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Edouard Laroche Professeur, Université de Strasbourg
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Anh-tu Nguyen Mâıtre de conférences, INSA Hauts-de-France

Membres invités :

Christian Duriez Directeur de recherche INRIA Lille



PhD Thesis

Submitted for the degree of Doctor of Philosophy from

l’UNIVERSITE POLYTECHNIQUE HAUTS-DE-FRANCE

and l’INSA HAUTS-DE-FRANCE

Dynamic Tracking Control for Soft Robots: Data-Driven Modeling and
Robust Control Design

Subject: Automation, Production

Presented and defended by Shijie LI
On 27 January 2023, Valenciennes

Doctoral school:

Doctoral School Polytechnique Hauts-de-France (ED PHF n°635)

Research unit:

Laboratory of Industrial and Human Automation control Mechanical engineering and
Computer science (LAMIH – UMR CNRS 8201)



JURY

President of jury :

Christine Chevallereau Directeur de Recherche, CNRS LS2N Nantes

Reviewers :

Jamal Daafouz Professeur, Université de Lorraine
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Résumé

Cette thèse porte sur les principaux problèmes de contrôle en robotique douce.
Une approche étape par étape est proposée, de la modélisation du robot au contrôle
dynamique et à la planification du mouvement. En plus des travaux théoriques,
de nombreuses expériences et simulations sont également menées pour illustrer
l’efficacité des méthodes proposées.

La thèse prolonge d’abord les travaux antérieurs de notre équipe, dans lesquels
le cadre de modélisation et de contrôle linéaire est proposé sur la base du modèle
de la méthode des éléments finis d’ordre réduit. Nous avons discuté en détail
de l’utilisation et des avantages d’une méthode améliorée de réduction de l’ordre
du modèle qui préserve la structure et la stabilité du modèle FEM. Cette nou-
velle méthode de modélisation permet la conception d’un contrôleur de rétroaction-
anticipation basé sur un observateur de perturbations. Cependant, le schéma de
contrôle proposé est efficace mais limité à une petite plage où le modèle linéaire est
efficace.

Pour effectuer le contrôle dynamique dans l’ensemble de l’espace de travail non
linéaire du robot logiciel, nous avons étendu le schéma de contrôle linéaire à un
nouveau cadre de contrôle à paramètres linéaires variables (LPV). Le modèle LPV
est développé en utilisant à la fois des modèles d’ordre réduit obtenus à partir de
modèles FEM et les données collectées à partir des robots mous. La stabilité du
contrôleur généralisé est garantie par la théorie de la stabilité de Lyapunov et la con-
ception du contrôleur est formulée comme un problème d’optimisation sous inégalités
matricielles linéaires (LMI).

Cependant, le modèle LPV est basé sur des modèles linéarisés. Les tâches de
commande prédictive et de planification de mouvement ne peuvent pas être réalisées
efficacement avec les modèles LPV. Pour atteindre des performances plus élevées
pour le contrôle des robots mous, nous avons également proposé des solutions cor-
respondantes à ces problèmes. Une nouvelle représentation cinématique des config-
urations de robots mous combinant à la fois le modèle et les données collectées est
proposée, ainsi qu’une méthode de cinématique inverse directe basée sur les données
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de mesure. Pour la commande anticipative de robots souples qui ne peut être obtenue
analytiquement, des résultats préliminaires sur la représentation fonctionnelle de la
commande anticipative et des lois d’apprentissage anticipatif avec des garanties de
stabilité sont illustrés.

Mots-clés: Robots souples, commande LPV, commande de mouvement, modélisation
pilotée par les données, réduction de l’ordre des modèles, méthode des éléments finis,
cinématique inverse, commande basée sur l’apprentissage.
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Abstract

This thesis focuses on the key control problems in soft robotics. A step-by-step
approach is proposed, from robot modeling to dynamic control and motion planning.
In addition to the theoretical works, extensive experiments and simulations are also
conducted to illustrate the effectiveness of proposed methods.

The thesis at first extends the previous work of our team, in which the linear
modeling and control framework is proposed based on the reduced order Finite El-
ement Method model. We thoroughly discussed the usage and advantages of an
improved model order reduction method that preserves the structure and stability
of FEM model. This new modeling method enables the design of a disturbance ob-
server based feedback-feedforward controller. However, proposed control scheme is
effective but limited to a small range where the linear model is effective.

To perform the dynamic control in the whole nonlinear workspace of soft robot,
we extended the linear control scheme to a new linear parameter varying (LPV)
control framework. The LPV model is developed using both reduced order mod-
els obtained from FEM models and the data collected from the soft robots. The
stability of generalized controller is guaranteed with Lyapunov stability theory and
the controller design is formulated as an optimization problem under linear matrix
inequalities(LMI).

However, LPV model is based on linearized models. The feedforward control
and motion planning tasks cannot be achieved effectively with LPV models. To
achieve higher performance for the control of soft robots, we also proposed corre-
sponding solutions for these issues. A novel kinematic representation of soft robot
configurations combining both model and collected data is proposed, as well as a
direct inverse kinematics method based on measurement data. For the feedforward
control of soft robot that cannot be obtained analytically, preliminary results about
functional representation of feed-forward control and feed-forward learning laws with
stability guarantees are illustrated.
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Keywords: Soft robots, LPV control, motion control, data-driven modeling, model
order reduction, finite element method, inverse kinematics, learning based control.
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Nomenclature

Abbreviations

Abbreviation Definition

FEM Finite element method
MOR Model order reduction
POD Proper orthogonal decomposition
EID Equivalent Input Disturbance
FK Forward kinematics
IK Inverse kinematics
DoF Degree of freedom
PCC Piece-wise constant curvature
LPV Linear parameter varying
LMI Linear matrix inequality
SVD Singular value decomposition
GPR Gaussian Process Regressor
i.i.d. Independent and Identically Distributed
RBF Radial Basis Function
ILC Iterative Learning Control
MPC Model Predictive Control
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Symbols

Symbol Definition

R set of real numbers
N set of non-negative integers
X⊤ Transpose of matrix X
X−1 Inverse of symmetric matrix X
X† Pseudo-inverse of matrix X
X ≻ 0 X is symmetric positive definite
X(i) i-th column of matrix X
He(X) X +X⊤

Sym(X) X −X⊤

λmin(X), λmax(X) min. and max. eigenvalues of symmetric matrix X
diag(X1, X2) block-diagonal matrix composed of matrices X1 and X2

I identity matrix of appropriate dimension

∥x∥ =
√
x⊤x 2-norm of vector x ∈ Rn

∥f∥∞ = supt∈R ∥f(t)∥ ℓ∞−norm of function f : R→ Rn

B∞ set of bounded functions f
(⋆) Transpose quantity in an expression or in a symmetric

matrix
x ∼ N (µ,Σ) The variable x has a Gaussian (Normal) distribution

with mean vector µ and covariance matrix Σ
p(y|x) conditional random variable y given x and its probability

(density)
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Chapter 1

Introduction

Soft robotics is the new hot spot in the field of robotics and also the natural
extension of the mature rigid-body robot research. Its maturity is inseparable from
the development of various fields such as computing, manufacturing, and materials,
etc. The special complexity of soft robots also provides additional challenges for
each direction. Among these, control is undoubtedly central to the successful appli-
cation and function of soft robots. While the research about corresponding dynamic
modeling and control methods is currently insufficient.

In this thesis, we conduct research on key control problems in soft robotics. A
step-by-step approach is proposed, from modeling to control, and planning of the
soft robot motion. As a first step we present the background of soft robotics, our
research motivations and the challenges we face.

1
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1.1 Background

Inspired by various creatures in nature, soft robots have capabilities in terms of
large-scale flexibility, dexterity, compliance and adaptability [1]. These robots have
been designed to perform complex tasks in interaction with humans, which involve a
high degree of uncertainty, e.g., surgery, assistive medical devices, search and rescue.
Up to now, considerable efforts have been devoted to the research and development
[2], [3]. Various hardware solutions have been developed to push the boundaries of
robot abilities [4]. Many researchers have sought to reproduce soft-bodied creatures
living in nature. For example, based on caterpillar locomotion, soft inchworm robotic
platforms have been designed such that they can crawl, inch or roll [5]–[7]. Flexible
fish-like robots capable of swimming underwater were made using silicone rubbers.
[8]–[10].

Figure 1.1: Various soft robots and manipulators [1]. a - Caterpillar-inspired locomo-
tion. b - A multi-gait quadruped. c - Active camouflage. d - Walking in hazardous
environments. e - Worm-inspired locomotion. f - Particle-jamming-based actuation.
g - Rolling powered by a pneumatic battery. h - A hybrid hard–soft robot. i - Snake-
inspired locomotion. j - Jumping powered by internal combustion. k - Manta-ray
inspired locomotion. l - An autonomous fish.

Apart from these replication of real creatures, soft manipulators also received
particular attention with the aim to achieve smooth and flexible deformations such
as elephant trunks [11], [12], octopus tentacles [13], [14], or skeletal spines of verte-
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brate animals [15]. Soft manipulators can be designed and fabricated with various
structures, materials, and actuation technologies, like the continuum robots actuated
by steel cables [16], by shape-memory alloys [17], by pneumatic artificial muscles [18],
or silicone soft robots [12], [19], etc.

The design of the soft robot determines the upper limit of the performance it can
achieve, and the control algorithm determines how much of the robot’s performance
can be utilized. Many attempts have already been made to control soft robots. Most
of these efforts are either based on heuristic algorithms or are only concerned with a
specific type of robot, and thus they are not able to propose a framework for control
that could be clear and possibly generic. Based on the work of interdisciplinary team
and former colleagues, we proposed a preliminary framework for dynamic modeling
to control of soft robots. To begin with, we will first discuss the structure and
mechanism of elephant trunk to illustrate the ideal soft robot and the type of control
performance we require.

1.2 Elephant trunk - ideal soft robot and source

of inspiration

For the survival of an elephant in the wild, its trunk is an indispensable tool.
Whether it is for drinking, eating and generally interacting with the outside world,
their trunk is a crucial interface. The elephant’s trunk has a high degree of flexibility,
moreover, flexibility without losing its strength.

An elephant trunk has about 40,000 muscle fibers divided into 16 distinct groups
according to the nervous system that controls them [20]. Since the muscles can only
contract, the 16 groups can be further simplified as 8 antagonistic pairs that are
performing independent actions. For comparison, the human tongue is made up of 8
groups and 4 pairs of muscles. The elephant’s trunk can be divided into 3 sections,
each with well-defined functions as shown in Table 1.1. For more detailed information
about anatomy and mechanism of an elephant’s trunk, readers can refer to [20]–[22].

Part of trunk Function
Section I-base bend
Section II-middle stretch and bend
Section III-tip stretch, bend, twist

Table 1.1: The function of each segment of the elephant trunk.
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(a) (b) (c)

Figure 1.2: Three type of elephant trunk functions (a) Bending (b) Stretching (c)
Twisting.

Researchers have obtained rich results on building soft robots imitating the trunk
structure with various sizes, material and actuators [23]–[25]. Whereas, several of
them have surpassed the real elephant trunk in terms of strength and accuracy, their
performances are still far from those of a real trunk, the limitations are due to the low
detection and control performances. In relation to the research goals of this work,
let us analyze the characteristics of trunk control based on the typical behavior of
elephants.

(a) (b) (c)

(d) (e) (f)

Figure 1.3: The elephant puts the hat on a man’s head from its own head [26]. (a)-(e)
are stepwise figures and the trajectory is shown in (f).
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To illustrate a typical trunk movement, Figure 1.3 shows the trajectory used to
pass a hat from an elephant’s head to a human’s. The trajectory of the hat Figure
1.3-(f) shows that the elephant is not moving its end-effector along the shortest
path (a straight line from a to c). Instead, the elephant estimates an appropriate
configuration of the trunk that can place the hat on the head of the man and moves
according to it. The method and criterion to generate the so-called suitable posture
are also the research focuses of neuroscientists [27]. However, this first move is not
fully successful, as the final position is point b (see figure 1-3f) instead of point c
which is the human’s head. This step is accomplished fast but inaccurate, while it
already gets close to the target. Since it is based on a planning trajectory and an
inverse modeling function in the elephant’s cerebellum, it is a feedforward control
step.

After getting close to the target i.e. point b, the elephant starts to move slowly
and carefully until it reaches point c and places the hat. This step is slower and
based on the vision of elephant, which corresponds to a feedback control step. Based
on this feedforward plus feedback control scheme, the elephant can manipulate its
trunk to accomplish various tasks. Note that this scheme is very similar for humans
when we want to perform manipulation tasks and trajectory tracking [28] as shown
in Figure 1.4.

+

−
Feedback
Control

Feedforward
control

+

+
Plant

eReference

Figure 1.4: The feedback feedforward control model of cerebellum [28].

Even for an elephant that uses its trunk all its life, it remains unable to manipulate
it with perfect precision using a feedforward neural system. While the bones and
joints bring higher rigidity to human arms, thus we can achieve movements with high
accuracy after practice. This comparison reflects the complexity of soft robot system,
but also exhibits the effectiveness of this feedforward-feedback control mechanism.
A natural idea is to apply such control mechanism to soft robots, while the current
control performance is far from that of an elephant. The limitations and challenges
are addressed in the next section.
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1.3 Challenges and state of the art

The unique properties of soft robots introduce numerous complexities. On the
other hand, these complexities enable the excellent performance of soft robots. New
challenges are introduced at each step from design to control, which also motivates
us to explore new methods.

1.3.1 Modeling

Existing first-principles about deformated body come from continuum mechanics
[29]. However, it is difficult to derive control-oriented models due to the following
main factors. First, the deformation of the soft robot occurs everywhere but not
uniformly in the robot body, unlike the rigid robot, which deforms only at the joints.
Such a system can only be formulated as an infinite-dimensional system. Second,
such robots exhibit highly nonlinear dynamics caused by material properties and
geometrical structures, which are further complicated by imperfect fabrication and
actuation-sensing techniques [30]. Therefore, unlike the rigid case, developing reliable
models in soft robotics remains challenging for both simulation and control design
purposes [31].

Geometrical simplification has been exploited to build piece-wise constant cur-
vature (PCC) models at early stage of soft robots control [16]. For PCC modeling,
the soft robot is represented as a set of circular arcs with only bending behaviors
being taken into account. Since the relationship between constant curvature sections
can be described by a homogeneous transformation matrix [16], PCC-based meth-
ods are mostly suitable for multi-section soft manipulators. To enlarge the system
application of PCC-based formulation, a dynamical model obtained by connecting
the soft robot to an equivalent augmented rigid robot has been proposed in [32]
for dynamic tracking control of planar soft robots. Some other PCC-based exten-
sions, e.g., polynomial curvature modeling, have been discussed in [33]. Note that
PCC-based modeling method is inherently limited to beam-like robots, which seems
difficult to be adapted to a wide range of soft robot structures [34]. To overcome the
difficulties in obtaining high-quality models for soft robots, data-driven and machine
learning approaches have been also developed [31]. Using experimental data, these
approaches directly identify the robot input-output relationship to derive accurate
kinematic models for open-loop control of soft robots [35].

Although the results from continuum mechanics cannot be used directly for the
control synthesis, they can be discretized for high-fidelity simulation. Two notable
modeling approaches can be emphasized: i) discretized Cosserat modeling, ii) fi-
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(a)
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(b)

(c) (d)

Figure 1.5: Illustration of different modeling method. (a) Real silicon rubber trunk
robot. (b) Constant curvature model with three section. (c) Cosserat rod model
with sliced discretization. (d) Finite element model with tetrahedron discretization.

nite element modeling. Cosserat rod theories take into account all possible rod-
deformation modes, e.g., bending, twisting, shearing, stretching, under a wide range
of boundary conditions [36]. The continuous Cosserat method represents the dy-
namics of soft robots by continuously stacking an infinite number of micro disks
as shown in Figure 1.5, leading to infinite-dimensional robot models formulated as
partial differential equations (PDEs). Although this method can accurately describe
continuum structures in the presence of external loads and different actuation meth-
ods [2], [37], it is hard to directly leverage PDEs formulations for a control synthesis.
Discretization of Cosserat models has been proposed in [38] for multisection soft ma-
nipulator dynamics under the assumption of piece-wise constant strain (PCS) along
the soft arm. Inheriting from the continuous Cosserat rod theory, the discretized
Cosserat method can preserve the geometrical and mechanical properties and take
intro account various types of deformation and external loads. However, Cosserat-
rod based modeling is currently limited to the description of multi-section soft robots
with rod-like structures [38]. Moreover, a fine discretization of Cosserat-rod models
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results in a drastic increase of computational burden.
Alternatively, the finite element method (FEM) is a remarkable solution for soft

robot modeling, which is based on the discretization of a complex geometric robot
shape into a finite number of smaller and simpler elements. Since the first FEM-
based modeling and control result in [39], various extensions have been successfully
developed for soft robots, e.g., collision handling [40], inflatable deformations [41],
force sensing [42], etc. FEM-based methods can provide not only high-quality models
but also a great flexibility to deal with a large variability of soft robot structures.
Moreover, while simulating robot deformations, FEM modeling allows introducing
some physical effects so that actuation methods, including magnetic field force and
thermal strain, piezoelectric effect, and frictional force, can be integrated [43]. Note
that FEM-based modeling has laid a solid foundation for recent theoretical and
technical developments related to the SOFA1 open-source simulation platform [41],
which has proved the feasibility and the relevance of model-based strategies for soft
robots.

1.3.2 Feedback control

Despite the fact that this is the core of the problem for soft robots, there are still
many steps to be taken to arrive at a generic design. The main difficulties are:

1. Lack of control oriented model
Existing results for controller synthesis are not directly applicable to soft robot
models which are either infinite dimension or large scale and often written (and
so optimized) for simulation purposes.

2. High non-linearity from both soft material and geometrical structure
The proposed controller is supposed to handle drastic non-linear behavior with-
out having a complete realistic model, or with a description of all the nonlinear-
ities. Most results obtained in non-linear control rely on a sufficiently accurate
model [44].

3. Imperfections of actuators, sensors and robot fabrication
Most soft robots use hardware and actuators (cable-driven, pneumatic, artificial
muscle, etc) that are manufactured with a high degree of variability in the
final product. These uncertainties can neither be fully described nor properly
modeled.

1The plugin SoftRobots of the SOFA Framework with related publications can be found at:
https://project.inria.fr/softrobot.

https://project.inria.fr/softrobot
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4. Robot configuration space is on manifold instead of Euclidean space
A soft robot is flexible but still limited, generalized coordinates for any available
robot model are still constrainted on a manifold. To perform a task, it is
therefore necessary to use either a motion planing method to obtain desired
trajectory of generalized coordinates or to design a non-linear controller directly
on the manifold.

Despite the difficulties, many new ideas have been and are proposed. The most
common method is not to consider directly the dynamics of the system, but to control
the robot in quasi-static mode.

Quasi-static control

Quasi-static control exploits the Jacobian matrix J(q) that provides the rela-
tionship between the control input variation and the displacement of the robot end-
effector. While the robot is moving at low speed, the relationship is given with:

∆y = J(q)∆u. (1.1)

where y is the coordinate that the end-effector will reach in steady state, u is control
input, q is the generalized coordinate describing robot configuration. The required
control input corresponding to the desired end-effector displacement can be easily
obtained with Jacobian. Since the Jacobian is a function of the robot coordinates, an
additional synchronization step is required after each control execution to update the
Jacobian to the new configuration, making the control quasi-static. The difference
between various quasi-static control methods is mainly about how to obtain the
Jacobian.

For soft robots described via the PCC model, since the relationship between the
curvature of each segment of the robot and its end-effector can be described by a
transformation matrix, this Jacobian matrix can be directly obtained for control.
The curvature of each section in this case acts as both generalized coordinates and
control input. It has been applied to several soft robots with various actuation
systems and sensing techniques [16], [45]. It is almost direct to apply but limited
to multi-segment robots and the constant curvature assumption is not always valid,
especially for non-negligible external loads including gravity [38]. Besides the PCC
model, the Jacobian matrix of the robot can also be obtained from the finite element
model through the Schur complement [39]. Based on quadratic programming (QP)
optimizations, a control input corresponding to the desired displacements can be
obtained under possible constraints and contact conditions [41]. In order to update
the Jacobian matrix, an observer built from deduced FEM model is proposed [46].
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Dynamic control

The main interests of dynamic controllers lie in the following directions:

� Ensure smooth and continuous motion during robot movement

� Compensate for changes of internal and external forces: such as gravity and
elastic forces

� Compensate for disturbances and uncertainties in robot motion

Although basic movements can be achieved with quasi-static controllers, it seems
difficult to go further with such methods to ensure smooth motions and/or manipula-
tions requiring dexterity. To go towards such tasks, close to real (animal) movements,
a dynamic control seems to be a promising solution. Nevertheless, dynamic control
synthesis requires the dynamic model of the robot, so there is few related research.

One way to achieve such a dynamic control is to enlarge the application scope
of PCC-based formulation . For example, a dynamical model has been obtained by
connecting the soft robot to an equivalent augmented rigid robot [32] for tracking
control of planar soft robots, in which virtual inertia matrix can be estimated for
each section of soft robot thus enabling dynamic control.

FEM-based dynamic feedback control looks substantially more challenging. In-
deed, the quality of FEM models highly depends on the density of the mesh to be
performed for the geometric robot shape. Hence, a reliable soft robot model requires
a huge number of finite elements, i.e., states, which makes classical control results
inapplicable. Therefore, model-order reduction is essential for dynamic feedback
control design of such large-scale robot models [47]. Note that the design of FEM-
based dynamic controllers is generally relied on linearized models, obtained from a
linearization around either a local equilibrium [12], [48] or a desired trajectory [49].
Then, the effectiveness of these dynamic feedback controllers is generally limited to
a small range of the workspace due to the large nonlinearity of soft robots. As an
iterative modeling method, a global nonlinear model can not be obtained from the
finite element model. However, using the framework of Linear Parameter Varying
(LPV) systems or quasi-LPV gives us the possibility to represent with accuracy the
nonlinear system on a large part of the workspace using a set of vertices (linear mod-
els) connected via nonlinear functions [50]. From this kind of representation, output
feedback controller synthesis can be applied including performances and robustness,
it is the core work of this thesis.
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1.3.3 Inverse kinematics

The inverse kinematics of soft robots has not been specifically discussed, although
it cannot be bypassed in the research of soft robot. Unlike rigid-body robots, most
kinematic and dynamic models of soft robots do not use the same generalized co-
ordinates. Therefore, inverse kinematics needs to be paid special attention. Never-
theless, as previously discussed, inverse kinematics can be of crucial interest when
trying to complete a complex task (touching, grasping, exploring...), the target posi-
tion and the robot configuration are supposed to be obtained for the task. The PCC
model divides the soft robot into several idealized segments, however, such drastic
model simplification also results in the robot’s flexibility not being fully utilized [51].
Besides, existing data-driven models mainly focus on the robot Jacobians and en-
deffector instead of configurations [52]. Until now, closed form solution of inverse
kinematics for soft robot has not been proposed [53].

1.4 Thesis Organization

This thesis extends the previous work of the team with Ph.D. Maxime Thieffry
[48], in which the research of dynamic control for soft robots was preliminarily con-
ducted. FEM based reduced order modeling and observer based controller design
were proposed in his work, while the research is limited to linear model and small
part of workspace.

The purpose of this thesis is to generalize the existing linear modeling and con-
trol framework to realize the dynamic control and planning on the larger possible
subspace of the workspace, and possibly on the whole workspace.

In chapter 2, a framework for dynamic tracking control of robots is proposed. We
discuss in detail the model reduction method proposed in [48] and use it to obtain the
system model. This model enables the design of a feedback-feedforward controller
including a disturbance observer.

In chapter 3, a generic nonlinear reduced-order tracking control method for elastic
soft robots is proposed. To this end, a new linear parameter varying (LPV) control
framework is developed using both reduced order models and the data collected from
the soft robots.

In chapter 4, we focused on the motion planning and inverse kinematic problem
of soft robots. A novel kinematic representation of soft robot combining both model
and collected data is proposed, as well as a direct inverse kinematics method based
on measurement data.

In the last chapter 5, we perform a preliminary research on the feed-forward
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learning control method for soft robots. The idea is to enable the feedforward con-
trol of soft robot, in which reversible nonlinear models are intractable. Functional
representations of feed-forward control and feed-forward learning laws with stabil-
ity guarantees are illustrated. At the end, the main contributions are recalled to
conclude this thesis.
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The main contributions of the PhD have been the subject of the following publi-
cations:

1. Shijie Li et al., “Equivalent-Input-Disturbance Based Dynamic Tracking Con-
trol for Soft Robots Via Reduced Order Finite Element Models”, IEEE/ASME
Transactions on Mechatronics, vol. 27, iss. 5, pp. 4078-4089, 2022.
This is the main material of Chapter 2.

2. Shijie Li et al., “Reduced-Order Model Based Dynamic Tracking for Soft Ma-
nipulators: Data-Driven LPV Modeling, Control Design and Experimental Re-
sults”, Submitted to IFAC Control Engineering Practice.
This is the main material of Chapter 3.

3. Shijie Li et al., ”Posture Based Inverse Kinematics for Soft Manipulators”, In
preparation for journal publication.
This is the main material of Chapter 4.
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Chapter 2

Equivalent-Input-Disturbance-
Based Dynamic Tracking Control

In the previous works of the team [48], basic framework for linear modeling and
control has been proposed. Nevertheless, the resulting reduced order models are not
ideal for building nonlinear models especially because the mechanical structure of
the system is partially lost. In this chapter, we thoroughly studied how to use a new
projector for the proper orthogonal decomposition (POD) algorithm to significantly
reduce the large-scale robot models, obtained from finite element methods (FEM),
while preserving their structure and stability properties. The new projector helps
relocate the uncertainties of the system and the retained structure enables the design
of a feedback-feedforward controller including a disturbance observer.

