a heavier nucleus. Nuclei,
the central core of atoms, are positively charged, so Coulomb interaction tends to keep them apart.
At very close distances however, the strong nuclear force, which is attractive, becomes dominant.
The strong nuclear force is responsible for keeping the protons and neutrons of a nucleus together.
Nuclear fusion occurs when two nuclei are close enough for the strong nuclear force to overcome
the repulsive Coulomb interaction. This happens when the nuclei collide together while going
very fast. It translates into being very hot, to go fast enough to overcome Coulomb repulsion, as
well as very dense, in order to actually collide with each other [Blatt & Weisskopf, 1991].

When fusion does occur, it releases large quantities of energy. This is because the products
of fusion are lighter than the parent nuclei (see [Wang et al., 2021] for a list of atomic masses).
The mass difference ∆m corresponds to an increase in the binding energy of the system following
Einstein’s formula E = ∆mc2. In Fig. 1.1, the average binding energy is plotted versus the
number of nucleons. When this binding energy increases during a nuclear reaction, the reaction
releases energy. Thus, Fig. 1.1 shows that to produce energy, heavy nuclei such as uranium can
undergo nuclear fission, or light nuclei such as deuterium (D) and tritium (T) can fuse together.
The fusion reaction of Deuterium and Tritium is

D + T −−→ 4He (3.5 MeV) + n (14.1 MeV). (1.1)

The volumetric reaction rate for the fusion of two nuclei is proportionnal to the number density
of the two nuclei [Clayton, 1983]. In the case of Deuterium-Tritium fusion, both nuclei are needed
in the same proportions. Assuming n is the total number density of the plasma, Deuterium and
Tritium would ideally each have a number density of n/2. The volumetric rate of fusion processes
is thus 〈σ v〉n2/4, where the coefficient 〈σ v〉 is the reactivity. σ is the fusion cross-section and v
is the relative velocity of the nuclei. Since all of the particles in a plasma do not have the same
velocity, the cross-section is averaged on all the relative velocities that are present in the plasma
[Atzeni & Meyer-ter Vehn, 2004]. This process is denoted by the brackets 〈 〉.

The volumic power produced by fusion reactions can thus be expressed as

pfusion = n2

4 〈σ v〉 Q, (1.2)

where Q is the energy released by each fusion reaction. As mentioned in the introduction,
laboratory fusion experiments seek to produce more energy than the energy expanded to reach
fusion conditions. A first step on the way to achieve this is for the reaction to be self-sustained, i.e.
fusion reactions release enough energy to maintain fusion conditions inside the fuel. Reaching

8
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Figure 1.1: Average binding energy by nucleons as a function of the number of nucleon in the nucleus.
This shows that heavy nucleus, such as uranium can undergo fission and release energy, whereas lighter
nuclei such as deuterium and tritium can fuse together to release energy.

this state is necessary in order to trigger more fusion reactions, and if it is maintained long
enough, fusion reactions will eventually release more energy than the energy provided to initiate
the experiment. For the reaction to be self-sustaining, pfusion must thus be higher than the power
lost to the environment [Atzeni & Meyer-ter Vehn, 2004]. The power loss is usually expressed
from the energy density of the plasma W as

ploss = W

τE
, (1.3)

where τE is the energy confinement time, which corresponds to the time it would take for the
system to lose all its internal energy if the energy loss rate was constant. The energy density
of the nuclei at a certain temperature T is (3/2)nkBT , with kB the Boltzmann constant. In
practice, the electrons also have to be at this temperature, so the internal energy associated with
the temperature T of a Deuterium-Tritium plasma is W = 3nkBT , since there are as much
electrons as nuclei in this case.

For the fusion reaction to be self-sustaining, the power produced by fusion reactions pfusion
must be greater than ploss. In practice, not all the energy released by fusion reactions can be
used to heat the plasma and counteract losses. In particular, neutrons goes through the plasma
almost unaffected, so in the case of Deuterium-Tritium, at most the 3.5 MeV of the 4He can be
absorbed by the plasma. With f the fraction of the energy released by fusion reactions that is
used to heat the plasma, the condition for a self sustaining fusion reaction is f pfusion ≥ ploss,
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which can be recast using eqs. (1.2) and (1.3) as

n τE ≥
12 kBT

〈σ v〉 f Q = (n τE)thr(T ). (1.4)

This is known as the Lawson criterion [Lawson, 1957]. The part of fusion energy that heats
the plasma, f Q depends on the reaction considered. Only 〈σ v〉 depends both on the reaction
considered and on the plasma temperature. Because of this, the threshold (n τE)thr depends
on the temperature and reaction. In Fig. 1.2, σ is plotted as a function of the temperature for
multiple reactions. It can be seen on the graph that the reaction with the highest cross section
σ is Deuterium-Tritium, at least at temperatures under 100 keV [Angulo et al., 1999, Bosch &
Hale, 1992].

Even for this particular reaction, reaching a significant reactivity requires reaching tempera-
tures of tens of millions of Kelvin1. At these temperatures, the plasma tends to expand, which
reduces the number density n and makes producing energy more difficult, per eq. (1.4). To keep
the plasma from expanding, the plasma has to be confined. In stars for instance, the gravitational
force fullfill this role because they are so massive. For laboratory experiments, other confinements
methods have been considered, such as magnetic confinement, Z-pinch, stellerator, and inertial
confinement, which is the one of interest in this work.

1.1.2 Inertial Confinement Fusion

In Inertial Confinement Fusion (ICF), a mix of Deuterium and Tritium (DT) called the fuel is
contained in a small spherical capsule. Part of the fuel can be cryogenic, in order to increase
its density, and have more DT in a given volume. The outer part of the capsule is a spherical
shell called the ablator, made out of plastic (CH), beryllium (Be), high-density carbon (HDC)
or another low-Z material. The principle of ICF is to quickly heat up the ablator, which causes
it to expand rapidly. This causes the fuel in the interior of the capsule to implode by reaction,
as shown in the bottom of Fig. 1.3. When the pressure in the center of the capsule balances out
the pressure induced by the implosion, the kinetic energy stored in the shell is converted into
internal energy, leading to high densities and temperatures at the center of the capsule. This
region, called the hot-spot, is where the fusion reactions starts.

Ideally, the fusion reactions in the hot-spot release enough energy to heat the rest of the fuel
to fusion conditions, and so all of the fuel undergo nuclear fusion, leading to a large quantity of
energy released. However, anisotropies in the implosion can result in mixing of ablator material
and cold fuel inside the hot-spot [Pfalzner, 2006], which cools it down.

There are two main ways to implode a capsule using lasers, shown in Fig. 1.3.
• Direct-drive, where the lasers directly hit the capsule.
• Indirect-drive, where the capsule is placed inside a cavity that is irradiated by the lasers.

This cavity, also known as hohlraum is made out of high-Z materials that turns into a hot
X-ray emitting plasma when irradiated by the lasers. The capsule implosion is driven by
this X-ray radiation. See Fig. 1.4 for pictures of a typical hohlraum, and Fig. 1.5 for the
configuration of laser beams.

Both of these methods have their advantages [Atzeni & Meyer-ter Vehn, 2004, Lindl et al., 2014].
1multiples keV (1 keV ≈ 11.6 millions of Kelvin)
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Figure 1.2: Fusion cross-section σ for multiple fusion reactions. The deuterium-tritium (D-T) reaction has
the highest reactivity at temperatures below 100 keV. Image credit: Atzeni & Meyer-ter Vehn [2004].

For example, direct-drive is more efficient at coupling laser energy to the capsule. However, it can
be difficult to distribute the laser energy homogeneously over the surface of the ablator. Indeed,
when the lasers drive the capsule implosion, a small disturbance in the uniformity of the laser
irradiation is directly imprinted on the capsule. This is at variance with indirect drive, where
the X-ray emission of the hohlraum plasma is much less dependant on the uniformity of the laser
irradiation. However, the conversion with X-ray is not lossless, and thus indirect drive is less
efficient than direct drive at coupling laser energy to the capsule. In both techniques, there are
also engineering limitations that make it more difficult to have an isotropic implosion: the capsule
has a fill tube, required to put the fuel inside, and it has to somehow be held in place during the
experiment in both cases. In direct drive, the capsule is usually held at the end of a thin stalk
[Igumenshchev et al., 2009]. In indirect drive, a very thin membrane called the tent is placed
inside the hohlraum and holds the capsule at the desired position inside the hohlraum [Betti &
Hurricane, 2016, Haan et al., 2011], as shown in Fig. 1.4.

Two facilities have been constructed with the explicit goal of reaching ignition: the Laser
Méga Joule (LMJ) in France, which is not yet fully completed, and the National Ignition Facility
(NIF) in the USA. Ignition is meant here to refer to experiments where fusion reactions yield
more energy than lasers supplied to the experiment i.e. the gain is greater than one. Since
its completion in 2009, numerous ICF experiments have been carried out at the NIF. Although
ignition has not yet been reached, understanding of the physics involved as well as experimental
designs have been substantially improved.

Fig. 1.6 shows an overview of the NIF. A representation of the target bay of the LMJ is given
in Fig. 1.7 to show the paths that the lasers have to take to reach the experimental chamber.
These two images hint at the scale and complexity of the NIF and LMJ facility, which participate
to explain why only two facilities have been built with the goal to reach ignition.
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Figure 1.3: Schematics of direct (top right) and indirect (top left) drive ICF. In indirect drive, lasers
are targeted on the hohlraum wall be converted into X-rays that irradiate the capsule. In direct-drive,
lasers directly impact the capsule. On the bottom is a representation of the capsule during an implosion.
The ablator expands and compresses the DT. Around peak compression, asymmetries in the implosions
can lead to mixing of ablator with fuel and degrade the implosion performance. Image credit: Betti &
Hurricane [2016]

1.1.3 Past experiments at the National Ignition Facility

The first campaign of ignition experiments on the NIF between 2009 and 2012 was called the Na-
tional Ignition Campaign (NIC) [Edwards et al., 2013, Lindl et al., 2014]. The NIC demonstrated
control over the velocity, entropy and shape of the implosion. This was achieved by adjusting
the target geometry as well as the shape of the laser pulse. The top performing implosion of the
NIC reached2 a (P τE) about 30% of that predicted to reach ignition [Lindl et al., 2014].

However, increasing the implosion velocity in the top-performing NIC experiment did not
result in an increase in yield because of ablator-fuel mixing, which resulted in pollution of the
hot spot [Meezan et al., 2017]. The mixing of ablator material into the hot spot was found to
be correlated with a decrease in the yield [Ma et al., 2013]. The leading candidate to explain
the mixing is the ablative Rayleigh-Taylor instability seeded by the tent [Kilkenny et al., 1994,
Tommasini et al., 2015]. To mitigate this, the use of a different laser pulse shape, called ’high-foot’

2The Lawson criterion eq. (1.4) can be expressed with (P τE) using the pressure of the plasma P = nkBT
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Figure 1.4: Pictures of an hohlraum, the metallic cavity inside which is placed the capsule of Deuterium-
Tritium in ICF experiments. The left picture shows the the capsule inside the hohlraum. It is held by
the tent. The right picture show the outside of a hohlraum. Images credit: Callahan et al. [2015] (left),
Lawrence Livermore National Laboratory (right).

Figure 1.5: Configuration of the laser beams inside the experimental chamber at the NIF. There are four
possible angles of incidence: 23.5° (in red), 30° (in yellow), 44.5° and 50° (in blue), which are pointed at
different places inside the hohlraum. The inner beams (red and yellow) irradiate the waist of the hohlraum,
where it is closest to the capsule, and the outer beams (blue) irradiate the hohlraum closer to the entrance
hole. Image credit: Lawrence Livermore National Laboratory.

was proposed [Dittrich et al., 2014, Park et al., 2014]. It delivers more power in the beginning
of the laser pulse, compared with the ’low-foot’ pulse shape used for most of the NIC, as shown
in Fig. 1.8. The ’high-foot’ design has proved to be less sensitive to instabilities [Peterson et al.,
2015], and showed little ablator-fuel mixing [Callahan et al., 2015]. This design made it possible
to reach conditions closer to ignition. However, only 60% of the (P τE) predicted to reach ignition
was achieved.

2D and 3D numerical simulations [Clark et al., 2016, Kritcher et al., 2016] of ’high-foot’
experiments compared to 1D simulations of ideal, perfectly symetrical implosions identified two
important sources of yield degradation, shown in Fig. 1.9. The first corresponds to the instabilites
seeded by the tent, the fill-tube, and the surface defects of the capsule, although the threshold
for these instabilities is reached at a much higher implosion velocity than in ’low-foot’ designs.
The second source of yield degradation is from asymmetry of the X-ray flux coming from the
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Figure 1.6: Overview of the National Ignition Facility. This image shows the scale of the lasers amplification
systems, which take up whole buildings. After the amplification in the laser bays, the lasers are directed
into the target bay by the switchyards. Image credit: Lawrence Livermore National Laboratory.

Figure 1.7: Overview of the target bay of the LMJ, which is roughly the same size as that of the NIF. The
paths of the laser beams are represented in red. The experimental chamber is in green. It is inside this
chamber that the capsule and hohlraum are placed during experiments. The lasers amplification systems,
though not shown here, are on the same scale as those at the NIF, which are shown in Fig. 1.6. Image
credit: CEA-DAM.
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Figure 1.8: Profile of laser power delivered in the hohlraum during a low-foot pulse (black) and three
high-foot pulses (red, green and blue). The high-foot pulses are shorter, and deliver more power at the
beginning of the pulse (before 10 ns in the graph). Image credit: Park et al. [2014]

Figure 1.9: Effect of multiple degradation mechanisms on the yield of the experiment. This graph shows
which mechanisms have the most impact on the neutron yield, and thus, which aspects of the experiments
can be improved on the most. Image credit: Clark et al. [2016]
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hohlraum.
Flux symetry in the hohlraum is usually controlled by adjusting the shape of the laser pulse,

the pointing of the beams, their wavelengths, and the power balance between the inner and outer
beams (see Fig. 1.5). At later times during the laser pulse, the hohlraum plasma expansion
becomes significant. This is detrimental to the X-ray flux symetry control, and so the hohlraum
can be filled with a gas in order to reduce the plasma expansion.

The presence of this gas slows down the expansion of the hohlraum plasma, which makes
it easier to control the flux symetry inside the hohlraum. However, the gas fill does absorb a
portion of the laser energy, which means less energy is available to the capsule, and thus to reach
fusion. The gas also makes it possible for Laser Plasma Interactions (LPI) to occur inside the
hohlraum, which can further drain energy away from the capsule. In particular, one LPI, Cross
Beam Energy Transfer (CBET) can transfer energy from one laser beam to another [Dewald
et al., 2013]. This mechanism is used to help control flux symetry inside the hohlraum, but it
remains a source of uncertainty.

The gas fill also reduces the coupling of laser energy to the capsule through phenomena such as
Stimulated Brillouin Scattering (SBS), Stimulated Raman Scattering (SRS) or other LPI, which
can cause the laser energy to backscatter out of the hohlraum. It has been shown [Berzak Hopkins
et al., 2015] that in high density gas fill experiments (density higher than 0.96 mg/cm3), ∼ 15% of
the laser energy is backscattered, and thus is not available for X-ray conversion. In Near-Vacuum
Hohlraums (NVHs) less than 5% of the laser energy is backscattered.

However, as stated before, X-ray flux symetry is difficult to control in NVHs towards the end
of the pulse, because of the expanding hohlraum plasma. A compromise was adopted by using
low-density gas filled hohlraums [Hall et al., 2017, Loomis et al., 2018]. High Density Carbon
(HDC) has also become a promising ablator material, since its high density allows for shorter
laser pulses [MacKinnon et al., 2014], and thus a shorter implosion.

All in all, three major points are currently being worked on in order to reach ignition in
indirect-drive experiments [Kline et al., 2019].

• The first is a better control of the hydrodynamic instabilities occuring in the capsule, which
is achieved by improving the target quality [Hamza et al., 2016, Ross et al., 2021]. Indeed,
non-uniformity of the ablator shell thickness, as well as imperfections in the material itself
(such as small voids) can all lead to hydrodynamic instabilities [Casey et al., 2021, Zylstra
et al., 2020, 2021]. Additionally, engineering features such as the fill tube as well as ways to
mount the capsule inside the hohlraum are also investigated [MacPhee et al., 2018, Nagel
et al., 2015] in order to reduce their impact on the experiment.

• The second is work on laser technology, in order to increase the energy available to the
hohlraum [Suter et al., 2004].

• The last is flux symmetry inside the hohlraum, for example with novel hohlraum designs
such as rugby shapes; I-raum or frustraum [Bhandarkar et al., 2018, Masson-Laborde et al.,
2016, Vandenboomgaerde et al., 2007, Xu et al., 2011].

Progresses in these three areas as well as others have already been evidenced by the fact that a
burning plasma regime has been reached at the NIF [Zylstra et al., 2022]. This means that fusion
reactions themselves provided most of the energy necessary to initiate more fusion reactions.
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Additionnally, in August 2021, a shot at the NIF reached a yield of 1.3 MJ, to be compared with
the 1.9 MJ that was provided to the experiments by lasers [LLNL, 2021]. The 1.3 MJ yield of this
shot can also be compared with the 170 kJ yield reached in previous experiments [Zylstra et al.,
2022]. Though this shot proved difficult to be reproduced, it showed that conditions currently
reached during experiments are very close to those required for ignition.

A good description of the laser to capsule coupling is critical in order to gain a better under-
standing of the conditions required to reach ignition. As can be seen in Fig. 1.10, laser to capsule
coupling can roughly be split into two steps. The first is the laser to X-rays conversion, and the
second is the X-ray to capsule coupling.

The X-ray energy is involved in the heating of the hohraum wall, the heating of the outer
surface of the capsule and preheating of the capsule interior, and part of it escapes the hohlraum
through the LEHs. The direction of emitted X-rays is highly dependant on the geometry of the
hohlraum. The X-ray to capsule coupling is thus primarily described by the hohlraum geometry,
and the radiation temperature inside the hohlraum [Lindl et al., 2004]. These parameters cannot
be easily adjusted without impacting the whole experiment. For example, increasing the capsule
size will increase the coupling (since a bigger capsule has more area to absorb X-rays), but bigger
capsules require more energy to reach ignition.

The laser energy entering the hohlraum can either exit the hohlraum or stay inside. The
energy that stays inside the hohlraum is absorbed, mainly by the hohlraum wall, but also by the
gas fill, if any. The hot hohlraum wall then converts part of this energy into X-ray radiation.
Energy exiting the hohlraum can be caused by LPIs such as SRS or SBS, which can backscatter
laser energy out of the hohlraum. Part of the laser energy can also be reflected specularly on
the hohlraum wall, which is a phenomenon known as glint [Honda et al., 1998]. Depending on
the laser beam it comes from, glinted light can directly irradiate the capsule, which disturbs the
flux symmetry, or it can exit the hohlraum. Additionally, glint light can also seed LPIs [Turnbull
et al., 2015], which can further increase the lost energy.

A good description of absorption, glint and LPIs is thus critical to predict the correct energy
balance inside of a hohlraum. However, in radiation hydrodynamics codes used to simulate
experiments, such as hydra at LLNL [Marinak et al., 1998] or troll at CEA [Lefebvre et al.,
2018], SRS and SBS are too costly to simulate fully, since these codes already have to solve
radiation hydrodynamics equations in the hohlraum and capsule. Thus, the SRS and SBS energy
is often accounted for by simply reducing the laser energy [Jones et al., 2012], though recent
works have attempted to improve this modelling [Colaïtis et al., 2021, Debayle et al., 2019].

In gas-filled hohlraum, this means that around 85% of the experimental laser energy is put
into simulations [Moody et al., 2014]. Even so, there is a drive-deficit, i.e. the simulated drive
is stronger than the experimental one, in terms of implosion velocity for example. In fact, only
60-70% of the experimental laser energy has to be simulated in order to reproduce experimental
measurements.

This means that the numerical description of the laser to capsule coupling is not entirely
faithful to experiments. This work aims to improve this description by enhancing the modelling
of laser absorption in radiation hydrodynamics codes used to design ICF experiments. Multiple
laser absorption mechanisms are relevant to ICF conditions [Pfalzner, 2006], notably inverse
bremsstrahlung, resonance absorption, and parametric absorption.

Parametric absorption consists in three waves interactions, which include the LPIs that were
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Figure 1.10: Repartition of energy during a typical NIF experiment. Only part of the laser energy will
actually heat up the capsule. A very accurate description of all the energy losses is thus paramount to
be able to predict this small fraction. Image credit: presentation given by J. Lindl at the Plasma Science
Committee at Beckman Center of the National Academies on September 24, 2005.

mentioned previously. Resonance absorption can be responsible for up to 50% of laser absorption
in ICF conditions [Eliezer, 2002, Igumenshchev et al., 2007, Kull, 1983], depending on the laser
polarization and angle of incidence. Parametric and resonance absorption tend to produce hot
electrons, which have a much higher temperature than their surroundings. These hot electrons
tend to carry their energy away rather than heat up the ions of the plasma locally. This is why ex-
perimental configurations tend to minimize laser absorption due to these mechanisms. The rest of
laser absorption (which is actually most of the absorption except in specific situations favourable
to resonance absorption) is due to inverse bremsstrahlung, which is the mechanism this work will
be focusing on. Before attempting to improve the description of inverse bremsstrahlung absorp-
tion in radiation hydrodynamics codes, it is important to explain how it is currently modelled,
which we will do in the next section.

1.2 The modelling of lasers in codes used to design ICF experi-
ments

We will now briefly present radiation hydrodynamics codes in section 1.2.1. Then, we will focus
on the modelling of laser in section 1.2.2, in order to show what approximations are made in
the modelling process. Finally, the modelling of the propagation and inverse bremsstrahlung
absorption will be detailed in section 1.2.3.

1.2.1 Presentation of radiation hydrodynamics codes

Physical modelling

Ignition experiments have time scales on the order of few tens of nanoseconds and length scales
on the order of millimeters, as evidenced by the size of a hohlraum shown in Fig. 1.4, and the
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length of typical laser pulses shown in Fig. 1.8. To assess the validity of the fluid approximation,
these scales are to be compared to the particles mean free path in ICF experiments. In Fig. 1.11
are shown the ion-ion λii, electron-ion λei and electron-electron λee mean free paths at an early
stage of a typical ICF experiment. These mean free paths are given by

λee = veth
νee

, λei = veth
νei

, λii = vith
νii
, (1.5)

where the collision frequencies νee, νei and νii are given by

νee = Cν
e4 ne√

me (kBTe)3/2 , , νei = Cν
Z̄ e4 ne√

me (kBTe)3/2 , νii = Cν
Z̄3 e4 ne√
mi (kBTi)3/2 , (1.6)

where ve,ith =
√
kBTe,i/me,i is the electron (resp. ion) thermal velocity, kBTe,i is the electron

(resp. ion) temperature, me,i the electron (resp. ion) mass, ne,i is the electron (resp. ion)
number density, Z̄ is the average degree of ionization and Cν = 4

√
2π/3 (4π ε0)2 is a constant.

The fluid approximation is most correct for ions, since the ion-ion mean free path is always less
than a micron, which is much less than any gradient length in the hohlraum. The electron-ion
mean free path can be comparable to gradient lengths in the hohlraum, especially in the low
density gas fill that is initially in the cavity, but it is much smaller everwhere else. The electron-
electron mean free path is on the order of 100 µm in the low density gas fill and in the hohlraum
plasma.

The hydrodynamic equations are therefore used to simulate ICF experiments, keeping in
mind that kinetic effects can be at play in a few locations. Indeed, though the hydrodynamic
approximation is not valid everywhere at every time during the simulation, it is valid in areas of
interest (such as the capsule and the hohlraum plasma). Furthermore, a kinetic description of the
whole hohlraum for the duration of an ICF experiment is beyond current computational means.
This explain why hydrodynamics code such as troll or hydra are used for the simulations of
ICF experiments.

These codes use a three-temperature one fluid model for the plasma. Indeed, the laser energy
is primarily deposited on the electrons, before being transmitted to ions via collisions, so a
two-temperature model is needed to capture the dynamics of both components of the plasma.
However, the timescale of momentum transfer between electrons and ions is very small compared
to the typical simulation timestep. This is why electrons and ions can be considered as comoving
at the plasma velocity u. Additionnally, radiation is not always at equilibrium with matter, and
so it is described by its own temperature Tr, which may not be equal to the temperatures of
electrons Te and ions Ti. The main hydrodynamic equations are then [Eliezer, 2002]





∂tρ+ ∇·ρu = 0 Mass conservation,
ρ ∂tu+ ρu ·∇u = −∇P Momentum conservation,

∂tee + u ·∇ee + (ee + Pe) ∇·u = ∇·Qe + Se Energy conservation (electrons),
∂tei + u ·∇ei + (ei + Pi) ∇·u = ∇·Qi + Si Energy conservation (ions),

(1.7a)
(1.7b)
(1.7c)
(1.7d)

where ρ is the plasma density, P = Pe + Pi the total, electron and ion pressures respectively, ee,i
the electron (resp. ion) volumetric internal energy, Qe,i the electron (resp. ion) heat flux, and
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a) Ion-ion mean free path (m)

3.3 mm

b) Electron-ion mean free path (m)

3.3 mm

c) Electron-electron mean free path (m)

3.3 mm

Figure 1.11: Images from a typical troll simulation using a high-foot laser pulse at t = 3 ns. The
color scale shows either the ion-ion mean free path (top), the electron-ion mean free path (middle) or the
electron-electron mean free path (bottom). At this stage of the experiments, most of the cavity (except
for the capsule) is occupied by the low density gas fill. Notice the different color scale for the electron-
electron mean free path. The ion-ion mean free path is much smaller than the diameter of the hohlraum
everywhere.
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Se,i the exchange term for electrons (resp. ions), which include laser heating for the electrons,
exchange between electrons and ions, exchange with the radiative field.

Other relations are necessary to close the system. Equations of State (EOS) for both the
electrons and ions give ee,i(ρ, Te,i) and Pe,i(ρ, Te,i). A heat flux model, typically a flux-limited
Spitzer-Härm [Spitzer & Härm, 1953] or Braginskii [Braginskii, 1965] model yields Qe, which
may be non-local [Schurtz et al., 2000]. The ion heat flux Qi is generally much smaller than its
electron counterpart, and so is often treated as linear diffusion, Qi = −κi ∇Ti, where κi is the
thermal conductivity of the ions. Equations for nuclear reactions and neutron transport are also
included for the simulations of experiments with fusible material.

Radiation is of paramount importance in indirect-drive ICF experiments: laser beams irra-
diate the hohlraum, and X-ray radiation drive the implosion of the capsule. Thus, codes used
to simulate ICF experiments such as troll and hydra must describe both hydrodynamics and
radiation transport. They are called radiation hydrodynamics codes.

The two main types of radiation encountered in ICF simulations, X-ray and laser are simulated
differently. On the one hand, X-ray photons propagate almost in a straight line through the
plasma, because of their high energy. Furthermore, they are emitted by a nearly black-body
hohlraum plasma, so a wide spectrum of energy, from ∼ 50 eV to ∼ 4000 eV, has to be taken
into account. On the other hand, laser beams are made up of monoenergetic low energy (∼ 3 eV)
photons, so they may have curved trajectories. In practice, a multi-group Monte Carlo method
using tabulated opacities and emissivities is used to transport X-rays, and a ray-tracing algorithm
is used for the propagation of the laser beams.

Numerical aspects

Fully 3D simulations would be necessary to describe all the phenomena occuring during an ICF
experiments [Clark et al., 2016], but they are very computationally costly. Therefore, the dimen-
sionality of the simulations is reduced when possible thanks to symmetries of the experimental
configuration. Indeed, hohlraums typically have multiple symmetry axis which can be used to
reduce the simulation domain. In particular, ICF hohlraums with a capsule have an axis of
revolution, and a symmetry plane that bissects the hohlraum (though not directly outlined, the
symmetry is apparent in the top left of Fig. 1.3). Only the configuration of laser beams, shown
in Fig. 1.5, does not have this symmetry, but this may be neglected in first approximation to
use 2D axisymmetric simulations. As a result, the simulated domain is typically only what is
shown in Fig. 1.12. In this image, the left side is an axis of symmetry, so that only one side
of the hohlraum is simulated. Additionnally, the bottom of the image is an axis of cylindrical
symmetry.

In 2D simulations, and even more so in 3D simulations, the number of cells in the mesh has
to be limited as much as possible, in order to reduce the computational cost of the simulation.
However, there are multiple areas where the mesh has to be well resolved in order to accurately
describe the experiment. For example, two of these areas are the hohlraum plasma and the
capsule. The hohlraum plasma must be well described because it produces the X-ray radiation
that drives the implosion of the capsule. The mesh also has to be well resolved in the capsule
in order to capture the physics of the hot spot. These areas move during the experiment: the
hohlraum wall is ablated, the center of the capsule is compressed, and the ablator expands. Thus,
it can be convenient to use a Lagrangian numerical scheme, in which the mesh is made to move
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Capsule
Glinted light
Outer beams

Hohlraum plasma
Inner beams

Hohlraum wall

Inverse of absorption length of laser (cm−1)

3.3 mm

Figure 1.12: Images from a typical troll simulation at t = 2 ns (top) and t = 6.7 ns (bottom). The
trajectory of some laser beams, computed with a ray-tracing algorithm is represented. The color of each
ray is related to the power it carries, with the outer beams carrying the most power before interacting
wih the hohlraum wall. These images are from the same simulation as Fig. 1.11, so the space scale is the
same. The color scale, which is the same for both images, shows the inverse of the characteristic absorption
length of the laser. The cyan part corresponds to the outside vacuum and the cavity gas, which do not
absorb much laser energy. Energy is mainly absorbed in the hohlraum plasma, in dark blue. In the bottom
image, the compression of the hot spot has started, and the hohlraum wall has significantly expanded.

with the matter it describes. However, having the mesh completely bound to matter can have
unwanted effects, for example in vortices and shear flows, where the mesh can be distorted to
such a degree that the simulation can fail. The strategy used in troll to deal with this is to
use an Arbitrary Lagrange Eulerian description, in which the Lagrangian mesh is periodically
transformed into a more regular mesh. In addition to maintaining mesh quality, this method also
allows for dynamic resolution. This means that areas of interest may be dynamically remeshed
more finely, for a better description.
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1.2.2 Laser modelling

As mentioned before, radiation hydrodynamic codes used to design ICF experiments use a ray-
tracing algorithm to compute laser energy deposition in matter. This section shows the derivation
of the ray-tracing propagation equation, to bring out the limits of this modelling.

The dispersion relation

Laser beams are electromagnetic waves that propagate according to Maxwell equations [Born &
Wolf, 1959, Jackson, 1999]





∇×E = −∂tB Faraday’s law of induction,
∇·B = 0 Gauss’s law for magnetism,

∇×B = 1
c2 ∂tE + µ0 J Ampère’s circuital law,

ε0 ∇·E = ρe Gauss’s law,

(1.8a)
(1.8b)

(1.8c)

(1.8d)

where E is the electric field, B the magnetic induction, ρe the electric charge density, and J the
current density. We use Ohm’s law to write J = σE, with σ the electric conductivity. Since the
electrons and ions are co-moving, the average charge density ρe is zero. This system of equation
can be further simplified using the fact that the electromagnetic field described here is due to
laser beams. Laser beams can be readily approximated by a wave with a pulsation ω, which
varies slowly on the trajectory of the beam, compared with the wavelength λ = 2π c/ω. This
is a very good approximation in practice. The frequency of a laser beam in ICF can evolve,
for example because of Doppler effect due to propagating through moving material [Dewandre,
1981]. However, these materials move very slowly compared to c, and so the frequency shift is
very small compared to the laser frequency.

As a result, we consider the pulsation as a constant in first approximation, and write in
the usual complex notation E = Re[E0(r) exp(−i ω t)], and B = Re[B0 (r) exp(−i ω t)] where
E0 and B0 contain the spatial variation of the field. Inserting these expressions into Maxwell’s
equations yields





∇×E0 = i ωB0,

∇·B0 = 0,

∇×B0 =
(
− i ω
c2 + µ0 σ

)
E0,

∇·E0 = 0.

(1.9a)
(1.9b)

(1.9c)

(1.9d)

We now introduce the medium complex permittivity as

ε = 1 + i
σ

ε0 ω
. (1.10)

Taking the curl of eq. (1.9c) and inserting eq. (1.9c) in the result then yields the Helmholtz
equation

∇2E0 + ω2

c2 εE0 = 0. (1.11)
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Similarly, it is also possible to obtain this equation on B0 instead of E0. This equation can be
solved numerically in order to model the propagation of laser beams. In 3D codes used to design
ICF experiments such as troll or hydra however, this is prohibitively costly from a numerical
point of view. This is the reason why further approximations that leads to geometrical optics are
carried out.

In order to show where these approximations come from, we write, without loss of generality,
E0 = A(r) exp(i k0 ψ(r)) where k0 = ω/c is the vacuum wavenumber, ψ(r) is a real coefficient
that takes into account the variation of the wavenumber, and A is the real amplitude of the field.
Inserting this into the Helmholtz equation eq. (1.11) yields

∇2A+ 2 i k0 (∇ψ ·∇)A+ i k0∇2ψA− k2
0 (∇ψ)2A+ k2

0 εA = 0. (1.12)

With εr = Re(ε), εi = Im(ε), the real and imaginary parts of this equation can be separated into

{
∇2A− k2

0 (∇ψ)2A+ k2
0 εrA = 0,

2 k0 (∇ψ ·∇)A+ k0∇2ψA+ k2
0 εiA = 0.

(1.13a)
(1.13b)

The main approximation of geometric optics is that the amplitude vary very slowly compared to
the scale of the propagation of the wave, which is roughly 1/k0. This means k2

0 A� ∇2A, so the
first term of eq. (1.13a) can be neglected. Assuming εr is of order unity, this yields

εr = (∇ψ)2, (1.14)

which is called the eikonal relation. With k = k0 ∇ψ, the eikonal relation becomes the dispersion
relation

k2 = ω2

c2 εr. (1.15)

The light rays in geometrical optics are defined as orthogonal trajectories to the wavefronts
k0 ψ(r) = constant. This means that the direction of propagation of a ray is given by a unit
vector in the direction of ∇ψ. Using eq. (1.14),

dr
ds = ∇ψ√

εr
, (1.16)

where r is the position of a ray and s is the curvilinear abscissa along its trajectory. The
propagation is characterized by

d
ds

[√
εr

dr
ds

]
= d

ds∇ψ (1.17)

=
(dr

ds ·∇
)

∇ψ (1.18)

= 1√
εr

(∇ψ ·∇) ∇ψ (1.19)

= 1
2√εr

∇
(
(∇ψ)2

)
(1.20)

= 1
2√εr

∇εr, (1.21)
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where we used d/ ds = (dr/ ds) d/dr, and the eikonal equation, eq. (1.14). This equation is more
conveniently written using the optical coordinate τ which is defined such that dτ = ds/√εr.
Eq. (1.21) can be recast as

d2r

dτ2 = 1
2 ∇εr. (1.22)

This is the equation used for the propagation of rays. We can now go back to eq. (1.13b) to see
how the amplitude vary along the propagation of the ray. At highest order in k0, this equation
simply yields εi = 0. This means that in geometrical optics, εi must be very small, so that it is
not of order unity like we assumed εr to be, but of order 1/k0. Since eq. (1.22) shows that εr
controls the ray propagation, and we will show that εi controls the absorption of the ray, this
essentially means that the propagation length of the ray must be much smaller than its absorption
length for geometrical optics to be usable. With this assumption on εi, eq. (1.13b) yields

(∇ψ ·∇)A = −1
2
(
∇2ψ + k0 εi

)
A. (1.23)

This can be simplified by using d/ dτ = √
εr d/ ds = √

εr dr/ ds ·∇ = ∇ψ ·∇, in which we
used eq. (1.16). This yields

dA
dτ = − 1

2 ∇
2ψA

︸        ︷︷        ︸
reversible term

− 1
2 k0 εiA
︸        ︷︷        ︸

absorption term

, (1.24)

which is the equation that describes the propagation of the amplitude of the ray along its trajec-
tory. The origin of the variation of amplitude along the trajectory of a ray is twofold. The first
term, outlined by the first brace in eq. (1.24) is purely reversible. Indeed, the trajectory of the
wave or variation of the wavelength can lead to a growing surface of the wavefront ψ = constant,
so even without any absorption, the same energy is spread out over a larger surface. In geometri-
cal optics, this corresponds to a decrease of the amplitude carried by the rays. The second term
corresponds to energy that is irreversibly absorbed by the medium.

The condition for the absorption length to be much greater than the propagation length can
now be formally expressed. The propagation length is given by eq. (1.15) as (k0 εr)−1. The
absorption length is given by the absorption term in eq. (1.24) as (k0 εi)−1. Thus, the condition
of validity of geometrical optics reduces to εi � εr. To use the amplitude equation eq. (1.24),
and the propagation equation eq. (1.22) in radiation hydrodynamics codes, an expression of the
plasma permittivity ε is needed.

