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Spécialité de doctorat : Informatique
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Introduction

How fast can real functions grow at infinity? In order to make this question more precise, we will
focus on germs of univariate real-valued functions at infinity.

Consider real-valued functions whose domain contains an interval (a;+1) for some a 2R.
Identifying two such functions whenever they coincide on a common subinterval (b;+1) of their
respective domains, one obtains an equivalence relation whose classes are called germs (at +1).
We say that the germ of f is strictly smaller than that of g if f(t)<g(t) for sufficiently large t2R.

At the simplest level, we have germs of constant functions 0;1;2;::: as well as the germ x of the
identity function, which is larger than all constant functions. Germs can be added and multiplied
pointwise. This allows us to obtain the following growth rates

x+1<x+2< � � �< 2 x< 2 x+1< : : : <x2<x2+1< � � �:

The ordering on germs is only partial, because of the oscillatory behavior of some functions. For
instance, the sine function sin cannot be compared with the constant function 0, whereas sin �exp(x)
cannot be compared with x. Many operations on germs, such as addition and multiplication, are

compatible with the partial ordering. For instance, the growth rates x¡1, x
2+ /1 2
x¡ 1 , 2

p
x or x

p
are

all ordered as

0< 1< � � �< x
p

<x¡ 1<x<x< x2+ /1 2
x¡ 1 <x+1<x+2< � � �< 2

p
x< 2x:

If f : (a;+1)¡!R is differentiable, then the germ of its derivative only depends on the germ of f .
Thus germs of differentiable functions can be differentiated as well. Finally, if g tends to +1 at
+1, and f : (a;+1)¡!R is a function, then the germ of f � g only depends on that of f and g,
thus yielding a partial composition law on germs.

In order to avoid pathological growth rates of arbitrary functions, we turn to the notion of
regular growth rates, i.e. we look for classes of germs of functions that are regular with respect to
the structure on germs: continuity, differentiability, smoothness.. . In the context of real geometry,
one may distinguish various types of regularity: continuous functions, analytic functions, quasi-
analytic classes, germs in Hausdorff fields, Hardy fields, definable maps in tame expansions of R .. .

The crudest level of regularity is that of continuous functions. An ordered field of germs of
continuous functions is called a Hausdorff field. They include the field R(x) of (germs of) rational
functions with real coefficients, as well as R(log log x). Germs in Hausdorff fields cannot oscillate
at +1 (for instance the germ of the cosine function does not lie in a Hausdorff field) because the
intermediate value theorem implies that oscillating functions have zeroes at +1 and thus cannot
have a multiplicative inverse. Thus Hausdorff fields give us a first notion of regularity of the growth
order of a function. Note however that R(x+2 sin(x)) is a Hausdorff field, which is isomorphic as
an ordered field to R(x), despite the fact that x+2 sin(x) is not the germ of a monotone function.

A higher degree of regularity can be achieved with Bourbaki's notion of Hardy field [26]. A
Hardy field is a field of continuously differentiable germs at +1 which is closed under derivation of
germs. This excludes oscillatory behavior in a stronger sense. For instance, although the function
x2+ sin does not oscillate at +1, its second derivative does, so the germ of this function at infinity
does not belong to a Hardy field. In particular, germs in Hardy fields and all their derivatives
are monotone. Hardy considered logarithmico-exponential functions, or L-functions, as functions
constructed from the identity function x and the real numbers using the field operations, exponen-
tiation, and logarithms. He showed that the set HLE of germs of L-functions is a Hardy field. The
regularity of germs in a Hardy field H can also be stated as a form of regularity of its derivation
operator f 7! f 0 with respect to the dominance relation, for instance, we have

8f 2H; (f >N=) f 0> 0):
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Even more regular growth rates can be obtained by imposing that the corresponding functions
be definable in tame expansions of the real ordered field. The theory of o-minimality (see [32])
provides many such examples. Indeed, a first-order expansion R= (R;+;�; <; : : : ) of the real
ordered field is o-minimal if and only if the set HR of germs of unary functions that are definable
in R is a Hardy field. Furthermore HR is closed under composition of composable germs as well
as under multivariate operations coming from the first-order language. In particular, taking R as
the real exponential field Rexp=(R;+;�; <; exp) (resp. the real exponential field with restricted
analytic functions), one obtains a large Hardy field Hexp (resp. Han;exp) containing HLE which is
closed under composition.

One difficulty entailed by the study of regular growth rates is that of their representation. We
have seen with L-functions how to obtain regular growth rates using algebraic operations and exp
and log. However, there are gaps among regular growth rates that can be expressed in this form.
For instance, writing exp2(x)= exp(exp(x)), exp3= exp(exp2(x)) and so on, Boshernitzan showed
[25] that there are Hardy fields that contain germs f with

exp(x)< exp2(x)< exp3(x)< � � �< f: (1)

Any such germ cannot be expressed in terms of elementary functions such as exp and log and
algebraic operations. How can one represent such growth rates as f in a consistent way? Can a
calculus of such growth rates, similar to that of L-functions, be proposed?

Working with the notions of regularity above also leads to difficulties of an analytic nature
when trying to account for all possible regular growth rates. Many important problems in the field
of tame geometry over the past few decades can be stated as a question of whether it is possible
to close certain types of tame structure under certain operations. For instance, it is known [23]
that Hardy fields can be extended into larger Hardy fields by integrals, exponentials, logarithms of
germs, or in general by Pfaffian differential equations of order 1. Likewise, an o-minimal expansion
of the real ordered field can be expanded with the real exponential function, or more generally
with solutions of generalized Pfaffian equations, while remaining o-minimal [94]. Similar problems
however remain difficult open questions. For instance, a long open question is whether there exists
an o-minimal expansion of (R;+;�; <) which defines a transexponential germ f as in (1). It is
also unknown whether so-called Dulac germs, connected to Dulac's problem [38], can be defined in
an o-minimal expansion of (R;+;�; <). It was conjectured [5] that Hardy fields can be extended
with solutions of all differential algebraic equations of odd degree, and a proof by the same authors
is in preparation [8].

In this thesis, we will follow an alternative formal approach. Instead of growth rates of real-
valued regular functions, we will consider formal objects, designed explicitly to be both closed under
many operations and equations, and also to be expressible in terms of a definite list of �regular�
operators such as exp, log, and field operations. This is the realm of generalized power series.
Defining derivations @: S¡! S and composition laws �: S� S>R¡! S on an ordered field S of
formal series containing the reals is a way to let those series act as regular, infinitely differentiable
functions on S>R.

Transseries, introduced independently by Dahn-Göring [30] and Écalle [39], are generalized
series based on operators exp, log and arithmetic operations. They form a natural generalization
of regular growth rates. As van der Hoeven's PhD thesis [60] illustrates, transseries are at the
same time naturally closed under many operations and equations while being amenable to formal
and algorithmic methods for solving equations or more general problems. The closure properties
of transseries, e.g. under derivation and composition, are inherited from the regularity of the
operators exp and log and the arithmetic operations. By extending this list of operators, one could
in theory extend the list of formal growth rates amenable to a formal calculus, while retaining the
properties of regular growth rates of real-valued functions. Hyperseries, as developed successively
by Écalle [39], van der Hoeven [60], Schmeling [92] and van der Hoeven, van den Dries and Kaplan
[33] are such extensions of transseries with so-called transfinite iterators exp�; log� of exp and log
for ordinals �, which have even stronger closure properties such as closure under conjugation (see
[40, 10]). For instance the first transfinite iterators exp! and log! satisfy the equations

exp! � (x+1) = exp � exp!,
log! � log = log!¡ 1:

8 Introduction



Compared to regular growth rates of real-valued functions, hyperseries can be extended with new
growth rates in a relatively simple and uniform way. In fact, van der Hoeven conjectured [60,
Section 2.7] (see also [5, p. 14]) the existence of a large field Hy of hyperseries equipped with a
derivation @ and a composition law � that should be closed under many operations and equations
considered when working with growth rates of regular real-valued functions. In particular, he
conjectured that given a unary term t(�) in the first-order language of (Hy;+;�; @ ; �) and f <h
in Hy such that t(f) and t(h) are defined, the following intermediate value property would hold:

t(f) t(h)< 0=)9g (f < g <h^ t(g)= 0):

Such a field Hy would be an ultimate �field-with-no-escape�. It is tempting to take all hyperseries
in Hy to coherently subsume �all regular growth rates�.

One remarkable aspect of the theories of transseries and hyperseries is that they form a far-
reaching extension of the calculus of real numbers with infinite and infinitesimal quantities, and
closure under exponentiation, logarithm, and transfinite summation. Even more remarkably, a
similar calculus was proposed in a different area by Conway [28]. He introduced the class No of
surreal numbers which extends the reals with infinitely large and infinitesimal quantities. Just as
transseries, surreal numbers form a real-closed field with a notion of infinite summation. Moreover,
Gonshor defined [55] an exponential function exp:No¡!No>0 on surreal numbers, illuminating
to their similarity to transseries. Cantor's class On of ordinals !;!+1; !!; : : : ; "0; : : : is naturally
contained in No, which implies that seemingly exotic quantities such as

!1
2!+1

p
¡!¡! /1 3¡! /1 5¡ � � �
exp( "0¡!

p
)

(2)

can be made sense of in No.

Surreal numbers possess two interesting and defining features. Firstly, they come with a linear
ordering < for which the surreal line No is set-wise saturated: given two sets L; R of surreal
numbers with L<R, there is always a number fL j Rg2No with L<fL j Rg<R. In other words,
any gap in the surreal line can be filled by a surreal number. This form of completeness, which is
difficult to obtain in rings of growth rates of real-valued functions or formal series, is a particularly
desirable feature that suggests that all orders of infinity can be accounted for in No. Secondly, the
number fL j Rg can be chosen �simplest�, in an abstract sense, to lie between L and R. This yields a
well-defined function (L;R) 7!fL j Rg which allows one to select simplest ways to fill holes between
numbers in a manner that is coherent with a given algebraic structure onNo. This allowed Gonshor
to define his exponential function in a natural way. In this thesis, we will exploit this phenomenon
to construct transfinite iterators of exp and log on No. It is remarkable [15] that in defining a
distinguished function E on surreal numbers so as to satisfy a< exp(a)< exp(exp(a))< � � �<E(a)
for large enough a2No, one also incidentally obtains a solution to the functional equation

E(a+1)= exp(E(a))

of exp!, for all sufficiently large a2No. This suggests that surreal numbers and hyperseries are
naturally related, and that the two ways of regular extending growth rates by solutions of equations
and by filling gaps are connected in a beautiful manner over No.

During the past two decades, the class of surreal numbers became a prominent universal domain
for several types of ordered algebraic structures, including ordered groups, ordered fields and
models of the real exponential field. Van der Hoeven conjectured [63, p. 16] (see also [5, Conjec-
ture 5.5] for a more precise statement) that surreal numbers are canonically isomorphic to Hy,
the isomorphism being an evaluation map sending each hyperseries f 2Hy to its �value at !�
f(!)2Hy(!)=No.

The main goal of this thesis is to prove this last conjecture. We do this by representing surreal
numbers as hyperseries, i.e. as formal expressions involving a definite set of operations, of which
we will provide a solid understanding. On the class of surreal numbers, we will see how to define
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(besides usual arithmetic operations) an infinite arity summation operator
P

, exponentials exp
and logarithms log and transfinite iterators exp� and log� thereof, where � ranges in the class On
of ordinals. We will see that such expressions as

exp!2

 
2!3

p
¡ log(!)¡ log2(!)¡ � � �

log!!(!)

!
¡ 5 exp

¡
log!

p �
!

are legitimate surreal numbers, and that representing surreal numbers such as (2) in this manner
is a good way to establish a link between surreal numbers and hyperseries and to allow one to
compute with numbers as if they were regular growth rates. In establishing this representation,
we will construct a field Hy(!) of hyperseries in !, thus answering van der Hoeven's conjecture in
the positive.

1 Toward an algebra of all regular growth rates

First systematic investigations of regular growth rates were made by Hardy [57, 58], based on earlier
ideas by du Bois-Reymond [20, 21, 22]. Hardy proved that the set HLE of L-functions was a Hardy
field and observed [57, p. 16] that �The only scales of infinity that are of any practical importance
in analysis are those which may be constructed by means of the logarithmic and exponential
functions.�. In other words, Hardy suggested that the framework of L-functions not only allows
for the development of a systematic asymptotic calculus, but that this framework is also sufficient
for all �practical� purposes. However, as was later suspected by Hardy himself, the set HLE is not
sufficient for all practical purposes, e.g. it is not closed under functional inversion [35, 60]. Part of
Hardy's work can be interpreted as a search for an elusive algebra, which we denote 
, of regular
real-valued functions that would encompass all instances of prominent regular functions appearing
in the literature.

We will discuss several possible instantiations of 
 in the realm of growth rates by considering
ways to extend Hardy fields with solutions of equations or with elements that fill certain gaps.

1.1 Hardy fields and algebraic differential equations

Many simple examples of Hardy fields, such as subfields of R, the field R(x; exp) generated by the
germs of the identity function and the exponential function, and the set HLE of L-functions, share
the property of being differentially algebraic [23, Lemma 3.7]. This means that each germ f 2HLE
satisfies an algebraic differential equation

P (f ; f 0; f 00; : : : ; f (n))= 0;

where P 2R[X0; : : : ; Xn] is a non-zero polynomial with real coefficients. On the other end of the
spectrum, Zorn's lemma implies the existence of Hardy fields, called maximal Hardy fields, which
are not properly contained in any larger Hardy field. Aschenbrenner, van den Dries and van der
Hoeven conjectured [5] that all maximal Hardy fields satisfy an intermediate value theorem for
differential polynomials: if P 2H[X0;:::;Xn]=/ and f ; g are germs in a maximal Hardy field H such
that

P (f ; f 0; : : : ; f (n))P (g; g 0; : : : ; g(n))< 0;

then there is a germ h in H lying between f and g, such that P (h; h0; : : : ; h(n))=0. Non maximal
Hardy fields satisfying this property exist that can be embedded into fields of transseries [64].
Although maximal Hardy fields need not be closed under composition, this intermediate value
property would make them good candidates for 
 from the standpoint of asymptotic differential
algebra.
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1.2 Filling gaps in Hardy fields
One of du Bois-Reymond, Hardy and Hausdorff's goals was to fill gaps between sets of germs. The
problem of filling gaps can be stated in the setting of Hardy fields as follows: given a Hardy field
and countable subsets A and B of with A<B, is there a larger hardy field which contains a germ
h with A<h<B? This question was recently answered in the positive by Aschenbrenner, van den
Dries and van der Hoeven in an article in preparation [7]. One readily sees that this process of
filling gaps invokes germs whose growth is very dissimilar to that of elementary functions such as
L-functions. Let us single out three particular cases. Taking

(A;B)= (?; flogn(x) :n2Ng);

one obtains a sublogarithmic solution, i.e. a germ h whose growth rate is smaller than that of any
finite iterate of the logarithm. Taking

(A;B)= (fexpn(x) :n2Ng;?);

one obtains transexponential solution, i.e. a germ h whose growth rate is greater than any finite
iterate of the exponential function. Finally, taking

(A;B)=
�n

x
p

; x
p

+e
log

p
(x)
; x
p

+e log(x)
p

+e log2(x)
p

;:::
o
;
n
2 x
p

; x
p

+e2 log(x)
p

; x
p

+e log(x)
p

+e2 log2(x)
p

;:::
o�

one obtains a �nested� solution h whose growth cannot be precisely approximated using finite
combinations of exp and log. We will see when studying surreal numbers that filling these three
types of gaps and generalizations thereof in the case of hyperseries is sufficient in order to obtain
a full copy of the surreal numbers. In fact this can also be seen in the realm of germs in the work
of Aschenbrenner, van den Dries and van der Hoeven [7].

1.3 Hyperexponentials and hyperlogarithms
In order to study and represent transexponential or sublogarithmic germs, it is convenient to
single out specific such germs that would play the role of exp and log as building blocks for more
complicated germs. Since transexponential and sublogarithmic germs do not appear as solutions
of differential equations over elementary functions [24, Section 12], one must turn to more general
functional equations in order to find examples. The simplest difference equation which generates
a transexponential germ is Abel's equation for the exponential function, which is the following
equation in y

y � (x+1)= exp � y: (1.1)

Kneser defined [66] an analytic and monotone function exp!:R>0¡!R>1 with exp!(0) = 1 and
exp!(r+1)=exp(exp!(r)) for all r2R>0, hence the germ of exp! is a solution of (1.1). The function
exp! can be construed as a transfinite iterator of the exponential function, with exp!(n)= expn(1)
for all n2N.

Conversely, the difference equation

y � log= y¡ 1 (1.2)

which can be obtained by formally inverting (1.1), generates a sublogarithmic germ. In fact the
functional inverse log!:R>1¡!R>0 of exp! is a solution of (1.2).

Boshernitzan showed [25] that R(exp!(x); exp!0 (x); exp!00(x); : ::) is a Hardy field. It is unknown
whether the expansion (R;+;�; <; exp!) (extending exp! to be zero on R<0) of the real ordered
field is o-minimal. A first step toward establishing a positive answer to this question is done in
Padgett's thesis [83] where she constructed a Hardy field H containing x, closed under exp and
log, as well as under exp! and log!.

Extending Kneser's method, Schmeling constructed [92, Appendix A] analytic solutions exp!2,
exp!3, etc. to the following equations:

exp!2 � (x+1) = exp! � exp!2 (1.3)
exp!3 � (x+1) = exp!2(exp!3(x)) (1.4)

���
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The fast growing germs exp!(x), exp!2(x), ::: are called hyperexponentials. Their functional inverses
log!(x), log!2(x), : : : are called hyperlogarithms and they grow extremely slowly. All these germs
are contained in a Hardy field.

Écalle studied analytic properties of very fast and slowly growing germs such as the transfinite
iterators of exp and log. He introduced a systematic technique for the construction of quasi-analytic
solutions to these and more general iteration equations [39]. After having introduced a subclass
of Hy in the form of his �Grand Cantor� [39, Chapter 8], he proposed [40] an instantiation of 

in the form of his �natural growth scale�. This is a group under composition of positive infinite
germs, including transfinite iterators and exp and log, in which many functional equations involving
compositions only should have solutions.

1.4 Levels

One important property of HLE or Han;exp is the classification of their levels. Levels were intro-
duced by Rosenlicht [89, Section 2] in the case of Hardy fields of finite rank, by Écalle [39] in the
case of transseries. They were later studied by Marker and Miller [79] in the case of fields HR for
o-minimal expansions R of real-closed fields which define an exponential function (the definition
of HR being similar as in the real case). We introduce them in the form of exp-log classes. Let us
fix an ordered field F)R equipped with an isomorphism exp:F¡!F> such that (F;+;�;<; exp)
embeds into an elementary extension of Rexp. This means that the inclusion R¡!F preserves all
first-order properties in the language of ordered exponential rings. Then the exp-log class EL(a)
of a2F>R is its equivalence class EL(a)�F>R for the relation

a�L b()9n2N; (logn(a)¡ logn(b)� 1):

Writing E for the set fexpn � (logn� 1) :n2Ng of strictly increasing bijections F>R¡!F>R, we
see that each EL(a) for a2F>R is the convex hull in (F>R; <) of the class

Ea := fg(a) : g 2Eg:

Exp-log classes are linearly ordered by universal comparison EL(a)<EL(b). For a; b2F>R, we have

EL(a)<EL(b)()Ea< Eb()Ea< b() a< Eb:

This type of inequalities concerning convex equivalence relations frequently appears when studying
germs, hyperseries, and especially surreal numbers, which are ideally suited to investigate them
(see in particular Chapters 10 and 11).

Consider a Hardy fieldH containing x, closed under exp and log, as well as under exp! and log!.
Write �n :=EL(expn(x)) and �¡n :=EL(logn(x)) for all n2N. Note that the set E is contained in
H>R. The exp-log classes of exp!(x) and log!(x), respectively, suggestively denoted �! and �¡!,
satisfy

�¡!<�n<�!

for all n2Z.
Further �transfinite� exp-log classes �!¡1 :=EL(log(exp!(x))), �"0 :=EL(exp!(exp!(x))), �¡!2 :=

EL(log!(log!(x))), etc, can be defined within H.
Given r 2R, the exp-log class �r of the function exp[r](x) := exp!(log!(x)+ r) satisfies

8r; s2R; r < s()�r<�s:

Indeed, one can see that (R;+; 0; <)¡! (H>R; �; x; <); r 7! exp[r](x) is an embedding of ordered
monoids with exp[1](x) = exp(x), and in particular that all exp[r](x) for r 2R commute. We can
readily construct other intermediate levels in H by noting that given ';  2H>R with

'¡  � 1
logn(exp!('))

for all n2N;
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the exp-log classes of exp! � ' and exp! �  are distinct. Indeed one can show that the sets

'� 1
logn(exp!('))

and (log! � E � exp!) � '

have the same convex hull. Those relations, which follow from the asymptotics of Abel's equation
and basic properties of smooth functions allow us to construct �infinitesimal� exp-log classes such as

� /1 ! :=EL
�
exp!

�
log!(x)+

1
log!(x)

��
:

which indeed satisfies �0< � /1 ! < �r for all r 2R>. To this date, there is no known o-minimal
expansion of (R;+;�;<) which defines a germ f >R with non-integer level [79]. One can therefore
say that there is no known o-minimal instantiation of 
. In contrast, as we will see, it is not too
difficult to construct fields of hyperseries which account for infinite or infinitesimal levels.

2 Formal series

Formal series can be used as formal asymptotic expansions of certain germs or as easy-to-construct
models of certain first-order theories. The particular kind of series which is relevant in our case
are well-based series or Hahn series as per [56], over R, because well-based series are subject to
many formal operators and algorithms [82, 92, 62] which can be used to define operations and solve
equations that appear in the context of Hardy fields.

Given a multiplicatively denoted Abelian, linearly ordered group (M;�;1;�), the fieldR[[M]] of
well-based series over R with monomial group M is the set of functions f :M¡!R whose support

supp f := fm2M : fm=/ 0g

is well-ordered for the reverse ordering � on M (see Chapter 1 for more details and an extension
of the definition for class-sized monomial groups M). Each function f 2R[[M]] is represented as
a formal sum

f =
X
m2M

fmm

where fm := f(m)2R and the field operations as defined by Hahn are as the pointwise sum

f + g :=
X
m2M

(fm+ gm)m;

and the Cauchy product

f + g :=
X

u;v2M
(fu gv) u v:

Fields of well-based series come equipped with a dominance relation

f � g()max supp f �max supp g

and an asymptotic equivalence

f � g()max supp f =max supp g

for non-zero f ; g2R[[M]]. An important feature of fields of well-based series for us is that one can
define a notion of transfinite sum of certain families of series [82, 59]. That is, given a field of well-
based series T=R[[M]] and a family (fi)i2I 2TI, we can sometimes define its sum

P
i2I fi as a

well-based series in T, which is useful in defining operations on T. An R-linear function 	:T¡!T
which preserves summability and commutes with the summation operator

P
: (fi)i2I 7!

P
i2I fi

is said to be strongly linear . Let us see how well-based series over R relate to the investigation of
regular growth rates by describing partial constructions of Hy in the literature.
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2.1 Transseries
Elementary germs, such as L-functions, are nothing but finite combinations of exp, log, and polyno-
mial or semi-algebraic functions. Accordingly there should exist a representation of such germs as
formal combinations of terms ex, logx and algebraic expressions. Dahn and Göring [30] and Écalle
[39] introduced formal series, called transseries, that serve this purpose. Transseries are specific
types of well-based series with real coefficients. Each transseries is constructed from a variable
x taken as a generic positive infinite element and from the real numbers, using exponentiation,
logarithms, and infinite sums. One example is

ee
x+ex/2+ex/3+� � �¡ 3 ex2+5 (log x)p+ 42+x¡1+2 x¡2+6 x¡3+ 24x¡4+ � � �+e¡x:

Transseries form an ordered, valued, exponential field (TLE;+;�; <;�; exp) with extra structure
called the field of logarithmic-exponential (or log-exp) transseries. The field TLE was first defined
by Dahn and Göring [30] in an effort to study Tarski's problem on the real ordered exponential
field Rexp=(R;+;�;<; exp): is the elementary theory of Rexp decidable? Tarski's problem is still
open, and has been reduced [93] to certain open (and considered very difficult) number theoretic
conjectures; in particular the Weak Schanuel's Conjecture [76].

Écalle proposed [39] a wide ranging analytic theory of accelero-summation which relates trans-
series to large classes of quasi-analytic real-valued functions called analyzable functions. This lead
in particular to his proof of Dulac's conjecture about the finiteness of limit cycles of polynomial
vector fields.

The subfield Tg of TLE of so-called grid-based transseries, among others, was studied by Joris
van der Hoeven, after Écalle [60], in order to set a framework that is rich in methods to analyze
the asymptotic behaviors of real-valued functions, such as differentially algebraic functions, that
naturally occur in geometry and analysis. This work allowed for a weaker but simpler method than
Écalle's accelero-summation in order to embed fields of transseries into Hardy fields [64]. Van der
Hoeven later showed that Tg satisfies the intermediate value theorem for differential polynomials
[63, Theorem 9.33].

Transseries are interesting in particular for their rich structure besides the field operations and
exponentiation. Indeed the fieldTLE is equipped with a canonical derivation @:TLE¡!TLE [36, 60],
as well as with a composition law �:TLE�TLE

>R¡!TLE [36, 60], which extends the composition of
rational functions in the variable x and shares a few first-order properties with the composition law
on Hardy fields that are closed under composition. In fact, there is a natural embedding of Hexp;an
into TLE that sends the germ x of the identity to x and preserves the derivations and composition
laws [36, Corollaries 3.12 and 6.30]. The image of the same embedding is contained in the subfield
Tg. As such those fields of transseries can be used as formal counterparts to certain Hardy fields,
with the advantage of lending themselves to formal methods and algorithms to solve equations and
inequations.

However, transseries are by their definition insufficient to describe the asymptotic behavior of
functions involving hyperexponentials and hyperlogarithms. In fact, the exp-log classes in Tg and
TLE are also parametrized by integers, and thus transseries very broadly fail to approximate germs
whose levels are infinite, fractional and infinitesimal as we mentioned above.

2.2 Model theory of transseries
In a more model theoretic vein, van den Dries, Macintyre and Marker took interest [36] in trans-
series as a natural non-standard model for certain expansions of the real ordered field, including
Rexp and Ran;exp. Indeed it is a by-product of their previous work [34] on the theory of Ran;exp that
Ran;exp is an elementary submodel of any field of well-based series equipped with a well-behaved
exponential function.

With Aschenbrenner, van den Dries studied the elementary properties of H-fields, which are
ordered, valued, differential fields designed to abstractly represent Hardy fields. They focused in
particular on the existence of closures of such models under certain differentially algebraic equations
[2, 3]. Since transseries are naturally closed under many operations, they are a prominent instance
of H-fields.

14 Introduction



The encounter between Aschenbrenner, van den Dries and van der Hoeven lead to a fruitful
cooperation, combining formal analytic methods and model theory. They set a research program [5]
toward conjunctively understanding the elementary theory TLE of (TLE;+;�;<;�; @) and that of
maximal Hardy fields. This motivates many recent projects and already yielded the major results
of recursive axiomatization of TLE, model completeness, quantifier elimination in an extended
language [4].

The model theory of (TLE;+;�; �) is much less tame. This stems from the fact that many
simple functional equations in TLE lack transseries solutions. An important example of an equation
without solution in TLE is the functional equation in f

f = x
p

+ef�logx with the condition f � x
p

: (2.1)

One can conceive [60] natural �syntactic� solutions

fs= x
p

+e logx
p

+e
loglogx

p
+e

� ��

(2.2)

to (2.1). It is plausible [61, Section 1.4] that the equation have quasi-analytic solutions that could
be partially described by the nested expansion (2.2). In order to understand this type of object
and formal expansion, van der Hoeven introduced the notion of abstract transseries [61].

2.3 Abstract transseries

Going beyond these results requires tools to be able to produce formal, transserial models for
various fields of real-valued functions beyond the spectrum of exponential-logarithmic-analytic
germs. It became clear that this implies extending the range fTLE;Tgg of admissible fields of
transseries to more abstract fields of transseries as defined by van der Hoeven [61]. This was
accomplished by Schmeling in his thesis [92]. Transseries fields are fields of well-based series T
equipped with a logarithm log which is a morphism (T>0;�; <)¡! (T;+; <) that shares certain
key features with the logarithm log= expinv on TLE. One specific restriction, denoted axiom T4
in [92, Definition 2.2.1] (see also Section 11.2.2), pertains to nested expansions such as (2.2). In
particular, Schmeling showed how to to construct transseries fields containing fs.

Transseries fields can be extended so that the logarithm becomes surjective. Such fields T are
equipped with an external composition law �:TLE�T>R¡!T. Schmeling showed how to define
derivations and compositions on transseries fields, and how to extend them when closing under
exponentials. These results are related to S. Kuhlmann's work on fields of generalized series. Indeed
Kuhlmann and her co-authors F-V. Kuhlmann, Matusinski, Shelah, and Tressl, showed how to
construct fields of well-based series equipped with logarithms and exponentials [68, 67], how to
distinguish between several types of generalized transseries [72], and how to extend derivations
when closing such fields under exponentials [70].

2.4 Hyperseries

Despite the excellent closure properties of transseries for the resolution of differential equations,
the functional equation (1.1) does not have a transseries solution. In order to establish a universal
formal framework for asymptotic calculus, we therefore need to incorporate extremely fast growing
formal counterparts E!, E!2, E!3; : : : to the functions exp!; exp!2, exp!3, . . . The first construction
of a field of generalized transseries that is closed under E!n and L!n for all n2N was accomplished
in [92]. The hyperlogarithms L!, L!2, etc. satisfy the functional equations

L!(L1(x)) = L!(x)¡ 1 (2.3)
L!2(L!(x)) = L!2(x)¡ 1
L!3(L!2(x)) = L!3(x)¡ 1

���
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In addition, we have a simple formula for their derivatives

L�(x)0 =
Y
�<�

1
L�(x)

; (2.4)

where �2f1; !; !2; : : : g and

L!nkn+� � �+!k1+k0(x) := L1
�k0(L!

�k1(� � � (L!n�kn(x)) � � �))

for all n2N and k0; : : : ; kn2N.
A second construction of such a field, for n= 1 was done in Padgett's thesis [83], where she

defines fields M containing well-based series, which are closed under exp, log, L!, E!, as well as
under a natural derivation @:M ¡!M . Padgett's framework is distinct from ours in that she
sometimes only allows finite sums in her series constructions, however we expect that our methods
are compatible, and that her fields should be embeddable in the fields of hyperseries we will mention
later.

The formula (2.4) is eligible for generalization to arbitrary ordinals �. Taking �=!!, we note
that the function L!! does not satisfy any functional equation. Yet any truly universal formal
framework for asymptotic calculus should accommodate functions such as L!! for the simple reason
that it is possible to construct models with good properties in which they exist. For instance,
by [25, 7], there exist Hardy fields with infinitely large functions that grow more slowly than L!n
for all n2N.

An advantage of hyperseries over their geometric counterparts is that the formal setting (and as
we will see the surreal setting) allows one to single out �simplest� operators in each growth class of
operators on hyperseries. For instance, in stark contrast with the vast number of possible solutions
of Abel's equations (1.1-1.2), there is one distinguished hyperexponential function L! of strength !,
and other solutions s 7!L!(s)+r;r2R of (2.3) in hyperseries are expressed using this simplest one.

2.5 Logarithmic hyperseries
The construction of the field L of logarithmic hyperseries in [33] was the first step toward the
incorporation of hyperlogarithms L� with arbitrary �. The field L is the smallest non-trivial field
of generalized power series over R that is closed under all hyperlogarithms L� and infinite real
power products. It turns out that L is a proper class and that L is closed under differentiation,
integration, and composition. One remarkable feature of L is that its construction is relatively
simple: it is simply a field of well-based series L=R[[L]] where L is the group under pointwise
multiplication of formal expressions

l=
Y
<�

`
l; (l)<�2R�

for �2On. The terms ` for  2On correspond to L(x). Possibly transfinite sums as above are
required so as to allow within the relation

`�
0 =

Y
<�

`
¡1

which extends (2.4).
The derivation @:L¡!L; f 7! f 0 on L is defined on monomials via an infinite Leibniz rule and

extended to R[[L]] by strong linearity. This gives a surjective derivation for which (L; @) is an H-
field in the sense of [2].

Although L contains no formal functional inverses for hyperlogarithms `, certain equations
y � `= f for given f 2L have unique solutions in L that are then denoted f" (see Section 4.1.4).
The composition law �:L�L>R¡!L is characterized by imposing the functional equations

`!�+1 � `!�= `!�+1¡ 1

for �2On and fixing the simplest values of `�
" for 6 �2On. As for the interaction between the

derivation and the composition law, we have the chain rule

8f 2L;8g 2L>R; (f � g)0= g 0 � (f 0 � g);
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and formal Taylor expansions around each point s 2L>R for each f 2L. That is, for all � in L
with �� s, we have

f � (s+ �)=
X
k2N

f (k) � s
k!

�k

where f (k)=@k(f) is the k-th derivative of f and
P
k2N

f(k) � s
k!

�k is the sum of the corresponding
summable family.

A first step in extending the work on logarithmic hyperseries would be to define a derivation
and a composition law on an extension L~ of L which also takes hyperexponentials into account.
Such work goes beyond the scope of the thesis but has been separately accomplished [10].

3 Numbers
The standard notion of number in order to represent geometric magnitudes is that of real number.
The standard notion of number in order to represent set-theoretic or order-theoretic magnitudes
is Cantor's notion of ordinal number. Whereas real numbers are the domain of the finite, ordinal
numbers are designed to account for infinite quantities.

Dating to Antiphon-Eudoxus-Archimedes with the method of exhaustion, through Leibniz'
infinitesimal calculus and Newton's fluxions, the inclusion of infinitesimal or infinite quantities
in real calculus has posed several problems and paradoxes. The first rigorous treatment of finite,
infinite and infinitesimal quantities in a unified context was Robinson's non-standard analysis where
infinitesimals and infinite elements are introduced using ultrafilters [86, 87], and later Nelson's
internal set theory [81] (see [43] for a more detailed discussion of the history of infinite and
infinitesimal quantities in mathematics). These extensions �R of R in non-standard analysis are
called fields of hyperreal numbers. A crucial feature of hyperreal numbers is that they satisfy
Robinson's transfer principle, a far reaching generalization and formalisation of Leibniz' law of
continuity (see [27, Section 4.4]).

Using a simple generalization of both Dedekind's definition of real numbers and von Neumann's
presentation of ordinal numbers, Conway proposed the unified setting of surreal numbers in his
monograph On Numbers and Games [28]. The class No of surreal numbers encompasses both real
and ordinal numbers, while allowing for ways to distinguish between quantities in an elegant way
because of the way each number can be given a specific name or presentation, in various ways.
Although surreal numbers do not enjoy an explicit transfer principle as strong as Robinson's, we
will see that they do elementarily extend important first-order structures with tame properties,
such as the real ordered field, the real exponential field, and the ordered valued differential field
TLE of log-exp transseries. Crucially, the fact that one can name each surreal number is what will
make it possible to intrinsically define distinguished hyperexponentials and hyperlogarithms on
No, where doing so on �R would, it seems, entail arbitrary choice or some reliance on a choice of
corresponding germs in R.

Let us explain how the field of surreal numbers came into prominence as a universal domain
for transseries and hyperseries.

3.1 Surreal forms
Surreal numbers are abstract quantities, containing an unfathomably wide array of magnitudes
that are amenable to a large number of surreal operations. This sentiment is summed up by
Conway's phrase, that surreal numbers contain �All numbers great and small�. Conway defines
surreal numbers as abstract forms fL j Rg construed as the �simplest� objects lying between sets
L and R of previously defined surreal numbers, with L<R. More precisely, Conway's definition
is inductive in essence, and relies on a mutual inductive definition of numbers and their ordering
<, according to which each number is characterized by the gap fL j Rg it fills in the class No of
surreal numbers. Thus surreal numbers arise from playing a simple game of filling gaps inductively,
starting with the empty setting (L;R)=(?;?). Quite remarkably, the operational structure which,
as we will see throughout the thesis, emerges from this construction, is very rich and closely related
to the task of constructing large fields of formal series with compositions and derivations.
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3.2 The field of surreal numbers

The main elements of the theory of surreal numbers were established by Conway. Conway showed
how to define a sum and product of surreal numbers in a very simple way using the inductive
definition of surreal numbers as gaps fL j Rg. Indeed Conway's definition of the sum of numbers
x= fLx j Rxg and y= fLy j Ryg is

x+ y= fLx+ y; x+Ly j x+Ry; Rx+ yg (3.1)

where the operations involved between the brackets only involve strictly �simpler� surreal numbers,
and are thus warranted by induction. One gets used to manipulating this type of inductive defin-
ition, and soon discovers that many interesting functions can be defined using the right inductive
definitions. The operation defined by (3.1) turns No into a divisible ordered Abelian group. In a
similar fashion, Conway defined a product on No and showed that No is a real-closed field which
caonnically contains the real ordered fieldR as well as the ordered semi-groupOn of ordinals under
their commutative Hessenberg operations.

The first enquiries about surreal numbers after Conway were centered around the representation
of numbers as well-based series. Indeed Conway [28] showed (see also Gonshor [55]) that the ordered
field of surreal numbers is canonically isomorphic to a field R[[Mo]] of well-based series over R,
whose group of monomials Mo is a subgroup of (No>0;�;<). This gives a representation of each
surreal number a as a formal series

a=
X

m2Mo
amm:

The series representation also allows one to use valuation theory to define embeddings of certain
ordered algebraic structures into No. For instance, Ehrlich characterized over the years [42, 45,
46] the type of ordered algebraic structures that could be embedded into No while preserving the
inductive definition of operations (i.e. as so-called initial subclasses of No).

3.3 Exponentiation on surreal numbers and transseries

Kruskal got interested in leveraging the expressive nature of surreal numbers in order to make sense
of asymptotic expansions of certain regular functions, such as germs in Hardy fields. For instance,
identifying the ordinal !2No with the germ of the identity, any possibly divergent Laurent seriesP
n>N rn z

n with real coefficients gives rise to a well-defined surreal number
P
n>N rn!

¡n2No.
The reader will note that certain fast or slowly growing functions such as the real exponential and
logarithm cannot be approximated by Laurent series in z¡1. Thus Kruskal's project requires at
least the existence of an exponential function and a logarithm on surreal numbers. Using hints from
Kruskal, Gonshor defined [55, Chapter 10] an exponential function exp which is an isomorphism
(No; +; <) ¡! (No>0; �; <), and it was later shown by van den Dries and Ehrlich [96] that
(R;+;�; exp; <) is an elementary substructure of (No;+;�; exp; <).

The existence of a well-behaved logarithm function log= expinv on No and the identification
No=R[[Mo]] make No an ideal candidate for a large transseries field as per [92]. The question
of the precise structural properties of (R[[Mo]]; log) was first investigated by Kuhlmann and
Matusinski [71]. One of the important steps of this task is to identify the class Mo! of log-atomic
elements of (R[[Mo]]; log). Those were introduced by van der Hoeven in the case of transseries,
and they can be defined in No as infinite monomials a 2Mo>1 such that logn(a)2Mo for all
n2N. Such numbers include !, logn(!) and expn(!) for all n2N, but also many other numbers
which accordingly cannot be expressed purely as combinations of exponentials and logarithms, and
algebraic expressions in !. Berarducci and Mantova later identified Mo! and showed that there
was a canonical strictly increasing function

�:No¡!Mo!; z 7!�z
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such that each positive infinite surreal number a2No>R lies in the exp-log class of a unique �z for
z2No. Note that this gives a tentative conclusion to our discussion on levels, by showing that the
set of levels in an ordered exponential field can be as large as the class No itself. A similar result
for a coarser notion of rank than that of levels was obtain by S. Kuhlmann and M. Matusinski
[71], instantiating a previous result of Kuhlmann [69, Theorem 5.12]. Using this, Berarducci and
Mantova were able to prove that (R[[Mo]]; log) is a transseries field as per [92] by showing that it
satisfies the axiom T4 [18, Theorem 8.4]. Finally, Ehrlich and Kaplan showed [46, Theorem 8.1]
that all transseries fields in the sense of [92] can be embedded into No, thus showing that No is
the ultimate field of transseries.

3.4 Derivations and compositions on surreal numbers
If surreal numbers are to be isomorphic to the fieldHy, they should be amenable to basic operations
that can be performed on growth rates. In particular, there should exist a derivation @:No¡!No
and a composition law �:No�No>R¡!No with respect to which numbers could be seen as
infinitely differentiable surreal-valued functions. The derivation should be strongly linear with
kernel R, satisfy Leibniz' rule

8a; b2No; @(a b)=@(a) b+ a @(b);

and be compatible with the exponential in the sense that we have

8a2No; @(exp(a))= @(a) exp(a):

Since ! is taken to represent the identity function or the generic variable x in transseries, the
function @ should be a derivation with respect to !, i.e. @(!)=1. The composition law should be
associative

8a2No;8b; c2No>R; a � (b� c)= (a � b) � c;

positive infinite numbers a2No>R should give rise to strictly increasing surreal valued functions

8a2No>R;8b; c2No>R; b < c=) a � b <a � c;

for each b2No>R, the functionNo¡!No;a 7!a� b should be a strongly linear morphism of rings,
and we should have a chain rule

8a2No;8b2No>R; @(a � b)= @(b)� (@(a) � b)

with respect to the derivation @. One expects that a sound definition of (@; �) on No will yield
a structure with good first-order properties, and in particular the intermediate value theorem
conjectured for Hy.

Using their characterization of No as a transseries field, and Schmeling's method for defining
derivations on transseries fields, Berarducci and Mantova defined [18] a derivation @ with respect
to ! on No, in such a way that it is the �simplest� (see [18, Theorem 9.6]) derivation such that
(No;+;�;<;�; @) is an H-field. In fact this derivation has good model theoretic properties, since
(No;+;�; <;�; @) is an elementary extension of TLE [6].

However, Berarducci and Mantova showed [19, Theorem 8.4] that there is no composition law on
No that is compatible with @. In our view [5], this is due to the fact that the definition of @ is irre-
spective of the natural structure of field of hyperseries that we seek to define on No. In particular,
it does not satisfy @(E!(a))= @(a)E!0 (a) for all a2No>R, for our definition of the first hyperex-
ponential E! on No>R. In fact, we have @(E!(E!(!)))=E!0 (E!(!))=/ @(E!(!))E!0 (E!(!)).

4 Overview of the thesis

Let us now give an overview of the results in the thesis. The thesis is split into four parts, each
focused on a particular theme, and each beginning with a thematic introduction which describes in
an informal way the main ideas and stakes at play. Parts I and III mainly contain known results,
with the exceptions of Chapters 2, 9 and 10. Most our new results are to be found in Parts II and IV.
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4.1 Well-based series
Part I mainly introduces known facts regarding well-based series, transseries, and operations on
those series. In Chapter 1, we recall properties of the summation operator and strongly linear
functions.

In Chapter 2, we study a notion of (formal) analytic functions on fields of well-based series.
Analytic functions are functions which can be locally expressed by power series. The main result
(Proposition 2.3.6) is that an analytic function is infinitely differentiable and has a Taylor expansion
in terms of its iterated derivatives. We develop a short list of results regarding analytic functions
which are very useful when working with the type of hyperserial calculus we introduce in Part II.
Indeed, the hyperseries acting as functions on hyperserial fields or surreal numbers will always be
analytic.

Finally, in Chapter 3, we give a short overview of Schmeling's work [92, Chapter 2] on transseries
fields by introducing a slight generalization of those fields.

4.2 Hyperseries
In Part II, we introduce the setting of hyperserial fields, in which we will be able to compute with
hyperseries. This setting is inspired by Schmeling's notion of transseries field, which it specifies by
including hyperlogarithms along with the logarithm. Our constructions of fields of hyperseries rely
on properties of the field L of logarithmic hyperseries. Intuitively speaking, the reason is that the
derivative of E� can be expressed as the composition of a logarithmic hyperseries with E�:

E�
0 (a) = 1

`�
0 � (E�(a))

and similarly for all higher derivatives. One key aspect of our approach is therefore to construct
increasingly large fields T of hyperseries simultaneously with compositions

�:L�T>R¡!T>R:

Our definition of hyperserial fields involves a parameter � which for the sake of simplicity and
exposition, we temporarily fix as � =On. Let T=R[[M]] be a field of well-based series, where
M (and equivalently T) can be a proeper class. Let �:L�T>R¡!T be a function. For r 2R
and m2M, we define mr as follows: set 1r := 1, set mr := `0r �m if m� 1, and set mr := `0

¡r �m¡1
if m� 1. So `0 acts as the identity variable x in transseries. For �2On, we define M2� to be the
class of series s2T>R with ` � s2M�1 for all  <!�. Such series are said L<!�-atomic. We say
that (T; �) is a hyperserial field (of force On) if the following axioms are satisfied:

HF1. L¡!T; f 7! f � s is a strongly linear morphism of ordered rings for all s2T>R.

HF2. f � (g � s)= (f � g) � s for all f 2L, g 2L>R, and s2T>R.

HF3. f � (t+ �)=
P
k2N

f(k) � t
k!

�k for all f 2L, t2T>R, and � 2T with �� t.

HF4. `!�
" � s< `!�

" � t for all ordinals �, all  <!�, and all s; t2T>R with s< t.

HF5. The map R�M!M; (r;m) 7!mr is a law of ordered R-vector space on M.

HF6. `1 � (s t)= `1 � s+ `1 � t for all s; t2T>R.

HF7. supp `1 �m� 1 for all m2M� and
supp `!� � a� (` � a)¡1 for all �> 1,  <!�, and a2M!�.

The first two axioms above impose compatibility between the composition laws on L�L>R and
L�T>R and the structure of field of well-based series on L. The series `!�

" in the fourth axiom
are defined as the unique solutions in (L; �) of

`!�
" � `= `!�:

The other axioms are more technical and will make sense as the reader goes through Chapters 3
and 4.
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The hyperserial field (T;�) is confluent if M=/ 1 and for all �2On and all s2T>R, there exist
a2M!� and  <!� with

` � s � ` � a:

Confluent hyperserial fields of force On include L itself, and the axiomatic properties of �:L�
T>R¡!T can be seen as a generalization of those properties of the internal law �:L�L>R¡!L
that make sense when T itself is not equipped with a composition law or derivation.

Since it is difficult to define composition laws satisfying the axioms above, we will rely on a
method whereby it is sufficient to consider a very restricted list of values of the law �. Given a
confluent hyperserial field (T; �), its skeleton is T together with the list of partial functions

L!�:M!� ¡! T

a 7¡! `!� � a

for all � 2On. We will see that the skeleton completely determines the composition law, while
being much easier to construct on certain fields of well-based series, and in particular on No. The
condition that (T; �) be a confluent hyperserial field lets us isolate a few axiomatic properties
that the skeleton (T; (L!�)�2On) should satisfy. Let us temporarily write Sk-Ax for this list of
properties (see Sections 4.2.1 and 4.2.2 for more details). Now consider a field U of well-based
series over R together with a list of partial functions L!�; �2On called partial hyperlogarithms
that satisfy Sk-Ax. We call (U; (L!�)�2On) a confluent hyperserial skeleton (of force On). An
embedding of confluent hyperserial skeletons is a strongly linear morphism of ordered rings 	:
U¡!V which commutes with the partial hyperlogarithms. Our first main result is the following
equivalence between confluent hyperserial fields and skeletons:

Theorem A. [Theorems 7.2.1 and 7.2.10] If (U; (L!�)�2On) is a confluent hyperserial skeleton,
then there is a unique function �:L�U>R¡!U such that (U; �) is a confluent hyperserial field
with skeleton (U; (L!�)�2On).

Conversely, if (T; �) is a confluent hyperserial field, then its skeleton (T; (L!�)�2On) is a
confluent hyperserial skeleton.

This correspondence will allow us to define the structure of hyperserial field on No in Part IV.
In Chapter 4, we define hyperserial skeletons and show how to define a composition law � on a
confluent hyperserial skeleton (Theorem 4.3.1).

Consider a hyperserial skeleton (U; (L!�)�2On) and the corresponding composition law � of
Theorem 4.3.1. Each partial function L!� for �>0 extends to U>R by setting L!�(s)= `!� � s for
all s2U>R. We will see that this function is injective, whence it has a partially defined left inverse
denoted E!�. In Chapter 5, we give a criterion on (U; (L!�)�2On) under which L!�:U>R¡!U>R

is surjective, i.e. under which E!�:U>R¡!U>R is totally defined. This leads us to consider the
notion of !�-truncated series, which are series '2U>R with '>`!�

" �m¡1 for all m2 supp ' with
m� 1 and  < !�. We also define 1-truncated to be those positive infinite series whose support
supp' contains only infinite monomials. Writing U�;!� for the class of !�-truncated series for any
� 2On, we have the following criterion

Proposition. [Corollary 5.3.13] Let �2On. If L!�(M!�)=U�;!� for all �6 �, then the function
L!�:U>R¡!U>R is surjective.

We say that the confluent hyperserial skeleton U has force (On;On) if each L!�:U>R¡!U>R

is surjective. Such a field is equipped both with hyperlogarithmic and hyperexponential functions.
The skeleton of L itself is not at all of force (On;On), since for instance no hyperexponential
E!�(x) for �2On is defined. So it is necessary to find ways to close arbitrary confluent hyperserial
skeletons under hyperexponentials. Using the previous criterion, we may define such extensions by
adjoining U with formal hyperexponentials e�

' of �-truncated series '2U which do not already
lie in L�(U>R). We will do this in Chapter 6 where we will prove the following other main result
of Part II:
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Theorem B. [Theorem 5.1.5] Let (U; (L!�)�2On) be a confluent hyperserial skeleton. There is a
confluent hyperserial skeleton U~ of force (On;On) and an embedding 	:U¡!U with the following
universal property: if V is a confluent hyperserial skeleton of force (On;On) and �:U¡!V is
an embedding, then there is a unique embedding �:U~ ¡!V with �=� �	.

U ¡!
	

U~

�& # 9!�
V

In Chapter 7, we define hyperserial fields, prove Theorem A, and study examples of hyperserial
fields.

4.3 Surreal numbers
In Part II, we introduce the class No of surreal numbers, together with its linear ordering < andits
simplicity relation @, and give a survey of its properties as they relate to the project of identifying
numbers and hyperseries. In Chapter 8, we give Gonshor's formal definition of No and recall its
properties as an ordered field of well-based series.

In Chapter 9 we introduce a type of subclass of No that plays an important role in Part IV. A
surreal substructure is a subclass S of No such that there is an isomorphism �S: (No;<;@)¡! (S;
<;@), which is then unique. It is known in particular that the class Mo of monomials and the
class Mo! of log-atomic surreal numbers are surreal substructures (see [55] and [18] respectively).

In Chapter 10 we introduce a convenient way to define surreal substructures that will turn out to
subsume every surreal substructure studied in the last part of the thesis. More precisely, a convex
partition � of a surreal substructure is a partition of S whose members are convex subclasses of
S. Given such a partition, the class Smp� of numbers which are @-minimal in each member of �
is a surreal substructure (Theorem 10.1.7).

In Chapter 11 we use surreal substructures and convex partitions in order to state relevant
properties of the class No with Gonshor's exponential function. This is based on work of Gonshor
[55], Berarducci and Mantova [18], Aschenbrenner, van den Dries and van der Hoeven [6], and
Ehrlich and Kaplan [46]. In particular, we recall how No can be construed naturally as a universal
transseries field.

4.4 Numbers as hyperseries
In Part IV, we introduce the hyperserial calculus on surreal numbers and use it to represent
numbers as hyperseries. This entails in particular to construe the field of well-based series No=
R[[Mo]] as a confluent hyperserial field of force (On;On), as will be our main task in Chapter 12.
Thanks to Theorem A, this reduces to defining a confluent hyperserial skeleton (No; (L!�)�2On) of
force (On;On). By the nature of axioms for hyperserial skeletons, we are to proceed by induction
on � 2On, whereas the definition of each partial hyperlogarithm L�:Mo�¡!No; �= !� itself
will be by well-founded induction on (Mo�;@). The case �=0 is already treated in essence in the
literature, and recalled in Chapter 11 of Part III. The class Mo! of log-atomic surreal numbers
was already identified by Berarducci and Mantova as a surreal substructure. It will turn out in
the inductive definition process that in general, each class Mo�; �=!� is a surreal substructure.
This makes it possible to give an inductive definition for L�:

8a2Mo�; L� a=
�
R; L� a

0+ 1
L a0

j L� a00¡
1

L a00
; L a

�
;

where a0, a00 respectively range among L<�-atomic numbers with a0; a00@ a and a0< a< a00, and 
ranges in �. The class No�;� of �-truncated numbers also turns out to be a surreal substructure,
and the hyperexponential E� of strength � satisfies the following inductive equation

8'2No�;�; E�'= fE';E(LE�'0+1) j E(LE�'0¡ 1)g;

where '0, '00 respectively range in the class of �-truncated numbers with '0; '00@ ' and '0<'<
'00, and  ranges in �. We show that this definition works, i.e. that (No; (L!�)�2On) is indeed a
hyperserial skeleton of force (On;On). This gives us the first main result of Part IV:
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Theorem C. [Theorem 1] There is a composition law �:L�No>R¡!No such that (No; �) is
a confluent hyperserial field of force (On;On).

In order to explain the last results of the thesis, we need to describe in some detail how surreal
numbers, and in particular monomials m 2Mo can be expanded using hyperexponentials and
hyperlogarithms. In the hyperserial field (No;�), every non-trivial monomial m2Monf1g admits
a unique expansion of exactly one of the two following forms:

m=e (L�(!))�; (4.1)

where e 2Mo, �2f¡1; 1g, and � 2On, with supp  � log(L�(!)); or

m=e (L�(E�(u)))�; (4.2)

where e 2Mo, �2f¡1;1g, � 2On; �2!On with �!<�, supp  � log(L�(E�(u))), and where
E�u lies in Mo� nL<�Mo�!. Moreover, if �=1 then it is imposed that  =0, �=1, and that
u cannot be written as u= '+ " b where '2No, "2f¡1; 1g and b2Mo!.
Note that we have two possible ways to further expand m:

i. If m=(L�(!))� (i.e.  =0), then we need not expand m further since L�(!) cannot be further
simplified.

ii. If m=e (L�(!))� where  =/ 0, then we may expand every monomial in supp  as in (4.1)
or (4.2). We call this a left expansion.

iii. If m= (L�(E�(u)))� (i.e.  = 0), then we may expand any non-trivial monomial in supp u
as in (4.1) or (4.2). We call this a right expansion.

iv. If m=e (L�(E�(u)))� where  =/ 0, then we may expand m on the right or on the left.

We adopt the notations

L�E�
u := L�(E�(u)) and

term a := famm:m2 supp ag:

An infinite path P = (rimi)i2N in a 2No is thus defined as a sequence of non-zero terms P =
(rimi)i2N2 (R=/ Mo n f1; !g)N with

8i2N; rimi2 term  i[ termui;

where (u0;  0)= (a; 0) and each mi expands as mi=e i+1 (L�i!)
�i or as mi=e i+1 (L�iE�i

ui+1)�i.
For instance, here are the first terms of a path P in a which consists in a left, then right, then

left expansion.

a = '0+ r0m0+ �0
= '0+ r0 e 1(L�0E�0

u1)�0+ �0

= '0+ r0 e
'1+r1e

 2(L�1E�1
u2)�1+�1 (L�0E�0

u1)�0+ �0

= '0+ r0 e
'1+r1e

 2

�
L�1E�1

'2+r2e
 3

�
L�2

E�2
u3

��2+�2��1
+�1

(L�0E�0
u1)�0+ �0

= '0+ r0 e
'1+r1e

 2

 
L�1E�1

'2+r2e
� ��
�
L�2

E�2
u3

��2+�2
!�1

+�1
(L�0E�0

u1)�0+ �0: (4.3)

To each ordered pair (P ;a) corresponds the sequence �=('i;  i+1; ri; �i;�i; �i; ui+1; �i)i2N of para-
meters which allows us to describe the path P within a. These expansions and corresponding paths
raise several questions. What properties must the sequences � satisfy? Under what conditions on
� does there exist infinite paths with � as a sequence of parameters ? How many numbers share
the same sequence of parameters? One additional problem is the possibility of infinite branching,
i.e. of the alternation of left and right expansions. In order to study these questions, we consider
the notion of good path.
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We say that the path P =(rimi)i2N in a is good if there is i02N such that for all i> i0, we have

mi+1 2/ supp  i+1;
ri 2 f¡1; 1g;
�i = 0; and
�i = 0:

This implies in particular that the branching phenomenon stops and that for j= i0+1, we have

uj= 'j� e j+1

0BB@
E�j

'j+1�e
 j+2

0BB@
E�j+1
� ��

'j+i�e
 j+i+1

 
E�j+i

� ��
!�j+i1CCA

�j+1
1CCA
�j

: (4.4)

We say that a is well-nested if every path in a is good. Relying on Chapter 12 and a study of paths
in No, we prove the main result of Chapter 13:

Theorem D. [Theorem 13.2.7] Every number is well-nested.

In Chapter 14, we study the existence of numbers such as aj above. Consider a sequence
� :=('i; "i;  i; �i; �i)i2N where for i2N, we have 'i2No, "i; �i2f¡1; 1g,  i2No� and �i2!On

along with other technical conditions (see Definition 14.1.1). For k 2N, consider the class Ad%k
of first terms ak of a sequence (ak+i)i2N with

ak+i = 'k+i+ "k+i e k+i (E�k+i ak+i+1)
�k+i;

supp 'k+i � e k+i (E�k+i ak+i+1)
�k+i;

supp  k+i � logE�k+i ak+i+1; and
'k+i+1¡ ak+i+1 � (L<�k+iE�k+i

'k+i)¡1;

for all i2N. We say that � is admissible ifAd :=Ad%0=/ ?, and that it is nested if it is admissible
and

Ad%k= 'k+ "k e k (E�k(Ad%k+1))�k

for all k 2N.
WriteNe for the class of numbers a02Ad such that the corresponding sequence (ai)i2N satisfies

E�i
ai+12Mo�i nL<�iMo�i! for all i2N. In other words, Ne is the class of numbers a02No which

admit the nested expansion

a0= '0+ "0 e 0

0@
E�0
'1+"1e

 1

0@
E�1
� ��

'i+"ie
 i

 
E�i

� ��
!�i1A�1

1A�0
:

Our second main result is the following generalization of [11, Theorem 8.8]:

Theorem E. [Theorem 14.2.4] If � is nested, then (Ne; <;@) is isomorphic to (No; <;@), i.e.
Ne is a surreal substructure.

In Chapter 15, we give a presentation of numbers as hyperseries in !, using trees labelled by real
numbers, ordinal numbers and surreal numbers. We call such expressions hyperserial descriptions.
The main result is the following:

Theorem F. [Theorem 15.3.1] Every surreal number has a unique hyperserial description. Two
numbers with the same hyperserial description are equal.

The hyperserial presentation of numbers is no more definitive than the sign sequence present-
ation or the well-based series presentation. However, we expect that it is sufficient to serve as a
basis to define derivations and compositions on No.
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Conventions

1 Prerequisites
This thesis is designed to be almost self-contained, and should be accessible to the patient average
mathematician. This is with the exception of two areas of logic with which some familiarity will
be useful.

First, although model theory does not play a major role in the thesis, it appears in decisive
ways in certain sections, and it remained a guiding framework for my thought process. We will not
systematically recall the definitions of basic model theoretic notions. Those can be found in most
introductive model theory textbooks: see [27]. The reader can also find all necessary notions and
more, including a treatment of case of many-sorted logic, in [4, Appendix B].

Secondly, it will be helpful for the reader to have a certain familiarity with elementary set
theory , including set theoretic definitions of functions, unions and intersections, and the elementary
theory of ordinal numbers and their arithmetic.

2 Axiomatic framework

2.1 NBG set theory
The underlying set theoretical framework of this paper is von Neumann, Bernays, and Gödel's
set theory, henceforth referred to as NBG set theory, and more precisely Gödel's one-sorted ver-
sion [54]. The language L2;Set of NBG set theory is the first-order language having as primitives a
binary symbol 2 interpreted as the membership relation, and a unary predicate Set which stands
for the predicate �being a set�, or �not being a proper class�. NBG set theory and its language
allow us to prove statements about classes. The reader will see that such powers are necessary
when working with fields of transseries closed under exponentiation (see Section 3.2), hyperseries
(see Section 4.1), or surreal numbers (see Part III).

We recall a few key features of the axiomatization. Sets are classes which can be members of
classes. That is, the following statement holds

8x; (Set(x)() (9y(x2 y))): (2.1)

Certain classes, called proper classes, are not sets. So proper classes are classes which lie in no
class. This includes the class V of all sets, or the class of all sets that do not contain themselves
(thus does NBG set theory avoid Russell's famous paradox).

If ' is an L2-sentence, then we canonically define an L2;Set sentence 'Set in which each
quantification is constrained to the predicate Set. For instance if ' is the sentence

8x9y(x2 y);
then 'Set is the sentence

8x(Set(x)=) (9y(Set(y)^x2 y))):

Crucially, NBG set theory is a conservative extension of ZFC (see [47]), which means that an L2-
sentence ' is a theorem of ZFC if and only if 'Set is a theorem of NBG set theory. Thus, despite the
fact that working with classes requires additional care, the reader who is familiar with elementary
set theory should have no qualms with our use of classes.

An important feature of NBG set theory is the axiom global choice (GC). The axiom of global
choice states that there is a function &:V¡!V such that for any non-empty set x, we have &(x)2x.
A consequence of GC is the theorem of limitation of size (LOS). The theorem of limitation of
size states that there is a well-ordering of V. See [47] for a discussion of those results.
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Remark 2.1. There exist several equivalent presentations of NBG set theory. Some use a two-
sorted language with a sort for set and a sort for classes. Some don't use the Set predicate since
it is defined in L2 via (2.1). The translation between different presentations of NBG set theory is
very straightforward. We introduced the predicate Set for clarity, but we will not rely on it in the
body of the thesis. Thus our framework is similar to Mendelson's [80]. The reader can find more
details and an axiomatization of NBG set theory in [80, Section 4.1].

2.2 Set-theoretic conventions and notations
If X and Y are classes, then a function X¡!Y is a subclass of X�Y which has the usual
functional property. If X is a proper class and Y is non-empty, then there is no class �YX �
of functions X¡!Y. Indeed such functions are proper classes, and consequently cannot lie in
classes. This means that we will have to use caution in the instances when we consider collections
of functions X¡!Y. However, if X is a set, then each function X ¡!Y is a set, and the class
YX of functions X ¡!Y is well-defined (and of course, it is a set if Y is a set). In most cases, it
is enough, in order to prove that certain classes exists, to use the following consequence of the fact
that NBG set theory is conservative over ZFC:

Class comprehension scheme: Given a formula '(x1; : : : ; xm; X1; : : : ; Xn) in L2;Set, which
quantifies only over sets, and classes X1; : : : ;Xn, there is a class X' which contains all the tuples
of sets satisfying ', that is,

8x1; : : : ; xm; ((x1; : : : ; xm)2X'() (Set(x1)^ � � � ^Set(xm)^ '(x1; : : : ; xm;X1; : : : ;Xn))):

As is standard for sets, we write

X'= f(x1; : : : ; xm) : '(x1; : : : ; xm;X1; : : : ;Xn)g:

Thus it is intended that the elements in the left-hand side of a bracket fx : [: : :]g are always sets,
whereas the reader should not expect that the notation fx : [: : :]g itself always denote a set.

Given a class I and a formula '(x0; x1), possibly with parameters, we have a corresponding
family (Xi)i2I of classes indexed by I, where for each i2 I, we define

Xi := fy : '(i; y)g:

We will always understand families in this sense, the formula '(x0; x1) often being implicit. A
family of functions is a family (Xi)i2I where each class Xi is a function, a family of groups is a
family (Xi)i2I where each class Xi is a group, and so on. . .

When it is relevant, we will mention explicitly which classes are sets or proper classes. In
general, we will use bold font letters X, G, S, N, . .. to denote classes which may be proper classes.
We extend this to upper-case letters in blackboard bold font which we use for our fields S, T, U,
V, . . . of well-based series (the standard number sets N, Z, Q, R and C being exceptions to this
rule), or to upper-case fraktur font letters which we use for our ordered groups of monomials M,
N, U, W, . . . Indeed those will often turn out to be proper classes. Except in the cases of relations
and functions between classes, we reserve regular fonts for sets.

3 Ordered and algebraic structures

3.1 Orderings

3.1.1 Orderings

An ordering on a class X is a binary relation < on (i.e. a subclass of X2) with

O1. x�x for all x2X.

O2. (x< y^ y < z)=) (x<z) for all x; y; z 2X.
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We say that (X;<) is an ordered class, or an ordered set if furthermore X is a set. An ordering <
on X is said linear if it satisfies

LO. x= y _x< y _ y <x for all x; y 2X.

We then say that (X; <) is a linearly ordered class / set . We will most of the time work with
linear orderings. Consequently, we will sometimes say that (X;<) is a partially ordered class/ set
to specify that the ordering may not be linear.

If (X; <) is an ordered class, then we write > for the ordering on X where

8x; y 2X; (x> y() y <x);

which is called the reverse of <. The ordering < is linear if and only if > is linear. We also write
6 for the relation

8x; y 2X; (x6 y)() (x= y _x< y);

which we call the large ordering corresponding to <, and we write > for the large ordering corres-
ponding to >. Note that 6 is not an ordering on X.

Let (X;<) be an ordered class, let A;B be subclasses of X and let x;x1; : : : ; xn2X. We write

A<B () 8x; y 2X; (x2A^ y 2B=)x< y)
A6B () 8x; y 2X; (x2A^ y 2B=)x6 y)

A<x1; : : : ; xn () A< fx1; : : : ; xng
x1; : : : ; xn6A () fx1; : : : ; xng6A
x1; : : : ; xn<A () fx1; : : : ; xng<A
A<x1; : : : ; xn () A< fx1; : : : ; xng:

For A�X, we will often write (A; <) for the ordered class where < is the intersection of A�A
with <, called the induced ordering on A. Indeed it is an ordering on A, which is linearly ordered
if (X;<) is linearly ordered. Unless specified otherwise, we will always endow subclasses with the
corresponding induced orderings.

Let a2A. We will say that a2A is minimal in A if there is no x2A with x<a. We will say
that a is the minimum (resp. maximum) of A if we have a6x (resp. x6 a) for all x2A. In that
case, we write a=minA (resp. a=maxA). The minimum (resp. maximum) of A when it exists
is the unique minimal (resp. minimal) element of A, and A has a minimum (resp. maximum) if
and only if it has a unique minimal (resp. maximal) element.

3.1.2 Increasing functions

Let (X; <X) and (Y; <Y) be partially ordered classes and let f :X¡!Y be a function. We say
that f is nondecreasing if

8x; x02X; x <Xx
0=) f(x0)�Y f(x);

that it is increasing if

8x; x02X; x <Xx
0=) f(x)6Y f(x0);

that is is strictly increasing if

8x; x02X; x <Xx0=) f(x)<Y f(x0);

that it is an (order) embedding if

8x; x02X; x<X x
0() f(x)<Y f(x0);

(in particular, order embeddings are injective). We say that f is an (order) isomorphism if it is
a bijective order embedding. Depending on whether <X is partial or linear, we have the following
logical implications among those properties:

Partial. isomorphism � embedding � strictly increasing � increasing � nondecreasing
Linear. isomorphism � embedding = strictly increasing � increasing = nondecreasing
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Finally, we say that f is nonincreasing / decreasing / strictly decreasing if it is nondecreasing
/ increasing / strictly increasing for the reverse ordering >Y on Y.

3.1.3 Ordinals

We consider the class On of ordinals as a generalized ordinal . If � is a class, then � 6On means
that � 2On or � =On. For generalized ordinals, we use bold font notations � ; �;� to suggest
that � ;�;� may be equal to On, whereas the notations �; ; �; � and so on are only used for true
ordinals �; ; �; �2On. We also extend the relations 6 and < on On by making On maximal,
with the convention that !On :=On. Given a linearly ordered set (X;<), an ordinal �2On, we
say that � is the order type of X, and we write �= ord(X;<), if there is an order isomorphism
(�;2)¡! (X;<), which is then unique.

We write OnLim for the class of limit ordinals. By convention, zero is a limit ordinal, and On
is a limit generalized ordinal. A cardinal is an ordinal �2On such that there is no bijective map
�¡!� for any �2�. Given a cardinal �, we write �+ for its Hartog ordinal, or successor cardinal,
i.e. for the smallest cardinal >�.

3.2 Ordered algebraic structures

3.2.1 Model theoretic morphisms

Consider a first-order language L consisting of the function symbols fi; i2I with arities �i; i2I and
the relation symbols Rj ; j 2J with arities �j ; j 2J . We recall that given two first-order structures

M = (M; (fiM)i2I ; (RjM)j2J) and
N = (N; (fiN)i2I ; (RjN)j2J);

a morphism M ¡!N is a function �:M ¡!N with

� �(fiM(m1; : : : ;m�i))= fi
N(�(m1; : : : ;m�i)) for all i2 I and m1; : : : ;m�i2M , and

� (M �RjM(m1; : : : ;m�j))=) (N �RjN(�(m1; : : : ;m�j))) for all j 2 J and m1; : : : ;m�j 2M .

An embedding M ¡!N is a morphism �:M ¡!N such that

8j 2J ;8m1; : : : ;m�j 2M(M �RjM(m1; : : : ;m�j))() (N �RjN(�(m1; : : : ;m�j))):

Finally, an isomorphism M ¡!N is a bijective embedding M ¡!N .
Most of our structures have a strict ordering as single relation (besides the equality), so our

morphism will be strictly increasing. In the cases where the structures are linearly ordered, the
notions of morphism and embedding coincide.

3.2.2 Ordered algebraic structures

Here we state our conventions for ordered algebraic structures. Our ordered monoids (M; �; 1< )
(in particular our ordered groups) satisfy

8x; y; z 2M((x< y)=) (x z < y z ^ z x< z y)):

If (M; �; 1< ) is an ordered monoid, X�M is a subclass and x2M, then we write

M>X := fa2M : a>Xg;
M>X := fa2M : a>Xg;
M>x := M>fxg= fa2M : a>xg;
M>x := M>fxg= fa2M : a>xg;
M> := M>1;

M> := M>1; and
M=/ := M n f1g:

Note that the same applies to (M; �; 1; >). For instance, we have M<= fa2M : a< 1g.
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If (G;+; 0; <) is an additively denoted, Abelian ordered group, then for all x 2G, we define
the absolute value jxjG of x as

jxjG :=max (x;¡x)2G:

We simply write jxj := jxjG if this does not lead to confusion.
Our rings are commutative, non-zero (i.e. 0=/ 1). Our ordered domains D satisfy

8a; b2D; ((0<a^ 0<b)=) 0<a b):

Any ordered domain D contains a unique isomorphic copy of (Z;+;�) in the sense that there is a
unique ordered ring embedding Z¡!D. We identify Z with the corresponding subring of D. An
element x2D is said infinitesimal if n jxj< 1 for all n2N, in which case we write x�1. We write
D� for the class of infinitesimal elements of D. Note that R�=Q�=Z�=f0g. If F is an ordered
field, then the embedding Z¡!F extends uniquely into an ordered ring embedding Q¡!F and
likewise, we identify Q with the corresponding subset of F.

Consider a differential ring (R;+; �;0;1;@) where @:R¡!R is a group morphism which satisfies
the Leibniz rule

8x; y 2R; @(x y)= @(x) y+x @(y):

The function @ is called the derivation on R. For x2R, we call @(x) the derivative of x. For k2N,
we write @k for the k-fold iterate of @ (so @0= IdR) and we call @k(x) the k-th iterate derivative
of x. We also sometimes write x(k) := @k(x) and x0= @(x), x00= @2(x), and so on. . .
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Part I

Well-based series





Formal series
Whatever

1+ "+ "2+ "3+ � � � (1)

is, the reader expects that any field allowing its existence and construing " as a small quantity
should allow the relation

(1¡ ") (1+ "+ "2+ "3+ � � �)= 1: (2)

Indeed (2) is a purely formal relation, assuming little more than distributivity of the product over
transfinite sums. Whatever

f =exx¡1+exx¡2+ � � �+n! exx¡(n+1)+ � � � (3)

is, one expects that any differential field allowing its existence should allow the relation

@(f)= exx¡1: (4)

Whatever

g=x+ log x+ log log x+ � � � (5)

is, one expects that any group equipped with a composition law � and that contains g should satisfy

g � log x= g¡x: (6)

In general, formal series display the type of manipulations they may be subject to.
In fields of formal series, it is indeed possible to give precise meanings to (1), (3) and (5), and

accordingly derive (2), (4) and (6). And this can be done without having to worry about refined
analytic notions of convergence, nor about whatever

�+ log �+ log log �+ � � �

could possibly signify for a number, series, or germ �. This comes at the high price of setting
the formal realm of series apart from the analytic or geometric realm of (real, complex)-valued
functions. The way back may be long, still this thesis is concerned almost exclusively with formal
series in their abstract, model theoretic relation to numbers and functions.

Well-based series
In fact, giving a meaning to such infinite sums is a non-trivial task. If we are to take advantage of
the formal setting, then the object � above should lie in a field of series equipped with a logarithm
function log. In particular � should itself be a series. But then each term

logn � := log � � � log
n times

�

is itself a series, and one has to make sense of the summability of the family (logn �)n2N.
There is a simple and well-known case when such a notion of summability, and corresponding

sums, exist. Here we are thinking of formal Laurent series

f =
X
k2Z

fkx
k

over the real numbers, where (fk)k2Z is an arbitrary family of real numbers which is zero for all
k above a certain n2Z. That is, the support

supp f := fk 2Z : fk=/ 0g

of f is either empty, or has a maximum. Then it is known that for any formal Laurent series

s= sn0x
n0+ sn0¡1x

n0¡1+ � � �;

with n0> 0 and s0=/ 0, the sequence (
P
k>¡m fk s

k)m2N converges to a seriesX
k2Z

fk s
k
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in the valuation topology. In fact, the set

S := fp2Z :9k 2Z; p2 supp skg

is either empty or has a maximum; for each p2S, the set

Ip := fk 2Z : p2 supp skg
is finite, and we have X

k2Z
fk s

k=
X
p2S

 X
k2Ip

fk

!
sp: (7)

For larger fields of series, such as Puiseux series, Levi-Civita series or transseries, the valuation
topology is not suited to make sense of transfinite sums in sufficient generality. However, the order
theoretic and finiteness conditions on S and Ip; p2S are retained in a large number of cases. This
motivates studying a formal order theoretic setting in which families of series can be summed as
in (7). Such is the purpose of well-based series.

The wide range of summable, so-called well-based families, and the rigid properties of sum-
mation are especially suited to the task of constructing very large fields of complicated series,
and defining operations on them. In particular, we shall see that finiteness and well-orderedness
conditions (generalizing those on S and Ip above) are fairly convenient to manipulate, while being
very general.

In Chapter 1, we will define order theoretic notions and give many tools that will allow us
to tackle the difficulties inherent to the manipulation of well-based series. The central object of
(ordered) fields of well-based series (over R) will be defined in Section 1.2 whereas the necessary
order theoretic tools will be developed in Sections 1.1 and 1.3.

Calculus on well-based series
One of the main goals of this thesis is to establish a hyperserial calculus on the field No of surreal
numbers. By calculus, we mean, for now, a way to let certain series act as partial differentiable
functions (this is made precise in Section 2.1.2) on a class with appropriate structure.

An action of a field of well-based series F on a field of well-based series S can be conceived as
a partially defined composition law

�S:F�S¡!S (8)

such that each f 2F acts as a partial function s 7! f �S s on S. It is natural and useful to ask that
elements in F act as series. That is, that given s2S, the function

F¡!S; f 7! f �S s;

should it be defined, must be a morphism of ordered fields which commutes with transfinite sums
of well-based families. The field F should have enough structure that it be amenable to an internal
law �:F�F¡!F whereby it act on itself.

Defining a composition law as in (8) can serve two purposes. Firstly, it induces a structure on
S in terms of the action of F, and allows us to study which equations

f �S s1= s2; f 2F; s1; s22S

can be solved on S. This is the case for fields of transseries and hyperseries, which are characterized
by the action of a field F of so-called logarithmic transseries or hyperseries. Secondly, it provides
a way to represent series in F as functions and ascribe them a subclass of S as a natural domain.
If, for instance, given f 2F, the partial function S¡! S; s 7! f �S s is differentiable, and if its
derivative has the form s 7! @(f) � s for a unique series @(f)2F, then we also obtain a natural
derivation @ on F which is compatible with the composition law.

There need not be a strong separation between the function field and the series field in the
calculus. On the contrary, the main goal of this thesis is give a presentation of surreal numbers
which should allow one to establish an equivalence between those notions for a very large class No
of (surreal) numbers, that turn out to be (well-based) series, that should turn out to be (surreal-
valued) functions . . .
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Analytic functions
Analyticity is a condition on a function A: S¡! S in a field of well-based series, which states
that A is locally determined by power series. That is, for each s2S, there is a fixed power series
Ps=

P
k2N Ps;k z

k with coefficients in S such that for sufficiently small ", we have a well-based
expansion

A(s+ ")=Ps;0+Ps;1 "+Ps;2 "2+ � � �: (9)

This formal notion of analyticity is far from possessing the strength of analyticity in the case of real-
valued functions. Nonetheless, we will see in Chapter 2 that it retains a few of its properties once
properly stated in the formal setting. For instance, an analytic functionA is infinitely differentiable,
and (9) can always be rewritten as

A(s+ ")=A(s)+A0(s) "+ A
00(s)
2

"2+ � � �: (10)

Thus imposing analyticity for functions f~: s 7! f �S s; f 2F in our calculi is a way to impose a
compatibility between derivations and composition laws. Furthermore (10) provides a natural way
to extend f~ around a series s for which the properties of compositions on hyperseries already give us
the expected values for f � s, @(f)� s, @(@(f)) �s;: : : , but where it fails, perhaps for general model
theoretic reasons, to provide defining equations for f � (s+ "). In that case Taylor expansions can
be construed as a natural way to define f � (s+ "). In fact this type of expansion can turn out to
be the only guide in establishing the value of f � s for certain complicated hyperseries or surreal
numbers f .

Transseries
Transseries are prima facie ideal candidates for the analytic calculi. Those generalized power
series, by virtue of being well-based series involving exponentials and logarithms, can be endowed
with transfinite sums and products, derivations, integration operators, composition laws, and have
functional inversion. Their impressive closure properties and their formal nature make them amen-
able to algorithmic methods for solving equations and other mathematical problems, as van der
Hoeven's thesis [60] illustrates. We will introduce transseries in Chapter 3 with the purposes of
applying the content of Part I in simple contexts and of preparing the reader (and the proof writer)
for the more demanding work on hyperseries.
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Chapter 1

Strongly linear algebra

Strongly linear algebra, over R is the realm of vector spaces over R which are ordered fields, and
which are equipped with a notion of summation with respect to which sumsX

i2I
fi

of certain possibly infinite families (fi)i2I called well-based families can be defined. The criterion
for summability is order-theoretic in nature, and requires non-trivial facts regarding ordered and
partially ordered sets that are proved or stated throughout this chapter.

1.1 Well-based sets in ordered groups

In this section, we define ordered groups of well-based series, focusing on the notion of transfinite
sums of well-based family irrespective of an additional structure of ordered field.

1.1.1 Well-ordered and well-based sets
We start with purely order theoretic simple statements.

Definition 1.1.1. A well-founded ordering on a class X is a partial ordering on X for which
each non-empty subclass of X has a minimal element. A well-ordered ordering on a class X is
a linear and well-founded ordering on X.

So an ordered class (X; <) is well-ordered if and only if it is both well-founded and linearly
ordered. The reader can check that for well-founded subclasses Y;Z�X, the class Y[Z is well-
founded. We have a well-founded induction principle: if (X;<) is a well-founded ordered class, and
Y�X is a subclass with

8x2Y; ((8y 2X; (y <x=) y 2Y))=) x2X);
then Y=X.

If X is a class and u:N¡!X is a sequence, then a subsequence of u is a sequence u�  where
 :N¡!N is strictly increasing.

Proposition 1.1.2. (Limitation Of Size) A partially ordered class (X;<) is well-founded if and
only if every sequence u:N¡!X in X has a nondecreasing subsequence.

Proof. Assume that (X;<) is well-founded and consider a sequence u:N¡!X. By induction onN,
let us define a strictly increasing map  :N¡!N such that u� is nondecreasing. Form2N, define
Xm to be the set of positive integers n>m such that un is minimal in fuk :k>mg. Set  (0) :=0 and

 (m+1) :=minX (m)

for all m 2N. Since m<Xm for all m 2N, the function  is strictly increasing. We claim that
u �  is nondecreasing. Indeed for m; n 2N with m<n, the element u (m) is minimal in fuk :
k >  (m)g3 u (n), so we have u (n)
u (m).

37



Now assume that (X; <) is not well-founded. We will define a sequence in X which has no
nondecreasing subsequence. Consider a non-empty subclass Y�X with no minimal element. By
the axiom of limitation of size, we have a well-ordering J of Y. We define a strictly decreasing
sequence u:N¡!Y by induction. Define u0 to be any element of Y. If n2N and u0> �� �>un are
defined in Y, then we note that un is not minimal in Y, so there is a unique J-minimal element
un+12Y with un+1<un, thus extending the sequence. For any strictly increasing map ':N¡!
N, the sequence u � ' is strictly decreasing. In particular, the sequence u has no nondecreasing
subsequence. �

Corollary 1.1.3. A linearly ordered class (X; <) is well-ordered if and only if every sequence u:
N¡!X in X has an increasing subsequence.

Corollary 1.1.4. A partially ordered class (X; <) is well-founded if and only if each non-empty
subset of X has a minimal element. A linearly ordered class is well-ordered if and only if each
non-empty subset of X has a minimum.

We say that an ordered class (X;<) is well-based if (X;>) is well-ordered, i.e. if any non-empty
subset of X has a maximum. Well-based classes have opposite properties to well-ordered ones.

If (X; <X) and (Y; <Y) are partially-ordered classes, then we define their product (X�Y;
<X�Y). The underlying class of X�Y is the Cartesian product X�Y, with the ordering

(x; y)<X�Y (x0; y 0)() ((x; y)=/ (x0; y 0)^ x6Xx
0^ y6Y y

0):

It is well-known that (X�Y; <X�Y) is a partially ordered class, and that it is linearly ordered if
both <X and <Y are linear. We next justify that the product preserves well-foundedness and well-
orderedness.

Proposition 1.1.5. Let (X;<X) and (Y;<Y) be well-founded ( resp. well-ordered) classes. Then
(X�Y; <X�Y) is a well-founded ( resp. well-ordered) class.

Proof. LetA�X�Y be a non-empty subclass. Let x be a minimal element in the non-empty class
fz 2X :9t2Y; (z; t)2Ag. Let y be a minimal element in the non-empty class ft2Y : (x; t)2Ag.
Then (x; y) is minimal in A. Therefore (X�Y; <X�Y) is well-founded. �

1.1.2 Multiplicative notations
We sometimes prefer to consider multiplicative notations for groups, even in the Abelian case. We
then usually use fraktur letters to represents monomial groups and elements, writing M, N, L, and
so on for the group and m, n, l and so on for the elements. We also sometimes denote orderings
of multiplicatively denoted groups with the symbol � instead of <. Given such a group M, the
neutral element is denoted 1. Given elements m; n2M, we write mn for their product, and m¡1

for the inverse of m in M. For n2N, we set

m0 := 1;
mn := m � � �m (m multiplied with itself n times), and

m¡n := (mn)¡1=(m¡1)n:

Given S;T�M and n2N, we write

S �T := fs t : s2S^ t2Tg;
Sn := S � � �S

n times
= fs1 � � � sn : s1; : : : ; sn2Sg; and

S1 :=
[
n2N

Sn= fs1 � � � sn :n2N^ s1; : : : ; sn2Sg:

Warning 1.1.6. The notation Sn conflicts with the standard Cartesian product abbreviation

Xn=X� � � � �X;

which we nonetheless also adopt. We expect that this will not lead to confusions.
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If (G;+; 0; <) is a linearly ordered Abelian group, then a multiplicative copy of G is simply G
itself, re-branded in the multiplicative language. We often represent it as the set

�G= f�a : a2Gg

of formal terms �a, where �2fx; z; e; e� ;: : :g is a symbol that will vary depending on the contexts.
For �a; �b2 �G, we have a product

�a�b :=�a+b

and an ordering
�a��b() a< b:

1.1.3 Hahn product groups
We next introduce a type of linearly ordered Abelian group, due to Hans Hahn [56], that will
frequently appear in our work. See also [4, Section 2.4] and [67] for different generalizations.

Let (G;+; 0; <) denote a linearly ordered Abelian group, and let L be a linearly ordered non-
empty class. We write H[L;G] for the class of functions f :X¡!G=/ where X �L is a well-based
(possibly empty) subset . We write

X = supp f:

We define f 2H[L;G] to be strictly positive if supp f =/ ? and f(max supp f)> 0 in G, where the
maximum is taken in (L; <).

For in f ; g 2H[L;G], the set supp f [ supp g is well-based, so the set

X := fl2 supp f [ supp g : f(l)+ g(l)=/ 0g

is well-based. We define f + g to be the element

(f + g):X ¡!G; l 7! f(l)+ g(l)

of H[L;G]. We call the binary operation + the pointwise sum onH[L;G]. Note that H[L;G]=GL

as a class whenever L is a well-based set. We will sometimes write f(l) :=0 for all f 2H[L;G] and
l2L n supp f . With this convention, we have

(f + g)(l)= f(l)+ g(l)

for all f ; g2H[L;G] and l2L. That is, the operation + is indeed a pointwise sum. In particular,
since G is an Abelian group, the structure (H[L;G];+;0) is an Abelian group. Its neutral element
0 is the element f with f(l)=0 for all l2L, i.e. the empty function ?. Moreover [51, Section 2.7],
setting f < g if and only if g¡ f is strictly positive, we obtain a linear ordering on H[L;G], such
that (H[L;G];+; 0; <) is a linearly ordered Abelian group.

