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Abstract
The paradigm shift from traditional Industrial Control Systems (ICSs) to software-based systems with
intertwined physical elements, like Cyber-Physical Systems (CPSs), has substantially raised the degree
of automation, inter-connectivity, and rigor of the requirements. An increasing number of features and
functionality driven by interaction among the system entities leads to higher complexity by design.
Deploying such systems in critical domains like automotive entails integrating safety and security
concerns during the System Engineering (SE) process in light of their importance and mutual influence.
Specifically, the associated risks must be anticipated and treated in unison in the early system conception
stages, e.g., architectural design, to reduce the likelihood of harm, additional costs, and complexities
encountered in identifying dependencies like conflicts and their treatment as an afterthought.

Despite the vast literature addressing the incorporation of safety and security concerns during the
SE process, the present system development landscape often exhibits a standalone viewpoint of the two
disciplines, owing to the fundamental differences, like the origin of risks. There is often a lack of explicit
modeling techniques that can encourage the formal reasoning of inter-dependencies between safety and
security in the early design stages. An amalgamation of the benefits of both worlds seems to be difficult
due to the complexity associated with understanding and executing formal-based techniques. Moreover,
existing works are limited in terms of guidance for non-savvy engineers to facilitate integration and
verification of stringent safety constraints and security exigencies. Methodological support in this regard
is lacking, consolidating tools and techniques belonging to the system, safety, and security disciplines.

Considering the problematics above, we propose a joint design and analysis approach and tooled
framework to better support and ease system safety and security co-engineering. Accordingly, the specific
contributions of this work are many-fold: 1) a method to build a safety and security modeling framework,
supporting the system safety and security co-engineering process, 2) a three-layered system model for
capturing the aspects pertaining to the different stages of system development, 3) a modeling language
and design framework, supporting the system architecture and safety and security properties modeling in
integration in the context of the three-layered system architecture, 4) a formal-based rigorous specification
of the system and properties to be verified, and 5) an operational tool-chain support for facilitating
different phases of the approach.

The approach follows an iterative process covering several stages of the system development, and
that relies upon existing design and analysis techniques for incorporating a positive vision of safety
and security concerns, particularly objectives encoded as properties. It incorporates Model-Driven
Engineering (MDE) and formal-based techniques to construct a set of Domain-Specific Modeling
Languages (DSMLs) and their corresponding formalisms for specifying and analyzing the system
architecture and properties models, capturing and allowing the reuse of the respective domain expertise
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and safety and security interplay. The outcomes comprise artefacts corresponding to the design and
analysis activities. This broadly includes the following steps: 1) modeling of the system aspects and
safety and security properties, 2) formalization of both system and properties models via interpretation
into a tooled-formal language, and 3) verification of properties and interplay. Furthermore, the approach
strives for a tool-chain leveraging the existing MDE platforms and formal-based techniques to support
hierarchical modeling, precise specification, formal interpretation, and verification of safety and security
properties in unison regarding different granular representations of the target System Under Design
(SUD).

For validation purposes of our work, we consider a three-layered system model, targeting high-level
mission, functional, and detailed component-based representations of the target SUD. Moreover, we
consider a set of representative properties belonging to the Availability, Integrity, Freshness, and
Controlled Accessibility categories that correspond to the safety and security concerns associated with the
system model. The system and properties DSMLs are implemented using meta-models for the abstract
syntax and profiles for the concrete syntax to provide a standardized modeling environment, relying
upon the existing Unified Modeling Language (UML). Furthermore, a logical specification of the system,
safety, and security properties is proposed using an abstract system model (i.e., a technology-independent
specification language) relying upon First-Order Logic (FOL) and Modal Logic, followed by a more
concrete specification of the system model and the properties relying upon a suitable language with
automated-tool support, namely Event-B. As part of the assistance for developing safe and secure
system architectures, we propose a tool-chain comprising Eclipse Papyrus as a modeling framework and
Rodin as a formal-based tool for verification. The approach illustration and assessment are conducted
via a Connected-Driving Vehicles (CDVs) use case in the automotive domain, targeting a safety- and
security-critical converging road plan scenario.

Keywords: Safety, Security, Co-engineering, Design and Analysis, Model-based Development,
Formal Techniques
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Résumé
Le changement de paradigme des systèmes de contrôle industriels (SCI) traditionnels vers des systèmes
basés sur des logiciels avec des éléments physiques entrelacés, comme les systèmes cyber-physiques
(CPS), a considérablement augmenté le degré d’automatisation, d’interconnexion et de rigueur des exigences.
Un nombre croissant de caractéristiques et de fonctionnalités découlant de l’interaction entre les entités
du système entraîne une complexité accrue par conception. Le déploiement de tels systèmes dans des
domaines critiques tels que l’automobile implique l’intégration des questions de sûreté et de sécurité au
cours du processus d’ingénierie des systèmes (SE), compte tenu de leur importance et de leur influence
mutuelle. Plus précisément, les risques associés doivent être anticipés et traités à l’unisson dès les
premières étapes de la conception du système, par exemple la conception architecturale, afin de réduire la
probabilité de dommages, les coûts supplémentaires et les complexités rencontrées dans l’identification
des dépendances comme les conflits et leur traitement après coup.

Malgré la vaste littérature traitant de l’incorporation des préoccupations de sûreté et de sécurité au
cours du processus de SE, le paysage actuel du développement de systèmes présente souvent un point
de vue autonome des deux disciplines, en raison des différences fondamentales, comme l’origine des
risques. Il y a souvent un manque de techniques de modélisation explicites qui peuvent encourager le
raisonnement formel des interdépendances entre la sûreté et la sécurité dans les premières étapes de la
conception. Il semble difficile d’amalgamer les avantages des deux mondes en raison de la complexité
associée à la compréhension et à l’exécution des techniques formelles. En outre, les travaux existants sont
limités en termes d’orientation des ingénieurs non avertis pour faciliter l’intégration et la vérification des
contraintes de sécurité strictes et des exigences de sécurité. Il manque un support méthodologique à cet
égard, consolidant les outils et les techniques appartenant aux disciplines des systèmes, de la sûreté et de
la sécurité.

Compte tenu de la problématique ci-dessus, nous proposons une approche de conception et d’analyse
conjointe ainsi qu’un cadre outillé pour mieux soutenir et faciliter la co-ingénierie de la sécurité et de la
sûreté des systèmes. En conséquence, les contributions spécifiques de ce travail sont multiples : 1) une
méthode pour construire un cadre de modélisation de la sécurité et de la sûreté, soutenant le processus
de co-ingénierie de la sécurité et de la sûreté des systèmes, 2) un modèle de système à trois couches
pour capturer les aspects relatifs aux différentes étapes du développement du système, 3) un langage
de modélisation et un cadre de conception, soutenant l’architecture du système et la modélisation des
propriétés de sécurité et de sûreté en intégration dans le contexte de l’architecture du système à trois
couches, 4) une spécification rigoureuse basée sur le formalisme du système et des propriétés à vérifier,
et 5) une chaîne d’outils opérationnels pour faciliter les différentes phases de l’approche.

L’approche suit un processus itératif couvrant plusieurs étapes du développement du système, et qui
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s’appuie sur les techniques de conception et d’analyse existantes pour incorporer une vision positive des
préoccupations de sûreté et de sécurité, en particulier les objectifs codés en tant que propriétés. Il intègre
l’ingénierie dirigée par les modèles (MDE) et des techniques formelles pour construire un ensemble
de langages de modélisation spécifiques au domaine (DSML) et leurs formalismes correspondants pour
spécifier et analyser l’architecture du système et les modèles de propriétés, en capturant et en permettant
la réutilisation de l’expertise respective du domaine et de l’interaction entre la sécurité et la sûreté. Les
résultats comprennent les artefacts correspondant aux activités de conception et d’analyse. Ces activités
comprennent en général les étapes suivantes 1) la modélisation des aspects du système et des propriétés de
sûreté et de sécurité, 2) la formalisation des modèles de système et de propriétés via l’interprétation dans
un langage formel outillé, et 3) la vérification des propriétés et de l’interaction. En outre, l’approche vise à
mettre en place une chaîne d’outils exploitant les plates-formes MDE existantes et les techniques formelles
pour prendre en charge la modélisation hiérarchique, la spécification précise, l’interprétation formelle
et la vérification des propriétés de sûreté et de sécurité à l’unisson en ce qui concerne les différentes
représentations granulaires du système cible en cours de conception (SUD).

Aux fins de validation de notre travail, nous considérons un modèle de système à trois couches, ciblant
les représentations de haut niveau de la mission, de la fonction et des composants détaillés du SUD
cible. De plus, nous considérons un ensemble de propriétés représentatives appartenant aux catégories
Disponibilité, Intégrité, Fraîcheur et Accessibilité contrôlée qui correspondent aux préoccupations de
sûreté et de sécurité associées au modèle de système. Les DSML du système et des propriétés sont mis
en œuvre à l’aide de méta-modèles pour la syntaxe abstraite et de profils pour la syntaxe concrète afin
de fournir un environnement de modélisation standardisé, en s’appuyant sur le langage de modélisation
unifié (UML) existant. En outre, une spécification logique des propriétés du système, de la sûreté et de
la sécurité est proposée à l’aide d’un modèle de système abstrait (c’est-à-dire un langage de spécification
indépendant de la technologie) reposant sur la logique du premier ordre (FOL) et la logique modale, suivie
d’une spécification plus concrète du modèle de système et des propriétés reposant sur un langage approprié
avec un support d’outils automatisés, à savoir Event-B. Dans le cadre de l’assistance au développement
d’architectures de systèmes sûrs et sécurisés, nous proposons une chaîne d’outils comprenant Eclipse
Papyrus comme cadre de modélisation et Rodin comme outil de vérification basé sur la formalisation.
L’illustration et l’évaluation de l’approche sont réalisées par le biais d’un cas d’utilisation de véhicules
à conduite connectée (CDV) dans le domaine automobile, ciblant un scénario de plan routier convergent
critique pour la sécurité et la sûreté.

Mots clés: Sûreté, Sécurité, Co-ingénierie, Conception et Analyse, Ingénierie des Modèles, Techniques
Formelles
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1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Research Context
The paradigm shift from traditional Industrial Control Systems (ICSs) to software-based systems
with intertwined physical elements, such as embedded systems and Cyber-Physical Systems
(CPSs), has substantially raised the degree of automation, inter-connectivity, and rigor of the
requirements. Consequently, an increasing number of features and functionality driven by the
seamless interaction among the system entities lead to higher complexity by design. Typically,
these systems demand greater security due to the risks posed by the underlying technologies
like communication and control and their implication on the information and physical assets.
Moreover, the systems with design flaws are not merely inadequate in terms of their operational
capabilities but also unsafe and vulnerable to security attacks. Indeed, the impact of deploying
such systems in domains like automotive [1], aeronautics [2], and public infrastructure [3] can
be critical regarding the business, economic, and safety criteria, and, in the end, can potentially
endanger the human lives. This entails the integration of safety and security concerns during
the System Engineering (SE) process.

In literature, there exist approaches facilitating the incorporation of safety [4] and security
concerns [5] during the SE process. However, they often exhibit a standalone viewpoint of
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the two disciplines without focusing on their mutual influence. This is evident for systems
deployed in scenarios that are purely safety-critical, such as healthcare, or security-critical, such
as e-voting and finance. Nevertheless, with software-based systems exhibiting automation and
communication capabilities, safety and security cannot be seen in isolation. For instance, in
the automotive domain, the remote access feature offered by the connected cars provides attack
surfaces like communication channels and onboard components for potential manipulation of
the safety-critical functionality, e.g., jamming of brakes [6]. Specifically, the associated risks
must be anticipated and identified in unison in the early stages, like system architectural design,
to reduce the likelihood of harm, additional costs, and complexities encountered in identifying
inter-dependencies, e.g., conflicts, and their treatment in the later stages [7].

1.1.1 Multi-layered System Model

To make the complexity of engineered systems potentially addressable, model layers can be
developed according to the different stages of the SE process. The resulting multi-layered
system model allows comprehending, expressing, and explaining different viewpoints [8], e.g.,
high-level mission or teleological, functional, and detailed component architecture, wherein the
involved stakeholders like system domain experts and architects can make design choices and
decisions relying upon the layered representation of the target System Under Design (SUD).

The mission is primarily a problem-oriented, and often, context-oriented concept. It is
multi-paradigmatic, encompassing goal, operation, object, and agent views that allow for the
amalgamation of the system functionality with the architectural design process [9]. When
defined diligently, it facilitates the engineering process of complex systems and comprehends
the interactions among the underlying entities. This, in turn, is useful for creating the design
and software implementation of the system behavior and delivering utility to the end-users
[8]. Discrete operational requirements form the basis for representing system actions and
corresponding responses at the mission layer representation of the system. These requirements
are collected in the form of operational scenarios having the following related aspects [10]: 1)
pre-conditions and post-conditions associated with the system operations, 2) system’s interaction
with the environment, and 3) interests and concerns of the stakeholders regarding the system
operations.

The functional representation allows decoupling the system’s functionality from the way
of its implementation, i.e., operations [11]. The corresponding system model captures system
functions and their interactions based upon the mission objectives for their fulfillment. In
general, more than one functional architecture can satisfy the underlying requirements towards
achieving the desired goal of the system [12]. At the design stage, it determines what the system
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does and, thus, assists in identifying the appropriate and optimal component-based architecture
for the underlying system. A function can be represented as a schema that contains a reference to
the behavior for the accomplishment of the function and demonstrates the conditions that allow
the behavior to achieve the function [13].

The component-based representation captures the detailed structure of the system, typically
the system components and communication channels, to meet the desired functions and deliver
the expected behavior. A component can be described as a self-contained entity that may further
have sub-components and constitute the structural part of the system [14]. The engineered
systems incorporate complex and seamless interaction between the components, which can be
physical or logical, comprising networking, software, and computational elements [15]. This
interaction is highly context-dependent as the system structure may change with time, where
components and connections between them may be added, removed, or updated.

Developing safety- and security-related systems requires integrating safety and security
analysis techniques in the SE—System Engineering process. In the safety context, for instance,
the safety expert takes as input the missions and goals of the system, along with the specific
context in which the system will operate, and provides a Preliminary Hazard Analysis (PHA)
[16] as an outcome, mainly guided by a list of feared events. Herein, the feared events are
defined considering the undesirable circumstances the system may face, including operational
conditions and system failures, determined via Hazard and Operability Analysis (HAZOP)
[17]—for instance. Likewise, a safety expert can conduct a Functional Hazard Analysis (FHA)
[18] or Failure Mode and Effects Analysis (FMEA) [19] regarding the different sub-systems
having dedicated functionalities, independently of the PHA or after. In the latter case, the
FHA/FMEA inherits the already-defined list of feared events. Last yet not least, the safety expert
can conduct a fault tree analysis [19] at the component level, which FHA/FMEA may follow.
It inherits the impact of the feared events defined in PHA or FHA/FMEA. Likewise, in the
security context, a consistent analysis, e.g., attack tree analysis or identification of misuse cases
of the related concerns [20], often demands a detailed view of the system architecture, involving
vulnerable technologies, insecure ports, and unprotected channels—for instance. The associated
feared events may propagate to the sub-system or system level and impact its trustworthiness.

Nevertheless, to the best of our knowledge, the state-of-the-art approaches, e.g., [4, 8], have
not addressed incorporating the above safety and security analysis techniques in the SE process
regarding the multi-layered system representation (see Figure 1.1). The role of the techniques
can be emphasized at different system representation levels, depending upon the design details
they offer. However, this often leaves a gap whereby the inter-dependencies between safety
and security concerns cannot be analyzed at the same level. Moreover, it is evident from the
existing approaches that the system development process from the safety perspective is relatively
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mature, owing to the extensive range of standards that provide the basis for the respective
concerns’ analysis. However, this is not the case with security, which demands consolidating
our understanding of the underlying aspects.

Figure 1.1: Integration of Safety and Security Properties Analysis in the System Development.

The multi-layered system model can facilitate the integration of the safety and security
analysis into the system development stages, whereby validation and verification of
corresponding concerns can be conducted based on the granularity adapted to the analysis. In
addition, relationships can be derived from the impact of concerns at a given layer or across
layers, within or between the safety and security domains. The state-of-the-art analysis in this
thesis will mainly cover the approaches regarding safety and security properties, in particular,
to be incorporated across different modeled representations of the system without explicit
associations.

1.1.2 Safety and Security Properties

Safety and security concepts are defined differently and are sometimes used interchangeably
[21]. Safety emphasizes the protection from accidental flaws or mistakes that harm the acquired
value. On the other hand, security is defined as protecting acquired value from intentional
actions taken by the human elements. Acquired value, also known as the object of protection,
includes system-related aspects that we value, e.g., system, software or hardware components,
transmission channels, data, human lives, etc. The engineering process of safe and secure
systems calls for a deep understanding of the underlying requirements to avoid the potential
impact of related feared events, e.g., faults, failures, hazards, threats, or attacks. These
requirements are defined on top of the functional ones and typically reflect the non-functional
properties of the system [22, 23]. The set of properties may vary depending on the nature
and complexity of the target of protection. In addition, the elementary nature of properties
can be qualitative or quantitative [24], temporal or spatial [25], and these may be system or
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environment-specific [26]. These can also be internal to the system or associated with the
communication interface [27].

In literature, safety is viewed as an attribute of dependability [28]. While security is a
composite notion comprising the Confidentiality, Integrity, and Availability (CIA) triad and
considered at the same level as dependability [28, 29]. In our context, we are not concerned with
such classification. We consider safety and security as the ultimate goals to be achieved by the
target SUD as a whole, and these goals can be built upon or influenced by a range of properties.
Specifically, in this work, we consider the following list of properties as the representative ones:

• Availability: Capability of a product (e.g., system, information, component) to provide a
stated function if demanded, under given conditions over its defined lifetime [30].

• Integrity: Protection of accuracy and completeness of information or data [31].
• Freshness: Non-duplication and temporal validity (i.e., recentness) of the received data

or information [32, 33].
• Controlled Accessibility: Ability to limit, control, and determine the level of access that

entities have to a system, function, information, and component [34, 32].
Figure 1.2 shows an excerpt for a better understanding of how the above properties will be

used in our work regarding several system-related aspects that can correspond to the different
layers of the multi-layered system representation. Herein, it requires a complex engineering
process to ensure consistent passage of the semantics concerning the system and the properties
across the layered representations and allow properties’ preservation.

Figure 1.2: Safety and Security Properties: A Correspondence with the Layered System
Representations.
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1.1.3 Model-based System Development

Model-based system development is an approach to address the growing complexity of modern
technical systems based upon time-proven engineering principles, such as the use of abstraction,
separation of concerns, step-wise refinement and iteration, and the use of formal methods
[35]. It involves computing-based automation techniques to generate the document artefacts
to models and ensure consistency. Models are used to denote the abstract representation of the
actual system to be engineered. They provide input and output at all the stages of the system
development, e.g., design and implementation, until the final system is built.

Model-Driven Engineering (MDE). Model-Driven Engineering (MDE) typically captures
the software development approaches that aim to reduce the gaps between problem specification
and software implementation using technologies for transforming abstract definitions to
executable code [36]. It can traverse knowledge across diverse technical domains via the
systematic use of models as first-class elements. Two pre-eminent aspects of MDE are
meta-modeling and model transformation. These aspects play a crucial role, especially when
different levels of knowledge formalization are involved [37]. Meta-models are extensively
used in defining Domain-Specific Modeling Languages (DSMLs) to describe models for a
domain. Meta-modeling endows a language with essential concepts and their relationships
through abstract notations, thus segregating the abstract syntax from the language’s concrete
syntax [38]. This assists the system designers in alleviating the complexity of effectively
capturing the domain concepts, e.g., safety and security, of the target SUD in separation from
the rest of the system-related aspects. Model transformation involves the conversion of a source
model into a target model using a model transformation language under the influence of some
well-defined transformation rules. The transformation is highly dependent on the nature of the
source and target models, along with the levels of abstraction.

The last few years have witnessed significant use of MDE for software development in
safety [39] and security-related [40] systems. Unified Modeling Language (UML) supports the
MDE approach and allows system architects and developers to specify, visualize, construct,
and document system software [41]. Being a general-purpose modeling language, it can be
adapted using the notion of UML profiles to specify specific domains, e.g., safety and security,
to develop large and complex system software. Automated tool support enables checking
the model regarding syntactic consistency and completeness. Among all, Papyrus [42] is an
Eclipse-based open-source tool that uses the notion of UML profiles for graphical modeling of
system requirements.
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Formal Techniques. Formal methods involve using techniques for mathematically analyzing
the description of a system, including its properties, e.g., safety and security, via the application
of formal specification languages. Formal specification involves using precise and unambiguous
mathematical concepts, like logic and algebra, with added semantic rules that foster reasoning
and verification of properties [43]. For example, First-Order Logic (FOL) [44] describes the
system’s state in the form of pre-conditions and post-conditions, and Modal logic [45] considers
the interpretation of formula within a defined context using modal operators, e.g., possibility
and necessity. Likewise, Event-B [46] is a formal language based upon set theory notions for
specifying and analyzing systems by modeling them as abstract state machines. Formal-based
tools, e.g., Rodin [47] and Alloy analyzer [48], are particularly useful in designing and verifying
high-end industrial systems. They broadly cover 1) automated model checkers that rely upon
algorithms for exhaustively verifying the desired properties of the system, given a model’s state
space, and 2) theorem provers (also proof assistants) that involve the use of human expertise for
guiding the proof of correctness [49].

1.2 Problematics
Within the above-mentioned context, our overall research problem is: How to address the
interplay between safety and security during the design stages of the SE—System Engineering
process?

Specifically, we aim to address the following methodological issues in this regard:
• Problematic P1: Despite the existing methodologies, techniques, and tools in the system

development realm, a lack of methodological support exists for a joint analysis reconciling
safety and security expertise during the early design stages of the SE process.

• Problematic P2: In the design phase, the requirements are broken down from the
high-level teleological representation to the detailed technical architecture of the target
SUD—System Under Design. However, this process is often complex and lacks consistent
semantic transfer across different granular representations of the system, along with the
incorporation of safety and security properties.

• Problematic P3: There exists a lack of modeling language and semantics, consolidating
diverse knowledge from the discipline of system, safety, and security engineering, and to
effectively express the domain concepts in an integrated fashion.

• Problematic P4: Conducting design-level safety and security analysis to increase system
design trustworthiness can be error-prone due to ambiguous properties specifications
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or biases introduced by non-savvy engineer’s interpretation. This incorporation may
also lead to potential inter-dependencies like conflicts between the properties due to the
absence of precise semantics.

• Problematic P5: The present landscape of safety and security development from a
standalone perspective is quite complex. Existing works are limited in terms of guidance
for non-savvy engineers like system architects and analysts involved in the SE process,
lacking the expertise to conduct integration and verification of stringent safety constraints
and security exigencies. In this regard, there is a lack of automated tool support for
integrated analysis of the system safety and security properties.

1.3 Thesis Contributions
To address the problematics above, this work strives for a joint design and analysis approach
and tooled framework to better support and ease system safety and security co-engineering.
Accordingly, the specific contributions of this thesis are five-fold:

• Contribution C1: A method to build a safety and security modeling framework,
supporting the system safety and security co-engineering process. This involves
developing a reusable formal model library of safety and security properties signatures
to be later incorporated into the SE process for verifying conformity with the underlying
safety and security requirements.

• Contribution C2: A three-layered system model for capturing the aspects pertaining
to different stages of system development, viz. Mission, Functional, and Component
architecture, along with the passage of semantics across the layers.

• Contribution C3: A modeling language and design framework, supporting the system
architecture and safety and security properties modeling in integration. To this end,
we propose a set of DSMLs to model the target SUD at different stages of system
development in the context of the three-layered system model and incorporate safety and
security properties across each layer. Herein, we use UML to create system and properties
meta-models and profiles.

• Contribution C4: The formal-based rigorous specification of the modeling language and
design framework, supporting the specification of the system and safety and security
properties to be verified. To this end, we define logical specification and semantics of the
modeled system and properties to facilitate model interpretation and delegate properties
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analysis to tooled-formal languages and frameworks. Herein, we use set theory, FOL,
and Modal Logic as technology-independent formalisms to ensure the well-formedness
of the system models and for the specification of dependencies like conflicts between the
properties. Also, we use the Event-B tooled-formal method in early modeling phases to
obtain a concrete specification relying upon the formalisms and ensure that once deployed,
the system’s operation conforms to the properties.

• Contribution C5: An operational tool-chain support integrating MDE and formal-based
techniques for facilitating different phases of the proposed approach, including
hierarchical modeling, precise specification, formal interpretation, and verification of
safety and security properties in unison. Herein, we use Eclipse Papyrus as a modeling
framework and Rodin as a formal-based verification tool.

Thesis Approach Synopsis. Initially, we investigate the state-of-the-art approaches for
incorporating safety and security analysis in the SE process. Accordingly, features are defined to
review these approaches from both standalone and co-engineering viewpoints. This is followed
by examining the approaches for specifying and verifying the safety and security properties of
the target SUD to conduct design and analysis. The lack and need for methodological support
to an end-user, e.g., system designer, architect, and analyst, are thus identified. Accordingly,
an approach is proposed in the context of the problematics defined in Section 1.2, relying upon
the existing MDE and formal-based techniques for safety and security integrated design and
analysis. The specific contributions are made in the scope of the proposed approach. This is
accompanied by tool-chain support that endows an environment for verifying properties and
addressing the engineers’ needs. Moreover, the approach’s applicability is demonstrated with
a use case from the automotive domain. Some of the outcomes of this work are published in
[50, 51, 52, 53].

1.4 Publications
A concise summary of the publications related to the research contributions presented in this
manuscript is provided as follows:

• Megha Quamara, Gabriel Pedroza, and Brahim Hamid. Introducing a multi-layered
model-based design approach towards safety-security co-engineering. In 2021 IEEE
21st International Conference on Software Quality, Reliability and Security Companion
(QRS-C), pages 1163-1164. IEEE, 2021.
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DOI: 10.1109/QRS-C55045.2021.00175
Summary: In this paper, we introduced a multi-layered model-based integrated design
and analysis approach for safety and security co-engineering. The approach seeks to
leverage existing techniques like MDE and formal methods to facilitate specification and
verification of safety and security properties in unison that can be further specialized
across different representations, i.e., mission, functional, and component, of a target SUD.

• Megha Quamara, Gabriel Pedroza, and Brahim Hamid. Multi-layered model-based
design approach towards system safety and security co-engineering. In 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C), pages 274-283. IEEE, 2021.
DOI: 10.1109/MODELS-C53483.2021.00048
Summary: In this paper, we provided an instantiation of the proposed approach for a
mission-centric system representation. We offered tool-chain support integrating MDE
techniques, namely Eclipse Papyrus, and a formal-based tool, namely Rodin, to conduct
verification, spot inconsistencies, and ensure design conformity concerning the safety and
security properties. The overall approach is validated based upon a Connected-Driving
Vehicles (CDVs) use case.

• Megha Quamara, Gabriel Pedroza, and Brahim Hamid. Facilitating safety and
security co-design and formal analysis in multi-layered system modeling. In 20th IEEE
International Conference on Dependable, Autonomic & Secure Computing (DASC), pages
1-8. IEEE, 2022.
DOI: 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927773
Summary: In this paper, we emphasized the modeling aspects of the proposed approach,
pursuing joint system safety and security design. To this end, we proposed a set of
DSMLs for the three-layered system modeling and for safety and security properties
modeling to incorporate them across different system representation layers. Herein, we
used UML and its profiles. Moreover, a model interpretation is defined to map system and
property models into Event-B specifications to conduct automated verification of safety
and security objectives’ signatures and conflict solving. For illustration purposes, we
considered the use case of CDVs.

• Megha Quamara, Gabriel Pedroza, and Brahim Hamid. Formal analysis approach
for multi-layered system safety and security co-engineering. In European Dependable
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Computing Conference (EDCC) Workshop: SERENE, pages 18-31. Springer, Cham,
2022.
DOI: 10.1007/978-3-031-16245-9_2
Summary: In this paper, we emphasized the formalization aspects of the proposed
approach, facilitating joint analysis of safety and security objectives, specialize-able across
different system views. As a prerequisite, we defined interpretation rules for mapping
the modeling concepts to their formal-based counterparts relying upon mathematical
logic, namely FOL and Modal Logic. Moreover, we used Event-B, to obtain a
more concrete specification of the system and properties conceptual model and the
accompanying formal-based tool, namely Rodin, to mechanize properties verification and
spot inconsistencies in early modeling phases. The approach is illustrated via the CDVs
use case.

1.5 Thesis Outline
The rest of this manuscript is organized into the following chapters:

In Chapter 2, we present a systematic review of the state-of-the-art approaches to safety
and security co-engineering concerning the problematics addressed in this research work.
Specifically, we focus on existing contributions along two principal axes: 1) incorporating safety
and security in the SE process from standalone and combined perspectives and 2) designing and
analyzing safety and security via specification and verification methodologies. Based on the
extraction of the features they exhibit, a lack of methodological support for an integrated design
and analysis of safety and security is observed, which provides a rationale for the contributions
of this work.

In Chapter 3, we provide an overview of our approach that aims to tackle the identified lack
towards effective safety and security co-engineering. One of the main contributions consists
in the provisioning of a method to build a safety and security modeling framework, supporting
the co-engineering process. This also includes a tool-chain prototype architecture relying upon
existing MDE and formal-based techniques to support the different phases of the approach,
followed by an introduction to the CDVs—Connected-Driving Vehicles use case for illustrating
the applicability of the approach.

In Chapters 4 and 5, we present the approach phases as the main contributions to integrated
system safety and security design and analysis via modeling and formalization activities,
respectively. This involves exemplifying the system-related notions relying upon the CDVs use
case, along with enlisting the requirements and the details on the accompanying tool support.
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In Chapter 6, we illustrate and assess the applicability of our approach and proposed
tool-chain support prototype via the CDVs use case. An instance of a scenario, which is both
safety- and security-critical, is targeted in this regard.

Finally, in Chapter 7, we conclude this manuscript by summing up the contributions and
discussing the potential future work and perspectives.
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Related Work

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Approaches to Incorporating Safety and Security in System Engineering 14
2.3 Approaches to Safety and Security Design and Analysis . . . . . . . . . . 22
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Introduction
Taking into account the context and problematics stated in Chapter 1, we establish a systematic
state-of-the-art in literature and industry practices. In particular, we are interested in
understanding how current approaches undertake the integration of safety and security concerns,
specifically properties, into the system development process, with existing research gaps and
artefacts that can be used to support the methodological aspects to address safety and security
interplay. By “approach”, we mean a way or strategy covering entangled or correlated aspects
like frameworks, methods, or implementation tools to address the mentioned problematics. It
is recalled from Section 1.1.2 that safety and security are considered the ultimate goals to be
achieved by the target System Under Design (SUD), and that can be built upon or influenced
by a range of properties. To this end, we highlight the existing works across two domains of
research: 1) approaches to incorporating safety and security in System Engineering (SE) and
2) approaches to safety and security design and analysis. We primarily focus on the system
architectural design stages. However, we do not aim to exclude other approaches, e.g., those
dealing with life-cycle stages involving dynamic adaptation or different life-cycle models. We
relied upon the basic principles from [54] for carrying out a Systematic Literature Review
(SLR) to explore, analyze, and interpret various contributions from the literature relevant to
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these domains. Instead of individually reporting the works, we characterize them based on
multi-attribute taxonomies relying upon the system, safety, and security domain concepts. At
the beginning of each major section, viz. Sections 2.2 and 2.3, we position our context and
requirements to the state-of-the-art. Likewise, at the end of each major section, an attempt is
made to identify and assess concepts and methods as key takeaways to be used in the context of
model-based approaches for the design and analysis of safety and security.

Overall, the chapter is organized as follows: In Section 2.2, we detail the existing works on
different approaches in safety and security engineering and how to integrate safety and security
concerns into the SE process, including some standalone and co-engineering approaches, as well
as holistic approaches. In this regard, the features exhibited by these approaches are highlighted,
considering the major phases, including requirements, architectural design, and analysis, of the
SE process. Furthermore, in Section 2.3, we examine the existing contributions based upon the
different constructs with varying degrees of formality adopted for the safety and security design
and analysis via specification and verification. In this regard, the capabilities and feasibility of
these constructs are precised. Finally, we conclude the chapter in Section 2.4.

2.2 Approaches to Incorporating Safety and Security in
System Engineering

Both safety and security domains flourished independently in practice, particularly in terms
of elementary requirements, constraints, manifestation of risks, and impact assessment [55].
Nevertheless, considering their mutual impact, it is paramount to incorporate the duo of safety
and security concerns during the SE process. Significant research efforts are being invested
in realizing the vision of safety and security co-engineering. However, this idea is still
lagging for several reasons, including a lack of combined standardization, methodological, and
implementation practices during system development [56]. To better understand the status
quo in practice, a systematic and comprehensive articulation of the existing contributions
incorporating safety and security in the SE process is imperative. In this section, we investigate
the state-of-the-art of such approaches from both standalone and combined perspectives.
This exploration will contribute to positioning the proposed approach for safety and security
co-engineering in the forthcoming Chapter 3.
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2.2.1 Materials and Method

To be precise with the scope of our investigation, we mainly focused on the approaches
concerning different stages of the SE process. As mentioned before, this work is undertaken by
extensively following the guidelines proposed in [54] for conducting an SLR. In this case, the aim
is to rely on a commonly accepted template or methodology for identifying and interpreting the
existing literature relevant to safety and security interplay while maintaining the transparency
of the results. The methodology that this work endorsed broadly includes the following four
phases: 1) research context-oriented formulation of the problematics defining the scope of this
study, which is already covered in previous Chapter 1, 2) exploration of the existing literature
in the direction of the formulated research problems, 3) multi-attribute analysis of the identified
literature in the context of the problematics, and 4) discussion on the key findings based on
the literature analysis, comprising existing lacks to be addressed. We sought to iteratively go
through these different phases for this study to enable its thorough evaluation. A simplified
pictorial representation of the entire four-phase process, with specific steps and outcomes per
phase, is depicted in Figure 2.1. Besides, the individual steps are documented in detail in the
following paragraphs.

Literature Exploration and Organization. To bring to light the relevant contributions in
the existing literature, we followed a two-stage literature exploration process. We began with
conducting an automated search on existing scientific databases like Web of Science, ACM
Digital Library, DBLP, and IEEE Xplore, using a set of search keywords constituting the
following Boolean string:

“Safety” AND “Security” AND (“Engineering” OR “Interplay” OR “Co-engineering” OR
“Integration”) AND (“Requirement”, OR “Design” OR “Analysis” OR “Risk assessment”)

AND (“Critical systems” OR “Cyber-Physical Systems”)
Afterwards, we manually refined the obtained search results using a set of inclusion and

exclusion criteria. This mainly involved selecting contributions related to incorporating safety
and security concerns in isolation or integration in the SE process. The duplicate contributions
appearing across multiple platforms were discarded.

Furthermore, we developed and elucidated a multi-attribute taxonomy to analyze the
obtained research contributions, comprising some novel and already used attributes in the
existing literature. To accomplish this, we used the concepts across system, safety, and security
engineering domains as a basis to characterize the selected research contributions, as detailed in
sub-section 2.2.2.
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Figure 2.1: Flowchart depicting Systematic Literature Review (SLR) Methodology.

To address the problematics P1-P5, we used the following list of attributes in order to
characterize the selected standalone approaches for the incorporation of safety and security in
system development for prospecting the capabilities offered by them in the domain:

• Life-cycle stage: Represents the target phase of the SE process to which the proposed
solution is applicable. The values that we considered include: Requirement (R), Design
(D1), Development (D2), Risk Analysis (RA), or Generic (G) for all the phases, inspired
by [57, 58].

• System specification layer: Represents the layer at which the target system is described.
This assists in pinpointing the scope of the proposed solution based on the level of
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granularity with which the system is represented. The values that we considered include:
Mission (M), Functional (F), or Component (C). From the typical definitions and concepts
associated with these layers found in the literature, we considered a set of keywords to
characterize the selected contributions based on this attribute. For instance, to group a
contribution into the category of mission-centric system representation, we chose a list
of keywords that includes, but is not limited to, Mission, Goal, Operation, and alike, and
subsequently, analyzed the proposed solution in the context of these keywords. Similarly,
for the functional layer, we chose: Function, Functional path, Information flow, and alike.
And finally, for the component layer, we chose: Component, Port, Connector, Object,
Entity, and alike.

• Stakeholders: Represents the stakeholders that provide the domain knowledge for various
activities associated with the applicability of the proposed solution. The values that we
considered include: Safety/Security Expert (SS), Analyst (A), Designer (D1), Developer
(D2), or Generic (G) for all the stakeholders [59].

• Propagation of safety and/or security semantics: This attribute denotes whether the
translation or mapping aspects among different layers of system representation are
discussed or addressed. This will assist in identifying the features that the proposed
solution exhibits to facilitate or foster communication among several stakeholders with
varying levels of expertise in terms of knowledge about the system representation.
Possible values are: Yes (Y) or No (N) [NB: Not addressing safety and/or security
propagation is not necessarily a drawback in the respective contribution, especially when
it is not the goal of the work. Even so, it is highlighted in the present manuscript for the
sake of a clear view of the state-of-the-art].

Along with the attributes listed above, we used the following additional ones to characterize
and analyze the capabilities of the selected approaches to safety and security co-engineering:

• Safety and security interaction: Represents the type of interaction between safety and
security concerns. This may further assist in envisaging the relationships, e.g., conflicts,
that may arise between them. Possible values are: Safety-informed Security (SS1),
Security-informed Safety (SS2), or Combined (Co) [60]. Here, SS1 indicates that security
fulfillment depends upon safety, SS2 indicates that safety fulfillment depends upon
security, and Co indicates that safety fulfillment depends upon security and vice versa.

• Conflict resolution: Whether the proposed solution takes into account or facilitates
the identification and/or analysis of the potential conflicts between safety and security
concerns. Possible values are: Yes (Y) or No (N) [59].

17



CHAPTER 2. RELATED WORK

2.2.2 Results

Herein, we summarize the results of our study on the approaches from standalone and
co-engineering perspectives.

2.2.2.1 Standalone Approaches

Tables 2.1 and 2.2 respectively provide a concrete summary of some of the selected approaches
from the literature for incorporating safety and security in the SE—System Engineering process
in a standalone fashion, based on the attributes mentioned in the previous sub-section 2.2.1.
Table 2.1: Summary of Selected Approaches to Incorporating Safety in System Engineering
(SE) Process.

Ref. Contribution Life-cycle
Stage

System Specification
Layer

Stakeholders Propagation of Safety
Semantics

[61]
• Multi-stage design process to address conflicting
safety requirements
• Algorithmic approach towards response time and
reliability enhancement

D1 F D1 N

[39] Modeling framework for integrating functional safety
analysis in critical system design process D1 M, F, C A, D1 N

[62]
• Model-based holistic approach for analyzing
functional safety requirements
• Supports technical and social requirements
specification through refinement

R, RA F, C SS, D1 Y

[63] Approach for verification and validation of system
properties D1 F A N

[64] Framework for assuring run-time safety of component-
based Cyber-Physical Systems (CPSs) D1 M, F, C SS, D1 N

[65]

• Component-based design for high-level system
description and real-time behavior analysis
• Use of Dependable Emergent Ensembles of
Components (DEECo) for modeling component-level
interaction

D1, D2 C D1 N

[66]
• Functional-level co-design methodology for safety-
critical CPSs
• Modeling technique for explicit partitioning of
physical and control functions

D1 F, C SS, D1 N

[67]
• Development approach based on model-based,
multi-layered software architecture for robot safety
• Interconnected repositories for storage and reuse of
the safety case models and software components

D1, D2 M, F, C SS, D1 N

[4]
• Integration of safety analysis with model-driven
software development
• Conceptual modeling to identify safety concerns
complementary to the software architecture

RA, D1 M, C A, D1 N
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Table 2.2: Summary of Selected Approaches to Incorporating Security in System Engineering
(SE) Process.

