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Application à un système de tuyauterie
d’une centrale nucléaire
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Thèse présentée et soutenue à Palaiseau, le 9 Novembre 2022, par
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Abstract
Nuclear power plants are complex engineering systems for which reliability has to be guaranteed during its operational lifetime

due to the hugely negative consequences provoked by nuclear accidents to human health or to the environment. The effects of
natural hazards such as earthquakes on these facilities are included in the risk analysis but are difficult to estimate because of their
randomness. Since the 1980s, a probabilistic seismic risk assessment framework has been developed to evaluate the reliability of
structures, systems and components (SSC) of nuclear facilities against seismic risk. This framework is relying on a specific quantity
of interest: the seismic fragility curve. At the scale of these facilities, these curves represent the conditional probabilities of failure of
the SSCs given a scalar value derived from a seismic loading indicating its "strength" and which is called seismic intensity measure.
The management of the various sources of uncertainty inherent to the problem to be addressed is often divided into two categories:
(i) the so-called random uncertainties that arise from the natural variability of physical phenomena that are difficult to measure or
control, and (ii) the so-called epistemic uncertainties that are associated with the lack of knowledge of the system under study and that
can be reduced, in the short term, by means of experimental campaigns for example. In seismic probabilistic risk assessment studies
for the nuclear industry, the main source of random uncertainty is the seismic loading and the sources of epistemic uncertainties are
attributed to the mechanical parameters of the structure considered. In this framework, this thesis aims at understanding the effect
of epistemic uncertainties on a seismic fragility curve by using an uncertainty quantification methodology. However, as numerical
mechanical models are often computationally expensive, a metamodeling step, based on Gaussian process regression, is proposed.
In practice, the sources of epistemic uncertainties are first modeled using a probabilistic framework. After establishing a Gaussian
process metamodel of the numerical mechanical model, they are then propagated through the surrogate model. The propagation of
epistemic uncertainties as well as the sensitivity analysis are then carried out on the seismic fragility curve via the metamodel, using
a reduced number of calls to the mechanical computer code. This methodology thus allows both propagating and ranking the most
influential epistemic sources of uncertainty on the fragility curve itself, at a reduced numerical cost. In addition, several procedures for
planning numerical experiments are proposed to lighten the computational load, while ensuring the best possible estimation accuracy
on the seismic fragility curve. The methodologies presented in this thesis are finally tested and evaluated on an industrial test case
from the nuclear industry, namely a section of piping equipping French pressurized water reactors.

Keywords: Seismic reliability • Uncertainty quantification • Design of experiments • Gaussian process • Nuclear industry

Résumé
Les centrales nucléaires sont des systèmes complexes dont la fiabilité doit être garantie tout au long de leur durée de vie opéra-

tionnelle en raison des conséquences négatives des accidents nucléaires sur la santé humaine et l’environnement. Les effets des risques
naturels tels que les séismes sur ces installations sont intégrés à l’analyse des risques mais sont difficiles à estimer en raison de leur
caractère aléatoire. Depuis les années 1980, un cadre d’évaluation probabiliste des risques sismiques a été développé pour évaluer
la fiabilité des structures, systèmes et équipements (SSE) des installations nucléaires face au risque sismique. Ce cadre s’appuie sur
une quantité d’intérêt spécifique: la courbe de fragilité sismique. A l’échelle de ces installations, ces courbes représentent les probabilités
conditionnelles de défaillance des SSE sachant une valeur scalaire dérivée d’un chargement sismique indiquant sa « force » et qui
est appelée intensité de mesure sismique. La gestion des diverses sources d’incertitudes inhérentes au problème à traiter est souvent
divisée en deux catégories : (i) les incertitudes dites aléatoires qui proviennent de la variabilité naturelle des phénomènes physiques dif-
ficiles à mesurer ou à contrôler et (ii) les incertitudes dites épistémiques que l’on associe au manque de connaissance du système étudié
et qui peuvent être réduites, à court terme, par le biais de campagnes expérimentales par exemple. Dans les études d’évaluation
probabiliste du risque sismique pour l’industrie nucléaire, la principale source d’incertitude aléatoire est le chargement sismique et
les sources d’incertitudes épistémiques sont attribuées aux paramètres mécaniques de la structure considérée. Dans ce cadre, cette
thèse vise à appréhender l’effet des incertitudes épistémiques sur une courbe de fragilité sismique en utilisant une méthodologie
de quantification des incertitudes. Toutefois, comme les modèles mécaniques numériques sont souvent coûteux en temps de calcul,
une étape de métamodélisation, basée sur la régression par processus Gaussien, est proposée. En pratique, les sources d’incertitudes
épistémiques sont en premier lieu modélisées en utilisant un cadre probabiliste. Après l’établissement d’un métamodèle par pro-
cessus Gaussien du modèle mécanique numérique, elles sont ensuite propagées à travers celui-ci. La propagation des incertitudes
épistémiques ainsi que l’analyse de sensibilité sont alors menées sur la courbe de fragilité sismique via le métamodèle, à partir d’un
nombre réduit d’appels au code de calculs mécaniques. Cette méthodologie permet donc à la fois de propager et de classer les
sources d’incertitudes épistémiques les plus influentes sur la courbe de fragilité elle-même, à un coût numérique réduit. En outre,
plusieurs procédures de planification d’expériences numériques sont proposées pour alléger la charge de calcul, tout en garantissant
la meilleure précision d’estimation possible sur la courbe de fragilité sismique. Les méthodologies présentées dans cette thèse sont
finalement testées et évaluées sur un cas test industriel issu de l’industrie nucléaire, à savoir un tronçon de tuyauterie équipant des
réacteurs à eau pressurisée français.

Mots-clés: Fiabilité sismique • Quantification des incertitudes • Planification d’expériences • Processus Gaussien • Industrie nu-

cléaire
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CHAPTER1
Introduction

Context

Nuclear power plants (NPP) are some of the most complex engineering systems ever designed
by mankind, involving almost every domain of physics and engineering like fluid mechanics,
thermohydraulics, neutronics, structural mechanics, fluid structure interactions to say the least.
As any complex engineering system, it is not deemed failure-proof, and due to the very long
lifetime of nuclear power plants, nuclear safety is a truly complex and challenging task. Moreover,
the negative consequences provoked by nuclear accidents - in terms of harm to human health and
to the surrounding environment - are so huge that the safety level imposed by national regulatory
agencies is one of the highest ever imposed to a complex engineering system.

One of the possible sources of nuclear accidents comes from natural hazard such as an earth-
quake event in the site of the NPP. The dynamical behavior during a seismic event of the various
structural components of the NPP has to be properly assessed to guarantee its operational con-
ditions. The main challenge of seismic risk assessment of NPPs is the inherent randomness of
earthquakes in terms of temporal and spectral content of the seismic loading. Since the 1980s,
the seismic probabilistic risk assessment (SPRA) framework has been developed in the USA to
properly assess the safety of NPP’s components under seismic excitations, accounting for the ran-
domness of seismic hazard through a probabilistic framework.

Since the last decades, the NPP safety has increasingly relied on high-fidelity computer models
that aim to be a digital twin of the system simulated. The use of numerical simulations is motivated
by the possibility to simulate physical phenomena that can not be observed or replicated on test
specimens due to their complexity (e.g. the dynamical behavior under seismic loading of the
whole piping system of a NPP). The computer model in structural dynamics often relies on solving
numerically ordinary or partial differential equations using for instance finite element simulations.

Assessing the reliability and safety of mechanical structures involves taking into account vari-
ous sources of uncertainties. Uncertainties may come from natural hazard such as wind or seismic
loading, but also from the physical properties of the structures (e.g. the material properties or the
boundary conditions). These uncertainties have to be taken into account to ensure a satisfactory
safety level. Such an objective can be achieved thanks to a general uncertainty quantification frame-
work presented in the next section.
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Uncertainty quantification framework

Uncertainty quantification (UQ) gathers a wide variety of both theoretical and applied tools
from probability theory, computational statistics and stochastic simulation. UQ framework is by
definition interdisciplinary and can be applied to many engineering branches. UQ can be summa-
rized into a few fundamental steps that can be applied to any engineering branch of interest (see
e.g. Sudret, 2007; De Rocquigny et al., 2008; Iooss, 2009). These steps are detailed below:

• Problem specification: the first step is naturally the definition of the engineering system
studied and the conception of the computer model that will simulate this system. It includes
defining the input variables of the computer model and its output quantities that matter for
studying the physical phenomena of interest.

• Uncertainty modeling: the second step consists in listing all the possible sources of uncer-
tainties affecting the input variables of the computer model. The most classical mathematical
model for the representation of the uncertainty is the probabilistic framework.

• Uncertainty propagation: the third step is dedicated to the propagation of the uncertainties
tainting the input variables to the output variables through the computer model. Therefore,
the output variable is tainted by uncertainties as well. Statistical tools can then be applied
on the output variables to estimate various quantities of interest (e.g. mean, quantile, prob-
ability of exceedance...)

• Inverse analysis: this last step can be split into two parts: First, the calibration of the com-
puter model w.r.t. available data, which is out of scope of this manuscript. Second, the
sensitivity analysis step aims at studying how the uncertainty on the output variable can be
apportioned to each input variable (or subset of input variables).

In this manuscript, we suppose that the computer model is previously calibrated. The inverse
analysis step will be devoted to the sensitivity analysis step.

Problem statement

This thesis deals with the problem of seismic fragility curve estimation of a given mechani-
cal structure. This particular quantity of interest is a key quantity of the SPRA framework and
is the probability of failure of a mechanical structure conditional to a seismic intensity measure,
which is commonly a scalar value. A seismic fragility curve is often represented graphically as
shown in Figure 1.1. After the pioneering work done in R. Kennedy, C. Cornell, et al., 1980; R.
Kennedy and Ravindra, 1984, seismic fragility curves estimation is now usually performed using
numerical simulations based on computer models (see e.g. Karim and Yamazaki, 2001; Kim and
Shinozuka, 2004; Zentner, 2010). However, the mechanical and material parameters of the struc-
ture are affected by uncertainties arising from manufacturing variability. Moreover, the boundary
conditions (e.g. fixation of the structure to the support) are very often uncertain due to a lack of
knowledge and/or a lack of data. Thus, these uncertainties may affect the seismic fragility curves
of the structure.

In this thesis, the emphasis is on taking into account the uncertainties that taint the mechanical
parameters of a structure on its seismic fragility curve, using the UQ framework. Therefore, the
main problematic under study in this manuscript can be stated as follows.
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FIGURE 1.1: Illustration of a seismic fragility curve.

How to build an UQ methodology for the seismic fragility curves of mechanical struc-
tures ?

This problematic can be decomposed into the following questions:

Q1 - How to propagate the mechanical parameters uncertainties into seismic fragility
curves with a reasonable computational time ?

Q2 - How the uncertainty on the seismic fragility curve can be apportioned to the different
sources of epistemic uncertainties ?

Q3 - How to planify the numerical simulations to improve the estimation accuracy of the
seismic fragility curves and to reduce the number of simulations in the same time ?

The two questions Q1 and Q2 are devoted to the adaptation of the general UQ framework to
seismic safety studies, and more specifically for the seismic fragility curves which are key quanti-
ties of interest in the SPRA framework. The last question Q3 is a key problematic in goal-oriented
UQ. Indeed, it concerns the planification of the computer calls w.r.t. all its input parameters to
accurately estimate the quantity of interest (here the seismic fragility curve). Several scientific
objectives of this thesis and a brief résumé of this manuscript are stated in the next section.

Objectives and outline

The objectives of this thesis are listed below:

O1 Propose a state-of-the-art review of the different existing statistical methods for seismic
fragility curves estimation in the SPRA framework;

O2 Develop a methodology to account for epistemic uncertainties in the seismic fragility curves
with appropriate statistical tools;

O3 Bring forward sensitivity analysis tools that are seismic fragility curve-oriented, taking into
account the estimation uncertainties of the seismic fragility curves;

O4 Propose numerical experimental designs to improve the estimation of seismic fragility curves
while managing in the same time the number of calls of the computer model;
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O5 Apply the proposed tools to a realistic computer model of a NPP component.

Letting the introduction and conclusion chapters aside, the present manuscript is composed of
seven chapters aiming to carry out the five scientific objectives stated above. The contents of each
chapter is detailed below.

Chapter 2 proposes a brief review of the principal methods for statistical estimation of seismic
fragility curve. The methodology for the estimation of seismic fragility curves using numerical
experiments is also recalled, from the generation of synthetic ground motions to the statistical
methods of estimation of seismic fragility curves.

Chapter 3 presents a novel estimation methodology of seismic fragility curves using impor-
tance sampling in order to improve their estimation accuracy.

Chapter 4 presents an overview about the UQ framework. First, the fundamental notions
are described, such as the black-box viewpoint, the sources of uncertainties and their probabilistic
modeling. Then, an adaptation of the UQ framework to earthquake engineering is proposed, fo-
cusing on the seismic fragility curves.

Chapter 5 addresses the core problem of surrogate modeling of black-box computer models.
Due to the computational cost of seismic fragility curves estimation, the computer model is re-
placed by a surrogate using statistical methods. The main advantage is a cheap estimation of the
seismic fragility curve, but they are now tainted by a surrogate modeling uncertainty. Surrogate
modeling using Gaussian process regression is then developed in this chapter, due to its ability to
propose both a prediction and a quantification of the uncertainty on its predictions.

Chapter 6 presents a sensitivity analysis methodology on the seismic fragility curve. The focus
is put on the more specific framework of global sensitivity analysis (GSA) that aims at considering
the overall probabilistic framework on the input parameters of the computer model. After a brief
state-of-the-art review of GSA, two global sensitivity indices are proposed as well as their estima-
tors. A numerical procedure is detailed to account for the uncertainty arising from the surrogate
model.

Chapter 7 proposes a sequential planning of experiments procedure based on Gaussian pro-
cess to improve the estimation accuracy of the seismic fragility curve using a Gaussian process
surrogate model. After a brief recall on stepwise uncertainty reduction (SUR) techniques, a SUR
strategy is then developed for seismic fragility curves estimation.

Chapter 8 presents a nuclear engineering representative test-case issued from an experimen-
tal program of the Commissariat à l’énergie atomique et aux énergies alternatives (i.e. French national
laboratory on nuclear and carbon-free energies). It consists in a mock-up of a piping system of a
French pressurized water reactor (PWR). In this chapter, the tools developed in the three previous
chapters are applied to discuss the use of the proposed methodology to a real test-case.

The chapters can be organized into two groups: On the one hand, Chapters 2 and 3 are more
about the classical methods of seismic fragility curve estimation and a possible improvement us-
ing the statistical technique of importance sampling, the question of epistemic uncertainties is not
addressed there. On the other hand, chapters 4, 5, 6, 7 and 8 concern the accounting of epistemic
uncertainties on the seismic fragility curve and the development of an UQ methodology on the
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seismic fragility curves, They are intended to be read in chronological order to be consistent with
the various mathematical tools used in these chapters. Table 1.1 provides a brief recap of the con-
tents of each chapter of this manuscript and specify their links to the scientific objectives. For each
chapter, a mention "SOTA" or "NEW" indicates if the content of the chapter is more "state-of-the-
art" related or an unpublished / novel contribution.

Moreover, I had the opportunity to supervise the six-months research internship of Antoine
Van Biesbroeck. The research topic concerned the elicitation of prior distributions concerning
Bayesian methods for estimating seismic fragility curves. Since its content differs from the main
topic of this thesis, his work has been exposed in Appendix C.

TABLE 1.1: Summary of the content of the thesis

Keywords Chapter Content Objectives
Seismic fragility curve / Ground motion generation / Log normal model Chapter 2 SOTA O1
Importance sampling / Planning of experiments / Confidence intervals Chapter 3 NEW O4/O5

Uncertainty modeling / Probability theory / Black-box computer models Chapter 4 SOTA O2
Surrogate modeling / Gaussian process regression Chapter 5 SOTA/NEW O2

Fragility curve-oriented GSA / Kriging-based GSA / Kernel methods Chapter 6 NEW O3
Sequential planning of experiments / Gaussian process Chapter 7 NEW O4

Piping system of a PWR / Seismic safety study Chapter 8 NEW O5
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CHAPTER2
Statistical methods for seismic fragility
curves estimation: a brief review

Contents
2.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Seismic fragility curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 SPRA framework for simulation-based approaches . . . . . . . . . . . . . . 9
2.2.3 Estimation of seismic fragility curves : a brief state-of-the-art . . . . . . . . . 10
2.2.4 Estimation based on expert judgment: another definition of the fragility

curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Seismic fragility curves estimation using maximum likelihood and the log-

normal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.6 Fragility curve estimation using linear regression in log-space . . . . . . . . 13

2.3 Seismic fragility curves estimation using numerical simulations . . . . . . . . . . 14
2.3.1 Ground motion generation using Rezaeian’s model . . . . . . . . . . . . . . 15
2.3.2 Reference fragility curves obtained by nonparametric estimation . . . . . . 17

2.4 Application: a single d.o.f. oscillator with nonlinear restoring force . . . . . . . . 17
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Context and motivations

Among the natural hazards, earthquakes are known to cause huge structural damages while
being extremely difficult to forecast. Since the last 1980s, a probabilistic framework has been
developed to evaluate the annual probability of occurrence of severe damage on structures caused
by seismic ground motions. The Seismic Probabilistic Risk Assessment (SPRA) (see R. Kennedy,
C. Cornell, et al., 1980; R. Kennedy and Ravindra, 1984) is thus a widely used methodology for
seismic structural reliability which is now the most common approach to evaluate the seismic risk
on structures in nuclear facilities. The key elements of SPRA studies are the determination of the
seismic hazard, the seismic fragility evaluations of the components of a structure and the system
analysis including the construction of a logical fault tree model of the system. The law of total
probability allows us to evaluate the annual probability of failure due to seismic hazard of the
system studied.
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In this framework, fragility analysis of the structure is a crucial step. This boils down generally
to the estimation of a so-called fragility curve, which is the probability of failure of a mechanical
structure conditional to seismic Intensity Measure (IM). A seismic IM is a scalar quantity derived
from the earthquake accelerogram signal (for instance the maximal absolute soil acceleration dur-
ing a seismic event at a designated site) in order to measure an earthquake strength. Fragility
curve is also a key quantity for Performance Based Earthquake Engineering (PBEE) (see Gho-
barah, 2001; Porter, R. Kennedy, and Bachman, 2007) framework. In this context, they are based
on a different definition - the probability of exceeding a certain damage state for a given Engineer-
ing Demand Parameter (EDP) such as interstory drift ratio for example - and are often referred
to as fragility functions (see e.g. Porter, R. Kennedy, and Bachman, 2007 and the proceedings in
PEER, 2004), even if this denomination is not reserved for this last definition and also includes the
previous one (see e.g. Baker, 2015; Kumar and Gardoni, 2013; Lallemant, Kiremidjian, and Burton,
2015). The concept of fragility curve is not limited to seismic loading and can be used for wind
loading (Quilligan, O’Connor, and Pakrashi, 2012) or multi-hazard storm conditions (Bernier and
Padgett, 2019).

Estimation of seismic fragility curve is based on three different approaches:

• Expert judgment: Expert opinions on the structure studied and the ground motion activity
of the specific site studied are used to define a fragility curve for the structure, this was
the first method of fragility curve estimation for SPRA studies proposed in R. Kennedy,
C. Cornell, et al., 1980 concerning nuclear power plants in the USA. This method does not
require computational power, which makes it very appealing in a time when computational
resources were scarce and not as powerful as today. However, the major drawback is the
inherent subjectivity of the method.

• Empirical observations: Fragility curve can be estimated after observational campaigns
made by civil engineers in regions that have a recent seismic activity. Several structures are
observed to determine their damage level. After this data gathering step, statistical models
are used to provide a fragility curve estimate. This method is more adapted for countries
with huge seismic activity such as the USA or Japan.

• Computer simulations: The rise of computational power in the late 1990s made possible
the use of mechanical numerical models (such as Finite Elements) to replace infeasible real
experiments by their numerical counterparts. This method is particularly interesting due to
its huge flexibility: It is possible to simulate a wide number of structures for seismic ground
motions of different sites in the world. However, numerical models of the seismic excitation
have to be developed and calibrated on real seismic ground motion signals.

This chapter presents a brief review of the different methods for estimating seismic fragility
curves with a focus on the SPRA framework and is organized as follows. Section 2.2 presents the
different definitions of the seismic fragility curve and the most common estimation methods that
can be found in the literature. Section 2.3 focuses on the particular case of seismic fragility curves
estimation using numerical mechanical simulations and finally Section 2.4 illustrates the main
concepts of this chapter on a single d.o.f. (degree of freedom) oscillator with nonlinear restoring
force.



2.2. Seismic fragility curves 9

2.2 Seismic fragility curves

2.2.1 Definition

In this work, the fragility curve of a mechanical structure is defined as the conditional proba-
bility of failure for a given seismic intensity measure:

ψ(a) = P(Z ≥ C|A = a) , (2.1)

A is the random variable of the seismic intensity measure, Z is the random variable of the mechan-
ical demand (observed or computed using numerical simulations) of the structure studied and C
is a threshold for which the structure studied is considered to be in a non-acceptable behavior in
terms of safety. Usually, the seismic intensity measure is a scalar value derived from the seismic
ground motion accelerogram. As recalled in Grigoriu and Radu, 2021, seismic intensity measures
must follow three properties:

• Efficiency: the conditional distribution of Z given A must have small variance;

• Sufficiency: the conditional distribution of Z given A must summarize the effect of the seis-
mic hazard;

• Scale robust: The conditional distribution of Z given A is unchanged when using scaling
seismic signals. Scaling here means adjusting a set of seismic signals to a specific intensity
measurement value A by multiplying them by ad hoc constants. In practice such method is
nevertheless not recommended (see Section 2.2.3).

2.2.2 SPRA framework for simulation-based approaches

The present work is part of the SPRA framework which ultimately consists in evaluating the
mean annual frequency of failure (or undesirable outcome) λf defined by (see e.g. R. Kennedy,
1999; A. Cornell, 2004; Baker, 2015; Kumar and Gardoni, 2013):

λf =

∫ ∞

0
ψ(x) |dH(x)| (2.2)

where ψ(x) = P({failure}|x) is the IM-based fragility curve we want to estimate via simulation-
based approaches and H(x) is mean annual frequency of exceedance of a ground motion of level
IM = x (i.e. the seismic hazard curve at a designated site). In A. Cornell, 2004, the author re-
calls the main assumption on which the equation (2.2) is based. This is the so-called sufficiency
assumption of the IM with respect to the magnitude (M), source-to-site distance (R) and other pa-
rameters thought to dominate the seismic hazard at the site of interest (e.g. P({failure}|M,R,IM) =
P({failure}|IM)). However, he rightly advises remaining cautious in practice and to choose as far
as possible seismic signals compatible with the scenario of interest because it is difficult to estab-
lish the sufficiency of an IM candidate. Accordingly, this is what we did in this thesis to perform
nonlinear dynamic analyses.

They are various methods to estimate the fragility curve of a structure, after a brief review
about the major estimation techniques, we briefly present three main methods: the first one is
based on expert judgments, the second one is based on a lognormal assumption on the seismic
fragility curve and finally the third and last one is based on linear regression in log-space.
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2.2.3 Estimation of seismic fragility curves : a brief state-of-the-art

In earthquake engineering, various data sources can be exploited to estimate these curves,
namely: expert judgments supported by test data (see e.g. R. Kennedy, C. Cornell, et al., 1980; R.
Kennedy and Ravindra, 1984; Park, Hofmayer, and Chokshi, 1998; Zentner, Gündel, and Bonfils,
2017), experimental data (see e.g. Park, Hofmayer, and Chokshi, 1998; Gardoni, Der Kiureghian,
and Mosalam, 2002; Choe, Gardoni, and Rosowsky, 2007), post-earthquake damage results called
empirical data (see Lallemant, Kiremidjian, and Burton, 2015; Straub and Der Kiureghian, 2008)
and analytical results given by more or less refined numerical models. For approaches based on
nonlinear dynamic structural analyses, three families of procedures are commonly used to collect
data in order to assess seismic fragility curves: Incremental Dynamic Analysis (IDA), Multiple
Stripes Analysis (MSA) and Cloud Analysis (CA). In most cases, these approaches are also cou-
pled with a parameterization of the fragility curve since, compared to non-parametric estimations,
parametric ones require small sample sizes. The lognormal model historically introduced in the
SPRA framework (see R. Kennedy, C. Cornell, et al., 1980; R. Kennedy and Ravindra, 1984) is
currently the most used (see e.g. Lallemant, Kiremidjian, and Burton, 2015; Shinozuka et al., 2000;
Ellingwood, 2001; Kim and Shinozuka, 2004; Mandal, S. Ghosh, and Pujari, 2016; F. Wang and
Feau, 2020; Mai, Konakli, and Sudret, 2017; Trevlopoulos, Feau, and Zentner, 2019), even if its va-
lidity is questionable (see e.g. Lallemant, Kiremidjian, and Burton, 2015; Mai, Konakli, and Sudret,
2017; Trevlopoulos, Feau, and Zentner, 2019; Zentner, 2017). IDA is based on scaled accelerograms
until the failure threshold of interest. Fragility curves are then considered as empirical cumula-
tive distribution functions. The main disadvantage of IDA is that excessive scaling can lead to
signals with unrepresentative frequency content and duration, which can imply biased results in
nonlinear structural responses (see e.g. Luco and Bazzurro, 2007; Altieri and Patelli, 2020). Strong
evidence against scaling accelerograms is provided in Grigoriu, 2011 considering a more theoreti-
cal approach. Although not recommended, this approach is still implemented (see e.g. Mandal, S.
Ghosh, and Pujari, 2016; C. Zhao, Yu, and Mo, 2020; Y. Zhao et al., 2021). MSA is based on multi-
ple accelerograms selected or scaled to match specific IMs. Thus, for each IM value, the structural
analyses provide a fraction of the ground motions that cause failure. Finally, CA is a kind of gen-
eralization of MSA in the sense that it is based on a single accelerogram for each IM value, i.e. no
scaled accelerogram is used. Depending on the context, different techniques can be employed to
estimate the fragility curves. For example, for parametric estimation, we distinguish: the method
of moments (which is mainly used for the IDA-based methodology), the Maximum Likelihood
Estimation (MLE) by assuming the independence of the observations (which can be questionable
when empirical data are concerned, see (Straub and Der Kiureghian, 2008)), and the minimiza-
tion of the Sum of Squared Errors (SSE). For non-parametric estimation, kernel smoothing can be
used (see e.g. Lallemant, Kiremidjian, and Burton, 2015; Mai, Konakli, and Sudret, 2017) as well
as other methodologies (see e.g. Trevlopoulos, Feau, and Zentner, 2019; Altieri and Patelli, 2020).
Note that most of these strategies are compared in Baker, 2015; Lallemant, Kiremidjian, and Bur-
ton, 2015; Mai, Konakli, and Sudret, 2017 and Lallemant, Kiremidjian, and Burton, 2015 give a
clear presentation of the advantages and disadvantages of each of them.

Beyond these methods, techniques based on machine learning can also be used, including:
linear regression or generalized linear regression (see Lallemant, Kiremidjian, and Burton, 2015),
classification - based techniques in Bernier and Padgett, 2019; Kiani, Camp, and Pezeshk, 2019;
Sainct et al., 2020, kriging in Gidaris, Taflanidis, and Mavroeidis, 2015, polynomial chaos expan-
sion in Mai, Spiridonakos, et al., 2016, artificial neural networks in Sainct et al., 2020; Mitropoulou
and Papadrakakis, 2011; Z. Wang et al., 2018. Some of them were coupled with adaptive tech-
niques to reduce the number of calculations to be performed (see Sainct et al., 2020; Gidaris,
Taflanidis, and Mavroeidis, 2015). The Bayesian framework is also relevant in this context since



2.2. Seismic fragility curves 11

it allows either (i) to fit numerical models (metamodels, mathematical expressions based on en-
gineering judgments, etc.) to experimental data to "directly" (see below) estimate the fragility
curves (see Gardoni, Der Kiureghian, and Mosalam, 2002) or (ii) to use empirical data or ana-
lytical data to fit the parametric models of the fragility curves (see Straub and Der Kiureghian,
2008).

Physics-based approaches are also suitable for estimating fragility curves. Let us quote for
example the approach developed as part of the PBEE framework, which makes it possible to esti-
mate non-parametric fragility curves by carrying out a rigorous reliability analysis once the capac-
ity and demand models have been developed (see Gardoni, Der Kiureghian, and Mosalam, 2002).
In doing so, it also offers the advantage of being able to carry out sensitivity analyses (see Choe,
Gardoni, and Rosowsky, 2007). The capacity model is first built on deterministic engineering
principles, thus exhibiting the main variables of the mechanical problem. Then, an additive prob-
abilistic model is constructed by introducing a bias correction term and a noise term to represent
the error of the model, which depend on a number of unknown parameters. The demand model
is built with similar considerations. This approach was implemented to estimate the EDP-based
fragility curves of reinforced concrete columns, having multiple failure modes, for which a large
experimental database is available in order to estimate the unknown parameters in the Bayesian
framework as in Gardoni, Der Kiureghian, and Mosalam, 2002; Choe, Gardoni, and Rosowsky,
2007. The same methodology was extended in Gardoni, Mosalam, and D. A., 2003 for estima-
tions of IM-based fragility curves of reinforced concrete bridges considering, among others, the
results of numerical simulations and, later, effects of corrosion in Choe, Gardoni, Rosowsky, and
Haukaas, 2009. Several studies have subsequently been carried out using this methodology.

2.2.4 Estimation based on expert judgment: another definition of the fragility curve

When data are scarce or incomplete, the estimation of seismic fragility curves is only possible
based on the judgment of engineers or experts in the domain. The safety factor method (see R.
Kennedy, C. Cornell, et al., 1980; R. Kennedy and Ravindra, 1984) was developed in the 1980s in
order to propose an economical method for seismic fragility curve estimation. This method sup-
poses that each safety factor follows a lognormal distribution. The seismic capacity Ac corresponds
to the conditional distribution A|(Z ≥ C). A simplified model assumes that Ac is defined by the
product of the safety factors, so that it is also lognormally distributed. Denote by (Fi)1≤i≤n the
safety factors with medians (F̌i)1≤i≤n and logarithmic standard deviation (βi)1≤i≤n, the ground
acceleration capacity Ac is then defined by:

Ac =
n∏

i=1

Fi . (2.3)

Moreover, the seismic capacity randomness is divided into an epistemic and aleatory part:

Ac = AmεRεU , (2.4)

where Am is the median capacity, εR and εU are two lognormal random variables with unit
median and log standard deviation respectively βR and βU . Consider the case where there are no
epistemic uncertainties (i.e. βU = 0). The fragility curve for an acceleration level a is in this case
defined by:

ψ(a) = P(Ac ≤ a) = Φ

(
log (a/Am)

βR

)
, (2.5)
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where Φ is the cdf of the standard Gaussian distribution N (0, 1). Consider now that βU > 0, the
fragility curve at ground acceleration a and confidence level Q is defined by:

ψ(a;Q) = Φ

(
log (a/Am) + βUΦ

−1(Q)

βR

)
, (2.6)

This confidence level Q provides conservative estimation of the fragility curve w.r.t. the lack
of knowledge of the system due to the epistemic uncertainties modeled by the random variable
εU . Indeed, we can notice that:

PεU (ψ(a;Q) ≥ PεR(Ac ≤ a|εU )) = Q ,

where for a random variable X , the notation PX corresponds to the probability measure de-
fined w.r.t X . In practice, the fragility curve is obtained using tabulated values for the median of
the safety factors F̌i, their log standard deviation βi which are divided into a random parts and an
epistemic part (the interested reader can consult Table 2 in R. Kennedy and Ravindra, 1984 for a
practical example).

Remark that in this framework, the fragility curve defined as P(Ac ≤ a) = P(A ≤ a|Z ≥ C) is
not the same as the definition given in Equation 2.1. However, it is possible to retrieve the original
fragility curve using Bayes theorem and total probability theorem:

P(A ≤ a|Z ≥ C) =
P(Z ≥ C|A ≤ a)P(A ≤ a)

P(Z ≥ C)

P(Z ≥ C|A ≤ a) =

∫ a

0
P(Z ≥ C|A = α)dPA(α) .

(2.7)

The safety factor methodology estimates a fragility curve which is the cumulative distribution
function of the random variableA|(Z ≥ C), and it can be related to the fragility curve definition in
Equation 2.1 thanks to Equation 2.7. In the rest of this manuscript, we will only study the fragility
curve defined in Equation 2.1.

2.2.5 Seismic fragility curves estimation using maximum likelihood and the lognor-
mal model

This approach is based on real observations on damaged structures after a seismic excitation,
it allows the estimation of fragility curves of real structures submitted to real seismic excitations,
without requiring expert knowledge or numerical simulations of the structure. However, the effi-
ciency of this method is limited due to the data scarcity (this method of estimation is only possible
in countries with huge seismic activity such as the USA or Japan). Moreover, the inference is also
challenging due to the binary nature of the data (the structure is considered damaged or not).
However, this method can be easily generalized to the case where the mechanical demand is ob-
tained through numerical simulations.

The most classical approach for fragility curve estimation was derived in Shinozuka et al.,
2000, it was used to estimate fragility curves of bridges after the 1995 Kobe earthquake: Consider
a dataset Dn = (Ai, Si)1≤i≤n where Ai is the intensity measure of the i-th bridge (the intensity
measure chosen in Shinozuka et al., 2000 was the PGA) and Si is a binary random variable equal
to 0 if no damage is observed on the i-th bridge and 1 if it is considered damaged. A lognormal
assumption is considered for the fragility curve ψ. Defining θ = (α, β)T ∈ (0,+∞)2, the fragility
curve takes the following analytical form:
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ψθ(a) = Φ

(
log
(
a
α

)

β

)
, (2.8)

we can thus write the likelihood using the lognormal model of the fragility curve:

L(Dn; θ) =

n∏

i=1

ψθ(Ai)
Si(1− ψθ(Ai))

1−Si , (2.9)

The estimation of the fragility curve thus boils down to the estimation of the parameter θ. The
maximum likelihood estimator (MLE) then writes:

θ̂MLE
n = argmax

θ∈(0,+∞)2
L(Dn; θ) . (2.10)

The uncertainty of the estimator θ̂MLE
n is classically assessed using the bootstrap method (see

Hastie, Tibshirani, and Friedman, 2001). The nonparametric bootstrap method consists in sam-
pling m ≤ n points in Dn with repetition B times to obtain B dataset (D∗

m,b)1≤b≤B of size m. The
bootstrap estimators (θMLE,∗

m,b )1≤b≤B are obtained by solving:

θMLE,∗
m,b = argmax

θ∈(0,+∞)2
L(D∗

m,b; θ) . (2.11)

In Shinozuka et al., 2000, a parametric bootstrap method is proposed. It consists in generating
n samples (S∗

i )1≤i≤n such that S∗
i ∼ B(ψ

θ̂MLE
n

(Ai)) where B(p) denotes the Bernouilli distribution
with parameter p. This procedure is repeated B times in order to have B datasets of the form
(Ai, S

∗
i )1≤i≤n. The bootstrap estimators (θMLE,∗

n,b )1≤b≤B are computed in the same fashion as in
Equation 2.11.

The interested reader will remark that the parametric formulation of the seismic fragility
curve define in Equation (2.8) seems arbitrary. It comes actually from the pioneering works of
R. Kennedy, C. Cornell, et al., 1980 which motivates the use of such a parametric form. Moreover,
this model is directly linked to the probit model (see Finney, 1971). Another well known model
for conditional probability estimation is the logit model (or logistic regression) and can also be
used for seismic fragility curve estimation (see e.g. Sainct et al., 2020).

2.2.6 Fragility curve estimation using linear regression in log-space

One of the main advantages of estimating fragility curve using numerical simulation is the
possibility to define an engineering demand parameter (EDP) which is a positive scalar. The EDP
can be an interstory drift, a local strain or stress, a maximal displacement during a time frame...
A widely used method to estimate fragility curves is to suppose a lognormal regression model
between the IM of the seismic ground motion and the EDP (Ellingwood and Kinali, 2009; Zentner,
Gündel, and Bonfils, 2017). Denote by Dn = (Ai, Zi)1≤i≤n a dataset of n numerical simulations
using artificial seismic signals of intensity measure Ai and for each simulation the EDP obtained
is Yi. The EDP Z is thus modeled as a lognormal random variable such that:

Z = bAcη , (2.12)
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where η is a standard lognormal random variable with median 1 and logarithmic standard
deviation σ. b, and c are two positive parameters. Using a logarithmic transformation Y = log(Z)
we can write that

Y = log(b) + c log(A) + σε , (2.13)

where ε ∼ N (0, 1) is a standard Gaussian r.v. Using the definition of a fragility curve one can
write:

ψLR(a) = Φ

(
log(b) + c log(a)− log(C)

σ

)
(2.14)

We can use the dataset Dn = (Ai, Zi)1≤i≤n to estimate the two parameters b and c of the log-
linear model. We obtain the following least-squares estimators:

b̂n, ĉn = argmin
b, c ∈R+\{0}×R

1

n

n∑

i=1

(Yi − log(b)− c log(Ai))
2 . (2.15)

The residual standard deviation σ is estimated using the empirical estimator σ̂n :

σ̂2n =
1

n− 1

n∑

i=1

(Yi − log(̂bn)− ĉn log(Ai))
2 , (2.16)

the estimator of the fragility curve using linear regression then writes:

ψ̂LR
n (a) = Φ

(
log(̂bn) + ĉn log(a)− log(C)

σ̂n

)
. (2.17)

One main advantage of this method is the possibility to estimate the fragility for any failure
criterion C with a learning sample Dn. LS estimators derived from Equation 2.15 can be expressed
analytically. Of course, the MLE estimator defined in Equation 2.10 can also be used when numer-
ical simulations are carried out by defining Si = 1Zi>C .

2.3 Seismic fragility curves estimation using numerical simulations

Due to the increase of the computational power in the recent years and due to the lack of real
data of mechanical structures damages subjected to earthquakes, it is now more common to re-
place real experiments (or empirical data) by so-called computer experiments, based on numerical
models for both the structure studied and the seismic ground motions (see for examples Karim
and Yamazaki, 2001; Kim and Shinozuka, 2004; Zentner, 2010). It allows to study the robustness
of structures to earthquakes without relying on costly real experiments.

The use of computer experiments imposes to propose a numerical generator of seismic ground
motions. More precisely, the goal is to have a numerical model that generates signals of ground
accelerations t → a(t) for t ∈ [0, T ] which have the same properties as real ground accelerations
of an earthquake. After this step, we can proceed the dynamical analysis of the structure studied
using synthetic seismic signals generated using the seismic ground motion generator. There are
two types of stochastic ground motions models: the source-based model that propagates seismic
waves in a ground medium after random occurrences of fault ruptures at a source point and site-
based model that are obtained by fitting the model on known earthquakes at a given site. For
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more details see the review in Rezaeian and Der Kiureghian, 2008. Basically, seismic ground ac-
celeration signals are usually represented as a filtered and modulated white noise process (see e.g.
Rodolfo Sargoni and Hart, 1973; Rezaeian and Der Kiureghian, 2010) with a deterministic modu-
lating function and a power spectral density which depends on the physical characteristics of the
earthquake source and the ground materials. In this manuscript, we will use the stochastic ground
motion model developed in Rezaeian and Der Kiureghian, 2008; Rezaeian and Der Kiureghian,
2010 which has the advantage of modeling both temporal and spectral nonstationarities of real
seismic acceleration signals.

2.3.1 Ground motion generation using Rezaeian’s model

For this manuscript, we have chosen to enrich a set of seismic acceleration records selected in a
real ground motion database using the model defined in Rezaeian and Der Kiureghian, 2010. This
generator is a parametrized modulated and filtered white-noise process. Its main advantage is
its capacity to reproduce both temporal and spectral non-stationarities of real seismic acceleration
signals, and it has been used in several recent works (see e.g. Mai, Konakli, and Sudret, 2017;
Sainct et al., 2020).

Following this model, a seismic ground motion acceleration temporal signal s(t) with t ∈ [0, T ]
writes as:

s(t) =
q(t,α)

σf (t)

∫ t

−∞
h(t− τ,β(τ))w(τ)dτ . (2.18)

q(t,α) is a deterministic non-negative piecewise modulating function that is defined as:

q(t,α) =





α1t
2/T 2

1 if 0 ≤ t ≤ T1
α1 if T1 ≤ t ≤ T2
α1 exp(−α2(t− T2)

α3) if T2 ≤ t ≤ T
(2.19)

This modulating function depends on the vector of parameters α = (α1, α2, α3, T1, T2) ∈ R5
+. w(t)

is a white-noise process and h(t,β(t)) is the Impulse Response Function (IRF) of a linear filter
that depends on the vector of parameters β. σf (t)

2 =
∫ t
−∞ h(t − τ,β(τ))2dτ is the variance of

the stochastic process defined in the integral in Equation 2.18. Remark that β depends on time in
order to achieve spectral nonstationarity of the ground motion. The IRF writes as follows:

h(t− τ,β(τ)) =
ωf (τ)√
1− ζ2f

exp(−ζfωf (τ)(t− τ)) sin(ωf (τ)
√
1− ζ2f (t− τ))1t≥τ , (2.20)

where β(τ) = (ωf (τ), ζf ), ωf (τ) is the natural time-dependent pulsation and ζf ∈ [0, 1] is the
constant damping ratio of the linear filter. A linear form ωf (τ) = ω0+

t
T (ωn−ω0) is chosen for the

time-dependent pulsation. Therefore, the IRF is parametrized by λ = (ω0, ωn, ζf ) ∈ R3
+.

The ground motion model parameters θGM = (α,λ) ∈ R8
+ are identified for each of theNr real

seismic signals. This gives a dataset (θGM
i )1≤i≤Nr of Nr seismic ground motion model parameters

and synthetic seismic signals can be generated by sampling several realizations of the white-noise
w. However, these signals will have features very similar to those of the real seismic signals
present in the database. In order to generate more diverse synthetic seismic signals, a second
level of uncertainty is added by considering that the model parameters θGM is a random variable
with probability density function π. The pdf π is estimated on (θGM

i )1≤i≤Nr by Kernel Density
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Estimation (KDE) using a Gaussian kernel in R8, this gives us the pdf πKDE. Finally, the generation
of seismic synthetic ground motions requires two steps:

1. Sample θGM ∼ πKDE;

2. sample a realization of the white noisew(t) and compute the signal s(t) with parameter θGM.

It is thus possible with this stochastic ground motion model to generate artificial seismic
ground motions that are fitted on a dataset of real earthquakes. This is a site-based method of
seismic ground motion generation as explained in Rezaeian and Der Kiureghian, 2008.
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FIGURE 2.1: Graphical representation of the modulating function and IRF of the
linear filter with parameters θGM fitted on a real earthquake acceleration signal.
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FIGURE 2.2: Real and simulated acceleration signal of an earthquake using the
model of Rezaeian. The parameters of the stochastic ground motion model are fitted
on the real earthquake signal.

Figure 2.1 shows the modulating function and IRF of the ground motion model whose param-
eters have been fitted on an acceleration signal record of the European Strong Motion Database
(Ambraseys et al., 2004) in the domain 5.5 < M < 6.5and R < 20km. Figure 2.2 compares the
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original acceleration signal record to a realization of the ground motion stochastic process after
parameters fitting.

2.3.2 Reference fragility curves obtained by nonparametric estimation

The previous methods for fragility curves estimation rely on a lognormal assumption which
can be questionable in practice. Recently, nonparametric methods for estimating fragility curves
have been proposed. Mai, Konakli, and Sudret, 2017 compare MLE estimation of fragility curves
with binned Monte-Carlo simulations and kernel density estimation of the joint density of (A,Z)
and the density of the intensity measure A. Lallemant, Kiremidjian, and Burton, 2015 propose
to estimate fragility curves using generalized additive models and Gaussian kernel smoothing.
Sainct et al., 2020 perform nonparametric seismic fragility curve estimation using support vector
machines. Trevlopoulos, Feau, and Zentner, 2019 propose to perform nonparametric estimation
of fragility curves using Monte-Carlo simulation and parametric models averaging based on K-
means clustering of the seismic intensity measures data. We will develop the latter nonparametric
estimation method in this section.

Let us consider Nc clusters and their associated centroids (Ci)1≤i≤Nc . The seismic fragility
curve value at each centroid is approximated by the empirical probability of failure in each cluster.

ψ̂MC
n (Ci) =

1

ni

∑

Zj∈Ki

1Zj>C , (2.21)

where Ki denotes the ith cluster for 1 ≤ i ≤ Nc, and ni the sample size of the ith cluster. The over-
all fragility curve is then approximated using linear interpolation between IM values. Confidence
intervals for this nonparametric fragility curve can be considered using the asymptotic Gaussian
distribution of estimator ψ̂MC

n (Ci). Indeed, its asymptotic variance can be approximated by

Var(ψ̂MC
n (Ci)) ≈

ψ̂MC
n (Ci)(1− ψ̂MC

n (Ci))

ni
(2.22)

This Monte-Carlo approximation of the seismic fragility curve will be used as a reference fragility
curve to compare between different parametric models.

2.4 Application: a single d.o.f. oscillator with nonlinear restoring force

This section aims to propose a practical example of seismic fragility curve estimation by statis-
tical methods using a simplified mechanical model that describes well essential features of nonlin-
ear responses in some real structures. The model is a nonlinear single degree of freedom oscillator.
Its equation of motion is:

z̈(t) + 2ξωż(t) + fNL(z(t)) = −s(t) , (2.23)

where ż and z̈ are the relative velocity and acceleration of the unit mass of the system submit-
ted to the acceleration signal s with null initial condition in velocity and displacement. ξ is the
damping ratio, ω = 2πf the circular frequency of the oscillator, and fNL is the nonlinear restoring
force. Figure 2.3 represents the behavior of fNL relatively to the yield displacement zd and the
post-yield stiffness αy. Figure 2.4 is a schematic representation of the nonlinear oscillator with its
parameters. This toy case has the advantage to have a fast computation of the relative displace-
ment z thanks to the finite-difference method.
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FIGURE 2.3: Schematic representation of the nonlinear restoring force fNL w.r.t. the
relative displacement of the oscillator z.
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FIGURE 2.4: Nonlinear single degree of freedom oscillator with kinematic harden-
ing.

In this section, f = 5 Hz and ξ = 2%. The yield displacement zd = 5.10−3 m and the post yield
stiffness αy = 0.2 . The engineering demand parameter in this example is defined by:

Z = max
t∈[0,T ]

|z(t)| . (2.24)

It corresponds to the maximal absolute displacement of the nonlinear oscillator during the seismic
excitation. The intensity measure used in this example is the Peak Ground Acceleration (PGA) and
it is defined as:

A = max
t∈[0,T ]

|s(t)| . (2.25)

The PGA is thus the maximal absolute acceleration of the seismic signal. 106 synthetic seismic
ground motions are generated using the model described in Section 2.3.1 using the data from
Sainct et al., 2020. A learning sample of n = 200 simulations of the nonlinear oscillator is consid-
ered to estimate the fragility curve with a failure threshold C = 1.6zd using the lognormal model
(Section 2.2.5) and the linear regression model (Section 2.2.6). The failure threshold of C = 1.6zd
roughly corresponds to the 90% level quantile of the distribution of Z on the overall dataset of 106

synthetic seismic ground motions. Uncertainty on the estimators is assessed using parametric and
nonparametric bootstrap described in Section 2.2.5 with 100 bootstrap samples of size 100. Nu-
merical results are shown in Figure 2.5. Remark that the bootstrap confidence interval is narrower
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for the parametric bootstrap than for the nonparametric bootstrap. This is expected due to the
more restrictive assumption in the parametric bootstrap method, where the model for the fragility
curve is supposed well-specified (i.e. the true fragility curve is lognormal).
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0.00

0.25

0.50
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1.00
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ψθ̂MLE

(A) Estimation of the fragility curve of the nonlinear os-
cillator with nonparametric bootstrap using the lognor-
mal model.
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(B) Estimation of the fragility curve of the nonlinear os-
cillator with parametric bootstrap using the lognormal
model.

FIGURE 2.5: Fragility curve estimation using the lognormal model with maximum
likelihood estimation. The green shaded area corresponds to the interquantile range
of the fragility curve between the 10% and 90% level quantiles for each PGA value,
estimated using the two bootstrap methods. The red solid curve corresponds to the
nonparametric estimation of the fragility curve using K-means clustering with the
106-sized dataset with K = 50.

The fragility curve of the nonlinear oscillator is also evaluated using linear regression in log
space as described in Section 2.2.6. The same learning set of size n = 200 is used, estimation
uncertainty is assessed using parametric and nonparametric bootstrap in the same fashion as in
Section 2.2.5. Figure 2.6 shows the numerical results of the estimation. Remark that the confidence
intervals are narrower than with the lognormal assumption of the fragility curve. However, the
bias between the estimator of the fragility curve and the reference fragility curve is larger than with
MLE estimation using the lognormal fragility curve model. An interpretation can be proposed
thanks to Zentner, Gündel, and Bonfils, 2017: the linear regression can extrapolate the behavior of
the structure even when no failure event (Z ≥ C) is observed in the training data. This property
makes the estimation of the fragility curve with small sample size possible, but with a possible
large bias. On the contrary, a sufficient amount of failure event in the training data is needed to
propose a good estimation of the fragility curve with MLE estimation, this permits to decrease the
bias, but it also imposes to have a bigger sample size to provide a narrow confidence interval.

