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Introduction

How fast can real functions grow at infinity? In order to make this question more precise, we will
focus on germs of univariate real-valued functions at infinity.

Consider real-valued functions whose domain contains an interval (a, +o00) for some a € R.
Identifying two such functions whenever they coincide on a common subinterval (b, +00) of their
respective domains, one obtains an equivalence relation whose classes are called germs (at +00).
We say that the germ of f is strictly smaller than that of g if f(¢) < g(t) for sufficiently large t € R.

At the simplest level, we have germs of constant functions 0,1,2,... as well as the germ x of the
identity function, which is larger than all constant functions. Germs can be added and multiplied
pointwise. This allows us to obtain the following growth rates

r+l<zr4+2<---<2x<2z+1<...<z?<2?4+1<---.

The ordering on germs is only partial, because of the oscillatory behavior of some functions. For
instance, the sine function sin cannot be compared with the constant function 0, whereas sin - exp(x)
cannot be compared with z. Many operations on germs, such as addition and multiplication, are

2
compatible with the partial ordering. For instance, the growth rates x — 1, "Lmtll/ 2 2z or \/T are
all ordered as

2+ 1

—— <z+l<z+2<---<2x<2z.

O<l< - <Vor<r—l<z<z<
If f:(a,+00) — R is differentiable, then the germ of its derivative only depends on the germ of f.
Thus germs of differentiable functions can be differentiated as well. Finally, if g tends to +o00 at
+00, and f:(a,+00) — R is a function, then the germ of fo g only depends on that of f and g,
thus yielding a partial composition law on germs.

In order to avoid pathological growth rates of arbitrary functions, we turn to the notion of
regular growth rates, i.e. we look for classes of germs of functions that are regular with respect to
the structure on germs: continuity, differentiability, smoothness... In the context of real geometry,
one may distinguish various types of regularity: continuous functions, analytic functions, quasi-
analytic classes, germs in Hausdorff fields, Hardy fields, definable maps in tame expansions of R...

The crudest level of regularity is that of continuous functions. An ordered field of germs of
continuous functions is called a Hausdorff field. They include the field R(z) of (germs of) rational
functions with real coefficients, as well as R(loglogz). Germs in Hausdorff fields cannot oscillate
at 400 (for instance the germ of the cosine function does not lie in a Hausdorff field) because the
intermediate value theorem implies that oscillating functions have zeroes at +o0o and thus cannot
have a multiplicative inverse. Thus Hausdorff fields give us a first notion of regularity of the growth
order of a function. Note however that R(x 4 2sin(x)) is a Hausdorff field, which is isomorphic as
an ordered field to R(z), despite the fact that 2+ 2sin(z) is not the germ of a monotone function.

A higher degree of regularity can be achieved with Bourbaki’s notion of Hardy field [26]. A
Hardy field is a field of continuously differentiable germs at +oo which is closed under derivation of
germs. This excludes oscillatory behavior in a stronger sense. For instance, although the function
22+ sin does not oscillate at 400, its second derivative does, so the germ of this function at infinity
does not belong to a Hardy field. In particular, germs in Hardy fields and all their derivatives
are monotone. Hardy considered logarithmico-exponential functions, or L-functions, as functions
constructed from the identity function « and the real numbers using the field operations, exponen-
tiation, and logarithms. He showed that the set Hig of germs of L-functions is a Hardy field. The
regularity of germs in a Hardy field H can also be stated as a form of regularity of its derivation
operator f— f’ with respect to the dominance relation, for instance, we have

VfeH,(f>N= f'>0).
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Even more regular growth rates can be obtained by imposing that the corresponding functions
be definable in tame expansions of the real ordered field. The theory of o-minimality (see [32])
provides many such examples. Indeed, a first-order expansion R = (R, +, X, <,...) of the real
ordered field is o-minimal if and only if the set Hx of germs of unary functions that are definable
in R is a Hardy field. Furthermore Hpz is closed under composition of composable germs as well
as under multivariate operations coming from the first-order language. In particular, taking R as
the real exponential field Rexp = (R, +, X, <,exp) (resp. the real exponential field with restricted
analytic functions), one obtains a large Hardy field Hexp (resp. Han,exp) containing Hyg which is
closed under composition.

One difficulty entailed by the study of regular growth rates is that of their representation. We
have seen with L-functions how to obtain regular growth rates using algebraic operations and exp
and log. However, there are gaps among regular growth rates that can be expressed in this form.
For instance, writing expa(x) = exp(exp(z)), exps = exp(expz(z)) and so on, Boshernitzan showed
[25] that there are Hardy fields that contain germs f with

exp(x) < expa(x) <exps(z) <--- < f. (1)

Any such germ cannot be expressed in terms of elementary functions such as exp and log and
algebraic operations. How can one represent such growth rates as f in a consistent way? Can a
calculus of such growth rates, similar to that of L-functions, be proposed?

Working with the notions of regularity above also leads to difficulties of an analytic nature
when trying to account for all possible regular growth rates. Many important problems in the field
of tame geometry over the past few decades can be stated as a question of whether it is possible
to close certain types of tame structure under certain operations. For instance, it is known [23]
that Hardy fields can be extended into larger Hardy fields by integrals, exponentials, logarithms of
germs, or in general by Pfaffian differential equations of order 1. Likewise, an o-minimal expansion
of the real ordered field can be expanded with the real exponential function, or more generally
with solutions of generalized Pfaffian equations, while remaining o-minimal [94]. Similar problems
however remain difficult open questions. For instance, a long open question is whether there exists
an o-minimal expansion of (R, +, X, <) which defines a transexponential germ f as in (1). It is
also unknown whether so-called Dulac germs, connected to Dulac’s problem [38], can be defined in
an o-minimal expansion of (R, +, X, <). It was conjectured [5] that Hardy fields can be extended
with solutions of all differential algebraic equations of odd degree, and a proof by the same authors
is in preparation [§].

In this thesis, we will follow an alternative formal approach. Instead of growth rates of real-
valued regular functions, we will consider formal objects, designed explicitly to be both closed under
many operations and equations, and also to be expressible in terms of a definite list of “regular”
operators such as exp, log, and field operations. This is the realm of generalized power series.
Defining derivations 9: $ — $ and composition laws o: $ x $>® — $ on an ordered field $ of
formal series containing the reals is a way to let those series act as regular, infinitely differentiable
functions on $>&,

Transseries, introduced independently by Dahn-Géring [30] and Ecalle [39], are generalized
series based on operators exp, log and arithmetic operations. They form a natural generalization
of regular growth rates. As van der Hoeven’s PhD thesis [60] illustrates, transseries are at the
same time naturally closed under many operations and equations while being amenable to formal
and algorithmic methods for solving equations or more general problems. The closure properties
of transseries, e.g. under derivation and composition, are inherited from the regularity of the
operators exp and log and the arithmetic operations. By extending this list of operators, one could
in theory extend the list of formal growth rates amenable to a formal calculus, while retaining the
properties of regular growth rates of real-valued functions. Hyperseries, as developed successively
by Ecalle [39], van der Hoeven [60], Schmeling [92] and van der Hoeven, van den Dries and Kaplan
[33] are such extensions of transseries with so-called transfinite iterators expa, log, of exp and log
for ordinals <, which have even stronger closure properties such as closure under conjugation (see
[40, 10]). For instance the first transfinite iterators exp,, and log,, satisfy the equations

expyo(r+1) = expoexp,,

log,olog = log, —1.
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Compared to regular growth rates of real-valued functions, hyperseries can be extended with new
growth rates in a relatively simple and uniform way. In fact, van der Hoeven conjectured [60,
Section 2.7] (see also [5, p. 14]) the existence of a large field Hy of hyperseries equipped with a
derivation 0 and a composition law o that should be closed under many operations and equations
considered when working with growth rates of regular real-valued functions. In particular, he
conjectured that given a unary term t(-) in the first-order language of (Hy, +, X,9,0) and f <h
in Hy such that ¢(f) and ¢(h) are defined, the following intermediate value property would hold:

t(f)t(h)<0=3g(f<g<hAt(g)=0).

Such a field Hy would be an ultimate “field-with-no-escape”. It is tempting to take all hyperseries
in Hy to coherently subsume “all regular growth rates”.

One remarkable aspect of the theories of transseries and hyperseries is that they form a far-
reaching extension of the calculus of real numbers with infinite and infinitesimal quantities, and
closure under exponentiation, logarithm, and transfinite summation. Even more remarkably, a
similar calculus was proposed in a different area by Conway [28]. He introduced the class No of
surreal numbers which extends the reals with infinitely large and infinitesimal quantities. Just as
transseries, surreal numbers form a real-closed field with a notion of infinite summation. Moreover,
Gonshor defined [55] an exponential function exp: No — No>? on surreal numbers, illuminating
to their similarity to transseries. Cantor’s class On of ordinals w,w+1,w*, ..., €q,... is naturally
contained in No, which implies that seemingly exotic quantities such as

w\/2w+1

1/. 1/,
N e

xp(v/20 =) @)

can be made sense of in No.

Surreal numbers possess two interesting and defining features. Firstly, they come with a linear
ordering < for which the surreal line No is set-wise saturated: given two sets L, R of surreal
numbers with L < R, there is always a number {L | R} € No with L<{L | R} < R. In other words,
any gap in the surreal line can be filled by a surreal number. This form of completeness, which is
difficult to obtain in rings of growth rates of real-valued functions or formal series, is a particularly
desirable feature that suggests that all orders of infinity can be accounted for in No. Secondly, the
number {L | R} can be chosen “simplest”, in an abstract sense, to lie between L and R. This yields a
well-defined function (L, R)— {L | R} which allows one to select simplest ways to fill holes between
numbers in a manner that is coherent with a given algebraic structure on No. This allowed Gonshor
to define his exponential function in a natural way. In this thesis, we will exploit this phenomenon
to construct transfinite iterators of exp and log on No. It is remarkable [15] that in defining a
distinguished function F on surreal numbers so as to satisfy a <exp(a) <exp(exp(a))<:-- < E(a)
for large enough a € No, one also incidentally obtains a solution to the functional equation

E(a+1) = exp(E(a))

of exp,, for all sufficiently large a € No. This suggests that surreal numbers and hyperseries are
naturally related, and that the two ways of regular extending growth rates by solutions of equations
and by filling gaps are connected in a beautiful manner over No.

During the past two decades, the class of surreal numbers became a prominent universal domain
for several types of ordered algebraic structures, including ordered groups, ordered fields and
models of the real exponential field. Van der Hoeven conjectured [63, p. 16] (see also [5, Conjec-
ture 5.5] for a more precise statement) that surreal numbers are canonically isomorphic to Hy,
the isomorphism being an evaluation map sending each hyperseries f € Hy to its “value at w”
f(w) e Hy(w)=No.

The main goal of this thesis is to prove this last conjecture. We do this by representing surreal
numbers as hyperseries, i.e. as formal expressions involving a definite set of operations, of which
we will provide a solid understanding. On the class of surreal numbers, we will see how to define
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(besides usual arithmetic operations) an infinite arity summation operator y_ , exponentials exp
and logarithms log and transfinite iterators exp, and log,, thereof, where a ranges in the class On
of ordinals. We will see that such expressions as

expw2< V2P —log(w) — loga(w) — - -- ) -

log,w(w)

are legitimate surreal numbers, and that representing surreal numbers such as (2) in this manner
is a good way to establish a link between surreal numbers and hyperseries and to allow one to
compute with numbers as if they were regular growth rates. In establishing this representation,
we will construct a field Hy(w) of hyperseries in w, thus answering van der Hoeven’s conjecture in
the positive.

1 Toward an algebra of all regular growth rates

First systematic investigations of regular growth rates were made by Hardy [57, 58], based on earlier
ideas by du Bois-Reymond [20, 21, 22|. Hardy proved that the set Hyg of L-functions was a Hardy
field and observed [57, p. 16] that “The only scales of infinity that are of any practical importance
in analysis are those which may be constructed by means of the logarithmic and exponential
functions.”. In other words, Hardy suggested that the framework of L-functions not only allows
for the development of a systematic asymptotic calculus, but that this framework is also sufficient
for all “practical” purposes. However, as was later suspected by Hardy himself, the set Hpg is not
sufficient for all practical purposes, e.g. it is not closed under functional inversion [35, 60]. Part of
Hardy’s work can be interpreted as a search for an elusive algebra, which we denote €2, of regular
real-valued functions that would encompass all instances of prominent regular functions appearing
in the literature.

We will discuss several possible instantiations of €2 in the realm of growth rates by considering
ways to extend Hardy fields with solutions of equations or with elements that fill certain gaps.

1.1 Hardy fields and algebraic differential equations

Many simple examples of Hardy fields, such as subfields of R, the field R(x, exp) generated by the
germs of the identity function and the exponential function, and the set Hyg of L-functions, share
the property of being differentially algebraic [23, Lemma 3.7]. This means that each germ f € Hyg
satisfies an algebraic differential equation

P(f’f’?f”""?.f(n)):07

where P € R[Xy, ..., X,] is a non-zero polynomial with real coefficients. On the other end of the
spectrum, Zorn’s lemma implies the existence of Hardy fields, called maximal Hardy fields, which
are not properly contained in any larger Hardy field. Aschenbrenner, van den Dries and van der
Hoeven conjectured [5] that all maximal Hardy fields satisfy an intermediate value theorem for
differential polynomials: if P € H[X,..., Xn]7é and f, g are germs in a maximal Hardy field H such
that

P(f,f/’...’f(n))P(g,gl’...,g(ln‘))<07

then there is a germ & in H lying between f and g, such that P(h,h’,..., h™)=0. Non maximal
Hardy fields satisfying this property exist that can be embedded into fields of transseries [64].
Although maximal Hardy fields need not be closed under composition, this intermediate value
property would make them good candidates for €2 from the standpoint of asymptotic differential
algebra.
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1.2 Filling gaps in Hardy fields

One of du Bois-Reymond, Hardy and Hausdorff’s goals was to fill gaps between sets of germs. The
problem of filling gaps can be stated in the setting of Hardy fields as follows: given a Hardy field
and countable subsets A and B of with A < B, is there a larger hardy field which contains a germ
h with A < h < B? This question was recently answered in the positive by Aschenbrenner, van den
Dries and van der Hoeven in an article in preparation [7]. One readily sees that this process of
filling gaps invokes germs whose growth is very dissimilar to that of elementary functions such as
L-functions. Let us single out three particular cases. Taking

(A, B) = (2, {logn(x) :n € N}),

one obtains a sublogarithmic solution, i.e. a germ h whose growth rate is smaller than that of any
finite iterate of the logarithm. Taking

(A, B) = ({expn(z) : n € N}, @),

one obtains transexponential solution, i.e. a germ h whose growth rate is greater than any finite
iterate of the exponential function. Finally, taking

(A,B):<{ﬁ,ﬁ+e‘/log(z),\/§+e /1og(x)+ex/log2(r)7n.}7{2\/57\/5+62\/10g(96)7\/:E+e\/log(ﬂc)ﬁ-e?vlogz(r)’n.})

one obtains a “nested” solution i whose growth cannot be precisely approximated using finite
combinations of exp and log. We will see when studying surreal numbers that filling these three
types of gaps and generalizations thereof in the case of hyperseries is sufficient in order to obtain
a full copy of the surreal numbers. In fact this can also be seen in the realm of germs in the work
of Aschenbrenner, van den Dries and van der Hoeven [7].

1.3 Hyperexponentials and hyperlogarithms

In order to study and represent transexponential or sublogarithmic germs, it is convenient to
single out specific such germs that would play the role of exp and log as building blocks for more
complicated germs. Since transexponential and sublogarithmic germs do not appear as solutions
of differential equations over elementary functions [24, Section 12], one must turn to more general
functional equations in order to find examples. The simplest difference equation which generates
a transexponential germ is Abel’s equation for the exponential function, which is the following
equation in y

yo(x+1)=expoy. (1.1)

Kneser defined [66] an analytic and monotone function exp,: R*? — R>! with exp,(0) =1 and
exp,,(r+1)=exp(exp,(r)) for all r € R>°, hence the germ of exp,, is a solution of (1.1). The function
exp,, can be construed as a transfinite iterator of the exponential function, with exp,(n)=exp,(1)
for all n € N.

Conversely, the difference equation

yolog=y—1 (1.2)

which can be obtained by formally inverting (1.1), generates a sublogarithmic germ. In fact the
functional inverse log,: R®! — R=? of exp,, is a solution of (1.2).

Boshernitzan showed [25] that R(exp.(z),exp,(z),expl(z),...) is a Hardy field. It is unknown
whether the expansion (R, +, X, <,exp,) (extending exp,, to be zero on R<?) of the real ordered
field is o-minimal. A first step toward establishing a positive answer to this question is done in
Padgett’s thesis [83] where she constructed a Hardy field H containing z, closed under exp and
log, as well as under exp,, and log,,.

Extending Kneser’s method, Schmeling constructed [92, Appendix A] analytic solutions exp,z2,
exp,3, etc. to the following equations:

expy20(x+1) = exp, oexp,:? (1.3)
expyso(x+1) = expyz(expys(z)) (1.4)
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The fast growing germs exp,,(x), exp,2(z), ... are called hyperezponentials. Their functional inverses
log. (), log2(x), ... are called hyperlogarithms and they grow extremely slowly. All these germs
are contained in a Hardy field.

Ecalle studied analytic properties of very fast and slowly growing germs such as the transfinite
iterators of exp and log. He introduced a systematic technique for the construction of quasi-analytic
solutions to these and more general iteration equations [39]. After having introduced a subclass
of Hy in the form of his “Grand Cantor” [39, Chapter 8], he proposed [40] an instantiation of
in the form of his “natural growth scale”. This is a group under composition of positive infinite
germs, including transfinite iterators and exp and log, in which many functional equations involving
compositions only should have solutions.

1.4 Levels

One important property of Hyg or Han,exp is the classification of their levels. Levels were intro-
duced by Rosenlicht [89, Section 2] in the case of Hardy fields of finite rank, by Ecalle [39] in the
case of transseries. They were later studied by Marker and Miller [79] in the case of fields Hz for
o-minimal expansions R of real-closed fields which define an exponential function (the definition
of Hg being similar as in the real case). We introduce them in the form of exp-log classes. Let us
fix an ordered field F D R equipped with an isomorphism exp: F — F~ such that (F, 4+, x, <, exp)
embeds into an elementary extension of Rexp. This means that the inclusion R — F preserves all
first-order properties in the language of ordered exponential rings. Then the exp-log class EL(a)
of a € F>R is its equivalence class EL(a) C F>R for the relation

axlb<=3IneN, (log,(a) —log,(b) < 1).

Writing € for the set {exp, o (log, & 1):n € N} of strictly increasing bijections F>F — F>E_ we
see that each EL(a) for a € F>® is the convex hull in (F>R, <) of the class

Ea:={g(a):ge&}.
Exp-log classes are linearly ordered by universal comparison EL(a) < EL(b). For a,b€ F>R, we have
EL(a) <EL(b) <= Ea < Eb<=Ea<b<=a < &D.

This type of inequalities concerning convex equivalence relations frequently appears when studying
germs, hyperseries, and especially surreal numbers, which are ideally suited to investigate them
(see in particular Chapters 10 and 11).

Consider a Hardy field H containing x, closed under exp and log, as well as under exp,, and log,,.
Write Ay, :=EL(expp(z)) and A_,,:=EL(log,(x)) for all n € N. Note that the set £ is contained in
H>R. The exp-log classes of exp,, () and log,,(z), respectively, suggestively denoted A, and \_,,
satisfy

Ao <A < Ay

for all n € Z.

Further “transfinite” exp-log classes A, —1:=EL(log(exp.(2))), Aey:=EL(expy(expy(x))), Acwa:=
EL(log.(log,(x))), ete, can be defined within H.
Given 7 € R, the exp-log class A, of the function expl)(x) :=exp,(log,,(x) + r) satisfies

Vr,seR,r <s<= A\ <.

Indeed, one can see that (R, +,0, <) — (H>R o 2, <);r— expm(ac) is an embedding of ordered
monoids with expl!(2) = exp(z), and in particular that all exp!"l(z) for € R commute. We can
readily construct other intermediate levels in H by noting that given ¢, ¢ € H>R with

1

P g (expu(@)

for all n € N,
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the exp-log classes of exp, o ¢ and exp, o 1 are distinct. Indeed one can show that the sets

1
+— and log,, o £ oexpy,) o
ENTRETRE) log.oEoomu)oy
have the same convex hull. Those relations, which follow from the asymptotics of Abel’s equation
and basic properties of smooth functions allow us to construct “infinitesimal” exp-log classes such as

Ay, :EL(expw<logw(x) +m> )

which indeed satisfies A\g < A1/, <A, for all » € R”. To this date, there is no known o-minimal
expansion of (R, +, X, <) which defines a germ f >R with non-integer level [79]. One can therefore
say that there is no known o-minimal instantiation of €2. In contrast, as we will see, it is not too
difficult to construct fields of hyperseries which account for infinite or infinitesimal levels.

2 Formal series

Formal series can be used as formal asymptotic expansions of certain germs or as easy-to-construct
models of certain first-order theories. The particular kind of series which is relevant in our case
are well-based series or Hahn series as per [56], over R, because well-based series are subject to
many formal operators and algorithms [82, 92, 62] which can be used to define operations and solve
equations that appear in the context of Hardy fields.

Given a multiplicatively denoted Abelian, linearly ordered group (9, x,1, <), the field R[[9N]] of
well-based series over R with monomial group 91 is the set of functions f: 9t — R whose support

supp f = {meM: fru#0}

is well-ordered for the reverse ordering > on 9t (see Chapter 1 for more details and an extension
of the definition for class-sized monomial groups M). Each function f € R[[9M]] is represented as

a formal sum
f= Z fmm

memMm

where fi,:= f(m) €R and the field operations as defined by Hahn are as the pointwise sum

f+9:=> (futgm)m,

meMn
and the Cauchy product

f+9:= > (fugo)uv.

u,pEM
Fields of well-based series come equipped with a dominance relation
f < g<= maxsupp f <maxsupp g
and an asymptotic equivalence
f =< g<=maxsupp f =maxsupp g

for non-zero f, g€ R[[PM]]. An important feature of fields of well-based series for us is that one can
define a notion of transfinite sum of certain families of series [82, 59]. That is, given a field of well-
based series T = R[[90]] and a family (f;)ics € T, we can sometimes define its sum dYerfiasa
well-based series in T, which is useful in defining operations on T. An R-linear function ¥: T — T
which preserves summability and commutes with the summation operator »: (fi)ier— >,  fi
is said to be strongly linear. Let us see how well-based series over R relate to the investigation of
regular growth rates by describing partial constructions of Hy in the literature.
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2.1 Transseries

Elementary germs, such as L-functions, are nothing but finite combinations of exp, log, and polyno-
mial or semi-algebraic functions. Accordingly there should exist a representation of such germs as
formal combinations of terms e”, log z and algebraic expressions. Dahn and Géring [30] and Ecalle
[39] introduced formal series, called transseries, that serve this purpose. Transseries are specific
types of well-based series with real coefficients. Each transseries is constructed from a variable
x taken as a generic positive infinite element and from the real numbers, using exponentiation,
logarithms, and infinite sums. One example is

e e P et 30 5 (log a) 442+ 2 420724 623+ 2404 o e T

Transseries form an ordered, valued, exponential field (Tyg, +, X, <, <, exp) with extra structure
called the field of logarithmic-exponential (or log-exp) transseries. The field Tyg was first defined
by Dahn and Goéring [30] in an effort to study Tarski’s problem on the real ordered exponential
field Rexp = (R, +, X, <,exp): is the elementary theory of Rexp decidable? Tarski’s problem is still
open, and has been reduced [93] to certain open (and considered very difficult) number theoretic
conjectures; in particular the Weak Schanuel’s Congecture [76].

Ecalle proposed [39] a wide ranging analytic theory of accelero-summation which relates trans-
series to large classes of quasi-analytic real-valued functions called analyzable functions. This lead
in particular to his proof of Dulac’s conjecture about the finiteness of limit cycles of polynomial
vector fields.

The subfield T, of Ty g of so-called grid-based transseries, among others, was studied by Joris
van der Hoeven, after Ecalle [60], in order to set a framework that is rich in methods to analyze
the asymptotic behaviors of real-valued functions, such as differentially algebraic functions, that
naturally occur in geometry and analysis. This work allowed for a weaker but simpler method than
Ecalle’s accelero-summation in order to embed fields of transseries into Hardy fields [64]. Van der
Hoeven later showed that T, satisfies the intermediate value theorem for differential polynomials
[63, Theorem 9.33].

Transseries are interesting in particular for their rich structure besides the field operations and
exponentiation. Indeed the field Ty is equipped with a canonical derivation 9: T,y — T [36, 60],
as well as with a composition law o: Ty g x TEER—> T [36, 60], which extends the composition of
rational functions in the variable x and shares a few first-order properties with the composition law
on Hardy fields that are closed under composition. In fact, there is a natural embedding of Hexp,an
into Ty g that sends the germ x of the identity to x and preserves the derivations and composition
laws [36, Corollaries 3.12 and 6.30]. The image of the same embedding is contained in the subfield
T,. As such those fields of transseries can be used as formal counterparts to certain Hardy fields,
with the advantage of lending themselves to formal methods and algorithms to solve equations and
inequations.

However, transseries are by their definition insufficient to describe the asymptotic behavior of
functions involving hyperexponentials and hyperlogarithms. In fact, the exp-log classes in T} and
Ty g are also parametrized by integers, and thus transseries very broadly fail to approximate germs
whose levels are infinite, fractional and infinitesimal as we mentioned above.

2.2 Model theory of transseries

In a more model theoretic vein, van den Dries, Macintyre and Marker took interest [36] in trans-
series as a natural non-standard model for certain expansions of the real ordered field, including
Rexp and Rap,exp- Indeed it is a by-product of their previous work [34] on the theory of Ran exp that
Ran,exp is an elementary submodel of any field of well-based series equipped with a well-behaved
exponential function.

With Aschenbrenner, van den Dries studied the elementary properties of H-fields, which are
ordered, valued, differential fields designed to abstractly represent Hardy fields. They focused in
particular on the existence of closures of such models under certain differentially algebraic equations
[2, 3]. Since transseries are naturally closed under many operations, they are a prominent instance
of H-fields.
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The encounter between Aschenbrenner, van den Dries and van der Hoeven lead to a fruitful
cooperation, combining formal analytic methods and model theory. They set a research program [5]
toward conjunctively understanding the elementary theory Ty g of (Trg, +, X, <, <,d) and that of
maximal Hardy fields. This motivates many recent projects and already yielded the major results
of recursive axiomatization of 71w, model completeness, quantifier elimination in an extended
language [4].

The model theory of (TLg, +, X, 0) is much less tame. This stems from the fact that many
simple functional equations in Ty g lack transseries solutions. An important example of an equation
without solution in Ty g is the functional equation in f

f=/x +efclosr with the condition f~ /z. (2.1)

One can conceive [60] natural “syntactic” solutions

—— , Jloglogate
fo= T+ eV BT (2.2)

o (2.1). It is plausible [61, Section 1.4] that the equation have quasi-analytic solutions that could
be partially described by the nested expansion (2.2). In order to understand this type of object
and formal expansion, van der Hoeven introduced the notion of abstract transseries [61].

2.3 Abstract transseries

Going beyond these results requires tools to be able to produce formal, transserial models for
various fields of real-valued functions beyond the spectrum of exponential-logarithmic-analytic
germs. It became clear that this implies extending the range {Trg, T,} of admissible fields of
transseries to more abstract fields of transseries as defined by van der Hoeven [61]. This was
accomplished by Schmeling in his thesis [92]. Transseries fields are fields of well-based series T
equipped with a logarithm log which is a morphism (T, x, <) — (T, +, <) that shares certain
key features with the logarithm log =exp™ on Tyg. One specific restriction, denoted axiom T4
in [92, Definition 2.2.1] (see also Section 11.2.2), pertains to nested expansions such as (2.2). In
particular, Schmeling showed how to to construct transseries fields containing f;.

Transseries fields can be extended so that the logarithm becomes surjective. Such fields T are
equipped with an external composition law o: Ti,g x T>R® — T. Schmeling showed how to define
derivations and compositions on transseries fields, and how to extend them when closing under
exponentials. These results are related to S. Kuhlmann’s work on fields of generalized series. Indeed
Kuhlmann and her co-authors F-V. Kuhlmann, Matusinski, Shelah, and Tressl, showed how to
construct fields of well-based series equipped with logarithms and exponentials [68, 67], how to
distinguish between several types of generalized transseries [72], and how to extend derivations
when closing such fields under exponentials [70].

2.4 Hyperseries

Despite the excellent closure properties of transseries for the resolution of differential equations,
the functional equation (1.1) does not have a transseries solution. In order to establish a universal
formal framework for asymptotic calculus, we therefore need to incorporate extremely fast growing
formal counterparts E,,, E, 2, E_s3,... to the functions exp,,, €Xp,2, €Xpy3,... The first construction
of a field of generalized transseries that is closed under E,» and L~ for all n € N was accomplished
in [92]. The hyperlogarithms L, Lz, etc. satisfy the functional equations

Ly(L1(z)) = Ly(x)—1 (2.3)
L2(Ly(x)) = Ly
Lys(Ly2(z)) = Lys(z) —1
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In addition, we have a simple formula for their derivatives

where a € {1,w,w?, ...} and
Lkt twkitko(r) = LY(L (- (L (@) --+))

for all n € N and ko, ..., k, € N.

A second construction of such a field, for n =1 was done in Padgett’s thesis [83], where she
defines fields M containing well-based series, which are closed under exp, log, L., E,, as well as
under a natural derivation 0: M — M. Padgett’s framework is distinct from ours in that she
sometimes only allows finite sums in her series constructions, however we expect that our methods
are compatible, and that her fields should be embeddable in the fields of hyperseries we will mention
later.

The formula (2.4) is eligible for generalization to arbitrary ordinals . Taking o =w, we note
that the function L.~ does not satisfy any functional equation. Yet any truly universal formal
framework for asymptotic calculus should accommodate functions such as L, for the simple reason
that it is possible to construct models with good properties in which they exist. For instance,
by [25, 7], there exist Hardy fields with infinitely large functions that grow more slowly than L
for all n € N.

An advantage of hyperseries over their geometric counterparts is that the formal setting (and as
we will see the surreal setting) allows one to single out “simplest” operators in each growth class of
operators on hyperseries. For instance, in stark contrast with the vast number of possible solutions
of Abel’s equations (1.1-1.2), there is one distinguished hyperexponential function L, of strength w,
and other solutions s+ L (s) 4,7 € R of (2.3) in hyperseries are expressed using this simplest one.

2.5 Logarithmic hyperseries

The construction of the field IL of logarithmic hyperseries in [33] was the first step toward the
incorporation of hyperlogarithms L, with arbitrary «. The field LL is the smallest non-trivial field
of generalized power series over R that is closed under all hyperlogarithms L, and infinite real
power products. It turns out that IL is a proper class and that IL is closed under differentiation,
integration, and composition. One remarkable feature of IL is that its construction is relatively
simple: it is simply a field of well-based series I = R[[£]] where £ is the group under pointwise
multiplication of formal expressions

I
(=1 & ()<, €R”
7<p
for p€ On. The terms £, for v € On correspond to L(x). Possibly transfinite sums as above are
required so as to allow within the relation
o=1J '

. y<p
which extends (2.4).

The derivation 9:IL— LL; f+— f’ on L is defined on monomials via an infinite Leibniz rule and
extended to R[[£]] by strong linearity. This gives a surjective derivation for which (L, 9) is an H-
field in the sense of [2].

Although IL contains no formal functional inverses for hyperlogarithms ¢,, certain equations
yol,= f for given f €L have unique solutions in I that are then denoted f!7 (see Section 4.1.4).
The composition law o: L x L>® — IL is characterized by imposing the functional equations

gqurl [e] gwu = gqurl — 1

for ;€ On and fixing the simplest values of 627 for v< p€On. As for the interaction between the
derivation and the composition law, we have the chain rule

VfG]L,VgE]L>R,(ng)/:gI-(flog),
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and formal Taylor expansions around each point s € L>R for each f € IL. That is, for all § in IL
with § < s, we have

_ f(k)os k
fo(s+5)—z 7 )
keN

where f(*) = OF(f) is the k-th derivative of f and ZkeN&(Sk is the sum of the corresponding

summable family. "

A first step in extending the work on logarithmic hyperseries would be to define a derivation
and a composition law on an extension L of IL which also takes hyperexponentials into account.
Such work goes beyond the scope of the thesis but has been separately accomplished [10].

3 Numbers

The standard notion of number in order to represent geometric magnitudes is that of real number.
The standard notion of number in order to represent set-theoretic or order-theoretic magnitudes
is Cantor’s notion of ordinal number. Whereas real numbers are the domain of the finite, ordinal
numbers are designed to account for infinite quantities.

Dating to Antiphon-Eudoxus-Archimedes with the method of exhaustion, through Leibniz’
infinitesimal calculus and Newton’s fluxions, the inclusion of infinitesimal or infinite quantities
in real calculus has posed several problems and paradoxes. The first rigorous treatment of finite,
infinite and infinitesimal quantities in a unified context was Robinson’s non-standard analysis where
infinitesimals and infinite elements are introduced using ultrafilters [86, 87], and later Nelson’s
internal set theory [81] (see [43] for a more detailed discussion of the history of infinite and
infinitesimal quantities in mathematics). These extensions *R of R in non-standard analysis are
called fields of hyperreal numbers. A crucial feature of hyperreal numbers is that they satisfy
Robinson’s transfer principle, a far reaching generalization and formalisation of Leibniz’ law of
continuity (see [27, Section 4.4]).

Using a simple generalization of both Dedekind’s definition of real numbers and von Neumann’s
presentation of ordinal numbers, Conway proposed the unified setting of surreal numbers in his
monograph On Numbers and Games [28]. The class No of surreal numbers encompasses both real
and ordinal numbers, while allowing for ways to distinguish between quantities in an elegant way
because of the way each number can be given a specific name or presentation, in various ways.
Although surreal numbers do not enjoy an explicit transfer principle as strong as Robinson’s, we
will see that they do elementarily extend important first-order structures with tame properties,
such as the real ordered field, the real exponential field, and the ordered valued differential field
Tk of log-exp transseries. Crucially, the fact that one can name each surreal number is what will
make it possible to intrinsically define distinguished hyperexponentials and hyperlogarithms on
No, where doing so on *R would, it seems, entail arbitrary choice or some reliance on a choice of
corresponding germs in R.

Let us explain how the field of surreal numbers came into prominence as a universal domain
for transseries and hyperseries.

3.1 Surreal forms

Surreal numbers are abstract quantities, containing an unfathomably wide array of magnitudes
that are amenable to a large number of surreal operations. This sentiment is summed up by
Conway’s phrase, that surreal numbers contain “All numbers great and small”. Conway defines
surreal numbers as abstract forms {L | R} construed as the “simplest” objects lying between sets
L and R of previously defined surreal numbers, with L < R. More precisely, Conway’s definition
is inductive in essence, and relies on a mutual inductive definition of numbers and their ordering
<, according to which each number is characterized by the gap {L | R} it fills in the class No of
surreal numbers. Thus surreal numbers arise from playing a simple game of filling gaps inductively,
starting with the empty setting (L, R) = (&, @). Quite remarkably, the operational structure which,
as we will see throughout the thesis, emerges from this construction, is very rich and closely related
to the task of constructing large fields of formal series with compositions and derivations.
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3.2 The field of surreal numbers

The main elements of the theory of surreal numbers were established by Conway. Conway showed
how to define a sum and product of surreal numbers in a very simple way using the inductive
definition of surreal numbers as gaps {L | R}. Indeed Conway’s definition of the sum of numbers
x={L; | R} and y={L, | Ry} is

z+y={Ly+y,x+L, |2+ Ry, Ry +y} (3.1)

where the operations involved between the brackets only involve strictly “simpler” surreal numbers,
and are thus warranted by induction. One gets used to manipulating this type of inductive defin-
ition, and soon discovers that many interesting functions can be defined using the right inductive
definitions. The operation defined by (3.1) turns No into a divisible ordered Abelian group. In a
similar fashion, Conway defined a product on No and showed that No is a real-closed field which
caonnically contains the real ordered field R as well as the ordered semi-group On of ordinals under
their commutative Hessenberg operations.

The first enquiries about surreal numbers after Conway were centered around the representation
of numbers as well-based series. Indeed Conway [28] showed (see also Gonshor [55]) that the ordered
field of surreal numbers is canonically isomorphic to a field R[[Mo]] of well-based series over R,
whose group of monomials Mo is a subgroup of (No>?, x, <). This gives a representation of each
surreal number a as a formal series

a= Z G M.

meEMo

The series representation also allows one to use valuation theory to define embeddings of certain
ordered algebraic structures into No. For instance, Ehrlich characterized over the years [42, 45,
46] the type of ordered algebraic structures that could be embedded into No while preserving the
inductive definition of operations (i.e. as so-called initial subclasses of No).

3.3 Exponentiation on surreal numbers and transseries

Kruskal got interested in leveraging the expressive nature of surreal numbers in order to make sense
of asymptotic expansions of certain regular functions, such as germs in Hardy fields. For instance,
identifying the ordinal w € No with the germ of the identity, any possibly divergent Laurent series
anz\/rn z™ with real coefficients gives rise to a well-defined surreal number Zn> ~Tnw ™" € No.
The reader will note that certain fast or slowly growing functions such as the real exponential and
logarithm cannot be approximated by Laurent series in z~!. Thus Kruskal’'s project requires at
least the existence of an exponential function and a logarithm on surreal numbers. Using hints from
Kruskal, Gonshor defined [55, Chapter 10] an exponential function exp which is an isomorphism
(No, +, <) — (No~?, x, <), and it was later shown by van den Dries and Ehrlich [96] that
(R, +, x, exp, <) is an elementary substructure of (No, +, X, exp, <).

The existence of a well-behaved logarithm function log = exp™ on No and the identification
No =R[[Mo]] make No an ideal candidate for a large transseries field as per [92]. The question
of the precise structural properties of (R[[Mo]],log) was first investigated by Kuhlmann and
Matusinski [71]. One of the important steps of this task is to identify the class Mo, of log-atomic
elements of (R[[Mo]],log). Those were introduced by van der Hoeven in the case of transseries,
and they can be defined in No as infinite monomials a € Mo~>! such that log,(a) € Mo for all
n € N. Such numbers include w, log,(w) and exp,(w) for all n € N, but also many other numbers
which accordingly cannot be expressed purely as combinations of exponentials and logarithms, and
algebraic expressions in w. Berarducci and Mantova later identified Mo, and showed that there
was a canonical strictly increasing function

A:No — Moy,; z— A,
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such that each positive infinite surreal number a € No>R lies in the exp-log class of a unique X, for
z € No. Note that this gives a tentative conclusion to our discussion on levels, by showing that the
set of levels in an ordered exponential field can be as large as the class No itself. A similar result
for a coarser notion of rank than that of levels was obtain by S. Kuhlmann and M. Matusinski
[71], instantiating a previous result of Kuhlmann [69, Theorem 5.12]|. Using this, Berarducci and
Mantova were able to prove that (R[[Mo]],log) is a transseries field as per [92] by showing that it
satisfies the axiom T4 [18, Theorem 8.4]|. Finally, Ehrlich and Kaplan showed [46, Theorem 8.1]
that all transseries fields in the sense of [92] can be embedded into No, thus showing that No is
the ultimate field of transseries.

3.4 Derivations and compositions on surreal numbers

If surreal numbers are to be isomorphic to the field Hy, they should be amenable to basic operations
that can be performed on growth rates. In particular, there should exist a derivation 9: No — No
and a composition law o: No x No”® — No with respect to which numbers could be seen as
infinitely differentiable surreal-valued functions. The derivation should be strongly linear with
kernel R, satisfy Leibniz’ rule

Va,beNo,d(ab)=9(a)b+ad(b),
and be compatible with the exponential in the sense that we have
Va € No, d(exp(a)) =0(a) exp(a).

Since w is taken to represent the identity function or the generic variable x in transseries, the
function 9 should be a derivation with respect to w, i.e. d(w)=1. The composition law should be
associative

Va € No,Vb,c € No”® ao(boc)=(aob)oc,

positive infinite numbers a € No>® should give rise to strictly increasing surreal valued functions

VYa e No R Vb, ce No”R b<c=aob<aoc,

for each b€ No~ R, the function No — No; a+— aob should be a strongly linear morphism of rings,
and we should have a chain rule

Va € No,Vb € No” R 9(aob)=0(b) x (0(a) ob)

with respect to the derivation 9. One expects that a sound definition of (9,0) on No will yield
a structure with good first-order properties, and in particular the intermediate value theorem
conjectured for Hy.

Using their characterization of No as a transseries field, and Schmeling’s method for defining
derivations on transseries fields, Berarducci and Mantova defined [18] a derivation 0 with respect
to w on No, in such a way that it is the “simplest” (see [18, Theorem 9.6]) derivation such that
(No, +, X, <, <,d) is an H-field. In fact this derivation has good model theoretic properties, since
(No, +, x, <, =<, 0) is an elementary extension of Ty [6].

However, Berarducci and Mantova showed [19, Theorem 8.4] that there is no composition law on
No that is compatible with 9. In our view [5], this is due to the fact that the definition of 9 is irre-
spective of the natural structure of field of hyperseries that we seek to define on No. In particular,
it does not satisfy 9(E,(a)) =9(a) E.(a) for all a € No”E, for our definition of the first hyperex-
ponential E,, on No>®. In fact, we have 9(E (E,(w))) = EL(Eu(w)) # 0(Eu(w)) EL(Eu(w)).

4 QOverview of the thesis

Let us now give an overview of the results in the thesis. The thesis is split into four parts, each
focused on a particular theme, and each beginning with a thematic introduction which describes in
an informal way the main ideas and stakes at play. Parts I and III mainly contain known results,
with the exceptions of Chapters 2, 9 and 10. Most our new results are to be found in Parts IT and IV.
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4.1 Well-based series

Part I mainly introduces known facts regarding well-based series, transseries, and operations on
those series. In Chapter 1, we recall properties of the summation operator and strongly linear
functions.

In Chapter 2, we study a notion of (formal) analytic functions on fields of well-based series.
Analytic functions are functions which can be locally expressed by power series. The main result
(Proposition 2.3.6) is that an analytic function is infinitely differentiable and has a Taylor expansion
in terms of its iterated derivatives. We develop a short list of results regarding analytic functions
which are very useful when working with the type of hyperserial calculus we introduce in Part II.
Indeed, the hyperseries acting as functions on hyperserial fields or surreal numbers will always be
analytic.

Finally, in Chapter 3, we give a short overview of Schmeling’s work [92, Chapter 2] on transseries
fields by introducing a slight generalization of those fields.

4.2 Hyperseries

In Part II, we introduce the setting of hyperserial fields, in which we will be able to compute with
hyperseries. This setting is inspired by Schmeling’s notion of transseries field, which it specifies by
including hyperlogarithms along with the logarithm. Our constructions of fields of hyperseries rely
on properties of the field IL of logarithmic hyperseries. Intuitively speaking, the reason is that the
derivative of E, can be expressed as the composition of a logarithmic hyperseries with F,:

1
o0 (Ea(a))
and similarly for all higher derivatives. One key aspect of our approach is therefore to construct
increasingly large fields T of hyperseries simultaneously with compositions

Eifa) =

oL x T>R _— T>R,

Our definition of hyperserial fields involves a parameter v which for the sake of simplicity and
exposition, we temporarily fix as ¥ =On. Let T =R][[MM]] be a field of well-based series, where
9 (and equivalently T) can be a proeper class. Let o:IL x T>® — T be a function. For r € R
and m € MM, we define m” as follows: set 1":=1, set m":=/jom if m> 1, and set m":=/; " om™!
if m<1. So ¢j acts as the identity variable x in transseries. For y € On, we define 9« to be the
class of series s € T>® with ly0s€M~! for all v <wh. Such series are said L.,n-atomic. We say
that (T, o) is a hyperserial field (of force On) if the following axioms are satisfied:

HF1. L — T; f+ fos is a strongly linear morphism of ordered rings for all s € T>R.
HF2. fo(gos)=(fog)osforall felL, gcL>R and s T>R.

HF3. fo(t+0)=Y, nimtdt for all feL, te T>®, and 6 € T with 5 <.

HF4. ELZ o0s< ELZ ot for all ordinals p, all v <w*, and all s,t€ TR with s < ¢.
HF5. The map R x M— 9M; (r,m) —m" is a law of ordered R-vector space on 9.
HF6. (10(st)=(105+ /10t for all s,tc T>E,

HF7. supp/iom =1 for all m € 9™ and
supplyroa ((yoa) ! for all p>1, vy <w”, and a € M.

The first two axioms above impose compatibility between the composition laws on L x L>® and
L x T>® and the structure of field of well-based series on L. The series £!} in the fourth axiom
are defined as the unique solutions in (I, o) of

0ol =0m

The other axioms are more technical and will make sense as the reader goes through Chapters 3
and 4.
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The hyperserial field (T, o) is confluent if M1 and for all € On and all s € T>E, there exist
a€eMy,r and v <wh with

lyos < [yoa.

Confluent hyperserial fields of force On include L itself, and the axiomatic properties of o: L X
T>R T can be seen as a generalization of those properties of the internal law o: I x LR — T
that make sense when T itself is not equipped with a composition law or derivation.

Since it is difficult to define composition laws satisfying the axioms above, we will rely on a
method whereby it is sufficient to consider a very restricted list of values of the law o. Given a
confluent hyperserial field (T, o), its skeleton is T together with the list of partial functions

qul mwu — T

a — fwuoa

for all ;€ On. We will see that the skeleton completely determines the composition law, while
being much easier to construct on certain fields of well-based series, and in particular on No. The
condition that (T, o) be a confluent hyperserial field lets us isolate a few axiomatic properties
that the skeleton (T, (Ly#)ucon) should satisfy. Let us temporarily write Sk-Ax for this list of
properties (see Sections 4.2.1 and 4.2.2 for more details). Now consider a field U of well-based
series over R together with a list of partial functions L,x, u € On called partial hyperlogarithms
that satisfy Sk-Ax. We call (U, (Lyn),con) @ confluent hyperserial skeleton (of force On). An
embedding of confluent hyperserial skeletons is a strongly linear morphism of ordered rings W:
U — V which commutes with the partial hyperlogarithms. Our first main result is the following
equivalence between confluent hyperserial fields and skeletons:

Theorem A. [Theorems 7.2.1 and 7.2.10] If (U, (Lur)ucon) s a confluent hyperserial skeleton,
then there is a unique function o:IL x U>R — U such that (U, o) is a confluent hyperserial field
with skeleton (U, (Lyr)ucon)-

Conwversely, if (T, o) is a confluent hyperserial field, then its skeleton (T, (Lyn)ucon) s
confluent hyperserial skeleton.

This correspondence will allow us to define the structure of hyperserial field on No in Part IV.
In Chapter 4, we define hyperserial skeletons and show how to define a composition law o on a
confluent hyperserial skeleton (Theorem 4.3.1).

Consider a hyperserial skeleton (U, (Ly»),con) and the corresponding composition law o of
Theorem 4.3.1. Each partial function L,u for p >0 extends to U>R by setting L,u(s) =£,uo0 s for
all s € U”R. We will see that this function is injective, whence it has a partially defined left inverse
denoted E, . In Chapter 5, we give a criterion on (U, (L), con) under which L, U>R >R
is surjective, i.e. under which E_«: U>R — U>R is totally defined. This leads us to consider the
notion of w*-truncated series, which are series ¢ € U>R with ¢ > ¢ Jom™! for all m € supp ¢ with
m<1 and v <w*. We also define 1-truncated to be those positive infinite series whose support
supp  contains only infinite monomials. Writing U, .~ for the class of w"-truncated series for any
1 € On, we have the following criterion

Proposition. [Corollary 5.3.13] Let p € On. If Ly,u(Myn) =Us yn for all n< u, then the function
L, U>R - U>R s surjective.

We say that the confluent hyperserial skeleton U has force (On, On) if each L,.: U>R — >R
is surjective. Such a field is equipped both with hyperlogarithmic and hyperexponential functions.
The skeleton of L itself is not at all of force (On, On), since for instance no hyperexponential
Ex(z) for p€On is defined. So it is necessary to find ways to close arbitrary confluent hyperserial
skeletons under hyperexponentials. Using the previous criterion, we may define such extensions by
adjoining U with formal hyperexponentials e? of a-truncated series ¢ € U which do not already
lie in L,(U>%). We will do this in Chapter 6 where we will prove the following other main result
of Part II:
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Theorem B. [Theorem 5.1.5] Let (U, (Lyr)ucon) be a confluent hyperserial skeleton. There is a
confluent hyperserial skeleton U of force (On,On) and an embedding ¥: U — U with the following
universal property: if V is a confluent hyperserial skeleton of force (On,On) and &: U —V is
an embedding, then there is a unique embedding A: U —V with ®=Ao .

U -5 0
s\, | 3A
\%

In Chapter 7, we define hyperserial fields, prove Theorem A, and study examples of hyperserial
fields.

4.3 Surreal numbers

In Part II, we introduce the class No of surreal numbers, together with its linear ordering < andits
simplicity relation , and give a survey of its properties as they relate to the project of identifying
numbers and hyperseries. In Chapter 8, we give Gonshor’s formal definition of No and recall its
properties as an ordered field of well-based series.

In Chapter 9 we introduce a type of subclass of No that plays an important role in Part IV. A
surreal substructure is a subclass S of No such that there is an isomorphism =Zg: (No, <, ) — (S,
<, ), which is then unique. It is known in particular that the class Mo of monomials and the
class Mo, of log-atomic surreal numbers are surreal substructures (see [55] and [18] respectively).

In Chapter 10 we introduce a convenient way to define surreal substructures that will turn out to
subsume every surreal substructure studied in the last part of the thesis. More precisely, a convex
partition IT of a surreal substructure is a partition of S whose members are convex subclasses of
S. Given such a partition, the class Smpy of numbers which are C-minimal in each member of TT
is a surreal substructure (Theorem 10.1.7).

In Chapter 11 we use surreal substructures and convex partitions in order to state relevant
properties of the class No with Gonshor’s exponential function. This is based on work of Gonshor
[55], Berarducci and Mantova [18], Aschenbrenner, van den Dries and van der Hoeven [6], and
Ehrlich and Kaplan [46]. In particular, we recall how No can be construed naturally as a universal
transseries field.

4.4 Numbers as hyperseries

In Part IV, we introduce the hyperserial calculus on surreal numbers and use it to represent
numbers as hyperseries. This entails in particular to construe the field of well-based series No =
R[[Mo]] as a confluent hyperserial field of force (On,On), as will be our main task in Chapter 12.
Thanks to Theorem A, this reduces to defining a confluent hyperserial skeleton (No, (Ly#),con) of
force (On, On). By the nature of axioms for hyperserial skeletons, we are to proceed by induction
on u € On, whereas the definition of each partial hyperlogarithm L,: Mo, — No, a = w*" itself
will be by well-founded induction on (Mo, C). The case p=0 is already treated in essence in the
literature, and recalled in Chapter 11 of Part III. The class Mo, of log-atomic surreal numbers
was already identified by Berarducci and Mantova as a surreal substructure. It will turn out in
the inductive definition process that in general, each class Mo,, « = w" is a surreal substructure.
This makes it possible to give an inductive definition for L:

1 1
M Loa= Loya'+—— | Lya"———— L
Va € Moy, L, a {]R, al +L’ya/ | al L’YCL”’ 'Ya}’

where a’, a” respectively range among L .,-atomic numbers with a’,a”’ Ca and a’ <a<a”, and ~
ranges in o. The class No, , of a-truncated numbers also turns out to be a surreal substructure,
and the hyperexponential E,, of strength « satisfies the following inductive equation

Vo €ENoy o, Eop= {E’cha E’Y(L'yEa o'+ 1) | E’Y(L’YEOL @' — 1)}7

where ¢’, ©” respectively range in the class of a-truncated numbers with ¢’, 0" C ¢ and ¢’ < p <
¢", and 7 ranges in a. We show that this definition works, i.e. that (No, (Ly#),con) is indeed a
hyperserial skeleton of force (On, On). This gives us the first main result of Part IV:
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Theorem C. [Theorem 1] There is a composition law o:IL x No>® — No such that (No,o) is
a confluent hyperserial field of force (On,On).

In order to explain the last results of the thesis, we need to describe in some detail how surreal
numbers, and in particular monomials m € Mo can be expanded using hyperexponentials and
hyperlogarithms. In the hyperserial field (No, o), every non-trivial monomial m € Mo\ {1} admits
a unique expansion of exactly one of the two following forms:

m =¥ (Ly(w))" (4.1)
where e¥ € Mo, ¢ € {—1,1}, and 8 € On, with supp 1 = log(Lg(w)); or
m=e? (Lg(Ea(u)))", (4.2)

where e¥ € Mo, 1€ {—1,1}, 3€ On,a € wO™ with fw <, supp ¥ = log(Ls(E4(u))), and where
Equ lies in Moy \ L<o Mog,,. Moreover, if a=1 then it is imposed that ¢ =0, =1, and that
u cannot be written as u= @+ b where p € No, e € {—1,1} and b € Mo,

Note that we have two possible ways to further expand m:

i. fm=(Lg(w))" (i.e. »=0), then we need not expand m further since Lg(w) cannot be further
simplified.

ii. If m=e" (Lp(w))* where 1) # 0, then we may expand every monomial in supp 1 as in (4.1)
r (4.2). We call this a left expansion.

ili. If m=(Lg(Eq(u)))" (i.e. ¥ =0), then we may expand any non-trivial monomial in supp u
as in (4.1) or (4.2). We call this a right expansion.

iv. f m=e¥ (Lg(E.(u)))* where 1) # 0, then we may expand m on the right or on the left.
We adopt the notations

LgEg = Lg(Ea(u)) and
terma = {amm:m€Esuppal.

An infinite path P = (r;m;);en in a € No is thus defined as a sequence of non-zero terms P =
(rim;)ien € (R” Mo\ {1,w})N with

Vi € N, r;m; € term ;U term u;,

where (uo, ¥o) = (a,0) and each m; expands as m;=e"*! (Lg,w)" or as my=e"i ! (Lg, B4,
For instance, here are the first terms of a path P in a which consists in a left, then right, then
left expansion.

a = @o+romo+do
= wo+roe?(Lg, Eal)+do
= <P0+7”0ewﬁmewz(LﬁlEz?)LlHl (Lo Eap)' + o

= @o+roe (Lgo Eqy)'0 + do

Lt L1
potroe’ (Lg,EY3) 2464
‘/’1+7'161/)2<LB1E¢11 ( F2 a2> +61 (

= po+rge Lg, EZ;)LUJFCS(). (4.3)

To each ordered pair (P, a) corresponds the sequence X = (@;, ¥; 41,74, Li, @4, B3, Uit 1, 0;)ieN Of para-
meters which allows us to describe the path P within a. These expansions and corresponding paths
raise several questions. What properties must the sequences ¥ satisfy? Under what conditions on
Y. does there exist infinite paths with ¥ as a sequence of parameters? How many numbers share
the same sequence of parameters? One additional problem is the possibility of infinite branching,
i.e. of the alternation of left and right expansions. In order to study these questions, we consider
the notion of good path.
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We say that the path P=(r;m;);en in a is good if there is i € N such that for all i > iy, we have

mi 1 ¢ supp ¥iq1,

ri € {*1,1},
ﬂi = 0, and
0; = 0.

This implies in particular that the branching phenomenon stops and that for j =19+ 1, we have

,<Pj+iic’¢’j+i+1<E(.t'j'+i>Lj+i GH1 b
@jp1Ee?it? EA;H
uj=pjtevitt\ B, (4.4)
We say that a is well-nested if every path in a is good. Relying on Chapter 12 and a study of paths
in No, we prove the main result of Chapter 13:

Theorem D. [Theorem 13.2.7] Every number is well-nested.

In Chapter 14, we study the existence of numbers such as a; above. Consider a sequence
¥ =: (i, €i, Vi, ti, @) ien Where for i € N, we have ¢; € No, €;,1,€ {—1,1}, ¥; € Noy and «; € wO?
along with other technical conditions (see Definition 14.1.1). For k € N, consider the class Ad ~
of first terms ay, of a sequence (ay4i)ieN With

Qhgi = PhtitErpi? i (Bay,, Ghgit1) ™,
supp @k i = €V (Bay, rgir) ™,
supp Yx+i = log Fo,, ak+it1, and

Prtiy—1
Prtit1 = htit1 = (Leapy, Boyi) ™

for all ¢ € N. We say that ¥ is admissible if Ad:= Ad ~o# @, and that it is nested if it is admissible
and

Ad k= pp+epe?t (Bay(Ad rpy1))™
for all k € N.

Write Ne for the class of numbers ag € Ad such that the corresponding sequence (a;);cn satisfies
Eg " €Mog, \ L<a, Moy, for all i € N. In other words, Ne is the class of numbers ao € No which
admit the nested expansion

‘¢i+aicwi<E@;>Li>Ll 0

@1+€16w1<EQ
ap = ¢o+€o eto an 1

Our second main result is the following generalization of [11, Theorem 8.8]:

Theorem E. [Theorem 14.2.4] If 3 is nested, then (Ne, <,C) is isomorphic to (No,<,C), i.e.
Ne s a surreal substructure.

In Chapter 15, we give a presentation of numbers as hyperseries in w, using trees labelled by real
numbers, ordinal numbers and surreal numbers. We call such expressions hyperserial descriptions.
The main result is the following:

Theorem F. [Theorem 15.3.1] Every surreal number has a unique hyperserial description. Two
numbers with the same hyperserial description are equal.

The hyperserial presentation of numbers is no more definitive than the sign sequence present-
ation or the well-based series presentation. However, we expect that it is sufficient to serve as a
basis to define derivations and compositions on No.



Conventions

1 Prerequisites

This thesis is designed to be almost self-contained, and should be accessible to the patient average
mathematician. This is with the exception of two areas of logic with which some familiarity will
be useful.

First, although model theory does not play a major role in the thesis, it appears in decisive
ways in certain sections, and it remained a guiding framework for my thought process. We will not
systematically recall the definitions of basic model theoretic notions. Those can be found in most
introductive model theory textbooks: see [27]. The reader can also find all necessary notions and
more, including a treatment of case of many-sorted logic, in [4, Appendix B].

Secondly, it will be helpful for the reader to have a certain familiarity with elementary set
theory, including set theoretic definitions of functions, unions and intersections, and the elementary
theory of ordinal numbers and their arithmetic.

2 Axiomatic framework

2.1 NBG set theory

The underlying set theoretical framework of this paper is von Neumann, Bernays, and Go6del’s
set theory, henceforth referred to as NBG set theory, and more precisely Gédel’s one-sorted ver-
sion [54]. The language Le ser of NBG set theory is the first-order language having as primitives a
binary symbol € interpreted as the membership relation, and a unary predicate Set which stands
for the predicate “being a set”, or “not being a proper class”. NBG set theory and its language
allow us to prove statements about classes. The reader will see that such powers are necessary
when working with fields of transseries closed under exponentiation (see Section 3.2), hyperseries
(see Section 4.1), or surreal numbers (see Part III).

We recall a few key features of the axiomatization. Sets are classes which can be members of
classes. That is, the following statement holds

YV, (Set(x) <= (Jy(xz € y))). (2.1)

Certain classes, called proper classes, are not sets. So proper classes are classes which lie in no
class. This includes the class V of all sets, or the class of all sets that do not contain themselves
(thus does NBG set theory avoid Russell’s famous paradox).

If ¢ is an Lc-sentence, then we canonically define an L¢ sct sentence ¢ger in which each
quantification is constrained to the predicate Set. For instance if ¢ is the sentence

VzIy(z € y),
then @get is the sentence
Vax(Set(x) = (Jy(Set(y) Az € y))).

Crucially, NBG set theory is a conservative extension of ZFC (see [47]), which means that an Lc-
sentence ¢ is a theorem of ZFC if and only if ¢get is a theorem of NBG set theory. Thus, despite the
fact that working with classes requires additional care, the reader who is familiar with elementary
set theory should have no qualms with our use of classes.

An important feature of NBG set theory is the axiom global choice (GC). The axiom of global
choice states that there is a function ¢: V—V such that for any non-empty set =, we have ¢(z) € x.
A consequence of GC is the theorem of limitation of size (LOS). The theorem of limitation of
size states that there is a well-ordering of V. See [47] for a discussion of those results.
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Remark 2.1. There exist several equivalent presentations of NBG set theory. Some use a two-
sorted language with a sort for set and a sort for classes. Some don’t use the Set predicate since
it is defined in L¢ via (2.1). The translation between different presentations of NBG set theory is
very straightforward. We introduced the predicate Set for clarity, but we will not rely on it in the
body of the thesis. Thus our framework is similar to Mendelson’s [80]. The reader can find more
details and an axiomatization of NBG set theory in [80, Section 4.1].

2.2 Set-theoretic conventions and notations

If X and Y are classes, then a function X — Y is a subclass of X x Y which has the usual
functional property. If X is a proper class and Y is non-empty, then there is no class “YX”
of functions X — Y. Indeed such functions are proper classes, and consequently cannot lie in
classes. This means that we will have to use caution in the instances when we consider collections
of functions X — Y. However, if X is a set, then each function X — Y is a set, and the class
Y X of functions X — Y is well-defined (and of course, it is a set if Y is a set). In most cases, it
is enough, in order to prove that certain classes exists, to use the following consequence of the fact
that NBG set theory is conservative over ZFC:

Class comprehension scheme: Given a formula ¢(x1,. .., Zm, X1,..., Xy) in L get, which
quantifies only over sets, and classes Xy, ..., X, there is a class X, which contains all the tuples
of sets satisfying ¢, that is,

Vi, .. Zm, (21, .. 2m) € X <= (Set(x1) A - - ASet(zm) A (21, ...y Tm, X1,y ..o, Xp))).
As is standard for sets, we write
Xo={(z1,...,xm) 0(x1,...,2m, X1,..., Xp)}.

Thus it is intended that the elements in the left-hand side of a bracket {z:[...]} are always sets,
whereas the reader should not expect that the notation {x:[...]} itself always denote a set.

Given a class I and a formula ¢(xg, 1), possibly with parameters, we have a corresponding
family (X;);e1 of classes indexed by I, where for each i € I, we define

Xi:={y:p(i,y)}.

We will always understand families in this sense, the formula ¢(x, 1) often being implicit. A
family of functions is a family (X;);c1 where each class X; is a function, a family of groups is a
family (X;);e1 where each class X; is a group, and so on...

When it is relevant, we will mention explicitly which classes are sets or proper classes. In
general, we will use bold font letters X, G, S, N,... to denote classes which may be proper classes.
We extend this to upper-case letters in blackboard bold font which we use for our fields $, T, U,
V,... of well-based series (the standard number sets N, Z, Q, R and C being exceptions to this
rule), or to upper-case fraktur font letters which we use for our ordered groups of monomials 9,
N, U, 20, ... Indeed those will often turn out to be proper classes. Except in the cases of relations
and functions between classes, we reserve regular fonts for sets.

3 Ordered and algebraic structures

3.1 Orderings

3.1.1 Orderings
An ordering on a class X is a binary relation < on (i.e. a subclass of X2) with
O1. z £z for all x€X.

02. (z<yhy<z)=(x<z)forall z,y,zeX.
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We say that (X, <) is an ordered class, or an ordered set if furthermore X is a set. An ordering <
on X is said linear if it satisfies

LO. z=yVz<yVy<zforall z,y e X.

We then say that (X, <) is a linearly ordered class / set. We will most of the time work with
linear orderings. Consequently, we will sometimes say that (X, <) is a partially ordered class/ set
to specify that the ordering may not be linear.

If (X, <) is an ordered class, then we write > for the ordering on X where

Ve,yeX, (z>y<—=y<z),
which is called the reverse of <. The ordering < is linear if and only if > is linear. We also write
< for the relation
Ve,yeX,(z<y) = (r=yVa<y),
which we call the large ordering corresponding to <, and we write > for the large ordering corres-

ponding to >. Note that < is not an ordering on X.
Let (X, <) be an ordered class, let A, B be subclasses of X and let z,z1,...,x, € X. We write

A<B <= Va,yeX, (€ ANyeB=uz<y)
A<B Ve, yeX,(re ANyeB=z<y)
A<zy,...,2n A<{zy,..., 7,
Tl ., Tn <A {z1,...,2,} <A
Tlyenny Ty < A {z1,..., 2o} <A
A<z, ..,xp <= A<{z,...,z,}.

<~
<~
—
<~

For A CX, we will often write (A, <) for the ordered class where < is the intersection of A x A
with <, called the induced ordering on A. Indeed it is an ordering on A, which is linearly ordered
if (X, <) is linearly ordered. Unless specified otherwise, we will always endow subclasses with the
corresponding induced orderings.

Let a € A. We will say that a € A is minimal in A if there is no z € A with x <a. We will say
that a is the minimum (resp. mazimum) of A if we have a <z (resp. x <a) for all x € A. In that
case, we write a =min A (resp. a=max A). The minimum (resp. maximum) of A when it exists
is the unique minimal (resp. minimal) element of A, and A has a minimum (resp. maximum) if
and only if it has a unique minimal (resp. maximal) element.

3.1.2 Increasing functions

Let (X, <x) and (Y, <y) be partially ordered classes and let f: X — Y be a function. We say
that f is nondecreasing if

Ve, ' e X, o <x o' = f(2') £v f(x),
that it is increasing if

Ve, o' e X o <x ' = f(x) <y f(z),
that is is strictly increasing if

Ve, ' e X,z <x o' = f(z) <y f(z),
that it is an (order) embedding if

Ve, o' e X,z <x a2’ <= f(z) <y f(z'),

(in particular, order embeddings are injective). We say that f is an (order) isomorphism if it is
a bijective order embedding. Depending on whether <x is partial or linear, we have the following
logical implications among those properties:

Partial. | isomorphism | C | embedding | C | strictly increasing
Linear. | isomorphism | C | embedding | = | strictly increasing

increasing | C | nondecreasing

-
C | increasing nondecreasing
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Finally, we say that f is nonincreasing / decreasing / strictly decreasing if it is nondecreasing
/ increasing / strictly increasing for the reverse ordering >y on Y.

