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ABSTRACT 

 

  Titre : Interprétation des mesures atmosphériques de CO2 à Mexico City 

  Mots clés : CO2, Mexico, inversion atmosphérique 

Résumé :  

Les villes sont responsables de plus de 70% des émissions mondiales de CO2. De 
nombreuses municipalités se sont engagées à réduire les émissions de CO2 urbaines. 
Afin d'évaluer l’impact des Plans Climat, des inventaires d'émissions de gaz à effet de 
serre sont établis à l'échelle de la ville. La modélisation par inversion atmosphérique 
offre une solution complémentaire capable de réduire les incertitudes pour ces 
inventaires d'émissions. Elle combine la modélisation du transport atmosphérique et les 
mesures de concentrations en gaz à effet de serre pour affiner les estimations des 
émissions issues des inventaires.  

La zone métropolitaine de Mexico (MCMA) est l'une des plus grandes mégalopoles du 
monde. Les émissions annuelles de CO2 dans la MCMA sont passées de 42,1 millions de 
tonnes à 66,0 millions de tonnes entre 2012 et 2018. Le gouvernement mexicain a prévu 
de réduire les émissions de CO2 de 65,2 millions de tonnes au cours de la période 2021-
2030. Afin d'évaluer quantitativement les stratégies de réduction des émissions de CO2, 
un projet franco-mexicain intitulé "Impacts du carbone dans la région de Mexico" 
(MERCI-CO2) a déployé un réseau d'instruments d'observation du CO2 in situ et en 
colonne dans la région de Mexico. Les gradients de concentration de CO2 sont assimilés 
dans un système d'inversion basé sur le modèle de transport atmosphérique WRF-Chem 
pour améliorer l'estimation préalable des émissions de CO2 à l'intérieur et à l'extérieur 
de la MCMA. 

J’ai évalué les performances du modèle atmosphérique sous diverses configurations. 
Afin de quantifier les erreurs les plus impactantes pour la simulation des concentrations 
en CO2 atmosphérique, le travail de thèse s’est focalisé sur les erreurs de simulation des 
températures de l'air, des vitesses et directions du vent et les hauteurs de mélange, en 
utilisant des données collectées aux stations météorologiques de la région mais 
également issues d’un instrument LiDar ainsi que de radiosondes. Ces tests de sensibilité 
ont permis de définir la configuration optimale du système de modélisation.  

Des cartes de concentration de CO2 au-dessus de la MCMA sur trois périodes 
caractéristiques des conditions météorologiques de la région (janvier, mai et juillet) ont 
été simulée par le modèle WRF-Chem à la résolution de 5 km, en utilisant deux 
inventaires d'émissions: inventaire local préparé par les chercheurs de l'UNAM et un 
inventaire d'émissions globales, ODIAC, ajusté par des facteurs d'échelle temporels. 
Parallèlement à l’évaluation sur la base de mesures in-situ de CO2 en surface et de 
mesures de colonne (XCO2) par FTIR, j’ai également analysé les distributions temporelle 
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et spatiale des signaux de CO2, ainsi que la zone impactée par les flux anthropiques et 
la variation des flux biogéniques. Sur la base de cette analyse, j’ai évalué le potentiel de 
quantification du réseau actuel, y compris l'emplacement de la station de fond, tout en 
étudiant les emplacements potentiels de nouvelles stations.  

Une inversion sur une année complète a été réalisée du 30 mars 2018 au 30 mars 2019. 
En se basant sur l'assimilation des gradients entre la station urbaine UNA et la station 
d’altitude ALZ, l'inversion a ajusté les émissions anthropiques issues des deux 
inventaires ainsi que les flux biogéniques du modèle CASA et les concentrations de fond 
du modèle CarbonTracker 2019B. Un ensemble de plusieurs inversions a été réalisé pour 
mieux quantifier les incertitudes en faisant varier les covariances d’erreur temporelles, 
en variant la fenêtre d’assimilation, en séparant les secteurs d’activités (trafic routier), en 
appliquant un masque sur la MCMA, et en filtrant les données de gradients en CO2. Cet 
ensemble permet d'améliorer les performances de l'inversion et de spécifier l'impact du 
signal urbain et des différentes composantes du système. Une dernière expérience m’a 
permis d’étudier l’impact de l’assimilation des concentrations en CO, dont les 
observations débutent en décembre 2018. 
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  Title : Analysis of atmospheric CO2 measurements in Mexico City 

  Keywords : CO2, Mexico City, atmospheric inversion 

Abstract :  

Cities are responsible for more than 70% of the global CO2 emissions and thus play an 
important role in mitigating climate change. Mayors and local governments have been 
taking measures to reduce urban CO2 emissions and to reach carbon neutrality. In order 
to evaluate their efforts, a series of high-resolution city-scale emission inventories were 
established. Top-down inversion modeling is a widely-used complementary solution to 
reduce the uncertainties in traditional bottom-up emission inventories. It combines 
atmospheric modeling and measurements to optimize the greenhouse gas estimates 
using Bayesian inference methods.  

The Mexico City Metropolitan Area (MCMA) is one of the largest megacities in the world. 
Its annual CO2 emissions have grown from 42.1 Mt to 66.0 Mt from 2012 to 2018. The 
Mexico government has planned to reduce 65.2 Mt CO2 emission during the period 
2021-2030. To assess local CO2 emission reduction strategies, a French-Mexican project 
Mexico City regional Carbon impacts (MERCI-CO2) deployed a network of in-situ and 
column CO2 observation instruments in MCMA. The CO2 concentration gradients are 
assimilated in our inversion system based on the WRF-Chem model to improve the 
inventory estimates of CO2 emissions in and outside MCMA. 

Various options on meteorological drivers, domain sizes, physics, dynamics schemes 
and spectral nudging of the WRF modeling system over MCMA were quantitatively 
evaluated for model performance. A series of meteorological parameters were taken 
into account for the comparison between simulations and in-situ observations, LiDar 
analysis as well as WMO radiosonde observations. For the purpose of CO2 simulation, 
the most studied variables are those related to the dispersion of the ambient air, 
including air temperatures, wind speeds, wind directions and mixing heights. These 
sensitivity tests helped to define the optimal model configuration.  

The CO2 concentration maps over MCMA during 3 typical months (January, May and 
July) were reconstructed by the double-nesting 5-km resolution WRF-Chem model, 
coupled with the local emission inventories from UNAM and the global emission 
inventories ODIAC scaled by temporal scaling factors. The evaluation of CO2 simulations 
were based on CO2 in-situ measurements by PICARRO and column measurements 
(XCO2) by FTIR at an urban site UNA and at the background station ALZ. Along with the 
evaluation, we also analyzed the temporal and spatial distribution of CO2 signals, as well 
as the area impacted by anthropogenic fluxes and by biogenic fluxes. Based on our 
analysis, we assessed the potential of our network to constrain the urban emissions, 
defined the potential locations for future stations, and defined a “background index” to 
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represent the suitability to build a background station.  

After the ground validation of the modeling system, we performed a 1-year inversion 
over the MCMA from 30 March 2018 to 30 March 2019. According to the assimilation 
of concentration gradients between the urban station and the rural station, the inversion 
adjusted the prior anthropogenic emission from UNAM and ODIAC estimates, in parallel 
with prior biogenic fluxes from the CASA model and background concentrations by 
CarbonTracker 2019B global inversion system. An ensemble of inversion configurations 
was constructed. The reference configuration optimizes three components: fossil fuel 
sources, biogenic fluxes and background concentrations to generate separate scaling 
factors for each block of 5 days. The sensitivity tests include several temporal error 
correlation length scales between continuous days, varying time windows over each day, 
a separation of the activity sectors (traffic), a filter over the MCMA, varying data 
screening and block sizes, to evaluate the performances of the inversion, and to specify 
the impact of our various configurations. The same system was also used to assimilate 
carbon monoxide concentrations, collected at the two stations since December 2018. 
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1 CHAPTER 1 INTRODUCTION 

1.1 CLIMATE CHANGE AND URBAN CO2 CONTROL 

With the increasing frequency of climate disasters, climate change 
becomes one of the greatest challenges to humanity. Since the earliest 
established temperature records at the end of the 19th century, the 
global surface temperature has increased by 1.09 (0.95 - 1.20) °C (Arias 
et al., 2021), and it is still increasing by 0.2°C per decade (Hansen et al., 
2006). Global warming leads to a series of environmental calamities, 
including sea level rise, abnormal extreme precipitation, droughts, heat 
waves and tropical cyclones (Arias et al., 2021). Greenhouse gases 
(GHG) are the main driver of global warming and climate change. 
Carbon dioxide (CO2), known as the most important greenhouse gas, 
is responsible for 66% of the radiative forcing by long-lived 
greenhouse gases and 82% of the increase in radiative forcing in the 
past decade. The atmospheric concentration of CO2 has been rising 
sharply since the Industrial Revolution. By 2021, the globally averaged 
atmospheric CO2 mole fraction has reached 414.7 ppm (NOAA, 2022), 
149% above the pre-industrial level (Wigley, 1983). Although the 
quarantine during Covid-19 in 2020 reduced CO2 emissions by 5 to 10% 
(Liu et al., 2020; Le Quéré et al., 2020; Friedlingstein et al., 2021), the 
current annual growth rate (2.5 ppm / year) was still higher than the 
average of the last 10 years (WMO, 2022).  

The main anthropogenic sources of CO2 are fossil fuel combustion (e.g., 
transportation, power plant and residential use), industrial processes 
(e.g. cement production and oil refining) and biomass burning (Metz, 
2005). More than 70% of anthropogenic CO2 emissions are from urban 
areas (Seto et al., 2014) and megacities contribute almost 50% of them 
(Wei et al., 2021). Meanwhile, the population in cities keeps growing. 
The urban population worldwide has increased from 1.35 billion to 
4.38 billion in the last 50 years and will increase by 1 - 2% annually until 
2050 (UN, 2018). Consequently, cities will play a pivotal role in the 
reduction of GHG emissions and bear the most pressure of the climate 
change related disasters.  

The international community has taken measures to address carbon 
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emission reduction. 196 countries signed the Paris Agreement at the 
21st Conference of the Parties (COP 21) in 2015, committing to limit 
global warming to less than 2 ℃, preferably to 1.5 ℃ (Paris Agreement, 
2015). In order to mitigate CO2 emissions and to achieve the goal of 
carbon neutrality by 2050, a series of protocols, agreements and 
projects between countries, sub-national governments and 
international organizations are concluded. The World Bank provides 
more than 200 governments, communities and individuals with 
financial support on reducing GHG emissions through their Emission 
Reductions Payment Agreements (ERPA) (The World Bank, 2021). C40 
Cities, a network of mayors, promotes a collaboration between 97 
large cities for approaching their commitment to the Paris Agreement 
(https://www.c40.org/about-c40/). The Global Covenant of Mayors 
have attracted more than 12,000 cities from 142 countries to commit 
to reduce their GHG emissions by 1.9 Gt CO2 equal annually in 2030 
(https://www.globalcovenantofmayors.org/who-we-are/). The 
URBACT Zero Carbon Cities project (https://energy-
cities.eu/project/zero-carbon-cities/) established a network of 7 
European cities of carbon reduction targets, policies and plans for the 
EU’s strategic vision for carbon neutrality by 2050. To evaluate all their 
efforts and actions, accurate measurements of carbon emissions are 
necessary. 

1.2 EMISSIONS INVENTORIES 

The greenhouse gas emissions over a certain time and region are 
commonly estimated using a greenhouse gas emission inventory 
protocol. Few emission inventories are directly measured from sources 
- they are usually measured and calculated under specific guidelines. 
Most of the current national CO2 emission inventories, including the 
official emission inventories reported to the United Nations Framework 
Convention on Climate Change (UNFCCC), Global Carbon Budget 
(Friedlingstein et al., 2022), Open-source Data Inventory for 
Anthropogenic CO2 (ODIAC, Oda et al., 2011) and Emissions Database 
for Global Atmospheric Research (EDGAR, Olivier et al., 2015), are 
compiled following the Intergovernmental Panel on Climate Change 
(IPCC) Guidelines for National Greenhouse Gas Inventories (Eggleston 
et al., 2006). In addition, the World Resources Institute's (WRI) GHG 

https://www.c40.org/about-c40/
https://www.globalcovenantofmayors.org/who-we-are/
https://energy-cities.eu/project/zero-carbon-cities/
https://energy-cities.eu/project/zero-carbon-cities/
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Protocol standards (GHG protocol, 2015; Fong et al., 2015) are used for 
emission inventory development by organizations such as the United 
States Environmental Protection Agency (U.S. EPA) and by projects 
such as C40 Cities. 

Most emission inventories mostly come from self-reported databases 
for power production, transportation, and manufacturing (Dasgupta et 
al., 2022). This emission estimation model describes the relationship 
between the CO2 emissions from a certain activity and the activity 
strength. The assumed relationship is usually linear with a fixed 
emission factor. The uncertainties of such a model come from various 
steps. Many emission sources are variable in time and space. For 
example, the transportation emissions are estimated with the traffic 
flow. Not every city and highway has its own traffic count dataset. 
Quite often, the traffic flow (volume and speed) is estimated on 
average, or thanks to another traffic-related parameter, like a 
congestion index. This will cause large uncertainties in both temporal 
and spatial dimensions, and in the estimated total amounts. Emission 
factors contribute to the emissions uncertainties. The real emissions 
are not linearly related to activity data, that is, emission factors are also 
variable. Engine type, engine capacity, speed and driving habits all 
affect the amount of CO2 emissions per kilometer per vehicle. 
Advances in technology are changing emission factors as well. It 
remains nearly impossible to adjust these emission factors based on 
local situations. Additionally, this estimation model requires a 
knowledge of local emission patterns. If there is some unknown or 
ignored source, the emission will definitely be under-estimated 
(Rypdal et al., 2001).   

Besides, the development of bottom-up emission inventories is time-
consuming and costly, especially for those at high spatial and temporal 
resolution. When it comes to city scales, people focus primarily on the 
major cities. Most of the urban-scale emission inventories are in 
developed countries (Dasgupta et al., 2022). The Hestia program is 
dedicated to providing the high-resolution hourly emission inventories 
for 4 cities in the U.S.: Baltimore, Salt Lake City, Indianapolis and Los 
Angeles. It calculated the residual and commercial non-point sources, 
industrial point sources and transportation sources in the 4 cities at the 
scale of buildings, streets and factories in 2011 (Gurney et al., 2012). 
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The Anthropogenic Carbon Emissions System (ACES) is another system 
focusing on urban scale CO2 emissions in the U.S. It provides the 1×1 
km CO2 emission inventories from fossil fuel combustion for 13 states 
across the Northeastern United States (covering New York), annually 
in 2011 and hourly in 2013/2014 (Gately et al., 2018). Cong et al. 
developed an annual direct fossil-fuel CO2 emission estimate in the 
Tokyo metropolitan area for the year 2014 (Cong et al., 2021). Some of 
the megacity emission inventories keep being updated regularly. 
London Atmospheric Emissions Inventory (LAEI) is a yearly 1×1 km 
emission dataset including CO2 of domestic, industrial/commercial, 
transport and other miscellaneous sources in the Greater London area 
(LAEI, 2021). It is updated about every three years. The AirParif 
emission inventory provides the 1×1 km CO2 emission map of direct 
emissions in Ile‐de‐France (IdF, or Greater Paris) as well as those 
indirect emissions related to consumption in the Ile‐de‐France regions 
of electricity and urban heating in five typical months every two years 
(AirParif, 2022). These city-scale emission inventories are more 
localized and accurate than widely-used global emission inventories. 
There could be a difference as high as 20% in regional emission total 
amount, and the spatial patterns are also so different that in some of 
the sectors and at some urban core, the global emission inventories 
are 75% higher or lower than the local emission inventories (Gately et 
al., 2017). However, only about 80 cities have their own emission 
inventories (Dasgupta et al., 2022), they are not all regularly updated 
with the latest local spatial and temporal emission patterns, and the 
uncertainties could be 4-10%, up to 20% (Gately et al., 2017). For those 
cities which do not have a local emission inventory, the high-resolution 
global CO2 emission inventory, ODIAC, with the energy consumption 
data compiled by the energy company BP p.l.c. and the spatial 
distribution of night-time light spatial data as well as individual power 
plant profiles, provides a widely-used solution.  

1.3 BAYESIAN INVERSION MODELING 

Top-down methodologies, or atmospheric inversions, offer a 
complementary solution to reduce the uncertainty of traditional 
bottom-up emission inventories. It takes advantage of a dense and 
local atmospheric CO2 concentration observation network to improve 
the prior emissions estimate from an inventory. This inverse approach 
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can compensate for known gaps and errors in traditional emission 
inventories - large uncertainties in emission factors, lack of data, and 
errors in the spatial and temporal distributions. Bayesian inversions 
take advantage of accurate measurements to track the long-term 
trends and the major discrepancies in urban CO2 emission estimation, 
supporting the implementation of mitigation policy at the city scale.  

Inversion modeling is based on the Bayesian theory, minimizing the 
mismatches between modeled and observed concentrations 
according to their respective uncertainties. More specifically, we utilize 
an atmospheric transport model coupled to anthropogenic emissions, 
biogenic fluxes and boundary conditions, to simulate the local 
gradients in CO2 concentrations.  In our approach, we compare the 
simulated gradients to the observed gradients over short time-periods 
(a few days), while assigning uncertainties to the observation and the 
prior emissions. By applying the Bayesian inference algorithm 
described hereafter (Figure 1.1), we finally calculate the posterior 
emissions and their associated uncertainties. 

 
Figure 1.1 Flowchart of the top-down (inversion) approach used to 
quantify the emissions from Mexico City, based on the Bayesian 
inversion system developed over Paris (Lian, 2020) 

The Bayesian inference estimates the conditional probability of a 
variable x (emissions) knowing the concentrations (y) by the probability 
of the concentrations (y) knowing the emissions (x), the uncertainty in 
x (emissions), and the uncertainty in y (concentrations): 
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𝑃𝑃(𝑥𝑥|𝑦𝑦) =
𝑃𝑃(𝑦𝑦|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑦𝑦)
 

Here we assumed a hidden Markov model: 

 

Figure 1.2 Structure of the hidden Markov Model 

In this model, our target variable x (estimation) is not directly 
measurable. The measurable variable y (observation) is linked to x by 
an operator H. Our aim is to make a Bayesian inference of emission x, 
based on the observation y and the prior estimate of x with its 
uncertainties. The forecast function and the observation function are: 

 
𝑥𝑥𝑘𝑘 = 𝑀𝑀𝑘𝑘−1(𝑥𝑥𝑘𝑘−1, 𝜆𝜆) + 𝑏𝑏𝑘𝑘 

𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘(𝑥𝑥𝑘𝑘) + 𝑟𝑟𝑘𝑘 

where k is the time step; M is the forecast operator and 𝝀𝝀  is its 
parameter independent of x; H is the linear observation operator that 
generates the estimation of y (observation) by x (estimation); b and r 
are the errors of emissions and observations, which are assumed to be .  

As for the optimal steps, we computed the Green’s response functions. 
To avoid the complicated computation of operator H, a scaling factor 
was involved. This estimation vector x is used as the scaling factor to 
optimize all emission variables, including anthropogenic emissions in 
various sectors, areas, time steps or time windows, as well as biogenic 
fluxes and boundary conditions. We take xA as the posterior estimation 
of the emission inventory scaling factor, and xB as the prior (Bréon et 
al., 2015). The optimal solution is given by the following equation 

xk-1 xk 
Mk-1 

Hk-

1 
Hk 

yk-1 yk 

··· ··· 
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(Enting, 2002; Tarantola, 2005): 
𝒙𝒙𝑨𝑨 = 𝒙𝒙𝑩𝑩 + (𝑩𝑩−𝟏𝟏 + 𝑯𝑯𝑻𝑻𝑹𝑹−𝟏𝟏𝑯𝑯)−𝟏𝟏𝑯𝑯𝑻𝑻𝑹𝑹−𝟏𝟏(𝒚𝒚 − 𝑯𝑯𝒙𝒙𝑩𝑩) 

where B is the error covariance matrix of the prior emission variable 
vector, and R is the  error matrix of the observation vector.  

The posterior error matrix, defined as A, is  
𝐴𝐴 = (𝐵𝐵−1 + 𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻)−1 

With a reliable atmospheric transportation model and reasonable 
observations with errors, the inversion system was set up. 

This inversion model has been widely used in urban CO2 emission 
estimation during recent years. Table 1.1 shows some recent studies 
on major cities across the world with various models, seasons, 
measurements and emission inventories. Lagrangian Backward 
Trajectory models are used most frequently as the atmospheric 
transport model in the previous studies using backward footprint 
simulations. The Weather Research and Forecasting model (WRF) 
coupled with various modules is also mentioned many times. 
Sometimes WRF and Lagrangian models are combined together. The 
spatial resolution of the models is usually 1-2 km. Considering the 
impact of growing vegetation, some studies restrict their target period 
in winter. Some of them use local emission inventories; some have to 
use global emission inventories, EDGAR, ODIAC, FFDAS (Fossil Fuel 
Data Assimilation System; Rayner et al.,, 2010) or a mix of them. 
Because of the ease of operation and the relatively lower cost, surface 
measurements are the most common, while there are some 
measurements from towers, aircrafts and satellites. With the 
development of computing science, there existed a new inversion 
approach named inversion ensemble, which combines a large number 
of emission inventories from different sources and bases, various 
measurements, several transportation models and configurations to 
make sensitivity tests (Lopez-Coto, 2020).  
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Reference City Emission 
Inventory 

Transportation 
model 

Target period Measurement 

Pitt, 2022 New York Vulcan, 
ACES, 
EDGAR 

HYSPLIT 2018-2020  non-
growing season 

aircraft 

Kaminski, 
2022 

Berlin self-
prepared 
local  

WRF-CMAQ 2008.2.3, 
2008.7.3 

satellite 

Nalini, 2022 Paris Origins 
Earth 

WRF-LPDM 2019.3-2019.5, 
2020.3-2020.5 

tower 

Lopez-Coto, 
2020 

Washington 
DC - 
Baltimore 

Vulcan, 
ODIAC, 
FFDAS, 
ACES, 
DARTE 

HYSPLIT, HRRR, 
WRF 

2016.2 aircraft 

Pisso, 2019 Tokyo ODIAC, 
EDGAR 

FLEXPART, 
flexpart-wrf, 
TRACZILLA 

2005-2009 
winter 

surface, tower, 
aircraft 

Kunik, 2019 Salt Lake City Hestia, 
ODIAC 

WRF-STILT 2015.9 surface 

Nickless, 2018 Cape Town self-
prepared 
local  

CCAM 2012.3-2013.6 surface 

Boon, 2016 London UK 
National 

CHIMERE 2012 summer surface 

Feng, 2016 Los Angeles Hestia, 
Vulcan 

WRF-Chem 2010.5-2010.6 surface, tower 

Staufer, 2016 Paris AirParif, 
EDGAR 

CHIMERE 2010.8-2011.7 surface 

Lauvaux, 2016 Indianapolis Hestia, 
ODIAC 

WRF-LPDM 2012–2013 
dormant season 

tower 

Table 1.1 Summary of several typical studies of urban CO2 inverse 
modeling. 

The studies in Table 1.1 have found significant adjustments by 
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inversion modeling on city carbon budgets, either for the emission 
inventories or for the uncertainties. Nalini et al. (2022) found that the 
CO2 emissions at Paris in 2019 and 2020 were 10% - 38% under-
estimated in different time periods and sectors, and the impact of the 
confinement during Covid-19 over the Paris metropolitan area is 12 
percentage points under-estimated. In Salt Lake City (Kunik, 2019), 
Cape Town (Nickless, 2018) and Indianapolis (Lauvaux, 2016), the 
inversion system reduced about 39%, 30% and 28% of the 
uncertainties in prior emissions, separately.  

1.4 MEXICO CITY AND MERCI-CO2 PROJECT 

Mexico City (Ciudad de México, CDMX), the capital city of the United 
States of Mexico, is one of the largest cities in the world. According to 
the definition of Mexico and state government, the Mexico City 
Metropolitan Area (MCMA, Greater Mexico City, or Metropolitan Area 
of the Valley of Mexico, or in Spanish Zone métropolitaine de la vallée 
de Mexico, ZMVM), including all 16 boroughs of Mexico City, 59 
municipalities in Mexico State and 1 municipality in Hidalgo State 
(Tizayuca), has a population of 21.6 million, ranking fifth in the world 
(UN, 2018). Almost half of the population are concentrated in CDMX.  

The annual CO2 emissions in MCMA have grown from 42.1 million tons 
to 66.0 million tons in 6 years, from 2012 to 2018. Mobile sources are 
the main source of CO2 in MCMA contributing about 57% - 65% to 
total CO2 emissions (SEDEMA, 2012; SEDEMA, 2021). By the end of 
2020, there are 14.7 million motor vehicles registered for circulation 
(including automobiles, passenger trucks and vans, cargo trucks and 
motorcycles, as well as the type of service official, public and private) 
on this MCMA land of 7585 square kilometers, 102% more than 10 
years ago, accounting for 29% of the national motor vehicle 
population (INEGI, 2021).  

Despite the rapid urban development, there is another challenge for 
the environmental problems in MCMA - the topography. The MCMA 
valley is surrounded by several mountain systems, as shown in Figure 
1.3. The highest mountain in elevation is La Sierra Nevada in the east, 
more than 5000 m a.s.l. The next highest is the south, about 3600-3930 
m a.s.l. Mountains in the north are the lowest - about 2500-3000 m 
a.s.l., while the average altitude of Mexico City is about 2240 m (CDMX 
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Government et al., 2021). The surrounding mountainous topography is 
a natural physical barrier to wind circulation, which limits the 
dispersion of pollutants emitted within the MCMA. Due to the warm 
climate and the dense urban area, the convective boundary layers are 
deep most of the year. In general, the maximum heights of the mixing 
layer are observed between 2:00 p.m. and 4:00 p.m. in the months of 
April and May, while the minimum values are recorded at night and 
during the winter season (CDMX Government et al., 2021). There is a 
particular phenomena named thermal inversion, which prevents the 
natural convective movement of the atmosphere. It is caused by a 
heated air layer above a cold one, most observed in the winter months.  

The climate in the MCMA is predominantly dry (sub-humid) 
subtropical with summer rains. Its average annual temperature ranges 
between 12 and 18 ºC, with year-round warmth. The year in Mexico 
City can be divided into a rainy season (May to October) and a dry 
season (November to April) (GMAO, 2015; CDMX Government et al., 
2021). The most frequent rains are in July and August. There are often 
rainy episodes observed in the afternoon from June to August. In the 
northern part of MCMA it’s slightly dryer and in the mountainous areas 
it’s much colder.  
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Figure 1.3 Land use, topography, administrative division and social-
economical statistics of MCMA in 2016 

The three local governments (CDMX, Mexico State and Hidalgo State) 
have engaged into aggressive carbon emission reduction policies. The 
standard NOM-163-SEMARNAT-ENER-SCFI-2013 was updated to 
restrict the emission of CO2 by small vehicles. For large public and 
service vehicles, low-carbon technologies are introduced, including 
electric, hybrid or emission control systems (EURO VI or EPA 10 
standard) (CDMX Government et al., 2021). However, strategies for the 
department of industry and power production are mainly focusing on 
contaminants instead of GHGs. The plan for CO2 reduction in the 
period 2021-2030 is to reduce by 65.2 million tons, of which 44.0 
million tons are from individual private transportation and 18.7 million 
tons are from public transportation of passengers (SEDEMA, 2021). 
There is a detailed time schedule for the strategies, and the barriers for 
the strategies are analyzed (CDMX Government et al., 2021), but the 
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effects and implementation of the strategies on CO2 emission 
reduction have not been quantitatively evaluated.  

Thanks to the French-Mexican project MExico City Regional Carbon 
Impacts (MERCI-CO2), a dense observation network of atmospheric 
CO2 concentrations was developed in MCMA (shown in Figure 1.4). 
Three different types of measurements were employed: high precise 
surface measurement using cavity ring-down spectrometers G2401 
commercialized by PICARRO, low-cost medium-precise sensor or 
LCMP based on non-dispersive infrared sensors commercialized by 
Senseair (Arzoumanian et al., 2019), and column measurements using 
solar absorption spectrometers commercialized by Bruker (Frey et al., 
2019). PICARRO, which is a cavity ring-down spectrometer (CRDS) 
(Crosson et al., 2008; Rella et al., 2013), is widely used in background 
and urban GHG monitoring (Yver Kwok et al., 2015; McKain et al., 2015; 
Heltfer et al., 2016; Wei et al., 2020), providing continuous 
measurements of CO, CO2 and CH4. In the previous studies mentioned 
in Table 1.1, the city inversion project of New York (Pitt et al., 2022), 
Paris (Staufer et al., 2016; Nalini et al., 2022), Los Angeles (Feng et al., 
2016), Cape Town (Nickless et al.,, 2018) and Indianapolis (Lauvaux et 
al.,, 2016) all benefit from the same high precision analyzers.  

There are two stations equipped with PICARRO (model G2401) high 
precise analyzers in MCMA, National Autonomous University of 
Mexico (UNA) and Altzomoni (ALZ). Both are calibrated to the 
WMO/GAW requirements (WMO, 2020) since the end of 2018, 
providing measurements of atmospheric CO2, CH4 and CO every few 
seconds. After calibration and quality control processes, the 
measurements were processed into hourly records with standard 
deviation. The uncertainties of the measures in the two stations are 
estimated to be 0.2 ppm and 0.05 ppm (González del Castillo et al., 
2022). UNA is an urban station located on the campus of National 
Autonomous University of Mexico (Universidad Nacional Autónoma de 
México, UNAM), with an altitude of 2304 m. The ALZ background 
station is located on mountain tops (4000 m a.s.l.), about 60 km from 
UNA, avoiding most of the impacts of anthropogenic fluxes in the 
urban area.  
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Figure 1.4 Measurement network envisioned for MERCI-CO2, with 
topography and administrative divisions in MCMA. 

Column sensors were also installed at these two sites, a mobile low 
resolution (0.5 cm-1) EM27/SUN in UNA in 2016 and a high resolution 
spectrometer HR125 in ALZ in 2012. EM27/SUN is a solar-tracking 
Fourier transform spectrometer (Gisi et al. 2012) and HR125 is the 
Fourier Transform Infrared (FTIR) system, known as Bruker IFS 125HR, 
used as reference instrument for the TCCON network (Poberovskii, 
2010). A dense network of seven EM27/SUN in MCMA started running 
in MCMA in September 2020 (Ramonet, 2020). Additionally, there is a 
network of LCMP sensors installed and planned all over MCMA, 
consisting of 13 LCMP sensors, based on the existing meteorological 
stations operated by SEDEMA (Secretaría del Medio Ambiente de la 
Ciudad de México, Secretary of the Environment of Mexico City). This 
later deployment of the LCMP sensors has been delayed due to 
COVID-19 restrictions starting in Spring 2020. The co-location of the 
in-situ and column sensors provides a unique opportunity to analyze 
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the urban CO2 signals both at the surface level, and integrated through 
the vertical columns.  

1.5 ATMOSPHERIC CO2 MODELING 

In order to quantify the transportation of contaminants or GHGs, 
atmospheric transport models (with or without chemistry depending 
on the tracers being considered) are widely used in atmospheric 
sciences. The various models could be divided into two types 
according to the form of the continuous function : Eulerian models 
(box models, as shown in Figure 1.5) and Lagrangian models (particle 
dispersion models) (Jacob, 1999). Eulerian models use fixed 
coordinates which look like a group of boxes, while Lagrangian models 
use moving coordinates, which look like a group of puffs.  

An atmospheric chemistry model considers the behavior of chemicals 
in four types of processes: Emission, Transport, Chemistry and 
Deposition (Jacob, 1999). Because of the stability of CO2, the chemistry 
part could be omitted. The main deposition of CO2, over continents, is 
the uptake by photosynthesis.  
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Figure 1.5 The main mechanism “in the box” and “between boxes” in a 
typical Eularian model (Jacob, 1999). 

One of the most famous Eulerian models is the Weather Research and 
Forecasting model coupled with Chemistry (WRF-Chem) developed by 
the Mesoscale and Microscale Meteorology (MMM) Laboratory of 
NCAR (Skamarock et al., 2008). As the most widely-used mesoscale 
atmospheric model, WRF offers robust and reliable simulation of 
meteorological parameters. It is not only capable of being coupled 
with its own chemistry module, but also provides input fields for a 
series of chemistry transport models, such as another Eulerian model, 
e.g. CHIMERE (Menut et al., 2013; Briant et al., 2017) by LMD 
(Laboratoire de Météorologie Dynamique) and CMAQ (Community 
Multiscale Air Quality modeling system) (Byun and Schere, 2006) by 
U.S. EPA, or providing the meteorological input to Lagrangian models 
(Angevine et al., 2014).  

Lagrangian models, including trajectory model and dispersion model 
(Lagrangian particle dispersion models, LPDMs), make it possible to 
track the activities of air mass, and make the footprint of CO2. The air 
parcel transportation trajectories could be tracked either forward or 
backward from sources to measurements. The most popular 
Lagrangian models includes the Stochastic Time-Inverted Lagrangian 
Transport (STILT) model (Lin et al., 2003) used in Salt Lake City (Kunik 
et al., 2019), FLEXPART (FLEXible PARTicle dispersion model) (Pisso et 
al., 2019b; Brioude et al., 2013) used in Tokyo (Pisso et al., 2019a), the 
Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) 
(Stein et al., 2015) used in New York (Pitt et al., 2022).  

Both types of models have a long history and wide range of application 
in urban atmosphere simulation, but there are some challenges. 
Mexico City lies in a valley with high altitude. The sharp topography 
changes make the model very unstable with fine vertical layers. In the 
city, the dense buildings lead to bias of wind speed and directions, heat 
and energy in the urban areas. Urban Canopy Model (UCM) is a 
common solution (Tewari et al., 2007). Previous sensitivity tests show 
that although the single-layer UCM tends to overestimate wind speeds 
and temperatures, it is enough for our purpose (Salamanca et al., 2011). 
Basin topography can cause the accumulation of signals under 
continuous low wind speeds, which may lead to errors in simulations 
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and inversions (Borsdorff, et al., 2020).  

WRF-Chem, one of the most popular Eulerian models in the world, is 
an online-coupled mesoscale model that has successfully worked on 
the CO2 transportation in cities (Feng et al., 2016; Zheng et al., 2019; 
Zhou W. et al., 2020; Lian et al., 2021). A modified version of WRF-
Chem was settled in this study to trace CO2 transport. There are also 
some successful cases combining WRF with Lagarangian models in 
urban CO2 inversion with footprints, e.g. FLEXPART-WRF (Pisso, 2019), 
WRF-STILT (Kunik, 2019) and WRF-LPDM (Lauvaux et al., 2016; Nalini 
et al., 2022). Considering the data availability in our simulating period, 
we are not using any explicit tower footprints with a Lagrangian model 
in this study.  

WRF provides rich options on the physical parameters. In order to 
cooperate with the options of UNAM study, the Planet Boundary Layer 
(PBL) scheme was MYJ (Mellor–Yamada–Janjić; Janjić, 1994; Janjić, 2001) 
at the first test. For the future application of turbulent kinetic energy 
(TKE) and the adaptation to the modified version of WRF-Chem, it was 
changed to MYNN (Mellor–Yamada–Nakanishi–Niino; Nakanishi and 
Niino, 2004; Nakanishi and Niino, 2009). The two are very similar. It is 
reported that nudging would improve the model performance in wind 
conditions (Deng et al., 2017), so an attempt of nudging was tested as 
well. 

