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Abstract

Abstract

Landslide is a gravity-driven downslope movement of soil, debris, or rock near the
earth’s surface. It can display heterogeneity in rates and movement types, ranging from
creeping motion to catastrophic acceleration. Both scenarios pose a threat to the exposed
region’s people, infrastructure, ecosystem, and economy. Traditional landslide risk man-
agement strategy suggests avoiding building new infrastructure in such a region based on
hazard maps. However, with climate change and rapid urbanization, this strategy seems
challenging to implement. Therefore, Early Warning Systems (EWS) are way forward to
take timely corrective measures to reduce life and economic losses. These EWS’s rely on
landslide monitoring systems, landslide models, and information reconstruction schemes.

In this challenging context of landslide monitoring and forecasting, the present work
aims to define a physics-based dynamical model of landslides, unknown parameters identi-
fication, and observer-based hazard evaluation from available measurements. This requires
a multi-disciplinary approach, i.e., concepts from geophysics on the one hand and control
theory on the other hand, for model structure definition and solution methods for observer
problems (or parameter identification), respectively. In short, the idea is to analyze the
changes in landslide variables and mechanical parameters prior to or while in a motion.

In the first part of our study, we formulated state and parameter estimation issues
in an ODE-PDE landslide model (with Ordinary and Partial Differential Equations) as
an optimization problem with discrete-time asynchronous synthetic measurements. The
calculus of variation based adjoint method (iterative approach) is then utilized to solve
the problem. Secondly, we address a similar state and parameter estimation problem in
a coupled ODE-PDE landslide model by designing a state observer again for synthetic
measurements (continuous approach). The observer consists of a copy of the PDE part
of the system and a Kalman-like design for the ODE. It is shown to ensure exponential
convergence of the state and parameter estimates employing the Lyapunov tool. Finally,
we present an approach for reconstructing displacement patterns and some unknown soil
properties of slow-moving landslides, using a special form of the so-called Kalman filter
or observer. This approach is validated for Super-Sauze landslide data from the literature
with an extension of the observer to forecast landslide displacement.

Keywords: Landslide dynamics, Coupled ODE-PDE system, State and parameter
estimation, Optimization, Discrete-time asynchronous measurements, Observer design,
Kalman filter, Observer tuning, Displacement forecasting.
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Résumé

Résumé

Un glissement de terrain est un mouvement sur pente descendante d’une partie du sol,
de débris, ou de roche de surface, entraîné par la gravité. On peut trouver une certaine
hétérogénéité dans les mouvements de ce type, comme dans leurs vitesses d’évolution,
allant du glissement lent à l’accélération catastrophique. Ces deux scénarios constituent
une menace pour la population, les infrastructures, l’écosystème et l’économie de la région
exposée. La stratégie traditionnelle de gestion des risques de glissement de terrain suggère
d’éviter de construire de nouvelles infrastructures dans une telle région sur la base de
cartes des aléas. Cependant, avec le changement climatique et l’urbanisation rapide, cette
stratégie semble difficile à tenir. Par conséquent, les Systèmes d’Alerte Précoce (SAP)
sont la voie à suivre pour prendre des mesures correctives en temps opportun afin de
réduire les pertes en vies humaines et économiques. Ces SAP s’appuient sur des systèmes
de surveillance des glissements de terrain, des modèles de glissements de terrain, et des
algorithmes de reconstruction d’informations.

Dans ce contexte difficile de surveillance et de prévision des glissements de terrain,
le travail présenté dans cette thèse vise à définir un modèle dynamique des glissements
de terrain basé sur la physique, développer des méthodes d’identification des paramètres
inconnus, et contribuer à l’évaluation des risques par des techniques d’observateurs à
partir des mesures disponibles. Cela nécessite une approche multidisciplinaire, s’appuyant
ici sur des concepts issus d’une part de la géophysique et d’autre part de la théorie du
contrôle, pour la définition d la structure du modèle et les méthodes de résolution des
problèmes d’observateurs (ou d’identification des paramètres), respectivement. En bref,
l’idée est d’analyser les changements dans les variables de glissement de terrain et dans les
paramètres mécaniques avant ou pendant un mouvement.

Dans la première partie de notre étude, nous avons formulé des problèmes d’estimation
d’état et de paramètres dans un modèle de glissement de terrain ODE-PDE (combi-
nant Equations Différentielles Ordinaires et à dérivées Partielles), comme un problème
d’optimisation avec des mesures synthétiques asynchrones à temps discret. La méthode
adjointe basée sur le calcul variationnel est ensuite utilisée pour résoudre le problème
(approche itérative). Dans un deuxième temps, nous abordons un problème similaire
d’estimation d’état et de paramètres dans un modèle de glissement de terrain couplé
ODE-PDE en concevant cette fois un observateur, à nouveau pour des mesures synthé-
tiques (approche continue). L’observateur se compose d’une copie de la partie PDE du
système, et d’une synthèse de type Kalman pour l’ODE. Il est montré qu’il assure une
convergence exponentielle des estimations d’état et de paramètres en utilisant l’outil de
Lyapunov. Enfin, nous présentons une approche pour reconstruire les schémas de déplace-
ment et certaines propriétés inconnues du sol dans le cas des glissements de terrain lents,
en utilisant une forme spéciale du filtre (ou observateur) de Kalman. Cette approche est
validée avec des données de glissement de terrain issues de la littérature pour le cas de
Super-Sauze, et une extension de l’observateur pour prédire l’évolution du glissement est
proposée.
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1
General Introduction

1.1 Thesis context

1.1.1 Landslide modeling and information reconstruction

A landslide, also characterized as slope destabilization, is a gravity-driven downslope move-
ment of rock, debris, or soil near the earth’s surface resulting from severe precipitation,
floods, earthquakes, substantial snowmelt, or human activities like construction (Fig. 1.1).
Landslides have become more common in recent years due to climate change and growing
urbanization. They can have severe socio-economic effects, including significant costs in
terms of human lives, infrastructure, the economy, and the region’s ecosystem. Landslides
have various movement types and rates, from slow creeping to rapid catastrophic accel-
eration. In the most destructive catastrophes, rocks, debris, or soil can flow at speeds of
several tens of meters per year, wreaking havoc on the region’s infrastructure, economy,
and ecosystem.

Figure 1.1: A landslide covers a circuit course in Nihonmatsu city, Fukushima prefecture,
northeastern Japan, Sunday, Feb. 14, 2021. The strong earthquake shook the quake-prone
areas of Fukushima and Miyagi prefectures late Saturday, setting off landslides and causing
power blackouts for thousands of people. [Hironori Asakawa/Kyodo News]
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Chapter 1. General Introduction

On the other hand, slow-moving landslides can have typical velocities ranging from a
few millimeters to several meters per year. Slow-moving landslides seldom result in fa-
talities, although they can damage public and private infrastructure significantly. Slow,
persistent landslides can sometimes lead to catastrophic acceleration; clayey landslides, for
example, are prone to these transitions. Traditional landslide risk management solutions
focus on avoiding infrastructure construction in vulnerable areas based on landslide haz-
ard maps, stabilizing unstable slopes (landslide geometry modifications, water drainage),
and erecting protective structures. However, infrastructure is still being built on or near
major landslides due to a lack of risk awareness. Slope stabilization can be costly in such
instances, and relocating the population to more stable places might generate significant
socio-economic problems. Implementing an Early Warning System (EWS) under these
scenarios can assist in taking prompt interventions to reduce life and economic losses prior
to hazardous events. The monitoring and warning service is an essential part of EWS. For
anticipation/estimation of the hazards associated with landslide physics-based dynamical
model, landslide monitoring and data assimilation play a vital role.

Our starting point is then that, the physics-based dynamical models are susceptible to
the initial conditions and parameters of the system. Simulating a model and iteratively
modifying the initial conditions and parameter values to achieve consistency with measured
data can account for these sensitivities. Another effective method can be to run a model
over time and fine-tune it to synchronize with updated measurements. Landslide models
can then assist in forecasting once these sensitivities have been addressed. As a result,
this manuscript proposes a cross-disciplinary approach for landslides investigation which is
general objective of the project Risk@UGA, associating landslide models from Geophysics
and Control theoretical tools for information reconstruction.

1.1.2 Cross-displinary Project ‘Risk@UGA’

The Ph.D. work presented in this thesis was developped in the context of a "Risk" project
of Université Grenoble Alpes. With the motto of "Managing risk for a more resilient
world", this project was started in 2018 to develop cross-disciplinary research and scientific
innovation in the field of disaster and risk management, specifically in areas that are made
vulnerable due to a strong interdependency between humans, natural or technological
hazards. In addition to the Grenoble basin, the project has addressed on other vulnerable
territories such as the Beirut area (Lebanon), Port-au-Prince (Haiti), and Peru and Nepal.
The project also aimed at proposing a risk institute within Université Grenoble Alpes.

1.1.2.1 Challenges

The project’s primary goal was to contribute to the proactive mitigation of disaster risks
and develop a culture of risk. It was dedicated to a global and regional challenge, which
is fundamental for the decades to come, due to the increase of the world population with
often-anarchic densification of urbanized areas, the increasing human impact on ecosys-
tems, but also the emergence of new risks induced by climate change and technological
development.

1.1.2.2 Interdisciplinarity

The project federated a hundred researchers belonging to 15 research labs from Human and
Social Sciences, Information and System Sciences, Geosciences, and Engineering Sciences.
The scientific challenges of collecting and processing heterogeneous data, modeling com-
plex and cascaded phenomena, multi-objective decision making, and assessing or defining
risk governance schemes require genuinely global and interdisciplinary approaches.

2



1.2. Research Question and Objectives

1.1.2.3 Project organization

The project proposed an innovative scientific approach to address the following challenging
issues:

• Managing data heterogeneity through a participatory approach

• Integrating rare or emergent events and cascading effects

• Moving from a static/reactive risk management approach to a proactive/dynamic
approach

• On the one hand, designing appropriate strategies for disaster risk reduction (apart
from a relevant assessment of vulnerabilities and local cultures) and for communi-
cations, on the other hand managing risk better and strengthening the culture of
risk.

1.1.2.4 International visibility

The project was entirely in line with Sendai’s United Nations conference framework on dis-
aster risk prevention in 2015, which encourages countries to prevent better and anticipate
disaster risks. It aimed to become a privileged interlocutor of the risk management stake-
holders in France and abroad, particularly on the five selected study sites (economic sphere,
public authorities, humanitarian organizations, academia, or risk center networks). The
project offers a solid contribution for both the structure and visibility of Univ. Greno-
ble Alpes in risk assessment and management by proposing a unique risk management
institute in France. The Risk project fosters the development of new interdisciplinary
methodologies by research teams to better work together and transfer research results
to relevant stakeholders and decision-makers. It also actively participates in reinforcing
interdisciplinary curriculum in risk management.

1.2 Research Question and Objectives
The main guiding research question of this work has been formulated as:

“How to reconstruct missing information required for landslide models to fore-
cast mass movement from available measurements?"

To answer this question, the following sub-questions have been identified:

• What is the state of the art regarding various landslide monitoring techniques and
their constraints in the sense of temporal and spatial resolution, different statistical
and physically-based landslide modeling studies, and variety of tools that have been
utilized for missing information reconstruction (back analysis) from measurements?

• What can control and systems tools bring in the context of this thesis: using opti-
mization based off line appraoch, state observer based online techniques, and pre-
diction tools?

Addressing research questions, the first objective of this thesis is to understand dif-
ferent landslide monitoring techniques and their constraints. The second objective is the
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selection of mechanical models of landslides based on the available measurement in a dy-
namical system framework. These two objectives consitutes state-of-the-art for the work.
Following state-of-the-art on the landslide monitoring and modeling, back anlysis (inverse
problem) for unknown parameter identification from available data is to be investigated
by optimization-based solution and observer design. Finally, observer-based approaches
for dynamical monitoring and landslide motion evaluation are to be developed based on
the available measurements and models.

1.3 Manuscript Outline
The structure of the manuscript is as follows:

• Current chapter 1 presents a brief overview of the context, cross-disciplinary project
Risk@UGA, research question, and objectives of the thesis.

• Keeping overall objective of the thesis in mind, an overview of a conducted lit-
erature review on different landslide monitoring techniques with their constraints,
landslide modeling studies from statistical to physically-based models, and inversion
techniques for parameter identification is given in Chapter 2.

• Addressing the research question of information reconstruction, optimization-based
adjoint method for estimation (unknown parameters and initial condition) in land-
slide models with discrete-time asynchronous synthetic measurements is proposed
in Chapter 3. The system under investigation is presented as a pair of coupled Or-
dinary Differential Equation (ODE) and Partial Differential Equation (PDE). The
Lagrangian multiplier is introduced to connect the dynamics of the system and the
cost function formulated as the least square error between the simlation values and
the available measurements. The adjoint method is used to obtain adjoint system
and gradients with respect to parameters and inital state. Finally, cost fuctional is
optimized using the steepest descent method. This chapter validates the proposed
method for state and parameter estimation with the help of two landslide applica-
tion examples: i) extended sliding-consolidation landslide model and ii) viscoplastic
sliding-consolidation landslide model, and using synthetic data.

• In Chapter 4, as a "continuous" alternative to the optimization approach, an observer
for state and parameter estimation in extended sliding-consolidation landslide model
is designed. The observer consists of a copy of the PDE part of the system and
Kalman-like observer for the ODE. In this chapter, Lyapunov tool is utilized to
ensure exponential convergence of the state and parameter estimates. At the end
of the Chapter, simulation results are presented to illustrate effectiveness of the
designed observer, again based on synthetic data.

• Considering a simplified model, a Kalman filter approach for reconstruction and
forecasting landslide displacement is presented in Chapter 5 with synthetic and real-
field data (taken from literature). The proposed observer relies on a simplified
viscoplastic sliding model of landslide. The observer’s performance is improved by
using a resetting method, and to overcome sensitivity to the observer coefficients,
a novel tuning method is proposed, which considers both actual and synthetic test
cases. The approach is also extended to landslide displacement forecasting. Using
a similar approach, some preliminary results with the Hollin Hill landslide data are
presented in Appendix A.1.

• General conclusions and future perspectives are finally given in Chapter 6.
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2
State of the art

This chapter provides an overview on the context and tools for
landslide monitoring issues. It takes the form of a state-of-the-
art review about three items: landslide monitoring, landslide
modeling, and information reconstruction. This review gives
the opportunity to introduce basic motivations and ingredients
for the developments proposed in the thesis, summarized at the
end of each item.
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Chapter 2. State of the art

2.1 Landslide monitoring

Landslide monitoring on marginally stable slopes is critical for identifying landslides oc-
currence and providing early warnings. It analyzes changes in attribute values of landslide
triggering factors and observes slope displacements in possible landslide sites, allowing
for early evacuation of vulnerable persons, timely repair, and maintenance of essential
infrastructure. The construction of slope stability models relies heavily on the moni-
toring of kinematic, hydrological, and climatic characteristics [Chae2017]. Forecasting
is impossible without first understanding movement patterns, and responses to climate
events [Angeli2000a]. It necessitates the monitoring of not only actual movements but
also environmental and geotechnical characteristics [Uhlemann2016]. Landslide monitor-
ing aids in the understanding of the landslide mechanism as well as the development of
valid criteria for landslide forecasts and early warnings. There has been a lot of research
into landslide forecasting and early warning in recent years, and the need for landslide
monitoring has been emphasized.

Landslide monitoring can be divided into three categories (Fig. 2.1). The first one is
field observations of changing topography features, cracks, and surface water flow. It is a
standard monitoring technique in which geologists take measurements of changing features
in the field at regular intervals. However, because measuring changes at the site in a short
time interval, such as a minute or hourly scale, is difficult, the method is limited in provid-
ing information on impending landslides or slope failures. The second category involves
employing various in situ sensors to observe slope displacement, hydrological and physical
qualities of the soil, and rainfall. Rain gauges for measuring precipitation, extensometers,
inclinometers, tiltmeters, and a Global Positioning System (GPS) for monitoring slope
displacement and deformation are the principal instruments deployed in the field. Total
stations, laser scanners, Radio Frequency Identification (RFID), and Acoustic Emission
(AE) sensors are also used to measure slope deformation, as well as Time Domain Reflec-
tometers (TDR), Tensiometers, and Piezometers to measure changes in hydrological and
physical properties of soils. Remote sensing approaches, such as satellite image analysis,
Synthetic Aperture Radar (SAR) interferometry, optical reflectometry, and Light Detec-
tion And Ranging (LiDAR), fall into the third category. These approaches have been
popular in recent years for landslide monitoring because they can quantify slope displace-
ment with high resolution in large target regions in the field. They can also measure
ground displacement in adverse weather and even at night. SAR interferometry and Li-
DAR monitoring have recently been carried out utilizing ground-based SAR (GB-SAR)
and LiDAR (GB-LiDAR) as well as airborne satellites and planes. This section offers
in situ ground-based monitoring and remote sensing methodologies to comprehend the
current state-of-the-art landslide monitoring technologies.

Landslide monitoring

Field Observations Ground-based Monitoring Remote Sensing

Topographical changes

Water flow near slope

Soil sample collection

Atmospheric conditions

Slope Displacement

Hydrological properties

Topographical changes

Atmospheric conditions

Slope Displacement

Figure 2.1: Landslide monitoring techniques
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2.1.1 In Situ Ground-based monitoring

Precipitation, slope displacement, and hydrological/physical features of soils, such as
groundwater level, Volumetric Water Content (VWC), and pore water pressure are all
monitored in situ. Instruments installed in boreholes and on the surface of possible land-
slide areas measure the monitored entities. The instruments can track changes in ob-
servation factors in real-time or at regular intervals. Changes in observation factors can
be measured in both short and long time intervals since the geologist can modify the
measurement interval.

The monitoring data is evaluated primarily to detect slope displacements. Based on
the monitoring data, it is possible to identify the depth of a sliding surface and understand
the slope’s sliding rates. Furthermore, the research findings reveal the relationship between
slope motions and the hydrological or physical properties of the slope under a variety of
geological and meteorological situations. As a result, in situ ground-based monitoring
enables decision-making on landslide triggering variables and suggests landslide triggering
factor thresholds at the monitoring site, such as rainfall and VWC. On the other hand,
ground-based monitoring is site-specific since it can detect landslides inside the monitoring
sensor zones. Effective landslide monitoring across a large area simultaneously has certain
limitations.

The three types of in situ ground-based monitoring are: i) monitoring environmental
conditions, ii) slope displacement and iii) hydrological and mechanical properties of soil
(Fig. 2.2). Because rainfall is the most prevalent triggering element, it is critical to inves-
tigate the link between rainfall conditions and landslide triggering using rainfall measure-
ment data. Some past studies used rain gauges in the field to determine empirical or sta-
tistical rainfall thresholds [Caine1980a,Aleotti2004,Guzzetti2008a, Brunetti2010,Martel-
loni2012]. It is emphasized that the locality and timing of rainfall control landslides
generated by rainfall [Franks1999,Tsaparas2002].

[Corominas1999] performed a thorough investigation on the association between land-
slides and rainfall in the upper basin of the Llobregat River, Eastern Pyrenees, and dis-
covered that two different rainfall patterns were associated with landslide occurrence [Ke-
qiang2009]. According to [Guzzetti2007], the joint US-Japanese Tropical Rainfall Measur-
ing Mission (TRMM), which was launched in November 1997 [Adler2003], and the planned
co-operative United States National Aeronautics and Space Administration (NASA) and
Japan Aerospace and Exploration Agency (JAXA) Global Precipitation Mission (GPM),
could provide spatial and temporal precipitation information with sufficient detail to fore-
cast the possible occurrence of landslides.

In recent years, most landslide monitoring involved rainfall measurements integrated
with slope displacement, hydrological and physical properties of soils [Luo2008,Yin2010,
Bittelli2012, Chae2011, Palis2016]. The integrated monitoring (e.g., Fig. 2.3 and Fig.
2.4) allows a better understanding of the relationships between the different triggering
characteristics of landslides and more reliable warning thresholds prior to an occurrence
or at the very early stage of landslide movement.
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In Situ Ground-based monitoring

Atmospheric conditions Slope Displacement Hydrological properties

Rain Gauge

Thermometer

Barometer

Hygrometer

Anemometer

Wind sock

GPS

Extensometers

Inclinometers

Tiltmeters

SAA

AEWG

RFID

Piezometer

TDR

Figure 2.2: In Situ Ground-based monitoring techniques

Figure 2.3: Natural slope monitoring system

Global Positioning System (GPS), tiltmeter, inclinometer, and extensometer are gen-
erally installed on the surface or in the subsurface of a slope to examine the defor-
mation behavior of rainfall-triggered landslides in the notion of displacement monitor-
ing. [Malet2002, Corsini2005, Brückl2013] examined measurements from two or three of
the aforementioned traditional deformation monitoring approaches, finding a strong cor-
relation between surface and subsurface deformations in terms of movement occurrences.
In the top part of the landslide, [Chelli2006,Konak2004] placed a GPS, tiltmeter, and wire
extensometer to determine the shape of the sliding masses and the depth of the sliding
masses. They also used displacement monitoring to determine the absolute lateral and
vertical movements and the rate of movement (velocity) of the various elements of the
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Figure 2.4: Earthwork slope monitoring system

complicated landslide.

[Stevens2000] analyzed 15 inclinometer datasets collected over six years. The goal of
the monitoring was to find out if shear horizons existed, how deep they were, and how fast
they moved. In recent years, high-resolution and high-accuracy movement measurements
have been necessary to offer data that can be utilized to verify landslide theories and mod-
els, as well as landslide warning [Xie2004]. High-resolution tiltmeters provide the same
type of data as inclinometers, but at a much greater resolution, ranging from 1 mrad (≈1
mm/m) to 1 nrad (≈1 nm/m), depending on the tiltmeter model. In two perpendicular
orientations, tiltmeters measure the angle between the instrument body and the plumb
line [García2010]. Tiltmeters were erected by [Chae2011] to monitor slope displacements
caused by rainfall infiltration into the soil. As the sensors were set in a grid pattern both
vertically and horizontally in the slope, they can detect small soil layer movements and
changes in the wetting front behavior caused by rainwater penetration. In [Breton2019],
radio-frequency identification (RFID) technology is presented as an alternative to tradi-
tional geodetic methods for measuring landslide displacements.

One of the goals of landslide monitoring is to identify a threshold for an influenc-
ing factor that can cause landslides in mountainsides, considering geologic conditions and
rainfall. [Yin2010] monitored the Yuhuangge landslide in the Three Gorges Reservoir area
in real-time. The monitoring system comprised TDR, a borehole inclinometer to monitor
deep displacement, a piezometer to measure pore water pressure, precipitation, reservoir
water level monitoring, and GPS with high accuracy double frequency for ground dis-
placement monitoring. The early warning criteria for landslides were established based
on the landslide monitoring experience at the Three Gorges Reservoir area, in which a
catastrophic scenario was categorized into four tiers. On the Hollin Hill landslide (Fig.
2.5), [Uhlemann2016] coupled traditional techniques such as GPS, inclinometer, and tilt-
meter with newly-applied deformation monitoring techniques such as AE monitoring using
active waveguides (AEWG) and Shape Acceleration Array (SAA).
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Figure 2.5: Overview maps of the study site. a) Geomorphological map of the landslide
indicating different landslide bodies and features. Also shown are the locations of the
monitoring equipment that are deployed at the site. b) Geological setting of the study
site. c) A section of Fig. 2.5 a) at a larger scale showing the locations of sensor clusters
comprising inclinometer, AEWG, SAA, piezometer, and tiltmeter deployed on the two
lobes, as well as the location of the weather station. (after [Uhlemann2016])

S-shaped slope displacement time behavior, defined as periods of slope acceleration,
deceleration, and stability in response to changes in pore-water pressures, was captured
using high temporal resolution data. An array of displacement measuring systems, includ-
ing GPS units, SAA, satellite (InSAR), and crack extensometers, as well as an array of
piezometers targeting pore water pressures in the region of the shear surface, were used to
monitor the Ripley landslide by [Macciotta2015]. During the active displacement period,
the displacement monitoring system displays the annual cycle of slope deformations and
average horizontal velocities. The system aims to provide landslide experts enough time
to assess the hazard level linked with the Ripley landslide. To establish early warning
displacement thresholds and associated hazard management protocols, analyses of land-
slide displacement patterns and near-real-time monitoring data are integrated with earlier
studies of landslide-induced railway track deflections and track quality standards.

The third type of monitoring for rainfall-induced shallow landslides is continuous mon-
itoring of the soil’s hydrological and mechanical parameters. Many previous studies have
shown that monitoring techniques can be used to identify the hydrological and mechan-
ical conditions of the soil during the triggering of shallow landslides [Simoni2004,Mat-
sushi2006,Godt2008,Godt2009,Leung2012,Bordoni2015,Springman2013a,Baum2010,Bit-
telli2012,Damiano2012].

Other earlier research has used the concept of hydrological and mechanical monitor-
ing of landslides. For shallow landslide triggering, unsaturated soil hydrology is cru-
cial [Lu2008,Tsai2009]. The most crucial cause of shallow landslides, according to some
authors, is a decrease in matric suction following rainfall and the creation of positive pres-
sures above the groundwater table. The stability study of an infinite slope was presented
by [Lu2008], which considered the suction stress idea proposed by [Lu2006]). Previous
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research has revealed that two potential mechanisms can cause rainfall-induced slope fail-
ures: i) a drop in matric suction [Ng1998,Collins2004,Rahardjo2007] and ii) an increase
in the water table [Cho2002,Crosta2003]. [Li2013] demonstrated that slopes with an ef-
fective friction angle greater than the slope angle are unlikely to be driven by the loss of
matric suction through analytical study. When infiltrating rainfall reaches an imperme-
able layer or the main groundwater table, the water table may rise. Moreover, [Mont-
gomery2002, Jiao2005, Jiao2006] observed that the groundwater flow regime in a highly
permeable layer overlain by a less permeable layer could result in an unusually high rise
in pore water pressure compared to typical conditions. The equipment of piezometers
was installed on the slope of the Yangbaodi landslide in China to connect the change in
the hydraulic head with rainfall and investigate the effect of hydrological and mechanical
factors initiating landslides [Li2015].

Time Domain Reflectometry (TDR) for mass deformation investigations is becoming
more popular for landslide research among the existing techniques. [O’Connor2021] de-
scribed the technique, and other articles describing applications in various circumstances
have been published. The TDR approach is more often used for assessing soil water content
and electrical conductivity [Topp1980,Robinson2003, Bittelli2012]. TDRs and tensiome-
ters were installed to observe slope displacements caused by rainwater infiltration into
the soil by [Chae2011] 2011. The sensors can monitor the velocity of rainfall infiltration
into the soil since they were installed in a grid pattern both horizontally and vertically in
the slope. They also investigate how rainfall penetration in the soil affects the monitored
slope’s Factor of Safety (FoS). In order to investigate the relationship between rainfall
and pore water pressure and the occurrence of landslides and debris flows, [Berti2005]
monitored rainfall and pore water pressure with sensors buried in a loose channel bed to
investigate mechanisms and prediction methods for debris flow initiation by channel bed
mobilization. In order to understand the mechanics of mudslides in Italy, [Comegna2007]
tried long-term monitoring of landslide movements and pore water pressure.

2.1.2 Remote Sensing Techniques for Landslide Monitoring

Traditional direct field monitoring strategies have the disadvantage of physically placing
the instrument in the landslides being monitored. As a result, measuring systems may face
two issues: i) they may influence the system and, as a result, the measured quantities, and
ii) the system may influence them. Remote sensing approaches almost entirely overcome
this constraint by measuring geophysical ground variables from a distance and without
direct contact. This, combined with recent significant advancements in space or airborne
sensing platforms, has resulted in a significant rise in remote sensing’s contribution to
landslide hazard assessment, monitoring, and early warning. According to a recent review
by [Tofani2013], based on a thorough survey conducted in Europe, remote sensing is
employed as a standard technology for landslide detection, mapping, and monitoring in
83%. According to the report, 75% of users employ a combination of two or more strategies.

In the field of landslide analysis, the current availability of advanced remote sensing
technologies allows for rapid and easily updatable data acquisitions, improving traditional
detection, mapping, and monitoring capabilities, optimizing fieldwork, and investigating
hazardous or inaccessible areas while ensuring the operators safety. Optical Very High-
Resolution (VHR) and Synthetic Aperture Radar (SAR) imagery represent very effective
tools for these implementations among Earth Observation (EO) techniques in the last
decades because very high spatial resolution can be obtained using optical systems and new
generations of sensors designed for interferometric applications. Even though these space-
borne platforms have revisiting times of a few days, they cannot match the spatial detail
or time resolution achieved by Unmanned Aerial Vehicles (UAV), Digital Photogrammetry
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(DP), and ground-based devices such as Ground-Based Interferometric SAR (GB-InSAR),
Terrestrial Laser Scanning (TLS), and Infrared Thermography (IRT), which have seen
a significant increase in usage in recent years due to technological advancements The
potential of the methodologies mentioned above, as well as the efficacy of their synergistic
application, is considered in this section.

