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Résumé

Mots clefs: Géométrie non-commutative, théorie de Jauge, théories Grand-Unifiés (GUT), AF-algebres.

La géométrie non-commutative (GNC) est une discipline mathématique développée dans les années 90 par

Alain Connes. Elle se présente comme la nouvelle généralisation de la géométrie usuelle, englobant et dépassant

le cadre Riemannien, et ce dans un formalisme purement algébrique. À l’instar de la géométrie Riemannienne, la

GNC possède elle aussi des liens avec la physique. En effet, la GNC a fourni un cadre puissant pour reformuler

le Modèle Standard de la Physique des Particules (SMPP) en tenant compte de la relativité générale, et ce, en

une seule représentation "géométrique", basée sur les Théories de Jauge Non-Commutatives (NCGFT). De plus,

cette réalisation offre un cadre propice à l’étude des diverses possibilités pour aller au-delà du SMPP, comme les

Théories Grands Unifiées (GUT). Cette thèse cherche à montrer une méthode élégante, récemment développée

par Thierry Masson et moi-même proposant un schéma général pour élaborer des GUTs dans le cadre des NCGFT.

Ceci concerne l’étude de NCGFTs basées sur les 𝐶∗
-algebres Approximativement Finies (AF-algèbres), en util-

isant soit les dérivations de l’algèbre, soit des triplets spectraux afin de mettre en place la structure différentielle

sous-jacente à la théorie de Jauge. La séquence inductive définissant l’algèbre AF est utilisée pour permettre la

construction d’une séquence de NCGFTs de types Yang-Mills Higgs, le rang 𝑛 + 1 pouvant ainsi représenter la

théorie grande unifiée de celle du rang 𝑛. Le principal avantage de ce cadre est de contrôler, à l’aide de conditions

adéquates, l’interaction des degrés de liberté le long de la séquence inductive sur l’algèbre AF, et de suggérer un

moyen d’obtenir des modèles de type GUT, tout en offrant de nombreuses voies d’exploration théorique pour

aller au-delà du SMPP.
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Abstract

Keywords: Non-commutative geometry, Gauge theory, Grand Unified Theories (GUT), AF-algebras.

Non-commutative geometry (NCG) is a mathematical discipline developed in the 1990s by Alain Connes.

It is presented as a new generalization of usual geometry, both encompassing and going beyond the Rieman-

nian framework, within a purely algebraic formalism. Like Riemannian geometry, NCG also has links with

physics. Indeed, NCG provided a powerful framework for the reformulation of the Standard Model of Particle

Physics (SMPP), taking into account General Relativity, in a single "geometric" representation, based on Non-

Commutative Gauge Theories (NCGFT). Moreover, this accomplishment provides a convenient framework to

study various possibilities to go beyond the SMPP, such as Grand Unified Theories (GUTs). This thesis intends to

show an elegant method recently developed by Thierry Masson and myself, which proposes a general scheme to

elaborate GUTs in the framework of NCGFTs. This concerns the study of NCGFTs based on approximately finite

𝐶∗
-algebras (AF-algebras), using either derivations of the algebra or spectral triples to build up the underlying

differential structure of the Gauge Theory. The inductive sequence defining the AF-algebra is used to allow the

construction of a sequence of NCGFTs of Yang-Mills Higgs types, so that the rank 𝑛 + 1 can represent a grand

unified theory of the rank 𝑛. The main advantage of this framework is that it controls, using appropriate condi-

tions, the interaction of the degrees of freedom along the inductive sequence on the AF algebra. This suggests

a way to obtain GUT-like models while offering many directions of theoretical investigation to go beyond the

SMPP.
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Symbols and Acronyms

The symbols table is organized with a logic that respects a given view of algebraic structures and the order

in which they can be constructively considered. First, the various algebras used here are presented. Then the

module and Hilbert space structures on which these algebras can act. The third block concerns other structures

that can be extracted from the algebra, such as the character space and the manifold. Then we consider the various

constructions on these last structures, tangent spaces, and others. The 5th block concerns automorphisms and

groups acting on the algebraic structures. The 6th block concerns metric and scalar product structures. The 7th

block deals with the operators used to study differential structures, and the connections that can be associated

with these structures in the 8th one. Finally, the 9th block contains the various operators that are useful in NCG,

while the last block contains all the other symbols used in this thesis.

 an algebra

𝐹 a finite algebra

∞(𝑀) the algebra of differentiable functions over 𝑀
𝑆𝑀 the finite algebra of the SMPP

̂ ∶= ∞(𝑀) ⊗𝐹 the algebra of the AC-manifold

 a module (over an algebra)

 the Hilbert space

𝐿2(𝑆) the Hilbert space of square integrable sections of a spinor bundle 𝑆
𝑆𝑀 the Hilbert space/fermionic representation of the SMPP

̂ the Hilbert space of the AC-manifold

𝐌() the set of all characters of 
𝑀 a manifold

𝐹 a finite set/space

𝑀 = 𝑀 × 𝐹 the AC-manifold

Γ∞(𝑀) the Lie algebra of smooth vector fields on 𝑀
𝑇(𝑀) the tangent bundle over 𝑀
Γ(𝐸) the space of all sections on the total space 𝐸

Aut() the automorphisms space of 
Out() the Outer automorphisms space of 
Inn() the Inner automorphisms space of 
Diff(𝑀) the space of diffeomorphism of 𝑀
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Introduction

In this last century, theoretical physics has known two important paradigm changes, each of them going in

its way beyond the thought framework offered by Newton. These are General Relativity (GR) and Quantum

Mechanics (QM). The first is written in the framework of differential geometry, and the second is in a pure

algebraic framework. The first describes more precisely what space-time is, the second does the same for the

matter and light.

The formalism in which the physical processes obeying the quantum behavior are described is that of op-

erators acting on Hilbert spaces. This mathematical structure did not exist before QM, it was progressively set

up while the quantum theory was being built. It can therefore be considered as physically motivated. The func-

tions of the classical mechanic’s framework (CM) are thus replaced by operators acting on the states described

as elements in Hilbert spaces. Several important novelties appear as simple consequences of this. Operators

become free not to commute, superposed states can coexist and non-factorizable or entangled states (which are

not tensor products states) combining more than two different particles appear. These three aspects alone induce

almost all the non-classical aspects of quantum. This is the Non-Commutativity (NC) of observables (which are

available data, extracted from the world through experiments performed on it) which is the main origin of the

need for such a formalism. The CM could also be described in this framework (as we will see in 7.3), but it would

be too complicated because the latter only requires simple phase spaces (with commuting functions) to describe

the observables and the mechanics of the concerned processes.

This was W. Heisenberg who first discover the NC properties of QM observables, giving a formulation of

this fact in terms of matrix mechanics. Then von Neumann reformulated QM using operators acting on Hilbert

spaces as elements of 𝐶∗
-algebras. He was the first to mention the potential relevance of an extended geometry

for which functions algebras are replaced by NC ones. Then P.A.M. Dirac followed him in this presentiment of

the need to introduce such concepts for the QM, making the analogy between Poisson’s bracket in CM which is

linked to differentiable structures, and the QM’s commutator. But these were feelings, analogies, and incomplete

conjectures since no such things as geometry were drawn. In 1943, I. Gelfand and M. Naimark proved the so-

called Gelfand-Naimark theorem which will be presented in 1.2. This theorem offers a strong link between states

on such algebras and topological properties, offering a path to extract topological data such as the notion of

points of an underlying space from these algebras. This was an important step to understand how to “make

speak” these algebras about the “geometry” of the space-time in which they live.

It is only in the 1990’s that A. Connes, set up the complete conceptual framework of NC differential geometry,

concluding satisfactorily on these preconceptions. By revealing the structures extending the usual geometrical

framework, and showing how to study these structures, he offered to the world of physicists and mathematicians

a new, more general, and clearly defined geometrical framework: Non-Commutative Geometry (NCG).

NCG has since then inspired many fields within pure mathematics and theoretical physics. It is not only a

generalization of the Riemannian geometry, but a reformulation of this one (for its commutative restriction) in a

completely new and purely algebraic framework, being free to receive the NC of operators and to go beyond the

notion of point. It is all the more interesting to work on the algebraic side that we can notice a very simple fact

concerning our understanding in the form of a geometrical representation of what is space-time, it is through the

observables that we receive all the information that makes us determine space-time. It seems, therefore, more

logical to have a theory that starts from this algebra of observables as fundamental objects, rather than from a

hypothetical geometrical spacetime, more arguments in this sense will be given in chapter 8.

1
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The general way of doing, taken by many researchers for applying NCG to various domains was to take

objects belonging to the usual commutative framework (function algebra, CM, Riemannian geometry, groups...)

which we will designate as belonging to Commutative Geometry (CG), then find its algebraic re-formulation,

then try to extend this to NCG framework dropping some commutativity conditions or changing the product:

CG → NCG.

This offers numerous generalizations of common concepts. In physics, this way of thinking is often linked to the

quantization process of observables, especially when the relaxed commutation relation concerns the latter.

There is another way to see things, in the reverse order: NCG → CG. This way is less intuitive since our intu-

ition is based on classical representations and then starts from CG. In physics, this may be called dequantization.

I nevertheless think that this is a more fundamental and potentially fruitful way to see things, in mathematics

and physics. For the mathematician who is familiar with NCG, the emerging feeling can be that it is a more

natural conceptual framework since “commutative mathematics” appear as restrictions, sometimes losing nice

properties and then looking like to be secondary. Non-commutativity appears as the negation of commutativity,

but it is a negation in the direction of the enlargement, and in my opinion, the more fundamental level of mathe-

matical structures are most of the time in this direction. Then taking the continuation of classical (or commons)

concepts to go to their NC generalization seems not to be totally justified for the one who wants to find “good”

NC generalizations.

In physics, colossal efforts have been made to make NC, i.e. to quantify classical concepts, starting from

classical theories. It gives results as for math but brings many problems as well. The fact that no general quan-

tization scheme has been found is for me an indicator of the limitation of this first way of doing. For those who

believe that the classical world must be an emerging picture from pure quantum phenomena (which seems to

be reasonable since it is composed of such objects with such behaviors), the correct path, again, is to find a pure

quantum description of Nature and then see how the classical picture emerges. QM is actually a hybrid theory,

parameterized by the classical world, for its outcomes specifically, but intrinsically not reducible to CM. My hope

is then that a pure NC-inspired mechanics will replace QM, giving asymptotically the classical picture, for a large

number of particles and/or denser environments. Decoherence is a good candidate in this direction.

Strong mathematical reasons have motivated the creation of NCG. An example is provided by the Gelfand-

Naimark theorem, which is at the origin of the study of NC topology. By providing a link between algebra and

topology, it opened the door to the exploration of NC topology (induced by NC algebras), that the formalism of

QM invited us to cross. We thus have various equivalences between algebraic and topological properties, like

the notion of point and pure state on a commutative algebra, compactness, and unitarity, or the property of

connectedness equivalent to the one of the non-existence of (non-trivial) projections for 𝐶∗
-algebras (see section

1.2 for more details).

A second important aspect concerning the study of topological properties via algebraic properties is provided

by the invariants of K-theory which we will address in section 1.3. This is one of the main “tools” for the study

of non-commutative spaces.

Another aspect related to K-theory concerns the work of A. Connes on the continuous cyclic cohomology

which appears to be related to the de Rham homology in the case of commutative algebras. This notion does

not yet introduce a differentiable structure that would generalize the de Rham complex of differential forms.

However, these results, in addition to their links with the Atiyah–Singer index theorem, offer strong motivation

for the introduction of spectral triples with Dirac operators to define a differential structure.

Again linked to K-theory, another motivation is provided by the Serre-Swan theorem. The latter provides

an explicit link between fiber bundles (at the basis of the formulation of gauge theories (GFT)) and projective

modules of finite type on the algebra (see section 11.1). It is this double link with K-theory and gauge theories

that provides one of the main mathematical motivations for the construction of gauge theories on𝐴𝐹 𝐶∗
-algebras,

which is the subject of this thesis.

The strong points of this new “geometrical” framework are that it allows to treat both the discrete and the

continuous within the same formalism (operators and Hilbert spaces), to find all the known results in Riemannian

geometry, while allowing to geometrize the other forces (see chapter 12), and to establish more links with other



CONTENTS 3

mathematical fields. A nice review on NCG’s landscape can be found in (Connes, 2019), for reference books, see

(Connes, 1994) and (Gracia-Bondía et al., 2013).

From the physicist’s point of view, a strong motivation for NCG comes from the simple fact that this mathe-

matical field was initially developed for the pure physical purpose and that mathematics tells us clearly that NC

algebras like those of observables in QM cannot be thought of as living on the points of a manifold. In theoretical

physics, the quantization of a theory means to find a way to link the commutative operators underlying the classi-

cal observables to the NC operators associated with the quantum equivalent of these observables. A natural way

to introduce a NC algebra is to deform a commutative algebra of functions. For example, one can consider Moyal

quantization, which deforms a function algebra with a Poisson structure. However, there are non-commutative

algebras that are not deformations of function algebras, like for example the algebra of matrices. This algebra

being one of the most famous, it will be used as a toy model to study NC structures throughout this thesis (see

Chapters 2 and 4). There is no theory explaining in a systematic way the quantization process, which seems to

be problematic from the point of view of conceptual clarity. One of the great challenges in physics today is to

find a quantum theory of gravitation, and thus to “quantize space-time”. If the motivation for such an approach

is well founded, it seems clear now that we lack theoretical and conceptual arguments to know how to carry it

out.

In physics, Lie algebras and groups are omnipresent, mainly in gauge theory. NCG proposes a natural gener-

alization of these structures, Hopf algebras, and quantum groups. Initially introduced to study the cohomology of

Lie groups, a Hopf algebra is a bialgebra with an operation called antipode, generalizing the notion of the inverse

operation in groups. A particular type of Hopf algebras are the quantum groups. They are often deformed Hopf

algebras, generally NC. These objects are at the heart of NCG and are considered as the natural generalization

of function algebras on a Lie group manifold, when this became a NCG. Indeed, the deformed algebra can be

considered as the algebra of functions on a NCG space. Some well-known books on quantum groups are for

instance (Chari and Pressley, 1994) and (Klimyk and Schmudgen, 1997).

In physics, example of NC spaces using NC coordinates are given by the 𝜅-Minkowski space (Iochum et al.,

2011a,b; Pachoł and Vitale, 2015) (whose coordinate algebra contains the bicrossproduct of the Hopf algebra of the

group of 𝜅-Poincaré, describing its symmetries) and the Moyal space (Cagnache et al., 2011b; Gracia-Bondía and

Varilly, 1988; Martinetti et al., 2013; Wallet, 2008). One of the main motivations behind such an introduction was

to reconcile gravity with QM and to explore the intuition that such spaces can help to solve the re-normalization

problems. However, nothing in NCG or in the current description of QM implies that the coordinates are NC.

NCG is primarily concerned with NC algebras and is not just about making coordinates noncommutative. These

attempts should therefore not be considered as the only possible ones, and it would be interesting to study

generalizations of spacetime of another kind, without necessarily making the coordinates NC.

One of the greatest progresses made with NCG is to have succeeded in going beyond the equivalence with

topology and measure theory, to include and extend differential geometry (differentiable manifolds, Lie groups,

fiber bundles, connections...). These structures are of major importance in mathematics and particularly in theo-

retical physics. Indeed, they are of primary interest in field theory, as they are the basis for the formulation of all

known forces, whether it is gravitation in the framework of GR or the forces of the Standard Model of Particles

Physics (SMPP) in the framework of Gauge theories. We will explore the two main ways to extend the framework

of differential geometry, the one based on derivations of the algebra in section 3.3, and the one based on spectral

triplets in section 3.4.

The application of the NCG in field theory has been done following two main ways. The first one con-

cerns the re-foundation of the structure of field theories, by changing the background space-time on which they

are defined. One of the main attempts concerns the replacement of the background space-time with a Moyal

space. However, theories on Moyal space are not renormalizable and suffer from the phenomenon called Ultra-

violet/Infrared (UV/IR) mixing. A significant advance was made in 2004, the proposal of an additional term to

the action (harmonic oscillator term) leads to a fully renormalizable NCFT. More details can be found in (Grosse

and Wulkenhaar, 2005a,b), and a nice review on the topic is given by (Wallet, 2008).

The second path concerns the reformulation of field theories within the framework of NCG, but retaining

the nature of the field and background space-time theories. This is the path followed throughout this thesis, the

NCSMPP (presented in chapter 12) being the main realization of this field of applications of the NCG. Indeed, NCG
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has been used to develop GTF (hereafter mentioned as NCGFT) in which scalar fields are part of the generalized

notion of connections. Then, the naturally constructed Lagrangians produce quadratic potentials for these fields,

providing Spontaneous Symmetry Breaking Mechanisms (SSBM) in these models. Our works with T. Masson

can be located in this last field of applications of NCG i.e. the elaboration of NCGFTs.

GFTs are an essential ingredient to model high energy particle physics. From the pioneer work by Yang and

Mills to the Standard Model of Particle Physics (SMPP), the gauge principle has shown how insightful it is both

technically and conceptually, and the search for the “right gauge group” has stimulated physicists to construct

Grand Unified Theories (GUT). Unfortunately, none of these theories has been retained until now as a convincing

model beyond the SMPP.

The way these GUT are constructed relies on the classical mathematics of fiber bundles and connections:

the gauge groups (infinite dimensional spaces) are the groups of vertical automorphisms of principal fibers over

space-time with some convenient structure groups (finite dimensional Lie groups). The choice of the structure

group is then the choice of the gauge group of the theory. GUT rely on finite dimensional Lie groups which are

“big enough”, for instance 𝑆𝑈(5), to contain the group of the SMPP, 𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3). This unifying approach

(for interactions) is then controlled by the choice of possible “not too large” finite dimensional Lie groups. This

group has to be “not too large” because one has to reduce it to the group of the SMPP that we actually see in

experiments, and the larger the original group, the more hypothesis it requires to perform this reduction, usually

using some successive SSBM.

Since the 90’s, noncommutative geometry (NCG) has shown that one can construct more general gauge field

theories in a natural way (see (Connes and Lott, 1990; Dubois-Violette et al., 1990a,b) for the seminal papers

and (van Suijlekom, 2015) for a review and references for more recent developments). NCG has permitted to

include in a natural way the scalar fields used in the SMPP to make manifest the SSBM which gives masses to

fermions and some of the gauge particles. In this approach, the gauge group is the group of inner automorphisms

of an algebraic structure, which in general is an associative algebra (it could be the group of automorphisms of

a module in some cases). According to the NC differential structure we choose, two main frameworks can be

used to construct NCGFT. The first one (from a historical perspective), initially proposed by M. Dubois-Violette,

R. Kerner, and J. Madore in (Dubois-Violette et al., 1990a,b) concerns the use of derivation-based differential

structure as fundamental structure. The second one, mainly developed by A. Connes, J. Lott, A. Chamseddine,

and M. Marcolli in (Chamseddine and Connes, 1997; Chamseddine et al., 2007a; Connes and Lott, 1990) concerns

the use of spectral triples based differential structure. These ways to build NCGFT will respectively be called

derivation and spectral triple-based NCGFT.

With T. Masson, we start the investigation of a new natural approach to “unifying” noncommutative gauge

field theories (NCGFT). This approach is based on approximately finite-dimensional (𝐴𝐹 ) 𝐶∗
-algebras, a very

natural class of algebras in NCG (see (Blackadar, 2006; Davidson, 1996; Rørdam et al., 2000) for instance). By

definition, 𝐴𝐹 𝐶∗
-algebras are inductive limits of sequences of finite-dimensional 𝐶∗

-algebras. Let us recall the

following two important points (see Sect. 2.2 and Sect. 13 for more details):

1. A finite-dimensional 𝐶∗
-algebra is, up to isomorphism, a finite sum of matrix algebras:  = 𝑀𝑛1 ⊕⋯⊕𝑀𝑛𝑟

where 𝑀𝑛 ∶= 𝑀𝑛(C) is the space of 𝑛 × 𝑛 matrices over C. For a manifold 𝑀 , NCGFT have been investigated

on the algebras 𝐶∞(𝑀)⊗ (referred to in the literature as “almost commutative” algebras) and these NCGFT

are of Yang-Mills-Higgs types.

2. An 𝐴𝐹 𝐶∗
-algebra is constructed in such a way that we get a control of the approximation of this algebra

by the successive finite-dimensional 𝐶∗
-algebras in its defining inductive sequence. This control (in terms of

𝐶∗
-norms) can be used to approximate some structures defined on the 𝐴𝐹 𝐶∗

-algebra. The best example is

the one of the 𝐾0-group that we briefly recall in Sect. 2.3 for sake of illustration.

The motivation for the present approach can be summarized in the following way: point 1 suggests to use the

defining inductive sequence of an 𝐴𝐹 𝐶∗
-algebra to construct a sequence of NCGFT of Yang-Mills-Higgs types

and point 2 could be used to get some control on this sequence of NCGFT in a meaningful way as successive

approximations of a “unifying” NCGFT on the full 𝐴𝐹 𝐶∗
-algebra. This would be a way to implement inclusions

of (finite dimensional) “gauge groups” as successive approximations of an (infinite dimensional) “unifying gauge

group”. More details on the mathematical and physical reasons will be given (respectively) in sections 11.1 and

13.1. The setting up of the underlying general mathematical structure was done using derivation-based NCGFT
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in (Masson and Nieuviarts, 2021) and using spectral triple-based NCGFT in (Masson and Nieuviarts, 2022). This

thesis is based on these two works.

Notice that the NCGFT that we can define on the full (maybe infinite dimensional)𝐴𝐹 𝐶∗
-algebra can be quite

unusual from a physical point of view since it can involve an infinite number of degrees of freedom in the gauge

sector. But if the control of approximations by “finite dimensional“ NCGFT (as suggested by point 2) is possible,

then the content of this NCGFT could be understood as a limit of usual and manageable Yang-Mills-Higgs theories

constructed gradually, for instance using empirical data.

In the GUT approach, the “big enough” gauge group must contain all the empirical phenomenology of present

particle physics. But, in our approach, thanks to the approximation procedure, we only require any step in the

inductive limit of NCGFT to approximate the present empirical phenomenology and the future possible discov-

eries in particle physics. As the probing energy increases, a better approximating NCGFT in the sequence has to

be taken at a farther position. In our bottom-up approximation, the number of degrees of freedom (in the gauge

sector) can increase along the sequence, contrary to the usual SSBM, which is a top-down procedure that relies

on reduction of degrees of freedom.

Notice that one might encounter a stationary sequence starting at some point, so that the full 𝐴𝐹 𝐶∗
-algebra

would be of finite dimension. In that case, the “final” NCGFT would make appear only a finite number of degrees

of freedom in the gauge sector, very much like ordinary GUT. But even in that situation, some interesting features

might be depending on how the successive NCGFT in the sequence (here finite) of NCGFT are connected to each

other, in particular concerning the mass spectra of the gauge bosons, see Sect. 14.3. At present time, we are not

aware of any empirical fact suggesting that such a radical new approach could be relevant. But we hope that our

new way to construct unifying gauge field theories beyond the SMPP could reveal new empirical content that

would be suggestive to answer open questions in particle physics. Works in this direction will be done after this

PhD thesis.

This thesis has been written with the intention of synthesizing and organizing my knowledge and perspec-

tives on this topic, and in a more general way on the meaning of NCG. This work is far from covering the whole

field of NCG. It represents a selection, according to my tastes, my interests, and the perspective I have chosen

to put forward to present NCG. I have preferred an approach and writing rather oriented on physical principles

(observables, symmetries, degrees of freedom...) for the first three parts because I think that other researchers

having more taste and competence to deal with the most mathematically abstract aspects of NCG had already

depicted in a sufficiently complete way these fundamental points. I hereby express my hopes for future applica-

tions of NCG that will be enlightening for the physicist’s mind, ideally as much as the application of Riemannian

geometry to describe the structure of space was. I have written this thesis intending to address it to different

types of readers on a continuous spectrum between two idealized ones. The first one would be a reader having

a mathematical or theoretical physics background and who would be curious to understand some points con-

cerning NCG for their culture or to develop new physics. They will thus be mainly interested in reading the first

three parts (I,II,III). In particular, they could gain intuition by carefully following the applications of the NCG to

matrix algebras in chapter 4 and then to the extensions of the framework of the usual Gauge theories via the

NCG. I will try throughout this text to show how the usual structures, whether topological or geometrical, such

as the differential structures, the notions of point and space, and the gauge theories become when moving to

their NC generalizations, in the purely algebraic framework of 𝐶∗
-algebras. I hope to bring some light to their

understanding of this subject which remains difficult to access. At the other extreme of the spectrum of my

intended readers, my alternative ideal reader is a researcher closer to the themes of NCG and Gauge theories,

more able to appreciate the technical details, the direction followed during this work as well as the contribution

provided to the pre-existing works, while perceiving the perspectives of research on the structure developed in

the work on which this thesis is based. This reader will be more concerned by the parts II and IV.

Outline. This thesis is divided into four parts. Part I is composed of four chapters. In chapter 1, I recall the

essentials of the theory of 𝐶∗
-algebras, putting ahead the properties which allow to consider these algebras as

noncommutative generalizations of locally compact topological spaces. In chapter 2, I introduce the notions of

finite and approximately finite algebras (AF) which will be the basic structures on which the works of this the-

sis are based. These algebras, which will always be matrix algebras, are the prototype of the non-commutative
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algebra and offer one of the most interesting, rich, and simple examples of NC structure, thus offering a pedagog-

ical illustration of noncommutative spaces, which will be followed throughout this thesis. Chapter 3 proposes

to highlight the path from usual differential geometry to its NC generalizations, these structures forming the

skeleton of the NCGFT which will be developed later on. And finally, for pedagogical and practical reasons, I will

present in chapter 4, how the two main methods of studying differential structures put forward earlier allow us to

study such matrix algebras. This will, among other things, introduce the notations that will be used throughout

this thesis. This first part can be considered as a general (and incomplete) presentation of the technical path to

NCG.

Now that some technical grounds have been set up, I propose in Part II a general discussion around NC in

QM, on the meaning of geometry in physics, and of a potential interpretation we can have of NCG.

When people asked me to explain what NCG is intuitively, I was blocked, I could answer that it is a geometry

without points, that it cannot be visualized. In short, I was saying what it is not, without really understanding

what it is. When I went into the literature, I realized that no author was offering such an intuitive view and that

most of them stood at the mathematical level for the understanding of NCG. This part can be seen as a personal

and partial answer to this question. Its claims are of particular importance for me because it seems clear today

that we lack new physical ideas to find relevant and innovative ways to progress. Specially concerning relevant

applications of the mathematical framework offered by NCG in physics. This is why I thought it was essential

to understand the origin of NC in QM and to understand what this meant for the potential NCG that would be

deduced from these observables (if it must be).

I think that it is physics that should drive our mathematical constructions. Then, without an intuitive rep-

resentation of what NCG is, the physicist’s intuition cannot express itself and allow them to guide themselves

in the elaboration of mathematical theories and structures able to grasp the underlying structures of reality, and

potentially express them in the beautiful structures revealed in the NC framework. Part II is then composed of

five chapters. In chapter 5, I present the general aim and structure of the argumentation of this part. In chap-

ter 6, I explain my view on the general misunderstanding in which NCG lives, particularly in the scope of its

applications to physics. In chapter 7, I try to show what is the meaning of non-commutativity of observables

in QM, what it induces, and how we can interpret it. In chapter 8, I discuss the notion of geometry to describe

space-time, its meaning, and its progressive algebraization, giving arguments to show that the algebraic view is

more fundamental than the geometrical one, with the points as primary objects. Then in chapter 9, using all the

arguments presented in this part and arguing that the formalism of QM must be taken seriously concerning its

geometrical consequences, I present some nice potential geometrical implications coming from such a formalism.

Part II corresponds to insights that I want to submit to an editorial review, once I have made more progress on

clarifying the suggested ideas.

Part III is composed of three chapters. In chapter 10, I propose a presentation of the gauge principle, and its

mathematical formulation in fibers bundles while presenting the SMPP, its links to gravitation, and the ways to go

beyond this theory. Then in chapter 11, I show how these structures can be generalized in the NC framework, and

then show how this is done when using derivations-based and then spectral triplets-based differential structures.

I conclude this part by chapter 12 with a very general presentation of the NCSMPP, explaining how it offers

a unification of GR and SMPP at the classical level while providing an adequate mathematical framework for

thinking about formulations of theories going beyond SMPP.

Part IV is composed of four chapters. In chapter 13, I present the general motivation behind the works on

which this thesis is based i.e. why building NCGFT based on AF-algebras can offer an interesting framework

to go beyond the SMPP. Then, I highlight how the embedding structure of 𝐴𝐹 -algebras works, and how we

can connect structures along its inductive sequence using the so-called 𝜙-compatibility condition, which is an

essential condition to relate NCGFTs at successive steps. Then I show how to build and relate NCGFTs along the

sequence, first in the derivation-based framework in chapter 14 then with spectral triples one in chapter 15. I

conclude part IV with chapter 16 where I summarize the results obtained so far with the derivations and spectral

triples frameworks for the building of NCGFT on AF-algebras, putting into perspective where they have common

features and where they differ. This part contains the main results of this thesis.

This thesis can also be partially read vertically. This may allow a reader more interested in technical details

to get faster to the point. Indeed, two main guidelines have been followed throughout this thesis. The first one
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concerns the study of NCG via differential structures based on derivations presented in section 3.3. The use of

this method on matrix algebras is then done in section 4.1, the construction of NCGFTs based on derivations is

then presented in section 11.5 to finish with chapter 14 by showing what it gives when the finite algebra on which

the gauge theory is constructed is an algebra of type AF. The second line in this vertical reading grid concerns

exactly the same four points (made in 3.4,4.2,11.6,15), but using spectral triples to construct the basic underlying

differential structure. This two lines are almost verbatim transcriptions of (Masson and Nieuviarts, 2021) and

(Masson and Nieuviarts, 2022) and are mainly addressed to the second type of readers. These to lines correspond

to the main work done during this thesis.
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Part I

From 𝐶∗-Algebras to Noncommutative
Geometry

9





Chapter 1

𝐶∗-Algebras

Algebra is the intellectual instrument which has been created for

rendering clear the quantitative aspects of the world.

A.N. Whitehead

We will try in the following to give a very general presentation of what algebras are, then 𝐶∗
-algebras, and

to explore some nice structures in this context. An algebra  is a set 𝐴 equipped with some operations on it’s

elements  = {𝐴, ⋆(1), ⋆(2), … }. 𝐴 can be a set of numbers, symbols, vectors, or functions... And the more

common operations can be +, ×, [ , ]... Therefore, an algebra is a pattern of relations, a structure with respect to

abstract operations between its elements. Thus, algebras are very general objects, and therefore useful in math

and physics, where associative, Lie, and 𝐶∗
-algebras are very common, with additional structures such as norm,

states, spectrum...

Fundamental concepts of quantum physics belong to a mathematical framework that cannot be reduced to

the classical one; they form a generalization of the framework used in classical physics, as we will see later in

section 7.3. The mathematical framework of 𝐶∗
-algebras was mainly developed to formulate quantum physics.

It is the result of a long work that can be considered as initiated by Werner Heisenberg’s matrix mechanics in

1925, then transmitted in more mathematical language by Pascual Jordan around 1933, and finally by John von

Neumann’s work setting up a general framework for these algebras. The 𝐶∗
-algebras thus offer a formalism that

generalizes that of classical and quantum theories, while preserving as much as possible of the structures they

share. In the context of physics, the elements of these 𝐶∗
-algebras are operators called observables, they are the

generalization of the notion of classical observable (functions) in the quantum world with operators, susceptible

to not commute. More details can be found in (Landsman, 2006). We propose here to highlight the main features

of the structure of 𝐶∗
-algebras, being motivated by the fact that they form the ground where non-commutative

geometry was born through the Gelfand Naimark theorem presented in section 1.2.

1.1 General Features of 𝐶∗-Algebras

I would like to make a confession which may seem immoral: I do not

believe absolutely in Hilbert space any more.

J. von Neumann

An algebra  on C is a complex vector space on which an internal law, multiplication, is defined. This

multiplication can be compatible with addition: 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 ∀𝑎, 𝑏, 𝑐 ∈ .  is said to be associative if

𝑎(𝑏𝑐) = 𝑎(𝑏𝑐); and unital if it contains the identity element 1 such that 1𝑎 = 𝑎1 = 𝑎.

The center of an algebra  is the subset of  such that:

() = {𝑎 ∈  / 𝑎𝑏 = 𝑏𝑎, ∀ 𝑏 ∈ }

11
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An involution on an algebra  is a real linear application of  → ∗
such that for all 𝑎, 𝑏 ∈  and 𝜆 ∈ C we

have :

𝑎∗∗ = 𝑎 (𝑎𝑏)∗ = 𝑏∗𝑎∗ (𝜆𝑎)∗ = 𝜆𝑎∗.

The pair (𝑉 , ‖‖) of a vector space with a norm is said to be complete for this norm if any Cauchy sequence

converges.

Given a vector space 𝑉 , a norm on 𝑉 defines a metric 𝑑 by 𝑑(𝑣, 𝑤) ∶= ‖𝑣 − 𝑤‖ with 𝑣 and 𝑤 ∈ 𝑉 . A vector

space with a complete norm in the sense of the associated metric is called Banach space and will be denoted

𝐵. This notion of complete distance makes possible to set up topological structures on the vector space, which

makes Banach spaces very useful in functional analysis.

An example of a Banach space is the Cartesian space R𝑛
with norm :

‖(𝑥1, 𝑥2, ..., 𝑥𝑛)‖𝑝 ∶= 𝑝

√
𝑛

∑
𝑖=1

|𝑥𝑖|𝑝

with 1 ≤ 𝑝 ≤ ∞ taking the limit for 𝑝 going to infinity, we get : ‖(𝑥1, 𝑥2, ..., 𝑥𝑛)‖∞ = max𝑖 |𝑥𝑖|.

A Banach algebra  is a Banach space which is furthermore an algebra such that for any 𝑎, 𝑏 ∈  we have :

‖𝑎𝑏‖ ≤ ‖𝑎‖ ‖𝑏‖

A unit element in a Banach space  is an element 1 satisfying 1𝑎 = 𝑎1 = 𝑎 for all 𝑎 ∈ , in particular, we have

‖1‖ = 1.

A functional on a Banach space 𝐵 is a linear map 𝜌 ∶ 𝐵 → C which is continuous; such that |𝜌(𝑣)| ≤ 𝐶‖𝑣‖
for a given constant 𝐶 and all 𝑣 ∈ 𝐵. The smallest 𝐶 satisfying this condition is called the norm of 𝜌 :

‖𝜌‖ ∶= sup{|𝜌(𝑣)| / 𝑣 ∈ 𝐵, ‖𝑣‖ = 1}.

The space of all functionals on 𝐵 is the dual space of 𝐵 and will be denoted 𝐵∗
, itself being a Banach space.

A bounded operator on a Banach space 𝐵 is a linear map 𝑎 ∶ 𝐵 → 𝐵 for which :

‖𝑎‖ ∶= sup{‖𝑎𝑣‖ / 𝑣 ∈ 𝐵, ‖𝑣‖ = 1} ≤ ∞ with ‖𝑎𝑣‖ ≤ ‖𝑎‖ ‖𝑣‖

The space of all bounded operators on 𝐵 will be denoted (𝐵), it is a Banach space for the norm on operators.

A sesquilinear product on a vector space 𝑉 is a map denoted by ( , ) : 𝑉 × 𝑉 → C such that for all

𝑣, 𝑤, 𝑤1, 𝑤2 ∈ 𝑉 et 𝜆1 and 𝜆2 ∈ C :

• (𝑣, 𝑤) = (𝑤, 𝑣)

• (𝑣, 𝜆1𝑤1 + 𝜆2𝑤2) = 𝜆1(𝑣, 𝑤1) + 𝜆2(𝑣, 𝑤2)

• (𝑣, 𝑣) ≥ 0 and such that (𝑣, 𝑣) = 0 if 𝑣 = 0

This is also called inner product.

The norm of an element 𝑣 is defined using the sesquilinear product by

√
(𝑣, 𝑣).

A Hilbert space  is a vector space with a complete sesquilinear product in the sense of its associated norm.

All Hilbert spaces that we will consider will be assumed to be separable, i.e. to have a dense countable subset.

An operator on this space is a continuous linear map from  to , we will denote () the set of bounded

operators on ; and we will most of the time consider bounded operators in the following.
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The simplest example of a Hilbert space is C𝑛
with (𝑥, 𝑦) = ∑𝑛

𝑖=1 𝑥 𝑖𝑦𝑖. Observe that if the Hilbert space is

finite dimensional  = C𝑛
then both the algebra of bounded and compact operators coincide and are isomorphic

to 𝑀𝑛(C).

It was von Neumann who first defined the abstract notion of a Hilbert space and who later developed the

theory of operators (bounded and unbounded) on these spaces (Von Neumann, 2018). He also proved the equiva-

lence between the matrix formalism of Heisenberg’s approach and the wave formalism developed by Schrödinger

to describe quantum phenomenon. Similarly, all Hilbert spaces of a given dimension are isomorphic so that a

Hilbert space can be completely characterised by its dimension. Real Hilbert spaces thus offer a potentially infi-

nite dimensional generalisation of usual Euclidean spaces, in which the geometric notions of distance and angle

still make sense, thanks to a generalisation of the usual product, made by the scalar product.

The adjoint operator 𝑎 → 𝑎∗ on a Hilbert space is defined by the following property, for all 𝜓1, 𝜓2 ∈ :

(𝑎∗𝜓1, 𝜓2) ∶= (𝜓1, 𝑎𝜓2).

It defines an involution on (). An operator 𝑎 is self-adjoint if 𝑎 = 𝑎∗; it is called normal if it commutes with

its adjoint.

The set of self-adjoint operators will be denoted R and we can decompose any operator 𝑎 into two self-

adjoint operators as follows:

𝐴 = 𝐴′ + 𝑖𝐴′′ ∶=
𝐴 + 𝐴∗

2
+ 𝑖

𝐴 − 𝐴∗

2𝑖

with 𝐴′
et 𝐴′′

belonging to R.

A 𝐶∗-algebra  is a complex Banach space which is at the same time a
∗
-algebra (the

∗
denoting an algebra

endowed with an involution) such that for all 𝑎, 𝑏 ∈  we have :

‖𝑎𝑏‖ ≤ ‖𝑎‖ ‖𝑏‖ and ‖𝑎‖2 = ‖𝑎∗‖‖𝑎‖ = ‖𝑎∗𝑎‖

The important the property ‖𝑎∗𝑎‖ = ‖𝑎‖2 for 𝑎 ∈ () is the origin of the definition of 𝐶∗
-algebras; it is the

property that makes the described norm and involution match together and renders the structure much more

workable. Initially, the “𝐶” of 𝐶∗
-algebras stood for closed. For example, any 𝑀𝑛(𝐴)-algebra of matrices with

coefficients in a 𝐶∗
-algebra is also a 𝐶∗

-algebra. In particular 𝑀𝑛(C) is a 𝐶∗
-algebra for all 𝑛 ∈ N.

An homomorphism of𝐶∗-algebras is a map preserving all the structures of the𝐶∗
-algebra. The𝐶∗

-algebras

with these homomorphisms form the category of 𝐶∗
-algebras.

A representation of 𝐶∗-algebra  on a Hilbert space  is a
∗
-homomorphism from  to the algebra ()

of bounded operators on .

Theorem 1.1.1 (Gelfand-Naimark-Segal) Every abstract 𝐶∗-algebra  is isometrically ∗-isomorphic to a con-
crete 𝐶∗-algebras of operators on a Hilbert space . If the algebra  is separable then we can take  to be separable.
For a recent reference see (Sitarz, 2013).

Thus, any abstract 𝐶∗
-algebra can be made “concrete”, i.e. representable as an algebra of bounded operators on

a Hilbert space. When this Hilbert space is of finite dimension, this algebra is finite and can be represented as a

matrix algebra. In the following, every algebra will be of finite type.

𝐶∗
-algebras ↔ bounded operators in ()

This establishes the possibility of considering 𝐶∗
-algebras as abstract algebraic entities without reference to

particular realizations as an operator algebra acting on Hilbert spaces.

𝐶∗
-algebras are of deep interest because of these three properties:

• They abstract the properties of bounded operations on Hilbert spaces: they do not require any particular

realization as acting on Hilbert spaces. This allows us to think of structures from the simple point of view

of the algebraic relations living on them.
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• As we will see in section 1.2, they generalize the properties of locally Compact Hausdorff topological spaces.

• They provide a successful mathematical framework for QM, but also of classical mechanics as we will see

in section 7.3.

Definition 1.1.2 (Spectrum of 𝒂 ∈ ) For 𝑎 ∈  an element of a 𝐶∗-algebra, we call 𝑆𝑝(𝑎) the spectrum of 𝑎
which is the set given by

𝑆𝑝(𝑎) ∶= {𝜆 ∈ C ∣ 𝑎 − 𝜆1 is not invertible } (1.1.1)

The collection of these sets (over all 𝑎 ∈ ) is 𝑆𝑝(). It is also the set of unitary equivalences of irreducible ∗-
representations of 

Definition 1.1.3 (Eigenspaces of an operator) For 𝑎 ∈  a 𝐶∗-algebra, we call 𝑉𝜆 the eigenspace associated to
the element 𝜆 ∈ 𝑆𝑝(𝑎) such that

𝑉𝜆 ∶= { 𝜓 ∈  | 𝑎𝜓 = 𝜆𝜓 }

Definition 1.1.4 (Spectral decomposition of normal operator with discrete spectrum) For 𝑎 ∈  a nor-
mal operator in a 𝐶∗-algebra, taking 𝑃𝜆 to be the orthogonal projection onto the associated eigenspace 𝑉𝜆, and {𝜆𝑖}𝑖∈𝑆𝑎
the set of all eigenvalues, with the corresponding index set 𝑆𝑎. Then we have the decomposition

𝑎 = ∑
𝑖∈𝑆𝑎

𝜆𝑖𝑃𝜆𝑖 (1.1.2)

For any normal element 𝑎 in a 𝐶∗
-algebra, the norm of 𝑎 is equal to its spectral radius:

‖𝑎‖ = sup{|𝜆| / 𝜆 ∈ 𝑆𝑝(𝑎)}

We define here three notions of topologies on operators, based on the previously constructed norm:

• The normed topology on () is defined by the convergence criterion:

𝐴𝑛 → 𝐴 if ‖𝐴𝑛 − 𝐴‖ → 0.

• The strong topology on () is defined by the convergence criterion:

𝐴𝑛 → 𝐴 if ‖(𝐴𝑛 − 𝐴)𝜓‖ → 0 for all 𝜓 ∈ .

• The weak topology on () is defined by the convergence criterion:

𝐴𝑛 → 𝐴 if ‖(𝜓1, (𝐴𝑛 − 𝐴)𝜓2)‖ → 0 for all 𝜓1,2 ∈ .

It can be shown that normed convergence implies strong convergence, which in turn implies weak convergence.

A special kind of 𝐶∗
-algebras are the von Neumann algebras:

A von Neumann algebra is an *-algebra of bounded operators on a Hilbert space which is unital and closed

under the weak operator topology. These are of deep interest in QM and axiomatic approach to quantum field

theory.

A factor is a von Neumann algebra with trivial center (the center consist only of scalar operators).

An element 𝑎 of a 𝐶∗
-algebra is said to be positive if 𝑎∗ = 𝑎 and if its spectrum is positive 𝑆𝑝(𝑎) ⊆ R+

. The

space of positive elements will be denoted +
.

A bounded operator 𝐴 ∈ () on a Hilbert space  is said to be positive if for all 𝜓 ∈  we have (𝜓, 𝐴𝜓) ≥ 0.

This property is equivalent to 𝐴∗ = 𝐴 and 𝑆𝑝(𝐴) ⊆ R+
and applies to closed subalgebras of (). In QM,

positive self-adjoint operators represent an extension of the notion of positive real functions, whose values are

often associated with observables in classical physics. It is possible to prove that an element 𝑎 ∈  is positive if

and only if it can be written as 𝑎 = 𝑏∗𝑏 for 𝑏 ∈ .
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The fact that the positivity of a bounded operator 𝐴 coincides with its self-adjointness and that 𝑆𝑝(𝐴) ⊆ R+

induces that the expected value of an observable 𝐴 in QM will always be real and positive. The characterisation

of quantum mechanical systems is thus done in this framework via algebraic conditions on the observables, the

Hilbert space allowing to organise the so-called “pure” (non-decomposable) states of quantum systems.

Behind the notion of observable, attached to the real world, a more abstract and underlying notion (from the

physicist’s point of view) is that of state:

Definition 1.1.5 (Positive linear functional) A linear functional 𝜌 ∶  → C is called positive if 𝜌(𝑎) ≥ 0 for
all positive element 𝑎 ∈ . (equivalently 𝜌(𝑏∗𝑏) ≥ 0 ∀𝑏 ∈ )

Definition 1.1.6 (State on an algebra) We call state on a 𝐶∗-algebra , a positive linear functional 𝜌 of norm
one, ie ||𝜌|| = 1. A state is called a trace if ∀𝑎, 𝑏 ∈  we have 𝜌(𝑎𝑏) = 𝜌(𝑏𝑎)

More details can be found in (Sergeev, 2016).

The Gelfand-Naimark-Segal-construction (GNS-construction) is a procedure which permits from any

state 𝜌 on a 𝐶∗
-algebra  to construct a representation 𝜋𝜌 of  in a Hilbert space . A simplified view of the

procedure can be seen as follows, if the vector 𝜓 ∈  is such that for all 𝑎 ∈  we have 𝜌(𝑎) = ⟨𝜓|𝑎|𝜓⟩ (in Dirac

Bra–ket notation), then we define 𝜋𝜌 ∶  → 𝐸𝑛𝑑() the representation of  by the relation 𝜌(𝑎) = ⟨𝜓|𝑎|𝜓⟩ ∶=
⟨𝜓, 𝜋𝜌(𝑎)𝜓⟩.

Note the importance of the nature of the product (which is the inner product) in this procedure. The analogy

with QM is that 𝜌(𝑎) provides the expectation value of the observable 𝑎 applied to the state 𝜓. As 𝜓 becomes the

main parameter of the procedure, it can be summarized as:

 → 𝜓 → 𝜌 → 𝜋𝜌()

More details can be found in (Blackadar, 2006; Landsman, 2017, 2012).

1.2 Gelfand-Naimark Theorem
One of the main theorems at the origin of NCG is the Gelfand-Naimark theorem, induced by the categorie equiv-

alence between commutative 𝐶∗
-algebras and Hausdorff-types topological spaces as we will see.

Definition 1.2.1 (Character of ) A character over an algebra  is a surjective non-zero homomorphism
𝜇 ∶  → C which respects the multiplicativity property 𝜇(𝑎𝑏) = 𝜇(𝑎)𝜇(𝑏) ∀𝑎, 𝑏 ∈ . The set of all characters is
denoted by 𝐌().

As 𝜇(𝑎 − 𝜇(𝑎)) = 0 we have that 𝑎 − 𝜇(𝑎)1 is not invertible, then 𝜇(𝑎) ∈ 𝑆𝑝(𝑎).

Example 1.2.2 An example can be given by = 0(𝑀) the algebra of continuous functions on a locally compact

space 𝑀 , vanishing at infinity, with 𝑝𝑥 ∶ 𝑓 → 𝑓 (𝑥) the evaluation map on 𝑓 ∈  at 𝑥 ∈ 𝑀 . ◊

Lemma 1.2.3 For a commutative Banach algebra , 𝐌() endowed with the Gelfand topology is a locally compact
space.

Definition 1.2.4 (Gelfand transform) For  a commutative Banach algebra, we call Gelfand transform (also
called Gelfand representation) of 𝑎 ∈  the function 𝑎̂ ∶ 𝐌() → C given by the evaluation of 𝑎 at 𝜇 :

𝑎̂(𝜇) ∶= 𝜇(𝑎). (1.2.1)

The Gelfand Transformation is a map Π ∶ 𝑎 → 𝑎̂ from  to 𝐶(𝐌()).

Lemma 1.2.5 Let 𝑎 ∈  be a self-adjoint element in 𝐶∗-algebra. Then 𝜇(𝑎) ∈ R for all 𝜇 ∈ 𝐌().
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Theorem 1.2.6 (Gelfand-Naimark theorem for commutative 𝑪∗-algebras) If a 𝐶∗-algebra is commutative
then it is an algebra of continuous functions on some (locally compact, Hausdorff) topological space.

Thus, the Gelfand-Naimark theorem tells us that if  is a commutative 𝐶∗
-algebra, then the Gelfand transfor-

mation between and the algebra𝐶0(𝑋) of continuous functions on the spectrum𝑋 of is an isomorphism. The

Gelfand transform allows us to define a functor that makes the categories of topological spaces and 𝐶∗
-algebras

equivalent. More generally, the Gelfand-Naimark theorem provides a method for representing commutative al-

gebras as algebras of continuous functions on a topological space, it tells us that a space 𝑀 is equal to the set of

characters on 𝐶(𝑀), that is𝑀 ≡ 𝐌(𝐶(𝑀)), which clarifies the choice of notation made for the set of all characters.

Using the example 1.2.2, the relationship 1.2.1 becomes
̂𝑓 (𝑥) = 𝑥(𝑓 ), This relation is quite surprising, because

it shows that we can equally well perceive the points of topological spaces as functions on an algebra of observ-

ables, as we can perceive this algebra as a function on a topological space. This remark is of great importance

and philosophical depth. We will return to it in sections 8.3 and 8.4.

The above mentioned category equivalence implies that we can speak of topology by referring to the alge-

bra of functions living on that topology. Thus, many characteristic properties of topological spaces have their

algebraic counterparts. For example, the group of homeomorphisms of a compact space 𝑀 is isomorphic to the

group of automorphisms of the 𝐶∗
-algebra (𝑀). A more detailed list of these equivalences can be found in table

1.1.

Algebra Topology

Commutative 𝐶∗
-algebra  Topological space 𝑀

Projectionless Connectedness

Projection/Pure state Point

Finite projective module Vector bundle

Automorphism Homeomorphism

Unital Compact

Separable Metrisable

Ideal Open subset

Quotient algebra Closed subset

tensor product Cartesian product

Figure 1.1: Equivalences between algebraic and topological properties.

We can therefore talk about topological spaces without any mention of them. Hence the manifold 𝑀 no longer

needs to be taken as input to express the algebra, since it can be derived from it.

An important remark is that nothing in this category equivalence requires the commutativity of the algebra. It

is by placing us on the side of the algebra, and by relaxing the commutativity condition of the latter that the NCG

came into being, as the extension of the geometric framework that accompanied that of commutative algebras.

This opens a new door for mathematics, where we can consider a non-commutative 𝐶∗
-algebra, and try to make

sense of a corresponding generalization of topological space. This was the beginning of NCG. A schematic view

of the underlying idea of NCG is given in figure 1.2.

Thus, the concept of point being algebraically characterized, we are now free to explore what happens in the

non-commutative context. In non-commutative “spaces”, what was only a point in commutative geometry now

acquires a structure. However, a NC algebra cannot be considered as an algebra of functions on a space thought

as a set of points. NC geometry therefore consists of conveying the properties of spaces (in the commutative

setting) into an algebraic form and then exploring what happens to these properties when moving to the NC

world. NC spaces do not exist as spaces, only their algebras have existence.
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Noncommutative “space”

Topological space 𝑀

Noncommutative

algebra of “functions”

Commutative algebra of con-

tinuous functions over 𝑀

Extention to

noncommutative

algebras

Gelfand-

Naimark

theorem

Figure 1.2: Extending topology through Gelfand-Naimark theorem.

Remark 1.2.7 The notion of point is not lost, it is just no longer fundamental and is therefore destitute of its

general significance. □

Then, coordinates are replaced by the generators of an algebra. Because they do not commute, they cannot be

simultaneously diagonalized and the usual space picture can no longer stand.

Remark 1.2.8 It is important to note that insofar as this theorem can be considered as one of the foundations

of NCG, there is no mention of NC coordinates, only of NC observables. □

More details can be found in (Sitarz, 2013) and (Coquereaux, 1998).

1.3 K-Theory of 𝐶∗-Algebras
K-theory is a branch of mathematics related to geometry, topology, number theory, and ring theory. The objects

of geometry, algebra, or arithmetic are associated with an object called K-group which contain important infor-

mation about them. It can be seen as the study of additive or abelian invariants over matrix algebras, simple

examples of abelian invariants being traces and determinants (Atiyah, 2000). Examples of results collected from

K-theory approach include the Grothendieck–Riemann–Roch theorem, Bott periodicity, the Atiyah–Singer index

theorem, this last one being one of the big results with the Gelfand-Naimark theorem that motivated the devel-

opment of the NCG. The link made with topological K-theory provides another equivalence between topology

and algebra, through the invariants of the K-theory.

Take  an unital 𝐶∗
-algebra, we consider the projectors of ; i.e. elements that are both self-adjoint and

idempotent 𝑃∗ = 𝑃 = 𝑃2
. We define 𝑀∞() ∶= ∪𝑝≥1𝑀𝑝() where 𝑀𝑝() ∶= 𝑀𝑝 ⊗ is the 𝐶∗

-algebra of 𝑝 × 𝑝
matrices with entries in . For all 𝑛 ≥ 1, we consider the set 𝑛() of projections onto 𝑀𝑛(), and we introduce

the object ∞() :

∞() =
∞

⋃
𝑛=1

𝑛().

We then construct an equivalence class ∼0 on ∞(); that is 𝑃 and 𝑄 belonging to ∞() are equivalent if there

is 𝑆 ∈ 𝑀∞() such that 𝑃 = 𝑆𝑆∗ and 𝑄 = 𝑆∗𝑆. We thus construct () as the quotient of ∞() by ∼0 :

() = ∞()/ ∼0 .

() can be equipped with an additive abelian law denoted +, moreover, () is not a group because there is

no inverse element. We then create another equivalence relation ∼ on ()×(), take (𝑥1, 𝑦1) and (𝑥2, 𝑦2) two

elements of()×(); we have (𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) if and only if there is 𝑧 ∈ () such that 𝑥1+𝑦2+𝑧 = 𝑥2+𝑦1+𝑧.

We consider 𝐾0() = () ×()/ ∼, which is an abelian group, 𝐾0() is the Grothendieck group 𝐺(()):

𝐾0() = 𝐺(()) = () ×()/ ∼
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This functor will thus allow us to transfer the study of algebras to that of abelian groups. In the case of inductive

sequences of algebras:

1 ↪
𝜙1−−→ 2 ↪

𝜙2−−→ 3 ... ⇝ 𝐴𝐹

we will be able to build the sequence:

𝐾0(1) ↪
𝐾0(𝜙1)−−−−→ 𝐾0(2) ↪

𝐾0(𝜙2)−−−−→ 𝐾0(3) ... ⇝ 𝐾0(𝐴𝐹 )

with 𝐾0(𝜙𝑖) defined in (Rordam et al., 2000). In the subsection 2.3 we will see how K-theory can be used to clas-

sify 𝐴𝐹 algebras, and in 11.1, that the projections used to build the construction that leads to the invariants of

K-theory can also be used to create projective modules. As we shall see, this provides a nice link with the topo-

logical constructions such as the vector bundles in Gauge theory, more precisely by connecting these projective

modules to the sections of the bundle. As for the Gelfand-Naimark theorem, this result is the consequence of an

equivalence of category.



Chapter 2

Finite and Approximately Finite (𝐴𝐹 )
Dimensional Algebras

In the following, as said before, we will only consider algebras of finite dimension, these are the ones with which

the quantum physicist is the more familiar with since she/he deals with experiments with finite or countable

outcome results. In this section, we will offer a more intuitive view of these algebras, adopting the natural matrix

representation. This will give a view of what the commutative limit represents in this unifying scheme. Then, I

will show how any 𝐶∗
-algebra admits a natural direct sum decomposition into sub-algebras. In section 2.2, I will

describe an important kind of algebra which is based on this direct sum decomposition i.e. the 𝐴𝐹 -algebras, on

which the work of this thesis is based. Then we will show in section 2.3 how K-theory offers a nice classification

of these algebras.

2.1 Finite Algebras
A first observation is that through the Gelfand-Naimark-Segal presented in chapter 1, any finite 𝐶∗

-algebra can

be represented by a matrix algebra acting on a finite-dimensional Hilbert space. These are isomorphic to the

space C𝑛
equipped with the inner product (𝜉 , 𝜂) = ∑𝑛

𝑖=1 𝜉𝑖𝜂𝑖 with 𝜉 , 𝜂 ∈ C𝑛
, where 𝑖 is the index of an orthonormal

basis of C𝑛
. More generally, these can be extended by associating a multiplicity space to them: C𝑛 ⊗ C𝜇

where

𝜇 is the multiplicity of this representation. In the context of NCG, these indices 𝑖 will be associated (in a one to

one way) with elements of a finite space 𝐹 .

To proceed pedagogically, let us start with the simplest example, that of commutative algebra. A first obser-

vation is that any commutative (finite and acting on  = C𝑛
) algebra 𝐶 is of the form 𝐶 = C𝑛

, where 𝑛 is its

dimension, which coincides with that of (𝐶). An algebraically equivalent writing is therefore the following,

∀𝑓 ∈ 𝐶 :

𝑓 =
⎛
⎜
⎜
⎜
⎝

𝑓 (1) 0 ⋯ 0
0 𝑓 (2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓 (𝑛)

⎞
⎟
⎟
⎟
⎠

where the indices 1, ⋯ , 𝑛 refer to the elements of the Hilbert space on which each 𝑓 (𝑖) acts, and thus to elements

of 𝐹 . In the commutative case, the space 𝐹 can be considered as a topological space with 𝑛 points. We can see

perfectly well that nothing can give the differential structure taking this form alone, so an additional structure

is needed to link the values of 𝑓 (𝑖) together. We can also provide this topological space with a metric, giving a

notion of distance between the points, at the level of the algebra. This is common in NCG and notably done in

(van Suijlekom, 2015, p 19). We will see in chapter 3 different procedures to build such metric and differential

structures.

A first step in the NC generalization of this algebra is to replace 𝑓 (𝑖) by algebras of NC matrices, and thus

19
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obtain the algebra 𝑁𝐶 such that ∀𝑎 ∈ 𝑁𝐶 :

𝑎 =
⎛
⎜
⎜
⎜
⎝

𝑎1 0 ⋯ 0
0 𝑎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑛

⎞
⎟
⎟
⎟
⎠

This expression is algebraically equivalent to 𝑎 = ⨁𝑛
𝑖=1 𝑎𝑖 = ⨁𝑛

𝑖=1𝑀𝑛𝑖(C), 𝑀𝑛𝑖(C) being matrix algebras of di-

mension 𝑛𝑖, as we will see, every finite 𝐶∗
-algebra admits such a writing. Natural Hilbert spaces for this kind of

algebras will be written ⨁𝑛
𝑖=1 C𝑛𝑖 ⊗C𝜇𝑖

. This example is interesting because the only definable point notions are

associated with each of these matrix algebras independently, there is no more refined point notion, the projec-

tors used to create these points being the elements 1𝑛𝑖 , identity matrices reduced to algebras 𝑀𝑛𝑖(C). One way of

representing what happens is to consider that these 𝑛 points are now endowed with an inner structure, whose

degrees of freedom can be called NC degrees of freedom. Go even further by filling in the non-diagonal terms,

we obtain an algebra ′
𝑁𝐶 “even more NC”, with ∀𝑎 ∈ ′

𝑁𝐶 :

𝑎 =
⎛
⎜
⎜
⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

⎞
⎟
⎟
⎟
⎠

𝑎𝑖1𝑖2 ∈ 𝑀𝑛1×𝑛2(C)

In this case, the space 𝐹 is the space reduced to a point, none of its elements having the status of a point for the

algebra (through-Gelfand Naimark theorem).

These finite spaces are the basis of the NC standard model which is “built” on the algebra ∞(𝑀) ⊗ (with

𝑀 a topological space) which can be considered as the one acting on the Cartesian product space 𝑀 × 𝐹 .

Finally, an interesting analogy can be made with QM. If we take the observable defined by the density matrix

𝜌, then we can see how the set of these density matrices forms a NC algebra. The decoherence process can

be understood as a process making this algebra commutative according to a given basis, that of the classical

observables:

𝜌 =
⎛
⎜
⎜
⎜
⎝

𝜌11 𝜌12 ⋯ 𝜌1𝑛
𝜌21 𝜌22 ⋯ 𝜌2𝑛
⋮ ⋮ ⋱ ⋮
𝜌𝑛1 𝜌𝑛2 ⋯ 𝜌𝑛𝑛

⎞
⎟
⎟
⎟
⎠

→ 𝜌′ =
⎛
⎜
⎜
⎜
⎝

𝜌11 0 ⋯ 0
0 𝜌22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜌𝑛𝑛

⎞
⎟
⎟
⎟
⎠

It is interesting to note that any finite 𝐶∗
-algebra admits a natural decomposition into direct sum. Indeed, by

the Artin–Wedderburn Theorem any finite-dimensional 𝐶∗
-algebra can be represented as a direct sum of matrix

algebras:

 ≃
𝑟

⨁
𝑖=1

𝑀𝑛𝑖(C)

With the 𝑛𝑖’s and 𝑟 being positive finite integers. This can be easily seen in this example of reconstruction, taking

any finite ∗-algebra  of complex matrices, there exists a minimal set of mutually orthogonal projectors {𝑝𝑖}𝑟𝑖=1
spanning the center () and forming a resolution of the identity (𝑝𝑖 = 1𝑛𝑖 and 0 outside for example). Then for

any 𝑎 ∈  we have:

𝑎 = 1𝑎 = (

𝑟

∑
𝑖
𝑝𝑖)

𝑎 =
𝑟

∑
𝑖
𝑝𝑖𝑝𝑖𝑎 =

𝑟

∑
𝑖
𝑝𝑖𝑎𝑝𝑖 ≃ 𝑎1⊕𝑎2⊕…⊕𝑎𝑟 ⊕0

because the projections are in the center and mutually orthogonal. As the projectors depend only on , this

decomposition holds for any 𝑎 ∈ , then we get :

 ≃  † = 1⊕2⊕…⊕𝑟 ⊕0
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with  the unitary matrix coming from the set of projections, the center of each algebra is trivial (𝑖) = C1𝑖 .

A complete derivation can be found in (Bény and Richter, 2015).

This is why we will often study what happens on such representations later on, as they are more convenient

to use, have many links with physics, and because the parameters of the embedding structure of 𝐴𝐹 -algebras act

specially on the elements of the direct sum.

The concept of direct sum can be generalized to direct integral. It was mostly developed for von Neumann

algebras which are at the heart of the axiomatic approaches to quantum field theory. A deep and important result

goes as follows: If one assumes that von Neumann algebras have the right properties to represent the general

algebra of observables in physics and that one considers as a potential candidate of interest for physics (without

assuming any parametrization of this algebra with respect to points in space-time, and assuming that this algebra

is finite dimensional), then it is possible to obtain a central decomposition of , such that, as above for the Artin-

Wedderburn theorem, (via the collection of mutually orthogonal projections of the center forming a resolution

of the identity) given the projections set {𝑝𝑥 }𝑥∈𝑀 of such a decomposition, with 𝑀 the set of indices of these

projections, one has:

 ≡ ∫
⊕

𝑀
𝑥𝑑𝜇(𝑥)

𝑑𝜇(𝑥) being a measure over 𝑀 . So in other words we have a diagonalization of  according to its center. Each

𝑥 is obtained from a 𝑝𝑥 , it turns out that (almost) each 𝑥 is a factor, which is analogous to full matrix algebras

over a field. We have taken 𝑥 as a subscript to emphasize the potential link with points of space-time. More

details can be found in (Kadison and Ringrose, 1986).

This is of capital significance because it proves that given any algebra (potentially NC) having reasonable

properties concerning physics, it can naturally be rewritten as defined on “a field” parametrized by its center,

where matrix algebras “live” above each point, which is exactly the description made in gauge theories as we

will see in part III. One must therefore understand that starting from such a NC algebra, without any notion of

point, one can rewrite it as a matrix field over a set of points, which one can imagine to be those of space-time.

This theorem thus provides a clue that NCG is a natural framework for gauge theories, since as we will see,

considering a general NC algebra lead naturally to structure like the ones described by fiber bundles. We will see

in section 11.4 how this fact is implemented with AC-manifolds.

Moreover, this construction is not without reminding the Gelfand-Naimark theorem, because these projec-

tions of the center can be taken to construct pure states defined on the algebra (using the trace), and thus define

a notion of disjoint points (mutually orthogonal) for the algebra since they belong to the center of this one. It is

interesting to note the contribution of this approach compared to that of the Gelfand-Naimark theorem which

is more general. Indeed, the notion of point can here be defined on an NC algebra from its own elements, i.e.
without external structure!

2.2 Approximately Finite (𝐴𝐹 ) Algebras
In this subsection, we would like to recall the necessary structures involved in the definition of 𝐴𝐹 𝐶∗

-algebras

that will be used in the following. We would like also to illustrate in section 2.3, with the 𝐾0-group example, the

powerful approximation procedure by finite dimensional structures that we inherit in this framework.

A 𝐶∗
-algebra  is said to be𝐴𝐹 (approximately finite-dimensional) if it is the closure of an increasing union of

finite dimensional subalgebras 𝑛 i.e.  = ∪𝑛≥0𝑛. We will always suppose that  is unital and that 0 ≃ C1
(Davidson, 1996). The equivalent of 𝐴𝐹 C

∗
-algebras in von Neumann algebras are hyperfinite factors. The 𝐴𝐹

𝐶∗
-algebras are non-commutative generalizations of 𝐶0(𝑀), with 𝑀 a totally disconnected space.

It is convenient to describe  as the direct limit ∞ = lim−−→𝑛 of the inductive sequence of the finite dimen-

sional (sub)algebras {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚} where 𝜙𝑛,𝑚 ∶ 𝑛 → 𝑚 are one-to-one unital ∗-homomorphisms

such that 𝜙𝑚,𝑝 ◦ 𝜙𝑛,𝑚 = 𝜙𝑛,𝑝 for any 0 ≤ 𝑛 < 𝑚 < 𝑝. From this composition property, one needs only to describe

the homomorphisms 𝜙𝑛,𝑛+1 ∶ 𝑛 → 𝑛+1. This can be done in two steps.
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Firstly, any finite dimensional 𝐶∗
-algebra is ∗-isomorphic to the direct sum of matrix algebras,  ≃ ⊕𝑟

𝑖=1𝑀𝑛𝑖
(Davidson, 1996, Thm. III.1.1). Secondly, any unital ∗-homomorphism 𝜙 ∶  = ⊕𝑟

𝑖=1𝑀𝑛𝑖 →  = ⊕𝑠
𝑘=1𝑀𝑚𝑘 is

determined up to unitary equivalence in  by a 𝑠 × 𝑟 matrix 𝐴 = (𝛼𝑘𝑖) where 𝛼𝑘𝑖 ∈ N (non-negative integers)

is the multiplicity of the inclusion of 𝑀𝑛𝑖 into 𝑀𝑚𝑘 (Davidson, 1996, Lemma III.2.1). The multiplicity matrix 𝐴 is

such that ∑𝑟
𝑖=1 𝛼𝑘𝑖𝑛𝑖 = 𝑚𝑘 . The action of 𝐴 can be seen on the index sets as follow:

𝐴
(

𝑛1
𝑛2
.
.
𝑛𝑟 )

→
(

𝑚1
𝑚2
.
.
𝑚𝑠
)

The Bratteli diagram is constructed in such a way that each 𝑛𝑖 and 𝑚𝑘 corresponds to points in the diagram, the

𝑛𝑖’s being all on the same line, and the 𝑚𝑘’s on another, the 𝛼𝑘𝑖 are then used to define arrows between these

points, so that if 𝛼𝑘𝑖 = 0 there is no arrow, and if 𝛼𝑘𝑖 ≠ 0 there is an arrow of multiplicity 𝛼𝑘𝑖:

𝑛𝑖∙
𝛼𝑘𝑖⟶ 𝑚𝑘∙

An important fact is that if = ∪𝑛≥0𝑛 and = ∪𝑛≥0𝑛 have the same Bratteli diagram, then they are isomorphic.

Furthermore if 𝑛 and 𝑛 are isomorphic ∀𝑛, the algebras are not necessarily isomorphic, since the nature of the

embedding structure defined by the 𝛼𝑘𝑖 contain crucial properties. This fact is very important since as mentionned

in (Christensen and Ivan, 2006), 𝜙 contains many important geometric and topological data. A natural question

will be how to characterize the additional geometric and topological data coming from the structure of the 𝐴𝐹
algebra, when we will have constructed differential structures based on such algebras. The characterization of 𝜙
up to unitary equivalence in  permits to take a convenient presentation of the inclusions of the 𝑀𝑛𝑖 ’s into the

𝑀𝑚𝑘 ’s, for instance by increasing order of the 𝑛𝑖’s along the diagonal of 𝑀𝑚𝑘 .

In what follows, we will not be interested in the 𝐶∗
aspect of 𝐴𝐹 𝐶∗

-algebras since we will focus on the

differentiable structures compatible with the increasing sequence of {(𝑛, 𝜙𝑛,𝑛+1) / 𝑛 ≥ 0}. In our point of view,

we will consider ∞ ∶= ∪𝑛≥0𝑛 as the dense subalgebra of  = ∪𝑛≥0𝑛 of “smooth” elements. ∞, as the direct

limit of {(𝑛, 𝜙𝑛,𝑛+1) / 𝑛 ≥ 0} in the category of associative (unital) algebras, inherits some algebraic structures of

the algebras 𝑛.

Let us notice that one key result for the study of 𝐴𝐹 algebras is given by (Davidson, 1996, Lemma III.2.1),

which describes the possible unital ∗-homomorphisms 𝜙 ∶  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 →  = ⊕𝑠

𝑘=1𝑀𝑚𝑘 . For reasons that will

be explained below (see Sect. 14.3), we will consider non unital ∗-homomorphisms 𝜙 ∶  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 →  =

⊕𝑠
𝑘=1𝑀𝑚𝑘 . In that case, we can use (Davidson, 1996, Lemma III.2.2) to describe 𝜙 up to unitary equivalence in 

with a matrix 𝐴 = (𝛼𝑘𝑖), with 𝛼𝑘𝑖 ∈ N, such that ∑𝑟
𝑖=1 𝛼𝑘𝑖𝑛𝑖 ≤ 𝑚𝑘 .

Another important point to notice is that in the mathematical considerations described before, the ∗-

homomorphisms 𝜙 ∶  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 →  = ⊕𝑠

𝑘=1𝑀𝑚𝑘 need only be characterized up to unitary equivalence

in . This is a consequence of the fact that we need only consider “classes” (modulo isomorphisms for instance)

for the purpose of classifying the structures. A priori, in physics, we may need to consider two ∗-homomorphisms

𝜙 as different even if they are related by a unitary equivalence. This is related to the fact mentioned above that

we consider the algebraic structure ∞ ∶= ∪𝑛≥0𝑛 instead of its completion, and that its presentation (the se-

quence of ∗-homomorphisms 𝜙𝑛,𝑛+1) may contain some phenomenological information. But, as will be shown,

see Examples 11.5.2 and 11.5.3, the action of (unitary) inner automorphisms is not relevant from a physical point

of view since it consists to a transport of structures. These inner automorphisms are similar to gauge transforma-

tions in the sense that one can chose a particular representative in the class of equivalent structures to describe

a physical situation. This explains why the analysis in this thesis relies on a chosen “standard form” for these

∗-homomorphisms which simplifies the presentation.

2.3 The Classification of 𝐴𝐹 𝐶∗-Algebras by K-Theory:
The complete classification of𝐴𝐹 𝐶∗

-algebras was made by G.A. Elliott in the framework of K-theory thanks to the

𝐾0-functor producing a category equivalence between the theory of 𝐶∗
-unital algebras and that of abelian groups.

This is one of the main arguments motivating the development of NC gauge theories based on 𝐴𝐹 -algebras.

Because it makes feel their structural importance (from the point of view of topology/algebra equivalence), as
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well as the link with a classification of the gauge theories built on it, with respect to the link between this

classification, and the gauge theories, via the idempotents of the algebra, as we will see in section 11.1 with

the Serre-Swan theorem. Indeed, for any 𝐴𝐹 algebra, at each rank of the inductive process, we can construct a

K-theory and obtain the corresponding invariants. The fact that this K-theory is linked to the one of the next

rank induces the possibility to compute the K-theory of the 𝐴𝐹 algebra at the limit of the inductive process. The

interest is therefore to use this fact to make gauge theories in the same way, i.e. by constructing a gauge theory

at each given rank, starting from the previous rank. The fact that K-theory allows us to fully classify 𝐴𝐹 algebras

will thus allow us to characterize the limit gauge theory associated with the induced 𝐴𝐹 algebra. We propose

here to show the construction of the functor 𝐾0 from an 𝐴𝐹 𝐶∗
-algebra to the associated abelian group. (Rordam

et al., 2000)

Let us now illustrate how the defining sequence {(𝑛, 𝜙𝑛,𝑛+1) / 𝑛 ≥ 0} can be used to construct “approxima-

tions” of the𝐾0 group of, using the same notations as in section 1.3. The definition (see (Davidson, 1996; Rørdam

et al., 2000) for details) of the 𝐾0 group of a unital 𝐶∗
-algebra  starts with an equivalence class of projections in

𝑀∞(). The space () ∶= ∞()/ ∼0 of equivalence classes [𝑃] of projections in 𝑀∞() is an Abelian semi-

group for the additive law [𝑃]+[𝑄] ∶= [𝑃⊕𝑄] where 𝑃⊕𝑄 ∶= ( 𝑃 0
0 𝑄 ) ∈ 𝑀∞(). Then 𝐾0() is the Grothendieck

group of ().1 We denote by 𝜄 ∶ () → 𝐾0() the map defining the universal property of 𝐾0(). Then, for

any 𝑃, 𝑄 ∈ ∞(), one has (Rørdam et al., 2000, Prop. 3.1.7) 𝜄([𝑃 ⊕ 𝑄]) = 𝜄([𝑃]) + 𝜄([𝑄]); 𝜄([𝑃]) = 𝜄([𝑄]) if and

only if there exists 𝑅 ∈ ∞() such that 𝑃 ⊕ 𝑅 ∼0 𝑄 ⊕ 𝑅; and 𝐾0() = {𝜄([𝑃]) − 𝜄([𝑄]) / 𝑃, 𝑄 ∈ ∞()}. So,

describing all the 𝜄([𝑃]) is sufficient to get 𝐾0().

For a matrix algebra  = 𝑀𝑛, one has 𝑀𝑝(𝑀𝑛) = 𝑀𝑝 ⊗ 𝑀𝑛 = 𝑀𝑝𝑛 and, for any 𝑃, 𝑄 ∈ ∞(𝑀𝑛), 𝑃 ∼0 𝑄 iff

rank(𝑃) = rank(𝑄). So (𝑀𝑛) ≃ N, 𝐾0(𝑀𝑛) = Z and 𝜄 is the inclusion 𝜄 ∶ N ↪ Z and so it can be omitted in

that case. For a finite dimensional algebra  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 , this result generalizes as 𝑃 = ⊕𝑟

𝑖=1 𝑃𝑖 ∼0 𝑄 = ⊕𝑟
𝑖=1 𝑄𝑖 iff

rank(𝑃𝑖) = rank(𝑄𝑖) for any 𝑖, so that (⊕𝑟
𝑖=1𝑀𝑛𝑖) ≃ N𝑟

and 𝐾0(⊕𝑟
𝑖=1𝑀𝑛𝑖) = Z𝑟

(Davidson, 1996, Ex. IV.2.1). Here

again 𝜄 is the natural inclusion and it can be omitted.

Any morphism of 𝐶∗
-algebras 𝜙 ∶  →  induces a canonical morphism of groups 𝜙∗ ∶ 𝐾0() → 𝐾0()

by 𝜙∗ ◦ 𝜄([𝑃]) = 𝜄([𝜙(𝑃)]) where 𝜙(𝑃) ∈ ∞() ⊂ 𝑀∞() is defined by applying 𝜙 to the entries of the matrix

𝑃 ∈ 𝑀𝑝() ⊂ 𝑀∞(). So, from the defining inductive sequence {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚} of an 𝐴𝐹 𝐶∗
-algebra

 = lim−−→𝑛, we get an inductive sequence {(𝐾0(𝑛), 𝜙𝑛,𝑚 ∗) / 0 ≤ 𝑛 < 𝑚}. Then one has 𝐾0() = lim−−→𝐾0(𝑛)
(Rørdam et al., 2000, Thm 6.3.2).

To compute lim−−→𝐾0(𝑛), one has to describe the morphisms 𝜙𝑛,𝑛+1 ∗ ∶ 𝐾0(𝑛) → 𝐾0(𝑛+1). This can be done

easily in terms of the multiplicity matrices 𝐴𝑛,𝑛+1 associated to the morphisms 𝜙𝑛,𝑛+1 ∶ 𝑛 → 𝑛+1. In order to

do that, we switch from projections to finitely generated projective modules.

Let 𝑃 ∈ 𝑀𝑝(𝑀𝑛) be a projection with rank(𝑃) = 𝛼 (≤ 𝑝𝑛). Then 𝑃 can be diagonalized as 𝑃 = 𝑈 ∗𝐸𝛼𝑈
for a unitary 𝑈 ∈ 𝑀𝑝𝑛 and 𝐸𝛼 = ( 1𝛼 0

0 0 ) ∈ 𝑀𝑝𝑛 where 1𝛼 is the unit 𝛼 × 𝛼 matrix. Then 𝑆 ∶= 𝐸𝛼𝑈 satisfies

𝑆∗𝑆 = (𝐸𝛼𝑈)∗(𝐸𝛼𝑈) = 𝑈 ∗𝐸∗𝛼𝐸𝛼𝑈 = 𝑈 ∗𝐸𝛼𝑈 = 𝑃 and 𝑆𝑆∗ = (𝐸𝛼𝑈)(𝐸𝛼𝑈)∗ = 𝐸𝛼𝑈𝑈 ∗𝐸∗𝛼 = 𝐸𝛼 so that [𝑃] = [𝐸𝛼].
Consider the free left 𝑀𝑛-module (𝑀𝑛)𝑝 ≃ 𝑀𝑝𝑛,𝑛 (row of 𝑝 copies of 𝑀𝑛 or rectangular matrices 𝑝𝑛 × 𝑛). Then up

to the unitary equivalence by 𝑈 (acting on the right on rectangular matrices), 𝑃 defines the submodule 𝑃 ≃
𝑀𝑝𝑛,𝑛𝐸𝛼 ≃ 𝑀𝛼,𝑛 ≃ C𝑛 ⊗ C𝛼

(a finitely generated projective module over 𝑀𝑛).

In the same way, a class [𝑃 = ⊕𝑟
𝑖=1 𝑃𝑟 ] ∈ (⊕𝑟

𝑖=1𝑀𝑛𝑖) defines a class (modulo isomorphisms) of left (finitely

generated projective) modules [𝑃 ] with 𝑃 = C𝑛1 ⊗ C𝛼1 ⊕⋯⊕C𝑛𝑟 ⊗ C𝛼𝑟
where 𝛼𝑖 = rank(𝑃𝑖). Indeed, if

𝑃 ∈ 𝑀𝑝(⊕𝑟
𝑖=1𝑀𝑛𝑖) = ⊕𝑟

𝑖=1𝑀𝑝 ⊗ 𝑀𝑛𝑖 then 𝑃𝑖 ∈ 𝑀𝑝 ⊗ 𝑀𝑛𝑖 = 𝑀𝑝(𝑀𝑛𝑖) and then we are in the previous situation for

every 𝑃𝑖. The map 𝜙∗ ∶ (⊕𝑟
𝑖=1𝑀𝑛𝑖) → (⊕𝑠

𝑘=1𝑀𝑚𝑖) induced by 𝜙 ∶ ⊕𝑟
𝑖=1𝑀𝑛𝑖 → ⊕𝑠

𝑘=1𝑀𝑚𝑘 with multiplicity matrix

𝐴 = (𝛼𝑘𝑖) sends [𝑃] to [𝑄 = ⊕𝑠
𝑘=1 𝑄𝑘] where every entry along𝑀𝑝 in𝑄𝑘 ∈ 𝑀𝑝(𝑀𝑚𝑘 ) contains 𝛼𝑘𝑖 copies, distributed

along the diagonal of𝑀𝑚𝑘 , of the entry at the same position along𝑀𝑝 in 𝑃𝑖. Since the rank of a matrix projection is

its trace, one gets 𝛽𝑘 ∶= rank(𝑄𝑘) = ∑𝑟
𝑖=1 𝛼𝑘𝑖𝛼𝑖 and the associated module is then𝑄 = C𝑚1⊗C𝛽1 ⊕⋯⊕C𝑚𝑠⊗C𝛽𝑠

by the previous construction. So, in terms of modules, 𝜙∗ sends the class of C𝑛1 ⊗C𝛼1 ⊕⋯⊕C𝑛𝑟 ⊗C𝛼𝑟
to the class

of C𝑚1⊗C𝛽1 ⊕⋯⊕C𝑚𝑠⊗C𝛽𝑠
, where C𝑛𝑖⊗C𝛼𝑖 = 𝑀𝛼𝑖 ,𝑛𝑖 is repeated 𝛼𝑘𝑖 times on the diagonal of C𝑚𝑘⊗C𝛽𝑘 = 𝑀𝛽𝑘 ,𝑚𝑘 .

1
The Grothendieck group 𝐺(𝑆) of an Abelian semigroup (𝑆, +) is the unique Abelian group 𝐾 which satisfies the following universal

property: there is a morphism of semigroups 𝜄 ∶ 𝑆 → 𝐺(𝑆) such that for any morphism of semigroups 𝜑 ∶ 𝑆 → 𝑇 for any Abelian group 𝑇 ,

there is a morphism of groups 𝜑 ∶ 𝐺(𝑆) → 𝑇 with 𝜑 = 𝜑 ◦ 𝜄.
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The diagonals are filled thanks to the relations𝑚𝑘 = ∑𝑟
𝑖=1 𝛼𝑘𝑖𝑛𝑖 and 𝛽𝑘 = ∑𝑟

𝑖=1 𝛼𝑘𝑖𝛼𝑖. See (Davidson, 1996, Ex. IV.3.1)

where the identification of 𝜙∗ with 𝐴 is also presented using projections.

This describes the maps 𝜙𝑛,𝑛+1 ∗ ∶ (𝑛) → (𝑛+1) in terms of (finitely generated projective) modules. For

𝐴𝐹 𝐶∗
-algebras, () equals the space 𝐾+

0 () of stable equivalence classes of projections in ∞(),2 and this is a

cone in𝐾0() such that𝐾0() = 𝐾+
0 ()−𝐾+

0 () (Davidson, 1996, Thm IV.1.6, Thm IV.2.3, Thm IV.2.4). So, for𝐴𝐹
𝐶∗

-algebras, it can be of practical importance to know what it means to approximate elements of () = 𝐾+
0 ().

A class [𝑃] ∈ () can be looked at as a sequence of classes [𝑃𝑛] ∈ (𝑛) for 𝑛 ≥ 𝑛0, related step-by-step by

the maps 𝜙𝑛,𝑛+1 ∗. The sequence {[𝑃𝑛]}𝑛≥𝑛0 corresponds then to a sequence {[𝑛]}𝑛≥𝑛0 of equivalence classes of

isomorphisms of finitely generated projective modules on the algebras 𝑛. Notice that it is only the sequence

in the whole that permits to reconstruct the target element [𝑃] ∈ (). We could say that, for some 𝑛 ≥ 𝑛0,
the module 𝑛 “approximates” (as a representative element in [𝑛]) the class [𝑃], but some information are

encoded in the embedding maps 𝜙𝑛,𝑛+1 ∗ ∶ 𝑛 → 𝑛+1 which then participate to this notion of approximation.

As seen before, concretely, the maps 𝜙𝑛,𝑛+1 ∗ are written in terms of the multiplicity matrices 𝐴𝑛,𝑛+1 associated to

the 𝜙𝑛,𝑛+1.3

It is well-known (Elliott’s Theorem, see for instance (Davidson, 1996, Thm IV.4.3)) that the 𝐾0-group, sup-

plemented with a structure of scaled dimension group, is sufficient to classify 𝐴𝐹 𝐶∗
-algebras. So there is no

more information outside of the one encoded in the sequence of multiplicity matrices 𝐴𝑛,𝑛+1 to be expected in the

constructions described before since it determines a unique 𝐴𝐹 𝐶∗
-algebra and it permits to construct its scaled

dimension group.
4
, and so to go on from the sequence:

1 ↪
𝜙1−−→ 2 ↪

𝜙2−−→ 3 ... ⇝ 𝐴𝐹

to the sequence:

𝐾0(1) ↪
𝐾0(𝜙1)−−−−→ 𝐾0(2) ↪

𝐾0(𝜙2)−−−−→ 𝐾0(3) ... ⇝ 𝐾0(𝐴𝐹 ).

In the part IV, we will use again these 𝜙𝑛 morphisms to link the essential structures of the gauge theories

which will be associated to each 𝑖, in order to build inductive sequences of NCGFTs on top AF-algebras.

2𝑃, 𝑄 ∈ ∞() are stably equivalent, 𝑃 ≈ 𝑄, if there is a projection 𝑅 ∈ ∞() such that 𝑃 ⊕ 𝑅 ∼0 𝑄 ⊕ 𝑅.

3
The full sequence of multiplicity matrices𝐴𝑛,𝑛+1 is provided by the𝐴𝐹 𝐶∗

-algebra. It can be represented graphically by a Bratteli diagram,

and it is known that two 𝐴𝐹 𝐶∗
-algebras with the same Bratteli diagram are isomorphic (Davidson, 1996, Prop. III.2.7)

4
Keep in mind that an 𝐴𝐹 𝐶∗

-algebra can be obtained from different sequences of multiplicity matrices.



Chapter 3

Noncommutative Differential Structures

We have seen with the Gelfand Naimark theorem that properties of an algebra can be mapped to topological

properties of an underlying space in the commutative case. Therefore, we know how to reconstruct the topolog-

ical manifold 𝑀 from , and then obtain the algebra 0(𝑀) of continuous functions on 𝑀 . It should be noted

that this connection provides only incomplete information about the geometry of this underlying “space”, and

thus for example does not allow one to distinguish between two equivalent topological spaces such as the ones

of torus and teacup for example. The additional information required to fully characterize the geometry would

be to introduce an object enabling the elaboration of a differential structure (on the algebraic side), and from

which one could extract a metric structure (geometric side). It is therefore very important to complete the al-

gebraic/geometric equivalence by finding techniques to define such differential and metric structures, and thus

construct the algebra ∞(𝑀) of differentiable functions. Having done this with tools that do not depend on the

commutativity of the algebra, the generalization to NC algebras can be started.

The study of differential structure can be seen as the study of variations of what is observed. This can be

achieved according to any abstract or concrete parameter like time, space, another observable, or numbers. This

can be done infinitesimally or not for the variation of this parameters. In QM, the observational outcomes are

given by 𝑂𝑎(𝜓) = ⟨𝜓|𝑎|𝜓⟩ (in the equivalent bra-ket notation). Then if we denote by 𝛿𝑂𝑎(𝜓) its variation, they

are two equivalent ways to see its origin:

• The 1st one is to consider that it comes from a variation of the state: 𝜓′ = 𝜓 + 𝜖𝛿𝜓 which gives at first

order 𝑂𝑎(𝜓′) = ⟨𝜓|𝑎|𝜓⟩ + 𝜖(⟨𝛿𝜓|𝑎|𝜓⟩ + ⟨𝜓|𝑎|𝛿𝜓⟩) = 𝑂𝑎(𝜓) + 𝜖𝛿𝜓𝑂𝑎(𝜓) if we neglect the terms of order two in

𝜖. We can call this the Schrödinger picture view of variations.

• The 2nd one is to consider that it comes from a variation at the level of the algebra: 𝑎′ = 𝑎 + 𝜖̃𝛿𝑎 which

give 𝑂𝑎′(𝜓) = 𝑂𝑎(𝜓) + 𝜖̃⟨𝜓|𝛿𝑎|𝜓⟩ = 𝑂𝑎(𝜓) + 𝜖̃𝛿𝑎𝑂𝑎(𝜓) which can be called in the same way the Heisenberg

picture view of variations..

Taking these two variations to be the same: 𝑂𝑎(𝜓′) = 𝑂𝑎′(𝜓) (via the equivalence between Schrödinger and

Heisenberg pictures) which mean that 𝛿𝜓𝑂𝑎(𝜓) = 𝛿𝑎𝑂𝑎(𝜓) = 𝛿𝑂𝑎(𝜓), we are left with two (in principle) equivalent

ways to study differential structures in this context. As we will see in sections 3.1 and 7.3, this works also in the

classical framework since it can also be describe in the framework of Hilbert spaces an operator algebras.

Different techniques for elaborating differential calculus have been developed, the most general being the

universal differential calculus. Differential calculi based on derivations of the algebra, as well as those based on

the Dirac operator can be obtained as quotients of this universal structure in favorable cases. Thus the derivation

technique can be said to study differential structure directly on  while the spectral triple technique is at the

level of operators on . Then, the two main approaches explored to build NC differential structures in NCG

belong respectively to the two categories of differential structures which will be presented below. Indeed in this

view, the derivation approach to algebra can be seen as a kind of Heisenberg picture (where only variations of

the observables are taken into account), whereas the spectral triplet approach belongs to the Schrödinger picture

(variation of the states).

25
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From a mathematical point of view, the derivation approach seems to be more economic since it has the good

feature that it can be defined from the algebra itself, without added structures (like the Dirac), and that it considers

only the algebra, which is more fundamental than the Hilbert space according to GNS construction. However,

strong mathematical motivations have also motivated the spectral triplet approach, whose mathematical and

physical developments are quite remarkable. Giving the usual Riemannian geometrical framework and having

nice realizations in physics as we will see with the NCSMPP in section 12.

3.1 Usual Differential Structures, open door to Noncommutative Ex-
tension

In what follows I will present these three ways of proceeding. But let us first clarify what we mean by differential

structure, in order to feel as much as possible the potential meaning of it’s NC generalization.

Differential calculus is the study of the rate at which quantities like functions evolve. The main object of

differential calculus is the derivative, which measures this rate according to the evolution of its argument, which

can be a coordinate for example. Using spatial coordinate, the derivative is defined as follows:

𝑑𝑓 (𝑥)
𝑑𝑥

= lim
𝑑𝑥→0
𝑑𝑥≠0

𝑓 (𝑥 + 𝑑𝑥) − 𝑓 (𝑥)
𝑑𝑥

(3.1.1)

The identification of a derivative is called differentiation.

Remark 3.1.1 In practice, the study of the variation of an observable can only be done by correlating it with

another observable, known as the reference observable, such as the pointer of a clock or the graduations of a

ruler, it is not intrinsic! □

Derivatives are of great importance in physics, and in almost all scientific fields studying quantities and their

evolution. For example, velocity is the derivative corresponding to the displacement of a moving body with re-

spect to time, the derivative of velocity is the acceleration, and the derivative of momentum (function of velocity)

is equal to the sum of forces acting on the body. Moreover, most of the fundamental equations used to describe

phenomenon are differential equations, whose constituents are once again derivatives. As soon as it is a question

of the evolution of a quantity, or position, according to certain degrees of freedom of the associated space, deriva-

tions associated with these infinitesimal degrees of freedom come into play, this is why differential geometry is

of such great importance and universality in physics. More general definitions of derivative, not involving the

notion of a limit as in eq.( 3.1.1) (which becomes limited in the NC framework) can be defined, using the so-called

𝑞 or ℎ-calculus, taking 𝑞 = exp(𝑖ℎ):

𝑑𝑞(𝑓 (𝑥)) = 𝑓 (𝑞𝑥) − 𝑓 (𝑥) or 𝑑ℎ(𝑓 (𝑥)) = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

When ℎ → 0 or equivalently 𝑞 → 1, these formulas become equivalent to the usual derivative 3.1.1.

Taking a derivative, we can construct the corresponding differential:

𝑑𝑓 (𝑥, 𝑑𝑥) =
𝑑𝑓 (𝑥)
𝑑𝑥

𝑑𝑥 (3.1.2)

If 𝑓 is a real differentiable function, its differential 𝑑𝑓 is a differential 1-form (called exact) which at each point 𝑥
is the linear form 𝑑𝑓 (𝑥). Locally, the differential 1-forms are expressed as combinations of function differentials.

As mentioned before, we can express all these results in the world of operator algebras and Hilbert spaces.

Taking the differential over ∞(𝑀), the Hilbert space can be defined as the completion in the 𝐿2 norm of the

module of 1-forms (considered as vector space here). The derivative 𝑑 can then be considered as an operator on

this Hilbert space (densely defined) such that ∀𝜓 ∈  and 𝑓 ∈ ∞(𝑀):

(𝑑𝑓 )𝜓 = [𝑑, 𝑓 ]𝜓 = 𝑑(𝑓 ⋅ 𝜓) − 𝑓 ⋅ (𝑑𝜓) Heisenberg picture
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𝑓 .(𝑑𝜓) = 𝑑(𝑓 ⋅ 𝜓) − (𝑑𝑓 )𝜓 Schrodinger picture

With this way of expressing things, with commutators in the framework of operators algebras, we are therefore

able to explore the NC framework extension, adopting more general notions, when needed.

A derivation is a linear map over an algebra that generalizes the derivative operator, but this time on the

algebraic side. Taking an algebra , a derivation is defined to be a linear map X ∶  →  which respects the

Leibniz’s rule:

X(𝑎𝑏) = 𝑎X(𝑏) + X(𝑎)𝑏

For example, partial and Lie derivatives with respect to a vector field are derivations over algebras on R𝑛
or a

differentiable manifold. This formula can be deduced from this simple argument, if we take X(𝑎) and X(𝑏) as

representing small variations of 𝑎 and 𝑏, then the variation X(𝑎𝑏) can be written:

X(𝑎𝑏) = (𝑎 + X(𝑎))(𝑏 + X(𝑏)) − 𝑎𝑏 = X(𝑎)𝑏 + 𝑎X(𝑏)

because X(𝑎)X(𝑏) is negligible since we consider small variations. As we will see, this notion is of great impor-

tance to extend the usual derivative to the NCG framework, partly because Leibniz rule still makes sense on NC

algebras the novelty being that because of now [𝑎,X(𝑏)] ≠ 0, then:

X([𝑎, 𝑏]) = 𝑎X(𝑏) + X(𝑎)𝑏 − X(𝑏)𝑎 − 𝑏X(𝑎) ≠ 0

Differential calculus can therefore also be constructed on the basis of such derivations.

It is important to realize that derivations on the algebraic side can be viewed to be equivalent to tangent

spaces on the geometric side. Indeed, directional derivatives can be defined as follow: if we take a point 𝑥 ∈ 𝑀 ,

and a smooth curve 𝛾 ∶ R → 𝑀 parameterized by 𝑡 such that 𝛾(0) = 𝑥 , therefore, taking any 𝑓 ∈ ∞(𝑀) we

have

𝑑𝑓 (𝛾(𝑡))
𝑑𝑡

=
𝑑𝛾(𝑡)
𝑑𝑡

𝑑𝑓 (𝛾(𝑡))
𝑑𝛾(𝑡)

at 𝑡 = 0

Where, by comparison to eq.(3.1.2), the derivation
𝑑𝑓 (𝑥)
𝑑𝑥 can be identified to

𝑑𝑓 (𝛾(𝑡))
𝑑𝛾(𝑡) and the infinitesimal displace-

ment 𝑑𝑥 to
𝑑𝛾(𝑡)
𝑑𝑡 . Therefore, for a given 𝑥 , taking the set of all derivations

𝑑𝑓 (𝛾(𝑡))
𝑑𝑡 (at 𝑡 = 0) corresponding to all

curves 𝛾 gives the tangent space 𝑇𝑥𝑀 . This is interesting since, we can see that in this way, the differential struc-

ture on the algebraic side contains the tangent space which is an essential geometric structure. These tangent

spaces being at the hearth of most of the natural geometric constructions. This is why derivations can offer the

algebraic equivalent of tangent spaces, “styling” the points provided by pure states through the Gelfand Naimark

theorem, and fulfilling the algebraic to geometric correspondence. In a more general context than commutative

algebras, some derivations will not correspond to directional derivatives in the usual meaning, but to derivations

along inner degrees of freedom.

Furthermore, derivations can be viewed as infinitesimal generators of the automorphisms in the algebra, as

discussed in (Sakai, 1991), and later in section 3.3, taking an algebra , and 𝜙𝑡 ∶  →  an automorphism with

parameter 𝑡 such that 𝜙0 = 1 and naturally 𝜙𝑡(𝑎𝑏) = 𝜙𝑡(𝑎)𝜙𝑡(𝑏), then the map 𝑎 → 𝑑
𝑑𝑡 |𝑡=0𝜙𝑡(𝑎) is a derivation.

You can therefore think of derivations as a kind of vector fields, linked to the potential infinitesimal displacements

which are allowed in the geometry. In the context of differential geometry (then general relativity), it is possible

to show that diffeomorphisms of𝑀 are equivalent to automorphisms of ∞(𝑀), therefore derivations can be seen

to be in relation with the set of infinitesimal displacements generating these diffeomorphisms. As we will see in

chapter 11 automorphisms of the algebra can be seen as linked with the symmetries of a theory, and are of great

importance in the framework of Gauge field theories since they will correspond to gauge transformations.

An important structure can be built from the algebra and its derivations, that of the differential calculus. Let

 be an unital associative algebra, a differential calculus on  is a graded differential algebra (Ω∙(), d), with

Ω∙() = ⊕𝑛≥0 Ω𝑛(), Ω0 =  and by definition d ∶ Ω∙ → Ω∙+1
. The derivation must satisfy d

2 = 0 together

with the graded Leibniz rule:

d(𝜔𝜂) = (d𝜔)𝜂 + (−1)𝑛𝜔(d𝜂)
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for all 𝜔 ∈ Ω𝑛
and 𝜂 ∈ Ω𝑚

. A direct consequence is that d1 = 0. The space Ω𝑛
is called the space of non-

commutative 𝑛-forms, which is a -bimodule. In general, every element of Ω𝑛
can be expressed as a combination

of elements 𝑎0d𝑎1 … d𝑎𝑛, and we have:

d(𝑎0d𝑎1 … d𝑎𝑛) = d𝑎0d𝑎1 … d𝑎𝑛.

