
HAL Id: tel-04102832
https://theses.hal.science/tel-04102832

Submitted on 22 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Recruitment-Related Representations from
Graphs and Sequential Data

Jun Zhu

To cite this version:
Jun Zhu. Learning Recruitment-Related Representations from Graphs and Sequential Data. Artificial
Intelligence [cs.AI]. Université Paris-Saclay, 2023. English. �NNT : 2023UPAST046�. �tel-04102832�

https://theses.hal.science/tel-04102832
https://hal.archives-ouvertes.fr

T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N

T
:2

02
3U

PA
ST

04
6

Learning
Recruitment-Related Representations

from Graphs and Sequential Data
Apprentissage de la Représentation Liée au Recrutement

à partir de Graphes et de Données Séquentielles

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦573, interfaces : matériaux, systèmes, usages
(INTERFACES)

Spécialité de doctorat: Mathématiques appliquées
Graduate School : Sciences de l’ingénierie et des systèmes

Référent : CentraleSupélec

Thèse préparée dans l’unité de recherche MICS (Université Paris-Saclay, CentraleSupélec), sous la
direction de Céline HUDELOT, Professeure, et l’encadrement de Paul-Henry COURNÈDE, Professeur.

Thèse soutenue à Paris-Saclay, le 28 Mars 2023, par

Jun ZHU

Composition du jury
Marc AIGUIER Président & Examinateur
Professeur, Université Paris-Saclay
Lynda TAMINE-LECHANI Rapporteur & Examinatrice
Professeure, Université Toulouse-III-Paul-Sabatier
Julien VELCIN Rapporteur & Examinateur
Professeur, Université Lumière Lyon-II
Fragkiskos MALLIAROS Examinateur
Maître de conférences, Université Paris-Saclay

Titre: Apprentissage de la Représentation Liée au Recrutement à partir de Graphes et de Données
Séquentielles
Mots clés: Recrutement, Graphe, Apprentissage de Représentations, Traitement de la Langue Naturelle

Résumé: L’E-recrutement est devenu un outil de
recrutement essentiel dans la société moderne, fa-
cilitant le processus de recrutement et générant
une quantité significative de données sous dif-
férents formats. Afin de gérer et d’analyser ef-
ficacement ces données, l’industrie a besoin de
méthodes pour représenter ces données, car la
représentation des données est fondamentale pour
leur gestion et leur analyse. Inspirée par le suc-
cès de l’Intelligence Artificielle (IA) dans d’autres
domaines, cette thèse vise à exploiter l’IA pour
aider à l’apprentissage de la représentation de
données liées au recrutement.
Les données de recrutement peuvent être organ-
isées de manière explicite ou implicite en struc-
tures de graphe, telles que des taxonomies de com-
pétences prédéfinies et des graphes de transition
d’emploi construits à partir des expériences profes-
sionnelles. Malgré leur richesse en connaissances

normatives, ces données structurées graphique-
ment sont moins utilisées. Dans ce contexte, cette
thèse tente d’exploiter ces données de recrute-
ment structurées implicitement ou explicite-
ment pour améliorer les représentations ap-
prises liées au recrutement.
Plus précisément, dans le Chapitre 4, nous ap-
prenons des représentations de titres de postes à
partir de graphes de transition enrichis. (ii) Dans le
Chapitre 5, nous apprenons des représentations de
compétences à partir d’un graphe de co-occurrence
de compétences construit et d’une taxonomie de
compétences prédéfinie. (iii) Dans le Chapitre 6,
nous apprenons la préférence professionnelle d’un
demandeur d’emploi à partir de séquences de de-
mandes historiques afin de prédire le prochain em-
ploi le plus probable auquel le demandeur d’emploi
pourrait postuler.

Title: Learning Recruitment-Related Representation from Graphs and Sequential Data
Keywords: Recruitment, Representation Learning, Graph, Natural Language Processing

Abstract: E-recruitment has emerged as a crucial
recruitment tool in modern society, facilitating the
recruitment process and generating a significant
amount of digital data in various formats. In order
to manage and analyse this data effectively, the in-
dustry requires suitable methods to represent this
data, as data representation is the basis for data
management and analysis. Inspired by the success
of Artificial Intelligence (AI) in other fields, this
thesis aims to leverage AI to help recruitment-
related data representation learning. Recruit-
ment data can be organised explicitly or implic-
itly into graph structures, such as predefined skill
taxonomies and job transition graphs built from
work experiences. Despite containing a wealth of

normative knowledge and additional information,
these graphically structured data are less utilised.
In such context, this thesis attempts to exploit
these implicit or explicit structured recruit-
ment data to improve learned recruitment-
related representations.
Specifically, in Chapter 4, we learn job title rep-
resentations from enriched job transition graphs
built on work histories. (ii) In Chapter 5, we learn
skill representations from a built skill co-occurrence
graph and a predefined skill taxonomy. (iii) In
Chapter 6, we learn the professional preference of a
job seeker from historical job application sequences
in order to predict the next most likely job that the
job seeker might apply for.

Université Paris-Saclay

Doctoral Thesis

Learning Recruitment-Related
Representations from Graphs and

Sequential Data

Author:
Jun Zhu

Supervisor:
Prof. Céline Hudelot

A thesis was prepared under the supervision of Professor Céline HUDELOT

within the

Mathematics and Computer Science Laboratory for Complexity and Systems
CentraleSupélec, Université Paris-Saclay

Mars 28, 2023

https://www.universite-paris-saclay.fr
https://zhujun81.github.io/
https://scholar.google.fr/citations?user=gFlAh6MAAAAJ&hl=fr
https://www.centralesupelec.fr/fr/laboratoire-mathematiques-et-informatique-pour-la-complexite-et-les-systemes-mics-ea-4037
https://www.centralesupelec.fr
https://www.universite-paris-saclay.fr

iii

Abstract

E-recruitment has emerged as a crucial recruitment tool inmodern society, facilitating the recruitment
process and generating a significant amount of digital data in various formats. In order to manage
and analyse this data effectively, the industry requires suitable methods to represent this data, as
data representation is the basis for data management and analysis. Inspired by the success of Artifi-
cial Intelligence (AI) in other fields, this thesis aims to leverage AI to help recruitment-related data
representation learning.
Recruitment data can be organised explicitly or implicitly into graph structures, such as predefined
skill taxonomies and job transition graphs built fromwork experiences. Despite containing awealth of
normative knowledge and additional information, these graphically structured data are less utilised.
In such context, this thesis attempts to exploit these implicit or explicit structured recruitment data
to improve learned recruitment-related representations.
Specifically, in Chapter 4, we learn job title representations from enriched job transition graphs built
on work histories. (ii) In Chapter 5, we learn skill representations from a built skill co-occurrence
graph and a predefined skill taxonomy. (iii) In Chapter 6, we learn the professional preference of a
job seeker from historical job application sequences in order to predict the next most likely job that
the job seeker might apply for.

Résumé

L’E-recrutement est devenu un outil de recrutement essentiel dans la société moderne, facilitant le
processus de recrutement et générant une quantité significative de données sous différents formats.
Afin de gérer et d’analyser efficacement ces données, l’industrie a besoin de méthodes pour représen-
ter ces données, car la représentation des données est fondamentale pour leur gestion et leur analyse.
Inspirée par le succès de l’Intelligence Artificielle (IA) dans d’autres domaines, cette thèse vise à
exploiter l’IA pour aider à l’apprentissage de la représentation de données liées au recrutement.
Les données de recrutement peuvent être organisées demanière explicite ou implicite en structures de
graphe, telles que des taxonomies de compétences prédéfinies et des graphes de transition d’emploi
construits à partir des expériences professionnelles. Malgré leur richesse en connaissances norma-
tives, ces données structurées graphiquement sont moins utilisées. Dans ce contexte, cette thèse tente
d’exploiter ces données de recrutement structurées implicitement ou explicitement pour améliorer
les représentations apprises liées au recrutement.
Plus précisément, dans le Chapitre 4, nous apprenons des représentations de titres de postes à partir
de graphes de transition enrichis. (ii) Dans le Chapitre 5, nous apprenons des représentations de
compétences à partir d’un graphe de co-occurrence de compétences construit et d’une taxonomie
de compétences prédéfinie. (iii) Dans le Chapitre 6, nous apprenons la préférence professionnelle
d’un demandeur d’emploi à partir de séquences de demandes historiques afin de prédire le prochain
emploi le plus probable auquel le demandeur d’emploi pourrait postuler.

v

A Short Introduction in French

Aujourd’hui, la technologie de l’Intelligence Artificielle, en particulier l’émergence de l’apprentissage profond,
a apporté des changements révolutionnaires dans de nombreux domaines tels que l’éducation, la santé, le
commerce, les transports et le divertissement. Elle est considérée comme une force puissante capable de
transformer nos vies quotidiennes tout en augmentant l’efficacité globale de la société.
Avec le développement continu de la société, la concurrence pour les ressources est devenue de plus en plus
féroce, et beaucoup d’entre elles sont centrées sur les ressources humaines. Le talent que possède un pays,
une institution ou une entreprise détermine sa position dans la compétition, et l’acquisition de talents doit se
faire par le biais d’un processus de recrutement. Le recrutement est donc important pour le développement
de l’ensemble de l’entreprise.
À cette fin, l’objectif global de cette thèse est d’étudier comment l’IA pilotée par les données peut
aider et améliorer le domaine du recrutement.

L’IA Ouvre une Nouvelle Ère pour le Recrutement: Le domaine du recrutement a connu différentes
périodes au fil de l’évolution de la science et de la technologie. Aujourd’hui, l’ère de l’IA, comme d’autres
domaines, s’est progressivement renforcée avec le développement de la technologie de l’IA. Elle s’appuie sur
les développements de l’ère numérique et utilise la technologie de l’IA pour améliorer les systèmes.
Avec l’aide de l’IA, le recrutement électronique est encore plus puissant. L’IA offre de nouvelles possibilités
à l’ensemble du domaine du recrutement, mais en raison de la particularité de ce domaine, certains défis
ont été rencontrés dans la mise en œuvre réelle, qui seront examinés dans la section 1.3. Les experts de
l’industrie, les chercheurs et les spécialistes de l’Intelligence Artificielle ont encore beaucoup à explorer.
Par conséquent, la manière d’appliquer correctement la technologie de l’IA dans le système de
recrutement pour le rendre plus efficace est un sujet d’importance pratique dans la réforme du
domaine du recrutement, et c’est également la motivation de recherche de cette thèse.

Randstad Veut un Système de Recrutement basé sur l’IA: Randstad est le leader mondial des services
de ressources humaines. En tant que pionnier du secteur, Randstad a déjà expérimenté les technologies
de l’IA à plusieurs étapes du processus de recrutement, telles que la sélection des CV, l’engagement des
candidats, les entretiens avec les candidats et le développement de carrière.
Randstad soutient également la recherche universitaire dans l’espoir d’améliorer l’efficacité du recrutement
en améliorant les méthodes existantes ou en développant de nouveaux outils avancés. C’est pourquoi cette
thèse est financée par la chaire d’enseignement et de recherche «L’Intelligence Artificielle au service du
recrutement»,1 une collaboration entre Randstad France et CentraleSupélec. Cette chaire vise à améliorer
et à faciliter le processus de recrutement en tirant parti des avancées et des progrès dans le domaine de
l’IA et des données de recrutement riches. En particulier, cette thèse se concentre sur l’apprentissage de
la représentation des données de recrutement, c’est-à-dire la représentation des talents, des emplois et
des compétences, afin d’améliorer les tâches en aval telles que la classification et la recommandation des
emplois ou des compétences.

Les Défis Posés par les Données de Recrutement: L’utilisation généralisée du recrutement en ligne a
entraîné une explosion massive des données numériques sur le recrutement. Ces données sont diverses et
complexes et posent de nombreux défis scientifiques:

1https://www.centralesupelec.fr/fr/randstad-et-centralesupelec-sassocient-pour-creer-une-chaire-sur-lintellig
ence-artificielle-et-le

https://www.centralesupelec.fr/fr/randstad-et-centralesupelec-sassocient-pour-creer-une-chaire-sur-lintelligence-artificielle-et-le
https://www.centralesupelec.fr/fr/randstad-et-centralesupelec-sassocient-pour-creer-une-chaire-sur-lintelligence-artificielle-et-le

vi

• Défi 1: Manque de données annotées supervisées. Pour des raisons de confidentialité, il y a
relativement moins d’ensembles de données annotées ouvertes dans le domaine du recrutement que
dans d’autres domaines [Junhua Liu et al., 2019]. Ce manque d’ensembles de données annotées
accessibles au public est problématique, car la plupart des approches de pointe axées sur les données
de l’IA à haute performance reposent principalement sur un paradigme d’apprentissage supervisé, qui
suppose la disponibilité de vastes ensembles de données annotées.

• Défi 2: Les données changent constamment. Les données de recrutement sont constamment
mises à jour et itérées. La plupart des modèles d’IA actuels ne s’adaptent pas à ces variations de
données. En effet, ils sont principalement basés sur l’hypothèse d’une distribution i.i.d. entre les
données d’apprentissage et les données de production.

• Défi 3: Faire bon usage des données implicitement ou explicitement structurées. Les données
de recrutement contiennent des données structurées cachées, principalement des graphes (réseaux),
qui contiennent de nombreuses informations supplémentaires. Toutefois, ces informations supplé-
mentaires sont rarement remarquées. Outre ces informations graphiques cachées, le domaine du
recrutement contient également des données prédéfinies et bien structurées, telles que la taxonomie
des compétences et des professions. Ces taxonomies contiennent souvent beaucoup de connaissances
normatives, mais aucun travail ne les a encore utilisées, que ce soit directement ou indirectement.
Par conséquent, l’utilisation de ces données implicitement ou explicitement structurées est un sujet
stimulant et prometteur.

En conclusion, les défis mentionnés ci-dessus sont principalement dus à la particularité des données de
recrutement. Dans cette thèse, nous tentons de relever partiellement ces défis. En outre, nous util-
isons des données de recrutement structurées implicites ou explicites (graphes) pour améliorer
les représentations apprises liées au recrutement afin de combler cette lacune de la recherche.

Tâches Traitées dans cette Thèse: Les tâches que nous abordons dans cette thèse sont:

• Apprendre la représentation des titres d’emploi à partir des graphes(Chapitre 4): apprendre
des représentations de titres de postes à partir de graphes de transition enrichis.

• Apprendre la représentation des compétences à l’aide d’un graphe hiérarchique (Chapitre 5):
apprendre des représentations de compétences à partir d’un graphe de co-occurrence de compétences
construit et d’une taxonomie de compétences prédéfinie.

• Prédiction de la prochaine demande d’emploi à partir de séquences de demandes d’emploi
(Chapitre 6): apprendre la préférence professionnelle d’un demandeur d’emploi à partir de séquences
de demandes historiques afin de prédire le prochain emploi le plus probable auquel le demandeur
d’emploi pourrait postuler.

Organisation de la Thèse: Le Chapitre 2 présente une étude des travaux connexes dans le domaine du
recrutement. Le Chapitre 3 présente les connaissances préliminaires qui seront utilisées dans cette thèse,
y compris les bases de l’intégration des graphes et de la recommandation séquentielle, ainsi que certains
travaux représentatifs qui seront utilisés comme lignes de base dans les expériences. Dans le Chapitre 4,
nous présentons notre méthode proposée pour l’apprentissage de la représentation des titres d’emploi. Le
Chapitre 5 traite de l’efficacité de la taxonomie des compétences pour l’apprentissage de la représentation
des compétences. Le Chapitre 6 présente notre méthode pour le problème de prédiction de la prochaine
demande d’emploi. Pour les Chapitres 4, 5 et 6, nous présenterons les expériences et l’analyse des résultats.
Enfin, dans le Chapitre 7, nous conclurons notre travail et envisagerons les travaux futurs.

vii

Acknowledgements
Some words:

Three days before my defence, I wrote the following words, not feeling very calm at the
time. However, aside from these words, all the gratitude expressed below is sincere and
heartfelt.

As Howard once said, “I guess the sad truth is not everyone will accomplish something great.
Some of us may just have to find meaning in the little moments that make up life.”

While this doctoral thesismay not earnme any awards, it represents a small yet significant
moment that makes up my life, and for that, it is undoubtedly meaningful. The giver of
this meaning is not only myself, but also all the people mentioned below (If anyone is not
mentioned, it is not because of my poor memory, but rather because my gratitude towards
you is so great that it cannot fit on these few pages). The names are sorted alphabetically,
without any preference.

To those who contributed to the existence of this thesis,
To Céline Hudelot, in addition to my deep gratitude towards her, another emotion I feel

is admiration. This admiration came when, after making certain revision to a paper, she said
to me, "Jun, I need to return to my role as a mother." She manages the balance between her
personal and professional life perfectly, and she excels at both. For me, she is a great role
model. I am very grateful to her for both her academic assistance and the spiritual strength
she has given me.

To Paul-Henry Cournède, he is my “Bo Le” (a term commonly used in Chinese culture),
which means that he is the person who appreciates me and is willing to give me opportuni-
ties. I am very grateful to him for his trust in me, for providing the opportunity to pursuemy
PhD in the MICS laboratory, and for all the help I have received during this doctoral period.

To Lynda Tamine-Lechani and Julien Velcin, I would like to express my gratitude to them
for accepting to be my rapporteurs. They provided very detailed evaluations and made very
constructive comments. To Marc Aiguier, Armelle Brun, and Fragkiskos Malliaros, I would
also like to thank them for accepting to be my jury members, despite their busy schedules.
Their valuable feedback and constructive suggestions have inspired me to think in new and
innovative ways, and have greatly enriched the quality of my research.

To Gautier Viaud, I would like to thank him for his timely help (which was only two
metres away) at the beginning of my PhD and for his meaningful suggestions after each
discussion. To Hélène Theuré, I would like to thank her for her valuable comments and sug-
gestions during our regular meetings. I also extend my gratitude to the Randstad corporate
research chair for providing the financial support that made this thesis possible.

To those who created a comfortable environment for this thesis,

viii

To Vincent Mousseau, I would like to thank him for patiently engaging in two conversa-
tions with me and for his warm and friendly greetings every time we met. I am thankful
to the highly competent administrative and technical staff of the school, who helped me on
many occasions with various administrative tasks and technical problems, allowing me to
dedicate my time and efforts to my research. Thanks to Dany, Fabienne, Guillaume, Jana,
Raphaëlle and Suzanne for everything they have done for me.

To François, Marc, Salim, Thomas, Victor B., Victor P., and Yassine, I would like to thank
them for every discussion at the end of seminars and group meetings. Marc, thank you for
showing me the ship-like building. Salim, thank you for working together late into the night
and for your great coding skills. Yassine, thank you for your always-available help and the
many warm conversations we’ve had.

To all colleagues who make the laboratory full of vitality, Aaron, Agathe, Andreas, An-
tonin, Brice, Elvire, Gautier, Gurvan, Hakim, Jad, Joseph, Laura, Leo, Lily, Ludovic, Mah-
moud, Maria, Marin, Martin, Mathilde, Othmane, Paul, Quentin, Romain, Sarah, Stefania,
Stergios, Sylvain, Véronique, Walid, Xiangtuo, Yoann, and anyone I may have missed. I
would like to thank them for their kindness towards me. Thank them for the happy time
we had in Corfu, playing Spikeball, eating crepes, playing codenames, bouldering, going to
restaurants, and all the other great memories. I would like to express my gratitude to each of
you personally, but I’m afraid I must cut this short and prepare my slides. Please be assured
that when we next meet I will be sure to pass on my thanks.

To all friends who witnessed this thesis,
To Patrick and Zahra, thank you for making me feel at home in that lovely house on a

certain road in Orsay, France. You are my family in France. I feel so lucky to have met you
in 2016, and I hope my wish to become your “daughter” has come true. Patrik, every one
of your dessert ideas is a success. Zahra, every word you say warms my heart. To Thiago,
thank you for taking photos and playing Switch with me every summer.

To Brigitte, thank you for sharing your beautiful clothes and delicious meals with me. To
Christophe, thank you for making me emotional as we edited my cover letter together. To
Diane, thank you for each of your carefully prepared gifts. ToWeiguo, thank you for helping
mewithmathematics and English. Thanks to Charles, Gustave and Plume for their company.
I hope Charles will be happy in his next life.

ToAntonin, Brice,Mathilde, andMyriam, thank you for the enjoyable time spent together,
whether it was trying new pastries, drinking bubble tea, or exploring new restaurants. An-
tonin, thank you for your discussion on the cultural differences between China and France.
Brice, thank you for driving me to the Guichet station and practicing Chinese with me so
that I could improve. Mathilde, thank you for the lavender T-shirt and the bunny with my
name. Looking forward to our trip to China! Myriam, thanks for your company in Lyon and
for being so warm.

To Hepeng, Jiannan, and Lingzhou, thank you for all the delicacies I enjoyed with them
in Orsay, Barcelona, and Changsha. A special thanks to Jiannan for always being there. To

ix

Li, Peipei, and Shanshan, thank you for all the happy times we spent together shopping,
taking photos and enjoying Shan Shan’s desserts. To Boyang, Chao, Giuseppe, Jian, Siqi, Nan
and Xuewen, thank you all for the BBQ and Restaurant Royal des Ulis. To Chaochao, Jiao,
Lei, Mia, Peng, Sizhuo, Tao, Weihan, and Xi, thank you for your willingness to share your
knowledge and experience, providewords of encouragement, and take on the important role
of belaying each other. A special thanks to Lei for the wonderful yoga session that helped
me calm down.

To Dan, Nan, Rui, Sheng, Xiaoyan and Yang, thank you the incredible memories we cre-
ated together on our travels and bouldering adventures. And a special thanks to Dan for her
amazing cooking and hospitality. To Chenmin and Jiao, thank you for your warm invitation
and for sharing your interesting views. To Changzhen, Chenlin, thank you for your helpwith
mathematics. To Ruiqing and Zheng, thank you for includingme in the research project, and
a special thanks to Zheng for helping me with my job search."

To my family who are proud of me, with or without this thesis,
To my family, thank you for always being proud of me and for providing a healthy envi-

ronment for me to grow up in. A special thanks to my grandpa and grandma on the other
side of the world, I miss you so much!

To Weichao, who is another moment of my life besides this thesis:
YES, LIFE IS BETTER WITH A DOG.

To my parents, who gave birth to the author of this thesis,
My parents, Guozhong Zhu and Xilu Guan, are my most important asset and greatest

source of pride. Your unconditional love and support have enabledme to realize my dreams,
including my Ph.D. journey. You are simply the best, and I will always love you.

xi

Contents

Acknowledgements vii

List of Abbreviations xxiii

1 Introduction 1
1.1 Context and Motivation . 1

1.1.1 AI Opens up a New Era for Recruitment . 2
1.1.2 Industrial Context: Randstad Wants an AI Recruitment System 5
1.1.3 Why Deep Learning? . 6

1.2 Available Data in the Recruitment Field . 7
1.3 Challenges Posed by Recruitment Data . 9
1.4 Tasks Handled in this Thesis . 11

1.4.1 Job Title Representation Learning from Graphs 11
1.4.2 Skill Representation Learning by Leveraging Hierarchical Graph 13
1.4.3 Next-Application Prediction from Job Application Sequences 14

1.5 Thesis Organization . 16

2 Related Works in the Recruitment Field 17
2.1 Terminology and Notation . 18
2.2 Skill Oriented . 19

2.2.1 Skill Extraction . 20
2.2.2 Skill Analysis . 20
2.2.3 Skill Representation Learning . 21
2.2.4 Available Skill Datasets and Tools . 21

2.3 Job Title Oriented . 22
2.3.1 Job Title Representation Learning . 22
2.3.2 Job Title Classification . 23
2.3.3 Job Title Analysis . 24
2.3.4 Available Job/Job Title Datasets and Tools . 24

2.4 Career Path Oriented . 25
2.4.1 Job Mobility Prediction . 25
2.4.2 Career Path Analysis . 26
2.4.3 Available Resume/Career Path Datasets and Tools 26

2.5 Matching Records Oriented . 27
2.5.1 Person-Job Fit . 27

xii

2.5.2 Available Person-Job Matching Datasets and Tools 29
2.6 Others . 30
2.7 Summary and Positioning . 32

3 Preliminary 35
3.1 Review of Graph Embedding Models . 35

3.1.1 Basic Concepts . 36
3.1.2 Graph Embedding . 37
3.1.3 Representative Node-Level Graph Embedding Models 39

Homogeneous Graph Embedding . 40
Heterogeneous Graph Embedding . 47

3.2 Related Works on Recommendation Model . 53
3.2.1 Background on Recommender Systems . 53

Recommendation Problem Formulation . 53
Collaborative Filtering . 54
Content-Based . 55
Hybrid Filtering . 56

3.2.2 Sequential Recommendation Models . 56
Sequential Recommendation Formulation . 57
Traditional Sequential Recommendation Methods 58
Deep Learning Based Sequential Recommendation Methods 60
Evaluation Metrics . 68

4 Job Title Representation Learning from Graphs 71
4.1 Motivation . 71
4.2 Research Scope . 73
4.3 Learning from Job-Transition Graph: an Overview . 73
4.4 Our Method: Integrating Job Knowledge to Enrich Representations 78

4.4.1 Job Title Composition . 78
4.4.2 Methodology . 78

4.5 Application on Two Real Recruitment Datasets . 80
4.5.1 Datasets . 81
4.5.2 Tag Generation . 82
4.5.3 Experimental Settings . 83

4.6 Results . 87
4.6.1 Job Title Classification . 87
4.6.2 Next-Job Prediction . 88
4.6.3 Visualization . 88

4.7 Conclusion and Perspectives . 89

xiii

5 Skill Representation Learning by Leveraging Hierarchical Graph 91
5.1 Motivation . 91
5.2 Research Scope . 92
5.3 Our objective: Preserving Pairwise Proximity and Community Hierarchy 92

5.3.1 Problem Formulation . 93
5.3.2 Review of Community Preserving Graph Embedding Models 94
5.3.3 Review of Hierarchical Community Structure Preserving Graph Embedding Models . 97

5.4 Benchmark Graph Embeddings for Skill Representation Learning 104
5.4.1 Datasets . 104
5.4.2 Dataset Analysis . 105
5.4.3 Experimental Settings . 107

5.5 Results . 109
5.5.1 Occupation Classification . 109
5.5.2 Skill Category Granularity . 110

5.6 Conclusion and Perspectives . 110

6 Next-Application Prediction from Job Application Sequences 113
6.1 Motivation . 113
6.2 Research Scope . 115
6.3 Proposed Method: the PANAP Framework . 116

6.3.1 Problem Formulation . 116
6.3.2 Proposed Model . 117

Job Content Representation . 118
Job Seeker Representation . 118
Next-Application Predictor . 119
Negative Sampling Strategies . 120

6.4 Experiments . 121
6.4.1 Datasets . 121
6.4.2 Experimental Settings . 122

6.5 Results . 125
6.5.1 Next-Application Prediction . 125
6.5.2 Effectiveness of Personalized Attention . 126
6.5.3 Effectiveness of Different Features . 127
6.5.4 Negative Sampling Analysis . 128
6.5.5 Number of Negative Samples . 130
6.5.6 Effectiveness of Different Text Encoders . 130
6.5.7 Effectiveness of Different Sections of Job Content 132

6.6 Conclusion and Perspectives . 133

7 Conclusion and Perspectives 135

xiv

A Supplementary Results 139
A.1 Job Title Representation Learning from Graphs . 139
A.2 Skill Representation Learning by Leveraging Hierarchical Graph 139
A.3 Next-Application Prediction from Job Application Sequences 139

B Dataset and Tool Description 141
B.1 Dataset . 141

B.1.1 CareerBuilder12 . 141
Job Title Label Assignment . 141

B.1.2 Randstad . 141
Parsed Resume . 141

B.1.3 IPOD . 142
B.2 Terminology resource . 143

B.2.1 ISCO 2008 . 143
B.2.2 SOC 2018 . 143
B.2.3 O*NET 2019 . 144
B.2.4 ESCO 2017 . 144

ESCO_K . 146
B.2.5 ROME . 146

B.3 Tool . 147
B.3.1 O*NET-SOC AutoCoder . 147

B.4 Experimental Datasets . 147
B.4.1 Chapter 4: Skill Representation Learning . 147

C Feature Extraction Methods 149
C.1 Classical Methods . 149

C.1.1 Categorical Word Representation . 149
C.1.2 Weighted Word Representation . 150

C.2 Representation Learning Methods . 151
C.2.1 Non-Contextual Word Representation . 151
C.2.2 Contextual Word Representation . 152

D Preliminary of Graph Embedding 155
D.1 Skip-Gram . 155

D.1.1 Language Modeling with Skip-Gram . 155
D.1.2 Negative Sampling . 156
D.1.3 Hierarchical Softmax . 156

E Neural Network Architecture 157
E.1 Multilayer Perceptron . 157
E.2 Convolutiona Neural Network . 158
E.3 Recurrent Neural Network . 158

E.3.1 Long Short Term Memory . 159

xv

E.3.2 Gated Recurrent Unit . 160

F Attention Mechanism 163
F.1 Attention . 163
F.2 Self-Attention . 165

Bibliography 167

xvii

List of Figures

1.1 The recruitment procedure. 2
1.2 Resume and job posting templates. 8
1.3 Example of Job-Transition-Tag Graph. 12
1.4 The scene where the skill appears. 13
1.5 Illustration of Next-job application prediction task. 15

2.1 Different types of information processed in recruitment related works. 17
2.2 Illustration of Person-Job Fit task. 27

3.1 Examples of graphs. 35
3.2 Example of homogeneous graph. 37
3.3 Example of heterogeneous graph. 37
3.4 Random walk generation process in Node2Vec. 42
3.5 Example of the first- and second-order structures. 42
3.6 Example of a job transition heterogeneous network. 48
3.7 Skip-Gram architectures of metapath2vec and metapath2vec++. 50
3.8 Node update process of RGCN. 51
3.9 Node-level and semantic-level aggregating process of HAN. 51
3.10 Two types of memory-based collaborative filtering. 55
3.11 GRU4Rec architecture. 61
3.12 The session-parallel mini-batch in GRU4Rec. 61
3.13 Caser architecture. 64
3.14 SASRec architecture. 66
3.15 The Transformer layer used in BERT4Rec. 67
3.16 BERT4Rec architecture. 67
3.17 SR-GNN architecture. 67

4.1 The scene where the job title appears. 71
4.2 Job-Transition Graph built from working histories of four talents. 74
4.3 Examples of four types of graphs. 79
4.4 Example of SOC structure. 81
4.5 Example of parsed resume in Randstad dataset. 82
4.6 Example of the taxonomy used in Randstad dataset. 82
4.7 Word frequency distribution of CareerBuilder12 and Randstad datasets. 83
4.8 Visualization of learned job title representations. 89

xviii

5.1 Example of skill taxonomy and skill co-occurrence graph. 94
5.2 Examples of communities. 95
5.3 The framework of CommDGI . 96
5.4 Illustration of a 4-level hierarchical graph and communities. 98
5.5 The embedding generation process of LouvainNE. 98
5.6 Spherical galaxy model used in GNE. 99
5.7 The structure of GNE. 99
5.8 The community hierarchy and subspace hierarchy in SpaceNE. 101
5.9 The hierarchical message passing scheme of HC-GNN. 102
5.10 A knowledge sub-tree of skill taxonomy in ESCO. 105
5.11 Neighborhood statistics for ESCO_K. 106

6.1 Illustration of the Next-Application Prediction problem. 117
6.2 The framework of the proposed PANAP. 117
6.3 Relationship between job seeker location and the applied job location. 122
6.4 Top10 cities and Top10 states. 122
6.5 Two variants of PANAP. 124
6.6 Two job application sequences with attention weights. 126
6.7 Visualization of career preference representations of job seeker. 128
6.8 Example of negative sample sampling without regard to “location”. 129
6.9 Performance comparison of different number of negative samples. 130
6.10 Visualization of job representations obtained by different text encoders. 131

B.1 Label distributions (raw), where the red line represents the average value. 142
B.2 Label distributions (filtered), where the red line represents the average value. 142
B.3 Example of SOC structure. 143
B.4 Sample of occupation taxonomy in ESCO 2017. 144
B.5 Illustration of occupation groups and occupations in ESCO 2017. 145
B.6 Illustration of occupation group and occupation in ROME. 146
B.7 Neighborhood statistics for ESCO. 147
B.8 Neighborhood statistics for ROME. 148

C.1 Example of One-Hot encoding. 150
C.2 Example of BoW encoding. 150
C.3 Two structure of Word2Vec. 151
C.4 ELMo architecture. 153
C.5 OpenAI GPT architecture. 153

E.1 The architecture of MLP. 157
E.2 The architecture of RNN. 158
E.3 The different RNN types. 159

F.1 The framework of Encoder-Decoder structure. 163
F.2 Example of sentence translation. 164

xix

F.3 Example of self-attention. 165

xxi

List of Tables

2.1 Categorization of recruitment-related works. 19
2.2 Summary of available skill datasets and tools. 21
2.3 Summary of available job/job title datasets and tools. 24
2.4 Summary of available resume/career path datasets and tools. 26
2.5 Summary of works related to Person-Job Fit . 29
2.6 Summary of available person-job matching datasets and tools. 29
2.7 Summary of data used in recruitment-related works. 30

3.1 Mathematical notations used in Review of Graph Embedding Models. 36
3.2 Categorization of graph embedding works. 40
3.3 Summary of unsupervised homogeneous embedding methods. 44
3.4 Summary of semi-supervised homogeneous graph embedding methods. 47
3.5 Summary of unsupervised heterogeneous graph embedding methods. 50
3.6 Summary of semi-supervised heterogeneous graph embedding methods. 52
3.7 Mathematical notations used in Related Works on Recommendation Model. 53
3.8 Summary of representative DL-based sequential recommendation methods. 68

4.1 Mathematical notations used in Chapter 4. 74
4.2 Summary of graph-based job title representation learning methods. 77
4.3 Dataset statistics of Chapter 4. 84
4.4 Job title classification results. 87
4.5 Next-job prediction results. 88

5.1 Mathematical notations used in Chapter 5. 93
5.2 Comparison of community/hierarchical community preserving graph embedding models. . . 103
5.3 Dataset statistics of Chapter 5. 105
5.4 Neighborhood statistics of skill co-occurrence graph. 105
5.5 Graph modularity based on skill taxonomy . 106
5.6 Graph modularity based obtained by Louvain . 106
5.7 Top 10 common skills. 107
5.8 The detailed occupation categories. 109
5.9 Occupation classification results. 110
5.10 Different skill category granularity. 110

6.1 Mathematical notations used in Chapter 6. 116
6.2 Dataset statistics of Chapter 6. 121

xxii

6.3 A quick review of the evaluation metrics used in Next-Application Prediction. 125
6.4 Next-application prediction results. 126
6.5 Performance comparison of different attention mechanisms. 126
6.6 Performance comparison of different feature combinations. 127
6.7 Performance comparison of different negative sampling strategies. 127
6.8 Comparison of negative sampling strategy by classification task. 130
6.9 Performance comparison of different text encoders. 131
6.10 Dataset statistics of CB12_d. 132
6.11 Performance comparison of different job content sections. 133

A.1 Best-performing hyperparameter settings. 139

B.1 Dataset statistics of parsed resumes. 142
B.2 Summary of all terminology resources. 143

xxiii

List of Abbreviations

AI Artificial Intelligence.
AR Association Rule.

BERT Bidirectional Encoder Representations from Trans-
formers.

BiGRU Bi-directional Gated Recurrent Unit.
BiLSTM Bi-directional Long Short Term Memory.
BoW Bag-of-Words.
BPR Bayesian Personalized Ranking.

CBOW Continuous Bag Of Words.
CNN Convolutional Neural Network.
CNNs Convolutional Neural Networks.
CommDGI Community Deep Graph Infomax.
CV Computer Vision.

DANN Domain Adversarial Neural Networks.
DGI Deep Graph Infomax.
DL Deep Learning.
DM Data Mining.
DNN Deep Neural Network.
DNNs Deep Neural Networks.
DSSM Deep Structured Semantic Model.

ELMo Embedding from Language Models.
ESCO European Skills, Competences, Qualifications and

Occupations.

FC Fully-Connected.

GAL Graph Attentional Layer.
GAN Generative Adversarial Network.
GAT Graph Attention Network.
GCN Graph Convolutional Network.
GloVe Global Vectors.
GNN Graph Neural Network.

xxiv

GNNs Graph Neural Networks.
GRN Graph Recurrent Network.
GRU Gated Recurrent Unit.
GRU4Rec Gated Recurrent Unit network for Recommendation.

HetG Heterogeneous Graph.
HetGs Heterogeneous Graphs.
HomG Homogeneous Graph.
HomGs Homogeneous Graphs.
HR Human Resource.

IKNN Item-based K-Nearest Neighbors.
IR Information Retrieval.
ISCO International Standard Classification of Occupa-

tions.

JD Job Description.

KB Knowledge-Based.
KNN K-Nearest Neighbors.

LDA Latent Dirichlet Allocation.
LINE Large-scale Information Network Embedding.
LSTM Long Short Term Memory.

M-NMF Modularized Nonnegative Matrix Factorization.
MC Markov Chain.
MF Matrix Factorization.
ML Machine Learning.
MLP Multilayer Perceptron.
MRR Mean Reciprocal Rank.

NDCG Normalized Discounted Cumulative Gain.
NER Named Entity Recognition.
NLP Natural Language Processing.
NN Neural Network.
NNs Neural Networks.

O*NET Occupational Information Network.

POS Part Of Speech.

RGCN Relational Graph Convolutional Network.

xxv

RNN Recurrent Neural Network.
RNNs Recurrent Neural Networks.
ROME Répertoire Opérationnel des Métiers et des Emplois.

SG Skip-Gram.
SGD Stochastic Gradient Descent.
SKNN Session-based K-Nearest Neighbors.
SNN Siamese Neural Network.
SOC Standard Occupation Classification.

TF Term Frequency.
TF-IDF Term Frequency Inverse Document Frequency.

1

Chapter 1

Introduction

1.1 Context and Motivation
Today, Artificial Intelligence (AI) technology, especially the emergence of Deep Learning (DL), has
brought revolutionary changes to many fields, such as education, health, commerce, transportation,
and entertainment. It is seen as a powerful force that can transform our daily lives while increasing the
overall efficiency of society. For example, education applications [Singh et al., 2017; Nie, Brunskill, and
Piech, 2021] use AI technology to automatically grade assignments, allowing teachers to spend more
time instructing students. E-commerce [Smith and Linden, 2017; Jizhe Wang et al., 2018] is equipped
with AI technology to improve the quality of product recommendations, thereby increasing revenue and
improving user satisfaction. Healthcare organizations [McKinney et al., 2020] develop AI tool to help
doctors detect cancer so patients can get timely treatment. Therefore, AI technology has attracted
considerable interest in many research fields such as Computer Vision (CV) and Natural Language
Processing (NLP), and various industries urgently need to implement this high-end technology and
integrate it with the market.

With the continuous development of society, the competition for resources has become increasingly
fierce, many of which are centered on human resources. The talents possessed by a country, an
institution, or an enterprise determine its position in the competition, and talent acquisition needs to
be done through a recruitment process. Therefore, recruitment is significant for the development of
the whole society.

The global aim of this thesis is to investigate how data-driven AI can help and
improve the recruitment domain.

Aim of This Thesis

In the following, we first explain the context and motivation of this thesis.

2 Chapter 1. Introduction

1.1.1 AI Opens up a New Era for Recruitment
Recruitment is the whole process of recruiting talent for vacancies, which can be generally divided
into five steps,1 including (i) Recruitment Planning, (ii) Submit Resume/CV, (iii) Screening and
Shortlisting, (iv) Interview and Assessment and (v) Offer Made, as shown in Figure 1.1.

Recruitment Planning Screening and Shortlisting Interview and Assessment

Submit Resume/CV

Offer Made

FIGURE 1.1: The recruitment procedure.

• Step 1: Recruitment Planning: Identification and analysis of vacant positions, including job
duties, work responsibilities, and skill requirements, followed by preparation and assignment of
job postings to attract talent.

• Step 2: Submit Resume/CV: Job seekers submit their resumes or Curriculum Vitaes (CVs)2

to apply for the job, where they describe their abilities and explain why they are suitable for
this job.

• Step 3: Screening and Shortlisting: Screening is the process of filtering the applications
of job seekers based on their resumes/CVs for further selection. Shortlisting is the process of
identifying short-listed candidates from the applicant pool who best meet the required criteria
for the vacant position.

• Step 4: Interview andAssessment: The shortlisted candidates enter the interview process to
assess their job-related knowledge, skills, and abilities, then determine which candidate should
be further interviewed, hired, or excluded.

• Step 5: Offer Made: A formal offer can be made once a final candidate is identified and a
background check is completed.

With the development of science and technology, these five steps have been affected to varying
degrees, and a series of changes has taken place. Next, we briefly explore the different periods in
the recruitment field. Similar to [The Role of Digital Age in Recruitment n.d.], we propose dividing
the recruitment development into three periods based on the different tools used to attract qualified
candidates and process information.

1https://en.wikipedia.org/wiki/Recruitment
2In this thesis, “resumes” and “CVs” are documents created by job seekers to show their profiles. Thus “resumes” and “CVs”

are interchangeable.

https://en.wikipedia.org/wiki/Recruitment

1.1. Context and Motivation 3

(i) Print Media and Communication Tool Age began around the 1980s and continued
until the late 1990s. Newspapers were the main channel for posting job advertisements. Other
traditional ways included some communication tools such as fax machines, telephones, or distribution
by television, radio, personal delivery, agents, and postal services. Such tools result in a lack of
timeliness in the transmission of information and limited coverage. Moreover, during this period,
resumes were usually in the paper version. Recruiters needed to browse a large number of resumes
first and then manually selected potential candidates from these resumes. This pre-selection process
was time-consuming, labor-intensive, and required recruiters to have relevant knowledge. In addition,
the volume of data and the tediousness of this pre-selection process forced recruiters to take many
shortcuts when reviewing resumes, which may lead to missing out on the best candidates.

(ii) Digital Age began in the 1990s and continues to the present. With the continuous and rapid
development of the Internet, traditional recruitment methods have undergone revolutionary changes.
E-recruitment/Online-recruitment, the process of recruiting candidates through the Internet to fill
vacant positions, has become the primary recruitment channel for many organizations and companies
at the time. They use different E-platforms, e.g., their own websites, third-party recruitment websites
(e.g., LinkedIn,3 CareerBuilder,4 and Monster5), or social media platforms (e.g., Facebook,6 Twitter7,
and Instagram8), to post job advertisements and accept resumes, in order to attract or find competent
job seekers and provide them with more opportunities. Moreover, many organizations now include the
Internet in the Screening and Shortlisting step, which saves a lot of time and resources, especially when
more applicants respond. Online attitude and aptitude tests are becoming increasingly popular as a
way to select suitable candidates. Video conferences have also emerged, allowing online interviews,
job invitations, and online acceptances, as well as electronic signatures that allow applicants to accept
and confirm job opportunities online. In addition to employers posting job postings through different
media to attract talents, another trend is to create online databases where job seekers can store their
resumes so that employers can search for candidates that meet their needs (e.g., LinkedIn,9 Indeed,10

and PhDTalent11). Such databases speed up the application process and allow people interested in
changing jobs to prove their availability anytime without actively applying for jobs.

Since E-recruitment makes the recruitment process more productive as well as less costly, it
provides more opportunities and liberates a lot of labor [Okolie and Irabor, 2017], which is beneficial
to both the organization and the job seeker. E-recruitment is widely used and plays a vital role in
the current recruitment process. As a result, the amount of online recruitment information (i.e.,
the personal information of employees and the recruitment information of employers) has increased
dramatically in the past ten years. For example [81 LinkedIn Statistics You Need to Know in 2022
n.d.], in 2021, there were 756 million users in more than 200 countries and territories worldwide,

3https://www.linkedin.com
4https://www.careerbuilder.com
5https://www.monster.com/
6https://www.facebook.com/
7https://twitter.com/
8https://www.instagram.com/
9https://www.linkedin.com

10https://www.indeed.jobs/
11https://careerfair.phdtalent.fr/en/home-2/

https://www.linkedin.com
https://www.careerbuilder.com
https://www.monster.com/
https://www.facebook.com/
https://twitter.com/
https://www.instagram.com/
https://www.linkedin.com
https://www.indeed.jobs/
https://careerfair.phdtalent.fr/en/home-2/

4 Chapter 1. Introduction

over 57 million companies listed on LinkedIn, with more than 15 million open job listings. Forty
million people search for jobs weekly through LinkedIn, and three people are hired every minute
on LinkedIn. This situation might be labor-intensive and exhausting for Human Resource (HR)
management without dedicated decision-aided tools, requiring manual review of candidate resumes
and assessment of applicant suitability for a position. Alternatively, it is difficult for job seekers to
find jobs that suit them accurately and quickly. In this context, new decision-aided tools need to be
conceived and developed to handle some basic operations.

To deal with such large amounts of data, a series of works [Shaha and Mourad, 2012] has been
proposed over the past two decades to handle some basic operations on behalf of humans. These
works revolve around different tasks of job recommender systems, such as matching people and
jobs [Malinowski et al., 2006] and classifying jobs [D. H. Lee and Brusilovsky, 2007]. However,
these systems use simple technologies, such as rule-based and statistics-based, and thus cannot cope
well with growing data volumes and increasingly complex information in the E-recruitment field.
Obviously, as E-recruitment continues to evolve, there is an urgent need for more effective technology
to process and analyze these large amounts of data in the recruitment field. For example, a job seeker
wants the system to recommend jobs that match his/her background to help him/her find suitable
jobs efficiently. On the other hand, companies also hope that the system can improve the recruitment
process to recruit qualified talents at a lower cost. In general, an effective E-recruitment system,
which can automatically interpret the available information in the recruitment domain and measure
how well talent qualifications match the requirements of recommended jobs, is a powerful assistant
for the steady and rapid development of recruitment activities.

(iii) AI Age is gradually gaining power with the development of AI technology, as in other domains.
The essence is to use AI technology to improve the system on the basis of the development of the
digital age. AI techniques have received increasing attention in the recruitment industry [Upadhyay
and Khandelwal, 2018; Van Esch, Black, and Ferolie, 2019]. These techniques are designed to
systematically address the limitations of conventional recruitment procedures by incorporating AI-
based methods, especially for repetitive, high-volume tasks. Such tasks include the job classification
task, which classifies newly published job postings into predefined categories; the skill identification
task, which extracts skills from job postings or resumes; and person-job matching task, which
measures how personal profiles match job requirements, etc. Several existing works [Javed, Q. Luo,
et al., 2015; Javed, McNair, et al., 2016; Zhu et al., 2018; Qin et al., 2018] have demonstrated
that the use of AI techniques can effectively reduce the cost, time and effort required by traditional
recruitment methods and improve the efficiency and functionality of E-recruitment systems. With the
help of AI, E-recruitment is even more powerful,12 i.e., it can (i) reach more potential candidates and
identify outstanding talents more accurately, (ii) help talents have more opportunities to be hired and
get more objective evaluations about their abilities and skills, (iii) make the hiring process faster, more
efficient and less costly. Since AI technology has so many benefits in the recruitment field, especially
for employers, organizations are starting to adopt and capitalize AI functionality in E-recruitment
platforms, to build more powerful job recommender systems.

12https://en.wikipedia.org/wiki/Artificial_intelligence_in_hiring

https://en.wikipedia.org/wiki/Artificial_intelligence_in_hiring

1.1. Context and Motivation 5

AI brings new opportunities to the entire recruitment field, but due to the particularity of the
recruitment field, some challenges have been encountered in the actual implementation, which will be
discussed in Section 1.3. There is still a lot of room for exploration by industry experts, researchers,
and AI scientists. Therefore, how to correctly apply AI technology in the recruitment system
to make it more effective is a topic of practical significance in the reform of the recruitment
field, and it is also the research motivation of this thesis.

1.1.2 Industrial Context: Randstad Wants an AI Recruitment System
Randstad13 is the global leader in the HR services industry, which was founded in 1960 and is head-
quartered in Diemen, the Netherlands. As an industry pioneer, Randstad has already experimented
with AI technologies at multiple steps of the recruitment process, such as resume screening, candidate
engagement, candidate interviewing, and career development.14 Randstad also supports academic re-
search in hopes of improving recruitment efficiency by improving existing methods or developing new
and advanced tools. Therefore, this thesis is funded by the chaire d’enseignement et de recherche
« L’Intelligence Artificielle au service du recrutement » (chair of teaching and research « Artificial
Intelligence at the service of recruitment »),15 a collaboration between Randstad France16 and Cen-
traleSupélec.17 This chair aims to improve and facilitate the recruitment process by leveraging the
advances and progress in the field of AI and the richness of recruitment data. In particular, the
research program of the chair includes:

• Representation learning for recruitment: Massive recruitment data requires us to find ef-
fective ways to represent them better, thereby facilitating follow-up tasks, e.g., job classification
and job recommendation. Therefore, one of the research directions of this chair is to learn com-
plete and accurate representations of various recruitment-related information (e.g., talent, job,
skill, etc.) from diverse and heterogeneous data. These heterogeneous data include resumes,
job postings, historical data, browsing data, profiles on professional social networks, video in-
terview data, and conversation data. Moreover, although not at the core of the chair program,
the question of fairness and interpretability of learned representation is also among the subjects
of interest.

• Newsoft skill analysis tool: With the development of society, talent competition is becoming
more and more fierce. In addition to the prominence of expertise, soft skills are another factor
that must be considered when hiring. For example, analyzing the emotion and personalities
of a candidate during a video interview can provide additional advice on candidate selection.
In this context, proposing a new tool for analyzing candidate behavior (soft skill) is another
research direction of the chair.

13https://www.randstad.com/
14https://www.randstad.com/workforce-insights/hr-tech/how-artificial-intelligence-human-resources-will-w

ork-together-future/
15https://www.centralesupelec.fr/fr/randstad-et-centralesupelec-sassocient-pour-creer-une-chaire-sur-lin

telligence-artificielle-et-le
16https://www.grouperandstad.fr/
17https://www.centralesupelec.fr/

https://www.randstad.com/
https://www.randstad.com/workforce-insights/hr-tech/how-artificial-intelligence-human-resources-will-work-together-future/
https://www.randstad.com/workforce-insights/hr-tech/how-artificial-intelligence-human-resources-will-work-together-future/
https://www.centralesupelec.fr/fr/randstad-et-centralesupelec-sassocient-pour-creer-une-chaire-sur-lintelligence-artificielle-et-le
https://www.centralesupelec.fr/fr/randstad-et-centralesupelec-sassocient-pour-creer-une-chaire-sur-lintelligence-artificielle-et-le
https://www.grouperandstad.fr/
https://www.centralesupelec.fr/

6 Chapter 1. Introduction

• Design and optimization of algorithms: Job recommender systems are the core of the en-
tire recruitment system. They aim at retrieving a list of job positions that satisfy the desire
of job seekers or the best set of potential candidates that meet the requirements of recruiters.
An efficient job recommender system can make the recruitment process simpler and less costly,
so building a job recommender system [Al-Otaibi and Ykhlef, 2012; Geyik, Ambler, and Ken-
thapadi, 2019; Kenthapadi, B. Le, and Venkataraman, 2017] is usually regarded as the goal of
many organizations, and naturally, it is also the goal of Randstad. Around the job recommender
system, many related algorithms need to be optimized or redesigned, including but not limited
to person-job matching algorithms, search techniques, and candidate or job recommendation
algorithms.

• Knowledge representation and reasoning for the recruitment domain : Another scientific
objective of this chair is related to the management and improvement of knowledge in the
recruitment field. Indeed, the field of recruitment has long been an area where knowledge
representation and reasoning tools, such as ontologies, have been studied and considered to
have great potential [Bizer et al., 2005; Malherbe and Aufaure, 2016]. Consequently, many
knowledge models have been proposed in the literature over the last decade, such as skill
ontologies [Lundqvist, Baker, and Williams, 2008; Fazel-Zarandi and Fox, 2009; Malherbe and
Aufaure, 2016], job ontologies [Khobreh, 2017], or, more generally, models of the Human
Resources domain [Kessler, Lapalme, and Tondo, 2016]. This is also a general trend among
the players in the field, as they have identified the potential of these approaches in improving
the recruitment process (e.g., Textkernel, Google). Around knowledge models, there are many
research lines, such as ontology matching to solve interoperability problems, knowledge-rich
learning models, and many others.

This thesis is part of this large research program. Its objective is not to tackle all aspects of the
program. Our work mainly involves the first and third aspects. In particular, this thesis focuses on
recruitment data representation learning, i.e., the representation of talents, jobs, and skills, to
improve downstream tasks such as job or skill classification and recommendation. We mainly focus
on the use of Deep Learning (DL)-based models.

1.1.3 Why Deep Learning?
Many practical applications that are frequently used in different fields, such as machine translation,
recommendation systems, image segmentation, and speech recognition, used to rely heavily on manual
feature engineering to extract informative features and human analysis to make decisions. However,
recent advances in AI, especially via the DL paradigm, have shown that they can speed up these
operations and significantly improve application performance, thanks to their ability to learn complex
representations of data [Bengio, Courville, and Vincent, 2013]. Similarly, DL can also be widely used
in the field of recruitment to help various operations, thereby improving efficiency. The main reasons
are [S. Zhang et al., 2019]:

1.2. Available Data in the Recruitment Field 7

• Effective for Representation Learning: Deep Neural Networks (DNNs) can effectively learn
useful representations from the input data [Bengio, Courville, and Vincent, 2013], such as Con-
volutional Neural Networks (CNNs) [Ye Zhang and Wallace, 2015] for images, Recurrent Neural
Networks (RNNs) [Sundermeyer, Schlüter, and Ney, 2012] for text and Transformers [Vaswani
et al., 2017] for text, images and other structured data. The widespread use of E-recruitment
brings with it large amounts of digital data that recruitment systems need to handle properly,
and one of the important considerations is how to represent them effectively. Most of the
recruitment data are non-structured or semi-structured textual data. Therefore, DNNs are a
natural choice for learning recruitment-related representations.