Despite the benefits, there are still several important issues with remote sensing meth-
ods for landslide monitoring, including i) the lack of subterranean penetration capabil-
ity, ii) the lower acquisition frequency compared to direct automated systems, and iii)
atmospheric disturbances. The primary advantages and limitations of remote sensing
approaches are driven by landslide typology, namely by two essential elements that come
from the latter: landslide velocity and dimension, as revealed by the study of [Tofani2013].
Traditionally, space-borne, airborne, and ground-based sensors have been classified (Fig.
2.6), with the key distinction being the platform utilized to bring the sensor into place,
hence the measurement frequency and distance from the target.

Remote Sensing Techniques

Space-borne platforms UAV and Ground-based methods

Optical VHR imagery

SAR data

UAV-DP

GB-InSAR

TLS

IRT

Figure 2.6: Remote Sensing Techniques for Landslide Monitoring

2.1.2.1 Space-borne platforms

Optical VHR imagery

Optical data is typically utilized for landslide detection and mapping via visual exami-
nation or analytical approaches [Metternicht2005,Fiorucci2011,Parker2014,Guzzetti2012,
Mondini2014]. For example, several optical derivative products (panchromatic, pan sharpen,
false-color composites, rationing) can assist in landslide mapping visualization [Casagli2005,
Ma2016, Marcelino2009]. Multispectral channels, which have a lower spatial resolution
than panchromatic channels, are downscaled in image fusion techniques using analyt-
ical models based on panchromatic-derived spatial information [Eyers1998, Chini2011,
Martha2012,Kurtz2014]. The False Color Composites (FCCs) of VHR pictures are fre-
quently employed to distinguish lithologies or terrain with distinct properties (weathering,
water content, vegetation cover) [Ciampalini2012,Lamri2016]. Another index extensively
used to map landslides by analyzing the plant cover rate is the Normalized Difference
Vegetation Index (NDVI) developed from optical images [Lin2004]. Higher NDVI values
indicate a dense vegetation cover, whereas lower values indicate areas affected by land-
slides. Furthermore, analytical methods based on the spectral features of the land surface
and automatic approaches focusing on the classification of image pixels can be used to
enhance multispectral pictures to detect landslides [Martha2010,Mondini2011]. Because
most hyperspectral satellite sensors are still in development, few studies have addressed
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the use of hyperspectral data to recognize and categorize landslides based on Earth surface
characteristics [Scaioni2014].

SAR data

SAR satellites circle the Earth at altitudes ranging from 500 to 800 kilometers, follow-
ing sun-synchronous, near-polar orbits that are slightly inclined with respect to Earth
meridians. Pixels with different amplitude and phase values make up a SAR image. The
vital ingredient for detecting ground displacement is the phase values of a single SAR
image, which are partially dependent on the sensor-target distance. SAR Interferome-
try is a technique that analyzes at least two SAR images to measure changes in signal
phase over time [Fruneau1996, Singhroy1998]. The Differential Interferometric SAR (D-
InSAR) [Bamler1998] is an excellent way to exploit phase difference between two con-
secutive radar images recorded over the same object. The D-InSAR technique is less
reliable due to geometrical and temporal decorrelation and atmospheric effects produced
by variations in the phase reflectivity value of specific radar targets [Berardino2002]. To
address these constraints, multi-temporal interferometric techniques (MIT) based on anal-
ysis of long stacks of coregistered SAR data can be used to improve InSAR-based in-
formation [Ferretti2001,Crosetto2016]. Several MIT approaches have been developed in
recent years, including the Permanent Scatterers Interferometry, named PSInSARTM [Fer-
retti2011,Colesanti2003], the SqueeSARTM [Ferretti2011], the Stanford Method for Persis-
tent Scatterers StaMPS [Hooper2004,Hooper2007], the Interferometric Point Target Anal-
ysis IPTA [Werner2003, Strozzi2006], the Coherence Pixel Technique CPT [Mora2003],
the Small Baseline Subset SBAS [Lanari2004,Berardino2003], the Stable Point Network
SPN [Casu2006,Crosetto2008], the Persistent Scatterer Pairs PSP [Herrera2010] and the
Quasi PS technique QPS [Costantini2008]. The signal analysis of a network of coherent
radar targets (Permanent Scatterers, PS) enables determining the displacement of each
acquisition. The deformation rate of a Line of sight (LoS) can be estimated with a theoret-
ical accuracy of better than 0.1 mm/yr. Each measurement is linked to a unique reference
image and a stable reference location in both time and space. The MIT analysis aims to
construct a time series of ground deformations for each PS based on different deformation
models (e.g., linear, nonlinear, or hybrid). The potential of SAR data has been utilized at
various scales in the field of landslide investigations, including national [Adam2011], re-
gional [Meisina2008,Meisina2013,Ciampalini2015,Ciampalini2016], basin [Lu2011], slope
[Frodella2016], and building scale [Ciampalini2014,Bianchini2015,Nolesini2016], as well as
in different phases of landslide response [Canuti2007].

2.1.2.2 UAV and Ground-based methods

UAV-DP

DP is a well-known method for obtaining detailed 3D geometric information in slopes from
stereoscopic overlaps of photo sequences taken with a calibrated digital camera [Chan-
dler1999, Lane2000, Sturzenegger2009]. With the rapid development of DP techniques
and the availability of easy-to-use, focusable, and relatively inexpensive digital cameras
in recent years, this technique has found widespread use in various fields, including 3D
building reconstruction, heritage protection, and landslide studies [Scaioni2015]. DP can
be divided into two fields of activity [Gopi2007], depending on the camera lens setting: far
range, which is usually more exploited for landslide characterization and general mapping
[Wolter2014], and close range, which is widely used in high precision metrological and de-
formation monitoring applications [Liu2016,Scaioni2015]. [Colomina2014, James2012,Re-
mondino2012, Eisenbeiss2011]. More recently, the combination of rapid development of
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low-cost and small UAVs and improvements in conventional sensors in terms of cost and
size led to new, promising scenarios in environmental remote sensing, surface modeling,
and monitoring.

GB-InSAR

The GB-InSAR system comprises a computer-controlled microwave transceiver with trans-
mitting and receiving antennas that can synthesize a linear aperture along the azimuth
direction by moving along a mechanical linear rail [Tarchi1997,Rudolf1999,Pieraccini2003].
The obtained SAR image contains amplitude and phase information of the observed
backscattered echo in the acquiring time interval (from little to less than 1 minute with
the most advanced systems) [Luzi2004,Wang2021,Monserrat2014]. The displacement de-
rived from the phase difference computation can be depicted in 2D maps in a GB-InSAR
interferogram, with the chromatic scale covering a total value equal to half of the wave-
length employed. Due to the periodic nature of the phase, it cyclically assumes the same
values, causing image interpretation issues. This problem, known as phase ambiguity, can
be overcome by employing appropriate phase unwrapping algorithms [Ghiglia1994], which
count the number of cycles done by the wave and produce cumulated displacement maps.
Because GB-InSAR apparatuses normally operate over short distances (less than 3 km),
they function in the Ku band (1.67–2.5 cm). GB-primary InSAR’s research applications
quickly shifted to slope monitoring [Pieraccini2003,Tarchi2003] and civil protection [Ven-
tisette2011, Intrieri2012,Bardi2014,Bardi2016,Lombardi2016].

TLS

A TLS device creates and emits a directed, coherent, and in-phase electromagnetic radia-
tion beam [Jaboyedoff2010]. The laser scanner can acquire the exact position of a mesh of
points (point cloud) described by (x,y,z) cartesian coordinates by measuring the backscat-
tered laser signal with high accuracy (millimeter or centimeter) [Slob2005]. The device’s
fast capture rate (up to hundreds of thousands of points per second) allows for quick access
to the object’s detailed 3D geometry. It is possible to link the obtained high-resolution 3D
surface digital model to a global reference system by defining the coordinates of specific
laser reflectors within the surveyed area using a Differential Global Positioning System in
Real-Time Kinematic mode (DGPS-RTK) [Morelli2012, Tapete2015, Pazzi2015]. TLS is
increasingly being employed in landslide investigations for geometrical and geostructural
characterization and monitoring unstable rock cliffs [Abellán2006,Abellán2011, Jaboyed-
off2007, Ferrero2008, Gigli2012b]. Because of the excellent resolution of the laser scan-
ning survey, even tiny details such as the structural crack pattern, crack opening di-
rection [Gigli2009,Gigli2012a], and orientation of crucial discontinuities within the rock
mass [Gigli2011,Rosser2005] may be extracted. Furthermore, this technique may estimate
ground 3D temporal displacements by comparing sequential recordings from the same
scenario [Abellán2011]. The intensity data can also provide information about the type
of material and soil moisture content of the targets, which can be used to supplement
information about the landslide’s key geomorphologic features [Franceschi2009].

IRT

IRT is a type of remote sensing that involves monitoring the radiant temperature of
Earth’s surface characteristics from afar [Spampinato2011]. The result of an infrared
thermographic survey is a pixel matrix (thermogram) collected by the thermal cam-
era array detector, which represents a radiant temperature map of the investigated ob-
ject after correction of the sensitive parameters (object emissivity, path length, air tem-
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perature, and humidity). Fractures, subsurface voids, moisture, and seepage zones in-
side the observable surface will affect the material’s thermal properties (density, ther-
mal capacity, and conductivity), affecting heat transmission [Teza2012]. As a result,
inhomogeneity within the observed scenario will be displayed as an abnormal thermal
pattern about the surroundings ("thermal anomaly") in the related radiant temperature
map [Frodella2017]. [Spampinato2011]. In recent years, IRT has seen substantial growth
in applications in geosciences. Nonetheless, except for a few notable experimental investi-
gations [Wu2005,Baroň2012,Frodella2017], it is still experimentally utilized in the study
of slope instability processes. IRT (typically in conjunction with laser scanning) is used
for the following purposes: i) collect data on rock mass fracturing; ii) detect shallow sur-
face weakness in rock walls [Teza2012]; iii) assess rockfall/slide susceptibility [Teza2014];
iv) map ephemeral drainage patterns [Frodella2015]; v) combine traditional geo-structural
and geomechanical surveys [Mineo2015,Mineo2016,Pappalardo2016].

Summary on landslide monitoring techniques
• No single technique or instrument can provide complete information about a

landslide, and therefore, various combinations are usually employed. The pri-
mary parameters of interest are precipitation, displacement, and pore-
water pressure.

• The performance of monitoring techniques and instruments is usually assessed
in terms of accuracy and precision, spatial and temporal resolutions,
sensitivity, and reliability. Another predominant factor driving the choice of
instrumentation and techniques is their cost.

• The data collected with the help of landslide monitoring systems facilitates
landslide modeling and information reconstruction which in turn helps in de-
velopement of Early Warning System (EWS).2.2 Landslide modeling

One’s capacity to represent a complex system in mathematical form reflects its un-
derstanding. The lack of knowledge of physical circumstances, material qualities, and
physical laws characterizing processes occurring on-site is the cause of landslides’ com-
plicated and unpredictable behavior. Landslides are caused by a variety of physical
processes, including tectonics [Bennett2016], human activity [Petley2007, Herrera2013a],
earthquakes [Marano2010], and climate [Moreiras2005]. More than 70% of fatal land-
slides are due to climate change, according to [Froude2018]. Landslides caused by climate
change are caused by heavy rains, melting snow, or melting permafrost, all of which reduce
ground rigidity and stress. Landslides can involve a wide range of movements (fall, topple,
slide, spread, and flow), geological materials (from solid rock to soft clay), and velocity
(from centimeters per year to meters per second) [Cruden1996a,Hungr2014,Iverson2005a].
Landslide models can be classified into data-driven/statistical and physically based models
(Fig. 2.7). The section reviews different modeling studies carried out in the literature.
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Landslide modeling

Data-driven/Statistical models Physically-based landslide models
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Multivariate
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Coupled hydrological models

Landslide runout models

Figure 2.7: Landslide models

2.2.1 Data-driven/Statistical models

The statistical relationships between the positions of past landslides and landslide-inducing
factors are analyzed in data-driven models, and then quantitative projections for landslide-
free places with similar conditions are made. Since data on previous landslides is used to
acquire information on the relative impact of each factor, these methods are known as
data-driven approaches [Santoso2011]. This strategy presumes that conditions that have
caused landslides in the past will continue to do so in the future. Bivariate statistical
methods, multivariate statistical methods, and artificial neural network analysis are the
three most frequent data-driven methodologies (Fig. 2.7). Each conditioning element,
such as slope, geology, or land use, is integrated with the landslide occurrence sites in
bivariate statistical analysis, and weight values are computed for each parameter class.
Multivariate statistical approaches analyze the combined correlation between a dependent
variable (landslide occurrence) and a series of independent variables (conditioning factors
such as slope, geology) [Lu2003]. An artificial neural network is a computational device
that can acquire, represent, and compute a map from one multivariate information space
to another given set of data-defining relationships. A set of correlated input and output
values is used to train an artificial neural network. Data-driven models help assess various
spatially dispersed landslide-inducing elements across broad areas.

According to [Westen2000], collecting data on landslide distribution and factor maps
over vast areas is the central issue in applying data-driven models. Furthermore, data-
driven landslide models focus solely on the correlations between landslides and related
factors rather than the failure mechanism [Park2013]. Furthermore, statistical models
typically disregard the temporal elements of landslides and cannot forecast the influence
of changes in landslide-controlling variables (e.g., water table fluctuations and land-use
changes) [Westen2004a].

2.2.2 Physically-based models

Modeling the mechanism of landslide occurrence is the basis for physically based landslide
models. Geometrical and geotechnical parameters are considered in these models for
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estimating slope instability. Physically-based models, unlike data-driven models, may
analyze slope stability regardless of landslide incidence by combining physical slope models
with on-site or laboratory test results. Physical description is desirable for the following
reasons: i) the quantitative thinking process is often more rewarding in terms of gaining
much more in-depth insight into observable facts; ii) the practical need to predict future
run-out, damage, and path of landslides or other gravity mass flow equations of motion
of a landslide is a pre-requisite to any computer modeling. Physically-based models have
recently been popular because of their improved prediction capability and suitability for
quantitative evaluation of the effects of specific parameters that contribute to landslide
onset [Corominas2013].

2.2.2.1 Infinite slope model

A physical slope model, such as an infinite slope model, is used to assess slope stabil-
ity by analyzing the forces exerted on the slope. For shallow sliding on a slip surface
parallel to the ground slope, the infinite slope model (Fig. 2.8) is basic but adequate.
This model is best suited for analyzing shallow landslides with planar failure surfaces be-
cause it considers that landslides are indefinitely long but have a little depth compared
to their length and width. Because the failure surfaces for rainfall-induced landslides are
often shallow (a few meters) and parallel to the ground surface [Lu2013], the infinite slope
model has been used to analyze susceptibility in several previous studies of shallow land-
slides [Ali2014a,Alvioli2014b,Griffiths2011,Tsai2014,Frattini2004,Huang2006,Rosso2006,
Godt2008,Avanzi2009,Apip2010,Santoso2011,Park2013,Ho2012].

Figure 2.8: Infinite slope model

The infinite slope model is based on a limit equilibrium analysis that establishes the
balance between shear stress and shear strength, which are the forces resisting movement
along the presumed failure plane, and calculates a factor of safety (FoS). That is, as-
suming that the groundwater is situated at a distance from the failure surface and that
groundwater flow is parallel to the slope (Fig. 2.8). The capacity of a system beyond the
expected or actual load is known as FoS. It may be defined as the ratio of resistive to
driving forces.

FoS = Resistive forces
Driving forces (2.1)

The slope is unstable if FoS ≤ 1, but steady if FoS > 1. However, if FoS is somewhat
more than 1, even minor slope disequilibrium can result in slope failure. For instance, if
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FoS is 1.05 and the slope is marginally steady, resistive forces are only 5% stronger than
driving forces. Slight undercutting, excessive rainfall, seismicity, and other factors could
lead the slope to fail in such situations. Resistive forces act in the opposing direction
of the motion, tending to resist it. The resistive force is characterized by the material’s
shear strength, which is a function of cohesion and internal friction angle. The capacity of
particles to stick together is referred to as cohesion. Clays and granites, for example, are
cohesive, but dry sand is non-cohesive. The measure of frictional forces acting between
constituent grains is the angle of internal friction. The driving force acts in the motion’s
direction, promoting downslope movement. Gravity is the primary driving factor, and it
plays an important role in guiding or initiating mass wasting occurrences. Every material
or body is pushed downward, towards the earth’s center, by gravity. A gravitational force
acts perpendicular to the ground on a flat surface, as shown Fig. 2.9. As a result, the
ground-forming material will not move and remain intact. The gravitational force on a
slope can be separated into two components (Fig. 2.9):

Figure 2.9: Gravitational force and its components [Pradhan2019]

1. Acting perpendicular to the slope (gp): Resistive force or shear strength which hold
the object and resist movement

2. Acting tangential to the slope (gs): Driving force or shear stress that promote down
slope movement of the object.

The slope forming material will break when the shear stress (driving force) surpasses
the shear strength (resistive force). As a result, on higher slopes, the tangential component
of gravity exceeds the resistive component, causing the mass to slide downhill. Other vital
parameters that determine the size of the driving force include slope angle, slope height,
climatic conditions, types of slope materials, runoff, and groundwater. The presence of
water exacerbates slope instability when water is added to a slope. It produces slope
failure due to the additional weight on the slope, which accelerates erosion rates and
increases pore pressure, resulting in a drop in the slope forming material’s shear strength.
Considering the above parameters FoS can be calculated from Eq. (2.2) [Coduto2010]).
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FoS = C+Hgcos2θ(ρ−ρw)tanφ
ρHgsinθcosθ

(2.2)

where, C is the effective cohesion, H is the thickness of potential slide, g acceleration due
to gravity, θ is the dip angle of potential sliding plane, ρ is the material density of potential
sliding plane, ρw is the density of water, φ is the internal friction angle.

Pore water pressure affects the effective normal stress and shear strength of soil in this
model, resulting in slope failure; therefore, knowing the groundwater level is critical for
forecasting and mitigating slope instability. However, measuring groundwater levels over a
large area is almost impossible. As a result, past studies have employed a fixed or randomly
chosen value for the groundwater level for the whole study area [Zhou2020,Griffiths2011].
On the other hand, the groundwater level varies depending on the soil type, rainfall
intensity, and hydraulic conductivity; thus, applying for a fixed or randomly chosen number
over a vast area is ineffective.

2.2.2.2 Sliding-consolidation model

Amodel for a single event behavior of flow slides in loose, cohesionless materials is proposed
in [Hutchinson1986]. This model provides a possible mechanism for the event in which
excess pore-fluid pressure is assumed to be generated by undrained loading. Resulting in
the loss of shear strength and correspondingly the downslope motion of debris by basal
sliding, consolidating by single, upward drainage. As a result, the pore pressure at the
base decays to a value that brings the debris to rest.

The debris sheet is considered to be placed on the slope inclined at α (Fig. 2.10), with
initial downslope velocity v0 and initial distribution of pore-water pressure in a saturated
basal layer of thickness sh̄.

Figure 2.10: Sliding-consolidation model [Hutchinson1986]

The dynamics of the landslide are governed by the difference between destabilizing
forces (F ) and resisting forces (Fr). The momentum equation is given as,

F −Fr =ma=mẍ (2.3)

where m is the mass and a or ẍ is the acceleration. Stability of slopes can be investigated
by idealizing the slopes as infinite and uniform. Considering effective stresses acting on a
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plane parallel to the surface of the slope and depth h̄. Forces are computed over a unit
surface, and therefore shear stresses are considered in what follows:

τ − (σ−ub) tanφ=ma (2.4)

where τ is the destabilising shear stress =mgsinα,
σ is the normal shear stress =mgcosα, and
σ−ub is the normal effective stress.
The equation of motion for the debris sheet expressed as, a Net driving force

md̈=mgsinα− (mgcosα−ub) tanφ (2.5)

where, mg = bh̄ [(1−s)γ+sγsat],
d is the displacement,
ub is the basal pore-water pressure at time t,
φ is the friction basal angle,
b is the basal area of the debris sheet,
h̄ is the thickness of the debris sheet, and
γ & γsat are the unit weight of debris sheet material in non-saturated and saturated layer
respectively.

Simplifying (2.5) gives the downslope acceleration/velocity/travel of the debris sheet,

d̈= g

{
sinα−

(
cosα− ub

h̄cosα [(1−s)γ+sγsat]

)
tanφ

}
ḋ= d̈t+v0

d= d̈t2

2 +v0t at t= 0, d(0) = 0, and ḋ(0) = v0

(2.6)

Another factor controlling the further progress of the debris sheet sliding is a process of
consolidation. The collapse of a metastable structure generates excess pore-fluid pressure,
a process of consolidation decays the basal excess pore-fluid pressure. Assuming that
Tarzaghi’s one-dimensional consolidation theory applies and that single, upward drainage
is taking place, the time tc required for the basal excess pore-water pressure to decay from
initial value to a value that brings debris sheet at rest is given by [Hutchinson1986]

tc =
T
(
d̄
)2

cv
(2.7)

where T is the time factor for the degree of the basal excess pore-water pressure, d̄= sh̄cosα
is the average length of drainage path, and cv is the coefficient of consolidation of the
material forming the layer sh̄ of the debris sheet, for the appropriate pore fluid and
stress level. For initial excess pore-water pressure ub0 an approximate solution of equation
governing one-dimensional consolidation is given by,

ub = ub0e
−t
tc (2.8)

Note: If initial effective stress at the base of debris sheets is zero, the maximum value ub
can be (limiting condition or liquefaction limit)

ub = [(1−s)γ+sγsat] h̄cos2α (2.9)
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2.2.2.3 Viscoplastic sliding-consolidation model

The strength of resistance to downslope motion of debris/soil may also be caused by
cohesion, which consists of soil cohesion and root strength (c = cs + cr) [Schmidt2008].
Root cohesion varies widely in space (land cover and land pattern) and time (growth
period). Also, it is challenging to estimate cr by sample laboratory tests quantitatively.
In this work, neglecting the effect of root cohesion, and assuming that cohesive strength
is due to soil particle cohesion only.

Fr = c+ (σ−ub) tanφ (2.10)

Sometimes nearly constant rates of displacement are observed in coincidence with steady
groundwater levels, which suggests the development of viscous forces during movement
[Corominas2005a]. Viscous forces are usually dependent on the strain rate of the shear
zone and can be evaluated using a Bingham model,

Fv = ηv

z
(2.11)

where η is the viscosity, v is the velocity, and z is the thickness of the shear zone. In
the viscoplastic model, resisting force Fr resists destabilizing force (2.10), and the differ-
ence between these two forces leads to inertial force F and viscous force Fv (2.11). The
momentum equation is,

F −Fr = Fi+Fv =ma+ ηv

z
(2.12)

τ − [c+ (σ−ub) tanφ] =ma+ ηv

z
(2.13)

If pore water pressure measurements are not available, it can be estimated from readings
of the depth of groundwater level. Assuming parallel flow to the slope surface

ub = zγwcos
2α (2.14)

where γw is the specific weight of pore water, z is the height of groundwater level. In [Her-
rera2013a] and [Bernardie2014a] changes in groundwater level assumed directly propor-
tional to effective rainfall intensity:

∆z = Iprep
n

(2.15)

where Iprep is rainfall intensity in mm−2day−1 and n is the material porocity. This change
in groundwater level leads to change in pore water pressure,

∆ub = ∆zγwcos2α (2.16)

The dissipation of excess pore-fluid pressure in the saturated layer is computed using
Terzaghi’s one-dimensional consolidation theory (2.8) for [Herrera2013a]

tc =
4
(
d̄
)2

π2cv
(2.17)

And, in [Bernardie2014a] as
ub = ub0e

−k
tc (2.18)

where k is the number of days since last recharge (or rainfall) and tc (in days) is the time
factor controlling the dissipation of the excess pore pressure, the initial excess pore-fluid
pressure ub0 is estimated as,

ub0 = [zmax−z0]γwcos2α (2.19)
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where, zmax is the highest groundwater level since the last recharge, and z0 is the ground-
water level when the landslide is at rest. The process of recharge and dissipation of excess
pore pressure takes place simultaniously. Hence, the variation of the pore water pressure
is given by (2.20) and variation of water table level by (2.21)

∆ub = ∆ubrecharge + ∆ubdissipation

= Iprep
n

γwcos
2α+ub0e

−k
tc

(
1−e

1
tc

) (2.20)

∆z = ∆ub
γwcos2α

(2.21)

2.2.2.4 Extented sliding-consolidation model

Motion of the slide block:
The extended sliding-consolidation clarifies how diverse styles and rates of landslide motion
can result from regulation of Coulomb friction by dilation or contraction of the water-
saturated basal shear zone. A model described in [Iverson2005a] is based on Newton’s
second law where landslide motion is resisted only by basal Coulomb friction. In this
model, basal pore fluid pressure regulates rigid body translation of a landslide block with
an added feature of pore pressure feedback. It is considered a solid, poroelastic block
placed on a rigid, planner slope inclined at an angle θ and aligned to rectangular Cartesian
coordinates in x-y. Also, forces at the base of the block are resolved using a coordinate
system (x’-y’) rotated by dilatancy angle ψ with respect to x-y system as shown in Fig.
2.11.

Figure 2.11: Extended sliding-consolidation model [Iverson2005a]

The forces acting at the base of the block mainly consist of three components: (i)
gravity imposed driving force parallel to the slope (x′ direction) is ρgHAsin(θ−ψ) where
ρ is the slide block mass density, g is the acceleration due to gravity, H is the thickness
of the slide block, and A is the area of the slide block base, (ii) consequent frictional
resistance equal to −ρgHAcos(θ−ψ)tanφ where φ is a basal frictional angle, and (iii) the
component of the fluid pressure force acting in the direction reducing the basal frictional
force acting uniformly along the base of the slide block equal to p(0, t)Acosψ tanφ where
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p(0, t) is the pore fluid pressure act at the base of the slide block. The net downslope force
in the x′ direction,

Fx′ = ρgHAsin(θ−ψ)−ρgHAcos(θ−ψ)tanφ+p(0, t)Acosψ tanφ (2.22)

The downslope movement of the side block initiates when Fx′ > 0, therefore, the resultant
momentum change in the x direction (which is smaller than momentum change in x′ by a
factor cosψ) is given by,

ρgHA
d2ux
dt2 = cosψFx′ (2.23)

where ux is the rigid body displacement in the x-direction. Substituting (2.23) in (2.22)
and dividing the result by ρHA, we get

d2ux
dt2

= gcosψ

[
sin(θ−ψ)−

(
cos(θ−ψ)− p(0, t)

ρgH
cosψ

)
tanφ

]
= dv

dt

(2.24)

which is a second-order ordinary differential equation describing the downslope movement
of the slide block, where v is the slide block velocity.
Pore pressure diffusion:
Systems of conservation laws arise naturally in several areas of physics and mechanics,
and landslide motion is one of them. Evolution of pore fluid pressure p is assumed to be
governed by conventional linear diffusion equation (1-D hyperbolic PDE) that describes
transient, one dimensional, saturated groundwater flow in a poroelastic medium that does
not change total stress [Iverson2005a],

∂p(z, t)
∂x

−D∂
2p(z, t)
∂z2 = 0 z ∈ [0,Z], t≥ 0 (2.25)

where D is the hydraulic diffusivity, and Z is the height of the water table. Eq. (2.25)
is derived from the principles of mass conservation where the state of the system (pore
pressure p) is a field that is a vector-valued function p(z, t) of space variables z and the
time t. For the analysis purpose, pore fluid pressure is split into two components: (i) the
imposed pore pressure pi due to processes such as rain infiltration and (ii) the excess pore
pressure pe which develops due to contraction or dilation of the basal shear zone.

p(z, t) = pi(z, t) +pe(z, t) (2.26)

Both imposed, and excess pore pressure satisfies their linear diffusion equation (PDE).