There are many possibilities to make such a differential calculus on , these possibilities are distinguished

by the nature of the chosen derivation. In section 3.2, I will present the most general of them, based on the

differential algebra of universal forms Ω𝑈 () (Coquereaux, 1998). Then in sections 3.3 and 3.4 I will present the

methods which use the derivations of the algebra ΩDer(), and the one which uses the spectral triples Ω𝐷(),
both being obtained as a quotient of Ω𝑈 (). More details can be found in (Müller-Hoissen, 1998), (François et al.,

2014), (Gracia-Bondía et al., 2013) and (Masson, 2001).

3.2 Universal Differential Structures
The universal differential calculus can be seen as the more general and abstract way to look at differential struc-

tures. In the following, we will need a convenient presentation of the differential graded algebra (Ω∙
𝑈 (), d𝑈 ).

We follow the presentation in (Masson, 1995) and (Gracia-Bondía et al., 2013).
1

Taking an associative algebra , we define the tensor algebra of degree 𝑛 on :

 𝑛 ∶=  ⊗⋯ ⊗⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛+1 times

= ⊗𝑛+1

with  0 = . We define  ∙
by  ∙ = ⊕𝑛≥0  𝑛. These are bimodules on  and a graded algebra for the

product  𝑛⊗ 𝑛′ →  𝑛+𝑛′ defined by (𝑎0⊗⋯⊗𝑎𝑛)(𝑎′0⊗⋯⊗𝑎′𝑛′) ∶= 𝑎0⊗⋯⊗𝑎𝑛𝑎′0⊗⋯⊗𝑎′𝑛′ . In particular,

 ∙ is a bimodule over  =  0. Define d𝑈 ∶  𝑛 →  𝑛+1 as

d𝑈 (𝑎0 ⊗⋯ ⊗ 𝑎𝑛) =1 ⊗ 𝑎0 ⊗⋯ ⊗ 𝑎𝑛

+∑𝑛
𝑝=1(−1)

𝑝𝑎0 ⊗⋯ ⊗ 𝑎𝑝−1 ⊗ 1 ⊗ 𝑎𝑝 ⊗⋯ ⊗ 𝑎𝑛

+ (−1)𝑛+1𝑎0 ⊗⋯ ⊗ 𝑎𝑛 ⊗ 1.

Then d𝑈 is a derivation of degree 1 on the graded algebra  ∙ such that d
2
𝑈 = 0. Notice that d𝑈 (𝑎) = 1⊗𝑎−𝑎⊗1

on  0. It satisfies the Leibniz rule since:

d𝑈 (𝑎𝑏) = 1 ⊗ 𝑎𝑏 − 𝑎𝑏 ⊗ 1 = 1 ⊗ 𝑎𝑏 − 𝑎 ⊗ 𝑏 + 𝑎 ⊗ 𝑏 − 𝑎𝑏 ⊗ 1 = d𝑈 (𝑎)𝑏 + 𝑎d𝑈 (𝑏).

Let first see how this relates to derivations on the algebra. A derivation X of an algebra  into a bimodule , is

a linear map satisfying the Leibniz rule.

Proposition 3.2.1 For any derivation X of , in a bimodule , there is a unique homomorphism of bimodules:

ℎX ∶ Ω1
𝑈 () → 

such that X = ℎX ◦ d𝑈 .

Proof Taking ℎX(d𝑈𝑎) = X(𝑎), as Ω1
𝑈 () is generated by the d𝑈𝑎 taking all 𝑎 ∈ , we see that

X(𝑎𝑏) = ℎX(d𝑈 (𝑎𝑏)) = ℎX(d𝑈 (𝑎))ℎX(𝑏) + ℎX(𝑎)ℎX(d𝑈 (𝑏)) = X(𝑎)ℎX(𝑏) + ℎX(𝑎)X(𝑏).

are compatible structures iff ∀𝑎 ∈  we have ℎX(𝑎) = 𝑎, this requirement inducing the unicity of this homomor-

phism.

1
We owe this presentation to Thierry Masson who owed this presentation to Michel Dubois-Violette.
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It is convenient to introduce the maps 𝑖𝑝1(𝑎0⊗⋯⊗𝑎𝑛) ∶= 𝑎0⊗⋯⊗𝑎𝑝−1⊗1⊗𝑎𝑝⊗⋯⊗𝑎𝑛 for any 𝑝 = 0,… , 𝑛+1,

with the convention that for 𝑝 = 0, the tensor factor 1 is added before 𝑎0 (for 𝑝 = 𝑛+1, it is added after 𝑎𝑛). Then

d𝑈 = ∑𝑛+1
𝑝=0(−1)𝑝 𝑖

𝑝
1 ∶  𝑛 →  𝑛+1.

Let 𝜇 ∶  1 →  0 be the multiplication map 𝑎0 ⊗ 𝑎1 ↦ 𝑎0𝑎1, and define Ω1
𝑈 () ∶= ker 𝜇 ⊂  1. Then d𝑈

maps  0 into Ω1
𝑈 () and Ω1

𝑈 () is generated, as a bimodule on , by the d𝑈𝑎’s for 𝑎 ∈ :
2

𝑎d𝑈 𝑏 = 𝑎 ⊗ 𝑏 − 𝑎𝑏 ⊗ 1 ∈ Ω1
𝑈 () ⊂  ⊗ = ⊗2

We can check that this belongs to ker 𝜇: 𝜇(𝑎d𝑈 𝑏) = 𝑎𝑏 − 𝑎𝑏 = 0. Then, elements in Ω𝑛
𝑈 () will take the form:

𝑎d𝑈 𝑏1d𝑈 𝑏2 … d𝑈 𝑏𝑛 ∈ Ω𝑛
𝑈 () ⊂ ⊗𝑛

.

These definitions are very abstract and give the feeling that many intuitions that we usually associate with

derivations are lost. Let’s see what this can represent in the case of commutative algebras, in order to get an idea

of what this universal differential calculus actually means. Let’s take  to be a commutative algebra. Since the

elements of  can be represented as functions on 𝑀 , the element of  ⊗ are of the form 𝑐(𝑥) ⊗ 𝑑(𝑦). Then

𝑎d𝑈 𝑏 can be written as:

[𝑎d𝑈 𝑏](𝑥, 𝑦) = 𝑎(𝑥) ⊗ 𝑏(𝑦) − 𝑎(𝑥)𝑏(𝑥) ⊗ 1(𝑦)

We see that 𝜇([𝑎d𝑈 𝑏](𝑥, 𝑦)) = 𝑎(𝑥)(𝑏(𝑥) − 𝑏(𝑦)) is equal to 0 if 𝑥 = 𝑦. When 𝑀 is a differentiable manifold, we

recognize the usual differential [d𝑈 𝑏](𝑥, 𝑦) = 𝑏(𝑥)−𝑏(𝑦), taking the limit 𝑦 → 𝑥 . we recover the usual differential

one-form of equation (3.1.2):

d𝑏(𝑥, 𝑑𝑥) =
d𝑏(𝑥)
𝑑𝑥

𝑑𝑥 with d𝑥 = 𝑦 − 𝑥

As mentioned in (Coquereaux, 1998), when considering general d𝑥 , this can be seen as a non local differential

calculus.

Let come back to general associative algebras, taking Ω0
𝑈 () ∶=  and Ω𝑛

𝑈 () ∶= Ω1
𝑈 () ⊗ ⋯ ⊗ Ω1

𝑈 ()
(𝑛 times tensor product over ) for any 𝑛 ≥ 2 and Ω∙

𝑈 () ∶= ⊕𝑛≥0 Ω𝑛
𝑈 (). Equivalently, Ω∙

𝑈 () is the graded

sub-algebra of  ∙ generated by Ω0
𝑈 () and Ω1

𝑈 (). One can then check that Ω𝑛
𝑈 () ⊂  𝑛 is generated by

the 𝑎0d𝑈𝑎1 ⋯ d𝑈𝑎𝑛 for 𝑎0, … , 𝑎𝑛 ∈ , so that d𝑈 restricts to maps Ω𝑛
𝑈 () → Ω𝑛+1

𝑈 (), and then (Ω∙
𝑈 (), d𝑈 ) is a

graded differential sub-algebra of ( ∙, d𝑈 ).

Let us consider the case  = ⊕𝑟
𝑖=1 𝑖, where 𝑖 are unital algebras with units 1𝑖 . It will be useful for future

discussions to use explicit presentations of ( ∙, d𝑈 ) and (Ω∙
𝑈 (), d𝑈 ) constructed as follows. Let

T0 ∶=
{

(

𝑎1 0 ⋯ 0
0 𝑎2 ⋯ 0
⋮ ⋱
0 0 ⋯ 𝑎𝑟 )

∣ 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ 

}
.

For any 𝑛 ≥ 1 and any 1 ≤ 𝑖0, … , 𝑖𝑛 ≤ 𝑟 , let us introduce the notation ⊗
𝑖0 ,…,𝑖𝑛 ∶= 𝑖0 ⊗⋯⊗𝑖𝑛 . Now, let T𝑛

𝑖1 ,…,𝑖𝑛−1
be the set of matrices with entries in ⊗

𝑖,𝑖1 ,…,𝑖𝑛−1 ,𝑗 at row 𝑖 and column 𝑗 . This can be schematically visualized as

⎛
⎜
⎜
⎜
⎝

⊗
1,𝑖1 ,…,𝑖𝑛−1 ,1 ⊗

1,𝑖1 ,…,𝑖𝑛−1 ,2 ⋯ ⊗
1,𝑖1 ,…,𝑖𝑛−1 ,𝑟

⊗
2,𝑖1 ,…,𝑖𝑛−1 ,1 ⊗

2,𝑖1 ,…,𝑖𝑛−1 ,2 ⋯ ⊗
2,𝑖1 ,…,𝑖𝑛−1 ,𝑟

⋮ ⋮ ⋮
⊗

𝑟,𝑖1 ,…,𝑖𝑛−1 ,1 ⊗
𝑟,𝑖1 ,…,𝑖𝑛−1 ,2 ⋯ ⊗

𝑟,𝑖1 ,…,𝑖𝑛−1 ,𝑟

⎞
⎟
⎟
⎟
⎠

where the first and last algebras in the tensor products will play a crucial role in the following. Combining the

products

⊗
𝑖,𝑖1 ,…,𝑖𝑛−1 ,𝑘 ⊗⊗

𝑘,𝑗1 ,…,𝑗𝑛′−1 ,𝑗
→ ⊗

𝑖,𝑖1 ,…,𝑖𝑛−1 ,𝑘,𝑗1 ,…,𝑗𝑛′−1 ,𝑗
,

2
If ∑𝑖 𝑎0𝑖 ⊗ 𝑎1𝑖 ∈  1 is such that 𝜇(∑𝑖 𝑎0𝑖 ⊗ 𝑎1𝑖 ) = ∑𝑖 𝑎0𝑖 𝑎1𝑖 = 0, then ∑𝑖 𝑎0𝑖 ⊗ 𝑎1𝑖 = ∑𝑖 𝑎0𝑖 (1 ⊗ 𝑎1𝑖 − 𝑎1𝑖 ⊗ 1) = ∑𝑖 𝑎0𝑖 d𝑈 𝑎1𝑖 .
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defined by the product in 𝑘 , and the usual rules for matrix multiplications, one gets products

T𝑛
𝑖1 ,…,𝑖𝑛−1 ⊗ T𝑛′

𝑗1 ,…,𝑗𝑛′−1 → ⊕𝑟
𝑘=1 T

𝑛+𝑛′
𝑖1 ,…,𝑖𝑛−1 ,𝑘,𝑗1 ,…,𝑗𝑛′−1.

Let us introduce

T𝑛 ∶= ⊕𝑟
𝑖1 ,…,𝑖𝑛−1=1 T

𝑛
𝑖1 ,…,𝑖𝑛−1 and T∙ ∶= ⊕𝑛≥0 T

𝑛

then T∙ is a graded algebra for the global product induced by the products defined above. Explicitly, for

⊕𝑟
𝑖1 ,…,𝑖𝑛−1=1 (𝑎

0
𝑖0 ⊗ 𝑎1𝑖1 ⊗ ⋯ ⊗ 𝑎𝑛−1𝑖𝑛−1 ⊗ 𝑎𝑛𝑖𝑛)

𝑟
𝑖0 ,𝑖𝑛=1

∈ T𝑛 and ⊕𝑟
𝑗1 ,…,𝑗𝑛′−1=1 (𝑏

0
𝑗0 ⊗ 𝑏1𝑗1 ⊗ ⋯ ⊗ 𝑏𝑛′−1𝑗𝑛′−1 ⊗ 𝑏𝑛′𝑗𝑛′ )

𝑟
𝑗0 ,𝑗𝑛′=1

∈ T𝑛′,

their product in T𝑛+𝑛′ is

⊕𝑟
𝑖1 ,…,𝑖𝑛−1 ,𝑖𝑛 ,
𝑗1 ,…,𝑗𝑛′−1=1

(𝑎0𝑖 ⊗ 𝑎1𝑖1 ⊗⋯ ⊗ 𝑎𝑛−1𝑖𝑛−1 ⊗ 𝑎𝑛𝑖𝑛𝑏
0
𝑖𝑛 ⊗ 𝑏1𝑗1 ⊗⋯ ⊗ 𝑏𝑛

′−1
𝑗𝑛′−1 ⊗ 𝑏𝑛

′

𝑗 )
𝑟
𝑖,𝑗=1 (3.2.1)

Let µ be the component-wise product on T1. Since multiplications by elements in 𝑖 and 𝑗 are zero for 𝑖 ≠
𝑗 , the resulting matrix is diagonal, and so one gets a natural map µ ∶ T1 → T0. Let 𝛀1

𝑈 () ∶= kerµ ⊂ T1
and 𝛀∙

𝑈 () ⊂ T∙ be the graded sub-algebra generated by 𝛀0
𝑈 () ∶= T0 and 𝛀1

𝑈 (). For any 𝑝 = 0,… , 𝑛 + 1,

define 𝐢𝑝1 ∶ T𝑛
𝑖1 ,…,𝑖𝑛−1 → ⊕𝑟

𝑘=0 T
𝑛+1
𝑖1 ,…,𝑖𝑝−1 ,𝑘,𝑖𝑝 ,…,𝑖𝑛−1 by inserting 1 = ⊕𝑟

𝑘=1 1𝑘 component-wise, i.e. 𝐢𝑝1 = ⊕𝑟
𝑘=1 𝐢

𝑝
1𝑘

with obvious notations. Then one can define d𝑈 ∶= ∑𝑛+1
𝑝=0(−1)𝑝 𝐢

𝑝
1 ∶ T𝑛 → T𝑛+1.

Proposition 3.2.2 The map d𝑈 is a differential on T∙ and there is an isomorphism 𝑡 ∶  ∙ → T∙ of graded
differential algebras which induces an isomorphism of the graded differential (sub)algebras Ω∙

𝑈 () and 𝛀∙
𝑈 ().

Proof For 𝑛 = 0, one defines 𝑡(⊕𝑟
𝑖=1 𝑎𝑖) = (

𝑎1 ⋯ 0
⋱

0 ⋯ 𝑎𝑟 ) ∈ T0 for any ⊕𝑟
𝑖=1 𝑎𝑖 ∈ . For 𝑛 ≥ 1, consider any

𝑎0 ⊗ ⋯ ⊗ 𝑎𝑛 ∈  𝑛 with 𝑎𝑝 = ⊕𝑟
𝑖=1 𝑎

𝑝
𝑖 where 𝑎𝑝𝑖 ∈ 𝑖. Expanding the tensor products along these direct sums,

one gets a sum of terms of the form 𝑎0𝑖0 ⊗ ⋯ ⊗ 𝑎𝑛𝑖𝑛 ∈ ⊗
𝑖0 ,…,𝑖𝑛 that we assemble as elements in T𝑛

𝑖1 ,…,𝑖𝑛−1. This

defines the map 𝑡 ∶  𝑛 → T𝑛, which, for any 𝑛 ≥ 0, is by construction an isomorphism of vector spaces. A

straightforward computation shows that the product on T∙ is such that 𝑡 is a morphism of graded algebras.

By construction of 𝐢𝑝1, one has 𝑡 ◦ 𝑖𝑝1 = 𝐢𝑝1 ◦ 𝑡, so that d𝑈 is a differential on T∙ and 𝑡 is an isomorphism of

differential algebras.

Finally, the map µ has been defined such that 𝑡 ◦ 𝜇 = µ ◦ 𝑡 so that 𝑡 identifies Ω1
𝑈 () with 𝛀1

𝑈 (), and so

Ω∙
𝑈 () with 𝛀∙

𝑈 ().

Notice that, with 1̂ ∶= 𝑡(1 ⊗ 1) ∈ T1, one has d𝑈 𝑡(𝑎) = [1̂, 𝑡(𝑎)] for any 𝑎 ∈ .

3.3 Derivation-based Differential Structures
The derivation-based differential calculus was defined by Dubois-Violette in (Dubois-Violette, 1988) and studied

for various algebras, by Dubois-Violette, Kerner, Madore, Masson, Michor, Vitale, de Goursac, Wallet, Wulken-

haar, see for instance (Cagnache et al., 2011a; de Goursac et al., 2007, 2008; Dubois-Violette and Masson, 1998;

Dubois-Violette and Michor, 1994, 1996, 1997; Dubois-Violette et al., 1990a,b; Martinetti et al., 2013; Masson, 1996,

1999). Some reviews can also be found in (Dubois-Violette, 2001; Masson, 2008a,b,c). The main ingredient is the

space of derivations on an associative algebra on which a natural differential calculus can be based.

Let  be an associative algebra with unit 1, and let () be its center. The space of derivations of  is

Der() = {X ∶  →  / X linear,X⋅(𝑎𝑏) = (X⋅𝑎)𝑏 + 𝑎(X⋅𝑏), ∀𝑎, 𝑏 ∈ }.

This vector space is a Lie algebra for the bracket [X,Y]𝑎 = XY⋅𝑎 − YX⋅𝑎 for all X,Y ∈ Der(), and a ()-
module for the product (𝑓X)⋅𝑎 = 𝑓 (X⋅𝑎) for all 𝑓 ∈ () and X ∈ Der(). The subspace

Int() = {ad𝑎 ∶ 𝑏 ↦ [𝑎, 𝑏] / 𝑎 ∈ } ⊂ Der()
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is called the vector space of inner derivations: it is a Lie ideal and a ()-submodule. The fact that the map

 → Int() defined by 𝑎 → ad𝑎 is surjective with kernel () implies that Int() can take the corresponding

form:

Int() ≃ /(). (3.3.1)

Taking any X ∈ Der() we have [X, ad𝑎] = adX⋅𝑎, then Int() is an ideal of Der() and so, Der()/ Int() is

also a Lie algebra. This define the subspace of Outer derivations with the quotient Out() = Der()/ Int().
Then there is a short exact sequence of Lie algebras and ()-modules:

0 ⟶ Int() ⟶ Der() ⟶ Out() ⟶ 0 (3.3.2)

Commutative algebras only have outer derivations.

Suppose that has an involution 𝑎 ↦ 𝑎∗. Then a real derivation on is a derivationX such that (X⋅𝑎)∗ = X⋅𝑎∗
for any 𝑎 ∈ .

LetΩ𝑝
Der() be the vector space of()-multilinear antisymmetric maps fromDer()𝑝 to, withΩ0

Der() =
. Then the total space

Ω∙
Der() = ⊕𝑝≥0 Ω

𝑝
Der()

gets a structure of N-graded differential algebra for the product

(𝜔 ∧ 𝜂)(X1, … ,X𝑝+𝑞) ∶=
1
𝑝!𝑞!

∑
𝜎∈S𝑝+𝑞

(−1)|𝜎|𝜔(X𝜎(1), … ,X𝜎(𝑝))𝜂(X𝜎(𝑝+1), … ,X𝜎(𝑝+𝑞))

for any 𝜔 ∈ Ω𝑝
Der(), any 𝜂 ∈ Ω𝑞

Der() and any X𝑖 ∈ Der() where S𝑛 is the group of permutations of 𝑛 elements.

A differential d is defined by the so-called Koszul formula

d𝜔(X1, … ,X𝑝+1) ∶=
𝑝+1

∑
𝑖=1

(−1)𝑖+1X𝑖⋅𝜔(X1, …
𝑖
∨. … ,X𝑝+1) + ∑

1≤𝑖<𝑗≤𝑝+1
(−1)𝑖+𝑗𝜔([X𝑖,X𝑗 ], …

𝑖
∨. …

𝑗
∨. … ,X𝑝+1).

This makes (Ω∙
Der(), d) a graded differential algebra.

Let us take the more intuitive commutative algebra ∞(𝑀), we have that (∞(𝑀)) = ∞(𝑀). We can

see that the algebra of derivations correspond to Γ(𝑀) the Lie algebra of smooth vector fields on 𝑀 such that

Der(∞(𝑀)) = Γ(𝑀) = Out(∞(𝑀)) since Int(∞(𝑀)) = 0. In this case, we recover the graded differential algebra

of de Rham forms on 𝑀 :

Ω∙
Der(∞(𝑀)) = Ω∙(𝑀)

This shows how natural is this construction.

Proposition 3.3.1 (Transport of forms by automorphisms) Let Ψ ∶  →  be an algebra automorphism.
Then Ψ induces an automorphism on ().

The map ΨDer ∶ Der() → Der() defined by ΨDer(X)⋅𝑎 ∶= Ψ(X⋅Ψ−1(𝑎)) for any X ∈ Der() and 𝑎 ∈ , is an
automorphism of the Lie algebra Der() and ΨDer(𝑓X) = Ψ(𝑓 )ΨDer(X) for any 𝑓 ∈ () (so ΨDer is not necessary
an automorphism for the structure of ()-module). For inner derivations, one has ΨDer(ad𝑎) = adΨ(𝑎).

The maps Ψ ∶ Ω𝑝
Der() → Ω𝑝

Der() defined by

Ψ(𝜔)(X1, … ,X𝑝) ∶= Ψ (𝜔(Ψ−1
Der(X1), … , Ψ−1

Der(X𝑝)))

for any 𝜔 ∈ Ω𝑝
Der() and X𝑖 ∈ Der(), defines an automorphism of the graded differential algebra (Ω∙

Der(), d).

For 𝑝 = 0, Ψ defined on Ω0
Der() =  is exactly the original automorphism Ψ of , so that the notation is

justified.



32 CHAPTER 3. NONCOMMUTATIVE DIFFERENTIAL STRUCTURES

Proof For any 𝑓 ∈ () and 𝑎 ∈ , one has Ψ(𝑓 )𝑎 = Ψ(𝑓 Ψ−1(𝑎)) = Ψ(Ψ−1(𝑎)𝑓 ) = 𝑎Ψ(𝑓 ) so that Ψ(𝑓 ) ∈ ().

With obvious notations, one has

ΨDer(X)⋅(𝑎𝑏) = Ψ (X⋅Ψ−1(𝑎𝑏)) = Ψ (X⋅(Ψ−1(𝑎)Ψ−1(𝑏))) = Ψ (X⋅Ψ−1(𝑎)) 𝑏 + 𝑎Ψ (X⋅Ψ−1(𝑏))
= (ΨDer(X)⋅𝑎)𝑏 + 𝑎(ΨDer(X)⋅𝑏)

so that ΨDer(X) is a derivation.

In the same way, one has ΨDer(𝑓X)⋅𝑎 = Ψ(𝑓 (X⋅Ψ−1(𝑎))) = Ψ(𝑓 )Ψ(X⋅Ψ−1(𝑎)) = Ψ(𝑓 )ΨDer(X)⋅𝑎.

For X,Y ∈ Der(), one has

ΨDer([X,Y])⋅𝑎 = Ψ(X⋅(Y⋅Ψ−1(𝑎))) − Ψ(Y⋅(X⋅Ψ−1(𝑎))) = Ψ(X⋅Ψ−1(ΨDer(Y)⋅𝑎)) − Ψ(Y⋅Ψ−1(ΨDer(X)⋅𝑎))
= ΨDer(X)⋅(ΨDer(Y)⋅𝑎) − ΨDer(Y)⋅(ΨDer(X)⋅𝑎) = [ΨDer(X), ΨDer(Y)]⋅𝑎

so that ΨDer([X,Y]) = [ΨDer(X), ΨDer(Y)]. The inverse Ψ−1
Der is defined by Ψ−1

Der(X)⋅𝑎 ∶= Ψ−1(X⋅Ψ(𝑎)) as it can be

easily checked. For inner derivations, one has ΨDer(ad𝑎)⋅𝑏 = Ψ([𝑎, Ψ−1(𝑏)]) = [Ψ(𝑎), 𝑏] = adΨ(𝑎) ⋅𝑏.

For any 𝜔 ∈ Ω𝑝
Der(), it is easy to check that Ψ(𝜔) is a ()-multilinear antisymmetric map from Der()𝑝

to . For any 𝜔 ∈ Ω𝑝
Der() and any 𝜂 ∈ Ω𝑞

Der(), the relation Ψ(𝜔) ∧ Ψ(𝜂) = Ψ(𝜔 ∧ 𝜂) is a direct consequence

of the definition of Ψ on forms. The proof of Ψ(d𝑎) = dΨ(𝑎) is a straightforward computation: Ψ(d𝑎)(X) =
Ψ(d𝑎(Ψ−1

Der(X))) = Ψ(Ψ−1
Der(X)⋅𝑎) = X⋅Ψ(𝑎) on the one hand and (dΨ(𝑎))(X) = X⋅Ψ(𝑎) on the other hand. To prove

dΨ(𝜔) = Ψ(d𝜔) for 𝜔 ∈ Ω𝑝
Der(), one has to use a similar computation and the fact that Ψ−1

Der is a morphism of

Lie algebras.

Example 3.3.2 (Transport of derivations by inner automorphisms) Let 𝑢 ∈  be an invertible element

(one can take 𝑢 to be unitary when  has an involution). The map Ψ(𝑎) ∶= 𝑢𝑎𝑢−1 defines an automorphism

of  and a simple computation shows that ΨDer(X) = X+ ad𝑢(X⋅𝑢−1) for any X ∈ Der(). In particular, if X = ad𝑎
is an inner derivation, then ΨDer(ad𝑎) = ad𝑢𝑎𝑢−1 = adΨ(𝑎) as expected. Notice also that Ψ(𝑓 ) = 𝑓 for any 𝑓 ∈ ()
so that ΨDer ∶ Der() → Der() is an automorphism of ()-module in that case. ◊

3.4 Dirac-based Differential Structures
The notion of Spectral triple, elaborated by A. Connes, mainly motivated by the Atiyah-Singer index theorem, is

a set of data that permits to encode algebraically and analytically all geometric features. In this subsection, we

recall some main facts about the construction of differential structures using spectral triples. We refer to (Connes

and Marcolli, 2008; Masson, 2012; van Suijlekom, 2015) for further details.

The spectral triple way to construct differential structure consists in adding an operator 𝐷 to the couple

(,), this is a differential operator called Dirac operator in analogy with the Dirac operator introduced by P.

Dirac to make the Schrödinger equation consistent with relativity. It can also be viewed as the square root of the

Laplacian, the inverse line element 𝐷 = 𝑑𝑠−1, and contain the data of the metric.

Definition 3.4.1 (Spectral triple) A Spectral triple (,, 𝐷) is the data of an involutive unital algebra  rep-
resented by bounded operators on a Hilbert space , and of a self-adjoint operator 𝐷 acting on  such that the
resolvent (𝑖 + 𝐷2)−1 is compact and that for any 𝑎 ∈ , [𝐷, 𝑎] is a bounded operator.

Let (,, 𝐷) be a spectral triple and denote by 𝜋 ∶  → () the representation on the Hilbert space .

This makes  a left -module.

An even spectral triple (,, 𝐷, 𝛾) is equipped with a Z2-grading linear map 𝛾 on  such that 𝛾† = 𝛾 , 𝛾2 = 1,

𝛾𝐷 + 𝐷𝛾 = 0 (𝐷 is odd), 𝛾𝜋(𝑎) = 𝜋(𝑎)𝛾 for any 𝑎 ∈  ( is even). The grading 𝛾 induces a decomposition

 = + ⊕ −
according to the eigenvalues ±1 of 𝛾 . Spectral triples without such a grading are referred to as

odd spectral triples.
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A real spectral triple (,, 𝐷, 𝐽 ) is equipped with a map 𝐽 ∶  →  which is an anti-unitary operator:

⟨𝐽𝜓1, 𝐽 𝜓2⟩ = ⟨𝜓2, 𝜓1⟩ for any 𝜓1, 𝜓2 ∈  such that ∀𝑎, 𝑏 ∈ :

[𝑎, 𝐽 𝑏∗𝐽−1] = 0 commutant property

[[𝐷, 𝑎], 𝐽 𝑏∗𝐽−1] = 0 first-order condition.

The map× →  defined by (𝜉 , 𝑎) ↦ 𝐽𝑎∗𝐽−1𝜉 defines a right module structure on so that is a-bimodule.

We denote by 𝑎◦ the element in the opposite algebra ◦
which corresponds to 𝑎 ∈  ( ≃ ◦

as vector spaces

by the formal map  ∋ 𝑎 ↦ 𝑎◦ ∈ ◦
and the new product in ◦

is 𝑎◦𝑏◦ ∶= (𝑏𝑎)◦). Then, using 𝑎◦ ↦ 𝐽𝑎∗𝐽−1 as a

left representation of ◦
,  becomes a left  ⊗◦

-module. We will frequently write 𝑎◦𝜓 = 𝐽𝑎∗𝐽−1𝜓 = 𝜓𝑎 for

any 𝑎 ∈  and 𝜓 ∈ . We define 𝑒 ∶= ⊗◦
. An even real spectral triple is an uplet (,, 𝐷, 𝐽 , 𝛾) with 𝛾 as

before. Notice then that 𝛾𝑎◦ = 𝑎◦𝛾 for any 𝑎 ∈ , and so 𝛾 commutes with the left representation of 𝑒
on .

In the odd and even cases, the 𝐾𝑂-dimensions 𝑛 mod 8 are given in Table 3.1, where the numbers 𝜖, 𝜖′, 𝜖′′ =
±1 are defined by the requirements:

𝐽 2 = 𝜖 𝐽𝐷 = 𝜖′𝐷𝐽 𝐽 𝛾 = 𝜖′′𝛾𝐽

The last requirement holding only in the even case.

n 0 1 2 3 4 5 6 7

𝜖 1 1 -1 -1 -1 -1 1 1

𝜖′ 1 -1 1 1 1 -1 1 1

𝜖′′ 1 -1 1 -1

Table 3.1: 𝐾𝑂-dimensions of real spectral triples.

Remark 3.4.2 When 𝐽 2 = −1 and  is finite dimensional, the dimension of the spectral triple is even (see (van

Suijlekom, 2015, Lemma 3.8) for instance). □

Given a finite spectral triple (,, 𝐷), the -bimodule of Connes’s differential 1-forms is given by

Ω1
𝐷() ∶=

{

∑
𝑘
𝑎𝑘 [𝐷, 𝑏𝑘] ∶ 𝑎𝑘 , 𝑏𝑘 ∈ 

}

. (3.4.1)

Thus, we can define the differential as the map 𝑑 ∶  → Ω1() defined by 𝑑(.) = [𝐷, .] and 𝑑2 ≠ 0.

Remark 3.4.3 This definition connects with the usual differential presented in section 3.1, if we take the usual

Dirac operator 𝐷𝑀 = 𝑖𝛾𝜇𝜕𝜇, 𝑓 ∈ ∞(𝑀) and 𝜓 in the corresponding Hilbert space, then:

[𝐷𝑀 , 𝑓 ]𝜓 = 𝐷𝑀 (𝑓 .𝜓) − 𝑓 .(𝐷𝑀𝜓) = 𝑖𝛾𝜇𝜕𝜇(𝑓 ).𝜓

We can see that even if the Dirac operator acts on the Hilbert space, it is equivalent to an action on the algebra

(through the action on the Hilbert space acted on by the algebra), and therefore equivalent to an Heisenberg

picture of the differential structure. □

Therefore, as mentioned in the end of section 3.2, we can construct the exterior algebra of differential forms

associated to the Dirac operator using the corresponding representation 𝜋𝐷 ∶ Ω𝑛
𝑈 () → () of the universal

differential algebra:

𝜋𝐷(𝑎d𝑈 𝑏1d𝑈 𝑏2 … d𝑈 𝑏𝑛) = 𝑎[𝐷, 𝑏1][𝐷, 𝑏2] … [𝐷, 𝑏𝑛] 𝑎, 𝑏1, 𝑏2, … 𝑏𝑛 ∈ 

The Dirac operators gives a geometric structure to (,, 𝐷), allowing to reconstruct lengths between states.

Indeed, taking two states 𝜓1 and 𝜓2 with 𝜓(1,2) ∶  → C, we can define the distance between these two states:

𝑑(𝜓1, 𝜓2) = 𝑠𝑢𝑝{|𝜓1(𝑎) − 𝜓2(𝑎)|; 𝑎 ∈ , ||[𝐷, 𝑎]|| ≤ 1}
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If we consider the commutative algebra  = ∞(𝑀), and the usual Dirac operator 𝐷𝑀 = 𝑖𝛾𝜇𝜕𝜇, a pure state leads

to the notion of points trough Gelfand Naimark theorem 𝜓1,2 → 𝑥1,2 ∈ 𝑀 , then we recover the usual distance

corresponding to the metric 𝑔 on 𝑀 :

𝑑𝑔(𝑥1, 𝑥2) = sup{|𝑓 (𝑥1) − 𝑓 (𝑥2)|; 𝑓 ∈ ∞(𝑀), ||[𝐷𝑀 , 𝑓 ]|| ≤ 1}.

The link between 𝑥̂(𝑓 ) and 𝑓 (𝑥) being given by the Gelfand transform eq.(1.2.1). The proof of this can be found

in (van Suijlekom, 2015)[page∼66].The link between the Dirac operator and the metric is given by the gamma

matrices trough {𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈. This illustrates how the slope of functions and the distance are linked trough the

Dirac operator.



Chapter 4

Differential Structure on Matrix
Algebras

In this chapter, we will make the differential structures presented in chapter 3 more “concrete" by showing how

they find realization on finite algebras in matrix representations, the first case being 𝑀𝑛(C) and the second

⨁𝑛
𝑖=1𝑀𝑛𝑖(C). This will be done only for derivation and spectral triples based differential calculus since it has

already been done in a general way for universal differential calculus in section 3.2. This is a very important

chapter since as mentioned in chapter 2, finite algebras are the algebras of interest here, and that constructed NC

gauge theories will be based on such differential calculus defined on these finite algebras. The case of AF-algebras

is left to chapters 14 and 15 since it requires the notion of 𝜙-compatibility which will be presented in chapter 13

in order to relate differential structures between two steps in the inductive sequence.

4.1 Differential Structure on 𝑀𝑛(C) and ⨁𝑛
𝑖=1𝑀𝑛𝑖(C) using Derivations

Since the understanding the situation 𝑖 = 𝑀𝑛𝑖(C) is our main objective for 𝐴𝐹 -algebras, we give here a series of

notations and results for later use when this specific situation will be considered in the case of NC gauge theories

in the derivation framework. This is for instance the case in Sect. 11.5 and chapter 14. We refer to (Dubois-Violette

and Masson, 1998; Dubois-Violette et al., 1990b; Masson, 1995, 2008a, 2012) for more details.

4.1.1 Derivations, Differential Structure, Metric, Integration and Hodge ⋆-operator
on 𝑀𝑛(C)

The center of the algebra 𝑀𝑛 ∶= 𝑀𝑛(C) is (𝑀𝑛) = C1𝑛 where 1𝑛 is the unit matrix in 𝑀𝑛. Let sl𝑛 be the Lie

algebra (for the commutator) of traceless matrices in 𝑀𝑛. Then the map sl𝑛 ∋ 𝑎 ↦ ad𝑎 ∈ Int(𝑀𝑛) realizes an

isomorphism sl𝑛 ≃ Der(𝑀𝑛) = Int(𝑀𝑛) (with Out(𝑀𝑛) = 0).

Let {𝐸𝛼}𝛼∈𝐼 be a basis of sl𝑛, where 𝐼 is a totally ordered set with card(𝐼 ) = 𝑛2 − 1 = dim sl𝑛. Choosing an

abstract totally ordered set 𝐼 to label this basis will be convenient when the inductive sequence defining the

𝐴𝐹 -algebra will be considered since then the 𝛼’s will be constructed as cumulative multi-indices. The ordering

will be used to order basis forms (for instance to define volume forms). Let us introduce the unique multiplet

(𝛼01 , … , 𝛼0𝑛2−1) ∈ 𝐼
𝑛2−1

such that 𝛼01 < ⋯ < 𝛼0𝑛2−1. We will use the notation 𝐶(𝑛)𝛾𝛼𝛽 = 𝐶𝛾𝛼𝛽 for the structure constants

of the Lie algebra sl𝑛 in the basis {𝐸𝛼}𝛼∈𝐼 : [𝐸𝛼 , 𝐸𝛽] = 𝐶𝛾𝛼𝛽𝐸𝛾 .

The basis {𝐸𝛼}𝛼∈𝐼 induces a basis {𝜕𝛼 ∶= ad𝐸𝛼 }𝛼∈𝐼 of Der(𝑀𝑛) = Int(𝑀𝑛). Let {𝜃𝛼}𝛼∈𝐼 be its dual basis in sl∗𝑛. The

derivation 𝜕𝛼 is real if and only if 𝐸𝛼 is anti-Hermitean and one has [𝜕𝛼 , 𝜕𝛽] = 𝐶𝛾𝛼𝛽𝜕𝛾 .

The space of NC forms on 𝑀𝑛 has a simple structure:

Ω∙
Der(𝑀𝑛) = 𝑀𝑛 ⊗⋀∙sl∗𝑛

35
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and the differential is the Chevalley-Eilenberg differential for the differential graded algebra associated to the

Lie algebra sl𝑛 with values in 𝑀𝑛 using the adjoint representation. Identifying 𝜃𝛾 with 1𝑛 ⊗ 𝜃𝛾 ∈ Ω1
Der(𝑀𝑛) =

𝑀𝑛 ⊗⋀1sl∗𝑛, one has d𝜃𝛾 = − 1
2𝐶

𝛾
𝛼𝛽𝜃

𝛼 ∧ 𝜃𝛽 .

Let us consider the canonical metric 𝑔 ∶ Der(𝑀𝑛)×Der(𝑀𝑛) → (𝑀𝑛) ≃ C defined by 𝑔(ad𝑎, ad𝑏) ∶= tr(𝑎𝑏) for

𝑎, 𝑏 ∈ sl𝑛. This is not the metric defined in (Dubois-Violette et al., 1990b) where a factor
1
𝑛 was put in front of the

trace (to get the normalized trace). The reason for this convention is linked to our constructions on AF-algebras

and will be explained below (see (14.2.1) and comments after). Once the basis {𝜕𝛼}𝛼∈𝐼 is given, one introduces the

components 𝑔𝛼𝛽 ∶= 𝑔(𝜕𝛼 , 𝜕𝛽) = tr(𝐸𝛼𝐸𝛽) of 𝑔 .

Let |𝑔| be the determinant of the matrix 𝑔 . We define the (NC) integral ∫𝑀𝑛
on Ω∙

Der(𝑀𝑛) by the following rule.

For any 𝜔 ∈ Ω𝑝
Der(𝑀𝑛) with 𝑝 < 𝑛2 − 1, ∫𝑀𝑛

𝜔 = 0. Any 𝜔 ∈ Ω𝑛2−1
Der (𝑀𝑛) can be written as 𝜔 = 𝑎

√
|𝑔|𝜃𝛼01 ∧ ⋯ ∧ 𝜃𝛼

0
𝑛2−1

for a unique 𝑎 ∈ 𝑀𝑛 which is independent of the chosen basis {𝐸𝛼}𝛼∈𝐼 and we define

∫
𝑀𝑛

𝜔 = ∫
𝑀𝑛

𝑎
√
|𝑔|𝜃𝛼

0
1 ∧ ⋯ ∧ 𝜃𝛼

0
𝑛2−1 ∶= tr(𝑎) (4.1.1)

Once again, this is not the convention used in (Dubois-Violette et al., 1990b) where a factor
1
𝑛 was put in front of

the RHS. In our convention, 𝜔vol
∶=

√
|𝑔|𝜃𝛼01 ∧ ⋯ ∧ 𝜃𝛼

0
𝑛2−1 is the volume form whose integral is normalized to 𝑛.

The metric permits to define the Hodge ⋆-operator

⋆ ∶ Ω𝑝
Der(𝑀𝑛) → Ω𝑛2−1−𝑝

Der (𝑀𝑛)

defined by

⋆(𝜃𝛼1 ∧ ⋯ ∧ 𝜃𝛼𝑝 ) ∶= 1
(𝑛2−1−𝑝)!

√
|𝑔|𝑔𝛼1𝛽1 ⋯𝑔𝛼𝑝𝛽𝑝𝜖𝛽1 ,…,𝛽𝑛2−1𝜃

𝛽𝑝+1 ∧ ⋯ ∧ 𝜃𝛽𝑛2−1 (4.1.2)

where 𝜖𝛽1 ,…,𝛽𝑛2−1 is the completely antisymmetric tensor such that 𝜖𝛼01 ,…,𝛼0𝑛2−1 = 1.

Example 4.1.1 (Transport by inner automorphisms) Let us consider the situation described in Exam-

ple 3.3.2 in the context of the matrix algebra. Let 𝜔 = 1
𝑝!𝜔𝛼1 ,…,𝛼𝑝𝜃

𝛼1 ∧⋯∧𝜃𝛼𝑝 be a 𝑝-form. To compute 𝜔𝑢 ∶= Ψ(𝜔),
let us introduce the matrix 𝑈 = (𝑈 𝛽

𝛼 ) defined by 𝑢−1𝐸𝛼𝑢 = 𝑈 𝛽
𝛼 𝐸𝛽 , so that Ψ−1

Der(𝜕𝛼) = ad𝑢−1𝐸𝛼𝑢 = 𝑈 𝛽
𝛼 𝜕𝛽 . Since 𝑆𝐿𝑛

is unimodular, one has det(𝑈 ) = 1. Notice also that 𝑢−1[𝐸𝛼1 , 𝐸𝛼2]𝑢 = [𝑢−1𝐸𝛼1𝑢, 𝑢−1𝐸𝛼2𝑢] = 𝑈 𝛽1
𝛼1 𝑈

𝛽2
𝛼2 [𝐸𝛽1 , 𝐸𝛽2] =

𝑈 𝛽1
𝛼1 𝑈

𝛽2
𝛼2 𝐶

𝛽3
𝛽1𝛽2𝐸𝛽3 on the one hand and 𝑢−1[𝐸𝛼1 , 𝐸𝛼2]𝑢 = 𝐶𝛼3𝛼1𝛼2𝑢

−1𝐸𝛼3𝑢 = 𝐶𝛼3𝛼1𝛼2𝑈
𝛽3
𝛼3 𝐸𝛽3 on the other hand, so that

𝑈 𝛽1
𝛼1 𝑈

𝛽2
𝛼2 𝐶

𝛽3
𝛽1𝛽2 = 𝐶𝛼3𝛼1𝛼2𝑈

𝛽3
𝛼3 . By definition, (𝜃𝛼)𝑢(𝜕𝛼′) = 𝑢𝜃𝛼(Ψ−1

Der(𝜕𝛼′))𝑢−1 = 𝑢𝑈 𝛽′
𝛼′ 𝛿

𝛼
𝛽′𝑢

−1 = 𝑈 𝛼
𝛼′ = 𝑈 𝛼

𝛽 𝜃
𝛽(𝜕𝛼′)

so that (𝜃𝛼)𝑢 = 𝑈 𝛼
𝛽 𝜃

𝛽
. In the same way, 𝜔𝑢𝛼1 ,…,𝛼𝑝 = 𝜔𝑢(𝜕𝛼1 , … , 𝜕𝛼𝑝 ) = 𝑢𝜔(Ψ−1

Der(𝜕𝛼1), … , Ψ−1
Der(𝜕𝛼𝑝 ))𝑢−1 =

𝑈 𝛽1
𝛼1 ⋯𝑈 𝛽𝑝

𝛼𝑝 𝑢𝜔𝛽1 ,…,𝛽𝑝𝑢−1, so that 𝜔𝑢 = 1
𝑝!𝑈

𝛽1
𝛼1 ⋯𝑈 𝛽𝑝

𝛼𝑝 𝑢𝜔𝛽1 ,…,𝛽𝑝𝑢−1𝜃𝛼1 ∧ ⋯ ∧ 𝜃𝛼𝑝 = 1
𝑝!𝑢𝜔𝛼1 ,…,𝛼𝑝𝑢

−1(𝜃𝛼1)𝑢 ∧ ⋯ ∧ (𝜃𝛼𝑝 )𝑢.
Now, the metric 𝑔(ad𝑎, ad𝑏) = tr(𝑎𝑏), for 𝑎, 𝑏 ∈ sl𝑛, is invariant by the transport associated to the inner auto-

morphism Ψ(𝑎) = 𝑢𝑎𝑢−1, and so one has 𝑔𝛼𝛽 = 𝑈 𝛼′
𝛼 𝑈

𝛽′
𝛽 𝑔𝛼′𝛽′ and 𝑔𝛼𝛽 = 𝑈 𝛼

𝛼′𝑈
𝛽
𝛽′𝑔

𝛼′𝛽′
for the inverse metric. In

particular, all the conditions and properties concerning orthonormality associated to 𝑔 are transported by Ψ. For

𝜔 = 𝑎
√
|𝑔|𝜃𝛼01 ∧ ⋯ ∧ 𝜃𝛼

0
𝑛2−1 , one has 𝜔𝑢 = 𝑢𝑎𝑢−1

√
|𝑔|(𝜃𝛼01 )𝑢 ∧ ⋯ ∧ (𝜃𝛼

0
𝑛2−1)𝑢 = 𝑢𝑎𝑢−1

√
|𝑔|𝑈 𝛼01

𝛽1 ⋯𝑈
𝛼0𝑛2−1
𝛽𝑛2−1

𝜃𝛽1 ∧ ⋯ ∧ 𝜃𝛽𝑛2−1 =

𝑢𝑎𝑢−1
√
|𝑔|𝜃𝛼01 ∧⋯∧𝜃𝛼

0
𝑛2−1 where we have used 𝜃𝛽1 ∧⋯∧𝜃𝛽𝑛2−1 = 𝜖𝛽1 ,…,𝛽𝑛2−1𝜃𝛼01 ∧⋯∧𝜃𝛼

0
𝑛2−1 and 𝜖𝛽1 ,…,𝛽𝑛2−1𝑈 𝛼01

𝛽1 ⋯𝑈
𝛼0𝑛2−1
𝛽𝑛2−1

=
det(𝑈 ) = 1. This implies that ∫𝑀𝑛

𝜔𝑢 = tr(𝑢𝑎𝑢−1) = tr(𝑎) = ∫𝑀𝑛
𝜔. Since the metric 𝑔 is invariant, the Hodge

⋆-operator is also invariant according to (4.1.2), and since the inverse metric is also invariant under the action of

𝑈 , a straightforward computation of ⋆((𝜃𝛼1)𝑢 ∧ ⋯ ∧ (𝜃𝛼𝑝 )𝑢) shows that the relation (4.1.2) is also valid when one

replaces all the 𝜃𝛼 by (𝜃𝛼)𝑢 on both sides. Combining all these results and the explicit relation (4.1.7), one can

show that for any 𝑝-forms 𝜔 and 𝜔′
, one has ∫𝑀𝑛

(𝜔 ∧ ⋆𝜔′)𝑢 = ∫𝑀𝑛
𝜔𝑢 ∧ ⋆𝜔′𝑢 = ∫𝑀𝑛

𝜔 ∧ ⋆𝜔′
. ◊

4.1.2 Derivations, Differential Structure, Metric, Integration and Hodge ⋆-operator
on ⨁𝑛

𝑖=1𝑀𝑛𝑖(C)
In this subsection we consider the derivation-based differential calculus on algebras decomposed as

 = 1⊕⋯⊕𝑟 = ⊕𝑟
𝑖=1 𝑖
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The results are given for these general algebras in order to see how direct sum of matrix algebras are particular.

We define respectively

𝜋 𝑖 ∶  → 𝑖, and 𝜄𝑖 ∶ 𝑖 → 

as the natural projection on the 𝑖-th term and the natural inclusion of the 𝑖-th term
1
.

Some results are presented using this full generality but others will require 𝑖 = 𝑀𝑛.

Let’s start with center and derivations.

Lemma 4.1.2 (Center of ) The center of  is () = ⊕𝑟
𝑖=1 (𝑖).

Proof Every 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ () must commute with any 𝑏 = 0⊕⋯0⊕ 𝑏𝑗 ⊕0⊕0 for any 𝑗 = 1, … , 𝑟 and any

𝑏𝑗 ∈ 𝑗 . This implies that 𝑎𝑗 ∈ (𝑗 ) for any 𝑗 . The result follows since ⊕𝑟
𝑖=1 (𝑖) ⊂ ().

Let us introduce the convenient notation for the elements

1̂𝑖 ∶= 𝜄𝑖(1) = 0⊕⋯⊕0⊕
i⏞⏞⏞
1 ⊕0⊕⋯⊕0 ∈ () ⊂ .

Notice that we use the fact that the 𝑖’s are unital.

Proposition 4.1.3 (Decomposition of derivations) One has

Der() = ⊕𝑟
𝑖=1 Der(𝑖), (4.1.3)

i.e. for any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈  and X = ⊕𝑟

𝑖=1 X𝑖 ∈ Der(), one has X(𝑎) = ⊕𝑟
𝑖=1 X𝑖(𝑎𝑖).

This decomposition holds true as Lie algebras and modules over () on the left and over ⊕𝑟
𝑖=1 (𝑖) on the

right.

If Der(𝑖) = Int(𝑖) for any 𝑖 = 1, … , 𝑟 , then

Der() = Int() = ⊕𝑟
𝑖=1 Int(𝑖) (4.1.4)

Proof The vector space decomposition (4.1.3) can be established using the maps X𝑗
𝑖 ∶= 𝜋𝑗 ◦ X ◦ 𝜄𝑖 ∶ 𝑖 → 𝑗 .

For any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 and 𝑏 = ⊕𝑟

𝑖=1 𝑏𝑖, one has

X(𝑎) = ⊕𝑟
𝑗=1 (∑

𝑟
𝑖=1 X

𝑗
𝑖 (𝑎𝑖))

and the Leibniz rule X(𝑎𝑏) = X(𝑎)𝑏 + 𝑎X(𝑏) can then be written as

⊕𝑟
𝑗=1 (∑

𝑟
𝑖=1 X

𝑗
𝑖 (𝑎𝑖𝑏𝑖)) = ⊕𝑟

𝑗=1 (∑
𝑟
𝑖=1 X

𝑗
𝑖 (𝑎𝑖)) 𝑏𝑗 + ⊕𝑟

𝑗=1 𝑎𝑗 (∑
𝑟
𝑖=1 X

𝑗
𝑖 (𝑏𝑖)) .

For a fixed 𝑘, take 𝑎𝑖 = 𝑏𝑖 = 0 for 𝑖 ≠ 𝑘. Then this relation reduces to

⊕𝑟
𝑗=1 X

𝑗
𝑘(𝑎𝑘𝑏𝑘) = 0⊕⋯⊕X𝑘

𝑘(𝑎𝑘)𝑏𝑘 ⊕0⊕⋯⊕0 + 0⊕⋯⊕𝑎𝑘X𝑘
𝑘(𝑏𝑘) ⊕ 0⊕⋯⊕0.

The 𝑘-th term shows that X𝑘
𝑘 ∈ Der(𝑘), which implies in particular that X𝑘

𝑘(1) = 0. Then, with 𝑏𝑘 = 1, one gets

X𝑗
𝑘 = 0 for 𝑗 ≠ 𝑘. This shows that X(𝑎) = ⊕𝑟

𝑖=1 X𝑖(𝑎𝑖) with X𝑖 ∶= X𝑖
𝑖 ∈ Der(𝑖) and we write

X = ⊕𝑟
𝑖=1 X𝑖

For any 𝑓 = ⊕𝑟
𝑖=1 𝑓𝑖 ∈ () = ⊕𝑟

𝑖=1 (𝑖), one has

(𝑓X)(𝑎) = 𝑓 (⊕𝑟
𝑖=1 X𝑖(𝑎𝑖)) = ⊕𝑟

𝑖=1(𝑓𝑖X𝑖)(𝑎𝑖)

so that (4.1.3) holds true as modules over () on the left and over ⊕𝑟
𝑖=1 (𝑖) on the right.

1
The notation 𝜋 is taken to be the same as the notation for representation, but always with indices
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For Y = ⊕𝑟
𝑖=1 Y𝑖 ∈ Der(), one has

[X,Y](𝑎) = X ◦Y(𝑎) −Y ◦ X(𝑎) = X (⊕𝑟
𝑖=1 Y𝑖(𝑎𝑖)) −Y (⊕𝑟

𝑖=1 X𝑖(𝑎𝑖))
= ⊕𝑟

𝑖=1 X𝑖 ◦Y𝑖(𝑎𝑖) − ⊕𝑟
𝑖=1 Y𝑖 ◦ X𝑖(𝑎𝑖)

= ⊕𝑟
𝑖=1[X𝑖,Y𝑖](𝑎𝑖)

so that

[X,Y] = ⊕𝑟
𝑖=1[X𝑖,Y𝑖]

This shows that (4.1.3) holds true as Lie algebras.

The proof of (4.1.4) is then a direct consequence: assuming Der(𝑖) = Int(𝑖), one has Int() ⊂ Der() =
⊕𝑟
𝑖=1 Int(𝑖) ⊂ Int() where the last inclusion follows from ad𝑎1 ⊕⋯⊕ad𝑎𝑟 = ad𝑎1⊕⋯⊕ 𝑎𝑟 .

We define 𝜄Der𝑖 ∶ Der(𝑖) → Der() as the inclusion X𝑖 ↦ 0⊕⋯⊕0⊕X𝑖⊕0⋯⊕0 in the 𝑖-th term. This

is a morphism of Lie algebras and for any 𝑎𝑖 ∈ 𝑖 and 𝑓𝑖 ∈ (𝑖), one has 𝜄𝑖(X𝑖(𝑎𝑖)) = 𝜄Der𝑖 (X𝑖)(𝜄𝑖(𝑎𝑖)) and

𝜄Der𝑖 (𝑓𝑖X𝑖) = 𝜄𝑖(𝑓𝑖)𝜄Der𝑖 (X𝑖). Notice also that for any X = ⊕𝑟
𝑖=1 X𝑖, one has 1̂𝑖X = 𝜄Der𝑖 (X𝑖) = 1̂𝑖𝜄Der𝑖 (X𝑖).

Using results given in Sect. 4.1.1, we obtain the direct Corollary of Prop. 4.1.3:

Corollary 4.1.4 For  = 𝑀𝑛1 ⊕⋯⊕𝑀𝑛𝑟 , one has Der() = Int() ≃ sl𝑛1 ⊕⋯⊕ sl𝑛𝑟 .

Let’s see now how it works for the Derivation-based differential calculus. A useful result concerning the

structure of the derivation-based differential calculus associated to  is the following.

Proposition 4.1.5 (Decomposition of forms) For any 𝑝 ≥ 0, one has

Ω𝑝
Der() = ⊕𝑟

𝑖=1 Ω
𝑝
Der(𝑖),

that is, any 𝜔 ∈ Ω𝑝
Der() decomposes as 𝜔 = ⊕𝑟

𝑖=1 𝜔𝑖 with 𝜔𝑖 ∈ Ω𝑝
Der(𝑖) and

𝜔(X1, … ,X𝑝) = ⊕𝑟
𝑖=1 𝜔𝑖(X1,𝑖, … ,X𝑝,𝑖) for any X𝑘 = ⊕𝑟

𝑖=1 X𝑘,𝑖 ∈ Der().

This decomposition is compatible with the ()-linearity on the left and the ⊕𝑟
𝑖=1 (𝑖)-linearity on the right,

and it is compatible with the products in Ω∙
Der() and Ω∙

Der(𝑖).

The differential d on Ω∙
Der() decomposes along the differentials d𝑖 on Ω∙

Der(𝑖) as

d𝜔 = ⊕𝑟
𝑖=1 d𝑖𝜔𝑖

We will extend the projection map 𝜋 𝑖 ∶ Ω∙
Der() → Ω∙

Der(𝑖) with the same notation.

Proof Let 𝜔 ∈ Ω𝑝
Der() and define, for any 𝑖1, … , 𝑖𝑝 , 𝑗 = 1, … , 𝑟 ,

𝜔𝑗𝑖1 ,…,𝑖𝑝 ∶ Der(𝑖1) × ⋯ × Der(𝑖𝑝 ) → 𝑗

by

𝜔𝑗𝑖1 ,…,𝑖𝑝 (X1,𝑖1 , … ,X𝑝,𝑖𝑝 ) = 𝜋𝑗 ◦ 𝜔(𝜄Der𝑖1 (X1,𝑖1), … , 𝜄Der𝑖𝑝 (X𝑝,𝑖𝑝 ))

for any X𝑘,𝑖𝑘 ∈ Der(𝑖𝑘 ) (𝑘 = 1,… , 𝑝). Then one has

𝜔(X1, … ,X𝑝) = ⊕𝑟
𝑗=1 (∑

𝑟
𝑖1 ,…,𝑖𝑝=1 𝜔

𝑗
𝑖1 ,…,𝑖𝑝 (X1,𝑖1 , … ,X𝑝,𝑖𝑝 ))

with X𝑘 = ⊕𝑟
𝑖𝑘=1 X𝑘,𝑖𝑘 . Let 𝑓𝑘 = ⊕𝑟

𝑖𝑘=1 𝑓𝑘,𝑖𝑘 ∈ (), then applying 𝜔 on the 𝑝 derivations 𝑓𝑘X𝑘 , the ()-linearity

of 𝜔 gives

⊕𝑟
𝑗=1 (∑

𝑟
𝑖1 ,…,𝑖𝑝=1 𝜔

𝑗
𝑖1 ,…,𝑖𝑝 (𝑓1,𝑖1X1,𝑖1 , … , 𝑓𝑝,𝑖𝑝X𝑝,𝑖𝑝 ))
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= ⊕𝑟
𝑗=1 𝑓1,𝑗 ⋯𝑓𝑝,𝑗 (∑

𝑟
𝑖1 ,…,𝑖𝑝=1 𝜔

𝑗
𝑖1 ,…,𝑖𝑝 (X1,𝑖1 , … ,X𝑝,𝑖𝑝 )) (4.1.5)

The arbitrariness on the 𝑓𝑘’s permits to simplify this relation in successive steps. Let us fix 𝑗1 and take 𝑓1 = 1̂𝑗1 .
Then on the LHS, the term at 𝑗 in ⊕𝑟

𝑗=1 reduces to

∑𝑟
𝑖2 ,…,𝑖𝑝=1 𝜔

𝑗
𝑗1 ,𝑖2 ,…,𝑖𝑝 (X1,𝑗1 , 𝑓2,𝑖2X𝑝,𝑖𝑝 , … , 𝑓𝑝,𝑖𝑝X𝑝,𝑖𝑝 ).

On the RHS, the only non zero term along ⊕𝑟
𝑗=1 occurs at 𝑗 = 𝑗1 and gives

𝑓2,𝑗1 ⋯𝑓𝑝,𝑗1 (∑
𝑟
𝑖1 ,…,𝑖𝑝=1 𝜔

𝑗1
𝑖1 ,…,𝑖𝑝 (X1,𝑖1 , … ,X𝑝,𝑖𝑝 )) .

By arbitrariness on the X𝑘’s, this implies that for 𝑗 ≠ 𝑗1 one has 𝜔𝑗𝑖1 ,…,𝑖𝑝 = 0 and the remaining non trivial relation

becomes (substituting 𝑗1 to 𝑗)

∑𝑟
𝑖2 ,…,𝑖𝑝=1𝜔

𝑗
𝑗 ,𝑖2 ,…,𝑖𝑝 (X1,𝑗 , 𝑓2,𝑖2X2,𝑖2 , … , 𝑓𝑝,𝑖𝑝X𝑝,𝑖𝑝 ) = 𝑓2,𝑗 ⋯𝑓𝑝,𝑗 (∑

𝑟
𝑖2 ,…,𝑖𝑝=1 𝜔

𝑗
𝑗 ,𝑖2 ,…,𝑖𝑝 (X1,𝑗 ,X2,𝑖2 , … ,X𝑝,𝑖𝑝 )) .

Let us now fix 𝑗2 and take 𝑓2 = 1̂𝑗2 . Then the relation first gives

∑𝑟
𝑖3 ,…,𝑖𝑝=1 𝜔

𝑗
𝑗 ,𝑗2 ,𝑖3 ,…,𝑖𝑝 (X1,𝑗 ,X2,𝑗2 , 𝑓3,𝑖3X3,𝑖3 , … , 𝑓𝑝,𝑖𝑝X𝑝,𝑖𝑝 ) = 0 for 𝑗 ≠ 𝑗2,

which implies 𝜔𝑗𝑗 ,𝑖2 ,𝑖3 ,…,𝑖𝑝 = 0 for 𝑖2 ≠ 𝑗 . Then, with this relation, the non vanishing term (at 𝑗 = 𝑗2) simplifies to

(substituting 𝑗2 to 𝑗)

∑𝑟
𝑖3 ,…,𝑖𝑝=1𝜔

𝑗
𝑗 ,𝑗 ,𝑖3 ,…,𝑖𝑝 (X1,𝑗 ,X2,𝑗 , 𝑓3,𝑖3X3,𝑖3 , … , 𝑓𝑝,𝑖𝑝X𝑝,𝑖𝑝 ) = 𝑓3,𝑗 ⋯𝑓𝑝,𝑗 (∑

𝑟
𝑖3 ,…,𝑖𝑝=1 𝜔

𝑗
𝑗 ,𝑗 ,𝑖3 ,…,𝑖𝑝 (X1,𝑗 ,X2,𝑗 ,X3,𝑖3 , … ,X𝑝,𝑖𝑝 )) .

We can repeat this argument for 𝑖𝑘 up to 𝑘 = 𝑝 and conclude that the only non zero maps 𝜔𝑗𝑖1 ,…,𝑖𝑝 are 𝜔𝑗𝑗 ,…,𝑗 for

𝑗 = 1, … , 𝑟 . Defining 𝜔𝑖 ∶= 𝜔𝑖𝑖,…,𝑖, one then gets

𝜔(X1, … ,X𝑝) = ⊕𝑟
𝑖=1 𝜔𝑖(X1,𝑖, … ,X𝑝,𝑖)

and (4.1.5) reduces to

⊕𝑟
𝑖=1 𝜔𝑖(𝑓1,𝑖X1,𝑖, … , 𝑓𝑝,𝑖X𝑝,𝑖) = ⊕𝑟

𝑖=1 𝑓1,𝑖⋯𝑓𝑝,𝑖𝜔𝑖(X1,𝑖, … ,X𝑝,𝑖).

This shows that for any 𝑖, 𝜔𝑖 is (𝑖)-linear. Finally, the antisymmetry of 𝜔 implies antisymmetry of the 𝜔𝑖’s.

This proves that 𝜔𝑖 ∈ Ω𝑝
Der(𝑖).

To prove the compatibility of this decomposition with the products, consider 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖 ∈ Ω𝑝

Der() and

𝜂 = ⊕𝑟
𝑖=1 𝜂𝑖 ∈ Ω𝑞

Der(), and 𝑝 + 𝑞 derivations X𝑘 = ⊕𝑟
𝑖𝑘=1 X𝑘,𝑖𝑘 ∈ Der(). Then by definition

(𝜔 ∧ 𝜂)(X1, … ,X𝑝+𝑞)

= 1
𝑝!𝑞! ∑

𝜎∈S𝑝+𝑞

(−1)|𝜎|𝜔(X𝜎(1), … ,X𝜎(𝑝))𝜂(X𝜎(𝑝+1), … ,X𝜎(𝑝+𝑞))

= 1
𝑝!𝑞! ∑

𝜎∈S𝑝+𝑞

(−1)|𝜎| (⊕𝑟
𝑖=1 𝜔𝑖(X𝜎(1),𝑖, … ,X𝜎(𝑝),𝑖)) (⊕𝑟

𝑗=1 𝜂𝑗 (X𝜎(𝑝+1),𝑗 , … ,X𝜎(𝑝+𝑞),𝑗 ))

= 1
𝑝!𝑞! ∑

𝜎∈S𝑝+𝑞

(−1)|𝜎| (⊕𝑟
𝑖=1 𝜔𝑖(X𝜎(1),𝑖, … ,X𝜎(𝑝),𝑖)𝜂𝑖(X𝜎(𝑝+1),𝑖, … ,X𝜎(𝑝+𝑞),𝑖))

= ⊕𝑟
𝑖=1 (

1
𝑝!𝑞! ∑

𝜎∈S𝑝+𝑞

(−1)|𝜎|𝜔𝑖(X𝜎(1),𝑖, … ,X𝜎(𝑝),𝑖)𝜂𝑖(X𝜎(𝑝+1),𝑖, … ,X𝜎(𝑝+𝑞),𝑖))

= ⊕𝑟
𝑖=1(𝜔𝑖 ∧ 𝜂𝑖)(X1,𝑖, … ,X𝑝+𝑞,𝑖)

so that 𝜔 ∧ 𝜂 = ⊕𝑟
𝑖=1 𝜔𝑖 ∧ 𝜂𝑖.
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Using similar notations, one has

(d𝜔)(X1, … ,X𝑝+1) =
𝑝+1

∑
𝑘=1

(−1)𝑘+1X𝑘 ⋅𝜔(X1, …
𝑘
∨. … ,X𝑝+1) + ∑

1≤𝑘<𝓁≤𝑝+1
(−1)𝑘+𝓁𝜔([X𝑘 ,X𝓁], …

𝑘
∨. …

𝓁
∨. … ,X𝑝+1)

=
𝑝+1

∑
𝑘=1

(−1)𝑘+1⊕𝑟
𝑖=1 X𝑘,𝑖⋅𝜔𝑖(X1,𝑖, …

𝑘
∨. … ,X𝑝+1,𝑖)

+ ∑
1≤𝑘<𝓁≤𝑝+1

(−1)𝑘+𝓁⊕𝑟
𝑖=1 𝜔𝑖([X𝑘,𝑖,X𝓁,𝑖], …

𝑘
∨. …

𝓁
∨. … ,X𝑝+1,𝑖)

= ⊕𝑟
𝑖=1 (

𝑝+1

∑
𝑘=1

(−1)𝑘+1X𝑘,𝑖⋅𝜔𝑖(X1,𝑖, …
𝑘
∨. … ,X𝑝+1,𝑖)

+ ∑
1≤𝑘<𝓁≤𝑝+1

(−1)𝑘+𝓁𝜔𝑖([X𝑘,𝑖,X𝓁,𝑖], …
𝑘
∨. …

𝓁
∨. … ,X𝑝+1,𝑖))

= ⊕𝑟
𝑖=1(d𝑖𝜔𝑖)(X1,𝑖, … ,X𝑝+1,𝑖)

so that d𝜔 = ⊕𝑟
𝑖=1 d𝑖𝜔𝑖.

For the metric, the integration and the Hodge ⋆-operator, we will consider only the situation 𝑖 = 𝑀𝑛𝑖 . This

permits to limit the study of metrics and Hodge ⋆-operators to the structures defined in Sect. 4.1.1 (see also

(Dubois-Violette and Masson, 1998; Dubois-Violette et al., 1990b; Masson, 1995, 2008a, 2012)).

For every 𝑖 = 𝑀𝑛𝑖 , one introduces a basis {𝐸𝑖𝛼}𝛼∈𝐼𝑖 of sl𝑛𝑖 where 𝐼𝑖 is a totally ordered set of cardinal 𝑛2𝑖 − 1.

Let {𝜕𝑖𝛼 ∶= ad𝐸𝑖𝛼 }𝛼∈𝐼𝑖 be the induced basis of Der(𝑀𝑛𝑖). The dual basis is denoted by {𝜃𝛼𝑖 }𝛼∈𝐼𝑖 .

We consider the metric 𝑔 on = ⊕𝑟
𝑖=1𝑀𝑛𝑖 defined by 𝑔(𝜕𝑖𝛼 , 𝜕𝑖

′

𝛼′) = 0 for 𝑖 ≠ 𝑖′ and 𝑔 𝑖𝛼𝛼′ ∶= 𝑔(𝜕𝑖𝛼 , 𝜕𝑖𝛼′) = tr(𝐸𝑖𝛼𝐸𝑖𝛼′)
as in Sect. 4.1.1. Then, by construction, Der(𝑖) is orthogonal to Der(𝑖′) when 𝑖 ≠ 𝑖′.

A natural way to define a (NC) integral of forms on  is to decompose it along the 𝑖 as

∫

𝜔 ∶= ∑𝑟

𝑖=1 ∫
𝑖
𝜔𝑖

for any 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖 ∈ Ω∙

Der(). Here ∫𝑖 = ∫𝑖
is defined as in Sect. 4.1.1 using the volume form 𝜔vol,𝑖 ∶=

√
|𝑔 𝑖|𝜃𝛼

0
1
𝑖 ∧ ⋯ ∧ 𝜃

𝛼0
𝑛2𝑖 −1
𝑖 where (𝛼01 , … , 𝛼0𝑛2−1) ∈ 𝐼

𝑛2𝑖 −1
𝑖 is such that 𝛼01 < ⋯ < 𝛼0𝑛2𝑖 −1.

In order to compute ∫ 𝜔, one has to find the unique element 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈  such that ⊕𝑟

𝑖=1 𝑎𝑖𝜔vol,𝑖 captures

the highest degrees in every Ω∙
Der(𝑖), and then one has ∫ 𝜔 = ∑𝑟

𝑖=1 tr(𝑎𝑖). In particular, with 𝜔vol
∶= ⊕𝑟

𝑖=1 𝜔vol,𝑖,

one has ∫ 𝜔vol = ∑𝑟
𝑖=1 𝑛𝑖.

The metric 𝑔 on gives rise to a well defined Hodge ⋆-operator, which, according to the proof of Lemma 4.1.6,

can be written using the Hodge ⋆-operators on each 𝑖 for the metric 𝑔 𝑖. For any 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖, 𝜔′ = ⊕𝑟

𝑖=1 𝜔′
𝑖 ∈

Ω∙
Der(), one has

𝜔 ∧ ⋆𝜔′ = ∑𝑟
𝑖=1 𝜔𝑖 ∧ ⋆𝑖𝜔

′
𝑖

where ⋆𝑖 is defined on Ω∙
Der(𝑀𝑛𝑖) as in Sect. 4.1.1, and we define the NC scalar product of forms on  = ⊕𝑟

𝑖=1𝑀𝑛𝑖
by

(𝜔, 𝜔′) ∶= ∫

𝜔 ∧ ⋆𝜔′ = ∑𝑟

𝑖=1 ∫
𝑖
𝜔𝑖 ∧ ⋆𝑖𝜔′

𝑖 (4.1.6)

This expression will be used to define action functional out of a connection 1-form.
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4.1.3 A technical result on Hodge ⋆-operators
Let 𝑉 be a finite dimensional vector space, with dim 𝑉 = 𝑛 and let 𝑉 ∗

its dual. Denote by {𝑒𝑘}𝑘 and {𝜃𝑘}𝑘 a basis of

𝑉 and its dual basis in 𝑉 ∗
. Let 𝑔 be a metric on 𝑉 and let 𝑔𝑘𝓁 ∶= 𝑔(𝑒𝑘 , 𝑒𝓁). Denote by (𝑔𝑘𝓁) its inverse matrix and

by |𝑔| the determinant of 𝑔 .

Let  be an associative unital algebra equipped with a linear form 𝜏 ∶  → C. We define forms on 𝑉
with values in  as elements in  ⊗ ⋀∙𝑉 ∗

. There is then a natural multiplication: for any 𝜔 ∈  ⊗ ⋀𝑝𝑉 ∗
and

𝜂 ∈  ⊗⋀𝑞𝑉 ∗
, 𝜔 ∧ 𝜂 ∈  ⊗⋀𝑝+𝑞𝑉 ∗

is defined by

(𝜔 ∧ 𝜂)(𝑒1, … , 𝑒𝑝+𝑞) ∶=
1
𝑝!𝑞!

∑
𝜎∈S𝑝+𝑞

(−1)|𝜎|𝜔(𝑒𝜎(1), … , 𝑒𝜎(𝑝))𝜂(𝑒𝜎(𝑝+1), … , 𝑒𝜎(𝑝+𝑞))

for any 𝑒𝐼 , … , 𝑒𝑝+𝑞 ∈ 𝑉 where S𝑛 is the group of permutations of 𝑛 elements.

Given an orientation 𝜃1 ∧ ⋯ ∧ 𝜃𝑛 of the basis {𝜃𝑘}𝑘 , the metric 𝑔 and the linear form 𝜏 define an “integration”

∫𝑉 ∶  ⊗ ⋀∙𝑉 ∗ → C which is non zero only on  ⊗ ⋀𝑛𝑉 ∗
where it is defined, for any 𝜔 uniquely written as

𝜔 =
√
|𝑔|𝑎⊗𝜃1∧⋯∧𝜃𝑛, by ∫𝑉 𝜔 ∶= 𝜏(𝑎). This definition does not depend on the basis {𝜃𝑘}𝑘 (only on its orientation

up to a sign). The 𝑛-form 𝜔vol
∶=

√
|𝑔|1 ⊗ 𝜃1 ∧ ⋯ ∧ 𝜃𝑛 is called the volume form.

The metric 𝑔 defines also a Hodge ⋆-operator on  ⊗ ⋀∙𝑉 ∗
defined on 𝜔 = 1

𝑝!𝜔𝓁1 ,…,𝓁𝑝 ⊗ 𝜃𝓁1 ∧ ⋯ ∧ 𝜃𝓁𝑝 by the

usual formula

⋆( 1
𝑝!𝜔𝓁1 ,…,𝓁𝑝 ⊗ 𝜃𝓁1 ∧ ⋯ ∧ 𝜃𝓁𝑝 ) = 1

(𝑛−𝑝)!
1
𝑝!

√
|𝑔|𝜔𝓁′1 ,…,𝓁′𝑝𝑔

𝓁1𝓁′1 ⋯𝑔𝓁𝑝𝓁
′
𝑝𝜖𝓁1 ,…,𝓁𝑛 ⊗ 𝜃𝓁𝑝+1 ∧ ⋯ ∧ 𝜃𝓁𝑛

where 𝜖𝓁1 ,…,𝓁𝑛 is the completely antisymmetric tensor such that 𝜖1,…,𝑛 = 1. For any 𝜔, 𝜔′ ∈  ⊗⋀𝑝𝑉 ∗
, a standard

computation gives (see for instance (Bertlmann, 1996, Sect. 2.4))

𝜔 ∧ ⋆𝜔′ = 1
𝑝!

√
|𝑔|𝜔𝓁1 ,…,𝓁𝑝𝜔

′𝓁1 ,…,𝓁𝑝 ⊗ 𝜃1 ∧ ⋯ ∧ 𝜃𝑛 (4.1.7)

with 𝜔′𝓁1 ,…,𝓁𝑝 ∶= 𝑔𝓁1𝓁′1 ⋯𝑔𝓁𝑝𝓁
′
𝑝𝜔′

𝓁′1 ,…,𝓁′𝑝
.

Lemma 4.1.6 Suppose that 𝑉 = ⊕𝑟
𝑖=1 𝑉𝑖 is an orthogonal decomposition for 𝑔 . Denote by 𝑔𝑖 the restriction of 𝑔 to 𝑉𝑖,

denote by ⋆𝑖 the corresponding Hodge star operator on  ⊗ ⋀∙𝑉 ∗
𝑖 , and denote by ∫𝑉𝑖 the corresponding integration

with volume form 𝜔vol,𝑖 such that 𝜔vol = 𝜔vol,1 ∧ ⋯ ∧ 𝜔vol,𝑟 .
Let 𝜔𝑖, 𝜔′

𝑖 ∈  ⊗⋀𝑝𝑖𝑉 ∗
𝑖 and 𝜔 = ∑𝑟

𝑖=1 𝜔𝑖, 𝜔′ = ∑𝑟
𝑖=1 𝜔′

𝑖 ∈  ⊗⋀∙𝑉 ∗. Then

∫
𝑉
𝜔 ∧ ⋆𝜔′ = ∑𝑟

𝑖=1 ∫
𝑉𝑖
𝜔𝑖 ∧ ⋆𝑖𝜔′

𝑖

Proof Let us introduce some notations. Let 𝑛𝑖 = dim𝑉𝑖 (so that 𝑛 = ∑𝑟
𝑖=1 𝑛𝑖); let {𝑒𝑖𝑘}𝑘=1,…,𝑛𝑖 be a basis of 𝑉𝑖; for

𝓁 = 1, … , 𝑛 written as 𝓁 = 𝑛1 + ⋯ + 𝑛𝑖−1 + 𝑘 with 𝑘 = 1,… , 𝑛𝑖, let 𝑒𝓁 ∶= 𝑒𝑖𝑘 be the elements of a basis of 𝑉 ; let

{𝜃𝑘𝑖 }𝑘=1,…,𝑛𝑖 and {𝜃𝓁}𝓁=1,…,𝑛 be the corresponding dual basis. Let 𝐼𝑖 be the set of indices 𝓁 = 𝑛1 + ⋯ + 𝑛𝑖−1 + 𝑘 with

𝑘 = 1,… , 𝑛𝑖, so that 𝑒𝓁 ∈ 𝑉𝑖 for 𝓁 ∈ 𝐼𝑖, and let 𝐼 𝑐𝑖 be its complement in {1, … , 𝑛}.

The matrix (𝑔𝑘𝓁) is block diagonal, and so is its inverse (𝑔𝑘𝓁) with blocks (𝑔𝑘𝓁𝑖 ) and

√
|𝑔| = ∏𝑟

𝑖=1
√
|𝑔𝑖|. The

orientation of the basis {𝜃𝓁}𝓁=1,…,𝑛 is chosen such that 𝜔vol = 𝜔vol,1 ∧⋯ ∧ 𝜔vol,𝑟 with 𝜔vol,𝑖 ∶=
√
|𝑔𝑖|1⊗ 𝜃1𝑖 ∧⋯ ∧ 𝜃𝑛𝑖𝑖 .

By linearity and the fact that 𝜔𝑖∧⋆𝜔′
𝑗 = 0 for 𝑖 ≠ 𝑗 , one has 𝜔∧⋆𝜔′ = ∑𝑟

𝑖=1 𝜔𝑖∧⋆𝜔′
𝑖 . For fixed 𝑖, to compute ⋆𝜔′

𝑖
we use (4.1.3): in the RHS, only components of (𝑔𝑘𝓁) belonging to the block (𝑔𝑘𝓁𝑖 ) can appear, so that 𝜖𝓁1 ,…,𝓁𝑛 must

contain all the indices 𝓁 ∈ 𝐼 𝑐𝑖 . This implies that the RHS contains all the volume forms 𝜔vol,𝑗 =
√
|𝑔𝑗 |1⊗𝜃1𝑗 ∧⋯∧𝜃𝑛𝑗𝑗

for 𝑗 ≠ 𝑖.

Let us consider a fixed 𝑛-uplet (𝓁1, … , 𝓁𝑛) in the sum in the RHS of (4.1.3). Our strategy is to collect all the

𝓁𝑟 ∈ 𝐼𝑖 in front of the 𝑛-uplet. Since for 𝑟 = 1, … , 𝑝𝑖 one has 𝓁𝑟 ∈ 𝐼𝑖, we need only to use a permutation of the

remaining indices to collect the other 𝑛𝑖 − 𝑝𝑖 indices which belong to 𝐼𝑖. As a permutation, we use the unique
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(𝑛𝑖 − 𝑝𝑖, 𝑛 − 𝑛𝑖)-shuffle
2

that maps (𝓁𝑝𝑖+1, … , 𝓁𝑛) into (𝓁′𝑝𝑖+1, … , 𝓁′𝑛𝑖 , 𝓁
′′
1 , … , 𝓁′′𝑛−𝑛𝑖) such that 𝓁′𝑟 ∈ 𝐼𝑖 for 𝑟 = 𝑝𝑖 + 1,… , 𝑛𝑖

and 𝓁′′𝑟 ′ ∈ 𝐼 𝑐𝑖 for 𝑟 ′ = 𝑛𝑖 + 1,… , 𝑛. This shuffle transforms the term (no summation) 𝜖𝓁1 ,…,𝓁𝑛𝜃𝓁𝑝𝑖+1 ∧ ⋯ ∧ 𝜃𝓁𝑛 into

𝜖𝓁1 ,…,𝓁𝑝𝑖 ,𝓁′𝑝𝑖+1 ,…,𝓁′𝑛𝑖 ,𝓁′′1 ,…,𝓁′′𝑛−𝑛𝑖 𝜃
𝓁′𝑝𝑖+1 ∧⋯ ∧ 𝜃𝓁

′
𝑛𝑖 ∧ 𝜃𝓁′′1 ∧⋯ ∧ 𝜃𝓁

′′
𝑛−𝑛𝑖 (since the shuffle acts on both the 𝜖 indices and the 𝜃𝓁, there

is no sign).

The summation on all the 𝑛 − 𝑝𝑖-uplets (𝓁𝑝𝑖+1, … , 𝓁𝑛) can now be performed in 3 steps: first using the (𝑛𝑖 −
𝑝𝑖, 𝑛 − 𝑛𝑖)-shuffle which separates the indices belonging to 𝐼𝑖 and 𝐼 𝑐𝑖 (there are

(𝑛−𝑝)!
(𝑛1−𝑝)!𝑛2! such shuffles to use); then

using a permutation on the 𝑛 − 𝑛𝑖 indices 𝓁′′𝑟 ′ ∈ 𝐼 𝑐𝑖 for 𝑟 ′ = 𝑛𝑖 + 1,… , 𝑛 to order them in increasing order (there

are (𝑛 − 𝑛𝑖)! such permutations) so that we can make appear the 𝜔vol,𝑗 for 𝑗 ≠ 𝑖; finally managing the summation

on the indices 𝓁′𝑟 ∈ 𝐼𝑖 for 𝑟 = 𝑝𝑖 + 1,… , 𝑛𝑖. This gives the series of equalities (with the previous notations and

convention for the indices):

1
(𝑛−𝑝𝑖)!

√
|𝑔|𝜖𝓁1 ,…,𝓁𝑛𝜃

𝓁𝑝𝑖+1 ∧ ⋯ ∧ 𝜃𝓁𝑛 = (𝑛−𝑝𝑖)!
(𝑛−𝑝𝑖)!(𝑛𝑖−𝑝𝑖)!(𝑛−𝑛𝑖)!

√
|𝑔|𝜖𝓁1 ,…,𝓁𝑝𝑖 ,𝓁′𝑝𝑖+1 ,…,𝓁′𝑛𝑖 ,𝓁′′1 ,…,𝓁′′𝑛−𝑛𝑖

𝜃𝓁
′
𝑝𝑖+1 ∧ ⋯ ∧ 𝜃𝓁

′
𝑛𝑖 ∧ 𝜃𝓁

′′
1 ∧ ⋯ ∧ 𝜃𝓁

′′
𝑛−𝑛𝑖

= (𝑛−𝑛𝑖)!
(𝑛𝑖−𝑝𝑖)!(𝑛−𝑛𝑖)!

√
|𝑔|𝜖𝓁1 ,…,𝓁𝑝𝑖 ,𝓁𝑝𝑖+1 ,…,𝓁𝑛𝑖 ,1,…,𝑛1+⋯+𝑛𝑖−1 ,𝑛1+⋯+𝑛𝑖+1,…,𝑛

𝜃𝓁𝑝𝑖+1 ∧ ⋯ ∧ 𝜃𝓁𝑛𝑖 ∧ (∧𝓁′∈𝐼 𝑐𝑖 𝜃
𝓁′)

= 1
(𝑛𝑖−𝑝𝑖)!

√
|𝑔𝑖|𝜖𝓁1 ,…,𝓁𝑝𝑖 ,𝓁𝑝𝑖+1 ,…,𝓁𝑛𝑖 ,1,…,𝑛1+⋯+𝑛𝑖−1 ,𝑛1+⋯+𝑛𝑖+1,…,𝑛

𝜃𝓁𝑝𝑖+1 ∧ ⋯ ∧ 𝜃𝓁𝑛𝑖 ∧ (∧𝑗=1,…,𝑟;𝑗≠𝑖𝜔vol,𝑗 )

= (−1)𝑝𝑖(𝑛1+⋯+𝑛𝑖−1) 1
(𝑛𝑖−𝑝𝑖)!

√
|𝑔𝑖|𝜖1,…,𝑛1+⋯+𝑛𝑖−1 ,𝓁1 ,…,𝓁𝑛𝑖 ,𝑛1+⋯+𝑛𝑖+1,…,𝑛

𝜔vol,1 ∧ ⋯ ∧ 𝜔vol,𝑖−1 ∧ 𝜃𝓁𝑝𝑖+1 ∧ ⋯ ∧ 𝜃𝓁𝑛𝑖 ∧ 𝜔vol,𝑖+1 ∧ ⋯ ∧ 𝜔vol,𝑟

To deal with the summation on the indices 𝓁𝑟 ∈ 𝐼𝑖, we shift their values by −(𝑛1 + ⋯ + 𝑛𝑖−1) to get indices

𝑘𝑟 = 1,… , 𝑛𝑖. Then we can replace the 𝜖 tensor by the tensor 𝜖𝑘1 ,…,𝑘𝑛𝑖 and at the same time replacing the 𝜃𝓁𝑟 ’s by

the 𝜃𝑘𝑟𝑖 ’s. Using the factor
1

(𝑛𝑖−𝑝𝑖)!

√
|𝑔𝑖| in front, this makes appears ⋆𝑖:

⋆𝜔′
𝑖 = (−1)𝑝𝑖(𝑛1+⋯+𝑛𝑖−1)𝜔vol,1 ∧ ⋯ ∧ 𝜔vol,𝑖−1 ∧ (⋆𝑖𝜔′

𝑖 ) ∧ 𝜔vol,𝑖+1 ∧ ⋯ ∧ 𝜔vol,𝑟

so that, with 𝜔𝑖 ∧ ⋆𝑖𝜔′
𝑖 = 𝑎𝑖𝜔vol,𝑖, where 𝑎𝑖 = 1

𝑝𝑖!𝜔𝑖,𝑘1 ,…,𝑘𝑝𝑖𝜔
′
𝑖
𝑘1 ,…,𝑘𝑝𝑖

,

𝜔𝑖 ∧ ⋆𝜔′
𝑖 = 𝜔vol,1 ∧ ⋯ ∧ 𝜔vol,𝑖−1 ∧ (𝜔𝑖 ∧ ⋆𝑖𝜔′

𝑖 ) ∧ 𝜔vol,𝑖+1 ∧ ⋯ ∧ 𝜔vol,𝑟 = 𝑎𝑖𝜔vol,1 ∧ ⋯ ∧ 𝜔vol,𝑟 = 𝑎𝑖𝜔vol

Notice that moving 𝜔𝑖 inside the product of the volume forms 𝜔vol,𝑗 and then putting 𝑎𝑖 in front of this product

is possible since volume forms have commutative values in . Since ∫𝑉𝑖 𝜔𝑖 ∧ ⋆𝑖𝜔
′
𝑖 = 𝜏(𝑎𝑖), one gets ∫𝑉 𝜔 ∧ ⋆𝜔′ =

∑𝑟
𝑖=1 ∫𝑉 𝜔𝑖 ∧ ⋆𝜔

′
𝑖 = ∑𝑟

𝑖=1 𝜏(𝑎𝑖) = ∑𝑟
𝑖=1 ∫𝑉𝑖 𝜔𝑖 ∧ ⋆𝑖𝜔

′
𝑖 .

4.2 Differential Structure on 𝑀𝑛(C) and ⨁𝑛
𝑖=1𝑀𝑛𝑖(C) using Finite Spec-

tral Triples
In this section, we recall all the important facts about finite real spectral triples that will be needed later on.

In particular, their classification by Krajewski diagrams (Krajewski, 1998) which diagrammatically encode the

essential algebraic data used to characterize spectral triples (see also (van Suijlekom, 2015), in which a sketch of

this classification is given). The result are given only for ⨁𝑛
𝑖=1𝑀𝑛𝑖(C) since in this framework the case of 𝑀𝑛(C)

can be seen as a simple restriction of the above more general situation. We will set up the normal form in which

spectral triples express, according to a basis of irreducible representations of the Hilbert space, and differential

structure being constructed from the Dirac operator that will be derived according to this basis, using the formula

eq.(3.4.1). The role played by metric, integration, and Hodge ⋆-operator in the derivation framework, will be

respectively played by the Dirac operator, the integration and the spectral action as we will see in subsection

2
A (𝑟, 𝑠)-shuffle is a permutation 𝜎 ∈ S𝑟+𝑠 such that 𝜎(1) < 𝜎(2) < ⋯ < 𝜎(𝑟) and 𝜎(𝑟 + 1) < 𝜎(𝑟 + 2) < ⋯ < 𝜎(𝑟 + 𝑠). It is well-known that

there are
(𝑟+𝑠)!
𝑟!𝑠! (𝑟, 𝑠)-shuffles in S𝑟+𝑠 .
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11.6.2 and chapter 12. In the following, we will not need to consider the analytic axioms since we consider only

finite dimensional algebras and representations.

In some proofs we will use the following well-known technical result, which comes from the existence of

cyclic vectors in C𝑛
for the matrix multiplication:

Lemma 4.2.1 For any 𝑛 ≥ 1 and any vector space 𝑉 , a linear map Ψ ∶ C𝑛 ⊗ 𝑉 → C𝑛 ⊗ 𝑉 such that Ψ(𝑎𝜉 ⊗ 𝑣) =
𝑎Ψ(𝜉 ⊗ 𝑣) for any 𝑎 ∈ 𝑀𝑛(C), 𝜉 ∈ C𝑛 and 𝑣 ∈ 𝑉 , reduces to a linear map 𝜑 ∶ 𝑉 → 𝑉 such that Ψ(𝜉 ⊗ 𝑣) = 𝜉 ⊗ 𝜑(𝑣).

Proof Let {𝜉𝛼}1≤𝛼≤𝑛 be the canonical basis of C𝑛
. For any 𝜉 ∈ C𝑛

, let 𝑎 ∈ 𝑀𝑛(C) be the matrix with first column

𝜉 and all other columns zero. Then one has 𝜉 = 𝑎𝜉1 and 𝑎𝜉𝛼 = 0 for any 𝛼 > 1. So, Ψ(𝜉 ⊗ 𝑣) = 𝑎Ψ(𝜉1 ⊗ 𝑣) =
𝑎∑𝑛

𝛼=1 𝜉𝛼 ⊗ 𝜑𝛼(𝑣) for a family of linear maps 𝜑𝛼 ∶ 𝑉 → 𝑉 . With the chosen 𝑎, the sum reduces to its first term

only, and so Ψ(𝜉 ⊗ 𝑣) = 𝑎𝜉1 ⊗ 𝜑1(𝑣) = 𝜉 ⊗ 𝜑1(𝑣). So 𝜑 ∶= 𝜑1 is the desired linear map.

4.2.1 Finite Spectral Triples
A spectral triple (,, 𝐷) is said to be finite if  is a finite dimensional involutive C-algebra,  is a finite

dimensional Hilbert space on which  is represented, and 𝐷 = 𝐷†
is a self-adjoint operator on . The faithful

representation 𝜋 of  on  will be omitted when no confusion is possible. In the following, we will write

𝑖 = 𝑀𝑛𝑖 = 𝑀𝑛𝑖(C) since no other matrix algebras will be considered. Let 𝜄𝑖 ∶ 𝑖 →  be the canonical inclusion

and 𝜋𝑖 ∶  → 𝑖 be the canonical projection.

Consider the set Λ ∶= {𝐧1, … , 𝐧𝑟 } of irreducible representations (irreps) of , where 𝐧𝑖 is a short notation

that designates at the same time the integer 𝑛𝑖 defining the irrep (on the space C𝑛𝑖
) and the integer 𝑖 (the same

that appears in the presentation ⊕𝑟
𝑖=1𝑀𝑛𝑖 of ). Λ is completely defined by  and, reciprocally,  = ⊕𝑟

𝑖=1𝑀𝑛𝑖 can

be recovered from Λ. Notice that the same dimension 𝑛 = 𝑛𝑖 = 𝑛𝑖′ = … can appear several times, but labeled by

different integers 𝑖, 𝑖′, … . We will also use the ordering on the labels 𝑖’s. Denote by 𝐧𝑖 ∶= C𝑛𝑖
the irreducible

representations (irreps) of the 𝑖’s, and so of .

The Hilbert space  can be decomposed into orthogonal components ̂𝐧𝑖 ∶= 𝜄𝑖(𝑖), so that  = ⊕𝑟
𝑖=1 ̂𝐧𝑖 .

Define 𝜄𝑖 ∶ ̂𝐧𝑖 →  and 𝜋
𝑖 ∶  → ̂𝐧𝑖 the natural inclusions and (orthogonal) projections. Then there are

integers 𝜇𝑖, the multiplicities of the irreps, such that ̂𝐧𝑖 ≃ 𝐧𝑖 ⊗C𝜇𝑖 = C𝑛𝑖 ⊗C𝜇𝑖
. So, up to unitary equivalence,

the Hilbert space  can be decomposed as  ≃ ⊕𝑟
𝑖=1 C𝑛𝑖 ⊗C𝜇𝑖

and we now suppose that a unitary map has been

chosen such that ̂𝐧𝑖 = C𝑛𝑖 ⊗ C𝜇𝑖
.
3

If one requires a faithful representation of , then 𝜇𝑖 ≥ 1 for all 𝑖.

In the even case, one has:

Lemma 4.2.2 𝛾 decomposes along a family of linear maps 𝓁𝑖 ∶ C𝜇𝑖 → C𝜇𝑖 such that 𝛾(𝜉𝑖 ⊗ 𝜎𝑖) = 𝜉𝑖 ⊗ 𝓁𝑖(𝜎𝑖) for any
𝜉𝑖 ⊗ 𝜎𝑖 ∈ C𝑛𝑖 ⊗ C𝜇𝑖 . This family satisfies 𝓁†𝑖 = 𝓁𝑖 and 𝓁2𝑖 = 1.

Proof First, consider 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 and 𝜓 = ⊕𝑟

𝑖=1 𝜉𝑖 ⊗ 𝜎𝑖 with only one non-zero component at fixed 𝑖 for 𝜓 and 𝑎
with 𝑎𝑖 = 1𝑛𝑖 (unit matrix in 𝑀𝑛𝑖 ): then one has 𝛾(𝜉𝑖⊗𝜎𝑖) ∈ C𝑛𝑖 ⊗C𝜇𝑖

. Since 𝛾2 = 1, this implies that 𝛾 decomposes

along the isomorphisms 𝛾𝑖 ∶ C𝑛𝑖 ⊗ C𝜇𝑖 → C𝑛𝑖 ⊗ C𝜇𝑖
such that 𝛾†𝑖 = 𝛾𝑖, 𝛾2𝑖 = 1 and 𝛾𝑖𝑎𝑖 = 𝑎𝑖𝛾𝑖 for any 𝑎𝑖 ∈ 𝑀𝑛𝑖 .

Then, by Lemma 4.2.1, since 𝛾 commutes with 𝜋, there is a family of linear maps 𝓁𝑖 ∶ C𝜇𝑖 → C𝜇𝑖
such that

𝛾(𝜉𝑖 ⊗ 𝜎𝑖) = 𝜉𝑖 ⊗ 𝓁𝑖(𝜎𝑖) for any 𝜉𝑖 ⊗ 𝜎𝑖 ∈ C𝑛𝑖 ⊗ C𝜇𝑖
. The relations 𝓁†𝑖 = 𝓁𝑖 and 𝓁2𝑖 = 1 are direct consequences of

those on 𝛾𝑖.

In the odd situation, let us consider any orthonormal basis {𝜎𝑝𝑖 }1≤𝑝≤𝜇𝑖 of C𝜇𝑖
. In the even case, we require this

basis to be eigenvectors of 𝓁𝑖 with eigenvalues 𝑠𝑝𝑖 = ±1. Then, for any 1 ≤ 𝑖 ≤ 𝑟 , let Γ(0)𝐧𝑖 ∶= {(𝑖, 𝑝) ∣ 1 ≤ 𝑝 ≤ 𝜇𝑖},
and for any 𝑣 = (𝑖, 𝑝) ∈ Γ(0)𝐧𝑖 , define 𝜆 ∶ Γ(0)𝐧𝑖 → Λ as 𝜆(𝑣) ∶= 𝐧𝑖. Notice that 𝜇𝑖 = #Γ(0)𝐧𝑖 . For any 𝑣 ∈ Γ(0)𝐧𝑖 , we then

define

𝑣 ∶= Span{𝜉𝑖 ⊗ 𝜎𝑝𝑖 ∣ 𝜉𝑖 ∈ C𝑛𝑖 } ≃ 𝐧𝑖

3
For sake of completeness, let us mention that the scalar product of this decomposition is the usual one: ⟨𝜓, 𝜓′⟩ =

∑𝑟
𝑖=1⟨𝜉𝑖, 𝜉 ′𝑖 ⟩C𝑛𝑖 ⟨𝜎𝑖, 𝜎′𝑖 ⟩C𝜇𝑖 for any 𝜓 = ⊕𝑟

𝑖=1 𝜉𝑖 ⊗ 𝜎𝑖 (and the same for 𝜓′
) where 𝜉𝑖 ∈ C𝑛𝑖

and 𝜎𝑖 ∈ C𝜇𝑖
.
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Then, in the even case, 𝛾 restricts to the multiplication by 𝑠𝑝𝑖 on 𝑣 with 𝑣 = (𝑖, 𝑝). We define 𝑠(𝑣) = 𝑠𝑝𝑖 for any 𝑣.