The Drude Optical Index

The Drude model [Drude, 1900] is a model for the transport properties, and in particular the
conductivity, of free electrons in a material where ions are motionless. Indeed, we recall that the
conductivity σ appeared in the definition of the permittivity eq. (1.10), which we recall is given
by

ε = 1 + i σ

ε0 ω
. (1.25)
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The derivation of the conductivity in the Drude model is based upon Ohm’s law, J = σE and
upon the definition of the current density

J =
∑

α

nα qα v̄α, (1.26)

where α runs over the species of the plasma (tyically electrons and ions), nα, qα and v̄α being
respectively the number density, average charge and average velocity of species alpha. The
Drude model first takes advantage of the fact that ions are so massive compared to electrons.
The velocity of ions can be neglected if the ration of temperature is much smaller than the ratio
of masses, Ti/Te � mi/me, which is always verified in ICF plasmas. Therefore, the only non-zero
term in the current density eq. (1.26) is the one related to the electrons, which leaves

J = −e ne v̄e. (1.27)

The evolution of the average electron velocity is due to the effect of the electric field, and to
collisions on ions. We will show in chapter 2 that collisions on ions can be modelled by a damping
term at a rate corresponding to the electron-ion collision frequency νei. This means that

me
dv̄e
dt = −eE −me νei v̄e. (1.28)

Since we are looking for solutions oscillating at the pulsation of the laser ω, we use the complex
notation v = Re[v0(r) exp(−i ω t)], E = Re[E0(r) exp(−i ω t)] and J = Re[J0(r) exp(−i ω t)],
which yields

v̄0 = −e
me (νei − i ω)E0, (1.29)

which can be inserted into eq. (1.27) to yield

J0 = e2 ne
me (νei − i ω) E0 =

ε0 ω2
p

νei − i ω
E0, (1.30)

where the plasma pulsation ω2
p = ne e

2/(ε0me) was introduced. It is straightforward to identify
σ = ε0 ω2

p/(νei − i ω) by comparison with Ohm’s law. Inserting this into the expression of the
optical index eq. (1.10) yields

ε = 1− ω2
p

ω (ω + i νei)
. (1.31)
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The real and imaginary parts of the permittivity εr = Re(ε) and εi = Im(ε) can both be extracted
from eq. (1.31) as

εr = 1− 1
ω2

ω2
p

+ ν2
ei

ω2
p

, (1.32)

εi = νei/ωp

ω

ωp

(
ω2

ω2
p

+ ν2
ei

ω2
p

) . (1.33)

Notice that when ω2 < ω2
p−ν2

ei, εr becomes negative, which is problematic in the eikonal equation
eq. (1.14). However, in this limit, the condition εi � εr cannot be fullfilled, and so the equation
of propagation eq. (1.22) and absorption eq. (1.24) are not valid anymore.

An additional simplification of eqs. (1.32) and (1.33) occurs when νei/ωp � 1. Fig. 1.13 shows
the values taken by νei/ωp during a typical cavity simulation. The image shows that νei � ωp
almost everywhere inside the cavity, including in the hohlraum plasma. The real and imaginary
parts of ε can then be expanded with respect to νei/ωp, which yields

εr = 1− ω2
p

ω2 +O
(
ν2
ei

ω2
p

)
, (1.34)

εi = νei
ωp

ω3
p

ω3 +O
(
ν3
ei

ω3
p

)
. (1.35)

Fig. 1.14 shows the optical index computed from eqs. (1.32) and (1.33) as a function of ω/ωp
for multiple values of νei/ωp. The approximated formulas eqs. (1.34) and (1.35) are also plotted
in this graph. Clearly, eqs. (1.34) and (1.35) are good approximations in the vanishingly small
limit of νei/ωp. The approximated formula of εr does not depend on νei. This show that the
trajectory of rays is almost independant of νei, in the νei/ωp � 1 limit. The electron-ion collision
frequency νei is then solely associated with laser absorption.

Additionally, Fig. 1.14 explains why ray tracing is needed for lasers and not for X-ray radiation
in ICF experiments. Laser beams in ICF usually have λ = 351 nm, which corresponds to ω ≈
5× 1015 rad/s. As a comparison, the plasma pulsation of gold at the solid density is roughly
ωp ≈ 9× 1016 rad/s. In the hohlraum plasma in which the laser propagates, the density is less
than the solid density, and so ωp has the same order of magnitude as ω. This means that εr is
not always 1, and εi can be important, i.e. lasers do not propagate in a straight line, and they
can be significantly absorbed by inverse bremsstrahlung. In contrast, the X-rays that drive the
implosion of the capsule have a much higher energy, such that they have always have ω � ωp,
and so εr ≈ 1, i.e. they propagate in a straight line. This explain why ray tracing in radiation
hydrodynamics codes is only used for the laser beams and not for X-ray radiation.

A first look at the electron-ion collision frequency νei

In this section, we present a back of the envelope derivation of the textbook formula of the
electron-ion collision frequency νei. A more detailed discussion on this frequency is deferred to
chapter 2.
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Figure 1.13: Ratio νei/ωp at t = 6.7 ns during a typical cavity simulation. The space scale is the same as
in Fig. 1.11, so the radius of the hohlraum is 3.3 mm. The black line represent the isocontour ω = ωp. We
will show using eqs. (1.34) and (1.35) that the region in which the laser can propagate is where ω > ωp, in
which the image shows that νei/ωp takes values below 0.01, except very close to the critical surface, where
νei/ωp can reach values as high as 0.05.
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Figure 1.14: Real (left) and imaginary (right) parts of the permittivity computed using the Drude formulas
eqs. (1.32) and (1.33) (solid lines) and from the approximated formulas eqs. (1.34) and (1.35) (dashed lines).
Notice the linear scale in the left graph showing εr as opposed to the logarithmic scale in the right graph.
The line νei/ωp = 0.1 for εr is not plotted for clarity because it is conflated with the orange line which is
for νei/ωp = 0.01.
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b

Ion

Electron
before
collision
v

v′

Electron
after
collision

Velocity diagram

v

v′

∆v∥

∆v⊥

Figure 1.15: Schematic representation of the collision between an electron and an ion. The motion of the
ion is neglected because it is so much heavier than the electron. The collision is elastic, so the magnitude
of the velocity of the electron is conserved, only the direction changes. This is illustrated in the velocity
diagram on the right, where ∆v∥ and ∆v⊥ are represented.

We first consider a classical collision between one electron and one ion, a representation of
which is shown in Fig. 1.15. This collision is characterized by its impact parameter b, which
would be the closest distance of approach had the particles not interacted and went in a straight
line. The velocity of the ion can be neglected because it is so heavy compared to the electron.
The velocity of the electron after the collision is

v′ = (v −∆v∥) v
v

+ ∆v⊥n, (1.36)

where v is the velocity of the electron before the collision, and n is a unit vector normal to v,
see Fig. 1.15 for the notations. The collision is considered elastic, so the velocity of the electron
after the collision has the same magnitude as before the collision, which means

∆v∥ = ∆v2
⊥

2 v , (1.37)

assuming ∆v∥ � v. Additionally, the electron and ion are assumed to interact only by a Coulomb
potential, so

me
dv
dt = − Z e2

4π ε0 r2 , (1.38)

where r is the distance between the electron and the ion and Z is the charge of the ion. The
velocity difference in the direction of n, ∆v⊥ can be approximated by

me
∆v⊥
∆t ≈ −

Z e2

4π ε0 b2
, (1.39)

where ∆t ≈ b/v is the characteristic time of the collision. Using eq. (1.37), the velocity difference
can be expressed as

∆v = v′ − v = − Z2 e4

2 (4π ε0)2m2
e b

2 v3
v

v
− Z e2

4π ε0me b v
n. (1.40)

The number of collisions with impact parameter between b and b + db that occurs during ∆t is
2π b db ni v∆t, where ni is the number density of ions. When averaging over all collisions, the
component of the velocity difference along n will cancel out because there are the same number of
collisions with impact parameter b and "−b", i.e. with the same impact parameter, but opposite
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relative position of the ion and electron. These collisions will produce the same ∆v⊥, but in
opposite directions, so they cancel out on average. A more rigorous proof of this will be given in
chapter 2. Finally, the average variation of velocity for an electron with velocity v is

〈∆v
∆t

〉
= −

∫
2π b db ni v

Z2 e4

2 (4π ε0)2m2
e b

2 v3
v

v
(1.41)

= π Z2 e4 v

(4π ε0)2m2
e v

3 ln Λ, (1.42)

where ln Λ =
∫

db/b is the Coulomb logarithm. Obviously, the Coulomb logarithm is not defined
if we consider all possible impact parameters, from 0 to ∞. Very large impact parameters have
to be cut off because of collective effects that occur in a plasma. When an electron and an ion
are sufficiently far from each other, they are shielded from each other by the other particles in
the plasma, and so they do not interact. The characteristic length at which this occurs is the
plasma Debye length

λDei =

√√√√ε0
e2

(
ne
kBTe

+ Z̄ ni
kBTi

)−1

, (1.43)

so this is a common choice for the upper limit of the integral of the Coulomb logarithm. When the
impact parameter is too small, eq. (1.39) is not a good approximation any more. Additionally,
quantum-mechanical effects have to be taken into account when the electron and ion are too
close to each other. These elements explain why a lower cut-off is needed for the integral of the
Coulomb logarithm. A common choice for the classical cut-off is the Landau length

Rc = Z̄ e2

4π ε0 kBTe
, (1.44)

which is the impact parameter for which the velocity is deviated by 90°. All in all, two cut-off
impact parameters, which we will refer to as bmin and bmax, have to be chosen to avoid divergence
of the Coulomb logarithm ln Λ. This yields

〈∆v
∆t

〉
= −

∫
2π b db ni v

Z2 e4

2 (4π ε0)2m2
e b

2 v3
v

v
(1.45)

= − π Z2 e4 ni v

(4π ε0)2m2
e v

3 ln Λ, (1.46)

where ln Λ = ln bmax/bmin. So far, we have only calculated the average change in velocity for one
electrons. To get the effect on the average electron velocity v̄, this change has to be averaged
with the electron velocity distribution fe, so that

dv̄
dt = − π Z2 e4 ni

(4π ε0)2m2
e

ln Λ
∫
v

v3 fe(v) d3v (1.47)

In the case of a drifted Maxwellian distribution, fe(v) = exp(−(v−vd)2/2 v2
th)/(2π v2

th)3/2, where
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vth =
√
kBTe/me is the thermal velocity and vd is the drift velocity,

dv̄
dt = −4

√
2π

3
Z2 e4 ni ln Λ

(4π ε0)2 √me (kBTe)3/2 v
3
v3

d

∫ vd

0
v2 exp

(
− v2

2 v2
th

)
dv

︸                                    ︷︷                                    ︸
≈1 when vd�vth

(1.48)

When the drift is small compared to the thermal velocity vd � vth, the last part of eq. (1.48),
is approximately 1, as outlined in the equation. By comparison with eq. (1.28), the electron-ion
collision frequency can then be expressed as

νei = 4
√

2π
3

Z e4 ne√
me(4π ε0)2 (kBTe)3/2 ln Λ. (1.49)

1.2.3 Ray-tracing and inverse bremsstrahlung absorption in codes

There are two aspects to ray-tracing algorithm in numerical codes: the propagation of the rays,
and their absorption. After presenting how rays are propagated, we will take a look into the
modelling of inverse bremsstrahlung. Other absorption phenomena do occur in ICF experiments,
and they are modelled in the codes [Colaïtis et al., 2021, Debayle et al., 2019], but for the sake of
conciseness, we only present inverse bremsstrahlung absorption, which is the focus of this thesis.

Propagation of rays in radiation hydrodynamics codes

In radiation hydrodynamics codes, the real part of the Drude optical index eq. (1.34) is used
in conjunction with the propagation equation eq. (1.22) to compute the trajectory of each ray.
Inserting eq. (1.34) into eq. (1.22) yields

d2r

dτ2 = − 1
2nc

∇ne (1.50)

To be used in computational codes, this equation must first be discretized. One possible technique
[Kaiser, 2000] is to mesh the simulation domain, for example using the hydrodynamic mesh. Cells
should be small enough so that the electronic density can be considered to vary linearly with space
inside each cell,

ne(r) = ne(rc) + (r − rc) ·∇ne(rc), (1.51)

where rc is the center of the cell. The electronic density and its gradient are usually reconstructed
from hydrodynamic quantities such as the density and ionization state. Since the gradient of
electronic density inside a cell is assumed constant, the ray-tracing equation eq. (1.50) can be
solved analytically and yield

dr
dτ (∆τ) = dr

dτ (0)− 1
2nc

∇ne(rc)∆τ, (1.52)

r(∆τ) = r0 + dr
dτ (0) ∆τ − 1

4nc
∇ne(rc) ∆τ2, (1.53)
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where r0 and dr
dτ (0) refer to the initial position and dr

dτ , i.e. at the cell entry. Since dτ = ds/√εr,

dr
dτ = nr

dr
ds = nr, (1.54)

where we used the fact that dr/ds is a unit vector, as shown in eq. (1.16). Thus, the magnitude
of dr

dτ (0) is nr(r0) which can be computed from eqs. (1.34) and (1.51). All in all, eq. (1.53) can be
solved with the initial position and direction of propagation of the ray. When passing from one
cell to another, these informations come from eqs. (1.52) and (1.53) in the previous cell. At the
beginning of the ray propagation, these informations have to be given as inputs to the ray-tracing
algorithm.

Eq. (1.53) can be used to compute the optical abscissa at which the ray will exit the cell.
This is done by inserting eq. (1.53) into the equation defining the surface of a face of the cell.
As an example, for planar cell faces, eq. (1.53) is inserted into u ·

(
r − ff

)
, where u is a unit

vector normal to the cell face, and rf is the position of the center of the face. This allows the
computation of the ∆τ at which the trajectory of the ray will cross each face. The actual face
by which the ray actually exits the cell is the one with the minimum exit ∆τ .

Because the electronic density is interpolated by eq. (1.51) inside each cell, the profile seen
by the ray may not be continuous. To deal with this, Snell’s laws can be used at the interfaces
between cells.

The validity of the trajectory of a ray relies mainly on the linear interpolation of the electronic
density eq. (1.51) that is done inside each cell. It is important to note that if there are not enough
cells to properly describe the density profile, the trajectory may be significantly altered. Because
the absorption is computed on the trajectory of the ray, the total energy deposited may also be
altered.

The computation we have described here is only concerned with the ray trajectory. This is
because the velocity of matter in ICF experiments is much less than the speed of light, therefore
the time taken by a ray to propagate through the plasma is much less than the hydrodynamic
timestep. This means that the ray can be considered to propagate instantly.

Inverse bremsstrahlung absorption in radiation hydrodynamics codes

The modelling of laser absorption in radiation hydrodynamics codes uses the same mesh that is
used for propagation. The absorption is computed from eq. (1.24), however, it is the intensity
carried by the ray I that is computed, rather than the amplitude A that appears in eq. (1.24).
Since the intensity is proportional to the square of the amplitude of the field3, this means

dI
dτ = −

(
k0 εi + ∇· k

k0

)
I. (1.55)

The wave vector can be computed from eq. (1.52). To compute inverse bremsstrahlung absorption,
the electron-ion collision frequency νei has to be known. We recall the textbook expression [Atzeni

3In this work, intensity is defined as I = ε0cE
2/2. This definition, which does not take into account the

refractive index was chosen to be consistent with the intensity in our molecular dynamics simulations presented in
chapters 3 and 4, in which the refractive index is not captured.
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& Meyer-ter Vehn, 2004, Eliezer, 2002] of νei, which was given in eq. (1.49) by

νei = 4
√

2π
3

Z e4 ne√
me (4π ε0)2 (kBTe)3/2 ln Λ, (1.56)

where ln Λ is the Coulomb logarithm, which mainly depends upon ne, Te and Z, though it
may also depends on I and ω. A thorough discussion on the Coulomb logarithm is deferred to
chapter 2.

For now, we will only present the Skupsky [1987] model, which is one of the model of Coulomb
logarithm that is available in troll

ln Λ = max
(

2.0, 1
2 ln

[
1 +

(
bmax
bmin

)2]
− 1.25

)
(1.57)

with

bmax = min (λcD, max(λD, ai)) , bmin = min (ai, max(λB, Rc)) (1.58)

where

λD =

√√√√ε0
e2

(
ne
kBTe

+ Z̄ ni
kBTi

)−1

, (1.59)

is the plasma Debye length, in which Z̄ is the average degree of ionization. When the distance
between an electron and an ion exceeds λD, they are screened from each other and do not interact.
This is the reason why bmax can be set to λD. For that to be true, λD must be larger than the
average distance between ions

ai =
( 3

4π ni

)1/3
. (1.60)

When the Debye length λD is smaller than ai, ions are strongly correlated to each other which
modifies the screening and bmax should then be set to ai, according to Skupsky [1987]. This is
the reason why max(λD, ai) appears in bmax in eq. (1.58). An additional condition on bmax in
Skupsky [1987]’s model comes from the fact that the electron-ion collision time, which is b/vth for
an impact parameter b and a thermal velocity vth =

√
kBTe/me, must be smaller than the laser

period. If this were not the case, Skupsky [1987] argues that very little electron heating would
occur. The conditions b/vth smaller than the laser period correspond to an impact parameter
smaller than the electron Debye length at the critical density,

λcD =
√
ε0 kBTe
nc e2 , (1.61)

where nc = ε0me ω
2/e2 is the plasma critical density. These elements explain the expression of

bmax in eq. (1.58).

In the expression of bmin in eq. (1.58), the presence of ai is again a correction for situations
where strong coupling occurs. The usual value of bmin is the impact parameter corresponding to
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1.2. The modelling of lasers in codes used to design ICF experiments

a collision with 90° scattering angle, which corresponds to the Landau length

Rc = Z̄ e2

4π ε0 kBTe
. (1.62)

The presence of the De Broglie wavelength

λB = ~

2
√

3me kBTe
, (1.63)

is a correction to account for situations where electrons may approach ions closer than this
distance, which is an indication that quantum-mechanical effects have to be taken into account.

A more explicit representation of which value is used for bmin and bmax according to plasma
conditions is given in Fig. 1.16. In plasma conditions relevant to ray-tracing in ICF, ne < nc, and
kTe is between tens of eV and a few keV. Additionally, Z̄ can be as high as 50 in the expanding
gold bubble of a hohlraum plasma, and so bmin will almost always take the value of Rc. However,
bmax can take any of the values of λcD, ai or λD. Since nc = ε0meω

2/e2 is used to compute λcD,
the Coulomb logarithm depends on the laser frequency but not on its intensity. Therefore, in
this model, the electron-ion collision frequency νei depends upon the laser frequency even when
the laser intensity is vanishingly small. While this does not appear problematic at first glance
since the heating rate is proportional to laser intensity (therefore it tends to 0 in this limit), this
is incoherent with the equation describing the evolution of the average velocity of the electrons
eq. (1.28). Indeed, this equation stands even in the absence of a laser, in which case it should
obviously not depend on any laser parameter. As will be explained in chapter 3, our Molecular
Dynamics simulations have ruled out a dependancy of νei on the laser frequency only.

Further investigation into the modelling of the electron-ion collision frequency will be carried
out in chapters 2 and 3. The next section will explore the possible consequences of a modification
in the modelling of laser absorption in a radiation hydrodynamics code. Indeed, even though
inverse bremsstrahlung is the main focus of this thesis work, there are several other mechanisms
of absorption and numerous ad-hoc techniques have been developed in the literature to take them
into account. In the last section of this chapter, we describe one more of these ad-hoc technique
that we have developed.

34



Chapter 1. Inertial confinement fusion and its numerical modelling

100 101 102 103 104
1020

1021

1022

1023

ne = nc

λBRc

ai

g = 9 kBTe = 36.1Z2 eV

kBTe(eV )

n
e
(c

m
−

3 )
Values taken by bmin

100 101 102 103 104
1020

1021

1022

1023

ne = nc

λDeiai

λcD

ne = nc


1 + Z

Te
Ti




−1g = 1
3



ne
nc




3/2

g = 1
3


1 + Z

Te
Ti




−3/2

kBTe(eV )

n
e
(c

m
−

3 )

Values taken by bmax

Figure 1.16: Values taken (in red) by the parameters bmin (left) and bmax (right) as a function of ne and
kBTe. In these graphs, Z = 2 and Te/Ti = 1.4. The critical density corresponds to λ = 351 nm. As an
example, for kTe = 10 eV and ne = 1× 1021 cm−3, bmin is equal to Rc and bmax is equal to λc

D. It should
be noted that the value Z = 2 was chosen for clarity of representation. In actual ICF plasmas, Z can be
as high as 50, and so, for example the limit between Rc and λB in the bmin graph is at a much higher
temperature.

1.3 A simple ad hoc model to evaluate the importance of the
Coulomb logarithm

We have shown how inverse bremsstrahlung is modelled in radiation hydrodynamics codes. How-
ever, as mentioned previously, there are other mechanisms contributing to laser absorption in a
plasma [Eliezer, 2002], such as laser plasma instabilities, Raman scattering, Brillouin scattering,
and cross beam energy transfer. Though recent models [Colaïtis et al., 2021, Debayle et al., 2019]
have been developed in order to take these into account in ray-tracing algorithms, such models
are not yet standard in radiation hydrodynamics codes such as troll [Lefebvre et al., 2018],
lasnex or hydra [Marinak et al., 2001].

However, these effects still have to be taken into account in order to reproduce experiments,
even if they cannot be simulated accurately. Two main methods have been developed to overcome
these issues: power multipliers (PM) and enhanced propagation (EP).

Power Multipliers consists in altering the incident laser intensity using so-called power multi-
pliers [Jones et al., 2012, Lindl et al., 2014, 2018, Robey et al., 2012]. These multipliers reduce the
power delivered with the hohlraum. They are allowed to vary with respect to time, as well as with
the laser beam they affect. Indeed, having different multipliers for different laser beams makes
it possible to take cross-beam energy transfer into account. These multipliers can also be used
to deduce energy that is backscattered out of the hohlraum, which cannot be computed with
ray-tracing algorithms. Power multipliers have been used to reproduce VISAR shock velocity
measurements and experimental symmetry of the hot-spot.

Enhanced propagation consists in modifying the laser frequency [Berzak Hopkins et al., 2015,
Turnbull et al., 2016]. Indeed, eq. (1.55) shows that the laser absorption coefficient is ∝ ω−2,
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1.3. A simple ad hoc model to evaluate the importance of the Coulomb logarithm

so a larger frequency means a smaller coefficient of absorption. This method also allows the
modification of each laser beam’s frequency separately from the others. It has been used to
reproduce experimental hot-spot symmetry in ICF experiments [Berzak Hopkins et al., 2015].

The main drawback of this method is that the laser frequency also appears in the real part of
the optical index eq. (1.34), which itself appears in the equation used to compute the trajectory
of rays eq. (1.50), so not only the power, but the trajectory of rays are affected by this method.
Thus, we have proposed another technique, absorption multipliers (AM).

Absorption multipliers consists in an additional factor Cabs that is added to eq. (1.55), so
that the absorption of laser intensity is now given by

dI
dτ = − Cabs[mat]

c

√

1− ω2
p

ω2

ω2
p

ω2 νei I, (1.64)

where the [mat] indicates that Cabs is allowed to depend on the material. The effect of Cabs is
to multiply the laser absorption per unit length by a factor Cabs which can be used either to
enhance propagation (when Cabs < 1) or to reduce propagation (when Cabs > 1).

Absorption Multipliers affect the modelling of absorption itself. This means that, contrary to
Power Multipliers, the incident laser energy is the same in experiments and simulations. They
also do not modify the trajectory of rays, in contrast with Enhanced Propagation.

All in all, absorption multipliers makes it possible to mimic poorly or not simulated absorption
mechanisms (laser-plasma instabilities, cross-beam energy transfer, etc.) by using either a Cabs >

1 to enhance laser absorption in places where laser energy is known to be lost, or by using a
Cabs < 1 to enhance laser propagation. Another benefit of the absorption multiplier, is that it
can also be used to account for uncertainties in the electron-ion collision frequency which were
introduced in the previous section.

These absorption multipliers have been developed as part of a contribution to [Poujade et al.,
2021]. In Fig. 1.17 are shown simulations of a cavity with different values of Cabs. A difference
in the symmetry of the capsule can clearly be seen, with the top image (Cabs = 1) having a
more symmetrical critical surface than the bottom image (Cabs = 0.5). This shows that the
uncertainties on laser absorption, whether they come from approximations in the modelling of
inverse bremsstrahlung or from laser plasma instabilities, can have a significant impact on ICF
experiments.

In this chapter, we have presented the ray-tracing algorithm that is used to compute the
propagation and absorption of the lasers in codes used to design ICF experiments. We have shown
the assumptions made to go from Maxwell’s equations to the ray-tracing equation eq. (1.50).

Additionally, we have shown how laser absorption is modelled in ray-tracing algorithms, and
in particular the central role of the electron-ion collision frequency, νei. In particular, νei is
proportional to the Coulomb logarithm ln Λ. There is not a consensus in the literature for the
modelling of the Coulomb logarithm. This term is thus a source of uncertainty in the modelling
of inverse bremsstrahlung, which will be investigate in the following chapter.
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Chapter 1. Inertial confinement fusion and its numerical modelling

Figure 1.17: Electronic temperature in Kelvin during a typical troll simulation with Cabs = 1 (top) and
Cabs = 0.5 (bottom). There are some differences near the laser entrance holes, and, most importantly, in
the capsule. Indeed, these images show Cabs can modify the symmetry of the implosion, which can have
a significant impact on the conditions inside the hot-spot, as explained in section 1.1.3.
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Chapter 2
Theoretical basis for inverse bremsstrahlung
heating

Contents
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2.2.1 Separate treatment of the Coulomb logarithm and the velocity
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The principle of radiation absorption by inverse bremsstrahlung in a plasma involves its free
electrons[Pfalzner, 2006]. When a laser propagates through a plasma, the free electrons of the
plasma oscillates with the E-field of the laser. Electron-ion collisions converts a fraction of this
oscillation energy into thermal energy. The same is true for ions, but because they are much more
massive than electrons, they can be considered motionless. The decay rate of laser intensity as
it goes through a plasma was derived in chapter 1, and was given in eq. (1.55). It can be related
to the inverse bremsstrahlung heating rate by

3
2 ne

dkBTe
dt = −dI

ds = 1
c

ω2
p

ω2 νei I, (2.1)

in which we recall that s is the curvilinear abscissa of the ray carrying the intensity I and νei is
the electron-ion collision frequency.

In this chapter, we will show a theoretical derivation of the inverse bremsstrahlung heating
rate eq. (2.1) of a weakly coupled plasma. Since electron-ion are central in this phenomenon,
the first step is the modelling of a single collision. Then, we will show how the effects of all
binary collisions occuring in the plasma are summed up in the electron-ion collision frequency
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2.1. Binary collisions

νei. Finally, we will demonstrate how the oscillating E-field of an external electromagnetic wave
heats the plasma. The last subsection of this chapter will be concerned with the derivation of
the Landau collision operator, upon which Fokker-Planck codes are often based. This explains
why chapters 3 and 4 of this thesis use a simulation technique that is not based upon a Landau
collision operator.

Though the theoretical developments of this chapter can mostly be found in textbooks [Del-
croix & Bers, 1963, Eliezer, 2002, Reif, 2009], they are often fragmented. Furthermore, a detailled
derivation of the heating rate will emphasize all the assumptions that have to be made to reach
the usual formula of the inverse bremsstrahlung heating rate.

2.1 Binary collisions

The first step in the modelling of electron-ion collision is to consider a single binary collision
event. We consider two point particles 1 and 2 of masses m1 and m2, charges q1 and q2, whose
positions are referenced by r1 and r2. They are under the influence of a central potential V12(|r|),
where r = r1 − r2.

~rm
b M

2

1
~u

θm

θm

χ = π − 2 θm

Figure 2.1: Schematic representation of the collision between two particles, 1 and 2. The points labelled
1 and 2 are the particle positions long before the collision. M is the center of mass of the two particles.
The minimal distance rm is characterized by an angle θm. In this illustration, the particles repulse each
other (for example two electrons), and have the same mass.

The position of the center of mass of the system M is given by

rM = m1 r1 +m2 r2
m1 +m2

. (2.2)

Since the potential is central, the trajectories of both particles are contained inside a plane. A
schematic representation of the collision which introduces useful notations is given in Fig. 2.1. In

the center of mass reference frame, and using r =
(
r cos θ
r sin θ

)
,

v1 = − m2
m1 +m2

(
ṙ cos θ − r θ̇ sin θ
ṙ sin θ + r θ̇ cos θ

)
and v2 = m1

m1 +m2

(
ṙ cos θ − r θ̇ sin θ
ṙ sin θ + r θ̇ cos θ

)
. (2.3)
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Using, the reduced mass m12 = m1m2/(m1 +m2), the total kinetic energy is therefore

1
2 m1 v

2
1 + 1

2 m2 v
2
2 = 1

2 m12
(
ṙ2 + r2 θ̇2

)
, (2.4)

and the angular momentum of the system is

(r1 − rM ) ∧ v1 + (r2 − rM ) ∧ v2 = m12 r
2 θ̇. (2.5)

Since both particles interact only via a central potential, angular momentum and mechanical
energy are conserved during the collision. Long before the collision, θ ≈ sin θ ≈ b/r, so θ̇ ≈
−b ṙ/r2, where b is the impact parameter defined in Fig. 2.1. At t = −∞, r2 θ̇2 can be neglected in
eq. (2.4) compared to u2, where u is the magnitude of u = ṙ(t = −∞), the initial relative velocity.
Thus, the mechanical energy is m12 u2/2, and the angular momentum is m12 b u. Furthermore,
still at t = −∞, the particles are infinitely far from each other, in which situation the potential is
conventionally taken equal to 0. The conservation of total energy and of the angular momentum
are then given by

1
2 m12 u

2 = 1
2 m12

(
ṙ2 + r2 θ̇2

)
+ V12(r), (2.6)

and
m12 b u = m12 r

2 θ̇. (2.7)

The conservation of angular momentum eq. (2.7) can then be used to find θ̇, which can then be
inserted into eq. (2.6) to yield

ṙ2 = u2
(

1− b2

r2 −
2V12(r)
m12 u2

)
. (2.8)

When ṙ is negative, the particles are closing in on each other, this is the first part of the collision.
When ṙ is positive, the particles are going away from each other after the collision. When ṙ is
zero, the distance between both particles is at its lowest value, rm, and θ = θm. The angle θm is
also given by

θm =
∫ ∞

rm

dθ
dr dr =

∫ ∞

rm

θ̇

ṙ
dr =

∫ ∞

rm

b dr

r2

√
1− b2

r2 −
2V12(r)
m12 u2

. (2.9)

The differential cross-section1 σ is defined by the proportion of particles with impact parameter
between b and b+ db and azimuth between φ and φ+ dφ that are scattered in a solid angle dΩ,
see Fig. 2.2. This means

σ = b db dφ
dΩ . (2.10)

The trajectory of the particles long after the collision is at an angle χ with the trajectory they
would have had, did they not interact. Since the deviation angle is given by χ = π − 2 θm (cf.

1The notation dσ
dΩ is sometimes used for the differential cross-section, and σ =

∫ dσ
dΩ dΩ then refers to the total

cross-section. Using the notations of this work, the total cross-section is σ0 =
∫
σ dΩ

41



2.1. Binary collisions

x

y

z

n̂1

n̂2

~u

u

φ

χ dΩ

Figure 2.2: Spherical coordinates used for the definition of the cross-section. z is an axis along the direction
of u. x and y are two axes normal to z and to each other, with unit vectors n̂1 and n̂2 respectively. The
deviation χ is the angle with u, and φ is the azimuth. The differential solid angle dΩ is defined from the
angles χ and φ by dΩ = sinχ dχ dφ

Fig. 2.1), and since dΩ = sinχ dχ dφ, the differential cross-section can be written as

σ = b

sinχ

(
∂b

∂χ

)

u

. (2.11)

The relative velocity long after the collision û has the same magnitude u as before the collision, but
is rotated by the deviation angle χ. Thus, the component along u of the velocity difference û−u
is u (cosχ−1). The fraction of the velocity difference that is not transferred to another direction
is (1 − cosχ). Integrating it over all possible collisions (i.e. all possible impact parameters and
azimuth) yields the momentum transfer cross-section σ1,

σ1 =
∫
σ (1− cosχ) dΩ = 2π

∫
b db (1− cosχ) = 4π

∫
b cos2 θm db. (2.12)

One case of particular interest in plasma physics is when particles interact via the Coulomb
potential, V12(r) = q1 q2/(4π ε0 r). In this case, the distance of closest approach rm can be
expressed directly, since it is the biggest root of the right side of eq. (2.8), so

rm = q1 q2
4π ε0m12 u2 +

√(
q1 q2

4π ε0m12 u2

)2
+ b2. (2.13)

Then, θm is given by tan θm = 1/ tan(χ/2) = 4π ε0m12 u2 b/q1 q2, which means

b = q1 q2
4π ε0m12 u2 b tan(χ/2) , (2.14)
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which can be inserted into eq. (2.11) to yield the differential cross section,

σ =
(

q1 q2
4π ε0 2m12 u2 sin2(χ/2)

)2
. (2.15)

This is why the momentum transfer cross section σ1 can be recast as

σ1 =
∫ ∞

0

b db

1 +
(

4π ε0m12 u2 b

q1 q2

)2 . (2.16)

This integral is divergent at b = ∞, for it scales as
∫

db/b, corresponding to a logarithmic
divergence. This divergence is unphysical because, in a plasma, charges q1 and q2 evolve in
a bath of other charged particles whose collective effect alter the simple view described here
[Eliezer, 2002]. The simplest way to account for these collective effects is to set the upper bound
of the integral to a certain value, bmax. Physically, this means that when particles have an
impact parameter greater than bmax, they are assumed not to interact with each other, they are
shielded from one another. A common choice for bmax in a plasma is the electron Debye length
λD =

√
ε0 kBTe/ne e2. In this case,

σ1 = 4π
(

q1 q2
4π ε0m12 u2

)2
ln

√√√√1 +
(

4π ε0
m12 u2 bmax

q1 q2

)2

. (2.17)

Additionally, the case b = 0 can also be pathological, in the opposite charges case. In this
case, eq. (2.13) yields rm = 0, which is problematic since the Coulomb potential diverges at
rm = 0. This happens because in using Coulomb potential, we have assumed that both particles
are point-like, which is not true at very close range for ions due to un-ionized electrons cloud
surrounding ions, and for electrons due to quantum effects. This has motivated the introduction
of a second parameter bmin, which replaces the lower bound of the integral in eq. (2.17). This
yields

σ1 = 4π
(

q1 q2
4π ε0m12 u2

)2 1
2 ln




1 +
(

4π ε0
m12 u2 bmax

q1 q2

)2

1 +
(

4π ε0
m12 u2 bmin

q1 q2

)2



. (2.18)

A common choice for bmin is the impact parameter b⊥ that corresponds to χ = π/2, or, since χ =
π − 2 θm, θm = π/4 [Temko, 1957]. Inserting this into eq. (2.14) yields b⊥ = q1 q2/4π ε0m12 u2,
which can be inserted into eq. (2.18) to yield

σ1 = 4π
(

q1 q2
4π ε0m12 u2

)2
ln




1√
2

√√√√1 +
(

4π ε0
m12 u2 bmax

q1 q2

)2

 . (2.19)

The choice of bmin and bmax has been discussed extensively in the literature [Filippov et al.,
2018, Lee & More, 1984, Skupsky, 1987]. Ways to resolve the divergence of the cross-section have
also been proposed, for example by using a shielded potential [Liboff, 1959, Ordonez & Molina,
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1994], by using the Lenard-Balescu collision operator [Balescu, 1960, Lennard, 1960], or by means
of different techniques such as wave theory [Kihara & Aono, 1963] or dimensional continuation
[Brown et al., 2005].

To summarize, we just showed how divergence appears in the momentum transfer cross-
section. Now we need to relate this cross section to the collision frequency that shows up in the
inverse bremsstrahlung heating.

2.2 Emergence of the Coulomb logarithm in collision frequencies

Here, we show why the so called Coulomb logarithm appears in the derivation of the collision
frequency. Following Baalrud [2012], we consider a uniform plasma containing two species labelled
1 and 2. The collision process between a particle of species 1 and a particle of species 2 is
characterized by the differential cross-section σ and the solid angle of the collision Ω, defined
from the deviation χ, and an azimuth φ, as described in the previous section and shown in
Fig. 2.2. The momentum given by species 1 to species 2 is written

R1−2 =
∫

v1
d3v1m1 v1CB(f1, f2), (2.20)

where CB is the Boltzmann collision operator, defined in a uniform plasma by

CB(f1, f2) = n1 n2

∫

v2

∫

Ω
d3v2 dΩuσ (f1(v̂1) f2(v̂2)− f1(v1) f2(v2)) , (2.21)

in which f1 and f2 are the velocity distribution functions of species 1 and 2 respectively. Quantities
with a hat correspond to the state well after the collision, and u is the relative velocity v1 − v2.
The integration on the particle positions has already been performed, since the plasma is assumed
to be uniform, and yielded the particle densities n1 and n2 as factors in eq. (2.21).

A derivation of the Boltzmann collision operator can be found in textbooks [Reif, 2009]. This
derivation makes multiple hypothesis: (i) only binary collisions are considered, so collisions with
three particles or more are neglected; (ii) any external force acting on the distribution f1 has no
effect on the scattering process; (iii) the variation of the velocity distribution functions is slow
compared to the characteristic time of the scattering process; (iv) the positions of two particles
are not correlated before the collision.

These assumptions are verified in weakly coupled plasmas, which are those of interest in ICF.
However, in the context of inverse bremsstrahlung, i.e. with a laser electrical field as an external
force, the modelling of the Coulomb logarithm can involve parameters of an external E-field of
the laser (frequency, intensity), which violates hypothesis (ii).