The feedback gains of the observer-based controller are computed from an opti-
mization problem under linear matrix inequality constraints with guaranteed stability
using Lyapunov theory. The effectiveness of the proposed dynamic control framework
has been demonstrated via both high-fidelity FEM simulations and experimental vali-
dations, performed on two soft robots of different natures. In particular, comparative
studies with state-of-the-art control methods have been also carried out to highlight
the interests of the new soft robot control results.

15
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2.1 Introduction

Dynamic feedback control has been proved as a solution to improve the closed-
loop behaviors of soft robots with FEM models [47]. FEM models require a spatial
discretization of the structure into a mesh [54], which can thus handle a large class
of elastic soft robots with different geometries and materials [13]. However, the finer
is the mesh the better is the model accuracy, as illustrated in Figure 2.1. Then, a
reliable robot model can be only obtained with a very large number of variables.
The large-scale nature of soft robot models implies technical challenges in designing
dynamic controllers with conventional control tools [55]. Moreover, the obtained
controllers cannot be directly applied to soft robots in practice. Hence, model order
reduction (MOR) is useful for FEM-based dynamic control design [47], [56]. Regard-
ing the existing results on MOR-based control for soft robots, the obtained models
lose the structure of the mechanical system, for which the system state is composed
of generalized coordinates and their derivatives. The order reduction generally does
not allow to keep a structure where the state remains composed of displacement
and velocities, thus losing part of the physical meaning and making motion plan-
ning more complex. Moreover, the structure mixing displacements and velocities
spreads the uncertainties in a more important way and thus introduces an additional
conservatism in the conditions to get a robust controller.

Figure 2.1: Illustrations of FEM modeling for a Trunk robot. (a) Visual model. (b)
FEM model with a coarse mesh. (c) FEM model with a medium-size mesh. The blue
triangulars on the FEM model are the different facets of the tetrahedral elements.
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Motivated by the above technical issues, we modify the proper orthogonal de-
composition (POD) method used in [47], [48] to significantly reduce the order of
FEM soft robot models while preserving their structure and stability properties.
As it will be shown, being able to preserve the structure enables a more effective
dynamic control scheme, especially in case of uncertainty and disturbances. The
proposed control scheme is formed with three main components, i.e., feedforward
control, disturbance-estimator control and feedback control. Using the dynamic FEM
reduced-order model, the feedforward action is designed to account for the reference
trajectory whereas the disturbance-estimator control is designed to compensate the
modeling uncertainty. The observer-based feedback control is designed to guarantee
a desired tracking performance, specified by an optimized ℓ∞−gain and a predefined
linear matrix inequality (LMI) region of the closed-loop robot system. Specifically,
our main contributions can be summarized as follows:

� Compared to the related works [47], [48], we propose a new projector for the
POD reduction method. Then, the reduced-order models of soft robots can
be obtained while preserving the structure and stability properties, which is
crucial to design an effective feedback-feedforward control scheme in presence
of modeling uncertainties.

� Exploiting the equivalent-input-disturbance (EID) concept [57], [58] for a spe-
cific mechanical model structure of soft robots, we develop a FEM model-based
control framework to achieve high-precision tracking tasks despite of unknown
uncertainties and disturbances. The closed-loop performance is rigorously guar-
anteed by Lyapunov stability theory, which is advantage in comparison with
most of existing results on soft robotics control.

� High-fidelity SOFA simulations and experimental validations have been per-
formed on two soft robots with different natures to demonstrate the effective-
ness of the proposed control framework.

2.2 Modeling of Soft Robots

This section provides a procedure to obtain control-based models for large-scale
soft robotics systems.



2.2. Modeling of Soft Robots 18

2.2.1 From FEM Modeling to State-Space Representation

For the modeling of soft robots, FEM method is used to approximate the infinite-
dimensional model by subdividing it into a large amount of tiny elements [54]. The
resulting discretized model has the number of degrees of freedom proportional to the
number of elements. The dynamics of a deformable soft robot can be described as
follows [41]:

M(q)q̈ = P(q)−F(q, q̇) +H(q)u, (2.1)

where q ∈ Rn is the displacement vector, q̇ ∈ Rn is the velocity vector, u ∈ Rm is
the control input,M(q) ∈ Rn×n is the inertia matrix, F(q, q̇) represents the internal
elastic forces of soft robots, P(q) represents known external forces, H(q) is the control
input matrix. We consider the case that P(q) only contains the gravity force, and the
mass distribution does not change over time. Hence, the positive definite matrices
P(q) = P andM(q) =M are constant. Without loss of generality, assume that the
tracking control of soft robots is performed around an equilibrium point, defined as
(q0, q̇0) = (0, 0) and u0 = 0. Then, it follows from (2.1) that

P −F(0, 0) = 0. (2.2)

Moreover, around the equilibrium point, the internal force F(q, q̇) can be approxi-
mated as

F(q, q̇) ≈ F(0, 0) +K(q, q̇)q +D(q, q̇)q̇. (2.3)

The compliance matrix K(q, q̇) and the damping matrix D(q, q̇) are respectively
defined as

K(q, q̇) = ∂F(q, q̇)
∂q

, D(q, q̇) = ∂F(q, q̇)
∂q̇

.

Substituting (2.2) and (2.3) into (2.1), the linearized FEM model of the soft robot
can be obtained as

Mq̈ ≈ −K(0, 0)q −D(0, 0)q̇ +H(0)u. (2.4)

For conciseness, we denote K = K(0, 0), D = D(0, 0) and H = H(0). Then, system
(2.4) can be rewritten in the state-space form

ẋ = Ax+Bu, y = Cx, (2.5)

where x =
[
q̇⊤ q⊤

]⊤ ∈ R2n. The matrices A ∈ R2n×2n and B ∈ R2n×m are large-
scale sparse, defined as

A =

[
−M−1D −M−1K

I 0

]
, B =

[
M−1H

0

]
. (2.6)

The system output y ∈ Rp represents the coordinates of the robot end-effector.
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Remark 1. The compliance matrix K and the damping matrix D are symmetric
positive definite. Due to the large-scale feature of system (2.5), i.e., n > 3000, and
the scattered connection between local neighbor elements in FEM modeling, these
matrices are also sparse.

2.2.2 Model Order Reduction for Soft Robots

Many model order reduction methods have been proposed for large-scale systems,
e.g., singular value decomposition (SVD), moment matching [59]. As an SVD-based
method, POD enables an effective model order reduction with a priori error bound.
Moreover, in contrast to most of existing order reduction methods, POD algorithms
can be directly applied to large-scale nonlinear systems [60]. Hence, POD has been
shown as a suitable order reduction method for soft robots [47].

At the beginning of the POD process, responses of the system states with respect
to excitation signals are stacked to construct snapshot matrix. To exploit the data
interdependence, the SVD of snapshot matrix is performed to obtain the modal
decomposition of system response. The system state can be significantly reduced
through an orthogonal projection operator T ∗

r ∈ R2n×2l, defined as[
xr
xr̄

]
=

[
T ∗
r

T ∗
r̄

]
x, (2.7)

where xr ∈ R2l is the reduced state vector with l ≪ n, xr̄ is the neglected state
vector, T ∗

r is the projector truncated from left singular matrix of SVD and T ∗
r̄ is the

orthogonal complement of matrix T ∗
r . Since the POD method only requires SVD

operations to obtain the projector, this method is computationally efficient for a
priori given snapshots [60].

Despite its effectiveness in reducing the order of system (2.5) for control design,
the POD projection (2.7) generally does not allow preserving the stability and the
mechanical structure properties of this large-scale system [61], which are crucial for
the proposed EID-based control scheme. To overcome this drawback, we propose a
modified POD projection taking into account the specific matrix structures of system
(2.5). To this end, only the displacement vector is projected into the low-dimension
space. Then, the reduced velocity vector can be obtained with the same projector
matrix. As a result, we have

xr =

[
q̇r
qr

]
=

[
T 0
0 T

] [
q̇
q

]
= Trx. (2.8)
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Applying the proposed projector (2.8) to system (2.5), the following approximated
reduced-order model can be obtained:

ẋr = Arxr +Bru+ TrAT
⊤
r̄ xr̄,

y = Crxr,
(2.9)

where Tr̄ is the orthogonal complement of matrix Tr, and

Ar = TrAT
⊤
r =

[
−TM−1DT⊤ −TM−1KT⊤

I 0

]
,

Br = TrB =

[
TM−1H

0

]
, Cr = CT⊤

r .

(2.10)

The accuracy of the POD reduced-order models depends on the decay rate of the sin-
gular values of the snapshots [47]. Figure 2.2(a) depicts the evolution of the singular
values corresponding to the position snapshots of the Trunk robot discussed in Sec-
tion 2.5. As shown in Figure 2.2(b), a fast decay of singular values is clearly observed
for the first four values, which represent more than 95% of the singular values of the
3324-state FEM robot model. Then, the POD method with the proposed projector
(2.8) can significantly reduce the number of the state variables, i.e., from 3324 to 4
states, while keeping a good modeling quality for dynamic control purposes.
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Figure 2.2: Singular values of the position snapshots of a Trunk robot. (a) Evolution
of the singular values. (b) Six first singular values.

Remark 2. With the proposed POD projector (2.8), the matrix structures are pre-
served between system (2.6) and its reduced-order counterpart (2.9), i.e., the pa-
rameters are only involved in the upper-half of the state-space matrices. As shown
in the sequel, this enables an effective EID-based control framework to compensate
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the modeling uncertainty for tracking performance improvements. This model order
reduction property preservation has not been yet exploited for dynamic control of
soft robots.

Model Error Analysis

We consider uncertainty in the knowledge of compliance, damping and control
matrices as

K̂ = K +∆K, D̂ = D +∆D, Ĥ = H +∆H,

where K̂, D̂, Ĥ are the estimations, K, D, H the real values, and ∆K, ∆D, ∆H
the uncertainties. Since the system structure is preserved, these uncertain terms are
taken into account in the reduced-order model (2.9) as

ẋr = Ârxr + B̂ru+ TrÂT
⊤
r̄ xr̄, (2.11)

with
Âr = Ar +∆Ar, B̂r = Br +∆Br,

Â = A+∆A, ∆A =

[
−M−1∆D −M−1∆K⊤

0 0

]
,

∆Ar = Tr∆AT
⊤
r , ∆Br =

[
TM−1∆H

0

]
.

Note that due to the specific upper-half structures of matrices Br, ∆Ar and ∆Br,
the following matrix decompositions can be performed:

∆Ar = BrB
†
r∆Ār, ∆Br = BrB

†
r∆B̄r, (2.12)

where B†
r =

(
B⊤

r Br

)−1
B⊤

r is the pseudo-inverse of Br, and

∆Ār =
[
−TM−1∆DT⊤ −TM−1∆KT⊤] ,

∆B̄r = TM−1∆H.

Let us define a lumped disturbance as

dl = B†
r∆Ārxr +B†

r∆B̄ru. (2.13)

Moreover, to take into account the neglected state dynamics for the control design,
we can decompose

TrÂT
⊤
r̄ xr̄ = Brdq̈ +Br̄dq̇. (2.14)
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where Br̄ is an orthogonal complement of Br. Note that the disturbance dq̈ (re-
spectively dq̇) corresponds to the neglected dynamics related to the acceleration q̈
(respectively velocity q̇). From (2.12), (2.13) and (2.14), the uncertain reduced-order
model (2.11) can be represented as

ẋr = Arxr +Br(u+ de) +Br̄dq̇,

y = Crxr,
(2.15)

with de = dq̈ + dl.

Transformation of Generalized Coordinates

Although the proposed POD projector (2.8) allows preserving the structures of
the state-space matrices, the state variables of the reduced-order model (2.9) are not
the displacement and the velocity of soft robots in the Cartesian coordinates. These
new state variables can be considered as generalized coordinates. Hence, a coordi-
nate transformation between generalized coordinates and Cartesian coordinates is
required to design an effective model-based feedforward control action. Indeed, for
trajectory tracking only the robot outputs are required to track their corresponding
reference signals, directly defined in the Cartesian coordinate system, i.e., a refer-
ence model is generally not available in the generalized coordinate system for control
design as in [48].

Since the output of soft robots only includes the coordinates of the end-effectors,
it follows from (2.9) that

y = Crxr = Cgqr,

with Cr =
[
0 Cg

]
and Cg ∈ Rp×l. Then, if the order reduction is performed with

p = l, then the proposed POD method can provide a full-rank matrix Cg. Hence,
for any arbitrary desired trajectory r in Cartesian coordinates, the corresponding
trajectory rg in generalized coordinates can be defined as rg = C−1

g r. As shown in
(2.18), this relation allows for a full use of the dynamic FEM reduced-order model
(2.15) of soft robots to design an effective feedforward control action.

2.3 Tracking Control Problem Formulation

This section formulates the tracking control problem of soft robots. To this end,
we define the tracking error in generalized coordinates as e = xr − rg. Then, the
tracking error dynamics can be defined from (2.15) as

ė = Are+Br(u+ de) + Arrg − ṙg +Br̄dq̇. (2.16)
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To deal with the modeling uncertainty and improve the tracking control performance
of soft robots, we propose a feedback-feedforward control scheme composed of three
components as

u = uff + udc + ufb, (2.17)

where uff is the feedforward control, udc is the disturbance-estimator based control,
and ufb is the feedback control. The proposed tracking control scheme is illustrated
in Figure 2.3.

Figure 2.3: EID observer-based tracking control structure for soft robots.

Feedforward Control

The feedforward control uff accounts for the affect of the reference signal rg,
considered as a known disturbance, on the closed-loop system. Hence, this control
action is designed such that

Bruff = −(Arrg − ṙg). (2.18)

The feedforward action can be designed from (2.18) as

uff = −B†
r(Arrg − ṙg). (2.19)

Disturbance-Estimator Based Control

The lumped disturbance de includes the nonlinearity and modeling uncertainty.
Note from (2.16) that de enters in the system dynamics via the same channel as the
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input u, i.e., matching disturbance. The estimation of disturbance d̂e consists of high-
frequency noise, so that a filtered disturbance signal d̂ef is used for the compensation.
Then, the disturbance-estimator based control can be designed as follows:

udc = −d̂ef , (2.20)

where d̂ef is an estimate of the filtered signal def of the lumped disturbance de. To
estimate this disturbance, we assume that de is of low-frequency, whose dynamics can
be efficiently captured using a second-order polynomial signal [62]. Note that this
assumption is suitable due to the low-frequency behaviors of soft robots. Moreover,
inspired by the EID approach [57], we integrate a low-pass filter with a time constant
Tf of the form

F(s) =
1

1 + Tfs
I, (2.21)

where s is the Laplace variable, to limit the angular-frequency band of the distur-
bance estimate as shown in Figure 2.3. Then, the disturbance model is given as

ḋ = Jd, (2.22)

with

d =

defde
ḋe

 , J =

− 1
Tf
I 1

Tf
I 0

0 0 I
0 0 0

 .
From (2.15) and (2.22), we propose the following Luenberger-like unknown-input
observer to estimate simultaneously the state xr and the unknown disturbance de:

˙̂xr = Arx̂r +Br(u+ d̂e) + Lx(y − ŷ),
˙̂
d = Jd̂+ Ld(y − ŷ),
ŷ = Crx̂r,

(2.23)

where d̂ is the estimate of d, the observer gains Lx ∈ R2l×p and Ld ∈ R3m×p are to
be designed.

Remark 3. The filter F(s) in (2.21) is integrated into the PI observer (2.23) to offer
a degree of freedom to regulate the angular-frequency band for disturbance rejection.
Then, the value of Tf can be selected as

Tf ∈
[

1

10ωr

,
1

5ωr

]
,
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where ωr is the highest angular frequency selected for disturbance rejection purposes
[57].

The dynamics of estimation error ε =

[
xr − x̂r
d− d̂

]
can be defined from (2.15), (2.22)

and (2.23) as follows:
ε̇ = (Ao − LoCo)ε+Boddq̇, (2.24)

with

Ao =

[
Ar B̃r

0 J

]
, Bod =

[
Br̄

0

]
, ε =

[
xr − x̂r
d− d̂

]
,

Lo =
[
L⊤
x L⊤

d

]⊤
, B̃r =

[
Br 0

]
, Co =

[
Cr 0

]
.

Feedback Control

The feedback control aims at guaranteeing the closed-loop stability and improv-
ing the steady-state tracking performance. To this end, we consider the following
proportional-integral control law:

ufb = Kp(x̂r − rg) +Kiei, (2.25)

where Kp ∈ Rm×2l and Ki ∈ Rm×p are the feedback gains to be designed, and

ėi = Cr(x̂r − rg). (2.26)

With uff , udc and ufb respectively defined in (2.19), (2.20) and (2.25), substituting
the control expression (2.17) into system (2.16), the tracking error dynamics can be
represented as

ξ̇ = (Ac +BcKc)ξ +Boε+Bcddq̇, (2.27)

where

ξ =
[
e⊤ e⊤i

]⊤
, Ac =

[
Ar 0
Cr 0

]
, Bc =

[
Br

0

]
,

Kc =
[
Kp Ki

]
, Bo =

[
−BrKp 0

0 0

]
, Bcd =

[
Br̄

0

]
.

The extended closed-loop system can be defined from (2.24) and (2.27) as

˙̃x =

[
Āc Bo

0 Āo

]
x̃+

[
Bcd

Bod

]
dq̇, (2.28)
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where x̃ =
[
ξ⊤ ε⊤

]⊤
, and

Āc = Ac +BcKc, Āo = Ao − LoCo.

Since we focus on the tracking control, the performance output associated to system
(2.28) is the position tracking error, i.e., z = e = C̃rξ, with C̃r =

[
Cr 0

]
. Hence,

one has

z = Fx̃, F =
[
C̃r 0

]
. (2.29)

To specify the performance of the closed-loop system, we exploit the concept of
D−stability [63] to design both the observer (2.23) and the feedback controller (2.25).
The idea of D−stability is to design a controller or observer whose poles are located
in specific regions of a complex plane.

To this end, we consider an LMI region D(r, θ, α) defined as a subset of the
left-half complex plane to guarantee a minimum decay rate α, a minimum damping
ratio ζ = cos(θ) and a maximum undamped natural frequency ωd = r sin(θ). The
following lemma guarantees the D−stability of a matrix A.

Lemma 1 ([63]). All the eigenvalues of A are located inside the region D(r, θ, α) if
and only if there exists a symmetric positive definite matrix X such that

A⊤X+XA+ 2αX ≺ 0,[
−rX AX
⋆ −rX

]
≺ 0,[

sin(θ)
(
AX+XA⊤) cos(θ)

(
AX−XA⊤)

⋆ sin(θ)
(
AX+XA⊤)] ≺ 0.

Hereafter, we propose an effective solution for the following observer-based feed-
back control problem.

Problem 1. Consider two LMI regions Dc(rc, θc, αc) and Do(ro, θo, αo). Determine
the control gain Kc (respectively the observer gain Lo) such that the poles of the
dynamic matrix Āc (respectively Āo) remain inside the region Dc(rc, θc, αc) (respec-
tively Do(ro, θo, αo)). Moreover, the extended system (2.28) satisfies the following
closed-loop properties.

(P1) For dq̇(t) = 0, ∀t ≥ 0, system (2.28) is exponentially stable with a decay rate
α > 0. For any initial condition x̃(0) and any bounded disturbance dq̇(t) ∈ B∞,
there exists a bound η(x̃(0), ∥dq̇∥∞) such that

x̃(t) ≤ η(x̃(0), ∥dq̇∥∞), t ≥ 0.
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(P2) For ∀x̃(0) and ∀dq̇(t) ∈ B∞, we have performance output z bounded as

lim
t→∞

sup∥z∥ ≤ γ∥dq̇∥∞, γ > 0, (2.30)

where the ℓ∞−gain is specified in Theorem 1.

Remark from (2.29) and (2.30) that a smaller value of the ℓ∞−gain γ leads to a
better tracking control performance.
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2.4 EID-Based Output Feedback Tracking Con-

trol

This section provides conditions to design both the unknown input observer (2.23)
and the feedback control law (2.25) satisfying the closed-loop specifications in Prob-
lem 1.

Theorem 1. Consider the closed-loop system (2.28) and two LMI regions
Dc(rc, θc, αc) and Do(ro, θo, αo). If there exist symmetric positive definite matrices
X ∈ R(2l+p)×(2l+p), Q ∈ R(2l+3m)×(2l+3m), matrices M ∈ Rm×(2l+p), N ∈ R(2l+3m)×p,
and positive scalars µ, ν such that the optimization problem (2.31) is feasible.

minimize µ+ ν, (2.31)

subject to (2.32)

He

[
Ao + αcQ QBod

0 −αcνI

]
≺ 0, (2.33)

He(Ac + αcX) ≺ 0, (2.34)[
−rcX Ac

⋆ −rcX

]
≺ 0, (2.35)[

sin(θc)He(Ac) cos(θc)Sym(Ac)
⋆ sin(θc)He(Ac)

]
≺ 0, (2.36)

He(Ao + αoQ) ≺ 0, (2.37)[
−roQ Ao

⋆ −roQ

]
≺ 0, (2.38)[

sin(θo)He(Ao) cos(θo)Sym(Ao)
⋆ sin(θo)He(Ao)

]
≺ 0, (2.39)X 0 XC̃⊤

r

⋆ Q 0
⋆ ⋆ µI

 ⪰ 0, (2.40)

with
Ac = AcX +BcM, Ao = QAo −NCo.

Then, the feedback observer-based controller (2.25) is such that the closed-loop prop-
erties specified in Problem 1 are satisfied with a guaranteed ℓ∞−gain γ =

√
νµ.

Furthermore, the control and observer gains are respectively given by

Kc =MX−1, Lo = Q−1N. (2.41)
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Proof. The proof is postponed to Appendix A.

Remark 4. The design procedure in Theorem 1 is recast as a convex optimization
problem under LMI constraints. Here, the control gain Kc and observer gain Lo can
be effectively computed using YALMIP toolbox and SeDuMi solver [64].

Remark 5. The LMI region Dc(rc, θc, αc) is defined to represent the dominant low-
frequency dynamics of soft robots. Moreover, the damping ratio should be chosen
as small as possible to avoid oscillatory behaviors of the closed-loop robot systems.
However, without restrictive constraints, the LMI region Do(ro, θo, αo) should be
specified to guarantee a fast convergence of the estimation error dynamics (2.24).

2.5 Illustrative Results and Evaluations

This section presents the control results obtained with both FEM-based simula-
tions and realtime experiments. To highlight the systematic feature of the proposed
tracking control method, we consider two different silicone soft robots for validations:
Diamond robot and Trunk robot, whose physical prototypes are described in [65].

2.5.1 FEM-Based Validations with Diamond Robot

The Diamond robot has four soft legs, which are actuated by cables as depicted
in Figure 2.4. This cable-driven robot can be considered as a soft version of parallel
robots. The movement of the Diamond robot is realized through a combination of
bending and compression of its four legs. Hence, most of the PCC-based approaches
[33] are no longer suitable for dynamic modeling and control of such a soft robot.
The weight of the Diamond robot is 0.5 [kg] and its height is 110 [mm] in the
initial position. The material parameters of this soft robot are obtained through
experiments. Then, the FEM model of the Diamond robot can be derived with 1570
nodes, leading to 9420 state variables. This high-fidelity FEM model is implemented
in the SOFA open-source simulation platform [41] for validations. Note that the
modeling error between FEM-based model and the real robot is less than 10% in
a workspace of 40 × 40 × 20 [mm3] around the rest position of the robot [39]. For
control design, a six-order dynamical model of the Diamond robot can be obtained
with the proposed POD model reduction method.

The FEM simulation is conducted in the SOFA framework. SOFA is an open
source framework dedicated to research, prototyping and development of physics-
based simulations. Sofa especially has advantages in real-time simulation of soft and
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elastic objects, so it is applied to soft robotics and surgical simulation. Our partner
DEFROST team in INRIA LILLE HAS been contributing to the research of soft
robotics and the development of the soft robotics toolbox in SOFA. More details on
the plugin SoftRobots for the SOFA Framework with related publications can be
found at the address: https://project.inria.fr/softrobot.

The control algorithms are implemented in MATLAB/SIMULINK environment
while the actuation is simulated in SOFA through TCP/IP socket. This SIMULINK-
SOFA co-simulation environment allows reducing significantly the costs related to
not only the design but also the real-time validation of complex soft robots.

(a) (b)

Figure 2.4: FEM-based schematic and real platform of the Diamond robot. The
red point in (a) represents the end-effector and the gray lines represent the driving
cables. These cables are shown in (b).

For the tracking control of the Diamond robot, we consider end effector trajecto-
ries of the form

yx(t) = 15 cos(ωt), yy(t) = 15 sin(ωt), yz(t) = 110 + t, t ∈ [0, 20] (2.42)

with ω = 1 [rad/s] for a fast trajectory tracking, and ω = 0.33 [rad/s] for a slow
trajectory tracking. This trajectory is defined within the cylindrical workspace of the
Diamond robot. To evaluate the control robustness performance with respect to the
modeling errors, we consider two test scenarios, i.e., without and with uncertainty
on Young’s modulus. This latter characterizes the softness property of the silicone
material, i.e., a softer material leads to a stronger oscillatory response in the open

https://project.inria.fr/softrobot/
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loop. Moreover, a comparison between the following FEM-based control methods is
performed to demonstrate the effectiveness of the new control method:

� Method 1: Inverse kinematics based QP control [15], [39].

� Method 2: Jacobian-based PID control [66], [67].

� Method 3: Proposed EID-based control.

For Method 1, the QP-based controller is composed of an PI controller and an QP
solver. The PI controller aims at providing a desired action of the robot end-effector
whereas the QP solver computes the actuation control through an inverse kinematic
optimization. The details on the QP-based control architecture and the related
tuning methods can be found in [15].

For Method 2, the PID controller is defined as

u(t) = J −1

(
Kpe(t) +Ki

∫
e(t)dt+Kdė(t)

)
,

where J is the Jacobian matrix of the soft robot, and Kp, Ki, Kd are the PID
control gains. Note that the Jacobian matrices of soft robots can be directly obtained
with SOFA platform for control design. Then, the PID controllers designed in both
Method 1 and Method 2 are properly tuned. Note also that due to the low resonant
frequency characteristics of soft robots, the ranges of the PID control gains are quite
narrow to avoid aggressive closed-loop behaviors.