The map 𝜆 is extended in an obvious way on the set

Γ(0) ∶= ∪𝑟𝑖=1Γ
(0)
𝐧𝑖

and there is an orthogonal decomposition of  into irreps

 = ⊕𝑣∈Γ(0) 𝑣

Let 𝑒 = (𝑣1, 𝑣2) ∈ Γ(0) × Γ(0), then the Dirac operator decomposes along maps 𝐷𝑒 ∶ 𝑣1 → 𝑣2 . With 𝑒 ∶= (𝑣2, 𝑣1),
𝐷† = 𝐷 is equivalent to 𝐷𝑒 = 𝐷†

𝑒 . In the even case, 𝛾𝐷 = −𝐷𝛾 implies that 𝑠(𝑣2)𝐷𝑒 = −𝑠(𝑣1)𝐷𝑒 , so that 𝐷𝑒 is

non-zero only when 𝑠(𝑣2) = −𝑠(𝑣1).

The previous decomposition of the spectral triple (,, 𝐷) or (,, 𝐷, 𝛾) can be summarized using a dec-

orated graph Γ, a so-called Krajewski Diagram, together with Λ:

1. The set of vertices Γ(0) of the graph is equipped with a map 𝜆 ∶ Γ(0) → Λ. By a slight abuse of notation, the

map 𝜆 will sometimes be used in the compact notation C𝜆(𝑣) = C𝑛𝑖
. We will also use the map 𝑖(𝑣) ∶= 𝑖 for

𝜆(𝑣) = 𝐧𝑖.
2. For any vertex 𝑣 ∈ Γ(0), define 𝑣 ∶= 𝜆(𝑣) = C𝜆(𝑣)

. The element 𝜆(𝑣) ∈ Λ is a decoration of the vertex 𝑣.
3. For any 𝐧𝑖 ∈ Λ, define Γ(0)𝐧𝑖 ∶= {𝑣 ∈ Γ(0) ∣ 𝜆(𝑣) = 𝐧𝑖} = 𝜆−1(𝐧𝑖) and 𝜇𝑖 ∶= #Γ(0)𝐧𝑖 .

4. In the even case, a second decoration is the assignment of a grading map 𝑠(𝑣) = ±1.

5. For every 𝑒 = (𝑣1, 𝑣2) ∈ Γ(0) × Γ(0), let 𝑒 ∶= (𝑣2, 𝑣1).
6. The space Γ(1) ⊂ Γ(0) × Γ(0) of edges of the graph are couples 𝑒 = (𝑣1, 𝑣2) such that:

a. there is a non-zero linear map 𝐷𝑒 ∶ 𝑣1 → 𝑣2 such that 𝐷𝑒 = 𝐷†
𝑒 ∶ 𝑣2 → 𝑣1 .

b. 𝑠(𝑣2) = −𝑠(𝑣1) in the even case;

Then 𝐷𝑒 defines a decoration of 𝑒.

Given such a Krajewski Diagram, one can construct a spectral triple up to unitary equivalence in the following

way. As already mentioned, Λ determines the algebra  ≃ ⊕𝑟
𝑖=1𝑀𝑛𝑖 . A vertex 𝑣 ∈ Γ(0) designates a copy of an

irrep 𝑣 = 𝜆(𝑣) = C𝜆(𝑣)
, and 𝜇(𝑣) ∶= #Γ(0)𝜆(𝑣) is the multiplicity of this irrep in . So, the Hilbert space decomposes

as  ∶= ⊕𝑣∈Γ(0) 𝑣 = ⊕𝑟
𝑖=1 C𝑛𝑖 ⊗ C𝜇𝑖

.

Then the representation 𝜋 of  on  decomposes as 𝜋(𝑎)𝜓 = ⊕𝑣∈Γ(0) 𝑎𝑖(𝑣)𝜓𝑣 = ⊕𝑟
𝑖=1(𝑎𝑖𝜉𝑖) ⊗ 𝜎𝑖, for any 𝑎 =

⊕𝑟
𝑖=1 𝑎𝑖 ∈  and any 𝜓 = ⊕𝑣∈Γ(0) 𝜓𝑣 = ⊕𝑟

𝑖=1 𝜉𝑖 ⊗ 𝜎𝑖, with 𝜉𝑖 ⊗ 𝜎𝑖 ∈ C𝑛𝑖 ⊗ C𝜇𝑖
, where 𝑎𝑖(𝑣)𝜓𝑣 (resp. 𝑎𝑖𝜉𝑖 ⊗ 𝜎𝑖) is the

multiplication of the matrix 𝑎𝑖(𝑣) on the vector 𝜓𝑣 ∈ C𝜆(𝑣)
(resp. 𝑎𝑖 on 𝜉𝑖 ∈ C𝑛𝑖

).

In the even case, 𝛾 is determined as the multiplication by the decoration 𝑠(𝑣) = ±1 on 𝑣 . The Dirac operator

𝐷 is reconstructed by the decorations 𝐷𝑒 of the edges 𝑒 ∈ Γ(1).

It is useful to write an explicit reconstruction of 𝐷 on the decomposition  = ⊕𝑟
𝑖=1 C𝑛𝑖 ⊗C𝜇𝑖

. First, introduce

an orthonormal basis for each C𝜇𝑖
, for instance its canonical basis. Since 𝑣 ∈ Γ(0) designates a specific copy of an

irrep 𝐧𝑖 = 𝜆(𝑣), one can label all the basis vectors in the union of all the C𝜇𝑖
’s as {𝜎𝑣}𝑣∈Γ(0) : for any 𝑣 ∈ Γ(0)𝐧𝑖 , 𝜎𝑣 is

an element of an orthonormal basis of C𝜇𝑖
. Then we can use the identification 𝑣 = Span{𝜉 ⊗ 𝜎𝑣 ∣ 𝜉 ∈ C𝜆(𝑣)}. For

any 𝑒 = (𝑣1, 𝑣2) ∈ Γ(1) with 𝜆(𝑣1) = 𝐧𝑖 and 𝜆(𝑣2) = 𝐧𝑗 , define 𝐷̂𝑒 ∶ C𝑛𝑖 ⊗ C𝜇𝑖 → C𝑛𝑗 ⊗ C𝜇𝑗
, for any 𝜉 ∈ C𝑛𝑖

, as

𝐷̂𝑒(𝜉 ⊗ 𝜎𝑣) =

{
0 if 𝑣 ≠ 𝑣1
(𝐷𝑒𝜉) ⊗ 𝜎𝑣2 if 𝑣 = 𝑣1

Then define

𝐷𝑖
𝑗 ∶= ∑

𝑒=(𝑣1 ,𝑣2)∈Γ(1)
𝜆(𝑣1)=𝐧𝑖 ,𝜆(𝑣2)=𝐧𝑗

𝐷̂𝑒 ∶ C𝑛𝑖 ⊗ C𝜇𝑖 → C𝑛𝑗 ⊗ C𝜇𝑗

Notice that the summation can be written on 𝑒 ∈ Γ(1) ∩ (Γ(0)𝐧𝑖 × Γ(0)𝐧𝑗 ). All the operators 𝐷𝑖
𝑗 can be collected in an

operator 𝐷 ∶  →  which is automatically self-adjoint.
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4.2.2 Finite Real Spectral Triples
Let us now consider (odd) finite (resp. even) real spectral triples (,, 𝐷, 𝐽 ) (resp. (,, 𝐷, 𝐽 , 𝛾)). The Hilbert

space  is then a bimodule over  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 , or equivalently a left 𝑒

-module, with 𝑒 = ⊕𝑟
𝑖,𝑗=1𝑀𝑛𝑖 ⊗𝑀 ◦

𝑛𝑗 . This

implies that  decomposes into orthogonal components ̂𝐧𝑖𝐧𝑗 ∶= 𝜄𝑖(𝑖)𝜄𝑗 (𝑗 )◦, so that  = ⊕𝑟
𝑖,𝑗=1 ̂𝐧𝑖𝐧𝑗 .

Denote by C𝑚⊤
(
⊤

for transpose) the 𝑚-dimensional C-vector space of row vectors, which is a natural right

𝑀𝑚-module, and denote by C𝑚◦
its corresponding left 𝑀 ◦

𝑚-module (C𝑚 ≃ C𝑚◦
as column vectors by the formal

map C𝑚 ∋ 𝜉 ↦ 𝜉 ◦ ∈ C𝑚◦
and, for any 𝑎 ∈ 𝑀𝑚 and 𝜉 ∈ C𝑚

, 𝑎◦𝜉 ◦ ∶= (𝜉⊤𝑎)⊤).

Let us recall the following result:

Lemma 4.2.3 For any integers 𝑛, 𝑚 ≥ 1, the irreducible left 𝑀𝑛 ⊗𝑀 ◦
𝑚-representations are isomorphic to C𝑛 ⊗ C𝑚◦.

Proof The proof relies on the identification of 𝑀𝑛 ⊗ 𝑀 ◦
𝑚 = End(C𝑛) ⊗ End(C𝑚◦) with End(C𝑛 ⊗ C𝑚◦) by the

natural map End(C𝑛) ⊗ End(C𝑚◦) ∋ 𝜓𝑛 ⊗ 𝜓◦
𝑚 ↦ [𝜉𝑛 ⊗ 𝜉 ◦𝑚 ↦ 𝜓𝑛(𝜉𝑛) ⊗ 𝜓◦

𝑚(𝜉 ◦𝑚)], which implies that 𝑀𝑛 ⊗ 𝑀 ◦
𝑚 is

isomorphic to a matrix algebra over the vector space C𝑛 ⊗ C𝑚◦
. Then one applies the usual result on irreducible

left representations of matrix algebras.

Let 𝜇𝑖𝑗 be the multiplicity of the irrep 𝐧𝑖𝐧𝑗 ∶= C𝑛𝑖 ⊗ C𝑛𝑗 ◦
of 𝑀𝑛𝑖 ⊗ 𝑀 ◦

𝑛𝑗 and so of 𝑒
, in . Then one has

̂𝐧𝑖𝐧𝑗 ≃ 𝐧𝑖𝐧𝑗 ⊗C𝜇𝑖𝑗 ≃ C𝑛𝑖 ⊗C𝜇𝑖𝑗 ⊗C𝑛𝑗 ◦
, so that  ≃ ⊕𝑟

𝑖,𝑗=1 C𝑛𝑖 ⊗C𝜇𝑖𝑗 ⊗C𝑛𝑗 ◦
. In the following, we suppose that a

unitary map has been chosen such that ̂𝐧𝑖𝐧𝑗 = C𝑛𝑖 ⊗ C𝜇𝑖𝑗 ⊗ C𝑛𝑗 ◦
.

4

Denote by 𝐽0 the anti-unitary operator on C𝑛 ⊗ C𝜇 ⊗ C𝑚◦
defined by 𝜉 ⊗ 𝜎 ⊗ 𝜂◦ ↦ 𝜉 ⊗ 𝜎 ⊗ 𝜂̄◦ where 𝜉 is the

entrywise complex conjugated vector (the same for 𝜎 and 𝜂̄◦). Then 𝐽0 extends naturally to  as an anti-unitary

operator which preserves each summand ̂𝐧𝑖𝐧𝑗 and one has 𝐽−10 = 𝐽0. Notice that 𝐽0 depends on the canonical

basis for the vector spaces C𝑛
, C𝜇

and C𝑚
(But any fixed orthonormal basis could have been used). We will use

the natural notation 𝐽0(𝜓) = 𝜓 for any 𝜓 ∈ . Define 𝐾 ∶= 𝐽 𝐽0, so that 𝐽 = 𝐾𝐽0. For any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ , define

𝑎⊤ = ⊕𝑟
𝑖=1 𝑎⊤𝑖 where 𝑎⊤𝑖 = 𝐽0𝑎∗𝑖 𝐽0 is the transpose of 𝑎𝑖 ∈ 𝑀𝑛𝑖 . For any operator 𝐴 on , define 𝐴 ∶= 𝐽0𝐴𝐽0 (if 𝐴 is

written as a matrix, 𝐴 is the entrywise complex conjugate matrix, whence the notation).

Proposition 4.2.4 𝐾 is a unitary operator on  such that 𝐾𝐾 = 𝐾𝐾 = 𝜖 and 𝑎𝐾(𝜓)𝑏 = 𝐾(𝑏⊤𝜓𝑎⊤) for any 𝑎, 𝑏 ∈ 
and 𝜓 ∈ .

For any 1 ≤ 𝑖, 𝑗 ≤ 𝑟 , 𝐾(̂𝐧𝑖𝐧𝑗 ) = ̂𝐧𝑗𝐧𝑖 , so that ̂𝐧𝑖𝐧𝑗 and ̂𝐧𝑗𝐧𝑖 have the same dimension, i.e. they correspond to
the same multiplicity 𝜇𝑖𝑗 = 𝜇𝑗𝑖.

There is a linear map 𝐿𝑖𝑗 ∶ C𝜇𝑖𝑗 → C𝜇𝑗𝑖 satisfying 𝐿†𝑖𝑗 = 𝐿−1𝑖𝑗 and 𝐿𝑗𝑖𝐿𝑖𝑗 = 𝐿𝑗𝑖𝐿𝑖𝑗 = 𝜖, such that, for any
𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ∈ ̂𝐧𝑖𝐧𝑗 , 𝐾(𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ) = 𝜂𝑗 ⊗ 𝐿𝑖𝑗 (𝜎𝑖𝑗 ) ⊗ 𝜉 ◦𝑖 .

Proof Since 𝐾 is the composition of two anti-unitary operators on , it is unitary. One has 𝐾 = 𝐽0(𝐽 𝐽0)𝐽0 = 𝐽0𝐽
so that 𝐾𝐾 = 𝐽 𝐽0𝐽0𝐽 = 𝐽 2 = 𝜖 and the same for 𝐾𝐾 = 𝜖.

For any 𝑎 ∈  and 𝜓 ∈ , one has 𝜓𝑎 = 𝐽𝑎∗𝐽−1𝜓 = 𝐾𝐽0𝑎∗𝐽0𝐾−1𝜓. From this we get two relations. For the

first one, replace 𝜓 by 𝐾𝜓 to get (𝐾𝜓)𝑎 = 𝐾𝐽0𝑎∗𝐽0𝜓, which can be written as (𝐾𝜓)𝑎 = 𝐾(𝑎⊤𝜓). For the second

one, act on both sides with 𝐾−1 = 𝜖 𝐽0𝐾𝐽0 (consequence of 𝐽 2 = 𝜖) to get 𝜖 𝐽0𝐾𝐽0(𝜓𝑎) = 𝜖 𝐽0𝑎∗𝐽0𝐽0𝐾𝐽0𝜓, that we

can simplify as 𝐾𝐽0(𝜓𝑎) = 𝑎∗𝐾𝐽0𝜓. Replacing 𝑎∗ by 𝑎 and 𝜓 by 𝜓, one gets 𝐾(𝜓𝑎⊤) = 𝑎(𝐾𝜓). These two relations

can be combined as 𝑎𝐾(𝜓)𝑏 = 𝐾(𝑏⊤𝜓𝑎⊤) for any 𝑎, 𝑏 ∈  and 𝜓 ∈ . The map 𝐾−1
satisfies the same relation.

Consider an element 𝜓 which has only a non-zero component 𝜉𝑖⊗𝜎𝑖𝑗 ⊗𝜂◦𝑗 ∈ ̂𝐧𝑖𝐧𝑗 and consider a unique non-

zero component 1𝑛𝑖 for 𝑎 and a unique non-zero component 1𝑛𝑗 for 𝑏. Then 𝐾(𝜉𝑖⊗𝜎𝑖𝑗⊗𝜂◦𝑗 ) = 𝑏⊤𝐾(𝜉𝑖⊗𝜎𝑖𝑗⊗𝜂◦𝑗 )𝑎⊤ ∈
̂𝐧𝑗𝐧𝑖 , so that 𝐾(̂𝐧𝑖𝐧𝑗 ) ⊂ ̂𝐧𝑗𝐧𝑖 . Using the same line of reasoning with 𝐾−1

, one gets 𝐾−1(̂𝐧𝑖𝐧𝑗 ) ⊂ ̂𝐧𝑗𝐧𝑖 , and so

𝐾(̂𝐧𝑖𝐧𝑗 ) = ̂𝐧𝑗𝐧𝑖 .

One can use a slight adaptation of Lemma 4.2.1 to show that there is a family of linear maps 𝐿𝑖𝑗 ∶ C𝜇𝑖𝑗 → C𝜇𝑗𝑖

such that 𝐾 decomposes as 𝐾(𝜉𝑖 ⊗𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ) = 𝜂𝑗 ⊗ 𝐿𝑖𝑗 (𝜎𝑖𝑗 ) ⊗ 𝜉 ◦𝑖 for any 𝜉𝑖 ∈ C𝑛𝑖
, 𝜎𝑖𝑗 ∈ C𝜇𝑖𝑗

, and 𝜂◦𝑗 ∈ C𝑛𝑗 ◦
. It is easy

4
The factor C𝜇𝑖𝑗

has been positioned in the middle to put forward the bimodule structure. In the proof of Prop. 15.1.19 it will be convenient

to change this convention.
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to show that 𝐾†
decomposes along the family of linear maps 𝐿†𝑖𝑗 ∶ C𝜇𝑗𝑖 → C𝜇𝑖𝑗

and 𝐿†𝑖𝑗 = 𝐿−1𝑖𝑗 since 𝐾 is unitary.

The relations 𝐿𝑗𝑖𝐿𝑖𝑗 = 𝐿𝑗𝑖𝐿𝑖𝑗 = 𝜖 are consequence of 𝐾𝐾 = 𝐾𝐾 = 𝜖 since 𝐾 decomposes along the 𝐿𝑖𝑗 ’s.

Corollary 4.2.5 For any 𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ∈ 𝐧𝑖𝐧𝑗 , one has 𝐽 (𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ) = 𝜂̄𝑗 ⊗ 𝐿𝑖𝑗 (𝜎𝑖𝑗 ) ⊗ 𝜉 ◦𝑖 .

Lemma 4.2.6 Let 𝜎 ∈ C𝜇𝑖𝑖 be an eigenvector of 𝐿𝑖𝑖 with eigenvalue 𝜆 ∈ 𝑈(1). Then 𝜎 is also an eigenvector with
eigenvalue 𝜖 𝜆.

Proof The complex conjugate of the relation 𝐿𝑖𝑖𝜎 = 𝜆𝜎 gives 𝐿𝑖𝑖𝜎 = 𝜆𝜎, which is equivalent to 𝜖 𝐿−1𝑖𝑖 𝜎 = 𝜆−1𝜎,

so that 𝐿𝑖𝑖𝜎 = 𝜖 𝜆𝜎.

Proposition 4.2.7 In the even case, there is a family of linear maps 𝓁𝑖𝑗 ∶ C𝜇𝑖𝑗 → C𝜇𝑖𝑗 such that 𝛾(𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ) =
𝜉𝑖 ⊗ 𝓁𝑖𝑗 (𝜎𝑖𝑗 ) ⊗ 𝜂◦𝑗 for any 𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ∈ ̂𝐧𝑖𝐧𝑗 . This family satisfies 𝓁†𝑖𝑗 = 𝓁𝑖𝑗 and 𝓁2𝑖𝑗 = 1.

Proof For any 𝜓 ∈  and any 𝑎, 𝑏 ∈ , one has 𝛾(𝑎𝜓𝑏) = 𝑎𝛾(𝜓)𝑏. Then one can use a slight adaptation of

Lemma 4.2.1 to deduce the family of linear maps 𝓁𝑖𝑗 . The relations satisfied by this family of linear maps are

consequence of the relations satisfied by 𝛾 .

Lemma 4.2.8 (Technical results on the families 𝑳𝒊𝒋 and 𝓁𝒊𝒋) The families of linear maps 𝐿𝑖𝑗 and 𝓁𝑖𝑗 satisfy the
following properties for any 𝑖, 𝑗 .

1. For any 𝑝 = 1, 2, let 𝜎𝑝𝑖𝑗 ∈ C𝜇𝑖𝑗 and define 𝜎𝑝𝑗𝑖 ∶= 𝐿𝑖𝑗 (𝜎
𝑝
𝑖𝑗 ) ∈ C𝜇𝑗𝑖 . Then ⟨𝜎1

𝑗𝑖, 𝜎2
𝑗𝑖⟩C𝜇𝑗𝑖 = ⟨𝜎2

𝑖𝑗 , 𝜎1
𝑖𝑗 ⟩C𝜇𝑖𝑗 . In particular,

𝜎𝑝𝑖𝑗 and 𝜎𝑝𝑗𝑖 have the same norm and 𝜎1
𝑖𝑗 and 𝜎2

𝑖𝑗 are orthogonal if and only if 𝜎1
𝑗𝑖 and 𝜎2

𝑗𝑖 are orthogonal.
2. 𝐿𝑖𝑗 ◦ 𝓁̄𝑖𝑗 = 𝜖′′𝓁𝑗𝑖 ◦ 𝐿𝑖𝑗 .
3. Let 𝜎𝑖𝑗 ∈ C𝜇𝑖𝑗 be an eigenvector of 𝓁𝑖𝑗 with eigenvalue 𝑠𝑖𝑗 = ±1. Then 𝜎𝑗𝑖 ∶= 𝐿𝑖𝑗 (𝜎𝑖𝑗 ) ∈ C𝜇𝑗𝑖 is an eigenvector of
𝓁𝑗𝑖 with eigenvalue 𝑠𝑗𝑖 = 𝜖′′𝑠𝑖𝑗 .

Proof These relations are straightforward computations using previously proved properties on the families of

linear maps 𝐿𝑖𝑗 and 𝓁𝑖𝑗 .
1. One has ⟨𝜎1

𝑗𝑖, 𝜎2
𝑗𝑖⟩ = ⟨𝐿𝑖𝑗 (𝜎1

𝑖𝑗 ), 𝐿𝑖𝑗 (𝜎2
𝑖𝑗 )⟩ = ⟨𝜎1

𝑖𝑗 , 𝜎2
𝑖𝑗 ⟩ = ⟨𝜎1

𝑖𝑗 , 𝜎2
𝑖𝑗 ⟩ = ⟨𝜎2

𝑖𝑗 , 𝜎1
𝑖𝑗 ⟩.

2. The relation 𝐽 𝛾(𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ) = 𝜖′′𝛾𝐽 (𝜉𝑖 ⊗ 𝜎𝑖𝑗 ⊗ 𝜂◦𝑗 ) can be written has 𝜂̄𝑗 ⊗ 𝐿𝑖𝑗 (𝓁𝑖𝑗 (𝜎𝑖𝑗 )) ⊗ 𝜉 ◦𝑖 = 𝜖′′𝜂̄𝑗 ⊗
𝓁𝑗𝑖(𝐿𝑖𝑗 (𝜎𝑖𝑗 )) ⊗ 𝜉 ◦𝑖 for any 𝜉𝑖, 𝜎𝑖𝑗 , and 𝜂◦𝑗 . This implies the relation.

3. Using 𝓁𝑖𝑗 (𝜎𝑖𝑗 ) = 𝑠𝑖𝑗𝜎𝑖𝑗 , one gets 𝓁𝑗𝑖(𝜎𝑗𝑖) = 𝓁𝑗𝑖(𝐿𝑖𝑗 (𝜎𝑖𝑗 )) = 𝜖′′𝐿𝑖𝑗 (𝓁̄𝑖𝑗 (𝜎𝑖𝑗 )) = 𝜖′′𝐿𝑖𝑗 (𝓁𝑖𝑗 (𝜎𝑖𝑗 )) = 𝜖′′𝑠𝑖𝑗𝐿𝑖𝑗 (𝜎𝑖𝑗 ) =
𝜖′′𝑠𝑖𝑗𝜎𝑗𝑖.

Let us now describe, in the two following propositions, the key constructions which lead to the classification

of finite real spectral triples. The content of these two propositions will be useful in Sect. 15.1.2 (mainly in

Prop. 15.1.19).

Proposition 4.2.9 Consider the odd case situation.
For 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟 , there is an orthonormal basis {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of C𝜇𝑖𝑗 such that 𝜎𝑝𝑗𝑖 = 𝐿𝑖𝑗 (𝜎

𝑝
𝑖𝑗 ) and 𝜎𝑝𝑖𝑗 = 𝜖 𝐿𝑗𝑖(𝜎

𝑝
𝑗𝑖) for

any 𝑖 < 𝑗 and any 1 ≤ 𝑝 ≤ 𝜇𝑗𝑖 = 𝜇𝑖𝑗 .
For 𝑖 = 𝑗 and 𝜖 = 1 (𝐾𝑂-dimensions 1 and 7), there is an orthonormal basis {𝜎𝑝𝑖𝑖 }1≤𝑝≤𝜇𝑖𝑖 of C𝜇𝑖𝑖 such that 𝜎𝑝𝑖𝑖 =

𝐿𝑖𝑖(𝜎
𝑝
𝑖𝑖).

For 𝑖 = 𝑗 and 𝜖 = −1 (𝐾𝑂-dimensions 3 and 5), 𝜇𝑖𝑖 is even and there is an orthonormal basis {𝜎𝑝𝑖𝑖 }1≤𝑝≤𝜇𝑖𝑖 of C𝜇𝑖𝑖

such that 𝜎2𝑎
𝑖𝑖 = 𝐿𝑖𝑖(𝜎2𝑎−1

𝑖𝑖 ) and 𝜎2𝑎−1
𝑖𝑖 = 𝜖 𝐿𝑖𝑖(𝜎2𝑎

𝑖𝑖 ) for any 𝑎 = 1,… , 𝜇𝑖𝑖/2.

Proof For 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 , consider any orthonormal basis {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of C𝜇𝑖𝑗
and define 𝜎𝑝𝑗𝑖 ∶= 𝐿𝑖𝑗 (𝜎

𝑝
𝑖𝑗 ) ∈ C𝜇𝑗𝑖

for

all 1 ≤ 𝑝 ≤ 𝜇𝑗𝑖 = 𝜇𝑖𝑗 . These vectors form an orthonormal basis satisfying the relations.

For 𝑖 = 𝑗 , the proof is an adaptation of the proof in (Wigner, 1960) or (van Suijlekom, 2015, Lemma 3.8) to

the endomorphism 𝐿𝑖𝑖 of C𝜇𝑖𝑖
. Let us simplify the notations by replacing C𝜇𝑖𝑖

by C𝜇
and 𝐿𝑖𝑖 by 𝐿. Recall that

𝐿𝐿 = 𝐿𝐿 = 𝜖.

Suppose 𝜖 = 1. Consider any vector 𝑣 ∈ C𝜇
of norm 1 and define 𝜎1 = 𝑐(𝑣 + 𝐿(𝑣̄)) if 𝐿(𝑣̄) ≠ −𝑣 and 𝜎1 = 𝑖𝑣 if

𝐿(𝑣̄) = −𝑣, where 𝑐 ∈ R is chosen so that 𝜎1
is of norm 1. Then 𝐿(𝜎1) = 𝑐(𝐿(𝑣̄) + 𝐿(𝐿(𝑣̄))) = 𝑐(𝐿(𝑣̄) + 𝑣) = 𝜎1

in

the first situation, while 𝐿(𝜎1) = −𝑖𝐿(𝑣̄) = 𝑖𝑣 = 𝜎1
in the second situation. Consider now a second vector 𝑣′ ∈ C𝜇
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of norm 1 that is orthogonal to 𝜎1
. Then, by Point 1 in Lemma 4.2.8, 𝐿(𝑣̄′) is also orthogonal to 𝐿(𝜎1) = 𝜎1

. This

implies that 𝜎2
, defined from 𝑣′ as 𝜎1

was defined from 𝑣, is orthogonal to 𝜎1
. Iterating this construction, one

gets an orthonormal basis of C𝜇
with the required property.

Suppose 𝜖 = −1. Let 𝜎1 ∈ C𝜇
be any vector of norm 1, and define 𝜎2 ∶= 𝐿(𝜎1), which, by Lemma 4.2.8, has

norm 1. Then ⟨𝜎2, 𝜎1⟩ = ⟨𝐿(𝜎1), 𝜎1⟩ = −⟨𝐿(𝜎1), 𝐿(𝐿(𝜎1))⟩ = −⟨𝜎1, 𝐿(𝜎1)⟩ = −⟨𝜎1, 𝜎2⟩ = −⟨𝜎1, 𝜎2⟩ = −⟨𝜎2, 𝜎1⟩ so

that ⟨𝜎2, 𝜎1⟩ = 0. Consider now a vector 𝜎3
of norm 1 which is orthogonal to 𝜎1

and 𝜎2
, and let 𝜎4 ∶= 𝐿(𝜎3).

From the previous computation, we know that the norm 1 vector 𝜎4
is orthogonal to 𝜎3

. One has ⟨𝜎4, 𝜎1⟩ =
−⟨𝐿(𝜎3), 𝐿(𝐿(𝜎1))⟩ = −⟨𝜎3, 𝐿(𝜎1)⟩ = −⟨𝜎3, 𝜎2⟩ = −⟨𝜎2, 𝜎3⟩ = 0. So 𝜎4

is orthogonal to 𝜎1
, and then of 𝜎2 = 𝐿(𝜎1).

Iterating this construction, one gets a basis of C𝜇
with the required property, and it shows also that 𝜇 is even.

Proposition 4.2.10 Consider the even case situation.

For 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑟 , there is an orthonormal basis {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of C𝜇𝑖𝑗 of eigenvectors of 𝓁𝑖𝑗 with eigenvalues 𝑠𝑝𝑖𝑗 = ±1
such that 𝜎𝑝𝑗𝑖 = 𝐿𝑖𝑗 (𝜎

𝑝
𝑖𝑗 ) and 𝜎𝑝𝑖𝑗 = 𝜖 𝐿𝑗𝑖(𝜎

𝑝
𝑗𝑖) for any 𝑖 < 𝑗 , and 𝑠𝑝𝑗𝑖 = 𝜖′′𝑠𝑝𝑖𝑗 .

For 𝑖 = 𝑗 , 𝜖 = 1, and 𝜖′′ = 1 (𝐾𝑂-dimension 0), there is an orthonormal basis {𝜎𝑝𝑖𝑖 }1≤𝑝≤𝜇𝑖𝑖 of C𝜇𝑖𝑖 of eigenvectors of
𝓁𝑖𝑖 with eigenvalues 𝑠𝑝𝑖 = ±1 such that 𝜎𝑝𝑖𝑖 = 𝐿𝑖𝑖(𝜎

𝑝
𝑖𝑖).

For 𝑖 = 𝑗 and 𝜖 = −1 (𝐾𝑂-dimensions 2 and 4), or 𝜖 = 1 and 𝜖′′ = −1 (𝐾𝑂-dimension 6), 𝜇𝑖𝑖 is even and there
is an orthonormal basis {𝜎𝑝𝑖𝑖 }1≤𝑝≤𝜇𝑖𝑖 of C𝜇𝑖𝑖 of eigenvectors of 𝓁𝑖𝑖 with eigenvalues 𝑠𝑝𝑖 = ±1 such that 𝜎2𝑎

𝑖𝑖 = 𝐿𝑖𝑖(𝜎2𝑎−1
𝑖𝑖 ),

𝜎2𝑎−1
𝑖𝑖 = 𝜖 𝐿𝑖𝑖(𝜎2𝑎

𝑖𝑖 ), and 𝑠2𝑎𝑖 = 𝜖′′𝑠2𝑎−1𝑖 for any 𝑎 = 1,… , 𝜇𝑖𝑖/2. In 𝐾𝑂-dimensions 2 and 6, one can choose the basis
such that 𝑠2𝑎𝑖 = +1 and 𝑠2𝑎−1𝑖 = −1.

Proof We will use results from Lemma 4.2.8. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 , the orthonormal basis {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of C𝜇𝑖𝑗

constructed above can be chosen such that it is a basis of eigenvectors of 𝓁𝑖𝑗 , so that 𝓁𝑖𝑗 (𝜎
𝑝
𝑖𝑗 ) = 𝑠𝑝𝑖𝑗𝜎

𝑝
𝑖𝑗 with 𝑠𝑝𝑖𝑗 = ±1.

Then the vectors 𝜎𝑝𝑗𝑖 ∶= 𝐿𝑖𝑗 (𝜎
𝑝
𝑖𝑗 ) ∈ C𝜇𝑗𝑖

form a basis of eigenvectors of 𝓁𝑗𝑖 for the eigenvalues 𝑠𝑝𝑗𝑖 = 𝜖′′𝑠𝑝𝑖𝑗 .

Let us consider the cases for 𝑖 = 𝑗 . As before, we will omit the index 𝑖 to simplify the notations.

For 𝜖 = −1 (𝐾𝑂-dimensions 2 and 4), the basis {𝜎𝑝}1≤𝑝≤𝜇 of C𝜇
in Prop. 4.2.9 can be constructed step by

step such that, for any 𝑎 = 1,… , 𝜇/2, 𝓁(𝜎2𝑎−1) = 𝑠2𝑎−1𝜎2𝑎−1
with 𝑠2𝑎−1 = ±1 so that 𝜎2𝑎 = 𝐿(𝜎2𝑎−1) satisfies

𝓁(𝜎2𝑎) = 𝑠2𝑎𝜎2𝑎
with 𝑠2𝑎 = 𝜖′′𝑠2𝑎−1.

For 𝜖 = 1, let us consider two situations. Firstly, suppose 𝜖′′ = 1 (𝐾𝑂-dimension 0). In the construction of

the basis for the corresponding situation in Prop. 4.2.9, we can choose, step by step, the vectors 𝑣𝑝 in such a way

that 𝓁(𝑣𝑝) = 𝑠𝑝𝑣𝑝 for 𝑠𝑝 = ±1 and 𝑣𝑝 is orthogonal to the 𝜎𝑝′ already defined for 𝑝′ < 𝑝 (It is easy to check that

𝓁 restricts to an endomorphism on the orthogonal complement of the 𝜎𝑝′ for 𝑝′ < 𝑝). Then, since 𝜖′′ = 1, 𝐿(𝑣̄𝑝)
is also an eigenvectors of 𝓁 with the same eigenvalue, the associated vector 𝜎𝑝 = 𝑐(𝑣𝑝 + 𝐿(𝑣̄𝑝)) or 𝜎𝑝 = 𝑖𝑣𝑝 is an

eigenvector of 𝓁 with eigenvalue 𝑠𝑝 (and, as in the proof of Prop. 4.2.9, they are two by two orthogonal). So the

orthonormal basis {𝜎𝑝}1≤𝑝≤𝜇 is a basis of eigenvectors of 𝓁.

Secondly, suppose 𝜖′′ = −1 (𝐾𝑂-dimension 6). Here, we cannot use the same argument as before since 𝐿(𝑣̄)
would be an eigenvector of 𝓁with eigenvalue−𝑠. Let 𝜎1 ∈ C𝜇

be any eigenvector of 𝓁 of norm 1with eigenvalue 𝑠1,
and define 𝜎2 ∶= 𝐿(𝜎1), which is an eigenvector of 𝓁 with eigenvalue 𝑠2 = −𝑠1. Then ⟨𝜎2, 𝜎1⟩ = ⟨𝓁(𝜎2), 𝓁(𝜎1)⟩ =
−⟨𝜎2, 𝜎1⟩ so that ⟨𝜎2, 𝜎1⟩ = 0 and therefore 𝜎1

and 𝜎2
are orthogonal. Consider now a vector 𝜎3

of norm 1
which is orthogonal to 𝜎1

and 𝜎2
and which is an eigenvector of 𝓁 with eigenvalue 𝑠3. Then 𝜎4 ∶= 𝐿(𝜎3) is an

eigenvector of 𝓁 with eigenvalue 𝑠4 = −𝑠3, which, by the previous computation, is orthogonal to 𝜎3
. It is also

orthogonal to 𝜎1
: ⟨𝜎4, 𝜎1⟩ = ⟨𝐿(𝜎3), 𝜎1⟩ = ⟨𝐿(𝐿(𝜎3)), 𝐿(𝜎1)⟩ = ⟨𝜎3, 𝜎2⟩ = ⟨𝜎3, 𝜎2⟩ = 0 and so is also orthogonal to

𝜎2 = 𝐿(𝜎1). Iterating this construction, one first shows that 𝜇 is even and one gets an orthonormal basis of C𝜇

with eigenvectors of 𝓁 such that 𝜎2𝑎 = 𝐿(𝜎2𝑎−1) for any 𝑎 = 1,… , 𝜇/2.

In 𝐾𝑂-dimensions 2 and 6, one has 𝜖′′ = −1. At each step of the construction of the couples of basis vectors

𝜎2𝑎−1
and 𝜎2𝑎

, one is such that 𝑠𝑝 = +1 and the other 𝑠𝑝 = −1, so that, up to a permutation (𝜎2𝑎−1, 𝜎2𝑎) ⇝
(𝜎2𝑎, 𝜖𝜎2𝑎−1), one can force 𝑠2𝑎 = +1 and 𝑠2𝑎−1 = −1.

We are now in position to use these results to decompose in a suitable way the Hilbert space  into irreps.

We already know that  = ⊕𝑟
𝑖,𝑗=1 ̂𝐧𝑖𝐧𝑗 and that ̂𝐧𝑖𝐧𝑗 = C𝑛𝑖 ⊗ C𝜇𝑖𝑗 ⊗ C𝑛𝑗 ◦

.
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Consider first the odd case. For any 1 ≤ 𝑖, 𝑗 ≤ 𝑟 , define the set Γ(0)𝐧𝑖𝐧𝑗 ∶= {(𝑖, 𝑝, 𝑗) ∣ 1 ≤ 𝑝 ≤ 𝜇𝑖𝑗 }, and for

any 𝑣 = (𝑖, 𝑝, 𝑗) ∈ Γ(0)𝐧𝑖𝐧𝑗 , define 𝜆, 𝜌 ∶ Γ(0)𝐧𝑖𝐧𝑗 → Λ as 𝜆(𝑣) ∶= 𝐧𝑖 and 𝜌(𝑣) ∶= 𝐧𝑗 . Notice that 𝜇𝑖𝑗 = #Γ(0)𝐧𝑖𝐧𝑗 . Define

𝜅 ∶ Γ(0)𝐧𝑖𝐧𝑗 → Γ(0)𝐧𝑗𝐧𝑖 as 𝜅(𝑣) ∶= (𝑗, 𝑝, 𝑖) for any 𝑣 = (𝑖, 𝑝, 𝑗). Using the orthonormal basis {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of C𝜇𝑖𝑗
given in

Prop. 4.2.9, let us define

𝑣 ∶= Span{𝜉𝑖 ⊗ 𝜎𝑝𝑖𝑗 ⊗ 𝜂◦𝑗 ∣ 𝜉𝑖 ∈ C𝑛𝑖
and 𝜂◦𝑗 ∈ C𝑛𝑗 ◦} ≃ 𝐧𝑖𝐧𝑗 (4.2.1)

Then, for 𝑖 < 𝑗 , 𝐽 (𝜉𝑖 ⊗ 𝜎𝑝𝑖𝑗 ⊗ 𝜂◦𝑗 ) = 𝜂̄𝑗 ⊗ 𝐿𝑖𝑗 (𝜎
𝑝
𝑖𝑗 ) ⊗ 𝜉 ◦𝑖 = 𝜂̄𝑗 ⊗ 𝜎𝑝𝑗𝑖 ⊗ 𝜉 ◦𝑖 ∈ 𝜅(𝑣) for any 𝜉𝑖 ∈ C𝑛𝑖

, 𝜂◦𝑗 ∈ C𝑛𝑗 ◦
, and 𝑣 ∈ Γ(0)𝐧𝑖𝐧𝑗 ,

while 𝐽 (𝜉𝑗 ⊗ 𝜎𝑝𝑗𝑖 ⊗ 𝜂◦𝑖 ) = 𝜂̄𝑖 ⊗ 𝐿𝑗𝑖(𝜎
𝑝
𝑗𝑖) ⊗ 𝜉 ◦𝑗 = 𝜖 𝜂̄𝑖 ⊗ 𝜎𝑝𝑖𝑗 ⊗ 𝜉 ◦𝑗 ∈ 𝜅(𝑣) for any 𝜉𝑗 ∈ C𝑛𝑗

, 𝜂◦𝑖 ∈ C𝑛𝑖◦
and 𝑣 ∈ Γ(0)𝐧𝑗𝐧𝑖 . In the

same way, for 𝑖 = 𝑗 and 𝜖 = 1, 𝐽 (𝜉𝑖 ⊗ 𝜎𝑝𝑖 ⊗ 𝜂◦𝑖 ) = 𝜂̄𝑖 ⊗ 𝜎𝑝𝑖 ⊗ 𝜉 ◦𝑖 ∈ 𝜅(𝑣) where 𝜅(𝑣) = 𝑣 ∈ Γ(0)𝐧𝑖𝐧𝑖 , and for 𝜖 = −1, with

𝑣 = (𝑖, 2𝑎 − 1, 𝑖) for any 𝑎 = 1,… , 𝜇𝑖𝑖/2, 𝐽 (𝜉𝑖 ⊗ 𝜎2𝑎−1
𝑖 ⊗ 𝜂◦𝑖 ) = 𝜂̄𝑖 ⊗ 𝜎2𝑎

𝑖 ⊗ 𝜉 ◦𝑖 ∈ 𝜅(𝑣) where 𝜅(𝑣) = (𝑖, 2𝑎, 𝑖) ∈ Γ(0)𝐧𝑖𝐧𝑖 .

Since 𝐽 2 = 𝜖, the maps 𝜅 ∶ Γ(0)𝐧𝑖𝐧𝑗 → Γ(0)𝐧𝑗𝐧𝑖 induce an involution on

Γ(0) ∶= ∪𝑟𝑖,𝑗=1Γ
(0)
𝐧𝑖𝐧𝑗

with the property 𝜆 ◦ 𝜅 = 𝜌 (and so 𝜌 ◦ 𝜅 = 𝜆), where 𝜆, 𝜌 ∶ Γ(0) → Λ are defined in an obvious way. This

involution encodes some properties of the family of maps 𝐿𝑖𝑗 , and so of the map 𝐽 ∶ 𝑣 → 𝜅(𝑣) for any 𝑣 ∈ Γ(0).
We have also an orthogonal decomposition of  along irreps:

 = ⊕𝑣∈Γ(0) 𝑣

To fully reconstruct 𝐽 , one needs to keep track of the parity of 𝑝 for 𝑖 = 𝑗 and 𝐾𝑂-dimensions 2, 3, 4, or 5 (𝜖 = −1):

this is done below.

Knowing the 𝐾𝑂-dimension (in particular the value of 𝜖) and 𝜅, one can reconstruct the map 𝐽 , up to a unitary

on  defining the explicit identifications 𝑣 = 𝐧𝑖𝐧𝑗 for (𝐧𝑖, 𝐧𝑗 ) = (𝜆(𝑣), 𝜌(𝑣)), since then, for any 𝜉𝑖 ⊗ 𝜂◦𝑗 ∈ 𝑣 ,

one has 𝐽 (𝜉𝑖⊗𝜂◦𝑗 ) = 𝜂̄𝑗⊗𝜉 ◦𝑖 ∈ 𝜅(𝑣) for 𝑖 < 𝑗 and 𝐽 (𝜉𝑖⊗𝜂◦𝑗 ) = 𝜖 𝜂̄𝑗⊗𝜉 ◦𝑖 ∈ 𝜅(𝑣) for 𝑖 > 𝑗 . For 𝑖 = 𝑗 and 𝐾𝑂-dimensions

1 and 7, one has 𝐽 (𝜉𝑖 ⊗ 𝜂◦𝑖 ) = 𝜂̄𝑖 ⊗ 𝜉 ◦𝑖 .

In the even case, one can use in the same way the orthonormal basis given in Prop. 4.2.10. Then one ob-

tains the same results concerning the map 𝐽 , in particular the existence of 𝜅 with the same properties and the

reconstruction formulas for 𝐽 for 𝑖 ≠ 𝑗 and 𝑖 = 𝑗 in 𝐾𝑂-dimension 0. But, in addition, by Prop. 4.2.7, the basis

in Prop. 4.2.10 are composed of eigenvectors of 𝛾 , and by construction, 𝛾 is then just the multiplication by ±1
on every 𝑣 . As before, we define a grading decoration of 𝑣 as 𝑠(𝑣) = ±1, which is the eigenvalue of the associ-

ated eigenvector. Notice then that 𝑠 ◦ 𝜅 = 𝜖′′𝑠 as can be checked in Prop. 4.2.10. The grading decoration 𝑠 fully

determines 𝛾 .

In 𝐾𝑂-dimensions 2, 3, 4, or 5, we have to take into account the parity of 𝑝 when 𝑖 = 𝑗 . We define a parity

decoration of 𝑣 by 𝜒(𝑣) = 0 if 𝑝 is odd and 𝜒(𝑣) = 1 if 𝑝 is even. Then for 𝑖 = 𝑗 and 𝐾𝑂-dimensions 2, 3, 4, 5, or 6,

one has 𝐽 (𝜉𝑖 ⊗ 𝜂◦𝑖 ) = 𝜖𝜒(𝑣)𝜂̄𝑖 ⊗ 𝜉 ◦𝑖 (since 𝜖 = 1 in 𝐾𝑂-dimension 6, this relation holds also in that case). In all these

𝐾𝑂-dimensions, 𝜇𝑖𝑖 is even and since 𝜒(𝜅(𝑣)) = 1 − 𝜒(𝑣), half of the 𝑣 in Γ(0)𝐧𝑖𝐧𝑖 are decorated by 0 (resp. 1).

The Dirac operator decomposes along the orthogonal subspaces 𝑣 as 𝐷𝑒 ∶ 𝑣1 → 𝑣2 where we define

𝑒 ∶= (𝑣1, 𝑣2) ∈ Γ(0) × Γ(0). With 𝑒 ∶= (𝑣2, 𝑣1), 𝐷† = 𝐷 is equivalent to 𝐷𝑒 = 𝐷†
𝑒 . Moreover, let (𝐧𝑖𝑘 , 𝐧𝑗𝑘 ) =

(𝜆(𝑣𝑘), 𝜌(𝑣𝑘)) for 𝑘 = 1, 2, then the first-order condition, written with 𝑎 = ⊕𝑟
𝑖=1 𝜆𝑖1𝑛𝑖 and 𝑏 = ⊕𝑟

𝑖=1 𝜇𝑖1𝑛𝑖 , implies

(𝜆𝑖1 − 𝜆𝑖2)(𝜇𝑗1 − 𝜇𝑗2)𝐷𝑒 = 0, so that 𝐷𝑒 = 0 when 𝑖1 ≠ 𝑖2 and 𝑗1 ≠ 𝑗2, or, equivalently, 𝐷𝑒 can be non-zero only

when 𝑖1 = 𝑖2 or 𝑗1 = 𝑗2. With 𝑏 as before and any 𝑎, one gets [𝑎𝑖1 , 𝐷𝑒] = 0 in the situation 𝑖1 = 𝑖2 and 𝑗1 ≠ 𝑗2,
and [𝑎◦𝑗1 , 𝐷𝑒] = 0 in the situation 𝑖1 ≠ 𝑖2 and 𝑗1 = 𝑗2. Using the same arguments as in the proof of Prop. 4.2.4, one

gets that 𝐷𝑒 reduces to a linear map 𝐷𝑅,𝑒 ∶ C𝑛𝑗1 ◦ → C𝑛𝑗2 ◦ when 𝑖1 = 𝑖2 and 𝑗1 ≠ 𝑗2 as 𝐷𝑒 = 1𝑛𝑖1 ⊗ 𝐷𝑅,𝑒 and to a

linear map 𝐷𝐿,𝑒 ∶ C𝑛𝑖1 → C𝑛𝑖2 when 𝑖1 ≠ 𝑖2 and 𝑗1 = 𝑗2 as 𝐷𝑒 = 𝐷𝐿,𝑒 ⊗ 1𝑛𝑗1 . When 𝑖1 = 𝑖2 and 𝑗1 = 𝑗2, nothing

general can be said about 𝐷𝑒 . Finally, define 𝜅(𝑒) ∶= (𝜅(𝑣1), 𝜅(𝑣2)), then the relation 𝐽𝐷 = 𝜖′𝐷𝐽 implies that

𝐷𝑒 and 𝐷𝜅(𝑒) are related by 𝐽 and 𝜖′ (an explicit expression is given below). In particular, they are both zero or

non-zero at the same time. As before, in the even case, the relation 𝛾𝐷 = −𝐷𝛾 implies that 𝐷𝑒 is non-zero only

when 𝑠(𝑣2) = −𝑠(𝑣1).

Let us abstract the construction using a decorated graph Γ, together with Λ and the 𝐾𝑂-dimension 𝑑.
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1. The set of vertex Γ(0) of the graph is equipped with two maps 𝜆, 𝜌 ∶ Γ(0) → Λ × Λ, that we write as a single

map 𝜋𝜆𝜌 ∶= 𝜆 × 𝜌, and define 𝑖(𝑣) ∶= 𝑖 and 𝑗(𝑣) ∶= 𝑗 for 𝜋𝜆𝜌(𝑣) = (𝐧𝑖, 𝐧𝑗 ).
2. There is an involution 𝜅 ∶ Γ(0) → Γ(0) such that 𝜆 ◦ 𝜅 = 𝜌 and such that 𝜅(𝑣) = 𝑣 when 𝜆(𝑣) = 𝜌(𝑣) in

𝐾𝑂-dimensions 0, 1, and 7.

3. For any vertex 𝑣 ∈ Γ(0) with 𝜋𝜆𝜌(𝑣) = (𝐧𝑖, 𝐧𝑗 ), define 𝑣 ∶= 𝜆(𝑣)𝜌(𝑣) = C𝜆(𝑣)⊗C𝜌(𝑣)◦ = C𝑛𝑖 ⊗C𝑛𝑗 ◦
. The element

(𝐧𝑖, 𝐧𝑗 ) ∈ Λ × Λ is a decoration of the vertex 𝑣.
4. Define the set Γ(0)𝐧𝑖𝐧𝑗 ∶= {𝑣 ∈ Γ(0) ∣ 𝜋𝜆𝜌(𝑣) = (𝐧𝑖, 𝐧𝑗 )} = 𝜋−1

𝜆𝜌 (𝐧𝑖, 𝐧𝑗 ) and 𝜇𝑖𝑗 ∶= #Γ(0)𝐧𝑖𝐧𝑗 .

5. Define the map 𝜅̂𝑣 ∶ 𝑣 → 𝜅(𝑣) as 𝜅̂𝑣(𝜉 (𝑣) ⊗ 𝜂(𝑣)◦) = 𝜂(𝑣) ⊗ 𝜉 (𝑣)◦ for any 𝜉 (𝑣) ∈ C𝜆(𝑣)
and 𝜂(𝑣)◦ ∈ C𝜌(𝑣)◦

. Notice

that 𝜅̂𝜅(𝑣) ◦ 𝜅̂𝑣 = Id𝑣 .

6. If the 𝐾𝑂-dimension is even, a second decoration of each vertex is the assignment of a grading map 𝑠(𝑣) = ±1
such that 𝑠 ◦ 𝜅 = 𝜖′′𝑠.

7. If the 𝐾𝑂-dimension is 2, 3, 4, 5, or 6, then 𝜇𝑖𝑖 is even and another decoration of each vertex 𝑣 ∈ Γ(0)𝐧𝑖𝐧𝑖 is the

parity 𝜒(𝑣) = 0, 1 such that 𝜒(𝜅(𝑣)) = 1 − 𝜒(𝑣), so that half of the vertices in Γ(0)𝐧𝑖𝐧𝑖 are decorated by the value

0 or 1.

8. For any 𝑣 ∈ Γ(0), define

𝜖(𝑣, 𝑑) ∶=

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

1 for 𝑖(𝑣) < 𝑗(𝑣),
𝜖 for 𝑖(𝑣) > 𝑗(𝑣),
1 for 𝑖(𝑣) = 𝑗(𝑣) and 𝑑 = 0, 1, 7,
𝜖𝜒(𝑣) for 𝑖(𝑣) = 𝑗(𝑣) and 𝑑 = 2, 3, 4, 5, 6.

(4.2.2)

One can check that 𝜖(𝑣, 𝑑)𝜖(𝜅(𝑣), 𝑑) = 𝜖 for any 𝑣 ∈ Γ(0).
9. For every 𝑒 = (𝑣1, 𝑣2) ∈ Γ(0) × Γ(0), let 𝑒 ∶= (𝑣2, 𝑣1) and 𝜅(𝑒) ∶= (𝜅(𝑣1), 𝜅(𝑣2)).

10. The space Γ(1) ⊂ Γ(0) × Γ(0) of edges of the graph are couples 𝑒 = (𝑣1, 𝑣2) such that:

a. 𝜆(𝑣1) = 𝜆(𝑣2) or 𝜌(𝑣1) = 𝜌(𝑣2) (or both);

b. 𝑠(𝑣2) = −𝑠(𝑣1) in the even case;

c. there is a non-zero linear map 𝐷𝑒 ∶ 𝑣1 → 𝑣2 such that:

i.𝐷𝑒 = 𝐷†
𝑒 ∶ 𝑣2 → 𝑣1 ;

ii.𝐷𝜅(𝑒) = 𝜖′𝜖(𝑣1, 𝑑)𝜖(𝑣2, 𝑑) 𝜅̂𝑣2𝐽0𝐷𝑒𝐽0𝜅̂𝜅(𝑣1) ∶ 𝜅(𝑣1) → 𝜅(𝑣2);

iii. For 𝜆(𝑣1) = 𝜆(𝑣2) and 𝜌(𝑣1) ≠ 𝜌(𝑣2), 𝐷𝑒 = 1𝑛𝑖1 ⊗ 𝐷𝑅,𝑒 with 𝐷𝑅,𝑒 ∶ C𝑛𝑗1 ◦ → C𝑛𝑗2 ◦;

iv. For 𝜆(𝑣1) ≠ 𝜆(𝑣2) and 𝜌(𝑣1) = 𝜌(𝑣2), 𝐷𝑒 = 𝐷𝐿,𝑒 ⊗ 1𝑛𝑗1 with 𝐷𝐿,𝑒 ∶ C𝑛𝑖1 → C𝑛𝑖2 .

Then 𝐷𝑒 defines a decoration of 𝑒.

For any 𝜉𝑖⊗𝜂◦𝑗 ∈ 𝑣1 , it is convenient to write𝐷𝑒(𝜉𝑖1⊗𝜂◦𝑗1) = 𝐷(1)
𝐿,𝑒𝜉𝑖1⊗𝐷

(2)
𝑅,𝑒𝜂◦𝑗1 as a sumless Sweedler-like notation

5

where there is an implicit summation over finite families of operators 𝐷(1)
𝐿,𝑒 ∶ C𝑛𝑖1 → C𝑛𝑖2 and 𝐷(2)

𝑅,𝑒 ∶ C𝑛𝑗1 ◦ → C𝑛𝑗2 ◦.

In the previous points 10.c.iii and 10.c.iv, this decomposition is explicitly given (summation reduced to a single

term).

One can see Γ(0) as a set of points on top of the points Λ × Λ, where the (down) projection is 𝜋𝜆𝜌 . Each point

in Γ(0)𝐧𝑖𝐧𝑗 = 𝜋−1
𝜆𝜌 (𝐧𝑖, 𝐧𝑗 ) is a copy of the irrep 𝐧𝑖𝐧𝑗 . So, instead of considering (𝐧𝑖, 𝐧𝑗 ) as a decoration of 𝑣 , one

could treat 𝑣 as an element of the “fiber” Γ(0)𝐧𝑖𝐧𝑗 on top of (𝐧𝑖, 𝐧𝑗 ). The edges in Γ(1), once projected in Λ×Λ, connect

points horizontally, vertically or self-connect a (projected) point. A convenient representation of Γ is then a 3-

dimensional set of points decorated by some values (as seen above) and linked by decorated lines, see Fig. 4.1.

These data determine a real (odd or even) spectral triple. As explained in Sect. 4.2.1, the algebra  is de-

termined by Λ. A vertex 𝑣 ∈ Γ(0) defines the irrep 𝑣 with multiplicity 𝜇(𝑣) ∶= #Γ(0)𝜋𝜆𝜌(𝑣), so the Hilbert space is

 ∶= ⊕𝑣∈Γ(0) 𝑣 = ⊕𝑟
𝑖,𝑗=1 ̂𝐧𝑖𝐧𝑗 with ̂𝐧𝑖𝐧𝑗 = C𝑛𝑖 ⊗C𝜇𝑖𝑗 ⊗C𝑛𝑗 ◦

. Any operator 𝐴 on  decomposes into linear maps

𝐴𝑣1
𝑣2 ∶ 𝑣1 → 𝑣2 .

5
This notation is usual for computations on coalgebras.
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Figure 4.1: A Krajewski diagram for the algebra 𝑀𝑛1 ⊕𝑀𝑛2 ⊕𝑀𝑛3 in the 3-dimensional representation explained

in the text. The component 𝐷𝑒1 (resp. 𝐷𝑒2 ) of the Dirac operator joins two irreps with same 𝜆 (resp. same 𝜌); 𝐷𝑒3
and 𝐷𝑒4 join irreps with the same 𝜆 and 𝜌, but 𝐷𝑒4 can be non-zero only in the odd case. The maps 𝜅̂ realize the

axial symmetry defined by the dotted line in the Λ lattice.

As before, we can describe the representation 𝜋 along these two decompositions. For any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ , any

𝑣 = (𝑖, 𝑝, 𝑗), and any𝜓 = ⊕𝑣∈Γ(0) 𝜓𝑣 = ⊕𝑟
𝑖,𝑗=1 𝜉𝑖⊗𝜎

𝑝
𝑖𝑗⊗𝜂◦𝑗 with𝜓𝑣 ∈ 𝑣 = C𝜆(𝑣)⊗C𝜌(𝑣)◦

and 𝜉𝑖⊗𝜎
𝑝
𝑖𝑗⊗𝜂◦𝑗 ∈ C𝑛𝑖⊗C𝜇𝑖𝑗⊗C𝑛𝑗 ◦

,

one has 𝜋(𝑎)𝜓 = ⊕𝑣∈Γ(0) 𝑎𝑖(𝑣)𝜓𝑣 = ⊕𝑟
𝑖,𝑗=1(𝑎𝑖𝜉𝑖) ⊗ 𝜎𝑝𝑖𝑗 ⊗ 𝜂◦𝑗 where 𝑎𝑖(𝑣)𝜓𝑣 is the multiplication of the matrix 𝑎𝑖(𝑣) on the

left factor of C𝜆(𝑣) ⊗ C𝜌(𝑣)◦
and 𝑎𝑖𝜉𝑖 is the usual matrix multiplication on C𝑛𝑖

. In other words, the decomposition

of the operator 𝜋(𝑎) along the 𝑣’s is

𝜋(𝑎)𝑣1𝑣2 = 𝑎𝑖(𝑣1)𝛿
𝑣1
𝑣2 ∶ 𝑣1 → 𝑣2 (4.2.3)

(where 𝛿𝑣1𝑣2 is the Kronecker symbol). In the real case, for any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ , any 𝑏 = ⊕𝑟

𝑗=1 𝑏𝑗 ∈ , and any

𝜓𝑣 ∈ 𝑣 , one has 𝑎𝑏◦𝜓𝑣 = 𝑎𝑖(𝑣)𝑏◦𝑗(𝑣)𝜓𝑣 ∈ 𝑣 (𝜋 omitted) where 𝑏◦𝑗(𝑣) acts on the right factor of C𝜆(𝑣) ⊗ C𝜌(𝑣)◦
(see

footnote 4.2.2). A similar relation holds on C𝑛𝑖 ⊗ C𝜇𝑖𝑗 ⊗ C𝑛𝑗 ◦
.

In the even case, 𝛾 is determined as the multiplication by the decoration 𝑠(𝑣) = ±1 on 𝑣 . The real operator

𝐽 is reconstructed by the family of maps

𝐽𝑣 ∶= 𝜖(𝑣, 𝑑) 𝐽0𝜅̂𝑣 = 𝜖(𝑣, 𝑑) 𝜅̂𝑣𝐽0 ∶ 𝑣 → 𝜅(𝑣)

or, equivalently, with 𝑖 = 𝑖(𝑣) and 𝑗 = 𝑗(𝑣), and any 𝜉𝑖 ⊗ 𝜂◦𝑗 ∈ 𝑣 ,

𝐽 (𝜉𝑖 ⊗ 𝜂◦𝑗 ) = 𝜖(𝑣, 𝑑) 𝜂̄𝑗 ⊗ 𝜉 ◦𝑖 ∈ 𝜅(𝑣).

In other words, 𝐽 𝑣1𝑣2 = 𝜖(𝑣1, 𝑑)𝛿𝑣1𝜅(𝑣1) 𝐽0𝜅̂𝑣1 .

The Dirac operator is reconstructed by the decorations 𝐷𝑒 of the edges 𝑒 ∈ Γ(1). All the properties of a (even)

real spectral triple are encoded in the relations required above. One has 𝐽𝜅(𝑣)𝐽𝑣 = 𝜖(𝜅(𝑣), 𝑑)𝜖(𝑣, 𝑑)𝜅̂𝜅(𝑣)𝜅̂𝑣𝐽 20 =
𝜖. In the same way, 𝐷𝜅(𝑒)𝐽𝑣1 = 𝜖′𝜖(𝑣1, 𝑑)𝜖(𝑣2, 𝑑) 𝜅̂𝑣2𝐽0𝐷𝑒𝐽0𝜅̂𝜅(𝑣1)(𝜖(𝑣1, 𝑑) 𝜅̂𝑣1𝐽0) = 𝜖′𝜖(𝑣2, 𝑑) 𝜅̂𝑣2𝐽0𝐷𝑒 while 𝐽𝑣2𝐷𝑒 =
(𝜖(𝑣2, 𝑑) 𝐽0𝜅̂𝑣2)𝐷𝑒 , so that 𝐽𝐷 = 𝜖′𝐷𝐽 . Finally, 𝐽𝑣𝛾𝑣 = 𝑠(𝑣)𝜖(𝑣, 𝑑)𝐽0𝜅̂𝑣 while 𝛾𝜅(𝑣)𝐽𝑣 = 𝑠(𝜅(𝑣))𝜖(𝑣, 𝑑)𝐽0𝜅̂𝑣 so that 𝐽 𝛾 =
𝜖′′𝛾𝐽 .

Let us describe the Dirac operator for the decomposition  = ⊕𝑟
𝑖,𝑗=1 ̂𝐧𝑖𝐧𝑗 . Introduce an orthonormal basis

for each C𝜇𝑖𝑗
and label all these basis vectors in the union of all the C𝜇𝑖𝑗

’s as {𝜎𝑣}𝑣∈Γ(0) : for any 𝑣 ∈ Γ(0)𝐧𝑖𝐧𝑗 , 𝜎𝑣 is an
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element of an orthonormal basis of C𝜇𝑖𝑗
. We use the identification 𝑣 = Span{𝜉 ⊗ 𝜎𝑣 ⊗ 𝜂◦ ∣ 𝜉 ∈ C𝜆(𝑣), 𝜂◦ ∈ C𝜇(𝑣)◦}.

For any 𝑒 = (𝑣1, 𝑣2) ∈ Γ(1) with 𝑣1 ∈ Γ(0)𝐧𝑖1𝐧𝑗1
and 𝑣2 ∈ Γ(0)𝐧𝑖2𝐧𝑗2

, define 𝐷̂𝑒 ∶ ̂𝐧𝑖1𝐧𝑗1 → ̂𝐧𝑖2𝐧𝑗2 , for any 𝜉 ∈ C𝑛𝑖1 and

𝜂◦ ∈ C𝑛𝑗1 ◦, as

𝐷̂𝑒(𝜉 ⊗ 𝜎𝑣 ⊗ 𝜂◦) =

{
0 if 𝑣 ≠ 𝑣1
(𝐷(1)

𝐿,𝑒𝜉) ⊗ 𝜎𝑣2 ⊗ (𝐷(2)
𝑅,𝑒𝜂◦) if 𝑣 = 𝑣1

Then define

𝐷𝑖1𝑗1
𝑖2𝑗2 ∶= ∑

𝑒=(𝑣1 ,𝑣2)∈Γ(1)

𝑣1∈Γ(0)𝐧𝑖1 𝐧𝑗1
,𝑣2∈Γ(0)𝐧𝑖2 𝐧𝑗2

𝐷̂𝑒 ∶ ̂𝐧𝑖1𝐧𝑗1 → ̂𝐧𝑖2𝐧𝑗2

The operators 𝐷𝑖1𝑗1
𝑖2𝑗2 can be collected in an operator 𝐷 ∶  →  which is self-adjoint.

One can write a specific version of (11.6.2) for the decomposition  = ⊕𝑣∈Γ(0) 𝑣 in terms of the operators 𝐷𝑒
for 𝑒 ∈ Γ(1). For any ω ∈ 𝛀𝑛

𝑈 () ⊂ T𝑛 which decomposes along a sum of typical terms ⊕𝑟
𝑖1 ,…,𝑖𝑛−1=1 (𝑎

0
𝑖 ⊗ 𝑎1𝑖1 ⊗

⋯ ⊗ 𝑎𝑛−1𝑖𝑛−1 ⊗ 𝑎𝑛𝑗 )
𝑟
𝑖,𝑗=1 ∈ T𝑛 and any 𝑣0, 𝑣𝑛 ∈ Γ(0), one has

𝜋𝐷(ω)𝑣𝑛𝑣0 = ∑
all terms at the

(𝑖(𝑣0), 𝑖(𝑣𝑛)) entry in ω

∑𝑣1 ,…,𝑣𝑛−1∈Γ(0) 𝑎
0
𝑖(𝑣0)𝐷(𝑣1 ,𝑣0)𝑎

1
𝑖(𝑣1)𝐷(𝑣2 ,𝑣1) ⋯

⋯𝑎𝑛−1𝑖(𝑣𝑛−1)𝐷(𝑣𝑛 ,𝑣𝑛−1)𝑎
𝑛
𝑖(𝑣𝑛) ∶ 𝑣𝑛 → 𝑣0 (4.2.4)

In this formula, one supposes 𝐷(𝑣𝑖+1 ,𝑣𝑖) = 0 when (𝑣𝑖+1, 𝑣𝑖) ∉ Γ(1).

A complete basis for any 𝑖, 𝑗 = 1, … , 𝑟 , let {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 be an orthonormal basis of C𝜇𝑖𝑗
(for instance as in

Prop. 4.2.9 or 4.2.10), to which we associate the irreps 𝑣 defined as in (4.2.1) for any 𝑣 = (𝑖, 𝑝, 𝑗) ∈ Γ(0)𝐧𝑖𝐧𝑗 . One can

then fix an orthonormal basis {𝑒𝑖𝑗 ,𝛼 = 𝜉 (1)𝑖,𝛼 ⊗ 𝜂◦(2)𝑗 ,𝛼 }1≤𝛼≤𝑛𝑖𝑛𝑗 (sumless Sweedler-like notation) of C𝑛𝑖 ⊗ C𝑛𝑗 ◦
. Let

Γ̃(0)𝐧𝑖𝐧𝑗 ∶= Γ(0)𝐧𝑖𝐧𝑗 × {1, … , 𝑛𝑖𝑛𝑗 } and Γ̃(0) ∶= ∪𝑟𝑖,𝑗=1Γ̃
(0)
𝐧𝑖𝐧𝑗

Then for any 𝑣̃ = (𝑣, 𝛼) ∈ Γ̃(0)𝐧𝑖𝐧𝑗 , let 𝑒𝑣̃ ∶= 𝜉 (1)𝑖,𝛼 ⊗ 𝜎𝑝𝑖𝑗 ⊗ 𝜂◦(2)𝑗 ,𝛼 ∈ 𝑣 . The family {𝑒𝑣̃}𝑣̃∈Γ̃(0) defines an orthonormal basis

of . We define 𝑣 ∶ Γ̃(0) → Γ(0) as 𝑣(𝑣̃) = 𝑣 for 𝑣̃ = (𝑣, 𝛼).
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Chapter 5

General Outline

Now that some conceptual and mathematical grounds have been established to understand the origin of NCG and

how it works on the mathematical side, let us try to see which meaning can be given to this noncommutativity,

as well as for the possible NCG that could accompany it. Since this part is not essential to understanding the

technical developments which follow and present assertions of a different nature than the other three parts, the

reader can directly move on to part III.

Welcome to those readers who have been willing to keep reading, before going any further, I would like to

warn you that the ideas developed here are personal ideas, not developed in the literature for most of them,

so there may not be a consensus about them. However, I have tried to make my statements as clear as possi-

ble, demonstrate them as much as possible, and support my statements with quotations to connect them to the

literature and other author’s thoughts, whenever possible.

I believe that a full-fledged mathematical physicist is both someone who can understand and develop the

mathematical structures that define our representations of reality, and make the theory clear at that level. But I

think that she/he must also be someone who understands how the mathematical objects in the theories relate to

observables, concrete physical objects, and how the intuitive/ontological picture we have of the world and the one

we get from its actual mathematical representation go on together. These are not passive philosophical claims,

because these clarifications are essential to guide the physicist’s vision and work in a meaningful way. Many

great scientists like Einstein, Bohr having done huge and fundamental contributions to physics are examples

of researchers who elaborate theories using something outside the scope of pure mathematical thinking, with

through experiments, philosophical principles about nature, intuitive feelings... That is why this part is for me a

very important and needed part that can be considered as an attempt to complete the mathematical presentation

made in the first part.

Attempting to give an ontology or an intuitive explanation of what NCG is, seems not to be an easy task. A

partial attempt in this direction was done in (Huggett, 2018). Intuitive objects such as the notion of a point no

longer make sense. But can we think of anything outside our usual spatial representations? Can we think of a

structure without assuming a set of points that supports our intuition? The NCG forces us to try to understand

the origin of the notion of point which appears so precious to our minds.

There is a certain line of interpretation of NCG, especially developed by A. Connes. These are mainly based

on wave considerations, with the wave number 𝑘 eigenvalue of the Laplacian formed by the Dirac operator, with

distance thought as linked with wave nature for example. This branch of interpretation happens to be based

on a formalism that reveals part of reality, and which is formally equivalent to matrix mechanics as Shrödinger

showed. In what follows, I will try to highlight the contributions that this dual approach of matrix mechanics

can provide to the interpretation of NCG.

NCG historically comes from the formalism used to describe QM, operator algebras acting on Hilbert spaces

through the Gelfand-Naimark theorem. The NC of observables in QM is seen as a kind of validation of the

potential relevance of the use of NCGs in physics. Usual NCGs are thought to correspond to the notion of

a “space” underlying an algebra of NC observables considered as continuous functions on this “space”. Then, if

there is an interpretation for the NC of observables in QM, this can lead to an interpretation for the corresponding
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NCG. There are two ways of looking at the QM formalism, more precisely concerning the 𝜓 state. These two

are the epistemic view and the ontic view. The first one postulates that 𝜓 is not relative to an objective physical

entity, but to a potential knowledge, the second one says that 𝜓 corresponds to a real physical state of nature.

If QM is an epistemic theory, then there are no objective geometrical consequences to be determined from its

formalism, because it does not refer to anything substantial. But if the theory is ontic, then (via Gelfand Naimark

theorem and the equivalence of categories between algebra and geometry highlighted in the first part) there must

be geometric consequences. This is why I will often talk about QM and the ways of interpreting it, to make sense

of what I will say in section 7.6 and chapter 9. We will see that the interpretation we have of the state (done

in section 7.5) permits us to deduce the interpretation of the NC in QM (done in 7.6), and finally to deduce an

interpretation of the deduced NCG (in chapter 9). This will be supported by the physical arguments given in

chapter 8 inducing that only observables can lead to the space-time’s geometric representation and that these

observables must therefore be taken to be more fundamental than space-time for the experimental physicist and

thinker.

First of all, in chapter 6 we will have a general discussion about what we mean by NC, NCG, and why NCG

remains largely unknown outside. I will then define some important notions on which the following statements

will be based. To introduce some useful terminology, we will first define what is a physical theory in chapter 7,

and what are the elements of reality. This will be necessary for the sections 7.5 and 8.1 where more advanced

considerations will come into play in the discussion. Then, I will give arguments to support these different points:

(I) The formalism of 𝐶∗
-algebras acting on Hilbert spaces encompasses both Classical and QM, thus offering a

framework to think about their unification (section 7.3).

(II) There are strong indications that the QM formalism refers directly to ontic states, and should therefore be

considered seriously as reflecting something objective i.e. this is not just an algorithm that leads to good

predictions (section 7.5).

(III) That point (II) induces that NC is linked to non-passivity of the measurement process, and therefore to con-

textual state change (section 7.6).

(IV) Observables are first to the notion of space-time. The space-time must not be thought of otherwise than as a

deduction of the observables that we collect (section 8.1).

(V) Giving objective existence to space-time structures seems to be misleading (section 8.2).

(VI) Geometry can be entirely algebraized, this procedure culminating with the Gelfand-Naimark theorem and

the birth of NCG. Leading to the fact that the structures of the algebra of observables and space-time contain

just as much information, and are equivalent (sections 8.3 and 8.4).

(VII) Because the formalism and observables of QM reflect something objective according to point (II), observables

are prior to space-time structures trough points (IV), (V) and (VI). We then have to understand what are the

geometric consequences behind this formalism. The first one concerns the origin of the notion of point, the

second one of connectedness, and the last one is about a length scale at which the notion of point no longer

stands, opening the door to NCG (chapter 9).

(VIII) Considering such a 𝜓-ontic interpretation, using (III) for the consequence on the interpretation of the NC of

observables, this implies that a natural interpretation of the NCG can be that of a measured geometry, this

measurement process being non-passive, changing the underlying notion of “point” coming from the pure

state undergoing change (section 9.5).

This can be viewed as three blocks, the first one containing points (I), (II), and (III) is about the ontic meaning of

the formalism of QM and the interpretation of the NC. The second includes points (IV), (V) and (VI) defends the

fact that observables are prior to space-time representation, and that they contain all the information we need.

The last one with points (VII) and (VIII) proposes to set up the consequences of the assumption of the first two

blocks, when their respective implications are put together.



Chapter 6

Why NCG remains in the Shadow for
Physicists?

It is surprising to note how unknown NCG is to researchers in theoretical physics, and to what extent the min-

imum basis of understanding of the subject remains out of reach for many of them. Indeed, it is not easy to

enter NCG, the language used is very limited to the mathematical one, and few efforts are made to go deeper

in the understanding. The specification of the supposed kind of NC with which NCG deals with, is not clarified

anywhere to my knowledge (which I will try to do in section 6.2 and afterward). Even worse, the terms chosen

to talk about NCG are often extensions of the terms of usual geometry, which have no more sense in this new

context, as we will see in section 6.3. What is a NCG? How to represent it? And why is it a relevant extension

of the geometric framework? Few simple answers are given to these elementary questions. It is not enough to

say that two observables do not commute and that mathematically this is written [𝑎, 𝑏] ≠ 0 to have a complete

intuition of what NCG is. One of the main problems in giving an intuition of the NCG lies in the notion of

point, which loses all meaning in NCG. Yet, this notion is the support of our intuition of “tangible” things, of our

representations of reality. So how do we go without it?

6.1 Are Sets and their Elements Primary Objects?

I know that the great Hilbert said “We will not be driven out of the

paradise Cantor has created for us” and I reply “I see no reason for

walking in!”

R. Hamming

Set theory is currently regarded as a foundation of mathematics. Most fields of mathematics are based on the

notion of a set of objects whose relations and operations are studied. The elements can be called points, vectors,

functions. . . This way of proceeding, by identifying objects, and looking at the notions they have between them,

is embedded in the innate functioning of our minds and provides us with a grid for reading the world, through

different systems of representations. When it comes to representations aimed at describing the “objective” phe-

nomena of the physical world, we formulate physical theories whose symbolic objects are related to physical

objects, phenomena and events. To describe our space-time, the representation is that of a space-time where the

set is called space, and the elements are called points, then points events. The same is true for many physical

theories, where the notions of set and element manifest themselves in different representations. But what is the

proof that this reading grid offers a complete picture of reality?

A hint of the insufficiency of this general framework of thinking is given by the non-commutativity of ob-

servables in QM. For instance, if we consider an operational way to define the elements of a set, according to

the determination of their properties (the experimental way being the only one accessible to us), and that these

properties no longer commute during this determination, it will no longer be possible to separate this set into
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sub-sets corresponding to these properties. Let’s take a simple example to illustrate this. If we consider that our

set is a box and its “elements” are particles that can have two shapes (square and spherical) corresponding to

the observable 𝑆 for shape, and two colors (red and blue) for the observable 𝐶, then if [𝐶, 𝑆] ≠ 0, it will not be

possible to partition this set into for example the set of red and spherical particles, the other set blue and square...

This is not possible because these particles cannot have the status of set elements for the properties defined by

𝑆 and 𝐶 jointly, and thus, the procedure for creating sets by specifying the properties of their elements becomes

meaningless, as we no longer obtain sets.

Thus, if the observables do not commute in QM, then we cannot classify “entities” as elements of a set for

these attributes taken together, as we only have access to observables, and we are not allowed to say more than

what observables tell us. Thus as shown in section 7.2, when partitioning the physical reality according to the

two properties deduced from these observables, the notion of phase space will no longer be appropriate. This

is intimately linked to the notions of realism/anti-realism, and therefore to the notion of the element of reality

which will be presented in section 7.5. We will see, with the arguments of section 8.1 and chapter 9 that for

the portion of these observables that leads to geometrical representations of the world, the usual geometrical

framework of space with points is no longer consistent. In this line of thought, another reason resulting from the

formalism of QM, in disagreement with the notion of element and thus of point, will be presented in section 9.2.

6.2 Which NC are we talking about?
What do we mean by non-commutativity? There is the answer of the mathematician, and the one of the physicist,

which are in some way connected.

For the mathematician, two notions of noncommutativities are encountered:

• The one of the groups, we will say non-abelian for groups. Most often, the concept of group is accompanied

by the concept of transformations of “spaces”.

• The one of algebras, we will say non-commutative for algebras. There is not necessarily the idea of trans-

formation.

As mentioned before, only NC of algebras is connected to NCG and more generally to NC mathematics. The one

of group is usually thought as linked to transformation, and if we consider a non-abelian group whose algebra

of function is commutative, then it will belong to commutative mathematics. This is important to note that no

mention of NC coordinates was given as input to define what is NCG, we only talk about NC of observables.

In the same way, the physicist encounters many non-commutativities in his everyday life. Some of them are

thought to be normal (classical), and others to be not. But what distinguishes normal non-commutativities from

those that could be attributed to an NCG for example? I haven’t found any clarification on this important subject.

I will try to give one in what follow.

Indeed, a question that naturally arises is: “of which non-commutativity are we talking about?” There are

various kinds of non-commutativities, in the present state of affairs, when they correspond to physical theories,

these can be classified into two categories:

1. Process-like NCs in space and time (Type 1 NCs): NCs of rotations, irreversible processes, operations on solids,

an example given by Connes being the operations of closing a bottle and filling it. These have extensions in

space-time.

2. NCs which are not attributed to processes in space and time (Type 2 NCs): they are perceived by the physicist

as belonging to processes without any spatial and temporal extension. They are thought (by many of them)

as intrinsic. These are the NC of observables in QM, of all quantized observables, or of non-abelian gauge

theories. These do not have extensions in space-time.

If this first category corresponds to classical intuition, it is to the second that the special character of the NCG is

clearly attributed, because these observables can well be, within the framework of these models, considered as

functions with values on “points” (in quantum mechanical models), thus without extension in space-time. We can

see that the categories for the physicist are linked to the ones of the mathematician since group action is thought

of as a kind of transformation in physics, and that algebras are connected to observables in physics, usually not
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thought of as transformation. We will see in sections 7.5 and 7.6 that according to Bohr, the NC in QM does not

represent a process in space and time. And that he is probably at the origin of this intuition concerning the NC

of observables in QM, as not being seen as processes in space-time.

We will see in section 7.6, that if Type 1 NCs are fully compatible with the realistic thesis (ontic interpretation)

of the state 𝜓, on the other hand, type 2 NCs induce an anti-realistic thesis regarding the nature of the symbolic

state, and thus (according to the PBR theorem that will be presented) of physical reality by rejecting the idea that

there is an element of physical reality, showing how NC and realism are intimately connected. We will discuss

to which extent the anti-realist hypothesis is actually tenable in section 7.5. In section 7.6, we will see that type

2 NCs are in fact type 1 NCs if one adopts an ontic interpretation of the state in QM.

6.3 The Problem of the Words used in NCG
The limits of my language mean the limits of my world.

L. Wittgenstein

The use of words that make good sense is important when trying to understand new pieces of knowledge.

Physics is not only about equations and mathematical structures, but about common language words and inter-

pretations, which guide our intuition and the elaboration of mathematical structures that are relevant to physics.

Words carry a heavy load of cultural connotations, and conceptual associations, both conscious and unconscious.

If we consider any conceptual framework (it could be a physical theory), it is associated with a set of words, sub-

jective representations, and epistemological concepts that provide us with a ’satisfactory’ understanding of that

framework. When considering an attempt to extend this framework, care must be taken with this set of words

associated with the old framework, when using them to understand the new one, as some of these concepts may

lose their meaning in the process. As has often happened in the history of physics, new words were invented to

accompany new perceptions whose relevance became obvious.

However, some physicists who have left an undeniable mark on the history of physics, such as Bohr, have

helped to mark a philosophical break with this tendency to create new words to understand physics, particularly

in quantum physics. Indeed, as J-M. Lévy-Leblond says in (Lévy-Leblond, 2000) Bohr considered the forms of

expressions of classical physics to be unsurpassable, and considered the desire to find forms of expression specific

to the quantum domain unattainable and condemnable. For him, it was an impossibility in principle. I find this

position extremely difficult to justify, as it appears both surprising and dogmatic. It is difficult to understand

why, unlike many great physicists in history who have encountered counter-intuitive phenomena, Bohr could

allow himself to create and spread the idea that these counter-intuitive characteristics were in fact fundamen-

tal principles (such as the principle of complementarity), expressible in the usual language of classical physics,

as counter-intuitive as they appear to us. Despite his influence, physicists of the following generations have

nevertheless created new words, specific to quantum physics, such as coherence, entanglement, beable... But

the influence of this epistemological break continues to strongly influence physics, and in particular it’s current

teaching, where there is no longer any question of having an understanding other than mathematical, the rest of

the modes of understanding knowledge being quite widely considered as subjective and illusory.

The creation of new words is a constitutive process of scientific knowledge, which must accompany the

emergence of new notions. This is why, starting from the usual geometrical framework, and all the words and

concepts that surround it, such as the notion of point, distance, coordinate, and differential structure... and

going towards the extension of this framework which is NCG, it will be necessary to pay particular attention

to the words chosen. I have noticed that some words commonly used in NCG do not really make sense in this

framework, and thus disturb its comprehension. Here are some of them:

• The notion of point, which remains present in the notion of finite 𝑛-point space, does not seem adequate.

These terms designate the finite Hilbert space on which the algebra is represented, but as we have seen with

the Gelfand-Naimark theorem, these elements only acquire the status of points for commutative algebras.

The fact that the elements in Hilbert spaces are intuitively considered as points comes from the status

they have in their use in QM, as classical outcomes, where they only acquire point status at the end of the
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measurement process. One suggestion is to call these elements pre-points, reserving point status for them

when the algebra living on them is or becomes commutative.

• In mathematics, a space is a set with remarkable additional structures, allowing us to define objects anal-

ogous to those of usual geometry. The elements can be called points, vectors, functions... The notion of

space does not make sense in NCG, since we can no longer think of this reality as based on the precious

notions of elements of a set, which are points in the geometry. The Hilbert space does not have the status

of a set (of points) from the point of view of the algebra, it only has one for the classical observer who

perceives well-defined outcomes, there is thus an error in terminology.

• In NCG, coordinates are replaced by generators of the algebra. As they do not commute they cannot be

simultaneously diagonalized and the space disappears. But people continue to name these generators co-

ordinates. Take a look at the meaning of the word coordinate, this comes from the Latin “co” for “together”

with “ordinare” for arranging or put in order. Therefore, the meaning of coordinate can be seen as “put

in relative order objects together” potentially with numbers. In NCG, neither objects/points nor order re-

lations are given in a non-contextual way because of the NC of the observables providing such numbers

used for this ordering. Therefore, this word has no meaning in NCG.

The first two points are deductions from the arguments presented in section 6.1 concerning the limitations of the

concepts of set and set’s elements (space and points respectively).

There are other obstacles to the conceptual understanding of NCG, and this at the basis of its study, as men-

tioned in section 6.2, about which NC is concerned. In addition, regarding the status of NCG in physics, most

physics researchers seem to consider, unconsciously at least, that NCG is a theory, just like loop quantum gravity

or string theory. However, NGC is not a theory, it is a framework of mathematical thoughts, in the same way

as Riemannian manifolds were. General relativity has not been called a theory of Riemannian manifolds, it is a

theory whose mathematical basis is based on this mathematical formalism. So it seems natural to me that re-

searchers who want to set up a theory of quantum gravitation should try to acquire some knowledge of NCG

as a framework, in order to try to understand how to quantify space-time in a relevant way. NCG should not

be considered as a theory, and therefore a rival theory, but rather as representing a mathematical framework for

formulating such theories. Because theories that want to go beyond general relativity must belong to a formalism

that is broader than that of Riemannian manifolds while having links with it since the theory of general relativity

must be found in the limiting cases of large scales and small energy densities.

The problem is probably even deeper than that, connected to the very structure of our language. In everyday

life, we identify objects, which can be thought of as elements of a set, and we attribute specific words to them.

But if the notion of element/object is no longer relevant, is it still possible to put words on things? If, as with

many words, they refer in their definitions to properties of the thing referred to, then to the extent that these

properties become contextual, the usual words lose their meaning. I don’t think there is anything in the structure

of our language to capture in essence the nature of an object whose properties are revealed contextually. But as

always, in science, we can create new words, and new meanings, to improve and extend our representations of

reality.

In section 9.5 I will bring a personal answer resulting from the arguments collected in the different sections

which will follow, as to how one can represent the NCG, and how one can come to get rid of the notions of

points, space, and coordinates, by changing one’s perspective, this change of perspective being among other

things allowed by the theorem of Gelfand-Naimark via the relation 1.2.1. I would finish this section by saying

that in my opinion, the words’ problem extends well beyond NCG, and contaminates many fields of the current

research in theoretical physics.



Chapter 7

NC and Physical Theories

In QM, three phenomena can be considered as really new. The principle of superposition, entanglement, and

the contextuality due to the NC of observables. All of these are due to the replacement (in QM) of functions by

operators. In this chapter, we will try to understand how NC can be understandable in the context of physical

theories (about nature), which change occurs at the level of the formalism, and what can this tells us about nature,

in the context of QM.

7.1 General Structure of Physical Theories

Experience without theory is blind, but theory without experience is mere

intellectual play.

I. Kant

A physical theory consists of two things: a mathematical structure M and a mapping of the elements of this

structure to the operational measurements process of the corresponding elements in nature. Given a physical

state 𝐸𝑅 (an element of reality), our representation in the mathematical structure M will be called the symbolic

state 𝜋M(𝐸𝑅). The measurement of an 𝐸𝑅 is the determination of the magnitude of something through the

comparison of this unknown quantity associated with the 𝐸𝑅 with a reference quantity of equivalent nature

(carried by the element of reality of the object being used as a measuring device), known as the measurement

unit. The informational content we get from the measurement of an 𝐸𝑅 is called an observable 𝑂(𝐸𝑅). The

physical theory must give the link between 𝜋M(𝐸𝑅) and the measurement process of the physical state 𝐸𝑅 such

represented:

𝜋M(𝐸𝑅) ⟶ Measurement of 𝐸𝑅 ⟶ 𝑂(𝐸𝑅)

If there is no such measurement process, the fact that 𝜋M(𝐸𝑅) is representing something real may be question-

able. We will call 𝑀𝑒𝑠(𝐸𝑅) the measurement process of the 𝐸𝑅, and 𝜋M(𝑀𝑒𝑠(𝐸𝑅)) it’s representation in the

mathematical structure M. 𝑂(𝐸𝑅) is the only thing that we see (as experimenters), 𝐸𝑅 and 𝑀𝑒𝑠(𝐸𝑅) being out of

reach. As the measurement process corresponds to an interaction, it can change the element of reality:

𝐸𝑅 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡⟶ 𝐸𝑅′

If the mode of observation of this 𝐸𝑅 is non-passive, that is to say, that it disturbs the 𝐸𝑅, then, we will have to

distinguish two notions of physical state, the one which would correspond to the physical state before measure-

ment and the one after the process, which we will call 𝐹(𝐸𝑅) = 𝐸𝑅′
. 𝐹(𝐸𝑅) can be seen as what we see, and 𝐸𝑅

as “what is” (before measurement). A physical theory can then be considered as describing what we observe, not

what is, but we often do this through shortcuts, because in our classical world, these two categories are confused.

We can complete this picture by specifying how and by which apparatus/observer the measurement is done since

observational content is both a function of the 𝐸𝑅 and of the measurement apparatus. We will encode all these
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data into one symbol, “𝑎” for apparatus (and then for observable in the framework of QM as we already see in

chapter 3). The previous notations become 𝑀𝑒𝑠𝑎(𝐸𝑅), 𝑂𝑎(𝐸𝑅) and 𝐹𝑎(𝐸𝑅).

The act of (classical) measurement should be seen as an interaction between physical objects and is therefore

the restriction to classical observers of a more complete picture of the interaction pattern underlying the mea-

surements process. This interaction extracts some information about the physical state, this information taking

the form of 𝜋M(𝐸𝑅). For some theories, 𝜋M(𝐸𝑅) does not describe directly an 𝐸𝑅 but the data we have on it, for

example statistical data. It’s also possible that 𝜋M(𝐸𝑅) can be an incomplete representation of an 𝐸𝑅, that some

hidden variable exists. It is also possible for some theories to reject the idea of an existing 𝐸𝑅.

In the special case of QM, 𝜋M(𝐸𝑅) will be replaced by 𝜓 or 𝜌 = |𝜓⟩⟨𝜓|, and 𝑂𝑎(𝐸𝑅) by 𝜆𝑖 with a probability

weight tr(𝑃𝜆𝑖𝜌) (or by 𝑂𝑎𝑣
𝑎 (𝜓) = ⟨𝜓|𝑎|𝜓⟩ = tr(𝑎𝜌) in average), for discrete spectrum as defined in (1.1.2). The

actual QM theory does not predict deterministically the outcome. There will be two manners to interpret its

mathematical structure M. Indeed, ontological models of QM can be categorized in two ways: the 𝜓-ontic way

and 𝜓-epistemic way. 𝜓-ontic models consider the symbolic state 𝜓 (𝜋M(𝐸𝑅)) as referring directly to objective

physical reality, whereas the 𝜓-epistemic ones consider it as simple knowledge of the observer on it. As we will

see in section 7.5, this second kind of interpretation can be split into two categories, the one that admits the

existence of 𝐸𝑅, and the one that rejects it. For models admitting the existence of a physical state (𝐸𝑅), we will

call 𝜓 its symbolic state’s representation.

Let’s 𝑎 and 𝑏 design two different measurement processes, potentially linked to different observables (or to

the same). Therefore, it is possible to encounter non-commutative relations like:

[ 𝑂𝑎 , 𝑂𝑏 ](𝐸𝑅) ≠ 0.

This means that [ 𝑂𝑎 , 𝑂𝑏 ](𝐸𝑅) = 𝑂𝑎(𝐹𝑏(𝐸𝑅)) − 𝑂𝑏(𝐹𝑎(𝐸𝑅)) ≠ 0. As said, the physicist doesn’t know 𝐸𝑅 (then

𝐹(𝐸𝑅)) nor the way in which a classical observation 𝑂(𝐸𝑅) is given from this 𝐸𝑅. Therefore an interpretation of

non-commutativity may concern either the link between 𝐸𝑅 and 𝐹(𝐸𝑅), or the way in which the measurement

process can transmit the information 𝑂(𝐸𝑅), in classical information format. We will see in section 7.6, that in

the framework of QM, an ontic interpretation of the symbolic state implies that 𝐸𝑅 ≠ 𝐹𝑎 or 𝑏(𝐸𝑅), putting the

interpretation at the level of the link between 𝐸𝑅 and 𝐹(𝐸𝑅), whereas for epistemic interpretation (defended by

Bohr), it is at the level of the transmission in a classical form that the interpretation must be centered.

The basic mathematical structures M corresponding to a huge part of the physical theories are in the field of

algebra. Algebra is the study of symbols and the rules for manipulating and combining these symbols in formulas,

the basic example being the product. These symbols will correspond directly or indirectly to elements of reality,

and the rules will correspond to how these elements of reality interact or combine into bigger systems. Therefore

it is interesting to play with different symbols (representations), or different products, like the universal/tensorial,

star, matrix, or inner products for example.

7.2 Classical Phase Space vs. Quantum Configuration Space
In general, a physical theory consists of four components: a convex state space 𝑆𝑝𝑠 , a real vector space of observ-

ables R, a function connecting these two spaces ⟨ , ⟩ ∶ 𝑆𝑝𝑠 ×R → R allowing to obtain the expected value of

the given observable for the state in question, and finally laws specifying the dynamics of the theory, such as a

Lagrangian, the Schrödinger or Dirac equation (Landsman, 1998).

In classical mechanics, the phase space 𝑆𝑝𝑠 is a space of points interpreted as the pure states of the system. The

mixed states are identified by measurement probabilities on 𝑆𝑝𝑠 . The observables of the theory are real functions

on the phase space 𝑆𝑝𝑠 , most often continuous and bounded. Thus the space R of observables can be taken to

be equal to 𝐶∞(𝑆𝑝𝑠 ,R), 𝐶0(𝑆𝑝𝑠 ,R) or 𝐶𝑏(𝑆𝑝𝑠 ,R). There is a function ⟨ , ⟩ ∶ 𝑆𝑝𝑠 ×R → R between the state space

𝑆𝑝𝑠 of measurement probabilities 𝜇 sur 𝑆𝑝𝑠 ,and the space R of observables 𝑓 :

⟨𝜇, 𝑓 ⟩ = 𝜇(𝑓 ) = ∫
𝑆
𝑑𝜇(𝜎)𝑓 (𝜎) ≡

∑𝐴𝑛𝑒−𝛽𝐸𝑛

𝑍
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with 𝑓 (𝜎) the value of the observable 𝑓 in the state 𝜎, and 𝑍 the partition function. This function gives the

expected value for the observable 𝑓 . In general, we have ⟨𝜇, 𝑓 ⟩2 ≠ ⟨𝜇, 𝑓 2⟩. For a pure state 𝜎, the measure is the

Dirac one and we have 𝛿𝜎(𝑓 ) = 𝑓 (𝜎) and ⟨𝜇, 𝑓 ⟩2 = ⟨𝜇, 𝑓 2⟩.

In QM, because of the commuting property of the canonically associated variable of the state space, this one

cannot be taken to be a state’s phase space anymore, it became a configuration space 𝑆𝑐𝑠 . The state space will

then consists of the set of all density matrices 𝜌̂, constructed on a given Hilbert space :

𝑆𝑐𝑠 = {𝜌̂ = |𝜓⟩⟨𝜓| , 𝜓 ∈ , ‖𝜓‖ = 1}

these are the pure states which are in correspondence with the unitary 𝜓 states. Similarly, the observables are

the bounded self-adjoint operators on . The function linking the states to the observables is given by:

⟨𝜌̂, 𝐴⟩ = 𝑇 𝑟(𝜌̂𝐴)

equal to (𝜓, 𝐴𝜓) for pure states. Thus we have respectively for the classical case, the statistical physics case and

the quantum case:

⟨𝜇, 𝑓 ⟩ = ∫
𝑆
𝑑𝜇(𝜎)𝑓 (𝜎) ↔ , 𝐴⟩ =

∑𝐴𝑛𝑒−𝛽𝐸𝑛

𝑍
↔ ⟨𝜌̂, 𝐴⟩ = 𝑇 𝑟(𝜌̂𝐴)

The main difference between quantum and classical systems is that for the quantum, the property ⟨𝜌̂, 𝐴⟩2 ≠
⟨𝜌̂, 𝐴2⟩, will generally be true, just as in the classical case, but it will be true even for pure states, with equality if

𝜓 is an eigenvector of 𝐴.

In general, a quantum system is obtained from a classical system by the quantization process described by

the linear application 𝑄 ∶  0
R → () with  0

R belonging to 𝐶∞(𝑆𝑝𝑠 ,), and () the space of self-adjoint

operators on . The quantization procedure therefore consists in establishing the relationship:

Classical observable 𝑓 ↔ Quantum observable 𝑄(𝑓 ).

It is interesting to observe that the set of classical observables is supposed to constitute 0(𝑀), where the

procedure for expressing this algebra as being based on 𝑀 can be provided by the Gelfand Naimark theorem.

Thus, the quantization of an observable belonging to 0(𝑀) will no longer be thought of as being based on

a manifold 𝑀 but as based on a Hilbert space, which makes the processes of QM impossible to visualize as

occurring in the usual space-time. The observables thus quantized cannot be thought of as living on a manifold.

Thus, given a locally compact manifold 𝑀 of Hausdorff kind, a “quantization” of 𝑀 consists in giving a Hilbert

space  and a positive map 𝑄 ∶ 0(𝑀) → (). When 𝑀 is compact, we want 𝑄(1𝑀 ) = 1. More detail on the

quantization procedure can be found in (Landsman, 2006).

7.3 KvN formalism and the Classical to Quantum Unification
Many physicists believe that the classical world must be thought of as an emergence of the quantum world, in

certain limit cases. For instance, with phenomena involving large numbers of particles, whose action goes far

beyond ℏ are in which decoherence occurs. Therefore, it seems interesting to find a formalism that deals with

both classical mechanics (i.e. classical observables) and QM (i.e. quantum observables). It is important to notice

that in the language of 𝐶∗
-algebra, these two algebras of observables correspond to:

• Algebra of continuous functions ∞(𝑀) over a particular topological space (Classical observables)

• Algebras of bounded operators () on a Hilbert space.

