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Titre Transport optimal semi-discret symétrique pour l’interpolation de
maillages

Résumé Cette thèse a pour but de développer des méthodes géométriques
pour approximer l’interpolation de déplacement, issue du transport opti-
mal. Le transport optimal est une théorie mathématique modélisant des
déplacements de matière sous une contrainte de minimisation de coût, avec
de nombreuses applications en physique, en informatique graphique et en
géométrie. Le coût minimal du déplacement entre deux distributions définit
une distance, qui elle-même est à l’origine de l’interpolation de déplacement.
Ces interpolations peuvent sous certaines conditions présenter des disconti-
nuités, que les approximations discrétisées du transport optimal n’arrivent
pas toujours à bien capturer. Le travail de cette thèse vise à développer une
approximation qui capture bien ces discontinuités.

Notre méthode s’appuie sur le transport optimal semi-discret, où seul l’une
des distributions est discrétisée, capturant ainsi avec précision les disconti-
nuités de la distribution restée continue. Les plans de transport ainsi obtenus
partitionnent la distribution continue en cellules associées aux échantillons
de la discrétisation. On peut donc assimiler un plan de transport optimal
semi-discret à un diagramme de puissance composé de ces cellules. Cette va-
riante du transport optimal a cependant l’inconvénient de briser la symétrie
entre les deux distributions. Nous commençons par formaliser notre problème
comme la recherche de plans de transport couplés par le biais des barycentres
de leurs cellules. Nous présentons ensuite un premier algorithme pour le cal-
cul de ces plans de transport couplés. Il repose sur un schéma classique
d’algorithme alterné, calculant successivement des plans de transport et les
barycentres de leur cellules jusqu’à convergence. Les résultats obtenus à par-
tir de cet algorithme permettent d’interpoler entre les distributions initiales
en conservant une précision satisfaisante, en particulier au niveau des dis-
continuités, et y compris lorsque la discrétisation des distributions est faits
avec relativement peu de points. Nous présentons ensuite notre exploration
de méthodes d’optimisation pour résoudre le même problème. Ces méthodes
expriment les contraintes de notre problème comme un point critique d’une
fonctionnelle, et cherchent à atteindre ces points à l’aide d’algorithmes tels
que l’algorithme de Newton. Cette approche n’a cependant pas donné de
résultats concluants, les fonctions considérées étant trop bruitées pour se
prêter à des algorithmes d’optimisation.

Mots clés Transport optimal, Interpolation, Optimisation, Géométrie al-
gorithmique
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Title Symmetric semi-discrete optimal transport for mesh interpolation

Abstract This thesis aims to develop geometric methods to approximate
displacement interpolation, derived from optimal transport. Optimal trans-
port is a mathematical theory modeling movements of matter under a cost
minimization constraint, with many applications in physics, computer graph-
ics and geometry. The minimum displacement cost between two distributions
defines a distance, which itself is at the origin of displacement interpolation.
This interpolation may under certain conditions present discontinuities, that
the discretized approximations of the optimal transport do not always suc-
cessfully capture. The work of this thesis aims to develop an approximation
that captures these discontinuities well.
Our method relies on semi-discrete optimal transport, where only one of

the distributions is discretized, thus accurately capturing the discontinuities
of the distribution that remains continuous. The transport plans thus ob-
tained partition the continuous distribution into cells associated with the
samples of the discretization. A semi-discrete optimal transport plan can
thus be assimilated to a power diagram made up of these cells. This variant
of optimal transport however has the disadvantage of breaking the symmetry
between the two distributions. We start by formalizing our problem as the
search for a pair of transport plans coupled through the barycenters of their
cells. We then present an algorithm for calculating these coupled transport
plans. This first algorithm is based on a classical alternating algorithm
scheme, successively computing the transport plans and the barycenters of
their cells until convergence. The results obtained from this algorithm allow
to interpolate between the initial distributions while maintaining a satis-
factory precision, in particular when it comes to discontinuities, including
when the discretization of the distributions is done with relatively few points.
We then present our exploration of optimization methods for solving the
same problem. These methods express the constraints of our problem as a
critical point of a functional, and aim to reach these points using algorithms
such as Newton’s method. However, this approach did not yield conclusive
results, as the functions involved were too noisy to lend themselves well to
optimization algorithms.

Keywords Optimal transport, Interpolation, Optimization, Algorithmic
geometry
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Résumé en français

Cette thèse a pour but de développer des méthodes géométriques pour l’ap-
proximation de l’interpolation de déplacement. L’interpolation de déplace-
ment est une interpolation basée sur la théorie du transport optimal, qui
modélise des déplacements de matière sous des contraintes de coût. Le coût
minimal du déplacement de la matière entre deux distributions définit une
distance sur l’ensemble des distributions, et l’interpolation associée est l’in-
terpolation de déplacement, qui représente le trajet de la matière d’une
distribution à une autre. La fonction représentant le déplacement de la
matière d’un point de la distribution de départ à la distribution d’arrivée
est appelée un plan de transport.

La théorie du transport optimal et l’interpolation de déplacement trouvent
de nombreuses applications dans des domaines variés. On peut par exemple
citer le transfert de couleurs, où le transport s’effectue dans l’espace des
couleurs entre deux histogrammes ; les algorithmes d’apprentissage, où cette
notion de distance permet de mesurer l’adéquation des résultats générés
aux données d’entrée ; ou encore la simulation de fluides, les distributions
représentant l’état du fluides à différents pas de temps.

Les algorithmes développés dans cette thèse utilisent une version du trans-
port optimal appelée le transport semi-discret. Dans ce cadre, la distribution
d’arrivée du transport est discrétisée par un nuage de points (appelés sites),
tandis que la distribution de départ reste continue. Les plans de transport
ainsi produits partitionnent l’espace de départ en un ensemble de polyèdres
convexes, en correspondance avec les points de la distribution discrète. Ces
polyèdres forment une variante des diagrammes de Voronoi appelée dia-
grammes de puissances, où l’aire de chaque cellule est contrôlée par un
paramètre scalaire, appelé son poids. Les poids définissant un plan de trans-
port optimal peuvent être calculés en minimisant une fonctionnelle convexe
définie sur l’ensemble des vecteurs de poids. Il existe plusieurs algorithmes
efficaces pour optimiser cette fonctionnelle.

L’inconvénient principal du transport semi-discret est son manque de
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symétrie : l’une des distributions étant discrétisée et l’autre continue, elles
ne peuvent pas jouer des rôles interchangeables. Ainsi, dans le but de cal-
culer une approximation de l’interpolation de déplacement entre deux dis-
tributions, nous contournons ce problème en définissant non pas un mais
deux plans de transport, chacun transportant de l’une des distributions vers
une discrétisation de l’autre. Afin de capturer les caractéristiques du plan
de transport, en particulier ses discontinuités, ces plans de transport sont
couplés : on impose que les points de la discrétisation d’un domaine soient
situés aux barycentres des cellules le transportant vers l’autre domaine. En
conséquence, les deux discrétisations doivent comporter le même nombre
d’échantillons.
Nous présentons un premier algorithme pour calculer ces plans de trans-

port couplés. Cet algorithme s’inspire d’algorithmes classiques tels que l’al-
gorithme de Lloyd. Appliqué à deux distributions µ et ν, il consiste à alter-
nativement calculer le plan de transport de sa distribution de départ (par
exemple µ) vers la discrétisation de sa distribution d’arrivée (ici ν), puis
repositionner les échantillons de la discrétisation de µ sur les barycentres des
cellules de µ. La deuxième partie de cette itération s’effectue en réalisant la
même opération en inversant les rôles de µ et ν. Cet algorithme converge en
pratique en une centaine d’itérations. L’interpolation linéaire des nuages de
points discrétisant µ et ν produit une première approximation de l’interpo-
lation de déplacement entre µ et ν.
Nous étudions ensuite la possibilité d’atteindre le même objectif par des

méthodes d’optimisation itératives, telles que la descente de gradient ou
l’algorithme de Newton. Ces optimisations portent sur des fonctions ob-
jectif constituées d’une combinaison de la fonctionnelle du transport et de
fonctions exprimant les contraintes barycentriques. Au contraire de l’opti-
misation calculant le transport, ces optimisations portent sur les poids du
transport et les positions des sites. La fonctionnelle de transport, considérée
comme une fonction de ces deux variables, n’est ni convexe, ni concave, mais
comporte un point selle incompatible avec l’objectif poursuivi dans cette
thèse. L’utilisation d’une simple descente de gradient a donc été abandonnée
pour cette raison. Nous présentons ensuite une variante de la méthode de
Newton visant à minimiser une fonction sous des contraintes d’égalité. Cette
méthode cherche à annuler un vecteur exprimant toutes les contraintes du
problème (optimalité des plans de transport et recentrage des sites). Bien
que cette méthode semble théoriquement appropriée à la résolution de notre
problème, le caractère très sensible des plans de transport aux perturbations
la rend concrètement impraticable.

Enfin, nous exposons comment utiliser le résultat de cet algorithme pour
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calculer une approximation fidèle de l’interpolation entre µ et ν. Nous nous
appuyons pour cela sur une propriété remarquable de nos plans de trans-
port couplés, dans lesquels les relations de voisinages entre cellules sont
préservées d’un diagramme à l’autre (i.e., si deux cellules sont voisines dans
le diagramme de µ, leurs cellules correspondantes seront aussi voisines dans
le diagramme de ν). En conséquence, la géométrie des cellules est également
préservée, hormis dans le cas où le plan de transport comporte des discon-
tinuités. Dans ce dernier cas, on observe empiriquement que les frontières
des cellules s’alignent avec ces discontinuités. Cela permet d’obtenir, en
interpolant linéairement entre les sommets des diagrammes de puissance,
une approximation de l’interpolation de déplacement qui couvre la totalité
des distributions initiales et capture correctement ses discontinuités. Une
évaluation quantitative de cet algorithme, en comparant ces résultats à ceux
d’une approximation précédente, considérée comme réalité terrain, montre
qu’il donne de meilleurs résultats, y compris en utilisant bien moins de points
pour ses discrétisations.
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Je remercie mes directeurs de thèse, Nicolas Bonneel et Julie Digne, de
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pour peut-être, qui sait, m’y engager définitivement un jour. Je remercie
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Introduction

Interpolating between distributions is a mathematical operation with a large
range of applications in computer graphics and computer vision. This op-
eration can be used whenever one wants to compute new values defined as
intermediates between two or more sets of input data. It can be used to
generate objects such as BRDFs or color palettes [BvdPPH11], to compute
intermediate frames in animation [Ree81] or to reconstruct distributions
from noisy measurements [DCSA+14], to only cite a few applications.

The simplest notion of interpolation is probably linear interpolation, where
the intermediate point between any two input points is obtained by comput-
ing their weighted barycenter. However, while it can be sufficient for some
applications, this interpolation quickly shows some limitations, in particular
when one aims to model physical deformations. Indeed, the result of linear
interpolation is closer to a cross-fade with no physical interpretation. Well-
named displacement interpolation, based on optimal transport, fills this gap,
and yields intermediate distributions on the basis of what it would cost to
move one to the other (see Fig. 1). It is thus better-suited to model physical
phenomena, in particular those involving deformations.
The theory of optimal transport was initially introduced to model dis-

placements of matter under a cost minimization constraint. From these very
general principles, several physical models can be derived, making optimal
transport a very versatile tool with several applications.

Optimal transport has seen numerous developments in the last decades, on
a theoretical level, with applications in geometry, probably theory and PDEs,
as one can read about in Cédric Villani’s monograph [Vil09], as well as in
its applications, as developed in the works of Filippo Santambrogio [San15]
and of Gabriel Peyré and Marco Cuturi [PC+17].

Computational optimal transport The classical way of computing op-
timal transport between two distributions is to discretize them and to use
a linear solver to solve the associated linear program. However, this is very

13
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Figure 1: Displacement interpolation (up) models a translation and has
physical meaning, while linear interpolation (down) suggest “teleportation”
of matter. Initial measure is in red, final measure is in blue and interpolation
steps are indicated by intermediate colors.

computationally costly, especially when the discretizations involve a lot of
points. Several less costly variants have been introduced to counter that.

Such variants include entropic regularization [Cut13] and sliced optimal
transport [RPDB11]. This thesis focuses on semi-discrete optimal transport,
which has interesting geometric properties that we will take advantage of.
Semi-discrete optimal transport is a discretization of optimal transport that
only discretizes the source distribution. While seemingly counter-intuitive
as a simplification of the problem, this gives it a geometric interpretation
as a power diagram [AHA98], which is fully described by a finite-dimension
vector of weights. Computing a semi-discrete transport plan then amounts
to computing the right value of the weights, which is at the minimum of a
convex function. The problem of convex optimization has been abundantly
studied, and thus a wealth of efficient algorithms exist to compute semi-
discrete optimal transport plans.

The question of finding discontinuities in optimal transport plans in gen-
eral is a difficult problem, and a challenge for good approximations of optimal
transport is to accurately capture these discontinuities. Some partial results
exist about them: (continuous) optimal transport maps that transport to
a convex shape equipped with a uniform measure are necessarily continu-
ous [Caf92], and, conversely, optimal transport maps that transport from a
convex shape to a shape whose boundaries presents regions of sufficiently
negative total curvature will result in a transport plan with discontinu-
ities [CJL+15].
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These discontinuities in the transport plan can be important when optimal
transport is used to model physical phenomena: they usually represent points
where matter separates. However, existing approximations of (continuous)
optimal transport through semi-discrete optimal transport usually do not
represent well these discontinuities.

X

X ′

Figure 2: The initial and final positions of the interpolating mesh computed
with Lévy’s algorithm [Lé14] superimposed with the two meshes X and X ′.
We observe that the interpolations erodes the original meshes and that it
presents jagged boundaries on discontinuities.

Figure 2 showcases the result of the semi-discrete approximation proposed
by Bruno Lévy [Lé14], when approximating transport from a 2-d disk to two
smaller disks (all equipped with a uniform measure). This transport plan
presents a discontinuity due to the changes in topology from the source to the
target. This approximation lacks precision in capturing this discontinuity.
The goal of this thesis is to develop an approximation of optimal trans-

port, using semi-discrete optimal transport, that properly represent these
discontinuities.

Applications of optimal transport Optimal transport, as a theory
arising from a concrete engineering problem, unsurprisingly finds many ap-
plications in applied mathematics and in computer graphics.

The evolution of physical systems can be cast as optimal transport prob-
lems, an impressive example being the reconstruction of the early stages
of the universe from present-day observations [LMvH21]. Problems from
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computer graphics can be modeled by optimal transport as well, such as
color transfer [RDG10], where one aims to transform the color histogram of
an image into that of another, while minimizing the amount of modifications
performed, in order to preserve the initial characteristics of the image.

The distance underlying displacement interpolation, called the earth mover
distance or Wasserstein distance, models the amount of work needed to dis-
place a distribution to another. It can thus be used to compare distributions
in terms of how much one has to transform one to turn it into another. For
example, one can use it to measure how close two images are in terms of fea-
tures [RTG04], or to measure how accurate the reconstruction [DCSA+14]
of a surface from a point cloud is. Such applications can demand a spe-
cialized formulation of optimal transport, such as optimal transport on the
circle [DSS10] for histograms. The barycenters induced by the earth mover
distance can be approximated using semi-discrete optimal transport, as is
done by Claici et al. [CCS18].
As a metric, earth mover distance can prove more interesting than con-

current metrics for comparing distributions, either because of its strong
physical meaning or because of its topological properties. This can make
the earth mover distance a good candidate in generative models [GPC18]
or GANs [ACB17], where it is used to measure the fitness of the generated
output to the model’s input.

Goal of this thesis The aim of this thesis is to develop methods to ap-
proximate displacement interpolation between meshes, using the geometrical
properties of semi-discrete optimal transport. In particular, we want our
approximations to faithfully represent the discontinuities that might arise
in the transport plan. Semi-discrete optimal transport, in its classical form,
only takes properly into account the discontinuities arising from the dis-
cretized mesh, which poses a problem when, for example, both meshes are
disconnected. To overcome this limitation, we propose a symmetrized ver-
sion of semi-discrete optimal transport, in which both meshes are discretized
and two coupled semi-discrete transport plans are computed. We show that
the power diagrams representing these transport plans can be linearly inter-
polated, and that this resulting interpolation does, in practice, properly take
into account possible discontinuities.



Notations

We present here the naming conventions that will be used accross this
manuscript.