∂pi(z, t)
∂x

−D∂
2pi(z, t)
∂z2 = 0 z ∈ [0,Z], t≥ 0 (2.27)

∂pe(z, t)
∂x

−D∂
2pe(z, t)
∂z2 = 0 z ∈ [0,Z], t≥ 0 (2.28)

Pressure gradient (boundary conditions) for imposed pore pressure derived by Darcy’s law
given as,

∂pi
∂z

(Z,t) =−ρwgβ (2.29)

∂pi
∂z

(0, t) =−ρwg
(
β+W

K

D
Z

)
(2.30)

where, ρw is the pore water density, β and W are dimensionless constants, and K is the
hydraulic conductivity. Imposed pore pressure serves to trigger slide block motion and
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also influences post-failure sliding but does not facilitate feedback analysis. Therefore,
(2.27), (2.29) and (2.30) are simplified to

pi(z, t) = ρwg

[
β(Z−z) +WK

(
t+ (Z−z)2

2D

)]
(2.31)

Since interest is in imposed pore pressure at the base of the slide block

pi(0, t) = ρwg

[
βZ+WK

(
t+ Z2

2D

)]
(2.32)

Pressure gradient (boundary conditions) for excess pore pressure derived by Darcy’s law
given as,

∂pe
∂z

(0, t) = ρwg

K

duy
dt

, pe(Z,t) = 0 (2.33)

For infinitesimal displacement dilatancy angle tanψ ≈ ψ = duy/dux and v = dux/dt there-
fore, pressure gradients (boundary conditions) are given as,

∂pe
∂z

(0, t) = ρwg

K
ψv, pe(Z,t) = 0 (2.34)

Combining (2.24), (2.26), (2.28), (2.32) and (2.34) yields governing equations and bound-
ary conditions for the landslide dynamics in which downslope slide block velocity (v) and
excess pore pressure (pe) are the dependent variables (states):

pi(0, t) = ρwg

[
βZ+WK

(
t+ Z2

2D

)]
, pe(z,0) = 0

p(z, t) = pi(z, t) +pe(z, t)
d2ux
dt2

= dv

dt
= gcosψ

[
sin(θ−ψ)−

(
cos(θ−ψ)− p(0, t)

ρgH
cosψ

)
tanφ

]
∂pe(z, t)
∂x

=D
∂2pe(z, t)
∂z2

∂pe
∂z

(0, t) = ρwg

K
ψv, pe(Z,t) = 0 (b.c.)

(2.35)

2.2.2.5 Coupled hydrological models

Hydrogeological models can evaluate an increase in pore water pressure induced by rainfall
infiltration; therefore, some physically-based models connect hydrogeological models to
evaluate the impacts of pore water pressure with the infinite slope stability model for the
computation of the FoS. As a result, by analyzing a drop in the shear strength of the
soil produced by increased pore water pressure, physically-based models combined with a
hydrogeological model can anticipate distributed shallow landslide initiation locations.

Based on the simplifying assumption, hydrogeological models can be divided into
two categories: steady-state and transient-state models [Montgomery1994, Terlien1995,
Wu1995,Pack1998,Baum2002,Crosta2003,Savage2004,Godt2008]. The steady-state shal-
low subsurface flow model described in TOPMODEL [Beven1979] and TOPOG [O'Loughlin1986]
is the most often used hydrological model in slope stability studies [Montgomery1994,
Wu1995]. The steady-state model assumes that rainfall infiltration is constant and sat-
urated water flows parallel to the slope surface. As a result, rather than simulating the
spatial groundwater level variation as a function of groundwater flow and rainfall in-
tensity during a rainfall event, this model assumes a uniform recharge state that sim-
ulates the spatial groundwater level variation as a function of groundwater flow and
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rainfall intensity over a long period. Due to continual rainfall infiltration, this model
cannot analyze short-term temporal variations in pore pressure and temporal changes in
FoS. By adding the infiltration process in an infinite slope using an estimated variant of
Richard’s equation [Iverson2000] sought to overcome the restricted assumptions of steady
water table level [Arnone2011]. Using the linearized solution of Richard’s equation [Iver-
son2000, Baum2002], the transient-state model performs transient seepage analysis and
delivers more realistic findings. However, one of the challenges in using the transient hy-
drologic model in a physically-based analysis approach is that the transient hydrologic
model necessitates a large amount of geographical data.

In recent years, a considerable number of physically-based models have been produced.
The most extensively used slope stability analysis methods based on the physically-based
model are SHALSTAB (Shallow Landsliding Stability model), SINMAP (Stability Index
Mapping), and TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope
Stability). SHALSTAB is a coupled model that combines a stability model based on the
infinite slope equation with a steady-state hydrological model, assuming that the sub-
surface flow is parallel to the slope [Beven1979, O'Loughlin1986]. Rainfall infiltration
is assumed to be in equilibrium with steady-state, saturated water flow parallel to the
slope surface above an impervious border in this model. The steady-state discharge is
calculated for each cell as a function of the infiltration rate and a "contributing area,"
representing the upslope area that influences the subsurface flux through the cell. To
estimate the relative water table depth and, as a result, the relative pore water pres-
sure, the steady-state discharge is paired with a general form for groundwater flow par-
allel to the slope. SHALSTAB has been widely utilized in numerous research, includ-
ing [Guimarães2003,Rosso2006,Huang2006,Sasso2014,Pradhan2014b,Fernandes2004,Gor-
sevski2006,Sorbino2009,Zizioli2013,de Luiz Rosito Listo2012] because of its simple hydro-
geological model for the generation of steady-state pore water pressure.

SINMAP is based on the infinite slope stability model, which uses groundwater pore
pressures from a topographically based steady-state hydrogeology model [Pack1998]. SIN-
MAP uses topographic, hydrological, and soil factors to classify terrain stability. The
input data (slope and specific catchment region) is derived from digital elevation models
(DEMs) analysis. An interactive visual approach that updates these parameters based
on observed landslides can be changed and calibrated. SINMAP provides for uncertainty
in input parameters by defining uniform probability distributions with lower and upper
bounds. The parameters are supposed to change at random between these boundaries for
the probability distribution. This model generates the stability index (SI), defined as the
chance that a place is stable, by assuming uniform distributions of the parameters over
uncertainty ranges.

Because the ratio of the contributing area to the cross-sectional width will be evaluated,
both SINMAP and SHALSTAB indicate that shallow landslides will concentrate in areas
of topographic convergence. The two programs differ in several details, such as flow-
routing algorithms, consideration of material attributes, and use of FoS calculations to
find unstable slopes, but their fundamental approach to determining slope stability is
comparable [Savage2004]. SINMAP and SHALSTAB are useful for preliminary stability
assessment over large areas where the underlying models’ assumptions are met. Under
constant rainfall, both models examine a basic steady-state hydrogeological process. This
means that both models are used to anticipate a spatially distributed slope stability, but
due to the steady-state description of hydrological fluxes, they are confined to the temporal
prediction of slope stability. Furthermore, steady-state models are restricted to a few
implausible scenarios involving rainfall characteristics and in situ conditions [Iverson2000].

The TRIGRS model incorporates transient pressure responses to rainfall and downward
infiltration to estimate the possible occurrence of shallow landslides [Baum2008]. TRIGRS
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combines an infinite slope stability calculation with an analytic, one-dimensional solution
for pore-pressure diffusion in a finite-depth soil layer in response to time-varying rainfall
[Savage2004, Baum2002]. The infiltration models in TRIGRS are based on the solution
of Richards’ equation for an infinitely deep impervious basal boundary by [Iverson2000]
and the surface condition of constant flux for a defined time and zero flux thereafter
by [Salciarini2006]. [Iverson2000] presents a theoretical framework for understanding how
hydrologic processes affect the location, timing, and rate of landslide occurrence based on a
solution to the boundary problem provided by Richard’s equation. [Baum2002] developed
the TRIGRS software program by generalizing Iverson’s initial infiltration model solution
for unsaturated environments and variable rainfall intensity and duration scenarios. Many
research, including [Baum2005,Salciarini2006,Godt2008,Zizioli2013,Vieira2010,Liao2010,
Raia2014, Bordoni2015, Lee2015]. , have used TRIGRS to evaluate the Spatio-temporal
prediction of landslide occurrence.

Transient models can improve the effectiveness of susceptibility analysis by accounting
for the transient impacts of fluctuating rainfall on slope stability conditions, but they typ-
ically require a lot of detailed spatial data [Sorbino2009]. Furthermore, they are sensitive
to some essential input variables, such as soil hydraulic characteristics, starting steady-
state groundwater conditions, and soil depths, which can only be accurately evaluated
using empirical models or inverse deterministic analyses [Salciarini2006,Godt2008]. Com-
parative analyses using different physical slope models were undertaken since multiple
physically-based models have been developed and used to create shallow landslide suscep-
tibility maps. [Meisina2007] used the SINMAP and SHALSTAB models to analyze slope
stability and compared the results to the locations of shallow landslides in Oltrepo Pavese’s
area (Northern Apennines) in November 2002. In May 1998, in the Campania Region of
Italy, [Sorbino2009] used SHALSTAB and TRIGRS to investigate the source locations of
major rainfall-induced, shallow landslides. [Zizioli2013] employed SINMAP, SHALSTAB,
and TRIGRS to create landslide susceptibility maps for a region in the northern Apennines
where landslides inflict significant infrastructure and agricultural damage. SINMAP and
SHALSTAB were compared by mapping landslide-prone areas in Brazil in [Michel2014].
The comparison of the various methodologies helps identify the most significant.

Several novel physically-based landslide susceptibility study methods have been pre-
sented in recent years. The triangulated irregular network (TIN)-based real-time inte-
grated basin simulator (tRIBS) model was developed by [Arnone2011] and [Lepore2013]
that allows simulation of most spatial-temporal hydrologic processes (infiltration, evap-
otranspiration, groundwater dynamics, and soil moisture conditions) that can influence
landslide occurrence. To account for heterogeneous and anisotropic soil impacts, this
model considers the spatial variability in precipitation fields, land-surface descriptors, and
the related moisture. [Montrasio2008] and [Montrasio2009] suggested a SLIP model that
focuses on the destabilizing forces created by the water downflow and the contribution
of partial saturation to the soil shear strength [Montrasio2011]. This model includes the
partial saturation contribution to soil shear strength using total soil cohesion. The prac-
tical and apparent cohesion connected to the matrix suction proposed by [Fredlund1996]
is included in total cohesion. Based on experimental data, [Montrasio2008] estimated
suction-related cohesiveness as a mathematical function of saturation degree. To assess
the slope stability change linked with rainfall on a slope, [Chae2011] proposed the modified
infinite slope model based on the concept of the saturation depth ratio. To investigate the
influence of the saturation depth ratio following rainfall infiltration, a rainfall infiltration
test on unsaturated soil was performed using a column. The proposed approach was tested
on real-world instances to determine its viability and construct a Geographic Information
Systems (GIS) regional landslide susceptibility map.
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2.2.2.6 Landslide runout models

In the case of a catastrophic failure, landslide runout is defined as the total distance cov-
ered by a landslide [McDougall2017]. It can refer to a distance measured downstream of
a given point (runout length) or the complete horizontal path length measured on a map
(travel distance) [Rickenmann2005]. Both cases suggest that a landslide can move much
further than simple frictional models predict [Corominas1996, Johnson2016]. Although
various landslides in a variety of materials can move over long distances and display flow-
like behavior [Hungr2001], the word "runout" is usually used to describe the mobility of fast
landslides that travel at exceptionally high speeds (> 5 m/s; [Cruden1996b]). Rockfalls,
debris flows, and rock/soil avalanches are examples of fast landslides that rapidly accel-
erate the original collapse, resulting in large displacements. Fast landslides have severe
destructive consequences and many causalities due to their speed and lack of predictabil-
ity (see [Guzzetti2000,Petley2012]). According to [Dai2002], landslide runout modeling is
critical at all levels of hazard and risk zoning.

How can we tell if a landslide has the potential to become exceedingly rapid? Primarily
based on previous experience and precedence. The majority of shallow slides that occur on
steep slopes can become relatively rapid. They usually involve a stable substrate and loose
granular regolith. Such collapses almost invariably occur during heavy rain, guaranteeing
that the loose layer is saturated. As the initial failure moves faster, the soil downslope
is over-ridden, liquefied by rapid undrained loading, and integrated into an expanding
debris avalanche [Sassa1985]. When loose sediment is abundant, debris mobilization can
also occur in established steep stream channels [Kean2013]. The surging, extremely rapid
debris flow is caused by the moving mixture of water and debris entrapping more material.
Debris flows are common occurrences that contribute to forming a fan with its deposits.

Slides that do not evolve faster than quick (3 m/min) movement are frequently found
in soils dominated by fine clayey material. According to [Ter-Stepanian2000], clay flow
slides that are extra-sensitive ("quick") are a significant and well-known exception. When
mixing with surface water is sufficiently rapid, clay slopes can also create shallow col-
lapses that evolve into extremely rapid mudflows [Hungr2001]. After a sudden failure,
rock slides, rockfalls, and rock topple in good-quality rock can become exceedingly quick.
The movement can take on a flow-like quality when a rock mass is broken, resulting in
exceptionally rapid rock avalanches [Melosh1987]. The failure behavior of numerous land-
slides is described in [Hungr2005], which can be used as a guideline.

Rapid gravitational processes are common and the most dangerous type of landslide,
regardless of the material involved. The capacity to forecast their travel distance and
possibly other factors such as velocity or peak discharge has significant implications for
hazard assessment and mitigation design. Several methods for calculating fast-moving
landslides’ travel distances and velocities have been developed. They range from empirical-
statistical methods to dynamic methods, continuum-based models that allow simulation of
the flow and related parameters along the slope, including a deposition [Rickenmann2005].

Since early attempts to constrain the relationship between landslide travel distance (L)
and the elevation difference between the starting and ending points of deposition (H), it
has been clear that the volume of the mass movement (V) has a significant impact on its
mobility [Corominas1996,Rickenmann1999]. According to a plot of the tangent of the trip
angle (H/L) against landslide volume (Fig. 2.12), large landslides have lower travel angles
than smaller ones. Differences in material characteristics and mobility mechanisms and
the shape of the deposition sites or impediments are frequently linked with high scatter
in such interactions [Corominas1996,Rickenmann1999]. Their application must consider
a homogeneous set of data reflective of the specific landslide type. On the other hand,
using mean values can produce overly optimistic findings; instead, use the lower envelope
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or the line corresponding to a given confidence level (e.g., 90%) [Hungr2005].

Figure 2.12: Relationship between landslide mobility (H/L) and volume as described by
various authors for different types of mass movements. ∗H ranging from 200 to 2000 m
(after [Chae2017])

For preliminary hazard mapping purposes, most empirical methodologies are simple
enough to use GIS to outline the extent of possibly affected areas [Toyos2007]. [Zimmer-
mann1997] defined a lower envelope of tan (H/L) as a function of the catchment area for
preliminary evaluations when volume estimates are lacking in the case of debris flows. Al-
ternatively, [Prochaska2008] proposes using the average channel slope to forecast runout
for small and medium-sized debris flows in constrained channels. [Fannin2001] advocated
using a sediment budget along the flow path to estimate the total travel distance, recog-
nizing the role of sediment entrainment for debris flows. Their method works regardless
of whether or not the projected debris-flow volume is known, and it is mainly reliant on
the quality of field data [Miller2008].

For lahars, [Iverson1998] suggested a method that links event volume (V) with a
flooded area (B) and cross-sectional flow area (A) (Fig. 2.13). It is founded on scal-
ing considerations and statistical data analysis from previous events. It may be used
to a variety of fast-moving landslides as long as the semi-empirical scaling relationships
between volumes V, B, and A are adjusted. Many researchers have proved its appli-
cability to debris flows [Crosta2003, Simoni2011] and other phenomena [Griswold2008].
Certain beneficial modifications have been offered to improve the method’s capabilities
or meet specific situations. [Scheidl2009] added a module to their TopRunDF for au-
tomated flow path prediction on the fan while expressing the mobility coefficient (V-B
relationship constant) as a function of the gradient of the deposition area. The prediction
model DFLOWZ [Berti2014] provides for the simulation of both confined and unconfined
flows and the consideration of scaling relationship uncertainties and their impact on out-
comes. [Griswold2008] included a module for defining likely debris flow source regions to
the GIS tool LAHARZ [Schilling1998] and, more recently, [Reid2016] incorporated the ef-
fects of debris-flow expansion along the channel due to entrainment into the same method.

Through frequency-magnitude connections, empirical, volume-based models allow the
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Figure 2.13: Definition of empirical scaling relationships describing the relation be-
tween event volume (V), inundated area (B) and cross-sectional flow area (A). Mobility
coefficients ka and kb can be obtained based on statistical analysis of past events (af-
ter [Chae2017])
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likelihood of alternative debris-flow runout lengths or inundated areas to be assessed.
While mapping hazard zones as a function of event volume would be advantageous, esti-
mating a likely range of flow volumes for a given channel or location can be problematic [Ri-
ley2013,Corominas2014]. On the other hand, empirical methods retain their relevance and
can be utilized for preliminary hazard assessment due to their simplicity, speed, and ease
of use.

Dynamic approaches use one-, two-, or three-dimensional models to simulate debris
flow propagation utilizing mass, momentum, and energy conservation. [McDougall2004,
Hungr1995, O’Brien1993a]. The majority of approaches treat debris flow as a continu-
ous system with superficial constitutive relationships capable of recreating a material’s
macroscopic behavior. Even though a propagating gravity flow is nearly always a non-
homogeneous and multi-phase mixture, several single-phase rheological models have been
devised for simulating its behavior [Iverson2000]. Due to the complexity and abundance
of needed parameters, more rigorous, physically-based multi-phase models have been pro-
posed [Iverson2001], although their application is limited [Liu2016]. Because natural ma-
terials contain coarse, irregular particles in a wide range of sizes and a variable quantity
of water, determining their rheological behavior remains difficult.

Gravitational flows are typically described using three dimensions as a non-Newtonian
fluid flowing using dynamic methods. A Bingham fluid, or, more broadly, a Coulomb
viscous [Johnson2016] or Herschel-Bulkley fluid, is a flow resistance term that is frequently
used. These models are more suitable for relatively fine-grained "mudflows" than for "stony
debris flows," which require a dilatant or inertial grain shearing model to account for the
grain collisions that dominate the flow behavior [O’Brien1993a]. Some intermediate models
describe the combined influence of viscous, inertial, and turbulent flow regimes. Despite
its origins as a snow avalanche model, the Voellmy frictional model has been successfully
and widely adapted to debris flows [Revellino2004, Naef2006]. A Coulomb-type friction
term scales with normal stress and a turbulent drag coefficient that scales with velocity
squared are included.

However, because mono-phase models do not represent the physics of flowing mate-
rials and full-scale direct measurement is impractical, the parameters of a specific rhe-
ological model are usually obtained through back-analysis of similar events [Sosio2007].
This is a significant limitation of dynamic methods because actual debris flows, or mud-
flows, exhibit significant variability in behavior during successive surges of a single event
[Berti2000,McCoy2010] and, even more so, between events that occur within the same
catchment [Kean2013,Navratil2013]. Rheological parameters generated from back-analysis
of documented historical events are often employed for prediction purposes [Jakob2012,Pir-
ulli2010]. Though such an approach seeks to handle the choice of rheological parameters
effectively, it inevitably adds uncertainty to the outcomes due to the above-mentioned
inter-event variability. Back analysis appears to be the only realistic choice because no
systematic effort has been made to constrain the ranges of rheological parameters as a
function of the many variables that influence flow behavior (e.g., volume, particle size,
solid concentration).

In general, predictive application of dynamic methods necessitates a thorough un-
derstanding of the physical phenomena to be recreated and the rheological model. To
correlate hazard values to simulation results of a specific catchment, the design volume
or, better still, the volume-frequency relationship is necessary, similar to empirical ap-
proaches [Jakob2007]. Alternatively, the flow’s erosion and deposition dynamics must be
considered. By injecting a user-specified quantity of entrainment (e.g., bed-normal depth
eroded per unit flow and unit displacement) along the course, [Hungr2001] attempted
to model the entrainment process, and several instances recently appeared in the litera-
ture [Hussin2012,Frank2015]. When entrainment is included in a model, the entrainment
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region and depth become extra input parameters, making them more difficult to limit.
Field-based geological observations can be utilized to estimate these parameters; however,
dynamic approaches are needed to replicate the entrainment process effectively [Asch2007].

FLOW-2D (3-D integrated Eulerian model) is one of the most extensively used dynamic
models for analyzing debris flows and mudflows on colluvial fans [Sosio2007,Marchi2010].
The model is based on the quadratic rheological technique presented earlier in this sec-
tion [O’Brien1993b]. An incoming water hydrograph is combined with a time-dependent
sediment-concentration graph to depict the inflow volume. To account for changes in sur-
face coverage, the Manning coefficient should be assigned to each grid element to account
for the hydraulic roughness of the terrain surface.

In the case of studies, several different debris-flow simulation models were used and
compared to actual debris flows. DAN-3D [Hungr1995,McDougall2004], RAMMS [Chris-
ten2010, Christen2012, Hussin2012], and RASH-3D [Pirulli2010] are only a few of them.
Runout distance inundation patterns, flow heights, and velocities can be investigated us-
ing dynamic numerical models. Given that the local terrain mostly dictates the runout
pattern, several writers concur on the importance of an accurate digital elevation model
of the prospective depositional area [Rickenmann2016,Hürlimann2008]. [Rickenmann2006]
conducted comparative research on the performance of simulation models. Because of the
large spectrum of physical processes that can be simulated, generalizations are impossible.
Some forms of flow (e.g., rocky turbulent debris flows) may be better reproduced by a
simulation model, whereas others may be reproduced less correctly (e.g., muddy viscous
flows). Because most simulation models’ rheologies do not define the physics of the pro-
cess, tracing boundaries is difficult. It is not unexpected, for example, that the Voellmy
rheology, which was created to mimic snow avalanches [Christen2010], can also be used to
simulate debris flows [Hussin2012] and rock avalanches [Deline2010,Sosio2008]. To permit
successful calibration based on a sufficient number of control factors (e.g., inundated area,
velocities, depths), maybe more than one event, rheological relationships should be simple
with few, readily constrained parameters [Hungr2005].

Collecting field observations that can be utilized to systematically back-analyze past
events is the most desirable development in the fast-moving landslide propagation study.
This will allow for the establishment of much-needed standards for the selection of rheo-
logical parameters and the evaluation of model performance in terms of landslide typology.

Summary on landslide models
• In most of the models discussed above, for instance, threshold-based models,

many of these are defined without rigorous mathematical or physical criterion.

• Then models like depth-averaged landslide model are very complex to solve
parameter estimation problems, as well as they require extensive spatial data.

• Therefore, we stick to relatively simple physics-based dynamical mod-
els of landslide for the further investigation, e.g. sliding-consolidation, ex-
tended sliding-consolidation, viscoplastic sliding-consolidation model of land-
slide.
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2.3 Information Reconstruction
To produce effective landslide forecasts using the physically-based model, adequate

and precise data is required. As a result, the quality and amount of input parameters
have been the primary considerations in landslide forecasting. In actuality, such data are
frequently limited in scope, have flaws, and are of varying quality [van Westen2005]. As a
natural process creates the slope material, the strength parameters of slope materials, such
as cohesion and friction angle, are fundamentally spatially heterogeneous [Baecher2003,
Carrara2008, Chowdhury2010]. Furthermore, the input parameters for the physically-
based approach should be collected from a large study area, with presumably limited
sampling; consequently, uncertainties are invariably present in the physically-based model
analysis. The disparity between simulated and observed landslide occurrence distributions
has been identified as an essential driver of uncertainty in model parameter evaluation
[Burton1998]. As a result, when using physically-based models to perform susceptibility
analysis, geographical variability and uncertainty in ground conditions must be considered.
As a result, using some model/parameter identification tools, it is vital to address such
uncertainties. We briefly review such strategies from the literature in this section.

2.3.1 Probabilistic approach

The majority of physically-based model studies have employed a deterministic technique
to evaluate slopes’ potential or relative instability across a vast area without considering
input parameter uncertainty. The deterministic methodology is not adequate for analyzing
uncertainties and variability because just a single fixed value is given for an unknown
parameter. Because of the uncertainties and difficulty gathering, checking, and processing
big spatial data sets, applying the deterministic technique to a wide study area might be
extremely difficult or impossible [Zhou2003,Zhou2020]. Probabilistic analysis can be used
to account for variability and uncertainty in a quantitative way. As a result, probabilistic
analysis has gained popularity as a powerful technique for dealing with uncertainty. To
account for the uncertainties associated with determining strength parameters, they should
be treated as random variables in probabilistic analysis. In addition, the available field or
laboratory data is used to calculate the statistical parameters (such as mean and standard
deviation) and probability density function (PDF) of unknown variables. The probabilistic
analysis is then performed utilizing the statistical parameters and the PDF of uncertain
parameters with the performance function (i.e., a physically-based model in this study).

The first-order second-moment method (FOSM), the point estimate method (PEM),
and Monte Carlo simulations are the three most often utilized probabilistic analysis ap-
proaches. Even when additional information about the random variables is absent, FOSM
and PEM have the advantage of providing an approximate estimation of the chance of
failure using only the means and standard deviations. When the performance functions
are complex, however, the computations become impossible. Furthermore, because these
methods can only be used to estimate the likelihood of failure, they cannot calculate the
distributions for FSs, which are also treated as random variables [Harr1987,Park2001]. On
the other hand, Monte Carlo simulations are one of the most extensively used probabilistic
analysis approaches that, in theory, may be used to any model that can be analyzed de-
terministically. Because all random variables and the likelihood of failure arising from the
reliability analysis are represented by their PDFs through repeated calculations, Monte
Carlo simulations are regarded as a complete probabilistic analysis technique [Park2013].
Monte Carlo simulations are simple to set up on a computer and may accept a wide
range of functions, even ones that are difficult to define explicitly [Baecher2003]. Several
works [Harr1987,Baecher2003,Chowdhury2010] provide extensive explanations for the var-
ious probabilistic analyses.
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As many reports have pointed out, probabilistic analysis has been adopted in site-
specific slope stability analyses at hillslope scale [Christian1994,Gokceoglu2000,Park2001,
El-Ramly2002,Park2005,Li2014, Zhang2007,Cho2010,Ali2014a, Zhu2013, qiang Dou2014]
The use of geographic information system (GIS) methodologies has lately permitted a
probabilistic approach to spatially distributed study and physically-based modeling of
landslide susceptibility over large areas. [Santoso2011] used a probabilistic analysis ap-
proach in the physically-based model method, but the strength parameters were not
treated as random variables. In certain research, probabilistic analytic methodologies
were employed in physically-based model assessments, but the hydrogeological model was
not used; therefore, a constant groundwater level was assumed for the entire study area
[Zhou2003,Shou2005,Shou2009]. Other scholars have used uniformly distributed strength
parameters with upper and lower bounds to model the uncertainties in input parame-
ters, which is the most basic type of probabilistic analysis [Dietrich2001,Meisina2007,Ter-
horst2009,Yilmaz2009].

Recently, more extensive probabilistic techniques for landslide susceptibility analysis
that are regionally dispersed and physically-based have been presented. Using Monte
Carlo simulation, [Raia2014] proposed a probabilistic version of the TRIGRS code. The
qualities of the slope material, such as strength and hydraulic parameters, are treated
as uniformly distributed random variables in this study. The proposed method was then
tested on a study area, with the probabilistic and deterministic analyses being contrasted.
According to the study, the predictive power of the probabilistic analysis was around 10%
higher than that of the deterministic analysis. High-resolution slope stability simulator
(HIRESSS), a physically-based slope stability simulator incorporating Monte Carlo simu-
lation, was proposed by [Rossi2013]. The probabilistic technique was employed to control
uncertainty in typical geotechnical parameters, which is a common weakness of the deter-
ministic model. The proposed simulator was tested in three different regions, with good
results in managing unpredictable input data over a vast area and on a vast scale. In a
physically based and spatially distributed landslide susceptibility analysis coupled with
the hydrological infiltration model, [Park2013] and [Lee2015] used Monte Carlo simula-
tion as the probabilistic approach. The proposed model was used to investigate locations
with numerous landslides, and the probabilistic analysis outperformed the deterministic
analysis.

2.3.2 Determination of triggering thresholds

2.3.2.1 Rainfall thresholds

Landslide early warning is critical for recognizing landslide indications early or in advance
so that inhabitants can be evacuated from potential landslide locations and minimize the
damage caused by landslides. Early identification of landslides in a vast natural terrain is
achievable by real-time or near-real-time monitoring of rainfall and changes in the soil’s
physical properties. The majority of landslide warning systems use triggering levels set
by rainfall and the soil’s physical qualities. A threshold is the lowest or highest quantity
required for a process or a state to change [White1996]. As a result, securing feasible and
reliable triggering criteria for landslide early warning is critical.