2.5 Conclusion

A brief review of the different statistical methods to estimate seismic fragility curves has been
proposed in this chapter, from the early work in the 1980s by R. Kennedy, C. Cornell, et al., 1980; R.
Kennedy and Ravindra, 1984 which propose an estimation based on expert judgment to statistical
methods based on numerical simulations. A classical example studied in earthquake engineering
consisting of a nonlinear single degree of freedom oscillator with kinematic hardening has been
presented in order to illustrate the different statistical methods of fragility curves estimation. For
the rest of this manuscript, we will focus mainly on estimation of fragility curves using numerical
simulations. Indeed, the next chapter will develop a methodology to improve the estimation of
seismic fragility curves using importance sampling, allowing to reduce the estimation uncertainty
and the learning sample size in the same time.
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(A) Estimation of the fragility curve of the nonlinear os-
cillator with nonparametric bootstrap.
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(B) Estimation of the fragility curve of the nonlinear os-
cillator with parametric bootstrap.

FIGURE 2.6: Fragility curve estimation using linear regression. The green shaded
area corresponds to the interquantile range of the fragility curve between the 10%
and 90% level quantiles for each PGA value, estimated using the two bootstrap
methods. The red solid curve corresponds to the nonparametric estimation of the
fragility curve using K-means clustering with the 106-sized dataset with K = 50.
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This chapter consists in the submitted paper:

Gauchy, C., C. Feau, and J. Garnier (2021a). Importance sampling based active learning for para-
metric seismic fragility curve estimation. DOI: 10.48550/ARXIV.2109.04323

3.1 Introduction

3.1.1 Contribution

The aim of this work is to address the issue of optimized estimation of intensity measure
(IM) based seismic fragility curves within a rigorous mathematical framework when complex
numerical models - i.e expensive numerical models - are used to obtain the data. In our case, the
complex numerical codes are "black boxes" whose results, for a given IM value, are simply binary,
namely: failure or not failure.

To tackle this issue, we propose and implement an active learning methodology based on
adaptive importance sampling as in Chu et al., 2011 in a statistical learning context (Hastie, Tib-
shirani, and Friedman, 2001), called Importance Sampling based Active Learning (IS-AL). In addi-
tion, we address the question of Confidence Intervals (CIs) related to the size of the samples used,
in order to reflect the estimation uncertainty, because bootstrap method cannot be used.

Adaptive importance sampling was introduced for classical Monte Carlo integral approxima-
tion in Kloek and Van Dijk, 1978, and later studied in Oh and J. Berger, 1992. Moreover, adaptive
importance sampling is also used in industrial applications and have already been discussed,
implemented and tested for probability estimation of rare event (e.g. failure state) in reliability
analysis as in Gong and W. Zhou, 2018; Papaioannou, Geyer, and Straub, 2019. By applying it
to the parametric estimations of the IM-based fragility curves, we show by asymptotic analysis
and numerical simulations that IS-AL allows for (i) a rapid convergence of the estimated fragility
curve towards the true (unknown) fragility curve and (ii) a rigorous quantification of the estima-
tion uncertainty. It gives asymptotic CIs and confidence ellipsoids for the quantities of interest as
well as statistical tests to determine whether the asymptotic regime has been reached and whether
asymptotic CIs and confidence ellipsoids can be used.

The proposed methodology relies on parametric approximations of fragility curves for any IM
of interest. Although the validity of parametric models is both questionable and difficult to assess
(see e.g. Lallemant, Kiremidjian, and Burton, 2015; Mai, Konakli, and Sudret, 2017; Trevlopou-
los, Feau, and Zentner, 2019; Zentner, 2017), some numerical experiments based on the seismic
responses of simple mechanical systems - i.e. few degrees of freedom systems - suggest that the
choice of an appropriate IM makes it possible to reduce the potential biases between reference
fragility curves - that can be obtained by massive Monte Carlo simulations - and their paramet-
ric approximations. This point is illustrated in the application section 3.6 of this chapter. Re-
member, however, that in practice, the selection of an optimal IM is not a trivial matter (see e.g.
Hariri-Ardebili and Saouma, 2016a; Ciano, Gioffrè, and Grigoriu, 2020) and Machine Learning
techniques can be used for this purpose (e.g. Sainct et al., 2020), knowing that the references A.
Cornell, 2004; Luco and A. Cornell, 2007 and Padgett, Nielson, and DesRoches, 2008 give optimal-
ity criteria for selection of such IM.

In this work, the methodology is applied to different test cases and compared with more tra-
ditional approaches such as MLE often used by practitioners (see e.g. Baker, 2015; Lallemant,
Kiremidjian, and Burton, 2015; Straub and Der Kiureghian, 2008; Shinozuka et al., 2000; F. Wang
and Feau, 2020; Mai, Konakli, and Sudret, 2017; Zentner, 2010). In order to avoid the scaling of

https://doi.org/10.48550/ARXIV.2109.04323
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the accelerograms, the stochastic model of modulated and filtered white-noise process defined
in Rezaeian and Der Kiureghian, 2010 (see Chapter 2, Section 2.3.1) is used to enrich a set of real
ground motion records selected in a database for a given (M,R) scenario. This stochastic model
is chosen because it well encompasses the temporal and spectral non-stationarities of real seismic
signals. Furthermore, it has already been used in several works (see e.g. Mai, Konakli, and Sudret,
2017; Sainct et al., 2020; Kwong and Chopra, 2015).

3.1.2 Organization

In section 3.2 the statistical framework is defined for any parametric fragility curve model
and any IM. Section 3.3 is dedicated to the presentation of the IS-AL algorithm applied to IM-
based seismic fragility curves estimation for the commonly used lognormal model. Section 3.4
summarizes the main theoretical results of this work, which are proved in the appendices. These
results concern a criterion for evaluating the convergence of the IS-AL strategy and the definition
of asymptotic confidence ellipsoids for the fragility curve parameters. Section 3.5 presents the
performance metrics used in this work to compare IS-AL, random sampling and MLE strategies.
Finally, in section 3.6, IS-AL performance is assessed on analytical and industrial test cases of
increasing complexity.

3.2 Seismic fragility curve estimation: a statistical learning framework

3.2.1 General framework

We consider the following situation. Let X be a compact set of R, X a X -valued random
variable and S ∈ {0, 1} a random label. In SPRA studies X = log IM - more generally we can
define X = ψ(IM) where ψ is an increasing function of IM such as a Box-Cox transform (G. E. Box
and Cox, 1964) - and S is the indicator variable of the failure of the structure. The pair (X,S) has
the probability distribution P over X × {0, 1}:

P (dx, ds) =
[
µ(x)δ1(ds) + (1− µ(x))δ0(ds)

]
p(x)dx , (3.1)

where δj is the Dirac distribution at j, p is the marginal probability density function (pdf) of X ,
and the IM-based fragility curve µ(x) is the conditional expectation of S (i.e. the conditional
probability of failure):

µ(x) = E[S|X = x] . (3.2)

The aim of the paper is to estimate the curve µ(x) from datapoints (Xi, Si)
n
i=1 that may be inde-

pendent and identically distributed with the distribution P or that may be selected by a more
appropriate scheme. As mentioned in the introduction, it is a classical assumption to use a para-
metric form for the fragility curve µ to tackle the need for time consuming mechanical simulations,
we thus consider the space of functions F = {fθ, θ ∈ Θ}, where x 7→ fθ(x) is a function from R to
[0, 1] for any θ and Θ ⊂ Rm. The goal is to minimize the quadratic risk:

g(θ) = E[(µ(X)− fθ(X))2] , (3.3)

in order to find (provided it exists and is unique):

θ∗ = argmin
θ∈Θ

g(θ) . (3.4)
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Unfortunately, the observable data are (Xi, Si)
n
i=1, we do not observe directly µ(Xi). But consid-

ering that:

E[(S − fθ(X))2] = E[(S − µ(X))2] + E[(µ(X)− fθ(X))2]

+ 2E[(µ(X)− fθ(X))(S − µ(X))]

= E[µ(X)(1− µ(X))] + E[(µ(X)− fθ(X))2] (3.5)

because E[S2|X] = E[S|X] = µ(X), we can observe that the minimization with respect to θ of
E[(S − fθ(X))2] is equivalent to the minimization of E[(µ(X)− fθ(X))2]. Hence, we will consider
the quadratic risk

r(θ) = E[(S − fθ(X))2] . (3.6)

In the context of classical learning, when we observe n datapoints (Xi, Si)
n
i=1 drawn indepen-

dently from the probability distribution P (dx, ds) over X × {0, 1}, the expectation can be approx-
imated by the empirical mean:

R̂n(θ) =
1

n

n∑

i=1

(Si − fθ(Xi))
2 . (3.7)

The corresponding passive estimator (the term passive is used to highlight the absence of any
particular sampling strategy) is then:

θ̂n = argmin
θ∈Θ

R̂n(θ). (3.8)

Conversely to classical learning, active learning aims at selecting the most useful numerical exper-
iments to be carried out in order to form the learning set. In the passive strategy, the datapointsXi

are sampled from the original probability distribution with pdf p drawn from a stochastic ground-
motion model. In the same way as in Chu et al., 2011, we propose an active learning strategy,
called Importance Sampling based Active Learning (IS-AL). It consists to draw the datapoints Xi

from an instrumental probability distribution with pdf q that is chosen in an adaptive way. In our
context, it is straightforward to use a rejection method applied to the stochastic ground-motion
model in order to generate seismic loads with a desired intensity measure distribution. Let us re-
call in fact that the label Si (which gives the failure state of the structure) is, in our case, expensive
to obtain because it comes from complex numerical simulations of mechanical structures while
the artificial seismic signals are inexpensive to generate.

The main objective of this procedure is to reduce the variance implied by the empirical approx-
imation of the quadratic risk r(θ). Importance Sampling is a classical variance reduction technique
for Monte Carlo estimation used in structural reliability (Papaioannou, Geyer, and Straub, 2019;
Zuniga, Murangira, and Perdrizet, 2021). If the (Xi)

n
i=1 are sampled with the pdf q and (Si)

n
i=1 are

the labels obtained from n calls to the mechanical model, then the importance sampling estimator
of the empirical quadratic risk is:

R̂IS
n (θ) =

1

n

n∑

i=1

p(Xi)

q(Xi)
(Si − fθ(Xi))

2. (3.9)

In the rest of the chapter, we will denote by r(θ) = E(X,S)∼P [ℓθ(X,S)] with θ 7→ ℓθ(x, s) a positive
loss function for the sake of generalization. For the numerical applications, only the case of the
quadratic loss

lθ(x, s) = (s− fθ(x))
2, (3.10)
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will be considered.

3.2.2 Problem regularization for the parametric lognormal model

For applications to seismic fragility curves estimation, a classical space of functions to approx-
imate µ is F = {Φ( log(IM/α)β ), (α, β) ∈ Θ} where Φ is the cumulative distribution function of the
standard Gaussian distribution (R. Kennedy, C. Cornell, et al., 1980), θ = (α, β)T , and Θ a compact
set of (0,+∞)2 (therefore m = 2). Compactness of Θ is a common assumption in our applications.
From an engineer perspective, it is possible to bound α and β. However, in practice, the lower
bound for β may be reached by the different estimators. Consequently, inspired by Bayesian in-
ference theory (G. Box and Tiao, 1973), we introduce a regularization term Ω(θ;βreg) to tackle this
issue (we will take Ω(θ;βreg) = βreg/β below). The squared loss (3.7) is then replaced by:

R̂n,reg(θ;βreg) =
1

n

n∑

i=1

ℓθ(Xi, Si) +
Ω(θ;βreg)

n
. (3.11)

The derivation of the importance sampling estimator of the regularized square loss is straightfor-
ward:

R̂IS
n,reg(θ;βreg) =

1

n

n∑

i=1

p(Xi)

q(Xi)
ℓθ(Xi, Si) +

Ω(θ;βreg)

n
. (3.12)

This regularization is motivated by the intrinsic difficulty of estimating the standard deviation β
of the lognormal model when β is small (Keller et al., 2015). Fragility curves with small β are hard
to distinguish due to the convergence towards a degenerate 0− 1 fragility curve.

3.3 Principles of the IS-AL strategy

This section focuses on the choice of an optimal density q (section 3.3.1) as well as on the
description of the IS-AL strategy (section 3.3.2).

3.3.1 Choice of an optimal density q

The heuristic used to find a good instrumental probability distribution family is presented in
Chu et al., 2011. The first idea would be to minimize the variance of the importance sampling risk
estimator (3.12):

Var
(
R̂IS
n,reg(θ)

)
=

1

n

{∫∫

X×{0,1}

p(x)

q(x)
ℓθ(x, s)

2P (dx, ds)− r(θ)2
}
, (3.13)

with respect to q within the set of all pdfs. If we denote by ℓ̃2θ(x) = E[ℓθ(X,S)2|X = x] the squared
loss averaged on S:

ℓ̃2θ(x) = µ(x)ℓθ(x, 1)
2 + (1− µ(x))ℓθ(x, 0)

2 , (3.14)

the variance of the importance sampling risk estimator (3.12) can be expressed as

Var
(
R̂IS
n,reg(θ)

)
=

1

n

{∫

X

p(x)2

q(x)
ℓ̃2θ(x)dx− r(θ)2

}
,
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and we look for

q∗θ = argmin
q

∫

X

p(x)2

q(x)
ℓ̃2θ(x)dx . (3.15)

Using Jensen’s inequality (Robert and Casella, 2004, Theorem 3.12), we can solve the optimization
problem and we can find that the optimal sampling pdf is of the form

q∗θ(x) ∝ ℓ̃θ(x)p(x) ,

which depends on µ because ℓ̃θ depends on µ [Here and below ∝ means equality up to a multi-
plicative constant]. Hence an approximation step is made by replacing µ by fθ in (3.14):

ℓ̃2θ(x) ≈ fθ(x)ℓθ(x, 1)
2 + (1− fθ(x))ℓθ(x, 0)

2 . (3.16)

Hence the instrumental density becomes:

qθ(x) ∝ p(x)
√
fθ(x)ℓθ(x, 1)2 + (1− fθ(x))ℓθ(x, 0)2 . (3.17)

Note that the instrumental distribution depends on θ, the parameter we aim to estimate. More-
over, using IS-AL with the instrumental density qθ directly could increase the variance if the den-
sity has light tails. We propose finally a defensive strategy as illustrated in Hesterberg, 1995; Owen
and Y. Zhou, 2000. The instrumental density becomes

qθ,ε(x) = εp(x) + (1− ε)qθ(x), (3.18)

with ε ∈ [0, 1]. ε is a mixing parameter, between the original marginal pdf p(x) and the instru-
mental one qθ(x), meaning that one time out of 1/ε the element is drawn from the pdf p(x). This
distribution allows to bound the likelihood ratio:

p(x)

qθ,ε(x)
=

1

ε+ (1− ε) qθ(x)p(x)

<
1

ε
. (3.19)

Thus the defensive strategy bounds the variance even if the likelihood ratio p(x)/qθ(x) is large.

3.3.2 Description of the IS-AL strategy

3.3.2.1 Algorithm

The procedure for computing the IS-AL estimator θ̂IAn is described in Algorithm 1. Its main
objective is to use an updated instrumental density qθ,ε at each step. Note that (i) the algorithm
needs to start from a certain parameter value θ̂IA0 and (ii) we choose Ω(θ;βreg) = βreg/β for the
regularization term in equation (3.12).

Additionally, a convergence criterion is presented in section 3.4.2 and an asymptotic confi-
dence ellipsoid for θ∗ centered on θ̂IAn is defined by equation (3.37).

3.3.2.2 Initialization and choice of θ̂IA0

Regarding the initialization, as expected, the closer θ̂IA0 is from the true parameter θ∗ the faster
IS-AL converges and is in asymptotic normal regime (see Section 3.4). A naive approach is to get
a small sample of size n0 (e.g. n0 = 20) (Xi, Si)

n0
i=1 from the original marginal density p of X and
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Algorithm 1 Importance Sampling based Active Learning (IS-AL)

1. Choice of θ̂IA0 (section 3.3.2.2) and estimations of βreg and ε (section 3.3.2.3).

2. For i = 1, . . . , n:

(a) Draw Xi from the distribution with pdf q
θ̂IAi−1,ε

.

(b) Call the mechanical simulation at point Xi to get label Si
(c) Compute

θ̂IAi = argmin
θ∈Θ

R̂IA
i,reg(θ;βreg), (3.20)

R̂IA
i,reg(θ;βreg) =

1

i

i∑

j=1

p(Xj)

q
θ̂IAj−1,ε

(Xj)
ℓθ(Xj , Sj) +

βreg
nβ

. (3.21)

to compute the passive learning estimator θ̂n0 (equation (3.8)). This crude estimation can be used
as the initial parameter θ̂IA0 to start IS-AL.

A better approach is to consider a metamodel - in the broad sense - of the mechanical simula-
tion. As often used by practitioners, a numerical resolution based on a modal base projection can
be implemented to get an estimate of the fragility curve corresponding to the linear behavior of the
structure of interest. It is then possible to get a huge amount of datapoints of the reduced model
(e.g. an independent and identically distributed sample of nred = 103–105 pairs (Xi, Sred,i)

nred
i=1

where Xi is sampled with the original pdf p and Sred,i is the associated label obtained with the
reduced model). The initial parameter θ̂IA0 is then chosen to be equal to θ̂nred

. Statistical metamod-
els could also be used such as Gaussian Processes in Echard, Gayton, Lemaire, and Relun, 2013 or
Support Vector Machines in Sainct et al., 2020.

In our applications reduced models are only used to give us prior knowledge on the fragility
curve shape, encapsulated in the initial parameter of the IS-AL procedure. We then initialize IS-
AL with a small sample of 20 datapoints with the instrumental density q

θ̂IA0 ,ε
(equation (3.18)). In

other words, in Step 2 of Algorithm 1, we do not update θ̂IAi during the first 20 steps.

3.3.2.3 Estimations of βreg and ε

The regularization parameter, called β̂IAreg, is determined by minimizing the Leave One Out
error on the initialization sample (see previous section):

β̂IAreg = argmin
β

1

n0

n0∑

i=1

ℓ
θ̂ISn0,−i(β)

(Xi, Si) , (3.22)

where

θ̂ISn0,−i(β) = argmin
θ∈Θ

1

n0 − 1

n0∑

j=1, i ̸=j
ℓθ(Xj , Sj) +

Ω(θ;βreg)

n0 − 1
.

Regarding the choice of the defensive parameter value ε, it is cumbersome and there is no di-
rect methodology for its estimation. Moreover, its value depends strongly of the problem studied
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as shown in Bect, Sueur, et al., 2015. Nevertheless, in section 3.6.2, we propose a benchmark in
order to evaluate the "optimal" value of ε for the class of structures considered in this study.

3.4 Theoretical results

This section summarizes the main theoretical results of this work. Section 3.4.1 addresses the
issue of the consistency and asymptotic normality for the IS-AL estimator. Then, in section 3.4.2,
a convergence criterion is proposed in order to be able to use the asymptotic confidence ellipsoids
defined in section 3.4.3. A discussion is finally proposed about the practical use of the convergence
criterion in section 3.4.4.

3.4.1 Consistency and asymptotic convergence of the IS-AL estimator

We derive some theoretical properties for the estimator θ̂IAn , consisting in its consistency to-
wards the parameter θ∗ defined by (3.4) and its asymptotic normality by adapting several proofs
of Delyon and Portier, 2018 about asymptotic optimality of adaptive importance sampling. De-
tailed proofs of the following results are given in the Appendix. The proofs are given in a more
general context of empirical risk minimization, instead of IS-AL specifically. Indeed, we consider
that these theoretical results can be used in a broader manner for other kinds of applications.

We first prove in Appendix B.1 the consistency of the IS-AL estimator θ̂IAn using Algorithm 1:

θ̂IAn −−−−−→
n→+∞

θ∗ in probability . (3.23)

Then, we prove in Apppendix B.2 the convergence of
√
n(θ̂IAn − θ∗) to a Gaussian random

variable with mean zero and covariance matrix:

Gθ∗,ε = r̈(θ∗)−1V (qθ∗,ε)(r̈(θ∗)
−1)T , (3.24)

where

V (qθ∗,ε) = E
[
p(X)

qθ∗,ε(X)
ℓθ∗(X,S)∇fθ∗(X)∇fθ∗(X)T

]
, (3.25)

and r̈(θ∗) is the Hessian of r(θ) at θ∗.
A straightforward corollary of equation (3.24) is that, if Gθ∗,ε is nonsingular (which we assume

from now on), then for any ξ ∈ (0, 1):

P
(
n(θ̂IAn − θ∗)TG

−1
θ∗,ε

(θ̂IAn − θ∗) < qξ
χ2(m)

)
−−−−−→
n→+∞

ξ , (3.26)

with qξ
χ2(m)

the ξ-quantile of the χ2(m) distribution (remember that θ = (α, β)T and m = 2 for the
lognormal model). Remark that the matrix Gθ∗,ε depends on the unknown parameter θ∗. It is thus
possible to use a plug-in estimator:

Ĝn = ̂̈rn(θ̂IAn )−1V̂n(θ̂
IA
n )(̂̈rn(θ̂IAn )−1)T , (3.27)

with
̂̈rn(θ) =

1

n

n∑

i=1

p(Xi)

q
θ̂IAi−1,ε

(Xi)
ℓ̈θ(Xi, Si) , (3.28)
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V̂n(θ) =
1

n

n∑

i=1

p(Xi)
2

qθ,ε(Xi)qθ̂IAi−1,ε
(Xi)

ℓ̇θ(Xi, Si)ℓ̇θ(Xi, Si)
T , (3.29)

and ℓ̈θ(x, s) the Hessian of ℓθ(x, s) with respect to θ. We have:

Ĝ−1
n → G−1

θ∗,ε
in probability. (3.30)

The proof is in Appendix B.3. Using asymptotic normality of θ̂IAn , we can show that: n(θ̂IAn −
θ∗)TG

−1
θ∗,ε

(θ̂IAn − θ∗) → χ2(m). Using Slutsky’s lemma, we have the following convergence in
distribution:

n(θ̂IAn − θ∗)T Ĝ−1
n (θ̂IAn − θ∗) −−−−−→

n→+∞
χ2(m) . (3.31)

3.4.2 Convergence criterion using a statistical hypothesis test

The estimation of the generalization error without a validation set is often based on Cross Val-
idation. When IS-AL is used, the data points (Xi, Si) are no longer independent and identically
distributed. We propose to use a convergence criterion that ensures that asymptotic normality is
reached. Consider two independent datasets D1 = (Xi,1, Si,1)

n
i=1 and D2 = (Xi,2, Si,2)

n
i=1 gener-

ated with IS-AL. Let R̂IA
n,reg,j be the weighted loss for Dj for j = 1, 2 defined as in (3.20). Denote:

θ̂IAn,j = argmin
θ∈Θ

R̂IA
n,reg,j(θ;βreg), j = 1, 2 .

We introduce the following quantity:

∆
˙̂
R

IA

n,reg =
˙̂
R

IA

n,reg,1(θ̂
IA
n,2;βreg)−

˙̂
R

IA

n,reg,2(θ̂
IA
n,1;βreg),

then we have: √
n∆

˙̂
R

IA

n,reg
L−→ N (0, 8V (qθ∗,ε, ℓ̇θ∗)) (3.32)

as n→ +∞. Denote

Ŵn =
n

8
(∆

˙̂
R

IA

n,reg)
T V̂ −1

n,12∆
˙̂
R

IA

n,reg, (3.33)

V̂n,12 =
1

2

(
V̂n,1(θ̂

IA
n,1) + V̂n,2(θ̂

IA
n,2)
)
, (3.34)

with V̂n,j the empirical estimator in equation (3.29) for the j-th IS-AL dataset Dj for j = 1, 2.
By equation (3.32) and by Slutsky’s lemma, Ŵn converges weakly to χ2(m). It is, therefore,

possible to define a convergence criterion inspired by statistical test theory to check the asymptotic
normality of θ̂IAn . Our convergence criterion is equivalent to the hypothesis test:

(H0) : Ŵn follows χ2(m) against (H1) : Ŵn does not follow χ2(m) . (3.35)

For ξ ∈ (0, 1), we then consider the statistical test which rejects (H0) if:

Ŵn > q
χ2(m)
1−ξ , (3.36)

where qχ
2(m)

1−ξ denotes the (1− ξ)-quantile of the χ2(m) distribution. Hence, this statistical test is of
asymptotic level ξ.
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3.4.3 Asymptotic confidence ellipsoid

Thanks to the equation (3.31), it is possible to construct an asymptotic confidence ellipsoid of
level ξ ∈ (0, 1) defined by:

E IA
n,ξ = {θ : n(θ − θ̂IAn )T Ĝ−1

n (θ − θ̂IAn ) < q
χ2(m)
1−ξ } , (3.37)

with:
P(θ∗ ∈ E IA

n,ξ) −−−−−→n→+∞
ξ.

Because the convergence criterion Ŵn indicates when the estimator follows the asymptotic
Gaussian distribution, it also indicates at which sample size n the value P(θ∗ ∈ E IA

n,ξ) is close to its
theoretical value ξ.

3.4.4 Discussion about the practical use of the convergence criterion

An apparent drawback of this convergence criterion is that it doubles the computational cost,
due to the necessity of having two independent IS-AL estimators θ̂IAn,1 and θ̂IAn,2 to compute Ŵn. It
is, however, possible to use the estimator

θ̂IAn,12 =
θ̂IAn,1 + θ̂IAn,2

2
, (3.38)

which has an asymptotic variance that is half the one of θ̂IAn,1 and θ̂IAn,2. Indeed, it is straightfor-
ward that

√
n(θ̂IAn,12 − θ∗) converges in distribution to a zero mean Gaussian random variable with

covariance matrix Gθ∗,ε/2. It is, therefore, possible to define an asymptotic confidence ellipsoid
which exploits all the data points used to build the estimator θ̂IAn,12 of θ∗:

E IA
n,12,ξ = {θ : 2n(θ − θ̂IAn,12)

T Ĝ−1
n,12(θ − θ̂IAn,12) < q

χ2(m)
1−ξ },

with Ĝn,12 = ̂̈r−1

n,12V̂n,12(̂̈r
−1

n,12)
T , V̂n,12 defined by (3.34), ̂̈rn,12 = 1

2
̂̈rn,1(θ̂IAn,1) + 1

2
̂̈rn,2(θ̂IAn,2) and ̂̈rn,j

defined as (3.28) with the dataset Dj , j = 1, 2.

3.5 Performance evaluation of the IS-AL strategy compared to the ran-
dom sampling and MLE strategies

This section explains how to assess the performance of IS-AL with respect to Random Sam-
pling (RS) and MLE strategies. In section 3.5.1, RS and MLE principles are briefly summarized.
Performance metrics inspired from Chabridon et al., 2017; Morio and Balesdent, 2015 to check
the quality of IS-AL strategy are detailed in section 3.5.2. Finally, the statistical procedure used
to assess the quality of the IS-AL asymptotic confidence ellipsoid compared to that of a classical
approach such as MLE is given in section 3.5.3.

3.5.1 RS and MLE principles

RS strategy consists in applying the IS-AL algorithm with the proposal probability density q
being the marginal probability density p of the intensity measure. This boils down to classical
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empirical risk minimization for supervised learning. The RS estimator θ̂RS
n is then defined by:

θ̂RS
n = argmin

θ∈Θ
R̂RS
n,reg(θ;βreg), (3.39)

R̂RS
n,reg(θ;βreg) =

1

n

n∑

i=1

ℓθ(Xi, Si) +
βreg
nβ

. (3.40)

As mentioned in the introduction, MLE is a classical estimation method in the field of seismic
probabilistic risk assessment and fragility curve estimation (see e.g. Straub and Der Kiureghian,
2008; Lallemant, Kiremidjian, and Burton, 2015; Shinozuka et al., 2000; F. Wang and Feau, 2020;
Mai, Konakli, and Sudret, 2017; Baker, 2015; Zentner, 2010). It is defined by the estimator θ̂MLE

n that
maximizes the likelihood given a dataset (Xi, Si)

n
i=1 that is sampled at random from the original

marginal density p of X :

θ̂MLE
n = argmax

θ∈Θ

n∑

i=1

Si log(fθ(Xi)) + (1− Si) log(1− fθ(Xi)). (3.41)

The initializations of the RS and MLE algorithms are based on 20 data points drawn at random
from the original distribution p. For the RS algorithm, the regularization parameter, called β̂RS

reg, is
computed using Leave One Out cross validation as for the IS-AL algorithm.

3.5.2 Performance metrics for the numerical benchmarks

This section aims to provide performance metrics, inspired from Chabridon et al., 2017; Morio
and Balesdent, 2015, to assess IS-AL performances, in comparison with the RS and MLE strategies,
on test cases.

3.5.2.1 Performance metrics based on the training errors

For the IS-AL strategy, the training error is called R̂IA
n = R̂IA

n,reg(θ̂
IA
n ;βIAreg) and is defined by

equation (3.21).
For the RS and MLE strategies, the training errors are respectively called R̂RS

n = R̂RS
n,reg(θ̂

RS
n ;βRS

reg)

and R̂MLE
n = R̂MLE

n,reg(θ̂
MLE
n ;βRS

reg), and are defined by :

R̂•
n,reg(θ;β

RS
reg) =

1

n

n∑

i=1

ℓθ(Xi, Si) +
βRS
reg

nβ

where • is for RS or MLE. Note that for MLE the penalization β̂RS
reg is only used to define similar

training errors as for IS-AL and RS algorithms, in order to compare the same quantity.
Thus, the performance metrics are :

• the Relative Standard Deviation

RSD•
n =

√
V[R̂•

n]

E[R̂•
n]

, (3.42)

where • is for IA, RS and MLE.
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• the Relative Bias

RB•
n =

|b− E[R̂•
n]|

b
, (3.43)

where • is for IA, RS and MLE, and b = E[µ(X)(1− µ(X))].

• The efficiency

ν•n =
V[R̂•

n]

V[R̂IA
n ]
, (3.44)

where • is for RS and MLE. A value of ν•n > 1 shows that IS-AL has a smaller loss variance
than RS or MLE.

The above metrics are empirically calculated using R replications of the three procedures (IS-
AL, RS and MLE) and b is estimated using a massive Monte Carlo estimator of µ. In practice, this
is only possible when the numerical models are not numerically expensive. This is the case for the
first two numerical test cases addressed in Section 3.6, but not for the third industrial case.

3.5.2.2 Performance metrics based on the testing errors

Additionally, we define the testing error by:

Q̂•
n,reg(θ;βreg) =

1

nt

nt∑

i=1

ℓθ(X
(t)
i , S

(t)
i ) +

βreg
ntβ

,

where (X
(t)
i , S

(t)
i )nt

i=1 is a testing set (independently and identically distributed with the original
distribution P ). The associated performance metrics are calculated by replacing R̂•

n,reg(θ;βreg)

with Q̂•
n,reg(θ;βreg) (also called Q̂•

n in the following) as defined in section 3.5.2.1.

3.5.3 Benchmark on the confidence ellipsoids IS-AL and MLE

This section aims to propose a procedure to evaluate the quality of the IS-AL asymptotic con-
fidence ellipsoid, E IA

n,ξ, compared to that of the MLE, EMLE
n,ξ . This procedure is based on the use of

R replications of the IS-AL and MLE algorithms, as for the evaluation of the performance met-
rics. So, we first define the empirical estimator of P

(
θ∗ ∈ E IA

n,ξ

)
(resp. P

(
θ∗ ∈ EMLE

n,ξ

)
), namely the

Coverage Probability (CP), in order to numerically (i) verify the definitions of the ellipsoids and
(ii) evaluate their convergences with respect to the size n of the samples. Then, to quantify the
effectiveness of the IS-AL strategy on reducing the variance of the estimate of the fragility curve,
compared to that of the MLE, we define and compare their Confidence Ellipsoid Volumes (CEVs).

Section 3.5.3.1 gives the definitions of the confidence ellipsoid and the coverage probability for
MLE. As the IS-AL confidence ellipsoid is defined in section 3.4.3, section 3.5.3.2 deals only with
the associated CP. Finally section 3.5.3.3 defines the CEVs for both procedures.

3.5.3.1 Confidence ellipsoid and coverage probability for MLE

In order to define the asymptotic confidence ellipsoid for the MLE and to compute the asso-
ciated CP, we use (i) the asymptotic normality of the MLE estimator (Bachoc, 2013) and (ii) the
independence property of the samples that allows the use of the bootstrap method.
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We first consider R replications of MLE estimator θ̂MLE
n for different sample size n and build

B bootstrap samples of size n for each replication in order to compute a bootstrap covariance:

V̂ MLE
n,r =

1

B

B∑

b=1

n(θMLE,∗
b,r − θ̂MLE

n,r )(θMLE,∗
b,r − θ̂MLE

n,r )T , (3.45)

where θ̂MLE
n,r is the MLE estimator for the r-th replication of size n and θMLE,∗

b,r the bootstrap MLE
estimator for the b-th bootstrap sample of the r-th replication.

Thus, the bootstrapped confidence ellipsoid for MLE is defined by:

EMLE,r
n,ξ = {θ : n(θ − θ̂MLE

n,r )T (V̂ MLE
n,r )−1(θ − θ̂MLE

n,r ) ≤ q
χ2(m)
1−ξ } , (3.46)

while the bootstrap CP writes:

CPMLE,r
n =

1

R

R∑

r=1

1
θ∗∈EMLE,r

n,ξ
. (3.47)

3.5.3.2 Coverage probability for IS-AL

The IS-AL asymptotic confidence ellipsoid E IA
n,ξ is defined in section 3.4.3 by equation (3.37).

So, as for MLE, the associated CP is computed by considering R replications of IS-AL, namely:

CPIA,r
n =

1

R

R∑

r=1

1
θ∗∈EIA,r

n,ξ
,

where E IA,r
n,ξ is the asymptotic confidence ellipsoid of the r-th replication of the IS-AL procedure of

size n.

3.5.3.3 Confidence ellipsoid volumes for IS-AL and MLE

A qualitative criterion to measure the sharpness of a confidence ellipsoid is its volume (Golestaneh
et al., 2018). So, to evaluate the effectiveness of the IS-AL strategy on the reduction of the vari-
ance of the fragility curve estimations, we define the CEVs, for respectively the MLE and IS-AL
strategies, as follows:

CEVMLE,r
n = det

(
V̂ MLE
n,r

n

)
and CEVIA,r

n = det

(
Ĝn,r
n

)
, (3.48)

where Ĝn,r is the estimated covariance matrix (3.27) of the r-th replication of IS-AL procedure of
size n.

3.6 Numerical results

To evaluate IS-AL efficiency, a numerical benchmark has been performed with three test cases
with increasing complexity:
1) a synthetic test case with known fragility curve and probability distribution of the seismic log-
intensity measure X ,
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2) a nonlinear elasto-plastic oscillator with kinematic hardening subjected to synthetic signals gen-
erated from the modulated and filtered white-noise ground-motion model (Rezaeian and Der Ki-
ureghian, 2010), as in Sainct et al., 2020,
3) an industrial test case of a nuclear facility’s pipeline-system, submitted to the same artificial
signals as the two test cases.

For test cases 2 and 3, 97 acceleration records selected from the European Strong Motion
Database (Ambraseys et al., 2004) in the domain 5.5 < M < 6.5 and R < 20km - where M is
the magnitude and R the distance from the epicenter - are considered in order to identify the pa-
rameters of the ground-motion model. 105 realizations of synthetic signals are then generated to
form the unlabeled pool.

The oscillator test case aims to evaluate the effectiveness of the IS-AL strategy before its appli-
cation to an industrial test case which is numerically much more costly. Moreover, since it well
represents the essential features of the nonlinear responses of a large variety of real structures
subjected to earthquakes, this test case allows to determine the value of the hyperparameter ε -
thanks to a numerical benchmark - because there is no ad hoc procedure to do this.

3.6.1 Synthetic test case

Here we benchmark our methodology while having full knowledge of the true fragility curve.
We generate 30,000 datapoints (Xi, Si) with the fragility curve µ(x) = Φ(x−log(α∗)

β∗
) with (α∗, β∗) =

(0.3, 0.4). The original marginal distribution of X is here a Gaussian distribution with mean
log
(
α∗
5

)
and variance 1.69. The parameters have been chosen so that the data generated are qual-

itatively close to the nonlinear oscillator test case presented in section 3.6.2. The unlabeled pool
consists of 20,000 datapoints Xi. 10,000 datapoints (Xi, Si) will be our validation set for testing
error estimation, using crude Monte Carlo.

Figure 3.1 shows (i) the target fragility curve µ in dashed red line, (ii) a kernel density esti-
mation of the density p based on the whole dataset in green and (iii) a kernel density density
estimation q of the 120 datapoints Xi obtained by IS-AL in red.

−8 −6 −4 −2 0
X

0.0

0.2

0.4

0.6

0.8

1.0 µ

p

q

FIGURE 3.1: Synthetic test case with lognormal fragility curve with parameters
(α∗, β∗) = (0.3, 0.4) and X ∼ N (α∗

5 , 1.69). Comparison of the original marginal
density p of X with the empirical density q of the n = 120 datapoints Xi obtained by
IS-AL.

Figure 3.2 shows the training and testing errors for R = 500 replications of the IS-AL, RS and
MLE algorithms. The algorithms are initialized with 20 datapoints and n = 100 datapoints are
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extracted from the unlabeled pool with the three procedures. The regularization parameters βreg ∈
(10−4, 10−1) were determined by cross validation with the 20 datapoints used for initialization for
each replication of the IS-AL and MLE strategies. We also use a defensive parameter value ε of
10−3 (see section 3.6.2 for justification).
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FIGURE 3.2: Results of the numerical benchmark for the synthetic test case: the thick
lines represent the mean loss forR = 500 replications, the shaded areas represent the
ranges between the quantiles at 90% and 10% of the 500 replications of the IS-AL, RS
and MLE procedures. For this case, the bias is known and is equal to E[µ(X)(1 −
µ(X))] ≃ 0.032.

TABLE 3.1: Performance metrics for the synthetic test case for n = 120 (see Section
3.5.2.1)

Train Test
• RS MLE IS-AL RS MLE IS-AL

RSD•
120 (%) 38 36 34 12 9 8.5
ν•120 1.2 1.2 × 2.3 1.1 ×

RB•
120 (%) 8.6 4.2 5 13 9 6.7

As depicted by Figure 3.2 and Table 3.1, IS-AL does not seem to reduce the training error. This
result is normal because IS-AL selects seisms whose intensity measures maximize ℓ̃θ, which can
be seen as a marginalized training loss variance of the observations. In other words, as illustrated
in Figure 3.1 with the density q(x), IS-AL selects "difficult" points - typically values of x for which
µ(x) takes values between 0 and 1 - and therefore the training error can be large because it is not
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representative of the generalization error as the testing one. RS, MLE and IS-AL strategies really
distinguish themselves on the testing error, which is smaller for IS-AL. Moreover, IS-AL quickly
converges to the known bias equal to E[µ(X)(1−µ(X))] ≃ 0.032. In comparison with RS and MLE
strategies, the variance of IS-AL is smaller after 120 iterations: νMLE

120 is smaller than νRS
120, meaning

that MLE is competitive with IS-AL in this synthetic case.
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FIGURE 3.3: Results of the numerical benchmark for the synthetic test case: empir-
ical distributions of the parameters α and β are represented by ranges between the
empirical 10% and 90% quantiles of 500 replications. The shaded blue and red areas
correspond respectively to MLE and IS-AL. The dashed green lines correspond to
the true parameters α∗ and β∗.

Figure 3.3 compares the distributions of the parameters α and β for several sample sizes using
the 500 replications of MLE and IS-AL estimators and they are similar when n > 100. Indeed,
the statistical model is in this case well specified (i.e. failure events follow a Bernoulli distribution
with a lognormal probability of failure) and thus MLE is supposed to perform well as shown in
Bachoc, 2013. Note that up to n = 80, the MLE strategy can produce degenerate fragility curves
because β ≃ 0. The IS-AL algorithm avoids this pitfall due to the regularization parameter.

3.6.2 A nonlinear oscillator

This test case aims to validate the overall strategy developed in this work on a simple but
representative case, because this is not possible for complex structures like the one in section 3.6.3.
This section is therefore particularly comprehensive, from the initialization of the IS-AL algorithm
to the estimations of the fragility curves, via the choice ε and the numerical verification of the
theorems.

3.6.2.1 Presentation of the oscillator

This second test case - illustrated in Figure 3.4 - relates to a single degree of freedom elasto-
plastic oscillator which exhibits kinematic hardening. It has been used in previous studies such
as Trevlopoulos, Feau, and Zentner, 2019; Sainct et al., 2020. For a unit mass m, its equation of
motion is:

z̈(t) + 2ζωLż(t) + fNL(z(t)) = −s(t) ,
with s(t) an artificial seismic signal. ż(t) and z̈(t) are respectively the velocity and the acceleration
of the mass while ζ is the damping ratio and ωL the pulsation of the oscillator. The nonlinear force
fNL is governed by two parameters: the post-yield stiffness, a, and the yield displacement, Y .
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With this model, the quantity of interest is the maximum displacement of the mass, D =
maxt∈[0,T ] |z(t)|, where T is the duration of the seismic excitation. The failure state is then de-
fined by the {0, 1}-valued variable S = 1(D>C), where C = 2Y is chosen to be approximately the
90% quantile of the maximal linear displacement of the unlabeled pool of size 105.

s(t)

m

(1− a)mω2
L

amω2
L

2 ζ mωL

z(t)

FIGURE 3.4: Elasto-plastic mechanical oscillator with kinematic hardening, with pa-
rameters fL = 5 Hz and ζ = 2%. The yield limit is Y = 5.10−3 m and the post-yield
stiffness is 20% of the elastic stiffness, hence a = 0.2.

In order to check the performances of the IS-AL algorithm, the unlabeled training set consists
in 9.104 seismic signals and the testing set is composed of 104 signals. The benchmark study
consists in R = 500 replications with n = 120 sampled seismic signals using IS-AL (that includes
the initial 20 points) and 120 for the RS and MLE strategies.

3.6.2.2 Initialization of the IS-AL procedure

In this test case, for IS-AL initialization, we use the underlying elastic oscillator as a cheap
model. The initialization parameter θ̂IA0 is approximated by θ̂RS

105 (equation (3.8)) using the 105-
sized dataset. In addition, the PGA is first considered as IM. Even if the PGA is not known to be the
best indicator, doing so helps to verify the relevance of the methodology in a "less favorable" case.
Note that the influence of the IM on the results is discussed in section 3.6.2.8. As shown in Figure
3.5, the parameter θ̂IA0 could be considered "close to" the true parameter θ∗. Thus, 20 datapoints
are queried on the nonlinear oscillator with the instrumental density q

θ̂IA0 ,ε
(equation (3.18)) before

launching the adaptive strategy.
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FIGURE 3.5: Lognormal fragility curves of the linear elastic and the nonlinear oscil-
lators obtained by using least squares minimization on the total 105 synthetic seismic
signals of the dataset.
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3.6.2.3 Choice of ε

As mentioned in section 3.3.2.3, there is no direct methodology for the choice of the ε value.
One thus benefits from this simple test case to implement a numerical benchmark in order to
obtain a reasonable value of ε for the class of structures for which the oscillator represents the
global nonlinear behavior under seismic excitation. This benchmark consists in evaluating the
IS-AL efficiency with respect to the RS strategy, νRS

n (equation (3.44)), as a function of ε when IM
= PGA and n = 120. Results are given in Table 3.2.

TABLE 3.2: Defensive parameter ε influence on νRS
120 when IM = PGA.

ε Train Test
10−1 1.3 1.2
10−2 2.1 3.9
10−3 2.2 3.3

They show that νRS
120 does not change between ε = 10−2 and ε = 10−3. νRS

120 is smaller when
ε = 10−1 meaning that this value is too conservative because there are too many elements drawn
from the pdf p. Accordingly, all the results will presented hereafter with a defensive parameter ε =
10−3. This implies that the defensive strategy plays essentially no role here, but gives theoretical
convergence guarantees.

3.6.2.4 Performance metrics

Figure 3.6 compares the IS-AL, MLE and RS training and testing errors as functions of n. The
mean training loss for the 500 replications is higher for IS-AL than for RS. Indeed, the instrumental
density is chosen to sample seismic signals that maximize the loss variance, resulting in a high
training error. Moreover, the mean testing error of IS-AL is also significantly smaller than for RS
and quickly converges to the "minimal" error related to the term E[µ(X)(1 − µ(X))] in (3.5). This
is shown in Table 3.3 by a significantly smaller value of relative bias RBIA

120 (1%) for the testing
error than with RS (12%). With respect to the MLE, one cannot make equivalent remarks insofar
as the two errors are "artificial" (see definitions in section 3.5.2.1) and only plotted for illustration
purpose. However, Table 3.3 shows that the IS-AL strategy has overall better performance than
the other two strategies.

TABLE 3.3: Performance metrics for the elasto-plastic oscillator for n = 120 when IM
= PGA (see Section 3.5.2.1).

Train Test
• RS MLE IS-AL RS MLE IS-AL

RSD•
120 (%) 47 65 30 19 14 11
ν•120 2.2 5.9 × 3.3 1.8 ×

RB•
120 (%) 11.1 7.6 5 12 6.4 1
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FIGURE 3.6: Results of the numerical benchmark for the elasto-plastic mechanical
oscillator with the PGA as IM (same notations as for the synthetic test case). The
empirical distributions of the training and testing errors are represented by the range
between the empirical 90% and 10% quantiles of the 500 replications.

3.6.2.5 Empirical distributions of the parameters α and β

Figure 3.7 shows the empirical distributions of the parameters α and β for several sample
sizes using 500 replications of MLE and IS-AL estimators. Remark in this case that IS-AL per-
forms better than the MLE by reducing the variances of the parameters’ estimators. The effects
are particularly visible for the parameter β, when the active learning strategy and the regulariza-
tion play their role in reducing the standard deviations of the estimators without increasing bias.
Indeed, MLE performances are downgraded when the model is not well specified (Bachoc, 2013).
We remark that parameter estimation is quite unstable for IS-AL for low sample sizes. Indeed,
the number of failure events for low sample sizes is often 0, which makes impossible a correct
estimation of the fragility curve’s parameters.

Figure 3.8 helps to visualize how IS-AL reduces the uncertainty of the fragility curve estima-
tion: IS-AL is designed to sample seismic ground motions in the transition zone between 0 and 1
of the fragility curve, this phenomenon is responsible for the uncertainty reduction.

3.6.2.6 Convergence criterion

Figure 3.9 shows the value of the test statistics Ŵn (see section 3.4.2) for two independent IS-AL
realizations. This result expresses that the IS-AL algorithm achieves asymptotic normality from
n = 100 because the value of Ŵn is less than the quantile 90% of the distribution χ2(2).
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FIGURE 3.7: Results for the elasto-plastic mechanical oscillator with the PGA as IM:
the empirical distributions of the parameters α and β are represented by the empiri-
cal 90% and 10% quantiles of the 500 replications and correspond to the shaded blue
and red areas for MLE and IS-AL, respectively. The dashed green lines correspond
to the values α∗ and β∗, which have been here approximated by α̂N , β̂N forN = 105.
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FIGURE 3.8: Comparison of the original marginal density p of PGA with the es-
timated density q of sampled PGA using IS-AL with n = 100 datapoints for the
nonlinear oscillator. Fragility curve is approximated by µ(PGA) = Φ( log(PGA/α̂N )

β̂N
)

for N = 105.

3.6.2.7 CPs and CEVs

Figure 3.10 shows the CP values for the nonlinear oscillator for a training size n between 100
and 500 for the fragility curve estimation by MLE or IS-AL. The true parameter θ∗ for this case has
been approximated by θ̂N for N = 105. The numerical results show that the CP values are close to
the theoretical and nominal value of 90%, which validates the theoretical results of the section 3.4.

Figure 3.11 shows the CEVs for the MLE and IS-AL estimators. For R = 200 replications, these
results show that for all the values of n considered CEVIA

n < CEVMLE
n . This indicates that MLE

and IS-AL succeed in generating confidence ellipsoids that have the required coverage probability
but MLE does so by generating ellipsoids that are much larger than the ones generated by IS-AL.
We can then conclude that IS-AL is much more efficient.

We emphasize that the convergence criterion Ŵn, illustrated in Figure 3.9, gives us at which
sample size the IS-AL reaches asymptotic normality and thus at which sample size asymptotic
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FIGURE 3.9: Values of the test statistic Ŵn for two independent IS-AL realizations,
when IM = PGA.
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FIGURE 3.10: CP values (for the confidence ellipsoid with level 1 − ξ = 0.9 for θ)
as a function of the training size n of IS-AL and MLE when IM = PGA. R = 100
IS-AL replications are used to estimate the CP for each training size n. B = 200
bootstrap samples are generated for the MLE to build the confidence ellipsoid at
level 1−ξ = 0.9 for n between 200 and 500,B = 300 bootstrap samples are generated
for n = 100 due to numerical instabilities.

confidence ellipsoid can be used. Even though CPIA
100 is less than the theoretical 90%, 70% is con-

sidered as acceptable in practice.

3.6.2.8 Empirical distributions of the fragility curves and influence of the IM value

The choice of the seismic IM is crucial for the accuracy of fragility curves estimates, especially
when parametric models are concerned. So, empirical distributions of the fragility curves for IS-
AL and RS methods are shown in Figure 3.12 when IM = PGA, and in Figure 3.13 when IM is the
spectral acceleration (SA) at 5 Hz and 2% damping ratio. The parametric fragility curves estimated
with a dataset of 104 seismic ground motions, are also shown in order to validate both the model
choice and the uncertainty reduction provided by IS-AL.

With the PGA, a bias between the lognormal fragility curve and the k-means nonparametric
fragility curve, called µMC , can be seen in Figure 3.12. This phenomenon could be explained by
the small correlation between maximal displacement of the oscillator during the seismic excitation
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FIGURE 3.11: CEVs (for the confidence ellipsoid with level 1 − ξ = 0.9 for θ) as a
function of the training size n for IS-AL and MLE strategies when IM = PGA. The
points are the medians over the R = 200 replications while the vertical lines are the
ranges between the 10% and 90% quantiles.

and the PGA, which conveys small information about the seismic ground motion (Ciano, Gioffrè,
and Grigoriu, 2020).
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FIGURE 3.12: Empirical distribution of the fragility curves estimated by RS and IS-
AL for the nonlinear oscillator for a training size of 120 mechanical computations.
The dashed orange line and solid green line are respectively the parametric esti-
mation µ using 104 seismic ground motions and the k-means nonparametric esti-
mation of the fragility curve using 105 seismic ground motions µMC . The red and
blue shaded areas correspond respectively to the 90% to 10% quantile ranges for the
fragility curve dataset computed with IS-AL or RS. Remark that the nonparametric
fragility curve is only plotted for PGA < 10m/s2 due to the lack of seismic signals
with PGA above that threshold.