• µ, ν denote positive, continuous measures, typically admitting a den-
sity,

• X, Y denotes the continuous spaces (typically an open subset of Rd)
over which these measures are defined,

• c : X × Y → R denotes a cost function over these spaces,

• xi, yi denote the samples discretizing continuous densities (also called
sites in the context of semi-discrete transport plans),

• N is the number of such samples, identical for both samplings,

• pi, qi denote the weights assigned to the sites xi, yi,

• φi, ψi denote the weights defining transport plans,

• X = (xi, φi, yi, ψi) denotes a variable gathering all the parameters
defining two coupled semi-discrete transport plans,

• Φ (or variants Φx, Φy) denote the transport functional to optimize over
these weights.
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Chapter 1

State of the art

In this chapter, we will start by recalling the bases of the theory of optimal
transport and the distance it induces on measures, as well as the associated
interpolation. We will then delve more precisely into semi-discrete optimal
transport and optimization algorithms to compute them. We review classical
algorithms using alternating strategies to compute partitions or samplings
of continuous domains, which serve as inspiration for one of the algorithms
presented in this thesis. At last, we review applications of optimal transport
(semi-discrete or not) in various fields.

1.1 General optimal transport

1.1.1 Monge’s formulation

The first formulation of optimal transport is due to French mathematician
and engineer Gaspard Monge, which he introduced in 1781 in his Mémoire
sur la théorie des déblais et des remblais [Mon81]. The concrete problem
that he was initially aiming to solve, and that is traditionally given as the
canonical example to illustrate optimal transport, is the one of moving sand
from a given initial position to a final one, say, to fill a hole or to build a
fortification, while spending as little energy as possible. The expected result
is a function mapping each initial position of a sand particle to the final
position this particle should occupy at the end of the motion.
This concrete problem gives an example of optimal transport where one

aims to transport an uncountable quantity, here the sand, which can be con-
sidered with infinitesimally small particles. This setting is called continuous
optimal transport. However, optimal transport can also take place between
discrete objects, the archetypal example for this variant being the problem
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of mines and factories. Given a set of mines producing iron ore, and a set
of factories using this iron ore to manufacture their products, one wishes
to assign the production of a mine to a factory for its consumption, while
minimizing the effort of moving the iron ore, computed as the mass of ore
displaced times the distance traveled.

We can formalize both these problems under the following common frame-
work. We consider an initial measure µ over a set X, representing either
the initial distribution of sand or the production of each mine, and a fi-
nal measure ν over a set Y , representing the desired distribution of sand
or the ore consumption of each factory. We consider with a cost function
c : X×Y → R, representing the cost of displacing matter between a point of
X and a point of Y . In practice, we take c to be the squared L2 distance, also
called quadratic cost: c(x, y) = ‖x− y‖2, for which optimal transport plans
have remarkable geometric properties, which will be developed in Section 1.2.

Solving the optimal transport problem then consists in finding a function
T : X → Y , called a transport map, minimizing the total cost of displacement
in a measure-preserving way.

We wish for this transport map to preserve the mass during the trans-
portation operation, expressed by the following constraint

ν = T#µ

which models mass conservation from the initial measure to the final one.

The notation f#µ, where f : X → Y is a measurable function, denotes a
measure called the pushforward measure of the measure µ by the function f .
It is defined as f#µ(A) = µ(f−1(A)) for each measurable set A ⊆ Y . Intu-
itively, this means that no matter is lost (or created) during transportation:
the pushforward measure of every measurable set A is equal to the total
measure of matter transported to A.

Given this constraint, we wish to minimize the cost of displacement, which
is given by the following formula:

∫

x∈X
c(x, T (x))dµ(x)

where, for each x in the initial set X, we sum the cost of displacing x to
its target location T (x), weighted by the mass µ(x) of x.

The formulas we have presented are more adapted to describing the case
where measures µ and ν are continuous, called continuous optimal transport.
In the case where X is a discrete set {xi | 1 ≤ i ≤ N}, the cost function
becomes



1.1. GENERAL OPTIMAL TRANSPORT 21

N
∑

i=1

c(xi, T (xi))µi

and the pushforward constraint is ∀j, νj =
∑

i,T (xi)=yj

µi. This version of

optimal transport is called discrete optimal transport.

1.1.2 Kantorovich’s formulation

The main weakness of Monge’s formulation comes from the fact that it rep-
resents the optimal transport map as a function X → Y instead of a general
relation between X and Y . This introduces a fundamental dissymmetry,
which for example translates to the fact that one can merge matter (map
two different source points to the same target) but not split it (map a point
to two different targets).

µν ν µν ν µν ν

Figure 1.1: Example of an optimal transport problem that has no solution
under Monge’s formalism: there is no function representing an optimal trans-
port plan from source measure µ, composed of one line segment, to target
measure ν, composed of two parallel segments. Figure inspired by [Vil09]
and [Lé14].

Figure 1.1 illustrates a situation where there is no solution Monge’s for-
mulation could model. In this problem, we try to find a transport map
that transports a single segment to two identical segments. We can build a
sequence of mappings from µ to ν where every step improves the cost of the
transport, but where the infimum is never realized by a function.
More generally, such problems arise when µ concentrates matter on sets

with Lebesgue measure equal to zero, which cannot be properly split using
a function. This shows this formulation needs to be relaxed.
Instead of representing the optimal transport from (X,µ) to (Y, ν) as a

function from X to Y , we model it as a measure γ over the product space
X × Y , where γ(x, y) represents the amount of matter to move from x to
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y. The measure formalism allows us to move only a fraction of the matter
located on x to y.

The quantity to be minimized thus becomes

∫

X×Y
c(x, y)dγ(x, y)

and the pushforward constraint becomes a constraint on γ’s marginals: if
we denote πX and πY the projections on X and Y respectively, we demand
that µ = πX#γ and ν = πY#γ. In other terms, this means that for every
measurable set A ⊂ X (resp. Y ), µ(A) = γ(A×Y ) (resp. ν(A) = γ(X×A)).
Such a γ is called a transport plan, and we denote by Γ(µ, ν) the set of

such measures γ.

Theorem 1. A solution to the Kantorovich problem exists when the costs
function is the quadratic cost and X, Y are compact sets.

This is a consequence of a more general theorem stating the existence of a
solution when c is lower semi-continuous. A proof can be found in Ambrosio
et al. [AGS05], chapter 6.
Ultimately, these two formulations deal with the same problem: given a

solution that solves Monge’s problem, we can adapt it into a solution to
Kantorovich’s problem, as explicited by Proposition 1. However, as we just
showed, the converse is not necessarily true.

Proposition 1. If (Id× T )#µ ∈ Γ(µ, ν), then T pushes µ forward to ν.

A proof can for example be found in Lévy’s article [Lé14].

1.1.3 Dual formulation of Kantorovich’s problem

Kantorovich’s formulation shows that the optimal transport problem can be
interpreted as a linear program:

min
γ∈Γ(µ,ν)

∫

(x,y)∈X×X
c(x, y)dγ(x, y)

This appears more clearly when considering the discrete setting, where the
expression to minimize is written

∑

i,j
ci,jγi,j and the constraints are

∑

j
γi,j =

µi,
∑

i
γi,j = νj and γi,j ≥ 0.

As a linear program, this problem has a dual formulation. Instead of
minimizing the total cost, one will maximize the sum of two dual variables
φ and ψ:
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max
ψ,φ

(

∫

X
ψdµ+

∫

Y
φdν) (1.1)

where ψ : X → R and φ : Y → R are bounded functions, under the
constraint that ∀x ∈ X, y ∈ Y, ψ(x) + φ(y) ≤ c(x, y).
When ψ and φ are functions that satisfy this constraint, the c-conjugate

of φ, defined by φc(x) = infy∈Y c(x, y)−φ(y), is also a suitable function and
improves the value that formula 1.1 aims to maximize. This yields a new
formulation of the problem:

max
φ

∫

x∈X
( inf
y∈Y

c(x, y)− φ(y))dµ(x) +
∫

y∈Y
φ(y)dν(y) (1.2)

The canonical interpretation of the dual formulation stems from the mines
and factories problem. Instead of directly transporting the iron ore from the
source to the targets, one hires a transporter that only charges for loading
the ore coming out of the mines and unloading it at the factories, these
respective costs being the dual variables φ and ψ we just introduced. Since
the transporter wants to maximize its profit, its goal is to maximize the sum
of those variables. However, it also needs to be a credible alternative to the
mines and factories operator simply doing the transportation themselves,
thus the cost φ(x) + ψ(y) of loading and unloading at a given (x, y) mine-
factory pair cannot be greater that the cost c(x, y) of transporting between
them.

1.1.4 Displacement interpolation

The smallest transport cost defines a distance over measures, called the earth
mover’s distance or Wasserstein metric. When equipping the set of measures
over a given set X with this distance, it turns it into a Riemannian manifold,
on which one can carry interpolations, called displacement interpolation.

The p-th Wasserstein distance between two probability measures µ and ν
is given by

Wp(µ, ν) =

(

inf
γ∈Γ(µ,ν)

∫

X×X
d(x, y)pdγ(x, y)

)1/p

In the most common case, p = 2. One can prove that, whenever d is a
distance function,Wp is also a distance over the space of probability measures
over X. McCann[McC97] introduced the displacement interpolation of two
measures, and Agueh and Carlier [AC11] generalized it to more than two
measures with barycenters in the Wasserstein space.



24 CHAPTER 1. STATE OF THE ART

There is an explicit formulation of Wasserstein barycenters between two
measures.

Proposition 2. If Monge’s formulation yields an optimal transport map T ,
then geodesics between µ and T#µ in the Wasserstein space are given by

µt = ((1− t)Id+ tT )#µ

where t ∈ [0; 1].

A proof can be found in Villani’s monograph [Vil09].

This is an interpolation between measures that can be more relevant than
linear interpolation for a range of applications.

1.2 Semi-discrete optimal transport

Asides from continuous optimal transport, where the source and target
measures have a density and are typically supported by an open subset of
R
n, and discrete optimal transport, where, on the contrary, both source and

target measures are finitely supported by a sum of diracs, a third case exists,
where the source measure is continuously supported and the target measure
is finitely supported: this is the so-called semi-discrete optimal transport.

The canonical practical example to illustrate semi-discrete optimal trans-
port, as presented in [KMT16], is the one of a city endowed with a population
density, which has to share a set of bakeries, placed on the map at discrete
locations. We know the production capacity of each bakery, which corre-
spond to the measure of its dirac, and the transport constraint imposes that
the total needs of the population equal the total production of the bakeries.
To the difference of the mines and factories setting, the source is represented
by a continuous density instead of a sparse set of locations. The choice
of each bakery by customers will be determined by a combination of their
distance to the bakery and of its prices relative to its competitors. Solving
the optimal transport problem here means to find the set of prices that will
exactly match the production capacity of a bakery to the demand of its
customer base.

In the remainder of this document, we will consider a source measure with
density ρ: dµ(x) = ρ(x)dx and a target measure supported by a sum of N

diracs: ν =
N
∑

i=1
piδxi . We will call sites the dirac locations xi.
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Since the target Y is finite, the function φ : Y → R can be finitely
represented as a vector of RN indexed by Y , and computing an optimal
transport plan amounts to maximizing a functional over RN .

We can adapt the c-transformed version of Kantorovich’s dual formulation
(equation 1.2) to the semi-discrete case, by adopting the discrete notation
(φi)1≤i≤N for the dual variable φ. If the cost function c verifies the so-called
twist condition, which states that the differential of c with respect to its first
variable is injective (see for example [KMT16] for more details), the infimum
over a finite set can be simplified into a minimum min1≤i≤N (c(x, xi)− φi)
and partition X into cells Celli = {x | ∀j, c(x, xi)− φi ≤ c(x, xj)− φj}:

max
φ

N
∑

i=1

∫

x∈Celli

(c(x, xi)− φi) dµ(x) +
N
∑

i=1

φipi (1.3)

In terms of bakeries, this means that the city is divided along the territories
of the bakeries. If every bakery has identical products and implements
identical prices, clients simply go to the nearest bakery: the territories
map is a Voronoi diagram. If the prices are different from one bakery to
another, clients make a trade-off between prices and distance by minimizing
c(x, xi)− φi.

We will discuss next the properties of such partitions.

1.2.1 Transport plans as power diagrams

Figure 1.2: From left to right: a Voronoi diagram, a Power diagram, and a
Laguerre diagram for cost c(x, y) = ‖x− y‖ (also known as an Apollonius
diagram), all for the same set of sites. Image from [Sca15].
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Let us now introduce some necessary definitions. We consider a do-
main X ⊂ R

d, a distance (or cost) function c over X, and a set of sites
{xi | 1 ≤ i ≤ N} ⊂ X. Here are some common ways to partition X accord-
ing to the (xi)s.

Definition 1 (Voronoi Diagram). A Voronoi diagram is a partition of the
domain X according to sites (xi) such that the cell of the partition associated
to xi is made up of the points of X that are closer to xi than to any other
xj. We denote by V or(xi) this Voronoi cell.

∀i, V or(xi) = {x ∈ X | ∀j, c(x, xi) ≤ c(x, xj)}

Laguerre diagrams generalize Voronoi diagrams: instead of associating to
each sites simply the closest points, a new degree of freedom is added in the
form of a weight associated to each site, which will modulate its “influence”
and determine which portion of space it can gather.

Definition 2 (Laguerre Diagram). The Laguerre cell Lagφ(xi) of site xi
with respect to weights (φi) consists in the points x ∈ X for which c(x, xj)−φj
is minimal for j = i.

∀i, Lagφ(xi) = {x ∈ X | ∀j, c(x, xi)− φi ≤ c(x, xj)− φj}

Another convention exists for defining Laguerre diagrams, where the min-
imized expression is c(x, xi) + φi. For example, Kitagawa et al. [KMT16] or
Lévy [Lé14] use this convention for their algorithms computing semi-discrete
optimal transport. Both are equivalent, but the − convention can be con-
sidered more intuitive, in that increasing the weight of a cell increases its
area. Besides, we use the convention that is coherent with the c-transform
introduced in Section 1.1.3.

Power diagrams are a restriction of Laguerre diagrams where the cost c is
the squared euclidean distance.

Definition 3 (Power diagrams).

∀i, Powφ(xi) =
{

x ∈ X | ∀j, ‖x− xi‖2 − φi ≤ ‖x− xj‖2 − φj
}

By definition, a semi-discrete transport plan (optimal or not) defined by a
given value of Kantorovich’s dual variable (φ)i, with euclidean cost c = ‖.‖2,
partitions X into a power diagram. The dual variable (φ)i plays the role of
the power diagram weights.
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We can thus rewrite Equation 1.3 for c = ‖.‖2 using the definition of power
diagrams. Let us define the functional Φ:

Φ(φi) =
N
∑

i=1

∫

x∈Powφ(xi)
‖x− xi‖2 dµ(x) +

N
∑

i=1

φi · (pi − µ(Powφ(xi)))

(1.4)

The optimization problem becomes:

max
φi∈RN

Φ(φi) (1.5)

Computing a semi-discrete optimal transport plan for the quadratic cost
thus amounts to finding the weights of a power diagram minimizing the
functional Φ.

From now on, we will only consider transport problems for the quadratic
cost.

Lagrangian interpretation One can interpret Φ as the Lagrangian func-
tion associated to a constrained optimization problem. The first sum
N
∑

i=1

∫

Powφ(xi)
‖x− xi‖2 dµ(x) corresponds to the transport cost associated

with the power diagram, which we aim to minimize. In the second sum,
the φis play a role akin to Lagrange multipliers, enforcing the constraint
µ(Powφ(xi)) = pi: the actual measures of the power cells are equal to the
Dirac’s masses, i.e. their prescribed measures. We get back to the basic
definition of the optimal transport problem: minimizing the cost of trans-
port while preserving a measure. Finding a constrained minimizer using
the Lagrangian boils down to finding a stationary point of the Lagrangian
function Φ, which does not necessarily have to be a minimum. It has been
shown above that, in this case, the stationary point we are looking for is a
maximum.
de Goes et al. [DGBOD12] show that the interpretation of the power

weights as Lagrange multipliers is legitimate. This is due to the fact that

the sum
N
∑

i=1

∫

x∈Powφ(xi)
‖x− xi‖2 dµ(x) is actually constant with regards to

the weights.

Converse implication Besides, Aurenhammer et al. [AHA98] show that
the implication that any semi-discrete optimal transport plan is a power
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diagram is actually an equivalence. This means that, given a set of weights
(φ)i, the power diagram that is defined by these weights represents a semi-
discrete optimal transport plan. This plan associates X, equipped with a
measure µ, to (xi), equipped with a discrete measure ν, such that ν(xi) =
µ(Powφ(xi)).
This implication is due to the fact that that a power diagram minimizes

the cost of transport under constraints of capacity.

1.2.2 Numerical algorithms

Most numerical algorithms for computing semi-discrete optimal transport
plans amount to maximizing the functional given in Equation 1.5, with
different optimization strategies.