It turns out that such formalism was known very quickly after the development of QM. Indeed, the formalism

of 𝐶∗
-algebras and Hilbert spaces seems to be the most general framework to describe physics. A little-known

fact is that a reformulation of classical physics has been made in this framework so that it encompasses classical

and quantum in the same formalism. Koopman-von Neumann (KvN) mechanics, first presented by Koopman
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and von Neumann in 1931, provides a description of classical mechanics in terms of Hilbert spaces. It opens

up an interesting path for studying quantum-to-classical correspondence. An elementary point that emerges is

that only two distinctions between the classical and the quantum descriptions are needed to go from classical

to the actual formulation of the quantum formalism. This transition needs to add non-commutativity between

conjugate variables and a collapse to render observational content from the formalism. A good introduction to

the KvN formalism can be found in (Bondar et al., 2012)

On the algebraic level, such a reconciliation of quantum and classical concepts would result in particular in

a formalism that contains the explanation of the () → 𝐶∞(𝑀) transition. The problem is that we have a

Hilbert space on the one hand and a manifold on the other hand. Some physicists justify the fact that we cannot

represent ourselves quantum mechanical phenomena because they don’t live in a manifold 𝑀 (space-time) but

on a Hilbert space . However, as we have seen with the Gelfand-Naimark theorem, there is a way to find the

points of 𝑀 from the pure states of its algebra, when it becomes commutative. This last fact seems to offer a tool

for the path towards the unification of classical and quantum, and to recover 𝑀 from  and the algebra. More

detail on the quantum to classical correspondence can be found in (Landsman, 2006).

7.4 What is Measurement?
What is our contact with elements of reality? The basic answer is through measurement. We use to think of

measurement and observation as direct perception of what is, but measurement is an interaction, and this must

have consequences. Indeed empirical knowledge and knowledge in general are not knowledge of reality in itself,

but of our interaction with this reality. A measurement process can be seen as an interaction between the object

we want to measure and an object of reference, on which, the corresponding perturbations are interpreted as

caused by this interaction. It is therefore logical to perceive the measurement scheme as an interaction and then

a reading of the information, and not a direct reading of reality as it actually is. However, since usual classical

measurements correspond to interactions that disturb the object being measured in a negligible way, the intuition

that emerges is that we are observing reality as it is, which is a shortcut to phenomenal thinking, since the reality

is that we are observing a disturbance on our sensors and that this disturbance is the signature of what the object

is, after this interaction.

This is intuitive insofar as any measurement corresponds to a physical interaction where the disturbance

of the physical quantities of a reference object (photon, measuring device, etc.) testifies to the presence or of

information on the measured object. This perturbation is linked to conserved physical quantities, such as energy,

momentum, spin, or other quantum numbers. Thus, any change in the properties of the standard object will

necessarily be accompanied by an equivalent change in the physical state being measured. Or the minimal

element of reality for a measurement apparatus is the photon of light, which has at least a certain impulse... Thus,

the interaction that is intended to imprint on the mediator a trace testifying to the presence of the measured object

is always accompanied by the negative reflection of this interaction on the measured particle, thus an alteration

of the corresponding quantities, this is a fact that cannot be contested and which is fully inscribed in the usual

classical thinkings of the world. This argument has a simple consequence, it is that any measurement acquiring

non-trivial information disturbs the physical state, a proof of this last assertion can be found in (Busch, 2009),

where the author shows that any measurement process that acquires nontrivial information on a physical object

disturbs this object. This is quite classical reasoning. Then there is no instrument that leaves unchanged all states

of the system unless the associated observable is trivial.

The fact that measurement in QM cannot be so straightforwardly accompanied by the idea that it is an

observation of the world as it is is at the origin of the creation of the concept of beable introduced by J. Bell to

replace the notion of observable (Bell et al., 2001).
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7.5 Realism, Anti-Realism and the PBR Theorem

Naive realism leads to physics, and physics, if true, shows naive realism to

be false. Therefore naive realism, if true, is false; therefore it is false.

B. Russell

Many scientists have the conception that QM’s formalism does not describe reality (only give us experimental

results), they have accepted to be mystified, and resign themselves to say that 𝜓 and 𝑎 are formal tools that give

the measurement’s result, but without physical meaning, as they do not directly represent real objects. For them,

the only view is that of a Hilbert space, and physical objects do not live elsewhere than in this mathematical

representation, or perhaps that there are no real physical objects behind this description...

In this section, we will discuss the interpretations of QM’s formalism. It will be a question of conceptually

partitioning the set of possible ontological options, according to whether realism is admitted or not, whether

it is at the level of the physical state or of what is observed, and finally whether the theory is of the 𝜓-ontic

or 𝜓-epistemic type. The motivations and concepts behind these postures will be presented throughout. Then

arguments will be presented to isolate one of the possibilities of this classification as agreeing with the results of

QM’s experiments. This section is of special significance, as the conclusion reached by these arguments will be

a very important element of the argument presented in section 7.6, and for the conclusions drawn in chapter 9

on the interpretation of the NCG.

As mentioned before, two views can be adopted regarding the ontological nature of the objects described by

QM, the Realistic (R) and the Non-Realistic (NR) postures. To define the relevance of the notion of realism, let us

start by mentioning the original criteria that led to the conjecture of the existence of an element of reality. Two

criteria of reality can be defined:

1. The Repeatability Criterion (RC): It can be defined as follows (EPR paper (Einstein et al., 1935)): if without

disturbing the system in any way, we can predict with certainty (with a probability of 1) the value of a physical

quantity, then there is an element of physical reality 𝐸𝑅 corresponding to this physical quantity.

2. The Kickability Criterion (KC): If a reference system is disturbed in a way that is not understandable as its free

behavior, then we will say that something physically real has interacted with it, in other worlds, it possesses

a causal power.

Put like that, it is obvious that these realism criteria refer to 𝑂(𝐸𝑅), because it is a question about what we

observe. The NR view denies the existence of objective observed observable 𝑂(𝐸𝑅) before the measurement, if

RC is not checked, the R position is thus hardly tenable. The KC is a much less powerful criterion than the RC,

because its negation is not clearly definable, as the notion of free behavior is difficult to specify, and sometimes

a matter of convention. The non-verification of the KC is therefore not a direct refutation of the R position.

Remark 7.5.1 By element of reality (or equivalently physical state), we only refer to a piece of hypothetical

information “carried” by the physical entity in question. □

Remark 7.5.2 It is interesting to stress that (RC) assumes that the measurement process must be non-disturbing.

Thus, disproving the RC will require proving that no disturbance has been caused to the system during the

measurement. □

Remark 7.5.3 The (KC) is the physical principle at the heart of the very notion of measurement, as discussed

in section 7.4. □

Although the notion of realism was initially defined with observational results, it is important to distinguish

between the R/NR thesis which concerns the physical state (𝜓 in ontic models) itself (ER), and those that concern

the measurement result (𝑎𝜓 in ontic models for a given observable 𝑎), thus 𝑂(𝐸𝑅). We are therefore left with

four categories of realism posture, the one about the physical state, which will be called SR and SNR thesis (for

State Realist or State Non-Realist), and the ones concerning observations will be called OR and ONR thesis. SNR

trivially induces ONR, but the converse is not true as we will see with the NC observables. The state and obser-

vation views on realism are sometimes confused by different authors, this is the origin of many misconceptions.

One could summarize these two positions in this way:
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1. Reality exists independently of our observation, we can consider it conceptually, and the act of observation is

a more or less precise transmission of this reality, through an interaction which is the measurement process.

2. Reality is what is observed.

Remark 7.5.4 As mentioned in section 7.4, if a theory only knows disruptive measurement process, therefore,

we have to make the distinction between what is, and what we observe. This is not the case in classical mechan-

ics. □

The 𝑂𝑅 and 𝑂𝑁𝑅 categories are not really classifying, as they are secondary in the causal chain of the

measurement process, and can be considered as (classical) deductions of the physical state. Therefore we will

only consider the 𝑆𝑅 and 𝑆𝑁𝑅 categories in the classification. It is also possible to divide the set of theories

according to the link between the possible physical state, and the symbolic state representing it. The theories

concerning QM are thus distributed according to 3 categories:

• 𝜓-ontic theory admitting SR (𝜓-OSR): 𝜓 is a state that corresponds in a bi-uniquely way to this ontic

physical state.

• 𝜓-epistemic theory admitting SR (𝜓-ESR): Realism is admitted, a real physical state exists, but the 𝜓 state

only represents information about this state.

• 𝜓-epistemic theory admitting only SNR (𝜓-ESNR): Realism is refuted, there is no ontic physical state, 𝜓 is

a kind of information, about potentialities but there is no defined physical state.

This classification is summarised in the following diagram:

Observations

RC & KC

OR ONR

SR

𝜓-OSR 𝜓-ESR

SNR

𝜓-ESNR

C
N

C

Observable 𝑂 ⟶

Physical state 𝐸𝑅⟶

Link with 𝜋M(𝐸𝑅)⟶

This diagram is presented as starting on the top from the observations, i.e. from what an experimenter can

be sure of, and going deeper into the speculations we can make about nature within the theory, first about the

realism of what is observed, then about the possible underlying physical state, and finally about the different

types of symbolic 𝜓 states describing it, thus offering a classification of possible theories in QM.

Bohr was perhaps the most influential physicist involved in the development, and especially the interpretation

of QM. He was probably the most aware of the subtleties of QM, and the most invested in trying to develop a

consistent picture of it. So we will try to understand how his views allow us to locate its position in this diagram,

which is of great importance, since he is, broadly speaking, followed by most of the physicists past and present,

with the Copenhagen interpretation. We will proceed in the logical order of the diagram, from top to bottom.

The first question concerns his position in terms of realism regarding the observational results 𝑂𝑅 and 𝑂𝑁𝑅.

One can unambiguously say that he was in the 𝑂𝑁𝑅 category, his principle of complementarity being the incar-

nation of it, as this quotation from Bohr in (Bohr, 1950) shows:
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A sentence like “we cannot know both the momentum and the position of an atomic object” raises at once questions
as to the physical reality of two such attributes of the object...

It is interesting to note that his statements are strictly at the level of 𝑂𝑁𝑅, without leaving any clue as to

its positioning 𝑆𝑅/𝑆𝑁𝑅, as he uses the term “attributes of the object”. What Bohr disputes is that the reality

criterion can be applied jointly to position and momentum. This dependence on the context of measurement is

called contextuality. One cannot speak of certain predictions concerning both position and momentum, these

are revealed not as intrinsic attributes of the quantum object, but as relative to the apparatus context. Therefore,

he positions himself at the level of 𝑂𝑁𝑅. The main argument which made him adopt such a position is the

NC of observables and the contextuality which is deduced from it, which he interpreted with the principle of

complementarity which he supported (As we shall see in section 7.6) because of his attachment to wave-particle

duality, which he considered as a fundamental duality (Mehra, 1987).

Concerning his positioning regarding the realism of the physical state (𝑆𝑅/𝑆𝑁𝑅), a lot of confusion has been

made about his claims, sometimes by attributing him ideas that he never had, but also by authors who do not

distinguish between the 𝑂𝑁𝑅 thesis and the 𝑆𝑁𝑅 thesis, or between the claims concerning the link between

physical and symbolic states, i.e. in a more general way between reality and our representation of reality. Indeed,

it is commonly attributed to the defenders of the Copenhagen interpretation, and thus to Bohr, to deny the

existence of an objective reality concerning the quantum world, thus displaying a 𝜓-ESNR posture, which was a

novelty in history. This can be seen, for example, in this quote from Heisenberg:

“atoms or elementary particles themselves are not real; they form a world of potentialities or possibilities rather
than one of things or facts”.

Similarly, in (Petersen, 1963) A. Petersen refers to the following “shocking” quotation of Bohr, which was

very often attributed to him afterward:

’There is no quantum world. There is only an abstract quantum physical description.’

This would put the defenders of Copenhagen, as well as Bohr, in the category of 𝑆𝑁𝑅, denying the existence

of an objective physical state. However, as N.D. Mermin says in (Mermin, 2004), Bohr has never published such

an assertion, in any of his articles where he affirms his position on quantum reality, nor in any of his other

writings. Several authors (Folse in (Folse, 1986), and Faye in (Faye, 2012)) argue that Bohr had a realistic view of

the physical state (SR). They say that Bohr always implicitly supported the 𝑆𝑅 thesis, as this quote from Bohr in

(Bohr, 1929) proves:

[...] the extraordinary development in the methods of experimental physics has made known to us a large number
of phenomena which in a direct way inform us of the motions of atoms and of their number. We are aware even of
phenomena which with certainty may be assumed to arise from the action of a single atom. However, at the same
time as every doubt regarding the reality of atoms has been removed and as we have gained a detailed knowledge of
the inner structure of atoms, we have been reminded in an instructive manner of the natural limitation of our forms
of perception.

He never went back on these statements. Similarly, in (Folse, 1986) Folse argues that the reality of atoms has

been established by experiments that directly cause phenomena that inform us of the existence and behavior

of atoms. This is the 𝐾𝐶 criterion: the proof that there exist real quantum objects is an experimental fact, the

simple fact being that we measure them, or that we deduce causal consequences from their properties, as Bohr

underlines, this is a proof of the objective existence of these quantum objects. For Bohr the existence of atomic

systems is “the given”, which theory must describe in a way allowing prediction of those phenomena caused

by these entities. Bohr is then, in fact, clearly convinced about the objective reality of the physical state. Many

authors say that Bohr’s words are confused or even contradictory concerning his ontic position, but his words

on this subject are always accurate. They are in terms of “objective communication” and not in terms of “truth”.

The confusion comes, in my opinion, from the readers, whose innate unconscious reflex is to associate with what

one observes, the impression that it is pure reality, without assuming that it is only a piece of information and

that this observation is moreover an interaction. Other authors like Hacking and Cartwright have supported this

view about the reality of quantum physical states, which they call Entity realism.
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Let us come back to the 𝑆𝑁𝑅 posture, which is justified by its defenders by saying that 𝑆𝑁𝑅 represents only

information about potentialities and that this is a complete description of reality i.e. that there is no hidden 𝐸𝑅
below this. A very simple argument can provide a serious counter-indication to the 𝑆𝑁𝑅 posture thus described.

Proposition 7.5.5 The SNR view is not in accordance with the results of quantum mechanical experiments.

Proof The 𝑆𝑁𝑅 posture rejects the idea that there is an element of reality corresponding to the quantum world

and therefore carrying the information that determines the measurement result. However, the repeatability of

an identical measurement made at short time intervals forces one to consider that information is conserved.

So the only way left by this position is, as they do, to say that this information is on the side of the observer,

only our abstract description, and the information thus symbolized exists, not the physical state. This is the

position defended by Heisenberg in particular. Now let’s take any quantum experiment, with a 𝜓 state, and two

observers 𝑂1 and 𝑂2, these two observers are sensibly the same, they are two identical machines. We then choose

to measure the state with 𝑂1, we collect the information by looking at the result of the measurement, then we

remove 𝑂1, and we do the same experiment with 𝑂2, immediately after, and we collect the information again. If

there is no 𝐸𝑅, and 𝜓 only represents the information we have, on a world of potentialities, that is to say that

there is no information stored in a 𝐸𝑅, then knowing that 𝑂2 does not have the information that 𝑂1 has collected,

it should have every chance to find another result, since this information cannot be stored in a 𝐸𝑅. However,

the experimental results show repeatability of the collected information, which is in disagreement with the 𝑆𝑁𝑅
posture.

We will give more arguments against the 𝑆𝑁𝑅 view later.

Now, concerning his position on the link between the physical state and the symbolic state, Bohr was clearly

epistemic, as were most of the advocates of the Copenhagen interpretation. The remarks of the preceding para-

graph thus place him in the 𝜓-ESR position. The epistemic interpretation of the symbolic state is supported by

various physicists, for several reasons:

• Because of the multidimensionality (The fact that we are left with nothing but a description of a state living

in a multidimensional Hilbert space.) of the 𝜓-state in Hilbert space, which seems not to offer a realistic

vision of the phenomenon as existing in space-time.

• To solve the collapse problem, becoming an actualization of the observer’s knowledge in the Copenhagen

interpretation. For Bohr, the 𝜓 function is a predictive tool and does not reflect any physical reality. It is

therefore not necessary to say that the subject would provoke any physical process during the measure-

ment. It merely defines a new form of objectivity, by including the mention of the experimental context,

while refraining from including the human subject. This new objectivity is thus fully linked to the thesis

of contextuality. In this view (Copenhagen) the ’collapse’ of the wave function is not a physical process,

and it just reflects an update of our information about the system.

• Because of the EPR paper which emphasizes that the formalism of QM is in contradiction with the thesis

of local realism.

His belonging to the epistemic category is underlined by an important aspect of his thought, concerning the

formalism of which he had a purely symbolic vision (Bohr, 1950):

The entire formalism is to be considered as a tool for deriving predictions, of definite or statistical character, as
regards information obtainable under experimental conditions described in classical terms and specified by means
of parameters entering into the algebraic or differential equations of which the matrices or the wave-functions, re-
spectively, are solutions. These symbols themselves, as is indicated already by the use of imaginary numbers, are
not susceptible to pictorial interpretation; and even derived real functions like densities and currents are only to be
regarded as expressing the probabilities for the occurrence of individual events observable under well-defined exper-
imental conditions.

Therefore as Faye says in (Faye, 2012):

Bohr also considered the state vector to have no ontological status but merely to be a heuristic device for the
calculation of the probability of a specific outcome of the measurement.
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Bohr is definitely on the 𝜓-ESR side. For him and many others, the QM formalism has no direct correspon-

dence with the reality of real objects, it is a symbolic representation that is not faithful to reality, allowing to

set up a kind of algorithm enabling to find the results of experiments. Most of the physicists seem to have this

posture, and do not consider 𝜓 as real, but rather as a kind of information, which is supported by the fact that

the result provided is probabilistic. This point is of importance for the chapter 9, because depending on whether

one attributes a concrete character to the symbolic state or not, speaking of geometrical consequences deduced

from the QM formalism will have a meaning, or will not have any.

It seems, therefore, that the only positions which are relatively tenable are the 𝑂𝑁𝑅, the 𝜓-𝑂𝑆𝑅, and the

𝜓-𝐸𝑆𝑅, the first being non-disjoint from the other two. Although it is not intuitively obvious, the 𝜓-𝑂𝑆𝑅 and 𝜓-

𝐸𝑆𝑅’s postures are not only different at the philosophical level. Indeed the quantum wavefunction 𝜓 is said to be

𝜓-ontic if any physical/ontic state in the theory is consistent with only one pure quantum state and 𝜓-epistemic

if there exist physical/ontic states that are consistent with more than one pure quantum state. This point will be

important to formally distinguish these two ontological issues and will be used in the proof of the PBR theorem

which I will present now. This will be of major significance in order to decide between the postures, i.e. between

the 𝜓-OSR and 𝜓-ESR’s interpretations, and then in section 7.6 to interpret the NC of observable in QM. To finish,

in chapter 9 it will permit to interpret the associated geometry we can infer of such an observable, according to

the arguments that I will present in chapter 8 about the objective path (trough measurement) we have to test

physical theories about space-time, in the mathematical framework M of geometry.

A theorem of capital importance allows us to determine between the 𝜓-OSR and 𝜓-ESR positions. Indeed,

in 2012, a powerful no-go theorem against 𝜓-epistemic interpretations 𝜓-ESR was found (Pusey et al., 2012).

This is called the PBR theorem (for Pusey, Barrett and Rudolph). This theorem is considered as being of similar

importance to the Bell, and Bell–Kochen–Specker ones. As these last theorems, PBR theorem is a statement about

hidden variable theories. It constrains hidden variable theories in a very strong way, almost killing the relevance

of their potential existence.

What the PBR theorem shows is that assuming the existence of a physical state (𝐸𝑅), the idea that the associ-

ated symbolic state 𝜋M(𝐸𝑅) = 𝜓 does not represent reality in a one-to-one way (then this physical state), but our

(probabilistic) knowledge on it is no longer tenable. Indeed, if there is such a physical state, the pure symbolic

state that we associate with it corresponds to a definite statement about this reality, and not to a probabilistic

one. 𝜓 is therefore no less “real” than the analogous objects used in classical theories to designate states of the

system.

More precisely the PBR theorem states that if we assume that:

1. A quantum system always does have some objective physical state.

2. For any repeatable experimental procedure, there exists a well-defined probability distribution over the set

of possible final outcome states, and a quantum system can be measured projectively on any basis.

3. Statistical independence of experiments, and tendency to tend to the probability distribution just mentioned

when the experiment is repeated many times.

4. Even if two systems are brought together for a joint measurement on an entangled basis, they may until then

be treated as separate systems, with their own space of states, and prepared so that the respective probability

distributions are independent.

5. Quantum predictions are correct.

Then, for a QM description done in a given Hilbert space, taking two preparation procedures that place the

system into two different (symbolic) pure states, they can’t represent the same physical state. If we have two

quantum symbolic states 𝜋M(𝐸𝑅1) and 𝜋M(𝐸𝑅2) with a physical state as an unknown, then:

𝜋M(𝐸𝑅1) ≠ 𝜋M(𝐸𝑅2) → 𝐸𝑅1 ≠ 𝐸𝑅2 (7.5.1)

Two different symbolic pure quantum states are directly linked to different physical states, whatever the reality

in which these physical states take sense may be. This is a really strong statement, it basically says that the

symbolic quantum states 𝜓 we use in QM are as real as our usual classical symbolic states, since they refer both

to physical states in a faithful and complete manner. The symbolic quantum state is then ontic, and the only

survivor of this battle and the happy winner is 𝜓-𝑂𝑆𝑅.



70 CHAPTER 7. NC AND PHYSICAL THEORIES

Remark 7.5.6 In the 𝜓-OSR theories, the wave-particle duality cannot be a fundamental duality (which is at the

basis of Bohr’s philosophy). Indeed, if the aspects of wave and corpuscular behavior can be associated with two

different 𝜓 states (one spread out in the space of positions and the other not), knowing that these states are in

one-to-one correspondence with two physical states, then these two physical states will be different too. There

is not, as Bohr represents it to himself, a quantum reality, whose properties can be manifested as undulatory or

corpuscular according to our mode of observation, but two distinct quantum elements of reality. Thus, it is an

effective duality, not a fundamental one, and the principle of complementary that accompanies it is no longer

tenable. □

This theorem is of crucial importance for the interpretation of the quantum mechanical formalism, but it

says nothing about 𝜓-ESNR type interpretations since it is based on the assumption of the existence of a physical

state. I have presented above a strong argument against this posture in the proposition 7.5.5. This point being

important, I wish to give here other more qualitative arguments against the SNR thesis, some of these arguments

are also arguments against the 𝜓-ESR posture:

1. Against 𝜓-ESNR: If QM is the basis of the classical as usually thought
1
, then the quantum state must have the

same status of realism as our classical states. I don’t see how it can be otherwise, we are constituted of particles

with quantum behavior! And it happens that a collapsed particle can find coherences again (Bouchard et al.,

2015). So the fact that its status of realism is going to pass from realism to nonrealism and then realism

by regaining coherences seems to me doubtful. Another argument comes from the KvN formalism, indeed

the implicit message is that the unification of the classical and the quantum can eventually be done in a

single formalism. So if quantum and classical states were of different natures, as the 𝜓-ESNR interpretation

suggests, then this unification would not be thinkable. I find this relatively inconceivable. In connection

with the previous argument, the wave function after the collapse is of the same nature as the one before the

collapse in the formalism, the only difference (in the case of a position measurement for example) is that it

is more localized. So there is no information about potentialities on one side and a concrete actualized result

on the other, it appears strange to say that the ontic status of 𝜓 can have changed during the measurement

process, going from 𝜓-epistemic to 𝜓-ontic. I add to this the fact that what we call real objects, are made of

these same particles, localized, and interacting, so how could it be that the ontic status of 𝜓 is different from

that of our machines, of all classical objects? I don’t see how. This continuity of vision argument is for me a

strong reason to believe that 𝜓 designates an entity no less real than any object whose reality is considered

without doubt.

2. Against 𝜓-ESNR: The multidimensionality of the Hilbert space in which the wave function lives is not an

argument against realism, it is only that it is no longer thinkable as a phenomenon in a usual space-time, as

mentioned in 7.3.

3. Against 𝜓-ESNR: In connection with the previous point, the EPR paper as well as Bell’s inequalities formu-

lated later cannot be taken as proof that realism must be abandoned, it is only local realism that is faulted,

there are many other notions of realism, such as structural realism, or ontic structural realism which remain

possible.

4. Against 𝜓-ESNR and 𝜓-ESR: As information does not correspond to something real, then if 𝜓 only describes

information, then it cannot act on the environment. Thus, the second criterion of realism (KC) is an argument

for me that decoherence is proof that the wave function is objective because it interacts with the particles

in the environment wherever it has coherences. If 𝜓 was only information, it would not interact with the

environment.

I have a simple question to ask if we consider that a criterion of existence for an entity is its ability to interact

with its environment, that 𝜓 does not describe anything real, only information, and that information that

is not material cannot interact with the environment. How is it then that a theory such as decoherence,

verified experimentally, is based on the fact that before the collapse, 𝜓 interacts with all the particles of the

environment contained in 𝐷(𝜓)? Isn’t this a clue that 𝜓 is in itself a real entity?

5. Against 𝜓-ESR: The epistemic interpretation of 𝜓 was promoted to solve the problem of the collapse pos-

tulate, taking it as an actualization of the observer’s knowledge. This was, together with the wave-particle

1
In the sense that classical theories must be recovered as approximations of quantum theory, in certain regimes, i.e. large number of

particles, large action, particle dense environment...
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duality, a strong reason that led them to think that 𝜓 refers only to information are potentialities, and that we

should abandon the assumption of realism. But today, the collapse postulate is more commonly considered

to be a problem of the actual QM’s measurement theory.

6. Against 𝜓-ESR: Wave-particle duality was taken to be a proof of the fact that 𝜓 does not refer directly to a

physical state, but to information we have on it. But as mentioned in remark 7.5.6, which was a deduction of

the PBR theorem, wave-particle duality can no longer be taken as a fundamental duality. Therefore, wave-

particle cannot be taken to validate 𝜓-ESR interpretations.

The PBR theorem, as well as these arguments, provide a counter indication to the 𝜓-ESR and 𝜓-ESNR theories,

thus putting ahead, as far as this classification is complete, the 𝜓-OSR theories. The 𝜓-state thus designates

a physical state, the collapse must correspond to a non passive physical process that remains to be discovered.

Therefore, surprising properties such as noncommutativity and entanglement must be taken seriously as to what

they say about our world, at its deepest level because they concern the nature of the fundamental constituents

of all things in our universe.
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7.6 Knowing is Changing: NC as an Observer Effect?

The Very Perception Is Action.

J. Krishnamurti

As mentioned in section 7.3, one of the main discrepancies between QM and classical mechanics comes from

the emergence of observables that do not commute. This fact is the mathematical origin of the Uncertainty Prin-

ciple (UP) which was introduced by Heisenberg in 1927. How we make intuitive sense of this noncommutativity

depends on the interpretation of the wave function we use. There are two almost equivalent ways to consider the

UP, via the wave approach, or via the matrix approach. These are comparable representations, but they highlight

different aspects of reality.

In wave formalism, it is easy to see to which extent a spread according to the momentum modes leads to

a possible interferential pattern, which allows the particle to be localized, but, if the wave packet consists of

only one 𝑝 mode, then, just like a planar wave, it is spread all over space, and the particle is delocalized. There

is therefore a relationship between the spread in position and the one in momentum. It is a wave property, 𝜓
cannot be localized in both momentum and the position basis at the same time. The bases of the Fourier modes

in position and momentum representations are therefore connected.

Let’s see to which extent the matrix formalism can complete this picture. In QM, measurement is taken to

collapse the state of the system to one of the eigenstates. When the state is not an eigenstate of the observable, this

collapse is not a projection, but something like a transformation then a projection. For an operator 𝑎, we will call

𝑎𝑐 the composition of 𝑎with the collapse operator (plus normalization, which will not be taken into consideration

here, because it does not change the argumentation). As in (1.1.2), if we take two (normal) operators 𝑎 and 𝑏 with

discrete spectrum, then we obtain their following spectral decomposition:

𝑎 = ∑
𝑖∈𝑆𝑎

𝜆𝑖𝑃𝑎𝜆𝑖 and 𝑏 = ∑
𝑗∈𝑆𝑏

𝜆𝑗𝑃 𝑏𝜆𝑗 .

This represents the operation that corresponds to the associated measurement process in QM. Let us see what NC

of 𝑎 and 𝑏means in first time, and what it implies when we add the collapse postulate i.e. what is the consequence

for [𝑎𝑐 , 𝑏𝑐].

If 𝜓 is in an eigenstate of 𝑎 then it is not affected by the measurement of 𝑎 : 𝑎𝜓 = 𝜆𝜓 with 𝜆 the eigenvalue,

result of the observation. Otherwise, 𝜓 undergoes a transformation: 𝑎𝜓 = 𝜓′
.

The NC of the observables 𝑎 and 𝑏 on 𝜓 induces that 𝜓 cannot be the eigenstate of both simultaneously. Thus,

at least one of these two observables is a non-passive measure of the symbolic state 𝜓.

To illustrate this, let us take 𝑎 = 𝑥̂ and 𝑏 = 𝑝̂, and assume that 𝜓 is eigenvector of the operator position:

𝑥̂ |𝜓⟩ = 𝑥0|𝜓⟩, and that it is not the case for the momentum 𝑝̂|𝜓⟩ = |𝜓′⟩, thus:

[𝑥̂, 𝑝̂]|𝜓⟩ = (𝑥̂𝑝̂ − 𝑝̂𝑥̂)|𝜓⟩ = (𝑥̂ − 𝑥0𝐼 )𝑝̂|𝜓⟩ = 𝑖ℏ|𝜓⟩

so that (𝑥̂ − 𝑥0𝐼 )𝑝̂|𝜓⟩ = (𝑥̂ − 𝑥0𝐼 )|𝜓′⟩ ≠ 0 which explicitly means that |𝜓′⟩ is not an eigenvector of 𝑥̂ with

eigenvalue 𝑥0 (𝑥̂ |𝜓′⟩ ≠ 𝑥0|𝜓′⟩). Then it allows us to get a result different from 𝑥0 as if the position had changed.

The conclusion is the same if we take 𝜓 to be a linear combination of eigenvectors of 𝑥̂ , and that at least one of

these elements is not an eigenvector of 𝑝̂.

If we add the collapse in this picture: 𝑎 → 𝑎𝑐 and 𝑏 → 𝑏𝑐 (to obtain the true measurement process’s induced

transformation), then the effect on 𝜓 is to collapse it onto one of the eigenspaces associated to 𝑃𝑎𝜆𝑖 for 𝑎 or 𝑃 𝑏𝜆𝑖 for

𝑏. A basic result of spectral theory is that if you have [𝑎, 𝑏] ≠ 0, then their exists at least one couple (𝑖, 𝑗) ∈ (𝑆𝑎, 𝑆𝑏)
such that [𝑃𝑎𝜆𝑖 , 𝑃

𝑏
𝜆𝑗 ] ≠ 0. This induces [𝑎𝑐 , 𝑏𝑐] ≠ 0 and the previous conclusion works also here.

Then NC of observables (operators in general) is always connected to the non-passive action of at least one

of the two measurement processes on the symbolic state 𝜓2
. An example for the first case (without collapse)

2
Note that these conclusions only apply to the symbolic state, then not directly to the physical one.
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can be the NC of gauge potential in non-abelian gauge field theories (if we replace (𝑎, 𝑏) by (𝐴𝜇, 𝐴𝜈)), and the

second one (with collapse) corresponds to QM’s measurement process. For this last case, the non-passiveness is

not only induced by the NC since the collapse represents a change of the symbolic state too. We can say that NC

adds a contextual property to this collapse-induced change. We cannot directly conclude that NC is linked to the

non-passiveness of the measurement process because the previous conclusions are at the level of the symbolic

state 𝜓. Therefore, according to our ontologic posture, we are left with two ways of interpreting this NC:

• The one coming from 𝜓-ESR interpretation schemes: There is change at the level of the symbolic state

𝜓, but as it is not directly linked to the physical state, we are not forced to said that the latter undergoes

an observer effect. It is even possible to suppose that there is no change at all in this physical state, by

postulating that this NC is induced by the fact that the classical properties in question have no real meaning

for the quantum object, which can thus be, without ambiguity, both a wave and a particle, whereas this has

no meaning in the classical world. This avoids having to consider discontinuous changes in the physical

state in question. It’s a statement about reality itself. Particles don’t have precisely defined momentum

and position to measure. This is a NC interpretation of type 2. There is no Observer effect.

• The less represented one coming 𝜓-OSR interpretation schemes: the revelation of the classical properties

has nothing mysterious, it is in bijection with the real physical state. But here it is not a question of a single

physical state, since this one is in bijection with the symbolic state... there are thus two physical states,

one transiting to the other one during the measurement, and thus non passivity of the act of measurement!

This is caused by the fact that collapse must be considered to be a physical process which transforms the

physical state in this kind of interpretation, non-commutativity rendering this process contextual. It’s a

statement about what we can know about reality. The act of measuring position changes the momentum,

and vice-versa. This is an interpretation for type 1 NC. There is an Observer effect.

Before going further, let’s try to understand how this NC has been historically interpreted, mainly by Heisen-

berg, then by Bohr.

Heisenberg’s first explanation of his UP was based on the idea that any measurement process must change

the physical state, and that this leads to significant perturbation when considering the measurement of quan-

tum states. Indeed, Heisenberg originally illustrated the intrinsic impossibility of violating the UP by using the

observer effect of an imaginary microscope as an elementary measuring device. The argument goes as follows.

Let us take the example of the electron that we want to localize in space, the minimal measurement scheme to

localize it implies shining at least one photon on it. If the electron was a classical object, like a bird in the sky, the

photon will affect its state in a so tiny way that we neglect this fact in all days life, which leads to the feeling of

seeing “what is”. However, this is not true for quantum objects. Most of the time, the energy of a single photon

is ridiculously small (in comparison to the one of the electron), and affects it in a negligible way, but it’s not true

for very energetic photons.

Let’s explain this measurement scheme more concretely, the microscope experiment consists in observing

how a light ray is deviated by the Compton effect when it scatters with an electron, the measurement of the

deviation angle permit to determine the localization of the electron with a certain accuracy. But this ray of

light has a certain wavelength 𝜆, below which it is not possible to measure the position of the particle, and this

wavelength is linked with its energy by the relation 𝐸 = ℎ𝑐/𝜆. Thus, improving the accuracy of the measurement

of such a position requires to increase the energy of the photon used. But such a photon is also associated with

momentum 𝑝 = ℎ𝑐/𝜆, and a portion of that momentum will be transmitted to the particle during the interaction

process at play, by conservation of this quantum number. Therefore, the more you measure the position with

accuracy, the more you change the momentum. The fact that the momentum of the particle is changed makes

the notion of phase space meaningless, this being at the origin of the introduction of the configuration space

mentioned in section 7.2.

This is a very important argument, it is obviously a purely experimental fact of QM and it as not to be deduced

by any outer logical argument, I will come back on this later in section 9.3. More details on the microscope exper-

iment can be founded in Heisenberg book (Heisenberg, 1949), and (Tipler and Llewellyn, 2012), and (Greenstein

and Zajonc, 2006). This phenomenon was understood by him as a manifestation of the UP. This argument of the

non-passivity of measurement seems quite reasonable, especially since, as said before, it has been demonstrated
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in (Busch, 2009), that a measurement that acquires information on a given system, necessarily disturbs the mea-

sured state. But these argument work at the level of the symbolic state, therefore we cannot conclude directly

like Heisenberg does that it is connected with an objective observer effect.

Indeed, it was argued by Bohr, that the Heisenberg UP has nothing to do with an observer effect. According

to Bohr, he did not make clear the distinction between a position measurement merely disturbing the momentum

value of the particle and the more radical idea that momentum is meaningless or undefinable in a context where

the position was measured instead. As mentioned in (Mehra, 1987):

Bohr felt that Heisenberg had not treated the thought-experiments with the X-ray microscope and the investiga-
tions on the Compton effect and resonance fluorescence light quite properly; his fundamental objection was something
quite different, As Heisenberg recalled: “The main point was that Bohr wanted to take this dualism between waves
and corpuscles as the central point of the problem.”

It is important to stress the fact that Bohr has no fundamental criticism to do to Heisenberg’s paper, but its

attachment to wave-particle duality and its epistemic interpretation of 𝜓, which are linked in the large picture

in which he tries to make sense of QM lead him to see things differently than Heisenberg for this experiment

and it’s linked to non-commuting observables. For Bohr, the wave-corpuscle duality was a fundamental duality,

which he made a consequence of the Complementary Principle (CP), which he proposed as a replacement for

Heisenberg’s UP.

In his view of CP, Bohr does not refer to discontinuous changes of the corresponding quantities during the

measurement process, on the contrary, he emphasizes the possibility of defining these quantities. He also rejects

the common view (that Heisenberg adopts for example) about the fact that measurement creates definite results:

The unaccustomed features of the situation with which we are confronted in quantum theory necessitate the
greatest caution as regard all questions of terminology. Speaking, as it is often done of disturbing a phenomenon by
observation, or even of creating physical attributes to objects by measuring processes is liable to be confusing, since
all such sentences imply a departure from conventions of basic language which even though it can be practical for
the sake of brevity, can never be unambiguous. (Bohr 1939: 24)

Bohr always stressed that uncertainty relations are first and foremost an expression of complementarity

(Mehra, 1987). This may seem odd since complementarity is a dichotomic relation between two types of de-

scription whereas the uncertainty relations allow for intermediate situations between two extreme potentialities

(wave and corpuscular behaviors), and therefore causal chain, contrary to the CP which defends the idea that

causal view is a classical restriction that doesn’t make sense in QM:

A causal description of the process cannot be attained; we have to content ourselves with complementary descrip-
tions. “The viewpoint of complementarity may be regarded”, according to Bohr, “as a rational generalization of the
very ideal of causality”

For Bohr, there is no time lapse during which a physical object behaving as a wave would become a particle

or the opposite. He means that these two visions of things are only valid at the classical level and that the particle

does not carry these properties in itself. Rather, the symbolic 𝜓 state being only there to give us a sort of classical

information useful to understand this inexpressible reality in a raw way as possessing in an unambiguous way

these (classical) properties called complementary. This is why, in this same line of thought, he defended that

causal thinking was also limited to our classical understanding of phenomena and that it reached its limit in a

very obvious way in the experiments involving these complementary observables.

In a more general way, Bohr defended the idea that the usual language, impregnated with the classical vision,

was not able to make quantum phenomena understandable, and that this was probably a fundamental limitation

that could not be overcome for our intuitive understanding of QM within our classical language. Indeed, in (Bohr,

1950), in order to defend the idea that the NC, in connection with the principle of complementarity, is not a matter

of processes in space and time, and that therefore the classical causal analysis is no longer valid, Bohr does not

hesitate to say that the ambiguity of such an interpretation lies in the fact that the classical language, which is

intrinsically causal, cannot describe the reality that lies behind such a NC:
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These so-called indeterminacy relations explicitly bear out the limitation of causal analysis, but it is important
to recognize that no unambiguous interpretation of such relations can be given in words suited to describe a situation
in which physical attributes are objectified in a classical way.

To summarise Bohr’s view on the interpretation of the NC of observables, the complementary between such

phenomena implies that there is only one object which is making different phenomenal appearances in different

experimental arrangements, which lead to different interactions scheme between the observer apparatus, and

the physical state. There is no causal chain, this physical state is not changed by the measurement process, it is

only the measurement of certain properties simultaneously that cannot make sense, and different experimental

arrangements will provide complementary evidence about this unique object. This phenomenon cannot be intu-

itively represented because the classical words, which he considers unsurpassable, do not allow us to intuitively

capture its nature.

For me, this is not a sufficient explanation, he did not explicitly show that it was not a matter of processes in

space and time, whereas it was the result of Heisenberg’s initial demonstration, of which he did not refute the

mathematical content. If he had sought to make this demonstration, he would have realized that the conservation

of quantum numbers during the process of measurement induces that the perception of an information that

testifies to the presence or properties of an object, during the process of measurement, necessarily induces the

perturbation of the corresponding properties that the measured object would carry, this argument having been

more fully discussed in section 7.4. On the other hand, he relies on the idea that classical language is unsurpassable

and provides a limitation to this understanding, which seems questionable from the arguments presented in

section 6.3. Furthermore, his interpretation of NC, which he accompanies with his principle of complementarity,

is not satisfactory, as the use of the concept that conventional language and associated classical notions cannot

deal with the quantum is not a convincing argument. It is like a black box that allows us to say that we cannot

hope to find a satisfactory explanation for quantum phenomena, even by creating new words. This makes it

acceptable to abandon the idea of obtaining an intuitive understanding of reality. The concern to obtain an

intuitive and conceptual coherence is no longer put forward. In my opinion, this idea has strongly polluted

the scientific thoughts developed later. Moreover, as JM. Lévy-Leblond points out (Lévy-Leblond, 2000), the

principle of complementarity was not considered a relevant and convincing idea by researchers such as Einstein

and Schrödinger, and even among his close collaborators such as Heisenberg and Pauli. Yet it was the basis of

Bohr’s philosophy, and of the commonly supported Copenhagen interpretation of which he was the principal

architect.

As we have seen in section 7.5, there is a much stronger argument to defeat his view. Indeed, Bohr’s statements

and interpretations are based on his epistemic interpretation of the symbolic state, without which, if he were to

admit an ontic view of formalism, he could not say that there is no transformation of the state as mentioned

above, and worse than that as mentioned in remark 7.5.6, the wave-corpuscle duality can then no longer be a

fundamental duality, which is at the heart of the interpretation he defends. These two aspects are then connected

to two distinct physical states, and there are therefore intermediate stages of the physical state to consider.

But, as we see in section 7.5, only 𝜓-OSR interpretations can be retained to be in accordance with experimental

results. So if the argumentation presented in section 7.5 is correct, the arguments of Bohr cannot be well founded.

Then, NC of QM is of the first kind, linked to process in space and time, caused by the non-passivity of the

act of measurement, then of the same kind as “classical” ones. However, they differ in that we are unable, as

classical observers, to see beyond these NCs, to see the intermediate stages of the process. In QM, processes

such as collapse, decoherence, the measurement process, quantum jumps, etc. were initially considered to be

instantaneous and discontinuous. These phenomena of discontinuous jumps from one symbolic state to another

were called quantum jumps, and it was the very nature of this discontinuity in evolution that made Bohr (among

others) prefer to opt for an epistemic interpretation, as he could not consider that the physical state could undergo

such a discontinuous evolution, which seems reasonable. Schrödinger, who thought that the wave function is a

faithful representation of reality, directly opposed this idea of quantum jump (Schrödinger, 1952) by also rejecting

the principle of complementarity. Nevertheless, at the time, nothing could have foreshadowed a possible non-

continuity of the evolution of the symbolic state, and therefore Bohr’s interpretation could make sense in the light

of the knowledge of the time, even if he could have concluded that the QM formalism could possibly be either

incomplete or that certain developments were missing to draw all the consequences. Today, it is experimentally

demonstrated that decoherence, quantum jumps (Minev et al., 2019) and therefore the measurement process is
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not instantaneous or discontinuous, but continuous and over very short periods of time. There is as yet no theory

explaining collapse in a continuous manner, but history seems to show that the apparent discontinuities in the

evolution of 𝜓 are gradually disappearing from the scientific landscape, suggesting the possibility of a strictly

continuous evolution for the state (physical and symbolic).

To summarise the information provided by wave and matrix’s representations of reality, the wave aspect tells

us that the distribution of the state according to the impulse and position bases are related. In particular for their

spread. And the matrix interpretation clearly shows us how the state will undergo an evolution for its distribution

according to one of these two bases, during the act of measuring one of the two observables. Thus, we can now

see how any non-commutativity is linked to the non-passivity of the act of measuring one of the two observables

over the symbolic state 𝜓, and then on the physical one. This can also be seen as a simple consequence of what

was said in section 7.4 about the fact that any measurement that obtains nontrivial data is disruptive for the state.

Remark 7.6.1 According to remark 7.5.2, the negation of observable realism induces proof of the fact that there

is no state change during the process. Bohr skipped this step. □

Remark 7.6.2 According to PBR theorem if there is an ER, it will be directly associated with a symbolic state in

a one-to-one correspondence, then supposing that the NC of observable is of type 2 lead to the fact that both the

symbolic and physical state has not been changed since it’s not linked to process in space-time, but as we just

see, for 𝜓-OSR interpretations, NC is linked to state change. Therefore, as mentioned in section 6.2, NC of type

2 and state realism SR are not compatible. But NC will always be linked to observable nonrealism (ONR). □

We thus see how the NCs of QM and gauge theory formalism arise from the same fact, the non-passivity of

the interaction that is the measurement in QM, or the non-passivity of the interaction with a boson vector in

gauge theory. Therefore, by the several arguments I have presented so far, I would adopt the ontic point of view

and its implications on the equivalence between noncommutativity and nonpassivity of the act of measurement

in what follows.



Chapter 8

Geometry and the Physical Theories of
Space-Time

Geometry is not true, it is advantageous.

H. Poincaré

History shows us that the extension of the geometrical framework used in physical theory has several times

allowed us to better understand natural processes. The greatest advances in this direction were, in my opinion,

the passage from Euclidean geometry to Riemannian geometry. Each of these steps was motivated by physical

arguments. The first geometry thought to describe space-time was a geometry of absolute space-time, as a

background theater for events. Then with Galileo, space lost its absolute character by becoming that of Galilean

reference frames. Then came Einstein who made geometry dependent on the observer, the notions of distances

and durations relative to the latter, and the notion of simultaneity also, thus breaking the idea of an absolute

time. Later, geometry became actively determined by the fields of matter.

I believe that the time of questioning the geometrical notions and their link with the concept of space-time

is not over. Therefore, we can ask the following question: is there any reason to think that we need a new ex-

tended geometric picture to understand physical processes and space-time? Several arguments can be given for

an affirmative answer. The purpose of the following considerations is to explore how the algebraic framework

in which NCG was developed, and the concepts surrounding it may be relevant when we try to go even further

in understanding what space-time is. In what follows, we will question the epistemological status of geometric

descriptions of space-time, starting by asking how it is measured, and then considering how geometric con-

cepts describing space-time, for example, have been progressively algebraized throughout history, this process

culminating with the Gelfand-Naimark theorem and the creation of the NCG’s framework.
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8.1 Geometry and Space-Time

Time and space are modes by which we think and not conditions in which

we live.

A. Einstein, 1944

Geometry is a representation of the mind where the processes of reality are made intelligible, it aims to

represent space-time. But what exactly is geometry, and what is the relation between its objects M𝑠𝑡 and those

of physics?

geometric object M𝑠𝑡
?⟷ Spacetime structure 𝐸𝑅𝑠𝑡 ∶ M𝑠𝑡 ∼ 𝜋M𝑠𝑡 (𝐸𝑅𝑠𝑡).

IsM𝑠𝑡 connected to a space-time element of reality 𝐸𝑅𝑠𝑡? There is no proof of this, on the contrary, the supposition

of the existence of an 𝐸𝑅𝑠𝑡 leads to problems as we will see in section 8.2.

This question is more complicated than it seems at first sight. For example, a geometric object can be a

distance, a duration, a point, or a coordinate. It must correspond to some structure of space-time. This means

that we have to find an operational experimental way to deduce what corresponds to the given geometric object.

This is the only objective access we can have to this structure and giving meaning to these concepts outside of

this scope is probably misleading. For example, if we want to make sense of the concept of location for a material

object, then we have to find an experimental operational way by which what we refer by this concept can be

measured. If there is no such path, this concept becomes meaningless.

Remark 8.1.1 Note that these considerations on operational ways of measurement of space-time concepts often

concern the use of photons and material objects. We will try to do the same in section 9.3. □

An important observation can then be made, the spatiotemporal (physical) structures 𝐸𝑅𝑠𝑡 are not measurable.

As Poincaré said:

“Experiments only show us the relationships of bodies to each other; none of them deals, or can deal, with the
relationships of bodies to space, or with the mutual relationships of the various parts of space.”

We cannot directly observe space and its properties. We can only observe material bodies or light (and

other bosons) phenomena. It is only through the observation of these material bodies and light phenomena that

we can obtain information about the properties of space. Then these corresponding 𝐸𝑅 are those of material

objects. Therefore, the conclusions we draw about the properties of space-time concern the use of concepts and

experiments about its material bodies and light experiment.

As I said, these experiments do not give us direct access to these notions, but to a set of observables {𝑂𝑖} with

relations {𝑅𝑖𝑗 } between them, that allow us to deduce these notions. We must therefore conclude that observables

(of material objects) are (on the operational level) primary to the notion of space-time.

Spacetime is not an observable.

It is important to stress that these deductions do not represent space-time in itself, but space-time as experienced

by the processes of nature. This distinction becomes important when these processes start to affect the structure

of space-time, or, more exactly, of the entities whose measurement makes it possible to deduce it. The experi-

enced space-time becomes different from the “pre-existing” one. Thus, what we observe is space-time as it is

experienced by material objects. The “measurement of space-time structure” can then be seen like this:

𝜋M(𝐸𝑅) 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡⟶ 𝑂(𝐸𝑅) 𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛⟶ idealized “space-time structure” 𝜋M𝑠𝑡 (𝐸𝑅).

Notice that we use 𝐸𝑅 a material element of reality instead of 𝐸𝑅𝑠𝑡 a space-time element of reality since the latter

are not measurable, only deducible from measurement on material objects, and then potentially are man-made

creation. A space-time concept can need more than one element of reality to be deduced.
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In physics, we have to let the phenomena speak by themselves and take care not to allow our conscious

representations to replace them, and eventually mislead us. What about the representation of space-time? We

implicitly believe that space-time exists, but we never measure it directly. It is therefore a man-made concept

whose fundamental nature can be questioned. We can thus ask ourselves what led us to the sensation/feeling of

space-time. Ernst Mach, in (Mach, 1890) thinks that space is constructed from the association, the ordering of

our sensations (i.e collection of measurements made by the body). In the same philosophy an intuition about this

was given by Poincaré:

The notion of space cannot be an integral part of any of our sensations taken in isolation. It is only when we
observe the order in which these sensations follow one another that this notion can be born.

In other words, the collection data of observation change (of material objects) leads to the intuitive feeling

of space-time. This set can be written O = {𝛿𝑂𝑎𝑖(𝐸𝑅𝑗 )}
𝑖∈𝐼𝑂
𝑗∈𝐼𝐸𝑅 , with 𝐼𝑂 the index set of all observer/measurement

contexts and 𝐼𝐸𝑅 the one of physical states/elements of reality. It’s now important to distinguish between two

kinds of observation change:

• The ones which lead to the elaboration of our geometric intuition of space-time, we will call the set of all

these observable changes O𝑠𝑡 .

• The ones which do not correspond to this usual geometric description, we will call the set of all these

observable changes O𝑛𝑠𝑡 for non-space-time likable.

With the total set O = O𝑠𝑡 +O𝑛𝑠𝑡 . I will come back on this in section 8.3.

The question is then to know how this collection of observables and observable change leads to the intuitive,

then geometric representation we have of our world, based on concepts like distance, time, point, and coordinates.

A first observation, which will be useful later is that (in many cases, maybe all) the collection of these observables

together with the composition law form an algebra, and that, as mentioned in chapter 3, the observable variations

are encoded in something called differential structure, which as we have seen in chapter 3 enabled to complete

the geometry to algebra unification. Therefore the intuition of Poincaré seems to be proved on the mathematical

side since it is implemented in the differential structure, which was the key ingredient to recover something like

geometry in the NCG framework.

An element of response to explain how an impression of spatial representation, and then of geometry, can

emerge from such a collection of observations is again given by Poincaré, (where he meets Lie and Helmholtz for

the basic intuition). Indeed, for Poincaré, the intuition of transformation groups is primary to that of geometry.

For him, the study of geometry is only the study of a group (of transformations). To say that Euclidean geometry is

the most suitable means that among the possible groups, the one constituted by the transformations of Euclidean

geometry corresponds the most to our experience and in particular to the motion of natural solid bodies. As he

said:

Like Lie, I believe that the more or less unconscious notion of the continuous group is the only logical basis of our
geometry. Like Helmholtz, I believe that the observation of the movements of solid bodies is its psychological origin.

Taking the group of transformations as the fundamental origin of geometric intuition, he adventured to

imagine other worlds, where a different experience, with the observation of different groups could lead to the

elaboration of other geometries, such as non-Euclidean geometry.

Other researchers agree with him on this intuition. According to Klein, geometry is a space, or a set of points,

with a structure, and the bijective applications of the space onto itself that preserve the structure form a group

which can be called the group of automorphisms. For Riemann, an automorphism of a Riemannian space is a

distance-preserving application of the space to itself. We will show in chapter 11 how the automorphisms of the

algebra play a fundamental role in NCG, in order to find on the one hand the usual coordinate changes of general

relativity, and on the other hand the local gauge transformations.

We thus see how the notion of observable and symmetry group on it is seen as the fundamental “reason”

behind the intuition of space and its geometrization. As mentioned in section 3.1, these groups of symmetries on

the observables form the automorphism group of the algebra of observables, which is connected (for infinitesimal

automorphisms) to the notion of derivation, and hence of differential calculus. The argument that groups of



80 CHAPTER 8. GEOMETRY AND THE PHYSICAL THEORIES OF SPACE-TIME

symmetries on observables are more fundamental than the notion of geometry, and that we should deduce our

notion of space accordingly, will be a crucial point in the argument of the sections 8.3 and 8.4, where it will be a

question of defending the relevance of geometrizing Gauge’s theories, and of discarding the notions of geometry

and space-time, in order to work on these concepts on the side of the algebra of observables.

However, these statements assume that we are talking about measured space-time, not space-time in itself.

It is not clear then whether our theories speak of space-time in itself, or of the one we measure. If the way

we measure it does not affect its structure, it is not essential, for all practical purposes, to differentiate these

cases. But if this is not the case, we must know it, because the two cases will give a different description of what

space-time is. I have found no indication in the literature on special and general relativities regarding this point

of interpretation. But if we go back to the method used by Einstein and Poincaré to discover special relativity

(Hladik, 2004), we notice that the concepts of duration and distance are studied according to the operational mode

of measurement by the photons of light, whose speed is independent of any reference frame. This led them to a

deeper understanding of the concepts of duration, distance, and simultaneity. This is for me a strong indication

that relativistic theories are descriptions of measured space, another indication being that, if this theory is a

physical theory, then it must predict what we observe, then the measured space-time. In this line of thought,

we will test the notion of point in section 9.3, using a similar measurement scheme, with photon and material

bodies.

More details and the origin of the citations used in this section can be found in (Michel, 2004), (Nabonnand,

2010), and (Bächtold, 2014).

8.2 The Point on the Point: is Space-Time Substantial?

Formerly, people thought that if matter disappeared from the universe,

space and time would remain. Relativity declares that space and time

would disappear with matter.

A. Einstein

Whether space-time corresponds to something having tangible existence/substance (manifold substantialism

view of general relativity) or not is a very difficult question. The theory of ether was supposed to describe “what

fills” space-time as a kind of fluid in which material objects undergo displacement. But according to Einstein

in (Einstein, 2007), the relativities show us that if there is such an ether, it must not possess any mechanical

properties like velocity for example. This seems to be far away from what we can think of as something being

substantial (i.e. corresponding to an element of reality).

Let’s suppose that there are such elements of physical reality corresponding to elementary space-time struc-

tures 𝐸𝑅𝑠𝑡 . Let’s suppose that this elementary structure corresponds to what we call space-time points, we will

then call it 𝐸𝑅𝑥 . Let’s try to test whether such an element of reality can truly be consistent with observations.

As mentioned in section 7.5, the origin of the concept of element of reality comes from the fact that the RC

(repeatability criterion) is respected, i.e. one or more observers will make predictions in agreement with each

others when they do repeated measurements on the same object at not-so-distant time intervals. This therefore

equally applies to space-time structures. Take the notion of point and the corresponding element of reality 𝐸𝑅𝑥 .

If there is such a physical notion, independent of any material object, then, a series of idealized measurements
1

of this notion of point by different observers should all coincide with the following result i.e. that 𝐸𝑅𝑥 describes

a substantive point in space-time with a probability of 1. But we know that the notion of a point depends on

the chosen reference frame, so different observers will see either a point or trajectories in space-time. Indeed,

any test of the notion of a spatial point without the notion of a material object of reference is doomed to failure,

because of the physical equivalence of all Galilean reference frames. The question of the difficulty of conceiving

physically an empty space, without material objects of reference had already been raised by Descartes, a similar

argument using a box containing space as the elementary tool can be found in (Einstein, 1990).

1
Because as said before, space-time is not measurable since only observation of material objects is possible, and that there are no material

objects to measure in this idealized measurement scheme
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Similarly as mentioned in section 8.1, spatial structures are not measurable, only the material objects from

which we deduce spatial concepts are. Thus, from the point of view of the physicist’s thinking, concepts of space-

time are derived from those of observation of material objects and thus are not necessarily supposed to represent

a real physical entity in their own right, as distinct from what matter is. There are many other arguments against

the idea that space-time is an autonomous physical entity.

A strong argument against giving physical meaning to points (𝑥) in general relativity was given by Einstein

with the hole argument. The general covariance requirement on the Einstein field equations implies that if we

consider a hole in space-time i.e. a region where the stress-energy tensor 𝑇 vanishes, a change in the coordinate

system 𝑥 → 𝑥′ taken to be only inside the hole will induce different metrics 𝑔̃ , for only one 𝑇 . But the new

metric is also a solution in the first coordinate system 𝑥 . Therefore, according to the “points” 𝑥 of 𝑀 , there can

be as many distinct trajectories as they are different metrics, but for only one matter field configuration given

by 𝑇 . This is problematic if we consider these points as being true objective (and then distinct) locations. Thus,

either we restrict ourselves in the set of possible coordinate changes and lose the general covariance, or we

lose the deterministic property of the field equations concerning the trajectories which are its solution. These

two solutions are not acceptable. This can also be seen as a consequence of diffeomorphism invariance, see

(Giovanelli, 2021; Stachel, 2014) for technical details.

Some time later, Einstein finally realized that this argument is based on an implicit assumption we have on

space-time, and therefore on its symbolic representation as being constituted of points 𝑥 on which physical prop-

erties like the value of a gravitational field (or equivalently of the 𝑇 , then of any field associated to 𝑥) are defined

in a meaningful way. By relaxing this requirement, he makes general covariance and determinism compatible.

But how do we provide meaning to “points” 𝑥 if they are not therefore intuitively related to “locations” of physical

quantities? How do these coordinates relate to objective locations?

The answer was given by Einstein as “the point coincidence argument”. This means that true objective

locations are not given by coordinates 𝑥 , but by crossings of world lines which are solutions of the Einstein

fields equations. Indeed, the only observable structures of space-time are point coincidence events, interaction

of a part of the observer apparatus, and the corresponding structure. As he said in (Einstein, 1923):

Our space-time verifications invariably amount to a determination of space-time coincidences. If, for example,
events consisted merely in the motion of material points, then ultimately nothing would be observable but the meetings
of two or more of these points. Moreover, the results of our measurements are nothing but verifications of such meetings
of the material points of our measuring instruments with other material points, coincidences between the hands of
a clock and points on the clock-dial, and observed point-events happening at the same place at the same time. The
introduction of a system of reference serves no other purpose than to facilitate the description of the totality of such
coincidences.

He considers this argument as one of its deepest insights. This was a strong counter indication to the manifold

substantialism view since its points are not referring by their intrinsic structure to locations. Then, the coordinate

systems have no intrinsic meaning. The physical significance of the notion of space-time point is then dependent

on the concept of matter as moving inside them. The notion of point must therefore be operationally based on

such coincidence, this will be used in section 9.3.

Therefore, is it still possible (according to these arguments) to think of empty space, with locations, as men-

tioned above? Going back to the hole argument, if we say that space-time does exist where there is no matter,

we realize that the only way to specify an adequate notion of point is to invoke the geodesic crossings, and thus

from a physical perspective, to reintroduce at least one particle into the hole which must interact with our test

particle. Then, if we implement operationally the point coincidence argument, this means that to implement an

objective notion of point, the hole is no longer a hole since it must contain a particle with which coincidence

permits to set up this notion of point.

So we can see that the idea of thinking of space-time physics as based on a notion of a manifold 𝑀 with

points leads to paradoxes and strange postulates about what these points are. One way to get rid of this problem

could be to find a formalism where 𝑀 does not play a primary role. The formalism of general relativity consists

roughly in supposing the existence of a smooth manifold 𝑀 endowed with a metric, on which we consider the

set of tensorial operations that we can do on it, and thus construct equations whose structural properties encode
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the relevant structures of 𝑀 . An interesting observation is that 𝑀 only comes into play in formalism as a tool

to introduce the ring of smooth functions on 𝑀 (Geroch, 1972). Everything that follows in the developments is

purely algebraic. It is this remark that led to the development of Einstein’s algebras, which are exclusively based

on this ring. By taking this object as first, without any reference to a manifold, one can reformulate general

relativity, without being troubled by 𝑀 and the paradoxes that come with it when it is taken as input.

As mentioned by N. Huggett in (Huggett, 2018), Earman suggested that taking the algebra as more funda-

mental than 𝑀 and its points would avoid the hole problem about the meaningfulness of coordinates by virtue of

locations. This was seen as a replacement of manifold substantivalism by algebraic substantivalism. In this view,

points are seen as deductions of matter fields, and of the elements of the corresponding algebra. The idea that

algebra should be taken as more fundamental than space-time and these points was defended by J. Earman and

in Geroch’s work in an attempt to bring arguments around the substantivalist-antisubstantivalist debate revived

with general relativity and its conceptual problems.

I cannot conclude from these arguments that only the antisubstantivalist position makes sense, but insofar

as this would be true, and that physical elements of reality are needed to explain the origin of space-time, then

only the elements of reality offered by material objects can be used to derive such a space-time structure and

it’s representation. As we see, this assertion is supported by the point coincidence argument. In chapter 9, I

will present how some essential structures at the heart of space-time’s concept such as the notion of point and

continuity between two points can be offered by pure matter concepts. In section 9.3, I will use these arguments

to show the limits at which such an operationally implemented notion of point failed, opening the door to NCG...

A nice review about the Relationalism versus Substantivalism debate can be found in (Field, 1984).

8.3 Back to what is Observable, Consequence for Gauge Theories
In section 8.1, arguments have been put for emphasizing the primary status of observables over our usual rep-

resentation of space-time as an entity in itself. Let us then try to reproduce the path of creation of the intuition

of space proposed by Poincaré, without presuming anything. A first observation is that we will acquire, by a

set of measurements, a whole state of observables, and data on their evolution. Our mind then begins to make

representations in which this shapeless mass of observables, as well as their evolutions, can make sense of these

data, according to the symmetries it perceives in the structure and evolution of these observables. Let’s start with

the notion of point. Usually, points are taken as input in all physical theories, i.e. we suppose point 𝑥 ∈ 𝑀 as

pre-existing entities on which events can occur. But we have to admit that these notions of point are necessarily

reconstructions from the observables we collect, and concecuntly, these observables have to be considered as

more fundamental than these points. As mentioned in section 1.2, the Gelfand Naimark theorem provides such a

link between observable and points of an underlying “hypothetical manifold”. This theorem has a deep meaning,

it implements a part of Poincaré’s idea presented in section 8.1, i.e. space-time geometrical notions have to be

deduced from the set of observations we can collect. Indeed, if we take again the equality 1.2.1,
̂𝑓 ∈  being such

an observable, 𝑥 a character on , and 𝑓 the inverse Gelfand Transform of
̂𝑓 , then we have:

̂𝑓 (𝑥) = 𝑥(𝑓 )

This shows that we can see these two views as equivalent:

• space-time as fundamental → ̂𝑓 (𝑥): Take the points 𝑥 ∈ 𝑀 as fundamental, and then interpret measure-

ment results as evaluations of observable on these points.

• Algebra of observables as fundamental → 𝑥(𝑓 ): Take observables
̂𝑓 ∈  as fundamental, and points as

special functions evaluating these observables.

We saw in section 8.2 that the notion of point being a source of problems, the approach starting from observables

(Einstein Algebra) could be considered as more fundamental. Moreover, as defended in section 8.1, the structures

of space-time are not measurable, only the observables on the matter are. And finally, as mentioned in sections

7.2 and 7.3, we saw that the first approach which consists in the evaluation of observables pointwisely is not

defined (because of the NC), whereas the algebra of observables is. This is why I think the second approach



8.3. BACK TO WHAT IS OBSERVABLE, CONSEQUENCE FOR GAUGE THEORIES 83

is more fundamental. Then, as mentioned in (Coquereaux, 1998), the measurement process can be taken as a

replacement for the first given consideration of the geometric background space.

Let us thus resume our initial apprehension of what space-time is, starting from the observables and their

variations as mentioned in section 8.1. As said above, a given proportion (O𝑠𝑡 ) of these observables (and their

evolutions) leads to our usual representation of space-time, while the other (O𝑛𝑠𝑡 ) can rather be perceived as

moving in non-spatialized dimensions, in purely formal structures, remaining attached to points of space-time.

These non-spatialized evolutions can be for example the evolution of color at a given point, of a fermionic field

according to its different charge components, of a spin, or simply of any properties of matter without spatial ex-

tension, and manifesting a temporal evolution. In the first case, we speak of reconstructing notions of trajectories

in space-time and in the second case of evolution in a non-spatial sense. But what determines these trajectories

and evolutions?

The most advanced theoretical view is to consider that trajectories are the results of the path for which the

phase interferences of the wave function of a particle are the more constructive. It is then the evolution of the

phase of the particle that becomes the primary theoretical object of these notions of trajectory and evolution.

The phase is the evolution parameter taken as an argument of the function whose variation is considered.

In geometry, the evolution of this phase along paths is encoded by the notion of parallel transport, imple-

mented by connections. We therefore observe trajectories, which are derived from the evolution of the phase,

which is parameterized by the connections that encode the parallel transport. More generally, given the col-

lection of phase observations, we are free to interpret the infinitesimal irregular changes of the phase in two

ways:

• Either as real phase changes (those induced by gauge potentials), which we will say are induced by forces.

• Either as false phase changes (those induced by gravitation), thought to be simply induced in appearance

by the non-regular structure of the background space.

Apart from technical conveniences, I have not found any conceptual or theoretical reasons for geometrizing

one force over another. What is objective, in short, are the observational changes in the material objects we

collect. A certain portion of these changes (O𝑠𝑡 ) can make sense in a geometric scheme, in this case Riemannian

(for gravitation), and we are free to do the same for the others (O𝑛𝑠𝑡 ) if we find such a geometric representation.

A little-known fact is that Einstein himself did not defend the idea that General Relativity was a geometrization

of gravitation, he rejected this hypothesis, which made no sense to him, more details on his position can be found

in (Lehmkuhl, 2014). This point will be further defended in the next section 8.4.

Another argument that makes connections as non-concrete as coordinates in terms of the idea that they

represent something physical is provided in (Healey, 2007), where it is shown that gauge potential cannot be

thought of as related to a physical (element of) reality, only curvature can be.

As we will see in part III, gauge theories offer a theoretical framework where the whole set of forces, and

thus phase evolutions, is encoded. Many researchers such as Einstein, Kaluza and Klein, and others have sought

to describe the interactions of the SMPP in a unifying scheme with gravitation, but this has not been successful.

As mentioned in chapter 3, differential structures can be understood as the study of variations in the general

meaning, this variation can be thought of as being along some degrees of freedom, abstract or concrete, like

space-time degrees of freedom (coordinates), another observable degree of freedom, or abstract numbers. Here

the variations of interest being the ones of the phase, we will see that the NC extension of these differential

structures and then of the geometric framework offers a way to make gravitation and the other interactions on

the same footing, in a single unified formalism, making the interactions of the SMPP appear like pseudo forces

induced by the underlying NCG.
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8.4 The Way of the Algebraization of Geometrical Concepts

Algebra is nothing more than geometry, in words; geometry is nothing

more than algebra, in pictures.

S. Germain

In the previous sections, I have highlighted the links between algebraic and geometric structures, presenting

arguments for the fact that observables were primary to the geometric intuition of space-time. However, it is

not yet clear that all geometric properties can be encoded algebraically. For example, we have seen that the

notion of point, having long resisted algebraization, finally yielded this tendency thanks to the Gelfand Naimark

theorem. In this section, I propose to show the historical path of this algebraization of geometrical notions, whose

culminating point can be considered as the creation of the NCG framework, previously presented in part I.

Together with arithmetic, geometry is one of the oldest mathematical fields. It comes from ancient

Greeks, with the first meaning being “land measurement”. The first purpose of geometry was to under-

stand spatial properties such as distance, relative positions, and size... It was initially done with compasses

and rulers. Its objects (points, straight lines,...) are familiar to us, certainly, because they are connected to

“a priori” given representations of our mind. We can see that these objects are the basic axiomatic objects with

which Euclid initially played to give axiomatic foundations to geometry. But I think that we have to admit that

these notions rely on very human-like representations probably inherited through the process of natural selec-

tion. For example, the Euclid axioms are based on primary objects such as points, lines, distances, and relative

locations... which only make sense for our inherited representations of the world, and which are very difficult to

explain in detail. The notion of a point, for example, which appears simple, is a profound concept, very difficult

to define. This is why I think that geometry is a more subjective mathematical science than others.

History shows that geometry, as a mathematical discipline, was gradually absorbed by algebra and that each

of the primary objects qualified as subjective has been incorporated and made more meaningful in the algebraic

frameworks. This can be seen as a 4-step process (to simplify).

The first step can be seen as the invention of coordinate systems by Descartes, implementing distance and

relative locations. Descartes is the creator of analytic geometry; perceiving this discipline as an “algebraic pre-

sentation of the ancient’s geometry”. This means that he reduced geometric problems to calculations of length

and translated geometric questions into algebraic equations. Before Descartes, it was understood that algebra

and geometry were completely separate branches of mathematics with no connection between them. His work

is the first to propose the idea of uniting algebra and geometry in a single discipline. The key to this unification

was the notion of coordinates.

In mathematics, coordinates are numbers used to locate a point in relation to a coordinate system. In physics,

these numbers are the result of observables, such as the measurement on a graduated ruler, the time taken for

light to travel between two material objects, etc. In mathematics, a system of coordinates allows each point in an

N-dimensional space to correspond to one (and only one) N-tuple of scalars. In many cases, the scalars considered

are real numbers, but it is possible to use complex numbers or elements of any commutative field.

It is important to stress that this definition is based (in input) on the existence of the notion of point and

commutative field for the associated coordinates. These coordinates are our starting point for understanding the

different generalizations of geometry, as were the Euclidean coordinates in an orthonormal frame of reference,

and then the curvilinear coordinates for manifolds.

Thus, analytic geometry is an approach to geometry in which objects are described by equations or inequa-

tions using a coordinate system. Then in the case of Euclidean geometry, a choice of Cartesian coordinates allows

the sophisticated axiomatic deductions of geometry to be transported into the field of algebraic calculations.

A second step can be seen as containing all attempts to find deeper characterizations of topology and geome-

try of a manifold 𝑀 (and more general geometries later) through algebraic objects like those based on differential

operators. Spectral geometry can be seen as one of the most interesting and prolific research areas in this di-

rection, providing a lot of characteristic information about topology and geometry from differential operators
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defined on 𝑀 . To be more precise, Spectral geometry is the study of the relationships between geometric struc-

tures on 𝑀 and the spectra of differential operators like the Laplacian. Two directions were followed as attempts

to answer to these two different questions:

• The inverse problems direction: Which geometric feature can be recovered from the knowledge of the

eigenvalues of the Laplacian?

• The direct problems direction: Knowing the geometry of a Riemannian manifold 𝑀 , what is the behavior

of the eigenvalues of the Laplacian?

The first question is more commonly expressed as “Can one hear the shape of a drum?”. The answer was the

negative, these differential operators don’t fully characterize the underlying geometric structure; two different

objects with nonequivalent geometries were found to have the same spectrum.

It is interesting to underline that such differential operators are based on the differential structures, which

as mentioned in chapter 3 where essential structures to complete the equivalence between algebra and geom-

etry. Similarly, such operators appear almost systematically in all of the most important equations in physics.

Indeed the spectrum of the Laplacian, or more generally of the d’Alembertian, is connected to important physical

properties of sounds, light, heat, and atomic process. It is present in:

• The Heat equation: 𝜕𝑡𝑢 = 𝛼Δ𝑢 whose eigenvalues give the time decay rates of eigenfunctions in time.

• The wave equation: □𝑢 = 0 governs light wave propagation for example, harmonic frequencies being given

by the eigenvalues of the Laplacian.

• The Schrodinger equation: 𝑖ℏ𝜕𝑡𝜓 = −(ℏ2/2𝑚)Δ𝜓 + 𝑉𝜓.

It is interesting to note that in the case of the Heat equation, the computation of the heat kernel (function of

the spectrum) and then something called the heat trace (spectral invariant of interest), lead to an asymptotic

expansion of this trace where the first three moments were connected to important geometric data:

𝑎0 = vol(𝑀), 𝑎1 =
1
6 ∫

𝑀
𝑠, 𝑎2 =

1
360 ∫

𝑀
(5𝑠2 − 2|𝑅𝜇𝜈|2 − 10|𝑅𝜆𝜇𝜈𝜌 |

2)

𝑠 being the scalar curvature, with Ricci and curvature tensors given by 𝑅𝜇𝜈 and 𝑅𝜆𝜇𝜈𝜌 .

This is very similar to the way in which a spectral invariant is constructed in the spectral triple framework

as we will see in subsection 11.6.2, which will in the same way connect to important geometrical data as we will

see. More details about spectral geometry and this asymptotic expansion can be founded in (Cruz, 2003) and

(Urakawa, 2017).

A third step encompasses the work that tries to find topological information from algebra, i.e. by deducing

from algebra the notion of set, and therefore of points, and then of topology. The first realization was to find

a duality between complete Boole algebras and sets. After this around 1930, Marshall Stone set up a link be-

tween mutually commuting projections on the Hilbert space and Boole algebras, making a link between these

projections and elements of a set, but this link is not complete since it is not implying that this Boole algebra

is complete. Later Stone duality shows the equivalence between compact completely discontinuous spaces and

Boolean algebras. The remaining question is what kind of algebra can correspond to non-discontinuous com-

pact spaces, such as R or 𝑀? As mentioned in section 1.2, the answer was given by the Gelfand duality, which

provides a complete link between topological data, and the algebra of observable. This was a crucial step since it

absorbs the concept of point which was previously taken as an input.

The final step can be considered as the elaboration of the NCG framework, giving a differential structure and

then the equivalent of a geometrical structure to the algebra of observables as shown in chapter 3. NCG only

exists in the algebraic setting, mainly because inputs of the geometric framework like points are relegated to the

secondary level in the restrained situation of commutative algebras. The algebra of observables establishes itself

as a background (by replacing 𝑀), providing a framework that encompasses the equivalent of all that was done

in the usual geometric one, and goes far beyond.



86 CHAPTER 8. GEOMETRY AND THE PHYSICAL THEORIES OF SPACE-TIME



Chapter 9

From Quantum Theory to NCG:
Geometric Consequences of the 𝜓-ontic
Interpretation

When forced to summarize the general theory of relativity in one

sentence: Time and space and gravitation have no separate existence from

matter.

A. Einstein

The Gelfand Naimark theorem establishes a one-to-one correspondence between the algebra of continuous

“functions” and the topology of an underlying space. As we already said, our intuition of space comes from the

observations we gather about our environment. The question is therefore whether we should seriously consider

the information possessed by the quantum states and find the correct intuitive geometrical representation coming

with it.

If we look at QM with 𝜓-epistemic eyes, 𝜓 does not refer to an objective reality, but to a tool for predicting

the results of experiments. Then, there are no geometrical consequences to be deduced from it. But with 𝜓-ontic

eyes, as the state corresponds to something objective, then, we have to consider it seriously, and try to understand

what is the corresponding geometrical view.

In section 7.5, I provided arguments in favour of the 𝜓-ontic interpretation. Then, in sections 8.1 and 8.3,

I gave arguments defending the fact that the observables should be considered by the physicists as primary

to the notion of space-time, which would be an “a posteriori” deduction. These arguments provide a strong

indication of the fact that one must take the formalism of QM as seriously as that of classical theories regarding

its representational fidelity to elements of reality, and consider the induced geometrical consequences. This will

be partially done in what follows, by relying on the links between topological and algebraic realities presented

in section 1.2.

In this chapter, we will see how the elementary constituent of the notion of space, i.e. the notion of point,

can be deduced from the QM formalism in section 9.1, and then, in section 9.2 I will outline a way to understand

what can fundamentally connect these points and thus be the potential origin of the notion of continuity for

spaces. Then, in section 9.3, I will show how, when and at what scale this notion of point loses meaning, in

connection with the NC. We will see in particular that this happens for scales larger than the Planck scale 𝜆𝑝 . As

I will discuss in section 12.2 these arguments could eventually provide a physical justification for the NCSMPP...

Then in section 9.4 I will show how, when restricted to unitary operators (without collapse), the notion of inner

derivation presented in section 3.3, acquires a natural meaning. To finish, I will make the synthesis of all what

has been said in this part, and of the vision of the NCG that I deduce in section 9.5.
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9.1 Gelfand Naimark Theorem, Pure States and Points
In general relativity, 𝑥 represents point-events, i.e. potential supports of an interaction between particles, or the

simple presence of one of them. The implicit view is that there is a space-time 𝑀 , a point 𝑥 ∈ 𝑀 , and that a

particle can eventually be found at this point. In this view, the point is primary to the presence of a particle. In

section 8.2, I have presented some arguments that go against this view, i.e. defining a notion of point, independent

of the presence of a material object in it, while remaining objective (using the realism criteria set up in section

7.5) seems to be unsuccessful. A possible conclusion of such a reasoning is that the event particle is upstream of

this notion of point, which would be in line with the arguments presented in sections 8.1 and 8.4 concerning the

primacy of the algebra of observables (concerning material objects) over space-time notions. In QM, it is the 𝜓
states that represent the famous point-event particles of which the current theory of gravitation speaks. As we

have seen, the Gelfand-Naimark theorem tells us that it is the pure states that provide the notion of point, from

the algebra. Hence, given these arguments, it seems likely that these pure states are those of material particles,

and that the notion of point to which an observer has access thereby arises like this. In what follows, it is assumed

that the pure states at the origin of the notion of points considered correspond to states of material particles.

Gelfand Naimark theorem said that if there is a pure state 𝜋M(𝐸𝑅) (corresponding in a bijective way through

PBR theorem to a physical state 𝐸𝑅 as seen in 7.5), then in the case of commutative algebras, we can construct

a point 𝑥 from this 𝐸𝑅. As coordinates are deducible from these observables, then, only commuting observables

will lead to a good notion of coordinate (associating numbers to points in a non-contextual way):

Point ≡ pure state + commuting observables → Notion of coordinates

As this depends on the projection property of the state, it will not be possible to associate such point events with

mixed states.

Remark 9.1.1 Therefore, we can see that pure states provide the notion of space-time points. But these pure

states also contain degrees of freedom that are not spatializable (Dirac fermion and anti-fermion component of the

wave-function, left/right component, spin, and other quantum numbers being in superposed states into the total

pure state). Then if the category equivalence behind the Gelfand-Naimark theorem is to be taken seriously, these

internal degrees of freedom must therefore know their geometric counterpart. As we will see, this is partially

done in the SMPP, where these internal degrees of freedom are taken to be the element of a finite space 𝐹 , which

will be named the fermionic representation space. Then any pure state can be associated with a notion of point,

with inner degrees of freedom given by these inner structures, that can be geometrized as we will see in remark

11.4.1 and chapter 11. □

Remark 9.1.2 Making such a link between a pure (symbolic) state and objective points is meaningless in 𝜓-

ESR theories (𝜓-epistemic theories admitting the existence of a physical state) because one physical state can

correspond to two distinct symbolic states, then to two distinct points
1
. This cannot be linked to any objective

physical notion of point, since a particle is defined to be able to interact with others at a given location, not at

two at the same time. □

An interesting terminology issue will be to no longer state that a particle is at a point 𝑥 , but that the particle is

the point. This connects with the point coincidence argument presented in section 8.2, where the impossibility

of defining a relevant notion of point without the pre-existence of a particle with which to interact in this “place”

was considered. This finally appears to be logical since the only observed points are material objects...

Taking 𝜓 to be a pure state, we call 𝑠𝑡(𝜓) the space-time domain where the presence density 𝜌 = 𝜓𝜓∗
of 𝜓

is non-zero. Then the only notion of point event we can associate to 𝜓 is one 𝑠𝑡(𝜓). This extends the notion of

point: usual points are recovered when decoherence and collapse occur during classical measurement processes,

making 𝑠𝑡(𝜓) very “localized”.

Then we can see that we have points, coming from the physical states of material objects, which can offer

candidates for the points events described in general relativity. But how do these points relate between them-

selves, and how connectedness between such points can be implemented, using concepts belonging only to the

realm of material objects?

1
Without any mention to coordinate change or move in space-time to explain the two different symbolic formulations of the same point

given to be attached to the physical state
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9.2 Entanglement and Connectedness
Entanglement is usually conceived (at the formal level) as “non-separability” of the tensor product in the Hilbert

space. Two states 𝜓1 and 𝜓2 are said to be entangled if the joined state 𝜓1,2 is not the tensor product state 𝜓1⊗𝜓2.

Now, what does the 𝜓-ontic interpretation tell us? It shows that this description is not only a formal one, but

that it represents directly a kind of physical reality. Let’s see what this means for our algebraic to topology

correspondence.

Entanglement has a direct geometric correspondence among the equivalences listed in table 1.2. This is given

in a transparent way by the equivalence provided between connectedness and projectionless. If we consider the

previous join pure quantum state 𝜓1,2, its reduced states (in 𝜓1 and/or 𝜓2’s basis, when taking the partial trace)

are mixed so that each of them cannot be associated with a point event as mentioned in section 9.1, only the

total state can. Therefore, the point is the union of the two particles, and 𝜓1 and 𝜓2’s elements of reality cannot

be seen as disconnected pieces (in the topological meaning). Then two entangled particles form a point, even if

they are far away in our usual space-time representation of the world.

Then, entanglement between 𝐸𝑅1 and 𝐸𝑅2 leads to connectedness of the associated space-time elements 𝑥̃1
and 𝑥̃2 which are not points, only the joined physical state 𝐸𝑅1,2 being one.

Many physicists believe that any mixed state 𝜓 is the projected sub-state of a larger pure state 𝜓𝑡𝑜𝑡 , where it

shares entanglements with other sub-states of this 𝜓𝑡𝑜𝑡 . There is no consensus on the reality of such an assump-

tion. However, it is certain that a pure state which interacts with its environment becomes mixed, and I do not

know of any other process which makes it possible to go from a pure to a mixed state. In the previous section

9.1, the fact that mixed states cannot be linked to the notion of point was mentioned. Then if we claim that any

mixed state 𝜓 can be seen as a sub-state of a bigger pure state 𝜓𝑡𝑜𝑡 , then there is a possibility to reconstruct such

a notion of point (then location), through this purification procedure.

The fact that entanglement may be at the origin of the continuous structure of space-time is at the very

heart of the Einstein–Rosen = Einstein–Podolsky–Rosen conjecture. This conjecture proposes an ambiguous

connection between two concepts, one existing in the field of observables (then algebra), the other, in that of

spatial concepts (then manifold, with metric). Nothing explains the link between these two concepts in the

claims of its advocates. Fortunately, the previous assertions give an unambiguous connection between these two

concepts and their representations. I think that the concepts of space-time in general relativity, and of observable

in QM must be unified in the purely algebraic framework offered by NCG.

Points of the manifold correspond to point-events in physics, two entangled particles thus form a single event.

I take such an entanglement as a potential candidate for the implementation of the concept of point coincidence

mentioned in section 8.2. This means that concerning a material object, an associated objective notion of point

can only be built using its link with another material object, this link being interaction or entanglement (which

are often linked since entanglement is created by interactions).
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9.3 Position Measurement, Compton Scale and NCG

If one wants to be clear about what is meant by “position of an object,” for

example of an electron..., then one has to specify definite experiments by

which the “position of an electron” can be measured; otherwise this term

has no meaning at all.

W. Heisenberg, 1927

Space-time is represented as a manifold made of points-event. The mind likes it very much because the points

are easy to think about, they are concrete objects and support our intuition of things. But does this view resist

to experience?

It is commonly admitted that at the Planck scale 𝜆𝑝 , the notion of localization via the coordinates’ measure-

ment of a particle loses its meaning. The argument used, developed in (Doplicher et al., 1995), deduces from

general relativity and the wave nature of particles (linked to the UP) that the measurement of the position of a

particle beyond a certain precision requires the intervention of a high-energy mediator which generates a black

hole, for dimensions of the order of 𝜆𝑝 . This paper seems to be a reference taken by Connes in (Connes, 1997) to

physically motivate NCG, and represents the general line of thought regarding the conjecture of a limit scale at

which the notion of space-time supported by a Riemannian manifold loses credibility. It is interesting to note in

this approach that it is the measured space-time that is no longer a Riemannian manifold, which seems to be in

the same line of thought as the arguments presented in section 8.1. Moreover, these statements clearly seem to

imply that the act of measurement modifies geometry, but this important conclusion is not made explicit.

In this section, we will test the spatio-temporal notion of a point event. To test the notion of a point, we

need to implement an experiment that gives us access to this notion. A first observation is that if we do not

measure absolute position, but the position of a material object, then the notion of a point in space-time has no

objective meaning without that of the measurement of a material object with respect to a given object taken as

reference. Imagine that we want to test the notion of position for the most elementary material object we have, a

particle. The only way to do this, without absorbing or totally disturbing the physical state of this particle, is to

send a light beam on it, which will be scattered by the Compton effect (for charged particles). This deviation will

provide an indication of the presence of the particle in the corresponding space-time area. This is the essence of

the microscope experiment argument mentioned in section 7.6 and an implementation of the point coincidence

argument presented in section 8.2.

As we see, the photon possesses a wavelength 𝜆, which must be smaller than the desired scale of localization

to permit to do this measurement. But the more you want to know precisely the localization of the electron,

the more you need a photon with a small wavelength (then big energy), and the more it affects the state of the

electron, changing its measured momentum. If we take the particle designed by 𝜓 to have a mass 𝑚𝜓 , then its

mass-energy is given by 𝐸𝜓 = 𝑚𝜓𝑐2. When the energy of the photon used to measure the position starts to be

of this order, then this measurement scheme starts to change the momentum of the particle. The wavelength of

the photon is connected to its momentum through 𝑝𝛾 = ℎ/𝜆. If we take 𝜆 to be the scale at which we want to

measure the location of 𝜓, then we see that it starts to affect in a non-negligible way the momentum 𝑝𝜓 when 𝑝𝛾
starts to be close to the mass-energy 𝐸𝜓 . Equalizing these two parts give the Compton wavelength:

𝐸𝜓 = 𝑝𝛾𝑐 → 𝜆𝑐𝜓 =
ℎ
𝑚𝜓𝑐

In other words, the Compton wavelength is nothing but the wavelength of a photon whose energy is the same

as the rest-mass energy of the particle. Then if we want to test the notion of location for a fermionic particle 𝜓,

it starts to change its momentum when trying to measure this location under 𝜆𝑐𝜓 scale precision. As mentioned

in section 7.6, this is the origin of the NC of position and momentum observables. But as proved by the Gelfand

Naimark theorem, and defended in chapter 8, observables are not only linked to the space-time picture but first

to it. Then, this NC is linked to a NCG which starts to occur at 𝜆𝑐𝜓 scales.

The same appears if we measure momentum, and that 𝜓 is not in momentum eigenstate basis, 𝜓 undergoes

change, and the position measurement before and after the momentum measurement reveals different positions.
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Since momentum and position are observables that we can obtain in space-time, then, it is not only a NC in phase

space but also in something which can be seen as an extension (in an unknown meaning) of ∞(𝑀). Therefore,

if as Heisenberg we take physical theories to give the prediction of what we observe (“measurement=meaning

principle”) so that we restrict our notion of reality to what is accessible by experiments, then, a correct descrip-

tion of the structure of space-time at Compton scales cannot be made in a geometrical framework where the

fundamental elements are points.

Remark 9.3.1 It is interesting to note that when Einstein and Poincaré studied the notions of duration, distance,

and simultaneity, they proceeded similarly: by testing these notions with experiments where light rays are used

to “measure” these notions. It is in this regard that the previous comments on the test of the notion of a point

can be seen in this line of thought. □

More details on the minimal length and the link between Compton scale and uncertainties can be found in

(Moniruzzaman and Faruque, 2016) and (Premovic, 2018).

The Compton wavelength of a particle is also the scale at which quantum field theory starts to be needed

to obtain accurate predictions. The fact that this coincides with the second quantization (the one of bosonic

and fermionic fields) can be understood thanks to the above arguments. Such processes, using gauge bosons for

example, become so energetic that particle creation and annihilation start to be possible.

Thus, the two pure NC encountered in theoretical physics (that of QM, and that of quantized Gauge connec-

tions) can be associated with the non-passivity of the act of interaction represented by the multiplication of the

mathematical representations 𝜋M(𝐸𝑅1) and 𝜋M(𝐸𝑅2) of the interacting entities 𝐸𝑅1 and 𝐸𝑅2. The interaction

process is represented mathematically by the multiplication operation.

Therefore, the notion of point, and then of Riemannian manifold, loses meaning well before reaching the

Planck scales 𝜆𝑝 . It loses effect at different scales, depending on the mass of the fermionic field taken into con-

sideration for the test of this notion of point. Thus, to each fermionic field 𝜓𝑓 will be associated a mass 𝑚𝑓 and

a length scale 𝜆𝑓𝑐 , the associated Compton wavelength, considered as the scale at which the notion of point and

Riemannian manifold ceases to be relevant. These are therefore scales, which according to the arguments devel-

oped in the section 7.6, are accompanied by a NC at the level of the observables, and thus by a NCG at the level

of the deduced geometry. As we will see in chapter 12, these are curiously the characteristic scales of the NC

spaces created to geometrize the set of forces in the NCSMPP.

9.4 Almost Naturalness of Inner Derivations
In section 7.6 we saw that the NC of the observables could be associated with the non-passivity of the act of

measurement. The claim of this section concerns QM theory without collapse (therefore not concerning physics,

unfortunately). If before the measurement of the observable 𝑏, we have 𝑂𝑎(𝜓) = ⟨𝜓|𝑎|𝜓⟩, after the measurement

of 𝑏, the state is transformed: |𝜓⟩ → 𝑏|𝜓⟩ and thus 𝑂𝑎(𝜓) becomes:

𝑂𝑎(𝑏𝜓) = ⟨𝜓|𝑏∗𝑎𝑏|𝜓⟩

Thus the variation of the observable can be written:

𝛿𝑏𝑂𝑎(𝜓) = ⟨𝜓|𝑏∗𝑎𝑏|𝜓⟩ − ⟨𝜓|𝑎|𝜓⟩

The fate of the observation coming from 𝑎 when the observable 𝑏 is realized is therefore given by the inner

automorphism ad𝑏∗(𝑎) = 𝑏∗𝑎𝑏. If 𝑏 is unitary, then we have:

ad𝑏∗(𝑎) = 𝑏∗𝑎𝑏 = ad𝑏−1(𝑎) = 𝑏 + 𝑏−1𝑎𝑏 − 𝑏 = 𝑏 + 𝑏−1[𝑎, 𝑏] = 𝑏 + 𝑏−1𝑑𝑏(𝑎)

With the derivation 𝑑𝑏(𝑎) = [𝑎, 𝑏]. This expression is analogous to the one of usual variation of functions along

space coordinates: 𝑓 (𝑥 + 𝑑𝑥) = 𝑓 (𝑥) + 𝜕𝑥𝑓 (𝑥)𝑑𝑥 .

An example of a unitary operator is the translation operator (temporal or spatial), it is interesting to note

that this is connected to the momentum, as well as to the degrees of freedom of space-time. As we can see in the

Ehrenfest equation, these inner derivations are the derivations of QM:

𝑖ℏ𝜕𝑡𝜌 = [𝐻, 𝜌].
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The fact that many observables are not unitary operators (not only thanks to collapse) makes it impossible to

build a differential structure from these observables. The obstacle to unitarity in the measurement process goes

further in QM, with the collapse coming with the process. However, the collapse is considered as a problem of

measurement and therefore does not have to be considered an unalterable fact. It is moreover possible that our

observables are approximations of a larger operator, which may be unitary. In any case, the obstacle to unitarity

for the evolution of 𝜓 is accompanied by an artificial renormalization of the wave function because its norm is not

preserved, which from the point of view of elegance and conceptual simplicity can be considered as a defect of

the current formalism. I therefore do not despair of the possibility that inner derivations may acquire a physical

meaning.

An interesting feature of inner derivations is that they implement an important operational physical reality

of the study of variations. Indeed, in practice, the study of variations is always done by collecting the observables

of an object whose variations are being studied. But it is not possible to study variations in an abstract way, it

is always done by comparing these observables with those of a reference object, i.e. the observables of a clock,

a ruler, or any other physical object presenting a range of possible observations relevant to the study of this

evolution. The study of variations is thus fundamentally that of the evolution of the links of relative observables

between objects, which is indeed the case for the inner derivations where it is a question of the evolution of the

observable linked to 𝑎 when the observation 𝑏 is made.
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9.5 Geometry through Algebraic Eyes:

It is common to find the anti-realist arguing that the success of quantum

theory has dealt the death blow to realism, while simultaneously some

realists herald the quantum revolution as demanding a reconstruction of

the conceptual framework of physics to attain a fuller understanding of

nature’s structure.

H. Folse

In this section I will synthesize what has been said in this part, deducing some consequences in the same

time, and building (in an incomplete manner) the emerging general picture. This will be done in a different order

now that some of the ideas have been presented, so as to highlight the logical path to the NCG and to offer a

better understanding of the proposed algebraic substantialism philosophy behind it.

By NCG, I mean the algebraic reformulation of geometry, which can go beyond the scope of the latter through

NC algebras. Therefore I speak also of Riemannian geometry seen from the algebraic eyes.

We do not observe space-time, but observables of material objects, from which we derive concepts of space-

time. Space-time is therefore a concept deduced from observables of material objects. We can then suppose that

there is a space-time which is an entity in itself, where material objects arise in a subordinate way: this is the

geometrical substantialism view of space-time. But we have seen that general relativity and various arguments

undermine this view.

Is it then possible to completely determine space-time from observables? In physics, observables can be

considered as elements of an algebra, while space-time is best described in terms of geometry. History shows

that concepts of geometry may have been absorbed into those of algebra, culminating in the absorption of the

notions of point and tangent space into the framework of NCG. It then seems plausible that our theories of

space-time can be entirely deduced from the observables of material objects.

We can therefore see that the geometric and algebraic representations of space-time are equivalent. It has

been shown that the algebraic framework probably offers a more appropriate and fundamental framework. Be-

cause it is both less limited and closer to physics (observables), potentially allowing to overcome some internal

inconsistencies in general relativity. This is why algebraic substantialism will be taken as a replacement for the

geometric one.

Let us therefore admit that observables are primary to the notion of space-time, and then look at what this

might imply. It turns out that the observables accessible to us can be divided into two categories, classical ob-

servables, which are perfectly related to the idea of space-time, and quantum observables, which as we have seen

are problematic at this level. In the algebraic framework, we have seen that pure states defined on an algebra

provide the notion of a point and that observables that do not commute do not provide such notions of point. If

the QM formalism designates objective physical states, then the mathematical equivalence between observable

and geometry can be used to extract an objective geometrical meaning from the quantum formalism. If not,

then no relevant geometrical consequences can be extracted. We have presented arguments to defend that this is

the case: QM’s formalism refers to objective physical entities. Then, it remains to understand what “geometric”

consequences can be deduced from this formalism.

Geometry is a deduction from observables, we are not allowed to say more. But for a certain class of phe-

nomena, the measurement corresponding to the objects M (of the material physical theories) which permits to

determine the represented spatial elements M𝑠𝑡 can no longer be considered as passive

𝜋M(𝐸𝑅1)
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡⟶ 𝜋M(𝐸𝑅2)

𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛⟶ space-time structure M𝑠𝑡

But if the physical theory of space-time is a theory that is intended to account for what is observed, then M𝑠𝑡
must be modified accordingly. Because our model of reality must fit with what is observed, and that, according

to the PBR theorem, if we take two distinct symbolic states, corresponding to two physical states, then

𝜋M(𝐸𝑅1) ≠ 𝜋M(𝐸𝑅2) → 𝐸𝑅1 ≠ 𝐸𝑅2
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But as we saw with Gelfand Naimark theorem in section 9.1, this will correspond to two different points 𝑥1 and

𝑥2 given by 𝐸𝑅1 and 𝐸𝑅2 respectively. However, we have seen in section 7.6, that the NCG is interpreted as a

perturbation of the symbolic and thus the physical state, which means that at least one of the two observables

causes a change of the physical state. Therefore, if we suppose that this change is from 𝐸𝑅1 → 𝐸𝑅2, then, this

corresponds to a change 𝑥1 → 𝑥2 of the associated notion of point. The NCG can thus be interpreted as geometry

in motion, this motion being induced by the act of measurement, which is, as mentioned in section 7.4, always

an interaction. The NGC is thus a perceived geometry, where the very act of observation disturbs the geometry,

i.e. the notion of point. In the algebraic substantialist view, we can see the measurement process can be taken as

a replacement for the process of considering the geometric background space. If points can be seen as secondary

to the process of measurement, then, I have no problems with NCG since nothing forces this process to lead to

this notion.

It is interesting to note that according to the arguments developed in section 7.4 and in (Busch, 2009), the

non-passivity of the act of measurement is universal (concern any measurement processes, classical and quan-

tum). Thus, if noncommutativities are associated with such a nonpassivity of the act of measurement as defended

in section 7.6, then the noncommutativities of some observables are universal but asymptotically null for macro-

scopic objects (giving classical theories with commuting observables as an “asymptotic” theory). The interesting

point that emerges is that insofar as the classical observables are only asymptotically commutative and that they

allow us to deduce our usual representation of space-time, then the latter is only asymptotically Riemannian,

without being fundamentally so. This invites us to reconsider the NCG as a potentially universal framework (in

line with the idea presented in the introduction that NC is more fundamental), of which the eventual Riemannian

space-time is only an approximation when the observables tend asymptotically to commute.

Other interesting topological consequences such as the link between entanglement and connectedness have

been seen, as well as the extension of the notion of point. This suggests that where the QM formalism seems to

offer great novelties (superposed states, NC, entanglement), notable geometrical consequences are to be found.

