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Abstract

This thesis by publication is devoted to the study of aspects of the early universe in
the context of primordial black hole (PBH) physics. Since the early ’70s, when PBHs
were initially proposed, PBHs have been attracting an increasing interest within the
scientific community given the fact that they can address a number of fundamental issues
of modern cosmology and at the same time give access to different physical phenomena
depending on their mass. Interestingly, with low mass PBHs one can probe and constrain
the physics of the early universe, such as inflation and reheating whereas with high
mass PBHs one can probe gravitational physics phenomena like the large-scale structure
formation and the origin of dark matter.

In the following PhD thesis, we firstly review the fundamentals of the early universe
cosmology and we recap the basics of the PBHs physics covering both theoretical and
observational aspects. In particular, we propose a refinement in the determination of the
PBH formation threshold, a fundamental quantity in PBH physics, in the context of a
time-dependent equation-of-state parameter. Afterwards, we briefly present the theory
of inflationary perturbations, which is the theoretical framework within which PBHs are
studied in this thesis.

Then, in the second part of the thesis, we review the core of the research conduc-
ted within my PhD, in which aspects of the early universe and the gravitational wave
physics are combined with the physics of PBHs. Moreover, aspects of the PBH gravita-
tional collapse process are studied in the presence of anisotropies. Specifically, we study
PBHs produced from the preheating instability in the context of single-field inflation. In
particular, we find that PBHs produced during preheating can potentially dominate the
universe’s content and drive reheating through their evaporation. Then, we focus on the
scalar induced second-order stochastic gravitational wave background (SGWB) produ-
ced during an era before BBN in which ultralight PBHs dominate the energy budget of
the universe. By taking then into account gravitational wave backreaction effects we set
model-independent constraints on the initial abundance of ultralight PBHs as a function
of their mass. Afterwards, we study in a covariant way the anisotropic spherical gravi-
tational collapse of PBHs during a radiation-dominated era in which one can compute
the PBH formation threshold as a function of the anisotropy.

Finally, we summarize our research results by discussing future prospects opened up
as a result of the work we have done within the PhD. In particular, we emphasize the
fact that one can narrow down the CMB observational predictions by studying PBHs
produced from the single-field inflation preheating instability as well as the potential de-
tectability of ultralight PBHs by future gravitational experiments such as LISA, Einstein
Telescope and SKA.

Keywords : primordial black holes, inflation, preheating, induced gravitational
waves, primordial black hole gravitational collapse
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Résumé

Cette thèse sur articles est dédiée à l’étude des aspects de l’univers primordial par
le biais des trous noirs primordiaux (TNP). Depuis que les TNP ont été initialement
proposés dans les années 70, ils attirent de plus en plus l’intérêt de la communauté
scientifique étant donné le fait que ces objets astrophysiques apportent un éclairage sur
un grand nombre de problèmes de la cosmologie contemporaine et en parallèle peuvent
donner accès à une grande variété de phénomènes physiques en fonction de de leur masse.
En particulier, les TNP de petite masse peuvent donner accès à la physique de l’univers
primordial comme la physique de l’inflation et du rechauffement tandis qu’ avec les TNP
de grande masse on peut explorer des phénomènes de la physique gravitationnelle comme
la formation des structures de grande échelle et l’origine de la matière noire.

Dans cette thèse, on rapelle tout d’abord les fondements de la cosmologie de l’univers
primordial et les essentiels de la physique des TNP en couvrant à la fois des aspects
théoriques et observationnelles. En particulier, on propose un raffinement des méthodes
sur la détermination du seuil de formation des TNP, une quantité fondamentale dans
le domaine de recherche des TNP, dans le contexte d’un paramètre d’équation d’état
dépendant du temps. Ensuite, on se réfère brièvement à la théorie des perturbations
inflationnaires, qui constitue le cadre théorique dans lequel les TNP sont étudiés dans
cette thèse.

Dans une deuxième partie, on présente la recherche effectuée au sein de mes études
doctorales, dans laquelle des aspects de la physique de l’univers primordial se combinent
avec la physique des ondes gravitationnelles. De plus, des facettes de l’effondrement gra-
vitationnel des TNP en présence des anisotropies sont étudiées. Plus spécifiquement,
on étudie les TNP produits de l’instabilité du préchauffement dans le contexte de la
théorie de l’inflation avec un champ scalaire. En particulier, on trouve que les TNP
produits pendant la période du préchauffement peuvent potentiellement dominer le
contenu énergétique de l’univers et conduire au réchauffement de l’univers à travers
leur évaporation.

Ensuite, on se concentre sur le fond stochastique d’ondes gravitationnelles induites
par perturbations scalaires à travers des effets gravitationnels de second ordre pendant
une période cosmique avant l’époque de la nucléosynthèse du Big Bang, où des trous noirs
primordiaux ultralégers constituent la composante principale du budget énergétique de
l’univers. En demandant alors que ces ondes gravitationnelles induites ne se produisent
pas en excès à la fin de la période de domination énergétique des TNP, on impose
des contraintes indépedentes du modèle de production de TNP sur leur abondance au
moment de leur formation en fonction de leur masse. Puis, on étudie d’une manière
covariante l’effondrement gravitationnel sphérique et anisotrope des TNP se produisant
pendant une époque cosmique dominée par la radiation.

Enfin, on résume les résultats de notre recherche en discutant les perspectives
qu’ouvre le travail effectué au sein du doctorat. En particulier, nous insistons sur le
fait que les prédictions observationnelles des modèles d’inflation à un champ scalaire
concernant les anisotropies du fonds diffus cosmologiques peuvent être affinées par la
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prise en compte des TNP produits pendant la phase de préchauffement. De plus, on
souligne la detectabilité potentielle des TNP ultralégers par des futures expériences gra-
vitationnelles comme LISA, Einstein Telescope et SKA.

Mots Clés : trous noirs primordiaux, inflation, préchauffement, ondes gravitation-
nelles induites, effondrement gravitationnel de trous noirs primordiaux.
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Introduction

Primordial black holes (PBHs), firstly proposed more than 50 years ago [1], are at-
tracting increasing attention given that they can address a number of issues of modern
cosmology. According to theoretical arguments they may indeed constitute a part or
all of the dark matter [2] and they may explain the generation of large-scale structures
through Poisson fluctuations [3, 4]. Furthermore, they may provide seeds for super-
massive black holes in galactic nuclei [5, 6] as well as account for the progenitors of
the black-hole merging events recently detected by the LIGO/VIRGO collaboration [7]
through their gravitational wave (GW) emission.

The idea for their existence dates back in 1967 when Novikov and Zeldovich [1]
proposed that black holes can form in the early universe through accretion of the sur-
rounding radiation. Some years later, Stephen Hawking in 1971 [8] and his PhD student
Bernard Carr in 1974 [9], who pioneered the field of PBHs, considered also formation
of PBHs establishing the modern way of viewing the PBH formation mechanism. In
particular, they claimed that PBHs form out of the gravitational collapse of high over-
density regions whose energy density exceeds a critical threshold value, which in general
depends on the characteristic scale and the shape of the overdensity region as well as on
the time at which the gravitational collapse is taking place [10] and on the details of
the surroundings.

This type of black holes is different from the astrophysical black holes in the sense that
they do not form out of the collapse of a star, an astrophysical process which imposes a
lower bound on the mass of the forming black hole at around 3 solar masses [11]. On the
contrary, PBHs can form at whichever epoch of the cosmic history when an overdensity
region is highly compressed and collapses to a black hole under an extremely strong
gravitational force. As realized very early by Hawking [8] the mass of a PBH is roughly
equal to the mass inside the cosmic horizon at the time of formation, a fact which makes
the mass range of PBHs very wide given the time dependence of the cosmic horizon
scale. In particular, one can produce super-massive black holes like the ones residing in
the center of galaxies, with typical PBH masses mPBH ∼ 106M� [12], where M� stands
for the solar mass, as well as ultra-light PBHs with mPBH ∼ 10−15M� [13] [See [14]
and the references therein].

This last fact that black holes can acquire a very small mass of the order of the
elementary particles or of the Planck mass initiated the idea of Hawking that black
holes should be strongly affected by quantum phenomena, an idea which led to his
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famous work in 1974 [15] showing that the mass-energy of a black hole is evaporated
away with a thermal radiation spectrum and that the time of evaporation of a black hole
depends cubicly on their mass, namely [16]

∆tevap =
160

πgeff

m3
BH

M4
Pl

, (1)

where geff is the effective number of relativistic degrees of freedom at the time of the
black evaporation, mBH is the black hole mass and MPl ∼ 4.34 × 10−6g is the reduced
Plack mass. Therefore, black holes with masses less than 1015g have evaporated by now.
This critical mass Mc = 1015g is very important since with it one can divide PBHs in
three categories depending on their mass, and these categories are related to different
physical phenomena.

Specifically, the small mass PBHs (mPBH ≤ 1015g) which have evaporated by now
can give access to the early universe physics such as the physics of inflation and the
primordial cosmological perturbations [17], the Big Bang Nucleosynthesis (BBN) physics
[18, 19], the physics of the cosmic microwave background (CMB) [20], the primordial
gravitational wave physics [21] and primordial phase transitions [22]. On the other
hand, with the intermediate mass PBHs which evaporate in our era we can probe high
energy astrophysical phenomena like the cosmic ray background through PBH Hawking
evaporation [23]. Finally, the higher mass PBHs which still exist today, (mPBH > 1015g),
can give access to gravitational physics phenomena like gravitational lensing [24, 25],
large scale structure (LSS) formation [26] as well as to the physics of the dark sector of
the universe, namely the dark matter (DM) [27] and the dark energy (DE) [28].

Given all this motivation for the research in the area of PBH physics, there has
been initiated during the last years a research interest on setting constraints on the
abundance of PBHs depending on their mass. These constraints range from micro-
lensing constraints, dynamical constraints (such as constraints from the abundance of
wide dwarfs in our local galaxy, or from the existence of a star cluster near the centers of
ultra-faint dwarf galaxies), constraints from the cosmic microwave background due to the
radiation released in PBH accretion, constraints from the primordial power spectrum as
well as from the nature of the statistics of the cosmological fluctuations and constraints
from the extragalactic gamma-ray background to which Hawking evaporation of PBHs
contributes. For a recent review, see [29].

During my PhD I focused on PBHs produced during the metric preheating instability
phase in the context of single-field inflation as well as on the scalar induced gravitational
waves produced from a universe filled with primordial black holes. I also engaged my-
self in studying the anisotropic gravitational collapse of PBHs formed in a radiation
dominated era.

This thesis is organized as follows. In Ch. 1 we recap the fundamentals of the early
universe cosmology, by presenting the basics of a homogeneous and isotropic universe
and by reviewing briefly its thermal history as well as the shortcomings of the Hot-Big
Bang theory which initiated the theory of inflation.

In Ch. 2, after providing the reader with the fundamental notions of PBH physics
as well as with the current observational status in the PBH field we propose a refined
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way of calculation of the PBH formation threshold in the context of a time-dependent
equation-of-state parameter. We highlight as well the implications of PBHs in cosmology.

In Ch. 3, after introducing the theory of inflationary perturbations, which is the
fundamental theoretical framework within which PBHs were studied throughout this
thesis, we review the literature related to preheating and describe the results of our
research regarding PBHs produced from metric preheating in the context of single-field
inflation [30, 31].

In Ch. 4, we recapitulate briefly the various ways with which PBHs can be connected
with gravitational waves and we give the fundamentals of the calculation of the stochastic
background of induced gravitational waves. Then, we present the results of our research
concerning induced gravitational waves produced from a universe filled with ultralight
PBHs [32].

In Ch. 5, after introducing the hydrodynamic equations describing the PBH gravita-
tional collapse we propose a covariant formulation for the equation of state of a spher-
ically symmetric anisotropic radiation fluid which can potentially collapse and form a
PBH. Then, by making use of a gradient expansion perturbative scheme we extract the
initial conditions of the hydrodynamic and metric perturbations and investigate how the
PBH formation threshold depends on the anisotropic character of the collapse.

Finally, we summarize our research results and discuss future prospects opened up
as a result of the work we have done within the PhD.
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7.2 Recherche effectuée pendant la thèse . . . . . . . . . . . . . . . . . . . . . 201
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Chapter 1

Early Universe Cosmology

In this chapter, we present the fundamental elements necessary for the description of
the early universe, when PBHs are assumed to be formed. Very briefly, we adduce firstly
the basic notions and the theoretical framework describing a homogeneous and isotropic
universe. Then, we give a brief description of the thermal history and the composition
of the universe during the different cosmic epochs. Finally, we recap the shortcomings
of the Hot Big Bang theory which gave rise to inflation, the “standard theory” for the
description of the very early moments of the cosmic history and which generated the
primordial cosmological perturbations seeding the large scale structures observed today
as well as the relic cosmic microwave background radiation.

1.1 The Homegeneous and Isotropic Universe

1.1.1 The Hubble parameter and the redshift

As it is well established, the universe is expanding and the rate of this expansion can
be described through a universal scale factor, a(t), which encodes all the information
about the expansion “history” of the universe. This quantity depends on the cosmic
time t, which is the time measured by a local comoving observer. From the point of view
of this observer, the distances measured can be written as

R(t) = a(t)r, (1.1)

where R(t) is the physical distance and r is the comoving distance. In a similar way,
one can define a useful time variable η defined as

dη ≡ dt

a(t)
, (1.2)

known as the conformal time. One then can naturally define the rate of the universe
expansion, known as the Hubble parameter, H, as

H ≡ 1

a

da

dt
=
ȧ

a
(1.3)
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This parameter appears as a proportionality factor in the famous Hubble law, relating
the expansion velocity U with the physical distance between two points in the universe,

U =
dR

dt
= HR. (1.4)

The Hubble parameter, H, has dimensions of inverse time and is very important since
it gives an order of magnitude prediction for the age of the universe at the time one
measures it. On the contrary, the Hubble radius, cH−1, where c is the speed of light,
determines the size of the observable universe at the time one measures it, i.e. the scale
of causal contact within our universe.

From the point of view of observations, the expansion of the universe is measured
with the redshift variable, z which is the relative change of the wavelength of a photon,
dλ/λ, which travels between the emission source and the observer. This relative change
is due to the expansion of the universe and reads as

1 + z ≡ a(tobs)

a(tem)
, (1.5)

where a(tobs) and a(tem) are the scale factors at the times of observation and emission of
the photons respectively. By measuring redshifts z one then can reconstruct the expan-
sion rate of the universe, H. The current value of the Hubble parameter as measured
by Planck satellite, which captured and analysed the CMB radiation, is [33]

H0 = 67.4± 0.5kms−1Mpc−1. (1.6)

However, different experiments probing late-universe cosmology phenomena based on dif-
ferent astrophysical measurements are finding different values with the tension between
different probes being quite intriguing [34, 33]. [See [35] for a review.]

1.1.2 The FRLW metric

The standard Hot Big Bang paradigm for the universe is based on the cosmological
principle which states that the universe is spatially homogeneous and isotropic in large
scales (∼ 100Mpc). This principle has observational evidences and the most astonishing
one is the nearly identical temperature of the CMB radiation coming from different
parts of the sky. Adopting thus the cosmological principle, one inevitably constrain
the form of the metric, i.e the infinitesimal line element between two points in the
universe, which should describe a homogeneous and isotropic universe. The general
form of this metric, known as Friedmann- Lemaitre-Robertson-Walker (FLRW) metric,
reads as [36, 37, 38, 39]:

ds2 ≡ gµνdxµdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(1.7)

where gµν is the metric tensor, a(t) is the scale factor with dimensions of length and
r,θ,φ are the comoving coordinates which are dimensionless. Finally, K is the spatial
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curvature signature of the metric (K = 0: flat univese, K = ±1: closed (spherical) and
opened (hyperbolic) universe respectively). In terms of the conformal time defined in
Eq. (1.2), the metric takes the following form which is very useful since it simplifies as
we will see later the calculations,

ds2 = −a2(η)

[
dη2 +

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.8)

1.1.3 The Einstein Equations

Having determined then the infinitesimal line element in an expanding homogeneous
and isotropic universe one can relate the expansion of the universe, a manifestation of
the curvature of the space-time, to the energy-mass content of the universe through the
Einstein’s equations of General Relativity (GR) which can be derived from the variation
of the action S describing the Universe.This action can decomposed in two parts, a part
Sgrav which describes the gravitational sector of the universe and a part Smatter which
describes the matter content in the universe. These two parts read as 1 [40, 41, 42]

Sgrav =
1

16πG

∫
d4x
√−g (R− 2Λ) (1.9)

Smatter =

∫
Lmatter

√−g d4x, (1.10)

where G is the Newton constant, Λ is a cosmological constant, Lmatter is the Lagrangian
of matter in the universe, g is the determinant of the metric gµν , R is the Ricci scalar
defined as a contraction of the Ricci tensor Rµν , i.e. R ≡ gµνR

µν . The Ricci tensor
reads as Rµν ≡ ∂ρΓ

ρ
µν − ∂νΓρµρ + ΓρµνΓλρλ − ΓρµλΓλνρ, where the Christoffel symbols are

given by Γρµν = gρλ

2 (∂νgλµ + ∂µgλν − ∂λgµν).
By varying then these two parts of the action one obtains that

16πG√−g
∂Sgrav

∂gµν
= Rµν −

1

2
Rgµν + Λgµν (1.11)

− 2√−g
∂Smatter

∂gµν
= gµνLmatter − 2

δLmatter

δgµν
(1.12)

Demanding then that ∂S
∂gµν

=
∂Sgrav
∂gµν

+ ∂Smatter
∂gµν

= 0 one obtains the Einstein equations

given by [40]
Gµν + Λgµν = 8πGTµν , (1.13)

where we have defined the Einstein tensor as Gµν ≡ Rµν − 1
2Rgµν . The stress-energy

tensor for matter is defined as

Tµν ≡ −
2√−g

∂Smatter

∂gµν
. (1.14)

1. Hereafter, unless stated otherwise, we work in units where c = ~ = kB = 1.
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With the Einstein equations Eq. (1.13) one can relate the curvature of space-time de-
scribed in terms the geometrical quantities Gµν or Rµν , R and gµν to the energy-mass
content of the universe described with the energy-momentum tensor Tµν .

1.1.4 Dynamics of an Expanding Universe

Now, by taking into consideration the cosmological principle and treating the universe
background medium as a perfect fluid, the energy-momentum tensor can be written in
a general form as

Tµν = −pgµν + (p+ ρ)uµuν (1.15)

where p and ρ are the pressure and energy densities of the fluid respectively and uµ is
the four velocity of a comoving observer for whom space is homogeneous and isotropic.
One thus has that uµ = δµ,0, where δ is the Krönecker delta. Therefore, by solving the
Einstein equations for a homogeneous and isotropic universe described with the FRLW
metric Eq. (1.7) and filled with a perfect fluid described in terms of the stress-energy
tensor in Eq. (1.15), one can extract the following equations, which govern the evolution
of the scale factor a(t) in a homogeneous and isotropic universe [43, 44].

H2 =

(
ȧ

a

)2

=
ρ

3M2
Pl

− k

a2
+

Λ

3
Friedmann Equation (1.16)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, Raychaudhuri Equation (1.17)

where we have used the definition of the reduced Planck mass as M2
Pl ≡ 1

8πG .
At this point, one should point out that combining the Friedmann and the Ray-

chaudhuri equations one can obtain the continuity equation which reads as

ρ̇+ 3H(ρ+ p) = 0. Continuity Equation (1.18)

The above equation can be also obtained from the covariant conservation of the energy-
momentum tensor, i.e. ∇µTµν = 0, where ∇µ is the covariant derivative and can be seen
as the first law of thermodynamics, dUth + pdV = 0, describing an adiabatic expansion,
where the thermal energy density Uth can be defined as Uth ≡ ρV and the volume V as
V ≡ a3.

Here, we should stress out that one can write the Friedmann equation in a more
compact form introducing the dimensionless variable Ω such as Ω = ρ

ρc
, where ρc = 3H2

8πG ,
which quantifies the deviation of the energy density of the universe from the critical
energy density, ρc, of a spatial flat universe. Thus, straightforwardly one obtains that
Eq. (1.16) can be recast as

Ω− 1 =
K

a2H2
(1.19)

and one can see that for K = −1 (hyperbolic geometry), Ω < 1 whereas for K = +1
(spherical geometric), Ω > 1. Regarding the case in which K = 0 (Euclidean geometry),
Ω = 1 and the universe is spatiallly flat.
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1.1.5 The constant equation of state

At this point, we can find the evolution of the scale factor for different components of
the energy budget of the universe which may dominate in different periods of the cosmic
history. By viewing the dominant component of the energy content of the universe as a
perfect fluid, the universe thermal state can be described by the following equation of
state

p = wρ, (1.20)

where w is the equation-of-state parameter determining the nature of the fluid. The case
where w is constant, the most commonly studied one, describes quite well the universe’s
thermal state in the different periods of the cosmic history. Assuming then a constant
equation-of-state parameter w = p/ρ for the dominant component of the universe one
can work out from Eq. (1.18) and Eq. (1.16) the dynamics of the space expansion as well
as of the energy density of the universe. In particular, one can straightforwardly find
that

ρ = ρini

(
a

aini

)−3(1+w)

(1.21)

a =





aini

[
1± 3

2

√
ρini
3

t−tini
MPl

] 2
3(1+w)

w 6= −1

aini exp
{(
±
√

ρini
3

t−tini
MPl

)}
w = −1

(1.22)

where the index ini denotes an initial time. The + sign accounts for an expanding
universe, H > 0, whereas the − sign for a contracting universe, H < 0.

Below, we refer to some characteristic values of w which can describe the universe
thermal state at different cosmic epochs. The case of w = 0 describes a fluid of non-
relativistic particles (matter domination era) where ρm ∼ a−3 whereas when w = 1/3 one
can identify a fluid of relativistic particles (radiation domination era) where ρr ∼ a−4.
The case w = −1 describes a thermal state of negative pressure in which the vacuum
energy dominates the universe energy content. This is the case for a Λ domination era
where one can assign from the Friedmann equation Eq. (1.16) an energy density to the
cosmological constant Λ, namely ρΛ = ΛM2

Pl = constant. With the same reasoning one
can associate an energy density to the spatial curvature, ρK = −3K

a2
M2

Pl which can be
viewed as the energy density of a perfect fluid with w = −1/3. Thus, taking into account
the above discussion one can rewrite the Friedmann equation Eq. (1.16) in the following
form

H2 =
1

3M2
Pl

(ρmatter + ρK + ρΛ) =
ρt

3M2
Pl

, (1.23)

where ρmatter accounts for the sum of the energy densities of ordinary matter, dark
matter, radiation and any other constituent of the universe and ρt is the total energy
density in the universe.
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1.1.6 The horizon scale

The concept of the horizon is fundamental in cosmology. Below we discriminate
between the notion of cosmological/Hubble horizon or Hubble radius and that of the
particle horizon. The Hubble horizon or Hubble radius is defined as

RH ≡ H−1 (1.24)

and is the distance at which the galaxy recession velocity is equal to the speed of light.
Galaxies outside a sphere of a radius equal to the Hubble radius recede from us at a speed
faster than the speed of light. This does not violate the special relativity postulate that
the maximum speed in the universe is c, because it is spacetime itself that is expanding
faster than the speed of light, not objects within that spacetime. In a more formal way,
the fact that galaxies can recede from us with a speed faster than the speed of light is
not a problem given the fact that Lorentz symmetry is a local symmetry.

The particle horizon on the other side is defined as the region where causal contact
has been established through photon interactions. More precisely, at a specific time the
particle horizon is the extent of our light cone in the the past at t = 0 . From Eq. (1.7)
taking dθ = dφ = 0 the infinitesimal distances traveled by photons is dr = dt/a(t).
Therefore, the particle horizon, LP is defined as

RP ≡ a(t)

∫ t

0

dt′

a(t′)
(1.25)

Assuming a polynomial behavior of a(t), i.e. a(t) ∝ tn with n < 1, which is the case for

the majority of the cosmic epochs, one finds that RP = nH−1

1−n ∼ H−1. One then can see
that the Hubble horizon and the particle horizon are of the same order and hereafter they
can be used interchangeably as the horizon scale unless stated differently. Therefore, the
horizon scale, H−1, gives a very good estimate of the region within which causal contact
has been established and is identified as well with the scale at which general relativistic
effects become important. An important relevant quantity is the horizon mass, MH,
defined as the mass inside the horizon:

MH ≡
4π

3
ρtR

3
H (1.26)

Combining then Eq. (1.26) and Eq. (1.23) one can infer that

RH = 2GMH. (1.27)

The above expression which relates the mass inside the horizon and the horizon scale is
the same expression used for the definition of the black hole apparent horizon in spherical
symmetry, a fact which reflects the common physical nature of the cosmological horizon
and the black hole apparent horizon. Both of them can be viewed as trapped surfaces
in the context of the theory of general relativity [45].

Finally, it is important to distinguish between physical lengths inside and outside the
horizon which will give us below critical behaviors. Therefore, a length scale λ related
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to its wave number is the comoving scale associated to λ times the scale factor. Thus,
λ = 2πa

k and our conditions take the following form:

k

aH
� 1⇒ Scale λ outside the horizon

k

aH
� 1⇒ Scale λ inside the horizon

1.2 The Thermal History of the Universe

The Cosmic Microwave Background radiation was firstly detected in 1965 by Penzias
and Wilson and later confirmed by the sattelite probes COBE, WMAP and Planck. As
it was found, CMB constitues a nearly uniform signal at microwave frequencies coming
from all directions in the sky with a high degree of isotropy. It is interpreted as the black-
body radiation emitted at the moment of the last scattering of photons with matter at
around 380.000 years after the Big Bang singularity. Today, the present temperature of
this black-body spectrum is TCMB,0 ' 2.725K while the high degree of isotropy, namely
∆T/T ∼ 10−5, strongly suggests a homogeneous universe on sufficiently large scales
∼ 100Mpc.

Accounting therefore for the cosmological redshift presented in Sec. 1.1.1 and for the
adiabatic expansion of the universe (no heat transfer) one can infer that a black-body
state stays as a black-body state with a temperature decreasing with the expansion as

Tr ∼ 1/a (1.28)

Therefore, as we go deeply in the radiation dominated universe the temperature increases
as 1/a and at the time when universe begins it becomes infinite. This leads to the
standard cosmological picture of the Hot Big Bang universe: One has initially an initial
state at some finite time in the past when the universe was infinitely hot, followed
by a radiation era during which the universe is gradually cooling down as Tr ∼ 1/a.
During this period of radiation, photons strongly interact with matter and at the end
of this period when the universe is cold enough, the first atoms form and photons can
travel freely in the universe without interacting with matter. This triggers the onset
of a matter dominated era during which large scale structures such as galaxies, stars
and planets form. Finally at some point, the vaccum energy, largely quoted as “dark
energy”, described above in terms of the cosmological constant Λ, inevitably dominates
the energy content of the universe driving in its turn an accelerated expansion as the
one we observe today. Let us now describe in more detail the different epochs of the
thermal history of the universe [46]:

— 100GeV < T < TPl = 1019GeV

This is the cosmic epoch of the very early moments of the cosmic history during
which inflation is assumed to take place at some point [47, 48, 49, 50, 51]. During
this inflationary epoch, the universe undergoes an accelerated expansion where
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physical lengths are stretched out so much that they become larger than the horizon
scale conserving however the isotropy. This inflationary period is supposed to be
driven by one (inflaton field) or more scalar fields which at the end of inflation
decay to relativistic particles which thermalise by reaching a common temperature,
quoted as the reheating temperature [For more details on reheating see [52, 53, 54,
55]]. 2 When reheating is over, the universe is dominated by relativistic particles
which increase the entropic degrees of freedom and which lead to the transition to
the radiation era (Hot Big Bang phase).

— T ∼ 100GeV

At a temperature T around 100GeV the electroweak phase transition [56, 57, 58]
takes place in which the SU(2)×U(1) electroweak symmetry breaks into the U(1)
symmetry of electromagnetism. During this phase transition, the weak nuclear
and electromagnetic forces separate and the physics of the universe at this time
is described by the Standard Model (SM) or some extension. The electroweak
symmetry breaking time corresponds as well to the last time at which it possible
to generate a matter/antimatter asymmetry through a process of baryogenesis
[59, 60].

— T ∼ 100MeV

At T ∼ 100MeV the Quantum ChromoDynamic (QCD) phase transition takes
place during which the plasma of quarks and gluons become bound leading to the
formation of hadrons [61, 62]. This transition is associated to a chiral symmetry
breaking mechanism and it is considered to play a significant role to the generation
of primordial magnetic fields [63].

— 1MeV < T < 100MeV

During this era, all the elementary particles (γ, ν, e, ē, n and p) interact with each
other and form a bath of thermal equilibrium. At a temperature T ∼ 1MeV the
neutrinos decouple from the thermal bath and primordial nucleosynthesis of light
elements (mostly H,D,He,Li and Be) starts taking place already at a temperature
T ∼ 10MeV and end at a temperature of T ∼ 100keV [64, 65, 66]. Heavier
elements are formed later in the interior of the stars through stellar nucleosynthesis
or through star explosions.

— T ∼ 100keV

At a temperature T ∼ 100keV the onset of the matter domination era takes place
during which through the recombination process [67] the first atoms form when
free electrons bind with nucleons. Given the dynamical nature of the recombina-
tion process initially some electrons are free and can interact with photons which
remain coupled to the unbound electrons during the first stages of recombination.

2. After inflation, the inflaton or/and the other scalar fields oscillates at the bottom of his/their
potential, a fact which sources a parametric instability in the equation of motion of the metric pertur-
bations, that are enhanced on small scales. These enhanced perturbations depending on the details of
their collapse dynamics can constitute the seeds either for the formation of virialised objects or for the
formation of PBHs.
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However, soon after the end of the recombination process photons decouple from
matter and are free to travel in the universe producing a black-body radiation spec-
trum, the well studied CMB radiation. This relic radiation is the oldest “snapshot”
of the universe one can get [68].

— 1meV < T < 100keV

After photon decoupling at T ∼ 100keV the different thermal processes present
in the earliest epochs of the cosmic history stop taking place and the universe
gradually cools down entering the so called “dark” ages during which structure
formation takes place through gravitational processes [69]. However, at a tem-
perature of around T ∼ 1meV reionisation processes occur when energetic objects
inside the already formed galaxies ionize the neutral hydrogen creating again, as
during the eras before recombination, the conditions for an ionized plasma in the
intergalactic medium [70, 71, 72]. However, due to the expansion of the universe
the matter is so much diluted that interactions are much less frequent explaining
in this way the transparency of the universe in the subsequent cosmic epochs [73].

— T < 1meV

After reionisation, at a temperature T ∼ 0.33meV, equivalent to 9 billions years
after the Big Bang singularity, dark energy dominates and the universe enters the
era of its accelerated expansion continuing to cooling down [74, 75, 76]. Today, its
temperature, namely the temperature of the CMB relic radiation is T ' 2.725K.

1.3 The Composition of the Universe

Having described in a concise way before the thermal history of the universe, we will
see here how the energy content of the universe evolves with time. In particular, one can
consider that each constituent of the energy content of the universe can be described in
terms of a perfect fluid and assuming for simplicity that there is no considerable energy
transfer between the different constituents the total energy density of the universe can be
read as the sum of the energy density of the different energy components [See Eq. (1.21)],

ρt =
∑

i

ρini,i

(
a

aini

)−3(1+wi)

. (1.29)

where the index i denotes the different constituents which are dominant during the
different epochs of the cosmic history. One then can specify the energy density of every
energy component at a specific time and then from Eq. (1.29) they can infer the dynamics
of ρtot. To do so in a “compact” way, we introduce the dimensionless parameters Ωi which
measure the energy contribution of the different components of the universe in its energy
budget and are defined as

Ωi ≡
ρi
ρc
, (1.30)
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where ρc is the critical energy density required for a flat universe [See the discussion
above Eq. (1.19)]. Consequently, one can easily deduce that Eq. (1.23) can be recast as

Ωtot =
∑

i

Ωi = 1. (1.31)

Following, the results of the Planck satellite which captured and studied the CMB relic
radiation we give below the the Ω parameters for the different constituents of the universe
today. Then, from Eq. (1.29), Eq. (1.30) and Eq. (1.31) we can reconstruct the time
evolution of the composition of the universe.

— Baryonic Matter

In this constituent of the universe counts the ordinary matter in form of cold
baryons, which are composite subatomic particles made up of quarks, like the
protons and the neutrons and which are heavier than the leptons, namely the three
generations of electrons and neutrinos. Their contribution according to Planck

2018 results [33] is Ω
(0)
b ' 0.049 3.

— Radiation

In this constituent, we account for relativistic particles, namely photons of the
CMB and neutrinos. Their overall contribution is extremely tiny and account for

Ω
(0)
r ' 10−4 [33].

— Dark Matter

This constituent of the universe was postulated to exist in order to explain many
observations findings related to galaxy rotation curves and large scale structure
formation. This non-relativistic form of matter, described in terms of a fluid with
w = 0, is of non baryonic form and therefore its unknown nature is an active

field of study. Its current contribution is Ω
(0)
DM = 0.265 [33] and as one can infer

its energy contribution is more than five times bigger than that of the ordinary
baryonic matter.

— Curvature

From the Friedman equation in the form of Eq. (1.19) and taking into account the
definitions of the Ω parameters [See Eq. (1.30)] one can identify and Ω parameter
associated to the spatial curvature which in the case where the universe is not flat,
namely when K = ±1, can be viewed as explained above Eq. (1.23) as a fluid
with w = −1/3. However, the observations made so far are still consistent with

a spatially flat universe with Ω
(0)
K ' 0. The current constraints on ΩK read as

Ω
(0)
K = −0.001± 0.002 at 95% confidence level [33].

— Dark Energy

This constituent of the universe was postulated to exist like dark matter to balance
the missing bulk part of the total energy density of the universe. It was also
introduced to explain the acceleration in the expansion of the universe observed

3. With the index (0) we refer to today.
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in ’90s which points towards the existence of a fluid with w ' −1. This is why
the cosmological constant Λ is considered one of the main candidates for the dark
energy. Similarly to dark matter, dark energy constitutes an active field of research

and its current energy contribution is calculated to be Ω
(0)
DE ' 0.685 [33].

In Fig. 1.1 below, we see in the left panel the current composition of the universe dis-
played in a pie chart. In left panel on the other hand, we show the evolution of the
energy contribution of the different constituents of the universe as a function of the
scale factor normalized with respect to the scale factor today, a0. As one may see, by
assuming this simple picture of non interacting fluids for the different constituents of
the universe we reproduce quite well the thermal history of the universe presented in
Sec. 1.2. We clearly see an initial radiation domination epoch for a < aeq during which
different phase transitions take place and thermal processes lead to the primordial nu-
cleosynthesis of the light elements and nuclei. Then, a subsequent matter domination
era for aeq < a < aacc drives the universe cosmic history during which the large scale
structures form and finally a late dark energy era for a > aacc during which the universe
expands in a accelerated way.

Baryons (4.9%)

Dark Matter (26.5%)

Radiation (0.01%)

Dark Energy (68.5 %)

Curvature (<0.1%)
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Figure 1.1 – Left Panel: The composition of the universe today. Right Panel: The
dynamics of the energy density contribution of the different constituents of the universe.
The left dashed vertical line denotes the time at matter-radiation equality (eq) when
the first atoms form while the right dashed vertical one denotes the time when the dark
energy dominated the universe energy budget driving an accelerated expansion (acc).

1.4 The Problems of the Hot Big Bang Universe

After having presented the fundamental notions and the theoretical framework of a
homogeneous and an isotropic universe and giving a brief thermal history of our universe
dictated by the Hot Big Bang theory we feature here the basic shortcomings of the
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standard Hot Big Bang cosmology that motivated inflation [47, 48, 49, 50, 51]. Actually,
we will refer to two of them: the horizon problem and the flatness problem.

1.4.1 The horizon problem

The horizon problem [77, 78] or large scale homogeneity problem is qualitatively the
fact that regions separated by distances greater than the speed of light times the age
of the universe (no causal connected regions) are observed to have similar density and
temperature fluctuations up to 10−5, a fact which is contradicting since they should not
know each other due to the principle of special relativity for the finitude of the speed of
light. Therefore, there should have been an information exchange between these regions
in the past. More quantitatively, we can see the evolution of the horizon and of physical
lengths during radiation and matter dominating epochs. In particular, from equation
Eq. (1.22) one obtains for radiation domination (RD) (w = 1/3) and matter domination
(MD) (w = 0) that

RH =





4
3MPl

√
3
ρini

(
1 + 3

2

√
ρini
3

t−tini
MPl

)
, for RD

MPl

√
3
ρini

(
1 + 3

2

√
ρini
3

t−tini
MPl

)
, for MD

(1.32)

On the other hand, the physical distances evolve as we showed before as

Rphys = a(t)r =




aini

(
1 + 3

2

√
ρini
3

t−tini
MPl

)1/2
, for RD

aini

(
1 + 3

2

√
ρini
3

t−tini
MPl

)2/3
, for MD

Thus, one can infer that the horizon scale, RH grows faster than physical distances both
in the RD and MD eras. Consequently, in the past there should have been regions
which were causally disconnected. However, our universe is extremely homogeneous and
isotropic (e.g. CMB temperature fluctuations δT

T ∼ 10−5 on angular scales larger than
1 deg, which corresponds to the horizon scale at the time of the emission of CMB).

1.4.2 The Flatness Problem

Regarding the flatness problem one can see how the Ω parameter, related to the
spatial curvature of the universe through Eq. (1.19), evolves in time. From Eq. (1.19)
we see that if the universe is perfectly flat today then Ω = 1 at all times. If however
there is a small curvature K 6= 0 then Ω will depend on time. Below, we consider the
case where K = +1 6= 0 for the RD and MD eras. Knowing then that ρr ∝ a−4 for the
RD era and ρm ∝ a−3 for the MD era and taking into account that H2 ∝ ρt, Eq. (1.19)
is equivalent to

Ω− 1 ∝
{
a2, for RD

a, for MD
(1.33)
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Consequently, knowing that Ω ∼ 0.01 today and that Tr ∼ 1/a one can easily infer that
at the beginning of the radiation dominated era, which here we identify with the epoch
of BBN where TBBN ∼ 1MeV,

|Ω− 1|T=TBBN

|Ω− 1|T=T0

≈
(
a2

BBN

a2
0

)
≈
(

T 2
0

T 2
BBN

)
≈ O(10−16) (1.34)

where T0 ∼ 10−13eV ∼ 2.7K is the present temperature of CMB. Therefore, in order to
recover the value Ω0−1 ∼ 1 today we must assume that the value of Ω−1 at early times
(Planck era) is perfectly fine-tuned to a value very close to zero 10−16 but not exactly
zero! That is the flatness problem, also dubbed as the “fine-tuning” problem and lies in
understanding the mysterious mechanism which led the universe to start its expansion
with almost spatially flat initial conditions [79, 80].

1.4.2.1 The flatness problem and the entropy conservation

Let us see here, how the flatness problem is related to the assumption of the adiabatic
expansion. Equation (1.19) can be recast in the RD era, where ρr = π2

30 g∗(T )T 4 with g∗
being the number of relativistic degrees of freedom when the universe’s temperature is
T , as follows

Ω− 1 =
90

π2g∗(T )

kM2
Pl

a2T 4
=

[
1440

π2g∗(T )

]1/3 kM2
Pl

S
2
3T 2

, (1.35)

where in the last equality we use the fact the entropy S is defined as S ≡ sV , where the
entropy density s reads as s = 2π2

45 g∗(T )T 3 and the volume V = a3. Thus, Eq. (1.35) at
the BBN time reads as

|Ω− 1|T=TBBN
=

[
1440

π2g∗(T )

]1/3 M2
Pl

S
2/3
BBNT

2
BBN

≈ 10−16 (1.36)

In the last step, we used the fact that the entropy in a comoving volume is conserved
and it is equal to 1090 according to observational evidence from the matter-antimatter
asymmetry [81] and that the number of relativistic degrees of freedom at BBN time,
where TBBN ∼ 1MeV, is g∗(TBBN) = 106.75, having accounted only for the SM particles.
Evidently, we find again the same “fine-tuning” problem as before in which the universe
should have started with almost spatially flat initial conditions. However, now this “fine-
tuning” problem arises because we have adopted the assumption of entropy conservation.

1.4.3 Solving the problems

Regarding the horizon problem mentioned above, in order to solve it, the universe
has to pass through a primordial period in which physical lengths Rphys grow faster than
the horizon scale H−1. Specifically, if there is a period in which physical lengths grow
faster than the horizon then the photons that appear to be causally disconnected in the
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time of last scattering (when CMB was emitted) where λ > H−1 had the chance to
“talk” to each other in a primordial cosmic era where λ < H−1. In this way, we recover
the homogeneity and isotropy of CMB solving the horizon problem. This last condition
can be expressed in terms of the evolution of the scale factor a(t). Thus, since λ ∝ a
and H−1 = a/ȧ we should impose a period in the cosmic history where

(
λ

H−1

).
= ä > 0. (1.37)

This equation can be recast, using Eq. (1.17) and the fact that during this early cosmic
era the universe’s energy content is dominated by a fluid X with an equation-of-state
parameter wX = p/ρ, in the following form

wX < −1/3. (1.38)

In order to solve now the flatness/entropy problem, we should demand that in an initial
era of the cosmic history before the onset of the radiation era, the parameter Ω − 1
should decrease allowing in this way to obtain very low values of the order of 10−16. To
ensure this, one can assume that the universe during this early era is prevailed by a fluid
X with equation of state wX. Combining therefore Eq. (1.19), Eq. (1.21) and Eq. (1.23)
one straightforwardly obtains that

Ω− 1 ∝ a1+3wX (1.39)

Consequently, in order for Ω− 1 to decrease one requires that

wX < −1/3. (1.40)

This last condition, wX < −1/3 for the solution of the flatness/entropy problem is the
same as the condition to address the horizon problem and defines the inflationary period
in the cosmic expansion. During this period, the universe expands in an accelerated way,
i.e. ä > 0 and the Ω parameter at the end of inflation is forced to take a value very close
to one, but not exactly one, independently of its initial value.

At this point, we should stress out that during inflation the universe expands in an
adiabatic way, i.e. there is no entropy production. More rigorously, this means that one
should ensure the covariant conservation of the stress energy tensor, i.e. ∇µTµν = 0. To
ensure however the transition to the radiation era the universe should pass through a non
adiabatic period of reheating during which an enormous amount of entropy is generated
through relativistic degrees of freedom, solving in this way naturally the flatness/entropy
problem. This early phase transition era is broadly quoted as (pre)reheating and was one
of the topics studied within my PhD where we studied together with by collaborators
the production of PBHs during the period of preheating in the context of single-field
inflationary models.
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Chapter 2

PBH Formation

In this chapter, we introduce the fundamentals of PBH physics. Firstly, we give the
basic theoretical framework in the field of PBH research by introducing the notions of
the PBH mass function, the PBH characteristic scale and the PBH threshold. Then,
we present briefly the current observational status in the domain of PBH physics by
describing the different observational constraints on the abundance of PBHs as a function
of their mass. Finally, we underlie the implications of PBHs in cosmology.

2.1 PBH Basics

2.1.1 The PBH Mass

As we saw in the discussion after Eq. (1.26) the expression which relates the mass
inside the Hubble radius and the Hubble radius is the same expression used for the defi-
nition of the black hole apparent horizon in spherical symmetry. This fact, as mentioned
in Sec. 1.1.6, reflects the common physical nature of the cosmological horizon and the
black hole apparent horizon from the point of view of general relativity. In particular,
the black hole apparent horizon is the asymptotic location of the outermost trapped sur-
face for outgoing light-rays whereas the cosmological horizon is the innermost trapped
surface for incoming light rays. One then expects that the mass of a PBH is the same
with the mass inside the horizon at PBH formation epoch, which is considered roughly
as the time at which the PBH characteristic scale crosses the Hubble radius. However,
more accurate analysis shows that the mass of a PBH is a fraction of the mass inside
the horizon at the time of PBH formation and reads as

mPBH = γMH, (2.1)

where γ ∼ O(1) is an efficiency parameter encapsulating the details of the gravitational
collapse.

At this point, one should stress out the importance of scaling laws in PBH formation
process firstly noted by Jedmazik and Niemeyer [82] and further investigated by Musco
et al. [83, 84] which can refine the computation of the PBH mass. Specifically, when
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the local/mean energy density excess is sufficiently close to the critical threshold δc, i.e.
|δ − δc| � 1, then the refined PBH mass is given by the following scaling law,

mPBH ∝MH (δ − δc)
p , (2.2)

where p ' 0.37 is a universal exponent. The above critical scaling behavior was already
found in the context of spherical symmetric collapse of a massless scalar field firstly
studied by Choptuik [85] and further explored by subsequent studies [86, 87]. Here,
it is important to mention that the scaling law in Eq. (2.2) breaks down when one
approaches very small values of the difference δ− δc due to generation of shock waves in
nearly critical collapse, imposing in this way a minimum mass for mPBH at the order of
10−4 of the mass inside the horizon [88].

2.1.2 The PBH characteristic scale

Having defined before the PBH mass as the horizon mass at the time of PBH for-
mation, approximately equal to the time at which the PBH characteristic scale crosses
the Hubble radius, one will inevitably ask the question what is this characteristic scale.
In general, assuming spherical symmetry, it is considered to be roughly equal to the
scale at which the local energy density excess of the overdensity/energy density profile,
δ(r), 1 at PBH formation time is zero. However, there are energy density profiles which
are always positive, such as the Gaussian one, which give an infinite PBH scale. These
profiles are called non-compensated profiles whereas profiles in which δ(r) becomes neg-
ative at some point are the compensated ones. See Fig. 2.1 in which a compensated and
a non-compensated energy density profiles are shown together with the respective PBH
scales.

For this reason, the PBH characteristic scale is usually defined in a more refined way
for any type of energy density profiles by using the notion of the compaction function,
firstly introduced by Shibata & Sasaki in [90] and then recently used by Musco [89].
The compaction function C is defined in a similar fashion as the Schwarzschild condition
for the formation of a black hole apparent horizon, R = 2GM and can be seen as a
local measure of the gravitational potential. In particular, it is defined as twice the local
mass-excess over the areal radius and reads as

C(r, t) ≡ 2
δM(r, t)

R(r, t)
, (2.3)

where δM(r, t) is the mass excess of a local overdense region and R(r, t) = a(t)r is the
areal radius of this region. Then, the characteristic comoving scale, rm of the overdense
region, is defined as the the position of the maximum of the compaction function, usually

1. The local energy density excess is defined as δ(r, t) ≡ ρ(r,t)−ρb(t)
ρb(t)

, where ρb(t) is the energy density

of the background and ρ(r, t) is the energy density of the overdensity. The energy density profile δ(r)
can be viewed as well as the time-independent part of the local energy density excess in the superhorizon
regime where one can perform a gradient expansion approximation [89].

26



0 2 4 6 8 10
r/rk

0.0

0.2

0.4

0.6

0.8

1.0

(r
)

rm, 2rm, 1

1(r) = Ae ( r
rk )2

2(r) = A[1 2
3 ( r

rk )2]e ( r
rk )2

Figure 2.1 – The PBH scale for a compensated and a non-compensated energy density
profile δ(r). The blue solid line represents a Gaussian (non-compensated) energy density
profile, denoted as δ1(r), whereas the red solid line stands for a Mexican-hat (compen-
sated) profile, denoted as δ2(r). In both profiles, the parameters A and rk are chosen to
be A = rk = 1. By making use of Eq. (2.4), we plot with the vertical dashed blue line
the PBH scale in the case of the Mexican-hat profile and with the vertical dashed red
line the PBH scale for the Gaussian profile.

computed on the superhorizon regime, where the compaction function becomes time-
independent [89].

C′(rm) = 0. (2.4)

In Fig. 2.1, one clearly sees that if using the condition 2.4, they can clearly determine
a finite PBH scale even for non-compensated energy density profiles, like the Gaussian
one.

2.1.3 The PBH Mass Function

We consider here the standard PBH formation scenario during which PBHs form out
of primordial energy density fluctuations when the local/mean energy density excess of
an overdense region is larger than a critical threshold, δc. In this case, when δ > δc the
overdense region stops expanding and collapses against the pressure of the background
medium, forming in this way a PBH. Consequently, in the context of Press-Schechter
formalism [91], the PBH mass function is defined as the probability that the local/mean
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energy density excess of an overdense region of mass M is larger than a critical threshold
δc:

2

β(M) ≡ P [δ > δc] =

∫ ∞

δc

P (M, δ)dδ, (2.5)

where P (M, δ) is the probability density function (PDF) of the density fluctuations which
can potentially collapse and form PBHs. The PBH mass function is a very important
quantity since it is the one constrained by observational probes. See [29] for a review
about the constraints on β(M).

Regarding the limitations of the Press-Schechter formalism, which render approxi-
mate this approach in some regimes one should mention the well known cloud-in-cloud
problem [92] in which small overdense regions which are parts of larger overdensities
and collapse to form PBHs are not taken into account leading in this way to an under-
estimation of the PBH abundance. In addition, the Press-Schechter approach assumes
an underlying Gaussian density field which is not only the case. To address thus these
problems, the excursion-set formalism was introduced initially by [93] and further devel-
oped by [94, 95] to tackle mainly the cloud-in-cloud problem, in which one should treat
the density fluctuation, δ, as a random variable and solve stochastic model equations to
obtain analytically [96, 97, 98] or numerically [95, 99] the mass function. Regarding
now the limitations on the Gaussian nature of the underlying density fields, there have
been proposed some extensions of the Press-Schechter formalism in the context of non-
Gaussian regimes [100, 101] as well as studies of non-Gaussian initial conditions in the
context of the excursion set theory regarding the halo mass functions [102, 103].

At this point, one should stress out that the PBH mass function is also often cal-
culated in the context of peak theory [104] which studies the statistics of the peaks of
a Gaussian density field and which assumes that a PBH is formed when a local den-
sity peak exceeds a certain threshold value. The peak theory approach similarly to the
Press-Schechter formalism suffers as well from the Gaussian assumption for the under-
lying density field.

Here, one should point out that the Press-Press-Schechter forrmalism, the peak the-
ory as well as the excursion set theory are not related to the companction function
method introduced before to compute the PBH characteristic scale.

2.1.4 The PBH Threshold

As we saw before, in order to determine the PBH mass function one should have
an expression for the PDF of the density fluctuations which can collapse and form
PBHs as well as an expression of the critical threshold value, δc. The PDF of the
density fluctuations is rather model dependent and one cannot say much more about it
without specifying the specific model which can give rise to PBH formation. The critical
threshold however, in most cases, depends on the characteristic scale and the shape of

2. In the standard Press-Schechter approach, the density contrast of an overdense region is smoothed
using a window function. In this way, it is introduced a smoothing scale R and the smoothed density
contrast becomes δ(x, R) ≡

∫
d3x′W (|x′ − x|, R)δ(x′), where W (|x′ − x|, R) is the window function.
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the collapsing overdensity region, the time at which the gravitational collapse is taking
place [10] as well as on the details of the surroundings. In what follows, we will try to
give a brief summary in a historical order of the analytic and numerical works done so
far for the determination of the critical PBH formation threshold δc.

2.1.4.1 Early Approaches

The first historical attempt for the determination of the PBH formation threshold was
done by Bernard Carr and Stephen Hawking between 1974 and 1975 [9, 10] where they
used a simplified Jeans instability criterion in the context of Newtonian gravity to de-
termine δc. Specifically, they required that an overdense region in the early Universe
can collapse to form a PBH if its characteristic scale is larger than the Jeans length at
maximum expansion. This led B. Carr to his famous result that δc ∼ w at horizon cross-
ing time, where w is the equation-of-state parameter defined in Sec. 1.1.5. Afterwards,
the PBH formation threshold was studied for the first time numerically through hydro-
dynamic simulations by some pioneering works from Nadezhin, Novikov & Polnarev in
1978 [105], Bicknell & Henriksen in 1979 [106] and Novikov & Polnarev in 1980 [107].

Then, after a break of almost 20 years, the PBH formation threshold was studied
again by highly sophisticated simulations this time performed in 1999 by Niemeyer &
Jedmazik [82] and Shibata & Sasaki [90] which expressed the PBH formation threshold
in terms of the energy density and curvature perturbation and which gave the same
range for δc varying between 0.3 and 0.5 depending on the shape of the energy den-
sity/curvature profiles considered.

2.1.4.2 Contemporary Approaches

In the last decades, a lot of progress has been made in the research for the determi-
nation of the PBH formation threshold both at the analytic as well as at the numerical
level.

In particular, T.Harada, C-M. Yoo & K. Kohri in 2013 [108] considered a “three
zone” spherical symmetric model for the description of the energy density field in which
an initially sharply peaked overdense region is modeled as a homogeneous core (closed
universe) surrounded by an underdense shell which separates the overdense region from
the expanding background universe. In the end, after comparing the time at which the
pressure sound wave crosses the overdensity with the onset time of the gravitational
collapse they updated the PBH formation threshold value obtained by Carr in 1975 and
in the uniform Hubble gauge their expression for δc as a function of the equation-of-state
parameter w reads as:

δc = sin2

(
π
√
w

1 + 3w

)
. (2.6)
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At this point, it is important to stress out that the above mentioned expression for δc is
valid for at least the cases where w � 1 where one expects negligible pressure gradients
which can not break up the homogeneity of the overdense region.

Some years later, knowing the dependence of δc on the shape of the initial energy
density perturbation which collapses to a PBH already since the early numerical works in
1999 from Niemeyer & Jedmazik [82] and Shibata & Sasaki [90], Germani & Musco [109,
89] quantified this effect by introducing a shape parameter in terms of the compaction
function defined in Eq. (2.3) through which one can describe the shape of the initial
density perturbation around the peak of the collapsing overdensity. With “shape” here,
one refers to the broadness or sharpness of the energy density perturbation around its
peak. In particular, the shape parameter is related to the second derivative of the
compaction function at the comoving characteristic scale of the perturbation and it is
defined on superhorizon scales where the compaction function is time independent as

α ≡ −r
2
mC′′(rm)

4C(rm)
(2.7)

Here, it is important to mention that the compaction function computed at rm is equal,
as it can be straightforwardly checked, to the average energy density excess over a volume
of radius rm,

δm ≡
1

V

∫ rm

0
4πr2δ(r) = C(rm), (2.8)

where V = 4πr3
m/3 and δ(r) is the superhorizon time independent energy density pertur-

bation. Consequently, one can formulate the PBH formation criterion by requiring that
a PBH forms when the compaction function at rm, C(rm) or equivalently the average
perturbation amplitude, δm is greater than a critical threshold which depends on the
shape of the initial energy density profile as well as on the characteristic scale, rm of
the collapsing overdense region. This threshold was studied numerically in [110] and
recently in [89].

Soon after the work of [89] was completed, the authors of [111], by making use
of an effective basis for the initial curvature profile which can reproduce any realistic
curvature for the calculation of the PBH formation threshold, deduced in the case of
PBH formation during a radiation era, a universal analytic threshold for the average
compaction function as a function of the shape parameter defined in Eq. (2.7). Their
analytic expression for the threshold reads as

δc =
4

15
e−

1
α

α1− 5
2α

Γ
(

5
2α

)
− Γ

(
5

2α ,
1
α

) , (2.9)

where Γ(x) is the gamma function and Γ(x, y) is the incomplete gamma function and
α is the shape parameter given by Eq. (2.7). The work of [111] was generalized for
an arbitrary equation-of-state parameter w and it was found that for w > 1/3 one can
find an analytic formula for δc as a function of α and w. We do not give here the full
expression since it is quite complicated. For w < 1/3 the determination of an analytic

30



PBH formation threshold remains an open issue given that in this regime the full shape
of the compaction function is necessary.

At this point it is very important to underlie the huge interest raised recently in the
role of non-linearities [112, 113, 114, 115] and non-Gaussianities [116, 117, 118, 119, 120]
for the determination of the PBH formation threshold as well as the dependence of the
PBH abundance [121] on the details of the initial power spectrum of curvature perturba-
tions which gave rise to PBHs [109, 122, 123]. In addition, we should mention that the
majority of the research work conducted in the literature assumes spherical collapse of
the initial perturbations which leads to the production of non rotating PBHs. However,
in a more realistic case, one can in principle expect non spherical collapse of the initial
overdense regions which in general induces velocity field generation and therefore rota-
tion effects. This last aspect was studied both analytically [124] and numerically [125]
showing that in principle a non-spherical collapse can make harder the PBH formation
leading to the increase of the PBH formation threshold. Finally, regarding rotation,
which has not necessarily generated due to non-spherical gravitational collapse, there
has been been done a lot of analytic [126, 127] and numerical work [128, 129] pointing
out that the PBH formation threshold in general increases with the angular momentum
which in its turn prevents the gravitational collapse.

2.1.5 The PBH formation threshold in a time-dependent w background

Having reviewed early and contemporary approaches about the determination of
the PBH formation threshold, we extract here for the first time, to the best of our
knowledge, the PBH formation threshold, δc, in the case of a time-dependent equation-
of-state parameter, w. To do that, we follow closely and generalize the analytic treatment
of [108], in which one can compute δc in the uniform Hubble gauge defined in the next
subsections, by considering the “three-zone” model adopted in [108]. In particular,
in this subsection, we initially introduce the “three-zone” model, then we compute the
energy density perturbation of the overdensity region in the uniform Hubble gauge and
finally we present a scheme to compute the PBH formation threshold in the case of a
time-dependent equation-of-state parameter.