1.6 OBJECTIVES AND OUTLINE OF THE THESIS 

The main objective of this thesis is to analyze the signals induced by 
the anthropogenic and biogenic CO2 fluxes in the atmosphere of 
Mexico-City. The analysis of the temporal and spatial characteristics of 
the CO2 concentrations, at the surface and through the vertical 
columns, should inform us about the intensity of the emissions in 
MCMA. To carry out this task I used the atmospheric transport model 
WRF in an optimal configuration thoroughly evaluated from 
meteorological measurements in and around MCMA. To simulate 
atmospheric CO2 concentrations with this model, I also had to prepare 
a set of inventories of anthropogenic and biospheric emissions. In the 
end, the thesis aims to use the atmospheric concentrations by an 
inversion system assimilating the measurements to the modeled 
concentrations, to reduce the uncertainties on the inventory of 
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anthropogenic emissions of MCMA. 

More specifically, the research questions contained in this thesis are:  

(1) How does the WRF model with different configurations work on 
the simulation of meteorological parameters in MCMA?  

(2) Could the WRF-Chem modeling system reproduce the surface 
CO2 and total column CO2 (XCO2) atmospheric concentrations 
in MCMA in various weather conditions? What are the charac-
teristics of CO2 concentration variations in MCMA?  

(3) Is ALZ representing the background of CO2 in UNA? What 
makes a good background station?  

(4) Can we successfully reduce the uncertainties from the prior 
emission inventories with the available measurements? How do 
the CO2 emissions in MCMA vary with time and space? 

(5) What could we interpret from the data assimilation between the 
CO2 measurements and simulations?  

Following this introductory chapter, the thesis consists of 3 main 
chapters. Chapter 2 and 3 form a publishable paper together, with 
separate summaries, while Chapter 4 is another publishable paper with 
a summary. There are also unpublished tests in Chapter 2 for a series 
of attempts. 

Chapter 2 describes the various options on drivers, domains, physics 
schemes and spectral nudging of the WRF modeling system over 
MCMA and makes a quantitative evaluation of the model performance. 
The modeled meteorological parameters are compared with in-situ 
surface observations, LiDar analysis as well as WMO radiosonde 
observations. For the purpose of CO2 simulation in the next chapters, 
the most focused variables are the ones related to dispersion of the air, 
containing air temperatures, wind speeds, wind directions and PBL 
heights. The results of these sensitivity tests are applied in the final 
modeling system used in the next chapters.   

Chapter 3 aims at the reconstruction of the CO2 and XCO2 
concentration maps over MCMA during 3 typical months (January, 
May and July) in the dry and rainy seasons in 2018, the characteristics 
of CO2 temporal variation, and the network design of CO2 observation 
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stations. The CO2 concentration maps are reconstructed by the 3-km 
resolution WRF-Chem coupled with the urban canopy model (UCM) 
through the local emission inventories from UNAM (García, 2020) and 
global emission inventories ODIAC scaled by temporal scaling factors 
(Nassar et al., 2013). The evaluation of CO2 simulations are made on 
the basis of CO2 in-situ measurements and column measurements 
(XCO2) by FTIR in the urban station UNA and the background station 
ALZ. Along with the evaluation, we also analyze the temporal and 
spatial distribution of CO2 signals, including diurnal cycle, weekly 
variation and seasonal variation, as well as the area impacted by 
anthropogenic fluxes and the variation of biogenic fluxes. Based on the 
analysis, we assessed the reasonability of the current location of the 
background station (ALZ), and defined a “background index” to 
represent the suitability to build a background station on the map.  

Chapter 4, the key part of the thesis, describes the Bayesian inversion 
system and its results. The inversion adjusts the prior anthropogenic 
emission from UNAM and ODIAC, and prior biogenic fluxes from the 
Carnegie Ames Stanford Approach (CASA) model previously optimized 
using eddy-flux tower data (Zhou et al., 2020), based on the data 
assimilation between the gradients from the urban station to the rural 
station. while the boundary conditions from CarbonTracker 2019B 
(Peters et al., 2007) remain the same. A series of inversion plans were 
applied to a 1-year simulation covering MCMA from March 30 2018 to 
March 30 2019. The plans basically contain 3 variables, standing for 
fossil fuel sources, biofluxes and background concentrations to 
generate separate scaling factors for each block of 5 days. Covariances 
between continuous days, time windows in a day, sectors from 
mobile/area/point, a MCMA mask and changed block sizes are added 
to different plans, to test the sensitivities of these options, to improve 
the performance of the inversion, and to specify the impact of urban 
signal and of various departments. The same system was also applied 
on carbon monoxide (CO), which observations start from December 
2018. The interest of CO is that it is a tracer co-emitted with CO2 by 
anthropogenic sources, but without major emissions from the 
biosphere, excluding biomass fires. 

Chapter 5 summarizes the main conclusions from this thesis and 
presents the perspectives of this project, as well as the potential future 
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research directions.   
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2 CHAPTER II : EVALUATION OF CONFIGURATIONS AND 
OPTIONS IN WRF MODELING SYSTEM OVER MEXICO CITY 
METROPOLITAN AREA 

SUMMARY 

The quality of atmospheric inversion results depends heavily on the 
performance of the atmospheric transport model. The Weather 
Research and Forecasting model (WRF) is a widely used Eulerian 
atmospheric transport model, which has been applied in various 
urban-scale inversion studies, but the best selection of physical 
parameters for urban-scale simulation varies from city to city. The main 
objective of this chapter is to investigate the performance of various 
configurations of the model and to determine the configuration in the 
future simulations. A period of 2 weeks in January 2018 is selected for 
our experiments.  

A set of triple-nesting domains was initialized in WRF over the Mexico 
City Metropolitan Area (MCMA). Mexico City is a basin city at high 
altitude, and such complex terrains are prone to cause mismatch in 
simulations. In order to evaluate how the WRF modeling system 
reproduces the transport conditions of CO2, validation with 
observations was made on the meteorological variables, e.g, wind 
speed, wind direction, temperature and Planetary Boundary Layer 
(PBL) height. The first three variables are measured by the SEDEMA 
(Secretaría del Medio Ambiente de la Ciudad de México, Secretary of 
the Environment of Mexico City) network. PBL heights and the vertical 
profile of horizontal wind speed are diagnosed from a Lidar installed 
at the National Autonomous University of Mexico (UNAM).  

For the sake of the optimization of model inputs, several key 
configurations and parameters in the WRF modeling system are tested, 
including PBL scheme, nudging strategy, urban canopy model, 
meteorological drivers, and the CO2 concentrations for boundary 
conditions. The reanalysis product ERA-5 repaired the temperature 
bias in the old version ERA-interim. The PBL scheme MYNN reproduces 
the PBL heights better than MYJ and YSU. Observation nudging failed 
in our domains and grid nudging worsened the fit between simulations 
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and observations.  

A relatively optimal configuration was then applied in WRF-Chem and 
simulated the CO2 transportations. I then evaluated the simulations of 
CO2 mixing ratio with two high-precise observation stations from 
MERCI-CO2 observation network, located at the south of the city center 
(UNA) and in the background area (ALZ). The urban canopy model BEP 
with default parameters is better than UCM in most meteorological 
variables, and succeeded in capturing several peaks in CO2 
concentrations, but it didn’t improve CO2 mean absolute errors (MAE). 
The moderate resolution 5-km domain tends to overestimate the CO2 
concentrations at night and in the morning than the high resolution 1-
km domain, but it captured the observation trends in the afternoon. 
There is no significant difference in the MAEs during the afternoon. 
This makes it possible to apply lower resolution models to increase the 
computational speed. 

With the 5-km domain WRF coupled with UCM, I analyzed the model 
performance and the characteristics of the meteorological conditions 
in 3 time periods: January for the dry season, July for wet season, and 
May for the transition between the two. PBL heights, surface 
temperatures, surface wind speed and wind directions, and vertical 
profile of horizontal wind speeds in the three seasons are all satisfying 
for inversion. 

The main part of this chapter, as well as Chapter 3 Atmospheric CO2 
sources, spatial distribution and seasonal variability over Mexico City 
Metropolitan Area, forms a manuscript  Evaluation of atmospheric CO2 
simulation over the Mexico City metropolitan area by WRF-chem 
submitted to Sustainable Cities and Society.  
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ABSTRACT 

Atmospheric inversions have been utilized across multiple cities to 
improve self-reported emission inventories, but the atmospheric 
dynamics over large metropolitan areas located in complex 
topography remain challenging for atmospheric transport models. 
Here, we evaluate the performance of an atmospheric CO2 modeling 
system and assess the optimal deployment of measurement sites to 
capture the whole-city emissions. As part of the French-Mexican 
project “Mexico City’s Regional Carbon Impacts (MERCI-CO2)”, two 
observation stations of surface and two column CO2 sensors were 
deployed in the Mexico City metropolitan area. We show that our 
modeling system is able to capture the local atmospheric dynamics 
with WRF at high resolution. The mean error in wind speed is 0.69 m/s 
and the relative error in PBL is 6.4%. The model also simulates CO2 
gradients observed by in situ and column sensors during dry and rainy 
seasons. The relative error of CO2 surface mixing ratio in the afternoon 
is -4.3%. The current network is deemed sufficient to capture city 
emissions (as a whole - not with intra-urban information) and to define 
the background conditions. Mountains are ideal to capture the 
background but the biogenic signals are responsible for large CO2 
spatial gradients and temporal variations. Therefore, we conclude that 
biogenic fluxes must be optimized within future inversion systems. 
However, we demonstrate how stations in the valley and mountain are 
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better simulated compared to those on the basin slopes, a deterrent 
to the deployment of sites in the suburbs of Mexico. 

Keywords: urban emissions, fossil fuel, greenhouse gas measurements, 
atmospheric modeling, Mexico City, WRF-chem, network design 

2.1 INTRODUCTION 

Atmospheric greenhouse gas (GHG) concentrations have significantly 
increased at global scale since the industrial revolution. Carbon dioxide 
(CO2), the main contributor to climate change, has seen its 
concentration reaching 414.7 ppm in 2021 (NOAA, 2022) compared to 
its pre-industrial level of 260-270 ppm (Wigley, 1983). Among the 
major sources of CO2, emissions from cities represent more than 70% 
of global fossil fuel CO2 emissions (IPCC, WG2, 2014). Countries and 
sub-national governments around the world are implementing policies 
to mitigate CO2 emissions (IPCC, WG3, 2014). The European Climate 
Law sets a target to reduce the net GHG emissions of the European 
Union by at least 55% by 2030 compared to 1990 levels1. At the sub-
national level, cities have also pledged to reduce their emissions, 
organized into large international consortiums. About 100 large 
metropolitan areas have joined the C40 City consortium, a network of 
mayors advocating for climate policies in line with the 1.5°C ambition 
of the Paris Agreement2. In parallel, more than 12,000 cities from 142 
countries joined the Global Covenant of Mayors, committed to reduce 
their annual GHG emissions by 1.9 Gt CO2 in 2030, compared to a 
business-as-usual (BAU) trajectory3. 

Accounting of GHG emissions is performed following varied 
established protocols resulting in uncertainties and inconsistencies 
across Self-Reported Inventories (SRI) of CO2 emissions (Chen et al., 
2019; Mueller et al., 2021; Gurney et al., 2021). Other non-standard 
approaches have also been developed to estimate city-scale emissions 
using spatial and temporal disaggregation methods of national-scale 
emissions, based on satellite night light data, a proxy of human 
activities, in combination with activity data from power plants and 

                                             
1 https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en 
2 https://www.c40.org/about-c40/ 
3 https://www.globalcovenantofmayors.org/who-we-are/ 

https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en
https://www.c40.org/about-c40/
https://www.globalcovenantofmayors.org/who-we-are/
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large industries (Oda et al., 2015, Olivier et al., 2015). Both methods 
(inventories and spatial disaggregation) are prone to large 
uncertainties, impairing the ability to verify the effectiveness of 
emission reduction policies over time. Common protocols, recent and 
detailed local activity data, and independent verification remain 
essential to improve current fossil fuel CO2 estimates (Mueller et al., 
2021). More recently, atmospheric methods (inverse modeling) have 
been developed and applied to monitor CO2 emissions from 
megacities, e.g. Paris (Bréon et al., 2015; Staufer et al., 2016), 
Indianapolis (Lauvaux et al., 2016; 2020), Cape Town (Nickless et al., 
2018), Washington D.C. and Los Angeles (Feng et al., 2016; Yadav et al., 
2021). However, atmospheric approaches require modeling systems 
affected by transport errors, especially over complex terrain and near 
coastal areas, where the local dynamics vary rapidly at sub-kilometric 
scales (Ye et al., 2020). Atmospheric inversion systems also rely on the 
quality of the emissions inventories, often delayed by several years, 
increasing the uncertainties in fast-growing metropolitan areas. The 
assessment of atmospheric models remains key to producing reliable 
and accurate estimates, taking advantage of existing meteorological 
measurement networks at the ground and collected during aircraft 
campaigns (Feng et al., 2016; Deng et al., 2017; Lian et al., 2018; Lopez-
Coto et al., 2020a). 

The Mexico City Metropolitan Area (MCMA), or Greater Mexico City 
(incl. La Ciudad de México, CDMX) is one of the largest megacities in 
the world. As the capital city of Mexico, its population of about 22 
million inhabitants (UN, 2018) ranks fifth in the world with a population 
growth rate of about 0.9% per year. Motor vehicle ownership has 
grown by 30% from 2014 to 2020 (INEGI Mexico, 2021), leading to a 
25% increase in CO2 emissions. The Secretaría del Medio Ambiente de 
la Ciudad de México (SEDEMA, https://www.sedema.cdmx.gob.mx/) 
updates an inventory of pollutant emissions, including CO2, every 2 
years, with a delay of about 2 years. The latest reported inventory of 
GHG emissions of Mexico City is available for the year 2018 (SEDEMA, 
2021). The total CO2 emissions for 2018 amount to 66 Mt CO2 in the 
MCMA, with about 85% from the transport and industry sectors. This 
represents a 50% increase in estimated CO2 emissions compared to 
the inventory for 2014 (SEDEMA, 2016), mainly due to a 60% increase 

https://www.sedema.cdmx.gob.mx/
https://www.sedema.cdmx.gob.mx/
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in the mobile sources sector. However, methodological changes and 
additional activity data explain the strong increase in only four years. 
In 2015, Mexico committed to reduce by 22% its greenhouse gas 
emissions by 2030 and to achieve carbon neutrality in Mexico City by 
2050 as stated in its Energy Transition Law. 

The French-Mexican project “Mexico City’s Regional Carbon Impacts 
(MERCI-CO2)”, funded by the French Agence Nationale de la Recherche 
(ANR) and the Mexican Consejo Nacional de Ciencia y Tecnologίa 
(CONACYT), enabled the strengthening of measuring atmospheric CO2 
concentrations over the MCMA by the deployment of additional 
instrumentation. The project was successful to incorporate three types 
of CO2 measurements in and around Mexico City. First, two high-
precision spectrometers (Picarro) (Crosson et al., 2008; Rella et al., 
2013),  collect hourly CO2, CH4, and CO concentration measurements 
(Gonzalez del Castillo et al., 2022) calibrated on international 
measurement scales. Second, about eight CO2 sensors of intermediate 
cost and precision (Mid-cost medium precision sensors, MCMP) are to 
be deployed around the area. Those mid–cost instruments are based 
on the development done by Arzoumanian et al. (2019). The periods 
of confinement due to COVID-19 in Mexico City have delayed the 
deployment of these instruments, initially planned for 2020. And finally, 
two FTIR measurements of total columns of CO2, CH4, and CO are 
being collected, one (model IFS-120/5HR, Bruker) from the mountain 
tops (Altzomoni station, ALZ; 19.12°N, 98.66°W) and a second 
(EM27/SUN) downtown (UNAM university campus, UNA; 19.33°N, 
99.18°W). The objective of these surface and column measurements is 
to characterize the atmospheric CO2 enhancements caused by 
anthropogenic emissions from the MCMA. To quantify the physical 
relationship between surface emissions from urban sources and 
atmospheric concentrations measured by the various instruments, an 
atmospheric transport model is required. This atmospheric approach 
comes up against several obstacles and requires, on the one hand, 
sufficient measurement density to characterize the evolution of 
concentrations as a function of exposure to emissions; and on the 
other hand an atmospheric circulation model capable of representing 
horizontal and vertical mixing in an urban environment (Feng et al., 
2016). The application of atmospheric top-down inversion methods to 
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CO2 on a regional scale must also face specific difficulties, such as the 
strong overlap of atmospheric signals related to anthropogenic and 
biospheric emissions; as well as atmospheric signals related to 
local/regional emissions from those on a larger spatial scale (Schuh et 
al., 2021). 

As part of MERCI-CO2, an atmospheric CO2 modeling system was 
configured over the MCMA and its surroundings. The location of 
Mexico-City spreading through a wide valley surrounded by 
mountains can prove to be advantageous in favoring the accumulation 
of CO2 in the planetary boundary layer (PBL) and therefore generating 
relatively high atmospheric gradients, more easily detectable by the 
analyzers. On the other hand, the complex topography around the 
basin represents a major difficulty for the simulation of atmospheric 
transport. In this study, we present the meteorological evaluation of 
atmospheric CO2 simulations using the Weather Research and 
Forecasting model (WRF, Skamarock et al., 2008) adapted to the 
regional scale, and the results of a simulation of the atmospheric 
concentrations of CO2 (WRF-Chem, Grell et al., 2005). The reliability of 
the model was tested based on wind speed, wind direction, PBL 
heights and temperature monitored at several locations disseminated 
in and around the city. We then compared the simulated surface and 
column CO2 concentrations to the available observations in Mexico-
City. 

2.2 METHOD 

2.2.1 Atmospheric modeling system 

The atmospheric simulations were firstly conducted with WRF version 
4.0 (Skamarock et al., 2008, Grell et al., 2005). Sensitivity tests were 
made on various urban canopy models, meteorological drivers, PBL 
schemes, and nudging parameters before we coupled the chemistry 
module to WRF.  

Table 2.1 shows all the tests made on WRF configurations. The 
atmospheric turbulence in the PBL for WRF was simulated using the 
eta (η) operational Mellor-Yamada-Janjic (MYJ, Xu et al., 2015) scheme 
with local vertical mixing, while the UNAM runs the same model using 
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Mellor-Yamada Nakanishi and Niino (MYNN, Nakanishi and Niino, 
2009) and Yonsei University scheme (YSU, Hu et al., 2010; Fekih et al., 
2017). The Run 3 series was coupled with the single-layer urban canopy 
model (UCM, Tewari et al., 2007; Chen et al., 2011).  

The first two simulations (Run 1 & 2) were performed for the period 
March 16-20, 2016 and the other three were January 4-18 2018, the 
same as the two rounds of UNAM simulations. Run 3 xn (no nudging) 
and Run 3 xs (grid analysis nudging) are compared to figure out how 
the nudging options work. The nesting domain’s lateral boundary 
conditions are initially processed by WRF preprocessing system (WPS) 
and then obtained from the parent domain. Grid nudging processes 
the other times and assimilates them with the conditions obtained 
from parent domains.  

No. Dates Run time Test object 

Run 1 20160316 - 
20160317 

5h PBL scheme MYJ compared to YSU 

Run 2 20160316 - 
20160320 

26h Id. with eta levels 

Run 3 xn 20180104 - 
20180118 

6d reference run for Jan, 2018 

Run 3 xs 20180104 - 
20180118 

6d grid nudging 

Test UCM 20180104 - 
20180118 

6d without urban canopy model (UCM) 

Test ERA-5 20180104 - 
20180118 

6d meteorological drivers 

Table 2.1 Sensitivity tests on WRF 

WRF was configured with two-way triple-nested domains for the Valley 
of Mexico City, with the spatial resolutions of 15, 5 and 1 km (Figure 
2.1). The largest domain (domain 1, d01) covers almost the entire 



 

50 

territory of Mexico and several neighboring countries; the middle 
domain (domain 2, d02) is one-third of the length and width of domain 
1 and domain 3 is one-third the length and width of domain 2. The 
smallest domain (domain 3, d03) covers the MCMA as well as several 
surrounding states, in order to include the whole valley and to avoid 
the instability when domain boundaries cut the mountains. Domain 3 
is the same size and location as the UNAM run, for the sake of 
comparison to the UNAM simulations with the MYNN and YSU 
boundary layer scheme.  

There are 49 vertical layers in each domain, the first two of which are 
around 16 and 45 meters above ground level. Due to the complex 
terrain of Mexico City's valley, the model would be very unstable with 
finer vertical layers near the ground.  

 

 
Figure 2.1 Simulation domains (a) of the three nested domainsat 15-
km (Domain 1, d01), 5-km (Domain 2, d02) and 1-km (Domain 3, d03, 
red square) resolutions with their corresponding terrain heights (in 
meters) and (b) Domain 3 showing Mexico City and its surroundings 
including the CO2 observation stations for surface and total columns 
measurements (red circles), a large power plant nearby (black circle), the 
urban area of MCMA (in pink), the administrative boundaries of Mexico 
City (in gray) and the model topography in meters. 

The meteorological drivers used as boundary and initial conditions are 
the 6-hourly ECMWF Reanalysis interim (ERA-interim, Dee et al., 2011) 
and version 5 (ERA-5, Hersbach et al., 2017), at 0.25° × 0.25° resolution. 
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The North American Mesoscale Model (NAM), which is used in the 
simulations run by UNAM, was tested as well, but was excluded 
because our Domain 1 exceeds the boundary of NAM.  

Due to the lack of available high-quality meteorological observations 
in and around Mexico City, the meteorological simulations were 
performed without data assimilation. However, several surface stations, 
not referenced at the World Meteorological Organization (WMO), 
were used to evaluate the model performances. A summary of the 
configurations and parameters are shown in Table 2.2, left column. 

 WRF WRF-Chem 

model version 4.0 3.9 

simulation dates 2018/1/4 00:00:00 - 2018/1/18 00:00:00 

spatial resolution 15km, 5km, 1km 15km, 5km(, 1km) 

meteorological drivers ERA-interim (ERA-5) ERA-interim (ERA-5) 

PBL scheme MYJ  
(YSU, MYNN by UNAM) 

MYNN (YSU) 

urban canopy UCM UCM (BEP) 

anthropogenic emission / ODIAC, ODIAC (UNAM), 
UNAM 

biogenic fluxes / CASA 

boundary conditions / 300 ppm (CarbonTracker 
2019B) 

nudging / (grid nudging) / (grid nudging) 

Table 2.2 Summary of the configurations and parameters for the 
reference run and sensitivity test (shown in brackets) for WRF and WRF-
Chem 

After the meteorological evaluation of WRF version 4.0, we coupled 
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the Chemistry module to WRF (Table 2.2) and continued the tests on 
CO2 simulations (Table 2.3). The CO2 simulations were conducted with 
WRF-Chem version 3.9, with 2 tracers for anthropogenic CO2 and CO2 
biogenic fluxes, separately. The anthropogenic emissions of domain 1 
and domain 2 are interpolated from the global CO2 emission product, 
the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda 
et al., 2018) and those of domain 3 are interpolated from the local 
emission inventory provided by the National Autonomous University 
of Mexico (UNAM). The biofluxes are interpolated from the Carnegie 
Ames Stanford Approach (CASA) model (Zhou et al., 2020). 
Interpolations were made by a mass-conserving python package 
(xESMF - conservative method, 
https://doi.org/10.5281/zenodo.1134365). In the test C-bdy, the global 
model CarbonTracker 2019 (Peters et al., 2007; Jacobson et al., 2020) 
was applied for optimized boundary conditions. The details of the 
emission inventories and boundary products, as well as interpolation 
details, are described in the next Chapter (section 3.1.2).   

No. Dates Test object 

C0 20180104 - 
20180118 

reference run of WRF-Chem 

C1-BEP 20180104 - 
20180118 

multi-layer urban canopy BEP 

C2-UNAMd2 20180104 - 
20180118 

change d02 emission to UNAM 

C3-nudging 20180104 - 
20180118 

grid nudging in d01 

C4-ERA5 20180104 - 
20180118 

meteorological drivers ERA-5 

C-bdy 20180104 - 
20180118 

boundary condition from 
CarbonTracker 

C25-d02 20180104 - 
20180118 

spatial resolution 

https://doi.org/10.5281/zenodo.1134365
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C-YSU 20180104 - 
20180118 

meteorological drivers 

C345-
feedback 

20180104 - 
20180118 

one-way nesting 

Table 2.3 Sensitivity tests on WRF-Chem 

In the WRF-Chem modeling system, we switched to the MYJ PBL 
scheme for the potential future application of Turbulent Kinetic Energy 
(TKE), and tested YSU for the optimization on the wind speed and 
direction in mountainous areas. The drivers (C4-ERA5) and grid 
nudging (C3-nudging) are re-tested under MYJ. The two-way nesting 
doesn’t show significant difference without the chemistry module, but 
it has become imperative in WRF-Chem. C345-feedback compared the 
two nesting ways. It took around 6 days to run a 2-week simulation on 
the cluster. For higher computational efficiency on long-term 
simulations, we tested the model performance on the middle 5-km 
domain, domain 2, to determine whether it is sufficient for inversion 
(C25-d02). The emission inventory source of domain 2 is then switched 
to UNAM 3-km national emission inventory.  

Another urban canopy model coupled with WRF, the multi-layer 
Building Environment Parameterization (BEP) (Martilli et al., 2002) was 
tested in WRF-Chem (test C1-BEP). Lian et al. (2019) found that BEP 
could significantly reduce the Root Mean Square Error (RMSE) and 
Mean Error (ME) of the CO2 concentrations from a one-year simulation 
compared to 2 GreenLITETM transceivers and 4 in-situ stations in Paris. 
BEP uses a series of parameters to describe the characteristics of the 
urban area, including street directions, road widths, and building width, 
height and percentage. Due to lack of study on local building, these 
parameters remain default. 

2.2.2 Meteorological observations 
2.2.2.1 Meteorological surface network 

We evaluated the WRF meteorological performances using 
measurements from the air quality network installed and operated by 
SEDEMA. Horizontal wind speed and direction, temperature, pressure, 
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and relative humidity were measured across 26 surface stations 
located in and around Mexico City, publicly available from SEDEMA4. 
The 26 stations are listed in Table 2.4, including the station’s names, 
their geographic coordinates, and the data availability for the year 
2018. In previous reports, we found specific comments on possible 
disturbances affecting wind measurements at three sites. At Merced 
(MER), located near downtown Mexico City, a three-story school 
located to the south of the station blocks the air flow from that 
direction, in addition to an elevated metro railway to the west. At 
Xalostoc (XAL), the inlet location is partially blocked by a building on 
one side of the shelter. Finally, at Cuajimalpa (CUA), the site is located 
on a two-story building with clear air flow in three out of four 
directions. There is a line of trees on one side of the shelter that may 
slightly impact wind direction and wind speed measurements, but the 
meteorological station is at the same altitude or slightly higher than 
the treeline. In conclusion, most of the SEDEMA meteorological 
observations match international standards thanks to rigorous data 
quality control. 

                                             
4 
http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBhnmI=%27&opcio
n=Zw== 

ID Station Entity Latitude Longitud
e Altitude 

Samplin
g 
height/
m 

Sinc
e 

% data 
in 2018 

ACO Acolman Mexico State 19.6355 -98.9120 2198 13.3 2011 84.35% 
AJM Ajusco Medio CDMX 19.2722 -99.2077 2548 15 2015 96.21% 
AJU Ajusco CDMX 19.1543 -99.1626 2942 4 2015 68.29% 
BJU Benito Juarez CDMX 19.3717 -99.1591 2257 5.5 2015 82.19% 
CHO Chalco Mexico State 19.2670 -98.8861 2253 7.3 2011 87.03% 
CUA Cuajimalpa CDMX 19.3653 -99.2917 2704 10.6 2000 98.05% 
CUT Cuautitlán Mexico State 19.7222 -99.1986 2263 4.5 2012 64.93% 
FAC FES Acatlán Mexico State 19.4825 -99.2435 2299 10.8 1986 61.37% 
GAM Gustavo A. Madero CDMX 19.4828 -99.0947 2242 6 2015 98.86% 

HGM Hospital General de 
México CDMX 19.4116 -99.1522 2234 15 2012 86.94% 

INN Investigaciones Nucleares Mexico State 19.2920 -99.3805 3080 4 2015 3.84% 

http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBhnmI=%27&opcion=Zw==
http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBhnmI=%27&opcion=Zw==
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Table 2.4 Coordinates, heights, first year of data acquisition, and 
percentage of valid data in 2018 of the SEDEMA meteorological stations 
in and around Mexico City. 
2.2.2.2 Lidar profiling 

The Doppler Lidar located at UNA (Wind Cube 100, Leosphere) was 
used for wind profile and mixing- and residual-layer height 
observations. The instruments measure with 50 m vertical resolution 
backscattered light from a pulsed laser in the infrared that is 
transmitted to the sky at four different directions and Doppler-shifted, 
15º from the zenith, from which a 3-dimensional wind field is 
reconstructed. Mixing and residual-layer heights calculated from the 
aerosol backscattering signal (carrier-to-noise ratio) and the variance 
of the vertical velocity are reported by the manufacturer. Since January 
2017, data is continuously collected by this instrument and stored in 
the RUOA repository (Red Universitaria de Observatorios Atmosféricos, 
http://www.ruoa.unam.mx) and the results have been evaluated 
against other data sources (Burgos-Cuevas et al 2022).  

As supplementary information, PBL heights measured by Radiosonde 
in international airports are also included in the comparison. The PBL 
heights from Radiosonde were obtained in the Mexico City 
international airport (19.43°N, 99.08°W), WMO station 76679 
(http://weather.uwyo.edu/upperair/sounding/html), and were 
computed from potential temperature (Θ) gradient: For each scan, PBL 

LAA Lab. de Análisis Ambiental CDMX 19.4838 -99.1473 2255 5.1 2016 97.59% 
MER Merced CDMX 19.4246 -99.1196 2245 17.2 1986 98.85% 
MGH Miguel Hidalgo CDMX 19.4041 -99.2027 2327 11.5 2015 99.77% 
MON Montecillo Mexico State 19.4604 -98.9029 2252 3.5 2000 97.24% 
MPA Milpa Alta CDMX 19.1769 -98.9902 2592 8 2016 72.74% 
NEZ Nezahualcóyotl Mexico State 19.3937 -99.0282 2235 12.1 2011 99.47% 
PED Pedregal CDMX 19.3252 -99.2041 2326 11.5 1986 96.05% 
SAG San Agustín Mexico State 19.5330 -99.0303 2241 8.6 1986 78.31% 
SFE Santa Fe CDMX 19.3574 -99.2629 2599 5.5 2012 84.87% 
TAH Tláhuac CDMX 19.2465 -99.0106 2297 3.6 2000 75.79% 
TLA Tlalnepantla Mexico State 19.5291 -99.2046 2311 7 1986 92.36% 
UAX UAM Xochimilco CDMX 19.3044 -99.1036 2246 18.7 2015 99.71% 
UIZ UAM Iztapalapa CDMX 19.3608 -99.0739 2221 19.6 2014 64.29% 
VIF Villa de las Flores Mexico State 19.6582 -99.0966 2242 4.5 2000 86.16% 
XAL Xalostoc Mexico State 19.5260 -99.0824 2160 30 1986 96.72% 

http://www.ruoa.unam.mx/
http://weather.uwyo.edu/upperair/sounding/html


 

56 

height was determined by identifying the point in the Theta inversion 
where the temperature is 2 K warmer than at the base of the inversion 
and the Theta gradient is greater than 0.005 K / m. Most of the 
Radiosonde data were collected at 12:00 UTC, which corresponds to 
6:00 local time in winter and 7:00 local time in summer. The PBL heights 
inferred from the radiosonde data were reliable in dry seasons but not 
in rainy seasons, as clouds significantly affected the temperature 
vertical profile and led to unreasonable inferred PBL heights that could 
reach thousands of meters. Therefore, I have excluded the inferred PBL 
heights more than 2000 meters in the present analysis.  

2.3 RESULT: METEOROLOGICAL PERFORMANCES 

2.3.1 Sensitivity tests 
2.3.1.1 Meteorological drivers 

I have made systematic comparisons of the observations with the 
meteorological dataset used as the drivers of the WRF simulations 
(met_em files generated by WPS, the pre-processing system of WRF). 
Three datasets have been investigated: ERA-interim, ERA-5 and NAM. 
ACO, an observation station from SEDEMA measurement network, is 
taken as an example of the comparisons. As Figure 2.2 shows, NAM 
seems to fit the wind speed observations the most, with an R square 
of 0.503 (that of ERA-interim and ERA-5 are 0.15 and 0.27 respectively). 
During January 5-6, ERA-interim significantly underestimated the wind 
speed at ACO station in the city center. ERA-interim also failed to 
capture the peak on January 13 in the evening (UTC time January 14 
00:00). However, the area which NAM covers is slightly smaller than 
the domain 1 defined for MCMA, and for this reason I could not use 
NAM in the simulations. 
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Figure 2.2 Wind speed time series (in m/s) from hourly observation and 
the interpolated 6-hour WRF input file from three meteorological 
products: ERA-interim, ERA-5 and NAM, at the observation station ACO 
in the city center of MCMA. (Two periods with abnormal values of ERA-
interim are marked with red square) 

The tests on meteorological drivers ERA-interim and ERA-5 are 
implemented on both WRF version 4.0 and WRF-Chem version 3.9, 
separately. As a more mature product, ERA-5 significantly improved 
the performance of the model, especially on the 2-meter a.g.l. 
temperature. On average over the 26 meteorological stations, the 
mean error of 2-week hourly temperature has been reduced from - 
4.25 ℃ to -0.94℃ (Figure 2.3). 

 
Figure 2.3 Temperature time series of 26-station average from hourly 
observation by SEDEMA and the simulation driven by three 
meteorological products: ERA-interim, ERA-5 and NAM. 
2.3.1.2 PBL schemes 

I have also compared the vertical wind measurements collected by the 
Lidar deployed at UNA (South city-side) to the simulations. The 
scanning elevation of the wind reconstruction covers a 15-degree 
angle from the zenith (75° to 90°; every scan contains 4 directions). The 
average wind speed from the 4 directions is used for the model 
evaluation of the wind speed. Two atmospheric layer heights are 
diagnosed from raw Lidar data: a mixing layer height and a residual 
layer height. As shown in Figure 2.4, mixing layer heights (red dots) 
diagnosed by the Lidar correspond to the top of the mixed layers but 
fail to capture the maximum elevations deduced from the residual 
heights (red line) during the afternoons. Conversely, the residual layer 
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heights correspond to the top of the mixed layer during the afternoon, 
while measuring the actual residual layer at night. To avoid a negative 
bias in Lidar measurements during daytime, we combined the two 
products to derive the most representative height of the mixed layer 
during daytime. The mixing layer diagnostic is used in the morning 
(local time 8:00-13:00) while residual layer heights are used to evaluate 
the mixed layer height in the afternoon (local time 14:00-18:00).  

 
Figure 2.4 Time series and linear regression of PBL height (in meters) 
simulation (in blue) and observation (“residual layer” heights in red lines 
and mixing layer heights in red dots) in UNA (time in UTC, golden 
background stands for local time UTC-6 afternoon: 14:00-18:00), for the 
three PBL schemes MYJ, MYNN and YSU.   