3.1.3 Ordinals

We consider the class On of ordinals as a generalized ordinal. If v is a class, then v < On means
that v € On or ¥ = On. For generalized ordinals, we use bold font notations v, u, A to suggest
that v, p, A may be equal to On, whereas the notations «,y, 3, p and so on are only used for true
ordinals a, 7y, 5, p € On. We also extend the relations < and < on On by making On maximal,
with the convention that wO™:=Omn. Given a linearly ordered set (X, <), an ordinal a € On, we
say that « is the order type of X, and we write a = ord(X, <), if there is an order isomorphism
(o, €) — (X, <), which is then unique.

We write Onpy, for the class of limit ordinals. By convention, zero is a limit ordinal, and On
is a limit generalized ordinal. A cardinal is an ordinal x € On such that there is no bijective map
a — k for any o € k. Given a cardinal k, we write x* for its Hartog ordinal, or successor cardinal,
i.e. for the smallest cardinal > k.

3.2 Ordered algebraic structures

3.2.1 Model theoretic morphisms

Consider a first-order language £ consisting of the function symbols f;,i € I with arities a;,i € [ and
the relation symbols R;, j € J with arities 3;, j € J. We recall that given two first-order structures

M = (M,(fM)icr,(RM)jes) and

J
N = (N,(fN)ier,(RY)jeq),
a morphism M — N is a function ®: M — N with
o B(fM(my,....,mu))=fN(®(m1,...,my,)) for all i € I and my,..., my, € M, and
o (MERM(my,...,mg)) = (NERN(®(my,...,mg,)) for all j€J and my,...,mg, € M.
An embedding M — N is a morphism ®: M — NN such that

Vi€ J, Vmy,...,mg, € M(MERM(my,...,mg)) < (NERN(®(m1,...,mg))).

Finally, an isomorphism M — N is a bijective embedding M — IN.

Most of our structures have a strict ordering as single relation (besides the equality), so our
morphism will be strictly increasing. In the cases where the structures are linearly ordered, the
notions of morphism and embedding coincide.

3.2.2 Ordered algebraic structures

Here we state our conventions for ordered algebraic structures. Our ordered monoids (M, -, 1<)
(in particular our ordered groups) satisfy

Ve, y,ze M((z<y)= (zz<yzAhzz<zy)).
If (M,-, 1<) is an ordered monoid, X C M is a subclass and € M, then we write

M>X .= {aeM:a>X},

M?>X = {aeM:a>X},

M>* = M ={aeM:a>z},
M3 — M>{”}:{aEMZa>l’}a
M> = M>17

M? := M?>! and

Note that the same applies to (M, -, 1, >). For instance, we have M<={aeM:a <1}.
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If (G,+,0,<) is an additively denoted, Abelian ordered group, then for all € G, we define
the absolute value |z|g of z as

|z|g:=max (z,—z) € G.

We simply write |z|:=|z|g if this does not lead to confusion.
Our rings are commutative, non-zero (i.e. 0#1). Our ordered domains D satisfy

Va,beD,((0<aA0<bd)=0<ab).

Any ordered domain D contains a unique isomorphic copy of (Z,+, X) in the sense that there is a
unique ordered ring embedding Z — D. We identify 7Z with the corresponding subring of D. An
element x € D is said infinitesimal if n |x| <1 for all n € N, in which case we write x < 1. We write
D~ for the class of infinitesimal elements of D. Note that R¥=Q~==7Z~={0}. If F is an ordered
field, then the embedding Z — F extends uniquely into an ordered ring embedding @ — F and
likewise, we identify @QQ with the corresponding subset of F.

Consider a differential ring (R, +,,0,1,9) where 9: R — R is a group morphism which satisfies
the Leibniz rule

Vz,y R, 0(xy)=0(x) y+z0(y).
The function 0 is called the derivation on R. For x € R, we call () the derivative of x. For k€N,

we write OF for the k-fold iterate of @ (so d° =IdRr) and we call 9*(z) the k-th iterate derivative
of z. We also sometimes write 2*) := §%(z) and 2’ = d(z), 2" = 9*(x), and so on...
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Well-based series
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Formal series

Whatever
l+e+er+ed+.. (1)
is, the reader expects that any field allowing its existence and construing € as a small quantity
should allow the relation
(1—¢)(1+e+e?+e3+--)=1. (2)

Indeed (2) is a purely formal relation, assuming little more than distributivity of the product over
transfinite sums. Whatever

f=e*z 14z 24 - fnletz ("D 4. (3)
is, one expects that any differential field allowing its existence should allow the relation
o(f)=ez~ L (4)
Whatever
g=x+logx+loglogx+ --- (5)
is, one expects that any group equipped with a composition law o and that contains g should satisfy

gologr=g—ux. (6)

In general, formal series display the type of manipulations they may be subject to.

In fields of formal series, it is indeed possible to give precise meanings to (1), (3) and (5), and
accordingly derive (2), (4) and (6). And this can be done without having to worry about refined
analytic notions of convergence, nor about whatever

¢+log & +loglog €+ -

could possibly signify for a number, series, or germ £. This comes at the high price of setting
the formal realm of series apart from the analytic or geometric realm of (real, complex)-valued
functions. The way back may be long, still this thesis is concerned almost exclusively with formal
series in their abstract, model theoretic relation to numbers and functions.

Well-based series

In fact, giving a meaning to such infinite sums is a non-trivial task. If we are to take advantage of
the formal setting, then the object £ above should lie in a field of series equipped with a logarithm
function log. In particular & should itself be a series. But then each term

log, &:=log---logé

n times

is itself a series, and one has to make sense of the summability of the family (log, &)nen-
There is a simple and well-known case when such a notion of summability, and corresponding
sums, exist. Here we are thinking of formal Laurent series

f= Z fexF
kez

over the real numbers, where (f;)rcz is an arbitrary family of real numbers which is zero for all
k above a certain n € Z. That is, the support

supp f 1= {k € Z: i #0}
of f is either empty, or has a maximum. Then it is known that for any formal Laurent series

— n no—1
§=8p, T 0+ Spg—1 207+,

with ng >0 and so# 0, the sequence (3>, fr s),men converges to a series

> fust

kEZ
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in the valuation topology. In fact, the set
S:={p€Z:3keZ,pecsuppst}
is either empty or has a maximum; for each p € S, the set

I,:={k€Z:pecsuppst}

S =Y (z f) 7

keZ peS \ kel,

is finite, and we have

For larger fields of series, such as Puiseux series, Levi-Civita series or transseries, the valuation
topology is not suited to make sense of transfinite sums in sufficient generality. However, the order
theoretic and finiteness conditions on S and I,, p € S are retained in a large number of cases. This
motivates studying a formal order theoretic setting in which families of series can be summed as
in (7). Such is the purpose of well-based series.

The wide range of summable, so-called well-based families, and the rigid properties of sum-
mation are especially suited to the task of constructing very large fields of complicated series,
and defining operations on them. In particular, we shall see that finiteness and well-orderedness
conditions (generalizing those on S and I, above) are fairly convenient to manipulate, while being
very general.

In Chapter 1, we will define order theoretic notions and give many tools that will allow us
to tackle the difficulties inherent to the manipulation of well-based series. The central object of
(ordered) fields of well-based series (over R) will be defined in Section 1.2 whereas the necessary
order theoretic tools will be developed in Sections 1.1 and 1.3.

Calculus on well-based series

One of the main goals of this thesis is to establish a hyperserial calculus on the field No of surreal
numbers. By calculus, we mean, for now, a way to let certain series act as partial differentiable
functions (this is made precise in Section 2.1.2) on a class with appropriate structure.

An action of a field of well-based series IF on a field of well-based series $ can be conceived as
a partially defined composition law

og:Fx$—F (8)

such that each f €T acts as a partial function s+— fogs on $. It is natural and useful to ask that
elements in [F act as series. That is, that given s € 3, the function

F—3S% ffoss,

should it be defined, must be a morphism of ordered fields which commutes with transfinite sums
of well-based families. The field F should have enough structure that it be amenable to an internal
law o:IF x F — [F' whereby it act on itself.

Defining a composition law as in (8) can serve two purposes. Firstly, it induces a structure on
8 in terms of the action of I, and allows us to study which equations

foss1=52, fe€IF, 51,5268

can be solved on $. This is the case for fields of transseries and hyperseries, which are characterized
by the action of a field IF of so-called logarithmic transseries or hyperseries. Secondly, it provides
a way to represent series in IF' as functions and ascribe them a subclass of $ as a natural domain.
If, for instance, given f € F, the partial function $ — 8; s+ f og s is differentiable, and if its
derivative has the form s— 9(f)o s for a unique series 9(f) € F, then we also obtain a natural
derivation 0 on IF which is compatible with the composition law.

There need not be a strong separation between the function field and the series field in the
calculus. On the contrary, the main goal of this thesis is give a presentation of surreal numbers
which should allow one to establish an equivalence between those notions for a very large class No
of (surreal) numbers, that turn out to be (well-based) series, that should turn out to be (surreal-
valued) functions...
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Analytic functions

Analyticity is a condition on a function A4: 3 — $ in a field of well-based series, which states
that A is locally determined by power series. That is, for each s € 3, there is a fixed power series
P,=3, en Psk 2% with coefficients in $ such that for sufficiently small €, we have a well-based
expansion

A(s+e)=Ps o+ Psie+ Py pe®+ - -. (9)

This formal notion of analyticity is far from possessing the strength of analyticity in the case of real-
valued functions. Nonetheless, we will see in Chapter 2 that it retains a few of its properties once
properly stated in the formal setting. For instance, an analytic function A is infinitely differentiable,
and (9) can always be rewritten as

A"(s) o
TR (10)

A(s+e)=A(s)+ A'(s) e+

Thus imposing analyticity for functions f :s— fogs, feF in our calculi is a way to impose a
compatibility between derivations and composition laws. Furthermore (10) provides a natural way
to extend f around a series s for which the properties of compositions on hyperseries already give us
the expected values for fos, O(f)os, d(I(f))os,..., but where it fails, perhaps for general model
theoretic reasons, to provide defining equations for fo(s+¢). In that case Taylor expansions can
be construed as a natural way to define fo(s+¢). In fact this type of expansion can turn out to
be the only guide in establishing the value of fos for certain complicated hyperseries or surreal
numbers f.

Transseries

Transseries are prima facie ideal candidates for the analytic calculi. Those generalized power
series, by virtue of being well-based series involving exponentials and logarithms, can be endowed
with transfinite sums and products, derivations, integration operators, composition laws, and have
functional inversion. Their impressive closure properties and their formal nature make them amen-
able to algorithmic methods for solving equations and other mathematical problems, as van der
Hoeven'’s thesis [60] illustrates. We will introduce transseries in Chapter 3 with the purposes of
applying the content of Part I in simple contexts and of preparing the reader (and the proof writer)
for the more demanding work on hyperseries.






Chapter 1
Strongly linear algebra

Strongly linear algebra, over R is the realm of vector spaces over R which are ordered fields, and
which are equipped with a notion of summation with respect to which sums

S
iel

of certain possibly infinite families ( f;);cs called well-based families can be defined. The criterion
for summability is order-theoretic in nature, and requires non-trivial facts regarding ordered and
partially ordered sets that are proved or stated throughout this chapter.

1.1 Well-based sets in ordered groups

In this section, we define ordered groups of well-based series, focusing on the notion of transfinite
sums of well-based family irrespective of an additional structure of ordered field.

1.1.1 Well-ordered and well-based sets

We start with purely order theoretic simple statements.

Definition 1.1.1. A well-founded ordering on a class X is a partial ordering on X for which
each non-empty subclass of X has a minimal element. A well-ordered ordering on a class X is
a linear and well-founded ordering on X.

So an ordered class (X, <) is well-ordered if and only if it is both well-founded and linearly
ordered. The reader can check that for well-founded subclasses Y, Z C X, the class Y UZ is well-
founded. We have a well-founded induction principle: if (X, <) is a well-founded ordered class, and
Y C X is a subclass with

VeeY,(VyeX,(y<xz=ye€Y) = zeX),

then Y =X.
If X is a class and u: N — X is a sequence, then a subsequence of u is a sequence u o 1) where
1: IN — N is strictly increasing.

Proposition 1.1.2. (Limitation Of Size) A partially ordered class (X, <) is well-founded if and
only if every sequence u: N — X in X has a nondecreasing subsequence.

Proof. Assume that (X, <) is well-founded and consider a sequence u:IN — X. By induction on N,
let us define a strictly increasing map ¥:IN — N such that wo 1) is nondecreasing. For m € N, define
Xm to be the set of positive integers n >m such that w,, is minimal in {u:k>m}. Set ¢(0):=0 and

Y(m+1) :=min Xy ()

for all m € N. Since m < X,,, for all m € N, the function 1 is strictly increasing. We claim that
u o is nondecreasing. Indeed for m,n € N with m <n, the element ) is minimal in {ug:

k> 1p(m)} 3wy (n), S0 we have Uy (n) & Uy (m)-

37
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Now assume that (X, <) is not well-founded. We will define a sequence in X which has no
nondecreasing subsequence. Consider a non-empty subclass Y C X with no minimal element. By
the axiom of limitation of size, we have a well-ordering <« of Y. We define a strictly decreasing
sequence u: N — Y by induction. Define ug to be any element of Y. If n€ N and ug> --- > u,, are
defined in Y, then we note that u,, is not minimal in Y, so there is a unique <¢-minimal element
Up+1 €Y with up41 <un, thus extending the sequence. For any strictly increasing map ¢: IN —
NN, the sequence wo ¢ is strictly decreasing. In particular, the sequence u has no nondecreasing
subsequence. O

Corollary 1.1.3. A linearly ordered class (X, <) is well-ordered if and only if every sequence u:
N — X in X has an increasing subsequence.

Corollary 1.1.4. A partially ordered class (X, <) is well-founded if and only if each non-empty
subset of X has a minimal element. A linearly ordered class is well-ordered if and only if each
non-empty subset of X has a minimum.

We say that an ordered class (X, <) is well-based if (X, >) is well-ordered, i.e. if any non-empty
subset of X has a maximum. Well-based classes have opposite properties to well-ordered ones.

If (X, <x) and (Y, <y) are partially-ordered classes, then we define their product (X x Y,
<xxv)- The underlying class of X x Y is the Cartesian product X x Y, with the ordering

(7, y) <xxv (@', ¥) = ((z,y) # (@, y) Ne <x 2 Ny <y y').

It is well-known that (X X Y, <xxvy) is a partially ordered class, and that it is linearly ordered if
both <x and <y are linear. We next justify that the product preserves well-foundedness and well-
orderedness.

Proposition 1.1.5. Let (X,<x) and (Y,<y) be well-founded (resp. well-ordered) classes. Then
(X XY, <xxv) is a well-founded (resp. well-ordered) class.

Proof. Let ACX xY be anon-empty subclass. Let « be a minimal element in the non-empty class
{zeX:3teY,(z,t)€ A}. Let y be a minimal element in the non-empty class {t €Y : (z,t) € A}.
Then (z,y) is minimal in A. Therefore (X XY, <xxvy) is well-founded. O

1.1.2 Multiplicative notations

We sometimes prefer to consider multiplicative notations for groups, even in the Abelian case. We
then usually use fraktur letters to represents monomial groups and elements, writing 9%, 0N, £, and
so on for the group and m, n, [ and so on for the elements. We also sometimes denote orderings
of multiplicatively denoted groups with the symbol < instead of <. Given such a group I, the
neutral element is denoted 1. Given elements m,n € 9, we write mn for their product, and m~—!
for the inverse of m in 9. For n € N, we set

mo = 1,
m” = m---m (m multiplied with itself n times), and
m" = (mn)fl — (mfl)n.

Given 6,TCIM and n € N, we write

6T = {st:seBGALET],

6" = 6---6={s1--5,:561,...,8,€6}, and
n times

G>® = U G"={s1- - 6,:nENASs,...,5,EC}.
neN

Warning 1.1.6. The notation &™ conflicts with the standard Cartesian product abbreviation
X"=Xx - xX,

which we nonetheless also adopt. We expect that this will not lead to confusions.
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If (G,+,0, <) is a linearly ordered Abelian group, then a multiplicative copy of G is simply G
itself, re-branded in the multiplicative language. We often represent it as the set

0cG={0%:a€G}

of formal terms ¢, where o € {x, z,¢, eg,...} is a symbol that will vary depending on the contexts.
For 0%, 0% € 0%, we have a product
oot :=gatt
and an ordering
0 <ol a<b.

1.1.3 Hahn product groups

We next introduce a type of linearly ordered Abelian group, due to Hans Hahn [56], that will
frequently appear in our work. See also [4, Section 2.4] and [67] for different generalizations.

Let (G, +,0, <) denote a linearly ordered Abelian group, and let L be a linearly ordered non-
empty class. We write H[L, G| for the class of functions f: X — G# where X CL is a well-based
(possibly empty) subset. We write

X =supp f.

We define f € H[L, G| to be strictly positive if supp f # @ and f(maxsupp f) >0 in G, where the
maximum is taken in (L, <).
For in f, g€ H[L, G], the set supp f Usupp g is well-based, so the set

X :={lesupp fUsuppg: f(I) + g(I) # 0}
is well-based. We define f + g to be the element
(f+9): X — Gl f() +9(l)

of H[L,G]. We call the binary operation + the pointwise sum on H[L,G]. Note that H[L, G] =G~
as a class whenever L is a well-based set. We will sometimes write f(1):=0 for all f € H[L, G] and
l €L\ supp f. With this convention, we have

(f+9)(1)=f(1)+g(l)

for all f, g€ H[L,G] and [ € L. That is, the operation + is indeed a pointwise sum. In particular,
since G is an Abelian group, the structure (H[L, G],+,0) is an Abelian group. Its neutral element
0 is the element f with f(I)=0 for all [ €L, i.e. the empty function &. Moreover [51, Section 2.7],
setting f < ¢ if and only if g — f is strictly positive, we obtain a linear ordering on H[L, G|, such
that (H[L, G],+,0, <) is a linearly ordered Abelian group.

We call H[L, G] the Hahn product of G to the power L. Note that for f, g€ H[L, G], we have
f<gifand only if f=£g, and for

lo=max {l €supp fUsupp g: f(I) # g(I)},
we have f(lp) < g(lp) in G.

Example 1.1.7. Consider the linearly ordered set of positive integers IN and the linearly ordered
Abelian group of integers (Z, +, <). We write N* for the ordered set (N, >) where < is the reverse
ordering on N. We have a Hahn product group H[N* Z]. Since (N, >) is well-based, this simply
consists in the set of anti-lexicographically ordered maps N — Z.

Remark 1.1.8. In the literature, it is often imposed that L, and later monomials groups 9t
involved in fields of well-bsed series (see Section 1.2.1) be sets, and not possibly proper classes.
Some authors would rather consider our types of Hahn products as “k-bounded Hahn products”
for kK = On, meaning that sizes of supports of elements in the Hahn product groups are strictly
bounded by the uncountable ordinal k.

Because our goal is to build large fields of hyperseries closed under exponentiation (by a result
of Kuhlmann-Kuhlmann—Shelah [68], those must have a proper class as monomial group), and
because surreal numbers themselves are an On-bounded Hahn series field, we think our choice is
sound. Since Hahn product groups and fields of well-based series are recurring objects in the thesis,
we allow ourselves to uniformly discard the expression On-bounded wherever it applies.
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Lemma 1.1.9. Let G be a linearly ordered Abelian group. Let (L,).con be a family of linearly
ordered classes such that L, CL, whenever p<v. Set G, :=H[L,, G| for each n, so G, C G, for
u<v. Set L:= U#GOHLV. Then
U G.=H[L,G].
©n€On

Proof. Set Gon:= U,uGOn G,. Clearly Gon C H[L, G], so it remains to show the other inclusion.
Let fe H[L,G]. For each [ € supp f, let 11; be the least ;1€ On with [ € L. Set

puf :=sup {1 : 1 €supp f}.
Then f € G, C Gon. 0

Remark 1.1.10. The previous result does not apply for set-sized unions. Consider for instance
the subgroups (27" Z, +, <),n € N of the additive group D of dyadic rational numbers. We have
D= UnEN 27" 7. Now, the map

fIN—{27":neN};n—2""
lies in H[N*, D], but not in |J,, . H[N*,27"Z].

Hahn product groups will be ubiquitous in the sequel. Indeed, the monomials in our well-based
series and the fields of well-based series themselves will be based on Hahn product groups.

1.1.4 Well-based families
Let L, G and H[L, G] be as in Section 1.1.3. We now introduce the central notion of (possibly
transfinite) well-based families and their sums.
Definition 1.1.11. Let I be a class. A family F = (f;)ic1 in H[L, G] is said well-based if
i. Uielsupp fi is a well-based set, and
it. Ii:={iel:l€supp fi} is finite for all I € L.
Then we may define the sum Y, _; fi of (fi)ic1 as the series )~ F with support

suppz F:{IGL:Z fl(l)%O}

iel;
and with (3° F)(1):=3,y, fi(l) for all 1 € supp f.
We will sometimes switch between the notations Y F' and Zielfi for the sum of F'=(f;)ier

Remark 1.1.12. This is nothing but a possibly infinite pointwise sum. Indeed the conditions
above are designed to ensure that such a pointwise sum is defined, by imposing that

e the support of }_ F is a well-based set (by 1), and
e the sums (), ; fi)(l) have finite support (by ii),

so that > F be a well-defined element of H[L, G].

In fact, it would be possible in certain cases to relax the conditions. For instance, one could
ask, instead of i, that the class {{€L:}_, ; fi(l) # 0} be a well-based set, or, instead of ii, that
each family (fi(1))ier be summable for a certain notion of summability on G. However, the sequel
of this chapter will show that those strong conditions make the notions of well-based families and
sums thereof very practical to manipulate. Furthermore, the aforementioned weakenings of i and
ii can produce irregularities, such as the failure of Proposition 1.1.16 below.

Remark 1.1.13. The class S:= ], ysupp f; is a set if and only if s, =0 outside of a subset of I.
Indeed, assume that S is a set and consider a subclass J CTI with s;#0 for all j€J. For [ € S, the
class J;:={j € J:l €supp f;} is finite, whence in particular a set. So J = U;cgJdiis a set.
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Given a € G and [l € L, we write a x; for the unique function {i} — {a}. So ax; € H[L, G]. If
a family (f;)ier1 is well-based, then we have

DS (z fiu))xl,

i€l leU;ersupp fi \1€L;

NS (z fi(l)> xl.

i€l leL \ i€l

Conversely, given f € H[L, G], the family (f(I) Xi)iesupp s is well-based, with
F=>" 10X
leL

This yields a representation of elements in H[L, G] as well-based formal sums. A multiplicative
copy of H[L, G| will in general be represented as a group of formal well-based products

=TI "

leL

1.1.5 Properties of well-based families

Here, we derive elementary properties of well-based families. Those properties are well known, at
least in the case of fields of well-based series and set-sized families, see [82, 60, 92, 62, 63].

We fix a Hahn product group H[L, G] and a class I. We will use the two following elementary
results, which follow easily from Definition 1.1.11, often without further mention:

Lemma 1.1.14. Let (f;)ic1 be a well-based family in H[L, G] and let (g;)ic1 be a family in H[L, G]
with

supp g; € supp f;
for alli €. Then (gi)icr is well-based.

Lemma 1.1.15. Let (f;)ie1 be a well-based family in H[L, G| and let J C1I be a subclass. Then
(fi)icg is well-based.

Proposition 1.1.16. Let I be a set and let (f;);c1 be a well-based family with f; >0 for all i€ I.
Then Zie]fi>0'

Proof. Write =3, fi. Set l[:=max|J,,supp fi, and let j € I with m=maxsupp f;. Foralli€,
we have [ >maxsupp f; so f;(l) > 0. It follows that f(I)=3%",_, fi(l) > f;(l) > 0. So l=maxsupp f
and f>0. O

Proposition 1.1.17. [62, Proposition 3.1(d)] Let F'=(fi)ic1 be a well-based family in H[L, G],
let J be a class and let 0:J — 1 be a bijection. The family F oo :=(fs(j))jea is well-based, with

ZFOU:Z F,
Z fa(j):Z fi-

JjeJ i€l

i.€.

Proposition 1.1.18. Let F = (f;)ict and G = (¢;)ic1 be well-based families in H[L, G]. Then
(F+G)=(fi+ gi)ier is well-based, with

Y F+@)=) F+) G,
Z fi+gi:Z fi+z gi-

i€l i€l i€l

1.e.
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Proof. For i1, we have supp (f; + ¢;) Csupp f; Usupp g;, so supp (F' + G) C (Supp F') U (supp G)
is a well-based set. For [ € L, the class

L={icl:lesupp(fi+gi}
is contained in the union of the two finite sets
Ir; = {i€l:lesupp fi}, and
Ic: = {i€l:lcsuppy}.
So I; is a finite set. Therefore (f;+ gi)ier is well-based. For [ € L, we have

S EOW = 3 (it g)0)

iel;

= Z fi(l) +Z gi(1)
iel; i€l

= Z i)+ Z 0] (since Ir ; and I ; are finite)
i€Ip i€lg

= > Pno+O- e
So S (F+G)=(Y F)+(YG). 0

Lemma 1.1.19. [62, Proposition 3.1(e)] Let I,J be classes, and let (I;);es be a family of classes
with I:ujeJIj' Let F=(fi)ie1 be a well-based family. Then for each j € J, the family Fy:=(f;)icy,
is well-based. Moreover, the family (3" Fj)jcy is well-based, with

S F=Y (O E).

jed

Corollary 1.1.20. [62, Proposition 3.1(c)| Let F1=(fi)ic1, and Fo=(fi)ic3, be summable families
where 1=11UI5 is a disjoint union. Then F1 11 Fy:=(f;)ic1 is summable, with

Z F1HF2:Z F1+Z P,
Z fi:Z fz‘JrZ fi

i€l i€l AP

1.€.

We also have a formal Dirichlet rearrangement theorem:

Lemma 1.1.21. Let I,J be classes and let (f; j),j)e1x3 be a well-based family in H[L, G]. For
each ig €1 and for each jo€ J, the families (fi, i)jes and (fi jo)ie1 are well-based. Moreover, the
families (32 ;5 fij)ier and (32, fij)jes are well-based, with

z(zfm-) > fi,jz(zfm)-

icel \ jeJ (i,§)€IxT jeJ \ i€l

Proof. Apply Proposition 1.1.19 with Ij:=Ix {j} forall j€J and J;:={i} xJ forall ieI. O

1.1.6 Well-based classes in Abelian linearly ordered groups

Let (90, -,1, <) be a multiplicative, linearly ordered group. We now state Bernhard Neumann’s
important results on products & - %, 6™ and & for well-based subclasses &,% of M and n € N.

Lemma 1.1.22. [82, Lemma 3.2 and Corollary 3.21] Let &, T C9N be well-based subclasses. Then
the class & -% is well-based. Moreover, for all me & -, the class {(u,0) € G xT:m=uv} is finite.

Corollary 1.1.23. Let n €N and let G4,...,8, CIN be well-based subclasses. The class
&:=6,---6,
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s well-based. Moreover, for all me &S, the class
{(ula"~7un)€61x XGn:m:ul...un}
is finite.

Lemma 1.1.24. [82, Theorem 3.4] Let & CIN be a well-based subclass with & 1. The class G
s well-based.

Proof. Write T:=&\ {1}. By [82, Theorem 3.4], the class T°:={]J, ., %" is well-based. But then
G>*={1}u%°
is well-based. 0

Lemma 1.1.25. [82, Theorem 3.5] Let & CIMN be a well-based subclass with &< 1. For all me &>,
the class {n e N:me &"} is finite.

1.2 Fields of well-based series

In this section, we define the ordered fields of well-based series that will be the underlying structures
for hyperseries. We will only consider well-based series over R, although most of our results apply
in more general cases. The results in Sections 1.2.1, 1.2.2 and 1.2.3 are well-known: see [56, 82, 92].

1.2.1 Well-based series

Let (9M, x, 1, <) be a non-trivial, linearly ordered, Abelian group. In particular (90, <) is an infinite
linearly ordered class. Considering the ordered additive group (RR,+,0, <) of real numbers, we have
a well-defined linearly ordered Abelian Hahn product group H[9, R]. We write

R[] := H[M, R],

which for now is equipped with its additively denoted structure (R[[9]],+,0, <) from Section 1.1.3.
We call (9, x, 1, <) the monomial group of R[[9]]. Recall that we have an inclusion R x It —
R[[9N]]; (r, m) — r Xm, whose range is denoted R M. For (r,m) € R x M, we will simply write
TM:=7Xm. Elements of M C R[[M]] are called monomials, whereas those in R 9t C R[[]] are
called terms. Finally, R 9 denotes the class of non-zero terms.

For the sequel, we write $:=R][[91]]. We call elements s of $ well-based series, and we write

Sm:=s(m) €,

for the coefficients of series s € $, for all m € 9. Recall that each s €3 is the sum
5= sum
m

of the well-based family (smm)meom. The length of s as a series is the order type ot(supp s, =) for
the reverse ordering > on 9. Terms are the well-based series of length <1, and 0 is the unique
series of length 0.

If s is a well-based series with supp s # &, i.e. with s+ 0, then we write

s := maxsupps€M and
Te 1= saSDSEIR#m.

respectively for the dominant monomial and dominant term of s. For m € MM, we set

Sem = E Sp,

. neMm-m
and we write
S = S»1,
S« = 81€ IR,

S< = S§—8-—51,
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SO supp Ss > 1, supp s= C {1} and supp s< < 1.

For s,t €%, we say that ¢ is a strict truncation of s and we write t < s if t# s and supp (t — s) <
supp t. The relation < is a well-founded partial ordering on $ with minimum 0 and, we denote
its corresponding non-strict ordering by <J. We also write 4 for the restriction of + to the class
{(t,s) €S x B:supps>suppt}={(s,t) €B xB:s<Is+t}. That is, the expression s+ t=wu for s,
t,u € P means that s+t =1wu and that supp s > suppt.

Let s,t €3$. By Lemma 1.1.22, the set (supps) - (suppt) is well-based and for each m € (supp s) -
(suppt), the set {(u,v) € (supps) x (suppt):uv=m} is finite. Thus the family (3"  __ suto)mem
is well-based, and the Cauchy product

sti=Y (Z sutu)m (1.2.1)

meM \uv=m

is well-defined. Note that
supp (st) C (supp s) - (suppt). (1.2.2)

Also note that the inclusion 9t C $~ preserves products. By [56], the class ($,+, x,0,1,<) is an
ordered field.

The ordering on 91 extends into a partial ordering < on $ defined by s <t if and only if R~ |s| <
[t|. We write s <t if t < s is false, i.e. if there is € R” with |s| <r [t|. We also write s <t if st
and t % s, i.e. if there is r € R~ with r |s| > |¢t| and r |[t| > s. When s,t are non-zero, we have s <t
(resp. s < t, resp. s<t) if and only if 05 < 0; (resp. 05 < 0+, resp. 05 ="0¢).

Then < is a dominance relation as per [4, Definition 3.1.1]. In other words, the relation < is a
linear quasi-ordering on $ with 140, and with

h#0= f< g+ fh<gh and fhngsh=f+g=<h

for all f,g,he$.
The relation < corresponds to the natural valuation on the ordered field (%, +, x, <). In
particular (8, 4+, x, <, <) is an ordered valued field with convex valuation ring

$5:={seP:sx1}.

More precisely, the dominant monomial function 9: $% — 90: s — 0, is a valuation on $ with value
group (9M, x, =) (note the reverse ordering). In other words, it is a morphism ($7, x) — (M, x)
with

0,4 ¢ < max (05, 0¢)
whenever s,t,s+tc$7.
Remark 1.2.1. The relation < on 91 is the non-strict ordering corresponding to <, but the same

is not true for < and < on $. On $, the relation < is transitive and reflexive (such relations are
sometimes called quasi-orders or pre-orders), and < is an equivalence relation.

We write
$. = {se€B:suppsCTM~},
$= {s€B:suppsCM~}={seP:s<1}, and
$77 = {s€8:s>R}={s€P:s=0As>1}.

Series in $., $= and $~" are respectively said purely large, infinitesimal, and positive infinite.
We have an additive decomposition

F=%. +R+3~
where each s € $ decomposes uniquely as
$=8y + 5=+ 5<. (1.2.3)

We also have a multiplicative decomposition

§7=R7-M-(1+37)
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where each s+ 0 decomposes uniquely as

s=rs05(1+¢s), (1.2.4)

S — Tg . . .
- 2 is infinitesimal.

with rs0,=7,#0 and ;=

Remark 1.2.2. Our notations for fields of well-based series follow the simple rule: symbols O
appearing as exponents in a notation $” indicate that we consider series s € $ satisfying 0, e.g.

37 ={se3:5>0}, - ={seP:5s<1}, and S "={seT:s>0As>1},

whereas symbols /A appearing as indexes in $ pertain to conditions on supports of series, e.g.

$. ={seP:supps>1} and $>?a{s€$>*>:supps>

where the last notation appears when considering hyperserial fields.

Remark 1.2.3. The type of valued fields we are studying are very specific. Accordingly, we will
mostly rely on valuation theory as a language and tool to state and prove results. Valued fields
of well-based series, over other fields besides R and possibly with factor sets (see [82, 65]), among
other generalizations, were studied in detail in particular by Irving Kaplansky. They naturally
appear as so-called maximal valued fields, and are in particular Henselian.

In our case, fields of well-based series over R are even more specific. Indeed, by the Ax-Kochen-
Erschov principle, the elementary theory of (8,4, x, <) only depends on the theory of (91, x, <)
as an ordered group. In particular, the elementary theory of (%, +, x, <) is completely determined
if 9 is divisible. In that case $ is in particular real-closed, as a consequence of [77, Theorem 1].
See for instance [4, Section 3.6] for more details.

Example 1.2.4. Consider a multiplicative copy (z%, -, <) of (%, +, <). Since (%, +, <) is the
smallest non-trivial linearly ordered Abelian group, the smallest field of well-based series is the
field R[[z%]] of so-called formal Laurent series over R. Well-based subsets of Z are simply subsets
of initial segments (—oo,n],n € Z of Z. Thus any formal Laurent series s can be written as

—+o0
S= E Sk z=F
k=n

where n € Z and (si)k>n is a sequence of real numbers. So R[[z%]] coincides with the usual field
of formal Laurent series. For instance, the following are formal Laurent series:
1 1

. 1
T s L L
1+ +2x +6x +24:13 +

P —r+2r2—162"4+6427 06— ..

We will adopt the convention that x denotes an infinite variable whereas z stands for a infinitesimal
one.

Example 1.2.5. Consider a multiplicative copy (z®, -, <) of the additive ordered group (IR, +, <)
of real numbers. We call R[[zR]] the field of real-powered series. It is well-known that for each
countable ordinal « € wq, there are well-ordered subsets of @, hence also of IR, that are order
isomorphic to a. So elements of R[[x®]] may have arbitrary countable lengths as series. Similarly,
we write R[[z®]] for the field of well-based series whose monomial group is a multiplicative copy
of (Q,+, <). We call those series rational-powered series and they properly contain Puiseux series.

Example 1.2.6. Let L be a linearly ordered class. Then the Hahn product group H[L, R] is
a linearly ordered Abelian group, so we can form the field of well-based series R[[H[L, R]]]. A
natural way to endow this field with additional structure is via certain partial functions H L,
R] — R[[H[L,R]]] or R[[H[L,R]]] — HIL,R]. This is the spirit of [17], and a guiding principle
in defining fields of transseries or hyperseries.
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1.2.2 Products of well-based families

In this subsection, we gather results about well-based families in $ pertaining to the Cauchy
product. A subclass & of 9 is said infinitesimal if all its elements are infinitesimal. We say that
S is small if we have s <1 for all s € &.

We will use the following elementary fact, often without mention:

Lemma 1.2.7. Let (s;);c1 be a well-based family and let (;);e1€ RY. The family (r;s;)icr is well-
based.

Proof. This follows from Lemma 1.1.14. O

Proposition 1.2.8. [92, Proposition 1.5.3(4)] Let S=(s;)iec1 and T'=(t;);c3 be well-based families
in S where I and J are classes. The family S-T :=(sitj) jye1xy 15 well-based, with

2.5 T=(3_85) (1)

Z Sitj: .
(i,§)€IxT LEI JeJ

61 = (U suppsZ-),

i€l

Gy = (U Supptj>.

i.e. with

Proof. Write

jE€T
Since S and T are well-based, those are well-based sets. For (i, j) €I x J, we have
supp s; t;  (supp s;) - (suppt;),

SO U(i_j)elx_]supp 5;t; C 61- Gy is well-based by Lemma 1.1.22. For m € 91, Lemma 1.1.22 also

implies that there are finitely many ordered pairs of monomials (ug, vx)k<n € (61 x &3)" L neN
with m=ug v for all k€{0,...,n}. The sets Iy={i€l:u;€supps;} and Jy={j€J: 0, Esuppt;}
being finite, the class
(IxI)m={(i,j) €IxI:mesupps;t;} C | Tk x Iy
k=0

is finite. So S-T is well-based. Since all sums involved have finite support, we have

> siti] = Y. sit
(i,j)€IxJ m (1,7) EAXI)m m

Z Z (Si)uk (tj)l’k

= (’L j)GIkXJk

- Z > (st

uo=m (i,5)€IxJ

S (Z (s»u)(Z(mU)

- Y (s
= (9T
We deduce that > 5-T=(>5) (> T). O

Notation 1.2.9. Let n€N. If X is a class and x = (x1,...,2,) € X", then for allie{1,...,n}
we write xp):=x;. If ve N", then we also set [v]:=3""_ vy
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Corollary 1.2.10. Let (tj)jcy be a well-based family and let s € 3. The family (st;);es is well-

based, with
Z S tj =S Z tj.

jed jeJ

Lemma 1.2.11. [92, Corollary 1.5.6] Let n € N~. For all infinitesimal series e1,...,e, €3~ and
for all (1,)penn € RN" the family (roe™ -+ e."),enn is well-based.

Proof. By Lemma 1.2.7, we may assume that r, =1 for all v € N™. By Proposition 1.2.8 and
Lemma 1.1.15 we may assume that n=1. We write e:=¢;.
The set & :=suppe is infinitesimal, so & is well-based by Lemma 1.1.24. For all k € N we have

suppe” C 6,

$0 Jjen SUPP ¥ is a well-based set. Consider an m € M. The set I, = {k € N:m € &*} is finite by
Lemma 1.1.25, so {k € N:m € suppe”} is finite, whence (¥)en is well-based. O

Corollary 1.2.12. [82] For e € $=, we have

Z eF=(1-¢)"L

keN

Proof. Note that suppe <1 so by Lemma 1.2.11, the family (¢¥)ren is well-based. Set t:=
ZkGNEk. We have

(1—¢e)t = Z ek + Z (—ekth) (by Corollary 1.2.10)

keN keN
= Z gk — Z gh+l (by Corollary 1.2.10)

keN keN
= [1+ Z ek ) — Z ek (by Proposition 1.1.17 and Corollary 1.1.20)

k>0 k>0
= 1.

Therefore t = (1 —¢) "L O

Lemma 1.2.13. Let (s;)ic1 be a family in S where I is a class. Assume that there is a well-based
and infinitesimal set T CM, a well-based set & CTIM and a function N: I — N such that we have

supp s; C /0.5 for alliel.
Assume that (sj)jey is well-based whenever JCI and f(J) is finite. Then (s;);e1 is well-based.

Proof. Assume for contradiction that (s;);er1 is not well-based. So there is an injective sequence
(ik)ren €IN and a sequence (my)ren € MY with mg<m; < -+ and my Esupp s;,, for all k€ N. We
have {my: k€ N} CT>*-G& where T°- & is well-based by Lemmas 1.1.22 and 1.1.24. So {m;:k €N}
is well-based and we may assume that (my)gen is constant. By Lemma 1.1.22 and 1.1.25, the set
{neN:mye IT" G} is finite. In particular {f(ix): k € N} is finite, so (s;,)ren is well-based: a
contradiction. g

Corollary 1.2.14. Let (8n,m)(n,m)en? be a family in $ such that each (sn,m)men for n €N is
well-based. Assume that there is a well-based and infinitesimal set T CIM and a well-based set
S CTIM with

Vn,m €N, supp sp,;m CE"- 6.
Then (Sn.,k)(n,k)en? is well-based.
Proposition 1.2.15. Let $=R[M]] be a field of well-based series. Let I be a set and let f:

I'— N be an arbitrary function. Let (si)icr be a well-based family in $ and let § 1. The family
(8i (5f(1)),-e[ 1s well-based.
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Proof. Write § =74 ¢ where r € R and € <1, and set & := Uz.e[supp Si- So G is well-based. For
(i,k) €I x N, write s; ,:=s; (fg)) =k gk 5o
supp si.x C & - (suppe)*.

If J CN is finite, then (s; )i, ke is well-based as a finite union of well-based families. Weldeduce
with Lemma 1.2.13 that (s; k)ier,ken is well-based. In particular ( i(zz)o si7k)i€[: € (5f(")),-e[ is
well-based by Lemma 1.1.19.

1.2.3 Flatness

Let $=R[[M]] be a field of well-based series. For s € $~, we write s™:=max (s,s71) and s~ :=
(st)"lsT:=max (s,s71). So sT=s"1if s<1 and st =s otherwise. As in [92, 64], it is useful to
consider the following orderings on $~:

Definition 1.2.16. Let s,t€3”. We say that s is flatter than t and we write
s=<t if (sT)"<tt forallmneN~, and
st if there are m,n € N~ with tT < (sT)™ < (t+)™.
We also write s Xt if s <<t or s=t.
The relation < is a partial ordering on $>. We sometimes extend it to $# by writing s <<t

whenever |s| < [t|. Note that s <t if and only if v9,> v, where v is the natural (or standard, or
Archimedean) valuation on the ordered group 9. See [4, p 83—84], for more details.

Example 1.2.17. In the field R[[2%]] of formal Laurent series, we have f X g for all f, g€ R[[z%]]
with f, g3 1. The existence of strictly flatter elements in fields of well-based series typically involves
the existence of a logarithm or an exponential. For instance, in the field No of surreal numbers
equipped with Gonshor’s exponential and logarithm functions exp and log [55, Chapter 10] (see
also Chapter 11), we have

1 < log(log(a)) < loga < exp(+/loga) <« a < exp(a) < exp(a?) < exp(exp(a))

for all a € No~~. Note that this reflects the asymptotics of the corresponding real-valued functions
at +o0.

Lemma 1.2.18. Let L: ($, x) — (8, +) be a strictly increasing morphism. Then for all s,t € $7,
we have

skt <= L(s)=
st < L(s)=
sEt <« L(s)x

(t),

Proof. This follows from the relation L(s")=ns for all s€$~ and n € N and the fact that L is
strictly increasing. O

We will frequently use the following consequences of Lemma 1.2.18, sometimes without mention:
Corollary 1.2.19. Assume that there is a strictly increasing morphism L: (37, x) — ($,4). Then
for s,t,ue$”, we have

a) st <Xmax (st tT).

b) sxt=sXt.

c) s<Kt=st=t.

Proof. The assertions a), ¢) follow from the classical valuation theoretic properties of <. The
assertion b) is an immediate consequence of Lemma 1.2.18. O
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1.3 Strong linearity

The notion of well-based families allows us to consider strongly linear operators. Those are oper-
ators between fields of well-based series which commute with transfinite sums of well-based families.
This will be the case for derivations and right compositions that we will define in later sections.
In the present section, we define this notion and introduce ways to define strongly linear operators.

1.3.1 Strongly linear functions

Let $=R[[M]] and T =IR[[MN]] be fields of well-based series. Consider a function ®:$ — T which
is R-linear. Then ® is said strongly linear if for every well-based family (s;);er in $, the family

(®(si))ier in T is well-based, with

i€l i€l
If &: 91— T is a function, then we say that it is well-based if for any well-based family (m;);cr
in M, the family (®(m;));es in T is well-based. Then & extends uniquely into a strongly linear

map ®:$ — T [62, Proposition 3.5]. As a consequence, we have the following characterization of
strong linearity.

Lemma 1.3.1. An R-linear function ®:% — T is strongly linear if and only if for all s€ S, the
family (sm ®(m))meom is well-based, with

O(s)= Y sm®(m).

meM

If &: 91— T is well based, then d is strictly increasing whenever @ is strictly increasing and it
is a ring morphism whenever ®(mn)=®(m) ®(n) for all m,ne€ M [62, Corollary 3.8|. In particular,
if ®(m)eMN for all me M and D is strictly increasing, then @ is well-based. Hence:

Proposition 1.3.2. Let & C M and TCN and consider an order-preserving map V: 6 — <.
Then there is a unique strongly linear function V:R[[6]] — R[[Z]] that extends V. If moreover

G, % are subgroups and U is a group morphism, then U is an embedding of ordered fields. O

1.3.2 Operator supports

We fix two fields of well-based series $ =IR[[90]] and T =R[[N]]. A very convenient way to prove
that certain families related to certain operators are well-based is to rely on the notions of operator
support [33, p. 10] and relative operator support [14, Definition 2.4]. We recall the definitions here.

Definition 1.3.3. Let &:91— T be a function. If MCMN (as ordered groups), then the support

supp ® of @ is the class
supp (m)

supp @ := U m

meM

The relative support suppe @ of @ is the class

suppe ® := U
meM

supp ®(m)
Oo(m)

If U:§ — T is a linear function, then we define its support and relative support as
supp ¥ := supp (¥ [9M) and
suppe ¥ := suppe (U [9M) respectively.

Z

Example 1.3.4. Consider the ordered field R[[z%]] of formal Laurent series, where 2% is a mul-

tiplicative copy of (%, +, <). We have a derivation given by

+o0 I +oo
(Z ak:rk> = kakx_(k+1).

k=n k=n
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In that case, for any monomial 2" € 2%, we have (z")'=nz""! so

supp( ")’ C{x 71}

This shows that the set {7} is a (well-based) support for the derivation.

Example 1.3.5. For f € R[[z%]], we have a well-defined sum

(k)
fo(z+1):=>" fT (1.3.1)

keN

which corresponds to the composition of f with 4+ 1 on the right, as formal series. We claim that
the function 2% — R[[2%]];2"+ 2™ o (x + 1) has well-based relative support {z~*:k € N}. Indeed,
for n € Z, we have

n (n — 1) xn72

o(x+1)=z"+na" 1+ 5

S0 0pno(zq1)=2" and

suppz”o (v +1) U en supp (z)®) c {an=k: ke N} .y
Ozno(m+1) - x™ - ™ o

% ke N}

That (1.3.1) is well-defined then follows from Proposition 1.3.7 below.
We next include two useful results.

Proposition 1.3.6. [33, Lemma 2.9] Let ®: 91— T have well-based support. Then ® is well-
based.

Proof. By Lemma 1.3.1, we have to show that given a well-based subset & C 9, the family
(@(m))mees is well-based. For m € &, we have supp ®(m) C & - (supp ), so [J,, & supp (m) is
well-based by Lemma 1.1.22. Moreover Lemma 1.1.22 implies that for all n€ I, the set

{meG:neS (suppP(m))} C{meS:neG- (suppP)}
is finite, so (®(m))mee is well-based. O

Proposition 1.3.7. [14, Proposition 2.5] Let ®: 9 — T be relatively well-based. Assume that
0¢& ®(M) and that 0o P:IM — N is strictly increasing. Then @ is well-based and its strongly linear

extension ® s injective.

Proof. Consider a well-based subset & C 9. We have

| supp ®(m) C {04 (m): m € &} (suppe @),
mes

50 Umee Supp ®(m) is a well-based subset of M. For any n€ (J, .o supp ®(m), the set of pairs
(m,u) € G x suppe ¢ with 0g () u=n forms a finite antichain. Since any m € & with n € supp ®(m)
induces such a pair (m,n/0¢m)), it follows that the set of all such m is also finite. This completes the
proof that ® is well-based. To see that P is injective, let s € $7 and take r € R¥ with s~r0,. The

assumption that 9 o @ is strictly increasing gives ®(s —rd5) < ®(rds) =7 ®(0,) #0, so (s) #0. O



Chapter 2

Analytic functions on well-based series

In this chapter, we introduce the notion of analytic function on a field $ of well-based series, which
will play an important role in Part II. The general idea is that a function f is is analytic if

(k) (s
fls+e)=>" fT!()gk (2.0.1)

keN

for all s in its domain, for sufficiently small ¢ in absolute value. This leads us in particular to study
the behavior of formal power series

P=>Y" P2Fes[:],

keN

and the conditions under which such power series converge at points ¢ € 3, i.e. yield well-based
families (Py,e*)ren.

Such work was done in some detail by Norman Alling in his book Foundations of analysis
over surreal number fields [1] (see in particular [1, Chapters 8 and 9]). Alling showed that formal
power series had similar behavior to real convergent power series on their domain of convergence.
Unfortunately, Alling’s results are restricted to the specific context of surreal numbers. Even more
unfortunate for us is his focus on a domain of convergence for power series which is rather too
small for our purposes in later sections of the thesis. We will have to show that certain result of
Alling extend to larger domains. The notion of analytic functions on surreal numbers also appears
in [19, Section 7.3].

Taylor series such as (2.0.1), are also a way to define composition laws on differential fields
of well-based series via Taylor expansions. They were used in that manner recently [33] in order
to define the composition law on logarithmic hyperseries. On a simpler level, the extension of
the so-called restricted real-analytic functions to fields of well-based series [34] also belongs to
this type of development. In particular, the definition of logarithms and exponentials on fields
of transseries crucially depends on those functions being analytic. There is one surprising (and
ultimately deceiving) exception: even though Gonshor’s definition [55, Chapter 10] of the surreal
exponential function does not require analyticity, we will see that it turns out to be an analytic
function [55, Theorem 10.3]. This suggests to us that analyticity and Taylor expansions are not only
sound and practical, but also natural, in developing formal calculus on fields of well-based series.

2.1 Elementary analysis on ordered fields

We first introduce generalization of classical notions in real calculus to general ordered fields. The
content of this section (in the set sized context) is often considered common folklore.

2.1.1 The order topology

Let F be an ordered field, possibly class-sized. There is a natural topology on F, called the
order topology, which turns it into a topological field. The order topology has open intervals as
a basis, so a non-empty subclass O CF is open if for all z € O, there is a § € F~ such that the
interval (x — 4,z 4+ 9) is contained in O. A neighborhood of x € F is a subclass of F containing an
open subclass of F which itself contains z.

51
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Remark 2.1.1. If F is a proper class, then the intended topology, which should be the class
of open classes, does not exists in general as per NBG set theory. This is because no class may
contain a proper class whereas any infinite interval in a class-sized ordered field is a proper class.
Therefore we will not be using topology here and will instead only rely of the well-defined notions
of open subclasses, continuity, differentiability, and so on.

One can define the continuity of a function g: A; — A5 between subclasses of F in the classical
way, i.e. g is continuous at x € Ay if for any neighborhood O of g(x), the class

9 " (A2n0)={yeAi:g(y) €0}

is the intersection of A, with a neighborhood of z. This translates into the famous “c-d definition™
the function g is continuous at x if and only if

VeeF>, 30 eF> Vye Ay, ly —z|<d=|g(y) — g(x)| <e.

2.1.2 Differentiable functions
Our main interest will be that of differentiable functions:
Definition 2.1.2. Let g: A1 — A5 be a function between subclasses of ¥, and let x € A1 be such

that A1 is a neighborhood of x. We say that g is differentiable at x if there is anl€F, such that
for alle e F~, there is a § € F~, such that for all h € F with |h| <4, we have

lg(z+h)—g(z)—hl|<e |h|.

The element [ is unique when it exists. It is called the derivative of g at x, and written I =: ¢’(x).
If A, is open and g is differentiable at each x € Ay, then we say that g is differentiable, and we
write ¢’ for the function A; — Ag;2— ¢’(z), which we call the derivative of g. A classical Calculus
101 proof of the chain rule for differentiable real-valued functions applies in our setting, and yields:

Proposition 2.1.3. Let f: Ay — A3 and g: A1 — Ay be functions between subclasses of F. Let
x €F such that Ay is a neighborhood of x and A, is a neighborhood of g(x). If g is differentiable
at x and f is differentiable at g(x), then fo g is differentiable at x with

(fog)(z)=g'(x) x f'(9(x)).

Similarly, it can be shown that many “elementary” results in real analysis can be recovered
in this setting: differentiable functions are continuous, sums and products of continuous (resp.
differentiable) functions are continuous (resp. differentiable)... Unfortunately, the list does not
include any interesting theorem in real analysis. Recall that R is unique up to unique isomorphism
as an ordered field with the least upper bound property. For any ordered field besides the real
numbers, none of the following properties are true:

1. Every non-empty bounded subclass has a least upper bound.

Every interval is connected (i.e. cannot be written as the union of two open subclasses).
There is a connected infinite interval.

Every locally constant function is constant.

Every continuous function on a closed interval is bounded.

The direct image of an interval by a continuous function is an interval.

Every continuous and injective function between intervals is strictly monotone.

Every differentiable function on an interval with zero derivative is constant.

© ® N e e W

Rolle’s theorem for differentiable functions.

—
o

The mean value theorem for differentiable functions.

. The L’Hospital rule.

—
—
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See [84] for a discussion and proofs of most of these results. We'll see that we can retain some of
the above properties which pertain to functions when working with certain classes of objects in
our calculi. For instance, the statements 5, 7 and 8 will hold in all our calculi.

2.2 Power series

Let us now study elementary properties of power series and show how they can act as functions
on power series fields. Throughout the section, we fix power series fields $, T and U over R, and
we write 91 for the monomial group of $, i.e. $=R][[MN]].

2.2.1 Power series
Let D be a domain. We write D[[z1,..., 2,]] for the ring of power series
P.= Z P,z{M ... 2" where (P,)yenn € DN,
'U€N7L

which is also a domain. We write D{[z]] for the ring of power series P=3", _\ P 2¥ in one variable.

For P=3, .\ Pk 2%, the derivative P’ of P is the power series

P:=>" (k+1) Pyy12F e D]z|).
keN

We write P for the n-th iterated derivative of P, i.e. P(?)=P and P("*1 = (P™)’ for all n e N.

Consider the subdomain z D[] of D[[z]] of power series P =", _\ Py 2" with Po=0. We have

a composition law o: D[[z] x zD[[z]] — D[[2]]. Indeed for P=3", _\ Pr2", Q=3", .\ Qrz" € 3[[2]]
with Qo=0, we have a composite power series

POQI=P0+Z ( Z Panl---an)ZkGS[[Z]].

keN mi+---+my=k
For P € DJ[z]] and @, R € zD][z]], we have Qo R € zDJ[z]] and
Po(QoR)=(PoQ)oR.

2.2.2 Convergence of power series

Definition 2.2.1. Given a power series

P= Z PyzyM 2 e S [z, - . ., 2],
veEN™

7171.

and s1,...,5, €S, we say that P converges at (s1,...,s,) if the family (Pys;" - s.™),enn is
well-based. We then set

v Vin
P(sl,...,sn)::g PysMs .
vEN™

We write Conv(P) for the class of tuples (s1,...,sn) € 3™ at which P converges.

Remark 2.2.2. This notion of convergence, like the notion of well-based family, does not corres-
pond to the convergence of sequences for the valuation topology on 5.

Example 2.2.3. Any real power series P=Y", _\ 42" € R[[z]] converges on $~ by Lemma 1.2.11.
In fact, since the sequence (s¥),en is <-nondecreasing whenever s 3= 1, we have Conv(P) =3~
unless P is a polynomial.
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The following shows that for P € $[[z]], the class Conv(P) is an ultrametic ball.

Proposition 2.2.4. [92, Corollary 1.5.8] For all P € $[[z]], and ,0 €% with 6 € Conv(P), we have
e 0=¢€Conv(P).

Proof. Write P=3_, _\ Pk 2¥ and u:=¢/5< 1. By Proposition 1.2.15 for I =N and f =Idy, the
family (Py 6% u*)ren = (Pre¥)ren is well-based. |

Lemma 2.2.5. Let P € $][z]] with Conv(P)#£{0}. Then Conv(P) is open.

Proof. Consider a € € Conv(P). Given a positive § € Conv(P)\ {0}, we have e+ <0 or e +0 ¢,
and likewise e —0 <0 or € —d < e. In any case, we obtain €+ J,¢ — § € Conv(P) by Proposition 2.2.4.
Therefore Conv(P) is open. O

Example 2.2.6. The case Conv(P)= {0} can occur. For instance, on the field R[[xZ]] of formal
Laurent series, the power series
Py:= Z xk 2k

kelN

satisfies Conv(P,) = {0}. This does not mean that there cannot be a larger field V 2 R[[z%]] on
which Py has a non trivial domain of convergence. For instance, identifying x with the surreal
number w, the power series Py converges at 1/ . in the field No of surreal numbers.

Lemma 2.2.7. Let P=3", Py z" € $[[2]] be a power series. For alln €N, we have Conv(P)=
Conv(P™).

Proof. It suffices to prove the result for n=1. We have 0 € Conv(P) N Conv(P’). Recall that
P'= Z (k+1) Pyyq 2",
kEN

For € € $7, we have the following equivalences:
(Prpe¥)1en is well-based

= (Pry1" ) en is well-based (by Proposition 1.1.17 and Corollary 1.1.20)
<= ((k+1) Pyy1")ren is well-based. (by Corollary 1.2.10)
We deduce that Conv(P)= Conv(P’). O

Proposition 2.2.8. Let P=3", \ P.z"€$[[z]] be a power series and let e,6 € Conv(P). Write

pk)
k!(g) z*. We have § € Conv(Py.) and

Py for the power series Pic:=3) ",
Pr(8) = P(e+9).

Proof. Note that P,o= P and that P,.(0)= P(¢), so we may assume that € and ¢ are non-zero.
The power series P, . is well-defined by Lemma 2.2.7. We have

U supp (Pesich*) = | supp (P;e?),
i,keN JEN

where the right hand set is well-based since (Pje?);en is well-based. For each monomial m € 90,
the set Iy :={(i,k) € N?:m & supp(Pi4 "%} is contained in {(i, k) € N?:i+k € Jn} where

Jm:={j € N:m€supp(P;d7)}.

Since (P; Ej)je]N is well-based, we deduce that J,, and hence I, are finite. This shows that
(Prtie®*1); ren is well-based. Likewise (P, 0%%%); ren is well-based.
For k € N, we have
PH(e) k+i i <k

i€EN
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Therefore it suffices to show that the family (Py; gt 5’“)1-_’;66]1\1 is well-based in order to prove
that § € Conv(P4.). For i,k €N, write

c1 5k — itk b
where (u,v)=(g,%.) if § e and (u,v)=(d,%/s) if € <J. In any case, we have v <1 and the family
(P u'**); ren is well-based. Applying Proposition 1.2.15 for =N x N and f = (a,b) — a+b,
we see that the family (Pijru'"*0%); ren= (Prric?6%); ken is well-based.
On the other hand we have § +e =< or  +e <, s0 § +& € Conv(P) and (Py (§ +¢)¥)ren is
well-based. By Lemma 1.1.21, we have

R W L

keN keN ieN

= 2 () e

i,k€N
SDIMOTERY
JEN 1]
= > Pi(e+9)
JEN
= P(c+9),
where we use Proposition 1.1.17 for the bijection
P:NZ2—{(j,k):jENAk<L }; (i, k) — (i+k, k)
to obtain the third equality above. O

Lemma 2.2.9. Let P=Y, \ Pi2"€8[[z]] be a power series with Conv(P)#{0}. The function
P is infinitely differentiable on Conv(P) with P™ = P™ on Conv(P) for all n € N.

Proof. We first prove that P is differentiable on Conv(P) with P'=P' Let ¢>0 and let s €
Conv(P). For all h €8 with |h| <|s|, we have h < s, so Proposition 2.2.8 yields

N _ P (g
P(s+h)—P(s) = Y Pk—!()hk

k>0
= ﬁ’(s) h+ h?u,

where u::ZkEN%h’ﬁ If u=0, then we set §:=|s|. If u#0, then we set §:=¢/,. In both

cases, we obtain |P(s+ h) — P(s) — P'(s) h| <& |h| whenever |h| <. So P is differentiable at s
with P’(s)=P’(s). The result for all n follows by induction. O

2.2.3 Zeros of power series

We next consider zeros of power series functions. A zero of a power series P € $[[z1,..., 2,]] is an
element (sy,...,s,) € Conv(P) with P(sy,...,s,)=0.

Example 2.2.10. Non-zero power series in one variable may have infinitely many zeros. Here
we give an example due to van der Hoeven. Set $ =R[[z%]] and write 7(n, k) for the number of
partitions of n into k parts, for all £ <n <w. For k€N, set

spi=(=1)F Z w(n,k)z~"eS$.
neN
Then the power series P=3}, sk 2¥ has ™ as a zero for each n € N. This power series can be

obtained by formally expanding the product [], . (1 —27"2).
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Lemma 2.2.11. Suppose that I is uncountable and let P € $[[21,. .., 2,]] be a power series with
(8=)"C Conv(P). If P+0, then P(s1,...,8,)#0 for some s1,...,8, €3~

Proof. We prove this by induction on n. If n=1, then write P = ZkE]N Py 2*. Suppose that P+£0
and let R C 3= be the set of non-zero infinitesimal zeros of P. Fix s € R and let m be such that
0 P,, s™ = Py, s" for all k. Since P(s)=0, there exists an index k #m with P, s™ = P s*. Then
0+ 5= (P! P)"/(™=%) whence

q
{05:5€eR} C {(%) :k,mEN,qu,Pk,ng/:O}.
In particular, {9s:s€R} is countable, whereas {05:s € T~,s#£0} =91~ is uncountable, so R #T~.

Now suppose that n>1 and write P =}, _\ Pk X% where each Py lies in $[[21, ..., zn_1]].
Assume that P #0. By the induction hypothesis, we can find s1,...,5,_1 €%~ and k € N such that
Py(s1,...,8n-1) #0. Fix such elements sy,...,s,_1 and let R €3~ be the set of s €T~ such that
P(s1,...,5n_1,5)=0. By the special case when n=1, we see that R # $~. Thus P(s,...,5,_1,5) %0
for some s € T. g

We will also need similar results in the univariable case.

Lemma 2.2.12. Let P=3 _\ Pn,2" € S[[z]] be a power series and let R C Conv(P) be an
uncountable set of zeros of P with pairwise distinct dominant terms. We have P=0.

Proof. Assume for contradiction that there is a non-zero term P, in the sequence and consider
s €R. Since the sum of (P, s"),en is zero, for each number m with P, # 0, there must exist at
)1/(m—n)

Tsm

least one number n# m with 7p 7" =7p_ 74'. Then 7,= ( , so we deduce that

Tsp

q
Rg{(“—m> :n,meJN,qu,Pm,PnaéO}.

7_577,
Therefore R is countable: a contradiction. O

Lemma 2.2.13. Let P=3, P 2% € $[[z]] be a power series, and let k be an infinite cardinal.
Let RCS be a set of zeros of P with cardinality > k™ such that for each s € R, the order type of
(supps, =) is <k. Then P=0.

Proof. Assume for contradiction that P+#0. We will call large the subsets X of R with |R\ X |<&.
For a <k and s €%, we let 5|, denote the <-maximal truncation of s such that the order type of
(supp sja, ) is <a, and we write so|:=5 — 5|4. Let Z denote the set of ordinals o < s such that
there is a large subset X, CR with ¢|3=wug for all 8 <« and t,u € X,. Note that Z contains 0
trivially and 1 by Lemma 2.2.12. Let us show that k € Z. Let a <k with €7 for all §< «.

If ovis limit, then for each 5 <, pick a large subset Xg CR satisfying the condition and consider
the set Xq:=(1,_,Xs. This set is large since a < kT and k7 is regular. Moreover it satisfies the
condition for « by definition. So € 7.

Assume now that = [+ 1 where S €Z and 3 >0. We fix a set X satisfying the condition for
. For t € X, since 3> 0, we have t|3<t, so t| 3 € Conv(P) is defined. We deduce with Lemma 2.2.9
that ¢| 3 € Conv(P™) for all k€ N. By Proposition 2.2.8 we have P(t)=P(t|5+1t5)) = Pa:w(tm).

Assume for contradiction that Py ,=0. Then P(i)(t‘ 3)=0forallieN,so lf’(t‘ g+e)=0forallee$

with € <t 3. In particular, given v < 3, we have If’(tw +70;) =0 for all r € R, which contradicts
Lemma 2.2.12. We deduce that Py , is non-zero. By Lemma 2.2.12, there is a co-countable subset
of Xp, hence large subset X, of R with (f3|);1 = (ug|)|1, hence u|o =v|, for all u,v € X,. This
proves that o € Z. By induction, we deduce that x € Z. For u,v € X, we have u=wu, =v|, =",
which contradicts the fact that X, is large.

‘We note two corollaries to this result.