Because landslides frequently occur during periods of heavy rainfall, a landslide trig-
gering threshold is linked to the rainfall and hydrological conditions in the soil. Ac-
cording to [Corominas2000, Aleotti2004,Wieczorek2005, Guzzetti2007], a rainfall thresh-
old can be established either empirically (statistically) or physically (deterministically).
Physical thresholds are based on numerical models that evaluate the relationship be-
tween rainfall, pore water pressure, VWC, suction stress, and slope stability, whereas
empirical thresholds are developed by collecting rainfall data for meteorological events
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with and without landslides. Empirical rainfall thresholds were divided into three cat-
egories by [Guzzetti2008a]: i) thresholds that combine precipitation measurements ob-
tained for specific rainfall events, ii) thresholds that include the antecedent conditions [Ter-
lien1998,Crozier1999,Chleborad2003,Aleotti2004], and iii) other thresholds, such as hy-
drological [Reichenbach1998, Jakob2003]. Thresholds based on precipitation data from
a single or several rainfall events can be further classified into intensity-duration (ID)
thresholds, total event rainfall (E), rainfall event-duration thresholds (ED), and rainfall
event-intensity (EI) thresholds, according to [Guzzetti2007]. These thresholds are usually
calculated by plotting lower bound lines in Cartesian, semi-logarithmic, or logarithmic co-
ordinates on the rainfall conditions that caused landslides [Iverson2000,Capparelli2011].
Deterministic-based models seek to expand the slope stability models used in geotech-
nical engineering spatially. Deterministic-based models can be used to global, regional,
and local thresholds. Furthermore, deterministic-based models can predict the quantity
of precipitation required to cause slope collapses and the location and timing of projected
landslides, making them useful for landslide warning systems [Chung2016].

Global, regional, and local rainfall thresholds have been established for the start of
landslides. A global threshold establishes a minimal level beyond which landslides are
unlikely to occur, regardless of local morphological, lithological, and land-use constraints,
as well as local or regional rainfall patterns and histories [Caine1980a,J.E.2005]. Regional
thresholds are developed for areas ranging from a few to several thousand square kilometers
with similar meteorological and physiographic characteristics and are possibly suitable for
landslide warning systems based on quantitative spatial rainfall forecasts, estimations, or
observations. The authors of [Salciarini2006] and [Melchiorre2011] recommended regional
thresholds. Local thresholds apply to single landslides or groups of landslides in areas
ranging from a few square kilometers to hundreds of square kilometers and take into ac-
count the local meteorological regime, geomorphologic context, and geological parameters
directly or implicitly.

[Wang2021] proposed a rainfall-based debris flow warning model based on the link
between rainfall and debris flow. A way to describe a rainfall event and its antecedent
rainfall were presented to assess the risk of debris flows induced by rainstorms. This
method defined rainfall parameters such as rainfall intensity, duration, accumulated rain-
fall, and effective accumulated rainfall. The rainfall triggering index (RTI), which set up a
rainfall-based debris flow warning model, was defined as the hourly rainfall intensity and
effective accumulated rainfall. Based on the RTI values of historical rainfall occurrences,
they suggested a method for determining the lower critical RTI value and the higher criti-
cal RTI value. After determining the two crucial RTI values in a rainfall event, a diagram
with instant RTI values at time t on the ordinate and the variation of time t on the abscissa
can be used to estimate the immediate debris flow occurrence potential.

2.3.2.2 Physical and mechanical thresholds

As mentioned earlier, rainfall is the most crucial landslide early warning threshold. How-
ever, there can be variances in landslide triggering under the same rainfall conditions. Rain
data obtained by rain gauges in landslide-prone locations is required for early warning of
shallow and deep landslides. Nonetheless, the impact of rainfall is difficult to quantify
because it is dependent on several factors, including soil heterogeneity. As a result, based
on each scenario’s physical and mechanical thresholds, it is required to investigate the
links between soil parameters and landslide triggering [Chae2011].

Because of the variability in conditions relevant to each significant component, physical
thresholds have various limits for applicability to large areas. Cite as an example of how
to get around these limits. [Rupp2018] provided a model of antecedent soil water status
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that took into account empirical thresholds like antecedent rainfall and physical proper-
ties like soil moisture and potential evaporation. [Huggel2009] used an empirical rainfall
threshold function, which took ten years and divided it into six-hour periods.Within a
hydrological conceptual modeling framework, [Sirangelo1996] created the forecasting of
landslides induced by rainfalls (FLaIR) model to forecast landslide movements activated
by a rainstorm. The relationship between the mobility function and landslide likelihood
as a function of antecedent rainfall is considered in this model. The FLaIR model is partly
based on physical approaches because the mobility function is specified as a function of the
infiltration rate, directly related to soil and topographical conditions. The system com-
prises two modules: a monitoring module that uses previous rainfall data and a warning
module that uses anticipated rainfall data. This fourth module, in particular, evaluates
the information offered by meteorological models, which provide rainfall estimates for the
next 6, 12, 18, and 24 hours. According to [Capparelli2010a], the system can forecast
likely developments over the next 24 hours using these values. The FLaIR model was
later expanded to mudflow movement [Sirangelo1996], leading to the MoniFLaIR early
warning system [Sirangelo2002,Capparelli2010a].

The relationship between slope failure and the VWC gradient as a function of rainfall
circumstances was investigated by [Chae2011]. In the Deoksan research region in Korea,
the VWC gradient was distributed in the range of 0.107-0.249 in cases of slope failure, but
field monitoring results without slope failure showed a gradient range of VWC between
0.003 and 0.073. The findings show that slope failure is caused by a considerable amount of
rainfall and a steep VWC gradient. Based on the findings, they proposed a VWC gradient
threshold for early warning of landslides produced by rainfall. The findings revealed that
a landslide is more likely to occur in the study area when the VWC gradient is greater
than 0.1.

A limit equilibrium model was integrated into a landslide early warning system by
[Thiebes2014]. The combined hydrology and stability model (CHASM), a physically-based
slope stability model, was first used to analyze stability conditions on a reactivated land-
slide in the Swabian Alps and was then integrated into a prototype of a semi-automated
landslide early warning system. The CHASM combines the simulation of saturated and
unsaturated hydrological processes to calculate pore water pressures, which are then in-
corporated into the computation of slope stability using limit equilibrium analysis for
assessing slope stability and early warning modeling. The results of the CHASM program
show that the FoS is relatively low for various potential shear surfaces, and additional
rainfall occurrences could create instability. International geospatial standards were em-
ployed to assure the interoperability of system components and the transferability of the
implemented system as a whole while integrating and automating CHASM within an early
warning system. The CHASM algorithm is executed automatically as a web processing
service, with fixed, planned input data and changing input data, such as hydrological
monitoring and quantitative rainfall forecasts. When pre-defined modeling or monitoring
criteria are crossed, a web notification service sends text and email messages to relevant
specialists, who decide to provide an early warning to local and regional stakeholders and
offer action suggestions.

The characterization of hydrological and mechanical behavior of unsaturated soils is
possible using the soil-water characteristic curve (SWCC), which is connected to pore
water pressure and water content. The hysteretic nature of SWCC [Lu2006,Fredlund2011,
Likos2014,Lu2013], linked to in situ processes resulting from different drying and wetting
cycles that the soils suffer under natural conditions, determines the development of the
drying and wetting curve. Thus it can have practical implications on water movement
in soils and mechanical behavior of unsaturated soils in terms of deformation and shear
strength [Wheeler2003,Likos2014,Bordoni2015]. The stability of an unsaturated slope on
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natural terrain was assessed using the fluctuation in suction stress caused in the soil by
rainfall infiltration over time, according to [Song2016]. The SWCC and the suction stress
characteristic curve of the unsaturated soil acquired from the study area were evaluated
using the [van Genuchten1980] and [Lu2006] models to apply the slope stability analysis
considering suction stress unsaturated soil. Because of changes in suction stress generated
by evaporation and infiltration of water in the unsaturated soil layer, the FoS of the
natural slope fluctuated continuously. As a result, when the VWC or matric suction in
the soil is being monitored in the field, the infinite slope stability of a slope in natural
terrain can be evaluated in real-time by measuring the suction stress induced by rainfall
in the unsaturated soil.

2.3.2.3 Back analysis and ground motion prediction for landslide forecasting

The shape of landslides, material qualities, and time change of groundwater level (or pore
pressure) can be used to solve physically-based model equations to anticipate ground mo-
tion [Herrera2013a]. Field observations, in-situ tests, and laboratory experiments can all
be used to get the parameters. Back analysis can estimate any of these characteristics in a
fixed period if unavailable; however, the prediction must be made for a different time. To
minimize disparities between observed and computed displacements, unknown material
parameters (viscous parameter and friction angle) were estimated using nonlinear regres-
sion in [Corominas2005a]. In [Herrera2013a], a similar strategy is employed.

Nonlinear regression

The relationship between a variable of interest Y and one or more explanatory or
predictor variables xj is studied using regression.. The general model is

Yi = h〈x(1)
i ,x

(2)
i , ...,x

(m)
i ;θ1,θ2, ...,θp〉+Ei (2.36)

where h is an appropriate function that depends on the explanatory variables and
parameters, that we want to summarize with vectors x̄ =

[
x

(1)
i ,x

(2)
i , ...,x

(m)
i

]T
and

θ̄ = [θ1,θ2, ...,θp]T . The random errors Ei characterize the unstructured departures
from the function h. For the distribution of this random error, a normal distribution
is assumed, so

Ei ∼N 〈0,σ2〉

[Bernardie2014a] computed displacements by solving combined statistical-mechanics-
based model equations using Sequential Quadratic Programming (SQP) algorithm to op-
timize some geometrical parameters and material properties for chosen range. The main
objective was to predict daily displacement from the precipitation time series. Therefore,
the calibration procedure has been performed over several time windows using the SQP
optimization algorithm. The models were then tested for any day of the period of interest.
Before a given day D, an optimal calibration window size among a period of 60 and 180
days was looked for. Results indicate that most of the optimized windows are around
90 days [Bernardie2014a]. Then the model was calibrated, and the displacements were
computed during this period (Fig. 2.14). The next day of the calibration was then shifted
at D+ 1, and the procedure was iterated.

In order to test the ability of the methodology to be used in an operational early
warning system delivering daily warnings in near real-time, a prediction procedure was
developed and tested in [Bernardie2014a]. The method was applied as if the new data were
received each morning and processed in real-time daily. Hence, the "new" received data
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were added to the historical time series for each day. The calibration was performed over
time windows of different durations (Fig. 2.14). The optimal calibration was then used
to predict the displacement for the three following days, based on the meteorological data
of these three subsequent days, assumed to be meteorological forecasts. The procedure
was then repeated for the next day, with a completely new calibration. In order to test
the 3-day prediction procedure, the daily predicted displacements were compared with the
observed displacements for the three predicted days. Consistency between model output
and observation was observed with some discrepancies.

Figure 2.14: Schematic framework of the forecasting procedure (after [Bernardie2014a])

Based on the results, first, inverse velocity criteria was analyzed to predict a catas-
trophic fluidization event (as already applied in other studies [Petley2002, Petley2005,
Rose2007]. However, it was found that this parameter was not suitable for the prediction
as inverse velocity was found to be decreasing even if no fluidization phenomenon occurred.
Another approach used was based on the evolution of some estimated parameters (opti-
mized each day), for instance, viscosity. Results suggested that viscosity vastly increases
during the period preceding the occurrence of a fluidization event. However, this trend
was observed for non-fluidization events. Thus, even these criteria were found non-suitable
for the prediction purpose.

In the results based on Root Mean Square Error (RMSE) computed on the three pre-
dicted days, it was observed that the model could not reproduce the accurate displacement
preceding the occurrence of a fluidization event. It indicated an important change in me-
chanical behavior and the kinematic regime of the landslide. Thus, the RMSE variation
was considered a good indicator of the occurrence of fluidization. Out of three proposed
thresholds, the first two were based on the normal law distribution of the RMSE values,
with the use of a threshold equal to the mean of the RMSE plus three standard deviation
values of the RMSE and the second one equal to the mean of the RMSE plus one standard
deviation values of the RMSE:

T1 = mean(x) + 3σx
T2 = mean(x) +σx
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A third threshold was defined based on the historical RMSE curve. The threshold was
then chosen as the RMSE values prior to the past fluidization events.

Sequential Quadratic Programming (SQP)

SQP is one of the most used approaches for solving constrained nonlinear optimiza-
tion problems numerically. It has a strong theoretical foundation and sophisticated
algorithmic tools for solving large-scale technologically relevant problems. Consider
the use of the SQP methodology to solve NLPs (Nonlinear Optimization Problems)
of the form

min
x

f(x) ∀x ∈ Rn

s.t. h(x) = 0
g(x)≤ 0

(2.37)

where f : Rn → R is the objective functional, the functions h : Rn → Rm and g :
Rn→ Rp describe the equality and inequality constraints.
SQP is an iterative procedure which models the NLP for a given iterate xk,k ∈N0 by
a Quadratic Programming (QP) subproblem, solves that QP subproblem, and then
uses the solution to construct a new iterate xk+1. This construction is done in such
a way that the sequence (xk)k∈N0 converges to a local minimum x∗ of the NLP (2.37)
as k→∞. In this sense, the NLP resembles the Newton and quasi-Newton methods
for the numerical solution of nonlinear algebraic systems of equations. However, the
presence of constraints renders both the analysis and the implementation of SQP
methods much more complicated.

Our work is mainly motivated by research work on landslide displacement/velocity fore-
casting [Bernardie2014a,Corominas2005a,Herrera2013a], in which beforehand foreacasting
process, unknown parameters are estimated first (back analysis) from past data. In that
regard, we propose systems and control theoretical tools to acheive the goal of parameter
identification.

2.3.3 State observer approaches

The observer problems from control theory are similar to back analysis or inversion tech-
niques. To the best of our knowledge, control theoretical approaches of information re-
construction has never been applied in the context of landslides. However, many of these
methodologies’ applications may be found in hydrological systems, overland flow, meteo-
rology, oceanography, and a variety of other fields. When some internal information of the
system is derived from exterior (directly available) measurements, the observer problem
inevitably emerges in a system approach. In general, one cannot use as many sensors as
signals of interest characterizing system behavior (due to cost, technological constraints,
and so on), mainly because such signals can be of various types: they typically include
time-varying signals characterizing the system (state variables), constant ones (parame-
ters), and unmeasured external signals (disturbances). Internal information is required
for a variety of reasons, including modeling (identification), monitoring (fault detection),
and driving (control) the system. These methods are generally based on a model (dy-
namical model). According to [Besançon2007], observer problems can be solved either via
optimization techniques or via direct observer design.
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2.3.3.1 Adjoint-based optimization

It is a gradient-based optimization method in which the derivative information is derived
using an adjoint or co-state equation from a mathematical standpoint. These approaches,
also known as optimal control theory, have their origins in the traditional calculus of vari-
ations and were developed in the 1950s and 1960s to optimize dynamical systems, particu-
larly for the optimal control of rocket and satellite flight paths [Bryson1975,Stengel1986].
During the 1970s, adjoint-based optimization techniques were introduced in numerical
reservoir simulation for computer-assisted ’history matching,’ i.e., model parameter esti-
mation through parameter adjustment until the model output matches measured pressures
and fluid rates in the wells [Chen1974,Chavent1975]. The Lagrangian multiplier method
is used in this approach to connect the system dynamics and the cost function, which
is commonly defined as the least square error between simulation values and measure-
ments. The adjoint state approach is then used to minimize the objective functional, so
as to obtain the adjoint system and gradients for the parameters of interest and the initial
state. With gradients, parameters and initial states are modified (iterative process) until
measurement and model output match.

This strategy is effective in solving observer or estimating difficulties in numerous
research. Reservoir characteristics are determined using well pressure data for hypothet-
ical and existing Saudi Arabian reservoirs [Chen1974] for reservoir systems represented
by a single-phase flow equation. Using five-year pressure and production data, the au-
thors [Chavent1975] used an adjoint-based optimization method to predict permeability
distribution. The approach is tested on a semi-realistic field model that is part of a 9×19
grid with ten production wells. For recorded periodic values of water surface height at
a particular station, both constant and position-dependent parameters (bottom friction
and water depth) are approximated using a hydrodynamical tidal flow model [Das1991].
In [Nguyen2014], an optimal estimation of initial condition based on the adjoint approach
is proposed for overland flow depicted by a one-dimensional Saint-Venant equation. The
Banzioumbou Tondi Kiboro catchment in Niger is then extended to estimate Manning
roughness and Horton infiltration coefficients [Nguyen2015]. The adjoint approach is
used in [Ding2005,Atanov Genadii1999,Ramesh2000,Chen1999] to estimate the manning
roughness coefficient in an open channel flow. [Nguyen2016a] proposed state and param-
eter estimation problems for 1D hyperbolic PDEs that reflect traffic and overland flow,
while [Nguyen2018] extended the method to switching 1D hyperbolic PDEs. A brief sur-
vey on the parameter estimation (inverse) problem in meteorology and oceanography in
view applications of 4D variational data is given in Parameters estimation in meteorology
and oceanography [Navon1998]. A review on adjoint-based optimization of multi-phase
flow (e.g., optimal recovery of hydrocarbons from subsurface reservoirs) through porous
media is given [Jansen2011].

2.3.3.2 Observer design

A state observer or state estimator is a system in control theory that estimates the internal
state of a given real system based on observations of the real system’s input and output. It
is usually computer-implemented and serves as the foundation for many practical applica-
tions. It can also aid in estimating model parameters by treating unknown parameters as
constant state variables. An observer is a model-based, measurement-based, closed-loop
information reconstructor that depends on a model with online adaption based on avail-
able measurements and aims at information reconstruction [Besançon2007]. An observer
is a well-known tool for state estimation as well as joint state and parameter estimation
(starting with the famous Kalman Filter), as well as joint state and parameter estimation
(e.g. with the Extended Kalman Filter). In recent years, it has also been extended to
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systems with distributed dynamics (described by Partial Differential Equations (PDE)),
with examples in open channel level control [Besançon2008] or monitoring [Bedjaoui2009],
backstepping boundary observer for a class of linear first-order hyperbolic systems with
spatially-varying parameters [Di Meglio2013], robust state estimation based on a boundary
output injection for a class of convection-diffusion-reaction systems [Besançon2013], ma-
trix inequality-based observer for transport-reaction systems [Schaum2014], backstepping
adaptive observer-based state and parameter estimation for hyperbolic systems with un-
certain boundary parameters and its application to underbalanced drilling [Di Meglio2014],
adaptive observer for coupled linear hyperbolic PDEs with unknown boundary parameters
based on swapping [Anfinsen2016] up to very recent results based on so-called high-gain
technique [Kitsos2022, Kitsos2021]. Extensions to coupled ODE-PDE (combining Oedi-
nary and Partial Differential Equations) can also be found, as in the case of a class of non-
linear ODE-PDE cascade system [Ahmed-Ali2015], and boundary observer based on the
Volterra integral transformation for hyperbolic PDE-ODE cascade systems [Hasan2016].

Summary on information reconstruction
• Based on landslide monitoring data and models, it is essential to reconstruct

information that can be beneficial to produce early warnings.

• This information could be a geometrical and mechanical parameter, some
threshold, statistical or physical criterion.

• The choice of information reconstruction scheme itself depends on the land-
slide model under consideration and data collected using landslide monitoring.

2.4 Conclusions
Landslide monitoring, modeling, and information reconstruction schemes are the three

vital ingredients for landslides forecasting. In the past few decades, with technical up-
grades in landslide monitoring, our understanding of complex physical phenomena taking
place on-site has also improved, i.e., the advancement in landslide modeling studies. Like
landslide monitoring and modeling, with improved computational power and data pro-
cessing algorithms, the efficiency of landslide forecasting can be improved. With time all
these three aspects will keep improving. This manuscript proposes a cross-disciplinary
approach for landslides investigation, associating landslide models from Geophysics and
Control theoretical tools for information reconstruction.
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3
Calculus of variations for estimation in ODE-PDE
landslide models with discrete-time asynchronous

measurements

Motivated by some landslide models, and related estimation
challenges, this chapter presents an optimal estimation method
for state and parameter in a special ODE-PDE coupled sys-
tem based on the adjoint method for discrete-time asynchronous
measurements. This system is described by a pair of coupled
Ordinary Differential Equation (ODE) and Partial Differen-
tial Equation (PDE), with a mixed boundary condition for the
PDE. The coupling appears both in the ODE and in the Neuman
boundary condition of the PDE. For this system, initial condi-
tions or state variables and some empirical parameters are as-
sumed to be unknown and need to be estimated. The Lagrangian
multiplier method is used to connect the dynamics of the system
and the cost function defined as the least square error between
the simulation values and the available measurements. The ad-
joint state method is applied to the objective functional to get
the adjoint system and the gradients with respect to parameters
and initial state. The cost functional is optimized, employing
the steepest descent method to estimate parameters and initial
state. Two illustrative examples corresponding to two differ-
ent landslide models validate the presented optimal estimation
approach. The first one is about state and parameter estima-
tion in an extended sliding-consolidation landslide model, and
the second one is in the viscoplastic sliding-consolidation land-
slide model. The material of this chapter corresponds to the
paper [Mishra2022a].
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3.1 Introduction

Landslide is a geological hazard responsible for about 17% of all casualties from natural
hazards [Chae2017]. It also poses a significant threat to the exposed region’s ecosystem,
infrastructure, and economy. A landslide Early Warning System (EWS) can help reduce
life and economic losses by facilitating timely corrective measures. These EWS’s rely on
models (data-driven and physically-based) to predict landslide occurrence considering dif-
ferent triggering factors such as rainfall, displacement/velocity, and material properties.
The current study is mainly motivated by research work on landslide displacement/ve-
locity forecasting [Bernardie2014b,Herrera2013b, Corominas2005b], in which beforehand
forecasting process, unknown parameters are estimated first (back analysis) from his-
torical data using some applied mathematical tools, for instance, Sequential Quadratic
Programming (SQP) and non-linear regression. This approach is called ‘history match-
ing’, i.e., model parameter estimation through matching the model output with measure-
ments [Chen1974,Chavent1975]. In some landslide models, Partial Differential Equations
(PDE) appear in conjunction with Ordinary Differential Equation (ODE) termed as cou-
pled ODE-PDE systems [Iverson2005b]. Apart from landslides many, more systems are
modeled as ODE-PDE systems (see for instance [Zainea2007] for power converters con-
nected to transmission lines, and references therein).

Recently, we proposed an adjoint method to estimate unknown material parame-
ters for the extended sliding-consolidation model of landslide based on synthetic data
[Mishra2020c]. The present chapter extends this previous work, where along with ma-
terial parameters, the initial excess pore pressure distribution is estimated for two land-
slide models, namely the extended sliding-consolidation model and viscoplastic sliding-
consolidation model. Both models depict a sliding type of slope movement and are based
on a mechanism of opposition to landslide down-slope movement by basal Coulomb fric-
tion, viscosity for the second model, and regulation through basal pore fluid pressure
feedback. A major difference between the two models is their applicability, where the ex-
tended sliding-consolidation model can represent diverse rates of landslide motions while
the viscoplastic sliding-consolidation model (with additional viscous force) can mainly de-
pict slow persistent movement. The motion of the slide block (velocity/displacement) and
excess pore pressure evolution are described as ODE and PDE (diffusion equation), re-
spectively. The output of the models depends on initial excess pore pressure distribution,
geometrical parameters, and material properties of landslides, out of which we assume that
initial excess pore pressure distribution and some material properties (viscosity, friction,
and dilatancy angle) are unknown and need to be estimated. Apart from these mod-
els, some more parameter-rich complex models represent variety of mass movements [Mc-
Dougall2017,Iverson2016,Frank2015,Liu2016,Johnson2016,Pradhan2014b]. Back analysis
for such models requires extensive spatial data [Chae2017]; therefore, this chapter focuses
on relatively simple landslide models depicting sliding behavior.

The calculus of variations-based adjoint method has been a vastly used concept for
more than 250 years and is employed in various applied mathematics problems. A brief
survey of the history and applications of variational calculus is shown in the work of Fer-
guson [Ferguson2004]. A large number of studies have illustrated the effectiveness of this
approach to solve observer or estimation problems, for instance, reservoir parameters es-
timation from well pressure data [Chen1974]; permeability distribution estimation given
flow production data [Chavent1975]; estimation of the water depth and bottom friction
coefficient in the tidal flow model [Das1991]; state and parameter estimation in switched
1D hyperbolic PDEs [Nguyen2018], traffic flow [?], overland flow [Nguyen2014] and a real
hydrological system [Nguyen2016c]; parameters estimation in meteorology and oceanog-
raphy [Navon1998]; estimation of the initial condition and parameters in overland flow
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for actual field data on the Tondi Kiboro catchment [Nguyen2015]; and estimation of the
Manning roughness coefficient in an open channel flow [Ding2005, Atanov Genadii1999,
Ramesh2000, Chen1999]. A review on adjoint-based optimization of multi-phase flow
through porous media is given in [Jansen2011]. Besides applications for observer prob-
lems, the adjoint method is also employed in the control design, such as designing the
controller for the contaminant releases in rivers [Michael1997a,Michael1997b]; air traffic
flow management [Strub2006]; and space shuttle reentry problem [Graichen2008].

In the context of landslides, measurements may be available only at given times,
not necessarily uniformly distributed (in time) due to landslide monitoring constraints
(i.e., discrete-time asynchronous measurement). We claim that the optimization (adjoint)
method can handle the estimation problem in coupled ODE-PDE models of landslides with
discrete-time asynchronous measurements. In this procedure, the system and adjoint equa-
tions are solved with the so-called Euler [Ascher1998] and Crank-Nicholson [Crank1947]
schemes. To obtain optimal parameter values, gradients (obtained by adjoint method) are
utilized as descent directions for the steepest descent method [Bartholomew-Biggs2008].
Numerical simulations validate the solution of the work with noisy synthetic observation
values given by a system simulation. For better analysis of the solution method, simula-
tions are performed for different noise levels in measurements and distinct initial sets of
guessed parameter values.

The chapter is organized as follows: Section 3.2 describes the dynamics of the system
and the formulation of the optimal estimation problem. The formulated optimization
problem is solved using the adjoint method in Section 3.3. In Section 3.4, two illustrative
examples dealing with state and parameter estimation in landslide models validate the
effectiveness of the solution method. Some conclusions and perspectives are put forward
at the end of the chapter in Section 3.5.

3.2 Problem formulation

3.2.1 System dynamics

Let us consider a special case of ODE-PDE coupled system of state variables y(t) and
u(z, t), evolving according to functions f and h of variables t, y(t), some input I(t) but
also a vector of parameters p ∈RN and u(z, t) satisfying a diffusion equation of coefficient
V as: 

ẏ = dy
dt = f [t,p,y(t),u(0, t), I(t)] , y(0) = y0

∂u(z,t)
∂t = V ∂2u(z,t)

∂z2 , u(z,0) = ui0(z)
∂u(0,t)
∂z = h [t,p,y(t),u(0, t), I(t)] , u(Z,t) = ub0(t)

(3.1)

where, spatial variable z and time variable t belong to the set (z, t) ∈ [0,Z]× [0,T ], func-
tion ub0(t) is a predefined boundary condition, function ui0(z) and y0 denote initial con-
ditions. In order to shorten the notations, f , h and u will be used instead of functions
f [t,p,y(t),u(0, t), I(t)], h [t,p,y(t),u(0, t), I(t)] and u(z, t).

3.2.2 Optimal estimation problem
On the basis of system dynamics (3.1), let us consider the problem of estimating time and
space evolution of u and time evolution of y from input I(t) and measurements ymea(tk)
when initial conditions ui0(z) and parameters pq = [p1...pq...pQ]⊆ p are unknown. We use an
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approach to minimize the errors between simulated output y and some related observation
values at discrete-time tl : ymea(tl). Using similar idea as in [?] with regard to discrete-
space measurements, we tackle constraint of discrete-time measurements by comparing
discrete-time asynchronous measurements to simulated output localized at discrete-times
tk via the Dirac-Delta weight δA. Technically, we are thus interested in minimizing the
cost function J defined as

J =ε1
2

∫ Z

0

∥∥ui0(z)−ui0F (z)
∥∥2
dz+ 1

2

Q∑
q=1

ε2q ‖pq−pqF ‖
2

+ ε3
2

L∑
l=1

(∫ T

0
δA(t− tl)y(t)dt−ymea(tl)

)2

(3.2)

where, T is the optimization horizon, Q is the number of unknown parameters, 0 ≤ t1 <
... < tL ≤ T are measurement times, L is the number of observation values, ymea(tl) is
measured value of y(t) at time tl, ui0F (z) is the guessed value of initial condition, pqF is
the guessed value of parameters. Weighting factors ε1, ε2q and ε3 are introduced to adjust
the scale of the different terms of the cost function. The term δA(t− tl) denotes the Dirac-
Delta function, described here by a Gaussian function with a very small variance σ2 as
δA(t− tl) = e−(t−tl)2/σ2 .