We call H[L;G] the Hahn product of G to the power L. Note that for f ; g2H[L;G], we have
f < g if and only if f =/ g, and for

l0=max fl2 supp f [ supp g : f(l)=/ g(l)g;
we have f(l0)< g(l0) in G.

Example 1.1.7. Consider the linearly ordered set of positive integers N and the linearly ordered
Abelian group of integers (Z;+;<). We write N� for the ordered set (N;>) where < is the reverse
ordering on N. We have a Hahn product group H[N�;Z]. Since (N; >) is well-based, this simply
consists in the set of anti-lexicographically ordered maps N¡!Z.

Remark 1.1.8. In the literature, it is often imposed that L, and later monomials groups M
involved in fields of well-bsed series (see Section 1.2.1) be sets, and not possibly proper classes.
Some authors would rather consider our types of Hahn products as ��-bounded Hahn products�
for �=On, meaning that sizes of supports of elements in the Hahn product groups are strictly
bounded by the uncountable ordinal �.

Because our goal is to build large fields of hyperseries closed under exponentiation (by a result
of Kuhlmann-Kuhlmann�Shelah [68], those must have a proper class as monomial group), and
because surreal numbers themselves are an On-bounded Hahn series field, we think our choice is
sound. Since Hahn product groups and fields of well-based series are recurring objects in the thesis,
we allow ourselves to uniformly discard the expression On-bounded wherever it applies.
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Lemma 1.1.9. Let G be a linearly ordered Abelian group. Let (L�)�2On be a family of linearly
ordered classes such that L��L� whenever �<�. Set G� :=H[L�;G] for each �, so G��G� for
�<�. Set L :=

S
�2OnL�. Then [

�2On

G�=H[L;G]:

Proof. Set GOn :=
S
�2OnG�. Clearly GOn�H[L;G], so it remains to show the other inclusion.

Let f 2H[L;G]. For each l2 supp f , let �l be the least �2On with l 2L�. Set

�f := sup f�l : l2 supp f g:
Then f 2G�f �GOn. �

Remark 1.1.10. The previous result does not apply for set-sized unions. Consider for instance
the subgroups (2¡nZ;+; <); n2N of the additive group D of dyadic rational numbers. We have
D=

S
n2N 2

¡nZ. Now, the map

f :N¡!f2¡n :n2Ng;n 7! 2¡n

lies in H[N�;D], but not in
S
n2NH[N

�; 2¡nZ].

Hahn product groups will be ubiquitous in the sequel. Indeed, the monomials in our well-based
series and the fields of well-based series themselves will be based on Hahn product groups.

1.1.4 Well-based families
Let L, G and H[L;G] be as in Section 1.1.3. We now introduce the central notion of (possibly
transfinite) well-based families and their sums.

Definition 1.1.11. Let I be a class. A family F =(fi)i2I in H[L;G] is said well-based if

i.
S
i2I supp fi is a well-based set, and

ii. Il := fi2 I : l2 supp fig is finite for all l2L.
Then we may define the sum

P
i2I fi of (fi)i2I as the series

P
F with support

supp
X

F :=
(
l2L :

X
i2Il

fi(l)=/ 0
)

and with (
P
F )(l) :=

P
i2Il fi(l) for all l2 supp f.

We will sometimes switch between the notations
P
F and

P
i2I fi for the sum of F =(fi)i2I.

Remark 1.1.12. This is nothing but a possibly infinite pointwise sum. Indeed the conditions
above are designed to ensure that such a pointwise sum is defined, by imposing that

� the support of
P
F is a well-based set (by i), and

� the sums (
P
i2I fi)(l) have finite support (by ii),

so that
P
F be a well-defined element of H[L;G].

In fact, it would be possible in certain cases to relax the conditions. For instance, one could
ask, instead of i, that the class fl 2L :

P
i2Il fi(l) =/ 0g be a well-based set, or, instead of ii, that

each family (fi(l))l2L be summable for a certain notion of summability on G. However, the sequel
of this chapter will show that those strong conditions make the notions of well-based families and
sums thereof very practical to manipulate. Furthermore, the aforementioned weakenings of i and
ii can produce irregularities, such as the failure of Proposition 1.1.16 below.

Remark 1.1.13. The class S :=
S
i2I supp fi is a set if and only if si=0 outside of a subset of I.

Indeed, assume that S is a set and consider a subclass J� I with sj=/ 0 for all j 2J. For l2S, the
class Jl := fj 2J : l2 supp fjg is finite, whence in particular a set. So J=

S
l2SJl is a set.
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Given a2G and l2L, we write a�l for the unique function flg¡!fag. So a�l2H[L;G]. If
a family (fi)i2I is well-based, then we haveX

i2I
fi=

X
l2
S
i2Isuppfi

 X
i2Il

fi(l)
!
�l;

X
i2I

fi=
X
l2L

 X
i2I

fi(l)
!
�l:

Conversely, given f 2H[L;G], the family (f(l) �l)l2suppf is well-based, with

f =
X
l2L

f(l) �l:

This yields a representation of elements in H[L;G] as well-based formal sums. A multiplicative
copy of H[L;G] will in general be represented as a group of formal well-based products

f =
Y
l2L

�l
f(l)

:

1.1.5 Properties of well-based families
Here, we derive elementary properties of well-based families. Those properties are well known, at
least in the case of fields of well-based series and set-sized families, see [82, 60, 92, 62, 63].

We fix a Hahn product group H[L;G] and a class I. We will use the two following elementary
results, which follow easily from Definition 1.1.11, often without further mention:

Lemma 1.1.14. Let (fi)i2I be a well-based family in H[L;G] and let (gi)i2I be a family in H[L;G]
with

supp gi� supp fi
for all i2 I. Then (gi)i2I is well-based.

Lemma 1.1.15. Let (fi)i2I be a well-based family in H[L;G] and let J� I be a subclass. Then
(fi)i2J is well-based.

Proposition 1.1.16. Let I be a set and let (fi)i2I be a well-based family with fi> 0 for all i2 I.
Then

P
i2I fi> 0.

Proof. Write f=
P
i2Ifi. Set l :=max

S
i2I supp fi, and let j2I with m=maxsupp fj. For all i2I,

we have l>max supp fi so fi(l)> 0. It follows that f(l)=
P
i2I fi(l)> fj(l)> 0. So l=max supp f

and f > 0. �

Proposition 1.1.17. [62, Proposition 3.1(d)] Let F = (fi)i2I be a well-based family in H[L;G],
let J be a class and let �:J¡! I be a bijection. The family F � � := (f�(j))j2J is well-based, withX

F � �=
X

F ;

i.e. X
j2J

f�(j)=
X
i2I

fi:

Proposition 1.1.18. Let F = (fi)i2I and G= (gi)i2I be well-based families in H[L;G]. Then
(F +G)= (fi+ gi)i2I is well-based, withX

(F +G)=
X

F +
X

G;

i.e. X
i2I

fi+ gi=
X
i2I

fi+
X
i2I

gi:
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Proof. For i2 I, we have supp (fi+ gi)� supp fi[ supp gi, so supp (F +G)� (SuppF )[ (suppG)
is a well-based set. For l2L, the class

Il= fi2 I : l 2 supp (fi+ gi)g

is contained in the union of the two finite sets

IF ;l = fi2 I : l2 supp fig; and
IG;l = fi2 I : l2 supp gig:

So Il is a finite set. Therefore (fi+ gi)i2I is well-based. For l2L, we haveX
(F +G)(l) =

X
i2Il

(fi+ gi)(l)

=
X
i2Il

fi(l)+
X
i2I

gi(l)

=
X
i2IF ;l

fi(l)+
X
i2IG;l

fi(l) (since IF ;l and IG;l are finite)

=
¡X

F
�
(l)+

¡X
G
�
(l)

So
P
(F +G)= (

P
F )+ (

P
G). �

Lemma 1.1.19. [62, Proposition 3.1(e)] Let I;J be classes, and let (Ij)j2J be a family of classes
with I=

F
j2JIj. Let F =(fi)i2I be a well-based family. Then for each j2J, the family Fj :=(fi)i2Ij

is well-based. Moreover, the family (
P
Fj)j2J is well-based, withX
F =

X
j2J

¡X
Fj
�
:

Corollary 1.1.20. [62, Proposition 3.1(c)] Let F1=(fi)i2I1 and F2=(fi)i2J1 be summable families
where I= I1t I2 is a disjoint union. Then F1qF2 := (fi)i2I is summable, withX

F1qF2=
X

F1+
X

F2;

i.e. X
i2I

fi=
X
i2I1

fi+
X
i2i2

fi:

We also have a formal Dirichlet rearrangement theorem:

Lemma 1.1.21. Let I;J be classes and let (fi;j)(i;j)2I�J be a well-based family in H[L;G]. For
each i02 I and for each j02J, the families (fi0;j)j2J and (fi;j0)i2I are well-based. Moreover, the
families (

P
j2J fi;j)i2I and (

P
i2I fi;j)j2J are well-based, with

X
i2I

 X
j2J

fi;j

!
=

X
(i;j)2I�J

fi;j=
X
j2J

 X
i2I

fi;j

!
:

Proof. Apply Proposition 1.1.19 with Ij := I�fjg for all j 2J and Ji := fig�J for all i2 I. �

1.1.6 Well-based classes in Abelian linearly ordered groups
Let (M; �; 1;�) be a multiplicative, linearly ordered group. We now state Bernhard Neumann's
important results on products S �T, Sn and S1 for well-based subclasses S;T of M and n2N.

Lemma 1.1.22. [82, Lemma 3.2 and Corollary 3.21] Let S;T�M be well-based subclasses. Then
the class S �T is well-based. Moreover, for all m2S �T, the class f(u;v)2S�T :m=uvg is finite.

Corollary 1.1.23. Let n2N and let S1; : : : ;Sn�M be well-based subclasses. The class

S :=S1 � � �Sn
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is well-based. Moreover, for all m2S, the class

f(u1; : : : ; un)2S1� � � � �Sn :m= u1 � � � ung
is finite.

Lemma 1.1.24. [82, Theorem 3.4] Let S�M be a well-based subclass with S41. The class S1

is well-based.

Proof. Write T :=S nf1g. By [82, Theorem 3.4], the class T� :=
S
k>0T

n is well-based. But then

S1= f1g[T�

is well-based. �

Lemma 1.1.25. [82, Theorem 3.5] Let S�M be a well-based subclass with S�1. For all m2S1,
the class fn2N :m2Sng is finite.

1.2 Fields of well-based series
In this section, we define the ordered fields of well-based series that will be the underlying structures
for hyperseries. We will only consider well-based series over R, although most of our results apply
in more general cases. The results in Sections 1.2.1, 1.2.2 and 1.2.3 are well-known: see [56, 82, 92].

1.2.1 Well-based series
Let (M;�;1;�) be a non-trivial , linearly ordered, Abelian group. In particular (M;�) is an infinite
linearly ordered class. Considering the ordered additive group (R;+;0;<) of real numbers, we have
a well-defined linearly ordered Abelian Hahn product group H[M;R]. We write

R[[M]] :=H[M;R];

which for now is equipped with its additively denoted structure (R[[M]];+;0;<) from Section 1.1.3.
We call (M;�; 1;�) the monomial group of R[[M]]. Recall that we have an inclusion R�M¡!
R[[M]]; (r;m) 7! r �m, whose range is denoted RM. For (r;m) 2R�M, we will simply write
rm := r �m. Elements of M�R[[M]] are called monomials, whereas those in RM�R[[M]] are
called terms. Finally, R=/ M denotes the class of non-zero terms.

For the sequel, we write S :=R[[M]]. We call elements s of S well-based series, and we write

sm := s(m)2R;

for the coefficients of series s2S, for all m2M. Recall that each s2S is the sum

s=
X
m

smm

of the well-based family (smm)m2M. The length of s as a series is the order type ot(supp s;�) for
the reverse ordering � on M. Terms are the well-based series of length 61, and 0 is the unique
series of length 0.

If s is a well-based series with supp s=/ ?, i.e. with s=/ 0, then we write

ds := max supp s2M and
�s := sds ds2R=/ M:

respectively for the dominant monomial and dominant term of s. For m2M, we set

s�m :=
X

n2M�m

sn n;

and we write

s� = s�1;

s� = s12R;

s� = s¡ s�¡ s1;
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so supp s�� 1, supp s��f1g and supp s�� 1.
For s; t2S, we say that t is a strict truncation of s and we write tC s if t=/ s and supp (t¡s)�

supp t. The relation C is a well-founded partial ordering on S with minimum 0 and, we denote
its corresponding non-strict ordering by P. We also write ++ for the restriction of + to the class
f(t; s)2S�S : supp s� supp tg= f(s; t)2S�S : sP s+ tg. That is, the expression s++ t=u for s;
t; u2S means that s+ t=u and that supp s� supp t.

Let s; t2S. By Lemma 1.1.22, the set (supps) � (supp t) is well-based and for each m2 (supps) �
(supp t), the set f(u; v)2 (supp s)� (supp t) :u v=mg is finite. Thus the family (

P
uv=m su tv)m2M

is well-based, and the Cauchy product

s t :=
X
m2M

� X
uv=m

su tv

�
m (1.2.1)

is well-defined. Note that

supp (s t)� (supp s) � (supp t): (1.2.2)

Also note that the inclusion M�S> preserves products. By [56], the class (S;+;�; 0; 1; <) is an
ordered field.

The ordering onM extends into a partial ordering � on S defined by s� t if and only ifR> jsj<
jtj. We write s4 t if t� s is false, i.e. if there is r2R> with jsj6 r jtj. We also write s� t if s4 t
and t4 s, i.e. if there is r 2R> with r jsj> jtj and r jtj> s. When s; t are non-zero, we have s� t
(resp. s4 t, resp. s� t) if and only if ds� dt (resp. ds4 dt, resp. ds= dt).

Then 4 is a dominance relation as per [4, Definition 3.1.1]. In other words, the relation 4 is a
linear quasi-ordering on S with 14/ 0, and with

h=/ 0=) f 4 g() fh4 g h and f 4h^ g4h=) f + g4h

for all f ; g; h2S.
The relation 4 corresponds to the natural valuation on the ordered field (S; +; �; <). In

particular (S;+;�; <;4) is an ordered valued field with convex valuation ring

S4 := fs2S : s4 1g:

More precisely, the dominant monomial function d:S=/ ¡!M: s 7!ds is a valuation on S with value
group (M;�;�) (note the reverse ordering). In other words, it is a morphism (S=/ ;�)¡! (M;�)
with

ds+t4max (ds; dt)

whenever s; t; s+ t2S=/ .

Remark 1.2.1. The relation 4 on M is the non-strict ordering corresponding to �, but the same
is not true for � and 4 on S. On S, the relation 4 is transitive and reflexive (such relations are
sometimes called quasi-orders or pre-orders), and � is an equivalence relation.

We write

S� := fs2S : supp s�M�g;
S� := fs2S : supp s�M�g= fs2S : s� 1g; and

S>;� := fs2S : s>Rg= fs2S : s> 0^ s� 1g:

Series in S�, S� and S>;� are respectively said purely large, infinitesimal , and positive infinite.
We have an additive decomposition

S=S�+R+S�

where each s2S decomposes uniquely as

s= s�+ s�+ s�: (1.2.3)

We also have a multiplicative decomposition

S=/ =R=/ �M � (1+S�)
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where each s=/ 0 decomposes uniquely as

s= rs ds (1+ "s); (1.2.4)

with rs ds= �s=/ 0 and "s=
s¡ �s
�s

is infinitesimal.

Remark 1.2.2. Our notations for fields of well-based series follow the simple rule: symbols �
appearing as exponents in a notation S� indicate that we consider series s2S satisfying �, e.g.

S>= fs2S : s> 0g; S�= fs2S : s� 1g, and S>;�= fs2T : s> 0^ s� 1g,

whereas symbols 4 appearing as indexes in S4 pertain to conditions on supports of series, e.g.

S�= fs2S : supp s� 1g and S�;�=
�
s2S>;� : supp s� 1

L<�(E�(s))

�
;

where the last notation appears when considering hyperserial fields.

Remark 1.2.3. The type of valued fields we are studying are very specific. Accordingly, we will
mostly rely on valuation theory as a language and tool to state and prove results. Valued fields
of well-based series, over other fields besides R and possibly with factor sets (see [82, 65]), among
other generalizations, were studied in detail in particular by Irving Kaplansky. They naturally
appear as so-called maximal valued fields, and are in particular Henselian.

In our case, fields of well-based series over R are even more specific. Indeed, by the Ax-Kochen-
Erschov principle, the elementary theory of (S;+;�;�) only depends on the theory of (M;�;�)
as an ordered group. In particular, the elementary theory of (S;+;�;�) is completely determined
if M is divisible. In that case S is in particular real-closed, as a consequence of [77, Theorem 1].
See for instance [4, Section 3.6] for more details.

Example 1.2.4. Consider a multiplicative copy (xZ; �;�) of (Z;+; <). Since (Z;+; <) is the
smallest non-trivial linearly ordered Abelian group, the smallest field of well-based series is the
field R[[xZ]] of so-called formal Laurent series over R. Well-based subsets of Z are simply subsets
of initial segments (¡1; n]; n2Z of Z. Thus any formal Laurent series s can be written as

s=
X
k=n

+1

sk x
¡k

where n2Z and (sk)k>n is a sequence of real numbers. So R[[xZ]] coincides with the usual field
of formal Laurent series. For instance, the following are formal Laurent series:

1+x¡1+ 1
2
x¡2+ 1

6
x¡3+ 1

24
x¡4+ � � �

x3¡�+2 x¡2¡ 16x¡4+ 64 x¡6¡ � � �:

We will adopt the convention that x denotes an infinite variable whereas z stands for a infinitesimal
one.

Example 1.2.5. Consider a multiplicative copy (xR; �;�) of the additive ordered group (R;+;<)
of real numbers. We call R[[xR]] the field of real-powered series. It is well-known that for each
countable ordinal � 2 !1, there are well-ordered subsets of Q, hence also of R, that are order
isomorphic to �. So elements of R[[xR]] may have arbitrary countable lengths as series. Similarly,
we write R[[xQ]] for the field of well-based series whose monomial group is a multiplicative copy
of (Q;+;<). We call those series rational-powered series and they properly contain Puiseux series.

Example 1.2.6. Let L be a linearly ordered class. Then the Hahn product group H[L;R] is
a linearly ordered Abelian group, so we can form the field of well-based series R[[H[L;R]]]. A
natural way to endow this field with additional structure is via certain partial functions H [L;
R]¡!R[[H[L;R]]] or R[[H[L;R]]]¡!H[L;R]. This is the spirit of [17], and a guiding principle
in defining fields of transseries or hyperseries.
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1.2.2 Products of well-based families
In this subsection, we gather results about well-based families in S pertaining to the Cauchy
product. A subclass S of M is said infinitesimal if all its elements are infinitesimal. We say that
S is small if we have s4 1 for all s2S.

We will use the following elementary fact, often without mention:

Lemma 1.2.7. Let (si)i2I be a well-based family and let (ri)i2I2RI. The family (risi)i2I is well-
based.

Proof. This follows from Lemma 1.1.14. �

Proposition 1.2.8. [92, Proposition 1.5.3(4)] Let S=(si)i2I and T =(tj)j2J be well-based families
in S where I and J are classes. The family S �T := (si tj)(i;j)2I�J is well-based, withX

S �T =
¡X

S
�¡X

T
�
;

i.e. with X
(i;j)2I�J

si tj=
 X
i2I

si

! X
j2J

tj

!
:

Proof. Write

SI :=
 [
i2I

supp si

!
, and

SJ :=
 [
j2J

supp tj

!
:

Since S and T are well-based, those are well-based sets. For (i; j)2 I�J, we have

supp si tj� (supp si) � (supp tj);

so
S
(i;j)2I�J supp si tj �SI �SJ is well-based by Lemma 1.1.22. For m2M, Lemma 1.1.22 also

implies that there are finitely many ordered pairs of monomials (uk; vk)k6n2 (SI�SJ)n+1; n2N
with m=uk vk for all k2f0; : : : ; ng. The sets Ik=fi2 I :uk2 supp sig and Jk=fj 2J :vk2 supp tjg
being finite, the class

(I�J)m= f(i; j)2 I�J :m2 supp si tjg�
[
k=0

n

Ik�Jk

is finite. So S �T is well-based. Since all sums involved have finite support, we have X
(i;j)2I�J

si tj

!
m

=
 X
(i;j)2(I�J)m

si tj

!
m

=
X
k=1

n X
(i;j)2Ik�Jk

(si)uk (tj)vk

=
X
uv=m

X
(i;j)2I�J

(si)u (tj)v

=
X
uv=m

 X
i2I

(si)u

! X
j2J

(tj)v

!
=

X
uv=m

¡X
S
�
u

¡X
T
�
v

=
¡¡X

S
�
�
¡X

T
��

m
:

We deduce that
P
S �T =(

P
S) (

P
T ). �

Notation 1.2.9. Let n2N. If X is a class and x=(x1; : : : ; xn)2Xn, then for all i2f1; : : : ; ng
we write x[i] :=xi. If v 2Nn, then we also set jv j :=

P
i=1
n v[i].
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Corollary 1.2.10. Let (tj)j2J be a well-based family and let s2S. The family (s tj)j2J is well-
based, with X

j2J
s tj= s

X
j2J

tj:

Lemma 1.2.11. [92, Corollary 1.5.6] Let n2N>. For all infinitesimal series "1; : : : ; "n2S� and
for all (rv)v2Nn2RNn

the family (rv "1
v[1] � � � "n

v[n])v2Nn is well-based.

Proof. By Lemma 1.2.7, we may assume that rv = 1 for all v 2Nn. By Proposition 1.2.8 and
Lemma 1.1.15 we may assume that n=1. We write " := "1.

The set S := supp" is infinitesimal, so S1 is well-based by Lemma 1.1.24. For all k2N we have

supp "k�S1;

so
S
k2N supp "k is a well-based set. Consider an m2M. The set Im=fk2N :m2Skg is finite by

Lemma 1.1.25, so fk 2N :m2 supp "kg is finite, whence ("k)k2N is well-based. �

Corollary 1.2.12. [82] For "2S�, we haveX
k2N

"k=(1¡ ")¡1:

Proof. Note that supp " � 1 so by Lemma 1.2.11, the family ("k)k2N is well-based. Set t :=P
k2N "

k. We have

(1¡ ") t =
X
k2N

"k+
X
k2N

(¡"k+1) (by Corollary 1.2.10)

=
X
k2N

"k¡
X
k2N

"k+1 (by Corollary 1.2.10)

=
 
1+

X
k>0

"k
!
¡
X
k>0

"k (by Proposition 1.1.17 and Corollary 1.1.20)

= 1:

Therefore t=(1¡ ")¡1. �

Lemma 1.2.13. Let (si)i2I be a family in S where I is a class. Assume that there is a well-based
and infinitesimal set T�M, a well-based set S�M and a function N: I¡!N such that we have

supp si�Tf(i) �S for all i2 I.

Assume that (sj)j2J is well-based whenever J� I and f(J) is finite. Then (si)i2I is well-based.

Proof. Assume for contradiction that (si)i2I is not well-based. So there is an injective sequence
(ik)k2N2 IN and a sequence (mk)k2N2MN with m04m14 � � � and mk2 supp sik for all k2N. We
have fmk :k2Ng�T1 �S where T1 �S is well-based by Lemmas 1.1.22 and 1.1.24. So fmk :k2Ng
is well-based and we may assume that (mk)k2N is constant. By Lemma 1.1.22 and 1.1.25, the set
fn 2N :m0 2 Tn �Sg is finite. In particular ff(ik) : k 2Ng is finite, so (sik)k2N is well-based: a
contradiction. �

Corollary 1.2.14. Let (sn;m)(n;m)2N2 be a family in S such that each (sn;m)m2N for n2N is
well-based. Assume that there is a well-based and infinitesimal set T�M and a well-based set
S�M with

8n;m2N; supp sn;m�Tn �S:
Then (sn;k)(n;k)2N2 is well-based.

Proposition 1.2.15. Let S=R[[M]] be a field of well-based series. Let I be a set and let f :
I¡!N be an arbitrary function. Let (si)i2I be a well-based family in S and let �4 1. The family
(si �f(i))i2I is well-based.
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Proof. Write �= r++ " where r2R and "� 1, and set S :=
S
i2I supp si. So S is well-based. For

(i; k)2 I �N, write si;k := si
�
f(i)
k

�
rf(i)¡k "k, so

supp si;k�S � (supp ")k:

If J �N is finite, then (si;k)i2I ;k2J is well-based as a finite union of well-based families. We deduce
with Lemma 1.2.13 that (si;k)i2I;k2N is well-based. In particular

¡P
k=0
f(i) si;k

�
i2I=(si �f(i))i2I is

well-based by Lemma 1.1.19. �

1.2.3 Flatness
Let S=R[[M]] be a field of well-based series. For s 2S>, we write s+ :=max (s; s¡1) and s¡ :=
(s+)¡1s+ :=max (s; s¡1). So s+= s¡1 if s < 1 and s+= s otherwise. As in [92, 64], it is useful to
consider the following orderings on S>:

Definition 1.2.16. Let s; t2S>. We say that s is flatter than t and we write

s�� t if (s+)n<t+ for all n2N>, and

s ¡̀a t if there are m;n2N> with t+< (s+)m< (t+)n.

We also write s�� t if s�� t or s ¡̀a t.

The relation �� is a partial ordering on S>. We sometimes extend it to S=/ by writing s�� t
whenever jsj�� jtj. Note that s�� t if and only if vds>vdt where v is the natural (or standard, or
Archimedean) valuation on the ordered group M. See [4, p 83�84], for more details.

Example 1.2.17. In the field R[[xZ]] of formal Laurent series, we have f ¡̀a g for all f ; g2R[[xZ]]
with f ; g�/ 1. The existence of strictly flatter elements in fields of well-based series typically involves
the existence of a logarithm or an exponential. For instance, in the field No of surreal numbers
equipped with Gonshor's exponential and logarithm functions exp and log [55, Chapter 10] (see
also Chapter 11), we have

1�� log(log(a))�� log a�� exp
¡

log a
p �

��a�� exp(a)�� exp(a2)�� exp(exp(a))

for all a2No>;�. Note that this reflects the asymptotics of the corresponding real-valued functions
at +1.

Lemma 1.2.18. Let L: (S>;�)¡! (S;+) be a strictly increasing morphism. Then for all s; t2S=/ ,
we have

s�� t () L(s)�L(t);
s�� t () L(s)4L(t);
s ¡̀a t () L(s)�L(t):

Proof. This follows from the relation L(sn)=n s for all s2S> and n2N and the fact that L is
strictly increasing. �

We will frequently use the following consequences of Lemma 1.2.18, sometimes without mention:

Corollary 1.2.19. Assume that there is a strictly increasing morphism L: (S>;�)¡! (S;+). Then
for s; t; u2S>, we have

a) s t��max (s+; t+):

b) s� t=) s ¡̀a t.
c) s�� t=) s t ¡̀a t.

Proof. The assertions a), c) follow from the classical valuation theoretic properties of 4. The
assertion b) is an immediate consequence of Lemma 1.2.18. �
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1.3 Strong linearity
The notion of well-based families allows us to consider strongly linear operators. Those are oper-
ators between fields of well-based series which commute with transfinite sums of well-based families.
This will be the case for derivations and right compositions that we will define in later sections.
In the present section, we define this notion and introduce ways to define strongly linear operators.

1.3.1 Strongly linear functions
Let S=R[[M]] and T=R[[N]] be fields of well-based series. Consider a function �:S¡!T which
is R-linear. Then � is said strongly linear if for every well-based family (si)i2I in S, the family
(�(si))i2I in T is well-based, with

�
 X
i2I

si

!
=
X
i2I

�(si):

If �:M¡!T is a function, then we say that it is well-based if for any well-based family (mi)i2I
in M, the family (�(mi))i2I in T is well-based. Then � extends uniquely into a strongly linear
map �̂:S¡!T [62, Proposition 3.5]. As a consequence, we have the following characterization of
strong linearity.

Lemma 1.3.1. An R-linear function �:S¡!T is strongly linear if and only if for all s2S, the
family (sm�(m))m2M is well-based, with

�(s)=
X
m2M

sm�(m):

If �:M¡!T is well based, then �̂ is strictly increasing whenever � is strictly increasing and it
is a ring morphism whenever �(mn)=�(m)�(n) for all m;n2M [62, Corollary 3.8]. In particular,
if �(m)2N for all m2M and � is strictly increasing, then � is well-based. Hence:

Proposition 1.3.2. Let S�M and T�N and consider an order-preserving map 	:S¡!T.
Then there is a unique strongly linear function 	̂:R[[S]]¡!R[[T]] that extends 	. If moreover
S;T are subgroups and 	 is a group morphism, then 	̂ is an embedding of ordered fields. �

1.3.2 Operator supports
We fix two fields of well-based series S=R[[M]] and T=R[[N]]. A very convenient way to prove
that certain families related to certain operators are well-based is to rely on the notions of operator
support [33, p. 10] and relative operator support [14, Definition 2.4]. We recall the definitions here.

Definition 1.3.3. Let �:M¡!T be a function. If M�N (as ordered groups), then the support
supp� of � is the class

supp� :=
[

m2M

supp�(m)
m

:

The relative support supp�� of � is the class

supp�� :=
[

m2M

supp�(m)
d�(m)

:

If 	:S¡!T is a linear function, then we define its support and relative support as

supp	 := supp (	 �M) and
supp�	 := supp� (	 �M) respectively.

Example 1.3.4. Consider the ordered field R[[xZ]] of formal Laurent series, where xZ is a mul-
tiplicative copy of (Z;+; <). We have a derivation given by X

k=n

+1

akx
¡k

!0
:=
X
k=n

+1

k akx
¡(k+1):
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In that case, for any monomial xn2 xZ, we have (xn)0=nxn¡1 so

supp (xn)0

xn
�fx¡1g:

This shows that the set fx¡1g is a (well-based) support for the derivation.

Example 1.3.5. For f 2R[[xZ]], we have a well-defined sum

f � (x+1) :=
X
k2N

f (k)

k!
(1.3.1)

which corresponds to the composition of f with x+1 on the right, as formal series. We claim that
the function xZ¡!R[[xZ]];xn 7!xn� (x+1) has well-based relative support fx¡k :k2Ng. Indeed,
for n2Z, we have

xn � (x+1)=xn+nxn¡1+ n (n¡ 1)
2

xn¡2+ � � �:
So dxn�(x+1)=xn and

suppxn � (x+1)
dxn�(x+1)

�
S
k2N supp (xn)(k)

xn
� fx

n¡k : k 2Ng
xn

= fx¡k : k2Ng:

That (1.3.1) is well-defined then follows from Proposition 1.3.7 below.

We next include two useful results.

Proposition 1.3.6. [33, Lemma 2.9] Let �:M¡!T have well-based support. Then � is well-
based.

Proof. By Lemma 1.3.1, we have to show that given a well-based subset S�M, the family
(�(m))m2S is well-based. For m 2S, we have supp�(m)�S � (supp�), so

S
m2S supp�(m) is

well-based by Lemma 1.1.22. Moreover Lemma 1.1.22 implies that for all n2N, the set

fm2S : n2S � (supp�(m))g�fm2S : n2S � (supp�)g

is finite, so (�(m))m2S is well-based. �

Proposition 1.3.7. [14, Proposition 2.5] Let �:M¡!T be relatively well-based. Assume that
02�(M) and that d��:M¡!N is strictly increasing. Then � is well-based and its strongly linear
extension �̂ is injective.

Proof. Consider a well-based subset S�M. We have[
m2S

supp�(m)�fd�(m) :m2Sg � (supp��);

so
S

m2S supp�(m) is a well-based subset of N. For any n2
S

m2S supp�(m), the set of pairs
(m;u)2S� supp�� with d�(m) u=n forms a finite antichain. Since any m2S with n2 supp�(m)
induces such a pair (m;n/d�(m)), it follows that the set of all suchm is also finite. This completes the
proof that � is well-based. To see that �̂ is injective, let s2S=/ and take r2R=/ with s� r ds. The
assumption that d �� is strictly increasing gives �̂(s¡ r ds)� �̂(r ds)= r�(ds)=/ 0, so �̂(s)=/ 0. �
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Chapter 2

Analytic functions on well-based series

In this chapter, we introduce the notion of analytic function on a field S of well-based series, which
will play an important role in Part II. The general idea is that a function f is is analytic if

f(s+ ")=
X
k2N

f (k)(s)
k!

"k (2.0.1)

for all s in its domain, for sufficiently small " in absolute value. This leads us in particular to study
the behavior of formal power series

P =
X
k2N

Pk z
k2S[[z]];

and the conditions under which such power series converge at points " 2S, i.e. yield well-based
families (Pk "k)k2N.

Such work was done in some detail by Norman Alling in his book Foundations of analysis
over surreal number fields [1] (see in particular [1, Chapters 8 and 9]). Alling showed that formal
power series had similar behavior to real convergent power series on their domain of convergence.
Unfortunately, Alling's results are restricted to the specific context of surreal numbers. Even more
unfortunate for us is his focus on a domain of convergence for power series which is rather too
small for our purposes in later sections of the thesis. We will have to show that certain result of
Alling extend to larger domains. The notion of analytic functions on surreal numbers also appears
in [19, Section 7.3].

Taylor series such as (2.0.1), are also a way to define composition laws on differential fields
of well-based series via Taylor expansions. They were used in that manner recently [33] in order
to define the composition law on logarithmic hyperseries. On a simpler level, the extension of
the so-called restricted real-analytic functions to fields of well-based series [34] also belongs to
this type of development. In particular, the definition of logarithms and exponentials on fields
of transseries crucially depends on those functions being analytic. There is one surprising (and
ultimately deceiving) exception: even though Gonshor's definition [55, Chapter 10] of the surreal
exponential function does not require analyticity, we will see that it turns out to be an analytic
function [55, Theorem 10.3]. This suggests to us that analyticity and Taylor expansions are not only
sound and practical, but also natural, in developing formal calculus on fields of well-based series.

2.1 Elementary analysis on ordered fields

We first introduce generalization of classical notions in real calculus to general ordered fields. The
content of this section (in the set sized context) is often considered common folklore.

2.1.1 The order topology
Let F be an ordered field, possibly class-sized. There is a natural topology on F, called the
order topology , which turns it into a topological field. The order topology has open intervals as
a basis, so a non-empty subclass O�F is open if for all x2O, there is a � 2F> such that the
interval (x¡ �; x+ �) is contained in O. A neighborhood of x2F is a subclass of F containing an
open subclass of F which itself contains x.
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Remark 2.1.1. If F is a proper class, then the intended topology, which should be the class
of open classes, does not exists in general as per NBG set theory. This is because no class may
contain a proper class whereas any infinite interval in a class-sized ordered field is a proper class.
Therefore we will not be using topology here and will instead only rely of the well-defined notions
of open subclasses, continuity, differentiability, and so on.

One can define the continuity of a function g:A1¡!A2 between subclasses of F in the classical
way, i.e. g is continuous at x2A1 if for any neighborhood O of g(x), the class

g¡1(A2\O)= fy 2A1 : g(y)2Og

is the intersection of A1 with a neighborhood of x. This translates into the famous �"-� definition�:
the function g is continuous at x if and only if

8"2F>;9� 2F>;8y 2A1; jy¡xj<�=)jg(y)¡ g(x)j<".

2.1.2 Differentiable functions
Our main interest will be that of differentiable functions:

Definition 2.1.2. Let g:A1¡!A2 be a function between subclasses of F, and let x2A1 be such
that A1 is a neighborhood of x. We say that g is differentiable at x if there is an l2F, such that
for all "2F>, there is a � 2F>, such that for all h2F with jhj<�, we have

jg(x+h)¡ g(x)¡h l j<" jhj:

The element l is unique when it exists. It is called the derivative of g at x, and written l :=g 0(x).
If A1 is open and g is differentiable at each x2A1, then we say that g is differentiable, and we
write g 0 for the functionA1¡!A2;x 7! g 0(x), which we call the derivative of g. A classical Calculus
101 proof of the chain rule for differentiable real-valued functions applies in our setting, and yields:

Proposition 2.1.3. Let f :A2¡!A3 and g:A1¡!A2 be functions between subclasses of F. Let
x2F such that A1 is a neighborhood of x and A2 is a neighborhood of g(x). If g is differentiable
at x and f is differentiable at g(x), then f � g is differentiable at x with

(f � g)0(x)= g 0(x)� f 0(g(x)):

Similarly, it can be shown that many �elementary� results in real analysis can be recovered
in this setting: differentiable functions are continuous, sums and products of continuous (resp.
differentiable) functions are continuous (resp. differentiable) . . . Unfortunately, the list does not
include any interesting theorem in real analysis. Recall that R is unique up to unique isomorphism
as an ordered field with the least upper bound property. For any ordered field besides the real
numbers, none of the following properties are true:

1. Every non-empty bounded subclass has a least upper bound.

2. Every interval is connected (i.e. cannot be written as the union of two open subclasses).

3. There is a connected infinite interval.

4. Every locally constant function is constant.

5. Every continuous function on a closed interval is bounded.

6. The direct image of an interval by a continuous function is an interval.

7. Every continuous and injective function between intervals is strictly monotone.

8. Every differentiable function on an interval with zero derivative is constant.

9. Rolle's theorem for differentiable functions.

10. The mean value theorem for differentiable functions.

11. The L'Hospital rule.
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See [84] for a discussion and proofs of most of these results. We'll see that we can retain some of
the above properties which pertain to functions when working with certain classes of objects in
our calculi. For instance, the statements 5, 7 and 8 will hold in all our calculi.

2.2 Power series

Let us now study elementary properties of power series and show how they can act as functions
on power series fields. Throughout the section, we fix power series fields S, T and U over R, and
we write M for the monomial group of S, i.e. S=R[[M]].

2.2.1 Power series
Let D be a domain. We write D[[z1; : : : ; zn]] for the ring of power series

P :=
X
v2Nn

Pv z1
v[1] � � � zn

v[n] where (Pv)v2Nn2DNn
,

which is also a domain. We writeD[[z]] for the ring of power series P =
P
k2NPkz

k in one variable.

For P =
P
k2NPk z

k, the derivative P 0 of P is the power series

P 0 :=
X
k2N

(k+1)Pk+1 zk2D[jz j]:

We write P (n) for the n-th iterated derivative of P , i.e. P (0)=P and P (n+1)=(P (n))0 for all n2N.

Consider the subdomain zD[[z]] of D[[z]] of power series P =
P
k2NPk z

k with P0=0. We have
a composition law �:D[[z]]�zD[[z]]¡!D[[z]]. Indeed for P =

P
k2NPkz

k; Q=
P
k2NQkz

k2S[[z]]
with Q0=0, we have a composite power series

P �Q :=P0+
X
k2N

 X
m1+� � �+mn=k

PnQm1 � � � Qmn

!
zk2S[[z]]:

For P 2D[[z]] and Q;R2 zD[[z]], we have Q�R2 zD[[z]] and

P � (Q �R)= (P �Q) �R:

2.2.2 Convergence of power series

Definition 2.2.1. Given a power series

P =
X
v2Nn

Pv z1
v[1] � � � zn

v[n]2S[[z1; : : : ; zn]];

and s1; : : : ; sn2S, we say that P converges at (s1; : : : ; sn) if the family (Pv s1
v[1] � � � sn

v[n])v2Nn is
well-based. We then set

P~(s1; : : : ; sn) :=
X
v2Nn

Pv s1
v[1] � � � sn

v[n]:

We write Conv(P ) for the class of tuples (s1; : : : ; sn)2Sn at which P converges.

Remark 2.2.2. This notion of convergence, like the notion of well-based family, does not corres-
pond to the convergence of sequences for the valuation topology on S.

Example 2.2.3. Any real power series P =
P
k2Nrkz

k2R[[z]] converges on S� by Lemma 1.2.11.
In fact, since the sequence (sk)k2N is �-nondecreasing whenever s< 1, we have Conv(P ) = S�

unless P is a polynomial.
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The following shows that for P 2S[[z]], the class Conv(P ) is an ultrametic ball.

Proposition 2.2.4. [92, Corollary 1.5.8] For all P 2S[[z]], and "; �2S with �2Conv(P ), we have
"4 �=) "2Conv(P ).

Proof. Write P =
P
k2NPk z

k and u := /" �4 1. By Proposition 1.2.15 for I =N and f = IdN, the
family (Pk �kuk)k2N=(Pk "k)k2N is well-based. �

Lemma 2.2.5. Let P 2S[[z]] with Conv(P )=/ f0g. Then Conv(P ) is open.

Proof. Consider a "2Conv(P ). Given a positive �2Conv(P ) nf0g, we have "+ �4 � or "+ �4 ",
and likewise "¡ �4� or "¡�4". In any case, we obtain "+ �;"¡ �2Conv(P ) by Proposition 2.2.4.
Therefore Conv(P ) is open. �

Example 2.2.6. The case Conv(P )= f0g can occur. For instance, on the field R[[xZ]] of formal
Laurent series, the power series

P0 :=
X
k2N

xk zk

satisfies Conv(P0) = f0g. This does not mean that there cannot be a larger field V�R[[xZ]] on
which P0 has a non trivial domain of convergence. For instance, identifying x with the surreal
number !, the power series P0 converges at /1 !! in the field No of surreal numbers.

Lemma 2.2.7. Let P =
P
k2NPk z

k2S[[z]] be a power series. For all n2N, we have Conv(P )=
Conv(P (n)).

Proof. It suffices to prove the result for n=1. We have 02Conv(P )\Conv(P 0). Recall that

P 0=
X
k2N

(k+1)Pk+1 zk:

For "2S=/ , we have the following equivalences:
(Pk "k)k2N is well-based
() (Pk+1 "k+1)k2N is well-based (by Proposition 1.1.17 and Corollary 1.1.20)
() ((k+1)Pk+1 "k)k2N is well-based. (by Corollary 1.2.10)

We deduce that Conv(P )=Conv(P 0). �

Proposition 2.2.8. Let P =
P
k2NPk z

k2S[[z]] be a power series and let "; � 2Conv(P ). Write

P+" for the power series P+" :=
P
k2N

P (k)
g

(")

k!
zk. We have � 2Conv(P+") and

P+"f (�)=P~("+ �):

Proof. Note that P+0=P and that P+"(0)=P ("), so we may assume that " and � are non-zero.
The power series P+" is well-defined by Lemma 2.2.7. We have[

i;k2N
supp (Pk+i "k+i)=

[
j2N

supp (Pj "j);

where the right hand set is well-based since (Pj "j)j2N is well-based. For each monomial m2M,
the set Im := f(i; k)2N2 :m2 supp(Pi+k �k+i)g is contained in f(i; k)2N2 : i+ k 2Jmg where

Jm := fj 2N :m2 supp(Pj �j)g:

Since (Pj "j)j2N is well-based, we deduce that Jm, and hence Im are finite. This shows that
(Pk+i "k+i)i;k2N is well-based. Likewise (Pk+i �k+i)i;k2N is well-based.

For k2N, we have

P (k)g (")
k!

�k=
X
i2N

�
k+ i
k

�
Pk+i "

i �k: (2.2.1)
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Therefore it suffices to show that the family (Pk+i "i �k)i;k2N is well-based in order to prove
that � 2Conv(P+"). For i; k 2N, write

"i �k=ui+k vk

where (u; v)= ("; /� ") if �4 " and (u; v)= (�; /" �) if "� �. In any case, we have v41 and the family
(Pi+k ui+k)i;k2N is well-based. Applying Proposition 1.2.15 for I =N�N and f = (a; b) 7! a+ b,
we see that the family (Pi+k ui+k vk)i;k2N=(Pk+i "i �k)i;k2N is well-based.

On the other hand we have �+ "4 " or �+ "4 �, so �+ "2Conv(P ) and (Pk (�+ ")k)k2N is
well-based. By Lemma 1.1.21, we have

X
k2N

P (k)g (")
k!

�k =
X
k2N

X
i2N

�
k+ i
k

�
Pk+i "

i �k

=
X
i;k2N

�
k+ i
k

�
Pk+i "

i �k

=
X
j2N

X
l6j

�
j
l

�
Pj "j¡l �l

=
X
j2N

Pj ("+ �)j

= P~("+ �);

where we use Proposition 1.1.17 for the bijection

 :N2¡!f(j ; k) : j 2N^ k6 jg; (i; k) 7! (i+ k; k)

to obtain the third equality above. �

Lemma 2.2.9. Let P =
P
k2NPk z

k2S[[z]] be a power series with Conv(P )=/ f0g. The function

P~ is infinitely differentiable on Conv(P ) with P~(n)=P (n)g on Conv(P ) for all n2N.

Proof. We first prove that P~ is differentiable on Conv(P ) with P~ 0= P 0e . Let " > 0 and let s 2
Conv(P ). For all h2S with jhj< jsj, we have h4 s, so Proposition 2.2.8 yields

P~(s+h)¡P~(s) =
X
k>0

P (k)g (s)
k!

hk

= P 0e (s)h+h2u;
where u :=

P
k2N

P (k+2)(s)

(k+2)!
hk. If u=0, then we set � := jsj. If u=/ 0, then we set � := /" juj. In both

cases, we obtain jP~(s+ h)¡ P~(s)¡ P 0e (s) hj< " jhj whenever jhj< �. So P~ is differentiable at s

with P~0(s)=P 0e (s). The result for all n follows by induction. �

2.2.3 Zeros of power series
We next consider zeros of power series functions. A zero of a power series P 2S[[z1; : : : ; zn]] is an
element (s1; : : : ; sn)2Conv(P ) with P~(s1; : : : ; sn)= 0.

Example 2.2.10. Non-zero power series in one variable may have infinitely many zeros. Here
we give an example due to van der Hoeven. Set S=R[[xZ]] and write �(n; k) for the number of
partitions of n into k parts, for all k6n<!. For k2N, set

sk := (¡1)k
X
n2N

�(n; k) x¡n2S:

Then the power series P =
P
k2N sk z

k has xn as a zero for each n2N. This power series can be
obtained by formally expanding the product

Q
n2N (1¡x

¡n z).
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Lemma 2.2.11. Suppose that M is uncountable and let P 2S[[z1; : : : ; zn]] be a power series with
(S�)n�Conv(P ). If P =/ 0, then P~(s1; : : : ; sn)=/ 0 for some s1; : : : ; sn2S�.

Proof. We prove this by induction on n. If n=1, then write P =
P
k2NPkz

k. Suppose that P =/ 0
and let R�S� be the set of non-zero infinitesimal zeros of P : Fix s2R and let m be such that
0=/ Pm sm<Pk sk for all k. Since P (s)=0, there exists an index k=/ m with Pm sm�Pk sk. Then
0=/ s� (Pm¡1Pk)1/(m¡k), whence

fds : s2Rg�
��

dPk
dPm

�q
: k;m2N; q 2Q; Pk; Pm=/ 0

�
:

In particular, fds :s2Rg is countable, whereas fds :s2T�; s=/ 0g=M� is uncountable, so R=/ T�.
Now suppose that n > 1 and write P =

P
k2N PkXn

k where each Pk lies in S[[z1; : : : ; zn¡1]].
Assume that P =/ 0. By the induction hypothesis, we can find s1;:::; sn¡12S� and k2N such that
Pke (s1; : : : ; sn¡1)=/ 0. Fix such elements s1; : : : ; sn¡1 and let R�S� be the set of s2T� such that
P~(s1;:::; sn¡1; s)=0. By the special case when n=1, we see that R=/ S�. Thus P~(s1;:::; sn¡1; s)=/ 0
for some s2T. �

We will also need similar results in the univariable case.

Lemma 2.2.12. Let P =
P
n2N Pn zn 2 S[[z]] be a power series and let R � Conv(P ) be an

uncountable set of zeros of P with pairwise distinct dominant terms. We have P =0.

Proof. Assume for contradiction that there is a non-zero term Pn in the sequence and consider
s2R. Since the sum of (Pn sn)n2N is zero, for each number m with Pm=/ 0, there must exist at

least one number n=/ m with �Pm �s
m= �Pn �s

n. Then �s=
�
�sm
�sn

�
1/(m¡n)

, so we deduce that

R�
��

�sm
�sn

�q
:n;m2N; q 2Q; Pm; Pn=/ 0

�
:

Therefore R is countable: a contradiction. �

Lemma 2.2.13. Let P =
P
k2NPk z

k2S[[z]] be a power series, and let � be an infinite cardinal.
Let R�S be a set of zeros of P with cardinality >�+ such that for each s2R, the order type of
(supp s;�) is 6�. Then P =0.

Proof. Assume for contradiction that P =/ 0. We will call large the subsetsX of R with jR nX j6�.
For �6� and s2S, we let sj� denote the P-maximal truncation of s such that the order type of
(supp sj�;�) is 6�, and we write s� j := s¡ sj�. Let I denote the set of ordinals �6� such that
there is a large subset X��R with tj�= uj� for all � <� and t; u2X�. Note that I contains 0
trivially and 1 by Lemma 2.2.12. Let us show that �2I. Let �6� with � 2I for all � <�.

If � is limit, then for each �<�, pick a large subsetX��R satisfying the condition and consider
the set X� :=

T
�<�X�. This set is large since �<�+ and �+ is regular. Moreover it satisfies the

condition for � by definition. So �2I.
Assume now that �= �+1 where � 2I and � >0. We fix a set X� satisfying the condition for

�. For t2X�, since �>0, we have tj�4 t, so tj�2Conv(P ) is defined. We deduce with Lemma 2.2.9
that tj� 2Conv(P (k)) for all k 2N. By Proposition 2.2.8 we have P~(t)=P~(tj�+ t� j)=P+tj�g (t� j).

Assume for contradiction that P+tj�=0. Then P
(i)g (tj�)=0 for all i2N, so P~(tj�+")=0 for all "2S

with "4 tj�. In particular, given  < �, we have P~(tj+ r dtj)=0 for all r2R, which contradicts
Lemma 2.2.12. We deduce that P+tj� is non-zero. By Lemma 2.2.12, there is a co-countable subset
of X�, hence large subset X� of R with (t� j)j1= (u� j)j1, hence uj�= vj� for all u; v 2X�. This
proves that �2 I. By induction, we deduce that �2 I. For u; v 2X�, we have u= uj�= vj�= v,
which contradicts the fact that X� is large. �

We note two corollaries to this result.

Corollary 2.2.14. Let P 2S[[z]] and let "2Conv(P ) with "=/ 0. If P~(�)=0 for all �4" then P =0.
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Proof. Consider the set S of series s2S with s4 " and such that the order type of (supp s;�) is
at most !. Fix an m2M� with m4 ". For each binary sequence u2 2N, we have a single elementP
n2Nu(n)m

n2S, so S is uncountably infinite. It follows by Lemma 2.2.13 for �=! that P =0. �

Corollary 2.2.15. Let P 2S[[z]] with Conv(P )=/ f0g and let �2Conv(P ). We have Conv(P+�)=
Conv(P ) and P =(P+�)+(¡�).

Proof. We may assume that �=/ 0. Proposition 2.2.8 shows that Conv(P+�)�Conv(P ). By �-
initiality of Conv(P ), we have ¡� 2Conv(P ). So ¡� 2Conv(P+�), which means that the power
series (P+�)+(¡�) is well-defined. Since Conv(P+�) is �-initial and contains �, Proposition 2.2.8
yields

(P+�)+(¡�)(")=P+�f ("¡ �)=P~(")

for all "4 �. We deduce by Corollary 2.2.14 that P =(P+�)+(¡�). Applying Proposition 2.2.8, this
time to (P+�;¡�), we get Conv(P+�)�Conv(P ), hence the equality. �

2.3 Analytic functions

Let S=R[[M]];T=R[[N]] andU=R[[O]] be fixed fields of well-based series overR withM�N�O
as ordered groups, whence S�T�U as ordered valued fields. We also fix a non-empty open
subclass O of S.

2.3.1 Analyticity

Definition 2.3.1. Let f :O¡!T be a function and let s2O. We say that f is analytic at s if
there is a power series fs2T[[z]] with Conv(fs) =/ f0g and a � 2Conv(fs) n f0g such that for all
"4 �, we have

(s+ "2O)=) f(s+ ")= fs~("):

We say that fs is a Taylor series of f at s. We say that f is analytic if it is analytic at each s2O.

Lemma 2.3.2. Let f :O¡!S be analytic at s2O. Then fs is the unique Taylor series of f at s.

Proof. Let P 2S[[z]] and � 2Conv(P ) n f0g with s+ "2O and f(s+ ")=P~(") for all "4 �. Then
the function fs¡P is zero on the class of series s4 �, so we have fs=P by Corollary 2.2.14. �

If f :O¡!S is analytic at s2O where O is open, then we can define

Conv(f)s := ft2O : t¡ s2Conv(fs)^ f(t)= fs~(t¡ s)g:

Proposition 2.3.3. Let P 2T[[z]] with Conv(P ) =/ f0g. Then P~ is analytic on Conv(P ) with
P~�=P+� and Conv(P~)�=Conv(P ) for all � 2Conv(P ).

Proof. Let �2Conv(P ). The class Conv(P ) is open by Lemma 2.2.5, with Conv(P+�)=Conv(P ).
By Proposition 2.2.8, we have P~(� + ") = P+�(") for all " 2Conv(P ), so P~ is indeed analytic on
Conv(P ) with Conv(P~)� � Conv(P+�) = Conv(P ). But we also have Conv(P~)� � Conv(P+�) =
Conv(P ) by definition, hence the result. �

Corollary 2.3.4. Let f :O¡!T be analytic at s2O. Then there is an open neighborhood Os of
s such that the restriction f �Os of f to Os is analytic.

Proof. Define Os= fs+S��g where � is any element of Conv(fs) n f0g. Then Proposition 2.3.3
yields the result. �

Proposition 2.3.5. Let f :O¡! S be analytic at s 2O and let U�Conv(f)s be a non-empty
open subclass containing 0. Then f is analytic on s+U, with fs+�=(fs)+� for all � 2U.
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Proof. Let � 2U and set t := s+ �. Since U3 0 is open and non-empty, we find a �=/ 0 with
� + " 2U for all " 4 �. Thus f(t + ") = fs~(� + ") whenever " 4 �. But given such ", we have
fs~(�+ ")= (fs)+�(") by Proposition 2.2.8, whence

f(t+ ")= fs~(�+ ")= (fs)+�("):

So f is analytic at t with ft=(fs)+(t¡s). �

Proposition 2.3.6. Let f :O¡!S be analytic at s2O. Then f is infinitely differentiable at s,
and each f (n) for n2N is analytic at s with Conv(f (n))s�Conv(f)s. Moreover, we have

fs=
X
k2N

f(k)(s)

k!
zk:

Proof. Recall that fs~ is infinitely differentiable on Conv(fs). By Lemma 2.2.9, each derivative
fs~ (n) for n 2N is a power series function on Conv(fs), and is thus analytic on Conv(fs) by Pro-
position 2.3.3. It follows since Conv(f)s is a neighborhood of s that f is infinitely differentiable

at s. By Lemma 2.2.9, given � 2Conv(f)s, we have f (n)(s+ �) = fs~ (n)(�) = (fs)(n)(�). Therefore
f (n) is analytic at s with fs

(n)= (fs)(n) and Conv(f (n))s�Conv(f)s. Write fs=
P
k2N sk z

k. We

have f (k)(s)= (fs)g (k)(0)= (fs)(k)(0)= k! sk. We deduce that fs=
P
k2N

f(k)(s)

k!
zk. �

Corollary 2.3.7. Let O�S be open and non-empty and assume that O=
F
i2IOi where each Oi

is open and non-empty. Let (si)i2I be a family where si2Oi for all i2 I. Let (Pi)i2I be a family
of power series in S[[z]] with (si+Conv(Pi))�Oi. The function f :O¡!S such that for all i2 I
and s2Oi, we have f(s)=Pi(s¡ si) is well-defined and analytic.

Proof. Let s 2O and let i2 I with s 2Oi. We have s¡ si2Oi¡ si�Conv(Pi) so Pi~ (s¡ si) is
defined. In particular f is well-defined. The class Oi¡ si is a neighborhood of 0, so there is a
� 2Conv(Pi) n f0g such that si+ "2Oi whenever "4 �. Given "4 �, we have

f(s+ ")=Pi(s+ "¡ si)= (Pi)+(s¡si)(")

by Proposition 2.2.8. Therefore f is analytic at s with fs=(Pi)+(s¡si). �

We leave it to the reader to check that analyticity, at a point or on an open class, is preserved
by sums and products. The following result will be used extensively in the thesis to show that a
composition of analytic functions is analytic.

Proposition 2.3.8. Let U�T be open. Let f :U¡!U; g:O¡!U and let s2O such that g is
analytic at s and f is analytic at g(s). Write

fg(s)=
X
n2N

an z
n and gs=

X
n2N

bn z
n:

Let "f 2Conv(f)g(s) and "2Conv(g)s with

8m2N>; bm "m� "f: (2.3.1)

The function f � g is analytic at s with "2Conv(f � g)s, and (f � g)s= fg(s) � (gs¡ g(s)).

Proof. For n2N and k 2N>, set Xn;k := fv 2 (N>)n : jv j= kg.

cn;k :=
X

v2Xn;k

an bv[1] � � � bv[n];

so fg(s) � (gs¡ g(s))= f(g(s))+
P
k2N> (

P
n2N cn;k) z

k. Note that since "2Conv(g)s�Conv(gs),
the set

Sg :=
[
m2N

supp (bm "m)
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is well-based. We have Sg � "f by (2.3.1). Set m := d"f, so Sg � m 4 "f. The set Sf :=S
n2N supp (anmn) is well-based. For n2N and k2N>, we have

supp cn;k "k� (Sg �m¡1)n �Sf ;

where Sg �m¡1 is well-based and infinitesimal, and Sf is well-based. Since each family (cn;k "k)k>0
for n 2 N is well-based with sum (g(s + ") ¡ g(s))n, we conclude with Corollary 1.2.14 that
(cn;k "k)n2N;k>0 is well-based. We deduce by Lemma 1.1.21 that

f(g(s+ ")) =
X
n2N

an (g(s+ ")¡ g(s))n

=
X
n2N

an

 X
k2N>

bk "
k

!n
= f(g(s))+

X
n2N

X
k2N>

cn;k "
k

= f(g(s))+
X
k2N>

 X
n2N

cn;k

!
"k

= (fg(s) � (gs¡ g(s)))("):

By Proposition 2.2.4, we deduce that f � g is analytic at s, hence the result. �

2.3.2 Basic examples of analytic functions
We give a few examples of analytic functions. Perhaps the most uninteresting examples of analytic
functions are locally constant functions, such as the dominant monomial map

S=/�M; s 7! ds;

or the purely large part function
S�S�; s 7! s�:

Note that these functions are monotone on any interval on which they are defined.
This illustrates the fact that analytic functions need not behave in a similar way as real-

analytic or holomorphic functions. In fact, the disconnectedness of any non-trivial field of well-
based series implies that any purely local notion of regularity for functions is subject to this type
of phenomenon.

Example 2.3.9. Recall that for "2T�, we have

1
1+ "

=
X
k2N

(¡1)k "k:

Thus for s2T=/ and �� s, we have
1

s+ �
= s¡1� 1

1+ (� s¡1)

= s¡1
X
k2N

(¡1)k s¡k �k:

Thus the reciprocal function R:T=/ ¡!T=/ ; s 7! 1

s
is analytic with

Conv(Rs) = f� 2T : �� sg and
Rs =

X
k2N

((¡1)k s¡(k+1)) zk

for all s=/ 0.

2.4 Real-analytic functions on well-based series
A well-known type of analytic function is that of restricted real-analytic function of [31, 34]. We
recall some of the definitions.
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2.4.1 Real-analytic functions

For n2N and v 2Nn, write @jvj

@xv
for the partial derivative operator

@jvj

@xv
� @jvj

@v[1]x1 � � � @v[n]xn
:

We also write v! := v[1]! � � � v[n]!.
If U is a non-empty open subset of Rn and f : U ¡!R is an analytic function, then by

Lemma 1.2.11 it extends into a function f :U +(S�)n¡!R+S� given by

8r 2Rn;8"1; : : : ; "n� 1; f(r+("1; : : : ; "n)) :=
X
v2Nn

1
v!
@jvjf
@xv

(r) "1
v[1] � � � "n

v[n]:

We say that f is a restricted real-analytic function on S.
Assume in particular that n=1 and U = I is a non-empty open interval of R. Then we have

f : I +S� ¡! R+S�

(r+ ") 7¡!
X
k2N

f (k)(r)
k!

"k:

For each r2I, the function f is analytic on r+S� by Proposition 2.3.6. Since I+S� is the disjoint
union I +S�=

F
r2I r+S�, it follows that f is analytic.

In particular, we have a real-analytic calculus through which each element f of the ring An of
real analytic functions R¡!R acts as an analytic function on S4=R+S�.

Lemma 2.4.1. Let T be a field of well-based series over R. Let 	:S¡!T be a strongly linear
morphism of ordered rings. Let I be a non-empty interval of R and let f : I¡!R be real-analytic.
For all s2 I +S� we have 	(f(s))= f(	(s)).

Proof. We have s= r+ " for a unique (r; ")2 I �S�. Since 	 is a strictly increasing morphism
of rings, we have 	(s)= r+	(") where 	(")� 1. Therefore,

f(	(s))=
X
k2N

f (k)(r)
k!

	(")k=	

 X
k2N

f (k)(r)
k!

"k

!
=	(f(s)): �

2.4.2 Model theory of restricted real-analytic functions
Fix n2N. Let Rfz1; : : : ; zng denote the set of power series

P =
X
v2Nn

Pv z1
v[1] � � � zn

v[n]2R[[z1; : : : ; zn]];

where n2N, such that there is an open neighborhood U of [¡1; 1]n in R where P converges for
the euclidean topology. The corresponding function

fP :U ¡!R; r 7!
X
v2Nn

Pv r[1]
v[1] � � � r[n]

v[n]

is thus analytic on U . Note that Pv=
@jvjf

@xv
(0) for all v 2Nn, so fP coincides with the function P~

on U +(S�)n. We write Rfz1; z2; : : :g :=
S
n2NRfz1; : : : ; zng.

Consider the first-order language Lan expanding the language f+;¡;�; ¡1;<g of ordered rings
with a n-ary function symbol P for each P 2Rfz1; : : : ; zng. We have two Lan-structures

� Define Ran to be the real ordered field where each P 2Rfz1;:::; zng is interpreted as the map

Rn ¡! R

r 7¡!
�
P (r) if r2 [¡1; 1]n
0 otherwise.

:
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� Define San to be the ordered field S where each P 2Rfz1; : : : ; zng is interpreted as the map

Rn+(S�)n ¡! R

s 7¡!
�
fP(s) if s2 [¡1; 1]n
0 otherwise.

:

Then the elementary theory Tan of Ran is model complete and o-minimal [32]. It also has quantifier
elimination in an extended language (see [31, Theorem 4.6] and [34, Proposition 2.9]). Moreover
[34, Corollary 2.11], if S is real-closed (i.e. if M is divisible), then San is a model of Tan.

2.4.3 Exponential and logarithm
An important example of unary restricted analytic function is the exponential function

exp :T4 ¡! R>+T�

r+ " 7¡! er
X
k2N

"k

k!
:

We also have a logarithm

log :R>+T� ¡! T4

r+ " 7¡! log r+
X
k2N

(¡1)k rk
k+1

"k+1:

Proposition 2.4.2. The function log and exp are functional inverses of each other. Moreover,
for each r2R, the function log � (er+S�) is the functional inverse of exp � (r+S�).

Proof. Since the real-valued log and exp are mutually inverse analytic functions, the composite
of the Taylor series of log and exp at er and r respectively is the identity series z 2R[[z]]. Thus
the composite of the Taylor series of log and exp at er and r respectively is z. We conclude by
Proposition 2.3.8 that for all "2T�, we have

log(exp(r+ "))= log(er)+ z~(")= r+ ":

Symmetric arguments prove that exp(log(r + ")) = r + " for all r 2R> and " 2 S�, hence the
result. �

Consider the first-order language Lan;exp extending Lan with two unary function symbols exp
and log. We expandRan into an Lan;exp structureRan;exp by interpreting exp as the real exponential
function and log as the natural logarithm, extended to R with

log(r) :=0

whenever r6 0.
Extending Wilkie's theorem [97], van den Dries and Miller [37] showed that the first-order

theory Tan;exp of Ran;exp is model-complete. Furthermore, van den Dries, Macintyre and Marker
[34] later showed that it has quantifier elimination in Lan;exp, and that it is o-minimal,. As is
well known [30, 39, 60, 68, 92, 72], it is possible to extend the restricted analytic exponential and
logarithm to S and S> respectively, provided the field S has additional structure. This leads us
into the realm of transseries. In that case San may also be expanded to an Lan;exp-structure. We
shall elaborate on this in Section 3.1.

2.5 Real powers

In this section, we fix a field S=R[[M]] of well-based series. We will show that under a condition
on M, we can define a composition law �:R[[xR]]�S>;�¡!S where R[[xR]] is the field of real-
powered series of Example 1.2.5. This can be seen as a toy example of the type of arguments we
will use in later chapters of the thesis. It is, in most part, a consequence of the work in [33].
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2.5.1 Real powering operation
Given r2R, the real power functionR>¡!R>; y 7! yr is analytic. Therefore it induces a restricted
analytic function on R>+S�. Here we study a case when this real power function extends to the
whole class S>.

We say that M has real powers, if it comes with a real power operation

R�M!M; (r;m) 7!mr

for which M is a multiplicative ordered R-vector space, i.e. an ordered R-vector space with mul-
tiplication and real powering in the roles of addition and scalar multiplication. Note in particular
that M=MQ is then divisible, so S is real-closed. In the sequel of the section, we assume that M
has real powers. For k 2N and r2R, the generalized binomial coefficient

�
r
k

�
2R is defined by�

r
k

�
:= r (r¡ 1) � � � (r¡ k)

k!
:

The real powering operation on M extends to S> as follows: for "2S�, we set

(1+ ")r :=
X
k2N

�
r
k

�
"k (2.5.1)

For a multiplicatively decomposed series s= cm (1+ ")2S> where c2R>, m2M, and "2S� (see
(1.2.4)), we set

sr := crmr (1+ ")r: (2.5.2)

We first note elementary properties of this definition.

Proposition 2.5.1. For r; r 02R and s; t2S> we have

(sr)r
0
= srr

0
and

(s t)r = sr tr:

Proof. For s; t� 1, the first two relations follow from basic power series manipulations; see [62,
Corollary 16]. The extension to the general case when s; t2S> is straightforward and left to the
reader. �

Proposition 2.5.2. For r2R> and s; t2S> with s< t, we have sr<tr.

Proof. Since (s/t)r= sr/ tr, it suffices to show that (s/t)r < 1. Write s/ t= cm (1 + ") where
c2R>, m2M, and "2S�. Since 0<s< t, we have s/t < 1, so either m� 1, or m=1 and c < 1,
or m= c=1 and " < 0. If m� 1, then mr� 1, so (s/t)r� 1. If m= 1 and c < 1, then cr< 1 and
(s/t)r= cr (1 + ")r 2 cr+S�< 1. If m= c= 1 and " < 0, then (s/t)r ¡ 1 = (1 + ")r ¡ 1� r " < 0,
so (s/t)r< 1. �

Thus the extended real power operation R�S>!S>; (r; s) 7!sr gives the multiplicative group
S> a structure of ordered R-vector space. Accordingly, we will say that S has real powers.

Proposition 2.5.3. The field S is real-closed. Any ring morphism S¡!R, where R is an ordered
domain, is strictly increasing.

Proof. Recall that S is real-closed, hence Euclidean. Given an ordered domain R, a morphism of
rings 	:S¡!R and a series s2S>, we have s=(s /1 2)2, whence 	(s)=	(s /1 2)2 is strictly positive.
Therefore 	 is strictly increasing. �

Example 2.5.4. Consider the fieldR[[xR]] of real-powered series of Example 1.2.5. Recall that the
ordered group xR is a multiplicative copy of the additive ordered group (R;+;<) of real numbers.
As such, the natural structure of ordered R-vector space on (R; +; <) yields a real powering
operation on xR, hence on R[[xR]].
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Example 2.5.5. Let e: (S�;+; <)¡! (M;�;�) be an isomorphism of ordered groups and let l
denote its functional inverse. Then we can lift the law of ordered vector space over R on (S�;+;<)
into a real powering operation on M by setting

mr := e(r l(m))

for all r 2R and m 2M. In particular, some of our fields of transseries and hyperseries (see
Chapter 3) will be equipped with such operations.

2.5.2 Real-powered calculus
Now let us show how to extend the real powering operation R�S>¡!S> into a calculus of real-
powered series on S, i.e. we will define a composition law �:R[[xR]]�S>;�¡!S.

Lemma 2.5.6. If I �R is well-based, then (sr)r2I is well-based for all s2S>;�.

Proof. Let s = c m (1 + ") with c 2R>, m 2M� and " � 1. Note in view of Definition 2.5.1
that there is a sequence of real constants (cr)r2I such that (sr)r2I is a subfamily of the pro-
duct family (crmr "k)r2I^k2N. Since (mr)r2I and ("k)k2N are both well-based, we conclude with
Lemmas 1.1.15, 1.2.7 and Proposition 1.2.8. �

Given p=
P
r2R prx

r2R[[xR]] and s2S>;�, the family (pr sr)r2R is well-based by the above
lemma, so we may define

p� s :=
X
r2R

pr sr: (2.5.3)

So xr � s= sr for all r 2R and s2S>.
Fix s 2 S>. We have (xr xr 0) � s= (xr � s) (xr 0 � s) for all r; r 0 2R by Proposition 2.5.1. By

Proposition 1.3.2, the function R[[xR]]¡!S; p 7! p�s is a strongly linear morphism of rings, which
is strictly increasing by Proposition 2.5.3.

Recall that R[[xR]] itself has real powers, so similarly, for p; q 2R[[xR]] with q > 0, we have a
well-defined series p � q 2R[[xR]].

Proposition 2.5.7. Let r 2R, p2R[[xR]] with p> 0 and s2S>;�. We have pr � s=(p� s)r.

Proof. Write p= cm (1 + ") where c2R>, m := dp, and "� 1. We have gr= crmr
P
k2N

�
r
k

�
"k,

so gr � s= cr (mr � s)
P
k2N

�
r
k

�
"k � s. We also have

(g � s)r= cr (m � s)r (1+ "� s)r= cr (m � s)r
X
k2N

�
r
k

�
("� s)k:

Since "k � s=("� s)k, we only need to show that (m � s)r=mr � s. Now m=xr
0
for some r 02R, so

(m � s)r=(xr
0 � s)r= sr 0r=xr 0r � s=mr � s

by Proposition 2.5.1. �

Corollary 2.5.8. Let p=R[[xR]], q 2R[[xR]]>, and s2S>;�. We have p � (q � s)= (p� q) � s.

Proof. We have

p � (q � s)=
X
r2R

pr (q � s)r=
X
r2R

pr (qr � s)=
 X
r2R

pr q
r

!
� s=(p � q) � s;

where the second equality follows from Proposition 2.5.7 and the third one follows from the strong
linearity of the composition with s. �

Given p2R[[xR]], we set @(p) :=
P
r2R r prx

r¡1. Note that supp@= fx¡1g is well-based, and
that @ is a strongly linear derivation R[[xR]]¡!R[[xR]]. We write p(0)= p and p(k+1) := @(p(k))
for all k 2N. So p(k) is the k-th derivative of p.
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Proposition 2.5.9. For p2R[[xR]], t2S>;� and � 2S with �� t, the family ((p(k) � t) �k)k2N is
well-based, and we have

p � (t+ �)=
X
k2N

p(k) � t
k!

�k:

Proof. Set " := /� t. We first handle the case when f =xr, for a fixed r 2R. We have "� 1, so

(1+ ")r=
X
k2N

�
r
k

�
"k:

For k2N, we also have (xr)(k)= k!
�
r
k

�
xr¡k, so (xr)(k) � t= k!

�
r
k

�
tr¡k. Therefore,

(t+ �)r = tr (1+ ")r = tr
X
k2N

�
r
k

�
"k = tr

X
k2N

(xr)(k) � t
k! tr¡k

"kx

=
X
k2N

(xr)(k) � t
k!

�k :

Now consider a general series p=
P
r2R prx

r 2R[[xR]]. For xr2 supp p and k 2N, we have

supp ((xr)(k) � t) �k�xr � (supp @)k � (supp ")1�fx¡1gk � (supp p) � (supp ")1:

The set fx¡1g is infinitesimal and well-based, whereas (supp p) � (supp ")1 is well-based. Applying
Lemma 1.2.13 to I := (supp p)�N, sxr;k=(xr)(k) � t and f(xr; k)=k for all (xr; k)2 I, we see that
((xr)(k) � t)xr2suppp;k2N is well-based. We deduce by Lemma 1.1.21 that

p � (t+ �) =
X
r2R

pr (t+ �)r

=
X
r2R

X
k2N

pr
(xr)(k) � t

k!
�k

=
X
k2N

X
r2R

pr
(xr)(k) � t

k!
�k

=
X
k2N

p(k) � t
k!

�k;

where we used the strong linearity of @ to obtain the last identity. �

We see with Proposition 2.3.6 that each p2R[[xR]] induces an analytic function p~:S>;�¡!S;
s 7! p � s with with p~0= @(p)g .

Lemma 2.5.10. For all p2R[[xR]]=/ and s2S>;�, we have p � s� �p � �s.

Proof. Write �p= c xr for c2R=/ and r 2R. We have p� �p. Since R[[xR]]¡!S; q 7! q � s is an
R-linear embedding of ordered fields, we have p � s� �p � s= c sr. Now by (2.5.2) we have sr� �sr,
hence the result. �

Proposition 2.5.11. Let p2R[[xR]]>;�. For s; t2S>;� with s< t, we have p� s< p � t.

Proof. Suppose first that s� t and write � := t¡ s, so �� t. We have

p � s= p � (t+ �)= p� t+
X
k>0

p(k) � t
k!

�k:

Let k >0. Since supp@k= fx¡kg, we have (p(k+1) � t) �k+1� t¡k �k (@(p) � t) � where t¡k �k=( /� t)k

is infinitesimal. So (p(k+1) � t) �k+1� (@(p) � t) �. In particular we have

p � s¡ p � t� (@(p) � t) �:
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We have p>R so @(p)� px¡1>0, whence @(p)� t>0. The series �=s¡ t is negative, so p�s< p� t.
Suppose now that s� t. Then Lemma 2.5.10 yields p � s� �p � �s and �p � �t� p � t where

�p � �s<�p � �t, hence the result. �

We thus have a calculus of analytic real-powered series/functions on S, whose properties are
summed up in the following theorem.

Theorem 2.5.12. The function �:R[[xR]]�S>;�¡!S defined above has the following properties:

a) For all s2S>, the function R[[xR]]¡!S; p 7! p�s is a strongly linear embedding of ordered
fields.

b) For all p; q 2R[[xR]] with q 2R[[xR]]>;� and all s2S>;�, we have p � (q � s)= (p � q) � s.

c) For all p2R[[xR]]>;� and s; t2S>;� with s< t, we have p� s< p � t.

d) For all p2R[[xR]]>;� and t; � 2S with t>R and �� t, the family ((p(k) � t) �k)k2N is well-
based with

p � (t+ �)=
X
k2N

p(k) � t
k!

�k:

Similar properties will hold in the case of the hyperserial calculus on hyperseries (see Sec-
tion 7.1.1), and ultimately on surreal numbers (see Result 1.2 in the Conclusion).
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Chapter 3

Transseries

We now introduce certain well-based series, expanding power series with formal exponential and
logarithm symbols ex and logx, called transseries. As an introduction to hyperseries and as ground
work to study surreal numbers, we will recall part of Schmeling's work [92, Chapters 2, 4 and 5].
We introduce a looser notion of transseries field than Schmeling's in Section 3.1. In Section 3.2, we
study exponentiation on transserial fields. In Section 3.3, we define a transserial calculus (Tlog;@ ;�)
on transserial fields.

3.1 Transserial fields

In this section, we fix a non-trivial ordered Abelian group M, and we set T :=R[[M]]. We will
see how to define a logarithm function on T> by relying on its formal Taylor series. Consider the
following power series in R[[z]]:

L :=
X
k2N>

(¡1)k¡1
k

zk and E :=
X
k2N

1
k!
zk

Note that L~(")2T� and E~(")2 1+T� for all "� 1. The functions L~ and E~ are respectively the
restricted analytic functions " 7! log(1+ ") and " 7! exp(") on T� (see Section 2.4). As a corollary
of Proposition 2.4.2, we have

E~(L~("))= 1+ " and L~(E~(")¡ 1)= " (3.1.1)

for all "� 1.

Lemma 3.1.1. [92, Example 2.1.3] The function E~ is strictly increasing on T�.

Proof. Let "; �� 1 with "<�. We have

E~(")¡E~(�)= "¡ �+ 1
2
("2¡ �2)+ � � �:

For all k > 1, we have "k¡ �k=("¡ �) u where u := "k¡1+ "k¡2 �+ � � � + " �k¡2+ �k¡1� 1. Thus
"k¡ �k� "¡ �. We deduce that E~(")¡E~(�)� "¡ � > 0. �

Lemma 3.1.2. [92, Lemma 2.1.4] For all "; �� 1, we have

E~("+ �)=E~(")E~(�) and L~("+ �+ " �)=L~(")+L~(�).

Proof. Note that E(k)=E for all k 2N. By Proposition 2.2.8, we have

E~("+ �) = E+"g (�)

=
X
k2N

E(k)g (")
k!

�k

= E~(")
X
k2N

1
k!
�k

= E~(")E~(�):
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By (3.1.1), we have

E~(L~("+ �+ " �)) = 1+ "+ �+ " �
= (1+ ") (1+ �)
= E~(L~("))E~(L~(�))
= E~(L~(")+L~(�)):

By Lemma 3.1.1, we deduce that L~("+ �+ " �)=L~(")+L~(�). �

Lemma 3.1.3. For all "� 1, we have L~(")6 ".

Proof. Indeed, we have L~(")="¡"2
¡ 1
2
+�
�
where � :=

P
k>0

(¡1)k¡1

k+2
"k is infinitesimal. We deduce

that "2
¡ 1
2
+ �
�
> 0, so L~(")6 ". �

3.1.1 Well-based series with a logarithm

Definition 3.1.4. Let log: (T>;�)¡! (T;+) be a strictly increasing group morphism with

TF1. logm2T� for all m2M.

TF2. log s6 s¡ 1 for all s2T>.

TF3. log rm (1+ ")= logm+ log r+L~(").

Then we say that (T; log) is a transserial field, and that log is the logarithm for (T; log).

Remark 3.1.5. Since log is a group morphism, an equivalent version of TF3 is

8u2T>; u4 1=) log u= log u

where log is the restricted analytic function of Section 2.4.

Remark 3.1.6. This definition is similar to Schmeling's definition of transseries fields [92, Defini-
tion 1.1.2], except for the fact that Schmeling imposes a fourth axiom T4 which we do not impose.
Our definition is also a slightly stronger version of Ehrlich and Kaplan's notion of logarithmic Hahn
field [46, Definition 6.1].

We will write logn instead of log[n] for the partially defined n-fold iterate of log, so log0= IdT>

and logn+1= logn � log for all n2N.

Lemma 3.1.7. [92, Proposition 2.2.4(1)] Let (T; log) be a transserial field. For s2T>;�, we have
log s� s.

Proof. Let n2N. We have s>R so log s>R. By TF2, we have

1
2
log s6 log s¡n= log e¡n s6 e¡n s¡ 1< e¡n s:

So logm<R> s, that is, log s� s. Applying this to log s2T>;�, we obtain log2 s� log s, whence
log (log s)n=n log2 s< log s for all n2N. But then (log s)N<s, whence log s� s. �

Proposition 3.1.8. The function log:T>¡!T is analytic with

Conv(log)s=T�s= f� 2T : �� sg
and

log(k)(s)= (¡1)k¡1 (k¡ 1)! s¡k

for all s> 0.

Proof. Let s2T>. For k 2N, set ak;s := (¡1)k¡1 (k¡ 1)! s¡k. For �� s and k > 0, we have

ak;s �k

k!
= (¡1)k¡1

k

�
�
s

�
k

:
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Since /� s� 1, the family (ak;s �k)k2N> is well-based with
P
k2N>

ak;s �k

k!
=L~
�
�

s

�
. By TF3, we have

log(s+ �)= log
�
s

�
1+ �

s

��
= log s+L~

�
�
s

�
:

That is, the function log is analytic at s with logs= log(s)+L� (s¡1 z) and Conv(log)s�f� 2T :
� � sg. Note that 1 2/ Conv(L) so s 2/ Conv(logs). It follows since Conv(log)s is �-initial that

Conv(log)s= f� 2T : �� sg. By Proposition 2.3.6, for each k2N, the series log(k)(s)
k!

is the (k+1)-
th coefficient ak;s

k!
of logs. So log(k)(s)= ak;s=(¡1)k¡1 (k¡ 1)! s¡k. �

Proposition 3.1.9. Let (U; log) be a transserial field and let 	:T¡!U be a strongly linear and
strictly increasing morphism of rings with 	(logm)= log	(m) for all m2M. Then we have

	(log s)= log	(s)

for all s2T>.

Proof. Let s 2T> and write s= r ds (1 + ") where r 2R> and "� 1. Since 	 is R-linear and
strictly increasing, we have 	(r (1+ "))4 1. Lemma 2.4.1 yields

	(log(r (1+ ")))=	(log(r (1+ ")))= log	(r (1+ "))= log	(r (1+ ")):

It follows that

	(log s)=	(log ds)+	(log(r (1+ ")))= log	(ds)+ log	(r (1+ "))= log	(s): �

3.1.2 Extending partial logarithms
Defining a logarithm on R[[M]] reduces to defining its restriction to M, as we next show. All our
results here can be found in [14].

Proposition 3.1.10. Let L1:M¡!T� be a strictly increasing group morphism. There is a unique
extension of L1 into a strictly increasing group morphism

log: (T>;�)¡! (T;+)

which extends the natural logarithm on R> and with

log(1+ ")=L~(") for all "2T�:

For s2T>, writing s= r ds (1+ ") for r2R> and "2T�, we have

log s=L1(ds)+ log r+L~("): (3.1.2)

Proof. Note that each s 2T> can be written as s= r ds (1 + ") in a unique way. Thus (3.1.2)
yields a well-defined function log:T>¡!T. We also deduce that any extension of L1 satisfying the
conditions must be given by (3.1.2). So it remains only to prove that log satisfies the conditions.
Let s= r ds (1+ ") and t= d dt (1+ �) be as above. We have s t=(r d) dst (1+u) where r d> 0 and
u := "+ �+ " �� 1. Recall that L~(u)=L~(")+L~(�) by Lemma 3.1.2. Since dst= ds dt, we have

log(s t) = L1(ds dt)+ log(r d)+L~(u)
= L1(ds)+L1(dt)+ log(r)+ log(d)+L~(")+L~(�)
= log s+ log t:

To see that log is order-preserving, we need only check that log s>0 for all s>1. If m=r=1, then
">0 and we have log s=L~(")�">0. If m=1 and r>1, then we have logs= log r+L~(")� log r>0,
since L~(")� 1. If m� 1, we have log s� logm>R, so log s> 0. �

Proposition 3.1.11. Under the same conditions, for all s2T>, we have log s2T� if and only
if s is a monomial.
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Proof. Writing s= r ds (1+ ") and log s=L1(ds)+ log r+L~(") as in (3.1.2), we have

(L1(ds); log r; L~("))2T��R�T�:

Therefore supp log s= suppL1(ds)t supp log rt suppL~("), and supp log s� 1 if and only if log r=
L~(")=0. Note that log r=0() r=1. By Lemma 3.1.1, we have L~(")=0()E~(L~("))=1+ "=1.
So s2T� if and only if s=1 ds (1+ 0), i.e. if and only if s is a monomial. �

Proposition 3.1.12. Assume that L1 satisfies the conditions of Proposition 3.1.10, and that
moreover L1(m)�m for all m2M�. Then we have log s6 s¡ 1 for all s2T>.

Proof. Let s= rm (1 + ")2T>, where r 2R>, m := ds, and "2T�. If m= 1, then logm=0, so
log s= log r+L~("). If r=1, then log s=L~(")6 "= s¡1. If r > 1, then log r < (r¡ 1) (1+ "), since
log r; r¡ 12R, "� 1, and log r <r¡ 1. Thus

log s< (r¡ 1) (1+ ")+L~(")= r (1+ ")¡ (1+ ")+L~(")6 r (1+ ")¡ 1= s¡ 1:

If m�1, then logm=L1(m)�m and logs¡ logm= log r+L~(")41. Hence log s�s and logs6s¡1.
If m� 1, then logm=¡L1(m¡1) is negative and infinite, so log s<¡16 s¡ 1. �

Corollary 3.1.13. Given L1 as in Proposition 3.1.12, the structure (T; log) is a transserial
field. Conversely, given a transserial field (T; log), the function log �M satisfies the hypotheses of
Proposition 3.1.12.

3.1.3 Logarithmic transseries
Let us construct a transserial field. Recall that in the field R[[xZ]] of formal Laurent series, we
have s ¡̀a t whenever s and t are not finite. As a consequence of Lemma 3.1.7, there is no structure
of transserial field on R[[xZ]]. In fact, iterating Lemma 3.1.7 starting from a monomial m2M�,
we have

m� dlogm� dlogdlogm� � � �;

which means that the ordered group M must have infinite rank in the sense of [4, Section 2.4, p.
85]. The smallest linearly ordered Abelian group with infinite rank is the lexicographically ordered
group

Z(N)= ff 2ZN :9n2N;8k >n; f(k)= 0g;

where �>0 if and only if f =/ 0 and f(n0)> 0 for n0=min fn2N : f(n)=/ 0g. The additive law is
the pointwise sum. Thus (Z(N);+;0;<) is naturally contained in the Hahn product group H[N�;Z]
of Example 1.1.7.