The results presented in Figure 3.13 show a reduction of the bias between the nonparametric
and the parametric fragility curve. This illustrates that, for the class of structures and for the
seismic signal generator considered in this study, the parametric lognormal model has a better fit
with the reference SA-based fragility curve than with reference PGA-based fragility curve.
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FIGURE 3.13: Empirical distributions of the fragility curves of RS and IS-AL for the
nonlinear oscillator when IM is the spectral acceleration at 5 Hz and 2% damping
ratio for a training size of 120 mechanical computations. The notations are the same
as those in the Figure 3.12. Remark that the bias between the nonparametric fragility
curve µMC and the parametric fragility curve µ is smaller than the one obtained
when using the PGA as the intensity measure (compare with Figure 3.12).

3.6.2.9 Confidence interval for parametric fragility curves : towards the engineering practice

After assessing the validity of the asymptotic confidence ellipsoid for IS-AL thanks to the com-
putation of the CP values in section 3.6.2.7, we can use the asymptotic Gaussian distribution to
construct the CI of the parametric fragility curve, as in the engineering practice. Thus, using a
single run of the IS-AL procedure, we estimate the asymptotic covariance matrix Ĝn and sample
fragility curve parameters from the asymptotic distribution N

(
θ̂IAn ,

Ĝn
n

)
. For the sake of compar-

ison, we also construct the CI on a single replication of the MLE procedure using the bootstrap
technique.

Figure 3.14 represents the CIs for the fragility curve at level 90% for IS-AL and MLE strategies,
for a single replication of size n = 200 of each procedure. Remark that the fragility curves esti-
mated by MLE can be degenerated (i.e. as a unit step function), which implies that the CI for MLE
is too conservative. This is consistent with the results of the figures 3.7 and 3.11.

3.6.2.10 Synthesis

In this section, we have shown that the IS-AL-based methodology is (i) efficient to reduce the
variance of the fragility curve estimation and (ii) can be applied regardless of the IM of interest.
However, in practice, it is more suitable to use an IM as correlated as possible to the response of
the structure to minimize potential biases due to the use of a parametric model. In addition, we
have shown that, if the computation times allow it, it is possible to know when to stop the IS-AL
algorithm, in order to build asymptotic confidence ellipsoids.

3.6.3 Industrial test case: safety water supply pipe of a Pressurized Water Reactor
(PWR)

3.6.3.1 Description of the piping system

The following test case corresponds to a piping system which is a simplified part of a sec-
ondary line of a French PWR. The numerical model was validated based on seismic tests per-
formed on the shaking table Azalée of the EMSI laboratory of CEA/Saclay. The experimental
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FIGURE 3.14: CIs of the parametric fragility curves of the elasto-plastic oscillator
obtained with 500 samples of the parameter asymptotic Gaussian distribution for
IS-AL and 500 bootstraped estimators with MLE, both for a training size of 300 me-
chanical computer simulations. The red and blue shaded areas correspond to the
ranges between the 95% and 5% quantiles for respectively IS-AL and MLE. The solid
green line corresponds to the Monte Carlo estimation (k-means nonparametric esti-
mation) of the fragility curve based on a dataset of 105 of synthetic seismic signals.

program, called ASG program, and the main results are outlined in Touboul, Sollogoub, and Blay,
1999. In Figure 8.2a a view of the mock-up mounted on the shaking table is shown. The Finite
Element (FE) model, based on beam elements, is depicted in Figure 8.2b.

(A)

 Guide

 Rod

  Mass

  Clamped end

(B)

FIGURE 3.15: (a) Overview of the ASG mock-up on the CEA’s shaking table and (b)
ASG FE model.

The mock-up is a 114.3 mm outside diameter and 8.56 mm thickness pipe with a 0.47 elbow
characteristic parameter, in carbon steel TU42C, filled with water without pressure. It contains
three elbows and a mass modeling a valve (120 kg) which corresponds to more than 30% of the
specimen total mass. As shown in Figure 8.2b, one end of the mock-up is clamped whereas the
other is supported by a guide in order to prevent the displacements in the X and Y directions.
Additionally, a rod is placed on the top of the specimen in order to limit the mass displacements
in the Z direction. In the tests, excitation act in the X direction.

Numerical comparisons are carried out with the homemade FE code CAST3M (Charras and
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Kichenin, 2011). Concerning the FE model, the boundary conditions are adjusted in order to ob-
tain shapes and frequencies similar of those of the first two eigenmodes of the mock-up in the X
and Y directions, respectively at 5.1 Hz and 6.6 Hz. As measured in the experiments, a critical
damping ratio of 1% is considered for these two eigenmodes with a damping Rayleigh assump-
tion. Finally, regarding the nonlinear constitutive law of the material, a bilinear law exhibiting
kinematic hardening is used to reproduce the overall nonlinear behavior of the mock-up with sat-
isfactory agreement compared to the results of seismic tests (Touboul, Sollogoub, and Blay, 1999).

In the context of this test case, the yield stress of the bilinear law is equal to 3.5 108 Pa, the
Young modulus is equal to 1.92 1011 Pa whereas the hardening modulus is equal to 4.3 108 Pa.
Moreover, since for the synthetic signals considered in this work (the same as those used in the
reference Sainct et al., 2020 and in the second test case of this paper) the piping system remains in
the linear domain, they are filtered by a fictitious linear single-mode building at 5 Hz and damped
at 2%. Finally, we consider excessive out-of-plane rotation of the elbow located near the clamped
end of the mock-up as failure criterion, as recommended in Touboul, Blay, et al., 2006. Since the
weight of the mass is not completely taken up by the mechanical assembly, the overall behavior
of the mock-up exhibits ratcheting.

In the following, the random variable Re corresponds to the maximum of the out-of-plane
rotation of the elbow. The binary variable which indicates the failure state is defined by S = 1Re>C

where C is the admissible rotation in degree. In our case, C = 4.38◦. This value is the 90%-level
quantile from a sample of 2000 mechanical simulations.

3.6.3.2 Performance metrics

For this test case, the numerical benchmark is based on 50 replications of 120 signals sampled
using IS-AL (that includes the initial 20 points) with a defensive parameter ε = 10−3 and 120
signals for the RS and MLE strategies.

The IS-AL procedure is initialized by considering the linear FE model of the ASG mock-up
and a numerical resolution based on a modal base projection. Thus, the initialization parameter
θ̂IA0 is approximated by θ̂RS

2000 using a 2000-sized dataset randomly selected from the 105 synthetic
seismic ground motions. Then, 20 datapoints are queried with the instrumental density q

θ̂IA0 ,ε

before launching the adaptive strategy. For the training, 100 signals are then chosen in a pool
of 1500 CAST3M computations while 500 additional computations are carried out in order to
compute the testing error.

Figure 3.16 compares the IS-AL, MLE and RS training and testing errors as functions of n.
Remark that the training loss of MLE is greater than the training loss of IS-AL. This numerical
artifact is essentially due to the regularization term βreg: if the β parameter estimated by MLE is
small, the penalization term βreg/β can be very high.

Table 3.4 shows that the IS-AL strategy has overall better performance than the other two
strategies.

3.6.3.3 Empirical distributions of the parameters α and β

Figure 3.17 compares the distributions of parameters α and β for several sample sizes between
MLE and IS-AL using 50 replications. As with the nonlinear oscillator, the β parameter estimated
with IS-AL is less likely to be close to 0 than when it is estimated with MLE. This motivates further
the use of active learning to have a better accuracy for fragility curves parameters estimates with
the same computational cost as state of the art estimation methods.
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FIGURE 3.16: Numerical benchmark of the ASG piping system. The empirical dis-
tributions of the training and testing errors are computed, the red and blue shaded
areas correspond to the area between the empirical quantiles of levels 10% and 90%
of the 50 replications for respectively IS-AL, RS and MLE.

TABLE 3.4: Performance metrics for the ASG piping system for n = 120 when IM =
SA (see Section 3.5.2.1)

Train Test
• RS MLE IS-AL RS MLE IS-AL

RSD•
120 (%) 40.5 46 34 24.1 28 12
ν•120 0.93 2.4 × 1.3 5.8 ×

RB•
120 (%) 7.2 8.6 5.5 18 8.4 0.3

3.6.3.4 Fragility curve estimations

Figure 3.18 illustrates the uncertainty reduction provided by IS-AL on the fragility curve es-
timate. Motivated by the results obtained for the nonlinear oscillator, the fragility curve of the
piping system is here expressed as a function of the pseudo-spectral acceleration of the initial set
of synthetic signals (i.e not filtered signals), calculated at 5 Hz and 1% damping ratio.

Figure 3.19 represents the confidence interval on the fragility curve for IS-AL and MLE using a
single replication of 200 CAST3M computations (20 computations used for initialization and 180
computations for IS-AL), obtained with the same methodology as that presented in section 3.6.2.9.
Remark that the Monte Carlo estimation of the fragility curve (i) belongs to the confidence interval



3.6. Numerical results 47

20 40 60 80 100 120
Training size n

10

15

20

25

α

MLE

IS-AL

α∗

20 40 60 80 100 120
Training size n

0.0

0.2

0.4

β

MLE

IS-AL

β∗

FIGURE 3.17: Results for the ASG piping system: the empirical distributions of pa-
rameters α and β are represented by the empirical 90% and 10% quantiles of 50
replications and correspond to the shaded blue and red areas respectively for MLE
and IS-AL. The dashed green lines correspond to the values α∗ and β∗, which have
been here approximated by α̂N , β̂N for N = 2000.
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FIGURE 3.18: Empirical distributions of the fragility curves of RS and IS-AL for the
ASG piping system. The red and blue areas correspond respectively to the ranges
between the 10% and 90% quantiles of the fragility curve dataset generated with IS-
AL and RS with n = 120 training datapoints (that includes the initialization points).
The dashed orange line corresponds to a parametric fragility curve estimation using
least squares minimization with a dataset of 2000 seismic ground motions and FE
simulations of the piping system. The solid green line corresponds to a Monte Carlo
estimation (k-means nonparametric estimation) of the fragility curve using the same
2000-sized dataset. The dashed green curves correspond to the 95% confidence in-
terval of the Monte Carlo fragility curve estimation.

of IS-AL for seisms with relatively small spectral acceleration (ii) is not accurate for high spectral
accelerations due to the lack of seismic signals of such intensities (see confidence intervals of the
Monte Carlo fragility curve estimations).

As for the nonlinear oscillator, the figures 3.18 and 3.19 suggest that for the RS and MLE strate-
gies, even with n = 120 points, it is possible to obtain samples for which a β estimate is close to 0,
which IS-AL avoids.
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FIGURE 3.19: Parametric fragility curve of the ASG piping system confidence inter-
val obtained with 500 samples of the parameter asymptotic Gaussian distribution for
IS-AL and 500 bootstraped estimators with MLE. The red and blue shaded areas cor-
respond to the ranges between the 95% and 5% quantiles for respectively IS-AL and
MLE. The solid green line corresponds to a Monte Carlo estimation (k-means non-
parametric estimation) of the fragility curve using our 2000 sized dataset of CAST3M
computations. The dashed green curves correspond to the 95% confidence interval
of the Monte Carlo fragility curve estimation.

3.7 Conclusion

In this chapter, for problems involving expensive numerical simulations, we have introduced
an original methodology to improve the accuracy of parametric IM-based fragility curves estima-
tions without increasing the sample size, thanks to an active learning strategy based on impor-
tance sampling. Defensive strategy has been implemented to control the likelihood ratio and the
possible increase of the training loss variance in the early steps. We use a penalized least square
loss to avoid an identifiability issue of the standard deviation of the lognormal model. We define
a convergence criterion that indicates asymptotic normality of the estimator and provides asymp-
totic confidence intervals and ellipsoids. This methodology concerns problems for which aleatory
uncertainties (i.e. due to the excitation) have a predominant contribution in the variability of the
structural response. Taking into account epistemic uncertainties will be the subject of the next
chapters. We have illustrated the performance of the proposed active learning procedure with
numerical examples dealing with a synthetic case up to the FE mechanical simulation of a piping
system of a French PWR. In comparison with the engineering practice based on the joint use of
the MLE and the boostrap techniques, the proposed methodology is more efficient. For the same
number of calculations, the IS-AL procedure reduces the variance of the parametric estimation of
the fragility curve and gives theoretical guarantees on the convergence of the estimations. Finally,
note that the performances of the IS-AL algorithm increase, compared to the classical methods,
with the failure thresholds. In practice, even it is difficult to estimate in advance what the effective
gain will be, it will be in favor of the proposed algorithm for well-designed structures facing the
seismic risk.



49

CHAPTER4
Uncertainty studies for black-box
computer models

Les ordinateurs, plus on s’en sert moins,
moins ça a de chances de mal marcher.

Devise Shadok
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4.1 Introduction

Numerical simulation consists in representing a real experiment using a computer code. Com-
puter models are now essential for simulating and designing complex systems such as mechanical
structures in industrial facilities. Computer simulation is now considered as a third branch for
studying phenomena, after theory and real experiments. Its main advantage is to replace costly
or infeasible real experiments by numerical simulations.

In order to assess that the system studied is always in operational conditions, it is necessary
to precisely estimate the uncertainties tainting specific quantities of interest of the system. In
some industries, it is even mandatory for regulatory reasons (such as in the nuclear industry).
Uncertainty Quantification (UQ) aims at developing specific methodologies to address this issue
using a probabilistic framework (in most cases). It can be the estimation of the probability of a rare
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event, optimizing quantities of interests under constraints, or assessing which design parameter
uncertainty influence the most the uncertainty of the system’s quantity of interest (e.g. sensitivity
analysis).

UQ concerns more globally the assessment of uncertainties sources on a model representing
an observed phenomenon. UQ framework can be used for several types of decision-making pro-
cesses such that:

• Design of a system to optimize its exploitation under costs and risks constraints;

• Estimation of a regulatory criterion;

• Understand more precisely the behavior of a phenomenon for R&D purposes.

In the scope of this thesis, the phenomenon studied is the dynamical response of a mechanical
structure to seismic ground motions.

4.2 Uncertainty quantification

4.2.1 A general framework

Uncertainty quantification of a numerical model comes after a modeling phase of a physical
system. Although in this manuscript the models considered will be related to structural mechan-
ics, all kind of physical models can be considered in this framework (e.g. thermohydraulics, neu-
tronics, fluid mechanics, etc).

Figure 4.1 describes the general framework of uncertainty quantification of computer models
in engineering studies (see e.g. Sudret, 2007; De Rocquigny et al., 2008; Iooss, 2009). The UQ
framework is divided in several (some of them optional) steps:

• Step A: Specification of the problem studied and its main objectives. Definition of the input
and output variables, the quantity of interest, and the definition of which input parameters
are uncertain;

• Step B: Uncertainty modeling of the input parameters. It consists in describing all the
sources of uncertainties affecting the parameters and choosing a framework to describe them
(e.g. probabilistic framework);

• Step B’: The validation and verification (VVUQ) phase of the computer model w.r.t. avail-
able data. This step consists mainly of solving ill-posed inverse problems in order to cali-
brate the computer model. It is beyond the scope of this manuscript;

• Step C: The uncertainty propagation step consists in evaluating the uncertainty of the model
output coming from input parameters uncertainty. The model output uncertainty is thus
summarized by a quantity of interest ϕ(Y ) which is in most cases the mean of the computer
model output EX[M(X)] or a failure probability EX[1(M(X)>C)];

• Step C’: The sensitivity analysis step aims at apportion the output uncertainty to each input
parameter uncertainty. It permits to rank the input parameters by influence on the model
output variability and thus help to make information based design choices. This could guide
the assessment of which parts or elements of the system studied deserve priority in subse-
quent modeling and data gathering steps.
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FIGURE 4.1: General framework for uncertainty quantification of computer models

The methodology for solving these different steps is now well-known. For instance, the Bayesian
calibration of computer codes using Gaussian process (M. C. Kennedy and O’Hagan, 2001), the
substitution of costly computer codes by surrogate models based on Gaussian process (Sacks et al.,
1989) and variance-based sensitivity indices for sensitivity analysis purposes (Sobol’, 1993; Sobol’,
2001). However, research in UQ is still popular, and it is possible to identify some recent trends:

• Theoretical and applied aspects about input uncertainty modeling has been recently studied
in Lemaitre, 2014; Meynaoui, 2019; Stenger, 2020; Gauchy et al., 2021;

• Global sensitivity analysis (GSA) methodologies for dependent input parameters has been
developed in Chastaing, 2013; Broto, 2020. GSA for goal-oriented purposes was also recently
developed in Browne, 2017; Chabridon, 2018;

• The development of surrogate models of computer code using multifidelity (e.g. where
several computer models are available) has been made in Le Gratiet, 2013; Stroh, 2018, or
with adaptive approximation of the computer model in Haberstich, 2020.

The next sections will describe more precisely the different steps of the UQ framework.

4.2.2 Black-box computer model

Numerical simulations are usually carried out using computer models. Due to the high com-
plexity of the physical phenomena studied and in order to have a flexible framework, such com-
puter codes will be seen throughout this manuscript as a black-box function. This means that a
computer model (or computer code) will be formally seen as a scalar valued function:
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M : X ⊂ Rp → Y ⊂ R
x 7→ y = M(x)

(4.1)

x = (x1, . . . , xp) is a set of p input parameters of the computer model. They are generally
physical quantities depending on the type of physics studied for the application (example: Young
modulus for mechanics). In most general cases, the output y of the computer model is consid-
ered to be a scalar. The computer model complexity is summarized into the mapping M(.). The
computer model can be in most simple cases an analytical formula or complex multiphysics com-
putational model based for instance on Finite Elements (FE) in mechanics or Computational Fluid
Dynamics (CFD) in thermohydraulics. This complexity justifies the consideration of the computer
model as a black-box function that is only known pointwise. It is important to also notice that
the computer model can be very expensive to evaluate as well as in terms of computational time
(computer model based on FE or CFD can take several days for a single run based on a fixed
value of input parameters x) as in terms of financial budget (in some cases the computer model
is outsourced in a specialized company and each single run results in fees to this company). The
computer model M can be deterministic (e.g. for a fixed x the value of y = M(x) is fixed) or
stochastic (two runs of the computer model at fixed input parameters x gives different values for
the output y).

Nowadays, it is not enough to perform simulation of a system only on a fixed set of input
parameters x and uncertainties coming from the input parameters can be very impactful on the
behavior of the real phenomenon simulated by the computer model. The potential impact of
these uncertainties can lead to undesirable consequences (e.g. financial consequences) up to dra-
matic consequences (e.g. direct threats to human life, huge environmental negative impact). Thus,
providing a rational inventory of the different sources of uncertainties and a clear mathematical
framework to model them is a key step in UQ methodology (see Figure 4.1).

4.2.3 Sources of uncertainties

For an efficient use of the computer model, the uncertainty tainting the input parameters of
the computer model has to be identified and quantified for several reasons. It can be due to safety
reasons like in aerospatial or nuclear industry where the need of high safety margins are imposed
by regulators. But as pointed out in Soize, 2005; Sudret, 2007 it is also related to the concept itself
of simulation of a physical system: the system simulated by the computer model with a given
set of input parameters may satisfy the imposed design criteria but in practice, the real system is
a man-made physical system in which uncertainty arises in all cases. Thus, the very distinction
between simulation and reality imposes the need to quantify the sources of uncertainties.

From an engineering point of view, after the characterization step of the different uncertainties
tainting the system studied. It is important to classify which uncertainties are reducible in a near-
term with a reasonable budget to help engineers to make information based design choices on
these sources of uncertainties. This leads to introduce two main types of uncertainties:

• Aleatory uncertainty refers to natural variability of a physical phenomenon that remains ir-
reducible. For instance, seismic ground motions are considered aleatory due to the difficulty
to predict them;

• Epistemic uncertainty refers to the lack of knowledge of the analyst and may be reducible
by gathering more information (by data acquisition or expert judgement). Indeed, the word
"epistemic" comes from the Greek word ϵπιστηµη, meaning "knowledge". In the nuclear or
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aerospatial industry, the uncertainty on the mechanical parameters of a structure is consid-
ered epistemic because the R&D budget in these industries allows making more measure-
ments and complex uncertainty models of these variables than in general cases.

Following the lines of Der Kiureghian and Ditlevsen, 2009, the distinction between aleatory
and epistemic uncertainties is subjective: it is a pragmatic classification between manageable un-
certainties for which engineers can allocate resources to reduce them to those for which it is im-
possible.

After identifying and classifying the sources of uncertainties, the analyst have to model these
uncertainties with a mathematical framework such as the probabilistic framework. Some ap-
proaches consider non-probabilistic paradigm to model uncertainty such as random set (Tonon
and B. A., 1998) or Dempster-Shafer theory (Shafer, 1976), but this is beyond the scope of this
manuscript.

4.2.4 Probabilistic modeling of uncertainty

This section gives some insights about measure theory which is the mathematical core of the
probabilistic modeling that will be use extensively in this manuscript. Let (Ω,A,P) by a probabil-
ity space. For X ⊂ Rp we denote B(X ) the Borel σ-algebra on X . A random vector X = (X1, ..., Xp)
on (X ,B(X )) is a measurable function such that:

X : Ω → X
ω 7→ X(ω)

(4.2)

The probability measure PX of X can be defined by two manners:

• The joint cumulative distribution function (CDF) FX : X 7→ [0, 1] such that: FX(x) = P(X ≤
x) = P(X1 ≤ x1, . . . , Xp ≤ xp);

• The joint probability density function (PDF) fX : X 7→ R+ only in cases where X is absolutely
continuous w.r.t. the Lebesgue measure on X . It is easily obtained from the CDF such that:
fX(x) = ∂pFX(x)

∂x1...∂xp
.

We now precise a fundamental theorem of probability theory that is the theoretical cornerstone
of UQ framework.

Theorem 1 (Transport theorem). Let X be a p-dimensional random vector with fX its joint pdf. Assume
that φ : Rp 7→ R is a measurable function. Then E[φ(X)] is given by:

E[φ(X)] =

∫

Rp

φ(x)fX(x)dx (4.3)

if the integral is absolutely convergent.

The transport theorem is the way engineers performs the uncertainty propagation step of UQ
framework. Indeed, given Y = M(X) the computer model output, the quantity of interest ϕ(Y )
is most of the time a generalized moment that can be expressed as:
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ϕ(Y ) = EY [φ(Y )]

= EX[φ(M(X))]

=

∫

Rp

φ(M(x))fX(x)dx .

(4.4)

However, the p-dimensional integral in 4.4 is most of the time not analytic and the engineer has
to rely on numerical methods of integration. The most classical one is the Monte-Carlo method,
which is based on the law of large numbers theorem.

Theorem 2 (Strong law of large numbers). Let X be a p-dimensional random vector with fX its joint
pdf. For a sample (Xi)1≤i≤N of independent realizations of X, if for φ : Rp 7→ R a measurable function we
have E[|φ(X1)|] < +∞ then :

1

N

N∑

i=1

φ(Xi)
a.s.−−−−−→

N→+∞

∫

Rp

φ(x)fX(x)dx (4.5)

In order to compute the quantity of interest ϕ(Y ), a sample (Xi)1≤i≤N of the input parameters
of the computer code is generated using its known pdf function. Then the computer model output
Yi = M(Xi) is computed for each input parameter vector in the N -sized sample. Finally, the
quantity of interest is approximated thanks to the law of large numbers:

ϕ(Y ) ≈ 1

N

N∑

i=1

φ(Yi) (4.6)

4.3 Framework of uncertainty quantification for earthquake engineer-
ing

The aim of this section is to show how to extend the general framework presented above into
seismic probabilistic risk assessment. Indeed, it is possible to see seismic fragility curve as a goal
oriented quantity of interest of a stochastic computer model.

4.3.1 The specific case of stochastic computer models

In most of UQ literature, the computer model is always considered deterministic w.r.t. the in-
put parameters vector X. However, in some engineering studies an uncontrolled uncertainty can
appear. For instance, seismic probabilistic risk assessment (SPRA) has to account for the uncon-
trolled seismic hazard coming from a ground motion loading that is considered as the realization
of a stochastic process. In this case, we will consider that the computer model is a function of two
input parameters:

• The seismic intensity measure A which quantifies the strength of the seismic loading;

• The vector of parameters of the structure studied denoted X ∈ Rp.

Note that the vector X is a random vector of controllable input parameters of the computer
model with probability distribution PX, whereas A depends on the seismic loading and hence
cannot be considered controllable. In SPRA we will thus have to consider the case of a stochastic
computer model which can be formalized as follows:
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M : Rp+1 → R
(a,x) 7→ y(a,x) = log(z(a,x)) = g(a,x) + ε ,

(4.7)

where z(a,x) is the mechanical demand of the simulated structure, the log mechanical demand
y(a,x) is usually considered due to the presence of multiplicative noise on the mechanical demand
for most of the structures. g is the deterministic part of the computer model and ε the stochastic
part which depends on an uncontrollable parameter ω and of (a,x) in terms of interaction with ω:

ε = ε(ω, a,x) , (4.8)

where E[ε|A,X] = 0. ω can be seen as the noise coming from the stochastic ground motion,
and which is difficult to represent with a reasonable number of scalar parameters. We emphasize
that with this kind of models, several mechanical simulations with the same value of (a,x) and a
different seismic ground motion will give different outputs.

4.3.2 Uncertainty quantification for seismic fragility curves

Seismic fragility curve is a peculiar quantity of interest arising from seismic probabilistic risk
assessment (SPRA) studies (R. Kennedy, C. Cornell, et al., 1980; R. Kennedy and Ravindra, 1984).
It is the probability of exceedance of a threshold C of a mechanical demand Z conditional to a
seismic intensity measure A. Following the lines of Der Kiureghian and Ditlevsen, 2009, we clas-
sify the sources of uncertainties in SPRA for the nuclear industry between aleatory and epistemic
uncertainties. In the frame of this manuscript, the seismic ground motion uncertainty will be
considered as aleatory uncertainty while the mechanical parameters of the structure will be con-
sidered as epistemic uncertainty. The main goal of the remainder of this manuscript is to study the
impact of the epistemic uncertainties on the seismic fragility curves. Indeed, measuring the im-
pact of the epistemic uncertainties on the seismic fragility curves will help mechanical engineers
to propose information based design choices and goal oriented risk assessment while in the same
time using the existing tools of SPRA. We thus propose a new definition of fragility curve that will
be the conditional probability of exceedance of a threshold to a seismic intensity measure and a
mechanical parameter vector:

Ψ(a,x) = Pε(z(A,X) > C|A = a,X = x) . (4.9)

This new definition allows us to consider the random function a → Ψ(a,X) as the goal-oriented
functional output for UQ studies in a SPRA context. From this functional output we can derive
functional quantities of interest such as the mean fragility curve:

Ψ̄(a) = EX[Ψ(a,X)] . (4.10)

One can also be interested in more conservative statistical quantities that will be useful for risk
analysis. We introduce the seismic fragility quantiles curves a→ qγ(a) of level γ ∈ [0, 1] such that:

qγ(a) = inf
q∈R

{PX(Ψ(a,X) ≤ q) ≥ γ} . (4.11)

The effect of epistemic uncertainties on the fragility curve is assessed by uncertainty quantification
using a Monte-Carlo sample (Xi)1≤i≤N w.r.t. the probability measure PX. Then, the quantity of
interest is approximated thanks to the law of large numbers:
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FIGURE 4.2: Uncertainty quantification framework adapted to seismic probabilistic
risk assessment

Ψ̄(a) ≈ 1

N

N∑

i=1

Ψ(a,Xi) ,

qγ(a) ≈ inf
q∈R

{ 1

N

N∑

i=1

1(Ψ(a,Xi)≤q) ≥ γ} .
(4.12)

Figure 4.2 shows the adaptation of the general UQ framework to seismic probabilistic risk
assessment in the same spirit as in Figure 4.1. Denote the two sources of randomness in this
framework: the aleatory uncertainty coming from the seismic ground motions and the epistemic
uncertainty coming from the mechanical parameters of the structure. This distinction between
sources of uncertainties is once again subjective and context dependent: in the case of nuclear
safety, mechanical parameters uncertainty is epistemic due to the very high level of safety im-
posed by regulatory agencies and thus uncertainty reduction on the mechanical parameters of the
structure is considered feasible in a near term. This is for instance generally not the case for seismic
risk assessment in civil engineering where mass production of structures and financial constraints
make infeasible the reduction of uncertainty on their mechanical parameters, which is the main
definition of epistemic uncertainty.

4.4 Conclusion

This chapter sets the main framework of uncertainty studies in engineering using black-box
computer models. Probability theory allows us to formalize mathematically the concept of un-
certainty and how to define valuable quantities of interest that can be insightful in the context of
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uncertainty studies. This framework can be extended to seismic probabilistic risk assessment of
structures for nuclear safety, by introducing an aleatory source of uncertainty: the seismic ground
motions. A goal-oriented statistic coming from the aleatory uncertainty is then defined: the seis-
mic fragility curve. The mechanical parameters of the structure are considered tainted by epis-
temic uncertainties, represented by a probability distribution. This uncertainty is then propagated
into the seismic fragility curve. However, the Monte-Carlo sample size N and the number of sim-
ulations necessary to obtain an estimation of a → Ψ(a,Xi) make the direct use of the stochastic
computer model M too costly for practical applications to mechanical structures. We thus will
have to build a surrogate for M using statistical learning methods to make the uncertainty prop-
agation step and the sensitivity analysis step numerically tractable. In the next chapter, we will
propose to build a surrogate based on Gaussian process regression in order to perform uncertainty
propagation. The main advantage of this surrogate is to propose both a prediction and an uncer-
tainty on the mechanical computer model output, which is very appealing in a context of seismic
safety studies.
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CHAPTER5
Surrogate modeling of black-box
computer models using Gaussian process

Au-delà de l’outil, et à travers lui, c’est la
vieille nature que nous retrouvons, celle
du jardinier, du navigateur ou du poète.

Saint-Exupéry, Terre des hommes
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5.1 Introduction

The increasing complexity of computer simulation and the need of a huge number of simu-
lations for Uncertainty Quantification (UQ) and optimization motivate the elaboration of meta-
models built using only a limited number of numerical simulations. These meta-models are used
as a surrogate (or emulator) of the numerical computer code. A surrogate can be simply defined as
being a substitute to a real computer code. Its main advantage is to perform fast evaluation of the
output quantities of the computer model, allowing the engineers to save money and computation
time while keeping the same operational objectives. However, one main drawback is the approx-
imation error between the real computer model and the surrogate model, coming from the very
definition of the surrogate. If this approximation error is not properly measured and controled, it
is not possible to be confident in the prediction by a surrogate of statistical quantities of interest
for an UQ study. This need of confidence measurement of a surrogate is even more significant in
the context of the nuclear industry, where the safety level imposed by national regulatory agencies
is very high. Since the late 1990s, Gaussian process (GP) regression imposed itself as a canonical
methodology for surrogate modeling of computer models. A main property of Gaussian process
that makes it stand out of the other surrogates methods is its probabilistic nature which allows to
provide a quantification of the uncertainty of the predictions of the surrogate itself. Moreover, the
uncertainty on the GP predictions can be quantified analytically, this makes GP regression virtu-
ous in terms of energy consumption for its computation.

GP regression is also known as kriging in the geostatiscal litterature of the 1960s (Matheron,
1962). The term kriging comes from the South-African engineer Danie G. Krige who aims to esti-
mate the spatial distribution of ore concentration in a mine field using a small number of drilling
(Krige, 1951). The kriging predictor is just a weighted linear combination of the observed ore con-
centration at the drilling places. In the field of computer experiments, the Gaussian hypothesis
is added due to the high dimension of the input parameters of the computer model (Iooss, 2009,
Section 3.3). GP regression has been then popularized in the field of computer experiments (Sacks
et al., 1989) and machine learning (Rasmussen and C. Williams, 2005).

This chapter aims at presenting the main methodology of surrogate modeling using Gaussian
process with a practical implementation for seismic fragility curves estimation. In Section 5.3, the
so-called kriging equations used to obtain the predictive distribution of the Gaussian process and
the Bayesian viewpoint of Gaussian process regression are presented. Then in Section 5.4 aspects
about the role of the covariance function of the Gaussian process on its regularity and how to infer
a covariance function from observed data are detailed. In Section 5.5 we propose a methodology to
estimate seismic fragility curve using a Gaussian process surrogate. Finally, Section 5.6 proposes
an application on a nonlinear single d.o.f. oscillator.

5.2 General considerations about Gaussian process regression

This section introduces the main concepts of GP regression. At first, general definitions will be
introduced. Then the kriging equations that are the core of GP regression technique will be derived
for the simple and the universal case. The practical use of a kriging surrogate is presented. Finally,
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the kriging equations are written in the case of noisy observations, which leads to a Bayesian
viewpoint of GP regression.

Definition 1. Let (Ω,G,PG) be a probability space and X a subset of Rp. A Gaussian process on X
is a collection of real-valued random variables G = {G(x) : Ω → R|x ∈ X} such that for any subset
{x1, . . . ,xd} ⊂ X , the vector (G(x1), . . . , G(xd))

T is a Gaussian vector.

The distribution of the Gaussian process is uniquely determined by its mean function defined
as:

m : x → EG[G(x)] , (5.1)

and its covariance function Σ defined as:

Σ: X × X → R
(x,x′) 7→ Σ(x,x′) = EG[(G(x)−m(x))(G(x′)−m(x′))] .

(5.2)

Generally a parametric model of the following form is considered for the mean function:

m(x) =

r∑

j=1

ηjuj(x) = ηTu(x) , (5.3)

where η = (η1, . . . , ηr)
T ∈ Rr a vector of parameters and u = (u1, . . . , ur) is a set of basis functions

from X to R. The GP G with mean function m and covariance function Σ will be simply denoted
by:

G ∼ GP(m,Σ) .

5.3 Kriging equations

This section will present the core of GP regression and its application to approximation of
functions. Let us consider a function g : X 7→ R, this function can represent a computer model
as in Sacks et al., 1989 or a spatially distributed natural variable (see e.g. Krige, 1951; Stein, 1999;
Chilès and Delfiner, 2012). For ω ∈ Ω, we denote by G(.;ω) a realization of the GP G. In order to
perform GP regression, we will make the assumption that g is a realization of the GP G. This boils
down more formally to say:

∃ω ∈ Ω ,∀x ∈ X , g(x) = G(x;ω) . (5.4)

As pointed out in Chilès and Delfiner, 2012, Section 1.2, this hypothesis has to be considered as
a modeling choice. This does not mean that this choice is arbitrary - it can be suggested by prior
knowledge on the function g - but that this choice cannot be falsified in K. Popper sense, i.e. it
cannot by refuted by objective observations. Moreover, GP regression can also be viewed in a
Bayesian way and will be discussed in Section 5.3.4.

We define the learning set Dn = (xi, g(xi))1≤i≤n. The goal of kriging is to predict for any x ∈ X
the value of g by only knowing its evaluations gn = (g(x1), . . . , g(xn))

T in the learning set. We
define also the observation vector by Gn = (G(x1), . . . , G(xn))

T . The main advantage of GP re-
gression is that the conditional distribution ofG(x) knowingGn = gn, denoted by (G(x)|Gn = gn)
is Gaussian with an analytic expression for the meanmn(x) and variance s2n(x) obtained using the
so-called kriging equations. We can derive these equations in two manners given some assump-
tions:
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• The case where the mean function m of the GP is known is called simple kriging.

• The case where the mean function has to be estimated using the learning set Dn is called
universal kriging.

Through all this section, the covariance function of the GP is supposed known. The case of
unknown covariance functions will be treated in Section 5.4.

5.3.1 Simple kriging

We will start by the case of simple kriging. The mean function m is supposed to be known.
The following theorem gives the expression of the kriging equations in this case:

Theorem 3 (Simple kriging equation). Under the assumption that the mean function m is known, the
conditional distribution of G(x) given (Gn = gn) is:

(G(x)|Gn = gn) ∼ N
(
mn(x), s

2
n(x)

)
, (5.5)

where the kriging mean mn(x), and the kriging covariance s2n(x,x′) are given by:

mn(x) = m(x) + cn(x)
TΣ−1

n (gn −mn) ,

s2n(x,x
′) = Σ(x,x′)− cn(x)

TΣ−1
n cn(x

′) .
(5.6)

mn = (m(x1), . . . ,m(xn))
T is the mean vector at observations points, Σn = (Σ(xi,xj))1≤i,j≤n is the

covariance matrix of the Gaussian vector Gn and cn(x) = (Σ(x1,x), . . . ,Σ(xn,x))
T . This conditional

GP is referred as the kriging surrogate.

The kriging variance s2n(x,x) will be denoted s2n(x) for the sake of notation simplicity. Some
comments about the simple kriging equations can be made:

• The kriging variance expression depends on the input observation points (x1, . . . ,xn) and
the new point x where we want to predict the value of g. This means that the kriging vari-
ance is easy and fast to compute because it does not depend on the value of g(x). This
property is particularly useful for performing design of experiments (see Echard, Gayton,
and Lemaire, 2011).

• Remark that if x = xi for 1 ≤ i ≤ n, the kriging variance s2n(xi) = 0 and the prediction
mn(xi) = g(xi). This means that the kriging surrogate interpolates the known observations.
This is of peculiar interest for application to deterministic computer models.

• The expressions of the kriging mean and variance are explicit and analytic (i.e. it only in-
volves matrix multiplications and inversions). In most industrial applications, the sample
size n is not large, thus their numerical evaluation is fast and economical in computational
resources (e.g. the computational time or the energy consumption).

Figure 5.1 gives an example of kriging prediction with the univariate function g(x) = 2πx sin(2πx).
A very useful graphical tool to illustrate the prediction uncertainty of the conditional GP is the
prediction interval of level δ. It is defined by:

[
mn(x)− Φ−1(1− δ/2)sn(x),mn(x) + Φ−1(1− δ/2)sn(x)

]
, (5.7)

where Φ is the cumulative distribution function of the standard Gaussian distribution. The green
shaded area in Figure 5.1 corresponds to the predictive interval of level 95%. As expected, the
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FIGURE 5.1: Illustration of kriging prediction with a simple univariate example with
a zero mean Gaussian process and a Gaussian covariance function

prediction interval length is larger in regions where no observation of g has been made and is null
at points where there is an observation.

It is also possible to sample a realization Gn(.;ω) from the distribution of the conditional GP
(G|Gn = gn). Given a set of evaluation points (tq)1≤q≤Q, we can derive the Q-dimensional vector
mean µn and the Q×Q covariance matrix Kn of the Gaussian vector (Gn(t1), . . . , Gn(tQ))T thanks
to the simple kriging equations:

µn = µ+ CTnΣ
−1
n (gn −mn) ,

Kn = K − CTnΣ
−1
n Cn .

(5.8)

µ = (m(t1), . . . ,m(tq)) is the mean vector at evaluation points, K = (Σ(ti, tj))1≤i,j≤Q the covari-
ance matrix of the GP G at the evaluation points, Cn = (Σ(xi, tj)), Σn = (Σ(xi,xj))1≤i,j≤n and
mn = (m(x1), . . . ,m(xn))

T . Figure 5.2 represents several realizations of the kriging surrogate
(G|Gn = gn) using a regular grid of 200 evaluation points in [0, 1]. Numerical implementation
requires a Cholesky decomposition of the covariance matrixKn. Note that the complexity of com-
puting the conditional covariance matrix and sampling the conditional GP is in O(max(n3, Q3)).
This means that when n (respectively Q) is large (approximately more than 103), the computation
of the conditional covariance matrix (respectively sampling realizations of the conditional GP)
becomes numerically intractable. Fortunately in our applications, the learning size n is usually
small. However, the number of evaluation points Q can be very high and requires more advanced
methodologies (see e.g. Chilès and Delfiner, 2012, Chapter 7; Le Gratiet, 2013, Section 6.4.3).

There is also another way to obtain the kriging equations 5.6. Indeed, the kriging mean is the
Best Linear Unbiased Predictor (BLUP) from the observations (see e.g. Chilès and Delfiner, 2012,
Section 3.3.4; Stein, 1999, Section 1.5). The BLUP is obtained by solving the following optimization
problem:

λn(x) = argmin
λ(x)∈Rn

EG[
(
λ(x)TGn −G(x)

)2
] . (5.9)
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FIGURE 5.2: Realizations of the kriging surrogate using a zero mean Gaussian pro-
cess and a Gaussian covariance

The BLUP has the same mean and variance function as the kriging surrogate:

mn(x) = λn(x)
T gn ,

s2n(x) = EG[
(
λn(x)

TGn −G(x)
)2
] .

(5.10)

The BLUP formulation is useful to derive the universal kriging equations, presented in the next
subsection.

5.3.2 Universal kriging

Now we consider the case where the mean vector m is unknown with the parametric form
m(x) = ηTu(x) defined in Equation 5.3. The BLUP formulation of the kriging surrogate is used to
get the kriging equations in this context. We are looking for a predictor of the form:

mn(x) = λn(x)
T gn , (5.11)

such that λn(x) is the solution of the problem:

λn(x) = argmin
λ(x)∈Rn

EG[
(
λ(x)TGn −G(x)

)2
] ,

s.t. UTλ(x) = u(x) .

(5.12)

U = (uj(xi))i,j is the matrix of the basis functions evaluated at observation points. The equality
constraint in Equation 5.12 comes from the unbiasedness property of the BLUP. This optimization
problem admits a closed form solution obtained using Lagrange multipliers methods (see e.g. Le
Gratiet, 2013, Section 1.5.1 for practical details of the computation). We then obtain:

λn(x) = Σ−1
n cn(x) + Σ−1

n U(UTΣ−1
n U)−1(u(x)− UΣ−1

n cn(x)) , (5.13)

the kriging variance is obtained using the following equality under the constraint UTλ(x) = u(x):

EG[
(
λ(x)TGn −G(x)2

)
] = Σ(x,x)− 2λ(x)T cn(x) + λ(x)TΣnλ(x) , (5.14)
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then by plugging the value λn(x) in Equation 5.11 (resp. Equation 5.14) we obtain the universal
kriging mean (resp. variance):

mn(x) = u(x)T η̂n + cn(x)
TΣ−1

n (gn − Uη̂n),

sn(x)
2 = Σ(x,x)− cn(x)

TΣ−1
n cn(x)

+ (u(x)T − cn(x)
TΣ−1

n )(UTΣ−1
n U)−1(u(x)T − cn(x)

TΣ−1
n )T ,

(5.15)

where η̂n = (UTΣ−1
n U)−1UTΣ−1

n gn. The kriging equations in the universal case are similar to
the ones in the simple case, the value of η being replaced by its estimation η̂n. Remark also the
additional term in the kriging variance, coming from the uncertainty in the estimation of η.

5.3.3 Kriging with noisy observations

In some situations, Gaussian process regression can also be used in the more general context
of nonparametric regression, where a noise is added between the function to approximate g and
observed data y. Recall the classical equation of nonparametric regression:

y(x) = g(x) + ε(x) (5.16)

where g : Rp 7→ R is coined the regression function. ε(x) is a stochastic process independent of g
such that E[ε(x)] = 0. This will represent the noise that taints our observations y(x). Throughout
this manuscript, we will suppose that ε(x) ∼ N (0, σε(x)

2) and Cov(ε(x), ε(x′)) = 1x=x′σε(x)
2.

The Gaussian assumption on ε allows to define the Gaussian process Y such that:

Y (x) = G(x) + ε(x) . (5.17)

Indeed, ε and G being two Gaussian processes, their sum is also a Gaussian process. The mean
functions of Y and G are the same and the covariance function of Y writes:

Cov(Y (x), Y (x′)) = Σ(x,x′) + σε(x)
2δ(x,x′) , (5.18)

where

δ(x,x′) =

{
0 if x ̸= x′,

1 if x = x′.
(5.19)

We can then derive the kriging equations for the GP (G(x)|Y n = yn):

mn(x) = m(x) + cn(x)
T (Σn +∆n)

−1(yn −mn) ,

s2n(x,x
′) = Σ(x,x′)− cn(x)

T (Σn +∆n)
−1cn(x

′) ,
(5.20)

where ∆n = Diag(σε(xi)2)1≤i≤n the diagonal matrix composed of the observations noise vari-
ances at the observation points. Remark that the only difference with the simple kriging equation
defined in Equation 5.6 is the replacement of the covariance matrix Σn by Σn+∆n. This results in
the loss of the interpolation property of the kriging mean function. Indeed, the noise tainted the
observations results in a non-zero variance s(xi)2 at observation points xi. Moreover, Gaussian
process regression in the presence of noisy observations can be addressed in a Bayesian frame-
work. This is the topic of the following subsection.
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5.3.4 Bayesian viewpoint of kriging

Gaussian process regression became very popular in the Machine Learning community thanks
to the book of Rasmussen and C. Williams, 2005. In this book, GP regression is seen as a Bayesian
nonparametric regression framework. Indeed, a lot of classical procedures can be reinterpreted
in a Bayesian way, such that penalized maximum likelihood, which can be seen as a maximum
a posteriori estimator using a well-chosen prior (e.g. the Laplace prior for lasso regression). As
shown in R.B. Gramacy, 2020, Section 5.3.2, since we can sample realizations of a GP without
observing data, the GP before observations can be seen as a prior distribution. Moreover, the
kriging equations raise the conditional distribution (G|Dn), which can be interpreted as a posterior
distribution. Again referring to R.B. Gramacy, 2020, this interpretation raises three questions:

• On which space is the prior distribution ?

• What is the likelihood pairing the posterior and the prior distribution and how to apply
Bayes theorem in this framework ?

• What brings the Bayesian viewpoint to our comprehension of the GP regression framework
?

Given the statistical model defined in Equation 5.17, and the three quantities (xi, G(xi), Y (xi)),
the (G(xi))-values can be seen as a latent (i.e. the G(xi)-values are never observed) Gaussian
random field between the observation points xi and the observed outputs Y (xi). The GP structure
on G boils down to put a prior on the latent G(xi)-values:

Gn ∼ Nn(0,Σn) , (5.21)

where Nn defines the n-dimensional multivariate Gaussian distribution. Because no data is ob-
served at this point, we can call this distribution a prior. The likelihood comes from the noise of the
observations. The vector of observations Y n = (Y (x1), . . . , Y (xn))

T indeed follow a multivariate
Gaussian distribution due to the noise structure:

Y n|Gn ∼ Nn(G
n,∆n) , (5.22)

where ∆n = Diag(σε(xi)2)1≤i≤n. The prior and the likelihood can now be combined using Bayes
theorem to obtain the posterior distribution:

P(Gn|Y n) =
P(Y n|Gn)P(Gn)

P(Y n)
. (5.23)

The denominator P(Y n) is often called marginal likelihood or evidence. It can be obtained by
integrating over the latent probability distribution of the GP G:

P(Y n) =

∫
P(Y n|Gn)dP(Gn) . (5.24)

The Bayesian viewpoint sheds a new light on GP regression: The GP G put a latent structure on
the regression function g, which can be seen as a prior distribution on g. This raises the question
of the choice of model for G, which boils down to the choice of the covariance function Σ(., .). The
effect of Σ(., .) on the GP is thus of keen interest, both on the theoretical and applied point of view.
Answering this question is the goal of the following section.
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5.4 Covariance functions and model selection

This section aims at studying the choice of covariance function Σ to model a good prior GP
on the regression function g. First, we will present theoretical results concerning the link between
the covariance function of the GP and peculiar Hilbert spaces of functions called Reproducing
Kernel Hilbert Spaces (RKHS). These results will give us insights about the effect of the covari-
ance function on the regularity of the realizations of the GP. Moreover, we will present a more
practical approach for choosing the covariance function. We will restrict to parametric families of
covariance functions, hence the choice of the covariance function boils down to a choice of hyper-
parameters. We will introduce a Maximum Likelihood Estimator (MLE) of the hyperparameters of
the covariance function, and then we will present a fully Bayesian approach for hyperparameters
tuning.

5.4.1 Covariance functions and Gaussian process regularity

In this subsection, the main properties of covariance functions will be detailed, theoretical re-
sults about Reproducing Kernel Hilbert Spaces (RKHS) will be recalled in order to give insights
about the regularity of the GP realizations. In this part, the covariance function will be denoted
k(., .).

First, we will recall the necessary and sufficient conditions for a function to be a covariance
function:

Definition 2. Let k : X × X 7→ R. The mapping k is commonly called a kernel. Two properties on k are
necessary and sufficient for k to be the covariance function of a GP:

• k is symmetric, i.e. k(x,x′) = k(x′,x) for all x,x′ ∈ Rp.

• k is positive semi-definite:

∀m ∈ N, ∀x1, . . . ,xm ∈ X , ∀a1, . . . , am ∈ R,
m∑

i=1

m∑

j=1

aiajk(xi,xj) ≥ 0 .

Given a covariance kernel k, in which functional space the GP realizations with covariance k
lies ? In order to answer this question, we need first to provide a spectral decomposition of k. This
decomposition comes from the eigenvalues and eigenfunctions decomposition of k. The following
theorem is an extension of the Mercer’s theorem (Mercer, 1909) with a probability measure µ with
support on X and a continuous positive kernel satisfying the property supx∈X k(x,x) < +∞ with
X a non-empty set of Rp.