Ref. Contribution Life-cycle
Stage

System Specification
Layer

Stakeholders Propagation of Security
Semantics

[68] Approach for requirement specification,
verification, and treatment R, D1 C SS, D1 N

[69]

• Analytical framework for capturing
mission-centric viewpoint of critical Cyber-
Physical Systems (CPSs)
• Modeling technique for visualizing the
system behavior as per mission specification

R, RA M G N

[70]
Model-Driven Security (MDS) approach
for guiding and automatizing pattern
application in system development

D1 M, F, C D1 Y

[71] Security-aware modeling methodology for
robustness validation D1 F D1 N

[72] Roadmap for incorporating requirements in
system life-cycle process R M, F, C SS N

[27]
Security characterization framework for
exposing security profiles of software
components

D2, RA C D2 N

2.2.2.2 Co-engineering Approaches

Furthermore, Table 2.3 provides a concrete summary of the selected research contributions from
the literature for safety and security co-engineering based on the listed attributes.

2.2.3 Assessment and Key Takeaways

Herein, we discuss the obtained results for the key findings upon which we build our research
and the lack in the existing contributions from a methodological perspective yet to be addressed.

Key Findings. Based on the characterization summary of the approaches presented in the
previous sub-section 2.2.2, we offer a concrete view of our findings regarding the selected
attributes:

• Life-cycle stage: Most of the approaches are inclined to incorporate safety [61, 39, 65] and
security [70, 71] concerns in the early design stages of system development. The earlier
we identify and address these domain-specific concerns, the more adequate will be the
design of the system under development with a lesser number of repetitions. This reduces
the overall cost and effort of developing safety and security-critical systems.

• System specification layer: Regarding the system specification layer, as we move from the
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Table 2.3: Summary of Selected Approaches to Safety and Security Co-engineering.
Ref. Contribution Life-cycle

Stage
System Specification

Layer
Stakeholders Propagation of Safety

and Security Semantics
Safety and Security

Interaction
Conflict Resolution

[73] Co-analysis study G F A, D1 N Co N
[74] System-theoretic co-analysis

approach R, D1 M, F, C SS, D1 N Co Y
[75] Joint deployment approach RA M SS, A N Co N
[76] Co-engineering approach R M, C SS, D1, D2 N Co N
[77] Security risks analysis

method and framework RA F, C SS, A N SS1 Y
[78] Co-engineering process G F D2 N Co N
[79] Co-certification approach G M, F, C SS N Co N
[80] Co-analysis approach RA C SS, A N Co N
[81] Co-engineering approach D1 F D1 N SS1 N
[82] Integrated analysis approach RA F SS, A N Co N
[83] Attack injection framework D1, D2 C D1, D2 N SS2 N
[84] Framework for integrated

analysis D1 M, F, C D2 N Co N
[85] Co-engineering approach G C G N Co Y
[86] Co-engineering method RA F, C A, D2 N Co N

higher levels of granularity to the lower ones, more details about the underlying system and
its entities are available for a refined safety and security analysis. Notably, safety analysis
can still be conducted at the mission layer [69] with high-level system-related information.
However, security concerns are often dealt with at the information and communication
level [68] due to the availability of the necessary implementation-related details.

• Stakeholders: Safety and security experts contribute to the knowledge for the assessment
of safety [62, 67] and security solutions [68, 72] and how the system can go wrong within
the considered operational environment. Similarly, analysts use their practical experience
to elicit the potential hazards [63, 4] or threats [69] concerning the system functionality.

• Propagation of safety and security semantics: Only a few contributions discuss the
layer-wise refinement of the system specification semantics in the safety [62] and security
domains [70]. The results show that how to maintain consistency and transformation of
safety and security concerns between different layers of a system representation is an open
question.

• Safety and security interaction: A range of contributions, e.g., [73, 74], aims towards
an interplay of safety and security concerns from a combined perspective. This can be
attributed to the fact that a combined approach often assists in bringing the fragmented
requirements and standalone practices from both domains under a realm via identifying
potential conflicts—for instance, without losing the domain-specific traits. In such cases,
safety and security engineers can mutually benefit each other towards a systematic and
rigorous safety and security analysis of the system under consideration.

20



2.2 Approaches to Incorporating Safety and Security in System Engineering

• Conflict resolution: Fewer contributions [74, 77] discuss resolving conflicts between
safety and security concerns. And none of them are related to safety informed by security,
even though security issues at the component layer can propagate functional failure,
risking the availability of safety-related functions. Moreover, some contributions [77]
discuss or address conflict resolution in the early design stages, thereby focusing on a
preventive vision towards the occurrence of these conflicts during implementation.

Based on the domain-specific knowledge from the existing literature, we aim to build our
research upon the following aspects:

• Architectural design and analysis: The system architecture development stage allows
flexibility regarding the design decisions, where safety and security concerns can be
incorporated and analyzed to obtain a safe and secure architectural model of the target
application.

• Three-layered model: To address safety and security concerns across different stages of
system development, i.e., mission, functional, and component, offering varying levels
of details for analysis, we aim to consider a three-layered model in the context of the
multi-layered system representation discussed in Section 1.1.1. This would provide better
coverage for specifying and verifying safety and security properties.

• Multi-stakeholder environment: The safety and security activities are conceived from
the perspective of different stakeholders, e.g., safety and security experts, analysts,
and architects, involved in the system development. This requires support for their
collaboration and cross-fertilization of their knowledge to yield a global safety and security
system development process.

Lacks in Existing Research. Despite a range of contributions in the domain, our analysis
reveals the following challenges pertinent for additional research efforts to realize safety and
security interplay:

• Conflicting results: Joint safety and security analysis may lead to conflicting results, also
termed antagonism [87]. In such cases, there is a need for approaches to identify and
support the analysis of potential conflicts.

• Lack of consistent semantic transfer: Most of the contributions are not concerned with
the layer-wise translation or mapping of the underlying semantics. As mentioned before,
safety analysis can be conducted regarding the high-level goal-oriented description of
the system up to the detailed architectural view. However, the security analysis is
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highly information-centric and often requires the component-level details of the system.
Cascading down the safety-specific information to the level where an integrated analysis
with security can be conducted requires consistent semantic transfer of knowledge among
the stakeholders involved at each layer [88]. Nevertheless, there is still a gap in a uniform
language to transmit information between different layers without losing details.

• Lack of application domain-agnostic knowledge: Literature study in the field shows the
inclination of the existing approaches for safety and security interplay towards specific
application domains to harmonize the respective concerns via methodological support.
Moreover, clear applicability of the solutions in the literature concerning the claimed
application domains is not demonstrated in many cases (e.g., in [89, 90]).

• Complex standalone development and lack of automation: The present landscape of safety
and security development from a standalone perspective (often considered as “silos”) is
quite complex and expensive [91]. Moreover, it relies on human intervention to conduct
the necessary tasks, with a lack of automated tool support to ease and speed up the safety
and security co-engineering process, which is still in its infancy. The theoretical and
practical exploration of the inter-relations between both domains towards consolidating
best practices remains limited.

2.3 Approaches to Safety and Security Design and Analysis
Specification and verification of safety and security concerns, e.g., properties as introduced
in Section 1.1.2, is crucial in the design and analysis of safety- and security-critical systems.
This typically demands elicitation of the underlying requirements and assurance of consistency,
accuracy, completeness, and fulfillment of the corresponding properties through specification
and assessment. Identifying appropriate means to support these aspects becomes essential
to incorporate concerns in the SE—System Engineering process, obtaining effective system
functionality regarding safety and security. Several languages, tools, and methods exist in the
literature to achieve this, which can be categorized based on the degree of formality of the
constructs used to represent and validate the system under consideration [92, 93].

In this section, we are particularly interested in investigating the existing methodologies
targeting safety and security design and analysis from the viewpoint of specification and
verification. The exploration shall shed light on the methodological support for integrated safety
and security design and analysis. This will contribute to positioning the specific contributions
in the forthcoming Chapters 4 and 5.
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2.3.1 Materials and Method

According to the degree of formality, safety and security concerns can be structured and refined
differently. Based upon this, various levels of formalization exist in the literature for specifying,
modeling, and verifying these concerns [94]. These comprise 1) language constructs that offer
syntax, semantics, and modeling rules, 2) tools to automatize the modeling and verification
process, and 3) techniques to address the concerns by synthesizing or analyzing the system
during design. These can be used in a standalone or integrated manner to specify the safety
and security properties, capture the whole set of underlying requirements, and represent design
rationale. Accordingly, relying upon these aspects, we pursued the methodology depicted in
Figure 2.1 to conduct an SLR study on the approaches to safety and security design and analysis,
which is detailed in the following paragraphs.

Literature Exploration and Organization. We sought to identify the building blocks and
associated literature to address the specification and verification of safety and security concerns.
We adopted both automated and manual search processes for exploring the literature concerning
conceptual and empirical contributions made by the research community relevant to this
survey. The automated search involved using the following Boolean string on existing scientific
databases:

“Safety” AND “Security” AND (“Properties” OR “Requirements”) AND (“Design” OR
“Analysis”) AND (“Model-Driven Engineering” OR “Formal methods” OR “Standards”)

Afterwards, we conducted a structured classification of the obtained research contributions
following two aspects: 1) the hypotheses or foundations for capturing safety and security
properties and 2) how research practitioners have used these fundamentals towards conducting
a scientific investigation or analysis through experimentation.

Furthermore, we developed and elucidated a multi-attribute taxonomy to analyze the
obtained research contributions. To accomplish this, we used the aspects across design and
analysis activities as a basis to characterize the selected research contributions, as detailed in
sub-section 2.3.2.

To address the problematics P1-P5, we used the following list of attributes in order to
characterize the selected approaches based on the means and techniques to support safety and
security design and analysis:

• Modeling aspects: Represents the aspects of the target system that are modeled.
• Property: Outlines the set of safety and security properties addressed in the contribution.
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• Relationship between properties: Outlines inter-related properties (if any).
• Language: Outlines the modeling languages (semi-formal or formal) used to model

or specify system aspects and safety and security concerns. The language constructs
determine the extent to which accurate, consistent, and unambiguous construction and
analysis of these specifications can be conducted. A brief summary of the formal building
blocks and their classification in the literature is provided in Appendix A.

• Tool: Outlines the automated tool (if any) used to specify and analyze system properties,
including safety and security. Tools may be accompanied by methodologies for modeling
and verifying properties.

• Evaluation:

– Use case/Case study: Highlights the use case or case study (if any) for demonstrating
the proposed solution and feasibility analysis.

– Assessment parameters: Outlines the means provided to interpret and assess the
results of the analysis conducted on the system under consideration and to use them
as feedback to improve it.

In addition, we consider the following set of attributes to characterise the context of the
selected contributions:

• Target system: Represents the system under consideration and the way it is represented
during design and/or analysis.

• Application domain: Determines the target application domain for study or evaluation of
results.

• Standard/Regulation/Guideline (S/R/G): Highlights the standards, regulations, or
guidelines (if any) that provide the basis for the common knowledge and legal directives
for safety and security properties and their specifications. A brief summary of the list of
safety and security standards across several industrial application domains is provided in
Appendix B.

• Key assumptions: Highlights the key assumptions made (if any) regarding the target
system. The interpretation of requirements and scope of study may differ depending on
these assumptions in certain cases.
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2.3.2 Results

In this section, we summarize the results of our study on the approaches to safety and security
design and analysis based on the attributes mentioned in the previous sub-section 2.3.1.

2.3.2.1 Characterization based on the Means and Techniques To Support Design and
Analysis

Tables 2.4, 2.5, and 2.6 provide a concrete summary of the selected approaches from the
literature based upon the means and techniques used by them to realize the safety and security
design and analysis activities.
Table 2.4: Summary of Selected Approaches based on the Means and Techniques to Support
Safety Design and Analysis.

Ref. Modeling Aspects Property
Relationship between

Properties
Language Tool Evaluation

Use Case/Case Study Assessment Parameters

[61] System functions, non-
functional requirements

• Response time
• Reliability

• Severity
• Exposure
• Controllability

Set theory - -
• Response time
• Reliability
• Energy consumption

[25] Spatial and temporal
modeling

• Periodicity
• Boundness -

Metric Temporal-
Spatial Logic
(MTSL)

- Train control system Non-functional aspects

[95] Network Availability - Assertion language ALFHA, VITE Electric car System functionality
and time

[96] Data monitoring units • Integrity
• Data freshness - Event-B Rodin Temperature Monitoring

System (TMS) Refinement results

[97] Functions, components,
control system

Sequential, temporal,
combinatory - SysML, FOL,

Temporal logic UPPAAL Mechanical press -

[98] Functions, components • Response time
• Robustness - - - Maneuver Assistance

System (MAS) -

[39] System, functional,
hardware, software-level - - Meta-model XText - Traceability

[99] Component modeling Temporal (e.g., time-out) - Textual, Meta-model Artop Production software
• Communication
• Execution
• Dynamic storage

[4] Development modeling Availability - UML
Objecteering 5.3,
Rational Software
Architect (RSA)

Consult System Flight
Plan (SFPL)

• Consistency
• Model integration

[63] Behavioral constraints Functional and non-functional - Simulink, Embedded
Matlab (EML) SDV, Uppaal-SMC Autonomous traffic sign

recognition vehicle Energy consumption
[100] Computation Safety properties in general - Word automata - - Reachability
[101] Functional modeling Behavioral - Petri-nets, B method AtelierB ERTMS/ETCS 3

train automation
Structural and behavioral
concerns

2.3.2.2 Context-oriented Characterization

Furthermore, Tables 2.7, 2.8, and 2.9 provide a concrete summary of the selected approaches to
safety and security design and analysis based on their scope.
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Table 2.5: Summary of Selected Approaches based on the Means and Techniques to Support
Security Design and Analysis.

Ref. Modeling Aspects Property
Relationship between

Properties
Language Tool Evaluation

Use Case/Case Study Assessment Parameters

[68] Component-Port-Connector (CPC)
architecture modeling

• Confidentiality
• Integrity
• Availability

- FOL, Modal Logic Alloy Smart meter gateway
demonstrator Security properties

[40] • Static structural modeling
• Dynamic behavioral modeling

• Confidentiality
• Integrity - UML, Z Z/EVES Bicycle parking

embedded software
Domain and security
checking

[102] Intruder modeling Confidentiality - Markov Decision Processes PRISM - • Attack probability
• Degree of confidentiality

[103]
• Cloud computing system
modeling
• Modeling of state-machine
diagrams

Confidentiality - UML, Set theory Proverif ConfiChair • Secrecy
• Unlinkability

[104]
• Low-level modeling for security
protocols
• High-level modeling for the whole
networked system

• Privacy
• Authentication
• Integrity
• Freshness
• Non-repudiation

- Applied pi calculus (a-pi) ProVerif Fieldbus security system Scalability (Limiting the
growth of state space)

[105] Trust chain modeling • Static integrity
• Dynamic integrity

• Trust
• Access control Set theory - Backdoor and code

injection attacks Program credibility

[106] Communication model in distributed
system

• Confidentiality
• Integrity
• Authenticity
• Non-repudiation

• Integrity with
Confidentiality
• Authenticity with
Integrity

First-order epistemic and
modal logics Alloy -

• Eavesdropping
• Corruption
• Spoofing
• Deniable reception
• Deniable sending

[107] Control loops Availability Resilience Petrinets - Laboratory plant with
water tanks

• MTTF
• Availability

[108] Threat modeling
• Users privacy
• Information integrity
• Authorized access
• Accountability of actions

Safety - - - -

[109] Data storage Integrity - - - - -
[110] Modeling of system and security

properties
• Confidentiality
• Authenticity - SysML-Sec ProVerif, TTool Key distribution protocol Attack resistance

Table 2.6: Summary of Selected Approaches based on the Means and Techniques to Support
Safety and Security Integrated Design and Analysis.

Ref. Modeling Aspects Property
Relationship between

Properties
Language Tool Evaluation

Use Case/Case Study Assessment Parameters

[111] Function, architecture, and
task mapping

• Safety: Reachability and
Liveness
• Security: Confidentiality and
Authenticity

- SysML-Sec TTool - -

[112]
Unified modeling of life-
cycle phases of safety and
security

- - FACT Graph - Stuxnet -

[113] Domain modeling of safety
and security - - Maude - Building automation

[114] System architecture Structural and behavioral - First-Order Logic
(FOL) Alloy Thales avionic system Protection against failures

and attacks

[115] Interactions -
Mutual reinforcement,
Antagonism, Conditional
dependency

BDMP formalism FigSeq Automatic door shutting
system Undesired event probability

[116] Communication architecture • Confidentiality
• Authenticity - Domain-specific UPPAAL, ProVerif Keying protocol -

[117] Risk scenarios - Reinforcement, Antagonism,
Conditional dependency BDMP formalism KB3 quantification Pipeline Event probability

[118] Functional aspects Integrity Security - - Communication systems -

2.3.3 Assessment and Key Takeaways

In this section, we discuss the results obtained from the previous sub-section for the key findings
upon which we build our research and the lacks in existing contributions that are yet to be
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Table 2.7: Context-oriented Characterization Summary of the Approaches for Safety Design
and Analysis.

Ref. Target System Application Domain S/R/G Key Assumptions
[61] Cyber-Physical Systems (CPSs) Automotive ISO 26262 Design methodology-specific
[25] Mission-critical CPSs Transportation - No spatial change
[95] Distributed time-triggered CPSs - - Fault-tolerant functionality
[96] Data Monitoring Systems (DMSs) - - • Fault-tolerant functionality

• Timing constraints
[97] Control system Machinery IEC 61508, IEC 62061,

EN 954-1, EN 574 Properties composition
[98] CPSs Automotive ISO 26262 Intended driver’s actions
[39] - Automotive ISO 26262 -
[99] System software Automotive ISO 26262, AUTOSAR Requirement specification
[4] Safety-critical - - Software failure

[63] CPSs Automotive - -
[100] Critical systems - - Automaton conventions-specific
[101] Critical systems Railway - System model-specific

addressed.

Key Findings. Based on the characterization summary of the approaches concerning means
and techniques to support safety and security design and analysis presented in the previous
sub-section 2.3.2, we offer a concrete view of our findings regarding the selected attributes:

• Modeling aspects: The approaches capturing the high-level mission-centric aspects
[61, 63] or functionalities [97, 98] of the target system to be modeled are dominant in
the safety context. Likewise, most of the approaches capturing the detailed technical
architecture of the target system can be found in the security context [68, 99]. This can be
attributed to the fact that as we move towards the lower levels of granularity concerning
the representation of the system-related aspects, more details about the underlying system
and its entities are available for better security analysis. It is recalled from Section 2.2.3
that safety analysis can still be conducted at the mission layer with limited information.
However, security aspects are often dealt with at the information and communication level,
where the required details are available.

• Property: In the safety context, response time [61], boundness [25], and periodicity [25]
are considered as the key properties considering the quantitative aspects concerning the
system operations that are characterized by spatial and time attributes. Likewise, in the
security context, confidentiality [40], integrity [68], and availability [107] are considered
the key properties associated with the communication systems. As already mentioned in
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Table 2.8: Context-oriented Characterization Summary of the Approaches for Security Design
and Analysis.

Ref. Target System Application Domain S/R/G Key Assumptions

[68] Distributed Component-Port-
Connector (CPC) software system

Information and Communications
Technology (ICT) systems ISO/IEC 27000 Model-specific

[40] Embedded software Embedded Systems - -
[102] Data dispersal algorithms Cloud storage systems - Passive and probabilistic

intruders
[103] Cloud computing systems Cloud computing systems - Secrecy, Unlinkability

[104] State transition systems comprising
nodes defined by a set of attributes Fieldbus systems -

• All fieldbuses, gateways,
and system users belong
to the same domain
• Dolev-Yao adversary

[105] Program under execution Trusted computing systems - Separation of data and
code storage

[106]
System comprising finite number of
processes/components and
communication connectors

- WS-Security

• Reliable broadcast
messaging semantics
• Any process can hear
any message sent by any
other process

[107]
Cyber-Physical Systems (CPSs)
equipped with Intrusion Detection
System (IDS)

- -
• Signature and anomaly-
based IDS
• System is in secure
state initially

[108] Implantable Medical Devices (IMD) Healthcare WMTS, MICS,
MedRadio, NFC Adversary models

[109] Cloud computing-based storage - - -
[110] Embedded systems Automotive - • No limits on loop

• Attribute secrecy

Table 2.9: Context-oriented Characterization Summary of the Approaches for Integrated Safety
and Security Design and Analysis.

Ref. Target System Application Domain S/R/G Key Assumptions
[111] Embedded systems - - Method iterations
[112] Cyber-Physical Systems (CPSs) - ISA 84, ISA 99 -
[113] CPSs - - Safety/security world-specific
[114] Embedded systems Avionic Visual Flight Rules (VFR),

Instrument Flight Rules (IFR) -
[115] Industrial control systems - IEC 64443 System-related
[116] Critical embedded systems Automotive - Dolev-Yao attacker
[117] Critical systems - - Quantitative parameters-specific
[118] Building Automation and Control

Systems (BACS) - IEC 61508, ISO/IEC 15408 Safety Integrity Level (SIL)-
specific

Section 1.1.2, the list of safety and security properties addressed by the contributions
may vary depending on the target of protection. In addition, there is an influence of
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the application domain-specific assumptions on the selection of properties in the safety
context based on the applicability of the system. However, the set of security properties
remains uniform due to the commonalities of the underlying communication platforms
across different application domains.

• Relationship between properties: Only a handful of contributions discuss the relationships
between properties within the safety [61] or security domains [106, 105]. Regarding
safety and security interplay, some approaches [115, 117, 118] discuss the relationships,
including mutual reinforcement, antagonism, conditional dependencies, etc., between the
safety and security domain-specific properties. It can be envisioned that security issues at
the component architecture layer can propagate functional failure, risking the reliability
of safety-critical functions. Moreover, some of the contributions, e.g., [117], discuss or
address early design stage conflict resolution.

• Language: Based on the degree of formality of the constructs, most of the contributions in
the safety context used formal representations relying upon temporal logic [97], B method
[101], etc., to express or analyze the underlying quantitative aspects of their solutions.
On the other hand, security-related approaches, e.g., [103], relied upon semi-formal
constructs with a certain level of analysis they offer. Although formal constructs offer
reasoning capabilities; however, due to the higher level of complexity of understanding
and implementing them, a compromise is often made concerning the analysis by relying
on semi-formal notions that offer a better representation.

• Tool: To comprehend the integration of safety and security disciplines, industries
now realize the importance of conquering the approaches that can better address their
underlying concerns. Essentially, in some cases, most of these concerns coincide with
common system installations and toolsets [117]. In such cases, to model safety and
security inter-dependencies in an integrated framework, tools that can be extended from
safety to the security domain and vice versa can be nominated as potential candidates.
Based on the diverse set of activities performed during the SE—System Engineering
process, these tools may range from requirement specification and system modeling tools,
e.g., Xtext and Papyrus, to risk assessment and testing ones, e.g., Rodin and UPPAAL.

• Evaluation: It can be observed that a majority of the approaches, e.g., [25, 107], for
safety and security design and analysis rely upon the use cases or case studies driven by
the empirical evidence supporting the underlying hypotheses. Diversity can be observed
in this regard for the choice of systems and constituents to demonstrate the approach or
validate the results.
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Furthermore, our findings regarding the characterization summary of the approaches
concerning their context are presented as follows:

• Target system: Existing approaches address the safety and security design and analysis
considering the specification and/or verification of underlying properties for different
target systems. However, the development of integrated safety and security solutions for
specific types of emerging systems (e.g., Cyber-Physical Systems (CPSs), communication,
and control systems) and embedded systems is still a challenging aspect due to the
difficulty in adhering to the standards belonging to the broad spectrum of domains and
lack of well-defined design and implementation practices.

• Application domain: With regards to the application domain, most of the reviewed
contributions, e.g., [61, 98, 99], targeted automotive systems for design and analysis in the
context of safety. This can be attributed to the fact that in the automotive domain, there
lies a potential for failure of the underlying system leading to accidents and causing injury
or death. Likewise, the approaches, e.g., [103, 102], in the security domain are mostly
inclined towards Cloud-based systems due to the conventional or emerging security risks
associated with the underlying communication.

• Standard/Regulation/Guideline (S/R/G): Standards provide a conceptual basis for
capturing the engineered systems’ safety and security concerns. Several industrial
standards have been published in which safety and security properties are defined,
considering the specificities of the target application domain. These definitions serve
to measure the completeness of the safety and security properties’ specifications in the
works found in the literature [61, 97, 68]. Safety and security domain-specific standards
can be coupled with a holistic system-level process definition to capture the global
behavior of large and complex systems, where safety and security-critical aspects can be
conceptualized even without the availability of detailed architectural knowledge of the
system [75].

• Key assumptions: In the safety context, some of the approaches address the assumptions
related to the fault-tolerant functionalities of the target system [95]. In some cases
[96], the assumptions are associated with the timing constraints capturing the temporal
aspects of the system behavior. In the security context, most of the approaches, e.g.,
[104, 108], adhere to assumptions related to the underlying adversarial models that capture
the capabilities of the attackers in terms of their access to the system and communication
model.
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Lacks in Existing Research. The choice of appropriate constructs or notions for specification
and verification of safety and security properties may depend upon a plethora of aspects,
including 1) the level of abstraction of the system model, 2) technical applicability, size, and
complexity of the system, and 3) experience of the associated stakeholders, e.g., developers,
designers, and users. As a must, coverage and traceability of safety and security requirements
make the choice of approach more complex. Safety and security co-engineering is a relatively
new domain and requires a critical understanding of the needs, gaps, state-of-the-art, and
practices [119]. Our study of the existing literature brings forward the following associated gaps
structured across the modeling, analysis, and evaluation activities, along with the support for
their realization that must be fulfilled to address the idea of safety and security co-engineering:

• Modeling: The use of Domain-Specific Modeling Languages (DSMLs) implemented
as Unified Modeling Language (UML) or Systems Modeling Language (SysML)
meta-models and profiles is widespread for modeling software-based systems
incorporating desired safety [101] and security concerns [110] and inconsistencies’
detection, often in a standalone manner. Some approaches, e.g., [116], incorporate
both safety and security properties. However, they adopt a fixed modeling view, not
covering different layered representations nor design steps, like allocation. In addition,
existing approaches often provide a unified viewpoint in terms of the modeling language
to capture the safety and security domain-specific concerns. However, comprehending
safety and security interplay requires maintaining the individual set of concerns from
both domains and analyzing them for potential conflicts—for instance [115].

• Analysis: Literature review in the field shows that a lack of concrete formalization
still exists in handling and analyzing inter-dependencies between safety and security
properties, along with their quantitative aspects. These can be captured from different
perspectives; no single technique can cover both of them. While standards provide
ease of comprehension regarding the fundamental domain-specific notions for properties
specification, formal constructs offer more precision in conducting the verification.
Consequently, the need arises to integrate these notions vertically across different
system representations (refer to Sections 1.1.1 and 1.1.2), as they require safety and
security properties compliance. Safety analysis approaches are often quantitative in
nature and typically based on formal-based techniques, such as Boolean-Driven Markov
process (BDMP), Failure Mode, Effects, and Criticality Analysis (FMECA), and software
reliability growth [117]. On the contrary, the security analysis is primarily qualitative and
relies on graphical techniques, such as misuse cases and sequence diagrams [20]. It is
evident from the review of primary studies that there is still a lack of explicit modeling
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techniques that can encourage the formal reasoning of inter-dependencies between safety
and security aspects in the early stages of the SE process [85]. An amalgamation of
the benefits of both worlds seems to be difficult due to the complexity associated with
understanding and executing formal techniques. In some efforts, formal logic, like
First-Order Logic (FOL) and temporal logic, are used for rigorous specification of safety
and security properties [25, 97, 68, 114]. Some of these works (e.g., [25, 97, 68]) are
nonetheless less oriented to cover the integrated specification of high-level safety and
security properties. As a drawback, works in this category are often constrained either
by the underlying formal language (inability to represent required properties) or by lack
of guidance (or even impossibility) to apply them at different layers, thus preventing the
reusability of the outcomes.

• Tool support: The main concern demanding tool support is the passage from semi-formal
structured models to their formal specifications. Tooled-formal methods, when used in
the engineering process of safety- and security-critical systems, increase confidence in
the aspects (e.g., properties) defined by the respective standards [120, 31]. Several works
demonstrate the use of the Event-B formal method for rigorous analysis of safety [96, 121]
and security concerns [122]. However, these works are constrained by the granularity
level and concepts chosen for modeling what imposes requirements to be specified at the
same level. If another layer is needed for conceptual modeling, further guidance is still
required to interpret the concepts from the semi-formal structured models to their formal
counterparts for specification and reasoning (including verification).

• Evaluation: Several contributions rely upon a specific set of parameters to assess the
proposed solutions. Nonetheless, this requires at least a minimum level of maturity to
understand the solution and extract a generic set of features that can be extrapolated and
migrated across diverse application areas.

2.4 Conclusion
In this chapter, we surveyed several existing approaches for 1) incorporating safety and security
in the engineering process of safety and security-critical systems and 2) conducting safety and
security design and analysis via specification and verification of the underlying concerns, e.g.,
properties. We outlined and analyzed their features and capabilities regarding our research’s key
objective: provisioning methodological support for non-savvy engineers to conduct integrated
design and analysis of safety and security in the SE—System Engineering process. First, we
provided a basis to analyze the existing methodologies allowing incorporation of safety and
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security concerns in the system development process in Section 2.2. To facilitate this survey,
we categorized the identified approaches into standalone and co-engineering. We defined a
multi-attribute taxonomy relying on previous surveys and knowledge in the domain to analyze
the selected contributions. By doing that, we prepared a characterization summary of these
approaches. This was followed by exploring and analyzing approaches to facilitate integrated
design and analysis of safety and security in Section 2.3. To this end, we targeted different
techniques in the literature for safety and security properties specification and verification and
their interplay.

According to the findings in Sections 2.2.3 and 2.3.3, a new methodology is needed that
should consider the existing approaches and fulfill the identified methodological lacks for
incorporating safety and security concerns in the system development in unison. The approach
should be holistic, adopting a global view of the SE process, targeting different stages, e.g.,
mission, functional, and component, of system development. Despite existing approaches
addressing these stages, mainly in a segregated fashion, further work is needed to integrate
these approaches during the system development. Besides, the conceived methodology should
be benefited from the foundational notions of the safety and security standards and exploit the
capabilities of the existing techniques, including Model-Driven Engineering (MDE) platforms,
and precision and rigorousness of formal methods to facilitate integrated safety and security
design and analysis. Accordingly, the approach must improve the feasibility of the existing
modeling frameworks regarding the complexity associated with understanding and integrating
formal techniques into the engineering process to conduct a sound safety and security properties
analysis.
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3.1 Introduction
In this chapter, we present a general overview of our proposed joint design and analysis
approach to ease safety and security co-engineering concerning the overall research problem
stated in Section 1.2, which is—How to address the interplay between safety and security
during the design stages of the System Engineering (SE) process? The aim is to articulate a
methodological view for the overall development process comprising activities and building
blocks belonging to two complementary aspects, viz. Model-Driven Engineering (MDE) and
formal-based techniques used in the rest of this work to incorporate safety and security into the
system architectural design. The proposal starts by adopting a stakeholders’ viewpoint in the
context of the engineering process, pursuing support and guidance during the integration and
verification of system safety and security concerns. Subsequently, we outline the key aspects
upon which the approach is constructed and applied. This includes the development of a safety
and security modeling framework to support the safety and security co-engineering process
(addressing the problematic P1) and three-layered system modeling (addressing the problematic
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P2). In addition, we discuss the technological support in terms of language constructs, tools, and
techniques for assisting the framework in the defined context, resulting in a prototype tool-chain
support architecture. Recalling the context provided in Section 1.1, the methodological support
involves leveraging the capabilities of MDE and formal-based tools and techniques to facilitate
safety and security design and analysis in unison.

Overall, the chapter is organized as follows: In Section 3.2, we present an instance of
the stakeholders’ interaction in a typical SE process to derive the need for safety and security
co-design and analysis, the key aspects to support the development of the proposed approach,
and the method to build the safety and security modeling framework. This is followed by the
description of the prototype tool-chain support architecture proposed in Section 3.3 in the context
of this work. Subsequently, we provide an introduction to a use case in Section 3.4 that will be
useful to illustrate and assess the approach and specific contributions as part of it. The research
methodology is detailed in Section 3.5. Finally, we conclude by summing up the contribution
of the chapter in Section 3.6.

3.2 Proposed Approach
The overall approach and its related aspects are detailed in the following sub-sections.

3.2.1 Need for Safety and Security Co-design and Analysis – The
Stakeholder’s Perspective

Developing safety- and security-critical systems require a dedicated engineering process
incorporating safety and security concerns, which can rely on high-level modeling to define the
system architecture. In a model-driven design, analysis by verification of the safety properties,
e.g., availability, can be conducted over the system, sub-system, or components, according to
the design granularity and details present. Likewise, risk analysis to address high-level security
concerns, e.g., unauthorized access, is often information-centric, which demands cascading
down to a detailed system view, particularly that involving components and transmission
channels. These aspects, in turn, call for 1) a consistent passage of system-related knowledge
across different-granularity system views; 2) the integration of properties and their consistency,
preservation, and traceability; and 3) the coordination and harmonization of collaborative work
among dispersed stakeholders and their tasks in the engineering process.

However, the aspects above lead to a complex enrichment process that often lacks
methodological guidance, modeling language including semantics, and automated tool support.
This is particularly true for non-savvy engineers during the integration and verification of
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safety and security properties. For example, we consider the scenario depicted in Figure
3.1 as an instance to capture the interaction among different stakeholders in a development
process driven by models. This interaction typically occurs in the following order, with the
numbers in parentheses corresponding to the numbers in the figure: 1) the different experts,
namely Distributed System Expert, Safety Expert, and Security Expert, elaborate a variety
of models encapsulating their respective knowledge or interests, 2) the Analyst interprets the
models and conducts analysis, 3) the Architect considers the models and harmonize the domain
expertise and outcomes to build the system architecture, 4) the Architect performs analysis on
the system architecture model by specifying and verifying safety and security properties based
upon the related architecture analysis artefacts. This, in turn, forms the basis to facilitate the
System Developer’s tasks. Notably, these stakeholders must reach a consensus regarding an
optimal system design. Nevertheless, such collaboration makes the job of the Analyst complex,
particularly when perceiving security models at different system representation views and jointly
analyzing safety- and security-related feared events to produce artefacts or solutions with the
expected safety and security features at the architecture level.

Figure 3.1: System Engineering (SE) Process for Safety and Security Co-engineering: An
Instance of the involved Stakeholders.

By adopting the stakeholders’ perspective and to address the previously described issues, we
present an approach to support the safety and security co-engineering process. The approach
primarily leverages the idea of capturing of safety and security concerns with the aim of
co-engineering to facilitate the complexity of the design that decouples 1) system-related aspects
from safety and security properties and 2) safety and security needs from solution architecture
design, as detailed in the following sub-sections.
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3.2.2 Key Aspects Supporting the Approach Development

Herein, we outline the important aspects regarding the construction of the proposed approach.
We also refer to where in the manuscript we introduce them.

• Three-layered system model: We are targeting systems that are either three-layered
specified or three-layered modeled. Although other systems that do not satisfy this aspect
could also be addressed with this approach, they are nonetheless not discussed in this
work. Refer to Chapter 4 for details.

• Preliminary hazard and threat analysis: We follow a preliminary hazard and threat
analysis approach based upon which the safety and security concerns, e.g., properties,
are specified. Refer to Section 6.2.3 for its applicability to the use case.

• Modeling and software language engineering: We assume that meta-modeling and
profiling are means that can be leveraged in the SE process to address the modeling of
system and safety and security properties and to capture the domain expertise. Refer to
Chapter 4 and Section 6.2.4 for details.

• Analysis: We assume that formal-based techniques are means that can be leveraged in the
SE process to address the verification of safety and security properties and improve system
safety and security. Refer to Chapter 5 and Section 6.2.5 for details.

The overall approach is depicted in Figure 3.2. It facilitates 1) modeling of a target System
Under Design (SUD) with varying granularity levels, thus defining the layers corresponding to
the different stages of system development, and 2) incorporation of safety and security properties
via separation of modeling purposes and languages, as opposed to incorporation into a flat single
model or view. Accordingly, the system-related aspects can be rendered at the following three
layers:

• Layer 1, Mission layer, concentrates on the formulation of high-level strategic aspects,
called missions, of a complex engineered system, thereby offering a teleological view to
capture its overall purpose.

• Layer 2, Functional layer, represents a classical functional decomposition of the system,
reflecting the design objectives correlated with its functionality.

• Layer 3, Component layer, focuses on the low-level detailed technical specification
of the target system wherein it is decomposed into a set of components, representing
self-contained computational/communication elements or physical entities and their
channels.
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Figure 3.2: Approach for System Safety and Security Co-engineering.

The idea behind the aforementioned layered representation is driven by the aim to provide
design choices and cover system-related aspects allowing safety and security properties analysis.
Herein, the allied conceptual models are the cornerstone that 1) encompasses fundamental
notions, their attributes, and potential relationships for capturing the structural and behavioral
aspects of the target SUD at different levels of granularity, with Mission at the highest
and 2) endows models with semantics to allow verification of properties. To address the
layers’ intertwined semantics, the framework is amenable for both top-down and bottom-up
design strategies, whereby models’ formalization shall allow progressive detailing of the SUD.
Specifically, the top-down strategy would allow the incorporation of greater details during the
system modeling, as described below:

• Mission captures what is needed to be achieved by the system.
• Function captures how to achieve what is needed to be achieved by the system.
• Component architecture captures which elements can finally realize the what and how.
On the other hand, the bottom-up strategy would allow for analysis of the propagation of

malfunctioning at the lowest layer upwards up to the highest one. For instance, from a safety
perspective, a faulty component like a sensor may eventually trigger a hazardous situation for
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the whole system, e.g., an autonomous driving vehicle, by transmitting erroneous information.
The structural and semantic linking among these layers concentrates on ensuring the consistency
between corresponding representations and the preservation of properties via traceability.

3.2.3 Method to Build the Safety and Security Modeling Framework

With the three-layered model as its foundation, we present a method that encompasses the
“safety- and security-by-design” principle, disambiguation in properties’ specification, and
early detection of potential conflicts between properties in the SE process, the three later as
contributions for an effective co-engineering. This is accomplished via the following main steps
that are depicted on the left side in Figure 3.3:

Figure 3.3: Method to Build a Framework to Support the Co-engineering Process of Safety and
Security.

• Step 1 Conceptual modeling: We begin with developing a conceptual model of the system
aspects and safety and security properties concerning the three-layered model. This would
provide a common understanding of the notions and their relationships in modeling the
system and properties at the layers associated with different stages of system development.
The corresponding Domain-Specific Modeling Languages (DSMLs) would allow the
creation of the system architecture model from the conceptual model and identified safety
and security concerns in the form of properties of the modeled system.
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• Step 2 Formalization: This involves the formalization of both system aspects and
properties via logical specification of the corresponding DSMLs. In addition, a set of
reusable formal model libraries for safety and security properties is also provided that are
verified via interpretation into a delegated formal tool.

Once formalized, the properties’ specifications instantiated at each layer remain generic
enough to be accommodated as reusable libraries to assess the system model for the properties’
violations. This, in turn, can be used to verify the fulfillment of the safety and security
requirements. This is depicted on the right side in Figure 3.3.

3.3 Proposed Tool-chain Support Architecture
Herein, we propose a tool-chain prototype integrating the MDE paradigm and formal-based
tools, supporting the modeling framework, DSMLs (meta-models and profiles), and formal
specifications to assist the developers of safe and secure systems. The underlying tools must
be able to support or illustrate the different phases and aspects of the proposed approach that
will be detailed in the forthcoming Chapters 4 and 5. This would include the creation of system
and properties DSML meta-models and profiles and a library of safety and security properties
involved during the modeling and analysis activities in the proposed approach.

Figure 3.4 depicts the prototype tool-chain support architecture used in our work, comprising
the following two primary blocks: 1) Safety and security modeling framework development block
and 2) System safety and security co-engineering block. These are detailed in the following
sub-sections, with their related activities numbered in parentheses.