We will consider a multiplicative copy (Llog; �;1;�) of (Z(N);+;0;<). Any element l=(ln)n2N2
Llog is a formal product

l

Y
n2N

xn
ln

whose support is finite, and where each xn
ln corresponds to ln�n2H[N�;Z]. Thus for l;m2Mlog,

we have l m=
Q
n2Nxn

ln+mn. We set Tlog :=R[[Llog]], which is thus a field of well-based series.
Let us next define a strictly increasing group morphism L1:Mlog¡! (Tlog)� with L1(m)�m,

and in fact L1(m)�m, for all m2Mlog
� . Since the group Mlog is generated by the set fxn :n2Ng

and L1 is a group morphism, it is sufficient and necessary to define L1 at each xn;n2N, and then set

L1(l)=
X
n2N

lnL1(xn);

for each l2Mlog (recall that the sum above has finite support).
The condition L1(xn)�xn implies that the dominant monomial l of L1(xn) must satisfy lk=0

for all k6n. Thus l=Qk=n+1
+1 xn

ln. It is then simplest to set l=L1(xn) :=xn+1. Let us check that
the function

L1: l 7¡!
X
n2N

lnxn+1 (3.1.3)
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satisfies the desired conditions. Note thatTlog is a proper extension of the field of purely logarithmic
transseries studied for instance in [52].

Proposition 3.1.14. The function L1 defined above satisfies the conditions of Proposition 3.1.12.

Proof. The function L1 is a group morphism by definition. It is clearly strictly increasing by
definition of the lexicographic order on Mlog and Tlog. We have L1(Mlog)� (Tlog)� since each xn;
n2N is infinite. Finally, for l2Mlog with l� 1, setting n0=min fn2N : ln=/ 0g, we have

L1(l)=
X
n>n0

lnxn+1�xn0+1�xn:

This concludes the proof. �

With Corollary 3.1.13, we thus obtain a transserial field (Tlog; log) which we call the field of
logarithmic transseries. Note that writing x :=x0, we have

l=
Y
n2N

(lognx)ln

for all l2Mlog.

3.2 Exponentiation

Given a transserial field (T; log), we now study the existence and properties of a functional inverse
exp of log:T>¡!T. As in [60, 92, 72], we will see that T can be extended into a transserial field
on which exp is totally defined.

3.2.1 The exponential
The logarithm log:T>¡!T is strictly increasing, hence injective. We write exp for the partially
defined functional left inverse of log, called the exponential on T. That is, we have exp(log s)= s
for all s2T>. By Proposition 3.1.11 and Corollary 3.1.13, we have T�\ logT>= logM. We will
sometimes write exp(') :=e' when '2 logM. In other words the partial function ' 7! e' is the
restriction of exp to purely large series in T�.

Proposition 3.2.1. [92, Proposition 2.3.8] For s2T>, we have s2 logT> if and only if s�2 logM.
Thus, the function log:T>¡!T is bijective if and only if T�� logM.

Proof. Let s2T> and write s= s�+ r+ s� where r2R and s�2T�. We have r+ s�2 logT>,
since exp(r+s�)=exp(r)E(s�)2T>. Since logT> is an additive subgroup ofT, we have s2 logT>

if and only if s� 2 logT>. We deduce by the arguments above that s 2 logT> if and only if
s�2 logM. �

Let '2 logM. For all "� 1 and r 2R, the previous proposition gives us

exp('+ r+ ")= exp(r) e'
 X
k2N

1
k!
"k

!
; (3.2.1)

In fact, this can be extended. Indeed we have R+T�=L~(T>\T4)� log(T>). Since exp is a
morphism on its domain, we deduce that for s2 logT>, r2R and "� 1, we have

exp(s+ r+ ")= exp(r) exp(s)

 X
k2N

1
k!
"k

!
: (3.2.2)

As in Proposition 3.1.8, we see that exp is analytic at s+ r with Conv(exp)s+r=T� and

exps+r=
X
k2N

exp(r+ s)
k!

zk:
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We say that the exponential is total on T if log:T>¡!T is surjective, hence if exp:T¡!T>

is totally defined. In that case, we expand the Lan-structure Tan of Section 2.4.2 into an Lan;exp-
structure Tan;exp by interpreting exp as the exponential function and log as the logarithm extended
to T by setting log(s) = 0 for all s6 0. Since M= exp(logM) = exp(Q logM) =MQ is divisible,
the field T must be real-closed. By [68] (see also [60, Proposition 2.2]), any transserial field with
a total exponential is a proper class.

Remark 3.2.2. Here we note that the field TLE of log-exp transseries, which has a total exponen-
tial and is set-sized, is not a transserial field. Nor is the field T of purely logarithmic transseries
studied in particular by Allen Gehret [52]. In order to include such model theoretically interesting
fields, a suggestion of Elliot Kaplan is to allow among fields of transseries those which can be written
as unions of fields of well-based series within a transserial field, as long as log or exp turn out to be
defined on the union. For instance, the field TLE of logarithmic transseries is a directed union of
fields of well-based series Tm;n where the exponential induces a strictly increasing morphism exp:
Tm;n ,! (Tm;n+1)>0 for all m;n2N, whence TLE itself is closed under exp. Since we are mainly
focused on constructing the ambient transserial and hyperserial fields, we will not consider such
general notions.

Proposition 3.2.3. Assume that log:T> ¡!T is surjective. Then Tan;exp is an elementary
extension of Ran;exp.

Proof. By applying (3.2.1) for '= "=0, we see that exp extends the real exponential function.
Recall that log(s)6 s¡1 for all s2T>. We claim that exp(s)>sn for all n2N and s>n2. Indeed
let s2T and n2N with s>n2. First assume that s4 1. So s= r+ s� for a certain r 2R>0 and
a s� 2T�. We have r> n2 so exp(r)> rn so exp(s)� exp(r)> rn� sn so exp(s)> sn. Assume

now that s� 1. We have exp
�

1

n+1
s
�
� s so exp(s)>sn. This proves that exp satisfies Ressayre's

axioms of [85]. Finally T is real-closed. By [34, Corollary 4.6], we deduce that Ran;exp4Tan;exp. �

3.2.2 Exponential closure
Any transserial field T=R[[M]] with logarithm log is contained in a minimal transserial field T~
on which the exponential is totally defined (see [92, Sections 2.3.2�2.3.4], where Schmeling's proof
applies to transserial fields independently of the validity of the axiom T4). We will not study
such extensions in this chapter, for we will prove their existence in the case of hyperserial fields
in Section 6.1. However, we briefly state the definition for the reader's information. The following
denotations are not binding since we will consider other constructions of exponential extensions
later.

The field T~ is defined as an increasing union T~ =
S
�2OnT� of transserial fields T�=R[[M�]],

with partial logarithm L�;1:M�¡! (T�)�. We have M0 :=M and L0;1= log �M. Given �2On
such that each M� ; � <� is defined, there are two cases.

� If �= �+1 for a certain �, then M� is a multiplicative copy M�=e(T�)� of ((T�)�;+;<),
and L�;1(e') := ' for all ' 2 (T�)�. The inclusion M� �M� is given by M� ¡!M�;
m 7! eL�;1(m).

� If � is a non-zero limit, then M� :=
S
�<�M� and L�;1=

S
�<�L�;1.

Note that setting M~ :=
S
�2OnM�, we have T=R[[M~ ]] by Lemma 1.1.9. It is easy to check

that L1e :=S�2OnL�;1 satisfies the conditions of Proposition 3.1.10, and that L1e (M~ )=T�, so T~ ,
equipped with the logarithm extending L1e , is a transserial field with total exponential.

3.3 Transserial calculus

We now define a derivation and a composition law on logarithmic transseries. The results in this
section are not new and the reader can find more details in [39, 60, 92, 36].
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3.3.1 Transserial derivations
We fix a transserial field (T; log). A transserial derivation on T is a strongly linear function @:
T¡!T which satisfies the Leibniz rule

8s; t2T; (@(s t)= @(s) t+ s @(t))

and is compatible with the logarithm, i.e. satisfies

8s2T>;

�
@(log s)= @(s)

s

�
:

We next give a strengthening of [92, Proposition 4.1.5]:

Proposition 3.3.1. Let @:T¡!T be a strongly linear function with

@(logm)= @(m)
m

for all m2M.

Then @ is a transserial derivation on T.

Proof. We first prove that @ satisfies the Leibniz rule. Consider m; n2M. We have

@(mn)
mn

=@(logmn)= @(logm)+ @(log n)= @(m)
m

+ @(n)
n

:

We deduce that @(mn)= @(m) n+m@(n). Now let s; t2T. We have

@(s t) = @

 X
m;n

sm tnmn

!
=
X
m;n

sm tn @(mn)

=
X
m;n

sm tn @(m) n+
X
m;n

sm tnm @(n)

=
�X

m

sm @(m)
��X

n

tn n
�
+
�X

m

smm

��X
n

tn @(n)
�

= @(s) t+ s @(t):

So the Leibniz rule holds for @. We deduce that we have @(tk+1)=k@(t) tk for all t2T and k2N.
Now let t2T> and write t= r dt (1+ ") where r2R> and "� 1. Note that

@(t)
t

= r @(dt) (1+ ")+ r dt @(")
r dt (1+ ")

= @(dt)
dt

+ @(")
(1+ ")

:

Recall that log t= log dt+ log r+
P
k2N

(¡1)k

k+1
"k+1 by TF3, so

@(log t) = @(log dt)+ @

 X
k2N

(¡1)k
k+1

"k+1

!

= @(dt)
dt

+
X
k2N

(¡1)k
k+1

@("k+1)

= @(dt)
dt

+ @(")
X
k2N

(¡1)k "k

= @(dt)
dt

+ @(")
(1+ ")

= @(t)
t
:

Thus @ is a transserial derivation on T. �
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We next apply this to define a transserial derivation on the field Tlog of logarithmic transseries.
Consider the function @:Mlog¡!Tlog given by

8l2Mlog; @(l) := l
X
n2N

ln
1Q

k6n lognx
:

In particular

@(lognx)=
1Q

k<n lognx

for all n 2N. Note that the set W :=
�

1Q
k6n lognx

: n 2N

�
is well-based, with supp @ =W. We

deduce with Propositions 1.3.6 and 1.3.1 that @ extends uniquely into a strongly linear function
Tlog¡!Tlog which we will still denote @.

Proposition 3.3.2. [92, Section 4.1.2] The function @:Tlog¡!Tlog is a transserial derivation on
Tlog.

Proof. Given l2Mlog, we have

@(l)
l
=
X
n2N

ln
1Q

k6n lognx
=
X
n2N

ln @(logn+1 x)= @
 X
n2N

ln logn+1x

!
= @(log l):

By Proposition 3.3.1, we deduce that @ is a transserial derivation on Tlog. �

3.3.2 A composition law
Let (T; log) be a transserial field. We next define a function �:Tlog�T>;�¡!T which will be our
first example of composition law on fields of transseries. Again our results are slight generalizations
(we do not impose Schmeling's axiom T4) of results in [92, Section 5.1.2].

Fix s2T>;�. For l2Mlog, we set

l � s :=
Y
n2N

(logn s)ln; (3.3.1)

and write 4s for the map 4s:Mlog¡!Tlog; l 7! l � s.

Proposition 3.3.3. The mapping 4s is well-based.

Proof. We will use Proposition 1.3.7. Since s >R, we have logn s > 0 for all n 2N, whence
4s(Mlog)> 0 by (3.3.1). Consider a logarithmic transmonomial l2Mlog, and set

t := log(4s(l))=
X
n2N

ln logn+1 s

And write t= t�+ t�+ t� as in (1.2.3). By (3.2.1), we have

4s(l)= exp(t)= exp(t�) et�
X
k2N

1
k!
(t�)k;

with et�= dexp(t)= d4s(l). Thus supp4s(l)� d4s(l) � (supp t�)1 where the set (supp t�)1 is well-
based since t�� 1. We deduce that supp�4s� (supp t�)1 is well-based. Note that 4s preserves
products, so it suffices to prove that 4s(l)�1 whenever l�1 in order to show that d�4s is strictly
�-increasing. Assume that l� 1. Then

log4s(l)= ln0 logn0(s)+ ln0+1 logn0+1(s)+ � � �

where n0=min supp l and ln0> 0. By Lemma 3.1.7, we have logn0(s)� logn0+1(s)� � � �, whence
logn0(s)� logn0+1(s)� � � �, so log4s(l)� ln0 logn0(s) is positive infinite. We deduce since exp is
strictly increasing that that 4s(l)� 1. By Proposition 1.3.7, the map 4s is well-based. �
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Note that by definition, the map4s preserves products. Thus by Proposition 1.3.2, the mapping
4s extends into a strongly linear morphism of ordered rings Tlog¡!T. Finally, it is easy to see
that4s satisfies the conditions of Proposition 3.1.9. In summary, the function �:Tlog�T>;�¡!T
satisfies the following axioms:

LT1. For all t2T>;�, the function Tlog¡!T;s 7!s� t is a strongly linear morphism of ordered
rings.

LT2. For all s2Tlog
> and t2T>;�, we have (log s) � t= log(s � t).

LT3. For all t2T>;�, we have x � t= t.
Taking T=Tlog, this yields an internal composition law �:Tlog�Tlog

>;�¡!Tlog. It will follow from
Section 7.3.1 that � is, among other properties, associative, i.e. that we have

(s � t) �u= s� (t � u)

for all s2Tlog, t2Tlog
>;� and u2Tlog

>;�.
In fact, it is known that the operations @ and � can be further extended respectively into

a transserial derivation @ and a composition law �:T�T>;�¡!T satisfying LT1, LT2 and
LT3, where T is a transserial field with a total exponential. In the case when T =Tlogg , the
extensions are unique. See [60, Theorem 2.3, Corollary 2.5 and Proposition 2.6] for an example, [92,
Theorems 4.4.2 and 5.3.2] for general examples in the cases of transseries fields, [70, Theorem 5.2]
for the extension of @ in general, and [18, Theorem 6.30] and [19, Theorem 6.3] in the case of surreal
numbers. Hyperseries will allow us to extend this type of result to even larger transserial fields.
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Part II
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Hyperseries arise

Part II is dedicated to the introduction of one of the two main objects of this thesis: hyperserial
fields. Those fields are to hyperseries what transserial fields are to transseries. It is possible to
work with hyperseries as if they were a peculiar kind of transseries, as Schmeling's work [92,
Chapters 7�9] illustrates. Nevertheless, it becomes necessary, in order to understand the precise
asymptotics of hyperseries compared to transseries and to be able to construe surreal numbers
as hyperseries, to extend some of Schmeling and van der Hoeven's notions in the specific context
of hyperexponential and hyperlogarithmic functions. The move from transseries to hyperseries is
multi-directional, as it affects several features of the behavior of transseries. New asymptotics must
be introduced that reflect that of very fast or slowly growing (e.g. sublogarithmic or transexpo-
nential) functions, new formulas must be derived for how those functions interact with derivations
and compositions in the formal realm, and new ways must be found to represent hyperseries. The
ideas supporting those moves are to be found in substance in the existing literature. This includes
inequalities involving transexponential or sublogarithmic growth rates [57, 66, 88, 25, 39, 40] and
methods to construct fields of formal series mimicking those growth rates [39, 92, 33]. It will be
our goal to gather those insights and to implement them in the coherent setting of hyperserial fields.

From monomials to log-atomic monomials
In fields of well-based series, and perhaps in an easier and more spectacular way in the field of
surreal numbers, �simplest� elements in each exp-log class (see Section 1.4) can be picked in a
canonical way. This is the purpose of log-atomic monomials. Given a transserial field (T; log),
Van der Hoeven defined log-atomic series as infinite monomials m for which each lognm for n2N
is also a monomial. By definition, each exp-log class in T>;� may contain at most one log-atomic
series. In certain cases, each class contains exactly one log-atomic series. It was shown by Schmeling
[92, Section 7.3.4] that in that case, defining a formal version L! of log! as a function on T>;�

reduces to defining L! at log-atomic series. In that sense and in view of the definition of log from
its definition at monomials (see (3.1.2)), log-atomic series play the same role for L! as monomials
do for the logarithm.

Write E! for the partially defined left inverse of L!. Likewise, we can pick, in each convex hull
of s� 1

lognE!(s)
for s 2R>;�, the simplest (in fact, the shortest, see Proposition 5.3.7) series ',

called an !-truncated series. Defining E! on T>;� reduces to defining it at each !-truncated series.
In view of the definition of exp from its value at purely large series (see (3.2.1)), !-truncated series
play the same role for L! as purely large series do for exp. We will see that the correspondences

8s2T>; log(ds)= (log s)�; 8t2T; dexp(t)= exp(t�)

extend, once appropriately formulated, to the hyperserial case (see Corollaries 5.3.10 and 5.3.12).
Defining fields of hyperseries containing large Hardy fields with composition requires to be able

to describe, in a precise manner, the structures of log-atomic and !-truncated series (and their
generalization to larger ordinals than !). This will occupy us for most of Chapters 4 and 5.

From power series to hyperseries
The largest field of hyperseries that we will construct in Part II will be denoted L~ and be called
the field of finitely nested hyperseries. It can be obtained by closing van den Dries, van der Hoeven
and Kaplan's field L of logarithmic hyperseries [33] under hyperexponential functions. We write
` for the formal -th iterate of the logarithm for any  2On. So the natural inclusion Tlog¡!L

sends x to `0 and lognx to `n for each n<!. Conversely e
`0 denotes the formal functional inverse

of ` (we will intrduce the notation e
' for more general hyperseries ' in Chapter 6). There are

conceptually simple routes that go from regular power series

p=
X
k=0

+1

pk `0
¡k
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to convoluted hyperseries such as the element

f :=
X
v2Nn

v! e¡v[0] `0
p

¡v[1] `1
p

¡� � �
 X
n;p2N

`v! � e!2
2¡n`!¡p`!!

!
(1)

of L~ . We can indeed build up to f within L~ by starting with the simple power series `0, proceeding
as in the following sequence of steps, where �6!! is an ordinal:

Series Type of series Class Operations Result
`0 power series R[[`0]] ¡1 `0

¡1

`0
¡1 formal Laurent series R[[`0Z]]

R
`1

`0
¡1; `1

¡1 formal Laurent series R[[`0Z]] � `0
¡1 `1

¡1

`0
¡1 `1

¡1 logarithmic transseries Tlog
R

`2

��� ��� ��� ��� ���
`n; n<! logarithmic transseries Tlog inv en

`0

`0; `1; : : : logarithmic transseries Tlog
P P

n<! `n

e1
`0;¡

P
n<! `n log-exp, logarithmic transseries TLE;Tlog � 1Q

n<!
`n

1Q
n<!

`n
general transseries (Tlog)(<1)

R
`!

��� ��� ��� ��� ���
`0; : : : ; ` ;  <� logarithmic hyperseries L

P P
<� `

e1
`0;¡

P
<� ` finitely nested hyperseries L~ � 1Q

<�
`

1Q
<�

`
logarithmic hyperseries L

R
`�

`� logarithmic hyperseries L inv e�
`0

r 2R; ` ; e
`0;  <!! finitely nested hyperseries L~

P
;�; � f

From skeletons to hyperserial calculi

In order to construct L~ and similar fields, we rely on analytic calculi (�T; @ ; �) on fields of well-
based series T. That is, we work with structures

�T:F�T>;� ¡! T;

�:F�F>;� ¡! F

@:F ¡! F;

where (F; @; �) should contain formal counterparts ` ; e ;  2On to hyperlogarithmic or hyper-
exponential functions, and which satisfy formal versions of the aforementioned differential and
functional equations. As in the case of transserial fields, it is easier to work with hyperlogarithms
first and define hyperexponential extensions afterwards, in order to take hyperexponentials into
account. For instance, differentiating Abel's equation

`!¡ 1= `! � `1
gives a tentative equation

`!
0 = `!

0 � `1
`0

= `!
0 � `2
`0 `1

= : : :

=
? 1

`0 `1 `2 � � �
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which suggests that `! should be differentially algebraic over a transserial field containing Tlog and
closed under certain transfinite products (which are nothing more than exponentials transfinite
sums). Furthermore, since the formal inverse e�

`0 of `� should have derivative (e�
`0)0 = 1

`�
0 � e�`0,

it is necessary when working with fields of hyperseries T equipped with hyperexponentials and
derivations to have at hand a composition law �:F�T>;�¡!T where F should contain all
derivatives `�0 for �2On.

This line of thought motivated the definition of the field L of logarithmic hyperseries by van
den Dries, van der Hoeven and Kaplan [33] as a candidate for F. Indeed L is the field of well-based
series over R whose monomial group is that of formal transfinite products (i.e. multiplicatively
denoted Hahn products) Y

<�

`
l, for �2On and (l)<�2R�

of the formal hyperlogarithmic terms `. We have

@(`�)=
1Q

<� `
and `!�+1 � `!�= `!�+1¡ 1

for all �2On.
Hyperserial fields will be fields of well-based series equipped with an external composition law

�T:L�T>;�¡!T. Our work in Part II is mostly contained in the pre-print [14] written with
Elliot Kaplan and Joris van der Hoeven, and we follow a similar route as that which we took in that
paper. In Section 2.5, we saw that the definition of the real-powered calculus R[[xR]]�T>;�¡!T
depended only on the existence of a well-behaved real powering operation R �M ¡!M. In
Section 3.3, we saw that the definition of the logarithmic transserial calculus Tlog�T>;�¡!T
depended only on the existence of a well-behaved partial logarithm function L1:M¡!T�. Here
in Part II, logarithmic hyperseries L will play the roles played by real-powered series R[[xR]] and
logarithmic transseries Tlog in Part I. In Chapter 7, we will give likewise designed conditions on
a reduced calculus, i.e. on a list of partial hyperlogarithms L!�:M!�¡!T where each M!�;
� 2On is a (rather small) subclass of M. For �= 1, this is the class of log-atomic monomials
mentioned earlier. The reduced structure (T; (L!�)�2On) is called a hyperserial skeleton. We will
then move on to study hyperexponentials on T (Chapter 5), and show that T enjoys a closure
under hyperexponentials (Chapter 6). Finally, in Chapter 7, we will define hyperserial fields, prove
that they do arise from hyperserial skeletons, and give examples.
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Chapter 4

Hyperserial skeletons

Hyperserial fields, as we will see in more detail in Chapter 7, are fields of well-based series T
equipped with a calculus of monotone and analytic hyperlogarithmic functions, i.e. with a com-
position law

�:L�T>;�¡!T

where each logarithmic hyperseries f induces an analytic and monotone function

T>;�¡!T; s 7! f � s:

The defining axioms for hyperserial fields (see Section 4.2 and Chapter 7) are numerous and
involved. Furthermore, the existence of strongly linear maps L¡!T; f 7! f � s can be difficult to
prove because of the relative complexity of logarithmic hyperseries. Nonetheless, our task requires
us to work with several types of hyperserial fields. In order to simplify their definition, we decided
to look at �reduced� calculi. Instead of a full composition law �:L�T>;�¡!T, one works with a
partial law L�M¡!T where L�L andM�T>;� are subclasses which represent �small� portions
of their ambient field. That is, we will focus on the action of certain logarithmic hyperseries f 2L,
namely, the hyperlogarithmic terms `!�; �2On on certain monomials a2M�, which we call L<!�-
atomic. The structure T together with the list of partial functions a 7! `!� � a will be called the
skeleton of (T; �).

Conversely, given a list of partial functions L!�; �2On on a field of well-based series T, we are
looking for conditions so that there exist a composition law �:L�T>;�¡!T for which each L!�
is the previously described partial function a 7! `!� � a, and for which (T; �) is a hyperserial field.
This search motivates the axioms to be found in Section 4.2. Sections 4.3 and 4.4 are dedicated to
the recovery of the composition law from those partial functions.

This method will be applied prominently twice in the thesis: when defining the hyperserial
structure of (hyper)exponential extensions of hyperserial fields (Chapter 6), and defining the hyper-
serial structure on surreal numbers (Chapter 12).

We will see in Chapter 7 that the method is sound, i.e. that under a condition of so-called
confluence (see Subsection 4.2.3), we can go from hyperserial fields to hyperserial skeletons, and
back.

4.1 Logarithmic hyperseries

A central object in our work is the field L of logarithmic hyperseries of [33], equipped with its
natural derivation @:L¡!L and composition law �:L�L>;�¡!L. Here, we recall its definition
and some of its properties.

4.1.1 Useful ordinal notations
If � is a successor ordinal, then we define �¡ to be the unique ordinal with �= �¡+1. If � is a
limit ordinal, then we define �¡ := �. For �=!�, we write �/! :=!�¡.

Recall that every ordinal  has a unique Cantor normal form

=
X
�2On

!� �
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where the set supp  := f!� : � 2On^ �=/ 0g is finite. So

=!�1 �1+ � � �+!�r �r
where r2N, �1;:::; �r2N> and �1;:::; �r2On with �1> ���>�r. The ordinals � with !�2 supp 
are called the exponents of the Cantor normal form and the integers �; �2 supp  its coefficients.
We write  <o � (resp. 6o �) if  < supp � (resp.  < (supp �)!), e.g.

!3+2!+3<o!4 <o !4 and
!2 2+! 6o !2:

We also define >!� (resp. >!�)to be the unique ordinal with !�6o >!� (resp. !�<o >!�) and
with = >!�+ � for some ��!� (resp. = >!�+ � for some �6!�+1). In other terms X

�2On
!� �

!
>!�

=
X
�>�

!� � and
 X
�2On

!� �

!
>!�

=
X
�>�

!� �:

Note that >!�=0 if and only if  <!�.

4.1.2 Definition and examples
The field of logarithmic hyperseries will be an extension of the field of logarithmic transseries,
where instead of formal products Y

n2N
xn
ln;

indexed by (a finite subset of) N we will consider for monomials formal productsY
<�

`
l:

indexed by arbitrary ordinals �. Indeed, for each ordinal , there is an element ` 2L which we
call the -th iterated hyperlogarithm, or formal hyperlogarithm of strength . Intuitively speaking,
we have

`0=x; `1= log x, `2= log log x, . . . , `!=L!(x), `!+1= logL!(x), etc.

Let � be an ordinal. We write L<� for the Hahn product group of (Z;+; <) to the power (�;3)
(note the reversed ordering 3). Thus elements of L<� are formal products

l=
Y
<�

`
l

with (l)<�2R� and where ` := � as per Section 1.1.3 is the monomial l with l=1 and l�=0
for all � <� with �=/ . We recall that L<� is ordered by setting l�1 if l>0 for some  <� with
l�=0 for all � < . We also have a real power operation on L<� given by setting Y

<�

`
l

!r
:=
Y
<�

`
rl

for r2R. This operation extends to all of L<� as described in Section 2.5.
We call L<� :=R[[L<�]] the field of logarithmic hyperseries of strength �. If �;  are ordinals

with  < �6�, then we let [; �) denote the interval f�2On : 6 �< �g and we let L[;�) denote
the subgroup

fl2L<� : l�=0 whenever �2 [; �)g:

As in [33], we write L[;�) :=R[[L[;�)]], L :=
S
�2OnL<� and

L :=R[[L]] =
[

�2On
L<�:

We will sometimes write L<On=L and L<On=L. We have natural inclusions L[;�)�L<��L,
which give natural inclusions L[;�)�L<��L.
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4.1.3 Derivation on L

The field L is equipped with a strongly linear derivation @:L¡!L. Given �2On and a logarithmic
hypermonomial l2L<�, we define the derivation of l by

@ l :=
 X
<�

l (`)y
!
l; (4.1.1)

where (`)y=
Q
�6 `�

¡1 2 L<�. Note that @` = (`)y ` =
Q
�< `�

¡1. For f 2 L and k 2N, we

sometimes write f (k) := @k f . Equipped with its derivation, the field L is an H-field with small
derivation, so for f ; g 2L, we have

f >R=) f 0> 0; f � 1=) f 0� 1; f � g�/ 1=) f 0� g 0:

Moreover, supp @4 `0¡1 is well-based, which implies the following variant of [33, Lemma 2.13]:

Lemma 4.1.1. Let �=!�, let T=R[[M]] be a field of well-based series, and let �:L<�¡!T be
a strongly linear field embedding. For f 2L<� and s2T with s��(`0), the family (�(f (n))sn)n2N
is well-based. Moreover, the map 	:L<�¡!T; f 7!

P
n2N

�(f(n))

n!
sn is a strongly linear ordered

field embedding.

Proof. Since supp @4 `0¡1 is well-based and � is a strongly linear field embedding, the set

S :=
[

l2supp�@
supp�(l)4�(`0)¡1

is well-based. Thus S � (supp s) is well-based. Since s��(`0), we have S � (supp s)� 1. Let f 2L.
For each n2N>, we have

supp (�(f (n)) sn) � (supp�(f)) � (S � (supp s))n:

Since supp�(f) is well-based and S � (supp s)�1, it follows that (�(f (n))sn)n2N is well-based and
that the map 	 is well-defined and strongly linear. For all f ; g 2L<�, we also have

X
n2N

�((f g)(n))
n!

sn=
X
n2N

X
i+j=n

�(f (i))�(g(j))
i!

sn=

 X
i2N

�(f (i))
i!

si

!0@X
j2N

�(f (j))
j!

sj

1A;
which shows that	 preserves multiplication. Finally	 is strictly increasing by Proposition 2.5.3. �

4.1.4 Composition on L

In addition to its derivation, the field L comes equipped with a composition law �:L�L>;�¡!L
which is unique to satisfy the following list of properties.

For g 2L>;�, the map �g:L!L; f 7! f � g is a strongly linear embedding of ordered fields. As
a consequence this map preserves the relations < and � [33, Lemma 6.6].

For f 2L and g; h2L>;�, we have f � (g �h)= (f � g) �h [33, Proposition 7.14].
For g 2L>;� and r2R, we have `0r � g= gr [33, Corollary 7.5].
For g; h2L>;� and r2R>, we have `1 � (gh)= `1 � g+ `1 �h and `1 � (rh)= log r+ `1 �h [33,

Section 1.4].
For ordinals �6o �, we have `� � `�= `�+� [33, Corollary 5.11].
For each successor ordinal �, we have `!� � `!�¡= `!�¡ 1 [33, Lemma 5.8].
The constant term of `!� � `! vanishes if �>  is a limit ordinal [33, Lemma 5.8].
For f ; h2L and g 2L>;� with h� g, the family ((f (k) � g)hk)k2N is well-based, with

f � (g+h) =
X
k2N

f (k) � g
k!

hk: [33, Proposition 8.1]

By Corollary 2.3.7, the last property implies that each logarithmic hyperseries acts as an analytic
function on L>;�, and that the derivation f 7! f 0 corresponds to the differentiation of Section 2.1.2.

4.1 Logarithmic hyperseries 85



The uniqueness follows from [33, Theorem 1.3]. By Proposition 2.1.3, the derivation also satisfies
the chain rule: for all f 2L and g 2L>;�, we have

(f � g)0 = (f 0 � g) g 0: [33, Proposition 7.8]

For �=!�, the unique composition � from above restricts to a composition L<��L<�
>;�¡!L<�.

For  <�, the map �`:L<�¡!L<� defined by �`(f) := f � ` is a strongly linear field embedding
with image L[;�) by [33, Lemma 5.13]. Accordingly, for g 2L[;�), we let g" denote the unique
series in L<� with g" � ` = g. Note that `!�+1

"!� = `!�+1+ 1 for all � and that, more generally,
`!�+1
"!�n+= `!�+1

" +n for  <!�+1 and n2N. For �<� and f 2L[!�+1;�) we have

f � `!� =
X
k2N

(¡1)k
k!

�k(f) = e¡� f (4.1.2)

where � is the derivation 1

`
!�+1
0 @ on L<� (see [33, Section 5.1]). Let R(f) :=

P
k2N>

(¡1)k

k!
�k(f).

Then R:L[!�+1;�)¡!L[!�+1;�) is strongly linear and R(f)� f , so, by [33, Lemma 2.2],

f"!
�
= f ¡R(f)+R2(f)¡ � � � = e� f: (4.1.3)

In particular,
f"!

�¡ f � ¡R(f) � 1
`!�+1
0 f 0: (4.1.4)

Lemma 4.1.2. For each �<�, each  < �6!�, and each k 2N>, we have (`�
")(k)2L<!�

� .

Proof. Since L<!� is closed under taking derivatives and the derivation preserves infinitesimals,
it suffices to prove the lemma for k=1. We have `�

" � `= `�, so

(`�
" � `)0=((`�

")0 � `) `0 = `�0 :

Since `0 ; `�0 2L<!� and `�0 � `0 , this yields (`�
")0 � ` 2L<!�

� . Since (`�
")0 � ` 2L[;�) as well, we

have (`�
")0 � ` 2 L[;!�)

� . Since the map f 7¡! f" maps L[;!�)
� onto L<!�

� , we conclude that

(`�
")0=((`�

")0 � `)" 2L<!�
� . �

4.2 Hyperserial skeletons
The definition of hyperserial skeletons involves several sets of axioms that we will now introduce.
All the results in this section can be found in [14, Section 3]. Here is a summary:

Section 4.2.1. The Domain of definition axioms state rules on the domain of partial functions
in hyperserial skeletons;

Section 4.2.2. A range of axioms constrain the way those functions interact with themselves
(Functional equations), the ordering (Asymptotics and Monotonicity), the structure of well-based
series (Regularity) and the partial exponential on L (Products);

Section 4.2.3. An axiom further is designed to impose that the hyperserial skeleton is sufficiently
rich to extend into a composition law;

Section 4.2.4. Shows that L is naturally equipped with a structure of hyperserial skeleton
respecting our axioms.

4.2.1 Domain of definition
We let T=R[[M]] be an ordered field of well-based series with real powers. Let � 6On be an
ordinal with � > 0. Given a structure (T; (L!�)�<�) where L!� are partial functions on T, we
consider the following axioms for �<�:

Domain of definition:
DD0. domL1=M�.

DD�. domL!�=

( T
�<� domL!� if � is a non-zero limitT
n2NdomL!�¡

�n if �= �¡+1.
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Suppose (T; (L!�)�<�) satisfies all axioms DD� for � < �. We set M!� := dom L!��M� for
all �<� and we extend this notation to the case when �=�, by setting

M!�=

( T
�<� domL!� if � is a non-zero limitT
n2NdomL!�¡

�n if �=�¡+1:
(4.2.1)

For �6�, we call M!� the class of L<!�-atomic elements. Note thatM!��M!� for all �6�6�.
We let L0 be the identity function with domL0 :=M� and, for � <!� with Cantor normal form
�=!1n1+ � � �+!knk, we define

L� :=L!k
�nk � � � � �L!1

�n1;

where f�n for n2N denotes the n-fold iterate of a given partial function f .
Here we understand that x2domL� whenever x2domL!1

�n1, L!1
�n1 x2domL!2

�n2, and so on until
L
!
k¡1
�nk¡1 � � � � �L!1

�n1 x2domL!k
�nk. Note that M! is the class of infinite monomials m2M� such hat

L1
�n(m) is an infinite monomial for all n2N. This generalizes as follows.

Proposition 4.2.1. For �6� with �> 0, we have

M!� = fs2T>;� : s2domL� and L�(s)2M�; for all � <!�g:

Proof. Given a2M!� and �<!�, let us first show by induction on � that L�(a) is defined and in
M�. This holds for �=0 by definition. Let 0<�6� and assume that the assertion holds strictly
below �. If �=0, then L0(a)= a2M�. Assume � > 0 and let � < �, n2N> and � <!� be such
that �=!�n+ �. We have a2M!�+1 so L!�n(a)2M!�+1 by definition. In particular L!�n(a)2M!�,
so our inductive hypothesis on � applied to � gives that L�(L!�n(a))=L�(a) is a monomial.

Given a 2T>;� such that a 2 dom L� and L�(a) 2M� for all � < !�, let us next show by
induction that a2M!�. This is clear if �=0. Let 1<�6� be such that the statement holds strictly
below �. If � is a successor, then for �<!�¡ and n2N, we have L!�¡n+�(a)=L�(L!�¡(a))2M�

so for all n2N; L!�¡n(a)2M!�¡, whence a2M!�. Assume now that � is a limit and let � < �.
Then L�(a)2M� for all � <!�, so the induction hypothesis yields a2M!�. We again conclude
that a2M!�. �

4.2.2 Axioms for the hyperlogarithms

Let T be an ordered field of well-based series with real powers, let � 6On, and let (L!�)�<� be
partial functions (L!�)�<� on T which satisfy the axioms DD� for all � < �. We consider the
following axioms, where � is an ordinal with 0< �<�.

Functional equations:
FE0. L1(mr)= r L1(m) and L1(mn)=L1(m)+L1(n) for all r2R> and all m; n2M1.
FE�. For a2M!�, we have L!�(L!�¡(a)) =L!�(a)¡ 1 if � is a successor (FE� holds trivially

if � is a limit).

Asymptotics:
A0. L1(m)�m for all m2M1.
A�. L!�(a)�L!�(a) for all � < � and all a2M!�.

Monotonicity:
M0. L1(m)> 0 for all m2M1.
M�. L!�(a)+L!�n(a)¡1<L!�(b)¡L!�n(b)¡1 for all � < �, n2N and a� b in M!�.

Regularity:

R0. suppL1(m)� 1 for all m2M1.

R�. suppL!�(a)�L!�n(a)¡1 for all � < �, n2N, and a2M!�.
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The axiom M� implies in particular that L!� is strictly increasing, hence injective. We define a
logarithm log:M¡!T as follows:

logm=

8>><>>:
L1(m) if m2M�

¡L1(m¡1) if m2M�

0 if m=1:
(4.2.2)

Then logM is an ordered R-vector subspace of T. By FE0, A0, M0 and R0, the structure (T; log)
is a transserial field. For �2On with 06 �6�, we consider the following axiom:

Infinite products:

P�.
P
<!� rL+1(a)2 logM for all a2M!� and all sequences (r)<!� of real numbers.

Remark 4.2.2. The axiom P� allows us to define the infinite product
Q
<!� L+1(a)

r for
a2M!� to be the unique monomial m2M with logm=

P
<!� rL+1(a), hence the name. Note

that the axiom P0 is a consequence of FE0: if FE0 holds, then for r 2R and m2M�, we have
r L1(m)= logmr.

Definition 4.2.3. Let �6On. A hyperserial skeleton of force � is a structure (T; (L!�)�<�)
where T is an ordered field of well-based series with real powers and (L!�)�<� are partial functions
on T which satisfy DD�, FE�, A�, M�, and R� for all �< �, as well as P� for all � 2On
with �6�.

Note that a hyperserial skeleton of force 0 is just a field of well-based series with real powers
and that (T; (L!�)�<On) is a hyperserial skeleton of force On if and only if (T; (L!�)�<�) is a
hyperserial skeleton of force � for each ordinal �. We will often write T to denote a hyperserial
skeleton (of force � 6On), where it is implied that for �< �, the term L!� refers to the !�-th
hyperlogarithm on T.

Definition 4.2.4. Let T=R[[M]] and U=R[[N]] be hyperserial skeletons of force �6On. We say
that a function �:T¡!U is an embedding of force � if it is a strongly linear strictly increasing
ring morphism with �(M!�)�N!� for each �6� such that

�(mr)=�(m)r for all m2M and r 2R;

and such that

�(L!�(a))=L!�(�(a)) for all �<� and a2M!�:

If �:T¡!U is a hyperserial embedding of force �, then we say that U is an extension of T
of force �. If T�U and IdS is an embedding of force �, then we say that T is a hyperserial
subskeleton of T of force �.

4.2.3 Confluence
In this subsection, let T =R[[M]] be a hyperserial skeleton of force � 6On and let � 2On
with �6 �. We inductively define the notion of �-confluence in conjunction with functions d!�:
T>;�¡!M!� and the classes E!�[s]�T>;�, as follows:

Definition 4.2.5. The field T is 0-confluent if M is not trivial. The function d1 maps each
s2T>;� to its dominant monomial ds. For each s2T>;�, we set

E1[s] := ft2T>;� : t� sg:

Let �2On with 0< �6�, let s2T>;�, and suppose T is �-confluent for all � < �.

� If � is a successor, then we define E!�[s] to be the class of series t with

(L!�¡ � d!�¡)�n(s)� (L!�¡ � d!�¡)�n(t)
for some n2N.
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� If � is a limit, then we define E!�[s] to be the class of series t with

L!�(d!�(s))�L!�(d!�(t))
for some � < �.

If each class E!�[s] contains an L<!�-atomic element, then we say that T is �-confluent. We will
see that each class E!�[s] contains at most one L<!�-atomic element, which we denote by d!�(s).

Remark 4.2.6. We note that �-confluence is somewhat stronger than the similar notion of
log!�-confluence from [92], due to the extra requirement that we have maps d!�.

Lemma 4.2.7. Let � 2On with �6 � and suppose T is �-confluent. Then the function d!� is
well-defined. Moreover, we have E!�[t]�E!�[t] for all �6 � and t2T>;�.

Proof. We prove this by induction on �, noticing that the case �=0 is trivial. Assume that this
is the case for all ordinals � < � and let s2T>;�. To see that d!� is well-defined, let a; b2M!�

with a; b2E!�[s]. We need to show that a= b.
Assume that � is a successor. Take m;n2N with

(L!�¡ � d!�¡)�m(a) � (L!�¡ � d!�¡)�m(s) and
(L!�¡ � d!�¡)�n(b) � (L!�¡ � d!�¡)�n(s):

We may assume for instance that m6 n. The inductive assumption that E1[t]� E!�¡[t] for all
t2T>;� gives

d!�¡((L!�¡ � d!�¡)�m(a))= d!�¡((L!�¡ � d!�¡)�m(s));

whence (L!�¡ � d!�¡)�k(a) = (L!�¡ � d!�¡)�k(s) for all k >m. In particular (L!�¡ � d!�¡)�n(a)�
(L!�¡ � d!�¡)�n(b).

Since L!�¡k(a) is L<!�-atomic for each k and since d!�¡ is well-defined by our induction
hypothesis, we have d!�¡(L!�¡k(a)) = L!�¡k(a) for each k. It follows by induction on k that
(L!�¡ � d!�¡)�k(a) = L!�¡k(a) for each k and, likewise, (L!�¡ � d!�¡)�k(b) = L!�¡k(b) for each k,
so L!�¡n(a) � L!�¡n(b). As both L!�¡n(a) and L!�¡n(b) are monomials, we have L!�¡n(a) =
L!�¡n(b). Recall that L!�¡ is injective by M�¡, so a= b.

Assume now that � is a limit and take �; �<� with L!�(d!�(a))�L!�(d!�(s)) and L!�(d!�(b))�
L!�(d!�(s)). We may assume for instance that � 6 �. Note that we have a= d!�+1(s) by defin-
ition and by the induction hypothesis. Recall that M!� �M!�+1 by definition. The inclusion
E!�+1[s]�E!�+1[s] and the fact that d!�+1 is well-defined thus give a= d!�+1(s)= b.

As to our second assertion, consider t 2T>;� and u 2 E!�[t] with � < �. If � is a successor,
then the induction hypothesis E!�[t]�E!�¡[t] implies that d!�¡(u) = d!�¡(t), so L!�¡(d!�¡(u))�
L!�¡(d!�¡(t)), whence u2E!�[t]. Assume that � is a limit. We have d!�(u)= d!�(t) because d!�

is well-defined. In particular L!�(d!�(u))�L!�(d!�(t)), so u2E!�[t]. This concludes the inductive
proof. �

Remark 4.2.8. We see that the conditions �for some n2N� and �for some �<�� in Definition 4.2.5
can be replaced by �for large enough n2N� and �for large enough �<�� respectively.

Corollary 4.2.9. Let �; �2On with �6 �6�. If T is �-confluent, then d!�(s)=d!�(d!�(s)) for
all s2T>;�.

Proposition 4.2.10. Let � 2On with �6 �. If T is �-confluent for all � < �, then the class
E!�[s] is convex for each s2T>;�. Moreover, if T is �-confluent, then d!�:T>;�¡!M!� is non-
decreasing.

Proof. We prove this by induction on �. Let s2T>;�. It is clear that E1[s] is convex and that
d1 is increasing. Let �> 0 and assume that the result holds for all � < �. By the monotonicity
axioms, each function L!� is strictly increasing on M!� (when �= 0, one also needs to use FE0
to see that L1(m/n) =L1(m)¡L1(n)> 0 for m� n2M1). As the composition of non-decreasing
functions is non-decreasing, the function (L!� � d!�)�n is non-decreasing for each � < � and each
n2N. We deduce that d!� is non-decreasing and that the classes E!�[s]; s2T>;� are convex. �
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If T is �-confluent for all � < �, then the proposition implies that the classes E!�[s] with
s2T>;� form a partition of T>;� into convex subclasses. If T is also �-confluent, then we have
the following explicit decomposition for all �6 �:

T>;�=
G

a2M!�

E!�[a]:

Definition 4.2.11. T is said to be confluent if it is �-confluent for each �2On with �6�. An
extension/embedding 	:T¡!U of force � is confluent if U is confluent.

Note that if � 2On, then T is confluent if and only if it is �-confluent.

4.2.4 The skeleton of logarithmic hyperseries
Let � be an ordinal and set � :=!�. The goal of this section is to check that L<� is a confluent
hyperserial skeleton of force �. This is immediate for � =0, so we assume that � > 0.

Definition 4.2.12. Let domL1 :=L<�
� and for 0<�<�, let domL!� :=f`� :!�¡6o�<�g. Given

l2 domL!�, set

L!�(l) := `!� � l:

We will show that (L<�; (L!�)�<�) is a hyperserial skeleton by checking that the axioms are
satisfied. We begin with the domain of definition axioms.

Lemma 4.2.13. (L<�; (L!�)�<�) satisfies DD� and (L<�)!�= f`� :!�¡6o� <�g, for all �6 �.

Proof. We prove this by induction on �. The case when �=0 is immediate. For �=1, consider
an infinite monomial l=

Q
<� `

l 2L<�. We have L1(l) =
P
<� l `+1, which is a monomial if

and only l= ` for some  <�. Conversely, for each  <� we have Ln(`)= `+n2L<�. Now let
1<�6 � and suppose that the lemma holds for all non-zero ordinals less than �. Assume that �
is a limit. We have �¡= �, whence\

�<�

domL!�=
\
�<�¡

domL!�+1=
\
�<�¡

f` :!�6o  <�g= f` :!�¡6o  <�g=domL!�:

Assume now that � is a successor. If l2 domL!�, then l= `� where !�¡6o � <�, and we clearly
have L!�¡

�n (l) = `�+!�¡n 2 dom L!�¡ for all n 2N, whence l 2
T
n2N dom L!�¡

�n . Conversely, let
l2
T
n2N domL!�¡

�n . Then l= `� where !�¡¡6o � < �. If �¡ is a limit, then �¡¡= �¡, whence
!�¡6o � <� and l2 domL!�. If �¡ is a successor, then �=  + !�¡¡m for some  >o !�¡ and
some m2N, so

`�= `+!�¡¡m= `!�¡¡m � `:

Since L!�¡(`!�¡¡m)= `!�¡¡m, we see that

L!�¡(l)=L!�¡(`�)= (`!�¡¡m) � `= `+!�¡¡m:

Since L!�¡(l)2domL!�¡, we must have m=0, so l= `� 2domL!�. �

For � <!� and l2domL�, note that L�(l)= `� � l. Note also that the notions of L<!�+1-atom-
icity and L<!�-atomicity coincide in L<� whenever � is a limit with �+16 �. This will not be
the case in general.

Proposition 4.2.14. The field L<� satisfies P� for all �6 �.

Proof. Let �6 � and let l2 (L<�)!�. By Remark 4.2.2, we may assume �> 0. We have l= `� for
some !�¡6o� <�. Let (r)<!� be a sequence of real numbers. We haveX

<!�

rL+1(l)=
X
<!�

r `+1 � `�=
X
<!�

r `�++1:
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This sum coincides with logm where m :=
Q
<!� `�+

r 2L<�. �

Proposition 4.2.15. The field L<� satisfies R�, A�, and M�, for all 0< �<�.

Proof. Let 0<�<� and let l2 (L<�)!�. We have l= `� for some !�¡6o�<�. Write �= +!�¡n
where =�>!�, n2N, and n=0 if � is a limit. We claim L!�(l)= `+!�¡n. If � is a successor,
then since `!� � `!�¡n= `!�¡n, we have

L!�(l)= `!� � `�= `!� � `+!�¡n= `!� � (`!�¡n � `)= (`!�¡n) � `= `+!�¡n:

If � is a limit, then l= `, so

L!�(l)= `!� � `= `+!�:

Now we move on to verification of R�, A�, and M�. The only elements in suppL!�(l) are `+!�
and possibly 1 (if n=/ 0), so suppL!�(l)< 1�L!�n(l)¡1 for all � < � and n2N, which proves R�.
For � < �, we have

L!�(l)= `!� � `�= `�+!�� `+!��L!�(l);
so A� holds as well.

As to M�, take l02 (L<�)!� with l0� l. We have l0= `� 0 for some � 0 with !�¡6o� 0<�. Write
� 0=  0+ !�¡ n0 where  0= �>!�

0 , n0 2N, and n0= 0 if � is a limit. The argument above gives
L!�(l0)=` 0+!�¡n0. If  0<, then L!�(l0)�L!�(l) and if  0= , then n0<n and L!�(l0)¡L!�(l)=
n¡n0> 1. In either case, M� is satisfied. �

Recall that for l2L<� and  <�, we write l for the real exponent of ` in l. Given f 2L<�
>;�,

we define �f to be the least ordinal with (df)�f=/ 0; see also [33, p. 23].

Proposition 4.2.16. L<!� is �-confluent. More precisely, for 0< �6 � and f 2L<�, we have

d!�(f)= `(�f)>!�¡: (4.2.3)

Proof. We first note that L<� is 0-confluent as L<� is not trivial. We proceed by induction on
0< �6 �. Take f 2L<�

>;�. If �= 1, then we have L1(d1(f))� `�f+1=L1(`�f) where `�f is L<!-
atomic, so d!(f)= `�f and L<� is 1-confluent. It remains to note that (�f)>1=�f.

Now suppose that �> 1 and assume that L<� is �-confluent and satisfies (4.2.3) for all � < �.
Suppose � is a successor, so d!�¡(f)= `(�f)>!�¡¡. Write (�f)>!�¡¡=(�f)>!�¡+!�¡¡n with n2N
and with n=0 if �¡ is a limit. We have `(�f)>!�¡¡= `!�¡¡n � `(�f)>!�¡, so

L!�¡(d!�¡(f))= (`!�¡ � `!�¡¡n) � `(�f)>!�¡=L!�¡(`(�f)>!�¡)¡n�L!�¡(`(�f)>!�¡)

and d!�(f)= `(�f)>!�¡.
Now suppose � is a limit, so there is � < � with (�f)>!�=(�f)>!�=(�f)>!�¡. By hypothesis,

we have that d!�+1(f)= `(�f)>!� and so

L!�+1(d!�+1(f))=L!�+1(`(�f)>!�)=L!�+1(`(�f)>!�¡):

Again, this yields d!�(f)= `(�f)>!�¡. �

Theorem 4.2.17. L<� is a confluent hyperserial skeleton of force �.

Proof. Using the identity

`1 � l=
X
<�

l `+1

for l=
Q
<� `

l2L<�, the field L<� is easily seen to satisfy FE0, A0,M0, and R0. Moreover, L<�
satisfies FE� for all 0< �<� by [33, Lemma 5.6]. Using Propositions 4.2.14, 4.2.15 and 4.2.16,
we conclude that L<� is a confluent hyperserial skeleton of force �. �

Corollary 4.2.18. L is a confluent hyperserial skeleton of force On.
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4.3 Extending the partial hyperlogarithms

Let �6On. We will follow [14, Section 4] while simplifying some proofs by using the material of
Chapters 2 and 3. The purpose of the next two sections is to prove the following theorem:

Theorem 4.3.1. Let (T; (L!�)�<�) be a confluent hyperserial skeleton of force �. There is a
unique function �:L<!��T>;�¡!T satisfying:

C1�. L<!�¡!T; f 7¡! f � s is a strongly R-linear ordered field embedding for each s2T>;�;

C2�. `0r �m=mr for all m2M and r 2R;
`!� � a=L!�(a) for all �<� and a2 domL!�;

C3�. f � (g � s)= (f � g) � s for all f 2L<!�, g 2L<!�
>;�, and s2T>;�;

C4�. f � (t+ �)=
P
k2N

f(k) � t
k!

�k for all f 2L<!�, t2T>;�, and � 2T with �� t.

We will start by extending each partial hyperlogarithm L!� for �<� to T>;�, and then define
the corresponding composition laws using rules of strong linearity. However, our proof will be an
induction where the definition of L!� reauires the validity of Theorem 4.3.1 for all ordinals <�.

We claim that it suffices to prove the theorem in the case when � 2On. The case when �=On
can then be proved as follows: let (T; (L!�)�2On) be a confluent hyperserial skeleton of force On.
Then for every �<On, there exists a unique composition ��:L<!��T>;�¡!T that satisfiesC1�,
C2�, C3�, and C4�. For �<�, the composition �� extends ��, by uniqueness. For any f 2L and
s 2T>;�, we have f 2L<� for some � <On, so we may define f � s := f �� s and this definition
does not depend on �. It is straightforward to check that this defines the unique composition �:
L�T>;�¡!T which satisfies C1On, C2On, C3On, and C4On.

Throughout this section, we fix an ordinal � and a hyperserial skeleton T=R[[M]] of force �.
We fix also �<� such that T is �-confluent and we set

� :=!�:

We assume that Theorem 4.3.1 holds for �, so we have a unique composition �:L<��T>;�¡!T
satisfying C1�, C2�, C3�, and C4�. For  < � and s2T>;�, we write L(s) := ` � s. In light of
Lemma 4.1.2, the expression (`�

")(k) � s makes sense for each k > 0. Moreover, C4� and Proposi-
tions 2.3.5 and 2.3.6 together imply that:

Lemma 4.3.2. Each f 2L<� induces an analytic function

Af: T>;� ¡! T

s 7¡! f � s; with
Conv(Af)s � T�s and

Af
(k) = Af(k)

for all s2T>;� and k 2N.

Recall that as a hyperserial skeleton of force 1, the structure (T;L1) already induces a logarithm
log:T>¡!T such that (T; log) is a transserial field and for which the content of Section 3.1
applies. Which means that we can focus on hyperlogarithms. Our main goal in this section is to
prove the following result:

Proposition 4.3.3. Assume that � > 0. There is an extension of L� to T>;� such that for all
s2T>;�, a2M�, and  < � with " :=L(s)¡L(a)� 1, we have

L�(s)=L�(a)+
X
k2N>

(`�
")(k) �L(a)

k!
"k:

It is crucial here that this identity is valid for all  < �. We will also prove that L� satisfies the
extension of FE� to T>;� (Proposition 4.3.11), that L� has Taylor expansions around every point
(Theorem 4.3.10) and that it is strictly increasing on T>;� (Lemma 4.3.12).
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Our extension will heavily depend on Taylor series expansions, so it is convenient to introduce
some notation for that. Let f 2L<� be such that f (k)2L<� for all k > 0. Let t2T>;� and � 2T
with �� t. By Lemma 4.1.1 with �= �, f 0 in place of f , and �:L<�¡!T; g 7! g � t, we see that
the family ((f (k) � t) �k)k2N> is well-based. We define

Tf(t; �) :=
X
k2N>

f (k) � t
k!

�k2T:

4.3.1 Confluence revisited
Assume now that �> 0. Let us revisit the notion of confluence.

Lemma 4.3.4. Let s;t2T>;� and suppose that L(s)�L(t) for some <�. Then L�(s)¡L�(t)�1
for all � < � with �> +2.

Proof. We first show that L+2(s) ¡ L+2(t) � 1. Take c 2R> and " � 1 such that L(s) =
L(t)(c+ "). We have

L+1(s)=L1(L(s))=L+1(t)+ log(c+ ");

where log(c+ ")4 1. Set � :=L+1(t)¡1 log(c+ ")� 1, so L+1(s)=L+1(t) (1+ �). We have

L+2(s)= logL+1(s)=L+2(t)+ log(1+ �);

where log(1+ �)=L~(�)� �� 1. Thus, L+2(s)¡L+2(t)� 1.
Now, fix � with +26� < � and set � :=L+2(s)¡L+2(t). By C3� and C4�, we have

L�(s)= `�
"+2 �L+2(s)= `�

"+2 �L+2(t)+ T`�"+2(L+2(t); �)=L�(t)+T`�"+2(L+2(t); �):

Lemma 4.1.2 in conjunction with the fact that ��1 gives us that T`�"+2(L+2(t); �)�1, so L�(s)¡
L�(t)� 1. �

Proposition 4.3.5. For all s2T>;�, we have

E�[s] = ft2T>;� :L(s)¡L(t)� 1 for some  < �g:

Proof. We fix s 2T>;�. Since � > 0, we know by Lemma 4.3.4 that it is enough to show that
E�[s] = ft 2T>;� :L(s)� L(t) for some  < �g: We proceed by induction on �. If �= 1, then
�=! and

E![s] = ft2T>;� : (L1 � d1)�n(t)� (L1 � d1)�n(s) for some n2Ng:

An easy induction on n yields (L1 � d1)�n(t)�Ln(t) for each t2T>;�, whence the result.
Now suppose that � > 1. If � is a successor, then for each t 2 E�[s] there is some n 2N

with (L!�¡ � d!�¡)�n(t)�L!�¡n(d�(t)). By our inductive assumption applied to �¡, we have that
L(t)¡L(d!�¡(t))� 1 for some  < !�¡. By Lemma 4.3.4, we have L!�¡(t)¡L!�¡(d!�¡(t))� 1
and an easy induction on n gives us that (L!�¡ � d!�¡)�n(t)¡ L!�¡n(t)� 1. Thus, we have that
L!�¡n(t) � L!�¡n(d�(t)) for some n 2N. Likewise, L!�¡m(s) � L!�¡m(d�(s)) for some m 2N.
By replacing m and n with max fm; ng and invoking Lemma 4.3.4, we may assume that m= n.
Since d�(s) = d�(t), we have L!�¡n(s)�L!�¡n(t). On the other hand, given t2T>;�, if L(s)�
L(t) for some  < �, then take some n 2N with  + 26 !�¡ n < �. By Lemma 4.3.4, we have
(L!�¡ � d!�¡)�n(s)�L!�¡n(s)�L!�¡n(t)� (L!�¡ � d!�¡)�n(t), so t2E�[s].

If � is a limit, then for each t 2 E�[s] there is � < � with L!�(d!�(t))� L!�(d�(t)). By our
inductive assumption applied to �, we have that L(t)¡L(d!�(t))�1 for some <!�, so L!�(t)¡
L!�(d!�(t))� 1 by Lemma 4.3.4. Thus L!�(t)�L!�(d�(t)) and likewise, L!�(s)�L!�(d�(s)) for
some � < �. By replacing � and � with max f�; �g and invoking Lemma 4.3.4, we may assume
that � = �. Since d�(s) = d�(t), we have L!�(s) � L!�(t). On the other hand, given t 2T>;�,
if L(s)� L(t) for some  < �, then take some � with  6 !� < �. By Lemma 4.3.4, we have
L!�(d�(s))�L!�(s)�L!�(t)�L!�(d�(t)), so t2E�[s]. �

Proposition 4.3.5 in conjunction with Lemma 4.3.4 gives us the two following corollaries:
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Corollary 4.3.6. Let �=!�<� and let a;b2M�. For  <� with !< �, we have d�(L(a))=a.

Proof. Note that !=!�+1 for a certain ordinal �. Given n2N> with !�n> , we have

L!(L!�n(a))6L!(L(a))6L!(a);

where L!(L!�n(a))=L!(a)¡n�L!(a). So L!(L(a))�L!(a). We deduce since !< � that
L(a)2E�[a], whence d�(L(a))= a. �

Corollary 4.3.7. For each s2T>;� there is  < � such that

L�(s)¡L�(d�(s))� 1;

for all 6 �< �. Moreover, if L(s)¡L(a)� 1 for some a2M� and some  < �, then a= d�(s).

4.3.2 Definition of the extended hyperlogarithms

Definition 4.3.8. Let s2T>;� and let  < � with " :=L(s)¡L(d�(s))� 1. We define

L�(s) :=L�(d�(s))+ T`�"(L(d�(s)); "):

As discussed at the beginning of the section, the series T`�"(L(d�(s)); ") exists in T by
Lemmas 4.1.1 and 4.1.2. To prove Proposition 4.3.3 all that remains is to show:

Lemma 4.3.9. The above definition does not depend on the choice of .

Proof. Let s, , " be as in Definition 4.3.8 and suppose that L�(s)¡L�(d�(s))�1 for some �< �.
Set � :=L�(s)¡L�(d�(s)). We need to show that

T`�"(L(d�(s)); ")= T`�"�(L�(d�(s)); �):

Without loss of generality, we may assume that �6 . Now

L(d�(s))+ " = L(s) = `
"� �L�(s)

= `
"� � (L�(d�(s))+ �)

= `
"� �L�(d�(s))+T`"�(L�(d�(s)); �):

Since `
"� �L�(d�(s))=L(d�(s)), this yields "= T`"�(L�(d�(s)); �). Set

F := T`�"
¡
` ; T`"�(`�; z)

�
; G := T`�"�(`�; z);

considered as formal power series F =
P
i2NFi z

i and G=
P
j2NGj z

j in L<�[[z]]: Then

T`�"(L(d�(s)); ")=
X
i2N

(Fi � d�(s)) �i and T`�"�(L�(d�(s)); �)=
X
j2N

(Gj � d�(s)) �j ;

so it suffices to show that F =G. For each h2L<�
� , we have

F~(h) = T`�"
¡
` ; T`"�(`�; h)

�
= T`�"(` ; `

"� � (`�+h)¡ `)= `�
" � (`+ `

"� � (`�+h)¡ `)¡ `�

= (`�
" � `

"�) � (`�+h)¡ `�= `�
"� � (`�+h)¡ `�=T`�"�(`�; h)=G

~(h);

so (F ¡G)(h)= 0 for all h2L<�
� , and we conclude that F =G by Corollary 2.2.14. �

Theorem 4.3.10. The function L� is analytic on T>;� with

Conv(L�)s � T�s and

L�
(k)(s) = `�

(k) � s

for all k 2N and s2T>;�.
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Proof. Let  < �. For all a; b2M� with a� b, we have L(a)�L(b) so

L(a)+T�L(a)\L(b)+T�L(b)=?:

In particular have a well-defined function

L�
" :

F
a2M�

(L(a)+T�) ¡! T>;�

L(a)+ " 7¡! L�(a)+ T`�"(L(a); ")

By Corollary 2.3.7, the function L�
"  is analytic. We also have

(L�
" )(k): s 7¡! (`�

")(k) � s

for all k 2N by Proposition 2.3.6. Since M is (divisible hence) densely ordered, we may apply
Proposition 2.3.8 to (L�

" ) and L at each s in the class

O :=
G

a2M�

ft2T>;� :L(t)¡L(a)� 1g:

Indeed, combining Lemma 4.3.2 and the identity L� �O= ((L�
" ) �L) �O of Lemma 4.3.9, we

obtain that L� is analytic on O and that for all s2Os, we have

Conv(L�)s � T�s, and
L�
0 (s) = `

0 � s� ((`�
")0 � ` � s) (by Proposition 2.1.3)

= `�
0 � s: (by the chain rule in L)

Recall that Af
(k)=Af(k) for all f 2L<� and k2N. We deduce that L�

(k)(s)=`�
(k)�s for all k2N and

s2O. For a2M�, we have E�[a]=
S
<�O by Proposition 4.3.5. It follows thatT>;�=

S
<�O,

thus concluding the proof. �

4.3.3 Properties of extended hyperlogarithms
We end this section with extensions of our monotonicity and functional equations axioms.

Proposition 4.3.11. Assume � is a successor. For s2T>;�, we have L�(L!�¡(s))=L�(s)¡ 1.

Proof. By Corollary 4.3.7, there is some n2N> such that " :=L!�¡n(s)¡L!�¡n(d�(s))� 1. We
may write

L!�¡(n¡1)(L!�¡(s))=L!�¡(n¡1)(L!�¡(d�(s)))+ ":

Note that L!�¡(d�(s)) is L<�-atomic, so d�(L!�¡(s))=L!�¡(d�(s)). For k 2N> we have¡
`�
"!�¡(n¡1)�(k)=(`�+(n¡ 1))(k)= `�

(k)=(`�+n)(k)=(`�
"!�¡n)(k);

so T
`�
"!�¡(n¡1)(a; ")= T`�"!

�¡n(a; ") for all a2M�. It follows that

L�(L!�¡(s)) = L�(L!�¡(d�(s)))+ T`�"!
�¡(n¡1)(L!�¡n(d�(s)); ") (by Definition 4.3.8)

= L�(d�(s))¡ 1+ T`�"!
�¡n(L!�¡n(d�(s)); ") (by FE�)

= L�(s)¡ 1 (by Definition 4.3.8)

This concludes the proof. �

Lemma 4.3.12. The function L� is strictly increasing on T>;�.

Proof. By induction on �, we may assume that L!� is strictly increasing on T>;� for all � < �
(the �=0 case follows from Proposition 3.1.10). As a composition of strictly increasing functions is
strictly increasing, the function L is strictly increasing on T>;� for all  < �. Given s<t2T>;�,
let us show that L�(s)<L�(t). We start with the case when d�(s)=d�(t) :=a and take  < � with
L(s)¡L(a)� 1 and L(t)¡L(a)� 1. Then " :=L(t)¡L(s) is infinitesimal and positive by
our induction hypothesis. By Theorem 4.3.10 we have

L�(t)¡L�(s)= T`�"(L(s); ")� ((`�
"�)0 �L�(s)) ":

4.3 Extending the partial hyperlogarithms 95



Since `�
"�>R, we have (`�

"�)0> 0, so L�(t)¡L�(s)> 0.
Now we turn to the case when d�(s)� d�(t). Set a := d�(s) and b := d�(t) and take an ordinal

� :=!�n< � with

L�(s)¡L�(a)� 1 and L�(t)¡L�(b)� 1:
Set � :=L�(s)¡L�(a), so

L�(s)¡L�(a)= T`�"�(L�(a); �)� ((`�
"�)0 �L�(a)) �� (`�

"�)0 �L�(a)

Repeated applications of (4.1.4) with � in place of � gives `�
"�� `�, so (`�

"�)0� `�0 and

(`�
"�)0 �L�(a)� `�0 �L�(a):

Since � > 1, we have `�� `1 so `�0 � `10 = `0¡1. Thus, `�0 �L�(a)�L�(a)¡1. All together, this shows
that L�(s)¡ L�(a)� L�(a)¡1. Likewise, we have L�(t)¡ L�(b)� L�(b)¡1. By the monotonicity
axiom M�, we have L�(a)+L�(a)¡1<L�(b)¡L�(b)¡1, so L�(s)<L�(t). �

4.4 Defining the external composition law

Throughout this section, � stands for a fixed ordinal and T=R[[M]] for a fixed confluent hyper-
serial skeleton of force �. We now set

� :=!�:

Our aim is to construct a well-behaved external composition L<��T>;�¡!T that satisfies C1�,
C2�, C3�, and C4� from Theorem 4.3.1. We will also prove that the mapping L<�¡!T; l 7¡! l�s
has relatively well-based support for all s2T>;�. Throughout the section, we make the inductive
assumption that Theorem 4.3.1 holds for all �<� and that the mapping L<!�¡!T; l 7! l � s has
relatively well-based support for all �<� and s2T>;�.

4.4.1 The case when �=0

Here T is a 0-confluent hyperserial skeleton of force 0. The field L<1=R[[xR]]=�R[[`0R]] is the field
of well-based series of real powers of the variable `0, with real coefficients. We have already seen
(see Theorem 2.5.12) that the real powering operation on T> extends into a calculus of power series
R[[xR]]�T>¡!T which in particular restricts to a composition law satisfying C10, C20, C30,
and C40. In order to complete the proof of Theorem 4.3.1 for �=0, it remains to show uniqueness.

Proposition 4.4.1. The function � is unique to satisfy C10, C20, C30, and C40:

Proof. Let � be a composition satisfying conditions C10, C20, C30, and C40: Write
s= cm (1 + ")2T>;�, where c 2R=/ , m := ds, and "� 1. By strong linearity, it suffices to verify
that `0r � s= sr for any monomial in L<1. Given r 2R, the condition C40 implies

`0
r � s= `0r � (cm)+

X
k2N>

(`0r)(k) � cm
k!

(cm ")k:

We have (`0r)(k)= k!
�
r
k

�
`0
r¡k, so

`0
r � s= `0r � (cm)+

X
k2N>

�
r
k

�
(`0
r¡k � cm)(cm ")k:

We have `0r � (cm)= `0r � (c `0 �m)= (`0r � (c `0)) �m= cr(`0r �m) by C30 and `0r �m=mr by C20, so
`0
r � (cm)= (cm)r. Likewise, `0r¡k � (cm)= (cm)r¡k, so

`0
r � s=(cm)r+

X
k2N>

�
r
k

�
(cm)r¡k(cm ")k=(cm)r

 
1+

X
k2N>

�
r
k

�
"k

!
= sr: �
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4.4.2 C1� and C2� for � > 0

For the remainder of this section, we assume that � > 0. By the results in Section 4.3.2, we have
a well-defined extension of L to all of T>;� for each  <�. Indeed, for s2T>;� and  <�, take
n with =!�¡n+� with �<!�¡ (so n=0 if � is a limit). Then we may set L(s) :=L�(L!�¡

�n (s)).
Given a2M� and l=

Q
<� `

r 2L<�, we have by P� that
P
<� rL+1(a)2 logM, so we

set l � a := exp(
P
<� rL+1(a))2M. Clearly, the map L<�¡!M; l 7! l � a is an embedding of

monomial groups which preserves real powers, and by A�, this embedding is order-preserving as
well. For f 2L<�, we set f � a :=

P
l2L<� fl (l � a). By Proposition 1.3.2, we have:

Lemma 4.4.2. The map L<�¡!T; f 7! f � a is a strongly linear ordered field embedding.

Proposition 4.4.3. For �<� and a2M�, the function L� is analytic at a with

Conv(L�)a � a+T�a and

L�
(k)(a) = `�

(k) � a

for all k 2N.

Proof. If � is a limit ordinal, then this follows from C4� for any ordinal � with � < !�, so we
may assume that � is a successor. The lemma is immediate when �=0, so suppose �> 0 and take
n2N and 0< 6!�¡ with �=!�¡n+ . We have

L�=L �L!�¡�n :

Now Lemma 4.3.2 on the one hand, and Proposition 3.1.8 Theorem 4.3.10 on the other, give that
L and L!�¡ are analytic with Conv(L!�¡)s� s+T�s and Conv(L)s� s+T�s for all s2T>;�.
Since moreover we have

L!�¡(a+ �)�L!�¡(a) and L(a+ �)�L(a)

for all �2T�a, we may iteratively apply Proposition 2.3.8 and deduce that the same is true of L�.

By the chain rule in L and in ordered fields (Proposition 2.1.3), we also obtain that L�
(k)(a)=`�

(k)�a
for all s2T>;�. �

In the general situation when s2T>;�, our next goal is to show that the family (L+1(s))<�
is well-based. For the remainder of this subsection, we fix s2T>;�. By �-confluence and Corol-
lary 4.3.7, take n 2N and � < � such that L(s)¡ L(d�(s))� 1 for all !� n6  < �. If � is a
successor, we can arrange that �= �¡. Set a := d�(s), set " :=L(s)¡L(d�(s)), and set � :=!�.

Lemma 4.4.4. Let f 2 L<� and let m 2N. If � is a successor or f 2
S
�<� L<!�, then the

expression f �L�m(a) is defined and equal to (f � `�m) � a.

Proof. Suppose � is a successor ordinal, so �=!�¡. Then L�m(a)2M�, so f �L�m(a) is defined.
As the maps f 7¡! (f � `�m) � a and f 7¡! f �L�m(a) are strongly linear, we may assume that f is
a monomial l=

Q
<� `

l. Since ` � `�m= `�m+ for  <�, we have

(l � `�m) � a=
 Y
<�

`�m+
l

!
� a= exp

 X
<�

lL�m+(a)
!
= exp

 X
<�

lL(L�m(a))
!
= l �L�m(a):

Now suppose that � is a limit and that f 2L<!� for some � <�. By increasing �, we may assume
that �m<!�, so f ; `�m2L<!�. Then C2� and C3� give

(f � `�m) � a= f � (`�m � a)= f �L�m(a): �

We rely on the following technical lemma in order to have a precise description of the support
of L�(s) for certain ordinals �.
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Lemma 4.4.5. There is a well-based family (f;k)�n6<�;k2N> from L[�n;�)
� such that

L+1(s)=L+1(a)+
X
k2N>

(f;k � a) "k

for each  with �n6  <�.

Proof. Fix  with �n6  <�. We first claim that

L+1(s)=L+1(a)+ T`+1"�n(L�n(a); "):

If � is a limit, then take � with  <!�<�. Then `+1
"�n; `�n2L<!�, so C4� gives

L+1(s)= `+1
"�n �L�n(a)+T`+1"�n(L�n(a); ")

and C3� gives `+1
"�n �L�n(a) =L+1(a), thereby proving the claim. If � is a successor, then take

� < � with  + 1 = � n+ �. Since L�n(a) is L<!�-atomic, Proposition 4.4.3 and the fact that
`+1
"�n= `�, yield

L+1(s) = L�(L�n(s))=L�(L�n(a))+T`�(L�n(a); ")
= L+1(a)+T`+1"�n(L�n(a); "):

Having proved our claim, let k>0 be given and set f;k :=
1

k!
(`+1
"�n)(k)� `�n2L[�n;�). Lemma 4.1.2

yields (`+1
"�n)(k)�1, whence f;k�1. If � is a limit, then (`+1

"�n)(k)2L<!�, where � is as above. So
in both the successor and limit cases, we may apply Lemma 4.4.4 with (`+1

"�n)(k) in place of f to get

f;k � a=
1
k!
(`+1
" �n)(k) �L�n(a):

This implies that

L+1(s)=L+1(a)+T`+1"�n(L�n(a); ")=L+1(a)+
X
k2N>

(f;k � a) "k:

It remains to show that the family (f;k)�n6<�;k2N> is well-based. Since (`+1)�n6<� is a well-
based family in L<� and L[�n;�)¡!L<�; f 7! f"�n is strongly linear, the family (`+1

"�n)�n6<�
is well-based. Since supp� @ is well-based and infinitesimal, the family ((`+1

"�n)(k))�n6<�;k2N> is
well-based. We conclude that the family (f;k)�n6<�;k2N> is well-based. �

Proposition 4.4.6. Let (r)<� be a sequence of real numbers. Then the family (L+1(s))<� is
well-based and the series

P
<� rL+1(s) lies in logT>.

Proof. We will show the following:

a) For each k <n, the family (L+1(s))�k6<�(k+1) is well-based andX
�k6<�(k+1)

rL+1(s) 2 logT>:

b) The family (L+1(s))�n6<� is well-based andX
�n6<�

rL+1(s) 2 logT>:

The proposition follows from (a) and (b), since the union of finitely many well-based families is
well-based and logT> is closed under finite sums.

To see why (a) holds, let k <n and note that

(L+1(s))�k6<�(k+1)=(L�+1(L�k(s)))�<�:

Since (`�+1)�<� is well-based, C1� gives that (L�+1(L�k(s)))�<�=(`�+1�L�k(s))�<� is well-based.
We have X

�k6<�(k+1)
rL+1(s)=

X
�<�

r�k+�L�+1(L�k(s)):
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Set l :=
Q
�<� `�

r�k+� 2 L<�. We claim that
P
�<� r�k+�L�+1(L�k(s)) = log(l �L�k(s)). If �= 0,

then l= `0
rk andX

�<�

r�k+�L�+1(L�k(s))= rkL1(Lk(s))= log(Lk(s)rk)= log(l �L�k(s)):

If �> 0, then C3� givesX
�<�

r�k+�L�+1(L�k(s))= log(l) �L�k(s)= log(l �L�k(s)):

As for (b), let " := L�n(s) ¡ L�n(a). By Lemma 4.4.5, there exists a well-based family
(f;k)�n6<�;k2N> from L[�n;�)

� such that

L+1(s)=L+1(a)+
X
k2N>

(f;k � a) "k:

The families (L+1(a))�n6<� and (f;k � a)�n6<�;k2N> are well-based by Lemma 4.4.2
and the fact that a 2 M�. Since the family ("k)k2N is also well-based, it follows that
((f;k � a) "k)�n6<�;k2N> is again well-based. In particular,

(L+1(s))�n6<�=
 
L+1(a)+

X
k2N>

(f;k � a) "k
!
�n6<�

is well-based. NowX
�n6<�

rL+1(s)=
X

�n6<�
rL+1(a)+

X
�n6<�

r
X
k2N>

(f;k � a) "k:

Since f;k and "k are infinitesimal for all k > 0, we may writeX
�n6<�

rL+1(s)=
 X
�n6<�

rL+1(a)
!
+ �;

where � 2T�: By (3.1.1), we have �=L(E(�))2 logT>. Furthermore, P� impliesX
�n6<�

rL+1(a)2 logM� logT>:

We conclude that
P
�n6<� rL+1(s)2 logT>. �

Let l=
Q
<� `

l 2L<�. In light of Proposition 4.4.6, we define

l � s := exp
 X
<�

lL+1(s)
!
:

We note that the map L<�¡!T>; l 7¡! l � s is an embedding of ordered multiplicative groups for
each s2T>;�.

Our next objective is to show that the map L<�¡!T; l 7¡! l � s extends by strong linearity to
a map L<�¡!T which satisfies C1� and C2�. For this, we will show that l 7¡! l � s is a relatively
well-based mapping, by using a similar �gluing� technique as for Proposition 4.4.6. Recall that
our second induction hypothesis from the beginning of this section stipulated that the mapping
L<!�¡!T; l 7¡! l � s is relatively well-based for all �<� and s2T>;�.

Proposition 4.4.7. Let �:L<�¡!T be the map �(l) := l � s. Then � is relatively well-based.

Proof. Let �>n be the restriction of � to L[�n;�) and for k <n, let �k be the restriction of � to
L[�k;�(k+1)). Since

supp��� (supp��0) � � � (supp��n¡1) (supp��>n);
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it suffices to show that each �k and �>n are relatively well-based. For the �k, fix k < n. Our
induction hypothesis implies that the map 	k:L[0;�)¡!T; l 7¡! l �L�k(s) is relatively well-based.
By Lemma 4.4.4 with l in place of f , we have

�k(l � `�k)= (l � `�k) � s= l �L�k(s)=	k(l):

It follows that �k is also relatively well-based with supp��k= supp�	k.
Now for �>n. Let l=

Q
�n<<� `

l 2L[�n;�). By Lemma 4.4.5, we have a well-based family

(f;k)�n6<�;k2N> from L[�n;�)
� such that

log(�>n(l))=
X

�n6<�
lL+1(s)=

X
�n6<�

lL+1(a)+
X

�n6<�
l
X
k2N>

(f;k � a) "k:

Exponentiating both sides, we obtain

�>n(l)= (l � a)E
 X
�n6<�

l
X
k2N>

(f;k � a) "k
!

so d�>n(l)= l � a. The set

E :=
[

�n6<�;k2N>

supp ((f;k � a) "k)

is well-based, infinitesimal and does not depend on l. Since

supp�>n(l)
d�>n(l)

�E1

for all l2L[�n;�), we conclude that supp��>n�E1 is well-based. �

We already noted that the map � from Proposition 4.4.7 is an order-preserving multiplicative
embedding. By Proposition 1.3.7, it follows that � is well-based, so it extends uniquely into an
order-preserving and strongly linear embedding �̂:L<�¡!T. Taking f �s := �̂(f) for all f 2L<�,
this proves C1�. By construction, we also have C2�. Note that � extends the unique composition
L<!��T>;�¡!T of Theorem 4.3.1 for � <�.

4.4.3 Properties C3� and C4� and uniqueness for � > 0

Let "2T�. By [62, Corollary 16], we have

E~(rL~("))=
X
k2N

�
r
k

�
"k=(1+ ")r for all r 2R: (4.4.1)

Proposition 4.4.8. For s2T>, and r 2R, we have log sr= r log s.

Proof. First, note that logmr=r logm for all m2M: if m�1, then this is just axiom FE0; if m�1,
then logmr=¡logm¡r= r logm; if m= 1, then logmr=0= r logm. Now, writing s= cm (1 + ")
with c2R>, m := ds, and "� 1, we have

log(sr) = log(mr)+ log cr+L~((")r)
= log(mr)+ log cr+L~(E~(r L~(")) (by (4.4.1))
= r logm+ r log c+ rL~(") (by (3:1:1))
= r log(s): �

Proposition 4.4.9. For r2R; g 2L<�
>;� and s2T>;�, we have (`0r � g) � s= `0r � (g � s).

Proof. As in Proposition 2.5.7, it suffices to prove that (l�s)r= lr �s holds for each l=
Q
<� `

l2
L<�. For such l, we have

log(lr � s)=
X
<�

l rL+1(s):
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By Proposition 4.4.8, we also have log((l � s)r)= r log (l � s)= r
P
<!� lL+1(s). By injectivity of

the logarithm, we conclude that (l � s)r= lr � s. �

Lemma 4.4.10. For all h2L<�
> and all s2T>;�, we have log(h � s)= (logh) � s.

Proof. First, we note that for l=
Q
<� `

l 2L<�, we have

(log l) � s=
 X
<�

l `+1

!
� s=

X
<�

lL+1(s)= log(l � s);

where the last equality uses the definition of l � s. Now, let h2L<�
> and write h= cm (1+ ") with

c2R>, m := dh, and "� 1. Then h � s= c (m � s)(1+ "� s) and

(logh) � s = (logm) � s+ log c+
X
k2N>

(¡1)k¡1
k

"k � s

= log(m � s)+ log c+
X
k2N>

(¡1)k¡1
k

("� s)k;

= log(c (m � s)(1+ "� s))= log(h � s):

Here we used the facts that (log c) � s= log c and that composition with s commutes with powers
and infinite sums. �

Proposition 4.4.11. The function � satisfies C3� , i.e. for all f 2L<�, g 2L<�
>;�, and s2T>;�

we have f � (g � s)= (f � g) � s.

Proof. We will show by induction on �6� that f � (g�s)=(f � g)�s for all f 2L<!�, all g2L<�
>;�,

and all s2T>;�. If �=0, then this follows from Proposition 4.4.9 and strong linearity.
Let �> 0, let g and s be fixed, and assume that the proposition holds whenever f 2L<!� for

some �< �. By strong linearity, it suffices to prove that l� (g �s)= (l� g)� s for all l=
Q
<!� `

l2
L<!�. Lemma 4.4.10 gives

log(l � (g � s)) = (log l) � (g � s)=
X
<!�

l `+1 � (g � s);

log((l � g) � s) = (log(l � g)) � s=((log l) � g) � s=
 X
<!�

l `+1 � g
!
� s:

Using the injectivity of log and strong linearity, we may thus reduce to the case when l= ` for
 <!�. Our induction hypothesis takes care of the case when � is a limit ordinal or when  <!�¡,
so we may assume that l= `, where !�¡6  <!�. By the inductive definitions of L(g � s) and
` � g, we may further reduce to the case when =!�¡. Lemma 4.4.10 takes care of the case �=1,
so we may assume that �> 1. In summary, we thus need to show that L!�¡(g � s)= (`!�¡ � g) � s,
where �> 1.

Set a := d!�¡(g)2L<�. We claim that (`!�¡ �a) � s=L!�¡(a � s). We have a= `�+!�¡¡k, where
!�¡6o� <�, k2N, and k=0 if �¡ is a limit ordinal. Since `�+!�¡¡k= `!�¡¡k � `�, we have

`!�¡ � a= `!�¡ � (`!�¡¡k � `�)= (`!�¡ � `!�¡¡k) � `�=(`!�¡¡ k) � `�= `�+!�¡¡ k:

This gives

(`!�¡ � a) � s = (`�+!�¡¡ k) � s=L�+!�¡(s)¡ k=L!�¡(L�(s))¡ k
= L!�¡(L!�¡¡k(L�(s)))=L!�¡(L�+!�¡¡k(s))=L!�¡(a � s);

where the first equality in the second line follows from Proposition 4.3.11.
Having proved our claim, let us now show that (`!�¡ � g) � s=L!�¡(g � s). Take  <!�¡ with

L(g � s)¡L(d!�¡(g � s))� 1, and " := ` � g¡ ` � a� 1. We have

`!�¡ � g= `!�¡
" � (` � g)= `!�¡

" � (` � a)+T`
!
�¡
" (` � a; ")= `!�¡ � a+ T`

!
�¡
" (` � a; "):
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As `2L<!�¡ and (`!�¡
" )(k)2L<!�¡ for all k>0, by Lemma 4.1.2, our induction hypothesis applied

to �¡ gives

((`!�¡
" )(k) � (` � a)) � s=(`!�¡

" )(k) � ((` � a) � s)= (`!�¡
" )(k) �L(a � s)

for k > 0. Along with C1�, we thus have

T`
!
�¡
" (` � a; ") � s =

 X
k2N>

(`!�¡
" )(k) � (` � a)

k!
"k

!
� s=

X
k2N>

((`!�¡
" )(k) � (` � a)) � s

k!
"k � s

=
X
k2N>

(`!�¡
" )(k) �L(a � s)

k!
(" � s)k= T`

!
�¡
" (L(a � s); " � s):

Using also our claim that (`!�¡ � a) � s=L!�¡(a � s), we obtain

(`!�¡ � g) � s=(`!�¡ � a) � s+T`
!
�¡
" (` � a; ") � s=L!�¡(a � s)+T`

!
�¡
" (L(a � s); " � s):

It remains to show that L!�¡(g � s)=L!�¡(a � s)+ T`
!
�¡
" (L(a � s); "� s). Now

L(g � s)¡L(a � s)= (` � g) � s¡ (` � a) � s= " � s� 1;

so d!�¡(a � s) = d!�¡(g � s) and L(a � s)¡ L(d!�¡(a � s))� 1. By analyticity of L!�¡, we can
conclude that L!�¡(g � s)=L!�¡(a � s)+ T`

!
�¡
" (L(a � s); "� s). �

Now that each `�0 � s is defined for �<�, the same arguments as in Proposition 4.4.12 yield:

Proposition 4.4.12. For �<�, the function L� is analytic on T>;� with

Conv(L�)s � s+T�s and

L�
(k)(s) = `�

(k) � s

for all s2T>;� and k 2N.