In section 6.1, we talk about the limitation of the thinking of sets as primary objects, this being linked to NC

of characteristic properties used to build the set thanks to conditions given by these properties. It is interesting

to note that the second big novelty of the QM world, i.e. entanglement, is also connected to the end of the set’s

thinking as being fundamentals. Indeed, two entangled particles cannot be seen as linked to distinct elements of

a set, neither at the level of their states nor at the level of the characteristic properties of these states, collected

during the measurement process. This is for me a strong indication that nature shows us the limitation of set’s

thinking as being universal.

For those who believe that QM is the ground of any theories about nature (because this talks about the me-

chanics of the elementary components of everything), this signifies that set’s thinking is no longer fundamental,

but asymptotically true. This may also be the case for mathematics.

An order is a conceptual representation that we use to make sense of what we observe in the world. It is a

tool, to find the “good order” in which observed things seem to make sense. It is an “a priori” given reading grid

of the world used to interpret the events we observe. An order can be seen as better than another if it requires

less information to understand and predict what happens in a meaningful way. Space-time is the main order,

its causal structure gives the order in which we make sense of processes. This order was first described to be

Euclidean with absolute space-time, then Euclidean without absolute space, then after some steps Riemannian.

Each time, these upgrades help to obtain more consistent picture of the process which occurs in nature.

In the above, I have argued that the formalism of QM should be taken seriously in terms of the geometrical

consequences that can be deduced from it. This way of thinking opens up a surprising perspective. QM presently

does not admit any satisfactory ontological scheme, it defies our intuition in various ways, in particular via non-

commutativity and entanglement whose geometrical consequences have been discussed. Even worse, it seems

to be in inadequacy with certain spatial and temporal notions such as locality, simultaneity... It is then in conflict

with the actual notion of order. Can these difficulties of interpretation and visualization of quantum processes

come from a limitation of our space-time representation to fully capture the nature of quantum events? Does QM

invite us by its very formalism and its geometric consequences to revisit the notion of ’order’ that we use to make

sense of observed processes (space-time)? If it is the case, then the NCG framework can potentially offer a picture

(deduced from quantum formalism) in which quantum processes will express intuitively. This potential algebraic
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framework can be used as a tool to understand the quantum to classical unification, and unify geometry (space)

to observable (matter), closing the path undertaken by Einstein. This would be achieved in a theory in which all

space-time concepts are absorbed into matter ones, providing a theory in which all elements are observable.
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Part III

Toward Noncommutative Gauge Field
Theories
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Chapter 10

The SMPP in the Framework of Gauge
Field Theories (GFT)

In this chapter, the foundations of gauge theories and the current SMPP will be presented. This will introduce

the different notions that will be generalized later in chapters 11 and 12, such as connection, curvature, action,

and the formalism of gauge theory. A mention will be made on the possible links between the current theory

of gravitation, and the treatment of fundamental interactions in the SMPP. Then I will finish by presenting the

generally followed procedure to find theories beyond the SMPP.

10.1 Principle of Gauge Theory
Maxwell’s formulation of electromagnetism can be considered as the birth of gauge theory. The elementary

observation was that electric and magnetic fields can be seen as secondary to a vector potential and that adding

suitable vector fields to this vector potential doesn’t change the physics i.e electric and magnetic fields which

affect the observed motion of charged particles. This can be considered as a symmetry of the theory. Gauge

transformations can then be seen as field transformations that left unchanged some important quantities like

the Lagrangian, which correspond to an important physical quantity. Later, symmetry arguments and gauge

principle were at the earth of many of the biggest achievements of theoretical physics, such as particle physics,

in QM, and in relativity theories.

Let’s see now how the gauge principle is implemented in particle physics, leading to the covariant derivative

and its curvature.

Let  be a finite-dimensional compact Lie group parameterized by 𝑀 . The field 𝜓(𝑥) is a multiplet represen-

tation of , it represents the fermion field. Taking 𝑔(𝑥) ∈ , it’s representation 𝜋(𝑔(𝑥)) must be a unitary, to

preserve inner product on the fermion field, and therefore physical probabilities. In what follows, we will only

speak about the representation, then we will use the notation 𝑔(𝑥) for 𝜋(𝑔(𝑥)).

A Lagrangian (𝜓, 𝜕𝜓) can be defined for this field. Physical Lagrangians are composed of elements like 𝜓𝜓
and 𝜓𝜕𝜇𝜓. The requirement is that this Lagrangian must be invariant under the action of :

(𝜓, 𝜕𝜓) = (𝑔𝜓, 𝜕(𝑔𝜓)) ∀𝑔 ∈ 

But as 𝑔(𝑥) is a function on 𝑀 :

𝜕(𝑔(𝑥)𝜓(𝑥)) = (𝜕𝑔(𝑥))𝜓(𝑥) + 𝑔(𝑥)(𝜕𝜓(𝑥)) ≠ 𝑔(𝑥)𝜕𝜓(𝑥).

Then as the Lagrangian is a polynomial function of 𝜓 and 𝜕𝜓 it will not necessarily be invariant under the action

of .

This is solved by introducing a connection field 𝐴 = 𝐴𝑎
𝜇(𝑥)𝑇𝑎 which is an element of the Lie-algebra based on

𝑀 , with 𝑇𝑎 its generators. It transforms in an inhomogeneous way:

𝐴 → 𝐴̃ = 𝑔𝐴𝑔−1 + 𝑔𝜕𝑔−1 (10.1.1)

99
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this represents bosons which are responsible of the different interactions. The derivative on𝑀 is then generalized

to a covariant derivative in a fiber bundle:

𝐷 = 𝜕 + (𝑖𝑒/ℏ)𝐴 (10.1.2)

where 𝑒 is the coupling constant of the theory (electric charge in the case of electromagnetism). This implements

the minimal coupling between fermions and bosons fields. Then we have that 𝐷(𝑔𝜓) = 𝑔𝐷𝜓 and therefore:

(𝜓, 𝐷𝜓) = (𝑔𝜓, 𝑔𝐷𝜓) ∀𝑔 ∈ 

Let’s go back to coordinate representation to better understand the link with physics. Let’s take 𝑔(𝑥) =
exp(−(𝑖𝑒/ℏ)Λ(𝑥)) for the unitary transformation, with Λ(𝑥) = Λ(𝑥)𝑎𝑇𝑎 the generator of the phase transforma-

tion. Then we obtain the new fermion field 𝜓̃(𝑥) = 𝑔(𝑥)𝜓(𝑥) = 𝜓(𝑥) − (𝑖𝑒/ℏ)Λ(𝑥)𝜓(𝑥) and 10.1.1 becomes

𝐴̃𝜇(𝑥) = 𝐴𝜇(𝑥) + 𝜕𝜇Λ(𝑥).

Let us now explore the equivalent transformations, experienced when 𝜓(𝑥) and 𝐴𝜇(𝑥) undergo infinitesimal

displacements in space-time. The gauge potential aims to define a notion of parallel transport, i.e. to specify be-

tween two neighboring points in 𝑀 what will be considered as an equivalent phase, in view of its transformation

which is not attributed to an intrinsic change of the phase, but to an extrinsic one induced by the curvature of

the folding space. Thus, the phases at 𝑥𝜇 and 𝑥𝜇 + 𝑑𝑥𝜇 are considered to be parallel transports of each other if

they differ by an amount (𝑒/ℏ)𝐴𝜇(𝑥)𝑑𝑥𝜇. Thus we get that

𝜓̂(𝑥 + 𝑑𝑥) = exp(𝑖(𝑒/ℏ)𝐴𝜇(𝑥)𝑑𝑥𝜇)𝜓(𝑥)

which is considered as an objective transformation of the state since it undergoes spatial displacement. After

some calculations, we obtain that the total phase accumulation around an infinitesimal path represented by the

square of sides (𝑑𝑥𝜇, 𝑑𝑥𝜈) is given by:

𝜓̂(𝑥) = (1 + (𝑖𝑒/ℏ)𝐹𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈)𝜓(𝑥)

With the term:

𝐹𝜇𝜈 = (𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) − 𝑖(𝑒/ℏ)[𝐴𝜇, 𝐴𝜈]

that is interpreted as the curvature of the gauge potential, directly connected to the phase accumulation. In

physics phase is not an observable, only the difference of phases is, and thus corresponds to a physical invariant.

We can see that 𝐹𝜇𝜈 is connected to this infinitesimal difference of phases between the two paths (𝑑𝑥𝜇 then 𝑑𝑥𝜈)
and (𝑑𝑥𝜈 then 𝑑𝑥𝜇). As 𝐹𝜇𝜈 corresponds to something physical (not depending on the way we parameterize it with

coordinates), a natural requirement will be to find gauge transformations 𝑔(𝑥) preserving the scalar associated

to the curvature: Tr(𝐹𝜇𝜈(𝑥)) = Tr(𝑔(𝑥)𝐹𝜇𝜈(𝑥)𝑔−1(𝑥)). Another way to calculate the curvature is obtained from

the covariant derivative 𝐷𝜇 = 𝜕𝜇 + (𝑖𝑒/ℏ)𝐴𝜇 introduced earlier:

(𝑖𝑒/ℏ)𝐹𝜇𝜈 = [𝐷𝜇, 𝐷𝜈] − 𝐷[𝜕𝜇 ,𝜕𝜈] = [𝐷𝜇, 𝐷𝜈]

because [𝜕𝜇, 𝜕𝜈] = 0 with holonomic basis in Riemannian geometry.

Thus, the connection is interpreted as the phase difference accumulated during an infinitesimal displacement,

this quantity cannot be associated with an observable i.e. a physical quantity, a then fundamental invariant is

obtained by calculating the phase accumulation on an infinitesimal loop.

The symmetry principle provides a strong thinking line for developing physical theories. The way of pro-

ceeding can be seen as follows. Let’s take a more general setting than fermion fields and Lagrangian based on

these fields. Let  be a vector space (degrees of freedom of a theory), and 𝐾() be the space of polynomial

functions on  (potential functional of these degrees of freedom representing something physically objective).

Consider now  a group acting on  , 𝑔 ∈ , and 𝑓 ∈ 𝐾(). The group action is (𝑔.𝑓 )(𝑥) ∶= 𝑓 (𝑔−1(𝑥)). Two ways

to construct models have been used:

1. Given  we name 𝐾() the space of polynomials on  which are left invariant by  : ∀𝑔 ∈  we have

𝑔.𝑓 = 𝑓 .
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2. Given 𝑘1() ∈ 𝐾() we name 𝑘1() the set of group elements which let 𝑘1() unchanged.

The first one takes the group as fundamental and tries to find the correct invariant polynomial which is left

invariant by this group, the second takes the polynomial as prior, trying to find the correct symmetry group,

to catch other structures for example. These two ways of doing have greatly contributed to the advancement

of physics, but the first one was the most efficient way to build the SMPP, by constraining its structure using

symmetry arguments. More generally, the procedure followed by physicists to build and improve the SMPP can

be seen as follows:

1. Choose the structure group 𝐺 with 𝑛 generators and make it be locally parameterized by 𝑀 :  = 𝑀𝑎𝑝(𝑀, 𝐺),
this provides a space of local symmetries.

2. Choose the (locally defined) matter fields (Dirac fermions, scalars, etc.) as representations of . It is an

implementation of the local symmetries just mentioned.

3. Set up a notion of derivation, leading to the differential structure upon which the Lagrangian  and then

motion equations can be expressed.

4. Construct a covariant derivative extending the previous derivation by choosing the gauge bosons in a repre-

sentation of . It is an implementation of the minimal coupling between gauge and matter fields.

5. Write the more general Lagrangian which is invariant under  action (gauge principle) and satisfies other

requirements such as being renormalizable.

6. If there is a Higgs like mechanism, compute the minimum of the Higgs potential and deduce the corresponding

masses.

7. Use QFT tools based on this Lagrangian to obtain predictions and compare them to experimental results.

Thus, any framework implementing in a clear and coherent way the gauge principle will be welcome. The

general structure of this framework must make in relation 3 main structures. A geometric structure given by

the space-time manifold 𝑀 , an algebraic structure  which uses to be a finite-dimensional algebra, and a global

structure 𝐺(𝑀,) that joins the two in one piece. The geometric structure can be obtained through a projection

from the global structure, and the algebraic one from inclusion into the global.

As we will see in the next section 10.2, the formalism of fiber bundle and differential geometry proved to

be particularly suitable to implement this gauge principle. However, one of its limitations, related to the Higgs

mechanism, will be presented in this same section. Then in Chapter 11, I will show how the NC extension of

gauge theories allows to overcome this limitation, and thus make the structure from which the SMPP Lagrangian

is extracted in a more mathematically consistent way. Other formalisms implement the gauge principle and

address this particular limitation, such as the transitive Lie algebroids (François et al., 2014) for example.

10.2 Gauge Theory in Fiber Bundle’s Framework and Yang–Mills The-
ory

A fiber bundle 𝐸 is a topological construction that is locally expressible as a product space between elements of

a base space 𝑀 and a fiber 𝐹 . A continuous surjective projection map 𝜋 ∶ 𝐸 → 𝑀 permits to express this local

structure. When it is globally expressible as 𝐸 = 𝑀 × 𝐹 , it is said to be trivial. The formalism of fiber bundles has

proved to be particularly suitable to provide a mathematical structure for gauge theories, gradually establishing

itself as the appropriate formalism from the 1975s. It is in this context in particular that the gauge potential

acquired the status of connection in the fiber bundle, providing, in some way, a geometric interpretation of the

gauge theories. Actually, all the forces of the SMPP are expressed as induced by gauge fields which are expressed

in such a formalism.

Definition 10.2.1 (Section in a fiber bundle) Taking the fiber bundle 𝜋 ∶ 𝐸 → 𝑀 , a section on this fiber is a
continuous function 𝑓 ∶ 𝑀 → 𝐸 such that 𝜋(𝑓 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝑀 .

𝐸 is the total space, 𝑀 is the base space, and Γ(𝐸) is the space of global sections of 𝐸. These can be vector, tensor,

or spinor fields, and correspond to (fermionic) matter fields. An important property to consider in order to find

the NC generalization of Γ(𝐸) is that it is a module on the algebra ∞(𝑀).
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Let 𝐺𝐸 be a Lie group acting on 𝐸, taking an element 𝑒 ∈ 𝐸 and 𝑔 ∈ 𝐺𝐸 , the right action of 𝐺𝐸 on 𝐸 is given by

𝑅𝑔(𝑒) = 𝑒.𝑔 . The gauge group is the group 𝐺 of “vertical” automorphisms of 𝐸, i.e the ones which respect fibers:

𝜋(𝑒.𝑔) = 𝜋(𝑒). The fiber above 𝑥 will be then denoted by 𝐹𝑥 = 𝜋−1(𝑥), it represents all the values the fermionic

vector field defined over 𝑥 can take.

Let g be the Lie algebra of 𝐺. A connection on 𝐸 is a one form on 𝐸 with values in g: 𝜔 ∈ Ω1(𝐸) ⊗ g such

that ∀𝜉 ∈ g and ∀𝑔 ∈ 𝐺:

𝐴𝑑𝑔(𝑅∗
𝑔(𝜔)) = 𝜔 and 𝜔(𝜉𝐸) = 𝜉

with 𝐴𝑑𝑔(𝑒) = 𝑔𝑒𝑔−1 the adjoint representation, and 𝜉𝐸 the fundamental vector field on 𝐸, linked to 𝑅𝑒𝑡𝜉 , 𝑡 being

a real parameter. The associated curvature Ω ∈ Ω2(𝐸) ⊗ g is given by Ω = d𝜔 + 1
2 [𝜔, 𝜔] with the graded bracket

at the level of g. It is then possible to locally trivialize 𝐸 on small open sets of 𝑥 ∈ 𝑀 in order to obtain the usual

gauge connection expressed here in spacetime coordinates 𝐴𝜇 ∈ Ω1(𝑥) ⊗ g and it’s curvature 𝐹𝜇𝜈 ∈ Ω2(𝑥) ⊗ g
which transform in the same way as in section 10.1, 𝑔 ∈  being parameterized by 𝑀 .

The SMPP consists in the understanding of two things, what are matter fields, and through which mediators

they interact. In the fiber bundle framework, these two fields will correspond to well identified structures in the

fiber bundle formalism:

• Matter fields will correspond to sections in the fiber bundle

• Interaction fields will correspond to connection in the principal bundle

Because of their statistics, matter fields will correspond to fermions and interaction fields to bosons.

In the field of developments in particle physics, Yang-Mills theories can be considered as one of the most

important breakthroughs coming from the application of the Gauge principle, they are now at the heart of the

structure of the SMPP. Indeed, exploring how non-abelian Lie groups like 𝑆𝑈(𝑛) are implemented in the gauge

potential can lead to building gauge theories that permit a better understanding of strong and weak forces, later

allowing the electro-weak unification. Now, all forces of the SMPP are expressed as Yang-Mills theories.

In the case of gauge symmetry under the action of a non-Abelian (locally parameterized) group, the situation

is slightly more complicated, as said, it is described by a Yang-Mills theory. If we consider  = 𝑆𝑈(𝑛), it acts on

the fermionic field 𝜓(𝑥) ∈ C𝑛
, we note {𝑇 𝑎}𝑎=1…𝑛−1 the infinitesimal generators, then we have:

𝜓(𝑥) =
⎛
⎜
⎜
⎝

𝜓1(𝑥)
⋮

𝜓𝑛(𝑥)

⎞
⎟
⎟
⎠
; 𝐴𝜇(𝑥) = 𝐴𝑎

𝜇(𝑥)𝑇
𝑎; 𝑔(𝑥) = 𝑒𝑖𝛼

𝑎(𝑥)𝑇 𝑎 . (10.2.1)

The curvature being given by 𝐹𝜇𝜈 = 𝐹 𝑎𝜇𝜈𝑇 𝑎 with 𝐹 𝑎𝜇𝜈 = 𝜕𝜇𝐴𝑎
𝜈 − 𝜕𝜈𝐴𝑎

𝜇 − (𝑖𝑒/ℏ)𝑓 𝑎𝑏𝑐𝐴𝑏
𝜇𝐴𝑐

𝜈 with 𝑓 𝑎𝑏𝑐 the structure

constants of g.

To build an invariant from 𝐹 , we have to understand how the inner product work on indices forms. Taking the

couple (𝑀, 𝑔̃) of a manifold with it’s metric, then 𝑔̃ induce the bilinear form ⟨ | ⟩ ∶ Ω𝑘(𝑀) ⊗ Ω𝑘(𝑀) → Ω0(𝑀).
For compact manifold, an integral against the volume form 𝑣𝑜𝑙𝑔̃ can be defined, this is called the Hodge inner

product ( | ) ∶ Ω𝑘(𝑀) ⊗ Ω𝑘(𝑀) → R, it is defined by:

(𝐹1|𝐹2) ∶= ∫
𝑀
⟨𝐹1|𝐹2⟩𝑣𝑜𝑙𝑔̃

This allows to define the Hodge star operator ⋆ ∶ Ω𝑘(𝑀) → Ω𝑛−𝑘(𝑀), i.e. this is the unique linear function such

that:

𝐹1 ∧ ⋆𝐹2 = ⟨𝐹1|𝐹2⟩𝑣𝑜𝑙𝑔̃

Then the bosonic action associated with 𝐴 can be given by the Yang-Mills action:

𝑏 = ∫
𝑀
𝐹 ∧ ⋆𝐹
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This number must be left invariant by two kinds of process, gauge transformations, change of coordinate (accord-

ing to general relativity framework), and trough any transformation corresponding to the equarions of motion,

these last ones being given by computing the solutions of:

𝛿𝑏 = 2∫
𝑀
𝛿𝐹 ∧ ⋆𝐹 = 0.

for one shell solutions. The fermionic action is given by:

𝑓 = −∫
𝑀
𝑖𝜓(𝛾𝜇𝐷𝜇 + 𝑖𝑚𝑐/ℏ)𝜓𝑑4𝑥

This provides a nice link between physical objects and mathematical structures. But as mentioned in (François

et al., 2014), the Higgs field is an object with ambiguous status in terms of the mathematical structure representing

it. Indeed, it is both considered as a Boson, and as a section in a vector bundle, which typically represents Fermions

fields. Moreover, its potential is not deduced from the formalism but added by hand. This appears to be slightly

inconsistent from the mathematical structures’ point of view. As we will see in section 11.4, and then in sections

11.5 and 11.6, the reformulation of the SMPP in the NC framework will make the Higgs field more consistent as

a mathematical structure, with a natural potential coming from the formalism.

10.3 The Standard Model of Particle Physics
The purpose of this section is to highlight the structure of the SMPP, making the connection between it’s La-

grangian, the meanings and interpretations of its terms, it’s symmetries according to the gauge principle, and in

which way equations of motion can be obtained from it.

A Lagrangian  is a quantity that takes a particular value at each point in space and time. The Lagrangian is

one of the most fundamental objects in theoretical physics. It is a functional which can depend for example on

fields (in field theory) or on the metric of space-time (in general relativity), and which has the property of having

its integral on the space-time (i.e. the action) minimized for a physical state and its evolution. This condition

is expressed by the Euler-Lagrange equation, the so-called equation of motion. The Lagrangian also allows us

to define and study the crucial notion of symmetry. We call global symmetry under the action of a group  a

transformation that leaves the Lagrangian invariant and depends on a single parameter 𝑔 ∈  for the whole

space-time. Conversely, a local symmetry depends on a parameter 𝑔 ∈  for each point in space-time or, more

precisely, on a smooth function 𝑔(𝑥).

The Lagrangian of the SMPP is the following:

 = −
1
4
𝐹𝜇𝜈𝐹𝜇𝜈 + 𝑖𝜓 /𝐷𝜓 + 𝜓𝑖𝑦𝑖𝑗Φ𝜓𝑗 + ℎ.𝑐. + |𝐷𝜇Φ|2 + 𝑉 (Φ) (10.3.1)

with 𝜓 = 𝜓†𝛾0, /𝐷 = 𝑖𝛾𝜇𝐷𝜇, 𝑦𝑖𝑗 the Yukawa coupling matrix, Φ the Higgs field and 𝑉 (Φ) = 𝜆Φ2 +𝜇Φ4
its potential.

The quantum version of the Standard Model Lagrangian consists of several quantum fields, each associated

with a Standard Model particle. There are actually 3 types of fields classified by their spins:

• those for Fermions (quarks and leptons) designated by 𝜓 with spin 1/2.

• those for the mediator bosons (photon, gluons, 𝑊 ±
and 𝑍0

bosons), designated by 𝐴𝜇, with spin 1.

• The Higgs bosonic field is designated by Φ with spin 0.

These fields are functions of the space-time points. They are not simple functions with numerical values, but

operators acting on field’s state, adding or removing particles. Consequently the Lagrangian and its associated

action become operators too, this is called quantization and consists in promoting these fields, which are for the

moment only functions, to the status of operators on a Hilbert space, the Fock space, which then verifies certain

imposed commutation relations. There is no canonical method to quantize fields, this leads to many difficulties
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such as the need of renormalization. An important physical point that the Lagrangian makes it possible to

determine is how the various particles propagate between points in space-time. The corresponding terms are

those defining the creation of a particle at a given point and its annihilation at another one, the ones with two

fields.

Einstein’s relation (𝐸 = 𝑚𝑐2) allows the conversion between energy and mass, and thus the possibility of

changing the number and nature of particles during a process. Unlike in classical and pure QM, the nature of

the system can then change, and visit many intermediate states. The possible transitions and their probabilities

are constrained by the structure of the Lagrangian. All independent groupements of terms of  describe the

interaction between particles (potentials and interactional terms) or propagators (kinetics terms):

• Kinetic terms: They correspond to the free propagation of the particle along space-time degrees of free-

dom, it implies spacetime derivatives and mass terms. For Fermions 𝑖𝜓/𝜕𝜓, for Bosons these are terms like

(𝜕𝜇𝐴𝜈)2 and for the Higgs Boson |𝜕𝜇Φ|2

• Potential and international terms: For Fermions 𝑖𝜓 /𝐷𝜓 − 𝑖𝜓/𝜕𝜓 and 𝜓𝑖𝑦𝑖𝑗Φ𝜓𝑗 , for Bosons − 1
4𝐹𝜇𝜈𝐹

𝜇𝜈 −
(𝜕𝜇𝐴𝜈)2 and |𝐷𝜇Φ|2 − |𝜕𝜇Φ|2 and 𝑉 (Φ)

 correspond then to the difference between potential and Kinetics terms.

Remark 10.3.1 𝜓𝑖𝑦𝑖𝑗Φ𝜓𝑗 containing the Yukawa coupling matrix 𝑦𝑖𝑗 which specifies the strength of the inter-

action (and then it’s probability to occur) between fermions and Higgs field. This term gives both the fermion’s

masses and the probability strength of the flavor-changing process. We will see in section 12.2, mainly in remarks

12.2.3 and 12.2.2, that in the context of the NCSMPP, this term acquires a kind of kinetic interpretation in the

same way as 𝑖𝜓 /𝐷𝜓. □

The SMPP is written in the framework of gauge theory, we will denote by GFTSMPP the actual gauge field theory

of the SMPP.

10.4 Gravitation and Gauge Theories
Actually, we know 4 fundamental forces, the ones of the SMPP, and Gravitation. Many physicists try to unify

Gravitation to the three other forces, in order to understand how to quantize gravitation and obtain a more

unified picture. Some basic hints can make us think that these two blocks share some similarities:

• The position coordinate is not observable, only the difference of coordinate between two positions is. The

same hold for phases and then connections, only relative difference in phases are observable. Making gauge

potential and coordinate on the same footing for the fact that they do not directly represent an observable,

but rather a relationship between observables.

• Like gauge transformations, general coordinate transformations have no consequences on physics, they

represent symmetries of the theory.

• The curvature of spacetime curves the trajectories of test particles. Interactions symbolized by gauge

potentials acting on fermionic fields of test particles curve their trajectories, in a similar way as gravitation

when we compute the curvature of the gauge potential (see the gravitational Aharonov-Bohm effect).

But the problem is that gravitation is a geometric theory contrary to other forces and that they are expressed in

different mathematical fields.

Historically, gravitation was elaborated by Einstein in the framework of pseudo-Riemannian geometry and

not in the one of gauge theory. The basic principle of this framework is to define an affine connection ∇ ∶
Γ(𝑇 (𝑀)) × Γ(𝑇 (𝑀)) → Γ(𝑇 (𝑀)) by the constraints:

∇𝑓 𝜕𝜇𝜕𝜈 = 𝑓 ∇𝜕𝜇𝜕𝜈 and ∇𝜕𝜇𝑓 𝜕𝜈 = 𝜕𝜇𝑓 𝜕𝜈 + 𝑓 ∇𝜕𝜇𝜕𝜈

∀𝑓 ∈ ∞(𝑀) and 𝜕𝜇, 𝜕𝜈 ∈ Γ(𝑇 (𝑀)). These locally connect tangent spaces.
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In order to make this connection compatible with the metric structure 𝑔̃ , we define the metric connection by

𝜕𝜆𝑔̃(𝜕𝜇, 𝜕𝜈) = 𝑔̃(∇𝜆𝜕𝜇, 𝜕𝜈) + 𝑔̃(𝜕𝜇, ∇𝜆𝜕𝜈) (10.4.1)

which can be seen as a sub-case of equation (11.2.1) that will be defined later.

Adding the torsion-free condition (∇𝜕𝜇𝜕𝜈 −∇𝜕𝜈𝜕𝜇 = [𝜕𝜇, 𝜕𝜈]) we obtain the Levi-Civita connection, which is at

the heart of general relativity.

Using these Levi-Civita connection, we can construct a covariant derivative (in local coordinate) on the tan-

gent bundle ∇𝜕𝜇 ∶ Γ(𝑇 (𝑀)) → Γ(𝑇 (𝑀)), with curvature being given by [∇𝜕𝜇 , ∇𝜕𝜈] − ∇[𝜕𝜇 ,𝜕𝜈]. Using the Christoffel

symbols defined by ∇𝜕𝜇𝜕𝜈 = Γ𝜆𝜇𝜈𝜕𝜆, the curvature can be computed, giving the curvature tensor 𝑅𝜆𝜇𝜈𝜌 , then the

Ricci tensor 𝑅𝜇𝜈 = 𝑅𝜆𝜇𝜈𝜆, and then the scalar curvature 𝑔̃𝜇𝜈𝑅𝜇𝜈. This last scalar can be taken to define the action of

the Gravitation theory:

[𝑔̃] ∝ ∫
𝑀
𝑅
√
|𝑔̃| d4𝑥

But the fact that the primary field taken to be the metric 𝑔̃ is not a 1-form makes the Lagrangian given by 𝑅 only

invariant under the group Diff(𝑀), taken to be the gauge group of the theory. Therefore, 𝑅 is only a scalar for

the geometric structure defined on 𝑀 , but not for general Gauge transformation, then different to gauge theory

in the general meaning.

In the same way, we can see that forces in gauge theories differ from the gravitation one since this last has

been given a geometric interpretation, promoting it to the status of pseudo-force i.e. fictitious force induced by

the effect of an irregular background geometry. This is not the case with Gauge’s theories, for which forces are

considered as pure forces, without any underlying geometrical representation explaining them.

But subsequent developments reformulated this theory in the field of Cartan geometry making this theory

be of gauge type. More details on the construction can be found in (Bennett, 2021; François et al., 2014). We will

see in chapter 12 that the NCSMPP offers such a way to reformulate both Gravitation and SMPP forces into the

same framework, at the same time being gauge theory and pseudo forces induced by pure geometry.

10.5 Open Doors to go Beyond the SMPP
In physical theories, unification can be seen as how two theories, previously understood as independent become

sub-manifestations of a larger theory, according to some parameters like energy change, formalism change inside

the same framework, framework change... It is perceived as an enhancement of the theoretical understanding.

Taking a physical theory and its mathematical structure M, not all theoreticians will agree on the fact that

it is complete and consistent or not, and in this last case, they can differ on which way this enhancement must

be done. The enhancement of a physical theory can be thinking according to several criteria and arguments. I

propose here 3 kinds of enhancement arguments:

1. The first concern is the diminution of the number of constant inputs. Like for example the 18 inputs of the

SMPP.

2. The second one is the diminution of the number of independent formal inputs. The equations of the theory

are deduced from minimal principle, the number of “put by hand” elements is minimal. A good framework

can help to obtain this result.

3. Consistency with experiment, with other theories on their crossings area, and on the conceptual and episte-

mological level.

In what will follow (see section 12.1), I will highlight according to which one of these arguments NCG improves

our understanding of the SMPP.

Concerning the SMPP, here is a non-complete list of what can be seen as missing-points with potential en-

hancement needed in the actual description:

• Find a mechanism that determines the origin of fermion masses, and thus explains the three-generation

existence. (12 inputs over 18 are concerned)
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• About the Cabibbo Kobayashi-Maskawa (CKM) matrix 𝑀𝐶𝐾𝑀 :

1. The eigenstates of the free Hamiltonian are also the ones of the gravitational, strong and electromag-

netic interactions, but they are not eigenstates of weak one. There are no explanations for this fact

(Hübsch, 2015).

2. The non-unity of the measured CKM matrix. According to the theoretical framework in which this

matrix is constructed, it must be unitary.

3. There is no theory predicting the value of the angles parameterizing the CKM matrix.

• Neutrino mixing and oscillations

• Potential unification with gravitation, find a better formalism implementing naturally the Higgs field and

its potential as mentioned, explain and/or unify the coupling constants...

Some of these points are questionable on whether they are truly problems in the actual description.

In this regard, Grand Unified Theories (GUT) can be considered as the most significant attempt for solving

such problems. The search for unification in field theory is a very old and fruitful field of investigation in theo-

retical physics. Some nice achievements are the unification of electric and magnetic fields in the electromagnetic

one, and later of this last with weak force in the electroweak unification. GUT are extensions of the SMPP with

larger symmetry groups than the existing ones. They must contain the SMPP group as a subgroup and possess

complex representations (fermionic fields) in accordance with the ones of the SMPP... Actually, GUTs theorists

try to exploit the successful arguments of gauge symmetries and group theory to unify electroweak and strong

interactions into a single one. A hint for such hope of unification is that the flows of the gauge couplings “con-

stants” of the SMPP at a high energy scale seem to converge.

Therefore, the question is what are the ways in which the SMPP fields can be embedded into an unified field?

This unified field (and its groups) must be large enough to encompass the current groups of the SMPP, but not

too, so that there will not be too much new physics, likely not to fit with the experiment. It must correspond to

the effective theory at higher energies, and render the actual SMPP within a certain limit, with some physical

process (like spontaneous symmetry breaking for example). By introducing new fields with their symmetries,

GUTs can improve many features of the SMPP. For example, they can provide a gauge coupling unification, give

an explanation for the lightness of neutrino masses, introduce contributions that can solve some flavor anomalies,

potentially explain charge quantization and predict values for weak mixing angles.

The first and simplest GUT being explored was the one of the Georgi–Glashow model corresponding to the

gauge group 𝑆𝑈(5). Many other groups like 𝑆𝑈(5) × 𝑈(1), 𝑆𝑂(10), 𝐸6 … have been explored, without succeeding.

A nice review of GUTs attempts can be found in (Croon et al., 2019).

Let us try to explain why this kind of attempt seems to offer a set of natural paths for unification, by trying

to think in a general way about unification. The first assumption to make is that this can be done in the current

formalism of gauge theories, or in any more or less equivalent formalisms based on field theories, such as the

NCSMPP presented in chapter 12. The basic ingredients of the SMPP are gauge potentials, not fermionic fields,

which are secondary representations, so the structure of the standard model is primarily driven by the nature of

these bosonic fields, this is the second assumption. A procedure to create such a model is to choose the right gauge

field according to these invariance groups and symmetry arguments, and then to choose among the possible set

of representations (fermionic fields, chiral structure...), which one is the most adequate. Assumption three is that

the same procedure should be used in attempts at unification, but taking into account the basic ingredients of

the old theory, i.e. those fermionic and bosonic degrees of freedom (dofs), which should be linked according to

certain criteria. It is now a question of understanding the (conceptual) passage from the gauge theory of the

SMPP, i.e. GFTSMPP, to the grand unified theory:

GFTSMPP → GFTGUT

in the first time, because the GFTGUT must be built from the one of the SMPP. Then we have to understand

the (physical) mechanism GFTSMPP ← GFTGUT which renders GFTSMPP from GFTGUT trough a suitable physical

process, like spontaneous symmetry breaking mechanism SSBM. This can be seen into a 3 step process: first find
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the good gauge field algebra, then a suitable (fermionic field) representation and check that the corresponding

mechanism restitutes the actual SMPP. There are many ways to imagine GUTs in this way. In this thesis, the

construction of gauge fields based on inductive sequences of algebras (which correspond to these gauge potentials

taken as input) will offer a framework to elaborate such GUT and understand the GFTSMPP → GFTGUT transition.

This transition will correspond to a step in the inductive sequence. This will be presented in section 13, and done

in part IV. The implementation of assumption three (condition between the two theories, at least on its elementary

degrees of freedom i.e. gauge and fermionic fields) will be given by the 𝜙-compatibility condition defined along

the sequence and presented in section 13.
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Chapter 11

Noncommutative Gauge Field Theories
(NCGFT)

In this chapter, I propose to show how the concepts presented in the previous chapter can be generalized in

NCG. It will be done in a general way for the notions of connection, curvature, fiber bundle, and symmetries, but

using derivation in section 11.5 then spectral triples in section 11.6 based GFT. Then the actual NCSMPP will be

presented in chapter 12, with some discussions. From now on, we will always suppose that  is unital, with unit

1.

11.1 Fiber Bundle and Serre-Swan Theorem
Another important topological structure possess a well identified algebraic counterpart, that of vector bundles.

Indeed, the Serre-Swan theorem states that any vector bundle on a manifold𝑀 defines a∞(𝑀)-projective module

of finite type on the algebra  = ∞(𝑀) by considering the set of smooth sections of this fiber; and conversely, if

𝑀 is connected, any ∞(𝑀)-projective module of finite type comes from a vector bundle on𝑀 . As for the Gelfand-

Naimark theorem this duality is more than a coincidence. It results from the category equivalence between that

of vector bundles on 𝑀 and that of ∞(𝑀)-projective modules of finite type on  = ∞(𝑀). Let first define what

is a projective module.

Definition 11.1.1 Let  be an algebra, a module  over  is projective iff we have  ⊕  = 𝑛, for some
module  (over ), and an integer 𝑛 ≥ 1.

We build a free module 𝑛
over .

Lemma 11.1.2 Taking a projection 𝑝 ∈ 𝑀𝑛() such that 𝑝2 = 𝑝 = 𝑝∗, then we can define the projective module
𝑝 = 𝑛𝑝.

Proof If 𝑝 is a projection, then 1 − 𝑝 is also a projection, and they are mutually orthogonal. Therefore 1−𝑝 =
𝑛(1 − 𝑝) is such that we have 𝑛 = 𝑝 ⊕1−𝑝 so that according to definition 11.1.1, this two modules are

projective.

This module is said to be finitely generated when 𝑛 is finite.

Let illustrate this by using our favorite commutative algebra  = ∞(𝑀), 𝑝 is therefore a function of 𝑥 ∈ 𝑀 .

Thus 𝑝(𝑥) = ∞(𝑀)𝑛𝑝(𝑥) define the module associated to 𝑥 .

Then any module  on  will be considered as the non-commutative equivalent of an associated vector

bundle, through the associated section. The set of sections of a trivial vector bundle whose fiber is of dimension

𝑛 is isomorphic to the module (∞(𝑀))𝑛. When the fiber is not trivial, we place ourselves in a larger space, which

means adding dimensions to trivialize it, the initial fiber is then obtained using a projection 𝑝: (∞(𝑀))𝑛𝑝. In

the commutative case, the space of matter fields can therefore be represented by a right module on , in the NC

109
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case, care should be taken to distinguish between the left and right modules. In NCG, bi-module will frequently

be more adapted than module.

As we shall see, this new extending framework for the usual gauge theories is entirely algebraic, and thus

leaves us with more freedom. This motivates the introduction of 𝐶∗
-algebras as non-commutative generalizations

of locally compact topological spaces, and modules as non-commutative generalizations of vector bundles.

It is interesting to notice that when  is unital, there is a correspondence between projective modules of

finite type and idempotents of 𝑀𝑛(). We can define (in an equivalent way to what has been done in section

1.3) a notion of algebraic equivalence between idempotents which is equivalent to the notion of isomorphism

between projective modules. As we have seen in section 1.3, these idempotents allow us to classify algebras via

K-theory, and thus in our context to classify the associated vector bundles. This is why the Serre-Swan theorem

allowed to relate topological and algebraic K-theory (see (Swan, 2006) for more details).

Then if we take  = ∞(𝑀), we have 𝑀𝑛() = ∞(𝑀,𝑀𝑛(C)) = ∞(𝑀) ⊗ 𝑀𝑛(C), we recognize the AC-

manifold. Thus the Serre-Swan theorem tells us that it is possible to construct a vector bundle using this AC-

manifold, with base space 𝑀 . We will see in section 11.4 that the AC-manifold is the basic structure of NCGFT,

and that it has led to the current non-commutative standard model of particle physics in chapter 12. The fact that

K-theory allows to classify 𝐴𝐹 -algebras (which are generalizations of 𝑀𝑛(C)) provides a strong mathematical

motivation to develop NCGFTs on AC-manifolds where the finite part algebra is taken to be an 𝐴𝐹 algebra.

Indeed, K-theory and Serre-Swan theorem are intimately related through their use of the idempotents of 𝑀𝑛().
Then K-theory can be used to classify the corresponding gauge theories and “even more” the ones based on

AF-algebras offering a strong mathematical reason to do NCGFTs based on AF-algebras.

11.2 Generalization of Vector Fields, Connections and Curvature
As said before, the Serre-Swan theorem asserts that finitely generated projective modules are linked to vector

bundles. Therefore we have to replace usual vector fields  constituting sections by modules  over an algebra.

A very nice fact, proved by Cuntz and Quillen in (Cuntz and Quillen, 1995) is that every projective module admits

the existence of connection and conversely, any module having a connection is projective. Defining a connection

requires the pre-existence of a differential structure. In the usual framework, this can be the covariant derivative

or the de Rham differential. As mentioned in chapter 3, these can be replaced by derivation and spectral triples-

based differential structures.

In the case of the universal differential calculus (Ω∙
𝑈 (), d𝑈 ), a NC connection can be defined as a 1-form

𝜔 = ∑𝑖 𝑎0𝑖 d𝑈𝑎1𝑖 ∈ Ω1
𝑈 (), but it is a too general definition. Now if we take an algebra  with an involution

∗
and

the associated differential calculus (Ω∙(), d) with 𝜔 ∈ Ω𝑛
and 𝜂 ∈ Ω𝑚

, we will suppose that the graded algebra

Ω∙
possess an involution such that (𝜔𝜂)∗ = (−1)𝑛𝑚𝜂∗𝜔∗

, and that d is real (d𝜔)∗ = d(𝜔∗).

Definition 11.2.1 let  be a left -module, and Ω1() be a first-order differential calculus over , with differen-
tial 𝑑. A connection is defined by a map ∇ ∶  → Ω1() ⊗  such that, ∀𝑎 ∈  and 𝑒 ∈ :

∇(𝑎𝑒) = 𝑎∇(𝑒) + 𝑑𝑎 ⊗ 𝑒.

Then the associated curvature is given by 𝑅 = ∇2
with 𝑅 ∶  → Ω2() ⊗ .

A Hermitian structure on  is a R-linear map ℎ ∶  ⊗ →  such that ℎ(𝑎1𝑒1, 𝑎2𝑒2) = 𝑎1ℎ(𝑒1, 𝑒2)𝑎∗2 for

any 𝑎1, 𝑎2 ∈  and 𝑒1, 𝑒2 ∈ . A connection ∇ is Hermitian if for any real X of  and any 𝑒1, 𝑒2 ∈ , one has

dℎ(𝑒1, 𝑒2) = ℎ(∇(𝑒1), 𝑒2) + ℎ(𝑒1, ∇(𝑒2)) (11.2.1)

This can be viewed as a generalization of the metric condition given in equation (10.4.1).

It turns out that the module concept is not sufficient to elaborate nice structures, in particular concerning

hermiticity problems. The bimodule structure (a module that is both left and right, making left and right multi-

plications compatible) is therefore preferable, especially in the context of spectral triples.



11.3. AUTOMORPHISMS OF FINITE NONCOMMUTATIVE SPACES 111

11.3 Automorphisms of Finite Noncommutative Spaces

If you cannot change your condition, change your perception.

D. Mridha

In the framework of NCGFT, automorphisms will provide gauge and coordinate change. As mentioned in

chapter 3, they are two ways to consider such changes. The first can be seen as change at the level of the Hilbert

space (i.e. it’s generalization as module here), and the other as being at the level of the algebra.

To be general, let  be an
∗

algebra with unit, and  a left -module. Let’s start with the automorphisms

which are implemented at the level of .

Definition 11.3.1 (Automorphism of a module ) An automorphism of a module  is a -linear map Π ∶
 →  which is invertible and preserves the module structure:

Π(𝑎𝑒) = 𝑎Π(𝑒) ∀𝑒 ∈  and 𝑎 ∈ .

Let’s suppose that  is equipped with a Hermitian structure ℎ. The gauge group  of  is the group of

automorphisms of  as a left module that preserve the Hermitian structure such that for any 𝑎 ∈ , 𝑒, 𝑒′ ∈ ,

𝑔 ∈  satisfies

𝑔(𝑎𝑒) = 𝑎𝑔(𝑒), ℎ(𝑔(𝑒), 𝑔(𝑒′)) = ℎ(𝑒, 𝑒′). (11.3.1)

The action of 𝑔 on a connection is defined by the compositions ∇ ↦ ∇𝑔 ∶= 𝑔 ◦ ∇ ◦ 𝑔−1. It is easy to check that ∇𝑔
is a connection and that ∇𝑔2◦𝑔1 = (∇𝑔1)𝑔2 for any 𝑔1, 𝑔2 ∈ .

Now, for the automorphisms implemented on the algebra:

Definition 11.3.2 (∗-automorphism of a ∗-algebra ) An ∗-automorphism of a ∗-algebra  is a linear map
Λ ∶  →  which is invertible and preserve the ∗-algebra structure:

Λ(𝑎𝑏) = Λ(𝑎)Λ(𝑏) and Λ(𝑎∗) = Λ(𝑎)∗ ∀𝑎 ∈ .

Given  a ∗-algebra, we denote by Aut() its automorphism group.

Aut() will be related to the gauge group associated to . We call  () the group of unitary elements in :

 () = {𝑢 ∈  ∶ 𝑢𝑢∗ = 𝑢∗𝑢 = 1}

Definition 11.3.3 (Inner automorphism of ) An automorphism Λ is called inner if it is of the form Λ(𝑎) =
ad𝑢(𝑎) = 𝑢𝑎𝑢∗ with 𝑢 ∈  () and 𝑎 ∈ . The group of inner automorphisms is denoted by Inn().

In a similar way as for derivations with equation (3.3.1), the map  () → Inn() defined by 𝑢 → ad𝑢 is

surjective with kernel the elements 𝑢 ∈  () such that ad𝑢(𝑎) = 𝑎 ∀𝑎, which correspond to  (()). Then we

have:

Inn() ≃  ()/ (())

Definition 11.3.4 (Outer automorphism of ) The group of outer automorphisms of  is defined by the quo-
tient

Out() ∶= Aut()/ Inn()



112 CHAPTER 11. NONCOMMUTATIVE GAUGE FIELD THEORIES (NCGFT)

For 𝑀 a smooth compact manifold, and  = 𝐶∞(𝑀), we have Aut() = Out() ≃ Diff(𝑀), the group of

diffeomorphisms of 𝑀 . Taking a diffeomorphism Ξ ∶ 𝑀 → 𝑀 , the link between diffeomorphism and (outer)

automorphism is given by the pullback over function space:

Ξ∗(𝑓 )(𝑥) = 𝑓 (Ξ(𝑥)) ∀𝑓 ∈  and ∀𝑥 ∈ 𝑀

Conversely for  = 𝑀𝑛(C) ≃ () for a given Hilbert space  of dimension 𝑛, all automorphisms will be inner.

Taking an algebra , we have the short exact sequence of groups:

1 ⟶ Inn() ⟶ Aut() ⟶ Out() ⟶ 1

from which 3.3.2 can be seen as an infinitesimal version.

In sections 11.5 and 11.6, we will see that the first kind of automorphisms will be implemented for NCGFT

based on derivations and that the second kind will be used for its spectral triples counterpart.

11.4 General Principles of NCGFT and the AC-Manifold
Let’s try to understand how the principle of gauge theory can be implemented using this extended framework.

The general procedure (which includes usual gauge theories) will be to:

Find a differential struc-

ture linked to degrees

of freedom associated

with some “space”

Build connection to

implement parallel

transport along these

degrees of freedom

Find an automorphism

invariant scalar built

from this connection

Now, suppose that we are interested in finding a space for which the diffeomorphism group is a compact

Lie group. But they are no such a manifold. As mentioned in the previous section 11.3, taking a manifold 𝑀 ,

its diffeomorphism group is equivalent to Aut(∞(𝑀)). Thus, by moving into the algebraic equivalent, a very

important observation can be made, automorphisms of algebras can be extended to provide compact Lie groups,

these being the automorphisms of matrix algebras. The question then becomes, what is the appropriate structure

of “space” i.e. algebra that could both contain Diff(𝑀) and the gauge Lie group  (potentially the one of the

SMPP) in its automorphisms group?

An answer was given by the almost commutative manifold, alternatively designed by the “space” 𝑀 = 𝑀 × 𝐹
or its algebra ̂ ∶= ∞(𝑀) ⊗𝐹 , 𝐹 being a finite space. The automorphisms group Aut(̂) is then equivalent

to Diff(𝑀) ⋉ , with  = 𝑀𝑎𝑝(𝑀, 𝐺), 𝐺 being the standard model group 𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3) for example. We

recognize the different structures at the heart of the implementation of the gauge principle mentioned in section

10.1 i.e. the geometric structure 𝑀 , the algebraic structure 𝐹 and the global one ̂ ∶= ∞(𝑀) ⊗𝐹 .

Subsequently, the AC-manifold’s algebra was taken to be the fundamental structure that allowed to obtain

the NCSMPP. The first use of the AC-Manifold was made in 1990, in (Dubois-Violette et al., 1990a) and (Dubois-

Violette et al., 1990b) by M. Dubois-Violette, R. Kerner and J. Madore with the algebra ∞()⊗𝑀𝑛(C). This model

shows for the first time that gauge theories arise naturally from a NC structure, with the advantage to consider

the gauge group as the set of unitary elements of an
∗
-algebra. In addition, it allowed us to understand that Higgs

and gauge fields could be gathered in the same non-commutative object, with a more natural interpretation for

the Higgs field, the potential of the Higgs being naturally given in the formalism, addressing the problem raised

in section 10.2. Indeed, the Higgs field can be seen as a connection along the internal NC degrees of freedom, its

potential is equivalent to both the “Einstein-Hilbert action” and the usual bosonic potential. Higgs scalar then

acquires a geometrical interpretation, it gives both a connection in the finite part of the AC-manifold and the

fermionic mass matrix. This model was the basis of later developments, and in particular of the NCSMPP mainly

developed by A. Connes about which I will speak in chapter 12.
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Remark 11.4.1 Notice that we chose the terminology 𝐹 both for the finite space and the fiber. This is because

the finite space is a kind of replacement for this fiber in the context of NCG. The finite space is constituted of 𝑛
elements, each one being able to take several values. These elements correspond to the different distinguishable

characteristics (like charge) the fermionic field can possess i.e. the 𝑖 of the 𝜓𝑖(𝑥) defined in section 10.2.1 which

represents the value taken by the field for the element 𝑖 at spacetime location 𝑥 . Fixing its values for each 𝑖 and

𝑥 ∈ 𝑀 will define a section. And if we visit all its potential values for every 𝑖 = 1… 𝑛 at a given 𝑥 , then we recover

the fiber 𝐹𝑥 defined in section 10.2. The finite space and the fiber are the same spaces but seen differently by the

formalism. We will call 𝐹 the fermionic representation space. □

Therefore, doing NCGFT will consist in working with the algebraic counterpart of the usual gauge theory struc-

tures defined in section 10.2, the main equivalences being given in table 11.1.

Usual gauge field theories: NCGFT:
(differential geometry) (algebra)

symmetry group 𝐺 (Lie group) associative algebra 
algebra 𝐶∞(𝑀) center of the algebra

vector field/sections on the fiber bundle finitely generated projective module  on 
gauge group: vertical automorphisms 𝐺 gauge group: Aut()

differential structure: de Rham differential structure: universal,

derivations, spectral triples

Covariant derivative NC connection 1-form associated to the

differential structure and based on 

Figure 11.1: Equivalences between topological and algebraic properties for gauge field theories.

The general procedure will then be to find a differential calculus based on 𝐹 or , then find a notion of connec-

tion, and then compute the action functional. Having done this, the road will be taken to obtain more concrete

gauge theories, using the AC-manifold’s algebra ̂ ∶= ∞(𝑀) ⊗𝐹 , and then construct the associated NCGFT

which will be called NCGFT𝐹 , the finite algebra 𝐹 being the only variable input. Then we will obtain the

associated action functional 𝐹 (which is not only a function of 𝐹 as we will see), doing this in the derivation

framework in section 11.5 and in the spectral triples one in section 11.6. In chapter 12, using spectral triples-

based NCGFT and taking an appropriate algebra 𝐹 , we will see that the action of the SMPP can be extracted,

this NCGFT thus being named the NCSMPP.

11.5 Derivation-based NCGFT
As we will see, the derivation’s framework offers a way to do NCGFT, implementing the Higgs boson in its

generalized connection, and naturally implementing a SSBM-like mechanism. Initial developments can be found

in (Dubois-Violette et al., 1990a,b).

Let  be a unital associative algebra equipped with an involution 𝑎 ↦ 𝑎∗ and let  be a left -module. A

(NC) connection ∇ on  is a family of linear maps ∇X ∶  →  defined for any X ∈ Der() such that

1. ∇𝑓X = 𝑓 ∇X and ∇X+Y = ∇X + ∇Y for any 𝑓 ∈ () and X,Y ∈ Der().
2. ∇X(𝑎𝑒) = (X⋅𝑎)𝑒 + 𝑎∇X𝑒 for any 𝑎 ∈ , 𝑒 ∈  and X ∈ Der().

The connection must be Hermitian: X⋅ℎ(𝑒1, 𝑒2) = ℎ(∇X𝑒1, 𝑒2) + ℎ(𝑒1, ∇X𝑒2) for any 𝑎1, 𝑎2 ∈  and 𝑒1, 𝑒2 ∈ .

The curvature of ∇ is the family of maps 𝑅(X,Y) ∶  →  defined for any 𝑒 ∈  and X,Y ∈ Der() by

𝑅(X,Y)𝑒 ∶= (∇X∇Y − ∇Y∇X − ∇[X,Y])𝑒

It can be easily shown that 𝑅(X,Y)(𝑎𝑒) = 𝑎𝑅(X,Y)𝑒 for any 𝑎 ∈  so that 𝑅(X,Y) ∈ Hom(,) (space of

homomorphisms of left modules).
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A special case of interest is the left module  =  for the multiplication in  equipped with the canonical

Hermitian structure ℎ(𝑎, 𝑏) ∶= 𝑎𝑏∗ for any 𝑎, 𝑏 ∈  = . Then, since  is unital, the connection ∇ is completely

given by its values on the unit 1 ∈ : for any 𝑒 ∈  =  and any X ∈ Der(),

∇X𝑒 = ∇X(𝑒1) = (X⋅𝑒) + 𝑒(∇X1) = (X⋅𝑒) + 𝑒𝜔(X)

where we define 𝜔(X) ∶= ∇X1. Then one has 𝜔 ∈ Ω1
Der() and 𝜔 is called the connection 1-form of ∇. The

compatibility of ∇ with ℎ implies that for any real derivation X, one has 𝜔(X) + 𝜔(X)∗ = 0 since 0 = X⋅1 =
X⋅ℎ(1,1) = 𝜔(X) + 𝜔(X)∗.

The curvature can be computed in terms of 𝜔 as 𝑅(X,Y)𝑒 = 𝑒Ω(X,Y) where

Ω(X,Y) ∶= (d𝜔)(X,Y) − [𝜔(X), 𝜔(Y)]

using the fact that  =  is also a right -module. The 2-form Ω ∈ Ω2
Der() is the curvature 2-form of ∇.

The gauge group  is the space  () of unitary elements in  which act on the right on  and respect

conditions defined in 11.3.1. Indeed, any 𝑔 ∈  is defined by its value 𝑢 ∶= 𝑔(1) ∈  so that 𝑔(𝑒) = 𝑔(𝑒1) =
𝑒𝑔(1) = 𝑒𝑢. Since  is a group, the element 𝑢 is invertible in  and the unitary condition comes from the

compatibility with the Hermitian structure: 1 = ℎ(1,1) = ℎ(1𝑢,1𝑢) = 𝑢𝑢∗. A computation shows that the

connection 1-form associated to ∇𝑔X = 𝑔 ◦ ∇X ◦ 𝑔−1 is given by:

𝜔𝑢 ∶= 𝑢−1𝜔𝑢 − 𝑢−1(d𝑢)

and its curvature 2-form is Ω𝑢 ∶= 𝑢−1Ω𝑢. A very simple NC connection is given by ∇0
X ∶= 𝑎 → X𝑎.

Proposition 11.5.1 (Transport of connections by automorphisms) Let us consider the hypothesis of
Prop. 3.3.1.

Let ΨMod ∶  →  be an invertible linear map such that ΨMod(𝑎𝑒) = Ψ(𝑎)ΨMod(𝑒) for any 𝑎 ∈  and 𝑒 ∈ .

Let ∇ be a connection on  compatible with a Hermitian structure ℎ on . Then, for any X ∈ Der() and 𝑒 ∈
, the maps ∇ΨMod

X 𝑒 ∶= ΨMod (∇Ψ−1
Der(X)Ψ−1

Mod
(𝑒)) define a connection on  which is compatible with the Hermitian

structure ℎΨMod defined by ℎΨMod(𝑒1, 𝑒2) ∶= Ψ (ℎ(Ψ−1
Mod

(𝑒1), Ψ−1
Mod

(𝑒2))). Its curvature 𝑅ΨMod satisfies 𝑅ΨMod(X,Y)𝑒 =
ΨMod (𝑅(Ψ−1

Der(X), Ψ−1
Der(Y))Ψ−1

Mod
(𝑒)) where 𝑅 is the curvature of ∇.

Let 𝑔 ∈  be a gauge transformation on . Then 𝑔ΨMod(𝑒) ∶= ΨMod ◦ 𝑔 ◦ Ψ−1
Mod

(𝑒) belongs to . If 𝑔 is compatible
with ℎ then 𝑔ΨMod is compatible with ℎΨMod . One has (∇𝑔)ΨMod = (∇ΨMod)𝑔ΨMod .

For  = , let ΨMod = Ψ. Let 𝜔 (resp. 𝜔Ψ) be the connection 1-form of ∇ (resp. of ∇Ψ). Then one has 𝜔Ψ = Ψ(𝜔).
Let 𝑢 = 𝑔(1) and 𝑢Ψ = 𝑔Ψ(1), then 𝑢Ψ = Ψ(𝑢).

Proof For any 𝑎 ∈ , 𝑓 ∈ (), X ∈ Der() and 𝑒 ∈ , one has

∇ΨMod

X (𝑎𝑒) = ΨMod (∇Ψ−1
Der(X)Ψ−1

Mod
(𝑎𝑒)) = ΨMod (∇Ψ−1

Der(X)Ψ−1(𝑎)Ψ−1
Mod

(𝑒))
= ΨMod ((Ψ−1

Der(X)⋅Ψ
−1(𝑎))Ψ−1

Mod
(𝑒)) + ΨMod (Ψ−1(𝑎)∇Ψ−1

Der(X)Ψ−1
Mod

(𝑒))
= ΨMod (Ψ−1(X⋅𝑎)Ψ−1

Mod
(𝑒)) + 𝑎ΨMod (∇Ψ−1

Der(X)Ψ−1
Mod

(𝑒)) = (X⋅𝑎)𝑒 + 𝑎∇ΨMod

X 𝑒

and

∇ΨMod

𝑓X 𝑒 = ΨMod (∇Ψ−1
Der(𝑓X)Ψ−1

Mod
(𝑒)) = ΨMod (∇Ψ−1(𝑓 )Ψ−1

Der(X)Ψ−1
Mod

(𝑒)) = ΨMod (Ψ−1(𝑓 )∇Ψ−1
Der(X)Ψ−1

Mod
(𝑒))

= 𝑓 ΨMod (∇Ψ−1
Der(X)Ψ−1

Mod
(𝑒)) = 𝑓 ∇ΨMod

X 𝑒

so that ∇ΨMod
is a connection. The compatibility with ℎΨMod

is proved by

X⋅ℎΨMod(𝑒1, 𝑒2) = X⋅Ψ (ℎ(Ψ−1
Mod

(𝑒1), Ψ−1
Mod

(𝑒2))) = Ψ (Ψ−1
Der(X)⋅ℎ(Ψ

−1
Mod

(𝑒1), Ψ−1
Mod

(𝑒2)))
= Ψ (ℎ(∇Ψ−1

Der(X)Ψ−1
Mod

(𝑒1), Ψ−1
Mod

(𝑒2))) + Ψ (ℎ(Ψ−1
Mod

(𝑒1), ∇Ψ−1
Der(X)Ψ−1

Mod
(𝑒2)))
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= Ψ(ℎ(Ψ−1
Mod

(∇ΨMod

X 𝑒1), Ψ−1
Mod

(𝑒2))) + Ψ (ℎ(Ψ−1
Mod

(𝑒1), Ψ−1
Mod

(∇ΨMod

X 𝑒2)))
= ℎΨMod(∇ΨMod

X 𝑒1, 𝑒2) + ℎΨMod(𝑒1, ∇ΨMod

X 𝑒2).

The relation for the curvature 𝑅ΨMod
is a straightforward computation:

𝑅ΨMod(X,Y)𝑒 = (∇ΨMod

X ∇ΨMod

Y − ∇ΨMod

Y ∇ΨMod

X − ∇ΨMod

[X,Y]) 𝑒

= ΨMod ◦ ∇Ψ−1
Der(X) ◦ Ψ−1

Mod
◦ ΨMod ◦ ∇Ψ−1

Der(Y) ◦ Ψ−1
Mod

(𝑒)
− ΨMod ◦ ∇Ψ−1

Der(Y) ◦ Ψ−1
Mod

◦ ΨMod ◦ ∇Ψ−1
Der(X) ◦ Ψ−1

Mod
(𝑒) − ΨMod ◦ ∇Ψ−1

Der([X,Y]) ◦ Ψ−1
Mod

(𝑒)

= ΨMod ◦ ∇Ψ−1
Der(X) ◦ ∇Ψ−1

Der(Y) ◦ Ψ−1
Mod

(𝑒) − ΨMod ◦ ∇Ψ−1
Der(Y) ◦ ∇Ψ−1

Der(X) ◦ Ψ−1
Mod

(𝑒)
− ΨMod ◦ ∇[Ψ−1

Der(X),Ψ−1
Der(Y)] ◦ Ψ−1

Mod
(𝑒)

= ΨMod (𝑅(Ψ−1
Der(X), Ψ

−1
Der(Y))Ψ−1

Mod
(𝑒))

The map 𝑔ΨMod
is obviously invertible with inverse (𝑔ΨMod)−1 = ΨMod ◦ 𝑔−1 ◦Ψ−1

Mod
. It is a morphism of modules:

𝑔ΨMod(𝑎𝑒) = ΨMod ◦ 𝑔 ◦ Ψ−1
Mod

(𝑎𝑒) = ΨMod ◦ 𝑔 (Ψ−1(𝑎)Ψ−1
Mod

(𝑒)) = ΨMod (Ψ−1(𝑎)𝑔 ◦ Ψ−1
Mod

(𝑒)) = 𝑎𝑔ΨMod(𝑒). One has

ℎΨMod(𝑔ΨMod(𝑒1), 𝑔ΨMod(𝑒2)) = Ψ (ℎ(Ψ−1
Mod

◦ ΨMod ◦ 𝑔 ◦ Ψ−1
Mod

(𝑒1), Ψ−1
Mod

◦ ΨMod ◦ 𝑔 ◦ Ψ−1
Mod

(𝑒2))
= Ψ (ℎ(𝑔 ◦ Ψ−1

Mod
(𝑒1), 𝑔 ◦ Ψ−1

Mod
(𝑒2)) = Ψ (ℎ(Ψ−1

Mod
(𝑒1), Ψ−1

Mod
(𝑒2)) = ℎΨMod(𝑒1, 𝑒2)

and

(∇𝑔)ΨMod

X = ΨMod ◦ ∇
𝑔
Ψ−1
Der(X) ◦ Ψ

−1
Mod

= ΨMod ◦ 𝑔 ◦ ∇Ψ−1
Der(X) ◦ 𝑔−1 ◦ Ψ−1

Mod

= (ΨMod ◦ 𝑔 ◦ Ψ−1
Mod

)◦(ΨMod ◦ ∇Ψ−1
Der(X) ◦ Ψ−1

Mod
)◦(ΨMod ◦ 𝑔 ◦ Ψ−1

Mod
)−1

= 𝑔ΨMod ◦ ∇ΨMod

X ◦ (𝑔ΨMod)−1 = (∇ΨMod)𝑔
Ψ

Mod

X .

Finally, one has

𝜔Ψ(X) = ∇Ψ
X1 = Ψ ◦ ∇Ψ−1

Der(X)Ψ−11 = Ψ ◦ ∇Ψ−1
Der(X)1 = Ψ(𝜔(Ψ−1

Der(X))) = Ψ(𝜔)(X)

and 𝑢Ψ = 𝑔Ψ(1) = Ψ ◦ 𝑔 ◦ Ψ−1(1) = Ψ ◦ 𝑔(1) = Ψ(𝑢).

11.5.1 Action in the Derivation-based Framework
To define a gauge field theory on , one considers the “fields” defining a connection ∇ on  and a Lagrangian

(∇) for these fields. This Lagrangian is usually constructed for the left module  =  using a Hodge star

operator ⋆ on the space of forms on :

(∇) ∶= −Ω ∧ ⋆Ω.

Then, using a trace ∫ (which sends forms to scalars) we can define an action:

[∇] ∶= ∫

(∇) = −∫


Ω ∧ ⋆Ω

the sign is necessary for positivity. The matter Lagrangian can be defined in a similar way. One first considers

∇ as a map ∇ ∶  → Ω1
Der() ⊗ . Using a natural involution on Ω∙

Der() which extends the involution on

 (see (François et al., 2014) for instance), one can extend ℎ to (Ω𝑝
Der() ⊗ ) ⊗ (Ω𝑞

Der() ⊗ ) → Ω𝑝+𝑞
Der ()

by ℎ(𝜔𝑝 ⊗ 𝑒, 𝜔𝑞 ⊗ 𝑒′) ∶= 𝜔𝑝ℎ(𝑒, 𝑒′) ∧ 𝜔∗
𝑞 . Then ∫ ℎ(∇𝑒, ⋆∇𝑒) defines a Klein-Gordon type action for matter fields

𝑒 ∈ .

Since we restrict our analysis to matrix algebras, we refer to Sect. 4.1.1 for the construction of an explicit

Hodge star operator and a trace.

Let us describe the degrees of freedom in the gauge sector of a NCGFT defined on𝑀𝑛 and on 𝐶∞(𝑀)⊗𝑀𝑛, see

(Dubois-Violette and Masson, 1998; Dubois-Violette et al., 1990a,b; François et al., 2014; Masson, 2012) for some

details. We use some notations from Sect. 4.1.1.
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11.5.2 Example of  = 𝑀𝑛

Let us consider  = 𝑀𝑛. Then Der() = Der(𝑀𝑛) ≃ sl𝑛, and, for 𝑘 = 1,… , 𝑛2 − 1, let {𝐸𝑘} be a basis of anti-

Hermitean traceless matrices in sl𝑛 so that {𝜕𝑘 ∶= ad𝐸𝑘 } is a basis of real derivations of𝑀𝑛.
1

Let us consider the left

module  =  with the canonical Hermitian structure ℎ(𝑎, 𝑏) ∶= 𝑎𝑏∗. There is a canonical connection ∇̊ on 
defined by ∇̊𝜕𝑘𝑎 ∶= 𝐸𝑘𝑎 for any 𝑘 = 1,… , 𝑛2−1 and 𝑎 ∈  = with connection 1-form 𝜔̊(𝜕𝑘) = 𝐸𝑘 . This canonical

connection satisfies two important properties: firstly, its curvature is zero; secondly, it is gauge invariant (see also

(Cagnache et al., 2011a) for another occurrence of such a canonical connection). It is then convenient to compare

any connection 1-form 𝜔 on  to this canonical connection, by writing 𝜔 = 𝜔𝑘𝜃𝑘 = 𝜔̊−𝐵𝑘𝜃𝑘 = (𝐸𝑘−𝐵𝑘)𝜃𝑘 . Then

the curvature 2-form Ω = 1
2Ω𝑘𝓁𝜃𝑘 ∧ 𝜃𝓁 has components Ω𝑘𝓁 ∶= Ω(𝜕𝑘 , 𝜕𝓁) = −([𝐵𝑘 , 𝐵𝓁] − 𝐶𝑚𝑘𝓁𝐵𝑚). This curvature

vanishes iff 𝐸𝑘 ↦ 𝐵𝑘 is a representation of the Lie algebra sl𝑛 (for instance 𝐵𝑘 = 0 or 𝐵𝑘 = 𝐸𝑘). The connection 𝜔
is compatible with ℎ iff 𝜔𝑘 + 𝜔∗

𝑘 = 0 for any 𝑘. Since the 𝐸𝑘’s are anti-Hermitean, this compatibility condition is

equivalent to 𝐵𝑘 + 𝐵∗
𝑘 = 0 for any 𝑘 and then Ω∗

𝑘𝓁 = −Ω𝑘𝓁. We can then decompose 𝐵𝑘 = 𝐵𝓁
𝑘𝐸𝓁 + 𝑖𝐵0

𝑘1𝑛 with real

functions 𝐵𝓁
𝑘 , 𝓁 = 0, … , 𝑛2−1, so that the number of degrees of freedom (number of real functions) in𝜔 is 𝑛2(𝑛2−1).

The action of a gauge transformation 𝑔 ∈ 𝑈(𝑛) induces the transformation 𝐵𝑘 ↦ 𝑔−1𝐵𝑘𝑔 (the inhomogeneous

part of the gauge transformation is absorbed by 𝜔̊).

Notice that this approach is only interesting for 𝑛 ≥ 2 since for 𝑛 = 1, 𝑀1 = C is commutative and so there is

no derivation and so no degree of freedom 𝐵𝑘’s.

Suppose that the basis {𝜕𝑘} is orthonormal for the metric 𝑔 defined as in Sect. 4.1.1. SinceΩ∧⋆Ω = 1
2Ω𝑘𝓁Ω𝑘𝓁𝜔vol

for Ω𝑘𝓁 = 𝑔𝑘𝑘′𝑔𝓁𝓁′Ω𝑘′𝓁′ , the action is then − 1
2 ∑𝑘,𝓁 tr(Ω𝑘𝓁)2 = − 1

2 ∑𝑘,𝓁 tr([𝐵𝑘 , 𝐵𝓁] − 𝐶𝑚𝑘𝓁𝐵𝑚)
2
. Notice that − tr(Ω𝑘𝓁)2 =

tr(Ω𝑘𝓁Ω∗
𝑘𝓁) ≥ 0.

From Prop. 11.5.1 and Examples 3.3.2 and 4.1.1, an inner automorphism defined by a unitary element 𝑢 in

𝑀𝑛 produces a transport of all the structures defining the NCGFT on 𝑀𝑛. One has 𝜔𝑢 = 𝑈 𝓁
𝑘𝑢𝜔𝓁𝑢−1𝜃𝑘 , and since

𝜔̊𝑢 = 𝑈 𝓁
𝑘𝑢𝐸𝓁𝑢

−1𝜃𝑘 = 𝜔̊, this implies that 𝐵𝑘 is mapped to 𝐵𝑢𝑘 = 𝑈 𝓁
𝑘𝑢𝐵𝓁𝑢

−1
. One then has [𝐵𝑢𝑘 , 𝐵

𝑢
𝓁 ] − 𝐶𝑚𝑘𝓁𝐵

𝑢
𝑚 =

𝑈 𝑘′
𝑘 𝑈

𝓁′
𝓁 𝑢−1 ([𝐵𝑘′ , 𝐵𝓁′] − 𝐶𝑚′

𝑘′𝓁′𝐵𝑚′) 𝑢 and the Lagrangian in the 𝐵𝑢𝑘 is the same as the Lagrangian in the 𝐵𝑘 . We con-

clude that such an action of inner automorphisms is not relevant from a physical point of view.

11.5.3 Example of ̂ = 𝐶∞(𝑀) ⊗ 𝑀𝑛

Let us consider the algebra ̂ = 𝐶∞(𝑀) ⊗ 𝑀𝑛 for a manifold 𝑀 . The space of derivations is Der(̂) = [Γ(𝑀) ⊗
1𝑛] ⊕ [𝐶∞(𝑀) ⊗ sl𝑛] where Γ(𝑀) = Der(𝐶∞(𝑀)) is the space of vector fields on 𝑀 , and (̂) = 𝐶∞(𝑀). For

𝜇 = 1,… , dim𝑀 , let {𝜕𝜇} (usual partial derivatives in a coordinate system given by a chart of 𝑀) be a basis of

real derivations on the geometric part, and let {d𝑥𝜇} be the dual basis of 1-forms. We can define a metric on this

almost commutative manifold:

𝑔̂(𝜕𝜇 + 𝜕𝛼 , 𝜕𝜈 + 𝜕𝛽) = 𝑔̃(𝜕𝜇, 𝜕𝜈) + 𝑔(𝜕𝛼 , 𝜕𝛽) = 𝑔̃𝜇𝜈 + 𝑔𝑘𝓁

where we recognize 𝑔̃𝜇𝜈 the usual metric for manifold, and 𝑔𝑘𝓁 the metric for the inner degrees of freedom defined

in section 4.1.

Let us consider as before the left module  = ̂ with the canonical Hermitian structure ℎ(𝑎, 𝑏) ∶= 𝑎𝑏∗.
Then a connection 1-form 𝜔 can be written as 𝜔 = 𝜔𝜇d𝑥𝜇 + 𝜔𝑘𝜃𝑘 = 𝐴𝜇d𝑥𝜇 + (𝐸𝑘 − 𝐵𝑘)𝜃𝑘 with 𝐴𝜇, 𝐵𝑘 ∈ ̂ and

this connection is compatible with ℎ when 𝐴𝜇 + 𝐴∗
𝜇 = 0 and 𝐵𝑘 + 𝐵∗

𝑘 = 0 (since the 𝐸𝑘’s are anti-Hermitean). As

before, we can decompose 𝐴𝜇 = 𝐴𝓁
𝜇𝐸𝓁 + 𝑖𝐴0

𝜇1𝑛 and 𝐵𝑘 = 𝐵𝓁
𝑘𝐸𝓁 + 𝑖𝐵0

𝑘1𝑛 so that the number of degrees of freedom

in 𝜔 is 𝑛2(dim𝑀 + 𝑛2 − 1). A gauge transformation given by 𝑔 ∈ 𝐶∞(𝑀) ⊗ 𝑈(𝑛) induces the transformations

𝐴𝜇 ↦ 𝑔−1𝐴𝜇𝑔 − 𝑔−1ddR𝑔 and 𝐵𝑘 ↦ 𝑔−1𝐵𝑘𝑔 where ddR is the ordinary de Rham differential on 𝑀 (to simplify, we

used the notation d𝑥𝜇 instead of ddR𝑥𝜇). So 𝐴𝜇d𝑥𝜇 can be identified with an ordinary 𝑈(𝑛)-connection.

The curvature of 𝜔 can be decomposed into three parts: Ω = 1
2Ω𝜇𝜈d𝑥𝜇 ∧ d𝑥𝜈 +Ω𝜇𝑘d𝑥𝜇 ∧ 𝜃𝑘 + 1

2Ω𝑘𝓁𝜃𝑘 ∧ 𝜃𝓁 with

Ω𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − [𝐴𝜇, 𝐴𝜈],
Ω𝜇𝑘 = −(𝜕𝜇𝐵𝑘 − [𝐴𝜇, 𝐵𝑘]),

1
We depart here from the conventions in many papers where the 𝐸𝑘 are chosen to be Hermitean and 𝜕𝑘 are defined as ad𝑖𝐸𝑘 .
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Ω𝑘𝓁 = −([𝐵𝑘 , 𝐵𝓁] − 𝐶𝑚𝑘𝓁𝐵𝑚).

The term Ω𝜇𝜈 is the usual field strength of 𝐴𝜇, Ω𝜇𝑘 is (up to a sign) the covariant derivative of 𝐵𝑘 along the

connection 𝐴𝜇 and Ω𝑘𝓁 is the expression obtained for the algebra  = 𝑀𝑛. Using natural notions of metric

and Hodge ⋆-operator in this context, a natural Lagrangian is the sum of 3 (positive) terms − 1
2 tr(Ω𝜇𝜈Ω𝜇𝜈) −

tr(Ω𝜇𝑘Ω𝜇𝑘) − 1
2 tr(Ω𝑘𝓁Ω𝑘𝓁). Finding a minimal configuration for such a Lagrangian is equivalent to minimizing

independently these 3 terms. The last one vanishes if and only if 𝐸𝑘 ↦ 𝐵𝑘 is a representation of sl𝑛. One possibility

is the take 𝐵𝑘 = 0 for all 𝑘 (referred to as the “null-configuration” in the following), which cancels also the second

term. Then one reduces the theory to massless gauge fields 𝐴𝜇. Another more stimulating configuration is to

consider 𝐵𝑘 = 𝐸𝑘 (referred to as the “basis-configuration” in the following), and then the second term reduces to

− tr([𝐴𝜇, 𝐸𝑘][𝐴𝜇, 𝐸𝑘]), which, after developing, produces mass terms for the 𝐴𝜇 fields, see Lemma 11.5.2. This is

similar to the SSBM implemented in the SMPP to give masses to some gauge fields.

Notice that for an ordinary Yang-Mills theory in the framework of fiber bundles and connections, with struc-

ture group 𝑈(𝑛), we have only the fields 𝐴𝓁
𝜇, 𝓁 = 0, … , 𝑛2 −1 since there is no “algebraic part” which produces the

𝐵𝑘’s. With the structure group 𝑆𝑈(𝑛), there is no field 𝐴0
𝜇 (the matrices 𝐸𝓁, 𝓁 = 1, … , 𝑛2 − 1, generate the real Lie

algebra su(𝑛)).

Contrary to Example 11.5.2, this case is also interesting for 𝑛 = 1. In that case, the degrees of freedom are

only in the spatial direction (the 𝐴𝜇’s) and they can be used to construct an ordinary 𝑈(1) gauge field theory.

Once again, one can ask about the action of an inner automorphism defined by a unitary element in ̂. The

action of such an automorphism on a “spatial” derivation 𝑋 ∈ Γ(𝑀) is given by ΨDer(𝑋) = 𝑋 + ad𝑢(𝑋⋅𝑢−1) (see

Example 3.3.2). If 𝑢 is a unitary in 𝑀𝑛 (not depending on 𝑀), then one gets ΨDer(𝑋) = 𝑋 . This implies that

the spatial directions (the 𝜕𝜇’s) are only affected by 𝑢 through the action of Ψ, 𝜔𝑢𝜇 = 𝑢𝜔𝜇𝑢−1, while the “inner”

directions (the 𝜕𝑘’s) change according to the rules given in Example 4.1.1. This implies that the Lagrangian in

the new fields is the same as the one in the original fields and so such an action of inner automorphism is not

relevant from a physical point of view. When 𝑢 is depending on 𝑀 , the second term in ΨDer(𝑋) does not vanish

and it produces mixing between spatial directions and inner directions: some degrees of freedom in the 𝐵𝑘’s are

sent in the spatial part 𝜔𝑢𝜇. This situation will not be considered in the following.

Lemma 11.5.2 Let us consider a NCGFT as previously given. In the basis-configuration for the 𝐵𝑘’s, the masses
induced on the fields 𝐴𝓁

𝜇 for 𝓁 = 1, … , 𝑛2 − 1, in the decomposition 𝐴𝜇 = 𝐴𝓁
𝜇𝐸𝓁 + 𝑖𝐴0

𝜇1𝑛, are all the same and equal to
𝑚basis-config =

√
2𝑛, while the field 𝐴0

𝜇 is mass-less.

Proof Using the metric 𝑔 defined as 𝑔(𝐸𝑘 , 𝐸𝓁) = tr(𝐸𝑘𝐸𝓁) (see Sect. 4.1.1), the masses for the fields 𝐴𝓁
𝜇, 𝓁 =

1, … , 𝑛2 − 1, are given by the term

𝑀2
𝓁1𝓁2𝐴

𝓁1
𝜇 𝐴

𝜇,𝓁2 = −𝑔𝑘1𝑘2 tr([𝐴𝜇, 𝐸𝑘1][𝐴
𝜇, 𝐸𝑘2]) = −𝐴𝓁1

𝜇 𝐴
𝜇,𝓁2𝑔𝑘1𝑘2 tr([𝐸𝓁1 , 𝐸𝑘1][𝐸𝓁2 , 𝐸𝑘2])

= −𝐴𝓁1
𝜇 𝐴

𝜇,𝓁2𝑔𝑘1𝑘2𝐶𝑚1
𝓁1𝑘1𝐶

𝑚2
𝓁2𝑘2 tr(𝐸𝑚1𝐸𝑚2) = −𝐴𝓁1

𝜇 𝐴
𝜇,𝓁2𝑔𝑘1𝑘2𝑔𝑚1𝑚2𝐶

𝑚1
𝓁1𝑘1𝐶

𝑚2
𝓁2𝑘2

where 𝐴𝜇 = 𝐴𝓁
𝜇𝐸𝓁 + 𝑖𝐴0

𝜇1𝑛. Since the field 𝐴0
𝜇 disappears, its mass is 0.

For any 𝑋, 𝑌 ∈ su(𝑛), the Killing form 𝐾(𝑋, 𝑌 ) = tr(ad𝑋 ◦ ad𝑌 ) satisfies 𝐾(𝑋, 𝑌 ) = 2𝑛 tr(𝑋𝑌 ) so that, on

the one hand, 𝐾𝑘𝓁 ∶= 𝐾(𝐸𝑘 , 𝐸𝓁) = 2𝑛 𝑔𝑘𝓁 and on the other hand, 𝐾𝑘𝓁 = 𝐶𝑛𝑘𝑚𝐶
𝑚
𝓁𝑛. Let us define 𝐶𝑘𝓁𝑚 ∶= 𝑔𝑚𝑛𝐶𝑛𝑘𝓁,

so that 𝐶𝑛𝑘𝓁 = 𝑔𝑚𝑛𝐶𝑘𝓁𝑚 and 𝐶𝑘𝓁𝑚 is completely antisymmetric in (𝑘, 𝓁, 𝑚). This leads to 𝑔𝑘1𝑘2𝑔𝑚1𝑚2𝐶
𝑚1
𝓁1𝑘1𝐶

𝑚2
𝓁2𝑘2 =

𝑔𝑘1𝑘2𝐶𝓁1𝑘1𝑚𝐶𝑚𝓁2𝑘2 = −𝑔𝑘1𝑘2𝐶𝓁1𝑚𝑘1𝐶𝑚𝓁2𝑘2 = −𝐶𝑘𝓁1𝑚𝐶
𝑚
𝓁2𝑘 , so that 𝑀2

𝓁1𝓁2 = 𝐶𝑘𝓁1𝑚𝐶
𝑚
𝓁2𝑘 = 𝐾𝓁1𝓁2 = 2𝑛 𝑔𝓁1𝓁2 . This proves that the

diagonalization of (𝑀2
𝓁1𝓁2) gives a unique eigenvalue 2𝑛 so that there is a unique mass 𝑚basis-config =

√
2𝑛.

Remark 11.5.3 The way to do NC gauge theories in the derivation framework can be seen as a geometrization

of the generators 𝑇𝑎 of the gauge potential introduced in chapter 10. Making this object being at the same level

of the 𝜕𝜇, in the covariant derivative (10.1.2) which becomes even more similar to a simple derivation, in a NCG.

This looks like a nice and direct implementation of NCG in the gauge field theory framework. □

This model lacks a fermionic action. More details can be found in (François et al., 2014; Masson, 2008a).
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11.6 Spectral Triple-based NCGFT
For models using spectral triples, we take the module to be a Hilbert space  = . As we will see, here the

connection is obtained from the inner fluctuations of the Dirac operator. As the elaboration of spectral triples

is intimately linked to the elaboration of a NCSMPP, we let the presentation of the history of the elaboration of

spectral triples based NCGFT to chapter 12.

Two spectral triples (,, 𝐷, 𝐽 , 𝛾) and (′,′, 𝐷′, 𝐽 ′, 𝛾 ′) are unitary equivalent when ′ = , and there

exists a unitary operator 𝑈 ∶  → ′
and an algebra isomorphism Λ ∶  → ′

such that 𝜋′ ◦ Λ = 𝑈𝜋𝑈−1
,

𝐷′ = 𝑈𝐷𝑈−1
, 𝐽 ′ = 𝑈𝐽𝑈−1

, and 𝛾 ′ = 𝑈𝛾𝑈−1
.

A symmetry of a spectral triple is a unitary equivalence between two spectral triples such that ′ = ,

′ = , and 𝜋′ = 𝜋, so that 𝑈 ∶  →  and Λ ∈ Aut(), i.e. a symmetry acts only on 𝐷, 𝐽 and 𝛾 . In the

following, we will only consider automorphisms Λ which are -inner, that is, there is a unitary 𝑢 ∈  () such

that Λ𝑢(𝑎) = 𝑢𝑎𝑢∗. This unitary in  defines the unitary 𝑈 = 𝜋(𝑢)𝐽𝜋(𝑢)𝐽−1 ∶  → , which can be interpreted

as the conjugation with 𝜋(𝑢) for the bimodule structure. A straightforward computation shows that such 𝑈 acts

as an automorphism on , leaves 𝐽 and 𝛾 invariant:

𝑈𝑎𝑈−1 = 𝜋(𝑢)𝜋(𝑢)◦𝑎(𝜋(𝑢)◦)∗𝜋(𝑢)∗ = 𝜋(𝑢)𝑎𝜋(𝑢)∗𝜋(𝑢)◦(𝜋(𝑢)◦)∗ = 𝜋(𝑢)𝑎𝜋(𝑢)∗ = Λ𝜋(𝑢)(𝑎)
𝑈 𝐽𝑈−1 = 𝜋(𝑢)𝐽𝜋(𝑢)(𝜋(𝑢)∗(𝜋(𝑢)∗)◦) = 𝜋(𝑢)𝐽 𝐽𝜋(𝑢)∗𝐽−1 = 𝜖𝐽−1 = 𝐽
𝑈𝛾𝑈−1 = 𝜖′′2𝛾𝑈𝑈−1 = 𝛾

and modifies the Dirac operator 𝐷 as:

𝐷𝑢 = 𝑈𝐷𝑈 ∗ = 𝐷 + 𝜋(𝑢)[𝐷, 𝜋(𝑢)∗] + 𝜖′𝐽 (𝜋(𝑢)[𝐷, 𝜋(𝑢)∗]) 𝐽−1. (11.6.1)

The usual way to look at this relation is to interpret the commutator with 𝐷 as a kind of differential: this ex-

pression tells us that 𝐷 is modified by the addition of two inhomogeneous terms of the form “𝜋(𝑢)d𝜋(𝑢)−1”.

By definition, gauge transformations are inner symmetries of a spectral triple. In order to compensate for

the inhomogeneous terms, we can use the same trick as in ordinary gauge field theory: add to the first order

differential operator 𝐷 a gauge potential. To do that, we need a convenient notion of NC connections.

We now suppose that there is an orthogonal decomposition of the Hilbert space  = ⊕𝑟
𝑖=1 𝑖 such that the

representation decomposes along 𝜋 = ⊕𝑟
𝑖=1 𝜋𝑖 where 𝜋𝑖 is a representation of 𝑖 on 𝑖: for any 𝜓 = ⊕𝑟

𝑖=1 𝜓𝑖 ∈ 
and 𝑎 = ⊕𝑟

𝑖=1 𝑎𝑖 ∈ , 𝜋(𝑎)𝜓 = ⊕𝑟
𝑖=1 𝜋𝑖(𝑎𝑖)𝜓𝑖. Then the Dirac operator 𝐷 decomposes as a 𝑟 × 𝑟 matrix of operators

𝐷𝑖
𝑗 ∶ 𝑖 → 𝑗 . We propose to write the representation 𝜋𝐷 as follows. Let us consider the universal differential

calculus (Ω∙
𝑈 (), d𝑈 ) and consider any ω ∈ 𝛀𝑛

𝑈 () ⊂ T𝑛 which decomposes along a sum of typical terms

⊕𝑟
𝑖1 ,…,𝑖𝑛−1=1 (𝑎

0
𝑖 ⊗ 𝑎1𝑖1 ⊗⋯ ⊗ 𝑎𝑛−1𝑖𝑛−1 ⊗ 𝑎𝑛𝑗 )

𝑟
𝑖,𝑗=1 ∈ T𝑛. Then 𝜋𝐷(ω) is the 𝑟 × 𝑟 matrix of operators

𝜋𝐷(ω)𝑗𝑖 = ∑
all terms at the

(𝑖, 𝑗) entry in ω

∑𝑟
𝑖1 ,…,𝑖𝑛−1=1 𝑎

0
𝑖𝐷

𝑖1
𝑖 𝑎

1
𝑖1𝐷

𝑖2
𝑖1 ⋯𝐷𝑖𝑛−1

𝑖𝑛−2𝑎
𝑛−1
𝑖𝑛−1𝐷

𝑗
𝑖𝑛−1𝑎

𝑛
𝑗 ∶ 𝑗 → 𝑖 (11.6.2)

Notice that, since ω ∈ 𝛀𝑛
𝑈 (), these sums define bounded operators because only commutators [𝐷, 𝑎] could

appear in 𝜋𝐷(ω) (this is not necessarily the case for a generic element in T𝑛).

As mentioned in section 11.2, a NC connection is defined as a 1-form 𝜔 = ∑𝑖 𝑎0𝑖 d𝑈𝑎1𝑖 ∈ Ω1
𝑈 () (finite sum).

Elements in the vector spaces Ω𝑛
𝑈 () can be represented as bounded operators on  by

𝜋𝐷(∑𝑖 𝑎
0
𝑖 d𝑈𝑎

1
𝑖 ⋯ d𝑈𝑎𝑛𝑖 ) ∶= ∑𝑖 𝜋(𝑎

0
𝑖 )[𝐷, 𝜋(𝑎

1
𝑖 )] ⋯ [𝐷, 𝜋(𝑎𝑛𝑖 )].

Notice that the map 𝜋𝐷 is not a representation of the graded differential algebra Ω∙
𝑈 (). In particular, d𝑈 is not

represented by the commutator [𝐷, −] as a differential. The representation 𝜋𝐷 can also be used to represent 𝑛-

forms on the right module structure of  by ∑𝑖 𝑎0𝑖 d𝑈𝑎1𝑖 ⋯ d𝑈𝑎𝑛𝑖 ↦ 𝐽𝜋𝐷 (∑𝑖 𝑎0𝑖 d𝑈𝑎1𝑖 ⋯ d𝑈𝑎𝑛𝑖 ) 𝐽−1. The map 𝜋𝐷 may

have a non trivial kernel, this is why we will prefer to use 𝜔 ∈ Ω1
𝑈 () instead of 𝜋𝐷(𝜔) in some forthcoming
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constructions. We notice that the term 𝜋(𝑢)[𝐷, 𝜋(𝑢)∗] in equation (11.6.1) can be interpreted as a particular

connection.

Given 𝐷 and 𝜔 ∈ Ω1
𝑈 (), one defines the operator 𝐷𝜔 ∶= 𝐷 + 𝜋𝐷(𝜔) + 𝜖′𝐽 𝜋𝐷(𝜔)𝐽−1 called the fluctuated

Dirac operator. Where 𝜋𝐷(𝜔) is an element of the space of Connes differential 1-forms Ω1
𝐷(). By a gauge

transformation 𝑢 ∈  (), 𝐷𝜔 is transformed into

(𝐷𝜔)𝑢 = 𝐷 + 𝜋(𝑢)𝜋𝐷(𝜔)𝜋(𝑢)∗ + 𝜋(𝑢)[𝐷, 𝜋(𝑢)∗] + 𝜖′𝐽 𝜋(𝑢)𝜋𝐷(𝜔)𝜋(𝑢)∗𝐽−1 + 𝜖′𝐽 𝜋(𝑢)[𝐷, 𝜋(𝑢)∗]𝐽−1.

This relation can be written as 𝐷𝜔𝑢 , where 𝜔𝑢 ∈ Ω1
𝑈 () is a gauge transformation of 𝜔 defined as 𝜔𝑢 ∶= 𝑢𝜔𝑢∗ +

𝑢d𝑈𝑢∗.

This is how a gauge field (in the general meaning of the term) is extracted from the Dirac when it is un-

dergoing inner fluctuation. Therefore, considering ̂ = ∞(𝑀) ⊗ 𝐹 we see that Out(∞(𝑀)) the group of

Outer automorphisms of ̂ is enhanced by the inner automorphisms of 𝐹 . As the metric comes out from the

Dirac, these new automorphisms give us deformation of the Dirac and then of metric for the spectral geometry

of (̂,̂, 𝐷̂), these deformations are interpreted as the gauge fields of Yang-Mills theory.

Thus, any real spectral triple (,, 𝐷, 𝐽 , 𝛾) possesses a gauge group deduced from the unitaries of , linking

this triple to other triples wherein the algebra is unitary equivalent to  and where the Hilbert space is left

unchanged. The gauge group of the triple can be defined as follows:

Definition 11.6.1 (Gauge group of a spectral triple) We define by (,; 𝐽 ) the gauge groupe of the given
spectral triple by:

(,; 𝐽 ) = {𝑈 = 𝑢𝐽𝑢𝐽−1|𝑢 ∈  ()}

It is connected to the gauge group acting on 𝜔 by the unitary 𝑢 ∶ 𝜔 ↦ 𝑢𝜔𝑢∗ +𝑢 [𝐷, 𝑢∗]. The element 𝑈 = 𝑢𝐽𝑢𝐽−1
corresponds to the composition of the left and right actions of 𝑢 on : 𝑈 ∶ 𝜉 → 𝑢.𝜉 .(𝑢∗)◦ which is called the

adjoint action of 𝑢.

Taking a spectral triple (,, 𝐷, 𝐽 , 𝛾), it is possible to construct another spectral triple with a given commu-

tative subalgebra of . Let’s define:

𝐽 ∶= { 𝑎 ∈  | 𝑎𝐽 = 𝐽 𝑎∗}

Proposition 11.6.2 Then (𝐽 ,, 𝐷, 𝐽 , 𝛾) is also a spectral triple, we have that is 𝑎∗ ∈ 𝐽 for any 𝑎 ∈ 𝐽 , that
𝐽 ∈ (), that for any 𝜔 ∈ Ω1

𝐷(): [𝑎, 𝜔] = 0, and (,; 𝐽 ) =  ()/ (𝐽 ).

Proof If we take 𝑎 ∈ 𝐽 and 𝑏 ∈  then:

𝐽−1𝑎∗𝐽 = (𝐽−1𝑎𝐽 )∗ = (𝑎∗)∗ = 𝑎 and then 𝑎∗𝐽 = 𝐽 𝑎

Using the fact that 𝑎 = 𝐽−1𝑎∗𝐽 we have 𝐽 𝑎𝐽−1 = 𝑎∗ and then 𝑎𝜖2 = 𝑎 = 𝐽𝑎∗𝐽−1, so that:

[𝑎, 𝑏] = [𝐽 𝑎∗𝐽−1, 𝑏] = 0

thanks to commutant property. The fact that 𝐽 commutes with Ω1
𝐷() is a direct consequence of the first order

condition. For the last point, if we consider the surjective map  () → (,; 𝐽 ) given by 𝑢 → 𝑢𝐽𝑢𝐽−1, then

this map is a group morphism with kernel given by:

{𝑢 ∈  () | 𝑢𝐽 𝑢𝐽−1 = 1 ↔ 𝑢𝐽 = 𝐽𝑢∗} =  (𝐽 )

which proves the last point.

Because of the Gelfand-Naimark theorem, 𝐹 can be seen as a subalgebra of (𝑋), 𝑋 being a background space.
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11.6.1 Dirac Operator on a Spin Manifold

No one fully understands spinors. Their algebra is formally understood

but their general significance is mysterious. In some sense they describe

the ’square root’ of geometry and, just as understanding the square root of

-1 took centuries, the same might be true of spinors.

M. Atiyah

The motivation of this subsection is to introduce the structures behind GR from the NCG framework point

of view and introduce some notations that will be important in subsection 11.6.2 and then chapter 12.1.

Let’s consider the tangent bundle 𝑇 (𝑀) over𝑀 , as said the Levi-Civita connection ∇ is the only connection on

𝑇 (𝑀) which is both compatible with the inner product defined by the metric, and torsion-free. It can be written

in local coordinate as ∇𝜕𝜇 (𝜕𝜈) = Γ𝜆𝜇𝜈𝜕𝜆, with Γ𝜆𝜇𝜈 the Christoffel’s symbols.

Let 𝐸 be a vector bundle over 𝑀 , and ∇𝐸 the associated connection, the associated Laplacian is given by:

Δ𝐸 = −𝑔𝜇𝜈(∇𝐸𝜇∇
𝐸
𝜈 − Γ𝜆𝜇𝜈∇

𝐸
𝜆). (11.6.3)

Now let𝑀 be a Riemannian spin
𝑐

manifold, 𝑆 be the spinor bundle define on𝑀 , and {𝑒𝑖(𝑥)} be a local orthonormal

(𝑔(𝑒𝑖, 𝑒𝑗 ) = 𝛿𝑖𝑗 ) basis of Γ(𝑇 (𝑀))|𝑥 . In this basis, the Christoffel symbols became ∇𝑒𝑖 = Γ𝑗𝜇𝑖𝑑𝑥𝜇 ⊗ 𝑒𝑗 . The spin

connection ∇𝑆 is defined to be a lift of the Levi-Civita connection to the spinor bundle:

∇𝑆𝜇 = 𝜕𝜇 −
1
4
Γ𝑗𝜇𝑖𝛾

𝑖𝛾𝑗

It acts on elements 𝜓(𝑥) of the Hilbert space. Then, the Dirac operator 𝐷𝑀 ∶ Γ∞(𝑆) → Γ∞(𝑆) on 𝑀 is given by

the composition of the spin connection with Clifford multiplication 𝑐 by 𝐷𝑀 = −𝑖𝛾𝜇∇𝑆𝜇.

Remark 11.6.3 Taking 𝑓 ∈ ∞(𝑀), the Dirac operator 𝐷𝑀 is linked to the usual differential:

[𝐷𝑀 , 𝑓 ]𝜓 = −𝑖𝑐(∇𝑆(𝑓 𝜓) − 𝑓 ∇𝑆𝜓) = −𝑖𝑐(𝑑𝑓 )𝜓 □

As wanted, this Dirac operator connects to the Laplacian, taking 𝑠 = 𝑅𝜇𝜈𝑔𝜇𝜈 the scalar curvature, and the Laplacian

of the spin bundle Δ𝑆
defined according to the equation (11.6.3), we have that:

𝐷2
𝑀 = Δ𝑆 +

1
4
𝑠. (11.6.4)

The scalar product on𝑀 is defined as follows, taking the fiber of 𝑆 above 𝑥 ∈ 𝑀 , we define ⟨ , ⟩𝑥 the scalar product

parameterized by𝑀 , and which varies continuously along𝑀 . Then we have the following scalar product on Γ(𝑆):

(𝜓1, 𝜓2) = ∫
𝑀
⟨𝜓1(𝑥), 𝜓2(𝑥)⟩𝑥

√
det 𝑔𝑑𝑥 (11.6.5)

The completion of Γ(𝑆) for the scalar product ( , ) is called the space of square integrable spinors, and will be

denoted 𝐿2(𝑆). As mentioned in (Besnard and Brouder, 2021; Lawson and Michelsohn, 2016), the scalar product

defined in (11.6.5) is not defined for pseudo Riemannian manifolds. More details can be found in (van Suijlekom,

2015).