As for the model, the approximate height above the surface was 
calculated using the geopotential height:  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 = (𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃)/𝑔𝑔 − 𝐻𝐻𝐻𝐻𝐻𝐻 

in which PH, PHB, HGT and 𝑔𝑔  stand for perturbation geopotential 
height, base-state geopotential height, terrain height and gravitational 
acceleration, respectively.  

Three PBL schemes were tested in our modeling system: MYJ (with 
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WRF version 4.0), MYNN and YSU (with WRF-Chem version 3.9). Figure 
2.4 shows the time series and linear regressions for the simulations 
and observations. MYJ and MYNN are more similar, but MYJ didn’t 
capture some of the high developments of the PBL.  For example, 
MYNN catched the sharp decrease in the evening of January 3 (UTC 
time 2018-01-04 00:00:00 - 03:00:00), as well as the rapid ascent in the 
afternoon of January 5 and 7 (UTC time 2018-01-05 19:00:00 - 2018-
01-06 00:00:00 and 2018-01-07 19:00:00 - 2018-01-08 00:00:00). The 
better performance of MYNN is shown in the regression plots. Linear 
fit of MYNN is closer to the line y=x, with a higher R square (0.68 vs 
0.63), and MYJ often underestimates the PBL heights in the morning. 
As for YSU, it tends to underestimate the nighttime PBL heights even 
more. In 6 of the 14 days, the simulated PBL heights, using YSU scheme, 
remain close to zero for several hours. All of the three schemes are 
severely underestimating the afternoon PBL heights. The daytime 
mean errors of PBL heights are -425 m for MYJ, -465m for YSU, and -
354 m for MYNN. 

Regarding the wind speeds, the comparison of the three PBL schemes 
clearly shows that YSU reduced the overestimation of wind speeds in 
the mountains. Table 2.5 shows the errors in different PBL schemes. 
The mean error is reduced by about 75%. On the other hand, the MAE 
wasn’t reduced. The “topo_wind” option of YSU usually decreases the 
wind speed enabling a better comparison to the observations, but in 
some cases it may drive to extremely high wind speed in complicated 
topography (see for example the INN station on Figure 2.5). 

 MYJ MYNN YSU 

Mean error 0.41 0.42 0.09 

Mean absolute error 0.87 0.98 0.99 

Table 2.5 Mean Errors and Mean Absolute Errors on wind speed of the 
three PBL schemes: MYJ, MYNN and YSU. 
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Figure 2.5 Wind speed daily mean observations and simulations under three 
PBL schemes in January 2018 at 5 of the 26 SEDEMA stations: MER in the city 
center, VIF in the north, MON in the east, AJU in the south (mountains), and 
INN in the west (mountains), in UTC time (local time=UTC-6). 

 

 
Figure 2.6 Time series of CO2 mixing ratio observed (red lines) at UNA 
(above) and ALZ (below) stations in the 2-week simulation in January, 
2018, with PBL scheme MYNN (blue lines) and YSU (black lines).  

I have also also compared the CO2 mixing ratios to the WRF-Chem 
simulations performed with two different PBL schemes (MYJ hasn’t 
been tested in WRF-Chem). Figure 2.6 shows that the overestimation 
of peaks (in January 5, 7, 12, 13) simulated with MYNN scheme could 
be fixed with YSU, probably thanks to its better performance in the 
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simulation of the wind. On the contrary, there are some peaks captured 
by MYNN but missed by YSU, on January 8 and 11. The CO2 variations 
at ALZ are much smaller than that of UNA and no significant difference 
was found between the two simulations under the two schemes. 
Overall, despite the fact that YSU improved the wind speed in most 
cases it doesn’t show obvious improvement in the CO2 simulation.  
2.3.1.3 Urban canopy models 

Two urban canopy models coupled with WRF were tested: the single-
layer UCM and the multi-layer BEP. With default parameters, the BEP 
module was not as stable as UCM and the model coupled with BEP 
sometimes crashes. Despite that, BEP improves the performance of the 
model in the simulation of the PBL heights, temperatures and CO2 
concentrations. The mean error of PBL heights at UNA in the afternoon 
simulated with BEP has decreased by 39%, from -588 m to -359 m.  

 
Figure 2.7 Time series of the temperature averaged for the 26 SEDEMA 
stations. Observations are shown in red, and the simulations coupled 
with single-layer urban canopy model UCM and multi-layer urban 
canopy model BEP are shown in blue and black respectively. 

BEP has optimized the temperature of the 26 stations in MCMA. In 
particular, the underestimation in the afternoon is largely reduced with 
BEP compared to UCM. On the other hand it still overestimates the 
minimum temperature observed in the morning (shown in Figure 2.7). 
The mean error increased from -0.34℃ (UCM) to 0.65℃ (BEP). The 
mean error and mean absolute error (MAE) maps in Figure 2.8 show 
that the mean temperatures are increased for almost all SEDEMA 
stations. For the stations in the city, they are underestimated with UCM 
and slightly overestimated with BEP. For several stations in the rural 
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area, e.g. AJU and CUT in the mountains, we observe a higher 
overestimation of the temperature. In total, the fit between 
observations and simulations didn’t change a lot, with an R square of 
0.83.  

 
Figure 2.8 The mean error and mean absolute error (MAE) map of the 
26 SEDEMA stations, in the 2-week simulation in January, coupled with 
urban canopy models UCM (left) and BEP (right). 

As for the simulation of the wind, using BEP with the default 
parameters, we do not observe a systematic improvement of the wind 
speed at all SEDEMA stations. As Figure 2.9 shows, in the city station 
MER and rural station AJU in the southern mountains, BEP even 
degrades the performance of the model. However, it reduces the large 
bias when the wind speed is high in the mountain, e.g. at INN. For the 
average of all the 26 stations, the mean error decreased from 0.42 m/s 
to -0.10 m/s with BEP, and the mean absolute errors decreased from 
0.98 m/s to 0.87 m/s.  

    
Figure 2.9 Wind speed daily mean in January 2018 at 5 of the 26 
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SEDEMA stations: MER in the city center, VIF in the north, MON in the 
east, AJU in the south (mountains), and INN in the west (mountains), in 
UTC time (local time=UTC-6), coupled with urban canopy model UCM 
(in blue) and BEP (in black). 

 

 

Figure 2.10 Time series of CO2 mixing ratio at UNA and ALZ station in 
the 2-week simulation in January, 2018, coupled with urban canopy 
models UCM (in blue) and BEP (in black).  

In CO2 simulations, BEP (with default parameters) is prone to generate 
CO2 concentration peaks in the urban area. It captured relatively well 
several peaks observed at UNA in the city center, that UCM missed on 
January 8, 11 and 12, but also created some peaks that didn’t exist, e.g. 
on January 6, 13 and 17, shown in Figure 2.10 (UNA, upper panel). 
Overall the mean error has decreased from -5.6 ppm to -1.1 ppm with 
BEP, but the mean absolute error keeps 12.8 ppm, and the mean 
absolute error in the afternoon even increased by 0.5 ppm.  
2.3.1.4 Nudging 

The fdda option nudges the WRF towards a gridded analysis. It is 
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supposed to nudge wind, temperature and water vapor. Grid nudging 
in the first domain didn’t make a significant difference in the model. 
The mean errors of PBL heights without and with nudging are -87 m 
and -99 m in the morning (local time 7:00-12:00), and -971 m and - 
986 m in the afternoon (local time 13:00-18:00). In departure from 
earlier studies (Lian et al., 2018), grid nudging sometimes worsen the 
model performance. As shown in Figure 2.11, the model captured the 
peaks of PBL height in the afternoons of January 4, 15 and 17 without 
nudging, but missed them with nudging. 

 
Figure 2.11 Time series of PBL height (in meters) simulation with and 
without nudging as well as Lidar observation (“residual layer” heights in 
red lines and mixing layer heights in red dots) at UNA (time in UTC, 
golden background stands for local time UTC-6 afternoon: 14:00-18:00) 

The deterioration due to grid nudging is more obvious in wind speed. 
The R2 of the linear regression between simulations and observations 
has dropped from 0.40 to 0.23, as shown in Figure 2.12. The mean 
errors in the morning and the afternoon have increased by 0.5 - 0.6 
m/s and the mean absolute errors have increased by 0.4 - 0.5 m/s. Grid 
nudging is not going to be applied in the future modeling. 
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Figure 2.12 Linear regression of hourly wind speed observation and 
simulation in the 2-week simulation at the 26 stations of SEDEMA 
network, in January 2018, without and with grid nudging in domain 1. 
2.3.1.5 Spatial resolution 

Feng et al. (2016) found that the high resolution configurations (1.3km) 
resolved PBL heights and vertical profile of the horizontal winds better 
than moderate-resolution (4 km) in Los Angeles (LA) basin, while it did 
not cause a significant difference in the simulation of the surface 
meteorological parameters. From the comparison I have done over a 
two-week period, unlike the LA case, the PBL heights at UNA from the 
5-km domain d02 and 1-km domain d03 have no significant difference. 
Figure 2.13 shows the time series of PBL heights derived from the two 
domains. Indeed, there are some differences, but all of them are at 
nighttime. The mean error of PBL heights in the afternoon 14:00-18:00 
(compared with the so-called “residual layer heights”) of 5-km 
simulation is -684 m and that of 1-km simulation is -686 m, almost the 
same with 5-km simulation. The mean absolute error in the morning 
(7:00-12:00) is 179 m and 178 m.  
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Figure 2.13 Time series of PBL height (in meters) of 5 km (black line) 
and 1 km (blue line) simulations as well as Lidar observation (“residual 
layer” heights in red lines and mixing layer heights in red dots) at UNA 
(time in UTC, golden background stands for local time UTC-6 afternoon: 
14:00-18:00). 

I have also compared the vertical profile of horizontal wind speed to 
the Lidar Dopller observations at the UNAM site (Figure 2.14). The 
mean error and mean absolute error of the two domains are rather 
close: mean errors are -0.75 m/s for 1 km and -0.60 m/s for 5 km; MAEs 
are 1.59 m/s for 1 km and 1.58 m/s for 5 km. The errors for the high 
resolution are even slightly larger, especially in the lower atmosphere 
(Figure 2.14).  

 
Figure 2.14 Vertical profiles of 2-week mean horizontal wind speed 
errors at UNA for two spatial resolutions (1 km in blue and 5 km in green) 
in the afternoon: (a) mean error profile (b) mean absolute error profile.  

Nevertheless, the moderate resolution (5-km) simulation appears to be 
not as good as the high resolution (1-km) domain to simulate the CO2 
concentrations. I have compared the CO2 concentrations simulated 
using the two resolutions, with the same fossil fuel emissions, biogenic 
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fluxes and boundary conditions. The 5-km simulation overestimated 
the gradients between the two stations (UNA-ALZ) by about 9.7%, 
while the 1-km domain overestimated them by 5.6%. As shown in 
Figure 2.15, the overestimations of the gradients between the two 
stations are mainly occurring at night time (UTC time 19:00 - 11:00) 
and in the morning (UTC time 12:00 - 17:00) when the CO2 
concentrations at UNA are higher with the 5-km resolution. For the 
simulation in the afternoon, when the PBL is stable, the mean absolute 
errors of the gradients for the two resolutions are similar: 7.6 ppm for 
the 5-km domain 2 and 7.7 ppm for the 1-km domain 3. The similar 
MAEs during the afternoon built a sufficient basis for the potential use 
of a moderate resolution domain in exchange for computational 
efficiency in future inversions. 

 

 

 
Figure 2.15 Time series of simulated and observed CO2 mixing ratio (red) 
at UNA and ALZ station in the 2-week simulation in January, 2018, in 
1-km (blue) and 5-km (black) simulation, in UTC time.  
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2.3.1.6 Boundary conditions and its spinning up 

With the two-way nesting approach, there is an interaction between 
the two model domains at each hour, and the input concentration map 
of domain 2 is affecting the smaller domain 1. As Figure 2.16 (right 
column) shows, the two-way nesting introduced a bias of the low-value 
area in the center of domain 1, due to the default input concentration 
of domain 2 (300 ppm), which is much lower than the background 
concentrations from CarbonTracker (410 – 420 ppm).  

 
Figure 2.16 Background CO2 concentrations from WRF boundary 
conditions for Domain 1, in one-way and two-way nesting after the 2-
week simulation, at 23:00:00 UTC time, 2018-01-08. 

To solve the problem, we have two choices: either we keep the two-
way nesting and edit the WRF input file, that is, to interpolate the input 
concentration map from CarbonTracker every time we run real.exe; or 
we switch to one-way nesting and reserve a period of time for spinning 
up. Figure 2.17 shows the time required for spinning up. The time 
depends on the large-scale diffusion conditions, e.g. wind speed in the 
high altitude. For our case in January, it takes about 5 days for 
CarbonTracker to cover half of the domain and about 10 days to cover 
the other half. Until the end of the 2 weeks, the domain has totally 
adapted the CarbonTracker background concentrations. 2 weeks 
would be enough for the concentration spinning up from the domain 
boundary.  
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Figure 2.17 Background CO2 concentrations from WRF boundary 
conditions for Domain 1, in one-way nesting, at four different times. 

2.3.2 Surface meteorological evaluation  

The sensitivity tests that I carried out made it possible to evaluate the 
sensitivity of the simulations to several parameters, with the aim of 
defining the configuration providing the best compromise between 
results and calculation time. According to the results of the sensitivity 
tests, I selected the configuration shown in Table 2.6, to perform 
longer simulations at different seasons. According to the tests on 
boundary conditions, it takes around 10 days for the background 
concentrations spinning up from domain boundaries. Consequently, I 
reserved 2 weeks for this spinning up in each round of running. In this 
section I present the evaluation of the simulations made with this 
configuration, by comparisons with meteorological observations. 
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 WRF-Chem 

model version 3.9 

simulation dates Jan: 2017/12/21 00:00:00 - 2018/1/18 00:00:00 
May: 2018/5/1 00:00:00 - 2018/5/29 00:00:00 
July: 2018/7/1 00:00:00 - 2018/7/28:00:00:00 

spatial resolution 15km, 5km 

meteorological drivers ERA-5 

PBL scheme MYNN 

urban canopy UCM 

anthropogenic emission ODIAC, UNAM 

biogenic fluxes CASA 

boundary conditions CarbonTracker 2019B 

nudging / 

Table 2.6 Summary of the configurations for WRF-Chem in 
meteorological evaluations 

Three simulations were performed over January, May, and July 2018, 
representing three contrasted seasons in the region of Mexico-City 
(Jáuregui, 2002). January is the coldest month of the year with 
temperatures ranging between 6°C and 22°C, with low precipitation, 
during the dry season. During the 2 weeks of January 2018, the average 
temperature of Mexico City, calculated from the 26 weather stations, 
varies from 2.3° to 21.3°C with a mean of 11.7 ± 4.5 °C (Figure 2.18). 
Conversely, the month of May is the hottest month of the year in 
Mexico City (13 to 26°C), with a mean temperature of 20 ± 3.4 °C 
recorded in 2018 (Figure 2.18). The month of July is characterized by 
lower temperatures compared to May (18.4 ± 3 °C in July 2018), but 
with higher precipitation rates in the city (52 mm) corresponding to 
the rainy season. 

The model succeeds in simulating most of the seasonal, synoptic and 
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diurnal variability of the surface temperature deduced from the 
network of 26 SEDEMA stations (Figure 2.18). In May and July, the 
mean daily biases are respectively equal to 0.6°C and 0.5°C, but the 
peak-to-peak amplitude is underestimated by 3.0 and 2.3°C. For most 
of the days, night minimums are overestimated by about 2°C and daily 
maximums are underestimated by about 0.4-0.8°C. On the contrary, 
the average temperatures of the 26 stations over the month of January 
are underestimated by about 0.3℃ . This positive anomaly may be 
related to residential and commercial heating in winter. Correlation 
coefficients for the near-surface temperature (3.5 to 30 m a.g.l.) 
between observation and simulation are very high (0.95, 0.97 and 0.92 
for January, May and July separately). The fit of our regression model 
(R-square) is larger than 0.85. The simulated diurnal cycle in May is 
highly correlated with observations (R=0.93), including the sharp drop 
after sunset on clear nights and the smooth variations on cloudy nights.  

 
Figure 2.18 Time series of the mean hourly temperature over the 26 
meteorological stations in and around Mexico City, in UTC time (local 
time=UTC-6), for the months of (a) January, (b) May, and (c) July of 2018. 
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Figure 2.19 Mean Absolute Error (MAE) in first-level temperature (0-
16m; upper row) and Mean Error in wind speed (middle row) and wind 
direction (bottom row) for the months of January (left column), May 
(middle column) and July (right column) of the year 2018.  

Observed and simulated surface wind speeds were compared at the 
26 meteorological stations. For January, May and July, the network-
wide Mean Absolute Error (MAE) of the 26 stations is 0.98, 1.40 and 
1.29 m/s, respectively. The average s MAE for wind speed vary from 
0.72 to 1.67 m/s across the station network. As shown in Figure 2.19 
and Figure 2.20, mountain stations (e.g. INN, AJU and MPA) show 
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degraded performances (1.5-2.5 m/s overestimated). Urban stations in 
the city center correspond to a mean bias of less than 1 m/s and a 
regression fit (R-square) larger than 0.5. Surface wind directions vary 
across stations with MAE’s between 50° to 70° (cf. Figure 2.21). Unlike 
wind speed, the simulated wind directions vary across the basin 
independently of the topography, possibly due to the 
misrepresentation of building heights and the use of default 
parameters in the urban canopy model. Overall, meteorological 
performances are similar to previous urban studies without data 
assimilation (Feng et al., 2016; Lian et al., 2018).  

 
Figure 2.20 Wind speed daymean with interquartile range in January, 
May and July 2018 at 5 of the 26 stations: MER in the city center, VIF in 
the north, MON in the east, AJU in the south (mountains), and INN in 
the west (mountains), in UTC time (local time=UTC-6). 
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Figure 2.21 Simulated and observed wind roses during daytime hours 
(07:00-17:00 local time, UTC-6) at two different meteorological stations: 
MER (in the city center) and INN (in surrounding mountains) over the 3 
comparison period in January, May and July 2018, when observed wind 
speed > 2m/s. 

2.3.3 Vertical mixing and horizontal wind evaluation 

Two vertical wind error profiles from the Lidar and the model are 
shown in Figure 2.22 to illustrate our model-data performances (left 
panel), in addition to the MAEs from 0 to 4,000 m above ground level 
(right panel). No observations were available for the month of July. 
Since the sample heights of the model and the Lidar are different, MAE 
was calculated based on the observation records and the simulation 
wind speed (49 layers) interpolated to observation layer heights (99 
heights). MAEs are less than 2 m/s in both months. In January, the 
mean error and mean absolute errors in the horizontal mean wind are 
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-0.4 m/s and 1.3 m/s respectively, with standard deviations of 0.9 m/s 
and 0.6 m/s. In May, they are equal to -0.7 m/s and 2.0 m/s, with 
standard deviations of 1.7 m/s and 1.1 m/s. Both errors increase for 
layers higher than 2000 m, which corresponds to the maximum 
observing elevation of the Lidar instrument.  

 
Figure 2.22 Vertical profile of 2-week mean horizontal wind speed 
errors at UNA in the afternoon: (a) mean error profile (b) mean absolute 
error profile.  

To evaluate the temporal variations of the modeled PBL heights, I 
performed a linear regression for the months of January and May, with 
estimated R-square values of 0.68 and 0.64, respectively. The mean 
bias during morning hours is about 15 m in January and about 280 m 
in May. During the afternoon hours, the bias reaches -580 m (in 
January) and 110 m (in May). These values are similar to the study of 
Feng et al. (2016) over the basin of Los Angeles using aircraft PBL 
heights. During the afternoons, the modeled PBL heights are usually 
lower than the Lidar measurements during the month of January. We 
note here that no Lidar measurement is available for the month of July 
2018.  

In addition to the Lidar measurements, I have also tried to use the PBL 
heights derived from Radiosonde measurements. Again, due to the 
weather, there are many radiosonde scans in the rainy season that 
don’t have a reasonable PBL height. Sometimes the inferred PBL height 
could reach unrealistic values of 10.000 meters. In the rainy season, it 
is cloudier and the temperature structure is complicated. This causes 
the huge uncertainty in locating the PBL boundaries. The remaining 
measures in July are all at UTC time 12:00, which is 7:00 AM local time. 
As shown in Figure 2.23, the Radiosonde measures match our 

· s-1 · s-1 
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simulated PBL heights during July 25-27, but are much higher on the 
other days. The situation for May is similar: sometimes the Radiosonde 
matched the simulation or Lidar observation, sometimes not with a 
large bias. In January, the Radiosonde measures are much more 
reasonable: none of them is larger than 5000 m. The mean absolute 
errors of Radiosonde in the three months are 430 m, 2241 m and 1567 
m, including the abnormal measurements under 5000 m. 

 
Figure 2.23 Time series and linear regression of PBL height (in meters) 
simulation (in blue) and observation (“residual layer” heights in red lines 
and mixing layer heights in red dots) in UNA, as well as radiosonde 
inference in black dots (time in UTC, golden background stands for local 
time UTC-6 afternoon: 14:00-18:00) 

2.4 CONCLUSIONS AND DISCUSSIONS 

In this chapter I evaluated the performances of the WRF and WRF-
Chem model to simulate the CO2 transportation conditions over 
MCMA. The meteorological conditions (surface temperature, wind 
speed and wind direction) were evaluated across the SEDEMA 
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observation network of 26 stations, and the development of the PBL 
was compared to the Lidar Doppler observations at UNAM campus.  

Of all the configurations I tested, the updated meteorological drivers 
from ERA-5 significantly improved the model performance in all 
surface meteorological parameters, especially the temperatures, 
compared to ERA-Interim and NAM. The PBL scheme MYNN simulated 
the PBL heights better than MYJ and YSU. Both MYNN and MYJ 
overestimated the surface wind speed. YSU corrected the bias, but YSU 
did not reproduce the wind speed time series satisfactorily. My results 
don't show the necessity of using YSU in the future simulations. Just 
like YSU, neither grid nudging nor high-resolution domain seems to 
significantly improve the results. The multi-layer urban canopy model 
BEP is better than the single-layer UCM in meteorological parameters. 
It reduced the errors in PBL heights, repaired the bias of surface 
temperatures and corrected the overestimation of wind in a mountain 
station. However, it tends to create extra peaks in CO2 concentrations, 
and the model coupled with BEP is not as stable as with UCM. For this 
reason, the UCM urban canopy model was finally selected. Domain 2's 
lower input will be brought to domain 1 through two-way nesting 
domains. To resolve the issue, a simple solution would be to switch to 
one-way nesting and allocate 2 weeks for the CO2 to spin up from a 
distance.  

Further evaluations have been conducted on the model with the 
optimized configuration in 3 months, representing various seasons. 
Within and around the city, the Mean Absolute Errors (MAE’s) in wind 
speed are around 1 m/s, while the wind speed errors were 1.5-2.5 m/s 
over-estimated by the model in the mountainous areas outside the city. 
The regression model of measured and modeled PBL heights at UNA 
is significant, with R-square values exceeding 0.64 for both seasons. 
Additionally, our simulation accurately captures local dynamics across 
the basin, as indicated by mean errors in horizontal wind speed at UNA 
being less than 1 m/s within the PBL.  

REFERENCES 

Arzoumanian, E., Vogel, F. R., Bastos, A., Gaynullin, B., Laurent, O., 
Ramonet, M., & Ciais, P. (2019). Characterization of a commercial 
lower-cost medium-precision non-dispersive infrared sensor for 



 

78 

atmospheric CO2 monitoring in urban areas. Atmospheric 
Measurement Techniques, 12(5), 2665-2677. 

Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., 
Ramonet, M., ... & Ciais, P. (2015). An attempt at estimating Paris 
area CO2 emissions from atmospheric concentration measurements. 
Atmospheric Chemistry and Physics, 15(4), 1707-1724. 

Burgos-Cuevas, A., Magaldi, A., Adams, D.K. et al. Boundary Layer 
Height Characteristics in Mexico City from Two Remote Sensing 
Techniques. Boundary-Layer Meteorol (2022). 
https://doi.org/10.1007/s10546-022-00759-w 

Chen, F, Kusaka, H, Bornstein, R, Ching, J, Grimmond, CSB, Grossman-
Clarke, S, Loridan, T, Manning, KW, Martilli, A, Miao, S, Sailor, D, 
Salamanca, FP, Taha, H, Tewari, M, Wang, X, Wyszogrodzki, AA and 
Zhang, C. (2011). The integrated WRF/urban modelling system: 
development, evaluation, and applications to urban environmental 
problems. International Journal of Climatology 31(2): 273– 288. DOI: 
https://doi.org/10.1002/joc.2158 

Chen, G., Shan, Y., Hu, Y., Tong, K., Wiedmann, T., Ramaswami, A., ... & 
Wang, Y. (2019). Review on city-level carbon accounting. 
Environmental science & technology, 53(10), 5545-5558. 

Crosson, E. (2008). A cavity ring-down analyzer for measuring 
atmospheric levels of methane, carbon dioxide, and water vapor. 
Applied Physics B, 92(3), 403-408. 

Deng, A., Lauvaux, T., Davis, K. J., Gaudet, B. J., Miles, N., Richardson, S. 
J., ... & Gurney, K. R. (2017). Toward reduced transport errors in a 
high resolution urban CO2 inversion system. Elementa: Science of 
the Anthropocene, 5. 

Feng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., ... & 
Yung, Y. L. (2016). Los Angeles megacity: a high-resolution land–
atmosphere modeling system for urban CO 2 emissions. 
Atmospheric Chemistry and Physics, 16(14), 9019-9045. 

González del Castillo, E., Taquet, N., Bezanilla, A., Stremme, W., 
Ramonet, M., Laurent, O., ... & Grutter, M. (2022). CO2 variability in 
the Mexico City region from in situ measurements at an urban and 
a background site. Atmosphere , 35 (2), 377-393. 



 

79 

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., 
Skamarock, W. C., & Eder, B. (2005). Fully coupled “online” chemistry 
within the WRF model. Atmospheric environment, 39(37), 6957-
6975. 

Gurney, K. R., Liang, J., Roest, G., Song, Y., Mueller, K., & Lauvaux, T. 
(2021). Under-reporting of greenhouse gas emissions in US cities. 
Nature communications, 12(1), 553. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐
Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, 
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, 
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., 
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., 
Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, 
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, 
P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J-N. (2017): 
Complete ERA5 from 1979: Fifth generation of ECMWF atmospheric 
reanalyses of the global climate. Copernicus Climate Change Service 
(C3S) Data Store (CDS).  (Accessed on 21-Jan-2021) 

INEGI (Instituto Nacional de Estadística y Geografía, Mexico National 
Institute of Statistics and Geography) Mexico (2021). Registered 
Motor Vehicles in Circulation, available at: 
https://www.inegi.org.mx/programas/vehiculosmotor/ (last access: 
29 December 2022) 

Lauvaux, T., Gurney, K. R., Miles, N. L., Davis, K. J., Richardson, S. J., Deng, 
A., ... & Turnbull, J. (2020). Policy-relevant assessment of urban CO2 
emissions. Environmental Science & Technology, 54(16), 10237-
10245. 

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., 
Davis, K. J., ... & Wu, K. (2016). High‐ resolution atmospheric 
inversion of urban CO2 emissions during the dormant season of the 
Indianapolis Flux Experiment (INFLUX). Journal of Geophysical 
Research: Atmospheres, 121(10), 5213-5236. 

Lian, J., Wu, L., Bréon, F. M., Broquet, G., Vautard, R., Zaccheo, T. S., ... & 
Ciais, P. (2018). Evaluation of the WRF-UCM mesoscale model and 
ECMWF global operational forecasts over the Paris region in the 
prospect of tracer atmospheric transport modeling. Elementa: 



 

80 

Science of the Anthropocene, 6. 

Lopez-Coto, I., Hicks, M., Karion, A., Sakai, R. K., Demoz, B., Prasad, K., 
& Whetstone, J. (2020). Assessment of planetary boundary layer 
parameterizations and urban heat island comparison: Impacts and 
implications for tracer transport. Journal of applied meteorology 
and climatology, 59(10), 1637-1653. https://doi.org/10.1175/JAMC-
D-19-0168.1 

Lopez-Coto, I., Ren, X., Salmon, O. E., Karion, A., Shepson, P. B., 
Dickerson, R. R., ... & Whetstone, J. R. (2020). Wintertime CO2, CH4, 
and CO emissions estimation for the Washington, DC–Baltimore 
metropolitan area using an inverse modeling technique. 
Environmental science & technology, 54(5), 2606-2614. 

Mueller, K. L., Lauvaux, T., Gurney, K. R., Roest, G., Ghosh, S., Gourdji, S. 
M., ... & Whetstone, J. (2021). An emerging GHG estimation 
approach can help cities achieve their climate and sustainability 
goals. Environmental Research Letters, 16(8), 084003. 

Nakanishi, M., & Niino, H. (2009). Development of an improved 
turbulence closure model for the atmospheric boundary layer. 
Journal of the Meteorological Society of Japan. Ser. II, 87(5), 895-
912. 

Nickless, A., Rayner, P. J., Engelbrecht, F., Brunke, E. G., Erni, B., & 
Scholes, R. J. (2018). Estimates of CO2 fluxes over the City of Cape 
Town, South Africa, through Bayesian inverse modelling. 
Atmospheric Chemistry and Physics, 18(7), 4765-4801. 
https://doi.org/10.5194/acp-18-4765-2018 

NOAA, https://gml.noaa.gov/ccgg/trends/global.html (last access: 
2022/12/29) 

Olivier, J.G.J., Janssens-Maenhout, G., Muntean, M. and Peters, J.A.H.W. 
(2015) Trends in global CO2 emissions: 2015 Report. PBL 
Netherlands Environmental Assessment Agency, The Hague; 
European Commission, Joint Research Centre (JRC), Institute for 
Environment and Sustainability (IES). Internet: 
http://edgar.jrc.ec.europa.eu/news_docs/jrc-2015-trends-in-
global-CO2-emissions-2015-report-98184.pdf. JRC report 98184/ 
PBL report 1803, 2015. 

https://doi.org/10.5194/acp-18-4765-2018


 

81 

Rella, C. W., Chen, H., Andrews, A. E., Filges, A., Gerbig, C., Hatakka, J., ... 
& Zellweger, C. (2013). High accuracy measurements of dry mole 
fractions of carbon dioxide and methane in humid air. Atmospheric 
Measurement Techniques, 6(3), 837-860. 

Sánchez-León, E., Castro, T., Peralta, Ó., Álvarez-Ospina, H., Espinosa, 
M. D. L. L., & Martínez-Arroyo, A. (2016). Estimated carbon dioxide 
exchange for three native species in an ecological reserve of Mexico 
City. Atmósfera, 29(3), 189-196. 

Schuh, A. E., Otte, M., Lauvaux, T., & Oda, T. (2021). Far-field biogenic 
and anthropogenic emissions as a dominant source of variability in 
local urban carbon budgets: A global high-resolution model study 
with implications for satellite remote sensing. Remote Sensing of 
Environment, 262, 112473. 

SEDEMA (2016). Inventario de Emisiones de la CDMX 2014. Dirección 
General de Calidad del Aire, Dirección de Proyectos de Calidad del 
Aire. Ciudad de México 
(http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbo
ok/inventario-emisiones-cdmx2014-2/mobile/index.html) 

SEDEMA (2021). Inventario de Emisiones de la Zona Metropolitana del 
Valle de México 2018. Dirección General de Calidad del Aire, 
Dirección de Proyectos de Calidad del Aire. Ciudad de México. 
Agosto 
(http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbo
ok/inventario-emisiones-cdmx-2018/Inventario-de-emisiones-
cdmx-2018.pdf) 

Seto, K., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., Huang, L., Inaba, 
A., Kansal, A., Lwasa, S., McMahon, J., Müller, D. B., Murakami, J., 
Nagendra, H., & Ramaswami, A. (2015). Mitigation of climate change. 
In C. B. Field et al. (Eds.), Climate Change 2014: Impacts, Adaptation, 
and Vulnerability. Part A: Global and Sectoral Aspects. Contribution 
of Working Group II to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change (pp. 361–409). United 
Kingdom and New York, NY: Cambridge University Press. 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, 
M. G., … Powers, J. G. (2008). A Description of the Advanced 
Research WRF Version 3 (No. NCAR/TN-475+STR). University 



 

82 

Corporation for Atmospheric Research. doi:10.5065/D68S4MVH 

Somanathan E., T. Sterner, T. Sugiyama, D. Chimanikire, N.K. Dubash, J. 
Essandoh-Yeddu, S. Fifita, L. Goulder, A. Jaffe, X. Labandeira, S. 
Managi, C. Mitchell, J. P. Montero, F. Teng, and T. Zylicz, 2014: 
National and Sub-national Policies and Institutions. In: Climate 
Change 2014: Mitigation of Climate Change. Contribution of 
Working Group III to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Edenhofer, O., R. 
Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. 
Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, 
S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. 
Cambridge University Press, Cambridge, United Kingdom and New 
York, NY, USA. 

Staufer, J., Broquet, G., Bréon, F. M., Puygrenier, V., Chevallier, F., 
Xueref-Rémy, I., ... & Ciais, P. (2016). The first 1-year-long estimate 
of the Paris region fossil fuel CO 2 emissions based on atmospheric 
inversion. Atmospheric Chemistry and Physics, 16(22), 14703-14726. 

Tewari, M, Chen, F, Kusaka, H and Miao, S. (2007). Coupled 
WRF/Unified Noah/urban-canopy modeling system. NCAR WRF 
Documentation 122: 1–22. NCAR, Boulder 

Tomohiro Oda, Shamil Maksyutov (2015), ODIAC Fossil Fuel CO2 
Emissions Dataset (Version name : ODIAC2019), Center for Global 
Environmental Research, National Institute for Environmental 
Studies, doi:10.17595/20170411.001. (Reference date : 2022/05/22) 

United Nations, Department of Economic and Social Affairs, 
Population Division (2018). The World’s Cities in 2018—Data 
Booklet (ST/ESA/ SER.A/417). 

Wigley, T. (1983). The pre-industrial carbon dioxide level. Climatic 
change, 5(4), 315-320.  

Yadav, V., Ghosh, S., Mueller, K., Karion, A., Roest, G., Gourdji, S. M., ... 
& Whetstone, J. (2021). The impact of COVID‐19 on CO2 emissions 
in the Los Angeles and Washington DC/Baltimore metropolitan 
areas. Geophysical research letters, 48(11), e2021GL092744. 

Ye, X., Lauvaux, T., Kort, E. A., Oda, T., Feng, S., Lin, J. C., ... & Wu, D. 
(2020). Constraining fossil fuel CO2 emissions from urban area using 



 

83 

OCO‐2 observations of total column CO2. Journal of Geophysical 
Research: Atmospheres, 125(8), e2019JD030528. 

 
 
 

 

  



 

84 

3 CHAPTER III : ATMOSPHERIC CO2 SIMULATION AND 
VARIABILITY OVER MEXICO CITY METROPOLITAN AREA 

SUMMARY 

In this chapter, the main objective is to investigate the potential of 
future inversion of surface CO2 and XCO2 based on the current 
simulation system and observation network. The seasonal variability 
and the component of CO2 and XCO2 at the urban station UNA and 
the background station ALZ and over the Mexico City Metropolitan 
Area (MCMA) is analyzed as well, including the contribution of 
biogenic fluxes. For the inversion in the next chapter, I examined the 
spatial distribution pattern of the background CO2 and XCO2 from long 
distance transportation, discussed the ideal location of background 
stations and fossil fuel signal stations, and assessed the quality of the 
background station ALZ. Additionally, the sensitivity test on emission 
inventories mentioned in the last chapter (ODIAC and UNAM) was 
made to compare the impact of emission inventory in the modeling 
system, to decide whether to include ODIAC in the future inversion. 