3.3.1 Block 1: Safety and Security Modeling Framework Development

This block supports the following five activities:
• (A1.1) Creation of DSML meta-models and profiles for the three-layered system and safety

and security properties.
• (A1.2) Defining the mapping for the DSML profiles to their corresponding logical

specification, along with the logic-based properties’ specification.
• (A1.3) Interpretation of the profiles to a concrete formal specification, using a formal

method with accompanying tool support to capture the structural and behavioral aspects
of the three-layered system and properties. This constitutes the formal model library
corresponding to the system architecture and properties.
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Figure 3.4: Overview of the Tool Architecture developed to Support the Co-engineering of
Safety and Security: Integrated Design and Formal Analysis.

• (A1.4) Defining the reusable libraries of safety and security objectives as signatures in the
context of the formal meta-model.

• (A1.5) Verifying the system design regarding the objectives signatures using the tool
support.

3.3.2 Block 2: System Safety and Security Co-engineering

This block includes user-oriented features and supports the following three activities:
• (A2.1) Modeling a three-layered system and properties conforming to the DSML profiles

created in (A1.1).
• (A2.2) Enabling the generation of a three-layered system formal model via refinement or

interpretation of the already developed meta-models in (A1.3).
• (A2.3) Integration of safety and security objectives’ specifications by reusing and adapting

the libraries defined in (A1.4).
The details about the level of automation of the above-listed activities in the two blocks

will be provided in Chapter 6 for the entire chain of approach instantiation. This will include
activities broadly typed as manual, partially automated, or automated, depending upon the level
of human intervention required.
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3.4 Illustrative Use Case: Autonomous Connected-Driving
Vehicles (CDVs)

In this section, we introduce the use case of autonomous Connected-Driving Vehicles (CDVs)
as an automotive domain-specific application for the illustration purposes of the proposed
approach. To address the current lack of literature related to integrated design and analysis
of safety and security in the SE—System Engineering process, as discussed in Chapter 2, we
demonstrate the applicability of our approach on a converging road plan scenario concerning
CDVs, which will be detailed in Chapter 6. We rely on this use case to exemplify the
basic notions involved in the different stages, viz. modeling and analysis, of the approach
in forthcoming Chapters 4 and 5, respectively. In addition, the complete approach will be
instantiated with the proposed tool-chain support prototype in Chapter 6 in the scope of this
use case.

3.4.1 System Description

As the name implies, CDVs are enabled by inter-connectivity, allowing communication among
the vehicles, Road-Side Infrastructure (RSI), and other remote entities like Cloud servers and
smartphones. Communication encompasses technologies, services, devices, and applications,
within or outside the vehicle, which are designed to facilitate transport, ease traffic, and mitigate
accidents [123]. The transmission of information among these systems is often related to road
congestion, vehicle’s present speed, location, and so forth [6]. Unlike traditional vehicles,
autonomous CDVs rely upon software to actualize features like self-driving, context adaption,
and automated decision-making.

To briefly understand the underlying architecture of CDV systems, we focus on the logical
decomposition of the system’s motion-control module. It aims to ensure certain high-level
functional goals of the system, such as ensure driving, and non-functional ones, such as avoid
collision with obstacles and ensure braking when needed, as depicted in Figure 3.5. Accordingly,
this module comprises various sub-systems, components, and sub-components for achieving
these goals. The components can be classified into the following categories: 1) Perception, 2)
Processing and decision-making, 3) Actuation, and 4) External communication, based on the
dedicated functions they perform, as depicted in Figure 3.6.

Perception can be described as the interpretation and semantic understanding of the data
about the vehicle and its surrounding environment [124]. This involves functions
related to sensing the vehicle’s state, for example, vehicle dynamics comprising speed,
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Figure 3.5: Layered Decomposition of the Motion Control Ecosystem in Connected-Driving
Vehicles (CDVs).

Figure 3.6: A Typical Connected-Driving Vehicle (CDV) System Architecture.
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acceleration, angular momentum, etc., and also, the state of the environment in which
the vehicle operates, for example, detection of obstacles, traffic, pedestrians, driving
lanes, lane crossings, etc. In this regard, the vehicle relies on perception blocks like
Light Detection and Ranging (LiDAR), Global Positioning System (GPS), surveillance
cameras, inertial measurement sensors, etc., that translate the data captured by physical
variables into signals for measurement. Specific algorithms like the ones for data fusion
and localization aim to enhance vehicle localization accuracy and decision-making by
coupling heterogeneous data sources [125].

Processing and decision-making deals with processing perception data and applying
algorithms to determine a driving strategy in the context of the operational environment
of the vehicle. It aims to ensure driving behaviors subject to constraints to generate
human-safe driving. This involves functions related to perception data processing,
vehicle positioning, trajectory planning, speed profile generation, navigation, etc., usually
conducted by the On-Board Units (OBUs) [124].

Actuation deals with directing the vehicle or its components to operate physically. This
involves functions related to controlling the vehicle’s dynamics, for example, transmission,
propulsion, steering, braking, etc. This is achieved via actuator devices like the steering
wheel, electric and hydraulic brakes, main engine, etc., which transform the input signals
to motion [125].

External communication involves the data exchange between the vehicle and the
external environment to enable surrounding data collection, configuration updates,
etc. [125]. Vehicle-to-Vehicle (V2V) communication allows data exchange
among the vehicles, relying upon different protocols and antennas, e.g., Dedicated
Short-Range Communications (DSRC), to access speed or location-related information.
Vehicle-to-Infrastructure (V2I) enables exchanging information about traffic congestion,
weather warnings, etc., between the vehicle and the external infrastructure. Other types
of communications include Vehicle-to-Remote Cloud (V2C), Vehicle-to-Grid (V2G),
etc.

3.4.2 Relevance of the CDV Systems regarding Safety and Security

Despite the theoretical and engineering-related technological advances achieved in the domain
so far [126, 127], CDV systems are not yet completely free from the underlying design flaws from
safety and security perspectives. The consequence of this is demonstrated by several instances
in the past, some of which resulted in fatal [128].
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Safety. From a safety perspective, there are driving situations in which malfunctioning of
an underlying sub-system can induce hazard-causing behavior of the vehicle. Considering the
motion-control module as the specific case, failure of the braking sub-system while the vehicle
is approaching a junction—for instance, may lead to a collision with other vehicles and injury
or death of the persons involved [129]. In such cases, faulty onboard components, e.g., sensors
embedded in CDV system, can severely impact the entire vehicle’s safety. The violation of
timing constraints hinders the system’s response to a safety-related event, e.g., the presence of
an obstacle. This, in turn, can be associated with the failure of the sub-system or the components
responsible for the in-time delivery of status updates to ensure safety-critical functionality. For
example, on the appearance of an obstacle, the control signals from the multi-function control
unit to the brake actuators should be sent in time to ensure the application of the brakes by the
CDV. The timing constraints’ violation, thus, can cause a delay in the actuator’s action, affecting
the in-time availability of the braking functionality [130].

Security. From a security perspective, increasing inter-connectivity offers potential attack
surfaces, making CDV systems prone to intentional harm and exploiting their functionality.
Communication is often susceptible to intentional but unwanted manipulations within a highly
networked environment. An attacker can cause deliberate delays in transmitting messages,
leading to the unavailability of the necessary functionality. Vulnerabilities associated with
the ports may be exploited [131] that may cause the entire communication to be accessible
for undesired manipulation. It is essential to ensure that the information or messages must
not change during transmission without being detected by the intended receiver. Likewise,
the system must restrict any malicious action performed by the components or entities whose
behavior has been modified [132].

Need for Safety and Security Interplay. Due to the inherent design inter-dependencies,
security-related concerns can impact the vehicle’s safety and vice versa. For example, a
vulnerability in the system can lead to a threat that can be exploited to interrupt the transmission
of control signals for braking. Likewise, in case of an emergency call to avoid an accident, the
concerned information is often unencrypted to prevent delays, and hence, prone to leakage by
a security attack. The safety- and security-critical nature of CDV systems demands the correct
implementation and verification of the mentioned concerns in the early stages of the SE process.
Specifically, in the design phase, the aim is to prevent inconsistencies in the safety and security
attributes of the system. For stakeholders involved in the system development process, e.g., those
already mentioned in Section 3.2.1, documents remain the most suitable artefact. For example,
hierarchical charts like the one depicted in Figure 3.5 are a first-hand description of the safety and
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security concerns of the system. Given an operational context, a common understanding needs to
be established regarding the design assumptions for multi-concern analysis and assurance [133].
Concerning the complexity associated with designing safe and secure CDV systems, methods
and tools are required to support the passage of design-stage semantics among the involved
stakeholders and ensure consistency of the document artefacts.

3.5 Research Methodology
This section accounts for the methodology we followed to construct the proposed safety and
security co-engineering method and address the problematics in this Ph.D. With a two-fold
purpose, this involved engineering of DSMLs and building the formalisms relying on the
fundamental notions presented in Section 1.1 to respectively facilitate integrated system and
safety and security design and analysis, as depicted in Figure 3.7. To develop the modeling
and analysis framework, we conducted our research using the Design Science Research
(DSR) method [134]. This method primarily focuses on designing and implementing the
artefacts, including procedures, process models, and algorithms, to improve their applicability.
Accordingly, we followed an iterative approach in this work, comprising three main steps related
to the artefacts for design, analysis, and tool support and their application regarding the use case,
with iterations concerning the different layers of the three-layered model.

Figure 3.7: Methodological Framework.

• The first step involved the identification of the domain concepts to create a conceptual
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model of the target SUD—System Under Design and properties. Furthermore, we worked
on defining the formalisms corresponding to these fundamental notions and specifying
properties using logic-based notions as extensions in the form of signatures that can be
instantiated considering the target system model.

• The second step involved the development of a dedicated modeling language to facilitate
the system and properties modeling and interpreting the modeling language to a
formal-based tooled language.

• The third and final step involved the implementation of the modeling language and
formalisms to facilitate the system and properties modeling for a target application and
conducting proofs to analyze the fulfillment of properties by the target SUD.

The proposed approach uses the philosophy as in [135]: A logical specification of the
system, safety, and security properties is proposed using an abstract system model (i.e., a
technology-independent specification language, such as FOL—First-Order Logic and Modal
Logic) followed by a more concrete specification of the system model and the properties (i.e., a
suitable language with automated-tool support, such as Event-B).

As mentioned previously, in each step, we applied the design and analysis artefacts to the
CDV use case to evaluate the respective contributions, viz. modeling languages and formalisms.
For example, the first step involved conceptual modeling of the fundamental notions captured
by the meta-models and the formalisms relying upon the use case scenario. We used FOL
[44] and Modal Logic [45] to create technology-independent formalisms. Likewise, the second
step involved designing the CDV system architectural model using the profiles and its formal
modeling using the formal-based tooled language, namely Event-B [136]. Finally, the third
step involved implementing the resulting modeling languages and formalisms in tool support
comprising Papyrus [42] and Rodin [47] for respectively mechanizing the design and analysis of
the CDV system architecture candidates and safety and security properties. In addition, applying
the approach to the use case involved iteratively illustrating and analyzing the system aspects and
properties in each step regarding the layers of the three-layered model. For example, the first
step was further detailed with conceptual modeling of the CDV system regarding the notions
defined for the mission, functional, and component layers, and safety and security properties
in unison. The iterative process allowed for receiving feedback based on the results obtained
from the use case-based application of the approach and improving the related artefacts before
progressing to the subsequent iterations.
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3.6 Conclusion
In this chapter, we presented a global view of the proposed approach for safety and security
co-engineering. The approach relies upon MDE and formal-based techniques as the primary
means for addressing integrated system safety and security design and analysis. The proposed
method allows the creation of the design and analysis framework to assist the safety and
security co-engineering process. Moreover, the prototype tool-chain support architecture aims
to facilitate different phases of the approach via application and evaluation in the context of the
CDV use case. This will provide methodological support to the system engineer via capturing
the safety and security expertise and conducting a joint analysis in the early design stages of the
system development.

In the forthcoming chapters, we apply our research methodology to address the problematics
P3-P5 stated in Chapter 1 via a detailed description of the following:

1. Three-layered system and safety and security properties modeling for creating a design
integrating safety and security in Chapter 4.

2. Formalization of the system and properties models to facilitate an integrated safety and
security analysis in Chapter 5.

3. Application of the approach phases and proposed tool-chain support prototype in the
context of the CDV use case in Chapter 6.
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4.1 Introduction
This chapter is dedicated to describing one of the main constituents of our proposed approach that
is related to system safety and security co-engineering based upon Model-Driven Engineering
(MDE) techniques. This part comprises a three-layered system modeling and safety and security
properties modeling for addressing the problematic P3, which is creating a system design
integrating safety and security, as mentioned in Section 1.2. To this end, we propose a set
of Domain-Specific Modeling Languages (DSMLs), relying upon existing Unified Modeling
Language (UML) [137] to define concepts and semantics corresponding to each layer and across
layers of the three-layered system model and safety and security properties model. The idea
behind different DSMLs is attributed to the fact that even if a single-layered view can express
the desired vocabulary, it may become complex to use and confusing for the stakeholders or
experts involved in the System Engineering (SE) process. Although by splitting the model,
design complexity may increase given the different layers introduced; however, the relationships
via links between the layered elements will simplify the passage of semantics across them.
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Furthermore, the DSMLs are implemented using meta-models for the abstract syntax and
profiles for the concrete syntax to provide a standardized modeling environment. To illustrate
the notions provided herein, we rely on the use case scenario of autonomous Connected-Driving
Vehicles (CDVs) introduced in Section 3.4, which indeed will be detailed in Chapter 6.

Overall, the chapter is organized as follows: In Section 4.2, we describe the method to
engineer the three-layered system and properties modeling languages to benefit from their use
and address safety and security interplay. In Section 4.3, we describe the features that seem
fundamental for the three-layered DSMLs and the languages and techniques used to support
them. This establishes the ground for our contribution towards integrated safety and security
design. In Section 4.4, we introduce the three-layered system modeling, wherein the DSMLs
are implemented as meta-models and profiles, capturing the fundamental notions of the System
Under Design (SUD) and related concerns that can be mapped to the various stages of the
system development, including mission, functional, and component architecture. Subsequently,
in Section 4.5, we present DSMLs to support the modeling of safety and security in the context
of the three-layered system model. Essentially, this includes features to tackle the interplay
between the underlying properties, with the support for identifying conflicts. In Section 4.6,
we present the details of the tool support used in this work to facilitate system and properties
modeling. Finally, we conclude by summing up the contribution of the chapter in Section 4.7.

4.2 Method to Modeling Languages Engineering
This section describes the method to engineer the system and safety and security properties
modeling languages. Recalling Figure 3.7, this involved several iterations for modeling system
aspects and properties, as depicted in Figure 4.1. The constituent meta-models were evolved
based on the consolidation of the feedback from an extensive literature review conducted during
this process, as presented in Chapter 2. Herein, we choose the top-down design flow, although
it is recalled from Section 3.2.2 that the method is also amenable to supporting the bottom-up
flow.

The iterations are detailed as follows:
• Iteration 1: This iteration is related to the modeling of the target SUD at the mission layer.

It begins with identifying the core concepts based upon existing mission specifications
as input. Accordingly, we reuse and adopt the domain concepts to define the language
elements and their relationships for modeling the system’s missions.

• Iteration 2: In this iteration, we determine the elements to define the language for
modeling the system’s functionality. Accordingly, relationships are defined between the
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Figure 4.1: Method for Domain-Specific Modeling Languages (DSMLs) Engineering.

elements belonging to the mission and functional layers to ensure the consistency of the
passage of knowledge across the corresponding representations.

• Iteration 3: In this iteration, we determine the concepts to design the system’s detailed
component-based architecture. Accordingly, links are defined to establish a relationship
between the functional and component layer elements and ensure consistency in semantic
transfer.

• Iteration 4: In this iteration, we define the language elements to model the safety and
security properties of the target SUD and their interplay concerning the three-layered
system model. This involves defining reusable model libraries of corresponding objectives
that can be incorporated with the language elements defined for each layer. If a property
cannot be verified at a given layer, it is delegated to the following layer to be corroborated.

These iterations are accompanied by an illustration involving a primary instance of the CDV
use case borrowed from the state-of-the-art (refer to Section 3.4) to model and analyze a safety-
and security-critical scenario relying upon the meta-model notions. Thus, prior to the iterations,
we consider the overall system’s description (refer to Section 3.4.1) as input, targeting the set
of safety and security missions, underlying functions, and components involved, which will be
detailed in Chapter 6.
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4.3 Desired Features for the Modeling Languages
Globally, the aim is to allow harmonizing knowledge derived from the stakeholders involved in
the SE process and to capture basic concepts in a generic way, facilitating safety and security
interplay. To this end, the desired features of the modeling languages are described as follows:

• Allow three-layered system modeling. The three-layered DSMLs shall allow capturing the
concepts and their relationships pertaining to the different granular representations of the
target SUD. In particular, they must reflect notions that can be mapped to the various stages
of the system development, including high-level purpose, functional features, and software
and hardware architecture. This should assist in modeling the instances of a three-layered
system representation as hierarchies of these notions. Moreover, the DSMLs should be
accompanied by means of grouping the related modeling elements in a structured manner,
like a package, for model comprehension and reusability.

• Allow integrated safety and security modeling. The languages shall serve the integration
of the safety and security concerns associated with the system’s representations. To this
end, they should provide the elements necessary to model properties, e.g., via a library or
catalogue of properties, and conduct a consistent interplay between them when necessary,
e.g., to identify conflicts and support further analysis.

• Ensure semantic transfer consistency and preservation. Given that some properties may
not be verified at a given layer. In such a case, it is recalled that to delegate the properties’
verification to the lower layers, the DSMLs should provide means to link the notions
and properties across layers. This is to ensure semantic transfer consistency between the
corresponding representations and properties preservation via traceability.

The system and properties models are indeed decomposed in conformity with the different
phases a system is developed in an MDE context. As mentioned in Chapter 1, UML supports
the MDE approach and allows system architects and developers to specify, visualize, construct,
and document system software. Being a general-purpose modeling language, it can be adapted
using the notion of UML profiles to specify specific domains, e.g., safety and security, to develop
large and complex system software. Accordingly, we rely upon semi-formal constructs offered
by UML for the modeling aspects involved in this work. We use UML Class diagrams to
create meta-models, describing concepts involved in the three-layered system and safety and
security properties modeling, whereby concepts are represented by classes, concept attributes
are represented as class attributes, and relationships among concepts within or across layers are
represented by links, e.g., association, generalization, etc. Subsequently, we define UML profiles
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that allow reusing and extending the existing UML concepts for customizing the models with
domain-specific details. The profiles facilitate instantiating the meta-models, including system
aspects and safety and security properties.

4.4 Three-layered System Modeling
In this section, we describe the DSMLs to facilitate the modeling of a three-layered system.
The language elements allow capturing the target SUD at different levels of granularity,
viz. Mission, Functional, and Component, with mission at the highest level. For this, we
propose meta-models at each layer to define the associated concepts, their attributes, and their
relationships. Afterwards, the relationships between the layered meta-models are introduced
based on their underlying semantics, allowing them to be used in standalone and coupled modes.
Furthermore, we propose UML profiles for the implementation of the proposed meta-models.

One of the key concepts of the models is the use of views [138]. A view in the present
context can be typically described as a collection of all the relevant entities, their attributes, and
relationships among the entities, corresponding to the phenomenon of interest concerning the
mission, functional, and component layers. The introduced views stand for keeping a separation
between the modeling purposes, including structural/behavioral aspects and safety and security
properties of the target SUD, in the aim to facilitate incorporation and treatment of properties,
rather than keeping them in a single encapsulated description. These models form the basis for
the proposed design and analysis approach that can be aligned with different system development
stages for safety and security co-engineering.

4.4.1 Meta-models for the Three-layered System

The meta-models corresponding to each layer of system representation are described as follows.

4.4.1.1 Meta-model for the System Mission Layer

The model for the system mission layer concentrates on the high-level strategic aspects, i.e.,
missions, of the target system without any low-level technical details. This involves analyzing
the mission specifications as input and designing a mission model to achieve the underlying
goals.

The associated meta-model captures concepts related to mission engineering. Herein, some
of the representative elements constituting the “mission view” offered by this meta-model are
semantically inherited from the state-of-the-art artefacts proposed for rigorously defining the
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missions, as discussed in Chapter 2. The principal concepts of this meta-model are illustrated
in Figure 4.2 and detailed as follows [NB: Concepts are represented in Bold and their attributes
are represented in Italics]:

Figure 4.2: Mission-layer System Meta-model.

• System: It represents the target system, e.g., CDV, as an atomic unit, which is intended
to achieve a set of missions. The system shares a physical and logical border to interact
with its environment.

– description: It provides a high-level textual description of the system and its
characteristics, comprising details like the type of connectivity and mode of
autonomy.

• Mission: It represents the system’s overall purpose or an atomic finality related to
some behavior, constraint, or property. For example, collision avoidance and grant only
authorized actions in the CDVs use case. Herein, we consider only the high-level atomic
missions that cannot be further decomposed into sub-missions. This is a choice to simplify
the configuration and explanations without considering any dependency that may arise by
introducing the sub-missions.

– description: It describes the mission in the form of a statement. The mission
statement reflects an obligation comprising the modal verbs, like must, will, and
should, to indicate the necessity and certainty of something to happen.
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– operationalSituation: It captures the operation-specific scenario that can take place
during the system’s life [30], like in the converging road map scenario.

– hazardousEvent: It represents the combination of a hazard and an operational
situation [30]. Thus, it captures a situation that can lead to a hazard, e.g., unintended
acceleration.

– securityIncident: Extending the notion of an information security incident from
[31], a security incident in our context represents the combination of a threat and
an operational situation. Thus, it captures a situation that can lead to a threat, e.g.,
unauthorized operations.

– overallGoal: It captures the desired operational situation or state of the system
derived from the hazardous event or security incident.

• Operation: It represents the system’s strategy or implementation steps for the
accomplishment of the missions. For example, braking and access provisioning operations
in the CDVs use case. Application of the operation leads to an elementary state transition
concerning the system that may or may not be aligned with the behavior, constraint, or
property prescribed by the mission statement. Two or more operations can be realized
sequentially or in parallel. We extend some of the concepts provided in the operation
model in [9], e.g., input/output, pre-/post-/trigger conditions, to define the following
attributes:

– operationInput: It represents the operation-specific input in the form of a stimulus,
crossing the physical and logical border between the system and its environment. It
impacts the system as a whole irrespective of its current state.

– operationOutput: It represents the operation-specific output in the form of a
response, crossing the physical and logical border between the system and its
environment. It restricts the scope of the operation applicability, as only those
system attributes variables will be affected by the application of the operation that
are declared in the operation output clause.

– preCondition and postCondition: It captures the descriptive pre-conditions and
post-conditions associated with the application of the operation. These conditions
are irrespective of any particular domain and typically capture the system’s state
from the operational perspective.

– environmentTriggerCondition: It captures the prescriptive obligation to trigger an
operation from the environmental perspective. Thus, it represents an additional
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strengthening that assures accomplishing the system missions via the realization
of the operations. For example, the decreasing distance between the CDV and
its obstacle beyond a certain threshold should trigger the braking operation. An
important concern is the inconsistencies resulting from multiple operations getting
triggered with the same environment trigger condition. However, we assume that a
trigger condition can only affect one operation at a time.

– durationOfExecution: It defines the interval between the point at which an operation
gets triggered and the point at which it produces an output.

– durationType: It denotes the type of the operation duration, typed as DurationType.
The possible values include: Function, Parameter, or Value. The operation duration
can be a function of the input received from other system operations, a parameter
describing the overall duration of execution for the operation, or a value indicating
the maximum execution time of an operation.

• Environment: It represents the physical environment with which the system interacts.
Inspired by [24], the notion of the environment in which the system operates may
comprise: 1) People having cooperative or even malicious intent, e.g., system operators,
maintainers, users, or observers, and 2) Asset that may be either tangible or intangible and
exist outside the system, e.g., commercial, personal, or civic, including money, services,
or physical property. We consider other systems similar to the target system, a part of the
environment, specifically assets.

– description: It provides a textual description of the environmental context in the
form of a statement, comprising details like persons interacting with the system,
infrastructure around the system, and environmental conditions.

4.4.1.2 Meta-model for the System Functional Layer

The model for the system functional layer reflects the design correlated with the system’s
functionality. This typically involves defining functions driven by the operations corresponding
to the high-level mission specifications of the target system to accomplish its overall purpose.

The associated meta-model includes concepts related to functional engineering. To model
the system functions at the detailed level, some representative elements are borrowed from the
literature, as discussed in Chapter 2, to define the “functional view” offered by this meta-model.
The principal concepts are illustrated in Figure 4.3 and detailed as follows:

• System: It represents the target system decomposed into a set of functions wherein it
can be observed in the form of collaborative sub-systems performing a set of cohesive
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Figure 4.3: Functional-layer System Meta-model.

functions [NB: This element is inherited from the mission-layer system meta-model and
extended for the purposes of functional design or engineering].

• Function: It represents one or more elementary behaviors, like perception- or
actuation-related, which are performed or provided by the target system, commonly
expressed in the active verb form.

– type: It represents the overall type of the function, typed as FunctionType.
The possible values include: Physical or Logical. The physical functions are
representative of the physical processing elements of the system, whereas logical
functions reflect the information processing tasks.

– preCondition: It represents the mandatory conditions to be fulfilled and/or states
to be reached for the invocation or execution of the function [139]. For example,
pre-conditions associated with the signature of the function input.

– triggerType: It represents the type of trigger as an external stimulus activating
a function, typed as TriggerType. The possible values include: Manual,
ControlSignal, or TemporalConstraint. The manual trigger lies in relation to the
physical representation of the functions. It is associated with the invocation of the
functions via physical actions that the system’s operator can induce. A control
signal is a signal received by a function from another function, thus triggering
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the execution of the former. The temporal constraints represent the requirements
regarding the temporal notions as a threshold for restricting the function’s trigger
time and execution duration. The precise semantics of the temporal constraints will
be specified and detailed in the forthcoming Chapter 5, where a logical specification
and semantics will be added to the languages herein defined.

• Caller: A caller is responsible for invoking a function. In correspondence with the
above-mentioned trigger types, the function caller can be either a system Operator
that initiates a manual trigger, an external Function that sends control signals, or
TemporalConstraint that may be related to the recursive calls made by the function for
self-invocation based on a temporal constraint [NB: The element Operator is inherited
from the mission layer system meta-model].

• Information: It represents the information associated with the function that can be either
of the following, inspired by the notion of input and output in [139] to describe a function:

– FunctionalInput: It corresponds to the information received by the function that
invokes or enables the function, which is further processed or transformed by the
function.

– FunctionalOutput: It corresponds to the information generated by the function as
a result of the transformation of input, for invoking other functions or providing the
final outcome.

• InformationFlow: It represents the link or flow of information from the functional output
of one function to the functional input of another function, thus forming a sequence of
functions.

• FunctionalInterface: It represents the point of interaction between the functions to allow
their invocation via the exchange of information. The notion of the interface is relative
based on its applicability. In the present context, it determines the semantics related to the
function signatures, comprising input and output for the passage of information between
the functions.

• FunctionalPath: It represents a sequence of functions, like obstacle detection → position
inference → deceleration, to realize the system’s operations with information flows, e.g.,
related to the dynamics of the obstacle. In other terms, it captures the flow of information
between different functions, constituting a functional path. The first and last function in
the sequence of functions constituting a path represent the boundary functions involving
the system’s interaction with its environment.
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– description: It describes the ordering of the functions constituting the functional
path in textual form, based on the flow of information among them. The constituent
functions correspond to the operations defined at the mission layer for mission
accomplishment.

4.4.1.3 Meta-model for the System Component Layer

The model for the system component layer concentrates on the low-level technical details of the
system. It defines the system as a composition of component sub-sets representing self-contained
computational/communication elements or physical entities.

The associated meta-model incorporates concepts related to the engineering of system
components. We reuse the Component-Port-Connector (CPC) model presented in [68] with
message passing-based communication primitives for the present work. The aim is to target
both components and communication channels involved in the system interactions. It provides
a recognized way of visualizing the system’s structural and behavioral aspects, constituting
the “component view” of this meta-model, as depicted in Figure 4.4. The structural elements
associated with this meta-model are defined as follows [NB: Other communication policies or
channels can be added according to the target system and modeling needs]:

Figure 4.4: Component-layer System Meta-model.

• System: It represents the system composed of different components, including physical
and logical [NB: This element is inherited from the mission-layer system meta-model and
extended by adding details to make it suitable for the component layer].
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• Component: It represents the self-contained computation elements or physical entities,
like the camera, processing unit, and brake actuators, constituting the system, i.e., the
CDV.

– type: It represents the type of the component, typed as ComponentType. The
possible values include: Atomic or Composite. The former are characterized by the
basic functionalities they provide independent of the other system components. On
the other hand, the latter rely on other components for their functionalities.

– failureRate: It represents the rate of failure [30] of a component, in case the element
represents a physical component.

– givenTime: It represents the current time under observation.
• Port: Each component uses different ports that provide an interface for the exchange

of data or alike between the components. A port is an interaction point to establish
communication between a component and its environment comprising other components.

– kind: It represents the kind of the port, typed as PortKind. The possible values
include: Input or Output. An input port is capable of receiving the data or alike. On
the other hand, an output port can send the data or alike.

• Connector: A connector establishes a connection between two or more components via
ports for communication.

– connType: It represents the type of the connector, typed as ConnectorType. The
possible values include: Bus, Pipe, or Channel. A bus represents the wired
communication link between the physical components. A pipe is a connector that
serves the data stream being transformed by the components acting as filters. A
channel represents the logical communication link between components.

• InteractionType: It determines the deployment characteristics of ports and connectors
within a system to represent the type or semantics of interaction between the components.
The type of ports and connectors constrain the semantics of interaction between the
components of the system. An interaction may involve the transmission of signals
(Signal), data (Data), or packets (Packet).

The behavioral elements associated with this meta-model are defined as follows:
• CommunicationStyle: It represents a specific communication behavior between the

components that may be senders or receivers. We consider message passing-based
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communication primitives (MsgPassing) as the communication style. Other possible
communication styles may include: broadcast (Broadcast) or multi-cast (Multicast). The
language can be enriched with the elements and semantics to allow the integration of
different communication styles and more technology-dependent models at the level of
component architecture design.

• MsgPassing: It represents the transmission of messages from the sender component to
the receiver component via sending and receiving actions, respectively.

4.4.2 Relationships between the Layered Meta-models

The first by-construction linking between the layers is the set of inherited elements, namely
System and Operator between the mission and the functional layers, and System between
the mission and the component layers. Referred inherited elements ensure a direct and
correct structuring relying upon standard UML extension mechanisms. We additionally define
a structural and semantic linking via association between the layered elements to ensure
consistency during the passage of knowledge between the corresponding layered representations.
Accordingly, Figure 4.5 depicts the resulting three-layered system meta-model. This is a choice
that simplifies the structuring and configuration of layers. These links are described as follows:

Figure 4.5: Three-layered System Meta-model.

• realizedBy: A system operation, like decision-making, at the mission layer, is realized by
a function, e.g., position inference, at the functional layer.
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• caller-operator generalization: A function caller at the functional layer can be an operator
of the system at the mission layer. For example, the deceleration function can be manually
triggered by a person sitting inside the CDV.

• allocatedTo: A function, like position inference, at the functional layer, is allocated to a
component, e.g., processing unit, at the component layer.

• conveyedBy: An information flow between functions at the functional layer may be
conveyed by the connector between the corresponding components at the component
layer. According to this allocation, the inputs and outputs associated with the functional
interfaces are implicitly mapped to their respective ports.

4.4.3 UML Profiles for the Three-layered System

To support the modeling of a three-layered system, we develop and implement UML profiles
from the previously defined concepts in the respective layered meta-models. The profiles reuse
the existing concepts from the UML 2.5 [140] and extend them according to the modeling needs.
They import both UML Standard Profile and Primitive Types of the Model Library. Herein, we
use Eclipse Papyrus [42] that allows the creation of the profiles by providing a UML modeling
environment.

4.4.3.1 UML Profile for the System Mission Layer

The UML profile for the system mission layer defines all the necessary stereotypes to model
the system missions and the related notions presented in the meta-model for the system mission
layer (refer to Section 4.4.1.1). Figure 4.6 depicts the complete profile, which is detailed in the
following paragraph.

As mentioned previously, a target SUD—System Under Design aims to achieve a set of
missions that are, in turn, accomplished through a set of operations. Therefore, we introduce
a set of stereotypes, like «System», «Mission», «Operation», extending the UML meta-class
Class. Likewise, the stereotype «Environment» extends the meta-class Class to capture the
people and the assets. The attributes like description, operationalSituation, hazardousEvent,
and preCondition are considered as String, as their values are captured in the textual form. The
durationType attribute of an operation is represented by the tagged value durationType, whose
values are provided by the enumeration «DurationType».
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Figure 4.6: Mission-layer System UML Profile.

4.4.3.2 UML Profile for the System Functional Layer

The UML profile for the system functional layer incorporates all the necessary stereotypes to
model the system functionality and the related notions presented in the meta-model for the
system functional layer (refer to Section 4.4.1.2). Figure 4.7 depicts the complete profile, which
is detailed in the following paragraph.

The tasks performed by the system are modeled by the «Function» stereotype, extending
the UML meta-class Action that captures both caller (via a UML Call Behavior Action) and
callee (via a UML Opaque Action) functions. The attributes type and triggerType of a function
are defined as tagged value enumerations to respectively define the type of the function and
the trigger associated with it. The type of these attributes is «FunctionType» and «TriggerType»,
respectively. The attribute preCondition representing the conditions necessary for the function’s
invocation in textual form is typed as String. The functional interfaces are modeled with the
stereotype «FunctionalInterface», which extends both Parameter and Interface meta-classes.
Likewise, the function caller is typed via the stereotype «Caller», extending the meta-class
Class. To model the input and output information respectively accepted and produced by the
function, we define the stereotypes «FunctionalInput» and «FunctionalOutput», respectively
extending the InputPin and OutputPin meta-classes. To model the link between functions
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Figure 4.7: Functional-layer System UML Profile.

corresponding to the flow of information across them, we define «InformationFlow» stereotype,
extending the UML meta-class Association. Finally, the temporal constraints representing
the function’s trigger are captured using the stereotype «TemporalConstraint», extending the
meta-class Parameter. The values for durationOfExecution and timeOfTrigger attributes are
typed as Real.

4.4.3.3 UML Profile for the System Component Layer

The UML profile for the system component layer defines all the necessary stereotypes to model
the CPC-based system architecture and the related notions presented in the meta-model for the
system component layer (refer to Section 4.4.1.3). Figure 4.8 depicts the complete profile, which
is detailed in the following paragraph.

The «Component», «Port», and «Connector» stereotypes, respectively extend the UML
meta-classes Component, Port, and Connector. Their respective types are captured
using the enumeration tagged values, stereotyped as «ComponentType», «PortKind», and
«ConnectorType». The possible interaction types, viz. signal, data, and packet, between
the components, are stereotyped using «InteractionType», extending the meta-class Class.
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Figure 4.8: Component-layer System UML Profile.

Likewise, the communication styles defining the behavior of communication between the
components are captured by «CommunicationStyle», extending the meta-class Class.

4.4.3.4 UML Profile for the Layered Meta-models Relationships

Based upon the structural and semantic linking defined in Section 4.4.2, the resulting UML
profile targeting the relationships between the layered meta-models is depicted in Figure 4.9.
Herein, the links are defined via associations between the respective elements. Since there is
a one-to-one correspondence between the semantic meaning of instantiated associations in the
profile and their respective counterparts in the meta-model in Figure 4.5, no further description
is provided.

4.5 Safety and Security Properties Modeling
In this section, we describe the DSML to facilitate the modeling of safety and security properties
and their interplay concerning the three-layered system architecture. For this, we propose
meta-models to define the concepts, their attributes, and relationships pertaining to the properties
at different layers of system representation. Furthermore, we propose the UML profiles to
implement the proposed meta-models.
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Figure 4.9: Three-layered System UML Profile.

4.5.1 Meta-models for Safety and Security Properties

The meta-models corresponding to safety and security properties at each layer of system
representation are described in the following sub-sections. The set of safety and security
properties characterize our understanding of those concerns for the SE process. This is indeed
the result of a selection conducted after a thorough review of the literature in Chapter 2, which
finally produced distinctive properties often referred to address and cope with safety and security
events. The properties have been adapted to the syntax and semantics captured in the different
meta-models and profiles at each layer.

4.5.1.1 Meta-model for the Properties at Mission Layer

The meta-model for the properties at the mission layer incorporates concepts related to safety
and security properties of the target SUD at this layer. The “property view” offered by this
meta-model extends the “mission view” presented in Figure 4.2 and is depicted in Figure
4.10 (see top part: Mission Layer). PropertyCategoryLibrary represents the reusable model
libraries, defining high-level properties of the system.

Furthermore, the “property view” is extended by the “property category view”, as depicted
in Figure 4.11 (see top part: Mission Layer). PropertyCategory represents the classification of
safety and security objectives. An objective represents the desired or positive feature a system
should have. For example, in the safety context, OperationalAvailability is defined as an
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Figure 4.10: Properties Meta-model: PropertyView.

objective within the Availability category. Extended the notion of availability from the standard
ISO 26262 [30], as presented in Chapter 1, the operational availability objective is defined as
follows:

Operational Availability (Prop1). A system in a certain operational situation should allow
for the realization of safety-critical operation(s), whenever a hazardous event is detected.

Herein, the readiness of the system in terms of completion of the operations assigned to
it, is of significant importance to guarantee distinct missions in safety-critical systems, e.g.,
obstacle detection in autonomous CDVs to avoid a crash. Likewise, in the security context,
SystemAccessibility is defined as an objective within the ControlledAccessibility category.
According to this,

System Accessibility (Prop2). A system must allow and limit the access of safety-critical
operations to only authorized entities.

The semantics behind these objectives will be detailed in Chapter 5. The set of
objectives considered in this work represents the pragmatical choices inspired by the literature,
as introduced in Section 1.1.2, concerning system safety and security. The libraries are
subsequently used as external models for capturing the objectives as signatures.
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Figure 4.11: Properties Meta-model: PropertyCategoryView.

4.5.1.2 Meta-model for the Properties at Functional Layer

The meta-model for the properties at the functional layer incorporates concepts related to safety
and security properties of the target SUD at this layer. The “property view” offered by this
meta-model extends the “functional view” presented in Figure 4.3 and is depicted in Figure 4.10
(see middle part: Functional Layer). It enriches the PropertyCategoryLibrary by defining
high-level properties essentially concerning the system functions and functional path.

Furthermore, the “property view” is extended by the “property category view”, as depicted
in Figure 4.11 (see middle part: Functional Layer). In the safety context, we consider two
objectives, namely FunctionalIntegrity and FunctionalPathAvailability, belonging to the
Integrity and Availability categories, respectively.

Functional Integrity (Prop3). It ensures the preservation of the information flow between
orderly execution of functions, e.g., obstacle detection, position inference, and deceleration,
constituting a functional path.

Functional Path Availability (Prop4). It ensures that a sequence of functions constituting a
functional path should globally complete their execution within a required temporal bound.

Likewise, in the security context, FunctionalPathFreshness and

70



4.5 Safety and Security Properties Modeling

InformationFlowFreshness are considered as two objectives within the Freshness category.

Functional Path Freshness (Prop5). It ensures the temporal consistency of the execution of
functions across a functional path.

Information Flow Freshness (Prop6). It ensures the temporal consistency of the information
flow across a functional path, as a specific case of functional path freshness.

The semantics behind these properties will be detailed in Chapter 5.

4.5.1.3 Meta-model for the Properties at Component Layer

The meta-model for the properties at the component layer incorporates concepts related to safety
and security properties of the target SUD at this layer. The “property view” offered by this
meta-model extends the “component view” presented in Figure 4.4 and is depicted in Figure 4.10
(see bottom part: Component Layer). It enriches the PropertyCategoryLibrary by defining
high-level properties of the system components and connectors.

Furthermore, the “property view” is extended by the “property category view”, as depicted
in Figure 4.11 (see bottom part: Component Layer). In the safety context, we consider two
objectives, namely CPCAvailability and MessageIntegrity, belonging to the Availability and
Integrity categories, respectively.

CPC Availability (Prop7). It ensures that the components, like the sensor and processing unit,
must be able to engage in communication for the transmission of critical messages, comprising
the position of the obstacle—for instance.