The gradient of Φ is

∇φiΦ((φi)i) = pi − µ(Powφ(xi))
and the coefficients of its hessian ∇2Φ, used in the second-order algorithm

presented in Section 1.2.2, are given by

∂2Φ(X)

∂φ2i
= -

Ki
∑

k=1

1

2 ‖xi − xik‖

∫

x∈Ei,ik

dµ(x)

∂2Φ(X)

∂φi ∂φj
=

1

2 ‖xi − xj‖

∫

x∈Ei,j

dµ(x)

(1.6)

for xj neighbor of xi, where Ei,j is the frontier between cells Powφ(xi) and
Powφ(xj), and ik is the index of the k-th neighbor of Powφ(xi). The inter-
ested reader can for example refer to [KMT16] for a complete computation
of these expressions.

First-order algorithms

One can show, as in [AHA98], that the functional Φ is the lower envelope
of a family of hyperplanes and is thus, by application of the envelope the-
orem [MS02], concave and smooth. Consequently, it lends itself well to a
gradient descent algorithm to maximize it (or, more accurately, a gradient
ascent).

Since the expression of ∇φiΦ corresponds to the (signed) gap between the
mass µ(Powφ(xi)) of a power cell and its prescribed mass pi, a gradient de-
scent algorithm amounts to increasing the weight of cells with too little mass
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and decreasing that of cells with too much mass. Aurenhammer et al. also
show that this gradient descent algorithm has a complexity of O(N log(N))
for computing each descent step.

Several improvements of this gradient descent algorithm have been pro-
posed. One of them is the multiscale algorithm of Mérigot [Mér11]. The idea
of this algorithm stems from the importance of the choice of a starting point
when computing optimizations, and in particular semi-discrete transport
plans: a poorly chosen starting point can greatly slow down the convergence.
This algorithm relies on the iterative simplification of the target measure,
by constructing a coarsening sequence of discrete measures. In practice, the
supports of these measures are constructed using Lloyd’s algorithm. The
mass of a site in a simplified measure is the sum of the masses of the previous
sites belonging to its Voronoi cell constructed with Lloyd’s algorithm: mass
is preserved in a compatible way over the decomposition. A sequence of
semi-discrete transport plans is then computed from the continuous measure
to each of the discrete simplified measures. The algorithm starts with the
coarsest measure, at each step using the optimal power diagram weights
computed for a discrete measure to initialize the weights of the transport to
the next finer one. More precisely, the weight of a site in the finer measure
is set to the weight of its associated site in the coarser one. One advantage
of this method is that it is not dependent on the algorithm used to com-
pute semi-discrete transport plans: a new improved method for transport
computation would result in an improvement of the multilevel algorithm.
In practice, the speedup with regards to the classical method can reach up
to an order of magnitude. The article also presents a theoretical guarantee
that the sequence of intermediate power diagram weights converges to the
weights of the actual semi-discrete transport plan.

Lévy [Lé14] discusses how to concretely implement such a multiscale algo-
rithm, using a quasi-Newton method to compute the transport plans. The
main practical aspect of this implementation is the computation of integrals
over a power diagram intersected with a simplicial (here, tetrahedral) mesh.
This is done by iterating over all cell-tetrahedron intersections. One starts
with an arbitrary intersection, and maintains a stack of such intersections
that is updated at each step with the neighboring cells and tetrahedra of
the current intersection. This algorithm can be further sped up by spatially
sorting the points. One can thus iteratively compute the contributions of
each intersection to the transport objective function and its gradient, which
can then be used by a quasi-Newton algorithm to compute the semi-discrete
transport plan.
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KMT algorithm

Kitagawa, Mérigot and Thibert [KMT16] present a Newton algorithm with
proven convergence for computing semi-discrete transport. This algorithm
involves computing the inverse (or at least the pseudo-inverse) of the hessian
(Equation 1.6) of the transport functional Φ in order to compute a descent
direction. Enforcing a lower bound on the areas of the cells allows to ensure
sufficient regularity of Φ.

Informally, this algorithm consists in computing a descent direction using
the hessian, then evaluating the maximum stepsize that will decrease the
norm of the gradient without creating cells of measure below a certain
threshold.

Algorithm 1 KMT algorithm for the computation of semi-discrete optimal
transport plans.

Input: A tolerance η and an initial set of weights φ0 such that

ε0 =
1

2
min

[

min
i
µ(Powφ

0
(xi)),min

i
pi

]

> 0

1: while

∥

∥

∥
∇φki

∥

∥

∥
≥ η do

2: Compute descent direction dk = (∇2Φ(φk))
−1

(∇φΦ(φk))
3: Compute step of form 2−l such that φkl := φk + 2−ldk satisfies

{

min1≤i≤N µ(Pow
φ(xi)) ≥ ε0

∥

∥(∇φΦ(φkl ))
∥

∥ ≤ (1− 2−(l+1))
∥

∥∇φΦ(φk)
∥

∥

4: φi+ = d ∗ 2−l
5: k ++
6: end while

As we can see in Algorithm 1, this algorithm requires that at each step, the
measures of the power cells do not fall below a certain threshold. In order for
the KMT algorithm to find a step size such that cells are sufficiently large, it
requires to be at least initialized with cells respecting this condition. This is
not trivial, in particular when sites xi are not all located on the support of
µ. In this case, there is a significant risk of their Voronoi diagram displaying
cells with zero mass. We next see approaches that aim at addressing this
problem through an initialization step.
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Initialization of KMT algorithm Meyron [Mey19] introduces three
different initialization methods to start the KMT algorithm without empty
cells.

The first is a perturbation method, where one slightly modifies the weights
of the cells until none is empty. This amounts to performing a gradient
descent with a very loose stopping criterion, and, in terms of complexity,
can defeat the purpose of using an efficient algorithm such as KMT.

This is similar to the two-stage algorithm proposed by Bansil [Ban19],
where the execution of the KMT algorithm is prefaced with a regularized
gradient descent, which allows the overall algorithm to run in polynomial
time on disconnected source measures.

The second method takes advantage of the fact that we know explicit
formulas, given in Proposition 3, for translating and rescaling the cells of a
power diagram by applying a transformation to the weights defining it. It
consists in tweaking these weights until all cells intersect with the support
of the source measure. However, as is, this method can prove counter-
productive when the source measure support is not connected, since it can
only relocate the cells to a single connected component.

Proposition 3. Given a point set (xi), a scaling factor λ > 0 and a trans-
lation vector t, if we define the point set (x′i) with x

′
i = λxi + t, then there is

the following relation between the power cells of the two sets

Powφ
′

(x′i) = Powφ(xi)

where φi =
φ′i
λ + 2x′i · t+ (λ− 1) ‖x′i‖

2 (from [Mey19]).

At last, the third method is an interpolation one: it consists in choosing
a superset of Supp(µ) ∪ {xi}i, equipping it with the Lebesgue measure, and
iteratively computing the optimal weights for a sequence of measures linearly
interpolating this uniform superset to the final measure µ. This allows to
use the KMT algorithm for each weight computation, since the computed
diagrams never present empty cells.

Performances of the KMT algorithm KMT algorithm is very efficient
in practice when used to transport from a connected domain to a point cloud,
typically converging in a dozen iterations. In fact, it is mathematically proven
that it converges globally with linear rate. In the case of a non-connected
domain, while this algorithm still manages to compute a transport plan, it
needs to use a smaller step size to “pass” power cells from one connected
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component to another without creating empty cells. This significantly slows
down the convergence of the algorithm.

Figure 1.3 compares the evolution of the power cells during the course
of the algorithm on two different source domains with same mass. One of
these domains is connected, the other is disconnected, and the transport
is computed to the same set of sites. With the connected domain, the
convergence is prompt and smooth, while it slows down on the disconnected
domain as soon as cells need to be transferred from one connected component
to the other. The applications developed in this thesis are typically interested
in disconnected domains, which makes this algorithm ill-suited to compute
transport plans in this context.

Transport between a simplex soup and a point cloud Mérigot et
al. [MMT17a] present an adaptation of the KMT algorithm in the case where
the source measure is supported by an union of simplices, with typically some
of these simplices being of lower dimension than the ambient space. The
measure over the simplex soup is assumed to be the sum of density measures
over its simplices, and the point cloud is assumed to fulfill a generic condition.
Under these conditions, they prove that the damped Newton algorithm
converges with linear speed.

Other algorithms for the computation of semi-discrete optimal

transport

Balzer [Bal09] presents a different way to compute a power diagram. The
weights are set one at a time to the value canceling their error function
(given by gap between the current cell size and its capacity constraint). The
originality of the method lies in the fact that, instead of computing the
canceling value using a descent algorithm, it uses the false position method
to compute the root of the error function. Although this method converges
in practice, it does not have any convergence guarantees.

1.3 Alternating algorithms in semi-discrete opti-

mal transport

A number of problems in computer science and applied mathematics can
be cast either as optimal quantizing or optimal clustering problems. These
problems can be expressed as a combination of some sort of transport cost
minimization constraints (either with capacity constraints or not) and of
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Figure 1.3: In the left column, the KMT algorithm computes an optimal
semi-discrete transport plan from a connected rectangle to a sampling of its
top left corner, while in the right column, the source mesh is made up of
two disconnected squares, totaling to the same area. Both transport plans
are initialized as Voronoi diagrams. At the 25th iteration, the algorithm
is almost converged in the connected case, while in the non-connected one
most of the cells are still located on the same connected component as they
initially were. This slow convergence can also be seen in the plotting of the
objective function on the top row, where the convergence is much faster with
the connected source.
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barycenter constraints. The transport constraints can be fulfilled either
by Voronoi diagrams (in case there are no capacity constraints) or power
diagrams (in case there are). Examples of such problems without capacity
constraints, such as the optimal sampling of a color space or approximation
of integrals, are developed in [DFG99].

A classical solution framework for solving these problems is to alternatively
enforce the transport constraints and the barycenter constraints until some
convergence criterion is reached. These alternating algorithms serve as an
inspiration for the algorithm we present in Chapter 3.1.1.

1.3.1 Lloyd’s algorithm

Centroidal Voronoi Tessellations (CVTs) are a special class of Voronoi dia-
grams where the location of the sites coincides with the weighted barycenters
of their Voronoi cells. They can be defined over a discrete as well as a con-
tinuous underlying domain, the continuous case being of more interest to us
for its analogy with semi-discrete transport. The barycenters positions in a
CVT yield samples distributed according to the underlying density.

These properties make CVTs particularly suited to applications in varied
scientific fields, as reviewed in [DFG99].

Algorithms

The best-known algorithm for computing CVTs is Lloyd’s algorithm [Llo82],
an iterative algorithm where a step of computation of the Voronoi diagram
alternates with a recentering step.

Algorithm 2 Lloyd’s algorithm for the computation of Centroidal Voronoi
Tessellations.
Input: A set of sites xi
while Convergence criterion is not met do

Compute the Voronoi cells V or(xi) of sites xi
Relocate each site xi at the weighted barycenter of its cell V or(xi)

end while

Lloyd’s algorithm can be interpreted as a fixed point iteration for the
function mapping a set of sites to the barycenters of the associated Voronoi
cells, called the Lloyd map.

A probabilistic variant of Lloyd is presented by Linde et al. [LBG80].
Du and al. [DFG99] propose a k-means algorithm for the discrete setting,

with both a randomized and a deterministic variant, which iteratively inserts
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new points in the Voronoi cells and updates the positions of the barycenters.
Contrarily to Lloyd’s algorithm in its classical form, this algorithm does
not involve explicitly computing the Voronoi diagram at each step, as it is
continuously updated by an insertion at each step.

Convergence

Du et al. [DFG99] show that a CVT can be interpreted as the minimizer of
the objective function: the fixed points of Lloyd’s map are its fixed points.

(xi)i 7→
N
∑

i=1

∫

x∈V or(xi)
‖x− xi‖2 dµ(x) (1.7)

The value of this function diminishes at each step of Lloyd’s algorithm,
as shown in Lemma 2.2 of [DEJ06], from which we can deduce that the
algorithm converges.
Function 1.7 is C2, which points in the direction of gradient descent and

Newton’s method. Such optimization algorithms are described in [DFG99]
and [LWL+09].

Properties

The cells of a CVT tend to become regular hexagons [Tó01] when the un-
derlying density is uniform. We will encounter a variation of this fact in our
results.

1.3.2 Capacity-constrained Centroidal Power Diagrams

In the same way that power diagrams are an extension of Voronoi diagrams,
centroidal power diagrams generalize centroidal Voronoi diagrams. To make
up for the extra degree of freedom introduced by the weights of the power
diagram, the problem data includes a set of capacity constraints. The
resulting objects are called Capacity-Constrained Centroidal Power Diagrams
(CCCPDs).

Balzer et al. [BSD09] give a method similar to the k-means method for
computing CVTs on a discrete grid, where one builds the power cells of
the capacity-constrained power diagram pixel by pixel. This method has a
higher per-step complexity than Lloyd’s, which makes it unsatisfactory to
compute CCCPDs.

A better algorithm, inspired by Lloyd’s, is presented in [DGBOD12], where
a step of computation of the power diagram fulfilling the capacity constraints
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(considered as a semi-discrete transport problem) alternates with a step of
sites recentering. This algorithm has linear convergence, with its main weak
point being the computation of the barycenters (as pointed out in [XLC+16]).
The sites generating a capacity-constrained centroidal power diagram have
blue noise properties. de Goes et al. [DGBOD12] take advantage of this to
compute high-quality samplings of gray scale images.

An improved method is the optimization presented by Xin et al. [XLC+16].
It builds on the notion that computing a CCCPD amounts to maximizing
the transport functional with respects to the weights and minimizing it with
respects to the sites positions. Observing that, given the sites’ positions, the
weight are uniquely defined (up to an additive constant), one can make the
transport functional a function of only the sites positions. One can then use
L-BFGS [Noc80] to optimize this functional.

Balzer [Bal09] studies a similar object: constrained centroidal Voronoi
diagram. These are Voronoi diagrams such that the area of the cells is
determined by a constraint. Since Voronoi diagrams do not enjoy the extra
degree of freedom provided by the power weights, one has to optimize over
the sites’ positions in order to fulfill these constraints. Because optimizing
over all the sites would be too computationally demanding, the presented
algorithm optimizes one site at a time over the course of an iteration. The cell
for which the difference between its actual area and its capacity constraint
is the lower is selected, and its site is moved in the direction of its most
oversized (or least undersized) neighbor.

1.4 Applications of semi-discrete optimal trans-

port

1.4.1 Displacement interpolation approximation

Bruno Lévy [Lé14] proposes an algorithm based on semi-discrete optimal
transport to approximate the displacement interpolation between simplicial
(triangular or tetrahedral) meshes.

The algorithm consists in sampling one of the meshes and transporting the
other to the samples. The vertices of the interpolated mesh evolve between
these samples and the centroids of the power diagram arising from the
transport. The edges and simplices are the ones of the Delaunay triangulation
(or tetrahedrization) of the samples.

This algorithm computes an interpolation between two subsets of the initial
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Algorithm 3 Algorithm approximating displacement interpolation through
semi-discrete optimal transport (taken from [Lé14]).

Input: Two simplicial meshes X and X ′ and a number of samples N
Output: A simplicial mesh with N vertices and a pair of points xi and ci
attached to each vertex.
(1) Sample X ′ with set of points {xi | 1 ≤ i ≤ N}
(2) Compute the weight vector (φi)i that realizes the optimal transport
between X and (xi)i
(3) Set the barycenters ci ← centroid(Powφ(xi) ∩X ′)
(4) Compute the Delaunay triangulation of the sampling (xi)i and mesh
(ci) using the same triangulation
(5) Remove the triangles that are not included in X at t = 0
(5’) Remove the triangles adjacent at t = 1 to a site xi such that Powφ(xi)
spans several connected components
(6) Interpolation Xt has vertices t · xi + (1− t) · ci, t ∈ [0, 1]

meshes. It has the advantage of allowing interpolation between different total
masses. Indeed, the total mass affected to the sampling of X ′ doesn’t have
to match with the actual mass of X ′ but with that of X.

The biggest limitation of this algorithm is that, by constructing the in-
terpolation from a sampling, it necessarily erodes the initial meshes. In
particular, a consequence is that the potential discontinuities in X are not
taken into account, since the sampling is done on X ′. This usually results
in jagged boundaries where the discontinuities occur — see Figure 2.4 for
an illustration. This will be developed more in Chapter 3.

1.4.2 Area preserving mappings

Zhao et al. [ZSG+13] use optimal transport to construct area-preserving
mappings between a topological surface and a planar surface. When mapping
a surface to the plane, it is usually difficult to preserve both angles and areas:
one has to make a tradeoff. This article aims to find mappings destined to
applications where area preservation is crucial, such as a number of medical
applications.