• Effective for Sequence Modeling: DNNs have shown promising results on many sequence
modeling tasks such as machine translation [Bahdanau, Cho, and Bengio, 2014], speech recog-
nition [Graves, Mohamed, and Hinton, 2013], and next-item/basket recommendation [F. Yu
et al., 2016; Hidasi, Karatzoglou, et al., 2015; Hidasi, Quadrana, et al., 2016]. In the recruit-
ment system, some scenarios need to process sequential data, such as predicting the next job
a talent will take based on his/her previous work experience and predicting the next job a job
seeker will apply for based on his/her application history. Therefore, DNNs are well suited
for this sequential pattern mining task.

• Effective for Graph Analysis: Recently, encouraged by the success of DL on other do-
mains, e.g., images, texts, and videos, a large number of methods [J. Zhou, G. Cui, S. Hu,
et al., 2020; Z. Wu et al., 2020] have extended the DNNs for graph data. Such methods are
called graph embeddings and Graph Neural Networks (GNNs), and have been shown to be
effective on various tasks such as node classification and link prediction. Graphs/networks are
ubiquitous in recruitment data, such as job transition histories, skill-occupation demand rela-
tionships, and occupation taxonomies. These graphs reflect simple/complex, static/dynamic
item relationships in low/high-linked data so that recruitment data can be analyzed against
these graphs. Therefore, graph representation learning can be an interesting research
line for recruitment data, and GNNs can be an effective tool.

1.2 Available Data in the Recruitment Field
As we said before, the widespread use of E-recruitment has led to a massive explosion of digital
recruitment data. These data are diverse and complex, bringing many scientific challenges. In this
section, we focus on the different data types and their characteristics and analyze the challenges posed
by these characteristics in the next section.

Recruitment data can be of the following types:

• Long text: Most recruitment data fall into this type, with job postings and resumes being
the most common. As both employers and talents turn to online employment portals, they
receive/send large amounts of job postings and resumes, which are usually loaded/uploaded
as textual digital documents in different formats such as .pdf, .doc, .html, or .rtf. These
documents are usually relatively long, and non-structured or semi-structured (i.e., resumes and
job postings are organized in sections).

8 Chapter 1. Introduction

• Short text: Unlike resumes and job postings, which usually have hundreds or even thousands
of words, there are also some short text data, such as messages sent in chatbots, responses
sent by emails, and assessments recorded during interviews.

• Terminological resouces, ontologies: To standardize the field of recruitment, some organi-
zations establish different terminology systems and references. For example, O*NET (B.2.3),
SOC (B.2.2), ISCO (B.2.1) and ESCO (B.2.4) contain hundreds of occupation and skill defi-
nitions, respectively. Moreover, companies also have their own references or ontologies.

• Interaction records: Interaction records include all actions taken from the talent or organi-
zation side, such as click, share and apply operations when a talent views job postings, as
well as keep and remove operations when a recruiter views application records. These actions
are recorded in a time-series format, usually divided into different sessions based on a specific
period (i.e., an hour or a day).

• Video: Video interviews, like face-to-face interviews, are about assessing the qualification
of a candidate by asking job-related questions. The difference is that video interviews are
conducted remotely, using video technology as a medium of communication, and the interview
of the candidate can be recorded in the video.

• Other: In addition to the above data types, there also exist some statistics generated by online
attitude and aptitude tests, as well as the information scanned from social media, such as code
on GitHub and portfolios on personal websites.

While textual data is not the only type of recruitment data, in this thesis, we only focus on textual
data regardless of the format in which it is presented. In the following, we further characterize these
textual recruitment data:

• Characteristic 1: Non-unified structured data. Job postings and resumes are the most
common long-text data, and these documents have a general structure, e.g., Education and
Work Experiences sections in resumes, or Job Title, Job Description and Company Description
in job postings, as shown in Figure 1.2. However, there is no standard structure, and the
corresponding content is expressed freely. In addition, to make the resume look more attractive,
it may contain tables and other formats such as bar charts, progress bars, and pie charts.

Contact

Education

Work Experience

Skills

(a) A resume template.

Job Description
Job Responsibilities

Job Title

Skill Requirements

(b) A job posting template.

FIGURE 1.2: A resume with Education and Work Experiences sections and a job
posting with Job Description and Skill Requirements sections.

1.3. Challenges Posed by Recruitment Data 9

• Characteristic 2: Free, messy and vague vocabularies and terms. Data in the recruitment
field is highly messy since it is expressed freely. People have different interpretations of words
and ideas, they express themselves freely in various ways, such as job titles/descriptions used in
resumes and job postings. Therefore, it is not easy to collect and organize useful information.

• Characteristic 3: Strong country/industry/company-specific references and standards.
Generally speaking, the recruitment domain varies from country to country, industry to indus-
try, or company to company. Although there are some standard references (i.e., O*NET18 and
SOC19), companies prefer to define their own naming conventions, occupational taxonomies,
and evaluation standards. They use these reference materials and standards to write job post-
ings, manage human resource systems and recruit talents. All these make the standardization
and unification of the recruitment field very challenging.

• Characteristic 4: Dynamic information and evolving knowledge. In addition to the
changes in references and standards between different countries, industries, and companies
mentioned above, the recruitment field also changes from time to time. One aspect is the
fast update and growing number of items (i.e., a large number of job postings are added or
removed daily, and hundreds of candidate profiles are created or updated). Another is the
evolving recruitment field (i.e., new occupations, new formations, new skills, and new terms).
All of these reflect the dynamic and evolving nature of the recruitment field.

• Characteristic 5: Privacy. Data privacy is a top priority for every company, especially in
recruitment. E-recruitment platforms collect a large amount of personal data of each talent,
including nationality, email address, phone number, age, race, work experience, and photos.
All these data are very private and important. If they are used carelessly by a malicious third
party, in addition to causing mental harm and property damage to talents, it will also greatly
impact the reputation of the information collectors (E-recruitment platforms). For this reason,
collecting datasets in the recruitment field is much more complicated than in other areas,
especially annotated datasets.

• Characteristic 6: Strong domain knowledge reliance. Unlike other domains, data pro-
cessing in the recruitment field requires a certain professional background. For example, the
same skill may be expressed differently, or the same term may mean different skills in different
contexts (e.g., “Java” in Java coffee and Java programming language).

1.3 Challenges Posed by Recruitment Data
The newly available recruitment big data enables researchers to conduct recruitment analysis in more
quantitative ways. Significantly, AI techniques, especially NLP, have been extensively studied in the
recruitment domain from academia and industry. Although many studies have demonstrated their
effectiveness, there are still many challenges, some of which are due to the specificity of recruitment
data. In this section, we summarize these challenges:

18http://www.onetcenter.org/taxonomy/2010/list.html
19https://www.bls.gov/soc/2018/home.htm

http://www.onetcenter.org/taxonomy/2010/list.html
https://www.bls.gov/soc/2018/home.htm

10 Chapter 1. Introduction

• Challenge 1: Lack of supervised annotated data.
Due to privacy reasons (i.e., Characteristic 5), there are relatively fewer open annotated datasets
in recruitment compared to other fields [Junhua Liu et al., 2019]. This lack of publicly available
annotated datasets is problematic because most state-of-the-art high-performance AI data-
driven approaches are mainly based on a supervised learning paradigm, which assumes the
availability of large annotated datasets.20 For example, we can take the Person-Job Fit problem,
one of the most striking tasks in the recruitment field. This task aims to measure the matching
degree between person-job pairs, where the person and the job are mainly represented using their
corresponding textual information (resume and job posting). Many approaches with different
deep architectures have been proposed in the literature [Qin et al., 2018; Zhu et al., 2018;
Bian, W. X. Zhao, et al., 2019]. These methods typically deal with the Person-Job Fit task as
a supervised binary text matching problem by training a matching label classifier based on a
set of labeled person-job matching records (i.e., the label of a person-job pair label is 1 if the
person got the job, and 0 otherwise). The amount and quality of available matching records
directly affect the performance of Person-Job Fit algorithms, and it is unrealistic to assume
either the availability or the annotation work of the needed dataset.21 Therefore, this lack of
annotated datasets challenges the use of purely supervised learning AI and brings the research
to other learning schemes such as unsupervised or semi-supervised learning. An interesting way
we explore in this thesis is the use of graphs to aid data learning.

• Challenge 2: Data is constantly changing.
Recruitment data is constantly updated and iterated (i.e., Characteristic 4). Most current AI
models are not adaptive to these data variations.22 For example, there is a lot of research on
job classification [Javed, Q. Luo, et al., 2015; Javed, McNair, et al., 2016], which is a task
to classify jobs into predefined categories (e.g., SOC and O*NET). The classifier output of
these job classification models is usually a probability vector whose dimension is the number
of available occupation categories. However, new occupations may be created due to the
evolving nature of the recruitment domain, and most of the time, taking into account these
new occupations means retraining the whole model on an updated dataset. The AI community
tackles this important issue as the open set recognition problem.

• Challenge 3: Explanation and fairness are needed.
The recruitment process is a series of decision-making tasks, from the initial screening of
resumes to deciding whom to hire [Schumann et al., 2020]. Explaining each decision-making
process, e.g., why resumes are selected and what skill deficiencies caused the job seeker to
be incompetent for the position, can improve the transparency, persuasiveness, effectiveness,
credibility, and user satisfaction of the recruitment results. Moreover, the decision-making
process needs to comply with many AI policy and regulation initiatives, such as the GDPR23 in
Europe. There is a rapid increase in the literature on fair and explainable AI [Yongfeng Zhang

20See, for instance, the importance of the ImageNet dataset in the advancement of Deep Learning for visual recognition.
21Except for big companies like LinkedIn can build pseudo-annotated datasets from the interactions of their users on their

websites, but such datasets are private.
22Indeed, they are mostly based on the assumption of i.i.d distribution between training data and production data.
23https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

1.4. Tasks Handled in this Thesis 11

and X. Chen, 2018; Arrieta et al., 2020], but the private nature of recruitment data makes it
particularly challenging.

• Challenge 4: Make good use of implicitly or explicitly structured data.
The data processed and analyzed in the existing works mainly include: (i) person-job matching
records for person-job fit [Zhu et al., 2018; Bian, W. X. Zhao, et al., 2019], (ii) career trajectories
for job mobility analysis [L. Li et al., 2017; Meng et al., 2019], and (iii) jobs or resumes for
classification [Javed, Q. Luo, et al., 2015; Jingya Wang et al., 2019], skill extraction/analysis [M.
Zhao et al., 2015; T. Xu et al., 2018], or representation learning [Junhua Liu et al., 2019;
Denghui Zhang et al., 2019], as summarized in Table 2.7. There are some hidden structured
data in these data, mainly graphs (networks), which contain a lot of extra information. However,
this additional information is rarely noticed, except that [Dave et al., 2018; Denghui Zhang
et al., 2019] learn job title representations from graphs. In addition to this hidden graph
information, the recruitment domain also contains some predefined well-structured data, such
as skill and occupation taxonomy. These taxonomies often contain much normative knowledge,
but no work has yet made use of it, whether directly or indirectly. Therefore, using these
implicitly or explicitly structured data is a challenging and promising topic.

In conclusion, the above challenges are mainly caused by the particularity of recruitment data. In
this thesis, we attempt to address these challenges partially. Additionally, we leverage implicit
or explicit structured recruitment data (i.e., graphs) to improve the learned recruitment-related
representations to fill this research gap. The tasks we deal with in this thesis are outlined in subsequent
sections and chapters.

1.4 Tasks Handled in this Thesis

1.4.1 Job Title Representation Learning from Graphs

Learn better job title representations to facilitate various subtasks of the recruit-
ment process, such as improving talent profile modeling, facilitating search and
recommendation, and benefiting the recruitment analysis.

Objective of This Task

A job title is a short text that uses a few words to describe a job position, but it usually carries
essential information, indicating the primary responsibilities and the level of the position. It appears
in many scenarios, such as resumes and job postings, which is the first part of attracting job seekers
or employers. Learning good job title representation benefits three important downstream tasks: (i)
improving the modeling of talent profiles by using, for instance, their working histories, (ii) facilitating
the job and skill alignment, and (iii) benefiting the recruitment data analysis. However, learning the
proper job title representation is a challenging task for the following reasons:

12 Chapter 1. Introduction

• Noisy data (i.e., Characteristic 1): job title data is noisy due to personal subjective reasons
(i.e., spelling errors) or objective reasons (i.e., the resume parser is not perfect).

• Messy data (i.e., Characteristic 2): job titles are messy because people have different ways
of thinking. For example, there are many alternative job titles for the same position, e.g.,
“purchasing clerk” and “buyer”. Another problem is that due to the ambiguity of certain terms,
they can refer to different positions in different contexts, e.g., “registered nurses sandwich
rehab” and “sandwich maker”.

• Non-standard naming conventions (i.e., Characteristic 3): naming conventions vary by
company, industry, and country. Therefore, there are a lot of subjective and non-standard
naming conventions for the same position.

For these reasons, standard approaches that aggregate (e.g., mean or sum) word representations
to get job title semantic representations may lead to mismatches. Moreover, these semantic-based
methods ignore hidden relationships between job titles, e.g., titles in the same resume may be similar.
In order to meet these challenges, we propose to learn job title representations from graphs generated
from the working history of talents. Indeed, in recent years, graph/network embedding technology
has been widely used in many scenarios, especially the node representation learning problem. The
learned representations are beneficial to various prediction and analysis tasks in many application fields,
ranging from computational social science to computational biology [Hamilton, Ying, and Leskovec,
2017a]. As mentioned earlier, using graphs can also help with data learning.

Research Scope Inspired by the achievements of graph/network embedding and taking advantage
of the benefit that graphs can aid data learning (i.e., Challenge 1), we propose leveraging graphs for
job title representation learning. Such graphs can be job-transition graphs extracted from the talent
career experience but can also be extended with additional information, leading to heterogeneous
graphs (different types of node and types of edges, see, for instance, Figure 1.3).

Talent A automotive technician → automotive shop
manager.

Talent B purchase agent → purchasing manager →
staff account purchasing manager.

Talent C staff accountant→ staff account purchasing
manager→ purchasing manager.

Talent D customer service → telemarketer → pur-
chasing clerk.

purchasing manager

staff account purchasing manager

automotive shop manager

automotive technician

purchase agent

staff
accountant

purchasing clerk
telemarketer

customer
service

technician

automotive

manager

purchasingpurchase

staff

accountant

FIGURE 1.3: Job-Transition-Tag Graph with grey/purple circles representing job titles/tags.
Black lines represent job transitions and purple lines represent “has/in” relationships.

In this task, we focus on answering the following Research Questions (RQs):

Research Question 1.4.1.1 : Can the graph structure provide more useful information for job title
representation learning?

1.4. Tasks Handled in this Thesis 13

Research Question 1.4.1.2 : Does additional information resulting in complex heterogeneous graph
help learn better job title representations?

1.4.2 Skill Representation Learning by Leveraging Hierarchical Graph

Learn better skill representations by leveraging the predefined taxonomy data,
which can aid occupation/job/talent classification.

Objective of This Task

Skills are technical knowledge (hard skills) or personal traits (soft skills) that arise in many sce-
narios in the labor market. For example, a set of basic skills is predefined for each occupation, job
requirements are mainly reflected through skills requirements in job postings, and talents attract
employers by expressing their skills on resumes, as shown in Figure 1.4.

Contact

Education

Work Experience

Skills

Job Description
Job Responsibilities

Job Title

Skill Requirements

FIGURE 1.4: The scene where the skill appears.

Many recruiting activities are primarily skills-based, e.g., using skills to quantify talents, recruiting
vacancies by measuring the skill fit, and alleviating the skill gap to increase opportunities for talents
and employers. Therefore, how to represent skills correctly and effectively is an essential task in the
recruitment field. Since occupations/job postings/talents can be represented as a set of skills they
require or possess, we can also take benefit of graphs for this specific task. In particular, we can build a
skill co-occurrence graph. Vertices represent skills and edges represent co-occurrence relationships, i.e.,
if two skills are required or possessed in the same job posting or resume, an edge is added between
them. Moreover, in the recruitment field, skills tend to be in a tree-like structure, representing a
hierarchical relationship, called a skill taxonomy. There are many predefined skill taxonomies in the
recent labor market, such as SOC,24 O*NET-SOC,25 ISCO,26 and ESCO.27 These taxonomies provide
a standardized language for the activities of people in the labor market [Ospino, 2018]. While this
information is well-structured and informative, it has rarely been studied directly and, to the best
of our knowledge, has never been used for skill representation learning. Therefore, in this task, we

24https://www.bls.gov/soc/2018/home.htm
25https://www.onetcenter.org/taxonomy.html
26https://www.ilo.org/public/english/bureau/stat/isco/isco08/
27https://ec.europa.eu/esco/portal

https://www.bls.gov/soc/2018/home.htm
https://www.onetcenter.org/taxonomy.html
https://www.ilo.org/public/english/bureau/stat/isco/isco08/
https://ec.europa.eu/esco/portal

14 Chapter 1. Introduction

exploit this hierarchical information, i.e., the skill taxonomy to learn better skill representations, along
with the skill co-occurrence graph.

Research Scope For this task, our orientation is the same as for the previous task, i.e., taking
advantage of advances in graph representation learning. More precisely, we draw our inspiration from
graph embedding works that try to preserve both the neighborhood information and the community
structure of graphs. In our case, not only the node proximity in the skill co-occurrence graph needs
to be preserved, but also the information carried by skill taxonomy needs to be considered. More
specifically, the skill taxonomy is similar to the hierarchical community structure, where communities
at lower levels are smaller and more cohesive than larger communities at higher levels. This hierarchy
of communities reflects similarities at different granularities. In other words, skills belonging to the
same lower-level skill category have more specific similarities, e.g., “algebra” and “probability theory”
are skills that mathematics teachers need. In contrast, skills that belong to the same higher-level
skill category are similar in more general contexts, e.g., “algebra” and ‘biomedicine” are science-
related skills. To this end, we exploit the hierarchical community preserving methods to improve the
informativeness of learned skill representations.

In this task, we focus on answering the following Research Questions (RQs):

Research Question 1.4.2.1 : Can the graph structure provide more useful information for skill repre-
sentation learning than the semantic representation?

Research Question 1.4.2.2 : Does the hierarchical information (i.e., skill taxonomy) contribute posi-
tively to skill representation learning?

1.4.3 Next-Application Prediction from Job Application Sequences

Recommend the next job application (i.e., the job posting that the job seeker will
apply for) based on the historical application record of job seekers, which is an
important task of the job recommender system.

Objective of This Task

Next-job prediction is one of the vital tasks of job recommender systems, where the job can be
the next job position or the next job application.

1.4. Tasks Handled in this Thesis 15

Job Description
Job Responsibilities

Job Title

Skill Requirements

Senior
Financial
Analyst

Contact

Education

Work Experience

Skills

FIGURE 1.5: Illustration of Next-job application prediction task.

In this work, we target to predict the next job application for which the job seeker might apply. We
propose a hybrid Personalized-Attention Next-Application Prediction model (PANAP), which aims to
answer the following issues partially:

• Evolving Job-Person interactions (i.e., Characteristic 4): The first issue is related to intrin-
sically dynamic and constantly evolving Job-Person interactions, which can be built from job
application records or working histories. We assume that the temporal relation between ap-
plication records tends to point towards sequential/session-based recommendations. Although
various session-based methods have been proposed in other fields, there is less research on
session-based job recommendations, especially the next job application prediction.

• Constantly updated items (i.e., Characteristic 4): The second issue is also due to the evolving
nature of the recruitment field. The constantly updated E-recruitment website and domain
intensify the cold-start problem. Therefore, building a static method that cannot be adjusted
quickly as the data constantly changes is impractical.

• Data privacy (i.e., Characteristic 5): The third issue is related to the sensitivity and privacy
of data in the recruitment domain. Therefore, collecting datasets in the recruitment field is
much more complicated than in other domains, especially annotated datasets.

• Personalization of recommendations: The last issue is related to the personalization of
recommendations. Indeed, two job seekers can apply for the same job with different motivations.
As a consequence, the important information in a job is specific to the job seeker. Thus,
weighing the jobs differently in the modeling tasks of job seeker careers is essential. General-
purpose approaches are often unable to capture such specific information. In addition, the
geographic location of job seekers often has a substantial impact on the application decision
and the recommendation result, but few works consider this information.

Research Scope For this task, our positioning is to model the next-job prediction problem as
a sequential recommendation problem, recently studied in other domains such as news or product
recommendation [Souza Pereira Moreira, Ferreira, and Cunha, 2018; J. Li et al., 2017; F. Yu et
al., 2016; Fang, Danning Zhang, et al., 2020]. Moreover, we also want to provide personalized
recommendations. For this, we rely on the well-known attention mechanism [Bahdanau, Cho, and
Bengio, 2014; Vaswani et al., 2017] (see Appendix F).

16 Chapter 1. Introduction

In this task, we answer the following Research Questions (RQs):

Research Question 1.4.3.1 : In the recruitment field, do we really need the sequential recommendation
method?

Research Question 1.4.3.2 : Can the personalized-attention mechanism better capture the personal
career preference?

Research Question 1.4.3.3 : Are job textual information and context information (e.g., geographical
location and educational background) important in job recommendation?

Research Question 1.4.3.4 : How to take into account context information in the recommendation
process?

1.5 Thesis Organization
Chapter 2 presents a survey of related works in the field of recruitment. Chapter 3 gives the preliminary
knowledge that will be used in this thesis, including the basics of graph embedding and sequential
recommendation, as well as some representative works that will be used as baselines in experiments.
In Chapter 4, we introduce our proposed method for job title representation learning. Chapter 5
discusses the effectiveness of skill taxonomy for skill representation learning. Chapter 6 introduces
our method for next-application prediction problem. For Chapter 4, 5 and 6, we will demonstrate the
experiments and the analysis of results. Finally, in Chapter 7, we will conclude our work and look
forward to future work.

17

Chapter 2

Related Works in the Recruitment Field

Recruitment is an essential process in the highly competitive labor market. The traditional methods of
recruitment mainly rely on relatively “low” technology. For example, employers distribute job postings
through the newspaper, radio, television, or courier service. In addition, the recruitment process is
almost manual and requires a lot of human resources. In recent years, as E-recruitment becomes more
and more common, Artificial Intelligence (AI) techniques, such as Machine Learning (ML), Information
Retrieval (IR), and Data Mining (DM), have been applied to many models to handle various tasks
in the recruitment market. To help us gain an extensive overview of the current industry and guide
our research, we review the latest works related to E-recruitment in this chapter. We categorize the
existing methods into five categories based on the information they processed: (i) Skill, (ii) Job title,
(iii) Career path, (iv) Matching record, and (v) Other, as illustrated in Figure 2.1.

Contact

Education

Work Experience
Job Description
Job Responsibilities

Skills

Job Title

Skill Requirements(i)
(i)Job�Title����- -

(ii)

(ii)

(iii
)

(iv)

FIGURE 2.1: Illustration of the different types of information processed in recruitment-
related works.

Although a paper may belong to more than one category for each evaluation axis in many cases,
we chose the most predominant one for our categorization. A summarization is shown in Table 2.1.
We start with a description of terminologies and a definition of notations. Then, we present the
methods and techniques used in existing works in the recruitment domain.

18 Chapter 2. Related Works in the Recruitment Field

2.1 Terminology and Notation
In practice, recruitment data usually consist of three parts, namely (i) job posting, (ii) resume, and
(iii) interaction history. Specifically, a job posting contains a job title and description (e.g., job duties
and requirements). A resume contains the profile of a talent. The interaction history records the
behaviors of talents regarding the available job information (e.g., click, apply and share). In the
following, we first define the terminology used frequently throughout this thesis.

• Employer: is an individual, company, or organization that employs people.

• Employee: is an individual who is paid for working for an employer.

• Talent: is an individual who has a specific set of skills or abilities.

• Job Seeker: is an individual who is looking for a job.

• Applicant: is an individual who applies for jobs by sending a resume or otherwise.

• Candidate: is an individual who has applied for a particular job position and is being further
considered by the employer.

• Skill: is the technical knowledge (hard skill) or personal trait (soft skill) required for a job
position. It usually appears in job postings or resumes.

• Resume/Curriculum Vitae (CV): is a formal document created by a job seeker to show
his/her personal information (e.g., age, gender, and interests), professional background (e.g.,
education background, and work experience), and abilities (e.g., hard skills and soft skills).

• Career Path/Trajectory/History: is the professional growth in the career life of an individual.
It comprises several distinct career stages, and each stage contains a set of work experience
items.

• Job Posting/Advertisement/Announcement: is an informative text that describes a vacant
position. It usually consists of job title, company description, job responsibilities, skill require-
ments, and application instructions. In this thesis, job responsibilities, skill requirements are
combined as job description.

• Job Title: is a set of several important terms used to describe the job position held by the job
seeker (described in the resume) or defined by the employer (published in the job posting). It
is the first part of attracting job seekers or employers, indicating the primary responsibilities
and position level.

• Job Description (JD): is a textual statement that provides detailed information about a spe-
cific position. It details related duties, responsibilities, and skill requirements (e.g., qualifications
about skills or experiences).

2.2. Skill Oriented 19

TABLE 2.1: Recruitment-related works categorized by information handled.

Information Task Paper

Skill
Skill Extraction [Kivimäki et al., 2013; M. Zhao et al., 2015; Javed, Hoang,

et al., 2017; Sayfullina, Malmi, and Kannala, 2018; Khaouja
et al., 2019; Gugnani and Misra, 2020; Wings, Nanda, and
Adebayo, 2021]

Skill Analysis [W. Zhou et al., 2016; T. Xu et al., 2018; Börner et al., 2018]
Skill Representation Learning [Dave et al., 2018; Nigam et al., 2020]

Job Title
Job Title Representation Learning [Dave et al., 2018; Junhua Liu et al., 2019; M. Liu et al.,

2019; Denghui Zhang et al., 2019; Decorte et al., 2021; L.
Zhang et al., 2021; Wings, Nanda, and Adebayo, 2021; Ya-
mashita et al., 2022]

Job Title Classification [Javed, Q. Luo, et al., 2015; Javed, McNair, et al., 2016;
Jingya Wang et al., 2019]

Job Title Analysis [H. Xu, Z. Yu, B. Guo, et al., 2018; Denghui Zhang et al.,
2019; Yamashita et al., 2022]

Career Path Job Mobility Prediction [Ye Liu et al., 2016; L. Li et al., 2017; James et al., 2018; Y.
Yang, Zhan, and Jiang, 2018; Meng et al., 2019; L. Zhang
et al., 2021; Decorte et al., 2021]

Career Path Analysis [H. Xu, Z. Yu, J. Yang, et al., 2016]

Matching Record Person-Job Fit [Qin et al., 2018; Zhu et al., 2018; Shen et al., 2018; Yan et
al., 2019; Bian, W. X. Zhao, et al., 2019; Y. Luo et al., 2019;
Bian, X. Chen, et al., 2020]

Other [Lacic et al., 2020]

2.2 Skill Oriented
With the advent of the era of the knowledge economy, the competition between people has become
extremely fierce. Talents with employer-targeted skills will be easily hired and get attractive rewards,
such as high salaries and fast promotions. However, there still exists a “Skill Gap” between employers
and job seekers. The term “Skill Gap” describes the mismatch between the skills employers want
and job seekers possess. This mismatch makes it difficult for job seekers to find jobs, and it also
makes it difficult for employers to find suitable employees. Recently, many efforts have been made
to analyze, alleviate and eliminate the “Skill Gap”. Generally speaking, the first step is to detect
skills automatically from resumes and job postings, and then to determine the value of skills, such
as quantifying the skill relevance and measuring the skill popularity. After that, the next step is to
provide career advice in terms of skills that the candidate should acquire and provide resume service
by advising which skills should be highlighted in the resume. Therefore, we further categorize related
works according to different steps in the process of solving the “Skill Gap” problem:

• Skill extraction [Kivimäki et al., 2013; M. Zhao et al., 2015; Javed, Hoang, et al., 2017;
Sayfullina, Malmi, and Kannala, 2018; Khaouja et al., 2019; Gugnani and Misra, 2020; Wings,
Nanda, and Adebayo, 2021].

• Skill analysis [W. Zhou et al., 2016; T. Xu et al., 2018; Börner et al., 2018].

• Skill representation learning [Dave et al., 2018; Nigam et al., 2020; Wings, Nanda, and
Adebayo, 2021].

20 Chapter 2. Related Works in the Recruitment Field

2.2.1 Skill Extraction
Skill extraction is a process of extracting standard professional skills terms from a given text. The
general idea of this type of work is to match the text (i.e., job postings or resumes) with some off-
the-shelf databases (e.g., predefined skill sets and Wikipedia) to extract skills from it. For example,
Elisit [Kivimäki et al., 2013] first calculates similarities between an input document and Wikipedia
pages and then uses a biased, hub-avoiding Spreading Activation algorithm on the Wikipedia hyperlink
graph to associate the Wikipedia page with LinkedIn skills [Bastian et al., 2014]. Then the skills
relevant to the input text are those associated with similar Wikipedia pages. CareerBuilder1 has
built an in-house system, SKILL [M. Zhao et al., 2015; Javed, Hoang, et al., 2017], for professional
skill identification and normalization. It extracts skill keywords from job postings and resumes and
then uses the Wikipedia API2 for deduplication and normalization. It also uses Word2Vec [Mikolov,
K. Chen, et al., 2013] to disambiguate skills. TaxoSoft [Khaouja et al., 2019] uses DBpedia3 and
Word2Vec to find terms related to soft skills from job postings and then uses social network analysis to
build a term hierarchy for generating the soft skill taxonomy. [Gugnani and Misra, 2020] first leverages
three parallel modules, Named Entity Recognition (NER), Part Of Speech (POS) Tagger, and Skill
Dictionary, to identify skill-terms from candidate profiles and job postings. Each module separately
extracts a set of “candidate” terms along with a module-specific score for each term, and the union
of these sets forms a probable skill set. The Word2Vec module then computes the cosine similarity
between each term in this set and all skill phrases found in the Skill Dictionary. By combining four
module-specific scores, each identified term is assigned a score indicating how likely it is to be a skill.

Unlike the approaches mentioned above that tackle the skill extraction task by finding skill-related
terms from free text, [Sayfullina, Malmi, and Kannala, 2018] treats the soft skill matching problem as
a binary classification, i.e., predicting whether a potential soft skill describes a candidate rather than
the company, using the context in which the skill occurs. In addition, [Wings, Nanda, and Adebayo,
2021] formulates the skill extraction problem as a multi-class classification problem with three classes,
i.e., not skill, soft skill, and hard skill, and the classifier input is representations of pre-annotated
skill phrases obtained through a language model (e.g., Word2Vec [Mikolov, K. Chen, et al., 2013],
FastText [Bojanowski et al., 2017], and BERT [Devlin et al., 2018]).

2.2.2 Skill Analysis
After extracting skills, some works analyze skills from different aspects, such as relevance and popular-
ity. For example, as a follow-up work of SKILL [M. Zhao et al., 2015], [W. Zhou et al., 2016] quantifies
the relevance between skills and job titles. It uses Term Frequency Inverse Document Frequency (TF-
IDF) based scores to calculate base relevant scores of skills for job titles. Then these base scores are
modified with different factors, including the skill uniqueness and the global and local frequency of
the skill. [T. Xu et al., 2018] proposes a skill popularity based topic model for modeling the popularity
of job skills based on the analysis of large-scale recruitment data via estimating the probability of skill
in the related topic. [Börner et al., 2018] analyzes skill discrepancies between research, education,

1https://www.careerbuilder.com/
2en.wikipedia.org/w/api.php
3https://www.dbpedia.org

https://www.careerbuilder.com/
en.wikipedia.org/w/api.php
https://www.dbpedia.org

2.2. Skill Oriented 21

and job, as well as proposes visual and computational models to help decision-makers understand the
evolving structure of skills so they can develop educational programs that meet workforce needs.

2.2.3 Skill Representation Learning
In addition to directly analyzing the relevance or popularity of skills, learning appropriate skill repre-
sentations is another meaningful task. The learned representations can serve other downstream tasks,
such as characterizing talents according to the skills they possess and helping with job classification
according to the skills those jobs require. A typical work is [Dave et al., 2018], which first builds a
job transition graph, job skill graph, and skill co-occurrence graph from the working history section
of the resume. Then, job title and skill representations are jointly learned from these three graphs.

Similar to methods that adapt Transformer-based language models, such as BERT [Devlin et
al., 2018], to their specific domains (e.g., BioBERT [J. Lee et al., 2020] for the medical domain or
sciBert [Beltagy, Lo, and Cohan, 2019] for scientific literature), in [Nigam et al., 2020], the authors
propose SkillBERT, a BERT model trained from scratch on manually annotated skills datasets that
can be used for skill classification. In [Wings, Nanda, and Adebayo, 2021], besides BERT, other
language models such as Word2Vec and BERT are also used for modeling skills.

2.2.4 Available Skill Datasets and Tools
To facilitate domain research, we list in Table 2.2 the datasets and online tools we know of that are
relevant to the skill.

TABLE 2.2: A summary of available skill datasets and tools.

Source Description

EMSI skills API

• 32,000+ skills gathered from online job postings, profiles, and resumes.

• skill names, IDs, and types (Specialized skills, common skills, certifications)

• categories and subcategories for each skill

Fine-tuned BERT • model proposed in [Wings, Nanda, and Adebayo, 2021]

Soft skill dataset

• created by [Sayfullina, Malmi, and Kannala, 2018]

• soft skills and the context in which they occur are annotated with 1 (i.e., if it is a soft
skill of the candidate) and 0 (i.e., otherwise)

Summary This section presents a non-exhaustive view of works using AI and its advances in
Natural Language Processing (NLP) for SKILL-oriented tasks. We underline the following points
from this analysis of existing works:

• Recent Deep Learning (DL)-based language models are very promising for improving different
skill-oriented tasks, and the previous works are good proofs of the interest in deep models for
the recruitment domain.

https://lightcast.io/open-skills
https://huggingface.co/Ivo/emscad-skill-extraction-conference-token-classification
https://github.com/muzaluisa/Learning_Representations_for_Soft_Skill_Matching

22 Chapter 2. Related Works in the Recruitment Field

• Nonetheless, most of the approaches described in this section rely heavily on manually con-
structing annotated datasets, which are often unavailable to the public. Table 2.7 provides
a summary of the data and tools used in these works. This emphasizes both Challenge 1
and Challenge 2 because in order to account for new skills, the dataset has to be incremented
and the model retrained. Moreover, most of the proposed models are specific to English only.

• At last, the study of these related works also shows that the structured information between
jobs and skills (skill-job graphs) or between skills (skill taxonomy or skill co-occurrence graphs)
is rarely exploited.

2.3 Job Title Oriented
The job title usually implies the responsibility and level of the job position. Although composed of only
a few words, it is the first part to attract people. For example, when job seekers browse recruitment
pages, they will be attracted by the job titles first, and recruiters will first check the work experience
section. Previous studies are focusing on:

• Job title representation learning [Dave et al., 2018; Junhua Liu et al., 2019; M. Liu et al.,
2019; Denghui Zhang et al., 2019; Decorte et al., 2021; L. Zhang et al., 2021; Yamashita et al.,
2022].

• Job title classification [Javed, Q. Luo, et al., 2015; Javed, McNair, et al., 2016; Jingya Wang
et al., 2019].

• Job title analysis [H. Xu, Z. Yu, B. Guo, et al., 2018; Denghui Zhang et al., 2019; Yamashita
et al., 2022].

2.3.1 Job Title Representation Learning
Like skill representation learning, job representation learning is also an important task that benefits
various downstream tasks, such as facilitating job classification and improving talent profile model-
ing. [Dave et al., 2018] jointly learns skill representations and job title representations from three
graphs built from resumes. This approach is experimentally tested on an unavailable dataset from
CareerBuilder. Title2vec [Junhua Liu et al., 2019] is a contextual job title vector representation ob-
tained by fine-tuning from the pre-trained model, ELMo (Embedding from Language Model) [Peters
et al., 2018] on the IPOD dataset. This dataset consists of 192k job titles belonging to 56k LinkedIn
users, and each word of these job titles is manually labeled with a Named Entity (NE) tag indicating
its level of seniority, field of work, and location. More descriptions can be found in Appendix B.1.3.
The obtained representations can then be used for Named Entity Recognition (NER) task. Unlike the
typical NER task that uses general tags, such as LOCation, PERson, and ORGanization. [Junhua
Liu et al., 2019] proposes domain-specific NE tags to denote the properties of occupations, such as
RESponsibility, FUNction and LOCation. JobBERT [Decorte et al., 2021] is designed for the job title
normalization task, which is based on the premise that skills are the basic elements of defining jobs. It
first applies a simple distant supervision rule to create a noisy training set of job titles with associated

2.3. Job Title Oriented 23

skills through literal string matches in job descriptions with an extensive proprietary reference skill list.
Then JobBERT uses BERT (Bidirectional Encoder Representations from Transformer) [Devlin et al.,
2018] as the backbone to encode job titles and applies the loss of Skip-Gram [Mikolov, Sutskever,
et al., 2013] with negative sampling to train the model.4

In addition to the above works that take learning job title representation as the target task, some
works consider learning job title representation as a step in the process of achieving the final task. For
example, Job2Vec [Denghui Zhang et al., 2019] learns collective multi-view job title representations
for job title benchmarking, aiming to match job titles with similar expertise levels across various
companies. Similarly, [Yamashita et al., 2022] also learns multi-aspect job title representations in
order to map user-created job titles to predefined standard job titles (Section 2.3.3). [L. Zhang et al.,
2021] learn company and position representations from a heterogeneous company-position graph by
applying an attentive heterogeneous graph embedding model. The learned representations are then
used for the task of job mobility prediction (Section 2.4.1). As with most methods mentioned, the
last three methods are experimentally constructed and evaluated on private datasets, for which the
datasets are unavailable.

2.3.2 Job Title Classification
In the job recruitment domain, categorizing large datasets consisting of job postings and resumes
into pre-defined or custom occupation categories is important for many downstream applications,
such as matching jobs with resumes, searching for positions, recommending jobs, and labor market
analysis [Jingya Wang et al., 2019]. Carotene [Javed, Q. Luo, et al., 2015; Javed, McNair, et al.,
2016], proposed by the CareerBuilder team, is a ML-based hierarchical, two-stage, semi-supervised,
proximity-based, multi-class, and multi-label job title classification system, which uses the pre-existing
O*NET-SOC 20105 hierarchy as target classes. DeepCarotene [Jingya Wang et al., 2019] is a more
advanced model of Carotene. It uses an end-to-end multi-stream Convolutional Neural Network
(CNN) to learn semantic features on both character and word levels. More specifically, DeepCarotene
considers both job title and job description as input and creates a hierarchical taxonomy by adding
additional subcategories to the 23 Major Groups of SOC 20186 system (Appendix B.2.2). Because it is
difficult to obtain large-scale job title labels and ensure the correctness of liberalization, DeepCarotene
first uses a weakly supervised model to obtain large-scale training data with noisy labels from Carotene.
Then, it jointly trains the character stream for local matching (i.e., based on spelling and pattern)
and the word stream for semantic matching (i.e., based on distributed representation). A multi-task
loss function is used to predict (i) the SOC 2018 Major Groups and (ii) the overall job title (i.e.,
including SOC Major Groups and the subcategories).

Most of the works mentioned in the previous section can also be used for job title classification.
Once again, for all this work, a big part is related to the building of a good and sufficient large
annotated dataset to train the corresponding proposed model. Most of the works mentioned in the
previous section can also be used for job title classification. Again, for all of these works, a large part

4The dataset use in the JobBERT model that consists of a list of Job tiles, each tagged with an ESCO occupation has been made
available here: https://github.com/jensjorisdecorte/JobBERT-evaluation-dataset

5https://www.bls.gov/soc/2018/major_groups.htm
6https://www.bls.gov/soc/2018/home.htm

https://github.com/jensjorisdecorte/JobBERT-evaluation-dataset
https://www.bls.gov/soc/2018/major_groups.htm
https://www.bls.gov/soc/2018/home.htm

24 Chapter 2. Related Works in the Recruitment Field

has to do with constructing well-annotated datasets large enough to train the corresponding proposed
models, and most of these datasets, with the exception of the one used in JobBERT, are unavailable,
thus making it difficult to reproduce these methods.

2.3.3 Job Title Analysis
Since the job title plays a vital role in both the resume and job posting, extensive job title analysis
is performed to benefit various downstream tasks. For example, [H. Xu, Z. Yu, B. Guo, et al.,
2018] adopts a Gaussian Bayesian network to model the joint distribution of job title ranks and the
difficulty of promotion from one job title to another in a career trajectory, thereby extracting the job
title hierarchy from the career trajectory data. Job2Vec [Denghui Zhang et al., 2019] is a collective
multi-view representation learning method for job title benchmarking, aiming to match job titles with
similar expertise levels across various companies. Specifically, the authors first construct a job graph,
where the nodes represent the job titles affiliated with specific companies and the edges represent the
correlations between job titles. Along this line, they reformulate job title benchmarking as the link
prediction task over the job graph. Similar to Job2Vec, [Yamashita et al., 2022] proposes a learning
method for multi-aspect representations (i.e., syntactic, semantic, and topology) of job titles for the
job title mapping task, which aims to map user-created job titles to predefined standard job titles.

2.3.4 Available Job/Job Title Datasets and Tools
To facilitate domain research, we list in Table 2.3 the datasets and online tools we know of that are
relevant to the job/job title.

TABLE 2.3: A summary of available job/job title datasets and tools.

Source Description

Job Salary Prediction dataset
• job ads

• IDs, job titles/descriptions, location, company, category, salary

Real/Fake Job Posting Prediction
• 18,000 job ads, about 800 of which are fake

• IDs, job titles/descriptions/requirements, location, salary, company

IPOD
• created by [Junhua Liu et al., 2019]

• 475,085 job titles crawled from Linkedin, with NE tags prefixed

JobBERT evaluation dataset
• created by [Decorte et al., 2021]

• 30,926 job titles, each tagged with an ESCO occupation (B.2.4)

EMSCAD

• 17,880 job ads

• contains 17,014 legitimate and 866 fraudulent job ads

• IDs, job titles/descriptions/requirements, location, salary, company

O*NET-SOC AutoCoder • a tool that provides an occupational code (i.e., SOC2018, O*NET2019,
and OES2020) for a job, resume and, UI claim

https://www.kaggle.com/competitions/job-salary-prediction/data
https://www.kaggle.com/datasets/shivamb/real-or-fake-fake-jobposting-prediction
https://github.com/junhua/ipod
https://github.com/junhua/ipod
https://www.kaggle.com/datasets/amruthjithrajvr/recruitment-scam
https://www.onetsocautocoder.com/plus/onetmatch

2.4. Career Path Oriented 25

Summary This section presents a non-exhaustive view of works using AI and its advances in
Machine Learning (ML) and Deep Learning (DL) for JOB TITLE tasks. We underline the following
points from this analysis of existing works:

• Using language models like BERT and ELMo is a straightforward way to model job title rep-
resentations [Junhua Liu et al., 2019; Decorte et al., 2021]. Another common direction is to
explore other hidden relations between job titles via graph topology, i.e., job transition graph, to
improve the learned representations [Dave et al., 2018; Denghui Zhang et al., 2019; L. Zhang
et al., 2021].

• Nevertheless, graph-based methods have attempted to consider more transition attributes, such
as transition duration and number [Denghui Zhang et al., 2019; L. Zhang et al., 2021], but
most of them ignore the most basic semantic information or learn semantic and topological
information separately.

• Indeed, the learned job title representation can also be used for classification and analysis
tasks. However, the annotated and open-source datasets are difficult to access due to privacy
and industry competition reasons (i.e., Characteristic 1).

2.4 Career Path Oriented
A career path/trajectory/history is a record of the jobs or professions that a person has engaged
in his/her working years. Indeed, the wealth of information on talent career trajectories provides a
new paradigm for recruitment analysis. Studies on the career path can provide potential benefits for
employees and employers. For example, employees can get information about their current career
stages and the full picture of their career paths to plan their next career move better, and employers
can learn about the career development of employees and decide the best time to promote employees
or increase salaries. Consequently, career path modeling is a research topic with high potential and
has many real-world applications, such as job mobility prediction and career advice.

• Job mobility prediction [Ye Liu et al., 2016; L. Li et al., 2017; James et al., 2018; Y. Yang,
Zhan, and Jiang, 2018; Meng et al., 2019; L. Zhang et al., 2021].

• Career path analysis [H. Xu, Z. Yu, J. Yang, et al., 2016].

2.4.1 Job Mobility Prediction
Job mobility prediction is the task of predicting the next career move of talents based on their career
paths and other available data. It is an emerging research topic that can benefit both organizations
and talents in various ways, such as job recommendation, talent recruitment, and career planning.
Recent works have proposed different structures for various prediction scenarios, such as predicting
whether an employee will leave, the next position he will go to, and how long he will stay in the new job.
For example, [Ye Liu et al., 2016] presents a multi-view multi-task learning approach for career path
prediction. This model fuses information from multiple social networks (e.g., Twitter, Facebook, and

26 Chapter 2. Related Works in the Recruitment Field

LinkedIn) to comprehensively describe talents and characterize the progressive properties of their career
paths. NEMO [L. Li et al., 2017] is a contextual Long Short Term Memory (LSTM) model [Hochreiter
and Schmidhuber, 1997], which integrates the profile context (e.g., skills, education, and location)
and career path dynamics to predict the next career move of the employee (which company with what
job title). In [James et al., 2018], they predict which scientists will move in the next year and which
institution will be selected based on the career quality, scientific environment, and the structure of
the scientific collaboration network of scientists. [Y. Yang, Zhan, and Jiang, 2018] investigates several
ML-models to help improve the talent demission prediction. The talent demission prediction problem is
formalized as a binary classification problem, and a causal structure learning based method is proposed
to calculate the causal relationships between different features (e.g., age, department, and education)
and labels, which can help the management to make decisions with the fewest considerations. [Meng
et al., 2019] integrates three levels of knowledge: personal-specific, company-specific, and position-
specific features to predict the next employer of an individual and how long he/she will stay in the
new position. Specifically, the model applies a local attention mechanism and a global attention
mechanism, respectively, to follow two LSTMs layers to learn the influences of internal and external
job mobility on the next job decision of individuals. [L. Zhang et al., 2021] first applies an attentive
heterogeneous graph embedding model on a heterogeneous company-position graph constructed from
the massive career trajectory data to learn company and position representations. A dual-GRU model
is then used to capture sequential interaction information between companies and positions, and the
final output is used for prediction.

2.4.2 Career Path Analysis
In addition to predicting future behavior based on career paths, organizations can be categorized by
analyzing the work histories of talents. In [H. Xu, Z. Yu, J. Yang, et al., 2016], they propose to detect
talent circles from an organization-level job transition network, where nodes stand for organizations
and edges represent the job transition among organizations. Each circle contains organizations with
similar talent exchange patterns, and clusters of organizations are found by inferring the existence
probabilities of edges in different circles.

2.4.3 Available Resume/Career Path Datasets and Tools
To facilitate domain research, we list in Table 2.4 the datasets and online tools we know of that are
relevant to the resume/career path.

TABLE 2.4: A summary of available resume/career path datasets and tools.

Source Description

US Resume Dataset on DataStock
• about 8M resumes extracted from Indeed.com

• IDs, job titles or job profiles, location

Resume Dataset

• 2, 400+ resumes collected from livecareer.com

• IDs, resume texts, categories of the job the resume was used to apply

• categories include: HR, Designer, Teacher, Advocate, Healthcare ...

https://datastock.shop/download-indeed-job-resume-dataset/
https://www.kaggle.com/datasets/snehaanbhawal/resume-dataset

2.5. Matching Records Oriented 27

Summary This section presents a non-exhaustive view of works using AI and its advances in
Recurrent Neural Network (RNN) for CAREER PATH-oriented tasks. We underline the following
points from this analysis of existing works:

• Recurrent Neural Networks (RNNs) have demonstrated their superiority on sequence modeling
tasks. Thus, they are widely used in job mobility prediction tasks.

• Career path records have many usages. In addition to modeling the professional profile of
talents, it can also be used to support the learning of recruitment representations, such as
learning job and skill representations [Dave et al., 2018; Denghui Zhang et al., 2019; L. Zhang
et al., 2021].

2.5 Matching Records Oriented
A matching record is a collection of job applications A = {(r, j, y)}r∈R,j∈J , where each application
contains a personal profile (usually expressed by a resume r) and a job posting j. Here, R and J
denote resume set and job postings set, respectively. Correspondingly, the matching label y indicates
whether the candidate with the resume r got the job j, i.e., y = 1 means he/she succeeded, while
y = 0 means he/she failed. An example of matching record is given in Figure 2.1, i.e., the part (iv).

2.5.1 Person-Job Fit
The study of measuring the matching degree between the abilities of a person and the demands of a
job, namely Person-Job Fit [Edwards, 1991; Sekiguchi, 2004], has become one of the most compelling
topics in the recruitment field. The Person-Job Fit is defined as estimating the matching degree y
for the resume-job pair (r, j) in an application.

Person 𝑟

Job 𝑗

𝑦 = 0

𝑦 = 1

Match ?

FIGURE 2.2: Illustration of Person-Job Fit task.

The early research work on Person-Job Fit can be traced back to [Malinowski et al., 2006] in
2006, where authors used person and job information to build a bilateral person-job recommendation
system in order to find a good match between a people and a job. In recent studies [Qin et al.,
2018; Zhu et al., 2018], a typical approach is to consider the Person-Job Fit task as a supervised text
matching problem. Consider a set of labeled data (i.e., person-job matching records) as training data,
the purpose of the Person-Job Fit task is to train a matching label (i.e., matching or not matching)
classifier based on the text content of job postings and candidate resumes. Several works have
proposed diverse end-to-end models that use different architectures to represent documents (i.e., job

28 Chapter 2. Related Works in the Recruitment Field

postings and resumes) and then concatenate the learned representations as input to a classifier with
binary cross-entropy loss. For example, [Qin et al., 2018] leverages a Bi-directional LSTM (BiLSTM)
to generate word-level semantic representations for job requirements and experiences. Then, four
hierarchical ability-aware attention strategies are designed to measure the different importance of
job requirements to the job semantic representation and measure the different contributions of work
experiences to a specific ability requirement. Finally, the jointly learned representations of job postings
and resumes are fed into a classifier to evaluate their matching degree. [Bian, W. X. Zhao, et al.,
2019] employs a hierarchical attention-based BiGRU to model both sentences and documents (i.e.,
job postings and resumes). Then, the global semantic interaction between each sentence in the
job posting and each sentence in the resume is modeled. Finally, job posting, resume, and the
global match representations are concatenated as input to a matching label predictor. [Y. Luo et al.,
2019] studies the effectiveness of adversarial training for the Person-Job Fit problem. The proposed
model uses an adversarial learning based framework [Makhzani et al., 2015] to learn more expressive
representations for resumes and job postings, thus leading to better representations for Person-Job
Fit. [Bian, X. Chen, et al., 2020] proposes a multi-view co-teaching network to integrate a text-based
matching model and a relation-based matching model to also take into account the implicit relational
information between candidates (their resumes) and job postings. For that, the authors build a job-
resume relation graph using category labels of job postings (i.e., jobs of the same high-level category
are linked in the graph) and shared keywords between resumes and job postings. Also, some works use
distance-based loss instead of cross-entropy loss, so the Person-Job Fit problem is no longer treated
as a classification problem with fixed classes. For example, [Zhu et al., 2018] proposes a CNN based
model to jointly learn representations of job postings and resumes. Then, the fitness between the
person and the job is measured by the distance between their latent representations. [Shen et al.,
2018] develops a latent variable model to model job descriptions and candidate resumes jointly for
Person-Job Fit and interview assessment. In addition to the often-used personal information and job
requirements, interview records also contain a lot of useful information for fitness matching. Some
works consider the interview records in the representation modeling. For example, [Yan et al., 2019]
proposes an end-to-end learnable NN to learn the preferences of recruiters and job seekers from their
previous interview and application histories, respectively, to improve job-resume matching.

We summarize the different representation learning structures and matching degree measurement
frameworks used in the works related to Person-Job Fit in Table 2.5. The vast majority of works rely
on deep networks to learn the job and resume representations, and among these works, some further
consider other information beyond job-resume pairs to help measure suitability.

2.5. Matching Records Oriented 29

TABLE 2.5: A summary of works related to Person-Job Fit, including the architecture of
representation learning and the framework of matching degree measurement.

Paper Representation Learning Architecture Matching Degree Measurement Framework

[Qin et al., 2018]

• BiLSTM: requirement/experience representation

• Hierarchical ability-aware attention mechanism:
job/resume representation

Concatenation of job and resume + binary
cross entropy loss

[Zhu et al., 2018]
• CNN: requirement/experience representation

• Max/mean-pooling: job/resume representation
Minimize/Maximize the distance of posi-
tive/negative job-resume pairs

[Shen et al., 2018] • Topic distribution: job/resume representation
Minimize the distance between job and re-
sume probability distributions

[Yan et al., 2019]

• GRU-based profiling memory model: preference-
aware job and resume representation

• The model memorizes the interviewed candidates
for the job and memorizes the job application his-
tory for the resume

Minimize/Maximize the distance of posi-
tive/negative job-resume pairs

[Bian, W. X. Zhao,
et al., 2019]

• Hierarchical attention-based BiGRU: job/resume
sentence representation

• Hierarchical attention-based BiGRU: job/resume
representation

• Compute the global semantic interactions between
every sentence in the job and every sentence in the
resume

Concatenation of job and resume + binary
cross entropy loss

[Y. Luo et al.,
2019]

• ELMo: job/resume word/phrase representation

• Hierarchical attention BiLSTM: experience repre-
sentation

• Attention scheme: skill representation

• CNN+adversarial learning mechanism: job repre-
sentation

Concatenation of job and resume + binary
cross entropy loss

[Bian, X. Chen, et
al., 2020]

• BERT+Transformer: job/resume sentence repre-
sentation+job/resume representation

• Relational Graph Convolutional Network on a job-
resume relation graph: job/resume representation

Concatenation of job and resume + binary
cross entropy loss + Multi-view co-teaching
network

2.5.2 Available Person-Job Matching Datasets and Tools
To facilitate domain research, we list in Table 2.6 the datasets and online tools we know of that are
relevant to the person-job matching.

TABLE 2.6: A summary of available person-job matching datasets and tools.