2.1.5.1 The “three-zone” model

In the spherically symmetric “three-zone” model, the overdense region is a homo-
geneous core (closed universe) surrounded by a thin underdense spherical shell which
compensates the overdensity and separates the overdense region from the expanding
background universe. See below Fig. 2.2.

On the one hand, the background metric corresponds to a flat FLRW universe and
reads as

ds2 = −dt2 + a2
b(t)

(
dr2 + r2dΩ2

)
, (2.10)
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Figure 2.2 – The spherical “three-zone” model: The overdensity region is shown in blue
and it is surrounded by a spherical underdense layer depicted with cyan. The boundary
between the overdensity region and the spherical underdense layer is shown with the
green circumference at χ = χa whereas the boundary between the underdense layer and
the FLRW flat background is depicted with the brown circumference at r = rb.

where dΩ2 is the line element of a unit two-sphere and ab(t) is the scale factor of the
background universe. The respective Friedmann equation reads as

H2
b =

(
ȧb

ab

)2

=
ρb

3M2
Pl

, (2.11)

where ρb and Hb is the energy density and the Hubble parameter of the background
universe.

On the other hand, the overdense region corresponds to a close (K = 1) FLRW
universe with a metric

ds2 = −dt2 + a2(t)
(
dχ2 + sin2 χdΩ2

)
(2.12)

and a Friedmann equation (
ȧ

a

)2

=
ρ

3M2
Pl

− 1

a2
, (2.13)
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where ρ is the energy density of the overdense region.
The underdense spherical shell is matched to the closed FLRW universe describing

the overdensity at χ = χa while the flat FLRW background universe is matched to the
the compensating underdense layer at r = rb. Therefore, the areal radius at the edge
of the overdense region, Ra as well as that a the edge of the surrounding underdense
spherical shell read as

Ra = a sinχa, Rb = abrb (2.14)

2.1.5.2 Defining the energy density perturbation on the uniform Hubble
gauge

Then, having introduced the spherical “three-zone” model, we extract here the energy
density perturbation at horizon crossing time on the uniform Hubble gauge, in which
the Hubble parameters of the overdensity and that of the background are the same, i.e.
H = Hb. To do so, we firstly introduce the energy density parameter, Ω of the overdense
region defined as

Ω ≡ ρ

3M2
PlH2

= 1 +
1

a2H2
, (2.15)

where in the last equality we have used Eq. (2.13). Then, using the expression for the
areal radius at χ = χa, i.e. Ra = a sinχa, as well as the definition of the horizon scale,
i.e. RH = H−1, one can find straightforwardly that

(Ω− 1)

(
Ra

RH

)2

= sin2 χa, (2.16)

an expression which relates Ω with the scale of the overdensity. In addition, one can
relate Ω with the energy density perturbation of the overdense region with respect to
the background defined as

δ ≡ ρ− ρb

ρb
. (2.17)

Specifically, by solving Eq. (2.17) for ρ and substituting ρ in Eq. (2.15) one can obtain
that

Ω = (1 + δ)

(
Hb

H

)2

, (2.18)

where ρb has been expressed in terms ofHb through Eq. (2.11). Then, one can extract the
energy density perturbation at horizon crossing time, δH, at the time when Ra = H−1

b ,
by solving for δ Eq. (2.18) and substituting Ω from Eq. (2.16). Finally, one gets that

δH =

(
H

Hb

)2

− cos2 χa. (2.19)

In the uniform Hubble time slicing, in which H = Hb, Eq. (2.19) becomes

δUH
H = sin2 χa, (2.20)
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where δUH
H denotes δ in the uniform Hubble gauge at horizon crossing time. We should

note here that the above expression for δUH
H does not depend on the equation of state of

the universe at PBH formation time.

2.1.5.3 The PBH formation threshold refined

After expressing the energy density perturbation in the uniform Hubble gauge we
compute now the PBH formation threshold in the case of a time dependent equation-
of-state parameter. In particular, we compute the threshold by comparing the pressure
and the gravitational force or equivalently the sound crossing time over the radius of the
overdensity and the free fall time from the maximum expansion to complete collapse. To
do so, we redefine the scale factor a and the cosmic time t such as that the Friedmann
equation for the overdensity, Eq. (2.13) takes the Tolman-Bondi form, valid for the dust
case, which has an analytic parametric solution. Specifically, we redefine a and t as
follows

ã = ae3I(a) (2.21)

dt̃ = dte3I(a) [1 + 3w(a)] (2.22)

where I (a) ≡
∫ a
aini

w(x)
x dx and the index ini denotes the initial time. Then, solving the

continuity equation (1.18) for a time-dependent equation-of-state parameter and using
the coordinate transformation of Eq. (2.21), the Friedmann equation of the overdensity
region (2.13) can be written in a dust form as

(
dã

dt̃

)2

=
A

ã
− 1, (2.23)

where A =
ρinia

3
ini

3M2
Pl

and we have used the fact that dã
dt̃

= da
dt . The above equation can be

integrated and gives a parametric solution of the form

ã = ãmax
1− cos η

2
, t̃ = t̃max

η − sin η

π
, (2.24)

with η ∈ [0, 2π]. In the above parametric solution, η is the conformal time defined in
terms of redefined scale factor and cosmic time, i.e. dt̃ ≡ ãdη, and ãmax and t̃max are
the redefined scale factor and cosmic time at the maximum expansion time respectively
and are given as follows:

ãmax =
Ωini

Ωini − 1
ãini, t̃max =

π

2
ãmax. (2.25)

Concerning now the sound wave propagation in a close Friedman geometry, the latter
is dictated by the following equation

a
dχ

dt
= cs(t), (2.26)
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where c2
s is the sound speed of an adiabatic fluid with a time-dependent equation-of-

state parameter, w computed in the Appendix A.1. Using now the conformal time η
introduced before with the use of the redefined variables ã and dt̃ and Eq. (2.24) the
above equation becomes

dχ

dη
=

cs(η)

1 + 3w(η)
(2.27)

One then can establish the PBH formation criterium by demanding that the time at
which the sound wave crosses the radius of the overdensity, i.e. η(χa) is larger than the
time at which the overdensity reaches the maximum expansion, i.e. ηmax = π. In this
way, the pressure gradient will not have time to prevent the gravitational collapse whose
onset time is considered here as the time of maximum expansion. To do so, in contrast
with the treatment of [108] one should solve numerically Eq. (2.27) and demand that

ηnum(χa) = π, (2.28)

where ηnum(χ) is the numerical solution of Eq. (2.27) and χa is the comoving scale at
which the sound wave crosses the overdensity at the time of the maximum expansion.
Therefore, from Eq. (2.20) one can see that in the uniform Hubble slice gauge, the PBH
formation threshold for a time dependent equation-of state parameter reads as

δc = sin2 χa, (2.29)

with χa being the solution of ηnum(χa) = π.
At this point, one should stress out that the black hole apparent horizon should form

after the onset of the gravitational collapse, i.e. the time of the maximum expansion.
Thus, one should demand as well that ηh > ηmax = π where ηh is the time of formation
of the apparent horizon which is obtained when 2M

R = 1 where M is the Misner-Sharp
mass in spherical symmetric spacetimes [See in [130, 131] for more details]. A rigorous
analysis shows that in the case of a closed FLRW universe, the condition 2M

R = 1 gives
that

ηh = 2χa or 2π − 2χa. (2.30)

Given the fact that the coordinates in Eq. (2.12) cannot cover entirely the overdense
region of perturbations for which π/2 < χa < π we focus here on perturbations for
which 0 < χa < π/2 and therefore ηh = 2π − 2χa. Demanding then that ηh > ηmax = π
one has that χa < π/2. Here, we should stress out that in the case w is constant then
c2

s = w, Eq. (2.27) can be solved analytically and the requirement that η(χa) = π with
0 < χa < π/2 leads to the formula for δc obtained in [108].

Consequently, in order to compute the PBH formation threshold in the case of a
time-dependent w background one should solve numerically Eq. (2.27) and then demand
that ηnum(χa) = π with 0 < χa < π/2. δc then is given from Eq. (2.29). This result
generalizes the findings of [108] and can be applied in the case of time-dependent w
epochs such the preheating epoch during which PBHs can be abundantly produced or
the QCD phase transition.

35



However, it is important to stress out that the prescription described above for the
computation of δc in the case of a time-dependent equation-of-state parameter, can be
only viewed as an approximate one since it requires the homogeneity of the central
overdense core that is not the case when one is met with strong pressure gradients. It
is valid then for situations in which w � 1. As noticed also in [89, 111], the “three-
zone” model initially introduced by [108] gives δc for a very sharply peaked homogeneous
overdensity profile which eventually collapses into a black hole but it does not take into
account the shape dependence of the energy density profile discussed in Sec. 2.1.4 and
the role of pressure gradients which can potentially disfavor the gravitational collapse
and increase the value of δc. For this reason, the PBH formation threshold computed
within the “three-zone” model can be viewed as a lower bound for δc.

Let us now express the PBH formation threshold in the comoving gauge which is the
one which is used mostly in numerical simulations [132, 133, 83, 84]. In the comoving
gauge, the energy density perturbation at horizon crossing, δcom

H can be written as [89]

δcom
H = Q(t)

1

3r2

d

dr

[
r3K(r)

]
r2

m, (2.31)

where rm is the comoving scale of the collapsing overdensity region, K(r) is the curvature
profile in the quasi-homogeneous solution regime [89] and Q is a function of time which
is given by

Q(t) = 1− H(t)

a(t)

∫ a

aini

da′

H(a′)
. (2.32)

In the case of a constant equation of state, Q = 3(1+w)
5+3w . For the case of the “three-zone”

model considered here, K(r) = 1 and rm = sinχa and as a consequence

1

3r2

d

dr

[
r3K(r)

]
r2

m = sin2 χa = δUH
H . (2.33)

Therefore, the energy density perturbation at horizon crossing time in the comoving and
the uniform Hubble gauge are related as follows

δcom
H = Q(t)δUH

H . (2.34)

In Fig. 2.3, we plot the evolution of the PBH threshold in the comoving gauge, δcom
c ,

the one used mostly in numerical simulations, in the case of a time-dependent equation-
of-state parameter varying from 0.03 to 0.1 within 2 e-folds having taken into account the
prescription described above. We compare also our prescription with the prescription of
[108] valid for a constant equation-of-state parameter.

As one may see, the PBH formation threshold computed with a time-dependent w
prescription is almost constant with a small decrease at N = 4 which is expected due to
the decrease of w at N ∼ 4. Interestingly, one can notice that despite the fact with the
HKY prescription δc decreases as w, if one takes into account the time-dependence of w
this decrease is smoothed presenting a small feature around the minimum of w. This ef-
fect can have important consequences for PBH formation since a higher δc means smaller
PBH abundances with possible consequences on the targets of future experiments.
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Figure 2.3 – Left Panel: The equation-of-state parameter as a function of the e-fold
number N with w0 = 0.1, wf = 0.03, ∆N = 0.4 and Nf = 4. Right Panel: The PBH for-
mation threshold, δcom

c , in the comoving gauge, in the case of a time-dependent equation-
of-state parameter (blue line) superimposed with δcom

c computed with the Harada, Kohri,
Yoo (HKY) prescription, valid for a constant equation-of-state parameter.

Below, in Fig. 2.4, we show as well the dependence on w and δc on ∆N which is the
width of variation of w(N). Interestingly, as it is expected, as one increases ∆N , w(N)
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Figure 2.4 – Left Panel: The equation-of-state parameter as a function of the e-fold
number N for different values of ∆N and with w0 = 0.1, wf = 0.03 and Nf = 4. Right
Panel: The PBH formation threshold, δcom

c , in the comoving gauge, as a function of
(N −Nf)/∆N for different values of ∆N , in the case of a time-dependent equation-of-
state parameter (solid lines) superimposed with δcom

c computed with the Harada, Kohri,
Yoo (HKY) prescription, valid for a constant equation-of-state parameter (dashed lines).

approaches a constant value and the w time-dependent prescription described above
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approaches the one of HKY prescription valid for constant w.

2.2 Observational Constraints on PBHs

We review here the current observational constraints on the abundance of PBHs
distinguishing between PBHs having been evaporated by now and PBHs that are still
evaporating, following closely the recent review on the PBH constraints by Carr et
al. [29]. Concerning the extraction of the constraints presented below, one assumes a
monochromatic PBH mass function (PBHs are produced with the same mass) and that
PBHs form during the radiation-dominated era.

2.2.1 Evaporated PBHs

We focus here on evaporated PBHs, which have evaporated by now or they evaporate
at the present time. Broadly speaking, the evaporated PBHs are black holes with masses
mPBH < 1015−1016g. The constraints on the abundance of evaporated PBHs are mainly
related to BBN constraints, constraints from extra-galactic γ rays, constraints from
galactic cosmic rays and constraints from CMB distortions. The summarized constraints
for the evaporated PBHs are given in Fig. 2.6, taken from [29]. In Fig. 2.6, the rescaled
PBH mass function β′(M) at formation 3 is plotted as a function of their mass M . The
relevant constraint in the case of absence of Hawking evaporation (black dotted line in
Fig. 2.6) are shown as well by requiring that energy density parameter of PBHs today
is smaller than one, i.e. ΩPBH(M) ≡ ρPBH

ρc
< 1. Below, we summarize very briefly the

main physical mechanisms which give rise to the constraints of the evaporated PBHs
depending on their mass.

— BBN Constraints

The BBN constraints on the PBH abundance are depicted with the magenta solid
line in Fig. 2.5. In particular, PBHs with masses mPBH < 109g can not be con-
strained by studying the BBN processes since they evaporate well before the time
of the weak freeze-out and thus they are not tractable. For PBHs with masses
mPBH ≈ 109 − 1010g, Hawking radiated mesons and antinucleons induce extra in-
terconversion of protons to neutrons increasing in this way the neutron-to-proton
ratio at the time of freeze-out of the weak interaction [134] triggering in this way
an increase in the final 4He abundance [135]. Regarding now the PBHs with
masses mPBH ≈ 1010−1012g, long-lived high energy hadrons produced out of PBH
evaporation, such as pions, kaons and nucleons remain long enough in the ambient
medium and trigger dissociation processes of light elements produced during BBN
[136], reducing in this way 4He and increasing D,3He,6Li and 7Li. Finally, for the

3. The rescaled PBH mass function β′(M) is related to the PBH mass function β(M) through the

following relation β′(M) = γ1/2
(

g∗
106.75

)−1/4
β(M), where g∗ is the number of the relativistic degrees of

freedom at formation time and γ is a parameter of order one associated to the details of the gravitational
collapse of an overdensity region to a PBH. For more details see [29].
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Élément sous droit, diffusion non autorisée

Figure 2.5 – The constraints on the abundance of the evaporated PBHs as a function
of their mass. With the colored lines one see the constraints on the rescaled PBH
mass fraction β′(M) at formation due to different physical phenomena explained in the
main text and assuming the validity of Hawking radiation mechanism. Otherwise, the
constraints are depicted with the black dotted line where there is no Hawking radiation
and are obtained by the requirement that ΩPBH(M) < 1. The allowed regions for β′(M)
are the ones below the colored lines. Figure credited to [29].

PBHs with mPBH ≈ 1012−1013g, photons produced out of the particle cascade pro-
cess further dissociate 4He, increasing the abundance of light synthesized elements
[19, 137]. However, it is important to stress out that the BBN constraints carry
out some uncertainties regarding the baryon-to-photon ratio, the reaction and the
decay rates of the elements produced during the BBN processes. In Fig. 2.5, the
most conservative constraints are depicted.

— CMB Constraints

The CMB constraints on the PBH abundance are depicted with the brown solid
line in Fig. 2.5 and as it can be seen these constraints come from CMB spectral
distortions as well as from CMB anisotropies. Regarding the CMB anisotropy
constraint, which is the dominant constraint on the PBH abundance for PBH
masses mPBH ≈ 1013−1014g, it is related to the damping of the CMB temperature
anisotropy power spectrum and a boost in the polarization at small scales. In
particular, when high energy electrons, positrons and photons are injected into
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the baryon-photon plasma around the recombination time (z ∼ 1000) as products
of PBH evaporation they can excite and ionize the neutral hydrogen and helium
leading in this way to an increase of scattering processes between CMB photons and
free electrons, thereby damping the CMB temperature anisotropy and increasing
the polarization at small scales [138, 139]. Concerning now the CMB spectral
distortion constraint, less stringent than the BBN constraint, which applies for
the PBH mass range mPBH ≈ 1011 − 1014g, it is related to deviations of the CMB
spectrum from the spectrum of a black body [140, 141, 142]. Specifically, when the
universe is quite young, i.e. before the emission of the CMB, the CMB achieves
a black-body spectrum through photon-electron interactions, i.e. Compton and
double Compton scatterings, despite of a possible high energy injection. However,
as soon as the universe cools down and one is met with the decouplings of these
interactions at around z = 106, distortions from a black-body spectrum can be
induced via energy injection due to PBH evaporation.

— Galactic/Extragalactic Cosmic Rays Constraints

The extragalactic cosmic ray constraints on the PBH abundance is depicted with
the green solid line in Fig. 2.5, it concerns PBHs with masses mPBH ≈ 1012 −
1016g and as it can be seen, it is less stringent than all the other constraints
[143, 144, 145, 146]. With the red solid line we see the constraint as well as from
the extragalactic γ ray background (EGB) which is the dominant one for PBH
masses around mPBH = 1014g [147, 148]. EGB is related mainly to the primary
and secondary emission of photons due to Hawking evaporation of PBHs residing
outside of our galaxy. The photons mostly contributing to the EGB due to PBH
evaporation are mainly soft γ ray and X ray emitted photons which lead to an
isotropic background different from the extragalactic cosmic ray background of
other astrophysical sources. Regarding now the galactic cosmic ray constraint, it
is depicted with the blue solid line in Fig. 2.5 and it is the dominant constraint
for PBH masses mPBH ≈ 1015 − 1016g. It is related mainly to the anisotropic γ
ray background emitted from evaporated PBHs clustered inside our galactic halo
[149, 150, 23] as well as to the e± [151, 152] and ν/ν̄ [153] emission due to Hawking
radiation within the galactic bulge.

2.2.2 Evaporating PBHs

After having reviewed the constraints on the PBH abundance for PBHs which have
evaporated by now we recap here the relevant constraints concerning PBHs which have
not completed their evaporation yet. These PBHs are black holes with masses mPBH >
1015 − 1016g and are considered to cluster in the galactic halo in the same way as other
forms of dark matter. As in the case of the evaporated PBHs, we consider here as
well that PBHs have a monochromatic mass. Historically, due to the assumption that
high mass PBHs can constitute a viable candidate for cold dark matter (CDM), the
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constraints are given in terms of the fraction of PBHs to CDM, f(M) defined as

f(M) ≡ ΩPBH(M)

ΩCDM
, (2.35)

where ΩCDM = Ω
(0)
DM = 0.265 [33] and ΩPBH(M) is the current energy density parameter

of PBHs. In the case of PBHs forming during radiation era f(M) is related to β′(M)
with the following expression [29]

f(M) ' 108β′(M)

(
M

M�

)−1/2

(2.36)

Élément sous droit, diffusion non autorisée

Figure 2.6 – The constraints on the fraction of PBHs to cold dark matter as a function
of their mass for PBHs with masses mPBH > 1015g. With the colored regions one see the
constraints on the fraction of PBHs to CDM, f(M), due to different physical phenomena
explained in the main text. In particular, the colored regions are the ones which are
forbidden by observations. There are four possible mass windows A,B,C,D in which
PBHs can have an appreciable contribution to dark matter. In the left corner of the
figure one can see the constraint from the extra-galactic γ ray background described
before. Figure credited to [27]

.

At this point point it is important to stress out that the majority of the constraints
concerning the evaporating PBHs, presented in Fig. 2.6 are obtained by studying the
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observational effects that the gravitational potential of PBHs can trigger and can be
divided in five large categories depending on the way PBHs induce a gravitational effect:
a) gravitational lensing, b) dynamical effect, c) accretion, d) large scale structure and e)
gravitational waves. Below, we recap briefly the observational constraints on the fraction
of PBHs to cold dark matter depending on the gravitational effect PBHs can trigger.

— Lensing Constraints

When between a source of light, i.e. a star, and an observer there is massive
compact object, such as a PBH, one expects, as a prediction of general relativity,
to observe light blending. As a consequence, the light source is observed either
as an arc segment, either as a ring either as a multimple image depending on the
level of alignment between the light source and the massive lensing object as well
as on the mass of the lens. Regarding the PBH observational constraints due to
gravitational lensing, they are related to microlensing effects in which no distortion
in the shape of the light source can be seen but instead one can monitor how the
amount of light received from a source change with time [154]. Concerning now
the lensing constraints on evaporating black holes, they come from microlensing
events of stars observed by MACHO [155] and EROS [156] collaborations (EM) in
the Large and Small Magellanic Clouds (LMC and SMC) which probe the fraction
of the galactic halo to Massive Compact Halo Objects (MACHOs) as well as from
microlensing events of stars in the galactic bulge probed by OGLE (O) [24] . They
come also from the lack of lensing events in type Ia Supernovae (SN) [25] as well
as from microlensing events of stars in M31 induced by PBHs lying in the halo
regions of Milky way and M31 as observed by Subaru Hyper Suprime-Cam (HSC)
[157].

— Dynamical Constraints

The dynamical constraints on evaporating PBHs are related to the gravitational
effect a PBH can have on an astrophysical system through gravitational interac-
tions. Up to now, many astrophysical systems have been studied. Indicatively, we
mention the disruption of a white dwarf and the subsequent nuclear fusion trig-
gered due to the passage of PBH in its vicinity [158] as well as the disruption of a
neutron star in which a PBH trapped inside it can quickly accrete the surrounding
matter and destroy the star [159, 160]. Another interesting dynamical effect of
a PBH is the disruption of weakly coupled binaries of stars [161, 162] or glob-
ular clusters [163] of weakly coupled stars which reside in the galactic halo and
which can easily disrupted from encounters of PBHs. Finally, one should mention
dynamical constraints imposed to the fraction of PBHs into dark matter from dis-
ruption of ultra-faint dwarf galaxies, whose stars move faster due to gravitational
interaction with PBHs [164], from dynamical friction on PBHs [165] as well as
from the heating of stars in the galactic disk [166] when a PBH passes through
its vicinity. In Fig. 2.6 we see in the green colored regions the dominant dynami-
cal constraints which come from wide binaries (WB), star clusters in Eridanus II
(E), heating of stars in the galactic disk (DH), galaxy tidal distortions (G), halo
dynamical friction and cosmic microwave dipole (CMB).
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— Accretion Constraints

The accretion constraints come from accretion of gas into PBHs and the effects
of this process. Here we recap briefly the accretion effects to the CMB radiation
taking place in the early universe as well as the the electromagnetic radiation emit-
ted from accreted matter to PBHs. Regarding the accreting effects to CMB, one
should take into account that the gas of baryonic nature surrounding a PBH is
attracted by its gravity, starts to fall into the central region and being in this way
ionised either by internal gas collisions or by the outgoing Hawking radiation. This
ionisation process heats the gas filling the universe and modifies the CMB black-
body spectrum, the time of photon decoupling as well as the ionisation history
[167, 168, 169, 20]. Detecting or not therefore these non-standard features on the
CMB radiation one can impose limits on the PBH abundance. Concerning now
the electromagnetic radiation from accreted matter to PBHs, one can impose con-
straints on the PBH abundance by comparing observational data and theoretical
predictions of electromagnetic waves, mainly X rays and radio waves, from PBH
which attract and accrete their surrounding gas at present time [170, 171, 172, 173].
In Fig. 2.6 we see in the light blue colored region the dominant accretion constraint
which comes from X-ray binaries (XB) as well as in the orange colored region the
accretion constraint from the Planck satellite CMB measurement (PA).

— Large Scale Structure Constraints

The large scale structure constraints lie in the fact that the Poissonian fluctua-
tions in the number density of randomnly distributed in space PBHs can enhance
the dark matter perturbations in small scales [3]. This enhancement of the dark
matter power spectrum on small scales can have an impact on the Lyα forest ob-
servations due to gravitational interactions of the dark matter perturbations with
the baryon perturbations. Observing therefore the Lyα absorption spectra from
distant quasars and taking into account the enhacement of dark matter perturba-
tions on small scales one can constrain the PBH abundance [4, 174]. In addition,
one can constrain the PBH abundance by suggesting PBHs as a possible solution
to the tension of the observed near infrared cosmic infrared background (CIB)
anisotropies [175, 176]. The large scale structure constraints are shown in Fig. 2.6
in the purple colored region.

— Gravitational-Wave Constraints

The gravitational-wave constraints on the PBH abundance emanate from the dif-
ferent ways PBHs can lead to gravitational wave (GW) production. In particular,
GWs can be induced from the primordial, large curvature perurbations that must
have preceded and given rise to the existence of PBHs due to second order grav-
itational interactions [177, 178, 179, 180, 181, 182, 183]. In addition, GWs are
also expected to be emitted by the mergers PBHs, similarly to the GWs observed
through the coalescence of black hole binaries by the LIGO/VIRGO collaboration
[184, 185, 186, 187, 188, 189]. Furthermore, one expects also a gravitational-wave
background due Hawking radiated gravitons [190, 191]. Finally, one should also
account for the GWs generated by PBHs themselves due to the gravitational po-
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tential they underlie [32, 192]. By comparing therefore gravitational-wave obser-
vations with the theoretical predictions of gravitational waves associated to PBHs
one can constrain the PBH abundance. In Fig. 2.6, in the brown colored region
one shows the GW constraints on the PBH abundance from the early LIGO results
in the range 0.5–30M� [187].

2.3 Cosmological Consequences of PBHs

Given the stringent PBH constraints presented above for a wide range of PBH masses,
one may deduce that PBHs are rather unlikely to constitute the totality of dark matter
and be detected in the future. However, even if they do not constitute all of dark matter,
their cosmological consequences are quite important since by studying them we can learn
a lot about the universe state in different times of the cosmic history and probe different
physical phenomena depending on the PBH mass.

Specifically, the small mass PBHs (mPBH ≤ 1015g) which have evaporated by now can
give access to the early universe physics such as the physics of inflation and the primordial
cosmological perturbations [17] by probing the matter power spectrum on scales smaller
than those of the CMB, the Big Bang Nucleosynthesis (BBN) physics [18, 19] through
Hawking evaporation and the physics of reheating [193, 194, 30], the physics of the
cosmic microwave background (CMB) [20] through distortions of the CMB spectrum,
the primordial gravitational wave physics [21] by probing the stochastic gravitational
background induced at second order in perturbation theory as well as the primordial
phase transitions [22].

Regarding the intermediate mass PBHs (mPBH ∼ 10−15M�) which evaporate in our
era, one can probe with them high energy astrophysical phenomena. Interestingly, as
recently noticed by Carr and al. [27] intermediate mass PBHs have been conjectured to
explain the extragalactic [143] and galactic [149] γ-ray backgrounds through Hawking
evaporation, short-period gamma-ray bursts [195], the reionization of the pregalactic
medium [196] and antimatter in cosmic rays [197] pointing out to an increasing interest
regarding the connection of PBHs to high energy astrophysics.

Finally, the higher mass PBHs which still exist today, i.e. (mPBH > 1015g), can have
significant cosmological consequences regarding the gravitational and the dark sector of
the universe. Specifically, according to recent arguments, PBHs may indeed constitute
a part or all of the dark matter [2] and they may explain the generation of large-scale
structures through Poisson fluctuations [3, 4]. Furthermore, they may provide seeds for
supermassive black holes in galactic nuclei [198, 6] as well as account for the progenitors
of the black-hole merging events recently detected by the LIGO/VIRGO collaboration [7]
through their gravitational wave (GW) emission.
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Chapter 3

Inflation Theory and PBH
Production from Preheating

In this chapter, we recap the basics of the theory of inflation which solves, as men-
tioned in Sec. 1.4, a range of fundamental problems of the Hot Big Bang theory. In
particular, we recap initially the standard single-field slow-roll inflation paradigm and
then we briefly present the theory of cosmological inflationary perturbations, which have
seeded the PBHs studied in the context of this thesis. Finally, after reviewing the lit-
erature regarding the preheating era we discuss the PBH production in the context of
single-field inflationary models theory due to metric preheating a research area to which
I contributed with two scientific publications [30, 31].

Regarding my personal contribution to the above mentioned scientific publications,
on the one hand, in [30] I made major contributions by performing a refined calculation
for the PBH formation criterion during preheating and writing up the numerical code for
the computation and the dynamical evolution of the PBH abundance. I also produced
the figures of the paper, wrote up the conclusions and proof read the paper. On the
other hand, in [31], my personal contribution was minor. In particular, I checked my PhD
advisor’s calculation for the computation of the background equation-of-state parameter
during preheating and proof read the paper. I also wrote up some conclusions regarding
the effect of the inflaton’s radiative decay on PBH formation.

3.1 Inflation Theory

As discussed in Sec. 1.4, in order to account for the shortcomings of the Hot Big
Bang theory one should require the existence of an early era of accelerated expansion,
where ä > 0, which translates to the condition p < −ρ/3 from Eq. (1.17).

3.1.1 Single-Field Inflation

This era of negative pressure can be naturally realized in the context of single-field
inflation in which a single scalar field φ, the inflaton field, is minimally coupled to gravity.
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The action describing such a field reads as

Sφ =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (3.1)

where the first term in the integral is the kinetic energy of the field and the second
the potential energy. The stress-energy tensor associated to the above action can be
obtained from Eq. (1.14) by replacing Smatter with Sφ and is given by

T (φ)
µν = ∂µφ∂νφ+ gµν

[
−1

2
gρσ∂ρφ∂σφ+ V (φ)

]
. (3.2)

Given the fact we are working in the context of a flat FLRW background, at the back-
ground level the inflaton field φ should be homogeneous, thereby depending only on
time. Thus, in this case, the energy and pressure densities of the inflaton field can be

obtained from T
(φ)
µν and are given by

ρφ = T00 =
φ̇2

2
+ V (φ) (3.3)

pφ = Tii =
φ̇2

2
− V (φ). (3.4)

The condition then for a homogeneous scalar field to drive a period of accelerated
expansion, i.e. 3p+ ρ < 0, becomes

V (φ) > φ̇2. (3.5)

The above condition ensures that in order for inflation to take place, the inflaton field
should slowly roll down its potential so that its potential energy dominates over its
kinetic one.

Regarding now the background dynamics of the inflaton field, it can be obtained by
plugging Eq. (3.3) and Eq. (3.4) into the continuity equation Eq. (1.18). One then gets
the Klein-Gordon equation for φ

φ̈+ 3Hφ̇+ Vφ(φ) = 0 (3.6)

where Vφ(φ) ≡ dV (φ)/dφ. Concerning the Friedmann equation, it reads as

3M2
PlH

2 = V (φ) +
φ̇2

2
. (3.7)

3.1.1.1 The Slow-Roll Regime

The slow-roll regime is defined when the condition Eq. (3.5) is saturated, i.e. when
V (φ) � φ̇2. In such a case, one gets from Eq. (3.3) and Eq. (3.4) that pφ ' −ρφ. In
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this regime, one obtains from the continuity equation 1.18 that ρ is almost constant in
time and from the Friedman equation one obtains that H is almost constant in time too.
This leads the spacetime to behave as the de Sitter one in which

a(t) = ainie
H(t−tini). (3.8)

The de Sitter universe is equivalent with a universe dominated by a cosmological con-
stant. See the discussion in Sec. 1.1.5. The slow-roll regime is therefore the limit in which
the universe is perturbatively close to the de Sitter one. This slow-roll limit is very inter-
esting since there is observational evidence for an almost scale invariant power spectrum
on the CMB scales, as the one predicted by the slow-roll single-field inflation [199].
One can then quantify the deviation from the de Sitter universe, by introducing the so
called slow-roll parameters, upon which one can perform a perturbative expansion of the
curvature power spectrum [200, 201, 202, 203]. Although there are many possible sets
of slow-roll parameters, the mostly used in the literature are the so called Hubble-flow
parameters [204, 205], εn, defined iteratively through the following expression

εn+1 =
d ln |εn|

dN
, (3.9)

where N is a time variable, called the e-fold number and it is defined as the logarithm
of the scale factor, N ≡ ln a. In this parametrisation for the slow-roll parameters, ε0 is
defined as ε0 = Hini

H , where the index ini denotes an initial time. In the case of a de Sitter
universe, ε0 is constant and equal to 1. Thus, in the slow-roll regime, which describes
a quasi de Sitter universe, ε0 should be almost constant in time and close to 1 and its
time derivatives calculated through Eq. (3.9) should be small, a fact that makes them
very useful to describe pertrurbatively the deviation from the de Sitter expansion. In
the language of the slow-roll parameters one is met with the slow-roll inflation as long
as |εn| � 1, for all n > 0.

3.1.2 Cosmological Perturbations in the Inflationary Epoch

As mentioned in Sec. 1, inflation constitutes the “standard theory” for the description
of the early moments of the cosmic history since the primordial cosmological perturba-
tions generated during inflation can seed the large scale structures observed today as
well as the anisotropies of the relic cosmic microwave background radiation. Therefore,
we recap here the theory of cosmological inflationary perturbations, which represents a
cornerstone of the modern cosmology.

3.1.2.1 The Scalar-Vector-Tensor Decomposition

In order to include cosmological perturbations on the top of a homogeneous and
isotropic background universe, one should go beyond homogeneity and isotropy. Thus,
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the most general perturbed metric which can model small perturbations of a FLRW
universe can be written as [206]

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2Bidx

idη + (γij + hij) dxidxj
]
, (3.10)

where A, Bi and hij are functions of space and time describing the deviation from a
homogeneous and isotropic universe. γij is the spatial part of the background metric.
In our case, since we consider a flat FLRW background universe, γij = δij .

In order now to extract the dynamics of the cosmological perturbations it is very
useful to decompose them into scalar, vector and tensor components, thus the name
Scalar-Vector-Tensor (SVT) decomposition [207]. In particular, any vector field, Bi can
be decomposed into the divergence of a scalar field, B, and to a vector field , B̄i, with
vanishing divergence 1, that is

Bi = ∂iB + B̄i, with ∂iB̄i = 0. (3.11)

In the same way, any tensor field, hij , can be decomposed into

hij = −2ψγij + 2∂i∂jE + 2∂(iĒj) + 2Ēij , with ∂iĒ
ij = 0 and Ēii = 0. (3.12)

The vector perturbations are rapidly supressed during the inflationary stage and there-
fore they are usually disregarded [208]. Scalar and tensor perturbations are instead
studied with a lot of attention. Focusing then for the moment on scalar perturbations
at linear order and making use of the SVT decomposition described above, the metric
in Eq. (3.10) reads as

ds2 = a2(η)
{
−(1 + 2A)dη2 + 2∂iBdxidη + [(1− 2ψ)δij + 2∂i∂jE] dxidxj

}
, (3.13)

where we have replaced γij = δij since as mentioned in Sec. 1.3 the observed negligible
spatial curvature favors a flat FLRW background universe.

3.1.2.2 The Gauge Issue

The study of cosmological perturbations lies in comparing the differences of physical
quantities between a background spacetime (here FLRW metric) which is homogeneous
and isotropic and the physical spacetime which does not obey necessarily to the cosmo-
logical principle. Thus, in order to compute the cosmological perturbations of a physical
quantity one should compare the value it assumes at the unperturbed background space-
time with its value at the perturbed one at the same spacetime point. Since these values
live in different spacetime geometries, it is important to find a correspondence that links
the same point on the two different spacetimes. This correspondence is called gauge

1. For the scalar, vector and tensor quantities introduced here, the indices are lowered and raised
according to the background metric γij .
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choice and fixing a gauge is equivalent to choosing a threading into lines, corresponding
to fixed spatial coordinates, and a slicing into hypersurfaces, corresponding to fixed time.

Let us consider a generic infinitesimal coordinate/gauge transformation which reads

xµ → x̃µ = xµ + ξµ, (3.14)

where ξµ = (ξ0, ξi) is an arbitrary four-vector whose components ξ0 and ξi depend
on space and time. As discussed in the previous section any vector field ξi can be
decomposed into the divergence of a scalar field, ξ, and to a vector field , ξitr, with
vanishing divergence (ξitr,i = 0), i.e. ξi = γijξ,j + ξitr, where the comma stands for the
covariant derivative with respect to the background space coordinates. Therefore, taking
into account only the functions ξ0 and ξ which preserve the scalar nature of the metric
perturbations one can write Eq. (3.14) as

x̃0 = x0 + ξ0(x0, xi), x̄i = xi + γijξ,j(x
0, xi). (3.15)

Under this gauge transformation the scalar perturbations A, B, ψ and E transform like
[206]

Ã = A− a′

a
ξ0 − ξ0′, ψ̃ = ψ +

a′

a
ξ0, B̃ = B + ξ0 − ξ′, Ẽ = E − ξ, (3.16)

where the prime denotes derivative with respect to the conformal time η defined in
Sec. 1.1.1.

The issue which is risen now with the gauge choice is that there is not a preferred
gauge. This is equivalent to the fact that there is not a unique choice of the functions
A, B, ψ and E [207]. Therefore, to address this issue one can make two choices:

— Make all the calculations in terms of gauge invariant quantities

— Make a gauge choice and perform the calculations in that gauge

Both of these choices have advantages and disadvantages. Making a specific gauge
choice may render the computations technically simpler but at the same time it can
potentially introduce gauge artifacts. On the other hand, performing a gauge-invariant
computation, maybe more technically involved, gives the advantage to work with only
physical quantities. One can construct gauge-invariant quantities by taking combinations
of A, B, ψ and E. The simplest gauge-invariant quantities constructed from linear
combinations of A, B, ψ and E that describe the gravitational sector are the so called
Bardeen potentials and are defined as follows [207]:

Φ ≡ A+
1

a

[(
B − E′

)
a
]′
, Ψ ≡ ψ − a′

a
(B − E′). (3.17)

In the absence of anisotropic stress, i.e. in the absence of non diagonal space-space
components in the stress-energy tensor, one can prove that Φ = Ψ. Regarding the
matter sector, one can construct a gauge-invariant fluctuation for the scalar field φ as
follows

δφ(gi)(η,x) ≡ δφ+ φ′(B − E′). (3.18)
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In the same manner, one can define gauge-invariant scalar fluctuations like δρ(gi) and
δp(gi). In particular, given a scalar quantity f one can define a gauge-invariant fluctuation
δf (gi) as

δf (gi) ≡ δf + f ′(B − E′). (3.19)

Here it is important to know that the construction of δf (gi) present in Eq. (3.19) is the
one mostly used in the literature but in fact there are infinitely more possibilities one
can construct a gauge-invariant scalar fluctuation.

3.1.2.3 The Perturbed Einstein’s equations in a gauge-invariant form

The matter and metric (gravitational) fluctuations are related to each other through
the Einstein’s equations. Specifically, working with gauge-invariant quantities one can
show that in the absence of anisotropic stress, i.e. Φ = Ψ, the perturbed Einstein’s

equations δG
(gi)
µν = 8πδT

(gi)
µν

2 after a straightforward but tedious calculation take the
following form [206]

∇2Φ− 3HΦ′ − 3H2Φ =
a2

2M2
Pl

δT
(gi)0
0 , (3.22)

∂i(Φ
′ +HΦ) =

a2

2M2
Pl

δT
(gi)0
i , (3.23)

[
Φ′′ + 3HΦ′ + (2H′ +H2)Φ

]
δij = − a2

2M2
Pl

δT
(gi)i
j . (3.24)

Working therefore with the stress-energy tensor of the inflaton field, Eq. (3.2), one can
find that the perturbed stress-energy tensor reads as [206]

δT
(gi)0
0 = a−2

(
−φ′2Φ + φ′δφ(gi)′ + Vφ(φ)a2δφ(gi)

)

δT
(gi)0
i = a−2φ′∂iδφ(gi)

δT
(gi)i
j = a−2

(
φ′2Φ− φ′δφ(gi)′ + Vφ(φ)a2δφ(gi)

)
δij

(3.25)

2. The gauge-invariant Einstein tensor and stress-energy tensor perturbations can be constructed as
follows:

δG
(gi)0
0 ≡ δG0

0 +G0′
0 (B − E′), δG

(gi)i
j ≡ δGij +Gi′j (B − E′), δG

(gi)0
i ≡ δG0

i +

(
G0

0 −
1

3
Gkk

)
∂i(B − E′)(3.20)

δT
(gi)0
0 ≡ δT 0

0 +G0′
0 (B − E′), δT

(gi)i
j ≡ δT ij + T i′j (B − E′), δT

(gi)0
i ≡ δT 0

i +

(
T 0
0 −

1

3
T kk

)
∂i(B − E′).(3.21)
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Consequently, plugging Eq. (3.25) into Eq. (3.22) one obtains that

∇2Φ− 3HΦ′ − 3H2Φ =
1

2M2
Pl

(
−φ′2Φ + φ′δφ(gi)′ + V,φ(φ)a2δφ(gi)

)
, (3.26)

(Φ′ +HΦ) =
1

2M2
Pl

φ′δφ(gi), (3.27)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = − 1

2M2
Pl

(
φ′2Φ− φ′δφ(gi)′ + V,φ(φ)a2δφ(gi)

)
. (3.28)

At this point, one can extract an equation for the dynamics of Φ, which describes
the gravitational sector. In particular, by substracting Eq. (3.26) from Eq. (3.28), using
Eq. (3.27) to express δφ(gi) as a function of Φ and Φ′ as well as the Klein-Gordon equation
Eq. (3.6), one obtains that

Φ′′ + 2

(
H− φ′′

φ′

)
Φ′ −∇2Φ + 2

(
H′ −Hφ

′′

φ′

)
Φ = 0. (3.29)

3.1.2.4 The Curvature Perturbation

As we saw previously, the matter perturbations, here the scalar field perturbations
δφ(gi), source metric perturbations Φ through the Einstein equations, which can be
translated to perturbations of the curvature of the spacetime. These perturbations of the
curvature of spacetime are of great importance since these are the ones which can explain
through the theory of inflation the large scale structure and the CMB anisotropies. In
this paragraph, we introduce the curvature perturbation in two gauges, most studied in
the literature and then we construct gauge-invariant curvature perturbations starting
from these two gauges [209].

— The comoving curvature perturbation

The function ψ, appearing in the spatial part of the perturbed metric is related
to the intrinsic curvature of hypersuperfaces of constant time. In the case of a
flat FLRW background one can show that the spatial Ricci scalar, (3)R, defined as
(3)R ≡ γijRij , is related to ψ as follows

(3)R =
4

a2
∇2ψ. (3.30)

The comoving curvature perturbation, R, is defined as the metric perturbation ψ
in the comoving slicing, which is the slicing of free-falling comoving observers for
which the expansion is isotropic. In this gauge, there is no energy flux measured
by the comoving observers, i.e. T 0

i = 0. Therefore, R is defined as

R ≡ ψ|T 0
i =0. (3.31)
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One then can express R in a general gauge through a gauge transformation on
constant time surfaces η → η + δη. Under this transformation, ψ transforms
according to Eq. (3.15) with ξ0 = δη as follows

ψ → ψ̃ = ψ +Hδη. (3.32)

In the comoving gauge, T 0
i = 0 and given the fact that at the background level

(0)T 0
i = 0 as can be checked from Eq. (3.2), and that δT

(gi)0
i ∝ ∂iδφφ

′ as can be
seen from Eq. (3.25), one gets that the fluctuation for the scalar field φ in the
comoving gauge, δφcom vanishes, i.e. δφcom = 0. To proceed now further and
extract the expression for R in a generic gauge we should identify how a scalar
fluctuation, like δφ, transforms under a gauge transformation.

Let then f be a scalar quantity and consider the generic coordinate transformation
given by Eq. (3.14). Since f is a scalar quantity, its value at a given physical
point is the same in all coordinate systems. Thus, f̃(x̃µ) = f(xµ). In addition,
one has as well for the unperturbed background that f0(xµ) = f̃0(xµ) where the
index 0 denotes background quantities. Consequently, one can deduce how the
scalar fluctuation δf(xµ) ≡ f(xµ)− f0(xµ) transforms under a generic coordinate
transformation. In particular, one obtains that

δ̃f(x̃µ) = f̃(x̃µ)− f̃0(x̃µ)

= f(xµ)− f0(x̃µ)

= f(x̃µ)− δxµ ∂f
∂xµ

(x̃µ)− f0(x̃µ)

' δf(x̃µ)− δxµ ∂

∂xµ
(f0(x̃µ) + δf(x̃µ)) ,

(3.33)

where in the last equality we expanded up to first order the function f(x̃µ). Then,
given the fact that for a homogeneous and isotropic scalar field the background
function f0 depends only on time and considering up to first order contributions,
δ̃f(x̃µ) reads as

δ̃f(x̃µ) = δf(xµ)− f ′0δη. (3.34)

Thus, following the derivation presented above, δφ will transform as δφ→ δφ−φ′δη
and therefore one gets for a transformation on constant time hypersurfaces that

δφ→ δφcom = δφ− φ′δη = 0⇔ δη =
δφ

φ′
. (3.35)

Consequently, given Eq. (3.32) and Eq. (3.35), the comoving curvature perturba-
tion, R can be defined in a generic gauge as

R ≡ ψ +Hδφ
φ′
. (3.36)
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At this point it is important to point out that the above quantity is gauge-invariant
by construction. Thus, R can be viewed as the gravitational potential on hyper-
surfaces where δφ = 0

R = ψ|δφ=0.

Let us also stress out here the usefulness of the comoving curvature perturbation
given its constancy on large scales [210]. It can be used then to propagate the
inflationary power spectrum from the end of inflation to the post-inflationary era.

— The uniform energy density curvature perturbation

In the same way, we can define the uniform energy density curvature perturbation,
ζ by considering a slicing with δρ = 0. Thus, ζ is defined as

ζ ≡ ψ|δρ=0. (3.37)

For a transformation on constant time hypersurfaces, given the fact that δρ being
a scalar fluctuation it transforms as δρ → δρ − ρ′δη, one can find, following the
same reasoning as in the case of the comoving slicing, that in the uniform energy
density slicing δη = δρ

ρ′ . Therefore, in a generic gauge ζ is defined as

ζ ≡ ψ +Hδρ
ρ′

(3.38)

and it is by construction a gauge-invariant quantity. It is worth to mentioning here
that it can be proved that, on superhorizon scales, i.e. k � aH, the curvature
perturbation on the uniform energy density gauge, ζ, is equal to the comoving
curvature perturbation, R [209].

3.1.2.5 The equation of motion for the scalar perturbations

In Sec. 3.1.2.2, we have introduced the Bardeen potentials Φ and Ψ, which are equal
in the case of a vanishing anisotropic stress and which describe the gravitational sector as
well as the gauge-invariant inflaton perturbation δφ(gi) which describes the matter sector.
These gauge-invariant quantities are related to each through the Einstein equations as
we saw in Sec. 3.1.2.3. This implies that one can construct a gauge-invariant quantity
which describes in a unique way the scalar sector, i.e. the gravitational and the matter
one. For this reason, the Mukhanov-Sasaki variable is introduced, which is a combination
of the Bardeen potential and the gauge-invariant inflaton perturbation δφ(gi) and it is
defined as [211, 212]

v(η,x) = a

(
δφ(gi) + φ′

Φ

H

)
. (3.39)

At this point, it is useful to mention that the Mukhanov-Sasaki variable is related to the
comoving curvature perturbation R as follows

v =
aφ′

H R, (3.40)
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where the last equation is a gauge-invariant equation constructed by starting from the
Newtonian gauge in which E = B = 0 and Ψ = ψ and having taken into account that
Φ = Ψ in the absence of anisotropic stress.

To extract the equation of motion for u(η,x), one should write the total action of
the system at hand, which is the sum of the action of the gravitational sector, i.e. the
Einstein-Hilbert action 1.9, plus the action of the matter sector which is the inflaton
scalar field action 3.1 and write the respective Laplace equation for the Mukhanov-
Sasaki equation. To do so, one expands the action of the system up to second order in
perturbations to obtain after a rather lengthy calculation that [206]

(2)δS =
1

2

∫
d4x

[
v′2 − δij∂iv∂jv +

(
a
√
ε1
)′′

a
√
ε1

u2

]
, (3.41)

where ε1 is the first slow-roll parameter defined through the recursive Eq. (3.9). Then, the
next step, is to write the action in terms of the the Fourier modes of v(η,x), given the fact
that in the context of a linear theory each mode evolves independently. Consequently,
expanding v(η,x) in Fourier modes we have that

v(η,x) =
1

(2π)3/2

∫

R
d3kvk(η)eik·x, (3.42)

with v−k = v∗k since v(η,x) is real. Then, inserting Eq. (3.42) into Eq. (3.41) one gets
that [206]

(2)δS =

∫
dη

∫

R+×R2

d3k

{
v′kv
∗′
k + vkv

∗
k

[(
a
√
ε1
)′′

a
√
ε1

− k2

]}
, (3.43)

where we integrate over the half of the Fourier space given the redundancy v−k = v∗k.
Therefore, the Lagrangian density in Fourier space reads as

L ≡
∫

R+×R2

d3k

{
v′kv
∗′
k + vkv

∗
k

[(
a
√
ε1
)′′

a
√
ε1

− k2

]}
, (3.44)

with the conjugate momentum pk being defined as

pk ≡
δL
δv∗′k

= v′k. (3.45)

Thus, the Laplace equation, which comes out of minimizing the action (2)δS, reads as
∂L/∂v∗k = ∂η (∂L/∂p∗k) and leads to the equation of motion for the Mukhanov-Sasaki
variable which is given by

v′′k +

[
k2 −

(
a
√
ε1
)′′

a
√
ε1

]
vk = 0. (3.46)
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From the above equation, one clearly sees that each mode k behaves as a parametric
oscillator with a time-dependent frequency ω(η,k) expressed as

ω2(η,k) = k2 −
(
a
√
ε1
)′′

a
√
ε1

. (3.47)

As one can see, the frequency ω(η,k) depends on the scale factor and its derivatives.
Thus, different inflationary potentials, which lead to different dynamics of the scale factor
through the Friedman equation, lead to different dynamics of ω(η,k) and subsequently
to different dynamics of vk(η).
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3.2 PBHs from the Preheating Instability

Having introduced before the fundamentals of the inflationary theory and the theory
of cosmological perturbations we study here the period of preheating after the end of
inflation and the possibility of PBH production during this early era of the cosmic history.
Initially, we make a brief introduction of preheating reviewing the relevant literature on
the field and then we discuss the PBH production from metric preheating in the context
of single-field inflationary models as discussed in the relevant research works completed
within my PhD [30, 31].

3.2.1 Preheating

When inflation ends, i.e. when the kinetic and the potential energy of the inflaton
field become comparable, the inflaton field approaches a local minimum of its potential,
which can be approximated in most cases by a quadratic potential of the form V =
m2φ2/2, where m is a mass scale representing the curvature of the inflationary potential
at its minimum. 3 Then, when the inflaton reaches the minimum of its potential, it starts
oscillating like φ ∝ a−3/2 sin(mt) driving a decelerated expansion in which the universe’s
thermal state behaves on average as a matter-domination state with 〈ρ〉 ∝ a−3 [52],
where 〈〉 denotes an average over the inflaton’s oscillations. This oscillatory era is quoted
in the literature as preheating.

These rapid oscillations can parametrically amplify the quantum fields present during
preheating both at the background and at the perturbative level [54, 55]. However, the
consideration described above does not take into account the coupling of the inflaton to
other degrees of freedom, which is necessary to ensure the transition to the radiation era,
i.e. the Hot Big Bang phase of the universe. For this reason, more realistic preheating
models consider these couplings as well. Below, we recap briefly how one can potentially
couple the inflaton field with other degrees of freedom and generate a parametrically
resonant amplification regime for the fields present during preheating.

3.2.1.1 The background

At the background level, one can introduce the coupling of the inflaton field with
other degrees of freedom by adding an extra friction term “Γφ̇” - where Γ is a decay
rate - in the Klein-Gordon equation 3.6, which basically accounts for the decay of the
inflaton to a perfect fluid, usually radiation. Initially, H � Γ and the effect of the
inflaton’s decay is negligible. As the universe expands, H decreases and at some point
H ∼ Γ, which is the time when the decay of the inflaton starts taking place. The
decay rate depends on the specifics of the model considered, i.e. the coupling of the

3. In fact, the quadratic form V = m2φ2/2 can be seen as the leading order term of a Taylor
expansion of the inflaton potential around its minimum. For potentials with vanishing curvature m at
their minimum the leading term is of higher order.
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inflaton with the perfect fluid as well as the relevant mass scales and can be calculated
within perturbation theory. This perturbative approach, initially studied in the context
of reheating after inflation by [213, 214], has however some limitations. It can describe
energy transfers due to individual decays of the inflaton to other degrees of freedom
and it is efficient only for the last stages of reheating when the energy transfer to the
inflaton’s decay products is small compared to the very efficient energy transfer taken
place during the very rapid coherent oscillations of the inflaton around its minimum
during the early stage of preheating [54, 55].

Therefore, one should consider non perturbative effects when considering the back-
ground behavior during the oscillatory phase of preheating. To illustrate this with an
example, one can couple the inflaton field φ with another scalar field χ with an in-
teraction Lagrangian Lint = −g2φ2χ2/2 where g is a dimensionless coupling constant.
Then, the total Lagrangian of the system can be written as L = Lφ + Lχ + Lint, with
Lφ = −m2φ2/2 + φ̇2/2, Lχ = −m2

χχ
2/2 + χ̇2/2 and the equation of motion for the

Fourier mode χk can be written as

χ̈k + 3Hχ̇k +

[
k2

a2(t)
+m2

χ + g2φ2
0(t) sin2(mt)

]
χk = 0, (3.48)

with mχ the mass of χ and φ0(t) the decreasing amplitude of the inflaton’s oscillations
written as φ ' φ0(t) sin(mt). The above equation can be written in a more compact
form by introducing the variable Xk = χka

3/2 and using the time variable z ≡ mt,

d2Xk

dz2
+ [Ak − 2q cos(2z)]Xk = 0, (3.49)

where the quantities Ak and q are defined as

Ak =
k2

a2m2
+
m2
χ

m2
− 3

2

H2

m2

(
3

2
− ε1

)
+ 2q, q =

g2φ2
0

4m2
. (3.50)

The above equation gives rise to a parametric resonance structure for the solutions
χk depending on the range of values of Ak and q as initially noted in the context of
reheating after inflation in [215, 216] and further studied in [54, 55]. To illustrate
this resonance structure, we consider here the case of the Minkowski spacetime and for
simplicity we assume mχ = 0. In this regime, Ak = k2/m2 + 2q, q is constant and
Eq. (3.49) becomes a Mathieu equation with unstable, exponentially growing solutions
χk ∝ eµkz, with µk being the Floquet index of the unstable mode [217]. Since q > 0,
the region of interest is the one with Ak > 2q. The unstable regions are the ones with
µk > 0. In Fig. 3.1, we plot µk as a function of Ak and q. As one can clearly see from this
figure, there are bands at the level of Ak−q in which the parametric resonance structure
is most pronounced, i.e. µk ∼ 1. The most pronounced band is the one with the smallest
value of Ak. At this point, we should stress out that q is related to the range of modes
k being excited. In particular, ∆k ∼ q`, where ∆k is the range of the excited modes k
for a band labelled with the integer ` > 1, with ` = 1 being the resonance band with
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Figure 3.1 – Instability chart of the Mathieu equation in the case of a Minkowski back-
ground spacetime. The colour code represents the value of the Floquet exponent µk of
the unstable mode. Stable solutions corresponds to µk = 0 and are represented by the
dark blue regions while the unstable solutions correspond to µk > 0 and are structured
in different colored bands. The white curve is associated with the line Ak = 2q. Figure
credited to [31].

the smallest value of Ak. Thus, when q � 1 we are in the so-called “broad-resonance”
regime in which the range of the excited modes k is large. On the contrary, when q � 1
we are in the “narrow-resonance” regime in which a small range of modes k are excited.

If one now takes into account the spacetime expansion then Ak and q become func-
tions of time and Eq. (3.49) is not a Mathieu equation anymore. It is an equation of the
Hill type in general ,which also gives rise to a parametric resonance structure for the so-
lutions χk as noted in [216, 54, 53, 55]. In this case, in which the spacetime dynamics is
restored, a mode k will spend more time inside the wide bands in which q � 1. There-
fore, in an expanding background spacetime the broad-resonance regime is the most
important one regarding the amplification of the χ field. This broad-resonance regime,
present when an expanding background is considered, is often quoted as “stochastic-
resonance” regime in which each growing mode scans different instability bands and the
relevant number of produced particles for a specific mode changes in a chaotic way. For
more details see [55].
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3.2.1.2 The perturbations: The case of metric preheating

Up to now, we have treated preaheating at the background level only. However,
preheating plays an important role at the level of the perturbations as well if one in-
cludes the metric and the matter perturbations. In particular, as studied vastly in
the literature, resonant amplification of the matter fluctuations are accompanied with
a resonant amplification of the scalar metric fluctuations, responsible for gravitational
fluctuations in the curvature, since the two are coupled through the perturbed Einstein’s
equations [54, 55]. This effect of the resonant amplification of the metric perturbations
is often quoted as “metric preheating” [218, 219, 220, 221]. In order to study the effect
of metric preheating, one should therefore examine if the Mukhanov-Sasaki equation,
Eq. (3.46), governing the dynamics of the scalar perturbations, exhibits a parametric
resonance structure like the one present at the background level, when the inflaton os-
cillates around the minimum of its potential.