There are also assumptions that have to be made on the scattering process itself. Indeed,
the scattering process must conserve both momentum and energy. In the previous section, we
considered that particles interacted via a potential during the collision, so this is verified. This
can be used in eq. (2.20) to yield [Baalrud, 2012, Reif, 2009]

R1−2 = n1 n2

∫
d3v1 d3v2 dΩm1 (v̂1 − v1) σ u f1(v1) f2(v2). (2.22)

When the differential cross-section σ is a function of u and the collision solid angle Ω only, such
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as in the case of a Coulomb interaction eq. (2.15), the integration over v1 can be written over u.
To do so, the conservation of momentum m1 v1 +m2 v2 = m1 v̂1 +m2 v̂2 can be used in order to
get m1 (v̂1 − v1) = m12 (û− u), where m12 = m1m2/(m1 +m2). Thus,

R1−2 = n1 n2m12

∫
d3u dΩσ(u, Ω)u (û− u)

∫
d3v2 f1(u+ v2) f2(v2). (2.23)

We will now concentrate on the integration over Ω, that concerns only
∫

dΩσ(u, Ω) (û− u).
Since û has the same magnitude as u, but is rotated by an angle given by the deviation χ, it is
possible to write (û− u) as (cosχ − 1)u + u sinχ cosφ n̂1 + u sinχ sinφ n̂2, where n̂1 and n̂2
are unit vectors normal to u and to each other. Moreover, assuming σ does not depend on the
azimuth φ, only the component of the integral along u remains,

∫
dΩσ(u, χ) (û− u) =

∫
dΩσ(u, χ) (cosχ− 1)u = −uσ1, (2.24)

where σ1 is the momentum transfer cross section that was defined in eq. (2.12). Furthermore,
defining the cross-correlation of f1 and f2 by F (u) =

∫
d3v2 f1(u + v2) f2(v2) allows eq. (2.23)

to be recast as
R1−2 = −n1 n2m12

∫
d3uuuσ1(u)F (u). (2.25)

To proceed any further, assumptions must be made on f1 and f2. In the context of inverse
bremsstrahlung, a laser’s periodic E-field is applied to the particles. The primary effect of this
E-field is to induce a coherent oscillating motion of free electrons. Since all particles of one species
have the same charge, they will all follow the same oscillation. Thus, the instantaneous velocity
distribution is not centred, but drifted because of the oscillations. It therefore makes sense to
consider drifted distributions, i.e. isotropic distributions with a drift velocity. The simplest case
is to have both f1 and f2 be drifted Gaussian distribution,

f1(v1) = 1
(2π v2

th1)3/2 exp
(
−|v − vd1|2

2 v2
th1

)
, f2(v2) = 1

(2π v2
th2)3/2 exp

(
−|v − vd2|2

2 v2
th2

)
(2.26)

where vth1 is the thermal velocity and vd1 the drift velocity, respectively for species 2. In this case,
F is also a Gaussian distribution, with thermal velocity vth =

√
v2

th1 + v2
th2, and drift velocity

vd = vd1 − vd2. However, with other distribution shapes of interest as will be expanded on in
chapter 4 with Langdon’s Super-Gaussian [Langdon, 1980] for instance, F cannot be determined
analytically, neither when f1 and f2 are both Super-Gaussian nor when one of them is Gaussian
and the other Super-Gaussian.

Nevertheless, it is possible to take advantage of the fact that in a two component plasma,
species 1 and 2 correspond to electrons and ions with a significant mass difference. The heavy
ions can be considered almost motionless compared to the light electrons and therefore, the ion
velocity distribution can be approximated by a Dirac distribution. In this case, F is simply the
instantaneous electron velocity distribution, which is what we will be considering in the remainder
of the reasoning.

More assumptions on F are necessary to carry on the computation of R1−2. In particular,
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we will assume that, for a drift velocity vd, there is a distribution f such that

F (u) = f(|u− vd| , θ, φ) = f(|u− vd| , θ), (2.27)

where θ is the angle of u with vd, and φ is the azimuth, see Fig. 2.3. This leaves

R1−2 = −n1 n2m12

∫
d3uuuσ1(u) f(|u− vd| , θ). (2.28)

Setting w = u− vd yields

R1−2 = −n1 n2m12

∫
d3w (w + vd) |w + vd| σ1(|w + vd|) f(w, θ). (2.29)

We now use spherical coordinates as described in Fig. 2.3. The direction of vd is used as a
reference (z axis in Fig. 2.3). The angle with vd is θ. The notation φ for the azimuth is kept
from Fig. 2.2. Every factor only depends on w and θ, except for the direction factor w + vd, so
only the component along vd will remain when integrating over the azimuth φ. This yields

R1−2 = −2π n1 n2m12 vd

∫ √
w2 + v2

d + 2 vdw cos θ
(

1 + w

vd
cos θ

)
σ1 f(w, θ)w2 sin θ dθ dw,

(2.30)
where σ1 is a shorthand for σ1

(√
w2 + v2

d + 2 vdw cos θ
)
. To proceed further in the computation

ofR1−2, a specific cross-section must be used. Furthermore, the distribution must be independent
of θ. This is a strong assumption that proved not to be correct in many situations investigated in
our Classical Molecular Dynamics Simulation presented in chapter 4. However, this assumption
is necessary to derive an analytical expression. With these assumptions,

R1−2 = −8π2 n1 n2m12R
2
c v

4
th vd

∫ 1 + w

vd
cos θ

u3 ln




√√√√1
2 + 1

2

(
bmax u2

Rc v2
th

)2

 f(w)w2 dw sin θ dθ,

(2.31)
where u =

√
w2 + v2

d + 2 vdw cos θ and Rc = q1 q2/4π ε0m12 v2
th is the Landau length, vth being

the thermal velocity of f , defined by 3v2
th = 4π

∫
w4 f(w) dw .

2.2.1 Separate treatment of the Coulomb logarithm and the velocity distri-
bution

The logarithmic term in the integral in eq. (2.31) is often treated separately from the rest, i.e.

ln




√√√√1
2 + 1

2

(
bmax u2

Rc v2
th

)2

 = ln Λ and ln Λ is assumed to be independent of w and θ, and is

modelled separately. This makes the integrals in eq. (2.31) tractable. R1−2 can now be recast as

R1−2 = −8π2 n1 n2m12R
2
c v

4
thvd ln Λ

∫ 1 + w

vd
cos θ

(
w2 + v2

d + 2 vdw cos θ
)3/2 f(w)w2 dw sin θ dθ. (2.32)
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n̂1

n̂2

~vd
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φ

θ

Figure 2.3: Spherical coordinates used in the computation of R1−2. z is an axis along the direction of vd.
x and y are two axes normal to z and to each other, with unit vectors n̂1 and n̂2. The angle with vd is
θ, and φ is the azimuth.

The integral on θ can be performed, and yields

R1−2 = −16π2 n1 n2m12R
2
c

v4
th
v3

d
vd ln Λ

∫ vd

0
f(w)w2 dw. (2.33)

The momentum collision frequency ν12 is defined as the proportion of the momentum density
of species 1 that is given to species 2 through collisions, or

R1−2 = −n1m1 ν12 vd, (2.34)

so that

ν12 = 16π2 n2
m12
m1

R2
c

v4
th
v3

d
ln Λ

∫ vd

0
f(w)w2 dw (2.35)

= ν0
12 ln ΛM(vd, f), (2.36)

where
ν0

12 = 4
√

2π
3 R2

c vth n2
m12
m1

(2.37)

is the usual collision frequency prefactor, and

M(vd, f) = 3 (2π)3/2 v
3
th
v3

d

∫ vd

0
f(w)w2 dw, (2.38)

is the absorption multiplier caused by the drift of f . This expression was obtained by Mulser et al.
[2000], who applied it to an isotropic Gaussian distribution fG(v) = exp(−v2/2 v2

th)/(2π v2
th)3/2,
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which yields

MG(ξ) = M(vd, f
G) = 3

2

( √
2π
ξ3 erf

(
ξ√
2

)
− 2
ξ2 exp

(
−ξ

2

2

))
, (2.39)

where erf(x) = 2/
√
π
∫ x

0 e
−t2 dt is the error function, and ξ = vd/vth. MG(ξ) approaches 1 when

ξ goes to 0, which yields the textbook collision frequency ν12 = ν0
12 ln Λ.

The formula eq. (2.38) can also be applied to an isotropic Super-Gaussian distribution fSG(v) ∝
exp(−vk) where k > 0 is the order of the Super-Gaussian. This yields

MSG(ξ, k) = 3 (2π)3/2

4π ξ3 Γ(3/k)γ


3
k
,

(
ξ√

3Γ(3/k)/Γ(5/k)

)k
 , (2.40)

where Γ is Euler’s gamma function, and γ(s, x) =
∫ x
0 t

s−1 e−t dt is the lower incomplete gamma
function.

In a nutshell, the assumption for the sake of amenability is the separate modelling of the
Coulomb logarithm that was necessary in order to obtain eq. (2.32). In the next subection, we
will show that in the case of Gaussian distributions, this separate modelling is not necessary.
This allows the derivation of a more consistent Coulomb logarithm that can be used in eq. (2.36).

2.2.2 Small drift compared to the thermal velocity: the Coulomb logarithm
and velocity distribution can be treated together

In this part, we compute R1−2 from eq. (2.28) assuming an isotropic Gaussian distribution
f(|u− vd| , θ) = exp(− |u− vd|2 /2 v2

th)/(2π v2
th)3/2. We will show that this strong assumption

on the distribution allows to calculate R1−2 without separating the modelling of the Coulomb
logarithm from the rest of the calculation as was necessary in the previous section. With a
Gaussian distribution, eq. (2.28) is written

R1−2 = −2π n1 n2m12
(2π v2

th)3/2

∫
d3uuuσ1(u) exp

(
−u

2 + v2
d − 2u vd cos θ

2 v2
th

)
. (2.41)

Since the only term that depends upon φ is u, the integration over φ sums up to
∫
u dφ =

2π u cos θ vd/vd. The integration over θ can then be performed, and yield

R1−2 = −2π n1 n2m12
(2π v2

th)3/2
vd
vd

∫
v5

th dµµ4 σ1(u) 2
µ2 ξ2 e

−
µ2 + ξ2

2 (µ ξ cosh (µ ξ)− sinh (µ ξ)) ,

(2.42)
where µ = u/vth and ξ = vd/vth. The collision frequency ν12 can then be expressed as

ν12 = ν0
12

3
4π R2

c

∫
σ1(u) e

−
µ2 + ξ2

2
(
µ3

ξ2 cosh(µ ξ)− µ2

ξ3 sinh(µ ξ)
)

dµ, (2.43)
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in which we recall Rc = q1 q2/4π ε0m1 v2
th and ν0

12 = 4
√

2π R2
c vth n2m12/3m1. The trigono-

metric functions can be expanded in series to yield

ν12 = ν0
12

3
2π R2

c

e
−
ξ2

2
+∞∑

n=1

n ξ2n−2

(2n+ 1)!

∫
σ1(u)µ2n+3 e

−
µ2

2 dµ. (2.44)

In the low laser intensity limit, ξ = vd/vth � 1, and so only the first term of the sum can be
considered. Using the Coulomb momentum cross section eq. (2.19),

ν12 = ν0
12

[
sin
(

Rc
2 bmax

) (
π

2 − Si
(

Rc
2 bmax

))
− cos

(
Rc

2 bmax

)
Ci
(

Rc
2 bmax

)
− ln

√
2
]
, (2.45)

where Si(x) =
∫ x

0 dt sin(t)/t is the sine integral function, and Ci(x) = − ∫∞x dt cos(t)/t is the
cosine integral function. This time, the logarithmic part of σ1 has been kept in the integral
eq. (2.44), as opposed to the method described for the transition between eq. (2.31) and eq. (2.32).
A standard choice for bmax is the electron Debye length λD =

√
ε0 kBTe/ne e2 in which case

Rc/bmax is the plasma coupling parameter g = Rc/λD. When the plasma is weakly coupled
g � 1, a series expansion yields

ν12 = ν0
12

(
ln
( √

2 e−γ
g

)
+O(g)

)
, (2.46)

in which γ is Euler’s constant and we used the big O notation O. Since
√

2 e−γ ≈ 0.794, this is
very close to other expressions found in the litterature, such as ln(0.765/g) obtained theoretically
[Brown et al., 2005, Kihara & Aono, 1963], or ln(1 + 0.7/g) obtained using Molecular Dynamic
simulations [Dimonte & Daligault, 2008].

In a nutshell, assuming the distribution is Gaussian allows the exact Coulomb momentum
cross-section to be used in order to derive a self consistent expression of the collision frequency and
of the Coulombian logarithm without having to model it separately, as was needed in eq. (2.32).
However, since the electron velocity distribution is known to be distorted by the laser E-field
[Langdon, 1980, Milder et al., 2021], we will have to resort to eq. (2.36) in order to take f into
account in the modelling of the inverse bremsstrahlung heating rate.

2.3 Inverse bremsstrahlung heating rate

The average volumetric heating rate of electrons under the influence of an external E-field E is
simply the Joule heating rate

3
2 ne

dkBTe
dt = j ·E, (2.47)

where j = −ne eve is the electron current density, ve being the average electron velocity. In cases
of interest, two forces are acting on these electrons: the periodic external E-field E = E0 cosωt,
and the collisions with ions, so that the evolution of the ensemble averaged velocity of electrons
can be modelled as

me
dve
dt +me νei ve = −eE0 cosωt, (2.48)
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2.3. Inverse bremsstrahlung heating rate

where we recall that νei not only depends on the plasma parameters (Z, ne, Te), but also on ve,
as shown in eq. (2.36). Eq. (2.48) shows that ve is always colinear to the E-field, so j ·E = j E.
The equation on the average electron velocity eq. (2.48) can also be written using the current
density,

dj
dt = ε0 ω

2
p E0 cosωt− νei j, (2.49)

in which ω2
p = ne e

2/ε0me is the plasma frequency. To determine j, it is useful to recall that
the plasmas of interest in this work are weakly coupled, g � 1, where g = Rc/λD is the plasma
coupling parameter, Rc = Z e2/4π ε0 kBTe being the Landau length and λD =

√
ε0 kBTe/ne e2

being the electron Debye length. This means that

νei
ω

= 1
3

√
2
π
g

√
ne
nc
M(vd, f) ln Λ� 1, (2.50)

in subcritical plasmas, and assuming the Coulomb logarithm and absorption multiplier are O(1).
Since the time scale for the variation of j is ω, eq. (2.49) can be expanded using the small
parameter νei/ω, j = j0 + j1, where j0 νei/ω is of the same order of magnitude as j1, so j1 � j0.
This yields

dj0

dt = ε0 ω
2
p E0 cosωt, (2.51)

dj1

dt = −νei j0, (2.52)

and so

j0 = ε0
ω2
p

ω
E0 sinωt, (2.53)

dj1

dt = −νei ε0
ω2
p

ω
E0 sinωt, (2.54)

This can be inserted into eq. (2.47). Since the E-field is periodic, it makes sense to average the
heating rate over one of its period. Finally,

〈3
2 ne

dkBTe
dt

〉
= ω

2π

∫ 2π/ω

0
j E0 cosωt dt (2.55)

= 1
2π

∫ 2π/ω

0

dj
dt E0 sinωt dt (2.56)

= 1
2π

∫ 2π/ω

0
ε0 ω

2
p E

2
0 sinωt cosωt+ νei ε0

ω2
p

ω
E2

0 sin2 ωt dt (2.57)

= neme v
2
osc

ω

2π

∫ 2π/ω

0
νei(ve(t)) sin2 ωt dt, (2.58)

where vosc = eE0/me ω. The average velocity of the electrons is needed to evaluate the electron-
ion collision frequency. It can be evaluated at zeroth order using j0 from eq. (2.53) as ve =
vosc sinωt.

The most simple way to evaluate eq. (2.58) is simply to neglect the variation of νei with ve,
and write νei = ν0

ei ln Λ, where ν0
ei = 4

√
2π Z2 e4 ni/(3

√
me(4π ε0)2(kBTe)3/2), and model ln Λ
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in such a way that it only depends on the plasma parameters. This yields
〈3

2 ne
dkBTe

dt

〉
= 1

2 neme v
2
osc ν

0
ei ln Λ. (2.59)

A more accurate way to evaluate the heating rate is to use eq. (2.36), ν12 = ν0
12 ln ΛM(vd, f).

The Coulomb logarithm is still modelled separately, even though it may depend on the drift
velocity. Taking advantage of the fact M only depends on the magnitude of the drift, this yields

〈3
2 ne

dkBTe
dt

〉
= neme v

2
osc ν

0
ei ln Λ 2

π

∫ π/2

0
M(vosc sin t, f) sin2 t dt (2.60)

= 1
2 neme v

2
osc ν

0
ei ln Λ M̄(vosc, f), (2.61)

where M̄(vosc, f) = 4/π
∫ π/2

0 M(vosc sin t, f) sin2 t dt is the multiplier on the heating rate, to be
compared with the modelling described by eq. (2.59). In the case where the electron velocity
distribution f is a Gaussian, M̄ can be computed analytically, and is given by

M̄G(η) = 6
η2


2F2

(
1
2 ,

1
2; 1, 3

2;−η
2

2

)
− e
−
η2

4 I0

(
η2

4

)
 , (2.62)

where η = vosc/vth, I0 is the modified Bessel function of the first kind, and 2F2 is a generalized
hypergeometric function. Unfortunately, M̄SG = M̄(vosc, fSG) cannot be computed analyti-
cally. It can, however, be evaluated numerically as shown in Fig. 2.4, which compares MG from
eq. (2.39),MSG from eq. (2.40), M̄G from eq. (2.62) and M̄SG for a range of η = vosc/vth. Clearly,
M̄(η, f) ≈M(η, f) for small η, which is the expected result: at small oscillation amplitude, the
averaging process does not have much of an impact on M .

In Fig. 2.4, it can be seen that the absorption multipliers, both instantaneous and cycle-
averaged are independant of the shape of the distribution at high η. This seemingly weak depen-
dance of the absorption multiplier on the distribution shape at high laser intensity might indicate
that the anisotropic distribution shapes that are observed in our CMDS in chapter 4 at high laser
intensity do not affect much the absorption multiplier.

At low η, the Gaussian absorption multiplier approaches 1, as described above. The Super-
Gaussian absorption multiplier for k = 5 approaches 0.445, which is very close to Langdon’s
multiplier for k = 5. Indeed, in Langdon [1980]’s model, absorption is proportional to f(0).
Since the absorption multiplier uses the Gaussian case as a reference, it follows that the absorp-
tion multiplier should be f(0)/fG(0) to be consistent with Langdon’s model. One of the key
assumptions in this model is η = vosc/vth � 1, so this limit will be examined. Integrating the
Taylor expansion of f(w) at small w yields

∫ ξ

0
f(w)w2 dw = ξ3

3 f(0) + ξ4

4 ∂vf(0) +O(ξ5). (2.63)

This can the be inserted into the definition of M eq. (2.38), and since fG(0) = (2π)−3/2,

M(ξ, f) = f(0)
fG(0) + 3

4 fG(0) ξ ∂vf(0) +O(ξ2). (2.64)
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2.3. Inverse bremsstrahlung heating rate

Thus, for small ξ, M(ξ, f) ≈ f(0)/fG(0), which explains why M(0, fSG) is very close to the
correction proposed by Matte et al. [1988] 2

Mmatte(k) = 1− 0.553

1 + 0.27
( 1

1.66

( 3
k − 2 − 1

))1/0.724 , (2.65)

where k is the order of the Super-Gaussian fSG.
All in all, we have showed how the inverse bremsstrahlung heating rate depends on the

amplitude of the laser field and on the electron velocity distribution. The expression we derived,
which was obtained by Mulser et al. [2000] is coherent with other expressions obtained from
Fokker-Planck simulations [Langdon, 1980, Matte et al., 1988]. However, the computation of
M requires knowing the shape of the electron velocity distribution, which is not known in all
situations. This is why we resorted to numerical simulations in order to confirm the validity of
theoretical models and better characterize the shape of the electron velocity distribution when
under the influence of a laser field. Before presenting the simulations we carried out in chapters 3
and 4, the next section will explain why Fokker-Planck simulations based on the Landau collision
operator cannot fully capture the electron-ion collision frequency, which explains why we resorted
to Molecular Dynamics simulations.

2Though this formula is not directly present in [Matte et al., 1988], it can be obtained by extracting α from
eq. (14) and inserting it into eq. (15), where both equation numbers refer to [Matte et al., 1988]
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Figure 2.4: Instantaneous and cycle-averaged absorption multipliers for a Gaussian distribution and a
Super-Gaussian (k = 5) distribution. At high η, the multiplier seems to be independant of the distribution
shape. When η approaches 0, the cycle-averaged multipliers M̄G and M̄SG tend towards their instan-
taneous values, MG and MSG respectively. When η = 0, MG = 1, since a non-drifted gaussian is our
reference case, and MSG ≈ 0.445, which corresponds to Langdon’s factor for k=5 [Langdon, 1980].

2.4 Landau collision operator

Most Fokker-Planck simulations [Ersfeld & Bell, 2000, Jones & Lee, 1982, Matte et al., 1988],
as well as theoretical models [Balescu, 1982, Chichkov et al., 1992, Fourkal et al., 2001, Lang-
don, 1980, Li & D., 1993, Porshnev et al., 1993, 1996] dedicated to the study of non-Maxwellian
behaviour of a plasma under the influence of a time varying E-field use the Landau collision
operator, as opposed to the Boltzmann collision operator that was used in the previous sections.
In this section, we will show how the Landau collision operator can be obtained from the Boltz-
mann collision operator and which assumptions are necessary. In particular, we will show that an
expression of the Coulomb logarithm needs to be provided. Therefore, Fokker-Planck simulations
cannot be used to get insight on the Coulomb logarithm, at variance with Classical Molecular
Dynamic Simulations where the level of assumption is much lower and the trajectory of every
particle is precisely described.

We recall the Boltzmann collision operator

CB(f1, f2) =
∫

v2

∫

Ω
d3v2 dΩσ(v1, v2 → v̂1, v̂2)u (f1(v̂1) f2(v̂2)− f1(v1) f2(v2)) , (2.66)

where Ω is the solid angle of the collision, and u = v1 − v2. The main assumption needed to
derive the Landau collision operator is that collisions only slightly deviates the trajectory, i.e.
the evolution of the velocity distribution is mainly a result of many small-angle of deviation
collisions. This means that v̂1 is sufficiently close to v1 to use the Taylor expansion of f1, and
f2. It is useful to notice that the conservation of momentum in a collision yields m1 (v̂1 − v1) =
−m2 (v̂2 − v2) = m12 (û − u) = m12 ∆u. Additionally, we note fα = fα (vα), and f̂α = fα (v̂α)
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for α = 1, 2, to clarify. The Taylor expansion of f1 around v1 is

f̂1 = f1 + m12
m1

∆u · ∂v1f1 + m2
12

2m2
1

(∆u⊗∆u) : ∆f1, (2.67)

where (X ⊗ Y )ij = Xi Yj , A : B = ∑
i,j Aij Bij and (∆f1)ij = ∂vivjf is the Laplacian of f1.

With the same expansion on f2, it is possible to write

f̂1 f̂2 − f1 f2 = m12 ∆u ·D + m2
12

2 ∆u⊗∆u :
[( 1
m1

∂v1 −
1
m2

∂v2

)
D

]
(2.68)

where
D = f2

m1
∂v1f1 −

f1
m2

∂v2f2. (2.69)

It is now possible to perform the integral on the collision solid angle. Indeed, only the differential
cross section σ, and ∆u depend on Ω. To perform the integral, we use the spherical coordinates
described in Fig. 2.2 that are based on u, χ the deviation angle from u, and the azimuth φ. The
differential cross-section σ usually does not depend on the azimuth. Therefore, the components
of ∆u normal to u will cancel when integrating over φ. The component of ∆u along u is then
u (cosχ− 1), and so

∫
dΩ ∆uσ = −u

∫
dΩσ (1− cosχ) = −uσ1, (2.70)

where σ1 is the momentum transfer cross-section defined in eq. (2.12). In this same coordinate
system,

∆u⊗∆u = u2




(cosχ− 1)2 (cosχ− 1) sinχ cosφ (cosχ− 1) sinχ sinφ
(cosχ− 1) sinχ cosφ sin2 χ cos2 φ sin2 χ sinφ cosφ
(cosχ− 1) sinχ sinφ sin2 χ sinφ cosφ sin2 χ sin2 φ


 .

(2.71)
Clearly, all the off-diagonal elements cancel out when integrated over φ. Additionally, the colli-
sions were assumed to only slightly deviate the particles, so (cosχ−1)2 ≈ 0 et sin2 χ ≈ 2 (1−cosχ)
at the second order in χ, and thus

∫
dΩσ∆u⊗∆u = u2 σ1




0 0 0
0 1 0
0 0 1


 = u3 σ1

u2 I − u⊗ u
u3 = u3 σ1w, (2.72)

where w is defined as
(
u2 I − u⊗ u) /u3 and corresponds to the projection on the plane normal

to u, I being the identity matrix. The collision operator is now

C(f1, f2) =
∫

v2
d3v2

[
m12 u (−σ1 u) ·D + m2

12 u

2 (u3 σ1w) :
[( 1
m1

∂v1 −
1
m2

∂v2

)
D

]]
. (2.73)
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It is useful to notice that ∂u ·w = −2u/u3, so we substitute u by −u3 ∂u ·w/2, yielding

C(f1, f2) = m12
2

∫

v2
d3v2 σ1 u

4
[
(∂u ·w) ·D + m12

m1
w : ∂v1D −

m12
m2

w : ∂v2D

]
. (2.74)

Since w only depends on u, (∂v2 ·w) = −(∂u ·w) = −(∂v1 ·w). Using this and an integration
by part on the last term of eq. (2.74) yield

C(f1, f2) = m12
2

∫

v2
d3v2 σ1 u

4
[
(∂v1 ·w) ·D + m12

m1
w : ∂v1D −

m12
m2

(∂v1 ·w) ·D
]

(2.75)

= m12
2

∫

v2
d3v2 σ1 u

4
[(

1− m12
m2

)
(∂v1 ·w) ·D + m12

m1
w : ∂v1D

]
(2.76)

= m2
12

2m1

∫

v2
d3v2 σ1 u

4 [(∂v1 ·w) ·D +w : ∂v1D] (2.77)

= m2
12

2m1

∫

v2
d3v2 σ1 u

4 ∂v1 · (wD) (2.78)

The case of interest here is when species 1 corresponds to electrons and species 2 to ions, with
ions being much heavier than electrons. In this case, the second term of D can be neglected
because m2 � m1, and ions are much slower than electrons, so fi ≈ ni δ and u ≈ ve. Finally,

C(fe) = ni
2 σ1 (ve) v4

e ∂ve ·
v2
e I − ve ⊗ ve

v3
e

∂vefe, (2.79)

where the notation σ1 (ve) emphasises that σ1 depends on u which has been approximated by ve
here. The usual Landau collision operator is then obtained by using the Coulomb momentum
cross-section eq. (2.19), in which the logarithmic term is treated as constant, like before, so
σ1 = 4π (q1 q2/m12 v2

e)2 ln Λ, which yields

C(fe) = 2π Z
2 e4 ni
m2
e

ln Λ ∂ve ·
v2
e I − ve ⊗ ve

v3
e

∂vefe. (2.80)

This is the Landau collision operator that is the basis of what is used in Fokker-Planck codes.
The precise expression may vary from code to code. It might also be based on a development of
this operator in Legendre polynomials.

This calculation has shown why the momentum transfer cross-section has to be modelled in
order to derive the Landau collision operator. We have shown in section 2.1 that this modelling
requires modelling the potential between two particles, which is not straightforward in a plasma
where both long-range collective effects and close-range effects have to be included. As a result,
Fokker-Planck simulations that are based on eq. (2.80) cannot get insight on the Coulomb loga-
rithm, which arises from σ1. This is why we resorted to Classical Molecular Dynamics simulations,
where collision processes are inherently taken into account.

55



2.4. Landau collision operator

56



Part II

Classical Molecular Dynamics
Simulations

57





Chapter 3
Molecular Dynamics of low-Z plasmas
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3.1. Introduction

Classical molecular-dynamics simulations (CMDS) have been conducted to investigate one of
the main mechanism responsible for absorption of radiation by matter namely stimulated inverse
bremsstrahlung. CMDS of two components plasmas (electrons and ions) for a large range of
electron densities, electron temperatures, for ionization Z = 1, were carried out with 2 million
particles using the code lammps. A parameterized model (with 6 adjustable constants), which
encompasses most theoretical models proposed in the past to quantify heating rate by stimulated
inverse bremsstrahlung, serves as a reference for comparison to our simulations. CMDS results are
precise enough to rule out elements of these past models such as coulomb logarithms depending
solely on laser pulsation ω and not on intensity. The 6 constants of the parameterized model
have been adjusted and the resulting model matches all our CMDS results and those of previous
CMDS in the literature.

3.1 Introduction

Inverse bremsstrahlung (IB) is the process of absorption of a single photon by a free electron in
the field of another particle (ion or neutral atom). It is the main source of absorption of laser light
by matter for intensities less than 1016 W/cm2. It is far from being the only effect responsible
for laser absorption directly or indirectly. Non resonant ponderomotive effects (laser beam self-
focusing, filamentation) or resonant ponderomotive effects (Brillouin, Raman, parametric decay
and oscillating two-stream instabilities, two plasmon decay, Langmuir cascade, two phonon decay
of phonon, etc) also contribute to absorption in their own way but IB is the most important.

This process of IB heating is modeled in several different ways in the extensive literature on
the subject. Theoretical works are either based on a classical approach [Brantov et al., 2003,
Dawson & Oberman, 1962, Grinenko & Gericke, 2009, Johnston & Dawson, 1973, Jones & Lee,
1982, Landau & Teller, 1936, Mulser et al., 2000, Silin, 1965, Skupsky, 1987] or upon a quantum
approach[Brantov et al., 2003, Grinenko & Gericke, 2009, Kull & Plagne, 2001, Moll et al., 2012,
Polishchuk & Meyer-Ter-Vehn, 1994, Rand, 1964, Schlessinger & Wright, 1979, Shima & Yatom,
1975, Silin & Uryupin, 1981, Skupsky, 1987]. In both cases, there does not seem to be a general
agreement, and quantum model do not converge to the classical limit for vanishingly small values
of ~. Few studies, such as [Brantov et al., 2003, Bunkin et al., 1973, Seely & Harris, 1973], even
go so far as to take a critical look at some of them.

In order to challenge these theoretical results, numerical evaluations of IB heating has been
carried out but mostly using Fokker-Planck (FP) simulations [Ersfeld & Bell, 2000, Le et al.,
2019, Matte et al., 1984, Weng et al., 2006, 2009]. These simulations require collision kernels to
be specified which amounts to making assumptions at microscopic level.

Ab initio classical molecular dynamic simulation (CMDS) of IB are very few in the recent
literature and this is one of the objective of this article, to strengthen the share of these CMDS
with present high-performance-computing capabilities. The second objective is to provide a lit-
eral expression for the IB heating d(kBTe)/dt and, as a corollary, for the electron-ion collision
frequency in the IB process νIB

ei (there is no reason it should be the same as the electron-ion
collision frequency within other mechanisms such as temperature relaxation νT

ei [Dimonte & Dali-
gault, 2008] or velocity relaxation νV

ei [Shaffer & Baalrud, 2019], both of which will be described
hereafter).

There are several different such expressions in the literature and we are now at a point where
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Chapter 3. Molecular Dynamics of low-Z plasmas

it is possible to reliably discriminate these expressions by use of microscopic molecular dynamic
simulations. Such a literal expression is of the essence when it comes to simulate the interaction
of intense radiations with matter within complex flows using radiation-hydrodynamics codes
[Lefebvre et al., 2018, Marinak et al., 2001, Zimmerman & Kruer, 1975], particle-in-cell codes
[Derouillat et al., 2018, Lefebvre et al., 2003] or Fokker-Planck codes.

Most theoretical expressions of inverse-bremsstrahlung heating in the literature can be sum-
marized in a single parameterized expression that will be presented in section 3.2. Numerical
simulations dedicated to IB absorption in the literature will be presented in section 3.3. The
classical modeling of a two component plasma described in our simulations and the description
of our CMDS will be the subject of section 3.4 and section 3.5. Finally, results of our CMDS
on situations without oscillating electric field will be compared to existing results [Dimonte &
Daligault, 2008, Shaffer & Baalrud, 2019] to ascertain our simulation settings in section 3.6 and
the determination of the adjustable constants of the parameterized model will be carried out in
3.7.

3.2 Theoretical modeling for inverse bremsstrahlung absorption
in the literature

Classical solutions to this problem have been provided through different techniques in the lit-
erature. The oldest was by way of ballistic modeling as in Landau [Landau & Teller, 1936] or
Mulser [Mulser et al., 2000] where one considers the trajectory of one single electron in the field
of a single screened scattering center. The second technique makes use of Vlasov equation, for
irradiation frequencies near the plasma frequency, as in the work of Dawson, Oberman and John-
ston [Dawson & Oberman, 1962, Dawson, 1964, Johnston & Dawson, 1973]. The last techniques
consists in solving the Boltzmann equation with a Lenard-Balescu collision term in order to get a
solution for a wider range of frequencies and intensities as in Silin’s work [Silin, 1965]. This last
method was also used by Jones and Lee [Jones & Lee, 1982] to discuss the evolution of the elec-
tron velocity distribution in a plasma heated by laser radiation. In a nutshell, these theoretical
works all led to similar template formulas of the electron heating rate by inverse Bremsstrahlung

d(kB Te)
dt = 2

3ne
ω2
p

c ω2 ν
IB
ei I (3.1)

where I and ω are respectively the radiation intensity and pulsation and νIB
ei is the electron-ion

collision frequency for the IB process that is proportional to a Coulomb logarithm, ln(ΛIB
ei ) as

can be seen in the general formula eq. (3.2).
In this classical context, there is, of course, no dependence upon ~. All these analytical

expressions have been derived assuming that electrons velocity distributions are Maxwellians.
Collective effects are hidden in the Coulomb logarithm which is generically of the form ln(Λ) =
ln(bmax/bmin) where, in the absence of irradiation (I = 0), bmax corresponds to the range of
collective interactions (of order the Debye length λD =

√
ε0kBTe/e2ne) and bmin corresponds to

the shortest distance accessible to these charged particles (of order either the closest distance
of approach, also known as the Landau length R = Z e2/4πε0 kBTe, or the de Broglie length).
The fuzziness of the expression of ln(Λ) is characteristic of theoretical calculations or reasonings
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3.2. Theoretical modeling for inverse bremsstrahlung absorption in the literature

where collective effects of all particles on all other is not properly addressed from first principles
and relies on the assumption that it can, in a sense, be captured by studying the motion of
one electron around one ion screened by the mean field of all other charged particles (all other
electrons and ions) which is largely disputable.

The Coulomb logarithm in the absence of laser irradiation is well known for the temperature
relaxation and velocity relaxation. It has been derived from first principles using dimensional
regularization [Brown et al., 2005] and was confirmed to a very good accuracy by CMDS [Dimonte
& Daligault, 2008, Shaffer & Baalrud, 2019]. On the contrary, for a plasmas submitted to laser
irradiation, none of the theoretical studies listed in previous sections [Brantov et al., 2003, Dawson
& Oberman, 1962, Johnston & Dawson, 1973, Jones & Lee, 1982, Landau & Teller, 1936, Mulser
et al., 2000, Silin, 1965, Skupsky, 1987] give any precise formulation of ln(Λ) apart from the
generic ln(bmax/bmin). Nevertheless, interesting suggestions have been pushed forward that can
be put to the test of microscopic simulations.

Here we propose a parameterized formulation of the inverse-Bremsstrahlung electron-ion col-
lision frequency with six constants, (Cabs,η, ε`,C`,η`, δ) which correspond to variations found
in the literature, to be adjusted by CMDS

νIBei = Cabs ν0[ne, Teff(η), Z] ln(ΛIBei ), (3.2)

ν0[ne, Te, Z] = 4
√

2π e4

3 √me (4πε0)2
ne Z

(kBTe)3/2 , (3.3)

Teff(x) = Te + x me v
2
E/kB, (3.4)

ΛIBei =


ε` +C`

4π ε
3
2
0 (kBTeff(η`))3/2

Z e3 √ne



(
ωp
ω

)δ
, (3.5)

where

v2
E =

(
eẼ

meω

)2

= e2 (I λ2)
2π2 ε0 c3m2

e

(3.6)

is the quiver velocity which is the maximum velocity of the oscillating motion of free electrons
due to the electric field time variation assumed to be monochromatic and linearly polarized of
the form E(t) = Ẽ cos(ω t + Φ)n where n is a unit vector along the polarization direction (in
section 3.7.2 other polarizations will be considered).