Theorem 4 (Mercer’s theorem). Let us consider a continuous symmetric positive semi-definite kernel
k(x,x′), x,x′ ∈ X ⊂ Rp - such that supx∈X k(x,x) < +∞ and X is a nonempty open set - and a
probability measure µ on X such that µ(U) > 0 for any nonempty open subset U of X . The kernel k(x,x′)
can be decomposed as follows:

k(x,x′) =
∑

q≥0

λqϕq(x)ϕq(x
′) ,

where ϕq ∈ L2
µ(X ) are the eigenfunctions of the trace class operator

(Tkf)(x) =

∫
k(x,u)f(u)dµ(u) ,



68 Chapter 5. Surrogate modeling of black-box computer models using Gaussian process

and (λq)q≥0 is the nonnegative sequence of eigenvalues sorted in decreasing order. Furthermore, (ϕq)q≥0 is
an orthonormal basis of L2

µ(X ) and ϕq is continuous for all q such that λq ̸= 0.

The regularity of the Gaussian process is closely related to the rate of convergence to 0 of the
eigenvalues sequence (λq)q≥0. We can derive from Theorem 4 some interesting insights about the
decomposition that will be of peculiar interest:

• By definition the eigenfunction ϕq satisfies the following equality:

λqϕq(x) =

∫
k(x,u)ϕq(u)dµ(u) .

• The orthonormal property of the eigenfunctions (ϕq)q≥0 implies that:
∫
ϕq(x)ϕp(x)dµ(x) = 1p=q .

• For covariance kernels such that ∀x ∈ X , k(x,x) = σ2, we have:

σ2 =
∑

q≥0

λqϕq(x)
2 =

∑

q≥0

λq .

Thanks to the Mercers’s decomposition theorem, we can now introduce a special Hilbert space
of functions called Reproducing Kernel Hilbert Space (RKHS). This type of Hilbert space is often
used for kernel methods in machine learning. However, it can be introduced from several per-
spectives as explained in Aubin-Frankowski, 2021, Section 1.2: One approach focuses closely on
functional analysis (see e.g. Berlinet and Thomas-Agnan, 2011; Saitoh and Sawano, 2016) where
the input set X is a subset of Rp, whereas another approach focuses more on defining kernel func-
tions on complex input spaces such that graphs or probability measures and extending classical
linear procedures to nonlinear settings (see Schölkopf, B. Smola, et al., 2002). In this section, we
will present the functional analysis definition of the RKHS and its links with the GP sample paths
regularity. The RKHS can be defined by its Mercer representation (Steinwart and Christmann,
2008, Theorem 4.51; Kanagawa et al., 2018):

Theorem 5 (Mercer representation). Let X ⊂ Rp be a nonempty open set, k : X ×X 7→ R be a continu-
ous symmetric positive semi-definite kernel, µ be a probability measure on X and (ϕq, λq)q≥0 be defined as
in Theorem 4. Then the RKHS Hk of k is given by:

Hk =



g :=

∑

q≥0

αq
√
λqϕq : ∥g∥2Hk

:=
∑

q≥0

α2
q < +∞



 , (5.25)

with the associated scalar product for g, h ∈ Hk defined by

⟨g, h⟩Hk
:=
∑

q≥0

αqβq ,

for g =
∑
q≥0

αq
√
λqϕq , h =

∑
q≥0

βq
√
λqϕq. It boils down to say that (

√
λqϕq)q≥0 forms an orthonormal

basis of Hk.

A first useful result is that the kriging mean function mn belongs to the RKHS Hk when the
covariance function is k (see Kanagawa et al., 2018, Remark 3.8). However, the GP sample paths
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do not belong to the RKHS Hk. In order to provide the GP sample paths space, we have to define
the powers of RKHSs and kernels (Kanagawa et al., 2018, Section 4.3):

Definition 3 (Powers of RKHS and kernels). Under the same assumptions of Theorem 5, let 0 < θ ≤ 1
be a constant and assume that

∑
q≥0 λ

θ
qϕq(x)

2 < +∞ holds for all x ∈ X , where (λq, ϕq)q≥0 is the
eigensystem coming from the Mercer’s decomposition. Then the power of RKHS Hk is defined as:

Hθ
k =



g :=

∑

q≥0

αqλ
θ/2
q ϕq : ∥g∥2Hk

:=
∑

q≥0

α2
q < +∞



 , (5.26)

with the scalar product for g, h ∈ Hθ
k is given by

⟨g, h⟩Hθ
k
=
∑

q≥0

αqβq ,

for g =
∑
q≥0

αqλ
θ/2
q ϕq , h =

∑
q≥0

βqλ
θ/2
q ϕq. The θ-th power of the kernel k is defined by

kθ(x,x′) :=
∑

q≥0

λθqϕq(x)ϕq(x
′) , x,x′ ∈ X . (5.27)

The power of a RKHS can be viewed as an intermediate function space between L2
µ(X ) and

Hk with the constant 0 < θ ≤ 1 determining the proximity between Hθ
k and Hk (Steinwart and

Scovel, 2012, Theorem 4.6). If θ = 1, we have Hθ
k = Hk, and Hθ

k approaches L2
µ(X ) as θ → 0+. The

spaces {Hθ
k/0 < θ ≤ 1} are in fact nested, i.e. for all 0 < θ < θ′ ≤ 1:

Hk = H1
k ⊂ Hθ′

k ⊂ Hθ
k ⊂ L2

µ(X ) ,

Hθ
k gets larger as θ decreases, which means that Hθ

k contains less smooth functions than Hk.

The power of RKHS are in fact very useful to characterize the function space of the GP-sample
path as shown in Kanagawa et al., 2018, Theorem 4.12:

Theorem 6. Under the same assumptions as Theorem 5, let 0 < θ ≤ 1 be a constant and assume that∑
q≥0 λ

θ
qϕq(x)

2 < +∞ holds for all x ∈ X , where (λq, ϕq)q≥0 is the eigensystem coming from the Mercer’s
decomposition. Consider G ∼ GP(0, k). Then the following statements are equivalent:

1.
∑

q≥0 λ
1−θ
q < +∞ .

2. There exists a version G̃ of G such that G̃ ∈ Hθ
k with probability 1.

Theorem 6 characterizes the GP-sample path function spaces as the powers of the RKHS Hθ
k

with θ satisfying the condition
∑

q≥0 λ
1−θ
q < ∞. The GP-sample paths function space thus de-

pends of the rate of convergence to 0 of the eigenvalues (λq)q≥0, the faster the rate of convergence
the smoother is the GP-sample path space. This theorem demonstrates also the insight that the GP-
sample path function space is always less smooth that the RKHS generated by covariance kernel k.

5.4.2 Karhunen-Loeve decomposition of a Gaussian process and Nyström method

On a more practical viewpoint, we can derive from the Mercer’s decomposition a representa-
tion of realization of a Gaussian process and thus a way to simulate numerically Gaussian process
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realizations. This method will be used extensively for kriging-based sensitivity analysis presented
in Chapter 6.

Theorem 7 (Karhunen-Loeve decomposition). Let us consider a zero-mean Gaussian process G with a
covariance function k and admitting the following Mercer’s decomposition:

k(x,x′) =
∑

q≥0

λqϕq(x)ϕq(x
′) .

Then, G can be represented in the following form:

G(x) =
∑

q≥0

√
λqϕq(x)εq ,

where (εq)q≥0 are independent and identically distributed real valued random variables such that ε1 ∼
N (0, 1).

Theorem 7 is particularly interesting for our applications. Indeed, if we know the eigensys-
tem (λq, ϕq)q≥0 of the covariance function, it is possible to generate realization of the Gaussian
vector (G(x1), . . . , G(xQ))

T with a computational cost in O(Q), on the contrary of direct sam-
pling with Cholesky decomposition method which is in O(Q3). However, we can only generate
approximations of the GP realizations because the series of the Karhunen-Loeve decomposition
has to be truncated for numerical implementation. In practice, the eigensystem (λq, ϕq)q≥0 is also
unknown, the Nyström method (Rasmussen and C. Williams, 2005, Section 4.2.3) aims at numeri-
cally approximating the eigensystem and thus the Karhunen-Loeve decomposition. According to
Mercer’s decomposition, we have to solve the eigenproblem ∀q ∈ N:

λqϕq(x) =

∫

X
k(x,u)ϕq(u)dµ(u) . (5.28)

We can approximate the right-hand side of the equation by Monte-Carlo:

∫

X
k(x,u)ϕq(u)dµ(u) ≈

1

N

N∑

i=1

k(x,ui)ϕq(ui) , (5.29)

where the ui-values are drawn from the probability distribution µ. We then consider the eigen-
function ϕq at point (ui)1≤i≤N in order to raise the following eigenproblem:

λqΦq =
KN

N
Φq , (5.30)

where ΦTq = (ϕq(u1), . . . , ϕq(uN )), (KN )i,j = k(ui,uj). The qth eigenfunction is then approxi-
mated by:

ϕq(x) =
1

Nλq
k(x)TΦq , (5.31)

where k(x)T = (k(x,u1), . . . , k(x,uN )). Given a point x, we can sample G(x) by considering
the truncated Karhunen-Loeve decomposition of G:

G(x) ≈ 1

N

∑

q≤T

k(x)TΦq√
λq

εq . (5.32)
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The only remaining difficulty is the choice of the truncation T , corresponding to the number of
eigenfunctions to consider in the Karhunen-Loeve decomposition of G. Denote by GKL the trun-
cated Karhunen-Loeve decomposition:

GKL(x) =
T∑

q=0

√
λqϕq(x)εq , (5.33)

We will now discuss the effect of the truncation T on the integrated mean square error (IMSE):

IMSE(G,GKL) =

∫

X
E
[
(G(x)−GKL(x))

2
]
dµ(x) . (5.34)

It is possible to control IMSE(G,GKL) using the eigenvalues (λq)q≥0 using the following lemma:

Lemma 1. Under the assumptions of Theorem 4, we have the following equation:

IMSE(G,GKL) =
∑

q≥T+1

λq .

Proof. Denote by Gk(x) =
k∑
q=0

√
λqϕq(x), thus

IMSE(Gm, Gk) =
∫

X
E






m∑

q=k+1

√
λqεqϕq(x)




2
 dµ(x)

=
∑

k+1≤q1,q2≤m

√
λq1λq2E[εq1εq2 ]

∫

X
ϕq1(x)ϕq2(x)dµ(x) ,

(5.35)

The random variables (εq)q≥0 being standard i.i.d. Gaussian variables, we have E[εq1εq2 ] = 1q1=q2 .
The eigenfunctions (ϕq)q≥0 being an orthonormal basis of L2(µ), we have

∫
X ϕq1(x)ϕq2(x)dµ(x) =

1q1=q2 as well. We then obtain the following expression:

IMSE(Gm, Gk) =
m∑

q=k+1

λq .

Since
∑

q≥0 λq <∞, (Gk)k≤1 is a Cauchy sequence. Due to the completeness of L2(Ω×X , dP⊗dµ),
we have

lim
m→∞

IMSE(Gm, Gk) = IMSE(G,Gk) =
∑

q≥k+1

λq

For covariance kernels such that ∀x ∈ X , k(x,x) = σ2 =
∑

q≥0 λq, it is thus possible to choose
T in order to control the IMSE of the truncated Karhunen-Loeve decomposition of a GP. However,
it matters also to verify how close is the covariance function of the truncated Gaussian process
GKL to the original one. It boils down to study the Mean Covariance Difference (MCD):

MCD(G,GKL) =

∫

X×X
E[|G(x)G(u)−GKL(x)GKL(u)|]dµ(x)dµ(u) . (5.36)

We can bound the MCD using the IMSE thanks to the following lemma:



72 Chapter 5. Surrogate modeling of black-box computer models using Gaussian process

Lemma 2. Under the assumptions of Theorem 4, considering a GP with a covariance kernel such that
∀x ∈ X , k(x,x) = σ2. We have the following upper bound:

MCD(G,GKL) ≤ 2σ
√

IMSE(G,GKL)

Proof. Using the following

MCD(G,GKL) =

∫

X×X
E[|G(x)G(u)−G(x)GKL(u) +G(x)GKL(u)−GKL(x)GKL(u)|]dµ(x)dµ(u)

≤
∫

X×X
E[|G(x)||G(u)−GKL(u)|]dµ(x)dµ(u)

+

∫

X×X
E[|G(u)||G(x)−GKL(x)|]dµ(x)dµ(u)

(5.37)

We can use the Cauchy-Schwarz inequality to obtain

∫

X×X
E[|G(x)||G(u)−GKL(u)|]dµ(x)dµ(u) ≤

(∫

X
E[G(x)2]dµ(x)

)1/2

IMSE(G,GKL)1/2 ,

from the last expression we can derive the upper bound on MCD(G,GKL).

It is thus possible to control the MCD between the GP and its truncated Karhunen-Loeve de-
composition using the IMSE.

5.4.3 Classical parametric models of covariance function

In practice, the covariance function is chosen among a parametric family of functions which
are known to be admissible covariance functions. Parametrized covariance functions have the
typical form:

k(x,x′) = σ2rρ(x,x
′) ,

σ2 controls the variance of the GP, rρ is a correlation function parametrized by the vector ρ =
(ρ1, . . . , ρp)

T ∈ Rp with ρj > 0 for all j. The parameter ρj is called the characteristic length in the
j-th direction. Indeed, this parameter controls for x,x′ the level of correlation between G(x) and
G(x′). Figure 5.3 gives an example of realizations of a GP with different values of characteristic
lengths. A common way to define a covariance function in high-dimensional space is through
tensorized 1-dimensional covariance function. Moreover, all the covariance functions considered
in this manuscript will be stationary, i.e. they only depend on h = x−x′. Assume that x ∈ X ⊂ Rp
such that x = (x(1), . . . ,x(p)), the covariance functions considered in this manuscript have the
following form:

k(x,x′) = σ2
p∏

j=1

wρj (h
(j)) , (5.38)

where wρj is a 1-dimensional correlation function. Examples of stationary correlation functions
from Rasmussen and C. Williams, 2005 are given in Table 5.1. In this manuscript, we will put
a particular focus on the Matérn covariance model. This covariance model includes a parame-
ter controlling the degree of differentiability of the GP and includes the exponential model for
a specific parameter value and Gaussian model as a limiting case. The function Γ is the Euler
gamma function and Kν is the modified Bessel function of the second kind of order ν ∈ (0,+∞)
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FIGURE 5.3: Realizations of a zero-mean Gaussian process with covariance function
exp

(
−(x−x′)2

2ρ2

)
for different values of ρ.

(Abramowitz and Stegun, 1965). Remark that Matérn correlation functions have simpler expres-
sions when ν = p + 1/2 , p ∈ N as they can be written as a product of an exponential and a
polynomial function of order p. When ν = 1/2 the Matérn correlation function corresponds to
an exponential correlation and when ν → +∞, the Matérn correlation converges to the Gaussian
correlation function.

TABLE 5.1: Examples of one-dimensional correlation functions

Name Formula

Matérn ν > 0 wρ(h) =
21−ν

Γ(ν)

(√
2ν|h|
ρ

)ν
Kν

(√
2ν|h|
ρ

)

Gaussian (Matérn ν 7→ +∞) wρ(h) = exp
(
− h2

2ρ2

)

Matérn ν = 5/2 wρ(h) =
(
1 +

√
5|h|
ρ + 5h2

3ρ2

)
exp

(
−
√
5|h|
ρ

)

Matérn ν = 3/2 wρ(h) =
(
1 +

√
3|h|
ρ

)
exp

(
−
√
3|h|
ρ

)

Exponential (Matérn ν = 1/2) wρ(h) = exp
(
− |h|

ρ

)

Another interesting property is the representation of the Matérn covariance through a stochas-
tic partial differential equation (SPDE) as highlighted in Lindgren, Rue, and Lindström, 2011. In-
deed, a Gaussian process y(x) ,x ∈ Rp with the Matérn covariance is the only stationary solution
of the following linear fractional SPDE:

(κ2 −∆)α/2y(x) = W(x) , α = ν + p/2 ,x ∈ Rp (5.39)
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with the Laplace operator ∆y =
∑p

j=1 ∂
2y/∂2x(j), a standard Gaussian white noise process W

with unit variance. Depending on ν and p, the operator (κ2 − ∆)α/2 is fractionary and must be
defined appropriately. The characteristic length ρ is empirically linked to ν and κ through the
relation ρ ≈

√
8ν/κ2. Actually this representation is very useful in practice in low dimensional

cases. Indeed, it is possible to derive a weak solution of Equation 5.39 and compute a finite ele-
ment approximation of y. This allows sampling of approximations of the GP y while remaining
computationally tractable.

Moreover, the parameter ν controls the regularity of the process through the parameter α. In-
deed, the realizations of a GP with Matérn covariance functions of parameter ν are ⌈ν⌉ − 1 mean
square differentiable (Stein, 1999, Section 2.7) where ⌈ν⌉ is the smallest integer greater than or
equal to ν. In practice, a choice of ν = 3/2 or ν = 5/2 is commonly used for GP regression, as it
represents a good trade off between the regularity of the realizations and the proximity to L2

µ(X )
(i.e. in terms of set inclusion) of the RKHS power space generated by the GP realizations. Figure
5.4 shows GP realizations with Matérn covariance model with different values of ν. When ν = 1/2
the realizations are not differentiable while for ν → +∞, corresponding to the Gaussian covari-
ance model, the realizations are C∞-differentiable.

In practical applications of GP regression, the different hyperparameters of the covariance
model are not known. To address this problem several approaches are possible: Two methods
are proposed in this manuscript. First, a plug-in approach consisting into replacing the unknown
hyperparameters by a maximum likelihood estimator (MLE) using the training data. Second, a
full Bayesian approach is presented, by considering prior distributions on the covariance model
hyperparameters. Other methods involving cross-validation techniques are proposed in the liter-
ature (see Bachoc, 2013).
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FIGURE 5.4: Realizations of a zero-mean and unit variance Gaussian process with
Matérn covariance function with different values of ν. The characteristic length is
also unit.
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5.4.4 Maximum likelihood estimation of the GP hyperparameters

In this section, we will develop maximum likelihood estimates of GP parameters. Assume
that we want to perform simple kriging with a GP G ∼ GP(0,Σθ) where (Σθ)θ∈Θ is a family of
admissible covariance functions and θ is unknown and has to be estimated. Given a set of training
dataGn = (G(x1), . . . , G(xn))

T , the likelihood considered is the joint density of the random vector
Gn (it is also coined marginal likelihood in the GP regression literature). Denote by Σn(θ) the
covariance matrix of Gn as a function of θ. The log likelihood thus writes:

ℓsimple(θ;G
n) = −n

2
log(2π)− 1

2
log det (Σn(θ))−

1

2
(Gn)TΣn(θ)

−1Gn . (5.40)

As pointed out in Rasmussen and C. Williams, 2005, Section 5.4, the three terms in the likelihood
can be interpreted: The only term involving the observations −(Gn)TΣn(θ)

−1Gn/2 corresponds to
a data fitting term; − log det (Σn(θ)) /2 corresponds to a complexity penalty as it only involves the
covariance matrix and n log(2π)/2 is a normalization constant. The maximum likelihood estimator
(MLE) θ̂n thus writes:

θ̂MLE
n = argmax

θ∈Θ
ℓsimple(θ;G

n) . (5.41)

Consider now the case of universal kriging G ∼ GP(m,Σθ) where m(x) = ηTu(x). Given the
training data Gn, we have to estimate the parameters (η, θ) of both the mean and covariance func-
tions. Consider that Σθ = σ2Wρ and θ = (σ, ρ). Denote by Wn(ρ) the correlation matrix of the
observations and U = (uj(xi))i,j . The log likelihood in this case writes:

ℓuniversal(θ, η;G
n) = −n

2
log(2π)− n log(σ)− 1

2
log det (Wn(ρ))−

1

2
(Gn −Uη)TWn(ρ)

−1(Gn −Uη) .

(5.42)
Conditionally to σ and ρ, the MLE of η corresponds to the generalized least squares estimate:

η̂n = (UTWn(ρ)
−1U)−1UWn(ρ)

−1Gn . (5.43)

We can plug in the value of η̂n in the log likelihood (5.42)

σ̂2n =
(Gn − Uη̂n)

TWn(ρ)
−1(Gn − Uη̂n)

n
. (5.44)

The hyperparameters of the correlation model ρ are found by maximizing the marginal log likeli-
hood:

ℓmarg(ρ;G
n) = −n

2
log(2π)− n log(σ̂n)− log det (Wn(ρ)) . (5.45)

Consider the case of simple kriging with heteroskedastic noise Y ∼ GP(0,Σθ + φ2
βδ) where

δ(x,x′) = 1x=x′ and x → φβ(x) is the heteroskedastic standard deviation parametrized by β. In
this case, it is not possible to derive a closed form for (θ, β). Denote ∆n(β) = (Diag(φβ(xi)

2))1≤i≤n.
The log likelihood writes:

ℓnoisy(θ, β;G
n) = −n

2
log(2π)− 1

2
log det (Σn(θ) + ∆n(β))−

1

2
(Gn)T (Σn(θ) +∆n(β))

−1Gn . (5.46)

The values of θ and β are obtained by maximizing the log likelihood ℓnoisy. Note that the case of
homoskedastic noise corresponds to ϕβ(x) = β for β ∈ (0,+∞).

In practice, numerical optimization of the log likelihood has to be carefully carried out to avoid
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numerical errors and instabilities. As pointed out in Rasmussen and C. Williams, 2005, Section
2.2, the log likelihood should be computed using Cholesky decomposition (see Section A.1) to
perform numerically stable and fast matrix inversion of the covariance matrix. A simple practical
implementation is proposed in Algorithm 2 in the case of simple kriging. To avoid ill-conditioned
covariance matrix, a common practice is to add a small Gaussian noise to the data, boiling down
to add τ2In to the covariance matrix. This is called nugget regularization.

Algorithm 2 Numerical computation of the log likelihood
inputs: Σn(θ) (covariance matrix), Gn (observations)

1. L := Cholesky(Σn(θ))

2. α = LT \(L\Gn)

3. ℓ(θ;Gn) = −αTGn/2−∑i Lii − n log 2π/2

4. return: ℓ(θ;Gn) (log likelihood)

5.4.5 Bayesian estimation of the GP hyperparameters

As pointed out in Section 5.3.4, the GP regression framework can be seen in a Bayesian way.
Thus, it is natural to consider a Bayesian framework for estimating the different hyperparameters
of the GP. In this part, the so-called "fully Bayesian" approach will be presented, this consists into
considering all the parameters of the mean function (the vector η) and the hyperparameters of the
covariance function (the variance σ2 and the characteristic lengths ρ) as random variables. The
prior distribution of the different parameters are built in a hierarchical way (see e.g. Santner, B.
Williams, and Notz, 2003, Section 4.1.4). This is a common methodology in Bayesian modeling. To
simplify the notations, all the probability measures involved in this part are absolutely continuous
w.r.t. the Lebesgue measure with a probability density function denoted by π.

The first major assumption is that the mean and variance parameters, η and σ2 respectively,
are independent of the correlation parameters ρ. Hence,

π(η, σ2, ρ) = π(η, σ2)π(ρ) .

The prior on η and σ2 is decomposed into

π(η, σ2) = π(η|σ2)π(σ2) .

From the Bayes rule we can derive the following equation

π(η, σ2, ρ|Gn) ∝ π(Gn|η, σ2, ρ)π(η|σ2)π(σ2)π(ρ) , (5.47)

remark that π(Gn|η, σ2, ρ) = exp (ℓuniversal(θ, η;G
n)), it is the likelihood of the vector Gn. The

posterior distribution π(ρ|Gn) is obtained by marginalizing over π(η, σ2):

π(ρ|Gn) =
∫
π(Gn|η, σ2, ρ)π(ρ)π(η|σ2)π(σ2)dηdσ2 . (5.48)



5.4. Covariance functions and model selection 77

GP regression is mostly about prediction of the regression function g at an input x. It is natural to
derive the posterior prediction distribution π(G(x)|Gn = gn):

π(G(x)|Gn = gn) =

∫
π(G(x)|η, σ2, ρ,Gn = gn)π(η, σ2, ρ|Gn = gn)dηdσ2dρ . (5.49)

Remark that π(G(x)|η, σ2, ρ,Gn = gn) is the conditional distribution of the GP coming from the
kriging equations (see Equation 5.6). Equation 5.49 illustrates the major drawback of the full
Bayesian approach: The posterior predictive distribution in this case is no longer analytically
tractable as in the more traditional kriging approach and its computation relies on into approx-
imating a potentially high-dimensional integral. Thus, one has in the general case to resort to
approximation by Monte Carlo Markov Chains (MCMC) methods or variational methods such as
Laplace approximation (see Robert and Casella, 2004). After sampling from the posterior distri-
bution a sample (ηi, σ

2
i , ρi)1≤i≤N , the posterior predictive distribution is approximated by Monte-

Carlo:

π(G(x)|Gn = gn) ≈ 1

N

N∑

i=1

π(G(x)|ηi, σ2i , ρi, Gn = gn) . (5.50)

However, because the computation of the likelihood requires the inversion of the correlation
matrix, the computational cost of MCMC is typically prohibitive. In GP regression, it is common
to estimate ρ by its maximum a posteriori (MAP) estimator:

ρ̂MAP
n = argmax

ρ
ℓ(ρ;Gn) + log π(ρ) , (5.51)

where ℓ(ρ;Gn) is the log likelihood. The posterior mode estimator can be seen as a penalized max-
imum likelihood estimator, with the penalization term log π(ρ) coming from the prior modeling
on the parameters. In order to have tractable notations, the correlation matrix will be denoted by
W in this section.

MCMC or variational approximations can be computationally cumbersome. Some specific
prior distributions of the parameters provide closed form expression for the posterior predictive
distribution, alleviating this computational burden. (Those priors are coined as conjugate priors in
the Bayesian literature).

Conjugate priors

We will consider the following prior distributions, that are known to provide an analytically
tractable posterior distribution. Note that in this part, the characteristic length parameter ρ is
supposed known.

η|σ2 ∼ N (η0, σ
2V0) (5.52)

and
σ2 ∼ IG(α, γ) (5.53)

where IG denotes the inverse gamma probability distribution with density function:

f(x) =
γαe−γ/x

Γ(α)xα+1
1x>0 .

These priors are commonly use in Bayesian GP regression (see e.g. Santner, B. Williams, and
Notz, 2003, Section 4.1; Le Gratiet, 2013, Section 1.2.2). The likelihood of the universal kriging
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framework defined in Equation 5.42 combined with the prior defined in Equation 5.52 raises the
following posterior distribution:

η|Gn, σ2 ∼ N (Av,A) , (5.54)

where A = (UTW−1U + V −1
0 )/σ2 and v = (UTW−1Gn + V −1

0 η0)/σ
2. The following equation

π(σ2|Gn) = π(Gn|η, σ2)π(η|σ2)π(σ2)/π(η|Gn, σ2)π(Gn) (5.55)

raises the following posterior distribution for parameter σ2:

σ2|Gn ∼ IG(vσ, Qσ) , (5.56)

where
Qσ ∝ 2γ + (η − η̂)(V0 + (UTW−1U)−1)−1(η0 − η̂) + Q̄σ

with vσ = n/2+α, η̂ = (UTW−1U)−1UW−1Gn and Q̄σ = (Gn)T (W−1−W−1U(UTW−1U)−1UTW−1)Gn.

After obtaining the posterior distribution of the parameters, it is of major interest to derive
the posterior predictive distribution (G(x)|Gn = gn) because the main objective of GP regression
is prediction. As pointed out in Equation 5.49, the posterior predictive distribution is obtained
through marginalization of the predictive distribution coming from the kriging equations by the
posterior distribution of the parameters.

First, let us marginalize by the posterior of η:

π(G(x)|Gn = gn, σ2) =

∫
π(G(x)|Gn = gn, η, σ2)π(η|Gn = gn, σ2)dη , (5.57)

we obtain through computation the following analytic form for the distribution of (G(x)|Gn =
gn, σ2):

(G(x)|Gn = gn, σ2) ∼ N (mη(x), s
2
η(x)) , (5.58)

where
mη(x) = u(x)TAv + c(x)TΣ−1(gn − UAv) , (5.59)

s2η(x) = σ2


1−

(
u(x)T c(x)T

)


−V −1

0 UT

U Σ




−1

u(x)

c(x)





 . (5.60)

Now, we can use the final predictive distribution (G(x)|Gn = gn) by integrating on the posterior
distribution of σ2. The computation raises the following posterior predictive distribution

(G(x)|Gn = gn) ∼ T (vσ,mη(x), Qσ,η(x)) , (5.61)

where T is the Student-t distribution, where mη is defined in Equation 5.59,

Qσ,η(x) =
Qσ
vσ


1 +

(
u(x)T c(x)T

)


−V −1

0 UT

U Σ




−1

u(x)

c(x)





 , (5.62)

and Qσ and vσ are introduced in Equation 5.56.
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Now, we will discuss special types of priors which are based on the likelihood. These priors
are often coined as non informative priors, due to the fact they can be a default choice for the statisti-
cian in cases when there are no information about the parameters values before observing the data.

Non-informative priors

When there is no knowledge about the parameters before observing the data, one can build
prior distributions based on the likelihood. These priors are denoted as reference, objective, non-
informative priors in the literature. The most classical objective prior is the Jeffreys prior (Jeffreys,
1961) which is based on Fisher information matrix (Fisher, 1956). Note X a random variable fol-
lowing the probability distribution Pθ with a pdf function p(θ; •). The likelihood of the parameter
θ = (θi)1≤i≤p with respect to X is then p(θ;X). The Fisher information matrix is given by

I(θ) = −
(
EX∼Pθ

[
∂2

∂θi∂θj
log(p(θ;X))

])

1≤i,j≤p
. (5.63)

The Jeffreys prior distribution’s pdf πJ is then defined by

πJ(θ) ∝
√
det I(θ) . (5.64)

Its main interesting property is that it is invariant under reparametrization. Priors based on the
likelihood have been extensively studied (see e.g. J. M. Bernardo, 1979; J. O. Berger, J. M. Bernardo,
and Sun, 2009). Such kinds of priors for GP regression have been studied in Muré, 2018. The
reference prior πR(η, σ2, ρ) for the universal GP regression model with a covariance function of
the form 5.38 with ρ ∈ (0,+∞)p was developed in Paulo, 2005 and is given by:

πR(η, σ
2, ρ) ∝ πR(ρ)

σ2
, (5.65)

with πR(ρ) ∝
√
det I(ρ), where I(ρ) is the Fisher information matrix of the observation Gn and is

written as follows:

I(ρ) = (I(ρ)i,j)1≤i,j≤p =





n− r if i = j = 0

Tr(Vj) if i = 0, j ̸= 0

Tr(Vi) if j = 0, i ̸= 0

Tr(ViVj) otherwise

(5.66)

where Vi = ẆiQ for 1 ≤ i ≤ p, and Ẇi is the partial derivative of the correlation matrix W with
respect to the i-th characteristic length parameter. The matrix Q is defined as:

Q =W−1(In − U(UTW−1U)−1UTW−1) .

In the case of simple kriging (i.e. r = 0) the reference prior has the same expression with Q = In.
As pointed out in Gu, 2019, the reference prior πR have several interesting properties when ρi → 0
or ρi → +∞. The first case correspond to W ≈ In and the second to W ≈ 1n1

T
n (where 1n

is a vector composed of ones), these cases are degenerate and provoke undesirable behaviors for
prediction. However, the use of the reference prior is computationally challenging, mainly coming
from the computation of the matrices Vi. To avoid this problem, a new class of prior coined jointly
robust priors have been introduced in Gu, 2019, they have the same tail rate decay as the reference
prior defined in Equation 5.65 while being analytical and thus computationally much simpler. The
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jointly robust prior writes:

πJR(η, σ
2, ρ) ∝ πJR(ρ)

σ2
, (5.67)

where πJR(ρ) has the following form:

πJR(ρ1, . . . , ρp) = C0

(
p∑

i=1

Ci
ρi

)a
exp

(
−b

p∑

i=1

Ci
ρi

)
, (5.68)

where C0 =
(p−1)!ba+p

∏p
i=1 Ci

Γ(a+p) is the normalizing constant. The variables a, b, Ci are to be chosen
by the statistician. Again following Gu, 2019, the parameters Ci can be seen as scale parameters
and can be set to Ci = n−1/p|x(i)

max − x
(i)
min| where x

(i)
max and x

(i)
min are the maximum and minimum

input values at the i-th coordinate and the factor n−1/p is the average distance between points in
a dataset of n samples in the hypercube [0, 1]p. More details about choosing the prior parameters
are to be found in Gu, Palomo, and J. Berger, 2018.

The jointly robust prior is also proposed in the case of noisy homoskedastic observations of
the form ε ∼ N (0, σ2ε). Denote by ζ = σ2ε/σ

2, the jointly robust prior writes:

πJR(η, σ
2, ρ, ζ) ∝ πJR(ρ, ζ)

σ2
, (5.69)

where πJR(ρ, ζ) has the following form:

πJR(ρ1, . . . , ρp, ζ) = C0

(
p∑

i=1

Ci
ρi

+ ζ

)a
exp

(
−b
(

p∑

i=1

Ci
ρi

+ ζ

))
. (5.70)

The different parameters can be estimated using the MAP estimator defined in Equation 5.51.

5.5 Gaussian process regression for seismic fragility curves estimation

In this section, we will perform GP regression for seismic probabilistic risk assessment (SPRA)
purposes, and more precisely by estimating seismic fragility curves using Gaussian processes. Af-
ter building the GP metamodel of the mechanical computer model, it is possible to carry out an
UQ study as detailed in Section 4.3.2. The sources of uncertainties are divided into two parts. The
first part is aleatory uncertainties which are related to the stochastic ground motions. A synthetic
generator of ground motions based on a filtered modulated white noise (Rezaeian and Der Ki-
ureghian, 2010) is then used (see Chapter 2, Section 2.3.1). Since seisms are complex stochastic
signals, it is common in SPRA studies to sum up the seismic hazard coming from the seisms by a
so-called intensity measure (IM). This is often a scalar value obtained from the seismic signal such
as the peak ground acceleration (PGA) or the pseudo spectral acceleration (PSA) (Grigoriu and
Radu, 2021). The choice of the IM is of great importance for fragility curves estimation and the
IM has to verify several properties to be representative of the seismic hazard (Grigoriu and Radu,
2021). We denote by a the scalar value corresponding to the IM. The model of the structure can
also include epistemic uncertainties about the material and mechanical properties, these parame-
ters will be denoted by the vector x ∈ X ⊂ Rd. Furthermore, we will denote by z the engineering
demand parameter (EDP) of interest. A very common statistical model between the EDP and the
combination of structural and seismic uncertainty is the log-normal model:

log(z(a,x)) = g(a,x) + ε , (5.71)
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where x is the vector of the mechanical properties of the structure, a is the intensity measure,
g(a,x) is the regression function, and ε ∼ N (0, σ2ε) is a centered Gaussian noise. Note that this
log-normal assumption for the EDP distribution is not necessary for the proposed methodology,
any functional transformation of z - such as Box-Cox transformation (see G. E. Box and Cox, 1964)
- is possible as long as it is normally distributed after this transformation. For the sake of notation
simplicity, we will denote y(a,x) = log(z(a,x)).

As mentioned in Chapter 2, seismic fragility curve estimation is usually performed by numer-
ical simulations. The computational burden is thus significant, as it requires a consequent number
of numerical simulations to provide an accurate estimation. As also introduced in Chapter 2, the
seismic fragility curve can be expressed as

Ψ(a,x) = P(z(A,X) > C|A = a,X = x) , (5.72)

where z(a,x) is a scalar mechanical demand parameter obtained through numerical simulation of
the structure with mechanical parameters x subjected to a seismic ground motion of intensity a. C
is a threshold of acceptable behavior of the structure regarding the mechanical demand parameter
studied.

5.5.1 Gaussian process surrogate with homoskedastic noise

In order to build our surrogate model, we suppose that the regression function g is a realization
of a Gaussian process G. We thus define the random observation by:

Y (a,x) = G(a,x) + ε . (5.73)

Remark in Equation 5.73 that thanks to the homoskedastic Gaussian noise assumption on
the nugget ε, the random observations Y (a,x) is also a Gaussian process. We make the as-
sumption that G is a zero mean Gaussian process with an anisotropic stationary Matérn 5/2
covariance function parametrized by its intensity σ and its lengthscales (ρi)1≤i≤p+1. Given an
experimental design made of n simulations of the mechanical computer model, we obtain the
dataset Dn = ((ai,xi), y(ai,xi))1≤i≤n. By the maximum likelihood method, we can provide esti-
mates for the unknown covariance function hyperparameters σ, (ρi)1≤i≤p+1 and also the Gaussian
noise variance σε (see Marrel, Iooss, Van Dorpe, et al., 2008 for a practical implementation of the
method). The dataset Dn can then be used to derive the conditional distribution of the Gaussian
process Y for any (a,x):

(Y (a,x)|Dn) ∼ N
(
mn(a,x), σn(a,x)

2
)
, (5.74)

wheremn(a,x) and σn(a,x)2 = sn(a,x)
2+σ2ε are obtained from the kriging equations (see Section

5.3). In the same fashion, we can derive the conditional distribution of the Gaussian process G on
the regression function for any (a,x):

(G(a,x)|Dn) ∼ N
(
mn(a,x), sn(a,x)

2
)
. (5.75)

The fragility curve is then obtained by replacing the computer model output y by a Gaussian
process Yn which follows the distribution of the Gaussian process Y conditioned to Dn detailed in
Equation (5.74). Hence, for any vector (a,x) we derive the estimator of the fragility curve Ψ(1):

Ψ(1)(a,x) = P(Yn(a,x) > log(C)) . (5.76)
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We can then use the distribution of Yn to estimate the fragility curve:

Ψ(1)(a,x) = Φ

(
mn(a,x)− log(C)

σn(a,x)

)
, (5.77)

where Φ is the cdf of the standard Gaussian distribution. Moreover, the Gaussian process sur-
rogate allows us to propagate the surrogate model uncertainty into the fragility curve, thanks to
the conditional distribution of the regression function (G(a,x)|Dn). We define Gn the Gaussian
process with same distribution as the Gaussian process (G|Dn), then the fragility curve tainted by
the uncertainty of the Gaussian process surrogate writes:

Ψ(2)(a,x) = Φ

(
Gn(a,x)− log(C)

σε

)
,

Gn(a,x) ∼ N
(
mn(a,x), sn(a,x)

2
)
.

(5.78)

Remark that Ψ(1) is the mean of Ψ(2) with respect to the distribution of (G|Dn). In order to estimate
the distribution of Ψ(2), we simulate K realizations (Gn,k(a,x))1≤k≤K from (G(a,x)|Dn) to obtain
a sample (Ψ

(2)
k )1≤k≤K of Ψ(2):

Ψ
(2)
k (a,x) = Φ

(
Gn,k(a,x)− log(C)

σε

)
. (5.79)

However, some mechanical structures have nonlinear behavior that can influence the local
variability of the log-EDP y(a,x). Thus, a varying nugget with respect to (a,x) could be necessary
to retrieve the distribution of y(a,x). This comes with a cost in terms of dataset size, due to the
increase in the number of parameters to estimate. We will then propose a simple heteroskedastic
Gaussian process surrogate and study its impact on the seismic fragility curve estimation.

5.5.2 Gaussian process surrogate with heteroskedastic noise

In this section, the log-EDP y(a,x) is now supposed to follow the statistical model:

log(z(a,x)) = g(a,x) + ε(a,x) , (5.80)

where ε(a,x) ∼ N (0, σε(a,x)
2). There are two ways of estimating σε(a,x) described in Kyprioti

and Taflanidis, 2021: The first one, called stochastic kriging (SK), is to consider several replications
at the same value of the input parameters (a,x) and to provide an empirical estimation of the het-
eroskedastic standard deviation σε(a,x), the other one is to propose a parametric model of the
noise standard deviation σε(a,x) = φ(a,x;β), and to calibrate the parameters vector β using the
dataset Dn = ((ai,xi), y(ai,xi))1≤i≤n. We decided to implement the second method with a para-
metric model for several reasons: SK imposes to be intrusive with respect to the stochastic ground
motion generator in order to make several replications at precise seismic intensity a, we prefer
to consider a framework that is independent of the generator of seismic ground motions, due to
the high number and diversity of stochastic generators proposed in the literature. Moreover, SK
also imposes to control the design of experiments in order to be able to make replications, but in
many applications, like in Marrel, Iooss, and Chabridon, 2021, due to budget or time constraints
engineers only have access to a Monte-Carlo dataset Dn = ((ai,xi), y(ai,xi))1≤i≤n, this makes the
use of SK difficult.
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The key aspect of the parametric model of the heteroskedastic noise is the choice of the fam-
ily of parametric functions φ(a,x;β). A sparse representation is preferable in order to limit the
dimension of the parameters vector β. Prior knowledge about earthquake engineering helps to
reduce the dimension of the input parameters (a,x). Indeed, it is common in earthquake engi-
neering that variability in the EDP is mainly caused by mechanical nonlinearities, which them-
selves depend on the intensity of the seismic ground motion. This leads to the simplification
φ(a,x;β) = φ(a;β). Thus, φ depends on only one variable, reducing drastically the dimension of
β. The calibration of β is performed using maximum likelihood estimation as in the homoskedas-
tic case, β is considered as a hyperparameter of the Gaussian process. After calibration of the
hyperparameters, we can obtain the conditional distribution of the heteroskedastic Gaussian pro-
cess for every (a,x).

(Y (a,x)|Dn) ∼ N
(
m̌n(a,x), σ̌n(a,x)

2
)
, (5.81)

we can also derive the conditional distribution of the Gaussian process G on the regression func-
tion:

(G(a,x)|Dn) ∼ N
(
m̌n(a,x), šn(a,x)

2
)
, (5.82)

where σ̌n(a,x)2 = šn(a,x)
2 + φ(a; β̌n)

2, β̌n is the vector of parameters of the parametrized het-
eroskedastic standard deviation obtained by maximum likelihood. In the same fashion as for the
homoskedastic Gaussian process we can estimate the fragility curve using the conditional distri-
bution:

Ψ̌(1)(a,x) = Φ

(
m̌n(a,x)− log(C)

σ̌n(a,x)

)
, (5.83)

the uncertainty on the Gaussian process (G|Dn) can be propagated in the fragility curve in the
same fashion as for the homoskedastic Gaussian process:

Ψ̌(2)(a,x) = Φ

(
Hn(a,x)− log(C)

φ(a; β̌n)

)
,

Hn(a,x) ∼ N
(
m̌n(a,x), šn(a,x)

2
)
.

(5.84)

The distribution of Ψ̌(2) is empirically estimated by generatingK realizations (Hn,k(a,x))1≤k≤K
from the distribution N

(
m̌n(a,x), šn(a,x)

2
)

in order to estimate a sample of Ψ̌(2):

Ψ̌
(2)
k (a,x) = Φ

(
Hn,k(a,x)− log(C)

φ(a; β̌n)

)
. (5.85)

5.5.3 Uncertainty propagation on seismic fragility curves using Gaussian process sur-
rogates

The Gaussian process surrogates allow us to propagate the uncertainties on X such that X ∼
PX into the fragility curves by considering the random functions a → Ψ(a,X). As previously
introduced in Chapter 4, Section 4.3.2, we can derive from these random fragility curves several
statistical quantities of interest such that the mean fragility curve:

Ψ̄(a) = EX[Ψ(a,X)] . (5.86)

Moreover, the mechanical engineer may be interested in more conservative statistical quantities
that will be useful for risk analysis. We recall the definition of the seismic fragility quantiles curve
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a→ qγ(a) of level γ ∈ [0, 1] defined as:

qγ(a) = inf
q∈R

{PX(Ψ(a,X) ≤ q) ≥ γ} . (5.87)

The estimation of these quantities of interest can be carried out using a Monte-Carlo sample
(Xj)1≤j≤m and the law of large numbers as detailed in Equation 4.12. For the fragility quan-
tile curve, the seismic fragility curve estimator Ψ(1) can be used to propose the following plug-in
estimator:

q(1)γ (a) = inf
q∈R

{ 1

m

m∑

j=1

1(Ψ(1)(a,Xj)≤q) ≥ γ} . (5.88)

Furthermore, the posterior predictive distribution of the GP surrogates can be used to obtain
the posterior distribution of the seismic fragility quantile curve using Ψ(2). Using a sample of
(Ψ

(2)
k )1≤k≤K of Ψ(2), we can estimate a γG-level quantile w.r.t. the posterior distribution of the GP

surrogate.

q(2)γG
(a,X) = inf

q∈R

{ 1

K

K∑

k=1

1
(Ψ

(2)
k (a,X)≤q) ≥ γG

}
. (5.89)

A bi-level seismic fragility quantile curve is then proposed by taking the γX-level quantile of
q
(2)
γG (a,X) w.r.t. the probability distribution of X.

q(2)γG,γX
(a) = inf

q∈R

{ 1

m

m∑

j=1

1
(q

(2)
γG

(a,Xj)≤q) ≥ γX

}
. (5.90)

The denomination bi-level meaning that it encompasses both the uncertainty on X and on the GP
surrogate modeling. The procedure of estimation of the bi-level seismic fragility quantile curve
is detailed in Algorithm 3. The same procedure can be applied using the heteroskedastic GP
surrogate.
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Algorithm 3 Uncertainty propagation on seismic fragility curves with Gaussian process
Requirements:

1. a regular grid (at)1≤t≤T

2. a Monte-Carlo sample (Xj)1≤j≤m with Xj ∼ PX

3. a learning sample Dn = ((ai,xi), y(ai,xi))1≤i≤n.

Procedure:

1. For each at with 1 ≤ t ≤ T

(a) For each Xj with 1 ≤ j ≤ m

i. Compute with the kriging equations mn(at,Xj), σn(at,Xj) and sn(at,Xj)

ii. Compute Ψ(1)(at,Xj) using Equation (5.77)
iii. For 1 ≤ k ≤ K, sample Gn,k(at,Xj) ∼ N (mn(at,Xj), sn(at,Xj)

2) and compute
Ψ

(2)
k (at,Xj) using Equation (5.79)

2. Estimate the seismic fragility quantile curve at point at using the dataset
((Ψ(1)(at,Xj))1≤j≤m by Equation (5.88)

3. Estimate the bi-level seismic fragility quantile curve with surrogate uncertainty at point at
using the dataset (Ψ(2)

k (at,Xj))1≤k≤K,
1≤j≤m

by using Equation (5.89) and (5.90)
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5.6 Uncertainty propagation on a single d.o.f. oscillator with nonlinear
restoring force

5.6.1 Presentation of the application

In this section, we apply the methodology of Section 5.5 to the single d.o.f. oscillator with
nonlinear restoring force introduced in Section 2.4. The source of epistemic uncertainties in this
application are the mechanical parameters of the oscillator. The variables are the mass m, the
spring stiffness k, the damping ratio ξ, the yield displacement zd and the post-yield stiffness αy.
We thus have the parameters vector x = (k,m, ξ, zd, αy)

T . We denote by X the random vector
following the probability measure PX of the mechanical parameters of which probabilistic model
is described in Table 5.2.

TABLE 5.2: Probabilistic model of X for the nonlinear oscillator.

Variable Name Mean

m (kg) Mass of the system 300

k (N/m) Stiffness 2.7 105

ξ (1) Damping ratio 0.015

zd (m) Yield displacement 5 10−3

αy (1) Post-yield stiffness 2 10−4

The variables are supposed mutually independent with uniform distribution parametrized for
each variable by its mean and its coefficient of variation (equal to 30% for each input variable).
The choice of the uniform distribution comes from the maximum entropy principle (see e.g. E. T.
Jaynes, 1957). The choice of the parametrization of the mechanical system is also subjective: a
parametrization with physically measurable parameters (such that the mass m) seems preferable
in the context of the study of a real mechanical system. However, the mean of the parameters
k and m have been chosen such that the natural frequency of the oscillator is 5 Hz. Indeed, this
value is commonly obtained on real mechanical structures. The seismic intensity measure chosen
for this study is the peak ground acceleration (PGA) previously used in Chapter 2, Section 2.4.
Synthetic seismic signals are generated using the methodology of Section 2.3.1. In this study,
the engineering demand parameter (EDP) is the maximal absolute displacement of the nonlinear
oscillator during the seismic excitation, similarly to Section 2.4.

5.6.2 Building Gaussian process metamodels and estimation of seismic fragility curves

In this part, we estimate the fragility curve of the nonlinear oscillator using Gaussian process
surrogates, one with homoskedastic noise assumption and another with an heteroskedastic noise
assumption. We perform simple kriging with a zero-mean Gaussian process with an anisotropic
tensorized Matérn 5/2 covariance function. This choice was motivated by the need of keeping a
few hyperparameters to keep the surrogate model as simple as possible. The hyperparameters
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to be optimized are the variance σ and the lengthscales (ρi)0≤i≤p (p = 5 in this study) where
index 0 denotes the intensity measure variable. The input of the surrogate (a,x) is logarithmically
transformed, centered and standardized before being taken as input variable by the GP for fitting.
All the computations are done in Python 3.7 using the library scikit-learn.

For the homoskedastic GP surrogate, computation of the MLE and MAP estimators of the hy-
perparameters with the jointly robust prior described in Section 5.4.5 is carried out. In order to
compare the estimates, MAP estimator and MLE of the hyperparameters have been computed on
500 replications of learning sample of size n = 200. Numerical results for the hyperparameters
σ, σε, ρ0, ρ1 are shown in Figure 5.5. Remark that the tail behavior of the jointly robust prior for
ρi → 0 and ρi → +∞ indeed reduces the uncertainty on the lengthscale parameters and leads to
fewer degenerates estimates than the MLE.
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FIGURE 5.5: Comparison of the MAP estimator and the MLE of the hyperparame-
ters. The red solid lines represent the interquantile range between the 10% and 90%
quantiles.