Given the oscillations of φ(t), one expects that H and the slow roll-parameter ε1
should oscillate as well. Therefore, the oscillations of ε1 should induce oscillations on the
time-dependent frequency ω2(η,k) of the mode vk. In such as case, Eq. (3.46) could be of
the Mathieu or Hill type with the presence of a resonance instability structure regarding
the different modes vk. In the context of single field inflation, due to the constancy of the
comoving curvature perturbations on super-horizon scales, it was thought initially that
there should not be a growth of the scalar perturbations [218]. However, as realized in
[222, 223] one can find a resonance instability structure regarding the metric perturba-
tions in the context of single-field inflation models but in the narrow-resonance regime,
which is immune to the perturbative inflaton decay to radiation [31]. In the context of
multi-field inflation however, the situation is different since there parametric amplifica-
tion of entropy/isocurvature fluctuations can source the parametric amplification of the
adiabatic/curvature fluctuations in the regime of broad resonance [224, 225, 226, 227].

3.2.2 PBHs from the Preheating Instability

During the preheating period after inflation, as we saw before, the inflaton oscillates
coherently at its ground state, around the minimum of its potential and decays into other
degrees of freedom. During this oscillatory phase, resonant amplification of matter and
metric perturbations take place [54, 55] leading in this way to amplified curvature pertur-
bations which in their turn collapse and form PBHs. Historically, PBHs emanated from
the preheating instability were proposed in the context of multi-field inflation and in par-
ticular in the context of two-field chaotic inflation [224, 225, 226, 227] and more recently
in [228, 229] since in this case the parametric amplification of entropy/isocurvature fluc-
tuations can source the parametric amplification of the adiabatic/curvature fluctuations
in the regime of broad resonance. In the context of single-field inflation, it is predicted as
well [222] [see also [223]] that a pronounced resonant instability structure in the narrow
regime this time can amplify metric perturbations inducing in this way the production
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of PBHs as recently studied in our research work [30].

3.2.2.1 Metric preheating in single-field inflation (research article)

After reviewing the basics of preheating before, we discuss here how PBHs can be pro-
duced during the preheating instability in the context of single-field inflationary models
due to the effect of metric preheating. To do so, one should study the equation of motion
for the scalar perturbations, namely the Mukhanov-Sasaki equation (3.46). In particu-
lar, after rescaling the Fourier mode vk according to ṽk = a1/2vk and using the cosmic
time t as the time variable, Eq. (3.46) can be written as

¨̃vk+

{
k2

a2
+Vφφ(φ)+3

φ̇2

M2
Pl

− φ̇4

2H2M4
Pl

+
3

4M2
Pl

[
φ̇2

2
− V (φ)

]
+

2

M2
Pl

φ̇

H
Vφ(φ)

}
ṽk = 0, (3.51)

where Vφ(φ) ≡ dV
dφ and Vφφ(φ) ≡ d2V

dφ2
. As already said in Sec. 3.2.1, during the rapid

oscillations of the inflaton after the end of inflation, the inflaton oscillates more rapidly
than the expansion rate of the universe entering the regime where H � m and in which
the energy density stored in φ scales in average as matter. In this case, the last term
in Eq. (3.51) is the dominant one scaling like a−3/2 while the other terms with time
derivatives of φ scale like a−3. Keeping therefore only the last term in Eq. (3.51) one
can recast Eq. (3.51) in the following form:

d2ṽk
dz̃2

+ [Ak − 2q cos(2z̃)] ṽk = 0, (3.52)

with z̃ being defined as z̃ ≡ mt+ π/4 and the coefficients Ak and q being

Ak = 1 +
k2

m2a2
, q =

√
6

2

φend

MPl

(aend

a

)3/2
, (3.53)

where φend and aend are the values of the inflaton field and the scale factor at the end
of inflation.

Rigorously, Eq. (3.52) is not of Mathieu type since Ak and q are time dependent.
However, as shown in [222] this time dependence is sufficiently slow that Eq. (3.52)
can be treated using the Floquet analysis for a Mathieu equation. Initially, q is of the
order of one since at the end of inflation φend = O(MPl) but as the universe expands,
it becomes smaller and smaller than one. Thus, after some oscillations of the inflaton
field one obtains that q � 1, being in the narrow-resonance regime and contrary to
the case of non-perturbative preheating in which the broad-resonance regime was the
more significant one. Considering then the most pronounced first instability band whose
bounds are 1− q < Ak < 1 + q [217], one has that

0 <
k

a
<
√

3Hm . (3.54)
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One then clearly sees the emergence of a new characteristic scale 1/
√

3Hm . In order then
for the instability to be physical one should consider modes which become subhorizon
during the preheating phase i.e aH < k. Therefore, the resonance instability structure
concerns physical modes which lie inside the range

aH < k < a
√

3Hm . (3.55)

Therefore, the physical modes which are excited are smaller than the Hubble scale H−1

and larger than the new characteristic scale 1/
√

3Hm . We depict the above range of
the excited modes in the following Fig. 3.2 in which it is shown the evolution of two
relevant physical scales.

6 4 2 0 2 4
N Nend

103

104

105

106

107

108
MPl/H
MPl/ 3mH
MPl/k1
MPl/k2

Figure 3.2 – Evolution of the relevant physical scales versus the e-folds number (counted
from the end of inflation). The solid red line stands for the dimensionless Hubble radius
MPlH

−1, which corresponds to the lower bound in Eq. (3.55) while the solid orange
line denotes the dimensionless characteristic scale MPl/

√
3Hm which corresponds to

the upper bound in Eq. (3.55). The dotted lines stand for the time evolution of two
dimensionless scales. Specifically, the “blue scale” enters the instability band from below
while the “cyan scale” enters it from above.

Let us now see how the curvature and energy density perturbations evolve for the ex-
cited modes satisfying Eq. (3.55). For the first instability band, the Floquet index of the
unstable mode is given by µk ' q/2 [55, 230] and vk = ṽk/a

1/2 = a−1/2 exp
(∫
µkdz

)
∝ a

[218, 222]. Therefore, the comoving curvature perturbation R related to v through
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Eq. (3.40) reads as

Rk =
H

aφ̇
vk =

vk
MPla

√
2ε1

= constant, (3.56)

where in the last equation we have used the fact that on average ε1 = φ̇2

2M2
PlH

2 ' constant

for V (φ) = m2φ2/2 and that during preheating φ ∝ a−3/2 sin(mt). One then finds, that
the comoving curvature perturbation is a conserved quantity for the modes lying inside
the physical instability defined by Eq. (3.55). Regarding now the evolution of the energy
density contrast δk, given the fact that the excited modes in study are physical, i.e.
they are inside the Hubble radius during preheating, there is no gauge ambiguity in the
definition of δk. Therefore, we choose to work in the Newtonian gauge, where E = B = 0
but our results are gauge-independent on subhorizon scales. In the Newtonian gauge,
one has [222] that

δk = −2

5

(
k2

H2
+ 3

)
Rk. (3.57)

Therefore, on subhorizon scales, i.e. aH < k, the first term in the parenthesis is the
dominant one and taking into account that Rk = constant for aH < k and that dur-
ing preheating the universe experiences an effective matter domination era in which
a2H2 ∝ a−1 one gets that for the excited modes inside the physical instability defined
by Eq. (3.55)

δk ∝ a. (3.58)

One then finds that for the excited modes, the density contrast grows linearly with the
scale factor, a fact which have important implications such as early structure formation
[222], gravitational wave emission [231] and PBH formation as studied in our research
work [30]. Regarding PBH formation, as we noted in [30], the metric preheating effect
studied here can induce formation of PBHs on small scales which exit the Hubble radius a
few e-folds before the end of inflation and therefore does not affect the large CMB scales.
These PBHs, being formed very early in the cosmic history during the preheating era,
can evaporate before BBN and reheat the universe through Hawking radiation [30]. For
more details see our relevant research article attached below.
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1 Introduction

The reheating stage [1–4] is a crucial part of the inflationary scenario [5–9]. It allows inflation
to come to an end, and describes how the inflaton field decays and produces ordinary matter.
Although reheating appears to be a rather complicated process, as far as the large scales
probed by the Cosmic Microwave Background (CMB) anisotropies are concerned [10, 11], the
influence of this epoch on the predictions of inflation is simple, at least in single-field models.
This is due to the fact that, on large scales, the curvature perturbation is conserved [12,
13], which implies that the details of the reheating process do not affect the inflationary
predictions. In fact, those predictions are sensitive to a single parameter, the so-called
reheating parameter [14], which is a combination of the reheating temperature and of the
mean equation-of-state parameter, and which determines the location of the observational
window along the inflationary potential. Given the restrictions on the shape of the potential
now available [15–19], this can be used to constrain reheating [20–23].

On small scales however, the situation is different. It was indeed shown in ref. [24]
(see also ref. [25]) that, for scales leaving the Hubble radius during the last ∼ 10 e-folds of
inflation (if the energy scale of inflation is not tuned to extremely low values), there is a
parametric instability that can lead to an enormous growth of perturbations. This can cause
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early structure formation and/or gravitational waves production [24–26], and may open a
new observational window on inflation and reheating.

In the present paper, we study yet another possible consequence of the presence of this
instability, namely the production of Primordial Black Holes (PBHs) [27, 28]. The motivation
is twofold. First, this may lead to a new inflationary mechanism for black hole production
which is completely natural and generic. Usually, it is necessary to consider very specific
potentials in order for this production to be efficient. In this work, the only assumption is
that the potential can be approximated by a parabola around its minimum. Except for fine-
tuned situations (where, for instance, a symmetry prevents the presence of a quadratic term
in the Taylor expansion of the potential about its minimum), this is always the case. Second,
tight constraints on the abundance of PBHs have been placed in various mass ranges (for a
review, see e.g. refs. [29, 30]), and this can be used to obtain extra information about the
reheating epoch. Note that PBH formation during preheating has been studied in refs. [31–
34], although in a different context.

The paper is organised as follows. In the next section, section 2, we briefly review
ref. [24] and the physical mechanism that leads to the instability mentioned above. Then,
in section 3, we study under which physical conditions PBHs are formed. In section 3.1,
based on ref. [35], we derive the critical density contrast from the requirement that the
instability must last long enough, before reheating is completed, to allow the initial scalar
field overdensity to form a black hole. In section 3.2, the corresponding criterion is refined
by taking Hawking evaporation into account. We then calculate the mass fraction at the
end of the instability phase in section 3.3. Due to the high efficiency of the instability, we
find that the corresponding values for the fraction of the universe comprised in PBHs can
be larger than one, which is not possible. The mass fraction must therefore be renormalised,
which is done in section 3.4. We propose two ways to carry out this procedure, one which
accounts for the possible inclusion of PBHs within larger ones (section 3.4.1), and one which
accounts for the premature termination of the instability phase by the backreaction of PBHs
(section 3.4.2). Having calculated the abundance of PBHs at the end of the instability,
in section 3.5, we proceed with calculating their abundance in the subsequent radiation-
dominated epoch. In some cases, we find that PBHs are so abundant that the radiation-
dominated era is delayed and we discuss under which conditions this occurs in section 3.6.
In section 3.7, we also consider the case where black holes do not entirely evaporate but
leave Planckian relics behind. In section 4, we derive the observational consequences of the
above-described mechanism. In section 4.1, we establish restrictions on the energy density
at the onset of the radiation dominated era (the reheating temperature). From current
constraints on PBHs (section 4.2) and Planckian relics (section 4.3) abundances, we then
derive constraints on the energy scale of inflation and the reheating temperature. In section 5,
we summarise our main results and present our conclusions. Finally, the paper ends with
two appendices. In appendix A, we explain how a scalar field (here, the inflaton field) can
collapse and form a black hole and, in appendix B, we use these considerations to derive the
expression of the critical density contrast used in the rest of the paper.

2 Inflation and the preheating instability

We consider scenarios where inflation is realised by a single scalar field φ (the inflaton), which
slowly rolls down its potential V (φ) and then oscillates at the bottom of it. In flat Friedmann-
Lemâıtre-Robertson-Walker space-times, the dynamics of the homogeneous inflaton field is
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driven by the Klein-Gordon and the Friedmann equations,

φ̈+ 3Hφ̇+ V ′ (φ) = 0 , H2 =
V (φ) + φ̇2

2

3M2
Pl

. (2.1)

Hereafter, H = ȧ/a is the Hubble parameter, a(t) is the scale factor, a dot denotes derivative
with respect to cosmic time, and MPl is the reduced Planck mass. These equations can
be solved numerically or with the help of the slow-roll approximation, and the solution is
insensitive to the choice of initial conditions due to the presence of the slow-roll attractor [36–
40]. Inflation ends when the first slow-roll parameter ε1 ≡ −Ḣ/H2 reaches one; then, starts
the reheating/preheating phase.

Close to its minimum, we assume the potential to be approximated by a quadratic
function,1

V (φ) =
m2

2
φ2. (2.2)

When, after the end of inflation, the inflaton field explores this part of the potential, H � m
and φ behaves as

φ(t) ' φ0

(
a0

a

)3/2

sin (mt) . (2.3)

This implies that the energy density stored in φ redshifts on average as matter [1], ρφ ∝ a−3,
and that the oscillations have a frequency given by the mass m. Here, the subscript “0” just
denotes a reference time that might be taken at the end of inflation. Let us stress that we only
assume the inflationary potential to be of the quadratic form towards the end of inflation,
see footnote 1. No restriction on its shape is imposed at the scales where the cosmological
perturbations observed in the CMB are produced, where the potential can e.g. be of the
plateau type, and provide a good fit to observations. This means that the parameter m
in eq. (2.2) should not be fixed to match the CMB power spectrum amplitude as usually
done, but should be left free in order to scan different values of Hend, namely different energy
scales at the end of inflation. In practice, this can be done as follows. Inflation ends when2

φend ' 1.0092MPl. Given that ε1 = 3φ̇2/2/(V + φ̇2/2), at the end of inflation, φ̇2 = V , and
one can relate Hend to m according to

m = 2Hend
MPl

φend
. (2.5)

In this way, by varying m one can vary the value of the Hubble parameter at the end of
inflation, Hend.

1As the amplitude of the oscillations get damped, the leading order in a Taylor expansion of the function
V (φ) around its minimum quickly dominates, which is of quadratic order unless there is an exact cancellation
at that order. The validity of this approximation is further discussed below.

2The value obtained for φend is independent of the mass parameter m, which can be seen with writing
eqs. (2.1) as a single equation for φ in terms of the number of e-folds N = ln a,

d2φ

dN
+

[
3 − 1

2M2
Pl

(
dφ

dN

)2
](

dφ

dN
+M2

Pl

V ′

V

)
= 0 . (2.4)

In this equation, the potential only appears through the combination V ′/V , in which the mass parameter m
cancels out. Since the first slow-roll parameter can be written as ε1 = (dφ/dN)2/(2M2

Pl), the value of φ at
which it crosses one does not depend on m.
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Figure 1. Power spectrum of the curvature perturbation at the end of inflation for m ' 1.14 ×
10−6MPl, corresponding to ρinf ≡ 3H2

endM
2
Pl = 10−12M4

Pl '
(
2.43× 1015GeV

)4
, as a function of

k/kend, where kend is the scale that exits the Hubble radius at the end of inflation. The blue solid line
corresponds to the numerical solution of eq. (2.6) while the black dashed line stands for the slow-roll
approximation (2.8).

For the cosmological perturbations, there is a single gauge-invariant scalar degree of
freedom that can be described with the Mukhanov-Sasaki variable [12, 13] v, which is a
combination of the perturbed inflaton field and of the Bardeen potential, the latter being
a generalisation of the gravitational Newtonian potential [41]. Its Fourrier component vk
evolves according to [42]

v′′k +

(
k2 − z′′

z

)
vk = 0, (2.6)

where a prime denotes a derivative with respect to conformal time η, defined as dt = adη.
In this expression, z ≡ √2ε1aMPl and is such that

z′′

z
= a2H2

[(
1 +

ε2
2

)(
2− ε1 +

ε2
2

)
+
ε2ε3

2

]
, (2.7)

where ε2 ≡ d ln ε1/dN and ε3 ≡ d ln ε2/dN are the second and the third slow-roll parameters
respectively. The initial condition is taken in the Bunch-Davies vacuum, i.e. such that vk →
e−ikη/

√
2k when k � aH, and the function z′′/z is evaluated on the background dynamics

that has been numerically integrated as explained above. In this way, one can compute the
amplitude of vk at the end of inflation for each mode k.

It is convenient to introduce the curvature perturbation ζ defined as ζ = v/z since this
quantity is conserved on super-Hubble scales, and to compute the power spectrum Pζ =
k3|ζk|2/(2π2) of that quantity at the end of inflation. It is displayed in figure 1 for the value

of m corresponding to ρinf ≡ 3H2
endM

2
Pl = 10−12M4

Pl '
(
2.43× 1015GeV

)4
, as a function
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Figure 2. Evolution of the relevant physical scales versus the e-folds number. The continuous red
line denotes the Hubble radius, which is also the upper bound of the instability band, while the
dashed red line represents the scale

√
3Hm which corresponds to the lower bound of the resonance

band. The dotted lines represent the physical wavelengths of different Fourier modes: the “green
modes” enter the instability mode from below while the “blue modes” enter it from above. The inset
shows the detailed behaviours of the Hubble radius and

√
3Hm at the transition between inflation

and reheating. Figure taken from ref. [24].

of k/kend, where kend = aendHend is the scale that exits the Hubble radius at the end of
inflation, see also figure 2. The blue solid line corresponds to the numerical solution of
eq. (2.6), while the black dashed line stands for the slow-roll approximated solution of that
equation, namely [43, 44]

Pζ,end =





H2
∗ (k)

8π2M2
Plε1∗ (k)

[
1 +

(
k

kend

)2
]

[1− 2 (C + 1) ε1∗ (k)− Cε2∗ (k)] if k < kend

H2
end

8π2M2
Pl

[
1 +

(
k

kend

)2
]

if k > kend

.

(2.8)
In this expression, for the modes that cross out the Hubble radius before the end of inflation,
k < kend, the functions H∗(k), ε1∗(k) and ε2∗(k) respectively denote the values of H, ε1 and
ε2 at the time when the mode k exits the Hubble radius, and are evaluated in the numerical
solution of eqs. (2.1). The parameter C ' −0.7296 is a numerical constant. One can check
in figure 1 that, except for the very few modes that are close to the Hubble scale at the end
of inflation and for which the amount of power is underestimated, eq. (2.8) provides a very
good fit to the numerical solution.

As already mentioned, after the end of inflation, the inflaton oscillates at the bottom
of its quadratic potential and the evolution of the perturbations through this epoch strongly
depends on the scales considered. On large scales (for instance, CMB scales), the conservation
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of curvature perturbation is sufficient to establish that the power spectrum (2.8) calculated
at the end of inflation propagates through the reheating epoch without being distorted.
However, on small scales, things can be very different. As shown in ref. [24], for modes
satisfying

aH < k < a
√

3Hm, (2.9)

see figure 2, the oscillations source a parametric resonance (in the narrow resonance regime).
The reason is that, thanks to these oscillations, eq. (2.6) becomes a Mathieu equation and the
condition (2.9) is in fact equivalent to being in the first instability band of that equation. We
see that the instability occurs if the physical wavelength of a mode is smaller than the Hubble
radius (continuous red line in figure 2) during reheating and larger than a new scale given
by
√

3Hm (dashed red line in figure 2). Moreover, two types of mode can be distinguished.
The “blue modes” in figure 2 exit the Hubble radius during inflation and re-enter it during
reheating; these modes therefore enter the instability band from above. On the other hand,
the “green modes” never exit the Hubble radius and enter the instability band from below
by crossing the new scale

√
3Hm. Once within the instability band, as described in ref. [24],

the fluctuations get strongly amplified, such that the density contrast grows linearly with
the scale factor. Effectively, they thus behave as pressureless matter perturbations in a
pressureless matter universe. In what follows, this epoch is referred to as the “instability
phase”. As explained in section 1, during this epoch, cosmological perturbations at the
amplified scales may collapse into PBHs. When the inflaton decays into other degrees of
freedom (or when the PBHs take the inflaton over, see below), the instability stops, and
the density of black holes evolves under various physical effects (cosmic expansion, Hawking
evaporation, accretion, merging, etc.).

Let us further discuss the quadratic approximation for the inflationary potential. The
largest scales amenable to parametric resonance during the instability phase are such that
k = ainstabHinstab, where the time tinstab denotes the end of the instability phase (the cor-
responding Fourier mode is denoted “kmin” in figure 2). During inflation, they cross out
the Hubble radius at a number of e-folds ∼ ln(Hend/Hinstab)/3 before the end of inflation,
where we recall that Hend is the value of the Hubble parameter at the end of inflation
and where we have used that, during the instability, the universe is matter dominated at
the background level. Since observational bounds on the tensor-to-scalar ratio impose [11]

Hend < 8 × 1013 GeV, and given that Hinstab > HBBN ∼ (10 MeV)2/
√

3M2
Pl ∼ 10−23 GeV,

where hereafter “BBN” stands for big-bang nucleosynthesis, this number of e-folds needs to
be smaller than ∼ 28.3 All the scales of interest for the problem at hand are therefore gener-
ated in the last 28 e-folds of inflation, where we assume the potential to be well approximated
by the quadratic form (2.2). Although one may be suspicious that this approximation holds
for 28 e-folds, let us stress that this value is in fact an extreme upper bound that comes from
saturating the condition Hinstab > HBBN, while we will see below that most of the relevant
parameter space is such that Hinstab and HBBN are separated by many orders of magnitude
and this number of e-folds is in fact much smaller. In practice, potentials favoured by the
data (such as plateau ones) tend to be shallower than the quadratic one away from the end of
inflation, and we have explicitly checked that this approximation only slightly underestimates

3Strictly speaking the tensor-to-scalar ratio r is related to H∗, the energy scale of inflation at the time the
CMB modes left the Hubble radius during inflation, which is a different quantity that Hend, the energy scale
at the end of inflation. Here, we neglect the difference between those two quantities. This approximation is
especially accurate for plateau models, namely for the models favoured by the most recent astrophysical data.
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the amplitude of scalar perturbations in such potentials, leading to conservative statements
regarding the amount of PBHs.4 It is nonetheless clear that the calculational program laid
out below can easily be performed for any given potential, such that the approximation (2.2)
for the last e-folds of inflation is released. In this work, it however allows us to carry out
a full parameter-space analysis, where the energy scale of inflation can be varied without
relying on a specific potential. We will see that this provides an overall picture where several
interesting regions are identified, in which a more detailed analysis can always be carried out.

3 PBH formation during reheating

We have just seen that the modes in the resonance band (2.9) behave as pressureless matter
fluctuations in a pressureless matter universe. In ref. [35] and in the two appendices, see
eq. (B.7), it is shown that they collapse into PBHs after a time [35]5

∆tcollapse =
π

H [tbc(k)] δ
3/2
k [tbc(k)]

, (3.1)

where tbc(k) denotes the “band-crossing” time, i.e. the time at which the mode k crosses in
the instability band (2.9).

Let us note that, in a matter-dominated universe, aH decreases as a−1/2 while a
√
H

increases as a1/4, so the bounds defining the instability band (2.9) are such that, when a
mode crosses in the band, it remains in the band (in other words, modes cannot cross out
the band).

This instability stops when the coherent oscillations of the inflaton are over. This can
happen e.g. when the inflaton decays into other fields. In the case of perturbative preheating,
this occurs when the Hubble parameter drops below the decay rate Γ of the inflaton, and for
this reason, hereafter this time is referred to as tΓ. One should however note that the results
derived below are independent of the precise way in which the phase of coherent oscillations
stop, since the time at which this happens (regardless of the way it happens) is simply one
of the parameters in the present scenario.6

Let us also stress that, for later convenience, we have introduced the two notations
tinstab and tΓ. As mentioned above, tinstab denotes the end of the instability while tΓ denotes
the time at which the field decays. Although they are identical in the standard picture, we
will see below that there are cases where they differ (for instance if PBHs come to dominate
the universe content before the inflaton decays), which explains the need for two distinct
notations.

3.1 Formation criterion

Let us now determine under which conditions PBHs form. The last mode to enter the
band (2.9) “from above” is such that k = aΓHΓ, which leads to k/kend = (ρΓ/ρinf)

1/6. The

4Hereafter, “conservative” refers to the fact that the approximations performed in this work tend to
underestimate the amount of PBHs, such that our results can be viewed as lower bounds on their abundance,
and the regions of parameter space that are excluded because they produce too many PBHs might extend
beyond what is obtained below.

5Here, we correct an error of a factor 2 in eq. (84) of ref. [35].
6As one approaches the point where H ∼ Γ, the averaged background equation-of-state parameter becomes

progressively finite and this could lead to shutting off the instability before the time of perturbative decay [45].
In this case HΓ > Γ, but again, HΓ is simply used as a parameter to describe the time at which the instability
stops, and “Γ” is no more than a convenient notation.
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last mode that enters the band “from below” is, on the other hand, such that k = aΓ

√
3HΓm.

In this paper, however, we restrict ourselves to modes that enter the instability band from
above. Indeed, as already noticed, the modes that enter the band from below have never
crossed out the Hubble radius and their status is unclear: in practice, one should derive the
full real-space profile of the over-densities produced by the instability band [46, 47], which is
beyond the scope of the present work. We therefore restrict our analysis to a subset of the
instability band (2.9) only, namely to modes such that

(
ρΓ

ρinf

)1/6

<
k

kend
< 1 . (3.2)

Obviously, the incorporation of the modes that enter the instability band “from below” could
lead to further PBHs production, and the results presented below are therefore conservative
in the sense of footnote 4.

Let us now determine under which condition the time spent in the instability band (2.9)
is enough for PBHs to form. Since the background energy density decays as pressureless
matter during the instability, one has

tΓ − tbc =
2

3Hbc

[(
aΓ

abc

)3/2

− 1

]
. (3.3)

Requiring that this is larger than the time (3.1) required for PBHs to form, one obtains the
following condition,

(
3π

2

)2/3
[(

k

kend

)3√ρinf

ρΓ
− 1

]−2/3

< δk[tbc(k)] < 1 , (3.4)

where the upper bound comes from the requirement that PBHs form in the perturbative
regime (the enforcement of this condition is again conservative with regards to the PBH
abundance).

3.2 Refined formation criterion: Hawking evaporation

The mass M of the PBH associated to the scale k is given by some fraction ξ of the mass
contained within a Hubble radius at the time tbc when k re-enters the Hubble radius. Making
use of the fact that the background energy density decays as pressureless matter during the
instability, one obtains

M(k) = ξ

(
3M2

Pl

)3/2
√
ρinf

(
k

kend

)−3

. (3.5)

These masses are typically very small and can be such that they disappear by Hawking
evaporation before the end of the instability. Since the evaporated black holes should be
removed from the mass fraction, let us determine under which conditions this happens. The
time of evaporation of a black hole with mass M is given by [48]

∆tevap(M) =
10240

g

M3

M4
Pl

, (3.6)

– 8 –



J
C
A
P
0
1
(
2
0
2
0
)
0
2
4

where g is the effective number of degrees of freedom. For the black hole to survive until
the end of the instability, one should therefore check that ∆tevap > tΓ − tcollapse = tΓ − tbc −
(tcollapse− tbc), where tΓ− tbc is given in eq. (3.3) and tcollapse− tbc is given in eq. (3.1). This
imposes the condition

δk[tbc(k)] <

[
2

3π

(
k

kend

)3√ρinf

ρΓ
− 2

3π
− 10240

g

ξ3

π

(3MPl)
4

ρinf

(
k

kend

)−6
]−2/3

. (3.7)

When the quantity inside the square brackets is negative, Hawking evaporation cannot pro-
ceed before the end of the instability phase and this does not need to be taken into account.
Otherwise, the value for δmax(k) now needs to be taken as the minimum value between the
right-hand side of eq. (3.4) and the right-hand side of eq. (3.7). Let us note that, comparing
eqs. (3.4) and (3.7), one always has δmax(k) > δc(k), unless δc > 1, in which case we simply
take the mass fraction to vanish.

3.3 Mass fraction

Assuming Gaussian statistics P for the density contrast perturbation at the band-crossing
time, with a variance given by the power spectrum Pδ, the mass fraction of PBHs can be
expressed as [49]

β (M, tΓ) ≡ dΩPBH(k, tΓ)

d lnM
= 2

∫ δmax(k)

δc(k)
P (δ)dδ = erfc

[
δc(k)√
2Pδ(k)

]
− erfc

[
δmax (k)√

2Pδ(k)

]
,

(3.8)

where erfc is the complementary error function and we have followed the usual Press-Schechter
practice of multiplying by a factor 2. In this expression, we recall that M and k are related
through eq. (3.5), that the minimum value of the density contrast, δc(k), is given by the left-
hand side of eq. (3.4), and that the maximum value, δmax(k), is given by the considerations
presented in section 3.2. On the other hand Pδ(k) [where the argument tbc(k) has been
dropped for notational convenience] can be obtained from the following considerations. Since
the modes belonging to eq. (3.2) are super Hubble between the end of inflation and the time
at which they enter the instability band (2.9) from above, the curvature perturbation ζk
is conserved, hence ζk [tbc(k)] = ζk,end. As explained in ref. [24], for the modes inside the
instability band, one has

δk = −2

5

(
3 +

k2

a2H2

)
ζk , (3.9)

which allows us to relate the power spectrum of the density contrast at the band-crossing
time to the one of the curvature perturbation at the end of inflation,

Pδ [k, tbc(k)] =

(
6

5

)2

Pζ,end(k) . (3.10)

The mass fraction at the end of the instability phase can be computed using the above
relations, and is displayed as a function of the mass in figure 3, for ρinf = 10−12M4

Pl '(
2.43× 1015GeV

)4
and a few values of ρΓ. We also take 10240/g = 100 and ξ = 1. The
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Figure 3. Mass fraction of PBHs at the end of the instability phase, as a function of the mass at which
they form. The energy density at the end of inflation is set to ρinf = 10−12M4

Pl ' (2.43× 1015GeV)4,
and the result is displayed for a few values of ρΓ, namely ρΓ = 3 × 10−32M4

Pl ' (3.2 × 1010GeV)4,
ρΓ = 10−32M4

Pl ' (2.4 × 1010GeV)4, ρΓ = 3 × 10−33M4
Pl ' (1.8 × 1010GeV)4, ρΓ = 10−33M4

Pl '
(1.4 × 1010GeV)4, ρΓ = 3 × 10−34M4

Pl ' (1010GeV)4 and ρΓ = 10−37M4
Pl ' (1.4 × 109GeV)4. The

vertical grey dashed line stands for the minimum mass corresponding to the scale that matches the
Hubble radius at the end of inflation, while the horizontal grey dashed line corresponds to β = 1,
which is the maximum possible value attained in the limit δc �

√Pδ.

vertical grey dashed line stands for the minimum mass Mmin, corresponding to the scale that
matches the Hubble radius at the end of inflation, and which can be obtained by setting
k/kend = 1 in eq. (3.5). For the value of ρinf used in the figure, one has Mmin ' 22.5 g '
1.1 × 10−32M�, where M� denotes the mass of the sun. Since the result depends only on
ρinf , and given that the same value of ρinf is used for all curves, this explains why the same
value for the minimum mass is found. One can also check that, the lower ρΓ is, the longer
the instability phase is, hence the more amplified the fluctuations are and the more black
holes are produced.

The dependence of β(M, tΓ) in terms of the mass M can also be understood in simple
terms. The dominant trend is that the mass fraction mostly decreases with the value of the
mass. This is because, the larger the mass, the smaller the wavenumber k [see eq. (3.5)],
hence the later the mode enters the instability band, so the less amplified the perturbation
and the larger δc [see eq. (3.4)]. More precisely, for δmax = 1, from eq. (3.8), β decreases
with δc/

√
2Pδ. Since δc ∝ k−2, see eq. (3.4), β decreases with M (hence increases with k)

if d lnPζ/d ln k > −4, i.e. if the spectral index is larger than −3. This is of course the case
away from the end of inflation, where the power spectrum is close to scale invariance, but
might not be true for modes that exit the Hubble radius close to the end of inflation, i.e. for
values of M close to Mmin. In fact, one can check that the spectral index corresponding to
the “numerical” power spectrum in figure 1 (blue curve) is always larger than −3, and the
reason why β increases with M at small masses in some of the curves displayed in figure 3 is
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Figure 4. Mass fraction of PBHs at the end of the instability phase, as a function of the mass

at which the black holes form, for ρinf = 10−12M4
Pl '

(
2.43× 1015GeV

)4
and ρΓ = 10−40M4

Pl '(
2.43× 108GeV

)4
. The black line corresponds to the result obtained before renormalisation and leads

to ΩPBH(tΓ) = 8.54 > 1, which is not physical. The blue dotted line is obtained after renormalisation
by inclusion, i.e. when increasing Mmin to M ′min such that the integrated mass fraction ΩPBH(tΓ)
becomes one. This accounts for the absorption of small-black holes into larger-mass black holes when
the regions that collapse into these large-mass black holes already contain smaller ones. The green
dotted line stands for renormalisation by premature ending, i.e. by stopping the instability phase
before tΓ, at the time when ΩPBH reaches one. This accounts for the fact that if the universe becomes
dominated by black holes, the parametric resonance effect stops.

because we make use of the slow-roll approximation (2.8) corresponding to the black dashed
curve in figure 1, for which the spectral index drops below −3 at the very end of inflation.
However, as stressed above, although this approximation is necessary to limit the numerical
cost of the parameter space exploration performed below, it only affects a tiny range of modes
that exit the Hubble radius at the very end of inflation, and is conservative in the sense of
footnote 4.

3.4 Renormalising the mass fraction at the end of the instability

The fraction of the energy density of the universe contained within PBHs at the end of the
instability phase is, by definition, given by

ΩPBH (tΓ) =

∫ Mmax

Mmin

β (M, tΓ) d lnM . (3.11)

One can compute its value for the parameters displayed in figure 3 and one finds ΩPBH(tΓ) '
8.68×10−7, 5.63×10−4, 2.13×10−2, 0.129, 0.412, 4.58 for ρΓ = 3×10−32M3

Pl, · · · , 10−37M4
Pl,

respectively. The fact that ΩPBH decreases with ρΓ is consistent with what precedes, but the
reader should be struck by the last value, which is above one. This is of course not possible
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given that we assume the spatial curvature to vanish, and entails that when ρΓ decreases,
the production of PBHs is so efficient that they overtake the energy density stored in the
inflaton field. When this happens, the above approach breaks down. Below, we propose two
procedures to model what may physically prevent ΩPBH to grow larger than one.

3.4.1 Renormalisation by inclusion

When ΩPBH increases and reaches sizeable values, PBHs are densely distributed in the uni-
verse, and when a fluctuation at a given scale gets amplified above the threshold, the region
of space that collapses and forms a black hole may already contain smaller black holes. If
this happens, when black holes with larger masses form, black holes with smaller masses may
be absorbed and disappear from the mass fraction, and we dub this effect “inclusion”. In
ref. [50], this is also called the “could-in-cloud” phenomenon.

In that case, we proceed as follows: if ΩPBH(tΓ) is found to be larger than one, we
increase the value of Mmin in eq. (3.11),

Mmin →M ′min , (3.12)

in such a way that ΩPBH(tΓ) becomes one. We therefore remove the small mass tail of the
distribution that is responsible for having ΩPBH > 1, accounting for their absorption into
larger-mass black holes.

One should note that this inclusion effect might, in practice, prevent ΩPBH to grow
larger than some intermediate value that is smaller than one, but this would have only very
little impact on the results derived below as long as that value is of order one (which is
expected for the inclusion phenomenon to be significant [50]). Another possibility is that
small-black holes are indeed removed from the distribution, but that the decrease in β at
small M is smoother than a sharp cutoff imposed at M ′min. In the absence of a clear way
to model the formation of PBHs and the inclusion dynamics in the dense regime, it seems
difficult to go beyond the sharp cutoff procedure, which can however be seen as a limit
bounding the range of possible renormalisation procedures (the other bounding procedure
being introduced below).

In figure 4, we have represented the mass fraction at the end of the instability phase for
ρinf = 10−12M4

Pl '
(
2.43× 1015GeV

)4
and ρΓ = 10−40M4

Pl '
(
2.43× 108GeV

)4
. The black

solid line corresponds to what is obtained before renormalisation and leads to ΩPBH(tΓ) =
8.54, which is not possible. The blue dotted line represents the result after renormalisation
by inclusion (3.12), i.e. by removing the low mass part of the distribution to bring ΩPBH(tΓ)
back to one.

3.4.2 Renormalisation by premature ending

Another possibility is that, as ΩPBH increases, PBHs backreact on the dynamics of the
universe, which is no longer dominated by the coherent oscillations of the inflaton field, and
the instability stops. The precise value of ΩPBH at which this premature termination occurs
is difficult to assess, and for simplicity we will assume it to be one, since our final results
mildly depend on it.

In that case, if ΩPBH(tΓ) is found to be larger than one, we change the time at which
the instability stops,

tΓ → tinstab, (3.13)
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Figure 5. Integrated mass fraction ΩPBH as a function of time, here parametrised by the total energy
density ρtot, from the end of the instability phase tinstab until BBN, for the same values of ρinf and
ρΓ as the ones displayed in figure 3. For ρΓ = 10−37M4

Pl ' (1.4× 109GeV)4, the mass fraction needs
to be renormalised, which for illustration here is done using the premature-ending procedure.

where tinstab is the time at which ΩPBH reaches one. Therefore, as announced before, there
are situations for which tinstab 6= tΓ. The result is displayed in figure 4 with the dotted green
line. One can check that the large-mass black holes are removed from the mass fraction
distribution, since those black holes correspond to scales that enter the instability band
towards the end of the instability phase, at which point the instability is now no longer on.

Since, as explained above, the procedure of renormalisation by inclusion removes the
small-mass end of the distribution, these two approaches can therefore be viewed as com-
plementary, and by studying the results obtained with both one can assess how much the
conclusions depend on the way the mass fraction is renormalised.

The actual renormalisation procedure might lie in between these two schemes: for in-
stance, it could happen that, as ΩPBH increases, inclusion starts to be important, which slows
down the increase of ΩPBH but does not prevent it from further growing, until the point where
premature ending occurs. In such a case, a distribution that is intermediate between the blue
and the green curves of figure 4 would be obtained. As we will show below, some common
conclusions can be drawn with both renormalisation schemes, which motivates the statement
that such conclusions are mildly dependent on the renormalisation approach.

3.5 Evolving the mass fraction

After the instability stops, the density of black holes evolves under different physical effects,
such as Hawking evaporation, accretion and merging. In what follows we neglect the two
latter and only account for the former. The reason is that accretion and merging are tech-
nically difficult to model (see e.g. refs. [51, 52]), and only contribute to enhancing the final
value of ΩPBH. The reason why this is the case for accretion is obvious, and for merging,
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this is because the Hawking evaporation time (3.6) cubicly depends on the mass. Therefore,
when two black holes (say of the same mass) merge, they loose some fraction of their mass
through the emission of gravitational waves, but their evaporation time is multiplied by 8,
allowing them to live much longer. As a consequence, by only considering Hawking evapo-
ration, we again derive conservative bounds, which underestimate the density of black holes
at the epochs where they are observationally constrained.

The mass of a black hole decreases under Hawking evaporation according to [48]

M(t, k) = M (tinstab, k)

{
1− t− tinstab

∆tevap [M (tinstab, k)]

}1/3

, (3.14)

where ∆tevap was given in eq. (3.6). This expression should be understood as coming with
a Heaviside function such that, when t− tinstab > ∆tevap, M is set to zero. We do not write
it explicitly here for notational convenience. If β̄ denotes the mass fraction in the absence of
Hawking evaporation, one then has

ΩPBH(t) =

∫ Mmax

M ′min

β̄ (M, t)

[
1− t− tinstab

∆tevap (Minstab)

]1/3

d lnM , (3.15)

where Minstab is a short-hand notation for M(tinstab, k), and where one should recall that M
and k are related through eq. (3.5). Let us see how β̄ can be calculated (in what follows,
quantities with a bar denote their values in the absence of Hawking evaporation). The
energy density of PBHs contained in an infinitesimal range of scales δ(lnM) is given by
δρ̄ = ρtotβ̄ (M, t) δ(lnM). Since PBHs behave as pressureless matter, in the absence of
Hawking evaporation one would have ˙δρ̄ + 3Hδρ̄ = 0. Plugging the former expression into

the latter, one obtains (ρ̇tot + 3Hρtot) β̄ (M, t) + ρtot
˙̄β (M, t) = 0. After the end of the

instability phase, we assume that the inflaton instantaneously decays into a radiation fluid,
so ρ̄tot = ρ̄PBH+ρ̄rad. In the absence of Hawking evaporation, one then has ˙̄ρtot = −3Hρ̄PBH−
4Hρ̄rad = −3HΩPBHρ̄tot − 4H(1− ΩPBH)ρ̄tot = Hρ̄tot(ΩPBH − 4). This gives rise to

˙̄β(M, t) +H (ΩPBH − 1) β̄(M, t) = 0 . (3.16)

A priori, this equation has to be solved for each mass independently, with the corresponding
initial condition at tinstab. However, since the equation is linear and does not depend explicitly
on the mass, a simpler solution to the problem can be found by introducing the function b
that satisfies

ḃ +H (ΩPBH − 1) b = 0 with b (tinstab) = 1 , (3.17)

and such that

β̄ (M, t) = β̄ (M, tinstab) b (t) (3.18)

satisfies eq. (3.16), with the correct initial condition. The set of equations (3.15), (3.17)
and (3.18) then defines a differential system that one can integrate numerically. Finally,
let us note that, in practice, we would like to integrate the differential system until a time
defined by its energy density rather than its cosmic time (for instance, until BBN defined

by ρ1/4 = ρ
1/4
BBN ∼ 10 MeV). For this reason it is more convenient to use ln ρtot as the time

variable (the log being used for numerical convenience), and eq. (3.17) becomes

db

d ln ρtot
+

ΩPBH − 1

ΩPBH − 4
b = 0 . (3.19)
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The value of cosmic time is still necessary in order to evaluate the Hawking suppression term
in eq. (3.15), which can be tracked solving

d(t− tinstab)

d ln ρtot
=

√
3MPl

(ΩPBH − 4)
√
ρtot

(3.20)

together with the above system.
In figure 5, the solution one obtains for ΩPBH as a function of time is displayed for the

same parameter values as the ones used in figure 3. At early time, the effect of Hawking
evaporation is negligible, and ρPBH ∝ a−3. If ΩPBH � 1, ρtot ' ρrad ∝ a−4 and ΩPBH ∝ a,
otherwise ρtot ' ρPBH ∝ a−3 and ΩPBH remains equal to one. Let us see when the black
holes complete their evaporation. If a PBH forms from a scale that crosses in the instability
band at ρbc, its mass is given by setting k/kend = (ρbc/ρinf)

1/6 in eq. (3.5). Inserting the
corresponding expression of M into eq. (3.6), the time tevap − tinstab at which it evaporates
can be derived. If ΩPBH � 1 until this point, eq. (3.20) can be integrated and gives ρ =
ρinstab[1 + 2

√
ρinstab/3(t− tinstab)/MPl]

−2, which means that the black hole evaporates at the
energy density

ρevap ∼
1

26244ξ6

(
g

10240

)2 ρ3
bc

M8
Pl

. (3.21)

Notice that, in order to obtain this estimate, we have neglected the fact that Hawking
evaporation starts before the end of the instability (which was however taken into account
for PBHs that entirely evaporate during the instability, see section 3.2). Indeed, given than
the collapsing time decays with the initial density contrast, see eq. (3.1), and since PBHs
form in the Gaussian tail of the distribution function where the smaller the density contrast,
the more likely it is, most PBHs form close to the end of the instability phase, and for them
Hawking evaporation during the instability can be neglected.

If ΩPBH takes sizeable values before the evaporation of the first black holes, the esti-
mate (3.21) needs only to be corrected by factors of order one (If ΩPBH = 1, the corrective
factor is 8/9). The first black holes to evaporate are the ones with the smallest mass Mmin,
i.e. such that ρbc = ρinf . In figure 5, one can check that the evaporation of these PBHs in-
deed corresponds to the turning point of all curves [for ρinf = 10−12M4

Pl '
(
2.43× 1015GeV

)4
,

eq. (3.21) gives ρevap ∼ 3× 10−45M4
Pl '

(
1.8× 107GeV

)4
]. Below this point, Hawking evap-

oration is efficient and ΩPBH quickly decreases.

3.6 Reheating through PBH evaporation

The onset of the radiation era, defined as being the time, after the instability phase, after
which ΩPBH remains below 1/2, does not necessarily coincide with tinstab. Indeed, if the
universe is dominated by PBHs at the end of the instability, as is the case for the curve
with ρΓ = 10−37M4

Pl ' (1.4 × 109GeV)4 in figure 5, the radiation era only starts with the
evaporation of the first black holes around ρ ∼ 10−45M4

Pl ' (107GeV)4 as explained above.
In fact, even if PBHs do not dominate the universe’s content at the end of the instability
phase, they may later do so, see the curve with ρΓ = 3 × 10−33M4

Pl ' (1.8 × 1010GeV)4 in
figure 5 for instance, in which case the onset of the radiation epoch is also delayed.

In such cases, let us point out that the reheating of the universe proceeds from the
Hawking evaporation of the PBHs that dominate the energy budget for a transient period
after the instability phase.7 If it completes long before BBN, such a mechanism is a priori

7This possibility has been discussed, in a different context, in refs. [53–56].
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Figure 6. Energy density at the onset of the radiation era, ρrad, as a function of ρΓ, for

ρinf = 10−12M4
Pl '

(
2.43× 1015GeV

)4
(which is the value used in all previous figures). The blue curve

corresponds to the renormalisation procedure by inclusion, while the green one stands for renormal-
isation by premature ending. The red circles indicate the location of the discontinuity, i.e. values of
ρrad comprised between the two circles are never realised, see main text.

allowed, and we discuss several of its implications in section 5. It is then interesting to
extract the energy density at the onset of the radiation period, ρrad, from our computational
pipeline. Let us notice that ρrad is the quantity which is related to what would be defined
as the reheating temperature, Treh, through ρrad = g∗π2T 4

reh/30, where g∗ is the number of
relativistic degrees of freedom.

The quantity ρrad is displayed in figure 6 for ρinf = 10−12M4
Pl ' (2.43 × 1015GeV)4

(which is the same value employed in all previous figures, in particular in figure 5) and as a
function of ρΓ, which varies between ρBBN and ρinf . This allows us to identify several relevant
regions in parameter space. When ρΓ is large, the instability phase is too short to produce
a substantial amount of PBHs and they never dominate the energy content of the universe.
This corresponds e.g. to the curve with ρΓ = 3 × 10−32M4

Pl ' (3.2 × 1010GeV)4 in figure 5.
In this case, the radiation era starts when the inflaton decays into radiation, and ρrad = ρΓ.

When ρΓ decreases, one first notices in figure 6 the presence of a discontinuity, that
we will explain shortly. In a small range below the discontinuity, ρrad is different from
ρΓ, denoting the presence of a phase where PBHs dominate the universe, but does not
depend on the renormalisation procedure, revealing that PBHs do not dominate at the end
of the instability phase. This corresponds e.g. to the curve with ρΓ = 3 × 10−33M4

Pl '
(1.8×1010GeV)4 in figure 5. In this case, after the instability phase, there is a first radiation
epoch, then PBHs take over and drive a matter epoch, before they evaporate and reheat the
universe, which finally enters a second radiation epoch. One then finds ρrad < ρΓ.

The discontinuity can be explained as follows: let us consider the case where radiation
dominates at tΓ, namely ΩPBH < 1/2 at tΓ. Clearly, in this situation, no renormalisation
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is needed since ΩPBH < 1 at tΓ. Then, as already explained, ΩPBH grows proportionally to
the scale factor until Hawking evaporation becomes efficient and makes ΩPBH decrease, see
figure 5. Assume that the maximum value ΩPBH reaches is slightly smaller than 1/2. In
this situation, the start of the radiation epoch is tΓ and ρrad = ρΓ since the radiation era is
never interrupted. This case corresponds to the upper red dot in figure 6. Consider now the
situation where at the end of the instability, the value of ΩPBH is infinitesimally larger than
in the previous case (and, therefore, still smaller than 1/2 at tΓ). This means that we now
start with a value of ρΓ that is slightly smaller than before (and the instability lasts slightly
longer). This gives rise to the same behaviour as described above except that, now, the value
at the maximum is slightly larger than before, and above 1/2. This means that the radiation
epoch comes to an end and that a matter dominated era starts. Of course, since this is also
the time at which Hawking radiation starts to become important, this matter-dominated era
lasts a very short amount of time and very soon a new radiation dominated era (the “real”
one) starts. The important point, however, is that ρrad is now very different from ρΓ and is
close to ρevap, and this second case corresponds to the lower red dot in figure 6.

This explains the discontinuity in the curve ρrad versus ρΓ. Let us note that an important
consequence of this behaviour is the fact that none of the values for ρrad comprised between
the two red circles can be physically realised. We therefore identify regions in parameter space
that are forbidden, not by the observations, but by self-consistency of the scenario itself.

Finally, when ρΓ takes small values, PBHs are very abundantly produced and the mass
fraction needs to be renormalised at the end of the instability phase. If renormalisation is
carried out by inclusion, by keeping only the heavy black holes in the distribution, Hawking
evaporation proceeds at later times when ρΓ decreases, and the radiation epoch is more and
more delayed. There is even a point where the radiation era has not started yet by BBN,
which is obviously excluded and which explains why the blue curve is not plotted in figure 6
below that point. If renormalisation is performed by premature ending on the other hand,
the result does not depend on ρΓ since ρinstab becomes independent of that parameter and,
from there, the value of ρrad is only controlled by the evaporation process. In that case, for

ρ
1/4
Γ & 286TeV, the onset of the radiation epoch is delayed compared to what it would have

been if sourced by inflaton decay. This also implies that the inflaton could decay “inside” the
black holes, although due to the no hair theorem, this should not leave any physical imprint.

On the other hand, if ρ
1/4
Γ . 286TeV, reheating occurs earlier than it would have with pure

inflaton decay.

To conclude this section, let us stress again that, for ρΓ . 1010GeV and ρinf =

10−12M4
Pl '

(
2.43× 1015GeV

)4
(a full scan of the parameter space is presented in the fol-

lowing), namely below the lower red point in figure 6, the radiation in our universe no
longer comes from inflaton decay but from the evaporation of PBHs formed during preheat-
ing. Given the generic character of the situation considered here (single-field inflation with
quadratic minimum), this is clearly one of the main conclusions of the present paper.

3.7 Planckian relics

The previous considerations show that the universe may have gone through a phase where
PBHs are numerous, and can even dominate the energy budget of the universe, but that these
black holes can also well have all disappeared before BBN, through Hawking evaporation. In
such a case, there is no direct way to constrain them, unless they do not fully evaporate and
leave some relics behind.
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This possibility has been discussed [57, 58] in the context of quantum-gravity inspired
scenarios, where it has been suggested that black hole evaporation might stop when the mass
of the black hole reaches the Planck mass. In this case, the number density of black hole can
be computed at the end of the instability phase according to

nPBH (tinstab) = ρtot

∫ Mmax

Mmin

β̃ (M, tinstab)

M
d lnM . (3.22)

In this expression, β̃ (M, tinstab) corresponds to eq. (3.8) (with tΓ replaced with tinstab) where,
instead of taking δmax as being the minimum value between one and the right-hand side of
eq. (3.7), one simply takes δmax = 1. This ensures that the black holes that evaporate before
the end of the instability phase are also accounted for in the calculation of relics.

Since this number density is not affected by Hawking evaporation, it then evolves ac-
cording to the function b(t) introduced in section 3.5, i.e. solely under the effect of cosmic
expansion. The fractional energy density of relics at subsequent times is thus given by

Ωrelics(t) = b(t)

∫ Mmax

Mmin

β̃ (M, tinstab)
MPl

M
d lnM . (3.23)

Let us note that this expression assigns one Planckian relic to each black hole, whether it
has already evaporated or not. It therefore gives the density of “naked” relics only in the
late-time limit, when all black holes have evaporated. It however always provides a lower
bound on the contribution to dark matter (DM) originating from black holes and their relics,
and as such, should be checked to be smaller than ΩDM, which will be done in section 4.3.

4 Observational consequences

Having described the physical setup and the methods employed to model it, let us now turn
to the results and discuss their physical implications.

4.1 The onset of the radiation era

In section 3.6, it was found that in some cases, the production of PBHs is so efficient that
they may come to dominate the energy budget of the universe, either before the end of
the instability phase or afterwards. In that case, the onset of the radiation era does not
correspond to the time when the inflaton decays, i.e. when ρ = ρΓ, but rather occurs when
the PBHs evaporate. The corresponding energy density, ρrad, has been displayed as a function
of ρΓ and for a fixed value of ρinf in figure 6.

In figure 7, the same quantity is shown, but as a function of both ρinf and ρΓ. Thus
figure 6 is a vertical slice of figure 7. The left panel corresponds to renormalisation by
inclusion, see section 3.4.1, while the right panel stands for renormalisation by premature
ending, see section 3.4.2. The grey region is excluded since it corresponds to ρΓ > ρinf .
In the region where ρrad = ρΓ, PBHs never dominate and reheating occurs at the end of
the instability phase, through decay and thermalisation of the inflaton. In both figures, the
lower right triangular regions, in which ρrad 6= ρΓ, are such that reheating proceeds by PBH
evaporation. Notice that, there, the darkest blue region corresponds to parameter values
for which the universe is still not dominated by radiation at BBN, which is excluded. This
allows us to generalise the remarks made around figure 6: when ρΓ is large, the instability
phase is short, PBHs never dominate the universe, so ρrad = ρΓ and reheating proceeds
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Figure 7. The energy density at the onset of the radiation era as a function of ρinf and ρΓ. The grey
region is excluded since it corresponds to ρinf < ρΓ. Left panel: renormalisation by inclusion. Right
panel: renormalisation by premature ending.

in the standard way; when ρΓ is sufficiently small, PBHs can dominate the universe, which

results into either delaying or anticipating the universe reheating. For ρ
1/4
inf ' 1015GeV, which

corresponds to a tensor-to-scalar ratio of r ' 10−3, reheating occurs from PBHs evaporation

when ρ
1/4
Γ . 2× 109GeV.

More generally, the boundary of the lower-right triangles, i.e. the condition for reheating
the universe via PBH evaporation, can be worked out as follows. Clearly, reheating proceeds
through PBHs evaporation if the PBHs are formed in a substantial way. This is the case if
the critical density contrast given in eq. (3.4), δc ∼ (3π/2)2/3(k/kend)−2(ρinf/ρinstab)−1/3 =
(3π/2)2/3(ρinstab/ρbc)

1/3 [where we have used k/kend = (ρbc/ρinf)
1/6] is much smaller than√

2Pδ. Moreover, the modes that get the more amplified are the ones that enter the instability
band the earlier, and thus exit the Hubble radius not long before the end of inflation. For
them, one can take Pζ,end ∼ H2

end/(8π
2M2

Pl), see eq. (2.8), hence Pδ,bc ∼ 3ρinf/(50π2M4
Pl), see

eq. (3.10). As a consequence, the condition δc/
√

2Pδ � 1 leads an upper bound on ρinstab,
namely ρinstab < 4(125

√
3π5)−1(ρinf/M

4
Pl)

3/2ρbc. This makes sense since, in order to have
sizeable PBHs production, the instability must last long enough and, therefore, ρinstab must
be small enough. Since ρbc < ρinf and ρΓ < ρinstab by construction, this gives rise to

ρΓ

M4
Pl

<
4

125
√

3π5

(
ρinf

M4
Pl

)5/2

. (4.1)

One can check that this expression provides a good fit to the boundary of the lower right
triangular regions in figure 7, hence it gives a simple criterion to check whether or not
reheating proceeds via PBH evaporation.

4.2 Constraints from the abundance of PBHs

Let us now discuss observational constraints from the predicted abundance of PBHs. The
amount of DM made of PBHs is constrained by various astrophysical and cosmological probes,
through their evaporation or gravitational effects (for a recent review, see e.g. refs. [29, 30]).
The earliest constraint, i.e. the one limiting black holes with the smallest mass, is BBN. This
is why in the left panels of figures 8 and 9, the fraction of the universe made of PBHs at
BBN is displayed, as a function of ρinf and ρΓ.
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Figure 8. In the left panel, the fraction of the universe made of PBHs at BBN is displayed as
a function of ρinf and ρΓ, when the mass fraction is renormalised by inclusion. The grey region
corresponds to ρΓ > ρinf and is therefore forbidden. In the blue region, ΩBBN

PBH < 10−30, which leaves
the parameters unconstrained. In the dark red region, ΩBBN

PBH ' 1, which is excluded. In between,
there is a fine-tuned region where ΩBBN

PBH takes fractional values, and where the details of the mass
fraction matter. For that reason, 6 points are labeled across that region, for which ΩBBN

PBH = 10−2, and
their mass fraction is shown in the right panel.