11.6.2 Action in the Spectral Triples Framework, case of the AC-Manifold

Math and music are intimately related. Not necessarily on a conscious

level, but sure.

S. Sondheim

Given a spectral triple (,, 𝐷) it is possible to extract spectral invariants from this structure. These quanti-

ties do not vary under the action of unitaries, and thus of the gauge transformations. We will retain two invariants
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here, for their capacity to give precisely the action of the standard model coupled to gravity, as we will see in

chapter 12 when an adequate spectral triple is chosen.

The first invariant, originally introduced by A. Chamseddine and A. Connes in (Chamseddine and Connes,

1997) is called the bosonic spectral action. Given 𝐷𝜔 = 𝐷 + 𝜔 + 𝜖′𝐽𝜔𝐽−1 the (bosonic) spectral action is defined

by:

𝑏[𝜔] ∶= Tr 𝑓 (𝐷𝜔/Λ) (11.6.6)

where 𝑓 ∶ R → R is a positive and even function which decay at ±∞ and provided a trace class operator, Λ ∈ R
being a cutoff parameter. This is the only natural spectral invariant that respects additivity. More conditions on

𝑓 can be founded in (Eckstein and Iochum, 2018) and (van Suijlekom, 2015).

The second one will be called the fermionic spectral action. In the even case, when the spectral triple is

equipped with 𝛾 and 𝐽 operators, for any 𝜓 ∈ ̃+
, where ̃+

corresponds to Grassmann vectors associated to

vectors 𝜓 ∈ + = ker(𝛾 − 1) (even elements in ), the fermionic spectral action is defined by:

𝑓 [𝜔, 𝜓] ∶=
1
2
⟨𝐽𝜓, 𝐷𝜔𝜓⟩̃ (11.6.7)

Proposition 11.6.4 The fermionic action is invariant under gauge transformation.

Proof Taking 𝑈 = 𝑢𝐽𝑢𝐽−1, we have 𝑓 [𝜔𝑢, 𝑈𝜓] = 1
2 ⟨𝐽𝑈𝜓, 𝑈𝐷𝜔𝑈 ∗𝑈𝜓⟩̃ = 1

2 ⟨𝐽𝑈𝜓, 𝑈𝐷𝜔𝜓⟩̃ = 1
2 ⟨𝑈 𝐽𝜓, 𝑈𝐷𝜔𝜓⟩̃ =

𝑓 [𝜔, 𝜓].

For the bosonic action a “good” function 𝑓 can be taken to be 𝑓 ∶ 𝐷𝜔 → exp(−𝑡𝐷2
𝜔).

Remark 11.6.5 It is interesting to note that this invariant involves a function of the Laplacian constructed from

the Dirac. This way of producing characteristic invariants of an underlying geometry is not new. As mentioned

in section 8.4, the study of the eigenvalues of differential operators such as the Laplacian defined on a manifold

(to see what geometric data they contain) was at the heart of investigations in the field of Spectral geometry.

The spectral action can therefore be seen as a way to sum the eigenvalues of the Laplacian, these eigenvalues

reflecting objective physical quantities, such as energy, that are conserved during unitary transformations. As

mentioned in section 8.4, this operator is both connected to the geometry of the underlying space and to the

stable planar waves allowed in that geometry. One can therefore interpret this spectral action as a means of

summing up the possible stables modes of the fields in the geometry in question, these modes being linked to

energies. It is thus quite credible that this action corresponds to a physical invariant. An advantage of the spectral

triple approach is that it allows us to completely characterize the underlying geometry in the commutative case

at least, unlike the original work done in spectral geometry on Riemannian manifolds where the same spectrum

of the Laplacian could correspond to two different manifolds. What is very curious is that, as we will see in

chapter 12, this action provides the Lagrangian of the SMPP whereas the latter is made from the curvatures of

the connections, which have a completely different interpretation as seen in section 10.1. □

To compute 𝑏, an asymptotic expansion of this action can be computed from the existence of its heat kernel

expansion, taking the limit 𝑡 → 0:

Tr(exp(−𝑡𝐻)) ∼ ∑
𝑖
𝑡 𝑖𝑐𝑖

All the formulas used here work also if we take 𝐷 instead of 𝐷𝜔, but the induced spectral action is the one that

leads to the SMPP. More analytic details can be found in (van Suijlekom, 2015) and (Eckstein and Iochum, 2018).

It is interesting now to see what form this action takes in the case of an almost commutative manifold ̂ ∶=
∞(𝑀) ⊗𝐹 . The corresponding spectral triple can be seen as the tensor product of (∞(𝑀), 𝐿2(𝑆), 𝐷𝑀 , 𝐽𝑀 , 𝛾𝑀 )
with (𝐹 ,𝐹 , 𝐷𝐹 , 𝐽𝐹 , 𝛾𝐹 ) defined by:

(̂ ∶= ∞(𝑀) ⊗𝐹 , ̂ ∶= 𝐿2(𝑆) ⊗𝐹 , 𝐷̂ ∶= 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷𝐹 ,
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𝐽̂ ∶= 𝐽𝑀 ⊗ 𝐽𝐹 , 𝛾̂ ∶= 𝛾𝑀 ⊗ 𝛾𝐹 ).

It is important to emphasize that given two real spectral triples, their product will not always be a spectral

triple. For example, if we take the two triplets (∞(𝑀), 𝐿2(𝑆), 𝐷𝑀 , 𝐽𝑀 , 𝛾𝑀 ) and (𝐹 ,𝐹 , 𝐷𝐹 , 𝐽𝐹 , 𝛾𝐹 ) with cor-

responding (𝜖𝑀 , 𝜖′𝑀 , 𝜖′′𝑀 ) and (𝜖𝐹 , 𝜖′𝐹 , 𝜖′′𝐹 ), then a direct calculation shows that the signs (𝜖, 𝜖′, 𝜖′′) of the almost

commutative manifold are defined if this relations are satisfied:

𝜖′ = 𝜖′𝑀 = 𝜖′′𝑀𝜖
′
𝐹 & 𝜖 = 𝜖𝑀𝜖𝐹 & 𝜖′′ = 𝜖′′𝑀𝜖

′′
𝐹

and if (𝜖, 𝜖′, 𝜖′′) exist in the table of KO-dimensions. Any AC-manifold must respect these relations to be associ-

ated with a definite spectral triple. We will then suppose that this is the case.

Now, taking any 𝜔 ∈ Ω1
𝑈 (̂), the fluctuated Dirac operator takes the form:

𝐷̂,𝜔 = 𝐷̂ + 𝜔 + 𝜖′̂𝐽̂𝜔𝐽
−1
̂

𝜔 can be represented as 𝜋𝐷̂
(𝜔) = 𝑎[𝐷̂, 𝑏], with 𝑎 and 𝑏 in ̂, we will take the notation 𝜔 for 𝜋𝐷̂

(𝜔) now.

Computing this connection gives:

𝑎[𝐷̂, 𝑏] =

first term⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎[𝐷𝑀 ⊗ 1, 𝑏] +

second term⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎[𝛾𝑀 ⊗ 𝐷𝐹 , 𝑏] (11.6.8)

The first term give:

𝑎[−𝑖𝛾𝜇𝜕𝜇 ⊗ 1, 𝑏] = [−𝑖𝛾𝜇𝜕𝜇 ⊗ 1, 𝑏]𝑎 = −𝑖𝛾𝜇 ⊗ 𝑎𝜕𝜇𝑏 ∶= 𝛾𝜇 ⊗ 𝐴𝜇 (11.6.9)

Thanks to first-order condition and the fact that [𝛾, 𝜋(𝑎)] = 0. Then the second term:

𝑎[𝛾𝑀 ⊗ 𝐷𝐹 , 𝑏] = 𝛾𝑀 ⊗ 𝑎[𝐷𝐹 , 𝑏] ∶= 𝛾𝑀 ⊗ Φ̃

Then 𝜔 = 𝛾𝜇⊗𝐴̃𝜇+𝛾𝑀 ⊗Φ̃ with the Hermitian operators 𝐴̃𝜇 and Φ̃ on 𝐶∞(𝑀)⊗. Let’s compute the fluctuated

Dirac operator 𝜋𝐷̂
(𝜔), it split into three terms. The first is 𝐷𝑀 ⊗ 1, then we have:

𝛾𝜇 ⊗ 𝐴̃𝜇 + (𝜖′𝑀 ⊗ 𝜖′𝐹 )(𝐽𝑀 ⊗ 𝐽𝐹 )𝛾
𝜇 ⊗ 𝐴̃𝜇(𝐽−1𝑀 ⊗ 𝐽 −1𝐹

)

= 𝛾𝜇 ⊗ (𝐴̃𝜇 + 𝜖′𝑀𝜖
′′
𝑀𝜖

′
𝐹 𝐽𝐹 𝐴̃𝜇𝐽−1𝐹

)
∶= 𝛾𝜇 ⊗ 𝐴𝜇

the last term being:

𝛾𝑀 ⊗ 𝐷𝐹 + 𝛾𝑀 ⊗ 𝜑 + (𝜖′𝑀 ⊗ 𝜖′𝐹 )(𝐽𝑀 ⊗ 𝐽𝐹 )𝛾𝑀 ⊗ Φ̃(𝐽−1𝑀 ⊗ 𝐽 −1𝐹
)

= 𝛾𝑀 ⊗ (𝐷𝐹 + Φ̃ + 𝜖′𝑀𝜖
′′
𝑀𝜖

′
𝐹 𝐽𝐹 Φ̃𝐽

−1
𝐹
)

∶= 𝛾𝑀 ⊗ Φ.

We obtain 𝐷̂,𝜔 = 𝐷𝑀 ⊗1+ 𝛾𝜇⊗𝐴𝜇 +𝛾𝑀 ⊗Φ. As we see, the action of an element 𝑈 ∈ (̂,̂; 𝐽̂) is equivalent

to a transformation at the level of the connection given by 𝜔𝑢 = 𝑢𝜔𝑢∗ + 𝑢[𝐷̂, 𝑢
∗]. This gives:

𝜔𝑢 = 𝑢(𝛾𝜇 ⊗ 𝐴𝜇 + 𝛾𝑀 ⊗ Φ)𝑢∗ + 𝑢[𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷𝐹 , 𝑢
∗]

Using [𝑢, 𝛾] = 0 and [∇𝑆𝜇, 𝑢∗] = 𝜕𝜇𝑢∗, we recover the usual gauge transformation:

𝐴𝜇 → 𝑢𝐴𝜇𝑢∗ − 𝑖𝑢𝜕𝜇𝑢∗ Φ → 𝑢Φ𝑢∗ + 𝑢[𝐷𝐹 , 𝑢
∗]

Now let ∇𝑆𝜇 be the spin connection on 𝑆 introduced in the previous section 11.6.1, and consider the vector bundle

𝐸 = 𝑆 ⊗ (𝑀 × ) such that 𝐿2(𝐸) = ̂, and let ∇𝐸𝜇 ∶= ∇𝑆𝜇 ⊗ 1 + 1 ⊗ (𝜕𝜇 + 𝑖𝐴𝜇) and Ω𝐸
𝜇𝜈 = [∇𝐸𝜇 , ∇𝐸𝜈 ] be the

natural twisted connection on 𝐸 defined by the spectral triple, and it’s curvature. Then we have that 𝐷̂,𝜔 =
−𝑖𝛾𝜇∇𝐸𝜇 + 𝛾𝑀 ⊗ Φ.
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Finally, let 𝐷𝜇 ∶= 𝜕𝜇 + 𝑖 ad(𝐴𝜇) = ad(∇𝐸𝜇) and its curvature 𝐹𝜇𝜈 ∶= 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖[𝐴𝜇, 𝐴𝜈] or equivalently

[𝐷𝜇, 𝐷𝜈] = 𝑖 ad(𝐹𝜇𝜈). 𝐹𝜇𝜈 and Ω𝐸
𝜇𝜈 are linked by the relation:

Ω𝐸
𝜇𝜈 = Ω𝑆

𝜇𝜈 ⊗ 1 + 𝑖1 ⊗ 𝐹𝜇𝜈.

As we will see, Φ will correspond to the Higgs field. More complete computational details can be found in (van

Suijlekom, 2015).

Let’s compute 𝐷2
̂,𝜔

= (𝐷𝑀 ⊗1+ 𝛾𝜇 ⊗𝐴𝜇 + 𝛾𝑀 ⊗Φ)2 now. After some computation (details in (van Suijlekom,

2015)[p.146]) we find that

𝐷2
̂,𝜔 = Δ𝐸 +

1
4
𝑠 ⊗ 1 − 𝑖

1
2
𝛾𝜇𝛾𝜈 ⊗ 𝐹𝜇𝜈 + 𝑖𝛾𝑀𝛾𝜇 ⊗ 𝐷𝜇Φ + 1 ⊗ Φ2

∶= Δ𝐸 − 𝐹

which is called the generalized Laplacian, Δ𝐸 being given by 11.6.3.

Inserting this in the heat kernel expansion, we have:

Tr(exp(−𝑡𝐷2
̂,𝜔)) ∼ ∑

𝑘≥0
𝑡
𝑘−𝑛𝑀

2 𝑎𝑘(𝐷2
̂,𝜔)

where 𝑛𝑀 corresponds to the dimension of 𝑀 , and

𝑎𝑘(𝐷2
̂,𝜔) ∶= ∫

𝑀
𝑎𝑘(𝑥, 𝐷2

̂,𝜔)
√𝑔𝑑4𝑥

with the Seeley-DeWitt coefficients 𝑎𝑘(𝑥, 𝐷2
̂,𝜔

). The 𝑎𝑘 with odd 𝑘 being zero, and 𝑓𝑖 = ∫ ∞
0 𝑓 (𝑝)𝑝𝑖−1𝑑𝑝 the

moments of 𝑓 . Doing the computation, we find:

𝑎0(𝑥, 𝐷2
̂,𝜔) = (4𝜋)

−𝑛𝑀
2 Tr(1)

𝑎2(𝑥, 𝐷2
̂,𝜔) = (4𝜋)

−𝑛𝑀
2 Tr((𝑠/6) + 𝐹)

𝑎4(𝑥, 𝐷2
̂,𝜔) = ((4𝜋)

−𝑛𝑀
2 /360) Tr(−12Δ𝑠 + 5𝑠2 − 2𝑅𝜇𝜈𝑅𝜇𝜈 + 2𝑅𝜇𝜈𝜆𝜌𝑅𝜇𝜈𝜆𝜌 + 60𝑠𝐹

+ 180𝐹 2 − 60Δ𝐹 + 30Ω𝐸
𝜇𝜈(Ω

𝐸)𝜇𝜈)

𝑎6(𝑥, 𝐷2
̂,𝜔) =∝ 43 terms of order 3: 𝐹 3, 𝐹𝑅2, (Ω𝐸

𝜇𝜈)
3 …

…

More details about this asymptotic expansion can be found in (Gilkey, 2011). This permits us to compute the heat

kernel expansion of the bosonic spectral action, taking 𝑛𝑀 = 4 we have:

Tr 𝑓 (𝐷̂,𝜔/Λ) ∼ 𝑓 (0)𝑎4(𝐷2
̂,𝜔) + 2𝑓2Λ2𝑎2(𝐷2

̂,𝜔) + 2𝑓4Λ4𝑎0(𝐷2
̂,𝜔) + (Λ−1) (11.6.10)

After some computations, we can see that if we define 𝑛 to be the dimension of 𝐹 , and define:

(𝑔𝜇𝜈, 𝐴𝜇, Φ) ∶= 𝑛𝑀 (𝑔𝜇𝜈) + 𝑏(𝐴𝜇) + Φ(𝑔𝜇𝜈, 𝐴𝜇, Φ) (11.6.11)

with:

𝑀 (𝑔𝜇𝜈) =
𝑓4Λ4

2𝜋2 −
𝑓2Λ2

24𝜋2 𝑠 +
𝑓 (0)
480𝜋2 (𝑠

2 − 3𝑅𝜇𝜈𝑅𝜇𝜈)

𝐴(𝐴𝜇) =
𝑓 (0)
24𝜋2 Tr(𝐹𝜇𝜈𝐹

𝜇𝜈)

Φ(𝑔𝜇𝜈, 𝐴𝜇, Φ) = −
2𝑓2Λ2

4𝜋2 Tr(Φ2) +
𝑓 (0)
8𝜋2 Tr(Φ4) +

𝑓 (0)
24𝜋2Δ(Tr(Φ

2)) +
𝑓 (0)
48𝜋2 𝑠 Tr(Φ

2) +
𝑓 (0)
8𝜋2 Tr((𝐷𝜇Φ)(𝐷𝜇Φ))

then:

Tr 𝑓 (𝐷̂,𝜔/Λ) ∼ ∫
𝑀
(𝑔𝜇𝜈, 𝐴𝜇, Φ)

√𝑔𝑑4𝑥 + (Λ−1)
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Remark 11.6.6 Because of the Laplacian, the term
𝑓 (0)
24𝜋2Δ(Tr(Φ2)) will make no contribution in this boundary

term integral. □

Remark 11.6.7 We can see that in the case of the AC-manifold,𝐷2
̂,𝜔

contains the Laplacian Δ𝐸 over the Rieman-

nian manifold defined in subsection 11.6.1. We can therefore see that it extends in some way the usual Laplacian,

and then the physics behind it, in the sense of the discussion made in section 8.4. □

More computational details can be found in (van Suijlekom, 2015).

Let’s see what happens for the fermionic action. If we consider an element 𝜓 ∈ ̂, then it takes the form

𝜓 = 𝜒 ⊗ 𝜉 with 𝜒 ∈ 𝐿2(𝑆) and 𝜉 ∈ 𝐹 . Then we have +
̂
= 𝐿2(𝑆)+ ⊗+

𝐹
⊕ 𝐿2(𝑆)− ⊗−

𝐹
= ker(𝛾̂ − 1), so

that any element 𝜓 ∈ +
̂

will take the form:

𝜓 = 𝜒𝐿 ⊗ 𝜉 + 𝜒𝑅 ⊗ 𝜂 (11.6.12)

with 𝜒𝐿 ∈ 𝐿2(𝑆)+ for left handed spinors, 𝜒𝑅 ∈ 𝐿2(𝑆)− for right handed spinors, 𝜉 ∈ +
𝐹

, 𝜂 ∈ −
𝐹

. Taking {𝑒𝑣}𝑣∈Γ(0)+

the orthonormal basis of +
𝐹

and {𝑒𝑣}𝑣∈Γ(0)−
the one of −

𝐹
, equation (11.6.12) can be written:

𝜓 = ⨁
(𝑣, 𝑣′)∈(Γ(0)+ , Γ(0)− )

𝜒 (𝑣)
𝐿 ⊗ 𝑒𝑣 + 𝜒 (𝑣)

𝑅 ⊗ 𝑒𝑣′

We restrict ourselves to the case 𝜖′′ = −1 such that 𝐽𝐹 ∶ ±
𝐹

→ ∓
𝐹

, this being the only interesting case in

order to obtain the good fermionic action for the NCSMPP. In this case, we can consider that 𝐽𝐹 connects the

basis of −
𝐹

and +
𝐹

i.e. {𝐽𝐹 𝑒𝑣 ∶= 𝑒𝜅(𝑣)}𝑣∈Γ(0)−
is an orthonormal basis of +

𝐹
. Then we have 𝜓 = ⨁𝑣∈Γ(0)−

𝜒 (𝑣)
𝐿 ⊗

𝑒𝑣 +𝜒 (𝑣)
𝑅 ⊗𝑒𝜅(𝑣). Because 𝛾̂𝐷̂ = −𝐷̂𝛾̂ the operator 𝐷𝐹 and then Φ will act as 𝐷𝐹 ∶ ±

𝐹
→ ∓

𝐹
. Therefore,

taking 𝑒 = (𝑣1, 𝑣2), we can define Φ𝑒 ∶ 𝑣1 → 𝑣2 as the restriction of Φ on these corresponding subspaces such

that Φ𝑒𝑒𝑣1 = 𝑚𝑒𝑒𝑣2 with 𝑚𝑒 a scalar. Furthermore, we define 𝜅(𝑒) by 𝜅(𝑒) = (𝜅(𝑣1), 𝜅(𝑣2)).

Taking the corresponding Grassmann vector 𝜓, the fermionic spectral action becomes:

𝑓 [𝜔, 𝜓] =
1
2
⟨𝐽̂𝜓, 𝐷̂,𝜔𝜓⟩̃ (11.6.13)

Using the fact that 𝐴𝜇 take the form (
𝑌𝜇 0
0 −𝑌𝜇 ) in the {(𝑒𝑣 , 𝑒𝜅(𝑣))}𝑣∈Γ(0)−

basis, such that 𝑌𝜇𝑒𝑣 = 𝑌 (𝑣)𝜇 𝑒𝑣 and 𝑌𝜇𝑒𝜅(𝑣) =
−𝑌 (𝑣)𝜇 𝑒𝜅(𝑣) with 𝑌 (𝑣)𝜇 a scalar and 𝑣 ∈ Γ(0)− , (11.6.13) then contains the 4 terms:

𝐽̂𝜓̃ = ⨁
𝑣∈Γ(0)−

𝐽𝑀𝜒 (𝑣)
𝐿 ⊗ 𝑒𝜅(𝑣) + 𝜖𝐹 𝐽𝑀𝜒 (𝑣)

𝑅 ⊗ 𝑒𝑣

(𝐷𝑀 ⊗ 1)𝜓̃ = ⨁
𝑣∈Γ(0)−

𝐷𝑀𝜒 (𝑣)
𝐿 ⊗ 𝑒𝑣 + 𝐷𝑀𝜒 (𝑣)

𝑅 ⊗ 𝑒𝜅(𝑣)

(𝛾𝜇 ⊗ 𝐴𝜇)𝜓̃ = ⨁
𝑣∈Γ(0)−

𝛾𝜇𝜒 (𝑣)
𝐿 ⊗ 𝑌𝜇𝑒𝑣 − 𝛾𝜇𝜒 (𝑣)

𝑅 ⊗ 𝑌𝜇𝑒𝜅(𝑣)

(𝛾𝑀 ⊗ Φ)𝜓̃ = ⨁
𝑣′∈Γ(0)+

∑
𝑣∈Γ(0)−
𝑒=(𝑣,𝑣′)

𝑒′=(𝜅(𝑣),𝑣′)

𝛾𝑀𝜒 (𝑣)
𝐿 ⊗ Φ𝑒𝑒𝑣 + 𝛾𝑀𝜒 (𝑣)

𝑅 ⊗ Φ𝑒′𝑒𝜅(𝑣)

Taking the corresponding scalar products (the one defined in (11.6.5) for the spinor field, and the usual one

associated with the inner product for the Hilbert space of the finite part), after some computations, we find that:

𝑓 [𝜔, 𝜓] = ∑
𝑣∈Γ(0)−

((𝐽𝑀𝜒
(𝑣)
𝐿 , 𝐷𝑀𝜒 (𝑣)

𝑅 ) − (𝐽𝑀𝜒 (𝑣)
𝐿 , 𝛾𝜇𝑌 (𝑣)𝜇 𝜒 (𝑣)

𝑅 )

+ ∑
𝑣′∈Γ(0)−

𝑒=(𝑣′ ,𝜅(𝑣))

(𝑚𝑒(𝐽𝑀𝜒 (𝑣)
𝐿 , 𝛾𝑀𝜒 (𝑣′)

𝐿 ) + 𝜖𝐹𝑚𝜅(𝑒)(𝐽𝑀𝜒 (𝑣)
𝑅 , 𝛾𝑀𝜒 (𝑣′)

𝑅 )))

Or equivalently 𝑓 [𝜔, 𝜓] = ∑𝑣∈Γ(0)−
𝑣
𝑓 [𝜔, 𝜓], with ( , ) the spinor space’s scalar product defined in (11.6.5).



Chapter 12

The NCSMPP (in the Framework of
Spectral Triples)

In the context of NCG’s applications in physics, the elaboration of a NCGFT yielding the Lagrangian of the

SMPP can be considered as one of the most important achievements. This NCGFT is written using spectral triple

techniques. This realization is the result of a long work in which 7 major steps can be highlighted:

1. In 1990, M. Dubois-Violette, R. Kerner and J. Madore in (Dubois-Violette et al., 1990a) (Dubois-Violette et al.,

1990b) showed that building NCGFTs on the AC-manifold model allowed to obtain a situation analogous to

the usual gauge theories, with a natural interpretation of the Higgs field, and the potential naturally coming

from the generalized curvature. This work was done via the framework of derivations of the algebra for the

study of the purely NC part.

2. Just after that, in 1990, A. Connes and J. Lott, inspired by this work, set up an equivalent thinking framework,

but with the spectral triple technique, to build a non-commutative Standard Model (Connes and Lott, 1990).

The so-called Connes-Lott model did not incorporate gravitation.

3. In 1996, an important step was reached by A. Chamseddine and A. Connes. In (Chamseddine and Connes,

1997) they propose an action principle (presented in section 11.6.2), associated with the spectral triple of a

NC space, which allows to incorporate gravitation into the previous model, but it suffers from the problem

of fermion doubling and imposes null-mass for neutrinos.

4. In 1996, F. Lizzi, G. Mangano, G. Miele and G. Sparano provide a way to overcome the fermion doubling

problem (Lizzi et al., 1997).

5. In 2006, J. Barrett and A. Connes, in (Barrett, 2007) and (Connes, 2006) solved these two problems in one

move, by allowing the metric dimension of a space to be independent of its KO-dimension, and making the

choice of KO-dimension 6 for the finite NC part. It additionally gives a mass relation, which must be imposed

at the unification scale, and therefore constrains potential models beyond the SMPP.

6. In 2007, thanks to A. Chamseddine, A. Connes, and M. Marcolli, this works culminate in the full derivation

of the (minimal) Standard Model, minimally coupled with gravity’s Lagrangian, directly computed from the

spectral action on a given AC-manifold (Chamseddine et al., 2007a), predicting a mass of 170 GeV for the

Higgs boson, and giving a postdiction of the Top quark mass. I will succinctly describe this model in chapter

12.

7. In 2012 after the discovery of the Higgs boson, with a mass of 125 GeV, A. Chamseddine and A. Connes

revisited their model to find an adequate Higgs mass, proposing not to neglect a certain scalar field appearing

in the calculations of the NCSMPP (Chamseddine and Connes, 2012).

8. The achievement of the NCSMPP, corresponding to actual phenomenology opens the path to go beyond the

SMPP in this framework. An important open door in this way was given in 2013 by A. Chamseddine, A.

Connes, and W. van Suijlekom (Chamseddine et al., 2013).

Other very important contributions to this programme can be mentioned, mainly due to D. Kastler, T. Schücker,

B. Iochum, J. M. Gracia-Bondia, L. Carminati, C. Stephan, see for instance this nonexhaustive list (Carminati et al.,

1996; Gracia-Bondıa et al., 1998; Iochum et al., 1995, 1997, 2004).
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In this chapter, I will show the elementary structure behind this NCSMPP, making some general remarks

and highlighting how it allows a geometrization of all forces. Then I will mention how this non-commutative

reformulation offers an adequate framework to think and constrain the creation of GUTs, preparing the last part

of this thesis where I will explore a way to do it, using this framework and 𝐴𝐹 -algebras.

12.1 Obtaining the Full Lagrangian of the SMPP
As mentioned in section 11.6, the development of the NCGFT in the framework of spectral triple allowed to set

up a NC structure from which the SMPP Lagrangian can be extracted in a natural way. The goal of this section

is to present the general structure behind the NCGFT which leads to the actual NCSMPP. This section aims to

present the general idea of the NC structure behind this reformulation. Then a lot of technical details will not

figure here in order to focus on the essential structures. A more complete presentation of the NCSMPP can be

found in (Chamseddine et al., 2007b; Jureit et al., 2007; van Suijlekom, 2015).

The NCSMPP is based on the following AC-manifold:

𝑆𝑇𝑆𝑀 = (̂ ∶= ∞(𝑀) ⊗𝑆𝑀 ,̂ ∶= 𝐿2(𝑆) ⊗𝑆𝑀 , 𝐷̂ ∶= 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷𝑆𝑀 ,

𝐽̂ ∶= 𝐽𝑀 ⊗ 𝐽𝑆𝑀 , 𝛾̂ ∶= 𝛾𝑀 ⊗ 𝛾𝑆𝑀 ) (12.1.1)

We note that 𝑆𝑇𝑆𝑀 is here only parameterized by the finite part, because it will be the only variable part in

what will follow, i.e. the manifold part will always be the same as here. 𝐽𝑀 and 𝛾𝑀 define the charge conjugation

and chirality operator used in particle physics. To obtain a definite spectral triple for the AC-manifold, with good

spectral action, KO dimension 6 will be the good choice for the finite part (the space of fermionic representations).

The algebra of the finite part is given by 𝑆𝑀 ≃ C⊕H⊕𝑀3(C), an element 𝑎 ∈ 𝑆𝑀 is given by the elements

(𝑎1, 𝑎2, 𝑎3) ∈ (C,H, 𝑀3(C)). The Hilbert space is given by 𝑆𝑀 = (𝑙⊕𝑙⊕𝑞⊕𝑞)⊕3 with 𝑙 for leptons, 𝑙 for

anti-leptons, 𝑞 for quarks, 𝑞 for anti-quarks, and ⊕3 for the 3 generations. The ways elements of 𝑆𝑀 act on

the different parts of 𝑆𝑀 can be found in (van Suijlekom, 2015)[p.188]. Imposing the unimodularity condition,

the Gauge group of the finite part is then given by the quotient on the finite cyclic subgroup 𝜇6:

(𝑆𝑀 ,𝑆𝑀 ; 𝐽𝑆𝑀 ) = 𝑈(1) × 𝑆𝑈(2) × 𝑆𝑈(3)/𝜇6.

To build the connection, we use the same procedure as done in section 11.6.1 concerning equation (11.6.8). Taking

𝑎, 𝑏 ∈ 𝑆𝑀 , the associated one form 𝑎[𝐷̂, 𝑏] then split into two terms, one coming from 𝐷𝑆𝑀 and the other from

𝐷𝑀 . Then, the equation (11.6.9) which corresponds to this second term now splits into 3 parts 𝛾𝜇⊗𝐴̃𝜇,𝑗 with 𝐴̃𝜇,𝑗 =
−𝑖𝑎𝑗𝜕𝜇𝑏𝑗 and 𝑗 ∈ {1, 2, 3}. Computing the fluctuated Dirac operator, we recover𝐷̂,𝜔 = 𝐷𝑀⊗1+𝛾𝜇⊗(𝐴𝜇,𝑗 )+𝛾𝑀⊗Φ
where 𝐴𝜇,1 (resp 𝐴𝜇,2 and 𝐴𝜇,3) correspond to the 𝑈(1) (resp 𝑆𝑈(2) and 𝑆𝑈(3)) gauge bosons. Having obtain 𝐷̂,𝜔,

we can therefore compute the bosonic spectral action 𝑏[𝜔]
For the fermionic action, the novelty is that the Hilbert spaces ±

𝑆𝑀 now split into two pieces ±
𝑆𝑀,𝑅/𝐿, by pair-

ing with the spinor field’s chiralities. Then, we have the basis −
𝑆𝑀,𝑅 given by {𝑒𝑅𝑣 }𝑣∈Γ(0)−,𝑅

and {𝐽𝑆𝑀𝑒𝑅𝑣 ∶= 𝑒𝑅𝜅(𝑣)}𝑣∈Γ(0)−,𝑅

for a basis of +
𝑆𝑀,𝑅 (Because we choose KO dimension 6 so that 𝜖′′𝐹 = −1, then 𝐽𝑆𝑀 change the chirality). The

same being done with {𝑒𝐿𝑣 }𝑣∈Γ(0)+,𝐿
for ±

𝑆𝑀,𝐿.

It is possible to connect ±
𝑆𝑀,𝑅 and ∓

𝑆𝑀,𝐿 basis using an operator ℎ ∶ Γ(0)±,𝑅/𝐿 → Γ(0)∓,𝐿/𝑅 such that ℎ2 = 1,

ℎ ◦ 𝜅 ◦ ℎ ◦ 𝜅 = 1 and that the basis of ±
𝑆𝑀,𝐿/𝑅 are also given by {𝑒𝐿/𝑅ℎ(𝑣)}𝑣∈Γ(0)∓,𝑅/𝐿

. Another splitting can be given by the

type of fermion field, with leptons (𝜈 for neutrinos type and 𝑒 for the other leptons), and by quarks (𝑢 for quarks

up type and 𝑑 for quarks down). Because there are only 3 generations, each of the basis of the four Hilbert spaces

±
𝑆𝑀,𝑅/𝐿 will possess 3 elements. Furthermore, ℎ and 𝜅 operators cannot connect different types of fermions. Γ(0)−

will then be the index set of fermions (resp. Γ(0)+ for anti fermions), and Γ(0)𝑅/𝐿 the index set of Right/Left handed

fermions. Then any 𝜓 in +
̂

will take the general form:

𝜓 = ⨁
𝑣∈Γ(0)−,𝑅

𝜒 (𝑣)
𝑒,𝑅 ⊗ 𝑒𝑅𝑣 + 𝜒 (𝑣)

𝑒,𝐿 ⊗ 𝑒𝐿ℎ(𝑣) + 𝜒 (𝑣)
𝑒,𝑅 ⊗ 𝑒𝑅𝜅(𝑣) + 𝜒 (𝑣)

𝑒,𝐿 ⊗ 𝑒𝐿𝜅(ℎ(𝑣))
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+ 𝜒 (𝑣)
𝜈,𝑅 ⊗ 𝜈𝑅𝑣 + 𝜒 (𝑣)

𝜈,𝐿 ⊗ 𝜈𝐿ℎ(𝑣) + 𝜒 (𝑣)
𝜈̄,𝑅 ⊗ 𝜈𝑅𝜅(𝑣) + 𝜒 (𝑣)

𝜈̄,𝐿 ⊗ 𝜈𝐿𝜅(ℎ(𝑣))
+ 𝜒 (𝑣)

𝑢,𝑅 ⊗ 𝑢𝑅𝑣 + 𝜒 (𝑣)
𝑢,𝐿 ⊗ 𝑢𝐿ℎ(𝑣) + 𝜒 (𝑣)

𝑢̄,𝑅 ⊗ 𝑢𝑅𝜅(𝑣) + 𝜒 (𝑣)
𝑢̄,𝐿 ⊗ 𝑢𝐿𝜅(ℎ(𝑣))

+ 𝜒 (𝑣)
𝑑,𝑅 ⊗ 𝑑𝑅𝑣 + 𝜒 (𝑣)

𝑑,𝐿 ⊗ 𝑑𝐿ℎ(𝑣) + 𝜒 (𝑣)
𝑑̄,𝑅 ⊗ 𝑑𝑅𝜅(𝑣) + 𝜒 (𝑣)

𝑑̄,𝐿 ⊗ 𝑑𝐿𝜅(ℎ(𝑣))

All Dirac spinors are independent. The fermionic spectral action 𝑓 [𝜔, 𝜓] can then be computed.

A complete computation of these two actions leads to the SMPP’s Lagrangian as presented in (10.3.1), coupled

to gravitation.

Remark 12.1.1 In the NCSMPP, 𝐴𝜇 and Φ are considered as independent degrees of freedom, taken as input in

calculations. But on the formal level of the construction, we can see that they are deductions of 𝑎[𝐷𝐹 , 𝑏] = Φ̃
and −𝑖𝑎𝜕𝜇𝑏 = 𝐴̃𝜇. Then, they are formally linked by their dependence on 𝑎 and 𝑏. As far as I know, the fact that

𝐴𝜇 and Φ are linked by the algebra’s degrees of freedom was not mentioned, and I haven’t found any authors

mentioning the reason for such an omission.

Insofar as there may be no reason for such an omission, one advantage of such an observation would be to

decrease the number of independent degrees of freedom in the current theory and more strongly constrain the

structure of the SMPP. □

Remark 12.1.2 We can see that 𝑛𝑀 , the number of dimensions of space-time is linked to the structure of the

Lagrangian in this approach. In equation (11.6.10), we see that the therms {𝑎𝑘}𝑘 which give non-zero contribution

in the spectral action at the origin of the Lagrangian of the SMPP are the ones such that 𝑘 ≤ 𝑛𝑀 . If the space-time

was of dimension 2 or 6, the Lagrangian should be very different. This is a strong constraint. □

Remark 12.1.3 The terms in Tr(Φ2) and Tr(Φ4) in the Lagrangian can be seen as weight associated with loops

in Krajewski’s diagram (in the irreducible’s representation space of the fermionic field) because of the trace

properties. This can be put in analogy with the curvature 𝐹𝜇𝜈𝐹𝜇𝜈 where 𝐹𝜇𝜈 was given in section 10.1 by computing

the total phase accumulation of a fermion field along a loop in space-time. Therefore, we can see that in the two

cases, the curvature of the connections is associated with loops in their corresponding geometries, commutative

and not commutative. As mentioned in section 9.1, if the pure state of a given particle gives the notion of point,

the irreducible representations which correspond to Left/Right, fermion/anti-fermion, and charge parts of this

pure state can be seen as internal degrees of freedom living within this point. □

I think that according to the three criteria of enhancement of a theory listed in section 10.5, the NCSMPP can

be considered as potentially better than the actual SMPP in the usual framework, and must therefore replace it.

Let’s see how it satisfies these different points.

For the first point, the number of independent inputs in the NCSMPP is inferior to the one of the SMPP.

News relations between the SMPP’s parameters are obtained, like the GUT relation of the couplings constants,

are other relations giving a prediction for the Higgs mass and a post-diction for the Top quark. This fact comes

from the more algebraically constrained structure of the NC framework.

For the diminution of the number of independent formal inputs, the fact that the Higgs is now a well-defined

object in the mathematical structure and that its potential is deduced from the formalism is a great advance.

Another enhancement concerns the fact that the right hypercharges are naturally implementes by the NC frame-

work. In fact, all the structures of the Lagrangian are deduced from minimal principles: extending the notion

of space, studying the general automorphisms of its algebra, and computing an invariant thanks to the obtained

fluctuated Dirac operator. Furthermore, it offers a link between the whole structure of the Lagrangian and the

dimension of space-time.

To complete the praise for this NC reformulation, with the third kind of enhancement (Consistency with other

theories on their crossings area, and on the conceptual and epistemological level), the NCSMPP is not less than

a unification of all forces in one framework, where similar structures can be found by extending the “geometric”

picture, such as generalization of the line element, of the notion of propagation along these line element, and

then of motion with it’s associated kinetic energy as we will see in section 12.2.
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Nevertheless, this can’t be considered a complete reformulation, since as mentioned in subsection 11.6.1, the

spacetime manifold is taken to be Riemannian whereas it is Minkowskian in relativity theory. The compact

Riemannian assumption is essential to obtain the asymptotic development of the bosonic spectral action which

cannot therefore be Lorentz invariant.

Now that the NCSMPP has been set up, what can we do with this structure? Are there some advantages to

study the SMPP in this framework? One of the main prospects of the NCSMPP concerns the creation of GUTs,

because of the strong constraints offered by the formalism. This will be more fully discussed in section 12.2 and

in the whole part IV where the purpose will be to set up a general formalism to create GUTs in the framework

of NCGFT. Another perspective of interest concerns the potentiality to offer ways to quantize gravitation since

it is now presented in a formalism equivalent to that of the other forces, for which we know how to do.

It is not excluded that the SMPP can be found in the derivation framework too, but few theoretical efforts

have been made in this direction. More details on the NCSMPP can be found in (Chamseddine et al., 2007a; Jureit

et al., 2007; van Suijlekom, 2015).

12.2 Beyond the SMPP in the NCSMPP’s Framework

Where there is matter, there is geometry.

J. Kepler

The NCSMPP in the framework of spectral triples can be seen as a “classical” (no quantization mentioned)

unification of general relativity and the SMPP, all in one pure geometric framework. In this section we will

discuss the meaning of this geometrization, and how this NCSMPP offers a nice and constrained way to make

models beyond the SMPP. This section can be viewed as the NC (partial) reply to sections 10.4 and 10.5.

The NCSMPP is a powerful way to geometrize the interaction of elementary particles, in the same way as

Gravitation was geometrized with general relativity. Let’s first try to highlight how the NCSMPP offers a unifying

framework for all forces, then a unification at the formal level.

Let’s consider the Dirac equation:

(−𝑖(ℏ/𝑐)𝛾𝜇𝜕𝜇 + 𝑚)𝜓 = 0

The idea of the NCSMPP is to “geometrize” this mass term such that the Dirac equation appears as a simple

kinetic term linked to a move in something bigger than spacetime. This is done by adding a new term into the

Dirac operator 𝐷̂ ∶= 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷𝑆𝑀 which represents the correspondings new degrees of freedom.

Take a look at another expression of the Dirac equation using the reduced Compton wavelength 𝜆̄𝑐 = ℏ/𝑚𝑐:

(−𝑖𝛾𝜇𝜕𝜇 + 1/𝜆̄𝑐)𝜓 = 0

We recognize 𝐷𝑀 and the scalar coming from 𝐷𝑆𝑀 . We can see that the mass term is associated with an inverse

length scale term, proportional to the Compton wavelength defined in section 9.3. In the NCSMPP, this mass

term is taken to be given by the Dirac operator 𝐷𝑆𝑀 of a pure NCG. These Compton scales will then correspond

to the natural scales of this NCG.

Remark 12.2.1 In section 9.3, I give physical arguments about the fact that the usual notion of point fails at

such scales, which can then induce a NCG. We have therefore this nice coincidence, on one side, we have the

NCSMPP built from mathematical arguments stating that the natural scale associated to a NCG is the Compton

scale. And on the other side, we have the physical arguments developed in part II which induce the same thing.

I believe that it is an open door to find a physical justification for such a geometrization of all forces. □

Remark 12.2.2 It is interesting to note that the Dirac operator𝐷𝑀 is related to the momentum of the particle, and

thus to the de Broglie characteristic scale 𝜆̄𝑏 = ℏ/𝑚𝑣, whereas the mass is related to the Compton characteristic

scale 𝜆̄𝑐 = ℏ/𝑚𝑐. These two scales are equal when 𝑣 = 𝑐. If 𝜆̄𝑏 is usually associated with a wavelength which is

observable in a space-time propagation, we cannot say the same for 𝜆̄𝑐 . However, the framework of NCG makes

it possible to perceive this scale as associated with propagation, but along the NCG’s degrees of freedom. □
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Remark 12.2.3 𝜓𝑖𝑦𝑖𝑗𝜙𝜓𝑗 and 𝑖𝜓 /𝐷𝜓 are very close in form, an idea of the NCSMPP is to make the thirst term

be a kinetic one by creating new pure NC degrees of freedom (in the same way as 𝜕𝜇 are those of space-time).

This is done by constructing the corresponding “covariant derivative” 𝐷𝑆𝑀 which will give 𝑦𝑖𝑗𝜙 and then the

fermions and bosons masses. In this way, we can say that 𝜓𝑖𝑦𝑖𝑗𝜙𝜓𝑗 describes the kinetic term associated to the

propagation (corresponding to 𝑦𝑖𝑗𝜙) of the fermions in these pure NC degrees of freedom i.e. in the representation

space associated to the finite space 𝐹𝑆𝑀 (the finite space associated to 𝑆𝑀 ). This implement the idea presented

in remark 9.1.1 about the continuation of the Gelfand-Naimark equivalence for these inner degrees of freedom.

This offers in the same way a framework to geometrize the set of observable change O𝑛𝑠𝑡 mentioned in section

8.1 with the link made with gauge theory done in section 8.3. The NCSMPP offers then a geometrical picture for

all observable variations O, taking O𝑠𝑡 to be encoded by the gravitational part of the SMPP. □

The parts of the Lagrangian which are linked to the Dirac equation can then be associated with kinetics terms

associated with space-time and non-space-time propagation:

• 𝑖𝜓/𝜕𝜓 corresponds to the part linked to displacements in space-time degrees of freedom, linked to the vari-

ation observable set O𝑠𝑡

• 𝜓𝑖𝑦𝑖𝑗𝜙𝜓𝑗 corresponds to the part linked to displacements in “non space-time” degrees of freedom, linked to

the variation observable set O𝑛𝑠𝑡 . This corresponds to an elementary displacements in the inner represen-

tation space of the fermion fields, from the element indexed by 𝑖 to the one indexed by 𝑗 .

𝜆̄𝑐 can then be considered as the scale at which the notion of point fails according to section 9.3, such that no-

space-time propagation is possible below, since the notion of point fails at such scales. New degrees of freedom

are then visited at these scales, these are those of a NCG.

Energy is a quantity deducible from the observation of the state’s rate of change that occurs during physical

processes (then of O). For free particles, it can therefore be seen as the addition of the kinetic energies associated

to move along space-time (“C" for commutative) and NC degrees of freedoms (dofs):

𝐸2 =

C dofs⏞⏞⏞⏞⏞⏞⏞
𝑝2𝑐2 +

NC dofs⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑚2𝑐4 .

We have the momentum corresponding to the observation of the state change according to space degrees of

freedom, and the mass-energy which will then corresponds to the state change according to inner degrees of

freedom i.e. in the fermionic representation space 𝐹𝑆𝑀 .

Inertia can then be seen as induced by the proportion of the total kinetic energy (linked to the spacetime and

non-spacetime degrees of freedom), which leaks into the inner (non-spatialized) degrees of freedom and then can

be seen as a kind of non-total transmission of the potential energy encoded in gauge fields (which leads to the

acceleration) into kinetic energy for the spacetime degrees of freedom.

This appears to be in line with the program in search for unified field theory (UFT), in which Kaluza–Klein’s

theory and Einstein’s works around the unification of gravitation and electromagnetism into one geometric pic-

ture are well-known attempts. The NCSMPP made it possible to reformulate the SMPP in a way that unifies it

with gravitation so that the four fundamental forces are expressed as pure gravitation on a space 𝑀 = 𝑀 × 𝐹 .

Diff(𝑀) now fits into a generalization of the diffeomorphisms Diff(𝑀) = Diff(𝑀) ⋉  on this extended space,

defined trough the automorphisms of the algebra ̂ ∶= ∞(𝑀) ⊗ 𝐹 with  = 𝑀𝑎𝑝(𝑀, 𝐺), and 𝐺 being the

standard model symmetry group for example. In general relativity (commutative geometry), gravity emerged as

a pseudo-force associated with general coordinate transformations which are equivalent to diffeomorphisms. In

this extended almost-commutative geometry, the other forces become pseudo-forces too, induced by the auto-

morphisms of the algebra, the diffeomorphisms of 𝑀 being equivalent to the outer ones.

The usual line element 𝑑𝑠 being connected to inverse of the Dirac operator 𝐷𝑀 (which contains the gravita-

tional forces data) is now extended to 𝑑𝑠 trough the new Dirac operator𝐷̂ ∶= 𝐷𝑀⊗1+𝛾𝑀⊗𝐷𝑆𝑀 . Therefore, this

new line element contains all the forces in its very structure, where gauge bosons appear as inner fluctuations

of the associated metric.
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If this framework offers a nice classical unification for gravitation and the other forces, it seems to be very

adapted to the elaboration of GUT-like unification too. This is probably because of its algebraic and very con-

strained structure, making links between the fermionic content and the GUT relation for example. The fact that

the SMPP is now interpreted geometrically makes GUTs extensions (at higher energies) similar to a change in

the geometry, just like for the geometry in general relativity which is a function of the stress-energy tensor and

can therefore change with it. In what follows, a general framework to do such GUTs will be constructed, using

AF-algebras as base algebra, and suitable compatibility conditions to implement the link between the theory and

its GUT. This will be done using derivation and then spectral triples-based gauge theories. More details about the

constraints offered by this NCSMPP approach can be found in (Chamseddine and Connes, 2008; Iochum et al.,

2004; Jureit and Stephan, 2008; van den Broek and van Suijlekom, 2013).



Part IV

Noncommutative Gauge Field Theories
based on 𝐴𝐹-Algebras
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Chapter 13

GUTs, 𝐴𝐹-Embedding and
𝜙-Compatibility Condition

The main purpose of this thesis is to construct NCGFTs based on 𝐴𝐹 𝐶∗
-algebras. As mentioned in section 2.2,

because of the composition property of 𝜙 i.e. 𝜙𝑚,𝑝 ◦ 𝜙𝑛,𝑚 = 𝜙𝑛,𝑝 , one needs only to describe the homomorphisms

𝜙𝑛,𝑛+1 ∶ 𝑛 → 𝑛+1. Then, the heart of the problem is to understand what happens during a single step in the

inductive sequence, and so to identify how NCGFTs based on the algebra at a given step ( = 𝑛) transform

into the next one ( = 𝑛+1):

NCGFT ⇝ NCGFT.

The NCGFT does not only depend on the algebra . According to the case (derivations or spectral triples),

NCGFTs will also depend on the chosen representation, on the chosen automorphisms, on the selected connec-

tion, and the choices concerning the additional structural operators (𝐷, 𝐽 , 𝛾 ...). It is thus necessary to connect

all these essential ingredients along the inductive sequence to relate the NCGFTs at different steps. It is the 𝜙-

compatibility condition (presented in section 13.3) that implements this constraint between structures. This part

represents the main realization of the work done during this thesis, for which the articles (Masson and Nieuviarts,

2021) and (Masson and Nieuviarts, 2022) are the achievements, using the method of derivations for the first one,

and of spectral triples for the second.

13.1 GUTs as a Motivations to do NCGFT’s based on 𝐴𝐹-Algebras
In section 10.5, we highlighted the fact that the creation of GUT-type models should take the algebra describing

the gauge field as input, and give an explanation of the transformation GFTSMPP → GFTGUT. In this part, we

will try to show how the construction of NCGFTs based on algebras of type AF offers an interesting way to

understand this move, using suitable conditions to link NCGFTs along the inductive sequence.

There is no general way to understand how to get NCGFT from NCGFT. But this seems reasonable to

expect that the structure of NCGFT would be recovered from NCGFT, under certain conditions since we expect

to obtain a GUT-like process. Thus, an insight can be that the NCGFT must contain all degrees of freedom of

NCGFT, and that essential structures must be related.

We will then observe the consequences on the algebra of the AC-manifold whose finite part is taken to be

this 𝐴𝐹 𝐶∗
-algebra, ̂𝐴𝐹 ∶= 𝐶∞(𝑀)⊗𝐴𝐹 , in order to identify how NCGFTs based on the algebra at a given step

̂ ∶= 𝐶∞(𝑀) ⊗  transform into the next ̂ ∶= 𝐶∞(𝑀) ⊗ . The Lagrangian obtained at a given step can be

interpreted as a unified NCGFT of the previous one. For instance, if we take ̂ ∶= 𝐶∞(𝑀) ⊗  to be the one

which gives the NCSMPP (̂ ∶= 𝐶∞(𝑀) ⊗𝑆𝑀 with the corresponding structure presented in chapter 12), then

the purpose is to see how according to suitable conditions ̂ ∶= 𝐶∞(𝑀) ⊗ can represent a GUT like extension

of the NCSMPP. The inherited structures will be identified in order to see how the old degrees of freedom (those

133
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from the previous step) and the new ones interact, and how we recover parts of the “old” Lagrangian in the new.

We propose to explore how the general embedding given by 𝜙 of  into  can provide such a link between

the two NCGFT, and how 𝐴𝐹 ’s embedding special characteristics can help to obtain “more concrete” class of

models. A key ingredient to do this sequence of NCGFT will be the 𝜙-compatibility condition. It will permit to

relate of the structures of NCGFT and NCGFT. As we will see, one of the main properties of AF embedding is

that they do not allow the embedding of two different block algebras in the direct sum of  at the same position

within a block of  (see equation (13.2.7)). The novelty with the spectral triples approach is that this will not be

the case for some irreps in the Hilbert space which can be “mixed” during the embedding (see equation (15.1.8)).

In our approach to NCGFT based on a “sequence” of finite dimensional NCGFT on the 𝑛’s, we will not

suppose that an approximation at a level 𝑛0 gives us all the information about the “limiting” NCGFT in the 𝐴𝐹
algebra. In other words, some new inputs (in addition to the 𝐴𝑛,𝑛+1’s) could be “added” at every step. This implies

(obviously) that many non-equivalent NCGFTs could be constructed on top of a unique 𝐴𝐹 algebra. This relies

on the fact that there may be physical motivations to construct one sequence rather than another and that the

chosen embedding at every step could participate in the phenomenology. This is similar to, but also a departure

from, GUT where some information is encoded in the SSBM reducing the large group to the group of the SMPP:

in our research program, we can look at our embeddings as being in duality with the SSBM, in a way that will

be illustrated in Sects. 14.3 and 15.2.

13.2 Structure of the 𝐴𝐹 Embedding
We will study the lift of an inclusion 𝜙 ∶  →  regarding some of the structures defined on  and . Here

we consider the special case of sums of matrix algebras,  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 and  = ⊕𝑠

𝑘=1𝑀𝑚𝑘 . For reasons that will

be explained in Sect. 14.3 for derivations and Sect. 15.1 for spectral triples, 𝜙 is not necessarily unital. We define

the corresponding projection and injection maps 𝜋
𝑖 , 𝜋

𝑘 , 𝜄𝑖 and 𝜄𝑘. We also suppose that there are (orthogonal)

decompositions  = ⊕𝑟
𝑖=1 ,𝑖 and  = ⊕𝑠

𝑘=1 ,𝑘 such that the ,𝑖 (resp. ,𝑘) are Hilbert spaces on which

𝑖 (resp. 𝑘) are represented. In other words, the (left) module structures are compatible with the direct sums of

algebras and Hilbert spaces: for any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈  and 𝜓 = ⊕𝑟

𝑖=1 𝜓𝑖 ∈ , one has 𝑎𝜓 = ⊕𝑟
𝑖=1 𝑎𝑖𝜓𝑖 (and similarly

for ).

An operator 𝐴 on  can be decomposed along the operators 𝐴𝑖
𝑗 ∶= 𝜋

𝑗 ◦ 𝐴 ◦ 𝜄𝑖
∶ ,𝑖 → ,𝑗 . The same

holds for operators on . For computational purposes, we recall that one has

𝐴𝜓 = ⊕𝑟
𝑗=1 (∑

𝑟
𝑖=1 𝐴

𝑖
𝑗 (𝜓𝑖)) = ∑𝑟

𝑖,𝑗=1 𝜄
𝑗


◦ 𝐴𝑖
𝑗 (𝜓𝑖).

In the same way, a (general, not necessarily the one of the 𝐴𝐹 -algebra) morphism of algebras 𝜙 ∶  → 
decomposes along the maps 𝜙𝑖𝑘 ∶= 𝜋

𝑘 ◦ 𝜙 ◦ 𝜄𝑖 ∶ 𝑖 → 𝑘 and a morphism of Hilbert spaces 𝜙 ∶  → 

decomposes along the 𝜙𝑖,𝑘 ∶= 𝜋
𝑘 ◦ 𝜙 ◦ 𝜄𝑖

∶ ,𝑖 → ,𝑘 . One has

𝜙(𝑎) = ⊕𝑠
𝑘=1 (∑

𝑟
𝑖=1 𝜙

𝑖
𝑘(𝑎𝑖)), and 𝜙(𝜓) = ⊕𝑠

𝑘=1 (∑
𝑟
𝑖=1 𝜙

𝑖
,𝑘(𝜓𝑖)).

Notice also that 𝜙(𝑎𝑎′) = 𝜙(𝑎)𝜙(𝑎′) implies

∑𝑟
𝑖=1 𝜙

𝑖
𝑘(𝑎𝑖𝑎

′
𝑖 ) = ∑𝑟

𝑖,𝑗=1 𝜙
𝑖
𝑘(𝑎𝑖)𝜙

𝑗
𝑘(𝑎

′
𝑗 ) for any 𝑘 = 1,… , 𝑠 (13.2.1)

Let’s now consider the inclusion given by the 𝐴𝐹 -algebra. The inclusion 𝜙 is taken in its simplest form, and

we normalize it such that, for any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖,

𝜙𝑘(𝑎) ∶= 𝜋
𝑘 ◦ 𝜙(𝑎) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1 ⊗ 1𝛼𝑘1 0 ⋯ 0 0
0 𝑎2 ⊗ 1𝛼𝑘2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑎𝑟 ⊗ 1𝛼𝑘𝑟 0
0 0 ⋯ 0 0𝑛0,𝑘

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(13.2.2)
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where the integer 𝛼𝑘𝑖 ≥ 0 is the multiplicity of the inclusion of 𝑀𝑛𝑖 into 𝑀𝑚𝑘 , 0𝑛0 is the 𝑛0 × 𝑛0 zero matrix such

that 𝑛0 ≥ 0 satisfies 𝑚𝑘 = 𝑛0 +∑𝑟
𝑖=1 𝛼𝑘𝑖𝑛𝑖, and

𝑎𝑖 ⊗ 1𝛼𝑘𝑖 =
⎛
⎜
⎜
⎜
⎝

𝑎𝑖 0 0 0
0 𝑎𝑖 0 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑖

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

𝛼𝑘𝑖 times.

We define the maps 𝜙𝑖𝑘 ∶= 𝜙𝑘 ◦ 𝜄𝑖 ∶ 𝑀𝑛𝑖 → 𝑀𝑚𝑘 , which take the explicit form

𝜙𝑖𝑘(𝑎𝑖) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ⋯ 0 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋯ ⋮
0 ⋯ 0 0 0 ⋯ 0
0 ⋯ 0 𝑎𝑖 ⊗ 1𝛼𝑘𝑖 0 ⋯ 0
0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13.2.3)

The maps 𝜙𝑖𝑘 satisfy a stronger relation than (13.2.1): for any 𝑖, 𝑗 = 1, … , 𝑟 and 𝑘 = 1,… , 𝑠,

𝜙𝑖𝑘(𝑎𝑖)𝜙
𝑗
𝑘(𝑎

′
𝑗 ) =

{
0 if 𝑖 ≠ 𝑗
𝜙𝑖𝑘(𝑎𝑖𝑎

′
𝑖 ) if 𝑖 = 𝑗.

(13.2.4)

This is the main specific characteristic of 𝐴𝐹 -algebra’s embedding structures.

If  = 𝑛 and  = 𝑛+1 for a 𝐴𝐹 -algebra lim−−→𝑛, then the multiplicities 𝛼𝑘𝑖 define the Bratteli diagram of

this 𝐴𝐹 -algebra and vice versa. The integers 𝑛0,𝑘 are defined by complementarity at each step.

When 𝛼𝑘𝑖 > 0, for 1 ≤ 𝛼 ≤ 𝛼𝑘𝑖 we define the maps 𝜙𝑖𝑘,𝛼 ∶ 𝑀𝑛𝑖 → 𝑀𝑚𝑘 which insert 𝑎𝑖 at the 𝛼-th entry on the

diagonal of 1𝛼𝑘𝑖 in the previous expression, so that 𝑎𝑖 appears only once on the RHS. The maps 𝜙𝑘 , 𝜙𝑖𝑘 , and 𝜙𝑖𝑘,𝛼
are morphisms of algebras and one has

𝜙 = ⊕𝑠
𝑘=1 𝜙𝑘 ∶ ⊕

𝑟
𝑖=1𝑀𝑛𝑖 → ⊕𝑠

𝑘=1𝑀𝑚𝑘 ,

𝜙𝑘 = ∑𝑟
𝑖=1 𝜙

𝑖
𝑘 ◦ 𝜋


𝑖 ∶ ⊕𝑟

𝑖=1𝑀𝑛𝑖 → 𝑀𝑚𝑘 , (13.2.5)

𝜙𝑖𝑘 = ∑𝛼𝑘𝑖
𝛼=1 𝜙

𝑖
𝑘,𝛼 ∶ 𝑀𝑛𝑖 → 𝑀𝑚𝑘 .

Notice then that 𝜙𝑘(1) = ∑𝑟
𝑖=1 ∑

𝛼𝑘𝑖
𝛼=1 𝜙𝑖𝑘,𝛼(1𝑖) fills the diagonal of 𝑀𝑚𝑘 with ∑𝑟

𝑖=1 𝛼𝑘𝑖𝑛𝑖 copies of 1 except for the

last 𝑛0,𝑘 entries. When 𝑛0,𝑘 = 0, one gets 𝜙𝑘(1) = 1𝑘 , otherwise, let

𝑝𝑛0,𝑘 ∶= 1𝑚𝑘 − 𝜙𝑘(1) ∈ 𝑀𝑚𝑘 and 𝑝𝑛0 ∶= ⊕𝑠
𝑘=1 𝑝𝑛0,𝑘 ∈ . (13.2.6)

The 𝑝𝑛0,𝑘 ’s are diagonal matrices with zero entries except for the last 𝑛0,𝑘 diagonal entries (bottom right) which

are equal to 1.

Lemma 13.2.1 For any 𝑎, 𝑏 ∈ , any 𝑖1, 𝑖2 ∈ {1, … , 𝑟}, any 𝛼1 ∈ {1, … , 𝛼𝑘𝑖1 } and any 𝛼2 ∈ {1, … , 𝛼𝑘𝑖2 },

𝜙𝑖1𝑘,𝛼1(𝑎)𝜙
𝑖2
𝑘,𝛼2(𝑏) = 𝛿𝑖1 ,𝑖2𝛿𝛼1 ,𝛼2𝜙

𝑖1
𝑘,𝛼1(𝑎𝑏). (13.2.7)

Proof This is a direct consequence of the definition of 𝜙𝑖𝑘,𝛼 and the multiplications of block diagonal matrices.

13.3 𝜙-Compatibility in the Derivation Framework
Definition 13.3.1 An one-to-one map 𝜙Mod ∶  →  between a left -module  and a left -module  is
𝜙-compatible if 𝜙Mod(𝑎𝑒) = 𝜙(𝑎)𝜙Mod(𝑒) for any 𝑎 ∈  and 𝑒 ∈ .

Remark 13.3.2 A “physical meaning” for the 𝜙-compatibility condition is to conserve the action of embedded

algebras elements on embedded Module’s spaces, meaning in some ways that bosonic fields (elements in the

algebra) continue to act in the same way on their associated fermionic fields (elements in the module). □
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In the following, since we want to construct a direct limit of modules accompanying a direct limit of algebras

with one-to-one maps, we always suppose that 𝜙Mod is also one-to-one. As before we define the corresponding

projection and injection maps 𝜋
𝑖 , 𝜋

𝑘 , 𝜄𝑖 and 𝜄𝑘 .

From (Davidson, 1996, Cor. III.1.2), we know that all the left modules on  and  are of the form  =
C𝑛1 ⊗C𝛼1 ⊕⋯⊕C𝑛𝑟 ⊗C𝛼𝑟

and  = C𝑚1 ⊗C𝛽1 ⊕⋯⊕C𝑚𝑠 ⊗C𝛽𝑠
for some integers 𝛼𝑖 and 𝛽𝑘 . Two situations are

easily handled to construct an one-to-one 𝜙-compatible map 𝜙Mod ∶  →  .

1. The case 𝛼𝑖 = 𝛽𝑘 = 1 for any 𝑖 and 𝑘. In that situation, 𝜙Mod can be constructed in a natural way using the

multiplicities 𝛼𝑘𝑖 of 𝜙. Denote by 𝟏𝑛 ∈ C𝑛
(resp. 𝟎𝑛 ∈ C𝑛

) the vector with all the entries equal to 1 (resp. 0).

Then one can define 𝜙Mod by

𝜋
𝑘 ◦ 𝜙Mod(𝑒) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑒1 ⊗ 𝟏𝛼𝑘1
𝑒2 ⊗ 𝟏𝛼𝑘2

⋮
𝑒𝑟 ⊗ 𝟏𝛼𝑘𝑟

𝟎𝑛0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ 𝑘 = C𝑚𝑘

2. The case 𝛼𝑖 = 𝑛𝑖 and 𝛽𝑘 = 𝑚𝑘 for any 𝑖 and 𝑘. This situation corresponds to  =  and  = . The

canonical map 𝜙Mod is taken to be 𝜙 itself.

By construction, these two maps are 𝜙-compatible. In the more general situation, we have to inject 𝛼𝑘𝑖 times (as

rows) C𝑛𝑖 ⊗ C𝛼𝑖
into C𝑚𝑘 ⊗ C𝛽𝑘

(C𝑛𝑖 ⊗ C𝛼𝑖
is injected only when 𝛼𝑘𝑖 > 0). A necessary condition is that 𝛽𝑘 is

large enough to accept the largest 𝛼𝑖. This necessary condition leaves open the possibility of constructing many

modules and many maps 𝜙Mod which are 𝜙-compatible.

Similarly to 𝜙, we decompose 𝜙Mod as 𝜙𝑖
Mod,𝑘 ∶= 𝜋

𝑘 ◦ 𝜙Mod ◦ 𝜄𝑖 ∶ 𝑖 → 𝑘 and for any 1 ≤ 𝛼 ≤ 𝛼𝑘𝑖,
𝜙𝑖

Mod,𝑘,𝛼 ∶ 𝑖 → 𝑘 which insert 𝑒𝑖 ∈ 𝑖 at the 𝛼-th row.

13.4 𝜙-Compatibility in the Spectral Triples Framework
The first structure to consider are the Hilbert spaces  and , that we can consider as left modules on  and

 via their corresponding representations that are not explicitly written in the following.

Definition 13.4.1 A morphism of Hilbert spaces 𝜙 ∶  →  is 𝜙-compatible if 𝜙(𝑎𝜓) = 𝜙(𝑎)𝜙(𝜓) for any
𝑎 ∈  and 𝜓 ∈  (the representations 𝜋 and 𝜋 are omitted in this relation).

For bimodules, the associated 𝜙-compatibility relation will be set up in subsection 15.1.2. Given the morphism

𝜙 ∶  → , one can decompose  as  = 𝜙() ⊕ 𝜙()⟂ in a unique 𝜙-dependent way,

where 𝜙() = Ran(𝜙) is the range of 𝜙 . This implies that any operator 𝐵 on  can be decomposed as

𝐵 = (
𝐵𝜙𝜙 𝐵⟂

𝜙

𝐵𝜙⟂ 𝐵⟂
⟂ )

with obvious notations, for instance 𝐵⟂
𝜙 ∶ 𝜙()⟂ → 𝜙(). In this orthogonal decomposition,

one has 𝐵† = (
𝐵𝜙†𝜙 𝐵𝜙†⟂
𝐵⟂†
𝜙 𝐵⟂†

⟂ ).

Definition 13.4.2 (𝝓-compatibility of operators) Given two operators 𝐴 on  and 𝐵 on , we say that they
are 𝜙-compatible if 𝜙(𝐴𝜓) = 𝐵𝜙𝜙𝜙(𝜓) for any 𝜓 ∈  (equality in 𝜙()).

This definition makes sense since both sides belong to 𝜙(). Notice that, by an abuse of notation, we use

the terminology “𝜙-compatibility” but this notion depends on the couple of maps (𝜙, 𝜙).

One can define a stronger 𝜙-compatibility between 𝐴 and 𝐵:

Definition 13.4.3 (Strong 𝝓-compatibility of operators) Given two operators 𝐴 on  and 𝐵 on , we say
that they are strong 𝜙-compatible if 𝜙(𝐴𝜓) = 𝐵𝜙(𝜓) for any 𝜓 ∈  (equality in ).

Notice that these two 𝜙-compatibility conditions imply that Ker 𝜙 ⊂ Ker 𝜙 ◦ 𝐴, since, if 𝜓 ∈ Ker 𝜙 , then

0 = 𝐵𝜙𝜙𝜙(𝜓) = 𝜙(𝐴𝜓) in the first case, and similarly in the second case. A sufficient condition for this to hold

for every 𝐴 is to require 𝜙 to be one-to-one.
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Remark 13.4.4 Definition 13.4.1 implies that 𝜋(𝑎) and 𝜋(𝜙(𝑎)) are strong 𝜙-compatible for any 𝑎 ∈ . □

The following Proposition gives other consequences of the two definitions, where diagonality refers to the

previously defined 2 × 2 matrix decomposition.

Proposition 13.4.5
1. 𝜙-compatibility and strong 𝜙-compatibility are stable under sums of operators.
2. Compositions of strong 𝜙-compatible operators are strong 𝜙-compatible (this is not necessarily true for 𝜙-

compatible operators).
3. If 𝐴 on  and 𝐵 on  are strong 𝜙-compatible then 𝐵𝜙⟂ = 0.
4. Strong 𝜙-compatibility implies 𝜙-compatibility.
5. If 𝐵𝜙⟂ = 0, the 𝜙-compatibility implies the strong 𝜙-compatibility.
6. When 𝐵 is self-adjoint, strong 𝜙-compatibility implies that 𝐵 is diagonal.
7. If 𝐴 on  and 𝐵 on  are strong 𝜙-compatible and 𝐴 and 𝐵 are unitaries, then 𝐴† and 𝐵† are strong 𝜙-

compatible and 𝐵 is diagonal.

8. For any 𝑎 ∈ , the operator 𝜋 ◦ 𝜙(𝑎) on  reduces to a diagonal matrix 𝜋 ◦ 𝜙(𝑎) = (
𝜋◦𝜙(𝑎)

𝜙
𝜙 0

0 𝜋◦𝜙(𝑎)⟂⟂ )
.

Proof Point 1 is obvious by linearity of the compatibility conditions and the matrix decompositions. For point 2,

let 𝐴1, 𝐴2 be two operators on  and 𝐵1, 𝐵2 two operators on  which are strong 𝜙-compatible with 𝐴1 and

𝐴2 respectively. Then for any 𝜓 ∈ , one has 𝜙(𝐴1𝐴2𝜓) = 𝐵1𝜙(𝐴2𝜓) = 𝐵1𝐵2𝜙(𝜓) so that 𝐴1𝐴2 is strong

𝜙-compatible with 𝐵1𝐵2. For 𝜙-compatibility, this line of reasoning is not possible in general.

One can identify 𝜙(𝜓) with ( 𝜙 (𝜓)0 ) ∈ 𝜙() ⊕ 𝜙()⟂ =  (resp. 𝜙(𝐴𝜓) with ( 𝜙 (𝐴𝜓)0 )), so

that 𝐵𝜙𝜙𝜙(𝜓) identifies with (
𝐵𝜙𝜙𝜙 (𝜓)

0 ) while 𝐵𝜙(𝜓) identifies with (
𝐵𝜙𝜙𝜙 (𝜓)

𝐵𝜙⟂𝜙 (𝜓))
. The 𝜙-compatibility condi-

tion implies that the map 𝐵𝜙𝜙 ∶ 𝜙() → 𝜙() is completely determined by 𝐴 and 𝜙 , while the strong

𝜙-compatibility condition implies firstly that 𝜙(𝐴𝜓) = 𝐵𝜙𝜙𝜙(𝜓), and secondly that 𝐵𝜙⟂ ∶ 𝜙() → 𝜙()⟂
is the zero map, which is point 3. So, using these results, one gets that the strong 𝜙-compatibility implies the

𝜙-compatibility condition (which only constrains the 𝐵𝜙𝜙 component of 𝐵), which is point 4. For point 5, from

𝐵𝜙⟂ = 0 and 𝜙(𝐴𝜓) = 𝐵𝜙𝜙𝜙(𝜓), one gets 𝐵𝜙(𝜓) = (
𝐵𝜙𝜙𝜙 (𝜓)

𝐵𝜙⟂𝜙 (𝜓))
= (

𝐵𝜙𝜙𝜙 (𝜓)
0 ) = ( 𝜙 (𝐴𝜓)0 ) = 𝜙(𝐴𝜓), which is the

strong 𝜙-compatibility condition.

Point 6: if 𝐵 is self-adjoint, the condition 𝐵 = 𝐵†
implies 𝐵⟂†

𝜙 = 𝐵𝜙⟂ = 0, so that 𝐵 is diagonal.

Point 7: if 𝐴 and 𝐵 are unitaries, then 𝜙(𝜓) = 𝜙(𝐴†𝐴𝜓) on the one hand and 𝜙(𝜓) = 𝐵†𝐵𝜙(𝜓) on the

other hand, so that 𝜙(𝐴†𝐴𝜓) = 𝐵†𝐵𝜙(𝜓) = 𝐵†𝜙(𝐴𝜓). Since 𝐴 is invertible, any 𝜓′ ∈  can be written as

𝜓′ = 𝐴𝜓, so that 𝜙(𝐴†𝜓) = 𝐵†𝜙(𝜓) for any 𝜓, which proves that 𝐴†
and 𝐵†

are strong 𝜙-compatible. The

strong 𝜙-compatibilities implies 𝐵𝜙⟂ = 0 and (𝐵†)𝜙⟂ = 𝐵⟂†
𝜙 = 0, and so 𝐵 is diagonal.

Point 8: let us use the notation 𝜋 ◦ 𝜙(𝑎) = (
𝜋◦𝜙(𝑎)

𝜙
𝜙 𝜋◦𝜙(𝑎)⟂𝜙

𝜋◦𝜙(𝑎)
𝜙
⟂ 𝜋◦𝜙(𝑎)⟂⟂ )

for any 𝑎 ∈ . From Definition 13.4.1, 𝜋 ◦ 𝜙(𝑎)

is strong 𝜙-compatible with 𝜋(𝑎), so that 𝜋 ◦ 𝜙(𝑎)𝜙⟂ = 0. Since 𝜋 ◦ 𝜙(𝑎∗) = 𝜋 ◦ 𝜙(𝑎)†, this implies that

𝜋 ◦ 𝜙(𝑎∗)⟂𝜙 = 0 for any 𝑎, so that 𝜋 ◦ 𝜙(𝑎) reduces to a diagonal matrix.

One can associate to 𝐵 = (
𝐵𝜙𝜙 𝐵⟂

𝜙

𝐵𝜙⟂ 𝐵⟂
⟂ )

the operator 𝐵𝜙𝜙 = (
𝐵𝜙𝜙 0
0 0). Then the 𝜙-compatibility between 𝐴 and 𝐵 is

equivalent to the strong 𝜙-compatibility between 𝐴 and 𝐵𝜙𝜙 .

Lemma 13.4.6 The 𝜙-compatibility of 𝜙 is equivalent to 𝜙𝑖,𝑘(𝑎𝑖𝜓𝑖) = 𝜙𝑖𝑘(𝑎𝑖)𝜙
𝑖
,𝑘(𝜓𝑖) for any 1 ≤ 𝑖 ≤ 𝑟 , 1 ≤ 𝑘 ≤ 𝑠,

𝑎𝑖 ∈ 𝑖 and 𝜓𝑖 ∈ ,𝑖.
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Proof One has 𝜙(𝑎𝜓) = ⊕𝑠
𝑘=1 (∑

𝑟
𝑖=1 𝜙𝑖𝑘(𝑎𝑖𝜓𝑖)) and 𝜙(𝑎)𝜙(𝜓) = ⊕𝑠

𝑘=1 (∑
𝑟
𝑖=1 𝜙𝑖𝑘(𝑎𝑖)𝜙

𝑖
,𝑘(𝜓𝑖)) so that 𝜙(𝑎𝜓) =

𝜙(𝑎)𝜙(𝜓) is equivalent to ∑𝑟
𝑖=1 𝜙𝑖𝑘(𝑎𝑖𝜓𝑖) = ∑𝑟

𝑖=1 𝜙𝑖𝑘(𝑎𝑖)𝜙
𝑖
,𝑘(𝜓𝑖) for any 𝑘. Taking 𝑎𝑖 and 𝜓𝑖 non-zero only for one

value of 𝑖, this implies that 𝜙𝑖𝑘(𝑎𝑖𝜓𝑖) = 𝜙𝑖𝑘(𝑎𝑖)𝜙
𝑖
,𝑘(𝜓𝑖) for any 𝑖. Reciprocally, if this last equally is satisfied for any

𝑖, it implies the previous one by linearity.

Lemma 13.4.7 Two operators 𝐴 on  and 𝐵 on  are strong 𝜙-compatible if and only if ∑𝑟
𝑗=1 𝜙

𝑗
,𝑘 ◦ 𝐴

𝑖
𝑗 (𝜓𝑖) =

∑𝑠
𝓁=1 𝐵𝓁

𝑘 ◦ 𝜙
𝑖
,𝓁(𝜓𝑖) for any 1 ≤ 𝑖 ≤ 𝑟 , 1 ≤ 𝑘 ≤ 𝑠, and 𝜓𝑖 ∈ ,𝑖.

Two operators 𝐴 on  and 𝐵 on  are 𝜙-compatible if and only if ∑𝑟
𝑗=1 𝜙

𝑗
,𝑘 ◦ 𝐴

𝑖
𝑗 (𝜓𝑖) = ∑𝑠

𝓁=1 𝐵
𝜙,𝓁
𝜙,𝑘 ◦ 𝜙

𝑖
,𝓁(𝜓𝑖)

for any 1 ≤ 𝑖 ≤ 𝑟 , 1 ≤ 𝑘 ≤ 𝑠, and 𝜓𝑖 ∈ ,𝑖.

Proof On the one hand, one has 𝜙(𝐴𝜓) = ⊕𝑠
𝑘=1 (∑

𝑟
𝑖,𝑗=1 𝜙

𝑗
,𝑘 ◦ 𝐴𝑖

𝑗 (𝜓𝑖)) and on the other hand 𝐵𝜙(𝜓) =
⊕𝑠
𝑘=1 (∑

𝑠
𝓁=1 ∑

𝑟
𝑖=1 𝐵𝓁

𝑘 ◦ 𝜙𝑖,𝓁(𝜓𝑖)). So, the relation 𝜙(𝐴𝜓) = 𝐵𝜙(𝜓) is equivalent to ∑𝑟
𝑖,𝑗=1 𝜙

𝑗
,𝑘 ◦ 𝐴𝑖

𝑗 (𝜓𝑖) =
∑𝑠

𝓁=1 ∑
𝑟
𝑖=1 𝐵𝓁

𝑘 ◦ 𝜙
𝑖
,𝓁(𝜓𝑖) for any 𝑘. Taking 𝜓𝑖 non-zero only for one value of 𝑖, this implies ∑𝑟

𝑗=1 𝜙
𝑗
,𝑘 ◦ 𝐴

𝑖
𝑗 (𝜓𝑖) =

∑𝑠
𝓁=1 𝐵𝓁

𝑘 ◦ 𝜙
𝑖
,𝓁(𝜓𝑖) for any 𝑖 and 𝑘. By linearity, this relation implies the previous one.

Concerning the 𝜙-compatibility, one can replace 𝐵 by 𝐵𝜙𝜙 in the previous result. Since 𝐵𝜙𝜙 acts only on 𝜙(),
one can replace 𝐵𝜙,𝓁𝜙,𝑘 by the operators 𝐵𝜙,𝓁𝜙,𝑘 ∶ 𝜋


𝓁 ◦ 𝜙() → 𝜋

𝑘 ◦ 𝜙() in the final relation.

We can extend the maps 𝜙𝑖𝑘 as 𝜙𝑖0 ,…,𝑖𝑛𝑘0 ,…,𝑘𝑛 ∶ ⊗
𝑖0 ,…,𝑖𝑛 → ⊗

𝑘0 ,…,𝑘𝑛 by 𝜙𝑖0 ,…,𝑖𝑛𝑘0 ,…,𝑘𝑛(𝑎
0
𝑖0 ⊗ ⋯ ⊗ 𝑎𝑛𝑖𝑛) ∶= 𝜙𝑖0𝑘0(𝑎

0
𝑖0) ⊗ ⋯ ⊗ 𝜙𝑖𝑛𝑘𝑛(𝑎

𝑛
𝑖𝑛)

for any 𝑖0, … , 𝑖𝑛 and 𝑘0, … , 𝑘𝑛, and then we define maps 𝜙 ∶ T𝑛 → T𝑛, for any 𝑛 ≥ 1, by ⊕𝑟
𝑖1 ,…,𝑖𝑛−1=1 (𝑎

0
𝑖 ⊗ 𝑎1𝑖1 ⊗

⋯⊗𝑎𝑛−1𝑖𝑛−1 ⊗𝑎𝑛𝑗 )
𝑟
𝑖,𝑗=1 ↦ ⊕𝑠

𝑘1 ,…,𝑘𝑛−1=1 (∑
𝑟
𝑖1 ,…,𝑖𝑛−1=1 𝜙

𝑖,𝑖1 ,…,𝑖𝑛−1 ,𝑗
𝑘,𝑘1 ,…,𝑘𝑛−1 ,𝓁(𝑎

0
𝑖 ⊗𝑎1𝑖1 ⊗⋯⊗𝑎𝑛−1𝑖𝑛−1 ⊗𝑎𝑛𝑗 ))

𝑠
𝑘,𝓁=1, and, for 𝑛 = 0, the diagonal

matrix with entries 𝑎𝑖 at (𝑖, 𝑖) is sent to the diagonal matrix with entries ∑𝑟
𝑖=1 𝜙𝑖𝑘(𝑎𝑖) at (𝑘, 𝑘). Using (3.2.1) and

(13.2.1), one can check that 𝜙 ∶ T∙ → T∙ is a morphism of graded algebras and that 𝜙(𝛀1
𝑈 ()) ⊂ 𝛀1

𝑈 (), so

that 𝜙 ∶ 𝛀∙
𝑈 () → 𝛀∙

𝑈 () is a morphism of graded algebras. These properties are consequences of the general

situation that will be described in Sect. 15.1.1.

From a purely mathematical point of view, the strong 𝜙-compatibility condition appears more natural, mainly

because of properties given in points 2, 6 and 7 and as we will see later with proposition 15.1.6 because it preserves

spectral triples KO dimension. This condition implements equality of actions at the level of all , making the

relation dependent on the new degrees of freedom. But it is too restrictive for physics as it imposes a diagonal

operator  and thus no couplings between new and old degrees of freedom along the sequence, which must

lead to very limited models for physics.

On the contrary, the 𝜙-compatibility condition is only an equality at the level of 𝜙(), then being less

restrictive. It appears to be more natural since it is only based on inherited degrees of freedom and then appears

closer to the relation of definition 13.4.1 which was first in this construction. Consequently, this condition appears

to be more natural and in line with the 𝜙-compatibility condition on Hilbert spaces. Moreover, from a physical

point of view, the 𝜙-compatibility condition is natural in the sense that it focuses on the conservation of the

action of NCGFT’s operators at a given step on the embedding of the Hilbert space on which they previously

act. As mentioned in remark 13.3.2, this condition embodies the physical idea of the transport of the action of a

physical operator 𝐴 ∈  on , when this one is embedded in . Moreover, it allows the Dirac  to have

off-diagonal terms. This permits couplings between the degrees of freedom of the injected and added fermionic

fields, which seem to be a natural requirement for GUT models. This is why we have chosen to focus our study

on this 𝜙-compatibility condition of operators to obtain NCGFTs of interest, as will be done later in section 15.2.



Chapter 14

Derivation-based Approach to NCGFT
on 𝐴𝐹-Algebras

In this chapter, we propose to set up NCGFTs based on 𝐴𝐹 -Algebras using the derivation based approach. This

will be done for one step in this two cases, 𝜙 ∶  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 →  = ⊕𝑠

𝑘=1𝑀𝑚𝑘 and 𝜙 ∶ ̂ ∶= 𝐶∞(𝑀)⊗ → ̂ ∶=
𝐶∞(𝑀) ⊗, then computing the link between the action at successive steps in subsection 14.3.1. In section 14.4,

some physical applications concerning mass spectra generated by Spontaneous Symmetry Breaking Mechanisms

(SSBM) are proposed using numerical computations for specific situations. This chapter is an account of the

results given in (Masson and Nieuviarts, 2021).

14.1 Modules and Connections for Direct Sum Algebras
We consider left modules on  of the form  = ⊕𝑟

𝑖=1 𝑖 where 𝑖 is a left module on 𝑖. This requirement

is sufficient for the particular situation  = 𝑀𝑛1 ⊕⋯⊕𝑀𝑛𝑟 since, according to (Davidson, 1996, Cor. III.1.2), the

modules of this algebra are of the form C𝑛1 ⊗ C𝛼1 ⊕⋯⊕C𝑛𝑟 ⊗ C𝛼𝑟 = 𝑀𝑛1×𝛼1 ⊕⋯⊕𝑀𝑛𝑟×𝛼𝑟 for some integers 𝛼𝑖,
where 𝑀𝑛𝑖×𝛼𝑖 is the vector space of 𝑛𝑖 × 𝛼𝑖 matrices over C.

Define 𝜋Mod

𝑖 ∶  → 𝑖 as the projection on the 𝑖-th term and 𝜄𝑖
Mod

∶ 𝑖 →  as the natural inclu-

sion. Then, 𝜋Mod

𝑖 ◦ 𝜄𝑖
Mod

= Id𝑖 and for any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 and 𝑒 = ⊕𝑟

𝑖=1 𝑒𝑖, one has 𝜋Mod

𝑖 (𝑎𝑒) = 𝜋 𝑖(𝑎)𝜋Mod

𝑖 (𝑒) and

𝜋Mod

𝑖 (𝜄𝑖(𝑎𝑖)𝑒) = 𝑎𝑖𝜋Mod

𝑖 (𝑒).

Proposition 14.1.1 (Decomposition of connections) A connection ∇ on the left  module  defines a unique
family of connections ∇𝑖 on the left 𝑖 modules 𝑖 such that for any 𝑒 = ⊕𝑟

𝑖=1 𝑒𝑖 and any X = ⊕𝑟
𝑖=1 X𝑖, one has

∇X𝑒 = ⊕𝑟
𝑖=1 ∇

𝑖
X𝑖
𝑒𝑖.

Denote by 𝑅𝑖 the curvature associated to ∇𝑖, then, for any X = ⊕𝑟
𝑖=1 X𝑖, any Y = ⊕𝑟

𝑖=1 Y𝑖, and any 𝑒 = ⊕𝑟
𝑖=1 𝑒𝑖, one

has

𝑅(X,Y)𝑒 = ⊕𝑟
𝑖=1 𝑅𝑖(X𝑖,Y𝑖)𝑒𝑖

Proof Since X = ⊕𝑟
𝑖=1 X𝑖 = ∑𝑟

𝑖=1 𝜄Der𝑖 (X𝑖), one has ∇X𝑒 = ∑𝑟
𝑖=1 ∇𝜄Der𝑖 (X𝑖)𝑒 for any 𝑒 ∈ . This implies that ∇X is

completely given by the 𝑟 maps ∇𝜄Der𝑖 (X𝑖) ∶  → .

So, for a fixed 𝑖 and for any X𝑖 ∈ Der(𝑖), let us study the map ∇𝜄Der𝑖 (X𝑖) ∶  → . Since 𝜄Der𝑖 (X𝑖) = 1̂𝑖𝜄Der𝑖 (X𝑖),
one has, for any 𝑒 ∈ , ∇𝜄Der𝑖 (X𝑖)𝑒 = ∇1̂𝑖𝜄Der𝑖 (X𝑖)

𝑒 = 1̂𝑖∇𝜄Der𝑖 (X𝑖)𝑒 so that 𝜋Mod

𝑗 ◦ ∇𝜄Der𝑖 (X𝑖) = 0 for 𝑗 ≠ 𝑖. In other words,

∇𝜄Der𝑖 (X𝑖)𝑒 takes its values in 𝑖.

For a fixed 𝑗 , take now 𝑒 = 𝜄𝑗
Mod

(𝑒𝑗 ) for some 𝑒𝑗 ∈ 𝑗 . Since 1̂𝑗 𝜄𝑗Mod
(𝑒𝑗 ) = 𝜄𝑗

Mod
(𝑒𝑗 ) one has ∇𝜄Der𝑖 (X𝑖)𝜄

𝑗
Mod

(𝑒𝑗 ) =
∇𝜄Der𝑖 (X𝑖)(1̂𝑗 𝜄

𝑗
Mod

(𝑒𝑗 )) = (𝜄Der𝑖 (X𝑖)⋅1̂𝑗 )𝜄𝑗Mod
(𝑒𝑗 ) + 1̂𝑗∇𝜄Der𝑖 (X𝑖)𝑒𝑗 = 1̂𝑗∇𝜄Der𝑖 (X𝑖)𝑒𝑗 since 𝜄Der𝑖 (X𝑖)⋅1̂𝑗 = 0 whatever 𝑖 and 𝑗 . If
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𝑗 ≠ 𝑖, then ∇𝜄Der𝑖 (X𝑖)𝜄
𝑗
Mod

(𝑒𝑗 ) = 1̂𝑗∇𝜄Der𝑖 (X𝑖)𝑒𝑗 = 0 since ∇𝜄Der𝑖 (X𝑖)𝑒𝑗 has only components in 𝑖. This implies that ∇𝜄Der𝑖 (X𝑖)
is only non zero on components in 𝑖, and so defines a map

∇𝑖X𝑖
∶= 𝜋Mod

𝑖 ◦ ∇𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

∶ 𝑖 → 𝑖.

Then, by construction, one has, for 𝑒 = ⊕𝑟
𝑖=1 𝑒𝑖 and X = ⊕𝑟

𝑖=1 X𝑖, ∇X𝑒 = ⊕𝑟
𝑖=1 ∇𝑖X𝑖

𝑒𝑖.

Now, let 𝑓𝑖 ∈ (𝑖), then

∇𝑖𝑓𝑖X𝑖
𝑒𝑖 = 𝜋Mod

𝑖 (∇𝜄Der𝑖 (𝑓𝑖X𝑖) ◦ 𝜄
𝑖
Mod

(𝑒𝑖)) = 𝜋Mod

𝑖 (∇𝜄𝑖(𝑓𝑖)𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

(𝑒𝑖))
= 𝜋Mod

𝑖 (𝜄𝑖(𝑓𝑖)∇𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

(𝑒𝑖)) = 𝑓𝑖𝜋Mod

𝑖 ◦ ∇𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

(𝑒𝑖)

= 𝑓𝑖∇𝑖X𝑖
𝑒𝑖

Let 𝑎𝑖 ∈ 𝑖, then

∇𝑖X𝑖
𝑎𝑖𝑒𝑖 = 𝜋Mod

𝑖 (∇𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

(𝑎𝑖𝑒𝑖)) = 𝜋Mod

𝑖 (∇𝜄Der𝑖 (X𝑖) ◦ 𝜄𝑖(𝑎𝑖)𝜄
𝑖
Mod

(𝑒𝑖))
= 𝜋Mod

𝑖 ((𝜄Der𝑖 (X𝑖)⋅𝜄𝑖(𝑎𝑖))𝜄𝑖Mod
(𝑒𝑖)) + 𝜋Mod

𝑖 (𝜄𝑖(𝑎𝑖)∇𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

(𝑒𝑖))
= (X𝑖⋅𝑎𝑖)𝜋Mod

𝑖 ◦ 𝜄𝑖
Mod

(𝑒𝑖) + 𝑎𝑖𝜋Mod

𝑖 ◦ ∇𝜄Der𝑖 (X𝑖) ◦ 𝜄
𝑖
Mod

(𝑒𝑖)

= (X𝑖⋅𝑎𝑖)𝑒𝑖 + 𝑎𝑖∇𝑖X𝑖
𝑒𝑖

These two relations show that ∇𝑖 defines a connection on the left 𝑖 module 𝑖.

Concerning the curvature, one has ∇X∇Y𝑒 = ∇X(⊕𝑟
𝑖=1 ∇𝑖Y𝑖

𝑒𝑖) = ⊕𝑟
𝑖=1 ∇𝑖X𝑖

∇𝑖Y𝑖
𝑒𝑖 and ∇[X,Y]𝑒 = ⊕𝑟

𝑖=1 ∇𝑖[X𝑖 ,Y𝑖]𝑒𝑖 so

that 𝑅(X,Y)𝑒 = ⊕𝑟
𝑖=1([∇𝑖X𝑖

, ∇𝑖Y𝑖
] − ∇𝑖[X𝑖 ,Y𝑖])𝑒𝑖 = ⊕𝑟

𝑖=1 𝑅𝑖(X𝑖,Y𝑖)𝑒𝑖.

Let us now consider the special case  =  with the natural left module structure. In that situation, we can

characterize ∇ by its connection 1-form 𝜔 ∈ Ω1
Der() defined by 𝜔(X) ∶= ∇X1 and its curvature takes the form

of the multiplication on the right by the curvature 2-form Ω ∈ Ω2
Der() defined by Ω(X,Y) ∶= (d𝜔)(X,Y) −

[𝜔(X), 𝜔(Y)].

Proposition 14.1.2 In the previous situation, the decomposition of the connection ∇X = ⊕𝑟
𝑖=1 ∇𝑖X𝑖

in Prop 14.1.1 is
related to the decomposition of the connection 1-form𝜔 = ⊕𝑟

𝑖=1 𝜔𝑖 in Prop. 4.1.5 where𝜔𝑖 ∈ Ω1
Der(𝑖) is the connection

1-form associated to the connection ∇𝑖.
In the same way, the connection 2-form Ω of ∇ decomposes along the connection 2-forms Ω𝑖 of ∇𝑖: Ω = ⊕𝑟

𝑖=1 Ω𝑖.

Proof One has 1 = ⊕𝑟
𝑖=1 1𝑖 where 1𝑖 is the unit in𝑖. WithX = ⊕𝑟

𝑖=1 X𝑖, one then has𝜔(X) = ∇X1 = ⊕𝑟
𝑖=1 ∇𝑖X𝑖

1𝑖 =
⊕𝑟
𝑖=1 𝜔𝑖(X𝑖).

The curvature 2-forms are defined in terms of differentials and Lie brackets (commutators in the respective

algebras) from the connection 1-forms. We have shown that these operations respect the decomposition of forms.

This proves the relation of the curvature 2-form of ∇.

14.2 Lifting one Step of the Defining Inductive Sequence
As expected, 𝜙 does not relate the centers of  = ⊕𝑟

𝑖=1𝑀𝑛𝑖 and  = ⊕𝑠
𝑘=1𝑀𝑚𝑘 . This implies in particular that we

can’t expect to find or to construct a “general” map to inject Der() into Der() as modules over the centers, or,

with less ambition, to inject a sub module and sub Lie algebra of Der() into a sub module and sub Lie algebra

of Der(). This strategy may indeed require very specific situations.

Since it is convenient to consider all the derivations of  and , our approach is to keep track of the deriva-

tions in Der() which “come from” (to be defined below) derivations in Der(). These derivations will propagate

along the sequence of the direct limit, while new derivations will be introduced at each step of the limit.

For any 𝑖, let us chose an orthogonal basis {𝜕𝑖,𝛼 ∶= ad𝐸𝑖,𝛼 }𝛼∈𝐼𝑖 of Der(𝑖) = Int(𝑀𝑛𝑖) where 𝐸𝑖,𝛼 ∈ sl𝑛𝑖 and 𝐼𝑖 is

a totally ordered set of cardinal 𝑛2𝑖 − 1. For any 𝑘, we can introduce a basis of Der(𝑘) = Int(𝑀𝑚𝑘 ) in two steps.

Let us define the set

𝐽 𝜙𝑘 ∶= {(𝑖, 𝛼, 𝜅) / 𝑖 ∈ {1, … , 𝑟}, 𝛼 ∈ {1, … , 𝛼𝑘𝑖}, 𝜅 ∈ 𝐼𝑖}
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and for any 𝛽 = (𝑖, 𝛼, 𝜅) ∈ 𝐽 𝜙𝑘 , define

𝐸𝑘,𝛽 ∶= 𝜙𝑖𝑘,𝛼(𝐸
𝑖
,𝜅) ∈ sl𝑚𝑘 and 𝜕𝑘,𝛽 ∶= ad𝐸𝑘,𝛽 ∈ Der(𝑘).

The set 𝐽 𝜙𝑘 is totally ordered for 𝛽 = (𝑖, 𝛼, 𝜅) < 𝛽′ = (𝑖′, 𝛼′, 𝜅′) iff 𝑖 < 𝑖′ or [𝑖 = 𝑖′ and 𝛼 < 𝛼′] or [𝑖 = 𝑖′ and 𝛼 = 𝛼′
and 𝜅 < 𝜅′ ∈ 𝐼𝑖].

Denote by 𝑔 and 𝑔 the metrics on  and , defined as in Sect. 4.1.1. We know that 𝑔(ad𝐸𝑘,𝛽 , ad𝐸𝑘′,𝛽′ ) = 0 for

𝑘 ≠ 𝑘′. So, let us consider a fixed value 𝑘. With the previous notations, one then has 𝑔(ad𝐸𝑘,(𝑖,𝛼,𝜅) , ad𝐸𝑘,(𝑖′ ,𝛼′ ,𝜅′)) = 0
when 𝑖 ≠ 𝑖′ or [𝑖 = 𝑖′ and 𝛼 ≠ 𝛼′] since then the product of matrices 𝐸𝑘,(𝑖,𝛼,𝜅)𝐸

𝑘
,(𝑖′ ,𝛼′ ,𝜅′) is zero. Then one has

𝑔𝑘,𝛽𝛽′ ∶= 𝑔(ad𝐸𝑘,(𝑖,𝛼,𝜅) , ad𝐸𝑘,(𝑖′ ,𝛼′ ,𝜅′)) = tr(𝐸𝑘,(𝑖,𝛼,𝜅)𝐸
𝑘
,(𝑖′ ,𝛼′ ,𝜅′)) = 𝛿𝑖𝑖′𝛿𝛼𝛼′ tr(𝐸𝑖,𝜅𝐸

𝑖
,𝜅′)

= 𝛿𝑖𝑖′𝛿𝛼𝛼′𝑔(ad𝐸𝑖,𝜅 , ad𝐸𝑖,𝜅′ ) = 𝛿𝑖𝑖′𝛿𝛼𝛼′𝑔 𝑖,𝜅𝜅′ (14.2.1)

In the following, we will use the fact that the metric (𝑔𝑘,𝛽𝛽′)𝛽,𝛽′∈𝐽 𝜙𝑘 (and also its inverse (𝑔𝛽𝛽
′

,𝑘 )𝛽,𝛽′∈𝐽 𝜙𝑘 ) is diagonal

by blocks along the divisions induced by the choice of a couple (𝑖, 𝛼) for which 𝛽 = (𝑖, 𝛼, 𝜅). Notice also that if

the 𝜕𝑖,𝜅 ’s are orthogonal (resp. orthonormal) for 𝑔, so are the 𝜕𝑘,𝛽’s for the metric 𝑔 for any 𝛽 ∈ 𝐽 𝜙𝑘 . This is the

reason we chose to remove the “
1
𝑛 ” factor in front of the definition of the metrics (see Sect. 4.1.1).