Based on the sensitivity tests made on the WRF model for January 2018 
in the last chapter, the optimal modeling configurations were decided. 
Further simulations in different seasons (the dry season, the rainy 
season, and the transition between the two) were made to evaluate 
the model performance on CO2 simulation in various climate 
conditions. The meteorological drivers, ECMWF Reanalysis interim 
(ERA-interim), were updated to the latest version ECMWF Reanalysis 
version 5 (ERA-5). Both emission products (UNAM and ODIAC), as well 
as the three sectors (area / residential & commercial, mobile / 
transportation, point / industrial) provided by UNAM, are applied in 
separate tracers in WRF-Chem. Single-layer urban canopy model 
(UCM) is coupled with WRF-Chem instead of the multi-layer canopy 
scheme BEP. I chose the one-way double nesting domain plan for 
reasons of computational efficiency. The resolution of the inner 
domain remains 5 km. The simulations and observations in January 
(dry season), May (transition of the two seasons) and July (rainy 
season) of 2018 were compared to evaluate the performance of our 
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WRF-Chem modeling system on CO2 simulation at the relatively lower 
resolution in various seasons and weathers. Each of the three 
simulations lasts for 4 weeks, 2 weeks for background spinning up 
from a long distance and 2 weeks for comparison.  

For the performance of the model, the time series, diurnal cycle and 
weekly distribution of surface CO2 are evaluated by the observation 
records from MERCI-CO2 measurement network. Despite the lack of 
measurement due to rainy weather in rainy seasons, XCO2 
measurements by FTIR are decomposed by the model in the same way. 
Additionally, the CO2 concentration maps of background, fossil fuel 
and biogenic flux contributions are shown to describe the spatial 
distribution of fossil fuel signals in different sectors, the characteristics 
of biogenic fluxes, and the network design.  

The main conclusions from this chapter are: i) The model reproduced 
most of the observed variations in the afternoon (2PM-5PM UTC-6) in 
both seasons, though it tends to under-estimate the peaks in the 
morning and there remains a 1-hour time lag in CO2 accumulation. 
Sometimes the morning and night trends are captured as well, but only 
the data in the afternoon when the PBL is stable are going to be 
assimilated in the future inversion. ii) The model indicates that the 
correlation between the background concentration of the two stations 
are high enough and the fossil fuel signals at our background station 
(ALZ) are low enough, leading to the high sufficiency to constrain the 
city emissions by the concentration gradients between the two stations 
(UNA-ALZ). ODIAC could be included in the future inversion. The 
biogenic fluxes should be optimized separately. iv) The mismatch of 
XCO2  during the first 3 days in May is mainly driven by high altitude 
air mass. Boundary conditions should also be optimized separately in 
future inversions of XCO2.  

The main points of this chapter, as well as Chapter 2 Evaluation of 
Configurations and Options in WRF modeling system over Mexico City 
Metropolitan Area, forms a manuscript  Evaluation of atmospheric CO2 
simulation over the Mexico City metropolitan area by WRF-chem 
submitted to Sustainable Cities and Society.   
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3.1 SURFACE CO2 EMISSIONS AND BOUNDARY CONDITIONS 

3.1.1 Fossil fuel emissions inventories  

Two emission products were used in our study: a gridded emission 
inventory (Garcia-Reynoso et al., 2018; Rodriguez-Zas et al., 2021. 
https://github.com/JoseAgustin/emis_2016) developed at the 
National Autonomous University of Mexico (UNAM), and the Open-
source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda et al., 
2018). The UNAM hourly national emission inventory of Mexico covers 
the entire country at 3-km resolution while the 1-km resolution 
product is only available for specific subdomains, including the MCMA. 
This local emission inventory provides CO2 emissions, as well as other 
species including CO and NOx, for three sectors: area sources 
(residential/commercial), mobile sources (traffic), and point sources 
(industrial). In our simulation, we defined one independent tracer per 
sector to quantify individually the sectoral contributions on the 
observed atmospheric CO2 enhancements.  

The ODIAC emission product provides global emission maps of fossil 
fuel CO2. ODIAC downscales national CO2 emissions from the Carbon 
Dioxide Information Analysis Center (CDIAC; Boden et al., 2017) to sub-
national levels by disaggregating the emissions according to night 
light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) 
on the Suomi National Polar-orbiting Partnership satellite (e.g., Elvidge 
et al., 2013). Combined with temporal scaling factors (Nassar et al., 
2013), ODIAC emissions are available at 1×1 km resolution and hourly 
(including monthly, weekly and daily temporal profiles).  

Anthropogenic emissions over the parent domain (d01) are 
interpolated from ODIAC, including areas outside Mexico and shipping 
over the ocean. We note, however, that shipping emissions remain low 
compared to the UNAM inventory. For our second domain at 5-km 
resolution, we applied the UNAM emission inventory as well as ODIAC 
in another tracer as a sensitivity test. To conserve the total budget, all 
the emissions are interpolated into our domains by applying a mass-
conserving technique (xESMF - conservative method, 
https://doi.org/10.5281/zenodo.1134365).  

Figure 3.1 shows the difference of the two emission products at the 
grid covering UNAM campus after interpolation. Due to the 

https://github.com/JoseAgustin/emis_2016
https://doi.org/10.5281/zenodo.1134365
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characteristics of nightlight and the temporal scaling factors, ODIAC 
varies much less than UNAM, the daily amplitude is only 20 tons, one 
fifth of that for UNAM, which is nearly 100 tons. For the weekly pattern, 
ODIAC assumes that every weekday is homogeneous; Saturday is 5-6% 
less than weekdays and Sunday is 5-6% less than Saturday. UNAM, on 
the contrary, is based on a traffic database and Saturday has a higher 
emission than most weekdays. 

 
Figure 3.1 Diurnal cycle (left panels) and weekly cycle (right panels) of 
fossil fuel CO2 emissions at the urban station UNA in MCMA for the 
UNAM and ODIAC emissions products in 2018, with error bars. 

CO2 emissions from mobile sources remain nearly constant all year 
long (about 3 Mt per month), but emissions from residential and 
industrial sources show large seasonal variations with larger values for 
the month of January (11.93 Mt) compared to May (9.10 Mt). Emissions 
for the month of July increase to 10.00 Mt due to the energy demand 
from air conditioning systems (Figure 3.2).  
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Figure 3.2 Total fossil fuel CO2 emissions over the domain 2 (upper 
panels) and over the urban area of MCMA (lower panels) for the UNAM 
and ODIAC emissions products (left panels), and biogenic fluxes from 
the CASA biogeochemical model (right panels) for the months of January, 
May, and July 2018. 

Total emissions over domain 2 from UNAM and ODIAC are generally 
consistent, but their spatial distributions differ (Figure 3.3). Although 
both ODIAC and UNAM grid values follow a lognormal distribution in 
the same interval (Figure 3.3 bc), ODIAC shows a larger number of 
low-value grid points (near-zero values). Due to the spatial 
disaggregation technique, point source emissions in ODIAC tend to be 
more distributed spatially compared to UNAM, where point sources 
are geo-located by their exact coordinates. For our application, the 
ODIAC emissions show the same distribution at 15 km resolution, with 
consistent country-scale emissions. When it comes to city-scale, 
ODIAC underestimate the emissions by 43%-45% compared to UNAM, 
similar to other cities in North America (Chen et al., 2020).  
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Figure 3.3 Maps of total fossil fuel CO2 emissions over (a) domain 1 and 
domain 2 from (b) ODIAC and (c) the UNAM inventory on 4 January 
2018 (UTC time, logarithmic scale, tons). Sectors of UNAM are shown on 
lower panels: (d) area sources, (e) mobile sources and (f) point sources. 

* Frequency distributions (black histograms) are shown over domain 2 
to illustrate the larger ratio of near-zero pixels in ODIAC and the 
presence of large peaks in the UNAM inventory. 

3.1.2 Biogenic CO2 fluxes: optimized CASA simulation 

The biogenic fluxes in MCMA were simulated by the Carnegie Ames 
Stanford Approach (CASA) model (Zhou et al., 2020) and are also 
interpolated to our domains by xESMF - conservative. The CASA 
simulation was optimized by generating an ensemble of perturbed 
parameters, including the maximum light use efficiency, the optimal 
temperature of photosynthesis, and the temperature response of 
respiration. These perturbed parameters were constrained by selecting 
the best configuration in comparison to AmeriFlux eddy-covariance 
flux data. Monthly Gross Primary Productivity (GPP) and total 
ecosystem respiration (Re) were downscaled to 3-hourly resolution 
based on 3-hourly air temperature and shortwave downward radiation 
from the North American Regional Reanalysis (Mesinger et al., 2006), 
as described in Olsen and Randerson (2004). GPP and Re were summed 
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into Net Ecosystem Exchange (NEE) at 5-km resolution. Figure 3.4 
shows the difference between dry/wet seasons, with a maximum in 
carbon uptake during the wet season (growing season). In Figure 3.4, 
the phenology of tropical forests (wet and dry) on the east coast of 
Mexico causes an early start of the growing season (May) while the 
central and western regions (temperate to semi-arid climates) show 
negative values (carbon uptake) later in the year (July).  

 

 
Figure 3.4 Midday (12:00 UTC-6) and midnight (00:00 UTC-6) biogenic 
monthly mean fluxes from the CASA biogeochemical model (Zhou et al., 
2020) over the WRF simulation domain (5-km resolution) for the months 
of January (left column), May (middle column) and July (right column) 
in mol/km2/hr. 

We note here that the central region of our domain, corresponding to 
Mexico City, shows very low NEE values caused by the dense urban 
area (sparse vegetation). The biogenic fluxes in the MCMA differ 
significantly from the surrounding areas, further examined by 
separating the biogenic contribution in our modeling system. 

3.1.3 Atmospheric CO2 boundary conditions 

The influence of distant sources and sinks was simulated by coupling 
the optimized CO2 concentrations from the global model 
CarbonTracker 2019 (Peters et al., 2007; Jacobson et al., 2020) to our 
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WRF domain, similar to Feng et al. (2019) over North America. The 
coupling scheme involves several steps including pressure correction 
due to terrain height differences, interpolation of the coarse resolution 
CO2 fields to the WRF grid, and mass conservation over the total CO2 
column, as described in Butler et al. (2020). As shown in Figure 3.5, the 
CO2 boundary inflow at our domain boundaries varies at daily and sub-
daily timescales (3-hourly in our case) especially over land (northern 
bound) where air masses from North America flow southward into our 
domain. We evaluate the CO2 boundary inflow by comparison to 
measurements collected at ALZ (mountain site), only occasionally 
influenced by the city emissions from the valley (cf. section 953.3.1.1). 
We also note here that we couple the 3D fields from the CarbonTracker 
global models to represent the vertical gradients between the surface 
(2,200 m a.s.l.) and the mountain tops (4,000 m a.s.l.). 

 
Figure 3.5 Time series of the CO2 boundary concentrations at the 
southern (sea) and northern (land) model boundaries from the 
CarbonTracker inversion system, in UTC time (local time=UTC-6)  for 
January, May, and July 2018. 

 

3.2 CO2 OBSERVATION NETWORK 

3.2.1.1 Atmospheric CO2 measurements 

Two high-accuracy analyzers measuring continuously atmospheric 
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CO2 concentrations were installed in 2014 at the UNAM university 
campus (UNA) and at the Altzomoni altitude station (ALZ). The two 
instruments are cavity ring-down spectrometers (model G2401) 
manufactured by Picarro (Crosson et al., 2008; Rella et al., 2013). Such 
instruments can measure every few seconds the atmospheric 
concentrations of CO2, CH4, CO and H2O, with precision compatible 
with the WMO/GAW requirements (WMO/IAEA 2020). These 
instruments are now widely used in the community, and have been 
subject to numerous evaluations documenting their repeatability, drift, 
and sensitivity to parameters such as temperature and humidity (Chen 
et al., 2013; Welp et al., 2013; Yver Kwok et al., 2015; 2021). The two 
analyzers began to be calibrated at the end of 2018 with a calibration 
scale consisting of three cylinders prepared by NOAA/ESRL, and 
traceable to the international WMO scale. This reference scale is now 
installed at the ALZ. A second scale, prepared at LSCE as part of the 
MERCI-CO2 project and also traceable to the WMO scale, is installed at 
the measurement site on the UNAM campus. The instrument 
calibration made at the end of 2018 was propagated backwards over 
the whole year 2018, inducing an estimated uncertainty of 
approximately 0.1 ppm over 2018, according to typical drift for such 
instruments (Yver-Kwok et al. (2015)).  Another major source of 
uncertainty is related to the water vapor correction, which has to be 
done in order to express the results as a mole fraction in dry air. 
Considering the humidity levels observed at the two stations, Gonzalez 
del Castillo et al. (2022) estimated an uncertainty of 0.2 ppm and 0.05 
ppm respectively for UNA and ALZ. The measurement protocols 
implemented at both sites are described in detail by Gonzalez del 
Castillo et al. (2022). CO2 concentrations are available for the two 
measuring stations UNA and ALZ in 2018 without any data gap.  

The two stations are located in very different environments, with a high 
exposure to urban emissions for UNA and a priori low at the mountain 
site (ALZ) at 4,000 m a.s.l. This results in significant differences in the 
diurnal and seasonal cycles (Gonzalez del Castillo et al., 2022). Thus, 
the daily peak-to-peak amplitude of CO2 is on average around 35 ppm 
at UNA and 5 to 7 ppm at ALZ. It has been shown that the main driver 
of the diurnal variability at UNA is the development of the atmospheric 
boundary layer. The daily maximum is reached between 6 and 7 a.m. 
(local time), and a regular decrease is observed until around 4 p.m. due 
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to the development of the atmospheric boundary layer leading to a 
dilution of the compounds emitted at the surface, like CO2, in a larger 
volume. CO2 then accumulates during the night as the atmospheric 
boundary layer decreases associated with greater vertical stability. In 
the case of ALZ, Gonzales del Castillo et al. (2022) explained that the 
diurnal cycle resulted from a combination of the influences of 
boundary layer dynamics and biospheric fluxes. They also assume that 
the increase in concentration observed in the afternoon is probably 
linked to the uplift of polluted air masses from Mexico City and other 
surrounding urban areas. 
3.2.1.2 Atmospheric CO2 column mixing ratios 

In addition to the CO2 surface measurements, CO2 total column 
measurements were performed at the ALZ and UNA stations using 
solar absorption FTIR spectroscopy. The ALZ station was equipped in 
2012 with a high resolution FTIR spectrometer (model IFS-120/5HR, 
Bruker), which continuously provides vertical column densities of 
atmospheric trace gases officially contributing to the Network for the 
Detection of Atmospheric Composition Change (NDACC). The dry air 
column-averaged mole fractions of CO2 (XCO2) used in this study were 
calculated from the high resolution spectra (0.02 cm-1) measured with 
KBr beamsplitter, using the PROFFIT 9.6 code (Hase et al., 2004) and 
adopting the CO2 and O2 retrieval methods described in Baylon et al., 
(2017).  Several post-process quality filters were applied to discard 
data affected by clouds, volcanic ash or low signal, based on both 
spectra and retrieval quality indicators (signal to noise ratio, relative 
RMS, wavenumber shift, etc.) and statistical criteria (standard errors). 
The UNA station was equipped in 2016 by a mobile low resolution (0.5 
cm-1) EM27/SUN spectrometer, providing continuous total column 
measurements of CO2, CO and CH4. Low-resolution spectra are 
processed following the COllaborative Carbon Column Observing 
Network (COCCON) processing chain (PREPROCESS and PROFFAST-
version 01-07-2018 codes) developed by the Karlsruhe Institute of 
Technology (KIT) and freely available (https://www.imk-
asf.kit.edu/english/COCCON.php). A full description of the analytical 
procedure is given in Sha et al. (2020), Frey et al. (2021), and Pollard et 
al. (2022). Calibration coefficients and ILS determined by the KIT 
(https://www.imk-asf.kit.edu/downloads/Coccon/2019-11-

https://www.imk-asf.kit.edu/english/COCCON.php
https://www.imk-asf.kit.edu/english/COCCON.php
https://www.imk-asf.kit.edu/downloads/Coccon/2019-11-08_Instrument-Calibration.pdf
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08_Instrument-Calibration.pdf for the used PROFFAST version) were 
applied according to the COCCON recommendations. We used the 
GGG2014 version of TCCON meteorological data and priors (daily 
MAPs files), downloaded from the CalTech server. Intraday ground 
pressure data were taken from the co-located RUOA pressure sensor 
measurements (https://www.ruoa.unam.mx/). UNA and ALZ XCO2 data 
were inter-calibrated using data obtained from several weeks of ALZ 
side-by-side measurements. Noisy outliers were filtered out according 
to a 3-sigma criterion.  

https://www.imk-asf.kit.edu/downloads/Coccon/2019-11-08_Instrument-Calibration.pdf
https://www.ruoa.unam.mx/
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3.3 RESULTS 

3.3.1 Atmospheric CO2 contributions from fossil fuel and biogenic sources 
and sinks 
3.3.1.1 Atmospheric in situ CO2 concentrations  

 
Figure 3.6 Observed and modeled in situ CO2 concentrations (in ppm) 
at both UNA and ALZ stations for the months of January, May, and July 
2018, in UTC time. The modeled concentrations were separated into 
three components: boundary inflow (bdy - in blue), biogenic fluxes (bio 
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- in green) and fossil fuel emissions (ff - in orange). The contributions
from the boundary conditions are indicated by the gray line and the
combined contribution of boundaries and biogenic fluxes (bdy+bio) by
the light yellow line. The CO2 concentrations simulated by ODIAC
emission products are shown in gray dotted lines.

Figure 3.5 shows the comparison between the simulated and the 
observed in situ CO2 concentrations at both sites (UNA and ALZ). 
Modeled concentrations are decomposed into three components: the 
background concentrations originating from the CarbonTracker 
inversion system (in blue), the fossil fuel contributions from Mexico 
City and from the entire country (in orange), and the biogenic sources 
and sinks caused by surface fluxes from the CASA model (in green). 
The WRF-Chem modeled concentrations tend to be under-estimated 
during the first hours of the night (about 10 ppm), revealing a time lag 
in the accumulation of CO2 in stable conditions. At both stations, the 
model-data differences are about -0.31 ppm (UNA) and -0.71 ppm 
(ALZ) during the afternoon hours (cf. Table 3.1). While the UNA station 
is influenced by large fossil fuel contributions (10 ppm during the 
afternoon hours), the ALZ station shows relatively low contributions 
(1.8 ppm). The biogenic contributions vary across the two stations (2.0 
and -0.27 ppm), indicating that future optimizations (flux inversions) 
will need to adjust separately the biogenic fluxes. The spatial 
distribution of biogenic CO2 fluxes is presented in the discussion 
section, due to differences in ecosystem types between the Mexico City 
basin and in the surrounding mountains. We note here a mismatch at 
ALZ during the first week of May (15 to 20 May 2018), possibly caused 
by incorrect boundary conditions. 

Unit: ppm 
Jan May July 

UNA ALZ UNA ALZ UNA ALZ 

Mean Error 
AM 2.25 0.97 -2.51 -0.37 -0.80 1.67 

PM 1.93 0.83 -2.86 -2.91 0.00 -0.04

Mean AM 21.63 2.60 9.04 2.32 8.77 2.69 
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Absolute 
Error PM 5.70 2.63 3.54 3.05 3.88 1.75 

 

Table 3.1 Mean errors and mean absolute errors in atmospheric CO2 
concentrations at 16-48 meters a.g.l. for AM (7:00-12:00 local time UTC-
6) and PM (13:00-17:00 local time UTC-6) in the months of January (left 
column), May (middle), and July (right) of 2018.  

We show the observed and modeled in situ CO2 concentration mean 
diurnal cycles at both sites in Figure 3.6. The lack of accumulation at 
night at UNA results in a time lag between the modeled and observed 
nighttime peaks of about 2 hours. During the afternoon hours (14:00-
18:00 local time), the WRF-Chem CO2 concentrations capture the 
temporal variations and the absolute values at UNA (413-424 ppm, 
MAE of 3-5 ppm). Due to its remote location, the ALZ station shows a 
reduced diurnal cycle amplitude, simulated by WRF-Chem, but mostly 
driven by the boundary CO2 concentrations from CarbonTracker (404-
410 ppm, MAE of 2-3 ppm). We confirm here the ability of our 
modeling system to reproduce the urban enhancements and the large-
scale boundary conditions at monthly timescale.  

 
Figure 3.7 Mean diurnal variations in atmospheric CO2 concentrations 
at UNA (upper row) and ALZ (lower row) stations observed (in pink) and 
simulated by WRF-Chem with UNAM emission inventory (in blue) and 
with ODIAC (in black), for the months of January (left), May (middle), 
and July (right) of the year 2018, shown in local time. 
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For reference, the concentrations simulated by ODIAC emission 
inventory is also shown in Figure 3.5 and Figure 3.6. Though the total 
amount of ODIAC in MCMA is much smaller (c.f. section 3.1.2.1) than 
UNAM, the concentrations at the urban station UNA are not very low 
due to local emission and diffusion conditions. The simulation with 
ODIAC is often higher than UNAM at night, just as the emission shows. 
After the emission becomes obviously lower than UNAM at daytime, 
ODIAC simulation is only slightly lower than that of UNAM. The mean 
absolute errors from ODIAC are -9%-38% higher than those from 
UNAM (shown in Figure 3.6), and the mean errors are sometimes 4 
times larger, but these errors are acceptable compared to the 
difference in emissions most of the time. It means ODIAC has the 
potential to be included in the future inversion for sensitivity tests. 
3.3.1.2 Atmospheric CO2 column concentrations  

We show in Figure 3.7 the model performances to simulate XCO2 at 
both stations. Because EM27 instruments only measure during daytime 
clear-sky conditions, we focus on the afternoon hours. We note that, 
due to poor weather conditions, there are nearly no afternoon FTIR 
measurements complying with the data quality requirements during 
July 2018. The influence of local sources and sinks is reduced by the 
dilution of PBL signals within the entire column of air, but their 
influence remains the main driver of the observed day-to-day 
variability at UNA. WRF-Chem tends to over-estimate XCO2 
concentrations in January (1.01 ppm) and under-estimate XCO2 in May 
(0.53 ppm; or 0.15 ppm if the abnormal period 15-17 May was 
excluded). The over-estimation of XCO2 concentrations in January does 
not coincide with in situ CO2 concentration differences, possibly 
caused by a positive bias in background concentrations rather than by 
local emissions. The day-to-day variations were better captured in May 
(R=0.81, except for the abnormal values in 15-17 May 2018) compared 
to January (R=0.63) (cf. Figure 3.9). Overall at UNA, the MAE for XCO2 
is about 1 ppm (1.22 ppm in January and 0.97 in May), indicating that 
background concentrations should be optimized in future inversions. 
Regarding the period 15-17 May 2018 during which the wind direction 
shifted from a northerly flow to a westerly flow, WRF-Chem failed at 
capturing the increase in XCO2 (Figure 3.9). In general, the lack of data 
in the rainy season impairs our ability to quantify the XCO2 model 



 

99 

errors at ALZ and UNA but the absence of fossil fuel signals at ALZ 
indicates that the local circulation from the valley to the mountain tops 
is absent during summer months. 

 
Figure 3.8 Observed and modeled Atmospheric XCO2 concentrations (in 
ppm) at both UNA and ALZ stations for the months of January, May, and 
July 2018, in UTC time. The modeled concentrations were separated into 
three components: boundary inflow (bdy - in blue), biogenic fluxes (bio 
- in green) and fossil fuel emissions from both simulation domains 1 and 
2 (ff - in orange). The contributions from the boundary conditions are 

XC
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indicated by the gray line and the combined contribution of boundaries 
and biogenic fluxes (XCO2bdy+XCO2bio) by the light yellow line. 

 
Figure 3.9 Daily mean XCO2 concentrations (left panels) and mean 
XCO2 diurnal cycles (middle panels, local time UTC-6) at the UNA 
station, observed by the EM-27/SUN instrument and simulated by WRF-
Chem, for the months of January and May 2018. Observed and 
simulated XCO2 concentrations (right panels), with the corresponding 
linear regressions (blue lines, abnormal period May 15-17 excluded) at 
UNA for the same months. 

3.4 CONCLUSIONS AND DISCUSSION 

In this chapter we evaluated the performances of the WRF-Chem 
model to simulate the CO2 and XCO2 concentrations over MCMA. 
Regarding surface CO2 concentrations, the model captured most of the 
observed variations in the afternoon, with a mean bias of -0.52 ppm 
and a MAE of 3.42 ppm. WRF-Chem tends to under-estimate the peak 
values in the morning, showing a 1-hour time lag in the simulation of 
CO2 accumulation patterns at night. Thus, only the afternoon data will 
be assimilated in our future inversion. The model also prompts us that 
the fossil fuel signals at our background station (ALZ) are low enough 
(1.8 ppm) to represent the background CO2 concentrations, but the 
biogenic flux patterns differ between the background (ALZ) and the 
downtown (UNA) stations. We conclude here that the gradients 
between the two stations (UNA-ALZ) are sufficient to detect and to 
quantify the city emissions in our future inversion, but the biogenic 
fluxes should also be optimized separately. Except for the large 
mismatch in wind direction over the period 15-17 May 2018, XCO2 
day-to-day trends were captured by the model during both seasons. 
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The mean bias was around 1.00 ppm for January and -0.53 ppm for 
May, most of which was driven by the wind direction shift on 15-17 
May 2018, indicating boundary conditions should also be included in 
future inversions of XCO2. 

3.4.1  Seasonality of fossil fuel contributions 

We examine in greater details the spatial and temporal distributions of 
fossil fuel signatures in our modeled CO2 concentrations from the 
mobile sector in Figure 3.8. Mobile CO2 enhancements concentrate in 
the city center, representing up to 90% of the modeled local 
enhancements. In the southern part of the city, north to the UNA 
station, the contribution reaches its maximum value while the northern 
suburbs are dominated by industrial and energy production sources. 
The Tula power plant and additional surrounding industries generate 
a second plume north of Mexico City, where mobile sources have a 
minor role in the observed enhancements. In terms of emissions, the 
seasonality of mobile sources remains low (around 4%). The largest 
mobile signal originates from the dense road network within CDMX. 
Several satellite cities show significant signals - Toluca de Lerdo to the 
west, Tizayuka and Pachuca de Soto to the northeast, and Ixtapaluca 
to the southeast (plumes in Figure 3.10, bottom row). While the 
absolute contribution from mobile sources varies with seasons, the 
magnitude can be explained by the local atmospheric dynamics. The 
strong convective activity during the rainy season mixes air masses 
from the boundary layer and the free Troposphere (convective mixing 
through updraft and downdraft). As a result, the highest daily-
averaged mobile contribution during the rainy season (12 ppm) is half 
of that during the dry season (22 ppm). We conclude that, with only 
two stations, future atmospheric inversions would be limited to 
constraining the emissions from traffic, while missing an important 
fraction of the energy production sources. Future stations should be 
deployed in the northern part of MCMA, the outflow of the urban basin. 
Additionally, a refinement of the fossil fuel emissions inventory 
(possibly divided into sectors of activities or SNAP’s) would be needed 
to determine the sectoral trends in more detail. 
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Figure 3.10 Atmospheric CO2 concentration absolute contributions 
from fossil fuel sources (top row), from mobile sources (middle row), and 
relative contribution of mobile sources to total fossil fuel (bottom row) 
in the PBL during the dry (left) and rainy (middle and right columns) 
seasons for the year 2018, in ppm. Topographic contours are indicated 
in light blue, administrative boundaries in gray, the urban area of MCMA 
in yellow, and the road network in CDMX in green. 

3.4.2  Biospheric contribution variability 

In our study, we used the biogenic flux contribution from the CASA 
biogeochemical model, optimized using eddy-covariance flux 
observations from the Ameriflux network (Zhou et al., 2020). While the 
optimization helps to constrain the model parameters, mediterranean 
and mountainous ecosystems lack flux measurement stations to 
constrain the model parameters. However, the use of disturbance 
forest maps and previous evaluation of CASA suggest that the 
simulated flux gradients should be representative of the area, with 
grassland and cropland in the valley north of the city, and forested land 
in the mountains. We discuss here how the ecosystem diversity, hence 
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their resulting CO2 fluxes, translate into CO2 spatial gradients in our 
simulated concentrations.  

As shown in Figure 3.9, in the early morning, the valley of Mexico 
remains positively-influenced by ecosystems (ecosystem respiration 
dominates) due to late exposure to incoming radiation compared to 
the surrounding mountains. Mid-afternoon hours tend to show no-to-
little spatial gradients across our simulation domain, corresponding to 
a homogeneous uptake of carbon. At night, the largest release of CO2 
from respiration takes place in the valleys, west and north of Mexico 
City. The positive fluxes remain low at both ALZ (above treeline) and at 
UNA (within the dense urban area).  

Despite the fact that the vegetation tends to be more active during the 
rainy season, we show no significant increase in the biogenic 
contribution at UNA nor ALZ (Figure 3.11), consistent with previous 
studies (Sánchez-León et al., 2016). During the dry season, the lack of 
water can prevent vegetation from growing, while the rainy and cloudy 
conditions reduce the sunlight during the rainy season. Across the 
urban area (including UNA), vegetation coverage remains low where 
population density is high. ALZ lies at high altitude (4000 m a.s.l.), 
above the treeline, hence without strong carbon uptake. In July, ALZ 
experiences a colder and drier climate than UNA, as shown in Figure 
3.12. The photosynthesis is higher than that in May, but the largest 
absorption is only 5 ppm and the net contribution over two weeks is 
about -1.5 ppm. Overall, we conclude here that both sites correspond 
to similar biogenic influences during daytime, while early morning 
fluxes differ significantly.   
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Figure 3.11 Modeled time series of biogenic contribution to surface CO2 
(in ppm) at UNA and ALZ for the months of (a) January, (b) May and (c) 
July of 2018, in UTC time (local time=UTC-6). 

 
Figure 3.12  (a) 2-week rainfall and (b) 2-week mean temperature at 
UNA and ALZ in January, May and July of 2018. 
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Figure 3.13 Mean biogenic contribution to surface CO2 of the three 
months in (top) AM: 8:00-12:00 local time (middle) PM: 13:00-17:00 local 
time (bottom) Night: 23:00-4:00 local time, with administrative 
boundaries (gray lines), high fossil fuel emission urban area over MCMA 
(yellow lines), two observation station (black point) and terrain height 
contours (in light blue).  

3.4.3  Optimal network designs for CO2 inversions 

Based on our modeled results, we discuss here the potential use of 
UNA and ALZ measurements to constrain the city emissions, and we 
examine potential measurement sites to enhance the current network. 
We analyze the spatial distribution of background concentrations to 
monitor large-scale boundary concentrations, and the spatial 
distribution of fossil fuel signals to maximize the city’s signals in our 
future inversion system. Although human activities vary seasonally, 
such as heating in winters (not common in the city) and air 
conditioning in summers, the distribution of fossil fuel signals remains 
relatively stable, concentrated around the city and the Tula power plant.  
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Figure 3.14 Atmospheric fossil fuel CO2 concentrations (50 meters agl) 
simulated by WRF and averaged over the three months of 2018 (top row), 
with current and potential MERCI-CO2 observation station locations and 
elevation contour lines (in light blue). Different emission sectors, area 
(residential), mobile and point (industrial) are shown in the bottom row. 

The current downtown station (UNA) is located near the city center 
while ALZ is located further away from the emitting area, at a much 
higher altitude. A recently-deployed column station (VAL) is located in 
the city center, co-located with the modeled CO2 concentration 
maximum, while CUA, TEC, TXO and AME are on the edge of urban 
areas, able to capture the background conditions under various wind 
conditions. For additional measurement locations, the largest 
unobserved sources are located in the north of MCMA, around and 
from the Tula power plant where no station has been identified yet. An 
additional station able to monitor the northern part of CDMX would 
allow us to monitor emissions from non-transportation sources 
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(industry and residential sectors), possibly CUA and FAC. Considering 
our existing stations, UNA is located near the maximum fossil fuel 
contributions (in terms of CO2 concentrations) while ALZ observes little 
to no fossil fuel signals.  

To assess the quality of the background station (ALZ), and determine 
additional locations for complementing our background conditions, 
we calculated the Spearman correlation coefficient between the 
modeled background values of UNA with each grid in and around 
MCMA, similar to Feng et al. (2016). Figure 3.11 shows the correlation 
map including (top row) and excluding (bottom row) biogenic fluxes, 
primarily to determine if biogenic fluxes should be included in our 
future inversion system as unknowns, or assumed to be directly 
observed by our background station. We clearly see that biogenic 
fluxes significantly decrease correlations between the valley and UNA, 
suggesting that biogenic fluxes are not observed and should be 
optimized separately. When excluding the biogenic influence, 
correlations remain high at 0.87 in January, 0.91 in May, and 0.95 in 
July.  

We conclude here that ALZ remains an optimal location for observing 
the background conditions when excluding the biogenic influence. 
Potential locations highly-correlated with the UNA background and 
biogenic fluxes are located north of the city, possibly impacted by the 
Tula power plant plume in January and May (northerly flow). Therefore, 
we conclude that a second background station would allow us to 
evaluate our modeled background concentrations but, based on our 
current modeling system, would be redundant with the ALZ station. 



 

108 

 
Figure 3.15 Spearman correlation coefficient maps of background (top) 
and background + biogenic (bottom) contributions for the three selected 
months of 2018, with tropospheric wind direction at 3.5km, 
administrative boundaries, the location of two stations and terrain 
height contours. 

Considering the various prevailing wind directions (shown in Figure 
3.11), the fossil fuel signal of ALZ is almost zero in July, but remains 3-
5 ppm (Figure 3.5) in January and May. If we are going to build 
another background station, in order to figure out the best position 
for a background station for MCMA or furtherly for other cities, that is, 
the place whose background correlation to the urban stations is the 
highest and the fossil fuel signal is the lowest, we defined an index 
combining the fossil fuel contribution to local CO2 concentrations and 
the background correlation. Considering the range of relative fossil 
fuel contribution (0% - 30%) and correlation coefficient (0.4 - 1.0), I 
normalized them to 0.0 - 1.0 first. Then the background index is 
defined as: 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

where corr stands for the normalized spearman correlation coefficient 
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with the urban stations (when there are several, take the average of 
them, or the weighted average based on the distance from every urban 
station), and ff_ratio stands for the normalized fossil fuel relative 
contribution to the CO2 concentrations of this grid.  

This index is defined between 0 and 1. The higher background index 
means the higher correlation with urban stations and the lower fossil 
fuel signals. The map of background indexes over MCMA and its 
surrounding areas in different seasons are shown in Figure 3.12. The 
green areas are the locations suitable for a background station. As 
Figure 3.12 shows, ALZ is a relatively good background station. 
Although it is slightly affected by fossil fuel signals in January and May, 
there is no obviously better location. Thanks to the basin terrains, the 
fossil fuel signal at ALZ is no more than 5 ppm, even when the wind 
blows from the city to ALZ in January. 