Scenario 1 [Without Uncertainty on Young’s Modulus]

For this test scenario, the Young’s modulus of the FEM simulation model and
the FEM control-based model of the Diamond robot are both set to 150 [KPa],
i.e., no mismatch between two FEM models. The slow trajectory tracking is shown
in Figure 2.5. The feedforward action of the proposed controller and the inverse
kinematic control of Method 1 allow for a better tracking performance during the
steady-state phase compared to the PID controller. Observe in Figure 2.6 that
the drawbacks of Methods 1 and 2 become much more clear with a fast trajectory
tracking in comparison to the EID-based method, i.e., the dynamic response of the
QP-based controller is degraded and the steady-state tracking error induced by the
PID controller increases.
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Figure 2.5: Slow spiral trajectory tracking in Scenario 1.
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Figure 2.6: Fast spiral trajectory tracking in Scenario 1.

Scenario 2 [With Uncertainty on Young’s Modulus]

The Young’s modulus of the Diamond robot implemented in SOFA platform
remains 150 [KPa] as in Scenario 1. However, we modify the Young’s modulus of the
FEM control-based robot model to 180 [KPa] to introduce a modeling uncertainty
in the control design. The control performance of the three considered methods
for a slow spiral trajectory tracking is depicted in Figure 2.7. Due to modeling
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errors and without taking into account the robot dynamics, as expected the QP-
based controller leads to a worse behavior in transient responses compared to the
tracking results in Scenario 1. Note that a satisfactory control performance can
be maintained for both PID controller and EID-based controller in case of a slow
trajectory tracking. Figure 2.8 presents the fast trajectory tracking results. Since the
modeling error directly affects the Jacobian matrix and the inverse kinematics, the
tracking performance of the PID controller and QP controller are degraded, whereas
the closed-loop behavior is preserved with the proposed controller due to its effective
EID-based error compensation mechanism.
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Figure 2.7: Slow spiral trajectory tracking in Scenario 2.

For a quantitative performance analysis, we define the following integral square
tracking error (ISE) index:

ISE =

∫ ∆t

0

e(t)2dt, (2.43)

where ∆t is the tracking time. Figure 2.9 summarizes the tracking performance com-
parisons in terms of ISE index [mm2s] between the three FEM-based control methods
obtained with the 3D trajectory (2.42) and ∆t = 20 [s]. Remark that when there
is no significant modeling uncertainty, the QP-based controller can provide a better
tracking performance compared to the Jacobian-based PID controller. However, this
latter seems to be more robust with respect to uncertainties than the QP-based con-
troller. We can see also that the proposed EID-based control method provides the
best tracking performance in all the test scenarios.
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Figure 2.8: Fast spiral trajectory tracking in Scenario 2.
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Figure 2.9: Summary of the ISE performance comparisons. (a) Slow tracking without
uncertainty. (b) Fast tracking without uncertainty. (c) Slow tracking with uncer-
tainty. (d) Fast tracking with uncertainty.

2.5.2 Effectiveness of proposed controller

To reveal the insights of the EID-based controller (2.17) for tracking purposes, we
point out the specific role of each involved control component, i.e., feedback control
ufb, feedforward control uff , and disturbance-compensation based control udc. To
this end, we reconsider Scenario 2 with a fast trajectory tracking task, decomposed
into three phases:
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� Phase 1: From 0 [s] to 13 [s] with only feedback control, i.e., controller (2.17)
with uff = 0 and udc = 0.

� Phase 2: From 13 [s] to 23 [s] with feedback and feedforward control, i.e.,
controller (2.17) with udc = 0.

� Phase 3: From 23 [s] to 33 [s] with the complete EID-based controller (2.17).

The tracking control result along the y−axis direction is shown in Figure 2.10. During
Phase 1, the tracking is performed with significant errors in amplitude and in phase.
Integrating the feedforward control action in Phase 2 can only improve the phase
error since the amplitude error is still observed due to the modeling uncertainty.
Using the EID-based control law (2.17) in Phase 3, the amplitude error can be also
significantly reduced with the error-compensation term udc. Hence, the proposed
method allows to achieve an effective fast (and slow) tracking control for soft robots
despite the modeling errors.
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Figure 2.10: Three-phase fast trajectory tracking along the y−axis in Scenario 2.

2.5.3 Experimental Validations

Hereafter, we present the tracking control results, experimentally obtained with
the Trunk robot shown in Figure 2.11.

Hardware Setup

The silicone Trunk robot is composed of 14 segments to make it highly deformable.
This soft robot is driven by four stepper motors via cables mounted on the robot
body to guarantee the accessibility of each direction in the workspace. The position
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(a) (b)

Figure 2.11: Trunk robot. (a) Robot platform, (b) Stepper motors.

of the end-effector, e.g., system output, is measured by a Polhemus Liberty magnetic
motion tracking sensor. The weight of the Trunk robot is 40 [g] and its length is 195
[mm] in the initial position. The FEM model of this robot has 1944 nodes, leading
to 3324 state variables. After performing the POD model reduction, a reduced four-
order dynamical Trunk robot model can be obtained for control design, while around
90% percent of singular values can be kept. Since the workspace of the Trunk robot
end effector is a surface, then it is sufficient to determine the position of the end-
effector with a 2D reference trajectory. For tracking control purposes, we consider
the spiral trajectory

x(t) = 0.2t cos(ωt), y(t) = 0.2t sin(ωt), (2.44)

with ω = 1 [rad/s], corresponding to a fast trajectory tracking. Note that the
linear speed of the spiral reference is continuously increasing according to the radius,
making the tracking task more challenging.

Tracking Control Performance

For this trajectory tracking, we examine the experimental results obtained with
two dynamic control methods: Jacobian-based PID control and EID-based control,
while the QP-based method is not applied due to the platform limitation. Figure
2.12 depicts the evolutions of the end-effector position tracking in the xy−plane,
performed by both considered controllers. We can see clearly that compared to
Jacobian-based PID control, the proposed EID-based control method provides a sig-
nificant improvement in terms of tracking performance. The tracking performance
along x−axis and y−axis directions, and the corresponding force control inputs ob-
tained with the spiral reference trajectory (2.44) are given in Figure 2.13. Observe in
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Figs. 2.13(c) and (d) that due to the effects of the feedforward action, the proposed
EID-based controller provides a faster response with respect to the Jacobian-based
PID controller, which allows for a better dynamic tracking performance as shown in
Figs. 2.13(a) and (b). We can also see in Figs. 2.13(c) and (d) that the control inputs
of both controllers start at the same values corresponding to the robot equilibrium
point. Moreover, there is only a small amplitude difference concerning the x−axis
force control inputs. However, along the y−axis, the proposed EID-based controller
provides a larger control action to better compensate the time-varying disturbance
due to the gravity effect, which improves the control precision performance as indi-
cated in Figure 2.12. For quantitative comparison purposes, the ISE indices, defined
in (2.43), are computed for both EID-based control and Jacobian-based PID control
over a time duration ∆t = 22 [s] as 153.3 [mm2s] and 778.9 [mm2s], respectively.
For this experimental test, we can note a tracking performance improvement ISE
index from 7.78 to 0.53. Videos of these experiments can be found at the address:
https://bit.ly/2VVwtLn.
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Figure 2.12: Experimental results of spiral trajectory tracking control. (a) Jacobian-
PID control. (b) Proposed EID-based control.

2.6 Concluding Remarks

A dynamic FEM model-based framework has been proposed for the tracking
control of soft robots. For the control design, the large-scale FEM robot model is
effectively reduced with a POD model reduction method. Using an EID approach,
we propose an observer-based tracking control structure including three components,
i.e., feedback control, feedforward control, error-compensation control. This control

https://bit.ly/2VVwtLn
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Figure 2.13: Comparison of spiral trajectory tracking control. (a) Tracking perfor-
mance along x−axis. (b) Tracking performance along y−axis. (c) Force control input
in x−axis direction. (d) Force control input in y−axis direction.

structure allows for an effective tracking control performance despite the presence
of modeling uncertainty and unknown disturbances. To improve the closed-loop
responses, the concept of LMI regions is exploited together with an ℓ∞ control design
via Lyapunov stability theory. The effectiveness of the proposed control method
has been first demonstrated with high-fidelity SOFA simulations performed on a
Diamond soft robot. Then, experimental validations have been also carried out with
a Trunk robot. Under the considered experimental conditions, the proposed control
method shows a clear tracking performance improvement compared to the existing
Jacobian-PID control method, i.e., about 80% of improvement in terms of ISE index.

The work done in this chapter makes possible an extension to linear systems
with varying parameters (LPV). It allows to take into account the nonlinearities and
modeling uncertainties caused by the large deformations of soft robots. The fact that
model reduction preserves the initial structure of the system is crucial for determining
controllers. The next chapter proposes to extend the results to the synthesis of a
nonlinear controller valid in the entire workspace of the soft robot.
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Appendix A: Proof of Theorem 1

By Lemma 1, we can show that LMI conditions (2.34), (2.35) and (2.36) (respec-
tively (2.37), (2.38) and (2.39)) guarantee that the eigenvalues of the dynamic matrix
Āc of the tracking error system (2.27) (respectively Āo of the estimation error system
(2.24)) are confined in the LMI region Dc(rc, θc, αc) (respectively Do(ro, θo, αo)).

Pre- and postmultiplying inequality (2.34) with P = X−1 while considering
(2.41), it follows that

He
(
PĀc + αcP

)
≺ 0. (2.45)

Let us denote

Πc = He
(
PĀc + αcP

)
, Πo = He

[
Ao + αcQ QBod

0 −αcνI

]
.

Note that Πo ≺ 0 and Πc ≺ 0 due to conditions (2.33) and (2.45), respectively.
Since Πc only depends on the control gain Kc and matrix P , and Πo only depends
on the observer gain Lo and matrix Q, there always exists a positive scalar τ > 0,
sufficiently small, such that [68]

Πo ⪯ τΦ⊤Π−1
c Φ, (2.46)

with Φ =
[
PBo PBcd

]
. By Schur complement lemma [69], we can prove that

condition (2.46) is equivalent to [
τΠc τΦ
⋆ Πo

]
⪯ 0. (2.47)

From the definitions of Πc, Πo, and Φ, condition (2.47) can be rewritten as

He

τP (Āc + αcI) τPBo τPBcd

0 Q(Āo + αcI) QBod

0 0 −αcνI

 ⪯ 0. (2.48)

To study the stability of the extended closed-loop system (2.28), we consider a Lya-
punov function candidate as

V (x̃) = x̃⊤diag(τP,Q)x̃. (2.49)

Now, pre- and postmultiplying (2.48) with
[
x̃⊤ d⊤q̇

]⊤
and its transpose, the following

condition can be obtained after some algebraic manipulations:

V̇ (x̃) ≤ −2αc(V (x̃)− νd⊤q̇ dq̇), (2.50)
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where V̇ (x̃) is the time derivative of the Lyapunov function (2.49) along the trajectory
of the closed-loop system (2.28). From the relation of vector-norms, inequality (2.50)
implies that

V̇ (x̃) ≤ −2αc

(
V (x̃)− ν∥dq̇∥2∞

)
. (2.51)

Applying the comparison lemma [44, Lemma 3.4] to (2.51), it follows that

V (x̃(t)) ≤ e−2αctV (x̃(0)) + ν∥dq̇∥2∞. (2.52)

Note that

α1∥x̃∥2 ≤ V (x̃) ≤ α2∥x̃∥2, (2.53)

with α1 = λmin (diag(τP,Q)) and α2 = λmax (diag(τP,Q)). It follows from (2.52)
and (2.53) that

∥x̃∥ ≤
√
α2

α1

e−αct∥x̃(0)∥+
√

ν

α1

∥dq̇∥∞, (2.54)

which guarantees Property (P1), i.e., the input-to-state stability of system (2.28)
with respect to any disturbance dq̇ ∈ B∞.

Let us consider the definition of the performance output z in (2.29). Pre- and
postmultiplying inequality (2.40) with diag(P, I, I), it follows that[

diag(P,Q) F⊤

⋆ µI

]
⪰ 0. (2.55)

Applying Schur complement lemma and congruence transformation [69] to inequality
(2.55), it follows that

µdiag(τP,Q)− F⊤F ⪰ 0, (2.56)

with τ > 0. Pre- and postmultiplying condition (2.56) with x̃⊤ and its transpose
yields

∥z∥2 ≤ µV (x̃). (2.57)

From (2.52) and (2.57), we can deduce that

∥z(t)∥ ≤
√
µV (x̃(0))e−αct +

√
νµ∥dq̇∥∞. (2.58)

For any initial condition x̃(0) and any bounded signal dq̇, it follows from (2.58) that

lim
t→∞

sup ∥z(t)∥ ≤ γ∥dq̇∥∞, (2.59)

which guarantees Property (P2). This concludes the proof.
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Figure 3.1: Workspace of Trunk robot

Figure 3 shows the shape of the Trunk robot workspace, the linearized model is
only applicable to the linear plane as shown with the mesh. We can see that the
deformations involve a nonlinear surface making the linear method of the previous
chapter impossible to apply on the whole surface. In order to perform a control in the
whole workspace it is necessary to perform a synthesis of the control from a nonlinear
model of the robot. Since an analytical control oriented model is intractable, we will
construct a LPV model from linear models obtained from FEM. In this chapter, a
stepwise procedure of LPV modeling and control design method is proposed including
extensive experiment validations to show their effectiveness.

41
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3.1 Introduction

As discussed in chapter 1, the main difficulties in the control of soft robots are the
models accuracies including the strong nonlinearities. We have proposed a framework
from linearization to model reduction in Chapter 2 to obtain control-oriented linear
models. However, due to the strong nonlinearity of soft robots, linear models are
only effective in a reduced range. Since the FEM is an iteratively updated model,
we cannot directly obtain a nonlinear model from it, nevertheless, a group of linear
models can be acquired for various equilibrium points. The problem we face is how
to use these linear models to obtain a global nonlinear control.

The primary goal of this chapter is to propose a generic solution for this critical
issue in soft robotics via a model-based nonlinear dynamic control scheme. The
proposed nonlinear control framework for soft robots is sequentially performed in
two steps: i) linear parameter varying (LPV) modeling, and ii) tracking LPV control
design.

For LPV modeling, we first perform linearization at several equilibrium points,
densely selected to cover the whole workspace of the soft robot. From the resulting
large-scale models, a proper orthogonal decomposition (POD) algorithm is used to
generate a set of linearized reduced-order models, which represent the local behaviors
of the soft robot corresponding to the selected equilibrium points. With a unified
POD projector for order reduction, the coherence between the linearized models is
naturally ensured, which is essential for interpolation-based LPV modeling [70], [71].
For LPV interpolation, due to the large number of linearized models and their corre-
lation with each other, we propose a decorrelation algorithm to limit the numerical
complexity of the LPV model, i.e., reduce the number of local linear submodels, while
guaranteeing a high-quality LPV modeling. To this end, the algorithm builds the
LPV model of the soft robot by interpolating a subset of selected linearized models
with radial basis function (RBF) networks.

Concerning the LPV tracking control scheme, it is generalized from the equiv-
alent input disturbance (EID) control concept [57] used in the previous chapter,
whose core components are feedforward control, disturbance-estimator control and
feedback control. A generalized proportional integral LPV observer is designed to
provide not only the estimate of reduced-order states for feedback control but also
the disturbance-estimator control action to compensate matched disturbances, e.g.,
modeling errors and external loads. The closed-loop stability of the soft robot sys-
tem is guaranteed by the feedback control, whose design is reformulated as a convex
optimization problem under linear matrix inequality (LMI) constraints. Using Lya-
punov stability theory, an ℓ∞−gain performance is incorporated in the feedback con-
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trol design to improve the tracking performance under the presence of unknown and
unmatched disturbances. The main contributions of this chapter can be summarized
as follows.

� A constructive LPV modeling method, including FEM-based modeling and
discretization, reduced-order reduction and iterative RBF-based interpolation,
which is relevant to represent and to control the nonlinear dynamics of soft
robots within the whole workspace.

� An ℓ∞ LPV control framework with formal proofs of closed-loop stability, which
requires only the output information to achieve an effective tracking perfor-
mance under unknown disturbances.

� Experimental results and suitable comparative studies are conducted with a
soft Trunk robot to fully validate the proposed LPV control framework in
terms of nonlinear modeling and tracking performance.

Due to its generic feature, the proposed LPV control methodology can be applied to
a large variability of elastic soft robots.

3.2 LPV Modeling of Soft Robots

This section presents a new LPV modeling method for large-scale soft robots
based on their FEM models and the RBF interpolation method. The linearization
and the model reduction methods follow the one presented in the previous chapter.
Thereafter, they are developed in a discrete framework for convenience and controller
design implementation.

3.2.1 FEM-Based Reduced-Order Models

Linearized State-Space Representation

Here we recall the linearized constitutive equation of the FEM robot model (2.4)
around the equilibrium point (q0,v0,u0) given by

M v̇(t) = −Kq(t)−Dv(t) +Hu(t). (3.1)

Here v(t) is the generalized velocity given with v(t) = ∂q(t)
∂t

. Due to the research
progress in the discrete control system, discrete system models give us more possi-
bilities to model systems and design less conservative controllers and it is also easier
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for the real-time implementation. To this end, we will perform the control design in
the discrete-time domain. For the large-scale model (3.1), to improve the numerical
efficiency and stability, the implicit Euler method can be used [72]. Considering a
sampling time step h and a constant control input u during the sampling interval,
the implicit Euler-discretization of model (3.1) is given by

qk+1 = qk + hvk+1 (3.2)

Mvk+1 =Mvk + h(−Kqk+1 −Dvk+1 +Huk). (3.3)

It follows from (3.2) and (3.3) that

Svk+1 = −hKqk +Mvk + hHuk (3.4)

with S = M + hD + h2K. From (3.2) and (3.4), the discrete-time robot model can
be reformulated as

E

[
qk+1

vk+1

]
=

[
I 0

−hS−1K S−1M

] [
qk

vk

]
+

[
0

hS−1H

]
uk (3.5)

with E =

[
I −hI
0 I

]
. Left-multiplying (3.5) with E−1, the following state-space

robot model can be obtained:[
qk+1

vk+1

]
=

[
I − h2S−1K hI − h2S−1(D + hK)
−hS−1K I − hS−1(D + hK)

] [
qk

vk

]
+

[
h2S−1H
hS−1H

]
uk. (3.6)

With a small sampling time step h, the impact of the terms related to h2, i.e.,
h2S−1K, h2S−1H and h2S−1(D+ hK), on the modeling quality are supposed to be
small enough to be removed. After neglecting these terms in (3.6), we obtain the
simplified model

xL,k+1 = ALxL,k +BLuk (3.7)

where xL,k =
[
q⊤
k v⊤

k

]⊤ ∈ R2m is the state vector, and the matrices AL ∈ R2m×2m

and BL ∈ R2m×p are defined as

AL =

[
I hI

−hS−1K I − hS−1D

]
, BL =

[
0

hS−1H

]
. (3.8)
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The system output yk ∈ Rq represents the coordinates of the robot end-effectors,
defined as

yk = CLxL,k (3.9)

where the non-zero elements of the output matrix CL correspond to the states of the
end-effectors.

POD-Based Model Order Reduction

Same as equation (2.7) in chapter 2, the projector T of the POD method is also
constructed from SVD of snapshot matrix according to a desired number r of singular
values. We continue using the notation T = Ur, where T ∈ Rr×m contains the first r
columns, with r ≪ m, of matrix U . Then, the reduced state vector is obtained with
[12]

x =

[
qr

vr

]
=

[
T 0
0 T

] [
q
v

]
= TrxL. (3.10)

Applying the projector (3.10) to the large-scale linearized system (3.7)–(3.9), we
obtain the reduced-order model of the form

xk+1 = Arxk +Bruk +wk

yk = Cxk

(3.11)

where the disturbance wk represents the model order reduction error, and

Ar = TrALT
⊤
r =

[
I hI

−hTS−1KT⊤ I − hTS−1DT⊤

]
Br = TrBL =

[
0

hTS−1H

]
, C = CLT

⊤
r . (3.12)

3.2.2 RBF-Based LPV Modeling

Due to the large non-linearity of soft robots, a control design based on a lin-
earized robot model (3.11) may not be effective for different robot configurations.
For instance, Figure 3.2 illustrates the nonlinear behavior of the Trunk robot during
a bending process. We can see that increasing the actuation force can lead to differ-
ent directions of displacement along the x−axis. Indeed, the x−axis displacement
first increases till a certain singular position, then it starts to decrease if the force
continues to increase. Moreover, the variation of the curve slope shows that the stiff-
ness of the Trunk robot increases with respect to the increment of actuation forces.
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To deal with such position-dependent nonlinear dynamics of a deformable robot, we
propose an LPV modeling method based on a family of local reduced-order models
as in (3.11).

Force

x−axis displacement Local equilibrium

Active region

Small deformation Singular position Large deformation

Figure 3.2: Illustration of nonlinear behaviors of the Trunk robot during bending.

Generating LPV Local Linear Models

To capture the complex dynamics of a soft robot, we select an appropriate number
of equilibrium points as illustrated in Figure 3.3 to cover as large as possible its whole

workspace. For each equilibrium point (x∗
i ,u

∗
i ), with x∗

i =
[
q∗⊤
ri v∗⊤

ri

]⊤
, we first

obtain the linearized FEM model (3.1) and the implicit Euler-discretization as in
(3.2)–(3.3). Then, the POD-based order reduction (3.10)–(3.10) is applied to obtain
the reduced-order model as in (3.11):

δxi,k+1 = Ariδxi,k +Briδui,k +wk

yk = C(δxi,k + x∗
i )

(3.13)

where δxi,k = xk − x∗
i ∈ Rn, with n = 2r, and δui,k = uk − u∗

i ∈ Rp. Note that the
state δxi,k of the ith linearized model (3.13) is defined as a relative distance between
the global coordinate xk and its local equilibrium x∗

i . For simplicity of notation,
we use the same disturbance vector wk to represent the reduction errors in different
reduced-order models. Similar to (3.12), the state-space matrices Ari ∈ Rn×n and
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Bri ∈ Rn×m are given by

Ari =

[
I hI
Kri Dri

]
, Bri =

[
0
Hri

]
(3.14)

with

Kri = −hTS−1
i KiT

⊤,

Dri = I − hTS−1
i DiT

⊤,

Hri = hTS−1
i Hi.

(3.15)

The matrices Si, Ki, Di and Hi in (3.15) corresponding to the equilibrium point
(x∗

i ,u
∗
i ) are obtained in a similar way as S, K, D and H in (3.8), respectively. It is

important to note that since the same projector Tr in (3.10) is applied to all linearized
submodels, the corresponding reduced models have the same order. Note also that
the state δxi,k of each linearized model (3.13) only has a local meaning, i.e., relative
distance between xk and x∗

i . Then, interpolating these linearized local models has no
meaning. To deal with this misfit, we reformulate the local model (3.13) in function
of the global state xk of the robot as

xk+1 = Arixk +Briuk + ζri +wk

yk = Cxk.
(3.16)

The constant affine term ζri of the ith local model can be defined from the equilibrium
point (x∗

i ,u
∗
i ) as

ζri = (I − Ari)x
∗
i −Briu

∗
i . (3.17)

At the equilibrium, we have v∗
ri = 0. Then, substituting (3.14) into (3.17), the term

ζri can be expressed as

ζri =

[
0

−Kriq
∗
ri −Hriu

∗
i

]
=

[
0
ζ∗
ri

]
(3.18)

with ζ∗
ri ∈ Rr.

RBF-Based Interpolation

To represent the position-dependent nonlinear dynamics of soft robots, we select
the end-effector position as the scheduling vector θ for LPV modeling, i.e., θ =
y. RBF networks allow to construct accurate interpolation of unstructured data,
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Figure 3.3: Workspace of the soft Trunk robot studied in Section 3.5 and selected
linearized models for its RBF-based LPV modeling.

possibly in high-dimensional spaces, with a small number of radial basis functions,
which is particularly suitable for nonlinear modeling of soft robots. The output ψ(θ)
of a normalized RBF network is defined as [73]:

ψ(θ) =
N∑
i=1

aiηi(θ) (3.19)

where the scheduling variable θ is the input vector of the RBF network, N is the
number of RBFs, and ai is the output parameter of the ith RBF. The normalized
radial basis function ηi(θ) is defined as

ηi(θ) =
φi (∥θ − ci∥)∑N
j=1 φj (∥θ − cj∥)

, i ∈ IN (3.20)

where ci is the center vector for the ith RBF, which represents the equilibrium point
(x∗

i ,u
∗
i ) corresponding to the ith linearized model (3.16). As usual in practice, we

select the Gaussian function as the radial basis function φi (∥θ − ci∥) in (3.20)

φi (∥θ − ci∥) = e−(ε∥θ−ci∥)2 (3.21)

where the parameter ε is the width of the receptive field.

Remark 6. The Gaussian radial basis function (3.21) is used as a similarity measure,
i.e., the similarity reaches the maximum at the center ci and decreases when the
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scheduling variable θ is far away from ci. Then, the key idea of the proposed LPV
modeling is to represent the dynamics of a soft robot at any given point in the
workspace by interpolating the nearest linearized models.

Remark 7. RBF networks are universal approximators, which can approximate any
continuous function on a compact set with an arbitrary precision [74]. However,
the radial basis functions of conventional RBF networks are constructed according
to each data sample, i.e., each data sample requires its own RBF [75]. Then, to
represent accurately the high nonlinear dynamics, a large number of RBFs N , i.e.,
a large number of linearized models, may be required, which induces difficulties for
the control design and real-time implementation of soft robots. To avoid this major
issue, based on the idea of the CPR algorithm [76], we propose an interpolator being
able to effectively represent a large number of local linearized models using as less
as possible number of RBFs N , as described below.