3.3 Solution method

3.3.1 Variational analysis

Based on the defined problem statement, the optimal values of pq and ui0(z) must mini-
mize cost function (5.10) subject to system dynamics (3.1) as constraints. To solve this
constrained optimization problem, let us consider the Lagrange multipliers λ(t) and Γ(z, t)
that combine both system equations and cost function into a new cost functional L

L= J +
∫ T

0
λ(t) [ẏ−f ]dt+

∫ T

0

∫ Z

0
Γ(z, t)

(
∂u

∂t
−V ∂

2u

∂z2

)
dzdt (3.3)

Using integration by parts, the cost functional can be rewritten as

L= ε1
2

∫ Z

0

∥∥ui0(z)−ui0F (z)
∥∥2
dz+ 1

2

Q∑
q=1

ε2q ‖pq−pqF ‖
2 +λ(T )y(T )−λ(0)y(0)

+ ε3
2

L∑
l=1

(∫ T

0
δA(t− tl)y(t)dt−ymea(tl)

)2

−
∫ T

0
y(t)λ̇dt−

∫ T

0
λ(t)fdt+V

∫ T

0
hΓ(0, t)dt

+
∫ Z

0
[Γ(z,T )u(z,T )−Γ(z,0)u(z,0)]dz−

∫ T

0

∫ Z

0
u

(
∂Γ(z, t)
∂t

+V
∂2Γ(z, t)
∂z2

)
dzdt

+V

∫ T

0

[
∂Γ(Z,t)
∂z

u(Z,t)− ∂Γ(0, t)
∂z

u(0, t)
]
dt−V

∫ T

0
Γ(Z,t)∂u(Z,t)

∂z
dt (3.4)

To solve this optimization problem, the adjoint method is used to obtain the adjoint system
and establish the gradient of the cost functional with respect to the parameters and initial
states. These gradients describe the sensitivity of cost function under the constraints of
system dynamics to variation of initial conditions and parameters. First of all, let us
compute the first variation of the cost functional with respect to the system variables (y
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and u), initial condition ui0(z), and parameters pq. The first variation δL is given as,

δL= ε1

∫ Z

0
[ui0(z)−ui0F (z)]δui0dz+

Q∑
q=1

ε2q[pq−pqF ]δpq +λ(T )δy(T )−λ(0)δy(0)

+ ε3

L∑
l=1

∫ T

0
δA(t− tl)

(∫ T

0
δA(t− tl)y(t)dt−ymea(tl)

)
δydt−

∫ T

0
λ̇δydt

−
∫ T

0
λ(t)fyδydt−

Q∑
q=1

∫ T

0
λ(t)fpqdtδpq−

∫ T

0
λ(t)fu(0,t)δu(0, t)dt

+
∫ Z

0
Γ(z,T )δu(z,T )dz−

∫ Z

0
Γ(z,0)δu(z,0)dz−

∫ T

0

∫ Z

0
[Γt+V Γzz]δudzdt

+V

∫ T

0

∂Γ(Z,t)
∂z

δu(Z,t)dt−V
∫ T

0

∂Γ(0, t)
∂z

δu(0, t)dt−V
∫ T

0
Γ(Z,t)δ ∂u(Z,t)

∂z
dt

+V

∫ T

0
Γ(0, t)hyδydt+V

Q∑
q=1

∫ T

0
Γ(0, t)hpqdtδpq +V

∫ T

0
Γ(0, t)hu(0,t)δu(0, t)dt (3.5)

where we use notation, νa for partial derivative of a variable ν w.r.t. argument a : ∂ν
∂a .

All the terms multiplied by δy and δu in Eq. (3.5) are collected together and set to
zero (with δy(0) = 0 assuming here y(0) is known). This gives the first order optimality
condition, or the adjoint system, for adjoint variables λ(t) and Γ(z, t), obtained from their
weak forms, as:



λ̇ = ε3
∑L
l=1 δA(t− tl)

(∫ T
0 δA(t− tl)y(t)dt−ymea(tl)

)
−λ(t)fy +V Γ(0, t)hy,

∂Γ(z,t)
∂t =−V ∂2Γ(z,t)

∂z2 ,

∂Γ(0,t)
∂z =− 1

V λ(t)fu(0,t) + Γ(0, t)hu(0,t), Γ(Z,t) = 0,

λ(T ) = 0, Γ(z,T ) = 0

(3.6)

The gradient of objective functional with respect to parameter pq, formed by selecting all
the terms related to δpq in Eq. (3.5), is then:

Lpq = ε2q(pq−pqF )−
∫ T

0
λ(t)fpqdt+V

∫ T

0
Γ(0, t)hpqdt (3.7)

By using the same method, the gradient with respect to initial condition ui0(z) can be
obtained from variation in Eq. (3.5) below:

δLδui0(z) = ε1

∫ Z

0
[ui0(z)−ui0F (z)]δui0(z)dz−

∫ Z

0
Γ(z,0)δui0(z)dz.

With the same weak form argument as before, the gradient is:

Lui0(z) = ε1[ui0(z)−ui0F (z)]−Γ(z,0) (3.8)

The system dynamics and adjoint equations must be discretized in order to be solved
numerically. The considered spatial domain [0,Z] is discretized into a set of smaller sections
[zm,zm+1]. Similarly, the gradient of initial condition (3.8) is discretized at every single
position zm, ∀zm =m∆z where 0<m≤M −1 with ∆z = Z/M , M being the number of
point, giving:

Lui0(zm) = ε1[ui0(zm)−ui0F (zm)]−Γ(zm,0). (3.9)
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3.3.2 Numerical implementation

3.3.2.1 Euler method for discretization

The Euler method is based on a truncated Taylor series expansion [Ascher1998], i.e.,
expansion of y in the neighborhood of t = tn, ∀tn = n∆t where 0 < n ≤N −1 with ∆t =
T/N , N being the number of time steps, gives

yn+1 := y(tn+ ∆t) = y(tn) + ∆tdy(tn)
dt

+O(∆t2) = yn+ ∆tf(yn, tn) +O(∆t2). (3.10)

At each time step, higher order terms O(∆t2) are neglected which induces local trun-
cation error proportional to the square of the step size (∆t), and the global error (error
at a given time) is proportional to the step size. The value of variable y at time tn+ ∆t
in Eq. (3.1) is computed as

y(tn+ ∆t) = yn+1 = yn+ ∆tf. (3.11)

The Euler method is used for numerical integration of system and adjoint ODEs, both
forward and backward in time.

3.3.2.2 Crank-Nicholson method for discretization

The Crank–Nicolson scheme is a finite difference method used for numerically solving
the heat equation and similar Partial Differential Equations (PDEs) [Crank1947]. It is
a second-order implicit method in time. The time derivative of PDE in Eq. (3.1) are
approximated by forward differences and space derivatives by central differences averaged
over n+ 1 and n. By denoting u(zm+ ∆z, tn+ ∆t) as um+1

n+1 , the Crank-Nicholson scheme
for discretizing Eq. (3.1) becomes:

umn+1−umn
∆t = V

2

[
um+1
n+1 −2umn+1 +um−1

n+1
∆z2 + um+1

n −2umn +um−1
n

∆z2

]
. (3.12)

Rearranging and substituting r = V∆t/2∆Z2 leads to,

− rum+1
n+1 + (1 + 2r)umn+1− rum−1

n+1 = rum+1
n + (1−2r)umn + rum−1

n . (3.13)

The boundary conditions in Eq. (3.1) are approximated as,

uM−1
n+1 = ub0(tn+1) and u1

n+1−u0
n+1 = ∆zh(tn+1). (3.14)

Now, Eq. (3.13) and (3.14) can be rewritten as a set of simultaneous equations in
matrix form as follows:

A︷ ︸︸ ︷

−1 1 0 ... 0 0 0

−r 1 + 2r −r ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... −r 1 + 2r −r

0 0 0 ... 0 0 1



X︷ ︸︸ ︷

u0
n+1

u1
n+1

...

uM−2
n+1

uM−1
n+1


=

B︷ ︸︸ ︷

∆zh(tn+1)

ru2
n+ (1−2r)u1

n+ ru0
n

...

ruM−1
n + (1−2r)uM−2

n + ruM−3
n

ub0(tn+1)


(3.15)

Therefore at each time step tn, X =
[
u0
n+1 u1

n+1 ... uM−2
n+1 uM−1

n+1

]T
= A−1B can be

computed using minor matrix operation. Notice that, in vector B of equation (3.15) term
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h(tn+1) depends on yn+1 and un+1. Out of which yn+1 can be obtained from solution of
ODE (3.11) while for h(tn+1) linear in un+1, term un+1 need to be taken to the left hand
side of the equation (3.14) before performing matrix operation.

Truncation error of the scheme is proportional to O(∆t2) +O(∆z2). Although the
Crank-Nicholson scheme is unconditionally stable, in the simulations values of ∆t and ∆z
are chosen such that r < 1. The Crank-Nicholson method is used for numerical integration
of system and adjoint PDEs, both forward and backward in time.

3.3.2.3 Steepest descent method for optimal estimation

We employ a steepest descent method [Bartholomew-Biggs2008] to solve the optimization
problem. The gradients Lpq and Lui0(zm) give the descent directions to estimate optimal
parameter values p∗q and initial values ui0(zm)∗. We choose constant step sizes γpq and γui0 ,
which minimize the cost functional L in the descent directions. We use Algorithm 1 below
to solve the optimization problem. The algorithm stops when the norm of the gradient is
smaller than the chosen tolerance ξpq and ξui0

. Notice that computing gradients require
solving both system (3.1) and adjoint system (3.6) equations.
Algorithm 1: Optimal parameter and initial value estimation
Input: Model input I(t) & Measurements y(tk)

Guessed parameter and initial values, pqF & ui0F (zm)
Set initial parameter and state values, pq0 ui00(zm)
Step sizes, γpq & γui0
Gradient tolerances, ξpq & ξui0
Stop_flag = false
Iteration index k=1
Set pkq = pq0 and ui0(zm)k = ui00(zm)

Output: p∗q , ui0(zm)∗
while Stop_flag = false do

Simulate system equations (3.1) with y(0), ui0(zm)k, pkq , & ui0(zm)k;
Simulate the adjoint system equation (3.6) (backward in time);
Compute gradients Lkpq , L

k
ui0(zm) using (3.7) & (3.9);

if
∣∣∣Lkpq ∣∣∣≤ ξpq &

∣∣∣Lk
ui0(zm)

∣∣∣≤ ξui0 then
Stop_flag = true;

else
pk+1
q = pkq - γpqLkpq ;
ui0(zm)k+1 = ui0(zm)k - γui0L

k
ui0(zm);

k = k+ 1;
end
Display pq, ui0(zm) and J

end
Return p∗q, ui0(zm)∗
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3.4 Landslide application examples

3.4.1 Example I: Extended sliding-consolidation model

3.4.1.1 System dynamics

The extended sliding-consolidation model [Iverson2005b] of landslide assumes that a slide
block is placed on an inclined surface as shown in Fig. 5.1. This model proposes a
mechanism of opposition to slide block down-slope movement by basal Coulomb friction
and regulation through basal pore fluid pressure feedback. The model splits total basal
pore pressure into two components of: i) imposed pore pressure pi due to rain infiltration
and ii) development of excess pore pressure pe in response to the dilation or contraction of
the basal shear zone. The velocity of the slide block v(t) and excess pore pressure pe(z, t)
(equivalent to y(t) and u(z, t) respectively in Eq. (3.1) evolution (diffusion equation) are
described by Eq. (3.16).

v̇(t) = ϕ(t,φ,ψ)
{
gcosψ [sin(θ−ψ)− cos(θ−ψ)tanφ] + cos2ψtanφ

ρZ
[pi(t) +pe(0, t)]

}
,

= f(t,φ,ψ,pe(0, t),pi(t)), v(0) = v0

∂pe(z, t)
∂t

=D
∂2pe(z, t)
∂z2 , pe(z,0) = pe0

∂pe(0, t)
∂z

= ρwgψ

K
v(t) = h(ψ,v), pe(Z,t) = 0 (3.16)

where pi(t) is the imposed pore pressure at the slide block base (input to the model),
(z, t) ∈ [0,Z]× [0,T ] with Z as a spatial domain length (slide block thickness), and T is
the length of time horizon. φ is the friction angle characterizing the mechanical strength
of the material, ψ is the dilatancy angle representing volume change of the material when
it is subject to deformation, ρ is the soil density, ρw is the pore water density, D is the
diffusion coefficient (D > 0), K is the hydraulic conductivity, g is the acceleration due to
gravity and θ is the slope angle. In addition, v0 and pe0 are initial values (t= 0) of the v
and pe respectively. Finally, ϕ(t,φ,ψ) is a smooth activation or logistic function given by,

ϕ(t,φ,ψ) = 1
1 +e−ξaf [pi(t)−pcrit]

(3.17)

where ξaf is the steepness of activation function and pcrit is the critical pore pressure above
which slide block starts to accelerate given as [Iverson2005b]

pcrit = gcosψ [cos(θ−ψ)tanφ−sin(θ−ψ)]
cos2ψtanφ/ρZ

. (3.18)

The activation function ϕ smoothly transits between 1 and 0 depending on positive and
negative (respectively) values of pi(t)−pcrit. ξaf can be used to adjust the transition slope
of activation function.
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Figure 3.1: Schematic view illustrating geometrical variables used to model slide block
motion (shear zone thickness st is used only in viscoplastic sliding-consolidation model)

3.4.1.2 Estimation results

To validate the effectiveness of the proposed approach, a synthetic velocity profile vmea(t)
is generated by solving the system equations (3.16). The initial values and parameter
values used for the simulation are summarized in Table 3.1. The geometrical and material
parameters are taken from the literature [Iverson2005b] and correspond to the case of a
dense loamy soil. In the simulations, imposed pore pressure is assumed to be sinusoidal
in time (with a period of 20 days to represent rainfall variations), oscillating around pcrit.
Simulated synthetic velocity measurement (with two different cases of additive noises)
and pore pressure profiles are shown in Fig. 3.2. Additive noises are white Gaussian
noises with signal-to-noise ratios (SNR) 10dB and 20dB, respectively, representing the
observation errors.

Here, we are interested in estimating mechanical parameters ψ and φ (equivalent to pq
in Eq. (3.1)) along with initial condition pe0 (equivalent to ui0(z) in Eq. (3.1)) assuming
other mechanical and geometrical parameters, velocity measurement vmea(t) and imposed
pore pressure pi(t) are known. The corresponding cost function is given by Eq. (3.19).
Based on the solution method (Section 3.2), adjoint system equations and gradients are
obtained (as shown by Eq. (3.20) and (3.21)). Then with the help of model and sim-
ulation parameters (steepness of the activation function, step sizes, stopping conditions,
and weighting factors) of Table 3.1 and Algorithm 1, simulations are performed. Weight-
ing factors are chosen in order to normalize the different terms of the cost function on a
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Table 3.1: Parameter Values: Extended sliding-consolidation model

Parameters Value Unit

Initial velocity, v0 0.010 mm/s

Initial basal excess pore pressure, pe0 -0.41 Pa

Time ∆t & space ∆z step 0.01 & 0.0066 sec & m

Diffusion coefficient, D 3×10−3 m2/s

Acceleration due to gravity, g 9.8 m/s2

Slide block thickness, Z 0.65 m

Hydraulic conductivity, K 2×10−5 m/s

Slide block mass ρ & pore water ρw density 2000 & 1000 kg/m3

Plane inclination θ, friction φ and dilatancy ψ angle 31, 35 & 6 ◦

Steepness of activation function, ξaf 100 -

Guessed initial excess pore pressure, pe0F
-0.2 kPa

Guessed friction φ & dilatancy ψF angle 31 & 4 ◦

Initial excess pore pressure, pe0 0 kPa

Initial friction angle, φ0 25, 29, 32 ◦

Initial dilatancy angle, ψ0 3, 4, 5 ◦

Step size, γpe 1.1×10−4 -

Step size, γφ 5×10−3 -

Step size, γψ 1.4×10−4 -

Weighting factor, ε1 1×10−12 -

Weighting factor, (ε21 & ε22) (2.5 & 5) ×10−3 -

Weighting factor, ε3 30 -

Stop condition, ξpe0
, ξφ, ξψ 10−2 -
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Figure 3.2: Synthetic data: Extended sliding-consolidation model. (a) Synthetic velocity
measurement [vmea(t)] for two additive noises. (b) Critical [pcrit], imposed [pi(t)] and basal
excess pore pressure [pe(0, t)]

52



3.4. Landslide application examples

0 20 40 60 80 100
25

30

35

Iteration k

φ̂
(◦

)

(a) With SNR 10 dB

φ= 35◦

φ01 = 25◦

φ02 = 29◦

φ03 = 32◦

0 20 40 60 80 100
25

30

35

Iteration k
φ̂

(◦
)

(d) With SNR 20 dB

φ= 35◦

φ01 = 25◦

φ02 = 29◦

φ03 = 32◦

0 20 40 60 80 100
2

4

6

Iteration k

ψ̂
(◦

)

(b) With SNR 10 dB

ψ = 6◦

ψ01 = 3◦

ψ02 = 4◦

ψ03 = 5◦

0 20 40 60 80 100
2

4

6

Iteration k

ψ̂
(◦

)
(e) With SNR 20 dB

ψ = 6◦

ψ01 = 3◦

ψ02 = 4◦

ψ03 = 5◦

0 0.13 0.26 0.39 0.52 0.65

−0.4

−0.2

0

Spatial length z (m)

p̂
e
(z
,0

)
(k

Pa
)

(c) With SNR 10 dB

pe(z,0)
p̂e(z,0)1

p̂e(z,0)2

p̂e(z,0)3

0 0.13 0.26 0.39 0.52 0.65

−0.4

−0.2

0

Spatial length z (m)

p̂
e
(z
,0

)
(k

Pa
)

(f) With SNR 20 dB

pe(z,0)
p̂e(z,0)1

p̂e(z,0)2

p̂e(z,0)3

Figure 3.3: Estimation results: Extended sliding-consolidation model. (a)&(d) Evolution
of the parameter estimate (φ̂) for velocity measurement with SNR 10 dB and 20 dB re-
spectively, (b)&(e) Evolution of the parameter estimate (ψ̂) for velocity measurement with
SNR 10 dB and 20 dB respectively, (c)&(f) Estimated initial state [p̂e(z,0)] for velocity
measurement with SNR 10 dB and 20 dB respectively.
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common scale. They also affect the speed of convergence (number of iterations required)
in estimated and actual parameter values and are chosen manually by a trial and error
scheme. Notice that, although synthetic data are generated with a time step ∆t = 0.01
sec, only asynchronous measurements are considered in the estimation. It is indeed here,
assumed that on alternate days, data are collected after every 30 minutes and 1 hour,
i.e., for day one half-hourly and on an hourly basis for day 2. In order to validate the
effectiveness of the estimation scheme, six simulations are performed with two distinct
noise levels (10 and 20 dB) and three different sets of initial parameter values (estimated
values for each simulation are summarised in Table 3.2). One can observe in Fig. 3.3 the
estimation results.

Cost function:

J1 = ε1
2

∫ Z

0

∥∥∥pie0(z)−pie0F
(z)
∥∥∥2
dz+ ε21

2 ‖φ−φF ‖
2 + ε22

2 ‖ψ−ψF ‖
2

+ ε3
2

L∑
l=1

(∫ T

0
δA(t− tl)v(t)dt−vmea(tl)

)2 (3.19)

Adjoint system:

λ̇1 = ε3

L∑
l=1
δA(t− tl)

(∫ T

0
δA(t− tl)v(t)dt−vmea(tl)

)
+ Dρwgψ

K
Γ1(0, t), λ1(T ) = 0

∂Γ1(z, t)
∂t

=−D∂
2Γ1(z, t)
∂z2 , Γ1(z,T ) = 0

∂Γ1(0, t)
∂z

=− 1
D
λ1(t)fpe(0,t), Γ1(Z,t) = 0

(3.20)

Gradients:

∂L1
∂pe0(zm) = ε1[pe0(zm)−pe0F

(zm)]−Γ1(zm,0)

∂L1
∂φ

= ε21(φ−φF )−
∫ T

0
λ1(t)fφdt

∂L1
∂ψ

= ε22(ψ−ψF ) + Dρwg

K

∫ T

0
Γ1(0, t)v(t)dt−

∫ T

0
λ1(t)fψdt

(3.21)

Estimated initial condition and parameter values indeed converge to respective real
values with small bias. These estimation biases are possibly caused by the truncation
errors of numerical schemes (Section 3.3) and/or due to noise in measurements. Note
that, initial value v0 is taken from vmea which itself is noisy. Even with the presence of
noise in measurements and numerical errors, the results obtained are quite satisfactory in
the sense of relative error in estimation (see Table 3.2). The relative errors between the
real values of variables and estimated ones are very small given the noise level. For similar
set of initial parameter values and 20dB noise level in measurement estimation results are
more accurate as compared to high noise level (10dB) scenario (see Table 3.2). It is also
observed that the closer the initial parameters for the estimation are to the actual ones,
the more accurate the estimation is. In addition, the lower the measurement noise level is,
the more accurate the estimation results are (see Table 3.2). Note that, initial excess pore
pressure is being estimated for all z i.e., pe(z,0) but in Table 3.2 only estimated initial
basal excess pore pressure [p̂e(0,0)] is mentioned.
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Table 3.2: Initial and estimated Values: Extended sliding-consolidation model

Sr. Noise Initial values Estimated values

no. SNR φ0, ψ0, pe0 φ̂ Error ψ̂ Error p̂e(0,0) Error

(dB) (◦, ◦, kPa) (◦) (%) (◦) (%) (kPa) (%)

1 10 25, 3, 0 34.90 0.28 5.96 0.67 -0.413 0.73

2 10 29, 4, 0 34.92 0.22 5.96 0.67 -0.411 0.24

3 10 32, 5, 0 34.93 0.20 5.97 0.50 -0.409 0.24

4 20 25, 3, 0 34.91 0.25 5.97 0.50 -0.412 0.48

5 20 29, 4, 0 34.92 0.22 5.97 0.50 -0.412 0.48

6 20 32, 5, 0 34.94 0.17 5.98 0.34 -0.411 0.24

3.4.2 Example II: Viscoplastic sliding-consolidation model

3.4.2.1 System dynamics

The viscoplastic sliding-consolidation model is formulated based on the similar mechanism
as the extended sliding-consolidation model with two modifications: i) a term related to
viscous force (−ηv(t)/st) which opposes landslide down-slope movement is added, ii) to
depict slow-moving landslides, the acceleration term v̇ is neglected, as inertia effects are
expected to remain small compared to other forces in the momentum balance. A similar
setting without basal pore fluid pressure feedback (simplified viscoplastic sliding model) is
presented in [Mishra2021]. We extended this model by including diffusion equation (PDE)
for excess pore pressure evolution to obtain an ODE-PDE coupled system:

ḋ= ϕ(t,φ,ψ)
{
ρstZ

η
[sin(θ−ψ)− cos(θ−ψ)tanφ] + sttanφcosψ

η
[pi(t) +pe(0, t)]

}
= f(φ,ψ,η/st,pe(0, t),pi(t)), d(0) = d0

∂pe(z, t)
∂t

=D
∂2pe(z, t)
∂z2 , pe(z,0) = pe0

∂pe(0, t)
∂z

= ρwgψv

K
= h(φ,ψ,η/st,pe(0, t),pi(t)) = ρwgψ

K
f, pe(Z,t) = 0 (3.22)

where, d(t) is slide block displacement, st is the shear zone thickness (see in Fig. 5.1), η
is the viscosity, and ϕ is the activation function (3.17).

3.4.2.2 Estimation results

A synthetic displacement dmea(t) time-series is computed by solving (3.22) for initial
and parameter values given in Table 3.3. The geometrical and mechanical parameters of
Minor Creek landslide with gravelly sand clay are taken from the literature [Iverson2005b].
Similar to Example I (Section 3.4.1), imposed pore pressure is assumed sinusoidal (with
a period of 300 days to represent seasonal variation in imposed pore pressure) oscillating
around pcrit computed using Eq. (3.18). Simulated synthetic displacement time-series
(with noises) and pore pressure profiles are shown in Fig. 3.4.

In this example we are estimating mechanical parameters ψ, φ and η/st along with
initial condition pe(z,0) assuming other mechanical and geometrical parameters, displace-
ment measurement dmea and imposed pore pressure pi(t) are known, i.e., optimizing cost
function (3.23). Note that, in this example, parameters η and st are clubbed together
to form a single parameter η/st since they cannot be estimated independently. It is also
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Table 3.3: Parameters values: Viscoplastic sliding-consolidation model

Parameters Value Unit

Initial displacement, d0 0.12 m

Initial basal excess pore pressure, pe0 -2.69 kPa

Simulation time, T 360 days

Time step, ∆t 1800 s

Space step, ∆z 0.12 m

Diffusion coefficient, D 1×10−5 m2/s

Acceleration due to gravity, g 9.8 m/s2

Slide block thickness, Z 6 m

Hydraulic conductivity, K 5×10−8 m/s

Plane inclination angle, θ 15 ◦

Slide block mass density, ρ 2200 kg/m3

Pore water density, ρw 1000 kg/m3

Friction angle, φ 15 ◦

Dilatancy angle, ψ 3 ◦

Viscosity, η 108 Pa.s

Shear zone thickness, st 0.1 m

Steepness of activation function, ξaf 500 -

Guessed initial excess pore pressure, pe0F
-1 kPa

Guessed friction angle, φF 12.5 ◦

Guessed dilatancy angle, ψF angle 2 ◦

Guessed viscosity/shear zone thickness, (η/st)F 8×108 Pa.s/m

Initial excess pore pressure, pe0 0 kPa

Initial friction angle, φ0 10.5, 12.5, 13.5 ◦

Initial dilatancy angle, ψ0 1.5, 2, 2.5 ◦

Initial viscosity/shear zone thickness, (η/st)0 (7,8,9)×108 Pa.s/m

Step size, γpe 1.1×10−4 -

Step size, γφ 2.5×10−4 -

Step size, γψ 7×10−5 -

Step size, γη/st 1.4×10−4 -

Weighting factor, ε1 1×10−12 -

Weighting factor, ε21 2.5×10−3 -

Weighting factor, ε22 5×10−3 -

Weighting factor, ε23 1×10−16 -

Weighting factor, ε3 10 -

Stop condition, ξpe0
, ξφ, ξψ, ξη/st 10−2 -

56



3.4. Landslide application examples

0 60 120 180 240 300 3600
0.5

1
1.5

2

Time (days)

D
is

pl
ac

em
en

t
(m

)
(a)

SNR 10dB SNR 20dB

0 60 120 180 240 300 360
−5

0
5

10
15
20

Time (days)

P
or

e
pr

es
su

re
(k
P
a

)

(b)

pcrit pi(t) pe(0, t)

Figure 3.4: Synthetic data: Viscoplastic sliding-consolidation model. (a) Displacement
measurement [dmea(t)] for two additive noises. (b) Critical [pcrit], imposed [pi(t)] and
basal excess pore pressure [pe(0, t)]

because it would not be possible to estimate them independently. Similarly to the previous
example, asynchronous measurements with four and two data points a day are assumed
for the estimation scheme. In this example as well, simulations are (for model and simu-
lation parameters Table 3.3, adjoint system equations and gradients given by Eq. (3.24)
and (3.25)) performed six times with different noise levels and distinct initial parameter
values (estimated values for each simulation are summarised in Table 3.4). Estimation
results can be seen in Fig. 3.5. In comparison to the previous example, error between
actual and estimated parameters (see Table 3.4) are a little bit higher (but < 5%) as we
are estimating one additional parameter. Similarly to the previous example, it is observed
that lower noise level in the measurement and closer initial parameter values to the actual
ones yield more accurate estimation results (see Table 3.4). In addition, the number of
iterations required to reach convergence in this example is about 120 while in previous
example around 110 iterations were needed. The number of iterations required depends on
weighting factors ε and step sizes γ (Table 3.3) which are chosen on trial and error basis.
Simulation results in Fig. 3.5(c) & (g) also shows that for the simulation parameters of
Table 3.3 convergence in parameter estimates η̂/st is faster then the other parameters.