Corollary 2.2.14. Let P € $[[2]] and let e € Conv(P) with 0. If P(8)=0 for all § e then P=0.
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Proof. Consider the set S of series s €3 with s< e and such that the order type of (supps, >) is
at most w. Fix an m € M~ with m < e. For each binary sequence u € 2N, we have a single element
Y onenw(n)m* €S, so S is uncountably infinite. It follows by Lemma 2.2.13 for k =w that P=0. [J

Corollary 2.2.15. Let P € $[[z]] with Conv(P)# {0} and let § € Conv(P). We have Conv(Pys)=
Conv(P) and P = (Pys)4(—s)-

Proof. We may assume that 6 # 0. Proposition 2.2.8 shows that Conv(Py;s) 2 Conv(P). By —<-
initiality of Conv(P), we have —¢ € Conv(P). So —¢ € Conv(P4s), which means that the power
series (Pys)1(—s) is well-defined. Since Conv(Pys) is <-initial and contains ¢, Proposition 2.2.8
yields

(Pio)1(—s)(e) = Prsle — 8) = P(e)

for all € . We deduce by Corollary 2.2.14 that P = (Py5)1(—s). Applying Proposition 2.2.8, this
time to (Pys,—0), we get Conv(Py;) C Conv(P), hence the equality. O

2.3 Analytic functions

Let $=R[[MM]], T=R[[97]] and U=R][[O]] be fixed fields of well-based series over R with M CNC O
as ordered groups, whence $ C'T C U as ordered valued fields. We also fix a non-empty open
subclass O of 5.

2.3.1 Analyticity

Definition 2.3.1. Let f:O — T be a function and let s € Q. We say that f is analytic at s if
there is a power series fs € T[[z]] with Conv(fs)# {0} and a 6 € Conv(fs)\ {0} such that for all
€ =<9, we have

(s+e€0)= f(s+¢)= file).
We say that fs is a Taylor series of f at s. We say that f is analytic if it is analytic at each s € O.

Lemma 2.3.2. Let f: O — % be analytic at s€ O. Then fs is the unique Taylor series of f at s.

Proof. Let P € 3][z]] and § € Conv(P)\ {0} with s+e€ O and f(s+¢e)=P(e) for all <. Then

—_—

the function fs— P is zero on the class of series s < J, so we have f;= P by Corollary 2.2.14. O

If f:O— 3 is analytic at s € O where O is open, then we can define

Conv(f)s:={t€O:t—seConv(f) A f(t)= fo(t—s)}.

Proposition 2.3.3. Let P € T[[z]] with Conv(P)# {0}. Then P is analytic on Conv(P) with
Ps= P, 5 and Conv(P)s=Conv(P) for all § € Conv(P).

Proof. Let § € Conv(P). The class Conv(P) is open by Lemma 2.2.5, with Conv(P;s) = Conv(P).

By Proposition 2.2.8, we have P(§ +¢) = ’:5(_5/) for all € € Conv(P), so P is indeed analytic on
Conv(P) with Conv(P)s D Conv(Py;) = Conv(P). But we also have Conv(P)s C Conv(P4s) =
Conv(P) by definition, hence the result. O

Corollary 2.3.4. Let f: O — T be analytic at s € O. Then there is an open neighborhood Oy of
s such that the restriction f O of f to Oy is analytic.

Proof. Define O, = {5+ $=?} where § is any element of Conv(f,)\ {0}. Then Proposition 2.3.3
yields the result. ]

Proposition 2.3.5. Let f: O — $ be analytic at s € O and let U C Conv(f)s be a non-empty
open subclass containing 0. Then f is analytic on s+ U, with fs15= (fs)+s for all § € U.
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Proof. Let 6 € U and set t:=s+ 0. Since U> 0 is open and non-empty, we find a p# 0 with
d+e€U for all e X p. Thus f(t+¢)= fs(6 +¢) whenever £ < p. But given such ¢, we have
fs(0+¢)=(fs)+s() by Proposition 2.2.8, whence

flt+e)= (6 +e) = (f)1s(e).
So f is analytic at ¢ with fi = (fs)4(—s)- a

Proposition 2.3.6. Let f: O — 8 be analytic at s € O. Then f is infinitely differentiable at s,
and each ™ for n € N is analytic at s with Conv(f(™),D Conv(f)s. Moreover, we have

FFE) (s
fs= Z k!( L2k,

keN

Proof. Recall that fs is infinitely differentiable on Conv(f,). By Lemma 2.2.9, each derivative
£ for n € N is a power series function on Conv(f,), and is thus analytic on Conv(f,) by Pro-
position 2.3.3. It follows since Conv(f)s is a neighborhood of s that f is infinitely differentiable

at s. By Lemma 2.2.9, given § € Conv(f),, we have f(s+6)= f,(M(5) = W(&) Therefore
™ is analytic at s with fs(n) = (f)™ and Conv(f™), D Conv(f),. Write f,= Y oken Sk 2k We

have f(*)(s) = (E(k)(O) = (fs)®(0) = k! 5. We deduce that f,= Y okeN f(lz!(s) 2", O

Corollary 2.3.7. Let O C$ be open and non-empty and assume that O =| |, _; O; where each O;

is open and non-empty. Let (s;)ic1 be a family where s; € O; for all i €1. Let (P;);ic1 be a family
of power series in $[[z]] with (s;+ Conv(F;)) 2 0O;. The function f: O — $ such that for alli €1
and s € O;, we have f(s)=P;(s —s;) is well-defined and analytic.

Proof. Let s €O and let ¢ €I with s € O;. We have s — s, € O; — s; C Conv(F;) so 15,-(5 —s;) is
defined. In particular f is well-defined. The class O; — s; is a neighborhood of 0, so there is a
d € Conv(F;)\ {0} such that s;+¢ € O, whenever € <. Given ¢ <4, we have

f(s+e)=Pis+e—s5i)=(Pi)s(s—s)(€)
by Proposition 2.2.8. Therefore f is analytic at s with fo=(P;)1(s—s,)- O
We leave it to the reader to check that analyticity, at a point or on an open class, is preserved

by sums and products. The following result will be used extensively in the thesis to show that a
composition of analytic functions is analytic.

Proposition 2.3.8. Let UCT be open. Let f: U— U, g: O — U and let s€ O such that g is
analytic at s and f is analytic at g(s). Write

Jo(s)= Z an 2" and gs = Z b, 2™
neN neN
Let g5 € Conv( f)y(s) and € € Conv(g)s with
Vm € N, by, ™ < e5. (2.3.1)
The function fo g is analytic at s with € € Conv(fo g)s, and (fo g)s= fys)o(gs— 9(s)).

Proof. For n€ N and k€ N~, set X, j:={ve (N”)":|v|=k}.

Cn,k = E anp bv[l] e b’U[n]a

’UGXnyk

50 fa(s)0(g9s—9g(s)) = f(g(s))+ ZkeN> (ZneN Cn.k) 2*. Note that since £ € Conv(g)s C Conv(gs),
the set

By:= U supp (b ™)
meN
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is well-based. We have &, < ¢y by (2.3.1). Set m:=0., so &, <m < ¢ey. The set &;:=
U, ensupp (a, m") is well-based. For n€ N and k € N~, we have

supp ¢ k€8 C (&g -m~1)" - &y,
where G,-m~! is well-based and infinitesimal, and &y is well-based. Since each family (¢, & Mo
for n € N is well-based with sum (g(s + ) — g(s))™, we conclude with Corollary 1.2.14 that
(en k€¥)nen k>0 is well-based. We deduce by Lemma 1.1.21 that

Flg(s+e) = Y an(gls+2)—g(s))"

neN

=3 an< > bkek>n

neN keN>

= fle)+ Y S et

neN keN>

~ fa)+ Y (Z cn,k>gk

keN>

= (fg(s) © (gs - g(s)))({;‘)
By Proposition 2.2.4, we deduce that fo g is analytic at s, hence the result. O

2.3.2 Basic examples of analytic functions
We give a few examples of analytic functions. Perhaps the most uninteresting examples of analytic
functions are locally constant functions, such as the dominant monomial map
$F — M 51— s,
or the purely large part function
S—»Pe;s— 5.
Note that these functions are monotone on any interval on which they are defined.
This illustrates the fact that analytic functions need not behave in a similar way as real-
analytic or holomorphic functions. In fact, the disconnectedness of any non-trivial field of well-

based series implies that any purely local notion of regularity for functions is subject to this type
of phenomenon.

Example 2.3.9. Recall that for € € T=, we have

1
T Z (—1)kek.

kEN
Thus for s € T# and § < s, we have
1T 1
sto 0~ 1+ (6s™h)
= g1 Z (—1)k sk gk,
kEN

Thus the reciprocal function R: T# — T%; s |—>§ is analytic with
Conv(Rs) = {0€T:d<s} and
R, = 3 ((-1Fs )

keN
for all s£0.

2.4 Real-analytic functions on well-based series

A well-known type of analytic function is that of restricted real-analytic function of [31, 34]. We
recall some of the definitions.
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2.4.1 Real-analytic functions

o]
For n€ N and v € N", write % for the partial derivative operator

lvl olvl
axv - 8”[1] €Ty aﬂ[n] xn-

We also write v!:=wvpy)! -« vyl
If U is a non-empty open subset of R™ and f:U — R is an analytic function, then by
Lemma 1.2.11 it extends into a function f:U + ($~)" — R+ $~ given by

1 alv\f

ol Oz

Vr R, Vey,...,en<1, f(r+(c1,...,6n) = Z
/UGN??

CERRE

We say that f is a restricted real-analytic function on $.
Assume in particular that n=1 and U =1 is a non-empty open interval of R. Then we have

FI+%8% — R+$~
f(k)(r) k
(r4+e) — Z et
keN k!

For each r € I, the function f is analytic on r +$= by Proposition 2.3.6. Since I + %~ is the disjoint
union I +$~==| | _,7+87, it follows that f is analytic.

In particular, we have a real-analytic calculus through which each element f of the ring An of
real analytic functions R — IR acts as an analytic function on $5 =R + $~.

Lemma 2.4.1. Let T be a field of well-based series over R. Let ¥: 38— T be a strongly linear
morphism of ordered rings. Let I be a non-empty interval of R and let f: I — R be real-analytic.

For all s € I +$~ we have U(f(s))= f(¥(s)).

Proof. We have s=r+¢ for a unique (r,e) € I x $=. Since ¥ is a strictly increasing morphism
of rings, we have U(s) =7+ ¥(e) where ¥(e) < 1. Therefore,

Fus) = 3o L2000 w<s>k=w<z %ek)ﬂ(‘(s)). 0

keN keN

2.4.2 Model theory of restricted real-analytic functions

Fix n € N. Let R{z1,...,2,} denote the set of power series

P=>" P MeR|z,. 2,
veEN™

where n € N, such that there is an open neighborhood U of [—1,1]" in R where P converges for
the euclidean topology. The corresponding function

fp:U—TR;r— Z Pvrﬁ[]”---r[v,,i?]
,UENTL

fol — .
is thus analytic on U. Note that P, :%(O) for all ve N", so fp coincides with the function P

on U+ ($7)". We write R{21,22,... }:= U, cnR{z1,- -, 20}
Consider the first-order language L., expanding the language {4, —, x, ~1, <} of ordered rings
with a n-ary function symbol P for each P € R{z1,...,2,}. We have two L,,-structures

e Define R, to be the real ordered field where each P € R{z1,...,2,} is interpreted as the map

R*" — R

P(r) if re[-1,1]"
ro— . .
0 otherwise.
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e Define $,, to be the ordered field $ where each P € R{z1,..., z,} is interpreted as the map
R"+($7)" — R

s s fp(s) if se[-1,1]" .
0 otherwise.

Then the elementary theory T, of R,y is model complete and o-minimal [32]. It also has quantifier
elimination in an extended language (see [31, Theorem 4.6] and [34, Proposition 2.9]). Moreover
[34, Corollary 2.11], if § is real-closed (i.e. if 91 is divisible), then $,, is a model of Ty,

2.4.3 Exponential and logarithm

An important example of unary restricted analytic function is the exponential function

&xp: TS — R>+T~

Ek

7'§ s

r+e& — e [k
keN

We also have a logarithm
log:R>+T=< — T

r+e — logr—i—z (_1—)krk€k+1.
= E+1

Proposition 2.4.2. The function log and &p are functional inverses of each other. Moreover,
for each r € R, the function log | (e"+$~) is the functional inverse of exp | (r+37).

Proof. Since the real-valued log and exp are mutually inverse analytic functions, the composite
of the Taylor series of log and exp at e” and r respectively is the identity series z € R][z]]. Thus
the composite of the Taylor series of log and &Xp at e” and  respectively is z. We conclude by
Proposition 2.3.8 that for all e € T=, we have

log(exp(r +¢)) =log(e”) + Z(e) =7 +¢.

Symmetric arguments prove that &xp(log(r +¢)) =r +¢ for all € R> and ¢ € $=, hence the
result. O

Consider the first-order language Ly oxp extending L,, with two unary function symbols exp
and log. We expand R,y into an Ly oxp structure Ran oxp by interpreting exp as the real exponential
function and log as the natural logarithm, extended to R with

log(r):=0
whenever r <0.

Extending Wilkie’s theorem [97], van den Dries and Miller [37] showed that the first-order
theory Tan exp Of Ran,exp is model-complete. Furthermore, van den Dries, Macintyre and Marker
[34] later showed that it has quantifier elimination in Lan exp, and that it is o-minimal,. As is
well known [30, 39, 60, 68, 92, 72], it is possible to extend the restricted analytic exponential and
logarithm to $ and $~ respectively, provided the field $ has additional structure. This leads us
into the realm of transseries. In that case $,, may also be expanded to an L, cxp-structure. We
shall elaborate on this in Section 3.1.

2.5 Real powers

In this section, we fix a field $ =R[[MN]] of well-based series. We will show that under a condition
on M, we can define a composition law o: R[[zR]] x $>~ — & where R[[zF]] is the field of real-
powered series of Example 1.2.5. This can be seen as a toy example of the type of arguments we
will use in later chapters of the thesis. It is, in most part, a consequence of the work in [33].
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2.5.1 Real powering operation

Given r € R, the real power function R”> — R”; y+— y" is analytic. Therefore it induces a restricted
analytic function on R> + $~. Here we study a case when this real power function extends to the
whole class $~.

We say that 9t has real powers, if it comes with a real power operation

RxIM—M; (r,m)—m"

for which 90 is a multiplicative ordered R-vector space, i.e. an ordered R-vector space with mul-
tiplication and real powering in the roles of addition and scalar multiplication. Note in particular
that = MR is then divisible, so $ is real-closed. In the sequel of the section, we assume that 9t
has real powers. For £ € N and r € R, the generalized binomial coefficient (;) € R is defined by

(3) =g =2

The real powering operation on 9 extends to $~ as follows: for ¢ € $~, we set

(1+ey:=Y" (2)& (2.5.1)

keN

For a multiplicatively decomposed series s=cm (1+¢) € $” where ce R~, me 9, and ¢ € $~ (see
(1.2.4)), we set

sTi=c"m" (1+¢)". (2.5.2)

We first note elementary properties of this definition.

Proposition 2.5.1. Forr,r’€R and s,t €$~ we have

(s = s and

(st)" = s"t".

Proof. For s,t~1, the first two relations follow from basic power series manipulations; see [62,
Corollary 16|. The extension to the general case when s,t € $~ is straightforward and left to the
reader. a

Proposition 2.5.2. Forre R~ and s,t €%~ with s <t, we have s" <t".

Proof. Since (s/t)"=s"/t", it suffices to show that (s/t)" <1. Write s/t=cm (1 +¢) where
ceR”, meM, and e € 3=. Since 0 < s<t, we have s/t <1, so either m <1, or m=1 and c< 1,
orm=c=1and e<0. If m=<1, then m"<1,s0 (s/t)"<1. f m=1 and ¢<1, then ¢" <1 and
(s/t)'=c"(1+e)"€c"+3°<1. f m=c=1and <0, then (s/t)"—1=(14+¢)"—1~re<0,
so (s/t)" < 1. O

Thus the extended real power operation R x $~ — $~; (r, s) — s gives the multiplicative group
$~ a structure of ordered IR-vector space. Accordingly, we will say that & has real powers.

Proposition 2.5.3. The field $ is real-closed. Any ring morphism $ — R, where R is an ordered
domain, is strictly increasing.

Proof. Recall that $ is real-closed, hence Euclidean. Given an ordered domain R, a morphism of
rings ¥: $ — R and a series s € $~, we have s = (572)2 whence ¥(s) = ¥(s"2)? is strictly positive.
Therefore VU is strictly increasing. g

Example 2.5.4. Consider the field R[[z]]] of real-powered series of Example 1.2.5. Recall that the
ordered group % is a multiplicative copy of the additive ordered group (IR, +, <) of real numbers.
As such, the natural structure of ordered R-vector space on (R, +, <) yields a real powering
operation on =%, hence on R[[zF]].
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Example 2.5.5. Let e: (3, +, <) — (IM, X, <) be an isomorphism of ordered groups and let !
denote its functional inverse. Then we can lift the law of ordered vector space over R on (3., +, <)
into a real powering operation on 91 by setting

m”:=e(rl(m))

for all r € R and m € M. In particular, some of our fields of transseries and hyperseries (see
Chapter 3) will be equipped with such operations.

2.5.2 Real-powered calculus

Now let us show how to extend the real powering operation R x $~ — &~ into a calculus of real-
powered series on $, i.e. we will define a composition law o: R[[zF]] x $>~ — .

Lemma 2.5.6. If I CR is well-based, then (s").cr is well-based for all s € 3~".

Proof. Let s=cm(l+¢) with c€ R, me MM~ and € < 1. Note in view of Definition 2.5.1
that there is a sequence of real constants (c,),.es such that (s").cr is a subfamily of the pro-
duct family (¢, m”e¥),.ciaren. Since (m"),c7 and (¢¥)zen are both well-based, we conclude with
Lemmas 1.1.15, 1.2.7 and Proposition 1.2.8. g

Given p=3% _ppr2’€ R[[z%]] and s € $>", the family (p,s"),er is well-based by the above
lemma, so we may define
pos:= Z pr S (2.5.3)
reR
So 2z"os=s"for all r €R and s € $~.

Fix s € $>. We have (2" 2"")os= (2" 0s) (2" os) for all 7,7’ € R by Proposition 2.5.1. By
Proposition 1.3.2, the function R[[z®]] — $; p+ po s is a strongly linear morphism of rings, which
is strictly increasing by Proposition 2.5.3.

Recall that R[[z®]] itself has real powers, so similarly, for p, ¢ € R[[z®]] with ¢ >0, we have a
well-defined series po q € R[[z}]].

Proposition 2.5.7. Letr € R, p € R[[z®]] with p>0 and s €$>~. We have p"os=(pos)".

Proof. Write p=cm (1 +¢) where ce R, m:=0,, and ¢ < 1. We have ¢"=c"m" ZkeN(Z) ek,
s0 gros=c"(m"os) Y, o (})e" os. We also have

(gos)"=c"(mos)"(l+eo0s)"=c"(mos)" Z (2) (e0s)k.

keN

k k

Since £Fo s = (£05)¥, we only need to show that (mos)"=m"os. Now m=z"" for some 7’ € R, so

(mos) =(z""0s) ' =s""=2""os=m"0s

by Proposition 2.5.1. O
Corollary 2.5.8. Let p=R[[z%]], ¢ e R[[2]]]>, and s € $>". We have po(qos)=(poq)os

Proof. We have
(gos)=>_ pr(gos)"=> pr(q"os)=( > prqg" |os=(pog)os
reR reR reR

where the second equality follows from Proposition 2.5.7 and the third one follows from the strong
linearity of the composition with s. O

Given p e R[[z"]], we set d(p):=), g rpr2" ' Note that suppd = {z~'} is well-based, and
that 0 is a strongly linear derivation R[[z%]] — R[[z%]]. We write p(® = p and p+ .= 9(p*))
for all ke N. So p'® is the k-th derivative of p.
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Proposition 2.5.9. For pc R[[z]]], t€$>" and § €S with 6 <t, the family ((p¥ ot) 6¥)pen is
well-based, and we have

(*)
o(t+d)=> 1L k!Otak.

keN

Proof. Set €:=9/,. We first handle the case when f =z", for a fixed r € R. We have € <1, so

nrr= X ()

kelN

For k€ N, we also have (z")*) = k! (v) 2" so (") F) ot =k! (+) t"—*. Therefore,

oo 4T T o__ 4T r k _ 4r (xr)(k)ot k
keN keEN
o @) Wot
o Z k! 0
keN

Now consider a general series p=3" _p p,2" € R[[«]]. For 2" € supp p and k € N, we have

supp ((z")*) ot) 6% C 2" (supp 9)* - (supp )™ C {z~1}*- (supp p) - (suppe)™

The set {x !} is infinitesimal and well-based, whereas (supp p) - (supp ) is well-based. Applying
Lemma 1.2.13 to I:= (supp p) X N, sz = (2")* ot and f(z",k) =k for all (", k) €I, we see that
((x’”)(k) ot)zresuppp,keN is well-based. We deduce by Lemma 1.1.21 that

o(t+8) = Y pr(t+4)

reR

- ¥ 3 ety

reR kEN

- T 3t

keEN reR

(k)
o p\lot b
=2

kelN

where we used the strong linearity of d to obtain the last identity. O

We see with Proposition 2.3.6 that each p € R[[z}]] induces an analytic function p: $>~ — $;
s+ pos with with p’'=9(p).

Lemma 2.5.10. For all p € R[[zR]]” and s € $>", we have pos~T,07s.

Proof. Write 7, =ca” for c€ R” and r € R. We have p~7,. Since R[[2R]] — $; ¢+ gos is an
RR-linear embedding of ordered fields, we have pos~T,0s=cs". Now by (2.5.2) we have s"~ 77,
hence the result. O
Proposition 2.5.11. Let p€ R[[zR]|]>". For s,t €$>" with s <t, we have pos<pot.

Proof. Suppose first that s~¢ and write d :=t — s, so § <t. We have

k.

(k) o ¢
pos:po(t+6):pot+z p 'O
k>0
Let k> 0. Since supp 8* = {z =%}, we have (pt*+Vot) §¥+1 <t=* 6% (9(p) ot) § where t =% = (9/,)*
is infinitesimal. So (p**1 ot) §¥+1 < (9(p)ot)d. In particular we have

pos—pot~(d(p)ot)d.
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We have p >R so 9(p) ~px >0, whence d(p) ot >0. The series § =s —t is negative, so pos < pot.
Suppose now that s~ t. Then Lemma 2.5.10 yields pos~ 7,07, and 7,07t~ pot where
Tp© Ts < Tp O T¢, hence the result. U

We thus have a calculus of analytic real-powered series/functions on $, whose properties are
summed up in the following theorem.

Theorem 2.5.12. The function o: R[[zR]] x $>" — & defined above has the following properties:

a) For all s€$>, the function R[[z®]] — $; p pos is a strongly linear embedding of ordered
fields.

b) For all p,q € R[[zR]] with ¢ € R[[z®]]>"" and all s €3>, we have po (qos)=(poq)os.
¢) For all pe R[[zR]]> and s,t € %>~ with s <t, we have pos<pot.

d) For all p e R[[zR]]>" and t,6 €S with t >R and § <t, the family ((p*) ot) 6%)ren is well-
based with

(k)
pO(t+5):Z p k|ot5k.
keN )

Similar properties will hold in the case of the hyperserial calculus on hyperseries (see Sec-
tion 7.1.1), and ultimately on surreal numbers (see Result 1.2 in the Conclusion).






Chapter 3

Transseries

We now introduce certain well-based series, expanding power series with formal exponential and
logarithm symbols e* and log x, called transseries. As an introduction to hyperseries and as ground
work to study surreal numbers, we will recall part of Schmeling’s work [92, Chapters 2, 4 and 5].
We introduce a looser notion of transseries field than Schmeling’s in Section 3.1. In Section 3.2, we
study exponentiation on transserial fields. In Section 3.3, we define a transserial calculus (Tiog, 0, 0)
on transserial fields.

3.1 Transserial fields

In this section, we fix a non-trivial ordered Abelian group 9, and we set T :=R[[9]]. We will
see how to define a logarithm function on T~ by relying on its formal Taylor series. Consider the
following power series in R][z]]:

L= (_1)k_1 k d E = 1 k
= Z Tz an .—Z Fz

keN> keN

Note that L(e) € T= and E(e) € 1+ T~ for all € < 1. The functions L and E are respectively the
restricted analytic functions € — log(1 +¢) and ¢+ &%p(e) on T= (see Section 2.4). As a corollary
of Proposition 2.4.2, we have

E(L(¢))=1+¢ and L(E()—-1)=¢ (3.1.1)
for all e < 1.

Lemma 3.1.1. [92, Example 2.1.3] The function E is strictly increasing on T=.

Proof. Let €,0 <1 with ¢ <. We have

E(E)—E(5)26—5+%(52—52)+...

For all k> 1, we have e* — §* = (¢ — §) u where u:=e* 1 4+e¥=25+ ... + 6824+ 6¥~1 < 1. Thus
ek — 6k <& — 8. We deduce that E() — E(8) ~e — 8 > 0. O

Lemma 3.1.2. [92, Lemma 2.1.4] For all €, <1, we have

E(e+6)=E(E)E() and  L(e+8+ed)=L(e)+ L(6).

Proof. Note that E*) = E for all k € N. By Proposition 2.2.8, we have
E(e+0) = E,.(5)
Z E(k)(g) 5k

k!
keN

- B} %5’6

keN
= E(e) E(9).

67
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By (3.1.1), we have

E(L(e+06+¢€d) = 14e+d+¢cd
= (I+¢)(1+9)
= E(L(e)) E(L(9))
= E(L(e) + L(6)).
By Lemma 3.1.1, we deduce that L(e + 6 +&0) = L(e) + L(4). O

Lemma 3.1.3. For all ¢ <1, we have L(¢) <e.

Proof. Indeed, we have L(e) =¢ — &2 (%+ §) where 6:= Zk>0%sk is infinitesimal. We deduce
that &2 (%+5) >0, 50 L(e) <e. O

3.1.1 Well-based series with a logarithm

Definition 3.1.4. Let log: (T~, x) — (T, +) be a strictly increasing group morphism with
TF1. logme Ty for all me M.
TF2. logs<s—1 forallseT”.
TF3. logrm (1+¢)=logm+logr+ L(e).
Then we say that (T,log) is a transserial field, and that log is the logarithm for (T,log).
Remark 3.1.5. Since log is a group morphism, an equivalent version of TF3 is
VueT>, u<1=logu=Ilogu

where log is the restricted analytic function of Section 2.4.

Remark 3.1.6. This definition is similar to Schmeling’s definition of transseries fields [92, Defini-
tion 1.1.2], except for the fact that Schmeling imposes a fourth axiom T4 which we do not impose.
Our definition is also a slightly stronger version of Ehrlich and Kaplan’s notion of logarithmic Hahn
field [46, Definition 6.1].

We will write log,, instead of log[”} for the partially defined n-fold iterate of log, so logo=1Id>
and log,, 1 =log, olog for all n € N.

Lemma 3.1.7. [92, Proposition 2.2.4(1)] Let (T,log) be a transserial field. For s€T>", we have
log s < s.

Proof. Let n € N. We have s >R so logs >R. By TF2, we have
%logsglogsfnzloge’”sge*"sf1<e*”s.

So logm <R~ s, that is, log s < s. Applying this to logs € T~ we obtain logs s < log s, whence
log (log s)" =nlogs s <log s for all n € N. But then (logs)N < s, whence log s < s. O

Proposition 3.1.8. The function log: T~ — T is analytic with
Conv(log)s=T=*={6€T:0<s}

and
log®™(s)=(=1)F"1 (k—1)IsF
for all s > 0.

Proof. Let s€ T”. For k€N, set a s:=(—1)*"1(k—1)!s7* For § < s and k>0, we have

ap,s 8" _ (—1)F1 (5)’@

k! k s
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Since %, <1, the family (ax, s 6%)pen> is well-based with >, ak,:, L( ) By TF3, we have

log(s+ ) :10g<s (1 +g>> :10g8+i<§).

That is, the function log is analytic at s with logs =log(s) + Lo (s~ 2) and Conv(log); 2 {6 € T:
d < s}. Note that 1 ¢ Conv(L) so s ¢ Conv(logs). It follows since Conv(log)s is <-initial that

(k)
Conv(log)s = {5 e€T:0<s}. By Proposmon 2.3.6, for each k €N, the series 2 gk %) is the (k+1)-

. So log®)(s) = ap, .= (— l)k Lk —1)s7r O

Proposition 3.1.9. Let (U,log) be a transserial field and let ¥: T — U be a strongly linear and
strictly increasing morphism of rings with ¥(logm)=1log ¥(m) for all me M. Then we have

U (log s) =log ¥(s)
for all seT~.

Proof. Let s €T~ and write s =705 (1 +¢) where r € R~ and ¢ < 1. Since ¥ is R-linear and
strictly increasing, we have U(r (14¢)) 1. Lemma 2.4.1 yields

U(log(r (1+¢)))=V(log(r (1+¢))) =log ¥(r (1+¢)) =log ¥(r (1 +¢)).
It follows that
U(log s) =U(logds) + ¥(log(r (1 +¢))) =log ¥(d,) + log U(r (1 +¢)) =log ¥(s). 0O

3.1.2 Extending partial logarithms
Defining a logarithm on R[[91]] reduces to defining its restriction to 9, as we next show. All our

results here can be found in [14].

Proposition 3.1.10. Let L1:9t — T\ be a strictly increasing group morphism. There is a unique
extension of Ly into a strictly increasing group morphism

log: (T, x) — (T, +)
which extends the natural logarithm on R~ and with
log(1+e)=L(e) forallee T,
For seT>, writing s=710s (1 +¢) forr € R~ and e € T, we have
log s = L1(0,) +logr + L(e). (3.1.2)

Proof. Note that each s € T~ can be written as s =70, (1 +¢) in a unique way. Thus (3.1.2)
yields a well-defined function log: T~ — T. We also deduce that any extension of L; satisfying the
conditions must be given by (3.1.2). So it remains only to prove that log satisfies the conditions.
Let s=70s(14+¢) and t=d0: (1 +6) be as above. We have st=(rd) 05 (1 +u) where rd >0 and
u:=e+0+¢e8<1. Recall that L(u) = L(¢) + L(5) by Lemma 3.1.2. Since 05, =040, we have

log(st) = L1(059;) +log(rd) + L(u)
= L1(0s) + L1(0¢) + log(r) +1og(d) + L(e) + L(9)
= logs+logt.
To see that log is order-preserving, we need only check that logs >0 for all s>1. If m=7r=1, then

€ >0 and we have logs—L( )~e>0. Ifm=1landr>1, thenwehavelogs-logr+L( )~logr>0,
since L(e) < 1. If m > 1, we have log s~logm >R, so logs > 0. O

Proposition 3.1.11. Under the same conditions, for all s € T~, we have log s € Tv if and only
if s is a monomial.
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Proof. Writing s =70, (1+¢) and logs= L (0s) +logr + L(¢) as in (3.1.2), we have
(L1(0s),logr, L()) € Ty x R x T=.

Therefore supp log s = supp L1 (d,) Usupp log  Usupp L(¢), and supplog s > 1 if and only if log =
L(¢) =0. Note that logr =0<=r=1. By Lemma 3.1.1, we have L(¢) =0<= E(L(¢))=1+e=1.
So s € Ty if and only if s=104(1+0), i.e. if and only if s is a monomial. a

Proposition 3.1.12. Assume that L1 satisfies the conditions of Proposition 3.1.10, and that
moreover Li(m) <m for all me9MM™. Then we have logs<s—1 for all s€ T~

Proof. Let s=rm(l+¢)€T>, where r € R”, m:=0,, and ¢ € T~. If m= 1, then logm =0, so
logs=logr+ L(e). If r=1, then logs=L(e)<e=s—1. If r>1, then logr < (r—1) (1+4¢), since
logr,r—1€R, <1, and logr <r —1. Thus

logs<(r—1)(14e)+L(e)=r(14+e)—(14e)+L(e)<r(14+e)—1=s—1.

If m > 1, then logm=L;(m) <m and log s —logm=1logr+ L(¢) < 1. Hence logs < s and log s <s — 1.
If m <1, then logm = —L;(m~!) is negative and infinite, so logs < —1<s — 1. O

Corollary 3.1.13. Given Ly as in Proposition 3.1.12, the structure (T,log) is a transserial
field. Conversely, given a transserial field (T,log), the function log | 9 satisfies the hypotheses of
Proposition 3.1.12.

3.1.3 Logarithmic transseries

Let us construct a transserial field. Recall that in the field R[[z%]] of formal Laurent series, we
have s 2t whenever s and ¢ are not finite. As a consequence of Lemma 3.1.7, there is no structure
of transserial field on R[[zZ]]. In fact, iterating Lemma 3.1.7 starting from a monomial m € ™,
we have

M Vogm > Vlogorgm > s

which means that the ordered group 9t must have infinite rank in the sense of [4, Section 2.4, p.
85]. The smallest linearly ordered Abelian group with infinite rank is the lexicographically ordered
group

ZMN ={feZN:IneN,Vk >n, f(k)=0},

where a: >0 if and only if f#0 and f(ng) >0 for no=min{n € N: f(n) #0}. The additive law is
the pointwise sum. Thus (Z®™), +,0, <) is naturally contained in the Hahn product group H[N*, Z]
of Example 1.1.7.
We will consider a multiplicative copy (Liog, -, 1, <) of (Z™),+,0,<). Any element [= (I,,),en €
Liog is a formal product
[= H x,ﬂf'

whose support is finite, and where each z'* corresponds to [, x, € H[N*, Z]. Thus for [,m e Miog,
we have [m= HneNﬂ{‘*m“. We set Thog := R[[£i0g]], which is thus a field of well-based series.
Let us next define a strictly increasing group morphism Li: 9og — (Tog)s with Li(m) <m,
and in fact Li(m) < m, for all me imgg. Since the group My, is generated by the set {z,,:n € N}
and L is a group morphism, it is sufficient and necessary to define L; at each x,,n € N, and then set

L) =" by La(wn),

neN
for each [€ Miog (recall that the sum above has finite support).
The condition L1(x,) < x, implies that the dominant monomial [ of L;(x,) must satisfy [y =0
for all k<n. Thus [= zionﬂ aci{l It is then simplest to set [=L;(2,) :=xn41. Let us check that
the function

Ly:l—s Z ly Zpp1 (3.1.3)
neN
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satisfies the desired conditions. Note that Ti,g is a proper extension of the field of purely logarithmic
transseries studied for instance in [52].

Proposition 3.1.14. The function Ly defined above satisfies the conditions of Proposition 3.1.12.

Proof. The function L; is a group morphism by definition. It is clearly strictly increasing by
definition of the lexicographic order on Meg and Tioe. We have Li(Mhog) C (Tiog) - since each zy,
n €N is infinite. Finally, for [ € 9,e with [~ 1, setting no=min{n € N:[,, #0}, we have

Ll([): Z [7L$7L+1xx'rzo+1'<x'n-
n=ngo

This concludes the proof. O

With Corollary 3.1.13, we thus obtain a transserial field (Tjog, log) which we call the field of
logarithmic transseries. Note that writing x := o, we have

[= H (log,, z)™
for all [ € Myy. nen

3.2 Exponentiation

Given a transserial field (T,log), we now study the existence and properties of a functional inverse
exp of log: T~ — T. As in [60, 92, 72|, we will see that T can be extended into a transserial field
on which exp is totally defined.

3.2.1 The exponential

The logarithm log: T~ — T is strictly increasing, hence injective. We write exp for the partially
defined functional left inverse of log, called the exponential on T. That is, we have exp(log s) =s
for all s € T>. By Proposition 3.1.11 and Corollary 3.1.13, we have T\ Nlog T~ =1log M. We will
sometimes write exp(p) =:e¥ when ¢ € log9. In other words the partial function ¢+ e?¥ is the
restriction of exp to purely large series in T\ .

Proposition 3.2.1. [92, Proposition 2.3.8] For s€ T~, we have s €log T~ if and only if s, €log M.
Thus, the function log: T> — T is bijective if and only if T.. ClogN.

Proof. Let s€ T~ and write s=s, +7+ s~ where r €R and s, € T=. We have r + s, €logT~,
since exp(r+s<) =exp(r) E(s<) € T~. Since log T~ is an additive subgroup of T, we have s €log T~
if and only if s, €log T>. We deduce by the arguments above that s € log T~ if and only if
5y € log 9. O

Let ¢ €logMt. For all € <1 and r € R, the previous proposition gives us

exp((p-i—r—l—s):exp(r)e“’( %5’“), (3.2.1)
keN

In fact, this can be extended. Indeed we have R+ T= = L(T>NT<) C log(T>). Since exp is a
morphism on its domain, we deduce that for s €logT~, r € R and € < 1, we have

exp(s+1+¢) =exp(r) exp(s) ( %5’“) (3.2.2)
keN

As in Proposition 3.1.8, we see that exp is analytic at s+ r with Conv(exp)s,,= T~ and

exp(r+s) _k
€XPs+r = E — A
keN
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We say that the exponential is total on T if log: T~ — T is surjective, hence if exp: T — T~
is totally defined. In that case, we expand the L,,-structure Ty, of Section 2.4.2 into an Lay exp-
structure T,y cxp by interpreting exp as the exponential function and log as the logarithm extended
to T by setting log(s) =0 for all s <0. Since M = exp(log M) = exp(Q log M) = M®X is divisible,
the field T must be real-closed. By [68] (see also [60, Proposition 2.2]), any transserial field with
a total exponential is a proper class.

Remark 3.2.2. Here we note that the field Ty g of log-exp transseries, which has a total exponen-
tial and is set-sized, is not a transserial field. Nor is the field T of purely logarithmic transseries
studied in particular by Allen Gehret [52]. In order to include such model theoretically interesting
fields, a suggestion of Elliot Kaplan is to allow among fields of transseries those which can be written
as unions of fields of well-based series within a transserial field, as long as log or exp turn out to be
defined on the union. For instance, the field Ty of logarithmic transseries is a directed union of
fields of well-based series T, , where the exponential induces a strictly increasing morphism exp:
T — (Tm7n+1)>0 for all m,n € N, whence Ty itself is closed under exp. Since we are mainly
focused on constructing the ambient transserial and hyperserial fields, we will not consider such
general notions.

Proposition 3.2.3. Assume that log: T> — T is surjective. Then Tan,exp @5 an elementary
extension of Ran,exp-

Proof. By applying (3.2.1) for ¢ =e =0, we see that exp extends the real exponential function.
Recall that log(s) <s—1 for all s€T>. We claim that exp(s) > s" for all n € N and s >n?. Indeed
let s€T and n € N with s >n?. First assume that s <1. So s =r+ s for a certain » € R*° and
a s €T=. We have 7 >n? so exp(r) >r" so exp(s) ~exp(r) >r"~ s so exp(s) > s". Assume

now that s> 1. We have exp(ﬁs) = s 80 exp(s) > s™. This proves that exp satisfies Ressayre’s
axioms of [85]. Finally T is real-closed. By [34, Corollary 4.6], we deduce that Ran exp < Tan,exp- O

3.2.2 Exponential closure

Any transserial field T = R[[90]] with logarithm log is contained in a minimal transserial field T
on which the exponential is totally defined (see [92, Sections 2.3.2-2.3.4], where Schmeling’s proof
applies to transserial fields independently of the validity of the axiom T4). We will not study
such extensions in this chapter, for we will prove their existence in the case of hyperserial fields
in Section 6.1. However, we briefly state the definition for the reader’s information. The following
denotations are not binding since we will consider other constructions of exponential extensions
later.

The field T is defined as an increasing union T = Uacon Ta of transserial fields T, =R[[97,]],
with partial logarithm Ly 1: 9, — (Ty)s-. We have Mg :=M and Lo ; =log [ M. Given o € On
such that each Mg, B < « is defined, there are two cases.

e If a=/+1 for a certain 3, then M, is a multiplicative copy My =eT4) of (Tp)s, +, <),
and Lq 1(e¥) := ¢ for all ¢ € (Ts),. The inclusion Mg C M, is given by Mz — My;

m— eloa(m)

e If o is a non-zero limit, then Mo :=J;_,Ma and La1=Uy_, Ls1-

Note that setting 9t := Uacon Ma, we have T =R[[M]] by Lemma 1.1.9. It is easy to check
that Li:= Uaeon L, satisfies the conditions of Proposition 3.1.10, and that Lq(9) =T\, so T,
equipped with the logarithm extending L, is a transserial field with total exponential.

3.3 Transserial calculus

We now define a derivation and a composition law on logarithmic transseries. The results in this
section are not new and the reader can find more details in [39, 60, 92, 36].
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3.3.1 Transserial derivations
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We fix a transserial field (T,log). A transserial derivation on T is a strongly linear function 0:

T — T which satisfies the Leibniz rule
Vs, teT,(d(st)=0(s)t+s0(t))

and is compatible with the logarithm, i.e. satisfies

VseT>, (8(10g s)= 825) )
We next give a strengthening of [92, Proposition 4.1.5]:
Proposition 3.3.1. Let 0: T — T be a strongly linear function with
d(logm) :%m) for all me M.
Then 0 is a transserial derivation on T.
Proof. We first prove that 0 satisfies the Leibniz rule. Consider m,n € 9t. We have

om) | o)

d(mn) =0(logmn)=0(logm) + d(logn) = ——= n

mn

We deduce that O(mn)=0(m)n+md(n). Now let s,t € T. We have

8(2 smtnmn>
Z Smin O(mn)
= Z smtna(m)n+z Smtnmd(n)

- (o) () (5 o) (5 )

= A(s)t+sI(t). )

d(st)

So the Leibniz rule holds for 9. We deduce that we have d(t*+1) =k 9(t)t* for all t € T and k € N.

Now let ¢t € T~ and write t =r0; (1 +¢) where r € R~ and € < 1. Note that

o) 100 (14+e)+70:0(e)  I(dy) n d(e)
t ro:(1+e) o (1+e)

Recall that logt =logd;+logr+3_, - (k_i)lk eF+1 by TF3, so

_ (=D* k11
I(logt) I(logd) + 0 Z T C

keN

_ 8(Ot)+ (*1)]C o k+1)
% k1o

t

0
= 204 o) 3 (et

keEN
_ 00 _0)
N +(1+5)
_ ot
= -

Thus 0 is a transserial derivation on T.
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We next apply this to define a transserial derivation on the field Tj,g of logarithmic transseries.
Consider the function 9: Moz — Tiog given by

1
VIE Mg, O(1) :=1 ly=—"7.
In particular
1

dlognpr)=—=——"+——

( gn ) Hk<n10gnx
v
II k<n log, x
deduce with Propositions 1.3.6 and 1.3.1 that d extends uniquely into a strongly linear function
Thog — Tiog which we will still denote 0.

for all n € N. Note that the set 9 := 'n e IN} is well-based, with supp 0 =20. We

Proposition 3.3.2. [92, Section 4.1.2] The function 0: Tiog — Tiog is a transserial derivation on
Tog-

Proof. Given [ € IM,,, we have

o) _ 1 _ _ _
- = Z l,———"—= ;\I I, 0(lognt1 ) —8( Z I, lognt1 x) =J(logl).

n
log, =
neN Hkg” &n neN

By Proposition 3.3.1, we deduce that 0 is a transserial derivation on Tigg. O

3.3.2 A composition law

Let (T, log) be a transserial field. We next define a function o: Tjoe x T — T which will be our
first example of composition law on fields of transseries. Again our results are slight generalizations
(we do not impose Schmeling’s axiom T4) of results in [92, Section 5.1.2].

Fix s € T>>~. For [ € Mg, we set

los:= J] (logns)™, (3.3.1)

neN

and write A, for the map Ag: Mygg — Tiog; [ o 5.
Proposition 3.3.3. The mapping A, is well-based.

Proof. We will use Proposition 1.3.7. Since s > R, we have log, s >0 for all n € N, whence
As(Myog) >0 by (3.3.1). Consider a logarithmic transmonomial [ € My, and set

t:=log(As(N) = Z lnlogni1s

neN

And write t =ty +t<+t< as in (1.2.3). By (3.2.1), we have

A1) =exp(t) = explt=) e 37 (1,

keN

> is well-

with e~ =exp) =04, (1)- Thus supp Ay(l) S0, 1) - (supp t<)> where the set (suppt<)
based since t< < 1. We deduce that suppg As C (supp t<)™ is well-based. Note that A preserves
products, so it suffices to prove that A4(l) =1 whenever [~ 1 in order to show that d o A, is strictly

~<-increasing. Assume that [~ 1. Then
log Ag(1) = 10108 70(8) + [ng+1108n+1(s) + - -

where ng=minsupp [ and [,,, > 0. By Lemma 3.1.7, we have log,(s) > log,,+1(s) > - - -, whence
10g1n,(8) = logny+1(8) = -+ -, s0 log Ag(l) ~ [y, logn,(s) is positive infinite. We deduce since exp is
strictly increasing that that A4(l) > 1. By Proposition 1.3.7, the map A is well-based. O
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Note that by definition, the map A preserves products. Thus by Proposition 1.3.2, the mapping
A, extends into a strongly linear morphism of ordered rings Tj,s — T'. Finally, it is easy to see
that A, satisfies the conditions of Proposition 3.1.9. In summary, the function o: Tyog x T=>7 — T
satisfies the following axioms:

LT1. For allt€T>>", the function Tiog — T;s+— sot is a strongly linear morphism of ordered
rings.
LT2. For all s € Tj;, and t € T~ we have (logs)ot=log(sot).
LT3. For all t € T>~, we have xot=t.
Taking T =Ty, this yields an internal composition law o: Tjeg X ’]Plig’> — Tog. It will follow from
Section 7.3.1 that o is, among other properties, associative, i.e. that we have

(sot)ou=so(tou)

for all s € Tloga te T1§é>_ and u € Tlif’;>_'

In fact, it is known that the operations 0 and o can be further extended respectively into
a transserial derivation d and a composition law o: T x T~ — T satisfying LT1, LT2 and

LT3, where T is a transserial field with a total exponential. In the case when T = T, the
extensions are unique. See [60, Theorem 2.3, Corollary 2.5 and Proposition 2.6] for an example, [92,
Theorems 4.4.2 and 5.3.2] for general examples in the cases of transseries fields, [70, Theorem 5.2]
for the extension of 9 in general, and [18, Theorem 6.30] and [19, Theorem 6.3] in the case of surreal
numbers. Hyperseries will allow us to extend this type of result to even larger transserial fields.
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Hyperseries
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Hyperseries arise

Part II is dedicated to the introduction of one of the two main objects of this thesis: hyperserial
fields. Those fields are to hyperseries what transserial fields are to transseries. It is possible to
work with hyperseries as if they were a peculiar kind of transseries, as Schmeling’s work [92,
Chapters 7-9| illustrates. Nevertheless, it becomes necessary, in order to understand the precise
asymptotics of hyperseries compared to transseries and to be able to construe surreal numbers
as hyperseries, to extend some of Schmeling and van der Hoeven’s notions in the specific context
of hyperexponential and hyperlogarithmic functions. The move from transseries to hyperseries is
multi-directional, as it affects several features of the behavior of transseries. New asymptotics must
be introduced that reflect that of very fast or slowly growing (e.g. sublogarithmic or transexpo-
nential) functions, new formulas must be derived for how those functions interact with derivations
and compositions in the formal realm, and new ways must be found to represent hyperseries. The
ideas supporting those moves are to be found in substance in the existing literature. This includes
inequalities involving transexponential or sublogarithmic growth rates [57, 66, 88, 25, 39, 40] and
methods to construct fields of formal series mimicking those growth rates [39, 92, 33|. It will be
our goal to gather those insights and to implement them in the coherent setting of hyperserial fields.

From monomials to log-atomic monomials

In fields of well-based series, and perhaps in an easier and more spectacular way in the field of
surreal numbers, “simplest” elements in each exp-log class (see Section 1.4) can be picked in a
canonical way. This is the purpose of log-atomic monomials. Given a transserial field (T, log),
Van der Hoeven defined log-atomic series as infinite monomials m for which each log,, m for n € N
is also a monomial. By definition, each exp-log class in T>~ may contain at most one log-atomic
series. In certain cases, each class contains exactly one log-atomic series. It was shown by Schmeling
[92, Section 7.3.4| that in that case, defining a formal version L, of log,, as a function on T>°~
reduces to defining L, at log-atomic series. In that sense and in view of the definition of log from
its definition at monomials (see (3.1.2)), log-atomic series play the same role for L, as monomials
do for the logarithm.

Write E,, for the partially defined left inverse of L,,. Likewise, we can pick, in each convex hull

of s im for s € R>", the simplest (in fact, the shortest, see Proposition 5.3.7) series ¢,

called an w-truncated series. Defining E,, on T> ™ reduces to defining it at each w-truncated series.
In view of the definition of exp from its value at purely large series (see (3.2.1)), w-truncated series
play the same role for L, as purely large series do for exp. We will see that the correspondences

Vs € T>,log(ds) = (log s)s-, Vt € T, 0exp(r) = exp(ts)

extend, once appropriately formulated, to the hyperserial case (see Corollaries 5.3.10 and 5.3.12).
Defining fields of hyperseries containing large Hardy fields with composition requires to be able

to describe, in a precise manner, the structures of log-atomic and w-truncated series (and their

generalization to larger ordinals than w). This will occupy us for most of Chapters 4 and 5.

From power series to hyperseries

The largest field of hyperseries that we will construct in Part IT will be denoted L and be called
the field of finitely nested hyperseries. It can be obtained by closing van den Dries, van der Hoeven
and Kaplan’s field I of logarithmic hyperseries [33] under hyperexponential functions. We write
¢, for the formal ~-th iterate of the logarithm for any v € On. So the natural inclusion T, — L
sends z to ¢y and log,, x to ¢, for each n <w. Conversely eg‘) denotes the formal functional inverse
of ¢~ (we will intrduce the notation ef for more general hyperseries ¢ in Chapter 6). There are
conceptually simple routes that go from regular power series

+oo
p=>_ mrl"
k=0
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to convoluted hyperseries such as the element

f:= Z v!e*ﬂ[o]\/afvu]\/zf--- (

veEN™

> M 44) (1)

n,pEN

of . We can indeed build up to f within L by starting with the simple power series ¢, proceeding
as in the following sequence of steps, where o <w® is an ordinal:

Series Type of series Class |Operations| Result
4 power series R[[¢o]] -1 0t
ormal Laurent series 1
0! formal L t seri R[[¢Z]] [ 1
et formal Laurent series R[[¢Z)] X Gt
Ly 1 £ 1 logarithmic transseries Tiog f 2
bpyn<w logarithmic transseries Tiog nv ef{’
Lo, b1, . .. logarithmic transseries Tog > Yoncwln
elf’, > <w£" log-exp, logarithmic transseries | Tig, Tiog o il ! 7
n<w N
ﬁ general transseries (Thog) (< 1) J l,
lo, ... 0y, v <o logarithmic hyperseries L > Zv<a£7
e§07 *Z’y<a67 finitely nested hyperseries L o i i 7
y<a
HW; 7 logarithmic hyperseries L J ly
Ly, logarithmic hyperseries L inv elo
reRR, 4., eg", y<w® finitely nested hyperseries L >, x,0 f

From skeletons to hyperserial calculi

In order to construct L and similar fields, we rely on analytic calculi (or,d,0) on fields of well-
based series T. That is, we work with structures

op: FxT>>~ — T,

o:IF x F>~
0:F — T,

— F

where (IF, 0, o) should contain formal counterparts ¢, e,y € On to hyperlogarithmic or hyper-
exponential functions, and which satisfy formal versions of the aforementioned differential and
functional equations. As in the case of transserial fields, it is easier to work with hyperlogarithms
first and define hyperexponential extensions afterwards, in order to take hyperexponentials into
account. For instance, differentiating Abel’s equation

b,—1=4F, 0/
gives a tentative equation
gl O£1
£I — w

w go
_ 004
A
PR

Colils--
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which suggests that /,, should be differentially algebraic over a transserial field containing Tj.e and
closed under certain transfinite products (which are nothing more than exponentials transfinite
sums). Furthermore, since the formal inverse e’ of ¢, should have derivative (ei‘))’ :Zi,o el
it is necessary when working with fields of hyperseries T equipped with hyperexponenti;ls and
derivations to have at hand a composition law o: F x T~ — T where [F should contain all
derivatives £/, for o € On.

This line of thought motivated the definition of the field IL of logarithmic hyperseries by van
den Dries, van der Hoeven and Kaplan [33] as a candidate for IF. Indeed L is the field of well-based
series over R whose monomial group is that of formal transfinite products (i.e. multiplicatively

denoted Hahn products)
II ¢ for acOnand (1,)y<q € R®

<o

of the formal hyperlogarithmic terms £,. We have

8(6#):— and gwit+1ogwu:£wlb+1f 1

for all © € On.

Hyperserial fields will be fields of well-based series equipped with an external composition law
op:IL x T>>” — T. Our work in Part II is mostly contained in the pre-print [14]| written with
Elliot Kaplan and Joris van der Hoeven, and we follow a similar route as that which we took in that
paper. In Section 2.5, we saw that the definition of the real-powered calculus R[[z®]] x T>> — T
depended only on the existence of a well-behaved real powering operation R x 9t — 9. In
Section 3.3, we saw that the definition of the logarithmic transserial calculus Tjog X T —T
depended only on the existence of a well-behaved partial logarithm function L;: 9 — T\. Here
in Part II, logarithmic hyperseries IL will play the roles played by real-powered series R[[z®]] and
logarithmic transseries Tioe in Part I. In Chapter 7, we will give likewise designed conditions on
a reduced calculus, i.e. on a list of partial hyperlogarithms L, x: 9, ,» — T where each M, x,
1 € On is a (rather small) subclass of 9. For p =1, this is the class of log-atomic monomials
mentioned earlier. The reduced structure (T, (Lyr)ucon) is called a hyperserial skeleton. We will
then move on to study hyperexponentials on T (Chapter 5), and show that T enjoys a closure
under hyperexponentials (Chapter 6). Finally, in Chapter 7, we will define hyperserial fields, prove
that they do arise from hyperserial skeletons, and give examples.






Chapter 4

Hyperserial skeletons

Hyperserial fields, as we will see in more detail in Chapter 7, are fields of well-based series T
equipped with a calculus of monotone and analytic hyperlogarithmic functions, i.e. with a com-
position law

oL xT>" —T
where each logarithmic hyperseries f induces an analytic and monotone function
T>" — T;s+ fos.

The defining axioms for hyperserial fields (see Section 4.2 and Chapter 7) are numerous and
involved. Furthermore, the existence of strongly linear maps . — T'; f +— f o s can be difficult to
prove because of the relative complexity of logarithmic hyperseries. Nonetheless, our task requires
us to work with several types of hyperserial fields. In order to simplify their definition, we decided
to look at “reduced” calculi. Instead of a full composition law o:IL x T>>~ — T, one works with a
partial law L x M — T where L CIL and M CT>>™ are subclasses which represent “small” portions
of their ambient field. That is, we will focus on the action of certain logarithmic hyperseries f € L,
namely, the hyperlogarithmic terms £,,«, 4 € On on certain monomials a € 91~ , which we call L. u-
atomic. The structure T together with the list of partial functions a+ ¢,x0a will be called the
skeleton of (T, o).

Conversely, given a list of partial functions L, u € On on a field of well-based series T, we are
looking for conditions so that there exist a composition law o:IL x T>>~ — T for which each L »
is the previously described partial function a+ £ .0 a, and for which (T, o) is a hyperserial field.
This search motivates the axioms to be found in Section 4.2. Sections 4.3 and 4.4 are dedicated to
the recovery of the composition law from those partial functions.

This method will be applied prominently twice in the thesis: when defining the hyperserial
structure of (hyper)exponential extensions of hyperserial fields (Chapter 6), and defining the hyper-
serial structure on surreal numbers (Chapter 12).

We will see in Chapter 7 that the method is sound, i.e. that under a condition of so-called
confluence (see Subsection 4.2.3), we can go from hyperserial fields to hyperserial skeletons, and
back.

4.1 Logarithmic hyperseries

A central object in our work is the field IL of logarithmic hyperseries of [33], equipped with its
natural derivation 0: L — IL and composition law o:IL x I.”>~ — IL. Here, we recall its definition
and some of its properties.

4.1.1 Useful ordinal notations

If p is a successor ordinal, then we define p_ to be the unique ordinal with p=pu_+1. If pis a
limit ordinal, then we define p1_ := pu. For f=w", we write 3, :=w"-.
Recall that every ordinal v has a unique Cantor normal form

v=) Wy,

n€On

83
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where the set supp v:={w”:n7€ On A+, #0} is finite. So
fy:w"h Y 4+ ... +wm’7m

where r €N, 7;,,..., ;. € N~ and n1,..., 1, € On with 7, >--- > n,. The ordinals 7 with w” € supp y
are called the exponents of the Cantor normal form and the integers v,, 7 € supp v its coefficients.

We write v <, p (resp. 7<,p) if v <supp p (resp. v < (supp p)w), e.g.
W3+ 2w+3<,wt <, w* and
w2 24w <, Wi
We also define 7> (resp. ysun)to be the unique ordinal with w” <, yswn (resp. w" <o7vsen) and
with 7 = ysn+ ¢ for some ¢ <w" (resp. ¥ = ysyn + ¢ for some ¢ <w"T1). In other terms

( Z w”’yn> :Z Wy and ( Z w”’yn> :Z Wy,
Zwt >wt

n€On n=e n€On n>e

Note that v>,»=0 if and only if v <w".

4.1.2 Definition and examples

The field of logarithmic hyperseries will be an extension of the field of logarithmic transseries,
where instead of formal products
ln
IT =

neN
indexed by (a finite subset of) N we will consider for monomials formal products
[
11 -
<o

indexed by arbitrary ordinals «. Indeed, for each ordinal v, there is an element ¢, € I which we
call the ~-th iterated hyperlogarithm, or formal hyperlogarithm of strength ~y. Intuitively speaking,
we have

ly=1z, l1=logz, la=loglogz, ..., l,=L,(z), ly+1=1log L,(x), etc.

Let o be an ordinal. We write £, for the Hahn product group of (Z, +, <) to the power («, 3)
(note the reversed ordering 3). Thus elements of £, are formal products

(=] &
<«

with (Iy)y <o € R* and where £, := x., as per Section 1.1.3 is the monomial [ with [, =1 and [3=0
for all § < a with §#~. We recall that £, is ordered by setting [~ 1 if [, >0 for some v < o with
[3=0 for all 3 <. We also have a real power operation on £, given by setting

(T )-T1 e

<o <o

for r € R. This operation extends to all of L., as described in Section 2.5.

We call L, :=R][[£<4]] the field of logarithmic hyperseries of strength «. If 3, are ordinals
with v < 3 <, then we let [, 3) denote the interval {p€ On:vy < p< (3} and we let £(, g) denote
the subgroup

{le £.4:1,=0 whenever p ¢ [y, 5)}.
As in [33], we write Ly, g):=R[[£[y p)l], £:=U,conL<a and
L:=R[£]= |J L<a
a€On

We will sometimes write £-on= £ and L<on=IL. We have natural inclusions £, 3 C £, C £,
which give natural inclusions L[, 5) C L., CL.
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4.1.3 Derivation on ILL

The field IL is equipped with a strongly linear derivation 0: L. — IL. Given o € On and a logarithmic
hypermonomial [€ £, we define the derivation of [ by

ar;(Z [, (ew)f>[, (4.1.1)

<«

where (£,)"= ], 6" € £<a. Note that 96, = (¢,)T ¢, =T[,_ " For feL and k€N, we

sometimes write f*):=@* f. Equipped with its derivation, the field L is an H-field with small
derivation, so for f, g €IL, we have

f>R= f'>0, 1= f'<1, fRg#¥1l=f'<g"
Moreover, supp d < £y * is well-based, which implies the following variant of [33, Lemma 2.13]:

Lemma 4.1.1. Let a=w", let T=R[[9M]] be a field of well-based series, and let ®: L., — T be
a strongly linear field embedding. For f € Loy and s € T with s < ®({y), the family (®(f)s™)en

(n)
1s well-based. Moreover, the map V:L.,— T; f— ZneN @({l! ) sn js q strongly linear ordered
field embedding.

Proof. Since suppd < ¢, " is well-based and ® is a strongly linear field embedding, the set
S:= |J supp®(l)x®(f)"
[Esupp. O

is well-based. Thus & - (supp s) is well-based. Since s < ®({y), we have & - (supps) < 1. Let f L.
For each n € N~, we have

supp ((f™)s™) C (supp ®(f))- (& (supps))™

Since supp ®(f) is well-based and & - (supp s) < 1, it follows that (®(f™)s™),en is well-based and
that the map V¥ is well-defined and strongly linear. For all f, g€ L.,, we also have

2((9)) (/)@ g<ﬂ'>>snz< <I><f<i>>si> WY,

which shows that ¥ preserves multiplication. Finally W is strictly increasing by Proposition 2.5.3. [J

4.1.4 Composition on L

In addition to its derivation, the field I. comes equipped with a composition law o:IL x L=~ — L
which is unique to satisfy the following list of properties.

For g € L”>", the map o L —L; f+— fog is a strongly linear embedding of ordered fields. As
a consequence this map preserves the relations < and < [33, Lemma 6.6].

For fel and g,heL>", we have fo(goh)=(fog)oh [33, Proposition 7.14].

For geL>>" and r € R, we have {{o g=g" [33, Corollary 7.5].

For g,h€LL>>" and r € R~, we have {10 (gh)={10g+{¢10h and {10 (rh)=logr+{;0h [33,
Section 1.4].

For ordinals o <, p, we have {,0{,={,, [33, Corollary 5.11].

For each successor ordinal p, we have £, 0l u-=£,.—1 [33, Lemma 5.8].

The constant term of £, 0 £~ vanishes if p >+ is a limit ordinal [33, Lemma 5.8].

For f,hel and g€ L>" with h < g, the family ((f®* o g) h*)ren is well-based, with

(k)
fo(g+h) E f °9 pk, [33, Proposition 8.1]
keN

By Corollary 2.3.7, the last property implies that each logarithmic hyperseries acts as an analytic
function on I~ and that the derivation f~ f’ corresponds to the differentiation of Section 2.1.2.
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The uniqueness follows from [33, Theorem 1.3]. By Proposition 2.1.3, the derivation also satisfies
the chain rule: for all f €L and g€ IL”"", we have

(fog) = (f'og)g. [33, Proposition 7.8]
For a=w", the unique composition o from above restricts to a composition L, X ]Lz’; — Lg,.
For v < a, the map oy : L., — L, defined by oy (f):= f ol is a strongly linear field embedding
with image L[, o) by [33, Lemma 5.13]. Accordingly, for g € L(, ), we let g17 denote the unique
series in L<o with ¢T7o £,=g. Note that Elfil =/l u+1+ 1 for all p and that, more generally,
él“:irlwv ZELZH +n for y <whttand n € N. For p<v and f € Ly,ut1 ) we have

folyn = § —(_1)k5k(f) =e0f (4.1.2)
@ k! o
kelN

where & is the derivation ——

77— 0 on Lq (see [33, Section 5.1]). Let R(f) ::Zk€N>(_k—1|)k5k(f).
whtl !
Then R: Ly u+1 q) — Lj,u+1 o is strongly linear and R(f) < f, so, by [33, Lemma 2.2,
f1% = f=R(f)+R*f)—- = & f. (4.1.3)

In particular,
L

0 s

(4.1.4)

1= f ~ =R(f) ~

Lemma 4.1.2. For each u<v, each v< B<w", and each k € N~ , we have (Ep)(k) eLZ u.

Proof. Since L.« is closed under taking derivatives and the derivation preserves infinitesimals,
it suffices to prove the lemma for k=1. We have EgVOEW =/{g, so

(L 0ty = ((€)) o ty) bl =th.

Since £}, € L<,n and €5 < €., this yields (627)’ ol,€LZ u Since (Eg”)’ oly €Ly, q) as well, we
have (£7)/ 0t € L[ om- Since the map f+— f17 maps L[5 ,u onto LZ,u, we conclude that
(€57 = ((£)") 0£5)17 €LZ . O

4.2 Hyperserial skeletons

The definition of hyperserial skeletons involves several sets of axioms that we will now introduce.
All the results in this section can be found in [14, Section 3]. Here is a summary:

Section 4.2.1. The Domain of definition axioms state rules on the domain of partial functions
in hyperserial skeletons;

Section 4.2.2. A range of axioms constrain the way those functions interact with themselves
(Functional equations), the ordering (Asymptotics and Monotonicity), the structure of well-based
series (Regularity) and the partial exponential on I (Products);

Section 4.2.3. An axiom further is designed to impose that the hyperserial skeleton is sufficiently
rich to extend into a composition law;

Section 4.2.4. Shows that L is naturally equipped with a structure of hyperserial skeleton
respecting our axioms.

4.2.1 Domain of definition

We let T =R][[9]] be an ordered field of well-based series with real powers. Let v < On be an
ordinal with v > 0. Given a structure (T, (Lynr),<y) where Lyu are partial functions on T, we
consider the following axioms for pu<wv:

Domain of definition:
DD(). dom L1 = E)ﬁf
ﬂn<“dom Ly,n if uis a non-zero limit

Npendom Lk if p=p +1.

DD,. dom L x= {
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Suppose (T, (Lyr)u<w) satisfies all axioms DD, for p<v. We set M, :=dom L, €M™ for
all 4 <v and we extend this notation to the case when p=wv, by setting

N < dom Lyn if v is a non-zero limit
M= K (4.2.1)

N,endom L if v=v_+1.

For p<v, we call M« the class of L, «-atomic elements. Note that 9, CM,» for all < p <.
We let Ly be the identity function with dom Lg:=91" and, for 8 <w" with Cantor normal form
B=w"ni+ - +wrng, we define

. rong oni
Lp:=L"%0 -0 L%,

where f°" for n € N denotes the n-fold iterate of a given partial function f.
Here we understand that z € dom Lg whenever = € dom L_31, L5 « € dom Lg%3, and so on until
LZZ'E:} o---oL 5tz €dom L5, Note that 91, is the class of infinite monomials m € 9~ such hat

L?"(m) is an infinite monomial for all n € N. This generalizes as follows.

Proposition 4.2.1. For p<v with u >0, we have

Mor = {s€eT>":s€dom L and Lg(s) €M™, for all B <wt}.