RBF networks are typically trained from pairs of input and target values. To
start the training of the proposed RBF network, we first collect a dataset of linearized
models (3.16) of M equilibrium points (x∗

i ,u
∗
i ), corresponding to the input vectors

θ∗
i = y∗

i , for i ∈ IM . Then, for each collected data sample, we reshape the data into a
column vector Y(i), for i ∈ IM , containing the parameters of Kri, Dri andHri involved
in the matrices Ari and Bri in (3.14), and in the affine term ζ∗

ri defined in (3.17). Note
that since the linearized robot models are highly correlated, a sparse representation
of these submodels can be performed. To this end, similar to the CPR algorithm
[76], we iteratively define the centers of the proposed RBF network. For each step, a
new RBF is added in the center position corresponding to the largest squared error,
until a given number of functions or a desired fitting performance is reached. The
iterative training procedure is summarized in Algorithm 1 and illustrated in Figure
3.4. The network weights are obtained from the Orthogonal Least Square Learning
algorithm with respect to all training data as described in [77].

After the training, the dataset of M linearized models can be interpolated by an
N− element RBF network, with N ≤ M . Hence, the resulting interpolated LPV
model has N local linear submodels, defined as

xk+1 = A(η)xk +B(η)uk + ζ(η) +wk

yk = Cxk

(3.22)

with [
A(η) B(η) ζ(η)

]
=

N∑
i=1

ηi(θk)
[
Ai Bi ζi

]
. (3.23)
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Add 1-st RBF

Add 2-nd RBF

Add 3-rd RBF

Data

RBF Center

Fitted

1

1 12 23

Figure 3.4: Illustration of the iterative RBF training procedure in Algorithm 1. Here,
the sample data are fitted using three radial basis functions.

The radial basis functions ηi(θk), for i ∈ IN , are used as the membership functions
of the LPV model (3.22), i.e., to weight local linear submodels, which satisfy the
convex sum property

0 ≤ ηi(θk) ≤ 1,
N∑
i=1

ηi(θk) = 1, i ∈ IN . (3.24)

Let Ω be the set of membership functions satisfying (3.24), i.e.,

η =
[
η1(θk) . . . ηN(θk)

]⊤ ∈ Ω,

for ∀k ∈ N. We also denote η+ =
[
η1(θk+1), η2(θk+1), . . . , ηN(θk+1)

]⊤ ∈ Ω. With the
proposed LPV modeling method, the parameter structures of Ai, Bi and ζi in (3.23)
are preserved as the same as those of Ari, Bri and ζri in (3.14) and (3.18), which are
given by

Ai =

[
I hI
Ki Di

]
, Bi =

[
0
Hi

]
ζi =

[
0

−Kiq
∗
ri −Hiu

∗
i

]
=

[
0
ζ∗
i

]
.

(3.25)

The parameter matrices Ki, Di, Hi, and the affine term ζ∗
i in (3.25) are constructed

from the reshaped data in the output column vector ai, for i ∈ IN , defined in (3.19).
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The validation of the proposed LPV modeling with a soft Trunk robot is reported in
Section 3.5.

Algorithm 1 Iterative Training of RBF Network
Inputs:

Data set D =
{(
θ∗1, Y(1)

)
, . . . ,

(
θ∗M , Y(M)

)}
Outputs:

Weights ai and centers ci of RBFs, for i ∈ IM
Required parameters:

Maximum number N of the RBF network
Width of the receptive field ε of the RBF network
Desired interpolation error σ

Initialization:
· Set the estimates of all Y(i) = 0 as Ŷ(i) = 0, for i ∈ IM
· Initialize an empty set S of weights ai and centers ci
for the RBF network

Begin
for i = 1 to N do
for j = 1 to i do
· Compute the activation vector of RBFs

Φj = [ηj(θ
∗
1), ηj(θ

∗
2), . . . , ηj(θ

∗
M)]⊤

· Build the activation matrix Ψ = [Φ1, . . . ,Φi]
⊤

· Build the coefficient matrix A = [a1, . . . ,ai]
end for
· Compute the estimation output Ŷ = AΨ
· Find the index k, for k ∈ IM , corresponding to the
largest prediction error ∥Ŷ(k) − Y(k)∥2

· Add a new RBF with the center ck = θ∗k into the set S
· Update the activation matrix Ψ with the new RBF
· Recompute the coefficients ak from the least square
solution of Y = AΨ with respect to A

if
∑N

k=1 ∥Ŷ(k) − Y(k)∥2 < σ then
break

end if
end for
End
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Remark 8. Existing data-driven LPV modeling methods usually include indepen-
dent model identification and LPV model construction processes. From system data,
local linear submodels are directly identified, which are generally independent from
each other, also called non-coherent [71]. Interpolating non-coherent submodels re-
quires some specific canonical state-space representations, which may not only lead
to a loss of the mechanical model structure of soft robots but also alter the system be-
haviors [78]. For the proposed LPV modeling, the coherence between local linearized
submodels can be naturally guaranteed by the unified POD projector T in (3.10).
Moreover, since the mechanical structure is preserved, the upper-half block-elements
of Ai, Bi and ζi given in (3.25) are constant. Hence, the number of parameters to
be interpolated with the proposed LPV modeling is reduced by 50%.

3.2.3 Modeling Error Analysis

Soft-body robots have much larger modeling and manufacturing errors than rigid-
body robots. However, since the structure of the system is preserved during the
modeling process, we can use this structure to effectively characterize and compensate
the uncertainties of the system. To this end, we assume that the parameter matrices
in (3.25) are subject to some unknown-but-bounded uncertainties as

K̂i = Ki +∆Ki, D̂i = Di +∆Di

Ĥi = Hi +∆Hi, ζ̂∗
i = ζ∗

i +∆ζ∗
i

(3.26)

where K̂i, D̂i, Ĥi, ζ̂
∗
i are the estimations, Ki, Di, Hi, ζ

∗
i are the nominal values,

and ∆Ki, ∆Di, ∆Hi, ∆ζ∗
i correspond to the uncertainties, for i ∈ IN . From (3.22),

(3.25) and (3.26), the uncertain LPV robot model can be described as

xk+1 = Â(η)xk + B̂(η)uk + ζ̂(η) +wk (3.27)

with

[
Â(η) B̂(η) ζ̂(η)

]
=

N∑
i=1

ηi(θk)
[
Âi B̂i ζ̂i

]
(3.28)

where the local uncertain matrices are defined as

Âi = Ai +∆Ai, B̂i = Bi +∆Bi, ζ̂i = ζi +∆ζi

∆Ai =

[
0 0

∆Ki ∆Di

]
, ∆Bi =

[
0

∆Hi

]
, ∆ζi =

[
0

∆ζ∗
i

]
.
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Exploiting the specific structures of the state-space matrices in (3.25), it follows from
(3.27) that

vr,k+1 = K̂(η)qr,k + D̂(η)vr,k + Ĥ(η)uk + ζ̂∗(η) +wv,k (3.29)

with [
K̂(η) D̂(η)
Ĥ(η) ζ̂∗(η)

]
=

N∑
i=1

ηi(θk)

[
K̂i D̂i

Ĥi ζ̂∗
i

]
. (3.30)

Note that for (3.29) the disturbance vector wk is partitioned as wk =
[
w⊤

q,k w⊤
v,k

]⊤
,

where the disturbance wq,k ∈ Rr (respectively wv,k ∈ Rr) affects the dynamics of the
generalized displacements qr,k (respectively generalized velocities vr,k). To represent
the parametric uncertainties involved in soft robots modeling, let us define a lumped
disturbance

de,k = H(η)†∆Σk (3.31)

where ∆Σk = K(η)qk + ∆D(η)vk + ∆H(η)uk + ∆ζ∗(η), and H(η)† is the pseudo-
inverse of H(η). Using the disturbance expression (3.31) and considering (3.29), the
uncertain LPV model (3.27) can be reformulated as

xk+1 = A(η)xk +B(η)(uk + de,k) + ζ(η) +wk

yk = Cxk. (3.32)

Hence, model (3.32) can be used for LPV control design of soft robots under both
disturbances and parametric uncertainties.

Remark 9. Using the projector Tr in (3.10) allows to reduce significantly the model
order while preserving the mechanical structure of the original robot model (2.1), i.e.,
the reduced-order states qr,k and vr,k still respectively play the role of the generalized
displacements and velocities with

qr,k+1 = qr,k + hvr,k+1. (3.33)

With such a structure preservation, the robot parameters are only involved in the
lower halves of the state-space matrices Ai, Bi and the affine term ζi. This leads
to two major advantages for LPV modeling of soft robots. First, for RBF network
training, the number of parameters to be interpolated is reduced by 50% since the
upper halves of the matrices Ari, Bri in (3.14) and the affine term ζri in (3.18) are
fixed constants. Second, the modeling uncertainties are only present in the lower
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halves of ∆Ai, ∆Bi and ∆ζi, for i ∈ IN . This allows to represent the parametric
uncertainty and a part of MOR errors in the LPV robot model (3.32) via the lumped
disturbance de,k, defined in (3.31). Note that de,k shares the same distribution matrix
B(η) with the control input uk, i.e., de,k is a matching disturbance. This key feature
enables an effective EID-based framework for LPV tracking control of soft robots
under modeling uncertainty as recently shown in [12]. It is important to note that
these advantages of the proposed LPV modeling cannot be achieved with existing
POD-based modeling results [48], [79], [80] and related references therein, which
cannot directly guarantee the structure preservation.

3.3 Tracking Control Problem Formulation

This section formulates the tracking control problem of soft robots following the
same structure and ideas than the linear case presented in the previous chapter. To
this end, we define the tracking error as

ek = xk − xr,k (3.34)

with xr,k =
[
x⊤
rq,k x⊤

rv,k

]⊤
, where xrq,k ∈ Rr (respectively xrv,k ∈ Rr) is the reference

trajectory corresponding to the generalized displacements (respectively velocities).
For soft robots, the reference trajectory of the state is not as easy to obtain as the
joint angles of rigid-body robots. Since this is the research topic of the next chapter,
here we assume that the reference trajectories are directly given. Then, the tracking
error dynamics can be defined from (3.32) and (3.34) as

ek+1 = A(η)ek +B(η)(uk + de,k) +wk

+ A(η)xr,k − xr,k+1 + ζ(η). (3.35)

To improve the tracking performance of soft robots under modeling uncertainties, we
extend the EID-based linear control scheme in [12] to the LPV model (3.35). This
feedback-feedforward control scheme is composed of three components as

uk = uff
k + udc

k + ufb
k (3.36)

where uff
k is the feedforward control, udc

k is the disturbance-estimator based control,
and ufb

k is the feedback control. The proposed control scheme is illustrated in Figure
3.5.
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Figure 3.5: EID-based LPV tracking control scheme for elastic soft robots.

3.3.1 Feedforward Control

The approximation capabilities of LPV modeling are substantially improved with
the offset terms [81], [82]. However, the presence of these affine terms leads to more
complicated stability analysis and control synthesis procedures [83], [84]. In addition,
for tracking control, the information of the reference signal can be obtained online.
Hence, dealing with the reference trajectory as an unknown input or disturbance
may lead to conservative control results. To avoid these issues, we can design a
feedforward control uff

k to account for the effects of xr,k and ζ(η) on the closed-loop
system by exploiting the mechanical structure of the proposed LPV model (3.32) for
soft robots, see Remark 9.

The feedforward control is determined under a perfect tracking condition, i.e.,
ek → 0 for k →∞, that is

xr
k = xr,k, θr

k = yr
k = Cxr,k, k →∞ (3.37)

where xr
k, y

r
k and θr

k respectively represent the reduced robot state, the robot output
and the scheduling variable corresponding to the perfect tracking. To guarantee a
smooth control action for soft robots, especially in large deformation scenarios, the
feedforward control is designed following the RBF-based interpolation similar to the
construction of the LPV robot model (3.22). From the local viewpoint, the error
dynamics (3.35) around the ith equilibrium point is given by

ek+1 = Aiek +Bi(uk + de,k) +wk

+ Aixr,k − xr,k+1 + ζi. (3.38)
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Then, the local feedforward control action can be selected from (3.38) as

Biu
ff
i,k + Aixr,k − xr,k+1 + ζi = 0. (3.39)

Substituting (3.25) into (3.39), it follows that

Hiu
ff
i,k +Kixrq,k +Dixrv,k − xrv,k+1 −Kiq

∗
ri −Hiu

∗
i = 0. (3.40)

Under condition (3.37), it follows that

Kixrq,k ≃ Kiq
∗
ri. (3.41)

Moreover, with a small sampling time value h and a smooth reference trajectory xr,k,
it follows that

xr,k+1 ≃ xr,k, Di = I − hTS−1
i DiT

⊤ ≃ I. (3.42)

From (3.40), (3.41) and (3.42), it is reasonable to select a local feedforward control
as uff

i,k = u∗
i . Then, the feedforward control uff

k is computed using the RBF-based
interpolation as

uff
k =

N∑
i=1

ηi(θk)u
ff
i,k =

N∑
i=1

ηi(θk)u
∗
i . (3.43)

Remark 10. A natural solution to obtain the feedforward control uff
k is directly

based on the tracking error model (3.35) as

B(η)uff
k + A(η)xr,k − xr,k+1 + ζ(η) = 0. (3.44)

Substituting the explicit expressions of A(η), B(η) and ζ(η) into (3.44), it follows
that

H(η)uff
k +K(η)xrq,k +D(η)xrv,k − xrv,k+1 + ζ∗(η) = 0. (3.45)

Then, the feedforward control can be deduced from (3.45) as

uff
k = −H(η)† (K(η)xrq,k +D(η)xrv,k − xrv,k+1 + ζ∗(η)) . (3.46)

However, the expression of uff
k in (3.46) requires an online pseudo-inverse of the

parameter-dependent matrix H(η), i.e., control direction matrix, which could yield
large control oscillations or even unstable control behaviors in case of large deforma-
tions. On the contrary, the feedforward control uff

k in (3.43) is a convex combination
of the control input values corresponding to different selected equilibriums, which
allows a smooth shifting between operating points of soft robots. Note also that the
approximation errors caused by (3.41) and (3.42) when computing uff

k in (3.43) can
be viewed as a matching disturbance, which can be effectively dealt with using the
EID-based control concept as shown in the design of disturbance-estimator based
control.
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3.3.2 Disturbance-Estimator Based Control

The lumped disturbance de,k, defined in (3.31), enters in the tracking error dy-
namics (3.35) via the same channel as the control input uk. Then, the disturbance-
estimator based control can be designed as follows:

udc
k = −d̂ef

k (3.47)

where d̂ef
k is a filtered estimate of the lumped disturbance de,k. Due to the low-

frequency behaviors of soft robots, it has been shown that de,k can be considered
of low-frequency [12]. After several trials, the dynamics of de,k can be sufficiently
described with a second-order polynomial signal. Moreover, based on the concept
of EID control approach [57], the following low-pass filter is integrated to limit the
angular-frequency band of the disturbance estimation:

F(s) =
1

1 + Tfs
I (3.48)

where s is the Laplace variable. The filter time constant Tf in (3.48) can be chosen
such that

Tf ∈
[

1

10ωr

,
1

5ωr

]
,

where ωr is the highest angular frequency selected for disturbance rejection [57].
Then, the continuous-time model of the lumped disturbance is given by [12]

ḋ(t) = Jcd(t) (3.49)

with

d(t) =

def(t)
de(t)

ḋe(t)

 , Jc =

− 1
Tf
I 1

Tf
I 0

0 0 I
0 0 0

 .
Using the explicit Euler-discretization, the discrete-time counterpart of model (3.49)
can be obtained as

dk+1 = Jdk (3.50)

with J = I + hJc. From the LPV robot model (3.32) and the disturbance model
(3.50), we propose the following Luenberger-like observer to estimate simultaneously
the state xk and the unknown disturbance de,k:

x̂k+1 = A(η)x̂k +B(η)(uk + d̂e,k) + Lx(η)(yk − ŷk)

d̂k+1 = J d̂k + Ld(η)(yk − ŷk) (3.51)

ŷk = Cx̂k (3.52)
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where x̂k is the estimate of xk, and d̂k is the estimate of dk. The parameter-
dependent observer gains Lx(η) ∈ Rn×q and Ld(η) ∈ R3p×q are to be designed. The
estimation error dynamics can be defined from (3.32), (3.50) and (3.51) as

εk+1 = (Ao(η)− L(η)Co)εk +Bowwk (3.53)

where εk =
[
ε⊤x,k ε⊤d,k

]⊤
, with εx,k = xk − x̂k and εd,k = dk − d̂k. The system

matrices in (3.53) are defined as

[
Ao(η) L(η)

]
=

N∑
i=1

ηi(θk)
[
Aoi Li

]
,

with

Aoi =

[
Ai Boi

0 J

]
, Bow =

[
I
0

]
, Li =

[
Lxi

Ldi

]
(3.54)

Co =
[
C 0

]
, Boi =

[
Bi 0

]
. (3.55)

Remark 11. Disturbance observers have been successfully applied to compensate
unknown disturbances/uncertainties for tracking control of various engineering sys-
tems [85], including robotics applications [86]–[89]. However, related works generally
imply complex analysis and design methods or require restrictive assumptions and/or
additional measurements, e.g., both system state and its derivatives must be available
[85]. Using the generalized Luenberger observer (3.51), we only require the output
information to compute directly the disturbance-estimator based control (3.47) with
a simple assumption of low-frequency matching disturbance, which is reasonable for
soft robots control [12].

3.3.3 Feedback Control

The feedback control is used to guarantee the closed-loop stability under the
effects of modeling uncertainties and disturbances. For tracking control purposes,
we consider the following LPV proportional-integral control structure:

ufb
k = KP (η)(x̂k − xr,k) +KI(η)eI,k (3.56)

where the parameter-dependent feedback gains KP (η) ∈ Rp×n and KI(η) ∈ Rp×q are
to be determined, and

eI,k+1 = eI,k + hC(xk − xr,k). (3.57)
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With uff
k , u

dc
k and ufb

k respectively defined in (3.43), (3.47) and (3.56), substituting the
control expression (3.36) into (3.35), the tracking error dynamics can be represented
by

ξk+1 = (Ac(η) +Bc(η)K(η))ξk +Be(η)εk +Bcwwk (3.58)

with ξk =
[
e⊤
k e⊤

I,k

]⊤
, and

Φ(η) =
N∑
i=1

ηi(θk)Φi, Φ ∈ {Ac, Bc, K}

Be(η) =
N∑
i=1

N∑
j=1

ηi(θk)ηj(θk)Beij.

The system matrices in (3.58) are given by

Aci =

[
Ai 0
C I

]
, Bci =

[
Bi

0

]
, Bcw =

[
I
0

]
Beij =

[
−BiKPj 0

0 0

]
, Ki =

[
KPi KIi

]
.

Then, the extended closed-loop dynamics can be defined from (3.53) and (3.58) as

x̄k+1 =

[
Āc(η) Be(η)
0 Āo(η)

]
x̄k +

[
Bcw

Bow

]
wk (3.59)

with x̄k =
[
ξ⊤k ε⊤k

]⊤
, and

Āoi = Aoi − LiCo, Āo(η) =
N∑
i=1

ηi(θk)Āoi

Ācij = Aci +BciKj, Āc(η) =
N∑
i=1

N∑
j=1

ηi(θk)ηj(θk)Ācij.

To study the stability of system (3.59), we consider the following parameter depen-
dent Lyapunov candidate function:

V(x̄) = x̄⊤diag{λQ−⊤Pc(η)Q
−1, Po(η)}x̄ (3.60)
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where λ > 0, the matrix Q ∈ R(n+q)×(n+q) is nonsingular, and the parameter-
dependent matrices Pc(η) ∈ R(n+q)×(n+q) and Po(η) ∈ R(n+3p)×(n+3p) are defined
as

Pc(η) =
N∑
i=1

ηi(θk)Pci, Po(η) =
N∑
i=1

ηi(θk)Poi,

with Pci ≻ 0 and Poi ≻ 0, for ∀i ∈ IN . For tracking control purposes, we also
introduce the performance output zk associated to system (3.59) as the position
tracking error zk = ek = Czξk, with Cz =

[
C 0

]
, or

zk = F x̄k, F =
[
Cz 0

]
. (3.61)

We are ready to formulate the following observer-based output tracking control prob-
lem for soft robots.

Problem 2. Consider the LPV robot model (3.32) with the control law (3.36).
Determine the parameter-dependent observer gain L(θ) and controller gain K(θ)
such that the extended error dynamics (3.59) verifies following properties.

(P1) If wk = 0, for ∀k ∈ N, the closed-loop dynamics (3.59) is exponentially stable
with a decay rate α ∈ (0, 1).

(P2) The closed-loop state x̄k is uniformly bounded for any initial condition x̄0 and
any sequence {wk}k∈N ∈ ℓ∞. That is, there exists a bound φ(x̄0, ∥w∥ℓ∞) such
that ∥x̄k∥ ≤ φ(x̄0, ∥w∥ℓ∞), for ∀k ≥ 0. Moreover, the performance output
verifies

lim
k→∞

sup ∥zk∥ < γ∥w∥ℓ∞ (3.62)

where the ℓ∞−gain γ is specified in Theorem 2. We also deduce from (3.62)
that if x̄0 = 0, then ∥zk∥ < γ∥w∥ℓ∞ , for ∀k ∈ N.

System (3.59) verifying properties (P1)–(P2) is globally uniformly ℓ∞−stable with
a performance level γ, see [90, Chapter 4]. It follows from (3.61) and (3.62) that a
smaller value of the ℓ∞−gain γ leads to a better tracking control performance. Note
also that a larger value of the decay rate α leads to a faster closed-loop response of
the soft robot, which may induce aggressive control behaviors.
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3.4 LPV Output Feedback Tracking Control with

ℓ∞−Gain Performance Guarantee

This section presents LMI-based conditions to simultaneously design an LPV
observer (3.51) and an LPV feedback controller (3.56) such that system (3.59) verifies
the closed-loop properties specified in Problem 2.

Theorem 2. Consider the LPV robot model (3.32) with the control law (3.36)
and a decay rate α ∈ (0, 1). If there exist parameter-dependent positive definite
matrices Po(η) ∈ R(n+3p)×(n+3p), Pc(η) ∈ R(n+q)×(n+q), parameter-dependent matrices
M(η) ∈ Rp×(n+q), N(η) ∈ R(n+3p)×q, matrices G ∈ R(n+3p)×(n+3p), Q ∈ R(n+q)×(n+q),
and positive scalars µ, ν such that(1− α)Po(η) 0 A⊤

o (η)G
⊤ − C⊤

o N
⊤(η)

⋆ ανI B⊤
owG

⊤

⋆ ⋆ G+G⊤ − Po(η+)

 ≻ 0 (3.63)

[
(1− α)Pc(η) Ac(η)Q+Bc(η)M(η)

⋆ Q+Q⊤ − Pc(η+)

]
≻ 0 (3.64)Pc(η) 0 Q⊤C⊤

z

⋆ Po(η) 0
⋆ ⋆ µI

 ⪰ 0 (3.65)

for all η(θk), η(θk+1) ∈ Ω, with

Po(η+) =
N∑
i=1

ηi(θk+1)Poi, Pc(η+) =
N∑
i=1

ηi(θk+1)Pci.

Then, the closed-loop system (3.59) verifies the properties defined in Problem 2
with a guaranteed ℓ∞−gain γ =

√
νµ. Moreover, the feedback control gain and the

observer gain are respectively given by

K(η) =M(η)Q−1, L(η) = G−1N(η). (3.66)

Proof. To begin with, it follows from (3.63) and (3.64) that

G+G⊤ ≻ Po(η+), Q+Q⊤ ≻ Pc(η+). (3.67)

Since Po(η+) ≻ 0 and Pc(η+) ≻ 0, for ∀η(θk+1) ∈ Ω, it follows from (3.67) that the
matrices G and Q are nonsingular, i.e., invertible, thus the feedback control gain
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K(η) and the observer gain matrix L(η) in (3.66) are well-defined. For brevity, we
denote

Āo(η) =
[
Āo(η) Bow

]
Po(η) = diag{(1− α)Po(η), ανI}
Ac(η) = Ac(η)Q+Bc(η)M(η)

Qc(η) = Q−⊤Pc(η)Q
−1, Qc(η+) = Q−⊤Pc(η+)Q

−1.

Inspired by the congruence transformation proposed in [91], we multiply inequality
(3.63) with [

I 0 −Ā⊤
o (η)

0 I −B⊤
ow

]
on the left and its transpose on the right while considering N(η) = GL(η), it follows
that

Γ(η, η+) = Ā⊤
o (η)Po(η+)Āo(η)−Po(η) ≺ 0. (3.68)

Then, multiplying inequality (3.64) with[
I −A⊤

c (η)Q
−⊤]

on the left and its transpose on the right, we have

A⊤
c (η)Qc(η+)Ac(η)− (1− α)Pc(η) ≺ 0. (3.69)

Pre- and post-multiplying (3.69) with Q−⊤ and its transpose while considering
M(η) = K(η)Q, it follows that

Π(η, η+) = Ā⊤
c (η)Qc(η+)Āc(η)− (1− α)Qc(η) ≺ 0. (3.70)

Since Γ(η, η+) ≺ 0 and Π(η, η+) ≺ 0, then for Ψ(η, η+) ⪰ 0, there always exists a
positive scalar λ such that [68]

Γ(η, η+) + λΨ(η, η+) ≺ λΥ⊤(η, η+)Π
−1(η, η+)Υ(η, η+) (3.71)

with

Ψ(η, η+) =

[
B⊤

e (η)
B⊤

c (η)

]
Qc(η+)

[
Be(η) Bc(η)

]
Υ(η, η+) =

[
Ā⊤

c (η)Qc(η+)Be(η) Ā⊤
c (η)Qc(η+)Bcw

]
.