We can now complete the family {𝜕𝑘,𝛽}𝛽∈𝐽 𝜙𝑘 into a full basis of Der(𝑘) with the same notation, 𝛽 ∈ 𝐽𝑘 = 𝐽 𝜙𝑘 ∪𝐽
𝑐
𝑘

where 𝐽 𝑐𝑘 is a complementary set to get card(𝐽𝑘) = 𝑚2
𝑘 − 1, in such a way that

𝑔(𝜕𝑘,𝛽 , 𝜕
𝑘
,𝛽′) = 0 for any 𝛽 ∈ 𝐽 𝜙𝑘 and 𝛽′ ∈ 𝐽 𝑐𝑘 . (14.2.2)

In other words, the metric 𝑔 is block diagonal and decomposes Der(𝑘) into two orthogonal summands. We

choose any total order on 𝐽𝑘 which extends the one on 𝐽 𝜙𝑘 . One knows that such a procedure is always possible,

but for practical applications (for instance to construct gauge field theories, as in Sect. 14.4), such a concrete basis

could be useful, in particular since the basis that we construct is adapted to the map 𝜙 ∶  → . Lets then see

how to construct such a basis adapted to 𝜙.

Recall that the maps 𝜙𝑖𝑘,𝛼 send the matrix algebras 𝑀𝑛𝑖 , for 𝑖 = 1, … , 𝑟 and 𝛼 = 1,… , 𝛼𝑘𝑖, on the diagonal of

𝑀𝑚𝑘 , with a possible remaining block 0𝑛0 on this diagonal. In order to manage this last block in the same way as

the others, let us add the value 𝑖 = 0 to refer to this block, with 𝛼𝑘0 = 1. In the following, we will use the notation

𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖) with 𝑖 = 0 (and 𝛼 = 1) to refer to this block.

Consider any matrix 𝐸 ∈ 𝑀𝑚𝑘 which have only non zero entries outside the blocks 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖) for 𝑖 = 0, … , 𝑟 .
Then a straightforward computation using block matrices shows that tr(𝐸𝑘,𝛽𝐸) = tr(𝐸𝐸𝑘,𝛽) = 0 for any 𝛽 ∈ 𝐽 𝜙𝑘 (the

product in the trace is off diagonal). In the same way, for any 𝐸 in the block 𝜙0𝑘,1(𝑀𝑛0), one has 𝐸𝑘,𝛽𝐸 = 𝐸𝐸𝑘,𝛽 = 0.

This implies that ad𝐸 for any 𝐸 outside of the blocks 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖) for 𝑖 = 1, … , 𝑟 is orthogonal (for the metric induced

by the trace) to ad𝐸𝑘,𝛽 for any 𝛽 ∈ 𝐽 𝜙𝑘 .

To complete the free family {ad𝐸𝑘,𝛽 }𝛽∈𝐽 𝜙𝑘 in Der(𝑘), it is then sufficient to describe the elements 𝐸 ∈ sl𝑚𝑘 ≃
Der(𝑘) “outside” of the blocks 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖) for 𝑖 = 1, … , 𝑟 . We will do that using the block decomposition induced

by the 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖).

We can introduce a first family of matrices 𝐸𝑘,𝛽 for new indices 𝛽 (in a set 𝐽 𝑐𝑘 ) as (traceless) matrices with non

zero entries in 𝜙0𝑘,1(𝑀𝑛0). There are 𝑛20 − 1 such elements.

Then, let us notice that for fixed 𝑖 = 0, … , 𝑟 , the 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖) for 𝛼 = 1,… , 𝛼𝑘𝑖 are in diagonal blocks 𝛼𝑘𝑖𝑛𝑖 × 𝛼𝑘𝑖𝑛𝑖.
We call these blocks the enveloping blocks of 𝑀𝑛𝑖 inside 𝑀𝑚𝑘 . We introduce a second family of matrices 𝐸𝑘,𝛽 as

matrices with non zero entries outside the enveloping blocks of the𝑀𝑛𝑖 ’s. For every 𝑖 = 0, … , 𝑟 , the row containing

the enveloping block of 𝑀𝑛𝑖 contains ∑𝑖,𝑖′ ,𝑖≠𝑖′(𝛼𝑘𝑖𝑛𝑖)(𝛼𝑘𝑖′𝑛𝑖′) entries (non zero outside the enveloping block).

The next level of blocks embedding we consider is the one inside the enveloping block of 𝑀𝑛𝑖 , for every 𝑖. In

such a block, 𝜙𝑖𝑘,𝛼 maps 𝑀𝑛𝑖 into the diagonal. For every 𝑖 = 0, … , 𝑟 , we can then introduce a family of matrices
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𝐸𝑘,𝛽 with non zero entries inside the enveloping blocks of 𝑀𝑛𝑖 but outside the blocks 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖) (for 𝛼 = 1,… , 𝛼𝑘𝑖).
For a fixed 𝑖, there are 𝛼𝑘𝑖(𝛼𝑘𝑖 −1) blocks of size 𝑛𝑖 ×𝑛𝑖, so that one can construct ∑𝑖 𝛼𝑘𝑖(𝛼𝑘𝑖 −1)(𝑛𝑖)2 such matrices

in the third family (as expected, for 𝑖 = 0 there is no contribution since 𝛼𝑘0 = 1).

Inside the enveloping block of𝑀𝑛𝑖 , we can also construct matrices with non zero entries in the blocks 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖).
Indeed, for fixed 𝑖 and 𝛼, let us consider the matrix 𝐸𝛼𝑖 with 1𝑛𝑖 in the block 𝜙𝑖𝑘,𝛼(𝑀𝑛𝑖). For 𝛽 = (𝑖, 𝛼, 𝜅) one has

𝐸𝑘,𝛽𝐸
𝛼
𝑖 = 𝐸𝑘,𝛽 and for 𝛽′ = (𝑖, 𝛼′, 𝜅)with 𝛼 ≠ 𝛼′ one has 𝐸𝑘,𝛽′𝐸

𝛼
𝑖 = 0. Notice that 𝐸𝛼𝑖 ∉ sl𝑚𝑘 , but, for 𝛼 = 1,… , 𝛼𝑘𝑖−1,

the matrices 𝐸𝛼𝑖 − 𝐸𝛼+1𝑖 belong to sl𝑚𝑘 and, by the previous remark, are orthogonal to the 𝐸𝑘,𝛽 for 𝛽 ∈ 𝐽 𝜙𝑘 . These

matrices constitute the fouth family: there are ∑𝑖(𝛼𝑘𝑖 − 1) such matrices (once again, there is not contribution

for 𝑖 = 0)

The fifth and last family of matrices are constructed as 𝑛𝑖+1𝐸1𝑖 − 𝑛𝑖𝐸1𝑖+1 ∈ sl𝑚𝑘 for 𝑖 = 0, … , 𝑟 − 1. These 𝑟
matrices have entries in different enveloping blocks.

Let us collect the number of matrices 𝐸𝑘,𝛽 for 𝛽 ∈ 𝐽 𝑐𝑘 that we have constructed:

card(𝐽 𝑐𝑘 ) = 𝑛20 − 1 + ∑𝑖≥0 ∑𝑖′≥0;𝑖≠𝑖′(𝛼𝑘𝑖𝑛𝑖)(𝛼𝑘𝑖′𝑛𝑖′) + ∑𝑖≥0 𝛼𝑘𝑖(𝛼𝑘𝑖 − 1)(𝑛𝑖)2 +∑𝑖≥0(𝛼𝑘𝑖 − 1) + 𝑟
= 𝑛20 + 2∑𝑖≥1(𝛼𝑘𝑖𝑛𝑖)𝑛0 +∑𝑖,𝑖′≥1(𝛼𝑘𝑖𝑛𝑖)(𝛼𝑘𝑖′𝑛𝑖′) − ∑𝑖≥1 𝛼𝑘𝑖[(𝑛𝑖)

2 − 1] − 1

= (𝑚𝑘)2 − 1 − card(𝐽 𝜙𝑘 )

where we have used 𝑚𝑘 = 𝑛0 + ∑𝑖≥1 𝛼𝑘𝑖𝑛𝑖 and card(𝐽 𝜙𝑘 ) = ∑𝑖≥1 𝛼𝑘𝑖[(𝑛𝑖)2 − 1]. This shows that card(𝐽𝑘) = (𝑚𝑘)2 −
1 = dim sl𝑚𝑘 for 𝐽𝑘 ∶= 𝐽 𝜙𝑘 ∪ 𝐽 𝑐𝑘 and that the free family {𝐸𝑘,𝛽}𝛽∈𝐽𝑘 is a basis for sl𝑚𝑘 . This construction and this

computation can be adapted to the case 𝑛0 = 0.

Notice that the derivations 𝜕𝑘,𝛽 = ad𝐸𝑘,𝛽 for 𝛽 ∈ 𝐽 𝑐𝑘 are not necessarily orthogonal. One can apply the Gram-

Schmidt process to transform this basis into an orthonormal one.

Let us return to the main construction. Notice that (14.2.2) implies that the inverse of the matrix (𝑔𝑘,𝛽𝛽′)𝛽,𝛽′∈𝐽𝑘 ,
denoted by (𝑔𝛽𝛽

′

,𝑘 )𝛽,𝛽′∈𝐽𝑘 , is also block diagonal and is such that (𝑔𝛽𝛽
′

,𝑘 )𝛽,𝛽′∈𝐽 𝜙𝑘 is the inverse of (𝑔𝑘,𝛽𝛽′)𝛽,𝛽′∈𝐽 𝜙𝑘 with

𝑔 (𝑖,𝛼,𝜅)(𝑖
′ ,𝛼′ ,𝜅′)

,𝑘 = 𝛿𝑖𝑖′𝛿𝛼𝛼′𝑔𝜅𝜅′,𝑖 .

The derivations 𝜕𝑘,𝛽 for 𝛽 ∈ 𝐽 𝜙𝑘 are the one “inherited” from the derivations on . We will use the convenient

notation 𝜕𝑘,𝛽 = 𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅) for 𝛽 = (𝑖, 𝛼, 𝜅). A key ingredient to introduce the 𝜙-compatibility condition on forms

is the following.

Lemma 14.2.1 For any 1 ≤ 𝑘 ≤ 𝑠, 1 ≤ 𝑖, 𝑖′ ≤ 𝑟 , 1 ≤ 𝛼 ≤ 𝛼𝑘𝑖, 1 ≤ 𝛼′ ≤ 𝛼𝑘𝑖′ , 𝜅 ∈ 𝐼𝑖, 𝜅′ ∈ 𝐼𝑖′ , 𝑎𝑖′ ∈ 𝑖′ , one has

𝜕𝑘,(𝑖,𝛼,𝜅)⋅𝜙
𝑖′
𝑘,𝛼′(𝑎𝑖′) = 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)⋅𝜙

𝑖′
𝑘,𝛼′(𝑎𝑖′) = 𝛿𝑖,𝑖′𝛿𝛼,𝛼′𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅 ⋅𝑎𝑖′)

and

[𝜕𝑘,(𝑖,𝛼,𝜅), 𝜕
𝑘
,(𝑖′ ,𝛼′ ,𝜅′)] = [𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅), 𝜙

𝑖′
𝑘,𝛼′(𝜕

𝑖′
,𝜅′)] = 𝛿𝑖,𝑖′𝛿𝛼,𝛼′𝜙𝑖𝑘,𝛼([𝜕

𝑖
,𝜅 , 𝜕

𝑖
,𝜅′])

Proof 𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅) is an inner derivation for the matrix 𝐸𝑘,(𝑖,𝛼,𝜅) in which the only non zero part 𝐸𝑖,𝜅 is located on

the diagonal of 𝑀𝑚𝑘 at a position depending on 𝑖 and 𝛼, see above. In the same way, the non zero part of 𝜙𝑖′𝑘,𝛼′(𝑎𝑖′)
is 𝑎𝑖′ on the diagonal of 𝑀𝑚𝑘 . When 𝑖 ≠ 𝑖′ or 𝛼 ≠ 𝛼′, the commutator of these two matrices is zero. When 𝑖 = 𝑖′
and 𝛼 = 𝛼′, the commutator is [𝐸𝑖,𝜅 , 𝑎𝑖] = 𝜕𝑖,𝜅 ⋅𝑎𝑖 on the diagonal of 𝑀𝑚𝑘 at the position designated by 𝑖 and 𝛼.

This matrix is obviously 𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅 ⋅𝑎𝑖). This proves the first relation.

The proof of the second relation relies on the same kind of argument since the 𝜕𝑖,𝜅 are inner derivations.

Definition 14.2.2 (𝝓-compatible forms) A form 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖 ∈ Ω∙

Der() is 𝜙-compatible with a form 𝜂 =
⊕𝑠
𝑘=1 𝜂𝑘 ∈ Ω∙

Der() if and only if for any 1 ≤ 𝑖 ≤ 𝑟 , 1 ≤ 𝑘 ≤ 𝑠, 1 ≤ 𝛼 ≤ 𝛼𝑘𝑖, 𝜔𝑖 and 𝜂𝑘 have the same degree 𝑝
and for any 𝜕𝑖,𝜅1 , … , 𝜕𝑖,𝜅𝑝 ∈ Der(𝑖) (𝜅𝑘 ∈ 𝐼𝑖) , one has

𝜙𝑖𝑘,𝛼 (𝜔𝑖(𝜕
𝑖
,𝜅1 , … , 𝜕𝑖,𝜅𝑝 )) = 𝜂𝑘 (𝜙

𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅1), … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝑝 )) (14.2.3)
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Notice that the LHS of (14.2.3) has only non zero values in block matrices on the diagonal of 𝑀𝑚𝑘 at a position

which depends on 𝑖 and 𝛼 (see above). This implies that the RHS has the same structure.

Proposition 14.2.3 Let 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖, 𝜔′ = ⊕𝑟

𝑖=1 𝜔′
𝑖 ∈ Ω∙

Der() and 𝜂 = ⊕𝑠
𝑘=1 𝜂𝑘 , 𝜂

′ = ⊕𝑠
𝑘=1 𝜂

′
𝑘 ∈ Ω∙

Der() such that 𝜔
is 𝜙-compatible with 𝜂 and 𝜔′ is 𝜙-compatible with 𝜂′. Then 𝜔∧𝜔′ is 𝜙-compatible with 𝜂∧𝜂′ and d𝜔 is 𝜙-compatible
with d𝜂.

Proof Since the product of forms decompose along the indices 𝑖 and 𝑘, we fix these indices in the proof and we

suppose that the degres of 𝜔𝑖 and 𝜔′
𝑖 are 𝑝 and 𝑝′ respectively. Inserting the RHS of (14.2.3) into (3.3) one has

(𝜂𝑘 ∧ 𝜂′𝑘) (𝜙
𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅1), … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝑝+𝑝′ ))

=
1

𝑝!𝑝′!
∑

𝜎∈S𝑝+𝑝′

(−1)|𝜎|𝜂𝑘 (𝜙
𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅𝜎(1)), … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝜎(𝑝))) 𝜂

′
𝑘 (𝜙

𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅𝜎(𝑝+1)), … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝜎(𝑝+𝑝′)))

=
1

𝑝!𝑝′!
∑

𝜎∈S𝑝+𝑝′

(−1)|𝜎|𝜙𝑖𝑘,𝛼(𝜔𝑖(𝜕
𝑖
,𝜅𝜎(1) , … , 𝜕𝑖,𝜅𝜎(𝑝))𝜔

′
𝑖 (𝜕

𝑖
,𝜅𝜎(𝑝+1) , … , 𝜕𝑖,𝜅𝜎(𝑝+𝑝′)))

= 𝜙𝑖𝑘,𝛼 ((𝜔𝑖 ∧ 𝜔
′
𝑖 )(𝜕

𝑖
,𝜅1 , … , 𝜕𝑖,𝜅𝑝+𝑝′ ))

In the same way, inserting the RHS of (14.2.3) into (3.3) one has

(d𝑘𝜂𝑘) (𝜙
𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅1), … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝑝+1))

=
𝑝+1

∑
𝑘=1

(−1)𝑘+1𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅𝑘 )⋅𝜂𝑘 (𝜙

𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅1), …

𝑘
∨. … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝑝+1))

+ ∑
1≤𝑘<𝑘′≤𝑝+1

(−1)𝑘+𝑘
′
𝜂𝑘( [𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝑘 ), 𝜙

𝑖
𝑘,𝛼(𝜕

𝑖
,𝜅𝑘′ )] , …

𝑖
∨. …

𝑘
∨. … , 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅𝑝+1))

=
𝑝+1

∑
𝑘=1

(−1)𝑘+1𝜙𝑖𝑘,𝛼 (𝜕
𝑖
,𝜅𝑘 ⋅𝜔𝑖(𝜕

𝑖
,𝜅1 , …

𝑘
∨. … , 𝜕𝑖,𝜅𝑝+1))

+ ∑
1≤𝑘<𝑘′≤𝑝+1

(−1)𝑘+𝑘
′
𝜙𝑖𝑘,𝛼 (𝜔𝑖([𝜕

𝑖
,𝜅𝑘 , 𝜕

𝑖
,𝜅𝑘′ ], …

𝑘
∨. … , 𝜕𝑖,𝜅𝑝+1))

= 𝜙𝑖𝑘,𝛼 ((d𝑖𝜔𝑖)(𝜕
𝑖
,𝜅1 , … , 𝜕𝑖,𝜅𝑝+1))

Let {𝜃𝜅,𝑖}𝜅∈𝐼𝑖 be the dual basis of {𝜕𝑖,𝜅}𝜅∈𝐼𝑖 . Then one has 𝜃𝜅,𝑖(𝜕𝑖
′

,𝜅′) = 𝛿𝑖′𝑖 𝛿𝜅
′

𝜅′ . In the same way, denote by {𝜃𝛽,𝑘}𝛽∈𝐽𝑘
the dual basis of {𝜕𝑘,𝛽}𝛽∈𝐽𝑘 .

Remark 14.2.4 (𝝓-compatibility and components of forms) Let us first illustrate 𝜙-compatibility for 1-

forms. One has 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖𝜅 ⊗ 𝜃𝜅,𝑖 for 𝜔𝑖𝜅 ∈ 𝑖 and 𝜂 = ⊕𝑠

𝑘=1 𝜂
𝑘
𝛽 ⊗ 𝜃𝛽,𝑘 for 𝜂𝑘𝛽 ∈ 𝑘 . Then (14.2.3) reduces to

𝜙𝑖𝑘,𝛼(𝜔
𝑖
𝜅) = 𝜂𝑘(𝑖,𝛼,𝜅). This means that the components 𝜂𝑘𝛽 of 𝜂 in the “inherited directions” 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)’s are inherited

from 𝜔.

In the same way, for 𝑝-forms, the LHS of (14.2.3) is non zero only for components along the 𝛽’s of the form

(𝑖, 𝛼, 𝜅) with the same couple (𝑖, 𝛼), and these components are given by the RHS. So, all the components 𝜂𝑘𝛽1…𝛽𝑝
in the “inherited directions” 𝛽1, … , 𝛽𝑝 for 𝛽𝑘 = (𝑖, 𝛼, 𝜅𝑘) (same 𝑖 and 𝛼) are constrained by the 𝜙-compatibility

condition. □

Let  = ⊕𝑟
𝑖=1 𝑖 and  = ⊕𝑠

𝑘=1 𝑘 and let ∇
and ∇

be two connections on the -module  and a -

module  with an one-to-one 𝜙-compatible map 𝜙Mod ∶  →  . We will used the maps 𝜙𝑖
Mod,𝑘,𝛼 ∶ 𝑖 → 𝑘 .

These connections define connections ∇,𝑖
on 𝑖 and ∇ ,𝑘

on 𝑘 .

Definition 14.2.5 The two connections ∇ and ∇ are said to be 𝜙-compatible if and only if, for any 1 ≤ 𝑖 ≤ 𝑟 ,
1 ≤ 𝑘 ≤ 𝑠, 1 ≤ 𝛼 ≤ 𝛼𝑘𝑖, 𝜅 ∈ 𝐼𝑖, one has

𝜙𝑖
Mod,𝑘,𝛼 (∇

,𝑖
𝜕𝑖,𝜅

𝑒𝑖) = ∇ ,𝑘
𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)
𝜙𝑖

Mod,𝑘,𝛼(𝑒𝑖). (14.2.4)
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When  =  and  = , one can introduce the connection 1-forms 𝜔 and 𝜔 for ∇
and ∇

. Then

one has

Lemma 14.2.6 If 𝜔 and 𝜔 are 𝜙-compatible, then ∇ and ∇ are 𝜙-compatible.

Proof Here we have 𝜙Mod = 𝜙. Using 𝑖 ∋ 𝑒𝑖 = 𝑒𝑖1𝑖 and the definitions of the connection 1-forms, one has

∇,𝑖
𝜕𝑖,𝜅

𝑒𝑖 = (𝜕𝑖,𝜅 ⋅𝑒𝑖)1𝑖 + 𝑒𝑖𝜔,𝑖(𝜕𝑖,𝜅), so that

𝜙𝑖𝑘,𝛼 (∇
,𝑖
𝜕𝑖,𝜅

𝑒𝑖) = 𝜙𝑖𝑘,𝛼 ((𝜕
𝑖
,𝜅 ⋅𝑒𝑖)1𝑖) + 𝜙𝑖𝑘,𝛼 (𝑒𝑖𝜔,𝑖(𝜕𝑖,𝜅))

= (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)⋅𝜙

𝑖
𝑘,𝛼(𝑒𝑖)) 𝜙

𝑖
𝑘,𝛼(1𝑖) + 𝜙𝑖𝑘,𝛼(𝑒𝑖)𝜔 ,𝑘 (𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅))

= (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)⋅𝜙

𝑖
𝑘,𝛼(𝑒𝑖)) 𝜙

𝑖
𝑘,𝛼(1𝑖) + 𝜙𝑖𝑘,𝛼(𝑒𝑖)∇

 ,𝑘
𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)

1𝑘

= 𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)⋅𝜙

𝑖
𝑘,𝛼(𝑒𝑖) + 𝜙𝑖𝑘,𝛼(𝑒𝑖)∇

 ,𝑘
𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)

1𝑘 = ∇ ,𝑘
𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)
𝜙𝑖𝑘,𝛼(𝑒𝑖)

where we have used 𝜙𝑖𝑘,𝛼(𝑒𝑖) = 𝜙𝑖𝑘,𝛼(𝑒𝑖)𝜙
𝑖
𝑘,𝛼(1𝑖) and 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)⋅𝜙𝑖𝑘,𝛼(1𝑖) = 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅 ⋅1𝑖) = 0 so that, using the

Leibniz rule, (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)⋅𝜙𝑖𝑘,𝛼(𝑒𝑖)) 𝜙

𝑖
𝑘,𝛼(1𝑖) = 𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)⋅𝜙𝑖𝑘,𝛼(𝑒𝑖).

Remark 14.2.7 Let us stress that the reverse of this Lemma is not true: 𝜙-compatibility between connections is

weaker than 𝜙-compatibility between their connection 1-forms. Indeed, let us assume that the two connections

are 𝜙-compatible, that is that the first and last expressions are equal in the computation in the above proof. Then

one can extract an equality at the second line between the connection 1-forms: Take 𝑒𝑖 = 1𝑖 and since then the

first terms in both sides are zero, one gets

𝜙𝑖𝑘,𝛼 (𝜔,𝑖(𝜕𝑖,𝜅)) = 𝜙𝑖𝑘,𝛼(1𝑖)𝜔 ,𝑘 (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)) (14.2.5)

This a weaker relation than (14.2.3). In Remark 14.2.4, we noticed that the 𝜙-compatibility (14.2.3) between

forms implies that all the values 𝜔 ,𝑘 (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)) come exactly from the values 𝜔,𝑖(𝜕𝑖,𝜅). What (14.2.5) says is

that 𝜙𝑖𝑘,𝛼(1𝑖), as a projector, selects only a part of the matrix 𝜔 ,𝑘 (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)) to be compared with the matrix

𝜔,𝑖(𝜕𝑖,𝜅). So some parts of the matrix 𝜔 ,𝑘 (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)) may not be inherited.

For practical reasons, we prefer to deal with the stronger 𝜙-compatibility condition, since it permits to “trace”

(to “follow”) the degrees of freedom of the 𝜔,𝑖’s “inside” the 𝜔 ,𝑘’s. The weaker 𝜙-compatibility condition mix

up these degrees of freedom into the matrices 𝜔 ,𝑘 (𝜙𝑖𝑘,𝛼(𝜕
𝑖
,𝜅)). □

Let us consider the following specific situation for 𝜙 ∶  → , where  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 is embedded into  = 𝑀𝑚

with 𝑚 ≥ ∑𝑟
𝑖=1 𝑛𝑖 in such a way that each 𝑀𝑛𝑖 appears once and only once on the diagonal of 𝑀𝑚. We consider

on  and  the integral defined in Sect. 4.1.1.

Proposition 14.2.8 Let 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖 ∈ Ω∙

Der() and 𝜂 ∈ Ω∙
Der() be such that 𝜂 is 𝜙-compatible with 𝜔 and 𝜂

vanishes on every derivation 𝜕,𝛽 with 𝛽 ∈ 𝐽 𝑐 (here we omit the 𝑘 = 1 index). Then

∫

𝜂 ∧ ⋆𝜂 = ∫


𝜔 ∧ ⋆𝜔

Proof Since 𝑘 = 1 and 𝛼 = 1 are the only possible values, to simplify the notations we write 𝜙𝑖 for 𝜙𝑖𝑘,𝛼 . We will

refer to 𝜙𝑖(𝑀𝑛𝑖) ⊂ 𝑀𝑚 as the 𝑖-th block on the diagonal of𝑀𝑚. The metric 𝑔 induces an orthogonal decomposition

of the derivations of  which is compatible with these blocks. Two derivations ad𝐸 and ad𝐸′ such that 𝐸 ∈ 𝜙𝑖(𝑀𝑛𝑖)
and 𝐸′ has no non vanishing entries in 𝜙𝑖(𝑀𝑛𝑖) are orthogonal. So, Der() = ⊕𝑟

𝑖=1 Der(𝜙𝑖(𝑀𝑛𝑖)) ⊕ Der()𝑐 where

the decomposition is orthogonal for 𝑔 and Der()𝑐 are derivations “outside” of the 𝜙𝑖(𝑀𝑛𝑖)’s.

For any 𝑝 one has 𝜂(𝜙𝑖(𝜕𝑖,𝜅1), … , 𝜙𝑖(𝜕𝑖,𝜅𝑝 )) = 𝜙𝑖 (𝜔𝑖(𝜕
𝑖
,𝜅1 , … , 𝜕𝑖,𝜅𝑝 )).

1
These are the only possible values for 𝜂.

In particular 𝜂 vanishes on any derivation in Der()𝑐 . Notice that 𝜙𝑖 (𝜔𝑖(𝜕
𝑖
,𝜅1 , … , 𝜕𝑖,𝜅𝑝 )) is 𝜔𝑖(𝜕𝑖,𝜅1 , … , 𝜕𝑖,𝜅𝑝 ) ∈ 𝑀𝑛𝑖

1
Since the 𝜔𝑖 and 𝜂 are not supposed to be homogeneous in Ω∙

Der(𝑖) and Ω∙
Der(), one has to evaluate them against any number of

derivations.
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at the 𝑖-th block on the diagonal of 𝑀𝑚. We can then write 𝜂 = ∑𝑟
𝑖=1 𝜂𝑖 where 𝜂𝑖 ∈ 𝜙𝑖(𝑀𝑛𝑖) ⊗ ⋀∙ Der(𝜙𝑖(𝑀𝑛𝑖))∗ ⊂

𝑀𝑚 ⊗⋀∙ Der(𝜙𝑖(𝑀𝑛𝑖))∗.

Let us define the metric 𝑔𝜙𝑖(𝑀𝑛𝑖 ) as the restriction of 𝑔 to Der(𝜙𝑖(𝑀𝑛𝑖)). From this metric we construct its

Hodge ⋆-operator ⋆𝜙𝑖(𝑀𝑛𝑖 ) and its NC integral ∫𝜙𝑖(𝑀𝑛𝑖 )
along the derivations of the matrix block 𝜙𝑖(𝑀𝑛𝑖). Then we

can apply Lemma 4.1.6, where the linear form 𝜏 is the ordinary trace on 𝑀𝑚, to get

∫

𝜂 ∧ ⋆𝜂 = ∑𝑟

𝑖=1 ∫
𝜙𝑖(𝑀𝑛𝑖 )

𝜂𝑖 ∧ ⋆𝜙𝑖(𝑀𝑛𝑖 )𝜂𝑖

One has Der(𝜙𝑖(𝑀𝑛𝑖)) ≃ Der(𝑀𝑛𝑖) and, using (14.2.1), 𝑔𝜙𝑖(𝑀𝑛𝑖 ) becomes 𝑔,𝑖 in this identification, so that ⋆𝜙𝑖(𝑀𝑛𝑖 )

corresponds to ⋆𝑀𝑛𝑖
. In this identification, the form 𝜂𝑖 is then 𝜔𝑖, so that ∫𝜙𝑖(𝑀𝑛𝑖 )

𝜂𝑖 ∧ ⋆𝜙𝑖(𝑀𝑛𝑖 )𝜂𝑖 = ∫𝑀𝑛𝑖
𝜔𝑖 ∧ ⋆𝑀𝑛𝑖

𝜔𝑖.
This shows that ∫ 𝜂 ∧ ⋆𝜂 = ∑𝑟

𝑖=1 ∫𝑀𝑛𝑖
𝜔𝑖 ∧ ⋆𝑀𝑛𝑖

𝜔𝑖 = ∫ 𝜔 ∧ ⋆𝜔 by (4.1.6).

A slight adjustment of the proof of Prop. 14.2.8 gives (with the same notations):

Corollary 14.2.9 Suppose that 𝜙 ∶  →  includes 𝜅𝑖 times 𝑀𝑛𝑖 on the diagonal of 𝑀𝑚. Then, with the same
assumptions, one has

∫

𝜂 ∧ ⋆𝜂 = ∑𝑟

𝑖=1 𝜅𝑖 ∫
𝑖
𝜔𝑖 ∧ ⋆𝑖𝜔𝑖

14.3 Direct Limit of NC Gauge Field Theories
14.3.1 𝜙-Compatibility of NC Gauge Field Theories
As mentioned in Sect. 2.2, we will consider non unital ∗-homomorphisms 𝜙 ∶  = ⊕𝑟

𝑖=1𝑀𝑛𝑖 →  = ⊕𝑠
𝑘=1𝑀𝑚𝑘 .

The reason for this choice is that we would like to cover physical situations where the gauge group are enlarged at

each step of the defining inductive sequence {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚}. For instance, one may ask for the inclusion

of 𝑈(2) into 𝑈(3), which can be performed in our framework by considering a natural inclusion 𝜙 ∶ 𝑀2 → 𝑀3.

This inclusion cannot be unital. A unital morphism would require for instance to consider the inclusion 𝜙 ∶
𝑀1 ⊕𝑀2 → 𝑀3, which may not correspond to a phenomenological requirement.

We first consider a NCGFT on the algebra  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 . Let us use the notations of Sect. 14.2: for any 𝑖, let

{𝜕𝑖,𝜅 ∶= ad𝐸𝑖,𝜅 }𝜅∈𝐼𝑖 be an orthogonal basis of Der(𝑖) = Int(𝑀𝑛𝑖) where 𝐸𝑖,𝜅 ∈ sl𝑛𝑖 and 𝐼𝑖 is a totally ordered set of

cardinal 𝑛2𝑖 − 1, and let {𝜃𝜅,𝑖}𝜅∈𝐼𝑖 be the dual basis of {𝜕𝑖,𝜅}𝜅∈𝐼𝑖 .

Since we are interested in the manipulation of connections as 1-forms, we restrict our analysis to the left

module  = . From Example 11.5.2 and the results in Sect. 14.1, with obvious notations, a connection 1-form

can be written as 𝜔 = ⊕𝑟
𝑖=1 𝜔𝑖 and its curvature 2-form as Ω = ⊕𝑟

𝑖=1 Ω𝑖, with 𝜔𝑖 = 𝜔𝑖𝜅𝜃𝜅,𝑖 = 𝜔̊𝑖 − 𝐵𝑖,𝜅𝜃𝜅,𝑖 =
(𝐸𝑖,𝜅 − 𝐵𝑖,𝜅)𝜃𝜅,𝑖 and Ω𝑖 = 1

2Ω
𝑖
𝜅1𝜅2𝜃

𝜅1
,𝑖 ∧ 𝜃

𝜅2
,𝑖 with Ω𝑖

𝜅1𝜅2 = −([𝐵𝑖,𝜅1 , 𝐵
𝑖
,𝜅2] − 𝐶(𝑛𝑖)𝜅3𝜅1𝜅2𝐵

𝑖
,𝜅3) where 𝐶(𝑛𝑖)𝜅3𝜅1𝜅2 are the

structure constants for the basis {𝐸𝑖,𝜅} of sl𝑛𝑖 .

The natural action for this NCGFT is then

 = −∑𝑟
𝑖=1 ∫

𝑖
Ω𝑖 ∧ ⋆𝑖Ω𝑖 = −∑𝑟

𝑖=1
1
2 tr(Ω

𝑖
𝜅1𝜅2Ω

𝑖,𝜅1𝜅2) = −∑𝑟
𝑖=1

1
2 ∑𝜅1𝜅2∈𝐼𝑖 tr(Ω

𝑖
𝜅1𝜅2)

2

= −∑𝑟
𝑖=1

1
2 ∑𝜅1𝜅2∈𝐼𝑖 tr([𝐵

𝑖
,𝜅1 , 𝐵

𝑖
,𝜅2] − 𝐶(𝑛𝑖)𝜅3𝜅1𝜅2𝐵

𝑖
,𝜅3)

2

where in the last line we have used the fact that the metric is diagonal.

As in Subsect 11.5.3, one can also consider a NCGFT on the algebra ̂ ∶= 𝐶∞(𝑀) ⊗ = ⊕𝑟
𝑖=1 𝐶∞(𝑀) ⊗ 𝑀𝑛𝑖

for a manifold 𝑀 . Then 𝜔𝑖 = 𝐴𝑖
,𝜇d𝑥𝜇 +(𝐸𝑖,𝜅 −𝐵𝑖,𝜅)𝜃𝜅,𝑖 and Ω𝑖 = 1

2Ω
𝑖
𝜇1𝜇2d𝑥

𝜇1 ∧d𝑥𝜇2 +Ω𝑖
𝜇𝜅d𝑥𝜇 ∧𝜃𝜅,𝑖 +

1
2Ω

𝑖
𝜅1𝜅2𝜃

𝜅1
,𝑖 ∧𝜃

𝜅2
,𝑖

with

Ω𝑖
𝜇1𝜇2 = 𝜕𝜇1𝐴

𝑖
,𝜇2 − 𝜕𝜇2𝐴

𝑖
,𝜇1 − [𝐴𝑖

,𝜇1 , 𝐴
𝑖
,𝜇2],

Ω𝑖
𝜇𝜅 = −(𝜕𝜇𝐵𝑖,𝜅 − [𝐴𝑖

,𝜇, 𝐵
𝑖
,𝜅]),
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Ω𝑖
𝜅1𝜅2 = −([𝐵𝑖,𝜅1 , 𝐵

𝑖
,𝜅2] − 𝐶(𝑛𝑖)𝜅3𝜅1𝜅2𝐵

𝑖
,𝜅3).

In that case, the natural action is

 = −∑𝑟
𝑖=1 ∫

𝑀 (
1
2 tr(Ω

𝑖
𝜇1𝜇2Ω

𝑖,𝜇1𝜇2) + tr(Ω𝑖
𝜇𝜅Ω

𝑖,𝜇𝜅) + 1
2 tr(Ω

𝑖
𝜅1𝜅2Ω

𝑖,𝜅1𝜅2))
√
|𝑔𝑀 |d𝑥

where 𝑔𝑀 is a metric on 𝑀 .

This action shares the same main features as mentioned in Subsect 11.5.3: it makes appear a SSBM thanks to

the presence of the scalar fields 𝐵𝑖,𝜅 = 𝐵𝑖,𝜅
′

,𝜅𝐸
𝑖
,𝜅′ + 𝑖𝐵𝑖,0,𝜅1𝑛𝑖 which can be non zero for a minimal configuration of

the Higgs potential − 1
2 ∑

𝑟
𝑖=1 tr(Ω𝑖

𝜅1𝜅2Ω
𝑖,𝜅1𝜅2). Then the couplings in −∑𝑟

𝑖=1 tr(Ω𝑖
𝜇𝜅Ω𝑖,𝜇𝜅) induce mass terms for the

(gauge bosons) fields 𝐴𝑖
,𝜇 = 𝐴𝑖,𝜅

,𝜇𝐸
𝑖
,𝜅 + 𝑖𝐴𝑖,0

,𝜇1𝑛𝑖 . We will concentrate of this feature in the following.

In order to simplify the analysis of the relation between NCGFT defined at each step of an inductive sequence

of finite dimensional algebras {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚}, we will consider a unique inclusion 𝜙 ∶  →  with

 = ⊕𝑟
𝑖=1𝑀𝑛𝑖 and  = ⊕𝑠

𝑘=1𝑀𝑚𝑘 as in Sect. 14.2.

Let 𝜂 = ⊕𝑠
𝑘=1 𝜂𝑘 be a connection 1-form on  for the module  = . Denote by Θ = ⊕𝑠

𝑘=1 Θ𝑘 its curvature

2-form. We use the notation 𝜂𝑘 = 𝜂𝑘𝛽𝜃
𝛽
,𝑘 = (𝐸𝑘,𝛽−𝐵

𝑘
,𝛽)𝜃

𝛽
,𝑘 and Θ𝑘 = 1

2Θ
𝑘
𝛽1𝛽2𝜃

𝛽1
,𝑘 ∧𝜃

𝛽2
,𝑘 with Θ𝑘

𝛽1𝛽2 = −([𝐵𝑘,𝛽1 , 𝐵
𝑘
,𝛽2]−

𝐶(𝑚𝑘)
𝛽3
𝛽1𝛽2𝐵

𝑘
,𝛽3) where 𝐶(𝑚𝑘)

𝛽3
𝛽1𝛽2 are the structure constants for the basis {𝐸𝑘,𝛽} of sl𝑚𝑘 .

We suppose that 𝜂 is 𝜙-compatible with 𝜔. This implies that, for all 𝛽 = (𝑖, 𝛼, 𝜅) ∈ 𝐽 𝜙𝑘 , 𝜂𝑘𝛽 = 𝜙𝑖𝑘,𝛼(𝜔
𝑖
𝜅) and that

𝐵𝑘,𝛽 = 𝜙𝑖𝑘,𝛼(𝐵
𝑖
,𝜅).

Lemma 14.3.1 For any 𝛽1 = (𝑖1, 𝛼1, 𝜅1), 𝛽2 = (𝑖2, 𝛼2, 𝜅2) ∈ 𝐽 𝜙𝑘 , Θ𝑘
𝛽1𝛽2 = 0 for 𝑖1 ≠ 𝑖2 or 𝛼1 ≠ 𝛼2 and Θ𝑘

𝛽1𝛽2 =
𝜙𝑖𝑘,𝛼(Ω

𝑖
𝜅1𝜅2) for 𝑖 = 𝑖1 = 𝑖2 and 𝛼 = 𝛼1 = 𝛼2.

Proof One has to evaluate

Θ𝑘(𝜙𝑖1𝑘,𝛼1(𝜕
𝑖1
,𝜅1), 𝜙

𝑖2
𝑘,𝛼2(𝜕

𝑖2
,𝜅2))

= 𝜙𝑖1𝑘,𝛼1(𝜕
𝑖1
,𝜅1)⋅𝜂𝑘(𝜙

𝑖2
𝑘,𝛼2(𝜕

𝑖2
,𝜅2)) − 𝜙𝑖2𝑘,𝛼2(𝜕

𝑖2
,𝜅2)⋅𝜂𝑘(𝜙

𝑖1
𝑘,𝛼1(𝜕

𝑖1
,𝜅1))

− 𝜂𝑘([𝜙𝑖1𝑘,𝛼1(𝜕
𝑖1
,𝜅1), 𝜙

𝑖2
𝑘,𝛼2(𝜕

𝑖2
,𝜅2)]) − [𝜂𝑘(𝜙𝑖1𝑘,𝛼1(𝜕

𝑖1
,𝜅1)), 𝜂𝑘(𝜙

𝑖2
𝑘,𝛼2(𝜕

𝑖2
,𝜅2))]

= 𝜙𝑖1𝑘,𝛼1(𝜕
𝑖1
,𝜅1)⋅𝜙

𝑖2
𝑘,𝛼2(𝜔𝑖2(𝜕

𝑖2
,𝜅2)) − 𝜙𝑖2𝑘,𝛼2(𝜕

𝑖2
,𝜅2)⋅𝜙

𝑖1
𝑘,𝛼1(𝜔𝑖1(𝜕

𝑖1
,𝜅1))

− 𝜂𝑘([𝜙𝑖1𝑘,𝛼1(𝜕
𝑖1
,𝜅1), 𝜙

𝑖2
𝑘,𝛼2(𝜕

𝑖2
,𝜅2)]) − [𝜙𝑖1𝑘,𝛼1(𝜔𝑖1(𝜕

𝑖1
,𝜅1)), 𝜙

𝑖2
𝑘,𝛼2(𝜔𝑖2(𝜕

𝑖2
,𝜅2))]

For 𝑖1 ≠ 𝑖2 or 𝛼1 ≠ 𝛼2, from Lemma 14.2.1, all the terms in the first line vanish while the last commutator is zero

since the two matrices involved do not occupy the same position on the diagonal of 𝑀𝑚𝑘 . For 𝑖1 = 𝑖2 = 𝑖 and

𝛼1 = 𝛼2 = 𝛼, the expression reduces to 𝜙𝑖𝑘,𝛼(Ω𝑖(𝜕𝑖,𝜅1 , 𝜕
𝑖
,𝜅2)) (which is also a consequence of Prop. 14.2.3).

Notice that this result is also a direct consequence of the expression of Θ𝑘
𝛽1𝛽2 in terms of the 𝐵𝑘,𝛽’s.

The curvature components Θ𝑘
𝛽1𝛽2 for 𝛽1, 𝛽2 ∈ 𝐽𝑘 can be separated according to the 3 possibilities: (1) (𝛽1, 𝛽2)

in 𝐽 𝜙𝑘 × 𝐽 𝜙𝑘 ; (2) (𝛽1, 𝛽2) or (𝛽2, 𝛽1) in 𝐽 𝜙𝑘 × 𝐽 𝑐𝑘 ; (3) (𝛽1, 𝛽2) in 𝐽 𝑐𝑘 × 𝐽
𝑐
𝑘 . From (14.2.2), the metric 𝑔 (and its inverse) is

block diagonal for these subsets of indices. The natural action on  can then be decomposed as

 = −∑𝑠
𝑘=1

1
2 ∑𝛽1𝛽2∈𝐽𝑘 tr(Θ

𝑘
𝛽1𝛽2Θ

𝑘,𝛽1𝛽2)

= − ∑𝑠
𝑘=1 (

1
2 ∑𝛽1𝛽2∈𝐽

𝜙
𝑘
tr(Θ𝑘

𝛽1𝛽2Θ
𝑘,𝛽1𝛽2) + ∑𝛽1∈𝐽

𝜙
𝑘 ,𝛽2∈𝐽

𝑐
𝑘
tr(Θ𝑘

𝛽1𝛽2Θ
𝑘,𝛽1𝛽2) + 1

2 ∑𝛽1𝛽2∈𝐽 𝑐𝑘
tr(Θ𝑘

𝛽1𝛽2Θ
𝑘,𝛽1𝛽2))

For fixed 𝑘, let us consider the first summation on 𝐽 𝜙𝑘 . By Lemma 14.3.1, the two indices 𝛽1 = (𝑖1, 𝛼1, 𝜅1), 𝛽2 =
(𝑖2, 𝛼2, 𝜅2) ∈ 𝐽

𝜙
𝑘 must satisfy 𝑖1 = 𝑖2 and 𝛼1 = 𝛼2 to get a non zero contribution, so that

1
2 ∑𝛽1𝛽2∈𝐽

𝜙
𝑘
tr(Θ𝑘

𝛽1𝛽2Θ
𝑘,𝛽1𝛽2) = 1

2 ∑
𝑟
𝑖=1 ∑

𝛼𝑘𝑖
𝛼=1 ∑𝜅1 ,𝜅2∈𝐼𝑖 tr(Θ

𝑘
(𝑖,𝛼,𝜅1)(𝑖,𝛼,𝜅2)Θ

𝑘,(𝑖,𝛼,𝜅1)(𝑖,𝛼,𝜅2))

= 1
2 ∑

𝑟
𝑖=1 ∑

𝛼𝑘𝑖
𝛼=1 ∑𝜅1 ,𝜅2∈𝐼𝑖 tr(Ω

𝑖
𝜅1𝜅2Ω

𝑖,𝜅1𝜅2) = 1
2 ∑

𝑟
𝑖=1 𝛼𝑘𝑖∑𝜅1 ,𝜅2∈𝐼𝑖 tr(Ω

𝑖
𝜅1𝜅2Ω

𝑖,𝜅1𝜅2)



14.3. DIRECT LIMIT OF NC GAUGE FIELD THEORIES 147

where we have used (14.2.1) (which holds true also for the inverse metrics) to make an equivalence between

raising the indices 𝛽 and raising the indices 𝜅.

This relation tells us that the action on contains copies of terms from the action on. As expected, these terms

involve the degrees of freedom which are inherited on  from those on . They involve also the multiplicities

of the inclusions of 𝑀𝑛𝑖 into 𝑀𝑚𝑘 . This implies that the relative weights of these terms are not the same on  as

they are on .

Let us now consider the algebra ̂ ∶= 𝐶∞(𝑀) ⊗  = ⊕𝑠
𝑘=1 𝐶

∞(𝑀) ⊗ 𝑀𝑚𝑘 . The connection 1-form is

parametrized as 𝜂𝑘 = 𝐴𝑘
,𝜇d𝑥𝜇 + (𝐸𝑘,𝛽 − 𝐵𝑘,𝛽)𝜃

𝛽
,𝑘 . We extend the 𝜙-compatibility between 𝜂 and 𝜔 on the ge-

ometrical part by the condition that 𝐴𝑘
,𝜇 = ∑𝑟

𝑖=1 𝜙𝑖𝑘(𝐴
𝑖
,𝜇) + 𝐴𝑘,𝑐

,𝜇 where 𝐴𝑘,𝑐
,𝜇 ∈ 𝑀𝑚𝑘 has zero entries in the image

of 𝜙𝑘 (which is concentred as blocks on the diagonal). In other words, all the degrees of freedom in𝐴𝑖
,𝜇 are copied

into 𝐴𝑘
,𝜇 according to the map 𝜙.

From this decomposition, the components of the curvature 2-forms Θ𝑘 = 1
2Θ

𝑘
𝜇1𝜇2d𝑥

𝜇1 ∧ d𝑥𝜇2 +Θ𝑘
𝜇𝛽d𝑥𝜇 ∧ 𝜃𝛽,𝑘 +

1
2Θ

𝑘
𝛽1𝛽2𝜃

𝛽1
,𝑘 ∧ 𝜃

𝛽2
,𝑖 can be separated into inherited components from the curvature 2-forms Ω𝑖 on ̂, interactions

terms between inherited components of the 𝜔𝑖 1-forms with new components of the 𝜂𝑘 1-forms, and completely

new terms from new components of the 𝜂𝑘 . Explicitly, one has

Θ𝑘
𝜇1𝜇2 = 𝜕𝜇1𝐴

𝑘
,𝜇2 − 𝜕𝜇2𝐴

𝑘
,𝜇1 − [𝐴𝑘

,𝜇1 , 𝐴
𝑘
,𝜇2]

= ∑𝑟
𝑖=1 𝜙

𝑖
𝑘 (𝜕𝜇1𝐴

𝑖
,𝜇2 − 𝜕𝜇2𝐴

𝑖
,𝜇1 − [𝐴𝑖

,𝜇1 , 𝐴
𝑖
,𝜇2])

− ∑𝑟
𝑖=1 ([𝜙

𝑖
𝑘(𝐴

𝑖
,𝜇1), 𝐴

𝑘,𝑐
,𝜇2] + [𝐴𝑘,𝑐

,𝜇1 , 𝜙
𝑖
𝑘(𝐴

𝑖
,𝜇2)]) + 𝜕𝜇1𝐴

𝑘,𝑐
,𝜇2 − 𝜕𝜇2𝐴

𝑘,𝑐
,𝜇1 − [𝐴𝑘,𝑐

,𝜇1 , 𝐴
𝑘,𝑐
,𝜇2]

In the same way, for any 𝛽 = (𝑖, 𝛼, 𝜅) ∈ 𝐽 𝜙𝑘 , one has

Θ𝑘
𝜇𝛽 = −(𝜕𝜇𝐵𝑘,𝛽 − [𝐴𝑘

,𝜇, 𝐵
𝑘
,𝛽]) = −𝜙𝑖𝑘,𝛼 (𝜕𝜇𝐵

𝑖
,𝜅 − [𝐴𝑖

,𝜇, 𝐵
𝑖
,𝜅]) + [𝐴𝑘,𝑐

,𝜇, 𝜙
𝑖
𝑘,𝛼(𝐵

𝑖
,𝜅)]

where the last term is off diagonal. For 𝛽 ∈ 𝐽 𝑐𝑘 , Θ𝑘
𝜇𝛽 depends on the fields 𝐴𝑘,𝑐

,𝜇 which couple with 𝐵𝑘,𝛽 . Finally,

Θ𝑘
𝛽1𝛽2 has been explored before.

Denote by ×
and ×

the groups of invertible elements in  and  and let us define 𝜙 ∶ × → ×
, for any

𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ ×

, as

𝜙𝑘(𝑎) ∶= 𝜋𝑘 ◦ 𝜙(𝑎) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑎1 ⊗ 1𝛼𝑘1 0 ⋯ 0 0
0 𝑎2 ⊗ 1𝛼𝑘2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑎𝑟 ⊗ 1𝛼𝑘𝑟 0
0 0 ⋯ 0 1𝑛0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

It is easy to check that 𝜙 is a morphism of groups: for 𝑎 ∈ ×
, one has 𝜙(𝑎) ∈ ×

and 𝜙(𝑎)−1 = 𝜙(𝑎−1). One has

also 𝜙(𝑎)∗ = 𝜙(𝑎∗) so that if 𝑢 ∈  () is a unitary element in , so is 𝜙(𝑢) in .

Lemma 14.3.2 For any 𝑎 ∈  and any 𝑢 ∈ ×, one has 𝜙(𝑢)𝜙(𝑎) = 𝜙(𝑢𝑎) and 𝜙(𝑎)𝜙(𝑢) = 𝜙(𝑎𝑢). For any
𝑘 ∈ {1, … , 𝑠}, any 𝑖 ∈ {1, … , 𝑟}, and any 𝛼 ∈ {1, … , 𝛼𝑘𝑖}, one has 𝜙(𝑢)𝜙𝑖𝑘,𝛼(𝑎) = 𝜙𝑖𝑘,𝛼(𝑢𝑎) and 𝜙𝑖𝑘,𝛼(𝑎)𝜙(𝑢) = 𝜙𝑖𝑘,𝛼(𝑎𝑢).

Proof From (13.2.5), it is sufficient to prove the last relations involving 𝜙𝑖𝑘,𝛼 . Since 𝜙(𝑢) differs only from 𝜙(𝑢) at

the last 𝑛0 × 𝑛0 block entry on the diagonal where 𝜙𝑖𝑘,𝛼(𝑎) is zero, one has 𝜙(𝑢)𝜙𝑖𝑘,𝛼(𝑎) = 𝜙(𝑢)𝜙𝑖𝑘,𝛼(𝑎) = 𝜙𝑖𝑘,𝛼(𝑢𝑎) by

(13.2.5) and (13.2.7). The same proof applies for the right multiplication by 𝑢.

Proposition 14.3.3 Let 𝜔 be a connection 1-form on  and let 𝜂 be a 𝜙-compatible connection 1-form on . Let
𝑢 ∈  () and 𝑣 ∶= 𝜙(𝑢) ∈  (). Then 𝜔𝑢 and 𝜂𝑣 are 𝜙-compatible.
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Proof Recall that 𝜔𝑢 = 𝑢−1𝜔𝑢 − 𝑢−1(d𝑢) and 𝜂𝑣 = 𝑣−1𝜂𝑣 − 𝑣−1(d𝑣). Notice that 𝜋 𝑖(𝜔𝑢) = 𝑢−1𝑖 𝜔𝑖𝑢𝑖 − 𝑢−1𝑖 (d𝑢𝑖) ∈
Ω1
Der(𝑖) and similarly 𝜋𝑘(𝜂𝑣) = 𝑣−1𝑘 𝜂𝑘𝑣𝑘 − 𝑣−1𝑘 (d𝑣𝑘) ∈ Ω1

Der(𝑘). For any 𝑘 and any 𝛽 = (𝑖, 𝛼, 𝜅) ∈ 𝐽 𝜙𝑘 , one has

𝜋𝑘(𝜂
𝑣)(𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅)) = 𝑣−1𝑘 𝜂𝑘(𝜙𝑖𝑘,𝛼(𝜕

𝑖
,𝜅))𝑣𝑘 − 𝑣−1𝑘 [𝜙𝑖𝑘,𝛼(𝐸

𝑖
,𝜅), 𝑣𝑘]

= 𝑣−1𝑘 𝜙𝑖𝑘,𝛼 (𝜔𝑖(𝜕
𝑖
,𝜅)) 𝑣𝑘 − 𝑣−1𝑘 𝜙𝑖𝑘,𝛼([𝐸

𝑖
,𝜅 , 𝑢𝑖])

= 𝜙𝑖𝑘,𝛼 (𝑢
−1
𝑖 𝜔𝑖(𝜕

𝑖
,𝜅)𝑢𝑖 − 𝑢−1𝑖 (d𝑢𝑖)(𝜕𝑖,𝜅)) = 𝜙𝑖𝑘,𝛼 (𝜋

𝑖
(𝜔

𝑢)(𝜕𝑖,𝜅))

where we have used Lemma 14.3.2.

We have a similar result for connections on ̂ and ̂:

Proposition 14.3.4 Let 𝜔 be a connection 1-form on ̂ and let 𝜂 be a 𝜙-compatible (in the extended version) con-
nection 1-form on ̂. Let 𝑢 ∈  (̂) and 𝑣 ∶= 𝜙(𝑢) ∈  (̂). Then 𝜔𝑢 and 𝜂𝑣 are 𝜙-compatible (in the extended
version).

Proof Concerning the algebraic parts of 𝜔𝑖 and 𝜂𝑘 , the proof is the same as for Prop. 14.3.3. It remains to show

that the 𝐴𝑖,𝑢𝑖
,𝜇 ∶= 𝑢−1𝑖 𝐴𝑖

,𝜇𝑢𝑖 − 𝑢−1𝑖 𝜕𝜇𝑢𝑖 are copied into 𝐴𝑘,𝑣𝑘
,𝜇 ∶= 𝑣−1𝑘 𝐴𝑘

,𝜇𝑣𝑘 − 𝑣−1𝑘 𝜕𝜇𝑣𝑘 according to the map 𝜙. Using

the fact that 𝑣𝑘 is block diagonal, and that these blocks are 𝜙𝑖𝑘,𝛼(𝑢𝑖) or 1𝑛0 , the diagonal part of the first term

𝑣−1𝑘 𝐴𝑘
,𝜇𝑣𝑘 is exactly ∑𝑟

𝑖=1 𝜙𝑖𝑘(𝑢
−1
𝑖 𝐴𝑖

,𝜇𝑢𝑖). The second term 𝑣−1𝑘 𝜕𝜇𝑣𝑘 contains only blocks on the diagonal: the zero

block from the block 1𝑛0 and blocks 𝜙𝑖𝑘,𝛼(𝑢𝑖)
−1𝜕𝜇𝜙𝑖𝑘,𝛼(𝑢𝑖) = 𝜙𝑖𝑘,𝛼(𝑢

−1
𝑖 𝜕𝜇𝑢𝑖) otherwise. This proves that the blocks on

the diagonal of 𝐴𝑘,𝑣𝑘
,𝜇 are copies of the 𝐴𝑖,𝑢𝑖

,𝜇 according to the map 𝜙. Obviously, the off diagonal part of 𝐴𝑘,𝑣𝑘
,𝜇 mixes

the degrees of freedom from the 𝐴𝑖
,𝜇’s and 𝑢𝑖’s.

Prop. 14.3.3 and 14.3.4 show that 𝜙-compatibility of connections is compatible with gauge transformations.

We have now at hand all the technical ingredients to discuss NCGFT on the 𝐴𝐹 𝐶∗
-algebra defined by a

sequence {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚}. This NCGFT uses the derivation-based differential calculus constructed on

the dense “smooth” subalgebra ∞ ∶= ∪𝑛≥0𝑛 as the inductive limit of the differential calculi (Ω∙
Der(𝑛), d), and

a natural module is the algebra ∞ itself. With obvious notations, the same holds for ̂∞. All these constructions

are canonical. A connection is constructed as a limit of connections on each 𝑛 (with module the algebra itself).

If we insist the connection 1-form on 𝑛+1 to be 𝜙𝑛,𝑛+1-compatible with the connection 1-form on 𝑛, then some

degrees of freedom in this connection are inherited from those of the connections on 𝑛, and new degrees of

freedom are added. This limiting procedure is compatible with a good notion of gauge transformations (see

Prop. 14.3.3 and Prop. 14.3.4).

Concerning the dynamics, the terms in the action functional on 𝑛 can be found (with possible different

weights) as terms in the action functional on 𝑛+1. If a solution for the gauge field degrees of freedom has been

found on 𝑛, then these degrees of freedom appear as fixed fields in the action on 𝑛+1, and so as constrains when

one solves the field equations on 𝑛+1 for the new fields (non inherited degrees of freedom). The same applies

to an inductive sequence {(̂𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚}. The Lagrangian on ∞ (or ̂∞) should be constructed as a

limiting procedure by adding new terms at each step in order to take into account the new degrees of freedom.

But then this Lagrangian could contain an infinite number of terms. From a physical point of view, we do not

expect to reach that point: only some finite dimensional “approximations” (at some levels 𝑛) can be considered

and tested in experiments. In other word, the purpose of our construction is not to define a “target” NCGFT (which
could be quite singular) but to construct a direct sequence of finite dimensional NCFGT. We expect all the empirical

data to be encoded into this sequence which formally defines a NCFGT on ∞ (or ̂∞).

As already mentioned at the end of Sect. 2.2, the ∗-homomorphisms 𝜙𝑛,𝑛+1 ∶ 𝑛 → 𝑛+1 are only character-

ized up to unitary equivalence in 𝑛+1. We have shown that the action of such an unitary equivalence, which

takes the form of an inner automorphism on 𝑛+1, is a transport of structures that does not change the physics.

This is why it is convenient to work with the standard form used in this thesis for these ∗-homomorphisms.
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14.4 Numerical Exploration of the SSBM
We would like now to concentrate on the SSBM in our framework. Using previous notations, when the Higgs

potential − 1
2 ∑

𝑟
𝑖=1 tr(Ω𝑖

𝜅1𝜅2Ω
𝑖,𝜅1𝜅2) for ̂ is minimized, the degrees of freedom in the 𝐵𝑖,𝜅 = 𝐵𝑖,𝜅

′

,𝜅𝐸
𝑖
,𝜅′ + 𝑖𝐵𝑖,0,𝜅1𝑛𝑖 are

fixed (possibly with a choice in many possible configurations) and the 𝜙-compatibility transports these values

into the 𝐵𝑘,𝛽 = 𝐵𝑘,𝛽
′

,𝛽 𝐸
𝑘
,𝛽′ + 𝑖𝐵𝑘,0,𝛽1𝑚𝑖 ’s. Then, using these fixed values, minimizing the Higgs potential for ̂ only

concerns a subset of all the 𝐵𝑘,𝛽
′

,𝛽 ’s. The configuration they define is not necessarily the minimum of the Higgs

potential for ̂ if it were computed along all the 𝐵𝑘,𝛽
′

,𝛽 ’s.

The configuration of the fields 𝐵𝑖,𝜅
′

,𝜅 ’s on ̂ (resp. the fields 𝐵𝑘,𝛽
′

,𝛽 ’s on ̂) induces a mass spectrum for the

gauge fields 𝐴𝑖,𝜅
,𝜇’s (resp. the gauge fields 𝐴𝑘,𝛽

,𝜇’s). In order to illustrate the way the masses of the 𝐴𝑘,𝛽
,𝜇’s are related

to the masses of the 𝐴𝑖,𝜅
,𝜇’s by the constraints induced by 𝜙, we have produced numerical computations of the

mass spectra for simple situations 𝜙 ∶  → . These computations have been performed using the software

Mathematica. The following situations have been considered:

1.  = 𝑀2 and  = 𝑀3. This is the minimal non trivial situation one can consider. It illustrates many features

of the other situations concerning the masses of the fields 𝐴𝑘,𝛽
,𝜇’s.

2.  = 𝑀2 ⊕𝑀2 and  = 𝑀4. This situation is used to illustrate how two different configurations for the fields

𝐵𝑖,𝜅
′

,𝜅 ’s (one for each 𝑀2) can conflict to produce a rich typology for the masses of the fields 𝐴𝑘,𝛽
,𝜇’s.

3.  = 𝑀2 ⊕ 𝑀2 and  = 𝑀5. This situation is used to show, by comparison with the preceding one, how the

target algebra influences the mass spectrum.

4.  = 𝑀2 ⊕ 𝑀3 and  = 𝑀5. This situation is used to show, by comparison with the preceding one, how the

source algebra influences the mass spectrum.

Due to the large number of parameters involved in the mathematical expressions, the numerical computations

cannot explore the full space of configurations for the fields 𝐵𝑖,𝜅
′

,𝜅 ’s. This is why we have chosen to work with

a very simplified situation: for every 𝑖, the fields 𝐵𝑖,𝜅
′

,𝜅 ’s are parametrized by a single real parameter 𝜆𝑖 which

interpolates, on the interval [0, 1], between the null-configuration and the basis-configuration (see Sect. 11.5.3)

as 𝐵𝑖,𝜅 = 𝜆𝑖𝐸𝑖,𝜅 . For each value of the 𝜆𝑖’s, the minimum of the Higgs potential on ̂ along the fields 𝐵𝑘,𝛽
′

,𝛽 ’s

which are not inherited (via 𝜙) is computed. Then this minimum configuration is inserted into the couplings

with the fields 𝐴𝑘,𝛽
,𝜇’s to compute the mass spectrum. A comparison with the mass spectrum of the fields 𝐴𝑖,𝜅

,𝜇’s

is easily done, since this spectrum is fully degenerate: all these fields have the same mass 𝜆𝑖 =
√
2𝑛𝑖 according to

Lemma 11.5.2.

Let us first make some general remarks on the expected results. When 𝜆𝑖 = 0 for all 𝑖 = 1, … , 𝑟 (in our

examples 𝑟 = 2 at most), the configuration on ̂ is the null-configuration. So, we expect the constraints due

to the values of the fields 𝐵𝑖,𝜅
′

,𝜅 = 0 when computing the minimum of the Higgs potential on ̂ to produce the

null-configuration for the fields 𝐵𝑘,𝛽
′

,𝛽 ’s. In the same way, when 𝜆𝑖 = 1 for all 𝑖 = 1, … , 𝑟 , the configuration on ̂ is

the basis-configuration, and since 𝜙 preserves Lie brackets, the minimum of the Higgs potential on ̂ is expected

to be the basis-configuration for the fields 𝐵𝑘,𝛽
′

,𝛽 ’s. All the numerical computations presented below are consistent

with these expected results.

When 𝜆𝑖 is neither 0 nor 1, the configuration for the fields 𝐵𝑖,𝜅
′

,𝜅 ’s is not a minimum of the Higgs potential

on ̂ (with value 0 in that case). Nevertheless, we consider these configuration as “possible” since  is not

necessarily the first algebra in the sequence {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚}. Indeed, as the results will show, and as

already mentioned, the minimum of the Higgs potential on ̂ is not the minimum along all the 𝐵𝑘,𝛽
′

,𝛽 ’s, and its

value can be non zero. So, we are not reduced to considering only zero minima on ̂ and it is legitimate to

explore other configurations for the fields 𝐵𝑖,𝜅
′

,𝜅 ’s on ̂.

Before describing the four cases, let us consider the situation in Fig. 14.1 which concerns the algebra 𝑀2 only.

The plot in Fig. 14.1a is the Higgs potential for the fields 𝐵1
,𝜅 = 𝜆1𝐸1,𝜅 depending only on 𝜆1. It is a quadratic

polynomials in 𝜆1 and it looks very much like the Higgs potential of the SMPP in this approximation (reduction

to a 1-parameter dependency). The plot in Fig. 14.1b is the mass spectrum for the 𝐴1,𝜅
,𝜇 fields. As proved in
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Lemma 11.5.2, it is fully degenerated and depends linearly on 𝜆1 with slope

√
2𝑛1 where 𝑛1 = 2 in the present

case. Similar plots can be obtained for any value 𝑛1. These plots can be compared to the ones obtained in the

four cases numerically explored.
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Figure 14.1:  = 𝑀2: plots for 𝜆1 ∈ [−1, 3].

All the numerical computations have been performed using orthonormal basis. We have noticed that the mass

matrices, which have been computed in terms of an orthonormal basis 𝐸1,𝛽 (here we have only 𝑘 = 1) constructed

as in subsection 11.5.3, are almost diagonal, up to terms of order 10−6 (these small values could be considered as

numerical artifacts). This motivates the introduction of the following nomenclature for the labels appearing in

the plots of the mass spectra for the gauge bosons. These labels refer to directions defined for specific subsets

of matrices 𝐸1,𝛽 ∈ 𝑀𝑚1 = . The labels 𝑎𝑖 will refer to the inherited directions in 𝜙(𝑀𝑛𝑖) ⊂ . Let 𝜙() be the

smallest square matrix block in 𝑀𝑚1 that contains all the 𝜙(𝑀𝑛𝑖). The label 𝑏 (resp. 𝑑) will refer to non diagonal

(resp. diagonal) directions in 𝜙() that are not labeled by the 𝑎𝑖. When 𝜙() ≠ , the labels 𝑐𝑖 will refer to non

diagonal directions in \𝜙() that commute with all the 𝜙(𝑀𝑛𝑖′ ) for 𝑖′ ≠ 𝑖: this means that these directions are

matrices in 𝑀𝑚1 with non zero entries only in \𝜙() at the same rows and columns occupied by 𝜙(𝑀𝑛𝑖). In the

same situation, the label 𝑒 will refer to diagonal directions with non zero entries in \𝜙() and which commute

with 𝜙().

For the first case  = 𝑀2 and  = 𝑀3, see Fig. 14.2, there is only one real parameter 𝜆1. On the plots, this

parameter is restricted to 𝜆1 ∈ [−1, 3].2 On Fig. 14.2a, one sees that minimum values for the configurations of

the 𝐵1
,𝛽 fields in the Higgs potential, taking into account the fixed values of the inherited fields 𝐵1

,𝜅 = 𝜆1𝐸1,𝜅 , are

zero only at 𝜆1 = 0, 1. These values show a maximum near 𝜆1 ≃ 0.563 and grow rapidly outside of 𝜆1 ∈ [0, 1].
This plot shows a similar global conformation as the one in Fig. 14.1a. On Fig. 14.2b, the induced masses for

the gauge bosons 𝐴1
,𝜇 are presented. This mass spectrum is richer than the one in Fig. 14.1b. It is not continuous,

and one of its discontinuities coincides with the maximum of the values of the Higgs potential minima near

𝜆1 ≃ 0.563. The second discontinuity, near 𝜆1 ≃ 2.376, corresponds to a discontinuity in the Higgs potential

minima plot that is visible at larger scale, as shown in the zoom effect circle. This mass spectrum is organized

as follows: the 𝑎1-lines have degeneracy 3, the 𝑐1-lines have degeneracy 4, and the 𝑒-lines have degeneracy 1,

which amounts to the 8 fields 𝐴1,𝛽
,𝜇 on ̂. Notice that the 𝑎11 and 𝑎13 (resp. 𝑐11 and 𝑐13) straight lines are part of

the same straight line (as shown by the dotted lines) with slope 2 =
√
2𝑛1 (resp.

√
3/2). Up to these small off-

diagonal values in the mass matrix, the 3 fields 𝐴1,𝛽
,𝜇 belonging to the 𝑎1-lines are the inherited 3 fields 𝐴1,𝜅

,𝜇 on

𝑀2. The slope of the 𝑎11 and 𝑎13 lines shows that the inherited fields retain their masses when they are induced by

𝜙 ∶  → . The 𝑎12-line reveals that there is a slight breaking of this invariance for a specific range in 𝜆1. The

𝑒-lines correspond to the diagonal direction diag(1, 1, −2)/
√
6 ∈ 𝑀3.

2
A numerical exploration on the interval [−100, 100] shows that the lines presented on Fig. 14.2b are extended linearly.
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(a) Minimum values for the Higgs potential with details in insert.
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Figure 14.2:  = 𝑀2 →  = 𝑀3: plots for 𝜆1 ∈ [−1, 3].

For the next three cases, there are two parameters 𝜆𝑖, 𝑖 = 1, 2 and the plots explore the square (𝜆1, 𝜆2) ∈ [0, 1]2.
Concerning the minimum values for the Higgs potential, all the points in the square can be displayed. But

concerning the mass spectra, all the points in the square would give a cloud of points impossible to interpret.

This is why we have chosen to display what happens along 7 specific lines in the square [0, 1]2, which are given

in Fig. 14.3:
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Figure 14.3: The 7 lines for (𝜆1, 𝜆1) ∈ [0, 1]2 along which computations of masses have been performed.

Since the resulting plots in 3𝑑 may be quite difficult to read nevertheless, we have displayed two specific

directions: the first one is the diagonal in the plane (𝜆1, 𝜆2), for 𝜆1 = 𝜆2 ∈ [−1, 3]; the second one is the anti-

diagonal 𝜆1 + 𝜆2 = 0.5 in the square [0, 1]2. The diagonal plots can be directly compared to the first case, and

they display a comparable rich structure: a restricted number of degenerated masses and some discontinuities.

The anti-diagonal plots can be used to better understand how the inherited and new degrees of freedom behave

in relation to each other (as encoded in the nomenclature for the labels). The choice of the parameter 0.5 for

the anti-diagonal line 𝜆1 + 𝜆2 = 0.5 is justified by the fact that we then explore in the 3 cases a region without

discontinuity.

All results are given in the figures 14.4a, 14.4b, 14.4, 14.5a, 14.5b, 14.5, 14.6a, 14.6b, 14.6, 14.7a, 14.7b, 14.7,

14.8a, 14.8b, 14.8, 14.9a, 14.9b, 14.9, 14.10a, 14.10b, 14.10c, 14.10.

Let us consider the second case  = 𝑀2 ⊕ 𝑀2 and  = 𝑀4. The minimum values for the Higgs potential

in Fig. 14.4a show a line of discontinuity that have a counterpart in the mass spectrum in Fig. 14.4b. Exploring

𝜆1 = 𝜆2 ∈ [−1, 3] in Fig. 14.7 shows that there are other discontinuities (at least one in the range considered) as in

Fig. 14.2. In the mass spectrum in Fig. 14.7b, the 𝑎1 and 𝑎2-lines have degeneracy 3, the 𝑏-lines have degeneracy

8, and the 𝑑-lines have degeneracy 1. For 𝑖 = 1, 2, the slope of the 𝑎𝑖1 and 𝑎𝑖3 (resp. 𝑏1 and 𝑏3) straight lines is

2 =
√
2𝑛1 =

√
2𝑛2 (resp.

√
3). As in the previous case, modulo very small off-diagonal values in the mass matrix,

the 6 = 2×3 fields in the 𝑎𝑖-lines are inherited from the 2×3 fields 𝐴1,𝜅
,𝜇 and 𝐴2,𝜅

,𝜇 from the two copies of 𝑀2 and the
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(a) Minimum values for the Higgs potential. (b) Masses for the gauge fields.

Figure 14.4:  = 𝑀2 ⊕𝑀2 →  = 𝑀4: plots for the square [0, 1]2 in the plane (𝜆1, 𝜆2).

(a) Minimum values for the Higgs potential. (b) Masses for the gauge fields.

Figure 14.5:  = 𝑀2 ⊕𝑀2 →  = 𝑀5: plots for the square [0, 1]2 in the plane (𝜆1, 𝜆2).

𝑑-lines correspond to the diagonal direction diag(1, 1, −1, −1)/
√
4 ∈ 𝑀4. The plot in Fig. 14.10a shows how the

distribution of these gauge fields changes along the anti-diagonal 𝜆1+𝜆2 = 0.5. The perfect symmetry around the

diagonal at 𝜆1 = 0.25 in Fig. 14.10a shows that the two 𝑀2 blocks play an equal role, as expected. At 𝜆1 = 0.5, we

end up on the side 𝜆2 = 0 in Fig. 14.4b, where the top line (end of the 𝑎1-line) has a slope 2 =
√
2𝑛1 with respect

to 𝜆1 ∈ [0, 1]; the middle line has a slope

√
3/2 (the 𝑏-line); and the lower line has a slope 0 (it corresponds to the

ends of the 𝑎2-line and the 𝑒-line). Here again, at least in the region 𝜆1 + 𝜆2 ≤ 0.5 (before the first discontinuity),

we have checked numerically that the masses of the inherited fields are preserved by the map 𝜙 ∶  → .

The third case  = 𝑀2 ⊕𝑀2 and  = 𝑀5, illustrated in Figs. 14.5, 14.8, and 14.10b, differs from the previous

one by the greater number of new degrees of freedom in . The discontinuity in Figs. 14.5a and 14.5b is larger. Its

position has also moved, as can be seen also in Fig. 14.8b. In this latter plot, the 𝑎1 and 𝑎2-lines have degeneracy

3, the 𝑏-line have degeneracy 8, the 𝑐1 and 𝑐2-lines have degeneracy 4, the 𝑑-lines have degeneracy 1, and the

𝑒-lines have degeneracy 1. Notice that the 𝑑 and 𝑒 lines are almost always merged in the plot, except for 𝑑2 and

𝑒2 which are close but clearly separated. For 𝑖 = 1, 2, the slope of the 𝑎𝑖1 and 𝑎𝑖3 (resp. 𝑏1 and 𝑏3, resp. 𝑐𝑖1 and 𝑐𝑖3)
straight lines is 2 =

√
2𝑛1 =

√
2𝑛2 (resp.

√
3, resp.

√
3/2). Modulo very small off-diagonal values in the mass

matrix, the 6 = 2 × 3 fields in the 𝑎𝑖-lines are inherited from the 2 × 3 fields 𝐴1,𝜅
,𝜇 and 𝐴2,𝜅

,𝜇 from the two copies

of 𝑀2. In accordance with the nomenclature of the labels, the 8 fields in the 𝑏-lines are new degrees of freedom
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(a) Minimum values for the Higgs potential. (b) Masses for the gauge fields.

Figure 14.6:  = 𝑀2 ⊕𝑀3 →  = 𝑀5: plots for the square [0, 1]2 in the plane (𝜆1, 𝜆2).
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(a) Minimum values for the Higgs potential with details in insert.
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Figure 14.7:  = 𝑀2 ⊕𝑀2 →  = 𝑀4: plots on the diagonal (𝜆1, 𝜆1) for 𝜆1 ∈ [−1, 3].

along directions 𝐸1,𝛽 that are contained in 𝑀4 ⊂ 𝑀5, where 𝑀4 contains the two copies of 𝑀2. The 8 = 2 × 4
fields in the 𝑐𝑖-lines are new degrees of freedom along directions 𝐸1,𝛽 that are defined with components outside

of this 𝑀4 ⊂ 𝑀5: the 𝑐1-line (resp. 𝑐2-line) corresponds to fields in the directions 𝐸1,𝛽 with non zero entries

outside of 𝑀4 ⊂ 𝑀5 and in the same rows and same columns as the ones in 𝑀𝑛1 (resp. 𝑀𝑛2 ). In other words, the

𝐸1,𝛽 for the 𝑐1-line do not commute with 𝜙(𝑀𝑛1) while they commute with 𝜙(𝑀𝑛2), and vice versa for the 𝑐2-line.

The 𝑑-lines correspond to the diagonal direction diag(1, 1, −1, −1, 0)/
√
4 ∈ 𝑀5 and the 𝑒-lines correspond to the

diagonal direction diag(1, 1, 1, 1, −4)/
√
20 ∈ 𝑀5. The anti-diagonal plot in Fig. 14.10b brings us more information

concerning the relationship between the 𝑎𝑖 and 𝑐𝑖-lines: it seems that there is a correlation between the 𝑎1-line

(resp. 𝑎2-line) and the 𝑐1-line (resp. 𝑐2-line) due to the fact that their associated directions 𝐸1,𝛽 do not commute.

This non commutativity could also explain the curved 𝑏-line which is “constrained” by the directions in the 𝑎1
and 𝑎2-lines.

Finally, the fourth case  = 𝑀2 ⊕ 𝑀3 and  = 𝑀5, illustrated in Figs. 14.6, 14.9, and 14.10c, is closer to the

second case than to the third case. We conjecture that this is due to the fact that the diagonal in  is filled by 𝜙
in the second and fourth cases, while there is a remaining 0 in the third case (which permits the existence of the

directions for the 𝑐1 and 𝑐2-lines in Fig. 14.10b). In the mass spectrum in Fig. 14.9b, the 𝑎1-lines have degeneracy

3, the 𝑎2-lines have degeneracy 8, the 𝑏-lines have degeneracy 12, and the 𝑑-lines have degeneracy 1. The slope of

the 𝑎11 and 𝑎13 (resp. 𝑎21 and 𝑎23, resp. 𝑏1 and 𝑏3) straight lines is 2 =
√
2𝑛1 (resp.

√
6 =

√
2𝑛2, resp.

√
25/6). Modulo
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(a) Minimum values for the Higgs potential with details in insert.
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Figure 14.8:  = 𝑀2 ⊕𝑀2 →  = 𝑀5: plots on the diagonal (𝜆1, 𝜆1) for 𝜆1 ∈ [−1, 3].
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Figure 14.9:  = 𝑀2 ⊕𝑀3 →  = 𝑀5: plots on the diagonal (𝜆1, 𝜆1) for 𝜆1 ∈ [−1, 3].

very small off-diagonal values in the mass matrix, the 3 fields in the 𝑎1-lines are inherited from the 3 fields 𝐴1,𝜅
,𝜇

from 𝑀𝑛1 = 𝑀2 and the 8 fields in the 𝑎2-lines are inherited from the 8 fields 𝐴2,𝜅
,𝜇 from 𝑀𝑛2 = 𝑀3. The 𝑑-lines

correspond to the diagonal direction diag(1, 1, 1, 1, −4)/
√
20 ∈ 𝑀5. As showed in Fig. 14.10c, the mass spectrum

along the anti-diagonal is no more symmetric, as can also be seen in Fig. 14.6b (look for instance at the singular

line in the mass spectrum): this distinguishes this case from the second one and illustrates how a change in the

algebra  affects the mass spectrum.

Let us make comments on these results. The exploration of the space of configurations for the fields 𝐵𝑖,𝜅
′

,𝜅 ’s

along paths parametrized by the 𝜆𝑖’s already shows a rich typology concerning the possible masses for the gauge

bosons 𝐴𝑘,𝛽
,𝜇.

As seen in Fig. 14.2 for instance, the minimum for a conflictual situation 𝜆1 = 1 and 𝜆2 = 0 (conflict between

the two minimal configurations for the 𝐵1
,𝜅 and 𝐵2

,𝜅 in𝑀2) is non zero and produces a global configuration for the

fields 𝐵1
,𝛽 that is neither the null-configuration nor the basis-configuration. The induced masses show 3 possible

values with degeneracies. Inserting this configuration as a initial data for another step into a sequence of NCGFT

constructed on the sequence {(𝑛, 𝜙𝑛,𝑚) / 0 ≤ 𝑛 < 𝑚}, may propagate this in-between result and produce more

subtle configurations with richer possibilities for the masses of the gauge bosons.

Since the exploration of the space of configurations for the fields 𝐵𝑖,𝜅
′

,𝜅 ’s is reduced to paths parametrized by

the 𝜆𝑖’s, our results do not offer a general and systematic view of what could happen in our kind of models.
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(a)  = 𝑀2 ⊕𝑀2 →  = 𝑀4.
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(b)  = 𝑀2 ⊕𝑀2 →  = 𝑀5.
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Figure 14.10: Masses for the gauge fields along the line 𝜆1 + 𝜆2 = 0.5.

Nevertheless, the results presented above already display a rich phenomenology from which some information

can be drawn. The first noticeable feature is that the mass spectra, constrained by the 𝜙-compatibility, reveal

that the masses are grouped in specific directions, so that we have neither a full degeneracy (as in Fig. 14.1b)

nor a complete list of independent masses (as many masses as degrees of freedom): these specific directions are

grouped according to the inherited degrees of freedom (the 𝑎𝑖-lines), according to the way the new degrees of

freedom commute or not with the inherited ones (the 𝑏 and 𝑐𝑖-lines), and according to the possible new diagonal

degrees of freedom one can introduce (the 𝑑 and 𝑒-lines). Masses for inherited gauge bosons are preserved by the

𝜙-compatibility condition quite systematically near the null-configuration. Concerning the first discontinuity

on the diagonal plots before the basis-configuration, the position of this discontinuity seems to be related, by

an approximate linear relationship, to the ratio of the number of new degrees of freedom over the number of

inherited degrees of freedom, see Table 14.1:

Case 𝑛ndof 𝑛idof 𝑟dof 𝜆1,first 𝜆1,second

𝑀2 ⊕𝑀3 → 𝑀5 13 11 1.182 0.475 2.526
𝑀2 ⊕𝑀2 → 𝑀4 9 6 1.5 0.542 2.456

𝑀2 → 𝑀3 5 3 1.667 0.563 2.376
𝑀2 ⊕𝑀2 → 𝑀5 18 6 3 0.734 2.263

Table 14.1: Relationship between the positions of the first and second discontinuities and the ratio of the number

of new degrees of freedom over the number of inherited degrees of freedom in the diagonal plots Figs. 14.9b, 14.7b,

14.2b, and 14.8b: 𝑛ndof (resp. 𝑛idof) is the number of new (resp. inherited) degrees of freedom, 𝑟dof = 𝑛ndof/𝑛idof is the

ratio of these degrees of freedom, 𝜆1,first (resp. 𝜆1,second) is the value of 𝜆1 at the first (resp. second) discontinuity.
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Chapter 15

Spectral Triple-based Approach to
NCGFT on 𝐴𝐹-Algebras

In this chapter, we propose to set up NCGFT based on 𝐴𝐹 -Algebras using the spectral triple-based approach. In

subsection 15.1.2, we will see how to lift arrows of a Bratteli diagram to arrows between Krajewski diagrams. In

subsection 15.2.1 we will create the “𝜙-normalized” map for physical purposes. In subsection 15.2.2, the spectral

actions defining NCGFTs associated with two spectral triples related by the arrows of the Bratteli diagram are

compared (tensored by a commutative spectral triple to put us in the context of Almost Commutative manifolds).

This is done by using the 𝜙-normalized map and working with 𝜙-compatible operators at the level of the two

successive spectral triples of the elementary step in the inductive sequence. This chapter is an account of the

results given in (Masson and Nieuviarts, 2022). Other works consisting in the development of spectral triples and

non-commutative gauge theories on AF algebras in a different way can be found in (Christensen and Ivan, 2006;

Marcolli and van Suijlekom, 2014).

15.1 Lifting one Step of the Defining Inductive Sequence
In this section, we adapt to spectral triples the inclusion map 𝜙 ∶  → . As explained in Chapt. 13, the main

idea, which is central in this thesis, is to define a notion of 𝜙-compatibility for the structures defining spectral

triples (,, 𝐷, 𝐽, 𝛾) and (,, 𝐷, 𝐽, 𝛾) on top of  and . This construction, applied in Sect. 13 to

𝐴𝐹 -algebras, can be interpreted as a lift of arrows in a Bratteli diagram to arrows between Krajewski diagrams.

15.1.1 General Situations
In this subsection, we will explore the consequences of 𝜙-compatibility and strong 𝜙-compatibility conditions on

the structure of spectral triples.

Definition 15.1.1 (𝝓-compatibility of spectral triples) Assume given a 𝜙-compatible map 𝜙 ∶  → .

Two odd spectral triples (,, 𝐷) and (,, 𝐷) are said to be 𝜙-compatible if 𝐷 is 𝜙-compatible with
𝐷.

Two real spectral triples (,, 𝐷, 𝐽) and (,, 𝐷, 𝐽) are said to be 𝜙-compatible if 𝐷 (resp. 𝐽) is
𝜙-compatible with 𝐷 (resp. 𝐽).

In the even case for , one requires that  is also even and that the grading operators 𝛾 and 𝛾 are 𝜙-compatible.

Strong 𝜙-compatibility of spectral triples can be defined in an obvious way.

Remark 15.1.2 Notice that strong 𝜙-compatibility of spectral triples is similar to the condition (3) given in

(Floricel and Ghorbanpour, 2019, Def 2.1) where their couple (𝜙, 𝐼 ) corresponds to our couple (𝜙, 𝜙). We depart

from this paper where inductive sequences of spectral triples are studied in the following way: we will restrict
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our analysis to the algebraic part of spectral triples since only 𝐴𝐹 -algebras will be considered later, so that the

analytic part is quite trivial in our situation, and we will focus on gauge fields theories defined on top of spectral

triples. For instance, conditions like (ST1) (about the ∗-subalgebra ∞
) and (ST2) (about the compactness of

the resolvent of the Dirac operator) in (Floricel and Ghorbanpour, 2019) will not be considered here. Moreover,

since we are interested in accumulating “new degrees of freedom” along the inductive limit, the 𝜙-compatibility

condition will be more effective than the strong 𝜙-compatibility condition. □

Since 𝐽 and 𝐽 define 𝑒 =  ⊗◦
and 𝑒 =  ⊗ ◦

modules structures on  and , it is convenient

to express 𝜙-compatibility in terms of this structure. The morphism 𝜙 defines a canonical morphism of algebras

𝜙◦ ∶ ◦ → ◦
by the relation 𝜙◦(𝑎◦) ∶= 𝜙(𝑎)◦. We then define 𝜙𝑒 ∶ 𝑒 → 𝑒

as 𝜙𝑒 ∶= 𝜙 ⊗ 𝜙◦, i.e. 𝜙𝑒(𝑎1 ⊗ 𝑎◦2) =
𝜙(𝑎1)⊗𝜙◦(𝑎◦2). Let (resp.  ) be a-bimodule (resp. -bimodule), which is also a𝑒

-left module ( resp. 𝑒
-left

module) by (𝑎1⊗𝑎◦2)𝑒 ∶= 𝑎1𝑒𝑎2 for any 𝑒 ∈  and 𝑎1, 𝑎2 ∈  (and similar relations for and ). Then, we say that

a linear map between the two bimodules 𝜙Mod ∶  →  is 𝜙-compatible if it is 𝜙𝑒-compatible between the two

left modules, that is 𝜙Mod((𝑎1⊗𝑎◦2)𝑒) = 𝜙𝑒(𝑎1⊗𝑎◦2)𝜙Mod(𝑒), which is equivalent to 𝜙Mod(𝑎1𝑒𝑎2) = 𝜙(𝑎1)𝜙Mod(𝑒)𝜙(𝑎2).

Lemma 15.1.3 Suppose that 𝜙 ∶  →  is 𝜙-compatible as a map of left modules and that 𝐽 and 𝐽 are
strong 𝜙-compatible. Then 𝜙 is 𝜙𝑒-compatible as a map between the bimodules defined by the real operators.

Proof For any 𝜓 ∈ , 𝑎1, 𝑎2 ∈ , by definition, one has 𝑎1𝜓𝑎2 = (𝑎1 ⊗ 𝑎◦2)𝜓 = 𝑎1𝐽𝑎∗2𝐽𝜓. On the one

hand, since 𝜙 is 𝜙-compatible, one has 𝜙(𝑎1𝜓) = 𝜙(𝑎1)𝜙(𝜓). On the other hand, 𝜙(𝜓𝑎2) = 𝜙(𝐽𝑎∗2𝐽𝜓) =
𝐽𝜙(𝑎2)∗𝐽𝜙(𝜓) = 𝜙(𝜓)𝜙(𝑎2).

Lemma 15.1.4 Suppose that 𝐽 is strong 𝜙-compatible with 𝐽:
1. 𝜖 = 𝜖.
2. 𝐽−1 is strong 𝜙-compatible with 𝐽−1
3. 𝐽 is diagonal in its matrix decomposition.
4. If two operators𝐴 on  and 𝐵 on  are 𝜙-compatible, then the operators 𝐽𝐴𝐽−1 and 𝐽𝐵𝐽−1 are 𝜙-compatible.

Proof From 𝐽 2 = 𝜖 and 𝐽 2 = 𝜖, one gets 𝜖𝜙(𝜓) = 𝜙(𝐽 2𝜓) = 𝐽 2𝜙(𝜓) = 𝜖𝜙(𝜓) for any 𝜓 ∈ , so that

𝜖 = 𝜖. From this we deduce that 𝐽−1 = 𝜖𝐽 is strong 𝜙-compatible with 𝐽−1 = 𝜖𝐽.

Let 𝐽 = (
𝐽 𝜙,𝜙 𝐽 ⟂,𝜙
𝐽 𝜙,⟂ 𝐽 ⟂,⟂ )

. Since 𝐽 is strong 𝜙-compatible with 𝐽, we already know that 𝐽 𝜙,⟂ = 0. Let 𝜓 ∈

𝜙() and 𝜓′
 ∈ 𝜙()⟂. Then 𝐽(𝜓) = (

𝐽 𝜙,𝜙(𝜓)
0 ) and 𝐽(𝜓′

) = (
𝐽 ⟂,𝜙(𝜓

′
)

𝐽 ⟂,⟂(𝜓′
)), so that 0 = ⟨𝜓′

, 𝜓⟩ =

⟨𝐽(𝜓), 𝐽(𝜓′
)⟩ = ⟨𝐽 𝜙,𝜙(𝜓), 𝐽 ⟂,𝜙(𝜓′

)⟩ . From 𝐽−1 = 𝜖𝐽 and 𝐽 𝜙,⟂ = 0, one gets that 𝐽 𝜙,𝜙 is invertible with

(𝐽 𝜙,𝜙)
−1 = (𝐽−1 )𝜙𝜙 = 𝜖𝐽

𝜙
,𝜙, so that 𝐽 𝜙,𝜙(𝜙()) = 𝜙(), which implies that 𝐽 ⟂,𝜙(𝜓′

) ∈ 𝜙()⟂, that is,

𝐽 ⟂,𝜙(𝜓′
) = 0 for any 𝜓′

 ∈ 𝜙()⟂, and so 𝐽 ⟂,𝜙 = 0.

From (𝐽𝐵𝐽−1 )𝜙𝜙 = 𝐽 𝜙,𝜙𝐵
𝜙
𝜙(𝐽

𝜙
,𝜙)

−1
, we deduce that the operators 𝐽𝐴𝐽−1 and 𝐽𝐵𝐽−1 are 𝜙-compatible.

Lemma 15.1.5 Let us consider the even case and suppose 𝛾 is 𝜙-compatible with 𝛾.
1. Then 𝛾 is diagonal in its matrix decomposition, so that strong 𝜙-compatibility and 𝜙-compatibility between 𝛾

and 𝛾 are equivalent.
2. Then 𝜙 is diagonal for the matrix decomposition induced by  = +

 ⊕−
 and  = +

 ⊕−
, so that 𝜙

restricts to maps ±
 → ±

.

Proof Point 1: since 𝛾† = 𝛾, one has 𝛾 = (
𝛾𝜙,𝜙 𝛾⟂,𝜙
𝛾⟂†,𝜙 𝛾⟂,⟂ )

. The 𝜙-compatibility implies (𝛾𝜙,𝜙)
2𝜙(𝜓) = 𝜙(𝛾2𝜓) =

𝜙(𝜓), so that (𝛾𝜙,𝜙)
2 = 1. Since 𝛾2 = 1, one has (𝛾𝜙,𝜙)

2 + 𝛾⟂,𝜙𝛾
⟂†
,𝜙 = 1, from which we get 𝛾⟂,𝜙𝛾

⟂†
,𝜙 = 0, which

implies 𝛾⟂,𝜙 = 0, so that 𝛾 is diagonal. By Prop. 13.4.5, this implies strong 𝜙-compatibility.

Point 2: for every 𝜓 ∈ ±
, one has ±𝜙(𝜓) = 𝜙(𝛾𝜓) = 𝛾𝜙(𝜓), so that 𝜙(𝜓) ∈ ±

.

Proposition 15.1.6
1. If two (odd/even) real spectral triples are strong 𝜙-compatible, then they have the same 𝐾𝑂-dimension (mod 8).
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2. If two (odd/even) real spectral triples are 𝜙-compatible and 𝐽 is strong 𝜙-compatible with 𝐽, then they have the
same 𝐾𝑂-dimension (mod 8).

Proof Let (,, 𝐷, 𝐽) and (,, 𝐷, 𝐽) be two strong 𝜙-compatible real spectral triple. In the even case,

consider the gradings 𝛾 and 𝛾. Then one has 𝐽 2 = 𝜖, 𝐽𝐷 = 𝜖′𝐷𝐽, and 𝐽𝛾 = 𝜖′′𝛾𝐽 (in the even

case), and similar relations for . We already know from Lemma 15.1.4 that 𝜖 = 𝜖. For any 𝜓 ∈ , one has

𝜙(𝐽𝐷𝜓) = 𝐽𝐷𝜙(𝜓) and 𝜙(𝐷𝐽𝜓) = 𝐷𝐽𝜙(𝜓), so that 𝜖′ = 𝜖′, and 𝜙(𝐽𝛾𝜓) = 𝐽𝛾𝜙(𝜓) and

𝜙(𝛾𝐽𝜓) = 𝛾𝐽𝜙(𝜓), so that 𝜖′′ = 𝜖′′.

The second assertion follows the same line of computations, using the fact that 𝐽 and 𝛾 are diagonal (Lem-

mas 15.1.4 and 15.1.5), so that in particular (𝐽𝐷)
𝜙
𝜙 = 𝐽 𝜙,𝜙𝐷

𝜙
,𝜙 and (𝐷𝐽)

𝜙
𝜙 = 𝐷𝜙

,𝜙𝐽
𝜙
,𝜙.

The requirement that 𝐽 be strong 𝜙-compatible with 𝐽 seems to be inevitable in the generic situation to

get the same 𝐾𝑂-dimension. In the case of 𝐴𝐹 -algebras, this requirement will be a consequence of another

requirement on the 𝜙 map, see Prop. 15.1.15.

Let (,, 𝐷, 𝐽) and (′,′ , 𝐷′ , 𝐽′) be two unitary equivalent real spectral triples for 𝑈 ∶  →
′ and 𝜙 ∶  → ′

and let (,, 𝐷, 𝐽) and (′,′ , 𝐷′ , 𝐽′) be two unitary equivalent real spectral

triples for 𝑈 ∶  → ′ and 𝜙 ∶  → ′
.

Proposition 15.1.7 Suppose that (,, 𝐷, 𝐽) and (,, 𝐷, 𝐽) are strong 𝜙-compatible, and that there are
a morphism of algebra 𝜙′ ∶ ′ → ′ and a linear map 𝜙′ ∶ ′ → ′ such that 𝜙′ ◦ 𝜙 = 𝜙 ◦ 𝜙 and
𝜙′(𝑈𝜓) = 𝑈𝜙(𝜓) for any 𝜓 ∈ . Then (′,′ , 𝐷′ , 𝐽′) and (′,′ , 𝐷′ , 𝐽′) are strong 𝜙′-compatible. If
the spectral triples are even, the result holds also.

This result shows that strong 𝜙-compatibility is transported by unitary equivalence if one assumes some

natural conditions on the maps 𝜙′ and 𝜙′ , which are the commutativity of the following diagrams:

 

′ ′

𝜙

𝜙′ 𝜙

𝜙′

and

 

′ ′

𝜙

𝑈′ 𝑈
𝜙′

Proof For any 𝜓′ ∈ ′ , let 𝜓 ∈  be the unique vector such that 𝜓′ = 𝑈𝜓, and for any 𝑎′ ∈ ′
, let

𝑎 ∈  the unique element such that 𝑎′ = 𝜙(𝑎). Then one has 𝜙′(𝜋′(𝑎′)𝜓′) = 𝜙′((𝜋′ ◦ 𝜙(𝑎))𝑈𝜓) =
𝜙′(𝑈𝜋(𝑎)𝜓) = 𝑈𝜙(𝜋(𝑎)𝜓) = 𝑈(𝜋 ◦ 𝜙(𝑎))𝜙(𝑈−1𝜓′) = 𝑈(𝜋 ◦ 𝜙(𝑎))𝑈−1𝜙′(𝜓′) = (𝜋′ ◦ 𝜙 ◦
𝜙(𝑎))𝜙′(𝜓′) = (𝜋′ ◦ 𝜙′(𝑎′))𝜙′(𝜓′), so that 𝜙′ is 𝜙′-compatible. Let 𝐴 and 𝐵 be strong 𝜙-compatible op-

erators on  and  and define 𝐴′ ∶= 𝑈𝐴𝑈−1
and 𝐵′ ∶= 𝑈𝐵𝑈−1

on ′ and ′ . Then one has

𝜙′(𝐴′𝜓′) = 𝜙′(𝑈𝐴𝜓) = 𝑈𝜙(𝐴𝜓) = 𝑈𝐵𝜙(𝜓) = 𝐵′𝑈𝜙(𝜓) = 𝐵′𝜙′(𝑈𝜓) = 𝐵′𝜙′(𝜓′), so that 𝐴′
and

𝐵′
are strong 𝜙′-compatible. Applying this result to 𝐷′ and 𝐷′ (resp. 𝐽′ and 𝐽′ , resp. 𝛾′ and 𝛾′ in the even

case) shows that (′,′ , 𝐷′ , 𝐽′) and (′,′ , 𝐷′ , 𝐽′) are strong 𝜙′-compatible and similarly in the even

case.