Proposition 4.4.13. The function � satisfies C4� , i.e. for all f 2L<�, all t2T>;� and all �2T
with �� t, we have

f � (t+ �)= f � t+Tf(t; �):

Proof. Fix t2T>;� and � 2T with �� t. Let T :L<�!T be the map given by

T (f) := f � t+Tf(t; �):

We need to show that f � (t+ �)=T (f) for all f 2L<�. By Lemma 4.1.1, the map T is strongly
linear, so it suffices to show that l � (t+ �)=T (l) for all l2L<�. Since log is injective, it is enough
to show that log (l � (t+ �))= log T (l). Now log (l � (t+ �))= (log l) � (t+ �) by Lemma 4.4.10 and
log T (l)=T (log l) by [33, Lemma 8.3]. By Proposition 4.4.12 and strong linearity, we have

T (log l)=T
 X
<�

l `+1

!
=
X
<�

lT (`+1)=
X
<�

lL+1(t+ �)= (log l) � (t+ �):

We conclude that log(l � (t+ �))= (log l) � (t+ �)=T (log l)= log T (l). �

To conclude our proof of Theorem 4.3.1, we prove the uniqueness of �.

Proposition 4.4.14. The function � is unique to satisfy C1� , C2� , C3� , and C4�.

Proof. Let � be a composition satisfying conditions C1�, C2�, C3�, and C4� and let s2T>;�.
We first show that `1�s= `1�s. Write s= cm+ �, with c2R>, m :=ds, and ��s. By C4�, we have

`1 � s= `1 � (cm)+
X
k2N>

`1
(k) � (cm)

k!
�:
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For k > 0, we have `1
(k)=(¡1)k¡1 (k¡ 1)! `0¡k, so C2� gives

`1
(k) � (cm)= (¡1)k¡1 (k¡ 1)! (cm)¡k= `1

(k) � (cm):

Thus, it remains to show that `1� (cm)=`1�(cm). UsingC2�,C3�, and the identity cm=(c`0)�m,
we see that

`1 � (cm)= `1 � ((c `0) �m)= (`1 � (c `0)) �m=(`1+ log c) �m=L1(m)+ log c:

Likewise `1 � (cm)=L1(m)+ log c.
Now we turn to the task of showing that f � s= f � s for f 2L<�. We make the inductive

assumption that for �<� and f 2L<!�, we have f �s= f �s (if �=0, this is Proposition 4.4.1). By
strong linearity, it suffices to verify that l � s= l � s for any monomial l2L<�. As (l � s)¡1= l¡1 � s
and likewise for l � s, it suffices to show this only for l2L<�

� . Given l=
Q
<� `

l 2L<�, we have
by C3� that

`1 � (l � s) = (`1 � l) � s=
X
<�

l(`+1 � s);

`1 � (l � s) = (`1 � l) � s=
X
<�

l(`+1 � s):

Thus, it suffices to show that ` �s= ` �s for all  <�. By our induction hypothesis, we only need
to handle the case that � is a successor and >!�¡. If =!�¡, then by Proposition 4.3.5, there is an
ordinal �<!�¡ with " := `� � s¡L�(d!�¡(s))� 1. Our inductive hypothesis and Lemma 4.1.2 yield

`� � s = `� � s=L�(d!�¡(s))+ ";
(`!�¡
"� )(k) �L�(d!�¡(s)) = (`!�¡

"� )(k) �L�(d!�¡(s)) (for k2N>)

Thus,

`!�¡ � s = `!�¡
"� � (`� � s)= `!�¡

"� � (L�(d!�¡(s))+ ") (by C3�)

= `!�¡
"� �L�(d!�¡(s))+

X
k2N>

(`!�¡
"� )(k) �L�(d!�¡(s))

k!
"k (by C4�)

= (`!�¡
"� � `�) � d!�¡(s)+

X
k2N>

(`!�¡
"� )(k) �L�(d!�¡(s))

k!
"k (by C3� and C2�)

= L!�¡(d!�¡(s))+
X
k2N>

(`!�¡
"� )(k) �L�(d!�¡(s))

k!
"k

= `!�¡ � s:

Now suppose  >!�¡ and assume by induction that `� � s= `� � s for all � < . Take � <  with
=!�¡+�. Then C3� and our inductive assumption gives

` � s=(`� � `!�¡) � s= `� � (`!�¡ � s)= `� � (`!�¡ � s)= (`� � `!�¡) � s= ` � s:

This concludes the proof. �
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Chapter 5

Hyperexponentiation

We now tackle the problem of hyperexponentiation in a confluent hyperserial skeleton T, equipped
with its external composition law � from Theorem 4.3.1. For the sake of the present discussion, we
takeT as having forceOn. Our treatment of exponentiation will take the form of an inductive proof
which spans over Chapter 5 and Chapter 6. The reason for this is that we require each function

L!�
":T>;�¡!T>;�; s 7! `!�

" � s

for �2On and  <!� to be strictly increasing (for now, we only know this to be true for =0 by
Lemma 4.3.12), in order to be able to study the properties of hyperexponentiation. Yet such strict
monotonicity result seems to be difficult to obtain unless it is known already that T embeds into
a field T~ where all hyperexponentials E of all strength  <!� are defined. In that case it follows
that L!�

"=L!� �E is strictly increasing. Now constructing extensions of T where E is defined
for all  <!� requires L!�

"� to be strictly increasing for all � < � and �<!� . . .hence the inductive
structure of the proof.

5.1 Inductive setting for Chapters 5 and 6

Our goal for Chapters 5 and 6 is to prove the Theorem 5.1.5 below. We first need a few defini-
tions. They implicitely rely on the extension of partial hyperlogarithms into strictly increasing
functions T>;�¡!T>;� as a consequence of Section 4.3.

Definition 5.1.1. Let T be a confluent hyperserial skeleton of force � 6On and let �6 �. We
say that T has force (� ; �) if for each � <�, the function L!�:T>;�¡!T>;� is bijective.

Note that if T has force (� ; �), then L:T>;�¡!T>;� is bijective for all  <!�.

Remark 5.1.2. Every confluent hyperserial skeleton of force � is a confluent hyperserial skeleton of
force (� ; 0). Given a set-sized field of transseries T, we recall that the exponential function cannot
be total [68]. Thus, any confluent hyperserial skeleton of force (� ; �) with �> 0 is necessarily a
proper class.

Remark 5.1.3. LetT be a hyperserial skeleton of forceOn. ThenT is hyperserial of force (On; �)
if and only if (T; (L!�)�<�) is hyperserial of force (�; �) for all � > �. Similarly, T is hyperserial
of force (On;On) if and only if T is hyperserial of force (On; �) for all �.

Definition 5.1.4. Let T be a confluent hyperserial skeleton of force � 6On and let �6 �. A
hyperexponential closure of T of force � is a confluent extension T(<�) of T of force (� ;�)
with the following initial property: if U is another confluent hyperserial skeleton of force (� ; �)
and if �:T¡!U is an embedding of force �, then there is a unique embedding 	:T(<�)¡!U of
force � that extends �.

T ¡!
�

T(<�)

�& # 9!�
U
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A hyperexponential closure of T is a hyperexponential closure of T of force �.

Note that a hyperexponential closure of force � if it exists is unique up to unique isomorphism.
We will write T(<�) for the hyperexponential closure of T of force � if it exists. We can now state
Theorem 5.1.5.

Theorem 5.1.5. Let T be a confluent hyperserial skeleton of force � 6On and let �6�. Then
T has a hyperexponential closure of force �.

We will prove Theorem 5.1.5 by induction on � (for all T). Note that it holds trivially if �=0.
Consider a generalized ordinal � 6 �. Throughout Chapters 5 and 6, we make the induction
hypothesis that Theorem 5.1.5 holds for all � <�:

Induction hypothesis (Chapters 5 and 6). Each confluent hyperserial skeleton of force � <�
has a hyperexponential closure of force � <�.

We first treat the case when � is a limit. For each �<�, and each confluent hyperserial skeleton
T of force �, we have an exponential closure T(<�)=R[[M(<�)]] of T of force �.

Each ordinal  2On can be written uniquely as  = � �() + �() where �() 2On and
�()<� if we impose �()=0 in the case when �=On. Setting M(0) :=M, we define an extension
T() :=R[[M()]] by induction on  2On as follows:

� M(+1) := (M())(<�()).

� M() :=
S
�<M(�) if  is a non-zero limit.

So T(0)=T and we have the force � inclusion T(�)�T() whenever � < . We set

M(<�) :=
[

2On
M(); T(<�) :=

[
2On

T()

Note that T(<�)=R[[M(<�)]] by Lemma 1.1.9.

Proposition 5.1.6. The hyperserial skeleton T(<�) is a hyperexponential closure of T of force �.

Proof. We first prove thatT(<�) has force (� ;�). Let �<� and s2T(<�)
>;� . So s2T() for a certain

 2On. We have s2T(+�+2) where T(+�+2) has force (� ; + �+1), hence force (� ; �+1) thus
s2L!�(T(+�+2)

>;� )�L!�(T(<�)). So T(<�) has force (� ;�).
Let �:T¡!U be a hyperserial embedding of force � into a confluent hyperserial embedding

U of force (� ;�). We will show for each  2On and that there is a unique force � embedding 	:
T()¡!U extending �. We have 	0=�, so assume that we have defined this unique embedding
	� when � < . If  = �+1 is a successor, then T()= (T(�))(<�(�)), so by 5.1.5, the embedding
	� extends uniquely to an embedding 	:T()¡!U. Since 	 uniquely extends 	� and since 	�
uniquely extends �, we see that 	 uniquely extends �. If  is a limit, then we set 	 :=

S
�<	�.

The map 	 is only defined on
S
�<T(�), which may not equal T(�), but 	 is defined on all of

M() and so 	 extends uniquely to a force � embedding T()¡!U, which we also denote by 	.
Since each 	�; � <  uniquely extends �, we see that 	 uniquely extends � as well. Likewise, we
define 	 to be the unique force � embedding extending

S
2On	. �

We now assume that �= �+1 is a successor. So Theorem 5.1.5 holds for � by Hypothesis 5.1.5
and we have an initial extension T�T(<�) for each confluent hyperserial skeleton of force �. In
order to prove Theorem 5.1.5, we have to show how to define missing hyperexponentials of the form
E!�(s) for s 2T>;�. In Section 5.2, we start by giving a formula for hyperexponentials E!�(s)
that are already defined in T>;� (showing in fact that they are analytic). In Section 5.3, we show
that defining hyperexponentials reduces to defining them on specific series called truncated series.
We will only prove Theorem 5.1.5 in the next chapter.

Before we continue, let us fix some notation. Set

� := !�

� := !�
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Given  < �, we set

`[;�) :=
Y

6�<�
`�2L[;�); `(;�) :=

Y
<�<�

`�; `<� := `[0;�):

Note that `�0 = `<�
¡1 and that `[;�)

" =
Q
6�<� `�

". Given s2T>;�, we set

L[;�)(s) := `[;�) � s; L�
"(s) := `�

" � s; L[;�)
" (s) := `[;�)

" � s;

and we view L[;�), L�
", and L[;�)

" as functions from T>;� to T>;�. We define L(;�) and L(;�)
"

analogously.
Given  <�, we say that E(s) is defined if s2L(T>;�). If T is of force (� ; �), then E(s)

is defined for all  < !� and s 2T>;�. Lemma 4.3.12 tells us that L is strictly increasing; in
particular, it is injective. We let E:L(T>;�)¡!T>;� be its functional inverse, which is again
strictly increasing. We may also consider E as a partially defined function on T>;�.

Our induction hypothesis, that T(<�) exists, has the following consequence:

Lemma 5.1.7. For  < �, the function L�
" is strictly increasing on T>;�.

Proof. Let s; t 2T>;� with s < t. By our inductive assumption, E(s) and E(t) both exist in
T(<�). As E and L� are strictly increasing on T(<�)

>;� and s< t, we have E(s)<E(t) and

L�
" (s)=L�(E(s))<L�(E(t))=L�

"(t): �

5.2 Local hyperexponentiation
The situation in this section is the same as that which we encountered when studying the expo-
nential in transserial fields. The function L� being analytic, its definition around a point s2T>;�

is given by a fixed power series, whose formal functional inverse if it exists provides a local inverse
of L� around L�(s).

There is a question as to whether such inversion can be done purely formally, i.e. in the general
context of analytic functions on fields of well-based series. The problem here is that although a
formal inverse of a power series is always defined, its convergence on a sufficiently large neighbor-
hood of 0 may be problematic to establish, unless one has control over the way differentiation acts
on analytic functions. Since analytic functions do not form a group of well-based series, one is left
with few tools to tackle such problem

5.2.1 Local inversion of log
We first consider the case when �=1, so �=0. This is the well-known case of exponentiation in
fields of well-based series, which we partially studied in Section 3.2.1. Indeed, recall that (T; log)
is in particular a transserial field. For s2T>, we showed that

log s2T�() s2M;

and that

s2 logT>() s�2 logT>: (5.2.1)

Furthermore, the function log:T>¡!T is bijective if and only if logM=T�.

Corollary 5.2.1. The skeleton T has force (1; 1) if and only if T�� logT>.

Recall by (3.2.2) that for s2 logT>, r 2R and "� 1, we have

exp(s+ r+ ")= exp(r) exp(s)

 X
k2N

1
k!
"k

!
:

For s2T>;�, we write

L1[s] := ft2T>;� : s¡ t4 1g:
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We note the following:

Lemma 5.2.2. For s 2T>, we have (log s)�= log ds. Thus, s 2M if and only if log s 2T�.
Moreover, L1 is a bijection between E1[m] and L1[L1(m)] for each m2M�.

Proof. Given s2T>, write s= r ds (1+ "), where r2R> and "� 1. We have

log s= log ds+ log r+L~(")

where logm is purely large. If r=/ 1, then supplog c=f1g and if "=/ 0, then L~(")�", so suppL~(")�1.
Thus, (log s)�= log ds, as desired. Now assume that s� 1 and let m2M�. Then

s2E1[m] () ds=m () ]1(L1(s))=L1(ds)=L1(m) () L1(s)2L1[L1(m)];

so L1(E1[m])=L1[L1(m)]\L1(T>;�). By (5.2.1), we have L1[L1(m)]\L1(T>;�)=L1[L1(m)], hence
the result. �

5.2.2 Local inversion of the hyperlogarithms

In this subsection, we study the range of the functions L�
" for  < � and give a formula for their

partial functional inverses. We fix a 2T>;� and set ' := L�(a)2T>;�. We also fix � < �. For
k 2N, we define series tk2L<� inductively by

t0 := `�

tk+1 := `<� tk
0

Intuitively speaking, the series tk�a is to be thought of as (`�
"�)(k)�', whereas the sum

P
k2N

tk � a
k!

"k

behaves like L�(E�('+ ")) for "�L(�;�)(a)¡1. The latter thereby provides a functional inverse
of L�

"� on a neighborhood of '.

Proposition 5.2.3. Let "2T with "�L(�;�)(a)¡1. Then the family ((tk �a) "k)k2N is well-based
and t0 � a� (tk � a) "k for k > 0.

Proof. Consider the derivative @[�;�) := `[�;�)
"� @ on L<�. We claim that tk= @[�;�)

k (`0) � `� for all
k 2N. This is clear for k=0. Assuming that the claim holds for a given k, we have

tk+1 = `<� tk
0 = `<� (@[�;�)

k (`0) � `�)0= `<� (@[�;�)k (`0)0 � `�) `�0

= `[�;�) (@[�;�)
k (`0)0 � `�)= (`[�;�)

"� @[�;�)
k (`0)0) � `�= @[�;�)

k+1 (`0) � `�:

In light of this claim, we have tk � a= @[�;�)
k (`0) � L�(a). Recall that @ has well-based operator

support supp� @= f`+10 :  < �g4 `0¡1 as an operator on L<�, so

supp� @[�;�)4 `0¡1 `[�;�)
"� = `0

¡1
Y

�6<�
`
"�=

Y
�<<�

`
"�= `(�;�)

"� :

Consider the strongly linear map

�:L<� ¡! T

f 7¡! f �L�(a)

and set

A :=
[

m2supp�@[�;�)

supp�(m);

so A is well-based and A4L(�;�)
"� (L�(a))=L(�;�)(a). For k 2N, we have tk � a=�(@[�;�)

k (`0)), so
for m2 supp(tk � a), there exist m1; : : : ;mk2 supp @[�;�) with

m2 (supp�(m1) � � � supp�(mk)) � supp�(`0):
This gives us

supp(tk � a)�Ak � supp�(`0)
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and it follows that

supp((tk � a) "k)� (A � supp ")k � supp�(`0):

As "�L(�;�)(a)¡1, we have A � supp "�1, so we deduce that ((tk �a) "k)k2N is well-based and that
t0 � a� (tk � a) "k for k > 0. �

For our next result, we need a combinatorial lemma for power series over a differential field.
Let (K;@) be a differential field. Then the ring K[[z]] is naturally equipped with two derivations: X

n=0

1

an z
n

!0
:=

X
n=0

1

(n+1) an+1 zn;

@

 X
n=0

1

an zn

!
:=

X
n=0

1

@(an) zn:

We also have a composition �:K[[z]]� zK[[z]]¡!K[[z]] given by

R � (z S) 7¡!R(z S)

for R;S 2K[[z]]. This composition interacts with our derivations as follows:

@(R � (z S))= (@R) � (zS)+ (R0 � (z S)) z @S; (R � (zS))0=(R0 � (z S)) (z S)0

Lemma 5.2.4. Let S=
P
n2N an z

n2K[[z]] and R=
P
m2N bm z

m2K[[z]]. Write F :=R � (z S)
and assume that we have

u a0 @b0=1; (n+2) an+1=ua0 @an; (m+1) bm+1=u @bm

for each n and m, where u2K. Then F = b0+ z.

Proof. The last two assumptions give us the following identities

R0 = u@R; and (5.2.2)
(zS)0 = a0 (1+u z @S): (5.2.3)

We claim that (@b0)F 0=@F . Indeed, we have

@F = @(R � (z S))
= (@R) � (z S)+ (R0 � (z S)) z @S
= (u¡1R0) � (z S)+ (R0 � (z S)) z @S (by (5.2.2))
= (u¡1+ z @S) (R0 � (zS))
= u¡1 (1+u z @S) (R0 � (z S))
= u¡1 a0

¡1 (zS)0 (R0 � (z S)) (by (5.2.3))
= (@b0) (zS)0 (R0 � (zS)) (since u a0 @b0=1)
= (@b0) (R � (z S))0

= (@b0)F 0:

Write F =
P
k=0
1

Fk z
k. The identity (@b0)F 0= @F yields Fk+1=

1

(k+1) @b0
@Fk for each k. Since

F0= b0, we conclude that F1=1 and Fk=0 for k > 1. �

Lemma 5.2.5. Let "2T with "�L(�;�)(a)¡1. Then

L�
"�
 X
n2N

tn � a
n!

"n

!
= '+ ": (5.2.4)

Proof. We have

L�
"�
�X
n2N

tn � a
n!

"n
�
=L�

"�
�
t0 � a+

X
n>1

tn � a
n!

"n
�
=
X
m2N

(`�
"�)(m) � (t0 � a)

m!

�X
n>1

tn � a
n!

"n
�m
:
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Consider the formal power series

F =
X
m2N

(`�
"�)(m) � t0
m!

�X
n>1

tn
n!
zn
�m
2L<�[[z]]:

Writing F =
P
k2NFk z

k, we haveX
k2N

(Fk � a) "k=L�
"�
�X
n2N

tn � a
n!

"n
�
:

Thus, it suffices to show that F = `�+ z.
Let an :=

1

(n+1)!
tn+1 and bm :=

1

m!
(`�
"�)(m) � t0. Then by factoring out z from the inner sum

and re-indexing, we obtain

F =
X
m2N

bm

 
z
X
n2N

an z
n

!m
:

Note that the sequence (an)n2N satisfies the identities:

a0= t1= `<� `�0 = `[�;�); an+1=
tn+2

(n+2)!
=
`<� tn+1

0

(n+2)!
=
`<�an

0

n+2
:

Since ((`�
"�)(m) � t0)0=((`�

"�)(m+1) � t0) t00 =((`�
"�)(m+1)� t0) `�0 , the sequence (bm) satisfies the iden-

tities

b0= `�
"� � t0= `� ; bm+1=

1
(m+1)!

(`�
"�)(m+1) � t0=

bm
0

(m+1) `�0
:

Setting u := `<�, we have

u a0 b0
0 = `<� b00 =1; (n+2) an+1= `<� an0 =ua0 an0 ; (m+1) bm+1=

bm
0

`�
0 =u bm

0 :

Using Lemma 5.2.4, we conclude that F = b0+ z= `�+ z. �

Proposition 5.2.6. The map s 7¡! L�
"�(s) is a bijection from L�(a) + T�L�(a) to L�(a) +

T�L(�;�)(a)
¡1
.

Proof. Let ��L�(a) and let s :=L�(a)+ �. We have L�
"�(s)=L�(a)+ T`�"�(L�(a); �), so

L�
"�(s)¡L�(a)� ((`�

"�)0 �L�(a)) �� ((`�
"�)0 �L�(a))L�(a):

Since `�0 =(`�
"� � `�)0=((`�

"�)0 � `�) `�0 , we have

((`�
"�)0 � `�) `�=

`�
0

`�
0 `�= `(�;�)

¡1 ;

so L�
"�(s)¡L�(a)�L(�;�)(a)¡1. This gives L�

"�(s)2L�(a)+T�L(�;�)(a)
¡1
.

Conversely, given "�L(�;�)(a)¡1, Lemma 5.2.5 yields L�
"�¡P

k2N
tk � a
k!

"k
�
=L�(a)+ ". Let us

show by induction on k> 1 that tk4 `(�;�)k `�. We have t1= `<� `�
0 = `[�;�)= `(�;�) `�. Assuming

that tk4 `(�;�)k `�, we have

tk+1= `<� tk0 4 `<� (`(�;�)k `�)0= `<� (k `(�;�)
k¡1 `(�;�)

0 `�+ `(�;�)
k `�

0 ):

We have

`(�;�)
0 `�= `�

X
�<�<�

`�
¡1 `<�

¡1 `(�;�)� `� `�+1¡1 `<(�+1)
¡1 `(�;�)� `� `<(�+1)

¡1 `(�;�)= `<�
¡1 `(�;�)= `�0 `(�;�);

so k `(�;�)
k¡1 `(�;�)

0 `�+ `(�;�)
k `�

0 � `(�;�)k `�
0 . This gives

tk+14 `<� `(�;�)k `�
0 =

`<� `(�;�)
k

`<�
= `[�;�) `(�;�)

k = `(�;�)
k+1 `�:
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It follows that (tk � a) "k� (tk � a)L(�;�)(a)¡k4L�(a) for each k > 0, so
P
k2N>

tk � a
k!

"k�L�(a).
Since t0 � a=L�(a), we conclude that

P
k2N

tk � a
k!
2L�(a)+T�L�(a). �

5.3 Truncated series

The notion of �-truncation for �2!On is a generalization of pure largeness (i.e. the fact of having
only infinite monomials in one's support). Like the exponential in transserial fields is determined
by its restriction to purely large series, the hyperexponential function of strength � is determined
by its values for �-truncated series. This seemingly unpractical notion will turn out to have many
regularities due to the relative simplicity of hyperexponential functions. It will play a crucial role
in the sequel of the thesis.

5.3.1 �-Truncation

Definition 5.3.1. For 0< �6 �, we say that '2T>;� is !�-truncated if '>L!�
"(m¡1) for all

m2 (supp')� and all <!�. We also say that a series '2T is 1-truncated if it is purely infinite,
i.e. if supp '�M�. We write T�;!� for the class of !�-truncated series in T. So T�;1=T�.

In Subsection 4.2.3, we showed for � < � that the class T>;� can be partitioned into convex
subclasses E!�[s]; s2T>;�, each of which contains a unique L<!�-atomic element d!�(s). In this
section, we describe a different partition of T into convex subclasses, each of which will contain
a unique !�-truncated series ]!�(s). We will then show that L� is bijective provided that T�;� �
L�(T>;�).

For the remainder of this section, we assume that �> 0.

Lemma 5.3.2. We have T�;�+R>�T�;�. If � is a successor, then T�;�+R=T�;�.

Proof. For '2T�;� and r2R>, we have (supp'+r)�=(supp')� and '+r>' so '+r2T�;�.
Assume now that � is a successor and let '2T�;� and r 2R. Again, (supp '+ r)�=(supp ')�.
Take n2N with n>¡r. Then for all  < � and m2 (supp ')�, we have

'>L�
"+!�¡n(m¡1)=L�

"(m¡1)+n>L�
"(m¡1)¡ r;

so '+ r >L�
"(m¡1). �

Lemma 5.3.3. Let a 2T>;� and let ' := L�(a) 2T>;�. Then ' is �-truncated if and only if
supp '�L(a)¡1 for all  < �.

Proof. We have (supp ')<� L(a)¡1 for all  < � since the series L(a) is infinite. Let m 2
(supp ')� and let  < �. By Lemma 5.1.7, the function L�

" is strictly increasing, so we have
'=L�

"(L(a))>L�
"(m¡1) if and only if L(a)>m¡1, hence the result. �

By Lemma 5.3.3 and R�, the series L�(a) is �-truncated for all a2M�. The axiom R0 also
gives that L1(m) is 1-truncated for m2M1.

Lemma 5.3.4. Let s; t2T>;� with s< t and let  < �. Then L�
"+1(s)>L�

"(t).

Proof. Take r 2R> with r s > t. Then Lemma 5.1.7 gives L�
"(r s)>L�

"(t), so it is enough to

prove that L�
"+1(s)>L�

"(r s). For this, we may show that `�
"+1>`�

" � (r `0) in L. As the map
L¡!L; f 7¡! f � `1 is order-preserving, it is enough to show that

`�
"= `�

"+1 � `1> (`�
" � (r `0)) � `1= `�

" � (r `1):
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This follows from Lemma 5.1.7 and the fact that r `1<`0. �

Definition 5.3.5. For t2T>;�, we define

L�[t] := fs2 t+T� : s= t or (s=/ t and t <L�
"(js¡ tj¡1) for some  < �)g:

Note that js¡ tj¡1 is positive infinite whenever s2 t+T� and s=/ t, so the expression L�
"(js¡

tj¡1) in the definition is warranted.

Proposition 5.3.6. The classes L�[t] form a partition of T>;� into convex subclasses.

Proof. Let t2T>;�. The convexity of L�[t] follows immediately from the definition of L�[t] and
Lemma 5.1.7. Let s2L�[t]. We claim that L�[t]�L�[s], from which it follows by symmetry that
L�[t] =L�[s]. This clearly holds if s= t, so assume that s=/ t.

We first show that t2L�[s]. Let " := s¡ t�1 and let  < � with t<L�
"(j"j¡1) for some  < �.

Given � with � >�> , we have `�
" � `= `�<`, whence `�

"<`0. Therefore,

L�
"(j"j¡1)=L�

"�(L�
"(j"j¡1))<L�

"�(j"j¡1)

by Lemma 5.1.7, so t<L�
"�(j"j¡1) for all such �.

If � is a successor, take n<! with  <!�¡n. Then t <L�
"!�¡n(j"j¡1) and since s¡ t= "� 1,

we have

s= t+ "<L�
"!�¡n(j"j¡1)+ "<L�(j"j¡1)+n+1=L�

"!�¡(n+1)(j"j¡1):

If � is a limit, take � < � with  <!�, so that t<L�
"!�(j"j¡1). Let us show that s<L�

"!�+1(j"j¡1).
Suppose for contradiction that s>L�"!

�+1
(j"j¡1). By (4.1.4), we have

`�
"!�¡ `��

1
`!�+1
0 `�

0 ; `�
"!�+1¡ `��

1
`!�+2
0 `�

0 :

Since `!�+2
0 � `!�+10 , we have `�

"!�+1¡ `�� `�
"!�¡ `�, so

`�
"!�+1¡ `�

"!�=
¡
`�
"!�+1¡ `�

�
¡ (`�

"!�¡ `�)� `�
"!�+1¡ `��

1
`!�+2
0 `�

0 = `[!�+2;�)
¡1 :

Therefore,

"= s¡ t>L�"!
�+1

(j"j¡1)¡L�
"!�(j"j¡1)�L[!�+2;�)(j"j¡1)¡1:

This means that j"j¡14L[!�+2;�)(j"j¡1): a contradiction since `[!�+2;�)� `0.
Now let u2L�[t] and let us show u2L�[s]. This is clear if u= s or if u= t, so we assume that

u, s, and t are pairwise distinct. By our claim, we have t2L�[s] and t2L�[u], so take  < � with
s<L�

"(jt¡ sj¡1) and u<L�
"(jt¡uj¡1). Note that

js¡uj6 jt¡ sj+ jt¡uj6 2max (jt¡ sj; jt¡uj);

thus, js¡uj¡1> 1

2
min (jt¡ sj¡1; jt¡uj¡1). Lemmas 5.1.7 and 5.3.4 yield

L�
"+1(js¡uj¡1)>L�

"+1(2 js¡uj¡1)>min (L�
"(jt¡ sj¡1); L�

"(jt¡uj¡1)):

If L�
"+1(js¡uj¡1)>L�

"(jt¡sj¡1)>s, then u2L�[s] by definition. If L�
"+1(js¡uj¡1)>L�

"(jt¡
uj¡1)>u, then s2L�[u], so u2L�[s] by our claim. �

Proposition 5.3.7. Let t2T>;�. Then the class L�[t] contains exactly one �-truncated element.

Proof. Let us first show that L�[t] contains a �-truncated element. Suppose that t itself is not �-
truncated, let m2 (supp t)� be greatest such that t6L�"(m¡1) for some <�. Setting ' := t�m, we
have '¡ t�m, so L�

"+1(j'¡ tj¡1)>L�
"(m¡1) by Lemma 5.3.4. Our assumption on m therefore

yields L�
"+1(j'¡ tj¡1)>t, whence '2L�[t].
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We claim that ' is �-truncated. Fix n2 (supp')�. By definition of ', we have t>L�
"+1(n¡1)

for all  < �. Since t¡ '�n� n, Lemma 5.3.4 gives L�
"+1(n¡1)>L�

"(jt¡ '�nj¡1) for all  < �,

so '�n2/ L�[t]=L�[']. By definition, this means that '>L�"+1(j'¡ '�nj¡1) for all  < �. Since
'¡ '�n� n, we have L�

"+1(j'¡ '�nj¡1)>L�
"(n¡1), by Lemma 5.3.4. Thus, '>L�

"(n¡1), as
claimed.

Now let ';  2T>;� be �-truncated series with '2L�[ ]. We need to show that '=  . Take
<� with '<L�

"(j'¡ j¡1). For m2 (supp')�, we have '>L�
"+1(m¡1) since ' is �-truncated.

Therefore,
L�
"(j'¡  j¡1)> '>L�

"+1(m¡1);

so j' ¡  j¡1�m¡1 by Lemma 5.3.4. Thus (supp ')�� j' ¡  j. Since j' ¡  j � 1, we deduce
supp '� j'¡  j, so 'P  . We also have  2L�['], so the same argument gives  P ' and we
conclude that '=  . �

For t 2T>;�, we define ]�(t) to be the unique �-truncated series in L�[t]. Note that this
definition extends the previous definition of ]1. It follows from the proof of Proposition 5.3.7 that
]�(t)P s for all s2L�[t] and that

L�[t] = fs2T>;� : ]�(s)= ]�(t)g:

Proposition 5.3.8. For a2T>;� we have

L�[L�(a)]= fs2T>;� : s¡L�(a)�L[;�)(a)¡1 for some  < �g:

Proof. We have s2L�[L�(a)] n fL�(a)g if and only if L�
"�(js¡L�(a)j¡1)>L�(a) for some �< �.

Since L�(a) = L�
"�(L�(a)) for each � < �, this is in turn equivalent to js ¡ L�(a)j¡1>L�(a) by

Lemma 5.1.7 . Thus, s2L�[L�(a)] if and only if js¡L�(a)j<L�(a)¡1 for some �<�, and it remains
to show that js¡L�(a)j<L�(a)¡1 for some �< � if and only if js¡L�(a)j�L[;�)(a)¡1 for some
 < �. This follows from the fact that if �< < �, then `�� `[;�)� `, so L�(a)¡1�L[;�)(a)¡1�
L(a)¡1. �

Proposition 5.3.9. For each a2T>;� we have L�(E�[a])�L�[L�(a)].

Proof. Let u2 E�[a]. Then there is �=!� n< � with L�(u)¡L�(a)� 1. Thus, L�(u)2L�(a) +
T� and so L�(u) = L�

"�(L�(u))2 L�(a) +T�L[�;�)(a)
¡1

by Proposition 5.2.6. Therefore, L�(u) 2
L�[L�(a)] by Proposition 5.3.8. �

Corollary 5.3.10. We have ]� �L�=L� � d� on T>;�. Thus, for s 2T>;�, we have s 2M� if
and only if L�(s)2T�;�.

Proof. Let s2T>;�. Then L�(d�(s))2L�[L�(s)] by Proposition 5.3.9 and L�(d�(s)) is �-truncated
by R� and Lemma 5.3.3. Thus L�(d�(s))= ]�(L�(s)). The fact that s2M� if and only if L�(s)2
T�;� follows from this and the fact that L� is injective. �

Proposition 5.3.11. Assume that T is a confluent hyperserial skeleton of force (� ; �). Then
L�(E�[s]) =L�[L�(s)] for all s2T>;�. In particular, if E�(t) is defined for t2T>;�, then E� is
defined on L�[t].

Proof. We prove this by induction on �. Let s2T>;�. By Proposition 5.3.9, we need only prove
that L�(E�[s])�L�[L�(s)]. Let t 2L�[L�(s)]. By Proposition 5.3.8, there is a �= !� n< � with

t2L�(s)+T
�L[�;�)

¡1 (s). By Proposition 5.2.6, there is a v 2L�(s)+T�L�(s) with t=L�
"�(v). Since

T is hyperserial of force (� ; �), the hyperexponential E�(v) is defined and

E�(t)=E�(v):

Finally, since v�L�(s), Lemma 4.3.4 and Proposition 4.3.5 imply E�(v)2E�[s]. �

Corollary 5.3.12. Assume that T is a confluent hyperserial skeleton of force (� ; �). Then we
have E� � ]�= d� �E� whenever one of the sides is defined.
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Corollary 5.3.13. The following are equivalent:

a) T has force (� ; �+1).

b) For all �6 �, the function E!� is defined on T�;!�.

c) For all �6 � and s2T>;�, the hyperexponential E!�(t) is defined for some t2L!�[s].
d) For all �6 �, we have L!�(M!�)=T�;!�.

Proof. The equivalence between a) and b) follows from Proposition 5.3.11 and the fact that we have

T>;�=
G

'2T�;!�
L!�[']

for all � 6 �. The equivalence between b) and c) follows directly from Proposition 5.3.11. The
equivalence between b) and d) follows from Corollary 5.3.10. �

Set � :=!� and assume that T has force (� ; �). Then by Lemma 5.3.1, for all s2T>;�, there
is a  < � with " := s¡ ]�(a)�

`�
0

`
0 �E� ]�(s). For any such , there is a family (t;k)k2N2L<�N with

t0= ` such that ((t;k �E� ]�(s)) "k)k2N is well-based and

E� a=E

 X
k2N

t;k �E� ]�(s)
k!

"k

!
: (5.3.1)

5.3.2 Useful properties of truncation
Throughout this subsection, we let 0< �<� and we set � :=!� and � :=!�¡. Given s; t2T>;�,
it will be convenient to introduce the following notations:

s<� t () L�[s]<L�[t] () ]�(s)<]�(t)
s=� t () L�[s] =L�[t] () ]�(s)= ]�(t)

Lemma 5.3.14. Let s2T>;�,  < �, and r 2R>. We have

L�
"(r L(s)) =� L�(s)

Proof. We claim that if `�=/ `�
" � (r `), then `�¡ `�

" � (r `)� 1 and

`�<`�
"+1 � j`�¡ `�

" � (r `)j¡1:

Assuming that `�=/ `�
" � (r `), we have

`�
" � (r `)= `�

"+1 � log(r `)= `�
"+1 � (`+1+ log r)=

X
k2N

(`�
"+1)(k) � `+1

k!
(log r)k;

whence `�
" � (r `)¡ `�� ((`�

"+1)0 � `+1) log r. Now

(`�
" +1)0 � `+1=

`�
0

`+1
0 = `[+1;�)

¡1 ;

so `�
" �(r`)¡`��`[+1;�)

¡1 �1. Since `[+1;�)�`+1, we have j`�¡`�
" � (r`)j¡1>`+1, so Lemma

5.1.7 gives

`�
"+1 � j`�¡ `�

" � (r `)j¡1>`�
"+1 � `+1= `� ;

as desired. Composing with s gives that if L�(s)=/ L�
"(rL(s)), then L�(s)¡L�

"(rL(s))�1 and

L�(s)<L�
"+1(jL�(s)¡L�

"(rL(s))j¡1);

From which it follows that L�
"(r L(s))2L�[L�(s)]. �
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Corollary 5.3.15. Let s; t2T>;� with t4 s. Then L�(s t) =� L�(s).

Proof. We have L�(s t) = L�
"1(L1(s t)) = L�

"1(L1(s) + L1(t)). Let n > 0 with t < ns. We have
0<L1(t)<L1(s)+ log n< 2L1(s), so

L�
"1(L1(s))<L�

"1(L1(s)+L1(t))<L�
"1(3L1(s))

by Lemma 5.1.7. Since L�(s)=L�
"1(L1(s)) =� L�

"1(3L1(s)) by Lemma 5.3.14 and L�[s] is convex,
we are done. �

Lemma 5.3.16. For each s2T>;� and each  < �, we have

L�
"(s) =� L�(L(s)) =� L�(s):

Proof. Take �=!�n with 6�<�. Since `�"6`0, we have `�"=`�"��`�"6`�"��`0 by Lemma 5.1.7.
This gives

`�
"6 `�"�= `�"!

�+1
� `!�+1
"� = `�

"!�+1 � (`!�+1+n)<`�
"!�+1 � (2 `!�+1):

Thus, L�
"(s)<L�

"!�+1(2L!�+1(s)). Likewise, since `> `�, we have

`� � `> `� � `�= `�"!
�+1
� (`!�+1 � `�)= `�

"!�+1 � (`!�+1¡n)>`�
"!�+1 �

�
1
2
`!�+1

�
;

so L�(L(s))>L�
"!�+1¡ 1

2
L!�+1(s)

�
. Lemma 5.1.7 gives `�

"= `�
" � `0> `�" � `= `�> `� � `, so we

have

L�
"!�+1(2L!�+1(s))>L�

"(s)>L�(L(s))>L�"!
�+1
�
1
2
L!�+1(s)

�
:

By Lemma 5.3.14, both L�
"!�+1(2 L!�+1(s)) and L�

"!�+1¡ 1
2
L!�+1(s)

�
are elements of L�[L�(s)].

Since L�[L�(s)] is convex, this means that it also contains L�
"(s) and L�(L(s)). �

We have the following useful consequence:

Corollary 5.3.17. Let s; t2T>;� be such that L(s)�L�(t) for some ; � < �. Then

L�(s) =� L�(t):

Proof. Take n2N> with 1

n
L(s)<L�(t)<nL(s). Then

L�

�
1
n
L(s)

�
<L�(L�(t))<L�(nL(s)):

We have L�(n L(s)) =� L�
"(n L(s)) by Lemma 5.3.16 and we have L�

"(n L(s)) =� L�(s)
by Lemma 5.3.14, so L�(nL(s)) =� L�(s). Likewise, L�

¡ 1
n
L(s)

�
=� L�(s). Since L�[L�(s)] is

convex, this yields L�(L�(t)) =� L�(s). Since L�(L�(t)) =� L�(t) by Lemma 5.3.16, we conclude
that L�(t)=�L�(s). �

Corollary 5.3.18. Let s; t2T>;� with L�(s) <� L�(t). Then s¡1 t2T>;� and L�(s¡1 t) =� L�(t).

Proof. As L� is strictly increasing, we have s6 t, which gives L1(s)6L1(t). We first claim that
L1(s)�L1(t). If �> 1, then Corollary 5.3.17 gives that L1(s)�L1(t), so we may focus on the case
when �=1. Suppose toward contradiction that L!(s)<!L!(t) and that L1(t)=L1(s)+ " for some
"�L1(s). Then

L!(t)¡L!(s)=L!
"1(L1(s)+ ")¡L!

"1(L1(s))=T`!"1(L1(s); ")� ((`!
"1)0 �L1(s)) ":

Since (`!
"1)= `!+1, we have (`!

"1)0= `!0 = `[0;!)
¡1 , so (`!

"1)0 �L1(s)= `[0;!)
¡1 �L1(s)=L[1;!)(s)¡1. Since

"�L1(s), we have

L!(t)¡L!(s)� ((`!
"1)0 �L1(s)) "�L[2;!)(s)¡1;
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so L!(s) =! L!(t) by Proposition 5.3.8, a contradiction.
From our claim, we get 0 < L1(s¡1 t) = L1(t) ¡ L1(s) � L1(t). This yields s¡1 t 2T>;�, as

L1(s¡1 t)2T>;�. Take r 2R>1 with r¡1L1(t)<L1(s¡1 t)<rL1(t). Lemma 5.3.14 gives

L�(t)=L�
"1(L1(t)) =� L�

"1(r¡1L1(t)) =� L�
"1(r L1(t));

so L�(t) =� L1(s¡1 t) since L�[L�(t)] is convex and L�
"1 is strictly increasing. �
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Chapter 6
Hyperexponential extensions
In this chapter, we continue and conclude the inductive proof we began in Chapter 5 (see Sec-
tion 5.1) Recall that �= �+16� is a successor ordinal, and that 5.1.5 is assumed to hold for �.
We again set

� := !�

� := !�

� := !�¡:

Note that �= � ! if � is a successor and �= � if � is a limit. We also fix a confluent hyperserial
skeleton T=R[[M]] of force (� ; �), and not just �. The results in this chapter are contained, in
this more general form, in [14, Sections 7 and 8].

In order to prove Theorem 5.1.5 for �, we rely on a weaker extension theorem which we now
describe. Given the class T�T of �-truncated series ' whose hyperexponential E�(') is not
defined, we construct a hyperserial skeleton T(�) =R[[M(�)]] and a hyperserial embedding 	:
T¡!T(�) with

	(T)�L�(T(�)
>;�); (6.0.1)

That is, seeing as T is naturally included in T(�), the hyperexponentials E�
' of each element '2T

are defined in T(�). Furthermore, the extension (T(�);	) is initial among extensions satisfying
(6.0.1). More precisely, we will prove the following result.

Theorem 6.0.1. Let T be a hyperserial skeleton of force (� ; �) and let T denote the class of �-
truncated series '2T with '2/ L�(T>;�). There is a hyperserial skeleton T(�) of force � and a
hyperserial embedding 	:T¡!T(�) of force � such that

	(T)�L�(T(�)
>;�):

Moreover, for any other such extension (U;�), there is a unique hyperserial embedding �:T(�)¡!
U of force � with � �	=�.

T ¡!
	

T(�)

�& # 9!�
U

Section 6.1 is dedicated to the proof of the theorem for �= 0. In that case, a large part of
the work has already been done in [92], but it contains a self-contained treatment for our setting.
The case when �> 0, which is the longest argument of the thesis, is split into three sections. In
Section 6.2, we define the structure of field of well-based series of T(�), which involves defining its
ordered group of monomials M(�). In Section 6.3, we define the hyperserial skeleton on T(�) and
conjunctively prove that it satisfies the axioms for hyperserial skeletons. In Section 6.4, we show
that T(�) is confluent, prove Theorem 6.0.1 and conclude our inductive proof of Theorem 5.1.5.

6.1 Exponential extensions
Let T be the class of all 1-truncated series '2T�;1 for which exp ' is not defined. Write hTi be
the R-subspace of T�;1 generated by T and logM. By Lemma 5.2.2, the class hTi consists only
of 1-truncated series. The reader may recall that we have already showed how to construct expo-
nential extensions and closures (see Section 3.2). The difference here is that besides extending the
logarithm throughout exponential extensions, we must also extend the whole hyperserial skeleton
and show that the axioms are preserved.
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6.1.1 Monomial group
We associate to each '2 hTi a formal symbol e' and we let M(0) denote the multiplicative R-
vector space of all such symbols, where e' e =e'+ and (e')r=er'. We use 1 in place of e0. We
order this space by setting e'� e () '>  : It is easy to see that (M(0);�;�;R) is an ordered
R-vector space which is isomorphic to (hTi;+;<;R). We identify M with the R-subspace elogM of
M(�) via the embedding m 7! elogm. Let T(0) :=R[[M(0)]], so the identification M�M(0) induces
an identification T�T(0).

6.1.2 Extending the logarithm and the first hyperlogarithm
For e'2M(0), we set

log e' := ':

We let L1 be the restriction of log to M(0)
� . Note the following:

1. By construction, (T(0); L1) satisfies DD0 and FE0. Moreover, L1(m) =L1(eL1(m)) for m2
M�, so (T; L1)� (T(0); L1)

2. We claim that (T(0);L1) satisfies A0. Suppose for contradiction that '=L1(e')< e', where
e'2M(0)

� . Then d'< e', so L1(d')> ' by definition. This gives L1(d')<d', which contra-
dicts the fact that (T; L1) satisfies A0.

3. By definition, we have e'2M(0)
� if and only if L1(e')> 0, so (T(0); L1) satisfies M0.

4. Since L1(e')= '2T�;1 for e'2M(0)
� , the axiom R0 is satisfied.

5. As remarked in Remark 4.2.2, P0 follows from FE0.

Extending L!. For ' 2 hTi with e' � 1, we have L1(e') 2M(0)
� if and only if ' 2M�, so

e'2
T
n2NdomL1

�n if and only if '2
T
n2N domL1

�n if and only if '2M!. Accordingly, we set

domL! := fe' : '2 hTi \M!g; L!(e') :=L!(')+ 1:

This ensures that DD1 holds. Note that if a2M!, then L1(a)2 hTi \M!, so a=eL1(a)2domL!
and L!(eL1(a))=L!(L1(a))+ 1=L!(a). Thus, M!� domL! and (T; L1; L!)� (T(0); L1; L!). We
also have the following:

1. For e'2 domL!, we have

L!(L1(e'))=L!(')=L!(e')¡ 1

so (T(0); L1; L!) satisfies FE1.

2. For e'2 domL!, we have L!(')+ 1= (`!+1) � '� `0 � '= ', since `!+1� `0. Thus

L!(e')=L!(')+ 1� '=L1(e');
which proves A1.

3. (T(0); L1; L!) satisfies M1. To see this, let e'; e 2domL! with e'� e and let n2N. We
want to show that L!(e') +Ln(e')¡1<L!(e )¡Ln(e )¡1. Since Ln+1(e')�Ln(e') and
Ln+1(e )�Ln(e ) by A0, we may assume without loss of generality that n> 0. Now

L!(e')+Ln(e')¡1 = L!(')+1+Ln¡1(')¡1

L!(e )¡Ln(e )¡1 = L!( )+ 1¡Ln¡1( )¡1:

Since ';  2M! and since (T; L1; L!) satisfies M1, we have

L!(')+Ln¡1
¡1 (')<L!( )¡Ln¡1¡1 ( ):

4. Let e'2 domL!. Since '2M! and (T; L1; L!) satisfies R1, the hyperlogarithm L!(') is
!-truncated by Lemma 5.3.3. It follows from Lemma 5.3.2 that L!(e')=L!(')+1 is also
!-truncated, so (T(0); L1; L!) satisfies R1.
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5. Let e'2domL! and let (rn)n2N be a sequence of real numbers. To show that (T(0);L1;L!)
satisfies P1, we need to show that the sum s=

P
n2N rnLn+1(e

') is in logM(0). We have

s=
X
n2N

rnLn+1(e')= r0 '+
X
n2N>

rnLn('):

Since ' 2M! and since (T(0); L1; L!) satisfies P1, we have
P
n2N> rn Ln(') 2 logM. It

remains to note that r0 '= r0L1(e')= log er0'2 logM(0) and that logM(0) is closed under
finite sums.

6.1.3 Extending L!� for 1< �<�

Let 1< � < � and set dom L!� :=M!�. We need to show that DD� holds for each �, and for
this, it suffices to show that DD2 holds. Let e'2

T
n2N domL!

�n and take n with L!(n+1)(')�
L!(n+1)(d!2(')). Since L!(')+ 1�L!('), Lemma 4.3.4 yields

L!(n+1)(e')=L!n(L!(')+1)�L!n(L!('))=L!(n+1)(')�L!(n+1)(d!2(')):

Since L!(n+1)(e') and L!(n+1)(d!2(')) are both monomials, they must be equal. The axiom M1

gives e'= d!2(')2M!2= domL!2.
Now FE�, A�, M�, R�, and P� hold for each 1< �<�, since they hold in T. Furthermore, P�

holds if � 2On; this is clear since � > 1. Thus, (T(0); (L!�)�<�) is a hyperserial skeleton of force
� which extends (T; (L!�)�<�).

Proposition 6.1.1. Then T(0) is �-confluent.

Proof. Clearly, T(0) is 0-confluent. Let s2T(0)
>;� and take '2 hTi with ds=e'2M(0)

� . We have
L1(d1(s))=L1(e')='2T. Let a :=d!(') and take n with (L1�d1)�n(')� (L1�d1)�n(a). We have
L1(d1(s))= ': By definition of hTi, we either have a2 logM and a2 hTi or a2/ logM and a2T,
whence a2 hTi. So

(L1 � d1)�(n+1)(s)� (L1 � d1)�n (a)= (L1 � d1)�(n+1)(ea):

The fact that a2M! implies that ea2domL!, so d!(s)= ea. We have

L!(d!(s))=L!(ea)=L!(a)+1�L!(a)=L!(d!(a));

so d!2(s)= d!2(a) and, more generally, d!�(s)= d!�(a) for 26 �6�. Thus, the skeleton T(�) is �-
confluent. �

Let us summarize:

Proposition 6.1.2. The field T(0) is a confluent hyperserial skeleton of force �. It is an extension
of T of force � with hTi�L1(M(0)).

Using the composition from Theorem 4.3.1, we can check whether an embedding � of confluent
hyperserial skeletons is of force � without having to verify that �(M!�)�N!� for all �.

Lemma 6.1.3. Let U=R[[N]] be a confluent hyperserial skeleton of force � with the external
composition �:L<��U>;�¡!U from Theorem 4.3.1 and let �:T¡!U be a strongly linear field
embedding. Suppose that �(M)�N, that �(mr) =�(m)r for all m2M and all r 2R, and that
�(L!�(a))=L!�(�(a)) for all � <� and all a2M!�. Then � is an embedding of force �.

Proof. We will show by induction on � < � that �(M!�)�N!�. For �=0, this holds since � is
order-preserving. Let � > 0 and assume that �(M!�)�N!� for all � < �. If � is a limit, then by
DD�, we have

�(M!�)=�
 \
�<�

M!�

!
=
\
�<�

�(M!�)�
\
�<�

N!�=N!�:
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Suppose � is a successor and let a2M!�. We have L!�¡n(a)2M!�¡ for all n2N by DD�. Our
induction hypothesis gives L!�¡n(�(a))=�(L!�¡n(a))2N!�¡ for all n2N. Applying DD� again
gives �(a)2N!�, so �(M!�)�N!�. �

Proposition 6.1.4. Let U=R[[N]] be a confluent hyperserial skeleton of force � and let �:T¡!U
be an embedding of force �. If �(T)� log(U>), then there is a unique embedding

	:T(0)¡!U

of force � that extends �.

Proof. As U is hyperserial of force �, we have an external composition �:L<��U>;�¡!U.
Since �(T)� logU>, � is R-linear, and logU> is an R-subspace of U containing �(logM), we
have �(hTi)� logU>.

Since �(M�)�N�, we have �(T�;1)�U�;1 so �(hTi)� logU>\U�;1. Thus, exp(�(')) is
a monomial for '2 hTi by Lemma 5.2.2. We define a map 	:M(0)¡!N by setting

	(e') := exp(�(')):

It is routine to check that 	:M(0) ¡!N is an embedding of ordered monomial groups with
R-powers. By Proposition 1.3.2, this embedding 	 uniquely extends into a strongly linear field
embedding of T(0) into U, which we will still denote by 	. Note that if m2M, then 	(elog(m))=
exp(�(logm))= exp(log(�(m)))=�(m), so 	 extends �.

We now prove that 	 is a force � embedding. By Lemma 6.1.3, we need only show that 	
commutes with logarithms and hyperlogarithms. Given e'2M(�), we have

	(log(e'))=	(')=�(')= log(exp(�(')))= log(	(e')):

Now let �<� with �> 0 and let e'2 (M(�))!�. If �>1, then e'2M!�, so we automatically have
L!�(	(e'))=	(L!�(e')), since 	 extends �. If �=1, then '2 hTi \M!, so

L!(	(e'))=L!(exp(�(')))=L!(�('))+ 1=�(L!(')+1)=�(L!(e'))=	(L!(e')):

Let us finally assume that �:T(0)¡!U is another embedding of force � that extends �. To
see that �=	, it suffices to show that �(e')=	(e') for '2 hTi. Now

log(�(e'))=�(log(e'))=�(')=�(');

so �(e')= exp(�('))=	(e'). �

We next turn to the case of �> 0.

6.2 Structure of field of well-based series

We first define T(�) as a field of well-based series by defining its monomial group M(�) as a linearly
ordered Abelian group extension of M.

6.2.1 Selecting truncated series
Let T be the class of all �-truncated series '2T�;� for which E�(') is not defined. Consider '2T
and s 2T>;�. We have ]�(L�(s)) = L�(d�(s)) 2 L�(T>;�) by Corollary 5.3.10. Since L�[L�(s)]
contains a unique �-truncated element, ' is �-truncated and '2/ L�(T>;�), it follows that '2/
L�[L�(s)]. Thus, we have

'6L�(s) () '<� L�(s)
'>L�(s) () '>� L�(s):

If � is a successor, then since T has force (� ; �), we have

T=T+Z: (6.2.1)
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6.2.2 The group of monomials
We associate to each l2L<� and each '2T a formal symbol l[e�

']. This should be thought of as
l� e�

' if e�
' is an element in a hyperserial extension of T. Accordingly, we write e�

' in place of `0[e�
']

and 1 in place of 1[e�
'].

Remark 6.2.1. We will now construct the smallest subgroup L<�[e�T] containing e�T such that a
composition law L<��T(�)

>;�¡!T(�) may be defined for T(�)=R[[L<�[e�T]�M]]. For '2T,and
l2L<�, we should hacve a monomial l � e�

' in L<�[e�T]. Since adding all these as formal symbols
would create ambiguities generated by identities

`� � e�
'=e�

'¡1

when �= � ! (i.e. when � is a successor). We choose to systemacitally write expressions `� � e�
' as

e�
'¡1 and thus only restrict our logarithmic hypermonomials t lie L<�, compensating by allowing
for certain transfinite products involving more than one '2T.

We define the group L<�[e�T] as follows. If � is a limit, then �= �, and L<�[e�T] is the group
generated by the elements l[e�

'] with l2L<� and satisfying the relations l1[e�
'] l2[e�

'] = (l1 l2)[e�
'].

Hence L<�[e�T] is the group of products

t=
Y
'2T

t'[e�
']; t'2L<�;

for which the hypersupport

hsupp t := f'2T : t'=/ 1g

of t is finite. If � is a successor, then let _ be the equivalence relation on T defined by

s_ t () t¡ s2Z:

We let L<�[e�T] be the group of formal products

t=
Y
'2T

t'[e�
']; t'2L<�;

for which the hypersupport hsupp t is well-based and hsupp t/_ is finite. Given s; t2L<�[e�T], we
note that hsupp s¡1 t�hsupp s[hsupp t, whence s¡1 t2L<�[e�T]. Hence L<�[e�T] is indeed a group.

For t2L<�[e�T]=/1, we define 't :=maxhsupp t and t :=min f < � : (t't)=/ 0g. We set t� 1 if
t't�1, which happens if and only if (t't)t> 0. The following facts will be used frequently, where
t; u range over L<�[e�T]:

� 't¡1= 't for t=/ 1,

� 'tu6max ('t; 'u), and if 't=/ 'u then 'tu=max ('t; 'u)

� If 1� t4 u or u4 t� 1, then 't6 'u,
� If t� 1 and u< 1 or if t� 1 and u4 1 then 'tu=max ('t; 'u).

Let M(�) denote the direct product L<�[e�T]�M. We denote by t m a general element (t;m) of
this group, where we implicitly understand that t2L<�[e�T] and m2M; we also identify (t; 1) and
(1;m) with t and m, respectively. We set T(�) :=R[[M(�)]].

Remark 6.2.2. Assume that � is a successor and consider t2L<�[e�T] as above. The advantage of
the representation of t as an infinite product of terms of the form t'[e�

'] with t'2L<� is that such
a representation is unique. Alternatively, it is possible to represent t as a finite product of terms
of the form l[e�

'] with l2L<�, but uniqueness is lost, since `0[e�
'] = `�[e�

'+1].
Nevertheless, we may construct a privileged representation as a finite product as follows. Since

hsupp t/_ is finite, there exist '1> � � �>'n2T with 'i_'j for i=/ j and hsupp t/_= f'1; : : : ;
'ng/_. Since hsupp t is well-based, we may also take 'i=maxf'2hsupp t :'_'ig for all i. Then

t=
Y

16i6n

Y
m2N

t'i¡m[e�
'i¡m]:
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Fix i2f1; : : : ; ng. For each m2N, we have log t'i¡m=
P
<� (t'i¡m) `+1, soX

m2N
log(t'i¡m � `�m) =

X
m2N

(log t'i¡m) � `�m=
X
m2N

 X
<�

(t'i¡m) `+1

!
� `�m

=
X
m2N

X
<�

(t'i¡m) `�m++1= log

 Y
m2N

Y
<�

`�m+
(t'i¡m)

!
:

Set
t'i
� :=

Y
m2N

Y
<�

`�m+
(t'i¡m) 2L<�:

This gives us the finite representation

t=
Y

16i6n
t'i
� [e�

'i]:

Note that t� 1() t'1� 1() t'1
� � 1.

6.2.3 The ordering
Let M(�)

� be the set of all elements t m2M(�) that satisfy one of the following conditions:

t� 1; m� 1, and 't>L�(m¡1) (I)
t� 1; m� 1, and 't<L�(m) (II)
t< 1 and m� 1 (III)
t� 1 and m< 1 (IV)

We define the relation � on M(�) by t m� u n if and only if (u t¡1) (nm¡1)2M(�)
� .

Proposition 6.2.3. The relation � is an order on M(�) that extends the orderings on both M

and L<�[e�T].

Proof. By definition, the relation � extends the orderings on M and L<�[e�T]. In order to show
that � is an order, it suffices to check that M(�)

� is a total positive cone on M(�).
Let tm2M(�)nf1g. By the definition ofM(�)

� and the fact that 't¡1='t, it is clear that tm and
(tm)¡1 cannot both be in M(�)

� . Let us show that either tm2M(�)
� or (tm)¡12M(�)

� . Assume that
tm2/M(�)

� . If t� 1 and m4 1 or t4 1 and m� 1, then (tm)¡1 satisfies (III) or (IV). Suppose that
t� 1, m� 1, and 't6L�(m¡1). Then 't< L�(m¡1) since 't2L�(T>;�), so 't¡1= 't<L�(m¡1).
Since t¡1� 1 and m¡1� 1, we conclude that (t m)¡1 satisfies (II). If t� 1, m� 1, and 't>L�(m)
then (t m)¡1 satisfies (I), for similar reasons.

Now let t m; u n2M(�)
� . We will show that (t u) (mn)2M(�)

� . If both t m and s n satisfy one
of the last two rules, then this is clear. Thus, we may assume without loss of generality that t m
satisfies either rule (I) or rule (II). We consider the following cases:

Case 1: tm and un both satisfy (I) or they both satisfy (II). Suppose that they both satisfy (I).
Then t u�1 and mn�1, so we need to verify that 'tu>L�((mn)¡1). By Corollary 5.3.15, we have
L�((mn)¡1) =� max (L�(m¡1); L�(n¡1)). Since t; u� 1, we also have 'tu=max ('t; 'u), whence
L�((mn)¡1)<� 'tu. The case when tm and u n both satisfy (II) is similar.

Case 2: t m satisfies (I) and u n satisfies (III) or (IV). We have t u� 1, so if m n< 1, then
(t u) (mn) satisfies (IV). Suppose that mn� 1. If n=1, then L�((mn)¡1)=L�(m¡1) and if n� 1,
then (mn)¡1�m¡1, so L�((mn)¡1)<L�(m¡1) as L� is strictly increasing. Since tm satisfies rule
(I) and u< 1, we have

'tu=max ('t; 'u)> 't> L�(m¡1)>L�((mn)¡1);

so (t u)(mn) satisfies (I).
Case 3: tm satisfies (II) and u n satisfies (III) or (IV). We have mn<m� 1, so if t u< 1, then

(t u)(m n) satisfies (IV). Suppose that t u� 1. If u� 1, then 1� u� t¡1, so 'u6 't¡1= 't and
'tu6max ('t; 'u)= 't. Since t m satisfies rule (II), we have 't<� L�(m), so

'tu6 't<� L�(m)6L�(mn):
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Hence (t u) (mn) satisfies (II).
Case 4: One of the monomials tm and un satisfies (I) and the other one satisfies (II). Without

loss of generality, we may assume that t m satisfies (I) and u n satisfies (II). Let us first consider
the case when t u� 1. Then 1� t� u¡1, so 't6 'u¡1= 'u and 'tu6 'u. Since 't>L�(m¡1) and
'u<L�(n), we deduce that L�(m¡1)<� L�(n), so L�(mn)=� L�(n) by Corollary 5.3.18. Since un

satisfies (II), we have 'u<L�(n), so

'tu6 'u<L�(n)=� L�(mn)
and (t s)(mn) satisfies (II).

Let us now consider the case when t u< 1. If mn� 1, then (t u) (mn) satisfies (III). If mn=1
and t u� 1, then (t u) (m n) satisfies (IV). If m n= t u= 1, then m n= (t u)¡1, so t m= (u n)¡1,
contradicting that tm;un2M(�)

� . It remains to consider the case that mn� 1. Then m¡1�n� 1,
so L�(m¡1)>L�(n) as L� is strictly increasing. Since 't>L�(m¡1) and 'u<L�(n), we deduce that
't> 'u, so 'tu= 't. Since n¡1� 1, we have (mn)¡1�m¡1, so L�((mn)¡1)<L�(m¡1). This gives

'tu= 't> L�(m¡1)> L�((mn)¡1);

so (t u) (mn) satisfies (I). �

Remark 6.2.4. Given m2M� and t2L<�[e�T]�, we have

m� t()m¡1 t� 1()L�(m)< 't:

Since m� t, we also have m� t()L�(m)> 't. More generally, for s2T>;�, we have

s� t()L�(s)<'t; s� t()L�(s)>'t:

This is because L�(s)=� L�(ds) by Corollary 5.3.17 with �= =0.

6.3 Extending the hyperlogarithmic structure
In this subsection, we extend the hyperlogarithms L!� from T to T(�), while verifying that they
satisfy the axioms for hyperserial skeletons. We separate various cases as a function of �, including
the case of the ordinary logarithm when �=0 and starting with the real power operation.

In each case, we start with the definition of the domain domL!� of the extended hyperlogar-
ithm L!� on T(�) and then define L!� on the elements of domL!� which do not already lie in M!�.
We next check that (T; (L!�)�6�) satisfies the domain definition axioms DD�, as well as the other
axioms for hyperserial skeletons.

6.3.1 Extending the real power operation
For r2R and t m2M(�), define (t m)r := trmr where mr is as defined in M, and

tr :=
Y
'2T

t'
r [e�

']2L<�[e�T]:

It is easy to check that this defines a real power operation on M(�). Note that 'tr= 't for each
non-zero r 2R.

Now that we have defined an ordering and a real power operation on M(�), we let T(�) :=
R[[M(�)]]. Then T(�) is a field of well-based series extending T.

6.3.2 Extending the logarithm when �=1

Suppose that �=1, so �=! and �=1. For `0r 2L<1 and '2T, we define

log(`0r[e!
']) := r e!

'¡1

We extend log to L<1[e!T] by setting

log t :=
X
'2T

log(`0
r'[e!

'])
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for t=
Q
'2T `0

r'[e!
']2L<1[e!T]. Note that log(`0

r'[e!
'])=/ 0 if and only if '2hsupp t. We claim that

log t is well-defined. Let '1> ���>'n2T. As in Remark 6.2.2, we have t=
Q
i=1
n Q

m2N`0
r'i¡m[e!

'i¡m]
and

log t=
X
i=1

n X
m2N

log(`0
r'i¡m[e!

'i¡m]) =
X
i=1

n X
m2N

r'i¡m e!
'i¡m¡1:

Each sum
P
m2N r'i¡m e!

'i¡m¡1 exists in T(�), since the support (e!
'i¡m¡1)m2Ai is a strictly

decreasing sequence in L<1[e!T]. Thus, log t is well-defined. If t=/ 1, then we note that

log t� log(`0
r't[e!

't])� r't e!
't¡1

Finally, we extend log to all of M(�) by setting log(tm) := log t+ logm. We let L1 be the restriction
of log to the class M(�)

� , so (T(�); L1) satisfies DD0.
Using the definition of real powers, it is straightforward to check that (T(�); L1) satisfies FE0.

For ' 2T, we have ' ¡ 1 2T by (6.2.1), whence e!
'¡1 2L<1[e!T]�. Therefore log(`0r[e!

'])� 1 for
all r2R. It follows that

suppL1(t m)� supp log t[ supp logm� 1

for tm2M(�)
� and R0 is satisfied. The axiom P0 follows from FE0, so it remains to be shown that

(T(�); L1) satisfies A0 and M0.

Lemma 6.3.1. (T(�); L1) satisfies A0.

Proof. Given t m2M(�)
� , we must show that L1(t m)� tm. We proceed by case distinction:

1. If t=1, then L1(t m)=L1(m)�m= tm since (T; L1) satisfies A0.

2. If m=1, then t� 1 and
dL1(t)=e!

't¡1

We have dL1(t)2L<1[e!T] and 'dL1(t)='t¡1. Thus dL1(t)� t since 't¡1<'t. Thus L1(tm)=
L1(t)� t= tm.

3. Suppose t�1, m�1, and 't>L!(m¡1). We have L1(tm)=L1(t)¡L1(m¡1), so it is enough
to show that L1(t)� t m and L1(m¡1)� t m. We have

L!(m¡2)=L!
"1(2L1(m¡1))=! L!(m¡1)

by Lemma 5.3.14, so 't>L!(m¡2), whence tm2�1 and tm�m¡1�L1(m¡1). Since 't1/2=
't>L!(m¡1), we also have t1/2m� 1, so

tm� t1/2�L1(t1/2)�L1(t):

4. Suppose t� 1, m� 1, and 't<L!(m). This time, we need to show that L1(t¡1)� t m and
L1(m)� t m. Using that 't2= 't and that L!(m1/2)=! L!(m), we have t2m; t m1/2� 1, so

t m� t¡1�L1(t¡1); t m�m1/2�L1(m1/2)�L1(m):

5. If t� 1 and m� 1, then L1(t m) = L1(t) +L1(m). So the result follows from the fact that
L1(t)� t� tm and L1(m)�m� tm. �

Lemma 6.3.2. (T(�); L1) satisfies M0.

Proof. Given tm2M(�)
� , we need to show that L1(tm)>0. If t=1, thenm�1 so L1(tm)=L1(m)>0

since (T; L1) satisfies M0. If m=1, then t� 1, so r't> 0. Since

L1(t)� r't e!
't¡1

we have L1(t m)=L1(t)> 0. If t;m� 1, then L1(tm)=L1(t)+L1(m)> 0.
Consider now the case that t� 1, m� 1, and 't<L!(m). Since L1(t m)=L1(m)¡L1(t¡1), we

need to show that L1(t¡1)<L1(m). For each r 2R>, we have

L!(m)=! L!
"1(r L1(m))=L!(r L1(m))+1
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by Lemma 5.3.14. Since 't<! L!(m), this gives 't¡ 1<L!(r L1(m)). We have

L1(t¡1)� e!
't¡1� r L1(m)�L1(m)

by Remark 6.2.4. This gives L1(t¡1)�E!('t¡ 1)�L1(m).
Finally, suppose that t � 1, m� 1, and 't > L!(m¡1). The same argument as above gives

't¡ 1>L!(r L1(m¡1)) for r 2R>, so L1(t)�L1(m¡1) and L1(t m)=L1(t)¡L1(m¡1)> 0. �

6.3.3 Extending the logarithm when �> 1

For l=
Q
<� `

l 2L<� and '2T, we define

log(l[e�
']) :=

X
<�

l `+1[e�
']:

This sum is well-defined, as `�+1[e�
']� `+1[e�

'] for  <� <�. For t2L<�[e�T], we set

log t :=
X

'2hsuppt
log(t'[e�

'])=
X

'2hsuppt

X
<�

(t') `+1[e�
']:

This sum is also well-defined, as hsupp t is well-based and `+1[e�
']� `�+1[e�

 ] for all ; � <�, and
';  2T with '<  . If t=/ 1, then note that log t� (t't)t `t+1[e�

'], so

dlog t= `t+1[e�
't] = dlog t't[e�

't]

and log t> 0 whenever t� 1. Finally, we extend log to all of M(�) by setting

log(tm) := log t+ logm:

for tm2M(�). As before, we let L1 be the restriction of log to M(�)
� , so (T(�); L1) satisfies DD0.

The axiom FE0 (and thus P0) follow easily from the definition of L1 and the axiom R0 holds
since `+1[e�

']� 1 for each . Let us prove that A0 holds for t2L<�[e�T]�. Given t�1, we need to

show that t dL1(t)
¡1 �1. Since 'dL1(t)= 't, it suffices to show that (t dL1(t)

¡1 )'t= t't(dL1(t)
¡1 )'t�1. Since

(dL1(t)
¡1 )'t= dL1(t't)

¡1 , this further reduces to showing that t't� L1(t't). But this follows from the

fact that A0 holds for L<�. The proof that A0 holds for a general element t m2M(�)
� is identical

to cases 3�5 of Lemma 6.3.1. Let us now show that (T(�); L1) also satisfies M0.

Lemma 6.3.3. (T(�); L1) satisfies M0.

Proof. We have L1(t)> 0 for t2L<�[e�T]� and L1(m)> 0 for m2M�. It follows that L1(t m)> 0
for t m2M(�)

� so long as t;m< 1. Suppose that t� 1, m� 1, and 't>L�(m¡1). Then L1(t m) =
L1(t)¡ L1(m¡1), so it is enough to show that L1(t)�L1(m¡1). As shown in the proof that A0
holds, we have 'dL1(t) = 't. By Lemma 5.3.16, we also have L�(m¡1) =� L�(L1(m¡1)). Thus,
'dL1(t)>L�(L1(m

¡1)), so L1(t)� dL1(t)�L1(m¡1); see Remark 6.2.4. The case that t� 1, m� 1,
and 't<L�(m) is similar. �

6.3.4 Extending L!� when 0< �< �¡

Given 0< �< �¡, we set

domL!� :=M!�[f`[e�
'] : '2T and !�¡6o  < �g:

Given  with !�¡6o  < �, we decompose = >!�+!�¡n, and define

L!�(`[e�
']) := `>!�+!�[e�

']¡n:

Note that n=0 and L!�(`[e�
'])= `+!�[e�

'] whenever � is a limit ordinal. More generally, we have

L!�(`[e�
']) = `+!�[e�

']
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whenever �6 �¡ (including the case when �=0).

Lemma 6.3.4. (T(�); (L!�)�<�¡) satisfies DD� for each � < �¡.

Proof. We prove this by induction on � < �¡, beginning with �=1. Let t m2M(�)
� , so

L1(t m)= logm+
X

'2hsuppt

X
<�

(t') `+1[e�
']:

If L1(t m) 2M(�)
� , then either t = 1 or m= 1. If t= 1, then m 2

T
n2N dom L1

�n if and only if
m 2M!. If m= 1, then L1(t)2M(�)

� if and only if t= `[e�
'] 2 dom L!. It remains to note that

Ln(`[e�
'])= `+n[e�

']2M(�)
� for all n.

Now assume that � > 1 and that DD� holds for all � < �. Since (T; (L!�)�<�¡) satisfies DD�

for each � < �¡, we may focus on elements of the form `[e�
'] where  < � and ' 2T. For the

remainder of the proof, we fix such an element. If � is a successor, then we need to show that `[e�
']2T

n2N domL!�¡
�n if and only if  >o !�¡. One direction is clear: if  >o !�¡ then L!�¡n(`[e�

']) =
`+!�¡n[e�

']2 domL!�¡ for each n. For the other direction, if `[e�
']2 domL!�¡, then  >o !�¡¡,

so write = >!�¡+!�¡¡m and note that L!�¡(`[e�
'])= `>!�¡+!�¡[e�

']¡m is a monomial if and
only if m= 0. If � is a limit, then  >o!�¡ for all � < � if and only if  >o !�¡= !�, so we have
`[e�

']2 domL!� if and only if `[e�
']2 domL!� for all � < �. �

Lemma 6.3.5. (T(�); (L!�)�<�¡) satisfies A� for each � < �¡.

Proof. Let ' 2T and �; �;  2On with 06 � < � < �¡ and !�¡6o  < �. Since (T; (L!�)�<�¡)
satisfies A� for each � < �¡, it suffices to show that L!�(`[e�

'])<L!�(`[e�
']). Decomposing  =

>!�+!�¡n, we have >!�+!�> +!�, so

L!�(`[e�
']) = `>!�+!�[e�

']¡n6 `>!�+!�[e�
']<`+!�[e�

'] =L!�(`[e�
']): �

Let 0< � < �¡, let !�¡6o  < �, and let '2T. We note that L!�(`[e�
']) has no infinitesimal

terms in its support, soR� is satisfied since it holds in (T; (L!�)�<�¡). To see that (T(�);(L!�)�<�¡)
satisfies FE�, suppose that � is a successor and write = >!�+!�¡n. Then

L!�(L!�¡(`[e�
']))=L!�(`>!�+!�¡(n+1)[e�

']) = `>!�+!�[e�
']¡ (n+1)=L!�(`[e�

'])¡ 1:

Lemma 6.3.6. (T(�); (L!�)�<�¡) satisfies M� for each � < �¡ with � > 0.

Proof. Let �<�¡ with �>0, let a;b2(M(�))!� with a�b, and let !�n<!�. We want to show that

L!�(a)+L!�n(a)¡1<L!�(b)¡L!�n(b)¡1:

If a; b2M!�, then this holds because (T; (L!�)�<�¡) satisfies M�. Consider the following cases:

1. If a= `[e�
'] and b= `�[e�

 ], then write = >!�+!�¡m and �=�>!�+!�¡ k. We have

L!�(a)+L!�n(a)¡1 = `>!�+!�[e�
']¡m+ `+!�n

¡1 [e�
']

L!�(b)¡L!�n(b)¡1 = `�>!�+!�[e�
 ]¡ k¡ `�+!�n¡1 [e�

 ]:

Since a� b, we have '6  . If ' <  , then `>!�+!�[e�
']� `�>!�+!�[e�

 ]. If '=  , then
 >�, so either >!�>�>!� or >!�= �>!� and m>k. In both cases, we have L!�(a) +
L!�n(a)¡1<L!�(b)¡L!�n(b)¡1.

2. If a=`[e�
'] and b2M!�, then we must have '<L�(b) by Remark 6.2.4. Writing = >!�+

!�¡m, we have L!�(a)= `>!�+!�[e�
']¡m, so dL!�(a)= `>!�+!�[e�

']. By Corollary 5.3.17,
we have L�(L!�(b))=� L�(b)> ', so

L!�(b)� `>!�+!�[e�
']�L!�(a);

again by Remark 6.2.4. In particular, L!�(a)+L!�n(a)¡1<L!�(b)¡L!�n(b)¡1.
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3. If a2M!� and b= `[e�
'], then '>L�(a). Arguing as in the previous case, we have L!�(b)�

`>!�+!�[e�
']�L!�(a). �

Lemma 6.3.7. (T(�); (L!�)�<�¡) satisfies P� for each 0< �< �¡.

Proof. Let a 2 (M(�))!� and let (r)<!� be a sequence of real numbers. Consider the sum
s :=

P
<!� rL+1(a). We need to show that s 2 logM(�). If a2M!�, then s 2 logM. Suppose

a= `�[e�
'] with !�¡6o� <�. Then L(a)= `�+[e�'] for all  <!�, so

s=
X
<!�

rL+1(`�[e�
']) =

X
<!�

r `�++1[e�
'] = log(l[e�

'])

where l :=
Q
<!� `�+

r 2L<�. �

6.3.5 Extending L� if �> 1 is a successor
Assume that �> 1 is a successor and let � :=!�¡¡. We take

domL� :=M�[f`[e�
'] : '2T and �6o  <�g:

Note that �6o <� implies = �n for some n2N. Moreover, if �¡ is a limit, then n=0. In other
words,

domL� =

(
M�[f`�n[e�

'] : '2T and n2Ng if �¡ is a successor.
M�[fe�

' : '2Tg if �¡ is a limit.

We define

L�(`�n[e�
']) := e�

'¡1¡n:

The proofs of Lemmas 6.3.4 and 6.3.7 can be amended to show that (T(�); (L!�)�<�¡) satisfies
DD�¡ and P�¡; just replace � with �¡. Since (T; (L!�)�<�¡) satisfies R�¡, FE�¡, and A�¡, it
suffices to check these axioms for elements of the form `�n[e�

'], where '2T and � n<�. We have
e�
'¡12M(�)

� so suppL�(`�n[e�
'])<1 and (T(�); (L!�)�<�¡) satisfies R�¡. As for FE�¡, suppose that

�¡ is a successor. We have

L�(L�(`�n[e�
']))=L�(`�(n+1)[e�

']) = e�
'¡1¡ (n+1)=L�(`�n[e�

'])¡ 1:

Lemma 6.3.8. (T(�); (L!�)�<�) satisfies A�¡.

Proof. Let '2T, � n<�, and � < �¡. We have

L�(`�n[e�
'])= e�

'¡1¡n� `�n+!�[e�
'] =L!�(`�n[e�

']): �

Lemma 6.3.9. (T(�); (L!�)�<�) satisfies M�¡.

Proof. Let a; b2 (M(�))� with a� b and let !�n<�. We need to show that

L�(a)+L!�n(a)¡1<L�(b)¡L!�n(b)¡1:

We proceed by case distinction.

1. If a; b2M�, then this holds because (T; (L!�)�<�) satisfies M�¡.

2. Suppose a= `�m[e�
'] and b= `�k[e�

 ] for some �m; � k < � and some ';  2T. Then

L�(a)+L!�n(a)¡1 = e�
'¡1¡m+ `�m+!�n[e�

']¡1, and

L�(b)¡L!�n(b)¡1 = e�
 ¡1¡ k¡ `�k+!�n[e�

 ]¡1:

Recall that '¡ 1;  ¡ 12T by (6.2.1). So either '<  or '= and m>k. In either case,
we have L�(a)+L!�n(a)¡1<L�(b)¡L!�n(b)¡1.
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3. Suppose a= `�m[e�
'] for some � m< � and some '2T and b2M�. Then '<L�(b) since

a� b. For each r2R>, we have L�(b)=� L�
"�(rL�(b))=L�(r L�(b))+1 by Lemma 5.3.14,

so '¡ 1<L�(rL�(b)). Now L�(a)� e�
'¡1� rL�(b)�L�(b) by Remark 6.2.4. Hence,

L�(a)+L!�n(a)¡1� e�
'¡1�L�(b)�L�(b)¡L!�n(b)¡1:

4. Suppose a 2M� and b= `�m[e�
'] for some � m < � and some ' 2T. Then ' > L�(a), so

similar arguments as above give '¡ 1>L�(r L�(a)) for each r 2R>. Again, we conclude
that L�(a)+L!�n(a)¡1�L�(b)¡L!�n(b)¡1: �

6.3.6 Extending L�
We define

domL� := M�[fe�
' : '2Tg

L�(e�
') := ':

Lemma 6.3.10. (T(�); (L!�)�<�+1) satisfies DD�.

Proof. If �=1, let tm2M(�)
� , with t=

Q
'2T `0

r'[e!
']. We have

L1(t m)=L1(m)+
X
'2T

L1(`0
r'[e!

'])=L1(m)+
X

'¡12T
r' e!

'¡1+
X

'¡12T
r'E!('¡ 1):

If L1(tm)2M(�)
� , then either t=1 or m=1. If t=1, then m2

T
n2NdomL1

�n if and only if m2M!.
If m=1, then L1(t)2M(�)

� if and only if t=e!
'2 domL!. For n2N, we have

Ln(e!
')= e!

'¡n:

If �> 1 is a successor, then let '2T and �m< �. We need to show that `�m[e�
']2

T
domL�

�n if
and only if m=0. This holds since

L�(`�m[e�
'])= e�

'¡1¡m:

Finally, if � is a non-zero limit, then we have\
�<�

f`[e�
'] : '2T and !�¡6o  < �g= fe�' : '2Tg: �

To see that R� is satisfied, let '2T and let !�n< �. We have

L!�n(e�
')¡1=

8<: `!�n[e�
']¡1 if � < �¡

(e�
'¡n)¡1 if �= �¡.

Let m2 (supp ')�. Since ' is �-truncated, we have '>L�(m¡1). This gives `!�n[e�
']¡1�m for

� < �¡. If � = �¡, then ' ¡ n is also �-truncated by Lemma 5.3.2, so ' ¡ n > L�(m¡1) since
(supp ')�=(supp ('¡n))�. This yields (e�

'¡n)�m¡1, i.e. L!�n(e�
')¡1�m, so

suppL�(e�
')= supp '�L!�n(e�

')¡1;

as desired.
If � is a successor, then L�(e�

')= e�
'¡1, so

L�(L�(e�
'))= '¡ 1=L�(e�

')¡ 1;

so FE� is satisfied. As for A�, let � < �. Since `0>`�, we have '>L�('), so Remark 6.2.4 with
t= `!�[e�

'] and s= ' gives

L!�(e�
')= `!�[e�

']� '=L�(e�
'):
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Lemma 6.3.11. (T(�); (L!�)�<�+1) satisfies M�.

Proof. Let a� b2 domL� and let !�n< �. We want to show that

L!�n(a)¡1+L!�n(b)¡1<L�(b)¡L�(a):

Note that L�(a);L�(b)2T�;�. We claim that L�(a)<L�(b). If a;b2M�, then this follows from the
fact that (T(�); (L!�)�<�+1) satisfiesM�. If a=e�

' and b=e�
 , then we have L�(a)='< =L�(b).

If a=e�
' and b2M�, then L�(a)= '<L�(b) by Remark 6.2.4 and likewise, if a2M� and b=e�

 ,
then L�(a)<  =L�(b).

Now suppose toward contradiction that L!�n(b)¡1+L!�n(a)¡1>L�(b)¡L�(a). We will show
that L�(b)2L�[L�(a)]. As L�(a) is the unique �-truncated element in L�[L�(a)] and L�(b) is �-
truncated, this is a contradiction.

Since L!�n(a)¡1>L!�n(b)¡1 by M{, we have 2L!�n(a)¡1>L�(b)¡L�(a), so

1
2
L!�n(a)< jL�(b)¡L�(a)j¡1:

By A0, we have L1(L!�n(a))�L!�n(a)� 1

2
L!�n(a), so

L!�n+1(a)� jL�(b)¡L�(a)j¡1:

If L!�n+1(a)2T>;�, then Lemma 5.1.7 gives

L�(a)=L�
"!�n+1(L!�n+1(a))<L�

"!�n+1(jL�(b)¡L�(a)j¡1);

so L�(b)2L�[L�(a)]. Suppose L!�n+1(a)2T>;� and let '2T with a=e�
'. If � < �¡, then

L!�n+1(a)= `!�n+1[e�
']� jL�(b)¡L�(a)j¡1;

so ' < L�(jL�(b)¡ L�(a)j¡1) by Remark 6.2.4. As '= L�(a), this too gives L�(b) 2 L�[L�(a)].
Finally, if �= �¡< �, then

L!�n+1(a)= `1[e�
'¡n]�jL�(b)¡L�(a)j¡1;

so '¡n<L�(jL�(b)¡L�(a)j¡1) by Remark 6.2.4. As `�+n= `�
"�n, we have

'<L�(jL�(b)¡L�(a)j¡1)+n=L�
"�n(jL�(b)¡L�(a)j¡1);

so L�(b)2L�[L�(a)] once again. �

Lemma 6.3.12. (T(�); (L!�)�<�+1) satisfies P�.