This method builds upon a previous algorithm by Dominitz and Tan-
nenbaum [DT10] that used discrete optimal transport to transform angle-
preserving mappings into area-preserving mappings. The originality of the
new approach lies in the use of semi-discrete optimal transport, which reduces
computational cost, as already discussed in this chapter.
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Figure 1.4: Interpolation between a sphere and an armadillo, and between
two stars. Image taken from [Lé14].

Given an input surface represented by a mesh, one computes an angle-
preserving mapping from it to the unit euclidean disk using an already-
established method. A semi-discrete transport map is then computed be-
tween the uniform unit disk and the vertices of the mesh each endowed with
the area of their neighborhood in the image of the initial mapping. This
step allows to quantify the area distortion induced by the angle-preserving
mapping.

Figure 1.5: Angle-preserving mapping (c) of the surface of the brain (a) and
(b), compared with the area-preserving mapping (c). Image from Zhao et
al. [ZSG+13]

The final mapping is made up of the composition of the initial angle-
preserving mapping, and of the semi-discrete transport map that corrects it
for area preservation.
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1.4.3 Fluids simulation

Semi-discrete transport can be used to simulate the behavior of continuous
physical systems such as fluids or galaxies at a very large scale.

Fluids with free boundaries

In order to simulate fluids, Bruno Levy [Lé22] decomposes them into power
cells through partial semi-discrete optimal transport. Modeling the fluid
elements with power cells yields a Lagrangian representation of the fluid.
The fixed masses of the cells model the incompressibility of the fluid: while
a fluid element can be deformed and split at will, its total volume has to
stay constant. Partial optimal transport differs from classical in that the
sum of the discrete masses is lower than the total mass of the source: the
power cells only cover part of the domain. This models the fact that the
fluid has a free surface in contact with the ambient air.

In order to make up for the fact that the source and target total measures
do not match, an extra target element is added, in the form of an uniform
sampling of the whole domain. All the samples are equipped with the same
weight, forcing their part of the diagram to effectively be a Voronoi diagram,
except at the interface with the fluid where they may be truncated by the
fluid cells. This models the fact that it does not “cost” anything for the fluid
to displace the air.

One then can make this uniform sampling tend to a continuous uniform
distribution, which is equivalent to removing the aforementioned Voronoi
cells and instead adding the constraint ‖x− xi‖2 < φi to the cell’s definition,
making it the intersection of a classical power cell and of a ball.

This problem can be solved using a variant of the KMT algorithm. The
main differences with its classical version come from the new definition of
the cells, which does not modify the essence of the gradient expression (it
remains the gap between the prescribed mass of a cell and its actual mass)
but does add a term for the Hessian. The rest of the algorithm, from the
stepsize computation to the stopping criterion, remains unchanged.

An example showing the effects of surface tension and the handling of
topology changes can be seen in Figure 1.6, which shows the evolution of a
pool of fluid in which a drop falls.

Early Universe Reconstruction

The behavior of galaxy clusters at a very large scale under the influence of
gravitation can be interpreted as the behavior of a fluid. Knowing that, it is
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Figure 1.6: Simulation of a drop falling into a pool of fluid using partial
optimal transport. Image from [Lé22].

no surprise that optimal transport has been used to simulate the evolution
of their positions from the early times of the universe to present day.

Lévy et al. [LMvH21] propose a new take on this method by designing a
semi-discrete optimal transport algorithm to reconstruct the early stages of
the universe.

Just after the Big Bang, light and matter were too densely packed for light
to circulate. Both light and matter were exerting pressure over each other,
with small heterogeneities in their distribution. After the universe expanded
enough to allow light to travel (photon decoupling), these heterogeneities
persisted and self-maintained, the densest regions having higher gravitational
potential and in turn attracting more matter. These heterogeneities can be
observed in two different structures today: first, in the cosmic microwave
background, emitted at the time of photon decoupling, and second in the
structure of the repartition of galaxy clusters today.
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Thus, there is a direct evolution path from the early repartition of matter
to what it is in present day. Lévy et al. pose the equations governing
the evolution of matter, and show that these can be formulated in terms
of optimal transport. This stems from the application of the least action
principle, which corresponds to the optimization aspect of optimal transport,
under matter conservation constraints, which are present in optimal transport
as the pushforward constraint.

In the case of this article, the positions of galaxy clusters are discretized
and considered the target distribution, while the continuous source distribu-
tion is considered uniform. The objective is to compute the transport plan
from the latter to the former, modeling the evolution of the system, which
one can then compare to a ground truth stemming from cosmic microwave
background.

This method uses the KMT algorithm in order to compute its semi-discrete
transport plan. The computational efficiency of semi-discrete transport in
general and of the KMT algorithm in particular allows to compute discretiza-
tions of a million points in a few minutes on an ordinary computer, where the
same level of discretization would have taken months with a fully discrete
formulation.

In addition, the computed power diagram weights hold an interesting
physical interpretation as the gravitational potential of the associated point.

1.4.4 Optics

Light in Power [MMT17b] discusses how semi-discrete optimal transport can
be used to model inverse problems in optics. More specifically, given a light
source, either punctual or collimated, and a light intensity distribution, one
wishes to design lenses or mirrors whose illumination corresponds to this
distribution. This is an inverse problem to the direct problem of computing
the illumination yielded by a light source passing through a lens or reflecting
over a mirror.

The key to modeling such a problem with optimal transport is to express it
in terms of conservation of the light energy, which finds a natural translation
into the mass conservation constraint of optimal transport.

In this framework, the light source is considered continuous, assimilated
either to S

2 (in the case of a punctual source) or to R
2 (in the case of

a collimated source), and equipped with the adequate density. The final
illumination is discretized. Semi-discrete transport is computed between
the source and the target illumination, and the resulting power cells are
used to compute a parameterization of the lens or mirror surface. In the
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Figure 1.7: From left to right: target image; simulation of the illumination
from a mirror reflecting a punctual source (located inside the mirror); illumi-
nation from a fabricated mirror reflecting a collimated source; illumination
from a fabricated lens refracting a collimated light source. Image taken
from [MMT17b].

case of a collimated source, the mirror and the lens both have a piecewise
linear surface; in the case of a punctual source, the mirror is made up of
paraboloid sections, while the lens is made up of ellipsoids. In all four cases,
the parameters of these surfaces are computed from the weights defining the
semi-discrete transport.

1.4.5 Texture enrichment

Galerne et al. [GLR17] use semi-discrete optimal transport in patch space
to enrich generated textures.

Their method builds upon Gaussian texture generation, where an example
texture is represented as a Gaussian vector, and the generated texture is
made up of patches drawn from that distribution, by computing a convolution
between the original patch and white noise.

This technique alone generates textures that have the same local statistical
properties as the example texture, but do not preserve larger structures.

In order to solve this issue, Galerne et al. rework the generated texture.
First, an optimal transport plan from the space of generated patches to the
actual patches of the example images (or, more realistically, a sampling of
them) is computed. Then, for each pixel of the generated texture, each
patch containing said pixel is projected onto an example patch according to
the transport plan, and the pixel is assigned a new value computed as the
average of its values in these projections.

This technique enjoys better spatial stability than its concurrents, includ-
ing a similar method that uses simple nearest-neighbors instead of optimal
transport. Long ranges correlations are better respected, while the local
statistical properties are still similar to the example’s. Examples of results
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Figure 1.8: Exemplar texture (first line) and generated texture (second line).
Image from [GLR17].

using this technique can be seen in Figure 1.8, with the source textures and
the generated textures presented side-to-side. This method has better perfor-
mance on stochastic and near-stochastic textures than on regular textures,
even when increasing the patch size.

1.5 Other applications of optimal transport

The earth mover’s distance is used by Rubner et al. [RTG04] as a metric to
compute perceptually accurate distances between images. Image retrieval
often uses characteristics of images represented as histograms, such as bright-
ness (one-dimensional histogram), color (three-dimensional histogram) or
texture (frequency content), to compare the contents of images. Rubner
et al. show that earth mover’s distance yields better results in comparing
images from this point of view. In particular, this distance allows to re-
group histogram bins and thus similar features, that are not perceived as
fundamentally different. The earth mover’s distance is also well-adapted to
partial matching, which is particularly useful when matching only parts of
an image.

Genevay et al. [GPC18] use optimal transport to evaluate how a generative
model fits its training data. The Wasserstein distance is a particularly well
adapted metric to compare distributions in this context. In order to make the
computation of transport distances tractable, they use a regularized version
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of the Wasserstein distance (see [Cut13]) for their loss, under the name of
Sinkhorn loss. They present a numerical scheme involving autodifferentiation
of the loss to learn under this metric. Applications include all sorts of
generative models, in particular image generation.
In a similar approach, Arjovsky et al. [ACB17] use the earth mover’s

distance as a metric for GANs to learn probability densities. Compared with
other usual metrics used for GANs, the earth mover’s distance allow more
sequences to converge, which in turn improves the convergence of the GANs.
Rabin et al. [RDG10] use OT for color transfer. Given a style image

and its extracted color palette, given as a histogram, one is looking for a
function operating over images that transforms a source image so that its
color histogram matches that of the style. This problem can be cast as
an optimal transport problem: the transformation function has to turn a
distribution into another while minimizing the amount of actual changes.
Naive solutions to this problem often result in artifacts, due to unwanted
decrease or enhancement of contrast (this last point can be particularly
problematic in the case where the enhanced features are compression artifacts
or noise). Their paper proposes a method that suppresses these artifacts
through a regularization operator that is applied to the optimal transport
map.

Figure 1.9: Example result for OT-powered color transfer with Rabin et
al. [RDG10]’s method. From left to right: source image (Auguste Renoir,
Le déjeuner des canotiers, 1881), style image (Paul Gauguin, Mahana no
atua — Le jour de Dieu, 1894), simple color transfer, color transfer with
regularization.

Delon et al. [DSS10] present an algorithm to compute optimal transport
between measures defined on the unit circle. Their algorithm takes advantage
of the fact that one can lift the measures on the circle to periodic measures
on R, and extend the cost function as well. This type of transport also
has applications in image processing: measures on the circle can represent
histograms, which are of use in color transfer, where color is represented
in the Hue, Saturation and Lightness model, or in image retrieval, where
distributions characterizing images can be defined on the circle.
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Digne et al. [DCSA+14] use optimal transport as a guide for measuring
the fitness of a mesh reconstruction to a given point cloud. Their method
starts from the Delaunay triangulation of the point cloud in question, which
is then iteratively simplified. At each step, the simplification operation is
chosen to minimize the increase in the value of the transport from the point
cloud to the candidate reconstructed mesh. This method is robust to noise
and outliers, and is very efficient at recovering sharp features.

1.6 Conclusion

Semi-discrete optimal transport is a formulation of optimal transport with
strong ties to geometry, through the interpretation of transport plans as
power diagrams. Transport plans can thus be encoded as the vector of the
weights defining the power diagram. The weights for which the transport
cost is minimal realized the optimum of a convex objective function, which
allowed for the development of several efficient optimization algorithms to
compute them.

However, in spite of its numerous qualities, semi-discrete optimal transport
has the substantial drawback of being fundamentally non-symmetrical. Next
chapter will propose a way to bring back symmetry while retaining its
advantages.

Furthermore, in this chapter, we presented alternating algorithms for com-
puting optimal samplings and partitions of continuous domains, which we will
use as inspiration for an algorithm for computing symmetrized semi-discrete
transport. We will also look into extending the optimization algorithms for
semi-discrete transport to its symmetrized formulation.
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Chapter 2

Problem statement

It is known that optimal transport maps transporting an uniform measure
supported by any bounded shape to an uniform measure supported by a
convex shape are continuous [Caf92], and that, conversely, optimally trans-
porting from a convex shape to a shape whose boundary presents regions
of sufficiently negative total curvature will result in a transport plan with
discontinuities [CJL+15], as illustrated in Figure 2.1. If we want to propose
an approximation of displacement interpolation, an important point is that
it should capture well such discontinuities.

We consider two measures µ et ν whose support is represented by sim-
plicial meshes. Our goal is to compute an accurate approximation of the
displacement interpolation between µ and ν, that, in particular, properly
captures potential discontinuities. Unlike most approximations of optimal
transport, our approach does not simply discretize both meshes and compute
a discrete transport plan between sample sets, but instead takes advantage
of the nice properties of semi-discrete optimal transport. Indeed, as de-

T

Figure 2.1: The optimal transport plan T between 2-d shapes maps the red
dotted line on the source onto the red line on the target, which has total
curvature below a threshold value. This mapping is discontinuous precisely
on this line.

47
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veloped in Section 1.2.2, very efficient algorithms exist to compute exact
semi-discrete optimal transport, whereas discrete OT demands either an al-
gorithm of cubic-time complexity (if exactness is required), or an algorithm
that sacrifices exactness by using regularization.

We propose an algorithm that lies in the continuity of other semi-discrete
approximations of displacement interpolation, where one of the continuous
domains is transported to the barycenters of an optimal partition of the
other, similar to Mérigot [Mér11] or Lévy [Lé14].

2.1 Non-symmetrized transport

The algorithm of Lévy [Lé14] can be used to compute approximations of the
displacement interpolation between two meshes X and X ′. To compute this
approximation, mesh X ′ is sampled. An optimal transport plan from X to
the sampling of X ′ is then computed, and is represented by a power diagram.
The interpolation is done between the samples of X ′ and the barycenters of
the power diagram, located on X. See Figure 2.2 for an illustration.

X

X ′

sampling

of X ′

barycenters

Figure 2.2: X is optimally transported to a sampling ofX ′, and this sampling
is interpolated to the barycenters of the transport plan.

The simplices of the interpolated mesh are retrieved from the Delaunay
triangulation (or tetrahedrization, in the 3d case) of the sampling of X ′.

The main weakness of this approach lies in the difficulty to capture all the
properties of the input meshes it aims to interpolate, in particular when it
comes to their discontinuities.
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Algorithm 4 Algorithm approximating displacement interpolation through
semi-discrete optimal transport (taken from [Lé14]).

Input: Two simplicial meshes X and X ′ and a number of samples N
Output: A simplicial mesh Xt with N vertices and a pair of points xi and
ci attached to each vertex. Transport is parameterized by time t ∈ [0; 1]
(1) Sample X ′ with set of points {xi | 1 ≤ i ≤ N}
(2) Compute the weight vector (φi)i that realizes the optimal transport
between X and (xi)i
(3) Set the barycenters ci ← centroid(Powφ(xi) ∩X ′)
(4) Compute the Delaunay triangulation of the sampling (xi)i and mesh
(ci) using the same triangulation
(5) Remove the triangles that are not included in X at t = 0
(5’) Remove the triangles adjacent at t = 1 to a site xi such that Powφ(xi)
spans several connected components
(6) Interpolation Xt has vertices t · xi + (1− t) · ci, t ∈ [0, 1]

Since the original mesh X ′ is discretized through a random sampling (xi),
a triangulation of (xi) will, in most cases, not cover all of X ′ — see figure 2.4
for an illustration. In the case where X ′ is disconnected, this triangulation
contains triangles that cross the discontinuity. These triangles are filtered out
in step (3) of algorithm 4. Filtering these triangles also typically results in
loss of matter from X ′. This results in the erosion of X ′ in the interpolation
built from the triangulation of (xi).

When mesh X is not connected, the algorithm does not take into account
these discontinuities when sampling X ′. Consequently, the locus of these
discontinuities on the interpolation not only suffers from the erosion due
to the sampling, but also presents jagged boundaries due to the filtering
of overlapping simplices, as illustrated in Figure 2.3. These issues can be
mitigated by using a CVT to sample X ′, in order to cover the mesh more
uniformly, but it is not enough to solve them.

This is a consequence of the non-symmetric roles played by the meshes
X and X ′ in this approach, since one is approximated by a set of samples
and the other is not. This results in at most one of the two meshes’ features
being well approximated during the interpolation.

These erosion and jagged boundaries issues are illustrated in Figure 2.4,
where the interpolating mesh at its initial and final positions are superim-
posed with the input meshes that it aims to approximate. See Section 5.3.1
for more examples of this interpolation.

To overcome these issues, we present in this chapter an algorithm sym-
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Figure 2.3: Red triangles are filtered out of the triangulation as they overlap
the connected components.

metrizing Lévy’s algorithm.