The usual classical value of Λ = bmax/bmin given by the ratio of the Debye length λD and the
Landau length R is

Λ = 4π ε
3
2
0 (kBTe)3/2

Z e3 √ne
. (3.7)

It is found in eq. (3.5) that can be recast as

ΛIBei =
[
ε` +C`

bmax
bmin

] (
ωp
ω

)δ
(3.8)

and where Te should be replaced by Teff defined by eq. (3.4). The usual classical value of Λ is
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recovered if one set ε` = 0, C` = 1 and δ = 0.
The advantage of this parameterized formulation is that comparison with results of the liter-

ature can be made easier. In the following table A, values of these six parameters for different
references in the literature are compared in various regimes

Ref Validity Cabs η ε` C` η` δ

[Dawson & Oberman, 1962],
[Johnston & Dawson, 1973] LiHf 1 0 0 1 0 1

[Silin, 1965] LiLf 1 0 0 1 0 0
[Silin, 1965] LiHf (see section 3.9) 1 0 0 1 0 1
[Silin, 1965] HiLf (a) 0.221 0 1 0 0
[Jones & Lee, 1982] Hi (b) 0.221 0 1 0 1
[Skupsky, 1987] Hf 1 0 0 1 0 1
[Mulser, 2020] Hf 1 - 0 1 1/4 1
[Mulser et al., 2000] Hf 1 - 0 1 1 1
[Brantov et al., 2003] Hf 1 1/6 0 1 0 1
[Dimonte & Daligault, 2008],
[Daligault & Dimonte, 2009] I = 0 1 0 1 0.7 0 0

Table A: In this table, L and H stand for Low and High, i and f stand for intensity and frequency (for
example, LiHf means Low intensity High frequency). This is an illustration of the fact that there are many
different classical models in the literatures (different constants), and the list is not exhaustive. (a) grows
like (ln (vE/2vth) + 1) where vth =

√
kBTe/me, (b) grows like (ln (vE/vth)). More details on the constants

reported in this table can be found in section 3.10.

In the remainder of this chapter, the goal is to use molecular dynamic simulations to reach clear
conclusions regarding values of these constants in order to discriminate between these models.

3.3 Numerical simulations dedicated to inverse bremsstrahlung
absorption in the literature

In the molecular dynamic simulations described in this paper, a plasma is described at the atomic
level. Every particles of a plasma, electrons and ions, are described classically by their position
and velocity and evolve as time goes by with Newton’s first law.

The physical quantities we are interested in – the electron-ion frequency, and in particular,
the so called Coulomb logarithm that describes the manifestation of collective effects within the
plasma – depend on two length scales that, in the context of weakly coupled plasma, are different
by orders of magnitude. They are commonly called bmin and bmax and correspond, for the former,
to the smaller distances of approach between electron and ions (a two-body effect) and, for the
latter, to the Debye length (a collective effect). Therefore, in order to simulate these collisions and
measure the Coulomb logarithm, it is of paramount importance to describe both scales precisely.
Only molecular dynamics simulations allow for such a description. In the best case scenario, PIC
simulations capture Debye length, bmax, but under no circumstances can they capture bmin.

In the literature, numerical simulations dedicated to inverse bremsstrahlung fall into three
categories : particle-in-cell simulations (PIC), Fokker-Planck simulations (FPS) and molecular
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dynamic simulations (either quantum molecular dynamic simulations, QMDS, or classical molec-
ular dynamic simulations, CMDS).

In the context of inverse Bremsstrahlung, FPS have mostly been used to assess the effect of the
laser on the free electron distribution [Weng et al., 2006, 2009] which could turn from Maxwellian
to super Gaussian of order 5 [Langdon, 1980] when the electron-electron collision frequency is
much less that electron-ion collision frequency so that electron-electron collisions are not frequent
enough to preserve the equilibrium shape. FP codes resolve the Boltzmann equation for single-
particle velocity distribution function but it is well known that the collision source term in this
equation depends on the two-particle distribution function which in turn depends on the three-
particle distribution function and so on. This is the BBGKY hierarchy problem. In order to get
a practical collision term it is mandatory, in this context of FP simulations, to make assumptions
on the closure of this collision term [Langdon, 1980]. Therefore, these FP simulations are not
able to let us gain full insight on microscopic quantities, such as collision-frequency or absorption,
for their results rely heavily on the assumptions made on these very processes. PIC simulations
are also plagued with the same issues.

The first CMDS in the context of IB [Pfalzner & Gibbon, 1998] was carried out for strongly
coupled plasmas and high intensity drive (non linear) because it is a situation that does not
require to many particles (between 20000 and 40000 limited by the computational power back
in 1998) to get proper results. Pfalzner and Gibbon were able to produce deformation of the
free electron distribution as predicted by Langdon [Langdon, 1980], though not in Langdon’s
condition which is Z � 1, and heating rate for Z = 1 for a coupled plasma of Γ = 0.1 and for
vE/vth from 0.2 to 10.

In [David et al., 2004], David, Spence and Hooker carried out many CMDS (with approxi-
mately 16000 particles) resulting in several points of heating rate (dTe/dt) versus laser intensity
(from 1012 to 1017 W/cm2) for different plasma states (ne, Te) and compared their results to Pol-
ishchuk and Meyer-Ter-Vehn’s quantum model [Polishchuk & Meyer-Ter-Vehn, 1994] but had to
propose an alternative expression to get an agreement. We tested these numerical results against
our parameterized model and showed that they are in agreement with our classical model.

The response of moderately to strongly coupled plasmas to a time varying electric field solic-
itation was studied using CMDS [Morozov et al., 2005]. In order to mimic quantum behaviors,
effective potentials, such as Deutsch or Kelbg potentials, were used as an alternative to Coulomb
potential. These potentials were not meant to avoid spurious numerical effects, as in [Kuzmin
& O’Neil, 2002] because of the divergent nature of the Coulomb potential at vanishingly small
radii, but they depended on De-Broglie wavelengths in order to capture, in an effective way, the
quantum delocalization of particles that are classically described as point-like.

Although not directly related to IB, CMDS reported in [Daligault & Dimonte, 2009, Dimonte
& Daligault, 2008] were the starting point of this work and are relevant to our parameterized
model. These articles report on CMDS used to measure ln(ΛTei) with respect to a parameter g
(which is nothing else than Γ2/3 where Γ is the plasma parameter). An almost perfect agreement
was found when compared to the BPS theory [Brown et al., 2005]. For the sake of complete-
ness, we have found the same agreement with our own CMDS against Dimonte and Daligault’s
[Daligault & Dimonte, 2009, Dimonte & Daligault, 2008] and against BPS (cf. Fig. 3.4 in the
present article). The analytical expression of the electron-ion collision frequency in the context
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of temperature relaxation is

νTei = ν0[ne, Te, Z] ln(ΛTei), (3.9)

ΛTei = 1 + 0.7 4π ε
3
2
0 (kBTe)3/2

Z e3 √ne
, (3.10)

which, in the parameterized formalism, would correspond to Cabs = 1, η = η` = 0 (for there is
no quiver velocity in this context), ε` = 1 and C` = 0.7.

In [Shaffer & Baalrud, 2019], Shaffer and Baalrud carried out velocity relaxation CMDS
and found that the symmetry of charge was broken on the collision frequency at moderately to
strong coupling. They found that for weakly coupled plasmas, CMDS with ions and positrons
(positively charged electrons) and CMDS with ions and electrons (with statistically equivalent
initial conditions) will evolve in a similar manner (statistically speaking). This is something we
have found with or without electric field in our own CMDS. We have also checked that in the
context of velocity relaxation, νVei(g) = νTei(g) which means, in weakly coupled plasmas, from a
CMDS stand point that ΛTei = ΛVei (cf. Fig. 3.4 in the present article).

In this article, we will only deal with Z=1 plasmas. Higher Z plasmas will be the subject of a
future publication where the velocity distribution alteration, as it was first predicted by Langdon
[Langdon, 1980], will be central.

3.4 Classical modelling of a two component plasma

3.4.1 Equations of motion

Describing a classical plasma consists in solving the classical equations of motions for all particles
in the plasma submitted to their mutual Coulomb interactions. In the actual simulations, a soft
core Coulomb potential as been used (instead of the 1/r potential) to avoid numerical problems,
whose discussion is deferred to section section 3.5.2 (Simulations Settings), without affecting
physical results.

As long as the velocities involved are much less than the celerity of light c, the generated B-field
is not strong enough to counteract onto the motion. In the context of inverse-Bremsstrahlung,
one has to add the effect of an external varying electric field (corresponding to the laser). One
can also neglect the electric field of the black-body radiation. Therefore, the equations of motions
are as follow

me
dv(α)

e (t)
dt = − e2

4πε0

∑

β,α

nαβ

|r(α)
e − r(β)

e |2
+ Z e2

4πε0

∑

b

nαb

|r(α)
e − r(b)

i |2
− eE(r(α)

e (t), t), (3.11)

mi
dv(a)

i (t)
dt = Z e2

4πε0

∑

β

naβ

|r(a)
i − r

(β)
e |2

− Z2 e2

4πε0

∑

b,a

nab

|r(a)
i − r

(b)
i |2

+ Z eE(r(a)
i (t), t), (3.12)

where me and mi are the mass respectively of one electron and one ion (only one population
considered), Z is the charge of an individual ion (+Z e), r(α)

e and v(α)
e are the position and

velocity of electrons (labeled with greek letters α, β, · · · ) and r(a)
i and v(a)

i are the position
and velocity of ions (labeled with roman letters for a, b, · · · ). Unit vectors nxy are directed
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from particle (x) to particle (y) (where x and y can be the label of an electron or of an ion).
These are the exact equations taken into account in the forthcoming classical molecular dynamic
simulations (CMDS) of a classical two components plasma.

3.4.2 Nondimensionalization of the equations of motion for electrons

The following discussion is purely theoretical and aims to determine the important dimensionless
parameters of the problem.

Owing to the mass difference between electrons and ions, me � mi, the electrons can be
assumed to collide on immobile ions to a very good approximation as long as

k Ti/mi � k Te/me. (3.13)

In this limit, for theoretical purposes only and for the following reasoning, ions positions (ri) can
be considered frozen (time independent) in eq. (3.11). Keep in mind that our CMDS resolves
both eqs. (3.11) and (3.12) without any approximations.

The characteristic geometrical length scale of a plasma is the typical distance between ions `,
the characteristic velocity is the thermal velocity vth and therefore the typical duration τ should
be such that

` = n
−1/3
i , (3.14)

vth =
(
kB Te
me

) 1
2
, (3.15)

τ = `

vth
, (3.16)

where ni is the ion density. Therefore, if one rescales lengths with ` and velocities with vth,
every plasmas will end up with typical distances between ions equal 1 and velocity distribution
of electrons width of 1 as well. What happens to other length scales, such as those related to e-e,
i-i and e-i radial distributions functions, or time scales such as inverse of collision frequencies,
depends entirely upon non dimensional parameters to be found in the remainder of this section.

The electric field is assumed to be a pure monochromatic oscillation with pulsation ω = 2π c/λ
(where λ is the actual wavelength of the laser) and it is further assumed to be spatially uniform.
This is compatible with our goal to evaluate, in a numerical experiment, values of electron-ion
frequency in IB processes which are local physical quantities. Assuming the electric field is
uniform amount to saying that the vacuum celerity of light is infinite. Indeed, if ω is fixed and
c = +∞ therefore k̃ = ω/c = 0 that is to say, the wave length in this limit of c, λ̃ = +∞. Have
we had less particles in our CMDS we could have claimed that the actual laser wave length, λ, is
much larger than the simulation domain size L but this is not quite correct for 106 particles when
one explores electronic densities as low as 1018 cm−3 for L becomes as large as 500 nm. We will
consider that the actual E(x, t) only depends on t within the restricted simulation domain (the
electric field is spatially uniform within that simulation domain). This is the same hypothesis
made by all theoretical developments to model inverse bremsstrahlung absorption [Brantov et al.,
2003, Dawson & Oberman, 1962, Johnston & Dawson, 1973, Jones & Lee, 1982, Landau & Teller,
1936, Mulser et al., 2000, Silin, 1965, Skupsky, 1987]. Finally, the polarization can be either linear,
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elliptical or circular such that

E(t) = E1 cos(ω t)n1 + E2 sin(ω t)n2 , (3.17)

with n1 and n2 two orthonormal vectors perpendicular to the direction of propagation.
Therefore, if R = ` R̃, r = ` r̃, v = vth ṽ, t = τ t̃ (where τ = `/vth) and E = (2 I/c ε0)1/2 Ẽ,

eq. (3.11) can be recast as

dṽ(α)
e

dt̃ = gcoul


 1
Z

∑

β,α

nαβ

|r̃(α)
e − r̃(β)

e |2
−
∑

b

nαb

|r̃(α)
e − r̃(b)

i |2


+ gosc Ẽ(gω t̃), (3.18)

where

gcoul = Z e2 n
1/3
i

4πε0 k Te
, (3.19)

gosc = e

n
1/3
i k Te

√
2 I
c ε0

, (3.20)

gω = ω τ. (3.21)

This very simple analysis shows that plasmas with different temperatures, densities, laser sources
may look different but as long as they have the same Z, gcoul, gosc and gω, they are similar, that
is to say, they will evolve identically when rescaled by the right length (`), velocity (vth) and time
(τ) factor.

If eq. (3.18) is integrated with respect to nondimensional time t̃, the velocity evolves as

ṽ(α)
e (t̃) = ṽ(α)

e (0) + gcoul

∫ t̃

0


 1
Z

∑

β,α

nαβ

|r̃(α)
e − r̃(β)

e |2
−
∑

b

nαb

|r̃(α)
e − r̃(b)

i |2


 dτ̃ + gosc

gω
Ẽ

(−1)(gω t̃).

(3.22)

The first term in the right-hand-side of the equation is still piloted by gcoul but the second term,
concerning the electric field, is now piloted by gosc/gω which is exactly vE/vth.

Therefore, with no laser, I = 0 or gosc = 0, all nondimensionalized physical quantities (such
as a coulomb logarithm) should only depends on Z and gcoul (which is nothing else than the
plasma parameter). This is indeed the case as reported from molecular dynamic simulations
of temperature relaxation [Daligault & Dimonte, 2009, Dimonte & Daligault, 2008] (where g in
these references is proportional to g3/2

coul) and from theoretical studies [Brown et al., 2005].
With radiation, meaning gosc , 0, eq. (3.22) tells us that every nondimensionalized physical

quantities that depends on velocity distribution (such as collision frequencies or absorption rate),
should depend on Z, gcoul and gosc/gω = vE/vth and not on Z, gcoul and gosc as eq. (3.18) might
have suggested. This will be highlighted in section 3.7.2.

3.5 Molecular dynamic simulations of a TCP with lammps
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3.5.1 lammps code

lammps [Thompson et al., 2022] stands for Large-scale Atomic/Molecular Massively Parallel Sim-
ulator. It is a PPPM (Particle-Particle-Particle-Mesh algorithm to account for periodic domain)
code that has been developed at Sandia National Laboratory (New Mexico) with computational
cost O(N logN), where N is the number of particles simulated, as opposed to a PP (Particle-
Particle) code with higher computational cost O(N2).

The computational cost of the simulations limits the simulation domain to a small fraction
of the size of a real plasma. This is mitigated by simulating a cube with periodic boundary
conditions in all three directions, which is a valid approximation provided the Debye sphere of a
given particle does not intersect with the Debye sphere of its replicas.

That has two consequences. The first and most obvious one is the fact that a particle going
out of the domain through a boundary is immediately reintegrated to the domain through the
opposite boundary with the same velocity. This is the reason why the number of particles in the
domain will remain constant as time goes by along with total energy. This is the characteristic of
a microcanonical simulation. The second consequence has to do with the interaction of particles.
For instance, if a particle A interacts with a particle B in the domain, it also interacts with its
own infinite replicates (all the As) and the infinite replicates of particle B in the periodic domains.
This infinite sum can be efficiently carried out by the technic of Ewald summation. The way this
is handled in PPPM molecular dynamic simulations [Griebel et al., 2007] is by optimizing this
Ewald summation using a fine regular mesh in the CMDS domain that will be used to calculate
the long range part the electric potential with periodic replicates using fast-Fourier-transform
and the short range part of the potential by simply adding up the contributions of neighboring
particles.

3.5.2 Simulations settings

The numerical domain is defined by a periodic box of size L×L×L with Nion ions of charge +Z e
and Z Nion electrons of charge −e. Here, we have tested both like-charges simulations (positive
electrons and positive ions, as in [Dimonte & Daligault, 2008]) and opposed-charges simulations
(negative electrons and positive ions) and found no difference for weakly coupled plasmas as
reported in [Shaffer & Baalrud, 2019].

In CMDS, close encounters between negative electrons and positive ions, which are very
unlikely for weakly coupled plasmas but can happen on very few occasions, would produce a
non conservative energy event that would ruin the outcome of the simulation. In order to avoid
these events, the potential used in our CMDS simulations with lammps is a soft-core (SC)
potential[Kuzmin & O’Neil, 2002]

VSC(r) = q1 q2
4πε0

1√
r2 + a2 (3.23)

which behaves as a pure Coulomb potential when r � a and goes to a finite value q1 q2/(4πε0 a)
when r � a (corresponding to a vanishingly small value of the electric field derived from that po-
tential when r � a). Other soft core potentials exist in the literature, such as q1 q2

4πε0
1
r

(
1− e−r/a

)
,

but they are equivalent for the most part. If the soft-core radius a is small enough but non zero,
it allows most particles to feel a pure Coulomb potential (because they are at a distance of one
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another much greater than a most of the time) but for those few particles that venture too close
to an opposite-charge particle (within a distance a) the SC potential leaves them fly-by (no inter-
action at distances much smaller than a). It drastically differs from the pure Coulomb potential
that would increase and would capture both particles into such a small orbit around one another
(with radius � a) that their velocity would skyrocket and violate the time-step limitation of the
simulation. The value

a = 0.1 Å, (3.24)

set in all simulations at Te = 10 eV that will be presented hereafter, was found to be small
enough: it has been checked Fig. 3.1 that results presented do not depend on such a small value
of a up to at least 0.1 Å (this was studied in [Pandit et al., 2017]).
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Figure 3.1: (color online) Evolution of the normalized electron-ion frequency with respect to the soft-
core radius "a" for two plasma states with different electron densities (ne = 1019 and 1021 cm−3) and
for the same electron temperature Te = 10 eV (which is the electron temperature used throughout this
article). Each point in the viewgraph corresponds to the result of one CMDS. As long as a� bmin, which
is approximately e2/(4πε0kBTe) in a classical treatment, simulations provide results that do not depend
upon "a" with νei = νei(0) (νei(0) = 3.3 ps−1 for ne = 1019 cm−3 and νei(0) = 151 ps−1 for ne = 1021

cm−3). For a ≥ bmin, the electron-ion frequency νei(a) decreases like − log(a) as a increases (it is a linear
behavior in a semilog axis) because then, in the Coulomb logarithm, bmin is replaced by the soft-core radius
"a" which becomes the lowest accessible length scale.

Our simulations are parameterized by the number of ions Nion allowed to evolve (106 in our
simulations), by Z, the degree of ionization of ions (one variety of ion with exactly one degree of
ionization in our simulations, at variance with real life plasmas where there are several varieties
of ions, each with possibly several degrees of ionization) and by ne, the electron density. These
three parameters defined the size L of the numerical domain by

L =
(
Z Nion
ne

)1/3
. (3.25)

Initially, the positions of electrons and ions are randomly distributed throughout the sim-
ulation domain with a uniform law. Moreover, velocities of these particles are also randomly
distributed with a Maxwellian distribution, at Te for electrons and Ti for ions. Of course, these
initializations are not physical since the actual radial distribution function g(r), also known as
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3.5. Molecular dynamic simulations of a TCP with lammps

the pair correlation function, is not constant even in a weakly coupled plasma. Therefore, before
each simulation, the code is launched for a period during which particles equilibrates and spatial
and velocity distributions converge towards their physical state. The spatial distribution of elec-
trons and ions becomes such that the Coulomb potential between ions and electrons, Vei, reaches
a minimum. The usual procedure is to apply a thermostat at the target electronic temperature
T

(0)
e (it is a canonical simulation) and let the system evolve until Vei reaches a minimum. Here,

we have found that a well chosen succession of microcanonical simulations (MS) would get us
faster to the equilibrium spatial distribution at T (0)

e . This is just an empirical observation and
in no way an explanation. The way we proceed is as follows. The first of these MS starts at the
target electronic temperature T1(0) = T

(0)
e and, as time unfold, Te increases while Vei decreases

and we terminate this first MS at the time τMS when the electron temperature as increased by
10%: T1(τMS) = Te(τMS) = 1.1 × T (0)

e (this threshold of 10% was found to be a good numerical
compromise). The second MS starts with the resulting spatial distribution of the first MS but
with a velocity distribution rescaled at T2(0) = T

(0)
e and it is carried out for the same amount

of time (τMS) and it results that T (0)
e < T2(τMS) < T1(τMS). The same procedure is repeated

several times. The n’th iteration starts with the resulting spatial distribution of the (n − 1)’th
and with a velocity distribution rescaled at Tn(0) = T

(0)
e and, after a time τMS, it results that

T
(0)
e < Tn(τMS) < Tn−1(τMS) < · · · < T1(τMS) = 1.1 × T

(0)
e (where n is the number of time

this procedure is repeated). As n increases, Te varies less and less with time (dTe/dt is smaller
and smaller at each successive MS) because Vei is closer to its equilibrium value. After enough
iterations, the resulting spatial distribution corresponds to Vei that has relaxed to a minimum for
Te = T

(0)
e .

A quantity defined in terms of quadrupole moments of the plasma distribution is introduced
in section section 3.6.1 in order to monitor the evolution of the spatial distribution quantitatively
in a different way than by inspecting the evolution of the inter-potential.

In order to accurately capture the physics of the plasmas of interest, simulations are con-
strained by a number of assumptions. First, relativistic effects are not included, so the electron
temperature should not be too high (kB Te � me c

2=511 keV) which is always satisfied in ICF
plasmas.

Furthermore, for the periodic boundary condition not to affect the physics of the plasma, every
particle should be screened from its replicas, i.e. the size of the domain should be greater than
twice the Debye length of the particles. As long as Ti < Z̄Te, which will always be the case in the
configurations we consider, the Debye length of the ions is smaller than that of the electrons, so
the most constraining condition is 2λD < L, that is to say, 2(ε0 kB Te/ne e

2)1/2 < (Z Nion/ne)1/3

which translates roughly to

Nion >
1

2π (Z + 1)3/2
1
g
. (3.26)

The smaller g (coupling parameter), the larger the number of particles in the simulation ((Z +
1)Nion), the more computationally costly the simulation. One can then evaluate the cost of one
time iteration depending upon the numerical scheme. In a nutshell, it scales likeO(Nion logNion) ∼
g−1 log g for a PPPM code such as lammps.

The time step of a simulation must be such that for all particles and at all time, the variation
of the acceleration of a particle between two time step should not vary more than a fraction
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(� 1) of its value or energy might be lost in the process causing spurious effects. For that
matter, the most stringent constraint is exerted by electrons, which are the lightest and most
mobile particles (compared to the heaviest ions). On average, they travel at velocities of order
vth ∼ (kB Te/me)1/2. The distance of closest approach to one another or to an ion is given by
bmin ∼ e2/4πε0 kB Te. The time step should then be of order dt ∼ bmin/vth, that is to say

dt ∼ e2√me

4πε0 (kB Te)3/2 (3.27)

The purpose of all our simulations is to precisely quantify the time of the exponential re-
laxation (either for temperature of for drift velocity) that is to say τp,Eei = 1/νp,Eei . Therefore,
simulations must last for a suitable fraction of 1/νp,Eei . This is why, the number of iterations
should scale like Np,E

iter ∼ 1/(dt νp,Eei ), that is to say

Np,E
iter ∼

(4πε0 kB Te)3

neZe6 ∼ Z g−2. (3.28)

The computational cost of a simulation is therefore given by the product of the number of itera-
tion, Niter, times the computational cost of one iteration. For a PPPM code such as lammps, it
scales like Z g−3 log g. Therefore, the weaker the plasma coupling, the more costly the simulation.

3.6 Simulations without time varying external electric field

Before carrying out MD simulations dedicated to inverse bremsstrahlung (IB), we have tested
the simulation suite on well established configurations. We have been able to reproduce existing
results with our MD simulations in temperature relaxation [Daligault & Dimonte, 2009, Dimonte
& Daligault, 2008] and velocity relaxation [Shaffer & Baalrud, 2019].

3.6.1 Relaxation towards a physical initial plasma state monitored by the
quadrupole moment of charges distribution

One of the key problem in molecular dynamic simulation is to obtain a physical initial plasma
configuration. Velocities of each particles within a simulated plasma at local thermal equilib-
rium at temperature T can easily be randomly generated following the Maxwell distribution
exp(− mv2

2 kB T ). Positions, on the contrary, are more difficult to generate. Charged particles within
a plasma are not randomly distributed following a uniform distribution (where every position
would be equally likely) since like charges tend not to get too close to each other, at variance
with opposed charges. In order to quantify the deviation to spatial uniform distribution one
uses radial distribution functions, gei(r), gii(r), gee(r), defined by the distribution of distances,
respectively, between each pair of electron-ion (ei), ion-ion (ii) or electron-electron (ee).

In practice, particles positions are initially distributed randomly and uniformly in a CMDS.
Simulations (without laser) are then run for a certain duration τeq at the end of which particles
reach their physical spatial distribution with the right radial distribution functions. It is suggested
in the literature [Shaffer & Baalrud, 2019] that τeq should be approximately 60ω−1

pe by inspecting
the evolution of radial distribution functions as time goes by.
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3.6. Simulations without time varying external electric field

Here, we describe a scalar quantity whose time evolution allows to precisely grasp the relax-
ation of the uniform distribution towards the physical distribution. Any positions distribution of
particles {x(α)}α∈[1,N ] (where N is the number of particles in the CMDS, α the label of one given
particle with charge qα) can be characterized by its multipoles, the first two being the dipole
(rank one tensor) and the quadrupole (rank two tensor). The averaged dipole per particle, Di,
is defined by

Di = 1
Ne

∑

α

qα x
(α)
i , (3.29)

and the averaged quadrupole per particle, Qij , is defined by

Qij = 1
Ne

∑

α

qα

(
x

(α)
i x

(α)
j −

δij
3 |x

(α)|2
)
. (3.30)

Hidden in these multipoles is the information of the position distribution which is exactly what
one needs to construct a scalar that could be monitored as time unfolds to observe the relaxation
of positions distribution.

For a two components plasma, one can show that the dipole D evolves as the position of the
centre of mass of the electron. Indeed, since

Di = −e
∑

αe

x
(αe)
i + Z e

∑

αion

x
(αion)
i (3.31)

and since the total momentum of the plasma can be set to zero, for it is a conserved quantity,
then the centre of mass position of the plasma,

me

∑

αe

x
(αe)
j +mi

∑

αion

x
(αion)
i , (3.32)

is constant and can be set to zero without loss of generality. Therefore,

Di = − e

Ne
(1− Zme

mi
)
∑

αe

x
(αe)
i . (3.33)

If Ne is the number of electrons in the domain, the centre of mass of the electron, ∑αe
x

(αe)
i is

roughly in the centre of the domain within non coherent thermal position fluctuations of order
`/
√
Ne decreasing as Ne is increased. Therefore, no interesting information can be extracted

from the only scalar that can be made out of the dipole D which is |D|2.

On the contrary, no such simplifications can be carried out on the quadrupole and the re-
maining question is how to construct an interesting scalar out of the quadrupole tensor ? The
quadrupole is traceless by construction, therefore the trace of the quadrupole, which is the simple
way to get a scalar (that is a rank 0 tensor) from a rank 2 tensor, is not an option. On the other
hand, one can square the quadrupole and get the trace, Tr(Q2) = QkjQkj , which is homogeneous
to a length to the fourth power, that we can divide by the averaged length between electrons for
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instance (n−1/3
e ) at the fourth power to get a non-dimensional scalar,

Q = n
4
3
e Tr(Q2) = n

4
3
e

∑

jk

Q2
kj , (3.34)

that can be compared between different plasma state (cf. Fig. 3.2).
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Figure 3.2: (color online) Evolution of the quadrupole, through Q1/4 (where Q is defined in eq. (3.34)),
with respect to time for four different plasma states, with ne = 1019, 1020, 1021 or 1022 cm−3 initialized
with random position distribution (uniform law) and Maxwellian velocity distribution corresponding to
T =10 eV. The coherent oscillations observed for the four cases correspond to Langmuir waves at different
plasma frequencies ωp =

√
ne e2/ε0me owing to different electronic densities. These coherent waves are

progressively damped as the plasma evolves towards its statistically stationary state.

The behavior depicted on Fig. Fig. 3.2 is typical of a plasma initialized (t = 0) with a
uniform spatial random distribution. For different initial electron densities, but for the same
initial Te = 10 eV, the quantity Q undergoes a damped oscillation at the plasma frequency due
to the fact that the initial spatial distribution is not physical and correspond to a perturbation
with respect to its physical (equilibrium) counterpart. This perturbation is subsequently (t > 0)
damped out through plasma waves. Once these coherent oscillations reach a sufficiently low
level, corresponding to the amplitude of the incoherent thermal fluctuations [that can be seen for
t > 0.01 ps on the blue curve (ne = 1022 cm−3) or for t > 0.04 ps on the green curve (ne = 1021

cm−3) on Fig. Fig. 3.2], one can be confident that the spatial distribution reaches an equilibrium
state.

Once this physical state is reached, it constitutes the initial state of temperature relaxation
(TR) simulations or velocity relaxation (VR) simulations, which were both carried out in order to
compare our methodology with existing, well documented studies, and foremost, it constitutes the
initial state of our inverse bremsstrahlung heating (IBH) simulations which are the core material
of this publication.

3.6.2 Temperature relaxation (TR) and velocity relaxation (VR)

The initialization previously described brings the electrons (at a density ne) and the ions (at a
density ni = Z ne) in a physical configuration (spatial distribution) at Te = Ti (velocity distri-
bution). For (TR) simulations, one additionally requires that Ti be different than Te in order
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3.6. Simulations without time varying external electric field

to measure the relaxation rate to an equilibrium temperature. This can simply be done by only
modifying the ions velocity distribution with Ti > Te or Ti < Te.

If the plasma, initialized this way, evolves freely, both temperatures will eventually equalize
after a while when thermal equilibrium is reached. Both temperatures will reach the common
equilibrium value following and exponential relaxation with time constant of order 1/νTei defined
by the energy electron-ion frequency

νTei = me

mi
ν0 ln

(
ΛTei
)

(3.35)

characterizing the rate at which energy of an electron is significantly altered in its scattered
motion through the plasma.

For a weakly-coupled plasma, the potential energy of the ee, ii and ei interactions are negligible
compared to kinetic energy and, therefore, neTe + niTi is constant throughout the evolution to
a very good approximation. This can be used to eliminate Ti from the evolution equation of the
electron temperature

dTe
dt

= −νTei(Te − Ti). (3.36)

From the fit of the solution of the resulting equation with the Te(t) relaxation time history in the
CMDS, one can deduce, see [Dimonte & Daligault, 2008] for more details, the value of νTei and
therefore that of ln

(
ΛTei
)
for any given value of g (compatible with the constraints of CMDS).
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Figure 3.3: (color online) Evolutions of the drift velocity of a plasma initially at ne = 1019 cm−3, T =10
eV and Z = 1, for 4 different equilibrations where the electron population has initially been given an
ensemble velocity (drift velocity) where vd = 0.1vth. The drift velocity is decreasing in the same way for
the 4 different initializations.

For (VR) simulations, both the relaxed spatial distributions and the velocity distribution for
ions and electrons are left unchanged. Therefore Te = Ti, but a drift velocity component, V d,
is added to every electrons so that the initial velocity of any single electron in a VR simulations
is of the form vα = V d + v′α (α being the label of the electron under consideration) where v′α
is distributed according to a Maxwellian of temperature Te. Therefore, in velocity space, the
distribution of the electrons in the plasma is a Maxwellian shifted by V d from the origin.

With such an initialization, the electrons will flow through the web of ions with a drift velocity
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that will exponentially decrease as time goes by following

dV d

dt = −νVei V d, (3.37)

where

νVei = ν0 ln
(
ΛVei
)
, (3.38)

which characterizes the rate at which the momentum of an electron is significantly modified by
its motion through scattering particles (electrons or ions) in the plasma (cf. Fig. 3.3).

The comparison between eqs. (3.35) and (3.38) shows a factor me/mi between νTei and νVei .
This is due to the fact that a single collision of an electron (small mass) against an ion (large mass,
mi � me) is enough to affect momentum (possible scattering of the electron in any direction) with
almost no kinetic energy variation (elastic scattering) whereas it would require ≈ mi/me > 2000
collisions with ions to modify appreciably its kinetic energy. Molecular dynamics simulations of
temperature relaxation are therefore more numerically costly for they need to be run for much
longer time (mi/me times as long) than velocity relaxation.

Extreme care should be brought to the choice of the initial Vd as compared to vth. In order
for the νVei measured in such simulation to be representative of the actual νVei of a plasma at
local thermodynamic equilibrium (LTE) with Te = Ti = T , the amplitude of the drift velocity
Vd should be much less than vth for the velocity distribution of electrons to appear centred in
the laboratory frame where ions have no ensemble averaged velocity. If Vd were to be of order
or greater than vth, not only would the velocity distribution of electrons in the same reference
frame appreciably be shifted (by Vd) but it would gradually turn into a centred Maxwellian of
larger width for the excess kinetic energy brought by the coherent motion (Vd) would dissipate,
by collisional processes, into internal energy thereby increasing the electron temperature (Te)
significantly.

The drawback is that taking Vd � vth goes against signal to noise ratio. A molecular dynamic
simulation being made of a limited number of particles, every averaged value, and the drift velocity
is no exception, is subjected to statistical fluctuation, which is of order vfluc ∼ vth/

√
Npart for drift

velocities. Thus, in order to comply with the LTE constraint (Vd � vth) and still be able to get
a sound measurement of the time history of Vd, which should not be buried under the statistical
noise (Vd � vfluc), the drift velocity should verify vfluc � Vd � vth to get a sufficient separation
between vfluc and vth. Two orders of magnitude, requires Npart > 104. All simulations presented
in this article are carried out with 106 ions and as many electrons. For all VR simulations, one
used an initial

Vd = 0.3 vth (3.39)

which turned out to be a good compromise between LTE and statistical fluctuations.
From the fit of the solution of that equation with the V d(t) relaxation time history in the

CMDS, one can deduce, see [Shaffer & Baalrud, 2019] for more details, the value of νVei and
therefore that of ln

(
ΛVei
)
for any given value of g (compatible with the constraints of CMDS).

Clearly, our results on Fig. 3.4 show very good agreement with results reported by [Dimonte
& Daligault, 2008] also in agreement with theoretical results by [Brown et al., 2005]. It is found
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that ν(V )
ei satisfies

Cabs = 1, (3.40)
η = 0, (3.41)
ε` = 1, (3.42)
C` = 0.7, (3.43)
η` = 0, (3.44)

which are the values reported by [Dimonte & Daligault, 2008] for ν(T )
ei . This shows that, in

weakly-coupled plasmas, molecular dynamics simulations agree with

ln
(
ΛTei
)

= ln
(
ΛVei
)
. (3.45)

It is to be remembered, here (for ν(V )
ei and ν

(T )
ei ), that Cabs = 1 whereas in our IB molecular

dynamic simulations, even at low intensity, we shall measure that it is consistent with half that
value, but we will come back to that in section 3.7.2.
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Figure 3.4: (color online) Plot of ln
(
ΛE

ei

)
= ln(1 + 0.7/g) from Daligault and Dimonte [Dimonte & Dali-

gault, 2008] in black solid line with colored points from our lammps CMDS with Te = 10 eV and ne varied
in such a way as to span the g axis from 0.006 to 0.2 for VR relaxation. The green point corresponds to
the simulation described in Fig. 3.3.

3.7 Simulations with time varying external electric field dedi-
cated to inverse bremsstrahlung heating

3.7.1 Setup specific to IBH

In our molecular dynamic simulations, the spatial variation of the electric field of the laser is not
taken into account as mentioned in section 3.4.2 and as it is the case in other such CMDS [David
et al., 2004, Pfalzner & Gibbon, 1998]. This means that in no way can our CMDS provide any
information about the dispersion relation for wave vector k , 0.

In such simulations, the laser is mimicked by the uniform (in space) oscillating (in time)
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electric field. The oscillation frequency is such that f` = c/λ`. The effect of the electric field
is to force a coherent ensemble motion of electrons (and ions) with an oscillating velocity whose
maximum is the quiver velocity defined by 3.6 (where ω = ω` = 2π f` is the laser pulsation and
Ẽ the maximum amplitude of the electric field generated by the laser).
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Figure 3.5: (color online) Evolution of the electronic temperature of a plasma initially at ne = 1019 cm−3,
T =10 eV and Z = 1, for 4 different equilibration processes, that is heated with a laser at I = 1014

W/cm2 and λ = 351 nm. The electronic temperature is increasing linearly, in the same way for the
4 different initializations, at a rate of 2.75 ± 0.05 eV/ps. Seed 1 to 4 correspond to different random
series to generate the initial random velocities with maxwellian distribution. The number of equilibration
periods corresponds to the number of time the equilibration process was carried out. Although, "long
time" (≈ 0.025 ps) fluctuation are clearly visible on the 1 equilibration period case, it does not affect the
overall slope of the early linear increase of Te as time goes by compared to 3 equilibration periods.

In the most general case, IBH simulations has to be initialized as VR simulations. Indeed, in
the presence of an oscillating electric field, a coherent motion of the electrons (and ions) is set
into play. There is an oscillating drift velocity created V d(t) that verifies an equation similar to
eq. (3.37) where the electric field sets in as

dV d

dt = −νpei V d + eE(t)
me

, (3.46)

and with initial condition Vd = 0. Assuming a varying electric field of the form eq. (3.17), the
general solution of 3.46 at early time, when Vd is still small (with respect to vth), is V d(t) =
e

me ω
(E1 sin(ωt)n1 − E2 cos(ωt)n2) + V 0

d where V 0
d is a possible constant vector of integration.