Proof. Let a 2 domL� and let (r)<� be a sequence of real numbers. Consider the sum s :=P
<� rL+1(a). If a2M�, then s2 logM since (T; (L!�)�<�+1) satisfies P�. Assume therefore

that a=e�
' for some '2T. If � is a limit, then �= � and

s=
X
<�

rL+1(e�
')=

X
<�

r `+1[e�
'] = log(l[e�

'])

where l :=
Q
<� `

r 2L<�
� . If � is a successor, then we may write

s=
X
n2N

X
<�

r�n+L�n++1(e�
')=

X
n2N

X
<�

r�n+L+1(L�n(e�
')):

Since '¡n2T for all n, we haveX
n2N

X
<�

r�n+L+1(L�n(e�
'))=

X
n2N

X
<�

r�n+L+1(e�
'¡n)= log

 Y
n2N

ln[e�
'¡n]

!
where ln :=

Q
<� `

r�n+ 2L<�
� . �
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6.3.7 Extending L!�+1
Suppose � > �+1. We define

domL!�+1 := M!�+1[fe�
' : '2T\M!�+1g

L!�+1(e�
') := L!�+1(')+ 1:

For ' 2T, we have e�
'2

T
n2N domL�

�n if and only if '2M!�+1 since '=L�(e�
'). This proves

that (T(�); (L!�)�<�+2) satisfies DD�+1. Let '2T\M!�+1. We have

L!�+1(L�(e�
'))=L!�+1(')=L!�+1(e�

')¡ 1;

so FE�+1 is satisfied. As for A�+1, it suffices to show that L!�+1(e�
')<L�(e�

') since L�(e�
')<

L!{(e�
') for all { < � by A�. Since `!�+1+1� `0, we have

L!�+1(e�
')=L!�+1(')+ 1= (`!�+1+1) � '� '=L�(e�

'):

Now for R�+1, let !� n < !�+1. Since L�(n+1)(e�
') 6 L!�n(e�') by A�, it suffices to show that

suppL!�+1(e�
')�L�(n+1)(e�

')¡1. Since

suppL!�+1(e�
')= suppL!�+1(')[f1g; L�(n+1)(e�

')¡1=L�n(')¡1;

it is enough to show that suppL!�+1(')�L�n(')¡1. This holds because (T; (L!�)�<�+2) satisfies
R�+1 and '2M!�+1.

Lemma 6.3.13. (T(�); (L!�)�<�+2) satisfies M�+1.

Proof. Let a; b2 domL!�+1 with a� b and let !� n<!�+1. We want to show that L!�+1(a) +
L!�n(a)¡1<L!�+1(b)¡L!�n(b)¡1. Since L�(n+1)(a)6L!�n(a) and likewise for b, it is enough to
show that

L!�+1(a)+L�(n+1)(a)¡1<L!�+1(b)¡L�(n+1)(b)¡1:

We proceed by case distinction:

1. If a; b2M�, then the result follows from M�+1 for T.

2. If a=e�
' and b=e�

 , then

L!�+1(a)+L�(n+1)(a)¡1 = L!�+1(')+1+L�n(')¡1

L!�+1(b)¡L�(n+1)(b)¡1 = L!�+1( )+ 1¡L�n( )¡1:

Since ';  2M!�+1 and (T; (L!�)�<�+2) satisfies M�+1, we have

L!�+1(')+L�n(')¡1<L!�+1( )¡L�n( )¡1:

3. If a= e�
' and b 2M!�+1, then ' < L�(b). Since '; L�(b) 2M!�+1 and (T; (L!�)�<�+2)

satisfies M�+1, we have

L!�+1(')+L�n(')¡1<L!�+1(L�(b))¡L�n(L�(b))¡1=L!�+1(b)¡ 1+L�(n+1)(b)¡1:

Thus,

L!�+1(a)+L�(n+1)(a)¡1=L!�+1(')+ 1+L�n(')¡1<L!�+1(b)+L�(n+1)(b)¡1:

4. If a2M� and b=e�
 , then the argument is similar to the previous case. �

Lemma 6.3.14. (T(�); (L!�)�<�+2) satisfies P�+1.

Proof. Let a2 (M(�))!�+1 and let (r)<!�+1 be a sequence of real numbers. We need to show
that the sum s=

P
<!�+1

rL+1(a) is in logM(�). If a2M!�, then s2 logM. If a=e�
' for some

'2T\M!�+1, then

s=
X
n2N

X
<�

r�n+L�n++1(e�
')=

X
<�

rL+1(e�
')+

X
n2N>

X
<�

r�n+L+1(L�n(e�
')):
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We have
P
<� rL+1(e�

')2 logM(�), since (T(�); (L!�)�<�+1) satisfies P�. We also haveX
n2N>

X
<�

r�n+L+1(L�n(e�
')) =

X
n2N>

X
<�

r�n+L+1(L�(n¡1)('))

=
X
n2N>

X
<�

r�n+L�(n¡1)++1(')2 logM;

since '2M!�+1 and (T; (L!�)�<�+2) satisfies P�+1. We conclude by noting that logM(�) is closed
under addition. �

Remark 6.3.15. In the case that �= �+1, the argument that DD�+1 is satisfied gives

(M(�))!�=
\
n2N

domL�
�n=M!� [fe�

' : '2T\M!�g

and the proof of Lemma 6.3.14 also tells us that (T(�); (L!�)�<�) satisfies P�.

6.3.8 Extending L!� when �+1< � <�

If � > �+1, then we will not extend the hyperlogarithms L!� with � > �+1. So for � < � with
� > �+1, we simply set

domL!� :=M!�:

Lemma 6.3.16. (T(�); (L!�)�<�) satisfies DD� for all � <�.

Proof. It suffices to show that (T(�); (L!�)�<�) satisfies DD�+2. Suppose toward contradiction
that there is some ' 2T \M!�+1 with e�

' 2
T
n2N dom L!�+1

�n . Take n > 0 with L!�+1n(') �
L!�+1n(d!�+2(')). Since L!�+1(e�

')=L!�+1(')+ 1�L!�+1('), Lemma 4.3.4 yields

L!�+1n(e�
')=L!�+1(n¡1)(L!�+1(')+ 1)�L!�+1(n¡1)(L!�+1('))�L!�+1n(d!�+2(')):

Since L!�+1n(e�
') and L!�+1n(d!�+2(')) are both monomials, they must be equal. The axiomM�+1

gives e�
'= d!�+2(')2T, a contradiction. �

For all � <� with � > �+1, the axioms FE�, A�, M�, R� and P� automatically hold in T(�)
since they hold in T, as does the axiom P� if � > �+1 is an ordinal.

6.4 End of the proof of Theorem 4.2
We have completed the proof of the following:

Proposition 6.4.1. (T(�); (L!�)�<�) is a hyperserial skeleton of force �.

Let us finally examine the confluence and universality of T(�).

6.4.1 The extended hyperserial skeleton

Proposition 6.4.2. We have M!�+1�T[L�(T>;�), and T(�) is �-confluent. In particular, T(�)
is �-confluent.

Proof. Let a2M!�+1. If a2/ L�(T>;�), then a2T by definition, the first part of the statement
is true. We turn to the second one.

Clearly, T(�) is 0-confluent. Consider s2T(�)
>;� and write d1(s)=ds= tm2M(�)

� . By our defin-
ition of L1, we either have have d1(L1(ds)) = d1(L1(m)) or d1(L1(ds)) = `t+1[e�

't]. If d1(L1(ds)) =
d1(L1(m)), then d!(s) = d!(m) and, more generally, d!�(s) = d!�(m) 2M!� for all � 2On with
16 �6�, since E![d!(m)]=E![m]�E!�[m] by Lemma 4.2.7. Assume from now on that d1(L1(ds))=
`t+1[e�

't].
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We set  := t and ' := 't. For 16 �6 �, let us first show by induction that

d!�(`[e�
'])= `>!�¡[e�

']2M!�:

If �=1, then = >1 and

d1(L1(ds))= `+1[e�
'] =L1(`[e�

']) = d1(L1(`[e�
']));

so we indeed have d!(s) = `>1[e�
']. Let 1< � 6 � and suppose that d!�(`[e�

']) = `>!�¡[e�
'] for

16� < �. If 1< �< � and � is a successor, then our induction hypothesis yields

L!�¡(d!�¡(`[e�
']))=L!�¡(`>!�¡¡[e�

']):

Writing >!�¡¡= >!�¡+!�¡¡n, we have

L!�¡(`>!�¡¡[e�
'])= `>!�¡+!�¡[e�

']¡n� `>!�¡+!�¡[e�
'] =L!�¡(`>!�¡[e�

']);

so

d!�(`[e�
']) = d!�(d!�¡(`[e�

']))= `>!�¡[e�
']:

If 1< �6 � and �= �¡ is a limit, then there is �< � such that >!�¡= >!�¡. For this �, we have

L!�(d!�(`[e�
']))=L!�(`>!�¡[e�

']) =L!�(`>!�¡[e�
']);

so d!�(`[e�
']) = `>!�¡[e�

'] 2M!�. Finally, if � = � and � is a successor, then >!�¡¡= !�¡¡ n,
where n=0 if �¡ is a limit. This gives

L�(d�(`[e�
']))=L�(`!�¡¡n[e�

']) = e�
'¡1¡n:

We thus have L�(d�(`[e�
']))�L�(e�

'). Since >�=0, we deduce that d�(`[e�
']) = e�

'= `>�[e�
'],

Let us now show that d!�+1(`[e�
']) exists. Let a := d!�+1('), so a2T[L�(T>;�) by the first

part of the statement. Take n with (L� � d�)�n(') � (L� � d�)�n(a). We have L�(d�(`[e�
'])) =

L�(e�
')= ', so

(L� � d�)�(n+1)(`[e�
'])� (L� � d�)�n(a)=

(
(L� � d�)�(n+1)(e�a) if a2T
(L� � d�)�(n+1)(E�(a)) otherwise.

Since a is an infinite monomial, it is !�+1-truncated, so E�(a)2M!�+1 so long as it is defined.
Thus, d!�+1(`[e�

']) is either equal to e�a or E�(a).
If d!�+1(`[e�

']) =E�(a), then d!�(`[e�
']) = d!�(E�(a)) for � 2On with �+16 �6�. On the

other hand, if d!�+1(`[e�
'])= e�a, then

L!�+1(d!�+1(`[e�
']))=L!�+1(e�

a)=L!�+1(a)+ 1�L!�+1(a):

Take n2N with (L!�+1 � d!�+1)�n(a)� (L!�+1 � d!�+1)�n(d!�+2(a)). Then

(L!�+1 � d!�+1)�(n+1)(`[e�
'])� (L!�+1 � d!�+1)�(n+1)(a)� (L!�+1 � d!�+1)�(n+1)(d!�+2(a));

so d!�+2(`[e�
'])= d!�+2(a) and, more generally, d!�(`[e�

'])=d!�(a) when �2On and �+26 �6
�. �

Propositions 6.4.1 and 6.4.2 yield:

Corollary 6.4.3. The structure (T(�); (L!�)�<�) is a confluent hyperserial skeleton of force �.

Remark 6.4.4. Let 0< �6 �¡. Then

(M(�))!�=M!�[fl[e�
'] : l2 (L<�)!� and '2Tg:

Given  <!� and l[e�
']2 (M(�))!� nM!�, we have L(l[e�

'])=L(l)[e�
']. Given t2L<�[e�T], we have

d!�(t)= d!�(t't)[e�
't].

Let us now show that T(�) satisfies a universal property. We start with a lemma.
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Lemma 6.4.5. For any a; b2M� with a� b and any ; � < �, we have L�(a)�L(b).

Proof. Choose � < �¡ and n2N such that ; � <!�n. Then L�(a)� a and L!�n(b)�L(b) so it
suffices to show that a�L!�n(b). Since L!�+1(a);L!�+1(b) are monomials and L!�+1(a)<L!�+1(b),
we have

L!�+1(a)�L!�+1(b)�L!�+1(b)¡n=L!�+1(L!�n(b)):

The monotonicity of L!�+1 gives a<L!�n(b). We conclude that a�L!�n(b), since a and L!�n(b)
are monomials. �

Proposition 6.4.6. Let U=R[[N]] be a confluent hyperserial skeleton of force � 6On and let
�:T¡!U be an embedding of force �. If �(T)�L�(U>;�), then there is a unique embedding

	:T(�)¡!U

of force � that extends �.

Proof. Since U is confluent, we have an external composition �:L<��U>;�¡!U. Given '2T,
the series �(') is �-truncated, soE�(�(')) is �-atomic, by Remark 5.3.10. We set a' :=E�(�('))2
N�. Note that for '2T and l=

Q
<� `

l 2L<�, the series

l � a'= exp
 X
<�

lL+1(a')
!

exists in N by P�. Let us define a map 	:L<�[e�T]¡!N. Let t2L�[e�T]. If � is a limit, then hsupp t
is finite and we define

	(t) :=
Y
'2T

t' � a'2N:

If � is a successor, let '1> � � �>'n2T and t'i
� be as in Remark 6.2.2. We define

	(t) :=
Y
i=1

n

t'i
� � a'i:

Note that in both the limit and successor case, we have

log	(t)=
X
'2T

log(t' � a')=
X
'2T

X
<�

(t')L+1(a'):

Given ' <  2T and ; � < �, we have L�(a') � L(a ) by Lemma 6.4.5 and, if  < �, then
L�(a')�L(a'). Thus, log	(t)� (t't)tLt+1(a't) for t=/ 1. In particular, 	 is order preserving,
since

t� 1() (t't)t> 0() log	(t)> 0()	(t)� 1:

Next, we extend 	 to all of M(�) by setting 	(tm)=	(t)�(m) for tm2M(�). Note that 	 extends
�. It is straightforward to check that 	:M(�)¡!N is an embedding of monomial groups which
respects real powers. We need to show that 	 preserves the ordering. Let t m2M(�)

� . If both t;
m< 1, then 	(t m)=	(t)�(m)� 1. This leaves us two cases to consider:

1. Suppose t � 1, m � 1, and 't > L�(m¡1). Set r := (t't)t > 0. We claim that
L�(m¡1)=� L�

"t+1(2 r¡1L1(m¡1)). If �=1, then t=0, so this follows from Lemma 5.3.14.
If �> 1, then 1; t+1<�, so this follows from Lemmas 5.3.14 and 5.3.16. In either case,
we have 't > L�

"t+1(2 r¡1 L1(m¡1)), so �('t) > L�
"t+1(2 r¡1 L1(�(m¡1))). From this,

we see that

Lt+1(a't)=Lt+1(E�(�('t)))> 2 r¡1L1(�(m¡1));

so 1

2
r Lt+1(a't) > L1(�(m¡1)): Since L1(	(t)) � r Lt+1(a't), this gives L1(	(t)) >

L1(�(m¡1)). Thus
log(	(t m))=L1(	(t))¡L1(�(m¡1))> 0;

so 	(tm)� 1.
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2. Suppose t�1,m�1, and 't<L�(m). Set r :=(t't)t<0. As before, Lemmas 5.3.14 and 5.3.16
give �('t)<L�

"t+1¡¡1

2
r¡1L1(�(m))

�
, so

¡2 rLt+1(a't)<L1(�(m)):

Since L1(	(t)¡1)=¡log(	(t))�¡r Lt+1(a't), this gives L1(	(t)¡1)<L1(�(m)), so

log(	(tm))=L1(�(m))¡L1(	(t)¡1)> 0
and 	(t m)� 1.

By Proposition 1.3.2, the function 	:M(�)¡!N extends uniquely into a strongly linear strictly
increasing embedding T(�)¡!U, which we still denote by 	.

We claim that 	 is an embedding of force �. By Lemma 6.1.3, we need only show that 	
commutes with logarithms and hyperlogarithms. We begin with logarithms. Let l2L<� and '2T.
If �=1, then l= `0r for some r2R and

log(	(`0r[e!
']))= r L1(a')= r L1(E!(�(')))= rE!(�('¡ 1)):

We have

rE!(�('¡ 1))= r a'¡1=	(log(`0r[e!
'])):

If �> 1, then

log(	(l[e�
']))=

X
<�

lL+1(a')=	
 X
<�

l `+1[e�
']
!
=	(log(l[e�

'])):

In all cases, we have, log(	(l[e�
']))=	(log(l[e�

'])). For tm2M(�), we have

log	(t m) = log	(t)+ log	(m)=
X
'2T

log(	(t'[e�
']))+ log�(m)

=
X
'2T

	(log(t'[e�
']))+�(logm)=	(log t)+	(logm)=	(log(tm)):

Now, let 0< �6 �+1 and let t= `[e�
']2domL!� nM!�. Note that 	(t)=L(a'), so we need to

show that 	(L!�(t))=L!�(L(a')). Write = >!�+!�¡n. If � < �¡, then

	(L!�(t))=	(`>!�+!�[e�
']¡n)=L>!�+!�(a')¡n=L!�(L(a')):

If �= �¡< �, then =!�¡¡n. We have

	(L�(`[e�
']))=	(e�

'¡1)¡n= a'¡1¡n=L�(a')¡n=L�(L(a')):

If �= �, then =0 and

	(L�(t))=	(')=�(')=L�(a'):

If �= �+1, then =0 and

	(L!�+1(t))=	(L!�+1(')+1)=�(L!�+1(')+ 1)=L!�+1(�('))+ 1=L!�+1(a'):

Since 	(L!�(m)) = �(L!�(m)) =L!�(�(m)) =L!�(	(m)) for m2M!� and since domL!�=M!�

for � > �+1, this completes the proof of our claim that 	 is an embedding of force �.
We finish with the uniqueness of 	. Let �:T(�)¡!U be another embedding of force � that

extends �. To see that �=	, we only need to show that �(t)=	(t) for all t2L<�[e�T]. For '2T,
we have

L�(�(e�
'))=�(L�(E�(')))=�(')=�(');

so �(e�
')= a'. For  < �, we deduce that

�(`+1[e�
'])=�(L+1(e�

'))=L+1(�(e�
'))=L+1(a')=	(`+1[e�

']):

Since � is strongly linear, this gives log �(t) = �(log t) = 	(log t) = log	(t) for t 2 L<�[e�T], so
�(t)=	(t) by the injectivity of log. �
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6.4.2 Hyperexponential closure
In this section, we prove Theorem 5.1.5 for � = �+ 1. We fix a confluent hyperserial skeleton
T=R[[M]] of force �.

Definition 6.4.7. For  2On, we define M(�+1;) as follows:

� M(�+1;0) :=M.

� M(�+1;+1) := ((M(�+1;))(<�))(�).

� M(�+1;) :=
S
�<M(�+1;�) if  is a non-zero limit

Where N 7!N(�) is given by Section 6.2.2 (for R[[N]] of force (� ; �)), and N 7!N(<�) is given
by 5.1.5 (in general).

We set T(�+1;) :=R[[M(�+1;)]], so T(�+1;0)=T and we have the force � inclusion T(�+1;)�
T(�+1;�) whenever  < �. We set

M(<�+1) :=
[

2On
M(�+1;); T(<�+1) :=

[
2On

T(�+1;)

Note that T(<�+1)=R[[M(<�+1)]] by Lemma 1.1.9.

Proposition 6.4.8. T(<�+1) is a confluent hyperserial skeleton of force (� ; �+1).

Proof. By Corollary 5.3.13, it suffices to show that

(T(<�+1))�;!��L!�(T(<�+1)
>;� )

for all �<�+1. Fix �<�+1 and fix s2(T<�+1)�;!�. Fix also an ordinal  with s2T(�+1;)
>;� . Then

either E!�(s) exists in T(�+1;) or E!�(s) exists in T(�+1;+1). In either case, E!�(s)2T(<�+1). �

Proposition 6.4.9. Let U be a confluent hyperserial skeleton of force (� ; �+1) and let �:T¡!U
be a force � embedding. Then there is a unique force � embedding 	:T(<�+1)¡!U extending �.

Proof. The proof is the same as that of Proposition 5.1.6, using Proposition 6.1.4 if �= 1 or
Proposition 6.4.6 if �> 1 in the case of successor . �

Theorem 5.1.5 at �= �+1 follows from Propositions 6.4.8 and 6.4.9. We conclude by induction
that Theorem 5.1.5 holds.
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Chapter 7
Hyperserial fields
In this chapter, we define hyperserial fields and establish the equivalence between confluent hyper-
serial fields and skeletons.

7.1 Hyperserial fields
We now define hyperserial fields. Throughout the section, we fix a � 6On and set � :=!�.

7.1.1 Axioms for hyperserial fields
Let T=R[[M]] be an ordered field of well-based series and let �:L<!��T>;�¡!T be a function.
For r2R and m2M, we define mr as follows: set

1r := 1;
mr := `0

r �m if m� 1, and
mr := `0

¡r �m¡1 if m� 1.

For �6On, as in the case of hyperserial skeletons, we define M!� to be the class of series s2T>;�

with ` �s2M� for all  <!�. The elements of M!� are said L<!�-atomic, and L<!-atomic series
are said log-atomic. Finally the elements of M!� are said atomic.

We say that (T; �) is a hyperserial field of force � if the following axioms are satisfied:

HF1. L<!�¡!T; f 7! f � s is a strongly linear embedding of ordered fields for all s2T>;�.

HF2. f � (g � s)= (f � g) � s for all f 2L<!�, g 2L<!�
>;�, and s2T>;�.

HF3. f � (t+ �)=
P
k2N

f(k) � t
k!

�k for all f 2L<!�, t2T>;�, and � 2T with �� t.

HF4. `!�
" � s< `!�

" � t for all ordinals �<�, all  <!�, and all s; t2T>;� with s< t.

HF5. The map R�M!M; (r;m) 7!mr is a law of ordered R-vector field (i.e. real power oper-
ation) on M.

HF6. `1 � (s t)= `1 � s+ `1 � t for all s; t2T>;�.

HF7. supp `1 �m� 1 for all m2M� and supp `!� � a� (` � a)¡1 for all 16 �<�, all  <!�, and
all a2M!�.

7.1.2 Elementary consequences of the axioms
The axioms HF6 and HF7 are assumed to hold trivially when �=0. In most cases we will assume
that � > 0. A consequence of the axioms is that `0 acts as the identity function:

Lemma 7.1.1. Let T be a hyperserial field of force �. For all s2T>;�, we have `0 � s= s.

Proof. Let m 2M� and r 2R>. We have `0 � m= m1 and (m1)1=m1�1 =m1 by HF5. The
function M¡!M; n 7! n1 is strictly increasing by HF5, hence injective. Thus m1=m. We obtain
(r `0) �m= rm by HF1. In L, we have `0 � (r `0) = r `0, so HF2 yields `0 � (rm) = rm. Now let
s2T>;� and write s= r ds+ � where r2R> and �� ds. By HF3, we have

`0 � s=
X
k2N

`0
(k) � (r ds)

k!
�k= r ds+ �= s: �
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The hyperserial field (T; �) is said confluent if M=/ 1 and if for all �2On with �6 � and all
s2T>;�, there are an a2M!� and a  <!� with

` � s� ` � a: (7.1.1)

For  < �, we write L for the partial function T>;�¡!T; s 7! ` � s, and we call (T; (L!� �
M!�)�<�) the hyperserial skeleton of (T; �). We will see in the next section that if (T; �) is
confluent, then (T; (L!� �M!�)�<�) is indeed a confluent hyperserial skeleton of force �.

7.2 Fields and skeletons

For the remainder of this section, we fix a hyperserial field T=R[[M]] of force �. For each �<�,
we define the function L!�:M!�¡!T; a 7¡! `!� � a. The skeleton of (T; �) is defined to be the
structure (T; (L!�)�<�) equipped with the real powering operation on M given byHF5. The main
purpose of this section is to prove the following theorem.

Theorem 7.2.1. The skeleton (T; (L!�)�<�) of (T; �) is a hyperserial skeleton. Moreover, if
(T; �) is confluent, then so is its skeleton and � coincides with the unique composition from The-
orem 4.3.1.

7.2.1 The skeleton of a hyperserial field
When �=0, then the skeleton of T is just the field T itself with the real powering operation on M.
Clearly, this is a hyperserial skeleton, as there are no axioms to verify. Moreover, it is 0-confluent
so long as (T; �) is, so Theorem 7.2.1 follows from Proposition 4.4.1, since � clearly satisfies C10,
C20, C30, and C40. Therefore, we may assume that � > 0. We will verify the various hyperserial
skeleton axioms over the next few lemmas, beginning with the Domain of Definition axioms:

Lemma 7.2.2. The skeleton (T; (L!�)�<�) satisfies the axioms DD� for all �<�.

Proof. By definition,D0 is the class of s2T>;�with `0�s2M�. Since `0�s=s byHF5, the axiom
DD0 holds. Let us fix 0<�<� and let us assume thatDD� holds for all �<�. If � is a limit, then\

�<�

domL!� =
\
�<�

fs2T>;� : ` � s2M� for all  <!�g

= fs2T>;� : ` � s2M� for all  <!�g= domL!�:

Suppose � is a successor. The inclusion dom L!��
T
n2N dom L!�¡

�n holds by definition, so we
show the other inclusion. Let  <!� and let s2

T
n2N domL!�¡

�n . Take n2N and � <o!�¡ with
 = !�¡ n + �. Then L!�¡

�n (s) 2 dom L!�¡, so `� � L!�¡�n (s) 2M�, by our inductive assumption.
Repeated applications of HF2 give `� � L!�¡�n (s) = ` � s. Since  < !� is arbitrary, this gives
s2domL!�. �

Now for the functional equations, asymptotics, regularity, and monotonicity axioms:

Lemma 7.2.3. The skeleton (T; (L!�)�<�) satisfies the axioms FE�, A�, and R� for all �<�.

Proof. Given r 2R> and m; n2M, we have

L1(mr) = `1 � (`0r �m)= (`1 � `0r) �m=(r `1) �m= r (`1 �m)= rL1(m) (by HF2 and HF1)
L1(mn) = `1 � (mn)= `1 �m+ `1 � n=L1(m)+L1(n); (by HF6)

so FE0 holds. Let 0<�<� be a successor ordinal and let a2M!�, so L!�¡(a) is defined and lies
in M!�. The axiom HF2 implies

L!�(L!�¡(a))= `!� � (`!�¡ � a)= (`!� � `!�¡) � a=(`!�¡ 1) � a=L!�(a)¡ 1;
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so FE� holds as well. The asymptotics axiomA0 follows from the relation `1�`0 in L<!� andHF1.
Likewise, A� follows from the fact that `!�� `!� for all � < �. By HF1, we note that the sets
(`<!� � s)¡1 and f(`!�n � s)¡1 : � < � and n 2Ng are mutually cofinal for each s 2T>;�. The
regularity axioms R� for �<� therefore follow from HF7. �

Lemma 7.2.4. The skeleton (T; (L!�)�<�) satisfies the axioms M� for all �<�.

Proof. The axiom M0 follows from the fact that `1> 0. For 0< �< �, let  < !� and take a;
b2M!� with a� b. We need to show

`!� � b¡ `!� � a> (` � a)¡1+(` � b)¡1:

We first consider the case that a� `!� � b for some � < � with  <!�+1. Then HF4 gives us that
`!�
"!� � a< `!�

"!� � (`!� � b) = `!� � b. By (4.1.4), we have `!�
"!� = `!�+ l+ ", where l= 1

`
!�+1
0 `!�

0 =Q
!�+16�<!� `�

¡1 and "� l. Since `!� � b¡ `!�
"!� � a> 0, we have

`!� � b¡ `!� � a> l � a+ "� a:

Since  <!�+1, we have `
¡1� l, so (` � a)¡1= `¡1 � a� l � a. The axiom HF4 gives ` � a<` � b,

so (` � a)¡1+(` � b)¡1< 2(` � a)¡1� l � a. Thus,

`!� � b¡ `!� � a> (` � a)¡1+(` � b)¡1:

Now we handle the case that a< `!� � b for all � < � with  <!�+1. We claim that the sets

f(`� � a)¡1 :� <!�g and f(`� � b)¡1 :� <!�g

are mutually cofinal. Let � < !� be given and take � < � with  < !�+1 and � 6o !�. Then
a< `!� �b by assumption, so a>`!�2 � b and HF4 gives `� � b>`� � a>`� � (`!�2 �b)= `!�2+� � b.
This proves the cofinality claim. Now HF7 gives supp(`!� �a)�f(`� �a)¡1 :� <!�g and likewise,
supp(`!� � b)�f(`� � b)¡1 :� <!�g. Thus

supp(`!� � b¡ `!� � a)� supp(`!� � a)[ supp(`!� � b)�f(`� � a)¡1; (`� � b)¡1 :� <!�g:

In particular, we have `!� � b¡ `!� � a> (` � a)¡1+(` � b)¡1, as desired. �

Before proving the infinite powers axioms, we need a lemma:

Lemma 7.2.5. Let s= cm (1+ ")2T>;� with c2R>, m := ds, and "� 1. Then

`1 � s= `1 �m+ log c+L~(");

where L is as defined in Section 3.1.

Proof. Set � := cm ", so �� cm and s= cm+ �. The axiom HF3 gives

`1 � s= `1 � (cm)+
X
k2N>

`1
(k) � (cm)

k!
�:

We have `1 � (cm)= `1 � ((c `0) �m)= (`1 � (c `0)) � dl�a by HF2, and `1 � (c `0)= `1+ log c. Hence

`1 � s=(`1+ log c) �m+
X
k2N>

`1
(k) � (cm)

k!
�= `1 �m+ log c+

X
k2N>

`1
(k) � (cm)

k!
�:

Given k > 0, we have `1
(k) � t=(¡1)k¡1 (k¡ 1)! t¡k. So for �� t, we have

`1
(k) � (cm)

k!
�=

(¡1)k¡1
k

�
�
cm

�
k

=
(¡1)k¡1

k
":

Thus,
P
k2N>

`1
(k) � (cm)

k!
�k=L~("). �

By HF4, HF6 and HF7, the function M¡!T;m 7! `1 �m satisfies the hypotheses of Pro-
position 3.1.10. Furthermore Lemma 7.2.5 and the corresponding logarithm on T> coincides with
s 7! `1 � s on T>;�.
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Lemma 7.2.6. Let T=R[[M]] be a hyperserial field of force �, let �<� and a2M!�. We have

8m2 suppL!�(a);m�� a:

Proof. If �=0, then this follows from the fact that suppL1(a)�1 byHF7 and from Lemma 3.1.7.
Assume that �> 0 and let m2 suppL!�(a). Then m4L!�(a)� a so m� a. We have

suppL!�(a)� (L<!� a)¡1

by HF7, whence in particular m� (L1 a)¡1. We deduce that m� a¡1. Therefore m�� a. �

Lemma 7.2.7. The skeleton (T; (L!�)�<�) satisfies the axioms P� for all �2On with �6�.

Proof. let �2On with �6�, let a2M!� and let (r)<!� be a sequence of real numbers. We
need to show that

P
<!� rL+1(a) 2 logM, where logm :=¡`1 �m¡1 for m 2M� and where

log 1 := 0. Set l :=
Q
<!� `

r. We may assume that l=/ 1 and, by negating each r if need be, we
further assume that l� 1. Hence `1 � l is defined. The axioms HF1 and HF2 giveX

<!�

rL+1(a)= (`1 � l) � a= `1 � (l � a);

so it remains to show that l�a2M�. For each  <!�, we have L+1(a)2M�. This gives supp `1�
(l � a)�M�. Take r 2R> and "� 1 with l � a= r dl�a(1+ "). Lemma 7.2.5 yields

`1 � (l � a)= `1 � dl�a+ log r+L~("):

We have supp(`1 � dl�a)� 1 by HF7. If "=/ 0, then L~(")� ", so d"2 suppL~("). If r=/ 1, we have
supp log r= f1g. As we have established that supp `1 � (l �a)�M�, it follows that r=1 and "=0.
Thus l � a= dl�a2M, as desired. �

This shows that (T; (L!�)�<�) is a hyperserial skeleton of force �.

7.2.2 Equivalence between confluent fields and skeletons
Now we turn to confluence. First, we need a lemma:

Lemma 7.2.8. Let s; t 2T>;� and let  < !�. If ` � s� ` � t, then `+1 � s¡ `+1 � t4 1 and
`� � s¡ `� � t�1 for all � with +26�<!�. In particular, `� � s� `� � t for all � with 6�<!�.

Proof. The proof is essentially the same as the proof of Lemma 4.3.4. Take c2R> and "�1 with
` � s= c (` � t) (1+ "). By Lemma 7.2.5, we have

`+1 � s= `1 � (` � s)= `1 � (c (` � t) (1+ "))= `+1 � t+ log c+L~(");

so `+1 � s� `+1 � t. Set � := (`+1 � t)¡1 (log c+L~("))� 1, so `+1 � s=(`+1 � t) (1+ �). Again,
Lemma 7.2.5 gives

`+2 � s= `1 � (`+1 � s)= `1 � ((`+1 � t) (1+ �))= `+2 � t+L~(�);

so `+2 � s ¡ `+2 � t = L(1 + �) � � � 1. Now set h := (`+2 � s ¡ `+2 � t) � 1 and fix � with
+26� <!�. We have

`� � s¡ `� � t = `�
"+2 � (`+2 � s)¡ `�

"+2 � (`+2 � t)
= `�

"+2 � ((`+2 � t)+h)¡ `�
"+2 � (`+2 � t)

= T`�"+2(`+2 � t; h)� (`�
"+2)0 � (`+2 � t)h:

Since (`�
"+2)0; h� 1, we have `� � s¡ `� � t� 1. �

Lemma 7.2.9. Suppose (T; �) is confluent. Then (T; (L!�)�<�) is confluent as well.
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Proof. The skeleton (T; (L!�)�<�) is 0-confluent since M is non-trivial. Let �2On with 0<�6�
and assume that (T; (L!�)�<�) is �-confluent for all �<�. We also make the inductive assumption
that for s2T>;� and � < �, we have ` � s� ` � d!�(s) for some  <!�. Let s2T>;� and take
 < !� and a2M!� with ` � s� ` � a. We will show that d!�(s) = a. We first handle the case
that � is a successor. Take n 2N> with  < !�¡ n. Lemma 7.2.8 gives `!�¡n � s� `!�¡n � a. By
assumption, we have `� � d!�¡(s)� `� � s for some � < !�¡, so `!�¡ � d!�¡(s)� `!�¡ � s, again by
Lemma 7.2.8. Induction on m gives (L!�¡ � d!�¡)�m(s)� `!�¡m � s for all m2N>, so

(L!�¡ � d!�¡)�n(s)� `!�¡n � s� `!�¡n � a=(L!�¡ � d!�¡)�n(a);

and d!�(s)= a. The case that � is a limit is similar, though this time we take � < � with  <!�

and use that

L!�(d!�(s))� `!� � s� `!� � a�L!�(d!�(a))

to see that d!�(s)= a. Since s was arbitrary, this gives that (T; (L!�)�<�) is �-confluent. �

Proof of Theorem 7.2.1. Lemmas 7.2.2, 7.2.3, 7.2.4, and 7.2.7 show that (T; (L!�)�<�) of (T;�)
is a hyperserial skeleton. The composition � clearly satisfies C1�, C2�, C3�, and C4�. If (T; �)
is confluent, then (T; (L!�)�<�) is confluent by Lemma 7.2.9 and Proposition 4.4.14 implies that
� coincides with the unique composition from Theorem 4.3.1. �

Given a confluent hyperserial skeleton (T; (L!�)�<�) of force �, it is clear that the unique
composition �:L<!� �T>;�¡!T in Theorem 4.3.1 satisfies all of the hyperserial field axioms,
where HF4 follows from Lemma 5.1.7. This gives us the following result:

Theorem 7.2.10. If (T; (L!�)�<�) is a confluent hyperserial skeleton of force �, then there
is a unique function � such that (T; �) is a confluent hyperserial field of force � with skel-
eton (T; (L!�)�<�).

In the sequel of the thesis, we will always equip confluent hyperserial skeletons with the cor-
responding composition law, and equip confluent hyperserial fields with their skeleton. We will no
longer use the notation D!� for the class of L<!�-atomic series in T, since it is redundant with
the notation M!� which we will use instead.

We also deduce that our results on hyperexponentiation in confluent hyperserial skeletons
apply for confluent hyperserial fields. In particular, we have the following characterizations of
hyperlogarithms and hyperexponentials of force �:

Let T be a hyperserial field of force �, let �2 (0;�) and write � :=!�. For all s2T>;�, there
is a  < � with L(s)�L(d�(s)). For all such , writing � :=L(s)¡L(d�(s)), we have

L�(s)=L�(d�(s))+
X
k>0

(`�
")(k) �L(d�(s))

k!
�k: (7.2.1)

Assume that s2L�(T>;�) and let  < � and "2T� with "� (L �E�)(')
(L �E�)0(')

. Then

E�(s+ ")=E

 
E�(s)+

X
k>0

(L �E�)(k)(s)
k!

"k

!
; (7.2.2)

where each (L �E�)(k)(') = t�;;k �E�(s) for a certain series t�;;k 2L<�. The series t�;;k are
given by induction by

t�;;0 = ` and

8k 2N; t�;;k+1 =
t�;;k
0

`�
0 :

7.2.3 Confluent hyperserial subfields
We next introduce a notion of hyperserial embedding which is more appropriate to the context of
hyperserial fields. We fix a � 6On and set � :=!�.
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Definition 7.2.11. Let (T; �T) and (U; �U) be hyperserial fields of force � with monomial groups
M and N respectively. We say that a strongly linear morphism of ordered rings �:T¡!U is an
embedding of force � if we have

�(M) � N; and
8f 2L;8s2T>;�;�(f �T s) = f �U�(s):

We then say that (U;	) is an extension of T of force �.
We say that (T;�T) is a subfield of (U;�U) of force � and we write (T;�T)� (U;�U) if T�U

and IdT:T¡!U is an embedding of force �.

We will add the adjective �confluent� when appropriate, e.g. confluent subfields are subfields
that are confluent as hyperserial fields. We allow ourselves to use the same vocabulary as in the
case of hyperserial skeletons (see Definition 4.2.4) because we will next show that those two notions
coincide (through the correspondence given by Theorems 7.2.1 and 7.2.10) in the confluent case.

Proposition 7.2.12. Let (U; �U) be a hyperserial field of force �. Let 4:T¡!U be a strongly
linear function with

4(logm) = log4(m) for all m2U, and
4(L!�(a)) = L!�(4(a)) for all 0< �<� and a2U!�.

Then 4 is a strictly increasing ring morphism with

4(f � s) = f �U4(s) for all f 2L<� and s2T>;�, and
4(log t) = log4(t) for all t2T>.

Proof. Let m; n2M. We have

log4(mn) = 4(logmn)
= 4(logm)+4(log n)
= log4(m)+ log4(n)
= log(4(m)4(n)):

We deduce since log is injective that 4(m n) =4(m)4(n). By strong linearity, it follows that
4(s t)=4(s)4(t) for all s; t2U, hence that 4 is a morphism of rings. We deduce with Propos-
ition 2.5.3 that 4 is strictly increasing.

Let C denote the class of series f 2L<� with 4(f �s)= f �4(s) for all s2U>;�. We will prove
that we have L<!��C by induction on �6 �, starting with �=1. We have 4(log s)= log4(s)
for all s>0 by Proposition 3.1.9. We deduce that C contains l2L<� if and only if it contains log l.
Note that by strong linearity, the class C is closed under sums of well-based families. Moreover, for
f ;h2C with h>R, we have f �h2C. So we need only prove that we have `!�2C for all �2 (0;�).
Let � 2 (0; �) such that this holds for all � < �. So L<!� �C by the previous arguments. Let
s2T>;� and write s :=d!�(s). Recall that there is a <!� such that the series " := ` �U s¡ ` �U s
is infinitesimal, with

`!� �U s= `!� �U s+
X
k>0

(`!�
")(k) �U (` �U s)

k!
"k:

Note that for k 2N>, we have (`!�
")(k)2L<!��C. The induction hypothesis yields

` �V4(s)¡ ` �V4(s)=4(` �U s¡ ` �U s)=4(")� 1:
It follows that

`!� �V4(s) = `!� �V4(s)+
X
k>0

(`!�
")(k) �V (` �V4(s))

k!
4(")k:

= 4(`!� �U s)+4

 X
k>0

(`!�
")(k) �U (` �U s)

k!
"k

!
(by the induction hypothesis)

= 4(`!� �U s):
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We conclude by induction that C=L<�. �

Corollary 7.2.13. Embeddings of force � between confluent hyperserial skeletons of force � are
embeddings of force � for the corresponding confluent hyperserial fields, and vice versa.

A subfield of T of force � is a hyperserial field U�T such that IdS is an embedding of force �.
In particular, we have f � s2U for all f 2L<� and s2U>;�. In view of the axioms for hyperserial
fields, we have the following converse implication.

Lemma 7.2.14. Let N�M be a subgroup and assume that

L<� � (R[[N]])>;��R[[N]]:

Then R[[N]], equipped with the restriction of � to L<��R[[N]]>;� is a subfield of T of force �.

Again, there is a skeletal version of this characterization in the case of confluent subfields.

Proposition 7.2.15. Assume that (T;�) is confluent. Let N�M be a subgroup and assume that

d!�(N�) � N for all �6�, and
L<!� � (d!�(N�)) � N for all �6�, and

suppL!�(d!�(N�)) � N for all � <�.

Then � restricts to a composition law �:L<��R[[N]]>;�¡!R[[N]] for which R[[N]] is a confluent
subfield of T of force �.

Proof. We first prove that R[[N]] is a subfield of T of force �. By Lemma 7.2.14, it is enough to
prove that for all s2T>;� and f 2L<�, we have supp f � s�N.

Fix s2T>;� and f 2L<�. From the proof of Proposition 4.4.7 and by Theorem 7.2.1, we see
that the support of f � s is contained in the class of finite products of monomials in the class

(supp s)[
[
�<�

[
>!�;<�

L<!� � d!�(dL(a)):

For �; � <� with �> �, we have dL!�(a)= dL!�(d!�(a)). So for  <� with >o!�, we have

supp f � s � (supp s)[
[
�<�

[
>o!�;<�

L<!� � d!�(dL(a))

� (supp s)[
[
�<�

[
>o!�;<�

L<!� � d!�
 [
!��/ 

suppL!�(d!�(N�))
!

� (supp s)[
[
�<�

L<!� � d!�(N�)

� N:

This proves the first part of the proposition. To see that R[[N]] is confluent, consider a s2T>;�

and a �6�. The field (T; �) is confluent so there are an a2M!� and a  <!� with ` � s� ` � a.
We thus have a= d!�(s)2N. So a2N!�, which proves that R[[N]] is confluent. �

7.3 Examples of hyperserial fields
We conclude Part II by giving examples of important hyperserial fields.

7.3.1 Finitely nested hyperseries
Let �6On and write � :=!�. As a consequence of Corollary 4.2.18 and Theorem 7.2.10, the field
L<� of logarithmic hyperseries of strength <�, together with its composition law

�:L<��L<�
>;�¡!L<�;
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is a confluent hyperserial field of force �. Likewise, its hyperexponential closure L<�g is a confluent
hyperserial field of force (� ;�). We call L<�g the field of finitely nested hyperseries of strength <�.
We simply call L~ the field of finitely nested hyperseries. This terminology will be justified in later
work, indeed we intend to show in the future that under the natural embedding f 7! f �! of L~ into
No, the numbers in L~ �!�No are exactly those which contain no infinite path (see Section 13.1.2).

The reader might think that we have so far given a very conservative description of the struc-
tures of L and L~ . Indeed, isn't the monotonicity entailed by the axiom HF4 valid for more
logarithmic hyperseries than just the series `!�

" ? Doesn't the derivation 0:L¡!L extend into
a well behaved derivation 0:L~ ¡!L~ ? Doesn't the composition law �:L�L~ >;�¡!L~ extend to
L~ �L~ >;�? Is (L~ >;�; `0; �; <) an ordered group? Do all conjugation equations

y � f = g � y

for fixed f ; g2L~ >`0 have solutions y in L~ >;�? All the answers are positive (see [10, Introduction]),
but require some efforts to be obtained and are not provided in this thesis.

7.3.2 Nested series
One could wonder whether L~ , as the total hyperexponential closure of all logarithmic hyperseries,
is the largest possible confluent hyperserial field. One way to try extending L~ is to fill initial cuts
within it. As in [63, Chapter 9], we define an initial cut in (L~ ; <) to be an initial subclass L of
(L~ ; <) without supremum in (L~ ; <). Consider such an initial cut L and write R :=L~ nL. Filling
L means to construct an extension �:L~ ¡!UfL j Rg for which there is a y 2UfL j Rg with

�(L)< y<�(R):

If one allows L to have no cofinal subset or R to have no coinitial subset, then one cannot expect
that any such initial cut (L;R) be filled. Indeed taking

L0 = ff 2L~ :9n2N; f <ng and (7.3.1)
L1 = L~ ; (7.3.2)

we can fill (L0;L~ >;�) and (L1;?) by adjoining suggestively denoted elements

`On and eOn
`0 ;

defining the appropriate structures on lexicographic products

L� (L � `On) and (L � eOn
`0 )�L;

with prevalence of the first projection, then taking the hyperexponential closure. Other uninter-
esting initial cuts are what van der Hoeven calls serial cuts, which cannot be filled without breaking
the condition that supports be set-sized.

A more interesting case is that when L has a cofinal subset L and R has a coinitial subset R.
By taking convex hulls, we see that (L;R) determines (L;R). Then as in [63, Chapter 9], we expect
that each such cut (L;R) can be expressed using cut operations and series in L~ . In fact, we expect
that each such initial cut is what we will informally call a nested cut . Let us give an example. For
n2N, write

fn := `0
p

++e `1
p

++e
� ��

`n
p

, and

gn := `0
p

++e `1
p

++e
� ��
2 `n
p

:

It is easy to see that
f0< f1< � � �< fn< � � �< � � �< gn< � � �< g1< g0:

We will show in later work that there is no series f 2L~ with

L := ffn :n2Ng< f < fgn :n2Ng :=R:

We thus have a corresponding initial cut in L~ , which is in fact an initial cut in (L<!)(<1).
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Schmeling showed [92, Section 2.5] that there are transseries fields, and in fact also confluent
hyperserial fields T(L j R) of force (1; 1), which contain a series f with L< f <R. One particular
example of such series fnest can be represented as a transfinite nested expansion

fnest� `0
p

++e `1
p

++e
� ��

`n
p

++e
� ��

; (7.3.3)

in the sense that

fnest� `0
p

and fnest¡ `0
p

is a monomial,
log(fnest¡ `0

p
)� `1
p

and log(fnest¡ `0
p

)¡ `1
p

is a monomial,
log(log(fnest¡ `0

p
)¡ `1
p

)� `2
p

and so on. . . (7.3.4)

As we will see in Part III, it is known that the field of surreal numbers has a natural structure of
confluent hyperserial field of force (1;1). With van der Hoeven, we showed [11, Section 8] that such
nested series satisfying (7.3.4) �already� exist in No. In fact, they form a proper subclass of No,
which implies that the expansion (7.3.3) is ambiguous. In Chapter 14, we will generalize this to
the hyperserial setting. It will turn out that L~ is naturally included in No (see Chapter 12), and
we expect to show in future work that one obtains No by iteratively closing L~ under nested series
such as fnest, and hyperexponentials.

7.3.3 Non confluent hyperserial fields
We finish with remarks on the failure of confluence in hyperserial fields. One could wonder whether
the confluence axioms are necessary to define composition laws on hyperserial fields, or if they
simply impose convenient restrictions. The following lemma shows that in any case, a non-confluent
hyperserial field which can be extended into a confluent can be thus extended via hyperexponential
extensions.

Lemma 7.3.1. Let U be a confluent hyperserial skeleton of force (� ; �) and let �6 �. Any
subskeleton of U of force (� ; �) is �-confluent.

Proof. Let T=R[[M]] be a subskeleton of U of force (� ; �). We prove that T is �-confluent
by induction on � 6 �. Let � 2 (0; �] and assume that T is �-confluent for all � < �. If � =
On, then it follows that T is �-confluent; so we assume that � <On. Assume that � = � +
1 is a successor. Consider an s 2T>;�. Since U is �-confluent, there is a k 2N with (L!� �
d!�)�k(s)�L!�k(d!�(s)). So L!�k(d!�(s)) is the dominant monomial of (L!��d!�)�k(s)2T, whence
L!�k(d!�(s))2T. But then d!�(s)2T since T has force (� ;�). Assume now that � is a limit, and
let s2T>;�. Since U is �-confluent, there is a �< � with L!�(d!�(s))�L!�(d!�(s)). But likewise
d!�(s)=E!�(L!�(d!�(s)))2T. So in any case T is �-confluent. This concludes the proof. �

Corollary 7.3.2. Let U be a confluent hyperserial field of force (� ;�) and let �6�. Any subfield
of U of force (� ; �) is �-confluent.

Proof. This follows from Lemma 7.3.1 and Theorems 7.2.1 and 7.2.10. �

We now give an example of a somewhat pathological non-confluent hyperserial field which
cannot be extended into a confluent hyperserial field. We will also show that this particular field
is ill-suited to the purpose of the thesis. Our example uses the axiom of choice by way of Zorn's
lemma. For the remainder of this subsection, we fix a linear ordering < of NN which extends the
universal comparison

f < g() (f =/ g^ (8n2N; (f(n)6 g(n)))):

Write + for the pointwise sum on NN. Note that (NN;+; <) is an ordered monoid. Consider the
(commutative) Hessenberg sum� on !! (see Section 8.1.2). We have a strictly increasing morphism
(!!;�;2)¡! (NN;+;<), whereby each ordinal  <!! with Cantor normal form =

P
n2N!

nn
is sent to the function n 7! n (which is zero outside of finite subset of N). We identify each  <!!

with (n)n2N2NN and see elements  of NN as �non-standard ordinals�

� 0+!1+ � � �+!n n+ � � �:
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Finally, for n2N and  2NN, we write >n for the function N¡!N which coincides with  on
[n;+1) and is identically zero on [0;n), i.e. �!n n+!n+1 n+1+ � � �.

We write L� for the multiplicatively denoted Hahn product group
Q

(NN;>)
R, for the reverse

ordering > on NN. Each f2L� is a well-based product

f=
Y
2NN

`
f

where f := f() and `
f := f�fg2L� (see Section 1.1.3).

Set L� :=R[[L�]]. Let us define a hyperserial skeleton of force ! on L�. We set

(L�)1 := L�
� and

(L�)!n+1 := f` : = >ng for all n2N.

Given f2 (L�)1, we define

L1(f) :=
X
2NN

f `+1:

Given ` 2 (L�)!n+1, we define

L!n+1(`) := `>n+1¡ n:

We leave it to the reader to check that (L�; (L!n)n<!) is a hyperserial skeleton of force ! and that
it is n-confluent for all n<!. By Theorem 4.3.1, we have compositions laws �n:L<!n�L�

>;�¡!L�
for each n<!. We let L�[ denote the proper (regular) subfield L<!!

[ :=
S
n<!L<!n of L<!! and

we denote

�:L<!![ �L�
>;�¡!L�

the function whose graph is the reunion of the graphs of all composition laws �n; n2N. For the
rest of this subsection, we fix � := IdN� 1+!+!2+ � � � 2NN. We have

`�>n= `!n � `�>n+1 (7.3.5)

for each n2N, so `� can be construed as a transfinite post-composition

`�� `1 � `! � � � � � `!n � � � �:

The inclusion (!!;3) ,¡! (NN; >) induces an embedding of ordered groups L<!!¡!L� which in
turn induces an embedding L<!!¡!L� of force !. This last embedding is not a bijection because
the field L� contains non-standard expressions such as `�. This prevents L� from being !-confluent.
To justify this, we show that we cannot apply Theorem 4.3.1 for � = ! to obtain a composition
L<!!�L�

>;�¡!L�.

Proposition 7.3.3. There is no extension of � into a function �:L<!!�L�
>;�¡!L� satisfying

the conditions C1!, C2!, and C3! as per Theorem 4.3.1.

Proof. Assume for contradiction that such a composition exists. By C1!, the family

(`!n � `�)0<n<!

is well-based. Let n2 (0; !). For k <n¡ 1, we have `!n � `!k¡ `!n� 1, whence

"n := `!n � (`1 � `! � � � � � `!n¡2)¡ `!n� 1:

By (7.3.5), C1! and C3!, we have

`!n � `�=(`!n+ "n) � `�>n¡1=(`!n � (`!n¡1 � `�>n))+ ("n � `�>n¡1)= (`!n � `�>n)¡ 1+ ("n � `�>n¡1)

where "n � `�>n¡1 is infinitesimal. By C2!, we have `!n � `�>n = `�>n+!n, which is an infinite
monomial. We deduce that 1 lies in supp `!n � `� for all n 2N>, which contradicts the fact that
(`!n � `�)0<n<! is well-based. �

The existence of `� also prevents L� from enjoying a well-behaved derivation as the following
shows.
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Proposition 7.3.4. There is no strongly linear derivation @:L�¡!L� which extends the deriva-
tion on L<!! and which satisfies the chain rule

@(f � g)= @(g) (f 0 � g) for f 2L<!!
[ ; g 2L�

>;�;

and the relation

1� f � g=) @(f)�@(g) for f ; g 2L�: (7.3.6)

Proof. Assume for contradiction that such a derivation exists. By the chain rule, the derivative
of `� is given by

@(`�) = `�
¡1 @(`~>1)

= `�
¡1
 Y
n<!

`n+�>1
¡1

!
@(`�>2)

= : : :

=
 Y
k<n

Y
�<!k

`�+�>k+1
¡1

!
@(`�>n+1)

For n<!, we have `�>n+1� `!n+1 whence

@(`�>n+1)�@(`!n+1)=
Y
k<n

Y
�<!k

`�+!k
¡1

by asymptoticity. For k <n and � <!k, we have �+!k<�+ �>k+1 so

@(`�>n+1)�
Y
k<n

Y
�<!k

`�+�>k+1
¡1 :

We deduce that the support of d@(`�)2L� in NN contains the strictly decreasing sequence

� > �>1>�>2> � � �;
a contradiction. �

The relation (7.3.6) is a weaker version of properties of certain ordered, valued, differential fields
called H-fields (see [2, 3, 4]). It is known [33, Lemma 3.2] that L itself with its standard derivation
satisfies (7.3.6).

What Proposition 7.3.4 above suggests to us is that hyperserial fields ought not to contain
those infinite post-compositions of hyperlogarithms, if they are to be equipped with well-behaved
derivations.
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Part III

Numbers





Seeing the number

The class No of surreal numbers was discovered by Conway and studied in his well-known mono-
graph On Numbers and Games [28]. Conway's original definition of (surreal) number is somewhat
informal and goes as follows:

�If L and R are any two sets of numbers, and no member of L is > any member
of R, then there is a number fL j Rg. All numbers are constructed in this way.�

In order to gain some insight on this mysterious definition and on the corresponding notion of
magnitude that it proposes, it is useful to find more explicit representations of such numbers. In
Part III, we will (rather briefly) consider three such representations: as cuts, as sign sequences, and
as transseries. Our motivation however is not mainly to understand surreal numbers, but rather
to find a representation that is most convenient in order to operate on them as if they were germs
of functions in Hardy fields. This is the task of representing numbers as hyperseries that we will
only tackle in Part IV.

Conway's paradise
The magic of surreal numbers lies in the fact that many traditional operations on integers and real
numbers can be defined in a very simple way on surreal numbers. Yet, the class No turns out to
admit a surprisingly rich algebraic structure under these operations. For instance, the sum of two
surreal numbers x= fxL j xRg and y= fyL j yRg is defined recursively by

x+ y = fxL+ y; x+ yL j xR+ y; x+ yRg: (1)

Similar definitions exist for subtraction and multiplication, which we will recall in Section 8.2.
Despite the fact that the basic arithmetic operations can be defined in such an �effortless� way,
Conway showed that No actually forms a real-closed field that contains R.

Since Conway's seminal work, further algebraic structure has been defined, often in natural but
non-trivial ways, on No. This includes an exponential function and a non-trivial derivation. There
is a �simplicity heuristic�, according to which it is sometimes possible to define an operation on No
by picking the simplest (i.e. @-minimal) solution to a given problem whenever several solutions
exist. Not only has this approach been successful in defining the algebraic structure on No, but
in a number of examples, it also turns No into a model of tame first-order theories, such as the
theories of divisible linearly ordered Abelian groups, of real-closed fields, of the real exponential
field, and of H-closed fields (see [5]).

We do not yet have a good model theoretic framework that could guide us in completing the
task at-hand of defining a structure of hyperserial field on No. Some partial results exist in the
form of Padgett's PhD thesis [83] which proposes in particular a first-order theory of the real
ordered field with Kneser's hyperexponential function [66]. Nevertheless, we will see in Part IV
that the simplicity heuristic, combined with the method of hyperserial skeletons of Chapter 4, gives
a solution to our problem. Furthermore Part IV will illustrate that surreal numbers are a prime
example of proper extension of L~ as a hyperserial field. For the sequel of the thesis, no one shall
expel us from this paradise Conway has created.

Sign sequences
One convenient way to rigorously introduce surreal numbers a is to regard them as �sign sequences�
a=(a[�])�<�2f¡1;+1g� indexed by the elements � <� of an ordinal number �= bd(a), called
the birth day of a: see Section 8.1 below for details. Every ordinal � itself is represented as
�= (�[�])�<� with �[�] = 1 for all � <�. The number 1/2 is represented by the sign sequence
+1;¡1 of length 2. The ordering < on No corresponds to the lexicographical ordering on sign
sequences, modulo zero padding when comparing two surreal numbers of different lengths. The
sign sequence representation also induces the important notion of simplicity : given a; b2No, we
say that a is simpler as b, and write a@ b, if the sign sequence of a is a proper truncation of the
sign sequence of b. The simplicity relation is denoted by <s in some previous works [18, 71, 6].

Seeing the number 151



The sign sequence representation was introduced and studied systematically in Gonshor's
book [55]. We will rely on it in order to give a simple definition of surreal numbers, as well
as to give examples of important numbers and classes of numbers.

Surreal substructures
In the course of the above project to construct an isomorphism between No and a suitable class of
hyperseries, one frequently encounters subclasses S of No that are naturally parametrized by No
itself. For instance, Conway's generalized ordinal exponentiation No¡!Mo; z 7!!_ z is bijective,
hence we have a natural parameterization of the class Mo of monomials by No. Similarly, nested
expressions such as (2.2):

!
p

++e log!
p

++e
loglog!

p
++e

� ��

do not give rise to a single surreal number, but rather to a class Ne of surreal numbers that is
naturally parametrized by No (see Theorem 14.2.4). Yet another example is the class Mo! of log-
atomic surreal numbers [18, Section 5.2]. More general subclasses than surreal substructures such
as initial subtrees as studied by Ehrlich [42] and subtrees of No as studied Lurie [75] play a role
in investigating initial algebraic substructures of No and studying fixed points of certain surreal-
valued functions.

In these examples, the parametrizations turn out to be more than mere bijective maps: they
actually preserve both the ordering < and the simplicity relation @. This leads to the definition of
a surreal substructure of No as being an isomorphic copy of (No; <;@) inside itself. Surreal sub-
structures such as Mo, Ne, and Mo! behave similarly as the surreal numbers themselves in many
regards. In particular, it is possible to define monotone functions between surreal substructures
by well-based induction with respect to the simplicity relation.

Exponentiation, derivation, and hyperseries
In his book [55], Gonshor shows how to extend the real exponential function to No. This function
actually has the same first-order properties as the usual exponential function: the class No is an
elementary extension of R as an ordered exponential field. Berarducci and Mantova later showed
that the field No, equipped with the functional inverse log of exp, is a transseries field , i.e. a
transserial field (see Definition 3.1.4) satisfying Schmeling's axiom T4 (see [92, Definition 2.2.1]).
As a transseries field, the class No vastly extends the logarithmic-exponential transseries, and is in
fact the largest transseries field [46, Proposition 8.4]. See also [46, Proposition 7.2] for a different
proof of the validity of T4 in No.

An important question concerns the possibility to define a natural transserial derivation @ on
No with @ (!)=1. Such a derivation was first constructed by Berarducci and Mantova [18], using
methods from [92]. It was shown in [6] that Berarducci and Mantova's derivation @ also turns
surreal numbers into an elementary extension of the ordered valued differential field TLE. We recall
that the derivation @ cannot be compatible with a composition law on No [19, Theorem 8.4]. A
tentative explanation of this fact is that @ is constructed by relying on a representation of surreal
numbers as transseries, and that this representation fails to accurately describe those surreal
numbers that will be best represented using the hyperexponential and hyperlogarithmic functions
we will define in Part IV.
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Chapter 8
Surreal numbers

In this chapter, we introduce surreal numbers as presented by Harry Gonshor in his book [55], and
give their elementary properties as an ordered valued field with a simplicity relation.

8.1 Numbers as sign sequences
The sign sequence representation is most convenient for the rigorous development of the basic
theory of surreal numbers. It was introduced by Gonshor [55, page 3] and we will actually use it
to formally define surreal numbers as follows:

Definition 8.1.1. A surreal number is a map a:bd(a)¡!f¡1; 1g;� 7!a[�], where bd(a)2On is
an ordinal number. We call bd(a) the birth day of a and the map a:bd(a)¡!f¡1; 1g the sign
sequence of a. We write No for the class of surreal numbers.

It follows from this definition that No is a proper class. Given a surreal number a2No, it is
convenient to extend its sign sequence with zeros to a map On¡!f¡1; 0; 1g and still denote this
extension by a. In other words, we take a[�] = 0 for all �> bd(a). Given a2No and �2On, we
also introduce its restriction b=a ��2No to � as being the zero padded restriction of the map a
to �: we set b[�] =a[�] for � <� and b[�] = 0 for �>�.

The first main relation on No is its ordering 6. We define it to be the restriction of the
lexicographical ordering on the set of all maps fromOn to f¡1;0;1g. More precisely, given distinct
elements a; b2No, there exists a smallest ordinal � with a[�] =/ b[�]. Then we define a< b if and
only if a[�]<b[�].

The second main relation on No is the simplicity relation @: given numbers x; y 2No, we
say that a is strictly simpler than b, and write a@ b if bd(a)< bd(b) and a= b � bd(a). We write
v for the non-strict ordering corresponding to @, and we say that a is simpler than b if a v b.
We write a@= fb 2No : b@ ag for the set of surreal numbers that are strictly simpler than a.
The partially ordered class (No;@) is well-founded, and (a@;@) is well-ordered with order type
ord(a@;@)= bd(a).

Every linearly ordered�and thus well-ordered�subset X of (No; @) has a supremum s =
sup�X in (No;@): for any a2X and �<bd(a), one has s[�]=a[�]; for any �2On with �>bd(a)
all a 2X, one has s[�] = 0. We will only consider suprema in (No;@) and never in (No; <).
Numbers a that are equal to supva@ are called limit numbers; other numbers are called successor
numbers. Limit numbers are exactly the numbers whose birth day is a limit ordinal.

8.1.1 The fundamental property
We now introduce the fundamental property of the structure (No; <;@):

Fundamental property. [55, Theorem 2.1] Let L;R be sets of surreal numbers with L<R. Then
there is a unique @-minimal number fL j Rg2No with

L< fL j Rg<R:

We call fg the Conway bracket . Note that fL j Rg is the simplest such number in the strong
sense that for all a2No with L<a<R, we have fL j Rgva. The converse implication 8a2No;
fL j Rgv a=)L<a<R may fail: see Remark 9.2.9 below.
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Now consider two more sets L0; R0 of surreal numbers with L0<R0. If L has no strict upper
bound in L0 and R has no strict lower bound in R0, then we say that (L;R) is cofinal with respect
to (L0;R0). We say that (L;R) and (L0;R0) are mutually cofinal if they are cofinal with respect to
one another, in which case it follows that fL j Rg= fL0 j R0g. These definitions naturally extend
to pairs (L;R) of classes with L<R. Note however that fL j Rg is not necessarily defined for
such classes. Indeed, there may be no number a with L<a<R (e.g. for L=No and R=?).

We call a pair (L;R) of sets with L<R a cut representation of fL j Rg. Such representations
are not unique; in particular, we may replace (L; R) by any mutually cofinal pair (L0; R0). For
every surreal number a, we denote

aL = fb2No : b <a; b@ ag
aR = fb2No : b >a; b@ ag;

which are sets of surreal numbers. We call aL and aR the sets of left and right options for a. By [55,
Theorem 2.8], one has a=faL j aRg and the pair (aL; aR) is called the canonical cut representation
of x.

This identity a= faL j aRg is the fundamental intuition behind Conway's definition of surreal
numbers precisely as the simplest numbers lying in the �cut� defined by sets L <R of simpler
and previously defined surreal numbers. Of course, this is a highly recursive representation that
implicitly relies on transfinite induction.

Conway's cut representation is attractive because it allows for the recursive definition of func-
tions using by well-founded induction on (No;@) or its powers. For instance, there is a unique
bivariate function f such that for all a, b2No, we have

f(a; b)= ff(aL; b); f(a; bL) j f(aR; b); f(a; bR)g: (8.1.1)

Here we understand that f(aL; b); f(a; bL) denotes the set ff(a0; b) :a02aLg[ff(a; b0) : b 02 bLg and
similarly for f(aR; b); f(a; bR). This recursive definition is justified by the fact that the elements of
the sets aL�fbg;fag� bL, aR�fbg, and fag� bR are all strictly smaller than (a; b) for the product
order on (No;@)� (No;@). This precise equation is actually the one that Conway used to define
the addition += f on No. We will recall similar definitions of a few other arithmetic operations
in Section 8.2 below.

8.1.2 Ordinal numbers as surreal numbers
For ordinals �; �, we will denote their ordinal sum, product, and exponentiation by �u �, ��� �
and �_ �. Their Hessenberg sum and product coincide with their sum and product when seen
as surreal numbers [55, Theorems 4.5 and 4.6]; accordingly, we denote them by �+ � and � �.
Note that �+ n=�un for all ordinals � and n<!. We assume that the reader is familiar with
elementary computations in ordinal arithmetic. In this section, we define operations on surreal
numbers which extend ordinal arithmetic.

For numbers a;b, we let aub denote the number, called the concatenation sum of a and b, whose
sign sequence is the concatenation of that of b at the end of that of a. So au b is the number of
birth day bd(au b)= bd(a)u bd(b), which satisfies

(au b)[�] = a[�] (�<bd(a))
(au b)[bd(a)u �] = b[�] (� < bd(b))

It is easy to check that this extends the definition of ordinal sums. Moreover, the concatenation
sum is associative and satisfies supv (aub@)=au b whenever x2No and y2No is a limit number.

We let a�� b denote the number of length bd(b)�� bd(b), called the concatenation product of a
and b, whose sign sequence is defined by

(a�� b)[bd(a)�� �u �] = b[�] a[�] (�< bd(y); � < bd(x)):

Here we consider b[�]a[�] as a product in f¡1;+1g. Informally speaking, given a2No and �2On,
the number a�� � is the �-fold right-concatenation of a with itself, whereas ��� a is the number
obtained from a by replacing each sign � times by itself. We note that �_ extends Cantor's ordinal
product.
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The operations u and �� will be useful in what follows for the construction of simple yet
interesting examples of surreal substructures. The remainder of this section is devoted to the
collection of basic properties of these operations. The proofs can be found in [11, Section 3.2]. We
refer to [28, First Part] for a different extension of the ordinal product to the class of games (which
properly contains No).

Lemma 8.1.2. [11, Lemma 3.1] For a; b; c2No, we have

a) a�� (b�� c)= (a�� b)�� c.
b) a�� 1= a and a�� (¡1)=¡a.
c) a�� (bu c)= (a�� b)u (a�� c).
d) a�� b= supv (a�� b@) if b is limit.

Remark 8.1.3. The previous lemma can be regarded as an alternative way to define the concat-
enation product. Yet another way is through the equation

8a> 0;8b; a�� b = fa�� bLu aL; a�� bRu (¡aR) j a�� bLuaR; a�� bRu (¡aL)g: (8.1.2)

Likewise, the concatenation sum has the following equation [44, Proposition 2]:

8a> 0;8b; au b = faL; au bL j au bR; aRg: (8.1.3)

Note that these two equations are not uniform in the sense of Definition 9.2.16 below.

Proposition 8.1.4. [11, Proposition 3.3] Let a; b; c2No.

a) If a=/ 0, then bv c if and only if a�� bv a�� c.
b) If 0<a, then b < c if and only if a�� b <a�� c.

8.2 Surreal arithmetic
We describe the arithmetic operations on surreal numbers as defined by Conway.

8.2.1 Surreal addition
As we mentioned above, the definition of the sum of two numbers a;b2No is by induction onNo by

a+ b= faL+ b; a+ bL j a+ bR; aR+ bg: (8.2.1)

Recall that the ordinal 0 is identified in No with empty sign sequence, so 0L=0R=?. Assume for
a moment that the equation (8.2.1) is justified. Let us show as an exercise that a+0= a for all
numbers a2No, by induction on (No;@). So let a2No such that b+0= b for all b@a. Since 0L
and 0R are empty, the equation (8.2.1) for b=0 simplifies as

a+0= faL+0; ? j ? ; aR+0g= faL+0 j aR+0g:

We have aL+0=aL and aR+0= aR by the induction hypothesis, so

a+0= faL j aRg=a

as claimed. We deduce the result in general by induction. Symmetric arguments yield 0 + a= a
for all a2No.

Let us now show as a second exercise that 1+1=2. Our proof will be quicker than Russell's.
Note that 1L= f0g, that 2R= f0; 1g and that 1R=2R=?. We thus have

1+1 = f1+1L; 1L+1 j ?g
= f1+0; 0+1 j ?g
= f1 j ?g
= f0; 1 j ?g
= 2:
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The reader can see that easy computations in (No;+) or, in general, involving Conway brackets,
can be more involved than they seem. This is why the theory of surreal numbers requires certain
results in order to simplifying those computations. One important related tool is the notion of
uniform equation, that we briefly mention here before giving more details in Section 9.2.4 below.
By [55, Theorem 3.2], the equation (8.2.1) for the sum of two numbers is uniform in the sense that,
given cut representations (La; Ra) and (Lb; Rb) of a; b in No, we have

a+ b= fLa+ b; a+Lb j a+Rb; Ra+ bg: (8.2.2)

The first-order properties of (No;+) are summed up by the following result.

Proposition 8.2.1. [28, Theorems 5, 6 and 12] The structure (No;+;0;<) is a divisible, Abelian,
linearly ordered group.

Additive inverses ¡a of numbers a2No can be inductively computed using the identity

¡a= f¡aR j ¡aLg: (8.2.3)

8.2.2 Surreal multiplication
The definition of surreal multiplication is a bit more involved than that of addition. It is based
on the following intuition. Consider numbers a= faL j aRg and b= fbL j bRg. Then given a02 aL
and b 0 2 bL, we have a ¡ a0; b ¡ b 0> 0, so a sensible definition of the product should give that
(a¡ a0) (b¡ b 0)> 0, which can be rewritten as

a b>a b 0+ a0 b¡ a0 b 0:

Given a002 aR, we should have (a00¡ a) (b¡ b 0)> 0, whence

a00 b+a b 0¡ a00 b 0>a b:
Considering the two other cases lead Conway to the following inductive definition

a b= fa b 0+ a0 b¡ a0 b 0; a b 00+ a00 b¡a00 b 00 j a b00+ a0 b¡ a0 b00; a00 b+ a b0¡ a00 b0g;

where a0; b0; a00 and b00 respectively range in aL, aR, bL and bR.
Again this definition is justified, and the cut representations (aL;aR) and (bL; bR) can be replaced

by arbitrary representations of a and b without changing the result. It can be shown that 1 is
indeed a neutral element for �. In fact, we have:

Proposition 8.2.2. [28, Theorem 26] The structure (No;+;�;0;1;<) is a real-closed ordered field.

Since the theory of real-closed fields is o-minimal, it follows from general model-theoretic argu-
ments and from the fundamental property that (No; +; �; 0; 1) is �-saturated for all infinite
cardinals �. Hence every real-closed field embeds into (No;+;�; 0; 1; <) as an ordered field, over
any common set-sized subfield. See [41] for more details.

Conway showed [28, Theorem 12] that the set D=
n
k

2n
:k; n2N

o
of dyadic numbers in No is

that of surreal numbers with finite birth day. In particular, for each n2N, the number

2¡(n+1)= f0 j 2¡ng

has birth day n+2, whereas the number 3¡1=
�
0; 1

4
;
5

16 ; : : : j : : : ;
11
32 ;

3

8
;
1

2

	
has birth day !.

There is a specific embedding of (R;+;�;<) into No obtained by sending r2R to the number
fd 2D : d < r j d 2D : d > rg. The image of this embedding is the only subfield of No which is
isomorphic to R and which is downward closed for @ in No [42, Theorem 8]. In the sequel, we
identify R with this subfield.

8.3 Valuation theory, and numbers as series
In this section, we sill see how surreal numbers can be represented as well-based series in a canonical
way.
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8.3.1 The natural valuation on an ordered field
Recall that any ordered field (F;+;�; 0; 1; <) can be equipped with a (possibly trivial) valuation,
called the natural valuation, whose valuation ring is the subring

O :=F4= fa2F :9n2N;¡n<a<ng

of finite elements in F, whose unique maximal ideal ℴ=O nO� coincides with the class

F�=
�
a2F :8n2N>; jaj< 1

n

�
of infinitesimal elements in F. The corresponding valuation va of a2F� is its Archimedean class

va := aO�=
�
b2F :9n2N>;

�
1
n
jaj< jbj<n jaj

��
:

If F is a set, then this is nothing but the quotient map v:F�¡!F�/O� corresponding to the
quotient of (F�;�) by its subgroup (O�;�). The quotient group v F�=F�/O� is ordered by
setting aO�<bO� if and only if ab2ℴ, yielding the ordered value group of the valued field (F;O).

The quotient field O/ℴ, called the residue field of (F;O), is always Archimedean. Furthermore,
if (R;+;�) embeds into O, then O/ℴ is necessarily isomorphic to R. See [4, Section 3.5] for more
details.

8.3.2 Valuation theory of surreal numbers
Since (No;+;�; 0; 1) is real-closed, Kaplansky's general theory of maximal valued fields, in this
particular case already implies that No embeds, as a valued ordered field, into a field R[[M]] of
well-based series. The value group M=vNo=/ can be identified with a subgroup of (No>;�;1). In
general, such so-called Kaplansky embeddings are defined using choice principles, both in order to
find a copy of the value group vNo=/ inside (No>;�; 1) and to ascribe surreal numbers f̂ 2No to
certain well-based series f=

P
m2Mfmm inR[[M]]. In the case of surreal number, the fundamental

property allows one to circumvent choice and to define a canonical isomorphism No'R[[vNo=/ ]],
as we next explain.

8.3.3 Monomials and the !-map

It was noticed by Conway that for each a2No=/ , the positive part va\No> of the Archimedean
class of a, which can be seen to be the class

fb2No> :9r2R>; r¡1 a< b<r ag;

has a simplest element denoted da, and that the class Mo := fda : a 2No>g is a subgroup of
(No>;�; 1). Furthermore, Gonshor showed [55, Theorems 5.2 and 5.3] that there is a unique
isomorphism (No; <;@)¡! (Mo; <;@) for the induced orderings on Mo. In Chapter 9, we will
systematically study subclasses of No that satisfy the property above, and refer to them as surreal
substructures. We will see in Chapter 10 that this property is an instance of a more general
phenomenon pertaining to convex partitions on surreal substructures.

The unique isomorphism (No; <;@)¡! (Mo; <;@) is denoted z 7!!_ z and called the !-map.
The exponent notation is used because of the following additional property of the !-map:

Proposition 8.3.1. [28, Theorem 20] The !-map is an isomorphism of ordered groups. In other
words, we have

!_ y+z=!_ y!_ z and y < z()!_ y<!_ z

for all y; z 2No.

Thus Mo can be understood as a multiplicative copy !_No of the ordered group (No;+; <)
within (No>;�;1), that contains exactly one element by Archimedean class. This means that Mo
is a candidate for the monomial group M in the identification No'R[[M]].
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8.3.4 Numbers as well-based series
Let us next show how to define an isomorphism R[[Mo]]¡!No; f 7! f̂ . We have the following
inductive definition of f̂ for each f =

P
m2Mo fmm2R[[Mo]], by induction on the length of the

series. Given n2 supp f , the length of f�n is smaller than that of f , so we can assume that each
such f�nc is defined, and set

f̂ = ff�nc + r n : n2 supp f ^ r 2R<fn j f�nc + r n : n2 supp f ^ r2R>fng:

Indeed the number f̂ should lie between the left and right hand set. It turns out that this method
is sound, as the following illustrates.

Theorem 8.3.2. [28, Theorem 21] The function R[[Mo]]¡!No; f 7! f̂ is an isomorphism of
ordered valued fields which sends each r 2R to the corresponding surreal real number r 2No.

See [55, Section 5.C] for a more detailed proof. In the sequel of the thesis, we will no longer
distinguish between surreal numbers and well-based series in R[[Mo]]. In particular, each surreal
number a= f̂ 2No has a support supp a := supp f �Mo and can be seen as a function

supp a¡!R;m 7! am := fm

with well-based support. Note that under this identification, for all a2No, the family (amm)m2Mo
is well-based, with sum

P
m2Mo amm=a. In this vein, we will also consider well-based families of

surreal numbers and sums thereof, as well as strongly linear functions on surreal numbers.

8.3.5 Iterated expansions and fixed points
The representation of numbers as well-based series is the first step in representing surreal numbers
as quantities amenable to various operations. Indeed, each number a=/ 0 is a well-based sum

a=
X

m2Mo

amm=
X
z2No

a!_z!_ z:

Expanding each exponent z with !_ z 2 supp a itself as a sum, we obtain a representation

a=
X
z2No

a!_z!_
P
u2Noz!_u!_

u

;

and this process can be repeated ad infinitum, as long as the exponents that appear are non-zero.
One might hope that this should determine a as a nested expansion in !-based exponentiations,
with real coefficients as sole parameters.

This is far from the truth. Indeed it is known [55, Chapter 9] that there are numbers "2No
for which !_ "= ". Moreover, such numbers form a proper class, containing the subclass of On of
"-numbers, that is isomorphic to (No; <;@) for the induced orderings. In fact, as discussed in
[28, Chapter 9], even higher order fixed points exist. What's more, as Lemire showed [73, 74], the
problem is much more general, as other type of transfinitely nested expansions such as

a=1++!_¡ /1 2++!_
¡ /1 2++!_

� ��

are plenty in No. See [11, Section 5] for a more detailed discussion and expansions of those results
about fixed points.
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Chapter 9
Surreal substructures

We next introduce surreal substructures as tools to study surreal numbers in relation to transseries
and hyperseries in Part IV. We hope to convey the sense that surreal substructures are at the same
time very general and very rigid subclasses of No and that several problems regarding the enriched
structure of No (highlighted in particular in the work of Gonshor [55], Kuhlmann�Matusinski [71],
Berarducci�Mantova [18], and Aschenbrenner�van den Dries�van der Hoeven [6]) crucially involve
surreal substructures.

9.1 Surreal substructures

9.1.1 Surreal substructures and their parametrizations
Let X be a subclass of No and let R=(<i)i2I be a family of orderings on No. Then we say that
a function f :X¡!No is R-increasing if f is increasing for each <i with i2 I. We say that it is
strictly R-increasing if it is strictly increasing for each <i. If we have x<i y() f(x)<i f(y) for
all x; y2X and i2 I, then we call f an R-embedding of (X; (<i)i2I) into (No; (<i)i2I). We simply
say that f is an embedding if f is a (<;@)-embedding.

Definition 9.1.1. A surreal substructure is the image of an embedding of No into itself.

Example 9.1.2. Given a2No, the function x 7! aux is an embedding of (No; <;@) into itself.
If a> 0, then so is the function x 7! a�� x, by Proposition 8.1.4. Consequently:

� For a2No, the function x 7!aux gives rise to the surreal substructure auNo of numbers
whose sign sequences begin with the sign sequence of a.

� For 0<a2No, the function x 7!a�� x induces the surreal substructure a�� No of numbers
whose sign sequences are (possibly empty or transfinite) concatenations of the sign sequences
of a and ¡a.

Example 9.1.3. Let ' be an embedding of No into itself with image S. Then the map
 :x 7¡!¡'(¡x) defines another embedding of No into itself with image ¡S= f¡x : x 2 Sg. In
other words, if S is a surreal substructure, then so is ¡S.

We claim that any strictly (<;@)-increasing map f :No¡!No is automatically an embedding.
We first need a lemma.

Lemma 9.1.4. If x; y; z are numbers such that xv y and xv/ z, then we have x<z if and only if
y <z, and z <x if and only if z < y.

Proof. Since xv/ z, we have x < z if and only if there is �x< bd(x) with x � �x= z � �x and
x[�x]<z[�x]. Now xv y so yv/ z and likewise y < z holds if and only if there is �y< bd(y) with
y � �y= z � �y and y[�y]<z[�y]. Notice that y � �y= z � �y and y wxv/ z imply that �y< bd(x). In
both cases, since xv y, we have x[�x]= y[�x] and x[�y]= y[�y]. Therefore the existence of �x yields
that of �y= �x and vice versa. The other equivalence follows by symmetry. �

Lemma 9.1.5. Assume that X is a convex subclass of (No; <). Then every strictly (<;@)-
increasing function ':X¡!No is an embedding (X; <;@)¡! (No; <;@).
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Proof. Since (No; <) is linearly ordered, the function ' is automatically an embedding for <, so
we need only prove that it is an embedding for @. Assume for contradiction that there are elements
x< y of X such that xv/ y and '(x)v '(y) (the case when y <x is symmetric). Let z be the @-
maximal common initial segment of x and y. We have x<z6 y, so z2X. Since ' is strictly (<;@)-
increasing, we have '(x)<'(z)6 '(y) and '(x)v/ '(z), which given our assumption '(x)v '(y)
contradicts the previous lemma. Hence '(x)v/ '(y), which concludes the proof. �

Since a surreal substructure S is an isomorphic copy of No into itself, it induces a natural
Conway bracket fgS on S. This actually leads to an equivalent definition of surreal substructures.
Let us investigate this in more detail.

Let S be an arbitrary subclass of No. We say that S is rooted if it admits a simplest element,
called its root , and which we denote by S�. In other words, it is rooted if, as a subgraph of (No;@),
it has a root. Given subclasses L<R of S, we let (L j R)S denote the class of elements x2S such
that L<x<R. If (L j R)S is rooted, then we let fL j RgS denote its root. If L=L and R=R
are sets, then we call (L j R)S the cut in S defined by L and R. If for any subsets L<R of S the
class (L jR)S is rooted, then we say that S admits an induced Conway bracket .

Proposition 9.1.6. Let S admit an induced Conway bracket. Then the map �S:No¡!S defined
by

8x2No;�Sx= f�SxL j �SxRgS

is an isomorphism (No; <;@)¡! (S; <;@).

Proof. We first justify that �S is well defined. Let x2No be such that �S is well-defined and
strictly <-increasing on x@, with values in S. We have �SxL<�SxR where those sets are in S so
�Sx is a well-defined element of (�SxL j �SxR)S, and �S is strictly <-increasing on fxg[xL[xR.
By induction, �S is a strictly increasing map No¡!S. Let y2No with xv y, so that xL< y<xR.
By definition, the number �Sx is the simplest element u2S with �SxL<u<�SxR. Since �S y2S
and �SxL<�S y <�S yL, it follows that �Sxv�S y. We deduce from Lemma 9.1.5 that �S is an
embedding of (No; <;@) into itself.

We now prove that S��SNo by induction on (S;@). Let y2S be such that y@\S is a subset
of �SNo. Let �SL0=L= yL\S and R= yR\S=�SR0 where since �S is strictly 6-increasing
and thus injective, the sets L0; R0 are uniquely determined and satisfy L0<R0. Since S admits
an induced Conway bracket, the cut (L j R)S is rooted and contains y, so fL j RgSv y. Since
fL j RgS2/ L[R, we necessarily have y=fL j RgS=�SfL0 j R0g. By induction, we conclude that
S=�SNo. �

Proposition 9.1.7. Let S be a subclass of No. Then S is a surreal substructure if and only if it
admits an induced Conway bracket.

Proof. Assume that S admits an induced Conway bracket. By the previous proposition, S is the
range of the strictly (<;@)-increasing function �S:No¡!No, whence S is a surreal substructure.
Conversely, consider an embedding ' of No into itself with image S. Let L<R be subsets of S
and define (L0; R0) = ('¡1(L); '¡1(R)). The function ' is strictly <-increasing so L0<R0, and
we may consider the number x= fL0 j R0g. Now let y 2 (L j R)S. We have '¡1(y)2 (L0 j R0), so
xv '¡1(y). Since ' is @-increasing, this implies '(x)v y, which proves that '(x)= fL j RgS, so
S admits an induced Conway bracket. �

Remark 9.1.8. More generally, one may discard the existence condition for the Conway bracket
and consider subclasses X of No that satisfy the following condition:

IN. For all subsets L;R of X with L<R, the class (L j R)X is either empty or rooted.

A subclass X�No satisfies IN if and only if there is a (unique) @-initial subclass IS of No and
a (unique) isomorphism (IS;<;@)¡! (S;<;@). This is in particular the case for the classes Smp�
described in Chapter 10 below. For more details on this more general kind of subclasses, we refer
to [42].
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In the thesis, we focus on surreal substructures. The characterizations given in Proposition 9.1.7
and Proposition 9.2.2 are known results. The second one was first proved (for more general types
of ordinal sequences) by Lurie [75, Theorem 8.3], and both of them were proved by Ehrlich [42,
Theorems 1 and 4].

Proposition 9.1.9. Let S be a surreal substructure. The function �S is the unique surjective
strictly (<;@)-increasing function No¡!S.

Proof. Let ' be a strictly (<;@)-increasing function No¡!S with image S. By Lemma 9.1.5,
it is an embedding. Given x2No such that ' and �S coincide on x@, the numbers '(x) and �Sx
of S are both the simplest element of (�SxL j �SxR)S and are thus equal. It follows by induction
that '=�S. �

Given a surreal substructure S, we call �S the defining surreal isomorphism or parametrization
of S. The above uniqueness property is fundamental; it allows us in particular to perform con-
structions on surreal substructures via their parametrizations.

9.1.2 Cut representations
Let S be a surreal substructure. Given an element x 2 S and subsets L; R of S with L<R, we
say that (L;R) is a cut representation of x in S if x= fL j RgS, i.e. if x is the simplest element
of (L j R)S. We refer to elements in L and R as left and right options of the representation. For
x2S, we write

(xLS; xRS) := (xL\S; xR\S)

and call this pair the canonical representation of x in S. We also write x@S for the set x@\S.
A @-final substructure of S is a rooted final segment T of S for @ (and thereby necessarily a

substructure). It is easy to see that this is the case if and only if T is rooted and T is the class
SwT

�
of elements x2S such that T�vx.