 
Figure 3.16 “Background index” maps of MCMA and surrounding areas 
for the three selected months of 2018, with tropospheric wind direction 
at 3.5km, administrative boundaries, the location of two stations and 
terrain height contours. 

Another ideal location for background stations could be to the 
northeast of UNA, with a higher background index, or to the west of 
VAL, which is much closer to the city stations and located upwind of 
the urban area in January and May. 

The maps of the background for surface CO2 (upper row) and XCO2 
(lower row) are shown in Figure 3.13. There is no significant difference 
between surface CΟ2 and xCO2 background concentrations in January 
and May. In July, the background spatial distribution is different in the 
south, but none of our background station plans concern the south, 
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where several satellite cities are located. Additionally, the difference is 
as small as 0.14 ppm, which could be definitely ignored. All the 
inversion plans for surface CO2 will also work on XCO2.  

  

Figure 3.17 Background map of surface CO2 (upper row) and XCO2 
(lower row) over MCMA in January, May and July. Observation network 
is shown in black points. 
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SUPPLEMENTARY INFORMATION 

 
Figure 3.18 Averaged afternoon CO2 concentrations (in ppm) with 
interquartile range for the different days of the week at UNA (upper row) 
and ALZ (lower row) for the months of January (left column), May 
(middle), and July (right) of 2018. 
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Figure 3.19 Wind roses of in situ CO2 concentrations at UNA and ALZ 
for 2-week period in the month January (left column), May (middle 
column) and July (right column) of 2018. 
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4 CHAPTER IV : BAYESIAN ESTIMATE OF CO2 EMISSIONS 
FROM THE MEXICO CITY METROPOLITAN AREA BASED ON 
1-YEAR ATMOSPHERIC MEASUREMENTS AND INVERSION 
MODELING 

SUMMARY 

The comparisons of CO2 simulations and observations detailed in 
Chapter 3 validated the performances of our modeling system under 
various climate conditions. Based on the same configurations, a 1-year 
WRF-Chem simulation was performed for the purpose of optimizing 
the estimates of anthropogenic CO2 emissions in MCMA through 
inversions. The main objective of this chapter is to attribute 
atmospheric CO2 signatures to fossil fuel combustion, reduce the 
uncertainties in the prior emissions estimates, with the long-term goal 
of evaluating the impact of carbon emission reduction strategies in 
MCMA.  

To accomplish our objectives, we performed a 1-year simulation 
including tracers of fossil fuel signals from UNAM and ODIAC emission 
inventories, biogenic fluxes from CASA (Net ecosystem exchange, NEE) 
and background concentrations, as well as carbon monoxide (CO) in 
and out of MCMA. Fossil fuel signals are separated into 4 time windows: 
night (00:00-05:00), AM (06:00-13:00), PM (14:00-17:00), and evening 
(18:00-23:00). Each time window is further divided into the signals in 
and out of MCMA. Tracers are also included for different emission 
sectors, including area (residential), mobile (transportation), point 
(industrial and others). Station-to-station concentration gradients are 
assimilated with observed gradients to make Bayesian inferences of 
CO2 surface fluxes. Errors in the inversion system are defined by 
observation errors, transport errors (in terms of model-measurement 
misfit), day covariances and time window covariances.  

We show here that various inversion configurations reduced the prior 
uncertainties of the UNAM emission inventory product in MCMA by 
over 50%. Uncertainties during the daytime, in the dry season and in 
MCMA’s fossil fuel emissions are most reduced. The posterior estimate 



 

117 

with the lowest gradient error is 61.7 Mt/yr, indicating a 13% 
underestimation by UNAM and a 6% overestimation by SEDEMA 
statistics. The months with the most emissions are June to October, 
which are almost the entire rainy season. The CO2 emission in the dry 
season is slightly overestimated by UNAM and the emission in the 
rainy season is underestimated. There is an abnormal biogenic flux in 
June, which is improved by our inversion system. Although the 
underestimation of ODIAC is partly corrected, the error of posterior 
gradients driven by ODIAC exhibit twice as those driven by UNAM. 

We tested data screening of gradients based on statistical outliers or 
large deviations of observation in our inversions. Both data screening 
methods improved the posterior gradient mismatch with observations, 
with the large-observation-deviation exclusion plan providing the 
lowest mismatch. Block sizes also impact the performance of 
inversions through day covariances. 1-day, 5-day, 30-day and all-day 
blocks are tested in our inversion system. The 1-day block provides 
daily emission scaling factors without the information of day 
covariances, at the cost of increased posterior uncertainty. The 30-day 
block provides better estimates than the 5-day, but when the block 
size increases to 365, the inversion system no longer provides 
reasonable emission fluxes. 

The abstract of this chapter has been presented at AGU 22 and the full-
text will shortly be edited and submitted as a manuscript.   
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ABSTRACT 

Cities contribute more than 70% of global fossil fuel CO2 emissions. 
During the past decades, cities and local governments have 
implemented local climate policies to mitigate their CO2 emissions. But 
these policies rely on bottom-up estimated emissions inventories from 
energy consumption data and statistical records, prone to large 
uncertainties. Top-down estimation based on Bayesian inversion 
approaches offers a complementary solution to reduce these 
uncertainties. Mexico City, located in the Valley of Mexico, is one of the 
largest cities in the world (22 million inhabitants). Thanks to a French-
Mexican collaboration (Mexico City’s Regional Carbon Impacts - 
MERCI-CO2), a network of CO2 in-situ (Cavity Ring-Down Spectrometer, 
CRDS - Picarro) and ground-based column (solar-absorption Fourier 
Transform InfraRed, FTIR - EM27/Sun) sensors have been deployed 
across the Mexico City metropolitan area. A series of atmospheric CO2 
simulations between April 2018 and March 2019 were performed with 
the Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem). The mean absolute errors for UNA and ALZ in PM during the 



 

119 

simulation year are 4.95 ppm and 2.54 ppm and the mean errors are -
1.56 ppm and 0.22 ppm. The simulations, together with the surface 
CO2 and XCO2 measurements, provide the opportunity to produce 
top-down estimation of CO2 emissions in and around Mexico City. 
Through the assimilation of CO2 concentration gradients between the 
urban (UNA) and the rural station (ALZ), the inversion system produced 
CO2 emission estimates from different sources - background, 
anthropogenic (including residential, transportation and industrial) 
and biogenic. The median of the posterior emissions in domain 2 (the 
central Mexico) estimated by various inversion configurations is 104.2 
Mt/yr in the dry season and 145 Mt/yr in the rainy season, indicating a 
1.2% reduction and a 16% increase from the prior UNAM 1-km CO2 
emission inventory. The inversions reduced the errors by 10% - 60%. 
The uncertainties in MCMA, during daytime and in the dry season were 
reduced most.  

4.1 INTRODUCTION 

Cities are reported to account for more than 70% of the global fossil 
fuel carbon emissions (Seto et al., 2014). With the global process of 
urbanization, they are playing a more and more important role in 
mitigating CO2 emissions. Major cities all over the world are taking 
measures to control their carbon emissions. To reach the goal of 
carbon neutrality by 2050, the City of Paris aims to promote an 80 % 
reduction in the local carbon footprint compared to 2004 levels, 
winning the UN Global Climate Action Awards for Climate Leaders in 
2021 (UN Climate Change, 2021). In New York City (NYC), over 125 
participants of the NYC Carbon Challenge pledge have cut their annual 
carbon emissions by more than 600,000 t and 13 leading participants 
are projected to achieve carbon neutrality within their NYC portfolios 
by 2030 (MOCEJ, 2022). The mayor of London has set a series of 
policies on heating and transportation for London to be net zero 
carbon by 2030, too (London Government, 2022). Tokyo sets its goal 
of net zero CO2 emissions by 2050 under ''Zero Emission Tokyo 
Strategy '' at the U20 Tokyo Mayors Summit in 2019 (TMG, 2019).  

In order to get a complete knowledge of the emission patterns and 
evaluate the effectiveness of actions on climate change in the cities, 
many cities have compiled their own high-resolution emission 
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inventories, e.g. Hestia at building/street scale for Los Angeles, 
Indianapolis, Salt Lake City and DC-Baltimore (Gurney et al., 2012), 
Origins.Earth (https://www.origins.earth) for Ile-de-France (covering 
the Greater Paris Metropolis), London Atmospheric Emissions 
Inventory (LAEI) (LAEI, 2021). However, these emission inventories rely 
on self-reported statistical data, prone to large uncertainties and 
inconsistencies, especially under-estimation (Gately et al., 2017; 
Gurney et al., 2021).  

Top-down Bayesian inversion offers a solution for the uncertainties of 
emission inventories in megacities. It assimilated the concentration 
gradients from observation and simulation to adjust the prior 
emissions and reduce the uncertainties (Bréon et al., 2015). Lauvaux et 
al. (2016) found the posterior emissions in Indianapolis over the 2012–
2013 dormant season is 20% higher than the prior Hestia emissions. 
The inversion in Paris decreases the annual emissions from 51.9 to 
37.4±2.1 Mt CO2/yr (Staufer et al., 2016). The uncertainties in Cape 
Town emission inventories have been reduced by 28.0% (2.3 - 50.5%) 
after inversion (Nickless et al., 2018).  

Additional trace species could be used to separate the attribution of 
emission sectors of atmospheric CO2. Carbon monoxide (CO) is known 
as a co-emitted species with CO2 in fossil fuel combustion. It is widely 
used as a trace species of CO2 source analysis, because it is easy to 
measure and there have been numerous studies indicating the sources 
and sinks of  atmospheric CO (Wong et al., 2015;.Nathan et al., 2018; 
Nalini et al., 2022).  

The French-Mexican project Mexico City’s Regional Carbon Impacts 
(MERCI-CO2) aims to reduce the uncertainties of CO2 emission in 
Mexico City. Mexico City (Ciudad de México, CDMX), located in the 
Valley of Mexico, is one of the largest megacities in the world. The 
Mexico City Metropolitan Area (MCMA, or Greater Mexico City) has a 
population of about 21.6 million inhabitants, ranking fifth in the world, 
and projected to increase by 11.6% from 2018 to 2030 (UN, 2018). As 
population grows, the annual CO2 emissions in MCMA have risen at an 
average rate of 9.5% per year during six consecutive years, reaching 
66.0 Mt in 2018. The main source of CO2 emission in MCMA is 
transportation, responsible for around 60% of the total CO2 
anthropogenic emissions (SEDEMA, 2012; SEDEMA, 2021). Rapid 

https://www.origins.earth/
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urbanization leads to rapid motor vehicle growth. Almost half of motor 
vehicles registered for circulation in the country run in MCMA. 
According to the official statistics, the number of vehicles (including 
public service vehicles) has reached 14.7 million by the end of 2020, 
which has increased by 102% during the last decade. (INEGI, 2021). 
Due to the topography of the enclosed basin, it’s not conducive to 
atmospheric dispersion, leading to the accumulation of CO2.  

The city has the objective of reducing at least 10% of CO2 emissions by 
2024 compared to 2018. This goal has been half-reached by strategies 
on tree planting, water resource management, zero waste, public 
transportation promotion, adoption of standards for motor vehicles 
and clean energies (Government Headquarters of Mexico City, 2021). 
For 2021-2030, MCMA is continuing to reduce 65.2 Mt CO2 emissions, 
mainly on traffic sources (SEDEMA, 2021), and approaching net zero 
emissions after 2030 (Government Headquarters of Mexico City, 2022).  

Thanks to MERCI-CO2, a dense network of CO2 measurements has 
been deployed in MCMA. In this study, we estimated anthropogenic 
and biogenic CO2 emissions in MCMA through a Bayesian inversion 
system based on the observations from this network and a 1-year 
atmospheric transport simulation by the Weather Research and 
Forecasting model coupled with Chemistry (WRF-Chem). The 
simulated concentration gradients are assimilated with those from the 
observation network, to optimize the prior local carbon emissions, and 
to constrain the uncertainties. Additionally, CO/CO2 ratios are involved 
to validate the contribution of traffic sources.  

4.2 METHODS 

4.2.1 CO2 observation network 

Two high-precision Cavity Ring-Down Spectrometers (CRDS) (model 
G2401) commercialized by Picarro (Crosson et al., 2008; Rella et al., 
2013) were installed in MCMA and started continuous measurements 
in mid-2014. The urban station UNA is located on the campus of 
National Autonomous University of Mexico (Universidad Nacional 
Autónoma de México, UNAM), which is 2280 m a.s.l, while the 
background station ALZ is at the top of the Altzomoni mountain, which 
is about 4000 m a.s.l.  
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The CRDS instruments were calibrated at the end of 2018, with a 
calibration scale consisting of three cylinders prepared by NOAA/ESRL, 
and traceable to the international WMO scale. The calibration was 
propagated backwards to provide measurements of CO2, CH4, CO and 
H2O every several seconds, with an estimated CO2 uncertainty of 
approximately 0.1 ppm over the whole year 2018. Due to the local 
humidity levels, the uncertainties related to water vapor correction is 
estimated as 0.2 ppm for UNA and 0.05 ppm for ALZ. 

Apart from surface CO2 measurement, there are also dry air column-
averaged mole fractions of CO2 (XCO2) measurements performed at 
the two stations, as Figure 4.1 shows. Both stations were equipped 
with the solar absorption Fourier Transform Infrared (FTIR) 
spectroscopy. The ALZ station was equipped with a high resolution 
(0.02 cm-1) FTIR spectrometer (model IFS-120/5HR, Bruker) in 2012 and 
the UNA station was equipped in 2016 by a mobile low resolution (0.5 
cm-1) EM27/SUN spectrometer in 2016, providing continuous total 
column measurements of CO2, CO and CH4. Inter-calibration was 
applied to the XCO2 measurements from both stations, with the side-
by-side measurements during several weeks at ALZ by a 3-sigma 
criterion.  

                           
Figure 4.1 MERCI-CO2 measurement network (current and future 
stations) with topography and administrative divisions in MCMA. 
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The network shown in Figure 4.1 includes 7 column sensors that 
started to collect XCO2 measurements from September, 2020 and 13 
future low-cost medium-precise (LCMP) sensors developed by LSCE. 
The inversion based on the column sensors (October 2020 to April 
2021) was made by Ke et al. (2023) and was compared with my 
inversions (April 2018 to March 2019.) on the overlapped months.  

4.2.2 Model and prior emissions 

The atmospheric transport model applied in this study is WRF-Chem 
(Skamarock et al., 2008, Grell et al., 2005) version 3.9, using the Planet 
Boundary Layer (PBL) scheme Mellor–Yamada–Nakanishi–Niino 
(MYNN) (Nakanishi and Niino, 2009), coupled with the MYNN 
atmospheric surface layer scheme and the single layer urban canopy 
model UCM.  WRF-Chem was configured with one-way two-nested 
domains, whose resolutions are 15 km and 5 km (shown in Figure 3.1). 
There are 49 vertical layers in each domain, the first of which is around 
16 meters above ground level and the second is around 45 meters. 
Such configurations have been evaluated over the MCMA in various 
seasons in the last two chapters.  

The local emission inventory are developed at National Autonomous 
University of Mexico (Universidad Nacional Autónoma de México, 
UNAM) (Garcia-Reynoso et al., 2018; Rodriguez-Zas et al., 2021, 
https://github.com/JoseAgustin/emis_2016), based on Mexico's 
National Emissions Inventory data (SEMARNAT, 2021). The hourly 
high-resolution UNAM emission product provides the gridded 
emission inventories for CO, CO2, NOx and other species in two 
resolutions: 3-km for national scale and 1-km for several states 
(estados) and regions, including MCMA. The 3-km version is 
interpolated to my domain 2 by a python package xESMF, using the 
mass-conserving method “conservative” (xESMF, 
https://doi.org/10.5281/zenodo.1134365). The UNAM emission products 
have three source sectors: area (residential), mobile (transportation) 
and point (industrial and others). The emission factor ratio of CO and 
CO2 for the mobile and point sectors are 0.05 and 0.006, while that for 
the area sector varies a lot. As the area only contributed less than 2% 
in total emissions, we set the CO/CO2 emission ratio for mobile and 
non-mobile sources as 0.05 and 0.006.  

For the larger 15-km domain which exceeds the boundary of Mexico, 

https://github.com/JoseAgustin/emis_2016
https://doi.org/10.5281/zenodo.1134365
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a widely-used high-resolution global fossil fuel emission map product 
based on nightlight satellite data, the Open-source Data Inventory for 
Anthropogenic CO2 (ODIAC) (Oda et al., 2018), is interpolated spatially 
from 1-km map to our 15-km domain by xESMF-conservative and 
temporally with scaling factors for weekdays and diurnal cycle (Nassar 
et al., 2013). The same product is also interpolated to the 5-km domain 
2, for the sensitive test of emission products compared to the UNAM 
emission inventory.  

The biogenic CO2 flux used in WRF-Chem is the 3-hourly Carnegie 
Ames Stanford Approach (CASA) model (Zhou et al., 2020), linear 
interpolated to hourly. The CASA model had been optimized by eddy-
covariance flux data and the optimized configuration of Net Ecosystem 
Exchange (NEE) was also interpolated to our domains by xESMF - 
conservative.  

Instead of the default fixed boundary condition used in CO simulation, 
the influence of CO2 background concentration was simulated with the 
global model CarbonTracker 2019B (Peters et al., 2007; Jacobson et al., 
2020). The 3°×2° CO2 mole fractions from CarbonTracker were 
interpolated to our domain 1 in the mass-conserved way Feng et al. 
(2019) used over North America, with pressure correction.  

Due to the data availability of CarbonTracker 2019B, our simulations 
and inversions are limited to the period until 2019-03-30. We ran a 
one-year WRF-Chem simulation for a one-year inversion in MCMA, 
from 2018-03-30 00:00:00 to 2019-03-30 00:00:00, UTC time.  

4.2.3 Inversion configuration 

Bréon et al. (2015) developed a linear Bayesian inversion method to 
adjust the prior knowledge of anthropogenic and biogenic CO2 fluxes. 
The method relies on an atmospheric transport model with boundary 
conditions and the CO2 concentration measurements. It defines an 
emission scaling vector x, which gathers all the scaling factors for 
different emission variables. xA is the posterior estimates, while xB is 
the prior estimates independent from the observations and the model 
operator H. The modeled gradient HxB is compared with the observed 
CO2 gradient vector y. To optimize the scaling factors, we take 
advantage of the prior uncertainty covariance matrix B, the linear 
emission-to-model operator H, and the observation error covariance 
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matrix R. The optimal solution is (Enting, 2002; Tarantola, 2005): 
𝒙𝒙𝑨𝑨 = 𝒙𝒙𝑩𝑩 + (𝑩𝑩−𝟏𝟏 + 𝑯𝑯𝑻𝑻𝑹𝑹−𝟏𝟏𝑯𝑯)−𝟏𝟏𝑯𝑯𝑻𝑻𝑹𝑹−𝟏𝟏(𝒚𝒚 − 𝑯𝑯𝒙𝒙𝑩𝑩) 

and the posterior uncertainty covariance matrix of xA is 
𝐴𝐴 = (𝐵𝐵−1 + 𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻)−1 

Due to the large dimensions of the inverse problem, we divided our 
inversion  over the 1-year time period into 5-day blocks. Inversions are 
made for every block, and generate a group of scaling factors for 
different variables (for time windows, sources, masks, etc.) of CO2. Only 
the gradients in the afternoon (local time 14:00-17:00, when the PBL is 
assumed to be well mixed) are assimilated in the inversion system. 
Now that the MCMA lies in the Valley of Mexico and the atmosphere 
is usually well mixed in the basin, wind direction is not taken as a 
criterion of data.  
4.2.3.1 Control vector 𝒙𝒙 and the prior estimate of emission flux 𝒙𝒙𝑩𝑩 

The control vector x contains the scaling factor of the boundary 
concentrations, total CO2 emissions in each time period (the length of 
the time periods depend on various plans), and biogenic fluxes. All the 
variables are optimized in the inversions.  

In order to specify the CO2 emission in different time windows, sectors 
and MCMA / non-MCMA areas, a series of tracers and masks are 
applied in the model. There are 4 time windows for each day, divided 
by local time: AM (06:00-13:00), PM (14:00-17:00), evening (18:00-
23:00), and night (00:00-05:00). The PM period starts from 14:00 
instead of 12:00, because the mixing layer in MCMA is not stable in the 
early-afternoon (Osibanjo et al., 2022). The three sectors from UNAM 
emission inventory, area (residential), mobile (transportation) and 
point (industrial and others), are traced separately to identify the 
source sector attribution. An urban mask was applied to separate the 
emissions from MCMA and other areas. The urban mask (shown as the 
pink area in Figure 2.1, right panel) is not the administrative boundary 
of MCMA, but defined by the fossil fuel emission area with a threshold 
of 105 mol/km2/h. It covers the northern part of Mexico City, the 
western part of Mexico State, and the industrial areas to the northwest 
of MCMA, including a large power plant (Tula power plant) to the north 
of Mexico City. There are also some smaller cities in the southern part 
of the domain that exhibit a large fossil fuel signal, e.g. Toluca de Lerdo 
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and Puebla Zaragoza, but they are more than 50 km away from the 
MCMA and their emission won’t have significant impacts on the 
atmospheric CO2 gradients. Therefore, they are not included in the 
urban mask.  

The configuration of reference inversion (Plan 0) contains only one 
fossil fuel variable in x, which means it creates one scaling factor for 
the 5-day block. Plan 1 expands to 5 variables, which contains the 
scaling factors for each day. Plan 2 includes the four time windows on 
the basis of Plan 1. Plan 3 includes the three factors on the basis of 
Plan 1. For Plan 1-3, the ''a'' after the number means the sensitivity test 
on emission inventories (UNAM vs ODIAC), ''b'' means the sensitivity 
test on block sizes (5 days vs 1 days) and ''c'' means urban area mask 
of MCMA was applied in the inversion. Plan 4 is the same as Plan 1 but 
for CO, with a fixed background mole fraction of 90 ppb (based on the 
minimum value of CO observation, similar to Linán-Abanto et al., 2021), 
which is consistent with the global background value 50-120 ppb 
(WMO, 2000). Plan 4c is also Plan 4 with the MCMA mask. Since CO is 
simulated with , Plan 4a attempted to improve the background 
concentration, because it is shown that the background of the two 
stations may have a difference of around 10 ppb. The prior scaling 
factors are put as zeros.  
4.2.3.2 Measurement gradients y 

y contains the measured gradients during PM (local time 14:00-17:00) 
that are assimilated with the simulations to constrain the prior 
emissions. Measurements at the two stations cover the whole year, 
with a data availability of 99.93 %. Measurements between UTC time 
2018-12-12 15:00:00 to 2018-12-17 19:00:00 are excluded from our 
study, because there was a wild fire causing unusual fluxes (c.f section 
4.3). The original measurements are averaged to hourly, consistent 
with the model output. The standard deviation of the measurements 
in one hour is keeped as a part of the observation errors (matrix R), 
which is averagely 3.72 ppm for UNA and 0.64 ppm for ALZ.  
4.2.3.3 Model operator H 

The linear operator H is the link between emissions and measurements, 
including the process of the spatial-temporal distribution of emission, 
the atmospheric transport, and the sampling from WRF-Chem: 
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𝑥𝑥 ↦  𝑦𝑦 = 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 

in which 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 remain the same, and 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚 is tested for 
two different emission products UNAM and ODIAC in Plan 0a. Different 
from Bréon et al. (2015), I include the boundary conditions in H 
because it is also affected by the transport and sampling process.  
4.2.3.4 Prior uncertainty covariance matrix B 

The prior relative uncertainty of the variables for anthropogenic 
emissions in one inversion block (5 days) is assumed as 20%, similar to 
Staufer et al. (2016). The uncertainties matrix B is divided into 3 
independent blocks: boundary conditions (bdy), anthropogenic fossil 
fuel emissions (ff) and biogenic fluxes (bio). The prior relative error of 
bdy is set as 1% and that of bio is set as 50%, based on our confidence 
to the performance of CarbonTracker and CASA in MCMA.  

Inside the ff block, the prior covariances between days and time 
windows are set up as in Bréon et al. (2015) and Staufer et al. (2016). 
The distribution of the correlations between consecutive days are 
defined by an  exponentially-decaying function. In our study, the error 
correlation extends up to 7 days. That means the correlation of error 
for the concentrations can last for 7 days at most. The current error of 
concentration is independent of the error a week before and a week 
after. Correlations between successive time windows are set as 1, 0.4, 
0.2, and 0.4, the same with Staufer et al. (2016). That is, the same time 
window of two days has 100 % of the covariance defined as above; the 
neighboring time windows have 40 %, and the alternate time windows 
only have 20 %. Figure 4.2 shows the distribution of uncertainty 
covariance matrix B with covariance of days (Plan 1) and covariance 
between time windows as well as days (Plan 2). 
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Figure 4.2 Distribution of uncertainty covariance matrix B with 
covariance of days (Plan 1, left) and covariance between time windows 
as well as days (Plan 2, right). 
4.2.3.5 Observation error covariance matrix R 

As we have already pointed out, the standard errors of the hourly 
measurements are a part of the observation error covariance. Other 
parts include model error, which is represented by the model-
measurement differences on gradients. The model-measurement 
gradient PM average is around 2 ppm in our study, similar to the 3-
ppm value Bréon et al. (2015) and Staufer et al. (2016) used. Owing to 
the fact that the MCMA measurements vary more than those in Paris, 
this model-measurement gradient mismatch is on the same scale with 
the standard errors of measurements. We combined them to form the 
observation error covariance matrix R. The uncertainties are assumed 
independent. R is thus a diagonal matrix.  

As for CO, the model-measure misfit is 8.88 ppb, much smaller than 
the measured uncertainties is 66.56 ppb. We took the measured 
uncertainties to build the observation error covariance R. 

4.3 RESULTS 

The one-year simulation was compared with the observation, as shown 
in Figure 4.3. Our simulation reproduced the CO2 concentrations from 
April 2018 to March 2019. It captured the minimum values in late May 
2018, late September 2018, mid-December 2018 and January to March 
2019. However, the model underestimated the CO2 mole fractions at 
UNA. Though the simulations reach the peaks at the same time with 
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the observations, these peaks were usually underestimated in the prior 
modeled concentrations, e.g. the peak values in April 2018. Almost all 
the observations above 430 ppm were missed in the simulation. We 
also noticed this persistent underestimation in April and May 2018 no 
longer exists in 2019. The mean absolute errors for UNA and ALZ in 
PM during the simulation year are 4.95 ppm and 2.54 ppm and the 
mean errors are -1.56 ppm and 0.22 ppm, which are sufficient for 
inversion.  

 

 

 
Figure 4.3 Time series of CO2 daymean during PM at UNA and ALZ, 
with CO daymean at ALZ, in the one-year simulation from 2018-03-30 
to 2019-03-29. 

We noticed there was an extreme high peak value in December 2018 
at ALZ, which is not captured by the model. We then checked the 
corresponding CO measures. There is also a peak of CO at the same 
time. The CO/CO2 ratio at the peak is about 4%, indicating the source 
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of the peak is a very efficient burning, most likely a wildfire. The period 
with this unexpected combustion source from UTC time 2018-12-12 
15:00:00 to 2018-12-17 19:00:00 is thus excluded in our inversions. 

 

 

 
Figure 4.4 Sources of CO2 concentrations and gradients (UNA-ALZ) 
daymean during the one-year simulation from 2018-03-30 to 2019-03-
29. The modeled concentrations were separated into three components: 
boundary inflow (bdy - in blue), biogenic fluxes (bio - in green) and fossil 
fuel emissions (ff - in orange). The contributions from the boundary 
conditions are indicated by the black line and the combined contribution 
of boundaries and biogenic fluxes (bdy+bio) by the yellow line. 

In addition to time series and errors, the modeled components of 
atmospheric CO2 are analyzed as well, shown in Figure 4.4. Consistent 
with the conclusions we made on the background station, the 
background CO2 concentration at ALZ is almost identical with that of 

CO
2 
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UNA during PM, and the fossil fuel signal at ALZ is as low as 0.63 ppm 
during the rainy season and 1.37 ppm during the dry season. The 
gradients of UNA-ALZ are not affected by boundary conditions, and 
mainly driven by the fossil fuel signal in the urban area as well as the 
difference of biogenic fluxes.  

4.3.1 Inversion results 

Generally, our inversions reduced the errors of prior emission 
inventories by 10% - 60%. The errors in MCMA, of the dry season and 
during PM were reduced the most. According to the climate records, 
we use 2018-05-28 as the start of the rainy season, and 2018-10-10 as 
the start of the dry season. The errors are listed in Table 4.1. Plan 2 
series (with covariances between days and time windows) performs the 
best across all error metrics used for evaluation.  

Figure 4.5 Boxplot of the prior and posterior emissions of the 12 
inversion plans of anthropogenic CO2 in domain 2 during dry season 
and wet season. Medians are shown in orange lines and means are 
shown in green triangles.  

In terms of median, the UNAM emission inventory product 
overestimated the emissions of the dry season by 1.29 Mt, and 
underestimated the emissions of the rainy season by 19.95 Mt. The 
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details of the prior and posterior emissions and reduced errors of the 
inversions are shown in Table 4.2 and Figure 4.5. Plan 0b (block 
size=1 day) has the lowest errors among all Plan 0 series (shown in 
Table 4.1), but the uncertainties shown in Table 4.2 are the highest. 

  



 

Mt/y Bias StDev RMSE R2 

No. dry wet dry wet dry wet dry wet 

  prior post prior post prior post prior post prior post prior post prior post prior post 

0 -1.09 -1.60 -3.31 -2.41 6.92 5.85 8.25 6.49 7.01 6.07 8.89 6.92 0.27 0.43 0.01 0.22 

0a -3.47 -2.38 -5.35 -2.81 6.76 6.10 8.10 6.77 7.60 6.55 9.71 7.33 0.25 0.39 0.00 0.18 

0b 0.33 -1.06 -1.90 -1.99 8.03 4.46 8.46 5.32 8.04 4.58 8.67 5.68 0.32 0.74 0.11 0.53 

0c -1.02 -2.09 -3.29 -2.19 6.93 5.85 8.25 6.45 7.01 6.21 8.88 6.81 0.27 0.44 0.01 0.25 

0d -0.59 -1.61 -2.41 -1.83 6.29 5.15 6.61 5.38 6.31 5.40 7.04 5.69 0.20 0.33 0.04 0.19 

1 -1.09 -1.50 -3.31 -2.10 6.92 4.63 8.25 5.78 7.01 4.86 8.89 6.15 0.27 0.63 0.01 0.36 

1c -1.02 -1.50 -3.29 -2.13 6.93 4.62 8.25 5.80 7.01 4.86 8.88 6.18 0.27 0.63 0.01 0.35 

2 -1.02 -1.22 -3.29 -1.82 6.93 4.28 8.25 5.28 7.01 4.45 8.88 5.59 0.27 0.68 0.01 0.45 

2c -1.02 -1.23 -3.29 -1.86 6.93 4.31 8.25 5.31 7.01 4.48 8.88 5.63 0.27 0.68 0.01 0.45 

3 -1.02 -1.55 -3.45 -2.24 6.92 4.69 8.25 5.90 7.00 4.94 8.94 6.31 0.27 0.62 0.01 0.33 

3c -1.02 -1.55 -3.45 -2.28 6.92 4.70 8.25 5.93 7.00 4.95 8.94 6.35 0.27 0.62 0.01 0.33 

Table 4.1 Mean Bias, Standard Deviation (StDev), Root Mean Square Error (RMSE) and coefficient of determination (R2) of the prior and 
posterior simulation of the CO2 concentration gradients (UNA-ALZ) from various inversion Plans in dry and wet seasons. Every variable 
is separately colored with the green-yellow-red colormap, in which green stands for small errors and red stands for large errors.



 

No Emission Test Prior - 
dry / Mt 

Posterior 
- dry / 
Mt 

Prior - 
wet / Mt 

Posterior 
- wet / 
Mt 

Reduced 
error  

0 UNAM ff+bio+bdy 146.25 148.36 84.22 113.55 62.2 % 

0a ODIAC 0-emission 133.67 157.94 80.08 140.19 51.8 % 

0b UNAM 0-block size 146.25 141.67 84.22 100.28 37.7 % 

0c UNAM 0-mask 146.25 134.74 84.22 98.68 30.2 % 
(71.4%)* 

0d UNAM 
5%-95% 

0-extreme 
values 

146.25 141.45 84.22 117.34 59.8 % 

1 UNAM day 
covariance 

146.25 155.18 84.22 122.43 58.1 % 

1c UNAM 1-mask 146.25 147.44 84.22 96.58 25.1 % 
(57.8%)* 

2 UNAM time window 146.25 146.92 84.22 112.14 41.1 % 

2c UNAM 2-mask 146.25 145.64 84.22 100.76 23.4 % 
(48.5%)* 

3 UNAM sectors 146.68** 144.96 83.07** 104.17 20.1 % 

3c UNAM 3-mask 146.68** 144.97 83.07** 89.58 10.1 % 
(11.8%)* 

4 UNAM 
CO 

CO 1.97 1.88 1.21 1.21 13.9 % 

4a UNAM 
CO 

4-bdy err 1.97 1.88 1.21 1.21 13.5 % 

4c UNAM 
CO 

4-mask 1.97 1.88 1.21 1.21 26.3 % 
(31.8%)* 

Table 4.2 Summary of the results for all inversions, with prior and posterior emissions 
in domain 2 during both seasons and reduced uncertainties (including variances and 
covariances) of fossil fuel emissions.  

*   Percentage values in brackets are the reduced errors in the MCMA urban mask.  

** Due to the random errors of the emission program, the sum of the three sectors has 
a minor discrepancy to total fossil fuel emissions in other plans. 



 

4.3.1.1 The reference inversion 

The reference inversion (Plan 0) is done with basic configurations: all 
the data in one block are treated as a whole. It generated only one 
fossil fuel scaling factor with all the 20 gradients in one block, leading 
to a lower uncertainty but a higher misfit. As shown in Figure 4.6, Plan 
0 assimilated the peak in December 2018 and corrected many of the 
model-measurement misfits, but failed to improve the peak in May 
2018 and the mismatch in September to October 2018. The 
performance of other inversions are compared with Plan 0 in the 
sensitivity tests (c.f section 4.4.1).  

 
Figure 4.6 The weekly average of CO2 gradients (UNA-ALZ) before and 
after inversion Plan 0 compared to observations, with shade of 
InterQuartile Range.  

On the other hand, we take the best plan, Plan 2c with day covariances 
and time window covariances as well as MCMA mask, to investigate 
the seasonal variation, MCMA and non-MCMA contribution, and 
diurnal cycle of CO2 emissions in central Mexico (Domain 2) and in 
MCMA. Unless otherwise specified, the following analysis is based on 
Plan 2c.  
4.3.1.2 Seasonal variation 

Figure 4.7 shows the emission fluxes adjusted by scaling factors. The 
uncertainty of fossil fuel fluxes in MCMA is reduced by around 50%. 
The yearly emission nearly remains constant, while the temporal 
distribution is improved. The posterior emission during the dry season 
of 2018 in MCMA (31.8 Mt) is in agreement with the emission 
estimation in 2020 by Ke et al. (2023, in preparation) using XCO2 
inversion (31.6 Mt). There are several emission peaks during the rainy 
season, probably related to drying, dehumidification and other needs. 
MCMA is warm (6 - 22 ℃) in the coldest month of the year (January). 
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Winter heating doesn’t seem to increase CO2 emissions.  

 
Figure 4.7 Prior and posterior CO2 daily emissions in domain 2 and in 
MCMA from inversion Plan 2c (with day covariances and time window 
covariances, as well as MCMA mask), with uncertainties.  