A full Bayesian approach is also carried out on a learning sample of n = 100 observations. The
parameters of the jointly robust prior are chosen according to Gu, Palomo, and J. Berger, 2018.
The MCMC algorithm is implemented in Stan (see Stan Development Team, 2018) using the No-
U-turn sampler (Hoffman and Gelman, 2011). 1000 posterior samples are then obtained with 1000
burn-in samples. Figure 5.6 represents the estimated marginal posterior distributions for different
hyperparameters based on the MCMC samples. We can see that the marginal posterior distribu-
tion of σε is close to Gaussian and concentrated around its mode. On the contrary, the parameters
ρ1 - corresponding to the stiffness k - is poorly identified, with a heavy tail towards large length-
scale values. The parameter ρ0 is better identified with a smaller right tail. This behavior is coming
from the very strong influence of the seismic signal - through the intensity measure variable a - to
the log displacement of the oscillator relatively to the mechanical parameters of the structure. The
influence of the mechanical parameters to the log displacement is way more difficult to infer.
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FIGURE 5.6: Histograms of the marginal posterior distribution for parameters
σ, σε, ρ0, ρ1 using the MCMC posterior samples.

Figure 5.7 represents scatter plots of parameters σ and σε and of σ and ρ0. Remark that the
parameters σ and σε are not correlated on the contrary to σ and ρ0 where a positive correlation is
observed.
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FIGURE 5.7: Scatter plots for different parameters with 1000 posterior samples.

For the rest of the Section, we will perform fragility curve estimation using the homoskedastic
GP with the MAP estimator. This is motivated by its computational simplicity and the learning
sample size in our applications (e.g. several hundreds). The heteroskedastic GP hyperparameters
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will be estimated by maximum likelihood.

Now we will consider the GP surrogate based on a heteroskedastic noise assumption. For the
parametric form of the standard deviation for the heteroskedastic Gaussian process, we consider
the following ramp function:

φ(a;β) = max(β0 + β1a, β2) , (5.91)

where β = (β0, β1, β2). This parametric formulation depends only on one variable and the small
dimension of β allows for its calibration with common sample sizes encountered in our applica-
tions (10 < n < 1000). This parametric model for the heteroskedastic noise is motivated by the
model proposed in Kyprioti and Taflanidis, 2021.

The predictivity quality of our two surrogates is assessed as follows: Figure 5.8 shows the
predicted versus observed values of the log-EDP y(a,x) using a learning dataset of n = 500 ob-
servations, the green solid line corresponds to the identity, the closer the data are from this line
the better is the prediction quality of the surrogate. The plots are quite similar for this appli-
cation, with the heteroskedastic GP predicting the high log-EDP values slightly better than the
homoskedastic GP.
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FIGURE 5.8: Predicted values versus observed values for the heteroskedastic and
homoskedastic Gaussian process surrogate with a dataset size n = 500.

Next, we measure quantitatively the predictivity quality of our surrogates using the predictiv-
ity coefficient Q2 defined as:

Q2 = 1−
∑nt

i=1(y(a
t
i,x

t
i)−mn(a

t
i,x

t
i))

2

∑nt
i=1(y(a

t
i,x

t
i)− ȳ)2

, (5.92)

where (xti, y(a
t
i,x

t
i))1≤i≤nt is a test dataset, and ȳ = 1

nt

∑nt
i=1 y(a

t
i,x

t
i). The predictivity coefficient

Q2 is computed on a test dataset of 1000 mechanical simulations, we consider learning sample
size n varying between 100 and 450. The learning datasets are resampled using bootstrap in a
total dataset of also 1000 mechanical simulations and 100 replications are made for each n. Figure
5.9 shows boxplots of the predictivity coefficient Q2 for the heteroskedastic and homoskedastic
Gaussian processes. Note that the homoskedastic GP surrogate seems to perform better than
the heteroskedastic GP. Indeed, the mean Q2 over the 100 replications for the homoskedastic GP
surrogate is greater than the mean Q2 of the heteroskedastic GP surrogate.
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FIGURE 5.9: Boxplots of the predictivity coefficients Q2 estimated with 100 replica-
tions for varying size of the learning sample from n = 100 to n = 450.

Moreover, we also provide a graphical tool proposed in Marrel, Iooss, and Chabridon, 2021
which consists in evaluating the proportion of data that lies in the α-theoretical confidence interval
obtained with heteroskedastic and homoskedastic Gaussian process surrogates. Several values
α ∈ [0, 1] of the prediction interval level are chosen and the theoretical level of the prediction
interval is compared to the empirical proportion of the data that belongs actually to this prediction
interval. By definition, the more the points are close to the identity line, the better is the quality
of the kriging surrogates. Figure 5.10 gives the results for heteroskedastic and homoskedastic
Gaussian process surrogate for n = 100, 250, 500 learning dataset sizes. The empirical coverage
probabilities are computed on a test sample of size 1000. Remark that the empirical coverages of
the homoskedastic and heteroskedastic GP surrogate are almost similar. Hence, the two surrogates
may provide almost the same conditional distribution of the log-displacement.

The quantities of interest are estimated empirically using a Monte-Carlo sampling (X)1≤j≤m of
size m = 1000. Numerical results for several training sizes n and failure threshold C are shown in
Figures 5.11 and 5.12, the red area corresponds to the area of the 10% and 90% level fragility quan-
tiles estimated using (Ψ(1)(.,Xj))1≤j≤m and (Ψ̌(1)(.,Xj))1≤j≤m for respectively the homoskedastic
and heteroskedastic Gaussian processes. The Gaussian process surrogate uncertainty is assessed
by sampling K = 1000 realizations of Gn and Hn for each value Xj , 1 ≤ j ≤ m, the bi-level
fragility quantile curves with γX = γG = 0.1 and γX = γG = 0.9 are shown in dashed green and
they are estimated empirically from the dataset (Ψ(2)

k (.,Xj))1≤k≤K,
1≤j≤m

and (Ψ̌
(2)
k (.,Xj))1≤k≤K,

1≤j≤m
respec-

tively for the homoskedastic and heteroskedastic Gaussian processes. The blue curve corresponds
to a nonparametric fragility curve estimation of the mean fragility curve using K-means clustering
and binned Monte-Carlo (see Chapter 2, Section 2.3.2) on a large dataset of 20000 mechanical sim-
ulations. The dashed blue curves corresponds to the 10% and 90% quantiles of the nonparametric
estimator using its asymptotic normal distribution.

Remark that the interquantile range accounting for metamodeling uncertainty (in green) of
the heteroskedastic Gaussian process is wider than for the homoskedastic Gaussian process. This
heuristic may validate for this particular test case the use of a homoskedastic Gaussian process
rather than a heteroskedastic one.
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FIGURE 5.10: Observed proportion of the data that lies in the α-theoretical confi-
dence intervals with respect to their theoretical proportion for both heteroskedastic
and homoskedastic Gaussian processes with sample size of the learning dataset.
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FIGURE 5.11: Uncertainty propagation of the epistemic uncertainties on the seismic
fragility curves with failure threshold of C = 1.3mzd where mzd is the mean of the
random parameter zd. The red area corresponds to the area of the 10% and 90% level
estimated fragility quantiles and the green area to the area of the 10% and 90% level
estimated bi-level quantile. The blue curve corresponds to a nonparametric fragility
curve estimation of the mean fragility curve using K-means clustering and binned
Monte-Carlo.
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FIGURE 5.12: Uncertainty propagation of the epistemic uncertainties on the seismic
fragility curves with failure threshold of C = 2.1mzd where mzd is the mean of the
random parameter zd. The red area corresponds to the area of the 10% and 90% level
estimated fragility quantiles and the green area to the area of the 10% and 90% level
estimated bi-level quantile. The blue curve corresponds to a nonparametric fragility
curve estimation of the mean fragility curve using K-means clustering and binned
Monte-Carlo.
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5.7 Synthesis about Gaussian process regression

This chapter provided a review about the metamodeling of black box computer models using
Gaussian processes. This section sums up the main aspects that have been covered in this chapter.

Kriging. As shown in the beginning of the chapter, Gaussian process regression was first in-
troduced for geostatistics purposes and coined kriging. This leads to the kriging equations for
simple kriging (i.e. the mean function is known) or universal kriging (i.e. the mean is unknown
and parametrized by a vector η such that the mean function is linear in η). The case of noisy
observations is also covered, as it is of primary importance for our applications to earthquake en-
gineering.

The choice of the covariance function. The covariance function has a key role for studying
the behavior of the realizations of a Gaussian process for theoretical purposes. The spectral de-
composition of the covariance - thanks to the Mercer theorem - is also very useful in practice for
approximating Gaussian process realizations through the Karhunen-Loeve decomposition. Prac-
tical aspects for choosing the covariance hyperparameters in a data-driven manner is also covered.

Gaussian process regression seen as a Bayesian nonparametric regression framework. The
stochastic nature of the Gaussian process makes very natural a Bayesian interpretation of the krig-
ing framework. Indeed, the Gaussian process may be seen as a latent regression function. This
interpretation - made by the machine learning community in the 2000s - leads to a more modern
viewpoint of the Gaussian process regression. Moreover, this interpretation naturally leads to the
full Bayesian approach, where the parameters and hyperparameters of the Gaussian process are
seen as random variables following prior distributions. The Bayesian framework is then used for
both inference of the various parameters and for prediction.

5.8 Conclusion

This chapter provides a review about Gaussian process regression and its use for Uncertainty
Quantification on seismic fragility curves of structures by numerical simulations. This frame-
work is illustrated on a single d.o.f. oscillator with nonlinear restoring force with its mechanical
parameters considered as random variables modeling epistemic uncertainties. Due to the com-
putational cost of mechanical computer models, the epistemic uncertainties propagation on the
seismic fragility curve has to be performed using surrogates.

Two surrogate models have been proposed: one with a homoskedastic noise assumption and
the other one with a parametrized heteroskedastic noise. The metamodels are validated using
different metrics based on their predictivities and their coverages for a test-case consisting in a
single d.o.f. oscillator with a nonlinear restoring force.

After assessing the uncertainties on the seismic fragility curves provoked by the epistemic
uncertainties, it is of particular interest for the mechanical engineer to apportion the uncertainties
on the seismic fragility curves to the different sources of epistemic uncertainties. Thus, in the
next chapter, sensitivity analysis on seismic fragility curves using Gaussian process surrogates is
discussed.
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CHAPTER6
Sensitivity analysis on seismic fragility
curves using Gaussian process surrogates

Toutes les grandes sensibilités sont un peu
prémonitoires

Romain Gary, Les cerfs-volants
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6.1 Introduction

While the modeling and the propagation of uncertainties can be considered as forward UQ, the
study of backward UQ may be of major interest as well. It boils down to study how the uncertainty
on the model output can be apportioned to the different sources of uncertainties in the model
inputs (see Saltelli et al., 2004, Section 2.2). Sensitivity analysis (SA) is a backward (or inverse)
UQ study, as presented in Chapter 4, which aims at determining which input parameters (often
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coined factors in the SA literature) drive the model output behavior. The different objectives of
SA can be found in Saltelli et al., 2004, Section 2.4 and are listed below:

• Factor prioritization: SA may aim to rank the input parameters in terms of influence on
the model output uncertainty. This objective aims to help make informed decisions about
which input parameter uncertainty have to be reduced in priority to maximize the reduction
of uncertainty on the model output.

• Factor fixing: This setting - also coined screening - aims at identifying the input parameter (or
a subset of input parameters) that has little to no influence on the model output uncertainty.
This objective aims at reducing the dimensionality of the input parameters without loosing
information on the model behavior.

• Variance cutting: This aims to identify a minimal number of input parameters to fix in order
to reach a target variance on the model output.

• Factor mapping: This aims to identify a subset of input parameters responsible for produc-
ing model output values in a given region of interest.

SA techniques are numerous and can be separated in two main families of methods: First, SA can
be performed locally in the vicinity of a set of input parameters values, these methods are natu-
rally coined local SA techniques. They mainly rely on gradient evaluations or Taylor expansions
of the model. On the other hand, SA can be performed by taking into account the uncertainty
range of the input parameters. This is coined global sensitivity analysis (GSA). The most famous
GSA method is based on the variance-based importance measure called Sobol’ indices (Sobol’,
1993). They are based on the Hoeffding-Sobol’ decomposition suggested by Hoeffding, 1948,
which is only valid when the input parameters are mutually independent. For an extension of
the Hoeffding-Sobol’ to the non-independent case, the interested reader is referred to Chastaing,
2013. In this manuscript, only the case of mutually independent input parameters are considered.

In this chapter, we define global sensitivity indices on seismic fragility curves. First, the ag-
gregated Sobol’ indices introduced in Iooss and Le Gratiet, 2019 - a natural extension of the Sobol’
indices to a functional output - is applied for GSA on seismic fragility curves. We also focus
on recently studied global sensitivity indices based on kernel methods which seem adapted to
functional output like seismic fragility curves. These indices are based on an embedding of the
fragility curve into a Reproducing Kernel Hilbert Space (RKHS). Moreover, all the global sensi-
tivity indices presented in this chapter are estimated using a Gaussian process surrogate of the
mechanical computer model. Thus, the surrogate model uncertainty is propagated into the global
sensitivity indices estimate in the same fashion as Le Gratiet, 2013, Chapter 6.

This chapter is organized as follows. First, we introduce the Sobol’ indices and the aggregated
Sobol’ indices in Section 6.2. Then we present in Section 6.3 the global sensitivity indices based on
the RKHS, by introducing the Maximum Mean Discrepancy (MMD) distance. Finally, we develop
in Section 6.4 a method to propagate the posterior distribution of the Gaussian process surrogate
into the global sensitivity indices. For that matter, we recall an important result for sampling
a Gaussian process on a large sample. Section 6.5 illustrates the presented sensitivity analysis
methodology on a single d.o.f. nonlinear oscillator.

6.2 Variance based global sensitivity indices

We will present in this section the method of Sobol’ for global sensitivity analysis (Sobol’,
1993) in the case where the model output is a scalar value. The extension of the Sobol’ indices to
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functional output, in the same fashion as Iooss and Le Gratiet, 2019, will also be presented with
some theoretical results.

6.2.1 The method of Sobol’

Let us consider the input parameters space X ⊂ Rp such that (X ,B(X )) is a measurable prod-
uct space of the form:

(X ,B(X )) = (X1 × . . .×Xp,B(X1)⊗ . . .⊗ B(Xp)) ,

where B(U) denote the Borelian σ-algebra of U ⊂ X and Xi ⊂ R is a nonempty open set for
1 ≤ i ≤ p. Furthermore, we consider a probability measure µ on (X ,B(X )) of the form

µ = µ1 ⊗ . . .⊗ µp .

The Hoeffding-Sobol’ decomposition introduced in Hoeffding, 1948 states that any function g(x) ∈
L2
µ(X ) can be decomposed into terms of increasing dimensionality such that:

g(x) = g0+
∑

1≤i≤p
gi(x

(i))+
∑

1≤i<j≤p
gi,j(x

(i),x(j))+. . .+g1,2,...,p(x
(1), . . . ,x(p)) =

∑

u∈P
gu(x

(u)) , (6.1)

where P is the collection of all subsets of {1, . . . , p} and x(u) is a group of variables such that x(u) =
(x(i))i∈u. The decomposition is also unique if we impose for all u = (u1, . . . , uk)1≤k≤p, 1 ≤ ui ≤ p:

∫
gu(x

(u))dµui(x
(ui)) = 0 ∀i = 1, . . . , k . (6.2)

This property has for consequence that the terms gu(x(u)) are orthogonal in L2
µ(X ), i.e. for every

gu(x
(u)) and gv(x(v)) such that u, v ∈ P and u ̸= v, we have:

∫
gu(x

(u))gv(x
(v))dµ(x) = 0 (6.3)

Another consequence is that g0 is the mean of g(x) w.r.t. the measure µ:

g0 =

∫
g(x)dµ(x) . (6.4)

As shown in Sobol’, 1993; Antoniadis, 1984, if X ∈ Rp is a random variable following the prob-
ability distribution µ, the variance of Y = g(X) can be decomposed thanks to the Hoeffding
decomposition by:

Var(Y ) = V =
∑

u⊆{1,...,p}
Var(gu(X

(u))) =
∑

u⊆{1,...,p}
Vu , (6.5)

where
gu(X

(u)) =
∑

v⊆u
(−1)|u|−|v|E[Y |X(v)] ,

where |u| = Card(u). Finally, the Sobol’ sensitivity indices are given by

Su =
Vu
V
,
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where u ∈ P . These indices represent the part of variance of Y = g(X) due to X(u) and not
explained by X(v) where v ⊂ u. We can rewrite the Hoeffding decomposition in terms of Sobol’
indices as follows.

1 =

p∑

i=1

Si +
∑

1≤i<j≤p
Sij + . . .+ S1,...,p =

∑

u∈P
Su . (6.6)

In particular, the Si = Var(E[Y |X(i)])/V are called first-order Sobol’ indices and measure the part
of variance explained by the random variable X(i). Furthermore, Sij for i ̸= j are coined second-
order Sobol’ indices and measure the part of variance of Y explained by the interactions between
variables X(i) and X(j) and not explained by the individual effects of X(i) and X(j).

Finally, the total-order Sobol’ indices Tu measure the part of variance explained by all the inter-
actions between the subset of variables X(u) and all the other variables, it is defined as follows

Tu =
∑

v∈P,u∩v ̸=∅
Sv = 1− Var(E[Y |X(−u)])

V
, (6.7)

where X(−u) is the complementary vector of variables with indices not in u.

Thus, Sobol’ indices allow to quantitatively assess the impact of each input variable on the
model output variance. One can use Sobol’ sensitivity indices for screening purposes: a low total-
order Sobol’ index means that the input (or subset of inputs) variable is noninfluential and that
freezing its value has no effect on the output variance. When the value of the first-order and
total-order Sobol’ indices are close, this means that there are no interactions with the other inputs,
whereas a large difference indicates interactions.

6.2.2 Monte-Carlo estimation of Sobol’ indices

In this section, we are interested in proposing estimators of the Sobol’ sensitivity indices of the
following form:

Si =
Vi
V

=
Var(E[Y |X(i)])

V
. (6.8)

A naive estimator of Var(E[Y |X(i)]) would require a double Monte-Carlo loop. It is however
possible to design better Monte-Carlo estimators to compute first-order and total-order Sobol’
indices if the inputs are independent (see e.g. Da Veiga et al., 2021, Section 3.2.1):

Lemma 3 (Pick-freeze formulation of Sobol’ indices (Sobol’, 1993)). Assume X and X̃ are two inde-
pendent copies of the input parameters vector. For any subset u ⊆ P , define X̃u a vector composed of X
and X̃ such that X̃(u)

u = X(u) and X̃
(−u)
u = X̃(−u). Denote Y = g(X) and Yu = g(X̃u), we have

Var(E[Y |X(u)]) = Cov(Y, Yu) .

Proof. First, remark that from the equality Y L
= Yu we have the following

Cov(Y, Yu) = E[Y Yu]− E[Y ]E[Yu]
= E[Y Yu]− E[Y ]2 .
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The following equalities hold since X(−u) and X̃
(−u)
u are independent

E[Y Yu] = E[E[Y Yu|X(u)]]

= E
[
E[Y |X(u)]E[Yu|X(u)]

]

= E[E[Y |X(u)]2] .

Finally, the conditional expectation property E[Y ] = E[E[Y |X(u)]] leads to

Cov(Y, Yu) = E[E[Y |X(u)]2]− E[E[Y |X(u)]]2

= Var(E[Y |X(u)]) .

Using the pick-freeze formulation, it is possible to estimate the first-order Sobol’ indices by
considering two random vectors (Xj)1≤j≤m and (X̃i,j)1≤j≤m and by estimating Var(E[Y |X(i)])
using the empirical estimator of Cov(Y, Yi). Following this idea, Sobol’ suggests the following
estimator for the first-order Sobol’ index (see Sobol’, 1993):

Ŝi =
1
m

∑m
j=1 g(Xj)g(X̃i,j)− 1

m

∑m
j=1 g(Xj)

1
m

∑m
j=1 g(X̃i,j)

1
m

∑m
j=1 g(Xj)2 −

(
1
m

∑m
j=1 g(Xj)

)2 . (6.9)

This Sobol’ index estimator is improved in Janon et al., 2014 with the following estimator

Ŝi =

1
m

∑m
j=1 g(Xj)g(X̃i,j)−

(
1
2m

∑m
j=1 g(X̃i,j) + g(Xj)

)2

1
2m

∑m
j=1(g(Xj)2 + g(X̃i,j)2)−

(
1
2m

∑m
j=1 g(X̃i,j) + g(Xj)

)2 . (6.10)

Indeed, the estimator in Equation 6.10 is asymptotically efficient for the first-order Sobol’ indices.
However, they are sometimes not accurate for small values of Vi/V . Note also that first-order
Sobol’ indices estimator based on rank statistics has been recently introduced (see Gamboa et al.,
2022). They can be useful in a given-data context (e.g. no further simulations of the computer
model is feasible).

6.2.3 Aggregated Sobol’ indices for functional output

In this part, we present an adaptation of the Sobol’ sensitivity indices to a functional output.
It was first introduced in Le Gratiet et al., 2017; Iooss and Le Gratiet, 2019 in the context of POD
(Probability of Detection) curves used in non-destructive testing studies. Using the notation X =
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(X(1), . . . ,X(p)), we first define the following quantities (with ΨX(a) = Ψ(a,X)):

Ψ̄(a) = EX [Ψ(a,X)] ,

ΨX(i)(a) = P(z(A,X) > C|A = a,X(i)) ,

ΨX(−i)(a) = P(z(A,X) > C|A = a,X(−i)) ,

D = EX

[
∥Ψ̄−ΨX∥2L2

h(A)

]

= EX

[∫

A
(Ψ̄(a)−Ψ(a,X))2dh(a)

]
,

(6.11)

where h is a probability measure on the compact bounded set A ⊂ R with p.d.f. pA. The aggre-
gated Sobol’ indices of first and total-order for the seismic fragility curves then write:

SFCi,m =
EX

[
∥Ψ̄−ΨX(i)∥2L2

h(A)

]

D ,

TFCi,m = 1−
EX

[
∥Ψ̄−ΨX(−i)∥2L2

h(A)

]

D ,

(6.12)

In the next lemma, we demonstrate that these indices follow the same Sobol’-Hoeffding decom-
position as in Equation 6.6.

Lemma 4. Suppose that ∀a ∈ A, the functions x 7→ Ψ(a,x) are in L2
µ(X ), then we have

∑

u⊆{1,...,p}
SFCu = 1 ,

where SFCu =
∑

v⊆u(−1)|u|−|v|E

[
∥Ψ

X(v)−Ψ̄∥2
L2
h
(A)

D

]

Proof. For each a ∈ A fixed, if Ψ(a, ·) is in L2
µ(X ), we can apply the variance decomposition stated

in Equation 6.5:
Var(Ψ(a,X)) =

∑

u⊆{1,...,p}
Vu(a) , (6.13)

where
Vu(a) =

∑

v⊆u
(−1)|u|−|v|Var(ΨX(v)(a)) .

Denoting that, by definition Var(ΨX(v)(a)) = E[(ΨX(v)(a) − Ψ̄(a))2] and by using the linearity
of the expectation, we can integrate against the measure h on both sides of Equation 6.13. The
results of Lemma 4 is then obtained by division by D =

∫
AVar(Ψ(a,X))dh(a) on both sides of the

equation.
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In consequence, the aggregated Sobol’ indices can be interpreted in the same fashion as Sobol’
indices on a scalar model output. In particular, the first-order aggregated Sobol’ index SFCi cor-
responds to the averaged part of variance on the intensity measure of Ψ(.,X) due to input X(i).
The total-order aggregated Sobol’ measure the average part of variance due to all the interactions
with input X(i). For more details about extending Sobol’ indices for nonscalar output variables,
the interested reader is referred to Da Veiga et al., 2021, Section 3.3.

Now, estimators of the aggregated Sobol’ indices are proposed using also the pick-freeze
methodology.

Lemma 5. Using the same notation as in Lemma 3, we have

EX

[
∥Ψ̄−ΨX(u)∥2L2

h(A)

]
=

∫

A
Cov (ΨX(a),ΨX(u)(a)) dh(a) .

Proof. It is possible to intervert the expectation and the integral

EX

[
∥Ψ̄−ΨX(u)∥2L2

h(A)

]
=

∫

A
Var(ΨX(u)(a))dh(a) ,

it is possible to use for all a ∈ A Lemma 3 on the scalar random variable ΨX(u)(a).

Now, we only need to approximate the integral on A against the measure h to propose an esti-
mator of the first and total-order aggregated Sobol’ indices. It is possible to perform a Monte-Carlo
sampling, however this is computationally cumbersome, as we need to perform one pick-freeze
estimation per sample of the seismic intensity measure. A more economical way to approximate
the integral is by relying on numerical quadrature algorithms (e.g. Riemann sum, trapezoidal
rule, Simpson’s rule, etc.). These methods are particularly suitable to our case since A is one-
dimensional and bounded. Consider (at)1≤t≤T a regular grid of intensity measures of size T .
One can propose the following pick-freeze estimator of the first and total-order aggregated Sobol’
indices

ŜFCi,m =

T∑

t=1

〈
Ψ(at,X)Ψ(at, X̃i)

〉
m
pA(at)− ⟨Ψ(at,X)⟩m

〈
Ψ(at, X̃i)

〉
m
pA(at)

T∑

t=1

〈
Ψ(at,X)2

〉
m
pA(at)− ⟨Ψ(at,X)⟩2m pA(at)

,

T̂FCi,m = 1−

T∑

t=1

〈
Ψ(at,X)Ψ(at, X̃−i)

〉
m
pA(at)− ⟨Ψ(at,X)⟩m

〈
Ψ(at, X̃−i)

〉
m
pA(at)

T∑

t=1

〈
Ψ(at,X)2

〉
m
pA(at)− ⟨Ψ(at,X)⟩2m pA(at)

,

(6.14)

where we denote for any function f :

〈
f(X, X̃i, X̃−i)

〉
m

=
1

m

m∑

j=1

f(Xj , X̃i,j , X̃−i,j) . (6.15)



102 Chapter 6. Sensitivity analysis on seismic fragility curves using Gaussian process surrogates

6.3 Kernel-based sensitivity indices

Kernel-based methods in machine learning and statistics gain in popularity due to their ability
to simplify difficult nonlinear problems into linear problems by embedding the data points into a
Reproducing Kernel Hilbert Space (RKHS) (Schölkopf, B. Smola, et al., 2002). The main applica-
tions involve independence testing (see e.g. Gretton, Fukumizu, et al., 2007; Fukumizu, Gretton,
et al., 2007) and dimensionality reduction (see e.g. Schölkopf, A. Smola, and K.-R. Müller, 1998;
Fukumizu, Bach, and Jordan, 2004; Fukumizu, Bach, and Jordan, 2009). A first use of kernel meth-
ods for GSA purposes was proposed in Da Veiga, 2015 where the Hilbert Schmidt Independence
Criterion (HSIC) is used to propose global sensitivity indices. Global sensitivity indices based on
the Maximum Mean Discrepancy (MMD) has been proposed in Da Veiga, 2021; Barr and Rabitz,
2022 and defined with the rationale of Borgonovo, Hazen, and Plischke, 2016. These MMD-based
sensitivity indices have also the interesting property of being Sobol’ indices on the kernel embed-
ding of the output variable as shown in Da Veiga, 2021. In this section, after a brief remainder on
RKHS theory, we will define MMD-based sensitivity indices on the seismic fragility curves. Their
main advantages is their resemblance to the Sobol’ indices, allowing the same estimation methods
to be used.

6.3.1 Embedding of probability distributions in a RKHS

Let us introduce a more general definition of a RKHS H (see Chapter 5, Section 5.4) through
the notion of reproducing kernel

Definition 4. Let X be a set and H be a class of functions from X to R forming an Hilbert space with inner
product ⟨·, ·⟩H. The function k : X × X → R is called a reproducing kernel of H if

• H contains all functions of the form

∀x ∈ X , kx : t → k(x, t) .

• For every x ∈ X and f ∈ H the reproducing property holds:

f(x) = ⟨f, kx⟩H .

If such a kernel k exists, then H is called a reproducing kernel Hilbert space (RKHS).

One of the foundations of the RKHS theory is the Moore-Aronszajn theorem (Aronszajn, 1950)
which links symmetric semi positive definite kernels to RKHS.

Theorem 8 (Moore-Aronszajn theorem). Let X be a set and suppose that the function k : X × X
is symmetric positive definite. Then there is a unique Hilbert space of functions on X for which k is a
reproducing kernel

Consider now a RKHS H of functions X → R with reproducing kernel k with dot product
⟨·, ·⟩H. The kernel mean embedding mµ ∈ H of the probability distribution µ is defined as

mµ = EX∼µ[k(X, .)] =
∫

X
k(x, .)dµ(x) , (6.16)

if EX∼µ[k(X,X)] < ∞. The maximum mean discrepancy (MMD) distance between two probability
measures µ1 and µ2 on X is defined by the distance in the RKHS between their kernel mean
embeddings:

MMD(µ1, µ2) = ∥mµ1 −mµ2∥H . (6.17)
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The MMD corresponds to a distance between probability measure if the kernel k is characteristic
(i.e. the mean embedding map µ → mµ is injective). The MMD also has a practical interest as its
computation relies only on expectations (see Gretton, Borgwardt, et al., 2012).

MMD(µ1, µ2)
2 = E[k(U,U ′)] + E[k(V, V ′)]− 2E[k(U, V )] , (6.18)

where U, U ′ ∼ µ1 and V, V ′ ∼ µ2 with U,U ′, V, V ′ mutually independent. This means that on
the contrary of most of the dissimilarity measures between probability measures, the MMD is
evaluated using only expectations of the kernel. This allows for instance for Monte-Carlo approx-
imations of the MMD.

6.3.2 Maximum mean discrepancy based global sensitivity indices

A general framework for designing global sensitivity indices using a dissimilarity measure
was proposed in Da Veiga, 2015. Given a dissimilarity d(·, ·) between probability measures, de-
note by PY the marginal probability distribution of Y and by PY |X(u) the marginal probability
distribution of Y given the input parameters X(u). The sensitivity measure Sdu of the set of input
u writes

Sdu = EX(u)

[
d
(
PY ,PY |X(u)

)]
. (6.19)

Indeed, the MMD can be used as a dissimilarity d and thus defining the following unnormalized
(i.e. the sum of all the sensitivity indices is not equal to 1) sensitivity index. In fact, the MMD2

dissimilarity will be used:

SMMD ,unorm
u = EX(u)

[
MMD

(
PY ,PY |X(u)

)2]
. (6.20)

This sensitivity index is well-defined under the assumption that for all u ∈ P and PX(u)-almost all
x(u) ∈ Xu ,EU∼P

Y |X(u)=x(u)
[k(U,U)] < ∞. This sensitivity index remarkably admits an Hoeffding-

Sobol’ (or FANOVA) decomposition and thus can be thought as a kernelized version of the Sobol’
indices (see e.g. Da Veiga et al., 2021, Section 6.2.2).

Lemma 6 (Hoeffding-Sobol’ decomposition in a RKHS (Da Veiga et al., 2021)). Assume that X has
independent components. Assume further that Mercer’s theorem holds w.r.t. the probability distribution
of Y . Denote MMD2

tot = E[k(Y, Y )] − E[k(Y, Ỹ )], where Ỹ is an independent copy of Y . Then the total
MMD can be decomposed as

MMD2
tot =

∑

u∈P
MMD2

u , (6.21)

where
MMD2

u =
∑

v⊆u
(−1)|u|−|v|EX(v)

[
MMD2

(
PY ,PY |X(v)

)]
. (6.22)

Proof. First, recall the Mercer’s decomposition of a kernel k w.r.t. the probability measure PY .

k(y, y′) =
+∞∑

q=0

λqϕq(y)ϕq(y
′)

Consider now the random variable W such that W =
∑+∞

q=0 Y
[q] where Y [q] =

√
λqϕq(Y ). Note

that, since the functions ϕq are orthogonal in L2
PY

(Y) and using the absolute convergence of the



104 Chapter 6. Sensitivity analysis on seismic fragility curves using Gaussian process surrogates

series, we have

Var(W ) =

+∞∑

q=0

λq Var(ϕq(Y ))

=

+∞∑

q=0

λqE[ϕq(Y )ϕq(Y )]−
+∞∑

q=0

λqE[ϕq(Y )ϕq(Ỹ )]

= E



+∞∑

q=0

λqϕq(Y )ϕq(Y )


− E



+∞∑

q=0

λqϕq(Y )ϕq(Ỹ )




= E[k(Y, Y )]− E[k(Y, Y ′)] .

(6.23)

Remark also that, for u ∈ P

EX(u)

[
MMD2

(
PY ,PY |X(u)

)]
= EX(u) [∥mP

Y |X(u)
∥2H − ∥mPY

∥2H]
= EX(u) [EU,U ′∼P

Y |X(u)
[k(U,U ′)]]− EU,U ′∼PY

[k(U,U ′)]

= EX(u)


EU,U ′∼P

Y |X(u)



+∞∑

q=0

λqϕq(U)ϕq(U
′)






−EU,U ′∼PY



+∞∑

q=0

λqϕq(U)ϕq(U
′)


 .

(6.24)

Since the convergence of the series is absolute, we can switch the expectations and the summa-
tions.

EX(u)

[
MMD2

(
PY ,PY |X(u)

)]
=

+∞∑

q=0

λqEX(u) [EU,U ′∼P
Y |X(u)

[ϕq(U)ϕq(U
′)]]− λqEU,U ′∼PY

[ϕq(U)ϕq(U
′)]

=
+∞∑

q=0

λq Var(E[ϕq(Y )|X(u)]) .

(6.25)

Moreover, using the classical Sobol’-Hoeffding decomposition for each Y [q] =
√
λqϕq(Y ) raises

Var(W ) =

+∞∑

q=0

λq Var(ϕq(Y ))

=
+∞∑

q=0

∑

u∈P

∑

v⊆u
(−1)|u|−|v|Var(E[Y [q]|X(v)])

=
∑

u∈P

∑

v⊆u
(−1)|u|−|v|

+∞∑

q=0

λq Var(E[ϕq(Y )|X(v)]) .

(6.26)

The lemma follows by considering the two possible expansions of Var(W ).

Lemma 6 shows that the MMD-based sensitivity index generalizes the Sobol’ one in the sense
that it measures not only the variance of the conditional expectation of the output variable Y , but
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on the RKHS embedding of the output through the feature map y 7→ ∑
q≥0

√
λqϕq(y)ϕq(.). It is

now possible to define normalized MMD-based sensitivity indices

βku =
MMD2

u

MMD2
tot

, (6.27)

βku is thus the normalized MMD-based sensitivity index associated to the subset of input u. Total
MMD-based sensitivity indices are also defined in the same fashion as for the total Sobol’ indices:

βk−u =
∑

v∈P,u∩v ̸=∅
βkv = 1−

EX(−u) [MMD2(PY ,PY |X(−u))]

MMD2
tot

. (6.28)

Notice that βk−u is not equal to βkv with v = −u = ū. We have from Lemma 6 the normalization
property

∑
u∈P β

k
u = 1.

In the same spirit as the Sobol’ indices, it is possible to define pick-freeze estimator of the
MMD-based sensitivity index of the first order

β̂ki,m =
⟨k(Y, Ỹi)− k(Y, Ỹ )⟩m
⟨k(Y, Y )− k(Y, Ỹ )⟩m

, (6.29)

where Ỹi = g(X̃i) where X̃i is defined the same way as in Lemma 3. The MMD-based sensitivity
index of the total order writes

β̂k−i,m = 1− ⟨k(Y, Ỹ−i)− k(Y, Ỹ )⟩m
⟨k(Y, Y )− k(Y, Ỹ )⟩m

. (6.30)

In order to define βk indices on the seismic fragility curves, define F = {a → Ψ(a,x),x ∈ X}
the space of all possible fragility curves given the variability of the mechanical parameters x. We
thus have to define a positive definite kernel on F × F , (Ψ1,Ψ2) → kF (Ψ1,Ψ2) for Ψ1,Ψ2 ∈ F .
According to Ferraty and Vieu, 2006, let ∆(·, ·) be a semi-metric (i.e. it satisfies the axioms of the
metric but not necessarily the triangle inequality) defined on the functional space F ×F , a kernel
associated to F can be defined as kF (Ψ1,Ψ2) = k(∆(Ψ1,Ψ2)) where k is acting on R. For the sake
of notations simplicity, the kernel acting on the functional space F will be denoted by k. For our
application, we will choose the so-called Gaussian kernel with squared L2 norm:

k(Ψ1,Ψ2) = exp

(
−
∥Ψ1 −Ψ2∥2L2

h(A)

2ℓ2

)
, (6.31)

where ℓ is a hyperparameter of the kernel. We will choose ℓ as the variance of the seismic fragility
curve in L2 norm:

2ℓ2 = E
[
∥ΨX −ΨX̃∥2L2

h(A)

]
,

where X and X̃ are two independent random vectors with same probability distribution.
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6.4 Kriging-based global sensitivity indices estimation

6.4.1 Posterior distribution of the global sensitivity indices

In this section, we will present an approach inspired from Le Gratiet, 2013 to perform global
sensitivity indices estimation on seismic fragility curves using a kriging surrogate model. Indeed,
a first natural approach is to plug the fragility curve estimator Ψ(1) into the pick-freeze estimator
of the aggregated Sobol’ indices (or MMD-based sensitivity indices). Given (at)1≤t≤T a regular
grid of intensity measure of size T , we propose the following plug-in estimator of the Sobol’ and
MMD-based sensitivity indices:

ŜFCi,m,n =

T∑

t=1

〈
Ψ(1)(at,X)Ψ(1)(at, X̃i)

〉
m
pA(at)−

〈
Ψ(1)(at,X)

〉
m

〈
Ψ(1)(at, X̃i)

〉
m
pA(at)

T∑

t=1

〈
Ψ(1)(at,X)2

〉
m
pA(at)−

〈
Ψ(1)(at,X)

〉2
m
pA(at)

,

T̂FCi,m,n = 1−

T∑

t=1

〈
Ψ(1)(at,X)Ψ(1)(at, X̃−i)

〉
m
pA(at)−

〈
Ψ(1)(at,X)

〉
m

〈
Ψ(1)(at, X̃−i)

〉
m
pA(at)

T∑

t=1

〈
Ψ(1)(at,X)2

〉
m
pA(at)−

〈
Ψ(1)(at,X)

〉2
m
pA(at)

,

(6.32)

β̂ki,m =

〈
k
(
Ψ(1)(·,X),Ψ(1)(·, X̃i)

)
− k

(
Ψ(1)(·,X),Ψ(1)(·, X̃)

)〉
m〈

k
(
Ψ(1)(·,X),Ψ(1)(·,X)

)
− k

(
Ψ(1)(·,X),Ψ(1)(·, X̃)

)〉
m

,

β̂k−i,m = 1−

〈
k
(
Ψ(1)(·,X),Ψ(1)(·, X̃−i)

)
− k

(
Ψ(1)(·,X),Ψ(1)(·, X̃)

)〉
m〈

k
(
Ψ(1)(·,X),Ψ(1)(·,X)

)
− k

(
Ψ(1)(·,X),Ψ(1)(·, X̃)

)〉
m

,

(6.33)

where Ψ(1) is the seismic fragility curve estimator using a GP surrogate defined in Chapter 5,
Section 5.5.

However, given the Bayesian interpretation of the GP regression framework (see Chapter 5,
Section 5.3.4), it is of particular interest to study the posterior distribution of the sensitivity in-
dices by considering the posterior distribution of the seismic fragility curve Ψ(2) (see Chapter 5,
Section 5.5), itself obtained using the posterior distribution of the kriging surrogate. In practice,
the posterior distribution of the sensitivity indices is obtained using Q realizations (Ψ(2)

q )1≤q≤Q of
the seismic fragility curve, this raises the following estimators:
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S̃FCi,m,n,q =

T∑

t=1

〈
Ψ(2)
q (at,X)Ψ(2)

q (at, X̃i)
〉
m
pA(at)−

〈
Ψ(2)
q (at,X)

〉
m

〈
Ψ(2)
q (at, X̃i)

〉
m
pA(at)

T∑

t=1

〈
Ψ(2)
q (at,X)2

〉
m
pA(at)−

〈
Ψ(2)
q (at,X)

〉2
m
pA(at)

,

T̃FCi,m,n,q = 1−

T∑

t=1

〈
Ψ(2)
q (at,X)Ψ(2)

q (at, X̃−i)
〉
m
pA(at)−

〈
Ψ(2)
q (at,X)

〉
m

〈
Ψ(2)
q (at, X̃−i)

〉
m
pA(at)

T∑

t=1

〈
Ψ(2)
q (at,X)2

〉
m
pA(at)−

〈
Ψ(2)
q (at,X)

〉2
m
pA(at)

.

(6.34)

β̃ki,q =

〈
k
(
Ψ(2)
q (·,X),Ψ(2)

q (·, X̃i)
)
− k

(
Ψ(2)
q (·,X),Ψ(2)

q (·, X̃)
)〉

m〈
k
(
Ψ(2)
q (·,X),Ψ(2)

q (·,X)
)
− k

(
Ψ(2)
q (·,X),Ψ(2)

q (·, X̃)
)〉

m

,

β̃k−i,q = 1−

〈
k
(
Ψ(2)
q (·,X),Ψ(2)

q (·, X̃−i)
)
− k

(
Ψ(2)
q (·,X),Ψ(2)

q (·, X̃)
)〉

m〈
k
(
Ψ(2)
q (·,X),Ψ(2)

q (·,X)
)
− k

(
Ψ(2)
q (·,X),Ψ(2)

q (·, X̃)
)〉

m

.

(6.35)

Moreover, in order to take into account the uncertainty of the Monte-Carlo estimation of the
Sobol’ indices, we draw, for b = 1, . . . , B, the random variables (ub(j))1≤j≤m with equiprobabil-
ity and with replacement in {1, . . . ,m} and replace the pick-freeze Monte-Carlo sampling dataset
(Xj , X̃i,j , X̃−i,j)1≤j≤m by (Xub(j), X̃i,ub(j), X̃−i,ub(j))1≤j≤m. We thus obtain a sample of size Q× B

of aggregated Sobol’ indices (S̃FCi,m,n,q,b)1≤q≤Q,
1≤b≤B

. This sample allows us to quantify the uncertainty

of SFCi coming from the kriging metamodel uncertainty and the pick-freeze Monte-Carlo uncer-
tainty. The posterior distribution estimation of SFCi is presented in Algorithm 4. The same pro-
cedure can be applied to the total order aggregated Sobol’ index and the MMD-based sensitivity
indices. We can also estimate the part of variance of SFCi coming from the Monte-Carlo approxi-
mation and the part related to the kriging metamodel uncertainty. The part of variance related to
the metamodeling writes:

σ̂2Gn
(S̃FCi,m,n) =

1

B

B∑

b=1

1

Q− 1

Q∑

q=1

(
S̃FCi,m,n,q,b −

〈
S̃FCi,m,n,b

〉
Q

)2
, (6.36)

where
〈
S̃FCi,m,n,b

〉
Q

= 1
Q

Q∑
q=1

S̃FCi,m,n,q,b. Furthermore, it is also possible to evaluate the part of the

variance due to Monte-Carlo approximation of the aggregated Sobol’ indices:

σ̂2MCm
(S̃FCi,m,n) =

1

Q

Q∑

q=1

1

B − 1

B∑

b=1

(
S̃FCi,m,n,q,b −

〈
S̃FCi,m,n,q

〉
B

)2
, (6.37)
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where
〈
S̃FCi,m,n,q

〉
B

= 1
B

B∑
b=1

S̃FCi,m,n,q,b. Again, this computation is feasible for the MMD-based sen-

sitivity indices as well. Following Le Gratiet, 2013, we can use these two variances as a rationale
for choosing the number of Monte Carlo samples m and the number of mechanical simulations
of the structure n. Indeed, when σ̂2MCm

(S̃FCi,m,n) ≈ σ̂2Gn
(S̃FCi,m,n) the Monte Carlo and the kriging

metamodel errors have contributions of the same order into the estimation error of the aggregated
Sobol’ indices. Remark that these variances are defined for each input parameter and each order
of the aggregated Sobol’ indices. A compromise has to be made for choosing which order and
input parameter the engineer must consider.

Algorithm 4 Estimation of the posterior distribution of SFCi

1. Compute the posterior distribution (G|Dn) using Equation 5.20

2. Generate using Monte-Carlo the samples (Xj , X̃i,j)1≤j≤m with respect to the probability
measure PX

3. Set Q the number of realizations of the GP posterior distribution and B the number of boot-
strap samples

4. For 1 ≤ q ≤ Q

(a) Sample Gn,q(D) where D = (at,Xj)1≤t≤T,1≤j≤m ∪ (at, X̃i,j)1≤t≤T,1≤j≤m.

(b) For 1 ≤ b ≤ B

i. Sample with replacement in {1, . . . ,m} the bootstrap indices (ub(j))1≤j≤m and then
define the bootstrap sample Db = (at,Xub(j))1≤t≤T,1≤j≤m∪(at, X̃i,ub(j))1≤t≤T,1≤j≤m

ii. Compute S̃FCi,m,n,q using Gn,q(Db)
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6.4.2 Sampling realizations of Gaussian process posterior distribution on large sam-
ples of evaluation points

The previous section provides a methodology to estimate the posterior distribution of global
sensitivity indices using the posterior distribution of a kriging surrogate. Nevertheless, the size
of the sample needed is 2mT for the Sobol’ indices and 3mT for the MMD-based indices. In our
applications, the sample size of the evaluation set where to sample realizations of the GP surrogate
is thus close to 106, which makes the use of the Cholesky method computationally intractable. We
will thus use the technique of kriging conditioning coupled with Nyström approximation of a
GP (see Chapter 5, Section 5.4.2). We have for that matter the following lemma (see Chilès and
Delfiner, 2012, Section 7.3, Le Gratiet, 2013, Section 6.4.3) adapted to the heteroskedastic noisy
case.

Lemma 7. (Sampling Gaussian process posterior distribution by kriging conditioning) Consider a learning
sample Dn = (xi, y(xi))1≤i≤n and the following GP regression model:

Y (x) = G(x) + ε(x) ,

where ε(x) ∼ N (0, σε(x)
2), G is a zero-mean GP with covariance function Σ. Denote the following

Gaussian process:
G̃n(x) = mn(x)− m̃n(x) +G(x) , (6.38)

where mn(x) is the predictive mean of Gn (5.20), m̃n is the predictive mean of the GP Gn where the
output observations vector yn is replaced by a virtual output observations vector ỹn sampled from the
unconditionned GP Y :

m̃n(x) = cn(x)
T (Σn +∆n)

−1ỹn , (6.39)

where ∆n is the diagonal matrix built from the (σε(xi)
2)1≤i≤n. Then, we have the following equality in

distribution between the two Gaussian processes

G̃n
L
= Gn ,

where Gn ∼ (G|Dn).

Proof. The proof consists in proving that the Gaussian process G̃n such that

G̃n(x) = mn(x)− m̃n(x) +G(x)

has the same mean and covariance function as the Gaussian process Gn ∼ (G|Dn). Remark that

E[G̃n(x)] = mn(x)− c(x)T (Σn +∆n)
−1E[ỹn] + E[G(x)]

= mn(x) ,
(6.40)

since E[ỹn] = 0Rn and E[G(x)] = 0. The mean of G̃n(x) is equal to the one of Gn(x) for all x. Now,
we have to check that the covariance function of G̃n is equal to the covariance function of G(x) for
all x,x′ ∈ X . By bilinearity of the covariance we have

Cov(G̃n(x), G̃n(x
′)) = Cov(m̃n(x), m̃n(x

′))− 2Cov(G(x), m̃n(x
′)) + Cov(G(x), G(x′)) .

First, we have the equality
Cov(G(x), G(x′)) = Σ(x,x′) .
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Second, we have

Cov(m̃n(x), m̃n(x
′)) = cn(x)

T (Σn +∆n)
−1Cov(ỹn, ỹn)(Σn +∆n)

−1cn(x
′)

= cn(x)
T (Σn +∆n)

−1cn(x
′) ,

(6.41)

since Cov(ỹn, ỹn) = Σn +∆n. Third, we have

Cov(G(x), m̃n(x
′)) = c(x′)T (Σn +∆n)

−1Cov(G(x), ỹn)

= cn(x
′)T (Σn +∆n)

−1cn(x) ,
(6.42)

since, for 1 ≤ i ≤ n ,Cov(G(x), G(xi) + ε(xi)) = Σ(x,xi). Finally, we obtain

Cov(G̃n(x), G̃n(x
′)) = Σ(x,x′)− cn(x)

T (Σn +∆n)
−1cn(x

′) ,

which is exactly the covariance obtained from the kriging equations (5.20). G̃n and Gn have thus
the same probability distribution.

The main trick of Lemma 7 is to sample a GP G̃n conditioned by the observed data in Dn

by sampling an unconditioned GP G with the same prior covariance function. Coupled with the
Nyström approximation ofG (see Chapter 5, Section 5.4.2), sampling GP realizations from an eval-
uation sample composed of Q datapoints have a computational complexity of O(Q) compared to
O(Q3) with the Cholesky method. Indeed, a main advantage of the Nyström approximation is
the possibility to add new points in the evaluation set without having to recompute the decom-
position of the eigensystem. Thus, it becomes computationally tractable to estimate the posterior
distribution of the Sobol’ indices and the MMD-based indices as presented in Section 6.4.1.

6.5 Sensitivity analysis on a single d.o.f. oscillator with nonlinear restor-
ing force

In this section, we apply the methodology of sensitivity described in this Chapter to the sin-
gle d.o.f. nonlinear oscillator presented in Chapter 5, Section 5.6. The probability distribution on
the several mechanical parameters is described in Table 5.2. A homoskedastic Gaussian process
is fitted using a learning sample of n = 250 mechanical simulations. A Monte-Carlo sample of
size m = 2.104 from the probability distribution of the mechanical parameters is used to perform
the pick-freeze estimation of the aggregated Sobol’ indices. Q = 200 realizations of the Gaussian
process posterior distribution andB = 150 bootstrap redraws have been carried out to assess both
the metamodeling and the Monte-Carlo uncertainty on the Sobol’ indices estimate. The eigensys-
tem of the prior GP is approximated with Nyström method using a dataset of size 100, we keep
88 eigenvalues in order to retrieve more than 90% of the GP variance. We estimate the aggregated
Sobol indices for the seismic fragility curve with failure threshold of C = 1.3mzd , correspond-
ing roughly to a 80%-level quantile evaluated on the whole simulation dataset of 106 mechanical
simulations. The measure h on A for the aggregated Sobol indices is chosen as the uniform distri-
bution on peak ground acceleration (PGA) superior to 1 m/s2 and inferior to 10 m/s2 in order to
focus the transition area between small and high probability of failure.