As before, the model is defined only when ρΓ < ρinf , i.e. outside the grey region. The
parameter space is otherwise essentially divided into two main regions: in the dark blue
region, i.e. for large values of ρΓ, ΩBBN

PBH . 10−30, and all observational constraints are easily
passed. This corresponds to situations where PBHs are either not substantially produced, or
evaporate before BBN. In the dark red region, i.e. for smaller values of ρΓ, ΩBBN

PBH ' 1 and the
universe is not radiation dominated at the time of BBN, which is not allowed at more than the
few percents level [59]. A substantial fraction of the reheating parameter space can therefore
be excluded from the considerations presented in this work, which is our second main result.

For instance, for the typical value ρ
1/4
inf ' 1015GeV, ΩBBN

PBH & 0.1 if ρ
1/4
Γ . 1.6× 107GeV when

renormalisation is performed by inclusion.
The location of the boundary between the excluded and the allowed regions can be

worked out as follows. Requiring that the evaporation time, estimated in eq. (3.21),
is later than BBN leads to ρbc/M

4
Pl < (9 × 62/3)ξ2(10240/g)2/3(ρBBN/M

4
Pl)

1/3. In ad-
dition, we must also make sure that the corresponding PBHs have been produced in
a non-negligible quantity which leads to the upper bound on ρinstab derived in the
text above eq. (4.1). Combining these two expressions, one obtains ρinstab/M

4
Pl <

(36×62/3ξ2)/(125
√

3π5)(10240/g)2/3(ρBBN/M
4
Pl)

1/3(ρinf/M
4
Pl)

3/2 ∼ 2.5×10−29(ρinf/M
4
Pl)

3/2.
Combined with eq. (4.1), this gives rise to

ρinstab

M4
Pl

< min

[
6.0× 10−5

(
ρinf

M4
Pl

)5/2

, 2.5× 10−29

(
ρinf

M4
Pl

)3/2
]
. (4.2)

One can check that this rough estimate indeed provides a good enough description of the
boundary between the blue and the red regions in figure 8 where one simply has ρinstab = ρΓ

(the situation in figure 9 is more complicated since those are two different quantities).
In between the excluded and the allowed regions, there is a fine-tuned, thin line along

which ΩBBN
PBH can take fractional values. There, the details of the mass fraction, i.e. the value of

– 20 –



J
C
A
P
0
1
(
2
0
2
0
)
0
2
4

10−1 102 105 108 1011 1014

ρ
1/4
inf (GeV)

10−1

102

105

108

1011

1014
ρ

1/
4

Γ
(G

eV
)

Renormalisation by premature ending

1

2

3

4

5

6

< 10−30

10−25

10−20

10−15

10−10

10−5

1

Ω
B

B
N

P
B

H

10−29 10−28 10−27 10−26 10−25 10−24 10−23 10−22 10−21

M/M�

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

β B
B

N
(M

)

Renormalisation by premature ending

1

2

3

4

5

6

Figure 9. Same as in figure 8, when the mass fraction is renormalised by premature ending.
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Figure 10. Fraction of the universe made of PBHs at BBN, as a function of ρinf and ρrad, when the
mass fraction is renormalised by inclusion (left panel) and premature ending (right panel). The grey
region is not realised either because ρrad > ρinf , or because the corresponding value of ρrad is never
realised, see the discussion around figure 6.

β and the range of masses it covers, matter. For this reason, both in figures 8 and 9, we have
sampled 6 points along this thin line, for which ΩBBN

PBH = 10−2, and we show the corresponding
mass fraction in the right panels, as a function of M/M�. We have checked that fixing ΩBBN

PBH

to values different than 10−2 does not qualitatively change the following remarks.

First, one may be surprised that some values of β are larger than one. This is because,
although β at the end of the instability is smaller than one by definition, see eq. (3.8), it is
then redshifted by b, see eq. (3.18), which can be much larger than one. The integrated mass
fraction, ΩPBH, does always remain smaller than one.

Second, the observational constraints on the value of β depend on whether the mass
distribution is monochromatic (i.e. all black holes have the same mass) or extended. In
our case, it is clearly extended, and the constraints then depend on its precise profile. Let
us however note [29] that the smallest mass being constrained is of the order 10−24M�.
Only the points labeled 1 and 2 in figures 8 and 9, i.e. the ones with ρinf ∼ 10−30M4

Pl '
(7.7× 1010GeV)4 and very small values of ρΓ, can therefore be constrained. More precisely,
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Figure 11. Abundance of Planckian relics normalised to the one of dark matter, as a function of ρinf

and ρΓ, when the mass fraction is renormalised by inclusion (left panel) and premature ending (right
panel).

for monochromatic mass distributions, one has8 βBBN(10−24M� < M < 10−23M�) < 10−7

and βBBN(10−23M� < M < 10−19M�) < 10−12. Although this would have to be adapted to
the extended mass distributions we are dealing with, this confirms that the points labeled 1
and 2 are probably excluded. This however does not change the main shape of the excluded
region.

Third, no black hole with masses larger than 10−20M� are produced unless they are
too abundantly produced. This implies that the present scenario cannot account for merger
progenitors as currently seen in gravitational-wave detectors such as LIGO/VIRGO, nor can
it explain dark matter since such black holes have all evaporated by now.

In figure 10, we finally display ΩPBH at BBN as a function of ρinf and ρrad, in order
to derive constraints in that parameter space too. As above, the upper-left grey triangle
corresponds to ρrad > ρinf and is therefore to be discarded. There are however additional
grey regions corresponding to values of ρrad that are not realised: an intermediate grey
band that stands for the discontinuity gap commented on around figure 6, and in the case
of renormalisation by premature ending, a lower right grey triangle that arises from the
saturation effect discussed around figure 6 as well.

4.3 Constraints from the abundance of Planckian relics

In section 3.7, we discussed the possibility that evaporated PBHs leave Planckian relics
behind, i.e. objects of mass ∼MPl that do not further evaporate. If they exist, their density
is expressed in eq. (3.23), and it should be smaller than the one of dark matter. This is why
in figure 11, the ratio Ωrelic/ΩDM is displayed, as a function of ρinf and ρΓ, and in figure 12, as

8Observational constraints are usually quoted at the time of formation, assuming that PBHs form in
the radiation era. In the present setup, PBHs form in a matter-dominated phase, so it is more convenient
to express BBN constraints at the time of BBN itself. In terms of the mass fraction β̃form at the time of
formation in the case where the universe is radiation dominated between PBH formation and BBN (i.e. the
quantity quoted in most reports on observational constraints), it is given by

βBBN = 31/4
√

4πξ

(
M6

Pl

M2ρBBN

)1/4

β̃form . (4.3)
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Figure 12. Abundance of Planckian relics normalised to the one of dark matter, as a function of
ρinf and ρrad, when the mass fraction is renormalised by inclusion (left panel) and premature ending
(right panel).

a function ρinf and ρrad. Similarly to figure 10, one can see that parameter space is essentially
divided into two regions: one (dark blue) where the amount of Planckian relics left over from
PBHs is negligible, and one (dark red) that is excluded since Planckian relics overtake the

dark matter abundance. From figure 11, we see that, if ρ
1/4
inf ' 1015GeV, then Ωrelics > ΩDM

if 4.1×107GeV . ρ
1/4
Γ . 4.0×109GeV and renormalisation is performed by inclusion. If it is

performed by premature ending, then Ωrelics > ΩDM if ρ
1/4
Γ . 4.0× 109GeV. Further regions

of parameter space can thus be excluded from the predicted abundance of relics, if they exist.
In between the excluded and allowed regions, there is a fine-tuned boundary where Planckian
relics could constitute a substantial fraction of the dark matter.

5 Discussion and conclusions

In this work, we have shown how the coherent oscillations of the inflaton field around a local
minimum of its potential at the end of inflation can lead to the resonant amplification of
its fluctuations at small scales, that can then collapse and form PBHs. We have shown how
the abundance and mass distribution of these PBHs can be calculated from the spectrum
of fluctuations as predicted by inflation. In some cases, it was found that the production
mechanism is so efficient that one needs to account for possible inclusion effects, and/or for
the possibility that PBHs backreact and prematurely terminate the preheating instability.
In such cases, the universe undergoes a phase where it is dominated by a gas of PBHs, that
later reheats the universe by Hawking evaporation. This happens when eq. (4.1) is satisfied.

A first result obtained in the present paper is therefore that, in the most simple models
of inflation, reheating does not necessarily occur via inflaton decay, but for a large frac-
tion of parameter space, it rather proceeds from the evaporation of PBHs produced during

preheating. For the iconic value ρ
1/4
inf ' 1015GeV (corresponding to a tensor-to-scalar ratio

r ∼ 10−3), this is the case provided ρ
1/4
Γ . 2 × 109GeV. This deeply modifies our view

of how the universe is reheated in the context of the inflationary theory: the radiation in
our universe could well originate from Hawking radiation rather than from inflaton decay as
usually thought.
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Figure 13. Combined constraints in the the space (ρinf , ρΓ), when the mass fraction is renormalised
by inclusion (left panel) and premature ending (right panel). Red regions are excluded since they yield
a too large abundance of primordial black holes. If black holes leave Planckian relics behind after
evaporation, the blue regions are also excluded since they lead to too many of them. The remaining
region, displayed in white, is the allowed one.

A second result concerns the constraints on the energy scale of inflation and the energy at
the onset of the radiation-dominated epoch that follow from the above-described mechanism.
These combined constraints on the two parameters describing our setup, either ρinf and ρΓ

or ρinf and ρrad, are given in figure 13 and figure 14 respectively. All coloured regions are
excluded: the grey one since it corresponds to values of ρΓ and/or ρrad that cannot be realised;
the red one since it leads to an overproduction of PBHs that is excluded by observations; and,
if evaporated black holes leave Planckian relics behind, the blue one since it yields more relics
than the measured abundance of dark matter. Only the white region remains, which strongly

constrains the energy scale of inflation and reheating. For ρ
1/4
inf ' 1015GeV, if renormalisation

is performed by inclusion, values such that ρ
1/4
Γ . 2 × 109GeV and 4.1 × 107GeV . ρ

1/4
Γ .

4.0×109GeV are excluded. If renormalisation is performed by premature ending, then values

such that ρ
1/4
Γ . 4.0× 109GeV are excluded. The constraints on ρrad are also relevant since,

as already mentioned, they correspond to constraints on the reheating temperature. For

ρ
1/4
inf ' 1015GeV, if renormalisation is performed by inclusion, we find that only values such

that 102MeV . ρ
1/4
rad . 6GeV and ρ

1/4
rad & 4 × 109GeV are allowed. If renormalisation is

performed by premature ending, then only ρ
1/4
rad & 4× 109GeV is possible.

This has very important implications. For instance, the Starobinsky model and the
Higgs inflation models, which are among the best models of inflation [16, 17] and yield
a tensor-to-scalar ratio of r ' 10−3, share the same potential but have different reheating
temperatures. More precisely, the Starobinsky model is usually associated with low reheating
temperatures (typically Treh ∼ 108GeV in supergravity embeddings, see ref. [60]), and Higgs
inflation with large reheating temperatures such as Treh ' 1012GeV [61–63], see e.g. figure 2

in ref. [64]. Using ρ
1/4
rad ' (π2g∗/30)1/4Treh with g∗ ' 1000, this leads to ρ

1/4
rad ' 4.2 ×

108GeV for the Starobinsky model and ρ
1/4
rad ' 4.2× 1012GeV for Higgs inflation. According
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Figure 14. Combined constraints in the the space (ρinf , ρrad), when the mass fraction is renormalised
by inclusion (left panel) and premature ending (right panel). The grey regions are excluded since they
correspond to values of ρrad, the energy density at the onset of the radiation epoch, that cannot be
realised. Red regions are excluded since they yield too large abundance of primordial black holes. If
black holes leave Planckian relics behind after evaporation, the blue regions are also excluded since
they lead to too many of them. The remaining region, displayed in white, is the one allowed.

to the constraints obtained here, the reheating temperatures typically associated with the
Starobinsky model are therefore excluded.

Finally, let us comment on the robustness of our results. One should note that in the
case where PBHs are abundantly produced, the use of the Press-Schechter formalism, or
of the peak theory, might be questionable since those typically assume PBHs to be rare
events. The precise way in which the mass fraction needs to be renormalised is also an open
question in that case. By considering two extreme possibilities, i.e. black hole inclusion and
premature ending of the instability, we have tried to cover the range of the possible outcomes
from that renormalisation procedure, but it would be clearly more satisfactory to have a
better description of PBHs production in the dense regime.

Let us also stress that over the course of the present analysis, conservative assumptions
have been made, which tend to underestimate the predicted abundance of PBHs, in order to
make safe the statement that the coloured regions in figures 13 and 14 are excluded. It would
however be interesting to go beyond these assumptions and make the constraints even tighter.

Another effect we have neglected is black-hole accretion and merging. Since the evap-
oration time of PBHs scales as their masses cubed, see eq. (3.6), accretion and merging
make them live longer and modelling these effects would therefore render our bounds tighter.
This might be of little importance when the abundance of PBHs is tiny, but it may play
a bigger role in the case where PBHs transiently dominate the universe content. In that
case, one may also expect that substantial amounts of gravitational waves are emitted by
PBH mergers, which provides another channel through which the preheating instability could
be constrained.

Let us also mention that in the analysis of appendices A and B, for simplicity, the over-
density has been assumed to be initially spherically symmetric. The impact of deviations from
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spherically symmetric configurations on the production of PBHs has been studied in dust-like
environment, e.g. in ref. [65], where it has been shown that it can play an important role, and
substantially decrease the abundance of the black holes. One may expect similar effects for
black holes forming from a massive scalar field inhomogeneity [45, 66], although the situation
is different9 and techniques developed to track perfect fluid inhomegeneities cannot be directly
applied here. One would thus have to generalise the analysis of appendices A and B to non-
spherically symmetric configurations, which may require a numerical approach and which we
leave for future work. This may lead to less black holes than what we have estimated in the
present work, although it is worth mentioning that non-spherically symmetric configurations
should also provide spins to the resulting black holes. Since the Hawking evaporation time
depends on the spin [68], PBHs forming from non-spherically symmetric over-densities have
different life times, and are affected by observational constraints differently.

It is also worth stressing that the preheating instability has here been discussed in the
context of a quadratic potential, since most inflationary potentials are quadratic close to
their minimum, but it also takes place for quartic potentials [24]. In that case, the instability
is even more pronounced, but it is restricted to a narrower range of modes, and it would be
interesting to study its consequences for PBH formation.

Finally, let us mention that CMB predictions are also affected by our results. As
explained in section 1, for a fixed inflationary single-field potential, the only theoretical
uncertainty in observational predictions is on the number of e-folds elapsed between the time
when the CMB pivot scale exits the Hubble radius and the end of inflation. This number
depends [14] on the energy scale of inflation, which is given by the inflationary model under
consideration, the energy density at which the radiation era starts, and the averaged equation-
of-state parameter between the end of inflation and that time. By restricting these values,
the present work allows one to make inflationary predictions more focused, and this will be
the topic of a separate article.
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A Black holes formation from scalar field collapse

In this first appendix, we review (and correct a few typos in the work of) ref. [35], that studies
black hole formation from massive scalar field collapse. Let us consider an inhomogeneous
massive scalar field φ(t, r) living in an inhomogeneous but isotropic (spherically symmetric)

9A massive scalar field differs from a pressure-less perfect fluid in different ways [67]: at the background
level, the equation-of-state parameter oscillates, and vanishes only when averaged over time, and at the
perturbative level, the scalar field perturbations have a different dynamics than those of a perfect fluid, as
revealed for instance by the fact that the density contrast grows proportionally with the scale factor only
inside the instability band for a scalar field, while it takes place at all scales for a perfect fluid. This explains
why standard techniques investigating the formation of PBHs in a pressure-less dustlike universe cannot be
directly applied to the situation discussed in this paper.
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space time endowed with the metric

ds2 = −dt2 + e−2Λ(t,r)dr2 +R2(t, r)
(
dθ2 + sin2 θdϕ2

)
. (A.1)

In order to follow the evolution of the scalar field, we must solve the corresponding Einstein
equations Gµν = Tµν/M

2
Pl where Tµν = ∂µφ∂νφ − 1

2gµν
(
gαβ∂αφ∂βφ + m2

φφ
2
)

is the stress
energy tensor of the scalar field (mφ is the mass of the field) and the Klein-Gordon equation(
gµν∇µ∇ν −m2

φ

)
φ = 0. This last equation takes the following form

φ̈− e2Λφ′′ +

(
2
Ṙ

R
− Λ̇

)
φ̇− e2Λ

(
2
R′

R
+ Λ′

)
φ′ +m2

φφ = 0, (A.2)

where a dot denotes a derivative with respect to time and a prime a derivative with respect
to the radial coordinate r. This Klein-Gordon equation should be compared to eq. (7) of
ref. [35]. The two formula are nearly identical but there are sign differences. As can be
seen on the above expression, in eq. (7) of ref. [35], 2Ṙ/R + Λ̇ should read 2Ṙ/R − Λ̇ and
−2R′/R+ Λ′ should read 2R′/R+ Λ′.

Then, the components of the Einstein tensor are given by

Gtt =
1

R2

[
1 + Ṙ2 − 2Λ̇ṘR−Re2Λ

(
2Λ′R′ + 2R′′ +

R′2

R

)]
, (A.3)

Gtr = − 2

R

(
Ṙ′ + Λ̇R′

)
, (A.4)

Grr =
1

R2

[
R′2 − e−2Λ

(
Ṙ2 + 2RR̈+ 1

)]
, (A.5)

Gθθ = sin−2 θ Gϕϕ = R
(
ṘΛ̇ + Λ′R′e2Λ +R′′e2Λ − R̈+ Λ̈R−RΛ̇2

)
. (A.6)

These equations exactly correspond to eqs. (2)-(5) of ref. [35]. On the other hand, the
components of the stress-energy tensor can be expressed as

Ttt =
1

2
φ̇2 +

1

2
e2Λφ′2 +

1

2
m2
φφ

2, (A.7)

Trt = φ̇φ′, (A.8)

Trr =
1

2
e−2Λφ̇2 +

1

2
φ′2 − 1

2
e−2Λm2

φφ
2, (A.9)

Tθθ = sin−2 θ Tϕϕ =
R2

2

(
φ̇2 − e2Λφ′2 −m2

φφ
2
)
. (A.10)

These formulas are identical to eqs. (9)-(12) in ref. [35].
Having the components of the Einstein and stress-energy tensors, we are in a position to

write down Einstein equations. However, these ones can be greatly simplified by introducing
two auxiliary functions k(t, r) and m(t, r) defined by the following relations

k(t, r) = 1−R′2e2Λ, m(t, r) =
R

2

(
Ṙ2 + k

)
. (A.11)

These definitions correspond to eqs. (13) and (14) in ref. [35]. Notice, however, the misprint
in eq. (13) where the factor R′2 in front of the term e2Λ is absent. Then, Einstein equations
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take the form

k′ = 8πRR′ (Ttt + T rr) + 2R′
(
R̈+ Λ̇Ṙ

)
, (A.12)

k̇ = 8πRR′T rt, (A.13)

m′ = 4πR2R′Ttt − 4πR2ṘTrt, (A.14)

ṁ = 4πR2R′T rt − 4πṘR2T rr. (A.15)

Notice that, in order to compare our results to ref. [35], we have used M−2
Pl = 8πG with

G = 1 (G is the Newton constant). The above equations are eqs. (15)-(18) of ref. [35] and
agree with our results, except eq. (15) for which the sign of the right-hand sign is incorrect.

Despite their apparent simplicity, the above equations remain difficult to solve. As
discussed in ref. [35], they can nevertheless be solved by expanding the scalar field in inverse
powers of its mass. For this purpose we write

φ(t, r) =
1

mφ
Φ(t, r) cos (mφt) . (A.16)

Then we insert this expression in eqs. (A.7), (A.8), (A.9) and (A.10). This leads to

Ttt =
1

2
Φ2 − 1

2mφ
ΦΦ̇ sin (2mφt) +

1

4m2
φ

(
Φ̇2 + e2ΛΦ′2

)
[1 + cos (2mφt)] , (A.17)

Trt =
1

2m2
φ

Φ̇Φ′ [1 + cos (2mφt)]−
1

2mφ
ΦΦ′ sin (2mφt) , (A.18)

T rr =−1

2
Φ2 cos (2mφt)−

1

2mφ
ΦΦ̇ sin (2mφt) +

1

4m2
φ

(
Φ̇2 + e2ΛΦ′2

)
[1 + cos (2mφt)] ,

(A.19)

Tθθ =
R2

2

{
1

2m2
φ

(
Φ̇2 − e2ΛΦ′2

)
[1 + cos (2mφt)]− Φ2 cos (2mφt)−

1

mφ
ΦΦ̇ sin (2mφt)

}
.

(A.20)

These equations correspond to eqs. (21)-(24) in ref. [35]. We notice that eq. (A.17) differs
from eq. (21) for two reasons: firstly, our third term is proportional to m−2

φ , while eq. (21) in

ref. [35] does not contain this factor, and, secondly, our term Φ̇2 + e2ΛΦ′2 reads Φ̇2 + e4ΛΦ′2

in ref. [35]. Since Φ has dimension two, see eq. (A.16), it is clear that the m−2
φ factor must

be present in that term in order for the equation to be dimensionally correct. On the other
hand, eq. (A.18) coincides with eq. (22) in ref. [35]. eq. (A.19), however, is again different
from eq. (23) in ref. [35], exactly for the same reasons as eq. (21) differs from our eq. (A.17).
Finally, eq. (A.20) is also different from eq. (24) of ref. [35]: our term e2Λ reads e4Λ in that
paper.

The Einstein equations and the Klein-Gordon equation are non-linear partial differential
equations and, therefore, are complicated to solve. Following ref. [35], it is useful to perform
an expansion in inverse powers of the mass mφ for the field and the free functions appearing
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in the metric tensor. Concretely, one writes

Φ(t, r) = Φ0(t, r) +
+∞∑

i=1

+∞∑

j=1

1

mi
φ

[
Φc
ij cos (jmφt) + Φs

ij sin (jmφt)
]
, (A.21)

k(t, r) = k0(t, r) +

+∞∑

i=1

+∞∑

j=1

1

mi
φ

[
kc
ij cos (jmφt) + ks

ij sin (jmφt)
]
, (A.22)

m(t, r) = m0(t, r) +
+∞∑

i=1

+∞∑

j=1

1

mi
φ

[
mc
ij cos (jmφt) +ms

ij sin (jmφt)
]
, (A.23)

R(t, r) = R0(t, r) +

+∞∑

i=1

+∞∑

j=1

1

mi
φ

[
Rc
ij cos (jmφt) +Rs

ij sin (jmφt)
]
. (A.24)

Inserting these expansions into the equations of motion leads, at leading order (namely order
m0
φ for the equations of motion), to the following expressions (restricting ourselves to a sum

from j = 1 to j = 2 which, for the leading order, will be fully justified below): eq. (A.13)
implies that kc

11 = kc
12 = ks

11 = ks
12 = 0 and k̇0 = 0. The definition of m(t, r) in eqs. (A.11)

reduces to Rc
11 = Rc

12 = Rs
11 = Rs

12 = 0 and −R0k0/2+m0−R0Ṙ
2
0/2 = 0. eq. (A.15) leads to

ṁ0 = 0, mc
11 = mc

21 = ms
11 = 0 and ms

12 = πR2
0Ṙ0Φ2

0. Notice that this last formula coincides
with eq. (35) of ref. [35]. The Klein-Gordon equation (A.2) implies that −R′03(1−k0)(2φ0Ṙ0+
2φ̇0R0 + Φ0R0Ṙ

′
0/R

′
0) = 0 and Φs

12 = 0. Finally eq. (A.14) reduces to m′0 = 2πR2
0R
′
0Φ2

0 = 0,
which is also eq. (33) of ref. [35]. Notice that by time differentiating the last expression
of m′0, leading to zero since we have already shown that ṁ0 = 0, one demonstrates that
the expression obtained before, namely −R′03(1− k0)(2φ0Ṙ0 + 2φ̇0R0 + Φ0R0Ṙ

′
0/R

′
0) = 0, is

identically satisfied and, therefore, does not lead to additional constraints. We wee that, at
leading order, it is consistent to assume that all coefficients of the above expansions vanish
but ms

12. This means that, at leading order, the solution to the Einstein equations reads

Φ(t, r) = Φ0(t, r) +O
(
m−2
φ

)
, (A.25)

m(t, r) = m0(t, r) +
1

mφ
ms

12 sin (2mφt) +O
(
m−2
φ

)
, (A.26)

k(t, r) = k0(t, r) +O
(
m−2
φ

)
, (A.27)

R(t, r) = R0(t, r) +O
(
m−2
φ

)
. (A.28)

In ref. [35], it is claimed that one can go to next-to-leading order (namely order m−1
φ for

the equations of motion), the solution at this order being given by the following expressions

Φ(t, r) = Φ0(t, r) +O
(
m−3
φ

)
, (A.29)

m(t, r) = m0(t, r) +
1

mφ
ms

12 sin (2mφt) +
1

m2
φ

mc
22 cos (2mφt) +O

(
m−3
φ

)
, (A.30)

k(t, r) = k0(t, r) +
1

m2
φ

kc
22 cos (2mφt) +O

(
m−3
φ

)
, (A.31)

R(t, r) = R0(t, r) +
1

m2
φ

Rc
22 cos (2mφt) +O

(
m−3
φ

)
. (A.32)

– 29 –



J
C
A
P
0
1
(
2
0
2
0
)
0
2
4

However, if one repeats the above analysis, one finds the following. At next-to-leading or-
der, eq. (A.13) implies that kc

21 = ks
21 = ks

22 = 0 and kc
22 = 2πR0(1 − k0)Φ0Φ′0/R

′
0. This

last formula is identical to eq. (34) of ref. [35] [In eq. (34), there is a misprint: R′0/R0

should read R0/R
′
0]. At next-to-leading order, the definition of m(t, r) in eqs. (A.11)

reduces to mc
11 = R0Ṙ0R

s
21, ms

11 = −R0Ṙ0R
c
21, mc

12 = 2R0Ṙ0R
s
22 which, given what

has been established at leading order, implies that Rc
21 = Rs

21 = Rs
22 = 0. More-

over, one also has ms
12 = −2R0Ṙ0R

c
22, which, given that ms

12 has already been deter-
mined, implies that Rc

22 = −πR0Φ2
0/2 in accordance with eq. (36) of ref. [35]. Let us

now turn to eq. (A.15). This leads to Φc
11 = Φs

11 = Φc
12 = 0 and mc

21 = ms
21 = 0,

mc
22 = πR2

0Φ0Φ′0/R
′
0. One also obtains an equation for the derivative of ms

12, namely
ṁs

12 = 2mc
22 − 2πR2

0Φ0Φ′0/R
′
0 + 2πR2

0k0Φ0Φ′0/R
′
0 + 2πR2

0Ṙ0Φ0Φ̇0, and an equation for Rc
22

that reads Rc
22 = 2Ṙ0Φs

12. But we have seen that the Klein-Gordon equation at leading order
implies Φs

12 = 0 and, therefore, Rc
22 = 0. This result is inconsistent with the result established

above, namely Rc
22 = −πR0Φ2

0/2. We interpret this inconsistency as an indication that, if
one works at next-to-leading order, it is impossible to truncate the expansions of Φ, R, k
and m to second harmonics. Since this is what was done in ref. [35], we conclude that the
next-to-leading order solution presented in this article is not correct. In the present article,
we therefore restrict ourselves to the leading order.

It follows from the previous considerations that, as long as the above perturbative
solution remains valid, the metric tensor (A.1) takes the form

ds2 ' −dt2 +
R2

0
′(t, r)

1− k0(r)
dr2 +R2

0(t, r)dΩ2, (A.33)

where

Ṙ0
2
(t, r)

R2
0(t, r)

=
2m0(r)

R3
0(t, r)

− k0(r)

R2
0(t, r)

, (A.34)

dm0(r)

dr
= 4π

Φ2
0

2
R2

0R
′
0. (A.35)

One recognises the Tolman-Bondi solution which corresponds to an inhomogeneous solution
of the Einstein equations for a pressureless fluid. The corresponding energy density is given
by Φ2

0/2 which is consistent since, at leading order, Ttt = ρ(t, r) = Φ2
0/2 + O(m−1

φ ). There-
fore, we reach the conclusion that, as long as the above described approximation is valid,
a scalar field overdensity behaves as the one of a pressureless fluid and, as a consequence,
unavoidably evolves into a black hole. This solution is the equivalent for a scalar field of
the spherical collapse model and allows us to follow the evolution of the system beyond the
perturbative regime.

Let us now study how an overdensity made of scalar field can proceed to a black hole.
For convenience, in the following, we write ρ(t, r) as

ρ(t, r) = ρb(t) [1 + ∆(t, r)] = ρb(t) [1 + δ(t, r)Θ(rc − r)] , (A.36)

where ρb(t) represents the homogeneous background energy density outside the overdensity
and ∆(t, r) = [ρ(t, r)− ρb]/ρb the density contrast. The quantity rc represents the comoving
radius of the overdensity and δ(t, r) is its profile. Notice that we need to know δ(t, r) only
for r < rc since this term does not contribute to ρ(t, r) outside the overdensity, thanks to the
Heaviside function Θ(rc − r). The line element (A.33) describes the evolution of spherical
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dust shells labelled by r. Notice that r is a comoving radial coordinate and that each shell has
surface area 4πR2

0(t, r). As a consequence, the total mass M of the overdensity is given by

M =

∫ rc

0

dm0(r)

dr
=

∫ rc

0
ρ(t, r)4πR2

0dR0 =

∫ rc

0
ρ(t, r)4πR2

0R
′
0dr. (A.37)

The conservation equation, ρ̇ + (Ṙ′0/R
′
0 + 2Ṙ0/R0)ρ = 0, guarantees that this mass is con-

served, namely Ṁ = 0.

To proceed further and study the dynamics of the collapse, we need to choose initial
conditions, in particular the initial profile for the overdensity. At this stage, let us recall that
there is a gauge freedom that can be be fixed by using the gauge condition R0(tini, r) = r.
This condition will be used in the rest of these appendices. Once the initial conditions have
been chosen, one can calculate the behaviour of the functions characterising the model. In
particular, using eq. (A.35), the function m0(r) can be expressed as

m0(r) =
4π

3
ρb(tini)r

3

[
1 +

3

r3

∫ r

0
∆(tini, x)x2dx

]
=

4π

3
ρb(tini)r

3 [1 + 〈∆(tini, r)〉] . (A.38)

Of course, many different choices for the initial density profile are a priori possible. The
important point is that, once a choice is made, the function m0(r) is uniquely specified thanks
to the above equation (explicit examples are given below). The mass of the overdensity is
nothing but M = m0(rc), which implies that the function m0(r) can also be rewritten as

m0(r) = M

(
r

rc

)3 1 + 〈∆(tini, r)〉
1 + 〈∆(tini, rc)〉

. (A.39)

Another initial data that needs to be provided is the value of Ṙ0(tini, r). For this
purpose, we define the “inhomogeneous” Hubble parameter by

H(t, r) ≡ Ṙ0(t, r)

R0(t, r)
. (A.40)

Then, one just needs to provide the function H(tini, r) ≡ Hini. A natural choice is to simply
assume that the initial value of H(t, r) is determined by the initial background energy density
(and, therefore, does not depend on r), that is to say

H2(tini, r) ≡ H2
ini =

8π

3
ρb(tini) =

2M

r3
c

1

1 + 〈∆(tini, rc)〉
. (A.41)

Finally, k0(r) remains to be calculated. In order to concretely determine this function,
one needs to integrate eq. (A.34). This can be easily done and the solution reads

R0(η, r) =
2m0(r)

k0(r)
cos2 η

2
, (A.42)

t0(η, r) = tBB(r) +
m0(r)

k
3/2
0 (r)

(η + sin η) , (A.43)

where η is, a priori, a parameter in the range [−π, π] [not to be confused with the conformal
time introduced below eq. (2.6)]. The radial dependent integration constant tBB(r) is usually
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called the big-bang time function since, in a cosmological context, it allows for inhomogeneous
Big Bangs. Using the gauge condition R0(ηini, r) = r, eq. (A.42) implies that

k0(r) =
2m0(r)

r

[
1− sin2

(
ηini

2

)]
. (A.44)

However, sin(ηini/2) remains to be found. In fact, it can be evaluated in terms of H(tini, r).
Indeed, from the above parametric solution (A.42)–(A.43), the Hubble parameter reads

H(t, r) =
k

3/2
0 (r)

2m0(r)

sin(η/2)

cos3(η/2)
. (A.45)

Then, using the expression of k0 already derived above, namely k0(r) = 2m0(r) cos2(ηini/2)/r,
one has

H2(tini, r) =
2m0(r)

r3
sin2

(ηini

2

)
. (A.46)

Inserting this formula back into eq. (A.44), one finally obtains

k0(r) =
2m0(r)

r
− r2H2(tini, r) = M

2 〈∆(tini, r)〉
1 + 〈∆(tini, rc)〉

r2

r3
c

, (A.47)

where one has used eq. (A.41). Everything is now known and, therefore, from the knowledge
of the initial density profile, we have completely characterised the model, in particular the
functions m0(r) and k0(r).

B Calculation of the critical density contrast

We now focus on the fate of the overdensity and, as a consequence, we restrict ourselves to
r ≤ rc. One can re-write the parametric solution using the expression of m0(r) and k0(r)
that we have established. Inside the overdensity, namely for r ≤ rc, one finds

R0(η, r)

r
=

1 + 〈∆(tini, r)〉
〈∆(tini, r)〉

cos2 η

2
, (B.1)

t0(η, r) = tBB(r) +
1

2Hini

1 + 〈∆(tini, r)〉
〈∆(tini, r)〉3/2

(η + sin η) . (B.2)

Let us now discuss the initial condition for this model. We start from a value of R0(t, r)
which is non-vanishing but in the linear regime. The wavelength of the Fourier mode under
consideration is related to the radius of the overdensity by R0(ηini, rc) = rc = λ. The value of
ηini depends on 〈∆(tini, r)〉 since using eq. (B.1) together with the gauge condition, one has

sin2
(ηini

2

)
=

1

1 + 〈∆(tini, r)〉
. (B.3)

This expression implies that ηini is a function of the radial coordinate r. We notice that, if
we change the value of 〈∆(tini, r)〉, then we change the initial value of the parameter ηini.
However, one can always ensure that tini = 0 by properly choosing the big-bang function
tBB(r), concretely

tBB(r) = − 1

2Hini

1 + 〈∆(tini, r)〉
〈∆(tini, r)〉3/2

(ηini + sin ηini) . (B.4)
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The fact that tBB can depend on r plays an important role and allows us to treat a situation
where ηini is itself dependent on r. In the present context, tini is in fact the band crossing (bc)
time. So times calculated in this way should in fact be interpreted as t− tbc. The question is
now which values of 〈∆(tini, r)〉 lead to black hole formation. There are in fact two conditions
for black hole formation: first, the approximation leading to a Tolman-Bondi solution should
be valid until the spherical overdensity becomes smaller than the Schwarzschild horizon and,
second, this should happen before the inflaton decay. This last condition can easily be worked
out. Using eqs. (B.2) and (B.4), one obtains that the time at which black hole formation
occurs is given by

tcoll − tbc =
1

2Hbc

1 + 〈∆(tini, r)〉
〈∆(tini, r)〉3/2

(π − ηini − sin ηini) , (B.5)

with, using eq. (B.3),

ηini = −2 arcsin

(
1√

1 + 〈∆(tini, r)〉

)
. (B.6)

Expanding tcoll − tbc in terms of 〈∆(tini, r)〉, one finds

tcoll − tbc =
1

2Hbc

{
2π

〈∆(tini, r)〉3/2
+

π

〈∆(tini, r)〉
− 4

3
+O

[
〈∆(tini, r)〉1/2

]}
. (B.7)

On the other hand, since a ∝ t2/3 during the phase where the scalar field oscillates around
its quadratic minimum, cosmic time at the end of the instability phase is given by

tinstab − tbc =
2

3Hbc

[
e3(Ninstab−Nbc)/2 − 1

]
. (B.8)

Then, the requirement that black hole formation occurs before the end of the instability
phase implies that tinstab − tbc > tcoll − tbc, which amounts to a lower bound on the initial
value of the density contrast, namely

〈∆(tini, r)〉 > δc ≡
(

3π

2

)2/3 [
e3(Ninstab−Nbc)/2 − 1

]−2/3
. (B.9)

One checks that in the absence of an instability phase, namely when Ninstab = Nbc, the initial
overdensity should be infinite.

Let us now see how the criterion (B.9) depends on the profile of the overdensity. The first
example we consider, most certainly the simplest one, is such that ∆(tini, r) = δiniΘ(rc − r),
namely a top hat profile. In that case, it is straighforward to show that 〈∆(tini, r)〉 = δini.
Moreover, it is also easy to show that, for r < rc,

m0(r) = M

(
r

rc

)3

, (B.10)

while, for r > rc,

m0(r) = M +
M

1 + δini

(
r3

r3
c

− 1

)
. (B.11)
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The function m0(r) is continuous everywhere but its derivative is discontinuous at the bound-
ary of the overdensity. On the other hand, the function k0(r) is obtained from eq. (A.47)
and one obtains

k0(r) = 2M
δini

1 + δini

r2

r3
c

, (B.12)

if r < rc and, if r > rc, one has

k0(r) = 2M
δini

1 + δini

1

r
. (B.13)

In particular, one can check that, outside the overdensity, the spacetime is asymptotically
Einstein-de Sitter. Therefore, the model correctly captures the idea of an overdensity em-
bedded into a cosmological spacetime.

Let us now consider another example: instead of a top hat profile as before, one chooses
a non flat profile defined by

∆(tini, r) = δini

(
1− 1

e

)−1(
e−r/rc − 1

e

)
Θ(rc − r). (B.14)

In this case, δini represents the value of ∆(tini, r) at the center of the overdensity [this is the
origin of the presence of the factor (1− 1/e)−1]. In that case, one has

〈∆(tini, r)〉 = 3
δini

1− 1/e

[
2

(
rc

r

)3 (
1− e−r/rc

)
− 2

(
rc

r

)2

e−r/rc − rc

r
e−r/rc − 1

3e

]
. (B.15)

From this formula, one can determine the functions m0(r) and k0(r). However, we do not
give them here since their expression is not especially illuminating. It is more interesting
to study the form of the criterion (B.9) in that case. Since 〈∆(tini, r)〉 now depends on r,
one can imagine different scenarios such as, for instance, a case where only a fraction of the
overdensity collapses to form a black hole. However, the simplest case is when the entire
overdensity proceeds to a black hole. In that situation, it seems reasonable to interpret the
criterion (B.9) as being valid for the radius of the overdensity, that is to say for r = rc. It is
easy to show that 〈∆(tini, rc)〉 = 3[2 − 16/(3e)]/(1 − 1/e)δini ' 0.18 δini. As a consequence,
the criterion becomes 0.18 δini > δc, where δc has been defined in eq. (B.9). Up to a factor
of order one, this is very similar to the criterion obtained from a top-hat profile, and one
concludes that our formation criterion is rather independent of the profile details.
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3.2.2.2 Metric preheating in single-field inflation and radiative decay (re-
search article)

We saw before the presence of a resonance instability structure in the context of
single-field inflationary models by considering only the self interactions of the inflaton. To
ensure therefore the transition to the radiation era one should couple the inflaton to other
degrees of freedom, with the first one decaying and reheating the universe. In our work
[30], the instability phase is abruptly ended either when the produced PBHs after their
domination in the energy budget of the universe reheat the universe through Hawking
evaporation or only when the inflaton decay products dominate the energy budget of
the universe neglecting their effect throughout the preheating instability phase. In this
last case, the inflaton oscillating phase was abruptly stopped by assuming instantaneous
production of radiation at the end of the instability. However, the production of radiation
should be continuous and one would expect that the effect of the inflaton’s decay products
may destroy the delicate balance which is responsible for the linear growth of the energy
density fluctuation for the excited modes lying within the physical instability defined by
Eq. (3.55).

This question was investigated in our work [31] in which metric preheating was
studied together with radiative decay of the inflaton field. It was also considered the
decay of the inflaton to fluids with a generic equation-of-state parameter. As it was
found, the perturbative decay effects of the inflaton field do not destroy the metric
preheating instability structure since the latter stops only when, at the background
level, the energy density of the inflaton’s decay products dominate the energy content
of the universe. In this way, our initial treatment in which the prehating instability is
simply stopped when the universe becomes radiation dominated is found to be quite
robust and confirms the unavoidable presence of a metric preheating instability at small
scales in the narrow-resonance regime in the context of single-field inflationary models.
See attached our relevant research article.
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Abstract. At the end of inflation, the inflaton oscillates at the bottom of its potential and
these oscillations trigger a parametric instability for scalar fluctuations with wavelength λ
comprised in the instability band (3Hm)−1/2 < λ < H−1, where H is the Hubble parameter
and m the curvature of the potential at its minimum. This “metric preheating” instability,
which proceeds in the narrow resonance regime, leads to various interesting phenomena such
as early structure formation, production of gravitational waves and formation of primordial
black holes. In this work we study its fate in the presence of interactions with additional
degrees of freedom, in the form of perturbative decay of the inflaton into a perfect fluid.
Indeed, in order to ensure a complete transition from inflation to the radiation-dominated
era, metric preheating must be considered together with perturbative reheating. We find
that the decay of the inflaton does not alter the instability structure until the fluid domi-
nates the universe content. As an application, we discuss the impact of the inflaton decay
on the production of primordial black holes from the instability. We stress the difference
between scalar field and perfect fluid fluctuations and explain why usual results concerning
the formation of primordial black holes from perfect fluid inhomogeneities cannot be used,
clarifying some recent statements made in the literature.
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1 Introduction

Cosmic inflation [1–5] is presently the most promising paradigm to describe the physical
conditions that prevailed in the very early universe. It consists of two stages. First, there is
a phase of accelerated expansion. In the simplest models, it is driven by a scalar field, the
inflaton, slowly rolling down its potential, and the background spacetime almost exponentially
expands. Second, there is the reheating epoch [6–12] (see refs. [13, 14] for reviews) during
which the inflaton field oscillates around the minimum of its potential and decays into other
degrees of freedom it couples to. Then, after thermalisation of these decay products, the
radiation-dominated era of the hot big-bang phase starts.

One of the main successes of the inflationary scenario is that it provides a convincing
mechanism for the origin of the structures in our universe [15, 16]. According to the in-
flationary paradigm, they stem from quantum fluctuations born on sub-Hubble scales and
subsequently amplified by gravitational instability and stretched to super-Hubble distances
by cosmic expansion. During this process, which occurs in the slow-roll phase, cosmological
perturbations acquire an almost scale-invariant power spectrum, which is known to provide
an excellent fit to the astrophysical data at our disposal [17, 18].

In the simplest models where inflation is driven by a single scalar field with canonical
kinetic term, on large scales, the curvature perturbation is conserved [15, 16], which implies
that the details of the reheating process do not affect the inflationary predictions or, in other
words, that “metric preheating” is inefficient on those scales. Since these models are well
compatible with the data [19–22], the stage of reheating is usually not considered as playing
an important role in the evolution of cosmological perturbations [23]. For the scales observed
in the Cosmic Microwave Background (CMB), the only effect of reheating is through the
amount of expansion that proceeds during this epoch, which relates physical scales as we
observe today to the time during inflation when they emerge. This thus determines the part
of the inflationary potential that we probe with the CMB. In practice, there is a single
combination [24] of the reheating temperature and of the mean equation-of-state parameter,
that sets the location of the observational window along the inflationary potential. Given the
restrictions on the shape of the potential now available [20, 25], this can be used to constrain
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the kinematics of reheating [26–29]. In multiple-field scenarios, on the contrary, large-scale
curvature perturbations can be strongly distorted by the reheating process [30–34], which
means that metric preheating can be important and, thus, can have more impact on CMB
observations.

The situation is very different for scales smaller than those observed in the CMB, more
precisely for scales crossing back in the Hubble radius during reheating (or never crossing
out the Hubble radius during inflation). In particular, it was shown in ref. [35] (see also
ref. [36]) that the density contrast of the scalar field fluctuations can grow on small scales
during preheating, due to a parametric instability sourced by the oscillations of the inflaton
at the bottom of its potential. This mechanism demonstrates that metric preheating can
be important even in single-field inflation, although not on large scales. It can give rise to
different interesting phenomena such as early structure formation [35], gravitational waves
production [37] and even Primordial Black Holes (PBHs) [38, 39] formation [40] (PBHs
formation from scalar fields was considered in ref. [41], in the case of two-fields models in
ref. [42] and in the case of single-field tachyonic preheating in ref. [43]).

These phenomena can lead to radical shifts in the standard picture of how reheating
proceeds. Indeed, in ref. [40], it was shown that the production of light PBHs from metric
preheating is so efficient that they can quickly come to dominate the universe content, such
that reheating no longer occurs because of the inflaton decay, as previously described, but
rather through PBHs Hawking evaporation. This conclusion, however, was reached by ne-
glecting the decay products of the inflaton throughout the instability phase, and by simply
assuming that they would terminate the instability abruptly at the time when they dominate
the energy budget (if PBHs have not come to dominate the universe before then). However,
as will be made explicit below, the instability of metric preheating proceeds in the narrow
resonance regime. One may therefore be concerned that it requires a delicate balance in
the dynamics of the system, and that even a small amount of produced radiation could be
enough to distort or jeopardise the instability mechanism. The goal of this paper is there-
fore to investigate how the presence of inflaton decay products (modelled as a perfect fluid),
produced by perturbative reheating, affects the metric preheating instability.

The paper is organised as follows. In section 2, we briefly review metric preheating,
which leads to the growth of the inflaton density contrast at small scales. Then, in sec-
tion 3, we study whether a small amount of radiation, originating from the inflaton decay,
can modify this growth. For this purpose, we introduce a covariant coupling model between
the inflaton scalar field and a perfect fluid, leading to equations of motion at the background
(see section 3.1) and perturbative (see section 3.2) levels that feature no substantial change
in the instability structure until the fluid dominates. In section 3.3, we discuss the applica-
tion of the previous results to the production of PBHs during reheating, which, we stress,
cannot be described as originating from perfect fluid inhomogeneities, contrary to what is
sometimes argued. Finally, in section 4, we briefly summarise our main results and present
our conclusions.

2 Preheating in single-field inflation

In this work, we consider single scalar field models of inflation, with a canonical kinetic
term. In these models, a homogeneous inflaton field φ(t) drives the expansion of a flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time, described by the metric ds2 =
−dt2+a2(t)dx2, where a(t) is the FLRW scale factor. The corresponding equations of motion
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are the Friedmann and Klein-Gordon equations, namely

H2 =
1

3M2
Pl

[
φ̇2

2
+ V (φ)

]
, φ̈+ 3Hφ̇+ Vφ (φ) = 0 , (2.1)

where H = ȧ/a is the Hubble parameter, Vφ the derivative of the potential with respect to φ,
MPl the reduced Planck mass and a dot denotes a derivative with respect to cosmic time t.
The inflaton field potential V (φ) must be such that the potential energy dominates over the
kinetic energy of the inflaton, and inflation (ä > 0) ends when they become comparable, that
is to say when the first slow-roll parameter ε1 ≡ −Ḣ/H2 reaches one. This usually happens in
the vicinity of a local minimum of the potential. There, most potentials can be approximated
by a quadratic function, V (φ) ∼ m2φ2/2, where m is the curvature of the potential at its
minimum. In fact, this expression can be seen as a leading-order Taylor expansion of the
potential around its minimum, and it is not valid only for potentials having an exactly
vanishing mass at their minimum, for which the leading term is of higher order. When the
inflaton reaches this region of the potential, it oscillates according to φ(t) ∝ a−3/2 sin (mt),
the expansion becomes, on average, decelerated, and similar to that of a matter-dominated
universe [9], i.e. 〈ρ〉 ∝ a−3 (where 〈·〉 denotes averaging over one oscillation).

2.1 Perturbative reheating

These considerations however ignore the possible coupling of the inflaton with other degrees
of freedom. In order to incorporate it, several descriptions are possible. A simple way, which
corresponds to “perturbative reheating”, consists in introducing a term “Γφ̇” (where Γ is a
decay rate) in the Klein-Gordon equation to account for the decay of the inflaton into a perfect
fluid (typically radiation) [6–8, 12]. In this case, the friction term becomes (3H + Γ/2)φ̇.
Initially, H � Γ and the effect of the inflaton decay is negligible, until H crosses down Γ, at
a time around which most of the decay of the inflaton occurs. In the next section, we explain
how to introduce Γ covariantly, thus allowing us to perform a consistent treatment both at
the background and perturbative levels. Microscopically, if one considers for instance that
φ is coupled to another scalar field χ through the interaction Lagrangian Lint = −2g2σφχ2,
where g is a dimensionless coupling constant and σ a new mass scale, the corresponding decay
rate can be calculated within perturbation theory and one finds Γ = g4σ2/(4πm) [12]. If
this process occurs at sufficiently high energy, the mass of the χ-particles are small compared
to the Hubble parameter at decay and, effectively, the inflaton field decays into relativistic
matter or radiation.

2.2 Non-perturbative preheating

The above perturbative description is however not sufficient since non-perturbative effects can
also play an important role [10–12]. This can be simply illustrated if one considers the case
where the interaction Lagrangian reads Lint = −g2φ2χ2/2. If one denotes the monotonously
decreasing amplitude of the inflaton oscillations as φ0(t), such that φ ' φ0(t) sin(mt), then
the equation of motion of the Fourier transform χk of the field χ reads

χ̈k + 3Hχ̇k +

[
k2

a2(t)
+m2

χ + g2φ2
0(t) sin2(mt)

]
χk = 0 , (2.2)

where mχ is the mass of χ and k the wavenumber of the mode under consideration. Writing
Xk = a3/2χk and using the variable z ≡ mt, the above equation can also be written under
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the following form

d2Xk

dz2
+ [Ak − 2q cos (2z)]Xk = 0, (2.3)

where the quantities Ak and q are defined by

Ak =
k2

a2m2
+
m2
χ

m2
− 3

2

H2

m2

(
3

2
− ε1

)
+ 2q, q =

g2φ2
0

4m2
. (2.4)

As a first step, in order to gain intuition about the behaviour of the solutions, it is convenient
to analyse the above equation in the Minkowski space-time (for simplicity, we also consider
the massless case mχ = 0). In that situation, the coefficients Ak = k2/m2 + 2q and q
are constant and eq. (2.3) is a Mathieu equation [44]. This equation possesses unstable,
exponentially growing solutions χk ∝ exp(µkz). In figure 1, known as the Mathieu instability
chart, we display the value of µk, the so-called Floquet index of the unstable mode (namely
the maximum of the two Floquet indices), as a function of Ak and q. Unstable regions
correspond to where µk > 0, and are organised in several “bands”, which can be identified as
the non dark-blue regions in figure 1. Since Ak = k2/m2 +2q, the parameter space of interest
is such that Ak > 2q, which corresponds to the region above the white line in figure 1. At a
given q, one can see in figure 1 that there are several ranges of values of Ak, hence several
ranges of wavenumbers k, where an instability develops. One also notices that the band with
the smallest value of Ak is the most pronounced one. When q � 1, the range of excited
modes is large, which corresponds to being in the “broad-resonance” regime. When q � 1,
on the contrary, there is only a small range of values of k being excited, which correspond to
the “narrow-resonance” regime. In that limit, the boundaries of the first band correspond to
1− q . Ak . 1 + q.

Then, space-time dynamics must be restored and its impact on the previous considera-
tions discussed. In that case, three time scales play a role in eq. (2.2): the inflaton oscillation
period m−1, the Hubble time H−1, and the k-mode period, a/k. The quantities Ak and q
now become functions of time [notice that the oscillating phase starts when m ∼ H, and
since H decreases afterwards, one quickly reaches the regime where H � m and, as a con-
sequence, the term ∝ H2/m2 in the definition (2.4) of Ak can be neglected]. This means
that eq. (2.3) is no longer a Mathieu equation: a given mode k now follows a certain path
in the map of figure 1. What is then the fate of the two regimes (narrow and broad res-
onance) identified before? Since more time is being spent in the wide bands than in the
narrow ones, the broad resonance regime is the most important one to amplify the χ field.
However, this regime is also crucially modified by space-time expansion and gives rise to the
so-called “stochastic-resonance regime”, discovered in ref. [12]. Preheating effects have also
been studied in other contexts, for instance when the curvature of (some region of) the in-
flationary potential is negative, as it is the case, for instance, in small-field inflation, leading
to tachyonic preheating [45, 46].

2.3 Metric preheating

So far we have discussed preheating at the background level only, without including the infla-
ton and metric perturbations. They however play an important role, in a mechanism known as
“metric preheating” [23, 30–34]. Including scalar fluctuations only, in the longitudinal gauge,
the perturbed metric can be written as ds2 = a2(η)

[
− (1 + 2Φ) dη2 + (1− 2Φ) δijdx

idxj
]
,
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Figure 1. Instability chart of the Mathieu equation. The colour code (see the colour bar on the right
hand side of the plot) represents the value of the Floquet exponent µk of the unstable mode. In the
present case, stable solutions corresponds to µk = 0 and are represented by the dark blue regions.
The other regions, structured in different bands, correspond to unstable solutions.

where η is the conformal time related to the cosmic time by dt = adη. As is apparent in the
previous expression, the scalar perturbations are described by a single quantity, namely the
Bardeen potential Φ. Matter perturbations, which, in the context of inflation, boil down to
scalar field perturbations, are also characterised by a single quantity, the perturbed scalar
field δφ(gi), where the “gi” indicates that this is a gauge-invariant quantity (δφ(gi) = δφ in the
longitudinal gauge and is mapped by gauge transformations otherwise). Using the perturbed
Einstein equations, the whole scalar sector can in fact be described by a single quantity, which
is a combination of metric and matter perturbations. This single quantity is the Mukhanov-
Sasaki variable [15, 16] v ≡ a

[
δφ(gi) + φ′Φ/H

]
, where H = a′/a (a prime denotes a derivative

with respect to conformal time) is the conformal Hubble parameter, and is directly related
to the comoving curvature perturbation R by v = ZR, where Z ≡ √2ε1aMPl. The Fourier
component vk evolves according to the equation of a parametric oscillator where the time
dependence of the frequency is determined by the dynamics of the background [47]

v′′k +

(
k2 − Z ′′

Z

)
vk = 0, (2.5)

with

Z ′′

Z
= a2H2

[(
1 +

ε2
2

)(
2− ε1 +

ε2
2

)
+
ε2ε3

2

]
, (2.6)

where ε2 ≡ d ln ε1/dN and ε3 ≡ d ln ε2/dN are the second and the third slow-roll parameters
respectively.
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The question is then whether eq. (2.5) allows for parametric resonance when the inflaton
field oscillates at the bottom of its potential. One might indeed expect that the oscillations
in φ(t) induce oscillations in the Hubble parameter H, hence in the slow-roll parameters,
hence in Z ′′/Z. In this case, eq. (2.5) could be of the Mathieu type, or more generally of
the Hill type, and could lead to parametric resonance. This was first thought not to be
the case, the main argument being that, despite the oscillations in Z ′′/Z, the curvature
perturbation has to remain constant and, as a consequence, there cannot be any growth
of scalar perturbations [23]. It has also been stressed that the situation can be drastically
different in multiple-field inflation [33], where entropy fluctuations source the evolution of
curvature perturbations. If the entropy fluctuations are parametrically amplified, they can
also cause a parametric amplification of adiabatic perturbations. This is the reason why
metric preheating was first mostly studied in the context of multiple-field (and in practice,
mostly two-field) inflation, see for instance ref. [33].

It was then realised in ref. [35] (see also ref. [36]) that eq. (2.5) can be put under the form

d2

dz2

(√
avk
)

+ [Ak − 2q cos(2z)]
(√
avk
)

= 0, (2.7)

with

Ak = 1 +
k2

m2a2
, q =

√
6

2

φend

MPl

(aend

a

)3/2
, (2.8)

where aend is the scale factor at the end of inflation and z ≡ mt + π/4. Although, strictly
speaking, this equation is not of the Mathieu type because of the time dependence of the
parameters Ak and q, it was shown in ref. [35] that this time dependence is sufficiently slow
so that eq. (2.7) can be analysed using Mathieu equations techniques. At the end of inflation
and at the onset of the oscillations, φ0(tend) = φend is of the order of the Planck mass, so
eq. (2.8) indicates that q starts out being of order one and quickly decreases afterwards. In
contrast to the situation of non-perturbative preheating discussed in section 2.2, the narrow-
resonance regime q � 1 is therefore always the relevant one for metric preheating. In that
regime, and contrary to the case of broad resonance, space-time expansion does not blur the
resonance but, on the contrary, reinforces its effectiveness, in a sense that we will explain
below. As mentioned above, in the q � 1 limit, the boundaries of the first instability band
are given by 1− q < Ak < 1 + q, which here translates into

k < a
√

3Hm. (2.9)

One notices the appearance of a new scale in the problem, namely
√

3Hm. Since the universe
behaves as matter dominated during the oscillations of the inflaton, a

√
H ∝ a1/4, and the

upper bound (2.9) increases with time. This means that the range of modes subject to the
instability widens up as time proceeds, hence the above statement that space-time expansion
strengthens the resonance effect.