Cost function:

J2 = ε1
2

∫ Z

0

∥∥∥pie0(z)−pie0F
(z)
∥∥∥2
dz+ ε21

2 ‖φ−φF ‖
2 + ε22

2 ‖ψ−ψF ‖
2

+ ε23
2 ‖(η/st)− (η/st)F ‖2 + ε3

2

L∑
l=1

(∫ T

0
δA(t− tl)d(t)dt−dmea(tl)

)2 (3.23)

Adjoint system:

λ̇2 = ε3

L∑
l=1

δA(t− tl)
(∫ T

0
δA(t− tl)v(t)dt−vmea(tl)

)
, λ2(T ) = 0

∂Γ2(z, t)
∂t

=−D∂
2Γ2(z, t)
∂z2 , Γ2(z,T ) = 0

∂Γ2(0, t)
∂z

=− 1
D
λ2(t)fpe(0,t) + ρwg

K
Γ2(0, t)fpe(0,t), Γ2(Z,t) = 0

(3.24)
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Figure 3.5: Estimation results: Viscoplastic sliding-consolidation model. (a)&(e) Evolu-
tion of the parameter estimate (φ̂) for displacement measurement with SNR 10 dB and 20
dB respectively, (b)&(f) Evolution of the parameter estimate (ψ̂) for displacement mea-
surement with SNR 10 dB and 20 dB respectively, (c)&(g) Evolution of parameter estimate
η̂/st for displacement measurement with SNR 10 dB and 20 dB respectively, (d)&(h) Es-
timated initial state [p̂e(z,0)] for displacement measurement with SNR 10 dB and 20 dB
respectively.
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Gradients:
∂L2

∂pe0(zm) = ε1[pe0(zm)−pe0F
(zm)]−Γ2(zm,0)

∂L2
∂(η/st)

= ε23[(η/st)− (η/st)F ]−
∫ T

0
λ2(t)fη/stdt+

Dρwg

K

∫ T

0
Γ2(0, t)fη/stdt

∂L2
∂φ

= ε21(φ−φF ) + Dρwg

K

∫ T

0
Γ2(0, t)fφdt−

∫ T

0
λ2(t)fφdt

∂L2
∂ψ

= ε22(ψ−ψF ) + Dρwg

K

[∫ T

0
Γ2(0, t)fdt+

∫ T

0
Γ2(0, t)fψdt

]
−
∫ T

0
λ2(t)fψdt

(3.25)

Table 3.4: Estimated Values: Viscoplastic sliding-consolidation model

Sr. Noise Initial values Estimated values

no. SNR φ0,ψ0,η/st0 ,pe0 φ̂ Error ψ̂ Error η̂/st Error p̂e(0,0) Error

(dB) (◦, ◦, GPa.s/m, kPa) (◦) (%) (◦) (%) (GPa.s/m) (%) (kPa) (%)

1 10 10.5, 1.5, 0.7, 0 14.90 0.66 2.95 1.67 0.996 0.4 −2.81 4.46

2 10 12.5, 2.0, 0.8, 0 14.91 0.60 2.95 1.67 0.996 0.4 −2.73 1.48

3 10 13.5, 2.5, 0.9, 0 14.92 0.54 2.96 1.34 0.997 0.3 −2.77 2.97

4 20 10.5, 1.5, 0.7, 0 14.93 0.47 2.97 1.00 0.997 0.3 −2.72 1.11

5 20 12.5, 2.0, 0.8, 0 14.93 0.47 2.98 0.67 0.998 0.2 −2.71 0.74

6 20 13.5, 2.5, 0.9, 0 14.94 0.40 2.98 0.67 0.998 0.2 −2.70 0.37

3.5 Conclusions
This chapter has proposed and validated an optimal approach for state and parame-

ter estimation in landslide motion models based on the adjoint method and the steepest
descent approach. Firstly, a generic case of the ODE-PDE coupled model has been pre-
sented. Secondly, the initial state and parameter estimation problem has been formulated
as an optimization problem from discrete-time asynchronous observation values using the
Lagrange multiplier approach. Then the adjoint method has been introduced to obtain
gradients of the cost functional and the adjoint equations. These gradients were then
utilized as descent directions for the steepest descent method to get optimal parameter
values. The differential equations of both system and adjoint systems have been discretized
and solved numerically utilizing Euler and Crank-Nicholson method. Lastly, the proposed
solution method has been validated with synthetically generated noisy data for extended
sliding-consolidation and viscoplastic sliding-consolidation models of landslide. The opti-
mal values of the initial state and parameters have been shown to be well estimated for
both examples. In the simulation results, it is observed that relative error and iterations
required in estimation for the second example are slightly larger in comparison to the first
example, as one additional parameter is being estimated in this second case.

The performance of the estimation process (convergence) can be improved by using
the inexact line search method [Shi2004] to choose step sizes γpq and γui0 instead of con-
stant ones. In both examples, it is observed that the lesser the noise level in measurement
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and closer the initial parameter values to the actual parameter values, the more accu-
rate estimates are obtained from the proposed approach. A validation with field data
is in progress to evaluate the applicability of the presented method to the Super-Sauze
landslide data taken from the literature. The proposed approach could be extended to
more complex landslide models. Finally, for the cases in which imposed pore pressure
will not be known, proposed approach can be extended to coupled hydrological landslide
models [Iverson2000].
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4
Observer design for state and parameter estimation

in a landslide model

This chapter presents an observer-based state and parameter es-
timation for the extended sliding-consolidation model of a land-
slide. This system is described by a pair of coupled Ordinary
Differential Equation (ODE) and Partial Differential Equation
(PDE), with a mixed boundary condition for the PDE. The
coupling appears both in the ODE and in the Neuman bound-
ary condition of the PDE. The observer consists of a copy of
the PDE part of the system and Kalman-like observer for the
ODE. It is shown to ensure exponential convergence of the state
and parameter estimates by means of Lyapunov tool. Finally,
a simulation result of the extended sliding-consolidation model
is presented to illustrate the effectiveness of the proposed ob-
server. The material of this chapter corresponds to the pa-
per [Mishra2020a].
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4.1 Introduction

A landslide or slope destabilization is a gravity-driven downslope movement of rock,
debris, or soil near earth’s surface caused by heavy precipitation, flood, earthquakes, sub-
stantial snowmelt, or human activities such as construction work. Over the last decade,
climate change [Gariano2016] and rapid urbanization [Nyambod2010] have increased the
frequency of occurrence of landslides. This, in turn, grabbed the attention towards the
implementation of early warning systems (EWS) to take timely actions to reduce human
and economic losses in advance of hazardous events [Krøgli2018]. One of the significant
components of EWS is environmental monitoring and forecasting [UN/ISDR2006]. Envi-
ronmental monitoring and forecasting are tools to assess the current status of an environ-
ment and establish the trends in environmental parameters. Information or data collected
with the help of environmental monitoring are processed and often used in the assessment
of risks related to the environment, e.g., weather forecast provides better predictions for
tropical storms, hurricanes, and severe weather. In the past few years, developments in
satellite remote sensing of the surface and atmosphere of the earth, numerical modeling,
and data assimilation have improved the accuracy of weather forecasting.

Similarly, for anticipation of the hazards associated with landslide, a physics-based dy-
namical model, landslide monitoring, and heterogeneous data handling play a vital role.
These physics-based dynamical models, e.g., sliding-consolidation model [Hutchinson1986],
extended sliding-consolidation model [Iverson2005a] and viscoplastic sliding-consolidation
model [Bernardie2014a,Herrera2013a,Corominas2005a] are sensitive to the initial condi-
tions and parameters of the system. These sensitivities can be taken into account by
simulating a model and iteratively adjusting the initial conditions and parameter val-
ues to obtain consistency with measured data, i.e., by adjoint method [Nguyen2016b].
Another efficient approach is to run a model over a time and continually fine-tune it to
synchronize with incoming data, i.e., Kalman filter like approach. Therefore, a comprehen-
sive evaluation of landslide hazards involves multi-dimensional problems, which require a
multi-disciplinary approach viz. geophysics, mechanics, signal/data processing, dynamical
systems, control theory, and information technologies.

In this context, the present chapter proposes an observer design for state and param-
eter estimation in an extended sliding-consolidation of a landslide with full convergence
analysis. The key feature of this model is mechanical feedback, which might be responsible
for the diverse rates of landslide motion (from steady creeping motion to runaway accel-
eration). This model is made of an Ordinary Differential Equation (ODE) coupled with a
Partial Differential Equation (PDE) subject to mixed boundary conditions, with the PDE
state entering into the ODE dynamics, and the ODE state affecting the Neuman bound-
ary of the PDE. The observer design relies on a measurement on the ODE. Notice that
observer is known to be an efficient tool for state estimation, or joint state and parameter
estimation (starting with the famous Extended Kalman Filter). In recent years, it has also
been extended to systems with distributed dynamics, with examples in open channel level
control [Besançon2008] or monitoring [Bedjaoui2009], backstepping boundary observer
for a class of linear first-order hyperbolic systems with spatially-varying parameters [Di
Meglio2013], robust state estimation based on a boundary output injection for a class of
convection-diffusion-reaction systems [Besançon2013], matrix inequality-based observer for
transport-reaction systems [Schaum2014], backstepping adaptive observer-based state and
parameter estimation for hyperbolic systems with uncertain boundary parameters and its
application to underbalanced drilling [Di Meglio2014], adaptive observer for coupled linear
hyperbolic PDEs with unknown boundary parameters based on swapping [Anfinsen2016],
and even with extension to coupled ODE-PDE like in the case of high-gain type observer
for a class of nonlinear ODE-PDE cascade systems [Ahmed-Ali2015], and boundary ob-
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server based on the Volterra integral transformation for hyperbolic PDE-ODE cascade
systems [Hasan2016]. In the present chapter, the coupled PDE-ODE observer problem
under consideration is addressed by basically combining a copy of PDE dynamics with a
Kalman-like observer for the ODE.

The structure of the chapter is as follows: A landslide model depicting landslide behav-
ior and the problem statement is given in Section 4.2. Section 4.3 presents the proposed
observer with full convergence analysis. In Section 4.4, the simulation results demonstrate
the effectiveness of the proposed observer. Finally, some conclusions and future directions
of the work are discussed in Section 4.5.

4.2 Problem Formulation

Extended sliding-consolidation model

The extended sliding-consolidation model [Iverson2005a] is based on a representation of
the landslide as a rigid block overlying a thin shear zone, where landslide (slide block)
motion is opposed by basal Coulomb friction and regulated by basal pore fluid pressure.
For the analysis purpose, the model assumes two components of basal pore pressure: i)
imposed pore pressure pi due rain infiltration and ii) development of excess pore pressure
pe in response to dilation or contraction of the basal shear zone. The motion of the slide
block and excess pore pressure evolution are described by Eq.(4.1) and (4.2) respectively.

Momentum equation

d2ux
dt2

= dvx
dt

= gcosψ [sin(θ−ψ)− cos(θ−ψ)tanφ]

+ cos2ψtanφ

ρZ
{pi(0, t) +pe(0, t)}

(4.1)

Excess pore pressure diffusion equation

∂pe(z, t)
∂t

=D
∂2pe(z, t)
∂z2

∂pe(0, t)
∂z

= ρwgψ

K
vx,

pe(Z,t) = 0

(4.2)

where φ: friction angle (mechanical strength),
ψ: dilatancy angle of the material,
ρ: soil density,
ρw: pore water density,
D: diffusion coefficient,
K: hydraulic conductivity,
g: acceleration due to gravity,
θ: sliding angle,
ux(t) and vx(t): displacement and velocity of the slide block respectively (along x-axis),
pi(0, t): imposed pore pressure at the slide block base,
pe(z, t): excess pore pressure distribution,
∂pe(0, t)/∂z = ρwgψvx/K: Neuman boundary condition,
and pe(Z,t) = 0: Dirichlet boundary condition of the excess pore pressure diffusion equa-
tion.
z ∈ [0,Z] with Z the spatial domain length (slide block thickness), and t> 0 is the time. In
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addition, vx0 and pe0 are initial values of vx and pe respectively. Coordinate z translates
with the base of the slide block such that with dilation or contraction of shear zone the
base of the slide block is always located at z = 0 as shown in Fig. 4.1.

Figure 4.1: The coordinate systems, geometric variables and material property of the slide
block

In this model, rate of landslide motion depends on the dilatancy angle (ψ), which
is generally difficult to measure. Also, this model is sensitive to the friction angle (φ)
of the soil. Assuming that the other parameters can be obtained from some knowledge
on soil characteristics and landslide geometry, this chapter is thus concerned with the
estimation of φ and ψ, along with the system state variables vx and pe(x,t). This will
be done assuming further some known imposed pore pressure time series, as well as some
measured velocity time series.

4.3 Observer-based state and Parameter Estimation

4.3.1 Normalized and transformed system equations

In order to address the observer problem, let us first normalize the system equations by
introducing dimensionless variables defined as

z∗ = z

Z
, t∗ = t

Z2/D
, v∗x = vx

g(Z2/D) ,

p∗i = pi
ρwgZ

& p∗e = pe
ρwgZ

.
(4.3)
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Then, consider a transformation

p̄∗e(z∗, t∗) =
[

K/g

ψ(Z2/D)

]
p∗e(z∗, t∗) (4.4)

and set

f0 = cosψ [sin(θ−ψ)− cos(θ−ψ)tanφ] ,

f1 = ρw
ρ
cos2ψtanφ & f2 =

(
Z2/D

K/g

)
ψf1

(4.5)

where f0, f1 and f2 are augmentative states depending on the parameter values i.e. ḟ0 =
ḟ1 = ḟ2 = 0. Now, substituting (4.3), (4.4), and (4.5) in (4.1) and (4.2) gives following
system equations (Note that from now on notation ‘ Ĺ̇ ’ denotes d/dt∗):


v̇∗x

ḟ0

ḟ1

ḟ2

=

A(t∗)︷ ︸︸ ︷
0 1 p∗i (0, t∗) p̄∗e(0, t∗)

0 0 0 0

0 0 0 0

0 0 0 0




v∗x

f0

f1

f2


y = C

[
v∗x f0 f1 f2

]>
(4.6)

∂p̄∗e(z∗, t∗)
∂t∗

= ∂2p̄∗e(z∗, t∗)
∂z∗2

∂p̄∗e(0, t∗)
∂z∗

= v∗x

p̄∗e(1, t∗) = 0

(4.7)

where C =
[
1 0 0 0

]
. This new form will be used for observer design. Here system

transformation simplifies system equations while normalization helps to define space do-
main as 0≤ z∗ ≤ 1, which will facilitate the convergence proof of observer.

4.3.2 Observer Design

For the sake of clarity, let us recall some notations, Poincaré’s inequality, Agmon’s in-
equality and definition of regular persistence which will be used later in the convergence
proof of the proposed scheme.

Notations

For a given x ∈Rn, ‖x‖ and ‖x‖H1
denotes its usual Euclidean norm and H1 norm respec-

tively.

Poincaré’s inequality

Let g = g(x) be continously differentiable function on [0,1] with g(0) = 0 or g(1) = 0,
then [Besançon2013] ∫ 1

0
g2(x)dx≤ 1

π2

∫ 1

0
g2
x(x)dx <

∫ 1

0
g2
x(x)dx

where gx is the first order derivative of g w.r.t. x.
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Agmon’s inequality

For a function g(x) ∈H1 on [0,1] following inequality holds [Krstic2008]

max
x∈[0,1]

|g(x)|2 ≤ 2

√∫ 1

0
g(x)2dx

√∫ 1

0
gx(x)2dx.

Regular persistence

For regularly persistent p∗i (0, t∗) and initial conditions in system (4.6)-(4.7), ∃ T > 0, α> 0,
t∗0 > 0 such that [Besançon1996]

∫ t∗+T

t∗
φ>(τ, t∗)C>Cφ(τ, t∗)dτ ≥ αI ∀t∗ ≥ t∗0 (4.8)

where φ(τ, t∗) is the state transition matrix of (4.6).

Lemma 1 Consider the following disturbed Lyapunov equations:

Ṡ(t∗) =−θS(t∗)−A>(t∗)S(t∗)−S(t∗)A(t∗) +C>C

˙̂
S(t∗) =−θŜ(t∗)− Â>(t∗)Ŝ(t∗)− Ŝ(t∗)Â(t∗) +C>C

(4.9)

with Â=A+ ∆ and S(0) = Ŝ(0) = S0. Assume that:

• A(t∗) is uniformaly bounded.

• ||∆|| ≤ λ̄e−ξ̄t∗ for some λ̄ > 0 and ξ̄ > 0.

Then there exists θ̄0 > 0 such that for all θ > θ̄0, ∀t∗ ≥ 0, ||S̄(t∗)−S(t∗)|| ≤ λ∗e−ξ∗t∗ for
some positive λ∗, ξ∗ (proof can be found in [Besançon1996]).

The main result can be stated as follows:

Theorem 2 For system (4.6)-(4.7) with available measurement y = v∗x, regularly persis-
tent known imposed pore pressure time series p∗i (0, t∗) and any initial condition, observer
(4.10)-(4.11) guarantees that ˆ̄p∗e(z∗, t∗)− p̄∗e(z∗, t∗), v̂∗x(t∗)−v∗x(t∗), f̂0(t∗)−f0, f̂1(t∗)−f1,
and f̂2(t∗)−f2 converge to 0 as t∗→∞ for all 0≤ z∗ ≤ 1, and θ ≥ θ0 for some θ0 > 0.

∂ ˆ̄p∗e(z∗, t∗)
∂t∗

= ∂2 ˆ̄p∗e(z∗, t∗)
∂z∗2

∂ ˆ̄p∗e(0, t∗)
∂z∗

= y,

ˆ̄p∗e(1, t∗) = 0

(4.10)


˙̂v∗x
˙̂
f0
˙̂
f1
˙̂
f2

=

Â(t∗)︷ ︸︸ ︷
0 1 p∗i (0, t∗) ˆ̄p∗e(0, t∗)

0 0 0 0

0 0 0 0

0 0 0 0




v̂∗x

f̂0

f̂1

f̂2

− Ŝ
−1C>

[
v̂∗x−y

]

˙̂
S(t∗) =−θŜ(t∗)− Â(t∗)>Ŝ(t∗)− Ŝ(t∗)Â(t∗) +C>C

(4.11)
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Proof. Define estimation errors: e(z∗, t∗) := ˆ̄p∗e(z∗, t∗)− p̄∗e(z∗, t∗) and

E(t∗) =


v̂∗x(t∗)

f̂0(t∗)

f̂1(t∗)

f̂2(t∗)

−

v∗x(t∗)

f0

f1

f2

 .

Then, they satisfy equations:
et(z∗, t∗) = ezz(z∗, t∗)
ez(0, t∗) = 0
e(1, t∗) = 0
e(z∗,0) = e0(z∗)

(4.12)

and

Ė =
[
Â(t∗)− Ŝ−1(t∗)C>C

]
E+



{ ˆ̄p∗e(0, t∗)− p̄∗e(0, t∗)
}
f2

0

0

0

 (4.13)

where ez and ezz are first and second order derivatives of e w.r.t. z∗ respectively, and et
is the first order derivative of e w.r.t. t∗. Let us study the convergence of both estimation
errors by Lyapunov function approach separately.

Convergence of e(z∗, t∗):
A candidate Lyapunov function based on the classical energy function is considered as
[Krstic2008]:

V1(t∗) := 1
2

∫ 1

0
e2(z∗, t∗)dz∗+ 1

2

∫ 1

0
e2
z(z∗, t∗)dz∗. (4.14)

Differentiating (4.14) w.r.t. t∗, by using integration by parts and (4.12), we get:

V̇1(t∗) =−
∫ 1

0
e2
zdz
∗−
∫ 1

0
e2
zzdz

∗ ≤−
∫ 1

0
e2
zdz
∗

V̇1(t∗)≤−1
2

∫ 1

0
e2
zdz
∗− 1

2

∫ 1

0
e2
zdz
∗.

Finally, by using Poincaré’s inequality and (4.14), we obtain V̇1(t∗)≤−V1(t∗) which implies
V1(t∗)≤ exp(−t∗)V1(0) i.e.,∫ 1

0
[e2(z∗, t∗) +e2

z(z∗, t∗)]dz∗

≤ exp(−t∗)
{∫ 1

0

[
e2(z∗,0) +e2

z(z∗,0)
]
dz∗
}

≤ exp(−t∗)‖e(z∗,0))‖2H1
.

(4.15)

Condition above proves that
∫ 1

0 e(z∗, t∗)dz∗→ 0 as t∗→∞ but this does not imply that
e(z∗, t∗) goes to 0 ∀z∗ ∈ (0,1). Therefore, by Agmon’s inequality we obtain

max
z∗∈[0,1]

|e(z∗, t∗)|2 ≤ 2

√∫ 1

0
e2(z∗, t∗)dz∗

√∫ 1

0
e2
z(z∗, t∗)dz∗

≤
∫ 1

0
e2(z∗, t∗)dz∗+

∫ 1

0
e2
z(z∗, t∗)dz∗.
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Now, by using (4.15) we get

max
z∗∈[0,1]

|e(z∗, t∗)|2 ≤ exp(−t∗)‖e(z∗,0))‖2H1
. (4.16)

This conclude that e(z∗, t∗) converges to 0 as t∗→∞ ∀z∗ ∈ [0,1].

Convergence of E(t∗):
Remember first regular persistence (4.8) and its consequence on the following Lyapunov
differential equation:

Ṡ(t∗) =−θS(t∗)−A>(t∗)S(t∗)−S(t∗)A(t∗) +C>C, S(0)> 0. (4.17)

From [Besançon1996] for instance, ∃θ0> 0 such that ∀θ≥ θ0, ∃α1> 0,α2> 0, t∗0> 0 : ∀t∗≥ t∗0
α1I ≤ S(t∗)≤ α2I

Notice then that Â = A+ ∆ with ‖∆‖ exponentially vanishing. It results from Lemma 1
that solution of

˙̂
S(t∗) =−θŜ(t∗)− Â>(t∗)Ŝ(t∗)− Ŝ(t∗)Â(t∗) +C>C, Ŝ(0)> 0

satisfies
∥∥∥Ŝ(t∗)−S(t∗)

∥∥∥≤ λe−ξt∗ for λ > 0, ξ > 0 and θ large enough. From this, θ can be
chosen so that Ŝ(t∗) also satisfies boundedness of the form

α̂1I ≤ Ŝ(t∗)≤ α̂2I, ∀t∗ ≥ t∗0, α̂1, α̂2 > 0. (4.18)

Hence, we can consider a candidate Lyapunov function as:

V2(t∗) := E(t∗)>Ŝ(t∗)E(t∗). (4.19)

Firstly, differentiating (4.19) w.r.t. time, using (4.11) and (4.13) we get

V̇2(t∗) = 2E(t∗)>Ŝ(t∗)Ė(t∗) +E(t∗)> ˙̂
S(t∗)E(t∗)

=−θE(t∗)>Ŝ(t∗)E(t∗) + 2E(t∗)>Ŝ(t∗)


e(0, t∗)f2

0

0

0


≤−θV2 + 2‖E‖

∥∥∥Ŝ(t∗)
∥∥∥ |e(0, t∗)|f2

Then, from (4.16), (4.18) and (4.19) we obtain

V̇2(t∗)≤−θV2 + 2
√
V2(t∗)/α̂2α̂2exp(−t∗)‖e(0,0))‖2H1

f2

Now, dividing both sides of the equation by 2
√
V2(t∗) we get

d
dt∗
√
V2(t∗)≤− θ

2α̂2

√
V2(t∗) +

√
α̂2exp(−t∗)‖e(0,0))‖2H1

f2.

Integrating both sides of the equation gives√
V2(t∗)≤ exp

(
− θ

2α̂2
t∗
)√

V2(0)

+
∫ t∗

0
exp

(
− θ

2α̂2
(t∗− τ)

)√
α̂2exp(−τ)‖e(0,0))‖2H1

f2dτ

which implies that
√
V2(t∗) exponentially decays to zero and so E(t∗)→ 0 as t∗→∞.
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4.4 Simulation Results

4.4.1 Measured velocity time-series

To validate the effectiveness of the designed observer, a slide block velocity time-series
is generated by solving the system equations (4.1)-(4.2), and then white Gaussian noise
is added to it (Signal to noise ratio = 20 dB). The parameter values [Iverson2005a] and
initial values used for the simulation are indicated in Table 4.1 (Initial values are chosen
differently than initial values for the observer to validate the performance). The momen-
tum equation (4.1) is solved by a stepwise analytical method, and the numerical solution of
the pore pressure diffusion equation (4.2) is obtained with the Crank-Nicolson method. In
the simulations, imposed pore pressure time-series pi(0, t) representing rainfall variations
is assumed as shown in Fig 4.2. The value of imposed pore pressure assumed to be greater
than or equal to pcrit given as

pcrit = gcosψ [cos(θ−ψ)tanφ−sin(θ−ψ)]
cos2ψtanφ/ρZ

,

which corresponds to the value of pore pressure above which slide block starts to accelerate.
Simulated excess pore pressure and velocity time series (with noise) are shown in Fig. 4.2
and Fig. 4.3 respectively. At each time step of solving (4.1)-(4.2) variables t, pi(0, t) and
vx(t) are normalized using (4.3), so as to obtain t∗, p∗i (0, t∗) and v∗x(t∗) which act as input
to observer.
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Figure 4.2: Critical, imposed pore pressure and simulated excess pore pressure
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Figure 4.3: Synthetic measured velocity time-series

Table 4.1: Parameter Values

Parameters Value Unit

Initial velocity, v0 2.4×10−2 mm/s

Initial excess pore pressure, pe0 -46.6 Pa

Simulation time, T 1000 s

Time step, ∆t 0.01 s

Space step, ∆z 0.0066 m

Diffusion coefficient, D 3×10−3 m2/s

Acceleration due to gravity, g 9.8 m/s2

Slide block thickness, Z 0.65 m

Hydraulic conductivity, K 2×10−5 m/s

Plane inclination angle, θ 31 deg

Slide block mass density, ρ 2000 kg/m3

Pore water density, ρw 1000 kg/m3

Friction angle, φ 35 deg

Dilatancy angle, ψ 6 deg

4.4.2 Observer results
In the simulation result, we are interested in the estimation of friction angle φ, dilatancy
angle ψ, velocity of the slide block vx, and basal excess pore pressure pe(0, t) assuming
other parameter values and imposed pore pressure are known along with synthetic slide
block velocity measurement. For initial states given in Table 4.2 (chosen such that initial
guess for the φ and ψ are 55◦ and 3◦ respectively), observer (4.10)-(4.11) gives, estimates
of the slide block velocity v̂∗x, excess pore pressure ˆ̄p∗e(z, t), augmentative states f̂0, f̂1
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and f̂2. Notice that for observer (4.10)-(4.11) space step ∆z∗ = ∆z
Z = 0.01 and time step

Table 4.2: Initial states for the observer

State Value

Initial velocity, v̂∗x(0) 0

Initial excess pore pressure, ˆ̄p∗e(z∗,0) 0

Initial augmentative state, f̂0(0) −0.7895

Initial augmentative state, f̂1(0) 0.7114

Initial augmentative state, f̂2(0) 2.5691×106

∆t∗ = ∆t
Z2/D = 7.1× 10−5. Based on estimates from observer, at each time step firstly

dilatancy angle ψ̂ and mechanical strength φ̂ are reconstructed by using Eq. (4.20) and
(4.21) respectively.

ψ̂(t∗) = f̂2(t∗)
f̂1(t∗)

×
(
K/g

Z2/D

)
(4.20)

φ̂(t∗) = tan−1

[
ρf̂1(t∗)

ρwcos2ψ̂(t∗)

]
(4.21)

Then, basal excess pore pressure p̂∗e(0, t∗) is obtained by inverse transformation

p̂∗e(0, t∗) =
[
Z2/D

K/g

]
ψ̂(t∗)ˆ̄p∗e(0, t∗). (4.22)

Observer (4.10)-(4.11) is solved for simulation time T ∗ = T
Z2/D = 7.1. After completion of

the simulation, all desired estimates ψ̂(t), φ̂(t), v̂x(t), and p̂e(0, t) are reconstructed from
ψ̂(t∗), φ̂(t∗), v̂∗x(t∗), and p̂∗e(0, t∗) using (4.3).

A convergence of the state and parameter estimates can be seen in Fig. 4.4, Fig. 4.5,
Fig. 4.6 and Fig. 4.7. In this simulation, the estimated parameter values are ψ = 5.97◦
and φ= 35.5◦ with the relative error between estimated and desired values 0.5% and 1.42%
respectively.

0 200 400 600 800 1,000

10

35

60

Time (s)

D
ila

ta
nc

y
&

Fr
ic

ti
on

an
gl

e
(d
eg

) ψ

ψ̂

φ

φ̂

Figure 4.4: Time evolution of the parameter estimate ψ̂ & φ̂

71



Chapter 4. Observer design for state and parameter estimation in a landslide model

0 200 400 600 800 1,000−4

0

4

8
·10−2

Time (s)

Sl
id

e
bl

oc
k

ve
lo

ci
ty

(m
m
/
s)

vx

v̂x

Figure 4.5: Time evolution of the state estimate v̂x
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Figure 4.6: Time evolution of the state estimate v̂x (Zoomed-in)
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4.5 Conclusions and future work
In this chapter, we designed an observer for state and parameter estimation of a land-

slide. Firstly, we considered the extended sliding-consolidation model depicting a landslide
behavior, which is a coupled ODE-PDE system. Secondly, the model is transformed and
simplified to utilize the Kalman filter like approach for the observer design. Then the
exponential stability of estimation errors has been validated with the help of candidate
Lyapunov functional. Lastly, parameter values (friction and dilatancy angle) and states of
the system have been well estimated. Based on this result, a future direction for work will
be to validate the effectiveness of the designed observer on actual field measurements.
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5
Reconstruction and forecasting of landslide

displacement using a Kalman filter approach

This work presents an approach for reconstructing displacement
patterns and some unknown soil properties of slow-moving land-
slides, using a special form of so-called Kalman filter or ob-
server. An observer relies on a model for the prediction step,
with online correction based on available measurements. The
proposed observer makes use of a simplified viscoplastic sliding
model of landslide. In this model, a rigid slide block is assumed
to be placed on an inclined surface, where landslide (slide block)
destabilizing motion is opposed by sliding resistance constituted
by friction, basal pore fluid pressure, cohesion, and viscosity. In
order to improve the observer performance, a resetting method
is proposed, and to overcome sensitivity to the observer coeffi-
cients, a novel tuning method is introduced, considering both ac-
tual and synthetic test cases. In this approach, known parame-
ter values (landslide geometrical parameters and some material
properties) and water-table height time series are provided as
input. The case of Super-Sauze landslide, with data taken from
the literature, validates the presented approach. Finally, the
observer is extended to forecast displacement pattern assuming
that future water-table height time series is known. The mate-
rial of this chapter corresponds to the paper [Mishra2022b].