Source Description

Matching Records • used in [Yan et al., 2019]

Matching Records • used in [Bian, W. X. Zhao, et al., 2019]

Matching Records • used in [Bian, X. Chen, et al., 2020]

https://github.com/leran95/JRMPM
https://github.com/RUCAIBox/Person-Job-Fit/blob/master/README.md#Licence
https://github.com/RUCAIBox/Person-Job-Fit/blob/master/README.md#Licence

30 Chapter 2. Related Works in the Recruitment Field

Summary This section presents a non-exhaustive view of works using AI and its advances in Deep
Learning (DL) for PERSON-JOB FIT tasks. We underline the following points from this analysis of
existing works:

• Most of the models described in this section typically deal with the Person-Job Fit task as a
supervised binary text matching problem by training a matching label classifier based on a set
of labeled person-job matching records. However, such datasets are not easy to collect due to
the privacy reason (i.e., Characteristic 1).

• Various deep architectures, such as Convolutional Neural Network (CNN), GRU, and LSTM
have been proposed with the aim of better modeling jobs and persons, or some works suggest
using pre-trained language models such as ELMo and BERT to obtain their representations.

• Finally, the study of these related works also shows that the information used to construct
representations, whether jobs or talents, is usually based on textual semantics, but the relation-
ships between them are rarely exploited, except for [Bian, X. Chen, et al., 2020] considering a
job-resume graph.

2.6 Others
In addition to using the above data types, several works have explored interaction records (e.g., job
seekers click, bookmark, and apply jobs) for job recommendation tasks. For example, [Lacic et al.,
2020] encodes interactions between job seekers and jobs using different autoencoder architectures,
and then recommends the next job posting in a K-nearest-neighbor manner.

TABLE 2.7: A summary of data used in recruitment-related works. NS means that the
authors did not provide a specific name for the data source. no indicates that the authors

did not give or we did not find a link to the same dataset used in the paper.

Paper Data & Source & Availability Model Graph Used Add. Tool

Sk
ill

Ex
tr
ac
tio

n

Elisit [Kivimäki et al., 2013] • skill: LinkedIn: no ML Wiki hyperlink
graph

Wikipedia

SKILL [M. Zhao et al., 2015] • job ad: CareerBuilder: no
• CV: CareerBuilder: no

ML+DL no Wikipedia,
Word2Vec

[Sayfullina, Malmi, and
Kannala, 2018]

• job ad: LinkedIn: yes
• CV: indeed: yes
• skill: NB: yes

ML+DL no -

TaxoSoft [Khaouja et al.,
2019]

• job ad: CareerBuilder, Apec,
Keljob, Rekrute...: no

ML+DL no DBpedia,
Word2Vec

[Gugnani and Misra, 2020] • job ad: NS: no
• CV: borrowed: no
• skill: predefined: no

ML+DL no Word2Vec

[Wings, Nanda, and Ade-
bayo, 2021]

• job ad: EMSCAD: yes
• hard skill: EMSI: yes
• soft skill: : yes

ML+DL no TaxoSoft

Continued on next page

https://www.kaggle.com/c/job-salary-prediction
 https://github.com/muzaluisa/soft-skill-matching
 https://github.com/muzaluisa/soft-skill-matching
https://www.kaggle.com/datasets/amruthjithrajvr/recruitment-scam
https://skills.emsidata.com/
https://github.com/muzaluisa/Learning_Representations_for_Soft_Skill_Matching

2.6. Others 31

Table 2.7 – continued from previous page
Paper Data & Source & Availability Model Graph Used Add. Tool

Sk
ill

A
na

ly
si
s/

R
ep

re
se
nt
at
io
n
Le

ar
ni
ng

[W. Zhou et al., 2016] • job ad: CareerBuilder: no ML no SKILL,
Carotene

[T. Xu et al., 2018] • job ad: not specify: no
• skill: CSDN 2016: no

ML no -

[Dave et al., 2018] • CVs: CareerBuilder: no ML job transition, job-
skill, skill-skill
graphs

SKILL,
Carotene

SkillBERT [Nigam et al.,
2020] • skills: predefined: yes ML+DL no BERT

Jo
b
Ti
tle

R
ep

re
se
nt
at
io
n
Le

ar
ni
ng

[Dave et al., 2018] • CV: CareerBuilder: no ML job transition, job-
skill, skill-skill
graphs

SKILL,
Carotene

Title2vec [Junhua Liu et al.,
2019] • job title: LinkedIn: yes ML+DL no ELMo

Job2Vec [Denghui Zhang et
al., 2019]

• career-path: NS: link wrong ML job transition graph -

JobBERT [Decorte et al.,
2021]

• job title: MYFutureJobs: yes ML+DL no BERT

Jo
b
Ti
tle

C
la
ss
ifi
ca
tio

n/
A
na

ly
si
s

[L. Zhang et al., 2021] • career-path: LinkedIn: no ML+DL company-position
graph

-

JAMES [Yamashita et al.,
2022] • resumes: FutureFit AI: no ML+DL job transition graph BERT

Carotene [Javed, Q. Luo, et
al., 2015] • job title: CareerBuilder: no ML no -

DeepCarotene [JingyaWang
et al., 2019] • job title: CareerBuilder: no ML+DL no Carotene

[H. Xu, Z. Yu, B. Guo, et al.,
2018] • career-path: NS: no ML job-title hierarchy

graph
-

Job2Vec [Denghui Zhang et
al., 2019]

• career-path: NS: link wrong ML job transition graph -

JAMES [Yamashita et al.,
2022] • resumes: FutureFit AI: no ML+DL job transition graph BERT

Jo
b
M

ob
ili
ty

Pr
ed

ic
tio

n/
C
ar
ee

rP
at
h
A
na

ly
si
s

[Ye Liu et al., 2016] • career-path: About.me: no ML no -

NEMO [L. Li et al., 2017] • career-path: LinkedIn: no ML+DL no -

[James et al., 2018] • career-path: APS: no ML no -

[Y. Yang, Zhan, and Jiang,
2018] • career-path: IBM: no ML no -

[Meng et al., 2019] • career-path: NS: no ML+DL no -

[L. Zhang et al., 2021] • career-path: LinkedIn: no ML+DL company-position
graph

-

[H. Xu, Z. Yu, J. Yang, et al.,
2016] • career-path: not specify: no ML job transition graph -

Pe
rs
on

-J
ob

Fi
t

[Qin et al., 2018] • job-CV pair: Baidu: no ML+DL no -

[Zhu et al., 2018] • job-CV pair: Baidu: no ML+DL no -

[Shen et al., 2018] • job-CV pair: Baidu: no ML no -

[Yan et al., 2019] • job-CV pair & interview
records: Boss Zhipin: yes

ML+DL no -

Continued on next page

https://www.dropbox.com/s/wcg8kbq5btl4gm0/code_data_pickle_files.zip?%20dl=0!
https://github.com/junhua/ipod
https://github.com/jensjorisdecorte/JobBERT-evaluation-dataset
https://github.com/leran95/JRMPM

32 Chapter 2. Related Works in the Recruitment Field

Table 2.7 – continued from previous page
Paper Data & Source & Availability Model Graph Used Add. Tool

[Bian, W. X. Zhao, et al.,
2019]

• job-CV pair: Boss Zhipin:
yes

ML+DL no -

[Y. Luo et al., 2019] • job-CV pair: private: no ML+DL no ELMo

[Bian, X. Chen, et al., 2020] • job-CV pair: Boss Zhipin:
yes

ML+DL job-resume graph BERT

N
ex

t-J
ob

Pr
ed

ic
tio

n

[Lacic et al., 2020] • job ad & interaction: Studo,
RecSys17,CareerBuilder12:
yes

ML+DL no -

2.7 Summary and Positioning
AI, especially the deep models, have been widely applied to handle the different recruitment tasks
mentioned above and achieved encouraging performance. These works use different types of recruit-
ment data based on different model structures and process schemes, which are summarized in detail
in Table 2.7. We underline some points by analyzing the table and all the works mentioned above:

• Terminology resource receive little attention: As seen from the table, different tasks mainly
focus on specific data types, such as career paths for job mobility prediction and job-resume
pairs for Person-Job Fit, but job postings and resumes are frequently used in all tasks. In
addition to these data, interaction records and interviewee records are also explored. However,
as described in Section 1.2, the recruitment field also has a wealth of predefined terminology re-
sources, especially skill taxonomies and occupation taxonomies, which are well-structured
knowledge graphs to show the hierarchical relationship between standard terms. These tax-
onomies often contain much normative knowledge, but no work has yet made use of it, whether
directly or indirectly. In such a context, we explore the utility of this data type, especially in
representation learning. More specifically, we take the skill taxonomy into account to learn
more informative skill representations, which will be explained in Chapter 5.

• Graph topology information is as important for representation learning as semantic
information: Much data in the field of recruitment can be represented by graph structures,
and there also exist graph-like terminology resources, as mentioned earlier. However, this
important information is less studied because current works and methods focus more on se-
mantic information. For example, different architectures have been designed to learn job and
person representations for Peron-Job Fit or classification tasks. Some works have attempted
to explore graph structures to assist various tasks, such as associating skills with Wikipedia
pages [Kivimäki et al., 2013], matching job titles with similar expertise levels across various
companies [Denghui Zhang et al., 2019], predicting job mobility [L. Zhang et al., 2021], and
matching talents with jobs [Bian, X. Chen, et al., 2020]. The core of these works is the learn-
ing of related representations. However, these methods either ignore the semantic information
carried by the manipulated data or learn topological or semantic information separately. In

https://github.com/RUCAIBox/Person-Job-Fit
https://github.com/RUCAIBox/Multi-View-Co-Teaching
https://github.com/lacic/session-knn-ae

2.7. Summary and Positioning 33

Chapter 4, we propose a new graph-based scheme for learning job title representations from
graphs by combining topological and semantic information.

• Lack of open datasets: Due to personal privacy and industry competition, few annotated
datasets are available in the field of recruitment (Challenge 1). Table 2.7 demonstrates this
argument that most works do not make public the datasets they use. This lack of publicly
available annotated datasets is problematic because most state-of-the-art high-performance AI
data-driven approaches are mainly based on a supervised learning paradigm, which assumes
the availability of large annotated datasets, such as Person-Job Fit and job classification tasks.
Therefore, this lack of annotated datasets inspires other learning schemes, such as unsupervised
or semi-supervised learning. In Chapter 6, we learn job representations in an unsupervised man-
ner and use the learned representations for next-application prediction, which is less studied in
the current domain. This is another reason why we focus or research on learning representation
using graphs.

This chapter reviews existing AI-based works, open datasets and online tools in
the recruitment field. By comparing these different works, we summarize current
issues and challenges to highlight the strengths of our proposed methods and the
importance of our research questions, i.e., how to leverage implicit (i.e., interac-
tion or transition records) or explicit (i.e., taxonomy) structured recruitment data
to improve the learned recruitment-related representations.

Summary of Chapter 2

35

Chapter 3

Preliminary

This chapter, as a preparatory part, consists of two parts: (i) an introduction to graph embeddings
and (ii) an introduction to recommendation models, especially sequential recommendation, both of
which will be studied in our work. Throughout this chapter, we use bold uppercase characters to
denote matrices (e.g., W) and bold lowercase characters to denote vectors (e.g., v). We employ
non-bold letters (e.g., n, N) to represent scalars and use Greek letters (e.g., λ) as parameters. The
cardinality of a set is denoted by the vertical bar | · |.

3.1 Review of Graph Embedding Models
Real-world data usually comes together with graph structures, where nodes represent individuals and
edges represent relations or interactions between nodes, such as social networks, citation networks,
and biological networks, as shown in Figure 3.1.

(a) Social network. (b) Citation network.

FIGURE 3.1: Examples of graphs.

Similarly, in the field of recruitment, there are various graph structures such as job transition
graphs, job company affiliation graphs, and predefined occupational taxonomies. Inspired by the suc-
cess of graph embedding methods in other applications, we therefore try to explore graph embedding
methods in the recruitment domain, especially in representation learning. This section first formally
introduces the basic concepts of graph embedding. For facilitating illustration, we list some important
mathematical notations used throughout this section in Table 3.1, unless particularly specified. Then
we introduce some representative graph embedding methods for both homogeneous and heterogeneous
input graphs, which will be used as baselines for job title representation learning task (Chapter 4) and
skill representation learning task (Chapter 5).

36 Chapter 3. Preliminary

TABLE 3.1: Mathematical notations used in Review of Graph Embedding Models.

Notation Description

G graph/network
V , E node set, edge (link) set
X feature matrix
A adjacency matrix

vx, exy x-th node, edge between node pair (vx, vy)
weightxy weight of edge exy

degout(v) out-degree of node v
degin(v) in-degree of node v
TV , TE node type set and edge type set
ψ(v) node type mapping function
ϕ(e) edge type mapping function
vw(i) node at i-th position in the random walk

c window size of context
Φ(·) embedding mapping function
N (v) neighbors of node v

3.1.1 Basic Concepts
Traditionally, a basic graph/network1 is represented as G = (V , E), where V = {v1, . . . , v|V|} is the
set of nodes (vertices/entities),2 and E ⊆ V × V is the set of edges (relation/links),3 each edge is
represented by a node pair exy = (vx, vy), x, y ∈ [1, |V|]. In some graphs, nodes are equipped with
node features, X = {x1, . . . ,x|V|},xi ∈ RF, where F is the number of features. A graph can be
represented by an adjacency matrix A of dimension |V| × |V|, and the elements of the matrix are
{axy}, indicating whether the nodes vx and vy are connected in the graph, i.e., axy = 1 if exy ∈ E ,
0 otherwise. If axy 6= ayx, G is a directed graph, or else it is an undirected graph. If axy is weighted
by weightxy ∈ W , W ∈ R+, G = (V , E ,W) is a weighted graph, otherwise it is an unweighted
graph. Nodes and edges can optionally have a type, which is represented as TV and TE. A graph with
a single type of node and a single type of edge, i.e., |TV | = 1 and |TE| = 1, is called homogeneous.
On the other hand, a graph with two or more types of nodes and/or two or more types of edges, i.e.,
|TV |+ |TE| > 2, is called heterogeneous. We formally define these two types of graphs as follows:

Definition 3.1.1 Homogeneous Graph (HomG): Homogeneous graph is defined as G = (V , E , TV , TE),
in which each node v ∈ V and each edge e ∈ E are associated with their type mappings, i.e., ψ(v) : V →
TV and ϕ(e) : E → TE. TV and TE represent the node type and edge type sets, respectively. In homoge-
neous graphs, nodes and edges have a single type, i.e., |TV | = 1 and |TE| = 1.

Example 3.1.1 : An example of HomG is a job transition network, as shown in Figure 3.2, where nodes
represent “job positions” (job titles) and edges represent “career moves”, where there is only one type of

1In this chapter, we use graph and network interchangeably.
2In this chapter, we use node, entity and vertex interchangeably.
3In this chapter, we use edge, link and relation interchangeably.

3.1. Review of Graph Embedding Models 37

node and edge.

Job title 1 Job title 2

Job title 3
Job title 4

Job title 5

FIGURE 3.2: Example of HomG:
nodes represent “job titles” and
edges represent “career moves”.

Job title 1 Job title 2

Job title 3
Job title 4

Job title 5

Company 1

Company 3

Company 2

Belong to

FIGURE 3.3: Example of HetG: with
two node types, i.e., “job titles” and
“company names”, and two edge
types, i.e., “career moves” and “be-

long to”.

Definition 3.1.2 Heterogeneous Graph (HetG): Heterogeneous graph is defined as G = (V , E , TV , TE)

in which there are multiple types of nodes/edges, i.e., |TV |+ |TE| > 2.

Example 3.1.2 : An example of HetG is a job transition graph with different types of nodes (i.e., “com-
pany names” and “job positions”), as shown in Figure 3.3. The edge between the two “job position”
nodes has the type of “career move”, and the edge between a “job position” and a “company name” node
is the “belong to” type.

Other important concepts are the graph adjacency matrix and the graph Laplacian, which we
define below.

Definition 3.1.3 Adjacency Matrix: The adjacency matrix of the graph G = (V , E) is defined as
A ⊆ {0, 1}|V|×|V| (unweighted) or A ⊆ R|V|×|V| (weighted), where the entry axy is non-zero if and
only if there is an edge exy ∈ E between vx, vy ∈ V , otherwise axy = 0

Definition 3.1.4 Graph Laplacian: The graph Laplacian is defined as L = D −A (or L = I −
D−1/2AD−1/2), where D ⊆ R|V|×|V| is the diagonal degree matrix and I is the identity. Through
spectral decomposition, L can be written by L = Udiag(λ)UT, where each column of U ∈ R|V|×|V|

is an eigenvector of L, λ ∈ R|V| gathers the eigenvalues of L and diag(·) function creates a diagonal
matrix whose diagonal elements are from a given vector.

3.1.2 Graph Embedding
Graph embedding consists in learning low-dimensional feature representations of nodes, edges, or
entire graphs. The principle is that the similarity in the embedding space reflects a certain proximity
relationship in the graph, which is usually quantified by the following proximity measures [Cai, Zheng,
and Chang, 2018; Daokun Zhang et al., 2018]:

38 Chapter 3. Preliminary

Definition 3.1.5 First-Order Proximity: The first-order proximity applies only to local pairwise
similarities between two nodes directly connected by an edge. It is usually defined as the edge weight.
The larger the edge weight between two nodes, the larger the first-order proximity between them.

Definition 3.1.6 Second-Order Proximity: The second-order proximity measures the similarity of
the neighborhood structures of two nodes. The more similar the neighborhoods of the two nodes are, the
larger the second-order proximity value between them.

Definition 3.1.7 High-Order Proximity: The high-order proximity measures the relationship be-
tween two nodes that are not directly adjacent. For example, the third-order proximity between two
nodes measures the similarity between the neighborhood of their neighborhoods.

The output of graph embedding is a set of low-dimensional vectors that are learned by preserving
one or more of the proximity mentioned above. These vectors can be divided into four types [Cai,
Zheng, and Chang, 2018]: (i) node embedding, (ii) edge embedding, (iii) hybrid embedding, and (iv)
whole graph embedding. Different types of embeddings benefit different downstream tasks.

• Node embedding is to learn node representation in a low-dimensional space. It is the most
common output of graph embeddings and can benefit various node-related graph analyses, such
as node clustering and classification. In this thesis, we focus on learning node embeddings.

• Edge embedding is to learn edge representation in a low-dimensional space. Besides direct
learning, edge representations can also be represented by a pair of node representations. It
benefits edge-related graph analysis, such as link prediction and knowledge graph relation
prediction.

• Hybrid embedding is to learn the combined representation of different types of graph com-
ponents, such as arbitrary combinations of nodes and edges, as well as communities. This
combined representation can be learned directly or derived by aggregating individual node and
edge embeddings.

• Whole graph embedding is to learn the representation of the whole graph. It facilitates
graph classification.

Based on the definition of different proximities and different embeddings, we formally define the
graph embedding as follows:

Definition 3.1.8 Graph Embedding: Given an input graph G (HomG or HetG) and its adjacency
matrix A, graph embedding consists in learning how to convert G into a d-dimensional space (d �
|V|) while preserving the properties of the graph. Graph properties can be quantified using proximity
measures such as first- and high-order proximity. The graph is ultimately embedded as a d-dimensional
vector (i.e., for the whole graph) or a set of d-dimensional vectors, each representing a graph component
(e.g., node and edge).

The resulting representations, especially node representations, can serve as precursors for numer-
ous downstream machine learning and optimization tasks, such as link prediction [Liben-Nowell and
Kleinberg, 2007; Lü and T. Zhou, 2011], node classification [Bhagat, Cormode, and Muthukrishnan,

3.1. Review of Graph Embedding Models 39

2011], community detection [Cavallari et al., 2017; X. Wang, P. Cui, et al., 2017], recommender
system [Shi et al., 2018], and network visualization [Jian Tang, Jingzhou Liu, et al., 2016]. Among
them, node classification and link prediction are two important tasks related to node embedding and
edge embedding, which have many applications and will be used frequently in this thesis. We define
them as follows:

Definition 3.1.9 Node Classification: Node classification is a task whose goal is to predict a label
y ∈ Y for each node v ∈ V \ Vtrain given a training set of nodes Vtrain ⊂ V whose true labels are known,
where Y is a set of predefined categories, types, or attributes. In general, node classification is conducted
by applying a classifier on the set of node embeddings. Compared to classical supervised classification,
in the case of graphs, we can not assume that each data point is statistically independent of all other data
points.

Definition 3.1.10 Link Prediction: Link prediction is a task whose goal is to predict whether an edge
exists between two nodes. More formally, given a set of nodes V and an incomplete set of edges between
these nodes Etrain ⊂ E . Our goal is to use this partial information to infer the missing edges E \ Etrain.

3.1.3 Representative Node-Level Graph Embedding Models
In this thesis, we mainly focus on learning node embeddings, which we call node-level graph embed-
dings. Following the categorization of [Cai, Zheng, and Chang, 2018], different node-level graph
embedding approaches can be classified in different ways according to the input graph type (i.e.,
homogeneous or heterogeneous graphs) and learning model and paradigm (i.e., shallow or deep mod-
els, semi-supervised or unsupervised learning). Early graph embedding methods focus on the use of
shallow models. These works first randomly initialize the node embeddings and then refine node
embeddings through optimizing some well-designed objective functions. Inspired by the successful
application of Skip-Gram [Q. Le and Mikolov, 2014] in Natural Language Processing (NLP), a series
of Skip-Gram-basedmodels have been proposed in recent years to encode the graph structure into
continuous spatial vector representations, such as Deepwalk [Perozzi, Al-Rfou, and Skiena, 2014] or
Node2Vec [Grover and Leskovec, 2016]. Recently, driven by Neural Networks (NNs), e.g., Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and autoencoders, there is an
increasing interest in extending NNs to handle graphs with arbitrary structures [Z. Wu et al., 2020],
namely GraphNeural Networks (GNNs). Deep models are designed to use advanced NNs to learn
embedding from node attributes or nonlinear relationships between nodes. A typical Deep Learning
(DL)-based model is Graph Convolutional Network (GCN) [Kipf and Welling, 2016] and a series of
GCN variants [Hamilton, Ying, and Leskovec, 2017b; Veličković, Cucurull, et al., 2017; Schlichtkrull
et al., 2018; Z. Wu et al., 2020] have been proposed.

This section reviews the state-of-the-art node-level graph embedding models through the hier-
archical taxonomy shown in Table 3.2. We first divide the models into two categories according to
the network type: homogeneous graph embedding and heterogeneous graph embedding. According to
whether nodes labels are provided for learning, we further categorize each category into two subgroups:

40 Chapter 3. Preliminary

unsupervised and semi-supervised. Moreover, models can further be divided into shallow and deep
categories according to the structure of the representation methods used.

TABLE 3.2: Graph embedding works categorized by graph type and learning method.

Paper

H
om

G Unsupervised Shallow DeepWalk [Perozzi, Al-Rfou, and Skiena, 2014], LINE [Jian Tang,
Qu, et al., 2015], Node2Vec [Grover and Leskovec, 2016],

Deep DGI [Veličković, Fedus, et al., 2018]

Semi-supervised Shallow -
Deep GCN [Kipf and Welling, 2016], GAT [Veličković, Cucurull, et al.,

2017], GraphSAGE [Hamilton, Ying, and Leskovec, 2017b]

H
et

G Unsupervised Shallow metapath2vec [Dong, Chawla, and Ananthram Swami, 2017],
PME [H. Chen et al., 2018]

Deep

Semi-supervised Shallow
Deep RGCN [Schlichtkrull et al., 2018], HAN [X. Wang, Ji, et al., 2019]

Homogeneous Graph Embedding

The following respectively introduces the methods of (i)unsupervised graph embedding and (ii)semi-
supervised graph embedding on HomGs.

(i) Unsupervised In this setting, no labeled nodes are provided for learning node representations.
Most existing algorithms fall into this category.

Inspired by Word2Vec [Mikolov, K. Chen, et al., 2013; Mikolov, Sutskever, et al., 2013], especially
the Skip-Gram model, a number of recent research works have proposed network embedding learning
frameworks based on random walks. The general idea of random-walk-based methods is to trans-
form the network structure into node sequences called random walks. Then they learn latent node
representations by processing random walks as the equivalent of sentences in the Skip-Gram model.
Skip-Gram, described in more detail in Appendix D.1, is a language model whose goal is to find word
representations that are useful for predicting the surrounding words in a sentence or document. More
formally, given a sequence of training words {w1, w2, . . . , wl}, the objective of the Skip-Gram model
is to maximize the following conditional probability:

1
l

l

∑
i=1

∑
−c≤j≤c,j 6=0

log Pr
(
wi+j|wi

)
, (3.1)

where c is the size of context window. This probability represents the likelihood that wi+j is the
context of the word wi.

The probability is defined as a softmax function on the embeddings of wi+j and wi:

Pr(wi+j|wi) =
exp

(
Φ(wi+j)

TΦ(wi)
)

∑w∈V exp (Φ(w)TΦ(wi))
,

3.1. Review of Graph Embedding Models 41

where V is the vocabulary set4, Φ(·) is the embedding mapping function. This mapping function,
defined as Φ : V → Rd, embeds each word w in the vocabulary V into a d-dimensional latent
space.5 In order to achieve efficient optimization, negative sampling and hierarchical softmax have
been proposed in [Mikolov, K. Chen, et al., 2013; Q. Le and Mikolov, 2014]. The general idea of
negative sampling is to maximize the similarity of a word wi to words in the same context (i.e.,
positive samples) while minimizing the similarity to those words that are not in the same context
(i.e., negative samples). Furthermore, instead of using all words that are not in the same context,
we randomly sample a small set of them as negative samples to reduce the number of parameters
that need to be updated. Hierarchical softmax is another way to reduce the computation cost. The
idea is to replace the direct softmax calculation with the computation on the binary tree, thereby
reducing the computation cost from O(|V|) to O(log2 |V|). A more detailed explanation is given in
the Appendix D.1.

For graphs, in random-walk-based methods, random walks are considered as sentences in the
language model. More specifically, a random walk of length l starting from a node vw(1) can be
modeled as a sequence W [vw(1)] = {vw(1), . . . , vw(l)}, where vw(i) ∈ V represents the node at the
i-th position in the walk. In general, different methods differ in the strategies used to generate random
walks and how the skip-gram objective is carried out. The two most typical works are:

• DeepWalk [Perozzi, Al-Rfou, and Skiena, 2014]: Given a graph G = (V , E), DeepWalk first
samples uniformly a node v as the root of the random walk and generates a random walk of
fixed-length l, each step of which is sampled from the neighbors of the last visited node in the
current walk with the following distribution:

Pr(vw(i+1) = vy|vw(i) = vx) =

{
πxy
Z , if exy ∈ E

0, otherwise
, 1 < i < l,

where πxy = weightxy in weighed graphs else πxy = 1 in the case of unweighted graphs,
and Z is the normalizing constant. Then, the generated random walk is used to update the
representations using the Skip-Gram approach with a hierarchical softmax [Mikolov, K. Chen,
et al., 2013], formulated as Equation 3.1.

• Node2Vec [Grover and Leskovec, 2016]: Node2Vec can be seen as an extension of DeepWalk.
It designs a biased random walk process that can balance Depth First Search (DFS) and
Breadth First Search (BFS) for neighborhood exploration. More formally, it defines a second-
order random walk with two parameters p and q. For instance, consider a random walk that
traverses from node vx to node vy and now resides at node vy, as shown in Figure 3.4. The
walk now needs to decide the next step, so it evaluates the transition probabilities πyz on
edges eyz leading from vy. In Node2Vec, the unnormalized transition probability is set as

4Note that V here represents the vocabulary set, not the previously defined node set.
5If we switch to the context of graphs, we denote the mapping function from node to feature representation as Φ : V → Rd.

42 Chapter 3. Preliminary

πyz = α(x, z) · weightyz, where

α(x, z) =


1
p , if dxz = 0

1, if dxz = 1
1
q , if dxz = 2

,

and dxz denotes the shortest path distance between nodes vx and vz, the distance here can
only be {0, 1, 2}, because Node2Vec considers the second-order random walk. For example,
in Figure 3.4, the shortest distance between node vx and vz1 is 1, so α(x, z1) = 1, while
α(x, z2) = 1/q for node vz2 .

After generating random walks, Node2Vec uses negative sampling [Q. Le and Mikolov, 2014]
to optimize the Skip-Gram model, in contrast to the hierarchical softmax used in DeepWalk.
Negative samples are drawn from a modified unigram distribution Pn(v) ∝ degout(v)3/4 as
proposed in [Q. Le and Mikolov, 2014], where degout(v) is the out-degree of node v.

	𝑣#

	𝑣$

		𝑣%&

𝛼(𝑥, 𝑥) = 1/𝑝

		𝑣%0

		𝑣%1

𝛼(𝑥, 𝑧3) = 1
𝛼(𝑥, 𝑧4) = 1/𝑞

𝛼(𝑥, 𝑧6) = 1/𝑞

FIGURE 3.4: Illustration of the
random walk generation pro-
cedure in Node2Vec, adapted
from [Grover and Leskovec,

2016].

FIGURE 3.5: An example of
the first-order and second-
order structures in a network,
from [Jian Tang, Qu, et al., 2015].

In the family of unsupervised methods, we also have models that do not use random walks, but
either use explicit modeling of proximity relations or mutual information.

• Large-scale InformationNetwork Embedding (LINE) [Jian Tang, Qu, et al., 2015]: LINE
learns node representations by explicitly modeling the first-order proximity and second-order
proximity, as defined in Definition 3.1.5 and 3.1.6, rather than exploiting random walks to
capture network structure.

– First-order proximity is the observed local pairwise proximity between two nodes, such
as the observed edge between nodes 6 and 7 in Figure 3.5. Given an undirected edge exy,
the first-order proximity between nodes vx and vy can be modeled by the following joint
probability distribution:

3.1. Review of Graph Embedding Models 43

Pr1(vx, vy) =
1

1 + exp(−Φ(vx)TΦ(vy))
.

This distribution is defined over the space V × V , with Φ(·) defined in Rd, and its
empirical probability can be derived as

P̂r1(vx, vy) =
weightxy

∑ex′y′∈E weightx′y′
.

To preserve the first-order proximity, we can minimize the distance between these two
distributions. In LINE, the authors propose to use the KL-divergence as the distance,
resulting in the following objective function (some constant omitted):

L1 = − ∑
exy∈E

weightxy log
(

1
1 + exp(−Φ(vx)TΦ(vy))

)
.

– Second-order proximity is determined by the similarity of the contexts (neighbors)
of two nodes. For example, the second-order similarity between nodes 5 and 6 can be
obtained by the fact that they share similar neighbors 1, 2, 3, and 4 in Figure 3.5. For each
directed edge (an undirected edge can be considered as two directed edges in opposite
directions), the probability of generating the “context” node vy from the source node vx

is defined as:

Pr2(vy|vx) =
exp

(
Φ′(vy)TΦ(vx)

)
∑v∈V exp (Φ′(v)TΦ(vx))

,

where Φ′(·) is the embedding mapping function for the context node. In fact, each node
v has two representations: Φ(v) (when it is treated as the source node) and Φ′(v) (when
it is treated as the “context” of other nodes). The empirical distribution P̂r2(vx, vy) is
defined as:

P̂r2(vx, vy) =
weightxy

∑vy′∈N (vx) weightxy′
,

where N (vx) denotes the neighbors of vx in graph G. Similarly, LINE minimizes the KL-
divergence between Pr2(·|·) and P̂r2(·|·) to preserve the second-order proximity, resulting
in the following objective function:

L2 = − ∑
exy∈E

weightxy log

(
exp

(
Φ′(vy)TΦ(vx)

)
∑v∈V exp (Φ′(v)TΦ(vx))

)
.

Besides the unsupervised methods described above of learning node representations by preserving
various proximity between nodes, another learning scheme is by aggregating neighbor information. In
particular, the aggregator utilizes the architecture of Neural Network (NN)s, such as Convolutional
Neural Network (CNN) and Long Short Term Memory (LSTM), so this kind of learning model is
called Graph Neural Network (GNN), which is usually learned under supervision, as described below.
Next, we explain an example of GNN that learns node representations without using labels.

44 Chapter 3. Preliminary

• Deep Graph Infomax (DGI) [Veličković, Fedus, et al., 2018]: DGI is a deep model that
learns node representations in an unsupervised way. It relies on maximizing the mutual in-
formation between patch representations obtained by summarizing patches around targeted
nodes via neighborhood aggregation and the corresponding high-level graph summaries, both
derived using the established GCN architectures [Kipf and Welling, 2016], rather than random
walks. More specifically, given a graph G = (V , E), node features X = {x1, . . . ,x|V|} and
the adjacency matrix A ∈ R|V|×|V|, DGI learns node representations using the following loss
function:

L =
1

|V|+ |V ′|

(
|V|

∑
i=1

E(X ,A) [log D(hi, s)] +
|V ′|

∑
i=1

E(X̃ ,Ã)[log(1− D(h̃i, s))]

)
, (3.2)

where hi represents the high-level representation for each node, and s represents the graph-
level summary vector that captures the global information content of the entire graph, s is
obtained by passing node representations through a readout function, R : R|V|×d → Rd, i.e.,
s = R(Φ(X ,A)), where Φ : R|V|×F ×R|V|×|V| → R|V|×d is an embedding mapping function
that takes the node feature matrix and the adjacency matrix as input. D : Rd × Rd → R

is a discriminator, and D(hi, s) represents the probability score assigned to a node-summary
pair (hi, s). The right side of the loss calculates the probability score assigned to negative
samples, provided by pairing the summary from (X ,A) with “fake” node representation h̃j of
an alternative graph (X̃ , Ã).

TABLE 3.3: A quick summary of the above unsupervised HomG embedding methods.

Paper Method

DeepWalk [Perozzi, Al-Rfou, and Skiena, 2014] random walk
LINE [Jian Tang, Qu, et al., 2015] first- & second-order proximity

Node2Vec [Grover and Leskovec, 2016] random walk
DGI [Veličković, Fedus, et al., 2018] GNN + mutual information

(ii) Semi-supervised In this setting, some labeled nodes are used for representation learning.
Since the category labels of nodes are strongly correlated with the graph structure and node attributes,
semi-supervised graph embedding models are proposed to take advantage of available node labels for
seeking more effective representations. This section introduces some semi-supervised methods that
learn node embeddings through supervised tasks, such as node classification and link prediction.

Recently, motivated by Neural Networks (NNs), there has been a growing number of works
extending NNs to deal with graphs of arbitrary structures, namely Graph Neural Networks (GNNs) [Z.
Wu et al., 2020]. The general idea of GNNs is to iteratively propagate the state of each node and
then generate a representation based on its state and neighboring nodes through a NN structure until
equilibrium is reached. A common scheme for defining GNNs is the message-passing framework [Gilmer
et al., 2017], which in its simplest form works in three steps: gathering all messages from the neighbors
of each node, aggregating these messages, and updating the node representation. More formally, for

3.1. Review of Graph Embedding Models 45

the message-passing phase from layer (l − 1) to layer (l), and for node vx, we consider the message
m

(l)
x←y passed from its neighbor node vy:

m
(l)
x←y = Msg(l)

(
h
(l−1)
x ,h(l−1)

y , exy

)
,

where Msg(·) is the message function and exy is the edge feature of the edge exy. h
(l)
x ∈ Rd(l) is

the hidden state of node vx at l-th layer, with d(l) being the dimension of the representation. The
messages of all neighbors N (vx) of node vx are integrated through the aggregation function Agg(·)
to build m(l)

N (vx)
as:

m
(l)
N (vx)

= Agg(l)y∈N (vx)

(
m

(l)
x←y

)
.

Then the state of node vx is updated by an update function Upt(·):

h
(l)
x = Upt(l)

(
h
(l−1)
x ,m(l)

N (vx)

)
.

The message function Msg(·) and update function Upt(·) are learned differentiable functions that
can be designed to build various GNN architectures. In the following, we present some important
architectures proposed in the literature. For an exhaustive review of GNNs, readers are referred to [Z.
Wu et al., 2020].

• Graph Convolutional Network(GCN) [Kipf and Welling, 2016]: GCN can be understood
as a special case of the message-passing framework, with the following message function Msg(·)
and update function Upt(·). Here, we consider

Msg(l)
(
h
(l−1)
x ,h(l−1)

y , exy

)
=

1
cxy
W (l−1)h

(l−1)
y + b(l−1),

where cxy =
√
|N (vx)| · |N (vy)| is a normalization constant for the edge exy, W (l−1) and

b(l−1) are layer-specific weight matrix and bias, respectively.

The aggregate function Agg(·) is the summation:

m
(l)
N (vx)

= ∑
y∈N (vx)

m
(l)
x←y.

Then the hidden state h(l)
x of vx at l-th layer is updated by:

Upt(l)
(
h
(l−1)
x ,m(l)

N (vx)

)
= σ

(
m

(l)
N (vx)

)
,

where σ(·) is an activation function.

• SAmple and aggreGatE (GraphSAGE) [Hamilton, Ying, and Leskovec, 2017b]: GraphSAGE
generalizes the GCN approach with trainable aggregate functions. In the embedding generation
step, nodes aggregate information from their local neighbors. As this process iterates, nodes

46 Chapter 3. Preliminary

gradually gain more and more information from further out in the graph. The aggregate function
Agg(·) is formulated as:

m
(l)
N (vx)

= Agg(l)
(
{h(l−1)

y }y∈N (vx)

)
.

After this aggregation, GraphSAGE concatenates it with the current representation of the source
node vx. Then, this concatenated vector is fed through a fully-connected layer with a nonlinear
activation function σ(·) to generate representations h(l)

x , used in the next step.

h
(l)
x = σ

(
W (l) · Concat

(
m

(l)
N (vx)

,h(l−1)
x

))
.

Four aggregate functions Agg(·) are tested in [Hamilton, Ying, and Leskovec, 2017b]:

– Mean aggregator: it takes the element-wise mean of the neighbor embedding vectors,
then concatenates it with the source node embedding vector:

m
(l)
N(vx)

= Mean
(
{h(l−1)

y }y∈N (vx)

)
,

h
(l)
x = σ

(
W (l) · Concat

(
m

(l)
N (vx)

,h(l−1)
x

))
.

– GCN aggregator: it takes the mean operation over representations of all nodes (i.e.,
neighbors and the source) directly:

m
(l)
N (vx)

= Mean
(
{h(l−1)

y }y∈N (vx) ∪ h
(l−1)
x

)
,

h
(l)
x = σ

(
W (l) ·m(l)

N (vx)

)
.

– LSTM aggregator: it applies a Long Short Term Memory (LSTM) to a random permu-
tation of node neighbors:

m
(l)
N (vx)

= LSTM (Perm(N (vx))) ,

h
(l)
x = σ

(
W (l) · Concat

(
m

(l)
N (vx)

,h(l−1)
x

))
.

– Pooling aggregator: it feeds each neighbor vector into a fully-connected NN, then it
applies an element-wise max-pooling operation:

h
(l)
x = max

({
σ
(
W

(l−1)
pool h

(l−1)
y + b(l−1)

)}
y∈N (vx)

)
.

• GAT [Veličković, Cucurull, et al., 2017]: In the GAT approach, the authors propose to leverage
the self-attention strategy [Vaswani et al., 2017] into the context of the graph to take into
account the importance between a node and its neighbors. More specifically, a single Graph
Attentional Layer (GAL) is introduced, where the input is a set of N node features X =

{x1, . . . ,xN},xi ∈ RF. The attention coefficient between two nodes vx and vy is calculated

3.1. Review of Graph Embedding Models 47

as:
axy = Att

(
Wxx,Wxy

)
,

where W ∈ RF′×F is a weight matrix used to map node features to a new F′-dimensional
space. The attention mechanism Att used in the original paper [Veličković, Cucurull, et al.,
2017] is a single-layer feed-forward neural network, parametrized with a weight vector q ∈ R2F′

and a LeakyReLU activation function:

axy = LeakyReLU
(
qT[Wxx ⊕Wxy

])
.

Here, ⊕ is the concatenation operation, which joins two vectors end-to-end.

The graph structure is injected into the attention mechanism by performing masked attention.
In other words, we only calculate axy for nodes in the neighborhood set of the node vx (i.e.,
vy ∈ N (vx)). Additionally, to make attention coefficients easy to compare across different
nodes, axy is normalized by a softmax function:

αxy = softmax(axy) =
exp(axy)

∑vy′∈N (vx) exp (axy′)
.

In order to stabilize the learning process of self-attention, the final output feature of each node
is a concatenation of the features obtained by K-independent attention mechanisms [Vaswani
et al., 2017]:

hx = ‖K
k=1σ

 ∑
y∈N (vx)

αk
xyW

kxy

 ,

where σ(·) is the sigmoid function. Note that, in this setting, the final hidden state hx consists
of KF′ features (instead of F′) for each node.

TABLE 3.4: A quick summary of the above semi-supervised HomG embedding methods.

Paper Method

GCN [Kipf and Welling, 2016] message-passing + graph convolutional aggregation
GAT [Veličković, Cucurull, et al., 2017] self-attention mechanism

GraphSAGE [Hamilton, Ying, and Leskovec, 2017b] GCN approach + trainable aggregate function

Heterogeneous Graph Embedding

Heterogeneous graphs are composed of different types of nodes and/or edges. The previously described
methods cannot be directly used for heterogeneous graphs since they do not consider the types of
nodes and edges. In the following, we present some important approaches for heterogeneous graph
embedding following the same introduction structure as homogeneous graphs: (i) unsupervised and
(ii) semi-supervised.

48 Chapter 3. Preliminary

(i) Unsupervised Many unsupervised heterogeneous models are also based on random walk
strategies, but they have to be adjusted to account for node and edge types. In particular, the
concept of meta-path, introduced in [Dong, Chawla, and Ananthram Swami, 2017], can be used to
guide random walks on HetGs.

Definition 3.1.11 Meta-Path: Given a HetG G = (V , E , TV , TE), a meta-path scheme P is defined

as the path, expressed as T1
V

T1
E−→ T2

V
T2

E−→ . . .
TL−1

E−→ TL
V , where Ti

V ∈ TV is a node type and T j
E ∈ TE is

an edge type. T1
E ◦ T2

E · · · ◦ TL−1
E defines the composite relations (edge types) between node types T1

V and
TL

V , and ◦ denotes a composition operator on relations.

We give an example of such a meta-path in the job transition heterogeneous graph depicted
in Figure 3.6, where node types include “person” (P), “job position” (J) and “company” (C). The

“colleague” relation can be described by the 5-length meta-path, P work-as−→ J in−→ C has−→ J
work-by−→ P,

or short as PJCJP if there is no ambiguity, e.g., Person 1 work-as−→ Job title 1 in−→ Company 1 has−→
Job title 4

work-by−→ Person 4.

Job title 1 Job title 2

Job title 3
Job title 4

Job title 5

Company 1

Company 3

Company 2

Person 1 Person 2 Person 3

Person 4

FIGURE 3.6: An heterogeneous job transition graph with three node types, i.e., “person”,
“job titles” and “company names”, and five edge types, i.e., “work-as”, “work-by”, “career

moves”, “has”, and “in”.

Using this concept of meta-path, we can now define the meta-path-based neighborhood and apply
the meta-path to random walks.

Definition 3.1.12 Meta-Path-Based Neighbors: Given a node v and a meta-path scheme P in a
HetG G = (V , E , TV , TE), the meta-path-based neighbors N (v)P of node v are defined as the set of
nodes which connect with node v via the meta-path P .

Definition 3.1.13 Meta-Path-Based Random Walk: Given a HetG G = (V , E , TV , TE), and a

meta-path scheme P = T1
V

T1
E−→ T2

V
T2

E−→ . . .
TL−1

E−→ TL
V . A meta-path-based random walk is a path built

with the following transition probability at each step i, and conditioned on a predefined meta-path scheme
P . The transition probability at i-th step, i.e., considering the step vx → vx+1 of the walk and knowing

3.1. Review of Graph Embedding Models 49

that the type of node vx is Tt
V (i.e., ψ(vx) = Tt

V) , is defined as follows:

p(vx+1 | vx,P) =


1∣∣N (vx)

Tt+1
V
∣∣ (vx, vx+1) ∈ E , ψ(vx+1) = Tt+1

V ,

0 (vx, vx+1) ∈ E , ψ(vx+1) 6= Tt+1
V ,

0 (vx, vx+1) /∈ E ,

where N (vx)
Tt+1

V is the set of neighbor nodes of vx of type Tt+1
V .

The meta-path-based random walk strategy ensures that the semantic relations between different
types of nodes can be properly incorporated into the Skip-Gram model. With this strategy, the Skip-
Gram strategy used in homogeneous graphs can be used for heterogeneous graph embeddings. We
present below two of them.

• metapath2vec [Dong, Chawla, and Ananthram Swami, 2017]: metapath2vec is a represen-
tative work for HetG, which introduces a heterogeneous Skip-Gram model. To incorporate
heterogeneous network structures into Skip-Gram, it uses meta-path-guided random walks
to model the heterogeneous neighborhoods of nodes. More specifically, given a meta-path

P : T1
V

T1
E−→ T2

V
T2

E−→ . . .
TL−1

E−→ TL
V for guiding meta-path-based random walks, the objective of

heterogeneous Skip-Gram is:

1
l

l

∑
i=1

∑
Tt

V∈{T1
V ,...,TL

V}
∑

−c≤j≤c,j 6=0
log Pr

(
vTt+j

V
x+j | vTt

V
x

)
,

where {vTt+j
V

x+j }−c≤j≤c,j 6=0 is the Tt+j
V type context of node vTt

V
x . The probability Pr(vTt+j

V
x+j | vTt

V
x)

is defined as:

Pr
(

vTt+j
V

x+j | vTt
V

x

)
=

exp
(

Φ(vTt+j
V

x+j)
TΦ(vTt

V
x)

)
∑v∈V exp

(
Φ(v)TΦ(vTt

V
x)
) ,

where Φ(·) is the embedding mapping function.

• metapath2vec++ [Dong, Chawla, and Ananthram Swami, 2017]: metapath2vec++ extends
metapath2vec by improving heterogeneous negative sampling, where the softmax function is

normalized with respect to the node type of the context. Specifically, Pr(vTt+j
V

x+j | vTt
V

x) is adjusted

to the specific node type Tt+j
V :

Pr
(

vTt+j
V

x+j | vTt
V

x

)
=

exp
(

Φ(vTt+j
V

x+j)
TΦ(vTt

V
x)

)
∑

v∈VTt+j
V

exp
(

Φ(v)TΦ(vTt
V

x)
) ,

where VTt+j
V is the node set of type Tt+j

V in the graph. metapath2vec++ specifies a set

50 Chapter 3. Preliminary

of multinomial distributions for each type of neighborhood in the output layer of the Skip-
Gram model. Recall that in metapath2vec, DeepWalk and Node2Vec, the dimension of the
output multinomial distribution is equal to the number of nodes in the network. However, in
metapath2vec++, the multinomial distribution dimension for type Tt

V nodes is determined by
the number of nodes of type Tt

V . An illustration is shown in Figure 3.7c.

(a) An academic network. (b) Skip-Gram in DeepWalk,
Node2Vec, and metapath2vec.

(c) Skip-Gram in metap-
ath2vec++

FIGURE 3.7: An illustrative example of a heterogeneous academic network and
Skip-Gram architectures of metapath2vec and metapath2vec++ for embedding

this network, from [Dong, Chawla, and Ananthram Swami, 2017].

TABLE 3.5: A quick summary of the above unsupervised HetG embedding methods.

Paper Method

metapath2vec [Dong, Chawla, and Ananthram Swami, 2017] meta-path-based random walk
metapath2vec++ [Dong, Chawla, and Ananthram Swami, 2017] metapath2vec + heterogeneous negative sampling

(ii) Semi-supervised In order to account for graph heterogeneity when learning node representa-
tions, some works propose ways to adapt homogeneous GNNs to heterogeneous graphs by considering
node types and/or edge types. In the following, two representative heterogeneous GNNs are intro-
duced:

• Relational Graph Convolutional Network (RGCN) [Schlichtkrull et al., 2018]: RGCN
is primarily motivated as an extension to GCN [Kipf and Welling, 2016], which introduces
relation-specific transformations. The model is formulated as:

h
(l)
x = σ

 ∑
Tt

E∈TE

∑
vy∈N (vx)

Tt
E

1

cTt
E

vx

W
(l−1)
Tt

E
h
(l−1)
y +W

(l−1)
0 h

(l−1)
x

 ,

where N (vx)Tt
E denotes the neighbor set of node vx with respect to the edge type Tt

E ∈ TE,

and cTt
E

vx is a normalization constant equal to |N (vx)Tt
E |. W (l−1)

Tt
E

is the weight matrix specific to

the Tt
E-type edges at (l− 1)-layer, andW (l−1)

0 is the self-connection weight matrix. Intuitively,

3.1. Review of Graph Embedding Models 51

the aggregate function Agg(·) used in RGCN is a normalized summation like in GCN. Different
from the regular GCN, RGCN considers relation-specific transformations, i.e., depending on
the edge type. A single self-connection representation of a particular edge type is added to
ensure that the representation of a specific node at (l + 1)-th layer can also be informed by
the corresponding representation at (l)-th layer each node in the graph. The updates for a
particular node (i.e., red) are shown in Figure 3.8, where the neighboring node representations
(i.e., blue) are gathered and then transformed separately for each relation type (for both in- and
outgoing edges). The resulting representations (i.e., green) are accumulated in a normalized
sum and passed through an activation function. Such per-node updates can be computed in
parallel with shared parameters across the whole graph. The final hidden states of nodes are
then fed into the softmax activation (per node) for the node classification task.

FIGURE 3.8: The computa-
tion graph for a single node
update in the RGCN model,
from [Schlichtkrull et al., 2018].

FIGURE 3.9: Illustration of the
node-level and semantic-level
aggregating process in HAN,

from [X. Wang, Ji, et al., 2019].

• HAN [X. Wang, Ji, et al., 2019]: As with homogeneous networks, several works have pro-
posed to leverage the attention mechanism for heterogeneous graph embedding. In particu-
lar, HAN proposes a hierarchical attention mechanism, i.e., node-level and semantic-level, for
HetGs, as illustrated in Figure 3.9. Specifically, the node-level attention mechanism is similar
to GAT [Veličković, Cucurull, et al., 2017], except that HAN further considers the node type.
Therefore, HAN can assign different weights to neighbors according to the meta-path. More
specifically, the authors first use a type-specific transformation matrix Wψ(vx) to project the
features of different types of nodes into the same feature space, i.e., hx =Wψ(vx) · xx, where
xx and hx are the original and projected features of node vx and ψ(·) is the node type mapping
function that returns the type of node vx. Afterward, a self-attention mechanism is used to
learn node-level attention aPxy between each pair of nodes (vx, vy) connected by a meta-path
P . The calculation formula is as follows:

aPxy = attnode
(
hx,hy,P

)
= σ

(
aP

T · [hx ⊕ hy]
)

,

52 Chapter 3. Preliminary

where σ represents the activation function, ⊕ represents the concatenate operation, and aP is
the node-level attention vector of the meta-path P .
The structural information is injected into the model through the masked attention similar
to GAT [Vaswani et al., 2017], which means only calculating aPxy for node vy ∈ N (vx)P , so
the attention aPxy is normalized by the following softmax function:

αPxy = softmax(aPxy) =
exp

(
aPxy
)

∑v′y∈N (vx)P exp
(
aPxy′
) .

Then the meta-path-based embedding of node vx is aggregated by the projected features of
meta-path-based neighbors with corresponding attention scores:

zPx = ‖K
k=1σ

 ∑
vy∈N (vx)P

αPxy · hy

 .

Given the meta-path set {P1, . . . ,PP}, after feeding node features into node-level attention,
there are P groups of semantic-specific node embeddings, expressed as {ZP1 , . . . ,ZPP}. Then
the semantic-level attention learns the importance of different meta-paths as:

bPp = attsemantic

(
ZP1

x , . . . ,ZPP
x

)
=

1
|V| ∑

vx∈V
bT · tanh

(
Ws · z

Pp
x + bs

)
.

The semantic-specific node representation zPp
x is first transformed through a Multilayer Percep-

tron (MLP) layer with parameters Ws and bs. Then, the importance of the semantic-specific
representation is measured as the similarity between the transformed representation and the
semantic-level attention vector b, which is then normalized by the softmax function:

βPp =
exp(bPp)

∑P
p′=1 exp(bPp′)

.

The weight of the meta-path Pp can be interpreted as the contribution of the meta-path Pp

to a specific task. With these weights, the final representation Z of a specific task is obtained
by fusing all semantic-specific representations:

Z =
P

∑
p=1

βPp ·ZPp .

TABLE 3.6: A quick summary of the above semi-supervised HetG embedding methods.

Paper Method

RGCN [Schlichtkrull et al., 2018] GCN + consider edge type
HAN [X. Wang, Ji, et al., 2019] node-level attention (GAT + consider node type) + semantic-level attention

3.2. Related Works on Recommendation Model 53

3.2 Related Works on Recommendation Model
This section introduces the necessary background of recommender systems, including the formulation
of the recommendation problem and the main families of traditional recommendation methods, such as
(i) collaborative- filtering-based, (ii) content-based, and (iii) hybrid filtering. We then briefly introduce
widely used sequential recommendation models, which are used in the next-application prediction
task (Chapter 6). For facilitating illustration, we list some important mathematical notations used
throughout this section in Table 3.7, unless particularly specified.

TABLE 3.7: Mathematical notations used in Related Works on Recommendation Model.

Notation Description

U user set
I item set
U (u)

sim users who are “similar” to user u using the similarity measure
I (u)liked items “liked” by u
R(u, i) utility function between user u and item i

content(i), content(u) feature of item i, profile of user u
Hu = {Su

1 , . . . , Su
T} historical behavior sequence of user u

Su
t = {it,1, . . . , it,nt} session of user u at the time step t

S session set

3.2.1 Background on Recommender Systems
Recommender systems take advantage of the past online experiences of users and then predict what
users might like in the future, i.e., telling users what to buy (e.g., Amazon), which movies to watch
(e.g., Netflix), and which songs to listen to (e.g., Spotify). Generally, recommendations are generated
based on user preferences, item features, historical user-item interactions, and additional information
such as specific time points (e.g., top news and breakthrough products). Next, we formally define the
recommendation problem.