Inside the first instability band, the Floquet index of the unstable mode is given by
µk ' q/2, so vk ∝ a−1/2 exp(

∫
µkdz) ∝ a [23, 35]. The comoving curvature perturbation,

Rk = vk/(MPla
√

2ε1), is thus conserved for modes satisfying eq. (2.9). Notice that, since
H � m during the oscillatory phase, this comprises super-Hubble modes, k < aH, for
which the conservation of R is a well-known result [15, 16]. However, the conservation of
R also applies for those sub-Hubble modes having k < a

√
3Hm, and for which this leads
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Figure 2. Evolution of the physical scales appearing in eq. (2.12), with time parameterised by the
number of e-folds (counted from the end of inflation). The orange solid line represents the Hubble
radius 1/H, the solid green line the new length scale 1/

√
3Hm and the solid blue line the physical

wavelength of a mode of interest, which enters the instability band from above. In all figures of
this work, we study the comoving scale k/aini = 0.002MPl, where the initial time of integration
is set 6 e-folds before the end of inflation, in a quadratic potential model V (φ) = m2φ2/2 with
m = 10−5MPl. The inflaton decay constant (the definition of which is detailed in section 3.1) is given
by Γ = 10−7MPl. Here, we consider the case where the inflaton decays into a radiation fluid, with
equation-of-state parameter wf = 1/3.

to an increase of the density contrast. Indeed, if R is constant, and given that the pressure
vanishes on average, the fractional energy density perturbation δk = δρk/ρ (where ρ is the
background energy density of the scalar field) in the Newtonian gauge is related to the
curvature perturbation via [35]

δk = −2

5

(
k2

a2H2
+ 3

)
Rk . (2.10)

On super-Hubble scales, the first term in the braces can be neglected, hence δk is constant
as Rk. On sub-Hubble scales however, the first term becomes the dominant one, and since
a2H2 ∝ a−1, the density contrast grows like

δk ∝ a . (2.11)

This corresponds to a physical instability (notice that, at sub-Hubble scales, there are no
gauge ambiguities in the definition of the density contrast), which therefore operates at scales

aH < k < a
√

3Hm. (2.12)

The scales appearing in this relation are displayed in figure 2. An instability is triggered
if the physical wavelength of a mode (blue line) is smaller than the Hubble radius (orange
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line) during the oscillatory phase and larger than the new scale 1/
√

3Hm (green line). This
implies that the instability only concerns modes that are inside the Hubble radius at the end
of the oscillatory phase, which is not the case for the scales probed in the CMB. It is therefore
true that metric preheating does not operate at CMB scales, although it plays a crucial role
at smaller scales (typically those crossing out the Hubble radius a few e-folds before the end
of inflation) where it triggers an instability in the narrow-resonance regime. The growth
of the density contrast along eq. (2.11) may have several important consequences such as
early structure formation [35], emission of gravitational waves [37] and, as recently studied
in ref. [40], formation of PBHs that may themselves contribute to the reheating process, via
Hawking evaporation.

As already mentioned, preheating effects cannot by themselves ensure a complete tran-
sition to the hot big-bang phase [12, 13, 48, 49] (except if reheating occurs by Hawking
evaporation of the very light primordial black holes produced from the instability if they
come to dominate the universe content [40]), which also requires perturbative decay of the
inflaton to complete. Metric preheating has however been investigated only in the context
of purely single-field setups, and it is not clear whether or not the narrow resonant structure
of metric preheating is immune to the decay of the inflaton into other degrees of freedom.
This is why in the next sections, we study metric preheating and perturbative reheating
altogether, in order to determine if and how the later can spoil the former.

3 Metric preheating and radiative decay

We have seen before that perturbations entering the instability band (2.12) undergo a growth
of their density contrast proportional to the FLRW scale factor, see eq. (2.11), and that this
can lead to a variety of interesting phenomena. At some stage, however, the inflaton field
decays and the growth of the density contrast, sourced by the oscillations of the inflaton
condensate, should come to an end. In ref. [40] this was simply modelled by abruptly stopping
the oscillating phase at a certain time (e.g., when H becomes smaller than a certain value
that can be identified with the decay rate Γ) and by assuming instantaneous production of
radiation at that time. However, clearly, the inflaton decay should proceed continuously.
Although it is true that the production of radiation becomes sizeable when the Hubble
parameter becomes of the order of the decay rate, tiny amounts of radiation are present
before and one may wonder whether or not they can destroy the delicate balance which is
responsible for the presence of the modes in the instability band. Indeed, the instability
proceeds in the narrow resonance regime, which means that the instability band spans a
small, fine-tuned volume of parameter space. In this section, we investigate these questions.

3.1 Setup and background

In order to study the influence of fluid production, we must first modify the equations of
motion of the system and introduce an explicit coupling between the inflaton field and a
perfect fluid, both at the background and perturbative levels. This poses non-trivial problems
at the technical level and we now review the formalism that can be used in order to tackle
them. Let us consider a collection of fluids in interaction. The presence of interactions
break the energy-momentum conservation for each fluid. On very general grounds, their
non-conservations can be described non-perturbatively by detailed balance equations of the
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form [50–56]

∇νTµν(α) =
∑

β

[
Qµ(α)→(β) −Q

µ
(β)→(α)

]
, (3.1)

where the transfer coefficients Qµ(α)→(β) are responsible for the non-conservation of energy-
momentum originating from the interaction between the fluids. The indices between paren-
thesis [such as “(α)”] label the different fluid components. The term Qµ(α)→(β) describes a

loss due to the decay of the fluid α into the fluids β while, on the contrary, the term Qµ(β)→(α)
corresponds to a gain originating from the decay of the fluids β into α. The evolution of
the stress-energy tensor of the fluid α, which is denoted Tµν(α), is then controlled by the de-

tailed balance between those two effects. The transfer coefficient Qµ(α)→(β) can always be
decomposed as

Qµ(α)→(β) = Q(α)→(β)u
µ + fµ(α)→(β), (3.2)

where Q(α)→(β) is a scalar quantity and fµ(α)→(β) a vector orthogonal to the matter flow, that

is to say fµ(α)→(β)uµ = 0 where uµ is the total velocity of matter. In an FLRW universe it

is given by uµ = (1/a,0), uµ = (−a,0), which immediately implies that f0
(α)→(β) = 0 at the

background level. Furthermore, in an homogeneous and isotropic background, one must have
f i(α)→(β) = 0 to respect the symmetries of space-time, hence fµ(α)→(β) = 0. This allows us to

write Q0
(α)→(β) = Q(α)→(β)/a and Qi(α)→(β) = 0. At the background level, the energy transfer

is therefore entirely specified by the scalar Q(α)→(β).
Let us now apply these considerations to a system made of one scalar field (the inflaton

field) and a perfect fluid assumed to be the inflaton decay product. In order to consistently
couple the scalar field φ with the fluid, one must view the scalar field as a collection of two
fictitious fluids, the “kinetic” one, with energy density and pressure given by ρK = pK =
φ′2/(2a2), and the “potential” one, with ρV = −pV = V (φ), each of them having a constant
equation-of-state, one and minus one, respectively. The energy density and pressure of the
scalar field are just the sums of the energy densities and pressures of the two fluids, namely
ρφ = ρK + ρV and pφ = pK + pV . In order to recover the standard equations for a scalar
field, one must also consider that the fictitious kinetic and potential fluids are coupled, the
coupling being described by [50]

aQK→V = −φ′Vφ, aQV→K = 0. (3.3)

Then, we consider the “real” interaction between the scalar field and the perfect fluid (in
practice radiation). The crucial idea [50, 57] is that it is obtained by coupling the fluid only to
the fictitious kinetic fluid related to φ and introduced above (and not to the potential fluid).
This implies that QµV→f = Qµf→V = 0. In practice, we consider the case where the covariant
interaction between “K” and “f” can be described non-perturbatively by the following energy
four-momentum transfer:

QµK→f = ΓTµνK uKν , Qµf→K = 0, (3.4)

where Γ is the decay rate and is the only new parameter introduced in order to account
for the interaction. Note that this description should be understood as a phenomenological
parametrisation of the decays of scalar fields in cosmological fluids, and not as a concrete mi-
crophysical model. At the background level, one recovers the picture described in section 2.1,
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Figure 3. Evolution of the different energy density contributions as a function of the number of
e-folds. The solid orange line represents the contribution of the fictitious kinetic fluid, the solid blue
line the contribution of the fictitious potential fluid and the solid green line the contribution of the
physical scalar field which is the sum of those two. The solid red line corresponds to the contribution
of radiation. Before the end of inflation, the scalar field dominates the energy budget and, then, when
its decay becomes effective, radiation takes over. The parameter values are the same as in figure 2.

since the equations of motion (3.1) of the system (namely the energy conservation equation,
since the momentum conservation equation is trivial) can be written as

φ′′ + 2Hφ′ + aΓ

2
φ′ + a2Vφ = 0, (3.5)

ρ′f + 3H(1 + wf)ρf −
Γ

2a
φ′2 = 0. (3.6)

The first equation is the modified Klein-Gordon equation while the second one is the modified
conservation equation for the fluid with equation-of-state parameter wf (in practical applica-
tions, unless stated otherwise, we take wf = 1/3). These equations are usually introduced in
a phenomenological way. The fact that we are able to derive them from a covariant formu-
lation, eq. (3.1), will allow us to describe perturbations in the same framework, by assuming
that eq. (3.1) also holds at the perturbative (and in principle, even non-perturbative) level,
see section 3.2.

We have numerically integrated eqs. (3.5) and (3.6) for V(φ)=m2φ2/2 withm= 10−5MPl,
wf = 1/3 and Γ = 10−7MPl. For a quadratic potential, inflation stops when φend/MPl'

√
2

and the (slow-roll) trajectory reads φ(N)/MPl'
√

2−4(N−Nend) where N is the number
of e-folds. Here, we want to focus on the last e-folds of inflation and, therefore, the ini-
tial conditions are chosen such that the evolution is started on the slow-roll attractor at
φini/MPl' 5, corresponding to Nend−Nini' 6, and ρini

f = 0 (as we will show below, the pre-
cise choice of the time at which we set ρf = 0 does not matter since ρf quickly reaches an
attractor during inflation). The result is represented in figures 3 and 4, where inflation
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ends when N−Nend = 0. Then starts the oscillation phase. In figure 3, ΩK ≡ ρK/(ρφ+ρf),
ΩV ≡ ρV /(ρφ+ρf), Ωφ≡ΩK+ΩV and Ωf ≡ ρf/(ρφ+ρf) are displayed as a function of time.
Initially, we have Ωφ'ΩV ' 1 and Ωf 'ΩK ' 0. Indeed, in the slow-roll phase, the potential
energy largely dominates over the kinetic energy, since the first slow-roll parameter can be
expressed as ε1 = 3[(1+wf)Ωf +2ΩK ]/2, hence both Ωf and ΩK need to be very small. In this
regime, we also have H�Γ and the amount of radiation being produced is very small. Then,
inflation stops and ΩK and ΩV become of comparable magnitude and start oscillating. Dur-
ing that phase, radiation still provides a small, though non-vanishing, contribution. Finally,
when H 'Γ, at the time N ≡NΓ, radiation starts to be produced in a sizeable amount and
cannot be neglected anymore. After the end of inflation, the universe expands, on average, as
in a matter-dominated era, for which H ∝ a−3/2, that is to say H ∝Hend exp[−3(N−Nend)/2].
Writing the condition H = Γ thus leads to an estimate of NΓ, namely

NΓ −Nend '
2

3
ln

(√
2

2

m

Γ

)
. (3.7)

With the values used in figure 3, one obtains NΓ −Nend ' 2.8, which is in good agreement
with what can be observed in this figure. Then, within a few e-folds, radiation takes over
and the radiation-dominated era starts. In figure 4, the transparent blue line displays the
total equation-of-state parameter for the background, namely wbg = (pφ+pf)/(ρφ+ρf). The
same remarks as in figure 3 apply. Initially, wbg ' −1 and inflation proceeds in the slow-roll
regime, until wbg crosses −1/3 and inflation stops. After inflation, wbg oscillates, and finally
asymptotes 1/3 when the transition towards the radiation-dominated era is completed. In
order to factor out the effect of oscillations and only study their envelope, we also display
the averaged value of wbg, i.e. 〈wbg〉, for two different time scales of averaging. The orange
curve corresponds to wbg convolved with a Gaussian kernel of standard deviation given by
0.2 e-fold, while the green one follows the same procedure but with standard deviation 0.1
e-fold. Interestingly, right after the onset of the oscillatory phase, 〈wbg〉 is close to zero,
which confirms that the background expands on average as in a matter-dominated era, until
the production of radiation becomes effective.

The behaviour of 〈wbg〉 when radiation is still subdominant (i.e. during inflation and
during the first stage of the oscillating phase) can be described analytically as follows. A
first remark is that eq. (3.6) can be solved exactly,

ρf(t) =
Γ

2

∫ t

tin

φ̇2(t̃)

[
a(t̃)

a(t)

]3(1+wf)

dt̃ . (3.8)

This expression can be cast as a perturbative expansion in Γ. At leading order, the integrand
should be evaluated with Γ = 0, i.e. using the background dynamics in the absence of the
radiation fluid, which we know how to describe.

During inflation, using the formula given above for the slow-roll trajectory, one can
compute eq. (3.8) explicitly in terms of error functions. The resulting expression is not
particularly illuminating so we do not reproduce it here, but we note that if the initial time
is chosen sufficiently far in the past, it converges to1

ρf '
mM2

PlΓ

3

√
π

2(1+wf)
e

3
2

(1+wf)[1−2(N−Nend)]erfc

{√
3

2
(1+wf) [1−2(N−Nend)]

}
. (3.9)

1This convergence proves that, as mentioned above, after a few e-folds in slow-roll inflation, ρf reaches an
attractor, which implies that our results do not depend on our choice of initial time of integration.
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Figure 4. Evolution of the instantaneous (transparent blue line) and time-averaged equation-of-state
parameters as a function of the number of e-folds, in the same setup as in figure 3. The averaging
procedure consists in convolving the instantaneous signal with a Gaussian kernel of constant standard
deviation given by 0.2 e-folds (orange line) and 0.1 e-folds (green line), such that oscillations on shorter
time scales are averaged out. The analytical approximation eq. (3.12) is also displayed (red line), and
the inset plot zooms in its regime of validity (i.e. at the onset of the oscillating phase).

At the end of inflation, ρf is therefore of order mM2
PlΓ, hence Ωf is of order Γ/Hend, so

radiation can indeed be neglected when the decay rate is much smaller than the Hubble
scale during inflation. For instance, with the parameter values used in figure 3, eq. (3.9)
gives Ωf(tend) ' 8.1 × 10−4 while the numerical integration performed in figure 3 gives
Ωf(tend) ' 9.8 × 10−4, which allows us to check the validity of our approach (the small
difference between these two values is explained by the fact that the slow-roll approximation
breaks down towards the end of inflation).

During the oscillating phase, in the absence of fluid, as explained above
φ(t) ∝ sin(mt)a−3/2. Plugging this formula into eq. (3.8), and after averaging over the oscil-
lating term, one obtains

Ωf ' Ωf(tend)e−3wf(N−Nend) +
Γ

12Hend

φ2
end

M2
Pl

{
3

4
(
wf − 1

2

)
[
e−

3
2

(N−Nend) − e−3wf(N−Nend)
]

+
m2

3
(
wf + 1

2

)
H2

end

[
e

3
2

(N−Nend) − e−3wf(N−Nend)
]}

. (3.10)

After a few e-folds, if wf > −1/2, the first term on the second line is the dominant one, which
leads to

Ωf '
1

18 (2wf + 1)

φ2
endm

2

M2
PlH

2
end

Γ

H
. (3.11)

In a quadratic potential, using the slow-roll formula φend '
√

2MPl, one has Hend ' m/
√

2
and the equation-of-state parameter wbg ' wfΩf is given by

wbg '
2wf

9 (2wf + 1)

Γ

H
. (3.12)
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Because of the slow-roll violation at the end of inflation, this formula is expected to provide
an accurate description only up to an overall factor of order one (for instance in m/Hend),
and in figure 4 one can check that this is indeed the case, see the inset in particular (the
agreement in the case of other fluid equation-of-state parameters can be checked in figure 6
below). When Γ becomes of order H, i.e. when N ∼ NΓ, the approximation breaks down
and eq. (3.12) cannot be trusted anymore.

3.2 Perturbations

Having established how the background evolves, we now turn to the behaviour of the per-
turbations. Since the equations we started from, eqs. (3.1) and (3.4), have a covariant form,
they can be perturbed. As stressed above, this is not the case of the background equations
of motion, eqs. (3.5) and (3.6), which explains why these two equations cannot be used as a
starting point, and why it was necessary to re-derive them from a covariant principle. For
more explanations about this formalism, we refer the interested reader to refs. [50, 57]. By
perturbing eq. (3.1), one obtains

δ
[
∇νTµν(α)

]
=
∑

β

[
δQµ(α)→(β) − δQ

µ
(β)→(α)

]
. (3.13)

In this formula, the perturbed energy transfer δQµ(α)→(β), using eq. (3.2), can be written as

δQµ(α)→(β) = δQ(α)→(β)u
µ +Q(α)→(β)δu

µ + δfµ(α)→(β). (3.14)

The constraint that the four-vector fµ(α)→(β) is orthogonal to the Hubble flow must also be

satisfied at the perturbed level, and this leads to δ[fµ(α)→(β)uµ] = 0. As a consequence,

δf0
(α)→(β) = 0 and only δf

(α)→(β)
i 6= 0. Since we consider scalar perturbations, we write

δf
(α)→(β)
i = ∂iδf(α)→(β) and work in terms of the function δf(α)→(β).

Let us now perturb the gradient of the stress energy tensor for a scalar field in inter-
action with a perfect fluid. At the perturbed level, the kinetic and potential fictitious fluids
associated to φ have perturbed energy density and pressure given by

δρ
(gi)
K = δp

(gi)
K =

φ′

a2
δφ(gi)′ − φ′2

a2
Φ, (3.15)

δρ
(gi)
V = −δp(gi)

V = Vφδφ
(gi), (3.16)

and the perturbed gradient of the stress energy tensor also involves the velocity potential

v
(gi)
(α) , related to the spatial component of the perturbed velocity by v

(gi)
(α),i = ∂iv

(gi)
(α) , and the

rescaled velocity ς
(gi)
(α) defined by ς

(gi)
(α) ≡ [ρ(α) + p(α)]v

(gi)
(α) ,

v
(gi)
K = −δφ

(gi)

φ′
, ς

(gi)
K = −φ

′

a2
δφ(gi). (3.17)

Notice that we do not need to specify v
(gi)
V since it does not appear in the equations. In

these expressions, as already mentioned, the superscript “(gi)” means that the corresponding
quantity is gauge-invariant and coincides with its value in the longitudinal gauge. At the
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perturbed level, the energy-momentum transfer coefficients between the kinetic and potential
fluids are given by

aδQK→V = −Vφδφ(gi)′ + Vφφ
′Φ− Vφφφ′δφ(gi), aδQV→K = 0, (3.18)

δfK→V = δfV→K = 0. (3.19)

As will be shown below, these formulas are indeed needed to recover the standard equation of
motion for the scalar field fluctuation (i.e. the equation of motion in absence of coupling with
a fluid, for which a Lagrangian formulation of the theory exists and the equation of motion
is well prescribed). Regarding the interaction between the kinetic and potential fluids on one
hand, and the perfect fluid on the other hand, we have from perturbing eq. (3.4)

δQK→f = −Γδρ
(gi)
K , δQf→K = δQV→f = δQf→V = 0, (3.20)

and

δfK→f = aΓ
[
v

(gi)
tot − v

(gi)
K

]
ρK , δff→K = δfV→f = δff→V = 0, (3.21)

where the total velocity v
(gi)
tot is defined by the following expression

v
(gi)
tot =

1

ρ+ p

∑

α

[
ρ(α) + p(α)

]
v

(gi)
(α) , (3.22)

with ρ and p the total energy density and pressure.
Endowed with these definitions and assumptions one can then derive the perturbed

equations of motion. For the scalar field, one obtains the perturbed Klein-Gordon equation

δφ(gi)′′ + 2Hδφ(gi)′ +
aΓ

2
δφ(gi)′ −∇2δφ(gi) + a2Vφφδφ

(gi) = 4φ′Φ′ − 2a2VφΦ− aΓ

2
φ′Φ.

(3.23)

For the perfect fluid, one has two equations, namely the time and space components of
the conservation equation, yielding an equation for the perturbed energy density and the
perturbed velocity respectively, which read

δρ(gi)′+3H(1+wf)δρ
(gi)−3(1+wf)ρΦ′+(1+wf)ρ∇2v(gi)−Γ

a

[
φ′δφ(gi)′− 1

2
φ′2Φ

]
= 0, (3.24)

ς(gi)′+4Hς(gi)+ρ(1+wf)Φ+wfδρ
(gi)+

Γ

2a
φ′δφ(gi) = 0. (3.25)

One also needs an equation to track the evolution of the Bardeen potential and this is provided
by the perturbed Einstein equations,

Φ′ = −HΦ− a2

2M2
Pl

[
− 1

a2
φ′δφ(gi) + ς(gi)

]
. (3.26)

In figure 5, we have numerically integrated the above equations using the same param-
eters as in figures 3 and 4 and for the mode k/aini = 0.002MPl, the physical wavelength
of which is displayed in figure 2. The solid blue line in figure 5 represents the scalar field

density contrast k3|δφk|2 = k3|δρ(gi)
φ,k/ρφ|2, the solid orange line corresponds to the radiation
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Figure 5. Evolution of the modulus of the gauge invariant perturbative quantities δφk (inflaton
density contrast, blue line), δf

k (radiation density contrast, orange line), δtot
k (total, i.e. scalar field

plus radiation, density contrast, green line) and Rk (comoving curvature perturbation, red line) as a
function of the number of e-folds, in the same setup as the one displayed in the previous figures. Soon
after perturbative reheating becomes effective (which, according to the discussion around figure 3,
occurs when NΓ−Nend ' 2.8), the scalar field density contrast decreases, the curvature perturbation
stops being constant and decreases as well, hence the total density contrast stops increasing, which
signals the end of the instability.

fluid density contrast k3|δf
k|2 = k3|δρ(gi)

f,k /ρf |2, while the green line is the total density contrast

k3|δtot
k |2 = k3|[δρ(gi)

φ,k + δρ
(gi)
f,k ]/(ρφ + ρf)|2. When the mode enters the instability band around

N −Nend ' 0.5 e-fold, we see that the scalar field density contrast grows and one can check
that this growth is proportional to the scale factor a(t). This is a first consistency check.
Originally, this growth was derived from an analysis based on the Mathieu-like equation for
the Mukhanov-Sasaki variable, see ref. [35]. Here, we recover it using the conservation equa-
tions. We also notice that, initially, the total density contrast is equal to the scalar field
density contrast which is of course expected since the production of radiation has not yet
started in a sizeable way. When the amount of radiation starts being substantial, the two
density contrasts become different as revealed by the fact that the green and blue curves
separate. Then, the scalar field density contrast strongly decreases and becomes quickly neg-
ligible. This means that the total density contrast is given by the radiation density contrast
and we see that, when the transition is completed, it stays constant. In figure 5, we have also

represented the comoving curvature perturbation Rk = Ψk − aHv(gi)
tot,k with the red line. At

the onset of the instability phase, it is, as expected from the above analysis, constant, and
then it decreases as expected for sub-sonic perturbations in a radiation-dominated universe.

The main conclusion of this analysis is a confirmation that perturbative reheating effects
do not destroy the metric preheating instability, since the instability stops only when, at the
background level, the radiation fluid dominates the energy budget of the universe. The tiny
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Figure 6. Time evolution of the background equations-of-state parameters (upper panels), with the
insets zooming in the regime of validity of the analytical approximation (3.12), as well as scalar per-
turbations (lower panels), as a function of the number of e-folds, in the cases of decay into pressureless
matter wf = 0 (left panels) and into a stiff fluid wf = 1 (right panels). Apart from the value of wf ,
the setup and parameter values are the same as in all previous figures.

amount of radiation that is initially present is not sufficient to blur the narrow-resonance
regime and to remove the system from the first, and very thin, instability band of the Mathieu
equation chart. Notice that this supports the treatment of ref. [40] where the instability was
simply stopped at the time when the universe becomes radiation dominated. This also
demonstrates the robustness of the results obtained in ref. [35] and the generic, unavoidable
presence of an instability in single-field models of inflation at small scales.

Another way to test this robustness is to study whether the above conclusion is still
valid when the inflaton decays into a fluid with an equation of state that differs from the
one of radiation. We have therefore considered two additional cases corresponding to a
decay into a fluid with wf = 0 (pressureless matter) and a decay into a fluid with wf = 1
(stiff matter). The results are displayed in figure 6 and confirm that our description of the
instability generalises to arbitrary equation-of-state parameters wf . On the upper panels,
we show the total equations of state wbg and their averaged values, as well as the analytical
approximation eq. (3.12), as a function of the number of e-folds. One verifies that the
equation-of-state parameter indeed asymptotes wbg = 0 (left panel) and wbg = 1 (right
panel) at late time. On the lower panels, we have displayed the time evolution of the density
contrasts and of the curvature perturbation. The growth δk ∝ a is still observed until the
universe is dominated by the fluid,2 regardless of its equation of state.

2In the case where the decay product is a pressureless fluid, the growth δk ∝ a still continues afterwards
for all scales. In the case where wf = 1, stiff fluid density fluctuations also grow like δk ∝ a on sub-Hubble
scales, see the relation above eq. (3.33).
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3.3 Radiative decay and PBH formation from metric preheating

In the covariant description developed in section 3, two fluids were necessary to fully describe
the scalar field fluctuations. This shows that cosmological inhomogeneities of a scalar field
and of a perfect fluid are a priori two very different physical systems, featuring different
properties. It is therefore rather intriguing that, during the oscillatory phase, the averaged
equation of state is the one of pressureless matter, and that inside the instability band, the
density contrast behaves as the one of pressureless matter too, since it grows linearly with
the scale factor.

The formation of primordial black holes has mostly been studied in the context of perfect
fluids, so if this correspondence between an oscillating scalar field and a pressureless perfect
fluid does hold (and even in the presence of additional radiation), it would have important
practical consequences [58] for studying the production of PBHs from the metric preheating
instability. This is why, in this section, we compare more carefully the behaviour of the
cosmological perturbations of the system at hand with those of a single perfect fluid sharing
the same equation-of-state parameter.

A key concept in this comparison is the one of the equation of state “felt” by the
perturbations, if they are interpreted as perturbations of a single perfect fluid. We start by
recalling the behaviour of the density contrast for a perfect fluid with a given equation-of-
state parameter w. This will allow us to extract the equation-of-state parameter from the
time dependence of the density contrast, and to apply this formula to the system studied in
section 3 in order to derive the effective “equation of state” felt by the density perturbations.
We will then compare it with the equation of state of the background.

In order to implement this program, a remark is in order regarding the definition of the
density contrast. So far, we have worked in terms of the density contrast δ(gi) (noted δg in
ref. [59]), which consists in measuring the energy density relative to the hypersurface which
is as close as possible to a “Newtonian” time slicing. However, for a single perfect fluid, this
density contrast usually stays constant at large scales and, as a consequence, cannot be used
as a tracer of the equation-of-state parameter. Fortunately, as is well-known, there are other
possible definitions, in particular δcom (noted δm in ref. [59]), which measures the amplitude
of energy density from the point of view of matter, and corresponds to the density contrast
in the comoving-orthogonal gauge. The behaviour of δcom does depend on w on large scales
and, therefore, it is a useful quantity for our purpose. The relationship between δ(gi) and
δcom is given by

δ(gi) = δcom −
ρ′

ρ
v(gi) = δcom

[
1 + 3

a2H2

k2

(
1 +

Φ′

aHΦ

)]
, (3.27)

which shows that, although they behave differently on super-Hubble scales, their evolution
is identical on small scales. To prove this relation, we have used that the density contrast
δcom is related to the Bardeen potential through the Poisson equation [59]

δcom = −2k2M2
Pl

a2ρ
Φ . (3.28)

If the space-time expansion is driven by a perfect fluid with constant equation-of-state pa-
rameter w, the energy density scales as ρ = ρend(aend/a)3(1+w), which leads to

δcom = δend
com

(
a

aend

)1+3w Φ

Φend
, (3.29)
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where the Bardeen potential follows the equation of motion [47]

d2

d(kη)2
[(kη)νΦ] +

2

kη

d

dkη
[(kη)νΦ] +

[
w − ν(ν + 1)

(kη)2

]
(kη)νΦ = 0 , (3.30)

with ν = 2/(1 + 3w). The solution to this equation is given by

Φk = (wkη)α [AkJα(wkη) +BkJ−α(wkη)] , (3.31)

with α = −(5 + 3w)/[2(1 + 3w)], Jα being a Bessel function and Ak, Bk two integration
constants fixed by the initial conditions. The behaviour of this solution depends on whether
|wkη| � 1 or |wkη| � 1, i.e. on whether the mode wavelength is larger or smaller than the
sound horizon w/H.

On super-sonic scales, |wkη| � 1, the Bessel functions can be expanded according to
Jα(z) ∝ zα. Since α < 0 for w > −1/3, eq. (3.31) features a constant mode and a decaying
mode. The Bardeen potential thus asymptotes to a constant, and δcom ∝ a1+3w, see eq. (3.29).
If w = 0, then δcom ∝ a, which is a well-known result.

On sub-sonic scales, |wkη|� 1, the Bessel functions can be expanded according to
Jα(z)'

√
2/(πz)cos[z−π(1+2α)/4]. This leads to δcom' a−1/2+3w/2 cos[wkη−π(1+2α)/4].

The density contrast thus oscillates as a result of the competition between gravity and pres-
sure, and compared to the super-sonic case, the overall amplitude also scales differently with
the scale factor. One also notices that this formula cannot be applied if w= 0. Indeed, in that
case, the argument of the Bessel functions vanishes. Physically, if w= 0, there is no sound
horizon anymore (since the pressure vanishes), and all scales are “super-sonic” by definition.

These two limiting expressions of the density contrast can be used to define an effective
equation-of-state parameter “felt” by the perturbations. Since δcom ∝ a1+3w on super-sonic
scales, we define

wsuper
eff ≡ 1

6

d ln
(
k3
〈
δ2

com

〉)

d ln a
− 1

3
, (3.32)

where 〈·〉 stands for time averaging over possible background oscillations. On sub-sonic scales,
δcom ' a−1/2+3w/2 cos[wkη − π(1 + 2α)/4], so we introduce

wsub
eff ≡

1

3

d ln
(
k3
〈
δ2

com

〉)

d ln a
+

1

3
. (3.33)

Which of these two effective equations of state is relevant depends on whether the mode k is
sub-sonic and super-sonic. In figure 7, we display these two quantities, wsuper

eff and wsub
eff , from

the value of δcom numerically obtained as in the previous figures, and compare them with the
(averaged) equation-of-state parameter of the background. In all cases, the time averaging is
performed with a Gaussian kernel of constant standard deviation given by 0.2 e-folds. Let us
also stress again that, on sub-Hubble scales, the density contrast in the comoving-orthogonal
gauge, δcom, coincides with the one in the longitudinal gauge displayed in figures 5 and 6.

During the first oscillations, the equation-of-state parameter vanishes (on average) in
the background, and recalling that all modes are super-sonic for a vanishing equation-of-
state parameter, one can check that the relevant equation of state, wsuper

eff , indeed vanishes,
and that the red and orange curves in figure 7 are indeed close. This however lasts for a
few e-folds only, after which neither of the effective equations of state correctly reproduces
the behaviour of the (averaged) equation of state of the background. In addition, for the
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Figure 7. Effective equation-of-state parameters for the perturbations as a function of the number of
e-folds. When the mode k is super-sonic, its effective equation-of-state parameter is given by wsuper

eff

(red line), and respectively by wsub
eff (green line) when it is sub-sonic. In order to facilitate the reading

of the figure, the effective equation-of-state parameters are displayed with dashed lines in the regimes
where they are not relevant. The instantaneous background equation of state (transparent blue line)
and its averaged value (orange line) are also represented for comparison. When 〈wbg〉 ≈ 0, the sound
horizon is very small and the super-sonic effective equation of state (red line) is the relevant one. As
expected, it is close to 0. However when 〈wbg〉 starts to depart from zero, since the physical mode
k/a is within the Hubble radius (see figure 2), the sub-sonic equation of state (green line) becomes
the relevant one and, as expected, it quickly converges to 1/3. Note however that between these two
asymptotic regimes, the effective equation of state for the perturbation does not match the one of the
background.

sub-sonic scales that lie inside the instability band, 〈wbg〉 does not coincide at all with wsub
eff

during the oscillating phase until radiation strongly dominates the universe content and
both converge to 1/3. Therefore, despite the fact that the inflaton background effectively
behaves as pressureless matter on average, and that its decay product is a perfect fluid, the
perturbations of the system are not those of perfect fluids. This confirms that the system
made of a decaying, oscillating scalar field has different behaviour from a pure perfect fluid,
and cannot be simply modelled as such.

Let us note that this fundamental difference is even more striking in the case where
the inflaton potential is quartic close to its minimum, since in that case the correspondence
between the inflaton perturbations and those of a perfect fluid with the same background
equation of state breaks down even in the absence of inflaton radiative decay. As shown in
ref. [35] indeed, while 〈wbg〉 = 1/3 in such a case, the instability of metric preheating is still
present, and the density contrast grows even faster than that of pressureless matter (namely,
exponentially with the scale factor) in the instability band, while the density contrast for a
perfect fluid having w = 1/3 is constant on sub-sonic scales.
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As mentioned above, this implies that, in order to study the production of PBHs that
arises from the increase of the density contrast in the instability band, one cannot rely on
techniques developed for perfect fluids. In ref. [58] for instance, it was used that an overdensity
of a perfect fluid with constant equation-of-state parameter w collapses into a black hole if
it exceeds the critical density contrast3 [62, 63]

δc =
3(1 + w)

5 + 3w
sin2

(
π
√
w

1 + 3w

)
, (3.34)

in which w was replaced with w ∼ Γ/H [see eq. (3.12)]. If w = 0, eq. (3.34) indicates that
any local overdensity ends up forming a black hole, which is indeed the case in the absence
of any pressure force. The analysis of ref. [58] thus suggests that what limits the formation
of PBHs from the instability of metric preheating is the presence of (even small amounts of)
radiation, which provide a non-vanishing value to the equation-of-state parameter, and hence
to δc. However, the results of the present work cast some doubt on such a treatment since
we showed that an oscillating scalar field decaying into a radiation fluid cannot be treated
as a collection of perfect fluids at the perturbed level [furthermore, the background equation
of state for such a system is strongly time dependent, see eq. (3.12), while eq. (3.34) only
applies to constant equation-of-state parameters].

In ref. [40], the formation of PBHs from the overdensities of an oscillating scalar field was
studied in the context of metric preheating, and it was found that what limits the formation
of PBHs is rather the fact that the instability does not last for ever, since it stops when
radiation takes over. Indeed, although it is true that any overdensity inside the instability
band develops towards forming a black hole, the amount of time needed for a black hole to
form depends on (and decreases with) the initial value of the density contrast. By requiring
that it takes less time than what is available before the complete inflaton decay (which, as
we have established in section 3.2, signals the end of the instability phase that is otherwise
not affected by the presence of radiation being produced), one obtains a lower bound on the
density contrast, which however has nothing to do with eq. (3.34).

4 Conclusions

Preheating effects are often believed to be observationally irrelevant in single-field models of
inflation. Although this is true at large scales, where the curvature perturbation is merely con-
served, the situation is different at small scales, namely those leaving the Hubble radius a few
e-folds before the end of inflation. Such scales are subject to a persistent instability proceed-
ing in the narrow-resonance regime [35], which causes the density contrast to grow, leading
to various possible effects such as early structure formation or even PBHs formation [40].

In contrast to the case of background preheating, where the narrow-resonance regime is
irrelevant since, in a time-dependent background, the system spends very little time in the
thin instability band and the resonance effects are wiped out, in the metric preheating case,
the presence of the instability is actually caused by cosmic expansion itself (see figure 2).
This is the reason why this mechanism is both atypical and very efficient.

This fact was known to be true [35] only if the inflaton is uncoupled to other degrees
of freedom. However, in order for reheating to proceed, the inflaton field must decay into

3The criterion for PBH formation is expressed in terms of the density contrast rather than curvature
perturbation, the latter being affected by environmental effects [60], see also ref. [61].
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radiation, and the goal of this paper was to determine whether this decay could spoil the
instability. Using the formalism of cosmological perturbations in the presence of interactions
between fluids, we have shown that it is not the case, and that the growth of the density
contrast inside the instability band remains unaffected until the radiation fluid dominates
the universe content.

We have also stressed that there is a fundamental difference between the cosmological
perturbations of an oscillating scalar field and those of a perfect fluid, and that techniques
developed to study the formation of PBHs from perfect fluid overdensities cannot be applied
to the present context. Instead, a dedicated analysis such as the one of ref. [40] must be
performed. Our results have confirmed that the presence of radiation can simply be ignored
until it comes to dominate the energy budget, thus stopping the instability.

The results of this work therefore confirm that the instability of metric preheating is
unavoidable in single-field models of inflation, since it only requires an oscillating scalar field
in a cosmological background, which is the state of the universe at the end of most inflationary
models, and given that it is robust against perturbative decay of this field.
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Chapter 4

PBHs and Induced Gravitational
Waves

In this chapter, we recap briefly the various ways in which PBHs can be connected
with gravitational waves and then we present the fundamentals for the calculation of
second order induced gravitational waves from first order scalar perturbations in the
case of GW production in a radiation-dominated era. Then, we present the main results
of our research work [32] in which induced gravitational waves are produced during an
era in which ultralight PBHs (mPBH < 109g) drive the universe’s expansion.

Regarding my personal contribution to the above mentioned scientific publication
[32], I had major contributions by performing an analytic approximative calculation for
the extraction of the GW spectral density as well as writing up the numerical code for the
calculation of the GW signal and the inference of constraints of the PBH abundances.
In addition, I produced the figures of the paper, wrote up the conclusions and the
appendices and proof read the paper.

4.1 Gravitational Waves and PBHs

PBHs can be involved in several ways in the production of gravitational waves giving
access to different physical phenomena and contributing as a consequence to a better
understanding of the early universe at the time at which they form.

In particular, as argued in the last decade [177, 232, 233, 182], PBHs are tightly
connected with induced gravitational waves which are sourced by large small-scale pri-
mordial curvature perturbations, and which can be potentially detected by future probes
like LISA, DECIGO and Einstein Telescope. One then, by studying the stochastic back-
ground of induced gravitational waves, can search for PBH “smoking guns” and con-
strain therefore the properties of these compact objects, such as their contribution to
dark matter [21].

At the same time, with GW detectors, such as LIGO/VIRGO, one can probe the
coalescence history of compact objects which as recently argued can be potentially ex-
plained with the existence of PBHs [234]. By studying therefore the gravitational waves

127



emitted out of PBH mergers [184, 185, 186, 187, 188, 189] one can search for PBH sig-
natures, reconstruct the PBH formation history and shed light into PBH characteristics
such as their mass [235, 236] and spin [237, 238].

Furthermore, one should stress out the connection between PBHs and the stochastic
gravitational wave background of Hawking radiated gravitons emitted out of the PBH
evaporation, through which one can constrain the PBH abundances, their masses and
their spins [190, 191].

In addition, as recently argued in our recent work [32], PBHs can be connected to
induced GWs which are associated to large-scale curvature perturbations underlain by
PBHs themselves, not the ones generated from the primordial curvature power spectrum
at small scales [32]. These GWs can be abundantly produced during an early PBH-
dominated era and can be potentially detected by LISA, Einstein Telescope and SKA
[239].

Given then all these possibilities of connection of PBHs to GWs, it is evident that,
thanks to the recent developments of the gravitational wave astronomy, one can develop
theories/models about PBHs, make predictions and test them directly in the laboratory,
which in this case is the universe itself.

4.2 Induced gravitational waves produced in an radiation-
dominated era: The fundamentals

Having introduced before the different ways PBHs are related to gravitational waves,
we focus here on the induced gravitational waves generated at second order from first
order scalar perturbations, which was one of the research axes studied within my PhD.
Below, we review the calculation of the GW energy density parameter, ΩGW, of the
stochastic background of induced gravitational waves and we consider the case in which
PBHs are produced during an RD era, which is the most studied in the literature.

4.2.1 Gravitational waves at second order

Before presenting the calculation of the GW energy density parameter of the stochas-
tic background of scalar induced gravitational waves we stress out here a major issue
emerging from the study of induced GWs at second order. This issue is actually the
fact that while the tensor modes are gauge invariant at first order this does not hold at
second order [240, 241, 242, 243, 244]. This means that, a priori, one needs to specify
in which slicing the gravitational waves are detected, i.e. which coordinate system is
associated to the detection apparatus.

However, as recently noted in [242, 243, 244, 245], this gauge dependence is expected
to disappear in the case of induced gravitational waves produced during a radiation era,
as the one we review here, due to diffusion damping which exponentially suppresses the
scalar perturbations in the late-time limit. In particular, small-scale perturbations, as
the ones which seed primordial black holes, decay exponentially like ∝ exp

(
−k2/k2

D(t)
)

[246], within the diffusion scale k−1
D (t) because the free-streaming length of some species,
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in particular the one of photons and neutrinos increases as the universe cools down
[247, 248]. This is often quoted as Silk damping [249]. Therefore, the difference between
tensor perturbations in two different gauges, which should be written in terms of scalar
perturbations should be negligible in the late-time limit.

In what follows, we choose to perform our calculation by working with the Newto-
nian coordinate system for the GW detection frame [250, 251, 252, 253]. Therefore,
by adding to the linearly-perturbed Friedmann-Lemâıtre-Robertson-Walker metric in
the Newtonian gauge the second-order tensor perturbation hij (with a factor 1/2 as is
standard in the literature) 1, we obtain the total metric

ds2 = a2(η)

{
−(1 + 2Φ)dη2 +

[
(1− 2Φ)δij +

hij
2

]
dxidxj

}
. (4.1)

The tensor perturbation can be Fourier expanded according to

hij(η,x) =

∫
d3k

(2π)3/2

[
h

(+)
k (η)e

(+)
ij (k) + h

(×)
k (η)e

(×)
ij (k)

]
eik·x, (4.2)

with the polarisation tensors e
(+)
ij and e

(−)
ij defined as

e
(+)
ij (k) =

1√
2

[ei(k)ej(k)− ēi(k)ēj(k)] , (4.3)

e
(×)
ij (k) =

1√
2

[ei(k)ēj(k) + ēi(k)ej(k)] , (4.4)

where ei(k) and ēi(k) are two three-dimensional vectors, such that {ei(k), ēi(k),k/k}
forms an orthonormal basis. This implies that the polarisation tensors satisfy e

(+)
ij e

(+)
ij =

e
(×)
ij e

(×)
ij = 1, e

(+)
ij e

(×)
ij = 0. Regarding now the equation of motion for the tensor modes,

it reads as [250, 251, 252]

hs,′′k + 2Hhs,′k + k2hsk = 4Ssk , (4.5)

where s = (+), (×) and the source function Ssk is given by

Ssk =

∫
d3q

(2π)3/2
esij(k)qiqj

[
2ΦqΦk−q +

4

3(1 + w)
(H−1Φ′q + Φq)(H−1Φ′k−q + Φk−q)

]
.

(4.6)
As we can see, the source term, Ssk, is quadratic in Φ and therefore it is a second-order
quantity. Consequently, the tensor modes, hsk, are second-order quantities as it can be
seen from Eq. (4.5).

In the absence of anisotropic stress, if the speed of sound is given by c2
S

= w, the
equation of motion for the Bardeen potential reads as [206]

Φ′′k +
6(1 + w)

1 + 3w

1

η
Φ′k + wk2Φk = 0 . (4.7)

1. The contribution from the first-order tensor perturbations is not considered here since we concen-
trate on gravitational waves induced by scalar perturbations at second order.
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Introducing x ≡ kη and λ ≡ (5 + 3w)/(2 + 6w), this can be solved in terms of the Bessel
functions Jλ and Yλ,

Φk(η) =
1

xλ
[
C1(k)Jλ

(√
w x
)

+ C2(k)Yλ
(√
w x
)]
, (4.8)

where C1(k) and C2(k) are two integration constants. On super sound-horizon scales,
i.e. when

√
w |x| � 1, this solution features a constant mode and a decaying mode (when

w = 0, this is valid at all scales). By considering the Bardeen potential after it has spent
several e-folds above the sound horizon, the decaying mode can be neglected, and one
can write Φk(η) = TΦ(x)φk, where φk is the value of the Bardeen potential at some
reference initial time, x0 and TΦ(x) is a transfer function, defined as the ratio of the
dominant mode between the times x and x0. This allows one to rewrite Eq. (4.6) as

Ssk =

∫
d3q

(2π)3/2
es(k, q)F (q,k− q, η)φqφk−q , (4.9)

where one has introduced

F (q,k− q, η) = 2TΦ(qη)TΦ (|k − q|η)

+
4

3(1 + w)

[
H−1qT ′Φ(qη) + TΦ(qη)

] [
H−1|k − q|T ′Φ (|k − q|η) + TΦ (|k − q|η)

]
,

(4.10)
which only involves the transfer function TΦ. An analytic solution to Eq. (4.5) is obtained
with the Green’s function formalism,

a(η)hsk(η) = 4

∫ η

η0

dη̄ gk(η, η̄)a(η̄)Ssk(η̄), (4.11)

where the Green’s function gk(η, η̄) is given by gk(η, η̄) = Gk(η, η̄)Θ(η − η̄). In the
previous expression, Θ is the Heaviside step function, and Gk(η, η̄) is the solution of the
homogeneous equation

G′′k +

(
k2 − a′′

a

)
Gk = 0 , (4.12)

where a prime denotes derivation with respect to the first argument η, and with initial
conditions limη→η̄ Gk(η, η̄) = 0 and limη→η̄ G′k(η, η̄) = 1. The above equation can be
solved analytically in terms of Bessel functions and the solution is:

kGk(η, η̄) =
π

2

√
xx̄ [Yν(x)Jν(x̄)− Jν(x)Yν(x̄)] , (4.13)

where ν = 3(1−w)
2(1+3w) . Since Gk(η, η̄) depends only on k, from now on it will be noted as

Gk(η, η̄).
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4.2.2 The stress-energy tensor of gravitational waves

Following closely [254], by considering only the contribution of small scales, where
one does not “feel” the curvature of the spacetime, the background spacetime can be
considered as efffectively flat. Thus, by coarse graining perturbations below the inter-
mediate scale ` such that λ� `� LB, the effective stress-energy tensor of gravitational
waves can be recast in the following form: [254]

tµν = −M2
Pl

(
R

(2)
µν −

1

2
ḡµνR(2)

)
, (4.14)

where ḡµν is the background metric, R
(2)
µν is the second-order Ricci tensor and R(2) =

ḡµνR
(2)
µν its trace. The overall bar refers to the coarse-graining procedure.

The physical modes contained in tµν can be extracted either by specifying a gauge,
as for instance the transverse-traceless gauge where ∂βh

αβ = 0 and h = ḡαβhαβ = 0, or
in a gauge-invariant way by using space-time averages [254] (see also Appendix of [255]).
Both approaches coincide on sub-Hubble scales and the 0-0 component of tµν reads

ρGW(η,x) = t00 =
M2

Pl

32a2
(∂ηhαβ∂ηhαβ + ∂ihαβ∂ihαβ) , (4.15)

which is simply the sum of a kinetic term and a gradient term.
In the case of a free wave [i.e. in the absence of a source term in Eq. (4.5)], these two

contributions are identical, since the energy is equipartitioned between its kinetic and
gradient components. This is the case in a radiation era where the scalar perturbations
due to diffusion damping are in general exponentially supressed and therefore decouple
in the late-time limit from the tensor perturbations. Therefore, the source term in the
right hand side of Eq. (4.5) can be neglected and considering only sub-horizon scales one
can neglect as well the friction term 2Hhs,′k in Eq. (4.5). Therefore, Eq. (4.5) becomes a
free-wave equation and one is met with an equipartition between the gradient and the
kinetic component in Eq. (4.15). Consequently, one obtains that

〈ρGW(η,x)〉 = t00 ' 2
∑

s=+,×

M2
Pl

32a2

〈(
∇hsαβ

)2
〉

=
M2

Pl

16a2 (2π)3

∑

s=+,×

∫
d3k1

∫
d3k2 k1k2

〈
hsk1

(η)hs,∗k2
(η)
〉
ei(k1−k2)·x .

(4.16)

In this expression, the bar denotes averaging over the sub-horizon oscillations of the ten-
sor field, which is done in order to extract the envelope of the gravitational-wave spec-
trum at those scales and brackets mean an ensemble average. Defining now ΩGW(η, k)
through the relation

〈ρGW(η,x)〉 ≡ ρtot

∫
ΩGW(η, k)d ln k, (4.17)

where ρtot is the total energy density of the universe, one then can compute ΩGW(η, k)
by computing 〈ρGW(η,x)〉. Equivalently, given Eq. (4.16) one can compute ΩGW(η, k)
by computing the two-point correlation function of the tensor field, 〈hrk1

(η)hs,∗k2
(η)〉.
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4.2.3 The tensor power spectrum at second order

We extract now the two-point correlation function of the tensor field, 〈hrk1
(η)hs,∗k2

(η)〉.
As we will show later, it is of the form

〈hrk1
(η)hs,∗k2

(η)〉 ≡ δ(3)(k1 − k2)δrs
2π2

k3
1

Ph(η, k1), (4.18)

where Ph(η, k) is the tensor power spectrum. According to Eq. (4.11), the two-point
function of the tensor fluctuation can be written in terms of the two-point function of
the source,

〈hrk1
(η)hs,∗k2

(η)〉 =
16

a2(η)

∫ η

η0

dη̄1Gk1(η, η̄1)a(η̄1)

∫ η

η0

dη̄2Gk2(η, η̄2)a(η̄2)〈Srk1
(η̄1)Ss,∗k2

(η̄2)〉,
(4.19)

where the source correlator can be derived from Eq. (4.9), leading to

〈Srk1
(η̄1)Ss,∗k2

(η̄2)〉 =

∫
d3q1

(2π)3/2
er(k1, q1)F (q1,k1 − q1, η̄1)

×
∫

d3q2

(2π)3/2
es(k2, q2)F ∗(q2,k2 − q2, η̄2)〈φq1φk1−q1φ

∗
q2φ
∗
k2−q2〉.

(4.20)

By choosing the initial time x0 well before the horizon entry, one can show that the
primordial value φk is related to the comoving curvature perturbation ζk as follows [252]

〈φk1φ
∗
k2
〉 = δ(k1 − k2)

2π2

k3
1

PΦ(k1), (4.21)

where PΦ(k) is the primordial power spectrum of the gravitational potential well before
the horizon entry.

Combining the above results, and considering the case of a radiation era where w =
1/3, Eq. (4.20) gives rise to

〈Srk1
(η̄1)Ss,∗k2

(η̄2)〉 = πδ(3)(k1 − k2)

∫
d3q1e

r(k1, q1)es(k1, q1)

F (q1,k1 − q1, η̄1)F ∗(q1,k1 − q1, η̄2)
PΦ(q1)

q3
1

PΦ(|k1 − q1|)
|k1 − q1|3

.

(4.22)

Rewriting then the above integral in terms of the two auxiliary variables u = |k1−q1|/k1

and v = q1/k1 and plugging Eq. (4.22) into Eq. (4.19) one obtains after a straightforward
but lengthy calculation [See [32] for more details] that the two-point function of the
tensor field can be cast in the form of Eq. (4.18), where the tensor power spectrum is
given by

Ph(η, k) = 4

∫ ∞

0
dv

∫ 1+v

|1−v|
du

[
4v2 − (1 + v2 − u2)2

4uv

]2

I2(u, v, x)PΦ(kv)PΦ(ku) , (4.23)

132



with

I(u, v, x) =

∫ x

x0

dx̄
a(x̄)

a(x)
k Gk(x, x̄)Fk(v, u, x̄). (4.24)

In this expression, x = kη and we use the notation Fk(v, u, x) ≡ F (q, |k − q|, η) given
the fact that x = kη, q = vk and |k − q| = uk. Having extracted therefore an analytic
formula for the tensor power spectrum defined through Eq. (4.18) one can compute
ΩGW(η, k) by combining Eq. (4.16) and Eq. (4.17). At the end, one gets that in the free-
wave approximation, where one can assume equipartition of the kinetic and gradient
energies, ΩGW(η, k) reads as

ΩGW(η, k) =
1

24

[
k

H(η)

]2

Ph(η, k). (4.25)

With the above formula one can compute the energy contribution of induced GWs
at a reference time during the RD era. Here we choose this time as the time of PBH
formation, which, as explained in Eq. (2.1), is considered to be the time at which the
mode k related to the PBH scale crosses the horizon. To compute then the contribution
of the induced GWs to the energy budget of the universe at present epoch one should
evolve ΩGW(ηf , k) computed at PBH formation time up to today. To do so, one has that

ΩGW(η0, k) =
ρGW(η0, k)

ρc(η0)
=
ρGW(ηf , k)

ρc(ηf)

(
af

a0

)4 ρc(ηf)

ρc(η0)
= ΩGW(ηf , k)Ω(0)

r

ρr,fa
4
f

ρr,0a4
0

, (4.26)

where we have taken into account that ΩGW ∼ a−4. The index 0 refers to the present
time. Then, taking into account that the energy density of radiation can be recast as

ρr = π2

15 g∗ρT
4
r and that the temperature of the radiation bath, Tr, scales as Tr ∝ g−1/3

∗S a−1

one finds that

ΩGW(η0, k) = Ω(0)
r

g∗ρ,f
g∗ρ,0

(
g∗S,0
g∗S,f

)4/3

ΩGW(ηf , k), (4.27)

where g∗ρ and g∗S stand for the energy and entropy relativistic degrees of freedom.

4.2.4 The GW energy density parameter in a RD era

Considering now GW emission during RD era, from Eq. (4.10), the function
Fk(u, v, x̄) in a RD era reads

FRD(v, u, x) = 2TΦ(vx)TΦ(ux) +
[
vxT ′Φ(vx) + TΦ(vx)

] [
uxT ′Φ(ux) + TΦ(ux)

]
, (4.28)

where we have used the fact that H = aH = 1/η during an RD era.
Regarding the evolution of TΦ, having written before Φk = TΦφk one can write

Eq. (4.8) for the transfer function TΦ by specifying the initial conditions at x0 for the
Tφ and for T ′Φ. At early times, i.e. x0 → 0, all modes can be considered super-horizon
leading to a constant value for TΦ according to the discussion after Eq. (4.7). One then
can choose that TΦ(x0 → 0) = 1 and T ′(x0 → 0) = 0 and TΦ(x) reads as

TΦ(x) =
9

x2

[
sin
(
x/
√

3
)

x/
√

3
− cos

(
x/
√

3
)]

(4.29)
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Thus, FRD(v, u, x) becomes

FRD(v, u, x) =
18

u3v3x6

[
18uvx2 cos

(
ux√

3

)
cos

(
vx√

3

)
+

(54− 6(u2 + v2)x2 + u2v2x4) sin

(
ux√

3

)
sin

(
vx√

3

)

+ 2
√

3 ux(v2x2 − 9) cos

(
ux√

3

)
sin

(
vx√

3

)

+ 2
√

3 vx(u2x2 − 9) sin

(
ux√

3

)
cos

(
vx√

3

)]

(4.30)

and from Eq. (4.24) one obtains after a straightforward but long calculation that

IRD(u, v, x) =
3

4u3v3x

{
− 4

x3

[
uv(u2 + v2 − 3)x3 sinx− 6uvx2 cos

ux√
3

cos
vx√

3
+

+ 6
√

3 ux cos
ux√

3
sin

vx√
3

+ 6
√

3 vx sin
ux√

3
cos

vx√
3

− 3
(

6 + (u2 + v2 − 3)x2
)

sin
ux√

3
sin

vx√
3

]

+ (u2 + v2 − 3)2

(
sinx

{
Ci

[(
1− v − u√

3

)
x

]
+ Ci

[(
1 +

v − u√
3

)
x

]

− Ci

[(
1− v + u√

3

)
x

]
− Ci

[(
1 +

v + u√
3

)
x

]
+ ln

∣∣∣∣
3− (u+ v)2

3− (u− v)2

∣∣∣∣
}

+ cosx

{
− Si

[(
1− v − u√

3

)
x

]
− Si

[(
1 +

v − u√
3

)
x

]
+

+ Si

[(
1− v + u√

3

)
x

]
+ Si

[(
1 +

v + u√
3

)
x

]})}
,

where the Ci(x) and Si(x) functions are defined as

Si(x) =

∫ x

0
dx̄

sin x̄

x̄
, Ci(x) = −

∫ ∞

x

cos x̄

x̄
. (4.31)

Taking now the oscillation average of I2
RD(u, v, x) in the late-time limit, i.e. x→∞ one

obtains that

¯I2
RD(v, u, x→∞) =

1

2

[
3(u2 + v2 − 3)

4u3v3x

]2{[
−4uv + (u2 + v2 − 3) ln

∣∣∣∣
3− (u+ v)2

3− (u− v)2

∣∣∣∣
]2

+ π2(u2 + v2 − 3)2Θ(v + u−
√

3 )

}

(4.32)
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To compute now the energy density parameter ΩGW(η, k) we consider a log-normal cur-
vature power spectrum which peaks at the frequency, f∗, at which the LISA experiment
exhibits its maximum sensitivity, i.e. f∗ = fLISA = 3.4mHz.