We summed the emissions in months in Figure 4.8. From October to 
February, UNAM emission inventory overestimated the emissions in 
central Mexico, while from March to September, it underestimated the 
emissions. These overestimates and underestimates are more severe 
in MCMA. From June to October, UNAM underestimates nearly 30% of 
the monthly emissions. Emissions in the rainy season are higher than 
those of the dry season, and were underestimated more than those of 
the dry season.  

 
Figure 4.8 Prior and posterior CO2 monthly emissions in domain 2 and 
in MCMA from inversion Plan 2c (with day covariances and time window 
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covariances, as well as MCMA mask).  
4.3.1.3 MCMA and non-MCMA 

The total of CO2 emissions in MCMA has increased from 53.62 Mt/yr 
to 61.74 Mt/yr after inversion Plan 2c, more closely related to the 
SEDEMA emission report of 66.0 Mt/yr. As shown in Figure 4.9, the 
uncertainty of emissions in MCMA is reduced by almost 50%, even 
though the uncertainty out of MCMA is only reduced by about 3%.  

 
Figure 4.9 CO2 yearly emission (in Mt) in and out of MCMA urban mask 
before and after inversion Plan 2c, with uncertainty bar. 
4.3.1.4 Time windows 

Since our inversion was performed only with data from the afternoon, 
the emission uncertainties of PM are improved most. Figure 4.10 
shows the reduced error by emission Plan 2c. The matrix for non-
MCMA areas (top left) almost remains the same, indicating the non-
MCMA areas have not improved much. On the other hand, the matrix 
for MCMA shows significant improvement.  

Among the four blocks for evening, night, AM and PM, the first two 
are not improved much either (around 12% - 16% errors reduced), 
given that the transports and the concentration patterns are very 
different after sunset. Conversely, AM and PM emission uncertainties 
are reduced by 75.4% and 85.1%. More specifically, the UNAM 
emission inventory underestimated the fluxes during morning time by 
4.9 %, and the fluxes in the afternoon by 18.6%, as shown in Figure 
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4.11. There was not much optimization in emissions in the evening and 
at night.  

The posterior diurnal and weekly cycles of CO2 emissions are shown in 
Figure 4.12. The emissions and errors out of MCMA hardly changed, 
while the emissions on weekdays and in the afternoon increased. We 
note that there is a sharp increase in PM in the diurnal cycle. In theory, 
there should not be a plateau in daytime emissions. It is exactly the 
time window “PM” in our inversion system, suggesting an 
underestimation of evening rush hours in UNAM. 

 
Figure 4.10  Prior and posterior uncertainty covariance matrix of Plan 
2c (for the last block from 2019-03-25 to 2019-03-30). The top-left 
20×20 matrix is for non-MCMA and the bottom-right one is for MCMA. 
In each 20×20 matrix, the diagonal is corresponding to the 20 time 
windows in the 5-day block. The four blocks are the 5 days’ evening, 
night, AM and PM, from top-left to bottom-right.  
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Figure 4.11 CO2 yearly emission (in Mt) of the four time windows 
(evening, night, AM, PM) before and after inversion Plan 2c, with 
uncertainty bar. 

 
Figure 4.12 Prior and Posterior averaged CO2 emission diurnal and 
weekly cycles in and out of MCMA by inversion Plan 2c. 

4.3.2 Sectoral and biogenic contributions 
4.3.2.1 Bioflux 

There was an abnormal peak in the biogenic fluxes from CASA in June. 
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According to the seasonal variation of vegetation in Mexico, June in 
the rainy season is the time when plant growth is relatively active. The 
biogenic flux should be negative, as in May and July.  

Our inversions corrected this large bias. Plan 2c (The top panel in 
Figure 4.13) decreased the NEE fluxes in June, but they are still positive 
and different from May and July. Plan 0 series (excluded 0b), Plan 1 
series and Plan 3 series are better, with a posterior flux behavior similar 
to May and June, but they also reduced the intake of CO2 in the 
growing season (the prior negative fluxes in July). Plan 0b differs 
greatly from the others, manifesting as severe fluctuations in posterior 
emissions, due to the small sample size and high uncertainty. 
Regardless of the circumstances, the abnormal prior biogenic fluxes 
led to more uncertainty in the inversions. If the NEE could be calibrated, 
the inversion on fossil fuel fluxes would be probably improved.  
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Figure 4.13 Prior and posterior CO2 daily biogenic fluxes in domain 2 
from inversion Plan 2c (with day covariances and time window 
covariances, as well as MCMA mask), Plan 0, Plan 0b, Plan 1 and Plan 
3, with uncertainties.  
4.3.2.2 Mobile contribution 

Plan 3c, with sector tracers and the MCMA urban mask, is used for the 
emission sector attributions in and out of MCMA. According to Figure 
3.2, the emissions from area sources of UNAM emission inventory are 
more than two orders of magnitude smaller than other sectors. This 
involves the definition of area sources and point sources. There are 8 
vertical layers in UNAM emission inventory, and all sources above the 
first layer are divided into point sources. Here, we examined the mobile 
source, which is believed only in the ground layer.  

Figure 4.14 shows the prior and posterior emissions of mobile sources 
in and out of MCMA urban mask. The year total of mobile source 
emissions was increased from 23.93 Mt to 29.44 Mt, about 47.7% of 
total emissions. SEDEMA reports that mobile sources contribute 57% - 
65% of yearly emission in MCMA administrative boundaries, which 
should be around 40 Mt. In order to verify whether the 10 Mt 
underestimation is caused by the difference of the MCMA urban mask 
and MCMA administrative boundary, or it is the systematic bias in the 
inversion, the CO/CO2 ratio is calculated with prior and posterior 
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concentrations to figure out the attribution of mobile sources (c.f. 
4.3.3).  

As expected, the mobile source is relatively stable, its variability being 
noticeable in the weekly cycle. However, our posterior mobile 
emissions show an amplitude of approximately 50%, e.g. in May 2018 
shown in Figure 4.14. Moreover, the uncertainties in MCMA are only 
reduced by 11.8% and the uncertainty of the mobile source in MCMA 
is only reduced by 5%.  

 

 

 
Figure 4.14 Prior and posterior CO2 daily and weekly emissions (unit: 
Mt/d) in MCMA and daily emissions in non-MCMA area from inversion 
Plan 3c (with day covariances and emission sector tracers as well as 
MCMA mask), with uncertainties.  

4.3.3 CO/CO2 ratio 

The observation records of CO started in mid-December 2018. After 
the aforementioned wildfire was excluded, there remained 100 days 
for inversion until March 30, 2019. The model-observation mismatch 
in CO gradients is smaller than that of CO2, and most of them are fixed 
in the inversion.  

We introduced a 50% high uncertainty of background conditions in 
Plan 4b, since the prior background concentration 90 ppb causes a 10-
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ppb overestimation on the minimums at ALZ (as shown in Figure 4.15). 
Unexpectedly, Plan 4b didn’t have significant improvement on the 
inversion. The difference between the two posterior concentrations is 
only -16 ppb to 15 ppb in hourly data, and not obvious enough to be 
shown in the daymean in Figure 4.16. A 10 ppb difference is rather 
negligible compared to the UNA-ALZ gradients up to 500 ppb.  

 
Figure 4.15 Time series of CO observation and simulation from our one-
year modeling.  

 

 
Figure 4.16 The daymean of CO gradients (UNA-ALZ) before and after 
inversion Plan 4 and 4a compared to observations, with shade of 
InterQuartile Range.  

Plan 4c optimized the CO fluxes in and out of MCMA. The prior CO 
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emission in MCMA is 0.14 Mt/yr and the posterior is 0.11 Mt/yr. 
Compared with the prior and posterior CO2 gradients in MCMA 
mentioned in section 4.3.2.2, the CO/CO2 ratio has decreased from 
21.35 to 17.02. The mobile contribution to CO2 emissions, as inferred 
from the CO/CO2 ratio using an emission factor ratio of 50 and 6 
ppb/ppm for mobile and non-mobile sources, has decreased from 34.9% 
to 25.05%. This value is not only much lower than the 57% - 65% 
reported by SEDEMA, but also lower than the 47.7% contribution from 
mobile sources reported by UNAM.  

The failure of CO/CO2 ratio inversion indicates that there may be some 
random error in the CO or CO2 inversion. A more robust solution is to 
perturb the emissions to create high-engine and low-engine scenarios, 
and see if the end of inversions converges, similar to Nathan et al. 
(2018), Lauvaux et al. (2020) and Nalini et al. (2022). 

4.3.4 XCO2 

XCO2 mixing ratio was driven from the WRF-Chem. Figure 4.17 shows 
the agreement between the simulations and observations. The mean 
error is 0.95 ppm and the mean absolute error is 1.96 ppm. When it 
comes to the PM period, the errors are -1.58 ppm (mean error) and 
4.44 ppm (mean absolute error). Contrary to surface CO2, the errors are 
larger during PM and at ALZ. Except for that, the data availability of 
XCO2 is poor. There is no available PM observation from March to 
September after data screening for quality control, mainly due to the 
weather conditions.  
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Figure 4.17 Observed and modeled XCO2 concentration time series 
(upper row) and PM daymean (lower row) in ppm at both UNA and ALZ 
stations for the simulated year 2018-03-30 to 2019-03-30, in UTC time. 
The modeled concentrations were separated into three components: 
boundary inflow (bdy - in blue), biogenic fluxes (bio - in green) and fossil 
fuel emissions (ff - in orange). The contributions from the boundary 
conditions are indicated by the gray line and the combined contribution 
of boundaries and biogenic fluxes (bdy+bio) by the light yellow line.  

Table 4.3 shows the data availability of the XCO2 measurements 
during PM time. The dataset of UNA is larger than ALZ, but our 
inversion based on the urban-rural gradients requires data when UNA 
and ALZ are both available. Even more unfortunate is there are some 
times when ALZ is available but UNA is not. It worsens the lack of 
gradients. Even at the most available months (January to March), the 
days with available gradients are less than one-third of the month. I 
chose the best available month (February) as an example to test the 
potential constraint of XCO2 data in our one-year run. There are 11 
records available in February, and they are from 11 different days 
(February 1-3, 6, 16-21 and 28). Almost all of them are measured at 
local time 14:00 (UTC time 20:00).  

UTCdatetime UNA UNAstdev ALZ ALZstdev UNA-ALZ 
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2018-04 20 20 2 2 0 

2018-05 27 27 0 0 0 

2018-06 10 10 0 0 0 

2018-07 0 0 0 0 0 

2018-08 2 2 0 0 0 

2018-09 5 5 2 1 0 

2018-10 6 6 2 1 2 

2018-11 18 18 7 2 2 

2018-12 35 35 13 9 5 

2019-01 53 53 8 7 8 

2019-02 72 72 13 9 11 

2019-03 56 56 9 5 8 

Table 4.3 Monthly data availability of XCO2 hourly observation in the 
afternoon between 2018-03-30 to 2019-03-29 at UNA and ALZ with 
standard deviations. 

When applying the inversion plan 0b (block size=1d) to this limited 
data set, most gradients do not improve after inversion (shown in 
Figure 4.18). The small sample size leads to high uncertainties. Owing 
to the lack of observations in the rainy season, the emissions during 
the rainy season haven't improved. The dry season is better, with an 
adjustment on the total emission from 146.25 Mt to 139.41 Mt, 
consistent with Plan 0b and most plans on surface concentrations. 
However, the uncertainties are not really reduced because of the small 
sample size, as shown in Figure 4.19.  

 
Figure 4.18 XCO2 UNA-ALZ mixing ratio gradients before and after 
inversion with Plan 0b, (the 1-day block plan) 
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Figure 4.19 CO2 yearly emission (in Mt) of the two seasons before and 
after inversion by XCO2 Plan 0b, with uncertainty bar. 

4.4 DISCUSSION 

4.4.1 Sensitivity experiments 
4.4.1.1 Data screening 

We combined the standard deviations of observations with the model-
measurement mismatch for R, which is 2 ppm in our study and 3 ppm 
in Bréon et al. (2015) and Staufer et al. (2016). The standard deviations 
of our hourly observation gradients vary from 0.27 ppm to 38.26 ppm. 
If we add a criteria that the standard deviations of both stations are 
less than 3 ppm, the size of the database would drop by half.  

With this observation Stdev filter, the prior mismatch as well as the 
prior observation differs, as shown in Figure 4.20. The reduced error 
remains consistent, while the first large mismatch in mid-September 
disappeared, with the peak in observation turned to a trough. It 
indicates this observation peak and this mismatch is probably caused 
by a low-quality observation period.   
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Figure 4.20 The weekly average of CO2 gradients (UNA-ALZ) before and 
after inversion Plan 0 compared to observations, with and without filter 
on StDev of hourly observations, with shade of InterQuartile Range.  

Despite the optimization of the gradients, the total emission is also 
adjusted. The emission in the dry and wet season has changed from 
113.55 Mt/yr and 148.36 Mt/yr to 105.83 Mt/yr and 141.20 Mt/yr, much 
closer to the median of all inversions, which is 104.17 Mt/yr and 144.96 
Mt/yr.  

Another data screening is made in Plan 0d, which removed the 
gradients beyond 5% - 95%. Table 4.4 shows the error comparison 
between the two data screening with reference Plan 0. Plan 0d 
removed 10% gradients and this observation filter (we call it Plan 0obs) 
removed nearly 50% observations. Plan 0obs significantly improved 
the errors of model-measurement mismatch.  
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Mt/y 

Bias StDev RMSE R2 

No. dry wet dry wet dry wet dry wet 

  prior post prior post prior post prior post prior post prior post prior post prior post 

0 -1.09 -1.60 -3.31 -2.41 6.92 5.85 8.25 6.49 7.01 6.07 8.89 6.92 0.27 0.43 0.01 0.22 

0obs -0.02 -0.92 -1.61 -1.54 5.70 4.39 6.60 5.13 5.70 4.48 6.79 5.36 0.37 0.57 0.06 0.25 

0d -0.59 -1.61 -2.41 -1.83 6.29 5.15 6.61 5.38 6.31 5.40 7.04 5.69 0.20 0.33 0.04 0.19 

Table 4.4 Mean Bias, Standard Deviation (StDev), Root Mean Square 
Error (RMSE) and coefficient of determination (R2) of the prior and 
posterior simulation of the CO2 concentration gradients (UNA-ALZ) from 
various data screening Plans in dry and wet seasons.  
4.4.1.2 Prior emissions - ODIAC 

As Figure 4.21 shows, the prior gradients of ODIAC are much smaller 
than UNAM. Its prior emissions are also 17 Mt/yr less than UNAM. 
Nevertheless, their posterior gradients are consistent. Our inversion 
system is able to correct the 17 Mt/yr bias, which is around 7% of total 
emissions. However, ODIAC is 40% lower than UNAM in the total 
emission in MCMA (c.f. Figure 3.2), the center of domain 2. Night light 
does not fully represent human activities, especially in mega-cities. Our 
inversion without footprints cannot deal with this problem unless a city 
mask is also applied to ODIAC.    
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Figure 4.21 The weekly average of CO2 gradients (UNA-ALZ) before and 
after inversion Plan 0 and Plan 0a compared to observations, with shade 
of InterQuartile Range.  
4.4.1.3 Block sizes 

Plan 0b tested a smaller block for 1 day and the posterior gradients 
and emissions are shown in Figure 4.22. The small sample size causes 
high uncertainties without the impact of day covariances and time 
window covariances, but the uncertainty could be double-validated by 
the reference Plan 0. The posterior weekly variations are similar, and 
Plan 0b captured the trends of CO2 gradients better, especially in 2019. 
Unlike Plan 0, which uses only one factor for 5 days, the co-application 
of Plan 0 and Plan 0b provides detailed daily emissions and fluxes 
similar to Plan 1 series, but with only the fossil fuel tracer. It could be 
an optimal solution when the dataset is large and the memory 
becomes insufficient to apply day covariances.  
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Figure 4.22 The weekly average of CO2 gradients (UNA-ALZ) and the 
daily emission fluxes before and after inversion Plan 0 and Plan 0b 
compared to observations, with shade of InterQuartile Range.  

In the other way, the length of a 5-day block is convenient for tests, 
but not as reasonable as a longer block, e.g. 30-day blocks in Bréon et 
al. (2015) and Staufer et al. (2016).  

Here I applied a novel whole-block plan, Plan 2cb, with all the 365 days 
in one block. It is based on Plan 2c, and tested with block sizes. Instead 
of 20% uncertainty for 5 days, I use 20% uncertainty for a year. The 
posterior gradients in Figure 4.23 are almost perfectly following the 
observation; the reduced uncertainty is 78.7% in MCMA; the posterior 
emission fluxes in Figure 4.24 are 145.64 Mt/yr in the dry season and 
100.76 in the wet season, similar to the median of all plans. The only 
problem is that the time series of scaling factors is not reasonable: they 
are sometimes negative and sometimes enormous. This may be related 
to improper prior uncertainty matrix B. The current system is not 
suitable for a whole-block inversion.  

The 30-day block plan, Plan 2cb30, which keeps all other 
configurations in Plan 2c with 30-day blocks, was also tested. The 
posterior is not as similar to the observations as Plan 2cb, but it did 
improve the assimilation of the peaks in May 2018 and February 2019. 
The reduced error in MCMA is 47.4%, close to that of Plan 2c. Its 
posterior emissions are also close to Plan 2c, but the sharp peaks (e.g. 
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in early August and around November) are smoothed, with a greater 
likelihood of being closer to the true situation. The posterior total in 
the rainy season (106.35 Mt/yr) is close to the median of all plans and 
Plan 2c, while that of the dry season is reduced to 136.98 Mt/yr.   
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Figure 4.23 The weekly average of CO2 gradients (UNA-ALZ) before and 
after inversion of Plan 2cb (whole-block), Plan 2cb30 (30-day blocks) 
and Plan 2c (5-day blocks) compared to observations, with shade of 
InterQuartile Range.   
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Figure 4.24 The daily emission fluxes before and after inversion of Plan 
2cb (whole-block) , Plan 2cb30 (30-day block) and the reference Plan 2c, 
compared to observations, with shade of InterQuartile Range.  

4.4.2 Limitations and perspectives 

Due to the limitation in the size of the observation network in 2018 
and 2019, our inversions only adjusted and reduced the uncertainties 
of the total emission in MCMA. We were not able to use any explicit 
tower footprints with a Lagrangian model in this study, and the peak-
to-peak amplitude of posterior daily emissions is much larger than 
expected. With the deployment of the column sensors and LCMP 
sensors, the lack of data should be improved in the future study.  

For the convenience of computation, my inversion plans are almost all 
done with the block size as 5-days. As a matter of fact, 30-day blocks 
(Bréon et al., 2015; Staufer et al., 2016) and whole-block are more 
widely adapted and reasonable. A larger block would reduce the loss 
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of unconsidered correlations between consecutive days divided into 
different blocks, and provide larger . The whole-block inversion system 
would be a supplementary solution as a comparison to the current 
system. The reason why a whole-block inversion led to an untrustable 
result remains to be solved.  

Sensitivity tests could also be made on alternative background 
concentration products, biogenic flux products, transport models, 
emission products or various prior emission amounts. An alternative 
biogenic flux product (e.g. the diagnostic biosphere Vegetation 
Photosynthesis and Respiration Model, VPRM) (Mahadevan et al., 2008; 
Ahmadov et al., 2007, 2009) would provide a reference to the abnormal 
fluxes in June. If other products keep the robustness of the inversion 
system, we would be able to overcome the limits of time period 
according to the current products, and move to a period with more 
available XCO2 measurements. Perturbation of prior emissions could 
test the robustness of the inversion system. In Chapter 2 and 3 we 
noticed the wind of July is overestimated, leading to a better dilution 
condition. Thus, the underestimation of the rainy season may be 
caused by dilution instead of underestimated inversion. Another 
operator Htrans would diagnose this underestimation.  
This study attempted to constrain the traffic sector attribution, by 
means of the inversion of CO/CO2 ratio, and with separate emission 
sectors. Although there is prior information of emission sectors, the 
current observation network is not providing extra information on 
mobile sources, with the urban station located in the UNAM campus. 
A mobile station located near the main roads would enhance our 
ability to analyze the mobile sources with prior mobile emissions and 
CO/CO2 ratio. In the same way, extra stations deployed near Tula 
power plant would improve the optimization of industrial sources. The 
CO/CO2 ratio inversion in this Chapter was rudimentary and 
susceptible to random biases. Perturbations with high-mobile and low-
mobile scenarios would help to increase the stability of the inversion 
and to identify the contribution of the mobile sector.  
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5 CHAPTER 5 CONCLUSIONS AND PERSPECTIVES 

5.1 CONCLUSIONS 

The interpretation of CO2 measurements in this study is mainly driven 
by an urban atmospheric CO2 Bayesian inversion system that 
assimilates the modeled concentrations with surface and column 
measurements from the MERCI-CO2 observation network deployed in 
Mexico-City. The system generates posterior estimates of CO2 
emission inventories in MCMA based on the measures from UNA and 
ALZ, the urban and rural monitoring stations, over a one year period 
starting from March 2018. The inversions successfully reduced 
uncertainties in prior emission inventories developed by Dr. García-
Reynoso in UNAM. Additionally, the thesis introduces a robust 
atmospheric simulation system that not only works in the CO2 
inversion system, but also has the potential to be associated with other 
species, including GHG (e.g. CH4) and other trace gasses (e.g. NOx and 
CO).  

In the following sections, I conclude and discuss three sub-topics 
presented in this study. The first one is about the evaluation of model 
performance on meteorological parameters related to CO2 
transportation and mixing conditions. The second part regards the 
reproduction of CO2 concentrations in MCMA and their spatial and 
temporal variability, including a discussion of the quality of the 
background station ALZ, its background concentration patterns, and 
fossil fuel signals. The last and key part of the study focuses on the 
optimization of anthropogenic and biogenic emissions by a one-year 
simulation, along with an attempt to quantify the attribution of 
emission sectors. 

5.1.1 The performance of WRF modeling system 

Our modeling system is developed on WRF-Chem version 3.9, coupled 
with the single layer urban canopy model UCM. For the purpose of 
verifying that the model replicates the transport conditions of CO2 and 
of optimizing the WRF configuration, various meteorological 
parameters, including wind speed, wind direction, vertical profile of 
horizontal wind, temperature and PBL heights, were compared and 
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evaluated with the observations for a 2-week period in January 2018. 
Sensitivity tests were conducted on various physical options, domain 
settings, urban canopy models, model inputs, nudging plans and other 
configuration options in Chapter 2.  

According to the sensitivity tests, meteorological drivers and urban 
canopy models significantly reduced the mismatch between the 
simulations and the observations on temperature, wind and CO2 
concentrations. Simple grid nudging, on the contrary, did not improve 
the performance of the model. Some PBL schemes would cause 
extremely high wind in mountainous areas. A background 
concentration product is necessary for CO2 simulation. Notably, the 
meso-resolution 5-km domain showed little difference from the high-
resolution 1-km domain in the mixing conditions of CO2 during the 
afternoon time. In fact, its performance was even better in the vertical 
profile of horizontal wind speeds.  

An optimal configuration was determined based on the sensitivity tests. 
The configuration of one-way double nesting 5-km meso-resolution 
modeling was then tested under various climate conditions in the dry 
season (January), the wet season (July) and the transition between the 
two seasons (May). Each case was carried out within 4 weeks, the first 
two of which are reserved for background concentration spinning up 
from a distance and the last two are utilized for evaluation. The 
meteorological evaluation of this configuration in three months in 
Chapter 2 demonstrates that our modeling system sufficiently 
reconstructs atmospheric transportation conditions in MCMA, when 
compared to similar studies in other cities.. The urban area inside the 
Mexico valley is better reproduced than the rural area in the 
mountainous south west for most of the parameters. However, wind 
speeds were usually slightly overestimated in the rainy season and 
wind directions tended to turn clockwise in one of the 26 stations in 
the dry season and in the northeast area of the city in the rainy season. 
The former one abnormal station is possibly caused by the relatively 
low resolution, which couldn't represent the complex urban building 
structure. The modeled horizontal wind speed error is around 0.5 m/s 
compared to observed values under the height of 2000 m, covering 
most of the mixing layer. The bias is 50% larger in May, but still under 
1 m/s in PBL. I combined the two variables (“Mixing layer height” for 
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AM and “Residual layer height” for PM) driven from the Lidar at UNAM 
to assess the model performance on PBL heights. The modeled PBL 
heights are consistent with the combined Lidar observation in both 
January and May (July is lacking data due to weather reasons). 

Regarding CO2 simulation in Chapter 3, the model captured the trends 
of atmospheric CO2 concentrations during the afternoon, but failed to 
capture the accumulation at night, which correlates with the decrease 
of PBL heights and high vertical stability. Due to this reason, there is a 
one-hour time lag between the simulated and observed concentration 
peaks.  

Alternative emission products did not bring about a considerable 
change in the CO2 mole fractions during the afternoon. Despite a 
difference of approximately 40% in total emission in MCMA and a 
difference of 30% during daytime in the grid where UNA is located, 
ODIAC didn't make strong differences on the concentrations during 
daytime. It even decreased the model-measurement mismatch at night 
owing to the high nighttime emission based on nighttime light data.  

The multi-layer urban canopy model BEP tends to create a bimodal 
distribution in the diurnal distribution, though the extra peaks at night 
did not impact the model performance in the daytime. BEP reduced 
the model bias on daytime CO2 concentrations, but did not improve 
the mean absolute errors and even increased them in PM.  

There are fewer measurements available for the total columns XCO2, 
but the discrepancy between the model and measurement is larger 
compared to the surface measurements CO2. About one-third of the 
observations are available in January and 27% in May at UNA, 
including morning observations. Measures at ALZ are even less, 
indicating difficulty in the retrieval of the observations. No XCO2 
measures are available during the afternoon period in July. Besides, the 
background concentration in May at ALZ is overestimated from May 
17, while that at UNA seems to be underestimated before May 17. The 
same background mismatch existed at UNA on January 7-10. The 
realistic background concentration patterns of XCO2 at the two 
stations may differ. Furthermore, there may be biases in the model in 
simulations of CO2 in the upper atmosphere.  
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5.1.2 Characteristics of surface atmospheric CO2 concentrations and 
gradients in MCMA 

Due to the exposure to the local urban emissions the standard 
deviation of CO2 measurements taken within a one-hour period could 
be as high as 38 ppm. For comparison with model results in Chapter 3, 
we used hourly averages of the measurements.  

The urban station UNA is located in the southern part of the city, where 
the primary source of CO2 emissions is associated with the traffic sector. 
The typical CO2 concentrations at UNA in April 2018 to March 2019 
ranged from 420 ppm to 470 ppm (with peaks up to 500 ppm), 
including 5 ppm to 60 ppm attributed to fossil fuel signals, according 
to the WRF simulations. These concentrations are high compared to 
the global average (415 ppm, WMO 2022) and other megacities in the 
world, e.g. Paris (390 - 430 ppm in 2016, Lian et al., 2019), due to the 
accumulation of pollutants in the Mexico-City basin.  

As expected, the concentrations of CO2 are the lowest on Sundays in 
January and July, when the traffic is reduced, but not in May. The 
seasonal difference of weekly cycles are probably related to human 
activities: more trips on Sundays in May due to the warm weather than 
in January and the less rainfall than in July. The average diurnal cycle 
for UNA is unimodal, peaking at 8:00 in AM in the dry season and 6:00 
AM in the rainy season (depending on sunrise time). However, in reality 
the CO2 diurnal cycle follows a bimodal distribution in about 50% of 
the days in January and 29% in May and July. The second peak at night 
is much smaller and its timing varies a lot. Therefore, it was smoothed 
in the averaged diurnal cycle.  

At the background station ALZ, the diurnal cycle exhibits a distinctive 
pattern. As it is located away from the urban center, the CO2 
concentration variations at ALZ are mainly driven by biogenic fluxes. 
The averaged diurnal cycle keeps at around 410 ppm in January and 
May, and at around 405 ppm in July, with a daily amplitude of less than 
5 ppm. It reaches its minimum before midday, and then rebound 
slightly due to the fossil fuel signal transported from MCMA basin in 
January and May. In July, the prevailing wind direction prevents the 
transportation of fossil fuel signals to ALZ.  

Our modeling system enables me to break down the sources of local 
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CO2 concentrations into background concentrations (also known as 
boundary conditions), fossil fuel signals and biogenic fluxes. 
Specifically, the UNAM emission inventory product divides the fossil 
fuel signals into three sectors: area (residential), mobile (transportation) 
and point (industrial and other sources). The traffic sources are mainly 
concentrated in the southern part of MCMA while the industrial 
sources are concentrated in the north. The residential sources, though 
negligible compared to the other two sectors, are concentrated in and 
to the west of MCMA, which almost coincides with the MCMA urban 
mask that I defined based on anthropogenic emissions.  

The modeled contribution of CO2 fossil fuel signal decreased by 50% 
during the rainy season, but this decrease is somewhat insignificant in 
observations. The difference between the maximum of the averaged 
diurnal cycle of January and July is about 34 ppm in the model, but 
only 7 ppm in the observations. This implies that the emission of July 
may be underestimated, or the model transportation error in the rainy 
season is larger than in the dry season.  

Based on the knowledge gained from the model, the network design 
of MERCI-CO2 is refined. I suggested several locations for urban 
stations to identify the contribution of large industrial sources and the 
fossil fuel signals in northern MCMA, and the quality of our current 
background station ALZ has been assessed. An ideal background 
station should have a background concentration highly correlated to 
the urban station, and a low fossil fuel signal. ALZ shows a low level of 
fossil fuel signals according to our modeling system. I then examined 
the background concentration maps to verify whether the background 
at ALZ represents the UNA background pattern, and whether there is 
a better background location. As we have assumed, whatever the 
prevailing wind direction is, the ALZ background concentration 
covaries with that of UNA, thanks to the basin terrains. The background 
concentrations are about 410 ppm on average, and vary more in the 
dry season than in the rainy season.  

However, the biogenic flux patterns of the two stations are strikingly 
divergent. In the morning, the MCMA remains positive, dominated by 
ecosystem respiration, while the ALZ has started photosynthesis and 
carbon uptake. In the afternoon with well mixed air, the distinction 
diminishes, but the NEE of UNA is still higher than ALZ. The divergent 
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biogenic patterns require separate optimization of biogenic fluxes in 
the inversion in Chapter 4.  

5.1.3 Estimation and uncertainty of emissions in MCMA 

With the model configurations evaluated in Chapters 2 and 3, a one-
year simulation was performed for inversion purposes. The simulation 
period commenced on March 16, 2018 with the first two weeks 
dedicated to spinning up the background concentration. Boundary 
conditions, biogenic fluxes, alternative emission products, various time 
windows, urban masks, emission sectors and carbon monoxide were 
simulated in separate tracers. The modeled concentration components 
confirmed the conclusion from Chapter 3 that the gradients of UNA 
and ALZ are driven by fossil fuel signals and biogenic fluxes 
throughout the year, with their background concentrations being 
nearly identical. The errors of the simulation are -1.56 ppm for the 
urban station UNA and 0.22 ppm for the rural station ALZ, which are 
sufficient for inversion.  

There are two typical approaches to long-term Bayesian inversions: 
first, aggregating the data over a long period and then performing the 
inversion, and second, performing the inversions over shorter periods 
and then aggregating the results. Both approaches are tested in 
Chapter 4, but I used the second approach in most tests for the ease 
of debugging within a single block. Our inversion system involves three 
basic variables, background concentration, fossil fuel signal, and 
biogenic flux. The fossil fuel signal variable can be decomposed into 
different time windows, MCMA or non-MCMA areas and emission 
sectors in our one-year simulation starting from March 30, 2018. Each 
inversion block consists of five consecutive days.  

Four series of CO2 inversion plans were carried out in Chapter 4. Plan 
0 series aggregates the 5 days in each block and creates one scaling 
factor based on the assimilation between the simulation and 
observation of the gradients, while Plan 1 series specifies the scaling 
factor for each day with an assumption of a day-to-day correlation up 
to 7 days. Plan 2 series takes advantage of not only the day-to-day 
correlation, but also the correlations between time windows. They 
assimilated the CO2 concentration gradient of each time window each 
day. Plan 3 series considered the contributions of emission sectors 
based on Plan 1 series. Results suggest that UNAM emission 
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inventories overestimate the emissions in the dry season slightly, and 
underestimate in the rainy season by about 20%. The posterior 
gradient errors are reduced to less than 2 ppm in most of the year, 
except for September and October. Abnormal biogenic fluxes in June 
were fixed as well. Plan 2 series, which have the most complete 
covariance information produced the lowest posterior error and 
reduced the uncertainty during the daytime by more than 75% and in 
MCMA by 50%-70%. The posterior year total of MCMA is 61.7 Mt, 
which is 8 Mt less than UNAM gridded emission inventory and 4 Mt 
greater than the SEDEMA statistics. Overall, it seems the inversion 
plans improved the accuracy of emission estimates and provided 
valuable insights into the sources of CO2 in the MCMA region. 

I conducted multiple sensitivity tests across all plans, including test a 
for an alternative emission product (ODIAC), test b for block sizes, test 
c for MCMA urban mask, and test d for data screening. Although 
ODIAC showed similar performances to UNAM in the afternoon, its 
prior and posterior errors in gradients were more than 2 times of 
UNAM. Despite this, the inversion effectively corrected the 7% 
underestimation of ODIAC in domain 2. Small block sizes provided 
daily estimates without the assumption of day covariances, resulting in 
lower posterior flux errors and higher uncertainties. A medium sized 
block with sufficient day covariances, e.g. 30 days, corrected small 
mismatches in gradients. However, the first-aggregated-and-then-
inversed approach, equivalent to a whole block of 365 days, 
successfully reproduced the gradients but failed to create a reasonable 
posterior emission time series. Owing to the location of the stations, 
our observation provides more information about MCMA than non-
MCMA area. Therefore, the utilization of the MCMA urban mask 
significantly optimized the uncertainty in MCMA.  

Two different data filtering strategies were applied to the inversion. 
Plan 0d kept observation gradients distributed between the 5th and 
the 95th percentile, while Plan 0obs filtered the hourly data with a 
standard deviation larger than 3 ppm, resulting in a 50% reduction of 
available data. After various data screening, the prior gradient 
mismatches between the model and measurements are completely 
different. Plan 0obs with the lowest prior bias did not reduce the bias. 
However, it improved the RMSE and R-square the most, especially in 
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the dry season.  

Additionally, there are Plan 4 series, which assimilated the gradients of 
the tracer gas CO and CO/CO2 ratio to constrain the CO2 emissions 
from the mobile sector. The mobile source attribution from UNAM 
emissions, WRF modeled concentrations driven by UNAM emission, 
CO/CO2 ratio and SEDEMA in MCMA are 47.7%, 34.9%, 25.1%, and 
around 60%, respectively, which are totally different from each other. 
The identification on the attribution of mobile sources in MCMA 
should be improved in future studies. 

However, The same plans on XCO2 were ineffective in achieving their 
intended goals, due to the lack of qualified measurements. Even during 
the month of February when more data are available (11 available 
records in February 1-3, 6, 16-21 and 28), there were no significant 
improvements in the posterior concentration gradients.  

5.2 PROSPECTIVES 

There are several aspects for improvement in future studies of MERCI-
CO2 beyond the knowledge gained in the previous Chapters.  