Recommendation Problem Formulation

Let U be the set of users, and I be the set of all possible items that can be recommended. The space
of I can be huge, ranging in hundreds of thousands or even millions of items in various applications.
Similarly, the user space can also be very large. Let R(u, i) be a utility function that measures the
relatedness of item i to user u, i.e., R : U ×I → K, where K is a totally ordered set, e.g., non-negative
integers or real numbers within a certain range.

For each user u ∈ U , the goal of a recommender system is to recommend such an item i∗ ∈ I
that maximizes the utility of user u. More formally:

∀u ∈ U , i∗ = arg max
i∈I

R(u, i).

54 Chapter 3. Preliminary

Each specific user u ∈ U can be described with a user profile that includes various user character-
istics, such as age, gender, and job in the context of our job recommendation. In the simplest case,
the profile can contain only a single (unique) element, i.e., the user ID. Similarly, each item i ∈ I is
defined with a set of characteristics. For example, in a job recommendation application, where I is
a collection of job postings, each of which can be represented by its ID, job title, job location, job
requirements, and mandatory skills. The utility of an item is usually represented by a rating, indicat-
ing how well a particular item satisfies the preference of a particular user. Furthermore, the utility
function R(u, i) is usually not defined on the entire U × I space, but only on some subset of it (i.e.,
items the user has interacted with before). Therefore, the central objective of recommender systems
is to predict the ratings of non-interacted user-item pairs. Once predicted ratings are generated, items
are recommended to the user by selecting the highest rating among all the predicted ratings for that
user. Alternatively, we can recommend the items with the highest N rating to the user.

Recommender systems are usually categorized according to the way they perform rating estimation.
Traditional recommendation techniques [Adomavicius and Tuzhilin, 2005; Ricci, Rokach, and Shapira,
2010] are mainly divided into three categories: (i) collaborative filtering, (ii) content-based, and (iii)
hybrid filtering, which are briefly described below.

Collaborative Filtering

Collaborative filtering is one of the most successful approaches for building recommender systems. It
is based on the assumption that users tend to like things similar to things they liked before and those
liked by other users who share similar interests. Therefore, collaborative-filtering-based methods make
recommendations by learning from user-item historical interactions, either explicit (e.g., the previous
ratings of users) or implicit feedback (e.g., browsing history). The two types of collaborative-filtering-
based methods are memory-based and model-based approaches [Breese, Heckerman, and Kadie, 2013]:

Memory-based Memory-based collaborative filtering uses ratings or interaction records of users
to calculate the similarity between users or items. Accordingly, under this category, two subcategories:
item-based collaborative filtering and user-based collaborative filtering are further separated.

• In the item-based collaborative filtering, users receive item recommendations similar to items
they liked in the past. More formally, the utility R(u, i) of user u and item i is estimated
from the utilities previously assigned by user u to other items, i.e., {R(u, i′)}

i′∈I (u)liked
. Here,

I (u)liked ⊆ I represents the items “liked” by user u. For example, as shown in Figure 3.10a, since
palette is similar to canvas (purchased by the user B), we recommend palette to the user B.

• In the user-based collaborative filtering, users receive recommendations for items that similar
users like. Similar to Item-based, the utility R(u, i) of user u and item i is estimated based on
the utilities assigned to item i by users who are “similar” to user u and who have rated item i,
i.e., {R(u′, i)}

u′∈U (u)
sim
. Here, U (u)

sim ⊆ U denotes users who are “similar” to user u. For example,

as shown in Figure 3.10b, since user B is similar to user C (they all like painting), and user C
bought painting tools, we recommend painting tools to the user B.

3.2. Related Works on Recommendation Model 55

A

B

C

Similar

(a) Item-based collaborative filtering.

Similar

A

B

C

(b) User-based collaborative filtering.

FIGURE 3.10: Two types of memory-based collaborative filtering.

Similarities between item-item pairs and user-user pairs can be calculated in different ways, for
example, cosine-based and correlation-based metrics such as Pearson [Fkih, 2022]. Memory-based
collaborative filtering suffers from two fundamental problems: sparsity and scalability. Interactions
between items and users are usually sparse due to the lack of historical data. Therefore, the accuracy
of this method is generally poor. As for scalability, memory-based approaches typically cannot handle
large numbers of users and projects.

Model-based. In contrast to memory-based methods, model-based algorithms use a collection of
ratings to learn a model, which is then used to make rating predictions. The model-building process
can be done using Machine Learning (ML) or Data Mining (DM) techniques. These techniques
include Bayesian models, clustering models, and Matrix Factorization. The clustering technique is
based on the assumption that users in the same cluster have the same interests. Therefore, users
are partitioned into clusters. Matrix Factorization attempts to decompose the user-item interaction
matrix into low-rank matrices. The main drawbacks of Matrix-Factorization-based methods lie in:
(i) Most of them only consider the lower-order interactions, i.e., first- or second-order, while ignoring
possible high-order interactions. (ii) They ignore temporal dependencies between behaviors within
and across different sessions.

Advantages vs. Disadvantages of Collaborative Filtering A key advantage of collabo-
rative filtering methods is that they are completely independent of machine-readable recommended
item representations. However, they suffer from the item cold-start problem.

Content-Based

Another widely used recommender system design approach is content-based. It is primarily based on
the comparison of auxiliary information of user and item. A diverse range of auxiliary information
such as texts, images, and videos can be considered, but content-based systems mainly focus on
textual information, such as reviews written for restaurants and resume forms filled out in job portals.
Therefore, the content-based approach originates in Information Retrieval (IR).

More formally, let content(i) be the item information, i.e., a set of attributes that characterizes
item i. As mentioned earlier, content-based systems are designed mostly to recommend textual items,

56 Chapter 3. Preliminary

and the content in these systems is usually described by terms, i.e., keywords and short phrases.
Similarly, let content(u) be the user profile of user u, which contains his/her taste and preferences.
This profile is obtained by analyzing some personal information (e.g., gender, age) or the content of
items the user has interacted with before. Specifically, given the personal information Pu and historical
interaction item set I (u) = {i1, . . . , im} of user u, each item i is characterized by content(i). Thus,
the user profile content(u) can be calculated from individual item content and personal information
Pu using various techniques such as averaging or summing.

In content-based systems, the utility function R(u, i) is usually defined as:

R(u, i) = score
(
content(u), content(i)

)
.

Here, the matching score between content(i) and content(u) can be calculated by various metrics,
such as cosine or Pearson similarity if the two contents belong to the same latent representation space.

According to the utility function, the main difference between the content-based approach and the
collaborative-filtering-based approach is the process of building the latent representations of contents
(i.e., content(i) and content(u)) and the way of calculating the matching score. The best-known
traditional approaches to leverage textual representation in IR is Bag-of-Word (BoW) and Term
Frequency Inverse Document Frequency (TF-IDF) [Salton and Buckley, 1988]. Topic Modeling, a
common technique in text mining, has also been explored for content representation learning [Jin,
Y. Zhou, and Mobasher, 2005; C. Wang and Blei, 2011]. A potential drawback of these approaches is
that they do not account for word orders and surrounding contexts. More recently, word embeddings
have shown excellent results in many NLP tasks and are used to improve the content representation
task in order to build better-performing recommender systems [Musto et al., 2015; Musto et al.,
2016].

Advantages vs. Disadvantages of Content-Based An advantage of content-based methods
over collaborative filtering-based methods is that they can process new items with little or no previous
user interactions. Another advantage is that they provide transparency into how recommender systems
work, making recommendations easy to explain. However, content-based methods require a wealth
of information about items and users.

Hybrid Filtering

In order to achieve high performance and overcome the shortcomings of each traditional recommen-
dation technique, hybrid recommender systems have often been proposed [Burke, 2002; Jin, Y. Zhou,
and Mobasher, 2005; Burke, 2007]. They combines the best features of two or more recommendations
techniques into a hybrid structure, e.g., combining collaborative-filtering-based techniques with other
recommendation techniques to avoid cold-start and sparsity issues.

3.2.2 Sequential Recommendation Models
The recommendation methods mentioned above have demonstrated their effectiveness in research and
industry applications. However, these methods typically focus on the long-term preferences of users,
do not take into account the short-term behavior or intention in their recommendations, and ignore

3.2. Related Works on Recommendation Model 57

the order of behaviors. In practice, (i) historical behaviors in different periods have different effects on
the construction of user preferences, and (ii) long-term user behaviors are often unavailable in certain
application areas of recommender systems. Consequently, taking temporal behavior into account has
become one of the most important and challenging problems in recommender systems [S. Wang, L. Hu,
et al., 2019]. To this end, sequential recommendation (is also related to session-based) systems have
recently been proposed. Note that since behaviors within a session are also sequential, in this work,
we use sequential recommendation, which is a much broader term than session-based recommendation,
to describe this kind of recommendation problem that models the sequential behavior of users in a
specific period. Using the notations described in Table 3.7, we first formally define session-based
recommendation, and then give a more general definition of sequential recommendation.

Sequential Recommendation Formulation

Given a historical behavior sequence ordered by time Hu = {Su
1 , . . . , Su

T} of a specific user u ∈ U ,
where T is the total number of time steps (events), and each event Su

t = {it,1, . . . , it,nt}6⊆ I
represents the collection of nt interacted items at a time step t. Su

t can be regarded as a behavior
session, e.g., the set of news read or the music listened to by a user in an hour or any period. The
behavior sequence is therefore composed of different sessions. In this case, recommender systems
that take a session as the basic data organization unit for analyzing the sequential data and making
recommendations are session-based recommender systems. Similar to [S. Wang, Cao, and Y. Wang,
2019], we formally define session-based recommendation as follows.

Definition 3.2.1 Session-Based Recommendation: Given the session-based historical information,
such as part of a session or recent historical sessions, the session-based recommendation aims to predict
unknown parts of a session or future sessions based on modeling the complex relations embedded within
a session or between sessions.

Accordingly, session-based recommendations can be further divided into two sub-categories: (i)
next-item(s) recommendation, which recommends a part of the current session, (ii) next-session (next-
basket) recommendation, which recommends part or entire future session. The formal definitions are
given as follows:

Definition 3.2.2 Next-Item(s) Recommendation: Given the active session of user u at time step t,
i.e., Su

t = {it,1, . . . , it,nt}, and assuming that part of Su
t is known, denoted as S̃u

t = {it,1, . . . , it,m}, m <

nt, the next-item(s) recommendation task consists in predicting the next item(s) it,m′ in Su
t conditional

on S̃u
t , where m < m′ ≤ nt.

Definition 3.2.3 Next-Session Recommendation: Given the collection of sessions of user u before
a given time step t, {Su

1 , . . . , Su
t−1}, the next-session recommendation task predicts the items that may

appear in session Su
t .

Next-item(s) recommendation and next-session (next-basket) recommendation both use sequential
information, i.e., the sequence of items in the active session or the sequence of sessions before the
active session. Therefore, as we mentioned before, in this work, we use the broader term “sequential

6We omit the superscript of u from the item indices without loss of clarity.

58 Chapter 3. Preliminary

recommendation” rather than session-based recommendation to describe the recommendation task
that explores the sequential data. Therefore, we formally define sequential recommendation as:

Definition 3.2.4 Sequential Recommendation: The sequential recommendation is defined as rec-
ommending the next item(s) based on the historical sequenceHu of user u.

Various methods have been proposed to make sequential recommendations based on the histor-
ical interactions of users. We first review the traditional methods, then conduct a brief survey on
recent Deep Learning (DL)-based sequential recommendation methods and summarize three training
strategies. Finally, we introduce commonly used evaluation metrics in sequential recommendations.

Traditional Sequential Recommendation Methods

Conventional (as opposed to DL-based) sequential recommendation methods [Quadrana, Cremonesi,
and Jannach, 2018; Ludewig and Jannach, 2018] usually use Markov chain [He and McAuley, 2016],
Matrix Factorization [Rendle, Freudenthaler, and Schmidt-Thieme, 2010], and K-Nearest Neigh-
bors [Jannach and Ludewig, 2017] to capture sequential information. In the following, we only
introduce the main methods used as baselines in our contribution to sequential recommendations.
For better elaboration, we take five users uA, uB, uC, uD, uE and their sequences of interaction items
at t time step as an example. The following table shows these sequences, where in each entry, a value
of 1 indicates that the user interacted with the item (e.g., buy, like, or share), and 0 otherwise. The
item set is {ia, ib, ic, id, ie, i f , ig}.

Item

ia ib ic id ie i f ig

Session

SuA
t 1 0 1 0 1 0 0

SuB
t 0 1 1 1 0 0 0

SuC
t 1 0 1 1 0 1 0

SuD
t 1 0 1 0 0 1 1

SuE
t 1 0 0 0 0 0 1

• Association Rule Learning (ARL) [Agrawal, Imieliński, and Arun Swami, 1993]: It is a
classic data mining technique used to find current patterns in data. It uses measures such as
the support of an item set (how often two items appear together in the action sequences of
any user) and its confidence to learn association rules and their corresponding importance. For
example, given another user uF and his/her interaction sequence {ic}, ARL predicts that the
next item he/she is most interested in is ia. Because according to the interaction table, the
item pair {ia, ic} has the highest support score, 3

5 , i.e., in 5 interaction sequences, they appear
together 3 times (SuA

t , SuC
t and SuD

t), and the confidence is equal to 3
4 , i.e., the item iC appears

in 4 sequences, 3 times with ia. This method is easy to implement and relatively explicable for
users. However, determining the appropriate support and confidence thresholds is challenging,
and the calculation is very time-consuming.

• K-NearestNeighbors (KNN)-Based: This type of methods includes different schemes: item-
based KNN and session-based KNN.

3.2. Related Works on Recommendation Model 59

– Item-based K-Nearest Neighbors (IKNN): The most traditional IKNN, such as the
one used in [Hidasi, Karatzoglou, et al., 2015; Hidasi and Karatzoglou, 2018; Ludewig and
Jannach, 2018], only considers the last item in a given session and then recommends items
that are similar to it, where the similarity is measured by the co-occurrence frequency in
other sessions. The item is usually encoded as a binary vector whose size is the total
number of sessions, where each element corresponds to a session. If the item is present
in this session, the corresponding session position is set to “1”. The similarity is then
calculated by the cosine similarity between the binary vectors. For example, according to
the above table, item ia can be expressed as [1, 0, 1, 1, 1] and ic as [1, 1, 1, 1, 0].

– Session-based K-Nearest Neighbors (SKNN) [Lerche, Jannach, and Ludewig, 2016;
Jannach and Ludewig, 2017]: SKNN compares the entire current session to all past
sessions in the training set instead of only considering the last item in the current session.
More specifically, given a session Su

t , we first apply a suitable session similarity measure
sim(Su

t , S′), S′ ∈ S to determine the K most similar past sessions Ssim ⊆ S . The
similarity measure can be the Jaccard index or cosine similarity of binary vectors on the
item space. Then the recommendation score for each item i is defined by [Bonnin and
Jannach, 2014], as:

scoreSKNN(i, S) = ∑
S′∈Ssim

sim(Su
t , S′) · 1S′(i),

where 1S′(i) returns 1 if session S′ contains item i and 0 otherwise.

Despite their simplicity, KNN-based methods generally perform surprisingly well, as discussed
in [Jannach and Ludewig, 2017; Kamehkhosh, Jannach, and Ludewig, 2017], and they can
generate highly explainable recommendations. In addition, since the similarity can be pre-
calculated, KNN-based recommender systems can generate recommendations quickly. However,
such algorithms generally fail to consider the order dependency among items, i.e., when using
the Jaccard index or cosine similarity as a similarity measure, SKNN method does not consider
the order of items in the session. To address this issue, some variants of SKNN are proposed
in [Ludewig and Jannach, 2018]. For example, Vector multiplication Session-based KNN (V-
SKNN) is a variant of SKNN. When computing the similarity, this variant focuses more on
recent items in a session. Instead of encoding the session as a binary vector as described
above, V-SKNN encodes the current session using a real-valued vector. Only the last item in
the session has a value of 1, the weights of the other items are determined using a linear decay
function that depends on the position of the item within the session. Therefore, items that
appear earlier in the session are given lower weight than the last item.

• MarkovChain (MC)-Based: Markov Chain based methods treat sequential data as a random
process on discrete random variables. They assume that future user behavior depends only on
the last or last few behaviors. For example, [He and McAuley, 2016] adopts a L-high-order
MC to make recommendations based on the L previous behaviors. MC-based methods cannot
exploit dependencies between behaviors in relatively long sequences.

60 Chapter 3. Preliminary

• Matrix Factorization (MF)-Based: Matrix Factorization based approaches first factorize the
item co-occurrence matrix or item-to-item transition matrix into a latent representation vector
for each item and then uses these latent representations to predict the following items. Such
approaches should be distinguished from the MF used in collaborative filtering methods, which
usually factorize the user-item interaction matrix (e.g., rating matrix) into latent factors of
users and items respectively [Linden, Smith, and York, 2003; Su and Khoshgoftaar, 2009].

Deep Learning Based Sequential Recommendation Methods

Recently, DL-based techniques have been massively used in recommender systems with impressive per-
formance [S. Zhang et al., 2019], especially for the sequential recommendation [Fang, Danning Zhang,
et al., 2020]. The general idea of DL-based methods is to use different deep network architectures
(e.g., Recurrent Neural Network and Convolutional Neural Network) to explore dependencies between
sequential behaviors. The architectures are then trained using a variety of well-designed loss functions
that allow the models to make reasonable and accurate predictions about possible follow-up actions.
Moreover, in order to improve the training efficiency, some models adopt special training techniques,
such as the batch generation method and negative sampling strategy. In the following, before describ-
ing some specific sequential recommendation models, we first summarize the main training strategies
used in DL-based sequential recommendation models from three aspects according to [Fang, Danning
Zhang, et al., 2020], including (i) negative sampling strategy, (ii) mini-batch creation, and (iii) loss
function design:

Negative Sampling Strategy Because there may be hundreds, thousands, or even millions of
items to recommend, it is difficult to calculate scores for all items at each prediction. The negative
sampling strategy is proposed, which selects a small number of items that the user has not interacted
with as negative samples to speed up model training. The strategies adopted can usually be divided
into popularity-based sampling and uniform sampling.

• Popularity-based sampling: It assumes that the more popular an item is, the more likely
users will know about it, i.e., users may not like it if they have not interacted with it before.
The sampling of negative samples is proportional to their popularity (support).

• Uniform sampling: The sampling is proportional to the uniform distribution.

• Additional sampling (Popularity-based + Uniform) : It is a combination of popularity-
based sampling and uniform sampling strategies, which is proposed in [Hidasi and Karatzoglou,
2018]. In additional sampling, negative samples are selected with a probability proportional
to suppα

i , where suppα
i is the support for item i and α, 0 ≤ α ≤ 1 is a parameter. The

cases of α = 0 and α = 1 are equivalent to uniform sampling and popularity-based sampling,
respectively.

Mini-Batch Creation The models are all trained in batches. In order to adapt to the particular
data structure of sequential recommendation, some batch generation methods are proposed to improve
the training efficiency.

3.2. Related Works on Recommendation Model 61

• Session-parallel mini-batch: A session-parallel mini-batch training strategy is proposed
in GRU4Rec [Hidasi, Karatzoglou, et al., 2015] to adapt to sessions of varying lengths and
strive to capture the dynamics of sessions over time. More specifically, as shown in Figure 3.12,
the sessions are first ordered chronologically, and then all the first events of the first batch of
sessions constitute the inputs of the first mini-batch (i.e., the events i1,1, i2,1 and i3,1). The
desired outputs (i.e., i1,2, i2,2 and i3,2) are the second events of the active sessions. If any
session of the given sessions ends, the next available session out of the given sessions is placed
in the corresponding place to form the mini-batch continually, e.g., i4,1 follows i2,2.

FIGURE 3.11: The
GRU4Rec architecture,
from [Hidasi, Karat-

zoglou, et al., 2015].

FIGURE 3.12: Session-parallel
mini-batch of GRU4Rec,
from [Hidasi, Karatzoglou,

et al., 2015].

• User parallel mini-batch: It is a variant of session-parallel mini-batch [Quadrana, Karat-
zoglou, et al., 2017] that designs parallel sessions belonging to different users to simulate the
evolution of user preferences across sessions.

Loss Function Design The loss function can also greatly affect the model performance. Given
a session with l + 1 interacted items Su

t = {i1, . . . , il , il+1}, the next-item prediction is to predict il+1

based on the previous items before it, i.e., {i1, . . . , il}. The number of negative samples is defined as
|I−|, and the ranking score is denoted as r. The various loss functions are described below:

• TOP1: It is a regularized approximation of the relative ranking of positive and negative samples,
where the relative ranking is calculated as:

LTOP1 =
1
|I−| ∑

i′∈I−
σ
(
ri′ − rit+1

)
+ σ

(
r2

i′
)

.

The first part is designed to force the scores of negative samples to be around 0, and the second
part is used for regularization.

• Bayesian Personalized Ranking (BPR): It is a Matrix Factorization method using pairwise
ranking loss. It compares the scores of positive and negative samples, and tries to maximize
the probability that the score of the ground-truth item is higher than the negative samples, i.e.,

62 Chapter 3. Preliminary

∑i′∈I− Pr(rit+1 > ri′), where Pr(rit+1 > ri′) is approximated by σ(rit+1 − ri′), and use negative
log-probability. The final loss function is defined as:

LBPR = − 1
|I−| ∑

i′∈I−
log σ

(
rit+1 − ri′

)
.

As explained in [Fang, Danning Zhang, et al., 2020], as the number of items increases, the
gradients of these losses above may suffer from the gradient vanishing problem. In order to
address this issue, a new family of listwise loss functions has been proposed, which is based on
individual pairwise loss. The idea is to compare the ground-truth score with the most relevant
negative sample score, the largest score among the samples, named ranking-max. Based on
this idea, TOP1-max and BPR-max losses are formulated as:

• TOP1-max: It is pretty straightforward and is given as follows:

LTOP1-max = ∑
i′∈I−

si′
(
σ
(
ri′ − rit+1

)
+ σ

(
r2

i′
))

,

which can be considered as a weighted version of TOP1, weighted by the corresponding softmax
score si′ . If ri′ is much lower than the maximum negative score, si′ will be almost zero.

• BPR-max: It tries to maximize the probability:

∑
i′∈I−

Pr(rit+1 > ri′ |ri′ = rmax)Pr(ri′ = rmax),

which can be approximated by σ(rt+1 − ri′) and si′ respectively:

LBPR-max = − ∑
i′∈I−

log si′σ
(
rit+1 − ri′

)
.

In addition to the ranking-based loss functions, Categorical Cross-Entropy and Hinge losses are
also applied to sequential recommendations.

• Categorical Cross-Entropy (CCE):

LCCE = − log
(
softmax(o)it+1

)
,

where o is the output of the model. It has computational complexity issues due to the softmax
function.

• Hinge: It compares the prediction with a pre-defined threshold τ:

LHinge = ∑
i′∈Iyes

max (τ, 1− oi′) + γ ∑
i′′∈Ino

max (τ, oi′′) ,

where Iyes is the recommended item set containing item it+1, Ino is the recommended item set
not containing it+1, and γ is a parameter that balances the impacts of the two parts. Using

3.2. Related Works on Recommendation Model 63

the Hinge loss, the recommendation task is transformed into a binary classification problem,
where the recommender system determines whether an item should be recommended or not.

Next, we describe some main sequential recommendation approaches according to the architecture
type used (e.g., Recurrent Neural Network and Convolutional Neural Network). For an exhaustive
survey, readers can refer to [S. Zhang et al., 2019].

RNN-Based Models Recurrent Neural Network (RNN)s with the ability to process sequential
data have been used for sequential recommendation and have achieved promising results [Hidasi,
Karatzoglou, et al., 2015; Hidasi, Quadrana, et al., 2016; F. Yu et al., 2016]. Compared to traditional
models, RNN-based models can capture the dependencies among items within a session or across
different sessions well. The basic idea of RNN-based methods is to encode user previous behavior
sequences into vectors with various recurrent architectures (e.g., Gated Recurrent Unit (GRU) [Cho
et al., 2014] or Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]) and use
various loss functions mentioned above to train models.

• GRU4Rec [Hidasi, Karatzoglou, et al., 2015]: GRU4Rec is the first work to our knowledge that
applies RNN to sequential recommendations. The input is a one-hot encoded representation
of the item, and the output is the probabilities for a fixed number of candidate items that will
be the next in the session. The core of GRU4Rec is the GRU layer(s) (the GRU architecture
is explained in Appendix E.3.2), where the output of each GRU layer is the input of the
next GRU layer. A feedforward layer is added between the last GRU layer and the output
layer, as illustrated in Figure 3.11. GRU4Rec employs Session-parallel mini-batch (as described
above) for efficient model training. The reason for using session-parallel mini-batches is to
form sessions with equal length, but the length of active sessions can vary widely. Moreover, it
uses a popularity-based negative sampling strategy to select negative samples from other items
in the same mini-batch with which the user has not interacted. This strategy assumes that
popular items that the user missed are more likely to express dislike than other unknown items
(i.e., if the user knows about them, he/she might be interested).

Since GRU4Rec, there has been a series of studies using RNNs for the sequential recommendation.
These extended studies [Hidasi, Quadrana, et al., 2016; Tan, X. Xu, and Yong Liu, 2016; J. Li et
al., 2017; Quadrana, Karatzoglou, et al., 2017; Hidasi and Karatzoglou, 2018] strive to improve the
model performance from the perspective of (i) model training and (ii) designing more advanced model
structures for better learning item information or user profile.

• [Hidasi, Quadrana, et al., 2016] extends GRU4Rec by considering additional item information
in addition to item IDs (e.g., images and textual descriptions). This information is not obtained
end-to-end, i.e., the image features are independently extracted from a pre-trained GoogLeNet
implementation [Szegedy et al., 2015] using transfer learning, and the textual descriptions are
simply represented by TF-IDF. Specifically, the authors introduce a multi-modal architecture
called p-RNNs, which consists of multiple parallel RNNs, each information source (e.g., item ID,
image, and textual description) has its own RNN. In addition,the authors propose alternative

64 Chapter 3. Preliminary

training strategies for p-RNNs: simultaneous, alternating, residual, and interleaving training.
In simultaneous training, each parameter of each RNN layer is trained simultaneously. In
alternating training, RNNs are alternately trained in each period. In residual training, RNNs
are trained one-by-one with the residual error of the ensemble of previously trained RNNs, and
interleaving training is performed alternately in each mini-batch.

• [Tan, X. Xu, and Yong Liu, 2016] adopts two techniques to improve the performance of
GRU4Rec, including a data augmentation process and a method to account for shifts in the
input data distribution. The authors propose two ways to enhance sequences: the first is to
treat all prefixes of the original input sessions as new training sequences, and the other is to
randomly drop some actions from the training sessions. In addition, they use a lot of outdated
data to get a pre-trained model, use this pre-trained model to initialize a new model, and then
use the latest data to train the new model. This allows the new model to benefit from large
amounts of data while focusing on the latest data.

• [Hidasi and Karatzoglou, 2018] improves GRU4Rec with a new class of loss functions (i.e., BPR-
max and TOP1-max) and an improved sampling strategy (a combination of uniform sampling
and popularity sampling), which is called Additional sampling, as described above.

CNN-Based Models Convolutional Neural Networks (CNNs) are suitable for capturing depen-
dencies across local information, e.g., the correlation between pixels in a specific part of an image
or the dependency between several adjacent words in a sentence. In the sequential recommendation,
CNN-based models can capture local features within a session well.

• Convolutional Sequence Embedding Recommendation Model (Caser) [Jiaxi Tang and
K. Wang, 2018]: Caser is a representative CNN-based method, which consists of three com-
ponents: Embedding Look-up, Convolutional Layers and Fully-connected Layers, as shown in
Figure 3.13.

FIGURE 3.13: The Caser architecture, from [Jiaxi Tang and K. Wang, 2018]. Here,
the authors use L = 4 consecutive items to predict the next T = 2 items that user

u will interact with.

3.2. Related Works on Recommendation Model 65

Specifically, given a sequence of items Su interacted by user u, the goal of Caser is to predict the
next T items based on the L previously interacted items, as shown on the left side of Figure 3.13.
It first embeds the user feature and L items into a user embedding Pu (i.e., the purple circle)
and an item embedding matrix E(u,t) (i.e., the blue circles) through the Embedding Look-up
layer. It treats the matrix E(u,t) as an “image” and uses horizontal layers and vertical layers to
search for sequential patterns as the local features of this “image”, as shown in the middle of
Figure 3.13. The outputs of Convolutional Layers are fed into Fully-connected Layers for more
high-level and abstract features. Finally, the final output is used for model training with binary
cross-entropy loss.

• 3D-CNN [Tuan and Phuong, 2017]: 3D-CNN is a similar work to Caser, which combines
sequential histories and content features (e.g., item textual description, item category, and
item ID) to generate recommendations. It uses a 3-dimensional CNN with character-level
encoding to model these data.

Attention-Based Model The attention mechanism is initially proposed in [Bahdanau, Cho, and
Bengio, 2014] for the neural machine translation task. The idea is to model the importance of
different parts of the input sentence to the output word. Building on this work, vanilla attention is
proposed, and the attention mechanism is applied as a decoder for RNNs. We provide more details
about the attention mechanism in Appendix F.1. The attention mechanism has been widely used
in sequential recommendations and can identify more “preference-related” items for users based on
their historical experiences. On the other hand, self-attention, derived from Transformer [Vaswani
et al., 2017], has also been applied to the sequential recommendation. Compared to vanilla attention,
it does not contain the RNN structure, but performs much better than RNNs-based models. More
details on self-attention are given in Appendix F.2. The attention mechanism has shown promising
potential in improving recommendation performance and interpretability [Kang and McAuley, 2018;
J. Li et al., 2017; Q. Liu et al., 2018; Sun et al., 2019]. In the following sections, we summarize some
attention-based models according to the type of attention mechanism deployed: (i) vanilla attention
and (ii) self-attention.

• Vanilla Attention Mechanism

– Neural Attentive Recommendation Machine (NARM) [J. Li et al., 2017]: NARM
is an encoder-decoder framework for sequential recommendation. It considers both the
sequential behavior of the user and the main purpose of the current session. Specifically,
in the global encoder, a GRU layer is used to model the sequential behavior of users.
The local encoder is similar to the global encoder, but an item-level vanilla attention
mechanism is combined with a GRU layer to capture the primary purpose of users in the
current session. Through the attention mechanism, NARM is able to remove noise from
unexpected behaviors, such as accidental actions. In order to learn the model parameters,
a cross-entropy loss is used. The loss function can be optimized with the standard mini-
batch Stochastic Gradient Descent (SGD).

– Short-TermAttention/Memory Priority (STAMP) [Q. Liu et al., 2018]: STAMP can
capture the general interests of the user from the long-term memory of the session context

66 Chapter 3. Preliminary

and take into account the current interests of the user from the short-term memory of
the “last action”. Therefore, such a session representation can simultaneously capture
the long-term general interests of users and their short-term interests. In particular, the
general interest is modeled by an attention-based model that considers both the "last
action" and the current session.

• Self-Attention Mechanism

– Self-Attention-based Sequential Recommendation model (SASRec) [Kang and
McAuley, 2018]: SASRec adopts a self-attention layer to balance the short-term intent
and long-term preference and seeks to identify items relevant to the next behavior from
user historical behavior sequences. Figure 3.14 shows the structure of SASRec.

FIGURE 3.14: The SASRec architecture, from [Kang and McAuley, 2018].

Specifically, the first layer of SASRec is an Embedding layer, and the input sequence is
represented as the concatenation of item embedding and its relative position embedding.
The sequence representation is then fed into a stack of self-attention blocks, each with
two parts: (i) Self-Attention Layer and (ii) Point-Wise Feed-Forward Network. However,
the training becomes difficult as the network gets “deeper”. To alleviate this problem,
SASRec uses the residual connection, layer normalization, and dropout on each Self-
Attention Layer and Point-Wise Feed-Forward Network. Another issue to consider is that
when recommending the t+ 1-th item, only the previous t items are known. However, the
t-th output of Self-Attention Layer contains embeddings of the following items. SASRec
modifies the attention mechanism by disabling all links between the i-th query and j-th
key for j > i, which means the corresponding attention weights are set to 0. Finally, the
output of the last Self-attention block is used for the next-item prediction. The model is
trained using pointwise cross-entropy loss.

– BERT4Rec [Sun et al., 2019]: BERT4Rec is another representative self-attention-based
method, which introduces a bidirectional self-attention model to model user behavior
sequences. Similar to SASRec, the input of the stacked Transformer layer is constructed

3.2. Related Works on Recommendation Model 67

by summing the corresponding item and position embeddings. As shown in Figure 3.15,
the Transformer layer contains two sub-layers: (i) Multi-Head Self-Attention layer and
(ii) Position-wise Feed-Forward Network. The structure of BERT4Rec is illustrated in
Figure 3.16.

FIGURE 3.15: The Trans-
former layer used in BERT4Rec,

from [Sun et al., 2019].

FIGURE 3.16: BERT4Rec archi-
tecture, from [Sun et al., 2019].

GNN-Based Models Graph Neural Networks (GNNs) [J. Zhou, G. Cui, Z. Zhang, et al., 2018]
can collectively aggregate information from graphs, as described in Section Chapter 3.1. They have
also attracted increasing attention in recommender systems due to their effectiveness and excellent
performance in many applications [Fang, Danning Zhang, et al., 2020; Shiwen Wu et al., 2022].

• Session-based Recommendation with Graph Neural Networks (SR-GNN) [Shu Wu et
al., 2019]: SR-GNN is the first work that uses GNN to perform sequential recommendations
by capturing more complex relationships between items in the sequence. Each session is repre-
sented as a directed graph in this model, which is then processed using a gated GNN [Y. Li et
al., 2015] to obtain a session representation. This representation is a combination of the global
preference and current interest in this session. Finally, SR-GNN predicts the probability of each
item being the next-click in each session. The structure of SR-GNN is showed in Figure 3.17.

FIGURE 3.17: The SR-GNN architecture, from [Shu Wu et al., 2019].

68 Chapter 3. Preliminary

We summarize the characteristics of the aforementioned deep methods in Table 3.8, which exploit
different NN architectures.

TABLE 3.8: Summary of representative DL-based sequential recommendation methods.

Model Paper Method

RNN

GRU4Rec [Hidasi, Karatzoglou, et al., 2015]
• session-based mini-batch

• popularity-based negative sampling

p-RNNs [Hidasi, Quadrana, et al., 2016]

• additional item information (images, textual
descriptions)

• multiple parallel RNNs

[Tan, X. Xu, and Yong Liu, 2016]
• training data augmentation

• data distribution shift (pre-training)

[Hidasi and Karatzoglou, 2018]
• BPR-max and TOP1-max losses

• additional sampling

CNN Caser [Jiaxi Tang and K. Wang, 2018] • horizontal and vertical convolutional layers

3D-CNN [Tuan and Phuong, 2017]

• additional item information (textual descrip-
tion, category)

• 3-dimensional CNN with character-level en-
coding

Attention

NARM [J. Li et al., 2017]

• GRU encoder to model the sequential behav-
ior

• GRU encoder with vanilla attention to model
the primary purpose in the current session

STAMP [Q. Liu et al., 2018]
• use attention mechanism to capture both the

long-term general interests and the short-term
interests

SASRec [Kang and McAuley, 2018]
• use self-attention to balance the short-term in-

tent and long-term preference

BERT4Rec [Sun et al., 2019] • use Transformer

GNN SR-GNN [Shu Wu et al., 2019] • model sessions as a directed graph

Evaluation Metrics

Metrics widely used in sequential recommendation include: the accuracy metric Recall@K, also known
as Hit Rate (HR@K) [Ludewig and Jannach, 2018], and the two most popular ranking metrics are Mean
Reciprocal Rank (MPR@K) [Ludewig and Jannach, 2018] and Normalized Discounted Cumulative Gain
(NDCG@K) [Fang, G. Guo, et al., 2019], where K is the cut off value.

• Recall@K: It measures the coverage of correctly recommended items based on ground-truth
items. If there is only one item in the ground-truth item list, Recall@K is identical to HR@K. In
this case, HR@K checks if the true next-item (ground-truth) exists in the top-K ranked items,
defined as follows:

HR@K =
1
|S| ∑

S∈S
1 (ri+ ≤ K) ,

where S is a sample set of sequences used for evaluation, i+ is the true next-item of each
sequence S, and r is the ranking generated by the recommender system. The symbol 1 is an
indicator that returns 1 if ri+ is in the top-K recommended items, 0 otherwise.

3.2. Related Works on Recommendation Model 69

• Mean Reciprocal Rank (MRR@K): It indicates how well the system ranks the ground-
truth items and is sensitive to their position, which assigns higher scores to the top rankings.
Intuitively, it is better to rank the ground-truth items higher in practice. MRR@K is defined as
follows:

MRR@K =
1
|S| ∑

S∈S

{
1

ri+
if ri+ ≤ K

0 otherwise
.

• Normalized Discounted Cumulative Gain (NDCG@K): It rewards each ground-truth
item based on its position in the list of recommended items, indicating how strongly it is
recommended.

NDCG@K =

{
1

log2(ri++1) if ri+ ≤ K

0 otherwise
.

This chapter serves as the preface of this thesis, providing necessary background
knowledge for the subsequent chapters. Specifically, in Section 3.1, we intro-
duced graph embedding and detailed some representative models. These mod-
els are used as baselines in two tasks: Job Title Representation Learning from
Graphs (Chapter 4) and Skill Representation Learning by Leveraging Hierarchi-
cal Graph (5). Then, in Section 3.2, we introduced the background of the recom-
mender system and mainly detailed some sequential recommendation methods.
Similarly, these methods are used as baselines in the task Next-Application Pre-
diction from Job Application Sequence(Chapter 6).

Summary of Chapter 3

71

Chapter 4

Job Title Representation Learning from
Graphs

4.1 Motivation
Job titles (referred to as jobs for short)1 usually use a few words to describe the position held by talents
(i.e., in resumes) or published by employers (i.e., in job postings), combined with responsibilities,
functions, and additional information. An illustration of job titles is given in Figure 4.1, where job
titles appear in the Work Experience section of resumes and at the top of job postings.

Contact

Education

Work Experience
Job Description
Job Responsibilities

Skills

Data scientist

Skill Requirements

q 10/2021—present: Tech lead
q 01/2018—08/2021: Java developer

FIGURE 4.1: The scene where the job title appears.

Learning job title representation is conducive to various downstream tasks in the recruitment
domain, such as (i) improving talent profile modeling to provide career guidance, (ii) categorizing jobs
to facilitate search and recommendation, and (iii) aiding recruitment analysis. However, in practice,
learning the proper job title representation is a challenging task for the following reasons:

• Noisy data: There is some noise in the job title data due to personal subjective reasons
(i.e., spelling errors) or objective reasons (i.e., the resume parser is not perfect). For example,
“software engineer” has a spelling error.

• Messy data: Job titles are messy because people have different ways of thinking and different
understandings of words and ideas (related to Characteristic 2). For example, there are too
many alternative words for a job position so that the same job position may be expressed by
different job titles, e.g., “purchasing clerk” and “buyer”, or the same term may refer to different

1In this chapter, we use job title and job interchangeably.

72 Chapter 4. Job Title Representation Learning from Graphs

job positions in different contexts, e.g., the term sandwich in “registered nurses sandwich rehab”
and “sandwich maker”.

• Non-standard naming conventions: Naming conventions vary greatly from company to
company and across industries (related to Characteristic 3). They usually define their naming
conventions and occupational taxonomies and use these reference materials and standards to
write job postings, manage human resource systems and recruit talents. Therefore, there are
a lot of subjective and non-standard naming conventions, which brings many heterogeneity
issues.

In the literature, job title representation learning, as described in Section 2.3.1, can be catego-
rized into (i) semantic-based and (ii) graph-based. Traditional semantic-based methods mainly focus
on improving the semantic representation of job titles, where the job title representation is a simple
combination (e.g., mean or sum) of the word semantic representations. For the reasons mentioned
above, simply combining the representation of words may increase the possibility of mismatch. More-
over, they ignore the hidden relationships between job titles, e.g., two job titles on the same talent
resume may be very similar. Recently, [Dave et al., 2018; Denghui Zhang et al., 2019] learn repre-
sentations from the perspective of graphs. They create graphs, mainly homogeneous graphs, from
job transition trajectories, where nodes represent job titles and edges represent job transitions. Then
they design different loss functions to embed the nodes into a low-dimensional space to learn job title
representations. We describe the main graph-based approaches for job title representation learning in
Section 4.3. However, the generated graphs are usually sparse due to the above reasons, limiting the
performance of graph-based methods. Standardizing job titles before generating graphs can alleviate
the sparse issue to a certain extent, but it loses some specific semantic information.

To tackle these challenges, in this work, our hypothesis is that such job title representation learning
from graphs could benefit from richer additional information about job titles. We propose to enrich the
job transition graph with additional information and learn job title representations via enriched graph
embedding methods. Specifically, inspired by domain-specific Named Entity tags (i.e., RESponsibility
and FUNction) proposed in [Junhua Liu et al., 2019], we treat the job title as a combination of
responsibility, functionality, and other additional information. The responsibility part describes the
responsibility-level of the position, e.g., senior, director and manager, the functionality part describes
the core function/operation type, e.g., marketing, security and education, and the additional infor-
mation contains some personal-specific information, such as company name and geographic location.
Accordingly, words related to responsibility and functionality are defined as RES- and FUN-tags,
respectively. Along this line, we construct a heterogeneous Job-Transition-Tag Graph, containing two
types of nodes, i.e., job titles and tags (RES-tags and FUN-tags), and two types of edges, i.e., job
transitions and “has/in” relationships. Then, we apply different graph embedding models on the graph
to learn job title representations. More details on graph definition are explained in Section 4.4.2.

Contributions In summary, our main contributions in this chapter are:

• We learn job title representations by simultaneously considering topological and semantic
information.

4.2. Research Scope 73

• We propose to enrich the constructed graphs with recruitment-specific information, i.e., RES-
tags and FUN-tags, thus improving the effectiveness of job title representation learning
.

• Our work is the first to directly apply such information to the job title representation learning
task.

• Experiments show that learned job title representations can improve downstream tasks such
as job classification and next-job prediction.

4.2 Research Scope
Graph embedding methods have demonstrated their effectiveness in learning node representations,
as described in Section 3.1. In particular, the career trajectory of talents can be transformed into a
job transition graph with job titles as nodes. In this context, graph embedding methods can be an
interesting way to improve job title representation learning, i.e., learn node representations from the
job transition graph. Therefore, in this chapter, we explore the utility of graph embedding methods
in the task of job title representation learning.

This chapter addresses the following Research Questions (RQs):

• RQ1: Can the graph structure provide more useful information for job title representation
learning?

• RQ2: Does additional information resulting in complex heterogeneous graph help learn better
job title representations?

For facilitating illustration, we list some important mathematical notations used throughout this
chapter in Table 4.1, unless particularly specified.

4.3 Learning from Job-Transition Graph: an Overview
Many existing graph-based methods mainly learn job title representations from homogeneous Job-
Transition Graph. The typical procedure is to first build a Job-Transition Graph from the working
history of talents and then learn job title representations from the resulting graph using different
approaches, which we introduce below. Formally, we consider a job seeker set U and their working
history set H = {Hu}u∈U , where the working history of each u is represented as a sequence of n work
records ordered by time Hu = {J1, . . . , J|Hu|}. The i-th record Ji is denoted by (ji, pi, oi), indicating
that u is engaged in a position (titled ji) during pi period. oi represents other information related to
this record, like company name and job content. The set of job titles ji that occurred in H is denoted
as J . Based on H, Job-Transition Graph can be constructed according to the following definition:

Definition 4.3.1 Job-Transition Graph: is a directed homogeneous graph Gjj = (J , E jj, TV , TE)

generated from H, where J is the set of job titles occurring in H and the edge ejj
xy ∈ E jj represents

the job transition from the former job jx to the next job jy. Here, TV = {“job title” } and TE =

{“is the previous job of” }, both nodes and edges have only one type.

74 Chapter 4. Job Title Representation Learning from Graphs

TABLE 4.1: Mathematical notations used in Job Title Representation Learning from Graphs
chapter.

Notation Description

U job seeker set
J job title set
Q tag set
C company set
W vocabulary set (words in job titles)

H = {Hu}u∈U working history set
Hu = {J1, . . . , J|Hu|} working history of the job seeker u

Ji = (ji, pi, oi) working record indicating the job title ji and period pi
G graph/network
V , E node set, edge (link) set
TV , TE node type set and edge type set

weightxy weight of edge exy

Y node category set
Gjj Job-Transition Graph
E jj job transition set
Gjj

E Enhanced Job-Transition Graph
E jj

E enhanced edge set
Gjt Job-Tag Graph
E jt set of edges between a job title and a tag
Gjtj Job-Transition-Tag Graph
Φ(·) embedding mapping function
N (v) neighbors of node v

Example 4.3.1 : Figure 4.2 describes the Job-Transition Graph built from working histories of four
talents, where grey circles represent job titles, and black directed edges represent job transitions among
job titles. We formally define edges like 〈jx = “purchase agent”, jy = “purchasing manager”, TE =

’is the previous job of’〉, where TE ∈ TE is the edge type.

Talent A automotive technician → automotive shop
manager.

Talent B purchase agent → purchasing manager →
staff account purchasing manager.

Talent C staff accountant→ staff account purchasing
manager→ purchasing manager.

Talent D customer service → telemarketer → pur-
chasing clerk.

purchasing manager

staff account purchasing manager

automotive shop manager

automotive technician

purchase agent

staff
accountant

purchasing clerk
telemarketer

customer
service

FIGURE 4.2: Job-Transition Graph built from working histories of four talents.

4.3. Learning from Job-Transition Graph: an Overview 75

Job title representation learning has received much attention in the recruitment field. The learned
representations are used in various downstream tasks, such as job recommendation [Dave et al.,
2018; M. Liu et al., 2019], job title benchmarking [Denghui Zhang et al., 2019] (i.e., matching
job titles with similar expertise levels across various companies, modeled as a link prediction task
over the Job-Transition Graph), or job mobility prediction [L. Zhang et al., 2021]. These works use
different methods, but they are all based on the construction of a Job-Transition Graph, defined in
Definition 4.3.1.

For example, to better capture the relations between skills and jobs, [Dave et al., 2018] proposes
to build three graphs, a homogeneous Job-Transition Graph Gjj and two other graphs (i.e., job-skill
graph and skill co-occurrence graph) based on the jobs and skills present in a set of talent resumes.
Then, job title and skill representations are jointly learned from these three graphs. More specifically,
the authors capture job transition information from Job-Transition Graph, arguing that connected
nodes are more similar than non-connected nodes. Given a triple (jx, jy, jz), jx, jy, jz ∈ J , where the
job title jx is linked to jy (i.e., exy ∈ E jj), while jx is not linked to jz (i.e., exz /∈ E jj), the authors
want to maximize the probability that the affinity score between jx and jy is higher than jx and jz.
The corresponding loss function is:

L = min
Φ
− ∑

(jx ,jy,jz)∈D jj

ln σ
(
〈Φ(jx), Φ(jy)〉 − 〈Φ(jx), Φ(jz)〉

)
.

〈Φ(jx), Φ(jy)〉 is the affinity score between jx and jy, which is the dot product of their representation
vectors. The job title representation vector is denoted as Φ(·), which will be learned during training.
D jj is a set of training triples independently sampled from Gjj, and σ(·) is a sigmoid function. Similar
ideas can be applied to the other two graphs, and since we focus on learning job title representations
from the Job-Transition Graph, we will not describe operations on the other two graphs.

Job2Vec [Denghui Zhang et al., 2019] proposes to construct a Job-TransitionGraph Gjj = (V , E jj),
where the node v ∈ V denotes the job title j ∈ J affiliated with the specific company c ∈ C, i.e.,
v = (j, c). Then, a collective multi-view (i.e., graph topology, semantic, job transition balance, and job
transition duration views) representation learning method is proposed to learn job title representations.
Among these views, Job2Vec models the graph topology view with a loss function similar to the second-
order proximity in LINE [Jian Tang, Qu, et al., 2015], which is formulated as:

Ltopology = − ∑
ex,y∈E jj

weightxy log

(
exp

(
Φ′(jy)TΦ(jx)

)
∑j∈J exp (Φ′(j)TΦ(jx))

)
,

where Φ(jx) is the representation vector in the topology-view when jx is treated as the source node,
while when jx is treated as the “context” of other nodes, its representation is denoted as Φ′(jx).
The semantic view is explored from the shared keywords in job titles, with the idea that job titles
with similar keywords should be close to each other in the semantic view representation space. More
specifically, the authors first assign to each word w in the job title vocabulary set W , a semantic
vector w. They then enforce job title representations to be close to each other if they share similar

76 Chapter 4. Job Title Representation Learning from Graphs

words, based on the following loss function:

Lsemantic = ∑
wi∈jx

fix log

(
exp

(
wT

i jx
)

∑w∈W exp (wTjx)

)
,

where jx is the semantic representation of job title jx and fix is the frequency of the word wi occurred
in the job title jx. To incorporate more information into job title representations, Job2Vec also
considers the number and duration of transitions. The final position representation is obtained by
compressing the representations of all views (e.g., Φ(jx) and jx) into a denser representation using
an encoder-decoder structure.

[L. Zhang et al., 2021] proposes to add company nodes C in Job-Transition Graph to build a
heterogeneous graph Gjj = (J ∪ C, E jj ∪ E cc ∪ E jc). Accordingly, the edges contain different node
relationships (i.e., the job transition between two company or job title nodes and the belonging
relationship between the company node and job title node). Then they use the attentive heterogeneous
graph neural network to represent the company and job title nodes. More specifically, the authors
define two kinds of aggregators. The first one is an external aggregator, which is used to aggregate
information from different types of nodes. For example, given a node vx (job title or company), the
representation avx aggregated by external aggregator is expressed as:

a
(l)
vx = ∑

vy∈ND(vx)

1√
|ND(vy)|

√
|ND(vx)|

W (l)H
(l)
vx ,

where ND(vx) is the set of neighbors for vx with different types,W (l) is a weight matrix in (l)-layer,
and H (l)

vx is the hidden representation of vx in (l)-layer. Note that in this part, only the company-job
edges are considered. The second aggregator is an internal aggregator that aggregates information
from nodes of the same type, i.e., job-job and company-company. Similar to Job2Vec, [L. Zhang
et al., 2021] further aggregates the job transition features (i.e., the number of job transitions and the
average working duration) into the learned representation via a transition-aware attention mechanism.
The representation bvx aggregated by internal aggregator is expressed as:

b
(l)
vx = ∑

vy∈NI(vx)

exp
(
µ1 ·

(
W1H

(l)
vx +W2H

(l)
vy +W3rxy

))
∑z∈NI(vx) exp

(
µ2 ·

(
W1H

(l)
vx +W2H

(l)
vy +W3rxy

))H (l)
vx

NI(vx) is the set of neighbors for vx with the same type, W∗ are trainable weight matrices, and µ∗
are the attention vectors. rxy is the transition feature of edge exy, which is modeled using the number
of job transitions and the average working duration from vx to vy. The final job title representation
is obtained by fusing the external representation avx and internal representation bvx .

JAMES [Yamashita et al., 2022] proposes a multi-aspect co-attention mechanism to fuse three
independent embeddings of the job title, namely, topological, semantic, and syntactic embeddings.
More specifically, the authors first learn the topological embedding by applying hyperbolic graph
representation learning on the constructed job transition graph and obtain the semantic embedding
using the pre-trained BERT. Because the syntactic embedding is learned for the final task of this

4.3. Learning from Job-Transition Graph: an Overview 77

work (i.e., mapping user-created job titles to predefined and standard job titles), we do not provide
details. Finally, similar to [Denghui Zhang et al., 2019; L. Zhang et al., 2021], the three independent
embeddings are fused together to obtain the final job title representation.

As mentioned in Section 4.1, the job title and job transition data are noisy and messy. There-
fore, Job-Transition Graph may be extremely sparse, as emphasized in the Job2Vec approach [Denghui
Zhang et al., 2019]. In order to alleviate this issue, a simple and straightforward method is to standard-
ize job titles and then construct a normalized and denser graph based on the standardized job titles.
For example, before constructing its Job-Transition Graph, [Dave et al., 2018] normalizes job titles by
using Carotene, a private job title classification system [Javed, Q. Luo, et al., 2015]. [Denghui Zhang
et al., 2019] aggregates job titles by filtering out low-frequency words, and [L. Zhang et al., 2021]
unifies job titles according to the Industrial and Professional Occupation Dataset (IPOD) [Junhua Liu
et al., 2019] dataset, which contains 192k job titles belonging to 56k LinkedIn users, and each word of
these job titles is manually associated with a Named Entity (NE) tag indicating its level of seniority,
field of work, and location. Another method is to consider semantic information in addition to graph
topology information. For instance, [Denghui Zhang et al., 2019] enforces job title representations to
be close to each other if they share similar words. However, these mentioned methods either ignore
the semantic information contained in job titles [Dave et al., 2018; L. Zhang et al., 2021] or separate
the semantic information from the topology structure [Denghui Zhang et al., 2019]. In addition, the
standardization of job titles may lose some specific information.

For better comparison, we summarize the methods explained above in Table 4.2.

TABLE 4.2: A summary of the above graph-based job title representation learning methods.
HetG denotes the heterogeneous graph, while HomG denotes the homogeneous graph.

Paper Graph Scheme Normalization Topology Semantic Others

[Dave et
al., 2018]

Job-Transition Graph
(HomG), job-skill
graph (HetG) and skill
co-occurrence graph
(HomG)

joint learn-
ing

use Carotene ranking-based
loss

not con-
sider

-

[Denghui
Zhang
et al., 2019]

Job-Transition Graph
(HomG)

multi-view filter out low-
frequency
words

second-order
proximity

conditional
probability

number and
duration of
transitions

[L. Zhang
et al., 2021]

Job-Transition Graph
(HetG, with company
nodes)

multi-view based on
IPOD

attentive hetero-
geneous GNN

not con-
sider

number and
duration of
transitions

[Yamashita
et al., 2022]

Job-Transition Graph
(HomG)

multi-view - hyperbolic graph
embedding

BERT syntactic in-
formation

As can be seen from the table, all methods use normalized job titles to build graphs, and
these methods use different approaches to learn job title representations from the graph topology.
Only [Denghui Zhang et al., 2019] models the semantic information, but semantics is learned sepa-
rately and then fused with topological information. Our proposed scheme differs from these methods
in that we learn topological and semantic information simultaneously. We incorporate job title seman-
tic information into the graph topology when constructing graphs. Furthermore, our method does
not need to normalize job titles before constructing graphs, thus reducing the information loss. In the
next section, we will explain the inspiration for our learning scheme and the details of our method.