In the proof, the commutativity of the first diagram is only used when the representation 𝜋′ is applied, and

more specifically, when this representation acts on 𝜙′(′). In other words, the minimal condition in this proof

is that 𝜋′ ◦ 𝜙′ ◦ 𝜙 = 𝜋′ ◦ 𝜙 ◦ 𝜙 holds as operators acting on 𝜙′(′) ⊂ ′ .

Another version using only 𝜙-compatibility can be proposed in the following way:

Proposition 15.1.8 Suppose that (,, 𝐷, 𝐽) and (,, 𝐷, 𝐽) are 𝜙-compatible, and that there is a mor-
phism of algebra 𝜙′ ∶ ′ → ′ and a linear map 𝜙′ ∶ ′ → ′ such that 𝜙′ ◦ 𝜙 = 𝜙 ◦ 𝜙 and 𝜙′(𝑈𝜓) =
𝑈𝜙(𝜓) for any 𝜓 ∈ , and suppose that 𝑈 is diagonal. Then (′,′ , 𝐷′ , 𝐽′) and (′,′ , 𝐷′ , 𝐽′) are
𝜙′-compatible. If the spectral triples are even, the result holds also.

Proof The proof follows the same line of reasoning as for the proof of Prop. 15.1.7, with the key difference that,

from 𝐵′ ∶= 𝑈𝐵𝑈−1
and the fact that 𝑈 is diagonal, one has 𝐵′𝜙

𝜙 = 𝑈
𝜙
𝜙𝐵

𝜙
𝜙(𝑈

𝜙
𝜙)

−1
.
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The map 𝜙 induces a natural map of graded algebras 𝜙 ∶  ∙ →  ∙ by the relation 𝜙(𝑎0 ⊗ ⋯ ⊗ 𝑎𝑛) =
𝜙(𝑎0) ⊗ ⋯ ⊗ 𝜙(𝑎𝑛). If 𝜔 ∈ Ω1

𝑈 (), then one can check that 𝜙(𝜔) ∈ Ω1
𝑈 (), so that 𝜙 restricts to a map of graded

algebras Ω∙
𝑈 () → Ω∙

𝑈 (). If 𝜙(1) = 1, then 𝜙(d𝑈𝑎) = 𝜙(1 ⊗ 𝑎 − 𝑎 ⊗ 1) = 1 ⊗ 𝜙(𝑎) − 𝜙(𝑎) ⊗ 1 = d𝑈𝜙(𝑏).
If 𝜙(1) ≠ 1, let 𝑝𝜙 ∶= 𝜙(1) ∈  be the induced projection. Then 𝜙(d𝑈𝑎) = 𝑝𝜙⊗𝜙(𝑎)−𝜙(𝑎)⊗𝑝𝜙 ∈ Ω1

𝑈 () can

be written as 𝜙(d𝑈𝑎) = 𝑝𝜙d𝑈𝜙(𝑎) + 𝜙(𝑎)d𝑈 (1 − 𝑝𝜙) = 𝑝𝜙d𝑈𝜙(𝑎) − 𝜙(𝑎)d𝑈𝑝𝜙. This shows that 𝜙 is a morphism of

differential algebras only when it is unital. In the following, we will use the most general relation 𝜙(𝑎0d𝑈𝑎1) =
𝜙(𝑎0)d𝑈𝜙(𝑎1) − 𝜙(𝑎0𝑎1)d𝑈𝑝𝜙 since 𝜙(𝑎)𝑝𝜙 = 𝜙(𝑎).

Proposition 15.1.9 Suppose that 𝐷 is 𝜙-compatible with 𝐷.
1. For any 𝜔 ∈ Ω1

𝑈 (), 𝜋𝐷 ◦ 𝜙(𝜔) is 𝜙-compatible with 𝜋𝐷(𝜔).
2. Suppose that 𝐽 is strong 𝜙-compatible with 𝐽. For any unitaries 𝑢 ∈  and 𝑢 ∈  such that 𝜋(𝑢) and
𝜋(𝑢) are 𝜙-compatible and 𝜋(𝑢) is diagonal in the matrix decomposition, 𝐷𝑢

 is 𝜙-compatible with 𝐷𝑢
 .

3. Using the hypothesis of the previous points, 𝐷𝑢
,𝜙(𝜔) is 𝜙-compatible with 𝐷𝑢

,𝜔.

Condition 2 in this Proposition implies in particular that 𝜋′ ◦ 𝜙′ ◦ 𝜙 = 𝜋′ ◦ 𝜙 ◦ 𝜙 (see comment after

Prop. 15.1.7) with ′ = , ′ =  and 𝜙′ = 𝜙.

Proof We can reduce the general case to 𝜔 = 𝑎0d𝑈𝑎1 ∈ Ω1
𝑈 (). Let us then consider 𝜋𝐷 ◦ 𝜙(𝑎0d𝑈𝑎1) =

𝜙(𝑎0)[𝐷, 𝜙(𝑎1)] − 𝜙(𝑎0𝑎1)[𝐷, 𝑝𝜙] (with 𝜋 omitted in this relation and the following). For any 𝜓 ∈ , one

has 𝜙(𝑎0𝑎1)[𝐷, 𝑝𝜙]𝜙(𝜓) = 𝜙(𝑎0𝑎1)𝐷𝜙(𝜓) − 𝜙(𝑎0𝑎1)𝜙(1)𝐷𝜙(𝜓) = 0, since 𝑝𝜙𝜙(𝜓) = 𝜙(𝜓), so that

𝜋𝐷 ◦ 𝜙(𝑎0d𝑈𝑎1)𝜙(𝜓) = 𝜙(𝑎0)[𝐷, 𝜙(𝑎1)]𝜙(𝜓). Using the matrix decomposition 𝐷 = (
𝐷𝜙
,𝜙 𝐷⟂

,𝜙

𝐷𝜙
,⟂ 𝐷⟂

,⟂ )
and Point 8

in Prop. 13.4.5, one gets

𝜙(𝑎0)[𝐷, 𝜙(𝑎1)] (
𝜙(𝜓)

0 ) =
(

𝜙(𝑎0)𝜙𝜙[𝐷
𝜙
,𝜙, 𝜙(𝑎

1)𝜙𝜙]𝜙(𝜓)
𝜙(𝑎0)⟂⟂(𝐷

𝜙
,⟂𝜙(𝑎

1)𝜙𝜙 − 𝜙(𝑎1)⟂⟂𝐷
𝜙
,⟂)𝜙(𝜓))

From this relation we get 𝜋𝐷(𝜙(𝑎0d𝑈𝑎1))
𝜙
𝜙 = 𝜙(𝑎0)𝜙𝜙[𝐷

𝜙
,𝜙, 𝜙(𝑎

1)𝜙𝜙] and then 𝜋𝐷(𝜙(𝑎0d𝑈𝑎1))
𝜙
𝜙𝜙(𝜓) =

𝜙(𝑎0)𝜙𝜙[𝐷
𝜙
,𝜙, 𝜙(𝑎

1)𝜙𝜙]𝜙(𝜓) = 𝜙(𝑎0[𝐷, 𝑎1]𝜓) = 𝜙(𝜋𝐷(𝑎0d𝑈𝑎1)𝜓) since 𝐷 is 𝜙-compatible with 𝐷.

Using the hypothesis that 𝜋(𝑢) is diagonal, a straightforward computation gives (𝜋(𝑢)†[𝐷, 𝜋(𝑢)])
𝜙
𝜙 =

(𝜋(𝑢)†)
𝜙
𝜙[𝐷

𝜙
,𝜙, 𝜋(𝑢)

𝜙
𝜙] from which we deduce that 𝜋(𝑢)†[𝐷, 𝜋(𝑢)] is 𝜙-compatible

with 𝜋(𝑢)†[𝐷, 𝜋(𝑢)]. From Lemma 15.1.4, we deduce that 𝐽𝜋(𝑢)†[𝐷, 𝜋(𝑢)]𝐽−1 is 𝜙-compatible with

𝐽𝜋(𝑢)†[𝐷, 𝜋(𝑢)]𝐽−1 , and so that 𝐷𝑢
 = 𝐷 + 𝜋(𝑢)†[𝐷, 𝜋(𝑢)] + 𝜖′𝐽𝜋(𝑢)†[𝐷, 𝜋(𝑢)]𝐽−1 is 𝜙-

compatible with𝐷𝑢
 = 𝐷+𝜋(𝑢)†[𝐷, 𝜋(𝑢)]+𝜖′𝐽𝜋(𝑢)†[𝐷, 𝜋(𝑢)]𝐽−1 since 𝜖′ = 𝜖′ by Prop 15.1.6.

The last point combines the two previous results by replacing 𝐷 by 𝐷,𝜔 = 𝐷 + 𝜋𝐷(𝜔) + 𝜖′𝐽𝜋𝐷(𝜔)𝐽−1
and𝐷 by𝐷,𝜙(𝜔) = 𝐷+𝜋𝐷(𝜙(𝜔))+𝜖′𝐽𝜋𝐷(𝜙(𝜔))𝐽−1 which are 𝜙-compatible by the first point, Lemma 15.1.4,

and Prop 15.1.6.

Notice that one can associate to any unitary 𝑢 ∈  the diagonal (unitary) operator (
𝜋◦𝜙(𝑢) 0

0 1⟂
⟂ ) where

𝜋 ◦ 𝜙(𝑢)𝜙(𝜓) ∶= 𝜙(𝜋(𝑢)𝜓) for any 𝜓 ∈  and 1⟂
⟂ is the identity operator on 𝜙()⟂. But this

operator is not necessarily of the form 𝜋(𝑢) for a unitary 𝑢 ∈ . In the case of 𝐴𝐹 -algebras, it will be possible

to construct a unitary 𝑢 ∈  from 𝑢 such that 𝜋(𝑢) and 𝜋(𝑢) are (strong) 𝜙-compatible and 𝜋(𝑢) is

diagonal, see Prop. 15.1.14.

A strong version of the previous proposition can be proposed, for which a proof is not necessary since it

combines previous results and the same line of reasoning when computations are needed:

Proposition 15.1.10 Suppose that 𝐷 is strong 𝜙-compatible with 𝐷.
1. For any 𝜔 ∈ Ω1

𝑈 (), 𝜋𝐷 ◦ 𝜙(𝜔) is strong 𝜙-compatible with 𝜋𝐷(𝜔).
2. Suppose that 𝐽 is strong 𝜙-compatible with 𝐽. For any unitaries 𝑢 ∈  and 𝑢 ∈  such that 𝜋(𝑢) and
𝜋(𝑢) are strong 𝜙-compatible, 𝐷𝑢

 is strong 𝜙-compatible with 𝐷𝑢
 .

3. Using the hypothesis of the previous points, 𝐷𝑢
,𝜙(𝜔) is strong 𝜙-compatible with 𝐷𝑢

,𝜔.
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15.1.2 𝐴𝐹-Algebras in terms of Krajewski’s Diagram Structures

We will use the results of section 4.2, in particular the diagrammatic descriptions of (odd/even) real spectral

triples. Let (,, 𝐷, 𝐽) and (,, 𝐷, 𝐽) be two real spectral triples on the algebras  = ⊕𝑟
𝑖=1𝑀𝑛𝑖 and

 = ⊕𝑠
𝑘=1𝑀𝑚𝑘 with  = ⊕𝑣∈Γ(0)

,𝑣 and  = ⊕𝑤∈Γ(0)
,𝑤 . As we defined the maps 𝑖, 𝑗 on Γ(0) , let us define

the similar maps 𝑘, 𝓁 on Γ(0) : for any 𝑤 ∈ Γ(0) with 𝜋𝜆𝜌(𝑤) = (𝐦𝑘 , 𝐦𝓁), 𝑘(𝑤) ∶= 𝑘 and 𝓁(𝑤) ∶= 𝓁.

Let 𝜙 ∶  →  be a 𝜙-compatible linear map of bimodules (𝜙𝑒-compatible as left modules). This map

decomposes along the maps 𝜙𝑣,𝑤 ∶ ,𝑣 → ,𝑤 between irreps on both sides. For any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ ,

𝑏 = ⊕𝑟
𝑖=1 𝑏𝑖 ∈ , and 𝜓 = ⊕𝑣∈Γ(0)

𝜓𝑣 , one has 𝜙(𝑎𝑏◦𝜓) = 𝜙(𝑎)𝜙(𝑏)◦𝜙(𝜓) with (using (4.2.3))

𝜙(𝑎𝑏◦𝜓) = ∑𝑣∈Γ(0)
⊕𝑤∈Γ(0)

𝜙𝑣,𝑤(𝑎𝑖(𝑣)𝑏◦𝑗(𝑣)𝜓𝑣) and 𝜙(𝑎)𝜙(𝑏)◦𝜙(𝜓) = ∑𝑣∈Γ(0)
⊕𝑤∈Γ(0)

𝜙(𝑎)𝑘(𝑤)𝜙(𝑏)◦𝓁(𝑤)𝜙
𝑣
,𝑤(𝜓𝑣).

We can select a fixed 𝑣 and choose 𝜓 with only one non-zero component 𝜓𝑣 . Then one gets, for any 𝑣 ∈ Γ(0) and

any 𝑤 ∈ Γ(0) , 𝜙𝑤,𝑣(𝑎𝑖(𝑣)𝑏◦𝑗(𝑣)𝜓𝑣) = 𝜙(𝑎)𝑘(𝑤)𝜙(𝑎)◦𝓁(𝑤)𝜙
𝑤
,𝑣(𝜓𝑣). Let us now consider a fixed index 𝑖 and 𝑎 with only

non-zero component at 𝑖(𝑣) = 𝑖, and the same for a fixed 𝑗 and 𝑏: with (𝑘, 𝓁) = (𝑘(𝑤), 𝓁(𝑤)), one has

𝜙𝑣,𝑤(𝑎𝑖𝑏
◦
𝑗𝜓𝑣) = 𝜙𝑖𝑘(𝑎𝑖)𝜙

𝑗
𝓁(𝑏𝑗 )◦𝜙𝑣,𝑤(𝜓𝑣) (15.1.1)

This relation, combined with (13.2.3), suggests to decompose C𝑚𝑘
in ,𝑤 = C𝑚𝑘 ⊗ C𝑚𝓁◦

as C𝑚𝑘 = [⊕𝑟
𝑖=1 C𝑛𝑖 ⊗

C𝛼𝑘𝑖] ⊕ C𝑛0,𝑘
and similarly for C𝑚𝓁◦

with a last term C𝑛0,𝓁
, so that one has the orthogonal decomposition

,𝑤 = C𝑚𝑘 ⊗ C𝑚𝓁◦ =[⊕𝑟
𝑖,𝑗=1 C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ◦] ⊕ [⊕𝑟

𝑖=1 C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ⊗ C𝑛0,𝓁◦] (15.1.2)

⊕ [⊕𝑟
𝑗=1 C𝑛0,𝑘 ⊗ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ◦] ⊕ [C𝑛0,𝑘 ⊗ C𝑛0,𝓁◦] . (15.1.3)

For any 𝑖, 𝑗 = 1, … , 𝑟 and 𝑘, 𝓁 = 1, … , 𝑠, let us define the inclusion

𝐼 𝑖,𝑗𝑘,𝓁 ∶ C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ◦ ↪ C𝑚𝑘 ⊗ C𝑚𝓁◦.

Notice that 𝐼 𝑖,𝑗𝑘,𝓁 = 𝐼 𝑖𝑘 ⊗ 𝐼 𝑗◦𝓁 with the inclusions 𝐼 𝑖𝑘 ∶ C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ↪ C𝑚𝑘
and 𝐼 𝑗◦𝓁 ∶ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ◦ ↪ C𝑚𝓁◦

.

Let 𝐹 (𝑖,𝑘),(𝑗 ,𝓁) ∶ C𝑛𝑖⊗C𝛼𝑘𝑖⊗C𝛼𝓁𝑗⊗C𝑛𝑗 ◦ → C𝑛𝑗⊗C𝛼𝓁𝑗⊗C𝛼𝑘𝑖⊗C𝑛𝑖◦
be the involution 𝜉𝑖⊗𝜎𝑘𝑖 ⊗𝜎𝓁

𝑗⊗𝜂◦𝑗 ↦ 𝜂𝑗⊗𝜎𝓁
𝑗⊗𝜎𝑘𝑖 ⊗𝜉 ◦𝑖

and 𝐹 𝑘𝓁 ∶ C𝑚𝑘 ⊗ C𝑚𝓁◦ → C𝑚𝓁 ⊗ C𝑚𝑘◦
the involution 𝜑𝑘 ⊗ 𝜗◦𝓁 ↦ 𝜗𝓁 ⊗ 𝜑◦𝑘 . Then, one can check that

𝐹 𝑘𝓁 ◦ 𝐼 𝑖,𝑗𝑘,𝓁 = 𝐼 𝑗 ,𝑖𝓁,𝑘 ◦ 𝐹
(𝑖,𝑘),(𝑗 ,𝓁)
 (15.1.4)

Notice that 𝐽 ∶ ,𝑣 → ,𝜅(𝑣) can be written as 𝐽 = 𝜖(𝑣, 𝑑)(𝐽0 ⊗ 𝐽0) ◦ 𝐹 𝑖𝑗 since 𝐹 𝑖𝑗 = 𝜅̂,𝑣 with (𝑖, 𝑗) =
(𝑖(𝑣), 𝑗(𝑣)).

In the case of a 𝐴𝐹 -algebra, the inclusions 𝐼 𝑖𝑘 (and so 𝐼 𝑗◦𝓁 and 𝐼 𝑖,𝑗𝑘,𝓁) are defined directly from the Bratteli diagram

of the algebra, that is, they depend only on the inclusion 𝜙 ∶  → . We can now write 𝜙 in terms of these

inclusions.

Combining (15.1.1) and (15.1.2), the map 𝜙𝑣,𝑤 first reduces to a map C𝑛𝑖 ⊗ C𝑛𝑗 ◦ → C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ◦
,

and using a slight adaptation of Lemma 4.2.1, it reduces to a linear map C → C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗
, that is, to the data of

an element 𝑢(𝑣, 𝑤) ∈ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗
, such that 𝜙𝑣,𝑤 is the composition of C𝑛𝑖 ⊗ C𝑛𝑗 ◦ ∋ 𝜉𝑖 ⊗ 𝜂◦𝑗 ↦ 𝜉𝑖 ⊗ 𝑢(𝑣, 𝑤) ⊗ 𝜂◦𝑗 ∈

C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ◦
with the inclusion 𝐼 𝑖,𝑗𝑘,𝓁. When 𝛼𝑘𝑖 = 0 or 𝛼𝓁𝑗 = 0, 𝜙𝑣,𝑤 = 0.

Consequently, the 𝜙-compatible map 𝜙 is completely determined by a family of matrices 𝑢(𝑣, 𝑤) ∈ 𝑀𝛼𝑘𝑖×𝛼𝓁𝑗 ≃
C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗 1

by the previous relation, with (𝑖, 𝑗) = (𝑖(𝑣), 𝑗(𝑣)) and (𝑘, 𝓁) = (𝑘(𝑤), 𝓁(𝑤)). Notice that for 𝑣, 𝑣′ ∈ Γ(0)
such that 𝜋𝜆𝜌(𝑣) = 𝜋𝜆𝜌(𝑣′), the ranges of 𝜙𝑣,𝑤 and 𝜙𝑣′,𝑤 are at the same place in ,𝑤 (the range of 𝐼 𝑖,𝑗𝑘,𝓁), and

𝑢(𝑣, 𝑤) and 𝑢(𝑣′, 𝑤) define a kind of relative positioning and weight between the two ranges. If 𝜋𝜆𝜌(𝑣) ≠ 𝜋𝜆𝜌(𝑣′),
the ranges are orthogonal in ,𝑤 since the ranges of 𝐼 𝑖,𝑗𝑘,𝓁 and 𝐼 𝑖

′ ,𝑗 ′
𝑘,𝓁 are distinct in the orthogonal decomposition

(15.1.2) when (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′).
1
We use the following convention. Let 𝑥, 𝑥′ ∈ C𝑛

and 𝑦, 𝑦′ ∈ C𝑚
. Define C𝑛 ⊗ C𝑚 ∋ 𝑥 ⊗ 𝑦 ≃ 𝑧 = 𝑥𝑦⊤ ∈ 𝑀𝑛×𝑚 and 𝑧′ = 𝑥′𝑦′⊤ ∈ 𝑀𝑛×𝑚, so

that 𝑧(𝑣) = ⟨𝑦̄, 𝑣⟩C𝑚𝑥 for any 𝑣 ∈ C𝑚
. One then gets 𝑦̄ ⊗ 𝑥̄ ≃ 𝑧∗ and tr(𝑧∗𝑧′) = ⟨𝑥, 𝑥′⟩C𝑛 ⟨𝑦, 𝑦′⟩C𝑚 , and by linearity, a similar relation holds for

𝑧 = ∑𝑖 𝑥𝑖𝑦⊤𝑖 and 𝑧′ = ∑𝑖 𝑥′𝑖 𝑦′⊤𝑖 . This relation will be used in the following.



162 CHAPTER 15. SPECTRAL TRIPLE-BASED APPROACH TO NCGFT ON 𝐴𝐹 -ALGEBRAS

For non-real spectral triples, a similar (simpler) result can be obtained: a 𝜙-compatible map 𝜙 ∶  → 
is completely determined by the linear maps 𝜙𝑣,𝑤 ∶ ,𝑣 = C𝑛𝑖 → ,𝑤 = C𝑚𝑘

for 𝑖 = 𝑖(𝑣) and 𝑘 = 𝑘(𝑤), and so

by a family of vectors 𝑢(𝑣, 𝑤) ∈ C𝛼𝑘𝑖
such that 𝜙𝑣,𝑤 is the composition of C𝑛𝑖 ∋ 𝜉𝑖 ↦ 𝜉𝑖 ⊗ 𝑢(𝑣, 𝑤) ∈ C𝑛𝑖 ⊗C𝛼𝑘𝑖

with

the inclusion 𝐼 𝑖𝑘 ∶ C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ↪ C𝑚𝑘
.

The following result summarizes the construction achieved so far:

Lemma 15.1.11 There is a family of matrices 𝑢(𝑣, 𝑤) ∈ 𝑀𝛼𝑘𝑖×𝛼𝓁𝑗 such that, for any 𝑣 ∈ Γ(0) and 𝑤 ∈ Γ(0) , with
(𝑖, 𝑗) = (𝑖(𝑣), 𝑗(𝑣)) and (𝑘, 𝓁) = (𝑘(𝑤), 𝓁(𝑤)), one has

𝜙𝑣,𝑤(𝜉𝑖 ⊗ 𝜂◦𝑗 ) = 𝐼 𝑖,𝑗𝑘,𝓁(𝜉𝑖 ⊗ 𝑢(𝑣, 𝑤) ⊗ 𝜂◦𝑗 ) for any 𝜉𝑖 ⊗ 𝜂◦𝑗 ∈ ,𝑣 . (15.1.5)

For any 𝑣 ∈ Γ(0) , any 𝑤 ∈ Γ(0) , and any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈ , one has

𝜙𝑖𝑘(𝑎𝑖)𝐼
𝑖,𝑗
𝑘,𝓁(𝜉𝑖 ⊗ 𝑢(𝑣, 𝑤) ⊗ 𝜂◦𝑗 ) = 𝐼 𝑖,𝑗𝑘,𝓁(𝑎𝑖𝜉𝑖 ⊗ 𝑢(𝑣, 𝑤) ⊗ 𝜂◦𝑗 )

with (𝑖, 𝑗) = (𝑖(𝑣), 𝑗(𝑣)) and (𝑘, 𝓁) = (𝑘(𝑤), 𝓁(𝑤)).
In the even case, if 𝛾 is 𝜙-compatible with 𝛾, then 𝜙𝑣,𝑤 , and so 𝑢(𝑣, 𝑤), can be non-zero only when 𝑠(𝑣) = 𝑠(𝑤).

Proof The first statement is a summary of the previous decomposition of 𝜙 . The second relation is a direct

consequence of this decomposition of 𝜙 and (15.1.1). Notice that in the LHS, one could replace 𝜙𝑖𝑘(𝑎𝑖) by 𝜙𝑘(𝑎)
since only the entries positioned according to 𝑖 in the matrix 𝜙𝑘(𝑎) ∈ 𝑀𝑚𝑘 , see (13.2.2) and (13.2.3), give non-zero

contributions once applied on the range of 𝐼 𝑖,𝑗𝑘,𝓁. In the even case, the statement is a consequence of Lemma 15.1.5,

which implies here that 𝜙𝑣,𝑤 = 0 when 𝑠(𝑣) ≠ 𝑠(𝑤).

Let us stress that 𝑢(𝑣, 𝑤) is an essential object since it encodes all the data of embedding (i.e. 𝛼𝑘𝑖’s and the way

of embedding into these corresponding blocks) which is at the heart of the Bratteli diagram structure. Then, it

allows us to link Bratteli’s and Krajewski’s diagrammatic structures since the way its basic elements (nodes 𝑣 and

𝑤) are now connected to Bratteli’s diagram structures.

Proposition 15.1.12 Two operators 𝐴 on  and 𝐵 on  are strong 𝜙-compatible if and only if

∑𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐴𝑣1
𝑣2𝜓𝑣1) = ∑𝑤1∈Γ(0)

𝐵𝑤1
𝑤2
𝜙𝑣1,𝑤1

(𝜓𝑣1) (15.1.6)

for any 𝑣1 ∈ Γ(0) , 𝑤2 ∈ Γ(0) , and 𝜓𝑣1 ∈ ,𝑣1 . They are 𝜙-compatible if and only if

∑𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐴𝑣1
𝑣2𝜓𝑣1) = ∑𝑤1∈Γ(0)

𝐵𝜙,𝑤1
𝜙,𝑤2

𝜙𝑣1,𝑤1
(𝜓𝑣1)

for any 𝑣1 ∈ Γ(0) , 𝑤2 ∈ Γ(0) , and 𝜓𝑣1 ∈ ,𝑣1 , where 𝐵𝜙,𝑤1
𝜙,𝑤2

∶ ,𝑤1 ∩𝜙() → ,𝑤2 ∩𝜙() is the decomposition

of 𝐵𝜙𝜙 along the ,𝑤 ∩ 𝜙()’s.

Proof For any 𝜓 = ⊕𝑣1∈Γ(0)
𝜓𝑣1 ∈ , one has 𝐴𝜓 = ⊕𝑣2∈Γ(0)

∑𝑣1∈Γ(0)
𝐴𝑣1
𝑣2𝜓𝑣1𝜓𝑣1 and 𝜙(𝜓) =

⊕𝑤1∈Γ(0)
∑𝑣1∈Γ(0)

𝜙𝑣1,𝑤1
(𝜓𝑣1). This implies 𝜙(𝐴𝜓) = ⊕𝑤2∈Γ(0)

∑𝑣1 ,𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐴𝑣1
𝑣2𝜓𝑣1) and, in a similar way, 𝐵𝜙(𝜓) =

⊕𝑤2∈Γ(0)
∑𝑤1∈Γ(0)

∑𝑣1∈Γ(0)
𝐵𝑤2
𝑤1
𝜙𝑣1,𝑤2

(𝜓𝑣1). The strong 𝜙-compatibility is then equivalent to ∑𝑣1 ,𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐴𝑣1
𝑣2𝜓𝑣1) =

∑𝑤1∈Γ(0)
∑𝑣1∈Γ(0)

𝐵𝑤2
𝑤1
𝜙𝑣1,𝑤2

(𝜓𝑣1) for any 𝑤2 ∈ Γ(0) , and, by linearity (fixing 𝜓 with one non-zero component at 𝑣1),

∑𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐴𝑣1
𝑣2𝜓𝑣1) = ∑𝑤1∈Γ(0)

𝐵𝑤2
𝑤1
𝜙𝑣1,𝑤2

(𝜓𝑣1) for any 𝑣1 ∈ Γ(0) and 𝑤2 ∈ Γ(0) .

The 𝜙-compatibility relation follows the same computation with 𝐵 replaced by 𝐵𝜙𝜙 .

Lemma 15.1.13 For any 𝑎 = ⊕𝑟
𝑖=1 𝑎𝑖 ∈  and 𝑏 = ⊕𝑠

𝑘=1 𝑏𝑖 ∈ , 𝜋(𝑎) and 𝜋(𝑏) are strong 𝜙-compatible if and
only if, for any 𝑣 ∈ Γ(0) , any 𝑤 ∈ Γ(0) , and any 𝜉𝑖(𝑣) ⊗ 𝜂◦𝑗(𝑣) ∈ ,𝑣 , one has

𝑏𝑘(𝑤)𝐼 𝑖,𝑗𝑘,𝓁(𝜉𝑖(𝑣) ⊗ 𝑢(𝑣, 𝑤) ⊗ 𝜂◦𝑗(𝑣)) = 𝐼 𝑖,𝑗𝑘,𝓁(𝑎𝑖(𝑣)𝜉𝑖(𝑣) ⊗ 𝑢(𝑣, 𝑤) ⊗ 𝜂◦𝑗(𝑣))

Proof Inserting (4.2.3) into (15.1.6) for 𝐴 = 𝜋(𝑎) and 𝐵 = 𝜋(𝑏), one gets 𝜙𝑣,𝑤(𝑎𝑖(𝑣)𝜓𝑣) = 𝑏𝑘(𝑤)𝜙𝑣,𝑤(𝜓𝑣) for any

𝑣 ∈ Γ(0) and 𝑤 ∈ Γ(0) . Using (15.1.5) for 𝜙𝑣,𝑤 then gives the relation.
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Proposition 15.1.14 Let 𝑢 ∈  be a unitary element and define 𝑢 ∶= 𝜙(𝑢) + 𝑝𝑛0 ∈  (see (13.2.6)). Then
𝑢 is a unitary element such that 𝜋(𝑢) is diagonal (in the orthogonal decomposition defined by 𝜙) and is strong
𝜙-compatible with 𝜋(𝑢).

Proof One already knows that 𝜋 ◦ 𝜙(𝑢) is strong 𝜙-compatible with 𝜋(𝑢) (see Remark 13.4.4). By con-

struction, the range of 𝜙,𝑤 is contained only in the first term in brackets (the double direct sum over 𝑖, 𝑗) in

(15.1.2), while 𝜋(𝑝𝑛0) is non-trivial only on the last two terms (the ones with C𝑛0,𝑘
as first factor). This implies

that 𝜋(𝑝𝑛0)𝜙(𝜓) = 0 = 𝜙(𝑢𝜓) for any any 𝜓 ∈ . So, one has 𝜋(𝑢)𝜙(𝜓) = 𝜙(𝑢𝜓) for any 𝜓 ∈ ,

and since 𝜋(𝑢) and 𝜋(𝑢) are unitary, by Prop. 13.4.5, 𝜋(𝑢) is diagonal.

Proposition 15.1.15 𝐽 is strong 𝜙-compatible with 𝐽 if and only if

𝑢(𝜅(𝑣), 𝜅(𝑤)) =
𝜖(𝑣, 𝑑)
𝜖(𝑤, 𝑑)

𝑢(𝑣, 𝑤)∗ (15.1.7)

for any 𝑣 ∈ Γ(0) and 𝑤 ∈ Γ(0) where 𝑑 (resp. 𝑑) is the 𝐾𝑂-dimension of  (resp. ).

Prop. 15.1.20 below gives a criterion on spectral triples on top of  and  so that 𝑑 = 𝑑.

Proof For any 𝜓𝑣 = 𝜉𝑖 ⊗ 𝜂◦𝑗 ∈ ,𝑣 , one has 𝜙𝜅(𝑣),𝜅(𝑤)(𝐽𝜓𝑣) = 𝜖(𝑣, 𝑑)𝜙𝜅(𝑣),𝜅(𝑤)(𝜂̄𝑗 ⊗ 𝜉 ◦𝑖 ) = 𝜖(𝑣, 𝑑)𝐼 𝑗 ,𝑖𝓁,𝑘(𝜂̄𝑗 ⊗
𝑢(𝜅(𝑣), 𝜅(𝑤))⊗𝜉 ◦𝑖 ) and 𝐽𝜙𝑣,𝑤(𝜓𝑣) = 𝐽 ◦ 𝐼 𝑖,𝑗𝑘,𝓁(𝜉𝑖⊗𝑢(𝑣, 𝑤)⊗𝜂

◦
𝑗 ) = 𝜖(𝑤, 𝑑)𝐼 𝑗 ,𝑖𝓁,𝑘(𝜂̄𝑗 ⊗𝑢(𝑣, 𝑤)

∗⊗𝜉 ◦𝑖 ) when one uses

(15.1.4) and the identification of 𝑀𝛼𝑘𝑖×𝛼𝓁𝑗 with C𝛼𝑘𝑖 ⊗C𝛼𝓁𝑗
(see Footnote 1). This implies the required equivalence.

Corollary 15.1.16 If 𝐽 is strong 𝜙-compatible with 𝐽, then, for any 𝑣 ∈ Γ(0) and 𝑤 ∈ Γ(0) , 𝜙𝜅(𝑣),𝜅(𝑤) ≠ 0 if and only
if 𝜙𝑣,𝑤 ≠ 0.

Proof For any 𝑣 ∈ Γ(0) and 𝑤 ∈ Γ(0) , with (𝑖, 𝑗) = (𝑖(𝑣), 𝑗(𝑣)) and (𝑘, 𝓁) = (𝑘(𝑤), 𝓁(𝑤)), from (15.1.7), one has

𝜙𝜅(𝑣),𝜅(𝑤)(𝜉𝑗 ⊗ 𝜂◦𝑖 ) = 𝐼 𝑗 ,𝑖𝓁,𝑘(𝜉𝑗 ⊗ 𝑢(𝜅(𝑣), 𝜅(𝑤)) ⊗ 𝜂◦𝑖 ) =
𝜖(𝑣, 𝑑)
𝜖(𝑤, 𝑑)

𝐼 𝑗 ,𝑖𝓁,𝑘(𝜉𝑗 ⊗ 𝑢(𝑣, 𝑤)∗ ⊗ 𝜂◦𝑖 ).

We then get the equivalence since 𝑢(𝑣, 𝑤) defines 𝜙𝑣,𝑤 .

For any 𝑣′ = (𝑖, 𝑝′, 𝑗) ∈ Γ(0),𝐧𝑖𝐧𝑗 , we define

𝜄𝑣
′

𝑣 ∶ ,𝑣′ → ,𝑣 as 𝜄𝑣
′

𝑣 (𝜉
(1)
𝑖,𝛼 ⊗ 𝜎𝑝

′

𝑖𝑗 ⊗ 𝜂◦(2)𝑗 ,𝛼 ) = 𝜉 (1)𝑖,𝛼 ⊗ 𝜎𝑝𝑖𝑗 ⊗ 𝜂◦(2)𝑗 ,𝛼 .

Proposition 15.1.17 Let 𝑣, 𝑣′ ∈ Γ(0) , 𝑤 ∈ Γ(0) , and 𝜓𝑣 ∈ ,𝑣 and 𝜓′
𝑣′ ∈ ,𝑣′ .

When 𝜋𝜆𝜌(𝑣) ≠ 𝜋𝜆𝜌(𝑣′), one has ⟨𝜙𝑣,𝑤(𝜓𝑣), 𝜙𝑣
′

,𝑤(𝜓′
𝑣′)⟩,𝑤 = 0.

When 𝜋𝜆𝜌(𝑣) = 𝜋𝜆𝜌(𝑣′), one has

⟨𝜙𝑣,𝑤(𝜓𝑣), 𝜙
𝑣′
,𝑤(𝜓

′
𝑣′)⟩,𝑤 = ⟨𝜓𝑣 , 𝜄𝑣

′

𝑣 (𝜓
′
𝑣′)⟩,𝑣 tr(𝑢(𝑣, 𝑤)

∗𝑢(𝑣′, 𝑤))

In particular, for any 𝜓𝑣 ∈ ,𝑣 and 𝜓′
𝑣′ ∈ ,𝑣 , one has

‖𝜙𝑣,𝑤(𝜓𝑣)‖,𝑤 = ‖𝜓𝑣‖,𝑣 ‖𝑢(𝑣, 𝑤)‖𝐹

⟨𝜙𝑣(𝜓𝑣), 𝜙
𝑣′
(𝜓

′
𝑣′)⟩ = ⟨𝜓𝑣 , 𝜄𝑣

′

𝑣 (𝜓
′
𝑣′)⟩,𝑣(∑𝑤∈Γ(0)

tr(𝑢(𝑣, 𝑤)∗𝑢(𝑣′, 𝑤))) (15.1.8)

where ‖−‖𝐹 is the Frobenius norm on matrices, defined as ‖𝐴‖2𝐹 ∶= tr(𝐴∗𝐴). This implies that 𝜙𝑣 ∶ ,𝑣 →  is
one-to-one if and only if ∑𝑤∈Γ(0)

‖𝑢(𝑣, 𝑤)‖2𝐹 > 0.
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(a) A Bratteli diagram
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n2

n3

λ

ρ
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v′
1

v2

κA(v2)

m1 m2

m1

m2

λ

ρ

w1

κB(w2)
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u(v1, w1)

u(v ′
1 , w1)

u(κA(v2), κB(w2))

u(v2 , w2)
κ̂A

κ̂B

(b) A lift of a Bratteli diagram between two Krajewski diagrams

Figure 15.1: Lift of a Bratteli diagram between two Krajewski diagrams.

(a): An example of a Bratteli diagram for the inclusion 𝑀𝑛1 ⊕𝑀𝑛2 ⊕𝑀𝑛3 → 𝑀𝑚1 ⊕𝑀𝑚2 with multiplicities 𝛼𝑘𝑖 for

the inclusion of 𝑀𝑛𝑖 into 𝑀𝑚𝑘 .

(b): Some lifts of the maps (arrows) given in the Bratteli diagram (a) as maps 𝜙𝑣,𝑤 ∶ ,𝑣 → ,𝑤 , here repre-

sented as (green) arrows decorated with their defining matrices 𝑢(𝑣, 𝑤) ∈ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗
, see (15.1.5). The configu-

ration for the arrows 𝑣2 → 𝑤2 and 𝜅(𝑣2) → 𝜅(𝑤2) is the consequence of Corollary 15.1.16. In the even case,

according to Lemma 15.1.11, one should have 𝑠(𝑣2) = 𝑠(𝑤2) for 𝑢(𝑣2, 𝑤2) to be non-zero, and similarly for other

arrows. The arrows 𝑀𝑛2 → 𝑀𝑚1 and 𝑀𝑛2 → 𝑀𝑚2 in (a) are not lifted in order to lighten the drawing.
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Proof From a previous remark, the scalar product is zero when 𝜋𝜆𝜌(𝑣) ≠ 𝜋𝜆𝜌(𝑣′). So, suppose 𝜋𝜆𝜌(𝑣) = 𝜋𝜆𝜌(𝑣′).
Let 𝑖 = 𝑖(𝑣) = 𝑖(𝑣′) and 𝑗 = 𝑗(𝑣) = 𝑗(𝑣′) and consider𝜓𝑣 = 𝜉𝑖⊗𝜂◦𝑗 and𝜓′

𝑣′ = 𝜉 ′𝑖 ⊗𝜂′◦𝑗 , so that 𝜙𝑣,𝑤(𝜓𝑣) = 𝜉𝑖⊗𝑢(𝑣, 𝑤)⊗𝜂◦𝑗
and 𝜙𝑣′,𝑤(𝜓′

𝑣′) = 𝜉 ′𝑖 ⊗ 𝑢(𝑣′, 𝑤) ⊗ 𝜂′◦𝑗 both in C𝑛𝑖 ⊗ 𝑀𝛼𝑘𝑖×𝛼𝓁𝑗 ⊗ C𝑛𝑗 ≃ C𝑛𝑖 ⊗ C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗 ⊗ C𝑛𝑗 ⊂ C𝑚𝑘 ⊗ C𝑚𝓁◦
.

Then ⟨𝜙𝑣,𝑤(𝜓𝑣), 𝜙𝑣
′

,𝑤(𝜓′
𝑣′)⟩,𝑤 = ⟨𝜉𝑖, 𝜉 ′𝑖 ⟩C𝑛𝑖 ⟨𝜂𝑗 , 𝜂′𝑗 ⟩C𝑛𝑗 tr(𝑢(𝑣, 𝑤)∗𝑢(𝑣′, 𝑤))where the trace factor is obtained from the

identification of 𝑀𝛼𝑘𝑖×𝛼𝓁𝑗 with C𝛼𝑘𝑖 ⊗ C𝛼𝓁𝑗
and we have used the fact that 𝜆(𝑣) = 𝜆(𝑣′) = 𝑛𝑖 and 𝜌(𝑣) = 𝜌(𝑣′) = 𝑛𝑗

to write the scalar products. This implies the formula in terms of the scalar product on ,𝑣 , from which we

deduce the relations on the norm in ,𝑤 and on the scalar product in . This last relation implies the norm

relation ‖𝜙𝑣(𝜓𝑣)‖2
= ‖𝜓𝑣‖2,𝑣(∑𝑤∈Γ(0)

‖𝑢(𝑣, 𝑤)‖2𝐹). Then, suppose ∑𝑤∈Γ(0)
‖𝑢(𝑣, 𝑤)‖2𝐹 > 0: if 𝜓𝑣 ∈ ,𝑣 is such that

𝜙𝑣(𝜓𝑣) = 0, then ‖𝜓𝑣‖2,𝑣
= 0, so that 𝜓𝑣 = 0, that is, 𝜙𝑣 is one-to-one. Suppose ∑𝑤∈Γ(0)

‖𝑢(𝑣, 𝑤)‖2𝐹 = 0, then

‖𝜙𝑣(𝜓𝑣)‖2
= 0 for any 𝜓𝑣 ∈ ,𝑣 , so that 𝜙𝑣 = 0, that is, 𝜙𝑣 is not one-to-one.

Notice that the condition ∑𝑤∈Γ(0)
‖𝑢(𝑣, 𝑤)‖2𝐹 > 0 for any 𝑣 ∈ Γ(0) does not implies that 𝜙 is one-to-one: one

can consider a situation where, for 𝑣, 𝑣′ ∈ Γ(0) such that 𝜋𝜆𝜌(𝑣) = 𝜋𝜆𝜌(𝑣′), 𝜓𝑣 ∈ ,𝑣 , and 𝜓′
𝑣′ ∈ ,𝑣′ , 𝜙𝑣,𝑤(𝜓𝑣) +

𝜙𝑣′,𝑤(𝜓′
𝑣′) = 0 ∈ ,𝑤 for some 𝑤 ∈ Γ(0) .

From (15.1.8), it is natural to define, for any 𝑣, 𝑣′ ∈ Γ(0) ,

𝐓𝑣1 ,𝑣2 ∶=

{
0 if 𝜋𝜆𝜌(𝑣1) ≠ 𝜋𝜆𝜌(𝑣2)
∑𝑤∈Γ(0)

tr(𝑢(𝑣1, 𝑤)∗𝑢(𝑣2, 𝑤)) if 𝜋𝜆𝜌(𝑣1) = 𝜋𝜆𝜌(𝑣2)

so that (15.1.8) can be written as ⟨𝜙𝑣1(𝜓𝑣1), 𝜙
𝑣2
(𝜓

′
𝑣2)⟩ = ⟨𝜓𝑣1 , 𝜄𝑣2𝑣1(𝜓

′
𝑣2)⟩,𝑣1

𝐓𝑣1 ,𝑣2 .

With 𝜋𝜆𝜌(𝑣1) = 𝜋𝜆𝜌(𝑣2) = (𝐧𝑖, 𝐧𝑗 ), one has 𝐓𝑣2 ,𝑣1 = ∑𝑤∈Γ(0)
tr(𝑢(𝑣2, 𝑤)∗𝑢(𝑣1, 𝑤)) = ∑𝑤∈Γ(0)

tr(𝑢(𝑣1, 𝑤)∗𝑢(𝑣2, 𝑤)) =
𝐓𝑣1 ,𝑣2 , so that (𝐓𝑣1 ,𝑣2)𝑣1 ,𝑣2 is a Hermitian matrix, so that this matrix can be diagonalized. Recall that the labels 𝑣1, 𝑣2
depends on the choices of the orthonormal bases {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of the spaces C𝜇𝑖𝑗

’s: this diagonalization (see proof

of Prop. 15.1.19) is related to a change of these bases. This leads us to introduce the following Hypothesis.

Hypothesis 15.1.18
We suppose that 𝜙 is one-to-one and is such that there are orthonormal bases {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of the spaces C𝜇𝑖𝑗 which
conform to Prop. 4.2.9 (in the odd case) or Prop. 4.2.10 (in the even case), and such that, for the decomposition of 
induced by these bases, 𝐓𝑣1 ,𝑣2 = 𝐭𝑣1𝛿𝑣1 ,𝑣2 when 𝜋𝜆𝜌(𝑣1) = 𝜋𝜆𝜌(𝑣2), with real numbers 𝐭𝑣 such that 𝐭𝜅(𝑣) = 𝐭𝑣 .

A direct consequence of these assumptions is that ⟨𝜙𝑣1(𝜓𝑣1), 𝜙
𝑣2
(𝜓

′
𝑣2)⟩ = 0 for any 𝑣1 ≠ 𝑣2 and

⟨𝜙𝑣(𝜓𝑣), 𝜙𝑣(𝜓′
𝑣)⟩ = 𝐭𝑣 ⟨𝜓𝑣 , 𝜓′

𝑣⟩,𝑣 for any 𝑣. The one-to-one requirement is natural in the context of 𝐴𝐹 -

algebras, since it generalizes the one-to-one requirement on 𝜙. On the other hand, the diagonalization require-

ment is not mandatory for the formal developments to come, but it will be useful to compare spectral actions

for 𝜙-compatible spectral triples on  and  in Sect. 15.2. Moreover, this requirement is satisfied for some

𝐾𝑂-dimensions:

Proposition 15.1.19 Suppose that 𝐽 is strong 𝜙-compatible with 𝐽, and, in the even case, that 𝛾 is 𝜙-compatible
with 𝛾. Then, in 𝐾𝑂-dimensions 0, 1, 2, 6, 7, the diagonalization requirement in Hypothesis 15.1.18 is satisfied for
any 𝜙 .

Proof Let {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 be orthonormal bases of the spaces C𝜇𝑖𝑗
which satisfy Prop. 4.2.9 (in the odd case) or

Prop. 4.2.10 (in the even case). Let us first complete the notations introduced before Prop. 15.1.17, where we have

introduced the identification 𝑣 = (𝑖, 𝑝, 𝑗). With this notation, we define 𝜅(𝑣) = (𝑗, 𝑝̄, 𝑖) where 𝑝̄ = 1, … , 𝜇𝑗𝑖 = 𝜇𝑖𝑗
and

̄̄𝑝 = 𝑝 (obviously, this bar is not to be confused with a complex conjugation).

Let {𝜏𝑞𝑘𝓁}1≤𝑞≤𝜈𝑘𝓁 be orthonormal bases of the spaces C𝜈𝑘𝓁
where 𝜈𝑘𝓁 are the multiplicity of the irreps ,𝐦𝑘𝐦𝓁

in . These bases define the irreps ,𝑤 for 𝑤 = (𝑘, 𝑞, 𝓁) ∈ Γ(0),𝐦𝑘𝐦𝓁
as in (4.2.1). We have written the map

𝜙𝑣,𝑤 ∶ ,𝑣 → ,𝑤 in terms of a matrix 𝑢(𝑣, 𝑤). It is convenient to write 𝜙𝑣,𝑤 explicitly in terms of the bases

{𝜎𝑝𝑖𝑗 } and {𝜏𝑞𝑘𝓁}. In order to avoid cumbersome notations, we use the identificationC𝑛𝑖⊗C𝜇𝑖𝑗⊗C𝑛𝑗 ◦ ≃ C𝑛𝑖⊗C𝑛𝑗 ◦⊗C𝜇𝑖𝑗

(resp. C𝑚𝑘 ⊗C𝜈𝑘𝓁 ⊗C𝑚𝓁◦ ≃ C𝑚𝑘 ⊗C𝑚𝓁◦⊗C𝜈𝑘𝓁
) so that 𝜎𝑝𝑖𝑗 (resp. 𝜏𝑞𝑘𝓁) will appear on the right in the tensor products.

Then we can replace the notation 𝑢(𝑣, 𝑤) by the notation 𝑢𝑖𝑗 ,𝑝𝑘𝓁,𝑞 ∈ 𝑀𝛼𝑘𝑖×𝛼𝓁𝑗 which refers to the bases {𝜎𝑝𝑖𝑗 } and {𝜏𝑞𝑘𝓁}
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for which, similarly to (15.1.5), one has 𝜙𝑣,𝑤(𝜉𝑖⊗𝜂◦𝑗⊗𝜎
𝑝
𝑖𝑗 ) = 𝐼 𝑖,𝑗𝑘,𝓁(𝜉𝑖⊗𝑢

𝑖𝑗 ,𝑝
𝑘𝓁,𝑞⊗𝜂

◦
𝑗)⊗𝜏

𝑞
𝑘𝓁 (no summation). In the 𝑝 and 𝑞

variables, 𝐓𝑣1 ,𝑣2 with 𝜋𝜆𝜌(𝑣1) = 𝜋𝜆𝜌(𝑣2) = (𝐧𝑖, 𝐧𝑗 ) then becomes 𝐓𝑝1 ,𝑝2𝑖𝑗 = ∑𝑘,𝓁,𝑞 tr((𝑢
𝑖𝑗 ,𝑝2
𝑘𝓁,𝑞 )

∗𝑢𝑖𝑗 ,𝑝1𝑘𝓁,𝑞 ) for 𝑝1, 𝑝2 = 1,… , 𝜇𝑖𝑗 .
Notice the switch 1 ↔ 2 which will be convenient later. Since we suppose that 𝐽 is strong 𝜙-compatible with

𝐽, by Prop. 15.1.15 one get (15.1.7) in terms of the new notations: 𝑢𝑗𝑖,𝑝̄𝓁𝑘,𝑞̄ =
𝜖(𝑖,𝑝,𝑗 ,𝑑)
𝜖(𝑘,𝓁,𝑞,𝑑) (𝑢

𝑖𝑗 ,𝑝
𝑘𝓁,𝑞)

∗
. This implies that

𝐓𝑝̄1 ,𝑝̄2𝑗𝑖 = ∑𝓁,𝑘,𝑞̄ tr((𝑢
𝑗𝑖,𝑝̄2
𝓁𝑘,𝑞̄ )

∗𝑢𝑗𝑖,𝑝̄1𝓁𝑘,𝑞̄ ) = ∑𝑘,𝓁,𝑞
𝜖(𝑖,𝑝2 ,𝑗 ,𝑑)𝜖(𝑖,𝑝1 ,𝑗 ,𝑑)

𝜖(𝑘,𝓁,𝑞,𝑑)2 tr(𝑢𝑖𝑗 ,𝑝2𝑘𝓁,𝑞 (𝑢
𝑖𝑗 ,𝑝1
𝑘𝓁,𝑞 )

∗)

= 𝜖(𝑖, 𝑝1, 𝑗 , 𝑑)𝜖(𝑖, 𝑝2, 𝑗 , 𝑑)𝐓
𝑝2 ,𝑝1
𝑖𝑗 (15.1.9)

In the following, we fix the couple (𝑖, 𝑗). Let us introduce a change of bases {𝜎𝑝𝑖𝑗 } to {𝜎′𝑝′
𝑖𝑗 } in C𝜇𝑖𝑗

, where

𝜎′𝑝′
𝑖𝑗 = ∑𝑝 𝑢𝑝

′𝑝𝜎𝑝𝑖𝑗 for a unitary matrix 𝑈 = (𝑢𝑝′𝑝)𝑝′ ,𝑝 . Then a straightforward computation shows that the

matrices 𝑢′𝑖𝑗 ,𝑝
′

𝑘𝓁,𝑞 defined relatively to the bases {𝜎′𝑝′
𝑖𝑗 } and {𝜏𝑞𝑘𝓁} are 𝑢′𝑖𝑗 ,𝑝

′

𝑘𝓁,𝑞 = ∑𝑝 𝑢𝑝
′𝑝𝑢𝑖𝑗 ,𝑝𝑘𝓁,𝑞 , and the associated

𝐓′𝑝′1 ,𝑝′2
𝑖𝑗 = ∑𝑘,𝓁,𝑞 tr((𝑢

′𝑖𝑗 ,𝑝′2
𝑘𝓁,𝑞 )∗𝑢′𝑖𝑗 ,𝑝

′
1

𝑘𝓁,𝑞 ) become

𝐓′𝑝′1 ,𝑝′2
𝑖𝑗 = ∑𝑘,𝓁,𝑞 ∑𝑝1 ,𝑝2 𝑢𝑝

′
2𝑝2𝑢𝑝

′
1𝑝1 tr((𝑢𝑖𝑗 ,𝑝2𝑘𝓁,𝑞 )

∗𝑢𝑖𝑗 ,𝑝1𝑘𝓁,𝑞 ) = ∑𝑝1 ,𝑝2 𝑢𝑝
′
2𝑝2𝑢𝑝

′
1𝑝1 𝐓𝑝1 ,𝑝2𝑖𝑗 ,

so that 𝐓′
𝑖𝑗 = 𝑈𝐓𝑖𝑗𝑈 ∗

with 𝑈 ∗ = (𝑢𝑝𝑝′)𝑝′ ,𝑝 (here we use the switch 1 ↔ 2 mentioned before). Since 𝐓𝑖𝑗 is a

Hermitian matrix, there is a unitary matrix 𝑈 such that 𝐓′
𝑖𝑗 = 𝑈𝐓𝑖𝑗𝑈 ∗

is diagonal with real eigenvalues 𝐭𝑝𝑖𝑗 = 𝐭𝑣 .
So, for the new basis {𝜎′𝑝′

𝑖𝑗 } of C𝜇𝑖𝑗
defined by 𝑈 , 𝐓′

𝑖𝑗 , and so (𝐓𝑣1 ,𝑣2)𝑣1 ,𝑣2 , is diagonal.

Let us now look how this diagonalization can be performed according to the constraints given in proposition

4.2.9 (in the odd case) or Prop. 4.2.10 (in the even case). The first constraint, common to Prop. 4.2.9 and 4.2.10, is

𝜎𝑝̄𝑗 𝑖 = 𝜖(𝑖, 𝑝, 𝑗 , 𝑑)𝐿𝑖𝑗 (𝜎
𝑝
𝑖𝑗 ) for any 𝑝, where 𝜖(𝑖, 𝑝, 𝑗 , 𝑑) = 𝜖(𝑣, 𝑑) is defined in (4.2.2).

Let us first consider the case 𝑖 < 𝑗 (for any 𝐾𝑂-dimension), for which 𝜖(𝑖, 𝑝, 𝑗 , 𝑑) = 1 and 𝑝̄ = 𝑝, so that,

from (15.1.9), one has 𝐓𝑝1 ,𝑝2𝑗𝑖 = 𝐓𝑝2 ,𝑝1𝑖𝑗 : 𝐓𝑗𝑖 is the transpose of 𝐓𝑖𝑗 . Since this result is true in any basis of C𝜇𝑖𝑗
, this

implies 𝐓′
𝑗𝑖 = 𝑈̄𝐓𝑗𝑖𝑈̄ ∗

. On the other hand, 𝜎′𝑝′
𝑗𝑖 = 𝐿𝑖𝑗 (𝜎

′𝑝′
𝑖𝑗 ) = ∑𝑝 𝑢𝑝

′𝑝𝐿𝑖𝑗 (𝜎
𝑝
𝑖𝑗 ) = ∑𝑝 𝑢𝑝

′𝑝𝜎𝑝𝑗𝑖, so that the change of

bases from {𝜎𝑝𝑗𝑖} to {𝜎′𝑝′
𝑗𝑖 } in C𝜇𝑗𝑖

is performed by the unitary matrix 𝑈̄ . From these two compatible relations, one

concludes that the change of basis defined by 𝑈 in C𝜇𝑖𝑗
which diagonalizes 𝐓′

𝑖𝑗 automatically induces a change of

bases 𝑈̄ in C𝜇𝑗𝑖
which diagonalizes 𝐓′

𝑗𝑖. Notice then that the eigenvalues 𝐭𝑝𝑗𝑖 in 𝐓′
𝑗𝑖 are the same as the eigenvalues

𝐭𝑝𝑖𝑗 in 𝐓′
𝑖𝑗 , so that 𝐭𝜅(𝑣) = 𝐭𝑣 .

Let us now consider 𝑖 = 𝑗 in 𝐾𝑂-dimensions 0, 1, 7. Then, as before, 𝜖(𝑖, 𝑝, 𝑖, 𝑑) = 1 and 𝑝̄ = 𝑝, so that,

from (15.1.9), one has 𝐓𝑝1 ,𝑝2𝑖𝑖 = 𝐓𝑝2 ,𝑝1𝑖𝑖 , and we already know that 𝐓𝑝1 ,𝑝2𝑖𝑖 = 𝐓𝑝2 ,𝑝1𝑖𝑖 : the matrix 𝐓𝑖𝑖 is a real symmetric

matrix, and the diagonalizing matrix 𝑈 can be chosen to be an orthogonal matrix (so a real matrix). This result

is compatible with the required condition 𝜎𝑝𝑖𝑖 = 𝐿𝑖𝑖(𝜎
𝑝
𝑖𝑖) on the basis since 𝜎′𝑝′

𝑖𝑖 = 𝐿𝑖𝑖(𝜎
′𝑝′
𝑖𝑖 ) = ∑𝑝 𝑢𝑝

′𝑝𝐿𝑖𝑖(𝜎
𝑝
𝑖𝑖) =

∑𝑝 𝑢𝑝
′𝑝𝜎𝑝𝑖𝑖 = ∑𝑝 𝑢𝑝

′𝑝𝜎𝑝𝑖𝑖 . Here, it is trivial that 𝐭𝜅(𝑣) = 𝐭𝑣 since 𝜅(𝑣) = 𝑣.

Finally, consider 𝑖 = 𝑗 in𝐾𝑂-dimensions 2, 3, 4, 5, 6. In that situation, if 𝑝 = 2𝑎 (resp. 𝑝 = 2𝑎−1) then 𝑝̄ = 2𝑎−1
(resp. 𝑝̄ = 2𝑎), and 𝜖(𝑖, 2𝑎−1, 𝑖, 𝑑) = 1 and 𝜖(𝑖, 2𝑎, 𝑖, 𝑑) = 𝜖. The matrix 𝐓𝑖𝑖 is a block matrix (

𝐓𝑒,𝑒𝑖𝑖 𝐓𝑒,𝑜𝑖𝑖
𝐓𝑜,𝑒𝑖𝑖 𝐓𝑜,𝑜𝑖𝑖 ) where

𝑜 and 𝑒 stand for odd and even: for instance 𝐓𝑒,𝑒𝑖𝑖 = (𝐓2𝑎1 ,2𝑎2
𝑖𝑖 ) and 𝐓𝑒,𝑜𝑖𝑖 = (𝐓2𝑎1 ,2𝑎2−1

𝑖𝑖 ) with 𝑎1, 𝑎2 = 1,… , 𝜇𝑖𝑖/2. Then,

from (15.1.9), one has 𝐓2𝑎1 ,2𝑎2
𝑖𝑖 = 𝐓2𝑎2−1,2𝑎1−1

𝑖𝑖 , 𝐓2𝑎1 ,2𝑎2−1
𝑖𝑖 = 𝜖𝐓2𝑎2 ,2𝑎1−1

𝑖𝑖 , and 𝐓2𝑎1−1,2𝑎2
𝑖𝑖 = 𝜖𝐓2𝑎2−1,2𝑎1

𝑖𝑖 . Considering

these block matrices as matrices indexed by 𝑎1, 𝑎2, this means that 𝐓𝑒,𝑒𝑖𝑖 = 𝐓𝑜,𝑜𝑖𝑖
⊤
, 𝐓𝑒,𝑜𝑖𝑖 = 𝜖𝐓𝑒,𝑜𝑖𝑖

⊤
, and 𝐓𝑜,𝑒𝑖𝑖 = 𝜖𝐓𝑜,𝑒𝑖𝑖

⊤
.

Since 𝐓𝑖𝑖 is Hermitian, one also has 𝐓𝑒,𝑒𝑖𝑖 = 𝐓𝑒,𝑒𝑖𝑖
∗

and 𝐓𝑒,𝑜𝑖𝑖 = 𝐓𝑜,𝑒𝑖𝑖
∗
.

In 𝐾𝑂-dimensions 3, 4, 5, one has 𝜖 = −1, so that 𝐓𝑒,𝑜𝑖𝑖 = −𝐓𝑒,𝑜𝑖𝑖
⊤ = 𝐓𝑜,𝑒𝑖𝑖

∗
, which implies that 𝐓𝑒,𝑜𝑖𝑖 and 𝐓𝑜,𝑒𝑖𝑖 are

antisymmetric matrices. We report the analysis for 𝐾𝑂-dimensions 2, 6 after the following considerations.

In the even case, since 𝛾 is 𝜙-compatible with 𝛾, from Lemma 15.1.11, 𝑢(𝑣, 𝑤) is non-zero only when 𝑠(𝑣) =
𝑠(𝑤), so that the sum defining 𝐓𝑣1 ,𝑣2 implies 𝑠(𝑤) = 𝑠(𝑣1) = 𝑠(𝑣2). The matrix (𝐓𝑣1 ,𝑣2)𝑣1 ,𝑣2 is then block diagonal

along the decomposition 𝑠(𝑣) = ±1, and its diagonalization can be done by blocks: in terms of the change of

bases in C𝜇𝑖𝑗
, this means that the unitary 𝑈 introduced above which diagonalizes 𝐓𝑖𝑗 can be chosen to preserve

the eigenspaces defined by the maps 𝓁𝑖𝑗 in Prop 4.2.10. The decomposition along 𝑠(𝑣) = ±1 is preserved by 𝜅
since 𝑠𝑝̄𝑗 𝑖 = 𝜖′′𝑠

𝑝
𝑖𝑗 : so all the previous developments are compatible with this choice for 𝑈 .
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In the case 𝑖 = 𝑗 and 𝐾𝑂-dimensions 2, 6, from Prop. 4.2.10, one has 𝑠(𝑖, 2𝑎, 𝑖) = 1 and 𝑠(𝑖, 2𝑎 − 1, 𝑖) = −1, so

that the block decomposition (
𝐓𝑒,𝑒𝑖𝑖 𝐓𝑒,𝑜𝑖𝑖
𝐓𝑜,𝑒𝑖𝑖 𝐓𝑜,𝑜𝑖𝑖 ) corresponds to the block decomposition along 𝑠(𝑣) = ±1, and from the

previous considerations, this implies that 𝐓𝑒,𝑜𝑖𝑖 = 𝐓𝑜,𝑒𝑖𝑖 = 0. Since 𝐓𝑒,𝑒𝑖𝑖 is Hermitean, there is a unitary matrix 𝑈
such that 𝑈𝐓𝑒,𝑒𝑖𝑖 𝑈 ∗

is diagonal, and then by transposition, 𝑈𝐓𝑜,𝑜𝑖𝑖 𝑈
∗

is also diagonal with the same eigenvalues, that

is, 𝐭𝜅(𝑣) = 𝐭𝑣 . The unitary 𝑈 = (
𝑈 0
0 𝑈 ) diagonalizes 𝐓𝑖𝑖 and this diagonalization is compatible with the required

conditions 𝜎2𝑎
𝑖𝑖 = 𝐿𝑖𝑖(𝜎2𝑎−1

𝑖𝑖 ) and 𝜎2𝑎−1
𝑖𝑖 = 𝜖𝐿𝑖𝑖(𝜎2𝑎

𝑖𝑖 ): 𝑈 = (𝑢̃𝑎′ ,𝑎) (resp. 𝑈 = ( ̄̃𝑢𝑎′ ,𝑎)) induces a change of the sub-

basis {𝜎2𝑎
𝑖𝑖 } to {𝜎′2𝑎

𝑖𝑖 } (resp. {𝜎2𝑎−1
𝑖𝑖 } to {𝜎′2𝑎−1

𝑖𝑖 }) with 𝜎′2𝑎′
𝑖𝑖 = ∑𝑎 𝑢̃𝑎

′ ,𝑎𝜎2𝑎
𝑖𝑖 (resp. 𝜎′2𝑎′−1

𝑖𝑖 = ∑𝑎
̄̃𝑢𝑎′ ,𝑎𝜎2𝑎−1

𝑖𝑖 ). The required

condition is satisfied since then 𝜎′2𝑎′−1
𝑖𝑖 = 𝜖𝐿𝑖𝑖(𝜎′2𝑎′

𝑖𝑖 ) = 𝜖 ∑𝑎
̄̃𝑢𝑎′ ,𝑎𝐿𝑖𝑖(𝜎2𝑎

𝑖𝑖 ) = ∑𝑎
̄̃𝑢𝑎′ ,𝑎𝜎2𝑎−1

𝑖𝑖 .

We suspect that the diagonalization property proved in Prop. 15.1.19 could be true also in 𝐾𝑂-dimensions

3, 4, 5. But we were unable to prove this fact. Nevertheless, the proposition fortunately covers the 𝐾𝑂-dimension

6 used in the finite part of the spectral triple for the NC version of the Standard Model of Particles Physics, see

(Chamseddine et al., 2007a) and (van Suijlekom, 2015) for instance.

Proposition 15.1.20 If two (odd/even) real spectral triples are 𝜙-compatible and 𝜙 is such that (15.1.7) holds, then
they have the same 𝐾𝑂-dimension (mod 8).

Proof Since 𝜙 satisfies (15.1.7), by Prop. 15.1.15, 𝐽 is strong 𝜙-compatible with 𝐽 and is diagonal. By

Lemma 15.1.5, 𝛾 is strong 𝜙-compatible with 𝛾 and is diagonal. The difference with Prop. 15.1.6, is that 𝐷
is only 𝜙-compatible with 𝐷. So, we already get 𝜖 = 𝜖 and 𝜖′′ = 𝜖′′: it remains to consider 𝜖′ and 𝜖′.

Since 𝐽 is diagonal, one has 𝐽𝐷 = (
𝐽 𝜙,𝜙𝐷

𝜙
,𝜙 𝐽 𝜙,𝜙𝐷

⟂
,𝜙

𝐽 ⟂,⟂𝐷
𝜙
,⟂ 𝐽 ⟂,⟂𝐷⟂

,⟂ )
and 𝐷𝐽 = (

𝐷𝜙
,𝜙𝐽

𝜙
,𝜙 𝐷⟂

,𝜙𝐽
⟂
,⟂

𝐷𝜙
,⟂𝐽

𝜙
,𝜙 𝐷⟂

,⟂𝐽 ⟂,⟂ )
, so that 𝐽 𝜙,𝜙𝐷

𝜙
,𝜙 =

𝜖′𝐷
𝜙
,𝜙𝐽

𝜙
,𝜙. Inserting this relation in the 𝜙-compatibility conditions on 𝐽 and 𝐷 implies 𝜖′ = 𝜖′.

From Prop. 15.1.12, the strong 𝜙-compatibility condition between 𝐷 and 𝐷 is equivalent to

∑𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐷,(𝑣1 ,𝑣2)𝜓𝑣1) = ∑𝑤1∈Γ(0)
𝐷,(𝑤1 ,𝑤2)𝜙

𝑣1
,𝑤1

(𝜓𝑣1)

for any 𝑣1 ∈ Γ(0) , 𝑤2 ∈ Γ(0) , and 𝜓𝑣1 ∈ ,𝑣1 , and the 𝜙-compatibility condition is equivalent to

∑𝑣2∈Γ(0)
𝜙𝑣2,𝑤2

(𝐷,(𝑣1 ,𝑣2)𝜓𝑣1) = ∑𝑤1∈Γ(0)
𝐷𝜙
,𝜙,(𝑤1 ,𝑤2)𝜙

𝑣1
,𝑤1

(𝜓𝑣1)

where 𝐷𝜙
,𝜙,(𝑤1 ,𝑤2) ∶ ,𝑤1 ∩ 𝜙() → ,𝑤2 ∩ 𝜙(). Unfortunately, from this relation, we cannot de-

fine the elementary operators 𝐷𝜙
,𝜙,(𝑤1 ,𝑤2) in terms of the elementary operators 𝐷,(𝑣1 ,𝑣2). Only the operators

∑𝑤1∈Γ(0)
𝐷𝜙
,𝜙,(𝑤1 ,𝑤2) ∶ ⊕𝑤1∈Γ(0)

,𝑤1 ∩ 𝜙() → ,𝑤2 ∩ 𝜙() can be recovered from the 𝐷,(𝑣1 ,𝑣2)’s.

15.2 Spectral Actions for 𝐴𝐹-AC Manifolds
Given a spectral action (,, 𝐷, 𝐽, 𝛾) for a finite dimensional algebra  and given a Riemannian spin

manifold (𝑀, 𝑔) equipped with its canonical spectral triple (𝐶∞(𝑀), 𝐿2(𝑆), 𝐷𝑀 , 𝐽𝑀 , 𝛾𝑀 ), we consider the spectral

triple (̂ ∶= 𝐶∞(𝑀) ⊗,̂ ∶= 𝐿2(𝑆) ⊗, 𝐷̂ ∶= 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷, 𝐽̂ ∶= 𝐽𝑀 ⊗ 𝐽, 𝛾̂ ∶= 𝛾𝑀 ⊗ 𝛾) over

the Almost Commutative algebra ̂. Obviously, this makes sense only when the 𝐾𝑂-dimension for 𝑀 and 
produces such a spectral triple, see for instance (Dąbrowski and Dossena, 2011).

Then, given two spectral triples (,, 𝐷, 𝐽, 𝛾) and (,, 𝐷, 𝐽, 𝛾) for two finite dimensional alge-

bras  and , and a one-to-one morphism 𝜙 ∶  →  such that the two spectral triples are 𝜙-compatible, with

𝐽 strong 𝜙-compatible with 𝐽, the aim of this section is to compare the spectral actions on ̂ and ̂ (for the

same Riemannian spin manifold (𝑀, 𝑔)).

In order to have a good physical interpretation of the 𝜙-compatibility, in particular at the level of the fermions,

we first need to introduce a “normalized” 𝜙 map.
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15.2.1 Normalized 𝜙 Map
Denote by 𝜙0 ∶  →  a given morphism as in Def. 13.4.1. We suppose that it satisfies Hypothe-

sis 15.1.18. Then we can choose the orthonormal bases {𝜎𝑝𝑖𝑗 }1≤𝑝≤𝜇𝑖𝑗 of C𝜇𝑖𝑗
that diagonalize (𝐓𝑣1 ,𝑣2)𝑣1 ,𝑣2 and this

implies that {𝜙0(𝑒𝑣̃)}𝑣̃∈Γ̃(0)
is a basis of 𝜙0(). For any 𝑣̃ = (𝑣, 𝛼), we can identify 𝜙0(𝑒𝑣̃) with 𝜙0,𝑣 (𝑒𝑣̃). Let

𝑣̃1 = (𝑣1, 𝛼1) and 𝑣̃2 = (𝑣2, 𝛼2). When 𝑣1 ≠ 𝑣2, one has ⟨𝜙0,𝑣 (𝑒𝑣̃1), 𝜙
0,𝑣
 (𝑒𝑣̃2)⟩ = 0, while, when 𝑣 = 𝑣1 = 𝑣2,

⟨𝜙0,𝑣 (𝑒𝑣̃1), 𝜙
0,𝑣
 (𝑒𝑣̃2)⟩ = 𝐭𝑣 ⟨𝑣̃1, 𝑣̃2⟩,𝑣 = 𝐭𝑣 𝛿𝛼1 ,𝛼2 . This implies that {𝜙0(𝑒𝑣̃)}𝑣̃∈Γ̃(0)

is an orthogonal family. Since 𝜙0
is one-to-one and ‖𝜙0,𝑣 (𝑒𝑣̃)‖2 = 𝐭𝑣 , one has 𝐭𝑣 ≠ 0 for any 𝑣 ∈ Γ(0) .

Definition 15.2.1 The normalized 𝜙 map associated to the map 𝜙0 ∶  →  which satisfies Hypothe-
sis 15.1.18 is the map 𝜙 ∶  →  defined by

𝜙(⊕𝑣∈Γ(0)
𝜓𝑣) ∶= ∑𝑣∈Γ(0)

𝐭−1/2𝑣(𝑣̃) 𝜙
0,𝑣
 (𝜓𝑣) (15.2.1)

Using (15.1.1) with 𝑏𝑗 = 0, one can check that 𝜙 satisfies Def. 13.4.1.

The normalization has been chosen such that the family {𝑓𝑣̃ ∶= 𝜙(𝑒𝑣̃)}𝑣̃∈Γ̃(0)
is an orthonormal basis of

𝜙(). This basis of 𝜙() can be completed with any orthonormal basis {𝑓𝑤̂}𝑤̂∈Γ̂(0)
of 𝜙()⟂ where Γ̂(0) is

any index set for this basis. So, {𝑓𝑣̃}𝑣̃∈Γ̃(0)
∪ {𝑓𝑤̂}𝑤̂∈Γ̂(0)

is an orthonormal basis of  adapted to the decomposition

𝜙() ⊕ 𝜙()⟂.

We now consider the normalized 𝜙 map in place of 𝜙0 . The relation between the scalar products in  and

 reduces to the simple relation ⟨𝜙𝑣(𝜓𝑣), 𝜙𝑣(𝜓′
𝑣)⟩ = ⟨𝜓𝑣 , 𝜓′

𝑣⟩,𝑣 for any 𝑣.

In the following, 𝜙-compatibility of operators will be relative to the normalized 𝜙 map.

For an operator 𝐵 on  which is 𝜙-compatible with an operator 𝐴 on , the components 𝐵⟂
𝜙 , 𝐵𝜙⟂, and

𝐵⟂
⟂ of 𝐵 in the 2 × 2 matrix decomposition induced by  = 𝜙() ⊕ 𝜙()⟂ will be called non-inherited,

while the component 𝐵𝜙𝜙 will be called inherited. Let us use the acronym “TNIC” for “Terms with Non-Inherited

Components” in the following technical results, which are the main interest for the use of the normalized 𝜙
map:

Lemma 15.2.2 For 𝑖 = 1, … , 𝑛, let 𝐵𝑖 be an operator on  which is 𝜙-compatible with an operator 𝐴𝑖 on .
1. For any 𝑣̃1, 𝑣̃2 ∈ Γ̃(0) , one has: ⟨𝑓𝑣̃1 , 𝐵1 ⋯𝐵𝑛𝑓𝑣̃2⟩ = ⟨𝑒𝑣̃1 , 𝐴1 ⋯𝐴𝑛𝑒𝑣̃2⟩ + TNIC

2. As a consequence, one has: tr(𝐵1 ⋯𝐵𝑛) = tr(𝐴1 ⋯𝐴𝑛) + TNIC

Proof First, let us prove the relation in Point 1 for 𝑛 = 1. We omit the index 𝑖. Using the matrix decom-

position 𝐴𝑒𝑣̃ = ∑𝑣̃′∈Γ̃(0)
𝐴𝑣̃′
𝑣̃ 𝑒𝑣̃′ along the basis {𝑒𝑣̃}𝑣̃∈Γ̃(0)

, the RHS is 𝐴𝑣̃1
𝑣̃2 . For the LHS, one has ⟨𝑓𝑣̃1 , 𝐵𝑓𝑣̃2⟩ =

⟨𝜙𝑣1(𝑒𝑣̃1), 𝐵
𝜙
𝜙𝜙

𝑣2
(𝑒𝑣̃2)⟩ = ⟨𝜙𝑣1(𝑒𝑣̃1), 𝜙

𝑣2
(𝐴𝑒𝑣̃2)⟩ = ∑𝑣̃∈Γ̃(0)

𝐴𝑣̃
𝑣̃2⟨𝜙

𝑣1
(𝑒𝑣̃1), 𝜙

𝑣
(𝑒𝑣̃)⟩ . This expression is zero for

𝑣1 ≠ 𝑣, so the summation reduces to the summation over the 𝑣̃ = (𝑣1, 𝛼) ∈ Γ̃(0) : ∑𝑣̃=(𝑣1 ,𝛼) 𝐴
𝑣̃
𝑣̃2⟨𝜙

𝑣1
(𝑒𝑣̃1), 𝜙

𝑣1
(𝑒𝑣̃)⟩ =

∑𝑣̃=(𝑣1 ,𝛼) 𝐴
𝑣̃
𝑣̃2⟨𝑒𝑣̃1 , 𝑒𝑣̃⟩ = 𝐴𝑣̃1

𝑣̃2 .

Let us return to the general situation 𝑛 ≥ 1 in Point 1. With 𝐵𝑖 = (
𝐵𝜙𝑖,𝜙 𝐵⟂

𝑖,𝜙

𝐵𝜙𝑖,⟂ 𝐵⟂
𝑖,⟂ )

, a straightforward computation

shows that the only component in 𝐵1 ⋯𝐵𝑛 that contains only inherited components is in the block (𝐵1 ⋯𝐵𝑛)
𝜙
𝜙 and

it is 𝐵𝜙1,𝜙⋯𝐵𝜙𝑛,𝜙, so that ⟨𝑓𝑣̃1 , 𝐵1 ⋯𝐵𝑛𝑓𝑣̃2⟩ = ⟨𝑓𝑣̃1 , 𝐵
𝜙
1,𝜙⋯𝐵𝜙𝑛,𝜙𝑓𝑣̃2⟩ + TNIC. The proof that ⟨𝑓𝑣̃1 , 𝐵

𝜙
1,𝜙⋯𝐵𝜙𝑛,𝜙𝑓𝑣̃2⟩ =

⟨𝑒𝑣̃1 , 𝐴1 ⋯𝐴𝑛𝑒𝑣̃2⟩ is the same as before, with 𝐵𝜙𝜙 = 𝐵𝜙1,𝜙⋯𝐵𝜙𝑛,𝜙 and𝐴 = 𝐴1 ⋯𝐴𝑛 which satisfy 𝜙(𝐴𝜓) = 𝐵𝜙𝜙𝜙(𝜓).

Point 2 is a direct consequence of Point 1. By the previous argument on the product 𝐵1 ⋯𝐵𝑛, one has

tr(𝐵1 ⋯𝐵𝑛) = ∑𝑣̃∈Γ̃(0)
⟨𝑓𝑣̃ , 𝐵1 ⋯𝐵𝑛𝑓𝑣̃⟩ +∑𝑤̂∈Γ̂(0)

⟨𝑓𝑤̂ , 𝐵1 ⋯𝐵𝑛𝑓𝑤̂⟩ = ∑𝑣̃∈Γ̃(0)
⟨𝑓𝑣̃ , 𝐵1 ⋯𝐵𝑛𝑓𝑣̃⟩ + TNIC

and ∑𝑣̃∈Γ̃(0)
⟨𝑓𝑣̃ , 𝐵1 ⋯𝐵𝑛𝑓𝑣̃⟩ = ∑𝑣̃∈Γ̃(0)

⟨𝑒𝑣̃ , 𝐴1 ⋯𝐴𝑛𝑒𝑣̃⟩ + TNIC = tr(𝐴1 ⋯𝐴𝑛) + TNIC by Point 1.
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Remark 15.2.3 Point 2 can be proved directly without the assumption that 𝜙 is normalized. □

The notion of 𝜙-compatibility has been developed for operators on  and . We define 𝜙-compatibility

for fermions as follows:

Definition 15.2.4 A vector 𝜓 is 𝜙-compatible with a vector 𝜓 if 𝜓 − 𝜙(𝜓) ∈ 𝜙()⟂.

Using this definition, we extend the acronym “TNIC” (“Terms with Non-Inherited Components”) to terms

which contains fermions.

From a physical point of view, the consequence of the normalization of 𝜙 is that, for any 𝜓 ∈ , one has

‖𝜙(𝜓)‖ = ‖𝜓‖

since, with 𝜓 = ⊕𝑣∈Γ(0)
𝜓𝑣 , one has ‖𝜙(𝜓)‖2

= ⊕𝑣∈Γ(0)
⟨𝜙𝑣(𝜓𝑣), 𝜙𝑣(𝜓𝑣)⟩ = ⊕𝑣∈Γ(0)

⟨𝜓𝑣 , 𝜓𝑣⟩ = ‖𝜓‖2
. This

means that 𝜙 respects the normalization of the state vector when it is injected from  into . This state 𝜓
can be “diluted” at different “places” in  (different irreps) but its norm is conserved.

15.2.2 Comparison of Spectral Actions

The purpose of this section is to compare the spectral actions for the two 𝜙-compatible spectral triples

(̂,̂, 𝐷̂ ∶= 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷, 𝐽̂ ∶= 𝐽𝑀 ⊗ 𝐽, 𝛾̂ ∶= 𝛾𝑀 ⊗ 𝛾)

and

(̂,̂, 𝐷̂ ∶= 𝐷𝑀 ⊗ 1 + 𝛾𝑀 ⊗ 𝐷, 𝐽̂ ∶= 𝐽𝑀 ⊗ 𝐽, 𝛾̂ ∶= 𝛾𝑀 ⊗ 𝛾)

for the same Riemannian spin manifold (𝑀, 𝑔). We suppose that 𝜙 ∶  →  is normalized.

We extend in a natural way the map 𝜙 to a morphism of algebras 𝜙 ∶= Id⊗𝜙 ∶ ̂ → ̂. In the same way,

we denote by 𝜙 ∶= Id⊗𝜙 ∶ ̂ → ̂ the natural extension of 𝜙 . The notion of (strong) 𝜙-compatibility is

then naturally defined from the notion of (strong) 𝜙-compatibility: an operator 𝐵̂ = 𝐵𝑀 ⊗𝐵𝐹 on ̂ is (strong) 𝜙-

compatible with an operator 𝐴̂ = 𝐴𝑀⊗𝐴𝐹 on̂ if 𝜙(𝐴̂(𝜒⊗𝜓)) = 𝐵̂𝜙
𝜙
𝜙(𝜒⊗𝜓) (resp. 𝜙(𝐴̂𝜒⊗𝜓) = 𝐵̂𝜙(𝜒⊗𝜓))

for any 𝜒 ⊗ 𝜓 ∈ ̂, that is, 𝜒 ⊗ 𝜙(𝐴𝐹𝜓) = 𝜒 ⊗ 𝐵𝜙𝐹,𝜙𝜙(𝜓) (resp. 𝜒 ⊗ 𝜙(𝐴𝐹𝜓) = 𝜒 ⊗ 𝐵𝐹𝜙(𝜓)).

Lemma 15.2.2 then extends naturally to:

Lemma 15.2.5 Let {𝜒𝑐}𝑐∈𝐶 be an orthonormal basis of 𝐿2(𝑆). For 𝑖 = 1, … , 𝑛, let 𝐵̂𝑖 be an operator on ̂ which is
𝜙-compatible with an operator 𝐴̂𝑖 on ̂.

1. For any 𝑣̃1, 𝑣̃2 ∈ Γ̃(0) and 𝑐1, 𝑐2 ∈ 𝐶, one has

⟨𝜒𝑐1 ⊗ 𝑓𝑣̃1 , 𝐵̂1 ⋯ 𝐵̂𝑛𝜒𝑐2 ⊗ 𝑓𝑣̃2⟩̂
= ⟨𝜒𝑐1 ⊗ 𝑒𝑣̃1 , 𝐴̂1 ⋯ 𝐴̂𝑛𝜒𝑐2 ⊗ 𝑒𝑣̃2⟩̂

+ TNIC

2. As a consequence, one has

Tr(𝐵̂1 ⋯ 𝐵̂𝑛) = Tr(𝐴̂1 ⋯ 𝐴̂𝑛) + TNIC

Proof The proof is similar to the one of Lemma 15.2.2, noticing that the geometrical part plays no role in the

main steps.

We follow (van Suijlekom, 2015) to define the bosonic and the fermionic spectral actions. For any 𝜔 ∈ Ω1
𝑈 (̂),

let us consider the operator 𝐷̂,𝜔 = 𝐷̂ + 𝜔 + 𝜖′
̂
𝐽̂𝜔𝐽

−1
̂

where 𝜔 is used in place of 𝜋𝐷̂
(𝜔). Let 𝑓 ∶ R → R be a

positive even function. Then the bosonic spectral action is defined by (11.6.6).

To define the fermionic spectral action, we introduce the vector space of Grassmann vectors ̃̂ defined from

̂, and the notation 𝜓 ∈ ̃̂ for any 𝜓 ∈ ̂. Then, in the even case, for any 𝜓 ∈ ̃+
̂

, where ̃+
̂

corresponds
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to Grassmann vectors associated to vectors 𝜓 ∈ +
̂
= ker(𝛾̂ − 1) (even elements in ̂). Then the fermionic

spectral action is defined by (11.6.7).

From now on, we suppose that dim𝑀 = 4 and, to simplify the presentation (to focus mainly on the algebraic

part of the spectral actions), we suppose that (𝑀, 𝑔) is compact and flat, so that all the Riemann tensors will be

trivial in the following.

Let us use the following notations. For any 𝜔 ∈ Ω1
𝑈 (̂) with 𝜋𝐷̂

(𝜔) = 𝛾𝜇 ⊗ 𝐴𝜇 + 𝛾𝑀 ⊗ Φ̃, for Hermitian

operators 𝐴𝜇 and Φ̃ on 𝐶∞(𝑀) ⊗ , define 𝐴𝜇 ∶= 𝐴𝜇 − 𝐽𝐴𝜇𝐽−1 and Φ ∶= 𝐷 + Φ̃ + 𝐽Φ̃𝐽−1 , so that 𝐷̂,𝜔 =
𝐷𝑀 ⊗ 1 + 𝛾𝜇 ⊗ 𝐴𝜇 + 𝛾𝑀 ⊗ Φ.

Let ∇𝑆𝜇 be the spin connection on 𝑆, and consider the vector bundle 𝐸 = 𝑆 ⊗ (𝑀 ×) such that 𝐿2(𝐸) = ̂,

and let ∇𝐸𝜇 ∶= ∇𝑆𝜇 ⊗ 1 + 1 ⊗ (𝜕𝜇 + 𝑖𝐴𝜇) be the natural twisted connection on 𝐸 defined by the spectral triple, so

that 𝐷̂,𝜔 = −𝑖𝛾𝜇∇𝐸𝜇 + 𝛾𝑀 ⊗ Φ. Finally, let 𝐷𝜇 ∶= 𝜕𝜇 + 𝑖 ad(𝐴𝜇) and 𝐹𝜇𝜈 ∶= 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖[𝐴𝜇, 𝐴𝜈]. In the same

way, we introduce 𝜔′
, 𝐴̃′

𝜇, Φ̃′
, 𝐴′

𝜇, Φ′
, 𝐸′, 𝐷′

𝜇, 𝐹 ′𝜇𝜈 for the algebra ̂.

Let 𝑓𝑛 ∶= ∫ ∞
0 𝑓 (𝑥)𝑥𝑛−1d𝑥 be the moments of 𝑓 for 𝑛 > 0, then we have the general result (van Suijlekom,

2015, Prop. 8.12) that we have simplified to take into account the fact that the metric 𝑔 is Euclidean. In particular

there is no Einstein-Hilbert Lagrangian since the purely geometric part needs not be compared from ̂ to ̂.

Proposition 15.2.6 Suppose that the 𝐾𝑂-dimension of  is even, then

Tr 𝑓 (𝐷̂,𝜔/Λ) ∼ ∫
𝑀
(𝐴𝜇, Φ) d

4𝑥 + (Λ−1)

with

(𝐴𝜇, Φ) = 𝐴(𝐴𝜇) + Φ(𝐴𝜇, Φ)

where 𝐴(𝐴𝜇) = 𝑓 (0)
24𝜋2 tr(𝐹𝜇𝜈𝐹𝜇𝜈), and, up to a boundary term,

Φ(𝐴𝜇, Φ) = −
2𝑓2Λ2

4𝜋2 tr(Φ2) +
𝑓 (0)
8𝜋2 tr(Φ4) +

𝑓 (0)
8𝜋2 tr ((𝐷𝜇Φ)(𝐷𝜇Φ))

We use the same function 𝑓 and the same cut-off Λ for the spectral actions on ̂ and ̂. It corresponds to the

same Lagrangian as in (11.6.11), without the terms coming from the metric of 𝑀 .

We suppose that 𝜔 ∈ Ω1
𝑈 (̂) and 𝜔′ ∈ Ω1

𝑈 (̂) are 𝜙-compatible in the sense that 𝜋𝐷̂
(𝜔′) and 𝜋𝐷̂

(𝜔) are

𝜙-compatible. Since the family of vectors {𝛾𝜇, 𝛾𝑀 } are linearly independent in the Clifford algebra generated by

the 𝛾𝜇’s, this implies that 𝐴̃′
𝜇 (resp. Φ̃′

) is 𝜙-compatible with 𝐴̃𝜇 (resp. Φ̃). The strong 𝜙-compatibility between

𝐽 and 𝐽 then implies that 𝐴′
𝜇 (resp. Φ′

) is 𝜙-compatible with 𝐴𝜇 (resp. Φ). Notice then that 𝜕𝜇Φ′
(resp. 𝜕𝜇𝐴′

𝜈) is

𝜙-compatible with 𝜕𝜇Φ (resp. 𝜕𝜇𝐴𝜈).
2

We then have:

Proposition 15.2.7 Suppose that 𝜔 ∈ Ω1
𝑈 (̂) and 𝜔′ ∈ Ω1

𝑈 (̂) are 𝜙-compatible in the previous sense. Then

̂,𝐴(𝐴
′
𝜇) = ̂,𝐴(𝐴𝜇) + TNIC

̂,Φ′(𝐴′
𝜇, Φ

′) = ̂,Φ(𝐴𝜇, Φ) + TNIC

Proof From Prop. 15.2.6, all the terms in ̂,𝐴(𝐴
′
𝜇) and ̂,Φ′(𝐴′

𝜇, Φ′) are traces of polynomials of 𝜙-compatible

elements. So, according to Lemma 15.2.5, up to terms with non-inherited components, they are equal to the

similar expression in terms of traces of polynomials of the corresponding elements on ̂.

Remark 15.2.8 This Proposition can be proved without the assumption on the normalization of 𝜙 , see Re-

mark 15.2.3. □
2
Thanks to the fact that 𝜙 does not depend on the points in 𝑀 .
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A slight extension of Prop. 15.1.8 shows that 𝜔 ∈ Ω1
𝑈 (̂) and 𝜔′ ∶= 𝜙(𝜔) ∈ Ω1

𝑈 (̂) are 𝜙-compatible. But then

𝜔′
contains only inherited degrees of freedom, and so this situation is quite trivial from a physical point of view.

Proposition 15.2.9 If 𝜓′ is 𝜙-compatible with 𝜓, then

̂,𝑓 [𝜔
′, 𝜓′] = ⟨𝐽̂𝜓

′, 𝐷̂,𝜔′𝜓′⟩̃̂
= ⟨𝐽̂𝜓, 𝐷̂,𝜔𝜓⟩̃̂

+ TNIC = ̂,𝑓 [𝜔, 𝜓] + TNIC

Proof Since 𝜋𝐷̂
(𝜔′) and 𝜋𝐷̂

(𝜔) are 𝜙-compatible, 𝐷̂,𝜔′ and 𝐷̂,𝜔 are 𝜙-compatible, and since 𝐽 and 𝐽 are

strong 𝜙-compatible, then 𝐽̂ and 𝐽̂ are strong 𝜙-compatible.

Using previously defined notations, one can write 𝜓′ = ∑𝑐,𝑣̃ 𝜓′𝑐,𝑣̃𝜒𝑐 ⊗ 𝑓𝑣̃ + ∑𝑐,𝑤̂ 𝜓′𝑐,𝑣̃𝜒𝑐 ⊗ 𝑓𝑤̂ and 𝜓 =
∑𝑐,𝑣̃ 𝜓𝑐,𝑣̃𝜒𝑐 ⊗ 𝑒𝑣̃ . Since 𝜓′

and 𝜓 are 𝜙-compatible, one has 𝜓′𝑐,𝑣̃ = 𝜓𝑐,𝑣̃ for any 𝑐, 𝑣̃. So, ⟨𝐽̂𝜓
′, 𝐷̂,𝜔′𝜓′⟩̃̂

=

∑𝑐1 ,𝑐2 ,𝑣̃1 ,𝑣̃2 𝜓
′𝑐1 ,𝑣̃1𝜓′𝑐2 ,𝑣̃2⟨𝐽̂𝜒𝑐1 ⊗ 𝑓𝑣̃1 , 𝐷̂,𝜔′𝜒𝑐2 ⊗ 𝑓𝑣̃2⟩̃̂

= 𝜖̂ ∑𝑐1 ,𝑐2 ,𝑣̃1 ,𝑣̃2 𝜓
′𝑐1 ,𝑣̃1𝜓′𝑐2 ,𝑣̃2⟨𝜒𝑐1 ⊗ 𝑓𝑣̃1 , 𝐽̂𝐷̂,𝜔′𝜒𝑐2 ⊗ 𝑓𝑣̃2⟩̃̂

. From

Lemma 15.2.5, one has ⟨𝜒𝑐1 ⊗𝑓𝑣̃1 , 𝐽̂𝐷̂,𝜔′𝜒𝑐2 ⊗𝑓𝑣̃2⟩̃̂
= ⟨𝜒𝑐1 ⊗𝑒𝑣̃1 , 𝐽̂𝐷̂,𝜔𝜒𝑐2 ⊗𝑒𝑣̃2⟩̃̂

+TNIC so that, since 𝜖̂ = 𝜖̂,

⟨𝐽̂𝜓
′, 𝐷̂,𝜔′𝜓′⟩̃̂

= 𝜖̂ ∑𝑐1 ,𝑐2 ,𝑣̃1 ,𝑣̃2 𝜓
𝑐1 ,𝑣̃1𝜓𝑐2 ,𝑣̃2⟨𝜒𝑐1 ⊗ 𝑓𝑣̃1 , 𝐽̂𝐷̂,𝜔𝜒𝑐2 ⊗ 𝑒𝑣̃2⟩̃̂

+ TNIC = ⟨𝐽̂𝜓, 𝐷̂,𝜔𝜓⟩̃̂
+ TNIC.

Remark 15.2.10 Notice that the formal proofs presented in the previous Propositions, which compare the spec-

tral action on ̂ to the spectral action on ̂, do not reveal the terms which mix inherited and non-inherited

components. A concrete and complete computation is necessary to compare precisely the two Lagrangians. This

computation was done but is too long to be presented here. □

These results can be collected to construct a sequence {(̂𝑛,̂𝑛
, 𝐷̂𝑛

, 𝐽̂𝑛
, 𝛾̂𝑛

)}𝑛≥0) of even real spectral triples

(on AC manifolds) which are 𝜙𝑛,𝑛+1-compatible and a sequence of their corresponding spectral actions 𝑏[𝜔𝑛] +
𝑓 [𝜔𝑛, 𝜓𝑛] with a control about their inherited and non-inherited terms. Using slight modifications of Prop. 15.1.9

and 15.1.14, a gauge transformation on ̂𝑛 can be transported to a gauge transformation on ̂𝑛+1. So, we end up

with a sequence of compatible NCGFT constructed on top of the defining sequence of an 𝐴𝐹 -algebra  = lim−−→𝑛.
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Chapter 16

Conclusions and Outlooks

In this chapter, we propose to conclude this part and therefore the essential results put forward in this thesis,

thus opening some perspectives for future works.

Both frameworks allow us to find the Lagrangian on top of  into the one on top of . In the case of the

derivations, this depends on the convention chosen to define the integration (see (4.1.1)). In the case of spectral

triples, it depends on the choice of taking the 𝜙-normalized compatibility (see (15.2.1)). These two choices are

linked to how a “scalar weight” is associated with the objects used. The fact that the action of  is recovered

at the rank  is an important indication of the naturalness of these constructions, particularly concerning the

intuition (underlying the GUTs) of extending a theory by keeping some of its structures.

The derivation framework is more constrained by the formalism than the spectral triple one. From a math-

ematical point of view, this may seem to be an advantage as there are fewer free choices. But from the point of

view of physical applications, the resulting structure is probably poorer than with the spectral triples where ad-

ditional choices to the natural structure of the 𝐴𝐹 -algebra appear for each of the structural operators. However,

as suggested in section 14.4, a potential interesting phenomenology concerning the prediction of bosons masses

should be explored.

The spectral triple framework offers the possibility to work with both notions of 𝜙-compatibility for the

operators. It would be interesting to determine the results for the Lagrangian by taking the strong 𝜙-compatibility

and/or any 𝜙-map (not necessarily the 𝜙-normalized). In the same way, a numerical exploration remains to be

done in the case of spectral triples.

Unfortunately, the implemented project is very large and I didn’t get the time to explore all its relevant

aspects. Then many questions remain to be explored, in particular, what is the tractability offered along the

inductive sequence by the 𝜙-compatibility notions, by the norm or by Dirac operators? What is the meaning

of the NCGFT at the end of the inductive sequence, given that it would potentially have an infinite number of

degrees of freedom? Which 𝐴𝐹 -algebra can be interesting to make NCGFTs on it? Knowing that 𝐴𝐹 -algebras

can approximate geometries and that our NCGFTs benefit from a geometrical interpretation, to what extent can

the implemented scheme allow us to approximate geometries?

The two frameworks thus established offer a large number of possibilities concerning the elaboration of

phenomenological models. Indeed, many choices are possible, concerning the 𝐴𝐹 -algebra, the module (or Hilbert

space), the chosen notion of 𝜙-compatibility and of the structural operators for the spectral triplets, or the way

𝑢(𝑣, 𝑤) embeds the fermionic fields, potentially allowing a “rotation" mechanism in the representation space

(which could be linked to the CKM matrix mechanism). After the end of my PhD thesis, I hope to have the

opportunity to work with researchers having some expertise in these fields, in order to study and explore GUT-

like models beyond the NCSMPP, within this framework.

Finally, this work goes beyond the development of NCGFTs. Indeed, a large part of the efforts made during my

PhD thesis have concerned the elaboration of differential structures on𝐴𝐹 -algebras, with notions of compatibility

between the operators allowing to build and relate these structures at each step of the sequence. There remain

many avenues to explore from this simple fact, notably on the possibility of approximating interesting, potentially

commutative geometries with this procedure.
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