Pζ(k) = Aζe
−

ln2( k
k∗ )

2σ2 , (4.33)

where k∗ = 2πf∗ and we have chosen Aζ = 0.029 and σ = 0.5. Then, plugging Eq. (4.33)
into Eq. (4.23) we perform numerically the double integral (4.23) and by combining
Eq. (4.25) and Eq. (4.27) we show in Fig. 4.1 ΩGW(η0, k) superimposed to the gravita-
tional wave sensitivity curve of LISA [256].
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G
W
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0,

k)
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Figure 4.1 – The energy density parameter ΩGW(η0, k) for a lognormal curvature power
spectrum [see Eq. (4.33)] superimposed to the gravitational wave sensitivity curve of
LISA [256].

4.3 Induced gravitational waves produced in a PBH-
dominated era (research article)

Having presented before the basics of the calculation of second order induced grav-
itational waves from first order scalar perturbations in the case of GW production in a
radiation-dominated era, we recap here the main results of our work [32] in which grav-
itational waves are produced in an era of domination of ultralight PBHs with masses
mPBH < 109g by emphasizing the differences with the case of induced GWs produced in
a RD universe.
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Firstly, we should stress out that contrary to the induced GWs produced in a RD era
where the gauge-dependence of GWs mentioned in Sec. 4.2.1 is expected to disappear in
the late-time limit due to diffusion damping [242, 243, 244, 245] this does not happen
for GWs produced in a matter-dominated era, like the one driven by PBHs. However, in
[32] we do not derive observable predictions, but we rather investigate a GW backreaction
problem, which we assume bears little dependence on the gauge. In particular, if the
energy density carried by gravitational waves overcomes the one of the background, one
expects perturbation theory to break down in any gauge.

In addition, we should underline the nature of the induced GWs studied in [32] as
well. In the majority of the literature, induced GWs are sourced be primordial scalar
perturbations which have preceded and given rise to PBHs. However, in our work [32]
the induced GWs are sourced by scalar perturbations underlain by PBHs themselves.
For this reason, by considering monochromatic PBHs produced in a RD universe with
their initial spatial distribution being of Poisson type (unclustered), we treated the
PBH energy density perturbations as isocurvature perturbations and we extracted at
the end the power spectrum of the gravitational potential PΦ(k) underlain by a gas of
PBHs during the subsequent PBH domination era. Finally, by plugging our expression
for PΦ(k) in Eq. (4.23) and making use of Eq. (4.25) we computed the GW spectrum
ΩGW(η, k).

Another aspect which should be emphasized here is that in our work [32], we con-
sidered GWs produced during a PBH-dominated era, where Φ = constant, a fact which
forces the source term (4.6) to be constant and as a consequence the equation of motion
(4.5) for the tensor modes is not anymore a free-wave equation. The amplitude of gravi-
tational waves converges then to a solution constant in time, which highly suppresses the
kinetic contribution compared to the gradient contribution in Eq. (4.15). Consequently,
in the case of induced GWs produced during a PBH-dominated era the result (4.25)
should be divided by two.

Finally, by making use of Eq. (4.25), we extracted both numerically and analyti-
cally ΩGW(ηevap, k) at evaporation time ηevap and we found that it crucially depends
on two parameters, namely the PBH mass, mPBH and the initial abundance of PBHs
at formation time ΩPBH,f . Typically, we found that the amount of gravitational waves
increases with mPBH, since heavier black holes live longer, hence dominate the universe
for a longer period before they evaporate, and with ΩPBH,f , since more abundant black
holes dominate the universe earlier, hence for a longer period too.

Subsequently, by integrating ΩGW(ηevap, k) over the relevant modes k we required
that the induced GWs produced during the PBH-dominated era are not overproduced,
i.e. ΩGW,tot(ηevap) < 1, deriving in this way both analytically and numerically the
following upper bound constraint on the initial abundance of PBHs, ΩPBH,f , as a function
of their mass mPBH:

ΩPBH,f < 1.4× 10−4

(
109g

mPBH

)1/4

. (4.34)

At this point, let us stress out that since PBHs with masses smaller than 109g evaporate
before BBN, they cannot be directly constrained (at least without making further as-
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sumption, see e.g. [257]). Therefore, to the best of our knowledge, the above constraint
is the first one ever derived on ultra-light PBHs. We should also underline that given
the fact that we have not assumed a specific PBH production mechanism - we just only
assumed that initially PBHs are unclustered and they all have the same mass - the
constraint quoted in Eq. (4.34) is rather model independent. For more details see our
relevant research article attached below.
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1 Introduction

Primordial black holes (PBHs) [1, 2] are attracting increasing attention since they may play
a number of important roles in Cosmology. They may indeed constitute part or all of the
dark matter [3], they may explain the generation of large-scale structures through Poisson
fluctuations [4, 5], they may provide seeds for supermassive black holes in galactic nuclei [6, 7],
and they may also account for the progenitors of the black-hole merging events recently
detected by the LIGO/VIRGO collaboration [8] through their gravitational wave emission,
see e.g. refs. [9, 10]. Other hints in favour of the existence of PBHs have been underlined,
see for instance ref. [11].

There are several constraints on the abundance of PBHs [12], ranging from micro-lensing
constraints, dynamical constraints (such as constraints from the abundance of wide dwarfs in
our local galaxy, or from the existence of a star cluster near the centres of ultra-faint dwarf
galaxies), constraints from the cosmic microwave background due to the radiation released
in PBH accretion, and constraints from the extragalactic gamma-ray background to which
Hawking evaporation of PBHs contributes. However, all these constraints are restricted to
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certain mass ranges for the black holes, and no constraint applies to black holes with masses
smaller than ∼ 109g, since those would Hawking evaporate before big-bang nucleosynthesis.

Nonetheless, various scenarios have been proposed [13–17] where ultra-light black holes
are abundantly produced in the early universe, so abundantly that they might even dominate
the energy budget of the universe for a transient period. By Hawking evaporating before big-
bang nucleosynthesis takes place, those PBHs would leave no direct imprint (apart from
possible Planckian relics [18, 19]). It thus seems rather frustrating that such a drastic change
in the cosmological standard model, where an additional matter-dominated epoch driven
by PBHs is introduced, and where reheating proceeds from PBH evaporation, cannot be
constrained by the above-mentioned probes. This situation could however be improved by
noting that a gas of gravitationally interacting PBHs is expected to emit gravitational waves,
and that these gravitational waves would propagate in the universe until today, leaving an
indirect imprint of the PBHs past existence.

The goal of this paper is therefore to compute the stochastic gravitational-wave back-
ground produced out of a gas of PBHs, if it constitutes the main component of the universe.
Since a gas of randomly distributed PBHs is associated with a density-fluctuation field, at
second order in perturbation theory [20, 21], these scalar fluctuations are expected to source
the production of tensor perturbations [22–24], thus inducing a stochastic gravitational-wave
background [25].

Let us note that there are several ways PBHs can be involved in the production of grav-
itational waves. First, the induction of gravitational waves can proceed from the primordial,
large curvature perturbations that must have preceded (and given rise to) the existence of
PBHs in the very early universe [26–32]. Second, the relic Hawking-radiated gravitons may
also contribute to the stochastic gravitational-wave background [13, 33]. Third, gravitational
waves are expected to be emitted by PBHs mergers [14, 34–38]. Here, we investigate a fourth
effect, namely the production of gravitational waves induced by the large-scale density per-
turbations underlain by PBHs themselves. Contrary to the first effect mentioned above, more
commonly studied, where PBHs and gravitational waves have a common origin (namely the
existence of a large primordial curvature perturbation), in the problem at hand the gravita-
tional waves are produced by the PBHs, via the gravitational potential they underlie. Let us
also notice that since we make use of cosmological perturbation theory, we will restrict our
analysis to scales larger than the mean separation distance between black holes, while the
inclusion of smaller scales would require to resolve non-linear mechanisms such as merging,
described in the third effect mentioned above.

As we will show, this fourth route is a very powerful one to constrain scenarios where
the universe is transiently dominated by PBHs, since the mere requirement that the energy
contained in the emitted gravitational waves does not overtake the one of the background
(which would lead to an obvious backreaction problem), leads to tight constraints on the
abundance of PBHs at the time they form. In particular, it excludes the possibility that
PBHs dominate the universe upon their time of formation, independently of their mass.

In practice, we consider that PBHs are initially randomly distributed in space, since
recent works [39–41] suggest that initial clustering is indeed negligible. We also assume that
the mass distribution of PBHs is monochromatic, since it was shown to be the case in most
formation mechanisms [41, 42]. If PBHs form during the radiation era, their contribution
to the total energy density increases as an effect of the expansion. Therefore, if their initial
abundance is sufficiently large, they dominate the universe content before they evaporate,
and we compute the amount of gravitational waves produced during the PBH-dominated era.
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The paper is organised as follows. In section 2, we explain how the initial PBH dis-
tribution can be modelled, and derive the gravitational potential it is associated with. In
section 3, we recall how the gravitational waves induced at second order from scalar pertur-
bations can be computed, before applying these methods to the case of a PBH-dominated
universe in section 4. There, we derive explicit constraints on the initial abundance of PBHs,
as a function of their mass. We summarise our main results and conclude in section 5. The
paper finally contains several appendices where various technical aspects of the calculation
are deferred.

2 Gravitational potential of a gas of primordial black holes

In this section, we compute the power spectrum of the gravitational potential that is underlain
by a gas of randomly distributed primordial black holes.

2.1 Matter power spectrum

As explained in the introduction, we consider a gas of PBHs having all the same mass mPBH,
randomly distributed in space. This means that the probability distribution associated to the
position of each black hole is uniform in space, and that the locations of several black holes are
uncorrelated. In other words, their statistics is of the Poissonian type. This assumption ne-
glects finite-size effects and the existence of an exclusion zone surrounding the position of each
black hole, it is therefore not suited to describe length scales smaller than the Schwarzschild
radius of the black holes. Moreover, in order to describe the PBH gas as a matter fluid
sourcing a perturbatively small gravitational potential, our calculation has to be restricted
to distances r that are larger than the mean separation r̄ between two neighbouring black
holes. Below r̄, the granularity of the PBH fluid becomes important. Since r̄ is always larger
than the Schwarzschild radius, it is sufficient to restrict the considerations below to r > r̄.

In appendix A, we show that the Poissonian approximation leads to the following real-
space two-point function for the density contrast,

〈
δρPBH(x)
ρtot

δρPBH(x′)
ρtot

〉
= 4

3π
(
r̄

a

)3
Ω2

PBHδ(x− x′) , (2.1)

see eq. (A.10) (here, contrary to eq. (A.10), x denotes comoving coordinates, hence the
appearance of the scale factor a). In this expression, ρPBH is the mass density of black holes,
ρtot is the overall mean energy density of the background, r̄ can be expressed in terms of
the mass and mean mass density of the black holes via r̄ =

(
3mPBH
4πρ̄PBH

)1/3
, see eq. (A.4), and

ΩPBH ≡ ρ̄PBH/ρtot is the fractional energy density of the black holes.
Upon Fourier expanding the density contrast as

δρPBH(x)
ρ̄PBH

=
∫ d3k

(2π)3/2 δk(t)eik·x , (2.2)

its power spectrum, Pδ(k), defined as 〈δkδ
∗
k′〉 ≡ Pδ(k)δ(k−k′), can be read off from plugging

eq. (2.2) into eq. (2.1), and is given by

Pδ(k) = 4π
3

(
r̄

a

)3
. (2.3)
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The power spectrum is thus independent of k, a well-known result for Poissonian statistics.
As explained above, the description of the PBH gas in terms of a continuous fluid is only valid
at scales larger than the mean separation distance r̄, which imposes an ultra-violet cutoff in
the above power spectrum,

kUV = a

r̄
. (2.4)

In particular, it guarantees that the reduced power spectrum,

Pδ(k) = k3

2π2Pδ(k) = 2
3π

(
k

kUV

)3
, (2.5)

is smaller than one since its maximal value is Pδ(kUV) = 2/(3π) ' 0.2.

2.2 Power spectrum of the gravitational potential
Our next task is to derive the power spectrum of the gravitational potential associated to
PBHs at the onset of the PBH-dominated era. Since the Poissonian power spectrum for the
density contrast derived in eq. (2.5) holds at the time PBHs form, this implies to relate the
initial PBH density contrast, computed in the radiation era, to the gravitational potential in
the subsequent matter-dominated era.

When PBHs are formed during the radiation era, their energy density is negligible with
respect to the energy density of the background, and the density contrast δPBH can thus be
seen as an isocurvature perturbation [43]. This isocurvature perturbation then generates, in
the PBH-dominated era, a curvature perturbation, which we now compute.

It is first convenient to introduce the uniform-energy-density curvature perturbation for
the two components, namely [44]

ζr = −Φ + 1
4δr (2.6)

for the radiation fluid, where Φ is the Bardeen potential [45], and

ζPBH = −Φ + 1
3δPBH (2.7)

for the non-relativistic matter component, i.e. the gas of PBHs. Let us see how these curvature
perturbations evolve on super-Hubble (k � H, where H is the comoving Hubble parameter)
and sub-Hubble (k � H) scales.

On super-Hubble scales, ζr and ζPBH are separately conserved [44], as is the isocurvature
perturbation defined by

S = 3 (ζPBH − ζr) . (2.8)

By contrast, the total curvature perturbation,

ζ = −Φ + δtot
3(1 + w) = 4

4 + 3sζr + 3s
4 + 3sζPBH , with s ≡ a

ad
, (2.9)

evolves from its initial value ζr, deep in the radiation era, to ζPBH, deep in the PBH era.
In this expression, w is the equation-of-state parameter, and ad denotes the value of the
scale factor a at the time PBHs start dominating. As a consequence, in the PBH-dominated
era, ζ ' ζPBH = ζr + S/3. Since S is conserved, it can be evaluated at formation time tf .
Furthermore, the isocurvature perturbation can be identified with δPBH(tf), which we have
computed in the previous section, assuming implicitly a uniform radiation energy density
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in the background. Indeed, in the following, we concentrate on the PBH contribution and
ignore the usual adiabatic contribution (associated to the radiation fluid), which is negligible
on the scales we are interested in, hence one simply has

ζ ' 1
3δPBH(tf) if k � H . (2.10)

One can then use the property that ζ ' −R on super-Hubble scales (see e.g. ref. [44]), where
R is the comoving curvature perturbation defined by

R = 2
3

Φ′/H+ Φ
1 + w

+ Φ . (2.11)

During a matter-dominated era, such as the one driven by PBHs, Φ′ can be neglected since
it is proportional to the decaying mode, so we get R = −ζ = (5/3)Φ. Combining with
eq. (2.10), this implies that

Φ ' −1
5δPBH(tf) if k � H . (2.12)

On sub-Hubble scales, one can determine the evolution of δPBH by solving its equation of
motion [46],

d2δPBH

ds2 + 2 + 3s
2s(s+ 1)

dδPBH

ds − 3
2s(s+ 1)δPBH = 0 , (2.13)

the dominant solution of which is given by

δPBH = 2 + 3s
2 + 3sf

δPBH(tf) . (2.14)

Let us stress that this formula is valid at all scales, and that, since it does not involve the
wavenumber k, it implies that the statistical distribution of PBHs remains Poissonian, i.e.
PδPBH ∝ k3 even after formation time [39–41]. Deep in the PBH-dominated era, neglecting
sf , it gives rise to δPBH ' 3s δPBH(tf)/2. On sub-Hubble scales, the relation between the
Bardeen potential and the density contrast does not depend on the slicing in which the
density contrast is defined, and in a matter-dominated era, it takes the form

δPBH = −2
3

(
k

H

)2
Φ . (2.15)

Plugging the solution we have obtained for δPBH into this formula, one obtains

Φ ' −9
4

(Hd
k

)2
δPBH(tf) if k � Hd . (2.16)

From eq. (2.12) and eq. (2.16), one can see that, both on sub- and super-Hubble scales, the
Bardeen potential is constant during the PBH era, in agreement with the expected behaviour
in a matter-dominated epoch. Using a crude interpolation between the two expressions, one
obtains

Φ ' −
(

5 + 4
9
k2

H2
d

)−1

δPBH(tf) . (2.17)
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Combining eqs. (2.5) and (2.17), the power spectrum for the Bardeen potential is finally
given by

PΦ(k) = 2
3π

(
k

kUV

)3(
5 + 4

9
k2

H2
d

)−2

, (2.18)

where we have made use of eq. (2.4) to replace a/r̄ by kUV. Notice that, since r̄ ∝ a, kUV is
a fixed comoving scale. From eq. (2.18), one can see that PΦ is made of two branches: when
k � Hd, PΦ ∝ k3, while PΦ ∝ 1/k when k � Hd. It reaches a maximum when k ∼ Hd,
where PΦ is of order (Hd/kUV)3.

3 Scalar-induced gravitational waves

Having determined the gravitational potential associated with the gas of PBHs, let us now
work out the gravitational waves that this gravitational potential induces.

3.1 Gravitational waves at second order
Although tensor modes are gauge invariant at first order in perturbation theory, this does not
hold at second order [47, 48]. This means that, a priori, one needs to specify in which slicing
the gravitational waves are observed, i.e. which coordinate system is employed to perform
the detection. This depends on the specifics of the detection apparatus. Recently, it has been
shown that the gauge dependence of the result disappears if gravitational waves are emitted
during a radiation era [49–51]. Although we study the case where gravitational waves are
emitted during a PBH-dominated era, hence a matter era, for which the question is more
subtle, we are not aiming at deriving observable predictions, but rather at investigating a
backreaction problem, which we assume bears little dependence on the gauge: if the energy
density carried by gravitational waves becomes comparable with the one of the background,
one expects perturbation theory to break down in any gauge.

In practice, we choose to follow refs. [22–24, 52] and to work in the Newtonian gauge.
Adding to the linearly-perturbed Friedmann-Lemaître-Robertson-Walker metric in the New-
tonian gauge the second-order tensor perturbation hij (with a factor 1/2 as is standard in
the literature),1 we obtain the total metric

ds2 = a2(η)
{
−(1 + 2Φ)dη2 +

[
(1− 2Φ)δij + hij

2

]
dxidxj

}
. (3.1)

The tensor perturbation can be Fourier expanded according to

hij(η,x) =
∫ d3k

(2π)3/2

[
h

(+)
k (η)e(+)

ij (k) + h
(×)
k (η)e(×)

ij (k)
]
eik·x, (3.2)

with the polarisation tensors e(+)
ij and e(−)

ij defined as

e
(+)
ij (k) = 1√

2
[ei(k)ej(k)− ēi(k)ēj(k)] , (3.3)

e
(×)
ij (k) = 1√

2
[ei(k)ēj(k) + ēi(k)ej(k)] , (3.4)

1The first-order tensor perturbation is ignored here as we concentrate on gravitational waves generated by
scalar perturbations at second order, but can be added to the contribution computed in our work, for instance
to include the gravitational waves produced during inflation via the usual mechanism.
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where ei(k) and ēi(k) are two three-dimensional vectors, such that {ei(k), ēi(k),k/k} forms
an orthonormal basis. This implies that the polarisation tensors satisfy e(+)

ij e
(+)
ij = e

(×)
ij e

(×)
ij =

1, e(+)
ij e

(×)
ij = 0. The equation of motion for the tensor modes is given by [22–24]

hs,′′k + 2Hhs,′k + k2hsk = 4Ssk , (3.5)

where s = (+), (×) and the source function Ssk is given by

Ssk =
∫ d3q

(2π)3/2 e
s
ij(k)qiqj

[
2ΦqΦk−q + 4

3(1+w)(H−1Φ′q +Φq)(H−1Φ′k−q +Φk−q)
]
. (3.6)

The source being quadratic in Φ, it is a second-order quantity, and so are the tensor modes.
In eq. (3.6), the contraction esij(k)qiqj ≡ es(k, q) can be expressed in terms of the spherical
coordinates (q, θ, ϕ) of the vector q in the basis {ei(k), ēi(k),k/k},

es(k, q) =





1√
2 q

2 sin2 θ cos 2ϕ for s = (+)
1√
2 q

2 sin2 θ sin 2ϕ for s = (×)
. (3.7)

In the absence of anisotropic stress, if the speed of sound is given by c2
S = w, the equation of

motion for the Bardeen potential reads [53]

Φ′′k + 6(1 + w)
1 + 3w

1
η

Φ′k + wk2Φk = 0 . (3.8)

Introducing x ≡ kη and λ ≡ (5 + 3w)/(2 + 6w), this can be solved in terms of the Bessel
functions Jλ and Yλ,

Φk(η) = 1
xλ
[
C1(k)Jλ

(√
w x

)
+ C2(k)Yλ

(√
w x

)]
, (3.9)

where C1(k) and C2(k) are two integration constants. On super sound-horizon scales, i.e.
when

√
w |x| � 1, this solution features a constant mode and a decaying mode (when w = 0,

this is valid at all scales). By considering the Bardeen potential after it has spent several
e-folds above the sound horizon, the decaying mode can be neglected, and one can write
Φk(η) = TΦ(x)φk, where φk is the value of the Bardeen potential at some reference initial
time (which here we take to be the time at which PBHs start dominating, xd) and TΦ(x) is
a transfer function, defined as the ratio of the dominant mode between the times x and xd.
This allows one to rewrite eq. (3.6) as

Ssk =
∫ d3q

(2π)3/2 e
s(k, q)F (q,k − q, η)φqφk−q , (3.10)

where one has introduced

F (q,k−q,η) = 2TΦ(qη)TΦ (|k−q|η)

+ 4
3(1+w)

[
H−1qT ′Φ(qη)+TΦ(qη)

][
H−1|k−q|T ′Φ (|k−q|η)+TΦ (|k−q|η)

]
,

(3.11)
which only involves the transfer function TΦ.
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A formal solution to eq. (3.5) is obtained with the Green’s function formalism,

a(η)hsk(η) = 4
∫ η

ηd
dη̄ gk(η, η̄)a(η̄)Ssk(η̄), (3.12)

where the Green’s function gk(η, η̄) is given by gk(η, η̄) = Gk(η, η̄)Θ(η−η̄). In this expression,
Θ is the Heaviside step function, and Gk(η, η̄) is the solution of the homogeneous equation

G′′k +
(
k2 − a′′

a

)
Gk = 0 , (3.13)

where a prime denotes derivation with respect to the first argument η, and with initial
conditions limη→η̄ Gk(η, η̄) = 0 and limη→η̄ G′k(η, η̄) = 1. The above equation can be solved
analytically in terms of Bessel functions and the solution is:

kGk(η, η̄) = π

2
√
xx̄ [Yν(x)Jν(x̄)− Jν(x)Yν(x̄)] , (3.14)

where ν = 3(1−w)
2(1+3w) . SinceGk(η, η̄) depends only on k, from now on it will be noted asGk(η, η̄).

3.2 The stress-energy tensor of gravitational waves
Now that we have derived the amplitude of the gravitational waves induced by scalar per-
turbations, let us study the energy density they give rise to. Following closely ref. [54], we
consider only the contribution from small-scale perturbations, i.e. scales λ that are much
smaller than the scale characterising the background metric LB. By coarse graining pertur-
bations below the intermediate scale ` such that λ � ` � LB, the effective stress-energy
tensor of gravitational waves reads [54]

tµν = −M2
Pl

(
R

(2)
µν −

1
2 ḡµνR

(2)
)
, (3.15)

where ḡµν is the background metric, R(2)
µν is the second-order Ricci tensor and R(2) = ḡµνR

(2)
µν

its trace. The overall bar refers to the coarse-graining procedure.
The physical modes contained in tµν can be extracted either by specifying a gauge, as

for instance the transverse-traceless gauge where ∂βhαβ = 0 and h = ḡαβhαβ = 0, or in a
gauge-invariant way by using space-time averages [54] (see also appendix of ref. [55]). Both
approaches coincide on sub-Hubble scales where space time is effectively flat, and where the
0-0 component of tµν reads

ρGW(η,x) = t00 = M2
Pl

32a2 (∂ηhαβ∂ηhαβ + ∂ihαβ∂ihαβ) , (3.16)

which is simply the sum of a kinetic term and a gradient term.
In the case of a free wave [i.e. in the absence of a source term in eq. (3.5)], these

two contributions are identical, since the energy is equipartitioned between its kinetic and
gradient components. In the present case however, in appendix B, we show that the source
term “forces” the amplitude of gravitational waves towards a constant solution, which highly
suppresses the kinetic contribution compared to the gradient contribution. In this regime,
only the gradient energy remains and eq. (3.16) leads to

〈ρGW(η,x)〉 = t00 '
∑

s=+,×

M2
Pl

32a2

〈(
∇hsαβ

)2
〉

= M2
Pl

32a2 (2π)3
∑

s=+,×

∫
d3k1

∫
d3k2 k1k2

〈
hsk1

(η)hs,∗k2
(η)
〉
ei(k1−k2)·x .

(3.17)
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In this expression, the bar denotes averaging over the sub-horizon oscillations of the tensor
field, which is done in order to only extract the envelope of the gravitational-wave spectrum
at those scales and brackets mean an ensemble average.

3.3 The tensor power spectrum at second order
From the above expression, it is clear that our next step is to derive the two-point correlation
function of the tensor field, 〈hrk1

(η)hs,∗k2
(η)〉. As we will now show, it is of the form

〈hrk1(η)hs,∗k2
(η)〉 ≡ δ(3)(k1 − k2)δrs 2π2

k3
1
Ph(η, k1), (3.18)

where Ph(η, k) is the tensor power spectrum. According to eq. (3.12), the two-point function
of the tensor fluctuation can indeed be expressed in terms of the two-point function of the
source,

〈hrk1(η)hs,∗k2
(η)〉 = 16

a2(η)

∫ η

ηd
dη̄1Gk1(η, η̄1)a(η̄1)

∫ η

ηd
dη̄2Gk2(η, η̄2)a(η̄2)〈Srk1(η̄1)Ss,∗k2

(η̄2)〉,
(3.19)

where the source correlator can be derived from eq. (3.10), leading to

〈Srk1(η̄1)Ss,∗k2
(η̄2)〉 =

∫ d3q1
(2π)3/2 e

r(k1, q1)F (q1,k1 − q1, η̄1)

×
∫ d3q2

(2π)3/2 e
s(k2, q2)F ∗(q2,k2 − q2, η̄2)〈φq1φk1−q1φ

∗
q2φ
∗
k2−q2〉.

(3.20)

Making use of Wick theorem, the four-point correlator 〈φq1φk1−q1φq2φk2−q2〉 has two non-
vanishing contractions for k1 6= 0 and k2 6= 0, namely

〈φq1φk1−q1φ
∗
q2φ
∗
k2−q2〉 = 〈φq1φ

∗
k2−q2〉〈φk1−q1φ

∗
q2〉+ 〈φq1φ

∗
q2〉〈φk1−q1φ

∗
k2−q2〉. (3.21)

These two terms yield the same contribution in eq. (3.20), which can be seen by performing
the change of integration variable q2 → k2 − q2.2 One can therefore compute one such
contribution only, and simply multiply the result by 2.

In the PBH-dominated era, the two-point correlation function of the Bardeen potential
is related to the power spectrum (2.18) via

〈φk1φ
∗
k2〉 = δ(k1 − k2)2π2

k3
1
PΦ(k1). (3.22)

Combining the above results, eq. (3.20) gives rise to

〈Srk1(η̄1)Ss,∗k2
(η̄2)〉 = πδ(3)(k1 − k2)

∫
d3q1e

r(k1, q1)es(k1, q1)

F (q1,k1 − q1, η̄1)F ∗(q1,k1 − q1, η̄2)PΦ(q1)
q3

1

PΦ(|k1 − q1|)
|k1 − q1|3

.
(3.23)

2The fact that 〈φq1φk1−q1φ
∗
q2φ
∗
k2−q2〉 remains unchanged when exchanging q2 and k2 − q2 is obvious from

eq. (3.21). In the same way, the fact that F is symmetrical upon its two first arguments can be clearly seen
in eq. (3.11). Finally, since es(k, q) only involves scalar products of q with vectors orthogonal to k, it is also
clear that es(k2, q2) = es(k2,k2 − q2).
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It is then convenient to re-write the above integral in terms of the two auxiliary variables
u = |k1−q1|/k1 and v = q1/k1. In the orthonormal basis {ei(k1), ēi(k1),k1/k1}, let (q1, θ, φ)
be the spherical coordinates of the vector q1. Applying the law of cosines (also known as
Al Kashi’s theorem) to the triangle formed of the vectors k1, q1 and k1 − q1, one finds
cos θ = (1 + v2 − u2)/2v, while one simply has q1 = k1v. The integral over q1 can thus be
written as ∫

R3
d3q1 = k3

1

∫ ∞

0
dv v2

∫ 1+v

|1−v|
du u

v

∫ 2π

0
dφ. (3.24)

Then, noticing that F (q,k − q, η) depends only on the modulus of its first two arguments,
see eq. (3.11), and given that, by construction, |q1 − k1| = k1u does not depend on φ, the
integral over φ in eq. (3.23) can be performed independently, and one finds

∫ 2π

0
dφ er(k1, q1)es(k1, q1) = k4

1
2 v

4
[
1− (1 + v2 − u2)2

4v2

]2

π δrs. (3.25)

Combining the above results, the two-point function of the tensor field can be cast in the
form of eq. (3.18), where the tensor power spectrum is given by

Ph(η, k) = 4
∫ ∞

0
dv
∫ 1+v

|1−v|
du
[

4v2 − (1 + v2 − u2)2

4uv

]2

I2(u, v, x)PΦ(kv)PΦ(ku) , (3.26)

with
I(u, v, x) =

∫ x

xd
dx̄ a(x̄)

a(x) k Gk(x, x̄)Fk(u, v, x̄). (3.27)

In this expression, x = kη and we use the notation Fk(u, v, η) ≡ F (k, |k − q|, η).
From eq. (3.11), the function Fk(u, v, x̄) in a matter-dominated era reads

Fk(u, v, x̄) = 10
3 TΦ(ux̄)TΦ(vx̄) , (3.28)

where we have used the property that TΦ is constant in the PBH-dominated era. Let us
note that, in eq. (3.26), the tensor power spectrum is given as a convolution product of
the gravitational-potential power spectrum at the scales q1 and q2 such that q1 + q2 = k.
According to the discussion in section 2.1, scalar fluctuations above the UV cutoff should be
discarded, which can be done by setting PΦ(q) = 0 for q > kUV. Since k < q1+q2, this implies
that Ph(k) = 0 for k > 2kUV, so up to a factor 2, the UV cutoff also applies to tensor modes.

Following a similar calculation as the one for the power spectrum, the energy density
contained in gravitational waves, and given by eq. (3.17), can also be derived. Defining
ΩGW(η, k) through the relation

〈ρGW(η,x)〉 ≡ ρtot

∫
ΩGW(η, k)d ln k , (3.29)

one obtains (see appendix B for further details)

ΩGW(η, k) = 1
48

[
k

H(η)

]2
Ph(η, k). (3.30)
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4 Constraints on the abundance of primordial black holes

In this section, we carry out the calculational program derived in section 3 and compute
the energy density contained in the induced gravitational waves. The two parameters of the
problem are the mass of the PBHs, mPBH, and their fractional energy density at the time they
form, ΩPBH,f . In section 4.1, we first derive the condition on ΩPBH,f for PBHs to dominate the
energy budget of the universe before evaporating, and in section 4.2, we identify the region
in parameter space where the induced gravitational waves are too abundant and lead to a
backreaction problem.

4.1 Conditions for a PBHs dominated phase

The mass of a primordial black hole corresponds to some fraction ξ of the mass contained
inside a Hubble volume at the time of formation, mPBH = 4πγρfH

−3
f /3. Making use of

Friedmann’s equation, H2 = ρtot/(3M2
Pl), and assuming that γ ∼ 1, this leads to mPBH =

4πM2
Pl/Hf . If PBHs form during the radiation era, since they behave as pressureless matter,

their relative contribution to the background energy density grows as ΩPBH ∝ a, so they
come to dominate the universe content when the scale factor reaches ad = af/ΩPBH,f . In a
radiation era, H ' 1/(2t) ∝ 1/a2, so this happens at a time td = mPBH/(8πM2

PlΩ2
PBH,f).

However, PBHs may have evaporated before that time. The Hawking evaporation time
of a black hole with mass mPBH is given by [56]

tevap = 160
πgeff

m3
PBH
M4

Pl
, (4.1)

where geff is the effective number of degrees of freedom. In numerical applications we take
geff = 100 since it is the order of magnitude predicted by the Standard Model before the
electroweak phase transition [57], but note that it could assume larger values in extensions
to the Standard Model and for this reason we keep it generic in the following formulas.
Requiring that tevap > td leads then to the condition

ΩPBH,f > 10−15
√
geff
100

109g
mPBH

. (4.2)

As already stressed, one must also impose that PBHs evaporate before big-bang nucleosynthe-
sis takes place, i.e. that Hevap ' 1/(2tevap) > HBBN =

√
ρBBN/(3M2

Pl) . With ρ1/4
BBN ∼ 1MeV,

this leads tomPBH < 109g as already mentioned in section 1. Note that since PBHs form after
inflation, one must also ensure that Hf < Hinf . In single-field slow-roll models of inflation,
the current upper bound on the tensor-to-scalar ratio [58] imposes that ρ1/4

inf . 1016 GeV, and
this leads to mPBH > 10g, so the relevant range of PBH masses is given by

10g < mPBH < 109g . (4.3)

The relations (4.2) and (4.3) define the domain in parameter space where to carry out our
calculation.

4.2 Avoiding the gravitational-wave backreaction problem

Let us recall that in the PBH-dominated era, the power spectrum of the Bardeen potential is
given by eq. (2.18), where the UV-cutoff wavenumber kUV was defined in eq. (2.4). Making
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use of the relation r̄ =
(

3mPBH
4πρ̄PBH

)1/3
given below eq. (2.1), and since, as explained at the

beginning of section 4.1, mPBH = 4πM2
Pl/Hf , it can be expressed as

kUV = HfΩ1/3
PBH,f . (4.4)

The tensor power spectrum can then be obtained by plugging eq. (2.18) into eq. (3.26), and
the power spectrum of the energy density contained in gravitational waves, given in eq. (3.30),
takes the form

ΩGW(η, k) = 4
75π2

(
k

aH

)2 ( k

kUV

)6
F
(

k

adHd
,ΩPBH,f

)
(4.5)

with

F(y,ΩPBH,f) =
∫ Λ

0
dv
∫ min(Λ,1+v)

|1−v|
du


 4v2 − (1 + v2 − u2)2

4
(
3 + 4

15y
2v2
) (

3 + 4
15y

2u2
)




2

uv . (4.6)

Here, we have used that I2 = 100/9 in a matter-dominated era and in the sub-Hubble limit,
i.e. k � H, as shown in appendix B.3 In the above expression, we have introduced y = k/Hd,
and the upper bound of the integral over v is given by

Λ = kUV
k

= y−1Ω−2/3
PBH,f . (4.7)

As noted above eq. (3.29), due to energy-momentum conservation, the tensor power spectrum
is non vanishing only at scales k < 2kUV, which implies that Λ > 1

2 . The double integral
appearing in eq. (4.6) can be computed numerically, and in the left panel of figure 1, the result
is displayed for ΩPBH,f = 10−6 and a few values of mPBH. One can see that the amplitude
of the power spectrum increases with the mass mPBH, since larger masses take longer to
evaporate and thus give more time for gravitational waves to be produced.

Further analytical insight can be gained by expanding the double integral appearing in
eq. (4.6) in the two regimes y � 1 and y � 1. This is done in detail in appendix C, where
it is shown that

F(y,ΩPBH,f) '




1125
√

5 π
256y7 for y � 1 and ΩPBH,f � 1

50625π2

2048y8 for y � 1
. (4.8)

In the case y � 1, we only give the limit of the expression where ΩPBH,f � 1 since the value
of ΩPBH,f where a backreaction problem occurs will turn out to be much smaller than one.
The full expression for an arbitrary value of ΩPBH,f can be found in appendix C. Plugging
the above results into eq. (4.5), one obtains

ΩGW(ηevap, k � Hd) '
(

3
√

5
4

)5/3 1
π

(
geff
100

)−2/3 k

Hd

(
mPBH

MPl

)4/3
Ω16/3

PBH,f , (4.9)

ΩGW(ηevap, k � Hd) ' 135
64

(45
2

)1/3 ( geff
100

)−2/3 (mPBH

MPl

)4/3
Ω16/3

PBH,f . (4.10)

3Hereafter we restrict the calculation of the power spectrum of the energy density contained in gravitational
wave to sub-Hubble scales, since, as mentioned in section 3.2, only for those scales is the interpretation
of the energy density unambiguous. However, as will be made clear below, the integrated energy density
carries little dependence on the lowest wavenumber one considers, which makes our results independent of the
infrared cutoff.
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Figure 1. Power spectrum of the energy density contained in gravitational waves as a function of
the wavenumber normalised to the comoving Hubble scale at the time of black-hole evaporation. The
left panel is for ΩPBH,f = 10−6 and shows a few values of the mass mPBH. The right panel focuses on
the case ΩPBH,f = 10−6 and mPBH = 107g, where the analytical approximations derived in the regimes
k � Hd [eq. (4.9), shown as the dashed green line] and k � Hd [eq. (4.10), shown as the dashed red
line] are superimposed. The vertical, dashed blue line stands for k = Hd, i.e. for the comoving Hubble
scale at the onset time of the PBH-dominated phase, where the power spectrum changes slope. The
vertical, dashed magenta line corresponds to k = 2kUV, above which non-linear effects are expected
to become important, and this explains why this regime is discarded from our analysis.

Replacing the prefactors with their numerical values, this gives rise to

ΩGW(ηevap, k) ' 1019
(
geff
100

)−2/3 (mPBH

109g

)4/3
Ω16/3

PBH,f ×
{

k
Hd

for k � Hd

8 for k � Hd
. (4.11)

Those formulas confirm that the amplitude of the power spectrum increases with the mass
mPBH, as already noticed in the left panel of figure 1. They also show that the energy
density contained in gravitational waves increases with ΩPBH,f , as one may have expected.
The power spectrum is thus made of two branches: a branch scaling as k for k � Hd, and
a scale-invariant branch for Hd � k � kUV. The two approximations (4.9) and (4.10) are
superimposed to the numerical result in the right panel of figure 1, where one can check that
the agreement is indeed good.

Note that as k approaches its maximal value, 2kUV, the approximation fails to de-
scribe the sharp cutoff in the power spectrum. This is because, when deriving eq. (4.8) in
appendix C, we also assumed that k � kUV. However, this concerns a small range of modes
only, and has little impact on the estimated amount of the overall energy density, as we shall
now see.

The integrated energy density contained in gravitational waves is given by eq. (3.29),
so its fractional contribution to the overall energy budget reads

ΩGW,tot(η) =
∫

d ln k ΩGW(η, k) . (4.12)

This integral can be performed numerically, making use of eqs. (4.5) and (4.6), and the result
is displayed in figure 2. When ΩPBH,f is larger than a certain value, one has ΩGW,tot(ηevap) > 1,
which leads to a backreaction problem. One can therefore derive an upper bound on ΩPBH,f
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Figure 2. Fractional energy density contained in gravitational waves, ΩGW,tot, at the time of PBHs
evaporation, as a function of the two parameters of the problem, namely the mass mPBH of PBHs, and
their relative abundance ΩPBH,f at the time they form. The orange region corresponds to ΩGW(tevap) >
1 and leads to a backreaction problem. This region is therefore excluded. The blue region corresponds
to values of ΩPBH,f such that PBHs never dominate the universe, while the green region is such that
a transient PBH-dominated phase does take place, but does not lead to a backreaction problem. The
dashed black line corresponds to the analytical approximation (4.16), which is an analytical estimate
of the upper bound on ΩPBH,f imposed by the need to avoid the backreaction problem. One can check
that it indeed provides a good approximation for the boundary between the orange and the green
regions. The boundary between the blue and green regions is given by eq. (4.2).

such that this does not happen, which corresponds to the boundary between the green and
the orange region in figure 2. An analytical approximation of this upper bound can also be
obtained by integrating eqs. (4.9) and (4.10) over k,4 and eq. (4.12) leads to

ΩGW,tot(ηevap) = µ [κ− ln(ΩPBH,f)] Ω16/3
PBH,f , (4.13)

with

µ =
(45

2

)4/3 1
16

(
geff
100

)−2/3 (mPBH

MPl

)4/3
and κ = 4

3
√

5 π
+ 3

2 ln(2) . (4.14)

The equation ΩGW,tot = 1 can be solved by means of the Lambert function [59], and one
obtains

Ωmax
PBH,f =

[
−3µ

16W−1

(
− 16

3µe
− 16κ

3

)]−3/16
, (4.15)

4Since, for k � Hd, ΩGW ∝ k, see eq. (4.9), the integral (4.12) converges at low k, and in the regime where
Hevap � Hd, one can simply neglect the contribution coming from its lower bound, which justifies the remark
made in footnote 3.
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where W−1 is the “−1”-branch of the Lambert function. Since mPBH > 10g (see eq. (4.3)),
one has µ � 1 while κ is of order one, so the argument of the Lambert function is close to
zero. In this regime, the Lambert function can be approximated by a logarithmic function.
Given the mild dependence of the logarithm on its argument, and since mPBH varies over 8
orders of magnitude “only”, in practice, it can be approximated as constant (and evaluated
for a central mass in the range, namely mPBH = 105g), and one obtains

Ωmax
PBH,f ' 1.4× 10−4

(
109g
mPBH

)1/4

. (4.16)

This approximation is superimposed in figure 2 and one can check that it provides an
accurate estimate of the boundary of the region where gravitational waves are over produced
(orange region). Recalling that mPBH > 10g, eq. (4.16) excludes the possibility to form PBHs
in such an abundant way that they dominate the universe content right upon their formation
time (i.e. the value ΩPBH,f = 1 is excluded). Otherwise, there exists a region (displayed in
green in figure 2) where PBHs happen to dominate the universe content at a later time, but
do not lead to a gravitational-wave backreaction problem. Note that our calculation does
not apply to the blue region in figure 2, which is where PBHs never dominate the universe,
but it is clear that no gravitational-wave backreaction problem can happen there.

5 Conclusions

In this work, we have studied the gravitational waves induced at second order by the gravita-
tional potential of a gas of primordial black holes. In particular, we have considered scenarios
where ultralight PBHs, with masses mPBH < 109g, dominate the universe content during
a transient period [13–16], before Hawking evaporating. Neglecting clustering at forma-
tion [39, 41], the Poissonian fluctuations in their number density underlay small-scale density
perturbations, which in turn induce the production of gravitational waves at second order.

In practice, we have computed the gravitational-wave energy spectrum, as well as the
integrated energy density of gravitational waves, as a function of the two parameters of the
problem, namely the mass of the PBHs, mPBH (assuming that all black holes form with
roughly the same mass [41]), and their relative abundance at formation ΩPBH,f . This calcula-
tion was performed both numerically and by means of well-tested analytical approximations.
We have found that the amount of gravitational waves increases with mPBH, since heavier
black holes take longer to evaporate, hence dominate the universe for a longer period; and
with ΩPBH,f , since more abundant black holes dominate the universe earlier, hence for a longer
period too.

Requiring that the energy contained in gravitational waves never overtakes the one of
the background universe led us to the constraint

ΩPBH,f < 1.4× 10−4
(

109g
mPBH

)1/4

. (5.1)

Let us stress that since PBHs with masses smaller than 109g evaporate before big-bang nucle-
osynthesis, they cannot be directly constrained (at least without making further assumption,
see e.g. ref. [60]). To our knowledge, the above constraint is therefore the first one ever
derived on ultra-light PBHs. In particular, it shows that scenarios where PBHs dominate
from their formation time on, ΩPBH,f ' 1, are excluded (given that m > 10g for inflation to
proceed at less than 1016GeV).
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A word of caution is in order regarding the assumptions underlying the present calcu-
lation. Since we have made use of cosmological perturbation theory to assess the amount
of induced gravitational waves, we only considered scales where the scalar fluctuations un-
derlain by PBHs remain perturbative, which is why we have imposed an ultra-violet cutoff
kUV at the scale corresponding to the mean separation distance between PBHs. As shown
in section 2.2, the maximal value of the gravitational-potential power spectrum in the PBH-
dominated phase is thus of order (Hd/kUV)3 = Ω2

PBH,f , which is indeed much smaller than
one. This confirms that from the point of view of the gravitational potential Φ, or from
the point of view of the curvature perturbation ζ, all scalar fluctuations incorporated in the
calculation lie in the perturbative regime, which is what is required since the induced gravi-
tational waves are sourced by Φ. However, as also noticed in section 2.2, the density contrast
δ associated with the gas of PBHs grows like the scale factor during the PBH-dominated
era, contrary to ζ or Φ which remain constant. Therefore, there are scales for which δ grows
larger than one during the PBH-dominated era, although Φ remains much smaller than one.
The status of these scales is unclear: the growth of δ above one may signal the onset of
PBH clustering, which might result in the enhancement of the power spectrum above the
Poissonian value, which might in turn be responsible for an even larger signal than the one
we have computed. In this sense, the bounds we have derived could be conservative only,
although a more thorough investigation of the virialisation dynamics at small scales would
be required.

Let us also note that we did not account for PBH accretion of the surrounding radiation,
which could potentially prolong the PBH lifetime beyond the evaporation time. However, for
Bondi-Hoyle type accretion [61], the PBH accretion rate, ṁPBH, is proportional to the square
of the PBH mass, i.e. ṁPBH ∝ m2

PBH. It is therefore less relevant for smaller black holes, and
recent analyses [62, 63] find that accretion is negligible when mPBH < O(10)M�. This is the
case of the ultralight black holes considered here, which have masses smaller than 109g.

Finally, we should stress out that the condition (5.1) simply comes from avoiding a
backreaction problem, and does not implement observational constraints. However, even if
the condition (5.1) is satisfied, gravitational waves induced by a dominating gas of PBHs
might still be detectable in the future with gravitational-waves experiments. Although an
accurate assessment of the signal would require to properly resolve the dynamics of the in-
duced gravitational waves during the gradual transition between the PBH-dominated and
the radiation-dominated era [64], let us note that since we have found that the energy spec-
trum peaks at the Hubble scale at the time black holes start dominating, this corresponds
to a frequency f = Hd/(2πa0), where a0 is the value of the scale factor today and Hd is the
comoving Hubble scale at domination time. This leads to

f

Hz '
1

(1 + zeq)1/4

(
H0

70kms−1Mpc−1

)1/2 ( geff
100

)1/6
Ω2/3

PBH,f

(
mPBH

109g

)−5/6
, (5.2)

where H0 is the value of the Hubble parameter today and zeq is the redshift at matter-
radiation equality. In figure 3, this frequency is shown in the region of parameter space that
satisfies the condition (5.1). Covering 14 orders of magnitude, one can see that it intersects
the detection bands of the Einstein Telescope (ET) [65], the Laser Interferometer Space
Antenna (LISA) [66, 67] and the Square Kilometre Array (SKA) facility [68]. This may help
to further constrain ultra-light primordial black holes, and set potential targets for these
experiments.
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Figure 3. Frequency at which the gravitational waves induced by a dominating gas of primordial black
holes peak, as a function of their energy density fraction at the time they form, ΩPBH,f (horizontal axis),
and their mass mPBH (colour coding). The region of parameter space that is displayed corresponds to
values of mPBH and ΩPBH,f such that black holes dominate the universe content for a transient period,
see eq. (4.2), that they form after inflation and Hawking evaporate before big-bang nucleosynthesis,
see eq. (4.3), and that the induced gravitational waves do not lead to a backreaction problem, see
eq. (5.1). In practice, eq. (5.2) is displayed with geff = 100, zeq = 3387 and H0 = 70 km s−1 Mpc−1.
For comparison, the detection bands of ET, LISA and SKA are also shown.
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A Density power spectrum for a Poissonian gas of PBHs

Let us consider a gas of N PBHs, each of them with the same mass mPBH, and randomly
distributed inside a volume V . The location of each PBH is random and follows a uniform
distribution across the entire volume. We assume that it is not correlated with the location
of other PBHs within the gas, which implies that we consider each black hole as a point-like
particle, since we neglect the existence of an exclusion zone around the position of the centre
of a black hole. This means that length scales smaller than the Schwarzschild radius are not
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properly described in this setup, which only applies to derive the density field on scales larger
than the black holes size.

Let us now consider a sphere of radius r (and of volume v = 4πr3/3) within the volume
V , and denote by Pn(r) the probability that n PBHs are located inside this volume. For
each PBH, the probability to be inside the sphere is given by v/V , and the probability to be
outside is given by (V − v)/V , so one has

Pn(r) =
(
N

n

)(
v

V

)n (
1− v

V

)N−n
. (A.1)

By denoting r̄ the mean distance between black holes, such that V = 4πr̄3N/3, this can be
written as

Pn(r) =
(
N

n

)(
r3

Nr̄3

)n(
1− r3

Nr̄3

)N−n
−→
N→∞

(
r

r̄

)3n e−
r3
r̄3

n!
(A.2)

where we have taken the large-volume limit. Such statistics are referred to as Poissonian.
The total mass of the PBHs contained within the volume v is given by nmPBH, so the

mean PBH energy density within the volume can be written as

ρ̄PBH(r) = nmPBH
4
3πr

3 . (A.3)

By making use of eq. (A.2), one can compute the two first moments of this quantity. One
first has

〈ρ̄PBH(r)〉 =
∞∑

n=0
Pn(r)nmPBH

4
3πr

3 = mPBH
4
3πr̄

3 , (A.4)

which is independent of r and simply corresponds to the average energy density. One then
finds

〈
ρ̄2

PBH(r)
〉

=
∞∑

n=0
Pn(r)

(
nmPBH

4
3πr

3

)2

= 9m2
PBH

16π2r6

[(
r

r̄

)3
+
(
r

r̄

)6
]
. (A.5)

Combining the two above results, one obtains the variance of the energy density fluctuation,
〈
δρ̄2

PBH(r)
〉

=
〈
ρ̄2

PBH(r)
〉
− 〈ρ̄PBH(r)〉2 = 9m2

PBH

16π2r̄6

(
r̄

r

)3
. (A.6)

Let us now describe the gas of PBHs in terms of a fluid with energy density ρPBH(x),
and density contrast δρPBH(x)/ρtot, where δρPBH(x) = ρPBH(x)−〈ρ̄PBH〉 and ρtot is the mean
total energy density (comprising PBHs but also other possible fluids). The mean energy
density with the volume v can be written as

ρ̄PBH(r) = 1
4
3πr

3

∫

|x|<r
d3xρPBH(x)

= 〈ρ̄PBH〉+ ρtot
4
3πr

3

∫

|x|<r
d3x

δρPBH(x)
ρtot

.

(A.7)

As explained above, the gas of PBHs being Poissonian, the existence of a PBH at location x
is uncorrelated with the position of a PBH at location x′, which means that

〈
δρPBH(x)
ρtot

δρPBH(x′)
ρtot

〉
= ξ δ(x− x′) , (A.8)
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where ξ a priori depends on x and x′ (because of statistical homogeneity and isotropy, only
through |x− x′|). By averaging the square of eq. (A.7), one thus obtains

〈
δρ̄2

PBH(r)
〉

= 9ρ2
tot

16π2r6
4
3πr

3 ξ . (A.9)

By identifying eqs. (A.6) and (A.9), one can read off ξ = 3m2
PBH/(4πρ2

totr̄
3). By introducing

the PBH fractional energy density ΩPBH = 〈ρ̄PBH〉 /ρtot, eq. (A.8) can thus be written as
〈
δρPBH(x)
ρtot

δρPBH(x′)
ρtot

〉
= 4

3πr̄
3Ω2

PBHδ(x− x′) , (A.10)

which is the expression we use in section 2.

B Kinetic and gradient contributions to the gravitational-waves energy

In this appendix, we compute the energy density contained in gravitational waves, given in
eq. (3.16), which is made of a kinetic contribution and a gradient contribution.

B.1 Kinetic contribution
From eq. (3.16), the kinetic contribution to the gravitational-waves energy density is given by

ρkin
GW(η,x) = M2

Pl

32a2
∑

s=+,×

〈
hs,′ij h

s,ij,∗,′
〉

=
∑

s=+,×

M2
Pl

32a2 (2π)3

∫
d3k1

∫
d3k2

〈
hs,′k1

hs,∗,′k2

〉
ei(k1−k2)·x .

(B.1)

Recall that this expression is valid on sub-Hubble scales only, as discussed in section 3.2, and
the bar denotes averaging over the oscillations of the tensor fields at those scales.

The time derivative of the tensor mode-function can be computed from differentiating
Eq. (3.12), and one obtains

hs,′k (η) = −Hhsk(η) + 4Gk(η, η)Ssk(η) + 4
a(η)

∫ η

ηd
a(η̄)G′k(η, η̄)Ssk(η̄)dη̄

= −Hhsk(η) + 4
a(η)

∫ η

ηd
a(η̄)G′k(η, η̄)Ssk(η̄)dη̄ ,

(B.2)

where we have used the fact that, as mentioned below eq. (3.13), Gk(η, η) = 0. Hereafter,
G′k(η, η̄) denotes the derivative of Gk with respect to its first argument, η. On sub-Hubble
scales, k � H, eq. (3.13) reduces to G′′k+k2Gk ' 0, hence G′k ∼ ±ikGk, and the second term
in the last line of eq. (B.2) is of order k hsk according to eq. (3.12), and thus dominates over
the first term, i.e.

hs,′k (η) ' 4
a(η)

∫ η

ηd
a(η̄)G′k(η, η̄)Ssk(η̄)dη̄ . (B.3)

The two-point function of hs,′k can then be computed from the source correlator in exactly the
same way the two-point function of hsk was evaluated for the power spectrum in section 3.3,
and one obtains

〈hr,′k1
hs,∗,′k2

〉 = δ(3)(k1 − k2)δrs 2π2

k3
1
Ph′(η, k1) (B.4)
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where

Ph′(η, k) = 4k2
∫ ∞

0
dv
∫ 1+v

|1−v|
du
[

4v2 − (1 + v2 − u2)2

4uv

]2

J2(u, v, x)PΦ(kv)PΦ(ku) (B.5)

and
J(u, v, x) =

∫ x

xd
dx̄a(η̄)
a(η)G

′
k(η, η̄)Fk(u, v, x̄). (B.6)

Combining these results together, eq. (B.1) gives rise to

ρkin
GW(η,x) =

∫
d ln kdρkin

GW(k)
d ln k

(B.7)

with
dρkin

GW(k)
d ln k = M2

Pl

16a2Ph′(η, k), (B.8)

so the fractional energy density contained in gravitational waves can be written as

Ωkin
GW (η, k) = Ph′(η, k)

48a2(η)H2(η) .
(B.9)

B.2 Gradient contribution

The gradient contribution to the energy density contained in gravitational waves can be
derived in the same way, and the result is presented in section 3.3. The fractional gradient
energy density is given by eq. (3.30), so the total fractional energy density reads

ΩGW(η, k) = Ωkin
GW(η, k) + Ωgrad

GW (η, k) = k2

48a2(η)H2(η)

[
Ph′(η, k)

k2 + Ph(η, k)
]
. (B.10)

B.3 Gravitational-wave energy in a matter dominated era

As explained in the main text, our goal is to compute the energy density contained in grav-
itational waves at the time where PBHs evaporate, i.e. at the end of the PBH-dominated
epoch. Since PBHs drive a pressureless matter-dominated phase, we now specify the above
formulas to such an epoch. As explained in section 3.1, in a matter era, the Bardeen potential
is, up to a decaying mode, constant in time, hence TΦ(x) = 1. From eq. (3.28), one then
has F = 10/3. By specifying eq. (3.14) to the case where the equation-of-state parameter
vanishes, w = 0, so ν = 3

2 , one has

kGk(η, η̄) = 1
xx̄

[(1 + xx̄) sin(x− x̄)− (x− x̄) cos(x− x̄)] . (B.11)

This allows one to compute the I integral, defined in eq. (3.27), exactly, and one finds

I2(x) = 100
9

[
1+cos(x−xd)

(
3
x2−

3xd
x3 −

x2
d
x2

)
−sin(x−xd)

(
3
x3 + 3xd

x2 −
x2

d
x3

)]2

. (B.12)

In the sub-Hubble limit, x� 1 and this reduces to I2 ' 100/9. The procedure of averaging
over the oscillations becomes trivial in this limit (since there are none) and one simply has
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I2 ' 100/9. Similarly, the J integral, defined in eq. (B.6), can be performed exactly,

J2(x) = 100
9

[
2
x
− cos(x− xd)

(
3
x3 −

3xd
x4 + 3xd

x2 −
x2

d
x3

)

+ sin(x− xd)
(

3
x4 −

3
x2 + 3xd

x3 −
x2

d
x4 + x2

d
x2

)]2

,

which reduces to J2 = J2 ' 4I2/x2 in the sub-Hubble limit.
As a consequence, in eq. (B.10), the kinetic term is suppressed by a factor x−2 � 1

compared to the gradient term, which justifies the statement made in section 3.2 that the
gradient term provides the main contribution. This can be understood from the presence of
the source term in eq. (3.5), which, in a matter-dominated era where TΦ(x) = 1, becomes
constant in time [see eq. (3.6)]. In the sub-Hubble limit, this forces the mode function hsk
towards a constant solution hsk '

4Ssk
k2 , which therefore carries little kinetic energy.