78 Chapter 4. Job Title Representation Learning from Graphs

4.4 Our Method: Integrating Job Knowledge to Enrich
Representations

4.4.1 Job Title Composition
Generally speaking, a job title usually consists of three parts [Junhua Liu et al., 2019; Denghui Zhang
et al., 2019]:

• Responsibility: describes the roles and responsibilities of a position from different levels, such
as:

– managerial level (e.g., director, manager, and lead),

– seniority level (e.g., vice, assistant, and associate),

– operational level (e.g., engineer, accountant, and technician).

• Functionality: describes the business functions of a position from various dimensions, such
as:

– work department (e.g., sales, marketing, and operations),

– work scope (e.g., enterprise, project, and national),

– work content (e.g., data, automotive, and security).

• Additional Information: contains personal-specific information, such as company name and
geographic location.

These three distinct parts are the essence of the job title and provide important information about
the position. For example, job titles with the same responsibility or functionality are more likely
to describe the same level of ability/authority or belong to the same industry. However, such useful
information is rarely directly used to learn job title representations, except [Denghui Zhang et al., 2019;
L. Zhang et al., 2021] that use it as auxiliary information to normalize job titles in working histories
and thus build graphs from these normalized job titles. Unlike these works, we add these words
related to responsibility or functionality directly to the graph, which can be seen as a kind of semantic
enrichment. As a result, the Job-Transition Graph we construct becomes a heterogeneous graph
with different types of nodes and edges, which can alleviate the graph sparsity problem and provide
additional information for the task of job title representation learning. Furthermore, we simultaneously
learn graph topology and semantic information from the same graph instead of combining different
views learned in separate graphs like [Denghui Zhang et al., 2019]. A detailed description of graph
construction is given in the next section. Extensive experiments have proved that the added words
can provide richer information, thereby improving the quality of job title representation.

4.4.2 Methodology
In order to address the sparsity issue of Job-Transition Graph mentioned above, we consider adding
more information when generating graphs, i.e., words related to the job responsibility or functionality,

4.4. Our Method: Integrating Job Knowledge to Enrich Representations 79

driven by the composition of job titles. Along this line, we formally denote these words as tags,
forming a tag set Q, and we define various types of graphs as follows:

Definition 4.4.1 Enhanced Job-Transition Graph: is based on Gjj with additional enhanced edges.
It is defined as Gjj

E = (J , E jj ∪ E jj
E , TV , TE), where E jj

E is a set of enhanced edges. More specifically, if
jx and jy share a word w, then we add a bidirectional edge between them, i.e., ejj

xy and ejj
yx. The common

word w can belong to Q, or other predefined vocabulary sets.

As shown in Figure 4.3b, red dashed lines represent additional enhanced edges, e.g., “purchasing
manager” shares the tag “purchasing” with “purchasing clerk”, so we add edges between them. Note
that the Enhanced Job-Transition Graph can be either homogeneous or heterogeneous, depending on
how we define the edge type of the red dashed line. If the edge type is expressed as “share similar tag”,
it is heterogeneous, with one node type (i.e., job title) and two types of edges (i.e., job transition
and “share similar tag” relationship). While if homogeneous, it is similar to the Job-Transition Graph,
with directed job transition edges and bi-directional enhanced edges. In this work, we consider that
Enhanced Job-Transition Graph is homogeneous. The heterogeneous case is left for future work.

Definition 4.4.2 Job-Tag Graph: is a heterogeneous graph Gjt = (J ∪Q, E jt, TV , TE), with job titles
and tags, two node types, i.e., TV = {“job title′′, “tag′′}. E jt is a set of bidirectional edges between a job
title and a tag, representing the “has/in” relationship, i.e., TE = {“has/in′′}.

An example of Job-Tag Graph is given in Figure 4.3c, where the grey/purple circles represent
job titles/tags, respectively. Edges are bidirectional to indicate that tags are in titles, e.g., job title
“automotive technician” has a tag “automotive”, so the bidirectional edge ejt (the purple line) means
that “automotive technician” has the tag “automotive”, and “automotive” is in “automotive technician”.

purchasing manager

staff account purchasing manager

automotive shop manager

automotive technician

purchase agent

staff
accountant

purchasing clerk
telemarketer

customer
service

(a) Job-Transition Graph Gjj.

purchasing manager

staff account purchasing manager

automotive shop manager

automotive technician

purchase agent

staff
accountant

purchasing clerk
telemarketer

customer
service

purchasing

(b) Enhanced Job-Transition Graph Gjj
E .

purchasing manager

staff account purchasing manager

automotive shop manager

automotive technician

purchase agent

staff
accountant

purchasing clerk
telemarketer

customer service

technician

automotive

manager

purchasingpurchase

staff

accountant

(c) Job-Tag Graph Gjt.

purchasing manager

staff account purchasing manager

automotive shop manager

automotive technician

purchase agent

staff
accountant

purchasing clerk
telemarketer

customer service

technician

automotive

manager

purchasingpurchase

staff

accountant

(d) Job-Transition-Tag Graph Gjtj.

FIGURE 4.3: Examples of four types of graphs (better to view in color), where small grey
circles represent job titles, and purple circles are tags. The black lines represent job transi-
tions, red dotted lines represent additional enhanced edges added when job titles share a

word, and purple lines represent “has/in” relationships between a job title and a tag.

80 Chapter 4. Job Title Representation Learning from Graphs

In order to aggregate more information, we further combine Job-Transition Graph and Job-Tag
Graph to build Job-Transition-Tag Graph:2

Definition 4.4.3 Job-Transition-Tag Graph: is a heterogeneous graph Gjtj = (J ∪Q, E jj∪E jt, TV , TE),
with two node types, i.e., TV = {“job title′′, “tag′′}, and two edge types, i.e., TE = {“is the previous job of′′,
“has/in′′}.

Our method then consists of learning job title representations (i.e., node embeddings) from these
graphs using the following hypothesis:

1. Job seekers generally work in a specific occupation, so the job titles in the same resume should
have strong correlations, e.g., “telemarketer” and “purchasing clerk” given in the same job seeker
profile, indicating that the job seeker works in the sales field. Such information is expressed
in the graph as job transitions. That is, the transition between “similar” jobs is more likely to
occur than non-similar jobs. More precisely, this means that the representation learning scheme
should respect the topology of the graph, i.e., adjacent job title nodes in the graph should be
close in the embedding space.

2. Job titles with the same tag describe similar job functions or responsibilities. For example,
“automotive service technician” and “automotive shop manager” are two job titles in the
automotive domain, and “automotive shop manager” and “purchasing manager” are two titles
for manager-level positions. This hypothesis implies that we want to preserve the semantic
information between jobs in the learning scheme. More precisely, the idea is to embed the
relationship between job titles linked to the same tag node into the embedding space, and the
modeling of the relationship is guided by meta-paths. The definition of meta-path is given in
Section 3.1.11.

Inspired by the achievements of graph embedding models in the node representation learning prob-
lem [Hamilton, Ying, and Leskovec, 2017a], we benchmark different graph embedding models and
adapt them to these different types of graphs in order to learn job representations from these graphs.
These methods include homogeneous unsupervised and supervised methods, e.g., Node2Vec, GCN
and GAT, as well as heterogeneous methods that consider node and edge types, e.g., metapath2vec, RGCN
and HAN. For unsupervised methods, the learning objective is to maximize the different proximity (i.e.,
first-, second-, or high-order) of nodes preserved in the embedding space, while for supervised meth-
ods, job title representations are learned through a job title classification objective or a link prediction
objective. A detailed description of these methods is given in Section 3.1.3 and in Section 4.5.3.

4.5 Application on Two Real Recruitment Datasets
Node classification and link prediction are two tasks that are widely used to evaluate the quality of
node representation. Therefore, this section empirically evaluates our proposed graphs on two real-
world networks with (i) a node classification task (i.e., job title classification) and (ii) a link prediction

2In further work, we consider trying different combinations, for example, combining Enhanced Job-Transition Graph with Job-Tag
Graph, that is, adding enhanced edges E jj

E to Job-Transition-Tag Graph.

4.5. Application on Two Real Recruitment Datasets 81

task (i.e., next-job prediction). We first describe the datasets used and experimental settings. Then
we present the quantitative results and analyze our graphs in more detail.

4.5.1 Datasets
In this work, we employ a public dataset CareerBuilder12 (CB12) and a private dataset Randstad to
evaluate our proposed graphs.

CareerBuilder12 It is an open dataset from an open Kaggle competition3 provided by the on-
line recruitment site CareerBuilder.4 It contains a collection of working experiences represented by
sequences of job titles. In total, we have 375,531 experience records (talents) and 657,153 job titles.
In the pre-processing process, we tokenized titles into tokens, then removed stopwords, numbers, and
punctuation. Then we use an online third-party API O*Net-SOC AutoCoder5 to assign a Standard
Occupation Classification (SOC) code 2018 to each job title. The SOC taxonomy consists of four
levels, Major Group (9), Sub-Major Group (25), Minor Group (90) and Unit Group (369), an example
is shown in Figure 4.4. For a detailed introduction to SOC, see Appendix B.2.2. Given a job title,
the original repository assigns a 3-digit Minor Group code to the job title. For more details on the
labeling process and AutoCoder, please refer to Appendix B.1.1 and Appendix B.3.1. In the end,
22,590 labeled job titles were obtained.

Major Group 1:
Managers, Directors and Senior Officials

Sub-Major Group 12:
Other Managers and Proprietors

Minor Group 121:
Managers and Proprietors in Agriculture Related Services

Unit Group 1211:
Managers and proprietors

in agriculture and horticulture
Unit Group 1213:

Managers and proprietors
in forestry, fishing and related services

Sub-Major Group 11:
Corporate Managers and Directors

Minor Group 112:
Production Managers and Directors

Unit Group 1121:
Production managers and directors

in manufacturing
Unit Group 1122:

Production managers and directors
in construction

Minor Group 111:
Chief Executives and Senior Officials

Unit Group 1115:
Chief executives and senior officials

Unit Group 1116:
Elected officers and representatives

FIGURE 4.4: An example of SOC structure.

Randstad It is a private resume dataset provided by the talent pool of Randstad company6, where
each resume is in French and is parsed into sections, e.g., Personal EducationHistory and Employ-
mentHistory, etc., as shown in Figure 4.5. More statistics for this resume dataset are given in

3https://www.kaggle.com/c/job-recommendation
4https://www.careerbuilder.com/
5http://www.onetsocautocoder.com/plus/onetmatch
6https://www.randstad.com/

https://www.kaggle.com/c/job-recommendation
https://www.careerbuilder.com/
http://www.onetsocautocoder.com/plus/onetmatch
https://www.randstad.com/

82 Chapter 4. Job Title Representation Learning from Graphs

Appendix B.1.2. Graphs are built from EmploymentHistory section, which consists of multiple Em-
ploymentItems, each EmploymentItem containing a JobTitle, and its corresponding occupation labels
(i.e., JobCode, JobGroup and JobClass).

PersonalInformation
Name
Address

EducationHistory
EducationItem

• EducationLevelCode: BAC2
• DegreeDirection: Technicien en maintenance industrielle
• StartDate: 2017-09-01
• EndDate: 2018-06-30
• InstituteName: AFPA MEUDON 92

EmploymentHistory
EmploymentItem
• Description: Contrôle des cartes électroniques et changes des composants électroniques …
• StartDate: 2014-01-01
• EndDate: 2015-12-31
• JobTitle: Technicien électronique
• EmployerName: EBO (Courneuve) 93
• JobCode: Technicien Électronique (h/f)
• JobGroup: Ingénieurs, Projeteurs et Techniciens Électricité
• JobClass: Ingénierie

FIGURE 4.5: An example of parsed resume in Randstad dataset.

The taxonomy used in Randstad has a three-level hierarchy, where JobCodes are leaf classes, and
each internal (JobGroup)/root class (JobClass) is an aggregation of all its descendant classes. An
example7 is illustrated in Figure 4.6.

JobClass 14:
nettoyage et gardiennage

JobGroup 132:
Agents de Nettoyage Véhicules et Appareils

JobCode 496:
agent de nettoyage industriel (h/f)

JobCode 2657:
agent de nettoyage sanitaire (h/f)

JobCode 3870:
agent de nettoyage train (h/f)

JobGroup 131:
Agents de Nettoyage Bâtiments et Chantiers

JobCode 87:
agent de maintenance aéroportuaire (h/f)

JobCode 94:
agent de décontamination (h/f)

JobCode 1073:
laveur de vitres (h/f)

JobGroup 130:
Agents de Nettoyage Locaux

JobCode 90:
agent d’entretien (h/f)

JobCode 2079:
agent de propreté des locaux (h/f)

JobCode 3426:
agent de service hôtelier (h/f)

FIGURE 4.6: An example of the taxonomy used in Randstad dataset.

In this experiment, we categorized job titles to the root level, i.e., Major Group/JobClass. Due to
the highly imbalanced label distribution, we further filtered out the job titles with low-frequency labels
for both datasets. Specifically, we filtered out Minor Groups/JobGroups that have a frequency lower
than 200 for CB12/Randstad datasets. Also, for graph construction, we remove working histories
with less than two work records, i.e., |Hu| < 2.

4.5.2 Tag Generation
We use the Top-200 tokens that appear most frequently in job titles and belong to IPOD [Junhua Liu
et al., 2019] as tags for both datasets. Note that IPOD is in English, while our Randstad dataset is

7We randomly select three JobGroups under the same JobClass, and for each JobGroup, three JobCodes are displayed.

4.5. Application on Two Real Recruitment Datasets 83

in French, so we manually translate the IPOD tags into French.8 More specifically, we first tokenize
titles into tokens and remove stopwords, numbers, and punctuation. The word frequency distribution
of words in two datasets are shown respectively in Figure 4.7, which are subject to the long-tail
distribution, similar to the observation in [Denghui Zhang et al., 2019].

Top 10 words
manager assistant
sales service
customer representative
specialist office
associate administrative

Last 10 words
chicago telephony
buying premier
pcs fisrt
c& northern
boiler counterperson

(a) CB12.

Top 10 words
agent assistant
responsable vendeuse
production preparateur
comptable service
commercial secretaire

Last 10 words
nounou italien
toulouse c.a.o
avril b2c
cofondateur prep
ling systemer

(b) Randstad.

FIGURE 4.7: Word frequency distribution, where the red line represents the average value.
Top10 words are sorted by frequency, and Last10 are randomly selected from the words with a

frequency of 2.

Most words appear only once, i.e., 53.55% of words only appear one time in CB12 dataset, and
this ratio is 56.55% in Randstad dataset. Figure 4.7 further shows the top ten and last ten frequent
words in each dataset. Obviously, high-frequency words like “manager” and “sales” describe the
responsibility or functionality of the job title, while low-frequency words are usually noise or person-
specific words. Based on the domain-specific Named Entity tags (i.e., RESponsibility, FUNction)
proposed in IPOD [Junhua Liu et al., 2019], we then select the Top-200 tokens that appear most
frequently and appear in the IPOD Named Entity tag set as tags for each dataset.9

Moreover, we assign the one-hot encoding of the corresponding title for each job title node as
the node feature. The vocabulary set W is obtained by filtering words with a frequency of 1 from
the tokenized job titles. Afterward, various graphs can be constructed using the corresponding work
history, and tag sets Q. Statistics for datasets and different graphs are summarized in Table 4.3.
We can observe that the generated Job-Transition Graphs (i.e., |V| and |E jj|) are sparse. We present
details of some parts of these graphs in Appendix A.1.

4.5.3 Experimental Settings
We consider the following graph embedding approaches. They are naturally divided into Homogeneous
and Heterogeneous according to the type of input graph and can be further categorized into Unsu-
pervised and Semi-Supervised according to whether node labels are provided for learning. Section 3.1

8The French version of the tag set is provided in Appendix B.1.3.
9Note that the Randstad dataset uses translated IPOD labels. Two complete tag sets are listed in Appendix B.1.3.

84 Chapter 4. Job Title Representation Learning from Graphs

TABLE 4.3: Statistics of datasets and corresponding graphs, #C represents the number of
categories, and |W| represents the vocabulary size for node one-hot encoding.

#C |W| |J | |Q| |E jj| |E jj
E | |E jt|

CB12 16 1,682 9,216 200 20,640 6,477,819 22,149
Randstad 18 2,303 12,864 200 36,722 6,663,267 22,897

describes these approaches in detail in Section. Here, we only present how they are implemented
and/or adapted to our enriched graphs.

• Homogeneous & Unsupervised

– Node2Vec (N2V) [Grover and Leskovec, 2016]: It is an extension of DeepWalk with a
biased random walk process for neighborhood exploration. For the graph Gjj, we use the
original flexible biased random walk strategy, which explores neighborhoods in BFS and
DFS fashion, as explained in Section 3.2 and the original paper [Grover and Leskovec,
2016]. More specifically, considering a random walk that traverses from node vx to node
vy and now resides at node vy, the standard Node2Vec calculates the transition probability
from node vy to the next node vz using the following formula:

Pr(vw(i+1) = vz|vw(i) = vy) =
α(x, z) · weightyz

Z
, if exy ∈ E jj,

where Z is the normalizing constant, vw(i+1) is the i + 1-th node in the walk and weightyz
is the weight of edge eyz. In Node2Vec, α(x, z) is controlled by a return parameter p and
an in-out parameter q, i.e., p controls the probability of returning vx after visiting vy,
and q controls the probability of exploring undiscovered parts of the graph. More detailed
calculation formulas are given in Section 3.1.

For Gjj, we set p = 0.25 and q = 0.25, which are set according to the best performance,
while for Gjj

E , random walks are sampled from E jj ∪ E jj
E with p = 0.25 and q = 1.

• Homogeneous & Semi-supervised

– GCN [Kipf and Welling, 2016]: It is a semi-supervised GNN that generalizes the convo-
lutional operation to HomGs.

– GAT [Veličković, Cucurull, et al., 2017]: It uses a self-attention strategy to learn the
importance between a node and its neighbors.

For these two methods, node features are modeled as one-hot encodings whose dimension is
the vocabulary size, as listed in Table 4.3.

• Heterogeneous & Unsupervised

4.5. Application on Two Real Recruitment Datasets 85

– metapath2vec (M2V) [Dong, Chawla, and Ananthram Swami, 2017]: It performs meta-
path-guided random walk and utilizes Skip-Gram to embed HetGs. We test all meta-paths
(i.e., “Job-Job” and “Job-Tag-Job”) in Gjtj and report the best performance.

• Heterogeneous & Semi-supervised

– RGCN [Schlichtkrull et al., 2018]: It is an extension of GCN on HetGs, introducing
relation-specific transformations based on the type of edges. For Gjj, Gjj

E and Gjt, there
is only one edge type, and in Gjtj, we have two relation transformations.

– HAN [X. Wang, Ji, et al., 2019]: It proposes a hierarchical attention mechanism, i.e.,
node-level and semantic-level for HetGs.

In addition to the comparison between network embedding methods, we will also compare the repre-
sentation learned through graphs with the representation obtained by semantic-based methods.

• Semantic-based

– Word2Vec (W2V) [Q. Le and Mikolov, 2014]: The representation of a job title is obtained
by averaging word vectors in it. We use word vectors trained on Google News10 for CB12,
and a pre-trained French embedding model [Fauconnier, 2015] for Randstad.

– BERT [Devlin et al., 2018]: The job title representations are obtained by using the bert-
as-service package [Xiao, 2018], a sentence encoding service for mapping variable-length
sentences to fixed-length vectors. We default to using the pre-trained BERT models
provided by the package, i.e., BERT-Base-Uncased is used for CB12, and BERT-Base-
Multilingual-Cased (New) for Randstad.11

Our implementation is based on the PyTorch version of the DGL package [Minjie Wang et al.,
2019]. To ensure fairness, we keep the same data split for all methods, and we set the dimension of
node embedding to 128 for all the above methods, except for W2V. We then propose to evaluate the
quality of learned representations through two downstream tasks: (i) the job title classification task
and the next-job prediction task.
For job title classification task: we classify job titles into root categories in this work, i.e., Major
Group for CB12 and JobClass for Randstad. We randomly split the data into training/validation/test
sets with a ratio of 60%/20%/20%. For unsupervised methods, node representations are learned from
the entire dataset. Then, a classifier is trained on the training and validation sets simultaneously. In
our experiments, we use logistic regression as the classifier applied to node representations. Semi-
supervised models are trained on the training set using a multi-class classification loss function (i.e.,
categorical cross entropy).
For next-job prediction task: we treat it as a link prediction task on Job-Transition Graph to predict
whether there is an edge (transition) between two nodes (job titles). We keep the same split ratio on
positive/negative edges to generate training/validation/test sets, where negative edges are randomly

10https://code.google.com/archive/p/word2vec/
11They were the state-of-the-art models at the time of these experiments. Testing more recent models is a direction for our future

work. We also report results obtained using another language model, trained on the Randstad data in Appendix A.1.

https://code.google.com/archive/p/word2vec/

86 Chapter 4. Job Title Representation Learning from Graphs

picked from unconnected node pairs (i.e., the same size as positive edges). Similar to the job title
classification task, for unsupervised methods, node representations are learned from the entire dataset,
and the logistic regression is used as a link classifier applied to edge representations. Here, we treat
link prediction as a binary classification. Edges in the training and validation sets are used to train
the classifier. Edge features are represented by applying binary operators [Grover and Leskovec, 2016]
on pairs of node representations, and then the best operator is chosen based on the validation set,
while the dot product is used for all semi-supervised methods. Semi-supervised models are trained on
the training set using a binary-class classification loss function (i.e., binary cross entropy).

In both tasks, semi-supervised models are trained on the training set, the parameters are optimized
on the validation set, and the final performance is evaluated on the test set. Models are optimized
with the Adam [Kingma and Ba, 2014] with a learning rate of 1e-3, and we apply L2 regularization
with a value 5e-4. We use an early stop with a patience of 100, i.e., if the validation loss does not
decrease in 100 consecutive epochs, we stop training. For models applying the attention mechanism,
the dropout rate of attention is set to 0.2. For random-walk-based methods, including N2V andM2V,
we set the window size to 5, walk length to 10, walks per node to 50, and the number of negative
samples to 5. We repeat each prediction experiment ten times and report the average performance
scores (i.e., Macro-F1 and Micro-F1 for job title classification and AUC for next-job prediction).

Macro-F1 and Micro-F1 are standard metrics for multi-class classification, which are defined as
different aggregation methods for F1 scores. Specifically, Macro-F1 is the unweighted mean of the
F1 scores F1i of different categories Yi ∈ Y , given in the following given by the following formula:

Macro-F1 =
F11 + · · ·+ F1|Y|

|Y| ,

where |Y| is the total number of categories. The F1 score is calculated as:12

F1 = 2
Precision× Recall
Precision+ Recall

,

where Precision = True Positive
True Positive + False Positive is used to measure the probability that the classifier

is correct when it makes a positive prediction, i.e., the number of true positive results divided by the
number of all positive results, and Recall = True Positive

True Positive + False Negative is to measure how many
positive results are correctly predicted, i.e., the number of true positive results divided by the number
of all samples that should be identified as positive. The calculation of Micro-F1 is similar to the F1
score, but instead of calculating for each individual category, it calculates the sum of True Positives,
False Positives, and False Negatives of all categories, respectively, and then substitutes these three
values into the F1 score equation. The larger the value of Macro-F1 and Micro-F1, the better the
classification performance. AUC is the “Area under the ROC Curve”, and the ROC Curve (Receiver
Operating Characteristic Curve) is a curve showing the performance of a binary classification model
at all classification thresholds. This curve plots the True Positive Rate and False Positive Rate. One
way to interpret AUC is the probability that the model ranks a random positive example higher than
a random negative example. If AUC is equal to 0.5, it proves that the model is useless.

12We omit the superscript of i without loss of clarity.

4.6. Results 87

4.6 Results
In this section, we present our experimental results. For all tables in this section, scores in bold are
the best in each metric, and scores in the underline are the second best.

4.6.1 Job Title Classification

TABLE 4.4: Job title classification results (Macro-F1/Micro-F1). The score in bold is the
best among all methods applied to all graphs, and the scores underlined are the best in
all graphs of each method. For M2V, we report the best results obtained by the meta-path
Job-Tag-Job. Note that, N2V, GCN and GAT are methods for homogeneous graphs, so we

do not report their results for Gjt and Gjtj.

N2V GCN GAT M2V RGCN HAN W2V BERT

C
B

12

Gjj 0.206/0.360 0.576/0.688 0.568/0.664 0.154/0.334 0.524/0.637 0.670/0.747

0.713/0.767 0.688/0.719Gjj
E 0.599/0.714 0.628/0.720 0.692/0.759 0.571/0.688 0.591/0.701 0.698/0.781

Gjt - - - 0.588/0.692 0.687/0.752 0.703/0.766
Gjtj - - - 0.588/0.692 0.703/0.766 0.742/0.797

R
an

ds
ta

d Gjj 0.201/0.304 0.520/0.616 0.529/0.593 0.166/0.282 0.388/0.536 0.592/0.665

0.595/0.671 0.580/0.609Gjj
E 0.523/0.623 0.484/0.621 0.607/0.677 0.469/0.585 0.452/0.580 0.607/0.689

Gjt - - - 0.590/0.665 0.552/0.643 0.572/0.663
Gjtj - - - 0.590/0.665 0.600/0.678 0.641/0.708

Table 4.4 summarizes the best results of all methods on different graphs. We have the following
observations:

(i) Among all graphs, all models generally have the lowest scores on Gjj because this graph is
often sparse and can only provide limited information, as mentioned earlier.

(ii) All models perform better on Gjj
E (except Macro-F1 of GCN) than Gjj, which shows that

the enhanced edges provide additional information. One interpretation is that enhanced edges add
semantic information, i.e., two job titles are more likely to be similar if they share the same word,
which in our case, is tackled under a graph perspective. Hence, it is able to address the sparsity
problem while adding semantic information to the representation learning.

(iii) The heterogeneous models perform well on our proposed Gjtj, which indicates that the added
tag nodes can effectively improve the quality of representation. Specifically, Gjtj carries both semantic
information (i.e., provided by the “has/in” edge) and pairwise topological information (i.e., provided
by the job transition relation), which makes it perform better than other graphs that only contain one
information. Note that we did not apply homogeneous methods to Gjtj, but the results on Gjj

E prove
that the information given by tags is useful. To make our results more complete, we will attempt
to adapt homogeneous methods to heterogeneous graphs, such as a variant of Node2Vec [Valentini
et al., 2021]. The full results can be found in Appendix A.1. For M2V, we report the best results
obtained by the meta-path Job-Tag-Job.

(iv) The models with attention mechanisms outperform the models without attention, demon-
strating that the attention mechanism is good at capturing important information from noisy graphs.

88 Chapter 4. Job Title Representation Learning from Graphs

(v) Graph-based methods perform better than semantic-based methods, which justifies our argu-
ment (i.e., due to the messy data, simply combining the representation of words may increase the
likelihood of mismatches) is correct.

4.6.2 Next-Job Prediction
We further evaluate the learning scheme using next-job prediction, which can be viewed as a link
prediction task to predict whether a position will be recommended as the next-job. For unsupervised
methods, edge features are represented by applying binary operators [Grover and Leskovec, 2016]
on node pairs, and then the best binary operator is selected based on the validation set, while the
dot product is used for semi-supervised methods. The results on CB12 given in Table 4.5 show
the promising results of our proposed graphs. Like job title classification, the scores of all network
embedding methods, i.e., N2V, GAT, M2V and HAN better on Gjj

E compared to Gjj, and the
heterogeneous models perform best on Gjtj. Such results further demonstrate the effectiveness of our
method for constructing graphs, whether adding additional information based on tags (i.e., Gjj

E) or
directly adding tags to graphs (i.e., Gjt and Gjtj). BERT using the Hadamard operator performs best,
followed by HAN on Gjtj with a slight difference of 0.007. However, when we use the dot product
used in HAN to obtain edge features for BERT, the AUC of BERT drops sharply to 0.477, while
W2V only drops a little to 0.763. We will analyze these results more deeply in future work. Overall,
link prediction results also demonstrate the effectiveness of our proposed graphs.

TABLE 4.5: Next-job prediction results (AUC) on CB12. The bold score is the best among
all methods, and the underlined score is the second-best.

N2V GAT M2V HAN
(Dot)

W2V
(Dot)

BERT
(Dot)

W2V
(Hadamard)

BERT
(Hadamard)

Gjj 0.564 0.704 0.548 0.685

0.763 0.477 0.777 0.840Gjj
E 0.692 0.789 0.593 0.792

Gjt - - 0.604 0.768
Gjtj - - 0.604 0.833

4.6.3 Visualization
For a more intuitive comparison, we visualize the learned representations for an example of the data
in Figure 4.8.

4.7. Conclusion and Perspectives 89

(a) HAN (G jj). (b) HAN (G jj
E). (c) HAN (G jt). (d) HAN (G jtj).

FIGURE 4.8: Visualization of representations (CB12). Healthcare support (green), Healthcare
practitioners and technical (blue), Architecture and engineering (purple), Office and administra-

tive support (orange) and Transportation and material handling (red).

Specifically, we select five types of job titles for illustration purposes, including two similar oc-
cupations: Healthcare support and Healthcare practitioners and technical, as well as three non-similar
occupations: Architecture and engineering, Construction and extraction and Transportation and ma-
terial handling. We use t-SNE [Van der Maaten and Hinton, 2008] to reduce the representation
dimension. Each color corresponds to an occupation category. Overall, the representations learned by
HAN on all graphs are clustered into groups. However, when considering tags, representations are
easier to be subdivided further in each category. For example, as shown in Figure 4.8d, the adminis-
trative occupation (i.e., orange) can obviously be further divided into three sub-clusters, which proves
that adding tag nodes can help capture more detailed information and make the learned representation
more informative. This detailed information helps further categorize occupations, as we only classify
job titles into the root category (i.e., Major Group) in this work. We further provide visualizations
for other occupations in Appendix A.1.

4.7 Conclusion and Perspectives
In this chapter, we study the problem of job title representation learning from the graph perspective.
We first propose to enrich Job-TransitionGraph commonly used in job title representation learning tasks
by adding tag-related information or directly adding tag nodes. Then we learn job title representations
through network embedding methods. This enhanced method can alleviate the sparsity problem,
thereby improving the quality of learned representations, as demonstrated in the experimental results
of job title classification and next-job prediction. Based on the experimental results, we can now answer
the Research Questions (RQs) proposed in Section 4.2.

• RQ1: Can the graph structure provide more useful information for job title representation
learning?
Answer: Yes, according to the performance comparison between semantic-based methods and
methods using graphs, we can conclude that using graphs can help job title representation learning.

90 Chapter 4. Job Title Representation Learning from Graphs

• RQ2: Does additional information resulting in complex heterogeneous graph help learn better
job title representations?
Answer: Yes, either adding tag-related information (i.e., Enhanced Job-Transition Graph) or
adding tags directly to graphs (i.e., Job-Tag Graph and Job-Transition-Tag Graph) bring better
results than the standard Job-Transition Graph. Such results demonstrate that the additional in-
formation carries useful information for job title representation learning.

Perspectives When generating graphs, we did not consider edge weights, such as the number of
job transitions between two job titles and the number of the same tags shared by two job titles. We
think these weights can provide more information about job title similarity, i.e., the job title jx is more
likely to be more similar to jy if they have a job transition edge with weight ten (weightxy = 10) than
jz, which has only one transition from jx (weightxz = 1). Therefore, one research direction in future
work is to consider edge weights when constructing graphs. In the process of graph construction, we
combine Job-TransitionGraph with Job-TagGraph to build Job-Transition-TagGraph. In future work, we
will try different combinations, such as combining Enhanced Job-Transition Graph with Job-Tag Graph.
Another research direction is to improve the tag generation approach and consider tags related to
“responsibility” and “functionality” separately. In the job title classification task, we classify job titles to
the root level, which is the coarsest category in the occupation taxonomy, as illustrated in Figure 4.4.
In the future, we will classify job titles into different occupational levels to explore whether tags can
provide more profound information. We also would like to explore why the Hadamard operator and dot
product lead to different link prediction results for BERT, as shown in Section 4.6.2. Finally, to make
our experiments more complete and make the results more convincing, we will compare representations
obtained by simultaneously considering topological and semantic information with those obtained by
simply aggregating these two parts of information, which are learned independently.

91

Chapter 5

Skill Representation Learning by
Leveraging Hierarchical Graph

5.1 Motivation
Skills play a vital role in the labor market and are the backbone of recruitment, i.e., occupations,
job postings, and talents are accompanied by a set of skills, and whether a talent is suitable for a
position is first measured from skill fit. Consequently, learning good skill representation is of prime
importance and can improve multiple tasks in recruitment portals. Most existing works focus on skill
extraction [Kivimäki et al., 2013; M. Zhao et al., 2015; Khaouja et al., 2019; Gugnani and Misra,
2020] and skill relevance or popularity analysis [W. Zhou et al., 2016; Börner et al., 2018; T. Xu et al.,
2018], as summarized in Section 2.2. To the best of our knowledge, in the literature, only a few works
have addressed the problem of skill representation learning. [Dave et al., 2018] proposes to jointly
learn skill and job representations from three graphs: job transition, job-skill, and job co-occurrence
graphs. In [Nigam et al., 2020], the authors propose to encode skills utilizing a BERT [Devlin et al.,
2018] model trained from scratch on a manually annotated skills dataset.

From the study of these previous works, we can derive interesting findings that motivate the work
of this chapter. The first observation is that, like job title representation learning (Chapter 4), skill
representation learning can benefit greatly from advances in graph embeddings. In particular, the
skill co-occurrence graph constructed from job descriptions or resumes is important information for
skill representation learning using graphs, as done in [Dave et al., 2018]. Furthermore, as highlighted
by [Nigam et al., 2020], another characteristic of skills is that they are organized into competency
groups, i.e., groups of similar skills required to do a job successfully. In graphs, these capability groups
can be analogized to communities, opening up a research direction for skill representation learning,
i.e., using community-preserving graph embedding methods. Finally, in the world of recruitment,
skills also tend to be in a tree-like structure, representing a hierarchical relationship, called a skill
taxonomy. These taxonomies can come from standard open ontologies in the recruitment field, such
as ESCO (Appendix B.2.4) and ROME (Appendix B.2.5), or private company references, such as
Randsatd. While this hierarchical information is well-structured and informative, it has rarely been
studied directly and has never been used for skill representation learning to the best of our knowledge.
Therefore, in this task, we exploit this hierarchical information, i.e., the skill taxonomy to learn better
skill representations, along with the skill co-occurrence graph.

92 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

Contributions In summary, our main contributions in this chapter include the following:

• We present an overview of the community and hierarchy preserving graph embedding models.

• We propose to learn skill representations from co-occurrence relations, and enhance the
representations by exploiting the common predefined reference, i.e., skill taxonomy. Our
work is the first attempt to exploit this hierarchical information directly for skill representation
learning.

• We propose to benchmark different representative community and hierarchical community pre-
serving methods for skill representation learning on two real-world datasets using an occupation
classification.

• Experimental results show that the skill representations learned by cooperating co-occurrence
relations and hierarchical information can improve occupation classification task.

5.2 Research Scope
From the methodological point of view, the work of this chapter is related to works that integrate the
community structure into network embeddings [X. Wang, P. Cui, et al., 2017; T. Zhang et al., 2020].
The main idea is that the representation of vertices within a community should be more similar than
vertices belonging to different communities. Not only vertices form communities, but communities
are usually organized in a hierarchy, i.e., a tree-structured hierarchy. This has motivated some typical
methods [Du et al., 2018; Long et al., 2019; Bhowmick et al., 2020] that try to preserve hierarchical
community structures within vector spaces. We describe these methods in detail below. Our objective
is to adapt these methods to the problem of skill representation learning and answer the following
Research Questions (RQs):

• RQ1: Can the graph structure provide more useful information for skill representation learning
than the semantic representation?

• RQ2: Does the hierarchical information (i.e., skill taxonomy) contribute positively to skill
representation learning?

5.3 Our objective: Preserving Pairwise Proximity and Com-
munity Hierarchy

In this section, we first formulate our problem, review some representative community and hierarchical
community preserving graph embedding models, and then compare these methods to inspire our
future perspective, a novel hierarchical community preserving graph embedding for skill representation
learning. For facilitating illustration, we list some important mathematical notations used throughout
this chapter in Table 5.1, unless particularly specified.

5.3. Our objective: Preserving Pairwise Proximity and Community Hierarchy 93

TABLE 5.1: Mathematical notations used in Skill Representation Learning by Leveraging Hi-
erarchical Graphs chapter.

Notation Description

G graph
V , E node set, edge (link) set
A adjacency matrix

vx, exy x-th node, edge between node pair (vx, vy)
weightxy weight of edge exy

deg(v) degree of node v
Φ(·) embedding mapping function
N (v) neighbors of node v
O occupation set
S skill set

Gss skill co-occurrence graph
E ss skill co-occurrence edge set

Φ(·) embedding mapping function
N (v) neighbors of node v
X feature matrix of skills
H skill taxonomy or hierarchical community tree of G
L depth ofH, or number of layers inH
C community-node set inH

C(l) the set of community-node at l-level (C(l) = {c(l)i }i∈{1,...,ml})
U node set ofH (i.e., U = S ∪ C)
C the community, is a group of nodes

Ch(u) child nodes of node u ∈ U
Pa(u) parent node of node u ∈ U

Q modularity

5.3.1 Problem Formulation
Benefiting from the fact that each occupation/job posting/talent can be represented as a set of skills
they require or possess, we first build a skill co-occurrence graph to reflect the pairwise similarity
between skills. More specifically, given a set of occupations O and a set of skills S , where each
occupation o ∈ O is pre-associated with a set of skills, i.e., o = {s1, . . . , s|o|} ⊂ S . Then the skill
co-occurrence graph Gss = (S , E ss,X ,W), an undirected homogeneous graph, which is constructed
according to O, with the skill set S as nodes, and each edge exy ∈ E ss indicates that sx and sy

appear in the same occupation. X = {x1, · · · ,x|S|} is the node feature matrix where xi ∈ RF is
the attribute vector associated with si, here the dimension F is the vocabulary size of the words in
skill names, and weightxy is the weight of edge exy, indicating the number of times sx and sy appear
together. Note that, for simplicity, here, we only discuss the occupation set. It can be replaced by a
set of jobs or talents, where skills are extracted from job postings or resumes using the skills extraction
tool [Kivimäki et al., 2013; M. Zhao et al., 2015].

94 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

We give an example with five occupations and their required skills, and the corresponding skill
co-occurrence graph is shown in Figure 5.1.

o1 = {s1, s2, s3}
o2 = {s2, s3, s4}
o3 = {s5, s6}
o4 = {s5, s6, s7}
o5 = {s7, s8, s9} s1 s2 s3 s4 s5 s6 s7 s8 s9

c(2)1 c(2)2 c(2)3 c(2)4

c(3)1 c(3)2

c(4)1

(A) Skill taxonomyH.

s1

s2

s3

s4

s5

s6
s7

s8

s9

1
11

2

1

1

2
1

1

1

1 1

(B) Skill co-occurrence graph Gss.

FIGURE 5.1: An example of skill taxonomyH and skill co-occurrence graph Gs.

Moreover, we also assume that skills are organized in a skill taxonomy. These taxonomies, such
as ESCO (Appendix B.2.4)1, are available for standardizing the recruitment industry. We denote it
as H, where leaf nodes represent “skills”, internal and root nodes are “skill categories”, denoted as C,
so nodes U in H consist of two types: skill nodes S and category-nodes C, i.e., U = S ∪ C. From
high-level to low-level, category-nodes describe more fine-grained skill types. More formally, we define
the category-nodes at l-level as C(l) = {c(l)i }i∈{1,...,ml}, l ∈ {2, · · · , L}, where c(l)i is a category-node

and ml is the number of category-nodes at l-level. Note that C(L) = {c(L)
1 } is the root node. An

example of such a skill taxonomy with a depth of four (i.e., L = 4) is given in Figure 5.1a, where
the first three high-level layers (i.e., C(4), C(3) and C(2)) are “skill categories”, and leaf nodes (i.e.,
{si}i∈{1,...,9}) are “skills”. We further use Ch(c(l)i) ⊆ C(l−1) to denote the child node set of the node

c(l)i , and Pa(c(l)i) ∈ C(l+1) to denote the parent node of c(l)i .
Using the above notations, we formally define the skill representation learning problem as

follows:
Given a set of occupations O, where each occupation can be represented as a set of required

skills, the corresponding skill co-occurrence graph Gss, and a given skill taxonomy H, we want to
Learn a skill embedding mapping Φ : V → Rd from skill graphs to d-dimensional skill repre-

sentations, which preserves the pairwise proximity, community structure, and hierarchical community
structure.

In the next section, we give an overview of related graph embedding methods: (i) community
preserving graph embeddings and (ii) hierarchical community structure preserving graph embeddings.

5.3.2 Review of Community Preserving Graph Embedding Models
In addition to the general proximity between pairs of nodes, e.g., the first- and second-order proximity
(Definition 3.1.5 and Definition 3.1.6), an interesting property of real-world networks is often the
community structure, i.e., the nodes of the network can be grouped into (potentially overlapping)
node sets of different sizes. For example, as shown in Figure 5.2, in a social network, communities can
represent different relationships, such as friends, colleagues, and family members, and in a recruitment

1https://esco.ec.europa.eu/en

https://esco.ec.europa.eu/en

5.3. Our objective: Preserving Pairwise Proximity and Community Hierarchy 95

scenario, communities in a skill co-occurrence graph can represent different skills required for a specific
profession, such as skills for developers, UX designers, and doctors.

Friends

Family

Colleagues

(a) A social network with three communities: friends, col-
leagues and family.

C++

AWS

Ruby

PythonMicrosoft

Surgery
Pediatrics

Axure

Figma

Adobe XD

Developers

Doctors

UX designers

(b) A skill network with three communities: different skills
of developers, UX designers, and doctors.

FIGURE 5.2: Examples of communities.

Let G = (V , E) be an undirected graph, where V = {v1, . . . , v|V|} is the set of nodes, and
E ⊆ V ×V is the set of edges, each edge is represented by a node pair exy = (vx, vy), x, y ∈ [1, |V|].
the community is formally defined as:

Definition 5.3.1 Community: A community C refers to a group of nodes C ⊆ V such that intra-group
connections are denser than inter-group ones [Meng Wang et al., 2015]. A graph can be decomposed
into several disjoint (possibly overlapping) communities {C1, . . . , Cm}, with V =

⋃m
i=0 Ci.

Definition 5.3.2 Modularity: The modularity is a measure of graph structure and is often used in
community detection tasks to measure the quality of the community partitioning of a graph. It measures
the difference between the actual number of edges within communities and the expected number of edges
(i.e., if the edges were randomly placed).The general expression for modularity is:

Q =
1

2|E | ∑
vi ,vj∈V

∑
C∈{Ci ,...,Cm}

(
Aij −

deg(vi)deg(vj)

2|E |

)
IiCIjC ,

where A is the adjacency matrix, deg(v) is the degree of node v and IiC is an indicator, i.e., IiC = 1 if
node vi is assigned to community C, otherwise IiC = 0.

Modularity values for unweighted and undirected graphs are in the [−1/2, 1] range. A graph with
a high modularity score has many connections within a community but few connections out to other
communities. There are other measures of graph structure,2 here we mainly focus on modularity.

In the following, we introduce some methods that preserve community information in the em-
bedding space. In particular, we present M-NMF, an approach based on Matrix Factorization, and
CommDGI, a Graph Neural Network (GNN) approach.

2http://braph.org/braph-1-0/manual/graph-measures/

http://braph.org/braph-1-0/manual/graph-measures/

96 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

• ModularizedNonnegativeMatrix Factorization (M-NMF) [X. Wang, P. Cui, et al., 2017]:
M-NMF preserves both the pairwise node similarity and the community structure into network
embedding. In particular, for the pairwise node similarity, M-NMF incorporates the first- and
second-order proximities of nodes (Definition 3.1.5 and Definition 3.1.6) to learn the representa-
tions using Matrix Factorization. For the community structure, the communities are detected
by a modularity constraint term. Then, these two terms can be jointly optimized by using
an auxiliary community representation matrix to connect the two terms through a consensus
relationship between node representations and the community structure of the network.

• Community Deep Graph Infomax (CommDGI) [T. Zhang et al., 2020]: CommDGI is an
extension of Deep Graph Infomax (DGI) to handle community detection.

FIGURE 5.3: The framework of CommDGI, from [T. Zhang et al., 2020]. Given
a graph, CommDGI learns hidden node representations via a Graph Infomax En-
coder and clusters these node representations using a Trainable Clustering Layer,

which is optimized together with the Graph Infomax Encoder.

As shown at the top of Figure 5.3, CommDGI maximizes together two kinds of mutual infor-
mation:

– Graph mutual information: is calculated between nodes and the graph. Similar to
DGI, CommDGI uses a GCN to encode node representations and trains the GCN with
contrastive loss Lgraph (Equation 3.2).

– Community mutual information: is calculated between nodes and the community
(sub-graph). CommDGI includes a clustering layer (Trainable Clustering Layer in Fig-
ure 5.3) implementing a differentiable K-means clustering which produces a soft assign-
ment of the nodes to K clusters in the embedding space. The cluster centers µC are then
optimized by:

µC =
∑i riChi

∑i riC
, ∀C ∈ {C1, . . . , Cm},

5.3. Our objective: Preserving Pairwise Proximity and Community Hierarchy 97

where hi is the representation of node vi, and riC is the probability that vi is assigned to
cluster C, which is calculated by:

riC =
exp (−δ‖hi −µC‖)

∑C ′∈{C1,...,Cm} exp (−δ‖hi −µC ′‖)
, ∀C ∈ {C1, . . . , Cm},

where δ is an inverse temperature hyperparameter that defines the difficulty of using the
clustering process.

The community mutual information objective is thus defined as:

Lcommunity =
1
|V|

|V|

∑
i=1

∑
C∈{C1,...,Cm}

E(H,µ)[log D(riChi,µC)].

D : Rd ×Rd → R is a discriminator, and D(riChi,µC) represents the probability score
assigned to a node-cluster pair (riChi,µC).

CommDGI further applies the modularity objective into the clustering layer as:

Lmodularity =
1
|E |Tr

[
RT

(
Aij −

deg(vi)deg(vj)

2|E |

)
R

]
.

where R = {riC} is the cluster assignment matrix.

5.3.3 Review of Hierarchical Community Structure Preserving Graph
Embedding Models

Not only do vertices form communities, but the communities are usually organized in a hierarchy,
i.e., a tree-structured hierarchy. Smaller communities at lower levels come together to form larger
communities at higher levels. Before we start introducing methods of network embedding that preserve
this hierarchy, we first formally define the hierarchical network as:

Definition 5.3.3 Hierarchical Network: A graph G = (V , E) is called a hierarchical network if it
can be decomposed into different communities, and these communities exist at different levels of granu-
larity. At the higher (coarser) level, there are a few large communities; at the lower (finer) level, there are
many small communities. Formally, the hierarchical community tree of G is denoted asH, the depth is L,
for example L = 4 in Figure 5.4. The community set at the l-th layer is denoted C(l) = {C(l)1 , . . . , C(l)ml },
C(l)i ⊆ V . For example, in Figure 5.4, there are three communities at 3-level, i.e., C(3)1 , C(3)2 and C(3)3 ,
where C(3)1 = {v1, v2, v3, v4, v5}. In particular, |C(L)| = 1 and C(L)

1 contains all nodes of G, i.e.,
C(L)

1 = V .

98 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

𝑐"
($) 𝑐&

($) 𝑐$
($)

𝑐"
(&) 𝑐&

(&) 𝑐$
(&) 𝑐'

(&) 𝑐(
(&) 𝑐)

(&) 𝑐*
(&) 𝑐+

(&)

		𝑣" 	𝑣& 	𝑣$ 	𝑣' 	𝑣(𝑣) 	𝑣* 	𝑣+ 	𝑣. 		𝑣"/	𝑣"" 	𝑣"& 		𝑣"$ 	𝑣"'

Root

Internal
node

Leaf

𝐿 = 4

𝑙 = 3

𝑙 = 2

𝑙 = 1

High/Coarse/Shallow level

Low/Fine/Deep level

𝒞"
(&)

𝒞&
(&)

𝒞$
(&)

𝒞"
($)

𝒞'
(&)

𝒞(
(&)

𝒞&
($)

𝒞)
(&)

𝒞+
(&)

𝒞*
(&)

𝒞$
($)

FIGURE 5.4: A formal illustration of a 4-level hierarchical graph/tree H, and the commu-
nities.

Moreover, the node set of the tree is denoted as U , i.e., V ⊆ U . For a node u ∈ U , Ch(u) and
Pa(u) denotes the set of child nodes and the parent node of node u, respectively. We further denote the
nodes other than the leaf nodes V in the tree H as community-nodes, i.e., c(l)i is the community-node
of the community C(l)i . Note that the community-node here is the same as the category-node in the skill
taxonomy described in Section 5.3.1.

Hierarchical community structure preserving graph embedding methods encode rich community
and hierarchical structure information into a vector space, making it much easier to analyze the graph
at different scales. Some representative works include:

• LouvainNE [Bhowmick et al., 2020]: LouvainNE first employs the Louvain algorithm [Blondel
et al., 2008] to recursively coarsen a large graph into smaller meta-graphs (communities) and
construct the hierarchy of meta-graphs. For example, in Figure 5.5, the meta-graphs are S1

with nodes {O, G, N, L, M, P, J, E, D, A, Z} and S12 with nodes {E, D, A, Z}.
It then obtains representations of nodes in the original graph at different levels of the hierarchy
and aggregates these representations to learn the final node embedding.

FIGURE 5.5: The embedding generation process of LouvainNE: from graph to
hierarchical tree to embedding, from [Bhowmick et al., 2020].

More specifically, LouvainNE proposes two techniques to learn the embedding vector for each
node except the root node:

5.3. Our objective: Preserving Pairwise Proximity and Community Hierarchy 99

– Standard embedding: given any tree-node, including the root but not the leaves,
LouvainNE constructs a weighted undirected meta-graph where the nodes are children of
the considered tree-node and the weighted edge between two children is calculated based
on the number of edges between them in the original graph. For example, the weighted
edge between children S1 and S2, as shown in Figure 5.5, is given by:

weightS1,S2
=
|ES1,S2 |
|S1| · |S2|

,

where ES1,S2 is the edge set between the node sets S1 and S2 in the original graph. Once
the meta-graphs are obtained, a standard graph embedding algorithm, e.g., DeepWalk or
Node2Vec is used to obtain embeddings of each one of these meta-graphs independently.

– Stochastic embedding: generates a random vector for each tree-node from a standard
normal distribution with zero mean and unit variance.

After obtaining the node embedding of each meta-graph, the final node embedding v of each
node in the original graph v ∈ G is given as:

v =
L−1

∑
l=1

αlvl ,

where vl is the embedding of leaf v in the l-th level meta-graph. For example, as shown in
Figure 5.5, the embedding of node O is calculated as vO = α1v

S111
O + α2v

S11
O + α3v

S1
O , where

vS111
O is the node representation of O in the sub-graph S111.

• Galaxy Network Embedding (GNE) [Du et al., 2018]: Inspired by the galaxy hierarchy,
GNE proposes an optimization problem with spherical constraints to preserve the hierarchical
community structure. Communities are embedded into a low-dimensional spherical surface, the
center of which represents the parent community they belong to, as shown in Figure 5.6.

FIGURE 5.6: Spherical galaxy
model, from [Du et al., 2018].

FIGURE 5.7: The structure of
GNE, from [Du et al., 2018].

More specifically, the optimization task is constrained by:

– Local community structure is preserved through the pairwise node similarity in the
same community. For c(l)i and c(l)j two community-nodes derived from the same parent

100 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

c(l+1)
k , c(l)i , c(l)j ∈ Ch(c(l+1)

k) the pairwise similarity between them is preserved by the
second-order proximity of LINE:

min
Φ,Φ′
O(l)

k = − ∑
c(l)i ,c(l)j ∈Ch

(
c(l+1)

k

) S(l)
i,j log Pr

(
Φ′
(

c(l)j

)
|Φ
(

c(l)i

))
,

where Φ(·) : V → Rd and Φ′(·) : V → Rd are two embedding mapping functions, which
embed each node v ∈ V into a d-dimensional latent space, and similar to LINE, Φ(v) is
the embedding vector of v when it is treated as the source node and Φ′(v) is the vector
when it is treated as the “context” of other nodes. Sl

i,j is the community proximity of

communities C(l)i and C(l)j (i.e., their community-nodes are c(l)i and c(l)j), calculated as
follows:

S(l)
i,j =

1

|C(l)j | · |C
(l)
j |

∑
vx∈C(l)i

∑
vy∈C(l)j

AT
xAy√

‖AT
x ‖1 · ‖AT

y ‖1

,

which means the average common neighbor similarity between C(l)i and C(l)j , where Ax

is the x-th column of the adjacency matrix of G.

– Global hierarchical structure is preserved by horizontal and vertical constraints:

* Horizontal constraint: nodes in the same community are more similar than nodes
belonging to different communities. For all community-nodes c(l)i , c(l)j and c(l)k at

l-level, with Pa(c(l)i) = Pa(c(l)j) and Pa(c(l)i) 6= Pa(c(l)k), they obey the following
constraint:

‖Φ(c(l)i)−Φ(c(l)j)‖ < ‖Φ(c(l)i)−Φ(c(l)k)‖,

where ‖ · ‖ means 2-norm.

* Vertical constraint: the cohesion of communities at shallow-level should be less than
that of communities at deep-level. The community cohesion in GNE is calculated by
the average representation distance between the sub-communities in it. Therefore,
the parent-child relationship can be described as: for all community-nodes c(l+1)

i at

(l + 1)-level, all c(l)j ∈ Ch(c(l+1)
i) and all c(l−1)

k ∈ Ch(c(l)j), they obey the following
constraint:

‖Φ(c(l+1)
i)−Φ(c(l)j)‖ > ‖Φ(c(l)j)−Φ(c(l−1)

k)‖.