Message Integrity (Prop8). It ensures that whenever a component sends some message, the
same message will eventually be received by the intended component.

Likewise, in the security context, MessageFreshness is considered as an objective within
the Freshness category.

Message Freshness (Prop9). It ensures the temporal validity of the message in transmission
across the system components.

For safety-critical CDV systems, it may act as an indicator of timely status updates. The
semantics behind these properties will be detailed in Chapter 5.
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4.5.2 Properties Interplay Modeling

Potential relationships between the objectives belonging to the safety domain
(intra-relationships), security domain (intra-relationships), and both safety and security
domains (inter-relationships) may arise within a layer or across layers. Thus, we aim to
establish an alignment via links between them to support further analysis, including safety and
security interplay. We define associations, like dependsUpon, definedBy, and conflictsWith,
between the objectives (refer to Figure 4.10). These are similar to the ones used by the pattern
community to define pattern relationships, like in [70], and are specified in RelationshipType,
with the description provided as follows:

• dependsUpon: An objective  depends upon another objective  implies  needs to be
satisfied for the fulfillment of .

• contributesTo: An objective  contributes to another objective  implies fulfillment of
 strengthens or complements the fulfillment of .

• composedOf: An objective  is composed of another objective  if  constitutes .
• conflictsWith: An objective  conflicts with another objective  if their joint

consideration leads to conflicting situations or inconsistencies.
• definedby: An objective  is defined by another objective  if  semantically depends

upon .
In essence, the links among the objectives are specified based upon the structural and

semantic linking in the three-layered system model, thus enriching our approach. Moreover,
they provide the means to model dependencies and conflicts between objectives. To clarify the
referred interplay, some instances are explained in the following paragraphs.

For example, consider the link accomplishedThrough in Figure 4.5 that associates one
mission to more than one operation. This link is followed by the link realizedBy that associates
one operation to one function. Given the notion of availability, whenever the property is
demanded at the mission layer for a set of operations to accomplish a mission, the property also
needs to be satisfied at the functional layer for a sequence of functions constituting a functional
path. The fact that the property is verified at the mission layer does not necessarily imply its
fulfillment at the functional layer, as additional details, like time and semantics, are incorporated
for the function execution that need to be verified. Thus, we create a link dependsUpon between
the OperationalAvailability and FunctionalPathAvailability objectives. Accordingly, if a
mission is accomplished through a sequence of operations that are, in turn, realized by a set
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of functions constituting a functional path, the fulfillment of the availability of the operations
finally depends upon the availability of the functional path.

Similarly, in the same Figure 4.5, consider the link allocatedTo that associates one function
to one component, followed by the link conveyedBy that associates an information flow to at
most one connector, and the implicit association between the functional interface and port.
Given the notion of availability, whenever the property is demanded at the functional layer for a
functional path, the property also needs to be satisfied at the component layer for components,
ports, and connectors involved. The fact that the property is verified at the functional layer
does not necessarily imply its fulfillment at the component layer due to constraints, like the
memory register’s size, bus speed, and computational throughput, introduced by the underlying
hardware that executes the function and demands further analysis. Therefore, we create
a link dependsUpon between FunctionalPathAvailability and CPCAvailability objectives.
Accordingly, if a sequence of functions and information flows between them constituting a
functional path are allocated to a set of components and conveyed by the connectors, respectively,
the fulfillment of the functional path availability objective depends upon the fulfillment of the
CPC availability objective.

Likewise, the SystemAccessibility objective at the mission layer conflicts with the
OperationalAvailability objective at the same layer in certain cases. Table 4.1 captures the
pair of objectives and their relationships identified for the safety and security interplay. Among
others, this table is the first summary that helps characterize the interplay between properties in
two axes: properties at the same layer (intra-layer) and properties between layers (inter-layer).

Table 4.1: Relationships between Objectives within or across the Layers.
Layers Objective 1 Relationship Objective 2

Mission SystemAccessibility conflictsWith OperationalAvailability
Mission-Functional OperationalAvailability dependsUpon FunctionalPathAvailability
Functional InformationFlowFreshness definedBy FunctionalIntegrity

FunctionalPathFreshness definedBy FunctionalIntegrity
FunctionalPathAvailability definedBy FunctionalIntegrity

Functional-Component InformationFlowFreshness dependsUpon MessageFreshness
FunctionalPathFreshness dependsUpon MessageFreshness
FunctionalPathAvailability dependsUpon CPCAvailability
FunctionalIntegrity dependsUpon MessageIntegrity

Component MessageFreshness definedBy MessageIntegrity
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4.5.3 UML Profiles for Safety and Security Properties

To facilitate the modeling of the safety and security properties at the three layers presented
in Section 4.4, we consider all the notions therein defined. To do so, we develop
and implement UML profiles from the concepts defined in the properties meta-models
at the respective layers. Specifically, we introduce stereotypes like «SystemProperty»,
«FunctionProperty», «ComponentProperty», extending the UML meta-class Class. The
stereotype «PropertyCategoryLibrary» models the library of safety and security properties.
The corresponding objectives are captured using stereotypes like «OperationalAvailability»
and «MessageFreshness», which extend the stereotypes «SafetyObjectiveCategory» and
«SecurityObjectiveCategory».

Likewise, to model safety and security interplay, the relationship among the properties is
specified by the «Relationship» stereotype, extending the UML meta-class Class. The actual
values of relationship type are defined in the enumeration «RelationshipType» as a tagged value.
The complete profile description is illustrated in Figures 4.12 and 4.13.

Figure 4.12: Properties UML Profile: PropertyView.
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Figure 4.13: Properties UML Profile: PropertyCategoryView.

4.6 Tool Support for Modeling
In this section, we propose tool support relying upon MDE paradigm, supporting the DSMLs
presented in the previous Sections 4.4 and 4.5 to assist the architects and designers of safe and
secure systems. We begin by outlining the essential requirements that the underlying tools must
fulfill to support the modeling aspects of the proposed approach, followed by the one used in
our work.

4.6.1 Tool Support Requirements

The tool support for modeling aspects in our approach is designed to primarily facilitate
the DSML meta-modeling and profiling tasks. As mentioned in Section 4.3, we rely upon
semi-formal constructs offered by UML in this regard. Accordingly, the underlying tools must
fulfill the following key requirements:

• Enable the creation of the UML meta-models for describing the three-layered system and
safety and security properties.

• Enable the creation of customized UML profiles corresponding to the three-layered system
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and safety and security properties meta-models.
• Enable the creation of the three-layered system model, describing the target SUD

according to the meta-model.
• Support the reuse of the safety and security properties model libraries while creating the

target system model.
Any tool that can fulfill these requirements can be used to conduct the system and properties

modeling tasks. In our case, we used Eclipse Papyrus [42] amongst the existing alternatives; the
key features of which leveraged in this work are described in the following sub-section.

Figure 4.14: Tool Support for Modeling.

4.6.2 Modeling Environment: Eclipse Papyrus

For conceptual meta-modeling, profiling, and modeling of the three-layered system and safety
and security properties involved in our approach, we rely upon Papyrus, a UML and Systems
Modeling Language (SysML) modeler developed as an open-source Eclipse project [42]. Salient
features it offers include full UML 2.5 support, model validation, and code generation. The
consistency between the layered DSMLs is ensured by the extension mechanisms inherited from
UML. Models’ correctness can be checked via extensions of Papyrus validation features.

Specifically, the system and properties modeling aspects in the proposed approach
incorporate the following steps concerning the tool support (see Figure 4.14): 1) Construction
of the meta-models for the three-layered system and properties by the respective domain experts,
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2) Based on the resulting meta-models, development of the DSML profiles by the software
language developers, and 3) Development of the three-layered system architecture and properties
models by the system architect in conformity to the profiles.

The first two steps (i.e., Steps 1 and 2) are performed once for a set of domains. The inputs
of these steps are expertise, standards, and best practices from the system, safety, and security
experts. Step 3 is performed once per application domain. Performing Step 2 requires knowledge
of the system and software language engineering, whereas Step 3 requires knowledge of the
system development process for a specific application domain. The input for Step 3 is the initial
system specification (e.g., requirements).

4.7 Conclusion
Summary. In this chapter, we addressed the problematic P3 related to the integration of
system safety and security at the design phase with the aim of achieving an approach for
co-engineering. To this end, we focused on the modeling aspects of the system and properties
via a three-layered representation, comprising high-level mission, functional, and detailed
component views. The design is conducted at the semi-formal language level, relying upon
generic, technology-agnostic, and standardized UML constructs to create system and properties
DSMLs. The DSMLs are first defined as meta-models, then implemented as profiles. The
former allows capturing the domain-oriented concepts and their relationships, enabling system
architects to understand the language and detect potential inconsistencies. At the same time,
the latter is built by stereotyping the domain modeling concepts and mapping the same to UML
meta-classes. The mapping from meta-models to profiles is mainly conducted by a review of
the UML standard, a selection of the meta-classes semantically aligned with the notions in the
meta-models, and, finally, the extension of the selected meta-classes to accordingly incorporate
the specificities of the system model, at the three layers, and the fundamental attributes capturing
the safety and security properties at stake for the analysis foreseen.

Usefulness. So far, model-driven constructs allow addressing the incorporation of safety and
security concerns in two manners and respective axes. First, MDE is used to decouple the
model of a target system into different layers according to the notions and purposes pertaining
to the phases of the engineering process, namely for the mission, functional, and component
design. Secondly, a set of properties that characterize safety and security concerns, mostly
borrowed from the literature, are specialized and integrated into each layer so that properties
belonging to the same category consistently cascade down across the three-layered model and
are referred to concerning specific elements. All these constructs provide a basis upon which
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properties analysis can be conducted, e.g., for verification, conflict solving, etc. The DSMLs
ensure separation of concerns as the system and properties are decoupled, thereby simplifying
the modeled reality. Engineers can use the same in familiar environments to model safety and
security interplay.

Concluding Remarks. It is noteworthy that an objective from a category, e.g., integrity or
availability, in a given context may belong to either the safety or security objective categories.
The notion of property categories thus does not aim at a strict classification but to assist the
designers in foreseeing the aspects that can influence the modeling of safety- and security-related
systems. The DSMLs will further encourage the formal reasoning and analysis of the
inter-dependencies between safety and security in the early design stages of the SE process,
as pursued in the forthcoming Chapter 5.

78



Chapter 5

Formalization for Specification and
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5.1 Introduction
This chapter presents another main contribution constituting our proposed approach, which
is motivated to address the problematic P4 related to error-prone design-level properties’
verification due to ambiguous specifications, as mentioned in Section 1.2. The Domain-Specific
Modeling Language (DSML) profiles presented in the previous Chapter 4 offer semi-formal
semantics, thus supporting certain analyses. However, as mentioned in Chapter 1, the absence
of precise semantics may lead system developers to infer the aspects in different ways that may
prevent them from bringing consensus in the system design and coherent modeling regarding
safety and security properties. To this end, we present the formalization of the DSML profiles
for rigorous specification and analysis of the system and safety and security properties in unison.
The aim is to consider the complexities associated with using formal-based languages and
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techniques in the System Engineering (SE) process and improve the approach usability by
automatizing properties verification. Accordingly, we begin with the logical specification for
the DSMLs belonging to the three-layered system and properties model, relying upon set theory
notions [141]. This is followed by the formal logic-based specification of the safety and security
properties and their interplay. For this, we use First-Order Logic (FOL) [44] and Modal Logic
[45] to create technology-independent formalisms. The former allows describing the system’s
state via attribute variables, while the latter captures the necessity and possibility related to the
change of the state. Finally, using these formalisms, we provide an interpretation of the models
to the language, namely Event-B [46], of a formal-based tool, namely Rodin [47], for model
checking and formal verification. For illustration purposes, we rely on the use case scenario
of Connected-Driving Vehicles (CDVs) introduced in Section 3.4, which will be detailed in
Chapter 6.

Overall, the chapter is organized as follows: In Section 5.2, we describe the method to
define the three-layered system and properties formalisms to leverage them and address safety
and security interplay. In Section 5.3, we describe the desired features of the formalisms
and the languages and techniques used to support them. This establishes the ground for our
contribution towards integrated safety and security analysis. In Section 5.4, we introduce
set theory-based logical specification for the three-layered system and properties DSMLs.
Subsequently, we present the formal logic-based specification of the safety and security
properties and their interplay concerning the three-layered system. Furthermore, using the
formalisms as interpretation rules, in Section 5.5, we provide an interpretation of the DSMLs
to the Event-B language to obtain a more concrete specification. In Section 5.6, we present the
convention to build a concrete architecture of the target system in Event-B, relying upon the
abstract system model. In Section 5.7, we present the details of the tool support used in this
work to mechanize model checking and formal verification. Finally, we conclude by summing
up the contribution of the chapter in Section 5.8.

5.2 Method to Defining the Formalisms
This section describes the method for defining the system and safety and security properties
formalisms. Recalling Figure 3.7, this involved several iterations for analyzing the system
aspects and properties concerning the three-layered model, as depicted in Figure 5.1. To this
end, the fundamental notions were extracted from an extensive state-of-the-art study presented in
Chapter 2. The candidate formal modeling languages were selected based on the desired features
listed in Section 5.3 to build the formalisms. These formalisms evolved by consolidating the
state-of-the-art notions and feedback received to debug the DSMLs during this research work.
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Figure 5.1: Method for Defining the Formalisms.

The iterations are detailed as follows:
• Iteration 1: This iteration is related to defining the formalism for the mission-layer system

DSML. It begins with mapping the mission-layer modeling language to a set theory-based
logical specification corresponding to the notions described therein. This is followed by
interpreting the respective profile using the logical specification in Event-B.

• Iteration 2: In this iteration, we conduct formalization concerning the system design at the
functional layer. Accordingly, we define formalism corresponding to the functional-layer
system DSML, which includes mapping to the set theory-based logical specification and
interpreting to the Event-B language.

• Iteration 3: In this iteration, we conduct formalization concerning the detailed technical
design of the system at the component layer, comprising components and communication
channels. Accordingly, we define formalism corresponding to the component-layer
system DSML, which includes mapping to the set theory-based logical specification and
interpreting to the Event-B language.

• Iteration 4: In this iteration, we define the set theory-based logical specification
corresponding to the properties DSML. This is followed by specifying safety and
security properties using logic-based notions. The properties signatures are instantiated
considering the target system model at different layers.

The iterations are accompanied by an illustration involving a primary and modeled instance
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of the CDV use case borrowed from the state-of-the-art (refer to Section 3.4) to analyze a safety-
and security-critical scenario relying upon the formal notions. Thus, prior to the iterations,
we consider the three-layered system and properties DSMLs from previous Chapter 4 as input,
targeting the set of safety and security properties considered therein and analyze the system
model concerning those properties by conducting proofs, which will be detailed in Chapter 6.

5.3 Desired Features for the Formalisms
The overall aim is to allow unambiguous and precise specification of the modeled system and
properties, facilitating integrated safety and security analysis of the target system. To this end,
the desired features of the formalisms are described as follows:

• Expressiveness. The formalisms should be generic enough to capture the different
viewpoints of the target system model. In our context, we materialize it as per the different
stages of system development, viz, Mission, Functional, and Component constituting the
three-layered system and properties model.

• Allow integrated safety and security analysis. The formalisms should provide means to
specialize and integrate the safety and security properties across the three-layered model,
irrespective of the system design flow, i.e., top-down or bottom-up, for a joint analysis of
properties.

• Technology-independent. The formalisms should be independent of the technology to
provide flexibility regarding the choice of the formal specification language and Validation
and Verification (V&V) tool support.

• Consistency-checking and verifiability. The formalisms shall support a three-layered
system design amenable to the interpretation to an existing tooled-language in a consistent
manner. In addition, they must support the translation of the properties specifications to
a formal-based framework to conduct sound proofs and automated verification in order
to spot inconsistencies and check for design conformity. Essentially, this shall involve
constructs and semantics as means to support properties interplay analysis via conflict
identification—for instance.

To formally capture the three-layered system model and properties model libraries in
a generic way, we use basic set theory notions. Moreover, to specify properties in a
technology-independent way, we use FOL. As mentioned in Chapter 1, FOL provides enough
expressiveness, sound proof theory, and capability to define pre-conditions and post-conditions
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associated with the system behavior on abstract types. The generic specification would
serve as a foundation to capture the safety and security properties of diverse systems under
consideration and their interplay. Similarly, the technology-independent way would prevent
technology-specific assumptions while analyzing different use cases. To capture the temporal
and ordering aspects associated with the properties covered in this work, we use Modal Logic.
Moreover, the Event-B language and the proposed approach share the scope of modeling and
reasoning the system as a whole. In order to carry out safety and security analysis on the system
model, we rely on theorem proving supported by Event-B via axioms and derivation rules.
Indeed this process is iterative and compatible with the refinement process that can be used
to introduce more details in the system design pertaining to different modeling layers and verify
properties, and allows model instantiation. Nevertheless, any formal language that can support
the desired features mentioned above can be used to conduct the formal modeling and analysis
of the system and properties.

5.4 Logical Specification of the Three-layered System and
Properties

In this section, we propose a logical specification for the three-layered system and properties
modeling languages presented in the previous Chapter 4. To this end, we rely upon the
basic set theory notions that allow capturing the user-defined types corresponding to the
Unified-Modeling Language (UML) profile elements. The logical specification for each layer
preserves the associations and types in the respective profiles. In addition, we present the formal
logic-based precise specification of safety and security properties and their interplay pertaining
to different layers of the three-layered system model. This involves defining a set of elementary
properties that serve as the building block to draw up the safety and security properties belonging
to different categories in our work. This is followed by FOL and Modal Logic-based formal
specification of safety and security properties, with associated preliminaries and semantics for
each layer of the three-layered system model. Furthermore, we provide examples demonstrating
the interplay between these properties, within or across the layers.

The logical specification being technology-independent would facilitate comprehension and
future extensions of the modeling languages towards different formal frameworks and tool
support. In addition, as a side effect, instead of directly mapping the profile elements to their
Event-B counterparts, by introducing the logical specification, the origin and target elements in
the interpretation are better identified and structured in the proofs facilitated by the automated
tool support Rodin for properties verification, which will be detailed in Section 5.5.
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5.4.1 Interpreting the DSMLs to Set Theory

Herein, we describe the set theory-based logical specification of the three-layered system and
properties DSMLs. Once the system aspects, like missions, functions, and components, along
with the safety and security properties, are modeled in the language presented in Chapter 4,
their corresponding logical specification can be obtained by following the mapping presented
in the following sub-sections. For readability purposes, the concept attributes in the respective
DSMLs are represented in Italics.

5.4.1.1 Mission Layer

Herein, a system S is a tuple comprising a set of missions M𝑖, 𝑖 ∈ {1…ℕ} and a variable
set named Environment, the domain of which is the set {𝑃𝑒𝑜𝑝𝑙𝑒, 𝐴𝑠𝑠𝑒𝑡}. A mission M𝑖 is
a quintuple, comprising a set of operations Op𝑗 , 𝑗 ∈ {1…ℕ} and variables that correspond
to the attributes of its respective class in the mission-layer system DSML illustrated in Figure
4.2. Likewise, an operation Op𝑗 is a tuple, comprising its respective attribute variables, like
operationInput, operationOutput, etc. Herein, the domain of durationType is the set {𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛,
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑉 𝑎𝑙𝑢𝑒} that captures operation duration as a function of the input received from
other system operations, a parameter describing the overall execution duration for the operation,
or a value indicating the maximum execution time of an operation. The complete mapping is
described in Table 5.1.

Table 5.1: Mapping: Mission-layer System DSML ↦ Logical Specification.
DSML Element Logical Specification
System S := ({M𝑖}, Environment), 𝑖 ∈ {1…ℕ}
Mission M𝑖 := ({Op𝑗}, operationalSituation, hazardousEvent, securityIncident overallGoal), 𝑖, 𝑗 ∈ {1…ℕ}

Operation Op𝑗 := (operationInput, operationOutput, preCondition, postCondition, environmentTriggerCondition,
durationOfExecution, durationType), durationType ∈ {Function, Parameter, Value}, 𝑗 ∈ {1…ℕ}

Environment Environment :∈ {People, Asset}

5.4.1.2 Functional Layer

The semantics associated with the mapping of the key elements in the functional-layer system
DSML depicted in Figure 4.3 to their logical counterparts is described as follows:

• Information flow: For a set  of functions F𝑘, 𝑘 ∈ {1…ℕ}, the information flow
between two functions F𝑖 and F𝑗 is denoted by (F𝑖, F𝑗). An information flow (F𝑖, F𝑗)
determines an exchange of information between the output O𝑖 of function F𝑖 and the input
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I𝑗 of function F𝑗 . Thus, the information flow (F𝑖, F𝑗) induces indeed the flow (O𝑖, I𝑗).
When there is no confusion and to simplify the notation, (F𝑖, F𝑗) and (O𝑖, I𝑗) can both be
used interchangeably to denote the information flow.

• Functional path: Given the set of functions  , a functional path denoted by FP = (F1,
…, F𝑘) satisfies the following:

– F𝑘 ∈  , ∀𝑘 ∈ {1…ℕ} and
– (F𝑘, F𝑘+1) is an information flow, ∀𝑘 ∈ {1…ℕ-1}.

The constituent functions realize the set of operations Op𝑗 defined at the mission layer via
information flows for mission accomplishment.

The complete mapping is described in Table 5.2.
Table 5.2: Mapping: Functional-layer System DSML ↦ Logical Specification.

DSML Element Logical Specification
System S := ({F𝑘}), 𝑘 ∈ {1…ℕ}

Function
F𝑘 := (type, preCondition, triggerType, caller, functionalInterfaces, Information), type ∈ {Physical, Logical},
triggerType ∈ {Manual, ControlSignal, TemporalConstraint}, TemporalConstraint ∈ {Duration, TriggerTime},
caller ∈ {Operator, F𝑙, TemporalConstraint}, 𝑘, 𝑙 ∈ {1…ℕ}

Information Information :∈ {FunctionalInput (or I𝑘), FunctionalOutput (or O𝑘)}, 𝑘 ∈ {1…ℕ}

FunctionalInterface FI | FIRI𝑘 or FIRO𝑘, 𝑘 ∈ {1…ℕ}
(R: “is related with”, where type of R is determined based on the link type in the UML profile)

InformationFlow InformationFlow := ({(O𝑖, I𝑗) Δ
= (F𝑖, F𝑗)} | FunctionalOutput[F𝑖] = O𝑖, FunctionalInput[F𝑗] = I𝑗), 𝑖, 𝑗 ∈ {1…ℕ}

FunctionalPath FP := (F1,… , F𝑘) | ∀(F𝑘, F𝑘+1), ∃ (O𝑘, I𝑘+1) ∈ {(O𝑖, I𝑗)}, 𝑖, 𝑗, 𝑘 ∈ {1…ℕ}

5.4.1.3 Component Layer

Herein, S denotes a system consisting of a set of components C𝑚, 𝑚 ∈ {1…ℕ}. Each component
C𝑚 is characterized by a set  of ports P𝑛, 𝑛 ∈ {1…ℕ} and the attribute variables from
the component-layer system DSML illustrated in Figure 4.4. A connector Conn between two
ports P𝑖 and P𝑗 is denoted by an ordered pair (P𝑖, P𝑗). It establishes a connection between
the output/input port P𝑖 of component C𝑖 and the input/output port P𝑗 of component C𝑗 . The
domain of possible interaction types denoted by IntType is the set {Signal, Data, Packet}.
Herein, Data corresponds to the information being transmitted, Signal refers to the carrier of
data over a communication channel, and Packet is a segment of data. Likewise, the domain of
the communication styles defining the behavior of interaction between the components, denoted
by CommunicationStyle, is the set {MsgPassing, Broadcast, Multicast}. Herein, MsgPassing
involves the transmission of messages from one component to other over a communication
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channel, Broadcast involves simultaneous message transmission to all the recipient components,
and Multicast involves simultaneous message transmission to a group of components. It
is recalled that other communication styles and more technology-dependent models can be
included. The complete mapping is described in Table 5.3.

Table 5.3: Mapping: Component-layer System DSML ↦ Logical Specification.
DSML Element Logical Specification

System S := ({C𝑚}), 𝑚 ∈ {1…ℕ}
Component C𝑚 := ({P𝑛}, type, failureRate, givenTime), type ∈ {Atomic, Composite}, 𝑚, 𝑛 ∈ {1…ℕ}
Port P𝑛 := (kind, IntType), kind ∈ {Input, Output}, 𝑛 ∈ {1…ℕ}

Connector Conn := ({(P𝑖, P𝑗)}, connType, CommunicationStyle), P𝑖.kind = Output/Input, P𝑗 .kind = Input/Output,
connType ∈ {Bus, Pipe, Channel}, 𝑖, 𝑗 ∈ {1…ℕ}

InteractionType IntType :∈ {Signal, Data, Packet}
CommunicationStyle CommunicationStyle :∈ {MsgPassing, Broadcast, Multicast}

5.4.1.4 Properties

Logical specification of the properties DSML presented in Section 4.5 considers the logical
specification of a set of elements from the three-layered system model to which the properties
are associated. Herein, PropertyCategory is a set comprising safety and security objective
categories, e.g., Availability and Freshness. It is recalled from Section 1.1.2 that these categories
and their respective objectives are considered as representative ones. The relationship between
the properties is characterized by an attribute variable type, the value of which spans across
the set {dependsUpon, contributesTo, composedOf, conflictsWith, definedBy}. The mapping
herein provides the basis to incorporate the safety and security properties specifications and
their interplay in the modeled target system to be furtherly analyzed. The complete mapping is
described in Table 5.4.

5.4.2 Basic Properties

A subset of safety and security properties belonging to certain categories in this work, e.g.,
Integrity and Freshness, are characterized by ordering and timing-based notions defining the
system behavior. For example, the freshness property incorporates the notion of timeliness
to determine the validity of the messages based on when they were exchanged between the
components. This, in turn, is of concern to prevent any outdated messages from being involved
in control decisions for the safety-critical functionality of the system [142]. Therefore, it requires
expressing and reasoning these notions to prove that the system satisfies the required safety and
security properties.
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Table 5.4: Mapping: Properties DSML ↦ Logic Specification.
DSML Element Logical Specification

System S := ({M𝑖}, Environment), 𝑖 ∈ {1…ℕ}
Mission M𝑖, 𝑖 ∈ {1…ℕ}
Operation Op𝑗 , 𝑗 ∈ {1…ℕ}
Function F𝑘, 𝑘 ∈ {1…ℕ}
FunctionalPath FP := (F1, …, F𝑘), 𝑘 ∈ {1…ℕ}
Information Information :∈ {I𝑘, O𝑘}, 𝑘 ∈ {1…ℕ}
Component C𝑚, 𝑚 ∈ {1…ℕ}
Message 𝑚𝑠𝑔
PropertyCategory PropertyCategory :∈ {SafetyObjectiveCategory, SecurityObjectiveCategory}
Relationship Relationship := (type), type ∈ {dependsUpon, contributesTo, composedOf, conflictsWith, definedBy}
SafetyObjectiveCategory SafetyObjectiveCategory :∈ {Availability, Integrity}
SecurityObjectiveCategory SecurityObjectiveCategory :∈ {ControlledAccessibility, Freshness}

Hence, we present a set of properties to describe the notions mentioned above via generic
specifications. We call these properties the basic ones since they play an elementary role in
defining, formally specifying, and reasoning the safety and security properties used by the
end user in system modeling. The specific safety and security objectives associated with the
target system model, as depicted in Figure 4.11, are instantiated at the different layers of the
three-layered model relying upon the basic properties. Some of these properties are based
upon well-accepted notions from the state-of-the-art; however, we extend them by adapting to
our three-layered design approach and tooled framework. Accordingly, these properties can
be instantiated and formally specified at different modeling layers, viz. Mission, Functional,
and Component, using logic-based languages (e.g., FOL and Modal Logic). However, not each
property can be instantiated at all the layers of the three-layered system model. In essence, it
depends upon the availability of the essential design details a layer offers to analyze specific
safety and security properties. Moreover, the instantiation of the basic property at a layer is
also subjected to the semantics of the property itself. For example, a time-related property like
Freshness cannot be verified on an element Mission that is static and does not change across
time.

The basic properties used in this work are described as follows:
• Precedence: In literature, precedence properties are commonly used in the specification

of concurrent systems for defining the ordering relationship between a pair of states or
events, where the occurrence of one is a necessary pre-condition for the other [143].
Extending this by adapting it to the notions and syntax of the DSMLs, the precedence
property in our context imposes a partial ordering among the DSML elements, where
two or more elements are realized sequentially. In simpler terms, it is associated with
the orderly or relative consideration of the elements within a defined scope. Herein, the
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scope captures the level of granularity with which the target system is modeled at the three
layers. Accordingly, the term realization can be related to the execution of functions at
the functional layer, enabling components at the component layer, etc.

• Equivalence: Equivalence checking is commonly used in literature for verifying the
symbolic, logical, or functional equivalence in real-time systems [144]. In communication
models, it is often related to the indistinguishability properties [145]. In our work,
equivalence between two elements is related to the equivalence of information flows
between origin and destination elements, like in sending and receiving events. Both
structural and behavioral aspects can be considered concerning these elements for
equivalence verification.

• Timeliness: In literature, the notion of timeliness is often observed as a performance
measure for defining an optimal time for task completion in real-time systems or
communication scheduling algorithms [146]. Inspired by this, the timeliness property
in our work imposes time constraints for the realization of elements. For instance, it may
be concerned with the specification of time bounds to constrain the execution of system
functions.

5.4.3 FOL and Modal Logic-based Properties Specification

We use standard FOL operators, including ∧ (conjunction), ∨ (disjunction), ¬ (negation), →
(implication), and ↔ (equivalence) for logical specification of safety and security properties.
The FOL-based properties formalism is extended using a range of modalities, including ◦

(next), ◊ (eventually), ◊≤Θ (bounded eventually, where Θ denotes the threshold or bounded
gap between two events, occurrences, actions, etc.), and □ (always), for capturing the notion
of future [147]. Likewise, ∙, ⧫, ⧫≤Θ, and ■, respectively, are used as their past counterparts.
These modalities are briefly described in Table 5.5. For example, predicates of the form 𝑃 ⇒ 𝑄
in FOL can be refined to □(𝑃 → ◊𝑄) using Modal Logic. Similarly, predicates of the form
𝑃 ⇔ 𝑄 can be refined to □(𝑃 ↔ 𝑄).

Table 5.5: Meaning of the Modalities used in this Work.
Notation Meaning Past-Counterpart Meaning

◦P P will be true in the next state ∙P P was true in the previous state
◊P P will be true sometime in the future ⧫P P was true sometime in the past
◊≤ΘP P will be true sometime in the future, no later than Θ ⧫≤ΘP P was true sometime in the past, at most Θ ago
□P P will be true always in the future ■P P was always true in the past

P: Predicate, Θ: Threshold or bounded gap
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Here, ⇒ means strongly implies and ⇔ means strongly equivalent. These refinements may
vary based on the informal definition of the specific objectives [NB: It is recalled that objectives
herein represent the desired properties or features, capturing the positive vision of safety and
security]. Depending on the priority of the system behavior defined using the notions, e.g.,
operation, function, etc., concerning safety and security, ◦ (highest priority), ◊≤Θ (medium
priority), or ◊ (lowest priority) can be used in the formal interpretations.

The formal logic defining the safety and security objective signatures across the layered
models is introduced in the following sub-sections.

5.4.3.1 Mission Layer

At the mission layer, we consider one safety objective category (i.e., Availability) and one
security objective category (i.e., Controlled Accessibility). Following the definitions introduced
in Section 4.5.1.1, the FOL-based formalism of the specific objectives belonging to these
categories is presented as follows:

• Operational Availability: Given a mission M𝑖, 𝑖 ∈ ℕ and an operation Op𝑗 , 𝑗 ∈ ℕ, the
operational availability objective denoted by OperationalAvailability(M𝑖, Op𝑗) holds iff
(see definition Prop1):

(𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛[M𝑖] ∧ ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡[M𝑖])
⇒ 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M𝑖, Op𝑗]

To satisfy OperationalAvailability(M𝑖, Op𝑗), the following specification in Modal Logic
must be respected:

□((𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛[M𝑖] ∧ ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡[M𝑖])
→ ◊(𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M𝑖, Op𝑗]))

i.e., it will always be the case that on the detection of a hazardous event, a system
in a certain operational situation will eventually perform an operation Op𝑗 for the
accomplishment of the safety-critical mission M𝑖. For example, on the detection of an
obstacle, a CDV moving towards a junction will eventually undergo braking to avoid a
collision.

• System Accessibility: Given a system S and an operation Op𝑗 , 𝑗 ∈ ℕ, the system
accessibility objective denoted by SystemAccessibility(S, Op𝑗 , People) holds iff (see
definition Prop2):
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𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒[People, S, Op𝑗] ⇒ 𝑎𝑐𝑐𝑒𝑠𝑠[People, Op𝑗]

To satisfy SystemAccessibility(S, Op𝑗 , People), the following specification in Modal Logic
must be respected:

□(𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒[People, S, Op𝑗] → ◊(𝑎𝑐𝑐𝑒𝑠𝑠[People, Op𝑗]))

i.e., it will always be the case that on acquiring the required privileges, environmental
entities, like a person, can eventually access the system S (i.e., CDV) to perform an
operation Op𝑗 , e.g., controlling the navigation.

Table 5.6 summarizes the aforementioned logical specifications of safety and security
objectives at the mission layer.

Table 5.6: Logical Specification of Safety and Security Objectives at the Mission Layer.
Objective Notation Logical Specification

Operational availability OperationalAvailability(M𝑖, Op𝑗) 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛[M𝑖] ∧ ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡[M𝑖]
⇒ 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M𝑖, Op𝑗]

System accessibility SystemAccessibility(S, Op𝑗 , People) 𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒[People, S, Op𝑗] ⇒ 𝑎𝑐𝑐𝑒𝑠𝑠[People, Op𝑗]

5.4.3.2 Functional Layer

To specify safety and security objectives at the functional layer, we present semantics associated
with their underlying temporal notions as follows:

• Global time scale: We elicit the notion of a global time scale from [148] as a timeline
representing past and future concerning the events occurring in the system.

• Instant: An instant represents a single point in the timeline.
• Occurrence: To capture the evolution in the system state, we define the notion of

occurrence that represents something has happened at an instant, leading to state transition
regarding the system. Formally, an occurrence with respect to the execution of a function
F𝑘 can be defined as a quadruple 𝒸𝒸(F𝑘−1, F𝑘, 𝑡𝑖, X𝑘), 𝑖, 𝑘 ∈ {1…ℕ}, 𝑡𝑖 ∈ ℝ+, where

– F𝑘−1 corresponds to the caller function,
– F𝑘 corresponds to the callee function,
– 𝑡𝑖 denotes the time of occurrence, and
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– X𝑘 denotes either an input I𝑘 or output O𝑘 associated with the function F𝑘.
• Gap between occurrences: Given two occurrences 𝒸𝒸(F𝑖−1, F𝑖, 𝑡𝑖, X𝑖) and 𝒸𝒸(F𝑗−1,

F𝑗 , 𝑡𝑗 , X𝑗), the gap between occurrences is given by

𝑑 = |𝑡𝑗 - 𝑡𝑖|

• Duration of execution of a function: It represents the duration 𝑑𝑘 it takes to execute a
function F𝑘 by the system. It is defined with two occurrences—begin, i.e., 𝒸𝒸(F𝑘−1,
F𝑘, 𝑡2𝑘−1, I𝑘) and end, i.e., 𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘)—corresponding to the triggering and
termination of function execution, respectively. Formally, duration is given by

𝑑𝑘 = |𝑡2𝑘 - 𝑡2𝑘−1|

[NB: The sub-indices in this and other definitions are meant to simplify notation, assuming
a functional path with functions sequentially indexed over 1, …, ℕ.]

Moreover, the specification of objectives at the functional layer adheres to the following
meta-properties:

• MP1: Every function F𝑖 in the functional path FP(F1, …, F𝑘) is defined as F𝑖: I𝑖 ↦ O𝑖,
𝑖 ∈ {1… 𝑘}.

• MP2: For every function F𝑖 in the functional path FP(F1, …, F𝑘), the notation for
sub-indices is (F𝑖−1, F𝑖, 𝑡2𝑖−1, I𝑖) and (F𝑖−1, F𝑖, 𝑡2𝑖, O𝑖), ∀𝑖 ∈ {2… 𝑘}.

• MP3: Consider that the function F1 for any functional path FP is self-invoked. Hence, the
notation for sub-indices is (F1, F1, 𝑡1, I1) and (F1, F1, 𝑡2, O1).

• MP4: For the initial function F1 in every FP, the value of threshold Θ1 corresponding to
the input and output occurrences of information flow cannot be considered, as there is no
function previous to F1 for interaction and it is self-invoked.

• MP5: Information flows correspond to payloads exchanged during the function calls.

Basic Properties. Prior to formally specifying the safety and security properties at the
functional layer, we instantiate the basic properties presented in Section 5.4.2 as follows:

• Functional Precedence: The functional precedence property imposes a partial ordering
on the execution of the system functions, where two or more functions are executed
sequentially. For example, the function to infer the position of the obstacle is preceded by
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the execution of the obstacle detection function that determines first whether the obstacle
is present.
Formally, we instantiate the notion of precedence presented in Section 5.4.2
for two functions F𝑖 and F𝑗 . Thus, the functional precedence denoted by
FunctionalPrecedence(F𝑖, F𝑗) holds iff:

F𝑗 ⇒ F𝑖

To satisfy FunctionalPrecedence(F𝑖, F𝑗), the following specification in Modal Logic must
be respected:

■(F𝑗 → ⧫(F𝑖))

i.e., if F𝑗 is ever invoked, it was preceded by the execution of F𝑖. To keep time consistency
in the occurrences corresponding to the functions, the following strict partial ordering
constraint should be satisfied:

𝑡𝑖𝑚𝑒𝑂𝑓𝑇 𝑟𝑖𝑔𝑔𝑒𝑟(F𝑖) + 𝑑𝑖 < 𝑡𝑖𝑚𝑒𝑂𝑓𝑇 𝑟𝑖𝑔𝑔𝑒𝑟(F𝑗)

In other words, F𝑖 precedes F𝑗 provided F𝑖 is completed within a duration 𝑑𝑖 before the
trigger time of F𝑗 , namely F𝑖 occurs strictly (<) before the occurrence of F𝑗 . Herein,
duration 𝑑𝑖 is defined by the occurrences corresponding to the triggering and termination
of F𝑖’s execution. Additional constraints (<Θ) can be added to specify the gap between
occurrences corresponding to F𝑖’s termination and F𝑗’s beginning.

• Information Equivalence: The information equivalence property ensures the
preservation of the information exchanged between two or more functions, particularly
those constituting a functional path.
Formally, we instantiate the notion of equivalence presented in Section 5.4.2 for a given
information flow (O𝑖, I𝑗) between two functions F𝑖 and F𝑗 . Thus, the information
equivalence denoted by InformationEquivalence(O𝑖, I𝑗) holds iff:

I𝑗 ⇔ O𝑖

To satisfy InformationEquivalence(O𝑖, I𝑗), the following specification in Modal Logic
must be respected:

□(I𝑗 ↔ O𝑖)
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i.e., it will always be the case that the functional input I𝑗 of F𝑗 is equivalent to the functional
output O𝑖 of F𝑖. For instance, ↔, in this case, may denote the equivalence relation
induced by partitioning the possible information space into classes containing equivalent
information [149].

• Execution Timeliness: Execution of a functional path involves the execution of the
functions constituting the path. Accordingly, the execution timeliness property ensures
that whenever there is an occurrence corresponding to the acceptance of input by the
first function in the functional path, the occurrence corresponding to the last function
generating the final output should appear not beyond the pre-defined threshold time gap.
Formally, we instantiate the notion of timeliness presented in Section 5.4.2 for a functional
path FP and a given threshold Θ, where Θ ∈ ℝ+. Thus, the execution timeliness denoted
by ExecutionTimeliness(FP, Θ) holds iff:

𝒸𝒸(F1, F1, 𝑡1, I1) ⇒Θ 𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘)

Herein, the timeliness property is instantiated explicitly regarding the occurrences
corresponding to the ordered execution of the functions that constitute the functional path.
To satisfy ExecutionTimeliness(FP, Θ), the following specification in Modal Logic must
be respected:

□(𝒸𝒸(F1, F1, 𝑡1, I1) →Θ ◊(𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘)))

that can be verified iff:

|𝑡2𝑘 - 𝑡1| ≤ Θ

i.e., it will always be the case that whenever there is an occurrence corresponding to
the acceptance of input by the first function F1 in the functional path, the occurrence
corresponding to the last function F𝑘 generating the final output should appear not beyond
the pre-defined threshold time gap Θ.