Proof. Given a €M« and  <wH, let us first show by induction on p that Lg(a) is defined and in
2M~. This holds for g =0 by definition. Let 0 < u < v and assume that the assertion holds strictly
below p. If 3=0, then Lo(a)=a€M~. Assume >0 and let n < p, n € N~ and ¢ <w" be such
that S=w"n+t. We have a €M ,n+1 80 Lynn(a) €M, n+1 by definition. In particular Ly,m,(a) € M yn,
so our inductive hypothesis on p applied to 1 gives that L,(L,n,(a)) = Lg(a) is a monomial.
Given a € T~ such that a € dom Lg and Lg(a) € M~ for all § < wk, let us next show by
induction that a €9, «. This is clear if £=0. Let 1 < pu < v be such that the statement holds strictly
below p. If p is a successor, then for ¢ <w*- and n € N, we have L -, ,(a)=L,(L,x-(a)) €M~
so for all n € N, Lu-,,(a) € M u-, whence a € M, ». Assume now that p is a limit and let n < p.
Then Lg(a) € M~ for all § <w", so the induction hypothesis yields a € M,,». We again conclude
that a € M, x. O

4.2.2 Axioms for the hyperlogarithms

Let T be an ordered field of well-based series with real powers, let ¥ < On, and let (Lyn),<o be
partial functions (Lyk),<p on T which satisfy the axioms DD, for all < v. We consider the
following axioms, where p is an ordinal with 0 < p<w.

Functional equations:
FEo. Li(m")=rLi(m) and Ly(mn)=Li(m)+ Lq(n) for all r€ R~ and all m,ne M.
FE,,. For a € M, we have Lyu(L,n-(a)) = Lyu(a)—1if pis a successor (FE, holds trivially
if pis a limit).

Asymptotics:

Ap. Li(m)<m for all me M.

A,,. Lyu(a) < Lyn(a) for all n < p and all a € Mn.
Monotonicity:

Mp. Li(m) >0 for all me M.

M,,. Lyu(a)+ Lynn(a) ™t < Lyu(b) — Lynn(b) 7 for all n < p, n €N and a < b in Dn.
Regularity:

Ro. supp Li(m) > 1 for all m € M;.

R,,. supp Lyu(a) = Lyn,(a)~! for all n< u, n €N, and a € M.
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The axiom M, implies in particular that L. is strictly increasing, hence injective. We define a
logarithm log: T — T as follows:

Li(m) if me M~
logm=<{ —Li(m~!) if meM= (4.2.2)
0 ifm=1.

Then log M is an ordered R-vector subspace of T. By FEq, Ao, Mg and Ry, the structure (T, log)
is a transserial field. For u € On with 0 < g < v, we consider the following axiom:

Infinite products:

Pu. >0 ouTyLaygi(a) €log M for all a € M,» and all sequences (ry)y<on of real numbers.

Remark 4.2.2. The axiom P, allows us to define the infinite product H’y<w“ Lyy1(a)™ for
a €9My,u to be the unique monomial m € I with logm=3"_ _ .7y L. +1(a), hence the name. Note

that the axiom Py is a consequence of FEq: if FEq holds, then for r € R and m € 91", we have
r Li(m) =logm".

Definition 4.2.3. Let v <On. A hyperserial skeleton of force v is a structure (T, (Lyn),<y)
where T is an ordered field of well-based series with real powers and (Lyr), <, are partial functions
on T which satisfy DD,,, FE,, A,, M,, and R,, for all p<wv, as well as P,, for all y € On
with p < v.

Note that a hyperserial skeleton of force 0 is just a field of well-based series with real powers
and that (T, (Lur)u<on) is a hyperserial skeleton of force On if and only if (T, (Lww)u<y) is a
hyperserial skeleton of force v for each ordinal ». We will often write T to denote a hyperserial
skeleton (of force v < On), where it is implied that for p <wv, the term L~ refers to the w-th
hyperlogarithm on T.

Definition 4.2.4. Let T=R[[9]] and U=R[[N]] be hyperserial skeletons of force v < On. We say
that a function ®: T — U is an embedding of force v if it is a strongly linear strictly increasing
ring morphism with ®(Mye) TNy for each p < v such that

S(m")=0(m)" for all me M and r € R,
and such that
O(Lyu(a)) = Low(®(a)) for all p<v and a €My,

If ®: T — U is a hyperserial embedding of force v, then we say that U is an extension of T
of force v. If T CU and Idg is an embedding of force v, then we say that T is a hyperserial
subskeleton of T of force v.

4.2.3 Confluence

In this subsection, let T = R[[9]] be a hyperserial skeleton of force v < On and let p € On
with u <v. We inductively define the notion of p-confluence in conjunction with functions 0,x:
T>7 — M~ and the classes E,u[s] ST, as follows:

Definition 4.2.5. The field T is 0-confluent if 9 is not trivial. The function 01 maps each
s€T>" to its dominant monomial 05. For each s€T>", we set

Eils|:={teT>"txs}.
Let p€On with 0< u<v, let s€ T, and suppose T is n-confluent for all n < .
o If i is a successor, then we define E,r[s] to be the class of series t with
(Lyn-00m-)°"(8) < (Lyn-00y,0-)°"()

for some n e N.
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o If uis a limit, then we define E,u[s] to be the class of series t with

Lwn(bwn(s)) = Lwn(bwn(t))
for some n < .

If each class E,u[s] contains an L u-atomic element, then we say that T is u-confluent. We will
see that each class E,nu[s] contains at most one L.,u-atomic element, which we denote by ,n(s).

Remark 4.2.6. We note that p-confluence is somewhat stronger than the similar notion of
log,,»-confluence from [92], due to the extra requirement that we have maps 0.

Lemma 4.2.7. Let u € On with p<v and suppose T is p-confluent. Then the function V,u is
well-defined. Moreover, we have E,n[t] CE,r[t] for alln< p and t € T>>7.

Proof. We prove this by induction on p, noticing that the case p=0 is trivial. Assume that this
is the case for all ordinals 7 < i and let s € T>>~. To see that d,» is well-defined, let a, b € Mi,»
with a, b€ &,x[s]. We need to show that a=Db.

Assume that p is a successor. Take m,n € N with

(qufobwu—)om(a) = (qufobwu—)om(S) and
(quf o Dwuf)on(b) = (qu— o Dw“’)on(s)'

We may assume for instance that m < n. The inductive assumption that & [t] C & «-[t] for all
teT> " gives

Owuf((quf o Owuf)om(a)) = Owuf((quf o Owuf)om(s)),

whence (L n- 0 0,0-)°%(a) = (Lyn- 0 0yu-)°F(s) for all k>m. In particular (Lywr- o 0ye-)°"(a) <
(Lw“* o Dw“*)on(b)'

Since L, n-g(a) is L<yr-atomic for each k and since d,:- is well-defined by our induction
hypothesis, we have 0,u-(L,x-k(a)) = Lyn-k(a) for each k. It follows by induction on k that
(Lyn-00,0-)°%(a) = Lyn-1(a) for each k and, likewise, (Lyu- 00,0-)°%(b) = L,u-1(b) for each k,
80 Lyn-p(a) < Lyn-,(b). As both L,e-,(a) and L,x-,(b) are monomials, we have L, u-,(a)=
Ln-pn(b). Recall that L,u- is injective by M, , so a=b.

Assume now that p is a limit and take n, p < g with Lyn(0,7(a)) < Lyn(0,n(s)) and Ly,e(0,0(b)) <
L,r(0,r(s)). We may assume for instance that n < p. Note that we have a =0 ++1(s) by defin-
ition and by the induction hypothesis. Recall that 9~ C9M ,+: by definition. The inclusion
E n+1[s] CE,p+1[s] and the fact that 0, ,,+1 is well-defined thus give a =0 ,,+1(s) =b.

As to our second assertion, consider ¢t € T='~ and u € E,n[t] with n < p. If p is a successor,
then the induction hypothesis E,n[t] C &, x-[t] implies that 0 ,u-(u) =0,n-(t), $0 Lyn-(Dyn-(u)) <
Ln-(0,0-(t)), whence u € E,u[t]. Assume that p is a limit. We have 0 ,7(u) =0,n(t) because d,n
is well-defined. In particular Ly,n(0yn()) =< Lyn(0,n(t)), so u € E,u[t]. This concludes the inductive
proof. O

Remark 4.2.8. We see that the conditions “for some n € N” and “for some 7 < p”” in Definition 4.2.5
can be replaced by “for large enough n € N” and “for large enough p < v” respectively.

Corollary 4.2.9. Let u,n€On withn< p<v. If T is p-confluent, then dy,u(s) =0,u(0,n(s)) for
all seT>".

Proposition 4.2.10. Let p € On with p <wv. If T is n-confluent for all n < p, then the class
Eu[s] is convex for each s€ T>". Moreover, if T is p-confluent, then 0yu: T>" — M ,n is non-
decreasing.

Proof. We prove this by induction on u. Let s € T> 7. It is clear that &;[s] is convex and that
0; is increasing. Let p >0 and assume that the result holds for all n < u. By the monotonicity
axioms, each function L is strictly increasing on 9, (when 7 =0, one also needs to use FEgq
to see that Li(m/n) = Li(m) — L1(n) >0 for m =n € My). As the composition of non-decreasing
functions is non-decreasing, the function (L,no0,7)°" is non-decreasing for each n < p and each
n € N. We deduce that 0, is non-decreasing and that the classes &E,1[s],s € T~>" are convex. [
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If T is n-confluent for all n < p, then the proposition implies that the classes &,n[s] with
s €T>>~ form a partition of T~>~ into convex subclasses. If T is also p-confluent, then we have
the following explicit decomposition for all n < u:

)

aEeM n

Definition 4.2.11. T is said to be confluent if it is p-confluent for each € On with u<v. An
extension/embedding ¥: T — U of force v is confluent if U is confluent.

Note that if ¥ € On, then T is confluent if and only if it is v-confluent.

4.2.4 The skeleton of logarithmic hyperseries

Let v be an ordinal and set a:=w”. The goal of this section is to check that L., is a confluent
hyperserial skeleton of force v. This is immediate for ¥ =0, so we assume that v > 0.

Definition 4.2.12. Let dom L1:=£Z, and for 0< u<wv, let dom Lyn:={{y:wh <,0 <a}. Given
ledom Lu, set
Lon():=L,nol.

We will show that (L<q, (Lwr)u<y) is a hyperserial skeleton by checking that the axioms are
satisfied. We begin with the domain of definition axioms.

Lemma 4.2.13. (L.q, (Lur)u<y) satisfies DD, and (£<a)wr={ls:w" <o0 <a}, for all p<v.

Proof. We prove this by induction on p. The case when p=0 is immediate. For p=1, consider
an infinite monomial [ = H7<a€£] € L£cn. We have Lyi(I) = Z'y<a [y¢y4+1, which is a monomial if
and only [=/¢, for some v < a. Conversely, for each v <« we have L,({y) ={y4n € £<a. Now let
1 < p < v and suppose that the lemma holds for all non-zero ordinals less than p. Assume that p
is a limit. We have p_ =y, whence

ﬂ dom L,n= ﬂ dom L n+1= ﬂ {ly:w<,y<a}={l,:w' <,y <a}=dom L.
n<p n<p- n<p-

Assume now that pu is a successor. If [ € dom Lx, then [=/¢, where w*- <, 0 < «, and we clearly
have L% (I) =4y 4 r-n € dom Lyu- for all n € N, whence [ € N, en dom L. Conversely, let

wh- wH—
L€, endom L. Then [=/{; where w" -~ <,0 <a. If p_ is a limit, then p__ = p_, whence
wh-<,0<a and edom L,». If p_ is a successor, then o =~y + w"--m for some v >,w- and
some m € N, so

o= E’y+w“**m = 1y © EW-
Since Lyu-(lyn--m) =Lyr- —m, we see that
Lyn-(1) =Lyn-(Uy) = (byr-—m) 0 by =Ly 4 yn-—m.

Since L,»-(I) € dom L »-, we must have m =0, so [={, € dom L,,x. O

For f <w” and [€ dom Lg, note that Lg(l) ={zo . Note also that the notions of L_.+1-atom-
icity and L. ,w#-atomicity coincide in L., whenever p is a limit with ©+ 1 <wv. This will not be
the case in general.

Proposition 4.2.14. The field L., satisfies P, for all p<v.

Proof. Let p<v and let [€ (£.4),+ By Remark 4.2.2, we may assume p>0. We have [= /¢, for
some w’- <,0 < a. Let (74)y<wr be a sequence of real numbers. We have

Z T’YL’H-l([): Z r7€7+106,,: Z 7“7604_74_1.

y<wh y<wh y<wt



4.2 HYPERSERIAL SKELETONS 91

This sum coincides with logm where m:= Hy<m€a+v €Log. O

Proposition 4.2.15. The field L., satisfies R, A, and M, for all 0 < p<wv.

Proof. Let 0< p<v and let [€ (£<4)wr. We have [=£,, for some wh-<,0 <a. Write 0 =y +w#-n
where y=03,r, n €N, and n=0if p is a limit. We claim L,x() = £y 4,r—n. If pis a successor,
then since £ u o0 Lyn-p =L, n —n, we have

qu([) Ewuof —EMOZWJWW”—ZMO(E H—p ol ) (fwu— )Of,y:ffy_;,_wu —n.

If 1 is a limit, then [=£,, so
qu([) = gwu o €V = €7+wu.

Now we move on to verification of R,,, A, and M. The only elements in supp L.,x([) are £y n
and possibly 1 (if n#0), so supp Lew([) = 1= Lyn, (1) 7! for all n < p and n € N, which proves R,
For n < u, we have

Lwn([) = gwn o gg = £g+wn =< £7+wu = qu([),

so A, holds as well.
As to M, take I (£<a)wu with [’ = [. We have l'=/{,. for some ¢’ with w"- <,0’ < . Write

o'=x —|—w“ n’ where 'y =oL,n, n €N, and n’ =0 if p is a limit. The argument above gives
Ln(l ) Cyrpon—n' If v/ <, then Lyn(l' ) = Ln(l) and if 4" =+, then n’ <n and L,«(I") — L,u(l)=
n—n’>1. In either case, M, is satisfied. O

Recall that for [€ £, and v < «, we write [, for the real exponent of £, in [. Given f € L2
we define Ay to be the least ordinal with (y)y, 7& 0; see also [33, p. 23].

<a’

Proposition 4.2.16. L. is v-confluent. More precisely, for 0< p<v and f € L.y, we have
0un(f)=Ling) s u (4.2.3)

Proof. We first note that L., is O-confluent as £, is not trivial. We proceed by induction on
0<p<v. Take feLZ, . If p=1, then we have L1(01(f)) =< lx,+1=L1({x,) where {x, is L.~
atomic, so 0,(f) =/x; and L, is 1-confluent. It remains to note that (As)>1= A

Now suppose that > 1 and assume that L., is n-confluent and satisfies (4.2.3) for all n < p.
Suppose p is a successor, so - ( f) =L(xp), u-- Write (Af)swr--=(Af)swr-+wh—n withneN
and with n=0 if pu_ is a limit. We have K(Af)%,b,, :Kwu”noé()\f)%,u SO

Lipn=@un-(f)) = (=0 ligip) 0 Ling) e = Lion=(Cing) us) == Loon=(Cingy )

and awu(f) ZE(/\f)%d“i.
Now suppose p is a limit, so there is 7 < p with (Af)>wn = (Af)>wr = (Af)>wr-. By hypothesis,
we have that d,n+1(f) =£(x,)._, and so

Lwn+1(0w”+1(f)) = Lw”+1(€(kf);wn) = Lw”Jrl(E(kf)?wuf)'
Again, this yields d,e(f) =£x;). - O
Theorem 4.2.17. L, is a confluent hyperserial skeleton of force v.

Proof. Using the identity

61 ol= Z [7£7+1

y<a
for [= ]—LKD/;7 € £, the field L, is easily seen to satisfy FEq, Ag, Mg, and Rg. Moreover, L.,
satisfies FE,, for all 0 < u <wv by [33, Lemma 5.6]. Using Propositions 4.2.14, 4.2.15 and 4.2.16,
we conclude that L., is a confluent hyperserial skeleton of force v. O

Corollary 4.2.18. L is a confluent hyperserial skeleton of force On.
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4.3 Extending the partial hyperlogarithms

Let v < On. We will follow [14, Section 4] while simplifying some proofs by using the material of
Chapters 2 and 3. The purpose of the next two sections is to prove the following theorem:

Theorem 4.3.1. Let (T, (Lyr)u<w) be a confluent hyperserial skeleton of force v. There is a
unique function o:L,v X T>" — T satisfying:
Cl,. Lo,v—T; f+—— fos is a strongly R-linear ordered field embedding for each s€ T~ ;

C2,. ffom=m" for all meIM and r e R;
lynoa=Lyu(a) for all p<v and a € dom Lyk;

C3,. fo(gos)=(fog)os forall f€Loyw, g€ Lz, and s€ T>;

C4y. fo(t+d)=31cn fo:!Ot(Sk forall feLoyv, te T, and 6 € T with § <t.

We will start by extending each partial hyperlogarithm L~ for i <v to T~ and then define
the corresponding composition laws using rules of strong linearity. However, our proof will be an
induction where the definition of L~ reauires the validity of Theorem 4.3.1 for all ordinals < u.

We claim that it suffices to prove the theorem in the case when v € On. The case when ¥ =0n
can then be proved as follows: let (T, (Ly~),con) be a confluent hyperserial skeleton of force On.
Then for every v < On, there exists a unique composition o,: L, x T~>~ — T that satisfies C1,,
C2,, C3,, and C4,. For ;1 <v, the composition o, extends o,, by uniqueness. For any f €L and
s€T> ", we have f €lL., for some v < On, so we may define fos:= fo,s and this definition
does not depend on v. It is straightforward to check that this defines the unique composition o:
L x T>** — T which satisfies Clon, C20n, C30n, and C40oy.

Throughout this section, we fix an ordinal v and a hyperserial skeleton T = R[[90]] of force v.
We fix also p < v such that T is p-confluent and we set

0= wh.
We assume that Theorem 4.3.1 holds for p, so we have a unique composition o:IL.g x T>" — T
satisfying C1,, C2,, C3,, and C4,,. For v < and s € T~"~, we write L,(s):={y0s. In light of

Lemma 4.1.2, the expression (6;7)(’“) o s makes sense for each k> 0. Moreover, C4, and Proposi-
tions 2.3.5 and 2.3.6 together imply that:

Lemma 4.3.2. Each f € L.g induces an analytic function

Ay T>7 — T
s — fos, with
Conv(As), 2 T=* and
AP = A

for all s€ T>~ and k € N.

Recall that as a hyperserial skeleton of force 1, the structure (T, L) already induces a logarithm
log: T~ — T such that (T, log) is a transserial field and for which the content of Section 3.1
applies. Which means that we can focus on hyperlogarithms. Our main goal in this section is to
prove the following result:

Proposition 4.3.3. Assume that u>0. There is an extension of Lg to T>" such that for all
seT>", acMg, and v < B with € := L(s) — Ly(a) < 1, we have

T7y(k) o
Ly(s)=Lg(a)+ > U )™ oln(e) " Lr@) i,

keN>

It is crucial here that this identity is valid for all v < 3. We will also prove that Lg satisfies the
extension of FE,, to T~ " (Proposition 4.3.11), that L has Taylor expansions around every point
(Theorem 4.3.10) and that it is strictly increasing on T~ (Lemma 4.3.12).
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Our extension will heavily depend on Taylor series expansions, so it is convenient to introduce
some notation for that. Let f € L., be such that f*) e L.gforall k>0. Let te T~ and § €T
with ¢ <¢. By Lemma 4.1.1 with a= 3, f’ in place of f, and ®:L.g— T; g+ got, we see that
the family ((f*) ot) 6%)pen> is well-based. We define

*)
T(t,0) = 3 fk,"takeqr.
keEN> ’

4.3.1 Confluence revisited

Assume now that p > 0. Let us revisit the notion of confluence.

Lemma 4.3.4. Let s,t € T~ and suppose that L(s)= L (t) for some~y < 8. Then Ly(s)— Ly(t)<1
for all o < B with o > v+ 2.

Proof. We first show that L,i2(s) — Lyy2(t) < 1. Take c€ R~ and € <1 such that L,(s) =
L,(t)(c+¢€). We have

Lys1(5) = La(Ln(5)) = Ly 11(t) + log(e +2),
where log(c+¢) < 1. Set §:=L41(t) tlog(c+e) <1, 80 Lyt1(8) = Lyy1(t) (1 +5). We have
Ly 42(s) =log Lyy1(s) = Ly42(t) +log(1 +0),

where log(1+ ) = L(8) ~6 < 1. Thus, L. 1a(s) — L4 2(t) < 1.
Now, fix o with y+2< 0o < and set § := L. 2(s) — Ly+2(t). By C3, and C4,,, we have

Lo(s) = 6720 L a(s) = 1720 L a(t) + Ty 2L a(t), 6) = Lo (t) + Ty1+2( Ly 12(1), 0):

Lemma 4.1.2 in conjunction with the fact that 6 <1 gives us that 7,1++2(Ly42(t),0) <1, 50 Ls(s) —
Lo(t) < 1. ’ O

Proposition 4.3.5. For all s€ T, we have
Epls]={teT>":Ly(s) — L(t) <1 for somey < §}.

Proof. We fix s€T>>". Since p >0, we know by Lemma 4.3.4 that it is enough to show that
Epls] ={teT>" : L,(s) < Ly(t) for some y < }. We proceed by induction on p. If p=1, then
08 =w and

Euls|={teT> " :(L1001)°"(t) < (L1001)°"(s) for some n € N}.

An easy induction on n yields (L1 001)°™(t) < L,(t) for each t € T~>~, whence the result.

Now suppose that p>1. If u is a successor, then for each t € Eg[s] there is some n € N
with (Lyn-00,0-)°"(t) < L,u-,(05(t)). By our inductive assumption applied to u_, we have that
L(t) — Ly(d,n-(t)) <1 for some v <w*-. By Lemma 4.3.4, we have Lyu-(t) — Ln-(0,n-(t)) <1
and an easy induction on n gives us that (Lgu-00,u-)°"(t) — Ly#-p(t) < 1. Thus, we have that
L (t) < Lyn-p(08(t)) for some n € N. Likewise, Lyn-p,(s) =< Lyn-1,(05(s)) for some m € N.
By replacing m and n with max {m,n} and invoking Lemma 4.3.4, we may assume that m =n.
Since d3(s) =05(t), we have Ly u-p(s) =< L,y (t). On the other hand, given t € T=7, if L,(s) =
L. (t) for some v < (3, then take some n € N with v+ 2 <w#-n < 8. By Lemma 4.3.4, we have
(quf o Dwuf)on(s) = Lw”“n(s) = Lw“*n(t) = (quf e} Dw#—)on(t), so t S Eﬁ[s]

If p is a limit, then for each ¢ € Eg[s] there is n < p with Ly,n(dn(t)) < Lyn(05(t)). By our
inductive assumption applied to 7, we have that L. (t) — L (0,n(t)) <1 for some v <w", s0 Lyn(t) —
L7(0,7(t)) <1 by Lemma 4.3.4. Thus Lyn(t) < L,(05(t)) and likewise, L,-(s) =< L,-(0g(s)) for
some o < u. By replacing 1 and o with max {n, o} and invoking Lemma 4.3.4, we may assume
that 7 =o0. Since g(s) =0g(t), we have Lyn(s) < L,n(t). On the other hand, given t € T>",
if L(s)= L,(t) for some v < 3, then take some 7 with v <w” < . By Lemma 4.3.4, we have
Ln(05(8)) < Lyn(8) < Lyn(t) < Lyn(0s(t)), so t € Egls]. O

Proposition 4.3.5 in conjunction with Lemma 4.3.4 gives us the two following corollaries:



94 HYPERSERIAL SKELETONS

Corollary 4.3.6. Let B=w" <« and let a,b€Mg. Fory<a with yw < B, we have v3(L,(a))=a.

Proof. Note that yw=w"t"! for a certain ordinal ¢. Given n € N> with w*n >+, we have
Low(Lwn(a) < Layw(Ly(a) < Lyw(a),

where Ly (Lyin(a)) = Lyw(a) —n< Ly, (a). So Ly (Ly(a)) < Ly,(a). We deduce since yw < 3 that
L.(a) € E3la], whence dg(L(a)) =a. O

Corollary 4.3.7. For each s € T~ there is v < (3 such that

Ly(s) = Lp(0p(s)) < 1,

for all v < p< B. Moreover, if L,(s) — Ly(a) <1 for some a€ Mg and some v < 3, then a=0g(s).

4.3.2 Definition of the extended hyperlogarithms
Definition 4.3.8. Let s€ T~" and let v <  with € := L (s) — L,(d3(s)) < 1. We define

Lp(s) := Lp(05(5)) + Tp1+(L4(0p(5)), €)-

As discussed at the beginning of the section, the series TEEW(L,Y(%(S)), e) exists in T by

Lemmas 4.1.1 and 4.1.2. To prove Proposition 4.3.3 all that remains is to show:
Lemma 4.3.9. The above definition does not depend on the choice of .

Proof. Let s, v, € be as in Definition 4.3.8 and suppose that L,(s) — L,(03(s)) <1 for some o < 3.
Set 0:=Ly(s) — Ls(93(s)). We need to show that

T, (L (05(5)). £) = Ty (Lo (05(5)). )
Without loss of generality, we may assume that o <. Now
L,@p(s) +¢ = Ly(s) = €170 Ly(s)
= (170 (Lo(05(s)) +9)
= EIY"OLU(OQ(S))+TZLU(LU(OQ(3)),6).

Since ELUOLU(Oﬁ(S)) =L (05(s)), this yields € =7,1-(Ls(05(s)),0). Set

~

F::,Z—eg”(e’w?—[g”(faaz))’ GZ:%[EG(EU,Z),

considered as formal power series =37, F;z" and G=3, \ Gz’ in L.o[[2]]. Then

i€N

T+ (L (05(s)),6) = Y (Fyovg(s)) 0" and  Ta(Lo(05(s)),0) = ) (Gjo0p(s)) 87,

i€N JEN
so it suffices to show that F'=G. For each h € L.Z,, we have
F(h) = Tty Tpye(lo, h)) :7;;7(5%53% (lo+h)—Ly) =Ly 0 (6 + 170 (Lo +h) —Ly) — g
= () oll7)o (bo+h)—Lg=1}70 (L +h) ~l3="T,+(lz, h) = G(h),
so (F —G)(h)=0 for all heLZ,, and we conclude that F =G by Corollary 2.2.14. O

Theorem 4.3.10. The function Lg is analytic on T~ with

Conv(Lg)s 2 T=* and
L(ﬁk)(s) = E(ﬁk)os

for allkeN and se T~ ".
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Proof. Let v < . For all a,b €Mz with a < b, we have L(a) < L,(b) so
L(a)+ T2 @0 (b) + T =g,
In particular have a well-defined function
LF: Usean, (In(a) + T) — >
Ly(a) +e — Lp(a) +7;1+(Ly(a), )
By Corollary 2.3.7, the function L;7 is analytic. We also have
(LB s— (ehM P os
for all k € N by Proposition 2.3.6. Since 9 is (divisible hence) densely ordered, we may apply
Proposition 2.3.8 to (Lg 7) and L. at each s in the class
O,:= |_| {teT>":L,(t) — Ly(a) <1}.
acMp

Indeed, combining Lemma 4.3.2 and the identity Lg [ O, = ((L%V) oLy) [ O, of Lemma 4.3.9, we
obtain that Lg is analytic on O, and that for all s € O, we have

Conv(Lg)s 2 T=° and
Lj(s) = Lhosx ((Eg’y)’oﬁvo s) (by Proposition 2.1.3)
= (jos. (by the chain rule in L)
Recall that A](ck) :Af(k) for all feL.gand k€ N. We deduce that L(ﬁk)(s) :éék) os for all k€N and

s € 0,. For a€ My, we have Egla] =, _ ;O by Proposition 4.3.5. It follows that T=~ =] _ ;05

thus concluding the proof. O

4.3.3 Properties of extended hyperlogarithms

We end this section with extensions of our monotonicity and functional equations axioms.
Proposition 4.3.11. Assume p is a successor. For s € T”>", we have Lg(L,»-(s)) = Lg(s) — 1.

Proof. By Corollary 4.3.7, there is some n € N~ such that e := L u-,(s) — Lyn-,(05(s)) < 1. We
may write

Lw“*(nfl)(Lw“*(s)) = Lw“*(nfl)(Lw“*(aﬁ(s))) te.
Note that L, (0(s)) is L<g-atomic, so 03(Lyn-(s)) = L,u-(05(s)). For k € N~ we have
wht=(n— e
(5O =g+ (= 1) =7 = (€ +m) ¥ = ("),

SO0 T rot—(n-1)(a,6) =T 1 n-.(a,€) for all a € Mg. It follows that

6y £
Lg(Lyu-(s)) = Lg(Lyr-(05(s))) +Zej" =D (Lyr-n(05(5)), €) (by Definition 4.3.8)
= Lp(0p(s)) = 14+ Zgp=" n(Lur-n(05(s)), €) (by FE,)
= Lg(s)—1 (by Definition 4.3.8)
This concludes the proof. O

Lemma 4.3.12. The function Lg is strictly increasing on T,

Proof. By induction on p, we may assume that L is strictly increasing on T~ for all n < pu
(the =0 case follows from Proposition 3.1.10). As a composition of strictly increasing functions is
strictly increasing, the function L. is strictly increasing on T>” for all v < §. Given s <t € T>",
let us show that Lg(s) < Lg(t). We start with the case when 93(s) =04(t) =:a and take v < 3 with
L,(s)—Ly(a)<1 and L,(t) — Ly(a) <1. Then €:=L,(t) — L,(s) is infinitesimal and positive by
our induction hypothesis. By Theorem 4.3.10 we have

Lp(t) = Ly(s) = Tyy+(Ly(s),€) ~ ((€5") 0 La(s)) .
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Since é;f‘ >R, we have (EZ,A)’ >0, so Lg(t) — La(s) > 0.
Now we turn to the case when 0(s) <0g(t). Set a:=0g(s) and b:=03(¢) and take an ordinal
A:=w"n < @ with
L)\(S) — L,\(a) <1 and L)\(t) — L,\(b) < 1.
Set 0:=Lyx(s) — Lx(a), so

Lp(s) — Ly(a) = Tya(La(a), ) ~ ((£5Y) 0 La(a)) 6 < (£5)" 0 Lx(a)
Repeated applications of (4.1.4) with 7 in place of p gives Kg’\ ~ g, so (Kg’\)’w% and
(€5 0 L(a) ~ €50 Ly(a).

Since 3> 1, we have {3 < {1 so {3 < (] =/{y*. Thus, (o Ly(a) < Ly(a)~!. All together, this shows
that Lg(s) — Lg(a) < Lx(a)~!. Likewise, we have Lg(t) — Lg(b) < Lx(b)~!. By the monotonicity
axiom M,,, we have Lg(a) 4+ Ly(a) ' < Lg(b) — Lx(b) 7%, so Lg(s) < La(t). O

4.4 Defining the external composition law

Throughout this section, v stands for a fixed ordinal and T =R[[9]] for a fixed confluent hyper-
serial skeleton of force v. We now set

a:=w".

Our aim is to construct a well-behaved external composition L., x T>>~ — T that satisfies C1,,
C2,, C3,, and C4, from Theorem 4.3.1. We will also prove that the mapping £, — T;[——1los
has relatively well-based support for all s € T>>~. Throughout the section, we make the inductive
assumption that Theorem 4.3.1 holds for all ;4 < v and that the mapping £+ — T;[+—los has
relatively well-based support for all y <v and s€ T>".

4.4.1 The case when vr=20

Here T is a 0-confluent hyperserial skeleton of force 0. The field L., = R[[2®]] = R[[(&]] is the field
of well-based series of real powers of the variable ¢y, with real coefficients. We have already seen
(see Theorem 2.5.12) that the real powering operation on T~ extends into a calculus of power series
R[[z®]] x T> — T which in particular restricts to a composition law satisfying C1y, C2y, C3y,
and C4y. In order to complete the proof of Theorem 4.3.1 for v =0, it remains to show uniqueness.

Proposition 4.4.1. The function o is unique to satisfy Clg, C2y, C3q, and C4.

Proof. Let e be a composition satisfying conditions C1y, C2y, C3p, and C4y. Write
s=cm(l+e)€T>", where c€ R7, m:=0,, and ¢ < 1. By strong linearity, it suffices to verify
that (e s=s" for any monomial in £.5. Given r € R, the condition C4( implies

(k)
lhes=1Lye(cm)+ Z %)k—|.m(cm€)k.

keN>
We have (£5)™ = k! (1) 457", so
lhes={ye(cm)+ Z (2>(fgfkocm)(cm€)k.
kEN>
We have (e (cm)=/{(e (clyem)=({yo(cly))em=c"({yem) by C3y and {fem=m" by C2, so

5o (cm)=(cm)". Likewise, £5 "o (cm)=(cm)"~*,

hes=(cm) + Z (2)(cm)"_k(cms)k:(cm)"'<1+ Z (2)5’6):3’". O
k

keN> eEN>

SO
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4.4.2 C1, and C2, for v >0

For the remainder of this section, we assume that v > 0. By the results in Section 4.3.2, we have
a well-defined extension of L. to all of T~ for each v < . Indeed, for s € T>" and vy < «, take
n with y=w""n+ o0 with 0 <w”- (so n=0 if v is a limit). Then we may set L+(s):= Ls(L?-(s)).

Given a € M, and [= H,KQETY” € L., we have by P, that Z,Ka Ty Lyt1(a) € logO, so we
set [o a::exp(zv<ary L, 1(a)) € M. Clearly, the map £.o — 9M;[—loa is an embedding of
monomial groups which preserves real powers, and by A,, this embedding is order-preserving as
well. For fel.,, weset foa:= Zre,c@ fi(toa). By Proposition 1.3.2, we have:

Lemma 4.4.2. The map L., —T; f— foa is a strongly linear ordered field embedding.

Proposition 4.4.3. For p<a and a€ Mg, the function L, is analytic at a with

Conv(L,)a 2 a+T=% and
(k) )
L) (a) = £,70a
for all ke N.

Proof. If v is a limit ordinal, then this follows from C4, for any ordinal u with p <w”, so we
may assume that v is a successor. The lemma is immediate when p=0, so suppose p >0 and take
n €N and 0 < v <w" with p=w”-n+~. We have

Ly=L,0L%%.

Now Lemma 4.3.2 on the one hand, and Proposition 3.1.8 Theorem 4.3.10 on the other, give that
L. and L, are analytic with Conv(Ly»-)s 2 s+ T=* and Conv(L,)s D s+ T=* for all s€ T>".
Since moreover we have

Ly-(a+6)~Ly-(a) and  L,(a+0d)~L(a)

for all 6 € T=¢, we may iteratively apply Proposition 2.3.8 and deduce that the same is true of L.

By the chain rule in I and in ordered fields (Proposition 2.1.3), we also obtain that L/()k)(a) :E,ﬁ’” oa
for all se T>7. O

In the general situation when s € T>”, our next goal is to show that the family (L,+1(5))y<a
is well-based. For the remainder of this subsection, we fix s € T~>~. By v-confluence and Corol-
lary 4.3.7, take n € N and p <wv such that L,(s) — L,(0,(s)) <1 for all w*n<y<a. If vis a
successor, we can arrange that p=v_. Set a:=04,(s), set € :=L+(s) — L,(04(s)), and set f:=wh.

Lemma 4.4.4. Let f € L., and let m e N. If v is a successor or f €|
expression fo Lgn(a) is defined and equal to (folgy)oa.

n<u]L<W’7’ then the

Proof. Suppose v is a successor ordinal, so 3 =w"-. Then Lgn(a) € My, so fo Lagmy(a) is defined.
As the maps f+—— (folgy)oaand f+— foLgy(a) are strongly linear, we may assume that f is

a monomial [= ] 61]. Since €~ 0 €gm ={am+~ for v < a, we have

<o
(lolgy,)oa= ( H E[B”m+7> o a:exp< Z [7L5m+7(a)> = exp( Z [WLW(Lﬁm(a))> =10 Lgm(a).
y<a v<a v<a

Now suppose that v is a limit and that f € L.,» for some 1 <v. By increasing 7, we may assume
that fm <w", so f,€gm € L<,n. Then C2, and C3,, give

(folpm)oa= fo(lgmoa)= foLgn(a). O

We rely on the following technical lemma in order to have a precise description of the support
of L,(s) for certain ordinals p.
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Lemma 4.4.5. There is a well-based family (fy.k)gn<y<a,ken> from ]Lfﬁn,a) such that

Lyaa(s) = Loma@+ 3 (fruwoa)e
for each v with fn< v <a. N>

Proof. Fix v with fn <~v <a. We first claim that

Ly1(8) = Ly 1(a) + Ty n (Lsa(a), ©):

TB8n
y+1
If v is a limit, then take n with v <w” <. Then o ﬁ"{,eﬁn €L, so C4,, gives

v+
(Lgn(a),¢€)
gT Bn

and C3, gives £ '] o Lgn(a) = L, 11(a), thereby proving the claim. If v is a successor, then take

p<a with y+1=8n+ p. Since Lgp(a) is L<,v-atomic, Proposition 4.4.3 and the fact that

010 =1, yield

Lyia(s) =1 0 Lgn(a) + 7,

18n
y+1

Lyia(s) = Lp(Lpn(s)) =Lp(Lpn(a)) +7Ze,(Lpn(a), )
= Lysi(@) +Zy10m(Lon(a), €).

Having proved our claim, let £ >0 be given and set f, ::% (Kliq)(k) 0lgn € Lign, o). Lemma 4.1.2

yields (@ﬁ’})“@) =<1, whence f, r~<1. If v is a limit, then (flﬁ’})(k) €L, where 7 is as above. So
in both the successor and limit cases, we may apply Lemma 4.4.4 with (flﬁ’})(k) in place of f to get

1 :
Frroa=2((7D® 0 L (a).
This implies that
Lyir(8) = Ly () + Ty e (Ln(0). €)= Ly a @)+ S (frx0m)eh.
kEN>

It remains to show that the family (fy &)gn<y<a,ken> is well-based. Since (£y41)gng~<a is a well-
based family in L<, and Lign o) — L<a; f f187 is strongly linear, the family (@ﬁq)ﬁng'y«x

is well-based. Since supp. 0 is well-based and infinitesimal, the family ((@i’{)(k))ﬁng'y<a,keN> is
well-based. We conclude that the family (fy )gn<y<a,ken> is well-based. |

Proposition 4.4.6. Let (r,)y<a be a sequence of real numbers. Then the family (Ly41(5))y<a s
well-based and the series 3. _ ryLy11(s) lies in log .
Proof. We will show the following:

a) For each k <n, the family (L,11(5))gr<y<p(k+1) is well-based and

ryLy11(s) € logT~.
By <B(k+1)
b) The family (Ly41(5))gn<~y<a is well-based and
Z ryLyi1(s) € logT~.
n<y<a

The proposition follows from (a) and (b), since the union of finitely many well-based families is
well-based and log T~ is closed under finite sums.
To see why (a) holds, let k¥ <n and note that

(Ly+1(8))r<ry<pk+1) = (Lp+1(Lgr(s))) p< 5-

Since (€,11),< g is well-based, C1,, gives that (L,41(Lgk(s)))p<s= (lp+10Lgk(s))p<p is well-based.
We have

Ty Lyya(s) = Z r8k+p Lor1(Lpr(s))-
Bk<y<B(k+1) p<p
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Set 1:=T],50,"""" € L. We claim that Y _ ;7p+p Lp+1(Lgw(s)) =log(lo Lgx(s)). If p=0,

then [=/¢g* and
> oo Lor1(Lon(s)) =i Li(Li(s)) = log(Li(s)™) = log(lo Lgx(s))-
p<p
If 11> 0, then C3, gives
> okt p Lps1(Lr(s)) =log(1) o Lx(s) =log(lo Lpi(s)).
p<p

As for (b), let € := Lgny(s) — Lgn(a). By Lemma 4.4.5, there exists a well-based family
(f’y,k)ﬁng’y<a,ke]N> from ]L[_En.,a) such that
L) =Ly(@+ 3 (fyhom ek,
kEN>

The families (L4+1(a))gngy<a and (fy,x 0 0)gn<y<a,ken> are well-based by Lemma 4.4.2
and the fact that a € 9,. Since the family (¢¥)pen is also well-based, it follows that
((fy.k0a)e¥)gn<y<a.ken> is again well-based. In particular,

(Ly+1(s))sn<y<a= (Lwl(a) + > (frro0) é‘k)
AnLy<a

keN>
is well-based. Now

Z Ty Lysa(s) = Z ry Lyga(a) + Z T’YZ (fyroa)eh.

Bny<a Bnsy<a pn<y<a  keN>

Since f, 1 and ¥ are infinitesimal for all k£ >0, we may write

Z TvL’H-l(S):( Z T’YL’Hrl(a))‘f'&a

fn<y<a An<y<a

where 6 € T=. By (3.1.1), we have § = L(E(0)) € log T~. Furthermore, P, implies

Z Ty Lyt1(a) €logM ClogT>.

Bn<y<a

We conclude that 37, . _ 7y Ly41(s) € log T>. O

Let [= H,Kaﬁij € £« In light of Proposition 4.4.6, we define

los := eXp(Z [’YL’H-l(S))'

<o

We note that the map £, — T7;[——Tlos is an embedding of ordered multiplicative groups for
each s€ T>".

Our next objective is to show that the map £, — T;[—— [os extends by strong linearity to
a map L., — T which satisfies C1, and C2,. For this, we will show that [—— [0 s is a relatively
well-based mapping, by using a similar “gluing” technique as for Proposition 4.4.6. Recall that
our second induction hypothesis from the beginning of this section stipulated that the mapping
Lewn— T;[—lo s is relatively well-based for all y<v and s€ T>".

Proposition 4.4.7. Let ®: £.,— T be the map ®(I):=1los. Then ® is relatively well-based.

Proof. Let &, be the restriction of ® to £, ) and for k <n, let ®; be the restriction of ® to
Lk, (k+1))- Since

suppe @ C (suppe o) - - - (suppe Pn—1) (SUppe Pxn),
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it suffices to show that each ®; and ®3,, are relatively well-based. For the ®y, fix k <n. Our
induction hypothesis implies that the map Wx: £(o, gy — T'; [ [0 Lgi(s) is relatively well-based.
By Lemma 4.4.4 with [ in place of f, we have

(I)k([ o fﬁk) = ([ o fgk) os=lo Lgk(s) = \I/k([).

It follows that @y is also relatively well-based with suppe @, = suppe Uk.
Now for ®,. Let [= Hﬁn<’y<a£b € £8n,a)- By Lemma 4.4.5, we have a well-based family

(f’y,k)ﬁng’y<a,ke]N> from ]L[_En,a) such that
log(@zn()= Y LLy(s)= D> LLyal@+ > L Y (fuoa)e
BnSy<a BnSy<a pn<y<a  keEN>
Exponentiating both sides, we obtain
e =(e) B[ 3 4> (fuea)et
fn<y<a keN>

$0 0g,(y="loa. The set

€= U supp (( fy,x0a) e¥)

Bn<y<a,keN>
is well-based, infinitesimal and does not depend on [. Since
Supp (1)271([) C @

09,,(1)
for all [€ £(g;,,), we conclude that suppe >, C € is well-based. O
We already noted that the map ® from Proposition 4.4.7 is an order-preserving multiplicative
embedding. By Proposition 1.3.7, it follows that ® is well-based, so it extends uniquely into an
order-preserving and strongly linear embedding ®: L., — T. Taking fos:=®(f) for all f €L,

this proves C1,. By construction, we also have C2,. Note that o extends the unique composition
Lcyn X T>" — T of Theorem 4.3.1 for n <wv.

4.4.3 Properties C3, and C4, and uniqueness for v >0
Let ¢ € T=. By [62, Corollary 16|, we have

ErlE)=) () =0+e) foralreR, (4.4.1)
kelN

Proposition 4.4.8. For s€'T~, and r € R, we have logs”=rlog s.

Proof. First, note that logm”=rlogm for all m e M: if m > 1, then this is just axiom FEq; if m <1,
then logm” = —logm ™" =rlogm; if m=1, then logm”=0=rlogm. Now, writing s=cm (1 +¢)
with c€ R”, m:=10,, and € <1, we have

log(s") = log(m") +logc”+ L((e)")
= 10g(m’”)+1ogcr+EEE(r£(s)) (by (4.4.1))
= rlogm+rlogc+rL(e) (by (3.1.1))
= rlog(s). O

Proposition 4.4.9. ForreR,g€ L2 and s€T>", we have ({50 g)os={50(gos).

Proof. As in Proposition 2.5.7, it suffices to prove that ([os)"=1["0 s holds for each [= ny<a€'[y‘y €
£<q. For such [, we have

log(I"o5) = 3 LrLya(s).

T<a
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By Proposition 4.4.8, we also have log((los)")=rlog(los)=r Z’y<w" [y L,+1(s). By injectivity of
the logarithm, we conclude that ([os)"=1"0s. g

Lemma 4.4.10. For all h€ L2, and all s€T>", we have log(hos)=(logh)o

Proof. First, we note that for [=]] 8;” € £.4, we have

T<ao
(log[)os:<z [’y€7+1>°5: Z [y Lyy1(s) =log(los),
<o <o

where the last equality uses the definition of [os. Now, let h € LZ, and write h=cm (1 +¢) with
ceR”, m:=0p, and ¢ < 1. Then hos=c(mos)(l+eos) and

k-1
(logh)os = (logm)os+logc+ Z + os
kEN>
1)k: 1
= log(mos)+loge+ Z T(eos)k

kEN>
= log(c(mos)(1+eos))=log(hos).

Here we used the facts that (logc) o s =1logc and that composition with s commutes with powers
and infinite sums. g

Proposition 4.4.11. The function o satisfies C3,, i.e. for all f €L, gE]L<a ,and s€ T~
we have fo(gos)=(fog)os.

Proof. We will show by induction on p<v that fo(gos)=(fog)osforall f€Loyu all ge L2,
and all s€ T>". If 4 =0, then this follows from Proposition 4.4.9 and strong linearity.

Let >0, let g and s be fixed, and assume that the proposition holds whenever f € L., for
some 7) < p. By strong linearity, it suffices to prove that [o(gos)=(log)os for all [= H’y<w“£’)’ €
Lcwn. Lemma 4.4.10 gives

log(lo(gos)) = (loglo(gos) Z [, lyt10(gos),

y<wh

log((log)os) = (log([og))os((log[)og)os( Z lyﬁvﬂog)os

Fy<wh

Using the injectivity of log and strong linearity, we may thus reduce to the case when [=/, for
v <w*. Our induction hypothesis takes care of the case when p is a limit ordinal or when vy < w*-,
so we may assume that [=/,, where w"- <y <w”. By the inductive definitions of L.(gos) and
¢, 0 g, we may further reduce to the case when y=w#-. Lemma 4.4.10 takes care of the case u=1,
so we may assume that g > 1. In summary, we thus need to show that L u-(gos)= (f,x-0g)os,
where p > 1.

Set a:=0,0-(g) € L<o. We claim that ({,x-o0a)os=Lyu-(aos). We have a="{, | ,u--, where

F-<oo<a, keN,and k=0 if p_ is a limit ordinal. Since ¢, ,n-- =L, n--0 L, we have

gwuf oa= gwuf o) (gwuffk o &,) = (gwuf nguffk) o ga‘ = (gw“* — k‘) o go’ = £g+wu— — k‘
This gives

(lor-0a)os = (loyuwr-—k)os=Lgiwr-(s)—k=Lyu-(Lo(s)) —k
= Lw#—(quffk(LU(S))) :Lw#—(Lo-_;'_w#—— ( )) :qu—(aOS),
where the first equality in the second line follows from Proposition 4.3.11.

Having proved our claim, let us now show that ({,x-0g)os=L,u-(gos). Take v <wh- with
L,(gos)—Ly(d,n-(gos))<1,and e:=¢y0g—L,0a<1. We have

bon-0g=L10 o(tyog)=t o(L,0n) +Ty1o (Lyoa,e) =Lyr-0a+Tpy (Lyoae).
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Asl, €L n- and (&Tﬂ,)(k) €L,u- for all k>0, by Lemma 4.1.2, our induction hypothesis applied
to p_ gives

(L) ® o (Ly0a))0s= (L1 )P o ((ty0a)0s) = (L1 )P oL (aos)
for k> 0. Along with C1,, we thus have

Ty (k) Ty (k)
T, (bowe)os — (Z (L) o(ewoa>5k>osz g () Woltyod)es

| |
keN> k! keEN> k!

Ty (k)
— Z (gwu—) Z'LW(CLOS) (sos)kz’TgT;L(Lv(aos),eos).

keN>

Using also our claim that (£, x-0a)os=L,«-(aos), we obtain

(lor-0g)os=(lyn-o0a)os+ Ty, (byoae)os=Lyn-(aos)+ Ty (Ly(aos),cos).
It remains to show that L,e-(gos)=Lyr-(aos)+ Ty (Ly(aocs),cos). Now

L,(gos)—Ly(aos)=(lyog)os—({yoa)os=cos=<1,
80 dyn-(aos)=0,u-(gos) and Ly(aos)— Ly(d,n-(aos)) <1 By analyticity of L,»-, we can
conclude that Lyw-(gos) = Lyu-(a0s) + Ty (Ly(aos),cos). O

Now that each £, 0 s is defined for p < o, the same arguments as in Proposition 4.4.12 yield:

Proposition 4.4.12. For p<a, the function L, is analytic on T>" with
Conv(L,)s 2 s+T=* and
(k) _ k)
Ly (s) = £, 0s
for all s€ T>" and k € N.

Proposition 4.4.13. The function o satisfies C4,,, i.e. for all f€lLcq, allt€e T>~ and all § €T
with § <t, we have

Fo(t+8)=fot+T(t,0).

Proof. Fix te T~ and 6 € T with § <t¢. Let T:IL.,— T be the map given by
T(f):= fot+T(t,09).

We need to show that fo(t+06)=T(f) for all f€L.,. By Lemma 4.1.1, the map T is strongly
linear, so it suffices to show that [o (¢t +6)=T(l) for all [€ £,,. Since log is injective, it is enough
to show that log (lo (t+6)) =log T(l). Now log (lo (t+6)) = (logl) o (t+ ) by Lemma 4.4.10 and
log T (1) =T (log!) by [33, Lemma 8.3]. By Proposition 4.4.12 and strong linearity, we have

T(log1) T( S le) =S LT ()= 3 b Lysa(t+6) = (log D) o (¢ +0).

v<a y<a y<a

We conclude that log(lo (t+4d)) = (logl)o (t+ ) =T (log!) =log T'(I). O
To conclude our proof of Theorem 4.3.1, we prove the uniqueness of o.

Proposition 4.4.14. The function o is unique to satisfy C1,, C2,, C3,, and C4,.

Proof. Let e be a composition satisfying conditions C1,, C2,, C3,, and C4, and let s€ T>".
We first show that ¢ es=/10s. Write s=cm+4, with ce R”, m:=0,, and § <s. By C4,, we have

0 o (cm)

o J.

lies=/{1e(cm)+ Z
kEN>
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For k>0, we have égk) = (=D (k=14 so C2, gives
0% o (cm) = (=)L (k—1)! (cm)F =M o (cm).

Thus, it remains to show that ¢; @ (cm)=¢;0(cm). Using C2,, C3,, and the identity cm=(cfy) em,
we see that

lie(cm)=/L1e((cly)em)=({10(cly))em= ({1 +]logc)em=L;i(m)+logec.

Likewise £10 (cm) = Ly(m) +logc.

Now we turn to the task of showing that fes= fos for f € L., We make the inductive
assumption that for y<v and f €L~ we have fes= fos (if u=0, this is Proposition 4.4.1). By
strong linearity, it suffices to verify that [e s=[o s for any monomial [€ £_,. As ([es) !=["les
and likewise for [o s, it suffices to show this only for [€ £Z . Given [= H7<a€[7” € £<a, we have
by C3, that

lie(les) = (610[)03:2 I,(lys105),

<o
lio(los) = (flo[)os:z [y(ly4108).
<o

Thus, it suffices to show that £, es={,0s for all v <a. By our induction hypothesis, we only need
to handle the case that v is a successor and v > w”~. If y=w"~, then by Proposition 4.3.5, there is an
ordinal o <w"- with e:={,05 — L;(0,v-(5)) < 1. Our inductive hypothesis and Lemma 4.1.2 yield

lyo5 = Ly,08=Ls(0,-(s5))+e¢,

(12 0 Ly(d,r-(s) = (£12)F) o Ly(v,-(s)) (for k€ N>)
Thus,
loros = (17 o(ly0s)=017 o (L, (0, (s))+¢) (by C3,)
- 079K o Ly(0,-(s
A Y R e (by C4,)
keN>
- 017)*) o Lo (0,0 (s
= ([T oly) v (s)+ Y (6) o (Qu(5)) .1 (by C3, and C2,)
keN>

= Lyv(04,7-(5)) + Z (flg*)(k)oLU(aw”*(S)) ok

!
et k!

= {,v-0s.

Now suppose v > w"- and assume by induction that ¢, e s=/{,0 s for all o <. Take o <~ with
v=w"-+4 0. Then C3, and our inductive assumption gives

lyos=(l 0l )os=L,0(l,v-05)=L;0(l,r-05)=(l,0l,v-)os=L 0.

This concludes the proof. O






Chapter 5

Hyperexponentiation

We now tackle the problem of hyperexponentiation in a confluent hyperserial skeleton T, equipped
with its external composition law o from Theorem 4.3.1. For the sake of the present discussion, we
take T as having force On. Our treatment of exponentiation will take the form of an inductive proof
which spans over Chapter 5 and Chapter 6. The reason for this is that we require each function

LI}Z:’]I‘>7> —>’]I‘>’>;s»—>€mos

for € On and v <w* to be strictly increasing (for now, we only know this to be true for v=0 by
Lemma 4.3.12), in order to be able to study the properties of hyperexponentiation. Yet such strict
monotonicity result seems to be difficult to obtain unless it is known already that T embeds into
a field T where all hyperexponentials E,, of all strength v <w* are defined. In that case it follows
that LLZ = Lo E, is strictly increasing. Now constructing extensions of T where E, is defined
for all v < w* requires LI}’W’ to be strictly increasing for all n < ¢ and p <w" ...hence the inductive
structure of the proof.

5.1 Inductive setting for Chapters 5 and 6

Our goal for Chapters 5 and 6 is to prove the Theorem 5.1.5 below. We first need a few defini-
tions. They implicitely rely on the extension of partial hyperlogarithms into strictly increasing
functions T~>~ — T~ as a consequence of Section 4.3.

Definition 5.1.1. Let T be a confluent hyperserial skeleton of force v < On and let up<v. We
say that T has force (v, p) if for each n < w, the function Lyn: T=7 — T>7 is bijective.

Note that if T has force (v, p), then L,: >~ — T>" is bijective for all v <w*.

Remark 5.1.2. Every confluent hyperserial skeleton of force v is a confluent hyperserial skeleton of
force (v,0). Given a set-sized field of transseries T, we recall that the exponential function cannot
be total [68]. Thus, any confluent hyperserial skeleton of force (v, u) with p >0 is necessarily a
proper class.

Remark 5.1.3. Let T be a hyperserial skeleton of force On. Then T is hyperserial of force (On, p)
if and only if (T, (Lyn)n<y) is hyperserial of force (v, ) for all v > p. Similarly, T is hyperserial
of force (On, On) if and only if T is hyperserial of force (On, p) for all p.

Definition 5.1.4. Let T be a confluent hyperserial skeleton of force v < On and let p<v. A
hyperexponential closure of T of force u is a confluent extension T ) of T of force (v, u)
with the following initial property: if U is another confluent hyperserial skeleton of force (v, u)
and if ®: T — U is an embedding of force v, then there is a unique embedding ¥: T« ,,) — U of
force v that extends ®.

C
T — Ti<p

AN
U

105
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A hyperexponential closure of T is a hyperexponential closure of T of force v.

Note that a hyperexponential closure of force g if it exists is unique up to unique isomorphism.
We will write T(< ,) for the hyperexponential closure of T of force u if it exists. We can now state
Theorem 5.1.5.

Theorem 5.1.5. Let T be a confluent hyperserial skeleton of force v < On and let w <v. Then
T has a hyperexponential closure of force .

We will prove Theorem 5.1.5 by induction on 7 (for all T'). Note that it holds trivially if 7w =0.
Consider a generalized ordinal 7w < v. Throughout Chapters 5 and 6, we make the induction
hypothesis that Theorem 5.1.5 holds for all n < :

Induction hypothesis (Chapters 5 and 6). Fach confluent hyperserial skeleton of force n <
has a hyperezponential closure of force n <.

We first treat the case when 7 is a limit. For each 1 <, and each confluent hyperserial skeleton
T of force v, we have an exponential closure T,y =R[[M,)]] of T of force .

Each ordinal v € On can be written uniquely as v =7 x(v) + p(v) where x(v) € On and
p(7v) < if we impose x () =0 in the case when 7 = On. Setting 9y :=M, we define an extension
Ty :=R[[9MM(,]] by induction on vy € On as follows:

* M) =M< o))
o My :=U, ., M) if 7 is a non-zero limit.

So T{py="T and we have the force v inclusion T{,) C T ) whenever o <. We set

Memy= | Mey,  Tem:= |J T
vE€On v€0On

Note that T« z)=R[[M < x)]] by Lemma 1.1.9.
Proposition 5.1.6. The hyperserial skeleton T« is a hyperexponential closure of T of force .

Proof. We first prove that T« ) has force (v, 7). Let n < and s € ’]I‘(><’:). So s € T for a certain
v €O0n. We have s € T, 2) where T(,,2) has force (v, y+n+1), hence force (v, 7+ 1) thus
s€ Lw”(T(?:n+2)) C Lun(T<x)). So T(<x) has force (v, ).

Let ®: T — U be a hyperserial embedding of force v into a confluent hyperserial embedding
U of force (v, ). We will show for each v € On and that there is a unique force v embedding .,
T,y — U extending ®. We have ¥y=®, so assume that we have defined this unique embedding
U, when p <+. If y=mn+1is a successor, then T,y = (T(y))(< p(n)), S0 by 5.1.5, the embedding
U, extends uniquely to an embedding ¥.,: T,y — U. Since ¥, uniquely extends ¥, and since ¥,
uniquely extends ®, we see that ¥, uniquely extends ®. If v is a limit, then we set ¥.,:=J < U,.
The map W, is only defined on J, <7T(a), which may not equal T(,), but ¥, is defined on all of
M,y and so ¥, extends uniquely to a force v embedding T{,) — U, which we also denote by V..
Since each ¥,, 0 <y uniquely extends ®, we see that ¥, uniquely extends ® as well. Likewise, we

define ¥ to be the unique force v embedding extending U7 con ¥ O

We now assume that w= p+1 is a successor. So Theorem 5.1.5 holds for x4 by Hypothesis 5.1.5
and we have an initial extension T C T, for each confluent hyperserial skeleton of force v. In
order to prove Theorem 5.1.5, we have to show how to define missing hyperexponentials of the form
E,u(s) for s € T>7. In Section 5.2, we start by giving a formula for hyperexponentials E,x(s)
that are already defined in T~ (showing in fact that they are analytic). In Section 5.3, we show
that defining hyperexponentials reduces to defining them on specific series called truncated series.
We will only prove Theorem 5.1.5 in the next chapter.

Before we continue, let us fix some notation. Set

a = wY

B = wH
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Given v < 3, we set

Uopy= [ €Lmm  lam= ] b t<si=top:
Y<o<pB y<o<pB

017, Given s e T> ", we set

Note that ¢ zézé and that E[T»Y’Y_ﬂ) =11, <ocplo

Ly, p)(s) =14}y pyos, LP(S);:%VOS’ L[T%ﬁ)(s)::émﬂ)o&

and we view L, 3), L;”, and L[va-ﬂ) as functions from T~ to T~~. We define L, 3) and L(T;Y_ﬂ)
analogously.

Given vy < o, we say that E,(s) is defined if s € L.,(T>"). If T is of force (v, u), then E,(s)
is defined for all v <w* and s € T>>~. Lemma 4.3.12 tells us that L, is strictly increasing; in
particular, it is injective. We let E,: L,(T>>7) — T~ be its functional inverse, which is again
strictly increasing. We may also consider E. as a partially defined function on T>".

Our induction hypothesis, that T, exists, has the following consequence:

Lemma 5.1.7. For v < 3, the function ng is strictly increasing on T~

Proof. Let s,t € T>>~ with s <t¢. By our inductive assumption, E,(s) and E,(t) both exist in
T(<,)- As E, and Lg are strictly increasing on 'IF(><’Z) and s <t, we have E,(s) < E,(t) and

L} (s) = Lo(B-(s)) < Ls(E, (£) = L} (0). =

5.2 Local hyperexponentiation

The situation in this section is the same as that which we encountered when studying the expo-
nential in transserial fields. The function Lg being analytic, its definition around a point s € T>>~
is given by a fixed power series, whose formal functional inverse if it exists provides a local inverse
of Lg around Lg(s).

There is a question as to whether such inversion can be done purely formally, i.e. in the general
context of analytic functions on fields of well-based series. The problem here is that although a
formal inverse of a power series is always defined, its convergence on a sufficiently large neighbor-
hood of 0 may be problematic to establish, unless one has control over the way differentiation acts
on analytic functions. Since analytic functions do not form a group of well-based series, one is left
with few tools to tackle such problem

5.2.1 Local inversion of log
We first consider the case when =1, so ;4 =0. This is the well-known case of exponentiation in
fields of well-based series, which we partially studied in Section 3.2.1. Indeed, recall that (T, log)
is in particular a transserial field. For s € T~, we showed that
log s € Ty <= s €M,

and that

s€logT” <= s, €logT~. (5.2.1)
Furthermore, the function log: T~ — T is bijective if and only if log M =T\ .
Corollary 5.2.1. The skeleton T has force (1,1) if and only if T, ClogT~.

Recall by (3.2.2) that for s €logT”, r € R and £ < 1, we have

1
exp(s+r+¢e)=exp(r)exp(s) ( E Hs’“).
kEN
For s € T>°~, we write ©

Li[s]:={teT>":s—t=x1}.
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We note the following:

Lemma 5.2.2. For s € T~, we have (log s). =log0s. Thus, s €M if and only if logs € T\.
Moreover, Ly is a bijection between E[m| and L1[L1(m)] for each m €M™,

Proof. Given s €T~ write s=r0,(1+¢), where r € R~ and € <1. We have
log s =log 0, + log r + L(¢)

where logm is purely large. If 7 # 1, then supplogc= {1} and if %0, then L(¢) ~&, so supp L(g) < 1.
Thus, (log s)s,. =log s, as desired. Now assume that s> 1 and let m € 91~. Then

SEgl[m] = Vy=m <— ﬁl(Ll(s)):Ll(bs):Ll(m) < Ll(s)eﬁl[Ll(m)],

so L1(&1[m]) = L4[Li(m)]NL1(T>>7). By (5.2.1), we have £4[L1(m)]N L1 (T>>7) = L[L1(m)], hence
the result. 0

5.2.2 Local inversion of the hyperlogarithms

In this subsection, we study the range of the functions ng for v < (8 and give a formula for their
partial functional inverses. We fix a € T>~ and set ¢ :=Lg(a) € T>7. We also fix A < 3. For
k €N, we define series t;, € L.z inductively by

to = 6/\

thy1 = lepty

Intuitively speaking, the series t;oa is to be thought of as (Kj\ﬁ)(k) o, whereas the sum ), t’“lj 2ek

behaves like Lx(Eg(¢ +¢)) for € < L(x,gy(a)~'. The latter thereby provides a functional inverse
of LB on a neighborhood of .

Proposition 5.2.3. Let e € T with e < L(» p)(a)~*. Then the family ((tyoa)e®)ren is well-based
and tgoa = (tpoa)e® for k>0.

Proof. Consider the derivative Jpy, gy:= E[T/\):ﬁ) 0 on L.g. We claim that ¢ = 8[’&75)(60) o/ for all
k €NN. This is clear for k=0. Assuming that the claim holds for a given k, we have

ther = Lepth="Lcp (O 5)(L0) 0 lr) =Lcp (O] 5)(Lo) 0 lx) L4
= {pn.) (O, ) (00) 0 03) = (L3 5y O 5y (£0)") © x = D3T3, (Lo) 0 .

In light of this claim, we have t;o0a= 8[]37@(60) o Ly(a). Recall that 0 has well-based operator
support supp, 0= {4 1:7< B} =< ly" as an operator on Lcg, so
A A
supp. O gy < Lo U g =Lo " [ €= T[] =054
AL<y< B A<y<B
Consider the strongly linear map
O:Log — T
f — foLx(a)
and set

A= U supp ®(m),

mesupp« 9|, g)

so 2 is well-based and A < L&B)(LA(a)) =L, p)(a). For k€N, we have tyoa= @(8[1“/\_’@(60)), S0
for m € supp(troa), there exist my, ..., mg €suppJdjy, gy with

€ (supp ®(m) - - - supp ®(my)) - supp L (4o).
This gives us
supp(tx 0 a) CA* - supp (¢o)
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and it follows that
supp((troa)e¥) C (A - suppe)* - supp @(£p).

As e <L g (a)~!, we have A-suppe < 1, so we deduce that ((toa)e"),en is well-based and that
tooa = (tyoa)e® for k> 0. 0O

For our next result, we need a combinatorial lemma for power series over a differential field.
Let (K ,0) be a differential field. Then the ring K[[z]] is naturally equipped with two derivations:

(i anz”> =

n=0

8<i anz”> =
n=0 n

We also have a composition o: K[[z]] x z K[[z]] — K][[z]] given by
Ro(2S)— R(zS5)

(77,+ 1) an+1'zna

s

3
I
=]

K

d(ap) 2™

I
=)

for R, S € K|[[#]]. This composition interacts with our derivations as follows:
O(Ro(25))=(0R)o(2S5)+ (R 0(295)) 208, (Ro(25)) =(R'0(29))(25)
Lemma 5.2.4. Let S=3 _an,z"€K[[2]] and R=3_  _\ bm2™€K][[z]]. Write F:=Ro(z5)
and assume that we have
wagObg=1, (n+2)apt1=uvagday, (m=+1)byyt1=1u0byy,

for each n and m, where w€ K. Then F =by+ z.