Figure 6.1 illustrates the results of the aggregated Sobol’ indices. Remark that the stiffness k
and the mass m have almost the same interquantile ranges and are the most influential variables
on the seismic fragility curves. Indeed, the mechanical oscillator is driven by the natural pulsation
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ω0 =
√
k/m, since the coefficients of variation of k and m are the same, the first-order Sobol’ in-

dices of k andm for the scalar output ω0 is almost 0.5. Hence, the variables k andm have the same
influence on the natural pulsation ω0. We can then expect the same values of sensitivity indices
for the input variables k and m.
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FIGURE 6.1: Aggregated Sobol’ first and total order indices for a failure threshold
C = 1.3mzd . The solid lines represent the interquantile ranges between the 10% and
90% quantiles for both the Monte-Carlo and the homoskedastic Gaussian process
surrogate uncertainty.

The same parameters for Monte-Carlo pick-freeze estimation, the bootstrap procedures and
the GP surrogate uncertainty are kept for the estimation of the MMD-based sensitivity indices.
Figure 6.2 illustrates the results of the estimation of the MMD-based sensitivity indices. First, re-
mark that the ranking of input remains the same as for the one obtained for the aggregated Sobol’
indices. Moreover, we can remark that the total-order MMD-based sensitivity indices take larger
values than the first order indices whereas the aggregated Sobol’ indices of first and total order
have very close values. Thus, the aggregated Sobol’ indices do not detect interactions between
the input parameters on the contrary of the MMD-based sensitivity indices. However, the MMD-
based sensitivity indices suffer from a lack of interpretability and the choice of the kernel (or the
choice of the lengthscale ℓ in the case of the Gaussian kernel) is still an open question for sensitiv-
ity analysis purposes (Barr and Rabitz, 2022). The output space being the space of fragility curves,
it is unsure if Mercer’s theorem holds in this case and thus Lemma 6 could possibly not be used in
this context. However, the MMD-based sensitivity indices still have a practical interest and some
properties still hold without the Mercer’s theorem as shown in Barr and Rabitz, 2022.
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FIGURE 6.2: First and total order MMD-based sensitivity indices for a failure thresh-
old C = 1.3 mzd . The solid lines represent the interquantile range between the 10%
and 90% quantiles for both the Monte-Carlo and the homoskedastic Gaussian pro-
cess surrogate uncertainty.
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6.6 Synthesis and conclusion

In this chapter, the main principles of sensitivity analysis have been recalled. We propose a
sensitivity analysis study adapted to seismic fragility curves, by extending the classical sensitivity
analysis framework based on scalar output to functional output. After reviewing the main prop-
erties of the variance-based sensitivity indices - the Sobol’ indices - we choose for our sensitivity
analysis study the aggregated Sobol’ indices, introduced in Iooss and Le Gratiet, 2019. Since the
Sobol’-Hoeffding decomposition still holds for the aggregated Sobol’ indices, this is a natural ex-
tension of the Sobol’ indices to functional output. Moreover, the use of kernel methods for GSA
purposes is adapted to our goal of sensitivity analysis of seismic fragility curves. We use for our
study a global sensitivity index based on the maximum mean discrepancy (MMD) (see e.g. Da
Veiga, 2021; Barr and Rabitz, 2022). Its main advantage is its ability to deal with complex type
of data such as functional ones while staying easy to estimate thanks to the pick-freeze Monte-
Carlo principle. Finally, we take into account the Gaussian process surrogate uncertainty in the
estimation of the sensitivity indices, the posterior distribution of the Gaussian process surrogate
being propagated into the sensitivity indices estimate. For that matter one needs to sample Gaus-
sian process realizations on very large evaluation sample. Since this is not tractable with classical
Cholesky decomposition, one has to rely on more advanced methods based on kriging condition-
ing and Nyström approximation. The sensitivity analysis framework developed in this chapter is
then applied to a single d.o.f. oscillator with nonlinear restoring force with its mechanical param-
eters considered tainted by epistemic uncertainties.
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CHAPTER7
Bayesian sequential design of experiments
for seismic fragility curves estimation

J’avais déjà décidé de poursuivre mes
recherches, car il me semblait, dans mon
innocence, que l’incertitude était pire que
tout, même si la vérité était terrible.

H.P. Lovecraft, L’appel de Cthulhu
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7.1 Introduction

Since Chapter 4, we consider that the learning sample Dn = (ai,xi, yi)1≤i≤n is given and used
to estimate the seismic fragility curves. However - when it is possible - the choice of the design of
experiments (DoE) can improve greatly the accuracy of the estimation of the quantity of interest
(QoI) while controlling the learning sample size n, as first shown in Chapter 3. In UQ studies, it
is usually possible to control the input parameters of the computer model and thus various DoE
algorithms and methods have been developed in this domain. DoE algorithms are conceived for
two separate objectives :
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1. One may seek to minimize the number of simulations n while keeping a target estimation
accuracy;

2. One can fix a simulation budget n and build a DoE to maximize the estimation accuracy of
the QoI for this simulation budget.

DoE can be model-free, these kinds of DoE are commonly coined space-filling design, since they
only rely on geometrical properties of the design in the input space. A review about space-filling
design is to be found in Pronzato and W. G. Müller, 2012. DoE can also be model-oriented in the
case of parametric estimation: they rely on optimality criteria based on functionals of the Fisher
information matrix of the parameters estimator (see e.g. Pronzato and Pazman, 2013, Chapter 5).
Moreover, DoE can also be seen with a Bayesian eye. These Bayesian DoE procedures boil down
to optimizing an expected utility function depending on the design (see Chaloner and Verdinelli,
1995).

Introduced by Villemonteix, Vazquez, and Walter, 2009; Vazquez and Bect, 2009, the stepwise
uncertainty reduction (SUR) strategies are sequential design of experiments procedures based on
the Bayesian nature of Gaussian processes. These algorithms aim at maximizing the estimation
accuracy of the QoI for a given simulation budget n, this objective seems particularly adapted in
our case. Indeed, the main advantage of SUR strategies are their flexibility to any QoI one can
consider. For instance, SUR procedures have been developed for conservative estimation of ex-
cursion sets of the input space X in Azzimonti et al., 2016, quantile estimation in Labopin-Richard
and Picheny, 2016 and probability of failure estimation in Bect, Ginsbourger, et al., 2012. SUR
strategies in a multi-fidelity setting has been studied in Stroh, 2018. SUR strategies can be also
used for optimization of expensive black-box functions as shown in Villemonteix, Vazquez, and
Walter, 2009. A theoretical work about the convergence of SUR strategies is also proposed in Bect,
Bachoc, and Ginsbourger, 2019.

We propose in this chapter a SUR strategy adapted to estimations of seismic fragility curves
with a Gaussian process surrogate. The proposed SUR strategy is then applied to estimation of
seismic fragility curve on a single d.o.f. oscillator with nonlinear restoring force. This chapter
is organized as follows: First, we present the Bayesian decision-theoretic framework of the SUR
strategy in Section 7.2, adapted to stochastic computer models. Second, we develop a SUR strategy
for the estimation of seismic fragility curves in Section 7.3. Finally, the proposed DoE procedure
is illustrated on a single d.o.f. oscillator in Section 7.4. The SUR strategy developed in this chapter
will also be applied to an industrial test case in Chapter 8.

7.2 Bayesian decision-theoretic framework

7.2.1 Problem statement and Bayes risk

Let us consider the following nonparametric regression model for x ∈ X ⊂ Rp:

y(x) = g(x) + ε , (7.1)

where ε ∼ N (0, σε(x)
2) is a heteroskedastic Gaussian noise. This statistical model corresponds to

the stochastic mechanical computer model usually considered in this manuscript. Our objective
in this section is to estimate the function w(x; g) defined as:

w(x; g) = Eε[f(y(x))] = Eε[f(g(x) + ε)] , (7.2)
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where f is a measurable and integrable function. Define In = (Xi, y(Xi))1≤i≤n, we will consider
the following class Sn of admissible design strategies with a simulation budget of size n

Sn = {Xn ∈ X n/ ∀k ∈ {1, . . . , n},Xk is σ(Ik−1)− measurable} , (7.3)

where σ(I0) is the trivial σ-algebra {∅,Ω} (X1 being deterministic). This class of designs corre-
sponds to sequential non-randomized designs, the input X1 is determined prior to any observa-
tions of the output y and at any step k, the input Xk is chosen by using the information given in
previous observations Ik−1. Given a design Xn = (xi)1≤i≤n with corresponding observed values
(y(xi))1≤i≤n, one can build an estimator ŵn of w. According to the Bayesian principles, one has to
define a loss function ℓ between ŵn and w to measure the quality of the experimental design Xn.
The approximation error e(Xn; g) is thus defined by

e(Xn; g) = ℓ(w, ŵn) .

An example of common loss function is the squared L2 norm w.r.t. a probability measure µ on X

ℓ(w, ŵn) = ∥w − ŵn∥2L2
µ(X ) .

Again according to Bayesian principles, we will consider now a Gaussian process prior distribu-
tion on the regression function g. Consider the Gaussian process G defined on the probability
space (Ω,B,P0). The statistical model defined in Equation 7.1 now becomes

Y (x) = G(x) + ε . (7.4)

The Bayes risk of the estimator ŵn is defined by:

rB = min
Xn∈Sn

EP0 [e(Xn, G)] . (7.5)

The optimal design X∗
n is the one minimizing the Bayes risk:

X∗
n = argmin

Xn∈Sn

EP0 [e(Xn, G)] . (7.6)

From a Bayesian viewpoint, the Gaussian process G represents our initial uncertain knowledge
about the regression function g. The optimal design can be seen as the one minimizing the loss
averaged on our prior knowledge on the function g.

7.2.2 j-step lookahead strategies and SUR criterion

Denote by Fn the σ-algebra generated by (xi, Y (xi))1≤i≤n (F0 being the trivial σ-algebra). Ac-
cording to Bect, Ginsbourger, et al., 2012, the optimal design X∗

n can be determined using back-
ward recursion: Denote the terminal risk

Rn = EP0 [e(Xn, G)|Fn] ,

and define by backward induction for 0 ≤ k ≤ n− 1

Rk = min
x∈X

EP0 [Rk+1|Xk+1 = x,Fk] . (7.7)

Remark that EP0 [Rk+1|Xk+1 = x,Fk] is an expectation w.r.t. the random variable Yk(x) following
the posterior distribution (Y (x)|Fk). Then, we have R0 = rB and the experimental design X∗

n
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defined by
x∗
k+1 = argmin

x∈X
EP0 [Rk+1|Xk+1 = x,Fk] , (7.8)

is optimal in the sense of Equation 7.6. It is critical to remark that the state space (X × R)k of the
optimization problem at step k is of dimension k(p + 1). As a consequence, a direct attempt to
obtain the optimal design using Equation 7.8 will be computationally untractable for a simulation
budget n more than a few dozen. A possible solution is to relax the optimization problem defined
in 7.8 in order to obtain computationally tractable experimental design. Using Equation 7.8, the
optimal design can be rewritten as follows

x∗
k+1 = argmin

x∈X
Ek[min

Xk+2

Ek+1 . . .min
Xn

En−1Rn|Xk+1 = x] , (7.9)

where Ek = EP0 [.|Fk]. A general way to relax the optimization problem is to truncate the expan-
sion after j terms. The resulting strategy

xk+1 = argmin
x∈X

Ek[min
Xk+2

Ek+1 . . . min
Xmin(n,k+j)

Emin(n,k+j)−1Rn|Xk+1 = x] , (7.10)

is coined a j-step lookahead strategy. Note also that the optimal and the j-lookahead strategies boil
down to define a sampling criterion Jk(x) which is Fk-measurable such that

xk+1 = argmin
x∈X

Jk(x) . (7.11)

SUR strategies consist in defining Jk as a 1-step lookahead strategy. The SUR criterion Jk then
boils down to

Jk(x) = EP0 [e(Xk+1, G)|Xk+1 = x,Fk] . (7.12)

In order to better interpret the SUR criterion, recall the definition of the approximation error
e(Xk+1, G) in terms of loss function:

Jk(x) = EP0 [ℓ(w(. ;G), ŵk+1)|Xk+1 = x,Fk] . (7.13)

The SUR criterion is thus the loss between the QoI w and its estimator ŵk+1 at step k+1 computed
using a virtual observation sampled from the distribution (Y (x)|Fk), averaged over the posterior
distribution of the observations (Y (x)|Fk). The SUR design XSUR

n = (xSUR
i )1≤i≤n is then defined

for 1 ≤ k ≤ n− 1 by
xSUR
k+1 = argmin

x∈X
Jk(x) . (7.14)

7.3 SUR strategy for seismic fragility curve estimation

After introducing the main theoretical tools to construct SUR designs in Section 7.2, the goal
of this section is to propose a SUR strategy for the estimation of seismic fragility curve.

7.3.1 Definition of the SUR criterion for seismic fragility curve estimation

We have detailed in Chapter 5, Section 5.5 how to estimate a seismic fragility curve using a
Gaussian process surrogate. Consider the following statistical model

y(a,x) = g(a,x) + ε , (7.15)
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with (a,x) ∈ R×Rp where a is the seismic intensity measure and x is the vector of mechanical pa-
rameters of the structure considered, ε ∼ N (0, σε(a,x)

2) is a Gaussian noise. y(a,x) = log(z(a,x))
is the log engineering demand parameter of the structure. The seismic fragility curve for a failure
threshold C then writes:

Ψ(a,x; g) = Φ

(
g(a,x)− log(C)

σε(a,x)

)
, (7.16)

where Φ is the c.d.f. of the standard Gaussian distribution. Again referring to Chapter 5, Section
5.5, we model the uncertainty on the regression function g by a Gaussian process prior G. Define
Fn the σ-algebra of the observations (Ai,Xi, y(Ai,Xi))1≤i≤n. Thanks to the kriging equations,
we have the following posterior distribution (G(a,x)|Fn) ∼ N (mn(a,x), sn(a,x)

2) for the GP
surrogate. Then, we can propose the posterior mean as a Bayesian estimator of the seismic fragility
curve

Ψ̂n(a,x) = EP0 [Ψ(a,x;G)|Fn]

= Φ

(
mn(a,x)− log(C)

σn(a,x)

)
,

(7.17)

where σn(a,x)2 = sn(a,x)
2 + σε(a,x)

2. A natural loss function in this setup is the squared L2 loss
for a probability measure η such that η = h⊗ PX:

ℓ(Ψ, Ψ̂n) =∥Ψ− Ψ̂n∥2Lη(A×X ) , (7.18)

where h is a probability measure on the seismic intensity measure (not necessary the probability
measure of observed data) and PX the probability on the mechanical parameters of the structure.
Following the principles of SUR strategy detailed in Section 7.2, the SUR criterion in this case
writes

Jk(a,x) = EP0 [∥Ψ− Ψ̂k+1∥2Lη(A×X )|Ak+1 = a,Xk+1 = x,Fk]

= EP0

[∫

A×X

(
Ψ(α,u;G)− Ψ̂k+1(α,u)

)2
dh(α)dPX(u)

∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
.

(7.19)

The SUR strategy (aSUR
i ,xSUR

i )1≤i≤n for seismic fragility curves estimation then verifies the fol-
lowing optimization problem

aSUR
k+1 ,x

SUR
k+1 = argmin

a,x∈A×X
Jk(a,x) , (7.20)

7.3.2 Practical implementation of the SUR strategy

We will derive in this section the quadrature methods used to compute numerically the SUR
criterion defined in Equation 7.19. First, we will rewrite the SUR criterion thanks to the following
Lemma

Lemma 8. The following equality holds

Jk(a,x) =

∫

A×X
EP0 [Ψ(α,u;G)2|Fk]− EP0 [Ψ̂k+1(α,u)

2|Ak+1 = a,Xk+1 = x,Fk]dh(α)dPX(u)
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Proof. Given that we have σ(Ak+1,Xk+1,Fk) ⊂ Fk+1 and using the property of the conditional
expectation we have:

Jk(a,x) =

∫

A×X
EP0

[
EP0

[(
Ψ(α,u;G)− Ψ̂k+1(α,u)

)2 ∣∣∣Fk+1

] ∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
dh(α)dPx(u) .

Since Ψ̂k+1 is the posterior mean w.r.t. the posterior distribution (G|Fk+1), we have

Jk(a,x) =

∫

A×X
EP0

[
EP0

[
Ψ(α,u;G)2 − Ψ̂k+1(α,u)

2
∣∣∣Fk+1

] ∣∣∣Ak+1 = a,Xk+1 = x,Fk
]
dh(α)dPx(u) .

By splitting the difference, we obtain the result of the Lemma.

Lemma 8 has a practical interest: it allows to compute the SUR sampling criterion only using
a simple Monte-Carlo loop. We will now derive the explicit expression of the two conditional
expectations inside the integrand. First, we have

EP0 [Ψ(α,u;G)2|Fk] = EZ∼N (mk(α,u),sk(α,u)2)

[
Φ

(
Z − log(C)

σε(α,u)

)2
]
. (7.21)

Second, we have

EP0 [Ψ̂k+1(α,u)
2|Ak+1 = a,Xk+1 = x,Fk] = EZ∼N (mk(a,x),σk(a,x)2)

[
Φ

(
mk+1(α,u;Z)− log(C)

σk+1(α,u; a,x)

)2
]
,

(7.22)
where mk+1(α,u;Z) and σk+1(α,u; a,x) denote respectively the posterior mean and standard de-
viation at point (α,u) of the GP conditional on the observations at step k and on the virtual ob-
servation Z at point (a,x). For fast computation of the two expectations, we use Gauss-Hermite
quadrature (Steen, Byrne, and Gelbard, 1969): Given (uq)1≤q≤Q the roots of the Hermite polyno-
mial HQ(x) such that

HQ(x) = (−1)Qex
2 dQ

dxQ
e−x

2
,

with their associate weights (ωq)1≤q≤Q given by

ωq =
2Q−1Q!

√
π

Q2|HQ−1(uq)|2
.

Then, we can provide the following approximation

EZ∼N (µ,σ2)[f(Z)] ≈
1√
π

Q∑

q=1

ωqf(zq) , (7.23)

where f is a measurable function and zq = µ+
√
2σuq. The integral against the measure η = h⊗PX

is approximated using a Monte-Carlo sample (αi,ui)1≤i≤N .
The last difficulty to tackle in order to put in practice the proposed SUR strategy is the reso-

lution of the optimization problem defined in Equation 7.14. The heuristic method proposed in
Bect, Ginsbourger, et al., 2012 is to replace the continuous optimization space A×X by a discrete
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one composed of M candidate points (a′j ,x
′
j)1≤j≤M . The optimization problem then simplifies to

j∗ = argmin
1≤j≤M

Jk(a
′
j ,x

′
j)

aSUR
k+1 ,x

SUR
k+1 = a′j∗ ,x

′
j∗ .

(7.24)

Algorithm 5 sums the main results of this section and describes the practical implementation of
a SUR strategy for seismic fragility curves estimation. Remark that the result of Lemma 8 has
a computational interest. Indeed, the first expectation can be computed outside the loop on the
candidate points, allowing for a better computation time.

Algorithm 5 SUR strategy for seismic fragility curve estimation
Requirements

1. A set of observations (ai,xi, y(ai,xi))1≤i≤k

2. A sample of candidate points (a′i,x
′
i)1≤i≤M

3. A Monte-Carlo sample (αi,ui)1≤i≤N

4. Gauss-Hermite quadrature points (uq)1≤q≤Q and their associated weights (ωq)1≤q≤Q

Procedure:

1. Compute the kriging mean predictionmk(αi,ui) and variance sk(αi,ui)2 (see Equation 5.20)
for each datapoint in the Monte-Carlo sample

2. Compute zk,q(αi,ui) = mk(αi,ui) +
√
2sk(αi,ui)uq for 1 ≤ q ≤ Q

3. Compute

Jk,1 =
1

N
√
π

N∑

i=1

Q∑

q=1

Φ

(
zk,q(αi,ui)− log(C)

σε(αi,ui)

)2

4. For each candidate point (a′j ,x
′
j)

(a) Compute z̃k,q(a′j ,x
′
j) = mk(a

′
j ,x

′
j) +

√
2σk(a

′
j ,x

′
j)uq

(b) Compute

Jk,2(a
′
j ,x

′
j) =

1

N
√
π

N∑

i=1

Q∑

q=1

Φ

(
mk+1(αi,ui; z̃k,q(a

′
j ,x

′
j))− log(C)

σk+1(αi,ui; a
′
j ,x

′
j)

)2

(c) Compute the SUR criterion Jk(a′j ,x
′
j) = Jk,1 − Jk,2(a

′
j ,x

′
j)

5. Find j∗ = argminj Jk(a
′
j ,x

′
j) and set aSUR

k+1 ,x
SUR
k+1 = a′j∗ ,x

′
j∗
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7.4 Estimation of seismic fragility curve of a single d.o.f. oscillator us-
ing a SUR strategy

In this section, we apply the SUR strategy developed in this chapter to the single d.o.f. non-
linear oscillator presented in Chapter 5, Section 5.6 and Chapter 6, Section 6.5. The probability
distribution of the different mechanical parameters is described in Table 5.2. We propose a ho-
moskedastic GP surrogate with a zero mean function and a Matérn 5/2 tensorized covariance
function. In this case, we will only fit the surrogate on the subset of variables (PGA, k,m). In-
deed, the proposed SUR strategy requires many candidate points and this number increases ex-
ponentially with the dimension. We thus select the most influential variables for building the GP
surrogate. Remark also that in SUR strategies, the hyperparameters estimation as well as their
uncertainties are not taken into account. By consequence, we take a homoskedastic noise in order
to reduce the number of hyperparameters.

The failure threshold considered in this section is C = 2.1mzd , this corresponds roughly to
the 90% quantile of the output variable for the whole dataset of 105 mechanical simulations. The
performance of the proposed SUR strategy is evaluated by comparing the bias bn of the estimator
Ψ̂n to a reference fragility curve Ψref estimated by kernel ridge regression with Gaussian kernel
on a dataset of 104 mechanical simulations.

bn =

∫

A×X
(Ψ̂n(α,u)−Ψref(α,u))

2dh(α)dPx(u) . (7.25)

Moreover, the performance is also assessed with the loss ℓ defined in Equation 7.18. For this ap-
plication, we choose for the measure h the uniform distribution on the segment [a0, a1] where
a0 = 1 m/s2 and a1 = 20 m/s2. This choice allows targeting evenly the transition between low
and high probabilities of failures. The SUR procedure starts by choosing 10 synthetic seismic
ground motions in the whole dataset in a stratified manner, by dividing the full dataset into 10
sets of equal size using the (j/10)1≤j≤9-level quantiles of the PGA. The mechanical parameters x
are sampled at random w.r.t. the probability distribution PX. They are the first points of the design
set and are used to optimize the Gaussian process hyperparameters (including σε). After that, a
set of candidate points (a′j ,X

′
j)1≤j≤ M (M = 1000) are chosen at random in the whole dataset of

105 synthetic seismic ground motions. The candidate points set is built by using the same par-
tition into 10 subdomains as for initialization. We then compute the SUR sampling criterion as
described in Algorithm 5. The SUR sampling criterion is estimated with a Monte-Carlo sample
of size N = 5000 and Q = 12 for the Gauss-Hermite quadrature. The GP hyperparameters are
optimized every 10 iterations.

We compare 100 replications of the SUR strategy with 100 replications of Monte-Carlo sam-
pling design (sampled in the whole dataset of 105 mechanical simulations). Figure 7.1 compares
the log bias bn and the log loss ℓ as a function of the training size. The bias bn is estimated with a
Monte-Carlo sample of size 5000, the loss ℓ(Ψ, Ψ̂n) is estimated with the same Monte-Carlo sample
and with 4000 realizations of the GP surrogate. The SUR outperforms Monte-Carlo design signifi-
cantly in terms of loss both in mean values and interquantile ranges. The bias is also better for the
SUR strategy, however it belongs in the interquantile range of the Monte-Carlo design. Figure 7.2
represents uncertainty propagation of the mechanical parameters on the seismic fragility curve in
the same fashion as in Chapter 5, Section 5.5 for a Monte-Carlo sample and a SUR design for a
training size n = 80. Remark that the GP surrogate uncertainty is significantly smaller (in terms of
interquantile range on the seismic fragility curves) with a SUR-based design than a Monte-Carlo
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FIGURE 7.1: Comparison of the bias bn and the loss ℓ(Ψ, Ψ̂n) between 100 Monte-
Carlo designs and 100 runs of the proposed SUR strategy for a failure threshold
C = 2.1mzd . The green error bars correspond to the interquantile range between the
10% and 90% quantiles of the observed metric on the 100 replications of the Monte-
Carlo design. The red error bars are the same quantities for the replications of the
SUR strategy.

design.

However, one can expect less performance of the SUR strategy for a smaller value of the fail-
ure threshold C. Indeed, for a high value of C, one can guess that failure states of the mechanical
structure considered happen for rare values of the input parameters (a,x) and thus the SUR strat-
egy will be more performant in this setting. We thus perform the same experimental campaign
with a smaller failure threshold C = 1.3mzd , which corresponds roughly to a 80%-level quantile
of the output variable on the whole dataset. Figure 7.3 illustrates the bias and the loss in this
setting. One can notice that even if the SUR strategy raises better performance than Monte-Carlo
design, the difference is less striking than for the higher failure threshold C = 2.1mzd . The use
of the SUR strategy seems thus more adapted for the estimation of seismic fragility curves with
high failure thresholds. Nevertheless, this validates the use of a SUR strategy for seismic fragility
curves estimation.
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FIGURE 7.2: Comparison of a Monte-Carlo design and a SUR design for a training
size n = 80 in terms on uncertainty propagation on the seismic fragility curves in the
same fashion as in Figure 5.11.
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FIGURE 7.3: Comparison of the bias bn and the loss ℓ(Ψ, Ψ̂n) between 100 Monte-
Carlo designs and 100 runs of the proposed SUR strategy for a failure threshold
C = 1.3mzd . The green error bars correspond to the interquantile range between the
10% and 90% quantiles of the observed metric on the 100 replications of the Monte-
Carlo design. The red error bars are the same quantities for the replications of the
SUR strategy.



7.5. Discussion and conclusion 123

7.5 Discussion and conclusion

In this chapter, we review the main methodology of SUR strategies. These DoE procedures
are Bayesian sequential design of experiments procedures based on the Bayesian viewpoint of GP
regression. After defining the SUR sampling criterion in the general setting of noisy computer
models, we derive a SUR sampling criterion for seismic fragility curve in the presence of epis-
temic uncertainties on the mechanical parameters. The methodology developed in this chapter
is then illustrated on a single d.o.f. oscillator with nonlinear restoring force. However, there is
still room for improvements on this subject. First, the SUR strategy does not take into account the
uncertainty on the hyperparameters of the GP surrogate. Even if a full Bayesian approach as de-
scribed in Chapter 5, Section 5.4.5 could fit in the SUR strategy framework, the computation time
of the SUR sampling criterion might become untractable (as pointed out in Stroh, 2018, Chapter 2).
Second, the brute-force optimization based on a set of candidate points described in Equation 7.24
suffers from the curse of dimensionality, which makes SUR strategy computationally cumbersome
in a high-dimensional setting. Despite these limitations, the numerical experiments carried out on
the nonlinear single d.o.f. oscillator show significant performance gains of the SUR strategy for
seismic fragility curves estimation and motivate further research on this topic.
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Application to a piping system mock-up
of a pressurized water reactor
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8.1 Introduction and motivations

Seismic design of nuclear piping is a complicated problem, since the length of piping systems
in nuclear power plants can be up to 100 km and that they play a key role in nuclear safety (e.g.
core cooling). Their designs have to satisfy a compromise between flexibility for supporting ther-
mal expansion and rigidity to support high level seismic loading. Thus, laboratory experiments
have to be carried out to assess the seismic robustness of piping systems. These experiments are
based on mock-ups which represent the earthquake-sensitive parts of piping systems. The mock-
ups are then put on shaking table, in order to analyze their behaviors under seismic loading. Since
it is too costly to reproduce real experiments on shaking tables, computer models of the mock-ups
based on Finite Elements (FE) are built to simulate their temporal behaviors under seismic ex-
citation and calibrated using real experiments. However, in such experimental campaigns the
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uncertainties, for instance on the boundary conditions and the material physical parameters of
the mock-ups, are generally not assessed and can be considered as epistemic uncertainties.

The objective of this chapter is to propose an UQ study of a computer model of a piping mock-
up tainted by epistemic and random uncertainties. The epistemic uncertainties concern the me-
chanical parameters and the boundary conditions of the model whereas the random uncertainty
comes from the inherent randomness of the seismic loading. The epistemic uncertainties are mod-
eled by a random vector and the output variable of the computer model corresponds to an engi-
neering demand parameter of the mock-up. The UQ study is goal-oriented, as it is performed on
the seismic fragility curve of the piping structure. The aim of this UQ study is to better under-
stand how the epistemic uncertainties - that are reducible in the sense of Chapter 4, Section 4.2.3 -
affects the seismic fragility curve of the mock-up, in order to have a further insight of the mock-up
behavior under seismic excitations.

This chapter is organized as follows. Section 8.2 describes the piping mock-up considered
and the sources of uncertainties. Section 8.3 defines and motivates the probabilistic model put on
the input parameters of the piping mock-up computer model. Then, Section 8.4, 8.5, 8.6 present
the results of the three methodologies developed in the three previous chapters (i.e., surrogate
modeling based on Gaussian process regression and uncertainty propagation, global sensitivity
analysis on the seismic fragility curves, Bayesian sequential design of experiments for seismic
fragility curves estimation). The most important results and remarks are gathered in Section 8.7.

8.2 Description of the ASG piping mock-up

The ASG (Alimentation de Secours Général) piping system is the French acronym for the emer-
gency feedwater system (EFWS) in the pressurized water reactor (PWR) nomenclature. According
to Jacquemain, 2015, Chapter 2, the EFWS is used to maintain the level of water in the secondary
line of the steam generator of the PWR, it helps to cool the reactor cooling system (RCS) in the
event the main feedwater system (MFWS) is not available. A schematic diagram of the different
auxiliary systems of a French PWR is given in Figure 8.1.

As motivated in Section 8.1, the behavior of a piping system such as the ASG system during
seismic excitations has to be studied thoroughly for nuclear safety purposes. Thus, the test case
developed in this chapter is based on a simplified and scale mock-up of a section of the ASG
piping system and is part of the ASG experimental program detailed in Touboul, Sollogoub, and
Blay, 1999. The mock-up is a 114.3 mm outside diameter and 8.56 mm thickness pipe with a
0.47 elbow characteristic parameter, in carbon steel TU42C, filled with water without pressure. It
contains three elbows and a mass modeling a valve (120 kg) which corresponds to more than 30%
of the specimen total mass. As shown in Figure 8.2b, one end of the mock-up is clamped whereas
the other is supported by a guide in order to prevent the displacements in the X and Y directions.
Additionally, a rod is placed on the top of the specimen in order to limit the mass displacements
in the Z direction.

The experimental campaign was performed on the shaking table AZALÉE of the CEA EMSI
Laboratory and consisted of temporal dynamic loading in the X direction. A view of the mock-up
mounted on the AZALÉE shaking table is shown in Figure 8.2a. A FE model, based on beam ele-
ments, is implemented with the homemade FE code CAST3M (Charras and Kichenin, 2011). The
FE model is depicted in Figure 8.2b. This computer model is calibrated on the dynamical behavior
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FIGURE 8.1: Schematic diagram of the main auxiliary systems in the reactor building
of a French PWR (see Jacquemain, 2015, Chapter 2), the piping system studied in this
chapter is the emergency feedwater system (EFWS) shown in pink color. This system
aims to maintain the level of water in the main feedwater system (MFWS) when it
is not available in order to cool the reactor core through the steam generator (SG).
Thus, it is one of the engineered safety systems of the PWR.

(A)

 Guide

 Rod

  Mass

  Clamped end

(B)

FIGURE 8.2: (a) Overview of the ASG mock-up on AZALÉE shaking table and (b)
ASG FE model.

of the mock-up during seismic loading of various intensities.

Numerical computation shows that the maximum stress of the mock-up was found to be in
the elbow closest to the clamped end of the mock-up. This stress is associated to an out-of-plane
moment. Consequently, the output variable of the computer model studied in this chapter will be
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the out-of-plane rotation R (in degree) of this specific elbow, this will be the engineering demand
parameter (EDP) used for seismic fragility curve estimation. Furthermore, physical variables de-
scribing the material properties of the mock-up and mechanical parameters at the boundary con-
ditions are considered as input variables of the mechanical computer model, they are listed in
Table 8.1.

TABLE 8.1: Input variables of the numerical model of the ASG mock-up

Variable number Variable

1 E: Young modulus

2 Sy: Elasticity limit

3 H: Hardening module

4 b: Modal damping ratio

5 RPY151: Rotation stiffness for the P151 guide in Y direction

6 RPX29: Rotation stiffness for the P29 clamped end in X direction

7 RPY29: Rotation stiffness for the P29 clamped end in Y direction

8 TPX29: Translation stiffness for the P29 clamped end in X direction

9 TPY29: Translation stiffness for the P29 clamped end in Y direction

10 TPZ29: Translation stiffness for the P29 clamped end in Z direction

The variables E, Sy, H, b are physical parameters proper to the carbon steel TU42C, influencing
the dynamical behavior of the mock-up. The other variables concern the boundary conditions:
They describe the translation and rotation stiffness on both the clamped end and the guide of the
mock-up. Indeed, they can be considered uncertain and their impacts on the dynamical behavior
of the mock-up are generally not assessed. These variables are considered tainted by epistemic
uncertainties. Indeed, the uncertainties on these variables may be reducible to ensure the best
possible knowledge of the structure, whereas the uncertainty on the seismic loading is aleatory.

The dynamical behavior of the piping mock-up is simulated using the synthetic seismic ground
motion generator described in Chapter 2, Section 2.3.1. The ground motions are previously filtered
by a linear single d.o.f. oscillator with a natural frequency of 5 Hz and a damping ratio of 2%. This
linear oscillator represents roughly the reactor building that support the ASG piping system. This
fictitious building is considered deterministic here since we only want to assess the reliability of
the piping system. In practice, uncertainties should also be taken into account on the mechanical
characteristics of the building.

The computer model of the ASG mock-up is composed of a linear FE model when the maximal
stress in the mock-up pipe elbow is less than the elasticity limit Sy and a nonlinear FE model when
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the maximal stress is greater. A run of the linear FE model has a computation of a dozen of seconds
whereas a run of the nonlinear FE model has a computation time of approximately 10 minutes.

8.3 Probabilistic model for the epistemic uncertainties of the ASG pip-
ing mock-up

The input parameters describing the material and the boundary conditions of the mock-up
are considered uncertain. The vector of the 10 parameters are denoted by X, and we assume that
X follows a probability distribution described in Table 8.2, the variables being independent, it is
sufficient to describe the probability distribution of X by the marginal probability distribution of
each of the input variables.

The mean value of each parameter is calibrated in the following manner: The mock-up is part
of a bigger piping system with a known first eigenmode obtained through numerical simulations,
so we choose the mean value for the boundary condition’s parameters so that the first eigenmode
of the mock-up matches the first eigenmode of the mock-up when coupled to the entire piping
system. Therefore, computational experiments based on simulations with calibrated mock-up
boundary conditions are more representative of the mock-up in its real environment. Of course,
these parameters are uncertain, the probability distribution chosen for X is the uniform distri-
bution, since it follows the principle of maximum entropy (see E. T. Jaynes, 1957). The uniform
distribution is parametrized by its mean and the coefficient of variation (c.o.v.). A c.o.v. of 15 %
is considered as a good compromise between uncertainty assessment of the input parameters and
the physical properties of the system studied. Note that the numerical values used in this chapter
are still purely hypothetical and does not intend to represent the real system.

8.4 Step #1: Surrogate model building and uncertainty propagation

In this section, we estimate the fragility curve of the piping system mock-up using a Gaus-
sian process surrogate. The seismic intensity measure chosen in this study is the pseudo-spectral
acceleration at 5 Hz and 1 % damping ratio. The spectral acceleration (PSA) at pulsation ω and
damping ratio ξ for a seismic acceleration signal t→ s(t) is defined by:

a = max
t∈[0,T ]

ω2|ℓ(t)| , (8.1)

where ℓ is the displacement of a single d.o.f. linear oscillator with natural pulsation ω and damp-
ing ratio ξ. This intensity measure is usually chosen in industrial applications due to the high
correlation between the engineering demand parameter and the pseudo-spectral acceleration for
various types of structure. The statistical regression model considered is thus the following

y(a,x) = g(a,x) + ε(a,x) , (8.2)

where y(a,x) = log(R(a,x)) is the log out-of-plane rotation angle at the mock-up pipe elbow.

8.4.1 Validation of the surrogate models

Due to the high dimension of the input space (10 mechanical input variables and 1 seismic
intensity measure), we reduce the dimension of the input space with an HSIC based statistical
hypothesis test using the ICSCREAM methodology developed in Marrel, Iooss, and Chabridon,
2021: a Gaussian kernel is used for each input variable and for the output variable (i.e. the log
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TABLE 8.2: Input variables probabilistic model

Variable Distribution Mean c.o.v.

E (Pa) Uniform 1.9236 1011 15%

Sy (MPa) Uniform 300 15%

H (1) Uniform 4.27 108 15%

b (1) Uniform 0.01 15%

RPY151 (Nm/rad) Uniform 1.1 105 15%

RPX29 (Nm/rad) Uniform 1.1 105 15%

RPY29 (Nm/rad) Uniform 3.3 105 15%

TPX29 (N/m) Uniform 1.0 106 15%

TYP29 (N/m) Uniform 2.0 105 15%

TPZ29 (N/m) Uniform 1.0 106 15%

rotation of the pipe elbow). 2000 mechanical simulations using the cheaper linear finite element
model for the piping system are carried out to perform the screening of the mechanical input vari-
ables. 6 input variables are selected (the variables number 1,2,3,8,9,10 in Table 8.1). This screening
procedure has a physical interpretation: the variables not detected by the HSIC based statistical
hypothesis test are all rotation stiffness on the clamped end for the three axis. The GP surrogates
proposed in this chapter are the same as in Chapter 5, Section 5.5. They are zero-mean Gaussian
processes with anisotropic tensorized Matérn 5/2 covariance function with homoskedastic Gaus-
sian noise on one hand and a parametrized heteroskedastic Gaussian noise on the other hand.

First, the predictivity of our surrogates is measured qualitatively. Figure 8.3 shows the pre-
dicted versus observed values of the log-EDP y(a,x) using a learning dataset of n = 500 obser-
vations, the green solid line corresponds to the identity, the closer the data are from this line the
better is the prediction quality of the surrogate. We can notice that the heteroskedastic Gaussian
process underestimates the high values of the log-EDP, the homoskedastic surrogate has also this
behavior, but the data are closer to the identity line for high values of the log-EDP.

Second, we measure quantitatively the predictivity quality of our surrogates using the predic-
tivity coefficient Q2 in the same fashion as in Chapter 5, Section 5.5. The predictivity coefficient
Q2 is computed on a test dataset of 1000 nonlinear mechanical simulations with a learning sam-
ple size n varying between 100 and 450. The learning datasets are resampled using bootstrap
in a total dataset of also 1000 nonlinear mechanical simulations. 100 replications are made for
each n. Figure 8.4 shows boxplots of the predictivity coefficient Q2 for the heteroskedastic and
homoskedastic Gaussian processes. We can notice that the homoskedastic Gaussian process sur-
rogate performs slightly better than the heteroskedastic Gaussian process surrogate for both the
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FIGURE 8.3: Predicted values versus observed values for the heteroskedastic and
homoskedastic Gaussian process surrogates with a learning dataset size n = 500.

mean and dispersion of the Q2 predictivity coefficient between replications for each n. This might
be the result of the increase of the number of hyperparameters to calibrate for the heteroskedastic
Gaussian process.
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FIGURE 8.4: Boxplots of the predictivity coefficients Q2 estimated with 100 replica-
tions for learning sample sizes varying from n = 100 to n = 450.

Moreover, in the same fashion as in Chapter 5, Section 5.5, we study qualitatively the coverage
probabilities of our two GP surrogates using α − α plots. The empirical coverage probabilities
are estimated on a test sample of size 1000. Figure 5.10 gives the results for heteroskedastic and
homoskedastic Gaussian process surrogates for learning sample of size 200 and 500. Note that
for both dataset sizes the empirical coverage probabilities with the heteroskedastic surrogate are
closer to the identity line than for the homoskedastic surrogate. This can be explained by the flex-
ibility of the variance provided by the heteroskedasticity which allows better adaptation to the
distribution of the data than with a fixed value for the variance. Finally, the observations made
in Figures 8.4 and 8.5 indicate that the homoskedastic surrogate performs better in terms of pre-
dictivity than the heteroskedastic one, but it is less efficient in terms of uncertainty quantification
and coverage. According to Ockham’s razor principle, more complex models are not always the
best choice for the practitioner and are highly dependent on the intended application. The ho-
moskedastic model is the best model in order to approximate the regression function g, but the
heteroskedastic one is better than the homoskedastic one to approximate the overall distribution
of the data which consists in, due to the Gaussian assumption of the statistical model defined in
Equation 5.80, approximating both the variance and the regression function of the data.
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FIGURE 8.5: Observed proportion of the data that lies in the α-theoretical confidence
intervals with respect to their theoretical proportion for both heteroskedastic and
homoskedastic Gaussian processes with sample size of the learning dataset n = 200
and n = 500.

8.4.2 Results and discussion

The GP surrogates allow us to propagate the uncertainty on X into the seismic fragility curves
by considering the random functions a → Ψ(a,X) as described in Chapter 4, Section 4.3.2. The
mean seismic fragility curve and the seismic fragility quantile curves are estimated empirically
using a Monte-Carlo sampling (Xj)1≤j≤m of size m = 1000. Numerical results for several training
sizes n and failure elbow out-of-plane rotation angles C are shown in Figures 8.6 and 8.7. The
failure angles C = 0.5◦ and C = 1◦ correspond respectively to a 75 % and 90 % level empirical
quantile of the 2000 nonlinear CAST3M simulations. The red area corresponds to the area of the
10% and 90% level fragility quantiles estimated using (Ψ(1)(.,Xj))1≤j≤m and (Ψ̌(1)(.,Xj))1≤j≤m
for respectively the homoskedastic and heteroskedastic Gaussian process. The Gaussian process
surrogate uncertainty is assessed by sampling Q = 1000 realizations of the GP posterior distri-
bution for each value Xj , 1 ≤ j ≤ m, the bi-level fragility quantile curves with γX = γG = 0.1
and γX = γG = 0.9 are shown in dashed green and are estimated empirically from the dataset
(Ψ

(2)
q (.,Xj))1≤q≤Q,

1≤j≤m
and (Ψ̌

(2)
q (.,Xj))1≤q≤Q,

1≤j≤m
respectively for the homoskedastic and heteroskedas-

tic GP.
Note that the interquantile range is larger for the homoskedastic Gaussian process than the
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FIGURE 8.6: Uncertainty propagation on the seismic fragility curves with a failure
elbow out-of-plane rotation angle C = 0.5◦. The blue solid curve is the nonparamet-
ric Monte-Carlo estimation of the mean fragility curve and the dashed blue curves
are the 90 % and 10 % asymptotic quantiles of the nonparametric fragility curve es-
timator (see Chapter 2, Section 2.3.2)

heteroskedastic Gaussian process for small training datasets (n = 200) and especially for a high
failure out-of-plane rotation angle of the pipe mock-up elbow (C = 1◦). This tends to demonstrate
that the heteroskedastic surrogate fits better the conditional distribution of the log elbow out-of-
plane rotation angle.

8.5 Step #2: Global sensitivity analysis on the seismic fragility curve

8.5.1 Global sensitivity indices estimation settings

The estimation of the aggregated Sobol indices and the MMD-based sensitivity indices of the
seismic fragility curves of the pipe mock-up is performed using the methodology described in
Chapter 6, Section 6.4. A training dataset of n = 500 simulations and a Monte-Carlo design of size
m = 20000 have been sampled in order to perform the pick-freeze estimation of the aggregated
Sobol indices. Q = 200 realizations of the GP surrogate and B = 150 bootstrap samples have been
carried out to assess the uncertainty of the aggregated Sobol indices both in terms of metamod-
eling and Monte-Carlo uncertainty. For the failure elbow out-of-plane rotation angle C = 1◦ we
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(C) C = 1◦, n = 500
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FIGURE 8.7: Uncertainty propagation on the seismic fragility curves with a failure
elbow out-of-plane rotation angle C = 1◦. The blue solid curve is the nonparametric
Monte-Carlo estimation of the mean fragility curve and the dashed blue curves are
the 90 % and 10 % asymptotic quantiles of the nonparametric fragility curve estima-
tor (see Chapter 2, Section 2.3.2)

compute the L2 distance between fragility curves on the interval a ∈ [5, 25] in order to focus on
the transition area between small and high probabilities of failure.

For the MMD-based sensitivity indices, we use the same parameters n, Q, B as for the estima-
tion of the aggregated Sobol indices. However, we choose m = 15000 for the Monte-Carlo design
used for the pick-freeze estimation. The kernel used is the Gaussian kernel defined in Equation
6.31.

8.5.2 Results and discussion

The figures 8.8 and 8.9 provide the results for the estimation of both first-order and total-order
aggregated Sobol indices for C = 1◦ using the homoskedastic and heteroskedastic Gaussian pro-
cess surrogates. Remark that the parameters E, TPX29 and TPY29 are mostly influential on the
seismic fragility curve. Indeed, the modal properties of the piping system essentially drive its
dynamic behavior and hence its robustness under seismic loading. One of the way to explain why
TPY29 is the most influential mechanical parameter of the piping system is the coupling of the
eigenmodes between the X direction (i.e. the direction of the seismic load) and the Y direction (i.e.
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FIGURE 8.8: First-order aggregated Sobol indices for a failure rotation angle C = 1◦

estimated with the heteroskedastic and homoskedastic GP surrogates
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FIGURE 8.9: Total-order aggregated Sobol indices for a failure rotation angle C = 1◦

estimated with the heteroskedastic and homoskedastic GP surrogates

the direction of the permanent loading due to the piping system’s weight). Note that the variable
TYP29 corresponds to the stiffness of the clamped end in the Y direction. The influence of variable
TYP29 is more clearly detected by the heteroskedastic Gaussian process surrogate, however the
two metamodels raise the same ranking of mechanical parameters in terms of aggregated Sobol
indices.

The results of the estimation of the MMD-based sensitivity indices are shown in Figure 8.10
and 8.11. Note that the ranking of inputs is the same as for the one obtained with aggregated Sobol
indices. However we can remark that the total-order MMD-based indices have higher values than
the first-order MMD-based indices whereas the aggregated Sobol indices of first and total order
have very close values. This means that the aggregated Sobol indices fail to detect interactions
between input parameters. On the contrary, because the MMD-based indices take into account
the overall probability distribution of the fragility curves conditional to the input parameters, it
is not surprising to detect more clearly interactions between inputs. Note also that the difference
between the heteroskedastic and homoskedastic GP surrogates is also more striking than for the
aggregated Sobol indices. Similarly to the aggregated Sobol indices, the influence of TYP29 seems
more clearly detected by the heteroskedastic GP surrogate than the homoskedastic one, while
keeping the same ranking of influence for each mechanical parameter.
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FIGURE 8.10: First-order MMD-based indices for a failure rotation angle C = 1◦

estimated with the heteroskedastic and homoskedastic GP surrogates

E Sy H TXP29 TYP29 TZP29
0.0

0.2

0.4

0.6

0.8

1.0

β
k

Homoskedastic GP

Heteroskedastic GP

FIGURE 8.11: Total-order MMD-based indices for a failure rotation angle C = 1◦

estimated with the heteroskedastic and homoskedastic GP surrogates
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8.6 Step #3: Bayesian sequential design of experiments for seismic fragility
curve estimation

In this third step, the sequential Bayesian design of experiments procedure developed in Chap-
ter 7 is applied to seismic fragility curve estimation of the piping system mock-up.

8.6.1 SUR procedure settings

The SUR procedure in this section is based on a zero-mean Gaussian process with an anisotropic
tensorized Matérn 5/2 covariance function and a homoskedastic Gaussian noise assumption. For
the same reasons explained in Chapter 7, Section 7.4, the input variables for surrogate fitting are
reduced to the most influential variables (PSA, E, TYP29). The failure rotation angle considered
is C = 1◦. This corresponds roughly to the 90% quantile of the output variable for the whole
dataset of 2000 CAST3M mechanical simulations. Similarly to Chapter 7, Section 7.4, the perfor-
mance of the proposed SUR strategy is evaluated by comparing the bias bn of the estimator Ψ̂n to
a reference fragility curve Ψref estimated by kernel ridge regression with Gaussian kernel on the
whole dataset of 2000 CAST3M mechanical simulations. The performance is also assessed with
the loss ℓ defined in Equation 7.18. For this application, we choose for the measure h the uniform
distribution on the segment [a0, a1] where a0 = 1 m/s2 and a1 = 25 m/s2. This choice allows to
target evenly the transition between low and high probabilities of failures. Due to the computa-
tional cost of the CAST3M mechanical simulations, we propose a meta-estimation framework as
in Bect, Ginsbourger, et al., 2012. The SUR procedure starts by choosing 10 CAST3M simulations
in a stratified manner on the pseudo-spectral acceleration, by dividing the full dataset into 10
sets of equal size using the (j/10)1≤j≤9-level quantiles of the PSA. They are the first points of the
design set and are used to optimize the Gaussian process hyperparameters (including σε). After
that, a set of candidate points (a′j ,X

′
j)1≤j≤ M (M = 1000) are chosen at random in the dataset of

2000 CAST3M mechanical simulations. The candidate points set is built by using the same par-
tition into 10 subdomains as for initialization. We then compute the SUR sampling criterion as
described in Algorithm 5. The SUR sampling criterion is estimated with a Monte-Carlo sample
of size N = 5000 and Q = 12 for the Gauss-Hermite quadrature. Due to a difficulty to estimate
σε for small training sizes, a non-informative prior π(σε) ∝ σ−2

ε is assumed on the parameter σε.
The GP hyperparameters are then obtained with a MAP estimator. The GP hyperparameters are
optimized every 10 iterations.