• Overall Timeliness: The overall timeliness property ensures that whenever there is an
occurrence corresponding to the generation of the output by the last function in the
functional path, the occurrence corresponding to the acceptance of input by the first
function in the functional path should not have happened beyond the pre-defined threshold
time gap in the past.
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Formally, we instantiate the notion of timeliness presented in Section 5.4.2 for a functional
path FP and a given threshold Θ, where Θ ∈ ℝ+. Thus, the overall timeliness denoted by
OverallTimeliness(FP, Θ) holds iff:

𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘) ⇒Θ 𝒸𝒸(F1, F1, 𝑡1, I1)

Herein, the timeliness property is instantiated explicitly regarding the occurrences
corresponding to the execution of the functions that constitute the functional path.
To satisfy OverallTimeliness(FP, Θ), the following specification in Modal Logic must be
respected:

■(𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘) →Θ ⧫(𝒸𝒸(F1, F1, 𝑡1, I1)))

that can be verified iff:

|𝑡2𝑘 - 𝑡1| ≤ Θ

[NB: OverallTimeliness(FP, Θ) can be considered as the past counterpart of
ExecutionTimeliness(FP, Θ).]

• Information Flow Timeliness: The information flow timeliness property ensures that
whenever there is an occurrence corresponding to the acceptance of the input by a function
in the functional path, the occurrence corresponding to the generation of output by the
previous function in the functional path should not have happened beyond the pre-defined
threshold in the past.
Formally, we instantiate the notion of timeliness presented in Section 5.4.2 for a functional
path FP, information flow (O𝑘−1, I𝑘), and a given threshold Θ𝑘, where Θ𝑘 ∈ ℝ+. Thus,
the information flow timeliness denoted by InformationFlowTimeliness(FP, {(O𝑘−1, I𝑘)},
Θ𝑘) holds iff:

𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘−1, I𝑘) ⇒Θ𝑘
𝒸𝒸(F𝑘−2, F𝑘−1, 𝑡2(𝑘−1), O𝑘−1), ∀𝑘 ≥ 2

Herein, the timeliness property is instantiated explicitly regarding the occurrences
corresponding to the execution of the functions that constitute the functional path.
To satisfy InformationFlowTimeliness(FP, {(O𝑘−1, I𝑘)}, Θ𝑘), the following specification
in Modal Logic must be respected:

■(𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘−1, I𝑘) →Θ𝑘
⧫(𝒸𝒸(F𝑘−2, F𝑘−1, 𝑡2(𝑘−1), O𝑘−1))), ∀𝑘 ≥ 2
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that can be verified iff:

|𝑡2𝑘−1 - 𝑡2(𝑘−1)| ≤ Θ𝑘

Table 5.7 summarizes the aforementioned logical specifications of basic properties at the
functional layer.

Table 5.7: Logical Specification of Basic Properties at the Functional Layer.
Property Notation Logical Specification

Functional precedence FunctionalPrecedence(F𝑖, F𝑗) F𝑗 ⇒ F𝑖

Information equivalence InformationEquivalence(O𝑖, I𝑗) I𝑗 ⇔ O𝑖

Execution timeliness ExecutionTimeliness(FP, Θ) 𝒸𝒸(F1, F1, 𝑡1, I1) ⇒Θ 𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘)
Overall timeliness OverallTimeliness(FP, Θ) 𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘) ⇒Θ 𝒸𝒸(F1, F1, 𝑡1, I1)
Information flow timeliness InformationFlowTimeliness

(FP, {(O𝑘−1, I𝑘)}, Θ𝑘)
𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘−1, I𝑘) ⇒Θ𝑘

𝒸𝒸(F𝑘−2, F𝑘−1, 𝑡2(𝑘−1), O𝑘−1),
∀𝑘 ≥ 2

Safety and Security Properties. At the functional layer, we consider two safety objective
categories (i.e., Integrity and Availability) and one security objective category (i.e., Freshness).
Following the definitions introduced in Section 4.5.1.2, the FOL-based formalism of the specific
objectives belonging to these categories is presented as follows:

• Functional Integrity: A functional path FP := (F1, …, F𝑘), 𝑘 ∈ ℕ satisfies the functional
integrity objective denoted by FunctionalIntegrity(FP) iff (see definition Prop3):

– There exists a partial ordering on the execution of functions constituting the
functional path, i.e., FunctionalPrecedence(F𝑘, F𝑘+1) holds, ∀𝑘 ∈ {1…ℕ-1} and

– The information flow is preserved across the functions constituting the functional
path, i.e., InformationEquivalence(O𝑘, I𝑘+1) holds, ∀𝑘 ∈ {1…ℕ-1}, for at least
one information flow (O𝑘, I𝑘+1) pertaining to (F𝑘, F𝑘+1).

• Functional Path Availability: A functional path FP := (F1, …, F𝑘), 𝑘 ∈ ℕ satisfies the
functional path availability objective denoted by FunctionalPathAvailability(FP) iff (see
definition Prop4):

– There is a preservation of the information flow between orderly execution of
functions constituting the functional path, i.e., FunctionalIntegrity(FP) holds and

– The timeliness of the execution of the functional path is ensured, i.e.,
ExecutionTimeliness(FP, Θ) holds.
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[NB: It is recalled that MP1, MP2, MP3 mentioned in the beginning of sub-section 5.4.3.2
hold in this case.]

• Functional Path Freshness: A functional path FP := (F1, …, F𝑘), 𝑘 ∈ ℕ satisfies the
functional path freshness objective denoted by Freshness(FP) iff (see definition Prop5):

– There is a preservation of the information flow between orderly execution of
functions constituting the functional path, i.e., FunctionalIntegrity(FP) holds and

– The timeliness between the final output and initial input occurrences of the functional
path is ensured, i.e., OverallTimeliness(FP, Θ) holds.

[NB: It is recalled that MP1, MP2, MP3 mentioned in the beginning of sub-section 5.4.3.2
hold in this case.]

• Information Flow Freshness: A functional path FP := (F1, …, F𝑘), 𝑘 ∈ ℕ satisfies
the information flow freshness objective denoted by Freshness(FP, {(O𝑘−1, I𝑘)}) iff (see
definition Prop6):

– There is a preservation of the information flow between orderly execution of
functions constituting the functional path, i.e., FunctionalIntegrity(FP) holds and

– The timeliness of the information flows between consecutive functions across the
functional path are ensured, i.e., InformationFlowTimeliness(FP, {(O𝑘−1, I𝑘)}, Θ𝑘)
holds.

[NB: It is recalled that MP1, MP4, MP5 mentioned in the beginning of sub-section 5.4.3.2
hold in this case.]

Table 5.8 summarizes the aforementioned logical specifications of safety and security
objectives at the functional layer.

Table 5.8: Logical Specification of Safety and Security Objectives at the Functional Layer.
Objective Notation Logical Specification

Functional integrity FunctionalIntegrity(FP) FunctionalPrecedence(F𝑘, F𝑘+1) ∧
InformationEquivalence(O𝑘, I𝑘+1)

Functional path availability FunctionalPathAvailability(FP) FunctionalIntegrity(FP) ∧ ExecutionTimeliness(FP, Θ)
Functional path freshness Freshness(FP) FunctionalIntegrity(FP) ∧ OverallTimeliness(FP, Θ)
Information flow freshness Freshness(FP, {(O𝑘−1, I𝑘)}) FunctionalIntegrity(FP) ∧

InformationFlowTimeliness(FP, {(O𝑘−1, I𝑘)}, Θ𝑘)
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5.4.3.3 Component Layer

Basic Properties. Prior to formally specifying the safety and security properties at the
component layer, we instantiate the basic properties presented in Section 5.4.2 as follows:

• Component and Connector Availability: In literature, availability analysis of system
components often includes reliability in conjunction with their replacement/recovery
from faults [150]. For communication protocols, the availability of the components
is associated with their ability to engage in communication [151]. Inspired by these
notions, the component (or connector) availability property in our context represents the
probability that a component (or a connector) is operational at a given time to take part in
communication.
We use the typical definition of reliability [152] to measure availability. Formally, let
R(𝑡) denotes the probability that a component C𝑖 with failure rate 𝜆𝑖 (or a connector Conn
with failure rate 𝜆𝑐𝑜𝑛𝑛) is operational for a certain time interval (0, 𝑡], 𝑡 ∈ ℝ+. Then, the
component (or connector) availability property denoted by ComponentAvailability(C𝑖, 𝜆𝑖,
𝑡) (or ConnectorAvailability(Conn, 𝜆𝑐𝑜𝑛𝑛, 𝑡)) holds iff for a time to failure T:

R(𝑡) = 1 - CDF(𝑡) = P(T > 𝑡)
To satisfy ComponentAvailability(C𝑖, 𝜆𝑖, 𝑡) (or ConnectorAvailability(Conn, 𝜆𝑐𝑜𝑛𝑛, 𝑡)),
the following specification in Modal Logic must be respected:

R(𝑡) = P{□(0,𝑡]}

where,  denotes operational constraints that the component (or connector) must fulfill
within the interval (0, 𝑡].
[NB: The following notions are adopted from the literature, where probabilistic analysis
[153] is used as one of the tools for determining the availability of the system components:

– To model time to failure, an exponential random variable X(𝑡), 𝑡 ∈ ℝ+ is used [150].
– For an interval [𝑡1, 𝑡2], 𝑡1, 𝑡2 ∈ ℝ+, the probability of occurrence of an event E, i.e.,

P(E)[𝑡1, 𝑡2] is directly proportional (∝) to |𝑡2 − 𝑡1|. If 𝑡1 = 0 and 𝑡2 = 𝑡, then P(E)[0,
𝑡] ∝ |𝑡 − 0| = 𝑡.

– Let 𝜆 ∈ ℝ+ denotes the failure rate of the component (or connector). Then,

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝑃𝐷𝐹 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜆𝑒−𝜆𝑡 *for 𝑡 > 0, 𝜆 > 0
0 otherwise (5.1)
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𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝐶𝐷𝐹 (𝑡) = ∫

𝑡′

0
𝜆𝑒−𝜆𝑡′𝑑𝑡′ (5.2)

*Models exponential failure distribution]
• Message Delivery: In protocol design for safety-critical systems based on a message

passing-based communication model, message delivery typically ensures the successful
transmission of safety-critical messages (e.g., control signals, packets, etc.). It may have
the following two variants:

– Eventual Message Delivery: This property ensures that following the sending of
some message by a component, the intended receiving component will eventually
receive the message.
Formally, given two components C𝑖 and C𝑗 , where 𝑖, 𝑗 ∈ ℕ and a message 𝑚𝑠𝑔, the
eventual message delivery property denoted by EventualMessageDelivery(C𝑖, C𝑗 ,
𝑚𝑠𝑔) holds iff:

𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)
To satisfy EventualMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔), the following specification in
Modal Logic must be respected:

□(𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)))
i.e., it will always be the case that if a component C𝑖 sends a message 𝑚𝑠𝑔, it will be
eventually received by the intended component C𝑗 .

– Bounded Message Delivery: This property imposes time constraints for the timely
delivery of safety-critical messages to the intended receiver.
Formally, as an instantiation of the notion of timeliness presented in Section
5.4.2 for two components C𝑖 and C𝑗 , where 𝑖, 𝑗 ∈ ℕ, a message 𝑚𝑠𝑔, and a
pre-defined threshold Θ ∈ ℝ+, the bounded message delivery property denoted by
BoundedMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ) holds iff:

𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) ⇒Θ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)
Herein, the timeliness property is instantiated explicitly regarding the sending and
receiving actions performed by the system components.
To satisfy BoundedMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ), the following specification in
Modal Logic must be respected:

□(𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) →Θ ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)))
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i.e., it will always be the case that if a component C𝑖 sends a message 𝑚𝑠𝑔, it will be
received by the intended receiving component C𝑗 within Θ time interval.

• Logical Conformity: Logical conformity validates the component architecture layer
against the functional layer. In other words, it validates the configuration of the system
components in association with the specifications stemming from the functional model.
Formally, considering a model instantiation depicted in Figure 5.2, logical conformity of
components with function F3 is elaborated as follows:

F3: I𝑋 ↦ O3

where, I𝑋 Δ
= I3,1∧ I3,2; I𝑋 Δ

= I3,1∨ I3,2
I3 = O1∧ O2; I3 = O1∨ O2

O1∧ O2 ↦ O3; O1∨ O2 ↦ O3

P(C1 = 1, 𝑡) ∧ P(C2 = 1, 𝑡) = P(C3 = 1, 𝑡); P(C1 = 1, 𝑡) ∨ P(C2 = 1, 𝑡) = P(C3 = 1, 𝑡)

Figure 5.2: Model Instantiation to depict Logical Conformity between Functional and
Component Architecture.

• Component Precedence: The component precedence property imposes an ordering on
the enabling of the components via interfaces, i.e., ports.
Formally, instantiating the notion of precedence presented in Section 5.4.2, the precedence
between two components C𝑖 and C𝑗 denoted by ComponentPrecedence(C𝑖, C𝑗) holds iff:

C𝑗 ⇒ C𝑖

To satisfy ComponentPrecedence(C𝑖, C𝑗), the following specification in Modal Logic
must be respected:

■(C𝑗 → ⧫(C𝑖))
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i.e., if C𝑗 is ever enabled, it was preceded by the enabling of C𝑖. To preserve the order in
which the components are enabled, the following constraint regarding the kind of ports
forming the connecting link between these components must be satisfied:

∀C𝑖, C𝑗 , ∃P𝑖, P𝑗| (P𝑖.𝑘𝑖𝑛𝑑 = Output) ∧ (P𝑗 .𝑘𝑖𝑛𝑑 = Input)
• Recentness: The recentness property ensures that whenever a component receives some

message, the same was sent by another component at most some pre-defined time gap ago.
Formally, we instantiate the notion of timeliness presented in Section 5.4.2 for two
components C𝑖 and C𝑗 , where 𝑖, 𝑗 ∈ ℕ, a message 𝑚𝑠𝑔, and a pre-defined threshold
Θ. Thus, the recentness property denoted by Recentness(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ) holds iff:

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔) ⇒Θ 𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔)
Herein, the timeliness property is instantiated explicitly regarding the sending and
receiving actions performed by the system components.
To satisfy Recentness(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ), the following specification in Modal Logic must
be respected:

■(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔) →Θ ⧫(𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔)))
i.e., if C𝑗 ever received a message 𝑚𝑠𝑔, it must not have been sent before Θ time gap ago
by C𝑖 in the past.

• Non-Duplication: The non-duplication property ensures that a system component has not
received the same message previously. In simpler terms, it ensures the uniqueness of the
messages delivered to a component.
Formally, given a component C𝑖 and a message 𝑚𝑠𝑔, the non-duplication property denoted
by NonDuplication(C𝑖, 𝑚𝑠𝑔) holds iff:

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚𝑠𝑔) ⇒ ¬(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚𝑠𝑔))
To satisfy NonDuplication(C𝑖, 𝑚𝑠𝑔), the following specification in Modal Logic must be
respected:

■(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚𝑠𝑔) → ¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚𝑠𝑔))))
i.e., if C𝑖 ever received a message 𝑚𝑠𝑔, it should not have received the same message 𝑚𝑠𝑔
in the past.

Table 5.9 summarizes the aforementioned logical specifications of basic properties at the
component layer.
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Table 5.9: Logical Specification of Basic Properties at the Component Layer.
Property Notation Logical Specification

Component or connector
availability

ComponentAvailability(C𝑖, 𝜆𝑖, 𝑡) or
ConnectorAvailability(Conn, 𝜆𝑐𝑜𝑛𝑛, 𝑡) R(𝑡) = 1 - CDF(𝑡) = P(T > 𝑡)

Eventual message delivery EventualMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔) 𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)
Bounded message delivery BoundedMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ) 𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) ⇒Θ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)
Component precedence ComponentPrecedence(C𝑖, C𝑗) C𝑗 ⇒ C𝑖

Recentness Recentness(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔) ⇒Θ 𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔)
Non-duplication NonDuplication(C𝑖, 𝑚𝑠𝑔) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚𝑠𝑔) ⇒ ¬(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑖, 𝑚𝑠𝑔))

Safety and Security Properties. At the component layer, we consider two safety objective
categories (i.e., Availability and Integrity) and one security objective category (i.e., Freshness).
Following the definitions introduced in Section 4.5.1.3, the FOL-based formalism of the specific
objectives belonging to these categories is presented as follows:

• Component-Port-Connector (CPC) Availability: Given two components C𝑖 having a
failure rate 𝜆𝑖 and C𝑗 having a failure rate 𝜆𝑗 , where 𝑖, 𝑗 ∈ ℕ, a connector 𝐶𝑜𝑛𝑛 having
a failure rate 𝜆𝐶𝑜𝑛𝑛 connecting C𝑖 and C𝑗 , a message 𝑚𝑠𝑔, and a pre-defined threshold
Θ ∈ ℝ+, the CPC availability objective denoted by CPCAvailability is satisfied iff (see
definition Prop7):

– Availability of components is ensured, i.e., ComponentAvailability(C𝑖, 𝜆𝑖, 𝑡) holds,
– Availability of connector is ensured, i.e., ConnectorAvailability(Conn, 𝜆𝐶𝑜𝑛𝑛, 𝑡)

holds,
– Delivery of critical messages between the components is ensured, i.e.,

EventualMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔) (or BoundedMessageDelivery(C𝑖, C𝑗 ,
𝑚𝑠𝑔, Θ)) holds, and

– There exists logical conformity of the component architecture with functional
architecture verified at the respective component and functional layers.

• Message Integrity: Given two components C𝑖 and C𝑗 , where 𝑖, 𝑗 ∈ ℕ, and a message
𝑚𝑠𝑔, the message integrity objective denoted by MessageIntegrity(𝑚𝑠𝑔) is satisfied iff
(see definition Prop8):

– The message once sent by a component, is eventually received by the intended
component in the same form, i.e., EventualMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔) holds.

• Message Freshness: Given two components C𝑖 and C𝑗 , where 𝑖, 𝑗 ∈ ℕ, a message 𝑚𝑠𝑔,
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and a pre-defined threshold Θ ∈ ℝ+, the freshness objective regarding 𝑚𝑠𝑔 denoted by
MessageFreshness(𝑚𝑠𝑔) holds iff (see definition Prop9):

– Precedence between the interacting components is ensured, i.e.,
ComponentPrecedence(C𝑖, C𝑗) holds,

– The message remains unaltered during its transmission, i.e., MessageIntegrity(𝑚𝑠𝑔)
holds,

– The message received by a component from another component is recent regarding
a pre-defined time gap between its corresponding sending and receiving actions, i.e.,
Recentness(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ) holds, and

– There is no duplicate reception of the same message by the receiving component,
i.e., NonDuplication(C𝑗 , 𝑚𝑠𝑔) holds.

Table 5.10 summarizes the aforementioned logical specifications of safety and security
objectives at the component layer.
Table 5.10: Logical Specification of Safety and Security Objectives at the Component Layer.

Objective Notation Logical Specification

Component-Port-Connector (CPC)
availability CPCAvailability

ComponentAvailability(C𝑖, 𝜆𝑖, 𝑡) ∧
ConnectorAvailability(Conn, 𝜆𝐶𝑜𝑛𝑛, 𝑡) ∧
EventualMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔)
(or BoundedMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ)) ∧
Logical conformity holds

Message integrity MessageIntegrity(𝑚𝑠𝑔) EventualMessageDelivery(C𝑖, C𝑗 , 𝑚𝑠𝑔)

Message freshness MessageFreshness(𝑚𝑠𝑔)
ComponentPrecedence(C𝑖, C𝑗) ∧
MessageIntegrity(𝑚𝑠𝑔) ∧
Recentness(C𝑖, C𝑗 , 𝑚𝑠𝑔, Θ) ∧
NonDuplication(C𝑗 , 𝑚𝑠𝑔)

5.4.4 Safety and Security Interplay: Conflicts Identification

Following the notions presented in Section 4.5.2, we describe examples of the interplay between
safety and security properties within the same layer or across layers of the three-layered system
model.

Preliminaries for Properties Analysis. Concerning the system model at the mission layer,
the process of operationalization is as follows. An important assumption made concerning
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the operations performed by the system is that these operations are derived from the mission
descriptions themselves. More specifically, inference rules can be applied to identify the correct
set of pre/post-conditions and environment trigger conditions corresponding to the operations
to accomplish a mission. In this process, we rely upon both generative and pruning semantics
[9]. Generative semantics disallow all the behavioral changes except those explicitly required by
the mission description. In this case, the operations performed by the system can only change
the relevant attributes of the system captured by the operation output attribute, thereby limiting
the scope of operation execution. However, generative semantics do not support incremental
reasoning concerning the partial models, where if new operations are added, there may arise
inconsistencies among the operation specifications. To avoid this problem, we also use the
pruning semantics that allow all the behavioral changes except for the explicitly disallowed
ones. In this case, the operations are observed as restrictive executions on the state transitions
associated with the system mission. A mission allocation pattern can be defined for the allocation
of the independent missions M𝑖, 𝑖 ∈ {1…ℕ} to one or more independent or dependent
operations Op𝑗 , 𝑗 ∈ {1…ℕ} for the accomplishment of M𝑖, as follows:

((𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛[M𝑖] ∧ ℎ𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠𝐸𝑣𝑒𝑛𝑡[M𝑖]) ⇔ (𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗] ∧
𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗])) ⇒ 𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M𝑖, Op𝑗]

Upon execution of the operation Op𝑗 to which the mission M𝑖 is allocated, the overallGoal
of M𝑖 becomes equivalent to the postCondition of Op𝑗 . Formally,

𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M𝑖, Op𝑗] ⇒ (𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M𝑖] ⇔ 𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗])
Likewise, the execution of a function at the functional layer depends on the presence of

the trigger and the fulfillment of pre-conditions. This ensures consistency concerning the
application of the operations and execution of functions, and traceability between the functional
path, sequence of operations, and their underlying missions.

Finally, at the component layer, each component C𝑚 can perform a particular action,
comprising the behavioral aspects of the system, including sending (𝑠𝑒𝑛𝑑(C𝑚, 𝑚𝑠𝑔)) or receiving
(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑚, 𝑚𝑠𝑔)) a message 𝑚𝑠𝑔 to or from other components. These actions depend on
the kind of the port, whose behavior is defined by the simple sending or receiving semantics.
In addition, the underlying system introduces communication features like First-In-First-Out
(FIFO) delivery of messages, eventual delivery of the messages, and no false message creation,
which define the communication semantics. FIFO would preserve the order in which messages
are sent and received and is used for illustration purposes.

Interplay within Mission Layer. Consider the use case presented in Section 3.4, where
collision avoidance is the high-level mission of the CDV. The manual triggering of brakes to
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avoid the collision situation may hinder the denial of manual operation access to the operator in
cases where safety is prioritized over security.

In such cases, conflicts between safety (namely operational availability) and security
(namely system accessibility) objectives can be identified by analyzing the predicates, more
concretely, for any states in which all post-conditions are not satisfied simultaneously. For
example, consider the following predicate, at the mission layer formal specification, where Op1

:= braking and Op2 := access provisioning, respectively denote the safety- and security-critical
operations performed by the CDV for the accomplishment of the mission M1 := collision
avoidance:

𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M1, Op1, Op2] ⇒ (𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M1] ⇔ (¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op1]
∨¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op2]))

Using the semantics defined in the previous Section 5.4.3, the above predicate is specified
as:
□(𝑎𝑐𝑐𝑜𝑚𝑝𝑙𝑖𝑠ℎ𝑒𝑑𝑇ℎ𝑟𝑜𝑢𝑔ℎ[M1, Op1, Op2] → ◊(𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐺𝑜𝑎𝑙[M1] ↔ (¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op1]

∨¬𝑝𝑜𝑠𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op2])))
Thus, no simultaneous fulfillment of post-conditions belonging to Op1 and Op2 after mission

accomplishment shall indicate, in particular, a conflict between the safety and security objectives
of the target system model.

Interplay between Mission and Functional Layers. Consider a situation when the trigger
condition of an operation becomes true within the interval of another operations’ execution. For
example, the premature or unintended deployment [154] of the vehicle’s airbag during braking,
which is still in progress without effective crash condition. Herein, the conflict may occur at
the level of high-level mission specification since the two missions’ overall goals may have
conflicting requirements.

In such cases, conflicts between objectives can be identified during the operations’ realization
(i.e., Op𝑗) to accomplish different missions. Hence, for the overall system model at the mission
layer, the following predicate is violated as the triggering of the airbag deployment conflicts with
the pre-condition for the braking operation, which is related to the lack of crash condition:

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗] ⇒ 𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗]
Using the semantics defined in the previous Section 5.4.3, the above predicate is specified

as:
□(𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑇 𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗] → ⧫(𝑝𝑟𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛[Op𝑗]))
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To illustrate the interplay with the functional layer, we consider the link realizedBy between
the operations and the functions constituting the functional path (refer to Figure 5.3) and the
introduction of time details. Herein, the assurance of functional integrity for the functional path
realizing a sequence of operations is assumed. However, the delay introduced by any constituent
function, i.e., deceleration, during execution may violate functional path freshness, influencing
the timely realization of the operations, i.e., airbag deployment. Hence, the above mission-layer
predicate can be analyzed with the details offered by the functional layer using the following
predicate:

(𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] > 0 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟[F2]) ⇒ (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F2])

Figure 5.3: Model Instantiation to depict Relationships across Layers.

Using the semantics defined in the previous Section 5.4.3, the above predicate is specified
as:
□((𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] > 0 ∧ 𝑡𝑟𝑖𝑔𝑔𝑒𝑟[F2]) → (𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F1] + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑇 𝑖𝑚𝑒[F2]))

Thus, for a sequence of functions F1 and F2, if the time of trigger of F1 has some positive
value and the trigger for F2 is true, then the time of trigger of F1 summed up with its duration of
execution should be less than the time of trigger of F2.

Interplay within Functional Layer. Consider a scenario comprising three system functions,
viz. F1 := obstacle detection, F2 := position inference, and F3 := deceleration. For a full chain
of information transmission across a function path (i.e., F1 → F2 → F3), the satisfaction of the
execution timeliness does not necessarily guarantee information flow timeliness. This can be
attributed to the delays introduced during the transmission of information between consecutive
functions (thereby violating information flow freshness), which in aggregation, still satisfy the
constraints for the satisfaction of functional path availability.
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Hence, to ensure that both functional path availability and information flow freshness
objectives hold, the following predicate needs to be satisfied (Refer to Figure 5.3):

𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘) ⇒Θ 𝒸𝒸(F𝑘−2, F𝑘−1, 𝑡2(𝑘−1), O𝑘−1), ∀𝑘 ≥ 2
[NB: It is recalled that the sub-indices here correspond to occurrences of function output

generation.]
Using the semantics defined in the previous Section 5.4.3, the above predicate is specified

as:
■(𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘, O𝑘) →Θ ⧫(𝒸𝒸(F𝑘−2, F𝑘−1, 𝑡2(𝑘−1), O𝑘−1)))

that can be verified iff:
∑ℕ

𝑘>=2 |𝑡2𝑘 - 𝑡2(𝑘−1)| + |𝑡2 − 𝑡1| ≤ Θ

Thus, the non-fulfillment of the predicate above will indicate the potential delays in
the transmission of information between the consecutive functions, provided the individual
functions respect the time-bound for execution, thereby violating the information flow freshness
objective.

Interplay between Functional and Component Layers. Consider a situation comprising
a sequence of functions, viz. F1 := obstacle detection, F1 := position inference, and F3 :=
deceleration. For the transmission between consecutive functions, the fulfillment of information
flow timeliness objective does not necessarily guarantee execution timeliness across the entire
chain of functions. This can be attributed to the fact that an attacker can introduce delays
in the packets for an underlying protocol for time synchronization, leading to failure in
the measurement of end-to-end delays by the communicating nodes, thereby violating the
functional path availability. However, with the assumption that each function execution and
the communication between the consecutive functions respect the time-bound, information flow
freshness still holds.

Hence, to ensure that both functional path availability and information flow freshness
objectives hold, the following predicate needs to be satisfied:

𝒸𝒸(F1, F1, 𝑡1, I1) ⇒Θ 𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘−1, I𝑘)
Using the semantics defined in the previous Section 5.4.3, the above predicate is specified

as:
□(𝒸𝒸(F1, F1, 𝑡1, I1) →Θ ◊(𝒸𝒸(F𝑘−1, F𝑘, 𝑡2𝑘−1, I𝑘)))
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that can be verified iff:
∑ℕ

𝑘=1 |𝑡2𝑘−1 - 𝑡1| + |𝑡2𝑘 − 𝑡2𝑘−1| ≤ Θ

To illustrate the interplay at the component layer, we consider the use case scenario
comprising two components, viz. C1 := processing unit and C2 := multi-function control unit.
Herein, non-fulfillment of the component availability objective due to failure of the component
C1 will, in turn, affect the delivery of the messages to the component C2, influencing the eventual
message delivery and message integrity. As a result, the message freshness objective is not
met, which is crucial to prevent the replaying of the control signals. In this case, the above
functional-layer predicate can be analyzed with the details offered by the component layer using
the following predicate:

P(T > 𝑡) ∧ 𝑠𝑒𝑛𝑑(C𝑖, 𝑚𝑠𝑔) ⇒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C𝑗 , 𝑚𝑠𝑔)
Thus, the time to failure T of the component C1 must appear after the time interval [0, 𝑡] to

ensure the fulfillment of the message integrity objective.

Interplay within Component Layer. Consider a scenario comprising three system
components, viz. C1 := processing unit, C2 := multi-function control unit, and C3 := brake
actuator, engaged in transmitting a message 𝑚𝑠𝑔 := braking command, from C1 to C3 via C2,
i.e., C1 ⟶𝑚𝑠𝑔 C2 and C2 ⟶𝑚𝑠𝑔 C3. Herein, we consider eventual message delivery, influencing
CPC Availability, and non-duplication, influencing message freshness, as the safety and security
objectives to be respectively satisfied. We assume that all these components are legitimate.
However, if C2 misbehaves and becomes faulty, it may tamper with 𝑚𝑠𝑔 to 𝑚𝑠𝑔′, leading to the
following flow: C1 ⟶𝑚𝑠𝑔 C2 and C2 ⟶𝑚𝑠𝑔′ C3.

Thus, even after tampering, the non-duplication objective is satisfied as none of the recipients
(viz. C2 and C3) undergo the repeated transmission of the message. However, the eventual
message delivery for 𝑚𝑠𝑔 is not satisfied as C3, the intended recipient, does not receive the
original message 𝑚𝑠𝑔. Hence, in such scenarios, the safety and security analysis should not be
conducted standalone but integrated to ensure corresponding objectives, especially across the
entire chain of transmission.

Hence, for the overall system model targeting the component-layer details, the aspect above
can be analyzed via the following predicates:

𝑠𝑒𝑛𝑑(C2, 𝑚𝑠𝑔) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C3, 𝑚𝑠𝑔) ∧¬(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C2, 𝑚𝑠𝑔))

𝑠𝑒𝑛𝑑(C1, 𝑚𝑠𝑔) ⇒ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C3, 𝑚𝑠𝑔)
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Using the semantics defined in the previous Section 5.4.3, the above predicate is specified
as:

□(𝑠𝑒𝑛𝑑(C2, 𝑚𝑠𝑔′) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C3, 𝑚𝑠𝑔′)) ∧¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C2, 𝑚𝑠𝑔′))))

□(𝑠𝑒𝑛𝑑(C1, 𝑚𝑠𝑔) → ◊(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C3, 𝑚𝑠𝑔)) ∧¬(⧫(𝑟𝑒𝑐𝑒𝑖𝑣𝑒(C3, 𝑚𝑠𝑔))))

The first predicate is not expected to be satisfied; otherwise, the message sent by C2 to C3 is
not the same as the one sent by C1 to C2. The second predicate should be satisfied whenever the
uniqueness of the message is expected to occur.

As a starting point, such predicates can assist engineers in conducting sound analysis, as
presented in the next section, by verifying the system’s safety and security trade-offs.

5.5 Formal Modeling and Verification in Event-B
In this section, we describe the interpretation of the structural and behavioral aspects of the
target system model at different layers and safety and security properties in Event-B, using the
formalisms and logical specifications presented in Section 5.4. Event-B was selected as the target
language given that it fulfills the desired features for the formalisms and properties analysis, as
mentioned in Section 5.3.

5.5.1 Introduction to Event-B

Event-B is a formal method for system-level modeling and analysis, wherein the model allows
to capture the structural and behavioral aspects of a discrete state transition system [46]. It
facilitates the use of set theory as a modeling notation, refinement to represent the system at
different levels of abstraction, and mathematical proof to verify the consistency between the
refinement levels. An Event-B model comprises: 1) Context to model the static structural aspects
of the system via sets, constants, axioms, and theorems, as depicted in Figure 5.4 and 2) Machine
to capture the dynamic behavioral aspects of the system via variables, invariants, variants, and
events, as depicted in Figure 5.5. Variables v define the state of the machine and are constrained
by the invariants I(v). An event e comprises event parameters p, guards G(p, v) representing
its enabling condition, and action A(p, v) describing the evolution of the state variables on the
execution of the event, as depicted in Figure 5.6. Accordingly, the event e has the following
form:

any p when G(p, v) then A(p, v) end
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Figure 5.4: Structure of an Event-B Context.
Figure 5.5: Structure of an Event-B Machine.

Figure 5.6: Structure of an Event-B Event.
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We rely upon mathematical proofs comprising a set of rules to reason and verify the
invariants. These rules are based upon the convention of Proof-Obligations (POs). A PO is
generated for every invariant that can be affected by an event, i.e., the invariant contains variables
that an event can change. In this case, we rely upon PO rules for invariant preservation that take
the form:

event_name/invariant_label/INV
The notion of extends, sees, and refines facilitate defining relationships between the contexts,

machines, and events that would serve for instantiating the system model for a target application
design and properties analysis. We use the open-source tool Rodin to support the Event-B
method. In Event-B, the specification and the proofs are separated, and Rodin is designed to
support these two parts.

In the following sub-sections, we leverage the aforementioned constructs and features of the
Event-B framework to provide a concrete specification of the three-layered system and properties
models, facilitating integrated safety and security analysis. For more details regarding Event-B
constructs, the reader is referred to Appendix C.

5.5.2 Three-layered System Formal Modeling

The formal interpretation of the three-layered system DSMLs presented in Section 4.4 into
Event-B relies upon the corresponding logical specifications presented in Section 5.4.1 and
is detailed in the following paragraphs. It is recalled that the logical specifications are the
prerequisites, defining rules for facilitating the interpretation of the modeling concepts to their
formal counterparts. Event-B is a target language and tool selected to instantiate and show such
interpretation.

5.5.2.1 Mission Layer

The interpretation of the mission-layer system DSML to Event-B considers the meta-model
depicted in Figure 4.2 and the mapping described in Table 5.1. The interpretation is described
in Table 5.11, along with the rationale and the elements and relationships in the DSML.

Structural Elements. To provide a formal declaration of the structural elements of the
mission-layer system DSML, we define a context C0MissionView. Herein, the key elements,
including System, Mission, Operation, Environment, and the enumeration DurationType are
defined as Event-B sets to model their respective classes or user-defined types. For instance, the
Mission set represents the collection of pre-defined system mission instances that can be either
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Table 5.11: Interpretation: Mission-layer System DSML ↦ Event-B.
DSML Element Event-B Element Rationale

System (SET)
description* *Required only for informal specification

Mission (SET)
description*
operationalSituation, hazardousEvent, securityIncident, overallGoal
(VARIABLES)**
operationalSituation ∈ Mission → BOOL (INVARIANTS)
hazardousEvent ∈ Mission → BOOL
securityIncident ∈ Mission → BOOL
overallGoal ∈ Mission → BOOL

*Required only for informal specification
**Split the mission description as per the
form: PreCondition ⇒ PostCondition,
for formal analysis

Operation (SET)
operationInput, operationOutput*
preCondition, postCondition, environmentTriggerCondition, counter**
(VARIABLES)
preCondition ∈ Operation → BOOL (INVARIANTS)
postCondition ∈ Operation → BOOL
environmentTriggerCondition ∈ Operation → BOOL
counter ∈ ℤ ∧ (0 ≤ counter) ∧ (counter ≤ n*** )

*Required only for informal specification
**Represents durationOfExecution
***𝑛 = number of events

DurationType (SET)
Function, Parameter, Value (CONSTANTS)
Function ∈ ℙ (DurationType) (AXIOMS)
Parameter ∈ ℙ (DurationType)
Value ∈ ℙ (DurationType)
partition(DurationType, Function, Parameter, Value)*

*Function, Parameter, and Value partition
the DurationType;
i.e., (DurationType = Function ∪ Parameter
∪ Value) ∧
(Function ∩ Parameter ∩ Value = 𝜙)

Environment (SET)
People, Asset (CONSTANTS)
People ∈ ℙ (Environment) (AXIOMS)
Asset ∈ ℙ (Environment)
partition(Environment, People, Asset)*

*People and Asset partition the
Environment;
i.e., (Environment = People ∪ Asset) ∧
(People ∩ Asset = 𝜙)

achieves (VARIABLE)
achieves ∈ System → Mission (INVARIANTS)
achieves∼∈ Mission ⇸ System

A system can achieve one or more
missions

interactsWith (VARIABLE)
interactsWith ∈ System → Environment (INVARIANT) A system interacts with its environment

accomplishedThrough (VARIABLE)
accomplishedThrough ∈ Mission → Operation (INVARIANTS)
accomplishedThrough∼∈ Operation ⇸ Mission

A mission can be accomplished through
one or more operations
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operational, safety, or security-related. This is a choice to represent the domain notions that are,
in essence, static regarding the proposed three-layered model. Likewise, the child classes, e.g.,
People, Asset, and enumeration values, e.g., Parameter, Value, are represented as constants.
Herein, Parameter and Value capture the sub-sets of the objects of related types. To model
the relation between a carrier set 𝕊 (e.g., Environment) and the constants s1, s2, …, s𝑛 (i.e.,
People, Asset), the 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 operator is used; i.e., 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝕊, s1, s2, …, s𝑛). Herein, People
and Asset represent the mutually disjoint sub-sets of the set Environment. An excerpt of the
context C0MissionView is depicted in Listing 5.1.
// Mission layer s t ruc tura l aspects
CONTEXT C0MissionView
SETS

Miss ion , O p e r a t i o n , Environment , Dura t ionType
CONSTANTS

People , Asse t , Pa rame te r , Value
AXIOMS

Pe op l e ∈ ℙ ( Envi ronment )
A s s e t ∈ ℙ ( Envi ronment )
p a r t i t i o n ( Environment , People , A s s e t )

END
Listing 5.1: Excerpt of Event-B context at the mission layer.

To model the instances for undefined sets1, we define a context C2MissionUtility that
provides declaration of the utility constants2, e.g., s1, m1, o1, p1, and a1 for a generic
representation of system, mission, operation, people, and asset, respectively. Herein, the
extends keyword is used for inheriting the elements, including axioms, from C0MissionView to
C2MissionUtility. An excerpt of this context is depicted in Listing 5.2.
// Mission layer u t i l i t y constants
CONTEXT C 2 M i s s i o n U t i l i t y
EXTENDS C0MissionView
CONSTANTS

m1
AXIOMS

m1 ∈ Miss ion ∧ Miss ion = {m1} // m1 i s of type Mission and i s the only
// element in the Mission set

END
Listing 5.2: Excerpt of Event-B context defining utility constants at the mission layer.

1Sets with no pre-defined concrete values. The end-users can introduce the values that must respect the axioms
defined in the context.

2Constants used for generic representation of set instances.
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Behavioral Elements. We apply the following refinement strategy at the mission layer. The
initial abstract specification M0MissionView formally captures the desired behavioral aspects
of the system at this layer. Moreover, it introduces the safety and security objectives to be
verified, which will be discussed in the forthcoming Section 5.5.3. Subsequently, the first
refinement, M1MissionLayerInstance, helps to illustrate how the former model is instantiated.
The refinement is also based upon the CDV use case, which is further detailed in Chapter 6.