Proof. The last two assumptions give us the following identities
R’ = uwdR, and )
(28) = ap(1+uzdS). (5.2.3)
We claim that (0bg) F'=0F. Indeed, we have
OF = O(Ro(z25))
8R) (2z8)+ (R'0(2S5))z08

('R o (28)+ (R'o(25)) 208 (by (5.2.2))
(u1+z35)( o (25))

—
o
[N}

~

—~

= u~ (1+u283)( 0(z5))
= ultag(28) (R0 (29)) (by (5.2.3))
= (0by) (28) (R 0 (25)) (since wagOby=1)
= (Obg) (Ro(zS))
= (0bo) F'
Write F'= Zk Fy 2%, The identity (0by) F’=OF yields Fj 1 :maFk for each k. Since
Fy=bo, we Conclude that F1=1 and F,=0 for k> 1. O

Lemma 5.2.5. Let e € T with € < L(x g)(a)~*. Then

thoa
L?(Z € ><p+€. (5.2.4)

neN

Proof. We have

LgA(Z tnn# n): (tooa—i—z t,Loa n) Z (85) m!(tooa) (Z tnnc?agn)m_

neN n>1 meN n>1
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Consider the formal power series

F= Z m)OtO(Z %zn)mem<a[[z]].

meN n>1
Writing F' = ZkeNszk, we have
S (Foa)et =L} ( 3 tj%gn)
keN neN
Thus, it suffices to show that F'=/{g+ 2.
Let a, := ﬁtrwl and b, ::%(%A)(m) otg. Then by factoring out z from the inner sum

and re-indexing, we obtain

meN neN

=y bm<zz )m

Note that the sequence (a,)nen satisfies the identities:

o=t =0 alh =0 Gy n+2 _beptnin _Llepan
0=l <BEX X, 8) n+1 (n+2)! (nt2) nia

Since ((fg)‘)(m) oty)' = ((fg)‘)(m"’l) oto)to= ((fg)‘)(m"’l) oto) £3, the sequence (b,,) satisfies the iden-
tities

A, L Ny, bm
bo 65 Oto 65, bm+1 (m+1)'(£5 ) Oto (m-i—l)ff\
Setting u:= /., we have
!
wagby="L<gbi=1, (n+2) ant1="Lcpga, =uaga, (m—l—l)bm“:%:ub,’n.
A
Using Lemma 5.2.4, we conclude that F'=by+ z=/{g+ z. g

Proposition 5.2.6. The map 3»—>Lg>‘(3) is a bijection from Ly(a) + T~ to Lg(a) +
T=Lom@ ™

Proof. Let § < Ly(a) and let s:=Ly(a) +d. We have L}*(s) = Lg(a) + T,17(La(a), ), so
Li(s) = Lp(a) ~ ((45Y) 0 La(a)) § < ((£5) 0 La(a)) La(a).
Since £5= ([0 £,)" = ((}})" 0 £3) £4, we have
(IR ﬁ b=,

so L}\(s) — Lg(a) < L, p)(a) 1. This gives Li*(s) € Lg(a) + T=Los(@)™!
Conversely, given € < Ly, gy(a) ™!, Lemma 5.2.5 yields LBA(Z%N t’“kO‘a e¥)=Lx(a)+¢. Let us
show by induction on k> 1 that < é(k 3) I We have 1 —€<g€/\—€[,\ 8) =1L, ) r. Assuming

that ¢, < 66,5) £y, we have

ter1="Lc<p tr < lep (56,5) 0))'= lep (k 51(6,\_,5) %,6) O+ 66,5) g;),
We have

ap =00 D 6o s) ~ Ol Lo Lous) < Lo Lous = E23 b sy = B o)
A<o<pB

&) k€()\ & Lo, 5)€>\+€ ) K/\NK(A ) £3. This gives

Ll
oS eathm =7 25 = lo,0) lhn) = il O
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It follows that (t)oa)e® < (txoa) L(x,p)(a) " < La(a) for each k>0, s0 3, kot ok < Ly(a).

k!

Since tgoa= Ly(a), we conclude that ), t’“k# € Ly(a) + T=5 (@), O

5.3 Truncated series

The notion of a-truncation for o € w®™ is a generalization of pure largeness (i.e. the fact of having
only infinite monomials in one’s support). Like the exponential in transserial fields is determined
by its restriction to purely large series, the hyperexponential function of strength « is determined
by its values for a-truncated series. This seemingly unpractical notion will turn out to have many
regularities due to the relative simplicity of hyperexponential functions. It will play a crucial role
in the sequel of the thesis.

5.3.1 B-Truncation

Definition 5.3.1. For 0<n< p, we say that ¢ € T>~ is w'-truncated if ¢ > L] (m~1) for all
me (supp )~ and all v <w". We also say that a series p €T is 1-truncated if it is purely infinite,
i.e. if supp  CIM~. We write Ty ,n for the class of w'-truncated series in T. So Ty 1 ="T,.

In Subsection 4.2.3, we showed for 1 < v that the class T=>" can be partitioned into convex
subclasses &,n[s], s € T>7, each of which contains a unique L, »-atomic element d,n(s). In this
section, we describe a different partition of T into convex subclasses, each of which will contain
a unique w"-truncated series f,7(s). We will then show that Lg is bijective provided that T, gC
Lg(T>").

For the remainder of this section, we assume that p > 0.
Lemma 5.3.2. We have Tv. s+ R> C T, g. If u is a successor, then Tv. g+ R =T, 4.

Proof. For ¢ € T, 5and r € RZ, we have (supp ¢ +7) = (suppp)= and p+r> ¢ so p+reT, g
Assume now that p is a successor and let ¢ € Ty g and r € R. Again, (supp ¢ +7)~ = (supp ¢)~.
Take n € N with n > —r. Then for all v < 8 and m € (supp ¢)~, we have

© >Lg”+w”’”(m*1) :Lgv(m’l) +n >L;V(m*1) —r,
so @+7>LL7(mY). O

Lemma 5.3.3. Let a € T>7 and let ¢ :=Lg(a) € T>7. Then ¢ is B-truncated if and only if
supp ¢ = L (a)™! for all v < .

Proof. We have (supp ¢)7 = L,(a)~! for all v < 3 since the series L.,(a) is infinite. Let m €
(supp ¢)~ and let v < 8. By Lemma 5.1.7, the function Lgv is strictly increasing, so we have

o= LEV(LW(a)) > Lgv(m_l) if and only if L,(a) >m™!, hence the result. O

By Lemma 5.3.3 and R, the series Lg(a) is f-truncated for all a € Miz. The axiom Rg also
gives that Li(m) is 1-truncated for m € 9.

Lemma 5.3.4. Let s,t € T~ with si=t and let v < 8. Then L} "'(s)>L}(t).

Proof. Take r € R~ with rs>¢. Then Lemma 5.1.7 gives Lgv(r s) > Lgv(t), so it is enough to

prove that Lg’YH(s) > Lgﬂ(r s). For this, we may show that Egﬂ“ > 5270 (rfp) in . As the map
L —1L; f— fol/; is order-preserving, it is enough to show that

e;” = é}”*l ol > (%VO (rég))oly= Egvo (rty).
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This follows from Lemma 5.1.7 and the fact that r £y < {. O

Definition 5.3.5. Fort€T>", we define
Lat]:i={s€t+T~:s=t or (s#t andt<Lg’Y(|sft|*1) for some v < ) }.

Note that |s —¢| ™! is positive infinite whenever s € t + T~ and s #t, so the expression Lg”(|s -
t|=1) in the definition is warranted.

Proposition 5.3.6. The classes Lg[t] form a partition of T>" into convex subclasses.

Proof. Let t € T~>~. The convexity of La[t] follows immediately from the definition of Ls[t] and
Lemma 5.1.7. Let s € Lg[t]. We claim that Lg[t] C Ls[s], from which it follows by symmetry that
Ls[t] = Ls[s]. This clearly holds if s=t, so assume that s =t.

We first show that ¢t € Lg[s]. Let e:=s—t <1 and let v< g with ¢ < Lgv(|s|_1) for some v < 3.
Given o with 3> 0 >, we have £]7o l,=1{, <L, whence 017 < 4y. Therefore,

LY (lel™) = Ly7(Lg (el =) < Ly (el ™)

by Lemma 5.1.7, so t < LTU(|5|’1) for all such o.
If 1 is a successor, take n <w with v <w#-n. Then ¢ <LW "(le|=1) and since s —t=¢ <1,
we have

s=t+e<L} ™le| ™) +e<Lale| ) +n+1=LF" "I (e| ).

If v is a limit, take n < p with v <w”, so that ¢ < Lg“’"(|€|71). Let us show that s < L;wn+l(|5|’1).
Suppose for contradiction that s> LTM+ (le|=1). By (4.1.4), we have

Twnt?t

el gﬁ’ gﬁ

765“’ 7

wnt+2

0" — g~ o —

A

Since gi)n+2<€iﬂ,+17 we have K%“’UJrl 7€B }gﬁwn 7657 .
wn Tl w wntl w wntl
ET m eT m (ET m _Eﬁ) (ZT n_fﬁ) ET K _EBNKI Eﬁ E[wn+2 8):
Therefore,
wn+1 _ wn _ 1N
cms =t L (el = LY (el ) ~ Lprea ()

This means that |e| ' < Ly,n+2 5)(|e|7'): a contradiction since £f,n+2 5 < Lo.

Now let uw e Lg[t] and let us show u € Lg[s]. This is clear if u=s or if u=t, so we assume that
u, s, and ¢ are pairwise distinct. By our claim, we have t € Lg[s] and t € Lg[u], so take v < § with
s< Lgv(|t —s| ™ and u< Lgv(|t —u|™1). Note that

s —u| <[t —s|+ |t —u| <2max (|t — 5|, |t — u]),
thus, |s —u| ! >%min(|t —s|74 |t —u|™!). Lemmas 5.1.7 and 5.3.4 yield
Lg7+1(|s—u|_1)>L},7+1(2|s—u|_1) >rnin(LgV(|t—s|_1),Lg7(|t—u|_1)).

If L;VH(L@ ) >Lgv(|t —5|71) > s, then u € Lg[s] by definition. If Lg7+1(|s —ul™) > L;7(|t -
u| 1) >wu, then s € Lg[u], so u € Lg[s] by our claim. O

Proposition 5.3.7. Let t € T>7. Then the class Lg[t] contains exactly one B-truncated element.

Proof. Let us first show that L£g[t] contains a S-truncated element. Suppose that ¢ itself is not -
truncated, let m € (suppt) = be greatest such that ¢ < LM( ~1) for some vy < 3. Setting ¢ :=t, m, we
have ¢ —t=m, so L;7+1(|<p —t|7YH > Lgv( 1) by Lemma 5.3.4. Our assumption on m therefore

yields L;7+1(|<p —t|71) > t, whence ¢ € Lg[t].
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We claim that ¢ is S-truncated. Fix n € (supp ¢)=. By definition of ¢, we have t > Lgvﬂ(n_l)
for all v < 3. Since t — ¢y <n, Lemma 5.3.4 gives L;’Hl(n’l) > Lg’y(|t — pen| ™) for all v < 3,
S0 @wn & Lg[t] = Lg[¢]. By definition, this means that ¢ > ngrl(hp — @yn| 1) for all v < 3. Since
© — Qs <n, we have Lg”+1(|g0 — @en| ) > L;V(n’l), by Lemma 5.3.4. Thus, ¢ > L;V(n’l), as
claimed.

Now let ¢, € T~ be S-truncated series with ¢ € L3[1)]. We need to show that ¢ =1. Take
v < B with p < L;7(|<p —1|71). For m€ (supp ¢)~, we have ¢ > ngrl(m_l) since @ is B-truncated.
Therefore,

Ly (o= v[™) > 9> L (mh),

so |¢ — 1|7t =m~! by Lemma 5.3.4. Thus (supp ¢)= = |¢ — ¥|. Since |p — | <1, we deduce
supp ¢ > | — 9|, so ¢ <. We also have 1) € Lg[p], so the same argument gives 1) < ¢ and we
conclude that ¢ =1. O

For t € T>:~, we define f3(t) to be the unique [-truncated series in Lg[t]. Note that this
definition extends the previous definition of #;. It follows from the proof of Proposition 5.3.7 that
#5(t) < s for all s € Lg]t] and that

Lplt] = {s €T :#s(s) =ts(t)}.
Proposition 5.3.8. For a € T>" we have

Ls[Lg(a)]={se€T>":s— Lg(a) < Ly z(a)~" for some v < (}.

Proof. We have s € L3[Lg(a)]\ {Ls(a)} if and only if L%p(|s — Lg(a)|™1) > Lg(a) for some p < f3.
Since Lg(a) = L;p(Lp(a)) for each p < 3, this is in turn equivalent to |s — Lg(a)| ™! > L,(a) by
Lemma 5.1.7 . Thus, s€ Lg[Lg(a)] if and only if |s — Lg(a)| < L,(a) ! for some p< 3, and it remains
to show that |s — Lg(a)| < Ly(a)~! for some p < 3 if and only if |s — Lg(a)| < L, g)(a) " for some
v < 3. This follows from the fact that if p <~ <, then £, {1, gy, s0 Ly(a) ' < Ly, g)(a) " <
L(a)~t. O
Proposition 5.3.9. For each a € T~ we have Lg(Egla]) C Ls[Ls(a)].

Proof. Let u € &gla]. Then there is A=w"n < @ with Ly(u) — Lx(a) < 1. Thus, Ly(u) € La(a) +
T= and so Lg(u) = Lg)‘([o\(u)) € Lg(a) + T<lna(@)™ by Proposition 5.2.6. Therefore, Lg(u) €
Ls[Lg(a)] by Proposition 5.3.8. O

Corollary 5.3.10. We have §go Lg=Lgodg on T>". Thus, for s€ T>", we have s € Mg if
and only if La(s) € Tv g.

Proof. Let s€T>". Then Lg(05(s)) € Ls[Ls(s)] by Proposition 5.3.9 and Lg(0s(s)) is S-truncated
by R, and Lemma 5.3.3. Thus Lg(0s(s)) =#3(Lga(s)). The fact that s € Mgz if and only if Ls(s) €
T, s follows from this and the fact that Lg is injective. g

Proposition 5.3.11. Assume that T is a confluent hyperserial skeleton of force (v, u). Then
Lg(Epls]) = Ls[La(s)] for all s€ T> 7. In particular, if Eg(t) is defined for t € T~ then Eg is
defined on Lg]t].

Proof. We prove this by induction on u. Let s € T~>~. By Proposition 5.3.9, we need only prove
that Lg(Es[s]) 2 La[La(s)]. Let t € Lg[La(s)]. By Proposition 5.3.8, there is a A=w"n < 3 with

—1
teLa(s)+ T ) By Proposition 5.2.6, there is a v € L(s) + TG with ¢ = L;A(v). Since
T is hyperserial of force (v, u), the hyperexponential E)(v) is defined and

Ep(t) = Ex(v).
Finally, since v~ Ly(s), Lemma 4.3.4 and Proposition 4.3.5 imply E\(v) € Eg[s]. O

Corollary 5.3.12. Assume that T is a confluent hyperserial skeleton of force (v, u). Then we
have Egofig=0g0 Eg whenever one of the sides is defined.
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Corollary 5.3.13. The following are equivalent:
a) T has force (v, pu+1).
b)
¢) For alln< p and s € T>7, the hyperezponential E n(t) is defined for some t € L,n[s].
d) For all n< p, we have Lyn(Myn) =Ty yn.

For all n < p, the function E n is defined on Ty .

Proof. The equivalence between a) and b) follows from Proposition 5.3.11 and the fact that we have

T>== || Lusld]

€T, ,n

for all n < p. The equivalence between b) and ¢) follows directly from Proposition 5.3.11. The
equivalence between b) and d) follows from Corollary 5.3.10. O

Set 3:=w" and assume that T has force (v, u). Then by Lemma 5.3.1, for all s €T >~ there
isay<pfwithe:=s—tg(a) %ﬁ—?oEg #5(s). For any such =, there is a family (¢, ;)ren € LY 5 with
Y

to=1~, such that ((ty o Egfs(s)) e¥)ren is well-based and

Ega&(Z W&). (5.3.1)

keN

5.3.2 Useful properties of truncation

Throughout this subsection, we let 0 < u <v and we set 8:=w* and 6 :=w*-. Given s,t € T>",
it will be convenient to introduce the following notations:

s<pt < Lpls|<Lg[t] < ts(s) <is(t)
s=pt <= Lgls|=L[t] < Hs(s)=1s(t)

Lemma 5.3.14. Let se T>", v< 3, and r€R~. We have
LE(r Ly(s)) =p Lg(s)
Proof. We claim that if g+ Egv o (rfy), then {5 — E;V o(réy) <1 and

lg<Lh T olbg— 7o (re,)| 7N

Assuming that £g+ 627 o (rt,), we have

1 Ty+1 Tv+1 €y P oty
ly o (rty)=1L5"" olog(rty)=£5"" " o(lyy1+logr)= Z T (logr)*,
keN ’
whence 62’70 (réy)—tg~ ((€g7+1)’o€7+1) logr. Now
05 1

(Y o lysr= =00 o,
B v %H [v+1,8)

S0 6270 (reéy)— €gx€[_vl+1_ﬂ) < 1. Since £[y41,8) > L1, we have {3 76270 (ry)|='>£,11, so Lemma
5.1.7 gives

Y e A e Y
as desired. Composing with s gives that if Lg(s) # Lgv(r L.(s)), then Lg(s) — Lgv(r L.,(s))<1and
Ly(s) <L (|Lp(s) = L (r Lo ()|,

From which it follows that Lgv(r L(s)) € Lg[Lp(s)]. O
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Corollary 5.3.15. Let s,t € T~ with t<s. Then Lg(st) =g Lg(s).

Proof. We have Lg(st) = Lgl(Ll(s ) = Lgl(Ll(s) + Ly(t)). Let n >0 with t <ns. We have
0< Li(t) < L1(s) +1logn <2 Ly(s), so

LI (Li(s)) < LY (La(s) + La(t)) < L' (3 Li(s))

by Lemma 5.1.7. Since Lg(s) :L;l(Ll(s)) =3 Lgl(?) Li(s)) by Lemma 5.3.14 and Lp[s] is convex,
we are done. O

Lemma 5.3.16. For each s € T~ and each v <0, we have

LY (s) =p Ls(L+(s)) =p Lp(s)-

Proof. Take A\=w"n with <\ <#. Since £}7 </, we have Kg’yzég)‘oﬁlﬁygﬁko&) by Lemma 5.1.7.
This gives
<P = ol = o (G 1) < LT 0 (24 m41).

Thus, Lg”(s) < LT“’WH(Q L,+1(s)). Likewise, since £, > £\, we have

goly > l50la=L1"" 0 (Lyni100) =" 0 (0 yni1—n) > 1" o <%ew+1>,
so Lg(Ly(s)) > L%“’UH(%LWH( ))- Lemma 5.1.7 gives 6”*6 ol 2%’7067:&3 2{gol,, so we
have

wntl wntif 1
Lg " (2Lwn+1(8))>Lg’y(8)2Lﬁ(LW(S))>Lg " <§Lwn+1(s)).

By Lemma 5.3.14, both LT“’UH(Q L,n+1(s)) and LTMH(; Ln+1(s)) are elements of Lg[Lg(s)].

Since L3[Lg(s)] is convex, this means that it also contains Lﬁv(s) and Lg(L,(s)). O
We have the following useful consequence:

Corollary 5.3.17. Let s,t € T>" be such that L,(s) =< L,(t) for some vy,0 <6. Then

Proof. Take n € N> with — L,(s) < Ly (t) <n L(s). Then
1
Lo £ 14(5) ) < Lo(La(0) < Lot Ly (o).
We have Lg(n L,(s)) =g Lgv(n L,(s)) by Lemma 5.3.16 and we have L "(n Ly(s)) =g La(s)

by Lemma 5.3.14, so Lg(nL-(s)) =3 Lg(s). Likewise, Lﬁ( L,(s)) =s LB( ). Since Lg[La(s)] is
convex, this yields Lg(L,(t)) =g Lg(s). Since Lg(L.(t)) =g Ls(t) by Lemma 5.3.16, we conclude
that Lg(t) = La(s). g

Corollary 5.3.18. Let s,t € T~ with Lg(s) <g Lg(t). Then st T>" and Lg(s~'t) =5 Lg(t).

Proof. As Lg is strictly increasing, we have s <t, which gives Li(s) < L1(¢). We first claim that
Li(s)» Li(t). If p>1, then Corollary 5.3.17 gives that L;(s) % L1(t), so we may focus on the case
when p=1. Suppose toward contradiction that L (s) <, L (t) and that Ly(t) = L1(s) + ¢ for some
€ < Ly(s). Then

Lo(t) = Lu(s) = L (Li(s) +) = L (L1(s) = Tya(La(s),€) ~ ((€L1) 0 Lu(s)) e

Smcz ((6) )= £h +1, we have (¢]1)’ KL:€[?J}W), so (011 o Ly(s) :€@}w) o Li(s)=Lp,w)(s) . Since
ex S), we have

Lo(t) = Lu(s) ~ (1) 0 Lu(s)) € < Liz,w)(8) 7Y,
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so Ly(s) =u Lu(t) by Proposition 5.3.8, a contradiction.
From our claim, we get 0 < Li(s™1t) = Li(t) — L1(s) < Ly1(t). This yields st € T>", as
Li(s71t)eT> . Take r e R>! with r 1 Ly(t) < L1(s71t) <7 L1(t). Lemma 5.3.14 gives

Lo(t) =L (La(t) =p Ly (r~" La(t)) =5 L' (r L1(1)),

so Lg(t) =5 L1(s~'t) since L[Lg(t)] is convex and Lgl is strictly increasing. O



Chapter 6
Hyperexponential extensions

In this chapter, we continue and conclude the inductive proof we began in Chapter 5 (see Sec-
tion 5.1) Recall that #= 4+ 1< v is a successor ordinal, and that 5.1.5 is assumed to hold for u.
We again set

v

o = w
B = wH
0 = wH.

Note that f=0w if u is a successor and =40 if p is a limit. We also fix a confluent hyperserial
skeleton T = R[[M]] of force (v, u), and not just v. The results in this chapter are contained, in
this more general form, in [14, Sections 7 and 8|.

In order to prove Theorem 5.1.5 for 7, we rely on a weaker extension theorem which we now
describe. Given the class T C T of (-truncated series ¢ whose hyperexponential Eg(¢) is not
defined, we construct a hyperserial skeleton T(,) = R[[97,,]] and a hyperserial embedding W:
T — T(M) with

U(T) C Lg(T(y ), (6.0.1)

That is, seeing as T is naturally included in Ty, the hyperexponentials Ef of each element ¢ € T
are defined in T,). Furthermore, the extension (T, ¥) is initial among extensions satisfying
(6.0.1). More precisely, we will prove the following result.

Theorem 6.0.1. Let T be a hyperserial skeleton of force (v, u) and let T denote the class of -
truncated series o € T with o ¢ Lg(T>7). There is a hyperserial skeleton T,y of force v and a
hyperserial embedding W:T — T,y of force v such that

W(T)C Ly(T7).

Moreover, for any other such extension (U, ®), there is a unique hyperserial embedding A:T(,,) —
U of force v with Ao ¥ =,

w
T — T

AN
U

Section 6.1 is dedicated to the proof of the theorem for p=0. In that case, a large part of
the work has already been done in [92], but it contains a self-contained treatment for our setting.
The case when p >0, which is the longest argument of the thesis, is split into three sections. In
Section 6.2, we define the structure of field of well-based series of T{,,), which involves defining its
ordered group of monomials 97(,,). In Section 6.3, we define the hyperserial skeleton on T{,) and
conjunctively prove that it satisfies the axioms for hyperserial skeletons. In Section 6.4, we show
that T, is confluent, prove Theorem 6.0.1 and conclude our inductive proof of Theorem 5.1.5.

6.1 Exponential extensions

Let T be the class of all 1-truncated series ¢ € T\ ; for which exp ¢ is not defined. Write (T) be
the R-subspace of Ty ; generated by T and log M. By Lemma 5.2.2, the class (T) consists only
of 1-truncated series. The reader may recall that we have already showed how to construct expo-
nential extensions and closures (see Section 3.2). The difference here is that besides extending the
logarithm throughout exponential extensions, we must also extend the whole hyperserial skeleton
and show that the axioms are preserved.

117
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6.1.1 Monomial group

We associate to each ¢ € (T) a formal symbol e¥ and we let 9o denote the multiplicative RR-
vector space of all such symbols, where e?e?¥ =e¥*¥ and (e?)"=e"%. We use 1 in place of €. We
order this space by setting e® = e¥ <=> ¢ > 1). It is easy to see that (M), X, <,R) is an ordered
R-vector space which is isomorphic to ((T), +, <,R). We identify 9 with the R-subspace e!°8™ of
M, via the embedding m— e'°8™. Let T(g) := R[[Mq)]], so the identification M C M) induces
an identification T C Tg).

6.1.2 Extending the logarithm and the first hyperlogarithm
For e¥ € Mg, we set

loge?:= .
We let Ly be the restriction of log to 937?0). Note the following:

1. By construction, (T{g), L1) satisfies DDg and FEq. Moreover, L;(m) = Li(em (™) for me
m>, SO (T, Ll) g (T(O), Ll)

2. We claim that (), L1) satisfies Ao. Suppose for contradiction that ¢ = L1(e?) = ¥, where
e¥e 93?6). Then d, = e¥, so L1(,) > ¢ by definition. This gives Li(d,) = 0,, which contra-
dicts the fact that (T, L) satisfies Ao.

3. By definition, we have e¥ € My, if and only if Li(e¥) >0, so (To), L1) satisfies M.
4. Since Li(e¥)=p €Ty ; for e¥ € 9376), the axiom R is satisfied.
5. As remarked in Remark 4.2.2, Py follows from FEq.
Extending L. For ¢ € (T) with e® > 1, we have Ly(e?) 6937(}0) if and only if p € M~, so
e? €, endom Li" if and only if p €, o dom Li™ if and only if p € M,,. Accordingly, we set
dom L, :={e¥: pe(T)NM,}, L,(e?):=Ly(p)+ 1.

This ensures that DD, holds. Note that if a € 9, then Lq(a) € (T) NIM,, so a=el(® edom L,
and L, (e (™) =L ,(L1(a)) + 1= L,(a). Thus, M, Cdom L, and (T, L1, L,,) C (T(o), L1, L.,). We
also have the following;:

1. For e¥ € dom L, we have
Lo(L1(e%)) = Lu(p) = Lu(e?) — 1
so (o), L1, L.,) satisfies FE;.
2. For e € dom Ly, we have L,(¢)+1=({,+ 1)o@ <{yop=, since £, +1<{y. Thus
Lo(e®) = Lu(¢) + 1< @ = La(e¥),
which proves Aj.

3. (T, L1, L) satisfies M. To see this, let e? e¥ edom L, with ¥ <e¥ and let n € N. We
want to show that L, (e¥) + L,(e¥) ™! < L,(e¥) — Ln(e¥) L. Since Ly41(e¥) < Ly(e?) and
Ly11(e¥) < Ly(e¥) by Ag, we may assume without loss of generality that n >0. Now

Lo(e#) + Ln(e®) ™" = Lo(p) +1+ Ln_1(p) "
Lo(e¥) = Ln(e?)™" = Lo(¥) +1—Ln1(y) "

Since ¢, 1 € M, and since (T, Ly, L,,) satisfies M1, we have

Lo(@) + Ly 1 (0) < Lo(¥) — Lyt 1 ().

4. Let e® € dom L,,. Since ¢ € M, and (T, Ly, L,,) satisfies Ry, the hyperlogarithm L, (¢p) is
w-truncated by Lemma 5.3.3. It follows from Lemma 5.3.2 that L, (e¥) = L, () + 1 is also
w-truncated, so (T(g), L1, L) satisfies R;.
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5. Let e¥ €dom L, and let (,,)nen be a sequence of real numbers. To show that (T, L1, L)

satisfies Py, we need to show that the sum s= ZneNrn L, +1(e?) is in log Mo). We have

s= Z rnLlni1(e?)=rop+ Z Tn Ln(p).
neN neN>
Since ¢ € M, and since (T(q), L1, L) satisfies P1, we have }° o 7 Ln(yp) € log M. It
remains to note that 7o ¢ =rg L1(e¥) =loge™¥ €log M o) and that log Mgy is closed under
finite sums.

6.1.3 Extending L, » for 1<n<v
Let 1 <n<wv and set dom Ln:=M,n. We need to show that DD, holds for each 7, and for

this, it suffices to show that DD3 holds. Let e® € [, .o dom Lg" and take n with Ly, 41)(¢) <
Ley(n+1)(002()). Since Ly(¢) +1< Ly(p), Lemma 4.3.4 yields

Lw(n+1)(e¢) = Lwn(Lw(QO) + 1) = Lwn(Lw(QO)) - Lw(n+1)(90) = Lw(n+1)(aw2(¢))'

Since Ly, (n41)(e?) and Ly (,41)(0,2(¢)) are both monomials, they must be equal. The axiom M;
gives €? =0,2(p) € M,2=dom L.

Now FE,, A,, M,, R,, and P,, hold for each 1 < n < v, since they hold in T. Furthermore, P,
holds if v € On; this is clear since v > 1. Thus, (T (o), (Lwr)y<.) is a hyperserial skeleton of force
v which extends (T, (Lyx)n<w).

Proposition 6.1.1. Then T(g) is v-confluent.

Proof. Clearly, Tg) is 0-confluent. Let s € ’]T(%r and take ¢ € (T) with d,=e¥ € Sﬂ?o). We have
L1(01(s))=L1(e?)=p e T. Let a:=0,(p) and take n with (L1001)°"(¢) =< (L1001)°"(a). We have
L1(01(s)) = ¢. By definition of (T), we either have a €log9 and a € (T) or a¢logM and a €T,
whence a€ (T). So

(L1001)° D (5) < (L1001)°" (a) = (L1 007)° D (e).
The fact that a € M, implies that e* € dom L,,, so 0,(s) =e. We have
Lis(00(5)) = Lu(e®) = Lu(a) + 1< Ly(a) = Lu(0u(a)),

80 0,,2(5) = 0.2(a) and, more generally, 0,7(s) =0,n(a) for 2<n<v. Thus, the skeleton T, is v-
confluent. O

Let us summarize:

Proposition 6.1.2. The field T(o) is a confluent hyperserial skeleton of force v. It is an extension
of T of force v with (T)C L1(Mq))-

Using the composition from Theorem 4.3.1, we can check whether an embedding ® of confluent
hyperserial skeletons is of force v without having to verify that ®(9,») CN,n for all 7.

Lemma 6.1.3. Let U=R][[MN]] be a confluent hyperserial skeleton of force v with the external
composition o: Lo x U>>" — U from Theorem 4.3.1 and let ®: T — U be a strongly linear field
embedding. Suppose that ®(OM) CN, that P(m") =P (m)" for all me M and all r eR, and that
®(Lyn(a)) = Lyn(®(a)) for alln<v and all a € Myn. Then @ is an embedding of force v.

Proof. We will show by induction on n < v that ®(9,,7) CN,». For n=0, this holds since ® is
order-preserving. Let >0 and assume that ®(9,,.) CN,,. for all ¢t < n. If 7 is a limit, then by

DD,,, we have
O(Mun) =& (| Mar | =) 2M) € (1] Mo =Non.
L<n <n <n
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Suppose 7 is a successor and let a € M,». We have L, (a) € M- for all n€ N by DD,. Our
induction hypothesis gives Ly, (®(a)) = ®(Lyn-,(a)) € N,n- for all n € N. Applying DD,, again
gives ®(a) € Ny, so (M) CN,,e. O

Proposition 6.1.4. Let U=R][[N]] be a confluent hyperserial skeleton of force v and let : T — U
be an embedding of force v. If ®(T) Clog(U~), then there is a unique embedding

v: T(O) —U

of force v that extends P.
Proof. As U is hyperserial of force v, we have an external composition o: L., x U~ — U.
Since ®(T) ClogU~>, ® is R-linear, and log U~ is an RR-subspace of U containing ®(log M), we
have ®((T)) ClogU~.

Since ®(9M~) C N, we have &(Tyw 1) CU, 1 so P((T)) ClogU> N U, ;. Thus, exp(P(p)) is
a monomial for ¢ € (T) by Lemma 5.2.2. We define a map ¥: 9y — 91 by setting

U(e?) :=exp(®(p)).

It is routine to check that W: 9y — 9N is an embedding of ordered monomial groups with
R-powers. By Proposition 1.3.2, this embedding ¥ uniquely extends into a strongly linear field
embedding of T(g) into U, which we will still denote by ¥. Note that if m € 90, then \Il(elog(m)) =
exp(®(logm)) = exp(log(®(m))) = P(m), so ¥ extends P.

We now prove that ¥ is a force v embedding. By Lemma 6.1.3, we need only show that ¥
commutes with logarithms and hyperlogarithms. Given e € 90(,,), we have

T(log(e¥)) =¥ (p) = P(p) =log(exp(P(y))) =log(¥(e¥)).

Now let < v with p>0 and let e® € (M(,))wr. If p>1, then e? € M1, so we automatically have
L,w(Y(e?)) =T (L,u(e?)), since ¥ extends ®. If p=1, then ¢ € (T)NM,, so

Lo(¥(e?)) = Lu(exp(P())) = Lu(P(p)) + 1= (Lu(p) +1) = (Lu(e?)) = ¥ (Ly(e?)).

Let us finally assume that A:T ) — U is another embedding of force v that extends ®. To
see that A=, it suffices to show that A(e?)=U(e¥) for p € (T). Now

log(A(e%)) = A(log(e?)) = A(p) = (),
so A(e?) =exp(P(p)) = T(e®). O

We next turn to the case of p>0.

6.2 Structure of field of well-based series

We first define T,,) as a field of well-based series by defining its monomial group 9, as a linearly
ordered Abelian group extension of 9.

6.2.1 Selecting truncated series

Let T be the class of all S-truncated series ¢ € T\ 3 for which Eg(¢) is not defined. Consider ¢ € T
and s € T>~. We have tig(Lg(s)) = Lg(d3(s)) € Lzg(T>") by Corollary 5.3.10. Since Lg[Lg(s)]
contains a unique [-truncated element, ¢ is S-truncated and ¢ ¢ Lg(T>>7), it follows that ¢ ¢
Ls[Lg(s)]. Thus, we have

p<Lp(s) == ¢<p Lp(s)

> Lg(s) < ¢>p Lp(s).

If 11 is a successor, then since T has force (v, i), we have

T=T+Z. (6.2.1)
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6.2.2 The group of monomials

We associate to each [€ £ and each ¢ € T a formal symbol [[ef]. This should be thought of as
loef if ef is an element in a hyperserial extension of T. Accordingly, we write ej in place of fo[ef]
and 1 in place of 1[ef].

Remark 6.2.1. We will now construct the smallest subgroup £<9[eg] containing erﬁr such that a
composition law L X ’]I‘(i’)> — T, may be defined for T(,)=R[[£<gle}] x M]]. For ¢ € T,and
[€ £, we should hacve a monomial [oef in £glef]. Since adding all these as formal symbols
would create ambiguities generated by identities
lgo e“ﬁ” = e“ﬁ”_ !

when f=60w (i.e. when p is a successor). We choose to systemacitally write expressions £go eg as
eé’*l and thus only restrict our logarithmic hypermonomials t lie £.p, compensating by allowing
for certain transfinite products involving more than one ¢ € T.

We define the group £glef] as follows. If y is a limit, then 6 = 3, and £-¢[e}] is the group
generated by the elements [[ef] with [€ £.9 and satisfying the relations [1[ef] l2[ef] = (I1 [2)[e].
Hence £.g[ef] is the group of products

t= ] tolefl,  toeL<o,

T
for which the hypersupport e

hsuppt:={peT:t,#1}
of t is finite. If u is a successor, then let —~ be the equivalence relation on T defined by
s~t <= t—sc.

We let £g[ef] be the group of formal products

t= [ tolefl,  toeL<o,
peT
for which the hypersupport hsupp t is well-based and hsupp t/~ is finite. Given s,t€ £<9[eg], we
note that hsupps !t C hsupps Uhsuppt, whence s~ 1 t€ £.9[e}]. Hence £g[e}] is indeed a group.
For te £9le}]7!, we define ¢y :=maxhsupp t and 7 :=min {y <0: (t,,),#0}. We set t= 1 if
t, >~ 1, which happens if and only if (t,,),, > 0. The following facts will be used frequently, where
t,u range over £.gle}]:

o 1= for t#1,

o pu<max (¢, ¢u), and if @iF py then i =max (¢, u)

o Ifl<tguorust<1,then gy,

o Ift-landui>=1orift<1and ux1 then vy, =max (v, @y).

Let 9,y denote the direct product £<gle}] x M. We denote by tm a general element (t, m) of
this group, where we implicitly understand that t€ £.9[e}] and m € 9M; we also identify (t,1) and
(1,m) with t and m, respectively. We set T,y :=R[[D(,)]].

Remark 6.2.2. Assume that p is a successor and consider t € £<9[eg] as above. The advantage of
the representation of t as an infinite product of terms of the form t, [eg] with t, € £ is that such
a representation is unique. Alternatively, it is possible to represent t as a finite product of terms
of the form [[ef] with [€ £, but uniqueness is lost, since £o[ef] zfg[egﬂ].

Nevertheless, we may construct a privileged representation as a finite product as follows. Since
hsupp t/ ~ is finite, there exist @1 >---> ¢, € T with ¢; A ¢; for i# j and hsuppt/~={p1,...,
©n} /. Since hsuppt is well-based, we may also take ¢; =max {¢ € hsuppt: p ~ ¢;} for all i. Then

t= [ I te—mlef ™™

1<i<n meN
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Fixie{l,...,n}. For each m € N, we have logt,, = Zv<9 (tpi—m)yly+1, SO

Z log(ty,—m o lom) = Z (log ty,—m) o lom = Z (Z (tWim)7€7+1>O€9m

meN meN meN y<0
t —m
= 3 et =ton| T1 TT 57
meN v<0 meN <6
Set
t* R g(t‘M*M)’Y c £
Pit Om+~y <p
meN ~<6

This gives us the finite representation

H . [ef].

1<i<n
Note that t = 1<=t,, =1 <=1, > L.

6.2.3 The ordering
Let sm@) be the set of all elements tm € 90,y that satisfy one of the following conditions:

t=1, m=<1, and ;> Lg(m™1) 0]
t<1, m>1, and ¢¢< Lg(m) (IT)
t=1and m> 1 (I11)
t-landmi=1 (Iv)

We define the relation < on 9, by tm <un if and only if (ut™") (nm~1) e M(,

Proposition 6.2.3. The relation < is an order on M, that extends the orderings on both M
and L<qlef].

Proof. By definition, the relation < extends the orderings on 9t and £-¢[e3]. In order to show
that < is an order, it suffices to check that 9:rt(>) is a total positive cone on 9.

Let tmeM(,) \ {1}. By the definition of sm(u) and the fact that p—1= ¢y, it is clear that tm and
(tm)~! cannot both be in 9M7,,. Let us show that either tm €M, or (tm) ' €IM(,). Assume that
tm§£9ﬁ(m Ift<land m=<1ort<1andm=<1,then (tm)~! satisfies (III) or (IV). Suppose that
t=1, m=<1, and ¢ < Lg(m™!). Then ¢y < Lg(m~ ) since ¢ & La(T>7), s0 ¢-1= (< Lg(m™1).
Since t71 <1 and m~! 1, we conclude that (tm)~! satisfies (II). If t<1, m =1, and ¢; > Lg(m)
then (tm)~! satisfies (I), for similar reasons.

Now let tm,une E)JTCL). We will show that (tu) (mn) e Em(:). If both tm and sn satisfy one
of the last two rules, then this is clear. Thus, we may assume without loss of generality that tm
satisfies either rule (I) or rule (II). We consider the following cases:

Case 1: tm and un both satisfy (I) or they both satisfy (II). Suppose that they both satisfy (I).
Then tu>-1 and mn <1, so we need to verify that g, > Lg((mn)~!). By Corollary 5.3.15, we have
Ls((mn)~1) =5 max (Lg(m~1), Lg(n~1)). Since t,u 1, we also have ¢, = max (¢4, ¢u), whence
Ls((mn)~1) <g . The case when tm and un both satisfy (II) is similar.

Case 2: tm satisfies (I) and un satisfies (III) or (IV). We have tu> 1, so if mn = 1, then
(tu) (mn) satisfies (IV). Suppose that mn<1. If n=1, then Lg((mn)~!)=Lg(m™1) and if n-1,
then (mn)~t<m™1 so Lg((mn)~!) < Lg(m™1) as Lg is strictly increasing. Since tm satisfies rule
(I) and u=1, we have

o =max (¢, pu) = o> Lg(m™1) > Lg((mn)~1),
o (tu)(mn) satisfies (I).
Case 3: tm satisfies (II) and un satisfies (III) or (IV). We have mn =m > 1, so if tu =1, then

(tu)(mn) satisfies (IV). Suppose that tu<1. If u=1, then 1 <u<t"1 so p, < p-1= @ and
Ve <max (@, ) = ¢ Since tm satisfies rule (IT), we have ¢¢<g Lg(m), so

< pe<g Lg(m) < Lg(mn).
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Hence (tu) (mn) satisfies (II).

Case 4: One of the monomials tm and un satisfies (I) and the other one satisfies (II). Without
loss of generality, we may assume that tm satisfies (I) and un satisfies (II). Let us first consider
the case when tu<1. Then 1 <t<u"! so ¢ < p,—1=p, and P < @y. Since > Lg(m™1) and
©u< Lg(n), we deduce that Lg(m~t) <z Lg(n), so Lg(mn) =g Lg(n) by Corollary 5.3.18. Since un
satisfies (II), we have ¢, < Lg(n), so

P pu<Lp(n) =5 Lg(mn)
and (ts)(mn) satisfies (II).

Let us now consider the case when tui=1. If mn > 1, then (tu) (mn) satisfies (III). If mn=1
and tu> 1, then (tu) (mn) satisfies (IV). If mn=tu=1, then mn=(tu)~!, so tm=(un)~1,
contradicting that tm,une sm(;). It remains to consider the case that mn<1. Then m~!>n>1,
so Lg(m™Y) > Lg(n) as Lg is strictly increasing. Since p¢> Lg(m ™) and ¢, < Lg(n), we deduce that
©¢> Pu, SO Py = pr. Since n~1 <1, we have (mn)~!<m™1 so Lg((mn)~!) < Lg(m~1). This gives

pru= 1> Lg(m™) > Lg((mn)~1),
so (tu) (mn) satisfies (I). O

Remark 6.2.4. Given m € 9"~ and t€ £ g[e}]™, we have
m=<ts=mit- 1< Li(m) < oy
Since m#t, we also have m > t <= Lg(m) > . More generally, for s € T>>~, we have
s<t<= Lg(s) < py, s=t<= Lg(s) > p.
This is because Lg(s) =3 Lg(ds) by Corollary 5.3.17 with o =~v=0.

6.3 Extending the hyperlogarithmic structure

In this subsection, we extend the hyperlogarithms L,» from T to T(,), while verifying that they
satisfy the axioms for hyperserial skeletons. We separate various cases as a function of 7, including
the case of the ordinary logarithm when 7 =0 and starting with the real power operation.

In each case, we start with the definition of the domain dom L~ of the extended hyperlogar-
ithm L,» on T,y and then define L, on the elements of dom L,» which do not already lie in 9,n.
We next check that (T, (Lyn), <) satisfies the domain definition axioms DD, as well as the other
axioms for hyperserial skeletons.

6.3.1 Extending the real power operation
For 7€ R and tm e 9M(,), define (tm)":=t"m” where m” is as defined in 91, and
tr= H thlef] € Lcolef].
peT

It is easy to check that this defines a real power operation on 97(,). Note that @i = ¢ for each
non-zero r € R.

Now that we have defined an ordering and a real power operation on M), we let T{,):=
R[[9(,»]]. Then T, is a field of well-based series extending T.

6.3.2 Extending the logarithm when p=1
Suppose that p=1, so f=w and §=1. For {j € £.1 and ¢ €T, we define

log(¢hlef]) :==rel ™"

We extend log to £.1[eX] by setting
logt:= Z log(447[ef])

peT
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for t= HweTESV’[ef] € £.1[el]. Note that log(£¢[ef]) # 0 if and only if ¢ € hsuppt. We claim that

log t is well-defined. Let ¢ >+ > ¢, € T. As in Remark 6.2.2, we have t=T[;_, [],,cx " "le5 ™"
and

n n

lOgt:Z Z log(egwim[efiim])zz Z Tz,ai—'mefviimil-

i=1 meN i=1 meN
Each sum }7 \74,—m efi ™! exists in T,), since the support (eZ: " '), ca, is a strictly
decreasing sequence in £1[eX]. Thus, logt is well-defined. If t= 1, then we note that
log t~log (£ [ef]) ~rp el

Finally, we extend log to all of M,y by setting log(tm):=logt+logm. We let L; be the restriction
of log to the class 937(:), so (T(,), L1) satisfies DDg.

Using the definition of real powers, it is straightforward to check that (T, L1) satisfies FEo.
For ¢ € T, we have ¢ —1 €T by (6.2.1), whence ¢? ' € £.1[eX]”. Therefore log(£§e?]) = 1 for
all r e R. It follows that

supp L1 (tm) Csupp log tUsupp logm > 1

for tme 937@) and Ry is satisfied. The axiom Py follows from FEq, so it remains to be shown that
(T'(y), L1) satisfies Ag and M.

Lemma 6.3.1. (T(,), L1) satisfies Ag.

Proof. Given tme m@), we must show that Li(tm) < tm. We proceed by case distinction:
1. If t=1, then Li(tm)=L;(m) <m=tm since (T, L;) satisfies Ao.
2. If m=1, then t>1 and

DLl(t) — efvtfl

We have 0z, ¢ €£1lel] and Pop, = pt— 1. Thus o, (1) <t since o — 1 <. Thus Li(tm)=
Li(t) <t=tm.

3. Suppose t =1, m=<1, and ¢ > L,(m~1). We have L;(tm)=L;(t) — L1(m~1), so it is enough
to show that Li(t) <tm and Li(m~1) <tm. We have

Lo(m™?) =L (2 Li(m™ ) =y Ly(m™)

by Lemma 5.3.14, so ¢¢> L, (m~2), whence tm?>-1 and tm>m~' > Li(m~?). Since ¢1/2=
@i > Lo(m™1), we also have t/2m > 1, so

tm - t1/2 - L (tY/2) < Ly (4).

4. Suppose t<1, m>=1, and ¢ < L,(m). This time, we need to show that L;(t"!) <tm and
Li(m) < tm. Using that @2 = ¢¢ and that Lw(ml/Q) = Ly(m), we have t?m, tm!/2-1, so

tm=t1 = Li(t7Y),  tm=m/2= L(m!/?) < Li(m).

5. If t>1 and m 1, then Li(tm)= Lq(t) + L1(m). So the result follows from the fact that
Li(t) <t<tmand Li(m)<m=<tm. O

Lemma 6.3.2. (T(,),L1) satisfies M.

Proof. Giventme m@), we need to show that L(tm)>0. If t=1,then m>1so0 Li(tm)=L;(m)>0
since (T, L) satisfies M. If m=1, then t>1, so r,, > 0. Since
Ll(t) ~ T, e«ft_l

we have Li(tm)=Ly(t) >0. If t, m> 1, then L;(tm)=Ly(t) + L1(m) > 0.
Consider now the case that t<1, m =1, and ¢ < L,(m). Since Li(tm)= Li(m) — Li(t7 1), we
need to show that Li(t™!) < Li(m). For each r € R~, we have

Lo(m) =, LIM(r Li(m)) = Ly(r Ly(m)) +1
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by Lemma 5.3.14. Since ¢ <,, L,(m), this gives ¢y — 1< Ly, (r L1(m)). We have
Li(t™ ") =ef "' <7 Li(m) < Ly(m)

by Remark 6.2.4. This gives Li(t™!) < E,(¢¢—1) < L1(m).
Finally, suppose that t =1, m <1, and ¢¢> L,(m~!). The same argument as above gives
0i— 1> Ly(r Liy(m™1)) for r e R>, so L1(t) = L1(m~1) and Ly(tm) =Ly (t) — L1(m~1) > 0. O

6.3.3 Extending the logarithm when p©>1
For [=]] e Lcgand p €T, we define

<Oy
log (1] Z [ €7+1 eﬁ
<6

This sum is well-defined, as £, 1[ef] < €7+1[e§] for v <o <@. For t€ £.¢[ef], we set
logt:= Z log(t, Z Z vy ialef].

@€hsuppt @Ehsuppt v<0
This sum is also well-defined, as hsupp t is well-based and £, 1[ef] < €U+1[eg’] for all v,0 <6, and
¢, €T with ¢ <. If t#1, then note that logt~ (ty, )y ly+1[ef], so

Vlogt =Ly +1[ef ] =dogt, [e]]
and logt> 0 whenever t- 1. Finally, we extend log to all of 9, by setting
log(tm):=logt+logm.

for tm €M ,). As before, we let L; be the restriction of log to sm(;), so (T(y), L1) satisfies DDg.
The axiom FE; (and thus Py) follow easily from the definition of L; and the axiom Rg holds
since £, 1[ef] >- 1 for each 7. Let us prove that Ag holds for t€ £.¢[e}]”. Given t> 1, we need to

show that td; (t) = 1. Since ¢, ,,= ¥, it suffices to show that (tDL_ll(t))gm ztw(DL_ll(t))w > 1. Since
(DLl(t))W = aLl(ﬁpJ’ this further reduces to showing that t,, > Li(t,,). But this follows from the
fact that Ag holds for L.g. The proof that Ay holds for a general element tm € sm(j) is identical
to cases 3-5 of Lemma 6.3.1. Let us now show that (T(,), L1) also satisfies M.

Lemma 6.3.3. (T, L1) satisfies M.

Proof. We have Li(t) >0 for t€ £.9le}]” and Li(m) >0 for m € M. It follows that Li(tm) >0
for tm € 9M7,) so long as t, m = 1. Suppose that t -1, m <1, and ¢¢> Lg(m™'). Then L;(tm)=

Ly(t) — Li(m™1), so it is enough to show that Li(t) = Li(m™!). As shown in the proof that Ag
holds, we have ¢, , = ¢ By Lemma 5.3.16, we also have Lg(m™') =5 Ls(Li(m~")). Thus,

Po, 0y > La(Li(m™1)), so Lyi(t) <0r, ) = Li(m™'); see Remark 6.2.4. The case that t<1, m > 1,
and ¢ < Lg(m) is similar. O

6.3.4 Extending L, » when 0 <n < pu_
Given 0 < n < p_, we set
dom Lyn:=MnU{l,[ef]: p €T and w' <,y <0}
Given 7 with w" <,y <0, we decompose ¥ = vz, +w" n, and define
Lwn(@y[eg]) = €7>wn+wn[eg] —n.

Note that n=0 and Lyn(¢,[ef]) =+ ywn[ef] whenever 7 is a limit ordinal. More generally, we have

Lo (6y[e8]) =yt urlef]
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whenever ¢ < 7_ (including the case when ¢ =0).
Lemma 6.3.4. (T, (Lun)y<u_) satisfies DD, for each n < p_.

Proof. We prove this by induction on 7 < p_, beginning with n=1. Let tm & im&), SO

Li(tm)=logm+ Z Z +Ey+1lef].

@Ehsuppt v<0

If Li(tm) e fma), then either t=1 or m=1. If t=1, then m€ ), . dom L7" if and only if
meM,. If m=1, then Ly(t) € M, (u if and only if t="{,[ef] € dom L,,. It remains to note that
Lu(ly[ef]) = £y 1nlef] € MG, for all n.

Now assume that  >1 and that DD, holds for all ¢« <#. Since (T, (Lyn)n<,_ ) satisfies DD,
for each 7 < p_, we may focus on elements of the form Ey[eg] where v < 6§ and ¢ € T. For the
remainder of the proof, we fix such an element. If 7 is a successor, then we need to show that £,[ef] €
N, en dom L if and only if v >,w”-. One direction is clear: if v >,w"™ then Ly, (¢,[ef]) =
Cywn-nlef] € dom Lyn- for each n. For the other direction, if ¢,[ef] € dom L,n-, then v >,w" -,
S0 write 7= y>,n- +w~m and note that L,n-({,[ef]) =4, __, +wn-[ef] —m is a monomial if and
only if m=0. If 5 is a limit, then v >,w"- for all « < n if and only if v>,w =w", so we have
¢y[ef] € dom Ly, if and only if £,[ef] € dom L. for all ¢ <. O

Lemma 6.3.5. (T, (Lun)y<u_) satisfies A, for each n<p_.

Proof. Let ¢ €T and 7,¢,v€On with 0 < <n < p_ and w’ <,y <. Since (T, (Luo)o<p)
satisfies A, for each o < i, it suffices to show that Lyn(¢y[ef]) < Lu(£4[ef]). Decomposing v =
Vw1 + w" n, we have yxn+w’ > v+ w, so

Ln(65[e8)) = by rwrlef] =1 < o ornlef] < by ar[e5] = Lun (L e5). =

Let 0<n < p_, let w" <,y <0, and let ¢ € T. We note that L,n({,[ef]) has no infinitesimal
terms in its support, so R, is satisfied since it holds in (T, (Lwn)y< ). To see that (T, (Lwn)y< )
satisfies FE,,, suppose that 7 is a successor and write v = 7y>,n+ w" n. Then

Lun(Lon-(65[651)) = Ll o (ns o) = b swrlef] = (4 1) = Lun(65[e5]) — 1.

Lemma 6.3.6. (T, (Lun)y<u_) satisfies My, for each n < p_ with n>0.
Proof. Let n< pu_ with >0, let a,b € (M) with a<b, and let w'n <w”. We want to show that
Ln(a)+ Lyepn(a) ™1 < Lyn(b) — Ly (b) 1
If a,b €M, then this holds because (T, (Lyn)y<, ) satisfies M,. Consider the following cases:
L If a=/(,[ef] and b= ég[eg], then write v = y>n 4w m and 0 =03, +w™ k. We have
Ln(@) + Ln(@) ™ = € urawnlef] —m+ 01 ynnlef]
Lon(b) = Loin(b) ™ = £0>wn+w"[eg] — k- ggj—w"n[eg]'

Since a < b, we have p <¢. If ¢ <9, then £, ,ion[ef] %f0>wn+wn[eﬁ] If o =1, then
v >0, so either vsyn > 05un O Y31 =03, and m > k. In both cases, we have L,n(a)+
LwLn(a)il < Lw’ﬂ(b) - LwLn(b)il.

2. If a=/(,[ef] and b € M,,», then we must have p < L(b) by Remark 6.2.4. Writing v =y3un+
w"-m, we have Lyn(a) =Ly, ,+wnlef] —m, 80 dp_,(a) =Ly, n+wrlef]. By Corollary 5.3.17,
we have Lg(Lyn(b)) =g Lg(b) > ¢, so

Len(b) = £v>wn+w"[eg] =< Lyn(a),

again by Remark 6.2.4. In particular, Lyn(a) + Lyipn(a) ™t < Lyn(b) — Lyen(b) L
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3. If acMynand b=~,[ef], then ¢ > Ls(a). Arguing as in the previous case, we have Lyn(b) =
ébwn_,_wn[eﬁ] - Lwn( ) O

Lemma 6.3.7. (T(,), (Lun)y<p ) satisfies Py for each 0 <n < p_.

Proof. Let ac (M(,)).n and let (7,)y<.n be a sequence of real numbers. Consider the sum
Si=3 Ty L 11(a). We need to show that s €logM,. If a €M, then s €logM. Suppose

a="{,[ef] with w" <,0 <0. Then L, (a) =Ly [ef] for all ¥ <w”, so

s= 3t Lyilbolef) = 3 vy lorialef] =log(ilef))
y<w? y<wn
where [:= Hv<m€g+7€£<9 O
6.3.5 Extending Ly if p > 1 is a successor
Assume that > 1 is a successor and let & :=w#--. We take

dom Lg:=MyU {{[ef]: o € T and £ <,y <O}

Note that £ <,v <@ implies v=¢&n for some n € N. Moreover, if p_ is a limit, then n=0. In other
words,

dom Lo — MU {lenlef]: o€ T and n€ N} if p_ is a successor.
ombe = My U {ef: €T} if g is a limit.

We define
Lo(lenlef]) :=ef " —n.

The proofs of Lemmas 6.3.4 and 6.3.7 can be amended to show that (T, (Lwn)y<,_) satisfies
DD, and P, ; just replace n with p_. Since (T, (Lyn)y<y ) satisfies R, , FE, , and A, , it
suffices to check these axioms for elements of the form f¢,[ef], where o € T and {n <. We have
e(’ﬁ”_l €M7,y 50 supp Lo(lenlef]) =1 and (T, (Lun)y< ) satisfies R, . As for FE,_, suppose that
_ is a successor. We have

Lo(Le(£enlef])) = Lo(ben+)[ef)) =ef ~" — (n+1) = Lo(fenlef]) — 1.
Lemma 6.3.8. (T(,), (Lun)y<y) satisfies A,
Proof. Let €T, én<6, and ¢ < u_. We have
Lo(lenlef)) =ef ' —n < Lenturlef] = Luo(Lenlef)). 0
Lemma 6.3.9. (T(,), (Lun)y<,) satisfies M,

Proof. Let a,be (9M(,))e with a <b and let w'n <. We need to show that
Lg(a) + Lyen(a) "t < Lo(b) — Lyun(b) 1.
We proceed by case distinction.
1. If a,b €My, then this holds because (T, (Lyn)y<,) satisfies M,
2. Suppose a = Llep[ef] and bzfgk[eg] for some £m, £k <6 and some ¢, 1) € T. Then

Lo( )+Lw n(a)”! = eg "~ lemiwn[ef] Tl and
Lo(b) = Lun(b) ™! = ef ' —k —Lepywrnley] L.
Recall that ¢ — 1,9 — 1€ T by (6.2.1). So either ¢ < 1) or ¢ =1 and m > k. In either case,

)-
we have Lg(a )—l—Lw n(@) 1< Lo(b) — Lyen(b) 71
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3. Suppose a = fgmlef] for some £m < 6 and some ¢ € T and b€ 9My. Then ¢ < Ls(b) since
a<b. For each r € R”, we have Lg(b) =g L;‘g(rLg(b)) = Lg(r Ly(b)) + 1 by Lemma 5.3.14,
so ¢ —1< Lg(r Ly(b)). Now Lg(a) xe(’ﬁ”_l <1 Lg(b) < Lg(b) by Remark 6.2.4. Hence,

Lo(a) + Lyn(a) " < ef " < Lo(b) < Ly(b) — Ly,en(b) .

4. Suppose a € My and b = l¢yfef] for some Em < 6 and some ¢ € T. Then ¢ > Ls(a), so
similar arguments as above give ¢ — 1> Lg(r Lg(a)) for each r € R”. Again, we conclude
that Lo(a) + Lem ()" < Le(b) — Loun(6) . O

6.3.6 Extending Lg

We define
dom Lg := MgU{ef:peT}
Lﬁ(eg) = .

Lemma 6.3.10. (T, (Lwn)y<pu+1) satisfies DD ,.

crlo’lel]. We have

Litm)=Li(m)+ > Li(lp?lef) =Lim)+ > rpef '+ > roEu(e—1).

eeT ¢—1€T p—1¢T

Proof. If p=1, let tmei)ﬁ(:), with t= H(p

If Ly(tm) ei)ﬁ&), then either t=1or m=1. If t=1, then me (", . dom L7" if and only if m € M,,..
If m=1, then Ly(t) € M, if and only if t=ef € dom L,,. For n €N, we have
Ln(ef)=el™".
If > 1 is a successor, then let p € T and {m < 6. We need to show that le,[ef] € () dom Lg" if
and only if m =0. This holds since
Lo(lemlef]) = 6571 —m.

Finally, if u is a non-zero limit, then we have

ﬂ {44[efl: o €T and w" <,y <0} ={ef:peT}. O
n<p

To see that R, is satisfied, let ¢ € T and let w”n < 3. We have

-1

bonplef]™1 if n<p_

Lum(eg)™ = (e5™ ™" ifn=p_.

Let m € (supp ¢)=. Since ¢ is B-truncated, we have ¢ > Lg(m~!). This gives £ymn[ef] ™" <m for
n<p_. If n=p_, then p —n is also S-truncated by Lemma 5.3.2, so » —n > Lg(m™1) since
(supp )~ = (supp (¢ —n))~. This yields (ef ") =m~!, ie. Lymn(ef)~ ! <m, so

supp Lg(ef) =supp ¢ = Lynn(ef) 1,
as desired.
If p is a successor, then Ly(ef) :eg_l, &)

Lg(Lo(ef)) = ¢ —1=Lg(ef) — 1,

so FE,, is satisfied. As for A, let ¢« < pu. Since o> {g, we have ¢ > Lg(¢), so Remark 6.2.4 with
t=/,[ef] and s = gives

wa(eg) = EwL[eg] - = Lﬁ(eg).
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Lemma 6.3.11. (T, (Lun)y<,t1) satisfies M.

Proof. Let a <b&dom Lg and let w*n < 3. We want to show that
Lwﬁn(a)71 + Luﬂn(b)il < Lﬁ(b) - Lﬁ(a)'

Note that Lg(a), Lg(b) € T 3. We claim that Lg(a) < Lg(b). If a,b € Mg, then this follows from the
fact that (T(,), (Lwn)y<ur1) satisfies M, If a=ef and b= eg, then we have Lg(a) = ¢ <1 =Lg(b).
If a=ef and b€ Mg, then Lg(a)= ¢ < Lz(b) by Remark 6.2.4 and likewise, if a € Mg and b :eg,
then Lg(a) <= Lg(b).

Now suppose toward contradiction that Ly, (b) ™! + Ly, (a) ™1 > Lg(b) — Lg(a). We will show
that Lg(b) € Ls[Lg(a)]. As Lg(a) is the unique [S-truncated element in Lg[Lg(a)] and Lg(b) is 5-
truncated, this is a contradiction.

Since Lyin(a) 71> Ly (b) ™1 by M, we have 2 Ly, (a) ™t > Lg(b) — Lg(a), so

%me(a) < |L5(b) - Lﬁ(a)|_1

%me(a), SO

Loent1(a) <[Lg(b) — L(a)| !
If Lyint1(a)eT>>7, then Lemma 5.1.7 gives

Lp(a) =Ly " (Luoma(a) < LY (|1Ls(b) = Lp(a)| ™),

By Ao, we have Li(Lyin(a)) < Ly (a) <

so Lp(b) € Ls[Lg(a)]. Suppose Lyint1(a) €T and let ¢ € T with a=ejf. If + < p_, then
Lo 1(a) = Lo pa[ef] < [Ls(b) — Lp(a)| 71,
so » < Lg(|Lg(b) — Lg(a)|~t) by Remark 6.2.4. As ¢ = Lg(a), this too gives Lg(b) € Lz[Ls(a)].
Finally, if ¢ = p_ < u, then
Ly y1(a) =lief ™" < |Lp(b) — La(a)| ",

so ¢ —n < Lg(|Lg(b) — Lg(a)| 1) by Remark 6.2.4. As Eg—i—nzfgen, we have

< Lp(|L(b) = Ly(a)| ™) +n= L™ (| Ls(b) — L(a)| 1),
so Lg(b) € Lg[L(a)] once again. O

Lemma 6.3.12. (T, (Lun)y<,t1) satisfies P .

Proof. Let a € dom Ls and let (r,)y<3 be a sequence of real numbers. Consider the sum s:=
B v)v<B

DI Lyi1(a). If ae Mg, then s € logM since (T, (Lyn)y<put1) satisfies P, Assume therefore

that a= eg for some p € T. If p is a limit, then =60 and

5= ryLysa(ef) =Y 7y byrafef] =log(ef])

y<0 y<0

where [:= ][] _,0." € £Zy. If p is a successor, then we may write

<Oy

5= 3 D Tonty Lonrrer(ef) = Y D7 Tonty Lya(Lon(ef)).

neN v<0 neN v<6

Since ¢ —n € T for all n, we have

Z Z 7"0n+'yL'y+1(L9n eg Z Z T9n+'y 'y+1 10g< H [ )

neN v<0 neN v<0 nelN

where [,:=[]._,l." "7 € £Z, |

y<O™Y
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6.3.7 Extending L _u+1
Suppose v > p+ 1. We define

dOmeu+1 = S)J”(w,wlu{eg:(peTﬂimel}
warl(eg) = Lyu+1(p)+ 1.

For ¢ € T, we have ef € ), . dom L3" if and only if ¢ € 9M,.+1 since ¢ = Lg(ej). This proves
that (T(,), (Lwn)y<ps2) satisfies DD, ;1. Let ¢ € TN, ut1. We have

qu+1(Lﬁ(eg)) = qu+1(<p) = qu+1(e§) - 17

so FE, ;1 is satisfied. As for A, 1, it suffices to show that L u+1(ef) < Lg(ef) since Lg(ef) <
L (ef) for all « < pu by A . Since £ u+1+1=<£o, we have

Lyurr(ef) =Lyus1(p) + 1= (Lon1+1) 0 o< 0= Lg(ef).
Now for Ry 41, let w'n <wh*!. Since Lg41)(ef) < Lum(e) by Ay, it suffices to show that
supp Ly, ut1(ef) = Ly 1y(ef) " Since
supp Ly, u+1(ef) =supp Lyu+1(p) U{1}, Lam+1)(ef) "1 =Lgn(p) 7,
it is enough to show that supp L u+1(¢) = Lg,(¢) . This holds because (T, (Lyn)y< i+2) satisfies
R, 11 and o €M urr.
Lemma 6.3.13. (T, (Lwn)y<ut2) satisfies M4 1.