8.6.2 Results and discussion

100 replications of the SUR strategy is compared with 100 replications of Monte-Carlo sam-
pling design (sampled in the whole dataset of 2000 CAST3M simulations). Figure 8.12 compares
the log bias bn and the log loss ℓ as a function of the training size. The bias bn is estimated with a
Monte-Carlo sample of size 5000, the loss ℓ(Ψ, Ψ̂n) is estimated with the same Monte-Carlo sam-
ple and with 4000 realizations of the GP surrogate. Still the SUR outperforms Monte-Carlo design
in this case, however one can see that the performance metrics have more variability in this case.
In terms of bias, the SUR strategy beats Monte-Carlo design for a training size greater than 100
CAST3M simulations, the posterior variance of the SUR strategy is quite similar to Monte-Carlo
design until a training size of 90 CAST3M simulations. The huge variability in the loss and the
bias for the SUR strategy compared to the single d.o.f. oscillator test-case developed in Chapter
7, Section 7.4 may come from the smaller size of the datasets (105 simulations for the oscillator
compared to 2000 CAST3M simulations).
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FIGURE 8.12: Comparison of the bias bn and the loss ℓ(Ψ, Ψ̂n) between 100 Monte-
Carlo design and 100 runs of the proposed SUR strategy for a failure threshold C =
1◦. The green error bars correspond to the interquantile range between the 10%
and 90% quantiles of the observed metric on the 100 replications of the Monte-Carlo
design. The red error bars are the same quantities for the replications of the SUR
strategy.

Figure 8.13 shows the results of the propagation of uncertainties on the mechanical parameters
of the piping structure to the seismic fragility curves with a Monte-Carlo design and a SUR design
of size 100. Similarly to the results of Chapter 7, Section 7.4. The GP surrogate uncertainty is
significantly smaller (in terms of interquantile range on the seismic fragility curves) with a SUR-
based design than a Monte-Carlo design. This further validates the use of such an experimental
design strategy on industrial applications.
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FIGURE 8.13: Comparison of a Monte-Carlo design and a SUR design for a training
size n = 100 in terms on uncertainty propagation on the seismic fragility curves for
the ASG piping system.

8.7 Conclusion

In this chapter, the methodologies developed in the three previous chapters have been illus-
trated on a mechanical FE computer model of a piping mock-up issued from structural seismic
safety for French PWR research experimental program.
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The first and second steps present an UQ study of the piping mock-up using a CAST3M finite
element computer model: the first step consists in GP surrogates building and is used for uncer-
tainty propagation on the seismic fragility curves of the mock-up. The second step is a sensitivity
analysis of the mechanical parameters of the structure tainted by epistemic uncertainties. The
third step is an auxiliary step for UQ studies and consists in providing a sequential design of ex-
periments algorithm based on the SUR principles. The design of experiments procedure is based
on the Bayesian nature of the GP surrogate and is targeted for seismic fragility curve estimation.

Consequently, the UQ methodology developed in this manuscript has been applied to a finite
element computer model of piping mock-up structure, validating the use of these three steps for
computer models of real structures. Nonetheless, a nonparametric estimation of the Gaussian
noise for the surrogate model building step is possible and motivates further improvements of the
methodology.
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CHAPTER9
Conclusion and perspectives

Main contributions of the thesis

The objective of this thesis was to propose efficient methodologies to estimate the seismic
fragility curves of mechanical structures while taking into account, if possible, the epistemic un-
certainties inherent in their mechanical parameters.

First, the main methods for estimating seismic fragility curves have been reviewed. An estima-
tion procedure based on adaptive importance sampling is then proposed to improve the precision
of the estimation of the seismic fragility curve while reducing the number of computer model calls.
In a second part, an UQ methodology has been developed to take into account the uncertainties
coming from a lack of knowledge on the mechanical structure. Gaussian process surrogates have
been proposed to replace the costly mechanical computer model and to perform uncertainty prop-
agation and global sensitivity analysis. Finally, a sequential planning of experiments algorithm
using the Gaussian process surrogate have been proposed to improve the estimation of seismic
fragility curves.

Parametric seismic fragility curve estimation using importance sampling

The first contribution of this thesis has consisted in the development of an algorithm based on
adaptive importance sampling to improve the estimation of parametric lognormal seismic fragility
curves. It relies on a statistical learning viewpoint by considering the empirical loss as a Monte-
Carlo approximation of the true loss function. Importance sampling is then used as a classical
variance reduction technique of the training loss. Since the optimal sampling density depends on
the parameters to estimate, the algorithm proposed is of adaptive nature. Theoretical results guar-
anteeing the consistency and the asymptotic normality of the proposed fragility curve parameters
estimator have been developed. The performance of this strategy in terms of loss and coverage
probability has been illustrated on several test-cases of increasing complexity. Finally, this work
has been subject to the following publication and communications:

• Gauchy, C., C. Feau, and J. Garnier (2020a). “Adaptive Importance Sampling for Seismic
Fragility Curves Estimation”. In: Mascot-num PhD days (MASCOT-NUM 2020). Grenoble,
France.

• Gauchy, C., C. Feau, and J. Garnier (2020b). “Adaptive Importance Sampling for Seismic
Fragility Curves Estimation”. In: 5ème École Thématique sur les Incertitudes en Calcul Scien-
tifique (ETICS 2020). Saint Pierre d’Oléron, France.
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• Gauchy, C., C. Feau, and J. Garnier (2021a). Importance sampling based active learning for
parametric seismic fragility curve estimation. DOI: 10.48550/ARXIV.2109.04323

Gaussian process surrogates and uncertainty propagation

The second contribution of this manuscript has focused on building a surrogate model of the
mechanical computer model. It consists in replacing a costly computer model by a predictor based
on statistical methods and a learning sample of observed computer model output and input pa-
rameters. Gaussian process regression (or kriging) supposes that the computer model is a realiza-
tion of a Gaussian stochastic process, the main advantage is its ability to propose both a predictor
and a quantification of the uncertainty of its predictions that are given analytically. The main
results about kriging have been reviewed, as well as the crucial choice of the prior covariance
function. Then, the seismic fragility curve estimator has been obtained using the posterior pre-
dictive distribution of the Gaussian process surrogate. Moreover, the Bayesian viewpoint on the
Gaussian process regression methodology helps us to propagate the uncertainty of the Gaussian
process surrogate into the seismic fragility curve estimator. Finally, an uncertainty propagation
methodology has been defined to study how the epistemic uncertainties on the mechanical struc-
ture affect the seismic fragility curves. Numerical experiments on a single d.o.f. oscillator with
nonlinear restoring force have been proposed to illustrate the developed methodology.

Global sensitivity analysis on seismic fragility curves using kriging

The third technical contribution of this thesis deals with the adaptation of the classical global
sensitivity analysis techniques on scalar model output to functional output such as seismic fragility
curves. The idea was to study how the uncertainty of the seismic fragility curve is apportioned
to the uncertainties tainting the mechanical parameters of the structure. To do so, the classical
Sobol indices have been extended to the case of functional output thanks to the aggregated Sobol
indices, their main advantage is the conservation of the theoretical guarantees of the Sobol indices
such as the Sobol-Hoeffding decomposition and the pick - freeze estimation methodology. Then,
new kind of global sensitivity indices based on kernel methods have been proposed, which are
based on the maximum mean discrepancy (MMD) distance. A kernel function between seismic
fragility curves is then defined to compute the MMD-based sensitivity indices. The two global
sensitivity indices proposed can be estimated using the pick-freeze formulation. Furthermore, the
Gaussian process posterior distribution is propagated into the global sensitivity indices estimates
using the method of kriging by conditioning. Therefore, the uncertainty of the metamodel is taken
into account in the sensitivity analysis step. The methodology proposed has been illustrated on a
single d.o.f. nonlinear oscillator.

The second and the third contributions have been subject to the following communications:

• Gauchy, C., C. Feau, and J. Garnier (2021d). “Propagation of epistemic uncertainties in seis-
mic risk assessment”. In: 15th Mascot-Num annual conference (MASCOT-NUM 2021). Online

• Gauchy, C., C. Feau, and J. Garnier (2021b). “Propagation of epistemic uncertainties and
global sensitivity analysis in seismic risk assessment”. In: 51ème journées de Statistique de la
Société Française de Statistique (JdS 2021). Online

• Gauchy, C., C. Feau, and J. Garnier (2021c). “Propagation of epistemic uncertainties and
global sensitivity analysis in seismic risk assessment”. In: 6ème École Thématique sur les Incer-
titudes en Calcul Scientifique (ETICS 2021). Erdeven, France

https://doi.org/10.48550/ARXIV.2109.04323
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• Gauchy, C., C. Feau, and J. Garnier (2022d). “Uncertainty quantification and global sensitiv-
ity analysis of seismic fragility curves using kriging”. In: 16th Mascot-Num annual conference
(MASCOT-NUM 2022). Clermont-Ferrand, France

A scientific article on this subject is currently under writing process at the time these lines are
written and will be soon submitted to a peer-reviewed journal.

Bayesian sequential planning of experiments using Gaussian process

The fourth contribution of this thesis is the elaboration of a sequential planning of experi-
ments procedure based on stepwise uncertainty reduction technique. This type of algorithm takes
into account the Bayesian nature of Gaussian process to define sampling criterion that aims at
maximizing the estimation accuracy of a given quantity of interest. After a brief review on the
main principles of SUR strategy, a sequential planning of experiments procedure have been pro-
posed to improve the estimation of seismic fragility curves using Gaussian processes. Numerical
experiments have been carried out to study the performance of the proposed SUR algorithm on a
test-case composed of a single d.o.f. oscillator with nonlinear restoring force. The contribution is
also linked to the following communication.

• Gauchy, C., C. Feau, and J. Garnier (2022b). “Estimation of seismic fragility curves by se-
quential design of experiments”. In: 52ème journées de Statistique de la Société Française de
Statistique (JdS 2022). Lyon, France

Application to a realistic piping system of a nuclear power plant

The last contribution of this thesis is devoted to the application of the developed methodolo-
gies to a realistic mechanical computer model issued from the nuclear industry. This case is based
on the dynamical simulation of a piping system mock-up under seismic loading. After a modeling
of the possible sources of epistemic uncertainties tainting the piping mock-up, Gaussian process
surrogate models with a homoskedastic noise on the one hand and heteroskedastic noise on the
other hand are fitted using a learning sample of several computer model simulations. Then, the
uncertainties are propagated on the seismic fragility curve. Several statistical quantities have been
studied to account for the surrogate models performances. In addition, a sensitivity analysis step
has been carried out using the surrogates to apportion the uncertainty on the seismic fragility
curve to the uncertainty of the different mechanical parameters. Finally, the Bayesian planning of
experiments algorithm has been applied to this test-case to study its performances on a complex
computer model used in mechanical simulations for seismic safety studies.

Perspectives

The work presented in this thesis could be extended in several directions set out below.

About surrogate modeling. A first research track could consist in elaborating a Gaussian
process surrogate model fitting both the conditional mean and variance of the mechanical com-
puter model output. Indeed, the results presented in this manuscript demonstrate the difficulty of
choosing a parametric model for the heteroskedastic noise and therefore motivate a nonparamet-
ric estimation of the noise. This can be done using joint Gaussian process modeling as proposed
in Marrel, Iooss, Da Veiga, et al., 2012: the first step consists in fitting a GP surrogate model on the
computer model output with a homoskedastic Gaussian noise, then a second step aims at fitting
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a second GP surrogate model on the squared residuals of the first predictor in order to learn the
heteroskedastic variance, the third step uses the GP variance predictor to fit the mean component
of the computer model with a third GP surrogate, this time with a heteroskedastic noise assump-
tion. Finally, a fourth GP is fitted on the squared residuals. Another heteroskedastic Gaussian
process methodology using a latent-variable viewpoint is proposed in Binois, R. Gramacy, and
Ludkovski, 2018.

About sensitivity analysis. The topic of sensitivity analysis using kernel methods is promising
and motivates further researches. Indeed, the choice of the kernel for the MMD-based sensitivity
analysis is crucial and still an open question as pointed out by Barr and Rabitz, 2022. The prob-
lem of the choice of the kernel can be relaxed by choosing a parametric family of kernels like the
Gaussian family with a lengthscale parameter. However, on the contrary to kernel methods for
statistical tests (see Gretton, Sejdinovic, et al., 2012) no optimality criterion for kernel choosing in
GSA context is available in the literature. Another way to solve this problem could be to design a
specific kernel for seismic fragility curves.

About SUR strategies. A motivating research track for SUR strategies could be the develop-
ment of new methodologies for tackling the curse of dimensionality. Indeed, the optimization of
the SUR sampling criterion using candidate points set suffers from the curse of dimensionality.
Metamodeling the SUR sampling criterion could be an idea but one has to be sure to not down-
grade the performances of the SUR strategy. Another possibility could be to carefully design the
set of candidate points using space-filling design to explore all the possible interactions between
the input variables when the input space is high-dimensional.

About Bayesian estimation of seismic fragility curve. The internship of Antoine Van Bies-
broeck (see Appendix C) dealing about the Bayesian estimation of seismic fragility curves using
objective priors led to promising results. Antoine will start a PhD on this subject in Autumn 2022
to study Bayesian methods for seismic fragility curves estimation more thoroughly.
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APPENDIXA
Mathematical background

A.1 Cholesky decomposition

The Cholesky decomposition of a symmetric definite positive matrix A consists in decompos-
ing A into a product of lower triangular matrix and its transpose

LLT = A , (A.1)

where L is called the Cholesky factor. The Cholesky decomposition is very useful to solve linear
systems of the form Ax = b. First solve the triangular system Ly = b and then the system
LTx = y. The solution is written x = LT \(L\b) where the notation A\b is the vector x solving
Ax = b.

A.2 Sampling of a Gaussian vector

Consider a Gaussian vector Y = (Y1, . . . , Yp)
T with mean vector µ ∈ Rp and covariance matrix

Σ ∈ Rp×p. A useful algorithm for generating a sample y = (y1, . . . , yp)
T from the probability

distribution of Y is relying on the Cholesky decomposition of Σ:

• Consider the vector v = (v1, . . . , vp)
T such that vi ∼ N (0, 1)

• Write Σ = LLT where L the Cholesky factor

• Compute y = µ+ Lv
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APPENDIXB
Proofs of Chapter 3

B.1 Proof of Equation (3.23)

Throughout the appendix, the IS-AL estimator θ̂IAn is denoted by θ̃n and the loss R̂IA by R̃. The
proof for the consistency is based on Theorem 2 of Delyon and Portier, 2018. We precise the needed
assumptions in a very general way, with a parametric family F = {fθ, θ ∈ Θ}, loss function ℓθ and
instrumental density qθ. We will then check that the needed assumptions are satisfied by IS-AL.
Set L(x, s) = supθ∈Θ ℓθ(x, s). Assume that Θ is a compact set, θ∗ = argminθ∈Θ r(θ) exists and is
unique and that: ∫∫

L(x, s)P (dx, ds) < +∞,

sup
θ∈Θ

∫∫
L(x, s)2p(x)

qθ(x)
P (dx, ds) < +∞,

∀θ ̸= θ∗,
∫∫

ℓθ(x, s)P (dx, ds) >

∫∫
ℓθ∗(x, s)P (dx, ds).

and for any (x, s) ∈ X × {0, 1}, θ ∈ Θ 7→ ℓθ(x, s) is continuous. Thus, we can apply Theorem 2 of

Delyon and Portier, 2018 in order to prove the consistency of θ̃n = argminθ∈Θ
1
n

n∑
i=1

p(Xi)
qθ̃i−1

(Xi)
ℓθ(Xi, Si).

More precisely, these assumptions are verified for IS-AL. Indeed, the regularized squared loss is
bounded for the variables θ, x, s when θ = (α, β)T is in a compact set of (0,+∞)2. Moreover, the
likelihood ratio p(x)

qθ,ε(x)
with the defensive instrumental density is bounded for x ∈ X . Concerning

the regularization, we have:

∣∣∣R̃n(θ)− r(θ)
∣∣∣ <

∣∣∣∣∣
1

n

n∑

i=1

p(Xi)

q
θ̂IAi−1,ε

(Xi)
ℓθ(Xi, Si)− r(θ)

∣∣∣∣∣+
Ω(θ;βreg)

n
. (B.1)

Thus the condition (17) of Theorem 2 in Delyon and Portier, 2018 is still valid.

B.2 Proof of the asymptotic normality of θ̂IAn

In the same way as in the proof of the consistency of θ̃n, we provide a general proof of asymp-
totic normality. Assume that θ 7→ ℓθ is three times differentiable at θ∗ for all x, s and that the
matrix r̈(θ∗) exists and is nonsingular. Assume that the third-order derivatives of θ 7→ ℓθ(x, s) are
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dominated in a neighborhood of θ∗ by a function that is integrable with respect to P . Assume also
that the following conditions are satisfied:

1. The hypotheses needed for the consistency of θ̃n are satisfied,

2. ∃η > 0 such that supθ∈Θ
∫∫

||p(x)ℓ̇θ∗ (x,s)qθ(x)
||2+ηP (dx, ds) < +∞,

3. supθ∈Θ
∫∫ p(x)||ℓ̈θ∗ (x,s)ℓ̈θ∗ (x,s)T ||

qθ(x)
P (dx, ds) < +∞,

4. there exists a neighborhood B of θ∗ such that ∀(x, s) ∈ X × {0, 1},
supθ∈B

p(x)∥
...
ℓ θ(x,s)∥
qθ(x)

< +∞.

The asymptotic normality of an estimator built such as θ̃n is based on the following arguments
highlighted in Theorem 5.41 of Vaart, 1998:

• (P1) The random function
√
nΨn(θ∗), with Ψn(θ) = ˙̃Rn(θ) − ṙ(θ), converges in law to a

centered Gaussian distribution with covariance Vθ∗ .

• (P2) The random function Ψ̇n(θ∗) converges in probability to E[ℓ̈θ∗(X,S)]

• (P3) The random function Ψ̈n(θn) is bounded in probability for θn a deterministic sequence
in a neighborhood of θ∗.

Of course, we need all the quantities above to be properly defined, hence we have to restrict our-
selves to a loss function θ 7→ ℓθ that is smooth enough, such as the quadratic loss. We use Theorem
1 of Delyon and Portier, 2018 to prove proposition (P1). Theorem 2.18 in Hall et al., 2014 ensures
that (P2) and (P3) are verified by the assumptions 2), 3) and 4) so that Ψ̇n(θ∗) converges toward
the matrix r̈(θ∗). The sequence

√
n(θ̃n − θ∗) is asymptotically normal with mean zero and covari-

ance matrix r̈(θ∗)−1Vθ∗(r̈(θ∗)
−1)T . For IS-AL, the functions ℓ̇θ, ℓ̈θ,

...
ℓ θ are continuous for variables

θ, x on a compact set and thus are bounded for variable θ, in the same way as for the consistency,
the likelihood ratio for the defensive instrumental density is bounded for x ∈ X . Concerning
the regularization, the third derivative

...
Ω(θ;βreg) is continuous on Θ which is compact, hence

bounded. Naturally, we have (P3) verified. Because Ω̇(θ;βreg)
n converges in probability to 0, (P2) is

also verified. Using Slutsky’s lemma, (P1) is verified.

B.3 Proof of Equation (3.30)

First of all, we precise the needed assumptions for a general proof. SetL1,k,l(x, s) = supθ∈Θℓ̈θ(x, s)k,l
and L2,k,l(x, s) = supθ∈Θ

p(x)
qθ(x)

(ℓ̇θ(x, s)ℓ̇θ(x, s)
T )k,l ∀k, l = 1, ...,m and assume that:

1. inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

ℓ̈θ(x, s)k,l > −∞ ∀k, l = 1, . . . ,m.

2. inf(θ,x,s)∈Θ×X×{0,1}
(
p(x)
qθ(x)

)2
ℓ̇θ(x, s)ℓ̇θ(x, s)

T
k,l > −∞ ∀k, l = 1, . . . ,m.

3.
∫∫

Li,k,l(x, s)P (dx, ds) < +∞, ∀i ∈ {1, 2}, ∀k, l = 1, ...,m.

4. supθ∈Θ
∫∫ Li(x,s)

2p(x)
qθ(x)

P (dx, ds) < +∞, i ∈ {1, 2}.
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The result comes from the uniform convergence of Ĝn(θ) = ̂̈rn(θ)−1V̂n(θ)(̂̈rn(θ)−1)T to Gθ for θ in
a neighborhood of θ∗. It boils down to prove uniform convergence of ̂̈rn(θ) and V̂n(θ). The proof
is in the same spirit as in Section B.1. We proceed coordinate by coordinate defining Hi(θ)k,l =
p(Xi)
qθ(Xi)

ℓ̈θ(Xi, Si)k,l − inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

ℓ̈θ(x, s)k,l to prove uniform convergence of ̂̈rn(θ) and

Hi(θ)k,l =
(
p(Xi)
qθ(Xi)

)2
ℓ̇θ(Xi, Si)ℓ̇θ(Xi, Si)

T
k,l− inf(θ,x,s)∈Θ×X×{0,1}

(
p(x)
qθ(x)

)2
ℓ̇θ(x, s)ℓ̇θ(x, s)

T
k,l for V̂n(θ).

Assumptions 3) and 4) ensure the uniform convergence using the proof technique of Theorem 1
of Delyon and Portier, 2018.

B.4 Proof of Equation (3.32)

The proof relies on the Taylor expansions of ˙̃Rn,1(θ̃n,2) and ˙̃Rn,2(θ̃n,1) around the parameter
value θ∗:

˙̃Rn,1(θ̃n,2) =
˙̃Rn,1(θ∗) +

¨̃Rn,1(θ∗)(θ̃n,2 − θ∗) + o
(
∥θ̃n,2 − θ∗∥

)
.

˙̃Rn,2(θ̃n,1) =
˙̃Rn,2(θ∗) +

¨̃Rn,2(θ∗)(θ̃n,1 − θ∗) + o
(
∥θ̃n,1 − θ∗∥

)
.

Using the asymptotic normality of θ̃n, we can apply Appendix B.3 in Delyon and Portier, 2018
to prove the convergence of ¨̃Rn,1(θ∗) and ¨̃Rn,2(θ∗) to r̈(θ∗) in the same spirit as for the proof in
Section B.1. We proceed coordinate by coordinate, defining Hi(θ∗)k,l = p(Xi)

qθ̃i−1(Xi)
ℓ̈θ∗(Xi, Si)k,l −

inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

ℓ̈θ∗(x, s)k,l . Remark that Hi(θ∗)k,l ≥ 0, hence we can apply Appendix B.3
in Delyon and Portier, 2018 to obtain the desired convergence. Moreover, the Taylor expansions
of ˙̃Rn,1(θ̃n,1) and ˙̃Rn,2(θ̃n,2) write:

0 = ˙̃Rn,1(θ̃n,1) =
˙̃Rn,1(θ∗) + r̈(θ∗)(θ̃n,1 − θ∗) + o

(
∥θ̃n,1 − θ∗∥

)
,

0 = ˙̃Rn,2(θ̃n,2) =
˙̃Rn,2(θ∗) + r̈(θ∗)(θ̃n,2 − θ∗) + o

(
∥θ̃n,2 − θ∗∥

)
.

Finally, the Taylor expansion of
√
n( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)) writes:

√
n
( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)

)

=
√
n
( ˙̃Rn,1(θ∗)− ˙̃Rn,2(θ∗) + r̈(θ∗)(θ̃n,2 − θ∗)− r̈(θ∗)(θ̃n,1 − θ∗)

)
+ oP (1)

= 2
√
n( ¨̃Rn,1(θ∗)− ¨̃Rn,2(θ∗)) + oP (1), (B.2)

because
√
n∥θ̃n,j−θ∗∥ = OP (1) for j = 1, 2. The right-hand side of equation (B.2) weakly converges

towards the centered Gaussian distribution with covariance matrix 8V (qθ∗ , ℓ̇θ∗).
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APPENDIXC
Bayesian estimation of seismic fragility
curves using objective priors

The content of this appendix is devoted to the work performed by Antoine Van Biesbroeck
during his 6th months internship that I supervised during my PhD in CEA Saclay, EMSI Labora-
tory.

This work deals with Bayesian method for the estimation of seismic fragility curve. Indeed,
due to the computational cost of mechanical simulations, the sample size is hence limited. Bayesian
methods have the advantage to propose to incorporate prior knowledge on the seismic fragility
curve. It is done by assuming a prior probability distribution on the seismic fragility curve pa-
rameters. From this prior distribution a posterior distribution is obtained using the Bayes theo-
rem after data observations. However, the elicitation of the prior distribution on the parameters
is far from trivial and can influence the posterior distribution for small sample sizes. Therefore,
the internship’s objective was to defined an objective prior distribution - i.e. a prior distribution
that maximizes the information brought by the observed data - for the usually considered log
normal parametrical model of seismic fragility curve. After a theoretical work on the objective
prior distribution definition, the methodology developed was illustrated on a simple mechanical
test-case.

C.1 Introduction

In Seismic Probabilistic Risk Assessment (SPRA), fragility curves express the failure proba-
bility of a structure as a function of a seismic intensity measure (IM) criterion. They are useful
decision making tools widely used for structures subject to earthquakes, such as nuclear power
plants (R. Kennedy, C. Cornell, et al., 1980). The estimation of such a fragility curve is still to-
day a complex and hugely studied issue because, in practice, the estimate can be numerically
expensive for complex structures modeled by sophisticated numerical mechanical models. There-
fore, since data are obtained through time-consuming mechanical simulations, this precludes
the use of certain data-consuming methodologies (Gidaris, Taflanidis, and Mavroeidis, 2015). A
possible point of view is to see these curves as the evaluations of the complementary cumula-
tive distribution function of a damage measure (DM) conditionally to the intensity measure (IM)
Pf (a) = P(DM > C|IM = a), where C is the failure criterion. In general, a log-normal model is
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considered leading to the following expression of the fragility curve

Pf (a) = P(DM > C|IM = a) = Φ

(
ln a− lnα

β

)
(C.1)

whose study is reduced to the approximation of two parameters α and β, Φ being the cumulative
density function of a standard normal distribution. The assumption of log-normal correlation be-
tween DM and IM is convenient but remains questionable (Karamlou and Bochini, 2015), and
several non-parametric methodologies have also been studied during the last decade (Mai, Kon-
akli, and Sudret, 2017; Sainct et al., 2020; Z. Wang et al., 2018). In this work we will stay under the
parametric log-normal model, and focus on a new approach under this framework. Numerous
ways already exist to estimate these parameters and a review of a range of the most common ones
is proposed by Zentner, Gündel, and Bonfils, 2017. The simplest approaches are based on maxi-
mum likelihood estimation (Shinozuka et al., 2000; Gehl, Douglas, and Seyedi, 2015; Baker, 2015),
but they suffer from irregularities on low data. The Bayesian approach has the purpose of reach-
ing a better accuracy and regularity, regarding the smallness of the sample size. It consists into
attributing a prior distribution to the parameters that need to be estimated. These priors are for
now chosen subjectively (Damblin et al., 2014; Keller et al., 2015; Jalayer, De Risi, and Manfredi,
2015), making questionable their relevance, and jeopardizing agreement concerning their validity.

To handle this last issue, our idea is to construct with an objective criterion a good and reliable
prior for the parameters. This approach is the one of Nalisnick and Smyth, 2017 in a more general
context but they limit their study to a parametric family of priors. Relying on the reference priors
theory particularly developed by J. M. Bernardo, 1979; J.. Bernardo and Smith, 1994; J. Bernardo,
2005; J. O. Berger, J. M. Bernardo, and Sun, 2009, we propose a complete approach to build an
objective prior suitable for seismic fragility curves, with the aim of estimating them.

In the next section, the lognormal model used for seismic fragility curve estimation is de-
scribed. Section C.2 presents definitions and choices of reference priors. These objective priors
will then be used for the estimation of fragility curves in Section C.4. Section C.5 is finally dedi-
cated to the conclusion.

C.2 Parametric log-normal model for seismic fragility curves

In the context of estimating fragility curves, both the question of the seismic intensity mea-
sure and the choice of the parametric model arise. First, numerous criteria are used as a metric
for seismic intensity measure Hariri-Ardebili and Saouma, 2016b, and there is no consensus in
the literature on the most relevant beyond them. In fact, the choice depends of the mechanical
problem and must be done in practice after a prior look to some specific criteria (efficiency, suf-
ficiency, and scale robustness) Grigoriu and Radu, 2021. The Peak Ground Acceleration (PGA),
which is the maximal acceleration measured in absolute value, is mostly used because of the facil-
ity of its calculation and the commonly admitted relation with the induced seismic forces Solomos,
Pinto, and Dimova, 2008. Studied structures are generally sensitive to ground motions on some
of their eigenmodes, which makes the consideration of spectral acceleration indicators relevant
Feau, 2019. Note that in some works several IMs are taken into consideration at once Lagaros and
Fragiadakis, 2007; Sainct et al., 2020.

Second, about choosing a one-dimensional correlation model between inputs (i.e. input excita-
tion reduced to some relevant parameters or IMs) and outputs (damage measure), linear models,
for their simplicity and the knowledge we have about them, are the most employed. For seismic
fragility curves estimation, the assumed linear link is between the logarithm of the damage mea-
sure DM with any of the presented above IMs’ logarithm. This model is what we call log-normal
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FIGURE C.1: Seismic fragility curve example as a log-normal curve. See equation
(C.1) for Pf ’s expression.

and is expressed below
logDM = c log IM + d+ σN (0, 1).

To support this choice, fig. C.2 shows logDM as a function of log IM . One can see a hazardous
chaos scattered around a straight line, here plotted from linear regression calculation. The choice
of this model stays imperfect and therefore is questionable. However, we must admit the com-
plexity of such a prediction with a limited number of data. So, in this context, the use of a one-
dimensional parametric model is justified because its “imprecision” is counterbalanced by a more
precise estimate of its parameters.

Finally, this leads to the analytical expression of fragility curves stated in eq. (C.1). Parameters
α and β, computed from C, c, d and σ are the ones we want to estimate. An example of such a
fragility curve under the log-normal assumption is provided in fig. C.1.

Problem formalization Our model may be seen as a statistical model with independent obser-
vations ((a1, z1), . . . , (ak, zk)), k being the data-set size. For an earthquake i, ai is its observed
IM and zi is the observation of a failure: zi = 1DMi>C . The couples (ai, zi) are independent
realizations of the random variable (IM,1DM>C), defined on a probability space (Ω,T ,P). We
express the k-tuple of them by A and Z, with distribution respectively denoted PA and PZ . Thus,
(A,Z) ∈ A × Z a.s. with Z = {0, 1}k and A ⊂ Rk+. T is the random variable denoting the re-
searched parameters (a realization of T is noted θ = (α, β)). The distribution of T is noted π and
called the prior, defined on a set Θ ⊂ R2

+. As fragility curves should depend only on the structure’s
response and not on the earthquake characteristics, A and T can be supposed being independent.
We use probability kernels notation to denote conditional distributions: PX1,X2 = PX1 ◦ PX2|X1

where µ ◦ ν(B1, B2) =
∫
B1
ν(B2, x)dµ(x). In our problem, given the log-normal relation (C.1) and

the independence of the observations, the conditional distribution of Z with respect to (A, T ) can
be written:

PZ|A,T (B, a, θ) =
∑

z∈B

k∏

i=1

Φ

(
log ai

α

β

)zi (
1− Φ

(
log ai

α

β

))1−zi
. (C.2)
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FIGURE C.2: Maximal displacement of the oscillator presented in section C.4.3, as a
function of some IMs in log scale. Red lines are linear regressions of the data.

whereB ⊂ Z . PA is approximated by kernels from the empirical distribution we observed Wasser-
man, 2004. The method is the following: we assume PA is absolutely continuous with respect to
the Lebesgue measure and we approximate its density fA as

fA(a) ≃
1

M

M∑

i=1

1

h
K

(
ai − a

h

)
(C.3)

where (ai)
M
i=1 denote the data and K(x) = 1√

2πσ2
e−

x2

2σ2 the Gaussian kernel. h and σ are generally

chosen as σ2 = Var(A) (approximated numerically) and h =M−1/5.

C.3 Information theory and reference priors

This section is dedicated to explore the prior choice in the Bayesian context. We discuss differ-
ent objective prior definitions. In subsection C.3.1 is introduced the notion of mutual information.
Its definition and its usefulness in Bayesian problems is not new J. M. Bernardo, 1979; Muré, 2018,
however, its computation under the framework of seismic fragility curves has not been studied
yet in the literature.

Then, we have decided to clearly express two reference priors definitions: non asymptotic and
asymptotic, respectively detailed in C.3.2 and C.3.3. Non-asymptotic reference priors are generally
not studied, as they are used for an introduction for asymptotic ones, making our consideration
new. Our point of view is that a dependency of the reference prior with respect to the number of
observations can be seen as relevant information rather than an issue. Particularly, our work bring
a rigorous mathematical framework and proper demonstrations of some main theorems that did
not exist yet.

The link between asymptotic and non-asymptotic reference prior is clearly expressed and dis-
cussed in C.3.3.
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C.3.1 Average expected information

This section is dedicated to explore the choice of prior in the Bayesian context. Hereafter is
discussed the construction of an objective prior. Shannon’s information theory provides relevant
elements for our problem, the information entropy is a common example of them, and allows to
call a distribution informative or non-informative E. Jaynes, 1982. Former approaches as objective
prior choices are to look for non-informative ones (i.e. with high entropy), as any information
would be considered subjective. In a context of finite number of events, an uniform prior meets
this criterion. Our approach goes further, a non-informative prior is a relevant choice as its impact
will be little in the posterior computation Muré, 2018. This Bayesian point of view is detailed
below, after the next useful definition.

Definition 1 (Kullback-Leibler divergence). Let µ and ν be two probability measures absolutely
continuous with respect to a measure λ. We denote p and q their respective Nikodym derivatives
with respect to λ. The Kullback-Leibler divergence of µ with respect to ν is

KL(µ||ν) =
∫
p(x) log

p(x)

q(x)
dλ(x).

This quantity is often seen as a “distance" between the distributions µ and ν (yet it is not sym-
metrical). In fact, looking at Shannon’s information theory, we can see that this is the information
that µ would provide if it were chosen instead of ν (lower weight is given to areas where µ and
ν’s are close). In the Bayesian framework K-L divergence can be used to get an idea about the
information provided by the posterior distribution with respect to the prior. Therefore, our idea
consists in maximizing with respect to π the quantity KL(PT |A,Z(·, a, z)||π) with our notations.
We can notice that it is a function of a and z, this is why we consider its expected value, hence the
following definition.

Definition 2 (Average expected information). Define a statistical model M = {X, PX|θ, θ ∈ Θ},
the average expected information for a prior π in the model M is the quantity (if it exists)

I(π|M) =

∫
KL(PT |X(·, x)||π)dPX(x)

where PT |X and PX are calculated considering T ∼ π and PX|T (·, θ) = PX|θ ∀θ ∈ Θ.

Our problem finally is

Find argmax
π∈P

I(π|M) =

∫

Z×A
KL(PT |A,Z(·, a, z)||π)dPZ,A(z, a) (C.4)

for some class P of measures over Θ under which the above formula has a sense. In fact, in our
work we will consider proper priors, i.e. P will denote a class of probability measures.

The letter M reminds us how this quantity depends on the model. While it is not expected
to change all along this work, it is noticeable that I’s expression and its – if it exists – maximizer
depends of the number observations we suppose to have (even if no empirical observation is taken
into account for its calculation). It is this last remark which explains the dissociation between the
two following subsections in which a finite number of observations is first considered, before
examining what happens under the assumptions of an “asymptotic model".

In what follows, the notation Mk is adopted to express that the number of observations is k.
For infinite observations assumption, we will write M. Such an asymptotic model is not properly
defined and we do not try to express it. This notation only reminds that the point of view is
asymptotic as as if k were growing to infinity. Further details are developed in subsection C.3.3.
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Contextual calculation of I In order to derive I in the context of seismic fragility curves, a proper
computation of the PT |A,Z and PA,Z distributions is needed, as regard to the available quantities
described in section C.2. This is done within the two following lemmas, demonstrated in Ap-
pendix C.6.

Lemma 1. Let us denote Z and A the sigma-algebras on Z and A. The joint distribution of (Z,A) can
be expressed as follows:

PA,Z(B1 ×B2) =

∫

B1

∫

Θ
PZ|A,T (B2, a, θ)dπ(θ)dPA(a)

for any B1 ∈ A , B2 ∈ Z .

Lemma 2. Suppose that there exists a measure c defined on Z such that for any (a, θ) ∈ A × Θ,
PZ|A,T (·, a, θ) is absolutely continuous with respect to c with Nikodym derivative equal to z 7→ p(z|a, θ).
Then the posterior distribution, which is the conditional law of T knowing (A,Z), is defined by the follow-
ing kernel:

PT |A,Z(F, a, z) =
∫
F p(z|a, θ)dπ(θ)∫
Θ p(z|a, θ)dπ(θ)

for any F ∈ B(Θ), a ∈ A, z ∈ Z .

Let us remind that equation (C.2) ensure the satisfactions of lemma 2’s hypothesis, c being the
discrete measure on Z and p(z|a, θ) being the likelihood of our model:

p(z|a, θ) =
k∏

i=1

Φ

(
log ai

α

β

)zi (
1− Φ

(
log ai

α

β

))1−zi
(C.5)

Thus, the quantity I(π|Mk) we want to maximize can be written as we do below.

I(π|Mk) =

∫

A×Z

∫

Θ

p(z|a, θ)∫
Θ p(z|a, θ)dπ(θ)

log
p(z|a, θ)∫

Θ p(z|a, θ)dπ(θ)
dπ(θ)dPA,Z(a, z)

=

∫

A×Z

∫

Θ
p(z|a, θ) log p(z|a, θ)∫

Θ p(z|a, θ)dπ(θ)
dπ(θ)dc(z)dPA(a). (C.6)

C.3.2 Reference priors under a finite number of observations

This maximization problem of the average expected information has already been studied by
J.. Bernardo and Smith, 1994, §5.4. Indeed, they developed a heuristic from which they derived
an implicit solution, that led them to a first definition of reference priors. In this subsection we
propose a definition for a reference prior and express its solution into a clear mathematical frame-
work.

Note that our problem is to maximize with respect to π the function I(π|Mk) defined in equa-
tion (C.6). As this function can be written as

I(π|Mk) =

∫

T

∫

Θ
g(t, θ) log

g(t, θ)∫
Θ g(t, θ)dπ(θ)

dπ(θ)dµ(t) (C.7)

where t = (z, a), T = Z ×A, g(t, θ) = p(z|a, θ) and µ = c⊗ PA. We will consider in the following
this more general expression with g continuous, non negative and such that its integral over T is
equal to 1. This formulation includes the generally studied problem of maximizing with respect
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to p Ĩ(p|Mk) =
∫
Z
∫
Θ p(z|θ)p(θ) log

p(z|θ)∫
Θ p(z|θ)p(θ)dθ

dθdz. One can find below our rigorous definition
of a reference prior.

Definition 3 (Reference prior). We call π∗ ∈ P a reference prior over the class P of priors if
π∗ ∈ argmaxπ∈P I(π|Mk).

Maximizing this function leads to a result that depends on k Muré, 2018. As stated before this
is generally seen as an issue which makes this maximizer not really considered. Indeed, the works
we cited are looking for a reference prior adapted to a model, which they consider intrinsically
not dependent on the number of observations. However, as expressed before, the low values of
available sample sizes is a central characteristic of our problem. As a consequence, we thought
that a proper study of this reference prior could be relevant.

A solution of this problem has been conjectured by J.. Bernardo and Smith, 1994. Under a clear
mathematical framework and some regularity assumptions, we bring in C.6 demonstrations of
the following results.

Theorem 1. Assume Θ ⊂ Rd is compact and g(t, θ) ∈ [l1, l2] ⊂ R∗
+ ∀t, θ. Consider a finite mea-

sure ν on Θ and P the class of the probability measure on Θ that are absolutely continuous with re-
spect to ν and admitting a continuous and positive Nikodym derivative. Then there exists an unique
π∗ = argmaxπ∈P I(π|Mk). It is such that p∗ = dπ∗

dν verifies :

p∗ ∝ f where f(θ) = exp

(∫

T
g(t, θ) log

g(t, θ)p∗(θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
dµ(t)

)
.

Theorem 2. Under the assumption of theorem 1, consider P ′ = P ∩ {π,
∫
Θ gidπ = ci ∀i ∈ [[1, n]]}. Then

there exists an unique π∗ = argmaxπ∈P ′ I(π|M). It is such that p∗ = dπ∗

dν verifies

p∗ ∝ f × exp

(
n∑

i=1

λigi

)

for some λi ∈ R.

Knowing the expression of a reference prior allows us to calculate the reference prior under
some additional constraints, following theorem 2. The idea behind that statement is to impose
moments constraints after an expert judgement on the parameters, choosing for example gi = idi.
The required calculation of the resulting λi is discussed in C.3.4.

The above theorems give an implicit expression of the optimal priors which may seem useless
at a first look. However, reminding what the function g corresponds to, allows us to recognize in
the definition of f the posterior distribution density with respect to ν, deduced from the result of
lemma 2:

dPT |A,Z
dν

(θ, a, z) = p∗(θ|a, z) = p(z|a, θ)p∗(θ)∫
Θ p(z|a, θ)p∗(θ)dν(θ)

considering that T is distributed with respect to π∗ = p∗ν.
This posterior distribution is clearly unknown, yet it can be approximated as follows:

p̃∗(θ|a, z) = p(z|a, θ)h(θ)∫
Θ p(z|a, θ)h(θ)dν(θ)

(C.8)

for a chosen density h. This basic formula suggested in J.. Bernardo and Smith, 1994 is based
on the fact that under an infinite number of observations and some regularity conditions, the
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resulting prior should be asymptotically independent of the posterior approximation. This will be
discussed in next subsection.

C.3.3 Asymptotic reference priors

We stated that J.. Bernardo and Smith, 1994 pointed out an independence between the prior
and the posterior approximation when the number of observations goes to infinity. The study of
what we call asymptotic reference priors came out of this remark. The key idea is that such a prior,
maximizer of the asymptotic average expected information, will depend only on the model, and
not on any uncertainty brought by the observations, satisfying the Bayesian point of view.

This statement could be seen as a consequence of the Bernstein-von Mises’ theorem Vaart,
1998. Indeed, according to the theorem, under appropriate assumptions, the posterior density
p(
√
k(θ − θ̂k)|t) converges to a Gaussian density – whose variance is the inverted square-root of

the Fisher information I(θ)−1/2 which is defined later (see definition 6) – where θ̂k is an asymptoti-
cally sufficient and consistent estimator, such as the Maximum Likelihood Estimator (MLE) under
general assumptions. This convergence does not depend on the prior and so any approximation
from (C.8) would lead to what follows. Thus, we asymptotically have

log p(θ|t) ≃ log
k

2π
− k

2
∥I(θ)1/2(θ̂k − θ)∥2 + 1

2
log det I(θ)

and consequently to the convergence of k∥I(θ)1/2(θ̂k − θ)∥2 to a χ2
2 distribution (whose expected

value is Eχ2
2 = 2), we can approximate

∫

T
p(t|θ) log p(θ|t)dµ(t) ≃ log

k

2πe
+

1

2
log det I(θ)

combined with theorem 1’s reference prior expression, we asymptotically get

p∗(θ)
∼∝ exp

1

2
log det I(θ).

This way, this heuristic developed more rigorously by M. Ghosh, 2011 not only states the intuited
asymptotic independence of the reference priors with respect to the construction choices made
discussed in (C.8), but also provides an idea of the limit which is verified in what follows.

Mostly studied and theorized in J. Bernardo, 2005; J. O. Berger, J. M. Bernardo, and Sun, 2009,
the asymptotic reference priors now benefit of clear frameworks and properties. Muré, 2018, chap-
ter I.2 provides a more general definition of these reference priors that is adapted to our problem.
With a few exceptions, we only consider proper priors in this work.

A possible definition for the asymptotic reference prior is the limit of some normalization of
what we derive in previous subsection J. M. Bernardo, 1979; J.. Bernardo and Smith, 1994. Yet,
we will consider to define it being the maximizer of some non-informative entropy, as we did
to define the non-asymptotic reference prior above, and as it is done in recent literature. These
definitions actually are equivalent under some regularity assumptions, as we will later see.

The first approach would be to define the asymptotic reference prior as the one which max-
imizes the limit of the non-informative entropy I(π|M). Unfortunately this limit generally is
infinite, a more subtle definition is then needed and expressed as follows, we could show that it is
equivalent to the heuristic under the right constraints.

Definition 4 (Asymptotic reference prior). Let Mk denote the model under k observations of the
data. We suppose that Θ ⊂ Rd and that there exists an increasing sequence (Θi)i of compact sets
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such that
⋃
iΘi = Θ. We call a probability distribution π∗ ∈ P an asymptotic reference prior over

a class P if for any other probability distribution π ∈ P and any i,

lim inf
k→∞

I(π∗i |Mk)− I(πi|Mk) ≥ 0

where πi and π∗i denote the normalized restrictions of the priors to Θi.

Note that contrarily to the previous subsection, Θ is not supposed to be compact anymore.
In fact, this asymptotic study is conjectured to lead to a non-implicit solution (contrarily to last
section’s results) as regard to the posterior convergence we discussed earlier. This will logically
lead to solutions that are equal on any compact intersections of Θ, up to a multiplicative constant.
That allows us to relax this hypothesis. From now on, we will still consider a measure ν on Θ, not
necessarily finite, and focus on priors absolutely continuous with respect to ν.

Next proposition adapted from Muré, 2018 states the uniqueness of a prior satisfying the for-
mer definition.

Proposition 1 (Asymptotic reference prior uniqueness). Assume that for any θ ∈ Θ, there exists a
weakly consistent estimator of θ and let P be a convex class of priors. Then if an asymptotic reference prior
over P exists it is unique.

As we now express clearly the dependency of our variables with respect to the number of
observation k, we will denote tk our data, and (T k,T k, µk) their living measured space. Next
definition set the correct class to which the approximated prior for posterior approximation we
evoked in subsection C.3.2 should belong to ensure convergence to the asymptotic reference prior.

Definition 5 (Asymptotic consistency). We call a positive, continuous and proper prior Θ asymp-
totically consistent if its density h is such that for any θ ∈ Θ, ε > 0, denoting h(θ|tk) =

∫
Θ g(tk, θ)h(θ)dν(θ),

the quantity ∫

|τ−θ|≤ε
h(τ |tk)dν(τ)

is a random variable distributed from g(·, θ)µ which converges in probability to 1. The class of
these density functions is denoted by Q.

The following theorem due to J. O. Berger, J. M. Bernardo, and Sun, 2009 completes our heuris-
tic as it states the convergence of the approximated non-asymptotic reference prior to the asymp-
totic one.

Theorem 3 (Explicit asymptotic reference prior). Let P the class of the probability measure on Θ that
are absolutely continuous with respect to ν and admitting a continuous and positive Nikodym derivative.
Let h be in Q and θ0 be an interior point of Θ. We define the following functions

fk(θ) = exp

(∫

T k

g(tk, θ) log h(θ|tk)dµk(tk)
)

f(θ) = lim
k→∞

fk(θ)

fk(θ0)
.

Assume the fk are continuous and bounded on every compact for k large enough. Then π∗ = p∗ν with
p∗ ∝ f is the asymptotic reference prior over class P .

The last theorem expresses the consistency of the non-asymptotic solution approximation we
described in subsection C.3.2. With the possibility of simulating some large numbers of obser-
vations, it allows the implementation of an algorithm to calculate the asymptotic reference prior
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J. O. Berger, J. M. Bernardo, and Sun, 2009. In what follows, we derive an other explicit expression
of the asymptotic reference prior, which does not depend of an asymptotical number of observa-
tions. This is more suitable to our problem, given the generation complexity of such data. Indeed,
Clarke and Barron, 1994 have shown Clarke and Barron, 1994 that Jefferey’s prior is an asymptotic
reference prior, under the right conditions. One can find below a definition of it.

Definition 6 (Jeffreys prior). Suppose g is twice differentiable with respect to θ and the following
integrals converge. The Fisher information matrix Ik(θ) ∈ Rd×d is defined by its coordinates:

Ik(θ)i,j = −Etk∼g(·,θ)
∂2

∂θi∂θj
log g(tk, θ) = −

∫

T k

g(tk, θ)
∂2

∂θi∂θj
log g(tk, θ)dµk(tk).

We call Jeffreys prior a prior J on Θ absolutely continuous with respect to the Lebesgue distribu-
tion, whose density is proportional to

√
det Ik(θ). Last results presented below propose explicit

solutions for asymptotic reference priors under or without constraints.

We remind the relation Ik(θ) = kI1(θ) (I1 will be simply noted I in the following), ensuring
the independence of Jeffreys prior with respect to k.

Theorem 4. If it is proper, the Jeffreys prior is the asymptotic reference prior over the class of all probability
distributions on Θ.