The machine M0MissionView is described as follows. It uses the sees keyword to inherit
the axioms of the context C2MissionUtility, and in turn C0MissionView, in conjunction
as hypotheses in the mathematical proofs. Herein, the attributes like hazardousEvent and
preCondition, corresponding to Mission and Operation in the respective DSML are defined as
variables. To type these variables, we define invariants that capture their relationships in the
DSML, which can be verified either in the same machine or later refinements. In addition, we
define constraints presented in Section 5.4.4 for properties analysis as model invariants to restrict
the model’s behavior. The events are defined to capture the state transitions associated with the
system missions and operations. For instance, the INITIALIZATION event assigns an initial
value to the variables. The guards in the when section, corresponding to the events, restrict the
values of the variables as enabling conditions for the events. The INITIALIZATION event has
no guards, implying that it is always possible. An excerpt of the machine M0MissionView is
depicted in Listing 5.3.
// Mission layer behaviora l aspects
MACHINE M0MissionView
SEES C 2 M i s s i o n U t i l i t y
VARIABLES o p e r a t i o n a l S i t u a t i o n , h a z a r d o u s Ev e n t , e n v i r o n m e n t T r i g g e r C o n d i t i o n ,
c o u n t e r , a c h i e v e s , accompl i shedThrough , i n t e r a c t s W i t h , p r i v i l e g e , a c c e s s
INVARIANTS

o p e r a t i o n a l S i t u a t i o n ∈ Miss ion → BOOL
c o u n t e r ∈ ℤ ∧ (0 ≤ c o u n t e r ) ∧ ( c o u n t e r ≤ n ) //n = no . of events
p r i v i l e g e ∈ ℙ ( Peo p l e x System x O p e r a t i o n )
a c c e s s ∈ ( Peo p l e x O p e r a t i o n ) → BOOL

EVENTS
INITIALIZATION
STATUS

ordinary
BEGIN

o p e r a t i o n a l S i t u a t i o n ≔ {m1 ↦ TRUE}
. . .

END
EVENT1
STATUS
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ordinary
WHERE

o p e r a t i o n a l S i t u a t i o n = {m1 ↦ TRUE}
h a z a r d o u s E v e n t = {m1 ↦ FALSE}
e n v i r o n m e n t T r i g g e r C o n d i t i o n = { o1 ↦ FALSE}
a c h i e v e s = { s1 ↦ m1}
c o u n t e r > 0

THEN
h a z a r d o u s E v e n t ≔ {m1 ↦ TRUE}
e n v i r o n m e n t T r i g g e r C o n d i t i o n ≔ { o1 ↦ TRUE}
accompl i shedThrough ≔ {m1 ↦ o1 }
i n t e r a c t s W i t h ≔ { s1 ↦ a1 }
c o u n t e r ≔ c o u n t e r − 1

END
END

Listing 5.3: Excerpt of Event-B machine at the mission layer.

5.5.2.2 Functional Layer

The interpretation of the functional-layer system DSML to Event-B considers the meta-model
depicted in Figure 4.3 and the mapping described in Table 5.2. The interpretation is described
in Table 5.12, along with the rationale and the elements and relationships in the DSML.

Structural Elements. To provide a formal declaration of the structural elements in the
function-layer system DSML, we define a context C5FunctionView. Herein, the key
elements, including Function, Information, Caller, and the enumeration FunctionType
and TriggerType are defined as Event-B sets to model their respective classes. For
instance, the Function set represents the collection of pre-defined system functions.
Likewise, the child classes, e.g., FunctionalInput, FunctionalOutput, and enumeration
values, e.g., Physical, Logical, are represented as constants. The relation between these
constants and their corresponding carrier sets is represented using the partition operation,
e.g., partition(Information, FunctionalInput, FunctionalOutput). To model a
one-to-one relation between InformationFlow and FunctionalInput—for instance, we use
the bijections denoted by ⤖. Bijections will allow specifying that an information flow is
associated with a functional input and one functional input constitutes at least one information
flow. This is a choice to maintain distinctiveness and facilitate traceability of the state transitions
when information passes across a functional path. Similarly, a functional path defined via
information flows between the functions is modeled using the total surjective relation ←←→→, where
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Table 5.12: Interpretation: Functional-layer System DSML ↦ Event-B.
DSML Element Event-B Element Rationale

Function (SET)
type, triggerType (CONSTANTS)
preCondition*
type ∈ Function ⤖ FunctionType (AXIOMS)
triggerType ∈ Function ⤖ TriggerType

*Required only for information specification

FunctionType (SET)
Physical, Logical (CONSTANTS)
Physical ∈ ℙ (FunctionType) (AXIOMS)
Logical ∈ ℙ (FunctionType)
partition(FunctionType, Physical, Logical)

Function can be of type physical or logical

TriggerType (SET)
Manual, ControlSignal, TemporalConstraint (CONSTANTS)
Manual ∈ ℙ (TriggerType) (AXIOMS)
ControlSignal ∈ ℙ (TriggerType)
TemporalConstraint ∈ ℙ (TriggerType)
partition(TriggerType, Manual, ControlSignal, TemporalConstraint)

Trigger type can be manual, control signal,
or temporal constraint

Caller (SET)
Operator, ExternalFunction, caller (CONSTANTS)
Operator ∈ ℙ (Caller) (AXIOMS)
ExternalFunction ∈ ℙ (Caller)
partition(Caller, Operator, ExternalFunction)*
caller ∈ Function → Caller
caller∼∈ Caller ⇸ Function

*Caller can be an operator, function or
temporal constraint; Herein, function is
represented as ExternalFunction, operation
is inherited from mission model and
temporal constraint is captured as a
behavioral element

Duration, TriggerTime (CONSTANTS)
Duration ∈ ℕ (TemporalConstraint) (AXIOMS)
TriggerTime ∈ ℙ (TemporalConstraint)
partition(TemporalConstraint, Duration, TriggerTime)
triggerTime ∈ Function → ℕ (INVARIANTS)
time* ∈ ℕ

*time represents the current system time on
the global time scale, traversing delays
from the beginning

FunctionalInterface (SET) Semantics are defined via passage of
information

Information (SET)
FunctionalInput, FunctionalOutput (CONSTANTS)
FunctionalInput ∈ ℙ (Information) (AXIOMS)
FunctionalOutput ∈ ℙ (Information)
partition(Information, FunctionalInput, FunctionalOutput)

Abstract class Information partitioned into
FunctionalInput and FunctionalOutput

FunctionalPath (CONSTANT)
FunctionalPath ∈ Function → Function (AXIOM)

Functional path as a sequence of objects of
type Function

sysFunc (CONSTANT)
sysFunc ∈ System ←←→→ Function (AXIOMS)
sysFunc∼∈ Function ⇸ System

A system may execute one or more
functions

funcInfo (CONSTANT)
funcInfo ∈ Function ←←→→ Information (AXIOM)
funcInfo∼∈ Information ⇸ Function (AXIOM)

One or more information elements may be
associated with a function

infoFI (CONSTANT)
infoFI ∈ Information ⤖ FunctionalInterface (AXIOM)

A functional interface will allow passage of
one information element at a time

functionalInterfaces (CONSTANT)
functionalInterfaces ∈ Function → FunctionalInterface
functionalInterfaces∼∈ FunctionalInterface ⇸ Function (AXIOMS)

A function may have one or more
functional interfaces

InformationFlow (SET)*
flowFI, flowFO (CONSTANTS)
flowFI ∈ InformationFlow ⤖ FunctionalInput (AXIOMS)
flowFO ∈ InformationFlow ⤖ FunctionalOutput

*Dynamically represented as interacting
events;
An information flow is associated with one
functional input or one functional output

pathFlow (CONSTANT)
pathFlow ∈ FunctionalPath ←←→→ InformationFlow (AXIOMS)
pathFlow∼∈ InformationFlow ⇸ FunctionalPath

A functional path links functions via one or
more information flows
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every information flow has at least one functional path through which it passes, and a partial
function ⇸ as an additional constraint to derive the injective relation. An excerpt of the context
C5FunctionView is depicted in Listing 5.4.
// Functional layer s t ruc tura l aspects
CONTEXT C5Funct ionView
SETS

Func t ion , I n f o r m a t i o n , C a l l e r , I n f o r m a t i o n F l o w
CONSTANTS

F u n c t i o n a l I n p u t , F u n c t i o n a l O u t p u t , P h y s i c a l , L o g i c a l , f lowFI , flowFO
AXIOMS

F u n c t i o n a l I n p u t ∈ ℙ ( I n f o r m a t i o n )
F u n c t i o n a l O u t p u t ∈ ℙ ( I n f o r m a t i o n )
p a r t i t i o n ( I n f o r m a t i o n , F u n c t i o n a l I n p u t , F u n c t i o n a l O u t p u t )
f l ow FI ∈ I n f o r m a t i o n F l o w ⤖ F u n c t i o n a l I n p u t
flowFO ∈ I n f o r m a t i o n F l o w ⤖ F u n c t i o n a l O u t p u t

END

Listing 5.4: Excerpt of Event-B context at the functional layer.
To model the instances for undefined sets, we define a context C7FunctionUtility that

provides a declaration of the utility constants, e.g., f1, f2, and info for a generic representation
of functions and information, etc. Herein, the extends keyword is used for inheriting the
elements, including axioms, from C5FunctionView to C7FunctionUtility. An excerpt of
this context is depicted in Listing 5.5.
// Functional layer u t i l i t y constants
CONTEXT C 7 F u n c t i o n U t i l i t y
EXTENDS C5Funct ionView
CONSTANTS

f1 , f2 , i n f o
AXIOMS

f1 ∈ F u n c t i o n ∧ f2 ∈ F u n c t i o n ∧ F u n c t i o n = { f1 , f2 } // f1 and f2 are of
// type Function
i n f o ∈ I n f o r m a t i o n

END

Listing 5.5: Excerpt of Event-B context defining utility constants at the functional layer.

Behavioral Elements. We apply the following refinement strategy at the functional layer:
• The initial abstract specification M2FunctionView formally captures the desired

behavioral aspects of the system at this layer, including the abstract function definitions.
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The machine uses the sees keyword to inherit the axioms of the context
C7FunctionUtility, and in turn C5FunctionView, in conjunction as hypotheses
in the mathematical proofs. Herein, we define the following seven variables to capture
the state transitions associated with function execution:

– trigger is a flag corresponding to a function that encodes the assumptions related
to the ordering of functions constituting a functional path in the form of a Boolean
variable. It denotes whether a function execution has taken place or not in the abstract
model.

– triggerTime represents the occurrence time of a function call and is typed as a
natural to capture the passage of time in the form of discrete ticks.

– duration denotes a natural variable denoting the discrete gap between the
occurrence of events corresponding to the function execution, i.e., function call and
function completion.

– time represents the current system time on the global time scale.
– functionalInput and functionalOutput represent the input and output,

respectively, associated with a function.
– Finally, var represents an information variable used for the passage of information

between two functions.
To type these variables, we define invariants that capture the relationships between
the elements represented by the context C5FunctionView. To ensure the consistency
of the execution of functions with the trigger time, we define an invariant
consistencyOfOccurrence. Likewise, to denote the minimal gap delta between the
execution of functions, we define an invariant occuranceGap. Moreover, we define events
to capture the state transitions associated with the system functions. The state transitions
involve functional call, function in progress, and function termination. An excerpt of the
machine M2FunctionView is depicted in Listing 5.6.

// Functional layer behaviora l aspects ( abstract )
MACHINE M2FunctionView
SEES C 7 F u n c t i o n U t i l i t y
VARIABLES t r i g g e r , t r i g g e r T i m e , d u r a t i o n , t ime , f u n c t i o n a l I n p u t ,
f u n c t i o n a l O u t p u t , v a r
INVARIANTS

t r i g g e r ∈ F u n c t i o n → BOOL
t r i g g e r T i m e ∈ F u n c t i o n → ℕ
d u r a t i o n ∈ ℕ
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∀ fk . fk ∈ F u n c t i o n ∧ t r i g g e r T i m e ( fk ) > 0 ⇔ t r i g g e r [ { fk } ] =
{TRUE} // consistencyOfOccurrence

EVENTS
INITIALIZATION
STATUS

ordinary
BEGIN

t r i g g e r ≔ { f1 ↦ FALSE}
t r i g g e r T i m e ≔ { f1 ↦ 0}
. . .

END
FUNCTION1
STATUS

ordinary
ANY

t i c k
o1 // funct iona l output l o c a l to th i s event

WHERE
t r i g g e r = { f1 ↦ FALSE}
f u n c t i o n a l I n p u t = { f1 ↦ i 1 }
o1 ∈ F u n c t i o n a l O u t p u t
t i c k ∈ ℕ1

THEN
t r i g g e r ≔ { f1 ↦ FALSE}
t r i g g e r T i m e ( f1 ) ≔ t ime + t i c k
d u r a t i o n ≔ d u r a t i o n + t i c k
f u n c t i o n a l O u t p u t ≔ { f1 ↦ o1 }
v a r ≔ o1

END
END
Listing 5.6: Excerpt of Event-B abstract machine at the functional layer.

• Subsequently, the first refinement M3FunctionViewRefinement, considers the
invocation and termination of the functions in a concrete way. Moreover, it introduces the
safety and security objectives to be verified, which will be discussed in the forthcoming
Section 5.5.3.
This machine uses the refines keyword to concretize the machine M2FunctionView. Some
of the variables defined herein include the following:

– beginFunc and endFunc are flags in the form of Boolean variables corresponding to
the occurrences that respectively mark the beginning and ending events of a function
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execution, as refinement of the trigger from the abstract machine.
– Likewise, beginTimeFunc and endTimeFunc represent the occurrence time

corresponding to these events and are typed as natural to capture the passage of time
in the form of discrete ticks.

– deadlineFunc denotes the instant when the results must be produced by a function,
and is typed as a natural.

Apart from the invariants to type these variables and restrict the system’s behavior,
we define gluing invariants to establish the relationship between the variables of the
abstract and concrete models. For example, endFunc holds the same value regarding
the variable trigger. The events defined to capture the state transitions associated with
the function execution, concretize the events presented in the abstract machine using the
refines keyword. An excerpt of the machine M3FunctionViewRefinement is depicted in
Listing 5.7.

// Functional layer behaviora l aspects ( concrete )
MACHINE M3Funct ionViewRefinement
REFINES M2FunctionView
SEES C 7 F u n c t i o n U t i l i t y
VARIABLES beginFunc , endFunc , beginTimeFunc , endTimeFunc ,
d e a d l i n e F u n c
INVARIANTS

beg inFunc ∈ F u n c t i o n → BOOL
endFunc ∈ F u n c t i o n → BOOL
beginTimeFunc ∈ F u n c t i o n → ℕ
endTimeFunc ∈ F u n c t i o n → ℕ
d e a d l i n e F u n c ∈ F u n c t i o n → ℕ1
∀ fk . fk ∈ F u n c t i o n ∧ endFunc [ { fk } ] = {TRUE} ⇔ t r i g g e r [ { fk } ]
= {TRUE} // gluing invar iant
∀ fk . fk ∈ F u n c t i o n ∧ endTimeFunc [ { fk } ] = t r i g g e r T i m e [ { fk } ]
∀ fk . fk ∈ F u n c t i o n ∧ beginTimeFunc ( fk ) > 0 ⇔ beg inFunc [ { fk } ]
= {TRUE} // consistencyOfOccurrence
∀ fk . fk ∈ F u n c t i o n ∧ endTimeFunc ( fk ) > 0 ⇔ endTimeFunc [ { fk } ]
= {TRUE}

EVENTS
INITIALIZATION
STATUS

ordinary
BEGIN

beg inFunc ≔ { f1 ↦ FALSE}
beginTimeFunc ≔ { f1 ↦ 0}
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. . .
END
FUNC1_BEGIN
STATUS

ordinary
ANY

t i c k
WHERE

beg inFunc = { f1 ↦ FALSE}
t i c k ∈ ℕ1

THEN
d u r a t i o n ≔ d u r a t i o n + t i c k
beginTimeFunc ( f1 ) ≔ t ime + d u r a t i o n
beg inFunc ≔ { f1 ↦ TRUE}
f u n c t i o n a l I n p u t ≔ { f1 ↦ i 1 }

END
FUNC1_END
STATUS

ordinary
REFINES

FUNCTION1
ANY

t i c k
o

WHERE
beg inFunc = { f1 ↦ TRUE}
endFunc = { f1 ↦ FALSE}
beg inFunc = { f2 ↦ FALSE}
t i c k ∈ ℕ1
d u r a t i o n = d u r a t i o n + t i c k
t ime ≤ beginTimeFunc ( f1 ) + d e a d l i n e F u n c ( f1 ) + d u r a t i o n
o ∈ F u n c t i o n a l O u t p u t

WITH
o = o1

THEN
endFunc ≔ { f1 ↦ TRUE}
endTimeFunc ( f1 ) ≔ t ime
f u n c t i o n a l O u t p u t ≔ { f1 ↦ o}
v a r ≔ o

END
END
Listing 5.7: Excerpt of Event-B concrete machine at the functional layer.
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• Finally, the last refinement, M4FunctionalLayerInstance will instantiate the proposed
model for the CDV use case, which will be detailed in Chapter 6.

5.5.2.3 Component Layer

The interpretation of the component-layer system DSML to Event-B considers the meta-model
depicted in Figure 4.4 and the mapping described in Table 5.3. The interpretation is described
in Table 5.13, along with the rationale and the elements and relationships in the DSML.

Structural Elements. To provide formal declaration of the structural elements of the
component-layer system DSML, we define a context C10ComponentView. Herein, the key
elements, including Component, Port, and the enumerations ComponentType, PortKind,
and ConnectorType are defined as Event-B sets to model their respective classes. For
instance, the Component set represents the collection of system components. Likewise,
CommunicationStyle and InteractionType are captured as pre-defined sets, with their child
classes, like MsgPassing, Data, and enumeration values, e.g., Atomic, Input, Bus, as constants.
The relation between these constants and the corresponding carrier sets is represented using
the partition operation, e.g., partition(CommunicationStyle, MsgPassing, Broadcast,
Multicast). Other relationships are accordingly modeled. An excerpt of the context
C10ComponentView is depicted in Listing 5.8.
// Component layer s t ruc tura l aspects
CONTEXT C10ComponentView
SETS

Component , Po r t , Connec tor , Communica t ionS ty l e
CONSTANTS

compType , Atomic , Composi te
AXIOMS

compType ∈ Component ⤖ ComponentType
Atomic ∈ ℙ ( ComponentType )
Composi te ∈ ℙ ( ComponentType )
p a r t i t i o n ( ComponentType , Atomic , Composi te )

END

Listing 5.8: Excerpt of Event-B context at the component layer.

Behavioral Elements. To model the system behavior, we consider discrete-time as a
parameter to express the instants of the occurrence of actions. Execution of a system is a
sequence of steps (instants), where a step is determined by two successive time points. We
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Table 5.13: Interpretation: Component-layer System DSML ↦ Event-B.
DSML Element Event-B Element Rationale

Component (SET)
compType, failureRate, givenTime (CONSTANTS)
compType ∈ Component ⤖ ComponentType (AXIOMS)
failureRate ∈ ℕ1*
givenTime ∈ ℕ1

*Positive natural number

ComponentType (SET)
Atomic, Composite (CONSTANTS)
Atomic ∈ ℙ (ComponentType) (AXIOMS)
Composite ∈ ℙ (ComponentType)
partition(FunctionType, Atomic, Composite)

Component can be of type atomic or
composite

Port (SET)
kind (CONSTANT)
kind ∈ Port ⤖ PortKind (AXIOM)

Each port has a kind

PortKind (SET)
Input, Output (CONSTANTS)
Input ∈ ℙ (PortKind) (AXIOMS)
Output ∈ ℙ (PortKind)
partition(PortKind, Input, Output)

Port can be of kind input or output

Connector (SET)
connType (CONSTANT)
connType ∈ Connector ⤖ ConnectorType (AXIOM)

Each connector has a type

ConnectorType (SET)
Bus, Pipe, Channel (CONSTANTS)
Bus ∈ ℙ (ConnectorType) (AXIOMS)
Pipe ∈ ℙ (ConnectorType)
Channel ∈ ℙ (ConnectorType)
partition(ConnectorType, Bus, Pipe, Channel)

Connector can be of type bus, pipe, or
channel

CommunicationStyle (SET)
MsgPassing, Broadcast, Multicast (CONSTANTS)
MsgPassing ∈ ℙ (CommunicationStyle) (AXIOMS)
Broadcast ∈ ℙ (CommunicationStyle)
Multicast ∈ ℙ (CommunicationStyle)
partition(CommunicationStyle, MsgPassing, Broadcast, Multicast)

Communication style can be message
passing, broadcast, or multi-cast

InteractionType (SET)
Signal, Data, Packet (CONSTANTS)
Signal ∈ ℙ (InteractionType) (AXIOMS)
Data ∈ ℙ (InteractionType)
Packet ∈ ℙ (InteractionType)
partition(InteractionType, Signal, Data, Packet)

Interaction type can be signal, data, or
packet

sysComp (CONSTANT)
sysComp ∈ System ←←→→ Component (AXIOMS)
sysComp∼∈ Component ⇸ System

A system may comprise one or more
components

uses (CONSTANT)
uses ∈ Component → Port (AXIOMS)
uses∼∈ Port ⇸ Component

A component uses one or more ports

connects (CONSTANT)
connects ∈ Connector → Port (AXIOMS)
connects∼∈ Port ⇸ Connector

A connector connects ports

122



5.5 Formal Modeling and Verification in Event-B

define a context C13ComponentMessaging to express time in a discrete sense, referred as Tick,
where time is explicitly modeled as a set of discrete ordered Tick instants, as depicted in Listing
5.9.
// Component layer messaging module
CONTEXT C13ComponentMessaging
EXTENDS C10ComponentView
SETS

Msg
CONSTANTS

from , to , s e n t , r e c e i v e d , Tick
AXIOMS

from ∈ Msg ↠ Component
t o ∈ Msg ↠ Component
Tick ⊆ ℕ
s e n t ∈ Msg → Tick
r e c e i v e d ∈ Msg → Tick

END
Listing 5.9: Excerpt of messaging module at the component layer.

Constraints are defined to restrict the interactions between the components in the form of
invariants. For example, a port must belong to at most one component, and each port has a kind
from the domain PortKind. An excerpt for such invariants is depicted in Listing 5.10.
INVARIANTS

f a i l u r e R a t e ∈ ℕ // f a i l u r e rate of a phys ica l component
∀c1 . ∀c2 . ∀p . c1 ∈ Component ∧ c2 ∈ Component ∧ p ∈ P o r t ∧ u s e s [ { c1 } ] = {p}
⇒ ¬ u s e s [ { c2 } ] = {p} // port not shared
∀c . c ∈ Component ∧ f i n i t e ( u s e s [ { c } ] ) // f i n i t e ports
∀con . con ∈ Connec to r ∧ c a r d ( c o n n e c t s [ { con } ] ) ≥ 2 // Connector connects
//more than two ports

Listing 5.10: Excerpt of invariants at the component layer to declare components’ interaction
constraints.

5.5.3 Safety and Security Properties and Interplay Formal Modeling

In this section, we describe the formal modeling of safety and security properties and their
interplay in Event-B.

Safety and Security Properties. The interpretation of the properties DSML to Event-B
considers the meta-models depicted in Figures 4.10 and 4.11 and the mapping presented in Table
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5.4. The interpretation is described in Table 5.14, along with the rationale and the elements and
relationships in the DSML.

We define the safety and security objectives presented in Section 5.4.3 in Event-B in the
form of model invariants to verify that the events satisfy the safety and security properties at
different layers. Herein, the invariants are represented as the combination of the following:

1. Utility constants that are represented as lowercase alphanumeric characters (e.g., 𝑚, 𝑓 , 𝑐1,
𝑐2) and set-theoretic symbols, like∈ that provide a generic representation and instantiation
of the notions for the system model at the three layers.

2. Quantifiers, like ∀ and ∃, to define the extent to which the invariant is true concerning the
utility constants.

3. Attribute variables to define the state of the notions for the system model at the three
layers. The domain of attribute variables can be a boolean set (BOOL), a set of integers
(ℤ), a set of natural numbers (ℕ), or a set of positive natural numbers (ℕ1).

4. Logic symbols, like ⇒ and ⇔, to represent the FOL operators between the attribute
variables.

5. Relations, like ↦, to expand the multi-argument attributes by expressing the relationship
between the arguments.

6. Arithmetic operators, like +, and relational operators, like < and ≤ to express the
relationship between numeric attribute variables.

In addition, the modal operators are translated to Event-B using the notion of guards. In this
case, an event is allowed to occur if the guard is true. Consider two events, E1 and E2, with
guards 𝑔1 and 𝑔2, respectively, as part of the system model. To model ◦E1, according to which
E1 must be the event to be executed next, we define an additional guard, i.e., ¬𝑔2 as a constraint
to prohibit the simultaneous or prior execution of E2. Thus, the overall guard on E1 becomes 𝑔1
∧ ¬𝑔2. A similar notion is presented in [155] to model obligations in Event-B.

Likewise, to model ◊≤ΘE1, according to which E1 must be executed not beyond the
pre-defined threshold gap Θ, we define an integer variable 𝑛 corresponding to this threshold that
represents the number of events defined in the system model and an integer counter 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐸1

.
Whenever trigger 𝑔1 is TRUE, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐸1

is set to 𝑛 and is decremented on every execution of
other events. If 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐸1

becomes zero and 𝑔1 is still true, other events will be disabled and
E1 will be executed. Otherwise, if 𝑔1 becomes false with 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐸1

still active and non-zero, it
is reset to 𝑛. The unbounded case ◊E1, according to which E1 will be executed eventually, is
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Table 5.14: Interpretation: Properties DSML ↦ Event-B.
DSML Element Event-B Element Rationale

SystemProperty (SET)
description*
systemProperty (CONSTANT)
systemProperty ∈ SystemProperty ←←→→ System (AXIOM)

*Required only for informal specification

FunctionProperty (SET)
description*
functionProperty, functionalPathProperty (CONSTANTS)
functionProperty ∈ FunctionProperty ←←→→ Function (AXIOMS)
functionPathProperty ∈ FunctionProperty ←←→→ FunctionalPath

*Required only for informal specification

ComponentProperty (SET)
description*
componentProperty (CONSTANT)
componentProperty ∈ ComponentProperty ←←→→ Component (AXIOM)

*Required only for informal specification

ConnectorProperty (SET)
description*
connectorProperty (CONSTANT)
connectorProperty ∈ ConnectorProperty ←←→→ Connector (AXIOM)

*Required only for informal specification

propertyCategory (CONSTANT)
propertyCategory ∈ SystemProperty ⤖ PropertyCategory (AXIOMS)
propertyCategory ∈ FunctionProperty ⤖ PropertyCategory
propertyCategory ∈ ComponentProperty ⤖ PropertyCategory
propertyCategory ∈ ConnectorProperty ⤖ PropertyCategory

A property is associated with a property
category

PropertyCategory (SET)
SafetyObjectiveCategory, SecurityObjectiveCategory (CONSTANTS)
SafetyObjectiveCategory ∈ ℙ (PropertyCategory) (AXIOMS)
SecurityObjectiveCategory ∈ ℙ (PropertyCategory)
partition(PropertyCategory, SafetyObjectiveCategory, SecurityObjectiveCategory)

A property category can be either safety
or security objective category

PropertyCategoryLibrary (SET)
propertyCategoryLibrary (CONSTANT)
propertyCategoryLibrary ∈ PropertyCategoryLibrary ←←→→ PropertyCategory (AXIOMS)
propertyCategoryLibrary∼∈ propertyCategory ⇸ PropertyCategoryLibrary

A property category library comprise
one or more property categories
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modeled by considering a non-deterministic unbounded 𝑛. Herein, 𝑛 is chosen once the guard
𝑔1 becomes true.

Listing 5.11 depicts the Event-B interpretation for the operational availability objective at
the mission layer in the safety context.
// Operational a v a i l a b i l i t y
INVARIANTS
∀m.∃o.m ∈ Miss ion ∧ o ∈ O p e r a t i o n ∧ ( o p e r a t i o n a l S i t u a t i o n [ {m} ] = {TRUE} ∧
h a z a r d o u s E v e n t [ {m} ] = {TRUE} ) ⇒ accompl i shedThrough [ {m} ] = {o}

Listing 5.11: Operational availability objective as Event-B invariant.
Likewise, in the security context, the Event-B invariant corresponding to System

Accessibility objective is depicted in Listing 5.12.
// System a c c e s s i b i l i t y
INVARIANTS
∀p . ∀s . ∀o . p ∈ Pe op l e ∧ s ∈ System ∧ o ∈ O p e r a t i o n ∧ p ↦ s ↦ o ∉ p r i v i l e g e
⇒ a c c e s s [ { p ↦ o } ] = {FALSE}

Listing 5.12: System accessibility objective as Event-B invariant.
Of particular interest here, objectives, like functional integrity at the functional layer,

are defined as extensions of basic properties like functional precedence and information
equivalence. Then, they are captured in Event-B via invariant decomposition, where each basic
property is associated individually with an invariant, as depicted in Listing 5.13.
INVARIANTS
// Functional precedence
∀ fk1 . ∀ fk2 . fk1 ∈ F u n c t i o n ∧ fk2 ∈ F u n c t i o n ∧ beg inFunc [{ fk2} ] = {TRUE} ⇒

endFunc [{ fk1} ] = {TRUE}
∀ fk1 . ∀ fk2 . fk1 ∈ F u n c t i o n ∧ fk2 ∈ F u n c t i o n ∧ beg inFunc [{ fk1} ] = {FALSE} ⇒

beg inFunc [{ fk2} ] = {FALSE}
∀ fk1 . ∀ fk2 . fk1 ∈ F u n c t i o n ∧ fk2 ∈ F u n c t i o n ∧ endFunc [{ fk1} ] = {TRUE} ∧
beg inFunc [{ fk2} ] = {TRUE} ⇒ beginTimeFunc ( fk1 ) + d u r a t i o n <
beginTimeFunc ( fk2 )
// Information equivalence
∀ fk1 . ∀ fk2 . fk1 ∈ F u n c t i o n ∧ fk2 ∈ F u n c t i o n ∧ f u n c t i o n a l O u t p u t [{ fk1} ] =
f u n c t i o n a l I n p u t [{ fk2} ]

Listing 5.13: Functional integrity objective as Event-B invariant.

Interplay. The Event-B model also supports the specification of predicates corresponding to
the properties conflict identification presented in Section 5.4.4 to analyze safety and security
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interplay. We define these predicates as Event-B invariants to demonstrate that the resulting
system model satisfies the desired safety and security properties in unison.

For instance, the Event-B invariant for the conflict identification predicate at the mission
layer is depicted in Listing 5.14.
// Conf l i c t i d e n t i f i c a t i o n at the mission layer
INVARIANTS
∀m.∃o1.∃o2.m ∈ Miss ion ∧ o1 ∈ O p e r a t i o n ∧ o2 ∈ O p e r a t i o n ∧
accompl i shedThrough [ {m} ] = {o1 , o2 } ⇒ ( o v e r a l l G o a l [ {m} ] = {TRUE} ∧
(¬ p o s t C o n d i t i o n [ { o1 } ] = {TRUE} ∨ ¬ p o s t C o n d i t i o n [ { o2 } ] = {TRUE} ) )

Listing 5.14: Mission layer properties conflict identification predicate as Event-B invariant.
These invariants are proven during the three-layered system model verification process.

5.5.4 Safety and Security Properties and Interplay Analysis

As mentioned in Section 5.5.1, a PO—Proof-Obligation is generated for every invariant that can
be affected by an event. Figure 5.7 depicts an excerpt of the Event-B proving process [46]. In
the CDV use case, the operational availability objective concerning the braking operation in the
event of obstacle detection is analyzed by relying upon the following PO, among others:

Obstacle_Detection/BrakingAvailability/INV

Figure 5.7: Event-B Proving Process.

The hypothesis for these POs relies upon the satisfaction of all the invariants (including
behavioral, safety and security objectives, and gluing) and the validity of the guards restricting
the values of the variables before the triggering of events in every reachable state of the system.
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To illustrate the analysis, we present extraction of the PO for the satisfaction of the
operational availability objective as an invariant, relying upon two invariants, INV1 and INV2,
and a theorem THM, as follows:

1. MissionAllocation (INV1): According to this invariant, whenever there is an equivalence
between the operational situation and hazardous event of an operation to the precondition
and environment trigger condition of an operation, the mission is allocated to that
operation for its accomplishment. Formally,

∀m ∈ Mission, ∃o ∈ Operation ∣ ((operationalSituation[m] ∧ hazardousEvent[m]) ⇔
(preCondition[o] ∧ environmentTriggerCondition[o])) ⇒ accomplishedThrough[m] = o

holds for all the events in the defined system model.
2. MissionConsistency (INV2): According to this invariant, given an operational situation,

if the system does not encounter a hazardous event, the overall goal adhering to the input
mission statement will not be satisfied. It signifies that there is no need to realize a
safety-critical operation. Formally,

∀m ∈ Mission ∣ (operationalSituation[m] ∧¬hazardousEvent[m]) ⇒ ¬overallGoal[m]

holds for all the events in the defined system model.
3. MissionAccomplishment (THM): According to this theorem, on the realization of

an operation, to which the safety-critical mission is allocated, the overall goal of the
mission becomes equivalent to the post condition of the operation, denoting mission
accomplishment. Formally,

∀m ∈ Mission, o ∈ Operation ∣ (accomplishedThrough[m] = o) ⇒ (postCondition[o] ⇔
overallGoal[m]);

which is a derived axiom that relies upon INV1 and INV2.
For the safety and security missions collision avoidance and grant only authorized actions,

respectively, in the use case scenario, the PO corresponding to the invariant in Listing 5.14 is
discharged, depicting a potential conflict between braking and access provisioning operations.
The reason can be attributed to the lack of privilege to the operator to realize the braking
operation manually, i.e., Operator ↦ CDV1 ↦ Braking ∉ privilege.
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5.6 Building a Concrete Architecture
In order to formally model and verify the three-layered system and safety and security properties
for a target application, we instantiate the proposed abstract Event-B models as follows:

• System aspects via context and machine: The model for a specific application would
comprise a set of contexts and machines to capture the structural and behavioral aspects.
The sets in the abstract model’s context are populated with values captured as constants in
the concrete model’s context. Additionally, the axioms are defined to relate the constants
with the parent sets. These aspects are supported by the extension mechanism (i.e.,
extends keyword) in Event-B. Likewise, the variables in the abstract model’s machine are
initialized with concrete values in the concrete model’s machine. Herein, gluing invariants
are defined to establish a link between the variables in both machines. Accordingly,
the events in the concrete machine target the variable values, incorporating witnesses to
relate with the variables in the abstract machine. This is done via using the refinement
mechanism (i.e., refines keyword) in Event-B.

• Safety and security properties and interplay via invariants: The invariants
corresponding to the safety and security properties and interplay in the abstract model
are reused via instantiation (i.e., concrete values), based on the variables corresponding
to the concrete model’s machine.

• Analysis via proofs: To conduct safety and security properties verification and interplay
analysis, we rely on the POs corresponding to the abstract system model. Accordingly, the
abstract system model and the invariants can be reused to adapt to the domain concepts of
the target application.

A concrete illustrative example is provided in Sections 6.2.5 and 6.3.1 in Chapter 6.

5.7 Tool Support for Formalization
In this section, we propose tool support relying upon formal-based techniques, supporting the
formalisms presented in the previous Sections 5.4-5.5 to facilitate integrated analysis of safety
and security properties. We begin by outlining the essential requirements that the underlying
tools must fulfill to support the formalization aspects of the proposed approach, followed by the
one used in our work.

129



CHAPTER 5. FORMALIZATION FOR SPECIFICATION AND VERIFICATION

5.7.1 Tool Support Requirements

The tool support for formalization aspects in our approach is designed to primarily support the
model checking and properties verification tasks. As mentioned in Section 5.3, we rely upon
formal constructs offered by the set theory, FOL, and Modal Logic in this regard. Accordingly,
the underlying tools must fulfill the following essential requirements:

• Support the formal specification of the three-layered system model according to the
DSMLs.

• Support the specification and automated verification of safety and security properties of
the system as formal model libraries.

• Support the reuse of the resulting formal model libraries during the creation of the target
system model.

Any tool that can fulfill these requirements can be used to conduct the properties analysis.
In our case, we used Rodin [47] amongst the existing alternatives; the key features of which
leveraged in this work are described in the following sub-section.

Figure 5.8: Tool Support for Analysis.

5.7.2 Formal Verification Tool: Rodin

Rodin is an Eclipse-based Integrated Development Environment (IDE) and open tool supporting
the Event-B method. It facilitates mathematical proofs and refinement on discrete state
transition-based system models [47]. The consistency between the different levels of refinement
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is ensured using mathematical proofs. The modeling database in Rodin comprises support of
various plug-ins, including requirement handlers, model checkers, proof obligation generator,
automatic and interactive provers, and UML transformers [46]. In order to carry out safety and
security analysis on the system model, we rely on theorem proving supported by Event-B via
axioms and derivation rules. Indeed this process is iterative and compatible with the refinement
process that allows model instantiation.

Specifically, the system and properties analysis aspects in the proposed approach incorporate
the following steps concerning the tool support (see Figure 5.8): 1) Defining the logical
specification for the three-layered system and properties models by the formal method experts,
2) Interpretation of the logical specification to a tooled-formal language by the formal method
experts, and 3) Conducting integrated safety and security analysis by the system architect.

The first two steps (i.e., Steps 1 and 2) are performed once for a set of domains. The input of
Step 1 is the expertise, standards, and best practices from the system, safety, and security domain,
along with the modeling languages corresponding to the three-layered system and properties.
Step 3 is performed once per application domain. Performing Steps 1 and 2 requires knowledge
of the formal-based techniques (e.g., formal methods), whereas Step 3 requires knowledge of
the system development process for a specific application domain. The input for this step is the
DSML models resulting from the modeling as discussed in Chapter 4 (see Figure 4.14).

5.8 Conclusion
Summary. In this chapter, we addressed the problematic P4 related to the integrated analysis
of system safety and security properties during the system design phase. To this end, we focused
on the formalization aspects of the three-layered system and properties DSMLs presented in the
previous Chapter 4. Accordingly, the design is conducted at the formal language level, relying
upon formal syntaxes, semantics, and rules for sound specification, reasoning, and verification
of system and properties. Firstly, the logical specifications were defined for the three-layered
system and the properties DSMLs, using basic notions from the set theory. This was followed
by the formal logic-based specification of the safety and security properties and their interplay
using FOL and Modal Logic. A set of basic properties was first incorporated concerning the
three modeled layers to later define and specify the specific safety and security objectives. The
resulting formalisms were then used to interpret the system and properties models into Event-B
to obtain a more concrete specification and exploit the accompanying tool Rodin to conduct
automated verification of safety and security objectives’ signatures in unison.
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Usefulness. It is evident from the review of the primary studies in Chapter 2 that there
is still a lack of explicit modeling techniques that can encourage the formal reasoning of
inter-dependencies between safety and security concerns in the early stages of the SE process.
An amalgamation of the benefits of both worlds seems to be difficult, particularly due to the
complexity associated with understanding and integrating formal techniques into the engineering
process. Our approach addressed this concern by facilitating an integrated system safety and
security analysis with respect to the typical stages of system development, viz. high-level
missions, functionalities, and detailed technical and component-based architecture. This work
provides a link between the semi-formal UML-based representations and formal constructs
required to conduct proofs. The formalized safety and security objectives’ signatures can
be accommodated as reusable libraries in the development process of different safety- and
security-critical systems at design time. This shall relieve the system designers and software
architects of the complexity of dealing with the formal languages and proofs since these details
are hidden by the modeling at the front end based upon DSMLs.