The final optimization formulation is:

min
Φ,Φ′
O(l)

i

(
Φ, Φ′

)
s.t. ∀c(l)j ∈ Ch(c(l+1)

i), ‖Φ(c(l+1)
i)−Φ(c(l)j)‖2 = r(l+1)

i ,

where r(l+1)
i denotes the sphere radius of community C(l+1)

i , and all children nodes of the

community-node c(l+1)
i are embedded on a sphere with center c(l+1)

i and radius r(l+1)
i . The

5.3. Our objective: Preserving Pairwise Proximity and Community Hierarchy 101

learning process recurses from top to bottom in the hierarchy. The whole embedding procedure
is illustrated in Figure 5.7.

• Subspace Network Embedding (SpaceNE) [Long et al., 2019]: SpaceNE is inspired by
the fact that subspaces within Euclidean space inherently follow a hierarchy, as shown in Fig-
ure 5.8. It preserves the pairwise proximity and the proximity between hierarchical communities,
including structural information within and among communities. More specifically, node repre-
sentations can be learned via the following scheme:

FIGURE 5.8: The correspondence between the community hierarchy and the sub-
space hierarchy, from [Long et al., 2019].

– SpaceNE models the pairwise proximity between nodes in a similar way to DeepWalk:

min
Φ
L1 = ∑

vx∈V
∑

vy∈N (vx)

log σ
(
‖Φ(vx)−Φ(vy)‖2

)
+ k ·Evz∝ [log σ (−‖Φ(vx)−Φ(vz)‖2)] ,

where N (vx) denotes the neighbors of vx in graph G, σ(·) is the sigmoid function, and
k is the number of negative nodes vz, i.e., exz /∈ E .

– SpaceNE models the proximity of hierarchical communities by considering the following
two types of information:

* Structural information within each community: nodes from the same community
should be closer than nodes from different communities, so nodes from the same
community are projected into the same subspace. For each community-node c(l)i ,
the constraint is given as:

rank(U (l)
i) ≤ d(l),

where d(l) is the dimension of the subspace at layer (l), and U (l)
i is a matrix where

each row is the embedding vector of each node belonging to the community C(l)i .
Note that each node has a new vector under the basis vector of the corresponding
subspace (community).

* Structural information among communities: minimize the difference between sub-
space similarity and community similarity for every two communities C(l)i and C(l)j ,
namely,

minL(l)
2 = ‖∆(l) − Γ(l)‖F,

102 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

where ∆(l) is a matrix, and each entry ∆
(l)
i,j is the similarity of two communities C(l)i

and C(l)j in the original graph, the calculation method of ∆(l) can be customized

according to the data set. Similarly, Γ
(l)
i,j is the similarity of two subspaces. ‖ · ‖F is

the Frobenius norm.

Graph Neural Networks (GNNs) (see Section 3.1 for more description of GNNs) can also be
extended to preserve hierarchical community structures into the embedding space. For example,

FIGURE 5.9: Elaboration of hierarchical message passing: (a) a collaboration net-
work, (b) the hierarchical message-passing mechanism based on (a) and (c), and
(c) the identified hierarchical structure, from [Zhong, C.-T. Li, and Pang, 2020].

• Hierarchical Community-aware Graph Neural Network (HC-GNN) [Zhong, C.-T. Li,
and Pang, 2020]: HC-GNN is the first implementation of the Hierarchical Message-passing
GraphNeural Network framework that detects and exploits the hierarchical community structure
for message passing. The learning process consists of four stages:

– Generate the hierarchical structure of the original graph G using the Louvain algo-
rithm [Blondel et al., 2008].

– Construct l-level graph based on its lower-level (i.e., l − 1) graph, as illustrated in the
middle of Figure 5.9. To this end, the hierarchical structure of G is represented as a list
of graphs {G1, . . . , GL}, where G1 represents the original graph G.

– Hierarchical message propagation consists of three parts:

* Bottom-up Propagation: using node embeddings in Gl−1 to update node embeddings
in Gl in the hierarchy {G1, . . . , GL}:

a
(k)

c(l)i

=
1

|Ch(c(l)i |+ 1

 ∑
c(l−1)

j ∈Ch(c(l)i)

h
(k−1)

c(l−1)
j

+ h
(k−1)

c(l)i

 ,

where h(k−1)

c(l)i

is the node embedding of c(l)i generated by (k − 1) GNN layer, and

a
(k)

c(l)i

is the updated embedding of c(l)i .

5.3. Our objective: Preserving Pairwise Proximity and Community Hierarchy 103

* Within-level Propagation: propagating information in each graph Gl ∈ {G1, . . . , GL}.
More specifically, for each node vx ∈ Gl, the within-level propagation is formulated
as:

b
(k)
vx = U · MEAN(a(k)vy), ∀vy ∈ N (vx) ∪ {vx}.

U is a learnable matrix, MEAN is an element-wise mean pooling.

* Top-down Propagation: adopting the graph attention mechanism to learn the con-
tributions of different levels during information integration. More specifically, given
a node vx of the original graph G, its final node embedding is obtained by

h
(k)
vx = ReLU(V · MEAN{αcxb

(k)
c }), ∀c ∈ P(vx) ∪ {vx},

where αcx is the trainable attention score between node vx and community-node
c ∈ P(vx) or itself, and P(vx) represents the set of community-nodes at different
levels to which node vx belongs. For example, in Figure 5.9, P(v1) = {s1, r1}.

– Train the model with a node classification objective.

We summarize, here, in Table 5.2, the representative works that preserve community structure
and hierarchical community structure introduced in the above two sections.

TABLE 5.2: Comparison of different community and hierarchical community structure
preserving graph embedding models. Here, Top2Bottom and Bottom2Top denote methods
for aggregating hierarchical information from top to bottom and bottom to top, respec-

tively, and Learning Scheme includes both supervised and unsupervised.

Method Input Top2Bottom Bottom2Top Node or
Edge feature

Pairwise
proximity

Learning
Scheme

C
om

m
un

it
y

M-NMF graph - - no first- and
second-order

unsupervised

CommDGI graph - - yes GNN (GCN) unsupervised

H
ie

ra
rc

hy

LouvainNE graph (hierarchical
community tree is
generated by Louvain
algo. from the graph)

no no no standard
graph em-
bedding, e.g.,
DeepWalk,
LINE and
Node2Vec

unsupervised

GNE graph + its ready-
made hierarchical
community tree

vertical
constraint

no no second-order
proximity
similar to
LINE

unsupervised

SpaceNE graph + its ready-
made hierarchical
community tree

subspace
projection

no no first-order
proximity
similar to
DeepWalk

unsupervised

HC-GNN graph (hierarchical
community tree is
generated by Louvain
algo. from the graph)

graph
attention

mean yes GNN
(GAT,GraphSAGE)

supervised
(node clas-
sification)

104 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

Here, we point out two limitations that they usually have:
(i) most of the methods ignore node features (i.e., the semantic information of skills in our

scenario), which are important in the recruitment field,
(ii) they [Du et al., 2018; Long et al., 2019] only consider one direction information, i.e., top-to-

bottom, and ignore bottom-to-top information, which can provide more pairwise proximity.
Benefiting from the ability of GNNs to encode node features and graph topology efficiently, HC-

GNN [Zhong, C.-T. Li, and Pang, 2020] applies GCN [Kipf and Welling, 2016] and GAT [Veličković,
Cucurull, et al., 2017] to the within-level and the top-down propagation schemes, respectively, after
using a mean bottom-up propagation scheme. These schemes allow messages to propagate between
nodes across different levels and between nodes within the same hierarchy. However, HC-GNN ag-
gregates information from bottom to top using a simple mean operation, and we argue that the order
of the three propagations can be changed for better performance, which will be studied in future
work. These limitations inspire us to propose a new model in the future that will consider
both top-bottom and bottom-top information transfer, and this model takes node features
into the learned representation.

5.4 Benchmark Graph Embeddings for Skill Representa-
tion Learning

5.4.1 Datasets
In this work, we conduct experiments on two real-world datasets. Both datasets have an occupation
set O and a known skill taxonomy H. They are described below, and detailed descriptions can be
found in Appendix B.2.4 and Appendix B.2.5.

ESCO It is a multilingual European classification of Skills, Competences, and Occupations.3 It
provides descriptions of occupations and associated skills. In this work, we use the English version. We
further consider one of the two sub-trees of the ESCO skill taxonomy (i.e., “skills” and “knowledge”),
named ESCO_K, where the nodes are all knowledge-related, as shown in Figure 5.10.

ROME It is the Operational Directory of Trades and Jobs used to categorize and identify trades
based on associated skills.4 It has an inventory of the names of trades, jobs, knowledge, and know-how.

We generate skill co-occurrence graphs from the corresponding occupation set O, with statistics
summarized in Table 5.3.

3https://ec.europa.eu/esco/portal
4https://data.europa.eu/data/datasets/58da857388ee384902e505f5?locale=en

https://ec.europa.eu/esco/portal
https://data.europa.eu/data/datasets/58da857388ee384902e505f5?locale=en

5.4. Benchmark Graph Embeddings for Skill Representation Learning 105

Knowledge

natural sciences, mathematics and statistics health and welfare

biological and related sciences ⋯

⋯

health

pharmacydental studies

mathematics and statistics

mathematics

biomedicine
toxicology

pharmacology
⋮

welfare

child care and
youth services

social work and
counselling

biochemistry

biomarkers
biomechanics

botany
⋮

algebra
geometry

3D modelling
⋮

biology

baby care
babysitting

adolescence medicine
⋮

statistics

medical statistics
probability theory
survey techniques

⋮

⋯

⋯

dental anatomy
dentistry science

orthodontics
⋮

analgesics
pharmacokinetics
pharmacognosy

⋮

family therapy
Migration

labour market
⋮

⋯

⋯ ⋯

FIGURE 5.10: A knowledge sub-tree of skill taxonomy in ESCO.

TABLE 5.3: Dataset statistics. |Navg| is the average number of neighbors per node, F is
the vocabulary size for node features. Hierarchy represents the number of nodes in each
layer from root to leaf, and these nodes are either “skill categories” or “skills”. #O_C is the
number of occupation categories, and #Savg is the average number of skills required for

each occupation.

Dataset Gs Go T #O_C #Savg|S| |E ss| |Navg| F |O| |E oo | |S|+ |C| Hierarchy

ESCO_K 2,536 116,218 91.63 2,290 1,639 1,342,341 2,646 {1, 9, 25, 75, 2536} 10 10.80
ESCO 11,368 1,191,122 209.56 5,682 1,701 1,445,850 11,846 {1, 2, 17, 99, 359, 11368} 10 37.82
ROME 11,428 587,213 102.77 8,424 532 141,246 11,839 {1, 53, 357, 11428} 14 49.93

5.4.2 Dataset Analysis
This section provides more analysis on these datasets from different aspects. We analyze the neigh-
borhood of each node in the skill co-occurrence graph, including the number of neighboring nodes and
the number of types of these neighboring nodes (according to the skill taxonomy). The statistics are
shown in Table 5.4, and the detailed distribution of ESCO_K is given in Figure 5.11. The detailed
distributions of ESCO and ROME are given in Figure B.7 and Figure B.8.

TABLE 5.4: Average number of neighbors and average number of neighbor types at differ-
ent level (i.e., different skill category granularity) per node in skill co-occurrence graph.

Dataset

ESCO_K ESCO ROME
|N (s)| 91.63 209.56 102.77

Level l (|C(l)|) 2(75) 3(25) 4(9) 2(359) 3(99) 4(17) 2(357) 3(53)
Avg 19.45 10.38 5.83 68.84 37.43 11.47 32.21 14.40

106 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

(A) Neighbor number. (B) 4-level skill categories (9).

(C) 3-level skill categories (25). (D) 2-level skill categories (75).

FIGURE 5.11: Neighborhood statistics for ESCO_K. In (a), the x-axis represents the size of
the neighborhood |N (s)|, and in (b), (c) and (d), the x-axis represents the number of neigh-
bor types (i.e., “skill categories”). The y-axis of all subfigures represents the corresponding

number of nodes.

According to Table 5.3 and Table 5.4, ESCO is denser, and the skills are more versatile, required
by most occupations. Furthermore, based on the skill taxonomy, we group skills according to the "skill
category" they belong to, resulting in different levels of communities. For example, the (4)-th level of
skill taxonomy in ESCO_K has 9 “skill categories”, so there will be 9 skill communities |C(4)| = 9. We
show the modularity of each skill co-occurrence graph in Table 5.5. We further use the commonly used
hierarchical clustering algorithm Louvain [Blondel et al., 2008] to discover the hierarchical community
structure and show the resulting modularity in Table 5.6.

TABLE 5.5: Graph modularity Q
based on skill taxonomyH.

Dataset Level l (|C(l)|) Q

ESCO_K
2 (75) 0.237
3 (25) 0.333
4 (9) 0.363

ESCO
2 (359) 0.048
3 (99) 0.097
4 (17) 0.072

ROME 2 (357) 0.104
3 (53) 0.206

TABLE 5.6: Graph modularity Q
based on Louvain.

Dataset Level l (|C(l)|) Q

ESCO_K 2 (44) 0.552
3 (9) 0.580

ESCO
2 (63) 0.537
3 (13) 0.557
4 (11) 0.558

ROME
2 (164) 0.439
3 (18) 0.495
4 (14) 0.496

The modularity score based on the skill taxonomy is generally lower than the score calculated by
the Louvain algorithm, especially for ESCO dataset.

5.4. Benchmark Graph Embeddings for Skill Representation Learning 107

TABLE 5.7: Top 10 common skills for ESCO and ROME.

ESCO ROME

create solutions to problems (S1) coordonner l’activité d’une équipe (00031)
use different communication channels (S1) outils bureautiques (00007)

manage staff (S4) management (00031)
keep records of work progress (S2) gestion administrative (00007)

have computer literacy (S5) gestion comptable (00008)
quality standards (04) techniques pédagogiques (00017)

troubleshoot (S1) suivre l’état des stocks (00029)
manage budgets (S4) utiliser un engin nécessitant une habilitation (00016)

identify customer’s needs (S1) techniques commerciales (00007)
mechanics (07) définir des besoins en approvisionnement (00029)

Common skills in ESCO and ROME are listed in the table 5.7. Not surprisingly, the skills in high
demand are “soft skills”, such as communication and problem-solving skills.

5.4.3 Experimental Settings
The baselines used for skill representation learning can be classified into the following types:

• Traditional methods do not use graph structures to obtain skill representations or occupation
representations.

– One-Hot: It encodes occupation representation as binary vectors, with dimension being
the number of skills in the skill set. Taking the occupations shown in Figure 5.1 as an
example, there are nine skills {si}9

i=1, so the representation of occupation o1 = {s1, s2, s3}
is encoded as [1, 1, 1, 0, 0, 0, 0, 0, 0].

– TF-IDF [Salton and Buckley, 1988]: It treats occupations as documents and skills as
words and then calculates a score for each skill using the standard TF-IDF method. It
can be seen as a weighted version of One-Hot.

– Doc2Vec [Q. Le and Mikolov, 2014]: It also treats occupations as documents and skills
as words and trains occupation representations using distributed memory.

– Semantic: skill representations are obtained by averaging the pre-trained word vectors in
skills.

• Local neighborhood preserving methods learn skill embedding vectors using the homo-
geneous skill co-occurrence graph Gss defined in 5.3.1. We select the representative methods
described in Section 3.1, which can be categorized into unsupervised or semi-supervised learning
methods.

– Unsupervised: no labeled nodes are provided for node (i.e., skill) representation learning.

* DeepWalk: It simulates uniform random walks on the graph to capture the first-order
proximity, and the generated random walks are used to update node representations
using the Skip-Gram approach with a hierarchical softmax.

108 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

* LINE: It learns node representations by explicitly modeling the first- and second-order
proximity.

* Node2Vec: It is an extension ofDeepWalk with a biased random walk process that can
balance Depth First Search (DFS) and Breadth First Search (BFS) for neighborhood
exploration.

* DGI: is an unsupervised GNN that maximizes the mutual information between the
graph representation and node representations.

– Semi-supervised: labeled nodes are provided for node (i.e., skill) representation learn-
ing. Here we use skill classification.

* GCN: generalizes the convolutional operation to graphs.

* GAT: uses a self-attention to learn the importance between a node and its neighbors.

• Community structure preserving methods learn from the skill co-occurrence graph Gss by
preserving node proximity and community structure. We consider the two methods described
in Section 5.3.2 in our benchmark.

– M-NMF: preserves community structure via matrix factorization.

– CommDGI: jointly maximizes the graph mutual information, community mutual informa-
tion, and modularity.

• Hierarchical community structure preservingmethods learn from skill co-occurrence graph
Gss and skill taxonomy H by preserving node proximity and hierarchical community structure.

– LouvainNE: the final skill representation is a weighted sum of skill representations in
different sub-communities.

– GNE: preserves community hierarchy through spherical projection.

– SpaceNE: introduces the subspace idea to preserve the hierarchy.

– LouvainNE_O: unlike LouvainNE, which uses Louvain to discover hierarchical commu-
nities, LouvainNE_O uses the skill taxonomy structure directly, and skill representations
at different levels are learned via DeepWalk.

We evaluate the quality of learned skill representations by an occupation classification task. We
set the dimension of skill representation to 100 for all methods except traditional methods. Semi-
supervised methods, including GCN and GAT, which learn skill representations using a skill classifica-
tion loss (8:1:1 nodes for train/validation/test), where the “skill category” is set according to the skill
taxonomy. We report the results obtained with the best “skill category” settings, i.e., 75/359/357
for ESCO_K/ESCO/ROME, respectively. For unsupervised methods which need to specify the num-
ber of clusters, e.g., M-NMF, CommDGI, the number of clusters is chosen also according to the
taxonomy, and the best results are reported in Table 5.9. For detailed hyperparameter settings, see
Appendix A.1.

5.5. Results 109

5.5 Results
In this section, we present our experimental results. For all tables in this section, scores in bold are
the best in each metric, and scores in the underline are the second best.

5.5.1 Occupation Classification
In this experiment, we evaluate the learned skill representations using an occupation classification task.
Since an occupation can be represented as a set of skills, we express the occupation representation o
in terms of the corresponding skill representations:

o = AGGREGATE({ s1, . . . , s|o|}).

Here AGGREGATE(·) is an aggregation operator, which is used to aggregate skill representation s to
form occupation representations. Occupation classification is then performed on these aggregated
occupation representations. Aggregators can be max pooling, mean pooling, or other trainable op-
erations. In this experiment, the occupation representation is the average of the corresponding skill
representations. The detailed occupation categories in the two datasets are listed in Table 5.8. There
are nine categories for the ESCO dataset, and ROME has 14 categories.

TABLE 5.8: The detailed occupation categories.

Dataset Occupation Category

ESCO (1) Technicians and associate professionals, (2) Service and sales workers, (3) Elementary occupations, (4) Profes-
sionals, (5) Managers, (6) Craft and related trades workers, (7) Skilled agricultural, forestry and fishery workers,
(8) Plant and machine operators and assemblers, (9) Clerical support workers, (10) Armed forces occupations

ROME (1) Agriculture et Pêche, Espaces naturels et Espaces verts, Soins aux animaux, (2) Arts et Façonnage d’ouvrages
d’art, (3) Banque, Assurance, Immobilier, (4) Commerce, Vente et Grande distribution, (5) Communication, Média
et Multimédia, (6) Construction, Bâtiment et Travaux publics, (7) Hôtellerie-Restauration, Tourisme, Loisirs et
Animation, (8) Industrie, (9) Installation et Maintenance, (10) Santé, (11) Services à la personne et à la collectivité,
(12) Spectacle, (13) Support à l’entreprise, (14) Transport et Logistique

Table 5.9 summarizes the best results (Macro-F1/Micro-F1) of all methods on occupation classi-
fication. We have the following observations:

(i) Methods exploiting graph structure generally perform better than traditional methods, indi-
cating that graphs provide more effective information about pairwise similarity of skills.

(ii) Compared to unsupervised methods, semi-supervised methods learn skill representations through
a skill classification loss, resulting in better occupation classification results. However, the choice of
skill category does affect the result, which will be discussed in Section 5.5.2.

(iii) CommDGI outperforms DGI, suggesting that preserving community structure is meaningful
for skill representation learning.

(iv) SpaceNE shows its advantages on ROME as it preserves the community hierarchy. While, on
ESCO its performance is even worse than Node2Vec used to learn the initial embedding. One possible
reason is that ROME has a deep skill taxonomy, i.e., L = 6. SpaceNE has difficulty capturing
hierarchical information as the depth of skill taxonomy increases. Likewise, GNE performs poorly due
to the "curse" of depth, as explained in [Long et al., 2019].

110 Chapter 5. Skill Representation Learning by Leveraging Hierarchical Graph

TABLE 5.9: Occupation classification results (Macro-F1/Micro-F1).

Method ESCO_K ESCO ROME

Traditional

One-Hot 0.513/0.567 0.640/0.665 0.806/0.814
TF-IDF 0.451/0.550 0.511/0.611 0.422/0.536

Doc2Vec 0.344/0.437 0.561/0.580 0.733/0.752
Semantic (AVG+AVG) 0.497/0.545 0.560/0.611 0.772/0.795
Semantic (AVG+SUM) 0.530/0.545 0.613/0.608 0.828/0.842
Semantic (SUM+AVG) 0.519/0.547 0.625/0.639 0.795/0.808
Semantic (SUM+SUM) 0.526/0.533 0.601/0.593 0.803/0.812

Local neighbor

DeepWalk (AVG) 0.505/0.538 0.627/0.646 0.847/0.859
DeepWalk (SUM) 0.514/0.520 0.607/0.615 0.820/0.831

LINE(1st+2st) (AVG) 0.490/0.532 0.598/0.601 0.837/0.845
LINE(1st+2st) (SUM) 0.517/0.529 0.602/0.618 0.822/0.830

Node2Vec (AVG) 0.514/0.555 0.630/0.646 0.831/0.845
Node2Vec (SUM) 0.516/0.529 0.633/0.642 0.834/0.842

GCN (AVG) 0.482/0.519 0.638/0.651 0.845/0.860
GCN (SUM) 0.521/0.532 0.638/0.651 0.845/0.860

GAT 0.527/0.555 0.648/0.659 0.850/0.866
DGI 0.485/0.521 0.569/0.587 0.721/0.725

Com M-NMF 0.338/0.409 0.116/0.310 0.107/0.303
CommDGI 0.492/0.533 0.580/0.609 0.735/0.740

H_Comm

GNE 0.503/0.503 0.605/0.620 0.858/0.872
SpaceNE 0.549/0.567 0.626/0.633 0.895/0.888

LouvainNE 0.340/0.393 0.422/0.460 0.581/0.626
LouvainNE_O 0.532/0.537 0.640/0.648 0.806/0.822

5.5.2 Skill Category Granularity
Semi-supervised methods such as GCN and GAT learn skill representations through a skill classifi-
cation task, where the skill categories are selected based on the skill taxonomy. Due to the inherent
structural nature of the taxonomy, lower-level skill categories describe more fine-grained skill charac-
teristics. Therefore, skill representations trained with more detailed skill categories usually contain
more specific information. The experimental results shown in Table 5.10 confirm this observation.

TABLE 5.10: Different skill category granularity.

Method
GCN GAT

ESCO_K 9 25 75 9 25 75
0.433/0.503 0.500/0.535 0.523/0.551 0.436/0.510 0.515/0.522 0.527/0.555

ESCO 2 17 99 359 2 17 99 359
0.576/0.601 0.596/0.607 0.621/0.633 0.638/0.651 0.591/0.612 0.622/0.634 0.636/0.645 0.648/0.659

5.6 Conclusion and Perspectives
In this chapter, we study the problem of skill representation learning by exploiting hierarchical com-
munity information. Based on the fact that each occupation is equipped with a set of skills required
to work in that occupation, we first construct a skills co-occurrence graph from different occupations.

5.6. Conclusion and Perspectives 111

Since skills are connected according to their co-occurrence relationships in occupations, the skills
co-occurrence graph reflects their pairwise proximities. Furthermore, in the field of recruitment, skills
also tend to be organized in a tree-like structure, representing a hierarchical relationship, called a skill
taxonomy. The skills can be grouped according to different skill categories, which are further orga-
nized into hierarchies, so skill taxonomy reflects a hierarchical community structure. To this end, we
propose to learn skill representations from these two graphs by preserving both the pairwise proximity
and hierarchical community structure. We apply different community and hierarchical community
structure preserving graph embedding methods for skill representation learning to verify the impor-
tance of the information carried in skill taxonomy. Based on the experimental results, we can now
answer the Research Questions (RQs) proposed in Section 5.2.

• RQ1: Can the graph structure provide more useful information for skill representation learning
than the semantic representation?
Answer: Yes, according to the performance comparison between the Semantic method and meth-
ods using graphs, we can conclude that using graphs can help skill representation learning.

• RQ2: Does the hierarchical information (i.e., skill taxonomy) contribute positively to skill rep-
resentation learning?
Answer: Yes, methods that learn representations from skills co-occurrence graph and skill tax-
onomy, such as GNE and SpaceNE, generally outperform other methods that do not consider the
hierarchical community structure. However, they suffer from the depth curse when skill taxonomy
has many layers.

Perspectives In this chapter, we adapt some existing graph embedding methods that preserve the
hierarchical community structure to learn skill representations. As summarized in Table 5.2, these
methods usually suffer from two major limitations: (i) ignore node features and (ii) only aggregate
hierarchical information from top to bottom. These limitations inspire us to propose a new model in
the future that will consider both top-bottom and bottom-top information transfer, and this model
incorporates node features into the learned representation. Additionally, we will also address the depth
curse present in GNE and SpaceNE.

113

Chapter 6

Next-Application Prediction from Job
Application Sequences

6.1 Motivation
As discussed in the introduction (Chapter 1), the widespread use of online recruitment services has
recently led to an information explosion in the job market (i.e., over 3 million jobs are posted on
LinkedIn in the U.S. every month).1 Therefore, there is an urgent need for an accurate, effective,
meaningful, and transparent job recommendation system. In response to this situation, many works
have been proposed to build effective job recommender systems [Tripathi, Agarwal, and Vashishtha,
2016]. Like many other domains, Deep Learning (DL)-based recommendation models have been
extensively studied in the recruitment domain. Nevertheless, while mostly studied, there are still
important issues with current approaches, which we summarize below:

• Issue 1: The first issue is related to intrinsically dynamic and constantly evolving Job-Person
interactions, which can be built from job application records or working histories. Identi-
cally, we assume that temporal relations between application records tend to point toward
sequential/session-based recommendations.2 Although various session-based methods
have been proposed in other domains, such as news, E-commerce, and movies, session-based
job recommendation is less studied. A thorough search of the relevant literature yielded only
one related work [Lacic et al., 2020], which encodes sessions using different autoencoder archi-
tectures and then recommends the next job posting in a K-nearest-neighbor manner. Moreover,
another important aspect of the Job-Person interaction matrix is its sparsity, as most job seekers
apply for only a few positions from the entire repository or work in a specific occupation.

• Issue 2: The second issue is related to the sensitivity and privacy of data in the recruitment
domain. From the perspective of content analysis methods, it is not easy to create an unbiased
and evolving labeled dataset due to the sensitivity and privacy of the data in the recruitment
domain [Qin et al., 2018; Zhu et al., 2018]. Therefore, it prevents the use of fully supervised
machine learning methods and calls for other learning schemes.

1https://economicgraph.linkedin.com/resources/linkedin-workforce-report-february-2021
2In this paper, we describe recommendation task to explore the sequential data by a broader term “sequential”. Thus “session”

and “sequential” are interchangeable.

https://economicgraph.linkedin.com/resources/linkedin-workforce-report-february-2021

114 Chapter 6. Next-Application Prediction from Job Application Sequences

• Issue 3: The third issue is related to the personalization of recommendations. Indeed, two
job seekers can apply for the same job with different motivations. Consequently, the important
information in a job and in its application is specific to the job seeker. Thus, weighing the jobs
differently in the modeling tasks of job seeker careers is essential. General-purpose approaches
are often unable to capture such specific information.

• Issue 4: The fourth issue is due to the evolving nature of the recruitment domain. In fact, in
addition to constantly updated E-recruitment websites (i.e., a large number of job postings are
added or removed daily, and hundreds of candidate profiles are created or updated), the domain
is still evolving (i.e., new occupations, formations, and skills), thus intensifying the cold-start
problem. Therefore, building a static method that cannot be adjusted quickly is impractical as
the data constantly changes. We thus need to avoid retraining a deep model for each change.

• Issue 5: The last issue is related to the diversity of preference influencing factors in the
recruitment domain. Many factors may influence job seeker preferences for jobs, such as job
content, analogous to article content in news recommendations, which is one of the most
important factors. Besides job content, based on the uniqueness of the recruiting field, the
personal context information of job seekers is also crucial. Among them, the geographic location
of job seekers is a non-negligible factor, which often has a substantial impact on the application
decision and the recommendation result, i.e., job seekers are more likely to apply for jobs
close to their current location. It raises two opposite goals. On the one hand, it is essential
to consider and capture this personal context information when modeling personal
preference. On the other hand, when making recommendations, the recommender system
also requires distinguishing this information from more core content, i.e., job content.

In order to solve these issues, in this chapter, we study the job recommendation problem modeled
as a next job application prediction task. We propose a hybrid Personalized-Attention Next-Application
Prediction model (PANAP) to answer the previous issues partially. Specifically, for Issue 1, we model
the next job application problem as a sequential recommendation problem and then compare our
proposed model with different session-based recommendation methods to analyze the dynamics in
the recruitment domain. Our work is the first attempt at applying deep end-to-end networks to the
next-application prediction task. Our model is composed of three independent modules. (i) The first
module learns job representations from textual job content and available metadata in an unsupervised
way to answer Issue 2. Text content plays an important role in describing job postings, and the way the
job content is encoded affects the model performance. Therefore, we explore the utility of different
content encoding methods. (ii) The second module contains a personalized-attention mechanism
to learn the job seeker representation that can solve the problem of personalized recommendations
mentioned in Issue 3. Different from the classical attention mechanism [Meng et al., 2019]), the
personalized-attention mechanism uses job-seeker-specific query vectors, which will be explained in
Section 6.3.2. (iii) The third module predicts the next application a job seeker will apply for. In order
to answer Issue 4, this module is inspired by the Deep Structured Semantic Model (DSSM) [Huang
et al., 2013] with a training loss based on representation similarities. To account for the “location”
factor when making recommendations (i.e., Issue 5), our model adds location-related metadata, e.g.,

6.2. Research Scope 115

city and state, when modeling job and job seeker representations. Furthermore, we propose a specific
negative sampling strategy that considers the geographic location of the job and job seekers.

Contributions In summary, our model is motivated by the above five issues, which address the
job recommendation from the direction of next-application prediction. Its three modules answer these
issues, i.e., alleviating reliance on annotated data, improving the personalization of recommendations,
adapting to continuous and rapid item updates, and considering the specific preference influencing
factor, respectively. Our contributions include the following:

• We propose a new session-based model, named PANAP, which is used for Next-Application
Prediction task. It integrates the personalized-attention mechanism to improve the rec-
ommendation accuracy.

• We propose a novel location-based sampling strategy that prioritizes jobs in the same state
as the job seeker as negative samples. Experiments have proved that this strategy can improve
the quality of recommendations.

• We conduct an extensive experimental study on the CareerBuilder12 dataset to investigate the
effect of leveraging differentmetadata types, different job posting sections, and different
text content encoders on model performance.

6.2 Research Scope
We model the next-application problem as a sequential recommendation problem, which has been
studied recently in other domains, such as news or product recommendation [F. Yu et al., 2016;
J. Li et al., 2017; Souza Pereira Moreira, Ferreira, and Cunha, 2018; Fang, Danning Zhang, et
al., 2020]. Recurrent Neural Networks (RNNs) have been widely studied for this problem since
they have demonstrated their effectiveness in processing sequential data, one representative work
is GRU4Rec [Hidasi, Karatzoglou, et al., 2015; Hidasi, Quadrana, et al., 2016; Hidasi and Karatzoglou,
2018]. The attention mechanism [Bahdanau, Cho, and Bengio, 2014] has shown promising potential
in improvements of accuracy and interpretability, like the vanilla attention-based [J. Li et al., 2017;
Q. Liu et al., 2018] and self-attention based one [Sun et al., 2019; Kang and McAuley, 2018]. Inspired
by the success of session-based methods in other applications, we apply some representative models
in the next application prediction problem to study the effectiveness of session-based models in the
recruitment domain.

This chapter addresses the following Research Questions (RQ):

• RQ1: In the recruitment field, do we really need the sequential recommendation method?

• RQ2: Can the personalized-attention mechanism better capture the personal career preference?

• RQ3: Are job textual information and context information (e.g., geographical location and
educational background) important in job recommendation?

• RQ4: How to take into account context information in the recommendation process?

116 Chapter 6. Next-Application Prediction from Job Application Sequences

6.3 Proposed Method: the PANAP Framework
In this section, we first formulate the Next-Application Problem, and then we describe in detail our
proposed model, called Personalized-Attention Next-Application Prediction (PANAP).For facilitating
illustration, we list some important mathematical notations used throughout this chapter in Table 6.1,
unless particularly specified.

TABLE 6.1: Mathematical notations used in Next-Application Prediction from Application Se-
quences chapter.

Notation Description

U job seeker set
J job posting set
ID identifier of job seeker or job posting

meta metadata attributes of job seeker or job posting
Hu job application record of job seeker u

6.3.1 Problem Formulation
Let U be a set of job seekers and J be a set of job postings (referred to as jobs for short). A job
j ∈ J can be represented as a tuple, i.e., j = (IDj, {w

j
1, . . . , wj

m}, metaj). IDj is the unique identifier

of job j. {wj
1, . . . , wj

m} is a sequence of m words, representing the textual content of job j. It can
be any text information about the job, such as job title and job description. metaj are associated
metadata attributes, such as the job city. Similarly, each job seeker u ∈ U can be summarized as a
tuple u = (IDu,Hu, metau) with an identifier IDu, a professional profile Hu, and metadata attributes
metau, like the education background or the geographical information. Specifically, the professional
profile Hu can be represented either as his/her working experience or his/her job application record.
In this work, we target at the job application record, so we denote Hu as a job posting sequence
(session) ordered by time Hu = {j1, . . . , jn}3, where each ji is a specific job in J . With the above
notations, the Next-Application Prediction problem can be formally defined as follows:

Given a set of available job positions J and a set of job seeker U , for each specific job seeker
u ∈ U who has a job application sequence Hu = {j1, . . . , jt} at one specific time step t, we want to

Predict the next most likely job jt+1 that the job seeker u might apply for, which means maxi-
mizing the likelihood of the conditional probability p(jt+1 = j+|Hu,J) of the true next-applied job
j+, given the application sequence Hu. An illustration is given in Figure 6.1.

3We omit the superscript of u without loss of clarity.

6.3. Proposed Method: the PANAP Framework 117

⋯
𝑗#

Job Application Record ℋ%

Job Seeker 𝑢

𝑗' 𝑗(

?
𝑗()*

Job Posting Set 𝒥

𝑗*

FIGURE 6.1: An illustration of the Next-Application Prediction problem. Given the job ap-
plication record Hu = {j1, j2, j3, . . . , jt} of job seeker u, a subset of the job posting set J ,

the purpose is to predict the next job jt+1 he/she will apply for.

6.3.2 Proposed Model
An overview of our model, called Personalized-Attention Next-Application Prediction (PANAP), is
given in Figure 6.2. It consists of three modules: (i) Job Content Representation is used for job
representation learning, (ii) Job Seeker Representation is used for job seeker characterization, and (iii)
Next-Application Predictor is used for next-application prediction. Next, we detail our model by
describing these different modules.

Fully Connected Layer

Text Encoder

𝑗" = [𝑤",… , 𝑤(]

Personalized-Attention Layer
𝒗+"

𝐞-

Dense

𝒗-

Jo
b

C
on

te
nt

 R
ep

re
se

nt
at

io
n

Jo
b

Se
ek

er
 R

ep
re

se
nt

at
io

n

Job Application Record

Identifier Embedding
Matrix 𝑴𝓤

Cosine

Next-Job Predictor

Softmax

Job Seeker

+𝒉+2 Job	metadata

𝒗+3

Fully Connected Layer

𝒉- + Job	seeker	metadata

Candidate Jobs

𝒗+"4

𝑃(𝑗"4|𝑢) 𝑃(𝑗34|𝑢)

Fully Connected Layer

Text Encoder

𝑗3 = [𝑤",… , 𝑤(]

+𝒉+: Job	metadata

Fully Connected Layer

Text Encoder

𝑗"4 = [𝑤",… , 𝑤(]

+𝒉+2; Job	metadata

Fully Connected Layer

Text Encoder

𝑗34 = [𝑤",… , 𝑤(]

+𝒉+:; Job	metadata

𝒗+34

Cosine

FIGURE 6.2: The proposed PANAP framework consists of three parts: (i) Job Content Rep-
resentation (i.e., blue dashed box) is used for job content representation learning. (ii) Job
Seeker Representation (i.e., green dashed box) uses the personalized-attention mechanism
to characterize the career preference of job seekers based on the Job Application Record.
(iii) Next-Application Predictor (i.e., yellow dashed box) utilizes a ranking loss based on the

representation similarity of job and job seeker to train the model.

118 Chapter 6. Next-Application Prediction from Job Application Sequences

Job Content Representation

The first module, named JCR (Job Content Representation), is responsible for learning a distributed
representation of each job j ∈ J , where j = (IDj, {w

j
1, . . . , wj

m}, metaj) as defined in Section 6.3.1.
Specifically, for job j, a d-dimensional textual representation hj ∈ Rd is learned from its textual

content {wj
1, . . . , wj

m} with a text encoder:

hj = text_encoder
(
{wj

1, . . . , wj
m}
)

,

where the text encoder can be some unsupervised textual embedding approaches (e.g., Word2Vec [Mikolov,
K. Chen, et al., 2013] and Doc2Vec [Q. Le and Mikolov, 2014]) or pre-trained models (e.g., BERT [De-
vlin et al., 2018]). The choice and design of the text encoder is important and can have an impact on
the recommendation accuracy. We study this impact experimentally in Section 6.5.6. As explained in
the motivation, we want to tackle the fact that the data in the recruitment domain often lack labels
and that the recruitment domain is an evolving field, as pointed out in Issue 2 and Issue 4. There-
fore, using textual information to represent jobs allows new jobs can be added easily and immediately
to the database, thereby alleviating the job cold-start problem (Issue 4). Moreover, the textual job
representation hj is trained separately in an unsupervised way or generated by a pre-trained language
model that can address Issue 2.

The metadata attributes metaj (e.g., city and state) are, respectively, embedded into vectors (e.g.,
v
city
j and vstatej) through different trainable embedding matrices (e.g., Mcity and Mstate), which

will be jointly learned during the training process of the model. The vector vmetaj is then obtained by
concatenation of all vectors:

vmetaj =
[
v
city
j ⊕ vcountryj ⊕ . . .

]
,

where the symbol ⊕ represents the concatenation operator. Then the textual job representation hj

and job metadata vector vmetaj are combined by using a sequence of Fully Connected (FC) layers to
produce a fixed dJ -dimensional Job Content Vector vj. The formula is as follows:

vj = FCs
(
[hj ⊕ vmetaj]

)
.

Job Seeker Representation

The second module, named JSR (Job Seeker Representation), is responsible for learning the distributed
representation of each job seeker. It requires three inputs: the identifier IDu of job seeker u, his/her
historical applied job sequence Hu = {j1, . . . , jn},4 and associated metadata attributes metau. In
addition, Hu can be transformed as a sequence of Job Content Vectors {vj1 , . . . ,vjn}, where each
vji ∈ RdJ is obtained from the JCR module. Since the same job may have different informativeness
for different job seekers, it contributes differently to characterize career profiles of job seekers. Then,
we learn the job seeker representation with a personalized-attention mechanism proposed in [C. Wu
et al., 2019]. We first embed the IDu of job seeker u into a vector eu using an identifier embedding

4We omit the superscript of u without loss of clarity.

6.3. Proposed Method: the PANAP Framework 119

matrix MU ∈ R|U |×ds
, where ds denotes the dimension of identifier embedding. Then eu is passed

to a dense layer parameterized withW q ∈ RdU×dq
and bq ∈ Rdq

to form the preference query vector
qu = ReLU(W q × eu + bq), where dq is the query dimension.

The importance score of i-th job for job seeker u is calculated as follows:

αi =
exp

(
vT

ji
pu

)
∑n

i′=1 exp
(
vT

ji′
pu

) ,

where pu = tanh
(
W a × qu + ba), with projection parameters W a ∈ Rdq×dJ and ba ∈ RdJ , dJ is

the dimension of Job Content Vector. Note that the attention scores might differ for the same job, as
the query vector depends on the ID of the job seeker. This allows forming a weighted career preference
representation hu for job seeker u:

hu =
n

∑
i=1

αivji .

Similar to the JCR module, the metadata vector of job seeker u is represented as follows:

vmetau =
[
v
city
u ⊕ veducationu ⊕ . . .

]
.

Then vmetau and hu are combined by using a sequence of FC layers to produce the final Job Seeker
Vector:

vu = FCs ([hu ⊕ vmetau]) ,

where Job Seeker Vector vu has a dimension of dU , which is equal to the dimension of Job Content
Vector vj (i.e., dU = dJ).

Next-Application Predictor

In classical deep recommendation architectures, the output is usually a probability vector whose
dimension is the number of available items. In our scenario of job recommendation, due to the
evolving nature of the recruitment domain (Issue 4), such models are not tractable in practice. Thus
this dynamic scenario needs an approach that does not need to retrain the whole network at each
change. As a consequence, inspired by the highly dynamic news recommendation scenario, we use the
ranking loss proposed in [Souza Pereira Moreira, Ferreira, and Cunha, 2018] to train the predictor.
The principle of this loss is to train the predictor to maximize the similarity between user preferences
and positive samples, while minimizing similarities with negative samples.

The idea of the ranking loss comes from DSSM [Huang et al., 2013], which is an effective document
ranking model and has been leveraged for the recommendation. It uses a Deep Neural Network (DNN)
structure to model a pair of text strings into a continuous semantic space and then measures the
semantic similarity between the two strings. In our case, we measure the similarity between jobs
and job seekers. More precisely, given the application history Hu = {j1, . . . , jn} of job seeker u, we
formulate the above representation generating processes as vu = JSR(IDu,Hu, metau; Θ1), where
each ji ∈ Hu can be embedded into a Job Content Vector vji through JCR(ji; Θ2), Θ1 and Θ2 are
model parameters. vu and vji are vectors of the same dimension, and we thus can define the relevance

120 Chapter 6. Next-Application Prediction from Job Application Sequences

score between job seeker u and job j by the cosine similarity of their representations:

sim(u, ji) = cos(vu,vji) =
vu · vji

‖vu‖‖vji‖
.

Due to the huge number of job postings in the database, it is impractical to compare the job
seeker u with all jobs one by one. A common strategy is to sample a set of jobs that u did not apply
during his/her active session as “negative” samples, denoted as J −u . Thus, the prediction problem
can be treated as a |J −u |+ 1-class classification problem (|J −u | negative jobs and a positive j+u),
the goal is to maximize the probability that the true next-application j+u is predicted while minimizing
the probability of negative jobs j− ∈ J −u . The probability of j ∈ J −u ∪ j+u being the next job for u
is formulated as follows:

Pr(j|u) = exp (sim(u, j))
∑j′∈j+u ∪J −u exp (sim(u, j′))

,

The recommender should learn to maximize the similarity between the content vector vj+u of positive
job j+u and the job seeker preference vector vu, while minimizing similarities with job vector vj− in
the negative set J −u . Thus, the loss function is defined by

L = − log ∏(u,j+) Pr (j+|IDu,Hu, metau; Θ1, Θ2) .

With this loss function, a newly published job posting can be immediately recommended as soon as its
representation is encoded, thus solving Issue 4. Furthermore, we consider metadata attributes of jobs
and job seekers in JCR and JSR, respectively, when modeling representations. These representations
contain more context information, which will help improve the recommendation quality (Issue 5).

Negative Sampling Strategies

Since our method is trained and evaluated with negative samples as described in Section 6.3.2, the
negative sample set J −5 significantly influences the model performance. A well-used sampling strat-
egy is the mini-batch based sampling proposed in [Hidasi, Karatzoglou, et al., 2015], which treats the
items from the other training/evaluation sessions in the same mini-batch as negative samples. [Hidasi
and Karatzoglou, 2018] extends the mini-batch based strategy by adding additional samples (based
on unity or based on popularity). In the scenario of news recommendation, [Souza Pereira Moreira,
Ferreira, and Cunha, 2018; Gabriel De Souza, Jannach, and Da Cunha, 2019] uniformly sample addi-
tional samples from a global buffer of the N most recently interacted items. For some applications,
such as news, music, and video, popularity is also an essential factor that influences user choice be-
sides personal preference. Therefore, sampling based on popularity is a good sampling strategy, as
described in Section 3.2.2. However, in the recruitment field, unlike these applications, the choices
of job seekers are more influenced by their personal contexts, such as the geographic location factor.
When job seekers make a choice, they usually first need to consider the job location. They are more
likely to apply for jobs in their cities or other cities not far from their current locations (i.e., cities in
the same state). We will prove this observation in Section 6.4.1.

5We omit the superscript of u without loss of clarity.

6.4. Experiments 121

In order to solve this problem, our PANAP method cooperates with the “location” metadata
attributes (e.g., city, state, and country) of jobs and job seekers to model their representations,
respectively. As a consequence, these representations contain “location” information. In addition,
considering the “location” when generating negative samples can enable our model to learn useful
information for more meaningful recommendations. As a consequence, we propose and evaluate
different sampling strategies in Section 6.4.2.

6.4 Experiments

6.4.1 Datasets
We employ CareerBuilder12, an open dataset from Kaggle competition,6 to evaluate our method.7

Its statistics are given in Table 6.2. It consists of job applications for almost 13 weeks. In this
dataset, job seeker has five metadata: City, State, Country, Degree, and Major. Job metadata are
City, State and Country. The textual job content includes a Job Title, a Job Description and some
Job Requirements. From this initial dataset, we created two datasets: (i) CB12_s like in [Lacic et al.,
2020], in which sessions are created via a time-based split of 30 min inactivity threshold, and we
discarded sessions with less than two applications for next job prediction purpose. (ii) CB12_l uses
all application records during 13 weeks to model the career profile of each job seeker. Thus, CB12_l
has longer sequences that enable us to evaluate the effectiveness of our method. We further split the
last 14 days for testing and the remaining sessions for training. Like [Lacic et al., 2020], we filter job
postings in the test set that do not belong to the training set as this enables a better comparison
with the approaches, which can only recommend items that have been used to train the model.

TABLE 6.2: Statistics of datasets, |S| is the total number of sessions, and |A| is the total
number of applications. |Hu|avg is the average application number in sessions. |Metadata|

contains the cardinality of each metadata attribute.

Dataset |U | |J | |S| |A| |Hu|avg |Metadata|
City/State/Country/Degree/Major

CB12_s 111,785 207,972 165,027 638,469 3.87 8,226/122/33/7/21,224
CB12_l 137,642 239,581 137,642 772,305 5.61 8,856/130/37/7/25,201

As we described in Section 6.3.2, the “location” is an essential factor that needs to be considered
in the job recommendation. In order to further prove this observation, in Figure 6.3, we illustrate
the relationship between locations of job seekers and applied jobs in CareerBuilder12 datasets. As
shown in Figure 6.3b, most job seekers (92.7% in CB12_s and 93.8% in CB12_l) have applied for
jobs in their states. Among these people, 81.3% and 79.7% of job seekers only consider jobs in their
own states. Figure 6.3a shows that only 39.6% and 40.5% of job seekers apply for jobs in their own

6https://www.kaggle.com/c/job-recommendation
7Another similar dataset in the recruitment domain is the RecSys17 dataset provided by XING after the RecSys Challenge

2017 [Abel et al., 2017], but it is no longer available.

https://www.kaggle.com/c/job-recommendation

122 Chapter 6. Next-Application Prediction from Job Application Sequences

cities because job opportunities in their cities are usually limited. As explained above, people are
also applying for jobs in other cities in the same state. Therefore, the “location” (the job site or the
current location of the job seeker) is an essential factor to be considered in the job recommendation.

(a) City (b) State

FIGURE 6.3: The relationship between job seeker location and the applied job location in
CareerBuilder12 datasets. Most job seekers (92.7% in CB12_s and 93.8% in CB12_l) have
applied for jobs in their states. Of these, 81.3% and 79.7% of job seekers only considered

jobs in their own states.

In addition, we list the Top10 SeekerCitys and SeekerStates in Figure 6.4a and Figure 6.4b,
respectively, along with the Top10 JobCitys and JobStates with the most applications by job seekers.
From the figures, we can see that JobState/JobCity and SeekerState/SeekerCity have a large overlap,
which also proves that “location” affects the choices of job seekers.

(a) Top10 City. (b) Top10 State.

FIGURE 6.4: The Top10 city (i.e., JobCity and SeekerCity) and Top10 state (i.e., JobState and
SeekerState) in CB12_s dataset.

6.4.2 Experimental Settings
Since PANAP consists of three modules, we explain the experimental settings in three parts.

To obtain job representation hj in JCR, we first tokenize job postings as words then remove stop
words, punctuation, and numbers. In this experiment, hj were obtained by Doc2Vec with dimension
d = 300 via the distributed memory. We also compared different text encoders in Section 6.5.6.

In JSR, the dimension ds of identifier embedding eu and the query dimension dq were set to 100,
and the dimension dU and dJ were set to 300. We applied the dropout technique with a rate of 0.2
to each layer and L2 regularization with rate 1e-4 to parameter weights. Metadata attributes with

6.4. Experiments 123

low cardinality (i.e., ≤ 10) were one-hot encoded, and high cardinality attributes were represented as
trainable embeddings. We used a sequence of two FC layers in our settings, with Leaky ReLU [Maas,
Hannun, and Ng, 2013] and tanh activation functions to combine metadata vectors, respectively.

PANAP is trained and evaluated with a 256 mini-batch size, and we use the Adam [Kingma and
Ba, 2014] optimizer with a learning rate of 5e-4. Our model is trained and evaluated with negative
samples, so we used 15 negative training samples for training and 50 for evaluation, chosen according
to the best performance of the model. We further discuss the impact of the number of negative
samples on model performance in Section 6.5.5. In our experiments, we first explore a sampling
strategy inspired by [Souza Pereira Moreira, Ferreira, and Cunha, 2018; Hidasi and Karatzoglou,
2018], and then propose an improved mini-batch based sampling strategy for the job recommendation
scenario. This improved strategy takes into account the current geographic location of the job seeker
and the job site when sampling negative jobs. The two strategies are as follows:

• Strategy 1 (S1)-mini-batch + additional samples: It is proposed in [Souza Pereira Moreira,
Ferreira, and Cunha, 2018; Gabriel De Souza, Jannach, and Da Cunha, 2019] for news rec-
ommendation. We adapt this strategy to the context of job recommendation discussed in this
thesis, i.e., when there are not enough negative samples within the mini-batch, additional sam-
ples are added with a uniform sampling strategy from a global buffer of the N most recently
applied jobs. Jobs are then uniformly sampled from the “candidate set” (i.e., jobs within the
mini-batch and additional jobs).

• Strategy 2 (S2)-mini-batch + additional samples + location-based: Different from Strategy 1,
in Strategy 2, we first select the jobs in the same state as the job seeker from the “candidate
set” as negative samples.8 When there are not enough negative samples in the current state,
we sample jobs in other states from the “candidate set”.

We evaluated PANAP by comparing it with the following baselines, details of each method can
be found in Section 3.2.2.

• POP: It is a simple and often strong baseline that recommends the most popular (i.e., most
applied) job postings.

• AssociationRule Learning (ARL): It is a simplified version of association rule [Agrawal, Imieliński,
and Arun Swami, 1993] with a maximum rule size of two.

• Content Similarity (CS): It recommends similar jobs based on the cosine similarity between
representations of each applied job and the N most recently applied jobs in the global buffer.

• Item-based K-Nearest Neighbors (IKNN): It recommends jobs that are similar to the last applied
job during the current session as in [Hidasi, Karatzoglou, et al., 2015].

• Session-based K-Nearest Neighbors (SKNN) [Jannach and Ludewig, 2017]: It compares the
entire current session with the past sessions in the training dataset, rather than considering
only the last job in the current session.

8As shown in Figure 6.3 people are more likely to apply for jobs where they are (i.e., the same city or the same state). Since job
opportunities in their cities are usually limited, as shown in Figure 6.3a, here we sample jobs in the same state.

124 Chapter 6. Next-Application Prediction from Job Application Sequences

• Vector multiplication Session-based KNN (V-SKNN) [Ludewig and Jannach, 2018]: It is a
variant of SKNN that emphasizes jobs more recently interacted within the current session,
when computing the similarities with past sessions. For this, a linear decay function is used
that depends on the position of the job within the session.

• VAE_Comb: It is the best-performing model in the CareerBuilder12 dataset proposed in [Lacic
et al., 2020], which uses a variational autoencoder to encode the job application session and the
job content, and then recommends the next-job based on the resulting session representation
using a K-Nearest Neighbor manner.

• GRU4Rec: It is a model that was specifically designed for sequential recommendation scenarios.
For this experiment, we use the most recent version of GRU4Rec [Hidasi and Karatzoglou,
2018].

• BERT4Rec [Sun et al., 2019]: It introduces the bi-directional self-attention model to model
user behavior sequences.

• Two variants of PANAP:

– LSTM: It replaces the personalized-attention layer with a LSTM layer to verify the effec-
tiveness of personalized attention, as shown in Figure 6.5a,

– PLSTM: It adds job seeker metadata to each job representation to generate Personalized
job embedding before the LSTM layer, similar to [Souza Pereira Moreira, Ferreira, and
Cunha, 2018], in order to verify the validity of the job seeker metadata and choose an
appropriate position to add the metadata, as shown in Figure 6.5b.