(3.72)
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Applying the Schur complement lemma [69], we can prove that condition (3.71) is
equivalent to [

λΠ(η, η+) λΥ(η, η+)
⋆ Γ(η, η+) + λΨ(η, η+)

]
≺ 0. (3.73)

Substituting the expressions of Γ(η, η+) in (3.68), Π(η, η+) in (3.70), Ψ(η, η+) and
Υ(η, η+) in (3.72) into condition (3.73), we obtainΣ11(η, η+) Σ12(η, η+) Σ13(η, η+)

⋆ Σ22(η, η+) Σ23(η, η+)
⋆ ⋆ Σ33(η, η+)

 ≺ 0 (3.74)

with
Σ11(η, η+) = λĀ⊤

c (η)Qc(η+)Āc(η) + λ(α− 1)Qc(η)

Σ12(η, η+) = λĀ⊤
c (η)Qc(η+)Be(η)

Σ13(η, η+) = λĀ⊤
c (η)Qc(η+)Bcw

Σ22(η, η+) = λB⊤
e (η)Qc(η+)Be(η) + Ξ(η, η+)

Ξ(η, η+) = Ā⊤
o (η)Po(η+)Āo(η)− (1− α)Po(η)

Σ23(η, η+) = λBe(η)
⊤Qc(η+)Bcw + Ā⊤

o (η)Po(η+)Bow

Σ33(η, η+) = −ανI + λB⊤
cwQc(η+)Bcw +B⊤

owPo(η+)Bow.

Since λB⊤
e (η)Qc(η+)Be(η) ⪰ 0, it follows from (3.74) thatΣ11(η, η+) Σ12(η, η+) Σ13(η, η+)

⋆ Ξ(η, η+) Σ23(η, η+)
⋆ ⋆ Σ33(η, η+)

 ≺ 0. (3.75)

Multiplying inequality (3.75) with
[
x̄⊤
k w⊤

k

]⊤
on the left and its transpose on the

right, the following condition can be obtained after some algebraic manipulations:

∆V(x̄k) + α
(
V(x̄k)− νw⊤

k wk

)
< 0, ∀k ∈ N (3.76)

where the parameter-dependent Lyapunov function V(x̄k) is defined in (3.60), and
∆V(x̄k) = V(x̄k+1) − V(x̄k) is its difference along the trajectories of the extended
closed-loop error dynamics (3.59). We distinguish the two following cases.

First, if wk = 0, for ∀k ∈ N, it follows from (3.76) that

∆V(x̄k) + αV(x̄k) < 0, ∀k ∈ N (3.77)

which proves Property (P1) on the exponential stability with a decay rate α of system
(3.59).



3.4. LPV Output Feedback Tracking Control with ℓ∞−Gain Performance
Guarantee 64

Second, if wk ̸= 0 and {wk}k∈N ∈ ℓ∞, it follows from (3.76) that

V(x̄k) < (1− α)V(x̄k−1) + αν ∥wk−1∥2 , ∀k ≥ 1. (3.78)

By recursivity and since α ∈ (0, 1), it follows from (3.78) that

V(x̄k) < (1− α)kV(x̄0) + αν

k−1∑
i=0

(1− α)i ∥wk−1−i∥2

< (1− α)kV(x̄0) + αν∥w∥2ℓ∞
k−1∑
i=0

(1− α)i

< (1− α)kV(x̄0) + ν∥w∥2ℓ∞ , ∀k ≥ 1 (3.79)

which guarantees that x̄k is uniformly bounded for any initial condition x̄0 and any
sequence {wk}k∈N ∈ ℓ∞.

Applying the congruence transformation diag{Q−⊤, I, I} to inequality (3.65), it
follows that Qc(η) 0 C⊤

z

⋆ Po(η) 0
⋆ ⋆ µI

 ⪰ 0. (3.80)

Using the Schur complement lemma, we can prove that condition (3.80) is equivalent
to

µdiag{Qc(η), Po(η)} − F⊤F ⪰ 0. (3.81)

Pre- and post-multiplying condition (3.81) with x̄⊤
k and its transpose yields

∥zk∥2 ≤ µV(x̄k). (3.82)

It follows from (3.79) and (3.82) that

∥zk∥ ≤
√
µV(x̄0)(1− α)k/2 + γ∥w∥ℓ∞ , ∀k ≥ 1 (3.83)

with γ =
√
νµ. For any initial condition x̄0, it follows from (3.83) that

lim
k→∞

sup ∥zk∥ ≤ γ∥w∥ℓ∞ . (3.84)

Conditions (3.79), (3.83) and (3.84) guarantee Property (P2), which concludes the
proof.



65 Chapter 3. Data-Driven LPV Modeling and Control Design

Remark 12. Using some congruence matrix transformations, the LPV observer-
based control design in Theorem 2 offers an extra degree of freedom to enable less
conservative results. Specifically, slack variables Q and G are introduced such that
the parameter-dependent matrices Pc(η) and Po(η) of the Lyapunov function V(x̄)
defined in (3.60) can be decoupled from any product with the state-space matrices.
Moreover, the feedback control gain K(η) and the observer gain L(η), given in (3.66),
do not explicitly depend on Pc(η) and Po(η), respectively. It is important to note that
the design conservatism of the control results in Theorem 2 can be further reduced
using parameter-dependent slack variables as Q(η) and G(η). However, in this case
the expressions of the control and observer gains require online matrix inversions, i.e.,
K(η) = M(η)Q−1(η) and L(η) = G−1(η)N(η), which could induce some difficulties
in control tuning for practical uses.

Theorem 2 cannot be directly used for control design due to the presence of
η(θk), η(θk+1) ∈ Ω in the LMI-based matrix inequalities (3.63)–(3.65). It is impor-
tant to note that the Gaussian membership functions ηi(θk), for i ∈ IN , are locally
defined. Hence, there is no overlap between two membership functions ηi(θk) and
ηj(θk), which are not adjacent to each other as illustrated in Figure 3.2. As a re-
sult, the product of two non adjacent membership functions is identically null, i.e.,
ηi(θk)ηj(θk) = 0, for ∀k ∈ N. Exploiting this fact and the LMI relaxation result
proposed in [92], the following theorem provides a tractable solution for Problem 2
while reducing the design conservatism and numerical complexity.

Theorem 3. Consider the LPV robot model (3.32) with the control law (3.36) and
a decay rate α ∈ (0, 1). Assume that the maximum number of membership functions
that are activated for all k ∈ N is less than or equal to s where 1 < s ≤ N .
Then, the closed-loop system (3.59) verifies the properties defined in Problem 2
with a guaranteed minimum ℓ∞−gain if there exist positive definite matrices Poi ∈
R(n+3p)×(n+3p), Pci ∈ R(n+q)×(n+q), matrices Mi ∈ Rp×(n+q), Ni ∈ R(n+3p)×q, for i ∈
IN , matrices G ∈ R(n+3p)×(n+3p), Q ∈ R(n+q)×(n+q), a positive semidefinite matrix
W ∈ R(n+q)×(n+q), and positive scalars µ, ν, solution to the following optimization
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problem:

minimize µ+ ν, (3.85)

such that (3.86)(1− α)Poi 0 A⊤
oiG

⊤ − C⊤
o N

⊤
i

⋆ ανI B⊤
owG

⊤

⋆ ⋆ G+G⊤ − Pol

 ≻ 0, i, l ∈ IN (3.87)

Pci 0 Q⊤C⊤
z

⋆ Poi 0
⋆ ⋆ µI

 ⪰ 0, i ∈ IN (3.88)

Θiil ≻ (s− 1)W, i ∈ IN (3.89)

Θijl +Θjil ⪰ −2W, i, j, l ∈ IN , i < j (3.90)

for all i and j excepting the pairs (i, j) such that ηi(θk)ηj(θk) = 0, ∀k ∈ N and s > 1.
The quantity Θijl and the matrix W in (3.89)–(3.90) are defined as

Θijl =

[
(1− α)Pci AciQ+BciMj

⋆ Q+Q⊤ − Pcl

]
, W =

[
W 0
⋆ 0

]
.

Proof. Since η(θk), η(θk+1) ∈ Ω, for ∀k ∈ N, multiplying condition (3.87) with
ηi(θk)ηl(θk+1) ≥ 0 and summing up for i, l ∈ IN , we obtain (3.63). Similarly, we
can prove that condition (3.88) implies (3.65). Moreover, using the relaxation result
in [92], it follows that conditions (3.89)–(3.90) guarantee (3.64). Note also that the
ℓ∞−gain γ =

√
µν can be minimized via the optimization problem (3.85). Then, by

the result of Theorem 2, we can conclude the proof.

Remark 13. The LPV tracking control design of soft robots is reformulated as a
convex optimization problem (3.85) under LMI constraints (3.87)–(3.90), which can
be effectively solved with YALMIP toolbox and SDPT3 solver [64].

3.5 Experimental Results of LPV Tracking Con-

trol for a Soft Trunk Robot

This section presents the experimental results obtained with a Trunk robot to
illustrate the effectiveness of the proposed RBF-based LPV modeling and the EID-
based LPV output feedback control method for elastic soft robots.



67 Chapter 3. Data-Driven LPV Modeling and Control Design

3.5.1 Experimental Soft Robot Platform

The Trunk robot platform is depicted in Figure 3.6. This soft robot is made of
silicone rubber with 14 segments to make it highly deformable. The weight of the
Trunk robot is 40 [g] and its length is 195 [mm] in the initial position. This soft robot
is driven by four stepper motors via cables mounted on the robot body to guarantee
the accessibility of each direction in the workspace. The two control inputs of the
robot are realized by pulling these four cables as a pulley system. The position of
the end-effector, e.g., system output, is measured by an OptiTrack tracking system
and a reflective marker is mounted on the endpoint as an end-effector. The data
rate of the OptiTrack tracking system is 100 [Hz] with an accuracy of 0.1 [mm]
after preliminary calibrations. Note that for this soft robot, since the center of mass
changes with respect to its motion and deformation, the gravity effect plays a role
of a time-varying disturbance.

(a) (b)

(c) (d)

Figure 3.6: Soft Trunk robot. (a) Robot platform. (b) Stepper motors. (c) OptiTrack
tracking system. (d) FEM modeling of the trunk with different meshes.
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3.5.2 LPV Model Validation

The FEM simulation and modeling of the soft Trunk robot is implemented using
the open-source SOFA framework1. The Trunk robot FEM model has 1484 nodes
with 8904 state variables. A four-order reduced model can be obtained via the POD-
based order reduction method as shown in the previous chapter. To construct the
RBF-based LPV model of the soft Trunk robot, we collect the data of 45 different
robot configurations, i.e., equilibrium points, that can cover the whole workspace,
see Figure 3.3. Then, POD-based model reduction method is applied to obtain the
45 corresponding reduced-order linear submodels of the form (3.11). After some
preliminary validations, 9 of these submodels are selected to build the interpolated
LPV model of the Trunk robot using Algorithm 1 as illustrated in Figure 3.3.
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Figure 3.7: Evolution of the non-zero elements of the input matrix B(η): RBF-based
interpolation results (-), model parameters from collected data (◦).

To illustrate the nonlinear phenomenon caused by the actuation forces, Figure

1More details on the plugin SoftRobots for the SOFA framework can be found at the address:
https://project.inria.fr/softrobot.

https://project.inria.fr/softrobot/


69 Chapter 3. Data-Driven LPV Modeling and Control Design

3.7 shows the evolution of the non-zero elements of the reduced-order input matrix

B(η) =


0 0
0 0

b31(η) b32(η)
b41(η) b41(η)


corresponding to a trajectory with large deformation as illustrated in Figure 3.2.
While for the rest of system matrices A(η) and C, the parameters either have only
a small variation range or are constants.

First, we can see that the parameter values of the 9 local linearized models,
used to establish the reduced-order LPV robot model, are well interpolated with
the proposed RBF-based method. Second, the value of b31(η), corresponding to the
action from the horizontal cable actuator to the x-axis of robot, varies from negative
to positive. This illustrates the nonlinear behavior of elastic soft robots concerning
the change of the actuation direction as previously discussed.

To further validate the proposed LPVmodeling method, we compare the following
robot models:

� the linear model in [12], corresponding to the equilibrium point (q0,v0,u0) ≡
(0, 0, 0);

� the 1484-node nonlinear FEM model used to derive the proposed LPV robot
model;

� the proposed LPV model.

For comparison purposes, we apply a ramp input signal to the left cable of Trunk
robot to gradually increase the robot deformation, which can reproduce the nonlinear
behavior illustrated in Figure 3.2. The displacement of the robot end-effector is
measured. Besides, simulations are performed with the same input signal for the
linear model, the FEM model and the LPV model. The comparison result is shown
in Figure 3.8.
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Figure 3.8: Comparison between different modeling methods for the Trunk robot.

Observe that the nonlinear FEM model and the LPV model provide similar be-
haviors, which capture well the nonlinear dynamics of the soft Trunk robot even if
the input signal becomes large. As expected, the linear reduced-order model can
only approximate the robot dynamics under small deformations with a small input
signal. Note that the linear model is obtained from the configuration, for which the
actuation does not have any impact on the z−axis displacement. The above valida-
tion results in Figures 3.7 and 3.8 confirm the validity of the proposed LPV modeling
method. Hereafter, the relevance of this LPV modeling for dynamic tracking control
design of soft robots under large deformations is demonstrated.

Although our LPV model captures the nonlinear behavior of the system well,
the LPV model is not a strictly equivalent nonlinear model. Since the scheduling
variables of the LPV model need to rely on the measurement of the system, the LPV
model will synchronize with the real system through the scheduling variables and the
Luenberger state observer. In other words, if open-loop simulations are performed
directly on the LPV model, small errors in scheduling variables could accumulate
and lead to significant model errors at high speeds or oscillations.
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3.5.3 Tracking Control Validation

To show the effectiveness of the proposed LPV tracking control framework for
elastic soft robots, we perform several experimental tests with both large and small
deformations. Note that this soft robot is horizontally positioned as an elephant
trunk, which leads to a distorted sphere workspace due to the gravity effect as de-
picted in Figure 3.9. Since the center of mass changes with respect to the robot
motion and deformation, the gravity effect plays a role of time-varying disturbance
for the robot control system. For comparison purposes, we have shown in the pre-
vious chapter that the linear EID-based controller therein can outperform, in terms
of tracking performance, some standard controllers for soft elastic robots, e.g., in-
verse kinematics based QP control [15], [39] and Jacobian-based PID control [66],
[67]. Hence, in the sequel we mainly focus on the comparisons between the proposed
LPV control method, the linear EID-based control method in [12] and a linear it-
erative learning control (ILC) method. This latter is known as a powerful scheme
for dynamic tracking control in the presence of non-random disturbances, such as
unmodeled nonlinearities of the system [93].

Test 1: Dynamic Tracking with a Predefined Trajectory

For this test, we select a reference trajectory that covers the entire workspace of
the Trunk robot. Note that the workspace of the Trunk robot can be parameterized
by a spherical coordinate system with two angular coordinates (ϑ(t), φ(t)), which
enable to easily define the Cartesian coordinates of end effector trajectories in the
workspace. For illustrations, we consider a reference trajectory with the following
latitude and azimuth angles:

ϑ(t) = 2.1 sin(0.3t) [rad], φ(t) = 0.5 cos(0.3t) [rad] (3.91)

which corresponds to a large circular trajectory in the workspace. Figure 3.9 depicts
the evolution of the end-effector positions of the Trunk robot within the shell-like
workspace, which are obtained with the proposed LPV control method and the linear
control method in [12]. We can see that the linear control quickly fails when the tra-
jectory goes beyond its operating region of the workspace. In contrast, LPV control
can provide an effective tracking for the whole predefined trajectory. To examine
the tracking control performance in more detail, Figures 3.10 and 3.11 present the
tracking control results, projected on the ϑφ−plane. Remark that both LPV and
linear control methods share a similar tracking performance around the initial robot
configuration. However, after reaching the singular configuration of the Trunk robot,
i.e., with a change of the actuation direction, the linear control method is unable to
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perform the tracking task while the LPV control method still offers a satisfactory
reference tracking result. The corresponding control inputs are shown in Figure 3.12.
Note that the ϑ−axis force control input has a sinus shape, which is synchronized
with the ϑ−axis trajectory. However, the φ−axis control input is similar to a square
wave, which does not correspond to the form of the φ−axis trajectory. This is not
the case of the dynamic tracking control with small deformations in [12], which also
illustrates the effects of large nonlinearities, i.e., large deformations, in soft robots
control. Video of this experiment can be found at: https://bit.ly/3RIXlsF.

Figure 3.9: Experimental results of 3D dynamic tracking control with a circular
reference trajectory (Test 1).

Test 2: Robustness with respect to External Disturbances

The EID-based control concept has been shown in [12] as an effective tool to deal
with the parametric uncertainties of elastic soft robots, analyzed in Section 3.2.3, for
linear dynamic tracking control. This test is used to demonstrate that this control
concept is also useful for interpolated LPV control framework to deal with not only
parametric uncertainties but also external disturbances. To this end, we add an extra
load near the end-effector of the Trunk robot as an external disturbance during the
trajectory tracking as shown in Figure 3.13. The load contains 3 coins with a total
mass of 24.8 [g], which is about 15% of the robot weight. The tracking task of this test
is composed of two phases with the same reference trajectory as defined in (3.91), and
the load is added in the second phase for comparison purposes. The corresponding

https://bit.ly/3RIXlsF
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Figure 3.10: Experiment tracking control results with a circular reference trajectory
projected on the spherical coordinate ϑφ−plane (Test 1).
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Figure 3.11: Tracking control task in the parametric space (Test 1). (a) Tracking
performance along ϑ−axis. (b) Tracking performance along φ−axis.

tracking control result in 3D and its projection on each axis are presented in Figures
3.14 and 3.15, respectively. We can see that the disturbance effect, caused by the
extra load added at around 27 [s], is quickly compensated. Indeed, there is no
significant difference after about 1 [s] on the tracking control performance between
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Figure 3.12: Force control inputs along the ϑ−axis and the φ−axis (Test 1).

Phase 1 and Phase 2. We can observe in Figure 3.15(c) that due to the presence
of the additional load, the φ−axis force control input is also reduced accordingly.
Since the extra load only affects the φ−axis, there is no change for the ϑ−axis force
input between Phase 1 and Phase 2. Videos of this experiment can be found at:
https://bit.ly/3RMDgBO.

Figure 3.13: Soft Trunk robot with an additional load (Test 2).

https://bit.ly/3RMDgBO
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Figure 3.14: Experimental results of 3D dynamic tracking control in the presence of
an external disturbance (Test 2).

Figure 3.15: Tracking control task with an external disturbance in the parametric
space (Test 2). (a) Tracking performance along ϑ−axis. (b) Tracking performance
along φ−axis. (c) Force control inputs.
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Test 3: Comparisons with Iterative Learning Control

ILC aims at generating a feedforward control to track a reference trajectory of
repetitive processes on a finite time interval while rejecting real-time disturbances
[94]–[96]. For comparisons, we perform a circular trajectory tracking with the norm-
optimal ILC control [97], which shares the common model-based principle as iterative
learning model predictive control [98]. The designed ILC control scheme is composed
of two decentralized single-input single-output (SISO) ILC controllers corresponding
to the ϑ−axis and the φ−axis, respectively. The design of each norm-optimal ILC
controller is formulated as an optimization problem, as described in Appendix B. We
distinguish two test scenarios for trajectory tracking: i) with a small robot deforma-
tion, and ii) with a large robot deformation.

a. Scenario 1: Tracking with a Small Deformation. This test scenario is per-
formed with the following small-range reference such that linear control can be still
effective:

ϑ(t) = 0.4 sin(0.9t) [rad], φ(t) = 0.4 cos(0.9t) [rad]. (3.92)

The tracking control results obtained with both LPV control and ILC control are
shown in Figure 3.16. We can see in Figures 3.16(a) and (c) that the tracking errors
become smaller after each control iteration. After 15 iterations, the robot end-effector
can track the desired reference (3.92) with the ILC control method. Moreover, the
tracking control performance of both control methods is similar in this case.

b. Scenario 2: Tracking with a Large Deformation. For this test, the tracking
control task is performed with the large-range reference defined in (3.91) to show
that linear control is not effective anymore for large-deformation situations. The
corresponding tracking control results are depicted in Figure 3.17. Observe that
ILC control can improve loop-after-loop the tracking performance from the initial
iterations, i.e., when the deformation is still small. However, when the deformation
becomes large, the ILC controller is not effective anymore to track the desired ref-
erence. In particular, the end-effector is not able to reach the robot configuration
with 90◦ bending deformation, which is not the case of the proposed LPV controller.
Videos for both scenarios of this test can be found at: https://bit.ly/3xLb3CH.

https://bit.ly/3xLb3CH
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Figure 3.16: Tracking performance comparison between LPV control and different
loops of ILC control for the small-deformation reference (3.92). (a) Tracking perfor-
mance along ϑ−axis. (b) Force control input along ϑ−axis. (c) Tracking performance
along φ−axis. (d) Force control input along φ−axis.
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Figure 3.17: Tracking performance comparison between LPV control and different
loops of ILC control for the large-deformation reference (3.91). (a) Tracking perfor-
mance along ϑ−axis. (b) Force control input along ϑ−axis. (c) Tracking performance
along φ−axis. (d) Force control input along φ−axis.
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For a quantitative performance analysis, we define the following index of normal-
ized square tracking error (nSTE) to avoid the impact of different reference ampli-
tudes:

nSTE =
1

∥xr∥2ℓ∞

∆t∑
k=1

∥ek∥2 (3.93)

where ∆t is the tracking time. Figure 3.18 summarizes the tracking performance
in terms of nSTE index obtained with the proposed LPV control and the compared
ILC controller for both small- and large-range trajectory references. Remark that
for the small-range tracking, a clear performance improvement can be observed loop
after loop for ILC control until a high tracking accuracy can be achieved. However,
for the large-range tracking, despite a loop-after-loop improvement, the nSTE values
obtained with ILC controller are large compared to that obtained with the proposed
LPV controller, which gives similar nSTE values for both test scenarios. These
confirm the tracking control results in Figures 3.16 and 3.17.
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Figure 3.18: Comparisons between LPV controller and ILC controller in terms of
nSTE performance for both small and large deformation test scenarios.

Test 4: Real-Time Marker Tracking

To further explore the potential of the proposed LPV control method, a more
challenging experiment is conducted. The task is to imitate the elephant trunk to
follow a moving target, i.e., to minimize the distance between the end-effector and
the target, which is materialized by a marker as illustrated in Figure 3.19. Note that
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the marker can be manually and arbitrarily moved within the workspace of the soft
Trunk robot.

Figure 3.19: Illustration of a real-time target tracking task with the Trunk robot.

The 3D trajectories of the end-effector and the target are shown in Figure 3.20.
For this test, we pay a special attention on the highly deformed configuration of
the Trunk robot and the ”unknown” and fast time-varying features of the target
trajectory, which makes the tracking task much more challenging compared to the
previous tests. Figure 3.21 shows that the real-time marker tracking is successfully
achieved with the proposed LPV control method. Videos of this experiment can be
found at: https://bit.ly/3KMDIOr.

Figure 3.20: A 3D view of the real-time marker tracking task (Test 4).

https://bit.ly/3KMDIOr
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Figure 3.21: Real-time marker tracking task in the parametric space (Test 4). (a)
Tracking performance along ϑ−axis. (b) Tracking performance along φ−axis. (c)
Force control inputs.

3.6 Concluding Remarks

A dynamic FEM model-based framework has been proposed for LPV tracking
control of soft robots. Based on a POD model reduction method, we first generate a
set of reduced-order linear models with the same mechanical structure for different
operating points, covering the whole robot workspace. Using RBF networks, these
local linearized models are interpolated to build a reduced-order LPV model, which
can capture the nonlinear dynamics of soft robots with large deformations. Then,
an EID-based control scheme is developed for LPV dynamic tracking control, which
is composed of three key components, i.e., feedforward control, feedback control,
error-compensation control. The LPV feedforward control is constructed from an in-
terpolation of local control input values, obtained at the operating points considered
for LPV modeling. The feedback control and the error-compensation control are de-
signed with a generalized proportional integral observer structure, incorporating the
low-frequency information of external disturbances and/or modeling uncertainties.
Using Lyapunov stability theory, sufficient LMI conditions are derived to design both
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the LPV feedback controller and the LPV extended observer such that the closed-
loop soft robot system is globally uniformly ℓ∞−stable. Various experimental tests
have been carried out with a soft Trunk robot under configurations with both small
and large deformations to validate the proposed LPV modeling and to show the ef-
fectiveness of the proposed LPV control method over existing linear tracking control
results.

Appendix.B:Norm-Optimal ILC Controller Design

To design two decentralized ILC controllers, the reduced-order robot model (3.11)
is decoupled into two SISO models corresponding to the control along the ϑ−axis
and the φ−axis, respectively. The norm-optimal ILC design for these both con-
trollers follows the same procedure, which is summarized hereafter with the same
formulation. More related technical details can be found in [99].

Under zero initial condition, the following impulse response matrix is derived
from the linear robot model (3.11):

P =


CpBrp 0 · · · 0
CpArBrp CpBrp · · · 0

...
...

. . .
...

CpA
T−1
r Brp CpA

T−2
r Brp · · · CpBrp

 (3.94)

where T is the iteration length, i.e., k ∈ [0, T ]. The pth input-output matrix pair
(Brp, Cp) corresponds to the SISO control loop along the ϑ−axis or the φ−axis. The
system output of the ith iteration can be represented by

yk(i) = Puk(i) (3.95)

where uk(i) is the control input of the ith iteration. The norm-optimal ILC control
design can be reformulated as the following optimization problem [99]:

min
uk(i+1)

e⊤
k(i+1)Week(i+1) + u⊤k(i+1)Wuuk(i+1) (3.96)

subject to
[
uk(i+1) − uk(i)

]⊤ [
uk(i+1) − uk(i)

]
≤ δ (3.97)

where ek(i) = rk − yk(i), and rk is the output reference. The weighting matrices
We and Wu determine the tradeoff between performance and input energy. The
constraint (3.97) on mmaximum of control update can be taken into account in the
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optimization problem (3.96) via a Lagrange multiplier λ as

min
uk(i+1)

Jk(i+1) (3.98)

with
Jk(i+1) = e⊤

k(i+1)Week(i+1) + u⊤
k(i+1)Wuuk(i+1)

+ λ
[(
uk(i+1) − uk(i)

)⊤ (
uk(i+1) − uk(i)

)
− δ
]
.