Proof. Let a,b € dom L,u+1 with a <b and let w*n <wHTl. We want to show that L, .+1(a)+
Lein(a) ™t < Lut1(b) — Lyen(b) 7. Since Lg(n41)(a) < Lyin(a) and likewise for b, it is enough to
show that

Lyyur1(a) + Lgn+1)(a) 7 < Lygur2(b) = Lgn+1y(b)
We proceed by case distinction:
1. If a,b € Mig, then the result follows from M, 1 for T.
2. Ifa=ef and b :eg, then
Lywtr(a) + Lpnan)(@) ™1 = Loura(p) + 1+ Lon(e) ™
Lyn+1(b) = Lg(ni1y(b) ™1 = Lyu+1(¥) +1— Lgn(¥) 1.
Since ¢, € M u+1 and (T, (Lyn)y< pr2) satisfies M, 1, we have
Lw"L*l((P) + Lﬁn(cp)71 < qu+1(1/’) - Lﬁn(w)il

3. If a=ef and b € M, u+1, then ¢ < Lp(b). Since ¢, Lp(b) € M, u+1 and (T, (Lyn)y<put2)
satisfies M, .1, we have

Lyuw1(9) + Lgn(0) 71 < Lyw+1(Lp(b)) — Lan(Lp(b)) = Lyu+1(b) =1+ Lgn+1)(b) .
Thus,
Lyu+1(a) + Lgn+1)(a) 1= Lyur1(0) + 1+ Lga(p) ™ < Lyu+1(b) + Ly (n11)(6) 1.

4. IfacMgand b :eg, then the argument is similar to the previous case. g
Lemma 6.3.14. (T, (Lun)y<pt2) satisfies Py .

Proof. Let a€ (M), n+1 and let (ry),,u+1 be a sequence of real numbers. We need to show
that the sum s= ZV<W+1T7LV+1(a) is in log M. If a €M, then s €logM. If a=ef for some
peTNM,u+1, then

5= > TontaLpniyt1(€f) =D i Lygi(ef) + Y D Tontq Lyra(Lpn(ef)).

neN y<3 y< B neN> y<3
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We have 37 _ 7y Ly 1(ef) €log My, since (T, (Lun)y<pt1) satisfies P,. We also have

Z Z rﬁn+va+1(Lﬁn(e§)) = Z Z Tﬁn+wLw+1(Lﬁ(n71)(50))

neN> y<3 nelN> y<p3

- Z ZT57L+7Lﬁ(n71)+y+1(g0)Elogim,
neEN> y<p

since @ € M ,u+1 and (T, (Lyn)y < uq2) satisfies P4 1. We conclude by noting that log 9%, is closed
under addition. O
Remark 6.3.15. In the case that v = u+ 1, the argument that DD, is satisfied gives
(M) v = ﬂ dom Lg" =M v U{ef: pc TNM v}
neN

and the proof of Lemma 6.3.14 also tells us that (T, (Lwn)y<.) satisfies P,,.

6.3.8 Extending L,» when pu+1<n<v

If v> p+1, then we will not extend the hyperlogarithms L,» with n > pu+ 1. So for n < v with
n>u+ 1, we simply set
dom Lwn = mwn.

Lemma 6.3.16. (T, (Lun),<y) satisfies DD, for all n <wv.

Proof. It suffices to show that (T{,), (Lun)y<.) satisfies DD, 5. Suppose toward contradiction
that there is some ¢ € TN M u+1 with ef € (), ooy dom Ljis1. Take n >0 with Lut1,(¢) <
Lyut1,(0u+2()). Since Lyu+i(ef) = Lyu+1(p) + 1< Lu+1(p), Lemma 4.3.4 yields

Lw“+1n(eg) = Lw“+1(n71)(Lw“+1((p) + 1) = Lw“+1(n71)(Lw“+l(<p)) = Lw“+1n(ow“+2(@))'

Since Ly, u+1,(ef) and Ly,u+1,(d,,0+2(¢p)) are both monomials, they must be equal. The axiom M, 1
gives ef =0,u+2(¢) €T, a contradiction. O

For all n <v with n> u+1, the axioms FE,, A,, M,, R, and P, automatically hold in T,
since they hold in T, as does the axiom P, if v > p+1 is an ordinal.

6.4 End of the proof of Theorem 4.2

We have completed the proof of the following:
Proposition 6.4.1. (T(,), (Lun)y<w) is a hyperserial skeleton of force v.

Let us finally examine the confluence and universality of T,,).

6.4.1 The extended hyperserial skeleton

Proposition 6.4.2. We have M ,.+1 CTULg(T> "), and T(,) is v-confluent. In particular, T,
s v-confluent.

Proof. Let a€ M u+1. If a¢ Lg(T>"), then a€ T by definition, the first part of the statement
is true. We turn to the second one.

Clearly, T, is 0-confluent. Consider s € T@’; and write 9(s) =0, =tme M. By our defin-
ition of L, we either have have 01([/1(03)) :al(Ll(m)) or al(Ll(DS)) :Em_H[eg‘]. If 01([/1(03)) =
01(L1(m)), then 0,(s) =0,(m) and, more generally, d,1(s) =0 ,n(m) € M,» for all n € On with
1< n< v, since E,[0,(m)]=E&,[m] C & n[m] by Lemma 4.2.7. Assume from now on that 91(L1(05)) =
fyoile£1
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We set v:=v¢ and ¢:= . For 1 <n< p, let us first show by induction that
Own(@[eg]) = 672“)777[6?] S mwn.
If n=1, then yv=1>; and
01(L1(05)) = £y 4alef] = La(4y[ef]) = 01 (La(E4[ef])),

so we indeed have d,(s) = £, [ef]. Let 1 <7< p and suppose that d,-(¢,[ef]) =£,_ . [ef] for
1<o<n If1<n<pand 7 is a successor, then our induction hypothesis yields

Ln-(0un-(04[ef]) = Lwnf(@;wnﬁ[eg]).
Writing v5,7-- = Y- +wn, we have

Lol 5D =t vur-lef] =<y sun-lef] = Lun-(bs [e5),
SO

Oun(bylef]) = 0un(0un-(by[ef])) = by, [e5]-
If 1 <n<pand n=r1_ is a limit, then there is 0 < such that v>,7- = v>.°-. For this o, we have
Lio(ue(by[ef])) = Luo by, o [5]) = Lue by, 0 -[€f]),

50 0n(ly[ef]) =€y _n_[ef] € M n. Finally, if n=p and p is a successor, then vy n-- =wh - n,
where n =0 if p_ is a limit. This gives

Lo(00(t5[ef])) = Lo(bon--nlef]) =ef ' —n.

We thus have Lp(0g(¢,[ef])) < Lo(ef). Since vz9=0, we deduce that 05(¢,[ef]) =ef =L, ,[ef],

Let us now show that d,.+1(¢,[ef]) exists. Let a:=0,u+1(¢p), so a€ TU Lg(T>") by the first
part of the statement. Take n with (Lgo05)°"(¢) < (Lgo05)°"(a). We have Lz(ds5(¢,[ef])) =
Lg(ef) = ¢, so

(Lgo0g)° D (ef) ifaeT

o o(n+1) o on =
(Lgodg)* "1 (¢ [ef]) < (Lgodp)°" (a) {(Lﬁoaﬁ)O(nJrl)(EB(a)) otherwise.

Since a is an infinite monomial, it is w”*!-truncated, so Eg(a) € M,,.+1 so long as it is defined.
Thus, 0,u+1(£4[ef]) is either equal to e} or Eg(a).

If 0,u+1(¢5[ef]) = Ep(a), then 0,n(¢,[ef]) =0 n(Ep(a)) for n € On with g+ 1< n<v. On the
other hand, if d,,.+1(¢,[ef]) = ef, then

Lo (0 (65 [651)) = Loiss(08) = Lers() + 1% Ls(a).
Take n € N with (qu+1 o Dwu+1)on(a) = (qu+1 o leb+1)on(0wu+2(a)). Then
(Lw‘“rl © Dw“+1)0(n+1)(€7[eg]) = (Lw"”rl © Ow“+1)0(n+1)(a) = (Lw“+1 © Dw“+1)0(n+1)(ow“+2(a))a

80 0y u+2(ly[ef]) =0, nt2(a) and, more generally, 0,7 (¢, [ef]) =0,n(a) when 7€ On and p+2<n<
v. |

Propositions 6.4.1 and 6.4.2 yield:
Corollary 6.4.3. The structure (., (Lun)y<yv) is a confluent hyperserial skeleton of force v.
Remark 6.4.4. Let 0<n< p_. Then
(M ())wn =MunU{[[ef] : L€ (£<p)wn and @ € T}.

Given v <w" and [[ef] € (M (,))wn \ Men, we have L ([ef]) = L, (D)[ef]. Given t€ £glef], we have
0ur(0) = 0un(t ) 5]

Let us now show that T, satisfies a universal property. We start with a lemma.
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Lemma 6.4.5. For any a,b€Mig with a<b and any v,0 <8, we have L,(a) < L, (b).

Proof. Choose < p_ and n € N such that 7,0 <w”n. Then L,(a) < a and Ly, (b) < L4(b) so it
suffices to show that a < Ly, (b). Since L s+1(a), L,»+1(b) are monomials and L »+1(a) < L n+1(b),
we have

L n+1(a) < Lyn+1(b) < Ln+1(b) —n= L n+1(Lynn(b)).

The monotonicity of L n+1 gives a < L7, (b). We conclude that a < L,n,(b), since a and L, (b)
are monomials. g

Proposition 6.4.6. Let U=R[[N]] be a confluent hyperserial skeleton of force v < On and let

®: T— U be an embedding of force v. If ®(T)C Lg(U>>"), then there is a unique embedding
v T(M) — U

of force v that extends ®.

Proof. Since U is confluent, we have an external composition o: L. x U”" — U. Given p € T,
the series ®(¢) is f-truncated, so Eg(® (¢ )) is B-atomic, by Remark 5.3.10. We set a,:=Eg(®(p)) €

Mg. Note that for ¢ € T and [= H7<5 - € £, the series

loag :exp( Z [7L7+1(%)>

v<B

exists in M by P,,. Let us define a map ¥: £<9[eg] —N. Let te )39[6%]. If 14 is a limit, then hsuppt
is finite and we define

)= H tooa, €M

peT

If p is a successor, let o1 >--- > ¢, € T and t,, be as in Remark 6.2.2. We define

U(t):=[] . oae.
i=1

Note that in both the limit and successor case, we have

log ¥(t) Z log(t,0a,) = Z Z Lyt1(ay).

peT peT v<0

Given ¢ <9 €T and 7,0 <6, we have L,(a,) < Ly(ay) by Lemma 6.4.5 and, if v < o, then
L,(a,) < Ly(a,). Thus, log W(t) ~ (ts,)y, Ly+1(ayp,) for t#1. In particular, ¥ is order preserving,
since

t-1<=(ty)y, >0<=log¥(t) >0<= V(t) -1

Next, we extend W to all of M,y by setting ¥(tm)=W(t) ®(m) for tm € M,. Note that ¥ extends
®. It is straightforward to check that W:9i,,) — 91 is an embedding of monomial groups which
respects real powers. We need to show that U preserves the ordering. Let tm € sm( )- 1f both ¢,
m =1, then U(tm) =T (t) &(m) > 1. This leaves us two cases to consider:
1. Suppose t > 1, m <1, and ¢¢ > Lg(m™'). Set r:= (t,)y > 0. We claim that
Lg(m™) =5 L)' (2r ' Li(m™Y)). If p=1, then 7,=0, so this follows from Lemma 5.3.14.
If p>1, then 1, v+ 1<86, so this follows from Lemmas 5.3.14 and 5.3.16. In either case,
we have ¢ > L7127 1 Li(m™1), so @(py) > L)' (2771 Li(®(m~1))). From this,
we see that
Ly1(ap) = Ly 11(Ep(2(00))) > 277 Li(2(m™1)),

SO %r Ly i1(ap) > Li(®(m™1)). Since Li(¥(t)) ~ r Ly11(ay,), this gives L (T(t)) >
Li(®(m~1)). Thus

log(W (tm)) = Ly(W(0) — Ly (®(m~1)) >0,
so ¥(tm) > 1.
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2. Suppose t<1, m>1, and i< Lg(m). Set r:=(t,,)~, <0. As before, Lemmas 5.3.14 and 5.3.16
give @ (py) < Lg”"”l(f%r*lLﬂ@(m)))a SO

—2 erH(ag,t) < L1(<I>(m))
Since Ly (¥ (t) ™) = —log(¥(t)) ~ —r Ly 41(ay,), this gives L1 (V(t) ™) < L1(®(m)), so
log(¥(tm)) = L1(®(m)) — L1 (¥(t) 1) >0
and ¥(tm) > 1.

By Proposition 1.3.2, the function ¥:9(,) — N extends uniquely into a strongly linear strictly
increasing embedding T,y — U, which we still denote by ¥

We claim that ¥ is an embedding of force v. By Lemma 6.1.3, we need only show that ¥
commutes with logarithms and hyperlogarithms. We begin with logarithms. Let [€ £.g and € T.
If =1, then [=/{{ for some r € R and

log(W(€plel])) =7 Li(ay) =r Li(Eu(®())) =r E,(P(¢ —1)).
We have
rEy(®(p—1)) =ra,_1="U(log({les]))-
If p>1, then

log(¥ Z lyLyt1(a,) = (Z Ly talef ) T(log(llef]))-

v<0 y<0

In all cases, we have, log(¥(l[ef])) = ¥(log(I[ef])). For tm e M,), we have

log¥(tm) = log¥(t) +log ¥(m Z log(W(t,[ef])) +log @(m)
peT
= Z T(log(tyle])) + @(logm) = ¥(logt) + ¥(logm) = ¥(log(tm)).

Now, let 0<n < p+1 and let t=/{,[ef] € dom Ly \ Myn. Note that W(t) = L,(a,), so we need to
show that W(L,n(t)) = Lyn(LA(ay,)). Write y=yz,n+w™ n. If n<p_, then

U(Lyn(t) = W(£v>wn+w"[eg] —n)= Lbunﬂﬂ(a«p) —n=Lyn(Ly(ay)).
If n=p_ < p, then y=wh-n. We have

U(Lo(ly[ef])) = ‘1’(6571) —n=a,_1—n=Ly(ay) —n=Ly(Ly(ay)).

If n=p, then y=0 and
U(Lp(t)) =¥ (p) = D(p) = Lp(ay).
If n=p+1, then v=0 and
U(Lyur1(t) = U(Lyur1(p) +1) = B(Lyutr(p) + 1) = Lyn+1((p)) + 1= Lyntr(ay).

Since W(L,n(m)) = ®(Lyn(m)) = Lyn(P(m)) = Lya(¥(m)) for m € M,» and since dom L,n = M»
for n > p+1, this completes the proof of our claim that ¥ is an embedding of force v.

We finish with the uniqueness of ¥. Let A:T,) — U be another embedding of force v that
extends ®. To see that A =W, we only need to show that A(t) =¥(t) for all te Lgfe}]. For p €T,
we have

Lp(A(ef)) = A(Lp(Ep(#))) = Alp) = (),
so A(ef) =a,. For v <0, we deduce that
A(ly41lef]) = A(Ly11(ef)) = Ly 1(A(ef)) = Ly+1(ap) = ¥ (Ly41[ef]).

Since A is strongly linear, this gives log A(t) = A(log t) = ¥(log t) = log ¥(t) for t€ £ glef], so
A(t) =T(t) by the injectivity of log. O
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6.4.2 Hyperexponential closure

In this section, we prove Theorem 5.1.5 for w = u+ 1. We fix a confluent hyperserial skeleton
T =R[[M]] of force v.

Definition 6.4.7. For v € On, we define M, 11,4) as follows:
* Mir,0:=M
o Muii41) = (Mur1,7) (<) (-
o Mty = Up<79ﬁ(#+17p) if v is a non-zero limit

Where Mi— N, is given by Section 6.2.2 (for R[[N]] of force (v, pn)), and N—N(< ) is given
by 5.1.5 (in general).

We set T, q1,4):=R[Mug1,9]], 50 T(pg1,00=T and we have the force v inclusion T, 41, ) C
T(41,p) whenever v <p. We set

M= J M1 Tcprni= |J Tty
YE€On YEOn

Note that T(< 1) =R[$(< u+1)]] by Lemma 1.1.9.
Proposition 6.4.8. T(.,41) is a confluent hyperserial skeleton of force (v, p+1).
Proof. By Corollary 5.3.13, it suffices to show that
(T(< u+1))>7w" - Lw"(T(><7:+1))

forall n< p+1. Fix n< p+1and fix s € (T« 441)s,wn. Fix also an ordinal v with s e T(?:lﬁ)' Then
either En(s) exists in T, 41 ) or Eyn(s) exists in T, 41 4+1). In either case, E n(s) € T« 41). O

Proposition 6.4.9. Let U be a confluent hyperserial skeleton of force (v, u+1) and let &: T—TU
be a force v embedding. Then there is a unique force v embedding V: T (., 1)— U extending .

Proof. The proof is the same as that of Proposition 5.1.6, using Proposition 6.1.4 if p=1 or
Proposition 6.4.6 if x> 1 in the case of successor 7. O

Theorem 5.1.5 at w = p+ 1 follows from Propositions 6.4.8 and 6.4.9. We conclude by induction
that Theorem 5.1.5 holds.






Chapter 7
Hyperserial fields

In this chapter, we define hyperserial fields and establish the equivalence between confluent hyper-
serial fields and skeletons.

7.1 Hyperserial fields

We now define hyperserial fields. Throughout the section, we fix a ¥ < On and set A:=w".

7.1.1 Axioms for hyperserial fields

Let T =R][[M]] be an ordered field of well-based series and let o: L~ x T~ — T be a function.
For r € R and m € 9, we define m” as follows: set

1" = 1,
m” = fpom ifm>1, and
m’ = fy"om™ ! ifm<1.

For ;1< On, as in the case of hyperserial skeletons, we define 9, to be the class of series s € T~~
with £, 05 €M for all v <w*. The elements of M« are said L. n-atomic, and L,-atomic series
are said log-atomic. Finally the elements of 9, are said atomic.

We say that (T, 0) is a hyperserial field of force v if the following axioms are satisfied:

HF1. L., — T; f+— fosis a strongly linear embedding of ordered fields for all s € T>".
HF2. fo(gos)=(fog)osforall feL v, gL, and s€ T>".

HF3. fo(t+06)=Y, noeto" for all f€ Loy, t€T>*, and § €T with § <t

HF4. (o5 <70t for all ordinals p < v, all vy <w", and all 5, € T>" with s <t.

w

HF5. The map R x 99— 9; (r,m) —m” is a law of ordered R-vector field (i.e. real power oper-
ation) on M.

HF6. (1o(st)={10s+ {0t for all s,teT>".

HF7. supp/;om 1 for all m € M~ and supplyroa> ((yoa)~! for all 1 < pu<v, all y<wh, and
all a e Men.

7.1.2 Elementary consequences of the axioms
The axioms HF6 and HF7 are assumed to hold trivially when v =0. In most cases we will assume
that v > 0. A consequence of the axioms is that £y acts as the identity function:

Lemma 7.1.1. Let T be a hyperserial field of force v. For all s € T, we have fyos=s.

Proof. Let m € M~ and r € R”. We have fpom=m! and (m')!=m!*!=m! by HF5. The
function M — M; n—n! is strictly increasing by HF5, hence injective. Thus m! =m. We obtain
(rép)om=rm by HF1. In L, we have {yo (r{y) =14y, so HF2 yields ¢yo (rm)=rm. Now let
s€T> " and write s=70,+ 0 where r € R~ and d <0,. By HF3, we have

(k)
Koos:zgooT('ras)ék:rstrézs. O
keN ’
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The hyperserial field (T, o) is said confluent if 9+ 1 and if for all 4 € On with < v and all
s€T> ", there are an a € M,» and a v < wH with

lyos=/{ oa. (7.1.1)

For v < A, we write L, for the partial function T=>~ — T; s~ £, 0s, and we call (T, (Lyn |
Mon)u<v) the hyperserial skeleton of (T, o). We will see in the next section that if (T, o) is
confluent, then (T, (Leyw [ Myn),<w) is indeed a confluent hyperserial skeleton of force v.

7.2 Fields and skeletons

For the remainder of this section, we fix a hyperserial field T =R[[9]] of force v. For each u <v,
we define the function L,u: M,n — T;a+— f,noa. The skeleton of (T, o) is defined to be the
structure (T, (Lyx),<w) equipped with the real powering operation on 9t given by HF5. The main
purpose of this section is to prove the following theorem.

Theorem 7.2.1. The skeleton (T, (Lyr)u<w) of (T,0) is a hyperserial skeleton. Moreover, if
(T, 0) is confluent, then so is its skeleton and o coincides with the unique composition from The-
orem 4.3.1.

7.2.1 The skeleton of a hyperserial field

When v =0, then the skeleton of T is just the field T itself with the real powering operation on 9.
Clearly, this is a hyperserial skeleton, as there are no axioms to verify. Moreover, it is 0-confluent
so long as (T, o) is, so Theorem 7.2.1 follows from Proposition 4.4.1, since o clearly satisfies C1y,
C2, C3yp, and C4. Therefore, we may assume that v > 0. We will verify the various hyperserial
skeleton axioms over the next few lemmas, beginning with the Domain of Definition axioms:

Lemma 7.2.2. The skeleton (T, (Lyr)u<y) satisfies the axioms DD, for all p<wv.

Proof. By definition, ®g is the class of s € T>'~ with £yos €M™ Since £yos=s by HF5, the axiom
DDy holds. Let us fix 0 < u <v and let us assume that DD,, holds for all 7 < p. If p is a limit, then

ﬂ dom Lyn = ﬂ {seT>":ly0os€IM for all v<w"}
n<p n<pn
= {seT>":4yoscIM for all v <wh}=dom L.

Suppose p is a successor. The inclusion dom Ly C (), o dom L%~ holds by definition, so we
show the other inclusion. Let v <w* and let s € (), . dom L. Take n € N and o <,w"~ with
vy=wt-n+o. Then L% (s) € dom L u-, so £y o Lk (s) €M™, by our inductive assumption.
Repeated applications of HF2 give ¢, 0 L k-(s) ={,0s. Since v <w* is arbitrary, this gives
sedom L,u. O

Now for the functional equations, asymptotics, regularity, and monotonicity axioms:
Lemma 7.2.3. The skeleton (T, (Lyr)u<y) satisfies the axioms FE,,, A,,, and R, for all p<v.

Proof. Given r € R” and m,n €9, we have

Li(m") = lio(lfom)=(l10lp)om=(rly)om=r(f1om)=rLi(m) (by HF2 and HF1)
Li(mn) = f1o(mn)={liom+/lion=Li(m)+ Li(n), (by HF6)

so FEq holds. Let 0 < u <wv be a successor ordinal and let a € M,», so L,u-(a) is defined and lies
in M= The axiom HF2 implies

Lyu(Lyn-(a)) =Lyro (byn-oa)= (byrolyn-)oa= (Lyn—1)oa= Lyu(a)—1,
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so FE,, holds as well. The asymptotics axiom A follows from the relation ¢; <€ in L.,» and HF1.
Likewise, A, follows from the fact that £« </{,n for all n < u. By HF1, we note that the sets
(lcpros) ™t and {(lyn,08)~t:n < p and n € N} are mutually cofinal for each s € T>>. The
regularity axioms R, for p < v therefore follow from HF7. O

Lemma 7.2.4. The skeleton (T, (Lyr)u<y) satisfies the axioms M, for all p<w.

Proof. The axiom My follows from the fact that /1 >0. For 0 < u <v, let v <w* and take a,
beM,« with a<b. We need to show

lynob—Lynoa> (L oa) "+ (£y0b)7 L.

We first consider the case that a < £,n0b for some 1 <y with v <w”*!. Then HF4 gives us that
009" oa< 09" o (bynob)=lyuob. By (4.1.4), we have 19" =l u+ [+ ¢, where [= e’; =
W+l

Hm+1<a<m€;1 and € < [. Since £,r0b—01%"0a>0, we have

bopob—Lynoa>loa+teoa.
Since v <wt!, we have E;l <1, so (fvoa)_1:€;10a< [oa. The axiom HF4 gives £,0a<{,0b,
so (byoa)™t+ (¢yob) 1 <2(¢yoa)~t <loa. Thus,
lynob—Lynoa>(lyoa)~t+ (£yob)~L.
Now we handle the case that a = £, nob for all n < p with v <w”*1. We claim that the sets
{(lyoa)"t:io<wt} and {({yob) Lo <wH}

are mutually cofinal. Let o < w* be given and take n < p with v < w”*! and o <, w”. Then
a={,m0b by assumption, so a> £, m90b and HF4 gives {,0b>{l,0a> ;0 (L, n20b) =L n21,0b.
This proves the cofinality claim. Now HF7 gives supp({,x0a)>{({y;0a) 1 :0 <wH} and likewise,
supp(lyrob) = {(ly0b) L0 <wt}. Thus

supp(lw 0 b — Lyuoa) Csupp(lynoa) Usupp(yprob) = {(lyoa) L, ((y0b) Lo <wh}.
In particular, we have {,u0b—fyvoa> ({yoa)~t+ (£,0b)71, as desired. O
Before proving the infinite powers axioms, we need a lemma:
Lemma 7.2.5. Let s=cm(1+¢)eT>" with cER”, m:=0,, and e <1. Then
Elos:élom—i—logc—i—i(s),
where L is as defined in Section 3.1.

Proof. Set :=cme, so § <cm and s=cm+ 4. The axiom HF3 gives

o (cm)
lios=/{10(cm)+ Z Té.

keN>

We have {10 (cm)="{10((cly)om)=(10(cly))odioq by HF2, and ¢; o (cly) = {1+ logc. Hence

fgk)o (Cm) fgk)o(cm)
lios=(l1+logc)om+ Z 7 d={liom+logc+ Z T(S.
keN> keN>
Given k >0, we have €gk)ot: (—=1)F=1(k—1)!t=*. So for § <t, we have
A (em) o (=DF (5 \F_(=)Et
k! -k em )k '
é(k)o(cm) k7
Thus, 37, o> ———— 0" =L(e). O

By HF4, HF6 and HF7, the function 9t — T'; m — {1 o m satisfies the hypotheses of Pro-
position 3.1.10. Furthermore Lemma 7.2.5 and the corresponding logarithm on T~ coincides with
sr—fi1oson T,
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Lemma 7.2.6. Let T=R[[IM]] be a hyperserial field of force v, let u<v and a € M, n. We have
Vm € supp Lyx+(a), m << a.

Proof. If ;1=0, then this follows from the fact that supp L1(a) > 1 by HF7 and from Lemma 3.1.7.
Assume that >0 and let m € supp L,x(a). Then m < Lyn(a) < a so m < a. We have

supp Lyn(a) = (Leyna)™t
by HF7, whence in particular m = (L1 a)~!. We deduce that m>>a~!. Therefore m < a. O

Lemma 7.2.7. The skeleton (T, (Lyr)u<w) satisfies the axzioms P, for all p€ On with p<w.

Proof. let p€On with p<v, let a € M,n and let (74),<ur be a sequence of real numbers. We
need to show that Z,Kw” 7y Lyy1(a) € log M, where logm:= —¢; om™! for m € M~ and where

logl:=0. Set [:= H7<W€:7. We may assume that [# 1 and, by negating each 7 if need be, we

further assume that [ > 1. Hence ¢; ol is defined. The axioms HF1 and HF2 give

Z Ty Lyti(a)=(lrol)oa=/(10(loa),

y<wk

so it remains to show that [oa €9t~ For each v <w", we have L. 1(a) € 9t~. This gives supp¢; o
(loa) CM~. Take r € R~ and £ <1 with l[oa=7004(1 +¢). Lemma 7.2.5 yields

Elo([oa)=€10010a+10g7"+f/(5)-

We have supp(£100i04) = 1 by HF7. If €0, then L(e) ~¢, so 0. €supp L(¢). If 7+ 1, we have
supplogr={1}. As we have established that supp ¢ 0 (foa) CO™, it follows that r=1 and ¢ =0.
Thus [oa=10,4 € M, as desired. O

This shows that (T, (Lynr),<y) is a hyperserial skeleton of force v.

7.2.2 Equivalence between confluent fields and skeletons

Now we turn to confluence. First, we need a lemma:

Lemma 7.2.8. Let s,t € T~ and let v <w". If {yos=<lyot, then {y1105— Ly 10t<1 and
loos—Llyo0t =<1 for all o with y+2< o <wY. In particular, l,0 5=l 0t for all o with y <o <w".

Proof. The proof is essentially the same as the proof of Lemma 4.3.4. Take c€ R~ and € <1 with
lyos=c({yot) (1+¢). By Lemma 7.2.5, we have

ly108=l10(ly08)=L10(c(byot)(1+¢)) =L 410t +loget Lie),

0 £yp108~L 110t Set §:=(y110t) "  (loge+ L(g)) <1, 50 £y y105=(y410t) (1+3). Again,
Lemma 7.2.5 gives

lyrz08=L10(byr108) =Llr0((byr10t) (L+8)) =20t +L(0),

80 byy208—Llyio90t=L(1+06)~6<1 Now set h:=(ly1205—{,120t) <1 and fix ¢ with
Y+ 2< 0 <wY. We have

lyos—Ll,0t = £2W+2o(€7+203)—82’7+20(£7+20t)
= £2v+20((£v+20t)+h>*£2W+2O(£v+20t)
= %l”*2(£v+2 ot,h)~ (£2v+2)/ o (ly420t)h.

Since (£,772) h <1, we have fyos—Llyot<1. O

Lemma 7.2.9. Suppose (T,o0) is confluent. Then (T, (Lur)u<y) is confluent as well.
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Proof. The skeleton (T, (Lyx),<w) is O-confluent since M is non-trivial. Let p€ On with 0 < pp< v
and assume that (T, (Lyn)y<w) is 7-confluent for all n < p. We also make the inductive assumption
that for s € T=~ and n < u, we have £, 05/, 00,n(s) for some v <w". Let s € T~ and take
v <w” and a € Mn with £y 0s=<L,0a. We will show that 0,x(s) =a. We first handle the case
that g is a successor. Take n € N~ with v <w*-n. Lemma 7.2.8 gives £ u-, 08 =< £ u-, 0d. By
assumption, we have £,00,:-(s) < {,0s for some p <w-, s0 Ly,u-0,u-(s) < {,n-0s, again by
Lemma 7.2.8. Induction on m gives (Lyu-00,0-)°"(s) < € u-, 08 for all m € N>, so

(quf Oowuf)on(s) = gwufn osx< gwuf,n oa= (quf o Ow/’u)on(a),

and d,1(s) =a. The case that p is a limit is similar, though this time we take 7 < p with v <w”
and use that

Ln(0un(8)) < Lynos=<Lymnoax Lyn(d,n(a))
to see that d,x(s) =a. Since s was arbitrary, this gives that (T, (Lwnr)u<y) is p-confluent. O

Proof of Theorem 7.2.1. Lemmas 7.2.2, 7.2.3, 7.2.4, and 7.2.7 show that (T, (Lyx),<w) of (T, 0)
is a hyperserial skeleton. The composition o clearly satisfies C1,, C2,, C3,, and C4,. If (T, o)
is confluent, then (T, (Lyn)u<y) is confluent by Lemma 7.2.9 and Proposition 4.4.14 implies that
o coincides with the unique composition from Theorem 4.3.1. g

Given a confluent hyperserial skeleton (T, (Lynr),<w) of force v, it is clear that the unique
composition o: L. X T~ — T in Theorem 4.3.1 satisfies all of the hyperserial field axioms,
where HF4 follows from Lemma 5.1.7. This gives us the following result:

Theorem 7.2.10. If (T, (Lyr)u<wv) is a confluent hyperserial skeleton of force v, then there
is a unique function o such that (T, o) is a confluent hyperserial field of force v with skel-
eton (T, (Lon)p<v)-

In the sequel of the thesis, we will always equip confluent hyperserial skeletons with the cor-
responding composition law, and equip confluent hyperserial fields with their skeleton. We will no
longer use the notation ®,« for the class of L.,r-atomic series in T, since it is redundant with
the notation 91, which we will use instead.

We also deduce that our results on hyperexponentiation in confluent hyperserial skeletons
apply for confluent hyperserial fields. In particular, we have the following characterizations of
hyperlogarithms and hyperexponentials of force p:

Let T be a hyperserial field of force v, let p € (0,v) and write f:=w*. For all s€T>>", there
is a vy < B with L,(s) ~L+(0s(s)). For all such v, writing § := L, (s) — L(d3(s)), we have

(5 (k)OL (05( ) ok

Lp(s)=Lp(dp(s) +Z

k>0

Assume that s € Lg(T>7) and let v< 3 and e € T= with ¢ <(L70—Ea)/(90). Then
(Lyo Ep)'(¢)

Eg(s+e)= ( Z (L OEﬁ )5k>, (7.2.2)

k>0

5. (7.2.1)

where each (L, 0 Eg)*¥)(p) =15, 0 Es(s) for a certain series t5 - 1 € L. The series t5 - are
given by induction by

ts,r0 = £y and

th ok

VkeN,tg 4 pr1 = %
B

7.2.3 Confluent hyperserial subfields

We next introduce a notion of hyperserial embedding which is more appropriate to the context of
hyperserial fields. We fix a ¥ < On and set A:=w".
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Definition 7.2.11. Let (T,or) and (U, oy) be hyperserial fields of force v with monomial groups
M and N respectively. We say that a strongly linear morphism of ordered rings ®: T — U is an
embedding of force v if we have

o) C N, and
VfeL,VseT>" , ®(fors) = fouyd(s).
We then say that (U, ) is an extension of T of force v.

We say that (T, o1) is a subfield of (U,oy) of force v and we write (T, o) C (U,op) if TCU
and Id: T — U is an embedding of force v.

We will add the adjective “confluent” when appropriate, e.g. confluent subfields are subfields
that are confluent as hyperserial fields. We allow ourselves to use the same vocabulary as in the
case of hyperserial skeletons (see Definition 4.2.4) because we will next show that those two notions
coincide (through the correspondence given by Theorems 7.2.1 and 7.2.10) in the confluent case.

Proposition 7.2.12. Let (U,oy) be a hyperserial field of force v. Let A\: T — U be a strongly
linear function with
A(logm) = logA(m) for all mell, and
A(Lyn(a)) = Lyu(A(a))  for all 0<n<v and a€ U,

Then /\ is a strictly increasing ring morphism with
A(fos) = fouA(s) forall feLex and s€T>", and
Alogt) = logA(t) for allteT~.
Proof. Let m,n e 9. We have
log A(mn) = A(logmn)
A(logm) + A(logn)

= log A(m) +1log A(n)
= log(A(m) A(n)).

We deduce since log is injective that A(mn) = A(m) A(n). By strong linearity, it follows that
A(st)=A(s) A(t) for all s,t €U, hence that A is a morphism of rings. We deduce with Propos-
ition 2.5.3 that A is strictly increasing.

Let C denote the class of series f € L with A(fos)= fo/A(s) for all s€ U~>>~. We will prove
that we have L,» C C by induction on p < v, starting with g =1. We have A(log s) =log A(s)
for all s >0 by Proposition 3.1.9. We deduce that C contains [ € £ if and only if it contains logl.
Note that by strong linearity, the class C is closed under sums of well-based families. Moreover, for
f,heC with h >R, we have foh € C. So we need only prove that we have ¢, € C for all n € (0,v).
Let n € (0,v) such that this holds for all : < 7. So L,» C C by the previous arguments. Let
s€T>>" and write § :=0,7(s). Recall that there is a y <w" such that the series e :={, 0oy s — 50y s
is infinitesimal, with
(W oy (Lyous)

o e”.

bynoys=~Lynoys+
k>0

Note that for £ € N~, we have (6 1) *) € L, C C. The induction hypothesis yields
Lyoy A(s) —lyoy A(s)=A(lyoys—Lyops)=A(e) <1.

It follows that

(k)
by A(s) = Lunoy As +Z f ov f O\/A( ) Ae)*.

Ty (k)

= A(lynous)+ A(Z ) Olzj' (6 0u ) 5’“) (by the induction hypothesis)
k>0 '

= A(lynoys).
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We conclude by induction that C=1L_x. O

Corollary 7.2.13. Embeddings of force v between confluent hyperserial skeletons of force v are
embeddings of force v for the corresponding confluent hyperserial fields, and vice versa.

A subfield of T of force v is a hyperserial field U C T such that Idg is an embedding of force v.
In particular, we have fos€ U for all f €L,y and s € U~". In view of the axioms for hyperserial
fields, we have the following converse implication.

Lemma 7.2.14. Let MTCIMN be a subgroup and assume that
Loxo (R[M))~~ CR[[MN]].
Then R[[MN]], equipped with the restriction of o to Lx x R[[M]]”>" is a subfield of T of force v.

Again, there is a skeletal version of this characterization in the case of confluent subfields.

Proposition 7.2.15. Assume that (T,0) is confluent. Let MM be a subgroup and assume that

0,6(M™) C N for all u<v, and
Lewno(0,6(M7)) € N forall p<v, and
supp L,n(0,7(M7)) € N for alln<wv.

Then o restricts to a composition law o:L<x x R[[9]]”"~ — R[[N]] for which R[[MN]] is a confluent
subfield of T of force v.

Proof. We first prove that IR[[91]] is a subfield of T of force v. By Lemma 7.2.14, it is enough to
prove that for all s€ T>” and f € L., we have supp fos C.

Fix s€ T>~ and f € L. From the proof of Proposition 4.4.7 and by Theorem 7.2.1, we see
that the support of fos is contained in the class of finite products of monomials in the class

(supp s) U U U £<wuoawu(0Lw(a)).
pn<r yZwh y<A
For p,n<wv with n> p, we have 0p,_,(a) =0r_u(0,n(a))- S0 for v <X with v >,w#, we have

supp fos C SUPPS U U £<w“obw“(aL7(a))
p<y yZowh, Y <A

swps)u ) U £<w“obw“< U supprw(%v(‘ﬁ*))>

By Y ZowH, v <A WLy

N

C (supps)U U Lwn 0 0,n(MN7)

u<v

c N

This proves the first part of the proposition. To see that R[[97]] is confluent, consider a s € T~>”
and a g <v. The field (T, o) is confluent so there are an a € M,,» and a v <w* with £yos=<{,0a.
We thus have a =0,:(s) €9l. So a € Nyx, which proves that R[[D1]] is confluent. O

7.3 Examples of hyperserial fields

We conclude Part II by giving examples of important hyperserial fields.

7.3.1 Finitely nested hyperseries

Let v < On and write A:=w". As a consequence of Corollary 4.2.18 and Theorem 7.2.10, the field
L. of logarithmic hyperseries of strength <A, together with its composition law

[oN IL<AX]L )\ 4’]]—_4<)\,
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is a confluent hyperserial field of force v. Likewise, its hyperexponential closure ]IT;)\ is a confluent
hyperserial field of force (v,v). We call L. the field of finitely nested hyperseries of strength <.
We simply call IL the field of finitely nested hyperseries. This terminology will be justified in later
work, indeed we intend to show in the future that under the natural embedding f— fow of I into
No, the numbers in Low C No are exactly those which contain no infinite path (see Section 13.1.2).

The reader might think that we have so far given a very conservative description of the struc-
tures of I and L. Indeed, isn’t the monotonicity entailed by the axiom HF4 valid for more
logarithmic hyperseries than just the series KLZ? Doesn’t the derivation ’:IL — L extend into
a well behaved derivation : L — IL? Doesn’t the composition law o: L x L>" — I extend to
LxL>"? Is (L>>", £y, 0, <) an ordered group? Do all conjugation equations

yo f=goy

for fixed f, g€ L>% have solutions y in > ? All the answers are positive (see [10, Introduction]),
but require some efforts to be obtained and are not provided in this thesis.

7.3.2 Nested series

One could wonder whether IL, as the total hyperexponential closure of all logarithmic hyperseries,
is the largest possible confluent hyperserial field. One way to try extending L is to fill initial cuts
within it. As in [63, Chapter 9|, we define an initial cut in (IL, <) to be an initial subclass L of

(L, <) without supremum in (I, <). Consider such an initial cut L and write R =1L\ L. Filling
L means to construct an extension ®:IL — U{L | R} for which there is a y € U{L | R} with

(L) <y < D(R).

If one allows L to have no cofinal subset or R to have no coinitial subset, then one cannot expect
that any such initial cut (L, R) be filled. Indeed taking

Ly = {felL:3neN, f<n} and (7.3.1)
L, = L, (7.3.2)
we can fill (Lo, L") and (L, @) by adjoining suggestively denoted elements
Yon and eeo"n,

defining the appropriate structures on lexicographic products
£x(Lolon) and  (Loel,) x £,

with prevalence of the first projection, then taking the hyperexponential closure. Other uninter-
esting initial cuts are what van der Hoeven calls serial cuts, which cannot be filled without breaking
the condition that supports be set-sized.

A more interesting case is that when L has a cofinal subset L and R has a coinitial subset R.
By taking convex hulls, we see that (L, R) determines (L,R). Then as in [63, Chapter 9], we expect
that each such cut (L, R) can be expressed using cut operations and series in L. In fact, we expect
that each such initial cut is what we will informally call a nested cut. Let us give an example. For
n € N, write

VIn
fn = Vil HeVate , and
2T

gn = \/%‘H’em—ﬂ_e..
It is easy to see that
fo<f1<"'<fn<"'<"'<gn<"'<g1<go-

We will show in later work that there is no series f € IL with
L:={fn:neN}< f<{gn:neN}=:R.

We thus have a corresponding initial cut in L, which is in fact an initial cut in (Lcw)(<1)-
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Schmeling showed [92, Section 2.5] that there are transseries fields, and in fact also confluent
hyperserial fields T(L | R) of force (1,1), which contain a series f with L < f < R. One particular
example of such series fhest can be represented as a transfinite nested expansion

VTnte -
fnest = \/E_O + e\/E-Pre' s (733)

in the sense that

frest~ V0o and  foest — V0o is a monomial,
log( faest — V00) ~ V1 and log( fuest — V/40) — /1 is a monomial,
log(log( faest — V€0) — Vf1) ~+/f2 and soon... (7.3.4)

As we will see in Part III, it is known that the field of surreal numbers has a natural structure of
confluent hyperserial field of force (1,1). With van der Hoeven, we showed [11, Section 8] that such
nested series satisfying (7.3.4) “already” exist in No. In fact, they form a proper subclass of No,
which implies that the expansion (7.3.3) is ambiguous. In Chapter 14, we will generalize this to
the hyperserial setting. It will turn out that L is naturally included in No (see Chapter 12), and
we expect to show in future work that one obtains No by iteratively closing L under nested series
such as fuest, and hyperexponentials.

7.3.3 Non confluent hyperserial fields

We finish with remarks on the failure of confluence in hyperserial fields. One could wonder whether
the confluence axioms are necessary to define composition laws on hyperserial fields, or if they
simply impose convenient restrictions. The following lemma shows that in any case, a non-confluent
hyperserial field which can be extended into a confluent can be thus extended via hyperexponential
extensions.

Lemma 7.3.1. Let U be a confluent hyperserial skeleton of force (v,v) and let p<v. Any
subskeleton of U of force (v, u) is p-confluent.

Proof. Let T =R[[?]] be a subskeleton of U of force (v, u). We prove that T is n-confluent
by induction on 1 < p. Let n € (0, u] and assume that T is ¢-confluent for all v < n. If n=
On, then it follows that T is m-confluent; so we assume that 1 < On. Assume that 1=+
1 is a successor. Consider an s € T>>". Since U is n-confluent, there is a k € N with (L, o0
0,:)°%(8) X Ly (0n(5)). So Lyik(0,m(s)) is the dominant monomial of (L. 0d,.)°*(s) € T, whence
Lk(0n(s)) € T. But then d,,n(s) € T since T has force (v, ). Assume now that 7 is a limit, and
let s€T~>~. Since U is n-confluent, there is a p <n with Lyr(due(s)) < Lyr(0un(s)). But likewise
0,7(8) = Eyo(Lyr(0,m(s))) € T. So in any case T is n-confluent. This concludes the proof. O

Corollary 7.3.2. Let U be a confluent hyperserial field of force (v,v) and let p<v. Any subfield
of U of force (v, u) is p-confluent.

Proof. This follows from Lemma 7.3.1 and Theorems 7.2.1 and 7.2.10. O

We now give an example of a somewhat pathological non-confluent hyperserial field which
cannot be extended into a confluent hyperserial field. We will also show that this particular field
is ill-suited to the purpose of the thesis. Our example uses the axiom of choice by way of Zorn’s
lemma. For the remainder of this subsection, we fix a linear ordering < of N~ which extends the
universal comparison

f<ge=({f#gA(VneN,(f(n)<g(n)))

Write + for the pointwise sum on N¥. Note that (NY, +, <) is an ordered monoid. Consider the
(commutative) Hessenberg sum @ on w® (see Section 8.1.2). We have a strictly increasing morphism
(W, @, €) — (NN 4+ <), whereby each ordinal v <w® with Cantor normal form = Y onen@" In
is sent to the function n — =, (which is zero outside of finite subset of N). We identify each v < w®
with (7n)nen € NN and see elements v of NN as “non-standard ordinals”

Y=Ytwrnt Wty t s
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Finally, for n € N and v € NN, we write v, for the function N — N which coincides with v on
[n,+00) and is identically zero on [0;n), i.e. vy=w"™y, +w Ly, 1+ -

We write £, for the multiplicatively denoted Hahn product group [] (
ordering > on NN, Each f€ £, is a well-based product

=10 &

yENN

NYLS) R, for the reverse

where f,:=f(y) and E;” = fy X{y} € £« (see Section 1.1.3).
Set L, :=R[[£.]]. Let us define a hyperserial skeleton of force w on L.. We set

(€)1 == £ and
(Lo)wn+r = {ly:y=7zn} forallneN.

Given f € (£.)1, we define
Ly(f) := Z fy Lyt1-

. yENN
Given £, € (£4),n+1, we define

Lw"+1(£7) = £7>n+1 - Tn-

We leave it to the reader to check that (L., (L,n)n<w) is a hyperserial skeleton of force w and that
it is n-confluent for all n <w. By Theorem 4.3.1, we have compositions laws 0™: Lo n x L7 — L,
for each n <w. We let IL; denote the proper (regular) subfield L2 . := [ L.yn of Ly and
we denote

n<w

o: LY 0 x L™ — L,

the function whose graph is the reunion of the graphs of all composition laws o™, n € N. For the
rest of this subsection, we fix ¢:=Idxy=1+w+w?+--- € NN. We have

by =lonoly, (7.3.5)
for each n € N, so ¢, can be construed as a transfinite post-composition
l,=/¢i0l, 00l mno---.

The inclusion (w*,>) — (N, >) induces an embedding of ordered groups £, — £, which in
turn induces an embedding L.« — L, of force w. This last embedding is not a bijection because
the field IL, contains non-standard expressions such as ¢,. This prevents L, from being w-confluent.
To justify this, we show that we cannot apply Theorem 4.3.1 for ¥ =w to obtain a composition
Logo x L7 —L,.

Proposition 7.3.3. There is no extension of o into a function o: Ly x L. — 1L, satisfying
the conditions C1,,, C2,, and C3,, as per Theorem 4.5.1.

Proof. Assume for contradiction that such a composition exists. By C1,,, the family
(bunoli)ocn<w
is well-based. Let n € (0,w). For k<n —1, we have {yn o0 i — {,nm <1, whence
€ni=Lyno(lyoly0-- 0l n-2)—Ll,m=<1.
By (7.3.5), C1,, and C3,,, we have
bonol,=(lynten)oly,, = Uumno(lyn-10l,,))+ (enolis, )= {lunol,, )1+ (enoli, ;)

where €, 0/, _, is infinitesimal. By C2,, we have {,nof, =/, +,», which is an infinite

1

monomial. We deduce that 1 lies in supp £~ 0 ¥, for all n € N>, which contradicts the fact that
(byn0l,)o<n<w is well-based. O

The existence of ¢, also prevents IL, from enjoying a well-behaved derivation as the following
shows.
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Proposition 7.3.4. There is no strongly linear derivation 0: 1L, — L. which extends the deriva-
tion on L.y« and which satisfies the chain rule

(fog)=0(g)(f'og) for felLlyw, gelL]",
and the relation
1< f<g=0(f)<0(g) for f,g€eL.. (7.3.6)

Proof. Assume for contradiction that such a derivation exists. By the chain rule, the derivative
of /, is given by

ot,) = €1 9(t5,,)

= ¢! H Ctosy |O(L,)
n<w
- H H Egib2k+1 a(€L>n+1)
k<n <wk
< £ n+1 whence

8(£L>n+1) = a(&u"*ﬂ = H H g;—i{wk

k<n 0<wk

For n <w, we have £, .,

by asymptoticity. For k<n and  <w*, we have 0 + w* <0 + (5541 so

Ol )= ] T totisnsr

k<n O<wk
We deduce that the support of dy(,) € £ in NN contains the strictly decreasing sequence
L>Ux1> 02>,

a contradiction. O

The relation (7.3.6) is a weaker version of properties of certain ordered, valued, differential fields
called H-fields (see [2, 3, 4]). It is known [33, Lemma 3.2] that IL itself with its standard derivation
satisfies (7.3.6).

What Proposition 7.3.4 above suggests to us is that hyperserial fields ought not to contain
those infinite post-compositions of hyperlogarithms, if they are to be equipped with well-behaved
derivations.
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Seeing the number

The class No of surreal numbers was discovered by Conway and studied in his well-known mono-
graph On Numbers and Games [28]. Conway’s original definition of (surreal) number is somewhat
informal and goes as follows:

“If L and R are any two sets of numbers, and no member of L is > any member
of R, then there is a number {L | R}. All numbers are constructed in this way.”

In order to gain some insight on this mysterious definition and on the corresponding notion of
magnitude that it proposes, it is useful to find more explicit representations of such numbers. In
Part 111, we will (rather briefly) consider three such representations: as cuts, as sign sequences, and
as transseries. Our motivation however is not mainly to understand surreal numbers, but rather
to find a representation that is most convenient in order to operate on them as if they were germs
of functions in Hardy fields. This is the task of representing numbers as hyperseries that we will
only tackle in Part IV.

Conway’s paradise

The magic of surreal numbers lies in the fact that many traditional operations on integers and real
numbers can be defined in a very simple way on surreal numbers. Yet, the class No turns out to
admit a surprisingly rich algebraic structure under these operations. For instance, the sum of two
surreal numbers = {xy, | xg} and y={yr, | yr} is defined recursively by

r+y = {zr+y,c+yr | 2r+y, 2+ yr} (1)

Similar definitions exist for subtraction and multiplication, which we will recall in Section 8.2.
Despite the fact that the basic arithmetic operations can be defined in such an “effortless” way,
Conway showed that No actually forms a real-closed field that contains IR.

Since Conway’s seminal work, further algebraic structure has been defined, often in natural but
non-trivial ways, on No. This includes an exponential function and a non-trivial derivation. There
is a “simplicity heuristic”, according to which it is sometimes possible to define an operation on No
by picking the simplest (i.e. C-minimal) solution to a given problem whenever several solutions
exist. Not only has this approach been successful in defining the algebraic structure on No, but
in a number of examples, it also turns No into a model of tame first-order theories, such as the
theories of divisible linearly ordered Abelian groups, of real-closed fields, of the real exponential
field, and of H-closed fields (see [5]).

We do not yet have a good model theoretic framework that could guide us in completing the
task at-hand of defining a structure of hyperserial field on No. Some partial results exist in the
form of Padgett’s PhD thesis [83] which proposes in particular a first-order theory of the real
ordered field with Kneser’s hyperexponential function [66]. Nevertheless, we will see in Part IV
that the simplicity heuristic, combined with the method of hyperserial skeletons of Chapter 4, gives
a solution to our problem. Furthermore Part IV will illustrate that surreal numbers are a prime
example of proper extension of IL as a hyperserial field. For the sequel of the thesis, no one shall
expel us from this paradise Conway has created.

Sign sequences

One convenient way to rigorously introduce surreal numbers a is to regard them as “sign sequences”
a=(a[f])s<a € {—1,+1}* indexed by the elements § < a of an ordinal number a =bd(a), called
the birth day of a: see Section 8.1 below for details. Every ordinal « itself is represented as
a=(a[f])s<a with a[f] =1 for all § < a. The number 1/2 is represented by the sign sequence
+1, —1 of length 2. The ordering < on No corresponds to the lexicographical ordering on sign
sequences, modulo zero padding when comparing two surreal numbers of different lengths. The
sign sequence representation also induces the important notion of simplicity: given a,b € No, we
say that a is simpler as b, and write a C b, if the sign sequence of a is a proper truncation of the
sign sequence of b. The simplicity relation is denoted by <, in some previous works [18, 71, 6].
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The sign sequence representation was introduced and studied systematically in Gonshor’s
book [55]. We will rely on it in order to give a simple definition of surreal numbers, as well
as to give examples of important numbers and classes of numbers.

Surreal substructures

In the course of the above project to construct an isomorphism between No and a suitable class of
hyperseries, one frequently encounters subclasses S of No that are naturally parametrized by No
itself. For instance, Conway’s generalized ordinal exponentiation No — Mo; z — w? is bijective,
hence we have a natural parameterization of the class Mo of monomials by No. Similarly, nested
expressions such as (2.2):

/4 /TR
do not give rise to a single surreal number, but rather to a class Ne of surreal numbers that is
naturally parametrized by No (see Theorem 14.2.4). Yet another example is the class Mo, of log-
atomic surreal numbers [18, Section 5.2]. More general subclasses than surreal substructures such
as initial subtrees as studied by Ehrlich [42] and subtrees of No as studied Lurie [75] play a role
in investigating initial algebraic substructures of No and studying fixed points of certain surreal-
valued functions.

In these examples, the parametrizations turn out to be more than mere bijective maps: they
actually preserve both the ordering < and the simplicity relation . This leads to the definition of
a surreal substructure of No as being an isomorphic copy of (No, <, ) inside itself. Surreal sub-
structures such as Mo, Ne, and Mo, behave similarly as the surreal numbers themselves in many
regards. In particular, it is possible to define monotone functions between surreal substructures
by well-based induction with respect to the simplicity relation.

Exponentiation, derivation, and hyperseries

In his book [55], Gonshor shows how to extend the real exponential function to No. This function
actually has the same first-order properties as the usual exponential function: the class No is an
elementary extension of R as an ordered exponential field. Berarducci and Mantova later showed
that the field No, equipped with the functional inverse log of exp, is a transseries field, i.e. a
transserial field (see Definition 3.1.4) satisfying Schmeling’s axiom T4 (see [92, Definition 2.2.1]).
As a transseries field, the class No vastly extends the logarithmic-exponential transseries, and is in
fact the largest transseries field [46, Proposition 8.4]. See also [46, Proposition 7.2] for a different
proof of the validity of T4 in No.

An important question concerns the possibility to define a natural transserial derivation 0 on
No with 9 (w)=1. Such a derivation was first constructed by Berarducci and Mantova [18], using
methods from [92]. It was shown in [6] that Berarducci and Mantova’s derivation 0 also turns
surreal numbers into an elementary extension of the ordered valued differential field Tr,g. We recall
that the derivation 0 cannot be compatible with a composition law on No [19, Theorem 8.4]. A
tentative explanation of this fact is that 0 is constructed by relying on a representation of surreal
numbers as transseries, and that this representation fails to accurately describe those surreal
numbers that will be best represented using the hyperexponential and hyperlogarithmic functions
we will define in Part IV.



Chapter 8
Surreal numbers

In this chapter, we introduce surreal numbers as presented by Harry Gonshor in his book [55], and
give their elementary properties as an ordered valued field with a simplicity relation.

8.1 Numbers as sign sequences

The sign sequence representation is most convenient for the rigorous development of the basic
theory of surreal numbers. It was introduced by Gonshor [55, page 3] and we will actually use it
to formally define surreal numbers as follows:

Definition 8.1.1. A surreal number is a map a:bd(a) — {—1,1}; a— a[a], where bd(a) € On is
an ordinal number. We call bd(a) the birth day of a and the map a:bd(a) — {—1,1} the sign
sequence of a. We write No for the class of surreal numbers.

It follows from this definition that No is a proper class. Given a surreal number a € No, it is
convenient to extend its sign sequence with zeros to a map On — {—1,0,1} and still denote this
extension by a. In other words, we take ala] =0 for all @« >bd(a). Given a € No and a € On, we
also introduce its restriction b=a [ « € No to a as being the zero padded restriction of the map a
to a: we set b[f]=a[f] for S < a and b[5] =0 for S > a.

The first main relation on No is its ordering <. We define it to be the restriction of the
lexicographical ordering on the set of all maps from On to {—1,0,1}. More precisely, given distinct
elements a,b € No, there exists a smallest ordinal o with a[a] # bla]. Then we define a <b if and
only if afa] <blal.

The second main relation on No is the simplicity relation C: given numbers z, y € No, we
say that a is strictly simpler than b, and write a C b if bd(a) <bd(b) and a=0b | bd(a). We write
C for the non-strict ordering corresponding to C, and we say that a is simpler than b if a Cb.
We write a-r ={b€ No:bC a} for the set of surreal numbers that are strictly simpler than a.
The partially ordered class (No, C) is well-founded, and (ar, C) is well-ordered with order type
ord(ac, C) =bd(a).

Every linearly ordered—and thus well-ordered—subset X of (No, C) has a supremum s =
sup< X in (No,C): for any a € X and a <bd(a), one has s[a] =a[a]; for any « € On with o >bd(a)
all a € X, one has s[a] =0. We will only consider suprema in (No, C) and never in (No, <).
Numbers a that are equal to supc ar are called limit numbers; other numbers are called successor
numbers. Limit numbers are exactly the numbers whose birth day is a limit ordinal.

8.1.1 The fundamental property
We now introduce the fundamental property of the structure (No, <,C):

Fundamental property. [55, Theorem 2.1] Let L, R be sets of surreal numbers with L < R. Then
there is a unique T-minimal number {L | R} € No with

L<{L|R}<R.
We call {} the Conway bracket. Note that {L | R} is the simplest such number in the strong

sense that for all a € No with L <a < R, we have {L | R} Ca. The converse implication Va € No,
{L | R}Ca= L <a< R may fail: see Remark 9.2.9 below.
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Now consider two more sets L', R’ of surreal numbers with L’ < R’. If L has no strict upper
bound in L" and R has no strict lower bound in R’, then we say that (L, R) is cofinal with respect
o (L', R’). We say that (L, R) and (L', R’) are mutually cofinal if they are cofinal with respect to
one another, in which case it follows that {L | R} ={L’ | R’}. These definitions naturally extend
to pairs (L, R) of classes with L < R. Note however that {L | R} is not necessarily defined for
such classes. Indeed, there may be no number a with L <a <R (e.g. for L=No and R=2).

We call a pair (L, R) of sets with L < R a cut representation of {L | R}. Such representations
are not unique; in particular, we may replace (L, R) by any mutually cofinal pair (L', R’). For
every surreal number a, we denote

ar, = {beNo:b<a,bCa}
ap = {beNo:b>a,bCa},

which are sets of surreal numbers. We call a7, and ag the sets of left and right options for a. By [55,
Theorem 2.8], one has a={ay, | ar} and the pair (ar,ar) is called the canonical cut representation
of x.

This identity a={ar, | ar} is the fundamental intuition behind Conway’s definition of surreal
numbers precisely as the simplest numbers lying in the “cut” defined by sets L < R of simpler
and previously defined surreal numbers. Of course, this is a highly recursive representation that
implicitly relies on transfinite induction.

Conway’s cut representation is attractive because it allows for the recursive definition of func-
tions using by well-founded induction on (No, ) or its powers. For instance, there is a unique
bivariate function f such that for all a, b € No, we have

fla,b)={f(ar,b), f(a,b) | f(ar,b), f(a,br)}- (8.1.1)

Here we understand that f(ar,b), f(a,br) denotes the set { f(a’,b):a’ €ar}U{f(a,b’):b' €br} and
similarly for f(ag,b), f(a,br). This recursive definition is justified by the fact that the elements of
the sets ar, x {b},{a} x by, ag x {b}, and {a} x br are all strictly smaller than (a,b) for the product
order on (No, ) x (No, ). This precise equation is actually the one that Conway used to define
the addition + = f on No. We will recall similar definitions of a few other arithmetic operations
in Section 8.2 below.

8.1.2 Ordinal numbers as surreal numbers

For ordinals «/, 3, we will denote their ordinal sum, product, and exponentiation by a+ 3, o x 3
and &”. Their Hessenberg sum and product coincide with their sum and product when seen
as surreal numbers [55, Theorems 4.5 and 4.6]; accordingly, we denote them by a+ 8 and « f.
Note that a+n=a+n for all ordinals a and n < w. We assume that the reader is familiar with
elementary computations in ordinal arithmetic. In this section, we define operations on surreal
numbers which extend ordinal arithmetic.

For numbers a, b, we let a+ b denote the number, called the concatenation sum of a and b, whose
sign sequence is the concatenation of that of b at the end of that of a. So a+b is the number of
birth day bd(a 4 b) =bd(a) + bd(b), which satisfies

(a+b)a] = ala] (a <bd(a))
(a+0)[bd(a)+ B8] = b[f] (B<bd(b))

It is easy to check that this extends the definition of ordinal sums. Moreover, the concatenation
sum is associative and satisfies supc (a +b-) =a+b whenever z € No and y € No is a limit number.

We let a x b denote the number of length bd(b) x bd(b), called the concatenation product of a
and b, whose sign sequence is defined by

(axb)[bd(a) x a4 p] = bla]a[f] (< bd(y), B <bd(z)).

Here we consider b[a] a[3] as a product in {—1,+1}. Informally speaking, given a € No and o € On,
the number a X a is the a-fold right-concatenation of a with itself, whereas o X a is the number
obtained from a by replacing each sign o times by itself. We note that x extends Cantor’s ordinal
product.
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The operations + and x will be useful in what follows for the construction of simple yet
interesting examples of surreal substructures. The remainder of this section is devoted to the
collection of basic properties of these operations. The proofs can be found in [11, Section 3.2]. We
refer to [28, First Part] for a different extension of the ordinal product to the class of games (which
properly contains No).

Lemma 8.1.2. [11, Lemma 3.1] For a,b,c€ No, we have

a) ax (bxc)=(axb)xec.

b) ax1l=a and a x (—-1)=—a.

¢) ax(b+c)=(axb)+ (axc).

d) axb=supc (axb-) if b is limit.

Remark 8.1.3. The previous lemma can be regarded as an alternative way to define the concat-
enation product. Yet another way is through the equation

Ya>0,Yb, axb = {axby+ap,axbr+(—ar) | axby,+ag,axbr+ (—ar)}. (8.1.2)
Likewise, the concatenation sum has the following equation [44, Proposition 2]:
Ya>0,Vb, a+b = {ag,a+b.|a+br,ar}. (8.1.3)
Note that these two equations are mot uniform in the sense of Definition 9.2.16 below.
Proposition 8.1.4. [11, Proposition 3.3] Let a,b, c € No.
a) If a#0, then bCc if and only ifax bCa X c.
b) If 0<a, then b<c if and only if a X b<a X c.

8.2 Surreal arithmetic

We describe the arithmetic operations on surreal numbers as defined by Conway.

8.2.1 Surreal addition

As we mentioned above, the definition of the sum of two numbers a,b € No is by induction on No by
a+b={ar+b,a+by | a+br,ar+b}. (8.2.1)

Recall that the ordinal 0 is identified in No with empty sign sequence, so 0, =0r= . Assume for
a moment that the equation (8.2.1) is justified. Let us show as an exercise that a +0=a for all
numbers a € No, by induction on (No,Z). So let a € No such that b+0=» for all b a. Since 0,
and Or are empty, the equation (8.2.1) for b=0 simplifies as

a+0={a,+0,2 | @,ar+0}={a,+0 | ar+0}.
We have ar +0=ar, and ag + 0= ar by the induction hypothesis, so
a+0={ar | ag}=a

as claimed. We deduce the result in general by induction. Symmetric arguments yield 0+a=a
for all a € No.

Let us now show as a second exercise that 14+ 1=2. Our proof will be quicker than Russell’s.
Note that 1, = {0}, that 2r ={0, 1} and that 1r =2r=©@. We thus have

1+1 = {14+1;,1.+1 | &}
= {1+0,0+1| o}
= {1]a}
= {01 2}
= 2.
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The reader can see that easy computations in (No, +) or, in general, involving Conway brackets,
can be more involved than they seem. This is why the theory of surreal numbers requires certain
results in order to simplifying those computations. One important related tool is the notion of
uniform equation, that we briefly mention here before giving more details in Section 9.2.4 below.
By [55, Theorem 3.2], the equation (8.2.1) for the sum of two numbers is uniform in the sense that,
given cut representations (Lg, R,) and (Lp, Rp) of a,b in No, we have

a+b={Lo+b,a+Ly| a+ Ry, Ra+b}. (8.2.2)
The first-order properties of (No, +) are summed up by the following result.

Proposition 8.2.1. [28, Theorems 5, 6 and 12| The structure (No,+,0,<) is a divisible, Abelian,
linearly ordered group.

Additive inverses —a of numbers a € No can be inductively computed using the identity

—a={-ar | —ar}. (8.2.3)

8.2.2 Surreal multiplication

The definition of surreal multiplication is a bit more involved than that of addition. It is based
on the following intuition. Consider numbers a ={ar, | ag} and b={bs, | bg}. Then given a’ € a,
and b’ € by, we have a —a’,b— b’ >0, so a sensible definition of the product should give that
(a—a’) (b—10") >0, which can be rewritten as

ab>ab' +a’b—a’b’.
Given a” € ag, we should have (a” —a) (b —b") >0, whence
a’b+ab —a"b'>ab.
Considering the two other cases lead Conway to the following inductive definition
ab={ab' +a’b—a’b;ab’+a"b—a"b" | ab”+a'b—a’b",a"b+ab —a"b'},

where a’,b’,a” and b" respectively range in ar, ag, by and bg.