Fully Connected Layer

Text Encoder

𝑗" = [𝑤",… ,𝑤(]

LSTM Layer
𝒗+"

𝒗,

Jo
b

C
on

te
nt

 R
ep

re
se

nt
at

io
n

Jo
b

Se
ek

er
 R

ep
re

se
nt

at
io

n

Job Application Record

+𝒉+/ Job	metadata

𝒗+0

Fully Connected Layer

𝒉, + Job	 seeker	metadata

Fully Connected Layer

Text Encoder

𝑗0 = [𝑤",… ,𝑤(]

+𝒉+1 Job	metadata

(a) LSTM

Fully Connected Layer

Text Encoder

𝑗" = [𝑤",… ,𝑤(]

LSTM Layer

𝒗+

Jo
b

C
on

te
nt

 R
ep

re
se

nt
at

io
n

Jo
b

Se
ek

er
 R

ep
re

se
nt

at
io

n

Job Application Record

+𝒉./ Job	metadata

𝒗.0+

Fully Connected Layer

Fully Connected Layer

Text Encoder

𝑗0 = [𝑤",… ,𝑤(]

+𝒉.1 Job	metadata

𝒗." Job	 seeker	metadata+

𝒗."+

Fully Connected Layer

𝒗.0 Job	 seeker	metadata+

(b) PLSTM

FIGURE 6.5: Two variants of PANAP.

The evaluation metrics used in this work are the accuracy metric Hit Rate (HR@5), and two
popular ranking metrics, Mean Reciprocal Rank (MRR@5) and Normalized Discounted Cumulative
Gain (NDCG@5). We quickly review these metrics in Table 6.3, for more details, see Section 3.2.2.

6.5. Results 125

TABLE 6.3: A quick review of the evaluation metrics used in Next-Application Prediction.

Metric Idea

HR the more ground-truth items included in the recommended items (i.e., the larger the value of HR),
the better the model

MRR the higher the ranking of ground-truth items among the recommended items (i.e., the larger the
value of MRR), the better the model

NDCG the higher the ranking of ground-truth items among the recommended items, the more rewards
they get (i.e., the larger the value of NDCG), and the better the model

6.5 Results
In this section, we present our experimental results. For all tables shown in this section, scores in bold
are the best in each metric, and score in the underline are the second best.

6.5.1 Next-Application Prediction
Table 6.4 summarizes the best results (HR@5/MRR@5/NDCG@5) for next-application prediction
among all methods. According to the results, we have the following observations:

(i) Among all models, POP and CS give the lowerest scores, as they neither model the personalized
preference nor consider the sequential information. Although POP is often a strong baseline in
certain domains, i.e., news and movies, career preferences are less affected by popularity factors in
the recruitment domain.

(ii) Overall, DL-based methods consistently outperform traditional methods, demonstrating that
Neural Networks are good at modeling sequential information, and the self-attention mechanism can
improve accuracy.

(iii) Our proposed method PANAP(S1), PANAP(S2) and its variants LSTM(S2) and PLSTM(S2)
perform best among all baselines, which indicates the job content and metadata can effectively improve
the recommendation performance. We detail this point in Section 6.5.3.

(iv) PANAP(S1) and PANAP(S2) outperform LSTM(S2) and PLSTM(S2), which use LSTM
to model the sequential information. One possible reason is that career preferences are less dynamic
in the recruitment domain than in other domains, and application sequences are relatively short (i.e.,
3.87 and 5.61 on average for both sets). Thus, the advantage of RNN can not be well demonstrated.
This result also demonstrates the advantage of personalized-attention as different jobs might have
different importance for career preference modeling, and selecting the more critical jobs is useful for
achieving better recommendation performance. Moreover, LSTM(S2) is better than PLSTM(S2).
One possible reason is that PLSTM(S2) merges the job seeker metadata into each job in the session,
which may weaken the information carried by the job itself, and add some noise (i.e., the location
information of job seeker).

(v) PANAP (S1) with sampling strategy S1 performs better than PANAP(S2) with sampling
strategy S2. The reason will be discussed in Section 6.5.4.

Since similar results can be seen from the CB12_s and CB12_l datasets, all experiments below
are performed on the CB12_s dataset.

126 Chapter 6. Next-Application Prediction from Job Application Sequences

TABLE 6.4: Next-application pre-
diction results, where metrics are

HR@5/MRR@5/NDCG@5.

Method CB12_s CB12_l

POP 0.089/0.042/0.054 0.093/0.046/0.058
AR 0.273/0.200/0.218 0.202/0.146/0.160
CS 0.226/0.128/0.152 0.214/0.118/0.142
IkNN 0.274/0.202/0.220 0.202/0.147/0.161
SkNN 0.349/0.247/0.272 0.276/0.196/0.216
V-SkNN 0.349/0.248/0.273 0.276/0.196/0.217
VAE_Comb 0.345/0.239/0.256 0.282/0.203/0.224
GRU4Rec 0.367/0.208/0.230 0.403/0.309/0.352
BERT4Rec 0.373/0.232/0.245 0.438/0.311/0.369

PANAP(S1) 0.756/0.620/0.680 0.807/0.671/0.733
PANAP(S2) 0.691/0.492/0.541 0.742/0.543/0.593
LSTM(S2) 0.540/0.339/0.389 0.569/0.368/0.418
PLSTM(S2) 0.480/0.292/0.338 0.516/0.323/0.371

TABLE 6.5: Performance compar-
ison of different attention mecha-
nisms in CB12_s dataset. All mod-

els are trained with S2.

Attention_mechanism HR@5/MRR@5/NDCG@5

Personalized-attention 0.691/0.492/0.541
Vanilla attention 0.685/0.480/0.531
No attention (avg) 0.565/0.367/0.416
LSTM(S2) 0.540/0.339/0.389

6.5.2 Effectiveness of Personalized Attention
In this part, we use CB12_s set to analyze the effectiveness of the personalized-attention mechanism
in PANAP(S2). As shown in Table 6.5, the models with attention mechanism consistently outperform
the model without attention, and our model with the personalized-attention outperforms its variant
with vanilla attention (similar to the global attention used in [Meng et al., 2019]). Such a result is
probably since the vanilla attention uses a fixed query vector and cannot adjust to different personal
preferences. In order to validate that the personalized-attention mechanism is able to select informative
jobs in the applied job sequence to characterize the career preference of job seekers, we visualize the
corresponding attention scores of the applied jobs obtained by the personalized-attention mechanism
in two example sessions in Figure 6.6.

(a) Sampled session 1 (b) Sampled session 2

FIGURE 6.6: Two sampled application sequences with attention weights captured from
the personalized-attention mechanism. Darker colors indicate higher attention weights.

6.5. Results 127

Each row is a job application record, including the attention score (i.e., darker colors indicate
higher attention weights), the corresponding job identifier IDj and job title. Note that, for each job j,
we treat its title, description, and requirements as the textual content, as explained in Section 6.4.1,
which contains hundreds of words. Therefore, we only provide job identifiers and job titles, and
darker colors indicate higher attention weights. From Figure 6.6, we find that our model can model
the different informativeness of jobs to learn the preferences of different job seekers. For example,
compared to the job seeker in Figure 6.6b, the job seeker in Figure 6.6a pays more attention to
the same job 409256 and job 959588, and both pay less attention to job 698373. So the predicted
next-applications are different.

6.5.3 Effectiveness of Different Features
In particular, we are interested in the influence on recommendation performance of using additional
available data, including job textual content and metadata. For this, we use the CB12_s dataset to
study their effect on our two best models: PANAP(S2) and LSTM(S2). As shown in Table 6.6, (i) it
is obvious that methods with the content representation or metadata generally give better results than
what is achievable from the job identifier IDj only (i.e., Only_JobID). (ii) The metadata has a fewer
influence on PANAP(S2) than LSTM(S2) (29.1% average reduction between Meta+Content+JobID
and No_Meta on three metrics compared to 41.0%). One possible reason is that PANAP(S2) uti-
lizes a personalized-attention mechanism to model career preferences, which already contain personal
information. (iii) Since the “location” factor affects the choice of job seekers, our sampling strategy
is location-based. The job metadata, e.g., City, State, and Country could give more relevant infor-
mation about “location”, so the scores of No_JobMeta are lower than that of No_SeekerMeta. (iv)
PANAP(S2) consistently outperforms LSTM(S2), even only the job identifier IDj is used, which indi-
cates that PANAP(S2) does capture personal preference. This observation also proves the advantage
of the personalized-attention mechanism in cases where no additional information is available.

TABLE 6.6: Performance comparison of dif-
ferent feature combinations, where metrics
are HR@5/MRR@5/NDCG@5. No_Meta
means that neither the job seeker metadata

nor the job metadata is considered.

Feature PANAP(S2) LSTM(S2)

Meta+Content+JobID 0.691/0.492/0.541 0.540/0.339/0.389
No_Meta 0.516/0.334/0.379 0.341/0.189/0.226
No_Content 0.530/0.341/0.386 0.449/0.286/0.326
Only_JobID 0.501/0.312/0.355 0.331/0.182/0.218
No_JobMeta 0.511/0.338/0.381 0.377/0.212/0.253
No_SeekerMeta 0.601/0.399/0.449 0.505/0.297/0.349

TABLE 6.7: Performance
comparison of different
negative sampling strategies

in CB12_s.

Strategy HR@5/MRR@5/NDCG@5

PANAP(S1) 0.756/0.620/0.680
PANAP(S2) 0.691/0.492/0.541

128 Chapter 6. Next-Application Prediction from Job Application Sequences

6.5.4 Negative Sampling Analysis
This section examines the performance of the two sampling strategies described in Section 6.4.2
and identifies the importance of the “location” factor when generating negative samples on CB12_s
dataset. According to the results, as shown in Table 6.7, PANAP(S1) has a better performance than
PANAP(S2). To explain the result, we visualize job seeker representations (session representations)
generated from PANAP(S1) and PANAP(S2) in Figure 6.7. We use t-SNE [Van der Maaten and
Hinton, 2008] to reduce the representation dimension. For illustration purposes, we categorize each
job seeker according to his/her Major. Here, Major denotes a specific subject that a student studies
at a college or university, such as “Journalism”, “Marketing” and “Nursing”. Note that categorizing job
seekers through Major is not the most reasonable way because some job seekers are currently engaged
in occupations that do not match their majors. Thus, we select three non-similar majors. People
with these professional backgrounds are more likely to engage in related jobs, including Management,
Computer Science and Medical Assistant. We also plot job seeker representations labeled with State
in Figure 6.7b and Figure 6.7d to show the influences of different sampling strategies. Each color
corresponds to one State.

(a) S1: Major (b) S1: State (c) S2: Major (d) S2: State

FIGURE 6.7: Visualization of career preference representations of job seeker generated
from PANAP(S1) and PANAP(S2).

We observe from Figure 6.7b that representations learned by our model PANAP(S1) with S1
are well-clustered into groups, and each corresponds to a State. This observation can be used to
explain why the accuracy scores of PANAP(S1) are better than that of PANAP(S2). A reasonable
explanation is that S1 does not consider the “location” factor when generating negative samples. More
specifically, as mentioned in Section 6.3.2, job seekers are more likely to apply for jobs located in their
cities or other cities in the same state. The two main reasons why a job seeker does not apply for a
job are as follows: (i) the job content is inappropriate, or (ii) the work location is not suitable. If most
of the negative samples are job postings in other states, regardless of the job content, these negative
samples tend to force the model to capture subtle information between different states rather than
different job contents. For instance, as illustrated in Figure 6.8, a job seeker in Seattle-Washington has
a background of computer science (i.e., education background, skills and work experience). There are
two negative samples: sales representative and java developer from Miami-Florida. They are negative
because Seattle is not in Florida state.

6.5. Results 129

Skills

Contact

Education

Work Experience

Address: Seattle-Washington

10/2019-07/2021: Computer Science

10/2021-present: Junior Java developer

Java, C, C++

Negative samples

Job 1
Job title: Sales representative
Job site: Miami-Florida

Job 2
Job title: Java developer
Job site: Miami-Florida

FIGURE 6.8: Example of negative sample sampling without regard to “location”.

Due to the “location” factor, this job seeker may not apply for java developer, while sales represen-
tative is not suitable from both “location” and job content perspectives. With these negative samples,
the model learns to distinguish between locations (i.e., Seattle-Washington and Miami-Florida) rather
than the contents of jobs (i.e., computer science and sales representative). As a result, the learned job
seeker representations do not capture job content information, so they are not categorized according
to their Major categories, as shown in Figure 6.7a. Instead, they are grouped together by the “loca-
tion” as in Figure 6.7b. However, the job content is one of the most important pieces of information
for recruitment, and the goal of many works centers on learning how to model it properly, such as
the Person-Job Fit task [Zhu et al., 2018; Qin et al., 2018] and job classification task [Jingya Wang
et al., 2019]. To handle this problem, we first include location-related metadata, such as City, State
and Country into the representation learning scheme. We then propose a location-based sampling
strategy, S2, as described in Section 6.4.2, which prioritizes jobs in the same state as the job seeker
as negative samples. We visualize the representations learned through S2 in Figures 6.7c and 6.7d to
show the promising results of our proposed strategy. We observe that the job seekers are grouped by
Major in Figure 6.7c, which demonstrates the effectiveness of S2.

In order to emphasize our findings, we further use a classification task to compare the represen-
tations obtained from S1 and S2. We use Major as the label of job seeker representations, although
in practice, this is not always the case because some job seekers are currently engaged in occupations
that do not match their majors. Specifically, we first select five non-similar major categories, including
Psychology, Criminal Justice, Management, Computer Science, and Medical Assistant. Then, we ran-
domly sampled 500 job seeker representations for each major from the training set to train a logistic
regression classifier and use the representations of the test set for evaluation. Macro-F1 is used to
compare performance.

From the classification results on the CB12_s dataset, as shown in Table 6.8, we can observe
that the representation learned by PANAP(S2) achieves relatively higher Major classification accu-
racy than PANAP(S1). This proves that the negative samples obtained through S2 provide more
relevant information about the job content. Both PANAP(S1) and PANAP(S2) have remarkable
classification accuracy advantages over Avg_Vec method, which uses the average vector of applied
jobs to represent job seekers. This result also demonstrates the effectiveness of our proposed method
in the characterization of job seekers.

130 Chapter 6. Next-Application Prediction from Job Application Sequences

TABLE 6.8: Performance compari-
son of representations learned by dif-
ferent negative sampling strategies

through the classification task.

Sampling_strategy Macro-F1

PANAP(S1) 0.822
PANAP(S2) 0.896

Avg_Vec 0.331
FIGURE 6.9: Performance compari-
son of different numbers of training

negative samples k in CB12_s.

6.5.5 Number of Negative Samples
This section discusses the influence of the number of negative samples used for training on prediction
accuracy. The experimental results on CB12_s dataset are shown in Figure 6.9, where k negative
samples are used for training and 50 samples for evaluation. As explained in Section 6.4.2, the
number of negative samples is chosen according to the best performance of the model. In this part,
we will discuss this more. When k increases (e.g., from 5 to 10), the performance of our model first
has a noticeable improvement. This may be because when k is too small, the information provided
by negative samples is relatively limited, and the model cannot learn useful information. Then, when
k continues to increase (e.g., from 10 to 20), the performance becomes stable. However, if k is too
large, there may not be enough jobs in the same state. Negative samples in other states become
dominant, making it difficult for the model to identify the valuable information correctly. As explained
in Section 6.5.4, the model will learn to distinguish the difference of locations, just like PANAP(S1).
As a result, the performance consistently improves. Therefore, we choose 15 as the number of negative
training samples.

6.5.6 Effectiveness of Different Text Encoders
This section analyzes the impact of different text encoders on the final performance of the model.
The different encoders that were tested are listed as follows:

• Word2Vec(W2V) [Mikolov, Sutskever, et al., 2013]: It is a distributed representation of words
based on training a model to predict the current word from surrounding context words (CBOW).
In this method, the job text content is represented as the average of its word embeddings.
For this experiment, we tried a pre-trained language model, pre-trained on Google News9 (i.e.,
W2V_P) and also trained our word embedding model using all job postings (i.e., W2V_O). The
dimension of the job representation is set to 300, and if the number of words exceeds 100,000,
we only keep words that occur frequently (i.e., at least ten times) to build the vocabulary.

9https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

6.5. Results 131

• TF-IDF*W2V: It is a weighted version of W2V, where each word vector is weighted by its
corresponding TF-IDF score. We also consider the same two word embedding models as W2V
(i.e., TF-IDF*W2V_P and TF-IDF*W2V_O).

• FastText: It is another word embedding method that extends Word2Vec by representing each
word as an n-gram of characters. For this experiment, we used a 300-dimensional pre-trained
model [Grave et al., 2018] (i.e., FastText_P), and other experimental settings were the same as
W2V.

• TF-IDF*FastText: It is a weighted version of FastText (i.e., TF-IDF*FastText_P).

• Doc2Vec (D2V) [Q. Le and Mikolov, 2014]: It is an extension of Word2Vec that can learn
fixed-length feature representations from variable-length pieces of text. In this experiment, the
job representation was obtained through a distributed memory model with a dimension equal
to 300.

• BERT [Devlin et al., 2018]: It is a large-scale Transformer-based language representation model.
In this experiment, the job representation is obtained using the average of the second last layer
of the pre-trained model BERT-Base-Uncased, which is pre-trained with the entire English
Wikipedia and the Brown Corpus.

TABLE 6.9: Performance
comparison of different
text encoders in CB12_s
dataset, where metrics are
HR@5/MRR@5/NDCG@5.

Encoder PANAP(S2)

W2V_P 0.680/0.477/0.528
W2V_O 0.760/0.572/0.619
TF-IDF*W2V_P 0.708/0.501/0.552
TF-IDF*W2V_O 0.765/0.577/0.624
D2V 0.691/0.492/0.541
FastText_P 0.681/0.487/0.535
TF-IDF*FastText_P 0.679/0.466/0.519
BERT 0.710/0.507/0.559

(a) TF-IDF*W2V_O (b) TF-IDF*FastText_P

FIGURE 6.10: Visualization of job repre-
sentations obtained by different text en-

coders.

The results shown in Figure 6.8 confirm that the choice of text encoder can significantly af-
fect the recommendation accuracy. Not surprisingly, word vectors trained on our job postings lead
to better results as the out-of-vocabulary issue is handled to some extent. Adding TF-IDF infor-
mation usually improves prediction accuracy. More advanced models are not necessarily the best
(e.g., TF-IDF*FastText_P compared to TF-IDF*W2V_P). It is worth noting that BERT does not
greatly or consistently outperform simpler methods such as weighted average word vectors (i.e., TF-
IDF*W2V_P), and even inferior to W2V_O and TF-IDF*W2V_O, which use vectors trained on job
data.

132 Chapter 6. Next-Application Prediction from Job Application Sequences

To get a rough idea of the relationship between the learned job representation and model per-
formance, we randomly select 2,000 jobs and plot their representations (the dimension is reduced
by t-SNE) obtained by different encoders in Figure 6.10. Here we use TF-IDF*W2V_O and TF-
IDF*FastText_P two encoders, as they have the best and worst performance, respectively, as shown in
Table 6.9. Obviously, the job representations shown in Figure 6.9a are better grouped together than
in Figure 6.9b, which can be used to explain why TF-IDF*W2V_O outperforms TF-IDF*FastText_P.
Therefore, a suitable text encoder can capture job content well (i.e., occupation type and field),
leading to better prediction results.

6.5.7 Effectiveness of Different Sections of Job Content
For the experiments above, the job representation was obtained on all textual contents, including Job
Title, Job Description, and Job Requirements, as described in Section 6.4.1. In fact, different job sec-
tions carry different amounts of information, so here we discuss the effectiveness of different sections on
the recommendation results. Since job postings may have the same job title/description/requirements,
we only keep jobs where Job Title, Job Description and Job Requirements all differ. Sessions are then
created in the same way as CB12_s described in Section 6.4.1, whose statistics are given in Table 6.10.

TABLE 6.10: Statistics of CB12_d, |S| is the total number of sessions, and |A| is the total
number of applications. |Hu|avg is the average application number in sessions. |Metadata|

contains the cardinality of each metadata attribute.

Dataset |U | |J | |S| |A| |Hu|avg |Metadata|
City/State/Country/Degree/Major

CB12_d 40,456 52,803 51,419 164,553 3.20 5,276/97/22/7/9,513

Overall, we can observe from Table 6.11 that different job sections lead to different recommen-
dation results. (i) Comparing to Description and Requirements, modeling the job with just Job Title
yields the best results. One possible reason is that, although the job title is a short string, it often
carries rich information about the job and can be used to characterize job postings. (ii) Modeling
with Job Requirements, which describe the qualifications required for the job, such as skills, educa-
tion level, work experience, and language, has poor performance compared to Job Description. One
possible reason is that there are complex relationships between jobs and required qualifications, so
we need a more appropriate method that better captures these relationships, e.g., one that better
captures dependencies between skills within the same job and model the similarities between skills at
different granularities. (iii) All generally has the best performance, as it combines all the information.
Moreover, in practice, it is impractical to use only one section, i.e., Job Title, Job Description or Job
Requirements to represent job postings, as they are often the same across different job postings. For
example, for the same job position in different companies, they may use the same job title, but the
job descriptions are different.

6.6. Conclusion and Perspectives 133

TABLE 6.11: Performance comparison of different job content sections in CB12_d for
PANAP(S2), where metrics are HR@5/MRR@5/NDCG@5.

Section TF-IDF*W2V_P TF-IDF*FastText_P D2V

Title 0.577/0.362/0.415 0.505/0.298/0.349 0.515/0.309/0.360
Description 0.552/0.337/0.390 0.490/0.283/0.334 0.479/0.269/0.320

Requirements 0.473/0.270/0.320 0.433/0.252/0.297 0.453/0.253/0.302
All 0.594/0.369/0.425 0.520/0.305/0.358 0.477/0.276/0.326

6.6 Conclusion and Perspectives
In this task, we mainly address the job recommendation problem under the Next-Application Prediction
task, which is one of the essential applications of job recommender systems. In response to the
issues in existing works, we proposed a personalized-attention model named Personalized-Attention
Next-Application Prediction model (PANAP) to answer these issues partially. More specifically, we
independently learn job posting representations in an unsupervised manner to address the lack of
labeled data in the recruitment domain. Then we use the personalized-attention mechanism to
capture specific job information for different job seekers when modeling their career preferences since
the same job has different informativeness for different job seekers. The experiments confirm that, by
incorporating the personalized-attention, our method can better capture the personal career preference
than baseline methods. Finally, our next-application predictor is trained using a similarity-based loss
function in response to job postings that increase or decrease over time. In addition, the personal
context of the job seeker is a vital factor to consider in the recruitment field, especially the location
information, which will influence the job selection of job seekers. Therefore, we incorporate location
information when modeling job and job seeker representations, and we propose a location-based
sampling strategy that takes the “location” factor into account when generating negative samples.

Extensive experiments were conducted to discuss the advantage of personalized-attention mecha-
nism, the effect of different negative sampling strategies, the importance of incorporating job content
information and metadata in the recruitment domain, the effectiveness of different document repre-
sentation methods, and the amount of information carried by different job posting sections. Based on
the experimental results, we can now answer the Research Questions (RQs) proposed in Section 6.2.

• RQ1: In the recruitment field, do we really need the sequential recommendation method?
Answer: Yes, methods that model application sequences are significantly better than methods that
do not rely on application sequences for the recommendation, such as POP, ARL, and CS.

• RQ2: Can the personalized-attention mechanism better capture the personal career preference?
Answer: Yes, ourmodel with the personalized-attention outperforms its variant without attention
or only with vanilla attention. Furthermore, attention scores can serve as an explanation that
different scores represent the different importance of each job for modeling the job seeker profile.

• RQ3: Are job textual information and context information (e.g., geographical location and
educational background) important in job recommendation?
Answer: Yes, although they have different effects on different models, in general, combining job
content and context information can effectively improve the recommendation quality.

134 Chapter 6. Next-Application Prediction from Job Application Sequences

• RQ4: How to take into account context information in the recommendation process?
Answer: In our work, we take it into account when modeling jobs and job seekers, as well as when
generating negative samples.

In addition to the above observations, we can also draw the following conclusions from the
experimental results: (i) The job text encoder has an impact on recommendation results, i.e., a
suitable encoder can make recommendations better. Therefore, it is an interesting task to design
suitable encoders, such as how to encode job requirements, as described in Section 6.5.7. (ii) Using
different parts of a job posting (e.g., job title, job description, and job requirements) as the job
representation yields different model performances. In addition to considering all information, the
method of only considering job titles has also achieved good results. Such a result supports the point
we made in Chapter 4 that job titles are informative.

Perspectives In this chapter, all experiments are performed on the CareerBuilder12 dataset con-
taining job application sequences. However, the format of the dataset provided by Randstad is not
exactly the same. This is why we do not apply our proposed method to the Randstad data. Therefore,
one of the future research directions is to adopt the proposed method on the Randstad data (B.1.2)
to recommend the next job based on resumes. Another research direction is to design a new job re-
quirement encoder that will take into account the complex relationship between required qualifications
and jobs, as described in section 6.5.7. In addition, exploring more advanced job content encoding
methods for better job content representation is also a research direction, for example, learning rep-
resentations from well-constructed graphs via graph embedding methods, as done in Chapter 4 (i.e.,
learning job title representations from graphs).

135

Chapter 7

Conclusion and Perspectives

In this thesis, we addressed the recruitment-related representation learning prob-
lem, more precisely, exploiting graph-structured data through AI methods.

Conclusion

With the development of technology, the field of recruitment has entered a new era, the era of
Artificial Intelligence (AI) helping and guiding. Like other fields, the recruitment field is also looking
to use AI to improve efficiency, reduce costs, and improve employer and employee satisfaction. As a
pioneer in the recruitment industry, Randstad actively develops AI-assisted recruitment and strongly
supports our research, hoping to improve recruitment efficiency by developing new and advanced AI
tools. As a consequence of the vigorous development of E-recruitment and the increasingly fierce
talent competition, the amount of recruitment data is increasing, and the data forms are becoming
more and more complex and diverse, as we summarized in Section 1.2. Therefore, the current industry
urgently needs suitable methods to represent, manage and analyze these data.

Massive data provides a guarantee for the research of AI-based methods, allowing researchers
to learn more quantitatively, but at the same time, due to the particularity of recruitment, these
data also bring challenges to AI methods, as we described in Section 1.3. Beyond these challenges,
by summarizing and comparing existing works related to recruitment in Chapter 2, we arrive at a
research gap that few studies have investigated: graph-structured data are rarely used explicitly (i.e.,
tasks are directed towards it) or implicitly (i.e., as auxiliary information for other tasks) in the field
of recruitment,especially for representation learning. In such context, this thesis aims to study
AI techniques, especially Deep Learning (DL)-based methods to assist recruitment-related
representation learning through a graph perspective..

Revisiting Our Contributions After summarizing and analyzing existing works related to re-
cruitment in Chapter 2 and introducing the necessary background knowledge on graph embedding
and recommendation methods in Chapter 3, our main contributions are:

• In Chapter 4, we proposed a strategy to enrich graphs to improve job title representation
learning. More specifically, we constructed Job-Transition-Tag Graph from the career trajectory
of talents, a heterogeneous graph containing two types of nodes, i.e., job titles and tags (i.e.,

136 Chapter 7. Conclusion and Perspectives

words related to job responsibilities or functions), and two types of edges (i.e., job transition
and “has/in” relationships). Then, we reformulated job title representation learning as a task of
learning node representation from the Job-Transition-Tag Graph. The learned representation
contains both graph topological and job title semantic information, and its effectiveness has
been demonstrated through job classification and next job prediction tasks.

• In Chapter 5, we proposed to learn skill representations by simultaneously considering node
pairwise proximity and hierarchical community structure, resulting in better skill representations
that facilitate occupation/job/talent classification. More specifically, we first constructed a
skill co-occurrence graph from occupations equipped with the required skills. Then we learned
skill representations by combining the node proximity information in it with the hierarchical
community structure information in a predefined skill taxonomy. The effectiveness of learned
skill representations has been demonstrated using an occupation classification task.

• In Chapter 6, we studied the next-application prediction problem, an important task of the job
recommender system, which aims to recommend the next job for a job seeker to apply for based
on his/her historical application record. More specifically, we modeled the task as a sequential
recommendation problem. We first learned job representations in an unsupervised way. Then,
to adapt the importance of each job to a job seeker, we adopted a personalized-attention
mechanism. Moreover, since job seekers need to consider location factors when making a
choice, we took into account the geographic location to make recommendations. Extensive
experiments have shown the effectiveness of our proposed method.

Listing Our Publications Based on the above three contributions, we have the following pub-
lications, including conference papers and book chapters:

• Improving Next-Application Prediction with Deep Personalized-Attention Neural Network, pub-
lished in IEEE International Conference onMachine Learning and Applications (ICMLA), 2021.

• Next Job Application Prediction by Leveraging Textual Information, Metadata, and Personalized-
Attention Mechanism, published in Deep Learning Applications, Volume 4, Springer, 2022.

• Towards Job-Transition-Tag Graph for a Better Job Title Representation Learning, published
in the Findings of Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics (NAACL), 2022.

Facing Our Limitations At the end of each previous chapter, we summarized the corresponding
contributions, answered the related research questions, and suggested specific improvements to the
proposed method. In this ending chapter, to help refine our proposed methods and ideas, as well as to
lay the groundwork for our possible future work, we point out the overall limitations of contributions
as follows:

• Data processing lacks validity analysis: One of the challenges posed by recruitment data
(Section 1.3) is that there is little access to annotated datasets. A detailed summary is given in
Table 2.7. Although in some tasks, we utilized unsupervised learning methods to address this

https://ieeexplore.ieee.org/abstract/document/9680268
https://link.springer.com/chapter/10.1007/978-981-19-6153-3_7
https://link.springer.com/chapter/10.1007/978-981-19-6153-3_7
https://aclanthology.org/2022.findings-naacl.164.pdf

Chapter 7. Conclusion and Perspectives 137

problem, we manually generated some datasets, which introduced some noise. For example,
in Chapter 4, in order to evaluate the learned job title representations, we used an online
third-party API O*Net-SOC AutoCoder1 (B.3.1) to assign a SOC code to each job title and
directly used the French translation version of the IPOD dataset on Randstad dataset. These
operations are not rigorous enough, which will bring some data noise, i.e., the classification
results cannot be guaranteed to be correct, and the direct translation from English to French
ignores the characteristics of different languages.

• Learning schemes lack versatility and uniformity: Different contribution targets an inde-
pendent task, i.e., learning job title representation, learning skill representation, and predicting
the next-application. Seemingly independent, these tasks actually “overlap”, i.e., the learning
scheme can be leveraged from each other. For example, when modeling job representations for
next-application prediction task (Chapter 6), job title, even job representations can be learned
via the scheme used in Chapter 4.

• Evaluation datasets lack diversity: The evaluation of our contribution is not comprehensive
and thorough, one of the reasons is that the number of datasets used is not enough, the
coverage area is relatively small, or the data accuracy is not high.

• Lack of theoretical new models: The general idea in Chapter 4 and Chapter 5 is to “add”
new additional information when learning from graphs via graph embedding methods, i.e., tag-
nodes in job title representation learning, and hierarchical information in skill representation
learning. However, the graph embedding methods used are some existing models which can
not fit our recruitment data well, such as ignoring node semantic information crucial to the
recruitment domain.

• Lack of fairness and explainability: As we noted in Challenge 3, the recruitment process
is a series of decision-making tasks, and an explanation for each decision-making action is
helpful and extremely meaningful. Therefore, explainable recommendations are also one of the
scientific objectives of Randstad. Although the attention mechanism can be viewed as a type
of explanation, i.e., using attention scores to reveal the importance of elements, our proposed
methods lack explainability overall. Furthermore, no works considered fairness and analyzed
fairness in decision-making actions, although it is an important practical problem in the real
world.

• Lack of online testing: All the methods and ideas proposed are still in the offline testing stage,
i.e., using some previous data to learn and evaluate. This also points out another limitation:
our methods were designed without considering practical issues such as computational efficiency
and parallelism.

Picturing Our Perspectives Based on the overall limitations of this thesis and the specific issues
of each model, we propose the following possible future research directions:

1http://www.onetsocautocoder.com/plus/onetmatch

http://www.onetsocautocoder.com/plus/onetmatch

138 Chapter 7. Conclusion and Perspectives

• A novel hierarchical community structure preserving graph embedding method for
learning recruitment-related representations: As stated in Chapter 5, existing graph em-
bedding methods that preserve hierarchical community structures suffer from two major lim-
itations: (i) ignore node features and (ii) only aggregate hierarchical information from top
to bottom. These limitations inspire us to propose a new model in the future that will con-
sider both top-bottom and bottom-top information transfer, and this model incorporates node
features into the learned representation.

• A flexible representation learning framework for various recruitment tasks: Instead of
dealing with different tasks separately and using an independent representation learning scheme
for each task, it may be more helpful and efficient to introduce a novel learning framework that
can freely combine different learning methods to achieve the best results for the target task.

• A fair recommender system for explainable recruitment: In Chapter 4 and Chapter 5,
the learning of job title and skill representations is mainly through existing graph embedding
methods. A line of future work is to propose a novel graph embedding model that can better
adapt to the recruitment domain,í

• A detailed and in-depth survey of recruitment-related works: The field of recruitment
is favored by academia and industry, and various related works are emerging in endlessly, as
described in Chapter 2. However, to the best of our knowledge, there are very few studies for
sorting out, summarizing, and analyzing existing related works. In the future, we plan to more
systematically analyze and sort out the recent works related to the recruitment field, especially
those based on DL.

To conclude, although the proposed methods and ideas still have many limitations, and although
the proposed contributions are small, we hope to propose more meaningful and constructive works for
the recruitment industry in the future.

139

Appendix A

Supplementary Results

A.1 Job Title Representation Learning from Graphs

A.2 Skill Representation Learning by Leveraging Hierar-
chical Graph

Method Param ESCO_K ESCO ROME

DeepWalk L_walk 100 100 50
N_walk 100 100 100

Node2Vec p 1 0.25 1
q 0.25 0.25 0.25

GCN

N_layer 1 1 1
dropout 0.2 0.2 0.2

weight_decay 5e-5 5e-5 5e-5
lr 0.001 0.001 0.001

GAT

N_layer 1 2 2
dropout 0.2 0.2 0.2

dropout(att) 0.2 0.2 0.2
N_head 8 8 8

weight_decay 5e-5 5e-5 5e-5
lr 0.0001 0.001 0.001

DGI

N_layer 1 1 1
dropout 0.2 0.2 0.2

weight_decay 5e-4 5e-4 5e-4
lr 0.0001 0.001 0.0001

M-NMF N_cluster 25 99 357
CommDGI N_cluster 75 359 357

GNE batch_size 64 64 64
lr(emb) 0.003 0.003 0.01

SpaceNE max_epoch 200 100 100
lr 0.001 0.1 0.1

TABLE A.1: Best-performing hyperparameter settings for each method
and dataset based on occupation classification.

A.3 Next-Application Prediction from Job Application Se-
quences

141

Appendix B

Dataset and Tool Description

B.1 Dataset

B.1.1 CareerBuilder12
Job Title Label Assignment

Job titles are not pre-labeled in the original working experience dataset provided by CareerBuilder12.
Therefore, for the job title classification task, we use an online third-party API O*Net-SOCAutoCoder1
(B.3.1) to assign a Standard Occupation Classification (SOC) 2018 code (B.2.2) to each job title, as
well as a match score (i.e., the scores above 70 means that the correct code is accurately predicted
at least 70% of the time). SOC 2018 is a four-level taxonomy structure consisting of MajorGroup
(23), MinorGroup (98), BroadGroup (459) and DetailedOccupation (867). For example, O*Net-SOC
AutoCoder assigns the code 11-2022 (Sales Managers) for the title “sales director”, which belongs to
the level of DetailedOccupation. The BroadGroup level is 11-2020 (Marketing and Sales Managers),
the MinorGroup level is 11-2000 (Advertising, Marketing, Promotions, Public Relations, and Sales
Managers), and the MajorGroup level is 11-0000 (Management Occupations). In Chapter 4, we
categorize job titles into MajorGroup. We have annotated a total of 30,000 job titles. The developer
guarantees that the code assigned to the title plus description has an accuracy rate of 85%. However,
only the job title is provided in our experiments, so the SOC 2018 code may be incorrectly assigned.
For this reason, we filtered out job titles with scores below 70. Therefore, 22,590 job titles remain.

B.1.2 Randstad
Parsed Resume

The parsed resume data is provided by the talent pool of Randstad company,2 where each resume
is in French and is parsed into sections, e.g., Personal EducationHistory and EmploymentHistory,
etc. In totally, we have 15,964 raw parsed resumes, 14,698 resumes have EmploymentHistory, and
13,161 resumes have valid EmploymentItems.3 The distribution of job title with respect to different
categories is illustrated in Figure B.1 and Table B.1. It can be observed that the number of different

1http://www.onetsocautocoder.com/plus/onetmatch
2https://www.randstad.com/
3Having all information about StartDate, JobTitle, JobCode, JobGroup, JobClass

http://www.onetsocautocoder.com/plus/onetmatch
https://www.randstad.com/

142 Appendix B. Dataset and Tool Description

classes is very unbalanced. Therefore, we removed ‘rare” labels. In these experiments, we removed the
EmploymentItems labeled ‘rare” JobCode (i.e., the frequency is lower than the average value 29.76).
Furthermore, we discarded resumes with less than two valid EmploymentItem for link prediction
purpose, and sorted EmploymentItems by StartDate in ascending order. Finally, we get a filtered
dataset containing 10,183 resumes. Similarly, the distribution of categories and data statistics are
shown in Figure B.2 and Table B.1, respectively.

(a) JobCode (b) JobGroup. (c) JobClass

FIGURE B.1: Label distributions (raw), where the red line represents the average value.

(a) JobCode (b) JobGroup. (c) JobClass

FIGURE B.2: Label distributions (filtered), where the red line represents the average value.

TABLE B.1: Dataset statistics of raw/filtered parsed resumes, where occ means occurrence
and item means EmploymentItem.s

Raw Filtered
JobCode JobGroup JobClass JobCode JobGroup JobClass

Unique 1,906 280 24 297 130 24
Max occ 2,156 4,997 9,315 2,156 4,719 8,614
Min occ 1 1 127 30 32 104

Mean occ 29.76 202.56 2363.25 160.04 365.64 1980.54

Max item 30 30
Mean item 14.71 13.13

B.1.3 IPOD
This dataset consists of 192k job titles belonging to 56k LinkedIn users, and each of these job titles
is manually associated with its associated level of seniority, the domain of work and location.

The French version will be added.

B.2. Terminology resource 143

B.2 Terminology resource

TABLE B.2: Summary of all terminology resources.

Name Organization Hierarchy Language

ISCO 2008 International Labour Organization 4 (436/130/43/10) EN
SOC 2018 U.S. Bureau of Labor Statistics 4 (867/459/98/23) EN

O*NET 2019 U.S. Dept. of Labor/Employment and Training Administration 5(149/867/459/98/23) EN
ESCO 2017 European Commission 5(2,942/436/130/43/10) 27 languages

ROME France Pôle emploi 3(532/110/14) FR

B.2.1 ISCO 2008
International Standard Classification of Occupations (ISCO) 20084 is the current version of Interna-
tional Standard Classification of Occupations, released in 2008 by International Labour Organization.
It has a four-level hierarchical occupation taxonomy that covers all jobs globally. It classifies jobs into
436 Unit Groups, then aggregates these Unit Groups into 130 Minor Groups, 43 Sub-Major Groups
and 10 Major Groups, based on their similarity in skill level and skill specialization required for the
job.

B.2.2 SOC 2018
Standard Occupation Classification (SOC) 20185 is developed by the U.S. Bureau of Labor Statistics
to meet the growing need for a universal occupation classification system. Such a classification system
allows government agencies and private companies to generate comparable data. SOC 2018 divides
workers into 867 detailed occupations (i.e., Detailed SOC Occupations) according to their occupational
definitions, and these detailed occupations are combined to form 459 Broad Occupations, 98 Minor
Groups, and 23 Major Groups. An example is illustrated in Figure B.3.

Major Group 23-0000:
Legal Occupations

Minor Group 23-2000:
Legal Support Workers

Broad Occupation 23-2010:
Paralegals and Legal Assistants

Detailed SOC Occupation 23-2011:
Paralegals and Legal Assistants

Minor Group 23-1000:
Lawyers, Judges, and Related Workers

Broad Occupation 23-1020:
Judges, Magistrates, and Other Judicial Workers

Detailed SOC Occupation 23-1021:
Administrative Law Judges, Adjudicators, and Hearing Officers

Detailed SOC Occupation 23-1022:
Arbitrators, Mediators, and Conciliators

Broad Occupation 23-1010:
Lawyers and Judicial Law Clerks

Detailed SOC Occupation 23-1011:
Lawyers

Detailed SOC Occupation 23-1012:
Judicial Law Clerks

FIGURE B.3: An example of SOC structure.

4https://www.ilo.org/public/english/bureau/stat/isco/isco08/
5https://www.bls.gov/soc/

https://www.ilo.org/public/english/bureau/stat/isco/isco08/
https://www.bls.gov/soc/

144 Appendix B. Dataset and Tool Description

B.2.3 O*NET 2019
Occupational Information Network (O*NET) 20196, a free online database containing definitions of
almost 1,000 occupations covering the entire U.S. economy, was developed under the sponsorship of
the U.S. Department of Labor/Employment and Training Administration through a grant to the North
Carolina Department of Commerce. The taxonomy structure of O*NET-SOC 2019 has been revised
based on the transition to SOC 2018. The latest version includes 1,016 occupational names (867
of which are SOC and 149 are Detailed O*NET-SOCs), of which 923 represent O*NET data-level
occupations and 93 represent non data-level.

B.2.4 ESCO 2017
European Skills, Competences, Qualifications and Occupations (ESCO) 20177 is the European mul-
tilingual classification of Skills, Competences, and Occupations. ESCO 2017 is like a dictionary that
describes, identifies, and classifies professional occupations and skills relevant to the EU labor mar-
ket, education and training. ESCO 2017 provides descriptions of 2,942 occupations and 13,485 skills
associated with these occupations, translated into 27 languages.

• Occupations: in ESCO 2017, the occupation concepts use their hierarchical relationships,
metadata, and mapping to the ISCO 2008 to build the occupation structure. In ESCO 2017,
each occupation maps exactly to a ISCO 2008 code (i.e., the current version, released in
2008) B.2.1. Therefore, ISCO 2008 can be used as a hierarchical structure for the occupa-
tion taxonomy. ISCO 2008 provides the top four levels for the occupation taxonomy. ESCO
2017 occupations are at level five and lower. An example of ocupation taxonomy is shown in
Figure B.4.

Professionals

Science and engineering professionals Health professionals

Physical and earth
science professionals ⋯

⋯

Medical doctors

Specialist medical
practitioners

Generalist medical
practitioners

Mathematicians, actuaries
and statisticians

Mathematicians, actuaries
and statisticians

astronomer
cosmologist
physicist

⋮

general practitioner specialized doctor

Nursing and midwifery
professionals

Nursing
professionals

Midwifery
professionals

Physicists and
astronomers

chemist
sensory scientist

actuarial consultant
demographer

mathematician
⋮

Chemists

advanced nurse practitioner
nurse responsible for general care

specialist nurse

midwife

FIGURE B.4: A sample of occupation taxonomy in ESCO 2017.

– occupation: 2,942

– occupation group: 619

6https://www.onetonline.org/
7https://ec.europa.eu/esco/portal

https://www.onetonline.org/
https://ec.europa.eu/esco/portal

B.2. Terminology resource 145

* 436 Unit Groups

* 130 Minor Groups

* 43 Sub-Major Groups

* 10 Major Groups

We show the occupation group relationship in Figure B.5a, where the larger the circle is, the
higher its level. We can see that occupation groups are grouped into 10 clusters, which is 10
Major Groups.

(a) Occupation_group. (b) Occupation_group and occupation

FIGURE B.5: The illustration of occupation groups and occupations in ESCO
2017, where the red point is the occupation group node, and green point is occu-

pation.

• Skills/Competences: the ESCO 2017 skill taxonomy distinguishes between (i) the concept
of skill/competence (i.e., there is no distinction between skills and competencies) and (ii) the
concept of knowledge by indicating the type of skill. Each of these concepts comes with a
preferred term and some non-preferred terms. Each concept also includes an explanation in
descriptive form. The skills taxonomy of ESCO 2017 contains 13,485 concepts, which are
structured in a hierarchy with four sub-categories: (i) Attitudes and values, (ii) Knowledge,
(iii) Language skills and knowledge, and (iv) Skills. Each sub-category targets different types
of knowledge and skill/competency concepts.

– skill: 13,485

* 6,412 sector-specific

* 3,643 cross-sector

* 2,977 occupation-specific

* 453 transversal

– skill group: 656

146 Appendix B. Dataset and Tool Description

ESCO_K

B.2.5 ROME
Répertoire Opérationnel des Métiers et des Emplois (ROME)8 is build by the Pôle emploi9, which
is a tool at the service of professional mobility and bringing together offers and candidates. It has
an inventory of the names of trades, jobs, and knowledge, as well as groups them according to the
principle of equivalence or proximity.

• Occupations

– occupation: 532

– occupation group: 114

* 110 sub-major occupation groups

* 14 major occupation groups

(a) Occupation_group. (b) Occupation group and occupation

FIGURE B.6: The illustration of occupation group and occupation in ROME,
where the red point is the occupation group node, and green point is occupa-

tion.

• skill: 13.913

– 8,983 SavoirFaire (know-how)

– 4,930 Savoir (knowledge)
8https://data.europa.eu/data/datasets/58da857388ee384902e505f5?locale=en
9https://www.pole-emploi.fr/accueil/

https://data.europa.eu/data/datasets/58da857388ee384902e505f5?locale=en
https://www.pole-emploi.fr/accueil/

B.3. Tool 147

B.3 Tool

B.3.1 O*NET-SOC AutoCoder
O*NET-SOC AutoCoder10 is a tool that can instantly provide a high-quality occupational classification
code (i.e., SOC 2018, O*NET 2019, and OES 2020) for a job, resume and, UI claim. The developers
guarantee that the code assigned to job postings (title plus description) is 85% accurate. The
primary mechanism of O*NET-SOC AutoCoder is simple: it allows two main inputs: job title and
job description. It splits the text of a job posting, resume, or UI statement into individual words
and phrases, which are then matched against a database of words and phrases associated with O*Net
codes. The words in the database have been reviewed and weighted by analysts, so the most important
words to a given occupation will have more weight in the match calculation. O*NET-SOC AutoCoder
has several different methods to match occupation codes to inputs. The final result is a weighted
average of these methods.

B.4 Experimental Datasets

B.4.1 Chapter 4: Skill Representation Learning

(A) Neighbor number. (B) 4-level skill categories (17).

(C) 3-level skill categories (99). (D) 2-level skill categories (359).

FIGURE B.7: Neighborhood statistics for ESCO. In (a), the x-axis represents the size of the
neighborhood |N (s)|, and in (b), (c) and (d), the x-axis represents the number of neighbor
types (i.e., “skill categories”). The y-axis of all subfigures represents the corresponding

number of nodes.

10https://www.onetsocautocoder.com/plus/onetmatch?action=guide

https://www.onetsocautocoder.com/plus/onetmatch?action=guide

148 Appendix B. Dataset and Tool Description

(A) Number of neighbors. (B) 3-level skill categories (53). (C) 2-level skill categories (357).

FIGURE B.8: Neighborhood statistics for ROME. In (a), the x-axis represents the size of the
neighborhood |N (s)|, and in (b), (c) and (d), the x-axis represents the number of neighbor
types (i.e., “skill categories”). The y-axis of all subfigures represents the corresponding

number of nodes.

149

Appendix C

Feature Extraction Methods

In this appendix, we briefly introduce various feature extraction models [Naseem et al., 2021] com-
monly used in different Natural Language Processing (NLP)-related tasks, including some classical
models and some representation learning models.

C.1 Classical Methods
We first introduce some early classic methods commonly used to represent texts, including (i) cate-
gorical word representation and (ii) weighted word representation [Naseem et al., 2021]:

C.1.1 Categorical Word Representation
Categorical data is data that takes only a limited number of values. For example, a sweater may
have several "color values" such as red, blue, and green. Most Machine Learning (ML) algorithms
cannot work with categorical data and need to convert it to numerical data. Therefore, categorical
word representation thus allows turning categorical data into features with numerical values, which is
the easiest way to represent texts.

• One-Hot Encoding: One-Hot Encoding is the most straightforward method to transfer cate-
gorical data into numerical values. In One-Hot encoding, the vector dimension is the number
of terms present in the corpus (vocabulary), i.e., N. Each unique term has a special index,
represented by a 1 at that index and 0s everywhere else. An example of the One-Hot encoding
of the location of the job seeker used in Section 6.4.2 is given in Figure C.1.

150 Appendix C. Feature Extraction Methods

location

Candidate 1: Paris

Candidate 2: New York

Candidate 3: Paris

Candidate 4: Beijing

One-Hot Encoding

Paris

1

0

1

0

New York

0

1

0

0

Beijing

0

0

0

1

FIGURE C.1: Example of One-Hot encoding of the location of the job seeker.

• Bag-of-Words (BoW) Encoding: BoW encoding is a simple extension of One-Hot encoding
that adds up the One-Hot representations of words in the text. As shown in Figure C.2, there
are two sentences, and the corresponding vocabulary set is {a, day, is, it, meet, nice, to, you}.

Sentence 1: It is a nice day

BoW Encoding

a

1

Sentence 2: Nice to meet you

day is it to

1 1 1

meet

o

nice you

1 0 0

0 0 0 0 1 1 1 1

FIGURE C.2: Example of BoW encoding of two sentences.

The most notable advantage of BoW is its simplicity and ease of use. However, as the vocabu-
lary grows, it suffers from sparse representation and dimensionality curve issues. Besides, BoW
ignores the order of words and the semantic relationship between words.

C.1.2 Weighted Word Representation
Unlike count-only categorical word representation methods, weighted word representation methods
further take word frequency into account.

• Term Frequency (TF): TF calculates how often a word occurs in a document. It is usually
formulated as follows:

TF(t, d) =
occur(t, d)

nd ,

where occur(t, d) represents the number of times the term t appears in the document d, and
nd is the number of terms in the document d.

• Term Frequency Inverse Document Frequency (TF-IDF): To reduce the impact of com-
mon words in the corpus, such as “a”, “and” and “the”, TF-IDF [Salton and Buckley, 1988]
combines Inverse Document Frequency (IDF) with TF, which is mathematically represented as
follows:

TF-IDF(t, d,D) = TF(t, d)× log
(
|D|
dft

)
,

C.2. Representation Learning Methods 151

where D represents the collection of documents, and dft represents the number of documents
that contain the term t.

C.2 Representation Learning Methods
Classical methods often fail to capture the syntactic and semantic meaning of words, and these
models suffer from the curse of high dimensionality. The shortcomings of these methods motivate
research on distributed word representation in low-dimensional spaces. Next, we briefly introduce
several commonly used distributed representations, which are categorized into (i) non-contextual
word representation (continuous word representation) methods and (ii) contextual word representation
methods.

C.2.1 Non-Contextual Word Representation
• Word2Vec: Word2Vec [Mikolov, K. Chen, et al., 2013] is the most representative work on

continuous word representation. It comes with two architectures for learning high-quality word
vectors: (1) Continuous Bag Of Words (CBOW) and (2) Skip-Gram (SG). Both architectures
are feed-forward Neural Networks (NNs), consisting of three layers: an input layer, a hidden
layer, and an output layer, but the objective functions they try to approximate are different.
CBOW takes the context of a given word as input and tries to predict the word. SG is similar
to CBOW, but instead of predicting the current word based on the context, it tries to predict
the context words associated with the current word. Figure C.3 shows the principle of the two
structures.

Input Projection Output

w(t-2)

w(t-1)
Sum

w(t+1)

w(t+2)

w(t)

(a) Continuous Bag Of Words.

OutputProjectionInput

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

(b) Skip-Gram.

FIGURE C.3: The CBOW and SG two structure of Word2Vec, adapted
from [Mikolov, K. Chen, et al., 2013].

• Global Vectors (GloVe): Word2Vec has difficulty leveraging statistics across all corpus be-
cause it is trained on local context windows and does not exploit the statistics contained in
the global co-occurrence matrix. In contrast, GloVe [Pennington, Socher, and Manning, 2014]

152 Appendix C. Feature Extraction Methods

is trained on global word-word co-occurrence counts, making efficient use of global statistics.
For example, given three sentences:

– I like Machine Learning

– I like summer

– Machine Learning is powerful

If the window size is equal to 2, the corresponding co-occurrence matrix is given as follows:

I like Machine Learning summer is powerful

like 2 0 1 0 1 0 0

Machine 0 1 0 2 0 0 0

Learning 0 0 2 0 0 1 0

summer 0 1 0 0 0 0 0

is 0 0 0 0 0 0 1

powerful 0 0 0 0 0 1 0

• FastText: FastText [Bojanowski et al., 2017] uses a similar CBOW structure with hierarchical
softmax as Word2Vec, but FastText uses a bag of character-level n-gram.

The character-level n-gram is a set of co-occurring characters within a given window, similar
to the word-level n-grams, except that the window size is at the character level. For example,
for the word “hello”, when n = 2, the 2-grams are: {“<h′′, “he′′, “el′′, “ll′′, “lo′′, “o>′′}, so
“hello” is represented by the sum of its character-level n-grams. The character-level n-gram has
two advantages: (i) It is better for low-frequency words (ii) For out-of-vocabulary words, their
word vectors can still be constructed, i.e., stack their character-level n-gram vectors.

The models described above have demonstrated their effectiveness in various downstream tasks.
However, one of the most severe weaknesses is that they can not handle words with multiple senses.
For example, the word “bank” has two commonly used linguistic meanings, i.e., the meaning of financial
institution and the meaning of riverside. Different word senses should have different context words, but
Word2Vec, GloVe, and FastText are trained to predict the same word regardless of different contexts.
Therefore, the word “bank” has a static embedding. To address this problem, some contextual models
are proposed, which will be explained in the next section.