Proposition 2. Let P be the class defined in theorem 3, we define P0 = P ∩{π,
∫
Θ gidπ = ci ∀i} for some

continuous gi. Then the asymptotic reference prior π∗0 over the class P0 is such that p∗0 =
dπ∗

0
dν verifies

p∗0 ∝ p∗ exp

(
n∑

i=1

λigi

)

for some λi ∈ R, where p∗ denotes the Nikodym derivative of the asymptotic reference prior over class P ,
derived in theorem 3.

Proposition 2 is, as far we know, new. It can be demonstrated by adapting theorem 3’s proof in
J. O. Berger, J. M. Bernardo, and Sun, 2009. Next corollary came from theorem 4 and proposition2.

Corollary 1. If the Jeffreys prior is proper and continuous, then the asymptotic reference prior over class
P0 defined in proposition 2 with ν being the Lebesgue measure admits for Nikodym derivative:

p∗0(θ) ∝
√
det I(θ) exp

(
n∑

i=1

λigi(θ)

)

for some λi ∈ R.

C.3.4 Lagrange multipliers derivation

In theorem 2 and proposition 2 we derived under-constraints solutions whose expressions in-
volve the unconstrained solutions and some Lagrange multipliers. The latter are such that the
constraints hold but this condition does not necessarily provide a convenient method to compute
them. In this section are presented some derivations adapted for some particular and often en-
countered cases.
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Mean constraint The following method is due to Lemaitre, 2014 Lemaitre, 2014, §3.3.1, who
derive a solution from a different but similar problem that the one considered there. Suppose the
constraint is a mean constraint: π should be such that

∫
Θ θidπ(θ) = mi ∀i. Then results stated

before ensure the solution admits a density of the form

p∗0(θ) = Kp∗(θ)e⟨λ,θ⟩

for some λ ∈ Rd and K ∈ R, with p∗ denoting the unconstrained solution. K depends on λ as it is
the normalization constant, its calculation leads to the following:

p∗0(θ) = p∗(θ)e⟨λ,θ⟩−ψ(λ) ψ(λ) = log

∫

Θ
e⟨λ,θ⟩p∗(θ)dν(θ)

ψ can be seen as the logarithm of the moment generating function MT of the variable T ∼ p∗ν.
Knowing its expression allows us then the computation of λ as it is shown below. From

∇MT (λ) =

∫

Θ
θe⟨λ,θ⟩p∗(θ)dν(θ) =

∫

Θ
θp∗0(θ)e

ψ(λ)dν(θ) =MT (λ)m

thus m = ∇MT (λ)/MT (λ). This equation should enable the calculation of λ.

Mean and variance constraints What is done above can be adapted to the constraints
∫
Θ θdπ(θ) =

m and
∫
θ(θ−m)(θ−m)Tdπ(θ) = Σ. Note that this second constraint can be replaced equivalently

by
∫
Θ θθ

Tdπ(θ) = S, S = Σ+mmT . Therefore we have

p∗0(θ) = Kp∗(θ)eλ
T θ+Tr(ΛT θθT ) = Kp∗(θ)eλ

T θ+θTΛT θ

for someK ∈ R, λ ∈ Rd and Λ ∈ Rd×d. Therefore, denotingNT (λ,Λ) the function
∫
Θ p

∗(θ)eλ
T θ+θTΛT θdν(θ)

gives us, similarly than before:

∇λNT (λ,Λ)/NT (λ,Λ) = m ∇ΛNT (λ,Λ)/NT (λ,Λ) = S.

Note that the previous methods can easily be generalized. Their only need is to know the
function NT (λ) =

∫
Θ p

∗ exp
∑

i λigidν, and be able to solve the equations ∇λiNT (λ)/NT (λ) = ci.

C.4 Fragility curves estimation with reference priors

C.4.1 Posterior simulation method

Once a prior for the parameters is chosen, different Bayesian methods exist to estimate fragility
curves. As an example, Damblin et al., 2014 introduce loss functions which serve to express the
right parameters as their minimizers. A simpler method often conducted in literature (e.g. Jalayer,
De Risi, and Manfredi, 2015) is to simulate a range of parameters under the computed posterior
distribution. These can give an idea of a desired confidence interval, derived from some simula-
tions’ quantiles. This is how we process in this section.

The posterior density is simply calculated – up to a constant – as the product between the prior
density and the likelihood. The expression of a commonly known density is generally not recog-
nized (e.g. with Jeffreys prior), we perform for this reason the simulations through an Metropolis-
Hasting (MH) algorithm.
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The resulting estimations that we made from this method and the consistency of our MH’s
simulation are discussed later on.

C.4.2 Jeffreys prior calculation

Theorem 4 and corollary 1 expressed the usefulness of the Jeffreys prior in the context of ref-
erence prior construction. Also, according to the heuristic we discussed in C.3.3, a good posterior
approximation could be derived from the Fisher information matrix. Consequently, this section is
devoted to its calculation.

We compute I(θ) in our model. Here, θ = (α, β) ∈ R2
+ and

I(θ)i,j = −
∫

Z×A
p(z|a, θ) ∂2

∂θiθj
log p(z|a, θ)dc(z)dPA(a).

for i, j ∈ [[1, 2]]. With c = δ0 + δ1 and p(z|a, θ) as expressed in (C.5) – with k = 1 –, i.e.

log p(z|a, θ) = z log Φ

(
log a− logα

β

)
+ (1− z) log

(
1− Φ

(
log a− logα

β

))
.

We denote γ = β−1 log a
α , the first order partial derivatives with respect to θ of log p(z|a, θ) are

the followings:

∂

∂α
log p(z|a, θ) = − 1

αβ
z
Φ′(γ)
Φ(γ)

+
1

αβ
(1− z)

Φ′(γ)
1− Φ(γ)

∂

∂β
log p(z|a, θ) = − log a

α

β2
z
Φ′(γ)
Φ(γ)

+
log a

α

β2
(1− z)

Φ′(γ)
1− Φ(γ)

which lead to the second order partial derivatives computed below:

∂2

∂α∂β
log p(z|a, θ) = − 1

β

∂

∂α
p(z|a, θ) + log a

α

αβ3
z
Φ′′(γ)Φ(γ)− Φ′(γ)2

Φ(γ)2

− log a
α

αβ3
(1− z)

Φ′′(γ)(1− Φ(γ)) + Φ′(γ)2

(1− Φ(γ))2
(C.9)

∂2

∂α2
log p(z|a, θ) = − 1

α

∂

∂α
log p(z|a, θ) + 1

α2β2
z
Φ′′(γ)Φ(γ)− Φ′(γ)2

Φ(γ)2

− 1

α2β2
(1− z)

Φ′′(γ)(1− Φ(γ)) + Φ′(γ)2

(1− Φ(γ))2
(C.10)

and

∂2

∂β2
log p(z|a, θ) = − 2

β

∂

∂β
log p(z|a, θ) + log2 a

α

β4
z
Φ′′(γ)Φ(γ)− Φ′(γ)2

Φ(γ)2

− log2 a
α

β4
(1− z)

Φ′′(γ)(1− Φ(γ)) + Φ′(γ)2

(1− Φ(γ))2
(C.11)

From these, the Fisher information matrix is computed numerically, from approximations of
the integrals over A. See appendix C.7 for more details.
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As we express in the following, Jeffreys prior needs to be iterated numerous times through
our computations (mainly due to the use of MCMC methods). However, as the complexity of its
calculation is high due to the integrals to be calculated, we decided to perform a calculation first,
based on a fine-mesh grid of R2

+, giving us an interpolated approximation of Jeffreys prior more
suitable for our numerical applications. Fig. C.3 proposed a plot of it. To be precise, 500 × 500
prior values have been computed for α ∈ [10−5, 10] and β ∈ [10−3, 2]. A linear interpolation has
been processed from these.
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FIGURE C.3: Jeffreys prior plot, calculated from PGA (at left). Approximation of the
PGA’s probability density function (at right) for the dataset used in section C.4.3.

Jeffreys prior is known to be improper in numerous common cases. As it is clear that it diverges
around (0.65, 0) in our study, this does not necessarily implies that it is not proper. However, we
have not demonstrated the contrary either. In this work, the prior is numerically truncated, thus
an approximation of Jeffreys prior and posterior – yet definitely proper – are actually computed
for the experiments presented in section C.4.4.

One can clearly see the influence of the IM’s distribution (also plotted in figure C.3) on Jef-
freys prior. That is explainable as follows: giving a higher prior weights to fragility curves whose
median happens to be around high probability IM values will enhance any learning from the ob-
servations. This naturally makes the information brought by the posterior likelihood with respect
to the prior higher.

From this remark we deduce how important is the studied IM’s distribution to construct an ob-
jective prior. Some works, in which these data are uniformly generated or artificially augmented,
and so not realistic, are therefore questionable.

C.4.3 Choices and data-set

The results of previous section give us a substantial range of different possible objective priors
according to the desired criteria.

First, the dependency of the prior on the observations set’s size is an interesting point of
view. Moreover, as regard to what we discussed in subsection C.3.3, a good approximation of the
datasize-dependent reference prior could be computed in accordance with equation (C.8) using
Jeffreys prior for the density h. In fact, many Bayesian studies prefer a focus onto the asymptotic
considerations, due to (i) the demonstrated convergence, (ii) the perception of asymptotic model
as more objective and (iii) the higher convenience of its calculation. However, we think that it
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could be interesting to take into account the information provided by the number of observations,
often limited in our field of application. Unfortunately, because of the additional calculations
required, we do not go further on this trail and leave its exploration for possible future works.

Secondly, different results have been presented on the subject of objective prior with “under
constraints" criteria (e.g. theorem 2 and proposition 2). As it is not the case in our work since we
stay on a theoretical case, these results could be useful in a study dealing for example with expert
judgements about the parameters. However, one should keep in mind that such a consideration
could compromise the 100% objective nature of the prior we have built so far.

Thus, only Jeffreys prior has been derived and used as a prior in this report, considering it as
the more general and objective possible prior.

About seismic intensity measures, we focused on the peak ground acceleration (PGA) dis-
cussed in section C.2 and expressed hereafter. This choice is mostly common and general in earth-
quake engineering and one can easily notice that our methodology can be directly adapted to any
different choice. Indeed, it only affects numerical calculations. We think that a validation of our
work on the PGA makes its validation on others really likely.

Presentation of the problem of interest For this work and our numerical simulations we run
our computations from the same seismic and mechanical models that Sainct et al., 2020 used.

A ground motion s is a signal simulated here as a filtered white noise with time dependent
parameters following the work done in Rezaeian and Der Kiureghian, 2010:

s(t) = q(t,ρρρ)

[
1

σf (t)

∫ t

−∞
h[t− τ,λλλ(τ)]w(τ)dτ

]
,

where σf (t)2 =
∫ t
−∞ h[t− τ,λλλ(τ)]dτ is the standard deviation and q is a time-dependant modulat-

ing function

q(t,ρρρ) = 0 if t ≤ T0,

= ρ1

(
t−T0
T1−T0

)2
if T0 ≤ t ≤ T1,

= ρ1 if T1 ≤ t ≤ T2,

= ρ1 exp [−ρ2(t− T2)
ρ3 ] if t ≥ T2.

For more details about the parameters and the impulse response function h, one can refer to Sainct
et al., 2020, §2. From such a signal, several IMs are calculated:

• the PGA = maxt∈[0,T ] |s(t)|;

• the Peak Ground Velocity PGV = maxt∈[0,T ]
∣∣∣
∫ t
0 s(τ)dτ

∣∣∣;

• the Peak Ground Displacement PGD = maxt∈[0,T ]
∣∣∣
∫ t
0

∫ τ
0 s(u)dudτ

∣∣∣;

• the total energy E =
∫ T
0 s2(τ)dτ ;

• the spectral acceleration SA = 4π2f2Lmaxt∈[0,T ] |ỹ(t)|. ỹ being calculated from a linear system
modeling structure, as expressed in equation (C.12).
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As shown in figure C.4, the simulated structure is a nonlinear single degree of freedom oscil-
lator with kinematic hardening.

m 

(1 − a ) mω 2 L 

amω 2 L 

2 βmω L 

y ( t ) 

FIGURE C.4: Scheme of the nonlinear single degree of freedom oscillator used for
the numerical simulations. m is the mass, ωL = 2πfL the circular frequency, a the
post-yield stiffness defining kinematic hardening, β the damping ratio and y(t) is
the relative displacement of the mass with respect to the ground.

Still following Sainct et al., 2020, its relative displacement y is ruled by the following equation

y′′(t) + 2β2πfLy
′(t) + fnl(y(t)) = −s(t)

under a ground motion s. fnl being the nonlinear resisting force, β the damping ratio, and fL
the frequency (in this study fL = 5Hz). In addition, we consider the associated linear system –
supposed to be known – whose relative displacement ỹ follows the equation

ỹ′′(t) + 2β2πfLỹ
′(t) + 4π2f2Lỹ(t) = −s(t), (C.12)

From these computations is derived the displacement measure DM = maxt∈[0,T ] |y(t)|. The
failure is considered when DM > C with C = 8 ·10−3m. A total of 105 signals and responses have
been generated this way. 10% of them resulted into the failure of the structure.

C.4.4 Numerical results

In this section we present the results of the numerical simulations with seismic fragility curves
estimation purpose, in accordance with the method described in section C.4.1.

As expressed in the last section, for posterior calculation, we illustrate the Jeffreys prior choice
method, which is computed considering the PGA as seismic intensity measure. Then, we compare
our estimations with the maximum likelihood estimation (MLE) method. Our resulting curves
are compared with a reference log-normal curve, whose parameters are the maximum likelihood
estimator based on the total available data set (105 observations). To analyze and compare the
methods we have done our simulations under two different sample sizes, 51 and 101, since the
objective is to assess the quality of the estimates for a “small" number of data.

500 MLE simulations have been performed for the 2 samples and are presented in figure C.5. It
is easy to see the "irregularities" that this method involves, especially when dealing with small size
samples. These are characterized by some estimations of β as 0, resulting into vertical confidence
intervals.
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FIGURE C.5: Scatter plots and resulting 95% confidence intervals of 500 MLE simu-
lations, for a sample size of 51 observations first, and 101 then.
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FIGURE C.6: Scatter plots and resulting 95% confidence intervals of 10000 posterior
simulations from Jeffreys prior, for a sample size of 51 observations first, and 101
then.
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FIGURE C.7: Scatter plots and resulting 95% confidence intervals of 10000 posterior
simulations from Gamma-Normal prior, for a sample size of 51 observations first,
and 101 then.
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FIGURE C.8: Evolutions of the average, over 10 replications, of the ”size” of the 95%
confidence interval and the mean square error between the medians of the estimates
and the reference fragility curve, as a function of the sample size.
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FIGURE C.9: Jeffreys prior (at left) and Gamma-Normal prior (at right).
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FIGURE C.10: Posterior plots from a number of 50 observations. Priors are Jeffreys
(at left) and a Gamma-Normal GN (0, 0.1, 0.1, 0.1) distribution (at right).
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These irregularities do not exist in Bayesian simulations. Plots of figure C.6 come from 10000
simulations of the posterior with Jeffreys prior. The scatter plot does not contain any of such limit
points discussed above (i.e. β = 0), which is see-able on the shape of the confidence intervals that
more closely match the shape of the reference curve.

To have a deep insight into these results, one can refer to figure C.8 where the evolutions,
with respect to the sample size, of the “size" of the confidence interval and the mean square error
between the medians of the estimates and the reference fragility curve are compared. These results
correspond to an average based on 10 replications.

We can immediately see the advantage of the Bayesian method over that of the MLE when it
comes to small samples. The fact that both curves are getting closer validates our convergence
intuitions: with a rising number of observations, the weight of the likelihood become stronger,
compared to the prior, in the posterior expression.

In the framework of Bayesian estimation of fragility curves, a Gamma-Normal prior is of-
ten chosen, generally fitted with parameters making it poorly informative. In fact, such a sub-
jective choice would be more questionable if it provided too much information. This Gamma-
Normal also has the advantage of making calculations and simulations convenient, as in log-
normal model the resulting posterior also follows a Gamma-Normal distribution whose param-
eters are known. For these reasons, we decided to perform, for comparison, a Bayesian estimate
from such a Gamma-Normal prior. We have done the choice of the distribution GN (0, 0.1, 0.1, 0.1)
in accordance with Damblin et al., 2014, which is plotted in figure C.9, next to Jeffreys prior plot.

In figure C.10 both posteriors derived from Jeffreys (at left) and Gamma-Normal (at right)
priors are plotted. On can notice that the low information feature of Gamma-Normal prior implies
that higher value of (α, β)’s areas have a substantial weight in the posterior than in Jeffreys one.
This is particularly true on a little sample size as one can observe in our simulations results plotted
in figure C.7. Confidence intervals are larger, especially in case Ndata = 51, because numerous
large couples (α, β) are simulated. This phenomenon is comparable to overfitting, because it gives
a neutral probability to all observable events.

C.4.5 MCMC consistency

As stated before, MH algorithm has been used for posterior simulations purpose. Because
we do not have a totally clear view on the prior’s features we have chosen to implement a variant
that can adapt to the different probability density functions. Our explicit choice is an adaptive MH
algorithm with Gaussian transition distribution Haario, Saksman, and Tamminen, 2001 which is
summarized in algorithm 6.

Our simulations have been realized by keeping the 10000 last values of a total of 40000 it-
erations, and one can see in figures C.13 and C.14 the average convergences of the parameters
through the MCMC iterations. The expected values all seem to converge relatively quickly (af-
ter 10000 iterations) questioning the burn-in of 30000 we did. However, under 51 observations,
Gamma-Normal posterior seems to struggle more, and does not seem stable before the 10000 last
iterations, hence our choice. This difficulty to converge is probably due to the slow decrease of
that posterior we already discussed in previous subsection. The acceptance rates we got, plotted
in figure C.15 are acceptable as being asymptotically around 0.4.

One can find the histograms of our resulting simulated parameters in figures C.11 and C.12, to
get an idea of the density function of the simulations.

In addition, we computed a 90% confidence zone from the posterior densities. After the sim-
ulations, it was checked and confirmed that the same proportion of the simulated variables felt
inside this zone.
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Algorithm 6 Adaptive MH

Require: π: target distribution

t0: Markov chain initialization

Niter, Nstep, σp, b, s: calibration parameters

for k = 1 . . . Niter do
if k < Nstep then
t∗ = tk−1 +N (0, σpI)

else
t∗ = tk−1 + s(1− b)N (0, Σ̂k−1) + bN (0, σpI)

end if
αk = π(t∗)/π(tk−1)
tk = t∗ with probability αk, tk = tk−1 with probability 1− αk
mk =

1
k

∑k
i=1 ti

Σ̂k =
∑k

i=1(ti −mk)(ti −mk)
T

end for
Ensure: t, α: Markov chain and acceptance rates sequences
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FIGURE C.11: Histograms of resulting simulated α and β through MCMC simula-
tion of Jeffreys posterior. Results of 3 simulations with 3 different sample sizes are
plotted.
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FIGURE C.12: Histograms of resulting simulated α and β through MCMC simu-
lation of G-N posterior. Results of 3 simulations with 3 different sample sizes are
plotted.
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FIGURE C.13: Cumulative average values of α (at left) and β (at right) through MH
iterations of Jeffreys posterior. Results of 3 simulations with 3 different sample sizes
are plotted.
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FIGURE C.14: Cumulative average values of α (at left) and β (at right) through MH
iterations of G-N posterior. Results of 3 simulations with 3 different sample sizes are
plotted.
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FIGURE C.15: Average acceptance rates through the MH iterations for Jeffreys and
Gamma-Normal posteriors. Results of 3 simulations with 3 different sample sizes
are plotted.
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C.5 Conclusion & prospects

In this work, we have implemented a method for Bayesian estimation of seismic fragility
curves, which oversteps the general prior choice issue, whose subjectivity can hardly be entirely
justified. We have studied a substantially theoretical and robust framework giving few trails about
different objective prior constructions. While we focused in this work on Jeffreys prior, which is a
theoretically known choice but never implemented yet for fragility curves estimation, other objec-
tive priors are proposed in this work and could be computed in the future. Indeed, expressing the
dependency of the expected information with respect to the sample size is an interesting point of
view, as well as prior construction under mean and/or variance constraints. Moreover, for a given
seismic scenario, we have shown that such an objective prior is correlated with the distribution of
seismic intensity measures, such as PGA, stating the importance of a realistic distributions of such
IMs in the data-set.

Our numerical simulations highlighted the limit of bootstrapping for MLE and the irregulari-
ties it implies, especially on small data-sets. In addition, they demonstrated the superiority of the
Bayesian method to remove these irregularities.

Finally, while the construction of a Bayesian estimation method which does not suffer from a
validation jeopardized by a prior subjectively chosen is proper progress on the literature, we have
been able to notice a better accuracy of it than the one achieved by the most commonly considered
prior in other studies of Bayesian estimation of fragility curves.

We conclude by saying that this work provides a methodology that could be generalized in
the context of fragility curves estimation. It only requires the calculation of the Jeffreys prior from
the distribution of the IM of interest by following our equations. Therefore, the estimations only
result from classical MCMC methods, which are easily reproducible. In the future, a methodology
based on Gamma-Normal parameters’ fitting could be implemented, choosing the objective priors
among the class of Gamma-Normal distributions. This would lead to a lower computation cost.

C.6 Proofs of the theoretical results

C.6.1 Lemma 1

We remind that all the terms in the integrals we manipulate in the demonstration of this lemma
or of the following are positive, and so Fubini-Tonelli’s theorem stands and the integration orders
do not matter.

Note that as A and T are supposed independent, their joint distribution is PA,T = PA ⊗ π and
therefore for any B1 ∈ A , B2 ∈ Z

∫

B1

∫

Θ
PZ|A,T (B2, a, θ)dπ(θ)dPA(a) =

∫

B1×Θ
PZ|A,T (B2, a, θ)dPA,T (a, θ)

which can be recognized being equal to the composition PA,T ◦PZ|A,T (B2 × (B1 ×Θ)) which is by
definition equal to PA,Z,T (B1×B2×Θ) = PA,Z(B1×B2) as the event {T ∈ Θ} is the universe. We
therefore have demonstrated the following equality for every elements B1 and B2 of the tributes
of A and Z :

PA,Z(B1 ×B2) =

∫

B1

∫

Θ
PZ|A,T (B2, a, θ)dπ(θ)dPA(a)
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C.6.2 Lemma 2

To demonstrate the result, let us first derive the conditional law of (A,Z) knowing T . Note that
according to Jirina’s theorem Stroock, 1993, all the requested conditional law exist. We consider the
probability kernel ν defined on (A ⊗Z )×Θ by ν(B1×B2, θ) =

∫
B1

PZ|A,T (B2, a, θ)dPA(a) for any
B1 ∈ A , B2 ∈ Z , θ ∈ Θ. We calculate below π ◦ ν(B1 ×B2 ×F ), for B1 ∈ A , B2 ∈ Z , F ∈ B(Θ).

π ◦ ν(B1 ×B2 × F ) =

∫

F
ν(B1 ×B2, θ)dπ(θ) =

∫

F

∫

B2

PZ|A,T (B2, a, θ)dPA(a)dπ(θ)

As T and A are independents, their joint distribution is PA,T = PA ⊗ π, therefore

π ◦ ν(B1 ×B2 × F ) =

∫

B1×F
PZ|A,T (B2, a, θ)dPA,T (a, θ) = PA,Z,T (B1 ×B2 × F )

we conclude that π ◦ ν = PA,Z,T which implies the equality PA,Z|T = ν.
To compute the conditional distribution of T knowing (A,Z), we start from the distribution

equality PA,Z ◦ PT |A,Z = PA,Z,T = π ◦ PA,Z|T , which can be re-written for any B1 ∈ A , B2 ∈
Z , F ∈ B(Θ) as:

∫

B1×B2

PT |A,Z(F, a, z)dPA,Z(a, z) =
∫

F
PA,Z|T (B1 ×B2, θ)dπ(θ) (C.13)

Lemma 1 allows us to express PA,Z as a function of PZ|A,T , and our hypothesis about that last
kernel implies that PA,Z is absolutely continuous with respect to the measure c⊗ PA:

PA,Z(B1 ×B2) =

∫

B1

∫

Θ

∫

B2

p(z|a, θ)dc(z)dπ(θ)dPA(a)

This allows us to express the left hand side of equation (C.13) as follows:
∫

B1×B2

PT |A,Z(F, a, z)dPA,Z(a, z) =
∫

B1

∫

B2

PT |A,Z(F, a, z)
∫

Θ
p(z|a, θ)dπ(θ)dc(z)dPA(a) (C.14)

Furthermore, in the right hand side of equation (C.13), the conditional kernel PA,Z|T can be re-
placed with the expression of ν defined above, which leads to:

∫

F
PA,Z|T (B1 ×B2, θ)dπ(θ) =

∫

F

∫

B1

PZ|A,T (B2, a, θ)dPA(a)dπ(θ)

=

∫

B1

∫

B2

∫

F
p(z|a, θ)dπ(θ)dc(z)dPA(a) (C.15)

As equation (C.13) expresses that (C.14) and (C.15) are equal and as it stands for any (B1, B2) ∈
A × Z , we can conclude

PT |A,Z(F, a, z)
∫

Θ
p(z|a, θ)dπ(θ) =

∫

F
p(z|a, θ)dπ(θ)

for any F ∈ B(Θ), a ∈ A, z ∈ Z . Hence the result after dividing by
∫
Θ p(z|a, θ)dπ(θ).
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C.6.3 Theorem 1

Let π ∈ P , we denote p its Nikodym derivative with respect to ν. I(π,M) can be written as
follows.

I(π,M) = Î(p) =

∫

T

∫

Θ
g(t, θ)p(θ) log

g(t, θ)∫
Θ g(t, θ)p(θ)dν(θ)

dν(θ)dµ(t)

Therefore maximizing I(·|M) over P is equivalent to maximize Î over C(Θ,R∗
+)∩{p,

∫
Θ pdν = 1}.

In addition, Î can be expressed as Î = Î1 + Î2 where

Î1(p) =

∫

T

∫

Θ
g(t, θ)p(θ) log g(t, θ)dν(θ)dµ(t)

Î2(p) =

∫

T
ψ

(∫

Θ
g(t, θ)p(θ)dν(θ)

)
dµ(t)

with ψ(x) = −x log(x) is a strictly concave function. Therefore let us remind that C(Θ,R∗
+) is

convex and consider p ̸= q ∈ C(Θ,R∗
+), λ ∈]0, 1[, we have:

Î2(λp+ (1− λ)q) =

∫

T
ψ

(
λ

∫

Θ
g(t, θ)p(θ)dν(θ) + (1− λ)

∫

Θ
g(t, θ)q(θ)dν(θ)

)
dµ(t)

>

∫

T

[
λψ

(∫

Θ
g(t, θ)p(θ)dν(θ)

)
+ (1− λ)ψ

(∫

Θ
g(t, θ)q(θ)dν(θ)

)]
dµ(t)

> λÎ2(p) + (1− λ)Î2(q)

from which we deduce that Î is strictly concave.
Note that C(Θ,R) provided with norm ∥·∥∞ is a Banach set whoseU = C(Θ,R∗

+)∩{p,
∫
Θ p(θ)dθ ∈

]1 − ξ, 1 + ξ[} ξ ∈]0, 1[ is an open and convex subset as Θ is supposed compact. Next part of the
proof will be dedicated to show that Î is differentiable.

As a consequence of the hypothesis g(t, θ) ∈ [l1, l2] ⊂ R∗
+, | log g(t, θ)| is bounded. Then for any

p ∈ U we have:

|Î1(p)| ≤
∫

T

∫

Θ
g(t, θ)dν(θ)dµ(t) sup

t,θ
| log g(t, θ)|∥p∥∞

≤ ν(Θ) sup
t,θ

| log g(t, θ)|∥p∥∞ (C.16)

this implies that Î1 is continuous and then differentiable as it is linear. Its differentiate is dÎ1(p) =
Î1 ∀p.

We consider 0 < l̃1 < (1 − ξ)11ν(Θ) and l̃2 > (1 + ξ)l2ν(Θ) and write Î2(p) = Φ1(p × G(p)),
with G = C − φ ◦ Φ2 where these functions are defined below.

Φ2





U −→
◦
C(T ×Θ, ]l̃1, l̃2[)

p 7−→
[
(t, θ) 7→

∫
Θ g(t, θ̃)p(θ̃)dν(θ̃)

] φ : q 7→ log ◦ q

Φ1





◦
C(T ×Θ, ]l̂1, l̂2[) −→ R

r 7−→
∫
T
∫
Θ r(t, θ)g(t, θ)dν(θ)dµ(t)

C = (t, θ) 7→ log g(t, θ)
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where 0 < l̂1 < min(log l̃1, l1) and l̂2 > max(log l̃2, l2).
◦
C(T × Θ, ]l̃1, l̃2[) denotes the set of interior

points of C(T × Θ, ]α̃, β̃[). We justify hereafter the correct definition of Φ2. Let p be in C(Θ,R∗
+).

As g is continuous and uniformly bounded, p is bounded and ν(Θ) < ∞ it is clear that Φ2(p) is
continuous, then we have

(1− ξ)l1ν(Θ) < Φ2(p) < (1 + ξ)l2ν(Θ)

this way Φ2(p) ∈ C(T ×Θ, ](1− ξ)l1ν(Θ), (1 + ξ)l2ν(Θ)[) which is included in
◦
C(T ×Θ, ]l̃1, l̃2[).

Now we will show that all these functions are differentiable. Φ2 is linear, and for any p ∈ U ,
∥Φ2(p)∥∞ ≤ ∥p∥∞l1ν(Θ) thus it is continuous and differentiable. Φ1 also is linear and for any

r ∈
◦
C(T ×Θ, ]l̂1, l̂2[), ∥Φ1(r)∥∞ ≤ ∥r∥∞ν(Θ), hence the continuity and the differentiability of Φ. As

it is clear that the application (q, p) 7→ qp is a continuous and differentiable bi-linear application,
last task we have to do is to demonstrate the differentiability of φ.

We consider p ∈
◦
C(T ×Θ, ]l̃1, l̃2[). Let ε > 0, there exists η > 0 such that for any x ∈]− η, η[,

| log(1 + x)− x| ≤ ε|x| inf
T ×Θ

|p|

Therefore if we consider δ such that B(p, δ) ⊂
◦
C(T × Θ, ]l̃1, l̃2[) and δ/ infT ×Θ |p| < η it comes for

any t, θ and h ∈ B(p, δ),
∣∣∣∣φ(p+ h)− φ(p)− h

p

∣∣∣∣ (t, θ) =
∣∣∣∣log

(
1 +

h(t, θ)

p(t, θ)

)
− h(t, θ)

p(t, θ)

∣∣∣∣ ≤ ε|h(x)|

Thus
∥∥∥∥φ(p+ h)− φ(p)− h

p

∥∥∥∥
∞

≤ ε∥h∥∞

which shows that φ is differentiable with dφ(p)h = h/p.
Finally, Î2 is differentiable. And as Î1 also is as demonstrated at (C.16), Î is. Moreover, all the

linear functions we have studied are C1, and as p 7→ dφ(p) is continuous on
◦
C(T × Θ, ]l̃1, l̃2[), Î

actually is C1 over U . We compute below the differentiate of Î :

dÎ(p)h = Φ1(hG(p)− pdφ(Φ2(p))Φ2(h))

=

∫

T

∫

Θ
g(t, θ)

(
h(θ) log

g(t, θ)∫
Θ g(t, θ̃)p(θ̃)dν(θ̃)

− p(θ)

∫
Θ g(t, θ̃)h(θ̃)dν(θ̃)∫
Θ g(t, θ̃)p(θ̃)dν(θ̃)

)
dν(θ)dµ(t) (C.17)

The maximal point we are looking for is the argmax of Î on U under the constraint p ∈ F =
g−1({0}), g(p) =

∫
Θ pdν − 1. g is clearly continuous and then C1 on U with dg(p) = h 7→

∫
Θ hdν

clearly surjective for any p ∈ F . F is convex and Î is concave on F and bounded above, this way,
it admits a maximizer p∗ over F . According to the Lagrange multipliers theorem Cartan, 2007,
there exists λ ∈ R such that p∗ is a critical point of the function L = Î − λg i.e.

dL(p∗) = dÎ(p∗)− λdg(p∗) = 0



C.7. Numerical calculation of the Fisher information matrix 177

This gives for any h ∈ C(Θ,R) that the expression derived in (C.17) is equal to λ
∫
Θ h(θ)dν(θ).

This gives for any θ ∈ Θ,

λ =

∫

T
g(t, θ)

(
log

g(t, θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
−
∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)

)
dµ(t)

expressing the exponential of last equation and multiplying by p∗(θ) leads to what follows.

p∗(θ)eλ+1 = exp

[∫

T
g(t, θ) log

g(t, θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
dµ(t) + log p∗(θ)

]

p∗(θ)eλ+1 = exp

[∫

T
g(t, θ) log

g(t, θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
dµ(t) +

∫

T
g(t, θ) log p∗(θ)dµ(t)

]
(C.18)

by using the fact that
∫
T g(t, θ)dµ(t) = 1. Final equation (C.19) states the result.

p∗(θ)eλ+1 = exp

[∫

T
g(t, θ) log

g(t, θ)p∗(θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
dµ(t)

]
. (C.19)

C.6.4 Theorem 2

This proof follows the proof of theorem 1 that one can find above. We are looking for a maxi-
mizer p∗ ∈ U of Î that satisfies the equality constraints

∫
Θ gi(θ)p

∗(θ)dν(θ) = ci ∀i and
∫
Θ pdν = 1.

These constraints are linear and continuous so the concavity of Î ensure the existence of p∗ and we
still are under the assumptions of the Lagrange multipliers theorem which states that there exist
λ, λ1, . . . , λn ∈ R such that

dÎ(p∗)h− λ

∫

Θ
hdν +

n∑

i=1

λi

∫

Θ
gihdν = 0

for any h ∈ C(Θ,R). This gives the following, for any θ ∈ Θ,

λ−
n∑

i=1

λigi(θ) =

∫

T
g(t, θ) log

g(t, θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
dµ(t)− 1

and so, similarly as in (C.18), applying exponential function and multiplying by p∗ leads to the
result:

p∗(θ)eλ+1e−
∑n

i=1 λigi(θ) = exp

[∫

T
g(t, θ) log

g(t, θ)p∗(θ)∫
Θ g(t, θ̃)p

∗(θ̃)dν(θ̃)
dµ(t)

]
.

C.7 Numerical calculation of the Fisher information matrix

In this section we develop the calculation begun in section C.4.2 and explain how we imple-
ment it numerically. The equations of the second order partial derivatives of p(z|a, θ) derived in
equations (C.9), (C.10) and (C.11) need to be integrated over Z and A. Integrating over the discrete
variable z first only replace z by Φ(γ) and (1− z) by 1− Φ(γ) in the equations.
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For the integration with respect to a, we proceed using Simpson’s interpolation method,to
approximate the integrals (remind fA’s approximation is expressed in (C.3))

A11 =

∫

A
log

a

α

Φ′(γ)2

Φ(γ)
fA(a)da A12 =

∫

A
log

a

α

Φ′(γ)2

1− Φ(γ)
fA(a)da

A21 =

∫

A
log2

a

α

Φ′(γ)2

Φ(γ)
fA(a)da A22 =

∫

A
log2

a

α

Φ′(γ)2

1− Φ(γ)
fA(a)da

A31 =

∫

A

Φ′(γ)2

Φ(γ)
fA(a)da A32 =

∫

A

Φ′(γ)2

1− Φ(γ)
fA(a)da

reminding γ = β−1 log a
α . Therefore, I(θ) is the following matrix

I(θ) =




1
α2β2 (A31 +A32)

1
αβ3 (A11 +A12)

1
αβ3 (A11 +A12)

1
β4 (A21 +A22)


 .
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APPENDIXD
Résumé étendu en français

Contexte

Les centrales nucléaires font partie des systèmes d’ingénierie les plus complexes jamais conçus
par l’homme, impliquant presque tous les domaines de la physique et de l’ingénierie tels que
la mécanique des fluides, la thermohydraulique, la neutronique, la mécanique des structures,
les interactions fluide-structure, pour ne citer que quelques exemples. Comme tout système
d’ingénierie complexe, il n’est pas à l’abri de défaillances et, en raison de la très longue durée
de vie des centrales nucléaires, la sûreté nucléaire est une tâche complexe et difficile. En outre, les
conséquences négatives provoquées par les accidents nucléaires - en termes d’atteinte à la santé
humaine et à l’environnement - sont si importantes que le niveau de sûreté imposé par les organ-
ismes de réglementation nationaux est l’un des plus élevé jamais imposé à un système d’ingénierie
complexe.

L’une des sources possibles d’accidents nucléaires pourrait provenir d’un risque naturel tel
qu’un tremblement de terre sur le site de la centrale. Le comportement dynamique des différents
composants structurels de la centrale lors d’un événement sismique doit être correctement évalué
afin de garantir ses conditions opérationnelles. Le principal défi de l’évaluation du risque sis-
mique des centrales nucléaires est le caractère aléatoire inhérent aux séismes en termes de con-
tenu temporel et spectral. Depuis les années 1980, le cadre de l’évaluation probabiliste du risque
sismique (SPRA en anglais) a été développé aux États-Unis pour évaluer correctement la sûreté
des composants des centrales nucléaires sous excitation sismique, en tenant compte du caractère
aléatoire du risque sismique dans un cadre probabiliste.

Depuis les dernières décennies, la sûreté des centrales nucléaires s’appuie de plus en plus sur
des modèles numériques haute-fidélité qui visent à être un jumeau numérique du système simulé.
L’utilisation de simulations numériques est motivée par la possibilité de simuler des phénomènes
physiques qui ne peuvent pas être observés ou reproduits par des essais réels en raison de leur
complexité (par exemple, le comportement dynamique sous chargement sismique de l’ensemble
du système de tuyauterie d’une centrale nucléaire). Le modèle numérique en dynamique des
structures repose souvent sur la résolution numérique d’équations différentielles ordinaires ou
partielles en utilisant par exemple la simulation par éléments finis.

L’évaluation de la fiabilité et de la sûreté des structures mécaniques implique la prise en
compte de diverses sources d’incertitudes. Les incertitudes peuvent provenir de risques naturels
tels que le vent ou les chargements sismiques, mais aussi des propriétés physiques des structures
(par exemple, les propriétés des matériaux ou les conditions aux limites). Ces incertitudes doivent



180 Appendix D. Résumé étendu en français

être prises en compte pour garantir un niveau de sûreté satisfaisant. Un tel objectif peut être atteint
grâce à un cadre général de quantification des incertitudes présenté dans la section suivante.

Quantification des incertitudes

La quantification des incertitudes (UQ en anglais) regroupe une grande variété d’outils théoriques
et appliqués issus de la théorie des probabilités, des statistiques computationelles et de la simu-
lation stochastique. Le cadre de l’UQ est par définition interdisciplinaire et peut être appliqué
à de nombreuses branches de l’ingénierie. La quantification des incertitudes peut être résumé
en quelques étapes fondamentales qui peuvent être appliquées à n’importe quelle domaine de
l’ingénierie (voir par exemple Sudret, 2007; De Rocquigny et al., 2008; Iooss, 2009). Ces étapes
sont détaillées ci-dessous :

• Spécification du problème: la première étape est naturellement la définition du système
d’ingénierie étudié et la conception du modèle numérique qui simulera ce système. Elle
comprend la définition des variables d’entrée du modèle informatique et de ses quantités de
sortie qui sont importantes pour l’étude des phénomènes physiques d’intérêt.

• Modélisation des incertitudes: la deuxième étape consiste à répertorier toutes les sources
possibles d’incertitudes affectant les variables d’entrée du modèle numérique. Le modèle
mathématique le plus classique pour la représentation des incertitudes est le cadre proba-
biliste.

• Propagation de l’incertitude: la troisième étape est consacrée à la propagation des incerti-
tudes qui affectent les variables d’entrée aux variables de sortie à travers le modèle numérique.
Par conséquent, les variables de sortie sont également entachées d’incertitudes. Des outils
statistiques peuvent alors être appliqués aux variables de sortie pour estimer diverses quan-
tités d’intérêt (par exemple, moyenne, quantile, probabilité de dépassement...).

• Analyse inverse: cette dernière étape peut être divisée en deux parties: premièrement, la cal-
ibration du modèle numérique par rapport aux données disponibles, ce qui n’est pas l’objet
de ce manuscrit. Deuxièmement, l’étape d’analyse de sensibilité, visant à étudier comment
l’incertitude sur la variable de sortie peut être attribuée à chaque variable d’entrée (ou sous-
ensemble de variables d’entrée).

Dans ce manuscrit, nous supposons que le modèle numérique est préalablement calibré. L’étape
d’analyse inverse sera consacrée à l’étape d’analyse de sensibilité.

Énoncé du problème

Cette thèse traite du problème de l’estimation de la courbe de fragilité sismique d’une structure
mécanique donnée. Cette quantité d’intérêt particulière est clé pour les études probabilistes de
sûreté sismique. Elle correspond à la probabilité de défaillance d’une structure mécanique con-
ditionnellement à une mesure d’intensité sismique, qui est généralement une valeur scalaire. Une
courbe de fragilité sismique est souvent représentée graphiquement comme illustré à la figure 1.1.
Après les travaux fondateurs effectués par R. Kennedy, C. Cornell, et al., 1980; R. Kennedy and
Ravindra, 1984, l’estimation des courbes de fragilité sismique est maintenant généralement réal-
isée à l’aide de simulations numériques basées sur des modèles numériques de simulation (voir
par exemple Karim and Yamazaki, 2001; Kim and Shinozuka, 2004; Zentner, 2010). Cependant, les
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FIGURE D.1: Illustration d’une courbe de fragilité sismique.

paramètres mécaniques et matériaux de la structure sont affectés par des incertitudes provenant
de la variabilité intrinsèque à la conception des structures. De plus, les conditions aux limites
(par exemple, la fixation de la structure au support) sont très souvent incertaines en raison d’un
manque de connaissances et/ou de données. Ainsi, ces incertitudes peuvent affecter les courbes
de fragilité sismique de la structure.

Dans cette thèse, l’accent est mis sur la prise en compte des incertitudes qui entachent les
paramètres mécaniques d’une structure sur sa courbe de fragilité sismique, en utilisant le cadre
de quantification des incertitudes. Par conséquent, la principale problématique étudiée dans ce
manuscrit peut être énoncée comme suit.

Comment construire une méthodologie de quantification des incertitudes pour les
courbes de fragilité sismique des structures mécaniques ?

Cette problématique peut être décomposée en les questions suivantes :

Q1 - Comment propager les incertitudes des paramètres mécaniques dans les courbes de
fragilité sismique avec un temps de calcul raisonnable ?

Q2 - Comment répartir l’incertitude sur la courbe de fragilité sismique entre les différentes
sources d’incertitudes épistémiques ?

Q3 - Comment planifier les simulations numériques pour améliorer la précision
d’estimation des courbes de fragilité sismique et réduire le nombre de simulations
dans le même temps ?

Les deux questions Q1 et Q2 sont consacrées à l’adaptation du cadre général de quantifi-
cation des incertitudes aux études de sûreté sismique, et plus particulièrement aux courbes de
fragilité sismique qui sont des quantités clés pour les études probabilistes de sûreté sismique. La
dernière question Q3 est une problématique importante pour la quantification des incertitudes
dite "orientée-but". En effet, elle concerne la planification d’expérience du modèle de simulation
numérique pour estimer avec précision la quantité d’intérêt (ici la courbe de fragilité sismique).
Plusieurs objectifs scientifiques de cette thèse ainsi qu’un bref résumé de ce manuscrit sont énon-
cés dans la section suivante.
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Objectifs et plan

Les objectifs de cette thèse sont énumérés ci-dessous :

O1 Proposer une revue de l’état de l’art des différentes méthodes statistiques existantes pour
l’estimation des courbes de fragilité sismique dans le cadre des études probabilistes de sûreté
sismique;

O2 Développer une méthodologie pour prendre en compte les incertitudes épistémiques dans
les courbes de fragilité sismique avec des outils statistiques appropriés;

O3 Proposer des outils d’analyse de sensibilité adaptées aux courbes de fragilité sismique, en
tenant compte des incertitudes d’estimation de ces courbes;

O4 Proposer des plans d’expériences pour améliorer l’estimation des courbes de fragilité sis-
mique tout en limitant le nombres d’appels au code de simulation numérique;

O5 Appliquer les outils proposés à un modèle numérique réaliste d’un équipement de centrale
nucléaire.

En laissant de côté les chapitres d’introduction et de conclusion, le présent manuscrit est com-
posé de sept chapitres visant à réaliser les cinq objectifs scientifiques énoncés ci-dessus. Le con-
tenu de chaque chapitre est détaillé ci-dessous.

Chapitre 2 propose une brève revue des principales méthodes d’estimation statistique de la
courbe de fragilité sismique. La méthodologie d’estimation des courbes de fragilité sismique à
l’aide d’expériences numériques est également rappelée, depuis la génération de séismes artifi-
ciels jusqu’aux méthodes statistiques d’estimation des courbes de fragilité sismique.

Chapitre 3 présente une nouvelle méthodologie d’estimation des courbes de fragilité sismique
utilisant l’échantillonnage préférentiel afin d’améliorer leur précision d’estimation.

Chapter 4 présente un aperçu du cadre de quantification des incertitudes. Tout d’abord, les
notions fondamentales sont décrites, telles que le point de vue boîte noire, les différentes sources
d’incertitudes et leur modélisation probabiliste. Ensuite, une adaptation du cadre de quantifi-
cation des incertitudes au génie parasismique est proposée, tel qu’il soit adapté aux courbes de
fragilité sismique.

Chapitre 5 aborde le problème central de la construction de métamodèles de codes de calcul
de type “boîte noire”. En raison du coût de calcul de l’estimation des courbes de fragilité sismique,
le modèle numérique est remplacé par un modèle de substitution (dit métamodèle) utilisant des
méthodes statistiques. Le principal avantage est une estimation à moindre coût de la courbe de
fragilité sismique, mais elle est désormais entachée d’une incertitude de modèle. La métamod-
èlisation par processus Gaussien est alors développée dans ce chapitre, en raison de sa capacité à
proposer à la fois une prédiction et une quantification de l’incertitude sur ses prédictions.

Chapitre 6 présente une méthodologie d’analyse de sensibilité sur la courbe de fragilité sis-
mique. L’accent est mis sur le cadre plus spécifique de l’analyse de sensibilité globale (GSA en
anglais) qui vise à considérer le cadre probabiliste global sur les paramètres d’entrée du code de
calcul. Après une brève revue de l’état de l’art de l’analyse de sensibilité globale, deux indices de
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sensibilité globale sont proposés ainsi que leurs estimateurs. Une procédure numérique est détail-
lée pour prendre en compte l’incertitude provenant du métamodèle par processus Gaussien.

Chapitre 7 propose une procédure de planification séquentielle d’expériences basée sur un
processus Gaussien pour améliorer la précision de l’estimation de la courbe de fragilité sismique.
Après un bref rappel des techniques de réduction d’incertitude par étapes (SUR en anglais), une
stratégie SUR est ensuite développée pour l’estimation des courbes de fragilité sismique.

Chapitre 8 présente un cas-test représentatif de l’ingénierie nucléaire issu d’un programme ex-
périmental du Commissariat à l’énergie atomique et aux énergies alternatives. Il consiste en une maque-
tte d’un système de tuyauterie d’un réacteur français à eau pressurisée (REP). Dans ce chapitre, les
outils développés dans les trois chapitres précédents sont appliqués pour discuter de l’utilisation
de la méthodologie proposée sur un cas-test réel.

Les chapitres peuvent être organisés en deux groupes: d’une part, les chapitres 2 et 3 concer-
nent les méthodes classiques d’estimation des courbes de fragilité sismique et une amélioration
possible par la technique statistique de l’échantillonnage préférentiel, la question des incertitudes
épistémiques n’y est pas abordée. En revanche, les chapitres 4, 5, 6, 7 et 8 concernent la prise
en compte des incertitudes épistémiques sur la courbe de fragilité sismique et le développement
d’une méthodologie de quantification des incertitudes sur les courbes de fragilité sismique, ils
sont destinés à être lus dans l’ordre chronologique pour être cohérent avec les différents outils
mathématiques utilisés dans ces chapitres.

Par ailleurs, j’ai eu l’occasion de superviser le stage de fin d’études de six mois d’Antoine Van
Biesbroeck. Le sujet du stage concernait l’élicitation de distributions a priori pour l’estimation
bayésienne des courbes de fragilité sismique. Puisque son contenu du stage diffère du sujet prin-
cipal de cette thèse, son rapport de stage a été placé en Annexe C.

Publications et communications

Les contributions présentées dans ce manuscrit ont fait l’objet de publications et communica-
tions qui sont énumérées ci-dessous.

Jour. Pap. Gauchy, C., C. Feau, and J. Garnier (2021a). Importance sampling based active learning for
parametric seismic fragility curve estimation. DOI: 10.48550/ARXIV.2109.04323

Gauchy, C., C. Feau, and J. Garnier (2022c). Uncertainty quantification and global sensitivity
analysis of seismic fragility curves using kriging. DOI: 10.48550/ARXIV.2210.06266

Int. Conf. Gauchy, C., C. Feau, and J. Garnier (2022a). “Adaptive Importance Sampling for Seismic
Fragility Curves Estimation”. In: SIAM conference on Uncertainty Quantification 2022. Atlanta,
USA. (Présentation)

Nat. Conf. Gauchy, C., C. Feau, and J. Garnier (2020a). “Adaptive Importance Sampling for Seismic
Fragility Curves Estimation”. In: Mascot-num PhD days (MASCOT-NUM 2020). Grenoble,
France. (Poster)

Gauchy, C., C. Feau, and J. Garnier (2020b). “Adaptive Importance Sampling for Seismic
Fragility Curves Estimation”. In: 5ème École Thématique sur les Incertitudes en Calcul Scien-
tifique (ETICS 2020). Saint Pierre d’Oléron, France. (Poster)
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