2.2 Coupled transport plans

Figure 2.5: Example of the situa-
tion we wish to attain, computed
with the method developed in 3.1.1

In addition to the measures µ and ν, we
consider two sets of samples (xi)i and
(yi)i, equipped with the discrete mea-

sures
∑N

i=1 piδxi and
∑N

i=1 qiδyi , where
pi (resp. qi) represents the amount of
mass ascribed to the sample xi (resp.
yi) and thus held by the cell Powφ(xi)
(resp. Powψ(yi)) when the power dia-
gram represents an optimal transport
plan. These mass prescriptions should
not be confused with the power diagram
weights φi (resp. ψi) that encode the
optimal transport plans from µ to (xi)i
(resp. ν to (yi)i).

In that context, we aim at finding
samples positions xi and yi, and weights φi and ψi such that xi is the
barycenter of Powψ(yi) and yi is the barycenter of Powφ(xi) for all i, and
power diagrams Powφ(xi) and Pow

ψ(yi) respectively describe optimal trans-
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X

X ′

Figure 2.4: The initial and final positions of the interpolating mesh computed
with Lévy’s algorithm superimposed with the two meshes X and X ′. We
observe that the interpolations erodes the original meshes and that it presents
jagged boundaries on discontinuities.

port maps from µ to
∑N

i=1 piδxi and from ν to
∑N

i=1 qiδyi , both sets of
samples being equipped with the discrete uniform measure. We denote these
transport maps Tφ and Tψ.

In practice, we use uniform discrete measures: ∀i, pi = qi =
1
N . Enforcing

pi = qi allows the same amount of mass to be gathered in Powφ(xi) and
Powψ(yi). We chose this value to be uniformly equal to 1

N so that the
underlying measure densities associated to µ and ν are properly captured:
regions of higher density carry smaller power cells and thus are more densely
sampled.

An example of such a situation is given in Figure 2.5. Note that these
constraints locate samples (xi) on the support of ν, despite the fact that
they are associated to µ through the transport plan Tφ.

2.3 Constrained optimization

This problem can be formalized as a constrained optimization problem. The
objective function is a combination of transport functionals that is maximal
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when power diagrams correspond to optimal transport maps. Constraints
encode the fact that the sites (xi) and (yi) are located at the barycenters of
the respective cells Powφ(xi) and Pow

ψ(yi).
We formulate it as follows:

max
(xi,φi,yi,ψi)

N
∑

i=1

∫

x∈Powφ(xi)
(‖x− xi‖2 − φi)dµ(x) +

N
∑

i=1

piφi

+
N
∑

i=1

∫

y∈Powψ(yi)
(‖y − yi‖2 − ψi)dν(x) +

N
∑

i=1

qiψi

s.t.

∫

x∈Powφ(xi)
(x− yi)dµ(x) = 0

and

∫

y∈Powψ(yi)
(y − xi)dν(y) = 0

(2.1)

2.3.1 Intersection of sets

This problem could alternatively be cast as searching for the intersection
of four subsets of the parameter space, each corresponding to one of our
constraints:

{

(xi, φi, yi, ψi) | ∀i, µ(Powφ(xi)) = pi

}

(2.2)
{

(xi, φi, yi, ψi) | ∀i,
∫

x∈Powφ(xi)
(x− yi)dµ(x) = 0

}

(2.3)

{

(xi, φi, yi, ψi) | ∀i, µ(Powψ(yi)) = qi

}

(2.4)
{

(xi, φi, yi, ψi) | ∀i,
∫

y∈Powψ(yi)
(y − xi)dν(y) = 0

}

(2.5)

Our problem would then amount to finding a point (xi, φi, yi, ψi) at the
intersection of sets 2.2, 2.3, 2.4 and 2.5.
Computing the intersection of two or more sets can be done through

an alternating projection strategy [BB96]. This method is guaranteed to
converge if the sets are convex and closed, however, it can give good practical
results even when these conditions are not met.



Chapter 3

Alternating algorithm

The constraints presented in Section 2.2 are very reminiscent of the ones char-
acterizing CCCPDs, with a significant difference in that our setting includes
two different domains, with cross-domains barycentric constraints. By anal-
ogy with the Lloyd-like algorithms used to compute CCCPDs, we propose
a fixed-point iteration to solve this constrained problem, by alternatively
optimizing the transport functional and enforcing the constraints.

3.1 Alternating algorithm

3.1.1 Algorithm

As input, our algorithm takes two measures µ and ν whose supports Sp(µ)
and Sp(ν) are domains meshed with triangles (in 2-d) or tetrahedra (in
3-d). Measures µ and ν are defined with piecewise linear density functions,
which are entirely given by their values on the mesh vertices and linearly
interpolated over triangles or tetrahedra.

Our algorithm starts by uniformly sampling the supports of both mea-
sures µ and ν following the method described by Levy and Bonneel [LB12]
that samples each simplex proportionally to its area. We then repeat until
convergence the following operations.

First, we optimize the weights of Powφ(xi), the power diagram restricted
to the support of µ, describing the semi-discrete transport map between µ
and (xi)i with capacities pi using standard semi-discrete optimal transport
techniques [Lé14].

We then move each sample yi to the barycenter ȳi of the newly computed

power cell Powφ(xi), accounting for measure µ: ȳi =

∫

x∈Powφ(xi)
xdµ(x)

∫

x∈Powφ(xi)
dµ(x)

.
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Then, we repeat the same operation by inverting the roles of the samples
and measures — computing the transport map between ν and (yi)i with
capacities qi, and centering the samples (xi)i at the barycenter of Powψ(yi)
with respect to measure ν.

Algorithm 5 Alternating algorithm for computing symmetrized optimal
transport maps

1: (xi) := random sampling of Sp(ν)
2: (yi) := random sampling of Sp(µ)
3: while not converged do

4: (φi) := semi-discrete optimal transport weights from µ to
N
∑

i=1
piδxi

5: (yi) := centroids of Powφ(xi)

6: (ψi) := semi-discrete optimal transport weights from ν to
N
∑

i=1
qiδyi

7: (xi) := centroids of Powψ(yi)
8: end while

We will show in Chapter 5 that even this seemingly simple algorithm
that symmetrizes the notion of semi-discrete optimal transport produces
displacement interpolation results that capture well discontinuous behavior
in the transport maps. A sample run of Algorithm 5 on a 2-d example is
shown in Fig. 3.1.

3.1.2 Implementation

Each semi-discrete optimal transport computation results in an optimization,
typically performed using an iterative solver (L-BFGS in our case). For the
two optimal transport optimizations performed at the first (outer) iteration,
in practice we initialize transport weights with a constant value, resulting in
Voronoi diagrams. For the remaining iterations we employ a warm restart
strategy: the optimized values of (φi)i and (ψi)i from the previous iteration
are reused as initial guesses. We repeat these iterations a fixed number of
times. Figure 3.2 shows the effect of this warm restart on the transport
plans computation times.

We found that 50 iterations were enough in practice to reach convergence
in all our examples. We also have found that ending the iterations of our
algorithm with a transport plan computation step, rather than ending it
with a recentering step, tends to yield better results with regards to the
interpolation, even when the algorithm was not yet completely converged.
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(a)
µ

ν

xi

(b)
µ

yj

(c)
µ

ν

yj

(d)

ν

xi

(e)
µ

ν

xi

(f)
µ

ν

xi
yi

Figure 3.1: First steps of the algorithm and final setting. Steps (a − d)
correspond to a single iteration of Alg. 5. (a) Measure µ is transported to
samples (xi), located on the support of ν. (b) Samples (yi) are relocated
to the barycenters of the new power cells. (c) Measure ν is transported to
samples (yi), located on the support of µ. (d) Samples (xi) are relocated
to the barycenters of the new power cells. (e) Transport from µ to (xi) for
the second iteration. (f) Transport maps and samples at convergence after
several iterations.

Computation of the transport maps is done using the HLBFGS library [Liu10],
and the algorithm has been implemented within the Graphite library [Lé19].
In the particular case of computing transport plans from a mesh with non-
convex connected components, our implementation using L-BFGS was not
converging in practice, which forced us to use a less efficient but more robust
gradient descent algorithm to compute our results. We will investigate it in
the future.

Runtime analysis The overall complexity of our algorithm is dominated
by the optimal transport computation, since the recentering complexity
is negligible. Requiring multiple calls to optimal transport optimizations
makes the overall procedure relatively costly — though of performance sim-
ilar to iterative semi-discrete optimal transport computations of fluid dy-
namics [GM18] that perform similar iterations. Due to our warm restart,
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transport map computations are typically much faster after the first iteration.
This is illustrated by Figure 3.2, where statistical properties (mean, median
and quartiles) of the transport computation times are presented, computed
over the course of 50 experiments. Each experiment is done with a differ-
ent initial placement of the sites, and the weights are always all initialized
to 1 (i.e. the transport plans start out as Voronoi diagrams). Due to the
potentially high values of outliers, we present these values in logarithmic
scale. While some transport plan computations beyond the two initial ones
can occasionally take more time, in the typical run they are much faster. In
practice, in all our 2-d and 3-d examples, the entire process takes approxi-
mately 7–8 minutes for 200 samples and 27–37 minutes for 10k samples, on
an Intel Xeon E5–1650 6-core machine at 3.5GHz.

3.2 Preliminary interpolations

The alternating algorithm gives as an output two point clouds in which
samples are in one-to-one correspondence with each other. We can linearly
interpolate between samples in correspondence, which gives us intermediate
point clouds that approximate displacement interpolation.

We present in Figure 3.3 the results of such pointwise interpolation. The
first four rows present the results of the algorithm on meshes that either
have multiple non-connected components (first row) or locally present suffi-
ciently negative curvature on their boundaries for displacement interpolation
between them to present discontinuities. Our method seems appropriate to
capture discontinuities, as the resulting interpolated points align well with
the locations where we expect discontinuities in the result. The last row
interpolates between two mass distributions that share the same support, but
have different non-uniform densities (in this case, the sum of two gaussians
placed in the opposite corners of a square). In this case as well, linearly
interpolating the point clouds seems to approximate well displacement inter-
polation.
However good these preliminary results are, point clouds remain quite a

coarse approximation of meshes. One option would be to follow the approach
of Bruno Lévy [Lé14] and consider the regular triangulation of these points
associated to the power diagrams computed by the algorithm. However, the
properties of the coupled power diagrams allow for a better meshing strategy,
which we present in Chapter 5.
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Figure 3.2: Average CPU time used for computing the transport plans
in the alternating algorithm, with 50 alternating iterations (meaning 100
transport plan computations). First chart shows times with warm restart,
and the second without. These statistics were computed over the course of
50 algorithm runs, when executing the algorithm for one disk transporting
to two disks, as in Figure 5.6, with N = 5000 points.
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Source Target
distribution t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1 distribution

Figure 3.3: Linear interpolations between the sites positions obtained
through the alternating algorithm, with N = 500 samples. The initial
and final positions of the sites approximate well the input meshes, and the
interpolated point clouds approximate the displacement interpolation. The
first four rows present the results on uniform measures with discontinuities
in the displacement interpolation, and the last one interpolate between two
identical square domains with non-uniform densities.



Chapter 4

Optimization approaches

We have presented in Chapter 4 an alternating algorithm for solving the
constrained optimization problem presented in Chapter 3. Algorithm 4
involves computing two optimal transport plans per iteration, which are
usually computed using convex optimization techniques. This means that
this method will make a number of calls to a convex optimizer that is linear
in the number of iterations. There exist more classical methods for solving
constrained optimization problems, which would solve the problem in only
one optimizer call. This opens the possibility for using acceleration schemes,
and getting better performances.
In this chapter, we explore first and second-order methods for carrying

out this constrained optimization, and discuss their results.

4.1 Problem formulation

We recall the constrained optimization formulation given in Chapter 3:

max
(xi,φi,yi,ψi)

N
∑

i=1

∫

x∈Powφ(xi)
(‖x− xi‖2 − φi)dµ(x) +

N
∑

i=1

piφi

+

N
∑

i=1

∫

y∈Powψ(yi)
(‖y − yi‖2 − ψi)dν(x) +

N
∑

i=1

qiψi

s.t.

∫

x∈Powφ(xi)
(x− yi)dµ(x) = 0

and

∫

y∈Powψ(yi)
(y − xi)dν(y) = 0
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The objective function is a combination of transport functionals that
is maximal when power diagrams correspond to optimal transport maps.
Constraints encode the fact that the sites (xi) and (yi) are located at the
barycenters of the respective cells Powφ(xi) and Pow

ψ(yi).

Notations To lighten our formulas, we will use X as a shorthand for the
parameters vector (xi, φi, yi, ψi)1≤i≤N and introduce the following notations.
The transport functionals that we wish to maximize are denoted:

Φx(X ) =
N
∑

i=1

∫

x∈Powφ(xi)
(‖x− xi‖2 − φi)dµ(x) +

N
∑

i=1

piφi

Φy(X ) =
N
∑

i=1

∫

y∈Powψ(yi)
(‖y − yi‖2 − ψi)dν(y) +

N
∑

i=1

qiψi

and we will call their sum Φ(X ) = Φx(X ) + Φy(X ).
Centroidal constraints that we wish to cancel out are denoted:

βx,i(X ) =
∫

x∈Powφ(xi)
(x− yi)dµ(x)

βy,i(X ) =
∫

y∈Powψ(yi)
(y − xi)dν(y)

βx,i is the gap between the (non-normalized) barycenter of the cell Powφ(xi)
and the site yi (scaled by the area of the cell). It cancels out when
∫

x∈Powφ(xi)
xdµ(x) = yi ·

∫

x∈Powφ(xi)
dµ(x), i.e. when yi =

∫

x∈Powφ(xi)
xdµ(x)

∫

x∈Powφ(xi)
dµ(x)

,

which is the definition of the barycenter of Powφ(xi) (given that the cell has
non-null mass).
We will also denote ni(x) the outwards-pointing normal to Powφ(xi) at

point x ∈ ∂Powφ(xi), Ki the number of edges of the boundary of Powφ(xi),
ik the index of the k-th neighboring site to xi and Ei,ik the common edge
to Powφ(xi) and Pow

φ(xik). ǫ, η ∈ {1, 2} denote one of the two-dimensions

coordinates (i.e., xη is x1 or x2 where x =

(

x1
x2

)

). These notations are

illustrated in Figure 4.1.

Barycenter formulations We have experimented with other barycenter

expressions, such as βx,i(X ) =
∫

x∈Powφ(xi)
(x−yi)dµ(x)

∫

x∈Powφ(xi)
dµ(x)

(computing the difference

between the normalized barycenter and the site), or the formulation (inspired
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xi

xik

Ei,ik

Powφ(xik)

Powφ(xi)

ni(x)

∂Powφ(xi)
x

Figure 4.1: The power cell Powφ(xi) is associated to the site xi. Its boundary
∂Powφ(xi), in the 2-d case, is a polygon with Ki edges (here Ki = 5). Its
k-th neighbor, for 1 ≤ k ≤ Ki, is Pow

φ(xik). Their common edge is Ei,ik ,
and the outwards-pointing normal to x ∈ ∂Powφ(xi) is ni(x).

by the Lloyd functional 1.7) βx,i(X ) =
∫

x∈Powφ(xi)
‖x− yi‖2 dµ(x), to be

minimized instead of canceled. However, they did not yield any significantly
different results.

4.2 Optimization algorithms

We have first considered exploring gradient descent algorithms on an objec-
tive function combining both the functionals to optimize and the constraints
to fulfill. However, this class of algorithms is bound to fail on this particular
problem, because the term ∇xi(Φx) = 2

∫

x∈Powφ(xi)
(x − xi)dµ(x) does not

point in the direction of a solution. Detail of the methods we experimented
with, and the reason for their failure, are detailed in Appendix A.

We thus experimented with second-order techniques with a theoretical
basis for correctness.

4.2.1 Constrained Newton optimization

In this section, we present a more principled approach based on a second-
order Newton optimization with Lagrange multipliers to enforce constraints.
We use the method presented in Boyd and Vandenberghe [BV04] to establish
a constrained optimization algorithm drawing upon Newton’s method.
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This method seemed theoretically promising, but it did give any results.
We nonetheless present it for the sake of completeness.

Computation of the Newton step

The Lagrangian associated to the problem is:

L(X ,Λ) = Φ(X ) + Λ ·B(X )
where Φ(X ) = Φx(X ) + Φy(X ) is the objective function of the uncon-

strained problem, B(X ) =

(

βx(X )
βy(X )

)

is the barycentric constraint vector,

and Λ is the vector of Lagrange multipliers. We will denote by J the Jaco-
bian of B, and by H the hessian of Φ.