Then, the optimal solution of the optimization problem (3.98) can be determined

from the equation
∂Jk(i+1)

∂uk(i+1)
= 0, leading to

uk(i+1) = W−1
opt

(
λuk(i) +P⊤We(I−P)rk

)
(3.99)

with Wopt = λI+P⊤WeP+Wu. Substituting (3.95) into (3.99), the update law of
the control input at the ith iteration can be obtained as

uk(i+1) = Q
[
uk(i) + Lek(i)

]
(3.100)

where the filter matrices Q and L are defined as

Q = W−1
opt

(
λI+P⊤WeP

)
L =

(
λI+P⊤WeP

)−1
P⊤We.

(3.101)

Remark 14. For ILC tuning, we select We = I and Wu = ρI, with ρ ∈ [0, 1],
to limit the computational burden of the control update law (3.100)–(3.101). The
tuning of the two design parameters λ and ρ can be done as follows. Since the soft
robot dynamics cannot be accurately described with a linear model, the value of λ
should be large enough to maintain the system stability by avoiding an aggressive
update in (3.100). The value of ρ should be small to minimize the tracking error
ek(i). For the experimental results in Section 3.5, we select λ = 1.2 and ρ = 0.1 for
both SISO norm-optimal ILC controllers.
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After implementing a full-workspace nonlinear controller, arbitrary trajectories in
workspace can be tracked. But if the robot is used to perform more advanced tasks
such as touching or grasping, we need to know the corresponding target configuration
and trajectory, which is known as motion or trajectory planning task. For a highly
nonlinear control system such as a soft robot, a feedback controller is not enough
to complete high level tasks, because its actual workspace is not a linear, but a
manifold with special structure. This is actually the same problem that rigid robots
face, but unlike rigid robots, soft robots inverse kinematic problem cannot be solved
accurately in real-time.

Inspired by the modeling process in previous chapter, a novel kinematic repre-
sentation of soft robot combining both model and collected data is proposed, as well
as an inverse kinematics method based on measurement data.

83
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4.1 Introduction

In this chapter, a learning and synthesis algorithm is presented for solving the
IK problem of soft manipulator. The algorithm learns feasible configurations from
collected configuration set and synthesizes new configurations that are similar to the
learnt ones and satisfies the kinematic constraints. The real configurations {qi},
which consist of the coordinates of several points and end effector of the manipulator
are collected by real-time experiment. The learning part is about training a model
that connects high-dimension configurations with reduced order states, which can
also be called feature vectors in machine learning. The feature vectors that we used
to learn the configurations are obtained from the FEM model of soft manipulator as
discussed in previous chapters. More specifically, our approach consists of following
key points:

Generalized coordinates In order to have effective feature vector to represent
a large number of soft manipulator postures, while maintaining the coherence with
dynamical controller. We obtain the reduced order general coordinates z from large
scale states x of FEM model by order reduction. The feature z is the same as the
reduced order state vector xr in previous chapters and can be reconstructed by state
observer from actual measurement y.

GPR learning To describe the likelihood between synthesized and captured pos-
tures of soft manipulator, the Gaussian Process Regressor (GPR) is introduced. The
feature vector z and the captured posture qi are the input and output of GPR re-
spectively. A low dimentional representation of posture set is defined: each posture
qi has a corresponding feature zi, and the similarity between different postures is
defined as the distance of their feature vectors.

IK solution To synthesize the desired posture of manipulator that both satisfy
the constraints and is similar to collected postures, we formulate the IK as an opti-
mization problem with an objective function LIK(z, q) derived from the learnt GPR
model.

4.2 Background and motivation

The main tasks of soft and rigid robots are actually highly overlapping, including
reaching and moving given objects as well as avoiding obstacles by changing its
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configuration. As an extension of rigid-body robots, soft-body robots also inherit
the same problem about kinematics. The generalized coordinates of a robot are
defined on a manifold thus linearized feedback controller is not effective to clarify
the relevant issues, we can start with a rigid body robot for comparative research.

4.2.1 Control of rigid manipulator

The dynamical model of rigid robot manipulators is conveniently described by
Lagrange dynamics. Using the robot manipulator with n links for example and let
the (n×1)-vector q be the generalized coordinates (joint angles or translations). The
dynamical model of the robot manipulator is given with Lagrange’s equation [100]:

H(q)q̈ +C(q, q̇)q̇ + τg(q) = τ , (4.1)

where H(q) is the (n × n) inertia matrix, C(q, q̇)q̇ is the vector of Coriolis and
centrifugal forces, τg(q) is the vector of gravity force, and τ is the generalized force
vector that we assume to be the control input.

The kinematic model based on the geometrical properties is used to compute
the position of the end-effector from specified values for the joint parameters. The
coordinates of the end effector are functions of the generalized coordinates and can
be given with

qy = fFK(q), (4.2)

which is also known as forward kinematics (FK).

q1
L1

L2 q2

x

y

Figure 4.1: Kinematic model of a RR planar robot. The model has two joints angles
as generalized coordinates.

From the viewpoint of controller design, end effector coordinates are the outputs
of the system. The space of end effector is usually called task space and the space
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of joint angles is called configuration space. Normally, the position, orientation and
trajectory of the end effector are controlled to execute given tasks. To this end, joint
angles are generated from desired trajectory of the end effector, and the problem is
transformed into trajectory tracking of joint angles.

A baseline method for manipulator control is PD control with a gravity compen-
sation scheme [100] of following form

τ = KP (qd − q)−KVq̇ + τg(q), (4.3)

where KP and KV are positive-definite gain matrices, qd is vector of desired joint
angles. The closed-loop stability achieved by PD controller is analyzed according
to the error dynamic based on (4.1). However, we may found it strange that the
position of the end-effector is what we are concerned about but it is not appearing in
the equation of the controller, so that it is not possible to describe the performance
and robustness w.r.t system output. This compromise is due to the uniqueness of
robot control problem.

Actually, as a non-linear dynamic model, holonomic constraints (geometrical re-
lationships) have been embedded in the Lagrange’s equation of rigid manipulator.
That is to say, the method of motion planning can be directly carried out based on
this equation, such as the trajectory planning problem of optimal time and energy,
and the necessary conditions of the target trajectory are already provided by the
optimal control theory [101]. While planning such trajectory is still an open and
challenging problem, especially when simultaneously taking kinematic and dynamic
constraints into account, which is called kinodynamic motion planning (KMP) [102].
These constraints are too complex for most robot platforms except for certain mobile
and aerial robot, and it is hard to solve them analytically and even numerically.

In practice, the motion planning task is usually decoupled from dynamical model
since the rigid manipulator can be precisely described with geometrical (kinematic)
model.

4.2.2 Forward and inverse kinematics for rigid robot

Consider the rigid robot in Figure 4.1 for example, the forward kinematics de-
scribing the relationship from generalized coordinates q = [q1, q2]

T to end-effector
position vector qy is given with

qy =

[
x
y

]
=

[
L1cos(q1) + L2cos(q1 + q2)
L1sin(q1) + L2sin(q1 + q2)

]
, (4.4)

where q1, q2 are joints angles and L1, L2 are the lengths of links as shown in the
figure. By substituting values of joint displacements into the right-hand side of the
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kinematic equation, one can immediately find the corresponding end effector position
and orientation.

For the motion planing task, we need to find the joint displacements that lead the
end effector to the specified position and orientation. This is the inverse of previous
problem, and it is called inverse kinematics. In terms of the planar robot used for
example in Figure 4.1, the joint angles can be solved analytically. Given the position
(x, y) of end effector, the corresponding joint angles can be calculated with

q2 = cos−1 x
2 + y2 − a21 − a22

2L1L2

, (4.5)

q1 = tan−1 y

x
− tan−1 L2 sin q2

L1 + L2 cos q2
. (4.6)

while for robot with redundant structure, numerical methods are used in order to
derive the desired joint displacements.

Figure 4.2: Configurations for vertical movement.

Figure 4.2 illustrated a series of manipulator configurations that move the end
effector vertically. It can be seen that for a simple straight trajectory in the task
space, the displacements of joints are complicated. Furthermore, since the dynamic
and kinematic equations contain dozens of nonlinear trigonometric functions, the
feasible region of linear state-space model of corresponding controller is highly re-
stricted. A possible solution is to use LPV control framework based on nonlinear
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dynamic model obtained from multibody dynamics [103] or identification from ex-
perimental data [104]. However, even with such non-linear controller, the inverse
kinematics is still irreplaceable, because it is related to the topology of Configura-
tion space(C-space).

q1
q2

(a) Topology of C-space

0 2

/2

start end

(b) Linear space with trajec-
tory

(c) C-space with trajectory

Figure 4.3: The non-linear nature of robot C-space.

The planar robot in Figure 4.1 has two independent rotary joints, corresponding
to two cyclic coordinates. Its configuration space is in the shape of a torus, as shown
in Figure 4.3(a). Figure 4.3(b) shows a linear space of joint angles without special
topological properties. The blue curve corresponds to the joint angle when the end
effector of robot in Figure 4.2 moves along a vertical line. Since the topological
structure is missed, the joint angles have to change discontinuously on axis q1. The
curves in Figure 4.3(c) depict joint angle trajectories on the manifold for the same
trajectory.

In addition, since the process of linearization also leads to the loss of topology, the
state trajectories in linear space actually do not fit the geometrical constraints of the
manifold, which leads to a serious model mismatch. Therefore, the linear model, and
its extension LPV model, cannot work alone when controlling objects such as robots.
We need to use geometric (kinematic) information to obtain the desired trajectory
and transform into a trajectory tracking problem.

4.2.3 Similar issue in soft robotics and related work

Soft manipulators have flexible structure and the capability to deform its con-
figurations, which we would like to call it posture because we are concerned about
the form of entire robot body instead of only the end effector. While during the
manipulation of soft robots, we still need to follow the kinematics and geometrical
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structures of general coordinates to perform control. Taking the robot in Figure 4.4
as an example, it is driven by cables to realize deformation along different directions.
The robot can only bend but not stretch. During our transition of bending from
left to the right, if we only design a feedback controller in the task space without
considering the kinematics, then the desired trajectory is supposed to be the red
one, which does not conform to the robot structure. One of the possible path is the
curve shown in blue. It can be seen from the figure that a linear model is sufficient
for a small range of bending, and by introducing the LPV model we can perform
feedback control throughout the bending process. However, a kinematic model is
indispensable to obtain the reference trajectory for LPV controller.

Actual trajectory

Linear trajectory

x

y

Figure 4.4: Illustration of bending deformation for Echelon robot [15].

4.2.4 Related works

Since the bending section of a continuum robot is in the form of an arc, a natural
idea is to use multiple arcs to approximate the robot. This method of approximating
robot with constant curvature has been applied in many studies. It is actually a
replica of the rigid robot model and idealizes the deformation and geometry of soft
body. When certain assumptions are fulfilled, the kinematic model of soft manipu-
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lators can be formulated in an analytical way. In the literature, a typical case is the
piece-wise constant curvature model [16].

(a) Original beam (b) Constant curvature section (c) Piece-wise con-
stant curvature
model

Figure 4.5: Piece-wise constant curvature element and model.

As the robot can be treated as several sections of curve with constant parameters,
the relationship between sections can be described by homogeneous transformations
[16]. Based on this rigid body transformation, the algorithms of rigid robot can
be directly transferred and used. Therefore, the position of the end point can be
converted into the curvature of each segment, and the inverse kinematics solution
can be obtained through inverse transformation. This gives soft robots the possibility
to accomplish specific tasks [45]. However, the method for rigid manipulators is less
effective for soft cases, the deformation introduced by gravity and the interaction with
load are ignored thus leading to significant modeling error and limited flexibility.
Besides, for both dynamic and kinematic models of rigid manipulator, they share
the same general coordinates (joint angles, etc.) which guarantees the combined
implementation of motion planning and dynamic control. While the curvature is
not a ideal coordinate for dynamical model, the solution of inverse kinematics is not
available to be used in dynamical control.

There is another popular method known as differential kinematics or Jacobian
kinematics, which does not use the relationship between general coordinates and the
end effector position but their derivative:

∆qy = J(q)∆q, (4.7)

J(q) =
∂qy

∂q
=
∂fFK(q)

∂q
. (4.8)

The Jacobian can be obtained from the geometrical model [16], Finite element
method (FEM) model [39] or from experiment and regression of collected data [19].
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For a rigid robot with an accurate geometric model, this method can be used to
obtain the trajectories of joint angles through a iterative computation process. Since
the model is of high accuracy, such trajectories can be directly used as the reference in
the control of rigid robot. That is to say, trajectory planning and dynamic control can
be performed separately. However, for a soft robot without precise kinematics, this
algorithm can only plan the trajectory within a small range, and then the robot must
update the model in reality and adapt the new configuration after making movement
as shown in Figure 4.6. After the update process, the trajectory and control are re-
planned and the accomplishment of task may take considerable iterations as shown
in [15].

x

y
Movement step

Update step

Figure 4.6: Movement process with Jacobian based method. The task is to move the
end effector from left side to right side.

Therefore, such control scheme is an iterative loop of planning, execution and
update. Here the available movement distance of each step is proportional to the
accuracy of model. To guarantee the stability and smoothness, the end effector
usually moves shortly and slowly at each step. Typical method from rigid robotics
like is also introduced to overcome the convergence and singularity problems [53].
While obtain IK solution is still local, so that may be inappropriate for the global
trajectory planning.

Due to the uncertain and non-linear nature of soft robots, data-based approaches
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have also naturally been introduced. Due to the development and performance im-
provement of machine learning methods in the recent period, the two main mapping
relationships in soft robots (forward kinematics [52], [105] and differential kinemat-
ics [52]) can be learned by machine learning models. After the training of regression
model, the IK is formulated as a non-linear optimization problem. The required in-
put for desired end-effector position can be obtained. After implementing obtained
input as open loop control, local control is accomplished through Jacobian based
method. This is an effective approach, but existing methods can only deal with the
end-effector position instead of configuration whole robot, as well as corresponding
local Jacobian method for feedback control. In order to realize the inverse kinematics
solution and feedback control for the configuration of soft robot, we need to have
deeper understanding about robot configurations and developing suitable method for
representation and bridge the robot model with dynamic controller.

4.3 Postures and generalized coordinates

Among all the research about soft robotics, the flexibility of soft robots is al-
ways emphasized. But in terms of control and modeling, only simplified models are
used, which is obviously contrary to our original intention. In order to obtain more
information about soft manipulators and take full advantage of their flexibility, we
must conduct more intensive sensing and measurement in soft robots. The stable
structure of rigid-body robots enables us to characterize the robot’s posture with
only measured joint angles. While for soft robots, we need more measurement meth-
ods to capture robot configuration and other information. Motion capture systems,
fiber-optic sensing [106] and image-based sensing [107] are supposed to be applied.
The goal is no longer only the position of end effector, or the endpoint of each seg-
ment, but the curve of the whole robot body, so that the robot’s flexibility and high
degrees of freedom can be fully captured.
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q1
q2

(a) (b)

Figure 4.7: Illustration of 3D model and real three-section Echelon robot [108]. Two
different postures of robot are shown in (a). The robot has three sections with
independent actuation, but the deformation is distributed in a more complicated
way due to the robot structure and gravity. To capture the form of robot curve, in
(b) we need at least 9 measured points. The optical markers are emphasized with
red circles.

Another essential point is that the kinematics must be combined with the dynamic
model. As mentioned earlier, the kinematic model must share generalized coordinates
with the dynamic model, so that we can develop a corresponding controller and
guarantee the realization of planned trajectory and reach the target configuration.

4.3.1 Another Perspective on POD

In the previous chapters, we first used FEM to model the soft robot, and then
collected the different robot configurations as snapshots to reduce the model order.
For the case that robot has state variable q ∈ Rm×1, the snapshot matrix S ∈ Rm×n

with n various configuration is given with:

S = (qu1 , qu2 , . . . , qun). (4.9)

The snapshot here includes robot configurations under various control inputs ui.
Then, the projection matrix of POD is obtained by SVD of snapshot matrix:
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up to a complex scalar of magnitude one (i.e., eiθ, where
θ ∈ �0; 2π�).
Given a rectangular matrix A, we can decompose the matrix with

the SVD in the following graphical manner:

where we have taken m > n in this example. Sometimes, the
components in U enclosed by the broken lines are omitted from
the decomposition, as they are multiplied by zeros in Σ. The
decomposition that disregards the submatrices in the broken-line
boxes are called the reduced SVD (economy-sized SVD), as opposed
to the full SVD.
In a manner similar to the eigenvalue decomposition, we can

interpret the SVD as a means to represent the effect of matrix
operation merely through the multiplication by scalars (singular
values) given the appropriate directions. Because the SVD is applied
to a rectangular matrix, we need two sets of basis vectors to span the
domain and range of the matrix. Hence, we have the right singular
vectors V that span the domain of A and the left singular vectors U
that span the range of A, as illustrated in Fig. 4. This is different from
the eigenvalue decomposition of a square matrix: in which case,
the domain and the range are (generally) the same. Although the
eigenvalue decomposition requires the square matrix to be
diagonalizable, the SVD (on the other hand) can be performed on
any rectangular matrix.

C. Relationship Between Eigenvalue and Singular Value
Decompositions

The eigenvalue and singular value decompositions are closely
related. In fact, the left and right singular vectors ofA ∈ Cm×n are also
the orthonormal eigenvectors of AA� and A�A, respectively.
Furthermore, the nonzero singular values of A are the square roots of
the nonzero eigenvalues of AA� and A�A. Therefore, instead of the
SVD, the eigenvalue decomposition can be performed onAA� orA�A
to solve for the singular vectors and singular values of A. For these
reasons, the smaller of the square matrices of AA� and A�A are often
chosen to perform the decomposition in a computationally
inexpensive manner as compared to the full SVD. This property is
taken advantage of in some of the decomposition methods discussed
in the following because flowfield data usually yield a rectangular
data matrix that can be very high-dimensional in one direction
(e.g., the snapshot POD method [28] in Sec. III).

D. Numerical Libraries for Eigenvalue and Singular Value
Decompositions

Eigenvalue and singular value decompositions can be performed
with codes that are readily available. We list a few standard

numerical libraries to execute eigenvalue and singular value
decompositions.
MATLAB: In MATLAB®, the command eig finds the

eigenvalues and eigenvectors for standard eigenvalue problems as
well as generalized eigenvalue problems. The command svd
outputs the singular values and the left and right singular vectors. It
can also perform the economy-sized SVD. For small- to moderate-
sized problems, MATLAB can offer a user-friendly environment to
perform modal decompositions. We provide in Table 2 some
common examples of eig and svd in use for canonical
decompositions.**

LAPACK: LAPACK (linear algebra package) offers standard
numerical library routines for a variety of basic linear algebra
problems, including eigenvalue and singular value decomposi-
tions. The routines are written in Fortran 90. See the users’
guide [38].††

ScaLAPACK: ScaLAPACK (scalable LAPACK) comprises
high-performance linear algebra routines for parallel distributed
memory machines. ScaLAPACK solves dense and banded
eigenvalue and singular value problems. See the users’
guide [39].‡‡

ARPACK: ARPACK (Arnoldi package) is a numerical library,
written in FORTRAN 77, that is specialized to handle large-scale
eigenvalue problems as well as generalized eigenvalue problems. It
can also perform singular value decompositions. The library is
available for both serial and parallel computations. See the users’
guide [40].§§

E. Pseudospectra

Before we transition our discussion to the coverage of modal
analysis techniques, let us consider the pseudospectral analysis
[33,35], which reveals the sensitivity of the eigenvalue spectra with
respect to perturbations to the operator. This is also an important
concept in studying transient and input–output dynamics,
complementing the stability analysis based on eigenvalues. Concepts
from the pseudospectral analysis appear later in the resolvent analysis
(Sec. VIII).
For a linear system described by Eq. (4) to exhibit stable

dynamics, we require all eigenvalues of its operator A to satisfy
Re�λj�A�� < 0, as illustrated in Fig. 3. Although this criterion
guarantees the solution x�t� to be stable for large t, it does not
provide insights into the transient behavior of x�t�. To illustrate this
point, let us consider an example of A � VΛV−1 with stable
eigenvalues of

λ1 � −0.1; λ2 � −0.2 (13)

Fig. 4 Graphical representation of singular value decomposition transforming a unit radius sphere, described by right singular vectors vj, to an ellipse
(ellipsoid) with semiaxes characterized by the left singular vectorsuj andmagnitude captured by the singular values σj. In this graphical example,we take
A ∈ R3×3.

**For additional details, see the documentation available on http://www.
mathworks.com [retrieved 10 February 2017].

††Library available online at http://www.netlib.org/lapack [retrieved
10 February 2017].

‡‡Library available online at http://www.netlib.org/scalapack/ [retrieved
10 February 2017].

§§Library available online at http://www.caam.rice.edu/software/ARPACK
[retrieved 10 February 2017].
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The projector T of model order reduction from equation (2.8) is the truncation
of matrix U and reduced order state variable z ∈ Rp×1 is given with

z = Tq. (4.10)

The projector T is used in previous chapters to obtain the reduced order dynamic
systems, which enable us to design the feedback controllers.

POD can also be understood as the modal decomposition of snapshot. Here U is
the orthonormal characteristic modal matrix and its column vectors are the modes
arranged in descending order of singular values. The singular values in Σ are the
coefficients of these modes to represent their energy. And the values in matrix V ∗ are
the weights of different modes for every collected configurations. After completing the
POD, all configurations of the robot become superposition of linearly independent
modes of various orders.

We have shown earlier that the reduced-order general coordinates z is able to act
as the state of dynamic system, based on which we can design feedback controllers,
and here we can also see the potential of z to be the vector of general coordinates
to represent various robot configurations like the joint angles of rigid manipulator.

4.3.2 Validation of configuration representation

Before introducing proposed inverse kinematic algorithm, we would like to vali-
date the theory above with a simulation model to show the mechanism and perfor-
mance. A planar soft robot is proposed because two dimentional figure is easier to
visualize.

The configurations are generated through a piece-wise constant curvature model
of a soft robot, which consists of two sections. The length of both sections are 20
[cm]. The model is actually a curve discretized with m = 20 states like in Figure
4.8(a).

First, we generate n = 400 different configurations with randomly assigned
curvature of each section as shown in Figure 4.8(b), the interval of curvature is
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Figure 4.8: Simulated 2D postures. In (a), an example from dataset is shown, the
model contains two PCC part I and II as illustrated, where the dotted lines are the
radius of corresponding arcs. The data set contains 400 various configurations as
shown in (b).

[0.12,−0.12]. Following the definition of snapshot matrix (4.9), the configuration
vectors qi are stacked to construct the snapshot matrix. To decide the order of re-
duced states, we first perform SVD to snapshot matrix and analyze the results for
modal analysis. The distribution of singular values is shown in Figure 4.9, which
indicates that with a reduced order of 2, we are able to take 68.6% of singular values
and with an order of 4, we can take around 85.9%. Thus, the first 4 modes are a
suitable compromise between accuracy and complexity. As discussed earlier, config-
urations of robot are decomposed to several orthonormal modes, which is the column
of projector T . The first 4 modes in modal matrix U are illustrated in Figure 4.10(a)
to show how the configurations can be dissembled. The result is consistent with
well-known examples in vibration theory [109]. Each mode shape is an independent
and normalized displacement pattern which may be amplified and superimposed to
create a resultant displacement pattern, as shown in Figure 4.10(b). Since the illus-
trated robot only has 2 sections with constant curvatures, higher order displacement
patterns are not significant.

The process of constructing proper features is called feature engineering in the
research of machine learning, the idea of which is to construct a new variable to
better represent data and improve the performance of regression. It is exactly what
we have done for the representation of robot postures. So far, we have clarified how
the reduced-order state z is obtained and the physical meaning behind.
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Figure 4.9: Left: the bar graph of singular values from the SVD decomposition
of snapshot. Right: Accumulated percentage of singular values. Here, 4 order is
enough to contain most of the modes because we have two section multiply with two
dimension on x-axis and y-axis.
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soft robot.
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Figure 4.10: Comparison of modal decomposition.
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After obtaining the reduced-order feature vector z with equation (4.10), to visu-
alize the distribution of postures w.r.t feature vector z, these poses are illustrated
using the coordinates of z in Figure 4.11. Here each blue point is corresponding to
a robot configuration in the data set. It is worth noting that the postures automat-
ically distributed in the form of arc, which is similar to the end effector positions in
Figure 4.8.

Figure 4.11: The comparison of configurations based on feature vector.

On the both sides of figure, postures in the interested regions are shown accord-
ingly. We can observe that, in reduced-order feature space, the similar poses are
nearby and the distribution is smooth. With the help of POD method, it is clear
that the reduced state vector is a proper candidate for the feature vectors to repre-
sent various robot configurations. Based on this feature vector, we can develop the
kinematic algorithms of soft robot.

4.4 Forward Kinematics (FK)

For rigid robots, the role of FK is to compute the position of the end-effector
from given joint parameters. Since they are rigid body system, this relationship is
purely geometric and a closed form can generally be obtained. In the soft robot
case, this closed form cannot be obtained excepted for very simple geometries (a
simple beam) and under assumptions (small deflection, Cosserat, ...). In addition,
the advantages of soft robots are reflected in the flexible whole-body posture, while
traditional kinematics only focuses on the position and orientation of the end effector.
Here, we extend the definition of FK such that FK is the function to compute the
posture curve from specified feature variables instead of only end effector.
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The extended forward kinematics of soft manipulator can be defined as a vector-
valued function as:

q = f(z) (4.11)

where q ∈ Rm×1 is robot posture and z ∈ Rp×1 is corresponding feature vector.

Due to the nature of soft manipulators, an analytical form of f(z) is not available
and we cannot proceed with parameter identification method like rigid robot [100].
Instead, the FK function is able to be obtained from captured postures. We refer to
non-parametric regression method that enables estimation of a continuous function
from data by incorporating latent relationship between obtained posture and feature
vectors.