C Approximation for the double integral in ΩGW

In this appendix, we expand the double integral appearing in eq. (4.6), F(y,ΩPBH,f), in the
two limits y � 1 and y � 1. For explicitness, let us introduce the function

h(u, v, y) ≡
[

4v2 − (1 + v2 − u2)2

4uv

]2

u3v3
(

3 + 4
15y

2v2
)−2 (

3 + 4
15y

2u2
)−2

, (C.1)

in terms of which eq. (4.6) can be written as

F(y,ΩPBH,f) =
∫ Λ

0
dv
∫ min(Λ,1+v)

|1−v|
duh(u, v, y), (C.2)

where we recall that Λ = y−1Ω−2/3
PBH,f , see eq. (4.7). A primitive of the function h(u, v, y) with

respect to the u variable is given by

H(u, v, y) = 75v

32768y10
(
3 + 4

15v
2y2
)2

{
64
(
u2 − v2 − 1

)3
y6

− 48
(
1− u2 + v2

)2
y4
[
45 + 4(1 + v2)y2

]

− 3
[
2025 + 360(1 + v2)y2 + 16(v2 − 1)2y4]2

45 + 4u2y2

+ 12(u2 − v2 − 1)y2
[
6075 + 1080(1 + v2)y2 + 16(3− 2v2 + 3v4)y4

]

− 12
[
91125 + 24300(1 + v2)y2 + 720(3 + 2v2 + 3v4)y4

+ 64(v2 − 1)2(1 + v2)y6
]

ln
(
45 + 4u2y2

)}
.

(C.3)
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One can indeed check that ∂H(u,v,y)
∂u = h(u, v, y). Our next step is to split the remaining

integral over v at the splitting points v = 1 and v = Λ− 1, according to

F(y,ΩPBH,f) =
∫ 1

0
[H(1 + v, v, y)−H(1− v, v, y)] dv

+
∫ Λ−1

1
[H(1 + v, v, y)−H(v − 1, v, y)] dv

+
∫ Λ

Λ−1
[H(Λ, v, y)−H(v − 1, v, y)] dv

≡ F1(y) + F2(y,ΩPBH,f) + F3(y,ΩPBH,f),

(C.4)

which defines the three integrals F1(y), F2(y,ΩPBH,f) and F3(y,ΩPBH,f). Hereafter, we will
not try to resolve the shape of ΩGW as one approaches the UV cutoff scale, so we will work
under the condition k � kUV, hence Λ� 1.

C.1 The y � 1 regime
Let us first consider the regime where y � 1. In the first integral F1(y), it can be shown
that the integrand is maximal when v is close to one, hence y is the only small parameter of
the problem. When expanding the integrand in y, one obtains a constant value at leading
order, H(1 + v, v, y)−H(1− v, v, y) ∝ y0, hence the integral features quantities of order one
only, and one has

F1(y) = O(1) . (C.5)

In the second integral, F2(y), the integrand is maximal when v is of order 1/y. It is therefore
convenient to perform the change of integration variables t = yv, such that the integrand is
maximal when t is of order one, hence y is again the only small parameter, in terms of which
the integrand can be expanded,

F2(y,ΩPBH,f) =
∫ y(Λ−1)

y

[
H

(
1 + t

y
,
t

y
, y

)
−H

(
t

y
− 1, t

y
, y

)] dt
y

' 54000
y7

∫ y(Λ−1)

y

t6

(45 + 4t2)4 .

(C.6)

Similarly, in the third integral, since v is of order Λ, one can perform the change of integration
variable t = v − Λ + 1, such that 0 ≤ t ≤ 1. Upon expanding in y, one then finds that

F3(y,ΩPBH,f) ∝
Ω4/3

PBH,f
y6 . (C.7)

In the limit where y � 1, since ΩPBH,f < 1, the integral F2(y,ΩPBH,f) is therefore the dominant
one. Noting that the remaining integral over t in eq. (C.6) can be performed exactly, this
leads to

F(y � 1,ΩPBH,f) '
1125
128y7


√5 arctan


 2

3
√

5 Ω2/3
PBH,f




−6
176Ω2/3

PBH,f + 2400Ω2
PBH,f + 10125Ω10/3

PBH,f(
4 + 45Ω4/3

PBH,f

)3


 .

(C.8)
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C.2 The y � 1 regime

Similar techniques can be employed to study the regime where y � 1. In the first integral,
the integrand is maximal when v is close to one, so 1/y is the only small parameter, and
expanding in 1/y leads to

F1(y) ' 16875
2048y8

∫ 1

0

dv
v3

[
4v(3− 2v2 + 3v4) + 6

(
v2 − 1

)2
(v2 + 1) ln

(1− v
1 + v

)]

= 16875
4096

3π2 − 16
y8 .

(C.9)

In the second integral, the integrand is maximal at values of v of order one again, so one can
expand in 1/y and obtain

F2(y,ΩPBH,f)'
16875
2048y8

∫ Λ−1

1

dv
v3

[
4v(3−2v2+3v4)+6

(
v2−1

)2
(v2+1)ln

(
v−1
1+v

)]

= 16875
4096

3π2+16
y8 ,

(C.10)

where in the last expression, we have assumed that Λ � 1, and set the upper bound of the
integral to infinity. As before, the third integral can be analysed by performing the change
of integration variable t = v + 1 − Λ. Assuming that Λ � 1, a leading-order expansion in
1/y leads to

F3(y,ΩPBH,f) ∝
Ω4/3

PBH,f
y6 . (C.11)

Recalling that ΩPBH,f and Λ are related through eq. (4.7), this implies that F3 ∝ y−8Λ−2.
The third integral is therefore suppressed by a factor Λ−2 compared to the first two, and
since we have assumed that Λ� 1, the overall integral is dominated by F1 and F2, leading to

F(y � 1,ΩPBH,f) '
50625π2

2048y8 . (C.12)
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Chapter 5

PBH formation for an anisotropic
perfect fluid

Up to now, most of the research works in the literature model the PBH gravitational
collapse as spherical and isotropic due to its calculational simplicity 1. In particular,
in the context of peak theory, within which PBHs are often studied, rare large peaks
which collapse to form PBHs are expected to be quasi spherical [104]. However, one
should go beyond these assumptions to model realistically the PBH gravitational collapse
process. Regarding the spherical symmetry hypothesis, there were some early studies
going beyond and adopting the “pancake” collapse [260, 261, 262, 263] as well as some
recent ones focusing on a non-spherical collapse of PBHs in a matter domination universe
[264] and on the ellipsoidal collapse of PBHs [124].

Regarding the anisotropic nature of the gravitational collapse, to the best of our
knowledge there is no systematic treatment of this topic in the context of PBHs. In
general, one expects to have anisotropies in theories with scalar fields and multifluids
where the anisotropy is described in spherical symmetry as a difference between the radial
and the tangential pressure [259]. In addition, in the astrophysics context, there has
been done a huge progress in the study of anisotropic star solutions in GR which can be
obtained both analytically [265, 266, 267, 268, 269, 270, 271] and numerically [272, 273]
but which do not treat the anisotropic character of the collapse in a covariant way. In a
recent study [274] a covariant formulation has been proposed to study anisotropic stars
as ultracompact objects mimicking the dynamical behavior of a black-hole .

Inspired by this work, we study here the anisotropic formulation of the initial condi-
tions for the collapse of cosmological perturbations into PBHs, giving at the end some
results for the possible effect of the anisotropy on the PBH formation threshold, δc. Ini-

1. During a spherically symmetric gravitational collapse the fluid elements are moving only in the
radial direction, leading to a spherically symmetric object. In the particular case we treat here, we
consider an additional degree of freedom of the stress energy tensor which accounts for the anisotropy of
the collapse and which is compatible with spherical symmetry, i.e. the radial and tangential pressures
appearing in the radial and angular diagonal parts of the stress-energy tensor, which in our case are not
the same [258]. This regime can be physically realized within theories with scalar fields and multifluids
[259]

165



tially, we review the Misner-Sharp and Misner-Hernadez hydrodynamic equations used
to describe the dynamical evolution of a spherically symmetric configuration. Then,
we discuss a covariant form for the equation of state of an anisotropic radiation fluid
describing the evolution of cosmological perturbations in the early universe. Afterwards,
by making a gradient expansion approximation on superhorizon scales we extract the
initial conditions for the hydrodynamic and metric perturbations as well as their depen-
dence on the degree of the anisotropy of the gravitational collapse. Finally, we give a
synthetic overview regarding the numerical calculation of the PBH formation threshold,
δc, and adopting a perturbative approach based on the assumption that δc depends on
the shape of the initial energy density profile in the same way as in the isotropic case,
we give an estimation regarding the dependence of δc on the degree of anisotropy of the
gravitational collapse.

The results and conclusions of this chapter regarding PBH formation for an
anisotropic perfect fluid were sumbitted on arXiv [275] on October 12th after the sub-
mission of the manuscript.

5.1 The Misner-Sharp Equations for an anisotropic perfect
fluid

Working in spherical symmetry, the space-time metric can be written in the Misner-
Sharp form [130]

ds2 = −A2(t, r)dt2 +B2(t, r)dr2 +R2(t, r)dΩ2 (5.1)

where R is the areal radius, A the lapse function, B a function related to the spatial cur-
vature of the space time, r the radial comoving coordinate, t the cosmic time coordinate
and dΩ2 the solid line infinitesimal element of a unit 2-sphere, i.e. dΩ2 = dθ2 +sin2 θdφ2.
This is the so called cosmic time slicing, corresponding to a FLRW metric when the Uni-
verse is homogeneous and isotropic. Introducing then the differential operators Dt and
Dt

Dt ≡
1

A

∂

∂t

∣∣∣∣
r

and Dr ≡
1

B

∂

∂r

∣∣∣∣
t

, (5.2)

which are basically the derivatives with respect to the proper time and proper space
respectively, one can define two auxiliary quantities U and Γ

U ≡ DtR and Γ ≡ DrR, (5.3)

where U is the radial component of the four-velocity in an “Eulerian” (non comoving)
frame and Γ is the so called generalized Lorentz factor. In the background homogeneous
and isotropic FLRW Universe, R(t, r) = a(t)r, U = H(t)R(t, r) and Γ2 = 1−Kr2, where
a is the scale factor, H is the Hubble parameter and K is the spatial curvature present
of the FLRW metric (1.7).
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The quantities U and Γ are related through the Misner-Sharp mass M which for
spherical symmetric spacetimes is defined as [130, 131]

M(t, r) ≡ R(t, r)

2
[1−∇µR(t, r)∇µR(t, r)] , (5.4)

From the above definition one can get the constraint equation

Γ2 = 1 + U2 − 2M

R
(5.5)

obtained by integrating the 00-component of the Einstein equations.
Regarding the form of the stress-energy tensor for an anisotropic perfect fluid, it can

be written in a covariant way [274] as

Tµν = ρuµuν + prkµkν + ptΠµν , (5.6)

where pr and pt are the radial and tangential pressure respectively, uµ is the fluid four-
velocity and kµ is a unit spacelike vector orthogonal to uµ, i.e uµu

µ = −1 = −kµkµ and
uµkµ = 0. Πµν = gµν + uµuν − kµkν is a projection onto a two surface orthogonal to uµ

and kµ. Working now in the comoving frame of the fluid we get that uµ = (−A, 0, 0, 0)
and kµ = (0, B, 0, 0). For an anisotropic spherically symmetric fluid, one has pr 6= pt.

Considering now the Einstein field equations Gµν = 8πTµν 2 and the conservation of
the stress energy tensor ∇µTµν = 0, one can obtain the Misner-Sharp hydrodynamic set
equations [130, 276] for an anisotropic spherically symmetric fluid with pr 6= pt:

DtU = − Γ

ρ+ pr

[
Drpr +

2Γ

R
(pr − pt)

]
− M

R2
− 4πRpr

Dtρ0

ρ0
= − 1

R2Γ
Dr

(
R2U

)

Dtρ

ρ+ pr
=
Dtρ0

ρ0
+

2U

R

pr − pt

ρ+ pr

DrA

A
= − 1

ρ+ pr

[
Drpr +

2Γ

R
(pr − pt)

]

DrM = 4πR2Γρ

DtM = −4πR2Upr

DtΓ = − U

ρ+ pr

[
Drpr +

2Γ

R
(pr − pt)

]
,

(5.7)

where one can appreciate the additional terms appearing when pr 6= pt. This system of
differential equations, combined with the constraint equation given by Eq. (5.5), can be
solved once the equations of state for pr and pt are specified. In the context of PBH
formation with a massless radiation fluid, one of these equations of state can be obtained
assuming, as it looks reasonable, the conservation of the trace, i.e. Tµµ = 0 [277], which
gives an additional constraint relation between pr and pt,

ρ− pr − 2pt = 0. (5.8)

2. In this chapter, we work in a unit system where c = G = 1.
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5.2 The Misner-Hernadez Equations for an anisotropic
perfect fluid

When using the Misner-Sharp equations presented in the previous section to study
the gravitational collapse process leading to the formation of a black hole, one is facing
a well known problem associated to the cosmic time slicing. Because the observer is
comoving with the fluid, it is possible to follow the evolution of the region both inside
and outside the apparent horizon 3 up to the formation of the singularity. However, in
this slicing this is reached when the matter outside the horizon is still collapsing into
the black hole. Therefore without doing something, the formation of the singularity is
going to prevent following the rest of the outer evolution, computing also the final mass
of the black hole, which is one of the fundamental outcomes of such simulations. For
this reason, despite the simplicity and intuitiveness of the cosmic time slicing one should
consider a null foliation of spacetime, characterized by a far distant observer, in order
to track consistently the gravitational collapse process 4. To do so, we revise here the
Misner-Hernadez formulation of the Einstein’s equations in which the time variable is
now the “observer time” defined as the time at which an outgoing radial null ray emitted
from an event reaches a distant observer. In this way, the formation of the singularity
is screened by the asymptotic formation of the apparent horizon because of the infinite
redshift associated to signals emitted from the region where the apparent horizon forms
[278], and all the evolution of the region outside the apparent horizon can be followed.

An outgoing null ray is described by the equation

Adt = Bdr (5.9)

and the observer time u is defined by

G(r, u)du = A(r, t)dt−B(r, t)dr, (5.10)

which inserted into the metric 5.1 allows to obtain the following form:

ds2 = −G2du2 − 2GBdudr +R2dΩ2, (5.11)

where the function G(r, u) plays the role of the lapse in the null slicing and satisfies the
following useful relation [See Appendix A.2]:

DkG

G
=
DrA

A
+
DtB

B
=
DrA

A
+
DrU

Γ
. (5.12)

3. The formation of an apparent horizon in spherical symmetry, in a collapsing or expanding medium,
is reached when the condition for a marginally trapped surface R(r, t) = 2M(r, t) is satisfied [45].

4. An alternative approach is to make a numerical excision of the central region, where the singularity
is formed, and continue the evolution in the cosmic time slicing. This technique however requires some
care. Making a coordinate transformation in spherical symmetry and going to a null slicing, does not
allow to follow the full evolution of the region inside the apparent horizon, but is a very good choice in
order to have a full description of the collapsing region outside.
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The operators defined in Eq. (5.2) are given by

Dk ≡
1

B

∂

∂r

∣∣∣∣
u

= Dr +Dt, Dt ≡
1

G

∂

∂u

∣∣∣∣
r

, (5.13)

Γ = DrR = DkR−U and the equations seen in Eq. (5.7) take the following form, derived
for the first time, in the isotropic limit, by Misner-Hernandez:

DtU = − Γ

ρ+ pr

[
Dkpr −Dtpr +

2Γ

R
(pr − pt)

]
− M

R2
− 4πRpr

Dtρ0

ρ0
=

1

Γ
(DkU −DtU)− 2U

R
Dtρ

ρ+ pr
=
Dtρ0

ρ0
+

2U

R

pr − pt

ρ+ pr

DkG

G
=

1

Γ

[
DkU +

M

R2
+ 4πRpr

]
⇔ Dk

(
Γ + U

G

)
= −4πR

G
(ρ+ pr)

DkM = 4πR2(Γρ− prU)

DtM = −4πR2Upr

DtΓ = − U

ρ+ pr

[
Dkpr −Dtpr +

2Γ

R
(pr − pt)

]
.

(5.14)

At the computational level, the strategy adopted is the following: first, we perturb
the Misner-Sharp equations by performing the gradient expansion approximation on
the superhorizon regime in order to specify the initial conditions on a space-like slice at
constant cosmic time in terms of a time-independent curvature profile. We do so because
in such slicing we know how to specify a consistent set of cosmological perturbations.
These initial conditions are then evolved with the Misner-Sharp equations (5.7) in order
to generate a second set of initial data on a null slice at constant observer time (outgoing
null ray). Finally, this second set of the initial data can then be evolved with the
Misner-Hernadez equations (5.14), following the full evolution of the perturbations until
an apparent horizon is formed in case of a perturbation with an amplitude larger than
the threshold, or seeing that the perturbation bounces and disperses if the amplitude is
below the threshold. For more details regarding the numerical scheme see [279, 132].

5.3 The equation of state of an anisotropic fluid

After having derived the Einstein equations for an anisotropic fluid in the cosmic
and null time slicing, we introduce here a covariant formulation modeling the difference
between the radial and tangential pressures of the collapsing fluid in terms of pressure
or energy density gradients. In particular, following [274, 280] the difference pt − pr can
be expressed, to a certain degree of arbitrariness, in a covariant form as

pt = pr + λf(r, t)kµ∇µpr (pressure gradients) (5.15)

or

pt = pr + λf(r, t)kµ∇µρ (energy density gradients), (5.16)
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where f(r, t) is a generic function of r and t while λ is a parameter tuning the level of the
anisotropy of the collapse. Using the metric (5.1) one can show that kµ∇µ = Dr. At this
point, one should mention that the Minser-Sharp equations (5.7) should be regularized
in the following way at R = 0 [280]:

lim
R→0

pr − pt

R
= 0. (5.17)

A possible choice for f(r, t) satisfying the boundary condition (5.17) and keeping the
parameter λ dimensionless, without introducing an additional characteristic scale into
the problem, is f(r, t) = R(r, t). In this case, using Eq. (5.15) and Eq. (5.16) combined
with Eq. (5.8), the equations of state for pr and pt read as

pr =
1

3
[ρ− 2λRDrpr] , pt =

1

3
[ρ+ λRDrpr] (pressure gradients) (5.18)

pr =
1

3
[ρ− 2λRDrρ] , pt =

1

3
[ρ+ λRDrρ] (energy density gradients).(5.19)

Another interesting possibility is to choose f(r, t) = ρn(r, t), where n is an integer. In
this last case, the anisotropy parameter λ is in general dimensionful but the equations
of state for pr and pt depend only on thermodynamic quantities, namely on pr and ρ,
which are all local quantities of the comoving fluid element, a key difference with respect
to the previous model. Using this choice, one obtains that

pr =
1

3
[ρ− 2λρnDrpr] , pt =

1

3
[ρ+ λρnDrpr] (pressure gradients) (5.20)

pr =
1

3
[ρ− 2λρnDrρ] , pt =

1

3
[ρ+ λρnDrρ] (energy dens. gradients).(5.21)

As one can see, from Eq. (5.18) and Eq. (5.20), in the limit λ = 0 one reproduces
the isotropic limit in which pr = pt = ρ/3. Below, we give the form of the Misner-
Sharp equations (5.7) in the anisotropic regime where pr 6= pt for f(r, t) = R(r, t) and
f(r, t) = ρn(r, t).

— f(r, t) = R(r, t), pr − pt = −λRDrpr

DtU = −Γ(1− 2λΓ)

ρ+ pr
Drpr −

M

R2
− 4πRpr

Dtρ

ρ+ pr
=
Dtρ0

ρ0
− 2λU

Drpr

ρ+ pr

DrA

A
= −(1− 2λΓ)

ρ+ pr
Drpr

DtΓ = −U(1− 2λΓ)

ρ+ pr
Drpr

(5.22)

— f(r, t) = R(r, t), pr − pt = −λRDrρ
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DtU = − Γ

ρ+ pr
(Drpr − 2λΓDrρ)− M

R2
− 4πRpr

Dtρ

ρ+ pr
=
Dtρ0

ρ0
− 2λU

Drρ

ρ+ pr

DrA

A
= − 1

ρ+ pr
(Drpr − 2λΓDrρ)

DtΓ = − U

ρ+ pr
(Drpr − 2λΓDrρ)

(5.23)

— f(r, t) = ρn(r, t), pr − pt = −λρn(r, t)Drpr

DtU = − Γ

ρ+ pr

(
1− 2λΓρn

R

)
Drpr −

M

R2
− 4πRpr

Dtρ

ρ+ pr
=
Dtρ0

ρ0
− 2λUρn

R

Drpr

ρ+ pr

DrA

A
= − Drpr

ρ+ pr

(
1− 2λΓρn

R

)

DtΓ = − U

ρ+ pr

(
1− 2λΓρn

R

)
Drpr

(5.24)

— f(r, t) = ρn(r, t), pr − pt = −λρn(r, t)Drρ

DtU = − Γ

ρ+ pr

(
Drpr −

2λΓρn

R
Drρ

)
− M

R2
− 4πRpr

Dtρ

ρ+ pr
=
Dtρ0

ρ0
− 2λUρn

R

Drρ

ρ+ pr

DrA

A
= − 1

ρ+ pr

(
Drpr −

2λΓρn

R
Drρ

)

DtΓ = − U

ρ+ pr

(
Drpr −

2λΓρn

R
Drρ

)

(5.25)

5.4 The quasi homogeneous solution

Having introduced a covariant formulation of the equation of state for a spherically
symmetric anisotropic fluid, one should specify the initial conditions for all the relevant
quantities describing a cosmological perturbation on superhorizon scales. To do so, let
us consider the asymptotic solution of the Einstein’s equations in the limit of t → 0.
This corresponds to a FLRW metric with an r dependent curvature profile K(r) which
does not depend on time,

ds2
AQH = −dt2 + a2(t)

[
dr2

1−K(r)r2
+ r2dΩ2

]
. (5.26)

171



The above solution is often quoted as the Asymptotic Quasi Homogeneous solution
(AQH) (as t → 0) [281] and within this formulation of the metric, K(r) can be seen
as an initial curvature profile specified on superhorizon scales 5. At this point, it is
important to stress out that K(r) corresponds to arbitrarily large metric perturbations
while the hydrodynamic perturbations, i.e. energy density and velocity ones, vanish
asymptotically as t → 0 and therefore on such regime they can be treated as small
perturbations. One can then solve analytically the hydrodynamic equations and write
self-consistently the initial conditions for the energy density, the velocity perturbations
and all the relevant variables of the equations as a function of the curvature profile K(r)
at a time when the quasi-homogeneous solution is valid at certain order.

Considering perturbations well outside the horizon, all the hydrodynamic and metric
quantities are nearly homogeneous and their perturbations are small deviations away
from their background value. To parametrise these deviations, we introduce a fictitious
parameter ε defined as the ratio between the Hubble radius H−1 and the characteristic
physical scale, L, of the collapsing region,

ε(t) =
H−1

L
=

1

H(t)a(t)rm
� 1 6, (5.27)

where rm is the comoving characteristic scale of the collapsing region. In this way, all
quantities can be written as a power series in ε. Thus, considering only the growing
mode which is of O(ε2) in the first non zero term of the expansion [282, 89], at first
order one has for the hydrodynamic variables ρ, U , pr, pt and M that [133]

ρ = ρb(t)
[
1 + ε2ρ̃(r, t)

]

pr =
ρb(t)

3

[
1 + ε2p̃r(r, t)

]

pt =
ρb(t)

3

[
1 + ε2p̃t(r, t)

]

U = H(t)R
[
1 + ε2Ũ(r, t)

]

M =
4π

3
ρb(t)R3

[
1 + ε2M̃(r, t)

]
.

(5.28)

This approach is known in the literature as the long wavelength approach [90], or
gradient expansion [283], or separate universe hypothesis [284, 282] and reproduces the
time evolution of the linear perturbation theory.

5. K(r) can be directly linked to the comoving curvature perturbationR defined in 3.36. In particular,

R =
r2m
2r2

[
r3K(r)

]′
[133].

6. It is important to mention here that the gradient expansion in terms of a fictitious parameter ε� 1
is valid only for superhorizon scales and it is used in order to determine the initial conditions for all
the metric and hydrodynamic quantities. When later the characteristic scale of the overdensity reenters
the Hubble radius and ε ∼ 1 the gradient expansion breaks down. Thus, once the initial conditions
are written by the gradient expansion approximation, they could be evolved using the Misner-Sharp
and Misner-Hernadez equations, which can describe the details of the non linear gravitational collapse
process.
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Regarding the metric components A, B and R, which are coupled to the matter ones
through Einstein’s equations, one can write in the same way that

A = 1 + ε2Ã(r, t)

B =
R′√

1−K(r)r2

[
1 + ε2B̃(r, t)

]

R = a(t)r
[
1 + ε2R̃(r, t)

]
.

(5.29)

The next step is to perform now the perturbative analysis and extract the initial
conditions for the hydrodynamic and metric perturbations as a function of the curva-
ture profile K(r). To do so, by performing the gradient expansion at the level of the
Misner-Sharp equations (5.7), we extract below the equations for the metric and the hy-
drodynamic perturbations without specifying a specific model describing the difference
pr − pt.

We start initially with the metric perturbations Ã, B̃ and R̃. From the definition of
U one has that Ṙ = AU . Perturbing this equation by keeping only first order terms, i.e.
∼ O(ε2), one gets for R̃ that it should obey the following equation:

ȧ(1 + ε2R̃) + a
(
ε2R̃

).
= (1 + ε2Ã)HR(1 + ε2Ũ)⇔

2εε̇R̃+ ε ˙̃R = εH(Ã+ Ũ)⇔

2R̃+
∂R̃

∂N
= Ã+ Ũ ,

(5.30)

where N = ln(a/aini) is the number of e-folds and aini is the scale factor at an initial
time. In the last step, we used the fact that ε̇/ε = H. Then, from the 01 Einstein

equation one can easily get that Ḃ
B = AU ′

R′ . Combining the above equation with Ṙ = AU

we obtain that Ḃ
B − Ṙ′

R′ = −A′U
R′ , which, once perturbed by keeping orders up to O(ε2),

gives the following equation for B̃:

2B̃ +
∂B̃

∂N
= −rÃ′. (5.31)

The prime ′ denotes differentiation with respect to the radial comoving coordinate.
Finally, regarding the perturbation of the lapse function Ã, perturbing the equation
DrA
A = − 1

ρ+pr

[
Drpr + 2Γ

R (pr − pt)
]

one obtains that

Ã′ = −1

4

[
p̃′r +

2

r
(p̃r − p̃t)

]
. (5.32)

We continue the perturbative gradient expansion scheme considering the hydrody-
namic perturbations Ũ , ρ̃ and M̃ . Regarding ρ̃ one perturbs the equation DrM =
4πR2Γρ which gives

1

3
(1 + ε2M̃)

[
3
R′

R
+ ε2M̃ ′

]
= (1 + ε2ρ̃)

R′

R
⇔ (5.33)
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ρ̃ =
1

3r2

(
r3M̃

)′
. (5.34)

Then, the equation for M̃ , obtained by perturbing DtM = −4πR2Upr, reads as

(1 + ε2M̃)

[
ρ̇b

ρb
+ 3

Ṙ

R
+
(
ε2M̃

).
]

= −Ṙ
R

(1 + ε2p̃r)⇔ (5.35)

M̃ +
∂M̃

∂N
= −4Ũ − 4Ã− p̃r. (5.36)

Regarding Ũ , by perturbing Eq. (5.5) one gets that

Ũ =
1

2

[
M̃ −K(r)r2

m

]
. (5.37)

To summarize, the differential equations describing the behavior of the metric and
hydrodynamic perturbations in the gradient expansion approximation in which ε � 1
are:

2R̃+
∂R̃

∂N
= Ã+ Ũ

2B̃ +
∂B̃

∂N
= −rÃ′

Ã′ = −1

4

[
p̃′r +

2

r
(p̃r − p̃t)

]

ρ̃ =
1

3r2

(
r3M̃

)′

M̃ +
∂M̃

∂N
= −4Ũ − 4Ã− p̃r

Ũ =
1

2

[
M̃ −K(r)r2

m

]
.

(5.38)

As one may see from the above equations, the only place, in which the dependence on
the prescription modeling the difference pr − pt enters, is at the level of the differential
equation for the lapse function perturbation, Ã.

5.5 The initial conditions in presence of anisotropies

We extract below the initial conditions of the hydrodynamic and metric perturbations
as a function of the time-independent curvature profile K(r) by specifying our choice for
the EoS of an anisotropic radiation dominated medium.

5.5.1 Equation of state in terms of pressure gradients

We choose here the EoS where the difference pr − pt is proportional to pressure
gradients [See Eq. (5.15)]. Regarding the free function f(r, t) we choose it to be either
f(r, t) = R(r, t) (which is a non local quantity) or f(r, t) = ρn(r, t) (which is a local
quantity).
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5.5.1.1 f(r, t) = R(r, t)

In this case, the anisotropy parameter λ is dimensionless and therefore one does not
need to introduce a characteristic scale at the level of the equation of state. Using the
EoS (5.18), with a straightforward calculation one has that the constraint equation for
p̃r reads as

p̃r − ρ̃ = −2λr

3

√
1−K(r)r2 p̃′r = −2λr

3
F ′(r), (5.39)

where

F (r) ≡
∫ r

0

√
1−K(r′)r′2 p̃′r(r

′)dr′ = − 3

2λ

∫ r

0

p̃r − ρ̃
r′

dr′, (5.40)

and the corresponding equation for the lapse perturbation Ã reads as

Ã′ = −1

4

(
p̃′r − 2λ

√
1−K(r)r2

)
. (5.41)

These equations coupled with Eq. (5.38) allows to find the explicit dependence of the
initial perturbation profiles on the curvature profile K(r). Let us start with the metric
perturbations Ã, R̃ and B̃. Integrating Eq. (5.41) and using the fact that ρ̃(0) = p̃r(0),
as it can be seen by Eq. (5.39), one can infer that

Ã− Ã(0) = −1

4
p̃r +

ρ̃(0)

4
+
λ

2
F (r). (5.42)

At r =∞, where p̃r(∞) = 0, from the above equation one has that

Ã(∞) = 0 = Ã(0) +
ρ̃(0)

4
+
λ

2
F (∞)⇔ Ã(0) = −1

4
[ρ̃(0) + 2λF (∞)] . (5.43)

Thus, plugging Eq. (5.43) into Eq. (5.42) and taking into account Eq. (5.39), one gets
that

Ã = − ρ̃
4

+
λ

2

[
rF ′(r)

3
+ F(r)

]
, (5.44)

where we have introduced the function F(r) defined as

F(r) ≡ F (r)− F (∞) = −
∫ ∞

r

∂p̃r(r
′)

∂r′
√

1−K(r′)r′2 dr′. (5.45)

Considering now Eq. (5.30) for R̃, one can crearly see that the right-hand side is time-
independent because of Eq. (5.44) and Eq. (5.37) allowing R̃ to be written as

R̃ =
1

2

(
Ã+ Ũ

)
= −1

2

{
ρ̃

4
− λ

6

[
rF ′(r) + F(r)

]
+

1

6
K(r)r2

m

}
(5.46)

As for B̃, following the same reasoning, one can see that

B̃ = −rÃ
′

2
=
r

8
p̃′r(1− 2λ

√
1−K(r)r2 ) =

r

8
F ′(r)

[
1√

1−K(r)r2
− 2λ

]
. (5.47)
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To work out the expression for M̃ one can combine Eqs. ((5.36), (5.42) , (5.39) and
(5.37) ) and obtain that

M̃ +
1

3

∂M̃

∂N
=

2

3
K(r)r2

m −
2

3
λF(r). (5.48)

Following the same reasoning as in the case of R̃, given the time-independent nature of
the right-hand side of Eq. (5.48) one can deduce that

M̃ =
2

3
K(r)r2

m −
2

3
λF(r). (5.49)

Considering the behavior of Ũ , one can plug Eq. (5.49) into Eq. (5.37) to get that

Ũ = −1

6
K(r)r2

m −
λ

3
F(r). (5.50)

Finally, by plugging Eq. (5.49) into Eq. (5.34) one obtains the expression for the energy
density,

ρ̃ =
2

3

{[
r3K(r)

]′

3r2
r2

m − λ
[r

3
F ′(r) + F(r)

]}
. (5.51)

One can further simplify the expressions for Ã, R̃, B̃, M̃ , ρ̃ and Ũ writing them in
a more compact form. To do so, we introduce the following effective curvature profile,

K(r) ≡ K(r)− λ

r2
m

F(r). (5.52)

This allows to write the quasi-homogeneous solution, in a similar form as the isotropic
case (λ = 0), introducing the effective energy density and velocity perturbations ρ̃eff and
Ũeff defined as

ρ̃eff = ρ̃− 2λ

[
rF ′(r)

3
+ F(r)

]
, (5.53)

Ũeff = Ũ +
λ

2
F(r) = −1

6
K(r)r2

m (5.54)

In this way, the metric and the hydrodynamic perturbations are given by the following
expressions:

Ã = − ρ̃
4

+
λ

2

[
rF ′(r)

3
+ F(r)

]
= − ρ̃eff

4

B̃ =
r

8
F ′(r)

[
1√

1−K(r)r2
− 2λ

]
=
r

8
ρ̃′eff

ρ̃ =
2

3

[
r3K(r)

]′

3r2
r2

m

Ũ = −1

6
K(r)r2

m −
λ

2
F(r) = Ũeff −

λ

2
F(r)

M̃ =
2

3
K(r)r2

m = −4Ũeff

R̃ = − ρ̃eff

8
+
Ũ

2
.

(5.55)
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To complete this derivation we need to find the function F(r) defined in Eq. (5.45),
which is the integral of the pressure-gradient profile ∂p̃r

∂r , corrected by Γ '
√

1−K(r)r2

on super horizon scales, which is measuring the geometrical curvature of the space time.
In particular, by combining Eqs. (5.39) and (5.51) one obtains the following integral
equation for p̃r

p̃r =
2

3

{[
r3K(r)

]′

3r2
r2

m − λ
[
F(r) +

4

3
rf(r)

]}
. (5.56)

where

f(r) ≡ ∂p̃r

∂r

√
1−K(r)r2 .

By differentiating the above equation we can write the following differential equation,

8λ

9
r
√

1−K(r)r2 f ′(r) +

[
14λ

9

√
1−K(r)r2 + 1

]
f(r)

− 2

3

{[
r3K(r)

]′

3r2

}′
r2

m

√
1−K(r)r2 = 0,

(5.57)

with f(0) = 0 and for λ = 0 we recover the quasi-homogeneous limit,

fλ=0(r) =
2

3

{[
r3K(r)

]′

3r2

}′
r2

m

√
1−K(r)r2 . (5.58)

Solving Eq. (5.57) one can extract the profile of the pressure gradients ∂p̃r
∂r that inserted

into Eq. (5.45) allows us to modify appropriately the metric and hydrodnamical pertur-
bations in the case of an anisotropic fluid described by the equation of state given by
Eq. (5.18).

Below, we show the pressure gradient profiles for both positive and negative values of
λ, as well the behavior of the the energy density and velocity perturbations’ profiles. In
the figures below, we make the simplest choice specifying K(r) with a Gaussian profile
of the form,

K(r) = Ae−(r/rm,0)2 , (5.59)

with rm,0 = 1 and A = 3e
4r2m,0

7. Regarding the value of rm, we take rm = rm,0 = 1, since

rm ' rm,0 for any value of λ considered here.
As one may see from the above figures, as λ → 0 one can clearly see a convergence

to the isotropic case and discriminate between two regimes, corresponding to positive
and negative values of λ. When λ < 0, given the fact that the pressure gradient profile
is mainly negative, then from pr − pt = −λRDrpr, one has that pr < pt. In this case,
since the radial pressure is reduced compared to the tangential one, one would expect
to be easier for a cosmological perturbation to collapse along the radial direction with

7. The value of A = 3e
4r2m,0

chosen corresponds to the threshold for the isotropic case, where the

averaged perturbation amplitude defined in Eq. (2.8) is equal to δm,iso = 0.5 [89].
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Figure 5.1 – In this figure, we show the behavior of ∂p̃r
∂r against r/rm. In the left panel

we are considering negative values of the anisotropy parameter λ whereas in the right
panel we account for positive values of λ.
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Figure 5.2 – In this figure, we show the behavior ρ̃ against r/rm. In the left panel we
are considering negative values of the anisotropy parameter λ whereas in the right panel
we account for positive values of λ.

respect to what one has in the isotropic case. Consistently, one sees that the peaks of
the energy density and velocity perturbations are enhanced compared to the case when
λ = 0. This behavior can be clearly seen from Fig. 5.1 and Fig. 5.3. On the other
hand, when λ > 0, we have pr > pt with this larger value of the radial component of
the pressure acting against the gravitational collapse compared to the isotropic case. In
this case, the amplitude of the energy density and velocity perturbations are therefore
reduced with respect to the isotropic ones [See Fig. 5.1 and Fig. 5.3].

To see this effect more explicitly, we consider a positive and a negative value of λ,
displaying the isotropic and the anisotropic contributions of the energy density perturba-
tion profile in Fig. 5.4. As it can be seen from this figure, when λ = −0.3 the anisotropy
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Figure 5.3 – In this figure, we show the behavior of Ũ against r/rm. In the left panel
we are considering negative values of the anisotropy parameter λ whereas in the right
panel we account for positive values of λ.
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Figure 5.4 – The isotropic and anisotropic contributions to the energy density pertur-
bation. In the left panel, we show the case for λ = −0.3 whereas in the right panel we
show the case for λ = 0.3.

has a positive contribution to the overall amplitude of the energy density perturbation,
enhancing it with respect to the isotropic case. On the other hand, when λ = 0.3, the
anisotropic contribution reduces the amplitude of the energy density perturbation.

Finally, one should also notice from the left panel of Fig. 5.1 that for a value of λ
which is smaller than a critical value, the pressure gradient profile does not converge to
zero at the origin as expected from the boundary condition given by Eq. (5.17). This
behavior is explained in detail in Appendix A.3, where one can see that due to the
mathematical structure of Eq. (5.57), the radial derivative of p̃r diverges at r = 0 when
λ < λc = −9/14.
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5.5.1.2 f(r, t) = ρn(r, t)

We are going to consider now the EoS when f(r, t) = ρn(r, t), as given by Eq. (5.20).
The only difference compared to the case where f(r, t) = R(r, t) is at the level of the
differential equation for Ã and p̃r − ρ̃. In particular, one finds that

Ã′ = −1

4
p̃′r

[
1− 2λρnb

ar

√
1−K(r)r2

]
(5.60)

p̃r − ρ̃ = −2λρnb
3arm

√
1−K(r)r2 p̃r

′ = −2λρnb
3arm

rH ′(r), (5.61)

(5.62)

where

H(r) ≡ rm

∫ r

0

√
1−K(r′)r′2

r′
p̃r
′(r′)dr′. (5.63)

Following the same reasoning as before one obtains for Ã that

Ã = − ρ̃
4

+
λρnb
2arm

[
H(r) +

r

3
H′(r)

]
, (5.64)

where H(r) is defined as

H(r) ≡ −rm

∫ ∞

r

√
1−K(r′)r′2

r′
p̃r
′(r′)dr′. (5.65)

Considering M̃ , by plugging Eq. (5.37) and Eq. (5.64) into Eq. (5.36) and taking into
account Eq. (5.61) one finds that M̃ satisfies the following differential equation:

M̃ +
1

3

∂M̃

∂N
=

2

3
K(r)r2

m −
2λ

3

ρnb(N)

a(N)rm
H(r). (5.66)

From the above equation, given the time-dependence of the right-hand side, one can
separate the variables (r,N) and the explicit profile of M̃ can be recast in the following
way:

M̃ =
2

3
K(r)r2

m + Φpr(N)H(r), (5.67)

where the time-dependent function Φpr(N) obeys the following equation:

Φ′pr(N) + 3Φpr(N) = −2λ
ρnb(N)

a(N)rm
. (5.68)

At this point, one should stress out that M̃ written in the form of Eq. (5.67) is the sum
of a time-independent isotropic term, 2

3K(r)r2
m, plus a time-dependent anisotropic one,

Φpr(N)H(r). The differential equation for Φpr can be integrated analytically and it has
the following solution:

Φpr(N) = e−3N

[
c−

λρnb,ini

ainirm(1− 2n)
e−(4n−2)N

]
. (5.69)
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By demanding that Φpr(N = 0) = 0, since one expects that at initial time the anisotropy

vanishes, one gets that c =
λρnb,ini

ainirm(1−2n) . Here one should notice that a = aini ⇔ N = 0
corresponds to an initial time when the perturbations are generated and at which one
can consider that the medium is still isotropic as one expects at the end of inflation Thus,
hereafter we consider that aini = ainf . At the end, taking into account the definition
of N = ln (a/aini) measuring the number of e-folds, Φpr can be written in terms of the
scale factor a as

Φpr(a) =
λρnb,inf

ainfrm(1− 2n)

(
a

ainf

)−3
[

1−
(

a

ainf

)−(4n−2)
]
, (5.70)

where the index “inf” stands for the time at the end of inflation. From Eq. (5.70) one
may say that for n = 1/2 there is an indefinite value for Φpr of the form (0/0). However,
this is not the case as one can see in Appendix A.4 in which we give Φpr in the limit
n→ 1/2.

Consequently, plugging Eq. (5.67) into Eq. (5.34) and Eq. (5.37), one obtains for the
energy density, velocity and lapse perturbations the following form:

ρ̃ = Φiso
1

3r2

[
r3K(r)

]′
r2

m + Φpr(a)
1

3r2

[
r3H(r)

]′
(5.71)

Ũ =
1

2

[
(Φiso − 1)K(r)r2

m + Φpr(a)H(r)
]

(5.72)

Ã = −1

4

{
Φiso

1

3r2

[
r3K(r)

]′
r2

m + Φpr(a)
1

3r2

[
r3H(r)

]′
}

+
λρnb(a)

2arm

[
r3H(r)

]′

3r2
, (5.73)

where Φiso = 2/3 and one can clearly identify the isotropic and anisotropic contributions.
Considering now the behavior of R̃ and B̃, by plugging Eq. (5.73) and Eq. (5.72)

into Eq. (5.30) and Eq. (5.31) one gets the following differential equations for R̃ and B̃.

2R̃+
∂R̃

∂N
= −Φiso

4

1

3r2

[
r3K(r)

]′
r2

m + (Φiso − 1)
K(r)r2

m

2

−
[

Φpr(N)

4
− λρnb(N)

2a(N)rm

] [
r3H(r)

]′

3r2
+

Φpr(N)

2
H(r)

(5.74)

2B̃ +
∂B̃

∂N
=
r

4
Φiso

{
1

3r2

[
r3K(r)

]′
r2

m

}′
+ r

[
Φpr(N)

4
− λρnb(N)

2a(N)rm

]{
1

3r2

[
r3H(r)

]′
}′
.

(5.75)

The above system of equations can be solved defining two new free functions I1,pr(N)
and I2,pr(N) and writing the solutions for R̃ and B̃ as following:

R̃ = −I1,iso
1

3r2

[
r3K(r)

]′
r2

m + I2,iso
K(r)r2

m

2
− I1,pr(N)

[
r3H(r)

]′

3r2
+ I2,pr(N)H(r)

(5.76)

B̃ = I1,isor

{
1

3r2

[
r3K(r)

]′
r2

m

}′
+ I1,pr(N)r

{[
r3H(r)

]′

3r2

}′
, (5.77)
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where I1,iso = 1/12 and I2,iso = −1/6. By plugging now Eq. (5.76) and Eq. (5.77) into
Eq. (5.74) and Eq. (5.75) one obtains the differential equations for I1,pr(N) and I2,pr(N)
which read as

I ′1,pr(N) + 2I1,pr(N) =
Φpr(N)

4
− λρnb(N)

2a(N)rm
(5.78)

I ′2,pr(N) + 2I2,pr(N) =
Φpr(N)

2
. (5.79)

The above equations can be solved analytically imposing the initial conditions I1,pr(N =
0) = I2,pr(N = 0) = 0 and their solutions in terms of the scale factor a read as

I1,pr(a) =
λρnb,ini

4ainfrm(2n− 1)(4n− 1)

(
a

ainf

)−3

×
[

4n− 1 + 4(1− 2n)
a

ainf
− (4n− 3)

(
a

ainf

)−(4n−2)
] (5.80)

I2,pr(a) = −
λρnb,inf

2ainirm(2n− 1)(4n− 1)

(
a

ainf

)−3
[

1− 4n+ 2(2n− 1)
a

ainf
+

(
a

ainf

)−(4n−2)
]
.

(5.81)

Interestingly, here as well, when n = 1/2 and n = 1/4, the behavior I1,pr and I2 should
be treated carefully. For this reason, we take the corresponding limits as it can be seen
in Appendix A.4

Finally, in order to determine explicitly the initial conditions for the hydrodynamic
and metric perturbations one should compute the modulating function H(r), which is
analogous to function F(r) defined earlier.To do so, one can combine Eq. (5.61) and
Eq. (5.71) and obtain after a straightforward calculation the following differential equa-
tion for the rescaled pressure gradient profile h(r):

√
1−K(r)r2

[
2λρnb(a0)

3a0rm
− Φpr(a0)

3

]
rh′(r) +

{[
2λρnb(a0)

3a0rm
− 4Φpr(a0)

3

]√
1−K(r)r2 + r

}
h(r)

− Φiso

[(
r3K(r)

)′

3r2

]′
r2

m

√
1−K(r)r2 = 0

,

(5.82)

where h(r) ≡ rm
∂p̃r
∂r

√
1−K(r)r2

r and the anisotropy modulating terms Φpr and
λρnb (a)
arm

should be computed at an initial time when the gradient expansion is still valid up to a
certain order ε0 = ε(t0). The above differential equation should satisfy the analogous to
F(r) boundary condition limr→0 h(r) = 0 as imposed by Eq. (5.17). Therefore, one can
solve the above differential equation for the rescaled pressure gradient profile h(r), and
then integrate it in order to compute H(r) which can be finally inserted into Eq. (5.71),
Eq. (5.72), Eq. (5.73), Eq. (5.76) and Eq. (5.77) to obtain the full expressions of the
initial conditions for the hydrodynamic and metric perturbations.
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At this point, given the value of n, one can define a new dimensionless anisotropy
parameter λ̃ as

λ̃ =
λρnb,inf

rm
, (5.83)

where ρb,inf is the background energy density the end of inflation. With the above
definition of the anisotropy parameter, the equation of state (5.20) can be recast as

pr =
1

3

[
ρ− 2λ̃rm

(
ρ

ρb,inf

)n
Drpr

]
. (5.84)

We should also stress out here that our problem at hand requires to specify five
input parameters in order to fully specify the initial conditions for the hydrodynamic
and metric perturbations. In particular, these parameters are a) the index n appearing
in the equation of state Eq. (5.84), b) the dimensionless anisotropy parameter λ̃, c) the
ratio between the energy scales at horizon crossing (εHC = 1) and the energy scale at the

end of inflation, i.e. q =
(
ρb,HC

ρb,inf

)1/4
, d) the small initial parameter ε0 =

H−1
0

a0rm
and e) the

background energy density, ρb,inf , measured at the end of inflation, which depends on the
underlying inflationary model generating the hydrodynamic and metric perturbations.
At the end, the initial conditions for Ã, R̃, B̃, M̃ , ρ̃ and Ũ could be written in a compact
form as follows:

M̃ =
2

3
K(r)r2

m + Φpr(N)H(r)

ρ̃ = Φiso
1

3r2

[
r3K(r)

]′
r2

m + Φpr(a0)
1

3r2

[
r3H(r)

]′

Ũ =
1

2

[
(Φiso − 1)K(r)r2

m + Φpr(a0)H(r)
]

Ã = −1

4

{
Φiso

1

3r2

[
r3K(r)

]′
r2

m + Φpr(a0)
1

3r2

[
r3H(r)

]′
}

+
λρnb(a0)

2a0rm

[
r3H(r)

]′

3r2

R̃ = −I1,iso
1

3r2

[
r3K(r)

]′
r2

m + I2,iso
K(r)r2

m

2
− I1,pr(a0)

[
r3H(r)

]′

3r2
+ I2,pr(a0)H(r)

B̃ = I1,isor

{
1

3r2

[
r3K(r)

]′
r2

m

}′
+ I1,pr(a0)r

{[
r3H(r)

]′

3r2

}′
,

(5.85)

where the modulating functions Φpr ,
λρnb (a)
arm

, I1,pr and I2,pr should be computed at initial
time t0 when the gradient expansion is valid up to a certain order ε0. Below, we give

183



their explicit dependence on q, ε0, n and λ̃.

λρnb(a0)

a0rm
=
λ̃

q

(
q

ε0

)4n+1

(5.86)

Φpr(a0) =
λ̃

q(1− 2n)

(
q

ε0

)3
[

1−
(
q

ε0

)(4n−2)
]

(5.87)

I1,pr(a0) =
λ̃

4q(2n− 1)(4n− 1)

(
q

ε0

)3

×
[

4n− 1 + 4(1− 2n)
ε0
q
− (4n− 3)

(
q

ε0

)(4n−2)
] (5.88)

I2,pr(a0) = − λ̃

2q(2n− 1)(4n− 1)

(
q

ε0

)3
[

1− 4n+ 2(2n− 1)
ε0
q

+

(
q

ε0

)(4n−2)
]
. (5.89)

Here, one should point out that at the level of the equation of state we identify three
main contributions. First, the dimensionless parameter λ̃ accounting for the anisotropy

of the medium. Second, the ratio
(

ρ
ρb,inf

)n
which is measuring for the effect of cosmic

expansion and finally the term Drpr which accounts for the effect of the pressure gradi-
ents. Regarding the possible values of n, one can assume based on physical arguments
that at the infinite time limit the pressure gradient contributions disappear, implying
that n ≥ 0. The values of the anisotropic parameter λ̃ can in principle take any value.

In the following figures, we show the behavior of the initial conditions of the pressure
gradients, the energy density and velocity perturbations for a specific toy-model, i.e.
n = 0, considering positive values of the dimensionless anisotropy parameter λ̃ and
taking into account that, due to the structure of Eq. (5.82) which describes the behavior
of the pressure gradients, one is facing a divergence at r = 0 for negative values of λ̃.
[See also the discussion in Appendix A.3.]

As it can be seen from the figures below,where we choose q = 10−10 and ε0 = 10−1,
the behavior of the initial conditions for the hydrodynamic and metric perturbations is
similar to the case where f(r, t) = R(r, t) with a positive value of λ̃ enhancing the radial
pressure compared to the tangential one and leading to a lower amplitude of the matter
perturbations ρ̃ and Ũ with respect to the isotropic case [See Fig. 5.6].

5.5.2 Equation of state in terms of energy density gradients

We study here the quasi-homogeneous solution when the EoS is given by Eq. (5.16),
where the function f(r, t) is chosen to be either f(r, t) = R(r, t) or f(r, t) = ρn(r, t).

5.5.2.1 f(r, t) = R(r, t)

Following the same reasoning as before, the only place in which we see a difference
compared to the previous cases is in the differential equations for Ã and p̃r − ρ̃ which
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Figure 5.5 – In this figure, we plot ∂p̃r
∂r against r/rm by considering positive values of λ̃.

We have chosen n = 0, q = 10−10 and ε0 = 10−1.
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Figure 5.6 – In the left panel we show ρ̃ against r/rm for different values of λ̃ > 0 while
in the right one we show Ũ against r/rm, considering different values of λ̃ > 0. We have
chosen n = 0, q = 10−10 and ε0 = 10−1.

now read as

Ã′ = −1

4

[
p̃′r − 6λ

√
1−K(r)r2 ρ̃′

]
(5.90)

p̃r − ρ̃ = −2λr
√

1−K(r)r2 ρ̃′ = −2λrG′(r), (5.91)

where

G(r) ≡
∫ r

0

√
1−K(r′)r′2 ρ̃′(r′)dr′. (5.92)

Then, in order to put the expressions for Ã, R̃, B̃, M̃ , ρ̃ and Ũ in a compact form
as in Sec. 5.5.1.1, we introduce an effective curvature profile similar to the one defined
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in Eq. (5.52) as follows:

K(r) = K(r)− 3λ

r2
m

G(r), (5.93)

where

G(r) ≡ G(r)−G(∞) = −
∫ ∞

r

∂ρ̃(r′)
∂r′

√
1−K(r′)r′2 dr′. (5.94)

We define as well the effective energy density and velocity perturbations ρ̃eff and Ũeff

such that the quasi-homogeneous solution is written in a similar form as in the isotropic
case (λ = 0),

ρ̃eff = ρ̃− 2λ
[
rG′(r) + 3G(r)

]
(5.95)

Ũeff = Ũ +
λ

2
G(r) = −1

6
K(r)r2

m. (5.96)

At the end, one gets the hydrodynamic and metric perturbations in the following compact
form:

Ã = − ρ̃
4

+
λ

2

[
rG′(r) + 3G(r)

]
= − ρ̃eff

4

B̃ =
r

8

[
ρ̃′ − 2λrG′′(r)− 8λG′(r)

]
=
r

8
ρ̃′eff

ρ̃ =
2

3

[
r3K(r)

]′

3r2
r2

m

Ũ = −1

6
K(r)r2

m −
λ

2
G(r) = Ũeff −

λ

2
G(r)

M̃ =
2

3
K(r)r2

m = −4Ũeff

R̃ = − ρ̃eff

8
+
Ũ

2

(5.97)

Finally, in order to express explicitly the initial conditions for the hydrodynamic and
metric perturbations, one should compute the behavior of the energy density gradient
profile ∂ρ̃

∂r . Combining then Eq. (5.91) and Eq. (5.34) one gets the following equation for

g(r) ≡ ∂ρ̃

∂r

√
1−K(r)r2

analogous to Eq. (5.57):

2λ

3
r
√

1−K(r)r2 g′(r) +

[
8λ

3

√
1−K(r)r2 + 1

]
g(r)+

− 2

3

{[
r3K(r)

]′

3r2

}′
r2

m

√
1−K(r)r2 = 0,

(5.98)

with the boundary condition g(0) = 0. By solving for g(r) the above equation, we
integrate g(r) in order to get the anisotropic modulating function G(r) modifying all the
hydrodynamic and metric perturbations as one can see from Eq. (5.97).
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Below, we show the energy density gradient profiles considering both positive and
negative values of λ, together the behavior of the energy density and velocity pertur-
bation’s profiles. For the figures below, we chose as before a curvature profile for K(r)
having a Gaussian form K(r) = Ae−(r/rm,0)2 with rm,0 = 1 and A = 3e

4r2m,0
. Regarding

the value of rm, we take as before rm = rm,0 = 1, since also in this case rm ' rm,0

independently of the value of λ we have considered.
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Figure 5.7 – In this figure, we show the ∂ρ̃
∂r against r/rm. In the left panel, we consider

negative values of λ whereas in the right panel we account for positive values of λ.
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Figure 5.8 – In this figure, we show the ρ̃ against r/rm. In the left panel, we consider
negative values of λ whereas in the right panel we account for positive values of λ.

As in the case where pr − pt = −λRDrpr, we identify two regimes: a) when λ < 0,
characterized by the fact that ∂ρ̃

∂r is mainly negative and one obtains that pr < pt

suggesting in this way the possibility for a cosmological perturbation to collapse more
easily and b) when λ > 0 where pr > pt and it is more difficult for a perturbation to
collapse.
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Figure 5.9 – In this figure, we show the Ũ against r/rm. In the left panel, we consider
negative values of λ whereas in the right panel we account for positive values of λ.

Regarding the behavior of the energy density gradient, similarly to the case where
pr − pt = −λRDrpr, one can identify from Fig. 5.7 a lower bound in λ, which can be
explained from the mathematical structure of Eq. (5.98) describing the behavior of ∂ρ̃

∂r .
[See also the Appendix A.3].