The optimality condition for the Lagrangian is:
{

∇Φ(X ) + J(X )⊤ · Λ = 0

B(X ) = 0
(4.1)

The goal is, starting from a point X , to find a direction ∆X such that
X + ∆X verifies condition 4.1. After substituting X with X + ∆X , the
gradient in the first equation and the constraint B in the second can be
linearized as:

∇Φ(X +∆X ) = ∇Φ(X ) +H(X )∆X +O(‖∆X‖) (4.2)

B(X +∆X ) = B(X ) + J(X )∆X +O(‖∆X‖) (4.3)

This allows us to rewrite the optimality condition as a linear system:

(

H(X ) J(X )⊤
J(X ) 0

)

·
(

∆X
Λ

)

=

(

−∇Φ(X )
−B(X )

)

(4.4)

Solving system 4.4 for

(

∆X
Λ

)

gives us our Newton step ∆X and the new

value of the Lagrange multiplier Λ.
If we dismiss the Lagrange multiplier Λ and the second column block of the

matrix, this method amounts to finding a zero of the expression

(

∇Φ(X )
B(X )

)

using Newton’s method, through linearization of ∇Φ and B as previously
done. The cancellation of this vector implies the fulfillment of the constraints
stated in 2.2: the transport functional’s gradient is null when the transport
plan is optimal, and βx and βy are zero when the sites are located in the
barycenters.
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Figure 4.2: Evolution of Φ and of the norm of

(

∇Φ(X )
B(X )

)

during the Newton

optimization, for two different settings, both using the result of the converged
algorithm as a starting point. Both ran for 1000 iterations.

Algorithm

The Newton method stemming from Equation 4.4 to compute coupled semi-
discrete transport plans is given in Algorithm 6.

This algorithm initializes the weights so that the transport plans start out
as Voronoi diagrams. However, one can also carry out a number of steps
of the alternating algorithm (Algorithm 5) before starting the main loop.
This is conjectured to allow the optimization to start at a point closer to the
constrained optimum and thus to avoid divergence.

The version of the Newton algorithm presented in Algorithm 6 uses a fixed
stepsize α. Another possibility would be to recompute the stepsize at each
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Algorithm 6 Newton algorithm for solving the constrained problem 2.1

Input: Two measures µ and ν, a number of samples N , a stepsize α
Sample ν with sites (xi)1≤i≤N
Sample µ with sites (yi)1≤i≤N
Initialize transport weights (φi)1≤i≤N and (ψi)1≤i≤N with a identical
value for all weights (0 in practice)
while not converged do

Compute the step

(

∆X
Λ

)

=

(

H(X ) J(X )⊤
J(X ) 0

)−1

·
(

−∇Φ(X )
−B(X )

)

Update the site positions and the transport weights









xi
φi
yi
ψi









= ∆X + α ·









xi
φi
yi
ψi









end while

step, for example by using the same method as KMT 1, by searching for
the maximum stepsize that does not create empty cells and diminishes the

norm of the right hand of the system

∥

∥

∥

∥

(

−∇Φ(X )
−B(X )

)∥

∥

∥

∥

. In order to use this

method, the initial weights (φi) and (ψi) have to describe transport plans
that present no empty cells. Starting the algorithm with a few alternating
steps can achieve this goal.

Experiments

Figure 4.2 presents the results of two example runs of this algorithm. As
we stated in the beginning of Section 4.2.1, this algorithm did not give
conclusive results. We thus chose to showcase its execution on the simplest
possible case. The starting point of the algorithm is computed by doing 50
iterations of the alternating algorithm. This should be close to a stationary
point of L.
We plot the value of −Φ, which we aim to minimize1, and the norm of

(

∇Φ(X )
B(X )

)

, which we aim to cancel and thus also minimize. The results

1This is due to the implementation of optimal transport in Graphite [Lé19], where,
instead of maximizing the objective functions Φx and Φy, the optimizer minimizes their
opposite.
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in the left column were computed on two identical square domains, while
those in the right column correspond to transporting one disk towards two
disks. We chose to start the optimization at convergence of the alternating
algorithm, in order to test it on a minimally difficult setting. These starting
points are given on the first line.

We would expect to see both the objective function and the norm of
the right hand side of Equation 4.4 eventually decrease, especially since
these optimizations are starting from a — theoretically — already converged
setting. In the case where the domains are identical (i.e. where our problem
boils down to computing two CCCPDs), the norm of the constraint vector
and the objective function stay mostly constant while locally increasing.
This is consistent with what we would expect to see. However, in the other
case, where the domains are disjunct, both value significantly increase, with
a marked “jump” at one point: the algorithm does not converge.

We explored whether the stepsize choice of Kitagawa et al. [KMT16] could
be adapted to our case to help our algorithm converge. However, when we
tested it on non-trivial situations, the algorithm systematically reached a
point where it could not find a suitable stepsize. This suggests that the step
∆X given by our algorithm might not always be a descent direction.

4.2.2 The issue with descent algorithms

It seems that the issue encountered by our optimization methods stems from
a very noisy function: the algorithms tend to take directions that do not
globally decrease the objective function.

As illustrated in Figure 4.3, a reasonably small step, applied to a site’s
position, dramatically modifies the geometry of its associated cell. Thus,
a step that intended on bringing us closer to a solution might modify the
setting enough for it to actually be further away from a solution than it
originally was.

To give a more precise quantification of this phenomenon, we need to
evaluate how a cell evolves when its parameters are slightly perturbated. We
recall the normal component of the frontier’s derivatives with respect to its
site, which we compute in 4.3.1.

〈

∂x

∂xi,η
, ni(x)

〉

=
xη − xi,η
‖xik − xi‖

where η ∈ {0, 1} is one of the 2-d coordinates.
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Figure 4.3: Evolution of a cell when its site is perturbated. As the red site is
slightly moved up while keeping the power weights identical, its associated
cell swells.

We can see that this term is proportional to the distance between the
site and its cell: cells whose sites are far away are more sensitive to small
site displacements. This makes iterative methods quite impractical in this
setting.

4.2.3 Alternating algorithm as an energy optimization

It seems that the best way to find a constrained optimal point in our case
is to alternate between an optimization step and a constraint enforcement
step. This describes the alternating algorithm we presented in 3.1.1.

We can see in Figure 4.4 that the norm of the constraints vector

∥

∥

∥

∥

(

∇Φ
B

)∥

∥

∥

∥

decreases to a minimum value, and that the transport objective function
Φ increases globally to a maximum value during the iterations of the algo-
rithms. The non-zero minimal value of the first expression corresponds to
the term ∇xi,yiΦ, which is not null. These values locally increase during the
recentering step of the main loop, but this increase is usually compensated
during the next transport step.
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Figure 4.4: Evolution of

∥

∥

∥

∥

(

∇Φ
B

)∥

∥

∥

∥

and Φ during the alternating algorithm.
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4.3 First order derivatives

We compute the analytical expressions of the derivatives of Φx, Φy, βx,i
and βy,i. We made the choice of computing these expressions explicitly, in-
stead of using autodifferentiation (as is done in applications such as Light in
Power [MMT17b]). This allowed for a direct implementation of these expres-
sions in Graphite [Lé19] without having to integrate an autodifferentiation
library into the software. In addition, this leaves open the possibility of prov-
ing further theoretical properties of the algorithms using these expressions
in future work.

As stated in Section 4.1, indices η and ǫ ∈ {1, 2} denote one of the 2-d co-
ordinates, with ǫ typically being used for the coordinate of the differentiated
quantity and η when differentiating with respect to the η-th coordinate of a
site.

4.3.1 Reynolds theorem

Both our objective function and our constraints involve integrals over power
cells, that depend on both the positions of the sites and the values of the
weights. Thus, we will need to know how to differentiate an integral over a
domain that depends on the differentiation parameter.

Fortunately, this is exactly the problem solved by the Reynolds transport
theorem [Rey03]. It reads as follows:

Theorem 2 (Reynolds transport theorem). Given an integration domain
Ω(t) depending on the real-valued parameter t, and a function f(x, t), the
derivative of

∫

x∈Ω(t) f(x, t)dx with respect to t is:

∂

∂t

∫

x∈Ω(t)
f(x, t)dx =

∫

x∈Ω(t)

∂f

∂t
(x, t)dx (4.5)

+

∫

θ∈S1

〈

∂γ

∂t
(θ, t), n(γ(θ, t))

〉

f(γ(θ, t), t)

∥

∥

∥

∥

∂γ

∂θ
(θ, t)

∥

∥

∥

∥

dθ

(4.6)

(4.7)

where ∂Ω(t) is the boundary of Ω(t), γ(., t) : S1 → ∂Ω(t) is a parameteriza-
tion of ∂Ω(t) defined on the unit circle S

1 and n(x) is the outwards-pointing
normal at x ∈ ∂Ω(t).

As stated by Cortes et al. [CMB04], the parameterization γ(., t) of the
domain’s boundary needs to be continuous and piecewise differentiable for
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xi

xik
xi

xik

Figure 4.5: The weights defining a power diagram can be visually represented
as circles with radii r =

√
φi. When modifying the weight associated to a

cell, its boundaries move parallel to themselves.

all t, and γ(θ, .) needs to be C1 for all θ as well. The integrated function
f also needs to be continuous on Ω(t) and integrable over ∂Ω(t), and its
derivative ∂f

∂t (x, t)dx needs to be integrable over Ω(t) so that the integrals
in the expression 4.5.

Intuitively, the variation of the integral of a function over a variable domain
comes from both the variation of the function inside the domain and the
variation of the frontier’s position.

Application to power diagram cells

In practice, we will use the Reynolds transport theorem with Ω = Powφ(xi)
and differentiate the integral with respect to any site xj,η or weight φj
(1 ≤ j ≤ N2 and η ∈ {0, 1}), these variables playing the role of t.

Figures 4.5 and 4.6 display the evolution of a power cell when its param-
eters (respectively its weight and its defining site) undergo a small modifi-
cation. These modifications impact both the total mass of a cell and the
outline of its boundary, which in turn transmit to the expressions of the
derivatives.

We need to define a continuous and differentiable parameterization of
∂Powφ(xi). Since ∂Pow

φ(xi) is a polygon, we define a different parameteri-
zation over [0, 1] for each of its edges, that can then be assembled through a

2As we shall see, these expressions are null unless j is equal to i or one of its neighbors.
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xi

xik
xik

Figure 4.6: When the site defining a power cell changes position, the bound-
aries of the cell rotate around their intersection point with segment [xi;xik ]

change of variables into a parameterization over S1.

xi

xik
Ei,ik

γk(θ)

sk = γk(0)

sk+1 = γk(1)

Figure 4.7: Parameteriza-
tion γk of edge Ei,ik .

A parameterization of edge Ei,ik of ∂Pow
φ(xi),

bounded by vertices sk and sk+1, can be γk(θ) =
(1 − θ) · sk + θ · sk+1. Partial derivatives of γk
are, in the general case:

∂γk

∂θ
(θ) = sk+1 − sk (4.8)

∂γk

∂t
(θ) = (1− θ) · ∂sk

∂t
+ θ · ∂sk+1

∂t
(4.9)

where t is either φj or xj,η.

Note that we do not need ∂γk
∂t (θ) on

its own, but only
〈

∂γk
∂t (θ), ni(γk(θ))

〉

=
〈

∂γk
∂t (θ),

xik−xi

‖xik−xi‖

〉

.

sk can be characterized as the intersection
between edges Ei,ik and Ei,ik+1

, using the defi-
nition of a power cell 3:

{

‖sk − xi‖2 − φi = ‖sk − xik‖2 − φik
‖sk − xi‖2 − φi =

∥

∥sk − xik+1

∥

∥

2 − φik+1

(4.10)
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However, since we are only looking for the component of ∂sk
∂φj

and ∂sk
∂xj,η

along direction ni, only the first equation is needed:

‖sk − xi‖2 − φi = ‖sk − xik‖2 − φik

• If t = φj , both sides of the first equation can be differentiated to
obtain:

2 ·
〈

sk − xi,
∂sk

∂φj
− ∂xi

∂φj

〉

− ∂φi

∂φj
= 2 ·

〈

sk − xik ,
∂sk

∂φj
− ∂xik
∂φj

〉

− ∂φik
∂φj

Since xi and xik do not depend on any weight φj , this equation sim-
plifies as:

〈

xik − xi,
∂sk

∂φj

〉

=
1

2
·
(

∂φi

∂φj
− ∂φik
∂φj

)

The expression
〈

xik − xi, ∂sk∂φj

〉

is thus only non-null when j = i or

j = ik:

〈

∂sk

∂φj
,
xik − xi
‖xik − xi‖

〉

=















1
2·‖xik−xi‖

j = i

−1
2·‖xik−xi‖

j = ik

0 otherwise

(4.11)

• If t = xj,η, differentiating the equation yields:

2·
〈

sk − xi,
∂sk

∂xj,η
− ∂xi

∂xj,η

〉

− ∂φi

∂xj,η
= 2·

〈

sk − xik ,
∂sk

∂xj,η
− ∂xik
∂xj,η

〉

− ∂φik
∂xj,η

Since φi and φik do not depend on any site position xj , this equation
simplifies as

〈

sk − xi,
∂sk

∂xj,η
− ∂xi

∂xj,η

〉

=

〈

sk − xik ,
∂sk

∂xj,η
− ∂xik
∂xj,η

〉

〈

xik − xi,
∂sk

∂xj,η

〉

=

〈

sk − xi,
∂xi

∂xj,η

〉

−
〈

sk − xik ,
∂xik
∂xj,η

〉

which is only non-null when j = i or j = ik:

〈

∂sk

∂xj,η
,
xik − xi
‖xik − xi‖

〉

=



















(sk−xi)η

‖xik−xi‖
j = i

(sk−xik )η

‖xik−xi‖
j = ik

0 otherwise

(4.12)
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We can now reinject these expressions into Equation 4.9:

〈

∂γk

∂φj
(θ), ni(γk(θ))

〉

=















1
2·‖xik−xi‖

j = i

−1
2·‖xik−xi‖

j = ik

0 otherwise

(4.13)

〈

∂γk

∂xj,η
(θ), ni(γk(θ))

〉

=



















(γk(θ)−xi)η

‖xik−xi‖
j = i

(γk(θ)−xik )η

‖xik−xi‖
j = ik

0 otherwise

(4.14)

We will use ∂x
∂t as a shorthand to denote ∂γk

∂t (θ) when x = γk(θ).

We can now give more explicit general expressions for the derivatives of in-
tegrals over Powφ(xi) we will encounter. We give an expression independent
of parameterization and write the last part as an integral over the boundary:

∂

∂φi

∫

x∈Powφ(xi)
f(x, φi)dx =

∫

x∈Powφ(xi)

∂f

∂φi
(x, φi)dx

+

Ki
∑

i=1

∫

x∈Ei,ik

1

2 · ‖xik − xi‖
f(x, φi)dx

∂

∂φik

∫

x∈Powφ(xi)
f(x, φik)dx =

∫

x∈Powφ(xi)

∂f

∂φik
(x, φik)dx

−
∫

x∈Ei,ik

1

2 · ‖xik − xi‖
f(x, φik)dx

∂

∂xi,η

∫

x∈Powφ(xi)
f(x, xi,η)dx =

∫

x∈Powφ(xi)

∂f

∂xi,η
(x, xi,η)dx

+

Ki
∑

i=1

∫

x∈Ei,ik

(x− xi)η
‖xik − xi‖

f(x, xi,η)dx

∂

∂xik,η

∫

x∈Powφ(xi)
f(x, xi,η)dx =

∫

x∈Powφ(xi)

∂f

∂xik,η
(x, xik,η)dx

+

∫

x∈Ei,ik

(x− xik)η
‖xik − xi‖

f(x, xik,η)dx

(4.15)
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4.3.2 Objective function

We present here the first-order derivatives of the unconstrained objective func-
tion (Φx+Φy) with regards to the sites xi and yi, and the weights φi and ψi.

∇(Φx +Φy)(X ) =











2
∫

x∈Powφ(xi)
(xi − x)dµ(x)

pi − µ(Powφ(xi))
2
∫

y∈Powψ(yi)
(yi − y)dµ(y)

qi − µ(Powψ(yi))











(4.16)

We refer the reader to the appendix of [DGBOD12] for the detail of the
computations.
The gradient with respect to the weights is the difference between the

actual area of a cell and its prescribed area. In a gradient descent, this
term would diminish the weight of cells with too much mass and increase
that of cells with too little. The gradient with respect to the sites is aligned
with the difference between the position of a site and the position of the
associated barycenter. In a gradient ascent, this term would tend to bring
a site closer to the barycenter of its own cell, instead of the barycenter of
the corresponding cell in the other domain, while a gradient descent would
send the sites away from the meshes to infinity. As pointed out in Section A,
neither of these behaviors are desirable in our application.

4.3.3 Constraints

We do not carry out the computation of
∂βx,i(X )

ε

∂ψj
as it is trivially 0, since no

ψj intervenes in the expression of βx,i.