C.2.2 Contextual Word Representation
• Embeddings fromLanguageModels (ELMo): Different from traditional word embeddings,

which assign a vector to each token based on the entire input sentence. ELMo derives word
embeddings from the top of two-layer bidirectional Language Models, where each layer is a

C.2. Representation Learning Methods 153

bidirectional LSTM. The bidirectional Language Model combines both a forward and back-
ward Language Model, then jointly maximizes the log-likelihood of the forward and backward
directions, as shown in Figure C.4.

FIGURE C.4: ELMo architecture,
from [Devlin et al., 2018].

FIGURE C.5: OpenAI GPT architec-
ture, from [Devlin et al., 2018].

• OpenAI Generative Pre-Training (GPT): Similar to ELMo and BERT, GPT also uses a
two-step framework: (i) pre-training and (ii) fine-tuning. The pre-training of GPT as shown in
Figure C.5 is similar to ELMo, except that GPT uses Transformer [Vaswani et al., 2017] as the
feature extractor instead of LSTM. Furthermore, GPT uses a left-to-right architecture, where
each token can only focus on previous tokens in the self-attention layers of the Transformer.

• Bidirectional Encoder Representation from Transformers (BERT) [Devlin et al., 2018]:
It is a pre-trained model proposed by Google in 2018, where the encoder is bidirectional trans-
formers. The framework of BERT has two steps: (i) pre-training and (ii) fine-tuning. During
pre-training, the model is pre-trained using two unsupervised objectives to capture word- and
sentence-level representations, respectively.

– Masked Language Model: simply mask 15% of the input tokens at random, and then
predict those masked tokens. For example:

I like Machine Learning→ I like Machine [MASK]

However, since the [MASK] token does not appear during fine-tuning, this leads to a
mismatch between pre-training and fine-tuning. To address this problem, the authors
do not always replace “masked” words with the actual [MASK] token. Instead, for these
15% token positions, only 80% tokens are actually replaced with [MASK], 10% tokens are
replaced by random tokens, and the 10% remains unchanged.

– Next Sentence Prediction: each pre-training example consists of two sentences: the
sentence A and B, 50% of the time B is the actual next sentence after A, and 50% of the
time it is a random sentence from the corpus.

For fine-tuning, BERT is first initialized with the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the downstream tasks.

155

Appendix D

Preliminary of Graph Embedding

D.1 Skip-Gram
In 2013, [Mikolov, K. Chen, et al., 2013] presented two architectures for learning high-quality word
vectors from huge data sets, under the common name of Word2Vec: Continuous Bag Of Words
(CBOW) and Skip-Gram (SG). Both architectures are feed-forward Neural Networks (NNs) [Bengio,
Ducharme, et al., 2003], consisting of three layers: an input layer, a hidden layer, and an output layer,
but the objective functions they try to approximate are different. CBOW takes the context of a given
word as input and tries to predict the word. SG is similar to CBOW, but instead of predicting the
current word based on the context, it tries to predict the context words associated with the current
word. In the case of SG architecture, two main optimizations have been presented: negative sampling,
which modifies only some weights related to negative examples (i.e., words not in the context), and
hierarchical softmax, where the output vector is determined by a tree-like traversal of the network
layers.

D.1.1 Language Modeling with Skip-Gram
Generally speaking, language modeling aims to estimate the likelihood of a specific word sequence ap-
pearing in a corpus with the vocabulary set V . More formally, given a sequence of words {w1, . . . , wn},
where wi ∈ V , we want to maximize the co-occurrence probability among the words that appear within
a context of the pre-fixed window size c in a sentence of the corpus:

1
n

n

∑
i=1

∑
−c≤j≤c,j 6=0

log Pr
(
wi+j|wi

)
(D.1)

The basic SG uses the softmax function to define Pr(wi+j|wi) as:

Pr(wi+j|wi) =
exp

(
Φ′(wi+j)

TΦ(wi)
)

∑w′∈V exp
(
Φ′(w′)TΦ(wi)

) ,

where Φ := V → R|V|×d and Φ′ := V → R|V|×d are the “source” (i.e., it is treated as the source
word) and “target” (i.e., it is treated as the “context” of other words) d-dimensional embedding
mappings, respectively.

156 Appendix D. Preliminary of Graph Embedding

The model is optimized by Gradient Descent. To speed up the training time, [Mikolov, Sutskever,
et al., 2013; Mikolov, K. Chen, et al., 2013] propose two approximations: negative sampling and
hierarchical softmax.

D.1.2 Negative Sampling
Negative Sampling allows each training example to modify only a small part of parameters, rather
than all of them. For each observed pair (wi+j, wi), [Q. Le and Mikolov, 2014] samples n− negative
context words w′ ∈ V from a noise distribution Pn(w′). The loss function is defined as follows:

log σ
(

Φ′(wi+j)
TΦ(wi)

)
+

n−

∑
p=1

Ewp∼Pn(w′)
[

log σ
(
−Φ′(wp)

TΦ(wi)
)]

,

where σ denotes the softmax function. Thus the task is to use logistic regression to distinguish the
target word wi+j from n− negative exmples sampled from the noise distribution Pn(w′).

D.1.3 Hierarchical Softmax
Another way to deal with the high cost of computing Pr(wi+j|wi) is hierarchical softmax. This model
factorizes the conditional probability of assigning words to |V| leaves of a binary tree, turning the
prediction problem into maximizing the probability of a particular path in the hierarchy. More precisely,
each word w can be reached by an appropriate path from the root of the tree. Let L(wi+j, k) be
the k-th node on the path from the root to wi+j, and let |L(wi+j)| be the length of this path, so
L(wi+j, 1) = root and L(wi+j, |L(wi+j)|) = wi+j. In addition, for any inner node wi+k, 1 < k <

|L(wi+j)|, let Ch(wi+k) be an arbitrary fixed child of wi+k and I(x) be the indicator, equals to 1 if
x is true, then −1 otherwise. Then,

Pr(wi+j|wi) =

|L(wi+j)−1|

∏
k=1

σ
(

I
(

L(wi+j, k + 1) = Ch(L(wi+j, k))
)
·Φ′(L(wi+j, k))TΦ(wi)

)
,

(D.2)

where σ(x) = 1/(1 + exp (−x)). This implies that the cost of computing log Pr(wi+j|wi) and
∆Pr(wi+j|wi) is proportional to |L(wi+j)|, the average is not greater than log |V|. Furthermore,
unlike the standard softmax formulation of SG which assigns two representations Φ(w) and Φ′(w)

to each word w, hierarchical softmax uses a representation Φ(w) for each word and a representation
Φ′(w) for each inner node of the binary tree.

157

Appendix E

Neural Network Architecture

This appendix briefly introduces some major architectures of Neural Network (NN)s, more appropri-
ately called Artificial Neural Networks (ANNs). For more details on NN and Deep Learning (DL), we
refer readers to [Goodfellow, Bengio, and Courville, 2016].

E.1 Multilayer Perceptron
Multilayer Perceptron (MLP), also known as Feedforward Neural Network (FNN), is a typical NN that
maps a set of input vectors to a set of output vectors. Its general architecture consists of at least three
layers of nodes: an input layer, a hidden layer, and an output layer, as shown in Figure E.1. Except for
the input nodes, each node is a neuron (or called unit) using a nonlinear activation function. Neurons
in each layer are connected to neurons in the next layer, and there are no connections between neurons
in the same layer. The neurons in the input layer receive input information, the hidden layer and output
layer neurons process the information, and the final result is output by the output layer neurons. This
type of architecture is called feedforward because there is no feedback connection feeding the output
of the model back to itself.

Input layer Hidden layer Output layer

(a) One hidden layer MLP.

Input layer Hidden layer Hidden layer Output layer

(b) Two hidden layer MLP.

FIGURE E.1: The architecture of MLP.

For better comparison with other architectures described below, we formally describe a MLP
with one hidden layer. Taking classification as an example, we have a set of input vectors X =

{x1, . . . ,xn}, where each xi ∈ Rm has m features, and their predefined labels y = {y1, . . . , yn},

158 Appendix E. Neural Network Architecture

yi ∈ R. The feedforward is formulated as:

H = σh

(
XW T

h + bh

)
,

O = σo

(
HW T

o + bo

)
.

H = {h1, . . . ,hn} ∈ Rn×h are h-dimensional hidden states, and O = {o1, . . . ,on} ∈ Rn×o are
o-dimensional output vectors. Wh ∈ Rh×m and bh ∈ Rh are weights and bias of the hidden layer.
Wo ∈ Ro×h and bo ∈ Ro are weights and bias of the output layer. σh and σo are two activation
functions used in the hidden layer and output layer, respectively. Common hidden layer activation
functions are ReLU, sigmoid, and tanh [Goodfellow, Bengio, and Courville, 2016]. The output layer
uses the sigmoid function for binary classification or the softmax function for multi-label classification.

E.2 Convolutiona Neural Network
Convolutional Neural Network (CNN)s are a family of NNs designed to process data with a known
grid-like topology, such as time series and images.

E.3 Recurrent Neural Network
Recurrent Neural Networks (RNNs) are a family of NNs designed to process sequential data, such as
time series. Different from MLP, RNN contains feedback connections, i.e., the output of the RNN
at a particular step is based not only on current input but also on previous inputs. Formally, for
sequential input {x(0), . . . ,x(T)}, x(t) ∈ Rm, the general RNN architecture is formulated as:

h(t) = RNN
(
h(t−1),x(t);θ

)
,

where h(t) ∈ Rh is the hidden state at step t, and x(t) is the input value for that step. h(t) is
considered to be a summary of the sequence of past inputs up to t. This formula can be drawn in
two different ways, as shown in Figure E.2.

𝒉

𝒙

Unfold

𝒐

Input layer

Hidden layer

Output layer

𝒉(𝟎)

𝒙(𝟎)

𝒐(𝟎)

𝒉(𝟏)

𝒙(𝟏)

𝒐(𝟏)

⋯ 𝒉(𝒕)

𝒙(𝒕)

𝒐(𝒕)

FIGURE E.2: The architecture of RNN can be expressed in two ways. On the left is the
circuit diagram, where the black square represents a delay for a single time step, adapted
from [Goodfellow, Bengio, and Courville, 2016], and on the right is the same network, but

in an unfolded way.

E.3. Recurrent Neural Network 159

The feedforward of the RNN is formulated as:

h(t) = σh

(
Uhx

(t) + Vhh
(t−1) + bh

)
,

o(t) = σo

(
Woh

(t) + bo

)
,

where h(t) ∈ Rh is the hidden state and o(t) ∈ Ro is the output. Uh ∈ Rh×m, Vh ∈ Rh×h and
bh ∈ Rh are parameters of the hidden layer. Wo ∈ Ro×h and bo ∈ Ro are parameters of the output
layer.

Depending on the number of inputs and outputs, there are different types of RNN, as shown in
Figure E.3, for different applications.

• one-to-one: The simplest structure of RNN, which allows single input and single output. It
can be used for image classification.

• one-to-many: This type of RNN takes a single input and returns a sequence of outputs. It
can be used for music generation and image captioning.

• many-to-one: This type of RNN takes a sequence of input, and returns a single output. It
can be used for sentiment analysis.

• many-to-many: This type of RNN takes a sequence of input, and returns a sequence of
outputs. This type can be further divided into two subclasses,

– equal unit size: the number of input and output units is the same. It can be used for
Name-Entity recognition.

– unequal unit size: the number of input and output units is different. It can be used for
machine translation.

(a) one-to-one.

⋯

(b) one-to-many.

⋯

(c) many-to-one. (d) many-to-many
(equal unit size).

(e) many-to-many (un-
equal unit size).

FIGURE E.3: The different RNN types.

E.3.1 Long Short Term Memory
Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] is a more sophisticated variant
of the RNN architecture that learns long-term dependencies better than vanilla RNNs. Just like the
name of LSTM, it has both “long-term memory” and “short-term memory”. The main difference
between the vanilla RNN and LSTM is that LSTM has gated cells. A standard LSTM unit consists

160 Appendix E. Neural Network Architecture

of a cell, an input gate, a forget gate, and an output gate. These three gates regulate the flow of
information into and out of the cell. More specifically, the forget gate first decides which information
to discard from the previous state c(t−1) ∈ Rh by comparing it with the current input, the formula is:

f (t) = σ
(
U fx

(t) + V fh
(t−1) + b f

)
,

where the subscript f stands for the forget gate, similarly, the subscripts i, o stand for the input gate,
output gate respectively. The output of the forget gate is a vector where each element has a value
between 0 and 1, i.e., f (t) ∈ (0, 1)h. A value of 1 means to keep all information, while a value of 0
means to discard all information.

Next, the input gate decides what new information to store in the current state, using the same
system as the forget gate.

i(t) = σ
(
Uix

(t) + Vih
(t−1) + bi

)
,

where i(t) ∈ (0, 1)h.
Then, the current state C(t) is updated according to the previous state c(t−1),

c(t) = f (t) � c(t−1) + i(t) � c̃(t),

where the operator � denotes the element-wise product, c̃(t) is a vector of new candidate value
obtained through a tanh layer, i.e., c̃(t) = tanh

(
Ucx

(t) + Vch
(t−1) + bc

)
.

Finally, the output gate decides what information is output in the current state by taking into
account the previous and current states. The formula is:

o(t) = σ
(
Uox

(t) + Voh
(t−1) + bo

)
,

h(t) = o(t) � tanh
(
c(t)
)

,

where o(t) ∈ (0, 1)h and h(t) ∈ (−1, 1)h. The above U∗ ∈ Rh×m/V∗ ∈ Rh×h and b∗ ∈ Rh are both
weight matrices and biases in the corresponding gate, and σ()̇ is the sigmoid activation function.

With these gates, LSTM can selectively output relevant information about the current state,
allowing LSTM to maintain useful, long-term dependencies for prediction.

E.3.2 Gated Recurrent Unit
Gated Recurrent Unit (GRU) is another gated RNN. Like LSTM, it is also proposed to solve the ladder
problem in long-term memory and backpropagation. The key difference between LSTM and GRU is
that GRU has two gates, reset gate and update gate, while LSTM has three gates. Therefore, GRU is
easier to train than LSTM.

The first step of GRU is to get the state of update gate u(t) and the state of reset gate r(t)
according to the previous hidden state h(t−1) and the current input x(t):

u(t) = σ
(
Uux

(t) + Vuh
(t−1) + bu

)
,

E.3. Recurrent Neural Network 161

r(t) = σ
(
Urx

(t) + Vrh
(t−1) + br

)
,

where U∗ ∈ Rh×m/V∗ ∈ Rh×h and b∗ ∈ Rh are both weight matrices and biases in the corresponding
gate.

The reset gate is used to determine how much past information to discard, which is roughly similar
to the forget gate of LSTM. The reset operation is formulated as:

h̃(t−1) = h(t−1) � r(t).

This reset information is then fed into a tanh layer along with the input x(t):

h̃(t) = tanh
(
Ucx

(t) + Vch̃
(t−1) + bc

)
.

Finally, the update gate updates the output:

h(t) = (1− u(t))� h(t−1) + u(t) � h̃(t),

where the first term (1−u(t))�h(t−1) indicates the amount of forgotten information in h(t−1), while
the second term u(t) � h̃(t) indicates the amount of forgotten information in the current information
h̃(t)

163

Appendix F

Attention Mechanism

In real life, the word “attention” means to focus more on something because it is more “important”
to a particular goal. The attention mechanism in Deep Learning (DL) is based on this concept of
attention in real life, which aims to pay more attention to certain factors when processing data for a
task. Along this line, the attention mechanism is initially proposed in [Bahdanau, Cho, and Bengio,
2014] for the neural machine translation task, the idea of which is to pay different attention to different
input words to obtain better translation output. Next, this appendix briefly describes the attention
mechanism and different types of attention.

F.1 Attention
The attention mechanism was introduced by [Bahdanau, Cho, and Bengio, 2014] to address the
bottleneck of the traditional encoder-decoder structure in the neural machine translation task. More
specifically, neural machine translation is a sequence-to-sequence task that aims to transform an
input sequence into an output sequence through a series of operations. An example (adapted from1)
is shown in Figure F.1, where the input is an English sentence, and the expected output is a French
translation.

Encoder Decoder

Life is better with a dog

La vie est meilleure avec un

Life is better with a dog

chien

FIGURE F.1: The framework of Encoder-Decoder structure for translating English sen-
tences into French.

The bottleneck of this framework is that the entire input sequence needs to be encoded into a
fixed-length vector (i.e., the grey squares), which causes information loss, and it is difficult for the

1https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

164 Appendix F. Attention Mechanism

decoder to obtain input information only through this fixed vector. In order to address this problem,
the attention mechanism is proposed in [Bahdanau, Cho, and Bengio, 2014] so that the encoder
does not need to compress the entire input sequence into a single vector but instead gives each part
of the input a d-dimensional representation si ∈ Rd (encoder state), and at each decoding step,
giving different attention to different parts of the input. Figure F.2 gives an example where the
input sentence is first encoded into six vectors, i.e., s1, . . . , s6, and then the attention mechanism
computes six attention scores for each decoder hidden state hj ∈ Rd, i.e., each score corresponds to
each encoder vector si, the darker the color of the square, the larger the attention value. Note that
in [Bahdanau, Cho, and Bengio, 2014], the hidden state hj is obtained via a RNN structure, by using
the previous hidden state hj−1 and the current context vector cj as input. This context vector is a
weighted sum of encoder states, which is explained below.

𝒔" 𝒔# 𝒔$ 𝒔% 𝒔& 𝒔'

La

Life is better with a dog

⋯𝒉"

Attention scores

𝒉#

vie

𝒉$

est

Initialization

𝒄" 𝒄# 𝒄$

FIGURE F.2: An example of sentence translation, where at each decoding step, different
attention scores are assigned to different parts of the input. The darker the color of the

square, the larger the attention value.

The attention score given by hj to si can be calculated as Att
(
hj, si

)
, i = 1 . . . , ls, j = 1 . . . , lt,

where ls is the length of the input sequence (i.e., source), and lt is the length of the output sequence
(i.e., target). Typically, attention scores are further normalized by a softmax function:

αji =
exp(Att

(
hj, si

)
)

∑i′=1,...,ls exp
(
Att

(
hj, si′

)) .

The corresponding output of each decoder step is a weighted sum of encoder vectors: cj+1 =

αj1s1 + · · ·+ αjlssls .
There are many ways to formulate the attention function Att

(
hj, si

)
,2 such as:

• Dot product [Luong, Pham, and Manning, 2015]: Att
(
hj, si

)
= hT

j si.

• Bilinear function [Luong, Pham, and Manning, 2015]: Att
(
hj, si

)
= hT

j Wsi.

• Multilayer Perceptron [Bahdanau, Cho, and Bengio, 2014]: Att
(
hj, si

)
= wT

Alignment ·
tanh

(
Uhj + V si

)
.

2https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

F.2. Self-Attention 165

W ∈ Rd×d, U ∈ Rd×d and V ∈ Rd×d are all learnable weight matrices of linear layers. wT
Alignment ∈

Rd is the alignment vector, which will be trained with the model.

F.2 Self-Attention
The self-attention is another attention mechanism, which has attracted attention with the proposal
of Transformer [Vaswani et al., 2017]. The difference between attention and self-attention is that
self-attention takes into account all information, i.e., all encoder states. More specifically, in self-
attention, each input token has three representations, each for one role, i.e., query, key, and value.
When the token acts as a query, use the query vector q; when the token responds to a certain query,
use the key vector k to calculate attention scores, the attention score is then multiplied by the value
vector v to get the final output. The formula of self-attention is as follows:

Att(q,k,v) = softmax
(
qkT
√

d

)
v,

where d is the dimension of key and value vector. The output is computed as a weighted sum of
value vectors, where the weight assigned to each value is measured by the “relevance” of the key to
the query.

For a better understanding, Figure F.3 gives an example, in which there are three m-dimensional
input tokens, x1, x2 and x3. Each token is multiplied by W Q ∈ Rm×d, W K ∈ Rm×d, and W V ∈
Rm×d, three weight matrices to produce the corresponding query, key and value vectors. The output
is a weighted sum of v1, v2 and v3.

Input 𝒙" 𝒙𝟐 𝒙$

Query 𝒒" 𝒒& 𝒒$

Key 𝒌" 𝒌& 𝒌$

Value 𝒗" 𝒗& 𝒗$

softmax
𝒒"𝒌"0

𝑑�
𝒗"Output softmax

𝒒"𝒌&0

𝑑�
𝒗& softmax

𝒒"𝒌$0

𝑑�
𝒗$+ +

FIGURE F.3: An example of self-attention, adapted from3.

3http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

167

Bibliography

Liu, Junhua et al. (2019). “Ipod: An industrial and professional occupations dataset and its
applications to occupational data mining and analysis”. In: arXiv preprint arXiv:1910.10495.

Singh, Arjun et al. (2017). “Gradescope: a fast, flexible, and fair system for scalable assessment
of handwritten work”. In: Proceedings of the fourth (2017) acm conference on learning@ scale,
pp. 81–88.

Nie, Allen, Emma Brunskill, and Chris Piech (2021). “Play to Grade: Testing Coding Games as
Classifying Markov Decision Process”. In: Advances in Neural Information Processing Systems
34, pp. 1506–1518.

Smith, Brent andGregLinden (2017). “Twodecades of recommender systems atAmazon. com”.
In: Ieee internet computing 21.3, pp. 12–18.

Wang, Jizhe et al. (2018). “Billion-scale commodity embedding for e-commerce recommenda-
tion in alibaba”. In: Proceedings of the 24th ACMSIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 839–848.

McKinney, Scott Mayer et al. (2020). “International evaluation of an AI system for breast cancer
screening”. In: Nature 577.7788, pp. 89–94.

The Role of Digital Age in Recruitment (n.d.). https://currandaly.com/the-role-of-digital-
age-in-recruitment/.

Okolie, Ugo Chuks and Ikechukwu Emmanuel Irabor (2017). “E-recruitment: practices, oppor-
tunities and challenges”. In: European Journal of Business and Management 9.11, pp. 116–122.

81 LinkedIn Statistics You Need to Know in 2022 (n.d.). https://www.omnicoreagency.com/link
edin-statistics/.

Shaha, T Al-Otaibi and Ykhlef Mourad (2012). “A survey of job recommender systems”. In:
International Journal of Physical Sciences 7.29, pp. 5127–5142.

Malinowski, Jochen et al. (2006). “Matching people and jobs: A bilateral recommendation ap-
proach”. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06). Vol. 6. IEEE, pp. 137c–137c.

Lee, Danielle H and Peter Brusilovsky (2007). “Fighting information overflow with personal-
ized comprehensive information access: A proactive job recommender”. In: Third Interna-
tional Conference on Autonomic and Autonomous Systems (ICAS’07). IEEE, pp. 21–21.

Upadhyay, Ashwani Kumar and Komal Khandelwal (2018). “Applying artificial intelligence:
implications for recruitment”. In: Strategic HR Review.

https://currandaly.com/the-role-of-digital-age-in-recruitment/
https://currandaly.com/the-role-of-digital-age-in-recruitment/
https://www.omnicoreagency.com/linkedin-statistics/
https://www.omnicoreagency.com/linkedin-statistics/

168 Bibliography

Van Esch, Patrick, J Stewart Black, and Joseph Ferolie (2019). “Marketing AI recruitment: The
next phase in job application and selection”. In: Computers in Human Behavior 90, pp. 215–
222.

Javed, Faizan, Qinlong Luo, et al. (2015). “Carotene: A job title classification system for the on-
line recruitment domain”. In: 2015 IEEE First International Conference on Big Data Computing
Service and Applications. IEEE, pp. 286–293.

Javed, Faizan, Matt McNair, et al. (2016). “Towards a job title classification system”. In: arXiv
preprint arXiv:1606.00917.

Zhu, Chen et al. (2018). “Person-job fit: Adapting the right talent for the right job with joint
representation learning”. In: ACM Transactions on Management Information Systems (TMIS)
9.3, pp. 1–17.

Qin, Chuan et al. (2018). “Enhancing person-job fit for talent recruitment: An ability-aware
neural network approach”. In: The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, pp. 25–34.

Al-Otaibi, Shaha T and Mourad Ykhlef (2012). “A survey of job recommender systems”. In:
International Journal of Physical Sciences 7.29, pp. 5127–5142.

Geyik, Sahin Cem, Stuart Ambler, and Krishnaram Kenthapadi (2019). “Fairness-aware rank-
ing in search & recommendation systems with application to linkedin talent search”. In:
Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining,
pp. 2221–2231.

Kenthapadi, Krishnaram, Benjamin Le, and Ganesh Venkataraman (2017). “Personalized job
recommendation system at linkedin: Practical challenges and lessons learned”. In: Proceed-
ings of the eleventh ACM conference on recommender systems, pp. 346–347.

Bizer, Christian et al. (2005). “The impact of semantic web technologies on job recruitment pro-
cesses”. In: Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety. Springer, pp. 1367–
1381.

Malherbe, Emmanuel and Marie-Aude Aufaure (2016). “Bridge the terminology gap between
recruiters and candidates: A multilingual skills base built from social media and linked
data”. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). IEEE, pp. 583–590.

Lundqvist, Karsten Øster, Keith Baker, and Shirley Williams (2008). “An ontological approach
to competency management”. In:

Fazel-Zarandi, Maryam andMark S Fox (2009). “Semantic matchmaking for job recruitment: an
ontology-based hybrid approach”. In: Proceedings of the 8th International Semantic Web Con-
ference. Vol. 525. 01, p. 2009.

Khobreh,Marjan (2017). “Ontology enhanced representing and reasoning of job specific knowl-
edge to identify skill balance”. In:

Kessler, Rémy, Guy Lapalme, and Eric Tondo (2016). Génération d’une ontologie dans le domaine
des ressources humaines.

Bibliography 169

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013). “Representation learning: A re-
view and new perspectives”. In: IEEE transactions on pattern analysis and machine intelligence
35.8, pp. 1798–1828.

Zhang, Shuai et al. (2019). “Deep learning based recommender system: A survey and new per-
spectives”. In: ACM Computing Surveys (CSUR) 52.1, pp. 1–38.

Zhang, Ye andByronWallace (2015). “A sensitivity analysis of (andpractitioners’ guide to) con-
volutional neural networks for sentence classification”. In: arXiv preprint arXiv:1510.03820.

Sundermeyer, Martin, Ralf Schlüter, andHermannNey (2012). “LSTM neural networks for lan-
guage modeling”. In: Thirteenth annual conference of the international speech communication as-
sociation.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural information
processing systems, pp. 5998–6008.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine translation
by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473.

Graves, Alex, Abdel-rahmanMohamed, and Geoffrey Hinton (2013). “Speech recognition with
deep recurrent neural networks”. In: 2013 IEEE international conference on acoustics, speech and
signal processing. Ieee, pp. 6645–6649.

Yu, Feng et al. (2016). “A dynamic recurrent model for next basket recommendation”. In: Pro-
ceedings of the 39th International ACM SIGIR conference on Research and Development in Infor-
mation Retrieval, pp. 729–732.

Hidasi, Balázs, Alexandros Karatzoglou, et al. (2015). “Session-based recommendations with
recurrent neural networks”. In: arXiv preprint arXiv:1511.06939.

Hidasi, Balázs, Massimo Quadrana, et al. (2016). “Parallel recurrent neural network architec-
tures for feature-rich session-based recommendations”. In: Proceedings of the 10th ACM con-
ference on recommender systems, pp. 241–248.

Zhou, Jie, Ganqu Cui, Shengding Hu, et al. (2020). “Graph neural networks: A review of meth-
ods and applications”. In: AI Open 1, pp. 57–81.

Wu, Zonghan et al. (2020). “A comprehensive survey on graph neural networks”. In: IEEE trans-
actions on neural networks and learning systems 32.1, pp. 4–24.

Bian, Shuqing, Wayne Xin Zhao, et al. (2019). “Domain adaptation for person-job fit with trans-
ferable deep global match network”. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 4812–4822.

Schumann, Candice et al. (2020). “We need fairness and explainability in algorithmic hiring”.
In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).

Zhang, Yongfeng and Xu Chen (2018). “Explainable recommendation: A survey and new per-
spectives”. In: arXiv preprint arXiv:1804.11192.

Arrieta, Alejandro Barredo et al. (2020). “Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI”. In: Information fusion 58,
pp. 82–115.

170 Bibliography

Li, Liangyue et al. (2017). “Nemo: Next career move prediction with contextual embedding”.
In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 505–513.

Meng, Qingxin et al. (2019). “A hierarchical career-path-aware neural network for job mobility
prediction”. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 14–24.

Wang, Jingya et al. (2019). “DeepCarotene-Job Title Classification with Multi-stream Convolu-
tional Neural Network”. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE,
pp. 1953–1961.

Zhao, Meng et al. (2015). “SKILL: A system for skill identification and normalization”. In:
Twenty-Seventh IAAI Conference.

Xu, Tong et al. (2018). “Measuring the popularity of job skills in recruitment market: A multi-
criteria approach”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

Zhang, Denghui et al. (2019). “Job2Vec: Job title benchmarking with collective multi-view rep-
resentation learning”. In: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, pp. 2763–2771.

Dave, Vachik S et al. (2018). “A combined representation learning approach for better job and
skill recommendation”. In: Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pp. 1997–2005.

Hamilton,William L, Rex Ying, and Jure Leskovec (2017a). “Representation learning on graphs:
Methods and applications”. In: arXiv preprint arXiv:1709.05584.

Ospino, Carlos (2018). “Occupations: Labor Market Classifications, Taxonomies, and Ontolo-
gies in the 21st Century”. In: Inter-American Development Bank.

Souza Pereira Moreira, Gabriel de, Felipe Ferreira, and Adilson Marques da Cunha (2018).
“News session-based recommendations using deep neural networks”. In: Proceedings of the
3rd Workshop on Deep Learning for Recommender Systems, pp. 15–23.

Li, Jing et al. (2017). “Neural attentive session-based recommendation”. In: Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, pp. 1419–1428.

Fang, Hui, Danning Zhang, et al. (2020). “Deep Learning for Sequential Recommendation: Al-
gorithms, Influential Factors, and Evaluations”. In: ACM Transactions on Information Systems
(TOIS) 39.1, pp. 1–42.

Kivimäki, Ilkka et al. (2013). “A graph-based approach to skill extraction from text”. In: Pro-
ceedings of TextGraphs-8 graph-based methods for natural language processing, pp. 79–87.

Javed, Faizan, Phuong Hoang, et al. (2017). “Large-scale occupational skills normalization for
online recruitment”. In: Twenty-ninth IAAI conference.

Sayfullina, Luiza, Eric Malmi, and Juho Kannala (2018). “Learning representations for soft skill
matching”. In: Analysis of Images, Social Networks and Texts: 7th International Conference, AIST
2018, Moscow, Russia, July 5–7, 2018, Revised Selected Papers 7. Springer, pp. 141–152.

Khaouja, Imane et al. (2019). “Building a soft skill taxonomy from job openings”. In: Social Net-
work Analysis and Mining 9.1, pp. 1–19.

Bibliography 171

Gugnani, Akshay andHemantMisra (2020). “Implicit skills extraction using document embed-
ding and its use in job recommendation”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 08, pp. 13286–13293.

Wings, Ivo, Rohan Nanda, and Kolawole John Adebayo (2021). “A context-aware approach for
extracting hard and soft skills”. In: Procedia Computer Science 193, pp. 163–172.

Zhou,Wenjun et al. (2016). “Quantifying skill relevance to job titles”. In: 2016 IEEE International
Conference on Big Data (Big Data). IEEE, pp. 1532–1541.

Börner, Katy et al. (2018). “Skill discrepancies between research, education, and jobs reveal
the critical need to supply soft skills for the data economy”. In: Proceedings of the National
Academy of Sciences 115.50, pp. 12630–12637.

Nigam, Amber et al. (2020). “SkillBERT:“Skilling” the BERT to classify skills!” In:

Liu, Mengshu et al. (2019). “Tripartite Vector Representations for Better Job Recommendation”.
In: arXiv preprint arXiv:1907.12379.

Decorte, Jens-Joris et al. (2021). “JobBERT: Understanding job titles through skills”. In: arXiv
preprint arXiv:2109.09605.

Zhang, Le et al. (2021). “Attentive heterogeneous graph embedding for jobmobility prediction”.
In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 2192–2201.

Yamashita, Michiharu et al. (2022). “JAMES: Job Title Mapping withMulti-Aspect Embeddings
and Reasoning”. In: arXiv preprint arXiv:2202.10739.

Xu, Huang, Zhiwen Yu, Bin Guo, et al. (2018). “Extracting Job Title Hierarchy from Career Tra-
jectories: A Bayesian Perspective.” In: IJCAI, pp. 3599–3605.

Liu, Ye et al. (2016). “Fortune teller: predicting your career path”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 30. 1.

James, Charlotte et al. (2018). “Prediction of next careermoves from scientific profiles”. In: arXiv
preprint arXiv:1802.04830.

Yang, Yang, De-Chuan Zhan, and Yuan Jiang (2018). “Which one will be next? An analysis
of talent demission”. In: The 1st International Workshop on Organizational Behavior and Talent
Analytics (Held in conjunction with KDD’18).

Xu, Huang, Zhiwen Yu, Jingyuan Yang, et al. (2016). “Talent circle detection in job transition
networks”. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 655–664.

Shen, Dazhong et al. (2018). “A joint learning approach to intelligent job interview assessment.”
In: IJCAI. Vol. 18, pp. 3542–3548.

Yan, Rui et al. (2019). “Interview choice reveals your preference on the market: to improve job-
resume matching through profiling memories”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 914–922.

172 Bibliography

Luo, Yong et al. (2019). “ResumeGAN: An Optimized Deep Representation Learning Frame-
work for Talent-Job Fit via Adversarial Learning”. In: Proceedings of the 28th ACM Interna-
tional Conference on Information and Knowledge Management, pp. 1101–1110.

Bian, Shuqing, Xu Chen, et al. (2020). “Learning to Match Jobs with Resumes from Sparse In-
teraction Data using Multi-View Co-Teaching Network”. In: Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Management, pp. 65–74.

Lacic, Emanuel et al. (2020). “Using autoencoders for session-based job recommendations”. In:
User Modeling and User-Adapted Interaction 30.4, pp. 617–658.

Bastian, Mathieu et al. (2014). “Linkedin skills: large-scale topic extraction and inference”. In:
Proceedings of the 8th ACM Conference on Recommender systems, pp. 1–8.

Mikolov, Tomas, Kai Chen, et al. (2013). “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781.

Bojanowski, Piotr et al. (2017). “Enriching word vectors with subword information”. In: Trans-
actions of the association for computational linguistics 5, pp. 135–146.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for language
understanding”. In: arXiv preprint arXiv:1810.04805.

Lee, Jinhyuk et al. (2020). “BioBERT: a pre-trained biomedical language representation model
for biomedical text mining”. In: Bioinformatics 36.4, pp. 1234–1240.

Beltagy, Iz, Kyle Lo, and Arman Cohan (2019). “SciBERT: A pretrained language model for
scientific text”. In: arXiv preprint arXiv:1903.10676.

Peters, Matthew E et al. (2018). “Deep contextualized word representations”. In: arXiv preprint
arXiv:1802.05365.

Mikolov, Tomas, Ilya Sutskever, et al. (2013). “Distributed representations of words and phrases
and their compositionality”. In: Advances in neural information processing systems, pp. 3111–
3119.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural com-
putation 9.8, pp. 1735–1780.

Edwards, Jeffrey R (1991). Person-job fit: A conceptual integration, literature review, and methodolog-
ical critique. John Wiley & Sons.

Sekiguchi, Tomoki (2004). “Person-organization fit and person-job fit in employee selection: A
review of the literature”. In: Osaka keidai ronshu 54.6, pp. 179–196.

Makhzani, Alireza et al. (2015). “Adversarial autoencoders”. In: arXiv preprint arXiv:1511.05644.
Cai, Hongyun, Vincent W Zheng, and Kevin Chen-Chuan Chang (2018). “A comprehensive

survey of graph embedding: Problems, techniques, and applications”. In: IEEE Transactions
on Knowledge and Data Engineering 30.9, pp. 1616–1637.

Zhang, Daokun et al. (2018). “Network representation learning: A survey”. In: IEEE transactions
on Big Data 6.1, pp. 3–28.

Bibliography 173

Liben-Nowell, David and Jon Kleinberg (2007). “The link-prediction problem for social net-
works”. In: Journal of the American society for information science and technology 58.7, pp. 1019–
1031.

Lü, Linyuan and Tao Zhou (2011). “Link prediction in complex networks: A survey”. In: Physica
A: statistical mechanics and its applications 390.6, pp. 1150–1170.

Bhagat, Smriti, Graham Cormode, and S Muthukrishnan (2011). “Node classification in social
networks”. In: Social network data analytics. Springer, pp. 115–148.

Cavallari, Sandro et al. (2017). “Learning community embedding with community detection
and node embedding on graphs”. In: Proceedings of the 2017 ACM onConference on Information
and Knowledge Management, pp. 377–386.

Wang, Xiao, Peng Cui, et al. (2017). “Community preserving network embedding”. In: Thirty-
first AAAI conference on artificial intelligence.

Shi, Chuan et al. (2018). “Heterogeneous information network embedding for recommenda-
tion”. In: IEEE Transactions on Knowledge and Data Engineering 31.2, pp. 357–370.

Tang, Jian, Jingzhou Liu, et al. (2016). “Visualizing large-scale and high-dimensional data”. In:
Proceedings of the 25th international conference on world wide web, pp. 287–297.

Le,Quoc andTomasMikolov (2014). “Distributed representations of sentences anddocuments”.
In: International conference on machine learning. PMLR, pp. 1188–1196.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (2014). “Deepwalk: Online learning of social
representations”. In: Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710.

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable feature learning for networks”.
In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 855–864.

Kipf, Thomas N and Max Welling (2016). “Semi-supervised classification with graph convolu-
tional networks”. In: arXiv preprint arXiv:1609.02907.

Hamilton, William L, Rex Ying, and Jure Leskovec (2017b). “Inductive representation learn-
ing on large graphs”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035.

Veličković, Petar, Guillem Cucurull, et al. (2017). “Graph attention networks”. In: arXiv preprint
arXiv:1710.10903.

Schlichtkrull, Michael et al. (2018). “Modeling relational data with graph convolutional net-
works”. In: European semantic web conference. Springer, pp. 593–607.

Tang, Jian, Meng Qu, et al. (2015). “Line: Large-scale information network embedding”. In:
Proceedings of the 24th international conference on world wide web, pp. 1067–1077.

Veličković, Petar,WilliamFedus, et al. (2018). “Deep graph infomax”. In: arXiv preprint arXiv:1809.10341.
Dong, Yuxiao, Nitesh V Chawla, and Ananthram Swami (2017). “metapath2vec: Scalable rep-

resentation learning for heterogeneous networks”. In: Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 135–144.

174 Bibliography

Chen, Hongxu et al. (2018). “PME: projected metric embedding on heterogeneous networks for
link prediction”. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 1177–1186.

Wang, Xiao, Houye Ji, et al. (2019). “Heterogeneous graph attention network”. In: The World
Wide Web Conference, pp. 2022–2032.

Gilmer, Justin et al. (2017). “Neural message passing for quantum chemistry”. In: International
conference on machine learning. PMLR, pp. 1263–1272.

Adomavicius, Gediminas and Alexander Tuzhilin (2005). “Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions”. In: IEEE trans-
actions on knowledge and data engineering 17.6, pp. 734–749.

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2010). “Introduction to recommender sys-
tems handbook”. In: Recommender systems handbook. Springer, pp. 1–35.

Breese, John S, David Heckerman, and Carl Kadie (2013). “Empirical analysis of predictive al-
gorithms for collaborative filtering”. In: arXiv preprint arXiv:1301.7363.

Fkih, Fethi (2022). “Similarity measures for Collaborative Filtering-based Recommender Sys-
tems: Review and experimental comparison”. In: Journal of King Saud University-Computer
and Information Sciences 34.9, pp. 7645–7669.

Salton, Gerard and Christopher Buckley (1988). “Term-weighting approaches in automatic text
retrieval”. In: Information processing & management 24.5, pp. 513–523.

Jin, Xin, Yanzan Zhou, and Bamshad Mobasher (2005). “A maximum entropy web recommen-
dation system: combining collaborative and content features”. In: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 612–617.

Wang, Chong and David M Blei (2011). “Collaborative topic modeling for recommending sci-
entific articles”. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 448–456.

Musto, Cataldo et al. (2015). “Word Embedding Techniques for Content-based Recommender
Systems: An Empirical Evaluation.” In: Recsys posters.

— (2016). “Learning word embeddings from wikipedia for content-based recommender sys-
tems”. In: Advances in Information Retrieval: 38th European Conference on IR Research, ECIR
2016, Padua, Italy, March 20–23, 2016. Proceedings 38. Springer, pp. 729–734.

Burke, Robin (2002). “Hybrid recommender systems: Survey and experiments”. In: User mod-
eling and user-adapted interaction 12.4, pp. 331–370.

— (2007). “Hybrid web recommender systems”. In: The adaptive web. Springer, pp. 377–408.
Wang, Shoujin, LiangHu, et al. (2019). “Sequential recommender systems: challenges, progress

and prospects”. In: arXiv preprint arXiv:2001.04830.
Wang, Shoujin, LongbingCao, andYanWang (2019). “A survey on session-based recommender

systems”. In: arXiv preprint arXiv:1902.04864.
Quadrana, Massimo, Paolo Cremonesi, and Dietmar Jannach (2018). “Sequence-aware recom-

mender systems”. In: ACM Computing Surveys (CSUR) 51.4, pp. 1–36.

Bibliography 175

Ludewig, Malte and Dietmar Jannach (2018). “Evaluation of session-based recommendation
algorithms”. In: User Modeling and User-Adapted Interaction 28.4-5, pp. 331–390.

He, Ruining and Julian McAuley (2016). “Fusing similarity models with markov chains for
sparse sequential recommendation”. In: 2016 IEEE 16th International Conference on Data Min-
ing (ICDM). IEEE, pp. 191–200.

Rendle, Steffen, Christoph Freudenthaler, and Lars Schmidt-Thieme (2010). “Factorizing per-
sonalized markov chains for next-basket recommendation”. In: Proceedings of the 19th inter-
national conference on World wide web, pp. 811–820.

Jannach, Dietmar andMalte Ludewig (2017). “When recurrent neural networksmeet the neigh-
borhood for session-based recommendation”. In: Proceedings of the Eleventh ACM Conference
on Recommender Systems, pp. 306–310.

Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami (1993). “Mining association rules be-
tween sets of items in large databases”. In: Proceedings of the 1993 ACMSIGMOD international
conference on Management of data, pp. 207–216.

Hidasi, Balázs and Alexandros Karatzoglou (2018). “Recurrent neural networks with top-k
gains for session-based recommendations”. In: Proceedings of the 27th ACM International Con-
ference on Information and Knowledge Management, pp. 843–852.

Lerche, Lukas, Dietmar Jannach, andMalte Ludewig (2016). “On the value of reminders within
e-commerce recommendations”. In: Proceedings of the 2016 Conference on UserModeling Adap-
tation and Personalization, pp. 27–35.

Bonnin, Geoffray and Dietmar Jannach (2014). “Automated generation of music playlists: Sur-
vey and experiments”. In: ACM Computing Surveys (CSUR) 47.2, pp. 1–35.

Kamehkhosh, Iman, Dietmar Jannach, and Malte Ludewig (2017). “A Comparison of Frequent
Pattern Techniques and a Deep Learning Method for Session-Based Recommendation.” In:
RecTemp@ RecSys, pp. 50–56.

Linden, Greg, Brent Smith, and Jeremy York (2003). “Amazon. com recommendations: Item-to-
item collaborative filtering”. In: IEEE Internet computing 7.1, pp. 76–80.

Su, Xiaoyuan andTaghiMKhoshgoftaar (2009). “A survey of collaborative filtering techniques”.
In: Advances in artificial intelligence 2009.

Quadrana, Massimo, Alexandros Karatzoglou, et al. (2017). “Personalizing session-based rec-
ommendations with hierarchical recurrent neural networks”. In: Proceedings of the Eleventh
ACM Conference on Recommender Systems, pp. 130–137.

Cho, Kyunghyun et al. (2014). “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv:1406.1078.

Tan, Yong Kiam, Xinxing Xu, and Yong Liu (2016). “Improved recurrent neural networks for
session-based recommendations”. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, pp. 17–22.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1–9.

176 Bibliography

Tang, Jiaxi and Ke Wang (2018). “Personalized top-n sequential recommendation via convolu-
tional sequence embedding”. In: Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, pp. 565–573.

Tuan, Trinh Xuan and Tu Minh Phuong (2017). “3D convolutional networks for session-based
recommendation with content features”. In: Proceedings of the Eleventh ACM Conference on
Recommender Systems, pp. 138–146.

Kang, Wang-Cheng and Julian McAuley (2018). “Self-attentive sequential recommendation”.
In: 2018 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 197–206.

Liu, Qiao et al. (2018). “STAMP: short-term attention/memory prioritymodel for session-based
recommendation”. In: Proceedings of the 24th ACMSIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 1831–1839.

Sun, Fei et al. (2019). “BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer”. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 1441–1450.

Zhou, Jie, Ganqu Cui, Zhengyan Zhang, et al. (2018). “Graph neural networks: A review of
methods and applications”. In: arXiv preprint arXiv:1812.08434.

Wu, Shiwen et al. (2022). “Graph neural networks in recommender systems: a survey”. In:ACM
Computing Surveys 55.5, pp. 1–37.

Wu, Shu et al. (2019). “Session-based recommendation with graph neural networks”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 346–353.

Li, Yujia et al. (2015). “Gated graph sequence neural networks”. In: arXiv preprint arXiv:1511.05493.
Fang, Hui, Guibing Guo, et al. (2019). “Deep learning-based sequential recommender systems:

Concepts, algorithms, and evaluations”. In: International Conference onWebEngineering. Springer,
pp. 574–577.

Fauconnier, Jean-Philippe (2015). FrenchWord Embeddings. url: http://fauconnier.github.io.
Xiao, Han (2018). bert-as-service. https://github.com/hanxiao/bert-as-service.
Wang, Minjie et al. (2019). “Deep Graph Library: A Graph-Centric, Highly-Performant Package

for Graph Neural Networks”. In: arXiv preprint arXiv:1909.01315.
Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980.
Valentini, Giorgio et al. (2021). “Het-node2vec: second order randomwalk sampling for hetero-

geneous multigraphs embedding”. In: arXiv preprint arXiv:2101.01425.
Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing data using t-SNE.” In: Jour-

nal of machine learning research 9.11.
Zhang, Tianqi et al. (2020). “CommDGI: community detection oriented deep graph infomax”.

In: Proceedings of the 29th ACM International Conference on Information & Knowledge Manage-
ment, pp. 1843–1852.

Du, Lun et al. (2018). “Galaxy Network Embedding: A Hierarchical Community Structure Pre-
serving Approach.” In: IJCAI, pp. 2079–2085.

http://fauconnier.github.io
https://github.com/hanxiao/bert-as-service

Bibliography 177

Long, Qingqing et al. (2019). “Hierarchical community structure preserving network embed-
ding: A subspace approach”. In: Proceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management, pp. 409–418.

Bhowmick, AyanKumar et al. (2020). “Louvainne:Hierarchical louvainmethod for high quality
and scalable network embedding”. In: Proceedings of the 13th International Conference on Web
Search and Data Mining, pp. 43–51.

Wang,Meng et al. (2015). “Community detection in social networks: an in-depth benchmarking
study with a procedure-oriented framework”. In: Proceedings of the VLDB Endowment 8.10,
pp. 998–1009.

Blondel, Vincent D et al. (2008). “Fast unfolding of communities in large networks”. In: Journal
of statistical mechanics: theory and experiment 2008.10, P10008.

Zhong, Zhiqiang, Cheng-Te Li, and Jun Pang (2020). “Hierarchical Message-Passing Graph
Neural Networks”. In: arXiv preprint arXiv:2009.03717.

Tripathi, Pooja, Ruchi Agarwal, and Tanushi Vashishtha (2016). “Review of job recommender
system using big data analytics”. In: 2016 3rd International Conference on Computing for Sus-
tainable Global Development (INDIACom). IEEE, pp. 3773–3777.

Huang, Po-Sen et al. (2013). “Learning deep structured semantic models for web search using
clickthrough data”. In: Proceedings of the 22nd ACM international conference on Information &
Knowledge Management, pp. 2333–2338.

Wu, Chuhan et al. (2019). “NPA: neural news recommendation with personalized attention”.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2576–2584.

Gabriel De Souza, P Moreira, Dietmar Jannach, and Adilson Marques Da Cunha (2019). “Con-
textual hybrid session-based news recommendation with recurrent neural networks”. In:
IEEE Access 7, pp. 169185–169203.

Abel, Fabian et al. (2017). “Recsys challenge 2017: Offline and online evaluation”. In: Proceedings
of the Eleventh ACM Conference on Recommender Systems, pp. 372–373.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier nonlinearities improve
neural network acoustic models”. In: Proc. icml. Vol. 30. 1. Citeseer, p. 3.

Grave, Edouard et al. (2018). “Learning Word Vectors for 157 Languages”. In: Proceedings of the
International Conference on Language Resources and Evaluation (LREC 2018).

Naseem, Usman et al. (2021). “A comprehensive survey on word representation models: From
classical to state-of-the-art word representation language models”. In: Transactions on Asian
and Low-Resource Language Information Processing 20.5, pp. 1–35.

Pennington, Jeffrey, Richard Socher, and Christopher DManning (2014). “Glove: Global vectors
for word representation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543.

Bengio, Yoshua, Réjean Ducharme, et al. (2003). “A neural probabilistic language model”. In:
The journal of machine learning research 3, pp. 1137–1155.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.

178 Bibliography

Luong, Minh-Thang, Hieu Pham, and Christopher DManning (2015). “Effective approaches to
attention-based neural machine translation”. In: arXiv preprint arXiv:1508.04025.

	Acknowledgements
	List of Abbreviations
	Introduction
	Context and Motivation
	AI Opens up a New Era for Recruitment
	Industrial Context: Randstad Wants an AI Recruitment System
	Why Deep Learning?

	Available Data in the Recruitment Field
	Challenges Posed by Recruitment Data
	Tasks Handled in this Thesis
	Job Title Representation Learning from Graphs
	Skill Representation Learning by Leveraging Hierarchical Graph
	Next-Application Prediction from Job Application Sequences

	Thesis Organization

	Related Works in the Recruitment Field
	Terminology and Notation
	Skill Oriented
	Skill Extraction
	Skill Analysis
	Skill Representation Learning
	Available Skill Datasets and Tools

	Job Title Oriented
	Job Title Representation Learning
	Job Title Classification
	Job Title Analysis
	Available Job/Job Title Datasets and Tools

	Career Path Oriented
	Job Mobility Prediction
	Career Path Analysis
	Available Resume/Career Path Datasets and Tools

	Matching Records Oriented
	Person-Job Fit
	Available Person-Job Matching Datasets and Tools

	Others
	Summary and Positioning

	Preliminary
	Review of Graph Embedding Models
	Basic Concepts
	Graph Embedding
	Representative Node-Level Graph Embedding Models
	Homogeneous Graph Embedding
	Heterogeneous Graph Embedding

	Related Works on Recommendation Model
	Background on Recommender Systems
	Recommendation Problem Formulation
	Collaborative Filtering
	Content-Based
	Hybrid Filtering

	Sequential Recommendation Models
	Sequential Recommendation Formulation
	Traditional Sequential Recommendation Methods
	Deep Learning Based Sequential Recommendation Methods
	Evaluation Metrics

	Job Title Representation Learning from Graphs
	Motivation
	Research Scope
	Learning from Job-Transition Graph: an Overview
	Our Method: Integrating Job Knowledge to Enrich Representations
	Job Title Composition
	Methodology

	Application on Two Real Recruitment Datasets
	Datasets
	Tag Generation
	Experimental Settings

	Results
	Job Title Classification
	Next-Job Prediction
	Visualization

	Conclusion and Perspectives

	Skill Representation Learning by Leveraging Hierarchical Graph
	Motivation
	Research Scope
	Our objective: Preserving Pairwise Proximity and Community Hierarchy
	Problem Formulation
	Review of Community Preserving Graph Embedding Models
	Review of Hierarchical Community Structure Preserving Graph Embedding Models

	Benchmark Graph Embeddings for Skill Representation Learning
	Datasets
	Dataset Analysis
	Experimental Settings

	Results
	Occupation Classification
	Skill Category Granularity

	Conclusion and Perspectives

	Next-Application Prediction from Job Application Sequences
	Motivation
	Research Scope
	Proposed Method: the PANAP Framework
	Problem Formulation
	Proposed Model
	Job Content Representation
	Job Seeker Representation
	Next-Application Predictor
	Negative Sampling Strategies

	Experiments
	Datasets
	Experimental Settings

	Results
	Next-Application Prediction
	Effectiveness of Personalized Attention
	Effectiveness of Different Features
	Negative Sampling Analysis
	Number of Negative Samples
	Effectiveness of Different Text Encoders
	Effectiveness of Different Sections of Job Content

	Conclusion and Perspectives

	Conclusion and Perspectives
	Supplementary Results
	Job Title Representation Learning from Graphs
	Skill Representation Learning by Leveraging Hierarchical Graph
	Next-Application Prediction from Job Application Sequences

	Dataset and Tool Description
	Dataset
	CareerBuilder12
	Job Title Label Assignment

	Randstad
	Parsed Resume

	IPOD

	Terminology resource
	ISCO 2008
	SOC 2018
	O*NET 2019
	ESCO 2017
	ESCO_K

	ROME

	Tool
	O*NET-SOC AutoCoder

	Experimental Datasets
	Chapter 4: Skill Representation Learning

	Feature Extraction Methods
	Classical Methods
	Categorical Word Representation
	Weighted Word Representation

	Representation Learning Methods
	Non-Contextual Word Representation
	Contextual Word Representation

	Preliminary of Graph Embedding
	Skip-Gram
	Language Modeling with Skip-Gram
	Negative Sampling
	Hierarchical Softmax

	Neural Network Architecture
	Multilayer Perceptron
	Convolutiona Neural Network
	Recurrent Neural Network
	Long Short Term Memory
	Gated Recurrent Unit

	Attention Mechanism
	Attention
	Self-Attention

	Bibliography