Since initially V d(0) = 0, it yields V 0
d = (eE2/me ω)n2. When averaging the resulting V d(t) over

one laser period, it is found that 〈V d(t)〉 = V 0
d = (eE2/me ω)n2 since 〈cos(ωt)〉 = 〈sin(ωt)〉 = 0.

Therefore, once the electric field is set on, there is an immediate drift velocity in the most general
case (when E2 , 0).

This drift velocity relaxes with time but, as it does so, it although heats the electron population
as described earlier in section 3.6.2 in the part concerning VR. This heating interferes with the
one we want to monitor exclusively namely the inverse bremsstrahlung heating. In order to
circumvent that issue, an initial drift velocity on the population of electron has to be enforced to
compensate exactly for the one that will be triggered by the electric field. This is why, initially,
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one must set

V d(t = 0) = −(eE2/me ω)n2. (3.47)

Once this is done, one can clearly appreciate the precision of the evolution of a typical elec-
tronic temperature history of one of our CMDS. In Fig. 3.5, one displays the evolution of a typical
electron temperature time history, Te(t) (calculated by summing the individual kinetic energies of
every electron in the reference frame of the oscillating electric field), for four different CMDS with
the same plasma and electric field parameters but originating from four different initializations
such as described earlier in section 3.6.1. Clearly, with Nion = 106, the thermal fluctuation is
barely noticeable which makes the measurement of the slope, dTe/dt, very precise. This slope,
also known as the heating rate, can be compared to the parameterized model eqs. (3.2) to (3.5)
when included in eq. (3.1).

This is the important information we gather from these simulations in order to display CMDS
measurements versus theoretical models such as those in Fig. 3.6 for instance. In this example,
indeed, each black point corresponds to a full CMDS of Nion = 106 ions and Nelec = 106 electrons
over roughly 106 iterations with time steps around 10−7 ps with ne = 1019 cm−3, Te = 10 eV
with an oscillating electric field corresponding to λ` = 351 nm at intensities ranging from 1013 to
1018 W/cm2.

The heating rate is calculated by a linear regression of the CMDS electronic temperature
history between t = 0 (corresponding to the instant the irradiation is turned on) and t = tfit,
when the temperature deviates from a straight line by more than 0.1 % (calculated from a least
squared fit). Therefore, what we call dTe/dt is the value at early time when (i) Te is still equal to
its initial value (heating over a sufficiently long period may increase that temperature drastically)
and (ii) the velocity distribution is still Maxwellian which may change as time unfold. This is a
deliberate choice to be coherent with assumptions made by all theoretical investigations on IB
heating [Brantov et al., 2003, Dawson & Oberman, 1962, Johnston & Dawson, 1973, Jones &
Lee, 1982, Landau & Teller, 1936, Mulser et al., 2000, Silin, 1965, Skupsky, 1987] (Maxwellian
distribution is one of these important assumptions).

3.7.2 Comparison between CMDS and the parameterized model

On one single set of CMDS, corresponding to a plasma state with ne = 1019 cm−3, Te = 10
eV, where the wavelength of the electric field is fixed to λ` = 351 nm but where the intensity is
varied, it is possible to adjust values of some constants of the parameterized model.

On each viewgraph in Fig. 3.6, the 11 black points correspond to different values of the
intensity evenly distributed in logarithmic scale (2 points per decade). Various settings of the
parameterized model are plotted against our CMDS data. Viewgraph (a) demonstrates that the
value η = 1/6 is, without a doubt, the only one compatible with molecular dynamics results.
Viewgraph (c), also demonstrates that the value η` = 1/6 is the only one compatible with the
CMDS data.

This particular value η = η` = 1/6 is interesting for it is the precise value one would have
found have we assumed that the coherent wiggly motion of electrons due to the electric field
oscillation was like an effective thermal motion that superimpose to the actual random thermal
motion. This idea is not new for it is present in various earlier works such as [Brantov et al.,
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Figure 3.6: (color online) Comparison of CMDS results (for ne = 1019 cm−3, Te = 10 eV and λ` = 351
nm) with the parameterized model for different adjustable constants variations. The important effect of
η is evaluated in figure (a). Figure (b) shows that the effect of ε` and C` are not very important within
these reasonable limits. Figure (c) confirms the small effect of C` but shows the important effect of η`.
Finally, figure (d) shows the importance of δ. The value δ = 1, put to the fore by most classical theories,
is ruled out by CMDS. The default values of the six parameters are those of eqs. (3.48) to (3.53).

2003] and [Faehl & Roderick, 1978]. Since the actual velocity of a single electron is made out
of a random thermal velocity v′ and of a coherent oscillation velocity vE , it can be recast as
v = v′ + vE . From there, one can deduce v2 = v′2 + v2

E + 2v′ · vE and since v′ and vE are
uncorrelated, the average over one cycle of oscillation yields 〈v2〉 = 3 v2

th + v2
E/2 = 3 (v2

th + v2
E/6)

since 〈v′2〉 = 3kBTe/me = 3 v2
th and 〈v2

E〉 = v2
E/2 (average over 1 cycle of a squared sine is half

its amplitude). One recognizes the factor 1/6 between v2
th and v2

E .
Viewgraph (b) of Fig. 3.6, shows that, within reasonable bounds (ε` = 0 and C` = 1 for

most models [Brantov et al., 2003, Dawson & Oberman, 1962, Johnston & Dawson, 1973, Jones
& Lee, 1982, Landau & Teller, 1936, Mulser et al., 2000, Silin, 1965, Skupsky, 1987] and ε` = 1
and C` = 0.7 for [Daligault & Dimonte, 2009, Dimonte & Daligault, 2008]) it is difficult to
discriminate between values of ε` and C` with our CMDS. Nevertheless, one has chosen to fix
ε` = 1 and C` = 0.7 to be coherent with [Brown et al., 2005, Daligault & Dimonte, 2009, Dimonte
& Daligault, 2008] in the limit of vanishingly small intensities.

Viewgraph (d) of Fig. 3.6 displays several settings of the parameterized model with the best
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Figure 3.7: (color online) Points represent CMDS simulations from different origins. Colored points, with
λ = 351 nm, for CMDS from the present study and black points, with λ = 1060 nm, from [David et al.,
2004]. On viewgraph (a), these points collapse with g (exp(ln(Λ))− 1) ∝ (1 + η` v

2
eff/v

2
th))3/2 for η` = 1/6

in black solid line (dashed line corresponds to η` = 1/3 and dashed-point line corresponds to η = 1). On
viewgraph (b), molecular dynamics simulations points collapse with g (exp(ln(Λ))− 1) ∝ (v2

eff/v
2
th))n with

n = 3/2, expected by Mulser [Mulser, 2020, Mulser et al., 2000], that cannot be mistaken with n = 0
which is what most other past models advocate [Dawson & Oberman, 1962, Johnston & Dawson, 1973,
Jones & Lee, 1982, Landau & Teller, 1936, Silin, 1965, Skupsky, 1987].

match to the CMDS data in red and with models from [Johnston & Dawson, 1973, Jones & Lee,
1982, Silin, 1965] in blue and [Skupsky, 1987] in orange. The variation of the parameter δ clearly
shows that δ = 1 is incompatible with CMDS data. The value δ = 0, not content with being
in agreement with CMDS data, is also consistent from a theoretical point of view because one
expect ln(ΛIBei ) to converge towards ln(ΛVei) = ln(ΛTei) in the vanishingly small intensity limit. In
this same limit, if one considers the case δ = 1, one is left with a dependency upon the laser
pulsation in the coulombian logarithm whereas the oscillating electric field is almost turned off
and that does not make sense.

It is possible to inspect the structure of ln(ΛIB
ei ) by dividing off the prefactor eq. (3.3) to the

CMDS heating rate and taking the exponential in order to get ΛIB
ei . This is what was carried

out and reported on Fig. 3.7. On viewgraph (a), the parameterized model was plotted for three
different values of η` (entering the expression of ΛIB

ei in eq. (3.5)) and clearly, even if the collapse
of CMDS points is not perfect – but it should be reminded that it is done on the exponential of
ln(ΛIB

ei ), that is to say the exponential of CMDS results which increases drastically the uncertainty
– viewgraph (a) points toward η` = 1/6. Moreover, viewgraph (b) shows a clear behaviour of ΛIB

ei

in (vE/vth)3 as explained by Mulser in [Mulser, 2020, Mulser et al., 2000]. All points, including
[David et al., 2004], collapse to the I3/2 ∝ v3

E behaviour which strongly support that Te in the
Coulomb logarithm should be replaced by Teff of eq. (3.4).

It should be reminded here that only monochromatic oscillations of the electric field are
considered. The question to be answered here is whether pulsation should enter the formal
expression of the heating rate through the quiver velocity or could it steps in on its own, as
reported by many publication starting from [Dawson & Oberman, 1962, Dawson, 1964]. This
idea is encapsulated in the constant δ of the parameterized model that is non-zero in many
publications as described in Table table A. In order to get an answer to that interrogation, several
CMDS have been carried out in the present study (Fig. 3.8), maintaining the initial plasma state
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Figure 3.8: (color online) (a) Heating rate versus pulsation in unit of plasma pulsation (ωp) and (b)
adimensionalized heating rate versus adimensionalized quiver velocity. Colored dots correspond to CMDS
results at a fixed intensity of 1015 W/cm2 for various laser pulsation (corresponding to wavelengths ranging
from 35 to 3500 nm). Solid lines correspond to the best parameterized model with δ = 0 and dashed line
with δ = 1.

and the intensity of the irradiation constant and varying only its pulsation (for λ ranging from
30 nm to 3000 nm). In viewgraph (a) results are presented as a function of ω/ωp and shows that
all points considered here are under-critical. This set of simulations, again, strongly supports
δ = 0 and viewgraph (b) shows that variations with respect to ω only shows up through vE/vth
as expected from nondimensionalized equations in Section 3.4.2.

0 10 20 30 40 50
polar(degree)

188.8

189.0

189.2

189.4

189.6

189.8

dT
e/d

t(e
V/

ps
)

Figure 3.9: Effect of polarization on the heating rate for a plasma at ne = 1020 cm−3 and Te = 10 eV and
for an intensity of 1015 W/cm2 at 351 nm. The variations observed are of statistical nature due to the
finite number of particles in our simulations. As θpolar is varied, the heating rate does remain constant to
within 0.15 % for CMDS carried out with 106 ions.

Effects of polarization on heating at a given intensity has also been investigated in the present
study (Fig. 3.9). From eq. (3.17), the expression of 〈E2(t)〉, where 〈 〉 is the time average over one
laser period, is E2

1〈cos2(ωt)〉 + E2
2〈sin2(ωt)〉 and since 〈cos2(ωt)〉 = 〈sin2(ωt)〉 = 1/2, it follows

〈E2(t)〉 = (E2
1 +E2

2)/2. Let us define, θpolar such that E1 = E0 cos(θpolar) and E2 = E0 sin(θpolar).
This yields 〈E2(t)〉 = E2

0/2 whatever θpolar. Therefore, by varying θpolar one spans all possible
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Figure 3.10: (color online) The colored dots represents initial dTe/dt versus laser intensity for plasmas
initially at Te = 10 eV at different electronic densities (1018, 1019, 1021, 1021 and 1024 cm−3) extracted
from our CMDS along with CMDS of David et. al. [David et al., 2004] that are represented by black
squares, triangles and stars. Solid colored curves represent the parametrized model for a wavelength of 351
nm, with adjustable constants fixed to the values reported on eqs. (3.48) to (3.53), at the corresponding
ne and Te. Dashed black curves represent the parametrized model for a wavelength of 1060 nm (which is
used in [David et al., 2004]), with adjustable constants fixed to the exact same values eqs. (3.48) to (3.53).

polarizations while keeping the intensity constant. A rectilinear polarization corresponds to
θpolar = 0◦, a circular polarization corresponds to θpolar = 45◦ and all other elliptical polarizations
range between 0 and 45◦. The result in Fig. 3.9 shows that there is no dependence of the heating
rate upon polarization as seen from CMDS, at least, for low Z plasma.

ne (cm−3) Te (eV) λ (nm) I (W/cm−2) Cabs data
1018 10 351 varI 0.48 Fig. 3.10
1019 10 351 varI 0.56 Fig. 3.10
1020 10 351 varI 0.60 Fig. 3.10
1021 10 351 varI 0.54 Fig. 3.10
1024 10 351 varI 0.44 Fig. 3.10
1019 10 varλ 1015 0.55 Fig. 3.8
1020 10 varλ 1015 0.65 Fig. 3.8

Table B: In this table, values of Cabs are reported for different series of CMDS either by maintaining a
constant laser wavelength of 351 nm and varying the intensity from 1014 W/cm2 to 1018 W/cm2 (varI)
or by maintaining the intensity constant at 1015 W/cm2 and varying the wavelength from 35 to 3500 nm
(varλ).

The last point that needs to be addressed is the value of the overall factor Cabs in the pa-
rameterized model eqs. (3.2) to (3.5). The way it is done in our numerical experiments is that
this adjustable constant is calculated by fitting the parameterized model (with η = η` = 1/6,
ε` = 1, C` = 0.7 and δ = 0) to each set of CMDS data at constant ne, Te. There were two kinds
of data sets : those (i) maintaining the laser wavelength constant and varying the laser intensity
Fig. 3.10 and those (ii) maintaining the laser intensity constant and varying the laser wavelength
Fig. 3.8. Values of Cabs were found to be scattered around 0.55 within a standard deviation of
0.07 as computed from table B. Therefore, in a nutshell, that analysis as enabled to fix the six

82



Chapter 3. Molecular Dynamics of low-Z plasmas

free parameters to the following values

Cabs = 0.55± 0.07, (3.48)
η = 1/6, (3.49)
ε` = 1, (3.50)
C` = 0.7, (3.51)
η` = 1/6, (3.52)
δ = 0. (3.53)

Our CMDS results for velocity relaxation (for I = 0), in Fig. 3.4, match theoretical results
[Brown et al., 2005] and molecular dynamic simulations by Dimonte and Daligault [Daligault &
Dimonte, 2009, Dimonte & Daligault, 2008] with Cabs = 1. One cannot provide solid explanation
as to what might be causing this variation of Cabs from 1 when I = 0 W/cm2 to 0.55 when I is a
least above 1013 W/cm2 (which is the intensity domain we have been able to probe in our CMDS)
but if one goes back to eq. (3.18), one can, however, notice that the limit I = 0 (no-radiation
limit) is reached when gosc � gcoul which can be recast as

I � e2 c

8π (4πε0) Z
2/3 n4/3

e , (3.54)

that, interestingly enough, does not depend on Te but only on ne and Z. As an example, for
ne = 1022 cm−3 and Z = 1, it amounts to saying that the no-radiation limit is bound to the
domain I � 5.95× 1012 W/cm2. A change in behavior (that could explain the Cabs shift from
0.55 to 1) may therefore appear below this intensity. We have not been able to assess this domain
because it would have required running CMDS over prohibitively long times to overcome the
loss of signal to noise ratio (The small Te increase, due to small intensities, is buried under the
thermal fluctuations of Te due to the limited number of particles in the CMDS).

3.8 Conclusion

The heating rate due to laser absorption by inverse bremsstrahlung is evaluated using the param-
eterized model described in eqs. (3.2) to (3.5), which takes into account most models proposed
in the literature (cf. table A) with appropriate parameter values (Cabs,η, ε`,C`,η`, δ).

It was compared to results from classical molecular dynamic simulations (CMDS) carried
out with lammps [Thompson et al., 2022]. These simulations where shown to be in very good
agreement with previous CMDS (with [Daligault & Dimonte, 2009, Dimonte & Daligault, 2008]
for velocity relaxation and with [David et al., 2004] for inverse bremsstrahlung). CMDS presented
here were carried out for a wide class of weak to moderate plasma coupling, for a wide variation
of laser intensities (five orders of magnitude) for a fixed pulsation or for a wide variation of
pulsations (two decades) for a fixed intensity.

It was found that CMDS do not back up the rule, first put to the forth by Dawson & Oberman
[1962], Dawson [1964] and derived by Silin [1965] for low intensity irradiation (as described in
our section 3.9), that ωp in the expression of the Coulomb logarithm should be replaced by ω
when ω � ωp or equivalently δ = 1 in our parametrized model. From a theoretical stand point, it
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tends to show that modeling the inverse bremsstrahlung heating should be done self-consistently
by taking into account collective effects from first principles rather than assuming that they can
be evaluated separately through a coulomb logarithm depending on ad-hoc choices of short and
long range characteristic lengths (bmin and bmin).

Our classical molecular dynamic simulations of inverse bremsstrahlung heating are consistent
with the parametrized model set to η = η` = 1/6, ε` = 1, C` = 0.7, δ = 0 and Cabs = 0.55 which
also matches previous CMDS by David et al. [2004].

3.9 Appendix A: Silin’s formula at low intensity

In his seminal paper, Silin [1965] did not derive explicitly a formula for the electron-ion frequency
in the process of IB at low irradiation intensity. In [Decker et al., 1994], the authors said : "He
[Silin] presented a general expression for the collision frequency in terms of complicated integrals.
In the limit vE/vth � 1 a closed form expression can be obtained and it is identical to that from
the Dawson-Oberman model". This is the calculation of this limit, from the complicated integrals,
that we present in this appendix.

From eq. (3.8) of [Silin, 1965], instead of taking the limit of supra-critical plasma (ne � nc
or equivalently ω � ωp as in eq. (3.2) in [Silin, 1965]) we take the low intensity limit, that is to
say ρ� 1 in eq. (3.9) which corresponds to eE0/mω vT � 1 in eq. (3.8) of [Silin, 1965].

The electron-ion collision frequency in the process of inverse-Bremsstrahlung heating is given
by

ν = 16NiZ2e2ω3me

eE3
0

[
R

(
eE0
mωvT

,
vTkmax
ω

)
−R

(
eE0
mωvT

,
vTkmin
ω

)]
, (3.55)

where the function R is defined by

R(ρ, x) = ρ

∫ x

0
dz
∫ ∞

0
dy J0(2ρz sin(y/2))

×
[
e−x

2y2/2 + 1
2 Ei

(
−x

2y2

2

)

−e−z2y2/2 − 1
2 Ei

(
−z

2y2

2

)]
. (3.56)

In the limit ρ small, J0(x) can be expanded as 1 − x2 at second order. If J0 is replaced by its
first order, that is 1, in eq. (3.56), then it is straightforward to show that R = 0. Therefore, the
first non vanishing term of the development of R is due to the second order of the development
of J0. Therefore,

R(ρ, x) ≈ −4ρ3
∫ x

0
dz z2

∫ ∞

0
dy sin2(y/2))

×
[
e−x

2y2/2 + 1
2 Ei

(
−x

2y2

2

)
− e−z2y2/2

−1
2 Ei

(
−z

2y2

2

)]
. (3.57)
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Since
∫ ∞

0
dy sin2(y/2))
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= π
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x
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the last integral, over z, in eq. (3.57) can be recast as

R(ρ, x) ≈ −4ρ3
∫ x

0
dz z2
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 , (3.59)

and yields

R(ρ, x) ≈ −ρ
3

12

√
π

2 Ei
(
− 1

2x2

)
. (3.60)

One can then write the collision in the inverse Bremsstrahlung context as

ν = 1
2ν0

[
Ei
(
− ω2

2v2
Tk

2
min

)
− Ei

(
− ω2

2v2
Tk

2
max

)]
(3.61)

and since kmin = 2π/bmax and kmax = 2π/bmin (where bmax and bmin are not deduced from first
principle as in BPS but just cut-off of the theory), one can specified 2v2

Tk
2
min to be ω2

p and then
2v2
Tk

2
max = 2v2

Tk
2
min(k2

max/k
2
min) = ω2

p Λ2. The final result is

ν = ν0 ln(ΛSil) (3.62)

where

ln(ΛSil) = 1
2

[
Ei
(
−ω

2

ω2
p

)
− Ei

(
− ω2

ω2
p Λ2

)]
(3.63)

is displayed in Fig. 3.11. The coulomb logarithm from Silin ln(ΛSil) = ln(Λ) when ω � ωp (in
the over-critical regime, which corresponds to eq. (3.12) in [Silin, 1965]) and it goes to ln(ΛSil) =
ln(Λωp

ω e−γ/2) when ω � ωp (in the super-critical regime, of interest to ICF) where γ ≈ 0.577 is
the Euler constant. It is interesting to note that if one write

Λ = bmax/bmin = vth kmax/ωp, (3.64)

the ΛSil = Λωp

ω when ω � ωp amounts to replacing ωp in eq. (3.64) by ω which is exactly what is
done in Dawson-Oberman [Dawson & Oberman, 1962] in eq. (26), in Johnston-Dawson [Johnston
& Dawson, 1973] just below eq. (1.b), in Jones-Lee [Jones & Lee, 1982] above eq. (28) "the small
wave number cut-off is ω/vth", in Skupsky [Skupsky, 1987] with its explicit prescription in eq. (3.a)
and in Mulser et. al. [Mulser et al., 2000] in eq. (15) and eq. (16).
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Figure 3.11: (color online) Plot of ln(ΛSil) using Λ = ΛDD = (1 + 0.7/g) from Daligault and Dimonte
[Dimonte & Daligault, 2008] for various values of ω/ωp and compared to Skupsky’s prescription which
consists in replacing ωp by ω in Λ = bmax

bmin
= vth kmax

ωp
as soon as ω > ωp. Clearly Skupsky’s prescription

is close to Silin results but none of these theoretical predictions match molecular dynamics simulation
results.

3.10 Appendix B: Details on the constants reported in table A

In Dawson-Oberman [Dawson & Oberman, 1962] or Johnston-Dawson [Johnston & Dawson,
1973], the collision frequency is provided in the low intensity (vE � vth) and high frequency
(ω � ωp) limit, C = 1 and ln(Λ(IB)

ei ) = ln(Λω/ωp) − γ where γ ≈ 0.577 is the Euler constant.
Skupsky [Skupsky, 1987], in its development about classic plasmas (as opposed to quantum),
used similar Coulomb logarithm of the form ln(Λ(IB)

ei ) = ln(Λω/ωp) in the high frequency limit.
In Silin [Silin, 1965], for the low intensity (vE � vth) and low frequency (ω � ωp) limit,

it is found that C = 1 and ln(Λ(IB)
ei ) = ln(Λ) and for the high frequency limit (ω � ωp) it is

found that C = 1 and ln(Λ(IB)
ei ) ≈ ln(Λω/ωp) (cf. appendix section 3.9). In the high intensity

(vE � vth) and low frequency (ω � ωp) limit (eq. eq. (3.13) from [Silin, 1965]), it is found
that ν = 16Nie

2
imω

3/eE3
0{ln (vE/2vth) + 1} ln(Λ) which, in our notation, should correspond to

eq. (3.12) of [Silin, 1965] where v2
T is replaced by the high intensity limit η v2

E that yields to
ν = 4

√
2πNie

2
imω

3/3e η3/2E3
0{ln (vE/2vth) + 1} ln(Λ) implying η = (4

√
2π/3/16)2/3 ≈ 0.221

reported in the fourth line of table table A.
In Jones-Lee [Jones & Lee, 1982], for high intensities (vE � vth) it is found (eq. (63) in

[Jones & Lee, 1982]) that the prefactor is the same as in Silin [Silin, 1965] but with ln(Λ(IB)
ei ) =

ln(Λωp/ω) and a slightly different logarithmic factor depending upon vE namely ln (vE/vth)
instead of ln (vE/2vth).

In Mulser[Mulser, 2020], in eq. (7.71) when ω � ωp, ln(Λ(IB)
ei ) = ln(Λωp/ω) with (v2

th)3/2 in
bmax replaced by (v2

th + v2
E/4)3/2 or by (v2

th + v2
E)3/2 in [Mulser et al., 2000].

In Brantov et al. [Brantov et al., 2003], what is called the effective collision in eqs.(19) or
(20) of this reference, sums up to C = (v2

th/(v2
th + v2

E/6))3/2 or C = (v2
th/(v2

th + v2
E ∗ 0.3))3/2 in

our notations and ln(Λ(IB)
ei ) = ln(Λωp/ω) when ω � ωp in eq.(3) of [Brantov et al., 2003].
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The following is the text of an article in preparation entitled "Classical molecular dynamic
simulation to assess the non-Maxwellian behavior of inverse bremsstrahlung heating in weakly
coupled plasmas" by R. Devriendt and O. Poujade.

4.1 Introduction

Collisional absorption of laser radiation by a plasma through the process of inverse bremsstrahlung
is dominant for intensities less than 1015 W/cm2. A precise modelling of this physical effect in
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radiation-hydrodynamics codes [Lefebvre et al., 2018, Marinak et al., 2001] is paramount to
designing inertial confinement fusion experiments [Betti & Hurricane, 2016] in order to reach the
goal of thermonuclear ignition.

When a monochromatic electromagnetic wave (laser) of pulsation ω and intensity I propagates
through a plasma of electronic density ne and temperature Te, electrons undergo an oscillating
coherent motion at the same pulsation superimposed to their random thermal motion of charac-
teristic velocity vth =

√
kBTe/me. The velocity amplitude of this collective motion is given by

vosc = eE/me ω known as the quiver velocity where E =
√

2 I/c ε0 is the amplitude of the elec-
tric field of the wave. Then, some of the energy carried by the electromagnetic wave is transferred
to electrons and ions thermal energies (random motion kinetic energy) by means of their random
scatterings. Obviously, this process affects the electron velocity distribution (EVD). It modifies
the width of its Maxwellian shape, since the electron temperature increases, but it can also mod-
ify the overall shape, turning the Maxwellian into a drastically different distribution, such as a
Supergaussian as predicted theoretically by Langdon [1980]. It happens when electron-electron
(e-e) collisions are not efficient enough to damp any deviations from the Maxwellian.

Langdon [1980] devised a nondimensional parameter

α = Z
v2

osc
v2

th
= Z

2 e2 I

c ε0me ω2 kBTe
, (4.1)

such that e-e collisions are negligible when α � 1. Solving Boltzmann equation with a Fokker-
Planck collision term, assuming vosc/vth � 1 and neglecting e-e collisions (therefore assuming
Z � 1 because of eq. (4.1)), Langdon showed that the EVD of such a plasma submitted to an
oscillating electric field, reaches an asymptotic self similar state described by a Supergaussian
EVD

fSGe (v) ∝ exp(−vk) (4.2)

as will be described in more detail in section 4.5 of this paper. The parameter k is called the order
of the Supergaussian and it tends asymptotically and monotonically towards a value depending
upon α comprised between k = 2 (when α = 0) and k = 5 (when α� 1) according to Langdon’s
derivation. This deformation may result in a reduction of absorption by a significant factor
when compared to the case α = 0 (still assuming vosc/vth � 1). Subsequently, Fokker-Planck
simulations (FPS) confirmed [Jones & Lee, 1982, Weng et al., 2006] Langdon’s finding, and the
authors of these simulations proposed [Matte et al., 1988, Weng et al., 2009] a fit for the order
of the EVD, namely k(α), as well as the reduction in absorption relative to a Maxwellian EVD,
namely R(α), as functions of α.

Other shapes of EVDs have been suggested in the literature. A sum of a Supergaussian
with a Maxwellian tail [Fourkal et al., 2001] was put forward for low laser intensities because e-e
collisions could become more important than e-i collisions for the population of electrons lying in
the supra-thermal tail of the EVD. As an other example, for high laser intensity (vosc/vth � 1), it
is expected [Ferrante et al., 2001] that temperatures parallel and perpendicular to the electric field
polarization grow at different rates. This could result in two-temperature oscillating Maxwellian
[Chichkov et al., 1992, Pfalzner, 1992] or Supergaussian [Porshnev et al., 1996] EVDs.

Recent, high energy density experiments confirmed [Liu et al., 1994, Milder et al., 2021,

88



Chapter 4. Molecular Dynamics Simulations of moderate-Z plasmas

2020, Turnbull et al., 2020] that non-Maxwellian distributions do form in laser induced plasmas.
Observations of these EVDs have proved that shapes are clearly non-Maxwellian and look a lot
like supergaussians [Langdon, 1980] but they are not precise enough to discriminate all shapes
proposed in the theoretical literature.

In classical molecular dynamics simulations (CMDS), which are numerical simulations at the
microscopic scale, EVD distortion was also observed by Pfalzner & Gibbon [1998] for Z = 1.
Nevertheless, that distortion was not observed in Langdon’s conditions requiring [Langdon, 1980]
both vosc/vth � 1 and Z v2

osc/v
2
th � 1 which can only be fulfilled if Z � 1. It was observed at

vosc/vth � 1, which is the only possibility to get α� 1 with a Z = 1 plasma. Moreover, the EVD
unveiled in Pfalzner & Gibbon [1998] was averaged over one laser cycle. Therefore, the distortion
can either be due to the averaging process that results in a non-Maxwellian averaged EVD out of
an oscillating instantaneous Maxwellian EVD or because the instantaneous EVD itself is already
distorted. The cycle-averaged EVD is different from the instantaneous EVD for it integrates the
coherent oscillating motion of the EVD in phase space (velocity space) produced by the varying
electric field. A clear distinction between instantaneous and cycle-averaged EVD is therefore of
the essence, as shown in section 4.10.

Ersfeld & Bell [2000] studied the anisotropy of the instantaneous distribution at high laser
intensity using a Fokker-Planck code (FP) with high-order Legendre polynomials. The isotropic,
cycle averaged and exact distribution yielded similar heating rate. However, in Fokker-Planck
codes, collisions have to be modelled and an analytical expression of the coulomb logarithm, as a
function of plasma state parameters (electronic density, temperature, etc.), has to be provided as
an input data. This is not the case in CMDS where collisions are inherently taken into account.

In this work, we will study the distortion of the instantaneous distribution at higher Z = 10
using classical molecular dynamic simulations in order to probe Langdon’s insight for a large
range of vosc/vth, and the effect of this distortion on the electron heating rate. We will first start
by detailing the setup of our CMDS simulations, before showing CMDS results of plasmas with
vosc/vth � 1 and Zv2

osc/v
2
th � 1, which are the exact conditions predicted by Langdon to observe

non-Maxwellian EVDs. We will then present CMDS at high laser intensity, i.e. vosc/vth > 1, in
order to extend Langdon’s results. We will then reproduce recent experimental results [Milder
et al., 2021], where the sum of a Maxwellian and a Supergaussian was measured. In section 4.6,
we will compare the order of the distribution as a function of vosc/vth from our CMDS simulations
with the predictions of Matte et al. [1988]. Finally, we will look at how the distortion of the EVD
affects the heating rate. To do so, we will first shortly recall the absorption model developed in
chapter 2 before testing it against our CMDS.

4.2 Classical molecular dynamic simulations setup

We carried out classical molecular dynamic simulations (CMDS) of a two components plasma
(electrons and one kind of ions with ionization Z = 10) using the code LAMMPS [Thompson
et al., 2022]. Large simulations with 4 · 105 electrons and 4 · 104 ions where carried out in our
study contrasting with 104 particles in Pfalzner & Gibbon [1998] or in David et al. [2004]. In
CMDS, particles are described by their charges, positions and velocities and evolve according to
Newton’s law. Electrostatic Coulomb forces between each individual particles (electron-electron,
ion-ion and electron-ion) are taken into account and for the problem at hand, namely radiation
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absorption by inverse bremsstrahlung, an external oscillating electric field with its interaction
with each charges of the simulated plasma is taken into account.

Since the pure Coulomb potential is not valid at very short range where the electronic structure
of the ion should be taken into account, particles in CMDS interact with each other via a modified
Coulomb potential. A soft core was added [Beutler et al., 1994] to the Coulomb potential in such
a way that the interaction potential between two generic charges q1 and q2 is

φ(r) = q1 q2
4π ε0

√
r2
c + r2 , (4.3)

where r is the distance between q1 and q2 and rc is the approximate distance below which the pure
Coulomb potential ceased to be meaningful. We chose rc = 0.1 Å and checked that our results
were not dependent on the particular choice of rc provided it is small enough. Additionally,
periodic boundary conditions were used to simulate an infinite uniform plasma and this is why
LAMMPS’ Particle-Particle Particle-Mesh (PPPM) algorithm was used to compute interactions
with domain replicas.

Particular care was given to the production of the initial states of our CMDS. Equilibrium
EVD and ion velocity distributions can be generated easily, since they are known to be Maxwellian
at thermodynamic equilibrium, contrary to the equilibrium spatial distributions. In order to
circumvent this problem, particles were initially distributed at random in the simulation domain.
Using a thermostat in LAMMPS, they were then left to relax until equilibrium was reached. To
speed up this relaxation, the ion and electron temperatures were regularly rescaled to their desired
values. This phase lasted for a few electron-ion collision times, until a steady state was reached,
which was monitored via the potential energy of the system, the ion and electron temperatures,
the EVD and the quadrupole (see chapter 3).

In order to encompass both subcritical and critical plasmas, where nc = 9× 1021 cm−3 for
λ = 351 nm, one initial state was generated with ne = 1020 cm−3 (corresponding to ne < nc)
and another one with ne = 1022 cm−3 (corresponding to ne ∼ nc). The choice of initial Te for
both initialization was set by the choice of the plasma coupling parameter [Dimonte & Daligault,
2008], (see Chapter 3)

g = Z e3 √ne
4π (ε0 kBTe)3/2 , (4.4)

that we fixed to the same value (g � 1 for a weakly coupled plasma) for comparison purposes.
The chosen value, g = 0.05, is a compromise between plasma weakness, for which one would
advocate for small values of g, and not-too-high-numerical-cost, for which one would advocate
for high values of g (see section 3.5.2). This is why we generated two initial conditions

ne = 1020 cm−3, kBTe = 100 eV, Z = 10, (4.5)
ne = 1022 cm−3, kBTe = 500 eV, Z = 10. (4.6)

For both initial conditions, multiple initial states were generated, in order to reduce the effect of
statistical fluctuations on our results.

In our CMDS, a time varying, spatially uniform, external electric field mimics the effect of a
laser in a small simulation volume. It is periodic in time and polarization is linear. The spatial
uniformity of the electric field means that effects arising from the spatial periodicity of the laser,
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such as the dispersion relation, are not captured by such CMDS (it was also the case in Pfalzner
& Gibbon [1998] and David et al. [2004]).

In chapter 3, which was dedicated to Z = 1 weakly coupled plasma, we have devised a
parametrized model for electron-ion collision frequency in the IB heating process with constants
adjusted by CMDS (for Z = 1 plasmas). The model is given by eqs. (3.2) to (3.5), which we
recall here for convenience

νIBei = Cabs ν0[ne, Teff(η), Z] ln(ΛIBei ), (4.7)

ν0[ne, Te, Z] = 4
√

2π e4

3 √me (4π ε0)2
ne Z

(kBTe)3/2 , (4.8)

Teff(x) = Te + x me v
2
E/kB, (4.9)

ΛIBei =


ε` +C`

4π ε
3
2
0 (kBTeff(η`))3/2

Z e3 √ne



(
ωp
ω

)δ
, (4.10)

with adjusted constants given in eqs. (3.49) to (3.53) as

η = 1/6, (4.11)
ε` = 1, (4.12)
C` = 0.7, (4.13)
η` = 1/6, (4.14)
δ = 0. (4.15)

In Fig. 4.1, this parametrized model, with constants adjusted for Z = 1, is compared to CMDS
results (red and blue points) for the Z = 10 plasmas described in eq. (4.5) and eq. (4.6). The
points correspond to measurement of the heating rate at early time, when the EVDs are still
Maxwellian, because the parametrized model has been devised from different theoretical models
assuming Maxwellian EVDs. Clearly, with the same parameters devised from Z = 1 simulations,
the agreement is still very good for Z = 10 plasmas at early time. This last precision is of course
very important for the remaining of this paper will deal with late time evolution of Z = 10
plasmas where EVDs turn non-Maxwellian.

Ideally, one would like to produce fits for k(α) and R(α) out of our CMDS and compare them
with those obtained in Matte et al. [1988] by FP simulations in the case of uniform plasmas.
As mentioned by these authors, in the absence of sink mechanism (which is the case for FPS of
uniform plasmas and also for our CMDS) the value of α, defined in eq. (4.1), is not constant and
decreases as the electron temperature of the plasma (Te) increases due to the laser heating at
constant intensity. This is the reason why, in the fitted functions k and R provided by Matte
et al. [1988], the values of α are not the initial values but the end-of-the-simulation value (when
the self-similar behaviour is achieved). The problem we observed in our CMDS is that the time it
takes for the EVD to reach the self-similar regime increases with laser intensity. As a result, for
a given CMDS duration, this limits the range of α where it is possible to observe that self-similar
evolution of the EVD. Hence, our simulations were carried out in the range

0.1 < vosc/v
0
th < 5, (4.16)
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where v0
th is the initial thermal velocity. Increasing the intensity further (vosc/v0

th > 5) would have
a high numerical cost because a smaller timestep would be needed to accurately capture high
velocity electrons and the number of time iterations would jump drastically. On the contrary,
reducing the intensity (vosc/v0

th < 0.1) would come into conflict with signal to noise ratio in the
CMDS because heating rate would be too small and buried under thermal fluctuations.
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Figure 4.1: Heating rate for both plasmas described in eq. (4.5) and eq. (4.6) at different intensities
measured at early time to ensure that EVDs have not yet transitioned to non-Maxwellian which is the
hypothesis of the parametrized model developed in chapter 3. The coefficients of the model are those
adjusted in chapter 3 by CMDSs at Z = 1 and one can see that the agreement is excellent even for Z = 10.