Again this definition is justified, and the cut representations (ay,,ar) and (br,,br) can be replaced
by arbitrary representations of a and b without changing the result. It can be shown that 1 is
indeed a neutral element for x. In fact, we have:

Proposition 8.2.2. [28, Theorem 26] The structure (No,+, x,0,1, <) is a real-closed ordered field.

Since the theory of real-closed fields is o-minimal, it follows from general model-theoretic argu-
ments and from the fundamental property that (No, +, x, 0, 1) is k-saturated for all infinite
cardinals x. Hence every real-closed field embeds into (No, +, x,0, 1, <) as an ordered field, over
any common set-sized subfield. See [41] for more details.

Conway showed [28, Theorem 12] that the set D= {2% tk,née IN} of dyadic numbers in No is

that of surreal numbers with finite birth day. In particular, for each n € N, the number

2=t ={0 | 27"}

has birth day n 4 2, whereas the number 37! = {0,%,1—1, U ,%,%,%} has birth day w.

There is a specific embedding of (R, +, X, <) into No obtained by sending r € R to the number
{deD:d<r | deD:d>r}. The image of this embedding is the only subfield of No which is
isomorphic to R and which is downward closed for = in No [42, Theorem 8§]. In the sequel, we
identify R with this subfield.

8.3 Valuation theory, and numbers as series

In this section, we sill see how surreal numbers can be represented as well-based series in a canonical
way.
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8.3.1 The natural valuation on an ordered field

Recall that any ordered field (F,+, x,0,1, <) can be equipped with a (possibly trivial) valuation,
called the natural valuation, whose valuation ring is the subring

O:=F~={a€F:IneN,-n<a<n}

of finite elements in F, whose unique maximal ideal 0 = O \ O coincides with the class
<_ . > 1
F*={acF:¥necN ,|a|<z
of infinitesimal elements in F. The corresponding valuation va of a € F* is its Archimedean class
va:=a0* = {bGF:EInGJN>, <%|a| <|bl<n |a|>}

If F is a set, then this is nothing but the quotient map v: F* — F* /O* corresponding to the
quotient of (F*, x) by its subgroup (O*, x). The quotient group v F*=F*/O* is ordered by
setting a O* <bO* if and only if ab€ o, yielding the ordered value group of the valued field (F,O).

The quotient field O/ o, called the residue field of (F, ), is always Archimedean. Furthermore,
if (R,+, x) embeds into O, then O /o is necessarily isomorphic to R. See [4, Section 3.5] for more
details.

8.3.2 Valuation theory of surreal numbers

Since (No, +, x,0,1) is real-closed, Kaplansky’s general theory of maximal valued fields, in this
particular case already implies that No embeds, as a valued ordered field, into a field R[[9]] of
well-based series. The value group 9 =vNo7 can be identified with a subgroup of (No~, x,1). In
general, such so-called Kaplansky embeddings are defined using choice principles, both in order to
find a copy of the value group v No7 inside (No~, x,1) and to ascribe surreal numbers f’e No to
certain well-based series f=3"_ o fum in R[[M]]. In the case of surreal number, the fundamental
property allows one to circumvent choice and to define a canonical isomorphism No~ R[[v No7]],
as we next explain.

8.3.3 Monomials and the w-map

It was noticed by Conway that for each a € No7, the positive part vaNNo> of the Archimedean
class of a, which can be seen to be the class

{beNo”:IreR”>,rta<b<ral,

has a simplest element denoted ?,, and that the class Mo :={0,:a € No~} is a subgroup of
(No~, x,1). Furthermore, Gonshor showed [55, Theorems 5.2 and 5.3] that there is a unique
isomorphism (No, <,C) — (Mo, <, C) for the induced orderings on Mo. In Chapter 9, we will
systematically study subclasses of No that satisfy the property above, and refer to them as surreal
substructures. We will see in Chapter 10 that this property is an instance of a more general
phenomenon pertaining to convex partitions on surreal substructures.

The unique isomorphism (No, <, ) — (Mo, <, C) is denoted z— w* and called the w-map.
The exponent notation is used because of the following additional property of the w-map:

Proposition 8.3.1. [28, Theorem 20| The w-map is an isomorphism of ordered groups. In other
words, we have

WYFTE =Y W* and Y<z<=uwY¥<W?
for ally,z € No.
Thus Mo can be understood as a multiplicative copy w™N° of the ordered group (No, +, <)

within (No~, x, 1), that contains exactly one element by Archimedean class. This means that Mo
is a candidate for the monomial group 97 in the identification No ~R[[90]].
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8.3.4 Numbers as well-based series
Let us next show how to define an isomorphism R[[Mo]] — No; f — f. We have the following
inductive definition of f for each f=3"_ _\.  fmm€ R[[Mo]], by induction on the length of the

series. Given n€supp f, the length of f., is smaller than that of f, so we can assume that each
such fs, is defined, and set

f:{f/;n-i-’l“ﬂinesuppf/\’rER<f" | Ji\n—l-rn:nesuppf/\re]Rﬁ"}.

Indeed the number f should lie between the left and right hand set. It turns out that this method
is sound, as the following illustrates.

Theorem 8.3.2. [28, Theorem 21| The function R[[Mo]] — Noj; f f is an isomorphism of
ordered valued fields which sends each r € R to the corresponding surreal real number r € No.

See [55, Section 5.C] for a more detailed proof. In the sequel of the thesis, we will no longer
distinguish between surreal numbers and well-based series in R[[Mo]]. In particular, each surreal

number a = f € No has a support supp a:=supp f C Mo and can be seen as a function
suppa — Rim— an = fi

with well-based support. Note that under this identification, for all « € No, the family (amm)meMo
is well-based, with sum ) Mo @mm=a. In this vein, we will also consider well-based families of
surreal numbers and sums thereof, as well as strongly linear functions on surreal numbers.

8.3.5 Iterated expansions and fixed points

The representation of numbers as well-based series is the first step in representing surreal numbers
as quantities amenable to various operations. Indeed, each number a # 0 is a well-based sum

a= E AmMm= E ay= W=,

meMo z€No

Expanding each exponent z with w? € suppa itself as a sum, we obtain a representation

W
a= § awszueNozw“w ,
z€No

and this process can be repeated ad infinitum, as long as the exponents that appear are non-zero.
One might hope that this should determine a as a nested expansion in w-based exponentiations,
with real coefficients as sole parameters.

This is far from the truth. Indeed it is known [55, Chapter 9] that there are numbers € € No
for which &W® =¢. Moreover, such numbers form a proper class, containing the subclass of On of
e-numbers, that is isomorphic to (No, <, C) for the induced orderings. In fact, as discussed in
[28, Chapter 9], even higher order fixed points exist. What’s more, as Lemire showed [73, 74], the
problem is much more general, as other type of transfinitely nested expansions such as

a=14 o Vet 2H

are plenty in No. See [11, Section 5] for a more detailed discussion and expansions of those results
about fixed points.



Chapter 9
Surreal substructures

We next introduce surreal substructures as tools to study surreal numbers in relation to transseries
and hyperseries in Part IV. We hope to convey the sense that surreal substructures are at the same
time very general and very rigid subclasses of No and that several problems regarding the enriched
structure of No (highlighted in particular in the work of Gonshor [55], Kuhlmann-Matusinski [71],
Berarducci-Mantova [18], and Aschenbrenner—van den Dries—van der Hoeven [6]) crucially involve
surreal substructures.

9.1 Surreal substructures

9.1.1 Surreal substructures and their parametrizations

Let X be a subclass of No and let R =(<;);es be a family of orderings on No. Then we say that
a function f: X — No is R-increasing if f is increasing for each <; with ¢ € I. We say that it is
strictly R-increasing if it is strictly increasing for each <;. If we have x <;y <= f(x) <; f(y) for
all z,y e X and ¢ € I, then we call f an R-embedding of (X, (<;);cr) into (No, (<;)icr). We simply
say that f is an embedding if f is a (<, C)-embedding.

Definition 9.1.1. A surreal substructure is the image of an embedding of No into itself.

Example 9.1.2. Given a € No, the function z+— a + z is an embedding of (No, <,C) into itself.
If a >0, then so is the function x+— a X x, by Proposition 8.1.4. Consequently:

e For a € No, the function z+ a+ x gives rise to the surreal substructure a + No of numbers
whose sign sequences begin with the sign sequence of a.

e For 0<a € No, the function z+ a X x induces the surreal substructure a x No of numbers
whose sign sequences are (possibly empty or transfinite) concatenations of the sign sequences
of a and —a.

Example 9.1.3. Let ¢ be an embedding of No into itself with image S. Then the map
Y x+— —p(—x) defines another embedding of No into itself with image —S={-x:2€S}. In
other words, if S is a surreal substructure, then so is —S.

We claim that any strictly (<, C)-increasing map f:No — No is automatically an embedding.
We first need a lemma.

Lemma 9.1.4. Ifx,y,z are numbers such that x Cy and z £ z, then we have x < z if and only if
y <z, and z <z if and only if z<y.

Proof. Since z [ z, we have x < z if and ounly if there is 7, < bd(z) with = [ n, =z | 1, and
x[ng] < 2[N]. Now z Cy so y L z and likewise y < z holds if and only if there is 1, <bd(y) with
y | ny=2z[mny and y[n,] < z[ny]. Notice that y [ n,==z[n, and y Ja £ z imply that n, <bd(z). In
both cases, since z C y, we have x[n,] = y[n.] and x[n,] = y[n,]. Therefore the existence of n, yields
that of 1, =17, and vice versa. The other equivalence follows by symmetry. O

Lemma 9.1.5. Assume that X is a convexr subclass of (No, <). Then every strictly (<,C)-
increasing function p: X — No is an embedding (X, <,C) — (No, <,C).

159
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Proof. Since (No, <) is linearly ordered, the function ¢ is automatically an embedding for <, so
we need only prove that it is an embedding for C. Assume for contradiction that there are elements
x <y of X such that Ly and ¢(z) C ¢(y) (the case when y < x is symmetric). Let z be the C-
maximal common initial segment of z and y. We have x < z <y, so z € X. Since ¢ is strictly (<,C)-
increasing, we have p(z) < ¢(z) < ¢(y) and p(z) L ¢(z), which given our assumption ¢(z)C ¢(y)
contradicts the previous lemma. Hence o(x) £ ¢(y), which concludes the proof. O

Since a surreal substructure S is an isomorphic copy of No into itself, it induces a natural
Conway bracket {}s on S. This actually leads to an equivalent definition of surreal substructures.
Let us investigate this in more detail.

Let S be an arbitrary subclass of No. We say that S is rooted if it admits a simplest element,
called its root, and which we denote by S°®. In other words, it is rooted if, as a subgraph of (No, C),
it has a root. Given subclasses L<R of S, we let (L | R)s denote the class of elements « € S such
that L<x <R. If (I | R)g is rooted, then we let {L. | R}g denote its root. If L=L and R=R
are sets, then we call (L | R)s the cut in S defined by L and R. If for any subsets L < R of S the
class (L | R)g is rooted, then we say that S admits an induced Conway bracket.

Proposition 9.1.6. Let S admit an induced Conway bracket. Then the map Zg:No — S defined
by
VreNo,ZEgx = {ES Xy, | =s acR}s

is an isomorphism (No,<,C) — (S, <,C).

Proof. We first justify that Zg is well defined. Let x € No be such that =g is well-defined and
strictly <-increasing on x, with values in S. We have Zgxy, < Zg zr where those sets are in S so
Esx is a well-defined element of (Egzy, | Eszr)s, and Eg is strictly <-increasing on {x}UxpUxp.
By induction, =g is a strictly increasing map No — S. Let y € No with x C y, so that z; < y < zg.
By definition, the number =g x is the simplest element v € S with Egx;, <u <Zgzg. Since 2gy €S
and Egrp < =gy < Zs yr, it follows that Zgx C Zg y. We deduce from Lemma 9.1.5 that =g is an
embedding of (No, <,C) into itself.

We now prove that S C Zg¢ No by induction on (S,C). Let y €S be such that y- NS is a subset
of ZsNo. Let Es L'=L=y,NS and R=yr NS =Z=g R’ where since Zg is strictly <-increasing
and thus injective, the sets L', R’ are uniquely determined and satisfy L’ < R’. Since S admits
an induced Conway bracket, the cut (L | R)s is rooted and contains y, so {L | R}sC y. Since
{L | R}s¢ LUR, we necessarily have y={L | R}s=Eg{L’ | R’}. By induction, we conclude that
S=Z=gNo. O

Proposition 9.1.7. Let S be a subclass of No. Then S is a surreal substructure if and only if it
admits an induced Conway bracket.

Proof. Assume that S admits an induced Conway bracket. By the previous proposition, S is the
range of the strictly (<, C)-increasing function Zg: No — No, whence S is a surreal substructure.
Conversely, consider an embedding ¢ of No into itself with image S. Let L < R be subsets of S
and define (L', R') = (¢~ Y(L), o7 1(R)). The function ¢ is strictly <-increasing so L’ < R’, and
we may consider the number x ={L’ | R’}. Now let y € (L | R)s. We have p~!(y) € (L' | R'), so
x C ¢~ Y(y). Since ¢ is C-increasing, this implies ¢(x) C y, which proves that p(x)={L | R}s, so
S admits an induced Conway bracket. O

Remark 9.1.8. More generally, one may discard the existence condition for the Conway bracket
and consider subclasses X of No that satisfy the following condition:

IN. For all subsets L, R of X with L < R, the class (L | R)x is either empty or rooted.

A subclass X C No satisfies IN if and only if there is a (unique) C-initial subclass Ig of No and
a (unique) isomorphism (Ig,<,C) — (S, <, ). This is in particular the case for the classes Smpp
described in Chapter 10 below. For more details on this more general kind of subclasses, we refer
to [42].
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In the thesis, we focus on surreal substructures. The characterizations given in Proposition 9.1.7
and Proposition 9.2.2 are known results. The second one was first proved (for more general types
of ordinal sequences) by Lurie [75, Theorem 8.3|, and both of them were proved by Ehrlich [42,
Theorems 1 and 4].

Proposition 9.1.9. Let S be a surreal substructure. The function =g is the unique surjective
strictly (<, C)-increasing function No — S.

Proof. Let ¢ be a strictly (<, C)-increasing function No — S with image S. By Lemma 9.1.5,
it is an embedding. Given z € No such that ¢ and Zg coincide on zr, the numbers ¢(z) and Eg z
of S are both the simplest element of (Egzy, | Zszr)s and are thus equal. It follows by induction
that ¢ =Eg. O

Given a surreal substructure S, we call Zg the defining surreal isomorphism or parametrization
of S. The above uniqueness property is fundamental; it allows us in particular to perform con-
structions on surreal substructures via their parametrizations.

9.1.2 Cut representations

Let S be a surreal substructure. Given an element z € S and subsets L, R of S with L < R, we
say that (L, R) is a cut representation of x in S if x={L | R}s, i.e. if x is the simplest element
of (L | R)s. We refer to elements in L and R as left and right options of the representation. For
T €S, we write

(2, 25) ;= (zLNS,zrNS)

and call this pair the canonical representation of x in S. We also write x% for the set z-NS.

A C-final substructure of S is a rooted final segment T of S for C (and thereby necessarily a
substructure). It is easy to see that this is the case if and only if T is rooted and T is the class
S=2T* of elements z € S such that T*C z.

Proposition 9.1.10. Let S be a surreal substructure and let (L, R) and (L', R') be cut represent-
ations in S. For x €S, we have

a) {L | R}s<{L'| R'}s if and only if {L | R}s<R' and L<{L'| R'}s.

b) (xf, x%) is a cut representation of x in S with respect to which any other cut representation
of x in S is cofinal.

c) STr= (xf | xj%)s.

Proof. The assertions a) and b) are true when S =No by [55, Theorems 2.5 and 2.9]. By Pro-
position 9.1.6, the function Zg is an isomorphism (No, <,C) — (S, <, C), satisfying the relation
Va € No, (Zsar,Zsar) = ((Esa)f, (Esa)?), so a) and b) hold in general. We have $2% D (2f | 28)s,
since = (2f | #3)&. Conversely, for y € S2% and z’ € 3, we have 2’ C y and y[bd(z')] = z[bd(z’)] €
{—1,1}, so y — 2’ and x — 2’ have the same sign. We conclude that z% < y < 2, which completes
the proof of c). O

9.2 Operations on surreal substructures

9.2.1 Imbrications

Let S, T be two surreal substructures. Write Z8" for the functional inverse of Zg:No — S. Then
there is a unique (<, C)-isomorphism E8:=210=8v:S — T that we call the surreal isomorphism

between S and T. The composition =g =1 :=Zg o =1 is also an embedding, so its image

S<T:==gT
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is again a surreal substructure that we call the imbrication of T into S. We say that T is a left factor
(resp. right factor) of S if there is a surreal substructure U such that S=T <U (resp. S=U~<T).

By the associativity of the composition of functions, the imbrication of surreal substructures is
associative. Right factors are determined by the two other substructures. More precisely, since = is
injective, the relation S=T < U =Z1 U yields U=Z$Y(S). The same does not hold for left factors:

(14 No) + (w+ No)=No < (w+ No) =w + No.

Proposition 9.2.1. If S, T are surreal substructures, then T is a left factor of S if and only if
SCT.

Proof. If S=T < U, then S=Z1SCT. Assume that SC T and let U =Z£(S). We have
U= (2 S) Es No where =8 ' S and Zg, are respectively embeddings (S, <,C) — (No, <, )
and (No, <,C) — (S, <,C) so (£ [ S) Zs is an embedding (No, <,C) — (No, <, ). Hence U
is a surreal substructure with =t U =S, which means that T<U =S. O

9.2.2 Surreal substructures as trees

Through the identification No~ {—1,1}<9% the class of surreal numbers can be represented by
a full binary tree of uniform depth On, as illustrated in Figure 9.2.1.

0

simplicity length

Figure 9.2.1. The class of positive surreal numbers as a tree. For clarity, only a few numbers up to the
birth day w? are represented. Negative numbers are obtained through symmetry w.r.t. the y-axis.

For each ordinal «, we let No(«) denote the subtree of No of nodes of depth <q, that is, the
set of numbers z with bd(z) < . This can be represented as the subtree obtained by cropping the
picture at depth a.. In order to characterize surreal substructures in tree-theoretic terms, we need
to investigate chains for C: given a subclass X C No, a C-chain in X is a linearly ordered (and
thus well-ordered) subset C of (X, C). If a C-chain C in (X, C) admits a supremum in (X, C), we
denote it supx, - C. Note that the empty set has a supremum in (X, C) if and only if X has a root,
in which case supx, - @ =X*. We say that y € X is the left successor of z€ X if y<x and zJy
for every z <z in X. Right successors are defined similarly.

Proposition 9.2.2. Let S be a class of surreal numbers. Then the following assertions are equi-
valent:

a) S is a surreal substructure.
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b) Ewvery element of S has a left and a right successor in S and every C-chain in S has
a supremum in (S,C).

Proof. Let S be a surreal substructure. In No, any element x clearly admits a left successor {xy, | 2}
and a right successor {z | g}, and every C-chain clearly admits a supremum. Since these prop-
erties are preserved by the isomorphism Zg, we deduce b).

Assume now that b) holds. We derive a) by inductively defining an isomorphism
=Z:(No,<,C) — (S, <,C). Applying b) to the empty chain, we note that the supremum of &
in (S,C) is the minimum of S for C. So S is rooted and we may define Z0=S*. Let 0 < « be
an ordinal such that Z is defined and strictly (<, C)-increasing on No(«). We distinguish two cases:

e If o is limit, then let x be a surreal number with length a. Thus z is a limit number and
Ezr is a C-chain in S. We define 22 =supx - Zzr.

e Assume now that « is successor, let  be a number with length «, and write x = u + o where
oce{—1,1}. Let u_; and u; be the left and right successors of Zu. Then we define Zx =u,.

In both cases, this defines = on No(a+ 1) and the extension is clearly strictly C-increasing and
strictly <-increasing on every set xr :={x} Uz for x € No(a+1).

It remains to be shown that = is strictly <-increasing on No(a+1). Given a <b in No(a + 1),
let ¢ € No(«) be their C-maximal common initial segment. We either have a <c<b and thus
Ha<Zc<EDb or a<c<band thus Za <Ec<Eb. So E is strictly <-increasing on No(a+1).

By induction, the function Z is defined and (<, C)-increasing on No={J , . 5,, No(a). Note that
(S, ) is well-founded since (No, ) is well-founded and S C No. By induction over y € S, let us
show that y lies in the range of =. If y is the left or right successor of an element v € S, then the
induction hypothesis implies the existence of some u € No with v=Zu, and we get y==(u41).
Otherwise, we have y =supc y2 = Zsup C where C' = {reNo:ZxC y}. We conclude that = is
an isomorphism. 0

Example 9.2.3. Consider the class Inc defined by Eppe0:=1, Eine (v +0) = (Emncu) + o+ 1, for all
u€eNo and o € {—1,1} and Egpcsupe C = (supc Einc C) + 1 for every non-empty C-chain C' without
maximum in (No,C). It is easy to check that we have bd(Zne z) > bd(2) and bd(Erpez) €On+1
for every surreal number z.

Example 9.2.4. Let S=No7\ {1}. Then (S, ) is isomorphic to (No, =), but S is not a surreal
structure. In other words, the condition b) cannot be replaced by the weaker condition that (S, )
and (No, C) be isomorphic.

The characterization b) gives us some freedom in constructing a surreal substructure: one only
has to provide a mechanism for choosing left and right successors of already constructed elements,
as well as least upper bounds for already constructed branches (i.e. C-chains). Intuitively speaking,
this corresponds to a way to “draw” S as a full binary tree inside the binary tree that represents No.

9.2.3 Convex subclasses
If X CY are subclasses of No, recall that X is conver in Y if
Ve,zeX,VyeY,(z<y<z=yeX),
and X is C-convex in Y if
Ve,ze X,VyeY, (e CyLCz= yecX).
We simply say that X is convex (resp. C-convex) if it is convex (resp. C-convex) in No. We let
Hully(X) denote the convex hull of X in Y, that is, for every number y, we have y € Hully(X)

if and only if y €'Y and there are elements x, z of X such that x <y <z. The convex hull of X in
Y is the smallest convex subclass of Y containing X.

Lemma 9.2.5. Assume that S is a surreal substructure. Then every non-empty convex subclass
of S is rooted.
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Proof. In view of Propositions 9.1.6 and 9.1.7, it suffices to prove the lemma for S=No. Let C
be a non-empty convex subclass of No. Assume for contradiction that u,v € C are two simplest
elements with u <v. Let o be the smallest ordinal such that u[a] <v[a]. Since u L v and v £ u, we
must have u[la] =—1 and v[a] =1. Now consider the number w whose sign sequence is u [a=v | a.
Then u < w < v, whence w € C, but also w C u; a contradiction. O

Proposition 9.2.6. Let S be a surreal substructure.

a) A convez subclass C of S is a surreal substructure if and only if it has no cofinal or coinitial
subset.

b) For subsets L <R of S, the cut (L | R)s is a surreal substructure.
¢) If TCS is a surreal substructure, then Hullg(T) is a surreal substructure.

d) If T is a surreal substructure, (L|R)s is a cut in S and f: T — S is strictly monotonic
and surjective, then f~1((L | R)s) is a surreal substructure.

e) The intersection of any set-sized decreasing family of surreal substructures that are convex
in S is a surreal substructure.

Proof. a) Assume that C has no cofinal or coinitial subset and let L < R be subsets of C.

e If both L and R are empty, then L < ¢ < R for any c € C. Notice that C# &, since & is not
cofinal in C.

o If L=o and R+ @, then there exists an x € C with z < R, since R is not coinitial in C.
Let y={x | R}sand r€ R. Then z<y<r,s0 y€C, and y€ (L | R)c.

e Similarly, if L# @ and R=4, then {L | y}s€ (L | R)c for some y>L in C.
o If L#+@ and R# @, then {L | R}s € C, by convexity.

In each of the above cases, we have shown that (L | R)c is a non-empty convex subclass of S.
By Lemma 9.2.5, it is rooted. By Proposition 9.1.7, it follows that C is a surreal substructure.
Conversely, if C is a surreal substructure, then given a subset X of C, we have

Co{o | X}c<X<{X |o}ceC,

so X is neither cofinal nor coinitial in C.
b) This is a direct consequence of the previous point: the cut (L | R)s is by definition a convex
subclass of S, and given a subset X of (L | R)s we have

(L|R)s>{L | X}s<X<{X | R}se(L | R)s.

By Proposition 9.1.7, it follows that (L | R)g is a surreal substructure.

c¢) Since T is a surreal substructure, it has no cofinal or coinitial subset. It follows that the
same holds for Hullg(T), which is thus a surreal substructure.

d) We have f~Y((L | R)s)=(f"YL) | f~Y(R))r is f is increasing and f~}((L | R)s) =
(f7YR) | f~Y(L))T if f is decreasing. In both cases, f~1((L | R)s) is a cut in T, hence a surreal
substructure by c).

e) Let (I, <) be a linearly ordered set and let (C;);er be decreasing for C. Its intersection
C:= ﬂieICi is convex. Let X be a subset of C. For i € I, we have X C C; whence [; < X <7r;
where I;= (@ | X)g,. and r;= (X | @)g,. Writing [={l;:i€] | X}sand r={X | r;:ie€l}g, we
have | < X <r. Moreover, for i € I, we have [; <l <r <r; so l,r € C; by convexity. This proves
that [,7 € C and consequently that X is neither cofinal nor coinitial in C. Therefore C is a surreal
substructure by a). O

Example 9.2.7. Cuts (L | R)g where L < R are subsets of S include C-final substructures of S
and non-empty open intervals of S, which are therefore convex surreal substructures. Note that
non-empty convex classes of No which are open in the order topology may fail to be surreal
substructures. One counterexample is the class No~:=Hull(Z) of finite surreal numbers, since it
admits the cofinal subset IN.
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Example 9.2.8. Here are some further examples and counterexamples of convex surreal substruc-
tures that we will consider later on.

e The class No~:= ({0} | @) of strictly positive surreal numbers is a convex surreal substruc-
ture, and it is in fact the C-final substructure No=" of No.

e Likewise, the class No™" := (N | @) =No=% of positive infinite surreal numbers is a convex
surreal substructure.

e The class No~:=(R<° | R>?) of infinitesimals forms a surreal substructure which can be

split as the union of {0} and the two C-final substructures No2~« ' No2v "

e Although every interval (—n —1,n+ 1) for n € N is a convex surreal substructure, their
increasing union No< is not a surreal substructure.

Remark 9.2.9. For subsets L < R of S, the cut (L | R)s may fail to be a C-final substructure
of S. In fact, by Proposition 9.1.10(c), it is a C-final substructure of S if and only if the canonical

representation of {L | R}s in S is cofinal with respect to (L, R), in which case we have (L | R)g=
SHLIR}s,

Any convex subclass C of S is a generalized cut C=(L | R)g in S where L is the class of strict
lower bounds of C in S and R is the class of its strict upper bounds. However, those classes may
not always be replaced by sets. In fact, the class C is a cut C=(L | R)s with subsets L < R of S
if and only if such sets can be found that are mutually cofinal with (L, R).

9.2.4 Cut equations

We already noted that the Conway bracket allows for elegant recursive definitions of functions on
No. Let us now study such definitions in more detail and examine how they generalize to arbitrary
surreal substructures.

Definition 9.2.10. Let S, T be surreal substructures. Let A, p be functions defined for cut rep-
resentations in S and such that A(L, R), p(L, R) are subsets of T whenever (L, R) is a cut
representation in S. We say that a function F:S — T has cut equation {\ | p}r if for allz €S,
we have

MaE,2f) < plaf,2R) and
F(z) = {Maf,2R) | p(af, 2R)}r-

We say that the cut equation is extensive if it satisfies
Va,y €S, (x Ty = (A, 28) CMyE, yi) A p(al, 2R) C p(uE, uR))).

Note. We will see in the proof of Proposition 9.2.14 below that extensive cut equations preserve
simplicity.

Example 9.2.11. A simple example of a cut equation is (8.2.3): Vo € No, —x = {—ar | —ar}.
Here we have S=T =No and we can take \(xr,zg) = —ar and p(zr,zr) := —zr. Note that this
cut equation is extensive.

Taking S=No and T=No~, A(z,zg) =2 NNo~ and p(zr,xr) =zrNNo~, we obtain the
function F with F'(x)=0 for all x <0 and F(z) =2« for all > 0.

See Example 9.2.20 below for more examples.

Remark 9.2.12. Our notion of cut equation is not restrictive on the function, since any function F":
S — T has cut equation (), p) with A(L, R):=F({L | R}s)F and p(L,R):=F({L | R}s)E. Thus it
should not be confused with the notions of recursive definition in [48] and genetic definition in [91].

Example 9.2.13. Given sets A, P of functions S — T, cut equations of the form (X, p) with

)\(xf,x%) = {f(l):feA,ZExE}
p(af,af) = {¢(r):YeP,reaf}
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are extensive. We will write {\(zf, 28) | p(2F, 28)}r = {A(z?) | P(2®)}T in this case. Note that
it is common to consider well-defined cut equations of the form

F(z)={A(z}) | P(z})}r,
where I itself belongs to A and P.

Proposition 9.2.14. Let S, T be surreal substructures. Let F: S — T be strictly <-increasing
with extensive cut equation {\ | p}r. Then F(S) is a surreal substructure, and we have F:E}S,w(s).

Proof. We claim that F' is C-increasing. Indeed, let z, y € S with z Cy. We have z5 < y < 23,
so x5 C yf and 28 C yf. We deduce by extensivity of (X, p) that A(zf, 2%) C A(yF, y5) and p(zF,
z3) C p(yf, y3), and thus A\(zF, 25) < F(y) < p(zf, 23). This implies that F(z) C F(y). Thus F is
strictly (<, C)-increasing. So the composition F oZg: No— F(S) is strictly (<, C)-increasing. The
function Eg: (No, <,C) — (S, <,C) is an embedding by Proposition 9.1.6, so F' embeds S into T.
In particular, F(S) is a surreal substructure. By Proposition 9.1.9, we conclude that F'= E}S,w(s). O

As an application, we get the following well-known result (see [18, Proposition 4.22]).
Proposition 9.2.15. Let ¢ be a number, and let No=59PP¥ denote the class of numbers x with
x <supp ¢. Then No="PP? and ¢ 4 No~5"PP¥ qre surreal substructures with

Yz S NO, E¢+No<suppw r=q + EN0<Suppv> xZ.

Proof. We have No=*"PP¥ = (—IR~ supp ¢ | R~ supp ¢). By Proposition 9.2.6(b), this is a surreal
substructure. Recall that for x € No, we have o+ a ={pr+z, o+ 21 | ¢ +2ar, or +z}. If
x € No™=s"PP¥ then we have ¢r +z < ¢+ NO™5"PP¥ < pp 4+ x so we may write

etz = {pt+ar| o+rr}pyNo<owre
No =SupPp ¥ No=<suprp¢

= {So—i_x[, | (,0+$R }[P_H_No<suppgp.

Seen as a cut equation in x, this is an extensive cut equation, so by Proposition 9.2.14, we see that
© 4+ No™SUPP¢¥ ig a surreal substructure and that z+— ¢ + x realizes the isomorphism No=s"PP®¥ —
¢ + No=supp®, O

Definition 9.2.16. Let F be a function S — T with cut equation (X, p). We say that (X, p) is
uniform at x € S if we have

ML,R) < p(L,R) and
F(x) = {ML,R) | p(L, R)}

whenever (L, R) is a cut representation of x in S. We say that (\, p) is uniform if it is uniform
at every x €S.

Remark 9.2.17. Although Gonshor [55] does not define what he calls equations and uniform
equations in a systematic way, we take Definition 9.2.16 to be a valid formalization of his use of
the term.

Example 9.2.18. Let a € No. The following cut equation for the function y —— a + y: No —
1+ No obtained from (8.1.3)

Vo €No,a+y={ar,a+yr | a+yr,ar},
is uniform. On the contrary, the following cut equation for z —— x + 1 is not uniform:
VreNo,x+1={z,z | xzr}.
Indeed, we have 0={@ | 1} and 0+1=1, but {0,2 | 1} ={0 | 1} = .

Example 9.2.19. Let b€ No~. By (8.1.2), the function No — b X No; y— b X y has the following
cut equation

Vy€No,bx y={bxyr+br,b X yp+(~br) | b X yr+br,bXx yr+(~br)},



9.2 OPERATIONS ON SURREAL SUBSTRUCTURES 167

which is uniform. On the contrary, the cut equation for =+ z X 1/, is not uniform:
Vo €No,z x Yo={z, 2+ (—2r) | zr,*+ (—21)}.

Indeed, if we were to apply this cut equation to the cut presentation ({3}, @) of 1, then we would
have /5 as a left option and 1+ (—1/%) <1/, as a right option, which cannot be.

Example 9.2.20. Most common definitions of unary functions No — No have known simple
cut equations, and many of them are uniform, in particular throughout the work of H. Gonshor
in [55]. For instance, the classical cut equations (8.2.3) and (11.1.3) for the functions a+— —a and
ar—expa are uniform, so for a € No and for any cut representation (L, R) of a in No, we have

—a = {-R | —-L}, and
expr expl
a—rlant1’ [l —aln

expa = {0, [a—lnexpl, [a —7]ant1€XPT [ } (leL, reR).

Example 9.2.21. We will also need an extension of the notion of uniform cut equation to functions
f:No x No — No. Specifically, by [55, Theorem 3.2|, the classical cut equation for the sum of
two numbers z, y is uniform in the sense that, given cut representations (L, R;) and (L,, R,) of
z,y in No, we have

z+y={Ly+y,z+L, | z+Ry,R,+y}. (9.2.1)
Similarly for the multiplication, we have
r+y={z'y+zy -2’y 2" y+xy" —2"y" |2y +ay" -2y 2" y+xy —2"y'},
where 2/, 2", y’ and y” range in L,, R, L, and R, respectively.
Uniform cut equations have the interesting property that they can be composed.

Lemma 9.2.22. Let Sy, S1,Ss be surreal substructures. Let F1: Sog—— S1 and F5:S1— Ss be
functions with uniform cut equations
Fy
!

{M | pi}s,
{2 | p2}s,-

Then Fyo Fy has the uniform cut equation (A2, p12) where for every cut representation (L, R) in
So, we have )\12(L, R) = )\2()\1(L, R), pl(L, R)) and p12(L, R) = pQ(Al(L, R), pl(L, R))

Proof. Let x € Sy, let (L, R) be a cut representation of z in Sy. By uniformity of the cut equation
of Fi at x, we have

Fi(z)={\M(L,R) | p1(L,R)}s,.
By uniformity of the cut equation of Fy at Fy(x), we have
F2(F1(‘r)) = {)‘Q(Al(LaR)apl(LaR)) | pQ()\l(LaR)’pl(L’R))}a

whence the result. |

Recall that a class X CNo is cofinal (resp. coinitial) with respect to a class Y C No if every
element of Y has an upper bound (resp. lower bound) in X. If X CY, then we simply say that X
is cofinal (resp. coinitial) in Y.

Lemma 9.2.23. When S, T are surreal substructures, the cut equation =S = {E% xP | =% 2B}
s uniform and extensive.

Proof. Let us first prove uniformity in the case when S=No. Let L < R be sets of surreal numbers
and let x={L | R}. Since Er is strictly increasing and ranges in T, the number y={=1r L | Er R}
is well defined and =1 L < Ep x < =1 R, which yields y C =1 . Moreover, the set L is cofinal in
xy, whereas R is coinitial in zg, so Erzp < y < Zrxg. Hence =rx C y and Z1 x =y, which shows
that the cut equation Zrx={Erx | Erzg}T is uniform.



168 SURREAL SUBSTRUCTURES

Now consider the general case and let ¢ A=L < R="Eg B be subsets of S. Setting z:={A | B}
and z:={L | R}s, we have x = =g z by uniformity of the cut equation for =Eg. Furthermore,

{E%L | 2% R}x = {Ex A |ErB}r

= ET Z,
by uniformity of the cut equation for Zr. Hence {ZF L | 2% R}t =Z1 28" 2 ==8 2, which proves
that 2% = {EF L | 2% R}t is uniform. This cut equation has the form =% 2z = {A(zf) | P(28)}r

where A =P = {E8.} are sets of functions, so it is extensive. O

The above proposition shows that surreal isomorphisms satisfy natural extensive cut equations.
Inversely, Proposition 9.2.14 shows that extensive cut equations give rise to surreal isomorphisms.
As an application, if we admit that the operation

VzeNo, w*:={0,Nw™ | 27Ny}

is well defined, then we see that it defines a surreal isomorphism. This is the parametrization of
the class Mo of monomials, that is, Conway’s w-map. This cut equation is also uniform (see [55,
corollary of Theorem 5.2]), and we can for instance compute, for every number z, the number

09 = {0 N L2 NG RY

= {0, N9 N@Ne™ | 9N 27 oy

= {N,WNo™ | 2 7emm,

Whenever they exist, this shows the usefulness of extensive cut equations. Unfortunately, many
common surreal functions such as the exponential do not admit extensive cut equations. The next
proposition describes a more general type of cut equation that is sometimes useful.

Proposition 9.2.24. Let S, T be surreal substructures. Let A be a function from S to the class
of subsets of T such that for x,y €S with x <y, the set A(y) is cofinal with respect to A(x). For
x €8S, let Alx] denote the class of elementsu of S such that A(z) and A(u) are mutually cofinal. Let
{\ | p}r be an extensive cut equation on S. Let F:S — T be strictly increasing with cut equation

Vz €S, F(z)={A(z),A\(z) | p(z)}T
Then F induces an embedding (Alz],<,C) — (T, <,C) for each element x of S.
Proof. Let z €8S. If u,w € Afz] and v € S satisfies u <v < w, then A(v) is cofinal with respect to

A(u) and hence to A(x), and A(z) is cofinal with respect to A(w) and hence to A(v), so v € Alx].
Therefore A[z] is a non-empty convex subclass of S. Note that for u € Afz], we have

Fu) ={A(x), AMu) | p(u)}r.

For numbers u, v lying in Afz] with v C v, we have A(xz) U (u) CA(z) UA(v) < F(v) < p(v) 2 p(u),
which implies that F(u) C F(v). Since Alz] is a non-empty convex subclass of S and Zg: No — S
is increasing and bijective, the class C:=Zg"(A[z]) is a non-empty convex subclass of No on which
F o =g is strictly (<, C)-increasing. By Lemma 9.1.5, the function F o =g induces an embedding
(C,<,C) — (T, <,C) and thus F induces an embedding (A[z], <,C) — (T, <, C). O

Example 9.2.25. A typical example is the following cut equation of [18, Theorem 3.8(1)| for the
exponential function on the class Mo™ :={m € Mo: R < m} of infinite monomials:

Vm € Mo, expm = {mN, (expm}M°)N | (exp m}©)N}.

Here we have A(m) =m~ and A[m]={neMo”: Ip, g€ N,m”» <n < mr}.



Chapter 10

Convex partitions

The reader can note that given a confluent hyperserial field (T, o) of force v < On, such partitions of
T~ into convex subclasses were considered in e. We are thinking of the collections of classes £,[s]
and L,[s] for s€ T~ and o« =w*, p <wv. This chapter introduces a convenient way to construct
surreal substructures, using partitions of a given surreal substructure such as No~'~ into convex
subclasses, so as to take advantage of this occurrence when defining and studying the hyperserial
structure on No.

10.1 Convex partitions

Throughout this section, S stands for a surreal substructure. A partition of S is a formula IT =TI(x,
y) which defines an equivalence relation on S, i.e. such that for all z,y,z €S, we have

M(z,z), I(z,y)=1(y,z), and (Il(z,y) All(y,z)=1(z,2)).
Given such a partition IT and x € S, we write II[x] for the equivalence class of z in S, that is,

I[z] = {y € S:11(, y)}.

10.1.1 Convex partitions and surreal substructures

Definition 10.1.1. Let II be a partition of S for which each class II[x] for x €S is convex in
(S, <). We say that II is a convex partition of S. For x €S recall that I1[z]| is rooted (by
Lemma 9.2.5). We say that x €S is II-simple if x =II[z]®, and we let Smpy denote the class
of II-simple elements of S. For x,y €S we write:

r<ny if z]<II[y],
r<ny if Hz]=Iy]orHx] <I[y].

Remark 10.1.2. Convex partitions are sometime called condensations [90, Definition 4.1].

We can obtain S as Smpyy,,  through the discrete partition Ilaisc with Ilgisc[z] = {x} for all
x €8S. Let mrp(z) :=1II[z]* €8S for all z € S. The map 7: S — Smpyy is a surjective, increasing
projection. We refer to it as the II-simple projection.

For the remainder of this subsection, let IT be a convex partition of S. A quasi-order (or
preorder) is a binary relation that is reflexive and transitive. The following lemma states basic
facts on partitions of a linear order into convex subclasses.

Lemma 10.1.3. The relation <11 is a linear quasi-order and restricts to a linear order on Smpyy.
For z,y €8S, we have x <1y if and only if mru(z) < mr(y).

169
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Proof. It is well known that the partition IT corresponds to the equivalence relation =y on S. The
transitivity and irreflexivity of <py follow from that of < on subclasses of No. That its restriction to
Smpqy is a linear order is a direct consequence of the definition of Smpyy and the equivalence stated
above, which we now prove. If IT has only one member, then the result is trivial. Otherwise, let
x,y €S with x <mgy. We have mr(z) € II[z] < II[y] 3 mr(y) so mr(z) < mr(y). Conversely, assume
that 7r(z) < 7mr(y). Then II[z] # I1[y] which since IT is a partition implies that IT[z] NII[y] = @.
For /€ II[x], there may be no element z of II[y] such that z <z for this would imply z <z <7 (y)
whence z € II[y] by convexity of this class: a contradiction. We thus have IT[z] < II[y], that is,
x <my. By definition of 7y, the relation z =ryy implies that mr(z) = 7mm(y), whereas mri(z) =7 (y)
implies that II[z] NII[y] # @, so I[z]| =II[y], so z =m y. O

For any subclass X of S, we write II[X]:=J II[x].

zeX
Lemma 10.1.4. Let A,B be subclasses of S. Then the following statements are equivalent:
a) A<II[B].
b) II[A] <B.
c¢) II[A] < II[B].

Proof. All inequalities are vacuously true if A =@ or B=@. Assume that A and B are non-empty
and let a € A and b€ B. Assume for contradiction that A <II[B], but II[A] £ II[B]. Then there
exist a’ € II[a] and b’ € TI[b] with a < b’ < a’. By convexity of IT[al, this yields b’ € II[a], whence
a € I1[b]. This contradiction shows that A <TI[B]=-II[A] <II[B]. The inverse implication clearly
holds. The equivalence IT[A] < B <= II[A] < II[B] holds for similar reasons. O

Lemma 10.1.5. For x €S, the three following statements are equivalent:

a) x is II-simple.

b) There is a cut representation (L, R) of x in S such that II[L] <z <II[R].

¢) Mzf] <z <[z}

Proof. Since (JJE, :cl%) is a cut representation of x in S, the assertion c) implies b).

Conversely, if (L, R) is a cut representation of x in S with II[L] <z <II[R], then we have L <
II[z] < R by the previous lemma. By Proposition 9.1.10(b), the cut representation (L, R) is cofinal
with respect to (zf,2%), so 28 < II[z] < 2§. Hence II[2}] < z < II[z§], again by Lemma 10.1.4. This
shows that b) implies c).

Assume now that z is II-simple and let us prove ¢). For u € 2§, we have uC z, so u ¢ IT[z],
whence u #m 2. We do not have IT[x] < II[u] since x £ u, so Lemma 10.1.3 yields IT[u] < II[z], and
in particular TI[u] < z. This proves that II[zf] <z, and similar arguments yield = < II[z5).

Assume finally that ¢) holds and let us prove a). We have I[z]* C x so I[z]* € 2§ U {z} U 2B
Now the class II[II[x]*] =II[z] is neither strictly greater nor strictly lower than x, so our assumption
imposes IT[z]* =z. We conclude that z is II-simple. O

An order < on a set S is said to be dense if for any a,b€ S with a <b, there exists a c€ .S with
a<c<hb.

Proposition 10.1.6. Assume that Smpyy is dense. Then Il is the unique convex partition of S
such that Smpryy is the class of TI-simple elements of S.

Proof. For a € Smpyy, let A, denote the class of elements x of S such that no Il-simple element
lies strictly between a and z. The definition of the family (Ap)pesmpy only depends on the class
Smpyy, and not specifically on II. For a € Smpyy, we have Il[a] C A,,.

Conversely, let € A,, and assume for contradiction that x lies outside of Il[a], say a <m .
Then a < 7r(z) and, Smpyy being dense, there exists a IT-simple element b between a and 7ry(z).
But a <m b <m7m(x) implies a < b <z, which contradicts the assumption that there is no simple
element between a and . We conclude that IT[a] = A, which entails in particular that the partition
IT is uniquely determined by Smpyy. O
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If Smpyg is dense, then we call II the defining partition of Smpyp. Notice that this is in
particular the case when Smpry is a surreal substructure. We next consider a set-theoretic condition
under which Smpyy is always a surreal substructure.

We say that IT is thin if each member of IT has a cofinal and coinitial subset, i.e. if each member
is the convex hull in S of a subset of S. For instance, the convex partition IT of No where

Iz]:={yeNo:IneN,—n<z—y<n},

is thin. Indeed each class II[z] for 2 € No admits the cofinal and coinitial subset z + Z.

If TT is thin, then (see [11, Appendix]) we may pick a distinguished family (IT[z]),cs such that
each II[z] for x € S is a cofinal and coinitial subset of II[z], with II[z] =1I[y] <=z = y. Given
sets L, R C Smpyp with L < R and (I,r) € L x R, we have II[l] <II[r] by Lemma 10.1.3, whence
II[] < II[r]. We deduce that the number

{I[l]:le L | O[r]:r€R}s
exists, and we see that
{O[l]:le L | O[r]:r € R}s={II[L] | II|R]}s. (10.1.1)

Theorem 10.1.7. If II is thin, then Smpyy is a surreal substructure. If (L, R) is a cut repres-
entation in Smpyy, then we have

{L | R}smpn = {H[L] | H[R]}s.

Proof. Let L < R be subsets of Smpp. By (10.1.1), the number x:= {II[L] | II[R]}s is well
defined. This number is II-simple by Lemma 10.1.5. Now let y € (L | R)s be II-simple. Given
l €L and r € R, the II-simplicity of I, r, and y implies that II[[] < y < II[r]. We deduce that
Ly, so x={L | R}smpy- By Proposition 9.1.7, we conclude that the class Smpryy is a surreal
substructure. g

When II is thin, the structure Smpyy is in addition cofinal and coinitial in S, since for x € S,
we have Smpyy 3 {9 | H[z]}s <2 < {H[z] | }s € Smpyy. By the previous proposition, we may say
that Smpyy is thin if its defining partition IT is thin. If IT is not thin, then Smp may fail to be
a surreal substructure, but one can prove that there exists a unique C-initial subclass I of No and
a unique isomorphism between Smpy and I.

For instance, we can obtain the ring Oz := Noy + Z of omnific integers of [28, Chapter 5]
as Smpyy,, where for each number z € Oz, we set Iloz[z] := [z, 2+ 1). This is not a surreal
substructure since the cut (0 | 1)oz is empty. Nevertheless, Oz is C-initial in No. Note that
different partitions may yield the same class Oz (for instance replacing Iloz[0] and I1o,[1] with
[0,15) and [Y5, 2) respectively and leaving the other classes unchanged), in contrast to the case of
dense partitions from Proposition 10.1.6.

Proposition 10.1.8. Assume that II is thin. Then we have the following uniform cut equation
for Esmpy and x € No:

Esmpn T = {[Esmpy 7] | TI[Esmpy; TR }s.

Proof. The cut equation follows from Theorem 10.1.7 and the relation

Esmpnx:{E’SmPn L | E'Smpr[ I'R}Smpn-
Now toward uniformity, consider a cut representation (L, R) of a number y. We have
Esmpy L <11 Zsmpy B so the number {II[Egmp, L] | II[Esmpy R]}s is well defined. Since
(L, R) is cofinal with respect to (yr, ygr) and ZEsmp, is strictly increasing, the number
{II[Zsmpy L] | II[Zsmpy R }s lies in the cut (II[Esmpy Y] | H[Esmpy Yr])s, s0

ESmpn Y E {H[Esmpn L] | H[Esmpn R]}S

Conversely, we have L <y < R, 50 Zsmpy L < Zsmpy ¥ < ZSmpy £ Since Egmpy L U
{Esmpy ¥} U Esmpy B € Smpp, we have II[Esmpy L] < Zsmpy ¥ < H[Esmpy R,
whence {II[Esmpy L] | II[Esmpy Rl}s T Esmpy ¥- We conclude that ZEgmp, vy =
{[Esmpy L] | H[Esmpy, A]}s. O
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10.1.2 Comparing thin convex partitions

For convex partitions IT, IT of S, we write II ZIT’ if we have II[z] C IT'[z] for every z € S, and
say that IT is finer than I1’. If II ZII’, then Smpy C Smpy. We write TT Z IT7 if TI ZT1’ but
we do not have IT' ZII. The (meta)relation £ is anti-reflexive and transitive, so we will talk of Z-
increasing families in the expected sense.

Recall that a directed set is a partial order (J, <) such that for all j, j' € J, there exists a j” € J
with j, j' < j".

Proposition 10.1.9. Let S be a surreal substructure. Let (J, <) be a non-empty directed set. If
(I1;)e is an Z-increasing family of thin convex partitions of S, then the intersection ﬂjEJSmpnj
s a surreal substructure with defining thin partition I1; given by

vees, M) = | M.
jeJ

Proof. Given z €S, the class Il;[z] := ;. ; IL;[2] is a non-empty convex subclass of S and
U,esIls[z]=S. Let z,y €S be such that IT;[z]NIL;[y] # @ and let i € J. Since J is directed, there
exists a j >4 in J such that IL;[z] NIL;[y] # &, whence II;[x] =I1I,;[y]. In particular, IT;[z] C I1,[y]
and II;[y] CII;[z]. Since this is true for any i € J, it follows that IT;[z] = I1;[y], so IL; defines a
convex partition of S.

For z € S, we have IT;[zf] <z < TI;[25] if and only if TI;[zf] < 2 < TI;[z§] holds for all j € J,
so Lemma 10.1.5 implies (; . ; Smpp, =Smpryy,. Now for z €S, the set |, ; Iz is cofinal and
coinitial in IT;[z], so II; is thin. Theorem 10.1.7 therefore implies that the class ﬂjeJ Smpyy, is
a surreal substructure. |

10.2 Function groups

In this section, we study one particularly important way in which convex partitions of surreal
substructures arise, namely as convex hulls of orbits under a group action. We fix a surreal sub-
structure S.

10.2.1 Actions by strictly increasing bijections

Let X be a set, and consider a formula X (xzg, 1, z2) which defines a family of strictly increasing
bijections S — S indexed by X. That is, we have

Vo, 21, 2, (X (20, 21, 22) = 20 € X Nx1 ESA22 €S),

and for each x € X, the class
Fpi={(a,b) €S?*: X(z,a,b)}

is a strictly increasing bijection S — S. We say that X" is a function set acting on S.

Consider any set-sized multiplicatively denoted group (G, x,1). An action of G by strictly
increasing bijections on S is an action G of G on S by strictly increasing bijections, where for all
g,he€G and x,z €S, we have

G(gh,z,2) <= FyeS,G(h,z,y) NG(g,y,2)).

So Fyn=Fgo Fy, for all g,h € G. Given such an action, we identify each element g of G with F,
and accordingly write g for the unique element of S for which G(g, z, gz) holds. We will also
write g € G as a shorthand for g € G. We call G a function group acting on S.

Now let X, X(z, y, z) be a function set acting on S. Write (X x {—1,1})* for the set of finite
words on X x {—1,1}. By the principle of definition by induction, there is a formula X’(z, y, z) such
that for all w=((z1,t1),..., (@K, tk)) € (X x {=1,1})*, the formula X'(w, y,z) defines the function
Fuw:i=Fpto---oF. % Quotienting (X x {—1,1})* by the relation w = w’ if F,(z) = Fy(x) for
all z €S, we obtain a group (X) under concatenation of words, and we have an action of (X) on
S given by

(X)z,y,2): (ze(X)NTJwex, (X (w,y,z2))).
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In that sense, we have a function group acting on S, which is generated by functions F,,xz € X
and their inverses. Identifying each z € X with F,, we will simply denote this function group by
(FpixeX).

10.2.2 Function groups and convex partitions

We fix a function group G acting on S. For X C S, we write G X:={gz:ge G} If X={z} is a
singleton, then we simply write Gz :=G {x}.

Definition 10.2.1. We define the halo Gz] of an element x € S under the action of G by
Gle] = {yeS:3g,heG,(gx<y<hz)} =Hullg(Gx).

Proposition 10.2.2. The classes G[z] for x €S form a thin convex partition of S .

Proof. Let z €S. For any y € G[z|, we have G[y] = G[x]. Indeed, we have gz < y < hx for certain
g,h€G. Given z € G[y], we also have ¢’ y <z < h'y for certain g', h' € G, whence (¢’ g) z < g’y <
2<h'y<(h'h)x, so that z € G[z]. We also have h~!y <z < g~ 'y, whence 2 € G[y] and z € G[y]
for any z € G[z]. The class G[x] is convex by definition. For a € S, we know that G[a] contains a,
so the Gla] for a € S form a convex partition of S. For z € S, the set Gz is cofinal and coinitial in
Glx], so this partition is thin. O

We write IIg for the partition from Proposition 10.2.2 and say that an element of S is G-simple
if it is IIg-simple. We let Smpg denote the class of G-simple elements. Proposition 10.2.2 implies
that every property from Lemmas 10.1.3, 10.1.5 and 10.1.4 applies to the class of G-simple elements.
We call 7g :=71, the G-simple projection and write <g, =g, and <g instead of <y1,,=nm,, and <.

Proposition 10.2.3. Smpg is a surreal substructure with the following uniform cut equation in
No:

V2 € NO, Esmp, & = {GESmpg 2L | GZsmp, TR }s-

Proof. This is a direct consequence of Proposition 10.2.2, Theorem 10.1.7 and Proposition 10.1.8,
where we take G (G[z]®) to be the required cofinal and coinitial subset of G[z] for each z€S. O

Remark 10.2.4. Consider actions X and ) of sets X,Y respectively on S by strictly increasing
bijections. We say that X is pointwise cofinal with respect to )Y and we write Y £ X if

VzeS,Vfe(Y),Ige(X), (fr<gx).

This relation is transitive and reflexive. If Y Z X, then Il x) £I1y), so Smp(y) C Smp x). If
X ZY and Y Z X, then we say that X and Y are mutually pointwise cofinal and we write X < Y.
In that case, we have Smpxy=Smp y). Finally if Y Z X but we do not have X' £}, then we
write X £ ). The relation Z is anti-reflexive and transitive.

Let us now specialize Proposition 10.1.9 to group-induced convex partitions.

Proposition 10.2.5. Let (J,<) be a non-empty directed set. If (G;);es is a Z-increasing family of
function groups acting on S, then the function group Gy=(G;: j€J) generated by Ujngj satisfies

Smpg, = ﬂ Smpgj.
jeJ

Proof. If x €S is G;-simple, then for j € J, we have G, 2 CGrad<r<GraS D G; 2 so z is G;-
simple. Conversely, assume x € S is G;-simple for all j € J. Then let g=gj, - -- g;, € G5 where for
1<k < n, we have g;, €Gj,. Since (J, <) is directed and (G;);e s is Z-increasing, there exists an index
j€J with ji,...,jn < j and an element g; € G; such that for all u €S we have gj_lug gipu< giu

for allie {1,...,n}, and thus g; " u< gu < gj u. Since x is Gj-simple, we have g’ P<x< g; " z$.

This yields gzf < < ga$, so  is Gy-simple. This proves that ﬂjGJSmpgj =Smpg,. g
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10.2.3 Common group actions

We conclude our study of convex partitions with a closer examination of the action of various
common types of function groups. We intentionally introduce these function groups without
assigning specific domains; this will allow us to let them act on various surreal substructures.

Given c € No, we define the translation by c to be the map
To.x—x+ec.

We have a function group 7 :={r € R} acting in particular on No and No~'~. Halos for the
action of 7 on No are called finite halos T [x] and 7 -simple elements correspond to purely infinite
numbers. The class Noy of purely infinite numbers is sometimes denoted J; see [28, 55].

Given s € No~, we define the homothety by the factor s to be the map

Hy:x——sz.

We have a function group H:={H,:r € R~} acting in particular on No,No~, and No~>~. Halos
for the action of H on No~ are the positive parts of Archimedean classes and H-simple elements
are exactly monomials. We recall class of monomials Mo = wN° is parametrized by the w-map
ZMo and forms a multiplicative cross section that is isomorphic to the value group of No for the
natural valuation. The relations <7y, <3y, =3 correspond to the asymptotic relations <, <, and
= from [63, 4]. Given a € No7, the projection 73(z) coincides with the dominant monomial g,
when considering a as a generalized series in R[[Mo]].
Given s € No~, we define the s-th power function by

Ps:x— x® =exp(slogx).

Here exp and log are the exponential and logarithm functions of Chapter 11. We have a function
group P:={P.:r € R~} acting in particular on No~ and No~". Halos P|[z] for the action of P on
No~ " are sometimes called multiplicative classes and P-simple elements fundamental monomials.
The class Smpp = exp(Mo™) =w?"* = Mo*? of fundamental monomials is parametrized by the
w*-map: see [71, Proposition 2.5].



Chapter 11

Surreal exponentiation

In this chapter, we give a presentation of the theory of exponentiation on surreal numbers. Our
presentation is mostly based on Gonshor’s work [55, Chapter 10] as well as on [17]. The reader can
find good surveys of surreal exponentiation in relation to Hardy fields and transseries in [78, 16].

11.1 Surreal exponentiation

Now that we can represent No as a field of well-based series, we need only define a logarithm on
No in order to turn it into a transserial field. Following a method from [17], we will show how to
define such a logarithm in the simplest way. It will turn out that this logarithm corresponds to
that defined by Gonshor.

11.1.1 Transserial logarithm on No

We already know by Proposition 3.1.10 that it is sufficient to define a strictly increasing group
morphism log: Mo — R[[Mo”]] such that logm <m for all m > 1. Berarducci, Kuhlmann, Mantova
and Matusinski [17] found that such a definition could be reduced to defining log on Mo < Mo =
WwMe. Let us state their main arguments. Assume that a function log,:wM® — Mo’ is defined,
strictly increasing and satisfies log, w™ < W™ for all m € Mo. Then we define a morphism log:
Mo — R[[Mo~]] by setting

logw=":=> " z; (log.w") (11.1.1)

n

for all z=>" zyn e No, and this morphism has the desired properties. Recall that the unique
extension of the logarithm to No~ is surjective if and only if log: Mo — R[[Mo”]] is surjective,

hence by (11.1.1) if and only if log,: wM® — Mo™ is surjective. Recall that Mo~ = wN°” and

WMo — @™ o log, induces a function h: No — No> with log,w®” =w"*) for all z € No. Moreover

h is surjective if and only if log, is surjective. We see that log, is strictly increasing if and only if
h is strictly increasing, and we have an equivalence

(Vm € Mo, (log.w™ <w™)) <= (Vz € No, (h(z) < &%)).

So defining a logarithm on No reduces to defining a strictly increasing bijection h: No — No~
satisfying h(z) <W* for all z € No. The simplest such function is given by the cut equation

V2 € No, h(2) = {h(zz) | h(zp), R> & }no>- (11.1.2)

11.1.2 Gonshor’s exponential

Harry Gonshor defined the standard exponential function on No using an inductive cut equation.
Given n € N and a € No, we define
k
a
[a]n = Z E

k<n

If @’ € ar, is such that exp(a’) is already defined, then for n € N, we should have

exp(a) = exp(a’) exp(a — a’) > exp(a’) [a — a'],

175
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and one expects that such inequalities give sharp approximations of exp a. Following this line of
thought, Gonshor defined

expa expa’
a—a’lant1’ o —aln
(¢’ €ar, a”" €ag). (11.1.3)

expa = {07 la—alnexpa’, [a—a"lanyrexpa” [

The reciprocal of exp, defined on No~, is denoted log. This also leads to a natural powering
operation: given a € No™ and b€ No, we define a’=exp(blog(a)). Given r € R, we have " =w", but
for more general elements z € No, one does not necessarily have w* = w?. (see [16] for more details).

Gonshor showed that the exponential of an infinite monomial ¥ for y € No~ was a fundamental
monomial W’ where g: No” — No is uniquely determined by the following inductive cut
equation

9(y)={Ind(y), g(y1°") | g(yR°")}

where Ind(y) is the unique number with ay:wmd<y>, or equivalently =™ It turns out that ¢
is the functional inverse of the function h defined by (11.1.2) above: g=h"V. Therefore exp [ wN°~
is the reciprocal of the function log, above. Gonshor’s results can be summarized as follows:

Theorem 11.1.1. [55, Corollaries 10.1 and 10.3 and Theorems 10.2, and 10.7-10.9] The function
exp defined in (11.1.3) is an isomorphism (No, +,0, <) — (No~, X, 1, <) which coincides with
the exponential on R and satisfies

exp(WN°”) = w9,
exp(No.) = Mo, (11.1.4)
Ve <1,exp(e) = %5’“.

keN

Moreover, we have exp(a)>1+a for all a € No as a consequence of Section 11.1.1. It follows
that the reciprocal log of exp satisfies all the axioms in the definition of transserial fields. In
other words (INo,log) is a transserial field with a total exponential. It was later shown [96] that
(No, +, X, <,exp) is an elementary expansion of R.

Since exp is total and Noy is closed under scalar multiplication by real numbers, the identity
(11.1.4) gives a real powering operation

R xMo — Mo

(r,m) — m"=exp(rlogm)

on Mo. Now consider the hyperserial skeleton (No,log | Mo”™). That exp is total also implies
that the product axiom P, for ;=1 is satisfied. Thus (No,log [ Mo™) is a hyperserial skeleton
of force (1,1). It was shown by Berarducci and Mantova [18, Corollary 5.11] that (No,log | Mo™)
is confluent. Therefore

Proposition 11.1.2. (No,log [Mo™) is a confluent hyperserial skeleton of force (1,1).

We will next give more details on log-atomic surreal numbers.

11.1.3 Exponential groups

Recall that we write

expn = expl™ =expo™X oexp
log, := logM=logo™Xolog
for all n € N. We define
E* :=(exp) and & :=(exppoH,olog,:r€ R”,neN).
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Both £* and £ act in particular on No~".

Halos &[z] and £*[z] for the actions of & and £* on No~ " are sometimes called logarithmic-
exponential and exponential classes respectively. The class Smpg of £-simple is parametrized by
the A-map: see [18, Section 5]. The class of £*-simple elements is denoted by K and parametrized
by the k-map: see [71, Section 3]. Given z € No, one traditionally writes \.:=Z¢z and k,:=Zg- 2.

It was shown by Berarducci and Mantova [18] that Smpg coincides with the class Mo, of
log-atomic numbers, which we recall consists of those infinite monomials m € Mo™ such that
log,, m € Mo for all n € N. Such numbers were essential for the definition of well-behaved formal
derivations on No. This was first achieved in [18], while building on analogue results in the context
of transseries [92, 60].

The structure K = Smpg- of k-numbers was introduced and studied in detail in [71], as an
intermediate subclass between fundamental monomials and the log-atomic numbers. It turns out
that the structure K is not big enough to describe all log-atomic numbers. Indeed, it was noticed
in 78] that K =Mo, <No., as a corollary of [6, Proposition 2.5].

Proposition 11.1.3. [6, Proposition 2.5] For all z € No, we have
exp(A:) = Azq1

Proof. We rely on the following uniform version of [18, Theorem 3.8(1)] from [6, Lemma 2.4]: if
m={L | R} is a monomial, where R L C Hull(L) and R R C Hull(R), then

exp(m) = {m~N exp(L) | exp(R)}.
In fact, we have P C € < {exp} on No™>", so exp(m) >Em D m™N, and
exp(m)={Em,exp(L) | exp(R)}. (11.1.5)

Now let z be a number with A, 1 =exp(\,) for all u € z-. Then z+1={z,2;,+1 | zg+1}. The
uniformity of the cut equation for the A-map thus yields

>‘z+1 = {5>‘z’5>‘ZL+1 | 5>\ZR+1}

{EX, Eexp(ey) | € exp(rey)}

= {EX,,expo &, | expo&A,,} (since expo & =€ oexp
= expA; (by (11.1.5)

)
)
The result follows by induction. O

Corollary 11.1.4. [18] Smpg¢ coincides with the class Moy, of log-atomic surreal numbers.

Proof. We have log, A\, =\._,, € Smp¢ for all n € N, whence log,, Smps C Smps C Mo. This
shows that every element of Smpyg is log-atomic.

Conversely, let A be a log-atomic number and assume A ¢ Smpg. Note that mg()) is log-atomic
by our previous argument. Assume for instance that wg(A) < A. For n € N, we have log,, mg(\) £
log,, A. Since both log, A and log, m¢(A) are monomials, it follows that log,, m¢(\) < log, A. We
deduce that (exp,oHolog,)(me(A)) <A, whence Emg(A) < A, which contradicts the defining relation
me(A) =g A. Likewise, mg(A) > A is impossible. We conclude that A =7g(\) € Smpeg. O

Proposition 11.1.5. [78] We have K =Mo,, < No...