4.4.1 Learning FK with Gaussian Process Model

Machine learning and in particular Gaussian process (GP) regression is suitable
to estimate and predict unknown functions or models based on large amounts of
data by introducing prior knowledge. With the available data and the efficiency
of hardware implementations, GPs are gaining more attention in control recently,
e.g., for MPC [110] and iterative learning control [111]. In the proposed method,
Gaussian process plays an important role both in the forward kinematics and inverse
kinematics because it is able to characterize prediction uncertainty which is essential
for the following IK solution.

The realization of GP in this chapter is classical with vector output [112], but
we will go through with some key steps in Bayesian analysis to show the special
interest of the GP on FK learning problem. A detailed exposition can be found, for
instance in [113]. In the training process, we have a data set with N observations,
D = {(zi, qi)|i = 1, . . . , N} collected from the motion capture system to initialize
the regression model, as well as concatenated feature vector Z = [z1, . . . ,zN ]

T and
concatenated posture vector Q = [q1, . . . , qN ]

T .
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q1 q2

z1 z2z∗

q∗ =?

Figure 4.12: The FK problem is about constructing new postures q∗ based on known
poses given feature vector z∗. The new posture is supposed to be more similar to
posture q1 since their feature vectors are closer.

The learnt FK model is supposed to construct new robot posture q∗ for given
feature vector z∗, based on the known data set D as illustrated in Figure 4.12. As
we said in last section, the FK function f(x) is continuous, the new posture can be
generated from similar postures that are close to it. In Figure 4.12, new pose q∗

will be interpolated with q1, q2, since z∗ is closer to z1, the interpolation will be a
weighted sum by taking into account the similarity.

Gaussian kernel function k(z, z′) acts as the measurement of similarity between
postures q and q′ based on the Euclidean distance of corresponding feature vectors
z and z′:

k(z, z′) = exp(−β∥z − z′∥2) (4.12)

where parameter β determines the spread of Gaussian function to be concentrated
or smooth.
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Figure 4.13: Gaussian Kernel with different spread β. Two given postures are similar
when their feature vectors are close. A larger β means a larger credible interval.

The prediction f̂(z) of the GPR is a weighted sum of prediction vector w and
weights are kernel functions:

q̂ = f̂(z) = ϕ(z)⊤w, (4.13)

where

ϕ(z) = (k(z, z1), k(z, z2), . . . , k(z, zN))
⊤,

w is the parameter to be learnt. Here vector ϕ(z) describes the similarity between
interested feature z and each posture zi in the data set. In ϕ(z) the elements that
are close to query value have larger values. From (4.11) and (4.13) we have the
regression model

q = ϕ(z)⊤w + ε (4.14)

where ε is assumed to be i.i.d. Gaussian noise with zero mean and variance σ2
n

ε ∼ N (0,σ2
nI). (4.15)

The noise origins from the reduction error and inaccuracy of the measurement by
the motion capture system, each dimension of ε has independent and identically
distributed probability distribution (i.i.d.). For the data set with N samples, we
also define the N × N covariance matrix K(Z,Z), in which Ki,j = k(zi, zj) and
k (z,Z) = ϕ(z) is one row in K(Z,Z). The covariance matrix defines the similarity
between the elements in the data set.
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From (4.14), we can obtain the likelihood function of all collected training prior
set as multivariate Gaussian distribution [113]

Q ∼ N (0, K(Z,Z) + σ2
nI). (4.16)

Then, the joint distribution of collected and estimated postures is given with [113][
Q
q∗

]
∼ N

([
0
0

]
,

[
K(Z,Z) + σ2

nI k (Z, z∗)
k (z∗,Z) k (z∗, z∗)

])
, (4.17)

where the covariance between estimated posture and postures in data set is defined
through k (z∗,Z).

The prediction of a new posture q∗ is the posterior mean under known observation
Q and input z∗. It can be obtained by deriving conditional distribution [113] from
(4.17) as

p(q∗|z∗,Q,Z) ∼ N (µ̂, σ̂), (4.18)

where

µ̂ = k(z∗,Z)(K(Z,Z) + σ2
nI)

−1Q = k(z∗,Z)w, (4.19)

σ̂ = k(z∗, z∗)− k (z∗,Z) (K(Z,Z) + σ2
nI)

−1k (Z, z∗) . (4.20)

Here q∗ = µ̂ is the constructed posture of feature vector z∗ with variance σ̂.
We can notice that the value of element in variance σ̂ only depends on the distance

from known feature vectors zi ∈ Z to query vector z∗. The variance (uncertainty) is
greater when z∗ is far from training data and we have less confidence.

Remark 15. We can pay attention to equation (4.19) to understand how the method
is working. Each time when the posture corresponding to feature vector z∗ is re-
quired, the similarity between required posture and collected postures are computed
first as k(z∗,Z). Since the postures are stored in matrix Q, the predicted posture q∗

is actually the weighted sum of postures in data set. And the variance σ̂ in (4.20)
acts as the measurement of uncertainty to be used in next section.

4.5 Inverse Kinematics

Soft manipulators behavior are much more sensitive to fabrication error, external
forces (load, contact, ...) and actuation performances, thus a IK method having same
performance as rigid robot is impractical. From the observation of object reaching
behavior of elephant trunk [20], we can find that the movement contains two stages:
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a feedforward stage that helps elephant to move the trunk rapidly but coarsely to the
target and a feedback stage to guarantee the accomplishment of task, which is same
as human beings. Based on this, we define the target of IK for soft manipulator is
to give an acceptable estimation of desired posture that fits with collected poses and
satisfies given constraints. The problem of generating inverse kinematics solutions
for interactive characters from data [114] and finite element models [115] are also
involved in computer graphics, and the algorithms in this chapter are also inspired
by these studies.

z1 z∗ =? z2

q1 q∗ =? q2

Target

Figure 4.14: The IK problem is about constructing new postures q∗ and feature
vector z∗ given collected poses and constraints.

In this section, a new method for solving the IK problem of soft manipulator is
presented. The new IK method could generate robot postures that conform con-
straints and the new postures are similar with collected postures in data set. It
uses the previously trained FK Gaussian Process model to evaluate the credibility
of generated new postures. Unlike the classical IK method that using analytical
geometrical models, proposed method is based on the sampled points of posture
curve, hence it is more suitable for robot with large deformation and high nonlinear
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structures.

4.5.1 Methodology

Using the same notation that q ∈ Rm×1 is robot postures and z ∈ Rp×1 is
corresponding feature vector, the IK can be formulated as an optimization problem
of objective function LIK(z, q) derived from previous section:

argmin
z,q

LIK(z, q) (4.21)

s.t. C(q) = 0. (4.22)

where

LIK(z, q) =
||q − f̂(z)||2

2σ̂2(z)
+

n

2
lnσ̂2(z) +

1

2
||z||2. (4.23)

here C(q) is a set of constraints on the robot posture, f̂(z) is the FK evaluation on
feature vector z based on GPR in (4.19), σ̂2 is the variance of conditional distribution
of FK prediction in (4.20).

The objective function LIK can be interpreted as follows. To generate a posture
that is similar to collected data, we optimize the robot posture q and its feature

vector z at the same time, and the first term in objective function ||q−f̂(z)||2
2σ̂2(z)

can
be interpreted as soft constraints on postures, which try to keep optimized posture
q similar to learnt distribution of postures f̂(z) when the hard constraints C(q)
have to be satisfied. While the second term n

2
lnσ̂2(z) is designed to minimize the

uncertainty of prediction by keeping the feature vector z close to collected set Z as
shown in Figure 4.15, closer distance lead to smaller variance. The last part ||z||2 is
the regularization term to avoid overfitting.



4.5. Inverse Kinematics 104

Figure 4.15: The credibility graph of 2D feature vector z from collected postures
(blue point) in Figure 4.8. The second term of covariance σ̂ in equation (4.20) is
visualized as surface. The feature vector is trusted to be reliable around collected
points in data set and credibility is positively related to data density. The term
n
2
lnσ̂2(z) in objective function limits the new feature vector to be located in high

credibility region, thus keeping it close with data set.

Remark 16. A simpler idea is to only optimize feature vector z and the estimated
posture q is directly generated by trained GPR with (4.19), as shown in [19]. This
follows the same manner of inverse kinematics for rigid robots, where the joint angles
are variables to be optimized. While the constraints are designed for the robot
posture q instead of optimization variable z, this can not be formulated as a typical
optimization problem.

The summarized method from FK to IK is shown in Algorithm.2. In order to
provide a clearer perspective on the proposed IK method, we summarize the main
elements of the method in the Table 4.16 and compare it with the IK of rigid-body
robots.
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Figure 4.16: Comparison of proposed IK method for soft robots and Jacobian based
IK method for rigid robots.

4.6 Numerical Validation

4.6.1 Setup

The simulation to test our method is performed on the PCC model of a three-
section planar soft manipulator. The length of each section is 20[cm] with maximum
curvature as 0.25. Here, the robot has more degrees of freedom than the one used in
previous section for illustration. An example of generated robot postures is shown
in Figure 4.17.
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Algorithm 2 Algorithm for inverse kinematics

Step 1 - Training of Forward Kinematics :
Inputs:

Data set of postures qi and feature vector zi: D = {(zi, qi)|i = 1, . . . , N}
Outputs:

Trained Gaussian Process and output vector w
Required parameters:

Kernel function k(z, z′) from (4.12)
Variance σ2

n

Begin
Assemble posture matrix Q by stacking postures qi

Compute output vector w = (K(Z,Z) + σ2
nI)

−1Q with (4.19)
End
Step 2 - Inverse kinematic solution:
Inputs:

Desired position of end-effector or desired robot posture
Gaussian process parameter w

Outputs:
Feature vector z for IK solution
Posture vector q for IK solution

Initialization:
Initialize vectors q and z with relaxed posture of robot

Begin
Formulate constraints on robot posture as C(q) = 0
Minimize objective function LIK(z, q)

End
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Figure 4.17: Illustration of a three-section planar robot generated with PCC model.
The robot is discretized into 15 subsections.
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The robot is redundant for the task in x − y plane, and thus becoming more
challenging for the IK solution. The robot is discretized with 15 points as posture
vector q. In the simulation, we design the kinematic constraints of the soft robot as
the position of the end effector, which is also the most common robotic task.

The training data set DT = {qi, zi}, i = 1, . . . , N consists of N = 5000 pairs of
feature vector and postures, where the postures are generated with random curvature
for each section and the reduced feature vector z ∈ R6×1 is obtained from the POD
process and the order of feature vector is determined from the diagram of singular
values in Figure 4.9. Besides, we also generated a validation data set DV with 500
random postures to test trained FK model. In our practice, the data processing
step like normalization and zero-centering is required to increase the performance of
the model. We could also have mean value functions µ(z) and µ(q) become zero
for simplicity. The hyper parameters of measurement noise variance σn and kernel
function spread β are first obtained from maximum likelihood estimation [113] and
has to be manually tuned.

4.6.2 FK Validation

The GP of FK is initialized on the training data set DT and then validated on
set DV . The proposed FK algorithm is actually a regressor, the performance of
interpolation can be measured with the 2- norm of error vector ∥q − q∗∥2. During
the test, we are comparing the postures qi in DV with the generated posture q∗

i by
GP model from feature vector zi of qi. The results of FK validation is shown in
Figure 4.18.
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Figure 4.18: The distribution of interpolation error ∥q − q∗∥2 is illustrated in
Figure(a), and 6 postures corresponding to different error class are presented in
Figure(b).

Among all of 500 postures in the validation set DV , the interpolation error is
varying from 0.283 to 3.831 and concentrated around 2. The performance of the
algorithm is stable and satisfying on the tested data. Postures from each class in the
histogram are provided to show the error visually. It can be observed from posture (f)
that the interpolation error is satisfied even for the worst case. The reduction based
FK regression can represent postures effectively and we will use learnt parameters of
GP in the IK method.

4.6.3 IK Validation

The IK task in the validation is typical reaching movement of manipulator, the
desire position of robot end effector is given and it is formulated as a constraint
C(q) of the optimization problem. Then the target function LIK is optimized with
Sequential quadratic programming (SQP) solver and gives the new posture q∗ and
its feature vector z∗. As we discussed earlier, the generated postures are supposed to
be similar with collected ones. To illustrate the effectiveness of proposed method, we
also compare the postures reconstructed from feature vectors by reversing the POD
mode order reduction process:

Reconstruction : q̂ = T Tz∗. (4.24)

mThe reconstructed posture q̂ is the actual posture corresponding to feature vector
z∗. The posture q∗ and feature vector z∗ are optimized simultaneously, and q∗ is
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slightly varied to meet constraints. The difference between q∗ and q̂ indicates the
accuracy of prediction.

In Figure 4.19, the IK solution of target with coordinate (−40, 40) are shown.
The posture q∗ is obtained through optimization and it satisfies the constraint on
end effector. The yellow dashed line is the estimated posture from GPR of forward
kinematics based on the optimized feature vector z, and the gray region is the 95%
confidence interval of posture prediction based on equation 4.20. The algorithm is
optimizing the feature vectors under soft constraints that the feature vectors must
be close to the high fidelity region as shown in Figure 4.15. Thus the final IK posture
here is slightly drifted from the FK prediction to meet the constraints but still in
the confidence interval. The red posture is reconstructed from feature vector z by
inverse projection with equation (4.24), and it represents the actual posture that
corresponds to the feature z. The optimized posture is highly similar to the real
posture and the later one is also close to the requirement of constraint.

Figure 4.19: The IK solution for target position (-40,40) of end effector. The variance
computed from (4.20) is shown in gray strip. The posture from IK is close to the
real pose (red) that can be achieved.

To further test the capability of generalization, we selected a set of targets for end
effector in various region of plane, and even out of the workspace soft manipulator
shown in Figure 4.20.
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(a) IK solutions for targets located in the
left plane.

(b) IK solutions for targets located in the
right plane.

(c) IK solutions for targets located in the
top plane.

(d) IK solutions for targets located in the
bottom plane.

(e) IK solutions for targets located
around origin.

(f) IK solutions for targets located out
of workspace.

Figure 4.20: IK solutions for various region in the workspace.
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Figure 4.20(a),(b),(c) contains postures with moderate deformation, where the
postures are changing continuously with target positions. In Figure 4.20(d),(e), the
positions of targets are located in the positions that require more twisted postures
while the proposed method still gives IK solution with high accuracy. In last sub-
figure, we also tested the case when targets are out of the workspace shown in Figure
4.8, although the solution of IK is intractable the obtained feature vectors still give
the closest postures to accomplish the task. Since the body of the soft robot is a
curve, and only limited measurement points are available, we cannot give inverse
kinematics results with exact length as real robot. Instead, we seek to generate the
robot posture of sampling points that is closest to the collected robot postures.

The examples above illustrate the behavior and effectiveness of proposed IK
method, while detailed test is still necessary to show the performance. To this end,
we tested the IK method on 200 different targets from validation set DV . The norm
of error between IK posture q∗ and real posture q̂ corresponding to feature vector z∗

is computed as shown in Figure 4.21(a). The results here show that the cases with
minor error (a)(b)(c) are majority among all tests, and the performance of proposed
IK method is stable.

Figure 4.21: The distribution of IK solution error ∥q∗− q̂∥2 is illustrated in (a), and
5 solutions corresponding to different error classes are presented in (b).

In Figure 4.21(b), one solution from each error class is shown. For the solution
(d)(e) with largest error in the figure, the end-effector of real posture is still close to
the target and such error is able to be compensated with feedback controller. While
for the solution (a)(b), the result from IK and the actual posture is highly consistent.
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4.7 Experimental Validation

4.7.1 Setup

To further validate the effectiveness of proposed method on realistic scenarios, we
performed the test on the Echelon robot with high degrees of freedom as shown in
Figure 4.22(a). The Echelon is composed by 2 sections with a total length of 52 [cm].
Each section is actuated by Nylon tendons attached at its endpoints. The orientation
and position of each section can be changed by pulling the tendons. The vertebrae
that form the robot body are 3D printed using regular Polylactic Acid (PLA).

(a) Two-section Echelon robot with 6
optical markers.

(b) 3D printed pulley actuators.

Figure 4.22: Echelon robot and its actuation system.

The robot is actuated by 6 cable actuators with servo motors shown in Figure
4.22(b), and posture data is captured with 6 optical markers to construct posture
vector q ∈ R12×1. In total 2000 various postures are collected and the training
data set DT = {qi, zi}, i = 1, . . . , N , where the reduced feature vector z ∈ R4×1 is
obtained from the POD process as described in section 4.3.1 and the order of feature
vector is determined through the histogram of singular values in Figure 4.9. Besides,
we also construct a validation data set DV with 200 postures out of the training set
to test trained IK model as shown in Figure 4.23(b).
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(a) Training data set DT with 2000 pos-
tures.
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(b) Validation data set DV with 200 pos-
tures.

Figure 4.23: Data sets used in the experimental validation.

The performance of IK method with experimental data is studied in the same
way as simulation in previous section. The IK method is tested on validation set DV .
The distribution of error between IK posture q∗ and real posture q̂ is computed as
shown in Figure 4.21(a). In the histogram, the term (e) corresponding to larger IK
error seems more significant than simulation case, while in fact the maximum error
is much lower. Elements from each class are shown in Figure 4.21(b) and even for
the worst case (e), the solution of IK is consistent with real postures. The overall
accuracy is actually improved compared to the simulation case because the structure
is more simple and the maximum deformation is smaller than simulated model. The
results here show that the cases with minor error (a)(b)(c) are majority among all
tests, and the performance of proposed IK method is stable and accurate.

Figure 4.24: The distribution of IK solution error ∥q∗− q̂∥2 for experimental data is
illustrated in (a), and 5 solutions corresponding to different error classes are presented
in (b).
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Besides, we also tested the IK method for extreme cases, where the target is out
of the workspace as shown in Figure 4.25. The workspace of Echelon robot is roughly
shown with the end-effector positions of postures from validation set (blue points in
Figure 4.25). It can be observed that, for targets inside the robot workspace (a,b,c),
given IK solutions are accurate and consist with real postures. While even for the
target outside the workspace, the solutions are still similar to the behavior of soft
robot. For target (d), the robot is stretching in the same direction, and for target
(e), the robot is also bending toward the target.

-40 -20 0 20 40

x[cm]

-10

0

10

20

30

40

y
[c

m
]

Target

IK solution

Real posture

a

b

d

c

e

Figure 4.25: The IK solutions for both regular and extreme cases. The blue points
are the end-effector positions of postures from validation set.

4.8 Summary

In this chapter, we propose a new forward and inverse kinematics framework for
soft robots. This allows us to obtain feature vectors from the collected robot postures
and use a Gaussian process to learn the hidden structures of the robot postures to
realize forward kinematic prediction. To solve the inverse kinematics problem, we
transform it into a constrained optimization problem, where the cost function is
based on the trained Gaussian process for the similarity measurement between the
generated posture and the learned ones. After that, we get solutions that satisfy
the constraints and are close to the actual possible postures of the robot. While
solving the inverse kinematics, we also get the generalized coordinates corresponding
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to the robot’s posture as the control target. The proposed method is validated
numerically on a three-segments planar soft robot model, and although the robot’s
model contains redundancy, we can obtain inverse kinematics solutions in each part of
the workspace, even including large-deformed twisted postures. Validation based on
robot experiment data is performed as well to study the performance on real scenario
with more uncertainties and obtained satisfied results. mThe proposed method is
able to represent soft robot postures with reduced order generalized coordinates, and
the same generalized coordinates are used for the kinematics and dynamics models as
for rigid-body robots. However, we cannot directly derive the required feedforward
control from this kinematic solution, which will be discussed in the next chapter.
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In the different chapters of this manuscript, we have developed LPV controller and
inverse kinematics for soft robot. However, for the control of such nonlinear systems,
the trajectory tracking problem is as crucial as the stabilization problem. In order to
achieve desirable control performance and ensure tracking stability, it is also essential
to introduce a feedforward controller to compensate for the non-linearity behavior of
the system. This is the last piece of puzzle in the control diagram above.

However, due to the limitations of the FEM based soft robot model, we must
introduce a new method to solve this feedforward problem. In this chapter we pro-
posed a learning-based feedforward control algorithm that can update in the control
process. The learning-based control scheme is validated in simulation with a linear
system model. Due to the limited time, only preliminary studies have been conducted
on this topic.

At the end of the chapter, our contributions and remaining challenges related to
dynamic control of soft robots are summarized to concludes the thesis.

117



5.1. A glimpse of feedforward control 118

5.1 A glimpse of feedforward control

The feedforward control draws attention from both neuroscientists and control
researchers. Feedforward control is recognized as a crucial mechanism of the central
nervous system which enables coordinates normal movement and how it contributes
to motor adaptation and motor learning [28]. For advanced mechatronics systems
with critical performance requirement, feedforward is required to push the response
to physical limit [116].

The feedforward control is a type of open loop control based on knowledge about
the system model and information about the incoming disturbances or desired re-
sponse. It is calculated directly from desired trajectory instead of tracking error and
can be improved with more experience and information. Most high level sports are
feedforward competitions, e.g. soccer, gymnastics, archery, where athletes do not
have immediate feedback to improve their performance during the competition.

Another example is singing, where a singer is able to control his tone and breath-
ing to sing from a music sheet even without an earphone as feedback. Opera is a good
example, typical music sheet is shown in Figure 5.1, the music notes can actually
be interpreted as reference output signals from the singer. The process of singing
is mostly based on feedforward and we can imagine that a feedback singing would
be a disaster because the transient between notes would be either over-damped or
under-damped.

Figure 5.1: This music sheet describes the desired output of the singer.

As discussed in chapter.1, elephants also control their trunk with feedforward
scheme, which contributes to the dexterous manipulation and soft response. To
give an idea of what is needed in terms of learning, a baby elephant takes more
than one year to manage its trunk through countless trials and fails. Developing
feedforward scheme for soft robot naturally becomes an interesting track to explore
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to improve the control performance, while the realization is complicated for such
system without high-quality model. In Chapter 3, we designed a naive feedforward
scheme by interpolation inputs of equilibriums ; naive, in the sense that it is based
on low model quality and a low speed assumption that may be conservative for more
general cases. Although the linearized model has many limitations, we can try to
combine it with data to improve the feedforward control. In this chapter, we present
directions for representing a function of an unknown feedforward control as well
as a model-based method for learning this feedforward function during the control
process.

5.1.1 Feedforward as a function

Before illustrating the proposed method, we need to first clarify the nature of
feedforward, which can not only be seen as a signal but also as a function. To this
end, we refer to the general form of a robotic system:

M(q)q̈ + F(q, q̇) = u (5.1)

where q is vector of generalized coordinates, M is matrix of inertia, F(q, q̇) collects
forces and u is control input. Given the desired trajectory qd and tracking error
e = qd−q, the feed-forward feedback controller (Computed Torque Controller [117])
gives the torque of each input according to the system dynamics with

u = M (qd) q̈d + F (qd, q̇d)︸ ︷︷ ︸
feedforward

+Kpe+Kvė︸ ︷︷ ︸
feedback

(5.2)

where the feed-forward part comes from model based information, and feedback gains
are designed to fulfill stability conditions [100]. Of course, the feedforward control
part is a function of the desired trajectory, and makes use of system model to directly
compute required input.

This formulation is actually equivalent to an inverse model using a transfer func-
tion, while it is written with differential equations. Unlike rigid robots with precise
models, such global non-linear model is currently not accessible for soft robots. The
only possible FEM model is of large scale and not accurate. While the feedforward of
soft robots can be also treated as a function of general coordinates and its derivatives.
The feedforward function can not be obtained analytically but it can be recovered
from data.
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5.1.2 Related work about feed-forward control

Various methods about feedforward control have been proposed while they have
different emphases. In this section, these works are reviewed based on the following
aspects:

� Model based or data-driven

� Stability guarantee

� Online learning possibility

� Generalization capability to various trajectories

Dictionary-like method

The idea of these methods is to sample control inputs densely and capture the
corresponding deformation of the robot. Thereby creating a large dataset of matching
shapes and control parameters. Firstly the randomly generated control input u,
corresponding q, q̇, q̈ are collected offline to build the regressor u = g(q, q̇, q̈) using
universal approximators such as neural networks. Then during the control stage, the
regressor uses the desired trajectory qd to deliver the control input. In the work [117],
13622 pairs of input and output data are collected to have comparable performance
with PD control for rigid 6-axis manipulator. Furthermore, feedback linearization
can also be achieved using such regressor [118] and the regressor can also be used to
generate new references from desired trajectory instead of control input [119]. This
method does not require system model and can generate to various trajectories, but
it must be trained beforehand and its stability cannot be guaranteed. This method
takes a direct data-driven approach to learn the kinematics of a robot and bypasses
the modeling process, which shows particular interest in soft robot control [52], [120].

Reinforcement learning method

Due to the development of deep learning, reinforcement learning can now be
applied to tasks of high complexity. The control input is given by a policy function
u = µ(x,xref ) to be learnt according to current system state x and reference xref .
The policy function is trained through iterations to maximize the reward given with
a reward function r(x,xref ). The classical reinforcement learning is designed for
the discrete policy game to find the policy that maximizes the reward [121]. The
discretization of a continuous problem usually leads to an explosion in the dimension
of the search space. A deep neural network can be used as a regressor to obtain
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the output of the continuous policy and make reinforcement learning feasible in
the context of robot control [122]. A successful RL method consists of an effective
algorithm to perform random exploration and policy update together with a well
designed tricky reward function. These empirical and trial-based behaviors are also
the main limitations for the application of this method. The most influential work
about reinforcement learning in robotics in our opinion is the Deep Deterministic
Policy Gradient algorithm(DDPG) [122] with real time validation results shown in
figure 5.2.

(a) Training in simulation (b) Training with real robots

Figure 5.2: The success rate of RL control in the training process [122]. The number
of workers indicates how many models or real robots are trained in parallel. It is
worth noting that the convergence of this method is not guaranteed in real time as
shown in (b).