One potential improvement is to test optimal parameters for the urban 
canopy model BEP, which has been proved to improve the model 
performance in urban-scale CO2 simulations (Lian et al., 2019). 
Although our WRF coupled to BEP with default parameters on the 
structure of city buildings is susceptible to model instability and did 
not show significant improvements, testing optimal parameters would 
have a great potential to enhance the model performance. 
Observation nudging is another widely used option to improve urban-
scale WRF simulations (Lian et al., 2018), which assimilates the WMO 
observations of meteorological parameters (e.g. wind, temperature 
and relative humidity) in the domains with the model to fix the drift 
that occurs during the model's execution. Although the attempt to 
apply observation nudging in our simulation system was hindered by 
data quality issues, developing alternative inputs for OBSGRID could 
reduce the model-measure mismatch on meteorological conditions. 
Spectral nudging, which requires particular PBL schemes that haven't 
been tested in our study, could be an option for the future modeling 
if needed.  
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Using alternative CO2 products for boundary conditions, e.g. CAMS 
global atmospheric CO2 inversion product (Chevallier, 2017), could 
expand the simulation to observation-intensive periods and improve 
data availability. The deployment of a network of 10 mid-cost medium-
precision sensors of CO2 in MCMA has been delayed by Covid-19, 
limiting the optimization of the spatial distributions. Nevertheless, our 
modeling system using MYJ is capable of TKE (Turbulent Kinetic Energy) 
and could be utilized for footprint once the network is completed in 
2022-2023. Future sensitivity tests of inversions could include 
transport models (Staufer et al., 2016; Pisso, 2019), perturbation on 
total emission amounts (Staufer et al., 2016) and prior errors, etc.  

Both the attempts on sector separated inversion and CO/CO2 ratio 
didn't manage to optimize the sector attribution of mobile. The 
posterior proportions of mobile sources present notable deviation and 
none of them is consistent with prior knowledge. For the inversion on 
sector emission, an additional observation station near to main roads 
would provide additional information on traffic emissions. Sensitivity 
tests on perturbation of prior sector emissions would verify the 
robustness of the mobile source inversion. For the tracer gas CO, it is 
evident that there is a bias on the current inversions. It may be related 
to underestimated removal of atmospheric CO by oxidation with HOx 
radicals. I also note there are distinct differences in the CO and CO2 
ratio in the emissions and in the modeled concentrations. Scenario 
simulations on high and low mobile contribution would help solve this 
problem.  
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LIST OF ABBREVIATIONS 

Abbreviations Full description 
ACES The Anthropogenic Carbon Emissions System 
ACO Acolman SEDEMA station 
AGU American Geoscience Union 
AJM Ajusco Medio SEDEMA station 
AJU Ajusco SEDEMA station 
ALZ Altzomoni MERCI-CO2 site 
AM Morning (Ante Meridiem) 
AME AMECAMECA_HSAN MERCI-CO2 site 
ANR French Agence Nationale de la Recherche 
BAU Business-as-usual 
BEP Building Environment Parameterization 
BJU Benito Juarez SEDEMA station 
CAMS Copernicus Atmosphere Monitoring Service 
CASA Carnegie Ames Stanford Approach 
CCA Centro de Cienciasde la Atmósfera 
CCAM Conformal Cubic Atmospheric Model 
CDIAC Carbon Dioxide Information Analysis Center  
CDMX Ciudad de México 
CH4 Methane 
CHO Chalco SEDEMA station 
CMAQ Community Multiscale Air Quality modeling system 
CO Carbon monoxide 
CO2 Carbon dioxide 
COCCON COllaborative Carbon Column Observing Network 
CONACYT Mexican Consejo Nacional de Ciencia y Tecnologίa 
COP Conference of the Parties 
CRDS Cavity Ring-Down Spectroscopy 
CT Carbon Tracker 
CUA Cuajimalpa SEDEMA station 
CUT Cuautitlán SEDEMA station 
DARTE Database of Road Transportation Emissions 
ECMWF European Centre for Medium-Range Weather Forecasts 
EDGAR Emissions Database for Global Atmospheric Research 
EGU European Geoscience Union 
EPA US Environmental Protection Agency 
ERA-5 ECMWF reanalysis for global climate and weather - 5th 
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generation 
ERPA Emission Reductions Payment Agreements  
ESRL NOAA Earth System Research Laboratories 
FAC FES Acatlán SEDEMA station 
FFDAS Fossil Fuel Data Assimilation System 
FLEXPART FLEXible PARTicle dispersion model 
FTIR Fourier Transform Infrared 
GAM Gustavo A. Madero SEDEMA statoin 
GAW WMO Global Atmosphere Watch Programme 
GGMT Greenhouse Gases and Related Measurement Techniques 
GHG Greenhouse Gases 
GMAO Global Modeling and Assimilation Office 
GPP Gross Primary Productivity 
GSFC Goddard Space Flight Center 
GSMA Groupe de Spectrométrie Moléculaire et Atmosphérique 
HGM Hospital General de México SEDEMA station 
HRRR High-Resolution Rapid Refresh model 
HYSPLIT Hybrid Single-Particle Lagrangian Integrated Trajectory model 
IAEA WMO International Atomic Energy Agency 
ICOS Integrated Carbon Observation System 
ILS Instrument Landing System 
INEGI Instituto Nacional de Estadística y Geografía 
INFLUX Indianapolis Flux Experiment 
INN Investigaciones Nucleares SEDEMA station 
IPCC Intergovernmental Panel on Climate Change  
KIT Karlsruhe Institute of Technology 
LAA Lab. de Análisis Ambiental SEDEMA station 
LAEI London Atmospheric Emissions Inventory 
LCMP low-cost medium-precise 
LMD Laboratoire de Météorologie Dynamique 
LPDM Lagrangian particle dispersion model 
MAE Mean absolute error 
MAP Mean Areal Precipitation 
MCMA Mexico City Metropolitan Area 
ME Mean error 
MER Merced SEDEMA station 
MERCI-CO2 Mexico City’s Regional Carbon Impacts 
MGH Miguel Hidalgo SEDEMA station 
MMM NCAR Mesoscale and Microscale Meteorology Laboratory 
MOCEJ NYC Mayor’s Office of Climate and Environmental Justice 



 

173 

MON Montecillo SEDEMA station 
MPA Milpa Alta SEDEMA station 
MYJ Mellor–Yamada–Janjić PBL scheme 
MYNN Mellor–Yamada–Nakanishi–Niino PBL scheme 
NAM The North American Mesoscale Model 
NCAR National Center for Atmospheric Research 
NDACC Network for the Detection of Atmospheric Composition Change 
NEE Net ecosystem exchange 
NEZ Nezahualcóyotl SEDEMA station 
NOx Nitrogen oxides 
NOAA National Oceanic and Atmospheric Administration 
NYC New York City 
OCO Orbiting Carbon Observatory Satellite 
ODIAC Open-source Data Inventory for Anthropogenic CO2 
OMM Organisation Mondiale de la Météorologie 
PBL Planet Boundary Layer 
PED Pedregal SEDEMA station 
PM Afternoon (Post Meridiem) 
Re Ecosystem respiration 
RMS Root mean square 
RMSE Root mean square error 
RUOA Red Universitaria de Observatorios Atmosféricos 
SAG San Agustín SEDEMA station 
SEDEMA Secretary of the Environment of Mexico City 
SFE Santa Fe SEDEMA station 
SLUCM Single-Layer urban canopy Model 
SNAP Selected Nomenclature for Air Pollution 
SRI Self-Reported Inventories 
STILT Stochastic Time-Inverted Lagrangian Transport model 
TAH Tláhuac SEDEMA station 
TCCON Total Carbon Column Observing Network 
TEC TECAMAC MERCI-CO2 site 
TKE Turbulent kinetic energy 
TLA Tlalnepantla SEDEMA station 
TMG Tokyo Metropolitan Government 
TROPOMI The TROPOspheric Monitoring Instrument 
TXO TEXO MERCI-CO2 site 
UAX UAM Xochimilco SEDEMA station 
UCM Single layer Urban Canopy Model 
UIZ UAM Iztapalapa SEDEMA station 
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UNA UNAM MERCI-CO2 site 
UNAM Universidad Nacional Autónoma de México 
UNFCCC United Nations Framework Convention on Climate Change 
URBACT URBan ACTion III Programme 
UTC Coordinated Universal Time  
VAL VALLEJO MERCI-CO2 site 
VIF Villa de las Flores SEDEMA station 
VIIRS Visible Infrared Imaging Radiometer Suite 
VPRM Vegetation Photosynthesis and Respiration Model 
WMO World Meteorological Organization 
WPS WRF Preprocessing System 
WRF Weather Research and Forecasting Model 
WRF-Chem Weather Research and Forecasting model with Chemistry 
WRI World Resources Institute 
XAL Xalostoc SEDEMA station 
XCO2 Dry air column-averaged mole fractions of CO2 

xESMF A Python package based on xarray and all ESMF regridding 
algorithms 

YSU Yonsei University scheme 
ZMVM Zone métropolitaine de la vallée de Mexico 
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APPENDIX A : THE SUBMITTED VERSION OF CHAPTER 2 & 
CHAPTER 3 
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Abstract 
Atmospheric inversions have been utilized across multiple cities to improve self-reported emission in-
ventories, but the atmospheric dynamics over large metropolitan areas located in complex topography 
remain challenging for atmospheric transport models. Here, we evaluate the performance of an atmos-
pheric CO2 modeling system and assess the optimal deployment of measurement sites to capture the 
whole-city emissions. As part of the French-Mexican project “Mexico City’s Regional Carbon Impacts 
(MERCI-CO2)”, two observation stations of surface and two column CO2 sensors were deployed in the 
Mexico City metropolitan area. We show that our modeling system is able to capture the local atmos-
pheric dynamics with WRF at high resolution. The mean error in wind speed is 0.69 m/s and the relative 
error in PBL is 6.4%. The model also simulates CO2 gradients observed by in situ and column sensors 
during dry and rainy seasons. The relative error of CO2 surface mixing ratio in the afternoon is -4.3%. 
The current network is deemed sufficient to capture city emissions (as a whole - not with intra-urban 
information) and to define the background conditions. Mountains are ideal to capture the background 
but the biogenic signals are responsible for large CO2 spatial gradients and temporal variations. There-
fore, we conclude that biogenic fluxes must be optimized within future inversion systems. However, 
we demonstrate how stations in the valley and mountain are better simulated compared to those on the 
basin slopes, a deterrent to the deployment of sites in the suburbs of Mexico. 
 
Keywords: urban emissions, greenhouse gas measurements, atmospheric modeling, Mexico City, 
WRF-chem, network design 

• Introduction 
Atmospheric greenhouse gas (GHG) concentrations have significantly increased at global scale since 
the industrial revolution. Carbon dioxide (CO2), the main contributor to climate change, has seen its 
concentration reaching 414.7 ppm in 2021 (NOAA, 2022) compared to its pre-industrial level of 260-
270 ppm (Wigley, 1983). Among the major sources of CO2, emissions from cities represent more than 
70% of global fossil fuel CO2 emissions (IPCC, WG2, 2014). Countries and sub-national governments 
around the world are implementing policies to mitigate CO2 emissions (IPCC, WG3, 2014). The Euro-
pean Climate Law sets a target to reduce the net GHG emissions of the European Union by at least 55% 
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by 2030 compared to 1990 levels5. At the sub-national level, cities have also pledged to reduce their 
emissions, organized into large international consortiums. About 100 large metropolitan areas have 
joined the C40 City consortium, a network of mayors advocating for climate policies in line with the 
1.5°C ambition of the Paris Agreement6. In parallel, more than 12,000 cities from 142 countries joined 
the Global Covenant of Mayors, committed to reduce their annual GHG emissions by 1.9 Gt CO2 in 
2030, compared to a business-as-usual (BAU) trajectory7. 
 
Accounting of GHG emissions is performed following varied established protocols resulting in uncer-
tainties and inconsistencies across Self-Reported Inventories (SRI) of CO2 emissions (Chen et al., 2019; 
Mueller et al., 2021; Gurney et al., 2021). Other non-standard approaches have also been developed to 
estimate city-scale emissions using spatial and temporal disaggregation methods of national-scale emis-
sions, based on satellite night light data, a proxy of human activities, in combination with activity data 
from power plants and large industries (Oda et al., 2015, Olivier et al., 2015). Both methods (inventories 
and spatial disaggregation) are prone to large uncertainties, impairing the ability to verify the effective-
ness of emission reduction policies over time. Common protocols, recent and detailed local activity data, 
and independent verification remain essential to improve current fossil fuel CO2 estimates (Mueller et 
al., 2021). More recently, atmospheric methods (inverse modeling) have been developed and applied to 
monitor CO2 emissions from megacities, e.g. Paris (Bréon et al., 2015; Staufer et al., 2016), Indianapolis 
(Lauvaux et al., 2016; 2020), Cape Town (Nickless et al., 2018), Washington D.C. and Los Angeles 
(Feng et al., 2016; Yadav et al., 2021). However, atmospheric approaches require modeling systems 
affected by transport errors, especially over complex terrain and near coastal areas, where the local 
dynamics vary rapidly at sub-kilometric scales (Ye et al., 2020). Atmospheric inversion systems also 
rely on the quality of the emissions inventories, often delayed by several years, increasing the uncer-
tainties in fast-growing metropolitan areas. The assessment of atmospheric models remains key to pro-
ducing reliable and accurate estimates, taking advantage of existing meteorological measurement net-
works at the ground and collected during aircraft campaigns (Feng et al., 2016; Deng et al., 2017; Lian 
et al., 2018; Lopez-Coto et al., 2020a).  
 
The Mexico City Metropolitan Area (MCMA), or Greater Mexico City (incl. La Ciudad de México, 
CDMX) is one of the largest megacities in the world. As the capital city of Mexico, its population of 
about 22 million inhabitants (UN, 2018) ranks fifth in the world with a population growth rate of about 
0.9% per year. Motor vehicle ownership has grown by 30% from 2014 to 2020 (INEGI Mexico, 2021), 
leading to a 25% increase in CO2 emissions. The Secretaría del Medio Ambiente de la Ciudad de México 
(SEDEMA, https://www.sedema.cdmx.gob.mx/) updates an inventory of pollutant emissions, including 
CO2, every 2 years, with a delay of about 2 years. The latest reported inventory of GHG emissions of 
Mexico City is available for the year 2018 (SEDEMA, 2021). The total CO2 emissions for 2018 amount 
to 66 Mt CO2 in the MCMA, with about 85% from the transport and industry sectors. This represents a 
50% increase in estimated CO2 emissions compared to the inventory for 2014 (SEDEMA, 2016), mainly 
due to a 60% increase in the mobile sources sector. However, methodological changes and additional 
activity data explain the strong increase in only four years. In 2015, Mexico committed to reduce by 

                                             

5 https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en 

6 https://www.c40.org/about-c40/ 
7 https://www.globalcovenantofmayors.org/who-we-are/ 

https://www.sedema.cdmx.gob.mx/
https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en
https://www.c40.org/about-c40/
https://www.globalcovenantofmayors.org/who-we-are/
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22% its greenhouse gas emissions by 2030 and to achieve carbon neutrality in Mexico City by 2050 as 
stated in its Energy Transition Law. 
 
The French-Mexican project “Mexico City’s Regional Carbon Impacts (MERCI-CO2)”, funded by the 
French Agence Nationale de la Recherche (ANR) and the Mexican Consejo Nacional de Ciencia y 
Tecnologίa (CONACYT), enabled the strengthening of measuring atmospheric CO2 concentrations 
over the MCMA by the deployment of additional instrumentation. The project was successful to incor-
porate three types of CO2 measurements in and around Mexico City. First, two high-precision spec-
trometers collect hourly CO2, CH4, and CO concentration measurements (Gonzalez del Castillo et al., 
2022) calibrated on international measurement scales. Second, about eight CO2 sensors of intermediate 
cost and precision are to be deployed around the area. Those mid–cost instruments are based on the 
development done by Arzoumanian et al. (2019). The periods of confinement due to COVID-19 in 
Mexico City have delayed the deployment of these instruments, initially planned for 2020. And finally, 
two measurements of total columns of CO2, CH4, and CO are being collected, one from the mountain 
tops (Altzomoni station, ALZ; 19.12°N, 98.66°W) and a second downtown (UNAM university campus, 
UNA; 19.33°N, 99.18°W). The objective of these surface and column measurements is to characterize 
the atmospheric CO2 enhancements caused by anthropogenic emissions from the MCMA. To quantify 
the physical relationship between surface emissions from urban sources and atmospheric concentrations 
measured by the various instruments, an atmospheric transport model is required. This atmospheric 
approach comes up against several obstacles and requires, on the one hand, sufficient measurement 
density to characterize the evolution of concentrations as a function of exposure to emissions; and on 
the other hand an atmospheric circulation model capable of representing horizontal and vertical mixing 
in an urban environment (Feng et al., 2016). The application of atmospheric top-down inversion meth-
ods to CO2 on a regional scale must also face specific difficulties, such as the strong overlap of atmos-
pheric signals related to anthropogenic and biospheric emissions; as well as atmospheric signals related 
to local/regional emissions from those on a larger spatial scale (Schuh et al., 2021). 
 
As part of MERCI-CO2, an atmospheric CO2 modeling system was configured over the MCMA and its 
surroundings. The location of Mexico-City spreading through a wide valley surrounded by mountains 
can prove to be advantageous in favoring the accumulation of CO2 in the planetary boundary layer (PBL) 
and therefore generating relatively high atmospheric gradients, more easily detectable by the analyzers. 
On the other hand, the complex topography around the basin represents a major difficulty for the sim-
ulation of atmospheric transport. In this study, we present the meteorological evaluation of atmospheric 
CO2 simulations using the Weather Research and Forecasting model (WRF, Skamarock et al., 2008) 
adapted to the regional scale, and the results of a simulation of the atmospheric concentrations of CO2 
(WRF-Chem, Grell et al., 2005). The reliability of the model was tested based on wind speed, wind 
direction, PBL heights and temperature monitored at several locations disseminated in and around the 
city. We then compared the simulated surface and column CO2 concentrations to the available observa-
tions in Mexico-City.  

• Methods 

o Atmospheric modeling system 
The atmospheric simulations were conducted with WRF-Chem version 3.9 (Skamarock et al., 2008, 
Grell et al., 2005). The atmospheric turbulence in the PBL was simulated using the level-2.5 closure 
scheme Mellor–Yamada–Nakanishi–Niino (MYNN) (Nakanishi and Niino, 2009), coupled to the 
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MYNN atmospheric surface layer scheme and the single-layer urban canopy model (UCM, Tewari et 
al., 2007; Chen et al., 2011). MYNN was selected based on previous studies that demonstrated its ability 
to reproduce convective boundary layers (Feng et al., 2016; Deng et al., 2017; Lian et al., 2018) and 
possibly nighttime boundary layer dynamics (Lopez-Coto et al., 2020b). Our simulation was performed 
over three months (January, May and July 2018) to examine three typical climatic conditions over Mex-
ico City: the dry season, the rainy season, and the transition between the two. During the month of July, 
recurring extreme weather events decrease the availability of observations, especially for Lidar and 
FTIR column measurements (XCO2). In every month’s run, the first 2 weeks are used for spinning up 
CO2 concentrations from distant areas (background variations), and the last 2 weeks are used for eval-
uation and analysis. The three comparison periods of 2018 are 4-17 January, 15-28 May, and 14-27 July 
(UTC time). 
 
WRF-Chem was configured with one-way two-nested domains for the Valley of Mexico City, with the 
spatial resolutions of 15 km and 5 km (Figure 1). The larger domain (domain 1, d01) covers almost the 
entire territory of Mexico and several neighboring countries; the smaller domain (domain 2, d02) covers 
the MCMA as well as several surrounding states, to include the whole Valley of Mexico. There are 49 
vertical layers in each domain, the first of which is around 16 meters above ground level. Due to the 
complex terrain of Mexico City's valley, the model would be very unstable with finer vertical layers 
near the ground.  
 

 
Figure 1: Simulation domains (a) of the two nested domains at 15-km (Domain 1) and 5-km 

(Domain 2) resolutions with their corresponding terrain heights (in meters) and (b) cropped area of 
Mexico City and its surroundings including the CO2 observation stations for surface and total columns 
measurements (red circles), a large power plant nearby (black circle), the urban area of MCMA (in 
pink), the administrative boundaries of Mexico City (in gray) and the model topography in meters. 
 
The meteorological drivers used as boundary and initial conditions are the 6-hourly ECMWF Reanaly-
sis version 5 (ERA-5, Hersbach et al., 2017), at 0.25° × 0.25° resolution. Due to the lack of available 
high-quality meteorological observations in and around Mexico City, the meteorological simulations 
were performed without data assimilation. However, several surface stations, not referenced at the 
World Meteorological Organization (WMO), were used to evaluate the model performances. 
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o Surface CO2 emissions and boundary conditions 

 Fossil fuel emissions inventories  
Two emission products were used in our study: a gridded emission inventory (Garcia-Reynoso et al., 
2018; Rodriguez-Zas et al., 2021. https://github.com/JoseAgustin/emis_2016) developed at the Na-
tional Autonomous University of Mexico (UNAM), and the Open-source Data Inventory for Anthro-
pogenic CO2 (ODIAC) (Oda et al., 2018). The UNAM hourly national emission inventory of Mexico 
covers the entire country at 3-km resolution while the 1-km resolution product is only available for 
specific subdomains, including the MCMA. This local emission inventory provides CO2 emissions, as 
well as other species including CO and NOx, for three sectors: area sources (residential/commercial), 
mobile sources (traffic), and point sources (industrial). In our simulation, we defined one independent 
tracer per sector to quantify individually the sectoral contributions on the observed atmospheric CO2 
enhancements.  
 
The ODIAC emission product provides global emission maps of fossil fuel CO2. ODIAC downscales 
national CO2 emissions from the Carbon Dioxide Information Analysis Center (CDIAC; Boden et al., 
2017) to sub-national levels by disaggregating the emissions according to night light data from the 
Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership 
satellite (e.g., Elvidge et al., 2013). Combined with temporal scaling factors (Nassar et al., 2013), 
ODIAC emissions are available at 1×1 km resolution and hourly (including monthly, weekly and daily 
temporal profiles).  
 
Anthropogenic emissions over the parent domain (d01) are interpolated from ODIAC, including areas 
outside Mexico and shipping over the ocean. We note, however, that shipping emissions remain low 
compared to the UNAM inventory. For our second domain at 5-km resolution, we applied the UNAM 
emission inventory as well as ODIAC in another tracer as a sensitivity test. To conserve the total budget, 
all the emissions are interpolated into our domains by applying a mass-conserving technique (xESMF 
- conservative method, https://doi.org/10.5281/zenodo.1134365). CO2 emissions from mobile sources 
remain nearly constant all year long (about 3 Mt per month), but emissions from residential and indus-
trial sources show large seasonal variations with larger values for the month of January (11.93 Mt) 
compared to May (9.10 Mt). Emissions for the month of July increase to 10.00 Mt due to the energy 
demand from air conditioning systems (Figure 2).  

https://github.com/JoseAgustin/emis_2016
https://doi.org/10.5281/zenodo.1134365
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Figure 2: Total fossil fuel CO2 emissions over the domain 2 (upper panels) and over the urban 
area of MCMA (lower panels) for the UNAM and ODIAC emissions products (left panels), and bio-
genic fluxes from the CASA biogeochemical model (right panels) for the months of January, May, and 
July 2018. 
 
Total emissions over domain 2 from UNAM and ODIAC are generally consistent, but their spatial 
distributions differ (Figure 3). Although both ODIAC and UNAM grid values follow a lognormal dis-
tribution in the same interval (Figure 3 bc), ODIAC shows a larger number of low-value grid points 
(near-zero values). Due to the spatial disaggregation technique, point source emissions in ODIAC tend 
to be more distributed spatially compared to UNAM, where point sources are geo-located by their exact 
coordinates. For our application, the ODIAC emissions show the same distribution at 15 km resolution, 
with consistent country-scale emissions. When it comes to city-scale, ODIAC underestimate the emis-
sions by 43%-45% compared to UNAM, similar to other cities in North America (Chen et al., 2020).  



 

182 

 
Figure 3: Maps of total fossil fuel CO2 emissions over (a) domain 1 and domain 2 from (b) 

ODIAC and (c) the UNAM inventory on 4 January 2018 (UTC time, logarithmic scale, tons). Sectors 
of UNAM are shown on lower panels: (d) area sources, (e) mobile sources and (f) point sources. 

* Frequency distributions (black histograms) are shown over domain 2 to illustrate the larger 
ratio of near-zero pixels in ODIAC and the presence of large peaks in the UNAM inventory. 

 Biogenic CO2 fluxes: optimized CASA simulation 
The biogenic fluxes in MCMA were simulated by the Carnegie Ames Stanford Approach (CASA) 
model (Zhou et al., 2020) and are also interpolated to our domains by xESMF - conservative. The CASA 
simulation was optimized by generating an ensemble of perturbed parameters, including the maximum 
light use efficiency, the optimal temperature of photosynthesis, and the temperature response of respi-
ration. These perturbed parameters were constrained by selecting the best configuration in comparison 
to AmeriFlux eddy-covariance flux data. Monthly Gross Primary Productivity (GPP) and total ecosys-
tem respiration (Re) were downscaled to 3-hourly resolution based on 3-hourly air temperature and 
shortwave downward radiation from the North American Regional Reanalysis (Mesinger et al., 2006), 
as described in Olsen and Randerson (2004). GPP and Re were summed into Net Ecosystem Exchange 
(NEE) at 5-km resolution. Figure 4 shows the difference between dry/wet seasons, with a maximum in 
carbon uptake during the wet season (growing season). In Figure 4, the phenology of tropical forests 
(wet and dry) on the east coast of Mexico causes an early start of the growing season (May) while the 
central and western regions (temperate to semi-arid climates) show negative values (carbon uptake) 
later in the year (July).  
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Figure 4: Midday (12:00 UTC-6) and midnight (00:00 UTC-6) biogenic monthly mean fluxes 

from the CASA biogeochemical model (Zhou et al., 2020) over the WRF simulation domain (5-km 
resolution) for the months of January (left column), May (middle column) and July (right column) in 
mol/km2/hr. 

 
We note here that the central region of our domain, corresponding to Mexico City, shows very low NEE 
values caused by the dense urban area (sparse vegetation). The biogenic fluxes in the MCMA differ 
significantly from the surrounding areas, further examined by separating the biogenic contribution in 
our modeling system. 

 Atmospheric CO2 boundary conditions 
The influence of distant sources and sinks was simulated by coupling the optimized CO2 concentrations 
from the global model CarbonTracker 2019 (Peters et al., 2007; Jacobson et al., 2020) to our WRF 
domain, similar to Feng et al. (2019) over North America. The coupling scheme involves several steps 
including pressure correction due to terrain height differences, interpolation of the coarse resolution 
CO2 fields to the WRF grid, and mass conservation over the total CO2 column, as described in Butler 
et al. (2020). As shown in Figure S1, the CO2 boundary inflow at our domain boundaries varies at daily 
and sub-daily timescales (3-hourly in our case) especially over land (northern bound) where air masses 
from North America flow southward into our domain. We evaluate the CO2 boundary inflow by com-
parison to measurements collected at ALZ (mountain site), only occasionally influenced by the city 
emissions from the valley (cf. section 3.2). We also note here that we couple the 3D fields from the 
CarbonTracker global models to represent the vertical gradients between the surface (2,200 m a.s.l.) 
and the mountain tops (4,000 m a.s.l.). 
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o Meteorological and CO2 observations 

 Meteorological surface network 
We evaluated the WRF meteorological performances using measurements from the air quality network 
installed and operated by SEDEMA. Horizontal wind speed and direction, temperature, pressure, and 
relative humidity were measured across 26 surface stations located in and around Mexico City, publicly 
available from SEDEMA8. The 26 stations are listed in table 1, including the station’s names, their 
geographic coordinates, and the data availability for the year 2018. In previous reports, we found spe-
cific comments on possible disturbances affecting wind measurements at three sites. At Merced (MER), 
located near downtown Mexico City, a three-story school located to the south of the station blocks the 
air flow from that direction, in addition to an elevated metro railway to the west. At Xalostoc (XAL), 
the inlet location is partially blocked by a building on one side of the shelter. Finally, at Cuajimalpa 
(CUA), the site is located on a two-story building with clear air flow in three out of four directions. 
There is a line of trees on one side of the shelter that may slightly impact wind direction and wind speed 
measurements, but the meteorological station is at the same altitude or slightly higher than the treeline. 
In conclusion, most of the SEDEMA meteorological observations match international standards thanks 
to rigorous data quality control. 

ID Station Entity Latitude Longitude Altitude Sampling 
height/m Since % data 

in 2018 
ACO Acolman Mexico State 19.6355 -98.9120 2198 13.3 2011 84.35% 
AJM Ajusco Medio CDMX 19.2722 -99.2077 2548 15 2015 96.21% 
AJU Ajusco CDMX 19.1543 -99.1626 2942 4 2015 68.29% 
BJU Benito Juarez CDMX 19.3717 -99.1591 2257 5.5 2015 82.19% 
CHO Chalco Mexico State 19.2670 -98.8861 2253 7.3 2011 87.03% 
CUA Cuajimalpa CDMX 19.3653 -99.2917 2704 10.6 2000 98.05% 
CUT Cuautitlán Mexico State 19.7222 -99.1986 2263 4.5 2012 64.93% 
FAC FES Acatlán Mexico State 19.4825 -99.2435 2299 10.8 1986 61.37% 
GAM Gustavo A. Madero CDMX 19.4828 -99.0947 2242 6 2015 98.86% 
HGM Hospital General de México CDMX 19.4116 -99.1522 2234 15 2012 86.94% 
INN Investigaciones Nucleares Mexico State 19.2920 -99.3805 3080 4 2015 3.84% 
LAA Lab. de Análisis Ambiental CDMX 19.4838 -99.1473 2255 5.1 2016 97.59% 
MER Merced CDMX 19.4246 -99.1196 2245 17.2 1986 98.85% 
MGH Miguel Hidalgo CDMX 19.4041 -99.2027 2327 11.5 2015 99.77% 
MON Montecillo Mexico State 19.4604 -98.9029 2252 3.5 2000 97.24% 
MPA Milpa Alta CDMX 19.1769 -98.9902 2592 8 2016 72.74% 
NEZ Nezahualcóyotl Mexico State 19.3937 -99.0282 2235 12.1 2011 99.47% 
PED Pedregal CDMX 19.3252 -99.2041 2326 11.5 1986 96.05% 
SAG San Agustín Mexico State 19.5330 -99.0303 2241 8.6 1986 78.31% 
SFE Santa Fe CDMX 19.3574 -99.2629 2599 5.5 2012 84.87% 
TAH Tláhuac CDMX 19.2465 -99.0106 2297 3.6 2000 75.79% 
TLA Tlalnepantla Mexico State 19.5291 -99.2046 2311 7 1986 92.36% 
UAX UAM Xochimilco CDMX 19.3044 -99.1036 2246 18.7 2015 99.71% 
UIZ UAM Iztapalapa CDMX 19.3608 -99.0739 2221 19.6 2014 64.29% 

                                             
8 http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBhnmI=%27&opcion=Zw== 

http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBhnmI=%27&opcion=Zw==
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VIF Villa de las Flores Mexico State 19.6582 -99.0966 2242 4.5 2000 86.16% 
XAL Xalostoc Mexico State 19.5260 -99.0824 2160 30 1986 96.72% 

 
Table 1: Coordinates, heights and first year of data acquisition of the SEDEMA meteorological stations 
in and around Mexico City. 

 Lidar profiling 
The Doppler Lidar located at UNA (Wind Cube 100, Leosphere) was used for wind profile and mixing- 
and residual-layer height observations. The instruments measure with 50 m vertical resolution backscat-
tered light from a pulsed laser in the infrared that is transmitted to the sky at four different directions 
and Doppler-shifted, 15º from the zenith, from which a 3-dimensional wind field is reconstructed. Mix-
ing and residual-layer heights are calculated from the aerosol backscattering signal (carrier-to-noise 
ratio) and the variance of the vertical velocity and reported by the manufacturer. Since January 2017, 
data is continuously collected by this instrument and stored in the RUOA repository (Red Universitaria 
de Observatorios Atmosféricos, http://www.ruoa.unam.mx) and the results have been evaluated against 
other data sources (Burgos-Cuevas et al 2022).  

 Atmospheric CO2 measurements 
Two high-accuracy analyzers measuring continuously atmospheric CO2 concentrations were installed 
in 2014 at the UNAM university campus (UNA) and at the Altzomoni altitude station (ALZ). The two 
instruments are cavity ring-down spectrometers (model G2401) manufactured by Picarro (Crosson et 
al., 2008; Rella et al., 2013). Such instruments can measure every few seconds the atmospheric concen-
trations of CO2, CH4, CO and H2O, with precision compatible with the WMO/GAW requirements 
(WMO/IAEA 2020). These instruments are now widely used in the community, and have been subject 
to numerous evaluations documenting their repeatability, drift, and sensitivity to parameters such as 
temperature and humidity (Chen et al., 2013; Welp et al., 2013; Yver Kwok et al., 2015; 2021). The 
two analyzers began to be calibrated at the end of 2018 with a calibration scale consisting of three 
cylinders prepared by NOAA/ESRL, and traceable to the international WMO scale. This reference scale 
is now installed at the ALZ. A second scale, prepared at LSCE as part of the MERCI-CO2 project and 
also traceable to the WMO scale, is installed at the measurement site on the UNAM campus. The in-
strument calibration made at the end of 2018 was propagated backwards over the whole year 2018, 
inducing an estimated uncertainty of approximately 0.1 ppm over 2018, according to typical drift for 
such instruments (Yver-Kwok et al. (2015)).  Another major source of uncertainty is related to the water 
vapor correction, which has to be done in order to express the results as a mole fraction in dry air. 
Considering the humidity levels observed at the two stations, Gonzalez del Castillo et al. (2022) esti-
mated an uncertainty of 0.2 ppm and 0.05 ppm respectively for UNA and ALZ. The measurement pro-
tocols implemented at both sites are described in detail by Gonzalez del Castillo et al. (2022). CO2 
concentrations are available for the two measuring stations UNA and ALZ in 2018 without any data 
gap.  
 
The two stations are located in very different environments, with a high exposure to urban emissions 
for UNA and a priori low at the mountain site (ALZ) at 4,000 m a.s.l. This results in significant differ-
ences in the diurnal and seasonal cycles (Gonzalez del Castillo et al., 2022). Thus, the daily peak-to-
peak amplitude of CO2 is on average around 35 ppm at UNA and 5 to 7 ppm at ALZ. It has been shown 
that the main driver of the diurnal variability at UNA is the development of the atmospheric boundary 

http://www.ruoa.unam.mx/
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layer. The daily maximum is reached between 6 and 7 a.m. (local time), and a regular decrease is ob-
served until around 4 p.m. due to the development of the atmospheric boundary layer leading to a dilu-
tion of the compounds emitted at the surface, like CO2, in a larger volume. CO2 then accumulates during 
the night as the atmospheric boundary layer decreases associated with greater vertical stability. In the 
case of ALZ, Gonzales del Castillo et al. (2022) explained that the diurnal cycle resulted from a com-
bination of the influences of boundary layer dynamics and biospheric fluxes. They also assume that the 
increase in concentration observed in the afternoon is probably linked to the uplift of polluted air masses 
from Mexico City and other surrounding urban areas. 
 