Proposition 9.1.10. Let S be a surreal substructure and let (L;R) and (L0;R0) be cut represent-
ations in S. For x2S, we have

a) fL j RgS6 fL0 j R0gS if and only if fL j RgS<R0 and L< fL0 j R0gS:

b) (xLS; xRS) is a cut representation of x in S with respect to which any other cut representation
of x in S is cofinal.

c) Swx=(xLS j xRS)S.

Proof. The assertions a) and b) are true when S=No by [55, Theorems 2.5 and 2.9]. By Pro-
position 9.1.6, the function �S is an isomorphism (No; <;@)¡! (S; <;@), satisfying the relation
8a2No; (�SaL;�SaR)=((�Sa)LS; (�Sa)RS), so a) and b) hold in general. We have Swx� (xLS j xRS)S,
since x=(xLS j xRS)S� . Conversely, for y2Swx and x02x@S , we have x0@ y and y[bd(x0)]=x[bd(x0)]2
f¡1; 1g, so y¡x0 and x¡x0 have the same sign. We conclude that xLS< y<xR

S, which completes
the proof of c). �

9.2 Operations on surreal substructures

9.2.1 Imbrications
Let S, T be two surreal substructures. Write �Sinv for the functional inverse of �S:No¡!S. Then
there is a unique (<;@)-isomorphism �TS :=�T��Sinv:S¡!T that we call the surreal isomorphism
between S and T. The composition �S�T :=�S ��T is also an embedding, so its image

S�T :=�ST
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is again a surreal substructure that we call the imbrication ofT into S. We say thatT is a left factor
(resp. right factor) of S if there is a surreal substructure U such that S=T�U (resp. S=U�T).

By the associativity of the composition of functions, the imbrication of surreal substructures is
associative. Right factors are determined by the two other substructures. More precisely, since �T is
injective, the relation S=T�U=�TU yields U=�Tinv(S). The same does not hold for left factors:

(1uNo)u (!uNo)=No� (!uNo)=!uNo:

Proposition 9.2.1. If S;T are surreal substructures, then T is a left factor of S if and only if
S�T.

Proof. If S= T �U, then S = �T S �T. Assume that S�T and let U= �Tinv(S). We have
U= (�Tinv �S) �SNo where �Tinv �S and �S, are respectively embeddings (S; <;@)¡! (No; <;@)
and (No; <;@)¡! (S;<;@) so (�Tinv �S) �S is an embedding (No;<;@)¡! (No;<;@). Hence U
is a surreal substructure with �TU=S, which means that T�U=S. �

9.2.2 Surreal substructures as trees
Through the identification No'f¡1; 1g<On, the class of surreal numbers can be represented by
a full binary tree of uniform depth On, as illustrated in Figure 9.2.1.
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Figure 9.2.1. The class of positive surreal numbers as a tree. For clarity, only a few numbers up to the
birth day !2 are represented. Negative numbers are obtained through symmetry w.r.t. the y-axis.

For each ordinal �, we let No(�) denote the subtree of No of nodes of depth <�, that is, the
set of numbers x with bd(x)<�. This can be represented as the subtree obtained by cropping the
picture at depth �. In order to characterize surreal substructures in tree-theoretic terms, we need
to investigate chains for @: given a subclass X�No, a @-chain in X is a linearly ordered (and
thus well-ordered) subset C of (X;@). If a @-chain C in (X;@) admits a supremum in (X;@), we
denote it supX;@C. Note that the empty set has a supremum in (X;@) if and only if X has a root,
in which case supX;@?=X�. We say that y 2X is the left successor of x2X if y <x and z w y
for every z <x in X. Right successors are defined similarly.

Proposition 9.2.2. Let S be a class of surreal numbers. Then the following assertions are equi-
valent:

a) S is a surreal substructure.
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b) Every element of S has a left and a right successor in S and every @-chain in S has
a supremum in (S;@).

Proof. Let S be a surreal substructure. InNo, any element x clearly admits a left successor fxL j xg
and a right successor fx j xRg, and every @-chain clearly admits a supremum. Since these prop-
erties are preserved by the isomorphism �S, we deduce b).

Assume now that b) holds. We derive a) by inductively defining an isomorphism
�: (No; <;@)¡! (S; <;@). Applying b) to the empty chain, we note that the supremum of ?
in (S;@) is the minimum of S for @. So S is rooted and we may define �0= S�. Let 0<� be
an ordinal such that � is defined and strictly (<;@)-increasing onNo(�). We distinguish two cases:

� If � is limit, then let x be a surreal number with length �. Thus x is a limit number and
�x@ is a @-chain in S. We define �x= supX;@�x@.

� Assume now that � is successor, let x be a number with length �, and write x=uu� where
�2f¡1;1g. Let u¡1 and u1 be the left and right successors of �u. Then we define �x=u�.

In both cases, this defines � on No(�+1) and the extension is clearly strictly @-increasing and
strictly <-increasing on every set xv := fxg[x@ for x2No(�+1).

It remains to be shown that � is strictly <-increasing on No(�+1). Given a<b in No(�+1),
let c 2No(�) be their @-maximal common initial segment. We either have a6 c< b and thus
�a6�c<�b, or a< c6 b and thus �a<�c6�b. So � is strictly <-increasing on No(�+1).

By induction, the function � is defined and (<;@)-increasing onNo=
S
�2OnNo(�). Note that

(S;@) is well-founded since (No;@) is well-founded and S�No. By induction over y 2S, let us
show that y lies in the range of �. If y is the left or right successor of an element v 2S, then the
induction hypothesis implies the existence of some u2No with v=�u, and we get y=�(u�_ 1).
Otherwise, we have y= sup@ y@S =� sup@C where C = fx2No : �x@ yg. We conclude that � is
an isomorphism. �

Example 9.2.3. Consider the class Inc defined by �Inc0 :=1, �Inc(uu�)=(�Incu)u�u1, for all
u2No and �2f¡1;1g and �IncsupvC=(supv�IncC)u1 for every non-empty @-chain C without
maximum in (No;v). It is easy to check that we have bd(�Inc z)>bd(z) and bd(�Inc z)2Onu 1
for every surreal number z.

Example 9.2.4. Let S=No> n f1g. Then (S;@) is isomorphic to (No;@), but S is not a surreal
structure. In other words, the condition b) cannot be replaced by the weaker condition that (S;@)
and (No;@) be isomorphic.

The characterization b) gives us some freedom in constructing a surreal substructure: one only
has to provide a mechanism for choosing left and right successors of already constructed elements,
as well as least upper bounds for already constructed branches (i.e. @-chains). Intuitively speaking,
this corresponds to a way to �draw� S as a full binary tree inside the binary tree that representsNo.

9.2.3 Convex subclasses
If X�Y are subclasses of No, recall that X is convex in Y if

8x; z 2X;8y 2Y; (x6 y6 z=) y 2X);
and X is @-convex in Y if

8x; z 2X;8y 2Y; (xv y v z=) y 2X):

We simply say that X is convex (resp. @-convex) if it is convex (resp. @-convex) in No. We let
HullY(X) denote the convex hull of X in Y, that is, for every number y, we have y 2HullY(X)
if and only if y 2Y and there are elements x; z of X such that x6 y6 z. The convex hull of X in
Y is the smallest convex subclass of Y containing X.

Lemma 9.2.5. Assume that S is a surreal substructure. Then every non-empty convex subclass
of S is rooted.
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Proof. In view of Propositions 9.1.6 and 9.1.7, it suffices to prove the lemma for S=No. Let C
be a non-empty convex subclass of No. Assume for contradiction that u; v 2C are two simplest
elements with u<v. Let � be the smallest ordinal such that u[�]<v[�]. Since uv/ v and vv/ u, we
must have u[�]=¡1 and v[�]=1. Now consider the number w whose sign sequence is u ��= v ��.
Then u<w<v, whence w 2C, but also wvu; a contradiction. �

Proposition 9.2.6. Let S be a surreal substructure.

a) A convex subclass C of S is a surreal substructure if and only if it has no cofinal or coinitial
subset.

b) For subsets L<R of S, the cut (L j R)S is a surreal substructure.

c) If T�S is a surreal substructure, then HullS(T) is a surreal substructure.

d) If T is a surreal substructure, (LjR)S is a cut in S and f :T¡!S is strictly monotonic
and surjective, then f¡1((L j R)S) is a surreal substructure.

e) The intersection of any set-sized decreasing family of surreal substructures that are convex
in S is a surreal substructure.

Proof. a) Assume that C has no cofinal or coinitial subset and let L<R be subsets of C.

� If both L and R are empty, then L<c<R for any c2C. Notice that C=/ ?, since ? is not
cofinal in C.

� If L=? and R=/ ?, then there exists an x2C with x<R, since R is not coinitial in C.
Let y= fx j RgS and r2R. Then x< y <r, so y 2C, and y 2 (L j R)C.

� Similarly, if L=/ ? and R=?, then fL j ygS2 (L j R)C for some y >L in C.

� If L=/ ? and R=/ ?, then fL j RgS2C, by convexity.

In each of the above cases, we have shown that (L j R)C is a non-empty convex subclass of S.
By Lemma 9.2.5, it is rooted. By Proposition 9.1.7, it follows that C is a surreal substructure.
Conversely, if C is a surreal substructure, then given a subset X of C, we have

C3f? j XgC<X < fX j ?gC2C;

so X is neither cofinal nor coinitial in C.
b) This is a direct consequence of the previous point: the cut (L j R)S is by definition a convex

subclass of S, and given a subset X of (L j R)S we have

(L j R)S3fL j XgS<X < fX j RgS2 (L j R)S:

By Proposition 9.1.7, it follows that (L j R)S is a surreal substructure.
c) Since T is a surreal substructure, it has no cofinal or coinitial subset. It follows that the

same holds for HullS(T), which is thus a surreal substructure.
d) We have f¡1((L j R)S) = (f¡1(L) j f¡1(R))T is f is increasing and f¡1((L j R)S) =

(f¡1(R) j f¡1(L))T if f is decreasing. In both cases, f¡1((L j R)S) is a cut in T, hence a surreal
substructure by c).

e) Let (I ; <) be a linearly ordered set and let (Ci)i2I be decreasing for �. Its intersection
C :=

T
i2ICi is convex. Let X be a subset of C. For i 2 I, we have X �Ci whence li<X < ri

where li=(? j X)Ci� . and ri=(X j ?)Ci� . Writing l= fli : i2 I j XgS and r= fX j ri : i2 IgS, we
have l <X < r. Moreover, for i 2 I, we have li< l < r < ri so l; r 2Ci by convexity. This proves
that l; r2C and consequently that X is neither cofinal nor coinitial in C. Therefore C is a surreal
substructure by a). �

Example 9.2.7. Cuts (L j R)S where L<R are subsets of S include @-final substructures of S
and non-empty open intervals of S, which are therefore convex surreal substructures. Note that
non-empty convex classes of No which are open in the order topology may fail to be surreal
substructures. One counterexample is the class No4:=Hull(Z) of finite surreal numbers, since it
admits the cofinal subset N.
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Example 9.2.8. Here are some further examples and counterexamples of convex surreal substruc-
tures that we will consider later on.

� The class No> := (f0g j ?) of strictly positive surreal numbers is a convex surreal substruc-
ture, and it is in fact the @-final substructure Now1 of No.

� Likewise, the classNo>;� :=(N j ?)=Now! of positive infinite surreal numbers is a convex
surreal substructure.

� The class No�:=(R<0 j R>0) of infinitesimals forms a surreal substructure which can be
split as the union of f0g and the two @-final substructures Now¡!¡1, Now!¡1.

� Although every interval (¡n ¡ 1; n+ 1) for n 2N is a convex surreal substructure, their
increasing union No4 is not a surreal substructure.

Remark 9.2.9. For subsets L<R of S, the cut (L j R)S may fail to be a @-final substructure
of S. In fact, by Proposition 9.1.10(c), it is a @-final substructure of S if and only if the canonical
representation of fL j RgS in S is cofinal with respect to (L;R), in which case we have (L j R)S=
SwfL jRgS.

Any convex subclass C of S is a generalized cut C=(L j R)S in S where L is the class of strict
lower bounds of C in S and R is the class of its strict upper bounds. However, those classes may
not always be replaced by sets. In fact, the class C is a cut C=(L j R)S with subsets L<R of S
if and only if such sets can be found that are mutually cofinal with (L;R).

9.2.4 Cut equations
We already noted that the Conway bracket allows for elegant recursive definitions of functions on
No. Let us now study such definitions in more detail and examine how they generalize to arbitrary
surreal substructures.

Definition 9.2.10. Let S;T be surreal substructures. Let �; � be functions defined for cut rep-
resentations in S and such that �(L; R); �(L; R) are subsets of T whenever (L; R) is a cut
representation in S. We say that a function F :S¡!T has cut equation f� j �gT if for all x2S,
we have

�(xLS; xRS) < �(xLS; xRS) and
F (x) = f�(xLS; xRS) j �(xLS; xRS)gT:

We say that the cut equation is extensive if it satisfies

8x; y 2S; (xv y=) (�(xLS; xRS)��(yLS; yRS)^ �(xLS; xRS)� �(yLS; yRS))):

Note. We will see in the proof of Proposition 9.2.14 below that extensive cut equations preserve
simplicity.

Example 9.2.11. A simple example of a cut equation is (8.2.3): 8x 2No;¡x= f¡xR j ¡xLg.
Here we have S=T=No and we can take �(xL; xR)=¡xR and �(xL; xR) :=¡xL. Note that this
cut equation is extensive.

Taking S=No and T=No>, �(xL; xR)=xL\No> and �(xL; xR)= xR\No>, we obtain the
function F with F (x)=0 for all x6 0 and F (x)=x for all x> 0.

See Example 9.2.20 below for more examples.

Remark 9.2.12. Our notion of cut equation is not restrictive on the function, since any function F :
S¡!T has cut equation (�; �) with �(L;R):=F (fL j RgS)LT and �(L;R):=F (fL j RgS)RT. Thus it
should not be confused with the notions of recursive definition in [48] and genetic definition in [91].

Example 9.2.13. Given sets �;P of functions S¡!T, cut equations of the form (�; �) with

�(xLS; xRS) = f�(l) : � 2�; l2 xLSg
�(xLS; xRS) = f (r) :  2P; r 2xRSg
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are extensive. We will write f�(xLS; xRS) j �(xLS; xRS)gT= f�(xLS) j P(xRS)gT in this case. Note that
it is common to consider well-defined cut equations of the form

F (x)= f�(xLS) j P(xRS)gT;
where F itself belongs to � and P.

Proposition 9.2.14. Let S;T be surreal substructures. Let F : S¡!T be strictly <-increasing
with extensive cut equation f� j �gT. Then F (S) is a surreal substructure, and we have F =�F (S)

S .

Proof. We claim that F is @-increasing. Indeed, let x; y 2S with xv y. We have xLS< y < xR
S,

so xLS� yLS and xRS � yR
S. We deduce by extensivity of (�; �) that �(xLS; xRS)��(yLS; yRS) and �(xLS;

xR
S)� �(yLS; yRS), and thus �(xLS; xRS)<F (y)< �(xLS; xRS). This implies that F (x)vF (y). Thus F is

strictly (<;@)-increasing. So the composition F ��S:No¡!F (S) is strictly (<;@)-increasing. The
function �S: (No;<;@)¡! (S;<;@) is an embedding by Proposition 9.1.6, so F embeds S into T.
In particular, F (S) is a surreal substructure. By Proposition 9.1.9, we conclude that F =�F (S)

S . �

As an application, we get the following well-known result (see [18, Proposition 4.22]).

Proposition 9.2.15. Let ' be a number, and let No�supp' denote the class of numbers x with
x� supp '. Then No�supp' and '++No�supp' are surreal substructures with

8x2No;�'++No�supp'x= '++�No�supp' x:

Proof. We have No�supp'=(¡R> supp' j R> supp '). By Proposition 9.2.6(b), this is a surreal
substructure. Recall that for x 2No, we have ' + x = f'L + x; ' + xL j ' + xR; 'R + xg. If
x2No�supp', then we have 'L+x< '++No�supp'< 'R+x so we may write

'++x = f'+xL j '+xRg'++No�supp'

= f'+xLNo�supp' j '+xRNo�supp'g'++No�supp':

Seen as a cut equation in x, this is an extensive cut equation, so by Proposition 9.2.14, we see that
'++No�supp' is a surreal substructure and that x 7!'+x realizes the isomorphism No�supp'¡!
'++No�supp'. �

Definition 9.2.16. Let F be a function S¡!T with cut equation (�; �). We say that (�; �) is
uniform at x2S if we have

�(L;R) < �(L;R) and
F (x) = f�(L;R) j �(L;R)g

whenever (L;R) is a cut representation of x in S. We say that (�; �) is uniform if it is uniform
at every x2S.

Remark 9.2.17. Although Gonshor [55] does not define what he calls equations and uniform
equations in a systematic way, we take Definition 9.2.16 to be a valid formalization of his use of
the term.

Example 9.2.18. Let a 2No. The following cut equation for the function y 7¡! au y:No¡!
1uNo obtained from (8.1.3)

8x2No; au y= faL; au yL j au yR; aRg;

is uniform. On the contrary, the following cut equation for x 7¡!xu 1 is not uniform:

8x2No; xu 1= fx; xL j xRg:

Indeed, we have 0= f? j 1g and 0u 1=1, but f0;? j 1g= f0 j 1g= /1 2.

Example 9.2.19. Let b2No>. By (8.1.2), the functionNo¡!b�� No; y 7!b�� y has the following
cut equation

8y 2No; b�� y= fb�� yLu bL; b�� yRu (¡bR) j b�� yLu bR; b�� yRu (¡bL)g;
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which is uniform. On the contrary, the cut equation for x 7!x�� /1 2 is not uniform:

8x2No; x�� /1 2= fxL; xu (¡xR) j xR; xu (¡xL)g:

Indeed, if we were to apply this cut equation to the cut presentation (f /1 2g;?) of 1, then we would
have /1 2 as a left option and 1u (¡ /1 2)6 /1 2 as a right option, which cannot be.

Example 9.2.20. Most common definitions of unary functions No¡!No have known simple
cut equations, and many of them are uniform, in particular throughout the work of H. Gonshor
in [55]. For instance, the classical cut equations (8.2.3) and (11.1.3) for the functions a 7!¡a and
a 7! exp a are uniform, so for a2No and for any cut representation (L;R) of a in No, we have

¡a = f¡R j ¡Lg; and

exp a =
�
0; [a¡ l]N exp l; [a¡ r]2N+1 exp r

�������� exp r
[a¡ r]2N+1

;
exp l
[l¡ a]N

�
(l2L; r 2R):

Example 9.2.21. We will also need an extension of the notion of uniform cut equation to functions
f :No�No¡!No. Specifically, by [55, Theorem 3.2], the classical cut equation for the sum of
two numbers x; y is uniform in the sense that, given cut representations (Lx; Rx) and (Ly; Ry) of
x; y in No, we have

x+ y= fLx+ y; x+Ly j x+Ry; Ry+ yg: (9.2.1)

Similarly for the multiplication, we have

x+ y= fx0 y+x y 0¡x0 y 0; x00 y+x y 00¡x00 y 00 j x0 y+x y 00¡x 0y 00; x00 y+x y 0¡x00 y 0g;

where x0, x00, y 0 and y 00 range in Lx, Rx, Ly and Ry respectively.

Uniform cut equations have the interesting property that they can be composed.

Lemma 9.2.22. Let S0; S1; S2 be surreal substructures. Let F1: S0¡! S1 and F2: S1¡! S2 be
functions with uniform cut equations

F1 � f�1 j �1gS1
F2 � f�2 j �2gS2:

Then F2 �F1 has the uniform cut equation (�12; �12) where for every cut representation (L;R) in
S0, we have �12(L;R)=�2(�1(L;R); �1(L;R)) and �12(L;R)= �2(�1(L;R); �1(L;R)).

Proof. Let x2S0, let (L;R) be a cut representation of x in S0. By uniformity of the cut equation
of F1 at x, we have

F1(x)= f�1(L;R) j �1(L;R)gS1:

By uniformity of the cut equation of F2 at F1(x), we have

F2(F1(x)) = f�2(�1(L;R); �1(L;R)) j �2(�1(L;R); �1(L;R))g;

whence the result. �

Recall that a class X�No is cofinal (resp. coinitial) with respect to a class Y�No if every
element of Y has an upper bound (resp. lower bound) in X. If X�Y, then we simply say that X
is cofinal (resp. coinitial) in Y.

Lemma 9.2.23. When S;T are surreal substructures, the cut equation �TS x�f�TS xLS j �TS xRSgT
is uniform and extensive.

Proof. Let us first prove uniformity in the case when S=No. Let L<R be sets of surreal numbers
and let x=fL j Rg. Since �T is strictly increasing and ranges in T, the number y=f�TL j �TRgT
is well defined and �TL<�T x<�TR, which yields y v�T x. Moreover, the set L is cofinal in
xL whereas R is coinitial in xR, so �TxL< y<�TxR. Hence �Txv y and �Tx= y, which shows
that the cut equation �T x�f�TxL j �TxRgT is uniform.
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Now consider the general case and let �SA=L<R=�SB be subsets of S. Setting z :=fA j Bg
and x := fL j RgS, we have x=�S z by uniformity of the cut equation for �S. Furthermore,

f�TS L j �TS RgT = f�TA j �TBgT
= �T z;

by uniformity of the cut equation for �T. Hence f�TS L j �TS RgT=�T�Sinvx=�TS z, which proves
that �TS � f�TS L j �TS RgT is uniform. This cut equation has the form �TS z = f�(zLS) j P(zRS)gT
where �=P= f�TSg are sets of functions, so it is extensive. �

The above proposition shows that surreal isomorphisms satisfy natural extensive cut equations.
Inversely, Proposition 9.2.14 shows that extensive cut equations give rise to surreal isomorphisms.
As an application, if we admit that the operation

8z 2No; !_ z := f0;N!_ zL j 2¡N!_ zRg

is well defined, then we see that it defines a surreal isomorphism. This is the parametrization of
the class Mo of monomials, that is, Conway's !-map. This cut equation is also uniform (see [55,
corollary of Theorem 5.2]), and we can for instance compute, for every number x, the number

!_!_
z
= !_f0;N!_

zL j2¡N!_zRg

= f0;N!_0;N!N!_zL j 2¡N!_2
¡N!_ zRg

= fN; !N!_zL j !_2¡N!_xRg:

Whenever they exist, this shows the usefulness of extensive cut equations. Unfortunately, many
common surreal functions such as the exponential do not admit extensive cut equations. The next
proposition describes a more general type of cut equation that is sometimes useful.

Proposition 9.2.24. Let S;T be surreal substructures. Let � be a function from S to the class
of subsets of T such that for x; y 2S with x< y, the set �(y) is cofinal with respect to �(x). For
x2S, let �[x] denote the class of elements u of S such that �(x) and �(u) are mutually cofinal. Let
f� j �gT be an extensive cut equation on S. Let F :S¡!T be strictly increasing with cut equation

8x2S; F (x)= f�(x); �(x) j �(x)gT

Then F induces an embedding (�[x]; <;@)¡! (T; <;@) for each element x of S.

Proof. Let x2S. If u;w2�[x] and v 2S satisfies u6 v6w, then �(v) is cofinal with respect to
�(u) and hence to �(x), and �(x) is cofinal with respect to �(w) and hence to �(v), so v 2�[x].
Therefore �[x] is a non-empty convex subclass of S. Note that for u2�[x], we have

F (u)= f�(x); �(u) j �(u)gT:

For numbers u; v lying in �[x] with uv v, we have �(x)[�(u)��(x)[�(v)<F (v)<�(v)� �(u),
which implies that F (u)vF (v). Since �[x] is a non-empty convex subclass of S and �S:No¡!S
is increasing and bijective, the class C :=�S

¡1(�[x]) is a non-empty convex subclass ofNo on which
F ��S is strictly (<;@)-increasing. By Lemma 9.1.5, the function F ��S induces an embedding
(C; <;@)¡! (T; <;@) and thus F induces an embedding (�[x]; <;@)¡! (T; <;@). �

Example 9.2.25. A typical example is the following cut equation of [18, Theorem 3.8(1)] for the
exponential function on the class Mo� := fm2Mo :R<mg of infinite monomials:

8m2Mo; expm= fmN; (expmLMo)N j (expmRMo)Ng:

Here we have �(m)=mN and �[m] = fn2Mo� : 9p; q 2N;m /1 p�n�mpg.
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Chapter 10

Convex partitions

The reader can note that given a confluent hyperserial field (T;�) of force �6On, such partitions of
T>;� into convex subclasses were considered in e. We are thinking of the collections of classes E�[s]
and L�[s] for s2T>;� and �=!�; �<�. This chapter introduces a convenient way to construct
surreal substructures, using partitions of a given surreal substructure such as No>;� into convex
subclasses, so as to take advantage of this occurrence when defining and studying the hyperserial
structure on No.

10.1 Convex partitions

Throughout this section, S stands for a surreal substructure. A partition of S is a formula�=�(x;
y) which defines an equivalence relation on S, i.e. such that for all x; y; z 2S, we have

�(x; x), �(x; y)=)�(y; x), and (�(x; y)^�(y; z)=)�(x; z)):

Given such a partition � and x2S, we write �[x] for the equivalence class of x in S, that is,

�[x] = fy 2S : �(x; y)g:

10.1.1 Convex partitions and surreal substructures

Definition 10.1.1. Let � be a partition of S for which each class �[x] for x2S is convex in
(S; <). We say that � is a convex partition of S. For x 2 S recall that �[x] is rooted (by
Lemma 9.2.5). We say that x2S is �-simple if x=�[x]�, and we let Smp� denote the class
of �-simple elements of S. For x; y 2S we write:

x=� y if �[x] =�[y];
x<� y if �[x]<�[y];
x6� y if �[x] =�[y] or�[x]<�[y]:

Remark 10.1.2. Convex partitions are sometime called condensations [90, Definition 4.1].

We can obtain S as Smp�disc through the discrete partition �disc with �disc[x] = fxg for all
x2S. Let ��(x) :=�[x]�2S for all x2S. The map ��:S¡!Smp� is a surjective, increasing
projection. We refer to it as the �-simple projection.

For the remainder of this subsection, let � be a convex partition of S. A quasi-order (or
preorder) is a binary relation that is reflexive and transitive. The following lemma states basic
facts on partitions of a linear order into convex subclasses.

Lemma 10.1.3. The relation 6� is a linear quasi-order and restricts to a linear order on Smp�.
For x; y 2S, we have x6� y if and only if ��(x)6��(y).

169



Proof. It is well known that the partition� corresponds to the equivalence relation =� on S. The
transitivity and irreflexivity of <� follow from that of < on subclasses ofNo. That its restriction to
Smp� is a linear order is a direct consequence of the definition of Smp� and the equivalence stated
above, which we now prove. If � has only one member, then the result is trivial. Otherwise, let
x; y2S with x<�y. We have ��(x)2�[x]<�[y]3��(y) so ��(x)<��(y). Conversely, assume
that ��(x)<��(y). Then �[x] =/ �[y] which since � is a partition implies that �[x]\�[y]=?.
For x02�[x], there may be no element z of�[y] such that z6x for this would imply z6x6��(y)
whence x 2�[y] by convexity of this class: a contradiction. We thus have �[x]<�[y], that is,
x<�y. By definition of ��, the relation x=�y implies that ��(x)=��(y), whereas ��(x)=��(y)
implies that �[x]\�[y] =/ ?, so �[x] =�[y], so x=� y. �

For any subclass X of S, we write �[X] :=
S
x2X�[x].

Lemma 10.1.4. Let A,B be subclasses of S. Then the following statements are equivalent:

a) A<�[B].

b) �[A]<B.

c) �[A]<�[B].

Proof. All inequalities are vacuously true ifA=? or B=?. Assume thatA and B are non-empty
and let a2A and b2B. Assume for contradiction that A<�[B], but �[A]��[B]. Then there
exist a02�[a] and b02�[b] with a < b 06 a0. By convexity of �[a], this yields b 02�[a], whence
a2�[b]. This contradiction shows thatA<�[B]=)�[A]<�[B]. The inverse implication clearly
holds. The equivalence �[A]<B()�[A]<�[B] holds for similar reasons. �

Lemma 10.1.5. For x2S, the three following statements are equivalent:

a) x is �-simple.

b) There is a cut representation (L;R) of x in S such that �[L]<x<�[R].

c) �[xLS]<x<�[xRS].

Proof. Since (xLS; xRS) is a cut representation of x in S, the assertion c) implies b).
Conversely, if (L;R) is a cut representation of x in S with �[L]<x<�[R], then we have L<

�[x]<R by the previous lemma. By Proposition 9.1.10(b), the cut representation (L;R) is cofinal
with respect to (xLS; xRS), so xLS<�[x]<xRS. Hence�[xLS]<x<�[xRS], again by Lemma 10.1.4. This
shows that b) implies c).

Assume now that x is �-simple and let us prove c). For u 2 xLS, we have u@ x, so u2/�[x],
whence u=/�x. We do not have �[x]<�[u] since x�u, so Lemma 10.1.3 yields �[u]<�[x], and
in particular �[u]<x. This proves that �[xLS]<x, and similar arguments yield x<�[xRS].

Assume finally that c) holds and let us prove a). We have �[x]�vx so �[x]�2xLS[fxg[ xRS.
Now the class�[�[x]�]=�[x] is neither strictly greater nor strictly lower than x, so our assumption
imposes �[x]�=x. We conclude that x is �-simple. �

An order < on a set S is said to be dense if for any a; b2S with a<b, there exists a c2S with
a< c< b.

Proposition 10.1.6. Assume that Smp� is dense. Then � is the unique convex partition of S
such that Smp� is the class of �-simple elements of S.

Proof. For a2Smp�, let Aa denote the class of elements x of S such that no �-simple element
lies strictly between a and x. The definition of the family (Ab)b2Smp� only depends on the class
Smp�, and not specifically on �. For a2Smp�, we have �[a]�Aa.

Conversely, let x 2Aa, and assume for contradiction that x lies outside of �[a], say a<� x.
Then a<���(x) and, Smp� being dense, there exists a�-simple element b between a and ��(x).
But a<� b <� ��(x) implies a< b<x, which contradicts the assumption that there is no simple
element between a and x. We conclude that�[a]=Aa, which entails in particular that the partition
� is uniquely determined by Smp�. �
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If Smp� is dense, then we call � the defining partition of Smp�. Notice that this is in
particular the case when Smp� is a surreal substructure. We next consider a set-theoretic condition
under which Smp� is always a surreal substructure.

We say that� is thin if each member of� has a cofinal and coinitial subset, i.e. if each member
is the convex hull in S of a subset of S. For instance, the convex partition � of No where

�[x] := fy 2No :9n2N;¡n<x¡ y <ng;

is thin. Indeed each class �[x] for x2No admits the cofinal and coinitial subset x+Z.
If � is thin, then (see [11, Appendix]) we may pick a distinguished family (�[x])x2S such that

each �[x] for x2 S is a cofinal and coinitial subset of �[x], with �[x] =�[y]() x=� y. Given
sets L;R�Smp� with L<R and (l; r)2L�R, we have �[l]<�[r] by Lemma 10.1.3, whence
�[l]<�[r]. We deduce that the number

f�[l] : l2L j �[r] : r2RgS
exists, and we see that

f�[l] : l2L j �[r] : r2RgS= f�[L] j �[R]gS: (10.1.1)

Theorem 10.1.7. If � is thin, then Smp� is a surreal substructure. If (L;R) is a cut repres-
entation in Smp�, then we have

fL j RgSmp�= f�[L] j �[R]gS:

Proof. Let L <R be subsets of Smp�. By (10.1.1), the number x := f�[L] j �[R]gS is well
defined. This number is �-simple by Lemma 10.1.5. Now let y 2 (L j R)S be �-simple. Given
l 2 L and r 2R, the �-simplicity of l, r, and y implies that �[l]< y <�[r]. We deduce that
xv y, so x= fL j RgSmp�. By Proposition 9.1.7, we conclude that the class Smp� is a surreal
substructure. �

When � is thin, the structure Smp� is in addition cofinal and coinitial in S, since for x2S,
we have Smp�3f? j �[x]gS6x6f�[x] j ?gS2Smp�. By the previous proposition, we may say
that Smp� is thin if its defining partition � is thin. If � is not thin, then Smp� may fail to be
a surreal substructure, but one can prove that there exists a unique @-initial subclass I of No and
a unique isomorphism between Smp� and I.

For instance, we can obtain the ring Oz :=No�++Z of omnific integers of [28, Chapter 5]
as Smp�Oz where for each number z 2Oz, we set �Oz[z] := [z; z + 1). This is not a surreal
substructure since the cut (0 j 1)Oz is empty. Nevertheless, Oz is @-initial in No. Note that
different partitions may yield the same class Oz (for instance replacing �Oz[0] and �Oz[1] with
[0; /1 2) and [ /1 2; 2) respectively and leaving the other classes unchanged), in contrast to the case of
dense partitions from Proposition 10.1.6.

Proposition 10.1.8. Assume that � is thin. Then we have the following uniform cut equation
for �Smp� and x2No:

�Smp�x= f�[�Smp�xL] j �[�Smp�xR]gS:

Proof. The cut equation follows from Theorem 10.1.7 and the relation

�Smp�x= f�Smp�xL j �Smp�xRgSmp�:

Now toward uniformity, consider a cut representation (L; R) of a number y. We have
�Smp� L <� �Smp� R so the number f�[�Smp� L] j �[�Smp� R]gS is well defined. Since
(L; R) is cofinal with respect to (yL; yR) and �Smp� is strictly increasing, the number
f�[�Smp�L] j �[�Smp�R]gS lies in the cut (�[�Smp� yL] j �[�Smp� yR])S, so

�Smp� y vf�[�Smp�L] j �[�Smp�R]gS:

Conversely, we have L < y < R, so �Smp� L < �Smp� y < �Smp� R. Since �Smp� L [
f�Smp� yg [ �Smp� R � Smp�, we have �[�Smp� L] < �Smp� y < �[�Smp� R],
whence f�[�Smp� L] j �[�Smp� R]gS v �Smp� y. We conclude that �Smp� y =
f�[�Smp�L] j �[�Smp�R]gS. �
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10.1.2 Comparing thin convex partitions
For convex partitions �;�0 of S, we write �\¡�

0 if we have �[x]��0[x] for every x 2 S, and
say that � is finer than �0. If �\¡�

0, then Smp�0� Smp�. We write �\�0 if �\¡�
0 but

we do not have �0\¡�. The (meta)relation \ is anti-reflexive and transitive, so we will talk of \-
increasing families in the expected sense.

Recall that a directed set is a partial order (J ;<) such that for all j ; j 02J , there exists a j 002J
with j ; j 06 j 00.

Proposition 10.1.9. Let S be a surreal substructure. Let (J ;<) be a non-empty directed set. If
(�j)j2J is an \-increasing family of thin convex partitions of S, then the intersection

T
j2JSmp�j

is a surreal substructure with defining thin partition �J given by

8x2S; �J[x] =
[
j2J

�j[x]:

Proof. Given x 2 S, the class �J[x] :=
S
j2J �j[x] is a non-empty convex subclass of S andS

x2S�J[x]=S. Let x; y2S be such that�J[x]\�J[y]=/ ? and let i2J . Since J is directed, there
exists a j> i in J such that �j[x]\�j[y] =/ ?, whence �j[x] =�j[y]. In particular, �i[x]��J[y]
and �i[y]��J[x]. Since this is true for any i2 J , it follows that �J[x] =�J[y], so �J defines a
convex partition of S.

For x2S, we have �J[xLS]<x<�J[xRS] if and only if �j[xLS]<x<�j[xRS] holds for all j 2 J ,
so Lemma 10.1.5 implies

T
j2J Smp�j=Smp�J. Now for x2S, the set

S
j2J �j x is cofinal and

coinitial in �J[x], so �J is thin. Theorem 10.1.7 therefore implies that the class
T
j2J Smp�j is

a surreal substructure. �

10.2 Function groups
In this section, we study one particularly important way in which convex partitions of surreal
substructures arise, namely as convex hulls of orbits under a group action. We fix a surreal sub-
structure S.

10.2.1 Actions by strictly increasing bijections
Let X be a set, and consider a formula X (x0; x1; x2) which defines a family of strictly increasing
bijections S¡!S indexed by X . That is, we have

8x0; x1; x2; (X (x0; x1; x2)=)x02X ^ x12S^ x22S);

and for each x2X, the class

Fx := f(a; b)2S2 :X (x; a; b)g

is a strictly increasing bijection S¡!S. We say that X is a function set acting on S.
Consider any set-sized multiplicatively denoted group (G;�; 1). An action of G by strictly

increasing bijections on S is an action G of G on S by strictly increasing bijections, where for all
g; h2G and x; z 2S, we have

G(g h; x; z)() (9y 2S; G(h; x; y)^G(g; y; z)):

So Fgh=Fg �Fh for all g; h2G. Given such an action, we identify each element g of G with Fg,
and accordingly write gx for the unique element of S for which G(g; x; gx) holds. We will also
write g 2G as a shorthand for g 2G. We call G a function group acting on S.

Now let X;X (x; y; z) be a function set acting on S. Write (X �f¡1; 1g)? for the set of finite
words onX�f¡1;1g. By the principle of definition by induction, there is a formula X 0(x; y; z) such
that for all w=((x1; �1); : : : ; (xk; �k))2 (X �f¡1; 1g)?, the formula X 0(w; y; z) defines the function
Fw :=Fx1

��1 � � � � � Fxk
��k. Quotienting (X �f¡1; 1g)? by the relation w�w 0 if Fw(x) =Fw 0(x) for

all x2S, we obtain a group hX i under concatenation of words, and we have an action of hX i on
S given by

hX i(x; y; z) : (x2 hX i ^9w2 x; (X 0(w; y; z))):
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In that sense, we have a function group acting on S, which is generated by functions Fx; x 2X
and their inverses. Identifying each x2X with Fx, we will simply denote this function group by
hFx :x2X i.

10.2.2 Function groups and convex partitions
We fix a function group G acting on S. For X�S, we write GX := fgx : g 2Gg. If X= fxg is a
singleton, then we simply write Gx := G fxg.

Definition 10.2.1. We define the halo G[x] of an element x2S under the action of G by

G[x] = fy 2S :9g; h2G ; (gx6 y6hx)g=HullS(Gx):

Proposition 10.2.2. The classes G[x] for x2S form a thin convex partition of S .

Proof. Let x2S. For any y 2G[x], we have G[y] = G[x]. Indeed, we have gx6 y6hx for certain
g; h2 G. Given z 2G[y], we also have g 0 y6 z6h0 y for certain g 0; h02 G, whence (g 0 g) x6 g 0 y6
z6 h0 y6 (h0 h) x, so that z 2 G[x]. We also have h¡1 y6 x6 g¡1 y, whence x2 G[y] and z 2 G[y]
for any z 2 G[x]. The class G[x] is convex by definition. For a2S, we know that G[a] contains a,
so the G[a] for a2S form a convex partition of S. For x2S, the set Gx is cofinal and coinitial in
G[x], so this partition is thin. �

We write �G for the partition from Proposition 10.2.2 and say that an element of S is G-simple
if it is �G-simple. We let SmpG denote the class of G-simple elements. Proposition 10.2.2 implies
that every property from Lemmas 10.1.3, 10.1.5 and 10.1.4 applies to the class of G-simple elements.
We call �G :=��G the G-simple projection and write <G, =G, and 6G instead of <�G;=�G, and6�G.

Proposition 10.2.3. SmpG is a surreal substructure with the following uniform cut equation in
No:

8x2No;�SmpG x= fG�SmpGxL j G�SmpGxRgS:

Proof. This is a direct consequence of Proposition 10.2.2, Theorem 10.1.7 and Proposition 10.1.8,
where we take G (G[x]�) to be the required cofinal and coinitial subset of G[x] for each x2S. �

Remark 10.2.4. Consider actions X and Y of sets X;Y respectively on S by strictly increasing
bijections. We say that X is pointwise cofinal with respect to Y and we write Y \¡X if

8x2S;8f 2 hYi;9g 2 hX i; (fx6 gx):

This relation is transitive and reflexive. If Y \¡X , then �hX i\¡�hYi, so SmphYi� SmphX i. If
X \¡Y and Y \¡X , then we say that X and Y are mutually pointwise cofinal and we write X 7Y.
In that case, we have SmphX i= SmphYi. Finally if Y \¡X but we do not have X \¡Y , then we
write X \Y. The relation \ is anti-reflexive and transitive.

Let us now specialize Proposition 10.1.9 to group-induced convex partitions.

Proposition 10.2.5. Let (J ;<) be a non-empty directed set. If (Gj)j2J is a \-increasing family of
function groups acting on S, then the function group GJ= hGj : j2J i generated by

S
j2JGj satisfies

SmpGJ=
\
j2J

SmpGj:

Proof. If x2S is GJ-simple, then for j 2 J , we have Gj xLS�GJ xLS<x< GJxRS �Gj xRS so x is Gj-
simple. Conversely, assume x2S is Gj-simple for all j 2 J . Then let g= gj1 � � � gjk2 GJ where for
16k6n, we have gjk2Gjk. Since (J ;<) is directed and (Gj)j2J is \-increasing, there exists an index
j 2J with j1; : : : ; jn6 j and an element gj 2Gj such that for all u2S we have gj

¡1u6 gjiu6 gj u
for all i2f1; : : : ; ng, and thus gj

¡nu6 gu6 gjnu. Since x is Gj-simple, we have gjnxLS<x< gj
¡nxR

S.
This yields gxLS<x< gxR

S, so x is GJ-simple. This proves that
T
j2J SmpGj=SmpGJ. �
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10.2.3 Common group actions
We conclude our study of convex partitions with a closer examination of the action of various
common types of function groups. We intentionally introduce these function groups without
assigning specific domains; this will allow us to let them act on various surreal substructures.

Given c2No, we define the translation by c to be the map

Tc:x 7¡!x+ c:

We have a function group T := fr 2Rg acting in particular on No and No>;�. Halos for the
action of T on No are called finite halos T [x] and T -simple elements correspond to purely infinite
numbers. The class No� of purely infinite numbers is sometimes denoted J; see [28, 55].

Given s2No>, we define the homothety by the factor s to be the map

Hs:x 7¡! sx:

We have a function group H := fHr : r2R>g acting in particular on No;No>, and No>;�. Halos
for the action of H on No> are the positive parts of Archimedean classes and H-simple elements
are exactly monomials. We recall class of monomials Mo= !_No is parametrized by the !-map
�Mo and forms a multiplicative cross section that is isomorphic to the value group of No for the
natural valuation. The relations <H, 6H, =H correspond to the asymptotic relations �, 4, and
� from [63, 4]. Given a2No=/ , the projection �H(x) coincides with the dominant monomial da,
when considering a as a generalized series in R[[Mo]].

Given s2No>, we define the s-th power function by

Ps:x 7¡!xs= exp(s log x):

Here exp and log are the exponential and logarithm functions of Chapter 11. We have a function
group P :=fPr :r2R>g acting in particular onNo> andNo>;�. Halos P [x] for the action of P on
No>;� are sometimes called multiplicative classes and P-simple elements fundamental monomials.
The class SmpP = exp(Mo�) =!_!_No

=Mo�2 of fundamental monomials is parametrized by the
!!-map: see [71, Proposition 2.5].
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Chapter 11
Surreal exponentiation

In this chapter, we give a presentation of the theory of exponentiation on surreal numbers. Our
presentation is mostly based on Gonshor's work [55, Chapter 10] as well as on [17]. The reader can
find good surveys of surreal exponentiation in relation to Hardy fields and transseries in [78, 16].

11.1 Surreal exponentiation
Now that we can represent No as a field of well-based series, we need only define a logarithm on
No in order to turn it into a transserial field. Following a method from [17], we will show how to
define such a logarithm in the simplest way. It will turn out that this logarithm corresponds to
that defined by Gonshor.

11.1.1 Transserial logarithm on No
We already know by Proposition 3.1.10 that it is sufficient to define a strictly increasing group
morphism log:Mo¡!R[[Mo�]] such that logm�m for all m�1. Berarducci, Kuhlmann, Mantova
and Matusinski [17] found that such a definition could be reduced to defining log on Mo�Mo=
!_Mo. Let us state their main arguments. Assume that a function log�:!_Mo¡!Mo� is defined,
strictly increasing and satisfies log� !_m� !_m for all m 2Mo. Then we define a morphism log:
Mo¡!R[[Mo�]] by setting

log!_
P
znn :=

X
n

zn (log�!_n) (11.1.1)

for all z =
P
zn n 2No, and this morphism has the desired properties. Recall that the unique

extension of the logarithm to No> is surjective if and only if log:Mo¡!R[[Mo�]] is surjective,
hence by (11.1.1) if and only if log�: !_Mo¡!Mo� is surjective. Recall that Mo�= !_No> and
!_Mo=!_!_

No
, so log� induces a function h:No¡!No>with log�!_!_

z
=!_h(z) for all z2No. Moreover

h is surjective if and only if log� is surjective. We see that log� is strictly increasing if and only if
h is strictly increasing, and we have an equivalence

(8m2Mo; (log�!_m�!_m))() (8z 2No; (h(z)�!_ z)):

So defining a logarithm on No reduces to defining a strictly increasing bijection h:No¡!No>

satisfying h(z)�!_ z for all z 2No. The simplest such function is given by the cut equation

8z 2No; h(z)= fh(zL) j h(zR);R>!_ zgNo>: (11.1.2)

11.1.2 Gonshor's exponential
Harry Gonshor defined the standard exponential function on No using an inductive cut equation.
Given n2N and a2No, we define

[a]n :=
X
k6n

ak

k!
:

If a02 aL is such that exp(a0) is already defined, then for n2N, we should have

exp(a)= exp(a0) exp(a¡a0)> exp(a0) [a¡ a0]n
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and one expects that such inequalities give sharp approximations of exp a. Following this line of
thought, Gonshor defined

exp a =
�
0; [a¡a0]N exp a0; [a¡a00]2N+1 exp a00

�������� exp a00

[a¡ a00]2N+1
;

exp a0

[a0¡ a]N

�
(a02 aL; a002 aR): (11.1.3)

The reciprocal of exp, defined on No>, is denoted log. This also leads to a natural powering
operation: given a2No> and b2No, we define ab=exp(b log(a)). Given r2R, we have !_ r=!r, but
for more general elements z2No, one does not necessarily have !_ z=!z. (see [16] for more details).

Gonshor showed that the exponential of an infinite monomial !_ y for y2No> was a fundamental
monomial !_!_

g(y)
where g:No> ¡!No is uniquely determined by the following inductive cut

equation

g(y)= fInd(y); g(yLNo>) j g(yRNo>)g

where Ind(y) is the unique number with dy=!_ Ind(y), or equivalently y�!_ Ind(y). It turns out that g
is the functional inverse of the function h defined by (11.1.2) above: g=hinv. Therefore exp �!_No>

is the reciprocal of the function log� above. Gonshor's results can be summarized as follows:

Theorem 11.1.1. [55, Corollaries 10.1 and 10.3 and Theorems 10.2, and 10.7�10.9] The function
exp defined in (11.1.3) is an isomorphism (No;+; 0; <)¡! (No>;�; 1; <) which coincides with
the exponential on R and satisfies

exp(!_No>) = !_!_
No
;

exp(No�) = Mo; (11.1.4)

8"� 1; exp(") =
X
k2N

1
k!
"k:

Moreover, we have exp(a)> 1+ a for all a2No as a consequence of Section 11.1.1. It follows
that the reciprocal log of exp satisfies all the axioms in the definition of transserial fields. In
other words (No; log) is a transserial field with a total exponential. It was later shown [96] that
(No;+;�; <; exp) is an elementary expansion of R.

Since exp is total and No� is closed under scalar multiplication by real numbers, the identity
(11.1.4) gives a real powering operation

R�Mo ¡! Mo
(r;m) 7¡! mr= exp(r logm)

on Mo. Now consider the hyperserial skeleton (No; log �Mo�). That exp is total also implies
that the product axiom P� for �=1 is satisfied. Thus (No; log �Mo�) is a hyperserial skeleton
of force (1; 1). It was shown by Berarducci and Mantova [18, Corollary 5.11] that (No; log �Mo�)
is confluent. Therefore

Proposition 11.1.2. (No; log �Mo�) is a confluent hyperserial skeleton of force (1; 1).

We will next give more details on log-atomic surreal numbers.

11.1.3 Exponential groups
Recall that we write

expn := exp[n]= exp � : : :n� � exp
logn := log[n]= log � : : :n� � log

for all n2N. We define

E� := hexpi and E := hexpn �Hr � logn : r 2R>; n2Ni:
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Both E� and E act in particular on No>;�.
Halos E [x] and E�[x] for the actions of E and E� on No>;� are sometimes called logarithmic-

exponential and exponential classes respectively. The class SmpE of E-simple is parametrized by
the �-map: see [18, Section 5]. The class of E�-simple elements is denoted by K and parametrized
by the �-map: see [71, Section 3]. Given z2No, one traditionally writes �z :=�E z and �z :=�E� z.

It was shown by Berarducci and Mantova [18] that SmpE coincides with the class Mo! of
log-atomic numbers, which we recall consists of those infinite monomials m 2Mo� such that
lognm2Mo for all n2N. Such numbers were essential for the definition of well-behaved formal
derivations on No. This was first achieved in [18], while building on analogue results in the context
of transseries [92, 60].

The structure K= SmpE� of �-numbers was introduced and studied in detail in [71], as an
intermediate subclass between fundamental monomials and the log-atomic numbers. It turns out
that the structure K is not big enough to describe all log-atomic numbers. Indeed, it was noticed
in [78] that K=Mo! �No�, as a corollary of [6, Proposition 2.5].

Proposition 11.1.3. [6, Proposition 2.5] For all z 2No, we have

exp(�z) = �z+1

Proof. We rely on the following uniform version of [18, Theorem 3.8(1)] from [6, Lemma 2.4]: if
m= fL j Rg is a monomial, where RL�Hull(L) and RR�Hull(R), then

exp(m)= fmN; exp(L) j exp(R)g:

In fact, we have P �E < fexpg on No>;�, so exp(m)> Em�mN, and

exp(m)= fEm; exp(L) j exp(R)g: (11.1.5)

Now let z be a number with �u+1= exp(�u) for all u2 z@. Then z+1= fz; zL+1 j zR+1g. The
uniformity of the cut equation for the �-map thus yields

�z+1 = fE�z; E�zL+1 j E�zR+1g
= fE�z; E exp(�zL) j E exp(�zR)g
= fE�z; exp � E�zL j exp � E�zRg (since exp � E = E � exp)
= exp�z (by (11:1:5))

The result follows by induction. �

Corollary 11.1.4. [18] SmpE coincides with the class Mo! of log-atomic surreal numbers.

Proof. We have logn �z= �z¡n 2 SmpE for all n 2N, whence lognSmpE � SmpE �Mo. This
shows that every element of SmpE is log-atomic.

Conversely, let � be a log-atomic number and assume �2/ SmpE. Note that �E(�) is log-atomic
by our previous argument. Assume for instance that �E(�)<�. For n2N, we have logn �E(�) =/
logn �. Since both logn � and logn �E(�) are monomials, it follows that logn �E(�)� logn �. We
deduce that (expn�H� logn)(�E(�))<�, whence E�E(�)<�, which contradicts the defining relation
�E(�)=E�. Likewise, �E(�)>� is impossible. We conclude that �=�E(�)2SmpE. �

Proposition 11.1.5. [78] We have K=Mo! �No�.

Proof. Following Mantova-Matusinski, we have the following equivalences for any number z2No:

z 2No� () zL+N<z <zR¡N

() expN(�zL)<�z< logN(�zR)
() expN(E�zL)<�z< logN(E�zR)
() E�(�zL)<�z< E�(�zR)
() �z 2K: �
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11.2 Numbers as transseries

We conclude Part III by discussing the benefits and shortcomings of representing surreal numbers
as transseries.

11.2.1 Iterated transserial expansions
In No, any non-zero number a0=

P
m (a0)mm can be expanded as we next explain. Pick one of

its terms (a0)m0m0, write r0 := (a0)m0 and a1 := logm02No, and let '0; �0 respectively denote the
segments of the series a0 lying above and below r0m0. Systematically placing terms in series from
greatest to least, we obtain the expression

a0= '0+ r0 ea1+ �0:

Repeating this process by picking a term r1m1= r1 ea2 in a1, we get

a0= '0+ r0 e'1+r1e
a2+�1+ �0:

Repeating this iteratively, we obtain a series of expressions

a0= '0+ r0 e'1+r1e
� ��
'i+rie

� �� +�i
+�1+ �0: (11.2.1)

We thus form what is called an infinite path P =(rimi)i2N in a0 as in [92, 18]. One can then study
conditions under which formal expressions such as (11.2.1) correspond to numbers.

11.2.2 Schmeling's axiom T4
It was shown by Berarducci and Mantova [18, Theorem 8.10] that No satisfies Schmeling's axiom
T4 [92, Definition 2.2.1]. This means that the sequences ('i)i2N, (ri)i2N and (�i)i2N occurring
in (11.2.1) must verify that there exist an i02N with ri2 f¡1; 1g and �i=0 whenever i> i0. In
other words, the expansion process in (11.2.1) must eventually yield expressions of the form

ai0= 'i0� e
'i0+1�e

� ��
'i0+j�e

� ��

: (11.2.2)

The axiom T4 is in fact defined in the more general context of a transserial field T=R[[M]] with
its logarithm log. It was introduced as a way to avoid certain problems in defining structure on
transserial fields. Indeed, the condition on the coefficients ri's avoids certain problem in comparing
numbers which have distinct infinite expansions such as (11.2.2) (see [92, Section 2.5]), whereas the
condition on the tails �i's avoids the existence of certain ill-based families occurring as derivatives
of such numbers (see [11, p. 49]).

11.2.3 Nested expansions
The converse problem is the existence of numbers with a given expansion of the form (11.2.2).
In [11, Section 8], we give conditions under which such numbers exist and actually form a proper
subclass of No. This is in particular the case for the sequences with 'i= logi!

p
, ri=1 and �i=0

for all i2N. This yields many numbers with the expansion

a= !
p

+e log!
p

+e
� ��

logi !
p

+e
� ��

: (11.2.3)

In the general expansion process, note that if any of the terms rimi=rieai+1 that we choose is a real
number, then we have ai+1=0, so the expansion stops. On the contrary, if a0=a is log-atomic (for
instance if a=! or a="0), then the only possible continuation of the path is with 8k>0; ak= logka.
This corresponds to the sequences 'i=0, ri=1 and �i=0 for all i2N, i.e. to the expansion

a=ee
� ��
e
� ��

: (11.2.4)

178 Surreal exponentiation



Such expansion gives no information on a except that it is log-atomic. For that reason, it is not
necessary or useful to expand a further.

11.2.4 Expansions and derivations
Consider (11.2.1) and assume that a well-behaved partially defined derivativeD:b 7!b 0 (see also [18,
Definition 9.1]), is defined for all the terms 'i; �i occurring in (11.2.1). Taking the compatibility
relation @s(exp b) = (@s(b)) exp b into account, we see that this expression admits a �syntactic
derivative� @s(a0) given by

@s(a0) = '0
0 + r0m0 @s(a1)+ �00

= '0
0 + r0m0 ('10 + r1m1 @s(a2)+ �10)+ �00

��� : : :

= '0
0 + r0m0 '1

0 + r0 r1m0m1 '2
0 + � � �+ �00 + r0m0 �1

0 + � � �:

This expression is in addition the simplest one which extends D and which may be extended into a
transserial derivation. Since No satisfies T4, we may assume that we have ri2f¡1; 1g and �i=0
for all i2N. Crucially [18, Proposition 6.20], this turns the syntactic derivative @s(a0) into a well-
defined sum

@s(a0)= '0�m0 '1
0 �m0m1 '2

0 � � � �:

One complication occurs when applying this method to the expansion (11.2.4). Indeed this sys-
tematically yields a syntactic derivative @s(a)= 0, although a2/R. Therefore D should already be
defined at each a2Mo!. Berarducci and Mantova found minimal conditions on D:Mo!¡!No;
a 7!a0 for the resulting derivation @s to be transserial. They constructed their derivation by relying
on the �simplest� solution D.

The class Mo! is proper class-sized and its apparent complexity seems to mirror that of No
itself (see for instance [18, Propositions 5.15, 5.17 and Corollary 5.17] and [9, Theorem 29]). Defining
a suited mapping D on Mo! thus requires insight. We think that Berarducci and Mantova's
choice does not fit into a coherent description of surreal numbers as (surreal-valued) functions,
as is highlighted in [19, Theorem 8.4]. We expect that a different approach relying on the hyper-
serial structure on No will yield a suited derivation.
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Part IV

Numbers as hyperseries





Seeing the forest for the tree
We have seen in Part III that starting from a complete binary tree f¡1;1g<On'No, it was possible
to define a structure of transseries field in a canonical way. In Part IV we will, in more detail,
show that surreal numbers can be represented as formal hyperseries f �applied� at the number !.
Pending a definition of what a hyperseries is, this statement is informal, so in order to make sense
of it, we will introduce the notion of hyperserial description. We will show that numbers can be
represented purely in terms of hyperseries, i.e. as (non-rooted) trees or forests indexed by ordinal
and real numbers.

A never-withering gardening metaphor
Let us describe our results by employing a gardening metaphor. In the first two Parts of the thesis,
our main task was to construct large fields of hyperseries by adjoining formal monomials to more
classical fields of transseries. We will now be working in the fixed ambient field No, seen as the
full binary tree (No; <;@) with its algebraic and transserial structure. In this barren land, we
are to find a way to see a natural structure of hyperserial field, with the additional goal that this
structure should be sufficient to represent all surreal numbers as hyperseries, and be amenable to
derivations and composition laws. This implies sawing the seeds, making sure a steady growth is
possible, cutting down unwanted sprouts, before we can collect the fruit of our work. The end goal
of representing numbers as forests indexed by ordinals and real numbers is but a first step in the
program of defining a derivation and a composition law on No that will be compatible with the
hyperserial structure and with one another. Unfortunately, this program does not fit in the present
thesis, and we will have to be content with this modest gardening task.

Atomic seed, hyperlogarithmic-hyperexponential flourish
The first stage will be to define a confluent hyperserial skeleton (L!�)�2On of force (On;On) on
No. In this task, we are guided by the simplicity heuristic and the axioms for hyperserial skeletons,
which will give us a �simplest� way of defining those partial functions. This will occupy us for
Chapter 12.

Having done that, we obtain by Theorem 7.2.10 a hyperserial field (No; �) of force (On;
On). This gives us the basis for our hyperserial representation process: we have the simplest
positive infinite number !, real numbers, and hyperlogarithmic and hyperexponential operators
L�: a 7!L�(a) and E�: a 7!E�(a) as tools to construct involved hyperseries with simpler ones. In
fact we will see that ! is the only atomic number in (No; �), whence there is a unique embedding
L~ ¡!No of force On, whose range is denoted L~ � !. Crucially, surreal numbers are a proper
extension of L~ �!. The difference between L~ �! and No lies in the existence of nested numbers
in No. Studying those numbers is the main task undertaken in the last two chapters of the thesis.

Hyperserial expansions
We saw in Section 11.2 that the representation of numbers as transseries was insufficient in
describing log-atomic numbers. Indeed those expand as

a=ee
e
� ��
; (1)

and such expansion gives no information on how the derivative of a should be defined, or on how
a should behave on a surreal valued function b 7! a � b if a composition law �:No�No>;�¡!No
is to be defined on surreal numbers.

A naive solution to the problem of expansions (1) would be to systematically rewrite (1) as
a=E�

' for a certain additively indecomposable ordinal �>! and a certain �-truncated number '.
We can assume that a=/ !, for it is intended that the simple number ! should not be decomposed.
Thus � can be chosen largest such that a2Mo�. We could extend this rule to general non log-
atomic monomials m by expanding them as

m=E1
 (2)
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for  = logm. Unfortunately, this representation method is not practical for reasons which we next
explain.

Ideally, there should exist a measure &:No¡!On of the �complexity� of surreal numbers seen as
hyperseries, so that when expressing m=E�

', we would have &(')<&(m). Indeed it would then be
possible to define, for instance, well-behaved derivatives @(m) and compositions m� b for b2No>;�

by induction on this complexity. We will see that the existence of (infinitely) nested numbers,
which can be seen as an unavoidable consequence of the fundamental property (Proposition 8.1.1)
forbids the existence of such a function &.

The next best thing then is to find a way to expand monomials m in such a way that the
complexities &(a1); : : : ; &(an) of the surreal parameters a1; : : : ; an involved in the expansion are
strictly smaller than &(m) unless m turns out to be a nested number. We expect that this is indeed
possible if we expand monomials using two surreal parameters  ; u, as

m=e (L�E�u)�

where �; � are ordinals, �2f¡1;1g, and the tuple ( ; �;�;u; �) satisfies a list of technical conditions
(see Definition 13.1.2). For n=e' (LE�v)� as above, if  = ' and �=� then we have

L�E�
u@LE�v=)m@n:

Under certain conditions (see Lemma 13.1.25), if (�; )= (�; 0), then we have

u@ v=)m@ n:

Thus simplicity relations between monomials written in this form can be read in simplicity rela-
tions between the parameters of the respective expansions, which is not the case for the �naive
representation� (2).

As explained in Section 11.2, we have a related notion of path P as a sequence of terms. A
path in a 2No=/ is a possibly infinite sequence P (0); P (1); : : : of terms where P (0)2 term a and
expanding each monomial dP (i) as dP (i)=e P ;i+1(L�P ;iE�P ;i

ui+1)�P ;i, the number P (i+1) if it is defined
is a term in  P ;i+1 or in uP ;i+1. Our first task toward studying nested numbers is to understand
hyperserial expansions and paths.

Ad infinitum
Having waited On-many days, we come back to our garden and find it sprouting. Not only do
we have trees with arbitrarily long finite branches that can already be found in L~ �!, but we also
possibly have infinite branches, that is, infinite paths (Pi)i2N in certain numbers a. The same
problems mentioned in Section 11.2 for the transserial case occur in the hyperserial case. More
precisely, the existence of arbitrary infinite paths would be problematic. Similarly to the axiom
T4, surreal numbers satisfy a structure theorem, namely Theorem 13.2.7, that states that for all
infinite paths, there must exist an i0 2N such that for all i> i0, the coefficient rP ;i of the term
P (i) is in f¡1; 1g, the monomial dP (i+1) is the minimum of suppuP ;i, and �P ;i=0. Assume for a
moment that i0=0. Writing ('i; "i;  i; �i; �i)= (a�dP(i); rP ;i;  P ;i+1; �P ;i; �P ;i) for all i2N, we have
an infinite nested expansion

a= '0++ "0 e 0

 
E�0

'1++"1e
 1

�
E�1
� ��
��1!�0

(3)

for a. The main goal of Chapter 13 will be to trim the possible infinite branches in iterated
hyperserial expansions of surreal numbers, by proving Theorem 13.2.7.

Reaping what you saw
The problem of existence of infinite paths in No is more subtle than it looks and raises several
questions. Consider the expansion (3) above and the corresponding sequence �= ('i; "i;  i; �i;
�i)i2N. We say that a is �-nested. On what condition on � can there be numbers which expand
as (3), how many such numbers exist, and how can those numbers be distinguished?
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There are three stages to addressing these questions. The first one is formal: the numbers
'i; "i;  i; �i and �i should satisfy certain conditions (for instance that each  i be purely large,
see Definition 14.1.1) that reflect the fact that they occur in the process of iterated hyperserial
expansions. Sequences which satisfy those conditions are called coding sequences.

On a second level, having an expansion such as (3) implies in particular some order theoretic
constraints on the parameters. For instance the existence of a implies that there is a positive infinite
number b with log b� supp  0 and such that supp '0� e 0 b�0. This translates into inequalities
involving the parameters '0,  0 and �0 (see Section 14.1.2). Coding sequences which satisfy all
such inequalities are said admissible.

It turns out that being admissible is not sufficient to guarantee the existence of corresponding
nested numbers. This is why we introduce a further condition on (admissible) coding sequences
that roughly states that if given i2N, a number c expands as

c= 'i+1++ "i+1 e i+1

 
E�i+1

'i+2++"i+2e
 i+2

�
E�i+2
� ��

��i+2!�i+1
; (4)

then the number d := 'i+ "i e i (E�i c)�i expands as

d= 'i++ "i e i

 
E�i

'i+1++"i+1e
 i+1

�
E�i+1
� ��

��i+1!�i
:

This is not a trivial condition, since the expansion (4) says nothing about 'i,  i, about the fact
that c be �i-truncated, and so on . . . Admissible sequences that satisfy this further condition are
called nested sequences. Nested sequences are particularly well behaved. In particular, we will
prove Theorem 14.2.4 which states that the class of corresponding �-nested numbers is a surreal
substructure. That there are plenty of �-nested numbers provided � is a nested sequence is, we
expect, a key feature in defining composition laws on surreal numbers.

It is sufficient to study nested sequences in order to represent surreal numbers as hyperseries
because of a key result in Section-14.1.3 that states that if � is admissible, then for large enough
k 2N, the sequence �%k := ('k+i; "k+i;  k+i; �k+i; �k+i)i2N is nested (Theorem 14.1.15).

Mapping the territory
Having studied the existence and multiplicity of nested numbers, we can finally represent surreal
numbers as hyperseries. In order to do this, we use labelled forests, where each label is a tuple
(r; �; �; �) that corresponds to the coefficient r2R=/ of a monomial m in the support of a number
and the parameters in its hyperserial expansion m=e (L�E�u)�. That the numbers  and u vanish
by giving rise to further branches in the forest is the gist of the formal representation.

Representing numbers as hyperseries is thus a matter of introducing the right graph theoretic
structure that can be uniquely ascribed to a surreal number. We will show that such a correspond-
ence exists by proving Theorem 15.3.1.
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Chapter 12

The hyperserial field of surreal numbers
Let us define a hyperserial skeleton (No; (L!�)�2On) on surreal numbers. The task ahead of us is
straightforward: we have a list of axioms for hyperserial skeletons (see Section 4.2.2), and we must
define partial hyperlogarithms L!�; � 2On that satisfy those axioms. Starting with Gonshor's
logarithm log, the class Mo! is already defined, and characterized by Berarducci and Mantova's
work as a surreal substructure. Let us see how this can be used to give an inductive definition of
L! on Mo!. This particular case was first dealt with in [15].

Let a2Mo! such that L! is defined on a@
Mo!, and let us see how L!(a) can be defined. Let

a02 aL
Mo! and a002 aR

Mo!. For n2N, the monotonicity axiom M� at �=1 gives

L!(a0)+
1

lognL!(a0)
<L!(a)<L!(a00)¡

1
lognL!(a00)

:

The asymptotics axiom A� at �=1 gives L!(a)< logn a. Therefore L!(a) should lie in the cut�
R[

�
L!(a0)+

1
lognL!(a0)

: a02 aL
Mo!

�
j
�
L!(a00)¡

1
lognL!(a00)

: a002 aL
Mo!

�
[ logN a

�
: (1)

We will see that defining L!(a) to be the simplest element of this cut yields a function L!:
Mo!¡!No>;� which satisfies all the axioms for hyperserial skeletons at �=1.

There are subtle obstacles in making this method work. The first one is that it is not easy to
prove by induction that (1) is indeed always a cut. In fact, we will need to define L! in a slightly
different way before we can prove that (1) is always a cut with root L!(a). The second one is that
this definition via cut presentations is suited to impose strict inequalities as constraints on L!,
but less so to insure that the remaining axioms for hyperserial skeletons hold. The product axiom
P� for any ordinal � follows from the fact that log:No>¡!No is surjective. So we are left with
two axioms that cannot seemingly be translated into sets of inequalities. Fortunately, we will see
that they follow from the above definition. In other words, the functional equation FE� and the
regularity axiom R� are consequences of the choice of simplest value for L!(a) satisfying the above
constraints.

For general infinie additively indecomposable ordinals �, we have a similar definition. Indeed
if a2No>;� is L<�-atomic, then L� a can be defined using the fairly simple recursive formula

L�(a) := fR; L�(a0)+ (L(a0))¡1 j L�(a00)¡ (L(a))¡1; L(a)g; (2)

where a0; a00 range over L<�-atomic numbers with a0; a00@ a and a0< a< a00 and  ranges in �; see
also (12.3.1).

We prove that this definition is warranted and that the resulting functions L� satisfy the axioms
of hyperserial skeletons from [14, Section 3]. Our proof proceeds by induction on � and also relies
on the fact that the class Mo� of L<�-atomic numbers actually forms a surreal substructure of
No. Our main result is the following rewriting of Theorem C.

Theorem 1. The definition (2) gives No the structure of a confluent hyperserial skeleton. Con-
sequently, we may uniquely extend L!� to No>;� in a way that gives No the structure of a confluent
hyperserial field. Moreover, for each ordinal �, the extended function L!�:No>;�¡!No>;� is
bijective.

12.1 Inductive setting
Here, we make precise our induction hypotheses for the proof of Theorem 1 throughout Chapter 12.
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12.1.1 Exponential-logarithmic groups
For c2R and r2R>, we define

Tr := a 7¡! a+ c acting on No or No>;�.
Hc := a 7¡! r a acting on No> or No>;�.
Pc := a 7¡! ar acting on No> or No>;�.

Now consider

T := fTc : c2Rg;
H := fHr : r 2R>g;
P := fPr : r 2R>g;
E 0 := hEnHrLn:n2N; r2R>i; and
E� := fEn; Ln :n2Ng:

Then we have the following list of correspondences G 7¡!SmpG:

� The action of T on No (resp. No>;�) yields No� (resp. No�
>), e.g. SmpT =No�.

� The action of H on No> (resp. No>;�) yields Mo (resp. Mo�).

� The action of P on No>;� yields Mo�Mo=E1Mo�.

� The action of E 0 on No>;� yields Mo!.

� The action of E� on No>;� yields K :=Mo!�No� (which will coincide with E!No�
>).

Generalizations of those function groups will allow us to define certain surreal substructures related
to the hyperlogarithms and hyperexponentials on No.

We have seen in Section 11.1.2 that (No; L1) is a confluent hyperserial skeleton of force (� ; �)
for � = 1. The aim of this section is to extend this result to any ordinal �. More precisely, we
will define a sequence (L!�)�2On of partial functions on No such that for each ordinal �, the
structure (No; (L!�)�<�) is a confluent hyperserial skeleton of force (� ; �), and L1 coincides with
Gonshor's logarithm.

12.1.2 Hyperexponential-hyperlogarithmic groups
Assume for the moment that we can define L and E as bijective strictly increasing functions
on No>;� for all ordinals . This is the case already for  < !. Let us introduce several useful
groups that act on No, as well as several remarkable subclasses of No.

Given an ordinal �, we set

� :=!� ;

and we consider the function groups

E�0 = hEHrL :  <�^ r 2R>i
E�� = hE ; Pr :  <�^ r2R>i:

where E, Hs; Ps and L act on No>;�. We also define

L�0 = L� E�0 E�
L�� = L� E��E�:

We write L<� :=fL :  <�g and E<� := fE :  <�g for each �6�. In the case when �=1, note
that

E10 = H
E1� = P
L10 = T
L1� = H:
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By Proposition 10.2.3 and the fact the set-sized function groups E�0 , E��, L�0 , and L�� induce thin
partitions of No>;�, we may define the following surreal substructures

Mo�0 := SmpE�0
Mo�� := SmpE��
Tr�0 := SmpL�0
Tr�� := SmpL�� :

Here we note that Mo10 corresponds to the class Mo�=Mo1 of infinite monomials in No and �E1
0

maps positive infinite numbers to their dominant monomial. Similarly, Tr10 coincides with No�
>

and �L10 maps a2No>;� to a�. In Section 12.3, we will prove the following identities.

Mo�0 = Mo�; [Proposition 12.2.16]
�E�0 = d�; [Proposition 12.2.16]
Tr�0 = No�;�=L�Mo�; [Proposition 12.3.6]
�L�0 = ]�; [Proposition 12.3.6]
Tr�� = Tr�0 if � is a limit ordinal, [Lemma 12.2.9]
Tr�� = No�

> if � is a successor ordinal, [Lemma 12.3.8]
8r 2R;�No�;�Tr = Tr�No�;� if � is a successor ordinal, [Lemma 12.3.7]
8r 2R;�Mo�Tr = E� TrL��Mo� if � is a successor ordinal, [Proposition 12.3.10]

Mo�� = Mo��No� if � is a successor ordinal, [Proposition 12.3.12]
Mo�� = E�Tr�� : [Proposition 12.3.13]

The first and third identities imply in particular that the classes Mo� and No�;� of L<�-atomic
and �-truncated numbers respectively are in fact surreal substructures, when regarding No as a
hyperserial field.

12.1.3 Induction hypotheses
For the definition of the partial hyperlogarithm L!�, we will proceed by induction on �. Let � be
an ordinal. Until the end of this section we make the following induction hypotheses:

Induction hypotheses

I1;�. For � < �, the partial hyperlogarithm L!� is defined on Mo!�; we have L1= log �Mo�

and (No; (L!�)�<�) is a confluent hyperserial skeleton of force (�; �).

I2;�. For r; s2R with 1<s and for ; �<!� with  < �, we have

8a2No>;�; E (rL a)<E�(sL� a):

I3;�. For �6 �, the class Mo!�0 is that of L<!�-atomic surreal numbers, i.e. Mo!�0 =Mo!�.

These induction hypotheses require a few additional explanations. Assuming that I1;� holds, the
partial functions L!� with � < � extend into strictly increasing bijections L!�:No>;�¡!No>;�,
by the results from Chapter 4. Using Cantor normal forms, this allows us to define a strictly
increasing bijection L:No>;�¡!No>;� for any  <� and we denote by E its functional inverse.
In particular, this ensures that the hypotheses I2;� and I3;� make sense.

Remark 12.1.1. In addition to the above induction hypotheses, we will implicitly assume that our
hyperlogarithms L!� for �<� are always defined by (12.2.1) below. In particular, our construction
of L!� is not relative to any potential construction of the preceding hyperlogarithms L!� with �<�
that would satisfy the induction hypotheses I1;�, I2;�, and I3;�. Instead, we define one specific
family of functions (L!�)�2On that satisfy our requirements, as well as the additional identities
listed in subsection 12.1.2.

Proposition 12.1.2. The axioms I1;1, I2;1 and I3;1 hold for (No; L1).
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Proof. Section 11.1.2 shows that I1;1 holds. Consider r; s2R> with s > 1. On No>;�, we have
Tlogr<Hs, hence Hr=E1TlogrL1<E1HsL1. It follows that we have EnHrLn<En+1HsLn+1 on
No>;� for all n2N. This implies that I2;1 holds. Finally, I3;1 is valid because of the relationMo!=
SmpE. �

Proposition 12.1.3. Let � be a limit ordinal and assume that I1;�, I2;�, and I3;� hold for all
�<�. Then I1;�, I2;�, and I3;� hold.

Proof. The statement I2;� follows immediately by induction. Toward I3;�, note that we have
Mo�=

T
�<�Mo!�=

T
�<�Mo!�0 by I1;� (and thus DD�) and I3;� for all � < �. By Proposi-

tion 10.2.5, we have Mo�0 =
T
�<�Mo!�0 =Mo�. So I3;� holds.

By I1;� for all �<�, we need only justify that (No; (L!�)�<�) is �-confluent to deduce that I1;�
holds. For a2No>;�, by I2;�, there are an a2Mo�0 =Mo� and a � :=!�<� with E�( /1 2L�a)6
a6E�(2L� a). We deduce that L�a�L� a, thus a2E�[a]. This concludes the proof. �

From now on, we assume that I1;�, I2;�, and I3;� are satisfied for �> 1 and we define

� := �+1
� := !�

� := !�:

The following subsection is dedicated to the definition of L� and the proof of the inductive hypo-
theses I1;�, I2;�, and I3;� for �. In combination with Propositions 12.1.2 and 12.1.3, this will
complete our induction and the proof of Theorem 1.

12.2 Defining the hyperlogarithm

12.2.1 Definition, monotonicity and regularity

Recall that we have Mo�0 =Mo� by I3;�. In particular Mo� is a surreal substructure. Consider
� < �. The skeleton (No; (L!�)�<�) is a confluent hyperserial skeleton of force (�; �) by I1;�. So
for a2No>;�, Proposition 4.3.5 and I2;� yield E!�[a] = E!�0 [a].

In view of A� and M�, the simplest way to define L� is via the cut equation:

8a2Mo� ; L� a :=
�
R; L� a

0+ 1
L<� a0

: a02 aL
Mo�

�������� L� aRMo�¡ 1
L<� a

; L<� a

�
: (12.2.1)

The reader can compare this cut equation to that found by Gonshor for the logarithm [55, Defin-
ition p.161]. Note the asymmetry between left and right options L� a0+ (L<� a0)¡1 and L� a00¡
(L<� a)¡1 (instead of L� a00¡ (L<� a00)¡1) for generic a02aL

Mo� and a002 aR
Mo�. In Corollary 12.3.4

below, we will derive a more symmetric but equivalent cut equation for L�, as promised in the
introduction. For now, we prove that (12.2.1) is warranted and that A�, M�, and R� hold.

Proposition 12.2.1. The function L� is well-defined on Mo� and, for a2Mo�, we have

Ha:
�
8a0 2 aL

Mo�; L� a0 +
1

L<� a0
< L� a ¡ 1

L<� a

�
and

�
8a00 2 aR

Mo�; L� a +
1

L<� a
< L� a00 ¡

1

L<� a00

�
.

Proof. We prove this by induction on (Mo� ;@). Let a2Mo� such that Hb holds for all b2a@Mo�.
Let a02 aL

Mo� and a002 aR
Mo�. We have a02 (a00)LMo� or a002 (a0)RMo�, so Ha0 or Ha00 yields

L� a
0+ 1

L<� a0
< L� a

00¡ 1
L<� a00

:
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For  < �, we have `+1� 1

2
` and 1

L a0
� 1

L a00
;

1

L a
, whence

1
L+1 a0

� 2
L a0

>
1

L a0
+ 1
L a00

+ 1
L a

;

for all  < �. Hence,

L� a
0+ 1

L<� a0
< L� a

00¡ 1
L<� a

:

We clearly have L� a00¡ 1

L<� a
�L� a00>R. Finally,

L� a
0+ 1

L<� a0
� L� a

0 � L<� a
0;

so L� a0+
1

L<� a0
<L<� a. This shows that L� a is defined and

L� a
0+ 1

L<� a0
< L� a < L� a

00¡ 1
L<� a

:

Since a0< a< a00, it follows that

L� a
0+ 1

L<� a0
< L� a�

1
L<� a

< L� a
00¡ 1

L<� a
:

By induction, this proves Ha for all a2Mo�. �

Proposition 12.2.2. The axiom M� holds.

Proof. Let a; b2Mo� with a� b. Since Mo� is a surreal substructure, there is a c2Mo� with
cv a; b and a6 c6 b. If a< c, then we have L� a+ (L<� a)¡1<L� c¡ (L<� c)¡1 by Ha. If c< b,
then we have L� c+(L<� c)¡1<L� b¡ (L<� b)¡1 by Hb. We cannot have both a= c and c= b, so
this proves that L� a+(L<� a)¡1<L� b¡ (L<� b)¡1. Therefore M� holds. �

Proposition 12.2.3. The axiom A� holds.

Proof. The rightmost options in (12.2.1) directly yield A�. �

Proposition 12.2.4. The axiom R� holds.

Proof. Let a 2Mo� and write ' := L� a. Let m 2 supp ' with m� 1. We have '<L<� a and
'�m� ' so '�m< L<� a. Moreover '�m is positive infinite. By [55, Theorem 5.12] (see also
[18, Proposition 2.8]), the number '�m is strictly simpler than ', so '�m does not lie in the cut
which defines L� a in (12.2.1). Therefore, there is an a0 2 aL

Mo� or an a00 2 aR
Mo� and an ordinal

 < � with '�m6L� a0+ (L a0)¡1 or '�m>L� a00¡ (L a)¡1. Consider the first case. We have
L� a

0+(L<� a0)¡1<'6 '�m+ 'mm+ � for a certain ��m. So 'm> 0 and

1
L<� a0

<
1

L a0
+ 'mm:

For �< � with  < �, we have (L�a0)¡1� (L a0)¡1 so (L�a0)¡1¡ (L a0)¡1� (L�a0)¡1. We deduce
that (L� a0)¡14m for all such �. It follows that (L� a)¡14m for all � < �. In the second case,
we directly get m� (L a)¡1. This proves that we always have m� (L<� a)¡1. In other words
supp '� (L<� a)¡1, whence R� holds. �

Remark 12.2.5. In (No;<;@), given numbers a;b with a6b, the @-maximal number c with cva;
b is given by c=faL j bRg, and it satisfies a6 c6 b. It follows by definition of surreal substructures
that for any surreal substructure S and for any u; v 2S there is a @-maximal element

w= fuLS j uRSgS2S
with wvu; v, and we have u6w6 v.

Proposition 12.2.6. If � is a successor ordinal, then the cut equation (12.2.1) is uniform.
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Proof. Let (La;Ra) be a cut representation in Mo� and write a := fLa j RagMo�. For l2La, we
have L� l<L� a�L<� a so L� l<L<� a. For r2Ra, we have L� l+(L<� l)¡1<L� r by R�. Since
l� a, it follows that L� l+(L<� l)¡1<L� r¡ (L<� a)¡1. We may thus define the number

' :=
�
R; L� l+

1
L<� l

: l2La

�������� L�Ra¡
1

L<� a
; L<� a

�
:

In order to show that (12.2.1) is uniform, we need to prove that L� a=', for any choice of the cut
representation (La;Ra). We will do so by proving that L� av ' and 'vL� a.

Recall that (La;Ra) is cofinal with respect to (aLMo� j aRMo�) and that L� is strictly increasing.
Consequently, we have

' < L� aR
Mo�¡ (L<� a)¡1:

Given a02 aL
Mo�, there is an l2La with a06 l. By M�, we have L� a0+(L a0)¡16L� l+ (L l)¡1

for all  < �, so '> fL� a0+ (L<� a0)¡1 : a0 2 aL
Mo�g. This proves that ' lies in the cut defining

L� a as per (12.2.1), whence L� av '.
Conversely, in order to prove that 'vL� a, it suffices to show that L� a lies in the cut�

L� l+
1

L<� l
: l2La

�������� L�Ra¡
1

L<� a

�
:

Let l2La and let b2Mo� be v-maximal with bv l;a. We have l6b6a, whence L�b6L� a, byM�.
If b@ l, then b2 lR

Mo�, so Hl yields L� l+ (L<� l)¡1<L� b and L� l+(L<� l)¡1<L� a. Otherwise
l=b2aL

Mo�, so Ha yields L� l+(L<� l)¡1<L� a. This proves that fL� l+(L<� l)¡1 : l2Lag<L� a.
Let r2Ra and consider by Remark 12.2.5 the @-maximal c2Mo� with cv r; a. As above, if

c@a, then c2aRMo� soHa yields L� a<L� c¡ (L<� a)¡1, whence L� a<L� r¡ (L<� a)¡1. Otherwise
a= c2 rL

Mo� so Hr yields L� r>L� a+(L<� a)¡1. Hence L� a<L�Ra¡ (L<� a)¡1 and we conclude
by induction. �

12.2.2 Functional equation
In this subsection we derive FE�, under the assumption that � is a successor ordinal. We start
with the following inequality.

Lemma 12.2.7. If �> 1, then we have E<�/!<E�/!H2L�/! on No>;�.

Proof. For  < �/!, there are � < �¡ and n<! with  <!�n. We have

E < E!�n = E!�+1TnL!�+1 < E!�+1H2L!�+1

on No>;� by the functional equation. Note that �+16 �¡< �, so I2;� yields

E!�+1H2L!�+1 6 E�/!H2L�/!;

whence E<E�/!H2L�/!. �

Let a2Mo�. Since Mo� is a surreal substructure, we may consider the L<�-atomic number

b := fL�/! aLMo� j L�/! aRMo�; agMo�:

We claim that b=L�/! a. Assume that �=1 and write a=�Mo! a. We have

log a = �Mo!(a¡ 1) (by [6, Proposition 2.5])
= �Mo! faL¡ 1 j aR¡ 1; ag (by (8.2.2))
= f�Mo!(aL¡ 1) j �Mo!(aR¡ 1);�Mo! agMo!

= flog�Mo! aL j log�Mo! aR;�Mo!agMo! (by [6, Proposition 2.5])
= flog aLMo! j log aRMo!; agMo!

= b:
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Assume now that �> 1. The function L�/! is strictly increasing with L�/!< IdNo>;�. Therefore

L�/! a 2 (L�/! aL
Mo� j L�/! aRMo�; a)Mo�;

so bvL�/! a. Since a2Mo�, the cut equation (12.2.1) for �¡ yields

L�/! a = fR; L�/! a0+(L<� a0)¡1 : a02 aL
Mo�/! j L�/! aRMo�/!¡ (L<� a)¡1; L<�/! ag: (12.2.2)

Given a02 aL
Mo�/!, we have d�(a0)2 aL

Mo� and a02E�[d�(a0)]. We deduce that

L�/! a
0 2 L�/! E�[d�(a0)] = E�[L�/! d�(a0)]:

Moreover, by definition, we have

b > E�0 [L�/! d�(a0)] = E�[L�/! d�(a0)];

so b�L�/!a0. Symmetric arguments yield b�L�/!aRMo�/!. Lemma 12.2.7 implies that L<�/!a�E�[a],
whence d�(L<�/! a) = fag. We get b< E� d�(L<�/! a), whence b < L<�/! a. Thus b lies in the
cut defining L�/! a in (12.2.2), so L�/! av b. This proves our claim that

8a2Mo� ; L�/! a= fL�/! aLMo� j L�/! aRMo�; agMo�: (12.2.3)

We now derive FE�.

Proposition 12.2.8. For a2Mo�, we have L�L�/! a=L� a¡ 1.