Recently some applications of the reinforcement learning technique on the soft
robots has been published [123]. The system of one section trunk like robot achieves
98% success rate of reaching after training for 100000 episodes. The reinforcement
learning technique is a model-free method and it can be learnt online and generalized
to various trajectories. Nevertheless, its effectiveness needs to be improved and no
guarantee on the convergence can be obtained formally.

Direct inversion based method

Let us recall the discrete error dynamics with unknown input du:

ek+1 = Aek +B(uk + du,k) (5.3)
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where ek = xd,k − xk is the tracking error. Then a direct estimation of du can be
obtained by

d̂u,k = B†(ek+1 − Aek −Buk) (5.4)

where B† is the pseudo-inverse. Generally for a disturbance observer, the unknown
input du is often formulated as a function of time du(t), while it is also possible to
consider the feedforward input as a function of the reference trajectory, i.e. du(xd)
according to equation 5.2. Since the FF input du(xd) can be estimated point-wise for
each point of trajectory xd, it can also be reconstructed by interpolation. Therefore,
the interpolated d̂(x) can be directly used for compensating in control [124], or taken
into account into a MPC controller as in [110]. This method can be applied to various
trajectories. It also inspires us about how to formulate the function to be learnt.

Iterative learning control

ILC is used in many motion systems including: additive manufacturing machines,
printing systems and wafer stages [116]. It can significantly enhance the performance
of equipments that are performing repetitive tasks. Iterative learning control (ILC)
is based on the notion that the performance of a system that executes the same task
multiple times can be improved by learning from previous iterations. Unlike other
control methods, ILC aims at optimizing the control input instead of the controller.
The classical formulation of the updating law [93] is:

ui(t) = ui−1(t) + Lei−1(t) (5.5)

where i is the number of iteration, u(t) is the control sequence, e(t) is the tracking
error, L is the learning gain. The control sequence is updated after each iteration,
and the convergence is guaranteed.

Classical ILC is limited to one control sequence and loses the ability to generalize
and several approaches have been proposed to improve the generalization properties
of ILC like basis functions [125]. Besides, the ILC is only mature for the SISO
system, the MIMO case can be dealt with by multiple SISO designs and more general
solutions are still under exploration [93] .

5.1.3 Proposed feedforward (FF) Learning Control

The approach proposed in this thesis is inspired by results coming from the field of
neuroscience regarding human motor learning mechanisms [28]. Such learning scheme
is based on the tracking error and the feedback control from our cerebellum. For a
movement requiring precision for the human, the trajectory planning and feedforward
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control tasks are performed by the cerebellum, while our vision system is involved in
the feedback control to accomplish the movement. The feedforward control signals
generated by the cerebellum during our movements inevitably result in tracking
errors, and visual feedback helps to compensate errors and complete the specified
movement. Meanwhile the cerebellum updates its own feedforward controller based
on the feedback error signal [27], which is known as the motor learning mechanism.
It combines both feedback and FF controller and the FF controller is updated online
based on the feedback one. Such control scheme can be summarized by the following
diagram

xd
x

+

Feedforward
Controller

Feedback
Controller Plante

d̂(xd)

Figure 5.3: The control diagram of feedback error learning. The feedforward con-
troller is updated based on the feedback error. In the ideal case, the feedforward
signal is perfect so that no tracking error occurs.

The scheme of human motor learning has following interests for control applica-
tion:

� Coexistence of feedforward and feedback controller to guarantee performance
and robustness

� Feedforward function d̂(xd) with a possibility to update online and having the
capability to generalize to different trajectories(extrapolation)

� Model based method being able to use a priori information of the system

� Reduced feedback gain to reduce stiffness and improve safety

Despite these interesting advantages, there are several challenges to the imple-
mentation of this control mechanism. Firstly, the feedforward function cannot be
expressed in the form of a parametric function. Secondly, although the feedforward
function is considered to be updated based on the feedback error [28], a corresponding
update law has to be defined using a mathematical description.
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This chapter aims to introduce a new feedforward learning control framework that
can achieve online learning of feedforward function while keeping stability guarantee.
To this end, we will take profit again of radial basis function network to represent
the desired function. The main difficulty associated with this technique is that the
updating law of the basis function coefficients should be shown to preserve the control
stability.

The main contributions of this work are to represent using radial basis network the
feedforward as a function of desired trajectory. Besides, a new parameter updating
law is derived from constructed Lyapunov function to update feedforward function.
The proposed solution has strong connections with computed torque control [117]
and adaptive control [126].

5.1.4 Mathematical formulation of feed-forward learning
problem

Let us start from the discrete time linear system:

xk+1 = Axk +Buk.

where xk ∈ Rn×1,uk ∈ Rm×1, A ∈ Rn×n, B ∈ Rn×m. According to the block dia-
gram 5.1.3, the update process of feed-forward coexists with the feedback control to
guarantee the stability. The system is assumed to be stable and here we omit the
feedback controller.

The achievable desired trajectory with input u∗ is represented with x∗
k, then the

dynamics for the error ek = xk − x∗
k becomes:

ek+1 = Aek +B(uk + u∗) = Aek +B(uk + d(zk)).

here zT
k = [x∗T

k ,x∗T
k+1], d(zk) denotes the unknown input related to the desired tra-

jectory, which will be learnt and compensated during the control process.
With the feed-forward estimation u = −d̂k(zk) as the control input, we have

∆d̂k(zk) = d(zk)− d̂k(zk), and the close loop system becomes:

ek+1 = Aek +B∆d̂k(zk). (5.6)

The index k of estimation d̂k(zk) means that it is updating with the time and the
argument zk is related to the desired trajectory. Since the d̂k(zk) can not be rep-
resented as a parametric function, we will discuss its possible nature and introduce
proper method in the next section.
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Figure 5.4: The estimation process of function d̂k(zk) on the first dimension of zk

from examples in section 5.1.9. The shape of the function is updating with time.

5.1.5 Function representation

Since we do not have the exact information about the function that describes the
input-output relationship, the most suitable way is to approximate it using universal
regressors like neural network or Gaussian process [113].

In the related work [127] and [126], integral transformation and Gaussian network
are used to express the function of adaptive control law. Among all these non-
parametric methods, the techniques based on radial basis functions seem to us again
appropriate. Obviously for their universal approximation property [128] but also
because the functions are differentiable which is necessary to define the adaptation
law

The evaluation of RBF network is given by:

Y (x) =
N∑
k=1

K(x,xk)ck (5.7)

where Y (x) is the prediction value of input x, ck are constant parameters, K(x,xk)
is the Radial basis function kernel (Gaussian kernel) as formulated below:

K(x,xk) = e−r/2σ2

, r = (x− xk)
T (x− xk),
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and xk is the center of k-th Gaussian kernel. Here in Figure 5.5 we recall the
illustration used chapter 3 to show the mechanism of such kernel based method.

Add 1-st RBF

Add 2-nd RBF

Add 3-rd RBF

Data

RBF Center

Fitted

1

1 12 23

Figure 5.5: Representation of function with 3 RBFs. The predicted value of the
function is given by the weight sum of the known data points, and the weight is
related to the distance,

The Gaussian function is a typical membership function used for approximation
techniques (fuzzy systems and/or neural networks) and it is also a positive definite
kernel function of a Hilbert’s spaceHk [129]. The result from kernel method indicates
that any continuous function f(x) ∈ Hk can be expressed as the combination of a
finite number of functions:

f(x) =
N∑
k=1

K(x,xk)ck. (5.8)

Therefore it exists a Gaussian kernel such that function d(zk) and its estimation
d̂k(zk) can be approximated as:

d(zk) =
∑
zi∈Ω

K(zi, zk)c(zi),

d̂k(zk) =
∑
zi∈Ω

K(zi, zk)ĉk(zi),

∆d̂k(zk) = d(zk)− d̂k(zk) =
∑
zi∈Ω

K(zi, zk)∆ĉk(zi).

(5.9)
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where Ω is the set of desired trajectory zk, K(., .) is the Gaussian kernel, and c(zi)
and ck(zi) are the coefficients and ∆ĉk(zi) = c(zi)− ĉk(zi) is the error between coef-
ficients. This method is defined on the set of desired trajectories Ω but not a certain
trajectory. The feedforward can be trained for various trajectories and extrapolated
from trained ones. Besides, with the normalized RBF network technique and several
similar methods [113], [130], [131],we can also have the convex representation with∑

zi∈Ω

K(z, zi) = 1.

5.1.6 Updating law

To realize the learning of FF function, a update scheme of d̂k(zk) is required
based on the RBF representation. Inspired from [127], and considering the special
form of d(zk) in (5.8), the update is performed on the coefficients ĉk(zi) as:

ĉk+1(zi) = ĉk(zi) +K(zi, zk)Lek+1,

here L is the learning gain matrix to be designed K(zi, zk) is the value of the RBF
function, which indicates its corresponding contribution. Therefore, the correspond-
ing updating law of coefficient error ∆ĉk(zi) becomes:

∆ĉk+1(zi) = ∆ĉk(zi)−K(zi, zk)Lek+1. (5.10)

At each step, the parameters of the RBF network are updated according to their
contribution to the tracking error. The learning control scheme is summarized in
algorithm.3 and the asymptotic stability of both tracking control and feed-forward
learning are discussed in next section.

5.1.7 Stabilization

To stabilize the system (5.6) with learning update law (5.10), we can derive the
stability conditions using Lyapunov theory [50]. To this end, we propose a Lyapunov
function with two parts:

V = V1 + V2.

where
V1 = eT

kPek. (5.11)

describes the error for tracking control with a positive definite matrix P = P T . The
second part of the Lyapunov function V2 is related to the estimation error of the
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Algorithm 3 Online estimation of feed-forward

1: Design a linear feedback controller to have A matrix stable
2: k ← 1
3: Initialize coefficients ĉk(zi) of RBF network in (5.9) with zeros
4: repeat
5: Evaluate d̂k(zk) =

∑
zi∈ZK(zi, zk)ĉk(zi) as feed-forward input

6: Send to the plant and wait ∆T for the next time step
7: Obtain the measurement for the tracking error ek+1

8: for zi ∈ Ω do
9: ĉk+1(zi) = ĉk(zi) +K(zi, zk)Lek+1{Update all the coefficients}
10: end for
11: k ← k + 1
12: until Desired performance is met

feedforward contribution (5.8). Consider the function V∆d:

V∆d = ∆d̂k(zk)
TQ∆d̂k(zk)

with Q > 0. Inspired from [126], it is possible to make the connection between the
function represented on the RBF network and on its coefficients. After substituting
(5.9) into V∆d and using Cauchy–Schwartz inequality, we have

V∆d = ∆d̂k(zk)
TQ∆d̂k(zk)

=

(∑
zi∈Ω

K(zi, zk)∆ĉk(zi)

)T

Q

(∑
zi∈Ω

K(zi, zk)∆ĉk(zi)

)

≤
(∑

zi∈Ω

K(zi, zk)
2

)(∑
zi∈Ω

∆ĉTk (zi)Q∆ĉk(zi)

)
≤
∑
zi∈Ω

∆ĉTk (zi)Q∆ĉk(zi) := V2, (5.12)

A larger Lyapunov function V2 > V∆d is obtained. It is similar to the Parseval’s
theorem that the sum (or integral) of the square of a function is equal to the sum
(or integral) of the square of its Fourier transform.

The difference of V1 can be obtained from (5.11)

∆V1 = eT
k+1Pek+1 − eT

kPek

= eT
k (A

TPA− P )ek + 2eT
kA

TPB∆d̂k(zk) + ∆d̂k(zk)
TBTPB∆d̂k(zk). (5.13)
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The difference of V2 in (5.12) is

∆V2 =
∑
zi∈Ω

[∆ĉTk+1(zi)Q∆ĉk+1(zi)−∆ĉTk (zi)Q∆ĉk(zi)]

=
∑
zi∈Ω

K(zi, zk)[−2eT
k+1L

TQ∆ĉk(zi)] +
∑
zi∈Ω

K(zi, zk)
2eT

k+1L
TQLek+1

= −2eT
k+1L

TQ
∑
zi∈Ω

K(zi, zk)∆ĉk(zi) + eT
k+1L

TQLek+1

∑
zi∈Ω

K(zi, zk)
2

≤ −2eT
k+1L

TQ
∑
zi∈Ω

K(zi, zk)∆ĉk(zi) + eT
k+1L

TQLek+1(with convexity)

= −2eT
k+1L

TQ∆d̂k(zk) + eT
k+1L

TQLek+1

= −2eT
kA

TLTQ∆d̂k(zk)− 2∆d̂k(zk)
TBTLTQ∆d̂k(zk)

+ eT
kA

TLTQLAek + 2eT
kA

TLTQLB∆d̂k(zk) + ∆d̂T
k (zk)B

TLTQLB∆d̂k(zk)

= eT
kA

TLTQLAek + 2eT
k

(
ATLTQLB − ATLTQ

)
∆d̂k(zk)

+ ∆d̂T
k (zk)[B

TLTQLB − (BTLTQ+QLB)]∆d̂k(zk)

we can rewrite in matrix form

∆V2 ≤
[

ek

∆d̂k(zk)

]T [
ATLTQLA ATLTQLB − ATLTQ
∗ BTLTQLB − (BTLTQ+QLB)

] [
ek

∆d̂k(zk)

]
= ∆V ∗

2

(5.14)

Now we can combine ∆V ∗
2 and ∆V1 in (5.13) to have

∆V ≤
[
ATLTQLA+ ATPA− P ATLTQLB + ATPB − ATLTQ

∗ BTLTQLB +BTPB − (BTLTQ+QLB)

]
< 0.

It can be reformulated as[
ATPA− P ATPB − ATLTQ

(∗) BTPB −
(
BTLTQ+QLB

)]+ [ATLTQ
BTLTQ

]
Q−1

[
QLA QLB

]
< 0.

Using the Schur complement, we can obtainATPA− P ATPB − ATLTQ ATLTQ
∗ BTPB − (BTLTQ+QLB) BTLTQ
∗ ∗ −Q

 < 0.
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Using the change of variable M = QLATPA− P ATPB − ATMT ATMT

∗ BTPB − (BTMT +MB) BTMT

∗ ∗ −Q

 < 0. (5.15)

The feedforward learning control scheme is stable if LMI (5.15) with respect to the
decision variables P,M,Q with the conditions P = P T > 0 and Q = QT > 0 are
feasible. Here the first diagonal part ATPA− P is negative due to the pre-designed
feedback control law.

5.1.8 Disturbance Rejection

In the principle of proposed feed-forward learning algorithm, all tracking errors
are attributed to the error of the feed-forward function. However, in practice, there
are disturbances or uncertainty outside the control channel, so we need to design a
feed-forward learning law that can reject mismatch disturbances. The system with
mismatch disturbances can be formulated as

ek+1 = Aek +B∆d̂k(zk) +Dwk. (5.16)

where D ∈ Rn×p,wk ∈ Rp×1. The goal is to find the best L2 → L2 gain to minimize
the impact of disturbance wk on feed-forward estimation ∆d̂k(zk), i.e.

sup
wk ̸=0

||∆d̂k(zk)||2
||wk||2

≤ γ.

Theorem 4. The discrete system (5.16) with feed-forward learning law (5.10) are
globally stable and the attenuation of the disturbance w to estimation error is at
least γ, if there exist matrices P > 0, Q > 0 and M such that the LMI

ATPA−P ATPB−ATMT ATPD ATMT

(∗) I+BTPB−
(
BTMT+MB

)
BTPD−MD BTMT

(∗) (∗) −γ2I+DTPD DTMT

(∗) (∗) (∗) −Q

 < 0

holds.

Proof: Consider the previous Lyapunov function with performance criteria such
that

∆Vk +∆d̂T
k (zk)∆d̂k(zk)− γ2wT

k wk < 0
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After summing this expression from k = 0 to k = τ we have

Vτ − V0 <
τ∑

k=0

(γ2wT
k wk −∆d̂T

k (zk)∆d̂k(zk))

With initial condition V0 = 0, we have

τ∑
k=0

∆d̂T
k (zk)∆d̂k(zk) + Vτ <

τ∑
k=0

γ2wT
k wk

Taking into account that Vτ > 0, we can obtain

||∆d̂k(zk)||2 < γ||wk||2.

To obtain the stability condition, we continue with previous Lyapunov functions
with new system The difference of V1 in (5.11) with system (5.16) is

∆V1 = eT
k+1Pek+1 − eT

kPek

= eT
k (A

TPA− P )ek + 2eT
kA

TPB∆d̂k(zk) + 2eT
kA

TPDwk

+ 2∆d̂k(zk)
TBTPDwk +∆d̂k(zk)

TBTPB∆d̂k(zk) +wT
kD

TPDwk (5.17)

The difference of V2 in (5.12) with system (5.16) is

∆V2 ≤ −2eT
k+1L

TQ∆d̂k(zk) + eT
k+1L

TQLek+1

= −2eT
kA

TLTQ∆d̂k(zk)− 2∆d̂k(zk)
TBTLTQ∆d̂k(zk)− 2wT

kD
TLTQ∆d̂k(zk)

+ eT
kA

TLTQLAek + 2eT
kA

TLTQLB∆d̂k(zk) + 2eT
kA

TLTQLDwk

+ 2∆d̂k(zk)
TBTLTQLDwk +∆d̂k(zk)

TBTLTQLB∆d̂k(zk) +wT
kD

TLTQLDwk

= eT
kA

TLTQLAek + 2eT
k (A

TLTQLB − ATLTQ)∆d̂k(zk) + 2eT
kA

TLTQLDwk

+ 2∆d̂k(zk)
T (BTLTQLD −QLD)wk

+∆d̂k(zk)
T (BTLTQLB − (BTLTQ+QLB))∆d̂k(zk)

+wT
kD

TLTQLDwk.

Combining ∆V1,∆V2, we have ∆V2+∆V1+∆d̂T
k (zk)∆d̂k(zk)− γ2wT

k wk < 0, which
isATLTQLA+ATPA−P ATLTQLB−ATLTQ+ATPB ATPD+ATLTQLD

∗ I+BTPB+BTLTQLB−(BTLTQ+QLB) BTPD+BTLTQLD−QLD
∗ ∗ −γ2I+DTPD+DTLTQLD

<0.
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It can be reformulated asATPA−P ATPB−ATLTQ ATPD
(∗) I+BTPB−

(
BTLTQ+QLB

)
BTPD−QLD

(∗) (∗) −γ2I+DTPD

+
ATLTQ
BTLTQ
DTLTQ

Q−1
[
QLA QLB QLD

]
< 0.

Using the Schur complement and the change of variable M = QL, we have
ATPA−P ATPB−ATMT ATPD ATMT

(∗) I+BTPB−
(
BTMT+MB

)
BTPD−MD BTMT

(∗) (∗) −γ2I+DTPD DTMT

(∗) (∗) (∗) −Q

 < 0

which is the condition for the theorem.

5.1.9 Numerical Example and Summary

Consider a linear dynamic system:

xk+1 = Axk +Buk.

where

A =

[
0.76 0.06
0.06 0.89

]
, B =

[
−0.006
0.033

]
.

The desired trajectory xd is generated with uk = sin(3k). The feedback controller
corresponds to the linear feedback u = Kx with K = [1.201 26.188]. The perfor-
mance of the feedback controller is shown in Figure 5.6.

0 50 100 150 200

step

-0.04

-0.02

0

0.02

0.04
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Figure 5.6: Trajectory tracking with the feedback controller.
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As expected, Figure 5.6 shows that the system can keep tracking the desired
trajectory. However, since there is only a linear feedback control, there is a tracking
error repeated during each iteration.

Using the proposed method, a feedforward learning gain is obtained from LMI
(5.15) as L = [−0.29 10.39]. Applying feedforward learning control scheme described
in Algorithm 3 together with the feedback controller, the tracking performance is
shown in Figure 5.7.
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Figure 5.7: Trajectory tracking with proposed feedforward learning scheme.

It can be observed from the figure that, the tracking error decreases rapidly with
trajectory repetition. As proven in section 5.1.7, The feedforward learning process
is asymptotically stable.

Based on the basis function representation of feedforward function, we developed
an updating law based on the coefficients of the RBF network together with Lya-
punov stability theory. In our point of view, such feed-forward can be seen as an
extension of unknown input disturbance observer. The unknown input is treated as
a function of states instead of time. This method can update the feed-forward of the
system according to a simplified model (linear or LPV for example) model, which
is ideal for nonlinear system like soft robot. Effectively, a global nonlinear model of
soft robot is not accessible, while linear models can be obtained from FEM model.

5.2 Future Works

Soft robot as a control object contains rich problems and we were only able to
discuss a small part of them in the thesis. Due to the complexity of such system,
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the methods proposed in the thesis are not completely mature and worth further
exploration.

The first focus is LPV modeling of soft robots. The proposed method uses the set
of collected models to build an interpolated model, and gradually increases the num-
ber of models according to the modeling error. Although this modeling methodology
can represent a large number of systems with fewer models, it is an heuristic method
that may introduced conservatism into the obtained model. For instance, the process
of adding iteratively new models may lead to redundancy in the models. It is worth
studying this modeling methodology further on; for example, adding pruning steps
to achieve a balance between model accuracy and complexity.

For the LPV controller synthesis, taking profit both of the discrete system repre-
sentation and the preservation of the system structure, more choices are available for
its design to enlarge the set of suitable and performant solutions. For example, the
use of powerful non-quadratic Lyapunov function to design the controller can easily
come at hand, keeping in mind that there will be a trade-off between complexity
of the conditions and complexity of the Lyapunov function [132]. Less conserva-
tive Lyapunov function can also be constructed in a polytopic way to have weaker
assumptions on varying parameters [133].

In addition, for the scheduling variables of the LPV model, we use the measurable
end-effector positions. According to the nature of soft robot, we can conclude that
the model variation is actually related to its shape, and the different shapes of the
robot make its input and output behavior different. Therefore, subsequent research
can study how to find variables that better represent the shape of the robot. They
can be calculated from known states or we can adopt latest measurement methods
such as embedded optical fiber as bending sensors [134], etc. In the case of having
uncertainties in the estimation of such variables, the closed loop stability can still be
guaranteed using a separate design of the observer and controller [135].

For the feed-forward algorithm, we developed the basic framework of controller
design, while experiments are only carried out on linear simulation models. It will
be necessary to validate on real robotic systems in the future. The linear framework
of feed-forward can also be generalized to nonlinear with LPV method to achieve
feed-forward learning of robots in the entire workspace. Our long term target is
to combine all the proposed algorithms as a complete robot control framework to
achieve dexterous soft robot manipulation.
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5.3 General Conclusion

Currently, the control of soft robot is still under low speed and far from typical
dexterous movement shown in Figure 5.8. While the FEM based modeling, model
reduction, and linear control methods of soft robots proposed by the previous works
of the team have brought up a new possibility for solving this difficult problem. Based
on these previous works, this thesis makes several explorations towards dynamic and
task-oriented control of soft robots including modeling, non-linear and feed-forward
control as well as inverse kinematics.

(a) The robotic arm catching a ball thrown to
it [136].

(b) Robot and human collaborate to as-
semble a desktop [137].

Figure 5.8: Two typical dexterous movements of robotic system.

The main contributions of this thesis can be summarized in the following cate-
gories:

Dynamic modeling To obtain a control oriented model with larger feasible region
and higher quality, we propose a new projector for the proper orthogonal decompo-
sition (POD) algorithm to generate a set of linearized reduced-order models repre-
senting the local behavior of the soft robot at different operating points within the
workspace. With a unified POD projector, not only can the order of these linearized
models be significantly reduced, but also their mechanical structure and stability
properties can be preserved for LPV modeling and control design. Next, using radial
basis function (RBF) networks, we propose an iterative training method to build a
LPV model of the robot by interpolating a selected subset of linearized models. The
iterative training method can reduce the correlation between linear models, thereby
utilizing fewer models to approximate the nonlinear model of the robot with specified
interpolation error.
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Dynamic control Based on the proposed modeling method, we introduced the
equivalent-input-disturbance-based scheme for dynamic tracking control, which is
composed of three core components: feedforward control, disturbance-estimator con-
trol and feedback control. The feedforward control is designed to account for the
effects of the trajectory reference and the time-varying affine term, issued from the
FEM-based model linearization. The disturbance-estimator control is obtained from
a generalized proportional integral LPV observer, which also provides the estimated
reduced-order states for feedback control. The observer-based feedback control de-
sign is reformulated as a convex optimization problem under linear matrix inequality
(LMI) constraints. The globally uniformly ℓ∞ stability of the closed-loop LPV robot
model is guaranteed by means of Lyapunov stability theory. The effectiveness of
the proposed dynamic control framework is firstly demonstrated in the linear case
via both high-fidelity SOFA simulations and experimental validations, performed on
two soft robots with different natures. Afterwards, detailed experiment tests are
conducted under several scenarios with small and large deformations of soft robot to
show the effectiveness of the proposed LPV tracking control framework. Compara-
tive studies with linear EID-based controller, PID controller and an iterative learning
controller are also conducted to emphasize the interests of the proposed nonlinear
control method.

Inverse kinematics To solve the problem of motion planning for soft robots,
we propose a hybrid approach based on both model and data. Starting from the
model-reduction approach, a reduced representation of robot postures based on fea-
ture vectors is developed and we reveal its connection with modal decomposition.
The feature vectors for posture representation are obtained from the model, while a
Gaussian process is introduced to establish a mapping between measured robot con-
figurations and feature vectors. This step is also known as forward kinematics. The
inverse kinematics of the robot is then formulated as an optimization problem with
constraints, where the constraints are derived from the robot task. This optimization
algorithm aims to generate the posture that is most similar to the measured ones
while satisfying the constraints. A large amount of posture data of the robot in both
simulation and experiment is collected, and verification of both forward and inverse
kinematics shows satisfying performance.

In addition, a preliminary exploration of the feed-forward control that can achieve
better dynamic control performance is presented. We also developed the soft robot
platforms and digital models used in the thesis are with our partners, including
design and manufacture, actuator and sensor setup, and drivers on computer-side.
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