Derivative of the centering constraint βx,i with respect to the po-

sition of the associated site xi

∂βx,i(X )ε
∂xi,η

=

∫

x∈∂Powφ(xi)

〈

∂x

∂xi,η
, ni(x)

〉

(x− yi)εdµ(x)

=

Ki
∑

k=1

∫

x∈Ei,ik

xη − xi,η
‖xi − xik‖

(x− yi)ε

=

Ki
∑

k=1

1

‖xi − xik‖

∫

x∈Ei,ik

(x− xi)η(x− yi)εdµ(x)

(4.17)

Computing the derivative of an integral over a cell demands the use of
Reynolds’ theorem. Here, the integrand x − yi is constant with respect to
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xi, thus only the term integrating over ∂Powφ(xi) remains. One then has to

replace
〈

∂x
∂xi,η

, ni(x)
〉

with its already computed value (Equation 4.14) and

to split ∂Powφ(xi) into its edges Ei,ik .

Derivative of the centering constraint βx,i with respect to the po-

sition of a neighboring site xik

∂βx,i(X )ε
∂xik,η

=

∫

x∈∂Powφ(xi)

〈

∂x

∂xik,η
, ni(x)

〉

(x− yi)εdµ(x)

=

∫

x∈Ei,ik

−
〈

∂x

∂xik,η
, nik(x)

〉

(x− yi)εdµ(x)

=

∫

x∈Ei,ik

− xη − xik,η‖xik − xi‖
(x− yi)εdµ(x)

= − 1

‖xik − xi‖

∫

x∈Ei,ik

(x− xik)η(x− yi)εdµ(x)

(4.18)

xi

xik
ni(x)

nik(x)

x

Figure 4.8: Outwards-pointing nor-
mals ni(x) and nik(x) at point x

from neighboring cells Powφ(xi) and
Powφ(xik) have opposite directions.

This computation is fairly simi-
lar to the previous one in 4.3.3, ex-
cept for the fact that ∂x

∂xik,η
is null

when x is not part of ∂Powφ(xik).
Here, this means that only the com-
mon edge Ei,ik to Powφ(xi) and
Powφ(xik) remains in the integral.
When x ∈ Ei,ik , ni(x) = −nik(x),
hence the minus sign appearing at
line 2.

Derivative of the centering con-

straint βx,i with respect to the

weight of the associated site φi

∂βx,i(X )ε
∂φi

=

∫

x∈∂Powφ(xi)

〈

∂x

∂φi
, ni(x)

〉

(x− yi)εdµ(x)

=

Ki
∑

k=1

1

2 · ‖xi − xik‖

∫

x∈Ei,ik

(x− yi)εdµ(x)
(4.19)

As in 4.3.3, we apply Reynolds’ theorem, here differentiating with respect
to the weight φi instead of to the site xi. x− yi is also constant with respect
to φi, which yields a similar expression except for the derivative of x.
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Derivative of the centering constraint βx,i with respect to the

weight of a neighboring site φik

∂βx,i(X )ε
∂φik

=

∫

x∈∂Powφ(xi)

〈

∂x

∂φik
, ni(x)

〉

(x− yi)εdµ(x)

=

∫

x∈Ei,ik

−
〈

∂x

∂φik
, nik(x)

〉

(x− yi)εdµ(x)

= − 1

2 · ‖xi − xik‖

∫

x∈Ei,ik

(x− yi)εdµ(x)

(4.20)

This expression is the same as in 4.3.3 but with only the term related to
the k-th edge of ∂Powφ(xi) remaining.

Derivative of the centering constraint βx,i with respect to the posi-
tion of the associated site in the opposite domain yi

∂βx,i(X )ε
∂yi,η

=

∫

x∈Powφ(xi)

∂(x− yi)ε
∂yi,η

dµ(x)

=

{

−µ(Powφ(xi)) if ε = η

0 otherwise

(4.21)

This computation also uses Reynolds’ theorem, but, contrary to the pre-
vious ones, only keeps the integral over Powφ(xi), since the geometry of
Powφ(xi) does not depend on yi, and thus neither does x ∈ ∂Powφ(xi).

Passing to the next line is done by noticing that
∂(x−yi)ε
∂yi,η

= −δε,η
Computing

∂βx,i(X )
ε

∂yik,η
similarly yields 0, for yi does not depend on yik .

4.4 Hessian of the objective function

We compute here the second-order derivatives of the unconstrained objective
function (Φx + Φy) that make up the Hessian H. We compute derivatives
with regards to the sites positions and the weights as well as crossed terms.

These results coincide with those appearing in de Gournay et al. [dGKL18],
where they are computed using another method.
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4.4.1 Derivatives with respect to the site positions

Second derivative of Φ with respect to the same site xi twice

∂2(Φx +Φy)(X )
∂x2i,η

=
∂2
∫

x∈Powφ(xi)
(xi − x)ηdµ(x)

∂xi,η

= 2 ·
∫

x∈Powφ(xi)

∂(xi − x)η
∂xi,η

dµ(x)

+ 2 ·
∫

x∈∂Powφ(xi)

〈

∂x

∂xi,η
, ni(x)

〉

(xi − x)ηdµ(x)

= 2 · µ(Powφ(xi))− 2 ·
Ki
∑

k=1

∫

x∈Ei,ik

(xi,η − xη)2
‖xik − xi‖

dµ(x)

(4.22)

The first line of the computation is obtained by substituting the value

of
∂(Φx+Φy)(X )

∂xi,η
already stated in Section 4.3.2. The second and third lines

stem from the application of Reynolds’ theorem, with both terms remain-

ing this time. The last line is obtained by substituting
∂(xi−x)η
∂xi,η

= 1 and
〈

∂x
∂xi,η

, ni(x)
〉

=
xη−xi,η

‖xik−xi‖
(Equation 4.14).

Second derivative of Φ with respect to a cell’s site xi and a neigh-

boring site xik

∂2(Φx +Φy)(X )
∂xi,η ∂xik,η′

=
∂2
∫

x∈Powφ(xi)
(xi − x)ηdµ(x)

∂xik,η′

= 2 ·
∫

x∈Powφ(xi)

∂(xi − x)η
∂xik,η′

dµ(x)

+ 2 ·
∫

x∈∂Powφ(xi)

〈

∂x

∂xik,η′
, ni(x)

〉

(xi − x)ηdµ(x)

= 2 ·
∫

x∈Ei,ik

−
〈

∂x

∂xik,η′
, nik(x)

〉

(xi − x)ηdµ(x)

= 2 ·
∫

x∈Ei,ik

(xik − x)η′ · (xi − x)η
‖xik − xi‖

dµ(x)

(4.23)
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This computation follows the same principles as the one in Section 4.4.1.

The main differences stem from the fact that
∂(xi−x)η
∂xik,η′

= 0 and that only the

term related to the k-th edge of the boundary of Powφ(xi) remains in the
sum.

Second derivative of Φ with respect to two different coordinates of

the same site xi

∂2(Φx +Φy)(X )
∂xi,1 ∂xi,2

=
∂2
∫

x∈Powφ(xi)
(xi − x)1dµ(x)

∂xi,2

= 2 ·
∫

x∈Powφ(xi)

∂(xi − x)1
∂xi,2

dµ(x)

+ 2 ·
∫

x∈∂Powφ(xi)

〈

∂x

∂xi,2
, ni(x)

〉

(xi − x)1dµ(x)

= 2 ·
Ki
∑

k=1

∫

x∈Ei,ik

(xi − x)1 · (xi − x)2
‖xik − xi‖

dµ(x)

(4.24)

This computation is very similar as well to 4.4.1, with
∂(xi−x)1
∂xi,2

= 0 can-

celing the first term from Reynolds’ theorem.

Second derivative of Φ with respect to a site xi and its corresponding

site yi in the opposite domain

∂2(Φx +Φy)(X )
∂xi,η ∂yi,η′

=
∂2
∫

x∈Powφ(xi)
(xi − x)ηdµ(x)

∂yi,η′

= 2 ·
∫

x∈Powφ(xi)

∂(xi − x)η
∂yi,η′

dµ(x)

+ 2 ·
∫

x∈∂Powφ(xi)

〈

∂x

∂yi,η′
, ni(x)

〉

(xi − x)ηdµ(x)

= 0

(4.25)

The first line of the computation is obtained by substituting the value

of
∂(Φx+Φy)(X )

∂xi,η
already stated in Section 4.3.2. Reynolds’ theorem is then

applied to the resulting integral. Both terms cancel out, for one because
xi does not depend on yi and for the other because ∂Powφ(xi) is also
independent on yi.
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Second derivative of Φ with respect to a site xi and a neighboring

site yik in the opposite domain

∂2(Φx +Φy)(X )
∂xi,η ∂yik,η′

=
∂2
∫

x∈Powφ(xi)
(xi − x)ηdµ(x)

∂yik,η′

= 2 ·
∫

x∈Powφ(xi)

∂(xi − x)η
∂yik,η′

dµ(x)

+ 2 ·
∫

x∈∂Powφ(xi)

〈

∂x

∂yik,η′
, ni(x)

〉

(xi − x)ηdµ(x)

= 0

(4.26)

This computation follows the same path as that of Section 4.4.1.

4.4.2 Derivatives with respect to the weights

Second derivative of Φ with respect to the same weight φi twice

∂2(Φx +Φy)(X )
∂φ2i

=
∂(pi − µ(Powφ(xi)))

∂φi

= −
∫

x∈∂Powφ(xi)

〈

∂x

∂φi
, ni(x)

〉

dµ(x)

= −
Ki
∑

k=1

1

2 · ‖xi − xik‖

∫

x∈Ei,ik

dµ(x)

(4.27)

The first line of the computation is obtained by substituting the value of
∂(Φx+Φy)(X )

∂φi
already stated in Section 4.3.2. Only the value of µ(Powφ(xi)) =

∫

x∈Powφ(xi)
dµ(x) depends on φi, and Reynolds’ theorem is applied to com-

pute the derivative of this integral. The term integrating over Powφ(xi)

disappears as ∂1
∂φi

= 0, and only
∫

x∈∂Powφ(xi)

〈

∂x
∂φi

, ni(x)
〉

dµ(x) remains.

The last line is computed by splitting the integral over ∂Powφ(xi) into its

edges and substituting
〈

∂x
∂φi

, ni(x)
〉

for its already-computed value (Equa-

tion 4.13).
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Second derivative of Φ with respect to a cell’s weight φi and the

weight φik of a neighboring cell

∂2(Φx +Φy)(X )
∂φi ∂φik

=
∂(pi − µ(Powφ(xi)))

∂φik

= −
∫

x∈∂Powφ(xi)

〈

∂x

∂φik
, ni(x)

〉

dµ(x)

=

∫

x∈∂Powφ(xi)

〈

∂x

∂φik
, nik(x)

〉

dµ(x)

=
1

2 · ‖xi − xik‖

∫

x∈Ei,ik

dµ(x)

(4.28)

This computation is very similar to that in Section 4.4.2. The only differ-
ence comes from the fact that, for x ∈ ∂Powφ(xi), ∂x

∂φik
6= 0 only if x ∈ Ei,ik .

Thus, only the integral over Ei,ik remains.

Second derivative of Φ with respect to a cell’s weight φi and the

weight ψi of the corresponding cell in the opposite domain

∂2(Φx +Φy)(X )
∂φi ∂ψi

=
∂(pi − µ(Powφ(xi)))

∂ψi

= 0

(4.29)

The value of
∂(Φx+Φy)(X )

∂φi
= pi−µ(Powφ(xi)) is differentiated with respect

to ψi. None of these terms depend on ψi, thus the final derivative is null.

By an identical computation,
∂2(Φx+Φy)(X )

∂φi ∂ψik
= 0.
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4.4.3 Crossed derivatives

Second derivative of Φ with respect to the weight φi and the site’s

coordinates xi of a cell

∂2(Φx +Φy)(X )
∂φi ∂xi,η

=
∂(pi − µ(Powφ(xi)))

∂xi,η

= −
∫

x∈∂Powφ(xi)

〈

∂x

∂xi,η
, ni(x)

〉

dµ(x)

=

Ki
∑

k=1

1

‖xi − xik‖

∫

x∈Ei,ik

(xi − x)ηdµ(x)

(4.30)

The value of
∂(Φx+Φy)(X )

∂φi
= pi−µ(Powφ(xi)) is differentiated with respect

to xi. Reynolds’ theorem is applied to µ(Powφ(xi)) =
∫

x∈Powφ(xi)
dµ(x).

∂1
∂xi,η

= 0, so only the integral over ∂Powφ(xi) remains. The integral is

then split over the edges of ∂Powφ(xi) and the normal component of the
derivative replaced by its value (Equation 4.14).

Second derivative with respect to the weight φi of a cell and the

coordinates xik of a neighboring cell’s site

∂2(Φx +Φy)(X )
∂φi ∂xik,η

=
∂(pi − µ(Powφ(xi)))

∂xik,η

= −
∫

x∈∂Powφ(xi)

〈

∂x

∂xik,η
, ni(x)

〉

dµ(x)

=

∫

x∈Ei,ik

〈

∂x

∂xik,η
, nik(x)

〉

dµ(x)

= − 1

‖xi − xik‖

∫

x∈Ei,ik

(xik − x)ηdµ(x)

(4.31)

This computation follows the same path as that in Section 4.4.3, but only
the integral over Ei,ik remains.
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Second derivative with respect to the weight φi of a cell and the

coordinates yi of the corresponding site in the opposite domain

∂2(Φx +Φy)(X )
∂φi ∂yi,η

=
∂(pi − µ(Powφ(xi)))

∂yi,η

= 0

(4.32)

The value of
∂(Φx+Φy)(X )

∂φi
= pi−µ(Powφ(xi)) is differentiated with respect

to yi. None of these terms depend on yi, thus the final derivative is null.

By an identical computation,
∂2(Φx+Φy)(X )
∂φi ∂yik,η

= 0.
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Chapter 5

Interpolation

In this chapter, we present how the power cells of coupled transport plans
are in one-to-one correspondence. As a consequence, both power diagrams
have the same geometry, which allows to linearly interpolate between their
vertices in order to approximate displacement interpolation. We present
visual results for this interpolation method and qualitatively evaluate them
against a reference interpolation.

5.1 Empirical properties of the coupled transport

plans

The coupled transport plans specified in 2.2 and obtained by the alternating
algorithm of Chapter 4 enjoy some remarkable properties that make them
well suited for interpolation. Our algorithm builds two coupled power dia-
grams. In practice, we observe that neighboring relationships are preserved.
This means that cells that are neighbors in a power diagram are also neigh-
bors in the other. In practice, this implies that not only power cells are in
correspondence, but also that their geometry is the same: the dual graphs of
the power diagrams are identical. Concretely, our algorithm deals with power
diagrams intersected with meshes. In the case where boundaries between
cells lie outside of the mesh, the neighboring relationship between these cells
is broken by the intersection. This appears to correspond to discontinuities
in the transport plan — see figures in Section 5.3.1 for an illustration.

We were not able to prove this property, but we observe that it holds in
practice. Figure 5.1 showcases it on two examples with same topology. We
observe that in both cases the power diagrams keep the same geometry, even
when the meshes are distorted in different directions.
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(a) Power cells in similar meshes.
(b) Power cells in meshes with same
topology but strong anisotropy.

Figure 5.1: In meshes of the same topology, the coupled power diagrams
present the same geometry. Even when interpolating between the meshes
involves distortion, the empirical property is preserved.

Choice of the number of samples It can sometimes happen that, even
when the algorithm has seemingly converged, one cell overlaps between
connected components, as shown in Figure 5.2.

Figure 5.2: A cell intersecting two different connected components in con-
verged transport maps

This is usually due to the ratio between the different connected compo-
nents’ areas being incompatible with the number of cells: for example, a
domain composed of two connected components of the same area, trans-
ported to an odd number of samples with uniform mass, will have to split
a cell between both components in order to fulfill the mass constraints of
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optimal transport. This phenomenon is showcased on Figure 5.2, where 201
cells are used to approximate transport between a large disk and two smaller
disks of identical areas. This calls for a wise choice of the exact number of
samples used.

More precisely, let us consider a mesh made up of k connected components
with areas A1, . . . , Ak, of total mass A =

∑k
i=1Ak. Let’s assume that for

each connected component, the ratio of its mass to the total mass Ai
A is a

rational piqi . Then, in the case where the samples are assigned identical masses,
and their number is a multiple of all the denominators qi, the power cells
can be divided among the connected components without a remainder. This
results in all power cells only intersecting with one connected component and
thus not spanning potential discontinuities. This contributes to the power
diagram properly approximating the transport plan and its discontinuities.