75



Chapter 5. Reconstruction and forecasting of landslide displacement using a Kalman
filter approach

5.1 Introduction

Natural hazards can have severe socio-economic consequences such as substantial cost
in life losses, economy, infrastructure, and ecosystem of the affected region. Such dis-
asters need to be detected by Early Warning Systems (EWS) in advance to take timely
corrective measures to reduce economic and life losses. One of the essential components
of EWS is environmental monitoring and forecasting [UN/ISDR2006]. In the context of
landslide hazards, landslide monitoring techniques help determining the stability of the
slope and establish the trends in landslide triggering factors, which helps predicting ground
movements [Bernardie2014a,Corominas2005a,Herrera2013a].

Monitoring marginally stable slopes provides information on kinematic, hydrological,
and climatic variables. These variables play a crucial role in developing landslide mod-
els [Buchli2013,Springman2013b], which can then be used for forecasting purposes. There
is a large variety of instruments and techniques that typically can be used in landslide
monitoring, e.g., Global Positioning System (GPS), photogrammetry, remote sensing (Li-
DAR, InSAR, etc.), Electrical Resistivity Tomography (ERT), Ground Penetrating Radar
(GPR), geotechnical techniques (inclinometers, piezometers, extensometer, Radio Fre-
quency Identification (RFID), Shape Acceleration Arrays (SAA), etc.) [Pecoraro2019,Sav-
vaidis2003,Angeli2000b,Gili2000,Breton2019] and geophysical methods [Larose2015,Bot-
telin2017]. The most commonly measured parameters are ground displacement, ground-
water pressure head and rainfall [Bernardie2014a].

There are two broad categories of models that can be utilized to predict landslide mobil-
ity. The phenomenological models employ empirical relationships [Caine1980b,Larsen1993,
Guzzetti2008b], probabilistic or statistical approaches [Capparelli2010b,Capparelli2011],
or artificial neural network [Bui2020,Yang2019,Mayoraz2002], to establish a relation be-
tween soil movement and landslide-inducing factors, e.g., rainfall, water table fluctuations.
However, as these models lack in time aspects of landslides, they are unable to predict
the impact of changes in landslide-controlling condition [Westen2004b]. Secondly, there
are mechanics-based models, which are governed by laws of physics representing physi-
cal processes controlling landslide occurrence [Dikshit2019,Kim2016,Pradhan2014a,Teix-
eira2014,Alvioli2014a,Ali2014b,Herrera2013a,Van Asch2007,Corominas2005a,Angeli1998,
Asch1990,Hutchinson1986]. Some combined statistical-mechanical models are also devel-
oped for the investigation of landslide displacement, pore water pressure, and rainfall in
order to define the possible cause for the triggers, the responses of the slope, and to predict
the slope kinematics [Bernardie2014a]. In this paper we rely on physically-based landslide
models depicting sliding behavior. As complex landslide models [Frank2015,Liu2016] re-
quire extensive spatial data for estimation and prediction purposes [Chae2017].

Physically-based landslide models are sensitive to initial conditions and parameters
(constant one or time-varying). Some of the parameters (geometrical parameters and
material properties) are generally obtained by field observations, laboratory, and in situ
tests, while other unknown parameters need to be estimated with the help of inversion
techniques. The most used approach to estimate the unknown parameters is by mini-
mizing the difference between measured displacement and displacement computed with
the help of the model. Several optimization schemes exist to estimate unknown param-
eters such as sequential quadratic programming (SQP) [Bernardie2014a] and non-linear
regression [Corominas2005a,Herrera2013a]. Both methods are adapted for the optimiza-
tion of non-linear dynamical systems; which can give sub-optimal solution, i.e., different
sets of estimated parameters can exist depending on optimization initiation. This might
provide faulty displacement forecasts. Apart from optimization methods (deterministic
approach), probabilistic back analysis can also be used [Zuo2020]. Once the unknown
parameters are estimated, the model equation can be solved to forecast displacements
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patterns [Bernardie2014a].
These sensitivities to initial conditions and parameters can be taken care of by simu-

lating a model iteratively adjusting parameter values to obtain consistency with measured
data, i.e. iterative approach. Second efficient approach is to run a model over time and
continually fine-tune it to synchronize with measured data, as in the so-called Kalman
filter (or ‘observer’) approach [Kalman1960]. Both of these approaches have been studied
for the extended sliding consolidation model of a landslide and synthetically generated
data, in [Mishra2020d] for iterative scheme (and ‘adjoint method’), and for continuous
scheme (and observer design) in [Mishra2020b]. Based on those studies, we found that a
continuous scheme can be more suitable for the case of time-varying parameters. There-
fore, Kalman filter approach will be considered here for the Super-Sauze landslide data
taken from [Bernardie2014a].

In comparison to the previous study [Mishra2020b], for improved performance to re-
construct displacement pattern and unknown parameters from displacement and pore
pressure/water table height measurements, the present paper first proposes the use of a
technique corresponding to a ‘discrete-time exponential forgetting factor observer’ [Ţi-
clea2013, Ţiclea2009]. Secondly, a resetting method (in the observer) is presented for a
better convergence of the estimates. Then, a novel approach of observer coefficients tuning
is put forward, considering both actual and synthetic test cases. Finally, the observer is
extended to forecast displacement pattern assuming that future water-table height time-
series is known.

The structure of the paper is as follows: the considered simplified viscoplastic sliding
model of landslide is first given in Section 5.2, together with the corresponding estimation
problem, while Section 5.3 presents the proposed reconstruction scheme. In Section 5.4,
simulation results demonstrate the effectiveness of the estimation scheme on the Super-
Sauze landslide data taken from the literature. Moving forward, Section 5.5 extends the
proposed observer for the landslide displacement forecasting purpose. Finally, Section 5.6
provides a conclusion and discusses future directions of the work.

5.2 Simplified viscoplastic sliding model of landslide

The viscoplastic sliding model [Corominas2005a, Herrera2013a, Bernardie2014a] of a
landslide assumes a rigid slide block overlying a thin shear zone, as shown in Fig. 5.1.
The dynamics is guided by difference between gravity force Fg and resisting forces Fr
made of effective friction, cohesion, and viscosity. Net inertia of the block Fi is given by,

Fi = ρHAa(t) = Fg−Fr = ρHAg sinθ
−A [ρHg cosθ tanφ−p(t)tanφ+C+ηv(t)/st]

(5.1)

where ρ is the soil density, H is the slide block height, A is the slide block base area, a(t)
is acceleration of the slide block, g is the acceleration due to gravity, θ is the inclination
angle, φ is the friction angle, p(t) is pore water pressure at time t, C is the cohesion, η is
the viscosity, v(t) is velocity of the slide block, and st is the basal shear zone thickness.

For slow-moving landslides the inertia term Fi is expected to remain much smaller
than the other terms. Also, assuming a groundwater flow parallel to the slope surface, the
pore water pressure can be expressed as [Bernardie2014a],

p(t) = ρwg cos2 θwt(t) (5.2)
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Figure 5.1: Schematic view illustrating geometrical variables used to model slide block
motion (graphical representation of landslide on left hand side of the figure is taken from
Wyoming State Geological Survey website)

where ρw is the pore water density and wt(t) is water table height as shown in Fig. 5.1.
Therefore, substituting (5.2) in (5.1), and rearranging the equation leads to dynamics

ḋ= v(t) =
(
ρ

η

)
stHgsinθ−

(
ρtanφ

η

)
stHgcosθ

−
(1
η

)
stC+

(
tanφ

η

)
stρwgcos

2θwt(t)
(5.3)

where d is the displacement of the slide block.
As upslope motion of the rigid slide block is physically impossible, the landslide velocity

can not be negative. Such a situation arises whenever water table height wt(t) goes below
a critical water table height wcritt . From (5.3) the value of wcritt is evaluated as

wcritt = C−ρHg sinθ+ρHg cosθ tanφ
ρwg cos2 θ tanφ . (5.4)

When wt(t)≤ wcritt landslide dynamics reduces to ḋ= v(t) = 0.
For known parameter values and water-table height (or pore pressure), time series

of displacement can be computed using Eq. 5.3. However some material properties are
generally unknown (typically friction angle, cohesion and viscosity) and need to be esti-
mated. In this paper an observer is proposed to estimate friction angle φ, and viscosity η
from measured displacement dmea(t) and water table height wt(t), assuming cohesion C
is known.
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5.3 Reconstruction scheme

5.3.1 Parameter normalization

To address the observer problem, let us first normalize unknown parameter (material
property η), by introducing a viscosity scaling factor η̄ (chosen as a typical viscosity scale)
in equation (5.3) as follows:

η̄ḋ=
(
η̄

η

)
stρHgsinθ−

(
η̄tanφ

η

)
stρHgcosθ

−
(
η̄

η

)
stC+

(
η̄tanφ

η

)
stρwgcos

2θwt(t).
(5.5)

The parameter normalization is introduced to bring parameters of interest in same order
of magnitude as friction angle φ is dimensionless and usually comprised between 0 and 1.

5.3.2 Model linearization and parameters as augmented states

As η and φ are the parameters to be estimated, let us define:θ1

θ2

 := st

(ρHg sinθ−C) −ρHg cosθ

0 ρwgcos
2θ


 η̄/η

η̄ tanφ/η

 . (5.6)

This substitution helps in linearizing the model equation. In order to estimate parameters
the state vector (vector consisting variables of system) can be extended to accommodate
the unknown parameters θ1 and θ2 as augmentative states of the model. Substituting (5.6)
in (5.5), the model can then be extended by two state variables θ1, θ2 with θ̇1 = θ̇2 = 0
(assuming that the parameters will remain constant as the dynamics of the parameters
are unknown). Taking into account wcritt system model reads:

ḋ=
{
θ1
η̄ + θ2

η̄ wt(t) if wt(t)>wcritt

0 otherwise

θ̇1 = 0, θ̇2 = 0.
(5.7)

5.3.3 Model in discrete in time

Instruments incorporated for landslide monitoring collect data with a particular time
resolution, e.g., hourly. Therefore, to adapt with discrete measurements, let us express
the system dynamics in discrete time,

xk+1︷ ︸︸ ︷
dk+1

θk+1
1

θk+1
2

=



Āk1︷ ︸︸ ︷
1 dt

η̄
dt
η̄ w

k
t

0 1 0
0 0 1


xk︷ ︸︸ ︷
dk

θk1
θk2

, if wkt >wcritt


1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Āk2


dk

θk1
θk2


︸ ︷︷ ︸
xk

otherwise

(5.8)
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where dt= tk+1− tk is the discrete time step. The measurement model given as

yk = dkmea =

C̄︷ ︸︸ ︷[
1 0 0

]
xk︷ ︸︸ ︷
dk

θk1

θk2

+rk (5.9)

where rk denotes some measurement noise.

5.3.4 Discrete-time exponential forgetting factor observer

Discrete-time exponential forgetting factor observer (or Kalman filtering with forgetting
factor) provides least mean-square estimate with an added feature of giving more weight
on the most recent measurements employing forgetting factor γ. It optimizes following
objective function,

Jk(x̂k0) = γk(x̂k0− x̂0)TP−1
0 (x̂k0− x̂0)

+
k∑
l=0

γk−l(ŷl−yl)TW−1(ŷl−yl)
(5.10)

subject to system dynamics

x̂k+1 = Ākx̂k

ŷk = C̄x̂k
(5.11)

as constraints, with γ ∈ (0,1),P0 = P T0 > 0,W =W T > 0 and where x̂0 denotes the initial
guess of the state. The solution of this optimization problem [Ţiclea2013] is provided
through measurement update equations:

x̂kc = x̂kp−Kk(C̄x̂kp−yk), (5.12)

with
Kk = P kC̄ᵀ(C̄P kp C̄ᵀ +W )−1, (5.13)

and time update equations,
x̂k+1
p = Ākx̂kc (5.14)

P k+1 = γ−1Āk[I−KkC̄]P kĀkᵀ +Q (5.15)
with initialization P0, where Kk is the Kalman gain, P is the auto-covariance of state esti-
mation error, W is the auto-covariance of measurement noise r, γ ∈ (0,1) is the forgetting
factor, and Q is the process noise auto-covariance matrix.

For dynamics (5.8)-(5.9), observer (5.12)-(5.15) provide estimates of d̂, θ̂1 and θ̂2.
Based on these estimates at each time step firstly η̄/η̂ and η̄ tan φ̂/η̂ are reconstructed
using (5.6)  η̄/η̂

η̄ tan φ̂/η̂

= 1
st

ρHg sinθ−C −ρHg cosθ

0 ρwgcos
2θ


−1θ̂1

θ̂2

 , (5.16)

followed by
η̂ = η̄

[η̄/η̂] & φ̂= tan−1
([
η̄ tan φ̂/η̂

]
× η̂
η̄

)
. (5.17)

In the proposed estimation scheme wcritt plays an important role, which depends on the
parameter values, therefore at each step it is estimated using Eq. (5.4)
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5.3.5 State estimation error covariance matrix (P ) resetting
In practical applications, unknown parameters could be time-varying, affecting the ob-
server’s performance, e.g., slow convergence in parameter estimates following abrupt changes
in parameter values. This issue can be addressed by detecting such abrupt variations in
parameters and resetting state estimation error covariance matrix P . In order to detect
abrupt variations Mahalanobis distance [Gnanadesikan1972] between actual and predicted
measurements for some previous times (tk−m to tk), with more weight on the most recent
ones, can be calculated as:

Dk =
k∑

j=k−m
γk−j(Cj x̂j−yj)TW−1(Cj x̂j−yj) (5.18)

For the times when Dj exceeds some threshold (Dk >χ2), P k is reset to P0. This threshold
can be obtained from the chi-square table [Pearson1900] according to the confidence level
of the measurement system. For example, when confidence level is 99% and the dimension
of the measurement system vector is 1, the corresponding chi-square value is χ2 = 6.635.
Note that there is a possibility of multiple switching one after another time, which could
hamper the overall performance of the estimation scheme. Such a scenario is avoided by
evading switching for some short duration (e.g., m instances) after the earliest detected
switching.

5.3.6 Observer coefficients tuning

Observer coefficients (P0,W,Q,γ,χ
2,m) should be chosen to properly recover model in-

formation (See Fig. 5.2). For practical applications, they are manually tuned till proper
convergence in estimates are obtained. In such applications, some nominal values of pa-
rameters are known, e.g., [Ţiclea2009], which is not the case in this paper. Therefore,
a novel approach is introduced, which considers both synthetic and actual data cases to
verify the estimates as shown in Fig. 5.3.

Figure 5.2: Discrete-time exponential forgetting factor observer

In this approach, for the assumed confidence level in the measurement model with
a known dimension of the measurement vector, the value of χ2 is fixed throughout the
tuning process. Along with χ2, P0 and m are also fixed. P0 is obtained from its definition
with guessed initial states x̂0. m is guessed from some rough initial simulation results on
synthetic test cases and can be chosen from the time steps required for first convergence.
Once filter coefficients χ2,P0 and m are fixed, for some initial Q, γ and W , the estimation
scheme is performed on real measurements. For the actual data case,W is manually tuned
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Figure 5.3: Observer coefficients tuning methodology
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till W ≈Wm where, Wm is the variance of signal dmea− d̂. Then synthetic measurements
are generated by solving (5.3) using known parameters, water table height measurements,
and estimated parameters (smoothed estimated viscosity and averaged estimated frictional
angle) from an actual data case. Now estimation scheme is employed on these synthetic
measurements keeping filter coefficientsW , γ, and Q same as the actual case. If estimated
parameters from both actual case and synthetic test are consistent, filter coefficients tuning
process can be stopped; else γ and Q can be tuned with the help of quantitative indicator
Iq given as

Iq =
n∑
k=1

∣∣∣∣∣qk− q̂kqk

∣∣∣∣∣ (5.19)

where qk is the parameter of interest (viscosity and friction angle) at time k and q̂k is
corresponding estimated parameter. Indicator Iq provides information on how close the
estimated parameters are to the parameters used to generate synthetic test case. Above
process of tuning W for actual case followed by γ and Q tuning in synthetic test case is
continued till parameter estimates in both cases are consistent to each other, as shown in
Fig. 5.3.

5.4 Estimation results

5.4.1 The Super-Sauze landslide data

The Super-Sauze landslide is situated in the French South Alps and monitored by the
French Multidisciplinary Observatory of Versant Instabilities (OMIV) for meteorological
parameters [meteorological station], slope hydrology [piezometers] and slope kinematics
[differential Global Positioning System (GPS): campaigns and permanent receivers, re-
mote Very High-Resolution (VHR) optical cameras, Terrestrial Laser Scanning (TLS)]
[Bernardie2014a].

To solve the observer problem, displacement dkmea and pore water pressure pk data
with time resolution of 2.4 hour (8640 sec) are taken from [Bernardie2014a]. Those data
correspond to one of the most active parts of the landslide for a period of high groundwater
level from 07/05/1999 to 23/05/1999 (16 days). At that position [location B2 of Fig.
4 in [Bernardie2014a]], displacement and pore water pressure are measured by a wire
extensometer and piezometer, respectively. The piezometer at location B2 is located at
−4m depth while the slip surface is at depth of −9m. In the proposed scheme, water
table height time-series wkt is required as an input, which is reconstructed from pk using
assumption of groundwater flow parallel to the slope surface (Eq. 5.2) as follows:

wkt = 5 +pk/(ρwgcos2θ).

Reconstructed water table height time-series can be seen in Fig. 5.4. The known parameter
values are indicated in Table 5.1. Here, the value of ρ = 1700 kg/m3 is chosen to be the
saturated soil density [Malet2005] as the slide block is close to the full saturation level
(Fig. 5.4).
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Table 5.1: Known geometrical and material parameter values

Parameters Value Unit

Initial block displacement, d0 0 m

Slide block thickness, H 9 m

Average inclination angle, θ 25 deg

Shear zone thickness, st 0.2 m

Acceleration due to gravity, g 9.8 m/s2

Pore water density, ρw 1000 kg/m3

Cohesion, C 14000 Pa

Slide block mass density, ρ 1700−2140 kg/m3
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Figure 5.4: Super-Sauze landslide data from 07/05/1999 to 23/05/1999: Displacement
measurement dkmea and reconstructed water table height time-series wkt bernardie

5.4.2 Observer results

Displacement pattern d̂ along with unknown soil properties (η̂,φ̂) are reconstructed with
the help of proposed estimation scheme (see Section 5.3), for known parameter values
(Table 5.1), displacement measurements and water table height time-series (Fig. 5.4). As
mentioned in Section 5.3.6, for assumed confidence level (99 %) on measurement systems
with dimension equal to 1, the value of χ2 is set to 6.635. At the same time, the value
of m is fixed to 5 (see Section 5.3.6). Initial auto-covariance of state estimation error

P0 is defined as variance of x0− x̂0 where, x0 =
[
d0 θ10 θ20

]T
(generally assumed to

diagonal matrix). Here, the value of d0 and d̂0 is equal to 0, therefore, the first entry in
P0 is assumed to be W which represents auto-covariance of measurement noise r. Also, as
the actual values of θ1 and θ2 are not known, other two entries (order of magnitude) are
guessed from θ̂1 and θ̂2, which are calculated using Eq. (5.6) for assumed η0 and φ0 to be
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108 Pa.s and 35° respectively. The matrix P0 is set to

P0 ≈


W 0 0

0 10000 0

0 0 100

 .

For fixed observer coefficients χ2, m and P0 with initial γ = 0.95, W = 10−12, and
Q = 10−12I3×3 the estimation scheme is performed on real measurements where, I3×3 is
the identity matrix of dimension 3. For the actual Super-Sauze case, W is manually tuned
till W ≈Wm where, Wm is the variance of dmea− d̂. This condition got satisfied for W =
7.7×10−6 and Wm = 7.727×10−6. For this set of observer coefficients (χ2,m,P0,γ,W,Q)
obtained estimation results can be seen in Fig. 5.5. In this simulation result, it is observed
that friction angle φ̂ is almost constant while viscosity η̂ varies with time (in correlation
with water table height). Therefore to generate synthetic measurements, average value
of φ̂ (φ̂avg) and filtered η̂ (η̂fil) are utilized (Fig. 5.5). Here to smooth η̂, the Savitzky-
Golay filter is used (Fig. 5.5). Also, in synthetically generated displacement random
Gaussian noise with variance W is injected. Now the estimation scheme with similar
observer coefficients as in the actual case is employed on the generated synthetic test case,
and results can be seen in Fig. 5.6. It is observed that parameter estimates are not
converging with φ̂avg and η̂fil (Fig. 5.6(a),(b)). Therefore, γ and Q are tuned with the
help of quantitative indicator Iη (see Eq. (5.19)). Notice that, following the sensitivity
analysis, it is found that indicator Iη is more sensitive as compared to Iφ and Id to
observer coefficient variation. This is because the friction angle is almost constant while
displacement is well estimated with measurement update equation (5.12) of the observer.

Based on sensitivity analysis (Table 5.2), for γ = 0.93 and Q = 10−11I3×3 indicator
value Iη = 0.4005 is the least one. So, for the estimation scheme, values of γ and Q
are updated, and simulation results for synthetic and actual cases are obtained. Still,
parameter estimates were not consistent; therefore, a process of tuning W for the actual
case with condition W ≈Wm and tuning γ and Q with the indicator for a synthetic test
case is continued till consistency in parameter estimates were observed. Following this
process of observer coefficients tuning for around 6 iterations, consistency in parameter
estimates was observed for synthetic test case (Fig. 5.7 (a)-(b)) and actual case (Fig.
5.8 (a)-(b)). In both cases, the average value of the estimated friction angle was found
to be equal to 36.77°, while approximately similar variations in estimated viscosity were
observed for identical observer coefficients. Here, water-table height is always above critical
water-table height (wkt > ŵcritt ) as shown in Fig. 5.8 (e), i.e., there is no switching in the
model as mentioned in Section 5.2. In addition to model switching, state estimation error
covariance matrix resetting is proposed in this work for better estimates convergence. This
resetting takes place when Dk > χ2 as shown in Fig. 5.7 (c) and Fig. 5.8 (c), and these
switchings can be seen in Fig. 5.7 (f) and Fig. 5.8 (f). Overall, based on results of Fig.
5.7 - Fig. 5.8, estimates for both actual case and synthetic test case are approximately
consistent with each other.
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Figure 5.5: Initial estimation results for Super-Sauze case with observer coefficients γ =
0.95, W = 7.7×10−6, Q= 10−12I3×3: (a)-(b) parameter estimates (η̂,φ̂), filtered viscosity
η̂fil and averaged friction angle φ̂avg, (c) Mahalanobis distance between estimated and
measured displacement Dk, (d) displacement estimate d̂ and displacement measurement
dmea, (e) critical water table height estimate ŵcritt and water table height measurement
wkt , (f) Resetting
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Figure 5.6: Initial estimation results for Super-Sauze synthetic test case with observer coef-
ficients γ = 0.95,W = 7.7×10−6, Q= 10−12I3×3: (a)-(b) parameter estimates (η̂syn,φ̂syn),
(c) Mahalanobis distance between estimated and synthetic displacement Dk

syn, (d) displace-
ment estimate d̂syn and synthetic displacement measurement dsyn, (e) critical water table
height estimate ŵcritt syn, (f) Resetting

87



Chapter 5. Reconstruction and forecasting of landslide displacement using a Kalman
filter approach

0 4 8 12 161

1.1

1.2

1.3

1.4 ·108

Time (days)

V
is

co
si

ty
(P
a
.s

)

(a)

η̂ η

0 4 8 12 1635

36

37

38

Time (days)

Fr
ic

ti
on

an
gl

e
(d
eg

)

(b)

φ̂ φ

0 4 8 12 160

1

2

3

Time (days)

D
is

pl
ac

em
en

t
(m

)

(c)

d̂ dmea

0 4 8 12 160

10

20

Time (days)

D
k

(d)

Dk χ2

0 4 8 12 168

8.5

9

9.5

Time (days)

W
at

er
ta

bl
e

he
ig

ht
(m

)

(e)
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Figure 5.7: Final estimation results for Super-Sauze synthetic test case with observer co-
efficients γ = 0.9,W = 6×10−5, Q= 10−11I3×3: (a)-(b) parameter estimates (η̂syn,φ̂syn),
(c) Mahalanobis distance between estimated and synthetic displacement Dk

syn, (d) displace-
ment estimate d̂syn and synthetic displacement measurement dsyn, (e) critical water table
height estimate ŵcritt syn, (f) Resetting
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Figure 5.8: Final estimation results for Super-Sauze case with observer coefficients γ =
0.9, W = 6× 10−5, Q = 10−11I3×3: (a)-(b) parameter estimates (η̂,φ̂), filtered viscosity
ηfil and averaged friction angle φavg, (c) Mahalanobis distance between estimated and
measured displacement Dk, (d) displacement estimate d̂ and displacement measurement
dmea, (e) critical water table height estimate ŵcritt and water table height measurement
wkt , (f) Resetting
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Table 5.2: Sensitivity analysis for tuning γ and Q

γ/Q 10−13 10−12 10−11 10−10

0.95 0.7768 0.5244 0.4666 0.5628

0.96 0.7666 0.5128 0.4531 0.5534

0.93 0.7628 0.5022 0.4005 0.4501

0.92 0.7657 0.6103 0.5130 0.5567

5.5 Landslide displacement forecasting

The reconstruction scheme (Section 5.3) works on the principle of prediction (5.14)
followed by correction (5.12) of the information of interest, i.e., at each time step ‘k’,
information is predicted for the next time step ‘k+ 1’ with the help of model (Eq. 5.8)
and then corrected based on the measurement. Then, this corrected information helps to
predict for the next time step. Here information refers to displacement and parameters,

i.e., x̂k =
[
d̂k θ̂k1 θ̂k2

]T
. Inherently, the proposed scheme can predict information for next

time step only. However, with minor update in Eq. (5.14) the prediction horizon can be
increased as,

x̄k+l
p =

{
Ākx̄kc for l = 1
Ākx̄k+l−1

p for l = 2 to L−1
(5.20)

where, L is the prediction horizon.

To validate this extension, for the 16-day Super-Sauze landslide data, the prediction
step is initiated after day eight, assuming that water table height time-series is known
and at each time step corresponding displacement is being measured. Here, two different
prediction horizons are chosen, 1 day (L= 10 as step size dt is 2.4 hr) and 2 days (L= 20)
respectively. In Fig. 5.9 (a)-(c) displacement and parameters forecasts till day 9 and day
10 respectively are presented. As the dynamics of time-varying parameters are unknown,
in model equations (5.7) they are assumed constant. Therefore, in simulation results the
predicted parameters can seen as constant (Fig. 5.9 (b)-(c)). However, as we move in
time, with the measurement update equation of the observer, estimated parameters start
varying based on displacement measurement (See Fig. 5.9 (e)-(f)). In the results, it is
observed that forecast gets more accurate the closer we are to the actual time (Fig. 5.9
(a)-(c)). This is because of the fact that parameters of model change with time and actual
time parameters are being estimated by proposed approach. Fig. 5.9 (d)-(f)) presents
moving horizon (1 day and 2 day) predictions, i.e., at instance k forecast of k+ 10 and
k+ 20, respectively. As the prediction horizon L is increased accuracy of the forecast
reduces. Note that the accuracy of the forecast also depends on the accuracy of the water
table height forecast.
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Figure 5.9: Landslide displacement [d̄] and unknown parameters [η̄, φ̄] forecasting: (a) -
(c) forecasts with prediction horizon 1 day [d̄1, η̄1, η̄1] and 2 days [d̄2, η̄2, η̄2], (d)-(f) forecasts
with moving prediction horizon 1 day [d̄1, η̄1, η̄1] and 2 days [d̄2, η̄2, η̄2], (a) - (f) estimated
displacement, viscosity and friction angle [d̂a, η̂a, φ̂a] from Section 5.4
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5.6 Discussion and conclusions
The ability to predict landslide motion is an essential issue for early warnings. Most

current alert systems are based on statistical criteria, such as cumulative precipitation
thresholds, which inject a degree of uncertainty and make them unreliable. Some alarm
systems make use of mechanical models to simulate the kinematic of landslides. However,
these models are sensitive to the model parameters (geometrical and material properties
of landslide). Knowing all the parameter values, the solution of the model equations
can reconstruct complex displacement patterns. However, in many cases, not all the
parameters are known. In some studies, preliminary mathematical tools, such as nonlinear
regression and sequential quadratic programming, estimate unknown parameters for back
analysis. Hence, it is required to utilize a more advanced tool to address the issue.