4.3 Langdon effect impacts the instantaneous distribution

In order to assess the effects of an oscillating electric field on a plasma EVD, it is important
to introduce two distributions of practical interest for the description of the results presented
in this work. The first one, the isotropic distribution, corresponds to the isotropic part of the
3D distribution. It is that isotropic distribution that was inferred by Langdon in its seminal
paper [Langdon, 1980]. The second one, the projected distribution, is particularly useful when
3D distributions are anisotropic.

In order to precisely define these two distributions, let us call the 3D distribution

fe(v) (4.17)

such that fe(v) d3v corresponds to the number of electrons of velocity v within d3v. It can be
computed in CMDS by sampling the whole 3D velocity space in small 3D sampling-cubes and
by counting the number of particles with velocities in each of these sampling-cubes. However, it
requires a very high number of particles to be accurate in a large velocity domain and is therefore
unpractical.

The isotropic distribution is computed from the 3D distribution fe(v), where the velocity
vector can be recast as v = vΩ, by fixing the modulus v and averaging over all directions Ω and
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defined as

f0
e (v) = 1

4π

∫
fe (v) d2Ω. (4.18)

It is used in Fokker-Planck codes, and is especially useful when the 3D distribution is close to
isotropic which is the assumption in Langdon [1980]’s and Matte et al. [1988]’s results. However,
the laser electric field inherently introduces anisotropy in the 3D distribution as will be shown in
section 4.4. It is thus appropriate to consider a last category of distributions.

The projected distributions are obtained by integrating the 3D distribution over the two
dimensions perpendicular to the axis of projection. As an example, the projected distribution on
the x-axis requires to integrate over y and z such that

fx(vx) =
∫
fe(vx, vy, vz) dvy dvz. (4.19)

Because we only consider linear polarization, two projections are of interest: along the direction
of the electric field, and perpendicularly. Indeed, the projected distribution is expected to be
the same along any of the directions perpendicular to the electric field. In the rest of this paper
quantities along the direction of the electric field will be referred to as parallel (∥) and quantities
referred to as perpendicular (⊥) are in a direction perpendicular to the electric field.

In the perspective of describing non-Maxwellian effects displayed by our CMDS, we first tried
to ascertain the degree of distortion of instantaneous EVDs. Indeed, time-averaged EVDs, often
reported in the literature, can be distorted by two mechanisms.

The first one, that we call the sweeping mechanism, can cause an instantaneous Maxwellian
EVD to become non-Maxwellian in the one-cycle-averaging process because of its oscillation in
v-space around the origin due to the collective oscillation triggered by the oscillating electric-field.
This effect can indeed modify collisional absorption as pointed out by Mulser et al. [2000]. We
also insist on that particular point in 4.10, where the order of the averaged distribution is shown
to be significantly larger than that of the instantaneous distribution, even at low laser intensity.

The second mechanism, that we call the intrinsic mechanism, has to do with the fact that the
forced oscillation of the electrons with respect to the ions (which remain motionless to a very good
approximation) that adds up to the random thermal motion, modifies the ratio of slow (v � vth)
to fast electrons (v � vth) in the oscillating reference frame, that is to say, the instantaneous
shape of the EVD. Indeed, depending upon the intensity and therefore the amplitude of vosc
with respect to vth, electrons with initial thermal velocity comprised between −vosc and +vosc
along the polarization direction for instance, will have, at one moment during the cycle of an
oscillation, a very small velocity in the ion reference frame. This is the condition for an important
cross section of collision with ions and therefore the condition for an increased slowing down.

In order to remove the sweeping mechanism, isotropic and projected distributions were ex-
tracted out of our CMDSs in the oscillating reference frame.

In the conditions of the Langdon effect, i.e. vosc/vT � 1 and Zvosc/vT � 1, our CMDS
display deformations of the instantaneous distribution function (therefore due to the intrinsic
mechanism). In Fig. 4.2 the projected distribution on the parallel direction (to the laser polar-
ization) f∥ is plotted. It clearly shows that a projected Maxwellian (which is a Maxwellian) does
not fit the projected CMDS distribution. This is why we tested other theoretical distributions
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Figure 4.2: Instantaneous projected (left) and isotropic (right) electron distribution function f∥ after
450 laser cycles. The simulation from which this result originates was set with Z = 10, T 0

e = 500 eV,
ne = 1022 cm−3 and vosc = 0.5 v(0)

th . As predicted by Langdon, the distribution function is closer to a
Supergaussian than to a Maxwellian. The best Supergaussian fit corresponds to an order k = 2.69 at
variance with predictions from Matte et al. [1988].

described in section 4.11.
A projected Supergaussian eq. (4.37), fits both its bulk and tail for k = 2.69 at vosc/vth = 0.5

after 450 laser cycles, well in the self-similar regime (one recalls that k is the Supergaussian
order of the 3D distribution). At smaller laser intensities (vosc/vth = 0.1), the projected CMDS
distribution was also well fitted by a projected Supergaussian, albeit with an order closer to 2.
In both cases, the measured Supergaussian order on our CMDS is less than the very popular
predictions by Matte et al. [1988]. The discussion on this discrepancy is deferred to section 4.6
for it requires more elements that will be presented in the following sections. Notwithstanding
this quantitative issue, the result presented in Fig. 4.2 is, to our knowledge, the first observation
in CMDS of non-Maxwellian effects on instantaneous EVDs in Langdon’s conditions.

4.4 Extension to Langdon prediction at high laser intensity

4.4.1 Anisotropy

In agreement with previous works [Chichkov et al., 1992, Ferrante et al., 2001, Pfalzner, 1992], our
CMDS show the isotropy of the distribution is not preserved at increasing laser intensities. Indeed,
at moderate or high laser intensities (vosc ≥ vth), our CMDS show that electron temperatures
become anisotropic.

In Fig. 4.3, the evolution of the temperatures ∥ and⊥ to the polarization is plotted for multiple
laser intensities, or equivalently for multiple initial values of vosc/vth. In simulations where
vosc > vth, it can be seen that the temperature in the direction of the polarization rises faster than
in the other directions. The different temperatures kBT∥ = me 〈v′2∥〉/2 and kBT⊥ = me 〈v′2⊥〉/2
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(where v′ is the fluctuating velocity of an electron around the average velocity of the whole electron
population and 〈.〉 is the ensemble average over that whole electron population) can be accounted
for in the distribution while still preserving the Supergaussian shape that we observed at lower
laser intensities with the single-order-anisotropic Supergaussian distribution defined by eq. (4.36).
This expression has been suggested by theoretical models [Porshnev et al., 1996] although the
order was fixed and not variable as it is assumed here. With the appropriate temperatures, the
projections of the single-order-anisotropic Supergaussian distribution, computed in eq. (4.37),
both ∥ and ⊥ to the electric field, closely fit with the CMDS projected distributions f∥ and f⊥.

At even higher laser intensity (vosc ≥ 2.2 vth), a single-order-anisotropic Supergaussian distri-
bution cannot fit both f∥ and f⊥ simultaneously anymore. Indeed, as an illustration, the parallel
and perpendicular instantaneous projected distributions of our CMDS data are plotted (solid
line) on the same viewgraph in Fig. 4.4. It is a critical plasma (ne ≈ nc) irradiated by a laser of
intensity such that vosc = 5 vth. The projected distribution f⊥ is well-fitted by a projected SG
eq. (4.37) with k = 3.5. However, unlike at lower laser intensity, the distribution projected along
the direction of the electric field, f∥ is well-fitted by a projected SG with a different order, k = 6.
The anisotropic SG shape, eq. (4.36) is not sufficient to describe the 3D distribution, since the
Supergaussian order k depends on the direction.

A quantitative indicator of this anisotropy is the kurtosis of the projected distributions. It is
defined by

Kurtµ = 1
vth4

µ

∫
(v − 〈vµ〉)4 fµ(v) dv, (4.20)

where µ ∈ {x, y, z} is the projection direction and 〈vµ〉 is the collective averaged velocity (due to
the oscillation of the electric field). Any projected distribution of a Maxwellian distribution (which
is itself a Maxwellian distribution) has a kurtosis of 3 regardless of the projection direction. For
the single-order-anisotropic Supergaussian (SOA) distribution, defined in eq. (4.36), the kurtosis
of its projected distribution is independent of the projected direction µ, and

KurtSOA
µ = 9 Γ(3/k) Γ(7/k)

5 Γ(5/k)2 . (4.21)

That kurtosis equals 3 when the order k = 2 (for a pure Maxwellian). As one can notice, the
kurtosis of a projected single-order-anisotropic Supergaussian distribution is only a function of the
order k of the distribution even when the temperature is anisotropic. Since there is a one to one
relation between the order k of the EVD and the kurtosis of its projected distribution, eq. (4.21)
can be reversed numerically and used to compute the order of the distribution, assuming the shape
of the distribution is eq. (4.36). The order of the CMDS distribution can thus be computed in two
ways: either by fitting the CMDS projected distribution to a projected Supergaussian eq. (4.37)
or by calculating the CMDS projected distribution kurtosis and using the inverse of relation
eq. (4.21). The projection can be carried out along the electric field or perpendicular to it. In
Fig. 4.3, we show that for vosc/vth large enough (at high intensity), parallel and perpendicular
CMDS projected distribution are different both in temperature and order. As depicted in Fig. 4.5,
the kurtosis analysis leads to the same conclusion. It allows to assess the evolution of the order of
the parallel and perpendicular projected distribution as time goes by. In Fig. 4.5, the evolution
of Kurt∥ and Kurt⊥ is plotted for multiple laser intensities. The kurtosis can be read on the left
vertical axis and the order of the projected Supergaussian can be read on the right vertical axis.
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Figure 4.4: (color online) Centered projected (left) and isotropic (right) distributions after 450 laser cycles.
This simulation started with T 0

e = 500 eV, ne = 1022 cm−3, and vosc/v
0
th = 5. Both projected distributions

are well fitted by projected SG, but with different order and thermal velocity. The best fit of f∥ on
eq. (4.37) gives vT∥ = 3.78v(0)

th and k∥ = 6.22. In a perpendicular direction, vT⊥ = 3.41v(0)
th and k⊥ = 3.22.

This graph shows the distribution anisotropy both in temperature and order. The distribution eq. (4.36)
can, when projected, fit both f∥ and f⊥ separately, but not at the same time, since k∥ , k⊥.
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Chapter 4. Molecular Dynamics Simulations of moderate-Z plasmas

It is interesting to notice that for high intensities, the asymptotic perpendicular Supergaussian
order does not depend on intensity, at variance with the asymptotic parallel Supergaussian order
increasing with intensity.

4.4.2 Supergaussian order can exceed Langdon’s prediction
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Figure 4.5: Kurt∥ and Kurt⊥ for different vosc (left axis). On the right axis is the corresponding SG
order given by Eq. eq. (4.21). As mentioned before, eq. (4.21) assumes the distribution is eq. (4.36).
These simulations start from kBT

0
e = 500 eV and ne = 1022 cm−3. When vosc > vth, the kurtosis becomes

anisotropic. This is not compatible with a Supergaussian distribution such as eq. (4.36).

After only a few laser cycles, for high intensities (vosc ≥ vth), the kurtosis can temporarily
exceed 3 as can be seen in Fig. 4.5. It implies, temporarily, that EVD projected Supergaussian
orders can be smaller than 2 before evolving toward a self-similar state. However, we have no
reason to expect the distribution to fit a Supergaussian shape before a self-similar state is reached,
and so the computed order should be taken with caution. By examining the projected distribution
at these instants in Fig. 4.6, it is possible to see that the increase of kurtosis is mainly caused by a
high-velocity tail. Indeed, since the kurtosis is computed from the fourth power of the deviation
to the mean, it is very sensitive to values far from the mean. The behaviour of the distribution
agrees with the sum of two Maxwellian distributions with different temperatures. Nevertheless,
fitting the central part of the distribution at these instants to a projected SG eq. (4.37) still
yields orders smaller than 2, although not as small as what the kurtosis predicts. All in all, in
the transient regime, the small orders assessed from the kurtosis are evidence for abundance of
suprathermal electrons (strong tails in the EVD).

In the self-similar regime, when the kurtosis levelled off, a very good agreement was observed
between the distribution order computed from the kurtosis eq. (4.21) and the order obtained
by fitting the projected distribution. The kurtosis can thus be used quantitatively to evaluate
the order of the projected distribution. In Fig. 4.7, one can see that the asymptotic value of
the kurtosis decreases with increasing laser intensity. This corresponds to higher and higher SG
orders. In particular, the SG order can become higher than 5 unlike Langdon’s prediction which
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Figure 4.6: Instantaneous projected (left) and isotropic (right) electron distribution function f∥ integrated
on both directions perpendicular to the laser field after 8.5 laser cycles. This simulation started with
T 0

e = 500 eV, ne = 1× 1022 cm−3 and vosc = 5 v0
th. The best SG eq. (4.37) fit has k = 1.75 and vth =

1.28 v0
th. For reference, the Gaussian with vth = 1.28 v0

th is plotted in green. The best fit on the projection
of eq. (4.39) has A = −1.24, vG

th = 1.87 v0
th, vSG

th = 1.18 v0
th, and k = 1.97. The order of the best SG fit is

less than two, but more than the prediction with Kurt∥. It only captures the behaviour of f∥ in the bulk
(v < vth). As shown by the fit on a sum of a Gaussian and SG, f∥ behaves like the sum of two Gaussian
distribution with different temperatures.

is illustrated in Fig. 4.4.
This anisotropy is further shown in Fig. 4.8, in which the density of the projected distribution

is plotted for multiple projection direction, defined by their angle with the laser electric field. The
bulk part of the distribution, in blue in Fig. 4.8, is well reproduced by Supergaussian models.
This is because the different temperatures in different directions are taken into account in both
models. However, the tail of the distribution is clearly not as well reproduced by the models.
Indeed, the Maxwellian model (k = 2) has a tail higher than the CMDS data. The Supergaussian
model is very accurate for the projection along the direction of the electric field, since k∥ was
used in the model. However, along the direction perpendicular to the laser electric field, the data
has a bigger tail than the SG model, this corresponds to k⊥ < k∥.

In a nutshell, we observed three kinds of anisotropy in the distribution at high vosc: the
coherent oscillating movement of the electrons which causes anisotropy in the laboratory frame,
the temperature anisotropy, and the anisotropy of the Supergaussian order.
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Figure 4.7: Evolution of Kurt∥ for multiple vosc (left axis). On the right axis is the corresponding SG
order given by eq. (4.21). These simulations start from kBT

0
e = 500 eV and ne = 1022 cm−3. The laser

is linearly polarized in the z direction. When vosc > 3.3vth, a transient effect in which the order of the
distribution becomes lower than 2 is observed. However, in the asymptotic behaviour of the kurtosis,
which corresponds to a self-similar state of the distribution, the order seems to increase with increasing
laser intensity.
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Figure 4.8: Density of the projected distributions as a function of the angle of the projection to the electric
field. The angle of projection is periodicized between 0 and π. The projected velocity is centered to remove
the oscillation due to the laser electric field. The density is given by the color. For comparison, the same
graph is plotted for the Maxwellian and Supergaussian eq. (4.36) models. For both models, since the
projection along an arbitrary direction is not known, the distributions were sampled, and then projected.
The number of samples used was the same as the number of electrons in our simulations (4 · 105). The
Maxwellian and Supergaussian thermal velocities were chosen so as to keep the same temperature as the
data, so vth∥ = 4.57 and vth⊥ = 4.27. The MD data has k∥ = 5.85 and k⊥ = 3.38. The order of the SG
here is k∥.
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4.5. Conditions for Supergaussian distributions with Maxwellian tails

4.5 Conditions for Supergaussian distributions with Maxwellian
tails

Fokker-Planck (FP) codes solve an equation based on the Boltzmann equation, which is, for a
uniform plasma submitted to an external electric field,

∂tfe −
e

me
E · ∂vfe = Cee(fe) + Cei(fe), (4.22)

where Cee and Cei are the electron-electron and electron-ion collision operators (usually in the
form Landau collision operators [Jones & Lee, 1982, Langdon, 1980]). Both collision terms are
modelled and depends on theoretical assumptions unlike in CMDS. In this modelling process,
assumptions have to be made on collision mechanism and the influence of collective effects, in
particular, through Coulomb logarithms. They are given as input data to the FP code.

Solutions of the Boltzmann equation eq. (4.22) are developed in Legendre polynomials and
only the first few terms are usually considered in FP codes. Langdon [1980] retained only the
slowly-varying (compared to the electric field) part of f0

e averaged over a laser period. The
resulting equation is

∂tf
0
e = Av2

osc
3

1
v2 ∂v

1
v
∂vf

0
e , (4.23)

where A = 2π ne Z e4 ln Λ/(m2
e (4π ε0)2). Balescu [1982] derived the same equation by consider-

ing the oscillating reference frame of the electrons to separate the slow and fast varying parts of
f0
e . This equation admits the self similar state f0

e ∝ exp(−(v/vth)5), where the thermal velocity
vth scales nonlinearly with time because of heating. In the limit Zvosc/vth � 1, electron-electron
collisions are dominant (Cee � Cei) therefore f0

e remains Maxwellian. Fokker-Planck simulations
were carried out [Matte et al., 1988] in order to compute the general case taking into account
both collision terms Cee and Cei. An empirical fit on the order of the Supergaussian distribution
with respect to α = Z v2

osc/v
2
th was proposed,

k(α) = 2 + 3

1 + 1.66
α0.724

, (4.24)

along with the reduction in laser absorption due to the distortion of the distribution

R(α) = 1− 1
(1 + (0.27/α)0.75 . (4.25)

A model was proposed by Fourkal et al. [2001] where the distribution can become a sum of
a Maxwellian distribution and a Supergaussian distribution. The low-velocity (with respect to
the thermal velocity) part of the distribution is expected to be distorted by the Langdon effect
thus becoming supergaussian, but the dynamics of the high-velocity part of the distribution are
dominated by electron-electron collisions. These collisions tend to relax the distribution towards
a Maxwellian, in the electrons oscillating frame. Taking both of these effects into account, the
distribution has the appearance of an oscillating Supergaussian with a Maxwellian tail. This
model was shown to be in agreement with experimental measurements of the isotropic distribution
function [Milder et al., 2021].
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Although the exact experimental conditions were too numerically costly to replicate (Z = 36
for most shots), we carried out simulations in similar conditions of electronic density (ne ≈
4× 1020 cm−3 in the experiments, and ne = 1020 cm−3 in our CMDS) and electronic temperature
(kBTe = 0.5 − 1 keV in the experiments, while our simulations start with kBT

0
e = 100 eV, but

the electrons heats up to 900 eV in our CMDS), but with Z = 10. In Fig. 4.9, we do observe an
isotropic distribution that is a Supergaussian at low velocities with a Maxwellian tail. However,
the conditions were slightly different than the conditions in Milder et al. [2021]. Besides the
difference in Z and ne, they had vosc ∼ 0.5vth, while the Maxwellian tail only appear at vosc > vth
in our simulations. We did not observe the Maxwellian tail for vosc < vth, nor for ne > nc.
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Figure 4.9: Instantaneous projected (left) and isotropic (right) distribution after 2963.2 laser cycles (solid
blue line). The best Supergaussian (k = 3.53) fit is in red dashed, and the best fit of the sum of a
Maxwellian and Supergaussian eq. (4.39) is in purple dashed. This simulation started from kBT

0
e = 100 eV

and ne = 1020 cm−3, and vosc/v
0
th = 3.3. The low velocity part of the distribution is very well fitted by

a Supergaussian distribution. However, the tail of the distribution behaves like a Maxwellian. The best
fit has the same temperature for the Maxwellian and the Supergaussian distribution. The distribution
corresponds to that predicted by Fourkal et al. [2001], albeit in different conditions, since vosc > vth here.
The Supergaussian order measured here (k = 3.53) corresponds to neither of the Supergaussian orders
measured from the projected distributions (k∥ = 4.43 in the direction of the E-field and k⊥ = 3.08 in the
perpendicular directions).

4.6 The order of the distribution as a function of vosc/vth

We established that in our simulations, the self similar state of the projected distributions can
always be fitted by a projected Supergaussian distribution eq. (4.37), though different orders
have to be specified in the parallel or perpendicular direction (with respect to polarization).
In Fig. 4.10, the top viewgraphs correspond to the evolution of the Supergaussian order of the
projected distributions and the bottom viewgraphs to the evolution of isotropic distribution.
Each curve in each viewgraph corresponds to the evolution of the Supergaussian order of a single
CMDS starting as a Maxwellian (with order 2 on the vertical axis). The initial value of vosc/vth
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4.6. The order of the distribution as a function of vosc/vth

can be read on the horizontal axis of order 2. On each curve, the laser intensity is kept constant
and vosc/vth decreases as time goes by because electrons heat up. Therefore, on each curve, the
time evolution is from right to left. Since simulations do not reach a steady state, the order keeps
evolving as the simulation proceed. As a reference, Matte’s formula, given in eq. (4.24) for the
order of the distribution, is plotted in solid black.

One can see in Fig. 4.10 top left viewgraph that parallel-projected-distributions-order can
overshoot Matte’s prediction unlike perpendicular-projected-distribution-order that seems to re-
main well under. There seems to be a change in behaviour at early time when vosc/vth > 2.2.
Above this threshold, the parallel-projected-distribution-order seems to dive first (with orders
less than 2 which indicates the creation of a supra-thermal electron tail) before rising rapidly
and reaching the self-similar behaviour. There seems to be a dependency of k∥(vosc/vth) upon
the electronic density when comparing the top right and top left viewgraphs in Fig. 4.10. On the
contrary, k⊥(vosc/vth) is much less affected by a change in electronic density.

In regards to isotropic distribution order, in Fig. 4.10 bottom viewgraphs, one can clearly
see that CMDS, for ne ≈ nc ≈ 1022 cm−3, predict a self-similar regime with an order that is
close but slightly less than Matte’s prediction (≈ 10% less). The same early time change in
behaviour depicted before with projected-distributions is still visible. However, when it comes
to ne ≈ 0.01nc, the order in the self-similar regime is much less than Matte’s prediction (≈ 50%
less) and this is due to the fact that k∥(vosc/vth) is less at smaller electronic density.

The discrepancy between our observations and the prediction of Matte et al. [1988] may
be explained by the fact that Matte used Fokker-Planck simulations where EVD shapes are
constrained by the limited development in Legendre polynomials in FP codes. Another sticking
point concerns collisions that have to be modelled. In particular, the Coulomb logarithm ln Λ
that appears in the electron-ion collision frequency, in eq. (4.26) for instance, has to be provided
as an input to FP simulations, which is not the case in CMDS.
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Figure 4.10: Supergaussian order as a function of vosc/vth for multiple laser intensities. The top
viewgraphs correspond to projected-distribution-order. The dashed lines correspond to perpendicular
projected-distribution (with respect to the electric field), and the solid lines correspond to the parallel
projected-distribution. The bottom viewgraphs correspond to isotropic-distribution-order. In each view-
graph, all curve of a given color correspond to the same CMDS (one color corresponds to one laser intensity
that is kept constant during the simulation). The fact that vosc/vth decreases during a simulation is due to
the fact that Te increases due to the IB heating. The black line on each viewgraph is Matte’s prediction.
These simulations all begin with the state(eq. (4.5) or eq. (4.6) with a Maxwellian EVD (order = 2).
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4.7. Absorption model for a Supergaussian distribution

4.7 Absorption model for a Supergaussian distribution

Here, we recall shortly the absorption model that was detailed in chapter 2. Mulser et al.
[2000] used a ballistic model to derive the following expression for the instantaneous e-i collision
frequency

νei(vd) = Z2 e4 ni ln Λ
4π ε2

0m
2
e v

3
d

∫ vd

0
4π v2

e fe(ve) dve, (4.26)

where the electron population has an average relative velocity vd with respect to the ion popu-
lation. This is why, in the case of IB heating, when the electrons are under the influence of a
periodic electric field, one can assume that vd corresponds to the electrons oscillating velocity.
Assuming the laser electric field is given by E cosωt, the electrons’ cycle averaged heating rate
is

〈j ·E cos(ωt)〉 = ne e
ω

2π

∫ 2π/ω

0
v ·E cos(ωt) dt, (4.27)

where v is the average electron velocity. Let us consider the Drude model that describes the
evolution of the ensemble velocity, v, of a free electron gas

dv
dt = −eE

me
cos(ωt)− νei v. (4.28)

After integrating by parts, the average heating rate can be expressed, with respect to νei, as

〈j ·E cos(ωt)〉 = neme vosc
ω

2π

∫ 2π/ω

0
νei(v) v sin(ωt) dt. (4.29)

Inserting eq. (4.26) in eq. (4.29), with an isotropic Supergaussian distribution (4.35) for fe yields

〈j ·E cos(ωt)〉 = ne
1
2 me v

2
osc ν

0
ei ln ΛR(η, k), (4.30)

where ν0
ei = (4

√
2πZ e4 ne)/(3

√
me(4π ε0)2kBT

3/2
e ), and

R(η, k) =
∫ π/2

0

12 γ


3
k
,

(
η

√
Γ(5/k)

3 Γ(3/k) sin(t)
)k


Γ(3/k)
√

2π η3 sin(t)
dt, (4.31)

where γ(a, z) =
∫ z

0 t
a−1 exp(−t) dt is the incomplete lower gamma function, η = vosc/vth and k

is the order of the Supergaussian distribution. This equation assumes the Coulomb logarithm can
be left out of the time average, which means it should be independent from the laser intensity.
This is not the case in practice, but this approximation allows the Coulomb logarithm to be
modelled separately.

Although eq. (4.31) can be computed numerically, it is not very convenient to use as is. It
still does retains useful properties, due to the way it was derived. The first of these properties is
that when k = 2, i.e. the distribution is Maxwellian, it yields similar values to a previous model
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Figure 4.11: Absorption coefficient of our model as a function of vosc/vth for multiple distribution shapes.
Silin [1965]’s model is plotted in dotted black for reference. For small η, the line corresponding to Langdon’s
case (k = 5) has a value very close to the absorption reduction predicted by Langdon (0.445).

that assumed a Maxwellian distribution, proposed by Silin [1965], as shown in Fig. 4.11. Further-
more, in simple kinetic models, such as Langdon’s, the laser absorption is directly proportional
[Langdon, 1980] to fe(0). The term we propose here is consistent with that approach, since a
Taylor expansion for small η (which is one of Langdon’s assumptions) yields

R(η, k) ≈
√
π

6
k Γ(5/k)3/2

3 Γ(3/k)5/2 = fSGe (0)
fGe (0) . (4.32)

Matte et al. [1988]’s model also very closely agrees with this. Although the model we propose
is valid at high laser intensities (high η), it does rely on a drifted isotropic Supergaussian dis-
tribution. This means that the temperature anisotropy as well as other anisotropy effects that
we observed in our CMDS are not taken into account and yet, we are going to show that the
agreement with CMDS results are quite correct in the following section.

4.8 Comparison of the absorption model to CMDS

In this section, we present preliminary results of a comparison between our model and numerical
results from CMDS, shown in Fig. 4.12. The heating rate in our model is given by

dkBTe
dt = Cabs

me

3 v2
osc ν

0
ei ln ΛR(η, k), (4.33)

that is to say, the parametrized model, devised from Z = 1 simulations in chapter 3, multiplied
by the non-Maxwellian multiplier R defined in eq. (4.31) and approximated in eq. (4.32). This is
what is referred to as "model of this work" in Fig. 4.12. The coefficient Cabs was set to its value
0.55 from chapter 3.

The MD heating rate was computed from the variation of temperature in a given amount
of laser cycles. Taking more cycles into account reduces noise, but produces inaccurate results
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Figure 4.12: Heating rate as a function of temperature for multiple laser intensities and initial conditions.
Initial conditions are a) ne = 1020 cm−3 and kBTe = 100 eV, and b) ne = 1022 cm−3 and kBTe = 500 eV.
The CMDS heating rate is computed on 5 laser cycles. Each color corresponds to a value of vosc/vth. For
each color (except red), solid lines correspond to simulation data, and dashed lines were computed from
the model developed in chapter 3, which does not take into account distortion of the electron velocity
distribution. The model proposed in this work eq. (4.33) is in red dotted for all intensities, but for each
case, it is very close to MD data, at least asymptotically. After a transient regime, when the distribution
has reached a self-similar state, the heating rate is well reproduced by our model, especially in the second
case.

when the heating rate changes very fast, which is the case at the beginning of the simulations.
In Fig. 4.12, the computed dkBTe/ dt on our CMDS was carried out over 5 laser periods. The
left viewgraph corresponds to ne ≈ 0.01nc and the right viewgraph to ne ≈ nc. The maxwellian
model and the model with the non-maxwellian multiplier are plotted over CMDS results.

The MD data and both models are all close together at early time in simulations. This is
expected, since the distribution is actually Maxwellian. At late time, when a self-similar state
is reached, the model with non-Maxwellian multiplier is very close to CMDS data in both cases.
Surprisingly enough, the absorption does not seem to be affected noticeably in the subcritical case
ne = 1020 cm−3. However, in the case ne = 1022 cm−3, the MD heating rate is significantly lower
than in the Maxwellian case. The transient regime, between early time and late time self-similar
regime, is difficult to model accurately.

4.9 Conclusion

We observed the distortion of the EVD in moderate-Z plasmas for a wide range of laser intensities.
At low laser intensity, we were able to observe the distortion predicted by Langdon [1980] on
the instantaneous EVD, which had yet to be done in CMDS with vosc < vth and Z > 1. At
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higher laser intensity, we observed and characterized the distribution of the EVD. In particular,
the distribution projected along the direction of the laser polarization was observed to reach a
Supergaussian order higher than 5, which was the highest order possible in Langdon’s predictions.
We observed Supergaussian distributions with Maxwellian tail in conditions close to experimental
conditions [Milder et al., 2021]. Then, we showed that the behaviour of the isotropic part of
the Supergaussian is qualitatively similar to the predictions of Matte et al. [1988], but with a
Supergaussian order slightly small from a quantitative point of view. Finally, we showed results
of the modification of the heating rate due to the distortion of the EVD. Though these results
have to be taken with caution because they are preliminary, they showed the heating rate of the
subcritical plasma we considered seems unaffected by the distortion of the EVD. The heating
rate of the critical plasma we simulated is affected, and the reduction of absorption seems to be
consistent with the non-Maxwellian model of absorption detailed in chapter 2.

4.10 Appendix A: Difference between instantaneous and cycle-
averaged distributions

In the literature [Langdon, 1980, Matte et al., 1988], electron velocity distributions (EVD) are
presented after being averaged over one laser cycle. The averaging process itself distorts the shape
of a the averaged distribution when the instantaneous distribution is subjected to oscillation in
phase space (due to an oscillating electric field or any other cause of oscillation of the averaged
velocity).

The cycle averaged-distribution of an oscillating population of electron, with instantaneous
velocity distribution fe in the oscillating frame, is given by

〈fe(v)〉 = 1
2π

∫ 2π

0
fe(v + vosc sin t) dt. (4.34)

When vosc vanishes, the averaged distribution is the same as the instantaneous distribution.
In Fig. 4.13, we have assumed that fe was a pure Maxwellian. Clearly, when vosc = 0.1 vth,
the difference between the projected-averaged and the projected-instantaneous distribution is
barely visible. However when vosc approaches 0.5 vth, the difference becomes noticeable and the
projected-averaged distribution exhibits a flat top that could be interpreted as a Supergaussian.
When vosc � vth the projected-averaged distribution exhibits a concavity for v � vosc with a
maximum around v ≈ vosc.
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Figure 4.13: Effect of the averaging process on a Maxwellian distribution. The initial distribution is a
Maxwellian in blue. The other curves correspond to the average of this distribution oscillating for multiple
oscillation amplitudes (vosc). For vosc = 0.5vth, the averaged is close to the initial Maxwellian, but for
vosc = 0.5vth the distribution is very far from the Gaussian. Fitting these distribution by projected
Supergaussian yield a thermal velocity of 1.06vth and k = 2.02 for vosc = 0.5vth; and a thermal velociy of
1.22vth and k = 2.35 in the case where vosc = vth. This demonstrates the effect of the sweeping mechanism
on the Supergaussian order.

4.11 Appendix B: Expressions for various useful Supergaussian
distributions and their projection

The non-Maxwellian expression of the EVD, first devised by Langdon [1980] then taken up by
Jones & Lee [1982], Matte et al. [1988] and many others, is that of an isotropic Supergaussian
(ISG) given by

f ISG
e (v) = k Γ(5/k)3/2

4π v3
th Γ(3/k)5/2 33/2 exp

[
−
(
v

vI

)k]
, (4.35)

where the velocity v = (v2
x + v2

y + v2
z)1/2, the width sprawl vI = vth × (3 Γ(3/k)/Γ(5/k))1/2

and where k is the order of the distribution. In the theoretical derivation of this expression
by Langdon, isotropy was hypothesized. But as shown in section 4.4 of the present article, our
CMDS show that EVDs can become anisotropic for different reasons.

At moderate intensities, CMDS illustrate that different temperatures can build up in both
parallel and perpendicular directions while keeping a common order k in all directions (the
reference being the direction of polarization). Therefore a single-order-anisotropic Supergaussian
(SOA) distribution written as

fSOA
e (v) = C exp


−

(
v2
x

v2
Sx

+
v2
y

v2
Sy

+ v2
z

v2
Sz

)k/2
 , (4.36)

is enough to describe such non-Maxwellian EVDs. In eq. (4.36), C is a normalization constant
and the width sprawl v2

Sµ = vthµ× (3 Γ(3/k)/Γ(5/k))1/2 where µ ∈ {x, y, z}. When projected on
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the µ-axis, in the sense of eq. (4.19), this distribution becomes

fSOA
µ (vµ) =

√
Γ(5/k)

2
√

3vthΓ(3/k)3/2 γ


2
k
,

(
vµ
vSµ

)k
 , (4.37)

where γ(a, z) =
∫ z
0 t

a−1 exp(−t) dt is the incomplete lower gamma function. In the case of a 3D
Maxwellian distribution, for which k = 2 in eq. (4.36), the projection is trivially a Maxwellian
with the same temperature as that along the projected axis.

Since our CMDS seems to show that, at high intensities, even the order seems to be anisotropic
(see Fig. 4.10) it would have been interesting to postulate a many-order-anisotropic Supergaussian
(MOA) distribution of the form

fMOA
e (v) = C exp


−
(
vx
vMx

)kx

−
(
vy
vMy

)ky

−
(
vz
vMz

)kz


 , (4.38)

but we were unable to find a practical formula for any of its projected distribution (such as
eq. (4.37) for eq. (4.36)).

Finally, using particle-in-cell simulations, Fourkal et al. [2001] found that the non-Maxwellian
behaviour of EVDs in a plasma submitted to an intense monochromatic radiation (laser) had one
more feature that was not described by Langdon’s seminal paper [Langdon, 1980]. Although the
bulk of the EVD is well described by a Supergaussian, its tail (for v � vth) was found to match a
Maxwellian. This is a characteristic that we can observe in our CMDS and this is the reason why
it is listed in this section. It is represented by a Supergaussian-Maxwellian tail (SGM) function
of the form

fSGM
e (v) = η fM

e (v) + (1− η) f ISG
e (v), (4.39)

where η is a parameter that characterizes the weight of the Maxwellian distribution.
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This chapter describes the experimental campaign that took place in october 2021 at the
GCLT facility (portable laser shock generator, Générateur de Chocs Lasers Transportable in
French) as part of this work, in order to study the absorption and reflection of a laser by a
plasma. We will start with a state of the art of similar experiments in section 5.1. The following
section will then describe the setup of the campaign at the GCLT in detail.

5.1 Slab reflection and absorption experiments: state of the art

As explained in chapter 1, lasers beams irradiate either the cavity in indirect-drive ICF, or the
spherical capsule in direct-drive ICF. Non planar target shapes such as cavities [Földes et al.,
1987] and spheres [Bach et al., 1983] introduce many geometric features that can affect laser
absorption. Any complicated target (sphere, cylinder, rugby-shaped) can locally, as any surface,
be considered planar. This is the reason why we chose planar targets for our campaign, in addition
to the fact that they are very simple to fabricate.

Thus, our review of the state of the art is limited to plane geometry. In the 1970s and the
1980s, specular reflection and scattering of a laser by a plane foil has been extensively studied
for a wide range of materials and laser characteristics (wavelength, pulse duration, intensity).
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The absorption and reflection of an intense laser by matter have been the subject of a number
of experiments for more than 60 years, see table A on page 115 for a list of publications on the
matter. For the most part, this literature review will be restricted to pulse durations between 0.1
and 8 nanoseconds, and laser intensities under 1014 W/cm2 since these are parameters that were
accessible on the GCLT facility. See section 5.2.1 for a more complete description of the facility.

Absorption and reflection depend on many experimental parameters including, but not limited
to the material and the shape and rugosity of the target, the laser wavelength, its polarisation,
the temporal shaping of the pulse, the size of the focal spot as well as the spatial intensity profile.
These can all modify laser absorption and reflection.