Concluding Remarks. Event-B has been used as formal language and technique as it was
able to comply with the desired features, thus providing sound semantics and proof capabilities.
The concept of refinement allowed the gradual introduction of the details in the system model
pertaining to different modeling layers and specialize properties, and model instantiation for a
target application that will be detailed in the forthcoming Chapter 6. Nevertheless, additional
work is demanded to address the analysis of the system and properties in the case of the
introduction of feared events (e.g., hazards, threats) via other complementary approaches like
model checking and animation. The formalisms being generic enough, would serve for future
extensions to other tooled-languages and formal frameworks via consistent interpretation.
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6.1 Introduction
This chapter targets to illustrate our approach for safety and security co-engineering through
a domain-specific application. Recalling the overall research problem stated in Chapter 1,
the aim is to address the following question: How to facilitate incorporation of safety and
security concerns and their joint analysis in the design stages of the System Engineering (SE)
process? To this end, we apply and assess the contributions presented in previous Chapters
3-5 for the design and analysis of an autonomous Connected-Driving Vehicle (CDV) system
from the transportation domain. The selection of the CDVs application is driven by the safety-
and security-critical nature of these systems [6]. Their malfunctioning behavior concerning the
design intent1 is hazardous to the system, environmental assets, and humans involved [156, 157].
Moreover, their high-networked architecture offers exposure of the functionalities to potentially
hostile players [158, 159]. Notwithstanding the extensive ongoing engineering effort in the field,
further work is still needed regarding methodological guidance for integrated safety and security
verification to increase CDVs design trustworthiness. Accordingly, we consider the design phase
of system development conforming to International Organization for Standardization (ISO)

1Captures the design decisions made by the designer
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26262 [30] and ISO 15288 [160] standards focusing on the integrated design and analysis of
safety and security concerns in the automotive domain. Moreover, we consider the concept phase
of system development as input to the overall approach and provide a preliminary definition of
the System Under Design (SUD). Despite the complete approach proposed in Chapter 3 will be
applied to treat the use case scenario in this chapter, the use case will also be used to illustrate
the contents of the approach relying upon the fragments provided, in particular, in Chapters 4
and 5. Applying the approach to the use case scenario using the proposed tool-chain support
(addressing the problematic P5) would enable us to determine to which extent the approach
facilitates expressing, analyzing, and verifying the relationships between safety and security
properties within a layer or across the layers in the three-layered system model.

Overall, the chapter is organized as follows: In Section 6.2, we introduce a realistic
scenario inspired by the literature for illustration purposes of the approach concerning CDVs and
untangle the associated safety and security concerns and their mutual impact. We also present
the CDV system pertaining to high-level mission, functional, and detailed component-based
specifications. Based upon these specifications as input, we present the modeling of the CDV
system, followed by the formal-based joint analysis of safety and security concerns. This
involves using the proposed tool-chain support prototype and describing the results obtained
for each contribution. In Section 6.3, we discuss the approach’s feasibility by assessing these
results and highlight its potential for extensibility. Finally, we conclude by summing up the
contribution of the chapter in Section 6.4.

6.2 Use Case: Connected-Driving Vehicles (CDVs)
In this section, we detail the CDV use case scenario from the system, safety, and security
perspectives and demonstrate the application of the proposed approach.

6.2.1 Scenario Description: Converging Road Plan

We assume the applicability of CDVs in limited areas, such as shuttle buses in airport terminals,
zoos, parks, and playgrounds [161] to simplify the illustration. Furthermore, we consider a
realistic scenario of a converging road plan inspired by [162], as shown in Figure 6.1. In this
scenario, two vehicles, denoted by CDV1 and CDV2, are both in driving mode and approaching
each other on different but converging roads with non-negligible speeds. Another third vehicle,
CDV3, is in the same lane and direction as CDV1 but behind it. To stay on the road lane, these
vehicles follow virtual guides placed over the road.

We consider the motion-control module of the CDV system regarding this scenario,
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Figure 6.1: Use Case Scenario: Converging Road Plan.

following the description provided in Section 3.4.1. For simplicity, the aspects related to road
guides’ detection and communication at the system level are disentangled. We also assume that
CDVs in this scenario are in full automation or self-driving mode, with no possibility of any
operational takeover by the operator or passengers [163]. The operational scenario considered in
this work is a choice relevant to both safety and security; however, we are aware of the possibility
of several other cases that are nonetheless not in the present scope.

6.2.2 Safety and Security Concerns

Herein, we introduce the safety and security concerns and their interplay in the context of the
scenario. We aim to analyze a subset of safety and security objectives2 and their relationships,
as depicted in Figure 6.2, from the catalogue presented in Chapter 4 across the three-layered
model of the CDV system.

Safety Concerns. Since the future motion path of CDV1 and CDV2 may intersect at the
junction, the unavailability of the braking operation while CDV1 is approaching the intersection
may lead to a collision with CDV2. To avoid this, CDV1, as the target SUD, should decelerate
upon identifying and locating CDV2. However, in this case, the faulty sensing components may
fail to perceive the environment and can cause a severe impact on the safety of the entire vehicle
[164]. This is captured under the safety column in Figure 6.2, wherein the availability of the
system operations depends upon the availability of its underlying functions and components. In

2It is recalled that objectives herein represent the desired properties or features, capturing the positive vision of
safety and security.
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addition, the violation of the timing constraints for in-time delivery of status updates may hinder
the vehicle’s response to the presence of an obstacle [165]. For example, on locating CDV2 too
close, the control signals from the multi-function control unit to the brake actuators should be
sent in time to ensure the application of brakes by CDV1.

Security Concerns. The connected and autonomous technology typically relies upon the data
or information made accessible to the components of the vehicular system or exchanged with
other vehicles or remote entities for the system to be operational. This opens up opportunities
to compromise the system’s behavior from a security perspective. Any direct attack or
unauthorized access to the system, e.g., CDV1, may cause the vehicle to misbehave. This can
also cause progressive misbehavior of the surrounding vehicles, e.g., CDV2, as they exchange
information with the vehicle under attack. The messages in transmission by the vehicle are
subject to tampering or delays upon remotely intercepting the ongoing communication by an
attacker [166]. Moreover, manipulation and replay attacks can influence the accurate delivery
of signals, leading to the actuation sub-system receiving a tampered with or duplicate command
[167]. This is captured under the security column in Figure 6.2, wherein the freshness of the
information flows within a functional sub-system depends upon the freshness of the messages
in transmission among the components.

Safety and Security Interplay Concerns. The presence of safety-related concerns may have
an adverse effect on security and vice versa. For example, the reception of messages related to an
emergency stop by CDV1 at the junction point can fall under the consequence of a replay attack
and, in turn, influence the availability of brake-on-demand functionality, being a time-critical
module. Thus, ensuring the freshness of the messages contributes to the in-time availability of
safety-related functions (see Figure 6.2). The Light Detection and Ranging (LiDAR) component
of CDV1, for instance, can be deceived into seeing a non-existing obstacle or phantom objects
[168], tricking the vehicle into triggering abrupt braking, possibly leading to a collision with
CDV3. In addition, by accessing the onboard control units remotely, an attacker can cause
the vehicle to accelerate. Consequently, it is insufficient to evaluate the properties belonging to
safety and security domains in segregation. During the design phase, it is essential to understand
the interaction between these properties and keep them free from any inconsistencies based upon
the underlying assumptions made within an operational context of the CDV system.
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Figure 6.2: Safety and Security Objectives to be Verified.

6.2.3 CDV System Specification

In this sub-section, we present an initial specification of the CDV system concerning the different
stages of system development, viz. mission, functional, and component. This is similar to the
system development process targeting the concept phase as described in ISO 26262 [30] and
ISO 15288 [160] standards and serves as an input to the proposed approach.

6.2.3.1 Mission Specification

Herein, we consider a CDV as an atomic system, with no focus on the lower-level functional or
component architectural details. Regarding the converging road plan scenario depicted in Figure
6.1, we derive a set of operational, safety, and security missions, which the CDV system aims to
achieve, in the following paragraphs.

Specification of Operational Missions. Initially, we begin with defining high-level
operational missions of the CDV system that capture its underlying purpose. The specification
of the operational missions follows the generic language syntax proposed in Section 4.4.1.1.
In the converging road plan scenario, an example operational mission OPER_M is specified as
follows:
[OPER_M] A CDV should allow transportation of the passengers from one place to another.
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Identification of Safety Hazards and Security Threats. There can be several potentially
hazardous and threat situations encompassing incompatible states of the CDV and its
environment comprising other vehicles concerning OPER_M in the converging road plan
scenario. These situations may be of varying complexity and can lead to severe safety-related
accidents and security attacks, thereby causing harm to the environment, humans, or the CDV
itself.

Safety Hazards. We follow a preliminary approach based on ISO 26262 Hazard Analysis and
Risks Assessment (HARA) [169] to identify the safety hazards concerning OPER_M. The result
of our analysis as an excerpt is summarized in Table 6.1. For each identified hazard (SH1-SH3),
we describe the hazardous event and the consequence of the hazard in the form of an accident.

Table 6.1: Result of Preliminary Safety Hazard Analysis and Risk Assessment (HARA).
ID Safety Hazard Hazardous Event Accident ASIL

SH1 Unintended acceleration Two CDVs approaching each other on converging
roads with non-negligible speed

A CDV is side-collided, leading to
rollover D (E4, C3, S3)

SH2 Unintended stopping
A moving CDV stops in the middle of the road
while another vehicle is coming from behind, with
certain speed

Rear-end collision of the CDV with
the following vehicle C (E4, C3, S2)

SH3 No detection A moving CDV is unable to detect the virtual
guides on the road

CDV leaving the road lane, colliding
with the surrounding infrastructure A (E2, C3, S2)

Moreover, we determine the Automotive Safety Integrity Levels (ASIL) [170] for each
hazard by evaluating the following risk impact factors:

• Exposure: It denotes the classes (E0-E4) of the probability of exposure concerning
the operational situation, where E4 indicates the highest probability of exposure. We
evaluate the exposure factor of SH1 and SH2 to E4 since CDV can frequently encounter
operational scenarios involving acceleration and stopping during OPER_M. However, for
SH3 involving deviation from the desired path, we evaluate the exposure factor to E2 based
on the frequency of its occurrence.

• Controllability: It denotes the classes (C0-C3) of controllability of the hazardous event
by an operator or other persons involved in the risky situation, where C3 indicates the
lowest level of controllability. We evaluate the controllability factor concerning all the
identified safety hazards to C3, considering the fully autonomous mode of the CDV with
no possibility of a human taking over the control.

• Severity: It denotes the classes (S0-S3) of the severity of potential harm based on a defined
rationale for each hazardous event, where S3 indicates the highest severity level. We
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evaluate the severity factor concerning SH1 to S2 due to the vehicle rollover resulting
from a side collision. Likewise, the severity factor for the other hazards SH2 and SH3
is S2 because of the potential harm caused by the rear-end collision and path deviation,
respectively.

Security Threats. We follow a Preliminary Threat Assessment (PTA) approach to identify the
security threats concerning OPER_M. The result of our analysis as an excerpt is summarized
in Table 6.2. For each identified threat (ST1-ST3), we describe the security incident and the
consequence of the threat in the form of an attack. Moreover, we type each identified threat
based on the STRIDE [5] threat model.

Table 6.2: Result of Preliminary Threat Assessment (PTA).
ID Security Threat Security Incident Attack STRIDE Category

ST1 Unauthorized operations Hostile party performing unauthorized actions
within on-board CDV architecture

Introduction of malware in CDV’s
computing facilities Elevation of privilege

ST2 Physical proximity A CDV is in physical proximity of a person
who is not an authorized user Physical damage to the CDV Denial of Service (DoS)

ST3 Remote control A person controlling the CDV remotely Misleading navigation of the CDV Tampering

The hazards and threats identified above are considered as input for specifying the safety and
security missions of the system, as detailed in the following paragraph.

Specification of Safety and Security Missions. To limit the risks associated with the
aforementioned safety hazards and security threats, we respectively derive safety and security
missions from them. We elicit one safety-related mission per hazard mentioned in Table 6.1 and
one security-related mission per threat mentioned in Table 6.2. The list though not exhaustive,
captures the essence of the potentially risky scenarios.

Safety Missions. The safety mission SAFE_M1 specific to the safety hazard SH1—for
instance, is specified as follows:

[SAFE_M1] A moving CDV should stop whenever an obstacle is detected.

Herein, we assume the operational behavior of the CDV system as a binary—either moving
or stopped—due to the lack of obstacle’s distance-related details for the vehicle to allow
deceleration without causing the engine to stop [NB: These details are not necessary and might
not be available at this stage].
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Security Missions. The security mission SEC_M1 specific to the security threat ST1—for
instance, is specified as follows:
[SEC_M1] An operational CDV should only allow authorized actions being performed by its

operator.

6.2.3.2 Functional Specification

Functions are the primary elements while modeling the functional architecture of the system.
Recalling the scenario depicted in Figure 6.1 in the context of the functional layer, we consider
CDV system comprising different sub-systems to execute its intended functionality. Specifically,
we focus on the motion-related part of the functional representation of CDVs. This roughly
includes 1) perception-related functions concerning the external environment in which the CDV
operates, 2) decision-making functions based on the perceived external environment, and 3)
actuation-related functions based upon the control decisions. In this case, a typical functional
path can be:

[FP] obstacle detection → position inference → deceleration

The above functions respectively support perception, processing, and motion control. The
designer proposes these functions constituting the functional path to perform the sensing,
decision-making, and braking operations, which should accomplish the system missions, e.g.,
SAFE_M1, modeled at the mission layer.

Accordingly, from a safety perspective, the key requirement is to ensure that the
safety-critical functions are always available. Specifically, regarding FP:
[SAFE_FP1] Whenever a collision situation is detected, an in-time availability of the braking

function response must be ensured.

Likewise, from a security perspective, to prevent any undesirable triggering of functions, the
following security requirement must be ensured:

[SEC_FP1] The freshness of the information generated by the sequence of functions
constituting the functional path FP must be ensured to prevent any delayed triggering of

functions.
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6.2.3.3 Component Specification

The functional blocks mentioned in the previous sub-section, in turn, can be executed by
cross-application generalized components, like cameras, and application-specific components,
like Global Positioning System (GPS) and sensors that are responsible for collecting the data,
e.g., obstacle-related, as input from the surroundings and sending the same to the processing
unit for producing information relevant for decision-making (refer to Figure 3.6). This may also
involve the use of data fusion algorithms to integrate data from multiple sensors. The controlling
software uses this information to generate and issue signals via the local gateway to other vehicle
components, e.g., brake actuators.

From the safety perspective, any of these components, in the case of the introduction of
faults, may hinder the transmission of data or control signals for effective braking in a collision
situation. Hence, some of the essential safety requirements regarding availability are:

• [SAFE_C1] The availability of sensors must be ensured to periodically detect the presence
of obstacles in the CDV’s surroundings.

• [SAFE_C2] The availability of the processing unit must be ensured whenever the sensors
transmit obstacle-related data to infer its position.

• [SAFE_C3] The availability of brake actuators must be ensured for deceleration in case
of an obstacle too close to the CDV.

• [SAFE_C4] Whenever obstacle-related data or control signals are being transmitted
between the sensors, processing unit, and brake actuators, the availability of connectors,
e.g., data buses and communication channels, between these components must be ensured.

Likewise, in the case of security, to prevent any delays introduced to the messages in
transmission, the following security requirement regarding freshness must be ensured:

• [SEC_C1] The freshness of the messages comprising any environment-related data
collected by the sensors must be ensured.

• [SEC_C2] The freshness of the control signal sent by the controlling software to the brake
actuator must be ensured.

6.2.4 Modeling the CDV System Design

In this section, based upon the initial system specification provided previously as input, we
present the modeling of the CDV system regarding different stages of system development,
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viz. mission, functional, and component, using our proposed framework and tool support.
The models incorporate the desired safety and security properties as extensions, using the
Domain-Specific Modeling Language (DSML) profiles presented in Chapter 4. These models
provide the candidates for the system architecture that are further evaluated regarding the
formalized safety and security properties specifications in Section 6.2.5. The idea is to provide
a tooled-method for facilitating the system, safety, and security modeling at the design phase as
described in ISO 26262 [30] and ISO 15288 [160] standards.

System and Properties Modeling at the Mission Layer. To model the CDV system at
the mission layer, we consider the initial mission specifications in Section 6.2.3.1 as input to
instantiate the mission layer DSML profile presented in Section 4.4.3.1. Figures 6.3 and 6.4,
respectively depict an excerpt of the mission model for safety mission SAFE_M1 and security
mission SEC_M1. Herein, each element is represented as a Unified Modeling Language (UML)
class. The interactions between the elements are captured by the class attributes. For example,
the association achieves between the system CDV1 and the mission SAFE_M1 appears as an
attribute in the CDV1 class. The sensing, decision making, and braking operations respectively
influence the obstacle detection, position inference, and speed attribute variables of CDV1 [NB:
The operator herein is responsible for monitoring and maintaining the system that controls the
CDV and reporting any issues to the backend team].

The safety and security objectives to be satisfied are incorporated by instantiating the profile
elements from Section 4.5.3 concerning the system CDV1. This integration is achieved in
an extended version of the Papyrus modeling environment to ensure: 1) SAFE_M1 via the
availability of the safety-related operations, viz. sensing, decision making, and braking, and 2)
SEC_M1 via the controlled accessibility of the system operations by its operator. The additional
details regarding these objectives are provided in pragmas as customized text-based comments.

System and Properties Modeling at the Functional Layer. To model the CDV system
functionality regarding the use case scenario, we consider the functional path FP in the initial
functional specification in Section 6.2.3.2 to instantiate the functional layer DSML profile
presented in Section 4.4.3.2. Each function is represented as an opaque action, as depicted in
Figure 6.5, i.e., the details of the function are, at this stage, unknown, and hence, it is considered
as a black box. An object flow captures the flow of information between each pair of functions.
Functional input and output are mapped to input and output pins, respectively. The obstacle
detection function calls itself periodically to realize the sensing operation. Likewise, the position
inference function obtains the information related to the obstacle and determines whether or not
the CDV is at a safe distance from the obstacle. After inferring the position, it sends the related
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Figure 6.3: Mission-layer System UML Profile Instantiation for Safety Mission SAFE_M1.

Figure 6.4: Mission-layer System UML Profile Instantiation for Security Mission SEC_M1.
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information to the deceleration function that manipulates the speed of the CDV, in turn, related
to braking.

The safety and security objectives to be satisfied are incorporated by considering the profile
elements from Section 4.5.3 in the form of pragmas as customized text-based comments. In
this case, to ensure the in-time braking response (SAFE_FP1) in the safety context, an order
must exist in executing these functions and preserving the information flow across them. In
addition, the execution of the functions must respect the period during which their availability
is required. Thus, the functional path availability objective must be verified. Likewise, in the
security context, the integration aims at ensuring SEC_FP1 via freshness of the information
flows between consecutive functions across the functional path FP. This would also contribute
to timeliness regarding the execution of the functions to ensure safe braking.

Figure 6.5: Functional-layer System UML Profile Instantiation for Functional Path FP.

System and Properties Modeling at the Component Layer. To model the CDV system
component-based architecture, we consider the set of components in the initial component
specification in Section 6.2.3.3 to instantiate the component layer DSML profile presented
in Section 4.4.3.3. An excerpt of the component diagram for the CDV use case scenario
is depicted in Figure 6.6. It comprises three system components, viz. sensor, processing
unit, and brake actuator. Semantically, the functions considered in the functional path FP
are respectively allocated to these components in a one-to-one corresponding. The sensor
communicates the obstacle-related reading Read_Obstacle with the processing unit via the S_PU
connector. Subsequently, relying upon this reading, the processing unit transmits the control
decision Sig_Brake to the brake actuator via the PU_BA connector. In addition, the respective
ports are added that provide an interface for exchanging messages between these components.
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The safety and security objectives to be satisfied are incorporated by considering the profile
elements from Section 4.5.3 in the form of pragmas as customized text-based comments. This
integration aims to ensure: 1) the requirements SAFE_C1-SAFE_C4 via the verification of the
CPC availability objective, 2) SEC_C1 and SEC_C2 via the verification of the message freshness
objective.

Figure 6.6: Component-layer System UML Profile Instantiation for the Use Case Scenario.

6.2.5 Formal-based Joint Analysis of CDV Safety and Security

Since the Event-B interpretation of the three-layered system and properties model presented in
Section 5.6 is generic, it is instantiated to incorporate the specific details of a concrete system
according to the application domain. This facilitates the integration of the properties in the
system development process of the target application using pre-defined library signatures. The
approach also allows for analyzing system safety and security properties in both a standalone
and joint fashion. The analysis involves the safety and security objectives—in Bold, using
the basic properties (if any)—in Italics, for defining these objectives, as depicted in Figure
6.7. The figure is an excerpt to illustrate the dependencies among the properties across the
three-layered model. It is noteworthy that these dependencies may not hold in all the cases and
are considered specifically in our context for illustration purposes. Accordingly, we consider the
system architecture models presented in the previous sub-section 6.2.4 for formal-based analysis
of safety and security in an integrated manner, as detailed in the following paragraphs. The idea
is to provide support for facilitating the system safety and security analysis at the design phase
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as described in ISO 26262 [30] and ISO 15288 [160] standards.

Figure 6.7: Unfolding the Safety and Security Objectives using Basic Properties.

System and Properties Analysis at the Mission Layer. In the light of the use case,
the mission-layer system and property views presented in Section 5.6 are instantiated as 2
Event-B contexts, viz. C3MissionViewInstance and C4MissionPropertyViewInstance,
respectively, using the extends keyword. An excerpt of the context C3MissionViewInstance
is depicted in Listing 6.1. Herein, based on the mission models depicted in Figures 6.3 and 6.4,
the CDV system is interpreted as a set of constants, e.g., CDV1, SAFE_M1, Braking, along with
axioms to define their relationships with the carrier sets System, Mission, Operation, of the
context C0MissionView.
// Structura l aspects of CDV system : Mission layer
CONTEXT C3Miss ionViewIns t ance
EXTENDS C0MissionView
CONSTANTS

CDV1, SAFE_M1 , SEC_M1 , Person , Veh ic l e , Braking , A c c e s s P r o v i s i o n i n g
AXIOMS

CDV1 ∈ System
SAFE_M1 ∈ Miss ion ∧ SEC_M1 ∈ Miss ion ∧ Miss ion = {SAFE_M1 , SEC_M1}

146



6.2 Use Case: Connected-Driving Vehicles (CDVs)

Pe r son ∈ Pe op l e
V e h i c l e ∈ A s s e t
Brak ing ∈ O p e r a t i o n ∧ A c c e s s P r o v i s i o n i n g ∈ O p e r a t i o n ∧ O p e r a t i o n =
{ Braking , A c c e s s P r o v i s i o n i n g }

END
Listing 6.1: Instantiation excerpt of C0MissionView context at the mission layer capturing CDV
structural aspects.

A concrete machine M1MissionViewInstance refines the abstract machine
M0MissionView in the form of an instantiation specific to the use case scenario. In
this machine, variables, e.g., operSit, goal, pre, post, and envTrig, define the state
corresponding to the CDV system in operation [NB: The variables are not explicitly listed
herein and follow the declarations from Listing 5.3]. We specify gluing invariants3, e.g., in
Listing 6.2, for maintaining the consistency between the variables belonging to the abstract
system model in Section 5.5.2.1 and concrete CDV system model.
INVARIANTS

( o p e r S i t = {SAFE_M1 ↦ FALSE} ⇔ o p e r a t i o n a l S i t u a t i o n = {m1 ↦ FALSE} ) ∧
( o p e r S i t = {SAFE_M1 ↦ TRUE} ⇔ o p e r a t i o n a l S i t u a t i o n = {m1 ↦ TRUE} )

Listing 6.2: An example of gluing invariant to link abstract and concrete CDV system at the
mission layer.

In addition, we recall the variables corresponding to the relationships between the mission
view elements defined in the abstract machine M0MissionView. The CDV system state
is defined in the collision scenario, comprising CDV in motion, obstacle detection, and
assurance of braking. We do not add new events and reuse the existing ones via refinement
considering the concrete machine’s variables. More specifically, events like Moving_CDV,
Obstacle_Detection, and Ensure_Braking of the concrete machine refine the events
Event1, Event2, and Event3 of the abstract machine, respectively, following the syntax in
Listing 5.3.

The safety and security objectives are instantiated as invariants in the use case context, as
shown in Listing 6.3.
INVARIANTS
// Braking a v a i l a b i l i t y
( o p e r a t i o n a l S i t u a t i o n [ {SAFE_M1} ] = {TRUE} ∧ h a z a r d o u s E v e n t [ {SAFE_M1} ]
= {TRUE} ) ⇒ accompl i shedThrough [ {SAFE_M1} ] = { Brak ing }
// CDV a c c e s s i b i l i t y
Pe r son ↦ CDV1 ↦ Brak ing ∉ p r i v i l e g e ⇒ a c c e s s [ { Pe r son ↦ Brak ing } ] = {FALSE}

3A gluing invariant glues the space of the abstract and concrete machines [136].
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Listing 6.3: CDV safety and security objectives at the mission layer.
The Proof-Obligations (POs) corresponding to the guard strengthening and validation of

the gluing invariants help to prove the correctness of the instantiated model, along with
the verification of the safety (SAFE_M1) and security (SEC_M1) objectives in segregation.
However, when modeled together, the PO corresponding to the invariant in Listing 6.4 is
discharged, depicting a potential conflict between braking availability and CDV accessibility.
This is due to the lack of privilege for the operator to realize the braking operation on CDV1
manually, i.e., (Operator ↦ CDV1 ↦ Braking) ∉ privilege.
INVARIANTS
( accompl i shedThrough [ {SAFE_M1} ] = { Brak ing } ∧ accompl i shedThrough [ {SEC_M1} ]
= { A c c e s s P r o v i s i o n i n g } ) ⇒ ( o v e r a l l G o a l [ {SAFE_M1} ] = {TRUE} ∧
(¬ p o s t C o n d i t i o n [ { Brak ing } ] = {TRUE} ∨ ¬ p o s t C o n d i t i o n [ { A c c e s s P r o v i s i o n i n g } ]
= {TRUE} ) )
Listing 6.4: Mission layer conflict identification predicate as Event-B invariant in the CDV
scenario.

System and Properties Analysis at the Functional Layer. The instantiation of
the functional-layer system and property views presented in Section 5.6 concerning
the use case involves 2 Event-B contexts, viz. C8FunctionViewInstance and
C9FunctionPropertyViewInstance. An excerpt of the former is depicted in Listing
6.5, based on the functional model depicted in Figure 6.5.
// Structura l aspects of CDV system : Functional layer
CONTEXT C 8 F u n c t i o n V i e w I n s t a n c e
EXTENDS C5Funct ionView
CONSTANTS

O b s t a c l e D e t e c t i o n , P o s i t i o n I n f e r e n c e , D e c e l e r a t i o n
AXIOMS

// Functions
O b s t a c l e D e t e c t i o n ∈ F u n c t i o n ∧ P o s i t i o n I n f e r e n c e ∈ F u n c t i o n ∧
D e c e l e r a t i o n ∈ F u n c t i o n ∧ F u n c t i o n = { O b s t a c l e D e t e c t i o n ,
P o s i t i o n I n f e r e n c e , D e c e l e r a t i o n }

END
Listing 6.5: Instantiation excerpt of C5FunctionView context at the functional layer capturing
CDV functions.
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Likewise, the machines, viz. M4FunctionViewInstance and
M4FunctionViewRefinementInstance model the behavioral aspects of the CDV system. An
excerpt of the latter specific to the use case scenario is depicted in Listing 6.6. In this machine,
variables like funcInput and funcOutput, capture the state conditions corresponding to
the system functions. Furthermore, events like OBSTACLEDETECTION, POSITIONINFERENCE,
and DECELERATION of the concrete machine refine the events FUNCTION1, FUNCTION2, and
FUNCTION2, respectively, of the abstract machine.
// Behavioral aspects of CDV system : Functional layer
MACHINE M5Func t ionViewRef inemen t In s t ance
REFINES M3Funct ionViewRefinement
SEES C8Func t ionViewIns t ance , C 9 F u n c t i o n P r o p e r t y V i e w I n s t a n c e
VARIABLES bFunc , eFunc , bTimeFunc , eTimeFunc , dFunc , d , t , f u n c I n p u t ,
funcOutpu t , v
EVENTS

DECELERATION_BEGIN ≜
STATUS

ordinary
REFINES

FUNC3_BEGIN
ANY

t i c k
WHERE

bFunc = { D e c e l e r a t i o n ↦ FALSE}
eFunc = { P o s i t i o n I n f e r e n c e ↦ TRUE}
t i c k ∈ ℕ1
d = d + t i c k
t ≥ eTimeFunc ( f1 ) + d

THEN
bFunc ≔ { D e c e l e r a t i o n ↦ TRUE}
bTimeFunc ( D e c e l e r a t i o n ) ≔ t
f u n c I n p u t ≔ { D e c e l e r a t i o n ↦ v}

END
END
Listing 6.6: Instantiation excerpt of Event-B machine at the functional layer: Event capturing
beginning of deceleration.

The safety and security objectives are instantiated as invariants in the use case context. For
instance, for the pair of functions Deceleration and PositionInference, both Functional
path availability and Information flow freshness objectives are defined by instantiating the
Functional integrity objective defined in Listing 5.13, along with Execution Timeliness and
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Information Flow Timeliness properties. The functional integrity is analyzed via the conjunction
of invariants corresponding to functional precedence and information equivalence, as shown in
Listing 6.7.
INVARIANTS
// Functional precedence
beg inFunc [{D e c e l e r a t i o n } ] = {TRUE} ⇒ endFunc [{ P o s i t i o n I n f e r e n c e } ] = {TRUE}
beg inFunc [{ P o s i t i o n I n f e r e n c e } ] = {FALSE} ⇒ beg inFunc [{D e c e l e r a t i o n } ] = {FALSE}
endFunc [{ P o s i t i o n I n f e r e n c e } ] = {TRUE} ∧ beg inFunc [{D e c e l e r a t i o n } ] = {TRUE} ⇒

beginTimeFunc ( P o s i t i o n I n f e r e n c e ) + d u r a t i o n < beginTimeFunc ( D e c e l e r a t i o n )
// Information equivalence
f u n c t i o n a l O u t p u t [{ P o s i t i o n I n f e r e n c e } ] = f u n c t i o n a l I n p u t [{D e c e l e r a t i o n } ]

Listing 6.7: Instantiation of functional integrity objective at the functional layer.
Herein, generation of the output by the function PositionInference upon detection of

the obstacle (i.e., CDV2) by ObstacleDetection, and Deceleration upon determining the
position of CDV2 by PositionInference, before their respective deadlines captured by dFunc,
ensures the functional path availability objective (SAFE_FP1). Essentially, dFunc for the
function Deceleration lies within the interval comprising the event of collision warning and
the event of the actual collision. In addition, the use of POs corresponding to the passage
of information between these consecutive functions fulfills the information flow timeliness
objective, resulting in the fulfillment of the information flow freshness objective (SEC_FP1).
However, this holds as long as the interval comprising tick of the ending and beginning of two
consecutive functions across the functional path respects the duration d.

System and Properties Analysis at the Component Layer. The instantiation of
the component-layer system and property views presented in Section 5.6 concerning
the use case involves 2 Event-B contexts, viz. C14ComponentViewInstance and
C15ComponentPropertyViewInstance. An excerpt of the former is shown in Listing 6.8,
based on the component model depicted in Figure 6.6.
// Structura l aspects of CDV system : Component layer
CONTEXT C14ComponentViewInstance
EXTENDS C10ComponentView
CONSTANTS

Sensor , P r o c e s s i n g U n i t , B r a k e A c t u a t o r , S_Out , PU_In , PU_Out , BA_In ,
S_PU , PU_BA

AXIOMS
// Components
Se ns o r ∈ Component ∧ P r o c e s s i n g U n i t ∈ Component ∧ B r a k e A c t u a t o r ∈
Component ∧ Component = { Sensor , P r o c e s s i n g U n i t , B r a k e A c t u a t o r }
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// Ports
S_Out ∈ P o r t ∧ PU_In ∈ P o r t ∧ PU_Out ∈ P o r t ∧ BA_In ∈ P o r t ∧
P o r t = {S_Out , PU_In , PU_Out , BA_In}
// Connectors
S_PU ∈ Connec to r ∧ PU_BA ∈ Connec to r ∧ Connec to r = {S_PU , PU_BA}

END
Listing 6.8: Instantiation excerpt of C10ComponentView context at the component layer
capturing CDV components-ports-connectors.

Likewise, the machine M9ComponentMPSTickInstance models the behavioral aspects of
the CDV system. An excerpt of this machine specific to the event of transmission of a braking
command from the processing unit to the brake actuator in the use case scenario is depicted in
Listing 6.9.
// Behavioral aspects of CDV system : Component layer
MACHINE M9ComponentMPSTickInstance
REFINES M8ComponentMPSTick
SEES C13ComponentMessaging , C14ComponentViewInstance ,
C15Componen tPrope r tyViewIns tance
VARIABLES a v a i l a b l e , sentMsg , v i s i b l e , rece ivedMsg , t i m e P r o g r e s s , s e n d T i c k
v i s i b l e T i c k , r e c e i v e T i c k
INVARIANTS

// Message i n t e g r i t y
∀m. ∀mps . ∀c1 . ∀c2 .m ∈ Msg ∧ mps ∈ MsgMPS ∧ s e n d e r [ { mps } ] = { c1 } ∧
s e n t [ {m} ] = { s e n d T i c k } ⇒ r e c e i v e r [ { mps } ] = { c2 } ∧ r e c e i v e d [ {m} ] =
{ r e c e i v e T i c k }
// Non−dupl icat ion
∀c1 . ∀m. ∀mps . ∀ t 1 . ∀ t 2 .m ∈ Msg ∧ mps ∈ MsgMPS ∧ r e c e i v e r [ { mps } ] = { c1 }
∧ r e c e i v e d [ {m} ] = { t 1 } ∧ t 2 < t 1 ⇒ ¬ r e c e i v e d [ {m} ] = { t 2 }

EVENTS
BrakeCommand_Transmission ≜
STATUS

ordinary
REFINES

TRANSMISSIONMPS
ANY

Brk_CMD
P r o c e s s i n g U n i t
B r a k e A c t u a t o r

WHERE
Brk_CMD ∈ sentMsg
P r o c e s s i n g U n i t ∈ from [ { Brk_CMD} ] ∧ B r a k e A c t u a t o r ∈ t o [ { Brk_CMD} ]
v i s i b l e T i c k ∈ t i m e P r o g r e s s
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WITH
Brk_CMD = m
P r o c e s s i n g U n i t = c1
B r a k e A c t u a t o r = c2

THEN
v i s i b l e ≔ v i s i b l e ∪ { Brk_CMD}
sentMsg ≔ sentMsg ∖ { Brk_CMD}
t i m e P r o g r e s s ≔ t i m e P r o g r e s s ∖ { v i s i b l e T i c k }

END
END
Listing 6.9: Instantiation excerpt of M8ComponentMPSTick machine at the component layer:
Event capturing braking command transmission.

The CPC availability objective corresponding to SAFE_C1-SAFE_C4 is proven by verifying
the availability of the components and connectors in the given duration, along with the delivery
of the obstacle-related data Obt_DATA and braking command Brk_CMD to the processing unit and
brake actuator, respectively, in logical conformance to the position inference and deceleration
functions. Likewise, the message freshness objective to ensure SEC_C1 and SEC_C2 is
proven by verifying that the messages in transmission fulfill the message integrity, recentness in
message delivery, and non-duplication of messages for each pair of components, i.e., (Sensor,
ProcessingUnit) and (ProcessingUnit, BrakeActuator), interacting with each other. In
case bounded delivery of messages is required, fulfilling the recentness objective contributes to
the CPC availability objective. Since these verifications are conducted at the component layer,
it is recalled that the model is supposed to contain enough details of the architecture, including
time.

6.3 Assessment of the Approach
In this section, we provide a light-weight evaluation of the proposed approach regarding its
applicability to the CDV use case, along with a discussion on its key features and the potential
for its generalization.

6.3.1 Evaluating the Approach on the Use Case

The outcomes of applying the approach to the CDV use case correspond to its two main phases:
1) system and properties modeling and 2) properties verification.
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6.3.1.1 Modeling Distinctive Features

The modeling of the CDV architecture at the three layers involved a set of profiles with their
respective stereotypes corresponding to the fundamental notions presented in Section 4.4.
The number of stereotypes is summarized in Table 6.3 that contribute to apprehending and
comprehending the elements involved in this work and, in turn, the understandability of the
models.

Table 6.3: Number of Stereotypes in the Three-layered System Profile for CDV Use Case.
Profile # Stereotypes

Mission-layer system profile 7
Functional-layer system profile 11
Component-layer system profile 11

Herein, functional- and component-layer profiles inherited 2 (viz., System, Operator) and
1 (viz., System) stereotypes, respectively, from the mission-layer profile. Likewise, the number
of safety and security objectives covered in the properties catalogue for modeling the system
properties and their interplay at the three layers are summarized in Table 6.4. The number of
relationships addressed across layers includes 1 between mission and functional layers, and 4
between functional and component layers.
Table 6.4: Coverage of Safety and Security Objectives and their Interplay for CDV Use Case.

Perspective # Objectives
Mission Layer Functional Layer Component Layer

Safety 1 2 2
Security 1 2 1
Interplay 1 3 1

It is recalled that safety and security objectives were associated with specific stereotypes
corresponding to the three-layered system modeling. For example, the Braking Availability
objective at the mission layer applies to Mission and Operation. Likewise, the CDV Accessibility
objectives applies to People, System, and Operation. Table 6.5 summarizes the elements to
which the properties in Figure 6.7 are associated.

6.3.1.2 Formalization and Verification

The formalization of the CDV system architecture and properties at the three layers involved
defining 6 contexts—2 for each layer—to capture the structural aspects and properties of the
system. Likewise, the system behavior is captured via machines; 1 at the mission layer, 2 at the
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Table 6.5: Safety and Security Objectives and Basic Properties with associated Stereotypes in
the Three-layered System Model.

Layer Objectives/Properties Elements
Mission Operational Availability Mission, Operation

System Accessibility System, Operation, People
Functional Functional Path Availability Functional Path

Information Flow Freshness Functional Path, Functional Input, Functional Output
Functional Integrity Functional Path
Execution Timeliness Functional Path
Functional Precedence Function
Information Equivalence Functional Input, Functional Output
Information Flow Timeliness Functional Path, Functional Input, Functional Output

Component CPC Availability Component, Connector, Message
Message Freshness Message
Eventual Message Delivery Component, Message
Bounded Message Delivery Component, Message
Component Availability Component
Connector Availability Connector
Logical Conformity Component, Port
Component Precedence Component
Message Integrity Component, Message
Non-duplication Component, Message
Recentness Component, Message

functional layer, and 1 at the component layer, to capture the state transitions targeting CDV
operations, functions, and component-based message transmission. The Event-B specification
of the CDV system model adheres to the interpretation rules defined in Chapter 5. Afterwards,
the results were obtained at the front end regarding proof of safety and security objectives and
their interplay. An excerpt of how hypotheses are selected to conduct interactive proving in
Rodin is depicted in Figure 6.8. The selected hypotheses are used to prove that the goal depicted
in Figure 6.9—for instance, corresponding to an invariant is satisfied.

Being correct-by-construction, some of the POs corresponding to the safety and security
objectives and their interplay for the instantiated CDV model were automatically discharged.
These POs comprise the hypotheses as a set of predicates. A summary of the number of POs for
objectives at each layer is provided in Table 6.6. In the failure of proof attempts, the following
2 cases are possible: 1) the abstract specification in Section 5.6 was fixed regarding the design
assumptions for the well-definedness of the predicates (see Figure 6.10) and 2) the set of selected
hypothesis that contribute to the sequent rules can be modified. Herein, the end-user, e.g., the
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Figure 6.8: Selected Hypotheses for conducting Proofs in Rodin: An Excerpt concerning
Proof-Obligation (PO) for Operational Availability Objective.

Figure 6.9: Excerpt of a Goal corresponding to the Operational Availability Objective.
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designer, does not need to be aware of the theory for the proving task in the model instantiation
as one can rely on the POs presented in the abstract model. This way, the model can be reused to
adapt to the domain concepts, as several POs are shared among different kinds of systems [171].