5.2 Interpolation algorithm

The fact that cells are in one-to-one correspondence allows us to come up
with a simple interpolation technique: since corresponding power cells have
the same geometry, we can put their vertices in correspondence and linearly
interpolate between them. In addition, power cells boundaries tend to be
aligned with the transport maps discontinuities, which helps capture tearing
during displacement interpolations — see Figure 5.5 for an example. This
allows to define the following 2-d mesh interpolation algorithm.
Our algorithm makes use of restricted power diagrams. We will use

Nivoliers’ [NYL11] classification of the vertices of such meshes.

Definition 4 (Vertex types). A vertex of a restricted power diagram is
necessarily of one of the three following types:

• type i a vertex that originates from the underlying mesh and that does
not depend on the (unrestricted) power diagram,

• type ii a vertex that is located at the intersection of an edge separating
two power cells, and an edge of the underlying mesh,

• type iii a vertex that is at the intersection between three cells of the
power diagram. Such a vertex can be uniquely identified by the triplet
(i, j, k) of surrounding cells indices.

As a consequence of the preservation of neighboring relationships stated
in Section 5.1, and of the fact that each power diagram vertex is uniquely
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defined by the power cells it is incident to, it is easy to check whether a
vertex of one power diagram can be matched with a vertex of the other, and
match them.

i

iii

ii

Figure 5.3: Red arrows point to ver-
tices with type i, ii and iii, and the

blue arrow show a vertex that splits
during the interpolation. Grey edges

represent edges that belong to the
underlying mesh, while black edges

come from the restriction of the power
diagram to the mesh.

When intersecting the power di-
agram with a mesh, this translates
to the fact that each type iii vertex
on the one side, encoded as (i, j, k),
is in correspondence with at most
one type iii vertex, also encoded as
(i, j, k), on the other side. We thus
identify cell vertices based on their
neighboring cells, and linearly inter-
polate between the two vertices that
share the same neighboring cells in
the two domains.
Correspondence between type ii

vertices that lie on the boundary
follows the same principle. In or-
der to identify which vertices should
be associated, we extend the triplet
identification presented in Defini-
tion 4. If a vertex is adjacent to cells
Powφ(xi) and Pow

φ(xj), it is iden-
tified by the triplet (i, j, 0), where 0
represents the fact that the “third
cell” it is adjacent to is in fact the outside of the mesh.
However, whenever the meshes present topological discontinuities, some

type iii vertices are bound to split during the transport, typically giving
birth to two type ii vertices, or one type ii vertex and one type i vertex. In
these cases, we need to duplicate the type iii vertices identified by (i, j, k)
into two new type ii vertices among (i, j, 0), (i, 0, k) and (0, j, k), and seek
corresponding vertices on the other side. A similar treatment is applied to
type ii vertices that split into type i vertices.
The fact that there is no one-to-one correspondence between vertices

involved in discontinuities offers us a practical criterion for identifying them.
This could be used to extract with precision the locus of such discontinuities.

At last, we need to account for type i vertices lying on the boundary. In
the best of cases, there is only one vertex identified by (i, 0, 0) in each of
the restricted Voronoi diagrams, and we can associate them right away. In
the worst case, there are several vertices represented by the same identifier
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on each side. In this situation, we chose to associate all the equivalent
vertices on one restricted Voronoi diagram to a single vertex of the opposite.
This potentially causes some artifacts in the morph and leaves room for
improvement of the algorithm. See for example the detail shown in Figure 5.4
where a power cell collapses as two of its vertices are mapped to the same
final vertex.

t = 0 t = 0.25
(1, 0, 0)

(1, 0, 0)

Figure 5.4: Detail from Figure 5.8. The interpolated mesh is shown at two
steps of the interpolation. Distinct vertices of the power diagram intersected
with the mesh can share the same identification. For example, if the cell at
the upper right extremity of the branch has identifier 1, both pointed vertices
will be identified by (1, 0, 0) and thus interpolated towards the same final
vertex. This results in an jagged outer boundary during the interpolation.

The key difference between this interpolation method and the one proposed
by Lévy [Lé14] is that our method interpolates between power diagrams
instead of Delaunay triangulations. In our method, the interpolated vertices
are the vertices of the power cells, while in the other method the vertices are
the samples. The power diagram covers all of the mesh while the Delaunay
triangulations only covers a portion of it, as can be seen in Figure 2.4.

5.3 Interpolation results

In this section, we present the interpolated meshes generated through our
alternating algorithm and the vertex association method presented in Sec-
tion 5.2. We present 2-d and 3-d interpolation for visual evaluation. We
also compute the Hausdorff distances of interpolated meshes to a reference
interpolation, for quantitative evaluation.

5.3.1 Interpolations in 2-d

We compare our symmetrized algorithm with classical semi-discrete optimal
transport [Lé14] for 2-d interpolation. The non-symmetrized algorithm in-
terpolates between a sampling of one of the meshes and the barycenters of
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a semi-discrete optimal transport plan, that transports from the other mesh
to the sampling. Figures 5.5, 5.6, 5.7, 5.8 and 5.9 compare the result of our
algorithm with interpolations obtained with the non-symmetrized algorithm.
Two versions of the non-symmetrized interpolation are presented, each sam-
pling a different mesh. This showcases the fact that these non-symmetrized
interpolations properly capture the discontinuities from at most one of the
meshes, while the symmetrized interpolation captures them from both.

Measures with uniform densities Figures 5.5 and 5.6 illustrate our al-
gorithm on sets of disks — two disks interpolated against two other disks, one
disk interpolated against two disks, and one disk interpolated against three
disks — and compare it with the (non-symmetric) semi-discrete approach
of Lévy [Lé14]. When a single disk is interpolated with a shape consist-
ing of two or three disks, the classical semi-discrete approach works well
only when sampling the non-connected shape and computing a semi-discrete
transport plan from the single disk (thus considered continuous) to these
samples. However, appropriately choosing the continuous measure is not
possible when interpolating between two non-connected shapes: in that case,
our method still nicely captures tearing (Fig. 5.5) while a non-symmetric
approach poorly approximates it.

Figure 5.7 shows an interpolation from a single disk to connected but non-
convex negatively-curved shapes, thus resulting in discontinuous transport
maps by construction [CJL+15]. The non-symmetrized algorithm fails at
capturing transport map discontinuities, both when transporting from or to
the single disk, while our symmetric approach captures them well.

Figure 5.8 shows a more complex interpolation between stars, where each
branch separates into two equal parts during interpolation. Our approach
better preserves the thin branch structures.

Measures with non-uniform densities As illustrated in Figure 5.9, our
algorithm also handles measures that are not uniform over their support. We
observe that the measures are interpolated in a consistent way, with the two
peaks from the source distribution splitting and joining into the two peaks
from the target distribution. In contrast, the non-symmetrized algorithm
results in interpolation of near uniform densities in this example.

5.3.2 Interpolations in 3-d

We showcase our algorithm on 3-d examples.
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Figure 5.5: Interpolation between two horizontally aligned disks and two
vertically aligned disks. Notice how the cells align with the discontinuities on
both measures with our method, while they only align on the target measure
with Levy’s method, resulting in artifacts in the interpolation.
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é1

4
]

µ
co

n
ti
n
u
o
u
s

ν
sa
m
p
le
d

se
m
i-
d
is
cr
et
e
[L
é1
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Figure 5.10 illustrates the importance of symmetry in 3-d as well: one
can observe the cells aligning with the discontinuities on our algorithm’s
output, resulting in two rather accurate tearings, while the interpolations
from Lévy’s algorithm always display a ragged tear in at least one of the
discontinuities, in a similar manner as what could be observed on Figure 5.5.

Figure 5.11 illustrates a similar phenomenon to the one observed on Fig-
ure 5.10: the power cells of symmetrized the transport map align with the
discontinuity on our algorithm’s output, while it is only the case with Levy’s
algorithm when the discontinuity is on the target measure.
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5.4 Quantitative evaluation

In order to evaluate the accuracy of our interpolations, we compute a high
quality interpolation using Lévy’s algorithm with 100k samples and compare
the Hausdorff distances between, respectively, our algorithm with 10k sam-
ples and the ground truth, and Lévy’s algorithm with 10k samples and the
ground truth. We observe that our results are systematically more precise
than which corroborates the visual observations.

Shape Algorithm 0 0.25 0.5 0.75 1

Six-pointed star to Levy’s 0.078 0.076 0.074 0.076 0.077
six-pointed star 5.8 Ours 0.028 0.033 0.038 0.044 0.045

Two disks to Levy’s 0.025 0.033 0.025 0.021 0.016
two disks 5.5 Ours 0.0086 0.017 0.0098 0.0094 0.0072

One disk to Levy’s 0.022 0.022 0.025 0.026 0.016
three disks 5.6 Ours 0.0098 0.0089 0.0017 0.0092 0.0064

Table 5.1: Hausdorff distances between the interpolated meshes at different
interpolation steps. The mesh generated by the symmetrized algorithm
(ours) is closer to the reference mesh than the algorithm generated by Lévy’s
algorithm.
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Figure 5.6: Interpolations between a disk and two disks, and between a disk
and three disks, using 200 samples. The non-symmetric approach poorly
approximates discontinuities when the single disk is sampled. Our method
best captures discontinuities in all cases.
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Figure 5.7: Interpolation between a disk and non-convex shapes. A disconti-
nuity appears on the disk to create the non-convexity.
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Figure 5.8: Interpolation between a star and another star with branches
equidistant to the first star’s branches. Each branch splits in two equal parts
that join with their neighbors to create the target branches.
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Figure 5.9: Interpolation between two squares equipped with non-uniform
densities, each consisting of the sum of two gaussians

Source Interpolation Target
distribution µ distribution ν
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Figure 5.10: Interpolation between two horizontally aligned spheres and two
vertically aligned spheres. Like in 2-d, power cells align with the discontinu-
ities in the case of our algorithm, allowing for accurate tearings, while with
Levy’s algorithm, in each case at least one of the tearings is not accurately
captured.
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Figure 5.11: Interpolation between a single sphere and two smaller spheres.
The power cells align with the discontinuity with our algorithm but only do
so in one case with Levy’s algorithm.
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Conclusion

In this thesis, I studied methods to accurately approximate displacement
interpolation using semi-discrete optimal transport. I proposed a way of
coupling semi-discrete transport plans in order to reintroduce symmetry into
this framework, while accurately capturing the discontinuities that could
arise in the interpolation. I proposed a fixed point algorithm to compute such
coupled transport plans. It consists in alternatively optimizing the weights
of an optimal transport plan and relocating the discrete samples to the
barycenters of the resulting power cells. This algorithm gives good practical
results, which one can use to linearly interpolate between the resulting
power diagram. This constitutes a good approximation of displacement
interpolation, including when the discrete approximations of distributions
have relatively few samples.

I also studied the feasibility of formulating this problem as a constrained
optimization problem, which could then be solved using classical methods
such as gradient descent or Newton’s method. Despite experimenting with
several formulations or optimizers, this has proved inconclusive. I hypothe-
size that this is due to the over sensitivity of function parameters, and the
problem being possibility ill-posed. It seems that at best, this optimization
approach could be shown to be solved through our alternating algorithm.

Future work

These results, positive or negative, raise more questions.

Theoretical guarantees I presented a way of coupling transport plans
and interpolating between them that, empirically, appears to yield a good
approximation of displacement interpolation. However, this result is for now
mainly empirical, and could benefit from theoretical guarantees. For exam-
ple, one could investigate whether the coupling conditions imply that the

97
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image of a power cell through a transport map between the two continuous
distributions would be the associated cell in the opposite domain. If this
association turns out not to be exact, one could instead turn to quantifying
the accuracy of this approximation. This last result could help studying to
what extent the power cells boundaries actually align with discontinuities in
the transport plan.

Another of our results that could benefit from theoretical guarantees is
the convergence of our alternating algorithm. This could for example be
done by proving that the norm of the constraint vector presented in 4.2.1
decreases over the algorithm’s iterations. If this were to fail, one could at
least try to prove that a fixed point of the algorithm does exist. A possibility
would be to use Brouwer’s fixed point theorem. It demands to verify two
hypotheses. First, the functions applied during the algorithm need to be
continuous (these functions being the optimal weights associated to a set of
sites positions, and the barycenters associated to a power diagram). Second,
the definition set needs to be convex, and compact, which, since we are
dealing with a finite-dimensional problem, amounts to being closed and
bounded. This definition set consists in the set of weights that can define
optimal transport plans and the set of positions that can be power cells
barycenters.

An alternative way of giving a theoretical foundation to the alternating
algorithm would be to consider it as a sequence of alternating projections. In
its classical version, the alternating projection method is used to compute the
intersection of closed, convex sets [GPR67]. This method has been extended
to sets that are not convex, such as manifolds [LM08]. Studying if the sets
involved in our problem fulfill conditions would certainly provide valuable
theoretical information about this problem.

Descent algorithms There might be optimization approaches that I did
not consider but that would be adapted to solving the constrained problem.
Studying the topological properties of the set of variables verifying the
barycentric constraint could orient the choice of an adequate optimization
algorithm. I worked with explicit expressions of derivatives, but one could
also experiment with autodifferentiation, which might be more robust to
edge-cases.

The optimization method we experimented implicitly assumed that the
weights and sites positions were independent variables. This is not true:
since our semi-discrete transport plans are optimal, the weights are uniquely
defined for a given set of sites positions (up to an additive constant). This is
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in accordance with the observation made in Section 4.2.2, which attributed
the failure of our previous methods to the weights not being updated to take
into account the new sites positions. This also hints at the reason behind
the efficiency of the alternating algorithm, in which each relocation of the
sites was followed by a computation of the new optimal transport plan.
A promising direction for a new method can be derived from this ob-

servation. The implicit function theorem guarantees that the function φ∗

associating the optimal weights (φi) to a set of sites positions (xi) exists
and is sufficiently regular. We can then compute the derivative of φ∗ and
reinject it in a Newton algorithm in order to cancel out the barycentric con-
straints. Conceptually, this is an inversion of the point of view adopted in
this manuscript: instead of optimizing transport functional under barycen-
tric constraints, the objective is to find barycenters through optimization on
the constrained space defined by optimal transport weights.

Applications Detecting discontinuities in transport plans is particularly
important in applications where the optimal transport formulation is the
direct translation of physical principles, such as fluid simulations [Lé22,
LMvH21]. In these applications, the cost minimization typically translates
the least action principle, and the pushforward measures equality trans-
lates matter conservation. In these applications, detecting discontinuities in
the transport plan can be used to partition matter early in the simulation
according to which route it will take in the future.

Extensions Wasserstein barycenters are most interesting when applied to
more than two distributions. The approach presented in this thesis heavily
relies on the fact that we only consider two distributions. By consequence,
it is not trivial to define a specification coupling more than two distributions
in the same fashion while preserving the same properties. One could, for
example, imagine chaining transport plans through their barycenters, the
sites of the k-th transport plan being located at the barycenters of the cells
of the k − 1-th transport plan.
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Appendix A

Gradient descent algorithms

We have experimented with a solution that incorporates the constraints
and (Φx +Φy) into a single objective function using a quadratic barrier. A
quadratic barrier adds the constraints in the objective function within a
highly weighted squared norm term. Doing so adds extreme penalty when
constraints are violated.

The resulting objective function to minimize would be, in our case:

−(Φx(X ) + Φy(X )) +A ·
(

N
∑

i=1

‖cx,i(X )‖2 + ‖cy,i(X )‖2
)

where A is orders of magnitude higher than
Φx+Φy
cx,i+cy,i

in a neighborhood

of a solution. We incorporate the unconstrained objective function in its
negative form −(Φx +Φy) in order to minimize it, to stay coherent with the
minimization of the quadratic barrier.
However, all gradient-based methods for this problem are bound to fail,

because of the fact that Φx and Φy are concave only in φi and ψi, and that
they’re actually convex in xi and yi. This can be seen when considering the
fact that ∇xi(Φx) = 2

∫

x∈Powφ(xi)
(x − xj)dµ(x). A gradient ascent would

thus drive the sites as far away as possible from their cells’ barycenters,
with a speed proportional to the site distance to the barycenter. Conversely,
a gradient descent would direct the sites towards their cells’ barycenters.
This property was successfully exploited in applications such as Blue Noise
through Optimal Transport [DGBOD12], where the objective was to force
the sites to coincide with the cells’ barycenters, thus the problem could be
formulated in terms of searching for a saddle point.

In our problem, however, neither a gradient descent nor a gradient ascent
suit our needs. Since our typical use case involves computing symmetrized
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optimal transport between disjunct meshes, the barycenter of a cell and the
barycenter of its associated cell do not coincide. Thus, a gradient descent
would defeat our purpose.

This issue is intrinsic to all methods using the gradient as a descent direc-
tion, and cannot be solved by using a different or more refined optimization
technique, such as stochastic gradient or Adam [KB14].
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