5.1.1 The energy balance

A few definitions are useful before proceeding further. Fig. 5.1 shows a schematic representation
of laser light hitting a plane target. The incident intensity is split into backscattered, absorbed,
and scattered intensity. This is summarized in

Iinc = Iabs + Ibs + Iscat. (5.1)

The backscattered light is mainly due to parametric instabilities such as Stimulated Brillouin
Scattering (SBS) and Stimulated Raman Scattering (SRS). The scattered light include specular
reflection as well as light scattered in other directions due to rugosity for instance. In the liter-
ature, this balance is often time-integrated over the duration of the incident pulse, which yields
E ∝ ∫

I dt. Defining the absorption coefficient as A = Eabs/Einc, the reflection coefficient as
R = Escat/Einc and the backscatter coefficient as Ebs/Einc. The integration of eq. (5.1) with
respect to time yields 1 = A+B+R. Since A = 1−B−R, a better characterization of reflected
light leads to a better characterization of absorbed light, provided B can be estimated or other-
wise measured. When backscattered light can be neglected, A = 1 − R. Measuring R becomes
equivalent to measuring A. When the time-resolved intensity profiles are measured, they can
be used to define the instantaneous absorption and reflection coefficients A(t) = Iabs/Iinc and
R(t) = Iscat/Iinc.

When the laser incidence is normal, the backscattered light and specular reflection overlap.
They can still be distinguished from one another using spectroscopy, since reflected light is blue-
shifted while SBS tends to be red-shifted. Indeed, light backscattered by SBS is subjected to the
Doppler effect, and thus may be overall blue-shifted, if the plasma is fast enough. Because of
the SBS process, this light cannot be as blue-shifted as specularly reflected light, and so reflected
and SBS light can be distinguished by spectroscopy. However, spectroscopy was not used in all
the experiments at normal incidence that will be discussed here, for example [Arad et al., 1980].

5.1.2 Scattered light and specular reflection

The part of scattered light that is in the specular reflection may vary during the laser pulse.
Indeed, the surface on which the laser is reflected is not guaranteed to stay parallel to the initial
target surface for the whole duration of the pulse. In particular, non-uniformities in the spatial
profile of the incident beam can lead to a deformation of the target surface [Desai et al., 1994].
As a result, light can be scattered in the whole half space in which the plasma expands.
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Target

Expanding
plasma Incident and

backscattered light

Specular
reflection

θ

Figure 5.1: Representation of a laser hitting a plane target at an angle, and its specular reflection. The
incidence θ is defined as the angle between the target normal and the incident beam. When the incidence
is normal (θ = 0°), the specular reflection is superimposed with the backscattered light. This simplified
representation only shows the specular reflection. In practice, part of the light is scattered in the 2π
half-space opposite to the target. The effects of this on the experiment are discussed insection 5.1.2.

Krokhin et al. [1975] measured the directivity of reflected light, both at normal and 45°
incidence. Though the scattering pattern was elongated in the direction of specular reflection,
they found that the scattered energy integrated in all directions was significantly higher than the
specularly reflected energy collected in a cone with the same solid angle as the focusing system,
for example from R = 0.65% to R = 3% in one of their shot. In other words, assuming the
reflected light is scattered in a cone that has the same solid angle as the incident light induces
a significant error in the energy balance. It is important to take into account light scattered in
the whole half plane in which the plasma expands, or at least a larger solid angle than that of
incident light. The directivity profiles of Krokhin et al. [1975] were confirmed by Ripin et al.
[1980]. Nishimura et al. [1980] studied the directivity profiles for 35° incidence and showed the
directivity of reflected light depends on the polarization of incident light.

The importance of scattered light was confirmed by Garban-Labaune et al. [1982], who mea-
sured more scattered light with an integrating sphere than reflected back into the optics, at
normal incidence, λ = 1.06 µm, and for intensities less than 1014 W/cm2. However, the light
reflected back into the optics include SBS as well as specular reflection, so the exact difference
between scattered light and specularly reflected light was not known. Finally, Desai et al. [1994]
measured the reflection coefficient for multiple collection angle, and multiple intensities. They
found that even the qualitative behaviour of the reflectivity with respect to laser intensity de-
pended on the angle of collection. The wide scattering of the reflected laser light was in part
explained by distortions of the plasma critical surface which were suggested to arise as a result
of non-uniform laser irradiation.

As a result, experiments in which only the specular reflection is collected [Dahmani, 1993,
Offenberger et al., 1986], where the solid angle of collection is not always given, are not guaranteed
to actually measure all the scattered light.

All in all, these experiments emphasize two points:

• the need to measure the reflectivity coefficient with an angle of collection as wide as possible,
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• the importance of using smoothing techniques such as polarization smoothing and random
phase plates that enhance laser power uniformity in the focal spot.

Another advantage of using smoothed laser beams, besides a better control of the laser intensity
on target and a more specular reflection, is that random phase plates and polarization smoothing
have been shown to greatly reduce SBS [Seka et al., 2002b].

5.1.3 The integrated absorption coefficient

There is a general agreement in the literature that the integrated absorption coefficient decreases,
when the laser intensity increases from 0.1 and 100 TW/cm2, independantly of the target material
and of the other laser parameters. This is supported by multiple experiments where an integrating
sphere was used to measure the whole scattered power, and the light backscattered through the
optics was measured separately [Anthes et al., 1979, Arad et al., 1980, Eidmann et al., 1984, Meyer
et al., 1982, Nishimura et al., 1981, Simpson et al., 1990], as well as when only the backscattered
light and specular reflection were measured [Dahmani, 1993, Offenberger et al., 1986]. However,
the exact values of absorption, reflection and backscattered light may fluctuate because they
strongly depend on the other laser parameters (wavelength, pulse duration) as well as the angle
of incidence.

The dependance of laser absorption upon the angle of incidence between the target and
incident laser beam has been shown [Mead et al., 1983] to be in agreement with theoretical
predictions [Kruer, 1988, Scheiner & Schmitt, 2019], in which the reflection coefficient is expected
to behave like exp(−K cos3 θ) where θ is the angle of incidence and where K depends on laser
parameters (intensity, wavelength) and target material properties.

Experiments carried out with carbon, silicium, aluminium, iron and gold targets [Anthes
et al., 1979, Dahmani, 1993] revealed that the integrated reflection coefficient does not depend
much on the target material for intensities lower than 100 TW/cm2. This is apparent in Fig. 5.2,
which is from Dahmani [1993]. The target material [Arad et al., 1980, Mead et al., 1983] does
make a difference in energy absorption at higher intensities. The coefficient of energy absorption
was found to decrease with increasing laser intensities in these experiments, though the numerical
value varied from experiment to experiment. This is not surprising, since parameters known to
affect energy absorption, such as the angle of incidence, were not the same in all these experiments.

5.1.4 The instantaneous absorption coefficient

It is known [Turnbull et al., 2015] that the instantaneous reflectivity coefficient varies during the
pulse in ICF experiments. Specifically, the reflection is significant at the beginning of the pulse,
before rapidly decaying. The instantaneous reflection coefficient then increases again and even
reaches values higher than the initial reflectivity.

Several experiments [Garban-Labaune et al., 1982, Seka et al., 2002a] indicated that the
instantaneous reflection coefficient also varied in plane foil configurations. This was done by
showing that the integrated reflection coefficient depends on the duration of the pulse. Seka
et al. [2002a] showed an increase in the coefficient of absorption from 0.8 to approximately 0.95
at intensities below 100 TW/cm2 when the pulse duration increased from 100 ps to 450 ps, at a
wavelength of 0.35 µm. At a wavelength of 1.06 µm, Garban-Labaune et al. [1982] measured an
increase of the absorption coefficient between 0.1 and 0.3 when the pulse duration was increased
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Figure 5.2: Integrated reflectivity coefficient with respect to laser intensity for multiple target materials.
The linearly polarized laser had λ = 1.064 µm. Further details of the experimental setup can be found in
table A. Image credit: Dahmani [1993].

from 100 ps to 2.5 ns for intensities between 0.2 and 200 TW/cm2. These two experiments confirm
that the reflection coefficient of a laser induced plasma is not constant during the laser pulse.
This emphasizes the importance of time-resolved reflectivity measurements.

Rupasov et al. [1973] measured the time-resolved reflected pulse, which appeared to have a
different time profile than the incident pulse, specifically the power peaked earlier in the reflected
pulse than the incident pulse. However, since the incident intensity is constantly varying, it is not
possible to reach a self similar state, such as those for which theoretical models exist [Manheimer,
1982, Mora & Pellat, 1979]. This has guided us to use pulse shapes with intensities as constant
as possible during our campaign at the GCLT facility, so that our results can be more easily
compared to theoretical models of the literature.

5.2 Setup of the experimental campaign on GCLT

As part of this thesis, an experimental campaign took place at the GCLT facility at CEA DAM in
october 2021. Though details will be given in what follows, the basic principle of the experiment
is represented in Fig. 5.3. A high intensity laser (1) is focused by a f/6 lens on a plane foil of
metal (2), with 45° between the incident laser and the normal of the target. The incident and
specularly reflected radiation are measured (time-resolved profile, integrated energy) in (3) and
(4) respectively, so as to obtain information on the reflectivity of the target. The specularly
reflected radiation is collected by a f/2 lens. A CCD (5) and a streak (6) camera are used to
record images of the plasma. In Fig. 5.4 are shown pictures of the experimental chamber, and of
both cameras.

5.2.1 The laser facility

The GCLT facility houses a Nd:Glass laser (λ = 1.053 µm) that is capable of delivering up to
40J of energy in a single pulse, with a duration between 4 and 100 ns that can be shaped at will.
The laser chain, shown in Fig. 5.5 consists of two amplification stages and some diagnostics on
the laser pulse before being directed to the experimental chamber. After the first amplification
stage, the laser is split into two beams, going through the second amplification stage separately.
The beams are recombined right before going out towards the experimental chamber. At this
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(1)
(2)

(3)

(4)

(5)
(6)

f/2

f/6

Figure 5.3: Diagram of the experimental setup. The laser (1) is focused on the target (2) with 45° incidence.
Both the incident and the specularly reflected energy and temporal profile are measured by a calorimeter
and a photodiode, (3) for the incident light and (4) for the reflected light. The plasma is observed by a
CCD (5) and streak camera (6).

point, the two beams polarizations are normal to each other, so they do not interfere with one
another. However, each beam has its own speckle pattern, which leads to a reduction in speckle
contrast [Tsubakimoto et al., 1992]. This process is known as polarization smoothing, and aims
to make the intensity profile on target more uniform.

Random phase plates [Burckhardt, 1970, Kato et al., 1984] are also used to smooth the spatial
profile of laser intensity. A random phase plate is an array of cells, each of which transmits the
laser beam while applying a phase shift of either 0 or π. It is associated to a focal spot diameter:
we used focal spot diameters of 429, 250, and 86 µm. These diameters were measured so that 81%
of the total laser energy is within the focal spot. In the rest of this work, all incident energies
are corrected to exclude energy outside the focal spot. In Fig. 5.6 are shown the spatial intensity
profiles associated with each phase plate. The 429 µm spot has the most uniform profile, but
is associated with the lowest laser intensity, for a given energy. The 250 and 86 µm focal spot
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Streak CCD

Figure 5.4: Pictures of the experimental chamber (left) and of the streak and CCD cameras (right).

Figure 5.5: View of the two GCLT laser chain. The top part of the diagram contains the two stages of
amplification. The bottom part contains diagnostics on the laser pulse, as well as the recombination of
the two beams and the chamber. The elements outlined in cyan are Nd:glass amplification cristals. The
elements outlined in green are Faraday rotators. Together with the elements outlined in violet, which are
polarizers, they prevent light from backscattering through the laser chain. Image Credit: Emilien Lescoute
(CEA/DAM).
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diameters made it possible to expand the accessible range of intensities, but at the cost of less
uniform focal spots.

This is because the size of a focal spot varies as λf/d, where f is the focal length, λ the laser
wavelength and d is the size of a cell of the random phase plate. This shows that a smaller focal
spot for fixed λ and f means larger d. Thus, a small focal spot is associated with large cells in
the random phase plate, and since the size of the beam before the phase plate is also fixed, the
beam can pass through less cells, and so there are less speckles, which leads to lower intensity
uniformity at the focal spot.

Figure 5.6: Imaging of the focal spot on target (with 45° incidence), with the 429 µm (left), 250 µm (center)
and 86 µm (right) phase plates. The space scale is the same for all three graphs. The focal spot is elliptic
because of the incidence. The size of the focal spot normal to the laser axis corresponds to the height of
the focal spot in the graphs. It is apparent that the larger the focal spot, the more uniform it is.

5.2.2 The laser pulses

As part of the experimental campaign, four pulse shapes were considered, samples of which are
shown in Fig. 5.7.

− Short Single Pulse (SSP): it is a pulse of constant intensity for 4 ns, which was used for
the majority of the shots. Two settings of energy were used, 10 J and 20 J. One advantage
of a step pulse is that since the incident intensity is almost constant for its whole duration,
a steady (or at least self-similar) state can develop inside the plasma, at variance with
Gaussian pulses, in which the incident intensity is constantly varying, so no steady state
can develop.

− Long Single Pulse (LSP): it is a pulse of constant intensity lasting for 10 ns, which was
used in order to study the behaviour of the reflected light on a longer timescale. 40 J were
delivered over 10 ns.

− Staircase Pulse (STP): it is a pulse which starts out like the SSP, but switches to a higher
intensity for four more nanoseconds at the end. The STP is an attempt to mimic typical
ICF laser pulses, where intensity rises twice during the pulse to deliver two shocks, though
the intensity reached at the GCLT facility are lower than intensities used in actual ICF
experiments. 10 J were delivered over the first 4 ns of the pulse, and 20 J over the next 4 ns.

− Double Step Pulse (DSP): it is a pulse composed of a first SSP step, and, after a delay
of 20 ns, a second SSP identical to the first one. This pulse allowed us to get more data on
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Figure 5.7: Typical laser pulses for all the shapes employed during the campaign. The energies on target
experienced small shot-to-shot variations. For these pulses, the energies on target are 19.2 J for the step
pulse (SSP), 38 J for the long step pulse (LSP), 29.98 J for the staircase pulse (STP), and 38.8 J in the
double step pulse (DSP), of which 19.83 J in the first pulse, and 18.97 in the second one. The rise time is
on the order of a nanosecond for all pulse shapes. However, the extinction after the pulse is not as short,
and in particular, the extinction between the two steps of the double step is not total.

the SSP, since the first pulse of DSP is SSP, while the second pulse served as a probe on
the plasma induced by the first pulse in order to assess the absorption of laser in a plasma
bubble. Due to technical constraints, the intensity extinction between the two steps is not
perfect, as shown in Fig. 5.7.

Table B sums up the intensities that were reached, between 1.7× 1013 and 8.6× 1013 TW/cm2.
Having intensities less than 1014 W/cm2 means that we expect very little backscattered light (SBS
and SRS), which was confirmed by radiation hydrodynamics simulations with troll. This means
that Ibs can be neglected from eq. (5.1). Thus, most of the intensity that is not absorbed by the
target is specularly reflected, the difference being energy scattered in other directions.

5.2.3 Targets and Diagnostic

All targets are plane foils of a pure element (except for plastic targets, which are made of carbon
and hydrogen), placed inside a vacuum chamber with a pressure less than 10−3 bar. Elements
shot are Al, Ti, Fe, Cu, Ag, Au, Pb, Si, V, Zn, Mo, Sn, Ta, W, Bi, and CH, shown in Fig. 5.8.

Size of focal spot 10 J over 4 ns 20 J over 4 ns 40 J over 10 ns

86 µm 4.3× 1013 W/cm2 8.6× 1013 W/cm2 6.9× 1013 W/cm2

250 µm 5.1× 1012 W/cm2 1.0× 1013 W/cm2 8.1× 1012 W/cm2

429 µm 1.7× 1012 W/cm2 3.5× 1012 W/cm2 2.7× 1012 W/cm2

Table B: Intensity reached for different phase plates and pulse characteristics. For all these pulses, the
intensity is constant for the whole duration of the pulse. The staircase pulse shape is equivalent to a (10 J,
4 ns) step immediately followed by a (20 J, 4 ns) step.
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When possible, we aimed to test multiple elements in each column of the periodic table, to assess
whether their behaviour is related to the outermost electronic configuration. Additionnally, there
were two kinds of iron and gold targets, smooth surface (arms ≈ 0.1 µm) called laminated and
rough surface (arms ≈ 1 µm) called hard. Multiple shots on both types of target using the 10 J
SSP have been carried out and we observed no significant difference beyond the shot-to-shot
variations. That indicates the influence of target rugosity on our experiments was not significant,
at least for low laser intensity shots.

The energy as well as the pulse shape of the incident laser irradiating the plane target are
monitored by diverting 0.1% of its energy shortly before it reaches the experimental chamber, and
measuring the energy and profile of this fraction, in (3) in Fig. 5.3 using both a photodiode and
a calorimeter. The absolute energy measurement is then corrected to only include the energy in
the focal spot. The specular reflection is collected by a lens inside the chamber and concentrated
outside the chamber where it was analyzed using also a calorimeter and a photodiode (4) in
Fig. 5.3. The f/2 collecting lens had a coating to minimize reflection at 1053 nm. The calorimeter
provided an absolute integrated measure of the reflected energy, while the photodiode provided
a relative time-resolved measure of the intensity collected.

TODO emsision du plasma, pas plasma Additionally, the plasma induced by the laser pulse
was monitored with a streak camera and a CCD camera, respectively (5) and (6) in Fig. 5.3.
The corresponding fields of view on the plasma are represented in Fig. 5.9. The streak camera
observes a single axis, but is resolved in time. The operating principle of a streak camera is
shown in Fig. 5.10. The plasma is observed through a thin slit(100 µm here). Photons emitted by
the plasma are converted to photoelectrons by a photocathode. These photoelectrons are then
projected onto a fluorescent screen. An electric field is applied to the electron beam before it
reaches the screen. This electric field shifts the positions of the electrons. The electric field varies
during the shot, and so the relation between the electrons shift and time is known. The result is
a 2D picture, where one axis is space (the slit), and the other is time (the electrons shift).

The streak camera’s slit was directed to image the axis of the plasma created by the irradiation
of the target (normal to the foil). It provided a time-resolved imagery of a 10-µm wide slice of
the plasma. The streak camera could be set for 10, 20 and 50 ns acquisition duration.

The CCD camera provided 2D images of the plasma self emission seen from the side. The
CCD was able to take 16 pictures during a shot with 3 ns of exposure for each picture. The
start time of exposure can be set independantly for each of the 16 pictures. This means that, for
example, the camera could be set to take one picture every nanosecond. This setting was used
for few shots, however, in most of them, the camera was set to take one picture every 3 ns, so the
exposure of one picture started when the exposure of the previous picture ended. An example of
CCD data is shown in Fig. 5.11, and cuts of the data are shown in Fig. 5.12. The plasma can
be seen expanding from the target. Each camera has a different sensibility, so a normalization
step is required in order to compare the CCD images with each other. This normalization is
performed by using an image with a static laser used to light up the camera.
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Target
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Laser beam
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Figure 5.9: Representation of the fields of view of the streak and CCD cameras (not to scale). The laser
does make a 45° angle with the target normal, but it is in the direction of the depth of the fields of view
of the cameras, and so it cannot be seen in this representation. The lenses between the plasma and the
cameras have a magnification of 10, so 100 µm wide slit of the streak camera corresponds to a 10 µm wide
view of the plasma.

Figure 5.10: Working principle of a streak camera. Image credit: Mahgoub et al. [2012]
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Figure 5.11: CCD images from a shot using the SSP, and I = 8.6× 1013 W/cm2. The CCD pictures are
taken with 3 ns exposure. The left image is earlier during the shot than the right image. The target is
seen from the side, it is on the left side of the picture, see Fig. 5.9 for the position of the field of view
relative to the laser. The color scale is the same for both images. The orange feature corresponds to the
self-emission of the plasma. The cyan lines indicate the cuts that are shown in Fig. 5.12
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Figure 5.12: CCD cuts from the image shown in Fig. 5.11 corresponding to the cyan lines showed on the
right image of Fig. 5.11.
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Chapter 6
Experimental results and interpretation with
the radiation hydrodynamics code troll
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The results of the experimental campaign are presented in this chapter. For each pulse shape,
the temporal profile of the reflected power is commented. The influence of target material is
analysed, and the variations of the reflected power profiles with laser intensity is discussed (when
multiple incident laser intensities are available). In section 6.1.5, a selection of streak images
are presented and commented. In section 6.1.6, a simple theoretical model is used to better
understand the results shown in the previous sections.

Finally, in section 6.2, the first results of radiation hydrodynamics simulations using the code
troll are presented. Since the inverse bremsstrahlung absorption model devised in chapter 3
was implemented in troll, the comparison of experimental results with simulations can be used
in order to get experimental measurements of the main constant of the parametrized models,
Cabs (see eqs. (3.2) to (3.5)). The results presented here are preliminary because at the time of
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writing this thesis, several sources of uncertainty, discussed in this chapter, have not yet been
fully addressed.

6.1 Experimental results

6.1.1 Single step pulse (SSP)
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Figure 6.1: Integrated specular reflectivity versus shot intensity for multiple materials. For every shot,
the laser pulse is approximately square and lasts 4 ns, i.e. the pulse is a step, or a double step. The
reflectivity is integrated on the first 20 ns of the shot, so as to include residual laser energy hitting the
target after the main pulse. Shots on gold are plotted in orange, shots on silver are plotted in green and
shots on lead are plotted in blue. Other materials are not plotted for clarity, but follow the same trend:
reflectivity almost constant for intensities ≤ 1.0× 1013 W/cm2, and a higher reflectivity for intensities ≥
1.0× 1013 W/cm2. The exact value of the reflectivity for intensities ≤ 1.0× 1013 W/cm2 as well as the
trend for higher intensities are material-dependant.

In Fig. 6.1 is plotted the integrated reflectivity as a function of the laser intensity on target
for multiple materials. The specular reflectivity is higher at high laser intensities. This is in
accordance with previous results [Arad et al., 1980, Eidmann et al., 1984, Simpson et al., 1990],
where the energy absorbed decreases with increasing laser intensity. To investigate this behaviour,
it is useful to observe the temporal profiles of reflected power with respect to time, for multiple
laser intensities.

Indeed, Fig. 6.2 shows that this sharp rise in reflectivity is linked with a change of the reflected
power temporal profile. For intensities ≤ 1013 W/cm2, the reflected power on gold (left graph)
decreases as time goes by. The rise of the integrated reflectivity in Fig. 6.1 for higher intensities
is correlated with a rise of the reflected signal during the pulse, as opposed to the decreasing
signal at low intensities. All materials tested during the campaign, except for lead which will
be detailed further, exhibit the same qualitative behaviour, though it is not shown here for all
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materials to avoid cluttering the graph. The slope of the reflected power during the pulse varies
from material to material, but its sign is the same for all materials inspected, at a given intensity.

As shown in the right graph of Fig. 6.2, lead has a different behaviour compared to all other
materials that were used. Indeed, it consistently had the lowest reflectivity of all materials as
can be seen against gold and silver in Fig. 6.1. The reflected power versus time for lead also has
a different shape compared to other materials, especially at high intensity. This may be linked
to the fact that lead has the highest Z of all the materials tested at high intensity. The only
material tested with higher Z is bismuth, but all shots involving bismuth targets were carried
out at low intensity, where the reflected power for all materials has the same qualitative profile,
which did not allow us to get a clearer insight on the subject.

0 5 10 15

10−3

10−2

10−1

100

Time (ns)

La
se

rp
ow

er
(a

rb
itr

ar
y

un
it)

a) Gold

I = 3.5 TW/cm2

I = 5.1 TW/cm2

I = 10 TW/cm2

I = 43 TW/cm2

I = 86 TW/cm2

0 5 10 15

10−3

10−2

10−1

100

Time (ns)

La
se

rp
ow

er
(a

rb
itr

ar
y

un
it)

b) Lead

I = 3.5 TW/cm2

I = 5.1 TW/cm2

I = 10 TW/cm2

I = 43 TW/cm2

I = 86 TW/cm2

Figure 6.2: Power incident (dashed) and reflected (solid) versus time for multiple intensities, for two
materials: gold (left) and lead (right). The laser power is normalized so that all the incident pulses have
the same maximum level, otherwise the incident power would not be the same for 10 J and 20 J pulses.
For each shot, the corresponding reflected power is the solid line of the same color. See table B for the
focal spot size and energy corresponding to each intensity. For lead, two shots are plotted (in the same
color) for each intensity, to show repeatability.

6.1.2 Long Single pulse (LSP)

To further investigate the rising reflected power during the pulse that was observed at high
intensities with the LSP, we used the long single pulse shape. Because of technical constraints,
it was not possible to simply extend the 20 J - 4 ns pulse to 10 ns. Instead, 40 J were delivered
over 10 ns, so the intensity reached was 6.9× 1013 W/cm2 (the 86 µm phase plate was used to
investigate high intensities), which is slightly less than the 6.4× 1013 W/cm2 intensity that was
reached during the 20 J - 4 ns step pulse.

The reflected power for this pulse shape is presented in Fig. 6.3. Though only silver, gold and
lead shots are presented so as not to clutter the graph, results for all materials are similar: the
reflected power either levels off or rises slowly. It is interesting to note that the behaviour of lead
in this graph is very similar to that of gold and silver, except at the very beginning of the pulse.
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Figure 6.3: Power incident (dashed) and reflected (solid) versus time for multiple intensities, for silver, gold
and lead targets. Multiple shots are shown for each material to demonstrate the shot to shot repeatability.
The first four nanoseconds of the reflected profiles are very similar to the I = 86 TW/cm2 shots in Fig. 6.2,
which is expected since the laser profile is similar, only with a slightly lower intensity (I = 69 TW/cm2).
The reflected power on silver and lead does seem to reach a steady state, and stay constant for the last
5 ns of the pulse.

This might mean that at high laser intensity, lead behaves like other materials with a time delay.
Further investigations into this matter are required to reach a definite conclusion, and to explain
the behaviour of lead at low laser intensities.

6.1.3 Double step pulse (DSP)

The DSP was used to assess the absorption of laser light (the second pulse) on a preformed plasma
(induced by the first pulse). A selection of these results are presented in Fig. 6.4 for a 86 µm
focal spot. The materials not shown in these graphs behave similarly to gold, with a reflected
power constant or slightly decreasing during the second pulse, but the exact numerical values of
the reflected power and its slope vary with the material. Similar shots were carried out at a lower
intensity, with a 429 µm focal spot. These results are not shown here since all materials behave
similarly to gold in Fig. 6.4.

At higher laser intensities, with a 86 µm focal spot, the behaviour of reflected power for
aluminium, iron and copper targets differed from other materials, as shown in Fig. 6.4. Indeed,
a spike in reflected power occured near the end of the pulse. This is repeatable even though
the amplitude of this spike differs from shot to shot, using the same laser pulse and material.
However, this spike occured to different degrees in all shots on aluminium, iron and copper for
the 2 x (10 J, 4 ns) pulse shape.

6.1.4 Staircase pulse (STP)

In ICF experiments, laser pulses are shaped to produce two shocks or more (see Fig. 1.8 for typical
ICF pulses). Here, we mimicked this shape in our experiments with a succession of two intensity
rises, the staircase pulse shape (see Fig. 5.7). We found that the behaviour of the reflectivity
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Figure 6.4: Power incident (dashed) and reflected (solid) versus time for multiple target materials: Al, Fe,
Cu, Au, Pb. All graphs use the double step pulse and have a 86 µm focal spot, the difference being the shots
plotted a) and c) use two 10 J steps, and b) and d) use two 20 J steps. For each shot, the corresponding
reflected power is the solid line of the same color. Multiple shots are shown for each material, to show
repeatability. Multiple behaviours can be distinguished. Reflected power during the first pulse is similar
to the I = 86 TW/cm2 in Fig. 6.1. Reflected power by lead and gold are almost constant during the second
pulse, for both energies. For copper, iron and aluminium, a spike in reflected power seems to occur near
the end of the pulse. The amplitude of the spike seems to vary from shot to shot, especially for copper in
d), but the spike itself is always noticeable.

was not significantly affected by the second rise as shown in Fig. 6.5, though the reflected power
doubles in a very short time, which is coherent with the fact that the incident power doubles
in this same time span. However, with the 429 µm focal spot, the reflected power in the second
part of the pulse seems to decrease with a slope comparable to that in the first part of the pulse.
With the 86 µm focal spot, we observed a behaviour similar to the LSP, specifically the reflected
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Figure 6.5: Power incident (dashed) and reflected (solid) versus time for silver, gold and lead target, for the
staircase pulse shape, and a 429 µm focal spot (left) and a 86 um focal spot (right). The values on top of
the graphs give the magnitude of the intensity reached during each shot. For each shot, the corresponding
reflected power is the solid line of the same color. Multiple shots are shown for each material, to show
repeatability. The first half of the pulse is identical to the 10 J single step pulse, so it follows that the
reflected power is the same as in Fig. 6.2. In the second half of the pulse and for the 429 µm focal spot,
the reflectivity does not seem to change behaviour, and still seem to decrease with the same slope. Since
the incident power doubles at mid-pulse, the reflected power also doubles. For the 86 µm focal spot, the
behaviour of the reflected power is reminiscent of the behaviour during the long pulse, which was shown
in Fig. 6.3, where the reflected power reaches a steady value.

power was either approximately constant or slowly rising in the second half of the pulse.

6.1.5 Streak Data

The streak images can be used to obtain information on the plasma. In Fig. 6.6 are shown a
selection of streak images for shots with I = 8.6× 1013 W/cm2 on different materials. Multiple
features can be distinguished in the images: during the laser pulse, the plasma is at its brightest,
and the bright area expands very fast. The edge of this feature is labelled "plasma-vacuum
interface" in Fig. 6.6. At the end of the laser pulse, it is possible to see a very sharp front,
especially for materials with high Z. This front is outlined in the streak image of the shot on gold
in Fig. 6.6. This effect may be related to atomic physics, since the sharpness of the front indicates
a very short characteristic time, too short to be related to any hydrodynamic phenomenon in
the plasma. Another possible cause of this sharp front is second harmonic generation that could
occur in the plasma. Since the laser has λ = 1.053 µm, the second harmonic has λ = 526.5 nm,
and is in the bandwidth of the streak camera. The sharp extinction seen in streak images would
then correspond to the extinction of the laser. This effect remains to be investigated. Finally,
after the laser extinction, the hot plasma expands into the chamber. This is labelled "plasma
expansion" in Fig. 6.6.

In Fig. 6.7, streak images of shot using the DSP are shown. These images show the interaction
of a laser pulse with a plasma bubble, which was induced by the first pulse. The images show that
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for all materials, the second pulse is much brighter than the first. If second harmonic generation
does occur in the plasma, this could mean that the conditions for this are more favorable in the
plasma bubble than during the first pulse. The bright spot associated to the second pulse is
also further to the right of the images, which corresponds to further away from the initial target
surface. This means that the laser mainly interacts with the plasma bubble, and only a fraction
of the second pulse reaches the initial target surface. This seems to indicates that the second
pulse is absorbed on its path traversing the subcritical plasma bubble, as opposed to the first
pulse, which is mainly absorbed near the critical density of the plasma.

6.1.6 Behaviour of reflected power

Here, we use a simple theoretical model to explain the behaviour of the reflected power at low
intensities. To simplify, we assume that the laser is normally incident on the target. The plasma
flows is thus planar. It is known [Manheimer, 1982, Mora & Pellat, 1979] that it reaches a steady
state where the electronic density decreases exponentially in the subcritical part of the plasma,

ne
nc

= exp (−x/`) , (6.1)

where x is a spatial coordinate away from the critical surface, nc = ε0meω
2/e2 is the critical

electron density and ` = cT t is the gradient length of ne, in which cT =
√
ZkTc/mi is the

isothermal sound speed at the critical surface, which scales with the square root of the temperature
at the critical surface Tc.

The streak profiles presented in Fig. 6.8 show an exponential decay of the intensity at the
plasma-vacuum interface (position 500 to 900 µm approximately). Though they are not shown in
this graph so as not to clutter it, all other materials also exhibit an exponential profile. Assuming
the degree of ionization and the electronic temperature are uniform in the underdense plasma, the
streak measurement mainly depends on the density. This would indicate that experimental data
is consistent with the model we propose. However, this must be taken with extreme caution, since
we have no direct way of assessing whether the degree of ionization and electronic temperature
are actually uniform. We make this assumption here to qualitatively explain the behaviour of
the reflectivity.

The reflection coefficient of an electromagnetic wave normally incident in an exponential
profile of electronic densitywith gradient length ` is [Eliezer, 2002]

R = exp
(
−8

3
νcei `

c

)
, (6.2)

where νcei is the electron-ion momentum collision frequency at the critical surface. Ignoring the
variation of the Coulomb logarithm, νcei scales with Z nc/T

3/2
c . We also recall that in Manheimer

[1982]’s model, ` = cT t. Finally,

lnR ∝ −νcei cT t ∝ −Z nc t/Tc (6.3)

When the plasma expansion is in a steady state, Tc can be determined by writing the energy
balance at the critical surface [Manheimer, 1982], which yields kBTc = mi (I/4 ρc)2/3/Z, where
I is the laser intensity and ρc is the density at the critical surface, which is proportional to
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Figure 6.6: Streak images of the plasma for shots on different targets. These shots all had
I = 8.6× 1013 W/cm2, which corresponds to a 4 ns, 20 J pulse. The vertical axis of the images is time.
The initial time is on top of the pictures, increases when going down. The streak was set to a 50 ns sweep
time for these shots. The horizontal axis is the axis of the plasma. The target is on the left side of the
images. The false color indicates the intensity of visible and near visible radiation from the plasma self
emission. The time, space and color scales are the same for every picture. In every image, the plasma
induced by the 4 ns laser pulse is the orange zone on the top left. The 50 ns sweep time makes it possible
to see the expanding and cooling plasma afterwards. At high Z, a very sharp front forms right when the
laser is shut down.

the critical electronic density nc. Inserting this into eq. (6.3) yields lnR ∝ I−2/3 λ−10/3 t, since
nc ∝ λ−2. This explains both why the reflection coefficient decreases with time (at constant
incident power), as well as why the reflected power increases with laser intensity. However, this
model does not explain our observations for the reflected power at high intensity.

The fact that the reflected power is rising with time at high laser intensity may be explained
by the fact that the plasma flow has not yet reached a steady state, which is a key assumption
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Figure 6.7: Streak images of the plasma for shots on different targets. These shots all had
I = 8.6× 1013 W/cm2, and correspond to a DSP with two 4 ns, 20 J pulses. The vertical axis of the
images is time. The initial time is on top of the pictures, increases when going down. The streak was set
to a 50 ns sweep time for these shots. The horizontal axis is the axis of the plasma. The target is on the
left side of the images. The false color indicates the intensity of visible and near visible radiation from
self emission. The time, space and color scales are the same for every picture. However, the color scale is
not the same as in Fig. 6.6. This means that, even though the first 24 ns of the shots are the same, some
features of the plasma were visible in Fig. 6.6, and are not visible here. The gain of the streak camera
was unchanged between the shots shown in Fig. 6.6 and the shots presented in this figure, so the different
color scale was needed because the plasma is more bright during the second pulse than during the first.

[Manheimer, 1982, Mora & Pellat, 1979] in the model presented here. Indeed, though the incident
intensity is as constant as possible for the duration of the pulse, Figs. 5.7 and 6.1 show that there
is still a non-negligible rise time. At least for the first part of the pulse, the incident intensity is
rising, so the temperature at the critical density can also be expected to rise.

Assuming eq. (6.2) still stands, a rising reflectivity coefficient can be explained by the ratio
Z nc`/T

3/2
c decreasing with time. Another possibility is that eq. (6.2) is not valid anymore,

possibly because 3D effects become non negligible when the focal spot becomes small, while the
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Figure 6.8: Spatial profiles of streak images for silver, gold and lead at t = 2.9 ns during a single pulse
shape, with 20 J energy, and 429 µm focal spot. The integration time is 0.02 ns. However, in all materials,
an exponential decay on the right side (i.e. where the plasma expands) can clearly be seen.

theoretical model is limited to one dimension. To further study the results in a 2D configuration,
we carried out radiation hydrodynamics simulations, which are presented in the following section.

6.2 Radiation hydrodynamics simulations

6.2.1 Simulation setup

Two dimensional axisymmetric radiation hydrodynamic simulations were carried out using the
code troll [Lefebvre et al., 2018], in which was implemented the model eq. (3.2) described in
chapter 3 and reproduced in eqs. (6.4) to (6.7). A brief presentation of radiation hydrodynamics
codes was given in chapter 1. The simulations that are presented here constitute a preliminary
work. In particular, all the simulations presented here reproduce shots that used the 20J SSP
laser pulse. Furthermore, four target materials (Al, Cu, Au and Pb) out of the sixteen that were
used during the experimental campaign have been the object of simulations so far.

The simulations presented here are 2D axisymmetric. Of course, 3D simulations would be
more suited because one beam with 45° incidence is a purely 3D configuration. This is something
to be done in the future, but because of time constraints, we restricted ourselves to 2D simulations.
2D planar simulations were unable to reproduce experimental results because the focal spot
has the shape of a line, instead of the elliptic focal spot in our experiments, see Fig. 5.6 for
images of the focal spot in our experiments and Fig. 6.9 for representations of the configurations.
The hydrodynamics of the resulting plasma is very different from reality. We found that this
significantly altered the simulations results, in particular the slope of the reflected power with
respect to time during the simulation were steeper than in the experimental data. Using a 2D
axisymmetric configuration, it is possible to simulate a circular focal spot, which is close enough
to the elliptic experimental focal spot that we expect to be able to reproduce the level of reflection
during the experiments.
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Figure 6.9: 3D representations of the experimental configuration (left), the 2D plane simulations configu-
ration (middle) and the 2D axisymmetric simulations (right). In the 2D axisymmetric configuration, the
interior of the cone is green to signify that there is no laser there. Indeed, the laser beams form a ring that
gets smaller as they approach the slab, to finally converge into a circular focal spot. The shape of the focal
spot is highlighted in blue in all three configurations. It is an ellipse in the experimental configuration, an
infinite rectangle in the 2D plane configuration and a circle in the 2D axisymmetric configuration.