 Atmospheric CO2 column mixing ratios 
In addition to the CO2 surface measurements, CO2 total column measurements were performed at the 
ALZ and UNA stations using solar absorption FTIR spectroscopy. The ALZ station was equipped in 
2012 with a high resolution FTIR spectrometer (model IFS-120/5HR, Bruker), which continuously pro-
vides vertical column densities of atmospheric trace gases officially contributing to the Network for the 
Detection of Atmospheric Composition Change (NDACC). The dry air column-averaged mole fractions 
of CO2 (XCO2) used in this study were calculated from the high resolution spectra (0.02 cm-1) measured 
with KBr beamsplitter, using the PROFFIT 9.6 code (Hase et al., 2004) and adopting the CO2 and O2 
retrieval methods described in Baylon et al., (2017).  Several post-process quality filters were applied 
to discard data affected by clouds, volcanic ash or low signal, based on both spectra and retrieval quality 
indicators (signal to noise ratio, relative RMS, wavenumber shift, etc.) and statistical criteria (standard 
errors). The UNA station was equipped in 2016 by a mobile low resolution (0.5 cm-1) EM27/SUN 
spectrometer, providing continuous total column measurements of CO2, CO and CH4. Low-resolution 
spectra are processed following the COllaborative Carbon Column Observing Network (COCCON) 
processing chain (PREPROCESS and PROFFAST-version 01-07-2018 codes) developed by the Karls-
ruhe Institute of Technology (KIT) and freely available (https://www.imk-asf.kit.edu/english/COC-
CON.php). A full description of the analytical procedure is given in Sha et al. (2020), Frey et al. (2021), 
and Pollard et al. (2022). Calibration coefficients and ILS determined by the KIT (https://www.imk-
asf.kit.edu/downloads/Coccon/2019-11-08_Instrument-Calibration.pdf for the used PROFFAST ver-
sion) were applied according to the COCCON recommendations. We used the GGG2014 version of 
TCCON meteorological data and priors (daily MAPs files), downloaded from the CalTech server. In-
traday ground pressure data were taken from the co-located RUOA pressure sensor measurements 
(https://www.ruoa.unam.mx/). UNA and ALZ XCO2 data were inter-calibrated using data obtained 
from several weeks of ALZ side-by-side measurements. Noisy outliers were filtered out according to a 
3-sigma criterion.  

• Results  

o Meteorological performances 

 Surface meteorological evaluation  
Model simulations were performed over three months (January, May, and July), representing three con-
trasted seasons in the region of Mexico-City (Jáuregui, 2002). January is the coldest month of the year 
with temperatures between 6 and 22°C, with low precipitation, during the dry season. During the 2 
weeks of January 2018, the average temperature of Mexico City, calculated from the 26 weather stations, 

https://www.imk-asf.kit.edu/english/COCCON.php
https://www.imk-asf.kit.edu/english/COCCON.php
https://www.imk-asf.kit.edu/downloads/Coccon/2019-11-08_Instrument-Calibration.pdf
https://www.imk-asf.kit.edu/downloads/Coccon/2019-11-08_Instrument-Calibration.pdf
https://www.ruoa.unam.mx/
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varies from 2.33 to 21.32°C with a mean of 11.66 ± 4.48 °C (Figure S2). Conversely, the month of May 
is the hottest month of the year in Mexico City (13 to 26°C), with a mean temperature of 20.01 ± 3.42 °C 
recorded in 2018 (Figure S2). The month of July is characterized by lower temperatures compared to 
May (18.37 ± 3.05 °C in July 2018), but with higher precipitation rates in the city (52 mm) correspond-
ing to the rainy season. 
 
The model succeeds in simulating most of the seasonal, synoptic and diurnal variability of the average 
temperature deduced from the network of 26 SEDEMA stations (Figure S2). In May and July, the mean 
daily biases are respectively equal to 0.61°C and 0.53°C, but the peak-to-peak amplitude is underesti-
mated by 3.03 and 2.26°C. For most of the days, night minimums are overestimated by about 2°C and 
daily maximums are underestimated by about 0.4-0.8°C. On the contrary, the average temperatures of 
the 26 stations over the month of January are underestimated by about 0.33℃. This positive anomaly 
may be related to residential and commercial heating in winter. Correlation coefficients for the near-
surface temperature (3.5 to 30 m a.g.l.) between observation and simulation are very high (0.95, 0.97 
and 0.92 for January, May and July separately). The fit of our regression model (R-square) is larger 
than 0.85. The simulated diurnal cycle in May is highly correlated with observations (R=0.93) simulated, 
including the sharp drop after sunset on clear nights and the smooth variations on cloudy nights.  
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Figure 5. Mean Absolute Error (MAE) in first-level temperature (0-16m; upper row) and Mean Error 
in wind speed (middle row) and wind direction (bottom row) for the months of January (left column), 
May (middle column) and July (right column) of the year 2018.  
 
Observed and simulated surface wind speeds were compared at the 26 meteorological stations. The 
average Mean Absolute Errors (MAEs) for wind speed vary from 0.72 to 1.67 m/s across the station 
network. For January, May and July, the network-wide MAE of the 26 stations is 0.98, 1.40 and 1.29 
m/s, respectively. As shown in Figure 5 and Figure S3, mountain stations (e.g. INN, AJU and MPA) 
show degraded performances (1.5-2.5 m/s overestimated). Urban stations correspond to a mean bias of 
less than 1 m/s and a regression fit (R-square) larger than 0.5. Surface wind directions vary across 
stations with MAE’s between 50° to 70° (cf. Figure S4). Unlike wind speed, the simulated wind direc-
tions vary across the basin independently of the topography, possibly due to the misrepresentation of 
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building heights and the use of default parameters in the urban canopy model. Overall, meteorological 
performances are similar to previous urban studies without data assimilation (Feng et al., 2016; Lian et 
al., 2018).  

 Vertical mixing and horizontal wind evaluation 
We compared the vertical wind measurements collected by the Lidar deployed at UNA (South city-side) 
to our simulations. The scanning elevation of the wind reconstruction covers a 15-degree angle from 
the zenith (75° to 90°; every scan contains 4 directions). The average wind speed from the 4 directions 
is used for the model evaluation of the wind speed. As for the model, the approximate height above the 
surface was calculated using the geopotential height: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 = (𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃)/𝑔𝑔 − H𝐺𝐺𝐺𝐺 
in which PH, PHB, HGT and 𝑔𝑔 stand for perturbation geopotential height, base-state geopotential 
height, terrain height and gravitational acceleration, respectively.  
 
Two vertical wind error profiles from the Lidar and the model are shown in Figure 6 to illustrate our 
model-data performances (left panel), in addition to the MAEs from 0 to 4,000 m above ground level 
(right panel). The modeled vertical gradients in wind profiles are consistent with observations. Since 
the sample heights of the model and the Lidar are different, MAE was calculated based on the observa-
tion records and the simulation wind speed (49 layers) interpolated to observation layer heights (99 
heights). MAEs are less than 2 m/s in both cases. In January, the mean error and mean absolute errors 
in the horizontal mean wind are -0.36 m/s and 1.28 m/s respectively, with standard deviations of 0.9 
m/s and 0.6 m/s. In May, -0.72 m/s and 2.00 m/s, with standard deviations of 1.7 m/s and 1.1 m/s. Both 
errors increase for layers higher than 2000 m, which corresponds to the maximum observing elevation 
of the Lidar instrument.  
 

 
 
Figure 6. Vertical profile of 2-week mean horizontal wind speed errors at UNA in the afternoon: (a) 
mean error profile (b) mean absolute error profile.  
 
We have also used the PBL heights deduced from the Lidar installed at UNA. Two atmospheric layer 
heights are diagnosed from raw Lidar data: a mixing layer height and a residual layer height. As shown 
in Figure 7, mixing layer heights diagnosed by the Lidar correspond to the top of the mixed layers but 
fail to capture the maximum elevations deduced from the residual heights during the afternoons. Con-
versely, the residual layer heights correspond to the top of the mixed layer during the afternoon, while 
measuring the actual residual layer at night. To avoid a negative bias in Lidar measurements during 



 

190 

daytime, we combined the two products to derive the most representative height of the mixed layer 
during daytime. The mixing layer diagnostic is used in the morning (local time 8:00-13:00) while re-
sidual layer heights are used to evaluate the mixed layer height in the afternoon (local time 14:00-18:00). 
To evaluate the temporal variations of the modeled PBL heights, we performed a linear regression for 
the months of January and May, with estimated R-square values of 0.68 and 0.64, respectively. The 
mean bias during morning hours is about 15 m in January and about 280 m in May. During the afternoon 
hours, the bias reaches -580 m (in January) and 110 m (in May). These values are similar to the study 
of Feng et al. (2016) over the basin of Los Angeles using aircraft PBL heights. During the afternoons, 
the modeled PBL heights are usually lower than the Lidar measurements during the month of January. 
We note here that no Lidar measurement is available for the month of July 2018.  
 

 
Figure 7. Time series and linear regression of PBL height (in meters) simulation (in blue) and obser-
vation (“residual layer” heights in red lines and mixing layer heights in green dots) in UNA (time in 
UTC, golden background stands for local time UTC-6 afternoon: 14:00-18:00) 
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o Atmospheric CO2 contributions from fossil fuel and biogenic 
sources and sinks 

 Atmospheric in situ CO2 concentrations  

 
Figure 8. Observed and modeled in situ CO2 concentrations (in ppm) at both UNA and ALZ stations 
for the months of January, May, and July 2018, in UTC time. The modeled concentrations were sepa-
rated into three components: boundary inflow (bdy - in blue), biogenic fluxes (bio - in green) and fossil 
fuel emissions (ff - in orange). The contributions from the boundary conditions are indicated by the 
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gray line and the combined contribution of boundaries and biogenic fluxes (bdy+bio) by the light yellow 
line. 
 
Figure 8 shows the comparison between the simulated and the observed in situ CO2 concentrations at 
both sites (UNA and ALZ). Modeled concentrations are decomposed into three components: the back-
ground concentrations originating from the CarbonTracker inversion system (in blue), the fossil fuel 
contributions from Mexico City and from the entire country (in orange), and the biogenic sources and 
sinks caused by surface fluxes from the CASA model (in green). The WRF-Chem modeled concentra-
tions tend to be under-estimated during the first hours of the night (about 10 ppm), revealing a time lag 
in the accumulation of CO2 in stable conditions. At both stations, the model-data differences are about 
-0.31 ppm (UNA) and -0.71 ppm (ALZ) during the afternoon hours (cf. Table S1). While the UNA 
station is influenced by large fossil fuel contributions (10 ppm during the afternoon hours), the ALZ 
station shows relatively low contributions (1.8 ppm). The biogenic contributions vary across the two 
stations (2.0 and -0.27 ppm), indicating that future optimizations (flux inversions) will need to adjust 
separately the biogenic fluxes. The spatial distribution of biogenic CO2 fluxes is presented in the dis-
cussion section, due to differences in ecosystem types between the Mexico City basin and in the sur-
rounding mountains. We note here a mismatch at ALZ during the first week of May (15 to 20 May 
2018), possibly caused by incorrect boundary conditions. 
 
We show the observed and modeled in situ CO2 concentration mean diurnal cycles at both sites in Figure 
9. The lack of accumulation at night at UNA results in a time lag between the modeled and observed 
nighttime peaks of about 2 hours. During the afternoon hours (14:00-18:00 local time), the WRF-Chem 
CO2 concentrations capture the temporal variations and the absolute values at UNA (413-424 ppm, 
MAE of 3-5 ppm). Due to its remote location, the ALZ station shows a reduced diurnal cycle amplitude, 
simulated by WRF-Chem, but mostly driven by the boundary CO2 concentrations from CarbonTracker 
(404-410 ppm, MAE of 2-3 ppm). We confirm here the ability of our modeling system to reproduce the 
urban enhancements and the large-scale boundary conditions at monthly timescale.  
 

 
Figure 9. Mean diurnal variations in atmospheric CO2 concentrations at UNA (upper row) and ALZ 
(lower row) stations observed (in pink) and simulated by WRF-Chem (in blue) for the months of Janu-
ary (left), May (middle), and July (right) of the year 2018, shown in local time. 
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 Atmospheric CO2 column concentrations  
We show in Figure 10 the model performances to simulate XCO2 at both stations. Because EM27 in-
struments only measure during daytime clear-sky conditions, we focus on the afternoon hours. We note 
that, due to poor weather conditions, there are nearly no afternoon FTIR measurements complying with 
the data quality requirements during July 2018. The influence of local sources and sinks is reduced by 
the dilution of PBL signals within the entire column of air, but their influence remains the main driver 
of the observed day-to-day variability at UNA. WRF-Chem tends to over-estimate XCO2 concentrations 
in January (1.01 ppm) and under-estimate XCO2 in May (0.53 ppm; or 0.15 ppm if the abnormal period 
15-17 May was excluded). The over-estimation of XCO2 concentrations in January does not coincide 
with in situ CO2 concentration differences, possibly caused by a positive bias in background concentra-
tions rather than by local emissions. The day-to-day variations were better captured in May (R=0.81, 
except for the abnormal values in 15-17 May 2018) compared to January (R=0.63) (cf. Figure S6). 
Overall at UNA, the MAE for XCO2 is about 1 ppm (1.22 ppm in January and 0.97 in May), indicating 
that background concentrations should be optimized in future inversions. Regarding the period 15-17 
May 2018 during which the wind direction shifted from a northerly flow to a westerly flow, WRF-
Chem failed at capturing the increase in XCO2 (Figure S6). In general, the lack of data in the rainy 
season impairs our ability to quantify the XCO2 model errors at ALZ and UNA but the absence of fossil 
fuel signals at ALZ indicates that the local circulation from the valley to the mountain tops is absent 
during summer months. 
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Figure 10. Observed and modeled Atmospheric column CO2 concentrations (in ppm) at both UNA and 
ALZ stations for the months of January, May, and July 2018, in UTC time. The modeled concentrations 
were separated into three components: boundary inflow (bdy - in blue), biogenic fluxes (bio - in green) 
and fossil fuel emissions from both simulation domains 1 and 2 (ff - in orange). The contributions from 
the boundary conditions are indicated by the gray line and the combined contribution of boundaries and 
biogenic fluxes (XCO2bdy+XCO2bio) by the light yellow line. 
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• Conclusions and Discussion 
In this paper we evaluated the performances of the WRF-Chem model to simulate the CO2 and XCO2 
concentrations over MCMA. The meteorological conditions (surface temperature, wind speed and wind 
direction) were evaluated across the SEDEMA observation network of 26 stations. Within and around 
the city, the Mean Absolute Errors (MAE’s) in wind speed are around 1 m/s, while the wind speed 
errors were 1.5-2.5 m/s over-estimated by the model in the mountainous areas outside the city. The 
regression model of measured and modeled PBL heights at UNA are significant with R-square values 
larger than 0.64 for both seasons, while the mean errors in horizontal wind speed at UNA are all less 
than 1 m/s within the Planetary Boundary Layer (PBL), confirming our simulation captures the local 
dynamics across the basin. Regarding CO2 concentrations, the model captured most of the observed 
variations in the afternoon, with a mean bias of -0.52 ppm and a MAE of 3.42 ppm. WRF-Chem tends 
to under-estimate the peak values in the morning, showing a 1-hour time lag in the simulation of CO2 
accumulation patterns at night. Thus, only the afternoon data will be assimilated in our future inversion. 
The model also prompts us that the fossil fuel signals at our background station (ALZ) are low enough 
(1.8 ppm) to represent the background CO2 concentrations, but the biogenic flux patterns differ between 
the background (ALZ) and the downtown (UNA) stations. We conclude here that the gradients between 
the two stations (UNA-ALZ) are sufficient to detect and to quantify the city emissions in our future 
inversion, but the biogenic fluxes should also be optimized separately. Except for the large mismatch 
in wind direction over the period 15-17 May 2018, XCO2 day-to-day trends were captured by the model 
during both seasons. The mean bias was around 1.00 ppm for January and -0.53 ppm for May, most of 
which was driven by the wind direction shift on 15-17 May 2018, indicating boundary conditions should 
also be included in future inversions of XCO2. 

o  Seasonality of fossil fuel contributions 
We examine in greater details the spatial and temporal distributions of fossil fuel signatures in our 
modeled CO2 concentrations from the mobile sector in Figure 11. Mobile CO2 enhancements concen-
trate in the city center, representing up to 90% of the modeled local enhancements. In the southern part 
of the city, north to the UNA station, the contribution reaches its maximum value while the northern 
suburbs are dominated by industrial and energy production sources. The Tula power plant and addi-
tional surrounding industries generate a second plume north of Mexico City, where mobile sources have 
a minor role in the observed enhancements. In terms of emissions, the seasonality of mobile sources 
remains low (around 4%). The largest mobile signal originates from the dense road network within 
CDMX. Several satellite cities show significant signals - Toluca de Lerdo to the west, Tizayuka and 
Pachuca de Soto to the northeast, and Ixtapaluca to the southeast (plumes in Figure 13, bottom row). 
While the absolute contribution from mobile sources varies with seasons, the magnitude can be ex-
plained by the local atmospheric dynamics. The strong convective activity during the rainy season 
mixes air masses from the boundary layer and the free Troposphere (convective mixing through updraft 
and downdraft). As a result, the highest daily-averaged mobile contribution during the rainy season (12 
ppm) is half of that during the dry season (22 ppm).  We conclude that, with only two stations, future 
atmospheric inversions would be limited to constraining the emissions from traffic, while missing an 
important fraction of the energy production sources. Future stations should be deployed in the northern 
part of MCMA, the outflow of the urban basin. Additionally, a refinement of the fossil fuel emissions 
inventory (possibly divided into sectors of activities or SNAP’s) would be needed to determine the 
sectoral trends in more detail. 
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Figure 11. Atmospheric CO2 concentration absolute contributions from fossil fuel sources (top row), 
from mobile sources (middle row), and relative contribution of mobile sources to total fossil fuel (bot-
tom row) in the PBL during the dry (left) and rainy (middle and right columns) seasons for the year 
2018, in ppm. Topographic contours are indicated in light blue, administrative boundaries in gray, the 
urban area of MCMA in yellow, and the road network in CDMX in green. 
 

o  Biospheric contribution variability 
In our study, we used the biogenic flux contribution from the CASA biogeochemical model, optimized 
using eddy-covariance flux observations from the Ameriflux network (Zhou et al., 2020). While the 
optimization helps to constrain the model parameters, mediterranean and mountainous ecosystems lack 
flux measurement stations to constrain the model parameters. However, the use of disturbance forest 
maps and previous evaluation of CASA suggest that the simulated flux gradients should be representa-
tive of the area, with grassland and cropland in the valley north of the city, and forested land in the 
mountains. We discuss here how the ecosystem diversity, hence their resulting CO2 fluxes, translate 
into CO2 spatial gradients in our simulated concentrations.  
 
As shown in Figure 12, in the early morning, the valley of Mexico remains positively-influenced by 
ecosystems (ecosystem respiration dominates) due to late exposure to incoming radiation compared to 
the surrounding mountains. Mid-afternoon hours tend to show no-to-little spatial gradients across our 
simulation domain, corresponding to a homogeneous uptake of carbon. At night, the largest release of 
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CO2 from respiration takes place in the valleys, west and north of Mexico City. The positive fluxes 
remain low at both ALZ (above treeline) and at UNA (within the dense urban area).  
 
Despite the fact that the vegetation tends to be more active during the rainy season, we show no signif-
icant increase in the biogenic contribution at UNA nor ALZ (Figure S8), consistent with previous stud-
ies (Sánchez-León et al., 2016). During the dry season, the lack of water can prevent vegetation from 
growing, while the rainy and cloudy conditions reduce the sunlight during the rainy season. Across the 
urban area (including UNA), vegetation coverage remains low where population density is high. ALZ 
lies at high altitude (4000 m a.s.l.), above the treeline, hence without strong carbon uptake. In July, ALZ 
experiences a colder and drier climate than UNA, as shown in Figure S9. The photosynthesis is higher 
than that in May, but the largest absorption is only 5 ppm and the net contribution over two weeks is 
about -1.5 ppm. Overall, we conclude here that both sites correspond to similar biogenic influences 
during daytime, while early morning fluxes differ significantly.   

 
 

Figure 12. Mean biogenic contribution to surface CO2 of the three months in (top) AM: 8:00-12:00 
local time (middle) PM: 13:00-17:00 local time (bottom) Night: 23:00-4:00 local time 

o  Optimal network designs for CO2 inversions 
Based on our modeled results, we discuss here the potential use of UNA and ALZ measurements to 
constrain the city emissions, and we examine potential measurement sites to enhance the current net-
work. We analyze the spatial distribution of background concentrations to monitor large-scale boundary 
concentrations, and the spatial distribution of fossil fuel signals to maximize the city’s signals in our 
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future inversion system. Although human activities vary seasonally, such as heating in winters (not 
common in the city) and air conditioning in summers, the distribution of fossil fuel signals remains 
relatively stable, concentrated around the city and the Tula power plant.  

 
Figure 13. Atmospheric fossil fuel CO2 concentrations (50 meters agl) simulated by WRF and averaged 
over the three months of 2018, with current and potential MERCI-CO2 observation station locations 
and elevation contour lines (in light blue). 
 
The current downtown station (UNA) is located near the city center while ALZ is located further away 
from the emitting area, at a much higher altitude. A recently-deployed column station (VAL) is located 
in the city center, co-located with the modeled CO2 concentration maximum, while CUA, TEC, TXO 
and AME are on the edge of urban areas, able to capture the background conditions under various wind 
conditions. For additional measurement locations, the largest unobserved sources are located in the 
north of MCMA, around and from the Tula power plant where no station has been identified yet. An 
additional station able to monitor the northern part of CDMX would allow us to monitor emissions from 
non-transportation sources (industry and residential sectors), possibly CUA and FAC. Considering our 
existing stations, UNA is located near the maximum fossil fuel contributions (in terms of CO2 concen-
trations) while ALZ observes little to no fossil fuel signals.  
 
To assess the quality of the background station (ALZ), and determine additional locations for comple-
menting our background conditions, we calculated the Spearman correlation coefficient between the 
modeled background values of UNA with each grid in and around MCMA, similar to Feng et al. (2016). 
Figure 14 shows the correlation map including (top row) and excluding (bottom row) biogenic fluxes, 
primarily to determine if biogenic fluxes should be included in our future inversion system as unknowns, 
or assumed to be directly observed by our background station. We clearly see that biogenic fluxes sig-
nificantly decrease correlations between the valley and UNA, suggesting that biogenic fluxes are not 
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observed and should be optimized separately. When excluding the biogenic influence, correlations re-
main high at 0.87 in January, 0.91 in May, and 0.95 in July.  
 
We conclude here that ALZ remains an optimal location for observing the background conditions when 
excluding the biogenic influence. Potential locations highly-correlated with the UNA background and 
biogenic fluxes are located north of the city, possibly impacted by the Tula power plant plume in Janu-
ary and May (northerly flow). Therefore, we conclude that a second background station would allow us 
to evaluate our modeled background concentrations but, based on our current modeling system, would 
be redundant with the ALZ station. 
 

 
Figure 14. Spearman correlation coefficient maps of background (top) and background + biogenic (bot-
tom) contributions with troposphere wind direction at 3.5km for the three selected months of 2018. 
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Figure S1. Time series of the CO2 boundary concentrations at the southern (sea) and northern 
(land) model boundaries from the CarbonTracker inversion system, in UTC time (local 
time=UTC-6)  for January, May, and July 2018. 
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Figure S2. Time series of the mean hourly temperature over the 26 meteorological stations in 
and around Mexico City, in UTC time (local time=UTC-6), for the months of (a) January, (b) 
May, and (c) July of 2018. 
 

 
Figure S3. Wind speed daymean with interquartile range in January, May and July 2018 at 5 
of the 26 stations: MER in the city center, VIF in the north, MON in the east, AJU in the south 
(mountains), and INN in the west (mountains), in UTC time (local time=UTC-6). 
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Figure S4. Simulated and observed wind roses during daytime hours (07:00-17:00 local time, 
UTC-6) at two different meteorological stations: MER (in the city center) and INN (in 
surrounding mountains) over the 3 comparison period in January, May and July 2018, when 
observed wind speed > 2m/s. 
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Figure S5. Averaged afternoon CO2 concentrations (in ppm) with interquartile range for the 
different days of the week at UNA (upper row) and ALZ (lower row) for the months of January 
(left column), May (middle), and July (right) of 2018. 
 

Unit: ppm 
Jan May July 

UNA ALZ UNA ALZ UNA ALZ 

Mean Error 
AM 2.25 0.97 -2.51 -0.37 -0.80 1.67 

PM 1.93 0.83 -2.86 -2.91 0.00 -0.04 

Mean 
Absolute 

Error 

AM 21.63 2.60 9.04 2.32 8.77 2.69 

PM 5.70 2.63 3.54 3.05 3.88 1.75 

 
Table S1. Mean errors and mean absolute errors in atmospheric CO2 concentrations at 16-48 
meters a.g.l. for AM (7:00-12:00 local time UTC-6) and PM (13:00-17:00 local time UTC-6) 
in the months of January (left column), May (middle), and July (right) of 2018.  
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Figure S6. Daily mean XCO2 concentrations (left panels) and mean XCO2 diurnal cycles 
(middle panels, local time UTC-6) at the UNA station, observed by the EM-27/SUN instrument 
and simulated by WRF-Chem, for the months of January and May 2018. Observed and 
simulated XCO2 concentrations (right panels), with the corresponding linear regressions (blue 
lines, abnormal period May 15-17 excluded) at UNA for the same months. 
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Figure S7. Wind roses of in situ CO2 concentrations at UNA and ALZ for 2-week period in 
the month January (left column), May (middle column) and July (right column) of 2018. 
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Figure S8. Modeled time series of biogenic contribution to surface CO2 (in ppm) at UNA and 
ALZ for the months of (a) January, (b) May and (c) July of 2018, in UTC time (local 
time=UTC-6). 
 

 
Figure S9.  (a) 2-week rainfall and (b) 2-week mean temperature at UNA and ALZ in January, 
May and July of 2018.
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The French-Mexican project Mexico City’s Regional Carbon Impacts 
(MERCI-CO2) is building a CO2 observation network in the Metropolitan 
Zone of the Valley of Mexico (ZMVM). The project investigates the 
atmospheric signals generated by the city's emissions on total column and 
surface measurements, aiming at reducing the uncertainties of CO2 emissions 
in ZMVM and evaluating the effects of policies that had been implemented 
by the city authorities.  
A nested high-resolution atmospheric transport simulation based on the 
Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem) is performed to analyze the observed CO2 mixing ratios during dry 
and wet seasons over Mexico City and its vicinity. Both anthropogenic 
emissions (UNAM 1-km fossil fuel emissions) and biogenic fluxes (CASA 
5-km simulations) are taken into account. The model configuration, with a 
horizontal resolution of 1km and using the Single-Layer urban canopy Model 
(SLUCM), has been evaluated over two weeks in January 2018 using 
meteorological measurements from 26 stations set by the Air Quality Agency 
of Mexico City (Secretary of the Environment of Mexico City - SEDEMA). 
The reconstruction of meteorological conditions in the urban area shows 
better performances than sub-urban and mountainous areas. Due to the 
complex topography, wind speeds in mountain areas are 2-3 m/s over 
estimated and wind direction simulations in some stations are 90° deflected, 
especially in southern mountains.  
Two high-precision CO2 analyzers deployed in urban and rural areas of 
Mexico City are used to evaluate the WRF CO2 1-km simulations. The model 
reproduced the diurnal cycle of CO2 mixing ratios at the background station 
but under-estimates the nighttime accumulation at the urban station. Mean 
absolute errors of CO2 concentrations range from 6.5 ppm (background 
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station) to 27.1 ppm (urban station), mostly driven by the elevated nocturnal 
enhancements (up to 500ppm at UNAM station). Based on this analysis, we 
demonstrate the challenges and potential of mesoscale modeling over 
complex topography, and the potential use of mid-cost sensors to constrain 
the urban GHG emissions of Mexico City. 
  



 

215 

APPENDIX C : ABSTRACT AT AGU 2022 

Estimate of fossil fuel CO2 Emissions from the Mexico City 
Metropolitan Area Based on 1 year of Atmospheric 
Measurements and Inversion Modeling 
 
Y XU1,  T. Lauvaux2, M.Ramonet1, JA García Reynoso3, M. Grutter3, J. Lian1, 4  

 
1 Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, UMR 
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France 

2 Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), Université de 
Reims-Champagne Ardenne, UMR CNRS 7331, Reims, France 

3 Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional 
Autónoma de México, Mexico City, Mexico 

4 Origins S.A.S., Suez Group, Tour CB21, Paris, France 

 
Megacities contribute more than 70% of global fossil fuel CO2 emissions. 
During the past decades, cities and local governments have implemented local 
climate policies to mitigate their CO2 emissions. But these policies rely on 
bottom-up emissions inventories from energy  consumption data and 
statistical records, prone to large uncertainties. Top-down estimation based 
on Bayesian inversion approaches offers a complementary solution to reduce 
these uncertainties. Mexico City, located in the Valley of Mexico, is one of 
the largest cities in the world (22 million inhabitants). Thanks to a French-
Mexican collaboration, (Mexico City’s Regional Carbon Impacts -  MERCI-
CO2), a large network of  CO2 in-situ (Cavity Ring-Down Spectrometer, 
CRDS - Picarro) and ground-based column (solar-absorption Fourier 
transform infrared, FTIR - EM27/Sun) sensors have been deployed across the 
Mexico City metropolitan area. A series of atmospheric CO2 simulations 
between April 2018 and March 2019 were performed with the Weather 
Research and Forecasting model coupled with Chemistry (WRF-Chem). 
These, together with the surface CO2 and XCO2 measurements, provide the 
opportunity to produce top-down estimation of CO2 emissions in and around 
Mexico City. Through the assimilation of CO2 concentration gradients 
between the urban (UNAM) and the rural station (ALZ), the inversion system 
produced CO2 emissions estimates from different sources - background, 
anthropogenic (including residential, transportation and industrial) and 
biogenic. We investigate the discrepancies between the UNAM 1-km CO2 
emission inventory and our inverse estimates   over a year, , and we determine 
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the optimal characteristics of a future network able to monitor Mexico’s CO2 
emissions combining additional in situ and column sensors over the region. 
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APPENDIX D : RESUME SUBSTANTIEL EN FRANÇAIS 

Les villes sont responsables de plus de 70 % des émissions mondiales 
de CO2 et jouent donc un rôle important dans les actions visant à 
atténuer le changement climatique. Les municipalités et les 
gouvernements non-étatiques se sont engagés à  réduire les émissions 
de CO2 urbaines, et se rapprocher ainsi de la neutralité carbone d’ici 
2050. Afin d'évaluer l’impact des Plans Climat, des inventaires 
d'émissions de gaz à effet de serre sont établis à l'échelle de la ville . 
Mais ces  inventaires d'émissions basés sur les données de 
consommation et de production d’énergie sont sujets à de grandes 
incertitudes. La modélisation par inversion atmosphérique offre une 
solution complémentaire  capable de réduire les incertitudes. Elle 
combine la modélisation du transport atmosphérique et les mesures 
de concentrations en gaz à effet de serre pour affiner les estimations 
des émissions issues des inventaires.  

La zone métropolitaine de Mexico (MCMA) est l'une des plus grandes 
mégalopoles du monde. Les émissions annuelles de dioxyde de 
carbone (CO2) dans la MCMA sont passées de 42,1 millions de tonnes 
à 66,0 millions de tonnes entre 2012 et 2018. Le gouvernement 
mexicain a prévu de réduire les émissions de CO2 de 65,2 millions de 
tonnes au cours de la période 2021-2030. Afin d'évaluer 
quantitativement les stratégies de réduction des émissions de CO2, un 
projet franco-mexicain intitulé "Impacts du carbone dans la région de 
Mexico" (MERCI-CO2) a déployé un réseau d'instruments 
d'observation du CO2 in situ et en colonne dans la région de Mexico. 
Les gradients de concentration de CO2 sont assimilés  dans un système 
d'inversion basé sur le modèle de transport atmosphérique WRF-
Chem pour améliorer l'estimation préalable des émissions de CO2 à 
l'intérieur et à l'extérieur de la MCMA. 

Au cours de cette thèse, le modèle atmosphérique a été tout d’abord 
évalué sous diverses configurations, y compris en utilisant divers 
forçages aux bords, différents domaines de simulation, différents 
schémas physiques et dynamiques. Plusieurs variables 
météorologiques ont été prises en compte pour comparer les 
simulations et les observations, en utilisant des données collectées aux 
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stations météorologiques de la région mais également issues d’un 
instrument  LiDar ainsi que de radiosondes de l'Organisation Mondiale 
de la Météorologie (OMM). Afin de quantifier les erreurs les plus 
impactantes pour la simulation des concentrations en CO2 
atmosphérique, le travail de thèse s’est focalisé sur  les erreurs de 
simulation des températures de l'air, des vitesses et directions du vent 
et les hauteurs de mélange (couche limite atmosphérique) . Ces tests 
de sensibilité ont permis de définir la configuration optimale du 
système de modélisation utilisé dans les chapitres suivants.   

Dans un second temps, des cartes de concentration de CO2 au-dessus 
de la MCMA sur trois périodes caractéristiques de la région  (janvier, 
mai et juillet) ont été reconstruites par le modèle WRF-Chem à la 
résolution de 5 km,  en utilisant deux inventaires d'émissions: 
inventaire local préparé par les chercheurs de l'UNAM et un 
inventaired'émissions globales, ODIAC, ajusté par des facteurs 
d'échelle temporels. L'évaluation des simulations de CO2 a été réalisée 
sur la base de mesures in-situ de CO2 (CRDS) et de mesures de colonne 
(XCO2) par FTIR. Parallèlement à cette évaluation, nous avons 
également analysé les distributions temporelle et spatiale des signaux 
de CO2, notamment le cycle diurne, la variation hebdomadaire et la 
variation saisonnière, ainsi que la zone impactée par les flux 
anthropiques et la variation des flux biogéniques. Sur la base de cette 
analyse, nous avons évalué le potentiel de quantification du réseau 
actuel, y compris l'emplacement de la station de fond, tout en étudiant 
les emplacements potentiels de nouvelles stations.  

Pour conclure ce travail de thèse, une inversion sur une année 
complète a été réalisée sur la MCMA du 30 mars 2018 au 30 mars 2019. 
En se basant sur l'assimilation des gradients entre la station urbaine 
(campus de l’UNAM) à la station rurale (Altzomoni), l'inversion a ajusté 
les émissions anthropiques issues des deux inventaires  ainsi que les 
flux biogéniques du modèle Carnegie Ames Stanford Approach 
(CASA). Les concentrations de fond, représentées par les 
concentrations en CO2 issues du modèle CarbonTracker 2019B sont 
restées les mêmes. Un ensemble de plusieurs inversions a été réalisé 
sur l’année pour mieux quantifier les incertitudes des émissions en 
faisant varier  les covariances d’erreur temporelles, en variant la fenêtre 
d’assimilation, en séparant les secteurs d’activités (trafic), en 
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appliquant un masque sur la MCMA, et en filtrant les données de 
concentrations en CO2.  Cet ensemble nous permet d'améliorer les 
performances de l'inversion et de spécifier l'impact du signal urbain et 
des différentes composantes du système. Un derniere expérience nous 
a permis d’étudier l’impact de l’assimilation des concentrations en 
monoxyde de carbone (CO), dont les observations débutent en 
décembre 2018.  
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