Proof. We prove this by induction on (Mo� ;@). Let a 2Mo� be such that the result holds
on a@Mo�. By (12.2.3), we have

L�/! a = fL�/! aLMo� j L�/! aRMo�; agMo�:

Let a0 and a00 range in aL
Mo� and aR

Mo� respectively. Proposition 12.2.6 and our induction hypothesis
yield:

L�L�/! a =

(
R; L�L�/! a

0+ 1
L<�L�/! a

0

���������� L�L�/! a00¡ 1
L<�L�/! a

; L� a¡
1

L<� a
; L<�L�/! a

)

=
�
R; L� a

0¡ 1+ 1
L<� a0

�������� L� a00¡ 1¡ 1
L<� a

; L� a¡
1

L<� a
; L<� a

�
:

On the other hand, we have

L� a¡ 1 =
�
R¡ 1; L� a0+

1
L<� a0

¡ 1
�������� L� a00¡ 1

L<� a
¡ 1; L<� a¡ 1; L� a

�
=
�
R; L� a

0+ 1
L<� a0

¡ 1
�������� L� a00¡ 1

L<� a
¡ 1; L� a; L<� a

�
:

In order to conclude that L�L�/! a=L� a¡ 1, it remains to show that L� a¡ 1<L� a¡ (L<� a)¡1
and that L� L�/! a<L� a. The first inequality holds because (L<� a)¡1 is a set of infinitesimal
numbers. An easy induction shows that L�/!a<a for all a2No>;�. The second inequality follows,
because L� is strictly increasing on Mo�. This completes our inductive proof. �

Combining our results so far, we have proved that (No; (L!�)�<�) is a hyperserial skeleton of
force �.

12.2.3 Confluence
We next prove that (No; (L!�)�<�) is �-confluent.

Lemma 12.2.9. If � is a non-zero limit ordinal, then the function groups E�0 and E�� are mutually
pointwise cofinal. In particular, we have Mo�=Mo�� and Tr�=Tr��.
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Proof. For  2 (0; �) and r 2R>, we have EHrL<E since Hr<E. We have

fL�; E� : �2 (0; �)g \\E��;

whereas I2;� yields

fE�HrL� : �2 (0; �)g \\E�0 :

Therefore E�0 \¡E�
�. For �< �, there is � < � with �<!�. The functional equation gives

E� < E!� = E!�+1 T1L!�+1 < E!�+1H2L!�+1;

which proves the inequality E��\¡E�
0 . �

Lemma 12.2.10. For each a2No>;�, any @-minimal element of E�[a] is L<�-atomic.

Proof. Let A denote the class of numbers a2No>;� that are @-minimal in E�[a]. Any such @-
minimal number a is also @-minimal in E�0 [a]=E�[a]�E�[a], hence L<�-atomic. Thus L� is defined
on A. It is enough to prove that A is closed under L� in order to obtain that A�Mo�.

Consider a2A, and recall that we have

L� a =
�
R; L� a

0+ 1
L<� a0

: a02 aL
Mo�

�������� L� aRMo�¡ 1
L<� a

; L<� a

�
: (12.2.4)

Assume for contradiction that L� a is not @-minimal in E�[L� a]. So there is a b2E�[L� a] with b@
L� a. This implies that b lies outside the cut defining L� a, so b is larger than a right option of
(12.2.4) or smaller than a left option of (12.2.4).

Assume first that b<L� a. So there is an a02 aL
Mo� with b4L� a0. We have d�(L� a)= d�(b)

so there is an n2N with

(L� � d�)�n(b) � (L� � d�)�n(L� a):

The function L� � d� is nondecreasing, so (L� � d�)�(n+1) is nondecreasing as well. So (L� �
d�)�(n+1)(a0)4 (L� � d�)�(n+1)(a). But

(L� � d�)�(n+1)(a0)= (L� � d�)�n(L� a0)< (L� � d�)�n(b)� (L� � d�)�n(L� a):
Thus

(L� � d�)�(n+1)(a0) � (L� � d�)�(n+1)(a):

This contradicts the @-minimality of a.
Now consider the other case when b > L� a. In particular, b must be larger than a right

option of (12.2.4). Symmetric arguments to those above imply that we cannot have b<L� a00 for
some a002 aR

Mo�. So there must exist a  < � with b>L a. If � is a limit ordinal, then  < �¡
so Lemma 12.2.9 yields d�(L a)= a, whence d�(b)< a. If � is a successor ordinal, then there is a
k 2N with 6 �/! k, so

d�(b) > d�(L(�/!)k a) = L(�/!)k a

and Proposition 12.2.8 yields L� d�(b)<L� a¡k<L� a. In both cases, we thus have L� d�(b)<L� a.
For any integer n> 1, we deduce that

(L� � d�)�n(b) > (L� � d�)�n(a) > (L� � d�)�(n+1)(a) = (L� � d�)�n(L� a):

This contradicts the fact that b lies in E�[L� a].
We have shown that the cases b<L� a and b>L� a both lead to a contradiction. Consequently,

L� a is @-minimal in E�[L� a] and we conclude that L�A�A, as claimed. �

Corollary 12.2.11. (No; (L!�)�<�) is �-confluent.

Proof. We already know that (No; (L!�)�<�) is �-confluent by I1;�. Recall that (No;@) is well-
founded, so each class E�[a] for a2No>;� contains a @-minimal element. Lemma 12.2.10 therefore
implies that No is �-confluent. �
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We now know that (No; (L!�)�<�) is a confluent hyperserial skeleton of force �. Moreover, the
class No�;� is that of C-minima and thus @-minima in the convex classes

L�[a] = fb2 a+No� : b=a_ (9 < �; a< `�
" � ja¡ bj¡1)g;

for a 2No>;�. In other words, we have No�;� = SmpL�. In order to conclude that No�;� is
a surreal substructure, we still need to prove that the convex partition L� is thin. This will be
done at the end of section 12.2.4 below.

Proposition 12.2.12. The cut equation (12.2.1) is uniform.

Proof. Let (La;Ra) be a cut representation in Mo� and write a := fLa j RagMo�. We have

L�[L� La] < L�[L� a] < L�[L�Ra]:

By Proposition 5.3.8 and since the sets f`[;�) :  < �g and f` :  < �g are mutually coinitial, this
shows that

L� a 2
�
R; L� l+

1
L<� l

: l2La

�������� L�Ra¡
1

L<� a
; L<� a

�
:

In particular, the number

' :=
�
R; L� l+

1
L<� l

: l2La

�������� L�Ra¡
1

L<� a
; L<� a

�
is well-defined, with ' vL� a. As in the proof of Proposition 12.2.6, we have L� av ', whence
'=L� a. We conclude that the cut equation (12.2.1) is uniform. �

12.2.4 Hyperexponentials
We have shown that (No; (L!�)�<�) is a hyperserial skeleton of force (�; �). In order to prove
that (No; (L!�)�<�) has force (� ; �), it remains to show that every �-truncated number ' has
a hyperexponential E�'. This is the purpose of this subsection.

Proposition 12.2.13. We have L�Mo�=No�;�, and E� has the following cut equation on No�;�:

8'2No�;� ; E�'=

(
E<�'; E<�

 
1

'R
No�;�¡ '

!
; E�0 E�'LNo�;�

���������� E�0 E�'RNo�;�

)
: (12.2.5)

Proof. We prove the result by induction on (No�;� ;v). Let '2No�;� such that E� is defined
on '@No�;� with the given equation. We will first show that the number

a :=
�
E<�';E<�

�
1

'R
No�;�¡ '

�
; E�0 E�'LNo�;�

�������� E�0 E�'RNo�;�
�

(12.2.6)

is well-defined. We will then prove that L� a= '.
Let '02 'LNo�;� and '00 2 'RNo�;�. If '0 2 ('00)LNo�;�, then E�'00> E�0 E�'0 by the definition

of E�'00. So E�0 E�'0< E�0 E�'00. Otherwise, we have '002 ('0)RNo�;�, whence E�0 E�'00>E�'0 by
definition of E�'0, so E�0 E�'0< E�0 E�'00. So we always have

E�0 E�'LNo�;� < E�0 E�'RNo�;�:

We also have E<� '00<E� '
00, so E<� ' < E�0 E� '00. This proves that E<� ' < E�0 E� 'RNo�;�. It

remains to show that

E<�

�
1

'R
No�;�¡ '

�
< E�0 E�('RNo�;�):

Note that 'RNo�;�>L�['], so by the definition of L�['], we have

L�
"
�

1
'R
No�;�¡ '

�
< ' < 'R

No�;� (12.2.7)
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for all  < �. Hence E<�(('RNo�;�¡ ')¡1)<E�'RNo�;�, which completes the proof that a is well-
defined.

Let us now prove that L�a='. Since E�\¡hE<�i, the definition (12.2.6) and the identityMo�=
Mo�0 thatgive a2Mo� by Lemma 10.1.5. First assume that � is a limit ordinal. Lemma 12.2.9
yields hE<�i\\E�, so we may write

a =
�
d�('); d�

�
1

'R
No�;�¡ '

�
; E�'L

No�;�

�������� E�'RNo�;�
�
Mo�

:

By Proposition 5.3.8, for b 2No>;� the classes that L�[L� b] and L� b� (L<� b)¡1 are mutually
cofinal and coinitial. Moreover, we have L�E� =  for all  2 '@No�;�, by our hypothesis on '.
Hence, Propositions 12.2.12 and 5.3.8 give

L� a =
�
R;L�[L� d�(')];L�

�
L� d�

�
1

'R
No�;�¡ '

��
;L�['LNo�;�]

�������� 'RNo�;�¡ 1
L<� a

; L<� a

�
:

Note that L� a2 ('LNo�;� j 'RNo�;�)No�;�, so 'vL� a. Now L� d�(')2L�[L�']<'. We also have

L� d�

�
1

'R
No�;�¡ '

�
2 L�E�0

�
1

'R
No�;�¡ '

�
;

where

L� E�0
�

1
'R
No�;�¡ '

�
= L� E��

�
1

'R
No�;�¡ '

�
(by Lemma 12.2.9)

\\L�"<�
�

1
'R
No�;�¡ '

�
< ': (by (12.2.7))

So L� d�('RNo�;�¡ ')¡1< '. Since '2No�;�, Lemma 10.1.5 gives L�['LNo�;�]< '. Finally, we
have by definition that a>E<�(('RNo�;�¡ ')¡1), so 'R

No�;�¡ (L<� a)¡1> '. This proves that
L� av ', so L� a= '.

Assume now that � is a successor ordinal. For all b2No>;�, the sets E<�', E<� d�('), and
E�/!N d�(') are mutually cofinal. So we can rewrite (12.2.6) as

a =
�
E�/!N d�('); E�/!N d�

�
1

'R
No�;�¡ '

�
; E�0 E�'LNo�;�

�������� E�0 E�'RNo�;�
�

=
�
E�/!N d�('); E�/!N d�

�
1

'R
No�;�¡ '

�
; E�'L

No�;�
�������� E�'RNo�;�

�
Mo�

:

As in the limit case, Proposition 12.2.12 yields

L� a =
�
R;L�[L�

"<� d�(')];L�
�
L�
"<� d�

�
1

'R
No�;�¡ '

��
;L�['LNo�;�]

�������� 'RNo�;�¡ 1
L<� a

; L<� a

�
:

Let  < �. There is an n2N with  < �/!n. Since L�'< '¡ (n+1), we have

' > L�
"�/!(n+1) d�(') > L�

" d�(')+ 1:

In particular ' > L�[L�
" d�(')]. We saw in (12.2.7) that L�

" d�(('RNo�;�¡ ')¡1) < ', whence
L�[L�

" d�(('RNo�;�¡ ')¡1)]< '. We also obtain the inequalities

L�['LNo�;�] < ' < 'R
No�;�¡ (L<� a)¡1

in a similar way as in the limit case.
We conclude that '=L� a holds in general. It follows by induction that the formula for E� is

valid. In particular L�:Mo�¡!No�;� is surjective. �

With Proposition 12.2.13, we have completed the proof of I1;�. By Proposition 4.3.5 we have

E�![a] =E�!0 [a] (12.2.8)
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for all a 2No>;�. Given a 2No�;�, we also deduce from Proposition 5.3.8 that the set a �
(L<�E�a)¡1 is cofinal and coinitial in L�[a]. The convex partition defined by L� is thus thin. By
Theorem 10.1.7, the class No�;� is a surreal substructure with uniform cut equation

8a2No; �No�;� a= fR;L�[�No�;�aL] j L�[�No�;� aR]g (12.2.9)

For a2No, we have L�[�No�;�a]<�No�;�aR, so �No�;�a<�No�;�aR¡ (L<�E��No�;�a)¡1. We
deduce that the following cut equation is equivalent to (12.2.9):

�No�;�a =
�
R;�No�;�a

0+ 1
L<�E��No�;�a

0 :a
02aL

�������� �No�;�aR¡
1

L<�E��No�;�a

�
: (12.2.10)

12.2.5 End of the inductive proof
We now prove I2;�, I3;� and Theorem C.

Lemma 12.2.14. If � is a limit ordinal, then we have E�T1L�>E<� on No>;�.

Proof. Let a2No>;�. We have ]�(L�a+1)>]�(L�a), so Corollary 5.3.12 yields

d�(E�(L� a+1)) = E�(]�(L�a+1)) � E�(]�(L� a)) = d�(a):

We deduce that E�(L�a+1)> E� a so E�(L�a+1)>E<� a by Lemma 12.2.9. �

Proposition 12.2.15. For r; s 2R with s > 1 and  < � < �, we have EHr L <E�HsL� on
No>;�, i.e. I2;� holds.

Proof. Throughout this proof, we consider inequalities and equalities of functions on No>;�.
Write = �m+ � and �= �n+ � where m;n<! and �; � < �. We have

EHrL = E�mE�HrL�L�m and
E�HrL� = E�nE�HsL�L�n:

If m= n, then � < �, so I2;� yields E�Hr L�< E�Hs L�, whence EHr L < E�Hs L�. Assume
that m< n. If �¡ is a successor ordinal, then there is p < ! with � < �/! p. By I2;�, we have
E�HsL�>Hs>Tp. So E� (E�HsL�)L�>E� TpL�=E�/!p. We conclude by noting that E�/!p>
E�>E�HrL�. If �¡ is a limit ordinal, then E�HsL�>T1 so E� (E�HsL�)L�>E�>E�HrL� by
Lemma 12.2.14. It follows that for k 2N>, we have E�(k+1)E�HsL�L�(k+1)>E�kE�HrL�L�k.
An easy induction on k yields the result. �

Proposition 12.2.16. Mo�0 is the class of L<�-atomic numbers, i.e. I3;� holds.

Proof. Let a 2No>;�. By Lemma 12.2.10, the simplest element of E�[a] is L<�-atomic. Since
E�[a] =E�0 [a] (see (12.2.8) and recall that �!=�), we deduce that Mo�0 �Mo�.

Conversely, given a2Mo�, we have b :=�E�0 (a)2Mo�0 �Mo�. Now b2E�0 [a], so by I2;�, there
are r; s2R> and  <� with E(rL a)< b<E(sL a) (here we use the fact that E�0 is generated
by the linearly ordered subset fE(r L a) :  <�^ r 2R>g). Hence, L b�L a, L b=L a and
b= a. We conclude that a2Mo�0 . �

In particular, the class Mo� is a surreal substructure. We have proved I1;� ; I2;�, and I3;�, so
we obtain the following by induction:

Theorem 12.2.17. The field (No; (L!�)�2On) is a confluent hyperserial skeleton of force (On;
On).

Combining this with Theorem A, we obtain Theorem C. Let us finally show that (No; �)
contains only one atomic, or L<On-atomic element.

Proposition 12.2.18. The number ! is the only L<On-atomic element in No. For all a2No>;�,
there is  2On with L a�L!.
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Proof. The number ! lies in Mo!� for all �2On, so it is L<On-atomic. For � 2On, the number
E!�!=fE<!�! j ?g is an ordinal. As a sign sequence, the number L!�!=f? j L<!�!gNo>;� is
! followed by a string containing only minuses [6, Lemma 2.6]. Since the sequences (E!�!)�2On and
(L!�!)�2On are strictly increasing and strictly decreasing respectively, the classes fE!�! :� 2Ong
and fL!�! : � 2Ong are respectively cofinal and coinitial in No>;�= fa2No :! v ag. Thus for
a2No>;�, there is a � 2On with E!�!>a>L!�!, whence L!�+1!�L!�+1 a. �

12.3 Remarkable identities
In this section, we focus on those properties of the functions E� and L� defined in Chapter 12 that
pertain to the simplicity relation on No. Consequently, those properties only make sense within
No, as opposed to many properties derived in Chapter 12 which can be stated in general hyperserial
fields. In particular, we will characterize certain classes defined in the hyperserial context as surreal
substructures defined using methods in Chapter 10. In what follows, � is a non-zero ordinal and
� :=!�.

12.3.1 Simplified cut equations for L� and E�

Given '2No>;�, let EC� := fE(�/!)n' :n2Ng if � is a successor ordinal and EC�' := f'g if �
is a limit ordinal. In this subsection, we will derive the following simplified cut equations for L�
on Mo� and E� on No�;�:

8a2Mo�; L� a = fL� aLMo� j L� aRMo�; L<� agNo�;� (12.3.1)

=
�
R; L� a0 + 1

L<� a0
: a0 2 aL

Mo�
�������� L� a00 ¡ 1

L<� a00
; L<� a: a00 2 aL

Mo�
�
;

(12.3.2)

8'2No�;�; E�' = fEC� d�('); E�'L
No�;� j E�'R

No�;�gMo� (12.3.3)

= fE<�'; E�E�'L
No�;� j E�E�'R

No�;�g: (12.3.4)

For all a 2No>;�, the set EC� d�(a) contains only L<�-atomic numbers, so (12.3.3) is indeed a
cut equation of the form f� j �gMo�.

Remark 12.3.1. The changes with respect to (12.2.1) and (12.2.5) lie in the occurrence of a00

instead of a in (12.3.2) and the (related) absence of the left option E<�(('R
No�;�¡')¡1) in (12.3.4).

So (12.3.2) and (12.3.4) give lighter sets of conditions than those in (12.2.1) and (12.2.5) to define
L� and E�. This seemingly meagre simplification will be crucial in further work. Indeed, combined
with Proposition 9.2.24, this allows one to determine large classes of numbers a; b with av b=)
E� avE� b.

First note that the cut equations (12.3.1) and (12.3.3) if they hold are uniform (see [15,
Remark 1]). Moreover, we claim that (12.3.1, 12.3.2) are equivalent and that (12.3.3, 12.3.4) are
equivalent. Indeed, recall that for a thin convex partition � of a surreal substructure S and any
cut representation (L;R) in Smp�, one has

fL j RgSmp� = f�[L] j �[R]gS:

For a0 2 aL
Mo� and a00 2 aR

Mo� the classes L� a0+ (L<� a0)¡1 and L�[L� a0] are mutually cofinal
by Proposition 5.3.8. Similarly, L� a00 ¡ (L<� a00)¡1 and L�[L� a00] are mutually coinitial. By
Lemma 12.2.9, the classes E<�' and E�[EC� d�(')] are mutually cofinal. So it is enough to prove
that (12.3.1) and (12.3.3) are valid cut equations for L� and E� respectively.

Lemma 12.3.2. If � is a successor ordinal, then the identities (12.3.1) and (12.3.3) hold.

Proof. Let a2Mo� and set

' := fL� aLMo� j L� aRMo�; L<� agNo�;�

=
�
R; L� a

0+ 1
L<� a0

: a02 aL
Mo� j L� a00¡

1
L<� a00

; L<� a : a002 aR
Mo�

�
:
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We have L�[L� aLMo�]<'<L<� a so in view of (12.2.1), it is enough to prove that '<L� aR
Mo�¡

(L<� a)¡1 to conclude that '=L� a. Let a002 aR
Mo�. If a002 E��[a], then the inequality '<L� a

00

entails '<L�[L� a00] whence '<L� a00¡ (L<� a00)¡1 and '<L� a
00¡ (L<� a)¡1. Otherwise, we

have a<L<� a
00, so L� a<L� a

00¡ 2, and L� a
00¡ (L<� a)¡1>L� a+ 1. It is enough to prove

that L� a+1> '. Recall that

L� a+1 =
�
L� a; L� a

0+ 1
L<� a0

+1 : a02 aL
Mo� j L� aRMo�¡ 1

L<� a
+1; L<� a

�
by (8.2.2). We see that L� a0+ (L<� a0)¡1<L� a+ 1 for all a02 aL

Mo�. We have 1¡ (L<� a)¡1�
(L<� aR

Mo�)¡1 so L� aR
Mo�¡ (L<� a)¡1+1> '. Thus '6L� a+1. So (12.3.1) holds.

Now let  2No�;� and set

b := fE�/!N d�( ); E� L
No�;� j E� R

No�;�gMo�:

By uniformity of (12.3.1), we have

L� b = fL�E�/!N d�( );  L
No�;� j  R

No�;�; L<� bgNo�;�;

whence L� b w f L
No�;� j  R

No�;�gNo�;� =  . Conversely, b > E�/!N d�( ) and b > E<�  , so
 < L<� b. We have L� E�/!N d�( ) = L� d�( ) +N. Since L� d�( ) < L�/! d�( ) �  , this
yields L�E�/!N d�( )<  . This proves that  lies in the cut defining L� b. We conclude that
 =L� b, hence (12.3.3) holds. �

We now assume that � is a limit ordinal. For z 2No, define

F (z) := fd�(�No�;� z); F (zL) j F (zR)gMo�; and
�z := fR;�z 0+(L<�F (z 0))¡1 : z 02 zL j �zR¡ (L<�F (z))¡1g:

Lemma 12.3.3. For all z 2No, we have

F (z) is defined (12.3.5)
�z is defined (12.3.6)
�z = �No�;� z (12.3.7)

F (z) = E��z (12.3.8)

Proof. We prove the result by induction on (No;@). Let z 2No be such that (12.3.5), (12.3.6),
(12.3.7) and (12.3.8) hold for all y 2No with y@ z.

For z 002 zR and z 02 zL, we have d�(�No�;� z)6 d�(�No�;� z
00)<F (z 00). We have F (z 0)<F (z 00)

by definition of F (z 00) if z 02 (z 00)L and by definition of F (z 0) if z 002 (z 0)R. This proves that F (z)
is defined.

Let z 0 2 zL and z 00 2 zR. If z 0 2 (z 00)L, then we have �z 00 > �z 0 + (L<� F (z 0))¡1 by defini-
tion of �z 00. Since F (z 0)<F (z) and F (z); F (z 0)2Mo�, we have LF (z 0)�LF (z) for all  <
�: We deduce that �z 00¡ (L<� F (z))¡1> �z 0+ (L<� F (z 0))¡1. If z 00 2 (z 0)L, then �z 0< �z 00¡
(L<� F (z 0))¡1 by definition of �z 0. Since F (z 0)<F (z), we obtain �z 00¡ (L<� F (z))¡1> �z 0+
(L<�F (z 0))¡1. This proves that �z is defined.

Since (12.3.7) and (12.3.8) hold on z@, we have

�z = fR;�No�;� z
0+(L<�E��No�;� z

0)¡1 : z 02 zL j �No�;� zR¡ (L<�E��No�;� z)
¡1g

By (12.2.10), this yields �z=�No�;� z, so (12.3.7) holds for z.
From (12.3.7), we get d�(�No�;� z)= d�(�z). By Proposition 12.2.12 and our assumption that

(12.3.8) holds on z@, we have

L�F (z) = fR;L�[L� d�(�z)];L�[L�F (zL)] j L�F (zR)¡ (L<�F (z))¡1; L<�F (z)g
= fR;L�[L� d�(�z)];L�[�zL] j �zR¡ (L<�F (z))¡1; L<�F (z)g:

Recall that �z= fR;L�[�zL] j �zR¡ (L<�F (z))¡1g. Therefore it suffices to show that �z lies in
the cut (L�[L� d�(�z)] j L<�F (z)) to conclude that L�F (z) = �z and thus that F (z) =E��z.
Now L�d�(�z)<E��[�z] so L�d�(�z)��z and L�[L�d�(�z)]<�z. We have F (z)>d�(�z), where
F (z)2Mo�. Since � is a limit ordinal, Lemma 12.2.9 implies that F (z)>E<��z, so �z<L<�F (z).
This completes the proof that F (z)=E��z. �
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Corollary 12.3.4. The identities (12.3.1), (12.3.2), (12.3.3), and (12.3.4) all hold.

Proof. It is enough to prove (12.3.1) and (12.3.3). The identity (12.3.3) follows from (12.3.7)
and (12.3.8). In order to obtain (12.3.1), we consider a 2Mo�, set  := fL� aL

Mo� j L� aR
Mo�;

L<� agNo�;�, and we show that a=E� . Since (12.3.3) is uniform, we have

E� = fd�( ); E�L� aLMo� j E�L� aRMo�; E�L<� agMo�

= fd�( ); aLMo� j aRMo�; E�L<� agMo�:

We have d�( )< a because  < L<� a, and E� L<� a> a because E�>E<� on No>;�. Since
a= faLMo� j aRMo�gMo�, we deduce that E� = a. �

Remark 12.3.5. The simplified cut equations for E�; L� can be viewed as alternative definitions
for those functions, since they hold inductively on their domain of definition. It is unclear how to
develop our theory directly upon these alternative definitions. In particular, does there exists a
direct way to see that the cut equation (12.3.2) is warranted, and that the corresponding function
satisfies R� and M�?

12.3.2 Identities involving Tr� and Tr�� .

Proposition 12.3.6. Defining Tr� :=SmpL�0 as in Section 12.1.2, we have Tr�=No�;�.

Proof. Let '2No�;�. We have E�L�[']=E�[E�'] by [14, Proposition 7.22]. Recall that E�[a]=
E�0 [a] for all a 2No>;�. Now E�0 � E� = E� � L�0 by definition of L�0 , so E� L�['] = E� L�0 [']
and L�['] =L�0 [']. By definition of Tr�, we conclude that Tr�=SmpL�=No�;�. �

Assume that � is a successor ordinal. Then we have No�;�=No�;�+R by Lemma 5.3.2, so
the functions Tr�No�;� and �No�;�Tr are both strictly increasing bijections from No onto No�;�.

Lemma 12.3.7. Assume that � is a successor ordinal. Then for r 2R, we have Tr �No�;�=
�No�;�Tr on No.

Proof. Let us abbreviate � := �No�;�. We prove the lemma by induction on (No;v)� (R;v).
Let (z; r)2No�R with

�y+ s = �(y+ s)

whenever (y; s)2No�R is strictly simpler than (z; r). We let z 0; z 00; r 0; r 00 denote generic elements
of zL; zR; rL; rR and we note that r 0; r 002R. By (12.2.9), we have

�(z+ r) =
�
�(z 0+ r)+ 1

L<�E��(z 0+ r)
; �(z+ r 0)+ 1

L<�E��(z+ r 0)

��������
�(z+ r 00)¡ 1

L<�E��(z+ r 00)
; �(z 00+ r)¡ 1

L<�E��(z 00+ r)

�
No>;�

=
�
Tr�z 0+

1
L<�E�Tr�z 0

; Tr 0�z+
1

L<�E�Tr 0�z

��������
Tr00�z¡

1
L<�E�Tr 00�z

; Tr�z 00¡
1

L<�E� Tr�z 00

�
No>;�

:

Recall that � is a successor ordinal. In view of the functional equation, the sets L<�E� Ta and
L<�E�a are mutually cofinal and coinitial. Moreover Ts(z+ b)=Tsz+b for all s2R and b2No, so

�(z+ r) =
�
Tr

�
�z 0+ 1

L<�E��z 0

�
; Tr 0

�
�z+ 1

L<�E��z

���������
Tr00

�
�z¡ 1

L<�E��z

�
; Tr

�
�z 00¡ 1

L<�E��z 00

��
No>;�

:
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By (8.2.2), we have

Tr�z =
�
Tr

�
�z 0+ 1

L<�E��z 0

�
; Tr 0�z

�������� Tr 00�z; Tr��z 00¡ 1
L<�E��z 00

��
No>;�

:

The numbers Tr�z; Tr 0�z and Tr 00�z are �-truncated so Tr�z lies in the cut [
r0

Tr 0

�
�z+ 1

L<�E��z

� ���������� [
r 00

Tr 00

�
�z¡ 1

L<�E��z

�!
No>;�

:

We deduce that Tr�z=�Tr z. The result follows by induction. �

Lemma 12.3.8. If � is a successor ordinal, then we have T \\L�� on No>;�. Consequently,
Tr�� =No�

>.

Proof. The set E<� is pointwise cofinal in E��. So L�E<�E� is pointwise cofinal in L�� . For  <�,
there is n2N such that 6�/!n. We have

L�EE� 6 L�E�/!nE� = (L�E�/!E�)
�n = (L�E�T1)�n = T1

�n = Tn 2 T:

We deduce that T \\L�� on No>;�, whence Tr�� =SmpT =No�
>. �

12.3.3 Identities involving Mo� and Mo�� .

Lemma 12.3.9. If � is a successor ordinal, then for z 2No we have

�Mo�(z¡ 1) = L�/!�Mo� z:

Proof. This can be seen as a converse to the proof of the identity (12.2.3). We proceed by induction
on (No;v). Let z be such that the relation holds on z@. By (12.2.3), we have

L�/!�Mo� z = fL�/! (�Mo� z)L
Mo� j L�/! (�Mo� z)R

Mo�;�Mo� zgMo�

= fL�/!�Mo� zL j L�/!�Mo� zR;�Mo� zgMo�

= f�Mo�(zL¡ 1) j �Mo�(zR¡ 1);�Mo� zgMo� (by the inductive hypothesis)
= �Mo� fzL¡ 1 j zR¡ 1; zg
= �Mo�(z¡ 1) by (8.2.2):

We conclude by induction. �

Noting that E�/!=E�T1L� on No>;�, the previous relation further generalizes as follows.

Proposition 12.3.10. Assume that � is a successor ordinal and let r 2R. Then

�Mo�Tr = E�TrL��Mo� (12.3.9)

Proof. We proceed by induction. Let (z; r)2No�R be such that

�Mo�Ts y = E�TsL��Mo� y

for all strictly simpler (y; s)2No�R with respect to the product order @�@. For s2R, let �s
be the function b 7¡!E�TsL� b on No>;� and let a :=�Mo� z. By (8.2.2) and Proposition 10.2.3,
we have

�Mo�(z+ r) = fR; E��Mo�(zL+ r); E��Mo�(z+ rL) j E��Mo�(zR+ r); E��Mo�(z+ rR)g
= fR; E��r(aLMo�); E��rL(a) j E��r(aR

Mo�); E��rR(a)g:

By (12.3.1), Lemma 12.3.7 and (8.2.2), we have:

TrL� a = fTrL� aLMo�; TrLL� a j TrRL� a; TrL� aR
Mo�; L<� agTr�:
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We deduce that

�r(a) = fE<� TrL� a; E��r(aLMo�); E��rL(a) j E��rR(a); E��r(aR
Mo�); E�E�L<� ag

= fE<�L� a; E��r(aLMo�); E��rL(a) j E��rR(a); E��r(aR
Mo�); E�L<� ag:

It is enough to prove that E<�L�a<�Mo�(z+r)<E�L<�a to conclude that �r(a)=�Mo�(z+r).
Toward this, fix an n2N with ¡n6 r6n. Lemma 12.3.9 yields

�Mo�(z+ r) 6 �Mo�(z+n) = E�/!n a < E�L<� a

�Mo�(z+ r) > �Mo�(z¡n) = L�/!n a > E<�L� a:

We conclude by induction that (12.3.9) holds. �

Remark 12.3.11. For r; s 2R, we have �r+s= �r � �s, and �1=E�/!. Therefore we can see
(�r)r2R as a system of fractional and real iterates of the hyperexponential function E�/! onNo>;�.
The previous proposition shows that the action of those iterates on L<�-atomic numbers reduces
to translations, modulo the parametrization �Mo�. In particular, one can compute the functional
square root of exp on Mo! in terms of sign sequences using the material from [9].

Proposition 12.3.12. If � is a successor ordinal, then Mo�� =Mo��No�.

Proof. For �2No�, we have �L+N<�<�R¡N. By Lemma 12.3.9, it follows that E�/!N�Mo��L<

�Mo� � <L�/!N�Mo� �R. This implies that E�� �Mo� �L<�Mo� � < E�� �Mo� �R, so �Mo� � is E��-
simple.

Conversely, consider � 2No>;� such that �Mo� � is E��-simple. We have �Mo� �L� (�Mo� �)L
and �Mo� �R� (�Mo� �)R, whence E�/!N�Mo� �L<�Mo� � <L�/!N�Mo� �R. We obtain �L+N<

�<�R¡N, which proves that � 2No�. �

Proposition 12.3.13. We have E�Tr�� =Mo�� .

Proof. Let '2Tr�� . So '2Tr�. By Proposition 9.2.24, the number E�' is simplest in

E�(E��[']\Tr�) = E��[E�']\Mo�:

Since Mo�� �Mo�, we have E�'vE��[E�']\Mo�� so E�'v d�
� (E�'). We deduce that E�'=

d�
� (E�'), so E�' is E��-simple. Conversely, let a2Mo�� . By Proposition 9.2.24 the number L� a is
simplest in L�(E��[a]\Mo�)=L�� [L�a]\No�;�. Since Tr�� �No�;�, we have L�avL�� [L�a]\Tr��
so L� av ]��(L� a). We deduce that L� av ]�� (L� a) is L�� -simple. �

Corollary 12.3.14. If � is a successor ordinal, then Mo�� =E�No�
>.
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Chapter 13
Well-nestedness
This chapter and the two subsequent ones are contained in essence in the pre-print [13] with van
der Hoeven. In this chapter, we prove Theorem 13.2.7, i.e. that each number is well-nested. Using
the terminology from the introduction, the general idea of the proof is as follows:

i. We assume for contradiction that there exists a number a that is not well-nested, and we
choose a simplest (i.e. v-minimal) such number.

ii. By definition, there exists a bad path P =(rimi)i2N in a. Recall that a and P give rise to a
sequence ('i;  i+1; ri; �i;�i; �i; ai+1; �i)i2N that describes the path P within a. Now consider
the lowest level i at which the branching phenomenon occurs. Then

ai= 'i+ ri e i+1 (L�iE�i
ui+1)�i+ �i (13.0.1)

and

mi+1 2 supp  i+1; or
ri 2/ f¡1; 1g; or
�i =/ 0; or
�i =/ 0:

Here we regard ai as a subexpression of a at level i and we may write a=Hi(ai) for a suitable
function that involves hyperexponentials and hyperlogarithms .

iii. If mi+12 supp  i+1, then we show that the number bi='i+ ri e i+1 is strictly simpler than
ai. Otherwise, we show the same thing for bi= 'i+ sign(ri) e i+1 (E�i

ui+1)�i.

iv. We next show that the substitution Hi(bi) of ai by bi in a is strictly simpler than a.

v. We finally show that P is a path in Hi(bi), contradicting the @-minimality of a.

The second step requires a way to expand numbers as hyperseries, as in the formula (13.0.1).
This gives rise to the notion of hyperserial expansions that will be studied in section 13.1.1. The
third and fourth steps requires techniques to derive a relation x v y from similar relations for
subexpressions of x and y. This will be the subject of sections 13.1.3 and 13.2. For the last step,
we must know how to deduce the existence of paths in a number x from the existence of paths in
certain subexpressions of x. Since hyperexponentials in particular have involved expansions around
truncated series (see (5.3.1)), this step requires a careful study of paths which is carried out in
sections 13.2 and 13.1.2. We prove Theorem 13.2.7 in section 13.2.2.

Before we start, we recall a few inequalities. Let � 2On> and write

� :=!�:

The first inquality below is immediate by definition and by the fact that H<E�. The others are
Lemmas 12.2.7 and 12.2.9 and Proposition 12.2.15, in that order:

E�! < E� (13.0.2)
E<� < E�H2L� (13.0.3)

hE :  <�i \\E� if � is a limit (13.0.4)

8 < �<�;8r; s> 1; EHrL < E�HsL�: (13.0.5)

From (13.0.5), we also deduce that

fEHrL :  <�; r 2Rg\\E�: (13.0.6)
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13.1 Hyperserial expansions
We start by introducing our notion of hyperserial expansions of monomials, which will play a crucial
role in the sequel of the thesis.

13.1.1 Hyperserial expansions
Recall that any number can be written as a well-based series. In order to represent numbers as
hyperseries, it therefore suffices to devise a means to represent the infinitely large monomials m
in Mo�. We do this by taking a hyperlogarithm L� m of the monomial and then recursively
applying the same procedure for the monomials in this new series. This procedure stops when we
encounter a monomial in LOn!.

Technically speaking, instead of directly applying a hyperlogarithm L� to the monomial, it
turns out to be necessary to first decompose m as a product m=e n and write n as a hyperexpo-
nential (or more generally as the hyperlogarithm of a hyperexponential). This naturally leads to
the introduction of hyperserial expansions of monomials m2Mo=/1, as we will detail now.

Definition 13.1.1. We say that a purely infinite number '2No� is tail-atomic if '=  ++ � a,
for certain  2No�, �2f¡1; 1g, and a2Mo!.

Definition 13.1.2. Let m2Mo=/1. Assume that there are  2No�, �2f¡1; 1g, �2f0g [!On,
� 2On and u2No>;� such that

m=e (L�E�u)�; (13.1.1)

with supp  �L�+1E�u. Then we say that (13.1.1) is a hyperserial expansion of type I if

� �! <�;

� E�
u2Mo� nL<�Mo�!;

� �=1=) ( =0 and u is not tail-atomic).
We say that (13.1.1) is a hyperserial expansion of type II if �=0 and u=!, so that E�u=! and

m=e (L�!)�: (13.1.2)

Note that u is �-truncated in expansions of type I, since E�u is in particular L<�-atomic.
Expansions of type II are those for which E�u=!. Formally speaking, hyperserial expansions can
be represented by tuples ( ; �; �; �; u). By convention, we also consider

1=e0 (L0E0 0)0;

to be a hyperserial expansion of the monomial m = 1; this expansion is represented by the
tuple (0; 0; 0; 0; 0).

Example 13.1.3. We will give a hyperserial expansion for the monomial

m= exp(2E!!¡ !
p

+L!+1!);

and show how it can be expressed as a hyperseries. Note that

logm=2E!!¡ !
p

+L!+1!

is tail-atomic since L!! is log-atomic. Now L!!=L!! is a hyperserial expansion of type II and
we have L!+1!�E!!; !

p
. Hence m=e2E!!¡ !

p
(L!!) is a hyperserial expansion of type II.

Let  := 2E! ! ¡ !
p

, so m= e (L! !). We may further expand each monomial in supp  .
We clearly have E!! 2Mo!2. We claim that E!!2Mo!2 nL<!2Mo!3. Indeed, if we could write
E!!=LnL!m a for some a2Mo!3 and n;m2N>, then !=L!(LnL!m a)=L!(m+1) a¡ n and

L!(m+1)a would both be monomials, which cannot be. Note that E!!=E!2(L!2E!!)=E!2
L!2!+1,

so E! !=E!2
L!2!+1 is a hyperserial expansion of type I. We also have !

p
= exp

¡ 1
2
log !

�
where

1

2
log ! is tail atomic. Thus !

p
=E1

1
2
log!

is a hyperserial expansion of type I. Note finally that
log!=L1! is a hyperserial expansion of type II. We thus have the following �recursive� expansion
of m:

m=e2E!2
L!2!+1¡E1

1
2
L1!

(L!!): (13.1.3)
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We will study this type of recursive expansion by studying paths in Section 13.1.2

Lemma 13.1.4. Any m2Mo has a hyperserial expansion.

Proof. We first prove the result for m2Mo!, by induction with respect to the simplicity relation
v. The v-minimal element of Mo! is !, which satisfies (13.1.2) for  = �=0 and �=1. Consider
m2Mo! nf!g such that the result holds onm@

Mo!. By [12, Proposition 6.20], the monomialm is not
L<On-atomic. So there is a maximal �2!On with m2Mo�, and we have �>! by our hypothesis.

If there is no ordinal <� such that Em2Mo�!, then we have m2Mo�nL<�Mo�!. So setting
�= �, � =0 and u=L�m, we are done. Otherwise, let  <� be such that a :=E

m2Mo�!. We
cannot have =0 by definition of �. So there is a unique ordinal � and a unique natural number
n2N> such that =  0+!�n and  0�!�. Note that �>!�+1. We must have �=!�+1: otherwise,
L!�+1m=L 0+!�+1(a)+n where L!�+1m and L 0+!�+1a are monomials. We deduce that  0=0 and
=!�n. Note that L�a�L�m, �<�!, and a2Mo�!, so a=d�!(m). We deduce that a@m. The
induction hypothesis yields a hyperserial expansion a=e (L�E�u)�. Since a is log-atomic, we must
have  =0 and �=1. If a=L�!, then ����/!=!�, since a2Mo�!. Thus m=L a=L�+! is a
hyperexponential expansion of type II. If a=L�E�u, then likewise ���!� and thus m=L�+E�u

is a hyperexponential expansion of type I. This completes the inductive proof.
Now let m 2Mo=/ nMo! and set ' := log m. If ' is tail-atomic, then there are  2No�,

�2f¡1;1g and a2Mo! with '= ++ �a. Applying the previous arguments to a, we obtain elements
�> !; �; u with a= L�E�

u and � ! < �, or an ordinal � with a= L� !. Then m= e (L�E�u)�

or m= e (L� !)� is a hyperserial expansion. If ' is not tail-atomic, then we have m=E1
' is a

hyperserial expansion of type I. �

Lemma 13.1.5. Let a2Mo=/ and assume that a=L�E�u is a hyperserial expansion. Let �> 0
and define �¡ := �¡ 1 if � is a successor ordinal and �¡ := � if � is a limit ordinal. Let

� :=� 0+ � 00 where
� 0 := �<!�¡��!�¡ and
� 00 := ��!�¡<!

�¡:

a) Then a is L<!�-atomic if and only if � 00=0 and either �>!� or �=0.

b) If �>!�, then d!�(a)=L� 0E�u.

Proof. We first prove a). Assume that a is L<!�-atomic. Assume for contradiction that � 00=/ 0
and let !�m denote the least non-zero term in the Cantor normal form of � 00. Since � 00<!�¡,
we have !�+1<!� so L!�+1 a is a monomial. But L!�+1 a=L��!�00 E�

u¡m where L��!�00 E�
u is a

monomial: a contradiction. So � 00= 0. If �= 0 then we are done. Otherwise E�u2/Mo�!, so we
must have �!>!�, whence �>!�. Conversely, assume that �>!� or �=0, and that � 00=0. If
�=/ 0, then then for all  <!�, we have L a=L� 0+E�u where � 0+  <�, so L a is a monomial,
whence a2Mo!�. If �=0, then for all  <!�, we have L a=L� 0+! 2Mo, whence a2Mo!�.
This proves a).

Now assume that �> !�. So L� 0E�u is L<!�-atomic by a). If � 00= 0 then we conclude that
a=L� 0E�u= d!�(a). If � 00=/ 0, then let !�m denote the least non-zero term in its Cantor normal
form. We have !�+1<!� and L!�+1 a=L!�+1L� 0E�

u¡m�L!�+1L� 0E�u, so L� 0E�u= d!�(a). �

Corollary 13.1.6. Let �2On>, � :=!�,  <�, and b2Mo�!. If L b2Mo� nMo�!, then �
is a successor ordinal and =�/!n for some n2N>.

Proof. Since L b2Mo� nMo�!, we must have  =/ 0. By Lemma 13.1.4, we have a hyperserial
expansion b=e (L�E�u)�. Since b is log-atomic, we have logb= ++ �L�+1E�u2Mo, whence  =0
and �=1. So b=L�E�u. We have b2Mo�! so by Lemma 13.1.5(a), we have ����. It follows that
L b=L�+E�u is a hyperserial expansion. But then L�+E�u2Mo� and Lemma 13.1.5(a) imply
that ��!�¡. The condition that  <� now gives �¡<�, whence � is a successor and =!�¡n
for a certain n2N>, as claimed. �
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Lemma 13.1.7. Any m2Mo has a unique hyperserial expansion (that we will call the hyperserial
expansion, henceforth).

Proof. Consider a monomial m=/ 1 with

m=e (L� a)�;

where  2No�, � 2 f¡1; 1g, �; � 2 !On, a 2Mo�, � ! < �, and supp  � L�+1 a. Assume for
contradiction that we can writem=e 

0
(L� 0E�0u0)�

0
as a hyperserial expansion of type I with �0<�.

Note in particular that �> 1, so L�+1 a is log-atomic. We have

logm=  ++ �L�+1 a=  0++ �0L� 0+1E�0u
0
:

If �0 = 1, then � 0 = 0,  0 = 0, �0 = 1, and u0 is not tail-atomic. But  ++ �L�+1 a = u0, where
L�+1a2Mo!, so u0 is tail-atomic: a contradiction. Hence �0>1. Note that �L�+1a and �0L� 0+1E�0u

0

are both the least term of logm. It follows that  =  0, �= �0, and

L� a=L� 0E�0u
0
: (13.1.4)

Since � 0!<�0, we have

E�0
u0= d�0(L� 0E�0u

0
)= d�0(L� a):

Now E�0
u02/Mo�0!, so d�0(L� a) =/ a and thus � !> �0. In particular � > � 0. Taking hyperexpo-

nentials on both sides of (13.1.4), we may assume without loss of generality that � 0= 0 or that
the least exponents � and � 0 in the Cantor normal forms of � resp. � 0 differ. If � 0= 0, then we
decompose b=  u !� n where n 2N> and � !�. Since L� a=E�0

u0 2Mo�0 nMo�0!, applying
Lemma 13.1.5(a) twice (for !�=�0 and !�=�0!) gives !�+1>�0 and !�+1��0!, whence �0=
!�+1. But then E�0u

0
=L!�nb, where b :=L a2Mo�0! by Lemma 13.1.5(a). So E�0u

02L<�0Mo�0!:
a contradiction. Assume now that � 0=/ 0. Lemma 13.1.5(a) yields both L� a2Mo!�+1 nMo!�+2
and L� 0E�0u

02Mo!� 0+1 nMo!� 0+2, which contradicts (13.1.4).
Taking a=! 2No and � :=max (�0!; �!2), this proves that no two hyperserial expansions of

distinct types I and II can be equal. Taking a=E�u with �>�0, this proves that no two hyperserial
expansions e (L�E�u)�; e 

0
(L� 0E�0u

0
)�
0
of type I with �=/ �0 can be equal.

The two remaining cases are hyperserial expansions of type II and hyperserial expansions
e (L�E�u)� and e 

0
(L� 0E�0u

0
)�
0
of type I with �= �0. Consider a monomial m 2Mo=/ with the

hyperserial expansions m=e (L!)�=e 
0
(L 0!)�

0
of type II. As above we have  = 0, �= �0, and

L!=L 0!. We deduce that =  0, so the expansions coincide.
Finally, consider a monomial m=/ 1 with two hyperserial expansions of type I

m=e (L�E�u)�=e 
0
(L� 0E�u

0
)�
0
: (13.1.5)

If �=1, then we have  =  0=0 and �= � 0=0 and �= �0=1, whence u=u0, so we are done.
Assume now that �> 1. Taking logarithms in (13.1.5), we see that  =  0, �= �0, and

L�E�
u=L� 0E�u

0
: (13.1.6)

We may assume without loss of generality that �>� 0. Assume for contradiction that �>� 0. Taking
hyperexponentials on both sides of (13.1.6), we may assume without loss of generality that � 0=0
or that the least exponents � and � 0 in the Cantor normal forms of � resp. � 0 differ. On the one
hand, Lemma 13.1.5(a) yields L�E�u2Mo!�+1 nMo!�+2. Note in particular that L�E�u2/Mo�,
since �!<�. On the other hand, if �=/ 0, then Lemma 13.1.5(a) yields L� 0E�u

02Mo!� 0nMo!� 0+1;
if � 0=0, then L� 0E�u

02Mo�. Thus (13.1.6) is absurd: a contradiction. We conclude that �= � 0.
Finally E�u=E�u

0
yields u=u0, so the expansions are identical. �

Lemma 13.1.8. If m=e (L�E�u)� is a hyperserial expansion of type I, then we have

supp  \ supp u=?:

Proof. Assume for contradiction that n2 supp  \ suppu. Since n2 supp , we have n�L�+1E�u.
Since u> 0, there is r 2R> with u> r n, so L�+1E�u< n: a contradiction. �
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13.1.2 Paths and subpaths
Let � be an ordinal with 0<�6! and note that i < 1u�() (i6�<!_ i <!=�) for all i2N.
Consider a sequence

P =(P (i))i<�=(�P ;i)i<�=(rP ;imP ;i)i<� in (R=/ Mo)�:

We say that P is a path if there exist sequences (uP ;i)i<1u�, ( P ;i)i<1u�, (�P ;i)i<�, (�P ;i)i<�, and
(�P ;i)i<1u� with

� uP ;0= �P ;0 and  P ;0=0;

� �P ;i2 term  P ;i or �P ;i2 termuP ;i, for all i <�;

� �P ;i2R=/ [f!g=) �= i+1, for all i <�;

� For i <�, the hyperserial expansion (of type I or II) of mP ;i is

mP ;i = e P ;i+1 (L�P ;iE�P ;i
uP ;i+1)�P ;i:

We call � the length of P and we write jP j := �. We say that P is infinite if jP j= ! and finite
otherwise. For a2No, we say that P is a path in a if P (0)2 term a. We then set aP ;0 := a. For
0<i< jP j, we define

(sP ;i; aP ;i) :=

(
(¡1;  P ;i) if mP ;i2 supp  P ;i
(1; uP ;i) if mP ;i2 supp uP ;i:

By Lemma 13.1.8, those cases are mutually exclusive so (sP ;i; aP ;i) is well-defined.
For k6 jP j, we let P%k denote the path of length jP j ¡ k in aP ;k with

8i < jP j ¡ k; �P%k;i := �P ;k+i:

So P%k is the path obtained by removing the first k elements of P and reindexing.

Example 13.1.9. Let us find all the paths in the monomial m of Example 13.1.3. We have a
representation (13.1.3) of m as a hyperseries

m=e2E!2
L!2!+1¡E1

1
2
L1!

(L!!)

which by Lemma 13.1.7 is unique. There are nine paths in m, namely

� one path (m) of length 1;

� three paths (m; 2E!2
L!2!+1),

�
m;¡E1

1
2
L1!

�
, and (m; !) of length 2;

� three paths (m; 2E!2
L!2!+1; L!2!), (m; 2E!2

L!2!+1; 1) and
�
m;¡E1

1
2
L1!

;
1

2
L1!

�
of length 3;

� two paths (m; 2E!2
L!2!+1; L!2!; !) and

�
m;¡E1

1
2
L1!

;
1

2
L1!; !

�
of length 4.

Note that the paths which cannot be extended into strictly longer paths are those whose last value
is a real number or !.

Infinite paths occur in so-called nested numbers that will be studied in more detail in Sec-
tion 7.3.2.

Definition 13.1.10. Let a 2No and let P be a path in a. We say that an index i < jP j is bad
for (P ; a) if one of the following conditions is satisfied

1. mP ;i is not the 4-minimum of suppuP ;i;

2. mP ;i=min supp uP ;i and �P ;i=/ 0;

3. mP ;i=min supp uP ;i and �P ;i=0 and rP ;i2/ f¡1; 1g;
4. mP ;i=min supp uP ;i and �P ;i=0 and rP ;i2f¡1; 1g and mP ;i2 supp  P ;i.

The index i is good for (P ; a) if it is not bad for (P ; a).
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If P is infinite, then we say that it is good if (P ; �P ;0) is good for all but a finite number of
indexes. In the opposite case, we say that P is a bad path. An element a2No is said to be well-
nested every path in a is good.

Remark 13.1.11. The above definition extends the former definitions of paths in [60, 92, 18].
More precisely, a path P with �P ;i=1 (whence  P ;i=0) for all i < jP j, corresponds to a path for
these former definitions. The validity of the axiom T4 for No means that those paths are good.
With Theorem 13.2.7, we will extend this result to all paths.

Lemma 13.1.12. For m2 (LOn !)�1 and for any path P in m, we have jP j6 2. For a 2L � !
and for any path P in a, we have jP j6 3.

Proof. Let l2L n f¡1g and let P be a path in l �!. If there is an ordinal  with l= `, then the
hyperserial expansion of l�! is L!, so jP j=1 if =0 and jP j=2 otherwise. If there is an ordinal
 with l= `

¡1, then the hyperserial expansion of l �! is (L!)¡1 and jP j=2.
Assume now that l2/ `On

�1 . If log l�! is not tail-atomic, then the hyperserial expansion of l�! is
l �!=elogl�!. If log l�! is tail-atomic, then the hyperserial expansion of l�! is l �!=e �! (a�!)�
for a certain log-atomic a 2 L. Since  2 log L, we have supp  � f`� : � 2Ong. We also have
a2L!=f`� : �2Ong by Section 4.2.4. So in both cases, P%1 is a path in some monomial in LOn!,
whence jP%1j6 2 and jP j6 3, by the previous argument. �

Definition 13.1.13. Let P ; Q be paths. We say that Q is a subpath of P, or equivalently that
P extends Q, if there exists a k< jP j with Q=P%k. For a2No, we say that Q is a subpath in
a if there is a path P in a such that Q is a subpath of P. We say that P shares a subpath with
a if there is a subpath of P which is a subpath in a.

So our subpaths are always initial subsequences. Paths can sometimes be concatenated. Indeed,
let P be a finite path and let Q be a path with Q(0)2 supp uP ;jP j[ supp  P ;jP j. Then we define
P �Q to be the path (P (0); : : : ; P (jP j); Q(0); : : : ) of length jP j+ jQj.

Lemma 13.1.14. Let �2!On and m2Mo�. Let P be a path in m with jP j> 2. Then P%1 is a
subpath in L�m.

Proof. By Lemma 13.1.12, we have m2/ (LOn!)�1. If m has a hyperserial expansion of the form
m=e (L!)�, then P%1 must be a path in  . So  is non-zero and thus �=1. It follows that P%1

is a path in logm=  ++ � (L!)�. Otherwise, let m=e (L�E�u)� be the hyperserial expansion of
m. If P%1 is a path in  , then it is a path in logm as above. Otherwise, it is a path in u. Assume
that �=1. If �=1, then we have  =0 and logm= � u so P%1 is a path in logm. If �> 1, then
logm= ++ �L�+1E�u where L�+1E�u is a hyperserial expansion, so P%1 is a path in logm. Assume
now that �> 1, so  =0, �=1, and �>!. We must have ����/! so there are � 02On and n2N
with � 0� �/! and �= � 0+�/!n. We have L�m=L� 0+�E�u¡n where L� 0+�E�u is a hyperserial
expansion, so P%1 is a path in L�m. �

Lemma 13.1.15. Let a2No>;�, �2!On and k2N>. If P is a path in ]�(a) with jP j> 2, then
P%1 is a subpath in dE�ka.

Proof. We prove this by induction on � k, for any number a2No>;�. We consider a2No>;�,
and a fixed path P in ]�(a) with jP j> 2.

Assume that �= k = 1. We have ]1(a) = a� and dexpa= ea�. Assume that a�=  ++ � a for
certain  2No�, �2 f¡1; 1g, and a2Mo!. Let a=LE�

u be the hyperserial expansion of a. If
�=!, then =0 and the hyperserial expansion of ea is ea=E!

u+1. Therefore P%1 is a subpath in
dexpa=e (E!

u+1)�. If �>!, then the hyperserial expansion of ea is ea=L+1E�u. Therefore P%1

is a subpath in dexpa=e (L+1E�u)�. Finally, if ea� is not tail-atomic, then P%1 is a subpath in
dexpa=(E1�a�)�, where �2f¡1; 1g is the sign of a�.

Now assume that �= 1, k > 1, and that the result holds strictly below k. We have Ek a=
Ek¡1(expa) where P%1 is a subpath in dexpa by the previous argument. We have rdexpaP ]1(expa)
for a certain r 2R=/ , so Q := (r dexpa) � P%1 is a path in ]1(exp a). The induction hypothesis on
k¡ 1 implies that Q%1=P%1 is a subpath in dEka.
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Assume now that �>! and that the result holds strictly below �. Write v := ]�(a). Recall by
(5.3.1) that there exist an � 2On, an n<!, and a � 2No with � :=!�<� and

E� a=E�n(L�nE�v++ �):

Assume for contradiction that there is a  2On with E�v=L!. We must have ���/!, so there
are a number n 2N and an ordinal  0�� � with  =  0+ �/! n. We have v = L 0+� ! ¡ n. By
Lemma 13.1.12, this contradicts the fact that jP j> 2. So by Lemma 13.1.4, there exist � 2!On

and  2On with � > �,  ! < �, E�v =LE�
u, and E�u2Mo� nL<�Mo�!. Since E�v 2Mo�, we

must have ���/! so there are a number n2N and an ordinal  0��� with  =  0+�/!n (note
that n= 0 whenever �/!=�). Thus v+ n=L�L 0+�/!nE�

u+ n=L 0+�E�
u is a monomial with

hyperserial expansion v+n=L 0+�E�u. There is no path in n of length >1, so P must be a path
in L 0+�E�u. We deduce that P%1 is a path in u. Consequently, Q= (LE�u) �P%1 is a path in
E�
v with jQj= jP j> 2. Applying n times Lemma 13.1.14, we deduce that Q%1=P%1 is a subpath

in L�nE�v, hence in ]�(L�nE�a). Consider a path R in ]�(L�nE�a) with P%1=R%i for a certain
i > 0. Applying the induction hypothesis for L�nE� a and �n in the roles of a and � k, the path
R%1 is a subpath in dE�n(L�nE�a)= dE�a. Therefore P%1 is a subpath in dE�a. We deduce as in
the case �=1 that P%1 is a subpath in dE�ka. �

Lemma 13.1.16. Let  2No�, and m2Mo=/ with supp  � logm. Let P be a path in m with
jP j> 1. Then P%1 is a subpath in e m.

Proof. Let m= e' (L�E�u)� be a hyperserial expansion. The condition supp  � logm implies
'+  = '++  , whence e m=e ++' (L�E�u)� is also a hyperserial expansion. In particular P%1 is
a subpath in e m. �

Corollary 13.1.17. Let �=!�2On, � 2On with � <�, and '2No�;�. If P is an infinite path,
then P shares a subpath with ' if and only if it shares a subpath with L�E�

'.

Proof. Write �=!�1m1+ ���+!�kmk in Cantor normal form, with �1> ���>�k andm1;:::;mk2N>

and let

ai :=L!�1m1+� � �+!
�i¡1mi¡1E�

'

for all i=1; : : : ; k.
Assume that P shares a subpath with '. In other words, there is a path R in ' which has a

common subpath with P . The path R must be infinite, so by Lemma 13.1.15, it shares a subpath
with E�

'= a1. Let us prove by induction on i= 1; : : : ; k that R shares a subpath with E�
'= ai.

Assuming that this holds for i < k, we note that ai is L<!�i¡1!-atomic, hence L<!�i-atomic. So
P shares a subpath with ai+1 by Lemma 13.1.14 and the induction hypothesis. We conclude by
induction that P shares a subpath with ak=L�E�

'.
Suppose conversely that P shares a subpath with L�E�

'=ak. By induction on i=k¡1;:::;1, it
follows from Lemma 13.1.15 that P shares a subpath with ai. Applying Lemma 13.1.14 to a1=E�

',
we conclude that P shares a subpath with '. �

13.1.3 Deconstruction lemmas
In this subsection, we list several results on the interaction between the simplicity relation v and
various operations in (No;+;�; (L�)�2On).

Lemma 13.1.18. [55, Theorem 3.3] For a; b2No, we have

av b()¡ av¡b:

Lemma 13.1.19. [55, Theorem 5.12(a)] For m2Mo and r2R=/ , we have

sign(r)mv rm:

Lemma 13.1.20. [11, Proposition 4.20] Let '2No. For �; " with �; "� supp ', we have

'++ � v '++ " () � v ":

13.1 Hyperserial expansions 209



Lemma 13.1.21. [18, Corollary 4.21] For m; n2Mo, we have

mv n () m¡1vn¡1:

Lemma 13.1.22. [18, Proposition 4.23] Given '; a; b in No� with a; b� supp ', we have

eav eb =) e'++av e'++b:

Lemma 13.1.23. [18, Proposition 4.24] Given m; n2Mo� with logm�n, we have

mv n =) emv en:

Lemma 13.1.24. Let '2No� and r 2R=/ , let m; n2Mo�\No�supp' with m2 E![n], and let
� 2No� with �� supp n. Then

mv n=) e'++sign(r)mv e'++rn++�:

Proof. The condition m2E![n] yields logm�n. We have emv en by Lemma 13.1.23. The identity
eMo�= SmpP implies that emv ejr jn, whence esign(r)mv ern by Lemma 13.1.21. Consequently,
e'++sign(r)mv e'++rn, by Lemma 13.1.22. Since e0=1v e�2No>, we may apply Lemma 13.1.22 to
'++ r n and '++ r n++ � to obtain e'++rnv e'++rn++�. We conclude using the transitivity of v. �

Lemma 13.1.25. Let �2!On with �> 1. For ';  2No�;� with L�E<�'<  , we have

'v  =)E�
'vE�

 :

Proof. By (12.3.3), we have

E�'=
�
E<�'; E�E�

'L
No�;�

������ E�E�'RNo�;�
�
:

Since 'v  , we have 'L
No�;��  L

No�;� and 'R
No�;��  R

No�;�, whence

E�E�
'L
No�;�

<E� <E�E�
'R
No�;�
:

Furthermore, we have L�E<�'<  , so E<�'<E�
 . We conclude that E�

'vE�
 . �

13.2 Nested truncation and well-nestedness
In [18, Section 8], the authors prove the well-nestedness axiom T4 for No by relying on a well-
founded partial order JPBM that is defined by induction. This relation has the additional property
that

8a; b2No=/ ; aJPBM b=) av b:

In this subsection, we define a similar relation . onNo that will be instrumental in deriving results
on the structure of (No; (L)2!On). However, this relation does not satisfy a. b=) av b for all
a; b2No.

13.2.1 Nested truncation
Given a; b2No, we define

a. b ,,,,,,,,,,,,,,,,,,,,,,def 9n2N; a.n b;

where (.n)n2N is a sequence of relations that are defined by induction on n, as follows. For n=0,
we set a.0 b, if aP b or if there exist decompositions

a = '++ sign(r)m
b = '++ rm++ �;
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with r2R=/ and m2Mo. Assuming that .n has been defined, we set a.n+1 b if we are in one of
the two following configurations:

Configuration I. We may decompose a and b as

a = '++ sign(r) e (E�u)� (13.2.1)
b = '++ r e (L�E�v)�++ �; (13.2.2)

where r 2R=/ ,  2No�, �2!On, �! <�, �2f¡1; 1g, u; v 2No�;�,

supp  � logE�u; L�+1E�v;

and u.n v. If �=1, then we also require that  =0.

Configuration II. We may decompose a and b as

a = '++ sign(r) e (13.2.3)
b = '++ r e 0 a�++ �; (13.2.4)

where r 2R=/ ,  ;  02No�, �2f¡1; 1g, a2Mo!; � 2No, supp  0� log a, and  .n 0.

Warning 13.2.1. Taking �=1 in the first configuration, we see that . extends JPBM. However,
the relation . is neither transitive nor anti-symmetric. Furthermore, as we already noted above,
we do not have 8a; b2No; a. b=) av b.

Lemma 13.2.2. Let �2!On. Let a; b2No>;� be numbers of the form

a = '++ rm
b = '++ s n++ �

where '; �2No, r; s2R=/ with sign(r)= sign(s), and m;n2Mo�. If m¡1<E�n
¡1 for sufficiently

large �<�, then

b2No�;�=) a2No�;�:

Proof. Let � 2On and � :=!�. Assume for contradiction that b2No�;� and a2/No�;�. Assume
first that aC b, so b= a++ �. Then supp b� 1

L<�E� b
. Let k 2N> be such that a++ k d�> b. Since

supp (a++ k d�)� supp b, we deduce that supp (a+ k d�)� 1

L<�E�(a+ k d�)
, whence a+ k d�2No�;�.

Modulo replacing b by a+k d�, it follow that we may assume without loss of generality that �=k p
for some k 2N> and some monomial p.

On the one hand, a is not �-truncated, so there are q 2 (supp ')� and  with 0 <  < �

and a<L�
"(q¡1). We may choose =!�n for certain � < � and n2N>, so a<L�

"!�n(p¡1). On
the other hand, a+ k p is �-truncated, so we have

a+ k p>L�
"!�(n+N>)(p¡1)>L�

"!�n(p¡1)>a:

We deduce that k p>L�
"!�(n+N>)(p¡1)¡L�

"!�n(p¡1). If � is a successor, then choosing � = �¡,
we obtain k p> L�

"!�n(p¡1) +N> ¡ L�
"!�n(p¡1), so k p� 1: a contradiction. Otherwise, k p>

`[!�+1;�)
¡1 � p¡1 by [14, (2.4)], where `[!�+1;�) :=

Q
!�+16<� `. Thus k¡1 p¡1 < `[!�+1;�) � p¡1,

whence k¡1 `0<`[!�+1;�): a contradiction.
We now treat the general case. By a similar argument as above, we may assume without loss of

generality that b='++ sn. Assume that b6a. Since a is not �-truncated, there exists a  <� with
m� (LE� a)¡16 (LE� b)¡1, whence m¡1�LE� b. But b is �-truncated, so n¡1�L<�E� b. In
particular n¡1�LE� b, so our hypothesis m¡1<L� n¡1 implies that m¡1�L�LE� b4LE� b:
a contradiction.

Assume now that b > a. As in the first part of the proof, there are � < � and n<n0<! with
'++ s n>L�

"!�n0(n¡1) and L�
"!�n(m¡1)> '++ rm. Recall that m¡1<E� n

¡1 for sufficiently large
�<�. Take � < � and n0<! such that

L�
"!�n0(n¡1) > L�

"!�(n+1)(m¡1)
L!�m

¡1 � n¡1 if � is a limit. (13.2.5)
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Then b¡a>L�
"!�(n+1)(m¡1)¡L�

"!�n(m¡1). If � is a successor, then choosing �=�¡ yields b¡a>1,
which contradicts the fact that m and n are infinitesimal. So � is a limit. Writing q :=max (m;n),
we have b¡a�q. As in the first part of the proof, we obtain q< `[!�+1;�)

¡1 �m¡1, so q¡14 `[!�+1;�)�
m¡1�m¡1. In view of (13.2.5), we also obtain q¡1�n¡1, so q¡1�max (m;n)¡1: a contradiction. �

Lemma 13.2.3. Let �; �02!On with �0>�. For u; v 2No>;�, we have

L� u< E� v =) L�0E�u< E�0E� v:

Proof. Assume that L�u<E� v. Let h2E�0 and let hinv be its functional inverse in E�0. We have
hinv<E�0H2L�0 by (13.0.5, 13.0.6), whence h>E�0H /1 2L�0. Furthermore, u<E� E� v, so

E�u<E�E� E� v: (13.2.6)

We want to prove that E�u< (E�0hE�) v. By (13.2.6), it is enough to prove that there is a g2E�
such that the inequality E�E� g6E�0 hE� holds on No>;�.

Assume that � = �0. Setting g :=H /1 2 2 E�, we have L� hE� > g, whence E� g 6 hE�, and
E�E� g6E� hE�.

Assume that �0 > �. We have E�0 H /1 2 > H2 so E�02 H /1 2 > E�0 H2 > E� E�0 by (13.0.3).
Thus E�0h>E�02H /1 2L�0>E�. Consequently, E�0hE�>E�E�, as claimed. �

If a; b are numbers, then we write [a$ b] for the interval [min (a; b);max (a; b)].

Proposition 13.2.4. For a; b; c 2No with a. c and b 2 [a$ c], any infinite path in a shares
a subpath with b.

Proof. We prove this by induction on n with a.n c. Let P be an infinite path in a. Assume that
a.0 c. If aP c, then we have aP b so P is a path in b. Otherwise, there are '; � 2No, r 2R=/

and m2Mo with a= '++ sign(r)m and c= '++ rm++ �. Then b= '++ s n++ t for certain t2No,
s2R=/ and n2Mo with s n2 [sign(r)m$ rm]. We must have n=m. If P is a path in ', then it
is a path in b. Otherwise, it is a path in sign(r)m, so P%1 is a subpath in sm, hence in b.

We now assume that a.n c where n>0 and that the result holds for all a0; b 0; c 02No and k<n
with a0.k c 0 and b 02 [a0$ c 0]. Assume first that (a; c) is in Configuration I, and write

a = '++ sign(r) e (E�u)�

c = '++ r e (L�E�v)�++ �
with u.n¡1 v:

Then we can write b= '++ sm++ t like in the case when n= 0. If P is a path in ', then it is
a path in b. So we may assume that P is a path in sign(r) e (E�u)�. Note that we have m 2
[e (E�u)�$ e (L�E�v)�]. Setting n := (m e¡ )�2 [E�u$L�E�

v], we observe that supp logn� supp  ,
whence e n� is the hyperserial expansion of m. If P%1 is a path in  , then it is a path in m.

Suppose that P%1 is not a path in  . Assume first that �=1, so  =0, �=0, and P is a path
in (E1u)�. Then Lemma 13.1.14 implies that P%1 is a subpath in � u, so P%2 is a subpath in u.
Otherwise, consider the hyperserial expansion E�u=L� 0E�0w , E�0w 2Mo�0nL<�0Mo�0! of E�u. Since
P%1 is not a path in  , it must be a path in w. The number L� 0E�0w is L<�-atomic, so we must
have �0> � and � 0�� �/!. There are n 2N and � 00��/! such that � 0= � 00+ �/! n. Therefore
u=L� 00+�E�0w ¡n. It follows by Corollary 13.1.17 that P%1 shares a subpath with u, whence so
does P .

Let z := ]�(L� n). Recall that n2 [E�u$L�E�
v], so L�n2 [u$L�L�E�

v]. Now (13.0.3) implies
that L�E�v 2E�[E�v], so L�L�E�v 2L�E�[E�v]=L�[v]. The function ]�=�SmpL� is non-decreasing,
so z = ]�(L� n)2 [u$ ]�(L� L�E�v)] = [u$ v]. But u.n¡1 v, so the induction hypothesis yields
that P%2, and thus P , shares a subpath with z. We deduce with Lemma 13.1.15 that P shares a
subpath with n, hence with b.

Assume now that (a; c) is in Configuration II, and write

a = '++ sign(r) e 

c = '++ r e 
0
a�++ �

with  .n¡1 0:
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Note that we also have  .n¡1 0++ � loga. We may again assume that P%1 is a path in  . Write b=
'++s0q++ t 0, where s02R=/ , t 02No, and q2 [e $e 

0
a�]\Mo. Then logq2 [ $ 0++ � loga] where

 .n¡1 0++ � loga. We deduce by induction that P shares a subpath with logq. By Lemma 13.1.15,
it follows that P shares a subpath with q, hence with b. This concludes the proof. �

Lemma 13.2.5. Let �; �2!On and � 2On with �! <�. Let a2No�;� be of the form

a= '++ r e (L�E�b)�++ �;

with '2No, r2R=/ ,  2No�, b2No�;�, �2f¡1; 1g, � 2No and logL�E�b � supp  . Consider
an infinite path P in c2No�;� with c. b.

i. If logE�c � supp  , then P shares a subpath with  .

ii. If logE�c � supp  and e (E�c)�� supp ', then P shares a subpath with '.

iii. If logE�c � supp  and e (E�c)�� supp ' and a0 := '++ sign(r) e (E�c)� 2/ No�;�, then P
shares a subpath with '.

Proof. i. If logE�c � supp  , then we have  =/ 0, so � > 1. Let m 2 supp  with logE�c <m.
Since logE�c and m are monomials, we have m6 logE�c , whence em6E�c . Our assumption that
m2 supp � logL�E�b also implies em6L�E�b . Hence em2 [E�c$L�E�

b ]. Now P shares a subpath
with E�c , by Lemma 13.1.15. Since E�c .L�E�b , Proposition 13.2.4 next implies that P shares a
subpath with em. Using Lemma 13.1.14, we conclude that P shares a subpath with m, and hence
with  .

ii. Let m2 supp' with m4e (E�c)�. It is enough to prove that P shares a subpath with m. Since
m, e (L�E�b)�, and e (E�c)� are monomials, we have e (L�E�b)�6m6 e (E�c)�. Let n := (e¡ m)�,
so that n2 [L�E�b$E�

c ]. In particular, we have supp  � logn�1. Moreover E�c .L�E�b , so using
Lemma 13.1.15 and Proposition 13.2.4, we deduce in the same way as above that P shares a subpath
with n. If n2/Mo!, then m=e ++�logn is the hyperserial expansion of m, so P shares a subpath with
m. If n2Mo!, then the hyperserial expansion of n must be of the form n=E� 0E�0u , since otherwise
log n would have at least two elements in its support. We deduce that P shares a subpath with u
and that the hyperserial expansion of m is e (E� 0E�0u )�. Therefore P shares a subpath with m.

iii. We assume that a0 is not �-truncated whereas logE�c � supp  and e (E�c)�� supp '. If
�=1, then we must have e (E�c)�41, which means that  <0 or that  =0 and �=¡1. But then
e (L�E�b)�4 1: a contradiction.

Assume that � > 1. By Lemma 13.2.2, we may assume without loss of generality that � = 0.
The assumption on a0 and the fact that a2No>;� imply that ' is non-zero. Write

p := e (E�c)� and
q := e (L�E�b)�:

So a='++ r q and a0='++ sign(r) p. Note that p must be infinitesimal since a0 is not �-truncated.
Thus q is also infinitesimal. By Lemma 13.2.2, we deduce that E<�q¡1�p¡1. We have ]�(a0)Ca0,
so ]�(a0) = ', since a and 'C a are both �-truncated. Since a0 is not �-truncated, there is an
ordinal  <� with p� (LE�

')¡1. If '> a, then q� (L<�E�a)¡1, because a is �-truncated. Thus
q� (L<�E�

')¡1. If '<a, then '+(L<�E�
')¡12L�[']<L�[a]3 a= '++ r q, because ' and a are

�-truncated. Now r > 0, since '<a. We again deduce that q� (L<�E�
')¡1.

In both cases, we have LE�
'2 [p¡1$q¡1] where p¡1.q¡1, so P shares a subpath with LE�

',
by Proposition 13.2.4. It follows by Corollary 13.1.17 that P shares a subpath with '. �

13.2.2 Well-nestedness
We now prove that every number is well-nested. Throughout this subsection, P will be an infinite
path inside a number a 2No. At the beginning of Section 13.1.2 we have shown how to attach
sequences (rP ;i)i<!, (mP ;i)i<!, etc. to this path. In order to alleviate notations, we will abbreviate
ri := rP ;i, mi :=mP ;i, ui :=uP ;i,  i :=  P ;i, �i := �P ;i, �i :=�P ;i, and �i := �P ;i for all i2N.

We start with a technical lemma that will be used to show that the existence of a bad path P
in a implies the existence of a bad path in a strictly simpler number than a.
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Lemma 13.2.6. Let a2No, let P be an infinite path in a and let i2N such that every index k6 i is
good for (P ;a). For k6 i, let 'k :=(uk)�mk, "k :=rk, and �k :=(uk)�mk, so that "0;:::; "i¡12f¡1;1g
and

uk = 'k++ "k e k+1 (E�k
uk+1)�k (k < i)

ui = 'i++ ri e i+1 (L�iE�i
ui+1)�i++ �i:

Let �2f0; 1g and let ci2No�;�i¡1 be a number with ci.ui and

ci= 'i++ � sign(ri) e i+1 p�i; (13.2.7)

for a certain p 2Mo< with log p� supp  i+1, pvE�i
ui+1 and p 2 E![E�i

ui+1] whenever  i+1= 0.
For k= i¡ 1; : : : ; 0, we define

ck := 'k+ "k e k+1 (E�k
ck+1)�k (13.2.8)

Assume that P shares a subpath with ci. If P shares no subpath with any of the numbers '0;  1; : : : ;
'i¡1;  i, then we have c0va, and P shares a subpath with c0.

Proof. Using backward induction on k, let us prove for k= i¡ 1; : : : ; 0 that

L�k ck+1 < E�kuk+1 (13.2.9)k
logE�k

ck+1 � supp  k+1 (13.2.10)k
e k+1 (E�k

ck+1)�k � supp 'k (13.2.11)k
ck . uk (13.2.12)k

P shares a subpath with ck+1 (13.2.13)k
ck+1 2 No�;�k (13.2.14)k
ck+1 v uk+1 (13.2.15)k

and that (13.2.13)k and (13.2.15)k also hold for k=¡1.
We first treat the case when k = i¡ 1. Note that ci=/ 0 since it contains a subpath, so 'i 2

No>;� or �= 1. From our assumption that ci= 'i++ � sign(ri) e i+1 p�i and the fact that p 2
E![E�i

ui+1] if  i+1=0, we deduce that ci2 E![ui]. Hence L�i¡1 ci< E�i¡1 ui and (13.2.9)i¡1. Note
that (13.2.13)i¡1 and (13.2.14)i¡1 follow immediately from the other assumptions on ci. If �=
0 then ci= 'iP ui. If � = 1, then pv L�i E�i

ui+1, since L�i E�i
ui+1 2 E�i[E�i

ui+1] and p v E�i
ui+1 v

E�i[E�i
ui+1]. Hence p�iv (L�iE�i

ui+1)�i by Lemma 13.1.21 and sign(ri) e i+1 p�iv ri e i+1 (L�iE�i
ui+1)�i

by Lemmas 13.1.19 and 13.1.22. Finally, civui by Lemma 13.1.20, so (13.2.15)i¡1 holds in general.
Recall that P is a subpath in ci, but that it shares no subpath with  i or 'i¡1. In view of
(13.2.14)i¡1, we deduce (13.2.10)i¡1 from Lemma 13.2.5(i) and (13.2.11)i¡1 from Lemma 13.2.5(ii).
Combining (13.2.10)i¡1, (13.2.11)i¡1 and (13.2.14)i¡1 with the relation ci. ui, we finally obtain
(13.2.12)i¡1.

Let k 2 f0; : : : ; i ¡ 1g and assume that (13.2.9�13.2.15)` hold for all ` > k. We shall
prove (13.2.9�13.2.15)k¡1 if k > 0, as well as (13.2.13)¡1 and (13.2.15)¡1. Recall that

ck= 'k+ "k e k+1 (E�k
ck+1)�k:

(13.2.9)k¡1. Recall that k > 0. If 'k=/ 0 or  k+1=/ 0, then ck2P [uk] and (13.2.10�13.2.11)k
imply (13.2.9)k¡1. Assume now that 'k=  k+1= 0. It follows since k > 0 that �k= 1, so
ck¡1=E�k¡1

ck and uk¡1=E�k¡1 uk. Since E�k¡1
uk is a hyperserial expansion, we must have

uk2/Mo�k¡1!, so �k¡1>�k. The result now follows from (13.2.9)k and Lemma 13.2.3.

(13.2.13)k¡1. We know by (13.2.13)k that P shares a subpath with ck+1. Since ck+12No�;�k,
we deduce with Corollary 13.1.17 that P also shares a subpath with E�k

ck+1, hence with
(E�k

ck+1)�k. In view of (13.2.10)k and Lemma 13.1.16, we see that P shares a subpath with
e k+1 (E�k

ck+1)�k . Hence (13.2.11)k gives that P shares a subpath with ck.

(13.2.10)k¡1. By (13.2.12)k, we have ck.uk. Now P shares a subpath with ck by (13.2.13)k,
but it shares no subpath with  k. Lemma 13.2.5(i) therefore yields the desired result
logE�k¡1

ck � supp  k.
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(13.2.11)k¡1. As above, P shares a subpath with ck, but no subpath with 'k¡1. We also have
ck.uk and logE�k¡1

ck � supp  k, so (13.2.11)k¡1 follows from Lemma 13.2.5(ii).

(13.2.12)k¡1. We obtain (13.2.12)k¡1 by combining (13.2.9�13.2.12)k and (13.2.14)k.

(13.2.14)k¡1. The path P shares a subpath with ck, but no subpath with 'k. By what
precedes, we also have logE�k

ck+1� supp  k and e k (E�k
ck+1)�k� supp 'k. Note finally that

uk 2No�;�k¡1. Hence ck 2No�;�k¡1, by applying Lemma 13.2.5(iii) with �k, �k¡1, uk,
uk+1, and ck+1 in the roles of �, �, a, b, and c.

(13.2.15)k¡1. It suffices to prove that E�k
ck+1vE�k

uk+1, since

E�k
ck+1vE�k

uk+1

=) (E�k
ck+1)�kv (E�k

uk+1)�k (by Lemma 13.1.21)
=) e k+1 (E�k

ck+1)�kv e k+1 (E�k
uk+1)�k (by Lemma 13.1.22)

=) "k e k+1 (E�k
ck+1)�kv "k e k+1 (E�k

uk+1)�k

=) 'k++ "k e k+1 (E�k
ck+1)�kv 'k++ "k e k+1 (E�k

uk+1)�k (by Lemma 13.1.20)
=) ckvuk:

Assume that �k> 1 and recall that

ck = 'k++ "k e k+1(E�k
ck+1)�k

ck+1 = 'k+1++ "k+1 e k+2(E�k+1
ck+2)�k+1:

By Lemma 13.1.25, it suffices to prove that ck+1v uk+1 and that E ck+1<E�k
uk+1 for all

 <�k. The first relation holds by (13.2.15)k. By (13.2.9)k, we have L�k ck+1< E�k uk+1.
Therefore ck+1<E�k

1

2
uk+1<L<�kE�kuk+1 by Lemma 13.1.25. This yields the result.

Assume now that �k=1. For d=0; : : : ; i, let

cd := dcd¡'d
ud := dud¡'d:

We will prove, by a second descending induction on d= i; : : : ; k¡ 1, that the monomials cd
and ud satisfy the premises of Lemma 13.1.24, i.e. cd; ud� 1, cd2E![ud], and cdv ud. It will
then follow by Lemma 13.1.24 that eckv euk, thus concluding the proof.

If d= i, then supp ci; suppui�1, because �i¡1=1. In particular ci;ui�1. Moreover, civ
ui follows from our assumption that pvE�i

ui+1, the fact that E�i
ui+1vE�i[E�i

ui+1]3L�iE�i
ui+1,

and Lemmas 13.1.22 and 13.1.21. If  i+1=/ 0, then we have ci2E![ui] because supp  i+1�
log p; logE�i

ui+1. Otherwise, we have ci= p2E![E�i
ui+1] = E![ui].

Now assume that d<i, that the result holds for d+1, and that �d=1. Again �d=1 implies
that cd+1; ud+1� 1. The relation cd+1v ud+1 and Lemmas 13.1.18, 13.1.19, and 13.1.20
imply that cd+1v ud+1. If  d+2=/ 0, then cd+1 2 E![ud+1] by (13.2.10)d+1. Otherwise, we
have �d+1=1, because cd2No�;1. Since �d=1, the number ud+1='d+1++"d+1E�d+1

ud+2 is not
tail-atomic, so we must have �d+1=1. This entails that cd+1=ecd+2 and ud+1=eud+2. By the
induction hypothesis at d+1, we have cd+22E![ud+2]. We deduce that cd+22E![ud+2], so

cd+12 exp E![ud+2] = E![eud+2] = E![ud+1]:

It follows by induction that (13.2.15)k¡1 is valid.

This concludes our inductive proof. The lemma follows from (13.2.15)¡1 and (13.2.13)¡1. �

We are now in a position to prove Theorem D.

Theorem 13.2.7. Every surreal number is well-nested.

Proof. Assume for contradiction that the theorem is false. Let a be a v-minimal ill-nested number
and let P be a bad path in a. Let i2N be the smallest bad index in (P ;a). As in Lemma 13.2.6, we
define 'k := (uk)�mk, �k := (uk)�mk, and "k := rk for all k6 i. We may assume that i>0, otherwise
the number c0 := '0++ sign(r0) e 1 (E�0

u1)�0 is ill-nested and satisfies c0@a: a contradiction.
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Assume for contradiction that there is a j <i such that 'j or  j+1 is ill-nested. Set � :=0 if 'j is
ill-nested and � :=1 otherwise. If �=1, then P cannot share a subpath with 'j, so supp'j� e j+1
by Lemma 13.2.5, and 'j++ "j e j+1 is ill-nested. In general, it follows that cj := 'j++ � "j e j+1 is
ill-nested. Let Q be a bad path in cj and set P 0 := (P (0); : : : ; P (j ¡ 1)) �Q. Then we may apply
Lemma 13.2.6 to j, cj, and P 0 in the roles of i, ci, and P . Since cj=/ uj, this yields an ill-nested
number c0@a: a contradiction.

Therefore the numbers '0;  1; : : : ; 'i¡1;  i are well-nested. Since i is bad for (P ; a), one of the
four cases listed in Definition 13.1.10 must occur. We set

di :=

(
'i++ sign(ri) e i+1 if Definition 13.1.10(4) occurs
'i++ sign(ri) e i+1 (E�i

ui+1)�i otherwise:

By construction, we have di.ui. Furthermore P shares a subpath with di, so there exists a bad
path Q in di. We have di2No�;�j¡1 by Lemma 13.2.2. If Definition 13.1.10(4) occurs, then we
must have  i+1=/ 0 so di is written as in (13.2.7) with di in the role of ci and p= �=1. Otherwise,
di is as in (13.2.7) for p=E�i

ui+1. Setting P 0 :=(P (0);:::; P (i¡1))�Q, it follows that we may apply
Lemma 13.2.6 to di and P 0 in the roles of ci and P . We conclude that there exists an ill-nested
number d0@ a: a contradiction. �
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Chapter 14

Nested numbers

In the previous chapter, we have examined the nature of infinite paths in surreal number and shown
that they are ultimately �well-behaved�. In this section, we work in the opposite direction and
show how to construct surreal numbers that contain infinite paths of a specified kind. We follow
the same method as in [11, Section 8].