In simulations, the laser is propagated using a ray-tracing algorithm, as described in chapter 1.
The angle of incidence is 45°, as in the experiments. However, the axisymmetric nature of the
simulations means that the incident laser beam actually formed a ring. The laser pointing was
adjusted so as to reproduce the experimental focal spot diameter on target. In the preliminary
results that are presented, only a 20 J SSP is used. The ray-tracing algorithm computes the
trajectory of each ray, as well as the power it carries. Every ray is either fully absorbed, or it
exits the simulation domain with a power intensity. The sum of all the outgoing power exiting
the simulation domain is what we will refer to as reflected power in the simulations. This means
that all the energy reflected is measured, in contrast with experiments, where only the power
collected by the lens could be measured (see Fig. 5.3). In the preliminary simulations presented
here, the uncollected reflected power in experiments is neglected. The simulations we carried out
use the inverse bremsstrahlung absorption model that was developed with Molecular Dynamic
simulations in chapter 3. It is as follows (see eqs. (3.2) to (3.5))

νIBei = Cabs ν0[ne, Teff(η), Z] ln(ΛIBei ), (6.4)

ν0[ne, Te, Z] = 4
√

2π e4

3 √me (4πε0)2
ne Z

(kBTe)3/2 , (6.5)

Teff(x) = Te + xme v
2
E/kB, (6.6)

ΛIBei =


ε` +C`

4π ε
3
2
0 (kBTeff(η`))3/2

Z e3 √ne



(
ωp
ω

)δ
, (6.7)

where the notations were introduced in section 3.2, and we recall that Cabs, η, ε`, C`, η`, δ are
adjustable constants of the model. The coefficient Cabs is the one with the most effect on the
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absorption which is the reason why we only varied this parameter in our simulations. The values
of the other parameters of eq. (6.4) used in our simulations are those determined from Molecular
Dynamics simulations in eqs. (3.49) to (3.53), which we recall here for convenience:

η = 1/6, (6.8)
ε` = 1, (6.9)
C` = 0.7, (6.10)
η` = 1/6, (6.11)
δ = 0. (6.12)

Fig. 6.10 shows a colormap of the electronic density at t = 3.5 ns. It also shows the basic
setup of the simulations: the target is on the left side, in yellow, and the focal spot is at the
bottom left of the picture.

In Fig. 6.11 are shown the simulated electronic density and temperature profiles on the ex-
panding plasma axis at multiple times during the pulse. The electronic temperature is roughly
uniform at each instant, which support the use of the theoretical models [Manheimer, 1982, Mora
& Pellat, 1979] in section 6.1.6. The electronic density exhibits a decaying exponential profile,
which also supports the use of these models. However, a density "bump" develops during the
laser pulse at very low densities, close to ne/nc = 10−3. This feature stems from the fact that our
simulations use hydrodynamics equations, which are not valid in these low density areas where
kinetic equations would be more appropriate. Along with the fact that the vacuum is simulated
by a very low density gas-fill, this indicates the density feature is actually a shock that forms at
the plasma-vacuum interface. In our simulations, this feature propagates roughly at the plasma
isothermal sound speed cT . Since cT =

√
Z kBTc/mi, it can be computed from simulations, and

it takes values of few hundreds of µm/ns depending on the precise values of Tc and Z considered.
Meanwhile, the velocity of this feature can be inferred from Fig. 6.11, where it is seen to cross
900 µm in 3.5 ns, meaning cT ≈ 250 µm/ns. As outlined in streak images of all materials Fig. 6.6,
a plasma-vacuum interface feature seems to propagate at a speed of a few hundreds of µm/ns.
Obviously, this connection must be taken with extreme caution and remains to be investigated.

6.2.2 Calibration of the absorption model by comparison between experimen-
tal results and simulations

A selection of experimental reflected powers compared to simulated reflected power (with various
values of the main parameterized model coefficient Cabs) is shown in Figs. 6.12 to 6.14. As
mentioned in the previous section, we found the slope of the reflected power with respect to time
to depend on the dimensionality of the simulations, i.e. the slope varied between 2D plane and
2D axisymmetric simulations. We thus expect full 3D simulations to be necessary to reproduce
precisely the slope of the reflected power versus time. However, we were able to roughly calibrate
the value of Cabs from the level of reflectivity because it is very sensible to Cabs, as shown in
Figs. 6.12 to 6.14.

The best value of Cabs is comprised between 0.5 and 0.75 at low intensity (3.5 TW/cm2, in
Fig. 6.12) for all materials but lead. The fact that it is compatible with CMDS results (Cabs =
0.55 ± 0.07 at one sigma) for most materials was expected because the inverse bremsstrahlung
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Figure 6.10: Simulated electronic density at t = 3.5 ns for a 20 J SSP shot on a gold target. The diameter
of the focal spot was 250 µm, which corresponds to an intensity of 1.0× 1013 W/cm2. The rise of the
density that can be seen at 500 µm on the axis is a purely numerical effect. Indeed, in this region, the
density of the plasma is so low that hydrodynamic equations are not appropriate, the regime is kinetic.
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Figure 6.11: Simulated electronic density (left) and electronic temperature (right) at multiple times for
the same simulation as in Fig. 6.10, so The diameter of the focal spot was 250 µm, which corresponds to
an intensity of 1.0× 1013 W/cm2.
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Figure 6.12: Simulated and experimental incident and reflected laser powers for a 20J SSP, for different
materials and Cabs. Solid lines are experimental profiles and dashed or dash-dotted lines are simulated
profiles. When multiple experimental shots are available, they are all plotted with the same color in order
to show the reproducibility of the data.
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absorption parameterized model was derived from Z = 1 simulations. In this situation, effects
of the electron velocity distribution distortion, studied in chapter 4, are not included and should
not be important at low intensities. In contrast, what was not expected is the particular behavior
of lead which is an open problem. Indeed, lead (Z = 81) behaves very similarly to gold (Z = 79)
in troll simulations, but this is not the case in experiments. Including models derived from
CMDS for intermediate to high Z plasmas (such as the one described in chapter 4) will be the
object of future investigations.

In table A are shown the optimal values of Cabs determined by comparison of the level of
reflection with the experimental data.

Material I = 3.5 TW/cm2 I = 10 TW/cm2 I = 86 TW/cm2

Gold 0.5-0.75 0.75-1 >1
Aluminium 0.75 1 1
Copper 0.5 0.75 0.75

Table A: Optimal value of the absorption coefficient Cabs for most shots simulated. Results for lead are
not in this table since the experimental and simulated profiles of reflected power are so different from each
other.

In Fig. 6.12 are shown a selection of simulated profiles of reflect power (in dashed lines)
and compares them with the experimental profiles (in solid lines), for multiple materials. The
behaviour of aluminium is well-reproduced by the code, and the absorption coefficient Cabs mostly
serves to adjust the level of the profile. The graphs for I = 10 TW/cm2, in Fig. 6.13 reveal the
experimental temporal profile of reflected power is almost the same as for I = 3.5 TW/cm2 for
aluminium, copper and gold. However, in simulations, for a given Cabs, there is more reflected
power for I = 10 TW/cm2 than for I = 3.5 TW/cm2. This explain why optimal Cabs values are
higher for I = 10 TW/cm2 than for I = 3.5 TW/cm2 in table A.

The behaviour of copper, shown in the top right of Figs. 6.12 and 6.13 is more difficult to
reproduce in simulations. Indeed, though the experimental shapes of reflected power are similar
to those of aluminium, the same is not true for the simulated profiles. Indeed, the simulated
reflected power increases at the end of the pulse. The magnitude of this increase seems to be
related to both the Cabs and the laser intensity, though this behaviour is still the object of
investigations.

In the case of gold, shown in the bottom left of Fig. 6.12, the level of reflected power at the
beginning of the pulse is quite well reproduced by Cabs = 0.75 (in dashed violet), however, the
slope of the profile is higher than in the experiments. Furthermore, modifying Cabs mostly seems
to change the reflected power at the beginning of the pulse, and not the slope. This is shown
by the simulation at Cabs = 0.5, in dashed blue, which reproduces the experimental reflected
power at the end of the pulse, but overshoots it at the beginning of the pulse. Thus, there is a
value of Cabs between 0.75 and 0.5 which would reproduce the integrated reflectivity observed
experimentally, but not the profile of the reflected power. At I = 10 TW/cm2, in the bottom left
of Fig. 6.13 this reasoning still holds, except with different values of Cabs: a value between 0.75
and 1 is necessary to reproduce the integrated reflected power.

Lead behaved unlike any other materials in our experiments. This is evidenced by its small
integrated reflectivity coefficient (shown in Fig. 6.1), as well as by the temporal profile of reflected
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power, which was already shown and discussed in Fig. 6.2. However, lead in simulations behaves
similarly to gold, as shown in the bottom right of Fig. 6.12. Such a big difference in the temporal
profile seems to indicate that there are some missing physics in the radiation hydrodynamic code
that prevents us from predicting the right behaviour for lead. Beyond the inverse bremsstrahlung
absorption model, further investigations into the equation of states and atomic physics models
specific to lead would be necessary in order to understand what is observed in the experiments.

Finally, results of simulations with I = 86 TW/cm2 are shown in Fig. 6.14. In the left graph,
which corresponds to copper, it is shown that the temporal profile of reflected power at low
Cabs (0.75 and less) is the same as the shape appearing for copper in the top right of Fig. 6.12.
However, this does not correspond to the shape of the experimental reflected power with respect
to time. Further study is required in order to better understand this behaviour.

Simulations were carried out for gold at I = 86 TW/cm2. In the right graph of Fig. 6.14, the
temporal profile of the reflected power seems stable in simulations, but is rising in experiments.
Additionally, simulations overpredict the reflected power at all times, which would indicate that
a larger Cabs is needed in order to reproduce experiments.

All in all, 2D axisymmetric radiation hydrodynamic simulations were able to reproduce the
reflected power in experiments at low intensity (I = 3.5 TW/cm2) and low Z (aluminium and cop-
per). For higher Z (gold and lead), and higher intensities (I = 10 TW/cm2 and I = 86 TW/cm2),
simulations struggle to reproduce experiments. There are multiple possible explanations for this.
First, we expect high-intensity shots to have much more 3D effects than lower intensity, because
they have a smaller and less uniform focal spot (see Fig. 5.6). In the case of high-Z materials,
there are multiple effects that may affect the absorption and thus make the absorption model
invalid, such as partially ionized atoms. Atomic physics effects may explain the large discrepancy
in the behaviour of lead between simulations and experiments.

6.2.3 Simulation of streak data

Radiation hydrodynamics simulations directly provide data on the reflected laser intensity with
respect to time, so the comparison with experimental data is straightforward. The same is not
true for the comparison of experimental data of the streak and CCD cameras. Indeed, since these
cameras are sensitive to visible and near-visible light, the images collected give information on
the self-emission of the plasma in this particular spectral domain. However, most of the radiation
has to propagate through the plasma first, before reaching the camera. During this propagation,
part of the radiation may be absorbed, see Fig. 6.15, so what the camera collects is not simply
the radiation emitted by the plasma, but the part of it that managed to propagate through the
plasma.

This information is not directly computed during hydrodynamics simulations. However, this
can be computed by using a particle transport code such as the 3D multigroup Monte Carlo
code diane [Poujade et al., 2017, Riz, 2000, Riz & Chiche, 2003]. This code solves a transport
equation for the photons, including source terms and absorption in the plasma. Thus, it can
simulate the radiation emitted by the plasma. We used this code to simulate the streak imaging
of our experiments.
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The basic equation for the propagation of radiation is of the form

dI
ds (ν, s) = S (ν, ne, Tr)− σ (ν, ne, Tr) I (ν, s) , (6.13)

where I is the intensity, s the curvilinear abscissa of the propagation of the ray, S is the emissivity
of the material and σ is the coefficient of absorption. The emissivity S as well as the absorption
coefficient σ are tabulated values that depend on the plasma conditions as well as the frequency
considered.

In Fig. 6.16 is shown a simulated streak image on the right side and the corresponding
experimental streak image on the left side. The expansion speed of the most emissive part of the
plasma, highlighted by the cyan lines in Fig. 6.16, seems to be well reproduced by simulations and
is of the order of 20 µm/ns. However, the extension of the emissive zone of the plasma, roughly
corresponding to the width of the orange spot is underestimated by simulations. As mentioned
previously, the speed of the "bump" feature in Fig. 6.10 seems to correspond with the speed of the
plasma-vacuum interface in the streak camera, which would that the extension of the plasma is
well reproduced by simulations. This means that the discrepancy between the experimental and
simulated streak images might come from uncertainties in the electronic temperature, or in the
emissivity or opacity of the plasma. Indeed, there are effects, such as non-local electron transport
which are not taken into account in the simulations presented here, but may impact the plasma
temperature. These remain to be investigated. Concerning the plasma emissivity and opacity,
the usual purpose of diane in the context of ICF experiments is to simulate X-ray imaging. The
code therefore uses opacities and emissivities dedicated to photon energies > 10 eV, whereas the
streak and CCD camera in our experiments collected light in the visible and near-visible domain
(photon energy between 2 and 3 eV). Simulations using appropriate opacities and emissivities
would be needed to complete this preliminary work.
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Figure 6.13: Simulated and experimental incident and reflected laser powers for a 20J SSP, for different
materials and Cabs. Solid lines are experimental profiles and dashed or dash-dotted lines are simulated
profiles. When multiple experimental shots are available, they are all plotted with the same color in order
to show the reproducibility of the data.
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Figure 6.14: Simulated and experimental incident and reflected laser powers for a 20J SSP with a 86 µm
diameter focal spot, which corresponds to I = 86 TW/cm2, for multiple values of Cabs. Solid lines are
experimental profiles and dashed or dash-dotted lines are simulated profiles. When multiple experimental
shots are available, they are all plotted with the same color in order to show the reproducibility of the
data. The case of copper (left graph) shows that Cabs can have a large influence on the shape of the
temporal profile of reflected power. In the case of gold (right graph), the temporal shape is roughly similar
in simulations and experiments, but the level of reflection is too high , which would indicate the necessity
of a larger Cabs.
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Figure 6.15: Representation of some radiation collected by the streak camera. When the radiation propa-
gates through the plasma, part of it may be absorbed, so it is not collected by the camera.
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Figure 6.16: Experimental (right) and simulated (left) streak data for a 20 J SSP shot on a gold target.
The diameter of the focal spot was 250 µm, which corresponds to an intensity of 1.0× 1013 W/cm2. The
time and space scales are the same for both pictures. The acquisition duration of the experimental data
was 20 ns, but it was cropped to match the simulated data. Streak images of the plasma for shots on
different targets. For each picture, the intensity is normalized to the maximum of intensity of that picture.
The cyan lines are aids to the eye to show the speed of the most emissive part of the plasma. In the left
image, the green line shows the expansion speed of the plasma-vacuum interface.
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6.3 Conclusion

In this chapter, we have presented experimental data for the reflection of a laser on a slab.
The integrated specular reflectivities we observed were consistent with previous experiments.
All the materials we used as targets during the campaign behaved similarly, except for lead.
Indeed, the reflectivity of lead was lower than that of all other materials, especially at low laser
intensity. Experiments using a longer laser pulse (10 ns compared to 4 ns previously) showed that
at high laser intensity, lead seems to behave like the other materials, with a time delay. Further
investigations into the reflectivity of lead would be needed to explain this behaviour.

We presented streak images of some experiments. Some features of the plasma are recognizable
on the images. However, for any quantitative analysis, it has to be kept in mind that the streak
camera was sensible to visible and near visible light. This means that laser-plasma interactions
such as second harmonic generation may be seen on the streak images. We expect these non-
linear interaction to be particularly significant in the interpretation of DSP (double single pulse)
experiments images, since the second laser pulse interacts with an underdense plasma, which is
a condition favourable to the development of many laser-plasma instabilities.

In the second part of this chapter, we presented preliminary 2D axisymmetric troll simula-
tions that reproduce the experimental configuration of the campaign. The simulations were able
to roughly reproduce the level of reflectivity of low-Z targets during low-intensity experiments,
but struggled to reproduce the shape of the temporal reflectivity profile of high-Z targets at low
intensity, and of all targets at high intensity. There are multiple issues to be investigated which
could explain this. First, full 3D simulations might be needed in order to accurately reproduce
these reflected power shapes. There are also uncertainties on the electronic temperature and
degree of ionization in simulations, which both affect inverse bremsstrahlung absorption, per
eq. (1.55). Indeed, the spatial profile of Te inside the plasma during the experiments is affected
by thermal conduction, and the simulations presented here all used a flux-limited Spitzer-Harm
model. Using a model that includes non-local effects might be needed in order to accurately repro-
duce the shape of the reflected power with respect to time. Atomic physics effects not described
in simulations may also be at play, especially in the case of lead (Z = 81), whose behaviour is
similar to that of gold (Z = 79) in the simulations but not in the experiments. Even concerning
other materials, atomic physics effects might impact the profile of Z inside the plasma, so more
accurate models might be needed in order to reproduce the experimental shape of the reflected
power in simulations. Still, we were able to roughly calibrate the absorption model developed in
chapter 3 from the comparison of experimental levels of reflectivity (irrespective of the shape)
with troll simulations that used this model. The value we obtained is in agreement with that
obtained from CMDS.

However, many more issues remains to be investigated. In particular, the simulation of
streak images was not able to reproduce the extension of the plasma, which may be explained
by the fact that the opacities and emissivities used in diane simulations are most accurate
in the X-ray range of frequency, whereas the streak camera collected visible and near-visible
light. Undescribed atomic physics effects, in addition to laser-plasma instabilities (such as second
harmonic generation) might also be at play here. Both of these may need to be investigated in
order to be able to accurately reproduce streak images from the simulations.

Finally, the inverse bremsstrahlung absorption model used in these preliminary simulations

147



6.3. Conclusion

was developed at Z = 1, therefore including high-Z effects such as the distortion of the distri-
bution shown in chapter 4 and multiple ion species might be necessary in order to accurately
reproduce experimental data. The results of radiation hydrodynamics codes with the hybrid
inverse bremsstrahlung absorption model (described in this chapter) would need to be compared
with results using other absorption models.
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This work contributes to improving the modelling of laser absorption by inverse bremsstrahlung
(IB) in weakly coupled plasmas. This was achieved by a twofold approach. The first step
consisted in Classical Molecular Dynamics Simulations (CMDS) to discriminate past models
from the literature and to calibrate a hybrid model devised during the course of this work. Then,
results of radiation hydrodynamics simulations, implementing the aforementioned hybrid model,
were compared to actual experimental data gathered during an experimental campaign carried
out as part of this thesis.

The broad context of this work, indirect-drive Inertial Confinement Fusion (ICF) was first
introduced. A state of the art on current ICF experiments showed that laser absorption may not
be faithfully described by radiation hydrodynamics simulations used for the design process and
as a tool for post-shot modelling. In this work, we focused on the most important absorption
mechanism, Inverse Bremsstrahlung (IB) absorption. The modelling of laser propagation and IB
absorption in codes was then expanded upon, in order to show what approximations are made
in the physical models implemented in radiation hydrodynamics codes. A theoretical derivation
of the Coulomb logarithm was developed. It highlighted the fact that collective effects are not
treated self-consistently from a theoretical point of view. They are notoriously difficult to take
into account, which explains the coexistence of so many different Coulomb logarithm models in
the literature. To discriminate theoretical models of IB absorption and Coulomb logarithm, we
resorted to microscopic numerical simulations.

We showed that Fokker-Planck (FP) simulations, which have extensively been used in the past
to describe IB heating cannot be carried out to capture any quantitative information about the
Coulomb logarithm. In the FP simulation framework, an expression of the Coulomb logarithm
must precisely be supplied as an input data. Particle-in-Cell (PIC) simulations suffer from the
same drawback. This is the reason why we resorted to classical molecular dynamics simulations,
where trajectories of individual particles of the plasma (electrons and ions) in the field of all others
are calculated using classical Newton’s laws. Collective effects are therefore inherently included.
We used the classical molecular dynamics code lammps to measure the heating rate and Coulomb
logarithm for the process of IB, first for low-Z weakly coupled plasmas. A hybrid model with six
adjustable parameters was proposed. It encompasses multiple models from the literature. This
model was tested out against data obtained from CMDS and most of its adjustable parameters
have been calibrated precisely enough to rule out certain categories of IB heating models from
the literature along with their associated Coulomb logarithm.
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We then carried out CMDS of IB heating in moderate-Z plasmas where electron velocity
distributions (EVDs) could be distorted from their equilibrium Maxwellian shapes, as predicted
by Langdon. We were able to make the first observation, in CMDS, of non-Maxwellian effects
on instantaneous EVDs in Langdon’s conditions. Moreover, anisotropy of EVDs were measured
at high intensity as predicted theoretically. We observed that the Super Gaussian order of the
EVDs parallel to the polarization of the laser E-field could exceed 5 (which is the limit inferred
by Langdon) whereas the perpendicular order seems to remain below that limit. Depending on
the plasma state and the laser intensity, isotropic or anisotropic Super-Gaussian EVDs or Super-
Gaussian + Maxwellian EVDs were observed. The isotropic part of EVDs varies qualitatively as
Matte et al. predicted, but slightly differently from a quantitative point of view with respect to
intensity as measured by our CMDS. A fit of parallel and perpendicular orders with respect to
the laser intensity has been proposed.

In order to get experimental values of some of the parameters of the hybrid model devised in
this work, an experimental campaign was conducted at the GCLT facility at CEA/DAM. Each
experiment used a laser with λ = 1.053 µm to deliver 10 to 40 J of energy on a slab. Sixteen
elements of the periodic table were used during the campaign, including materials of interest
to ICF such as gold. A review of similar slab experiments carried out in the past outlined the
importance of measuring the instantaneous, as opposed to the integrated, reflection coefficient.
The relative simplicity of these dedicated experiments allowed to shoot with different laser pulses
and intensities, sometimes several times with the same configuration for repeatability purposes.

A selection of experimental results on the reflectivity of the laser induced plasma were pre-
sented. A physical model was proposed to try and qualitatively explain these results. Then,
preliminary results of 2D axisymmetric radiation hydrodynamics simulations using troll were
carried out in order to reproduce the experimental configuration. The hybrid model devised from
CMDS was implemented in troll, and the comparison of simulation results with experimental
data was used to calibrate, experimentally this time, the hybrid model. It was shown that, in
preliminary simulations, the hybrid model with CMDS adjusted constants seemed to reproduce
experimental data for low-Z materials and moderate laser intensity (I = 3.5 TW/cm2), but it
struggled with high-Z materials and higher laser intensities (I ≥ 10 TW/cm2). Uncertainties that
could affect laser absorption remain on the reproduction of experimental plasma parameters (ne,
Te, Z) by simulations. These uncertainties could be reduced by the use of full 3D simulations and
of other physical models (non-local thermal conduction, atomic physics models, etc.) than those
used in the preliminary simulations presented here. Finally, the hybrid model was developed with
Z = 1, so high-Z effects such as multi-ion species and the structure of bound electrons around
ions were not taken into account. Further CMDS in these situations may be required in order to
develop a model that is able to reproduce high-Z experimental data.

Perspectives

Though the distortion of the electron velocity distribution that occurs at high-Z in a laser-
irradiated plasma has been discussed, a predictive model for the shape of the distribution has
not yet been proposed. Moreover, only two components with structureless ions plasmas were
considered in this work, whereas in ICF experiments, hohlraum plasmas have multiple species
of ions with extended bound electron structure. Additional CMDS would be required to assess
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their effects on the heating rate.
The post-processing of the experimental data gathered during the campaign at the GCLT

facility is still in progress. Notably, full 3D hydrodynamics simulations of all experimental config-
urations tested with all sixteen target materials would help to better calibrate the hybrid model.
Discrepancies in the spatial extension of a bright area in simulated and experimental streak im-
ages is still an open question, though the dimensionality of the simulations may account for some
of the difference. Simulating the CCD images, to see whether they coincide with the experimental
images is also something that remains to be done.
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Summary in French

Cette thèse s’inscrit dans le contexte de la Fusion par Confinement Inertiel (FCI). Le principe
de la FCI est de compresser rapidement une petite capsule remplie de combustible fusible afin
d’atteindre des conditions propices à la fusion thermonucléaire. Cette compression est réalisée à
l’aide de faisceaux lasers intenses, qui peuvent directement irradier la capsule ou bien être utilisés
indirectement pour produire des rayons X dans une cavité, lesquels irradient et compressent la
capsule. Dans les deux cas, l’absorption de faisceaux laser est critique à la FCI. Une bonne
compréhension des mécanismes d’absorption est donc indispensable à la FCI.

Des expériences de FCI sont réalisées sur l’installation NIF (National Ignition Facility) aux
USA depuis plus de 10 ans, et pourtant, de nombreux problèmes liés à l’absorption échappent à
notre compréhension. Des simulations numériques utilisant des codes d’hydrodynamique radiative
comme troll au CEA ou hydra au LLNL (Lawrence Livermore National Laboratory) aux USA
ont été menées pour préparer et reproduire ces expériences. Le début de cette thèse, consacré à
l’introduction de la FCI ainsi qu’à l’état de l’art des expériences récentes de FCI, a montré que,
dans la littérature, la description de l’absorption laser dans les codes n’est pas complètement
fidèle aux expériences.

C’est pourquoi, dans cette thèse, nous nous intéressons à un des mécanismes principaux
d’absorption d’un laser par un plasma : l’absorption par Bremsstrahlung Inverse (BI). Lorsqu’une
onde électromagnétique traverse un plasma, son champ électrique est la cause d’un mouvement
cohérent d’oscillation des électrons libres du plasma. Les ions du plasma ne sont que peu affectés
par le champ électrique, en raison du rapport de masse entre électrons et ions. Les collisions
entre les électrons oscillants et les ions peuvent transférer une partie de l’énergie de l’onde élec-
tromagnétique au plasma. La description de la modélisation de la propagation d’un laser et de
son absorption par BI dans les codes d’hydrodynamique radiative a permis de mettre en évidence
les approximations présentes dans les modèles physiques implémentés dans ces codes. Cette de-
scription a également montré l’émergence de la fréquence d’interaction entre les électrons et les
ions, appelée fréquence de collision électron-ion. Cette fréquence est un paramètre de première
importance dans la description du chauffage par BI, et a été largement étudiée dans la littéra-
ture depuis les années 1950. Pourtant, un consensus sur sa modélisation n’a pas encore émergé.
Une dérivation théorique du taux de chauffage par BI présentée dans cette thèse a permis de
montrer la difficulté de la prise en compte des effets collectifs, qui apparaissent par le biais du
logarithme Coulombien. Cette complexité explique la coexistence de multiples modèles de log-
arithme Coulombien, et donc de chauffage par BI dans la littérature. Afin de discriminer ces
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modèles, nous avons utilisé des simulations numériques microscopiques.
Nous avons montré que les simulations Fokker-Planck (FP), largement utilisées dans la lit-

térature pour mesurer le chauffage par BI, ne peuvent pas capturer d’information quantitative
sur le logarithme Coulombien. En effet, une expression du logarithme Coulombien doit être
donnée en entrée de ces simulations. Les codes PIC (Particle-in-Cell) ont la même limitation.
C’est pourquoi nous avons utilisé des Simulations de Dynamique Moléculaire Classique (SDMC).
En effet, dans ces simulations, les trajectoires de toutes les particules du plasma sont calculées
avec les lois de Newton, en prenant en compte l’interaction de chaque particule avec toutes les
autres ainsi que le champ électrique du laser. La prise en compte de toutes les interactions (et
les capacités finies de calcul) ont pour inconvénient de limiter ces simulations à de très petits
volumes. En revanche, pour la même raison, les SDMC prennent en compte les effets collectifs et
sont parfaitement adaptées à la mesure de quantités locales, comme le taux de chauffage par BI.

Dans cette thèse, plusieurs séries de SDMC ont été menées afin de mesurer le taux de chauffage
par BI pour une vaste gamme d’états plasma et de paramètres laser. Dans un premier temps, nous
avons simulé des plasmas faiblement couplés avec degré d’ionisation Z = 1 dans des situations
où la distribution de vitesse des électrons est Maxwellienne. C’est une hypothèse des modèles
théoriques de chauffage par BI de la littérature auxquels nous avons confronté nos SDMC. Pour
ce faire, nous avons proposé un modèle hybride à six paramètres ajustables qui englobe la plupart
des modèles de la littérature. Les paramètres de ce modèle ont été calibrés à l’aide de nos SDMC,
de manière suffisamment précise pour rejeter certains modèles de logarithme Coulombien de la
littérature.

Dans un deuxième temps, nous avons simulé le chauffage par BI dans des plasmas modérement
ionisés (Z = 10), dans lesquels la distribution de vitesse des électrons (DVE) peut s’écarter de sa
forme Maxwellienne d’équilibre. En effet, Langdon a prédit que la DVE moyennée sur une période
laser peut devenir Super-Gaussienne (fe(v) ∝ exp(−vk) où k ≥ 2 est l’ordre de la distribution),
ce que nous avons observé pour la première fois dans des SDMC dans les conditions de Langdon
sur la DVE instantanée. De plus, nous avons pu voir l’anisotropie de la distribution à forte
intensité laser, ce qui avait été prédit théoriquement. L’ordre Super-Gaussien de la DVE projetée
sur la direction parallèle au champ électrique dépasse 5 (qui était la valeur maximale prédite
par Langdon), tandis que l’ordre de la DVE projetée sur une direction perpendiculaire au champ
électrique reste en dessous de cette limite. Sous certaines conditions, nous avons observé des
distributions correspondant à la somme d’une Maxwellienne et d’une Super-Gaussienne, ce qui est
en accord avec des mesures expérimentales de la forme de la DVE. L’ordre de la partie isotrope de
la DVE correspond qualitativement aux prédictions de Matte et al. mais est légèrement inférieur
d’un point de vue quantitatif.

Afin d’obtenir des valeurs expérimentales des paramètres du modèle hybride pour le chauffage
par BI, une campagne expérimentale a été menée sur l’installation GCLT au CEA/DAM dans le
cadre de cette thèse. Un laser de longueur d’onde 1.053 µm délivrant entre 10 et 40J d’énergie
dans un faisceau, avec une durée d’impulsion comprise entre 4 et 30ns a été tiré sur des plaques
planes à 45°. Seize éléments purs du tableau périodique ont été utilisés comme cibles durant la
campagne, dont certains d’intérêt direct pour la FCI, comme l’or. Un état de l’art d’expériences
similaires dans la littérature a mis en avant l’importance de mesurer la réflexion instantanée,
et non intégrée sur l’impulsion laser. La relative simplicité de la configuration expérimentale a
permis d’utiliser plusieurs formes d’impulsion laser, et plusieurs niveaux d’intensité, ainsi que de
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réaliser plusieurs tirs identiques pour évaluer la répétabilité des expériences.
Une sélection de résultats expérimentaux ont été présentés dans cette thèse. Nous avons

présenté des simulations 2D axisymétriques d’hydrodynamique radiative réalisées avec le code
troll dans lequel le modèle hybride d’absorption par BI développé au cours de cette thèse a
été implémenté. La comparaison de ces simulations avec les résultats expérimentaux a permis
de calibrer, expérimentalement cette fois, le modèle hybride. Nous avons montré que la calibra-
tion expérimentale donne des résultats semblables à la calibration à partir des SDMC pour les
matériaux à faible Z et à intensité laser modérée (I = 3.5 TW/cm2). Le modèle hybride semble
cependant avoir des difficultés à reproduire les résultats expérimentaux à Z élevé et intensité
laser plus importante (I > 10 TW/cm2). Des incertitudes qui pourraient affecter l’absorption
laser persistent sur la bonne reproduction des paramètres plasma (ne, Te, Z) expérimentaux par
les simulations. Ces incertitudes pourraient être réduites par des simulations 3D, ainsi que par
l’utilisation d’autres modèles physiques (conduction thermique non locale, modèle de physique
atomique, etc.) que ceux utilisés dans les simulations préliminaires présentées ici. Nous rappelons
enfin que le modèle hybride, développé à partir de SDMC réalisées à Z = 1, n’inclut pas les effets
spécifiques liés à un Z élevé, tel que la présence de plusieurs espèces d’ions et la structure du
cortège des électrons liés. D’autres SDMC prenant en compte ces effets pourraient être nécessaires
pour développer un modèle d’absorption par BI qui peut reproduire les données expérimentales
à Z élevé.
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Titre : Étude numérique et expérimentale de l’absorption laser dans un plasma par bremsstrahlung inverse

Mots clés : absorption, réflexion, bremsstrahlung inverse, dynamique moléculaire, laser, plasma

Résumé : La Fusion par Confinement Inertiel (FCI)
consiste à comprimer une capsule millimétrique d’un
mélange Deutérium-Tritium à l’aide de lasers de puis-
sance jusqu’à atteindre les conditions de fusion ther-
monucléaire auto-entretenue. Deux méthodes d’irra-
diation par les lasers de puissance sont possibles.
En attaque directe, les lasers sont absorbés par la
surface externe de la capsule. En attaque indirecte,
la capsule, positionnée au centre d’une cavité en or
(hohlraum), est irradiée par un rayonnement X intense
issu de l’absorption des lasers par les parois de la ca-
vité. Le retour des expériences de FCI réalisées de-
puis plus de dix ans aux USA au National Ignition Fa-
cility a montré que l’absorption laser par la matière
était encore imparfaitement modélisée dans les simu-
lations d’hydrodynamique-radiative utilisées pour les
dimensionner et les restituer.
Cette thèse a pour objectif d’améliorer la modélisation
d’un des principaux mécanismes de couplage la-
ser/matière en FCI : l’absorption du rayonnement par
bremsstrahlung inverse (BI). Nous avons proposé un
modèle paramétré à partir d’un grand nombre de
modèles de la littérature. Les constantes ajustables
ont été évaluées pour ces différents modèles de la

littérature (montrant au passage la disparité) et nous
avons pu aussi les évaluer par des simulations de dy-
namique moléculaire classique (DMC) pour des plas-
mas à deux composantes (électrons-ions) faiblement
couplés (d’intérêts pour la FCI) pour les degrés d’io-
nisation Z∗ = 1 (faible) et Z∗ = 10 (modéré). Les
résultats de nos simulations de DMC semblent ex-
clure certaines hypothèses qui mènent, dans certains
modèles, à une dépendance du logarithme Coulom-
bien (qui est une manifestation des effets collectifs
microscopiques dans le processus d’absorption) à la
fréquence du laser indépendamment de son intensité.
Nous avons aussi implémenté ce modèle paramétré
dans le code d’hydrodynamique-radiative TROLL qui
a été utilisé pour simuler une série d’expériences de
réflexion laser sur plaques (15 matériaux purs testés)
réalisées dans le cadre de cette thèse sur l’installation
GCLT au CEA DAM. Les résultats préliminaires de
la comparaison de ces simulations avec les données
expérimentales (réflectivité au cours du temps, ima-
gerie de l’évolution du plasma coronal) permettent
une évaluation des paramètres qui pourront être com-
parés aux valeurs issues de la DMC.

Title : Numerical and experimental study of laser absorption in a plasma by inverse bremsstrahlung

Keywords : absorption, reflection, glint, inverse bremsstrahlung, molecular dynamics, laser, plasma

Abstract : Inertial Confinement Fusion (ICF) consists
in compressing a millimeter-sized capsule of a mix-
ture of Deuterium-Tritium using power lasers to reach
the conditions of self-sustained thermonuclear fusion.
Two methods of irradiation by power lasers are pos-
sible. For a direct drive, lasers are absorbed by the
outer surface of the capsule. For an indirect drive, the
capsule, located at the center of a gold cavity (hohl-
raum), is irradiated by an intense flux of X-rays re-
sulting from laser absorption by the walls of the cavity.
ICF experiments carried out for more than ten years in
the USA at the National Ignition Facility have consis-
tently shown that laser absorption by matter was still
imperfectly modeled in the hydrodynamic-radiative si-
mulations used for the design and post-shot modelling
of these experiments.
This thesis’ goal is to improve the modelling of one
of the main mechanisms of laser/matter coupling in
ICF: radiation absorption by inverse bremsstrahlung
(IB). We have proposed a parameterized model out
of several models in the literature. The adjustable

constants were evaluated for these various models
from the literature (showing in passing the disparity)
and we also evaluated these constants by classical
molecular dynamics (CMD) simulations for two com-
ponents (electrons-ions) weakly coupled plasmas (of
interest to ICF) for ionization Z∗ = 1 (weak) and
Z∗ = 10 (moderate). CMD simulation results seem to
rule out certain hypotheses leading, in certain models,
to a dependence of the Coulomb logarithm (which is
a manifestation of microscopic collective effects in the
absorption process) on the laser frequency regardless
of intensity. We also implemented this parameteri-
zed model in the hydrodynamic-radiative code TROLL
which was used to simulate a series of laser slab ex-
periments (15 pure materials tested) carried out as
part of this thesis on the GCLT facility at CEA DAM.
The preliminary results of the comparison of these si-
mulations with the experimental data (reflectivity over
time, images of the evolution of the coronal plasma)
allow an evaluation of the parameters which can be
compared with the CMD values.
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