Therefore, a Kalman filter-like methodology has been proposed, which relies on a
simplified viscoplastic sliding model of landslide for both reconstruction and forecasting of
displacement and unknown parameters from displacement and water table height measure-
ments. The methodology itself depends on some coefficients. Therefore, a novel method
for these coefficients tuning is utilized considering both actual and synthetic test cases,
where the coefficients are tuned till the estimation results obtained for both scenarios are
consistent with identical coefficients. This methodology is tested for the 16 days Super-
Sauze landslide data taken from the literature. The results show that the friction angle φ
was almost constant while viscosity η varied in correlation to water table height variation
for the simulated time.

The presented scheme works on the principle of prediction followed by correction of the
information of interest, i.e., at each time step, information is predicted for the next time
step and then corrected based on the measurement. This idea of prediction of the next time
step is then extended to more time steps with the help of the model equation. To validate
this extended scheme, two different prediction horizons are chosen (one day and two days).
However, as the dynamics of time-varying parameters are unknown, they are assumed
constant for the prediction horizon. As the new measurement arrives correction step
takes place, and with these corrected parameters, displacement and parameters are again
predicted for the respective prediction horizon. Notice that in the simulation, it is assumed
that water table height variation for the prediction horizon is known here. This remains
the future work to estimate the water table height variation from precipitation forecasts.
Some statistical models are already developed for the water table height prediction from
rainfall; however, the focus will remain on a physics-based model.
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6
Conclusions and Future Perspectives

This thesis has dealt with the estimation challenges in landslide models. The models
under investigation are physically-based landslide models. Given the input (pore water
pressure/rainfall) and parameter values (geometrical and material properties), physically-
based landslide models can reconstruct and forecast landslide motion. However, it is diffi-
cult to collect all those data, and some missing information needs to be reconstructed from
available data. This problem can be defined as back analysis, inverse problem, observer
problem, or parameter identification issue. After a state-of-the-art about this problem for
landslides, this manuscript has proposed an observer design and an optimization-based
solution to address the related research question raised in Chapter 1. This chapter lists
different thesis outputs, corresponding outcomes and future perspectives as follows:

Thesis Outputs and Outcomes

1. The first output (see Chapter 3) consists of an optimization-based adjoint method for
state and parameter estimation in a unique ODE-PDE coupled system for discrete-
time asynchronous measurements. In this model, the coupling appears both in the
ODE and in the Neuman boundary condition of the PDE. For this system, initial
conditions and unknown parameters are estimated for synthetically generated mea-
surements. Firstly the Lagrangian multiplier connects the dynamics of the system
and the cost function defined as the least square error between the available (discrete-
time asynchronous) measurements and the simulation values. Secondly, the adjoint
state method gives the adjoint system equation and the gradients with respect to
initial condition and parameters. Then, the cost functional is optimized, employing
the steepest descent (iterative) method to estimate parameters and initial state. Fi-
nally, The presented approach has been validated for extended sliding-consolidation
and viscoplastic sliding-consolidation landslide models.

For the two examples addressed with optimization, the optimal values of the initial
state and parameters (friction angle φ, dilatancy angle ψ, and viscosity η) have been
well estimated (see Chapter 3). Since one additional parameter is being estimated,
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the relative error and iterations required in estimation for the second example are
a little higher in contrast to the first example. Using the inexact line search ap-
proach to choose step sizes, instead of constant ones can increase the convergence
rate. In both cases, it is observed that the proposed methodology produces more
accurate estimates for the lower the measurement noise level and the closer the ini-
tial parameter values are to the actual parameter values. The key takeaway for the
optimization-based method is its scalability; as for the first example, two parameters
(φ,ψ) have been estimated, and for the second example, three parameters (φ,ψ,η).
However, this scheme cannot estimate time-varying parameters with a fixed time
horizon.

2. The second proposed solution method (see Chapter 4) is an observer-based state and
parameter estimation for the extended sliding-consolidation model of a landslide. A
copy of the PDE part of the system combined with a Kalman-like observer for the
ODE constitutes the observer. The model is transformed and simplified for the
observer design to use a Kalman filter-like method. Then, the exponential stability
of estimation errors was verified using Lyapunov arguments. Finally, to demonstrate
the usefulness of the designed observer, a simulation result of the extended sliding-
consolidation model is also shown.
With the observer-based approach, the system’s states and parameter values (fric-
tion and dilatancy angle) have been well estimated (see Chapter 4). Also, it is
observed that the observer tuning parameter needs to be large enough for better
convergence. Note that only two parameters are structurally identifiable for the
transformed model, i.e., with an observer design scheme, only two parameters can
be estimated. However, this scheme is capable to estimate time-varying parameters.

3. The third output of the thesis (see Chapter 5) presents an approach for recon-
structing displacement patterns and some unknown soil properties of slow-moving
landslides, using a unique form of so-called Kalman filter or observer (discrete-time
forgetting factor observer). The proposed observer is based on a simplified land-
slide viscoplastic sliding model. To increase the observer’s performance, a resetting
mechanism is presented. The methodology itself depends on some coefficients. Con-
sequently, a novel method for tuning these coefficients is used, which considers both
real and synthetic test cases and tunes the coefficients until the estimation results
for both cases are consistent with identical coefficients. The input for this method
is a time series of water-table heights and known parameter values (landslide geom-
etry parameters and some material qualities). The proposed technique is based on
prediction followed by correction of the relevant information, i.e., data is predicted
for the next time step and then corrected based on measurement at each time step.
With the use of the model equation, the idea of predicting the next time step is then
expanded to multiple time steps. Two alternative prediction horizons are used to val-
idate this extended approach (one day and two days). The dynamics of time-varying
parameters, on the other hand, are unknown; thus, they are assumed to be constant
for the prediction horizon. When a new measurement is received, a correction step
is performed, and the corrected parameters are used to forecast displacement and
parameters for the respective prediction horizon.
The case of the Super-Sauze landslide, relying on data from the literature, demon-
strates the validity of the proposed method. A set of 16-day Super-Sauze landslide
data from the literature has been used to test this methodology. The friction angle
φ remained nearly constant for the simulated duration while viscosity η fluctuated
in conjunction with water table height changes (see Chapter 5).
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Thesis Perspectives
1. The applicability of the adjoint-based technique (Chapter 3) to the Super-Sauze

landslide data from the literature is now being tested with field data. The proposed
approach can be extended to more complicated landslide models. Its extention to
time-varying parameters can also be considered.

2. About the observer appraoch (Chapter 4), a future work direction will be to evaluate
the effectiveness of the designed observer on actual field measurements. It can be
followed by observer design for more complex landslide models for synthetic as well
as actual field data.

3. Regarding the third part of the thesis (Chapter 5), it is worth noting that the
simulation assumes that the water table height fluctuation for the forecast horizon
is known. A study to estimate the water table height fluctuation from precipitation
forecasts remains part of the perspectives of the thesis. This issue can be tackled
by using some coupled hydrological models. We started investigating this issue
based on consolidation models incorporating rainfall as input inspired by Tarzaghi
consolidation theory. The proposed methodology can also be applied to some other
landslides (the Hollin Hill landslide in England and Harmalière landslide in France)
with different data types as a future direction. In particular, preliminary studies
and results are ongoing with the Hollin Hill landslides in England, with the help
of the British Geological Survey for field data access and related discussions (see
Appendix A.1). Based on preliminary results, it is found that for the duration when
water table height is close to the critical water table height proposed methodology
works well, however for some time intervals proposed scheme is not that efficient.
It indicates that some more ingredients (forces) need to be included in the model,
followed by an updated information reconstruction scheme.
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A.1 The Hollin Hill landslide estimation results using a
Kalman filter approach

With a mean slope angle θ= 12◦, the Hollin Hill landslide is located south of Terrington,
North Yorkshire, UK. The Hollin Hill landslide is a field laboratory that serves as a test lo-
cation for various monitoring approaches and indicates inland landslides in stiff clays. The
landslide is equipped with various monitoring equipment to serve as a research landslide
observatory, allowing us to learn more about the factors that cause first-time failure and
landslide reactivation. The observatory is made up of the following components: i) two
shape arrays (SAA), ii) GPS tracking of 45 marker locations, iii) weather station, and iv)
two piezometers (Fig. A.1) [Uhlemann2016]). Apart from these instruments, three clusters
of active waveguides monitoring acoustic emission, three inclinometers, and two tiltmeters
are employed on-site (Fig. 2.5). Additionally, soil moisture content, bulk conductivity,
and temperature are monitored at three separate places, including the backscarp, active
lobes, and an area outside the landslide, with sensors set at depths ranging from 0.1 to
6.5 m below ground level [Uhlemann2016]). The tiltmeter, active waveguides, and shape
arrays are extremely sensitive to minor movements with a limited spatial resolution and a
high temporal resolution. While GPS marker and inclinometer measurements have a low
temporal resolution, they can be utilized to identify areas of instability and shear surfaces.
The study site can be divided into two lobes, the western and eastern lobe (Fig. A.1).
The eastern lobe is a relatively active part of the landslide out of them. As SAA and
piezometer are placed close to each other on the eastern lobe (Fig. A.1), we investigate
our proposed estimation scheme for eastern lobe data.

A.1.1 Landslide monitoring data

To solve observer problem displacement dkmea (Fig. A.2) and water table height wkt (Fig.
A.3) measurements from SAA and piezometer respectively with temporal resolution (dt)
of 1 hour (3600 sec) are considered here. This data corresponds to the eastern lobe of
the landslide for a period from 01/01/2016 to 01/01/2018, which is provided by British
Geological Survey, Nottingham, UK. The known parameter values are indicated in Table
A.1 [Uhlemann2016]).
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Figure A.1: The Hollin Hill landslide monitoring system (Picture credit: British Geolog-
ical Survey, Nottingham, UK)
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Figure A.2: Displacement dkmea data (Eastern lobe)
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Figure A.3: Water table height wkt data (Eastern lobe)

Table A.1: Known geometrical and material parameter values for the Hollin Hill landslide

Parameters Value Unit

Initial block displacement, d0 0 m

Slide block thickness, H 2 m

Average inclination angle, θ 12 ◦

Acceleration due to gravity, g 9.8 m/s2

Pore water density, ρw 1000 kg/m3

Slide block mass density, ρ 1750 kg/m3

A.1.2 Simulation results

Displacement pattern d̂ along with unknown soil properties ( η̂st ,φ̂) are reconstructed with
the help of proposed estimation scheme (see Section 5.3), for known parameter values
(Table A.1), displacement measurements (Fig. A.2) and water table height time-series
(Fig. A.3). Note that, for the Hollin Hill landslide cohesion C is not taken into con-
sideration as only two parameters can be estimated, and cohesion is unknown. Also,
notice that the preliminary results obtained are with manually tuned observer coefficients
(P0,W,Q,γ,χ

2,m) = (I3×3,5× 10−9,10−11I3×3,0.985,6.635,6), i.e., without observer co-
efficients tuning methodology presented in Section 5.3 (I3×3 is identity matrix of rank
3). Estimation results can be seen in Fig. A.4-A.9. Starting with first 140 days of dis-
placement and water table height time-series estimation results are obtained first (Fig.
A.4-A.6) followed by whole two years data (Fig. A.7-A.9). The idea is to tune observer
coefficients for some initial days using proposed methodology (Section 5.3). Then for tuned
observer coefficients, estimation results can be obtained for the whole data (work is under
progress). For manually tuned coefficients and initial 140 days data, displacement and
unknown parameters have been well reconstructed. It is observed that both friction angle
and viscosity/shear zone thickness varies with time. However, similarly to the Super-Sauze
landslide case (Fig. 5.8) significant variations in viscosity/shear zone thickness estimate
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is observed in comparison to friction angle.
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Figure A.4: Displacement estimate d̂ for first 140 days
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Figure A.5: Friction angle estimate φ̂ for first 140 days

0 20 40 60 80 100 120 140
0

2

4

6

8

·108

Time (Days)

η̂ s
t

(P
a
.s
/
m

)

η̂
st

Figure A.6: Viscosity/Shear zone thickness estimate η̂
st

for first 140 days

The estimation scheme is then employed to complete two-year data for the manually
tuned observer coefficients. In simulation results, it is observed that information (dis-
placement and unknown parameters) have been well estimated for a majority of times.
However, displacement estimates are not converging with displacement data (Fig. A.7)
for some instances, i.e., from day 150 to 320 and from day 500 to 550. This is because,
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in the assumed landslide model, displacement does not change when water table height is
less than critical water table height. However, in data, it appears that some displacement
is observed even when water table height is less than critical (≈ 1.45 m). This issue must
be translated into unknown parameter estimates as well. It suggests including some more
terms in the model which could depict this landslide behavior. It needs to be further
investigated.
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Figure A.7: Displacement estimate d̂ for period 2016-2018
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Figure A.8: Friction angle estimate φ̂ for period 2016-2018
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for period 2016-2018
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Introduction de la thèse en Français

Introduction de la thèse en Français

Le contexte de la thèse

Modélisation des glissements de terrain

Un glissement de terrain, également caractérisé par la déstabilisation d’une pente, est un
mouvement descendant de roches, de débris ou de sol sous l’effet de la gravité, près de la
surface de la terre, résultant de fortes précipitations, d’inondations, de tremblements de
terre, d’une fonte des neiges importante ou d’activités humaines comme la construction
(Fig. A.10). Les glissements de terrain sont devenus plus fréquents ces dernières années
en raison du changement climatique et de l’urbanisation croissante. Ils peuvent avoir
de graves effets socio-économiques, notamment des coûts importants en termes de vies
humaines, d’infrastructures, d’économie et d’écosystème de la région. Les glissements de
terrain présentent différents types et vitesses de mouvement, allant de la reptation lente
à l’accélération catastrophique rapide. Dans les catastrophes les plus destructrices, les
roches, les débris ou le sol peuvent s’écouler à des vitesses de plusieurs dizaines de mètres
par an, causant des ravages sur les infrastructures, l’économie et l’écosystème de la région.

Figure A.10: Un glissement de terrain recouvre un circuit dans la ville de Nihonmatsu,
préfecture de Fukushima, nord-est du Japon, dimanche 14 février 2021. Le fort séisme
a secoué les zones sismiques des préfectures de Fukushima et de Miyagi samedi en fin de
journée, déclenchant des glissements de terrain et provoquant des coupures de courant pour
des milliers de personnes. [Hironori Asakawa/Kyodo News]

D’autre part, les glissements de terrain à évolution lente peuvent avoir des vitesses
typiques allant de quelques millimètres à plusieurs mètres par an. Les glissements de
terrain lents font rarement des victimes, mais ils peuvent endommager considérablement
les infrastructures publiques et privées. Les glissements de terrain lents et persistants
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peuvent parfois conduire à une accélération catastrophique ; les glissements de terrain
argileux, par exemple, sont sujets à ces transitions. Les solutions traditionnelles de gestion
des risques de glissement de terrain consistent à éviter la construction d’infrastructures
dans les zones vulnérables en se basant sur les cartes des risques de glissement de terrain,
à stabiliser les pentes instables (modification de la géométrie des glissements, drainage
de l’eau) et à ériger des structures de protection. Cependant, des infrastructures sont
encore construites sur ou à proximité de glissements de terrain majeurs en raison d’un
manque de sensibilisation aux risques. La stabilisation des pentes peut s’avérer coûteuse
dans de tels cas, et le déplacement de la population vers des endroits plus stables peut
générer des problèmes socio-économiques importants. La mise en œuvre d’un système
d’alerte précoce (SAP) dans ces scénarios peut aider à prendre des mesures rapides pour
réduire les pertes humaines et économiques avant les événements dangereux. Le service de
surveillance et d’alerte est un élément essentiel du SAP. Pour l’anticipation/estimation des
risques associés au modèle dynamique basé sur la physique des glissements de terrain, la
surveillance des glissements de terrain et l’assimilation des données jouent un rôle essentiel.

Notre point de départ est donc que les modèles dynamiques basés sur la physique sont
sensibles aux conditions initiales et aux paramètres du système. La simulation d’un modèle
et la modification itérative des conditions initiales et des valeurs des paramètres pour
obtenir une cohérence avec les données mesurées peuvent rendre compte de ces sensibilités.
Une autre méthode efficace peut consister à faire tourner un modèle dans le temps et à
l’affiner pour le synchroniser avec les mesures actualisées. Les modèles de glissement de
terrain peuvent alors aider à la prévision une fois que ces sensibilités ont été traitées.
En conséquence, ce manuscrit propose une approche interdisciplinaire pour l’étude des
glissements de terrain, qui est l’objectif général du projet Risk@UGA, en associant des
modèles de glissement de terrain issus de la géophysique et des outils théoriques de contrôle
pour la reconstruction de l’information.

Projet interdisciplinaire "Risk@UGA"

Le travail de doctorat présenté dans cette thèse a été développé dans le cadre d’un projet
" Risque " de l’Université Grenoble Alpes. Avec pour devise "Managing risk for a more
resilient world", ce projet a été lancé en 2018 pour développer la recherche transversale
et l’innovation scientifique dans le domaine de la gestion des catastrophes et des risques,
spécifiquement dans les zones rendues vulnérables en raison d’une forte interdépendance
entre les humains, les risques naturels ou technologiques. En plus du bassin grenoblois, le
projet a abordé sur d’autres territoires vulnérables tels que la région de Beyrouth (Liban),
Port-au-Prince (Haïti), ou encore le Pérou et le Népal. Le projet visait également à
proposer un institut du risque au sein de l’Université Grenoble Alpes.

Challenges

L’objectif principal du projet était de contribuer à l’atténuation proactive des risques
de catastrophe et de développer une culture du risque. Il était dédié à un défi global
et régional, fondamental pour les décennies à venir, en raison de l’augmentation de la
population mondiale avec une densification souvent anarchique des zones urbanisées, de
l’impact croissant de l’homme sur les écosystèmes, mais aussi de l’émergence de nouveaux
risques induits par le changement climatique et le développement technologique.

Interdisciplinarité

Le projet a fédéré une centaine de chercheurs appartenant à 15 laboratoires de recherche
issus des sciences humaines et sociales, des sciences de l’information et des systèmes, des
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géosciences et des sciences de l’ingénieur. Les défis scientifiques que sont la collecte et
le traitement de données hétérogènes, la modélisation de phénomènes complexes et en
cascade, la prise de décision multi-objectifs, l’évaluation ou la définition de schémas de
gouvernance des risques nécessitent des approches véritablement globales et interdisci-
plinaires.

Organisation du projet

Le projet propose une approche scientifique innovante pour répondre aux défis suivants :

• Gérer l’hétérogénéité des données par une approche participative

• Intégration des événements rares ou émergents et des effets en cascade

• Passer d’une approche statique/réactive de la gestion des risques à une approche
proactive/dynamique

• D’une part, concevoir des stratégies appropriées pour la réduction des risques de
catastrophes (outre une évaluation pertinente des vulnérabilités et des cultures lo-
cales) et pour la communication, d’autre part mieux gérer les risques et renforcer la
culture du risque.

Visibilité internationale

Le projet s’inscrivait pleinement dans le cadre de la conférence des Nations Unies de
Sendai sur la prévention des risques de catastrophes en 2015, qui encourage les pays à
mieux prévenir et à anticiper les risques de catastrophes. Il visait à devenir un interlocu-
teur privilégié des acteurs de la gestion des risques en France et à l’étranger, notamment
sur les cinq sites d’étude sélectionnés (sphère économique, pouvoirs publics, organisations
humanitaires, milieu universitaire, ou réseaux de centres de risques). Le projet offre une
contribution solide à la fois pour la structure et la visibilité de l’Université Grenoble Alpes
en matière d’évaluation et de gestion des risques en proposant un institut de gestion
des risques unique en France. Le projet Risk encourage le développement de nouvelles
méthodologies interdisciplinaires par les équipes de recherche afin de mieux travailler en-
semble et de transférer les résultats de la recherche aux parties prenantes et aux décideurs
concernés. Il participe aussi activement au renforcement du cursus interdisciplinaire en
gestion des risques.

Question de recherche et objectifs

La principale question de recherche directrice de ce travail a été formulée comme suit:

“Comment reconstruire les informations manquantes nécessaires aux modèles
de glissement de terrain pour prévoir les mouvements de masse à partir des
mesures disponibles ?"

Pour répondre à cette question, les sous-questions suivantes ont été identifiées:

• Quel est l’état de l’art concernant les différentes techniques de surveillance des glisse-
ments de terrain et leurs contraintes en termes de résolution temporelle et spatiale, les
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différentes études de modélisation statistique et physique des glissements de terrain,
et la variété des outils utilisés pour la reconstruction des informations manquantes
(rétroanalyse) à partir des mesures ?

• Qu’est-ce que les outils de contrôle et de systèmes peuvent apporter dans le contexte
de cette thèse : l’utilisation d’une apprache hors ligne basée sur l’optimisation, des
techniques en ligne basées sur un observateur d’état et des outils de prédiction ?

En réponse aux questions de recherche, le premier objectif de cette thèse est de com-
prendre les différentes techniques de suivi des glissements de terrain et leurs contraintes.
Le second objectif est la sélection de modèles mécaniques de glissements de terrain basés
sur les mesures disponibles dans un cadre de système dynamique. Ces deux objectifs
constituent l’état de l’art de ce travail. En suivant l’état de l’art sur la surveillance
et la modélisation des glissements de terrain, la rétro-analyse (problème inverse) pour
l’identification des paramètres inconnus à partir des données disponibles doit être étudiée
par une solution basée sur l’optimisation et la conception d’observateurs. Enfin, des ap-
proches basées sur des observateurs pour la surveillance dynamique et l’évaluation du
mouvement des glissements de terrain doivent être développées sur la base des mesures et
des modèles disponibles.

Plan du manuscrit
La structure du manuscrit est la suivante:

• La partie actuelle de la thèse présente un bref aperçu du contexte, du projet trans-
disciplinaire Risk@UGA, de la question de recherche et des objectifs de la thèse.

• En gardant à l’esprit l’objectif global de la thèse, le chapitre 2 donne un aperçu d’une
revue de la littérature sur les différentes techniques de surveillance des glissements
de terrain et leurs contraintes, les études de modélisation des glissements de terrain,
des modèles statistiques aux modèles physiques, et les techniques d’inversion pour
l’identification des paramètres.

• En réponse à la question de recherche sur la reconstruction de l’information, une
méthode adjointe basée sur l’optimisation pour l’estimation (paramètres inconnus et
condition initiale) dans les modèles de glissement de terrain avec des mesures syn-
thétiques asynchrones en temps discret est proposée dans le chapitre 3. Le système
étudié est présenté comme une paire d’équations différentielles ordinaires (ODE) et
d’équations différentielles partielles (PDE) couplées. Le multiplicateur de Lagrange
est introduit pour relier la dynamique du système et la fonction de coût formulée
comme l’erreur des moindres carrés entre les valeurs de simulation et les mesures
disponibles. La méthode adjointe est utilisée pour obtenir le système adjoint et les
gradients par rapport aux paramètres et à l’état initial. Enfin, la fonction de coût
est optimisée à l’aide de la méthode de descente la plus abrupte. Ce chapitre valide
la méthode proposée pour l’estimation de l’état et des paramètres à l’aide de deux
exemples d’application de glissement de terrain : i) modèle étendu de glissement-
consolidation et ii) modèle viscoplastique de glissement-consolidation, et en utilisant
des données synthétiques.

• Dans le chapitre 4, comme alternative "continue" à l’approche d’optimisation, un
observateur pour l’estimation de l’état et des paramètres dans un modèle étendu
de glissement-consolidation est conçu. L’observateur consiste en une copie de la
partie PDE du système et en un observateur de type Kalman pour l’ODE. Dans ce
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chapitre, l’outil de Lyapunov est utilisé pour assurer la convergence exponentielle
des estimations de l’état et des paramètres. À la fin du chapitre, des résultats de
simulation sont présentés pour illustrer l’efficacité de l’observateur conçu, toujours
sur la base de données synthétiques.

• En considérant un modèle simplifié, une approche par filtre de Kalman pour la
reconstruction et la prévision du déplacement des glissements de terrain est présen-
tée au chapitre 5 avec des données synthétiques et de terrain réel (tirées de la lit-
térature). L’observateur proposé s’appuie sur un modèle viscoplastique simplifié
de glissement de terrain. Les performances de l’observateur sont améliorées par
l’utilisation d’une méthode de réinitialisation, et pour surmonter la sensibilité aux
coefficients de l’observateur, une nouvelle méthode de réglage est proposée, qui prend
en compte les cas d’essai réels et synthétiques. L’approche est également étendue à
la prévision du déplacement des glissements de terrain. En utilisant une approche
similaire, certains résultats préliminaires avec les données du glissement de terrain
de Hollin Hill sont présentés dans l’annexe A.1.

• Les conclusions générales et les perspectives d’avenir sont enfin présentées dans le
chapitre 6.
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Modeling and information reconstruction
from landslide monitoring data

Résumé

Un glissement de terrain est un mouvement sur pente descendante d’une partie
du sol, de débris, ou de roche de surface, entraîné par la gravité. On peut trou-
ver une certaine hétérogénéité dans les mouvements de ce type, comme dans
leurs vitesses d’évolution, allant du glissement lent à l’accélération catastrophique.
Ces deux scénarios constituent une menace pour la population, les infrastructures,
l’écosystème et l’économie de la région exposée. La stratégie traditionnelle de ges-
tion des risques de glissement de terrain suggère d’éviter de construire de nouvelles
infrastructures dans une telle région sur la base de cartes des aléas. Cependant,
avec le changement climatique et l’urbanisation rapide, cette stratégie semble dif-
ficile à tenir. Par conséquent, les Systèmes d’Alerte Précoce (SAP) sont la voie à
suivre pour prendre des mesures correctives en temps opportun afin de réduire les
pertes en vies humaines et économiques. Ces SAP s’appuient sur des systèmes
de surveillance des glissements de terrain, des modèles de glissements de ter-
rain, et des algorithmes de reconstruction d’informations. Dans ce contexte difficile
de surveillance et de prévision des glissements de terrain, le travail présenté dans
cette thèse vise à définir un modèle dynamique des glissements de terrain basé sur
la physique, développer des méthodes d’identification des paramètres inconnus, et
contribuer à l’évaluation des risques par des techniques d’observateurs à partir des
mesures disponibles. Cela nécessite une approche multidisciplinaire, s’appuyant ici
sur des concepts issus d’une part de la géophysique et d’autre part de la théorie du
contrôle, pour la définition d la structure du modèle et les méthodes de résolution
des problèmes d’observateurs (ou d’identification des paramètres), respectivement.
En bref, l’idée est d’analyser les changements dans les variables de glissement de
terrain et dans les paramètres mécaniques avant ou pendant un mouvement.

Mots-clés : Dynamique des glissements de terrain, Système ODE-PDE
couplé, Estimation d’état et de paramètres, Optimisation, Mesures asynchrones en
temps discret, Filtre de Kalman, Conception d’observateur, Réglage d’observateur,
Prédiction de déplacement

Abstract

Landslide is a gravity-driven downslope movement of soil, debris, or rock near the
earth’s surface. It can display heterogeneity in rates and movement types, ranging
from creeping motion to catastrophic acceleration. Both scenarios pose a threat
to the exposed region’s people, infrastructure, ecosystem, and economy. Tradi-
tional landslide risk management strategy suggests avoiding building new infras-
tructure in such a region based on hazard maps. However, with climate change
and rapid urbanization, this strategy seems challenging to implement. Therefore,
Early Warning Systems (EWS) are way forward to take timely corrective measures
to reduce life and economic losses. These EWS’s rely on landslide monitoring sys-
tems, landslide models, and information reconstruction schemes. In this challenging
context of landslide monitoring and forecasting, the present work aims to define a
physics-based dynamical model of landslides, unknown parameters identification,
and observer-based hazard evaluation from available measurements. This requires
a multi-disciplinary approach, i.e., concepts from geophysics on the one hand and
control theory on the other hand, for model structure definition and solution methods
for observer problems (or parameter identification), respectively. In short, the idea
is to analyze the changes in landslide variables and mechanical parameters prior to
or while in a motion.

Keywords : Landslide dynamics, Coupled ODE-PDE system, State and pa-
rameter estimation, Optimization, Discrete-time asynchronous measurements, Ob-
server design, Kalman filter, Observer tuning, Displacement forecasting
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