Table 6.6: Number of Proof-Obligations (POs) in the Properties Model for CDV Use Case.
Proof-Obligation (PO) @ # Safety # Security # Safety and Security Interplay
Mission layer 8 3 4
Functional layer (Abstract) 8 8 -
Functional layer (Concrete) 35 42 7
Component layer 12 16 8

Figure 6.10: Formal Modeling and Analysis in Event-B.

6.3.2 Key Features of the Approach

The proposed approach exhibits several features to assist non-savvy engineers, e.g., system
architects, in building safe and secure architectures via capturing and integrating safety and
security expertise in the SE—System Engineering process. In line with these aspects, the
contributions are made in the scope of the approach to model and analyze safety and security
properties in unison. The distinctive features of the approach herein proposed lay in the following
main axes:

• The approach relied upon existing Model-Driven Engineering (MDE) and formal-based
techniques. The former allowed capturing the system, safety, and security domain
expertise in an integrated fashion. The latter allowed discerning the resulting models,
and jointly and consistently analyzing safety and security objectives, thus introducing
architecture artefacts that ensured suitable safety and security levels. The approach

156



6.3 Assessment of the Approach

leverages the best of both worlds by systematically reducing the gap between the
semi-formal and formal semantics.

• We adopted a global view of the SE process. This included a three-layered system,
targeting high-level mission, functional, and component-based system development
stages. The approach is amenable to covering these different phases irrespective of the
design flow (top-down or bottom-up).

• Along with ensuring consistent design flow, the approach allows engineers to select a
single layer adequate to the modeling granularity and analysis needs or the three layers
together, thus resulting flexible enough. Since each layer has its respective formal
interpretation, it can be used in standalone or coupled mode with other layers.

The above distinctive features are encompassed with the capabilities to specify and model
pre-defined safety and security properties and verify them. This, in turn, supports the early
identification and systematic analysis of their inter-dependencies and conflicts. The approach
also contributes to the reusability of safety and security objectives’ signatures across different
design projects. For now, the feedback or results from the formal tool have not been fully
integrated into the MDE modeler. Further research work is necessary to accomplish this
objective, which will be discussed in the forthcoming Chapter 7. Furthermore, there is a
possibility of other configuration choices involving, for instance, more missions, functions,
functional paths, and functions belonging to more than one functional path that will be a subject
of future work. A concrete summary of our work regarding the existing state-of-the-art discussed
in Chapter 2 based on the characterization attributes used therein, is provided in Tables 6.7, 6.8,
and 6.9.

Table 6.7: Our Results: Safety and Security Co-engineering.
Ref. Contribution Life-cycle

Stage
System Specification

Layer
Stakeholders Propagation of Safety

and Security Semantics
Safety and Security

Interaction
Conflict Resolution

[50] Co-engineering approach D1 M, F, C G Y Co Y
[51] Integrated design approach

to safety and security D1 M D1, A N Co Y
D1: Design | M: Mission, F: Functional, C: Component | G: Generic, A: Analyst, D1: Designer | Y: Yes, N: No | Co: Combined

6.3.3 Genericity for Applicability and Extensibility of the Approach

The instantiation of the modeling languages and formalisms in the context of the CDVs use case
pointed out several important aspects that the approach must meet to address the integrated safety
and security design and analysis. Based upon this, we discuss the genericity for the applicability
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Table 6.8: Our Results: Means and Techniques to Support Safety and Security Design and
Analysis.

Ref. Modeling Aspects Property
Relationship between

Properties
Language Tool Evaluation

Use Case/
Case Study

Assessment Parameters

[53]
Three-layered system—
Mission, Functional, and
Component-Port-Connector
(CPC)

Figure 4.11 Table 4.1

Unified Modeling
Language (UML),
First-Order Logic
(FOL), Modal Logic,
Event-B

Eclipse Papyrus,
Rodin - Properties verification

[52]
Three-layered system—
Mission, Functional, and
CPC

Figure 4.11 Table 4.1 UML, Event-B Eclipse Papyrus,
Rodin

Converging road
plan scenario Properties verification

Table 6.9: Our Results: Context-oriented Characterization of the Approach for Safety and
Security Design and Analysis.

Ref. Target System Application Domain S/R/G Key Assumptions

[53, 52] Safety and security-
critical systems Automotive ISO 26262, ISO 27001, ISO 15288 Layered representations and

design methodology-specific

and extensibility of the proposed approach across two dimensions, i.e., languages and tools for
implementation, and incorporating additional safety and security properties.

Languages and Tools for Implementation. We can highlight a salient feature of our approach
that relies upon two orthogonal but complementary aspects: generality and amenability of
the languages for specialization and refinement. Regarding generality, it is often considered
a pre-condition to capture high-level and complex notions. The choice of First-Order Logic
(FOL) as an entry language for safety and security objectives specification is aligned with this
consideration. On the other hand, regarding the support for specialization and refinement,
Event-B is a formal method that allows system-level modeling and analysis, along with the
definition of extensible signatures in the form of invariants. This feature particularly facilitates
the alignment of the incremental system, safety, and security engineering processes.

In addition, the three-layered system DSML offers a generalized way to abstract and capture
complex use cases. We reused the three-layered system models, along with the safety and
security objectives for specifying the static and dynamic aspects of the system, describing the
use case of CDVs in Event-B. The set theory and FOL-based Rodin-aligned formal syntax
will provide the system architects that are non-experts a way to transform models into formal
specifications for verification. However, it is recalled from Chapter 5 that we can envision the
applicability of the proposed approach with other formal specification languages, e.g., temporal
logic [147], and model-checking tools, e.g., UPPAAL [172] or Alloy analyzer [48]. This would
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require mapping the fundamental notions proposed in this work via interpretation to the target
formal specification language, accompanied by the automated tool support. This will allow the
use of the proposed approach among practitioners familiar with diverse MDE and formal-based
tools and environments.

Incorporating Additional Safety and Security Properties. Applicability regarding the use
case shows that the proposed approach fosters the reuse of formal specification of safety and
security objectives in the form of invariants across different system designs, given that they
rely explicitly on the respective layered models considered in this work. An engineer can
instantiate the reusable set of safety and security objectives libraries by extending the signature
definitions and corresponding invariants. Ultimately, it assists system designers or architects
in integrated modeling and analyzing the interplay between safety and security properties.
Automated suggestions can be provided in this regard as part of future work to address the
violation of the objectives, which will be discussed in Chapter 7.

In addition, it is recalled that the set of safety and security objectives considered in this work
are representative ones (refer to Section 1.1.2), and we established a way to identify relationships
between them. However, the approach offers the capability to extend and incorporate additional
desired properties, e.g., data confidentiality and message authenticity, or other time-based
properties. This may require, in some cases, e.g., time-based properties, to enrich the DSML
notions and DSML-to-EventB interpretations to handle those notions.

6.4 Conclusion
Summary. In this chapter, we showed the applicability of the approach for safety and security
co-engineering proposed in Chapter 3 through a domain-specific application. In particular,
the contributions presented in Chapters 4-5 were assessed via the design and analysis of an
autonomous CDV system for a converging road plan scenario that demands both safety and
security. As part of the concept phase, the initial system specification involved a preliminary
analysis of the feared events, e.g., hazards and threats, regarding the three-layered system
representation. This specification served as input to the overall approach in textual form.
Accordingly, we instantiated the DSML profiles presented in Chapter 4 to model the CDV
system architecture at the three layers, incorporating desired safety and security properties. The
resulting system architectures were mapped to the Event-B specification by instantiating the
formalisms presented in Chapter 5, which was further analyzed against the safety and security
objectives and their interplay by reusing the formalized objectives signatures. It is noteworthy
that the Event-B specification of the CDV system model involved hybrid means, wherein the
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system elements were interpreted manually to Event-B language, and the relationships with the
abstract specification were defined using the language elements and facilities, thus yielding a
partially automated process. Moreover, the genericity of the approach was evaluated based on
the outcomes obtained from each contribution.

Usefulness. Recalling the question mentioned in Section 6.1—How to facilitate incorporation
of safety and security concerns and their joint analysis in the design stages of the SE—System
Engineering process?—the approach facilitates the integration of the safety and security
properties in the engineering process of the target SUD—System Under Design by construction
and definitions of the notions defined in the DSML profiles. This is achieved by selecting a layer
from the three-layered model, which corresponds to different design stages, and incorporating
the properties in the model referring to the layered elements in the respective profiles. The
formal-based analysis of the system architecture candidates against safety and security objectives
allowed us 1) to verify whether the modeled system is consistent and conforms to the
corresponding requirement specifications and 2) to analyze the potential inter-dependencies
between them and their impact on the modeled system.

Concluding Remarks. The properties belonging to categories like availability and integrity
are analyzed from the safety perspective in the use case. However, when considered in another
context, they may influence the system’s security. For example, integrity property may be
applied to detect any unauthorized alterations of the messages in transmission. It is recalled
from Chapter 4 that the purpose of the notion of property categories is not to emphasize
a strict classification of the properties in the safety and security domain but to facilitate
analysis in a given context.

Following the MDE paradigm, the proposed approach considers a loop involving modeling
at the front end with three-layered system and safety and security properties models as the
outcome, followed by the formal-based interpretation of the models in a tooled-formal language,
namely Event-B. This interpretation is currently made using manual means, relying upon
hand-made tables in Section 5.6, and further work is needed to automatize this step. The Event-B
specification constitutes the back end that results in the generation of the safety and security
analysis artefacts regarding the system architectural model for verification. The results of the
verification process could then be used for generating feedback—for instance, related to the
detection of properties violation or potential conflicts, which again demands further work.
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Conclusion and Future Work
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7.1 Summary and Contributions
In this thesis, we addressed the problematics concerning a lack of methodological support for an
integrated system, safety, and security analysis, reconciling respective domain expertise during
the early design stages of the System Engineering (SE) process. The inherent complexities
of standalone safety and security engineering practices and semantic gaps pose difficulties in
conducting a consistent analysis considering their mutual influence. To this end, we proposed
a model-based joint design and analysis approach and tooled-framework to better support and
ease safety and security co-engineering. The approach has been instantiated in the context of
a three-layered—mission, functional, and component-based—system representation, targeting
a positive vision of safety and security, particularly objectives, encoded as properties. It
relied upon 1) the Model-Driven Engineering (MDE) paradigm allowing the use of models
for conducting the system design incorporating safety and security properties, and 2) the
rigorousness of formal-based techniques facilitating safety and security properties analysis in
unison. Accordingly, the specific contributions of this work are five-fold, as shown in Table 7.1
and summarized in the following sub-sections.
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Table 7.1: Summary of the Thesis Contributions.
Problematic Contribution Language/Tool/Technique Used

P1: Lack of tooled-approach to facilitate
incorporation of integrated safety and
security analysis in the System
Engineering (SE) process

C1: A method to build safety and security modeling
framework, supporting the safety and security co-
engineering process (Chapter 3)

Model-Driven Engineering (MDE)
and formal-based techniques

P2: Lack of consistent semantic transfer
across the different granular system
representations

C2: A three-layered system representation/model
for capturing the details corresponding to different
stages of system development (Chapter 3)

Conceptualization via different-
granularity system viewpoints

P3: Lack of modeling language,
consolidating system, safety, and security
domain concepts specification in unison

C3: A set of Domain-Specific Modeling Languages
(DSMLs) for three-layered system and safety and
security properties modeling (Chapter 4)

Meta-modeling and profiling
(Unified Modeling Language (UML))

P4: Error-prone design-stage safety and
security analysis due to the ambiguities in
properties specifications and interplay

C4: Technology-independent semantics for the
modeling languages and interpretations to tooled-
language (Chapter 5)

Set theory, First-Order Logic (FOL),
Modal Logic, Event-B

P5: Lack of automated tool support for
integrated safety and security design and
analysis

C5: An operational tool support integrating MDE
and formal-based techniques (Chapters 4, 5, 6) Eclipse Papyrus, Rodin

7.1.1 Method for Safety and Security Co-design and Analysis

The proposed approach comprised a method to build a safety and security modeling framework
and support their co-engineering process regarding problematic P1, as presented in Chapter
3. This involved conceptual modeling, developing the modeling languages, and their
interpretations to tooled-formal language to facilitate integrated design and analysis of the
system and safety and security properties. The safety and security co-engineering process for a
target application involved the model-based system architecture design and reusing the existing
formal model libraries for the properties to verify the fulfillment of underlying safety and security
requirements—refer to Section 3.2.3. The methodological support allows an engineer to conduct
system and properties modeling and verification targeting the system architectural design stages,
thereby facilitating the integration of the proposed approach in the SE process. The iterative
methodology assists the system designer with the passage of knowledge from textual requirement
specifications to system and properties models that are verifiable regarding conformity to those
requirements.

7.1.2 Three-layered System and Properties Model

The three-layered system and properties model provided the basis for the proposed method
to support the safety and security co-engineering process, as presented in Chapter 3. It
allowed capturing the target System Under Design (SUD) regarding different stages of system
development with varying granularities, viz. Mission for high-level teleological representations
to capture and understand the overall purpose of the complex engineered systems, Functional to
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capture the system’s functionality, and Component for the detailed technical architecture of the
system—refer to Section 3.2.2. In addition, it allowed defining safety and security properties
concerning the system-related aspects at each layer. In this regard, relationships were derived
from the impact of properties at a given layer or across layers, within or between the safety and
security domains, regarding problematic P2. This allows an engineer to select a single layer or
multiple layers adequate to the modeling granularity and analysis needs, thus resulting flexible
enough.

7.1.3 Modeling Language and Integrated Design Framework

In Chapter 4, to address the problematic P3, we proposed a set of Domain-Specific Modeling
Languages (DSMLs) that capture the target SUD and associated safety and security properties
regarding different stages of system development represented by the three-layered model.
The DSMLs were first defined as meta-models to capture the domain concepts and their
relationships, thereby allowing system architects to understand the language and detect potential
inconsistencies—refer to Sections 4.4 and 4.5. Subsequently, they were implemented as profiles
built by stereotyping the domain modeling concepts and mapping the same to Unified-Modeling
Language (UML) meta-classes, relying upon the UML standard. The selected meta-classes
are semantically aligned with the notions in the meta-models and extended to incorporate the
specificities of the system model at the three layers and the fundamental attributes capturing the
desired safety and security properties. The DSMLs ensure separation of modeling purposes
via decoupling of the system and properties, thereby simplifying the modeled reality. This
contribution provides a basis to analyze safety and security properties and their interplay by
supporting the system architecture and properties modeling in unison.

7.1.4 Formal-based Rigorous Specification

In Chapter 5, to address the problematic P4, we proposed the formalization of the DSML
profiles for rigorous specification and verification of the modeled system and safety and security
properties. Accordingly, we defined logical specification for the system and properties DSMLs
at the three layers based upon set theory notions. This was followed by the formal specification
of the safety and security properties and their interplay, relying upon First-Order Logic (FOL)
and Modal Logic. The formalisms allowed the interpretation of the models to the Event-B
language to obtain a concrete specification. This contribution supports formal reasoning of
the inter-dependencies between the safety and security concerns in the design stages of the
system development. The Event-B specification of the three-layered system being generic, can
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be instantiated via a refinement facility to obtain a formal-based specification of the target SUD
and conduct analysis. This indeed involves refining the events in the abstract machine to capture
the target system behavior, along with the generation of existential Proof-Obligations (POs) for
witnesses. Accordingly, the safety and security properties specified as invariants in the abstract
machine are also incorporated.

7.1.5 Tool-chain Support

Furthermore, to address the problematic P5, we used the following set of tools that support and
automatize the different phases of the proposed approach:

• Papyrus for conceptual meta-modeling, profiling, and modeling of the system aspects at
the three layers and safety and security properties, as detailed in Section 4.6.

• Rodin for model checking and properties verification via theorem proving, as detailed in
Section 5.7.

To address the approach’s applicability regarding integrated modeling and verification of
safety and security system architecture, we presented a tool-chain support prototype architecture
in Section 3.3. Based upon that, an example scenario involving the use of the tools mentioned
above is depicted in Figure 7.1, comprising the following two blocks:

Figure 7.1: Example Scenario for Tool Support Architecture and Related Approach Artefacts.
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• Safety and security modeling framework development, which primarily involved the
creation of the DSML meta-models and profiles using Papyrus (A1.1), defining the
mapping for the fundamental notions captured by the profiles to a logical specification
based upon set theory, along with FOL and Modal Logic-based properties formal
specification (A1.2), and their formal-based interpretation to Event-B (A1.3). This
was followed by defining a library of reusable safety and security objectives signatures
(A1.4). Finally, an integrated verification of safety and security objectives was conducted,
which involved the automatic generation of POs in Rodin (A1.5.1), followed by checking
the undischarged POs (A1.5.2) for identifying and fixing the issues related to the
well-definedness of the predicates and selection of hypothesis in the back end. Automated
interpretation of the models to their formal-based specification and provisioning of the
feedback that could be exhibited to the end user at the modeling stage constituting the
front end, if needed, will be part of the perspective work, as detailed in Section 7.3.

• System safety and security co-engineering, which involved the modeling of system
architecture and safety and security properties for a target application by an engineer,
based on the already defined profiles (A2.1), followed by the creation of a formal model
in Event-B using semi-automated means (A2.2), relying upon the language constructs to
instantiate the formal meta-model in (A1.3), and incorporation of formal-based safety and
security objectives signatures using pre-defined libraries (A2.3).

Notably, the approach is agnostic of the underlying tool-chain technology, which is only
developed for proof-of-concept purposes. Notwithstanding this choice, the tool-chain integrates
mechanisms that facilitate approach extension and specialization. Being generic and mostly
automated, it aims to enable model interpretation towards other formal frameworks, thus
alleviating the complexity of manually integrating formal analysis of safety and security
concerns into the design phase.

7.1.6 Approach Illustration and Assessment

We illustrated the applicability of the proposed approach and tooled-framework by relying upon
the use case of autonomous Connected-Driving Vehicles (CDVs) from the automotive domain.
Specifically, we considered a converging road plan scenario relevant to both safety and security.
This involved exemplifying the notions involved in the contributions C3 and C4, in Chapters 4
and 5, respectively, to contribute to the safety and security modeling framework development
block in Figure 7.1. The complete instantiation of the approach and proposed tool-chain support
prototype for the contribution C5 is detailed in Chapter 6, which contributes to the system safety
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and security co-engineering block. We also discussed the evaluation of the approach based on
the results obtained for each contribution—refer to Section 6.3. The selection of the use case
scenario has been considered an important aspect in this work to assess the approach regarding
integrated safety and security properties modeling and verification. In essence, the framework
and the resulting tool-chain support shed light on the key aspects regarding the use of MDE and
formal-based techniques for the design and analysis of system safety and security in unison.

7.2 Shortcomings and Future Work
The proposed approach and tooled-framework aim to provide methodological support to assist
non-savvy engineers in safe and secure system architecture design in a coordinated fashion.
Despite the features they offer, we identified certain lacks and, accordingly, define the following
future objectives to consolidate our work:

1. Analyzing complex configurations: The vertical relationships between the layered
DSMLs are illustrated through some instances, mainly covering the target SUD—refer to
Section 4.4.2, and safety and security objectives—refer to Section 4.5.2. Nevertheless,
there is a possibility of even more complex configurations involving, for instance, 1)
composite missions that can be further decomposed to sub-missions, 2) realization of
an operation by more than one function, i.e., a one-to-many relationship, 3) functions
belonging to more than one functional path, 4) allocation of a function to more than
one component, i.e., a one-to-many relationship, and 5) incorporation of more missions,
functions, or functional paths. Moreover, the use case in Chapter 6 may call upon a
large set of additional objectives, e.g., those within the confidentiality and authenticity
categories. Thus, we plan to explore and analyze them to assess the approach’s coverage
and confidence. It is worth noting that an objective, e.g., within the integrity and
availability categories, in a given context may affect the overall safety of the system, while
in the other, it may influence the security-related requirements. Therefore, we also aim to
consider such possibilities.

2. Classification of conflicts: The approach paves the way to analyze the interplay between
safety and security objectives across the three-layered system model, which was illustrated
through some instances—refer to Section 5.4.4. However, the proposal is limited from the
point of view of conflict-handling strategies. This necessitates determining the potential
causes of conflicts that can be due to 1) the mechanisms to ensure the respective objectives,
e.g., encryption in case of message confidentiality and time-out in case of message
freshness, 2) no simultaneous fulfillment of the desired post-conditions, e.g., in case
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of operational availability and system accessibility, and 3) the influence of the details
offered by the layers, e.g., time-based notions in case of functional path availability at
the functional layer and message freshness at the component layer. All these cases can
provide dimensions for identifying and analyzing conflict mitigation mechanisms based
on the features they can offer. Therefore, we aim to classify the conflicts based on these
dimensions, considering the elementary horizontal and vertical links in the three-layered
model.

3. Negative safety and security perspectives: A suitable coverage of the feared events
potentially impacting the fulfillment of the safety and security objectives demands the
integration of unwanted properties constituting a negative vision of safety and security.
For example, if sub-systems of a system are not operational anymore, it can lead to the
system’s failure [30]. Likewise, if the functionality of the components is not available,
it might be related to the faults [30]. In many cases, the positive and negative visions
are dual to each other [173]. Accordingly, fault, failure, hazard, and threat models can
be introduced to serve as evidence for the system design during various stages of system
development to meet the defined goals and safety and security objectives in the presence
of feared events. Thus, we aim to formulate domain-specific language as a reference to
the negative vision and establish a common understanding of the stakeholders involved in
safety and security.

4. Formal analysis in Event-B: The analysis of system safety and security properties can be
carried out in Event-B using three complementary approaches: theorem proving, model
checking, and animation. In this work, we relied upon theorem proving as mentioned in
Section 5.3. However, in case of the introduction of feared events, the system needs to be
deadlock-free, for which it should be guaranteed that it can transit from a dangerous state
to a safe state. Model checking identifies the unreachable states and automatically verifies
whether the system is deadlock-free. Moreover, animation can identify the potential weak
links in the formal specifications and harmonize the same with the informal specification
of the system and properties by visually observing the system behavior. Thus, we seek to
explore these capabilities. In addition, we aim to improve the usage of Event-B using more
elaborated facilities, like injective functions and refinements, to formalize the vertical
relationships across layers.

5. Safety and security interplay for systems in practice: To demonstrate the technical
applicability of the proposed approach, we relied upon the use case of CDVs from the
automotive domain presented in Chapter 6. Another significant future work in this
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direction is to determine whether the approach would suffice to address the safety and
security properties of such industrial systems in practice. To this end, we aim to collect
feedback from industry practitioners and incorporate the same to assess and address the
improvements. We also seek opportunities to address other industrial domains for the
approach applicability.

7.3 Perspectives
Apart from the short-term goals discussed above, the work presented in this Ph.D. thesis opens
important orientations to be investigated in the middle and long term. This mainly includes
enhancement of the proposed approach concerning the following aspects:

1. Tool support: Regarding the tool-chain support prototype architecture described in
Section 3.3, we seek to study the integration of the proposed approach with other modeling
frameworks and tools based upon MDE and formal-based techniques to support the
following:

(a) Automation: We would like to automatize the integration of safety and security
objectives libraries in the system architectural model when the designer selects the
respective elements at the three modeling layers. The aim is to simplify the system
safety and security modeling task conforming to the DSML meta-models. This
can be achieved by developing a textual or graphical editor using Xtext [174]—for
instance.

(b) Model transformation: We plan to incorporate transformation engines in the
functionality of the tool-chain support architecture for 1) automatic or incremental
[175] generation of the Event-B formal specification from the DSMLs, addressing
the tables presented in Sections 5.5.2 and 5.5.3 and 2) reporting mechanism
to the end-user regarding any violation of safety and security objectives, or
inter-dependencies like conflicts. To this end, we seek to explore features provided
by Xtend [174]—for instance.

2. Design patterns for safety and security co-engineering: We aim to incorporate the
outcomes of the approach to a more global process within the pattern life-cycle. This will
involve exploring sophisticated techniques to build a pattern system [176], providing the
creation, selection, and integration of design patterns for safety and security properties
and their relationships, to the overall SE—System Engineering process.
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3. Solution space for safety and security interplay: Besides the conflicts appearing during
problem specification, the solutions, e.g., mechanisms and policies, provided at the
architectural levels, may also suffer from the same issue. For instance, implementing
ciphering techniques as a security mechanism for the confidentiality of data transmission
may have a non-negligible impact on the system’s overall performance due to the
introduction of delays, potentially violating the safety constraints [91]. In such cases,
the approach needs to be extended to resolve the conflicts without prioritizing safety or
security solutions.

4. Implementation phase: Our approach focused on the architectural design phase of the
SE process. However, safety and security properties violations and inter-dependencies
like conflicts may also arise once the system is implemented [177], which is an even more
complex undertaking. In such cases, testing practices can reveal some of them. This
requires the extension of the approach with code generation facilities, complying with the
domain standards to move to the implementation phase. Accordingly, we need to inspect a
way to define the specified behavior of the system being implemented. Moreover, further
work is needed to address annotations in the system and properties models to ensure that
the properties verified at the model level inherit at the code level.

5. Standardization and certification: In this thesis, we relied upon the system, safety, and
security domain-specific standards to use the respective fundamental notions as input to
the overall approach. However, there is a need for standards and certification practices
regarding the integration of safety and security concerns during system development.
Besides, current certification practices contemplate safety and security in an isolated
context towards compliance with the stringent domain-specific standards. For instance,
the conventional safety standards do not consider inter-connectivity and interactions
among systems, which is one of the primary reasons for raising security issues and
propagation of failures among systems [56]. Cross-disciplinary knowledge from the
system’s application context can be leveraged in this direction to identify the intersections
between both domains. Existing industrial safety (e.g., ISO 26262) and security (e.g., ISO
27000) standards can be revisited in terms of their role in reducing the ambiguity of a joint
safety and security engineering process.
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Appendix A

Formal Methods

A.1 Classification of Formal Building Blocks in Literature
In literature, formal specification languages and tools have been collectively described as formal
methods, with a classification based on specific characteristics, including foundational theory,
the target of application, and research or user-oriented aspects [178]. Formal constructs have
been widely accepted for specification in agent-based systems within highly distributed and
concurrent environments. In light of this, a discussion on the underlying aspects of formal
modeling and detailed classification of formal methods, along with associated research issues,
can be found in [179].

The specification style using formal constructs adopted during the system design phase may
rely on the formal semantics of the programming languages and general specification of the
system [43]. Some of the formal languages that exist in the literature for specifying system
properties include Z notation [180], Vienna Development Method (VDM) [181], Petri nets
[182], and process algebra [183]. Logic-based notions are accompanied by different levels of
expressiveness and broadly include propositional logic [184], First-Order Logic (FOL) [185],
temporal logic [186], Burrows–Abadi–Needham (BAN) Logic [187], and knowledge logic
[188]. A plethora of open-source tools based on formal notions are available for assisting formal
specification, modeling, reasoning, and analysis during system design [49]. Tools based on
formal languages include Alloy [48], Games, Omega-Automata, and Logics (GOAL) [189],
Electrum [190], and UPPAAL [172].

Table A.1 summarizes the classifications of the formal building blocks in the literature,
highlighting the basis of classification and corresponding examples.
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Table A.1: State-of-the-art on Classification of Formal Building Blocks.
Formal Notions Classification Basis Examples

Formal specification [43] Formal semantics of programming
languages Axiomatic, Denotational, Operational
General system specification Model-based, Algebraic

Formal languages [43] Predicate logic-based Z, VDM, B
Temporal logic-based CTL, TLA
Process algebras CSP, CSS, CIRCAL
Others RSL, Action semantics, ASM

Formal tools [49] Abstract model checking SPIN, UPPAAL, SMV, NuSMV, FDR, Alloy, Simulink
design verifier

Hardware description language
checking Questa formal, Solidify, JasperGold, Incisive
Software correctness checking Frame-C, BLAST, Java Pathfinder, Spark ADA, Malpas
Provably correct design creation VDM, Z, B, Event-B, Rodin

Formal methods [178][179] Model-oriented approaches ASM, B-Method, RAISE, VDM, Z notation, FSMs,
Statecharts, Petri Nets, XM

Property-oriented approaches Axioms, Algebra
Process algebras CSP, CCS, Pi-calculus, IOA
Logics Temporal logic, RTL, BDI logics, KARO logic
Other approaches Artificial physics, SCR, Mathematical analysis, Game

theory, OCL, Hybrid approaches
Foundational theory Set theory, Transition systems, Calculus, Universal algebra
Target application Protocols, Real-time systems, Data processing

174



Appendix B

Safety and Security Standardization
Efforts

Herein, we outline the published standards that provide a conceptual basis for capturing the
engineered systems’ safety and security concerns. Specifically, we focus on how safety and
security properties are defined in these documents considering the specificities of the target
application domain.

B.1 Safety Standards
In the safety context, Table B.1 outlines some of the key application domain-specific standards,
regulations, and guidelines that reflect the industrial perception of the safety properties
[26]. International Electro-technical Commission (IEC) 61508 is a functional safety standard
that applies to industries dealing with electrical, electronic, or programmable electronic
safety-critical systems [191]. According to this umbrella standard, integrity is “the probability
with which a safety-related system satisfactorily performs the required safety functions, under
all the pre-defined conditions for a stated period”.

Various industry-specific variants of IEC 61508 have been defined by standards-making
bodies and adopted by the research and development communities. International Standard
Organization (ISO) 26262 captures the functional safety concerns, like severity, exposure, and
controllability, of electrical and electronic systems in automobiles [120]. According to this
standard, availability is “the capability with which a product provides an already-stated function
on demand, under all the pre-defined conditions for a stated period”. International Atomic
Energy Agency (IAEA) published safety standards for nuclear safety to capture the essential
requirements, principles, and recommendations associated with the domain [213]. According
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Table B.1: Application Domain-specific Safety Standards, Regulations, and Guidelines.
Application Domain Standards (S)/ Regulations (R)/ Guidelines (G)
Generic IEC 61508 [191] (S)
Automotive ISO 26262 [120] (S), EN 50495 [192] (S), ISO/PAS 21448 [193] (S)
Aviation DO 178 [194] (G), DO 254 [194] (G)
Chemical process IEC 61511 [195] (S)
Power grid NERC reliability standards [196] (S)
Railway EN 50128 [197] (S), IEC 62278 [198] (S)
Machine IEC 62061 [199] (S), ISO 13849 [200] (S), IEC 61131 [201] (S)
Nuclear power plants IEC 61513 [202] (S), IAEA safety standards [203] (S), IEC 60880 [204] (S)
Medical IEC 62304 [205] (S), IEC 60601 [206] (S), ISO 14971 [207] (S), EU medical device regulation [208] (R),

ISO 13485 [209] (S), FDA [210] (R)
Household IEC 60335 [211] (S), IEC 60730 [212] (S)

to this standard, safety is “an attribute of dependability that describes the trustworthiness of the
system as a whole”. This standard describes availability as “the fraction of time for which the
system is capable of fulfilling its planned purpose”. The latest definition of availability provided
by this standard follows the one presented by ISO 26262, under the provision of essential external
resources.

B.2 Security Standards
In the security context, experts and researchers have considered some properties, including
Confidentiality, Integrity, Availability, and Authenticity, abbreviated as CIAA, as a benchmark
for secure computing and communication systems. These are based on the security standards,
regulations, and guidelines for different application domains and target aspects of security, as
provided in Tables B.2 and B.3, respectively. Notably, some of the standards highlighted in
Table B.3 address security in a holistic way, thus covering different aspects, subjects, views,
etc. According to ISO/IEC 27000 [214], 1) confidentiality is “the property of non-disclosure
or unavailability of information to unauthorized entities, processes, or individuals”, 2) Integrity
is “the property of completeness or accuracy”, 3) Availability is “the property of usability and
accessibility when demanded by an authorized entity”, and 4) Authenticity is “the property that
an entity is what it claims to be”. Moreover, this standard defines other security properties,
including non-repudiation, accountability, and reliability. National Institute of Standards and
Technology (NIST) Special Publication (SP) 800-12 Rev. 1 [215] defines confidentiality as
“preserving authorized restrictions on access to information and its disclosure, including ways
to protect proprietary information and personal privacy”. Likewise, it defines integrity as “the
ability to guard against improper information modification or destruction, ensuring information

176



B.2 Security Standards

authenticity and non-repudiation”.
Table B.2: Application Domain-specific Security Standards, Regulations, and Guidelines.
Application Domain Standards (S)/Regulations (R)/Guidelines (G)

Automotive ISO/SAE DIS 21434 [216] (S)
Aviation ATA Spec 42 [217] (S), ED-201 [218] (G), ED-202A [219] (G), ED-203A [220] (G), ED-204 [221] (G),

ARINC 664 [222] (S), ARINC 811 [223] (S)
Chemical process industry CFATS [224] (S)
Power grid IEC 62351 [225] (S), NERC CIP standards [226] (S)
Railway AS 7770 [227] (S), VDE 0831-102 [228] (S), VDE 0831-104 [229] (S)
Machine EU machinery directive 2006/42/EC [230] (G)
Nuclear power plants IEC 62645 [231] (S), IEEE 692-2010 [232] (S), NRC RG 5.71 [233] (R)
Medical FDA [210] (R), AAMI TIR 57 [234] (S), DTSec [235] (S), DTMoSt [236] (G)
Household ETSI [237] (S)

Table B.3: Target Aspect-specific Security Standards, Regulations, and Guidelines.
Target Aspect of Security Standards (S)/Regulations (R)/Guidelines (G)

Secure information management ISO 27001 [238] (S), ISO 27032 [239] (S)
Software and hardware ISO 15408 [240] (S)
Industrial Automation and Control Systems (IACS) ANSI/ISA 62443 [241] (S)
Critical infrastructure NIST [242] (S)
Information and Communications Technology (ICT) DHS [243] (S/G)
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Appendix C

Underlying Formal Platform

C.1 Event-B Formal Method
Context. A context describes static properties of the model that do not change over time. Each
context has a distinct name with regard to the other components, viz. contexts and machines,
within the same model. It comprises the following:

• Extends: Lists the contexts that are extended explicitly. This allows using the sets,
constants, and axioms of the extended contexts as references.

• Sets: Also called carrier sets, it is used to declare the user-defined types. These are
implicitly assumed to be non-empty.

• Constants: Enlists the constants introduced in the context. These have distinct identifiers
regarding the constants and sets in the extended contexts or the context itself. The type of
constants is declared in the axioms section.

• Axioms: Contains the list of predicates, called axioms, which define rules that are obeyed
by the constants. Axioms can be marked as “theorems”. A theorem can be proved by
using the predicates listed before it in the context. The order of axioms is concerned with
avoiding circular reasoning.

A general structure of a context is depicted in Figure C.1.

Machine. A machine describes the dynamic behavior of the model by means of variables
whose values change by the events as the system evolves. Each machine has a different name
from the other components, viz. contexts and machines, within the same model. It comprises
the following clauses that are not all mandatory, and some can be left empty:
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Figure C.1: Structure of an Event-B Context.
Figure C.2: Structure of an Event-B Machine.

• Refines: Contains the machine (if any) that is refined by this machine.
• Sees: Contains the list of contexts that are referred to explicitly by this machine.

Accordingly, the machine can use the sets and constants defined therein or seen explicitly.
Also, axioms defined in the seen context are used in proofs in the machine as hypotheses.

• Variables: Lists the variables introduced in the machine, having distinct identifiers.
However, some variables can be the same as some in the abstract machine. The type
of variables is declared in the invariants section.

• Invariants: Lists the predicates that should be true for every reachable state during the
model execution. Invariants can be marked as “theorem”. A theorem can be proved
by using the predicates in the seen contexts and abstract machines and local invariants
and theorems written before it. An invariant may also comprise variables of the refined
machine and is known as gluing invariant, as it glues the space of the refined machine and
the present machine.

• Variants: These are defined in a machine comprising some “convergent” events. The
“Initialization” event determines the values of the variables that may change by the events.

• Events: Lists the events defined in the machine.
A general structure of a machine is depicted in Figure C.2.
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Events. An event describes the transitions in a model and represents a relation between two
successive states. It comprises the following clauses that are not all mandatory, and some can
be left empty:

• Status: It can be any one of “ordinary”, “convergent” (where the event has to decrease
the variant), or “anticipated” (where the event must not increase the variant).

• Refines: Lists the abstract events refined by this event.
• Any: Lists the parameters of the event.
• Where: Lists the guards of the event. A guard specifies when an event is allowed to occur.

In other words, these represent the necessary conditions for the event to be enabled. An
event executes iff the values of the machine’s variables and parameters match the values
specified in the guard.

• With: Lists the witnesses of the abstract event refined by this event.
• Then: Lists the actions of an event. An action denotes the changes that will be applied to

the variables when the event gets enabled.
A general structure of an event is depicted in Figure C.3.

Figure C.3: Structure of an Event-B Event.
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Glossary

AAMI

Association for the Advancement of Medical Instrumentation
ANSI

American National Standards Institute
ARINC

Aeronautical Radio INC
AS

Australian Standard
ASIL

Automotive Safety Integrity Level
ATA

Air Transport Association
BDMP

Boolean-logic Driven Markov Processes
CDV

Connected-Driving Vehicle
CFATS

Chemical Facility Anti-Terrorism Standards
CIA

Confidentiality, Integrity, Availability
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CIAA

Confidentiality, Integrity, Availability, Authenticity
CIP

Critical Infrastructure Protection
CPC

Component-Port-Connector
CPS

Cyber-Physical System
DAG

Directed Acyclic Graph
DHS

Department of Homeland Security
DMS

Data Monitoring System
Domain-Specific Modeling Language (DSML)

A language to create models that are specific to a certain domain.
DSML

see: Domain-Specific Modeling Language (DSML)
DSR

Design Science Research
DSRC

Dedicated Short-Range Communications
DTMoSt

Diabetes Technology Society Mobile Platform Controlling a Diabetes Device Security
and Safety Standard
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DTSec

Standard for Wireless Diabetes Device Security
EN

European Standard
ETSI

European Telecommunications Standards Institute
EU

European Union
FACT

Failure-Attack-Countermeasure
FDA

Food and Drug Administration
FHA

Functional Hazard Analysis
FIFO

First-In-First-Out
FMEA

Failure Mode and Effects Analysis
FOL

First-Order Logic
Formalization

The process of creating formalized structure.
GPS

Global Positioning System
HARA

Hazards Analysis and Risks Assessment
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HAZOP

Hazard and Operability Analysis
IAEA

International Atomic Energy Agency
ICS

Industrial Control System
IEC

International Electro-technical Commission
IEEE

Institute of Electrical and Electronics Engineers
IMD

Implantable Medical Devices
ISA

International Society of Automation
ISO

International Organization for Standardization
LiDAR

Light Detection and Ranging
MDE

see: Model-Driven Engineering (MDE)
MICS

Medical Implant Communication System
Model-Driven Engineering (MDE)

A software development methodology that focuses on creating and exploiting models for
abstract representations of the knowledge governing a particular domain.
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MTSL

Metric Temporal-Spatial Logic
MTTF

Mean Time To Failures
NERC

North American Electric Reliability Corporation
NIST

National Institute of Standards and Technology
NRC

Nuclear Regulatory Commission
OBU

On-Board Unit
PAS

Publicly Available Specification
PHA

Preliminary Hazard Analysis
PO

see: Proof-Obligation (PO)
Proof-Obligation (PO)

A theorem stating that a certain property must hold in order for a formal specification to
be internally consistent.

Properties

Fundamental well-defined notions that are the building blocks upon which high-level
requirements can be decomposed and characterized.

PTA

Preliminary Threat Assessment
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RG

Regulatory Guides
RSI

Road-Side Infrastructure
SAE

Society of Automotive Engineers
SE

see: System Engineering (SE)
SLR

Systematic Literature Review
SP

Special Publication
SUD

System Under Design
SysML

Systems Modeling Language
System Engineering (SE)

A transdisciplinary approach to enable the successful realization, use, and retirement of
engineered systems.

TIR

Technical Information Report
UML

see: Unified Modeling Language (UML)
Unified Modeling Language (UML)

A general-purpose modeling language in the field of software engineering that is intended
to provide a standardized way to visualize system design.
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V2C

Vehicle-to-Remote Cloud
V2G

Vehicle-to-Grid
V2I

Vehicle-to-Infrastructure
V2V

Vehicle-to-Vehicle
WMTS

Wireless Medical Telemetry Service
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