Let us briefly outline the main ideas. Our aim is to construct �nested numbers� that correspond
to nested expressions like

a = !
p

+e log!
p

¡e loglog!
p

+e
logloglog!

p
¡e

� ��

(14.0.1)

Nested expressions of this kind will be presented through so-called coding sequences �. Once we
have fixed such a coding sequence �, numbers a of the form (14.0.1) need to satisfy a sequence of
natural inequalities: for any c2R with c> 1, we require that

c¡1 !
p

< a < c !
p

!
p

+ec
¡1 log!
p

< a < !
p

+ec log!
p

!
p

+e log!
p

¡ec loglog!
p

< a < !
p

+e log!
p

¡ec
¡1 loglog!

p

!
p

+e log!
p

¡e loglog!
p

+c¡1e logloglog!
p

< a < !
p

+e log!
p

¡e loglog!
p

+ce
logloglog!

p

���

Numbers that satisfy these constraints are said to be admissible. Under suitable conditions, the
class Ad of admissible numbers forms a convex surreal substructure. This will be detailed in
Section 14.1, where we will also introduce suitable coordinates

a;0 = !
p

+e log!
p

¡e loglog!
p

+e
logloglog!

p
¡e

� ��

= a

a;1 = log!
p

¡ e loglog!
p

+e
logloglog!

p
¡e

� ��

= log (a;0¡ !
p

)

a;2 = log log!
p

+e logloglog!
p

¡e �
�

�
= log

¡
log!

p
¡a;1

�
���

for working with numbers in Ad.
The notation (14.0.1) also suggests that each of the numbers a;0¡ !

p
, log!
p

¡a;1, : :: should
be a monomial. An admissible number a2Ad is said to be nested if this is indeed the case. The
main result of this section is Theorem E, i.e. that the class Ne of nested numbers forms a surreal
substructure. In other words, the notation (14.0.1) is ambiguous, but can be disambiguated using
a single surreal parameter.

14.1 Coding sequences for nested numbers

Let us first define and study the basic properties of sequences of numbers that can occur in nested
expansions.
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14.1.1 Coding sequences

Definition 14.1.1. Let � := ('i; "i;  i; �i; �i)i2N2 (No� f¡1; 1g �No� f¡1; 1g � !On)N. We
say that � is a coding sequence if for all i2N, we have

a)  i2No�;

b) 'i+12No�;�i[f0g;
c) (�i=1)=) ( i=0^ ( i+1=0=)�i+1=1));

d) ('i+1=  i+1=0)=) (�i>�i+1^ "i+1= �i+1=1);

e) 9j > i; ('j=/ 0_  j=/ 0).

Taking �i= 1 for all i 2N, we obtain a reformulation of the notion of coding sequences in [11,
Section 8.1]. If �=('i; "i;  i; �i; �i)i2N is a coding sequence and k2N, then we write

�%k := ('k+i; "k+i;  k+i; �k+i; �k+i)i2N;

which is also a coding sequence.

Lemma 14.1.2. Let P be an infinite path in a number a2No without any bad index for a. Let
'0 := a�mP ;0 and 'i := (aP ;i)�mP ;i for all i 2N>. Then �P := ('i; rP ;i;  P ;i+1; �P ;i; �P ;i)i2N is a
coding sequence.

Proof. Let i2N. We have rP ;i2f¡1;1g because i is a good index for (P ;a). We have  P ;i+12No�
and aP ;i+12No�;�i by the definition of hyperserial expansions. If i > 0 and 'i=/ 0, then we have
'i2No>;� because aP ;i2No>;� by the definition of paths. Lemma 13.2.2 also yields 'i2No�;�i.
This proves the conditions a) and b) for coding sequences. Assume that �i= 1. Then by the
definition of hyperserial expansions, we have  P ;i+1= 0 and uP ;i+1= aP ;i+1 is not tail-atomic.
Assume that  P ;i+2= 0. Then supp uP ;i+1� 1 so �P ;i+2= 1. We have uP ;i+1= 'i+1++ rP ;i+1 a

where a :=E�P ;i+1
uP ;i+2 and uP ;i+1 is not tail-atomic. This implies that a is not log-atomic, so �P ;i+1=1.

Thus c) is valid.
Assume that 'i+1=  P ;i+2= 0. Recall that aP ;i+1= rP ;i+1 (E�P ;i+1

uP ;i+2)�P ;i+1= uP ;i+12No>;�,
so rP ;i+1= �P ;i+1=1. Since E�P ;i

uP ;i+12/Mo�P ;i!, we have uP ;i+12/Mo�P ;i!, whence �P ;i+16�P ;i.
This proves d).

Assume now for contradiction that there is an i02N with 'P ;j= P ;j+1=0 for all j >i0. By d),
we have rP ;j= �P ;j=1 for all j >i0, and the sequence (�P ;j)j>i0 is non-increasing, hence eventually
constant. Let i1> i0 with �P ;i1=�P ;j for all j > i1. For k 2N, we have aP ;i1=E�P ;i1k aP ;i1+k so
aP ;i12

T
k2NE�P ;i1kMo�P ;i1=Mo�P ;i1!. Therefore E�P ;i1

aP ;i1+1 is L<�P ;i1+1!-atomic: a contradiction.
We deduce that e) holds as well. �

We next fix some notations. For all i; j 2N with i6 j, we define partial functions �i, �i; and
�j;i on No by

�i(a) := 'i+ "i e i¡1 (E�i¡1 a)
�i¡1;

�j;i(a) := (�i � � � � ��j¡1)(a);
�i; := �i;0:

The domains of these functions are assumed to be largest for which these expressions make sense.
We also write

�i; = �;i :=
Y
k<i

"k �k

�j;i = �i;j :=
Y

i6k<j
"k �k

We note that on their respective domains, the functions �i, �i;, and �j;i are strictly increasing if
"i �i= 1, �i;= 1, and �j;i= 1, respectively, and strictly decreasing in the contrary cases. We will
write �;i and �i;j for the partial inverses of �i; and �j;i. We will also use the abbreviations

ai; := �i;(a)
a;i := �;i(a)

aj;i := �j;i(a)
ai;j := �i;j(a)
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For all i2N, we set

Li
[1] := ('i¡�;iR> supp 'i)i; Ri

[1] := ('i+�;iR> supp 'i)i;
Li
[2] := ('i+ "i e i¡"i�;iR

>supp i)i; Ri
[2] := ('i+ "i e i+"i�;iR

>supp i)i;

Li
[3] :=

8>><>>:
? if 'i+1=0

or �;i+1 "i+1=¡1
(L�i'i+1)i+1; otherwise

Ri
[3] :=

8>><>>:
? if 'i+1=0

or �;i+1 "i+1=1
(L�i'i+1)i+1; otherwise

Li := Li
[1][Li

[2][Li
[3]

Ri := Ri
[1][Ri

[2][Ri
[3]

L :=
[
i2N

Li: R :=
[
i2N

Ri:

Note that

'i=0 () Li
[1]=Ri

[1]=? and

 i=0 () Li
[2]=Ri

[2]=?:

The following lemma generalizes [11, Lemma 8.1].

Lemma 14.1.3. If a2 (L jR), then a;i is well defined for all i2N.

Proof. Let us prove the lemma by induction on i. The result clearly holds for i= 0. Assuming
that a;i is well defined, let j > i be minimal such that 'j =/ 0 or  j =/ 0. Note that we have
�i>�i+1> � � �>�j, so E�i �E�i+1 � � � � �E�j=E where =�i+�i+1+ � � �+�j. Applying �;i to
the inequality

Lj<a<Rj ;

we obtain
�;i (Lj);i<�;i a;i<�;i (Rj);i:

Now if 'j=/ 0, then

(Lj);i � 'i+ "i e i (E('j¡�;jR> supp 'j))�i

(Rj);i � 'i+ "i e i (E('j+�;jR> supp 'j))�i;

whence

�;i e i (E('j¡�;jR> supp 'j))�i<�;i
a;i¡ 'i
"i

<�;i e i (E('j+�;jR> supp 'j))�i:

Both in the cases when �;i=1 and when �;i=¡1, it follows that ((a;i¡ 'i)/"i e i)�i is bounded
from below by the hyperexponential E of a number. Thus a;j=L(((a;i¡ 'i)/("i e i))�i) is well
defined and so is each a;k for i6 k < j. If 'j=0, then we have  j=/ 0 and

(Lj);i � 'i+ "i e i (E(e j¡"j�;jR
>supp j))�i;

(Rj);i � 'i+ "i e i (E(e j+"j�;jR
>supp j))�i:

Hence
"i e i (E(e j¡"j�;jR

>supp j))�i<a;i¡ 'i<"i e i (E(e j+"j�;jR
>supp j))�i

Both in the cases when "i= 1 and when "i=¡1, it follows that ((a;i¡ 'i)/"i e i)�i is bounded
from below by the hyperexponential E of a number, so a;j is well defined and so is each a;k for
i6 k < j. �

14.1.2 Admissible sequences

Definition 14.1.4. Let �:=('i; "i;  i; �i; �i)i2N be a coding sequence and let a2No. We say that
a is �-admissible if a;i is well defined for all i2N and

a;i = 'i++ "i e i (E�i a;i+1)�i;
supp  i � logE�i a;i+1; and
'i+1 C ]�i(a;i+1) if 'i+1=/ 0:
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We say that � is admissible if there exists a �-admissible number.

Note that we do not ask that e i (E�ia;i+1)
�i be a hyperserial expansion, nor even that E�ia;i+1

be a monomial. For the rest of the section, we fix a coding sequence �=('i; "i;  i; �i; �i)i2N. We
write Ad for the class of �-admissible numbers. If a 2Ad, then the definition of Ad implicitly
assumes that a;i is well defined for all i2N. Note that if � is admissible, then so is �%k for k2N.
We denote by Ad%k the corresponding class of �%k-admissible numbers.

The main result of this subsection is the following generalization of [11, Proposition 8.2]:

Proposition 14.1.5. We have Ad=(L j R).

Proof. Let a 2Ad[ (L j R) and let i 2N. We have a;i2No>;�. If �;i= 1, then �i; is strictly
increasing so we have

Li
[1]
<a<Ri

[1] ()
¡
Li
[1]�

;i<a;i<
¡
Ri
[1]�

;i

() 'i¡R> supp 'i<a;i< 'i+R> supp 'i
() a;i¡ 'i� supp 'i
() 'iP a;i:

If �;i=¡1, then �i; is strictly decreasing and likewise we obtain Li;<a<Ri;() 'iP a;i.
We have �i logE�i a;i+1= �i

�
log a;i¡ 'i

"i e
 i

�
. If �;i=1, then �i; is strictly increasing so we have

Li
[2]
<a<Ri

[2] () 'i+ "i e i¡"iR
>supp i<a;i<'i+ "i e i+"iR

>supp i

() ¡R> supp  i< log
a;i¡ 'i
"i e i

<R> supp  i

() supp  i� log
a;i¡ 'i
"i e i

() logE�i a;i+1� supp  i:

Likewise, we have Li
[2]<a<Ri

[2]() logE�i a;i+1� supp  i if �;i=¡1.
Assume that 'i+1=/ 0 and �;i+1=1. If "i+1=1, then we have a;i+1>'i+1. Hence

Li
[3][Li+1

[1]
<a<Ri

[3][Ri+1
[1] () L�i'i+1<a;i+1^ 'i+1Pa;i+1

() 'i+1<]�i(a;i+1)^ 'i+1Pa;i+1
() 'i+1C ]�i(a;i+1):

If "i+1=¡1, then we have a;i+1> 'i+1, whence

Li
[3][Li+1

[1]
<a<Ri

[3][Ri+1
[1] () a;i+1<L�i'i+1^ 'i+1Pa;i+1

() ]�i(a;i+1)< 'i+1^ 'i+1Pa;i+1
() 'i+1C ]�i(a;i+1):

Symmetric arguments apply when 'i+1=/ 0 and �;i+1=¡1.
We deduce by definition of Ad that Ad=

T
i2N (Li j Ri)= (L j R). �

As a consequence of this last proposition and [11, Proposition 4.29(a)], the class Ad is a surreal
substructure if and only if � is admissible.

Example 14.1.6. Consider the coding sequence �0=('i; "i; �i;  i; �i)i2N where for all i2N, we
have

'i = L!2i!+L!2i2!+L!2i3!+ � � �;
"i = 1;
 i = L!2i+1!+L!2i+12!+L!2i+13!+ � � �;
�i = ¡1 and
�i = !2i+1:
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We use the notations from Section 14.1. We claim that �0 is admissible. Indeed for i2N, set

ai := '0+e 0
�
E!
'1+e

 1
�
E
!3

� ��
'i
�¡1�¡1

:

Given j2N and i> j, we have Lj<ai and ai<Rj. We deduce that L<R, whence �0 is admissible.

Lemma 14.1.7. Let a2Ad and b2No be such that a¡ '0 and b¡ '0 have the same sign and
the same dominant monomial. Then b2Ad.

Proof. For x; y 2No=/ , we write x� y if x� y and x and y have the same sign. Let us prove by
induction on i2N that b;i is defined and that a;i¡ 'i� b;i¡ 'i. Since this implies that 'iP b;i,
that log b;i¡ 'i

"i e
 i
� supp  i, and that 'iC ]�i¡1(b;i) if i > 0, this will yield b2Ad.

The result follows from our hypothesis if i=0. Assume now that a;i¡ 'i� b;i¡ 'i and let us
prove that a;i+1¡ 'i+1� b;i+1¡ 'i+1. Let

ci :=
�
b;i¡ 'i
"i e i

�
:

We have ci�
�
a;i¡ 'i
"i e

 i

��i
=E�ia;i+12No>;�, so b;i+1=L�i(ci) is defined. Moreover ci2E�i[E�ia;i+1]

so b;i+1 2 L�i[a;i+1]. Since 'i+1C ]�i(a;i+1) = ]�i(b;i+1), we deduce that b;i+1¡ 'i+1� a;i+1¡
'i+1, whence in particular b;i+1¡ 'i+1� a;i+1¡ 'i+1. This concludes the proof. �

Corollary 14.1.8. We have Ad%1=L�0[Ad%1].

Proof. For b2Ad%1, and c2L�0[b], we have '1C ]�0(b)= ]�0(c) so c¡'1� b¡ '1. We conclude
with the previous lemma. �

Lemma 14.1.9. For a; b2Ad and i2N>, we have L�i¡1 a;i< E�i¡1 b;i.

Proof. Let j > i be minimal with 'j =/ 0 or  j =/ 0. We thus have a;j ; b;j 2 P ['j ++ "j e j] so
log a;j� b;j. We have a;i=E�i+ � � �+�j¡1 a;j and b;i=E�i+� � �+�j¡1 b;j where �i> � � �>�j> 1. We
deduce by induction using Lemma 13.2.3 that L�i¡1 a;i<E�i¡1 b;i. �

14.1.3 Nested sequences
In this subsection, we assume that � is admissible. For k2N we say that a �%k-admissible number
a is �%k-nested if we have E�k+i ak;i+12Mo�k+i nL<�k+iMo�k+i! for all i2N. We write Ne%k
for the class of �%k-nested numbers. For k = 0 we simply say that a is �-nested and we write
Ne :=Ne%0.

Definition 14.1.10. We say that � is nested if for all k 2N, we have

Ad%k= 'k+ "k e k (E�kAd%k+1)�k:

Note that the inclusion Ad%k�'k+ "k e k (E�kAd%k+1)�k always holds. In [11, Section 8.4],
we gave examples of nested and admissible non-nested sequences in the case of transseries, i.e. with
�i=1 for all i2N. We next give an example in the hyperserial case.

Example 14.1.11. We claim that the sequence �0 from Example 14.1.6 is nested. Indeed, let k2N
and a2Ad%k+1. We have a='k+1++e k+1 (E!2k+3b)¡1 for a certain b2No>;� with b�L!2k+4!.
Let us check that the conditions of Definition 14.1.4 are satisfied for c := 'k+e k (E!2k+1 a)¡1.

First let m2 supp  k. We want to prove that m� logE!2k+1 a. We have m=L!2k+1n ! for a
certain n2N>. Now a< 2L!2k+2!, so logE!2k+1 a�E!2k+12

L!2k+2!=L!2k+2(!+2)�m.
Secondly, let n2 supp'k. We want to prove that n� e k (E!2k+1a)¡1. We have n=L!2kn! for a

certain n2N>. Then e k (E!2k+1a)¡1�e2 k by the previous paragraph. Now 2 k+N<3L!2k+1!
so e2 k� e3L!2k+1!�n.
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Finally, we claim that 'k+1 C ]!2k+1(a). This is immediate since the dominant term � of
e k+1 (E!2k+3 b)¡1 is positive infinite, so 'k+1C 'k+1++ � P ]!2k+1(a). Therefore �0 is nested.

A crucial feature of nested sequences is that they are sufficient to describe nested expansions.
This is the content of Theorem 14.1.15 below.

Lemma 14.1.12. Let b2Ad%1. If �0>1, or �0=1 and b� is not tail-atomic, then the hyperserial
expansion of E�0 ]�0(b) is

E�0 ]�0(b)=E�0
]�0(b)

If �0=1, b�=  ++ � b is tail-atomic, and eb=L�E�
u is a hyperserial expansion, then  2Ad%1

and the hyperserial expansion of exp b� is

exp b�=e (L�E�u)�:

Proof. Recall that ]1(b) = b�. By Corollary 14.1.8, we have ]�0(b)2Ad%1,. So we may assume
without loss of generality that b= ]�0(b).

We claim that E�0
b 2Mo�0 n L<�0Mo�0!. Assume for contradiction that E�0

b 2 L<�0Mo�0!
and write E�0

b =L a accordingly. Then Corollary 13.1.6 implies that =0, in which case we define
n :=0, or �0=!�+1 for some ordinal � and =(�0)/!n for some n2N>. Therefore E�0

b+n2Mo�0!,
so b+n2Mo�0!. This implies that

b=(b+n)++ (¡n):

Recall that '1Cb. Assume that n=0, so '1=0. Since b is log-atomic, we also have  1=0. Let j >1
be minimal with 'j=/ 0 or  j=/ 0. We have �1> � � �>�j¡1 and b1;j=L�1+� � �+�j¡1 b2Mo�j¡1!.
In particular, the number b1;j is log-atomic. If 'j=/ 0, this contradicts the fact that 'jC b1;j. If
 j=/ 0, then supp  j� log ((b1;j e¡ j)�j) implies

log b1;j=  j++ log ((b1;j e¡ j)�j):

But then log b1;j is not a monomial: a contradiction. Assume now that n> 0. So '1= b+ n and
b= '1++(¡n). But then b1;2 is not defined: a contradiction. We conclude that E�0

b 2/ L<�0Mo�0!.
If �0> 1, or if �0=1 and b is not tail-atomic, then our claim yields the result. Assume now

that �0=1 and that b=  ++ � b is tail-atomic where �2f¡1; 1g;  2No�, and eb=L�E�u2Mo!
is a hyperserial expansion. Then the hyperserial expansion of exp b is exp b=e (L�E�u)�.

We next show that  2Ad%1. If b 2/ e 1 (E�1Ad%2)�1, then '1C  , and we conclude with
Lemma 14.1.7 that  2Ad%1. Assume for contradiction that b2 e 1 (E�1Ad%2)�1. Since b is log-
atomic, we must have  1=0. By the definition of coding sequences, this implies that �1=1 and
�1=1. So b= '1++ "1 exp(b1;2), whence  = '1, �= "1, and b= exp(b1;2). In particular the number
b1;2 is log-atomic, hence tail-atomic. Since b1;22Ad%2, the claim in the second paragraph of the
proof, applied to �%1, gives E1

b1;22/Mo!. But then also b2/Mo!: a contradiction. �

We pursue with two auxiliary results that will be used order to construct a infinite path required
in the proof of Theorem 14.1.15 below.

Lemma 14.1.13. For a 2 Ad, there is a finite path P in a with uP ;jP j 2 Ad%1 ¡ N or
 P ;jP j2Ad%1¡N.

Proof. By Lemma 13.1.16, it is enough to find such a path in E�0 a;1. Write �0 :=!�. Assume
first that �=0, so �0=1 and  0=0. If (a;1)� is not tail-atomic, then the hyperserial expansion
of exp (a;1)� is exp (a;1)�=E1(a;1)� and rE1(a;1)� is the dominant term of exp a;1 for some r 2R=/ .
Then the path P with jP j=1 and �P ;0 :=rE1(a;1)� satisfies uP ;jP j=(a;1)�2Ad%1. If (a;1)� is tail-
atomic, then there exist  2Ad%1, �2f¡1; 1g and a2Mo! such that the hyperserial expansion
of exp (a;1)� is exp (a;1)�=e a�. Let r e a� be a term in exp a;1 with r 2R=/ . Then the path P
with jP j=1 and P (0) := r e a� satisfies  P ;jP j=  2Ad%1¡N.

Assume now that �> 0. We recall that there are an ordinal �<�0 and a number � with

E�0 a;1=E�(L�E�0
]�0(a;1)++ �):
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If � is a limit ordinal, then by Lemma 14.1.12, we have a hyperserial expansion m :=L�E�0
]�0(a;1).

Let � 2 term ]�0(a;1) and set Q(0)=m and Q(1) := � , so that Q is a path in m. By Lemma 13.1.15,
there is a subpath in E�0 a;1, hence also a path P in E�0 a;1, with �P ;jP j¡1= m. So uP ;jP j =
]�0(a;1)2Ad%1. If � is a successor ordinal, then we may choose �=!�¡n for a certain n2N. By
Lemma 14.1.12, we have a hyperserial expansion m :=E�0

]�0(a;1)¡n. As in the previous case, there
is a path P in E�0 a;1 with �P ;jP j=m, whence uP ;jP j= ]�0(a;1)¡n2Ad%1¡N. �

Corollary 14.1.14. For a2Ad and k2N, there is a finite path P in a with jP j>k and uP ;jP j2
Ad%k¡N or  P ;jP j2Ad%k¡N.

Proof. This is immediate if k= 0. Assume that the result holds at k and pick a corresponding
path P with uP ;jP j2Ad%k ¡N (resp.  P ;jP j 2Ad%k ¡N). Note that the dominant term � of
uP ;jP j¡'k (resp.  P ;jP j¡'k) lies in "k e k (E�kAd%k+1)�k by Lemma 14.1.7. Moreover � is a term
of uP ;jP j (resp.  P ;jP j). By the previous lemma, there is a path Q in � with uQ;jQj2Ad%k+1¡N
or  Q;jQj2Ad%k+1¡N, so (P (0); : : : ; P (jP j ¡ 1); Q(0)) �Q satisfies the conditions. �

Theorem 14.1.15. There is a k 2N such that �%k is nested.

Proof. Assume for contradiction that this is not the case. This means that the set � of indexes
d2N such that we do not have Ad%d= 'd+ "d e d (E�dAd%d+1)�d is infinite. We write �= fdi :
i2Ng where d0<d1< � � �. Fix a2Ad and let d := di2�. Let u2Ad%d+1 such that

'd+ "d e d (E�du)�d2/Ad%d; (14.1.1)

let n2N and let P be any finite path with

uP ;jP j= 'd+ "d e d (E�du)�d¡n:

We claim that we can extend P to a path Q with jQj> jP j, uQ;jQj2Ad%di+3¡N and such that jP j
is a bad index in Q. Indeed, in view of Definition 14.1.4 for Ad%d, the relation (14.1.1) translates
into the following three possibilities:

� There is an n2 supp  d with n4 logE�d u. We then have logE�d a;d+1� n4 logE�du. By
Lemma 14.1.7 and the convexity of Ad%d+1, we deduce that �d ( d)n n lies in the class
�d log E�dAd%d+1, so e( d)nn 2 (E�dAd%d+1)�d. By Corollary 14.1.14 for the admissible
sequence starting with (0; 1; 0; �d; �d) and followed by �%d+1, there is a finite path R0 in
e( d)nn with jR0j > di+3 ¡ d > 2 and uR0;jR0j 2Ad%di+3 ¡N. Taking the logarithm and
using Lemma 13.1.14, we obtain a finite path R1 in ( d)n n, hence in  d, with jR1j> 2 and
uR1;jR1j=uR0;jR0j2Ad%di+3¡N. Write (E�da;d+1)�d=rm++ � where r2R=/ and m2Mo=/ .
Then log m� E�d a;d+1� supp  d, so the hyperserial expansion of e dm has one of the
following forms

e dm = e d++� (L�E�u)� or
e dm = (E1

 d++�)�

where (L�E�u)� is a hyperserial expansion and � is purely large. In both cases, the path R=
("dr e dm)�R1 is a finite path R in "d e d (E�da;d+1)�d with uR;jRj=uR1;jR1j2Ad%di+3¡N.
Since R(0) is a term in uP ;jP j, we may consider the path Q :=P �R. Moreover, since �Q;jP j
is a term in  d=  Q;jP j, the index jP j is bad for Q.

� We have logE�du� supp d, but there is an m2 supp'd with m4e d(E�du)�d. We then have
e d (E�da;d+1)�d�'mm4 e d (E�du)�d. By Lemma 14.1.7 and the convexity of Ad%d+1, we
deduce that ('d)mm lies in e d (E�dAd%d+1)�d. So L�d((e¡ d ('d)mm)�d) lies in Ad%d+1.
But then also v := ]�d(L�d((e

¡ d ('d)mm)�d)) lies in Ad%d+1 by Corollary 14.1.8. By Corol-
lary 14.1.14, there is a finite path R0 in v with jR0j>2 and uR0;jR0j2Ad%di+3¡N. Applying
Lemma 13.1.15 to this path R0 in v, we obtain is a finite path R1 in (e¡ d ('d)mm)�d with
uR1;jR1j2Ad%di+3¡N. Since ('d)mm2e d(E�dAd%d+1)�d, we have supp d�e¡ d('d)mm.
So Lemma 13.1.16 implies that there is a finite path R in ('d)m m, hence in 'd, with
uR;jRj2Ad%di+3¡N. We have R(0)2 term 'd nR� term uP ;jP j, so Q :=P �R is a path.
Write � for the dominant term of "d e d (E�d u

0)�d. The index jP j is a bad in Q because
�Q;jP j and � both lie in term aQ;jP j, and �Q;jP j� � .
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� We have log E�d u � supp  d and supp 'd � e d (E�d u)�d, but 'd+1 = ]�d('d+1 ++
"d+1 e d+1 (E�d+1u)

�d+1). By the definition of �d-truncated numbers, there is a � <�d with

e d+1 (E�d+1u)
�d+1� 1

L�E�d
'd+1 � e

 d+1 (E�d+1 a;d+2)
�d+1:

Using the convexity of Ad%d+2, it follows that L�E�d
'd+12 e¡ d+1 (E�d+1Ad%d+2)¡�d+1. By

similar arguments as above (using Corollary 14.1.14 and Lemmas 13.1.15 and 13.1.14), we
deduce that there is a finite path R in 'd+1 with uR;jRj2Ad%di+2¡N. As in the previous
case Q :=P �R is a path and jP j is a bad index in Q.

Consider a b2Ad%d1¡1 and the path P0 :=(�a¡'d0) in b. So P is a finite path with uP0;jP0j2Ad%d1.
Thus there exists a path P1 which extends P0 with uP1;jP1j2Ad%d3, where jP0j is a bad index in
P . Repeating this process iteratively for i=2; 3; : : : , we construct a path Pi that extends Pi¡1 and
such that uPi;jPij2Ad%d2i+1 and such that jPi¡1j is a bad index in Pi. At the limit, this yields an
infinite path Q in a that extends each of the paths Pi. This path Q has a cofinal set of bad indexes,
which contradicts Theorem 13.2.7. We conclude that there is a k 2N such that �%k is nested. �

14.2 Existence of nested numbers

We finally show that nested sequences enjoy proper classes of corresponding nested numbers.

14.2.1 Preparation lemmas

Lemma 14.2.1. Assume that � is nested. Then we have Ad= '0+ "0 e 0 (E�0[E�0Ad%1])�0.

Proof. Note that E�0[E�0Ad%1]=E�0L�0[Ad%1]. The result thus follows from Corollary 14.1.8
and the assumption that � is nested. �

Lemma 14.2.2. Assume that � is nested. Let k2N, a2Ad and ck2No with

ck= 'k++ "k e k p�k (14.2.1)

for a certain p2Mo< with pvE�j a;k+1 and p2 E![E�k a;k+1] whenever  k= 0. If ck 2Ad%k,
then we have

(ck)k;va:

Proof. The proof is similar to the proof of Lemma 13.2.6. We have a;k='k++ "k e k (E�k a;k+1)�k
and we must have supp k� logp since ck='k++ "k e kp�k2Ad%k. If follows from the deconstruc-
tion lemmas in Section 13.1.3 that ckv a;k. This proves the result in the case when k=0.

Now assume that k > 0. Setting ck¡p :=�k¡p;k(ck), let us prove by induction on p6 k that

ck¡p 2 Ad%k¡p
ck¡p 2 No�;�k¡p¡1
ck¡p v a;k¡p:

For p= k, the last relation yields the desired result.
If p=0, then we have ck2Ad%k by assumption and we have shown above that ck v a;k. We

have 'kC ]�k¡1(ck) and e k p�j is a monomial, so (14.2.1) yields ck= ]�k¡1(ck)2No�;�k¡1. This
deals with the case p=0. In addition, we have ck>0 because k>0 and ck2Ad%k. Let us show that

log ck� a;k: (14.2.2)

If 'k=/ 0, then this follows from the facts that 'kC a;k and 'kC ck. If 'k=0 and  k=/ 0, then
log (ck/"k)�  k� log (a;k/"k)� a;k. If 'k=  k= 0, then a;k=E�k a;k+1 and ck= p2 E![a;k], so
log ck� a;k.
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Assume now that 0< p6 k and that the induction hypothesis holds for all smaller p. We have

ck¡p=�k¡p(ck¡p+1)= 'k+ "k e k (E�k¡p
ck¡p+1)�k (14.2.3)

Since� is nested, we immediately obtain 'k¡pC]�k¡p¡1(ck¡p), whence ck¡p2No�;�k¡p¡1 as above.
Since ck¡p¡12Ad%(k¡p¡1) and � is nested, we have ck¡p2Ad%(k¡p). Using (14.2.3), (14.2.2),
and the decomposition lemmas, we observe that the relation ck¡pva;k¡p is equivalent to

E�k¡p
ck¡p+1vE�k¡pa;k¡p+1: (14.2.4)

We have ck¡p+1v a;k¡p+1, so ck¡p+1v ]�k¡p(a;k¡p+1). Note that

E�k¡p
]�k¡p(a;k¡p+1)= d�k¡p(E�k¡pa;k¡p+1)vE�k¡p a;k¡p+1:

So it is enough, in order to derive (14.2.4), to prove that E�k¡p
ck¡p+1vE�k¡p

]�k¡p(a;k¡p+1). Now

L�k¡p ck¡p+1< E�k¡p ]�k¡p(a;k¡p+1)

by Lemma 14.1.9, whence E�k¡p
ck¡p+1vE�k¡p]�k¡p(a;k¡p+1) by Lemma 13.1.25. �

14.2.2 Surreal substructures of nested numbers
For i2N, g 2E�i and a2Ad, we have 'i+ "i e i g(E�ia;i+1)�i2Ad%i by Lemma 14.2.1. We may
thus consider the strictly increasing bijection

	i;g :=Ad¡!Ad; a 7¡! ('i+ "i e i g(E�i a;i+1)
�i)i;:

We will prove Theorem 4.4 by proving that the function group G := f	i;g : i2N; g 2E�ig on Ad
generates the class Ne, i.e. that we have Ne=SmpG. We first need the following inequality:

Lemma 14.2.3. Assume that � is nested. Let i; j 2N with i< j and let g2E�i. On Ad, we have
	i;g<	j;H2 if �j+1;i+1=1 and 	i;g<	j;H /1 2

if �j+1;i+1=¡1.

Proof. It is enough to prove the result for j = i+1. Assume that �i+2;i+1=1. Let a2Ad and
set a0 := (	i+1;H2(a))i+1;, so that

a;i+1 = 'i+1+ "i+1 e i+1 (E�i+1 a;i+2)
�i+1

a0 = 'i+1+ "i+1 e i+1 (2E�i+1 a;i+2)
�i+1:

Note that

(	i;g(a))i+1; 2 T�i[a;i+1]:

If �;i+1=1, then "i+1 �i+1= �;i+2/�;i+1=1 and 	;i+1 is strictly increasing. So we only need to
prove that T�i[a;i+1]<a0, which reduces to proving that ]�i(a;i+1)<]�i(a0). Let � be the dominant
term of E�i+1 a;i+2. Our assumption that � is nested gives 'i+ "i e i (E�i a0)�i2Ad%i, whence
'i+1C ]�i(a0). We deduce that 'i+1+ "i+1 e i+1 (2 �)�i+1P ]�i(a0). Lemma 13.2.2 implies that
'i+1+ "i+1 e i+1 (2 �)�i+1 is �i-truncated.

]�i(a;i+1)¡ 'i+1 � "i+1 e i+1 � �i+1;
]�i(a0)¡ 'i+1 � "i+1 e i+1 (2 �)�i+1

and "i+1 �i+1=1 implies that

"i+1 e i+1 (2 �)�i+1¡ "i+1 e i+1 � �i+1

is a strictly positive term. We deduce that ]�i(a;i+1)¡ 'i+1<]�i(a0)¡ 'i+1, whence ]�i(a;i+1)<
]�i(a0). The other cases when �;i+1=¡1 or when �i+2;i+1=¡1 are proved similarly, using sym-
metric arguments. �

We are now in a position to prove the following refinement of Theorem 4.4.

Theorem 14.2.4. If � is nested, then Ne is a surreal substructure with Ne=SmpG.
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Proof. By Theorem 10.2.3, the class SmpG is a surreal substructure, so it is enough to prove the
equality. We first prove that SmpG �Ne.

Assume for contradiction that there are an a2SmpG and a k 2N, which we choose minimal,
such that a;k cannot be written as a;k = 'k ++ "k mk where mk = e k (E�k

a;k+1)�k is a hyperserial
expansion. Set m := da;k¡'k, r := (a;k)m and � := (a;k)�m.

Our goal is to prove that there is a number m2fk; k+1g and p2Mo� with

p 2 E�m[E�m a;m+1]
p v E�m a;m+1
p @ E�m a;m+1; whenever �=0 and r 2f¡1; 1g.

(14.2.5)

Assume that this is proved and set cm := 'm+ "m e m p�m. The first condition and Lemma 14.2.1
yield cm2Ad%m and the relations log p� supp  m and e m p�m� supp 'm. The second and third
condition, together with Lemma 14.2.2, imply c :=(cm)m;@a. The first condition also implies that
c2G[a]: a contradiction. Proving the existence of m and p is therefore sufficient.

If m=/ min supp a;k or m=min supp a;k and r 2/ f¡1; 1g, then m := k and p := dE�ka;k+1 sat-
isfy (14.2.5). Assume now that m=min supp a;k and that r 2 f¡1; 1g, whence r= "k. If a;k+12/
No�;�k then m := k and p :=E�k

]�k(a;k+1) satisfy (14.2.5). Assume therefore that a;k+12No�;�k.
This implies that there exist  <�k and a2Mo�k! with E�k

a;k+1=L a: By the definition of coding
sequences, there is a least index j > k with 'j=/ 0 or  j=/ 0, so

E�k
a;k+1=E�k+� � �+�j¡1('j++ "j e

 j (E�j
a;j+1)�j)2/Mo�k!:

We have a2Mo�k! and L a2Mo�k nMo�k!. So by Corollary 13.1.6, we must have �k=!�+1

for a certain � 2On and  = (�k)/!n for a certain n 2N>. Note that a;k+1=L�k a¡ n. Recall
that 'k+1Ca;k+1 and L�k a2Mo�, so 'k+12fL�k a; 0g. The case 'k+1=L�k a cannot occur for
otherwise

a;k+2=
�
a;k+1¡ 'k+1
"k+1 e k+1

��k+1
=

n�k+1

"k+1 e k+1

would not lie in No>;�. So 'k+1=0. Let m := k+1 and

p :=
�
L�k a

e k+1

��k+1
=
�
da;k+1

e k+1

��k+1
= dE�k+1a;k+2:

We have p2 E�k+1[E�k+1 a;k+2] and p@E�k+1 a;k+2, so m and p satisfy (14.2.5). We deduce that
SmpG is a subclass of Ne.

Conversely, consider b2Ne and set c :=�G[b]. So there are i1; i22N and (g;h)2E�i1
0 �E�i2

0 with
	i1;g1(b)<c<	i2;g2(b). Let i :=max (i1+1; i2+1). By Lemma 14.2.3, there exist d1; d22 f /1 2; 2g
with 	i1;g1<	i;Hd1 and 	i2;g2< 	i;Hd2, whence 	i;Hd1¡1

(b) < c <	i;Hd2(b). Since �;i is strictly

monotone, we get c;i¡ 'i� b;i¡ 'i. The numbers "i (c;i¡ 'i) and "i (b;i¡ 'i) are monomials, so
c;i¡ 'i= b;i¡ 'i. Therefore b= c2SmpG. �

In view of Theorem 14.2.4, Lemma 14.2.3, and Proposition 10.2.3, we have the following para-
metrization of Ne:

8z 2No; �Ne z= fL;	N;H�Ne zL j 	N;H�Ne zR; Rg:

We conclude this section with a few remarkable identities for �Ne.

Lemma 14.2.5. If � is nested, then for i2N and a; b2Ne, we have av b() a;iv b;i.

Proof. By [11, Lemma 4.5] and since the function �i; is strictly monotone, it is enough to prove
that 8a; b2Ne; av b(= a;iv b;i. By induction, we may also restrict to the case when i=1. So
assume that a;1v b;1. Recall that L�0 a;1� E�0 b;1 by Lemma 14.1.9. Since a;1; b;1 2No�;�0, we
deduce with Lemma 13.1.25 that E�0

a;1 v E�0
b;1. It follows using the decomposition lemmas that

av b. �

Proposition 14.2.6. If � is nested, then we have Ne=(Ne%1)1;= '0+ "0 e 0 (E�0
Ne%1)�0.
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Proof. We haveNe� (Ne%1)1; by definition ofNe. So we only need to prove that (Ne%1)1;�Ne.
Consider b2Ne%1. Since � is nested, the number a := '0+ "0 e 0 (E�0 b) is �-admissible, so we
need only justify that E�0b2Mo�0nL<�0Mo�0!. Since a is �-admissible, we have '1C ]�0(b). But
b is �%1-nested, so b= '1++ � for a certain term � . We deduce that b= ]�0(b)2No�;�0, whence
E�0 b2Mo�0.

Assume for contradiction that E�0
b 2L<�0Mo�0! and write E�0

b =L a where a2Mo�0! and
 < �0. Note that  =/ 0: otherwise 'i and  i would be zero for all i> 1, thereby contradicting
Definition 14.1.1(e). By Corollary 13.1.6, we must have �0= !�+1 for a certain ordinal � and
=!�n for a certain n2N>. Consequently, b=L�0 a¡n2Mo¡n. If '1=/ 0, then the condition
'1C ]�0(b) implies '1= b, which leads to the contradiction that b1;2=02/No>;�. If '1=0, then
Ne%1� "1Mo, whence n=0: a contradiction. �

Corollary 14.2.7. If � is nested, then for z 2No, we have

�Ne z= '0+ "0 e 0 (E�0
�Ne%1�;1z)�0:

Corollary 14.2.8. If � is nested and k 2N, then

�Ne=�k; ��Ne%k �H�;k:

Proposition 14.2.9. Assume that � is nested with ('0; "0;  0; �0) = (0; 1; 0; 1), assume that
�02!On+1 and write � := (�0)/!. Consider the coding sequence �0 with ('i0; "i0;  i0; �i0; �i0)= ('i; "i;
 i; �i; �i) for all i2N, with the only exception that

'1
0 = '1¡n:

If  1< 0, or  1=0 and �1=¡1, then �0 is nested and we have

�Ne0=L�n ��Ne;

where Ne0 is the class of �[n]-nested numbers.

Proof. Assume that  1 < 0, or  1 = 0 and �1 = ¡1. In particular, if a is �-admissible, then
a;1¡'1�1, so a;1¡'1� supp'10 . For b2No>;�, it follows that E�0(b¡n) is �[n]-admissible if and
only if E�0b is �-admissible. Let Ad%i0 be the class of �%i0 -admissible numbers, for each i2N. We
have L�nAd=Ad0 by the previous remarks, and �0 is admissible. For i>1, we have �%i0 =�%i, so

Ad%i0 =Ad%i� 'i0+ "i0 e i
0
(E�i0Ad%i+1

0 )�i
0
:

Moreover, Ad%1
0 =Ad%1¡n, so

Ad0 � L�nAd�L�nE�0Ad%1=L�nE�0 (Ad%1
0 +n)=E

�0
[n]Ad%1

0

Ad%1
0 � '1¡n+ "1 e 1 (E�1Ad%2)�1= '1

0 + "10 e 1
0 ¡
E
�1
[n]Ad%2

0 �
�1
0
:

So �0 is nested. We deduce that L�nNe=Ne0, that is, we have a strictly increasing bijection L�n:
Ne¡!Ne0. It is enough to prove that for a; b2Ne with av b, we have L�navL�n b. Proceeding
by induction on n, we may assume without loss of generality that n=1. By [12, identity (6.3)],
the function L� has the following equation on Mo�0:

8a2Mo�0; L� a=
�
L� aL

Mo�0
���� L� aRMo�0; a

	
Mo�0

:

So it is enough to prove that L� b < a. Note that L� b = E�0
b;1¡1 and a = E�0

a;1 where b;1 ¡ '1;
a;1¡ '1� 1. So b;1¡ a;1� 1, whence b;1¡ 1<a;1. This concludes the proof. �

14.2.3 Pre-nested and nested numbers
Let a2No be a number. We say that a is pre-nested if there exists an infinite path P in a without
any bad index for a. In that case, Lemma 14.1.2 yields a coding sequence �P which is admissible
due to the fact that a2 (L j R) with the notations from Section 7.3.2. By Theorem 14.1.15, we get
a smallest k 2N such that (�P)%k is nested. If k=0, then we say that a is nested . In that case,
Theorem 14.2.4 ensures that the class Ne of �P -nested numbers forms a surreal substructure, so
a can uniquely be written as a=�Ne(c) for some surreal parameter c2No.
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One may wonder whether it could happen that k> 0. In other words: do there exist pre-nested
numbers that are not nested? For this, let us now describe an example of an admissible sequence
�� such that the class Ne�� of ��-nested numbers contains a smallest element b. This number b
is pre-nested, but cannot be nested by Theorem 14.2.4. Note that our example is �transserial� in
the sense that it does not involve any hyperexponentials.

Example 14.2.10. Let �= ('i; "i; 0; 1; 1)i2N be a nested sequence with "1=¡1. Let a be the
simplest �-nested number. We define a coding sequence ��=('i�; "i�; 0; 1; 1)i2N by

"0
� := ¡1
'0
� := e'1¡

1
2
e
a;2

('i�; "i�) := ('i; "i) for all i > 0.

Note that

a;1= '1¡ ea;2= '1++ "1 ea;2;

where ea;2 is an infinite monomial, so b := '0
�¡ ea;1 is ��-nested. In particular, the sequence �� is

admissible.
Assume for contradiction that there is a ��-nested number c with c< b. Since "0�= "1�=¡1, we

have c;2<b;2. Recall that c;2 and b;2 are purely large, so ec;2� eb;2=ea;2. In particular

ec;1=e'1¡e
c;2< e'1¡

1
2
e
a;2

= '0
�;

which contradicts the assumption that c is ��-nested. We deduce that b is the minimum of the
class Ne�� of ��-nested numbers. In view of Theorem 14.2.4, the sequence �� cannot be nested.

The above examples shows that there exist admissible sequences that are not nested. Let us now
construct an admissible sequence �? such that the class Ne�? of �?-nested numbers is actually
empty.

Example 14.2.11. We use the same notations as in Example 14.2.10. Define ('0
?; "0

?) :=(eb;1) and
set ('i

?; "i
?) :=('i¡1� ; "i¡1

� ) for all i>0. We claim that the coding sequence �? :=('i
?; "i

?;0;1;1)i2N
is admissible. In order to see this, let  := /1 2 eb;1. Then

e'1
?++"1 =e'0

�++"0
� � e'0�++"0�e

b;1
=eb:

Since '1
?++ "1  is (�?)%1-admissible (i.e. ��-admissible), we deduce that eb+ e'1

?++"1 is �?-
admissible, whence �? is admissible. Assume for contradiction that Ne�? is non-empty, and let
eb++m2Ne�?. Then logm is ��-nested, so logm> b, whence m< eb: a contradiction.
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Chapter 15
Hyperserial representations
Traditional transseries in x can be regarded as infinite expressions that involve x, real constants,
infinite summation, exponentiation and logarithms. It is convenient to regard such expressions as
infinite labelled trees. In this section, we show that surreal numbers can be represented similarly
as infinite expressions in ! that also involve hyperexponentials and hyperlogarithms. One technical
difficulty is that the most straightforward way to do this leads to ambiguities in the case of nested
numbers. These ambiguities can be resolved by associating a surreal number to every infinite
path in the tree. In view of the results from Section 7.3.2, this will enable us to regard any surreal
number as a unique hyperseries in !.

Remark 15.0.1. In the case of ordinary transseries, our notion of tree expansions below is slightly
different from the notion of tree representations that was used in [60, 92]. Nevertheless, both notions
coincide modulo straightforward rewritings.

15.1 Introductory example
Let us consider the monomial m= exp(2 E! ! ¡ !

p
+ L!+1 !) from Example 13.1.3. We may

recursively expand m as

m=e2E!2
L!2!+1¡E1

1
2
L1!

(L!!):

In order to formalize the general recursive expansion process, it is more convenient to work with
the unsimplified version of this expression

m=e
2�e0�

�
E!2
1�e0�(L!2!)

1+1�1
�1
+(¡1)�e0�

�
E1

/1 2�e0�(L1!)1
�1
(L!!)1:

Introducing }c:x 7¡!xc as a notation for the �power� operator, the above expression may naturally
be rewritten as a tree:

2

E1

�

P
�

�

}1

L!

!

}1

�

¡1 �

E1

P
}1

P
�

1 /1 2

�

P

E1

1

�

1

E1

P
E!2

�

}1

L!2

!

}1

L1

!

�

P
E1

P
E1

In the next subsection, we will describe a general procedure to expand surreal monomials and
numbers as trees.

229



15.2 Tree expansions
In what follows, a tree T is a set of nodes NT together with a function that associates to each node
� 2NT an arity `�2On and a sequence (�[�])�<`�2NT

`� of children ; we write C� :=f�[�] :�<`�g
for the set of children of �. Moreover, we assume that NT contains a special element �T , called the
root of T , such that for any � 2NT there exist a unique h (called the height of � and also denoted
by h�) and unique nodes �0; : : : ; �h with �0= �T , �h= �, and �i2C�i¡1 for i=1; : : : ; h. The height
hT of the tree T is the maximum of the heights of all nodes; we set hT :=! if there exist nodes of
arbitrarily large heights.

Given a class �, an �-labelled tree is a tree together with a map �:NT ¡!�; � 7¡! ��, called
the labelling . Our final objective is to express numbers using �-labelled trees, where

� := R=/ [f!;
P
;�; }¡1; }1g[L!On [E!On:

Instead of computing such expressions in a top-down manner (from the leaves until the root), we
will compute them in a bottom-up fashion (from the root until the leaves). For this purpose, it is
convenient to introduce a separate formal symbol ?c for every c2On, together with the extended
signature

�] := �[f?c : c2Nog:
We use ?c as a placeholder for a tree expression for c whose determination is postponed to a later
stage.

Consider a �]-labelled tree T and a map v:NT ¡!On. We say that v is an evaluation of T if
for each node � 2NT one of the following statements holds:

E1. �� 2R=/ [f!g, `�=0, and v(�)=��;
E2. ��=

P
, the family (v(�[�]))�<`� is well based and v(�)=

P
�<`v

v(�[�]);
E3. ��=�, `�=2, and v(�)= v(�[0]) v(�[1]);
E4. ��= }�, �2f¡1; 1g, `�=1, and v(�)= v(�[0])�;
E5. ��=L!�, `�=1, and v(�)=L!� v(�[0]);
E6. ��=E!�, `�=1, and v(�)=E!� v(�[0]);
E7. ��= ?�, `�=0, and v(�)=�.

We call v(�T) the value of T via v. We say that a2No is a value of T if there exists an evaluation
of T with a= v(�T).

Lemma 15.2.1.
a) If T has finite height, then there exists at most one evaluation of T.
b) Let v and v 0 be evaluations of T with v(�T)= v 0(�T). Then v= v 0.

Proof. This is straightforward, by applying the rules E1�E7 recursively (from the leaves to the
root in the case of (a) and the other way around for (b)). �

Although evaluations with a given end-value are unique for a fixed tree T , different trees may
produce the same value. Our next aim is to describe a standard way to expand numbers using
trees. Let us first consider the case of a monomial m2Mo. If m=1, then the standard monomial
expansion of m is the �]-labelled tree T with NT = f�T g and ��T = 1. Otherwise, we may write
m=e (L� g)� with g=! or g=E�u. Depending on whether g=! or g=E�u, we respectively take

T :=

�

E1

? 

}�

L�

!

or T :=

�

E1

? 

}�

L�

E�

?u
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and call T the standard monomial expansion of m. Let us next consider a general number a2No
and let `2On be the ordinal size of its support. Then we may write a=

P
�<` c�m� for a sequence

(c�)�<`2(R=/)` and a �-decreasing sequence (m�)�<`2Mo`. For each �<`, let T� be the standard
monomial expansion of m�. Then we define the �]-labelled tree

T :=

P
�

c0 T0

�

c1 T1

�

c2 T2

� � �

� � �

and call it the standard expansion of a. Note that the height of T is at most 6, there exists a
unique evaluation v:NT ¡!No of T , and v(�T)= a.

Now consider two trees T and T 0 with respective labellings �:NT ¡!�] and �0:NT 0¡!�].
We say that T 0 refines T if NT 0�NT and there exist evaluations v:NT ¡!No and v 0:NT 0¡!No
such that v(�)= v 0(�) for all � 2NT and ��=��0 whenever �� 2/ ?No. Now assume that v(�T)= a
for some evaluation v:NT ¡!No. Then we say that T is a tree expansion of a if for every � 2NT
with ��=

P
, the subtree T 0 of T with root � refines the standard expansion of v(�). In particular,

a tree expansion T of a number a2No with ��T 2/ ?No always refines the standard expansion of a.

Lemma 15.2.2. Any a2No has a unique tree expansion with labels in �.

Proof. Given n2N, we say that an �]-labelled tree T is n-settled if ��2/ ?No for all nodes � 2NT
of height <n. Let us show how to construct a sequence (Tn)n2N of �]-labelled tree expansions of
a such that the following statements hold for each n2N:

S1. Tn is an n-settled and of finite height;

S2. vn(�Tn)= a for some (necessarily unique) evaluation vn:NTn¡!No of Tn;

S3. If n> 0, then Tn refines Tn¡1;

S4. If T is a tree expansion of a with labels in �, then T refines Tn.

We will write �n:NTn¡!�] for the labelling of Tn.
We take T0 such that NT0=f�T0g and ��T0= ?a. Setting v0(�T0) :=a, the conditions S1, S2, S3,

and S4 are naturally satisfied.
Assume now that Tn has been constructed and let us show how to construct Tn+1. Let S be the

subset of NTn of nodes � of level n with vn(�)2 ?No. Given � 2S, let T� be the standard expansion
of vn(�) and let v� be the unique evaluation of T�. We define Tn+1 to be the tree that is obtained
from Tn when replacing each node � 2S by the tree T�.

Since each tree T� is of height at most 6, the height of Tn+1 is finite. Since Tn+1 is clearly (n+1)-
settled, this proves S1. We define an evaluation vn+1:NTn+1¡!�] by setting vn+1(�)= vn(�) for
any � 2NTn and vn+1(�) = v�(�) for any � 2 S and � 2NT� (note that vn+1 is well defined since
v�(�T�) = (�n)� = vn(�) for all � 2 S). We have vn+1(�Tn+1) = vn(�Tn) = a, so S2 holds for vn+1.
By construction, NTn+1�NTn and the evaluations vn and vn+1 coincide on NTn; this proves S3.
Finally, let T be a tree expansion of a with labels in � and let v be the unique evaluation of T with
v(�T)=a. Then T refines Tn, so v coincides with vn on NTn. Let � 2S. Since T is a tree expansion
of a, the subtree T 0 of T with root � refines T�, whence NT �NT�. Moreover, v(�)= vn+1(�), so
v coincides with v� on T�. Altogether, this shows that T refines Tn+1.

Having completed the construction of our sequence, we next define a �-labelled tree T1 and a
map v1:NT1¡!No by taking NT1=

S
n2NNTn and by setting (�1)� := (�n)� and v1(�)= vn(�)

for any n 2N and � 2NTn such that (�n)� 2/ ?No. By construction, we have v1(�T1) = a and
T1 refines Tn for every n2N.

We claim that T1 is a tree expansion of a. Indeed, consider a node � 2NT1 of height n with
��=

P
. Then � 2NTn+1 and (�n+1)�=

P
, since Tn+1 is (n+1)-settled. Consequently, the subtree

of Tn+1 with root � refines the standard expansion of vn+1(�). Since T1 refines Tn+1, it follows
that the subtree of T1 with root � also refines the standard expansion of v1(�)= vn+1(�). This
completes the proof of our claim.
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It remains to show that T1 is the unique tree expansion of a with labels in �. So let T be any
tree expansion of a with labelling �:NT ¡!�. For every n2N, it follows from S4 that NT �NTn.
Moreover, since Tn is n-settled, � coincides with both �n and �1 on those nodes in NTn that are
of height <n. Consequently, NT �NT1 and � coincides with �1 on NT1. Since every node in NT
has finite height, we conclude that T =T1. �

15.3 Hyperserial descriptions

From now on, we only consider tree expansions with labels in �, as in Lemma 15.2.2. Given a class
Ne of nested numbers as in Section 7.3.2, it can be verified that every element in Ne has the same
tree expansion. We still need a notational way to distinguish numbers with the same expansion.

Let a2No be a pre-nested number. By Theorem 14.1.15, we get a smallest k 2N such that
(�P)%k is nested. Hence aP ;k2Ne for the class Ne of (�P)%k-nested numbers. Theorem 14.2.4
implies that there exists a unique number c with aP ;k = �Ne(�;k c). We call c the nested rank
of a and write �a := c. By Corollary 14.2.8, we note that �uP ;i= �;i �a for all i 2N. Given an
arbitrary infinite path P in a number a 2No, there exists a k > 0 such that P%k has no bad
indexes for aP ;k (modulo a further increase of k, we may even assume aP ;k to be nested). Let
�P ;k := sign (rP ;0 � � � rP ;k¡1) �P ;0 � � � �P ;k¡12f¡1; 1g. We call �P :=�P ;k �uP ;k the nested rank of P ,
where we note that the value of �P ;k �uP ;k does not depend on the choice of k.

Let T be the tree expansion of a number a2No and let v:NT ¡!No be the evaluation with
a= v(�T). An infinite path in T is a sequence �0; �1; : : : of nodes in NT with �0= �T and �i+12C�i
for all i 2N. Such a path induces an infinite path P in a: let i1< i2< � � � be the indexes with
��ik=

P
; then we take �P ;k= v(�ik+1) for each k2N. It is easily verified that this induces a one-

to-one correspondence between the infinite paths in T and the infinite paths in a. We call �� := �P
the nested rank of the infinite path �=(�n)n2N in T . Denoting by IT the set of all infinite paths
in T , we thus have a map �: IT ¡!No; � 7! ��. We call (T ; �) the hyperserial description of a.

We are now in a position to prove the final theorem of this paper.

Theorem 15.3.1. Every surreal number has a unique hyperserial description. Two numbers with
the same hyperserial description are equal.

Proof. Consider two numbers a; a0 2No with the same hyperserial description (T ; �) and let
v; v 0:NT ¡!No be the evaluations of T with v(�T) = a and v 0(�T) = a0. We need to prove that
a = a0. Assume for contradiction that a =/ a0. We define an infinite path �0; �1; : : : in T with
v(�n) =/ v 0(�n) for all n by setting �0 := �T and �n+1 := �n[m], where m2N is minimal such that
v(�n[m]) =/ v 0(�n[m]). (Note that such a number m indeed exists, since otherwise v(�n) = v 0(�n)
using the rules E1�E7.) This infinite path also induces infinite paths P and P 0 in a and a0 with
aP ;n= v(�in) and aP 0;n= v 0(�in) for a certain sequence i1<i2< � � � and all n2N. Let n> 0 be such
that P%n and P%n0 have no bad indexes for aP ;n and aP 0;n. The way we chose �0; �1; : : : ensures
that the coding sequences associated to the paths P%n and P%n0 coincide, so they induce the same
nested surreal substructure Ne. It follows that v(�in)=aP ;n=�Ne(�;n ��)=aP 0;n= v 0(�in), which
contradicts our assumptions. We conclude that a and a0 must be equal. �
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Conclusion and further research

The presentation of surreal numbers as hyperseries opens several problems on which I started to
work during my PhD. I will now, in a more colloquial tone, describe the main ones and propose a
few research questions related to this thesis.

1 Defining the derivation and composition law on No
Before the year 2022 when the manuscript was finished, a substantial amount of additional material
was considered for this thesis, most of which now consists in manuscripts in preparation. The
main goal in this respect is to define the natural derivation @:No¡!No and composition law �:
No�No>;�¡!No on surreal numbers by relying extensively on their hyperseries representation.
More precisely, I have proofs of the two following results:

Theorem 1.1. [Work in progress] There is a unique strongly linear derivation @:No¡!No
satisfying:

SD1. Ker(@)=R.

SD2. For all a2No>;� and f 2L, we have @(f � a)=@(a) � (f 0 � a).
SD3. If �=('i; "i;  i; �i;�i)i2N is an admissible sequence and a2No is �-nested, then writing

li := `(0;�i) �E�i
a;i+1; and

ni := e i (E�i
a;i+1)�i:

for all i2N, we have

@(a)=
X
i2N

 Y
k<i

"k �k nk lk

!
(@('i)+ "i @( i)): (1.1)

Moreover, the ordered valued differential field (No;+;�;<;�; @) is an elementary extension of the
field of log-exp transseries.

The formula (1.1) corresponds to the simplest expression for which the derivation can satisfy
the other conditions.

Theorem 1.2. [Work in progress] There is a unique function �:No�No>;�¡!No satisfying
the following:

SC1. For all �2No, the function No¡!No ;a 7!a� � is a strongly linear morphism of rings.

SC2. For all � 2No>;� and f 2L, we have (f �!) � �= f � �.
SC3. For all a2No and �; � 2No>;�, we have (a � �) � �= a� (� � �).
SC4. For all a2No>;� and �; � 2No>;�, we have � < � =) a � � <a � �.
SC5. For all a 2No, � 2No>;� and � 2No with � � � and (@(m) � �) � �m � � whenever

m2 supp a, we have

a � (�+ �)=
X
k2N

@k(a) � �
k!

�k:

SC6. If �=('i; "i;  i; �i; �i)i2N is a nested sequence and � 2No>;� is such that

� � � := ('i � �; "i;  i � �; �i; �i)i2N (1.2)
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is also a nested sequence, then writing �� and ���� for the parametrizations of the classes
of �-nested and (� � �)-nested numbers respectively, we have

8z 2No; (�� z) � �=���� z: (1.3)

Moreover, the structure (No>;�; �; !; <) is a bi-ordered group in which any two strictly positive
elements are conjugate.

The formula (1.3) corresponds to the simplest value for which the composition law can satisfy
the other conditions. It should be noted that the versions of these conjectures whereNo is replaced
by its subfield L~ �! are already proved in [10]. In fact, this subfield will constitute the base case
of an inductive proof of the second conjecture (granted, this base case excludes nested numbers
and thus evacuates the crucial parts SD3 and SC6 of the conjectures).

1.1 Surreal numbers as a hyperserial field
In order to define (@; �) and prove the results, a first step is to derive further properties of the
structure of No as a hyperserial field. The main ingredients are contained in this manuscript (and
in [13]): the well-nestedness of all surreal numbers (Theorem 13.2.7), the eventual nestedness for
all admissible sequences (Theorem 14.1.15), and the nature of surreal substructure for classes of
�-nested numbers in the case when � is nested (Theorem 14.2.4). Using this, one can show that
No is the increasing union of confluent hyperserial subfields T ;  2On of force (On;On), where
each T+1 is obtained by adding to T all nested numbers whose coding sequence is nested and
takes values in T, and then closing under hyperexponentials. We take unions of monomial groups
at non-zero limit stages , and start with T0=L~ �!.

This also applies to subfields of No of smaller force. Fix � 2On> and set �: =!�. We have a
�force � version� No� of No. We can define an embedding No�¡!No; a 7! a"� of force � whose
effect on the hyperserial description of an a 2No� is to replace each occurring leaf ! by the
hyperserial description of the number

E�
!=E�!

L�!!+1:

This embedding can be seen as a composition on the right with the hyperexponential of strength �.
Such embeddings have the important feature of simplifying the behavior of derivations and compos-
itions, i.e. derivations and compositions on the right onNo�

"� :=fa"� :a2No�g are easy to describe
in terms of their operator support and relative support respectively, as per Section 1.3.2 (these
properties are more accurately stated by considering near supports and near relative supports, see
[10, Section 1.6]).

1.2 The surreal derivation
It is possible to define @ by using path derivatives as in [92, Section 4.1]. This is probably the most
sensible method in order to do so. The idea here is the same as in [92]: given a2No every element
P in the set Pa of finite and maximal paths P in a with P (jP j)2/R=/ contributes exactly one term
@(P )2R=/Mo to the derivative @(a) of a, in that @(a) can be defined as the sum of the well-based
family (@(P ))P 2Pa. Proving that this family is well-based can be done by reducing to the case
when a is �-nested for a nested sequence �, and then using the properties of nested sequences (in
particular Lemma 14.2.1) and compositions with hyperexponentials in order to isolate from one
another the contributions @(P ) for distinct paths P 2Pa.

1.3 The surreal composition law
The definition of the composition law is much more technical. This is in part because a combinat-
orial description of composition laws, in the same vein as the method of path derivatives, seems too
complex to be achieved. That leaves us with SC1�SC6 as sole guides in order to define �, and it
must be shown that they suffice. Understanding when (and why) the sequence in (1.2) should be
nested, and dealing with the well-basedness of complicated families involved in the Taylor series in
SC5 proves particularly difficult. In that respect, many useful tools can be found in the present
thesis, in particular in Chapter 2, as well as in [10].

234 Conclusion and further research



2 Model theory of ordered structures with composition
In view of Results 1.1 and 1.2, we have a first-order structure

(No;+;�; @ ; �; <;�)

of a peculiar type which, in view of its interesting closure properties (conjugacy equations, algebraic
differential equations, set-wise order saturation...), deserves to be studied. This feeling is bolstered
by the model theoretic tameness of its reducts: e.g. the first-order theories of (No;<), (No;+;<),
(No;+;�;<), (No;+;�;<;�; @) are all model complete and decidable. Even so, the literature on
the model theory ordered structures with composition laws is scarce. How are we to start studying
this rich structure?

2.1 Growth order groups
One route is to restrain ourselves to studying a small part of the language which includes the
composition law. Accordingly, the natural candidate is the bi-ordered group (No>;�; �; !; <).
The algebraic theory of non-commutative, linearly (bi-)ordered groups is involved, in comparison
to the commutative case, as constructing and classifying extensions of such groups frequently
leads to open problems and dead-ends (see [53]). However, the ordered group (No>;�;�; !;<) has
specific properties which are not often considered by group theorists, but are related to properties
of ordered groups of unary germs definable in o-minimal expansions of real-closed fields, as I will
now explain. In particular, the basic inequality

a � b > b� a

is valid whenever a; b >! and a lies above all compositional iterates b[n]; n2N of b. This can be
stated as a first-order sentence in the language f�; 1;<g of ordered groups. Indeed it can be shown
that the centralizer C(b) :=fc2No>;� : c� b= b� cg of b can be described using real compositional
iterates b[r]; r2R of b, hence it is mutually cofinal with fb[n] :n2Ng (see [10, Section 10.3] in the
case of L~ ). This leads to the following axiom satisfied by (No>;�; �; !;<):

GOG1. 8x8y( (x; y > 1^x> C(y))=)x � y < y �x).
Along with this, this group satisfies the first-order property GOG2 below which implies that the
relation ac b()max (a; ainv)>C(b) behaves similarly to a dominance relation on Abelian ordered
groups (in fact, here the relation is given by the Archimedean valuation on ordered groups, see [51,
Section 4.1]):

GOG2. 8x8y8z8t( (x> y > 1^ z 2C(y))=)9t(t2C(x)^ t> z).
I call growth order groups those ordered groups (including all Abelian ordered groups) which satisfy
GOG1 and GOG2. So (No>;�; !; �; <) and (L~ >;�; `0; �; <) are growth order groups. In fact,
further important and universal first-order properties, such as the commutativity of centralizers,
require additional axioms in order to be necessary, but I will not go into such details here. Many
growth order groups should originate from tame expansions of the real ordered field:

Conjecture 2.1. Let R=(R;+;�;<;: ::) be an o-minimal expansion of the real ordered field. Let
G denote the group of germs at +1 of R-definable functions R¡!R which tend to +1 at +1,
ordered by comparison of germs at +1. Then G is a growth order group.

I expect that the non-commutative valuation theory of a growth ordered group retains certain
features of the valuation theory of Abelian ordered groups (see [4, Section 2.4]). Just as valuation
theory gives tools to obtain asymptotic expansions of regular growth rates of an additive nature, I
expect that growth rates of functions definable in certain o-minimal structures can be decomposed
as non-commutative compositions of simpler growth rates.

Using real iteration, one can construe the group R> as a function group onNo>!, thus yielding
a surreal substructure SmpR> whose elements are simplest in their convex equivalence class in the
compositional sense (just as monomials in Mo are simplest in the additive sense). Using Conway
brackets, it is then possible to define non-commutative transfinite compositionsK

<�

p
[r] (2.1)
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of well-based families
¡
p
[r]
�
<�

in ((SmpR>)[R];b). By convention, I define these as trailing on
the left. We should then have

Conjecture 2.2. For each a 2 No>;�, there is a unique well-based family
¡
p
[r]
�
<� in¡

(SmpR>)[R
=/ ];b

�
with

a=
K
<�

p
[r]:

I plan to illustrate these ideas first by proving a case of the Conjecture 2.1, namely when the
expansion of R with the exponential function is levelled in the sense of [79]. I will also show that
Conjecture 2.2 is valid in finitely nested hyperseries and log-exp transseries, where all terms p

[r]

lie in the corresponding fields, and where r0 must be an integer if p0= ex in the case of log-exp
transseries. In those cases, the element (2.1) can be defined without relying on the existence of a
composition law on No. Thus this work can be started right away.

2.2 A model theoretic approach to genetic definitions
Genetic, or recursive definitions are, in the language of the thesis, cut equations of a particular
nature. They are sound and uniquely define surreal-valued functions by way of the principle of
definition by induction. I was impressed by unpublished notes of Antongiulio Fornasiero [50] who
derived in a concise way surprisingly strong properties of functions that can be defined in a recursive
way over No.

Of particular importance to us is the possibility of deriving intermediate value properties [50,
Definition 3.3] for such functions. Indeed, intermediate value properties (IVP) for unary terms in
the corresponding first-order language completely axiomatize the first-order theories of (No;+;<),
(No; +; �; <), (No; +; �; <; �; @) over simple finite fragments of those theories (namely and
respectively: linearly ordered Abelian groups, ordered domains, and Liouville-closed H-fields with
small derivation). Moreover, in view of van der Hoeven's IVP conjecture [4, Conjecture 4.3] for
Hy'No, it would be interesting to see if such a result could be derived from intrinsic properties
of surreal numbers, rather than from possibly difficult computations on hyperseries. We are far
from being able to prove such things, since there is no known genetic definition of a derivation
(let alone a composition law) on No. It seems well in the realm of possibility to me that no such
definition should exist.

Still, an equally interesting problem concerns the possibility of interpreting first-order languages
and realizing models of corresponding theories within No. More precisely, given a first-order
language L with < as the only relation symbol, and an L-theory T of dense linear orders without
endpoints (DLOWs), when and how (and in what order) can one define, in a recursive way,
interpretations of the function symbols fi; i2 I in L as functions fi; i2 I on No and its Cartesian
powers, in such a way that (No;<; (fi)i2I) be a model of T? When doing so, what is the complete
theory Th(No) which we obtain?

The known examples of ordered Abelian groups, ordered rings and real-closed exponential fields
seem to work exceptionally well in the sense that the corresponding recursive definitions (as usual
a0; a00; b 0; b 00 range in aL; aR; bL and bR respectively, see Chapters 8 and 11)

a+ b = fa0+ b; a+ b 0 j a+ b00; a00+ bg;
a b = fa0 b+ a b0¡ a0 b 0; a00 b+ a b00¡a00 b 00 j a00 b+ a b 0¡ a00 b 0; a0 b+ a b00¡a0 b00g; and

exp(a) =
�
0; [a¡ a0]N exp a0; [a¡ a00]2N+1 exp a00

�������� exp a00

[a¡ a00]2N+1
;

exp a0

[a0¡a]N

�
encompass only a very small part of the resulting theory Th(No), but still end up producing the
good complete theory containing the axioms used in the recursive definition. For instance, it is
remarkable that the theory of DLOWs with a binary operation that is strictly increasing in both
variable suffices to obtain as a result the theory of divisible Abelian linearly ordered groups !

I have found conditions on such languages and theories which, when satisfied should make
such a recursive interpretation over No possible. These conditions are extremely restrictive, still
I believe that the game is worth the sacrifice.
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3 Analytico-geometric interpretation of surreal numbers

As told in the introduction of the thesis, this work is part of a program whose origins are questions
about the growth rates of concrete, very regular, and commonplace real-valued functions. Yet, after
only a reasonable amount of pages, these grounded questions have sprouted a class-sized array of
ordinal indexed hyper-fast growing functions, the first of which, already, would but raise eyebrows
among analysts and geometers; a stack of �fields-with-no-escape� containing arbitrarily long series
and infinitely deep vertical expansions thereof; full binary trees of fixed points for well-behaved
operators; and so on. . . Maybe it is now time to look back?

3.1 Real hyperexponentiation
One long standing open question in o-minimality is the existence of an o-minimal expansion of
the real ordered exponential field which defines a transexponential function. As we have seen in
Chapter 12, Abel's equation

y � (!+1)=e! � y (3.1)

naturally arises when studying surreal-valued functions with transexponential asymptotics. In fact,
the simplicity theorem [15, Theorem 21] can be strengthened by discarding the condition b), i.e.
Abel's equation.

Thus, functions like Kneser's [66] solution E of Abel's equation on R> are natural candidates
for such o-minimal investigations. However, despite interesting unique properties of E [29, Propos-
ition 1], it is unclear whether it is more interesting than other similar solutions (e.g. [95]), see [39,
Chapter 8]. More generally, there doesn't seem to be known non-trivial model theoretic constraints
of a solution of Abel's equations for it to generate an o-minimal expansion.

If there are no such conditions, then our hope is that the calculus of hyperseries onNo faithfully
represents asymptotic properties of real-valued germs which are solutions of (3.1), and that it can
help in understanding them. The use of formal series in order to understand functions with tran-
sexponential growth rates is convincingly illustrated in [83]. Padgett's first-order theory Ttransexp
for (R;+;�; E) in an expanded language Ltransexp is indeed sufficient to order the field Htransexp
of germs of unary terms in Ltransexp [83, Theorem 1.1.5]. This is shown by embedding such germs
into fields of formal series. Let exp! extend E! toNo>0 via the restricted analytic function method
(see Section 2.4) applied to the analytic function E. Then (No;+;�; exp!) is a natural model of
Ttransexp, which raises questions as to the compatibility between No and Htransexp. There should
exist a natural inclusion

ev! :Htransexp ¡! No
t(x) 7¡! t(!):

We make the following conjectures, on which we have worked with good progress together with
Adele Padgett and Elliot Kaplan:

Conjecture 3.1. The function ev! is a well-defined Ltransexp-embedding.

Conjecture 3.2. The function ev! commutes with the derivations and composition laws on
Htransexp and No.

In Conjecture 3.2, one can replace No with L~ or some set-sized subfields thereof, for which the
derivation and composition are already defined in [10] and known to be well-behaved. A positive
answer to Conjecture 3.2 would have consequences for the differential algebra of Htransexp:

Conjecture 3.3. The field Htransexp is an w-free H-field with small derivation.

The property of w-freeness is a very robust property pertaining to the behavior of differential
polynomials (see [4, Section 11.7]). Finally, we expect that, like the Hardy field Han;exp of the real-
exponential field with restricted analytic functions [49], the field Htransexp sits nicely within No:

Conjecture 3.4. The set ev!(Htransexp)�No is initial, i.e. downward closed in (No;@).
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3.2 Nested germs
A unique feature of surreal numbers is that they naturally contain nested numbers. Les us draw,
one last time, our favourite nested expansion

!
p

++e log!
p

++e
loglog!

p
++e

� ��

;

which we recall only specifies a proper class Ne'No of numbers. It should be of little surprise to
learn that these nested numbers will exactly be the solutions of the functional equation

y= !
p

+ exp(y � log!); with the condition y� !
p

: (3.2)

This equation makes perfect sense for germs of real-valued functions, and can thus be solved in
various classes of regularity. Such equations and solutions have barely been studied in the past
(with the notable exception of [61]), so simple questions remain open. Écalle suggested to us that
the geometric relevance of nested numbers is questionable. Therefore it would be interesting to test
whether problems arise when considering germs with the corresponding nested expansions, with
the help of the functional equation.

Among the least degrees of regularity for germs, we can consider van den Dries' notion of
Hardian germs, i.e. germs lying in a Hardy field. Two Hardian solutions of (3.2) living in a common
Hardy field must be, in particular, comparable. If surreal numbers really are deeply connected to
growth rates of regular functions, then one would expect that the existence of a very large class
of solutions of (3.2) in No is reflected in properties of solutions sets in Hardy fields. It is sensible,
when considering germs of real-valued functions, to restrict ourselves, at most, to the field No(!1)
of surreal numbers with countable birth day (under the continuum hypothesis, this field can be
represented as a Hardy field: see [5, p. 11]). Still, the existence of as many as jNo(!1)j comparable
solutions of a functional equations is puzzling.

In contrast, the set of surreal solutions E!
!+r; r2R of Abel's equation (3.1) is only parametrized

by real numbers. Yet given a Hardian solution y of (3.1), all other Hardian solutions y � ', most
of which lie in distinct Hardy fields, are parametrized by functions ' with ' � (x+ 1) = '+ 1,
most of which are non-Hardian and pairwise incomparable. It is conceivable that (3.2) is much
more compatible with a linear ordering of its solutions than Abel's equation, so that its solution
set in a common Hardy field may be parametrized by a linearly ordered set of germs, possibly
of size jNo(!1)j. Or, the amount of solutions in No may be an artifact of algebraic and model
theoretic properties of the functional equation, without analytic meaning. In any case, an aspect
of the correspondence between numbers and regular growth rates can be reduced to the following
question, which I plan to investigate:

Question. What linear orderings can be represented by the set of solutions of (3.2) lying in a
common Hardy field? In particular, does (3.2) have a Hardian solution?

Here, it would be more daring to state a definite conjecture, but is it ever in bad taste to end
with a question?
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Appendix A
Résumé en français

Ce travail de thèse, intitulé �Hyperséries et Nombres surréels�, consiste à effectuer deux taches:

Problème I. Proposer une définition axiomatique (d'ordre supérieur) pour des corps de séries
généralisées équippés de fonctions à croissance hyper-forte ou hyper-faible jouant le rôle
d'itérées transfinies de la fonction exponentielle et du logarithme respectivement. Nous
appelons ces corps des corps hypersériels.

Problème II. Définir une structure de corps hypersériel sur la classe No des nombres surréels
de Conway, de manière à identifier les nombres surréels à des � hyperséries � formelles.

Il s'agit donc essentiellement d'un travail de définition et de construction, dans lequel la théorie
des modèles n'intervient que comme outil simplificateur. Dans la suite, je présente mes résultats
concernant ces deux problèmes.

A.1 Préliminaires formels

La Partie I est constituée de rappels et de développements techniques sur les séries formelles
généralisées dites séries de Hahn. Je rappelle ici que les corps de séries de Hahn admettent une
notion formelle, combinatoire, de somme transfinie de certaine familles dites sommables. On parle
de fonctions fortement linéaires entre deux tels corps U;V pour désigner les fonctions R-linéaires
�:U¡!V qui commutent avec les sommes transfinies au sens où �(

P
i2I si)=

P
i2I �(si) pour

toute famille sommable (si)i2I dans U.

A.2 Corps hypersériels

Le corps L des hyperséries logarithmiques, défini par van den Dries, van der Hoeven et Kaplan
avant que je ne commence mon travail de thèse, est le plus petit corps de séries formelles clos
par sommes et produits infinis, par dérivation et intégration. Il est construit à partir d'éléments
`!�, pour � ordinal quelconque. Le premier terme `1 correspond au logarithme, tandis que les `!�
pour �> 0 sont vus comme des fonctions strictement croissantes tendant vers +1 extrêmement
lentement, ce qui est illustré par les équations fonctionnelles

`! � `1= `!¡ 1;
et en général

`!�+1 � `!�= `!�+1¡ 1:

Puisque `!� croît très lentement vers +1, sa dérivée devrait décroitre très rapidement vers 0, sans
que cette décroissance soit si forte que `!� admette une limite finie en +1. Ainsi, on devrait avoir�

1
`n

�0
<`!

0 <`n
0

pour tout n2N, où `n= `1 � � � � � `1 est l'itérée n-ième du logarithme. Un choix naturel de valeur
pour `!0 est alors

`!
0 = 1Q

n<! `n
; (A.2.1)
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produit formel qui satisfait en effet aux conditions (A.2). Cette formule se généralise dès lors que
l'on dispose dans le langage de produits formels infinis de termes de la forme `� pour tout ordinal
�. On obtient en étendant ces formules un corps ordonné différentiel (L;+; �; <; @; �) avec une loi
de composition.

Le premier problème, situé dans le cadre formel, consiste à donner des conditions sur un corps
T de séries de Hahn à coefficients réels, pour qu'une loi de composition telle que définie ci-dessous
existe.

Une loi de composition est une fonction �:L�T>R¡!T satisfaisant notamment:

HF1. L¡!T; f 7¡! f � s est un morphisme de corps ordonnés fortement linéaire pour chaque s2
T>R.

HF2. f � (g � s)= (f � g) � s pour tous f 2L, g 2L>R, et s2T>R.

HF3. f � (t+ �)=
P
k2N

f(k) � t
k!

�k pour tous f 2L, t2T>R, et � 2T avec �� t.

HF4. `!� � s< `!� � t pour tous les ordinaux �,  <!�, et les s; t2T>R avec s< t.

On dit alors que (T;�) est un corps hypersériel , et l'existence de � est équivalente à celle de fonctions
partielles L!�; �2On satisfaisant un petit nombre de conditions axiomatiques notées Ax ici. Les
résultats principaux de ce travail, contenus dans la Partie II, sont les suivants:

Theorem A.2.1. Si T est un corps de séries de Hahn et (L!�)�2On est une famille de fonction
partielles satisfaisant Ax, alors il existe une unique loi de composition �:L�T>R¡!T faisant
de (T; �) un corps hypersériel avec `!� � s=L!�(s) sur le domaine de L!�.

On définit les plongements entre corps hypersériels comme morphismes d'anneaux fortement
linéaires qui commutent avec �.

Theorem A.2.2. Soit (T; �) un corps hypersériel. Il existe un corps hypersériel (T~ ; �) et un
plongement �:T¡!T~ tel que:

� Toute fonction hyperlogarithme Le : s 7¡! ` � s:T~>R¡!T~>R est bijective.

� Si (S; �) est un corps hypersériel où toute fonction Le est bijective, et si �:T¡!S est un
plongement, alors il existe un unique plongement 	:T~ ¡!S avec �=	 ��.

Le premier point ci-dessus signifie que l'on peut étendre les corps hypersériels afin que les
réciproques des fonctions hyperlogarithmes Le , appelées fonctions hyperexponentielles, soient
définies. Le second point est une propriété initiale pour l'extension T~ /T, qui est donc unique
à unique isomorphisme près.

A.3 Nombres en tant qu'hyperséries
Le second problème consiste à appliquer ces résultats à T=No, et à utiliser la loi �:L�No>R¡!
No, pour décrire chaque nombre surréel comme une hypersérie. Le fait que No soit naturellement
isomorphe à un corps de séries de Hahn fut établi dès le départ par Conway. On sait aussi [18]
que No, équipé de la fonction logarithme de Gonshor, est un corps de transséries. Ces faits sont
rappelés en Partie III. Nous étendons dans la Partie IV ce résultat pour les hyperséries comme suit:

Theorem A.3.1. Il existe une loi de composition �:L�No>R¡!No telle que (No; �) est un
corps hypersériel. De plus, les fonctions hyperlogarithmes sont bijectives.

Nous prouvons également un théorème de structure qui décrit la façon dont les nombres peuvent
être représentés comme des hyperséries. Un nombre a2No admet un développement comme série
de Hahn, série de termes � = rm où r2R et m est un monôme, c'est-à-dire un terme additivement
indécomposable. La classe Mo des monômes est un groupe isomorphe au groupe additif surréel.
Chaque monôme non trivial m=/ 1 peut se développer comme

m=e (L�E!� u)�
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pour un unique tuple ( ; �; �; �;u) où u;  2No, �2f¡1;1g et �; � sont des ordinaux, satisfaisant
certaines conditions. En développant  et u à leur tour et en poursuivant inductivement, on obtient
une décomposition des nombres en expressions formelles (arbres indexés par des ordinaux et des
nombres réels) appelée hyperséries.

Il s'agit alors d'investiguer l'existence hyperséries de profondeur infinie, dites nidées. J'ai isolé
une qualité de ces séries nidées, un peu technique, mais qui peut être considérée comme le fait que
le processus de représentation des nombres comme hyperséries aboutit à une expression dite � bien
nidée �, telle que l'expression détermine la place du nombre en question dans la droite surréelle.
Ainsi, chaque nombre conduit à une expression éventuellement bien nidée:

Theorem A.3.2. Tous nombres surréels sont éventuellement bien nidés.

Les nombres correspondant aux expressions bien nidées sont quant à leur quantité en bijection
naturelle avec la classe No elle-même. Enfin, tout nombre surréel peut être décrit sans ambiguïté
comme une hypersérie. Nous appelons cela la représentation hypersérielle de ce nombre.

Theorem A.3.3. Tout nombre surréel admet une unique représentation hypersérielle, et la
représentation détermine le nombre.

En ce sens, les nombres surréels sont des hyperséries.
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Titre : Hyperséries et nombres surréels

Mots clés : nombres surréels, théorie des modèles, transséries

Résumé : Les hyperséries sont des transséries
généralisées construites à partir d’exponentielles ex

et de logarithmes log x d’une variable positive et in-
finiment grande x, ainsi qu’à partir d’itérateurs trans-
finis eωα et ℓωα de ex et log x respectivement, pour
tout ordinal α. Par exemple, les éléments e1, eω, . . .
peuvent être vus comme des avatars formels de so-
lutions régulières (en particulier monotones et analy-
tiques) de l’équation d’Abel

Eωα+1(r + 1) = Eωα(Eωα+1(r))

pour r ∈ R suffisamment grand, où E1 = exp
est la fonction exponentielle réelle. De telles fonc-
tions, exotiques en apparence, sont particulièrement
intéressantes du fait qu’il est possible d’effectuer un
”calcul hypersériel” simple et bien défini avec leur
contrepartie formelles eωα , ℓωα . Selon ces règles de
calcul, il doit être possible de définir de façon natu-
relle des dérivations et lois de composition sur les

hyperséries, de sorte qu’il en résulte des structures
modérées des points de vue de la géométrie et de la
théorie des modèles.

L’objectif de cette thèse est de définir une structure
de corps d’hyperséries sur le corps No des nombres
surréels de Conway. Nous prouvons que tout nombre
surréel est représenté canoniquement par une hy-
persérie dans laquelle le nombre ω ∈ No joue le rôle
de la variable infinie x.

A cette fin, nous montrons comment définir
les itérateurs transfinis Lωα et Eωα sur des corps
généraux d’hyperséries, et nous prouvons que ces
opérateurs peuvent être définis de façon naturelle sur
les nombres surréels. Nous introduisons ensuite un
moyen de représenter chaque nombre surréel comme
une série formelle en ω impliquant les opérateurs Lωα

et Eωα , des coefficients réels, et des sommes transfi-
nies.

Title : Hyperseries and surreal numbers

Keywords : surreal numbers, model theory, transseries

Abstract : Hyperseries are generalized transseries
that involve exponentials ex, logarithms log x of a po-
sitive infinite variable x, as well as so-called transfi-
nite iterators eωα and ℓωα of ex and log x respectively,
for any ordinal index α. For instance, the elements
e1, eω, . . . can be construed as a formal counterparts
to regular (e.g. monotonous and analytic) solutions of
Abel’s equation

Eωα+1(r + 1) = Eωα(Eωα+1(r))

for large enough r ∈ R, where E1 = exp is the real
exponential function. Such seemingly exotic functions
are of particular interest because their formal counter-
parts eωα , ℓωα are amenable to a simple “hyperserial
calculus” according to which derivations and compo-

sitions of hyperseries are naturally defined, with tame
properties.

The goal of the thesis is to define a structure of field
of hyperseries on Conway’s field No of surreal num-
bers. We show that each surreal number can be ca-
nonically represented as a hyperseries in which the
number ω ∈ No takes the role of the positive infinite
variable x.

To that end, we show how transfinite iterators Lωα

and Eωα can be defined on general fields of formal
hyperseries, and we show that these functions can be
defined in a natural way on surreal numbers. We then
introduce a way to represent each surreal number as
a formal series in ω involving the operators Lωα and
Eωα , real numbers, and transfinite sums.
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