5.5.2.2 f(r, t) = ρn(r, t)

We now consider the EoS with f(r, t) = ρn(r, t), given by Eq. (5.21). Following the
same strategy as in Sec. 5.5.1.2, the differential equations for Ã and p̃r − ρ̃ read as

Ã′ = −1

4

[
p̃′r −

6λρnb
ar

√
1−K(r)r2 ρ̃′

]
(5.99)

p̃r − ρ̃ = −2λρnb
a

√
1−K(r)r2 ρ̃′ = −2λρnb

arm
rJ ′(r), (5.100)

where

J(r) ≡ rm

∫ r

0

√
1−K(r′)r′2

r′
ρ̃′(r′)dr′. (5.101)

The differential equations for R̃, B̃, M̃ , ρ̃ and Ũ , taking into account that these quantities
do not depend on the prescription modeling the difference pr − pt, will be given by Eqs.
(5.38). Integrating them using the above equations, similarly as in Sec. 5.5.1.2, one can
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write the profiles of Ã, R̃, B̃, M̃ , ρ̃ and Ũ as follows:

M̃ =
2

3
K(r)r2

m + Φρ(a0)J (r)

ρ̃ = Φiso
1

3r2

[
r3K(r)

]′
r2

m + Φρ(a0)
1

3r2

[
r3J (r)

]′

Ũ =
1

2

[
(Φiso − 1)K(r)r2

m + Φρ(a0)J (r)
]

Ã = −1

4

{
Φiso

1

3r2

[
r3K(r)

]′
r2

m + Φρ(a0)
1

3r2

[
r3J (r)

]′
}

+
3λρnb(a0)

2a0rm

[
r3J (r)

]′

3r2

R̃ = −I1,iso
1

3r2

[
r3K(r)

]′
r2

m + I2,iso
K(r)r2

m

2
− I1,ρ(a0)

[
r3J (r)

]′

3r2
+ I2,ρ(a0)J (r)

B̃ = I1,isor

{
1

3r2

[
r3K(r)

]′
r2

m

}′
+ I1,ρ(a0)r

{[
r3J (r)

]′

3r2

}′
,

(5.102)

where J (r) is defined as

J (r) ≡ −rm

∫ ∞

r

√
1−K(r′)r′2

r′
ρ̃′(r′)dr′. (5.103)

The anisotropy modulating functions Φρ, I1,ρ and I2,ρ, calculated at initial time t0 when
the gradient expansion is valid up a certain order ε0, satisfy the following differential
equations

Φ′ρ(N) + 3Φρ(N) = −6λ
ρnb(N)

a(N)rm
(5.104)

I ′1,ρ(N) + 2I1,ρ(N) =
Φρ(N)

4
− 3λρnb(N)

2a(N)rm
(5.105)

I ′2,ρ(N) + 2I2,ρ(N) =
Φρ(N)

2
, (5.106)

with initial conditions Φ(N = 0) = I1,ρ(N = 0) = I2,ρ(N = 0) = 0. After solving the
above differential equations, the solutions of for Φρ, I1,ρ and I2,ρ in terms of the scale
factor read as

Φρ(a) = 3
λρnb,inf

ainfrm(1− 2n)

(
a

ainf

)−3
[

1−
(

a

ainf

)−(4n−2)
]

(5.107)

I1,ρ(a) =
3λρnb,inf

4ainfrm(2n− 1)(4n− 1)

(
a

ainf

)−3

×
[

4n− 1 + 4(1− 2n)
a

ainf
− (4n− 3)

(
a

ainf

)−(4n−2)
]] (5.108)

I2,ρ(a) = −
3λρnb,inf

2ainfrm(2n− 1)(4n− 1)

(
a

ainf

)−3
[

1− 4n+ 2(2n− 1)
a

ainf
+

(
a

ainf

)−(4n−2)
]
.

(5.109)

189



As in Sec. 5.5.1.2, N = 0 refers to a = ainf , the time when inflation ends, correspond-
ing to the epoch when the cosmological perturbations are generated. For this reason,
when N = 0 we are essentially still in the isotropic regime. The limits for n→ 1/2 and
n→ 1/4 for the modulating functions Φρ, I1,ρ and I2,ρ are given in Appendix A.4.

Finally, in order to specify explicitly the initial conditions for the hydrodynamic and
metric pertubations one should compute the energy density gradient profile, ∂ρ̃

∂r and
then integrate it to obtain the modulating function J (r). Doing so, one can combine
Eq. (5.100) and Eq. (5.34) and obtain after a straighforward calculation the following
differential equation for the rescaled energy density gradient profile j(r):

Φρ(a0)
√

1−K(r)r2

3
rj′(r) +

{
4Φρ(a0)

3

√
1−K(r)r2 − r

}
j(r)

+ Φiso

[(
r3K(r)

)′

3r2

]′
r2

m

√
1−K(r)r2 = 0

, (5.110)

where j(r) ≡ rm
∂ρ̃
∂r

√
1−K(r)r2

r .
At this point, as we have seen in Sec. 5.5.1.2, one can introduce the rescaled

anisotropy parameter λ̃ defined exactly as before through Eq. (5.83) and express the

anisotropic modulating functions
λρnb (a0)
a0rm

, Φρ(a0), I1,ρ(a0) andI2,ρ(a0) in terms of λ̃, n, q
and ε0, given below by the following explicit expressions:

λρnb(a0)

a0rm
=
λ̃

q

(
q

ε0

)4n+1

(5.111)

Φρ(a0) =
3λ̃

q(1− 2n)

(
q

ε0

)3
[

1−
(
q

ε0

)(4n−2)
]

(5.112)

I1,ρ(a0) =
3λ̃

4q(2n− 1)(4n− 1)

(
q

ε0

)3

×
[

4n− 1 + 4(1− 2n)
ε0
q
− (4n− 3)

(
q

ε0

)(4n−2)
] (5.113)

I2,ρ(a0) = − 3λ̃

2q(2n− 1)(4n− 1)

(
q

ε0

)3
[

1− 4n+ 2(2n− 1)
ε0
q

+

(
q

ε0

)(4n−2)
]
.

(5.114)

In the following figures, we have chosen as before q = 10−10 and ε0 = 10−1, in
order to compute the behavior of the initial profiles of the energy density gradients, the
energy density and velocity perturbations in the special case of n = 0. As discussed
in the Appendix A.3, negative values of λ̃ lead to a divergent behavior of the energy
density gradient profile at r = 0. Therefore, we consider only positive values for the
dimensionless anisotropic parameter λ̃.

The effect of the anisotropy is similar to the case where the difference between the
radial and the tangential pressure is proportional to pressure gradients with λ̃ > 0
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leading to an enhancement of the radial pressure and therefore decreasing the amplitude
energy density perturbation.
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Figure 5.10 – In this figure, we plot ∂ρ̃
∂r against r/rm by considering positive values of λ̃.

We have chosen n = 0, q = 10−10 and ε0 = 10−1.
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Figure 5.11 – In the left panel we show ρ̃ against r/rm for different values of λ̃ > 0 while
in the right one we show Ũ against r/rm for different values of λ̃ > 0. We have chosen
n = 0, q = 10−10 and ε0 = 10−1.
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5.6 Towards the PBH formation thershold

After specifying the initial conditions for the hydrodynamic and metric perturbations,
the next step is to compute numerically the PBH formation threshold δc as a function
of the degree of the anisotropy. Given the fact that we have not yet fully completed
the numerical computation of δc (work in progress) we give below a synthetic overview
about the prescription one should follow to make such computation.

1. Given the anisotropy parameters λ or λ̃ and n and the amplitude of the curvature
profile A, one can compute the characteristic scale of the collapsing overdensity region
rm, corresponding to the location where the compaction function defined in Eq. (2.3)
has a maximum. This is done on the superhorizon regime when the compaction function
is time-independent. This allows to compute the averaged perturbation amplitude of
the collapsing overdensity δm, defined as the integral of the energy density perturbation
over a spherical volume of radius rm in Eq. (2.8).

2. Then, one should evolve the non linear hydrodynamic equations and check if a
black hole apparent horizon is formed, i.e. when the condition R(r, t) = 2M(r, t) is
fulfilled. The threshold δc is obtained then as the limiting intermediate case between
overcritical perturbations (δm > δc) collapsing into a black hole, and subcritical ones
(δm < δc), where the perturbation bouncing back into the medium without forming a
black hole. In practice this is computed with a bisection method up to a certain precision.

To estimate here what one would obtain performing numerical simulations of our
anisotropic models, we compute δc by adopting a perturbative approach based on the
assumption that δc depends on the shape of the initial energy density profile in the same
way as it happens in the isotropic case. If so, one can compute the dependence of δc in
terms of the degree of anisotropy of the gravitational collapse, computing how the shape
of the initial perturbation is changed by the amplitude of the anisotropy.

To find this dependence, we use the analytic relation for the threshold of PBH for-
mation as a function of the shape parameter, α, defined as

α ≡ −r
2
mC′′(rm)

4C(rm)
. (5.115)

For our analytic estimation of δc, we use the numerical fit given by Eq. (44) of [285]
where the threshold for PBH formation is given as a polynomial function of α as follows,

δc =





α0.047 − 0.50 0.1 . α . 7

α0.035 − 0.475 7 . α . 13

α0.026 − 0.45 13 . α . 30.

(5.116)

Fixing the amplitude of the anisotropy measured by λ or λ̃ one should firstly compute rm

by requiring C(rm) = 0 and subsequently compute at rm the compaction function and its
second derivative, which allows to compute the shape parameter, α using Eq. (5.115). By
inserting then this into Eq. (5.116) one can compute the threshold for PBH formation.
Below, we give the dependence of α and δc in terms of λ or λ̃ when f(r, t) = R(r, t) or
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f(r, t) = ρn(r, t). In particular, when f(r, t) = ρn(r, t), we choose n = 0 , q = 10−10

and ε0 = 10−1. For our practical purposes, we fix as well the perturbation amplitude
δm = 0.5, a condition from which one can extract the amplitude A of the curvature
profile for a fixed value of the amplitude of the anisotropy.
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Figure 5.12 – The shape parameter (left panel) and the PBH formation threshold (right
panel) as a function of the degree of anisotropy λ. The blue circles stand for the prescrip-
tion in which pr − pt = −λ̃R(r, t)Drpr while the red ones correspond to the prescription
in which pr − pt = −λ̃R(r, t)Drρ.

As one can see from the figures below, an initial increase of δc is observed, which is
somehow expected for an increasing amplitude of the anisotropy, as mentioned in the
previous sections. This is because in this regime, the radial pressure is enhanced with
respect to the tangential one, an effect that works against the gravitational collapse. On
the contrary, after a critical value of λ or λ̃, δc follows a decreasing behavior, an effect
that could not be predicted. However, if one makes a careful analysis on the dependence

of α in terms of λ or λ̃ it is possible to identify a dependence of α ∝ (λ or λ̃) ∂(p̃r or ρ̃)
∂r

∣∣∣ rm,

with two competing terms: λ or λ̃, and ∂(p̃r or ρ̃)
∂r

∣∣∣ rm which decreases in absolute value

with respect to λ or λ̃ as it can be seen numerically from Figs. 5.1, 5.5, 5.7 and 5.10.
Consequently, one expects a critical turning point in the behavior of δc. The explicit
dependence of δc in terms of λ or λ̃ has not been deduced yet and it is part of an ongoing
research work.

At this point, one should comment the fact that in the case where f(r, r) = R(r, t)
the behavior of α and δc when the difference pr − pt is modeled as proportional to
pressure gradients is quite different with respect to the case when pr − pt is modeled
as proportional to energy density gradients. In the first case, δc initially increases with
λ and then after a critical point decreases. However, in the second case, δc initially
decreases and then increases with λ. This behavior could be caused from the fact that
the EoS for f(r, t) = R(r, t) is given not only in terms of local quantities such as pr
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Figure 5.13 – The shape parameter (left panel) and the PBH formation threshold (right
panel) as a function of the degree of anisotropy λ̃. The blue circles stand for the pre-

scription in which pr − pt = −λ̃rm

(
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)n
Drpr while the red ones correspond to the

prescription in which pr−pt = −λ̃rm

(
ρ

ρb,inf

)n
Drρ. In both prescriptions we have chosen

n = 0, q = 10−10 and ε0 = 10−1.

and ρ but also in terms of non local quantities as the areal radius R(r, t). This is an
indication that this model is not so well physically motivated. This claim however needs
to be confirmed by performing full numerical simulations.

Finally, it is important to stress out that Eq. (5.116) gives just an estimation of δc

for values of λ or λ̃ in which pt − pt � 1 and cannot be trusted if one wants to find the
exact value of δc in presence of anisotropies. For this reason it is important to perform in
the future the full numerical analysis and evolve the non-linear hydrodynamic equations.
Despite this fact, the results obtained here give a reasonable estimation of the effect of
the anisotropy.
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Chapter 6

Conclusions - Outlook

Since ’70s, when PBHs were initially introduced by Novikov and Zeldovich [1] and
Stephen Hawking [8], they have been attracting an increasing attention within the
scientific community. Already in [2], PBHs were proposed to contribute to dark matter
and seed the supermassive black holes we see in the center of galaxies [5, 6]. In ’90s, the
first formation scenarios made their appearance ranging from inflationary production
mechanisms [286, 287], primordial phase transitions [288, 289] up to gravitational
collapse of topological defects [290, 291, 292]. In the following decades, a huge progress
took place regarding the analytical [108] and numerical [107, 82, 90] methods describing
the PBH gravitational collapse process. In addition, the wide range of masses of PBHs
gave access to different physical phenomena, a fact which gave the possibility to make
significant progress on the constraints of the abundance of PBHs at different mass ranges
by studying data from different observational probes [29].

In the view of this significant progress on the field of PBHs physics, both at the theo-
retical and the observational level, a first goal of this thesis was to constrain parameters
of the early universe through PBH physics and vice-versa to constrain PBHs by studying
aspects of the early universe. In particular, in a first part of the thesis we set constraints
on parameters of the early universe, namely the energy scale at end of inflation and the
energy scale at the onset of the radiation era, by studying PBHs produced from the
preheating instability in the context of single-field inflationary models [30, 31]. Inter-
estingly, we find that PBHs can be so abundantly produced that reheating can proceed
from their evaporation. By taking also into account the decay of the inflaton field to a
radiation fluid, we show that the resonant instability structure of preheating responsible
for the PBH production is not disrupted by the presence of the radiative products of the
inflaton, a fact which points out to the presence of a generic PBH production mechanism
from the preheating instability in the context of single-field inflation.

Regarding future prespectives of this first research part of this thesis, one should
point out the possibility to narrow down the observational predictions of the CMB.
Particularly, for a fixed single-field inflationary potential, the only theoretical uncertainty
in the observational predictions of the CMB is on the number of e-folds elapsed between
the time when the CMB pivot scale exits the Hubble radius and the end of inflation,
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namely ∆N∗. This number depends on the energy scale at the end of inflation, ρinf ,
which is given by the inflationary model under consideration, the energy density at the
onset of the radiation era ρrad, and the averaged equation-of-state parameter between
the end of inflation and the onset of the radiation era, w̄rad and reads [293]

∆N∗ =
1− 3w̄rad

12(1 + w̄rad)
ln

(
ρrad

ρinf

)
+

1

4
ln

(
ρ∗

9M4
Pl

ρ∗
ρinf

)
(6.1)

− ln

(
kP/anow

ρ̃
1/4
γ,now

)
, (6.2)

where w̄rad ≡
∫Nrad
Ninf

w(N)dN

∆Nrad
is the mean equation of state during reheating with ∆Nrad =

Nrad − Ninf , ρ∗ is the energy scale at the time when the CMB pivot scale exits the
Hubble radius, anow is the present value of the scale factor, and ρ̃γ,now is the the energy
density of radiation today rescaled by the number of relativistic degrees of freedom.
Taking the pivot scale kP/anow to be 0.05Mpc−1 and ρ̃γ to its measured value, the last

term is N0 ≡ − ln

(
kP/anow

ρ̃
1/4
γ,now

)
' 61.76.

Considering then constraints on the energy scale at the end of inflation and on
energy scale at the onset of the radiation from PBHs produced during preheating, one
can constrain ∆N∗. In particular, by using the theoretical setup introduced [30] one
can compute w̄rad and from Eq. (6.1) constrain ∆N∗. In Fig. 6.1 we give the constraints
on ∆N∗ as a function of ρinf and ρrad.
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Figure 6.1 – ∆N∗ as a function of ρinf and ρrad, when the PBH mass fraction is renor-
malised by inclusion (left panel) and by premature ending (right panel).

Vice-versa, in a second part of the thesis, we study a backreaction problem of the
gravitational waves induced by energy density perturbations underlain by a gas of PBHs.
In particular, by requiring that the induced gravitational waves associated to PBHs are
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not overproduced in an era when ultralight PBHs (mPBH < 109g) dominate the energy
budget of the universe we set constraints on the abundance of PBHs at the time they
form as a function of their mass [32]. To the best of our knowledge, these constraints
are actually the first solid model-independent constraints in the literature regarding
ultralight PBHs, which are poorly constrained since they evaporate before BBN and
they do not leave a direct observational imprint apart from rather speculative Planckian
relics produced as leftovers of the PBH Hawking evaporation.

At this point, one should point out the potential detectability of the gravitational-
wave signal of the stochastic background of induced gravitational waves produced from
a universe filled with ultralight PBHs. As we found in [32], the peak frequency of
the relevant gravitational-wave spectrum, given in Eq. (6.3), depends crucially on the
initial PBH abundance when the PBH forms, ΩPBH,f , and the PBH mass, mPBH, and
lies within the frequency band of future gravitational-wave experiments like the Einstein
Telescope (ET) [294], the Laser Interferometer Space Antenna (LISA) [295, 256] and the
Square Kilometre Array (SKA) facility [296],

f

Hz
' 1

(1 + zeq)1/4

(
H0

70kms−1Mpc−1

)1/2 ( geff

100

)1/6
Ω

2/3
PBH,f

(
mPBH

109g

)−5/6

, (6.3)

where H0 is the value of the Hubble parameter today, geff is the effective number of
relativistic degrees of freedom at PBH formation time and zeq is the redshift at matter-
radiation equality. See also the following Fig. 6.2 in which the peak frequency is plotted
as a function of the initial PBH abundance at formation time and the PBH mass.

This is very important, since one can potentially further constrain ultralight PBHs
from the upcoming data of future gravitational-wave observational probes. However,
in order to give an explicit answer on whether this signal can be detected, one should
take into account the dynamical evolution of the gravitational-wave spectrum from the
end of the PBH-dominated era up to our epoch by resolving the gradual transition from
the PBH-dominated era up to the subsequent radiation-dominated era which is rather
subtle [297, 192].

Finally, in the last part of the thesis, which is a work in progress and not published
yet, we study aspects of the gravitational collapse of a radiation fluid to PBHs in the
presence of anisotropies. In particular, we model in a covariant way the difference
between the radial, pr, and the tangential pressure, pt, as proportional to either to
pressure or energy density gradients with a proportionality factor λ which accounts for
the anisotropic nature of the gravitational collapse. Then, by performing a gradient
expansion approximation on superhorizon scales at the level of the Einstein’s equations
we extract the initial conditions for the hydrodynamic and metric perturbations in the
presence of anisotropies. At the end, we deduce the dependence of the PBH formation
threshold in terms of the anisotropy parameter λ adopting a perturbative approach
based on the assumption that δc depends on the shape of the initial energy density
profile in the same way as in the isotropic case. Although this is something that requires
a numerical investigation which is an ongoing work, the results obtained here give a
reasonable estimation of what is the effect of the anisotropy.

197



10−15 10−12 10−9 10−6 10−3

ΩPBH,f

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

f
(H

z)

ET

LISA

SKA

101

102

103

104

105

106

107

108

109

m
P

B
H

in
gram

s

Figure 6.2 – The peak frequency of the stochastic gravitational wave background induced
by a dominating gas of primordial black holes, as a function of their abundance at the
time they form, ΩPBH,f (horizontal axis), and their mass mPBH (colour coding). The
displayed region of parameter space corresponds to values of mPBH and ΩPBH,f such
that black holes dominate the universe content for a transient period, they form after
inflation and Hawking evaporate before BBN and that the induced gravitational waves
are not overproduced, see Eq. (4.34). In practice, Eq. (6.3) is displayed with geff = 100,
zeq = 3387 and H0 = 70 km s−1 Mpc−1. For comparison, the detection frequency bands
of ET, LISA and SKA are also shown. Figure credited [32].

The next step is to evolve in time the non-linear hydrodynamic equations and study
numerically the PBH apparent horizon formation and the explicit dependence of the
PBH formation threshold on the anisotropy parameter λ. In this way, we will be able to
derive the dependence as well of the PBH mass fraction on the anisotropy parameter λ.
In this way, one can make use of the observational constraints on the PBH abundances
and set tight constraints on the anisotropy parameter of our model. In addition, in the
case where the anisotropy parameter λ becomes dimensionful, it depends on the intrinsic
energy scale of the problem, which in our case is the energy scale when the perturbations
are generated, namely the energy scale at the end of inflation. Consequently, in this
regime one can translate the potential observational constraints on λ to constraints on
the energy scale at the end of inflation giving access in this way to the inflationary
landscape.
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To summarize, with this thesis we studied aspects of the early universe through
PBH physics. In particular, we set constraints on cosmological parameters of the early
universe by studying PBHs produced during the preheating instability in the context of
single-field inflation and we constrained PBHs by studying induced gravitational waves
produced in an early PBH-dominated era. In addition, we studied some facets of the
PBH gravitational collapse in the presence of anisotropies. The research findings related
to this thesis can potentially open up new directions in the field of PBH physics as
stressed out above shedding light at the same time in the understanding of the physics
of the early universe.
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Chapitre 7

Compte Rendu Français

Ce compte rendu contient une description courte des résultats principaux de cette
thèse sur articles.

7.1 Contexte Scientifique

Les trous noirs primordiaux (TNP), proposés initialement dans les années ’70
[1, 298, 299], attirent de plus en plus l’attention de la communauté scientifique, vu
qu’ils peuvent adresser un grand nombre de problèmes de la cosmologie contemporaine.
D’après des arguments récents, ils peuvent potentielllement constituer une partie ou
la totalité de la matière noire en expliquant en même temps la génération des struc-
tures gravitationnels de grande échelle à travers les fluctuations Poissoniennes [3, 4].
De plus, les TNP pourraient fournir les graines des trous noirs supemassifs au milieu
des noyaux galactiques [198, 6] aussi bien que consituer les ancêtres des évenements de
coalescence des trous noirs recemment détectés par les missions LIGO/VIRGO [7] à
travers l’émission des ondes gravitationnels.

Malgré le fait que les TNP ne sont pas encore détectés, ces objets astrophysiques
jouent un rôle cardinal sur la cosmologie étant donné le fait que avec eux, dépendamment
de leur masse, on peut explorer et contraindre une grande variété de phénomènes phy-
siques. En particulier, les TNP de pétite masse (mPBH ≤ 1015g) qui se sont évaporés
maintenant peuvent donner accès à la physique de l’univers primordial comme la phy-
sique de l’inflation et des perturbations cosmologiques primordiales [17], la physique du
rechauffement de l’univers et de la nucléosynthèse après le Big Bang (BBN) [18, 19] , la
physique des ondes gravitationnels primordiaux [21] et des transitions de phase primor-
diales [22] aussi bien que la physique du fond cosmologique (Cosmic Microwave Back-
ground) [20]. De l’autre côté, avec les TNP d’une masse intérmediaire qui s’évaporent
à notre époque cosmique, on peut investiguer des phénomènes de l’astrophysique de
haute énérgie comme le fond des rayons cosmiques par le biais de l’évaporation Hawking
de TNP [23]. Enfin, les TNP d’une grande masse qui existent encore aujourd’hui, i.e.
(mPBH > 1015g), peuvent donner accès à des phénomènes de la physique gravitation-
nelle, comme les lentilles gravitationnelles [24, 25], à la formation des structures de
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grande échelle [26] aussi bien que à la physique du secteur noir de l’univers, à savoir la
matière noire [27] et l’énergie noire [28].

7.2 Recherche effectuée pendant la thèse

Après avoir suscité avant le contexte scientifique sur le domaine de TNP on résume ici
les résultats de la recherche effectuée pendant mes études doctorales, pendant laquelle on
a combiné des aspects de l’univers primordial et de la physique des ondes gravitationnels
avec la physique des TNP. On a étudié aussi des facettes du processus de l’effondrement
gravitationnel des TNP en présence des anisotropies.

7.2.1 TNP de l’instabilité de préchauffement

L’inflation constitue la théorie cardinale de la cosmologie primordiale qui peut décrire
d’une manière concordante les conditions initiales de l’univers primordial et résoudre les
problèmes fondamentaux de l’époque du Hot Big Bang, à savoir les problème de l’hori-
zon et de la platitude. De plus, l’inflation peut générer naturellement les petrurbations
cosmologiques primordiales qui ont engendré les structures de grande échelle à l’univers
aussi bien que le fond cosmologique.

Pour adrésser ainsi à tous ces aspects mentionnés avant, l’inflation postule une
phase initiale pendant laquelle l’univers s’étend avec un rythme accéléré et son bud-
get énergétique est dominé par un champ scalaire, φ, rapporté comme l’inflaton, qui
est associé à un potentiel inflationnaire V (φ). Après avoir passé d’une phase de rou-
lement lent tout au long de son potentiel, l’infaton commence à osciller à l’origine de
son potentiel, un comportement oscillatoire qui conduit inévitablement à l’émergence
d’une structure d’instabilité résonante au niveau de l’équation de mouvement des per-
turbations scalaires. C’est alors pendant cette phase oscillatoire de l’inflaton, souvant
citée comme préchauffement, qu’on étudie la production des TNP dans le contexte des
modèles inflationnaires avec un champ scalaire [30, 31].

En particulier, on a trouvé que les TNP produits pendant la période du prechauffe-
ment peuvent potentiellement dominer le contenu énergétique de l’univers et conduire
au réchauffement de l’univers, pendant lequel les particules élémentaires du Modèle
Standard se produisent, à travers leur évaporation. Par conséquent, en exigeant que
les TNP ne dominent pas le budget énergétique de l’univers pendant la période de la
nucléosynthèse après le Big Bang et qu’ils ne surproduisent pas des reliques Planckiennes,
on a imposé des contraintes concernant l’échelle d’énergie de l’univers au commencement
de l’époque du Hot Big Bang, ρrad aussi bien l’échelle d’énergie de l’univers à la fin de
la période d’inflation, ρinf [30]. Dans la Fig. 7.1 ci-dessous on montre les contraintes
combinées au niveau des paramètres ρrad et ρinf pour les deux prescriptions de renorma-
lisation de la fonction de masse des TNP étant introduites pour adresser le problème de
la surproduction de TNP. Pour plus de détails à voir sur [30].

Ensuite, vu que sur [30] on a considéré que les auto-interactions de l’inflaton, on a
avancé notre recherche en couplant d’une manière covariante le champ inflaton avec un
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Figure 7.1 – Contraintes combinées au niveau des paramètres ρrad et ρinf quand la
fonction de masse de TNP se renormalise par inclusion (panneau gauche) et par l’arrêt
prématuré de l’instabilité de préchauffement (panneau droit). Les régions grises sont
exclues vu qu’elles correspondent aux valeurs de ρrad, qui ne peuvent pas être réalisés
naturellement tandis que les régions rouges sont aussi exclues parce qu’elles conduisent
aux abondances très grandes de TNP à l’époque de BBN. Les régions bleues sont ex-
clues vu que dans lequelles quelq’un se confronte avec une surpoduction des reliques
Planckiennes. La région qui reste, démontrée en blanc, est celle qui est permise. Figure
créditée à [30].

fluide de radiation afin d’assurer la transition de la période de l’inflation à la période
du Hot Big Bang. Enfin, on a trouvé que la desintégration de l’inflaton en radiation ne
change pas la structure de l’instabilité résonante du préchauffement, responsable pour la
production de TNP, jusqu’à le moment où le fluide de radiation domine énergétiquement
l’univers. Par suite, l’émergence de l’instabilité de résonance qui favorise la formation
des TNP est encore présente pendant la période du préchauffement, en indiquant de
cette façon un mécanisme de production de TNP général dans le contexte des modèles
inflationnaires avec un champ scalaire [31].

7.2.2 Ondes gravitationnelles d’un univers rempli des TNP

Au sein de cette thèse, on combiné aussi des aspects de la physique des ondes gravi-
tationnelles avec la physique des TNP. Évidemment, il y a pleins de canaux connectant
la physique des TNP avec la physique des ondes gravitationnnelles. Parmi eux, on peut
mettre en exergue les trois plus significatifs. Tout d’abord, il faut se référer aux ondes
gravitationnelles de second ordre qui se sont induites par les perturbations de courbure
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primordiales qui ont précédé et ont donné naissance aux TNP. Un second canal possible
de connection de TNP avec les ondes gravitationnelles est le fond stochastique gravi-
tationnel des gravitons émis par le biais de l’évaporation Hawking des TNP. Enfin, le
troisième canal, le plus étudié par rapport aux autres, est le fond stochastique des ondes
gravitationnelles produites à travers des événements de coalescence des TNP.

Pendant le temps de déroulement de cette thèse, on s’était concentré sur les ondes
gravitationnellles induites par des perturbations scalaires associés aux TNP eux-mêmes,
et pas aux perturbations de courbure primordiales qui ont donné naissance aux TNP.
En particulier, on a étudié un gas des TNP qui crée son propre potentiel gravitationnel
et qui induit inévitablement un fond des ondes gravitationnelles à travers des effets
gravitationnels de seconde ordre. Plus spécifiquement, on a traité des régimes où les
TNP constituent la composante principale du budget énergétique de l’univers pendant
une période avant BBN. En demandant alors que ces ondes gravitationnelles induites ne
se produisent pas en excès à la fin de la période de domination énergétique des TNP,
on a imposé des contraintes indépedentes du modèle de production de TNP sur leur
abondance au moment de leur formation en fonction de leur masse. Ci-dessous, on donne
notre approximation analytique des contraintes extraites au niveau de l’abondance des
TNP,

ΩPBH,f < 1.4× 10−4

(
109g

mPBH

)1/4

, (7.1)

où ΩPBH,f et mPBH sont l’abondance initiale des TNP le moment de leur formation et
la masse des TNP respectivement.

Vue que ces TNP se forment et s’évaporent avant BBN, leurs masses sont miniscules,
à savoir mPBH ∈

[
10g, 109g

]
et d’après la bibliographie internationale sur le sujet, ils ne

sont pas bien contraints. En étudiant alors les ondes gravitationnelles induites produites
dans une époque de domination énergétique des TNP on a pu imposer les premières
contraintes solides sur les TNP ultra-légers [32]. On voit aussi ci-dessous dans la Fig. 7.2
les contraintes extraites au niveau de paramètres ΩPBH,f et mPBH.

7.3 Effondrement anisotrope des TNP

Enfin, pendant cette thèse, on a abordé aussi une autre facette de la physique des
TNP, réliée à l’effondrement gravitationnel en présence des anisotropies. En particulier,
en adoptant la symétrie sphérique, on a introduit une pression anisotrope afin de tenir en
compte le caractère anisotrope de l’éffondrement gravitationnel d’un fluide de radiation.
Plus spécifiquement, étant inspiré par le comportement des objets ultra-compacts qui
imitent le comportement dynamique des trous noirs, on modélé d’une façon covariante
la difference entre la densité de la pression radiale, pr, et la densité de la pression tan-
gentielle, pt, en postulant que la différence pr− pt est proportionnelle soit aux gradients
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Figure 7.2 – L’énergie de densité fractionnelle aux ondes gravitationnelles, ΩGW,tot,
au moment d’évaporation de TNP en fonction de deux paramètres, à savoir la masse
des TNP, mPBH, et leur abondance, ΩPBH,f , le moment ils se forment. La région orange
correspond aux régimes où ΩGW(tevap) > 1 et conduit à la surproducion des ondes
gravitationnelles. Cette région est alors exclue. La région bleue correspond aux régimes
où les TNP ne dominent jamais le budget énergétique de l’univers tandis que la région
verte correspond aux cas où on se confronte avec des phases transitoires de domination
des TNP et où les ondes gravitationnelles ne se produisent pas en excès. La ligne noire
en tirés représente notre approximation analytique (7.1), par rapport à la contrainte
supérieure au niveau de ΩPBH,f . Évidemment, on peut voir qu’il nous fournit avec une
approximation très bonne de la frontière entre les régions orange et verte.

de pression soit aux gradients de densité d’énergie,

pt = pr + λf(r, t)kµ∇µpr (gradients de pression) (7.2)

or

pt = pr + λf(r, t)kµ∇µρ (gradients de densité d’énergie), (7.3)

où kµ est un quadrivecteur spatial unitaire orthogonal à la quadrivitesse du fluide,
∇µ correspond à la dérivative covariante, λ est un paramètre qui correspond au degré
de l’anisotropie et f(r, t) est une fonction libre. Ensuite, en utilisant la méthode de
l’éxpansion de gradients au niveau des équations hydrodynamiques, on a extrait les
conditions initiales pour les perturbations hydrodynamiques et metriques en fonction du
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profile de courbure K(r), rélié à la géométrie de l’éspace-temps.
Enfin, on a extrait la dépendence du seuil de formation de TNP, δc, en fonction du

degré de l’anisotropie λ en supposant que δc dépend de la forme du profil initial de
la densité d’énergie de la même manière que dans le cas isotrope. Malgré le fait que
cela demande une exploration numérique, constituant un travail en cours, les resultats
obtenus ici donnent une estimation raisonable de l’effet de l’anisotropie. Dans la figure
ci-dessous, on voit la dépendence du δc en fonction du degré de l’anisotropie λ ou λ̃,
dépendant de la modelisation de la différence pr − pt.
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Figure 7.3 – Le paramètre de forme (panneau gauche) et le seuil de formation de TNP
(panneau droit) en fonction du degré de l’anisotropie λ̃. Les circles bleus correspondent
à la modelisation où pr− pt = −λ̃R(r, t)Drpr tandis que les circles rouges correspondent
à la modelisation où pr − pt = −λ̃R(r, t)Drρ.

7.4 Conclusions - Perspectives

Depuis les années ’70, quand les TNP s’étaient initialement introduits par Novikov
and Zeldovich [1] et Stephen Hawking [8], ils attirent de plus en plus l’attention de la
communauté scientifique. Déjà, dans [2] les TNP sont proposés afin de contribuer au
budget énergétique de la matière noire et engender les trous noirs supermassifs qu’on
voit au centre des galaxies [5, 6]. Dans les années ’90, les premiers mécanismes de
production de TNP se sont apparus, se variant des modèles inflattionaires [286, 287]
et des transitions de phase primordiales [288, 289] jusqu’à l’effondrement gravitation-
nel des défauts topologiques [290, 291, 292]. Dans les decennies suivantes, un grand
progrès s’était manifesté par rapport aux méthodes analytiques [108] et numériques
[107, 82, 90] décrivant le processus de l’effondrement gravitationnel des TNP. De plus, la
grande gamme de masse des TNP nous a permis d’avoir accès aux phénomènes physiques
différents donnant de cette façon la possibilité de contraindre l’abondance des TNP en
étudiant les données observationnelles des différentes éxperiences [29].

Vu ce progrès significatif au domaine de la physique des TNP, au niveau théorique
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Figure 7.4 – Le paramètre de forme (panneau gauche) et le seuil de formation de TNP
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(
ρ
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on a choisi n = 0, q = 10−10 and ε0 = 10−1.

et à la fois observationnel, un premier but de cette thèse était de poser des contraintes
aux paramètres de l’univers primordial à travers la physique des TNP et vice-versa de
contraindre les TNP en étudiant quelques aspects de l’univers primordial. En particu-
lier, dans la première partie de la thèse, on a posé des contraintes sur des paramètres
cosmologiques de l’univers primordial, à savoir l’échelle d’énergie à la fin de la période
de l’inflation et l’échelle de l’énergie au commencement de l’époque du Hot Big Bang
en étudiant des TNP se produisant pendant la période de préchauffement au contexte
de la théorie de l’inflation avec un champ scalaire [30, 31]. Il est intéressant de no-
ter que les TNPs se produisant pendant la période de préchauffement se produisent si
abondamment qu’ils peuvent conduire au réchauffement de l’univers par le biais de leur
évaporation.

En ce qui concerne les perspectives futures de cette première partie de la thèse il
faut souligner les contraintes potentielles que quelq’un peut poser sur les prévisions
observationnelles du CMB. Plus spécifiquement, pour un potentiel inflattionaire avec un
champ scalaire fixe, la seule incertitude au niveau des prévisions observationnelles du
CMB se repose au nombre d’e-folds passés entre le temps dans lequel l’échelle pivot du
CMB franchit le rayon Hubble et la fin de la période l’inflation, à savoir ∆N∗. Ce nombre,
dépendant de l’échelle d’énergie à la fin de la période de l’inflation, ρinf , qui est donné
par le modèle d’inflation sous considération, de l’échelle de l’énergie au commencement
de l’époque du Hot Big Bang, ρrad, et du paramètre de l’équation d’état moyen entre la
fin de l’inflation et le commencement de l’époque du Hot Big Bang, w̄rad, s’écrit comme
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[293]

∆N∗ =
1− 3w̄rad

12(1 + w̄rad)
ln

(
ρrad

ρinf

)
+

1

4
ln

(
ρ∗

9M4
Pl

ρ∗
ρinf

)
(7.4)

− ln

(
kP/anow

ρ̃
1/4
γ,now

)
, (7.5)

où w̄rad ≡
∫Nrad
Ninf

w(N)dN

∆Nrad
est le paramètre de l’équation d’état moyen pendant la période

du réchauffement, ∆Nrad = Nrad−Ninf , ρ∗ est l’échelle d’énergie au moment où l’échelle
pivot du CMB franchit le rayon Hubble, anow est le facteur d’échelle aujourd’hui et ρ̃γ,now

est la densité d’énergie de radiation aujourd’hui. En prenant alors l’échelle pivot du CMB
kP/anow égal à 0.05Mpc−1 et ρ̃γ à son valeur mesuré aujourd’hui, le dernier terme en

Eq. (7.4) devient N0 ≡ − ln

(
kP/anow

ρ̃
1/4
γ,now

)
' 61.76.

Par suite, en considérant les contraintes sur l’échelle d’énergie à la fin de la période
de l’inflation et l’échelle de l’énergie au commencement de l’époque du Hot Big Bang
en étudiant des TNP se produisant pendant la période de préchauffement, on peut
contraindre la quantité ∆N∗. En particulier, en utilisant le setup théorique developpé en
[30], quelq’un peut calculer w̄rad et de l’Eq. (7.4) poser des contraintes sur ∆N∗. Dans
la Fig. 7.5,on donne les contraintes au niveau de ∆N∗ en fonction de ρinf et ρrad.

Figure 7.5 – ∆N∗ en fonction de ρinf et ρrad, quand la fonction de masse des TNP est
renormalisée avec le schéma de l’inclusion des TNP (panneau gauche) aussi bien qu’avec
le shéma de l’arrêt premature de l’instabilité du préchauffement (panneau droit). Pour
plus de détails à voir sur [30].

Vice-versa, dans la seconde partie de la thèse, on a étudié un problème de réaction
en retour des ondes gravitationnelles induites par des perturbations d’énergie de densité
sous-tendues par un gaz des TNP. Plus spécifiquement, en demandant que les ondes
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gravitationnelles induites associées aux TNP ne se produisent pas en excès pendant une
période cosmique où des TNP ultralégers (mPBH < 109g) dominent le budget énergétique
de l’univers on a posé des contraintes sur l’abondance des TNP au moment où ils se
forment en fonction de leur masse [32]. Au meilleur de notre connaissance, elles se
sont les premières contraintes solides indépendentes du modèle de production des TNP
ultalégers dans la littérature internationale, étant donné le fait que les TNP ultralégers
sont très pauvrement contraintes vu qu’ils s’évaporent avant BBN et ils ne laissent pas
une empreinte observationnelle directe à part des reliques Planck spéculatives qui se
produisent comme un vestige après l’évaporation Hawking des TNP.

Sur ce point, il faut mettre en exergue la détectabilité potentielle du signal stochas-
tique des ondes gravitationnelles induites produites dans un univers étant dominé par
des TNP ultralégers. De façon interessante, on a trouvé dans [32] que la fréquence de
crête du spectrum respective, donné par l’Eq. (6.3) dépend de manière décisive de l’abon-
dance initiale des TNP au moment de leur formation, ΩPBH,f , et de la masse du TNP,
mPBH, et se trouve de la gamme de fréquences des expériences des ondes gravitation-
nelles comme l’Einstein Telescope (ET) [294], le Laser Interferometer Space Antenna
(LISA) [295, 256] et le Square Kilometre Array (SKA) [296],

f

Hz
' 1

(1 + zeq)1/4

(
H0

70kms−1Mpc−1

)1/2 ( geff

100

)1/6
Ω

2/3
PBH,f

(
mPBH

109g

)−5/6

, (7.6)

où H0 est le valeur du paramètre Hubble aujourd’hui, geff est le nombre effective des
degrés de liberté relativistes au moment de fomation des TNP et zeq est le décalage vers
le rouge au moment de l’équilibre énergétique entre la matière et la radiation. À voir
aussi la Fig. 7.6 dans laquelle la fréquence de crête se montre en fonction de ΩPBH,f et
de mPBH.

Cette perspective est très importante vu que quelq’un peut potentiellement
contraindre plus les TNP ultralégers en étudiant les donnés qui vont arriver par les
expériences observationnelles futures des ondes gravitationnelles. Par contre, afin de
donner une réponse finale si ce signal stochastique des ondes gravitationnelles induites
associées aux TNP ultralégers peut être détecté ou non, il faut tenir en compte l’évolution
dynamique du spectrum des ondes gravitationnelles de la fin de l’époque de domination
des TNP jusq’à notre époque. Et pour cela, il est nécessaire de résoudre la transition
graduelle de l’époque cosmique dominée par des TNP à l’époque cosmique successive
dominée par la radiation, une étude assez subtile [297, 192].

Enfin, dans la dernière partie de la thèse, qui est un travail en cours pas encore
publié, on étudie des aspects de l’effondrement gravitationnel d’un fluide radiative aux
TNP en présence des anisotropies. En particulier, on modèle d’une manière covariante
la différence entre la pression radiale, pr, et la pression tangentielle, pt, en postulant que
la différence pr− pt est proportionnelle soit aux gradients de pression soit aux gradients
de densité d’énergie avec un paramètre de proportionalité λ qui est équivelent à un
paramètre d’anisotropie. En réalisant alors le programme perturbative de l’expansion
des gradients au niveau des équations d’Einstein on déduit les conditions initiales des
perturbations hydrodynamiques et metriques en présence des anisotropies. De plus, on
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Figure 7.6 – La fréquence de crête du fond stochastique des ondes gravitationnelles
induites par un gaz des TNP dominant le budget énergétique de l’univers, en fonction
de l’abondance des TNP au moment où ils se forment, ΩPBH,f (axe horizontal), et de
leur masse, mPBH (code des couleurs). La région de l’éspace des paramètres démontrée
correspond aux valeurs de mPBH et de ΩPBH,f tels que les TNP dominent le budget
énergétique de l’univers pendant une période transitoire, se forment après la fin de la
période de l’inflation et s’évaporent avant BBN et que les ondes gravitationnelles induites
ne se produisent pas en excès, à voir Eq. (7.1). En pratique, Eq. (6.3) est démontrée avec
geff = 100, zeq = 3387 et H0 = 70 km s−1 Mpc−1. Pour comparaison, les bandes des
fréquences détectables par ET, LISA et SKA sont aussi montrées. Figure creditée à
[32].

déduit la dépendence du seuil de formation de TNP, δc, en fonction de λ en supposant
que δc dépend de la même manière que dans le cas isotrope de la forme du profil initial
de densité d’énergie.

Le prochain pas à faire est d’évoluer les équations hydrodynamiques non-linéaires et
étudier numériquement la formation de l’horizon du TNP et la dépendence explicite du
seuil de formation des TNP avec le degré de l’anisotropie λ. Par conséquent, on pourra
calculer le seuil de formation des TNP en présence des anisotropies et dériver aussi la
dépendence de la fonction de masse des TNP avec le paramètre λ. Et cela va ouvrir des
perspectives sur notre recherehce vu qu’en utilisant les contraintes des abondances des
TNP quelq’un peut contraindre le degré de l’anisotropie λ de notre modèle. De plus, dans

209



le cas où le paramètre λ a des dimensions, il se dépend lui-même de l’échelle d’énergie
intrinsèque du processus de l’effondrement gravitationnel, qui est dans notre cas l’échelle
d’énergie au moment où les perturbations sont générées, à savoir l’échelle d’énergie à la
fin de la période de l’inflation. Par conséquent, quelq’un peut traduire les contraintes
observationnelles potentielles au niveau du degré de l’anisotropie λ aux contraintes au
niveu de l’échelle d’énergie à la fin de la période de l’inflation donnant accès de cette
façon au panorama inflationnaire.

Pour résumer, avec cette thèse on a étudié des aspects de l’univers primordial par
le biais de la physique des TNP. Plus particulièrement, on a posé des contraintes sur
des paramètres cosmologiques de l’univers primordial en étudiant les TNP se produisant
pendant la période du préchauffement au contexte de la théorie de l’inflation avec un
champ scalaire. De plus, en étudiant aussi les ondes gravitationnelles induites produites
dans une époque cosmique où des TNP constituent la composante dominante du budget
énergétique de l’univers, on a posé des contraintes indépendentes du modèle de produc-
tion des TNP sur l’abondance des TNP au moment où ils se forment en fonction de
leur masse. De surcrôıt, on a étudié des facettes de l’effondrement gravitationnel des
TNP en présence des anisottropies. Comme il était mis en évidence avant, les résultats
de la recherche effectuée au sein de cette thèse peuvent potentiellement ouvrir des di-
rections nouvelles sur le domaine de la physique des TNP et porter un éclairage sur la
compréhension de la physique de l’univers primordial.
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Appendix A

Appendix

A.1 The sound speed in a time-dependent w background

Here, we extract the sound speed of a general adiabatic fluid, c2
s , with a time-

dependent equation-of-state parameter, w. In a general system, the pressure density p
is a function of the energy density ρ as well as of the entropy density S, i.e. p = p(ρ, S).
Consequently, one can write the following equation

δp = c2
sδρ+

(
∂p

∂S

)

ρ

δS, (A.1)

where the sound speed c2
s is defined as c2

s ≡
(
∂p
∂ρ

)
S
. If one considers then an adiabatic

system then they should require that
(
∂p
∂S

)
ρ

= 0, i.e. there is no entropy production.

Consequently, for such a system c2
s becomes

c2
s =

δp

δρ
, (A.2)

Given then the fact that the background pressure and energy densities of an adiabatic
fluid system, p and ρ depend only on time, one can rewrite Eq. (A.2) by introducing the
derivation with respect to the conformal time and using the chain rule, as

c2
s =

p′

ρ′
, (A.3)

where the prime denotes differentiation with respect to the conformal time, η. Us-
ing therefore the continuity equation (1.18) written with the conformal time as the
time variable as well as time differentiating the equation of state for a time dependent
equation-of-state parameter w, one can straightforwardly obtain that

c2
s (η) = w(η)− 1

3 [1 + w(η)]H(η)

dw

dη
, (A.4)

where H ≡ a′
a is the conformal Hubble parameter.
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A.2 The External Derivative

Below we derive the relation Dkf = Drf +Dtf as well Eq. (5.12) by making use of
the external derivative which is defined to be the unique R-linear mapping from k-forms
to (k + 1)-forms satisfying the following properties [300]:

1. df is the differential of 0-forms (smooth functions) f.
2. d(df) = 0 for every k-form f .
3. d(a ∧ b) = da ∧ b+ (−1)pa ∧ db, where b is a p-form.
Having that into our mind, we can prove here the relation Dkf = Drf + Dtf for a

general function f . If we multiply (5.10) with a function f (0-form) and take the external
derivative we have that

Gdf ∧ du+ fdG ∧ du = Adf ∧ dt+ fdA ∧ dt−Bdf ∧ dr − fdB ∧ dr ⇔
Gdf ∧ du = Adf ∧ dt−Bdf ∧ dr ⇔

G

(
∂f

∂r

)

u

dr ∧ du = A

(
∂f

∂r

)

t

dr ∧ dt+B

(
∂f

∂t

)

r

dr ∧ dt⇔

G

(
∂f

∂r

)

u

dr ∧ du = A
G

A

(
∂f

∂r

)

t

dr ∧ du+B
G

A

(
∂f

∂t

)

r

dr ∧ du⇔

Dkf = Drf +Dtf,

where from the first to the second equality, we used the fact that the external derivative
applied to (5.10) gives dG ∧ du = dA ∧ dt − dB ∧ dr and from the third to the forth
equality we expressed dt in terms of du and dr through (5.10).

Regarding now the derivation of Eq. (5.12), one obtains from (5.10) by applying the
external derivative that

dG ∧ du = dA ∧ dt− dB ∧ dr ⇔
(
∂G

∂r

)

u

dr ∧ du =

(
∂A

∂r

)

t

dr ∧ dt+

(
∂B

∂t

)

r

dr ∧ dt⇔
(
∂G

∂r

)

u

dr ∧ du =
G

A

(
∂A

∂r

)

t

dr ∧ du+
G

A

(
∂B

∂t

)

r

dr ∧ du⇔

DkG

G
=
DrA

A
+
DtB

B
⇔

DkG

G
=
DrA

A
+
DrU

Γ

where in the last equality we replace t from (5.10) and we used the fact that from 01
Einstein equation, DtB

B = DrU
Γ .
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A.3 Lower limit on the anisotropic parameter λ/λ̃

As we checked numerically for values of λ < 0 less than a critical value the pres-
sure and energy density gradient profiles were diverging at zero for both of the cases
f(r, t) = R(r, t) and f(r, t) = ρn(r, t). This divergence can be explained by developing
the pressure/energy density gradient profile around zero. We will work here with the
energy density gradients. The same arguments apply also for the pressure gradients.

Starting with the case of f(r, t) = R(r, t) and working with the differential equation
5.98 regarding the energy density gradients, one can develop g(r) around zero as

g(r) = g0 + g1r + g2r
2/2,

where
g0 = g(0) = ρ̃′(0) , g1 = g′(0) and g2 = g′′(0)

Then, after a straightforward calculation, we get that

2λr

3

(
1− Ar

2

2

)
(g1 + g2r)+

[
8λ

3

(
1− Ar

2

2

)
+ 1

](
g0 + g1r +

g2r
2

2

)
−ρ̃′iso

(
1− Ar

2

2

)
= 0

Considering now only the O(r0) terms we have that

g0 = ρ̃′(0) = lim
r→0

ρ̃′iso(r)

1 + 8λ
3

,

where ρ′iso = 2
3

{
[r3K(r)]

′

3r2

}′
r2

m

If λ < −3/8 and since ρ̃′iso(0) = 0− one gets that ρ̃′(0) = 0+ which is not consistent
since ρ̃′(0) should approach zero from negative values. If however λ > −3/8 then one
obtains the consistent result that ρ̃′(0) = 0−. For the critical value λ = −3/8 then one
has that

ρ̃′(0) = lim
r→0

ρ̃′iso(r)

1 + 8λ
3

=
0

0
=
ρ̃′′iso(0)

0
= −∞ 6= 0−,

after applying the De l’Hopital theorem and considering the fact that ρ̃′′iso(0) < 0.
Consequently, in the case of pr − pt = −λRDrρ with λ < 0 one gets that λ should

be larger than a critical value, namely λ > λc = −3/8. In the case of λ > 0 we do not
have this problem since the expression 1 + 8λ

3 is always positive, making thus ρ̃′(0) = 0−

always for λ > 0. As one may notice, λ = λc = −3/8 is the value which makes zero the
prefactor in front of g(r) in Eq. (5.98) and which determines the sign of ρ̃′(0) at order
O(r0).

In the case of pr − pt = −λRDrpr, following the same procedure one can conclude
that λ > λc = −9/14 in order not to confront divergent pressure gradient profiles at
r = 0.

Regarding now the case of f(r, t) = ρn(r, t) one can apply the same gradient expan-
sion around zero for the differential equation governing the pressure gradient profile’s
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behavior, i.e. Eq. (5.82) and derive the necessary condition for which the pressure gra-
dient does not diverge at r = 0. At this point, we should point out that given that in
the formulation where f(r, t) = ρn(r, t) we have more than one anisotropy parameters,
the divergence condition should be given in terms of λ̃, n, q and ε0.

Writing then h(r) as
h(r) = h0 + h1r + h2r

2/2,

where
h0 = h(0) = p̃r

′(0) , h1 = h′(0) and h2 = h′′(0)

and applying the same procedure as before one gets that

h0 = p̃r
′(0) = lim

r→0

p̃′r,iso(r)

2
9(1−2n)

λ̃
q

(
q
ε0

)3
[
(5− 6n)

(
q
ε0

)4n−2
− 2

] ,

where p̃′r,iso = 2
3

{
[r3K(r)]

′

3r2

}′
r2

m. Consequently, the necessary condition in order not

obtain a divergence at r = 0 is

2

9(1− 2n)

λ̃

q

(
q

ε0

)3
[

(5− 6n)

(
q

ε0

)4n−2

− 2

]
> 0. (A.5)

From the above expression if one fixes q and ε0, one may identify two regimes, namely
when n > 1/2 and when n < 1/2. In particular when n > 1/2 given the fact that
q/ε0 � 1 one obtains that the second term in the brackets in Eq. (A.5) is the dominant
one and that λ̃ should be positive, i.e. λ̃ > 0. If one the other hand n < 1/2 the first
term in the brackets is the dominant one and one can see straightforwardly that again
λ̃ should be positive. Therefore, if q/ε0 � 1 which is in general the case, λ̃ > λ̃c = 0.

In the case now where the difference between the radial and the tangential pressure
is modeled as proportional to energy density gradients, following the same procedure as
before and make a gradient expansion around r = 0 at the level of 5.110 one gets the
following necessary condition to avoid divergences around r = 0.

3

1− 2n

λ̃

q

(
q

ε0

)3
[

1−
(
q

ε0

)4n−2
]
< 0. (A.6)

From the above equation, one can easily check that given the fact that q/ε0 � 1, λ̃
should always be positive for any value of n, i.e. λ̃ > λ̃c = 0.
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A.4 The limits n→ 1/2 and n→ 1/4 of Φpr, Φρ, I1,pr, I2,pr, I1,ρ

and I2,ρ

Below we give the limits n→ 1/2 and n→ 1/4 of Φpr , Φρ, I1,pr ,I2,pr , I1,ρ, I2,ρ which
are given respectively by equations (5.70), (5.107), (5.80), (5.108) and (5.109).

lim
n→1/2

Φpr(a) = −
2λ
√
ρb,inf

ainfrm

(
a

ainf

)−3

ln

(
a

ainf

)
(A.7)

lim
n→1/2

I1,pr(a) =
λ
√
ρb,inf

2ainfrm

(
a

ainf

)−3 [
2− 2

a

ainf
+ ln

(
a

ainf

)]
(A.8)

lim
n→1/4

I1,pr(a) = −
λρ

1/4
b,ini

2ainfrm

(
a

ainf

)−3{
1 +

a

ainf

[
2 ln

(
a

ainf

)
− 1

]}
(A.9)

lim
n→1/2

I2,pr(a) =
λ
√
ρb,inf

ainfrm

(
a

ainf

)−3 [
ln

(
a

ainf

)
− a

ainf
+ 1

]
(A.10)

lim
n→1/4

I2,pr(a) = −
λρ

1/4
b,inf

ainfrm
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a

ainf

)−3{
1 +
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ln

(
a

ainf

)
− 1

]
a

ainf

}
(A.11)

lim
n→1/2

Φρ(a) = −
6λ
√
ρb,inf

ainfrm

(
a

ainf

)−3

ln

(
a

ainf

)
(A.12)

lim
n→1/2

I1,ρ(a) =
3λ
√
ρb,inf

2ainfrm

(
a

ainf

)−3 [
2− 2

a

ainf
+ ln
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a

ainf
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(A.13)

lim
n→1/2

I1,ρ(a) = −
3λρ

1/4
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2ainfrm
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a

ainf

)−3{
1 +

a

ainf
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2 ln

(
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ainf
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(A.14)
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n→1/2

I2,ρ(a) =
3λ
√
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ainfrm

(
a

ainf

)−3 [
ln
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ainf
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]
(A.15)

lim
n→1/4

I2,ρ(a) = −
3λρ

1/4
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ainfrm
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ln
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}
. (A.16)

215



Bibliography

[1] Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during
Expansion and the Hot Cosmological Model, Soviet Astronomy 10 (Feb., 1967)
602.

[2] G. F. Chapline, Cosmological effects of primordial black holes, Nature 253 (1975)
251–252.

[3] P. Meszaros, Primeval black holes and galaxy formation, Astron. Astrophys. 38
(1975) 5–13.

[4] N. Afshordi, P. McDonald and D. Spergel, Primordial black holes as dark matter:
The Power spectrum and evaporation of early structures, Astrophys. J. Lett. 594
(2003) L71–L74, [astro-ph/0302035].

[5] B. J. Carr and M. J. Rees, How large were the first pregalactic objects?, Monthly
Notices of the Royal Astronomical Society 206 (Jan., 1984) 315–325.

[6] R. Bean and J. Magueijo, Could supermassive black holes be quintessential
primordial black holes?, Phys. Rev. D 66 (2002) 063505, [astro-ph/0204486].

[7] LIGO Scientific, Virgo collaboration, B. Abbott et al., GWTC-1: A
Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by
LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9
(2019) 031040, [1811.12907].

[8] S. Hawking, Gravitationally collapsed objects of very low mass, Monthly Notices
of Royal Astronomic Society 152 (Jan., 1971) 75.

[9] B. J. Carr and S. W. Hawking, Black holes in the early Universe, Monthly
Notices of Royal Astronomic Society 168 (Aug., 1974) 399–416.

[10] B. J. Carr, The Primordial black hole mass spectrum, Astrophys. J. 201 (1975)
1–19.

[11] J. Rhoades, Clifford E. and R. Ruffini, Maximum mass of a neutron star, Phys.
Rev. Lett. 32 (1974) 324–327.

[12] J. L. Bernal, A. Raccanelli, L. Verde and J. Silk, Signatures of primordial black
holes as seeds of supermassive black holes, JCAP 05 (2018) 017, [1712.01311].
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