Proof. Following Mantova-Matusinski, we have the following equivalences for any number z € No:

ze€Noy, <— z1+N<z<zg—N

expN(Az,) <Az <logn(Azp)

eXp]N(g/\ZL) <A< IOg]N(g/\ZR)

EX(Ae) <A <E(Azp)

A € K. O

1117
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11.2 Numbers as transseries

We conclude Part III by discussing the benefits and shortcomings of representing surreal numbers
as transseries.

11.2.1 Iterated transserial expansions

In No, any non-zero number ag= 3 (ap)m m can be expanded as we next explain. Pick one of
its terms (ag)m, Mo, write 79 := (ag)m, and a; :=logmg € No, and let g, do respectively denote the
segments of the series ag lying above and below rgmg. Systematically placing terms in series from
greatest to least, we obtain the expression

ag= @+ roe* + do.

Repeating this process by picking a term 71 m; =71 e%? in a1, we get
ap= o+ roef e oL 5

Repeating this iteratively, we obtain a series of expressions

Cpitrier 48

o= o + roeP1TIe o g, (11.2.1)

We thus form what is called an infinite path P = (r;m;);eN in ag as in [92, 18]. One can then study
conditions under which formal expressions such as (11.2.1) correspond to numbers.

11.2.2 Schmeling’s axiom T4

It was shown by Berarducci and Mantova [18, Theorem 8.10] that No satisfies Schmeling’s axiom
T4 [92, Definition 2.2.1]. This means that the sequences (¢;)ien, (r:)ien and (9;);en occurring
in (11.2.1) must verify that there exist an io € N with r; € {—1,1} and §; =0 whenever ¢ > ip. In
other words, the expansion process in (11.2.1) must eventually yield expressions of the form

LpigriEe”

iy = i, £ ePior1EE . (11.2.2)

The axiom T4 is in fact defined in the more general context of a transserial field T =IR[[9]] with
its logarithm log. It was introduced as a way to avoid certain problems in defining structure on
transserial fields. Indeed, the condition on the coefficients r;’s avoids certain problem in comparing
numbers which have distinct infinite expansions such as (11.2.2) (see [92, Section 2.5]), whereas the
condition on the tails §;’s avoids the existence of certain ill-based families occurring as derivatives
of such numbers (see [11, p. 49]).

11.2.3 Nested expansions

The converse problem is the existence of numbers with a given expansion of the form (11.2.2).
In [11, Section 8], we give conditions under which such numbers exist and actually form a proper
subclass of No. This is in particular the case for the sequences with ¢; =4/log;w, ;=1 and 6;=0
for all ¢ € N. This yields many numbers with the expansion

VToggwte

a= /o +eV Bt . (11.2.3)

In the general expansion process, note that if any of the terms r;m; =r;e%*! that we choose is a real
number, then we have a;41 =0, so the expansion stops. On the contrary, if ap=a is log-atomic (for
instance if a=w or a=¢q), then the only possible continuation of the path is with Vk >0, a =log a.
This corresponds to the sequences p; =0, ;=1 and §; =0 for all i €N, i.e. to the expansion

a—ee (11.2.4)
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Such expansion gives no information on a except that it is log-atomic. For that reason, it is not
necessary or useful to expand a further.

11.2.4 Expansions and derivations

Consider (11.2.1) and assume that a well-behaved partially defined derivative D:b+— b’ (see also [18,
Definition 9.1]), is defined for all the terms ¢;, d; occurring in (11.2.1). Taking the compatibility
relation Os(exp b) = (0s(b)) exp b into account, we see that this expression admits a “syntactic
derivative” 0s(ag) given by

65(a0) = <p6+7“0m005(a1)+66
= o+ romo (¢1+r1myds(az) + 1) + g

= 0+ T0Mo Pl +ToTI MMy Y5+ -+ 00+ ToMg o]+

This expression is in addition the simplest one which extends D and which may be extended into a
transserial derivation. Since No satisfies T4, we may assume that we have ;€ {—1,1} and §,=0
for all 4 € N. Crucially [18, Proposition 6.20], this turns the syntactic derivative 0s(ag) into a well-
defined sum

as(ao)zgooimo (p{imoml @éi---.

One complication occurs when applying this method to the expansion (11.2.4). Indeed this sys-
tematically yields a syntactic derivative ds(a) =0, although a ¢ R. Therefore D should already be
defined at each a € Mo,,. Berarducci and Mantova found minimal conditions on D: Mo, — No;
a+— a’ for the resulting derivation ;s to be transserial. They constructed their derivation by relying
on the “simplest” solution D.

The class Mo,, is proper class-sized and its apparent complexity seems to mirror that of No
itself (see for instance [18, Propositions 5.15, 5.17 and Corollary 5.17] and [9, Theorem 29]). Defining
a suited mapping D on Mo, thus requires insight. We think that Berarducci and Mantova’s
choice does not fit into a coherent description of surreal numbers as (surreal-valued) functions,
as is highlighted in [19, Theorem 8.4]. We expect that a different approach relying on the hyper-
serial structure on No will yield a suited derivation.






Part 1V

Numbers as hyperseries
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Seeing the forest for the tree

We have seen in Part 11 that starting from a complete binary tree {—1,1}<9?~No, it was possible
to define a structure of transseries field in a canonical way. In Part IV we will, in more detail,
show that surreal numbers can be represented as formal hyperseries f “applied” at the number w.
Pending a definition of what a hyperseries is, this statement is informal, so in order to make sense
of it, we will introduce the notion of hyperserial description. We will show that numbers can be
represented purely in terms of hyperseries, i.e. as (non-rooted) trees or forests indexed by ordinal
and real numbers.

A never-withering gardening metaphor

Let us describe our results by employing a gardening metaphor. In the first two Parts of the thesis,
our main task was to construct large fields of hyperseries by adjoining formal monomials to more
classical fields of transseries. We will now be working in the fixed ambient field No, seen as the
full binary tree (No, <, C) with its algebraic and transserial structure. In this barren land, we
are to find a way to see a natural structure of hyperserial field, with the additional goal that this
structure should be sufficient to represent all surreal numbers as hyperseries, and be amenable to
derivations and composition laws. This implies sawing the seeds, making sure a steady growth is
possible, cutting down unwanted sprouts, before we can collect the fruit of our work. The end goal
of representing numbers as forests indexed by ordinals and real numbers is but a first step in the
program of defining a derivation and a composition law on No that will be compatible with the
hyperserial structure and with one another. Unfortunately, this program does not fit in the present
thesis, and we will have to be content with this modest gardening task.

Atomic seed, hyperlogarithmic-hyperexponential flourish

The first stage will be to define a confluent hyperserial skeleton (L), con of force (On, On) on
No. In this task, we are guided by the simplicity heuristic and the axioms for hyperserial skeletons,
which will give us a “simplest” way of defining those partial functions. This will occupy us for
Chapter 12.

Having done that, we obtain by Theorem 7.2.10 a hyperserial field (No, o) of force (On,
On). This gives us the basis for our hyperserial representation process: we have the simplest
positive infinite number w, real numbers, and hyperlogarithmic and hyperexponential operators
Ly:a— Ly(a) and Ey:a— Eu(a) as tools to construct involved hyperseries with simpler ones. In
fact we will see that w is the only atomic number in (No, o), whence there is a unique embedding
L — No of force On, whose range is denoted L ow. Crucially, surreal numbers are a proper
extension of L ow. The difference between L ow and No lies in the existence of nested numbers
in No. Studying those numbers is the main task undertaken in the last two chapters of the thesis.

Hyperserial expansions

We saw in Section 11.2 that the representation of numbers as transseries was insufficient in
describing log-atomic numbers. Indeed those expand as

a=e® | (1)

and such expansion gives no information on how the derivative of a should be defined, or on how
a should behave on a surreal valued function b+— aob if a composition law o: No x No~~ — No
is to be defined on surreal numbers.

A naive solution to the problem of expansions (1) would be to systematically rewrite (1) as
a=EY? for a certain additively indecomposable ordinal o > w and a certain a-truncated number .
We can assume that a # w, for it is intended that the simple number w should not be decomposed.
Thus « can be chosen largest such that a € Mo,. We could extend this rule to general non log-
atomic monomials m by expanding them as

m=FEy (2)
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for ¢ =logm. Unfortunately, this representation method is not practical for reasons which we next
explain.

Ideally, there should exist a measure ¢:INo — On of the “complexity” of surreal numbers seen as
hyperseries, so that when expressing m = E¥, we would have ¢(¢) <¢(m). Indeed it would then be
possible to define, for instance, well-behaved derivatives 9(m) and compositions mob for b€ No~»~
by induction on this complexity. We will see that the existence of (infinitely) nested numbers,
which can be seen as an unavoidable consequence of the fundamental property (Proposition 8.1.1)
forbids the existence of such a function .

The next best thing then is to find a way to expand monomials m in such a way that the
complexities ¢(ai),...,<(a,) of the surreal parameters as,..., a, involved in the expansion are
strictly smaller than ¢(m) unless m turns out to be a nested number. We expect that this is indeed
possible if we expand monomials using two surreal parameters ¥, u, as

m=e¥ (Lg EY)"

where a, 3 are ordinals, « € {—1,1}, and the tuple (¢, 5, «,u,¢) satisfies a list of technical conditions
(see Definition 13.1.2). For n=e¥ (L, E})? as above, if ©)= ¢ and ¢ =0 then we have

LgEqC Ly Ej = mCn.
Under certain conditions (see Lemma 13.1.25), if (p, v) = («, 0), then we have

uCv=—mlCn.

Thus simplicity relations between monomials written in this form can be read in simplicity rela-
tions between the parameters of the respective expansions, which is not the case for the “naive
representation” (2).

As explained in Section 11.2, we have a related notion of path P as a sequence of terms. A
path in @ € No” is a possibly infinite sequence P(0), P(1),... of terms where P(0) € term a and
expanding each monomial dp(;) as 9p(;y=e%"** (Lg, , EZ;fil)LP’i, the number P(i+1) if it is defined
is a term in ¥p ;41 or in up ;1. Our first task toward studying nested numbers is to understand
hyperserial expansions and paths.

Ad infinitum

Having waited On-many days, we come back to our garden and find it sprouting. Not only do
we have trees with arbitrarily long finite branches that can already be found in Low, but we also
possibly have infinite branches, that is, infinite paths (P;);en in certain numbers a. The same
problems mentioned in Section 11.2 for the transserial case occur in the hyperserial case. More
precisely, the existence of arbitrary infinite paths would be problematic. Similarly to the axiom
T4, surreal numbers satisfy a structure theorem, namely Theorem 13.2.7, that states that for all
infinite paths, there must exist an ig € IN such that for all ¢ > g, the coeflicient rp ; of the term
P(i) is in {—1,1}, the monomial 0p(;11) is the minimum of suppup ;, and fp ;=0. Assume for a
moment that ig=0. Writing (v;, &;, Wi, Li, ;) = (a>aP<i),rp7i, Yp.i+1,tP i ap ;) for all i € N, we have
an infinite nested expansion

Fere? (E >1 N
pr1te1e’t| E,
a=po+ege’? (an ' ) (3)

for a. The main goal of Chapter 13 will be to trim the possible infinite branches in iterated
hyperserial expansions of surreal numbers, by proving Theorem 13.2.7.

Reaping what you saw

The problem of existence of infinite paths in No is more subtle than it looks and raises several
questions. Consider the expansion (3) above and the corresponding sequence ¥ = (¢, &4, ¥i, L4,
a;)ien. We say that a is X-nested. On what condition on X can there be numbers which expand
as (3), how many such numbers exist, and how can those numbers be distinguished?
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There are three stages to addressing these questions. The first one is formal: the numbers
iy €iy Yiy t; and a; should satisfy certain conditions (for instance that each v; be purely large,
see Definition 14.1.1) that reflect the fact that they occur in the process of iterated hyperserial
expansions. Sequences which satisfy those conditions are called coding sequences.

On a second level, having an expansion such as (3) implies in particular some order theoretic
constraints on the parameters. For instance the existence of a implies that there is a positive infinite
number b with log b < supp o and such that supp g = e¥°b‘. This translates into inequalities
involving the parameters g, 1o and to (see Section 14.1.2). Coding sequences which satisfy all
such inequalities are said admissible.

It turns out that being admissible is not sufficient to guarantee the existence of corresponding
nested numbers. This is why we introduce a further condition on (admissible) coding sequences
that roughly states that if given ¢ € N, a number ¢ expands as

"y S\ si2 it
pitoteiree” it B,
_ Yivi| B i+2
C*@i+1+€i+1e Q41 )

(4)

then the number d:= @; +¢;e¥i (E,, c)" expands as

) K Lit1 L
" @¢+1+€¢+1ewl+l<E&¢+1)
d= Yite;e” Eai .

This is not a trivial condition, since the expansion (4) says nothing about ¢;, ¥;, about the fact
that ¢ be a;-truncated, and so on... Admissible sequences that satisfy this further condition are
called nested sequences. Nested sequences are particularly well behaved. In particular, we will
prove Theorem 14.2.4 which states that the class of corresponding Y-nested numbers is a surreal
substructure. That there are plenty of Y-nested numbers provided X is a nested sequence is, we
expect, a key feature in defining composition laws on surreal numbers.

It is sufficient to study nested sequences in order to represent surreal numbers as hyperseries
because of a key result in Section-14.1.3 that states that if ¥ is admissible, then for large enough
k €N, the sequence X g := (Qkti, Ektis Vktis bh+ir Vht+i)ieN is nested (Theorem 14.1.15).

Mapping the territory

Having studied the existence and multiplicity of nested numbers, we can finally represent surreal
numbers as hyperseries. In order to do this, we use labelled forests, where each label is a tuple
(r,t,a, B) that corresponds to the coefficient r € R7 of a monomial m in the support of a number
and the parameters in its hyperserial expansion m=e¥ (Lg E%)*. That the numbers v and u vanish
by giving rise to further branches in the forest is the gist of the formal representation.

Representing numbers as hyperseries is thus a matter of introducing the right graph theoretic
structure that can be uniquely ascribed to a surreal number. We will show that such a correspond-
ence exists by proving Theorem 15.3.1.






Chapter 12

The hyperserial field of surreal numbers

Let us define a hyperserial skeleton (No, (L,»),con) on surreal numbers. The task ahead of us is
straightforward: we have a list of axioms for hyperserial skeletons (see Section 4.2.2), and we must
define partial hyperlogarithms L,x, u € On that satisfy those axioms. Starting with Gonshor’s
logarithm log, the class Mo, is already defined, and characterized by Berarducci and Mantova’s
work as a surreal substructure. Let us see how this can be used to give an inductive definition of
L, on Mo, This particular case was first dealt with in [15].

Let a € Mo, such that L, is defined on algo‘“, and let us see how L, (a) can be defined. Let

a’ € ap™® and a” € a}°“. For n € N, the monotonicity axiom M, at p=1 gives

1 1

/ m _
L,(a")+ Togn Lu(a)) < Le(a) <Ly(a") 108, Lo(a”)’

The asymptotics axiom A, at =1 gives Ly(a) <log, a. Therefore L, (a) should lie in the cut

/ 1 C ! Mo, " _ 1 7 Mo,
(IRU{LW(a)+—10gan(a,) ;o' €ap | « Ly(a”) Togn To(@”) ra’ ear Ulogna ). (1)

We will see that defining L,(a) to be the simplest element of this cut yields a function L,:
Mo, — No~~ which satisfies all the axioms for hyperserial skeletons at u=1.

There are subtle obstacles in making this method work. The first one is that it is not easy to
prove by induction that (1) is indeed always a cut. In fact, we will need to define L, in a slightly
different way before we can prove that (1) is always a cut with root L (a). The second one is that
this definition via cut presentations is suited to impose strict inequalities as constraints on L,
but less so to insure that the remaining axioms for hyperserial skeletons hold. The product axiom
P, for any ordinal 4 follows from the fact that log: No~ — No is surjective. So we are left with
two axioms that cannot seemingly be translated into sets of inequalities. Fortunately, we will see
that they follow from the above definition. In other words, the functional equation FE, and the
regularity axiom R, are consequences of the choice of simplest value for L, (a) satisfying the above
constraints.

For general infinie additively indecomposable ordinals «, we have a similar definition. Indeed
if ae No~'~ is L.,-atomic, then L, a can be defined using the fairly simple recursive formula

La(a) = {R, La(a") + (Ly(a')) " | La(a") = (Ly(a)) ", Ly(a)}, (2)
where a’, a” range over L. ,-atomic numbers with a’,a” C a and a’ <a < a” and « ranges in «; see
also (12.3.1).

We prove that this definition is warranted and that the resulting functions L,, satisfy the axioms
of hyperserial skeletons from [14, Section 3]. Our proof proceeds by induction on « and also relies

on the fact that the class Mo, of L.,-atomic numbers actually forms a surreal substructure of
No. Our main result is the following rewriting of Theorem C.

Theorem 1. The definition (2) gives No the structure of a confluent hyperserial skeleton. Con-
sequently, we may uniquely extend L,» to No”*™ in a way that gives No the structure of a confluent
hyperserial field. Moreover, for each ordinal p, the extended function Lyu: No”~ — No~™ is
bijective.

12.1 Inductive setting

Here, we make precise our induction hypotheses for the proof of Theorem 1 throughout Chapter 12.

187
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12.1.1 Exponential-logarithmic groups
For ce R and r € R”, we define

T := a—a+c acting on No or No~".
H. := a—ra acting on No~ or No~".
P. := a—a" acting on No~ or No~~.
Now consider
T = {I.:ceR},
H = {H,:reR”},
P = {P:reR”},

& = (E,H - L;:neN,reR”), and
& = {E,,L,:neN}.
Then we have the following list of correspondences G — Smpg:
e The action of 7 on No (resp. No>*") yields No, (resp. NoZ), e.g. Smp; =No,..
e The action of H on No~ (resp. No~") yields Mo (resp. Mo™).
e The action of P on No~'~ yields Mo<Mo = E; Mo™.
e The action of £ on No~" yields Mo,,.
e The action of £* on No”~ yields K := Mo, <Noy (which will coincide with £, NoZ).

Generalizations of those function groups will allow us to define certain surreal substructures related
to the hyperlogarithms and hyperexponentials on No.

We have seen in Section 11.1.2 that (No, L) is a confluent hyperserial skeleton of force (v, v)
for v=1. The aim of this section is to extend this result to any ordinal v. More precisely, we
will define a sequence (L) con of partial functions on No such that for each ordinal v, the
structure (No, (Lwn),<y) is a confluent hyperserial skeleton of force (v,v), and Ly coincides with
Gonshor’s logarithm.

12.1.2 Hyperexponential-hyperlogarithmic groups

Assume for the moment that we can define L, and E, as bijective strictly increasing functions
on No~'~ for all ordinals . This is the case already for v < w. Let us introduce several useful
groups that act on No, as well as several remarkable subclasses of No.

Given an ordinal v, we set

and we consider the function groups

&, = (EyH,Ly:y<aAreR”)
En = (Ey,Priy<aAreR”).

where E,, H, P; and L., act on No~”~. We also define
Eéu = L, gclu E,
L: = LoEXE,.

We write Loy:={Ly:v<A} and Ecy:={E,:v <A} for each A <a. In the case when a =1, note
that

& =H
& = P
Ly =T
Li = H
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By Proposition 10.2.3 and the fact the set-sized function groups &, £%, L., and L} induce thin
partitions of No~~, we may define the following surreal substructures

Mo,, := Smpg;
Mo;, := Smpg:
Tr, := Smp,:
Tr;, := Smpg:.
Here we note that Mo] corresponds to the class Mo~ =Mo; of infinite monomials in No and g,

maps positive infinite numbers to their dominant monomial. Similarly, Tr} coincides with NoZ
and 7z, maps a € No” ™ to ay. In Section 12.3, we will prove the following identities.

Mo/, = Mo,, [Proposition 12.2.16]

e, = oy [Proposition 12.2.16]

Tr,, = No. ,=L,Mo,, [Proposition 12.3.6]

zr = fay [Proposition 12.3.6]

Tri = Tr, ifv is a limit ordinal, [Lemma 12.2.9]

Tr}, = NoZ ifv is a successor ordinal, [Lemma 12.3.8]
Vre€R,ENo, . Tr = T;ENo, , if v is a successor ordinal, [Lemma 12.3.7]
VreR,EMo, 1y = FEoT LoZmMo, if v is a successor ordinal, [Proposition 12.3.10]
Mo}, = Mo,<No, if v is a successor ordinal, [Proposition 12.3.12]

Mo}, = E,Trx}. [Proposition 12.3.13]

The first and third identities imply in particular that the classes Mo, and Noy , of L,-atomic
and a-truncated numbers respectively are in fact surreal substructures, when regarding No as a
hyperserial field.

12.1.3 Induction hypotheses

For the definition of the partial hyperlogarithm L,~, we will proceed by induction on . Let p be
an ordinal. Until the end of this section we make the following induction hypotheses:

Induction hypotheses

I,,,. For 1< p, the partial hyperlogarithm L is defined on Mo,n; we have L; =log [ Mo™
and (No, (Lyn)y<u) is a confluent hyperserial skeleton of force (u, ).

I3, .. For r,s € R with 1 <s and for v, p <w with v < p, we have
VaeNo~”~, E,(rLya)<E,(sL,a).

Is,,.. For n< p, the class Mo/,» is that of L.,»-atomic surreal numbers, i.e. Mo[,n» =Moyn.

These induction hypotheses require a few additional explanations. Assuming that I, , holds, the
partial functions L,» with 17 < p extend into strictly increasing bijections L, n: No~~ — No~",
by the results from Chapter 4. Using Cantor normal forms, this allows us to define a strictly
increasing bijection L,:No”~ — No~" for any « < 4 and we denote by E. its functional inverse.
In particular, this ensures that the hypotheses I , and I3 , make sense.

Remark 12.1.1. In addition to the above induction hypotheses, we will implicitly assume that our
hyperlogarithms L, for n < p are always defined by (12.2.1) below. In particular, our construction
of L, is not relative to any potential construction of the preceding hyperlogarithms L.,» with n < i
that would satisfy the induction hypotheses I, ,, I ,, and I3 ,. Instead, we define one specific
family of functions (L,n)ycon that satisfy our requirements, as well as the additional identities
listed in subsection 12.1.2.

Proposition 12.1.2. The azioms 11, Is1 and I3 hold for (No, L;).
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Proof. Section 11.1.2 shows that Iy ; holds. Consider r,s € R~ with s >1. On No~", we have
Tiogr < Hs, hence H, = Ey Tiogr L1 < E1 Hs Ly. 1t follows that we have E,, H, L, < Ey, 1 Hs Ly, 1 on
No~7 for all n € N. This implies that I ; holds. Finally, I3 1 is valid because of the relation Mo,, =
Smpe. O

Proposition 12.1.3. Let v be a limit ordinal and assume that 1, ,,, I ,, and I3, hold for all
pw<v. Then 1 ., Io ., and I3, hold.

Proof. The statement I, follows immediately by induction. Toward I3 ,, note that we have
Mo, =1, ., Moyn = ﬂn<VM0£Jn by I , (and thus DD,) and I3, for all n <v. By Proposi-
tion 10.2.5, we have Mo, = ﬂn<VMOw71— Mo,. So I3, holds.

By I, , for all n <v, we need only justify that (No, (L)<, ) is v-confluent to deduce that I, ,,
holds. For a € No~ ", by I ,, there are an a € Mo/, = Mo, and a 3:=w" < a with Eg(s Lga) <
a< Eg(2 Lga). We deduce that Lga< Lga, thus a € Egla]. This concludes the proof. O

From now on, we assume that I, ,, I ,, and I3 , are satisfied for ;> 1 and we define

v = pu+1
a = W
0 = wh

The following subsection is dedicated to the definition of Lg and the proof of the inductive hypo-
theses I, ,, I, and I, for v. In combination with Propositions 12.1.2 and 12.1.3, this will
complete our induction and the proof of Theorem 1.

12.2 Defining the hyperlogarithm

12.2.1 Definition, monotonicity and regularity

Recall that we have Moj=Mog by I5 ,. In particular Mog is a surreal substructure. Consider
n <v. The skeleton (No, (Ly+),<y) is a confluent hyperserial skeleton of force (1, n) by I; ,. So
for a € No~ ", Proposition 4.3.5 and I ,, yield &,n[a] =&, n[a].

In view of A, and M, the simplest way to define Lg is via the cut equation:

YaeMog, Lga:= {R,Lﬁa/‘i’ ca/ € apos L5a¥°5;,L<5a}. (12.2.1)

1
L<ﬁa/ L<ﬁa

The reader can compare this cut equation to that found by Gonshor for the logarithm [55, Defin-
ition p.161]. Note the asymmetry between left and right options Lga’+ (L<ga’)~! and Lga” —
(L<pa)~! (instead of Lga” — (L<ga”)~") for generic a’ € a}'®? and a”’ € a¥®?. In Corollary 12.3.4
below, we will derive a more symmetric but equivalent cut equation for Lg, as promised in the
introduction. For now, we prove that (12.2.1) is warranted and that A, M,,, and R, hold.

Proposition 12.2.1. The function Lg is well-defined on Mog and, for a € Moﬁ, we have
H,: (Va’ea,; % Lga'+ +—— <Lg 15‘1) and (Va”eaR % Lga+——<Lga" —

1
L<gﬂ” .

Proof. We prove this by induction on (M05, ). Let a € Mog such that Hy, holds for all b € aMes.
Let a’ € ap®? and a” € af'®?. We have a’ € (a”)}°% or a” € (a’)}°7, so Hyr or Hyn yields

Lﬁa’Jr—l < Lga”—

Lsa Lga’
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1

1 1 1
For v < 3, we have 11 <5 {y and WFW’m’ whence
1 o 2 S 1 1 n 1
Lyjia Lya Lya’ Lya” Lya’

for all v < 5. Hence,

1 1

Lga'+—— < Lga’—
s * L<5a’ A L<ﬁa

1

"
We clearly have Lga” — Tooe

= Lga”>1R. Finally,

1
Lga'+——— = Lgd Loga’
8 +L<ﬁa, ga < Lcpal,

s0 Lga'+—— < L.ga. This shows that Lza is defined and

Lga’
Lga’Jr; < Lga < Lga”— L .
L.ga L.ga
Since a’ <a < a”, it follows that
Lga'+ < Lgat LI Lga"” — L
L.ga L.ga L.ga
By induction, this proves H, for all a € Mog. a

Proposition 12.2.2. The axiom M, holds.

Proof. Let a,b € Mog with a < b. Since Mog is a surreal substructure, there is a ¢ € Mog with
¢Ca,band a<ce<b. If a<c, then we have Lga+ (L<ga) ' < Lgc— (Lcgc) ! by Hq. If ¢ < b,
then we have Lgc+ (L<gc) ' <Lgb— (L<zb)~! by Hp. We cannot have both a=c¢ and ¢=b, so
this proves that Lga+ (L<ga) ' <Lgb— (L.gb)~!. Therefore M,, holds. O

Proposition 12.2.3. The axiom A, holds.
Proof. The rightmost options in (12.2.1) directly yield A ,. O
Proposition 12.2.4. The axiom R, holds.

Proof. Let a € Mog and write ¢ :=Lga. Let m € supp ¢ with m <1. We have ¢ < L.ga and
Oym X P S0 Yym < Lcga. Moreover ¢,y is positive infinite. By [55, Theorem 5.12] (see also
[18, Proposition 2.8]), the number ¢, n, is strictly simpler than ¢, so ¢y does not lie in the cut
which defines Lga in (12.2.1). Therefore, there is an a’ € a}*® or an a” € ay'® and an ordinal
v < B with oom<Lga’+ (Lya’)"t or pom>Lga” — (L, a)~!. Consider the first case. We have
Lo+ (Lepga) P << @om+ pmm+6 for a certain § <m. So ¢ >0 and
1 1
L<g a’ < L’Y
For p < 3 with v < p, we have (L,a’)" > (L,a’) "' so (L,a’) "' = (Lya') "' < (L,a’)~ . We deduce
that (L,a’)"!<m for all such p. It follows that (L,a)"'<m for all p< 8. In the second case,
we directly get m = (L, a)~!. This proves that we always have m > (L.ga)~'. In other words
supp ¢ = (L<ga)~!, whence R, holds. O

a,—l—gomm.

Remark 12.2.5. In (No, <,C), given numbers a,b with a <b, the C-maximal number ¢ with ¢Ca,
b is given by c={ar, | bg}, and it satisfies a < ¢ <b. It follows by definition of surreal substructures
that for any surreal substructure S and for any u,v € S there is a C-maximal element

w:{uE | U}S%}SES

with w C u, v, and we have u <w <.

Proposition 12.2.6. If u is a successor ordinal, then the cut equation (12.2.1) is uniform.
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Proof. Let (£4,94) be a cut representation in Mog and write a:= {£q | Ra}mo,. For [€ L4, we
have Lgl< Lga<Lcgaso Lgl<L.ga. For t € R, we have Lgl+ (L)t < Lgt by R,,. Since
[<a, it follows that Lgl+ (L<gl)~' < Lgr— (L<ga)~t. We may thus define the number

1 .

1
: L —— L .
L<5[ le £, ggia L<ga’ <5a}

p = {]R, Lgl+
In order to show that (12.2.1) is uniform, we need to prove that Lga= ¢, for any choice of the cut
representation (£4,R,). We will do so by proving that LzaC ¢ and ¢ C Lga.
Recall that (£4,R,) is cofinal with respect to (a}'®? | af'®?) and that Ly is strictly increasing.
Consequently, we have

p < Lgag[oﬁf(L<ga)fl.

Given a’ € a}™®?, there is an [€ £, with a’ <[. By M,,, we have Lga’+ (L,a')" < Lgl+ (L, 1)~*
for all v < 3, so ¢ >{Lga’+ (L<ga’)~':a’€ap’®s}. This proves that ¢ lies in the cut defining
Lga as per (12.2.1), whence LgaC .

Conversely, in order to prove that ¢ T Lga, it suffices to show that Lga lies in the cut

1
Lgl+——:1
<5+L<5[ €Ly

1

LgRq— Tora )
Let l€ £, and let b € Mog be E-maximal with bC[,a. We have [<b < a, whence Lgb<Lga, by M,,.
If b [, then b€ [, so Hy yields Lgl+ (L<gl) "' < Lgb and Lgl+ (L<5l)~' < Lga. Otherwise
[=bea}®? so H, yields Lgl+ (L<gl)™' < Lga. This proves that {Lgl+ (L) :1€ L4} < Lga.

Let v € R4 and consider by Remark 12.2.5 the C-maximal ¢ € Mog with ¢C v, a. As above, if
¢ a, then c € ap'®? so H, yields Lga< Lgc— (L<ga)~!, whence Lga< Lgr— (L<ga)~!. Otherwise
a=cer}t® so H, yields Lgt> Lga+ (Loga)~t. Hence Lga< LsR,— (L<za)~ ! and we conclude
by induction. O

12.2.2 Functional equation

In this subsection we derive FE,,, under the assumption that p is a successor ordinal. We start

with the following inequality.

s

Lemma 12.2.7. If u>1, then we have E<g,, < Eg,, Hs Lg,, on No™ .
Proof. For v< 3, there are n < pu_ and n <w with 7y <w"”n. We have

E‘,y < Ewnn = Ewn+1 Tn Lwn+1 < Ewn+1 H2 Lwn+1
on No~” by the functional equation. Note that n+1< pu_ <p, so I , yields

w

En+1Hy L+ < Eg, HyLg,,,
whence E, <FEg, HyLg,,. g
Let a € Mog. Since Mog is a surreal substructure, we may consider the L. g-atomic number
b = {Lg, o} | Lg, ay°, a}mop-

We claim that b= Lg, a. Assume that y=1 and write a =Z=nmo, a. We have

loga = Emo,(a—1) (by [6, Proposition 2.5])
= EMo, {ar—1|ar—1,a} (by (8.2.2))
= {Emo.(ar —1) | Emo,(ar — 1), EMo,, @} Mo,
= {log Emo, ar. | 10g Emo,, ar, EMo,, @ }Mo., (by [6, Proposition 2.5])

= {loga}"* | log a3, a}mo,
= b
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Assume now that y>1. The function Lg,, is strictly increasing with Lg,, <Idne>.-. Therefore

Lﬁ/w a € (Lﬁ/w a%/IOB | L/B/w a}l\%/lo/;, a)MOg;

so bC Lg,, a. Since a € Mog, the cut equation (12.2.1) for p_ yields
Lg.,a = {R,Lg, o'+ (Lega’) ' ia’ €a)’®e | Lg, aj'®%e—(Lega)™', Leg, a}. (12.2.2)
Given a’ € a}™®%., we have d5(a’) € a}'®? and o’ € E5[05(a’)]. We deduce that
Lg,, 0" € Lg, Elop(a’)] = Es[Lg,,0p(a’)].
Moreover, by definition, we have
b > &Ly, 05(a")] = EslLlp,.0p(a")],

sob>~Lg,, a'. Symmetric arguments yield b< Lg,, aj'®s/.. Lemma 12.2.7 implies that Lcgp,,aC&plal,
whence 05(L<g,, a) ={a}. We get b <E305(L<p,, a), whence b < L.g, a. Thus b lies in the
cut defining Lg, a in (12.2.2), so Lg,,a £ b. This proves our claim that

Va€Mog, Lg, a={Lg, a}" | Lg,, a§'*’ a}mop (12.2.3)
We now derive FE,,.

Proposition 12.2.8. For a € Mog, we have LgLg, a=Lga—1.

Proof. We prove this by induction on (Mog, ). Let a € Mog be such that the result holds
on aMes. By (12.2.3), we have

Lﬁ/w a = {L/B/w a%/log | Lﬁ/w a}\%/loﬁa a}Mog~

Let a’ and a” range in aM®? and aN®? respectively. Proposition 12.2.6 and our induction hypothesis
yield:

1

1
LsL = {R,LgLg, a Ll a'——— I[gsa——— L_gL
gLlg,,a { yLglg, o + gL, a Lsly.a ga Tsa <g ﬁ/wa}

L<5 Lg/w a’

1
= <{R,Lga’—1+4+——
{ s Lga +L<5a’

1 1
Lga"—1——— Lga———, L .
Ba L<ﬁa’ ﬁa L<ﬁa) <ﬁa}
On the other hand, we have

1 1
Lga—1 = -1, Lga’+———1|Lga’————1,L —1,L
5a {R 9 ﬁa+L<ﬁa/ ’ ﬁa L<5a 9 <5a 9 53}

= {R,Lga/-i- —1‘L5C&”—L1

—1,L5CL,L<5C[}.
<g@

1
L<ﬁ CL'
In order to conclude that LgLg, a=Lga—1, it remains to show that Lga—1<Lga— (L<g a)~!
and that LgLg, a<Lga. The first inequality holds because (L<ga)~!
numbers. An easy induction shows that Lg, a<aforalla€ No~~. The second inequality follows,

is a set of infinitesimal

because Lg is strictly increasing on Mog. This completes our inductive proof. O

Combining our results so far, we have proved that (No, (L.n)y<,) is a hyperserial skeleton of
force v.

12.2.3 Confluence

We next prove that (No, (Lyn),<,) is v-confluent.

Lemma 12.2.9. If p is a non-zero limit ordinal, then the function groups £5 and E5 are mutually
pointwise cofinal. In particular, we have Mog= Mo} and Trg=Trj.
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Proof. For v€ (0, 8) and r e R”, we have E, H, L, < E,, since H, < E,,. We have
(Lo, E,:p€(0,8)} 5 &,
whereas I ,, yields
{B,H.L,: p€(0,8)} & &
Therefore £; £ E5. For p < 3, there is n < p with p <w". The functional equation gives
E‘/J < Ewn = wn+1 T1 Lwn+1 < Ewn+1 H2 Lwn+1,
which proves the inequality 5 £ E. O
Lemma 12.2.10. For each a € No~™, any C"-minimal element of E,[a] is L<q-atomic.

Proof. Let 2 denote the class of numbers a € No”” that are C-minimal in £,[a]. Any such C-
minimal number a is also C-minimal in Ej[a] = Egla] C E,[a], hence L. g-atomic. Thus Ly is defined
on . It is enough to prove that 2 is closed under Lg in order to obtain that A C Mo,.

Consider a €2, and recall that we have

1 1
Lga = Lga ca’ e aMos | LgaNes — L . 12.2.4
sa {IR, sa +L<5a’ a’ €ap 305 P <ga} ( )

Assume for contradiction that Lga is not C-minimal in £,[Lga]. So thereis a be&y[Lga] with bC
Lga. This implies that b lies outside the cut defining Lga, so b is larger than a right option of
(12.2.4) or smaller than a left option of (12.2.4).

Assume first that b < Lga. So there is an a’ € ap’®? with b < Lga’. We have 0,(Lga) =0,(b)
so there is an n € N with

(Lgo0s)"(b) = (Lpovp)°"(Lsa).
The function Lgo dg is nondecreasing, so (Lo 05)°"*V) is nondecreasing as well. So (Lgo
02)°( V(@) < (Lyo02)° "+ (a). But

(Lgodg)*"(a’) = (Lgodp)°™(Lga’) = (Lo 0p)°"(b) < (Lpod)°"(Lga).
Thus

(Lgodg)°"™(a') = (Lgovg)°™+(a).

This contradicts the C-minimality of a.

Now consider the other case when b > Lga. In particular, b must be larger than a right
option of (12.2.4). Symmetric arguments to those above imply that we cannot have b= Lga” for
some a” € aff’®. So there must exist a y < # with b> L, a. If y is a limit ordinal, then y < p_
so Lemma 12.2.9 yields d3(L~ a) =a, whence dg(b) = a. If p is a successor ordinal, then there is a
ke N with v< 8/, k, so

23(b) = 0s(L(gyka) = Lg k0

and Proposition 12.2.8 yields Lgdg(b) = Lga—k = Lga. In both cases, we thus have Lgdg(b) = Lga.
For any integer n > 1, we deduce that

(Lo0p)°™(b) > (Lgodg)™™(a) > (Lgovp)° " (a) = (Lgovp)°"(Lsa).

This contradicts the fact that b lies in E,[Lga].
We have shown that the cases b<Lga and b> Lga both lead to a contradiction. Consequently,
Lgais C-minimal in £,[Lga] and we conclude that Lg2A C 2, as claimed. O

Corollary 12.2.11. (No, (Lyn)y<y) is v-confluent.

Proof. We already know that (No, (Ly7),<,) is p-confluent by I; . Recall that (No, ) is well-
founded, so each class £,[a] for a € No~>" contains a C-minimal element. Lemma 12.2.10 therefore
implies that No is v-confluent. O



12.2 DEFINING THE HYPERLOGARITHM 195

We now know that (No, (L.n)y<,) is a confluent hyperserial skeleton of force v. Moreover, the
class Noy g is that of <-minima and thus C-minima in the convex classes

Lsla] = {bea+No=:b=aV (Iy<pB,a<ly’ola—b"1)},

for a € No~»”. In other words, we have No. 5=Smp,,. In order to conclude that No, s is
a surreal substructure, we still need to prove that the convex partition Lz is thin. This will be
done at the end of section 12.2.4 below.

Proposition 12.2.12. The cut equation (12.2.1) is uniform.
Proof. Let (£4,%R,) be a cut representation in Mog and write a:={£, | Ra} Mo, We have
LolLgLa] < LplLpa] < Ls[LzRa].

By Proposition 5.3.8 and since the sets {/[, g):v <} and {{,:v < 3} are mutually coinitial, this
shows that

Lga € <R Lgl+——:1c £,
L<ﬁ[

1
L —— L .
ﬁ%u L<ﬁ a) <p a)
In particular, the number

= L
© {]R B[+L<B[ le £,

is well-defined, with ¢ C Lga. As in the proof of Proposition 12.2.6, we have Lga T ¢, whence
¢ =Lga. We conclude that the cut equation (12.2.1) is uniform. a

1
LB%a—m,L<ﬁ Cl}

12.2.4 Hyperexponentials

We have shown that (INo, (Lwn)n<y) is a hyperserial skeleton of force (v, ). In order to prove
that (No, (Lyn)y<y) has force (v,v), it remains to show that every [S-truncated number ¢ has
a hyperexponential Ez¢. This is the purpose of this subsection.

Proposition 12.2.13. We have LgMog=No. g, and Eg has the following cut equation on Noy g:

1
VQOGNO>7Q, Eﬁ@{E<ﬁ@,E<5<W> gﬁEﬁsﬁNc)*B
Yr T T

ELEgpRor ﬂ} (12.2.5)

Proof. We prove the result by induction on (Noy g,C). Let ¢ € No. 5 such that Eg is defined
on pN°~¢ with the given equation. We will first show that the number

a = {E<ﬁ‘PaE<ﬁ<_N—o:5_ )féEwE“’W
PR P
is well-defined. We will then prove that Lga=
Let ¢’ € N6 and " € No-5. If ¢’ € (¢”)N°> %, then Ego" > EL Eg¢’ by the definition
of Ege”. So E5Egp’ <E5Esy”. Otherwise, we have <p”€ (¢")R°~ 7, whence £ Eg " > Eg’ by
definition of Eg¢’, so E5Egp’ <E45Ese”. So we always have

ELEgpR - ﬁ} (12.2.6)

géEg(pL O < ggEg(pNo> B,
We also have F.g¢” < Eg”, so E<gp < &b Ege”. This proves that Eogp < Es Eg oR®2. It

remains to show that

1 / No
E<5<W) < EsEp(pr 7).

Note that R °~# > Lg[¢], so by the definition of Ls[¢], we have

1
LE’Y<W) < p < 8011310>,g (1227)
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for all v < 3. Hence E.p((pR°# — ¢)~1) < EgR -7, which completes the proof that a is well-
defined.

Let us now prove that Lga= . Since Eg £ (E <), the definition (12.2.6) and the identity Mog=
Moy thatgive a € Mog by Lemma 10.1.5. First assume that 4 is a limit ordinal. Lemma 12.2.9

yields (E<g) éé’g, so we may write

1
a = {OBUP)’DB(—Nw),EMPEIO*'B E5<P11§°*'5}
QDR ’ ¥ MOB
By Proposition 5.3.8, for b€ No>” the classes that £5[Lsb] and Lgb+ (L.gb)~! are mutually

cofinal and coinitial. Moreover, we have LgEg1y =1 for all ¥ € ¢§°>v‘3, by our hypothesis on .

Hence, Propositions 12.2.12 and 5.3.8 give

1 o o
Lga = {]R,Eﬁ[Lﬁ%(sD)],ﬁﬁ[%%(ﬁﬂaﬁﬁ[ﬁ =) | RO —

o Ly a}
R I ) .
¥R f <5Cl <h

Note that Lga € (1 °# | R " ?)Noy. 4 S0 ¢ T Lga. Now Lgdg() € Lg[Lap] < ¢. We also have

1 1
Lﬁ%(m) € LB‘%[W}

YR ¥
where
Lﬁ‘%{ﬁ] = Lﬁgﬁ[ﬁ} (by Lemma 12.2.9)
$rR T PR TP @

/ LT<6< 1 )
7\ R -

< ¢ (by (12.2.7))

So Log(pR° % — )=t < . Since ¢ € Noy ,, Lemma 10.1.5 gives Lg[¢f°~ 7] < p. Finally, we
have by definition that a > E.s((pR° % — ¢)~ 1), so pR°~# — (L<ga)~' > ¢. This proves that
LgaE ¢, s0 Lga=¢.

Assume now that p is a successor ordinal. For all b€ No~>~, the sets F<gp, F<30s(¢p), and
Eg,,n0s(¢p) are mutually cofinal. So we can rewrite (12.2.6) as

1
° = {Eﬁ/wmﬁ(@)’Eﬁ/wN%(—NW)vféEwLN”ﬂ 5éEas0E°>ﬁ}

YR ¥
1 Nos Nos- .5
= ¢ Ep.n0s(9), Eg, N8| —wor7—— ) Eser 77 | Egpr®™
(IDR ! 2 Mog

As in the limit case, Proposition 12.2.12 yields

1 1
Lga = LL<P LI<s Nos 41 | ,Now.s_ I .
50 {R,Eﬁ[ 5 Dﬁ(sa)],ﬁﬁ[ o\ oNema Lsler o7 | ¢r Ty bese

Let v < 8. There is an n € N with v < 8/, n. Since Lgp < ¢ — (n+1), we have

18/w(n+1
o > Lg T 05(0) > L} os() + 1.

In particular ¢ > Eg[LgV 05(¢p)]. We saw in (12.2.7) that L;V 5((eR°# — ¢)~1) < ¢, whence
ﬁg[Lg’Y 95((@R° 7 — ) ~1)] < . We also obtain the inequalities
Lol 7] < ¢ < @R —(Lega)™!

in a similar way as in the limit case.
We conclude that ¢ = Lga holds in general. It follows by induction that the formula for Eg is
valid. In particular Lg: Mog — No, g is surjective. g

With Proposition 12.2.13, we have completed the proof of I; ,. By Proposition 4.3.5 we have
Epwlal =Epylal (12.2.8)
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for all a € No”™”. Given a € Noy g, we also deduce from Proposition 5.3.8 that the set a &
(L<gEga)~" is cofinal and coinitial in Lg[a]. The convex partition defined by L is thus thin. By
Theorem 10.1.7, the class Noy g is a surreal substructure with uniform cut equation

Va € No, ENO},/ja: {R, EB[EN0>75GL] | ‘Cﬁ[EN0>,BaR]} (12.2.9)
For a € No, we have L5[ENo, ;0] <ENo, ;0R, S0 ENo, ;a8 <ENo, z0r — (L<skp EN0>,Ba)’1. We
deduce that the following cut equation is equivalent to (12.2.9):

a'+ 1 a'car | 2 a 1
= : L | =No R—
L<ﬁEﬁ‘:‘NO>75a/ =B

}. (12.2.10)

ENo a = RaENo> =
=B { N L<ﬁEﬁ‘:'N0>Y/3a

12.2.5 End of the inductive proof

We now prove I ,, I3, and Theorem C.
Lemma 12.2.14. If p is a limit ordinal, then we have EgTi Lg> E.g on No~".
Proof. Let a € No~~. We have fig(Lga+1) > t3(Lga), so Corollary 5.3.12 yields

0s(Es(Lpa+1)) = Ep(ts(Lpa+1)) ~ Es(is(Lpa)) = vs(a).
We deduce that Eg(Lga+1)>Ega so Eg(Lga+1)> E<za by Lemma 12.2.9. O

Proposition 12.2.15. For r,s € R with s >1 and v< p <a, we have E, H, L, < E,H;L, on
No~7, i.e. I, holds.

Proof. Throughout this proof, we consider inequalities and equalities of functions on No~~.
Write v=0m+t and p=n+ 6 where m,n <w and ¢,0 < 3. We have

E H,L, = EgynE, H,L, Lg, and
E,H,L, = Ep,EgH,Lg L.

If m=mn, then ¢+ <6, so I, yields E, H, L, < Ey Hy Ly, whence E, H, L, < E, H,; L,. Assume
that m <n. If u_ is a successor ordinal, then there is p <w with « < 8/, p. By I2 ,, we have
EgH,Lo> Hy> 1T, So Es (EgHs Lg) Lg>FEg1,Lg= Eﬁ/wp' We conclude by noting that Eﬁ/wp >
E,>E,H.L, If p_ is a limit ordinal, then Eg H; Ly > Ty so Eg(EgHsLg) Lg> E, > E, H, L, by
Lemma 12.2.14. It follows that for k € N~, we have Eg11) Eg Hs Lo Lg(k41) > Epr £, Hy L, Lg.
An easy induction on k yields the result. O

Proposition 12.2.16. Moy, is the class of L.q-atomic numbers, i.e. I, holds.

Proof. Let a € No”'~. By Lemma 12.2.10, the simplest element of &,[a] is L«,-atomic. Since
Ealal =E&la] (see (12.2.8) and recall that fw =), we deduce that Mo/, C Mo,,.

Conversely, given a € Mo,, we have b:=mg:(a) € Mo, C Mo,. Now b€ &,[a], so by I ,, there
are r,s € R” and v < o with E,(r Lya) <b < E,(s Lya) (here we use the fact that &, is generated
by the linearly ordered subset {E.,(rL,a):y<aAr€R~”}). Hence, L,b=<Lya, L,b=L,a and
b=a. We conclude that a € Mo,,. O

In particular, the class Mo, is a surreal substructure. We have proved I, ,,I> ., and I3 ,, so
we obtain the following by induction:

Theorem 12.2.17. The field (No, (Ly,n)ycon) is a confluent hyperserial skeleton of force (On,
On).

Combining this with Theorem A, we obtain Theorem C. Let us finally show that (No, o)
contains only one atomic, or L.op-atomic element.

Proposition 12.2.18. The number w is the only L on-atomic element in No. For alla€ No~ ™,
there is v € On with Lya < L w.
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Proof. The number w lies in Mo, for all ;€ On, so it is L.on-atomic. For v € On, the number
E,w={E<,vw | @} is an ordinal. As a sign sequence, the number L ,vw={F | Ley,rw}ne>> s
w followed by a string containing only minuses [6, Lemma 2.6]. Since the sequences (E,»w),con and
(Lwrw)yeon are strictly increasing and strictly decreasing respectively, the classes { E,vw:v € On}
and {L,vw:v € On} are respectively cofinal and coinitial in No”>” ={a € No:w C a}. Thus for
a € No~ ™, there is a v € On with E +»w >a > L »w, whence L v+1w =< L v+1a. |

12.3 Remarkable identities

In this section, we focus on those properties of the functions F, and L, defined in Chapter 12 that
pertain to the simplicity relation on No. Consequently, those properties only make sense within
No, as opposed to many properties derived in Chapter 12 which can be stated in general hyperserial
fields. In particular, we will characterize certain classes defined in the hyperserial context as surreal
substructures defined using methods in Chapter 10. In what follows, v is a non-zero ordinal and
ai=w".

12.3.1 Simplified cut equations for L, and E

Given ¢ € No™7, let Eqy:={E(q, np:n €N} if v is a successor ordinal and Eq, ¢ :={¢} if v
is a limit ordinal. In this subsection, we will derive the following simplified cut equations for L,
on Mo, and E, on No, :

Ya€Moa, Loa = {Loa}™ | Loay®, Loya}No, . (12.3.1)
1 Mo, . Mo,
= {IR, La a/ + L<a a/: a/ (S aL © La a// - m, L<D¢ a: a// € aL ° },
(12.3.2)
thENO>7a, Eop = {EQaaa(‘P)aEaWFO>ﬂ | Ea‘:"1§0>’a}1\/loa (12-3'3)
= {Ecap,EaEap) " | EaEapn™"}. (12.3.4)

For all a € No~ ", the set Fq, 0,(a) contains only L.,-atomic numbers, so (12.3.3) is indeed a
cut equation of the form {p | A }mo,-

Remark 12.3.1. The changes with respect to (12.2.1) and (12.2.5) lie in the occurrence of a”

instead of a in (12.3.2) and the (related) absence of the left option Eq((¢n =" — ¢)~1) in (12.3.4).
So (12.3.2) and (12.3.4) give lighter sets of conditions than those in (12.2.1) and (12.2.5) to define
L, and E,. This seemingly meagre simplification will be crucial in further work. Indeed, combined
with Proposition 9.2.24, this allows one to determine large classes of numbers a,b with a C b=
E,aCE,b.

First note that the cut equations (12.3.1) and (12.3.3) if they hold are uniform (see [15,
Remark 1]). Moreover, we claim that (12.3.1,12.3.2) are equivalent and that (12.3.3,12.3.4) are
equivalent. Indeed, recall that for a thin convex partition IT of a surreal substructure S and any
cut representation (L, R) in Smpryy, one has

{L | R}smpy = {II[L] | H[R]}s.

For a’ € aM® and a” € ay©* the classes Lo o’ + (Leo o)t and L£4[Ly o] are mutually cofinal
by Proposition 5.3.8. Similarly, L, a” — (L<q @)™t and L£,[Ls a”] are mutually coinitial. By
Lemma 12.2.9, the classes E<q ¢ and E4[Fqq 04(¢)] are mutually cofinal. So it is enough to prove
that (12.3.1) and (12.3.3) are valid cut equations for L, and E, respectively.

Lemma 12.3.2. Ifv is a successor ordinal, then the identities (12.3.1) and (12.3.3) hold.
Proof. Let a € Mo, and set

¢ = {La aivloa | Lo azlgloaaL<a a}Noy o

1
= {]R,Laa’—i— ,:a’eag/l°“|Laa”—

Mo
Loqa:a”’eag ;.
L<aa <« R

1
L<a Cl”’



12.3 REMARKABLE IDENTITIES 199

We have Lq[La a)™°] < ¢ < L.qa so in view of (12 2.1), it is enough to prove that o < L, ay°* —

(Leoa)! to conclude that ¢ = L, a. Let a” € ay®. If a” € £%[a], then the inequality ¢ < L, a”
entails ¢ < L4[Loa”’] whence ¢ < Lya” —(L<ga”)™ ! and ¢ < Ly a” — (L<na)~t. Otherwise, we
have a < L.y a”, so Loa<Lsa” =2, and Lya” — (Leqa) > Loa+ 1. It is enough to prove
that L, a4+ 12> . Recall that

1
Loa+1 = {L 0, Lo’ +———+1:a’€ap’® | L, aMoa—L

+1,Lcqa
Lead <at = }
by (8.2.2). We see that Lo o'+ (Loga’) "' < Loya+1 for all a’ € aM®. We have 1 — (Lo a)" ! >
(Leoay®) =l so Ly ay® — (Lega) ' 41> @. Thus ¢ < Lya+ 1. So (12.3.1) holds.
Now let i) € Noy , and set

b = {Ea,x0a(¥), Baty *" | Eaty * " Mo,
By uniformity of (12.3.1), we have
Lab = {La Ea/wNoa(z/))awlleo>,a | wgo>’aaL<a b}No>,aa

whence Lo b3 {¢] " | ¥R “}INo, .= 9. Conversely, b> E,, n0a(%) and b> Eq %, so
Y < Lcab. We have Lo Eq) N 0a(?) = Lo 04(7) + N. Since Ly 04(¥) < La,, 0a(?0) < ¢, this
yields Lo Eo,,N0a(?) < 1. This proves that 1 lies in the cut defining L, b. We conclude that
1 =L4b, hence (12.3.3) holds. O

We now assume that v is a limit ordinal. For z € No, define

F(z) = {0a(ENo, . 2), F(2) | F(2r) Mo, and
2 = {R,Z2/+ (Lo F(2") " iz €21 | E2p— (Lo F(2)) 71}

Lemma 12.3.3. For all z € No, we have

[1]

F(z) is defined (12.3.5)
Ez is defined (12.3.6)
Ez = ENoy .7 (12.3.7)

F(z) = E.Zz (12.3.8)

Proof. We prove the result by induction on (No,C). Let z € No be such that (12.3.5), (12.3.6),
(12.3.7) and (12.3.8) hold for all y € No with yC z.

For 2" € zr and 2’ € 21, we have 04(ENo,. . 2) <0a(ENo, , 2”7) < F(2"). We have F(2') < F(2")
by definition of F(z") if 2z’ € (2")r, and by definition of F'(z’) if z” € (2')r. This proves that F'(z)
is defined.

Let 2’ € 2z and 2" € 2. If 2’ € (2”), then we have 22" > Z2' + (L., F(2'))™! by defini-
tion of Zz”. Since F'(z') < F(z) and F(z), F(z') € Mog, we have L F(z') < Ly F(z) for all v<
a. We deduce that 22" — (Leo F(2)) "1 > 22"+ (Leo F(2)) 7L If 2”7 € (2')1, then 22’ < :z” —
(L<o F(2"))~! by definition of Z2’. Since F(z’) < F(z), we obtain Zz" — (L., F(2)) ! >Z2'+
(L<o F(2'))~1. This proves that =z is defined.

Since (12.3.7) and (12.3.8) hold on zr, we have

=z = {IR, ENOXQ 2+ (L<a E, EN0>,a Z’)il = 2I | E.No}’a ZR — (L<a FE, ENOXQ Z)il}
By (12.2.10), this yields 22 =ENo, , 2, 50 (12.3.7) holds for z.

From (12.3.7), we get 04(ENo, , 2) =0a(E2). By Proposition 12.2.12 and our assumption that
(12.3.8) holds on zr, we have

LaF(z) = {R,La[Lada(E2)], LalLa F(2)] | Lo F(2r) = (L<a F(2)) 7" Lea F(2)}
= {R,La[Lada(E2)], La[E2L] | E2r— (Lca F(2)) 7 Lea F(2)}-

Recall that 22 ={R, L4[Z21] | Z2r — (L<o F(2))~1}. Therefore it suffices to show that Zz lies in
the cut (Lo[La0a(E2)] | L<o F(2)) to conclude that L, F(z) =Zz and thus that F(z) = FE,Ez.
Now Lo 04(E2) <Ei[22] 30 Lo 0a(E2) <Ez and L4[La04(E2)] <Ez. We have F(z) >0,(Zz), where
F(z) € Mo,,. Since v is a limit ordinal, Lemma 12.2.9 implies that F(z) > E<,Z2,80 E2 < Lo F(2).
This completes the proof that F(z) = E,=z. O

[1
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Corollary 12.3.4. The identities (12.3.1), (12.3.2), (12.3.3), and (12.3.4) all hold.

Proof. It is enough to prove (12.3.1) and (12.3.3). The identity (12.3.3) follows from (12.3.7)
and (12.3.8). In order to obtain (12.3.1), we consider a € Mo,, set ¢ := {Lq ap® | Lo apo®,
L<na}No, ., and we show that a = FE, 1. Since (12.3.3) is uniform, we have

Eotp = {0a(¥), Ea Lo aivloa | Eo La a}l}é/{oaan Lo a}Mo,
= {Ua('lli), a%/[oa | a}l\%/loa, E, L<a a}MoOu

We have 0,(1) < a because ¢ < Ly a, and E, L.y a> a because E, > E-, on No> . Since
a= {a}\//loa | allgloa}Moa, we deduce that an =a. 0

Remark 12.3.5. The simplified cut equations for E,, L, can be viewed as alternative definitions
for those functions, since they hold inductively on their domain of definition. It is unclear how to
develop our theory directly upon these alternative definitions. In particular, does there exists a
direct way to see that the cut equation (12.3.2) is warranted, and that the corresponding function
satisfies R, and M,,?

12.3.2 Identities involving Tr, and Tr},.

Proposition 12.3.6. Defining Tr,:=Smp,, as in Section 12.1.2, we have Tro,=No, 4.

Proof. Let ¢ € Noy . We have E, Lo[p] =Eq[Eq @] by [14, Proposition 7.22]. Recall that £,[a] =
Ella] for all a € No> . Now &/ o E, = E, o L, by definition of L}, so E, Lu|¢] = Eo L]
and Lo[¢] = L,[¢]. By definition of Tr,, we conclude that Tr, =Smp,_ =Noy ,.

RS

Assume that v is a successor ordinal. Then we have Noy ,=Noy ,+ R by Lemma 5.3.2, so
the functions T;. ENo, , and ENo, , T are both strictly increasing bijections from No onto Noy. 4.

Lemma 12.3.7. Assume that v is a successor ordinal. Then for r € R, we have T, ENo, , =
ENo, o 1+ on No.

Proof. Let us abbreviate Z:=ZNo, ,. We prove the lemma by induction on (No, ) x (R, C).
Let (z,7) € No x R with

E(y+s)

whenever (y,s) € No x R is strictly simpler than (z,r). We let 2/, 2", r’, 7" denote generic elements
of zr,2r,rr,7r and we note that r’,r” € R. By (12.2.9), we have

1

- /
=z +r)’ =(z+1")

E(z+71) = {EE'+r)+
) = {2+ g

1
+ =
Leo EQE(z+17)

1 1
- . =( _
E(z+r") Leo EQE(z+1r")’ =) L<ochcE(Z”+r)}No>'>

1 T =z 4+ 1

—inEs S S
{ Ct IR T = L-wBEaT =2

1 1
TT’/:Z_— T:Z/I——
— — _ r—= — .
L<OéEaTT//‘:‘Z L<CEECE7-"!"‘:‘Z” No> >

Recall that v is a successor ordinal. In view of the functional equation, the sets L., F, 7a and
L., E,a are mutually cofinal and coinitial. Moreover T;(z 4+ b) =T; 2+ b for all s€R and b€ No, so

1 1
= —dn(sd+——— ) T Er
(z47) {’"( Z+L<aEaEz’>’ ’"( Z+L<aEaEz)‘
1
Eq

1
T2 ), TH B2 — ———— :
( ‘ L<a E/Z)’ ( ‘ L<aEaEZN)}NO>,>



12.3 REMARKABLE IDENTITIES 201

By (8.2.2), we have

1 1
7,22 = < T | E2+—"F—— ), 122 | nZ22, T| B2/ — —F—— .
‘ { ( : +L<QEQEZ/> ‘ ‘ < ‘ L<04E0z:'zﬂ)}No>’>

The numbers T,. 2z, T, =z and T,.» =z are a-truncated so T;.Zz lies in the cut

1 1
T(get— /A =P - .
(U ( Z+L<QEQEZ>‘U ( ? L<aEa:z>>
/ ! No~>:~

T

We deduce that T, Zz =Z=T, z. The result follows by induction. O

Lemma 12.3.8. If v is a successor ordinal, then we have Téﬁ; on No~~. Consequently,
Tr}, = No:.

Proof. The set E.,, is pointwise cofinal in £5. So L, E<, E, is pointwise cofinal in L},. For v < «,
there is n € N such that v <ay,n. We have

LaE’yEa < LaEa/unEoz = (LozEa/wEa)on = (LozEaTl)on = 1on = Tn e T

We deduce that Téﬁg on No>»~, whence Tr}, = Smp; = No:. O

12.3.3 Identities involving Mo, and Moj.

Lemma 12.3.9. If v is a successor ordinal, then for z € No we have
EMOQ(Z - 1) == La/w EMoa zZ.

Proof. This can be seen as a converse to the proof of the identity (12.2.3). We proceed by induction
on (No,C). Let z be such that the relation holds on zr. By (12.2.3), we have

La,, Mo, ? = {La,, (EMo, 7)1 °% | La,, (EMo. 2)i % EMo, 2 I Mo

= {La/w EMo,, 2L | La/u EMo,, 2R, EMoy, Z}Moa

= {Emo.(2— 1) | EMoo(2r — 1), EMo, 2 tMo,  (by the inductive hypothesis)
= EMOQ{ZL71|ZRfl,Z}

= EMo,(2—1) by (8.2.2).

We conclude by induction. O

Noting that E,, o= E,Ti L, on No~ ", the previous relation further generalizes as follows.

Proposition 12.3.10. Assume that v is a successor ordinal and let r € R. Then

EMoa T’l“ = Ea Tr La EMoa (1239)

Proof. We proceed by induction. Let (z,7) € No x R be such that
EMoa T‘s Yy = Ea Tl@ La E'Moa Yy

for all strictly simpler (y,s) € No x R with respect to the product order C x C. For s € R, let ¢
be the function b— E, T; Lo b on No~>”™ and let a:=Enzo, 2. By (8.2.2) and Proposition 10.2.3,
we have

EMo,(2+7) = {R,E0EMo,(20+7),Ea Mo (2 +7L) | Ea EMo, (2R +T), Ea EMo, (2 +TR)}
= {R, & ¢T(C‘£Aoa)a‘€a br(a) | Ea ¢T(all>i/loa)’5a Grp(a)}

By (12.3.1), Lemma 12.3.7 and (8.2.2), we have:
T,Loa = {T,Laa}' Ty, Laa | Ty Laa,Tr Lo apy °*, Leg a}ry, -



202 THE HYPERSERIAL FIELD OF SURREAL NUMBERS

We deduce that

(157«(&) = {E<a T Loa, &y QZ’T(GE/IOQ);Ea QbrL(a) | Ea Qer(a)aga Qbr(a}l\%/loa)aga E,L., a}
= {E<a Loa, &y (br(ayoa)aga ¢TL(a) | Ea (b’l'R(a))ga (b'r(a]l}z/loa)aEa Leg CL}.

It is enough to prove that E<, Ly a<Ewno, (2 +7) < Fy L<qa to conclude that ¢,.(a) =ZEno, (24 7).
Toward this, fix an n € N with —n <r <n. Lemma 12.3.9 yields

EMo,(2+7) € Emo(z+n) = Eojnt < Eglcga
EMon(2+7) =2 EMo.(z—n) = Lojna > EcoLaa.

We conclude by induction that (12.3.9) holds. a

Remark 12.3.11. For r,s € R, we have ¢,s= ¢, 0 ¢5, and ¢1 = FE, . Therefore we can see
(dr)rer as a system of fractional and real iterates of the hyperexponential function E,, /o 01 No~>~.
The previous proposition shows that the action of those iterates on L. ,-atomic numbers reduces
to translations, modulo the parametrization Eno,,. In particular, one can compute the functional
square root of exp on Mo, in terms of sign sequences using the material from [9].

Proposition 12.3.12. If v is a successor ordinal, then Mo}, = Mo,~<No. .

Proof. For 6 € No. , we have 0, + N <0 <6z — N. By Lemma 12.3.9, it follows that Ea/wN EMo, 0L <
EMoa 0 < La/wlN EMoa 6‘3. This implies that 5; EMoa 01, < EMoa 0 < 5; EMoa 6‘3, SO EMoa 0 is 5;—
simple.

Conversely, consider § € No~>~ such that Eno, 0 is E4-simple. We have Eno, 01 C (EMo, 0)L
and EMoa Or C (EMoa 9)3, whence Ea/wlN EMoa 0, < EMoa 0 < LQ/W]N EMoa 0r. We obtain 0y, + N <
0 < 6r — N, which proves that 6 € No... O

Proposition 12.3.13. We have E, Tr}, =Mo},.

Proof. Let ¢ € Trf,. So ¢ € Tr,. By Proposition 9.2.24, the number E, ¢ is simplest in
EQ(E;[@] N rI‘ra) = E;[Ea 90] NMo,.

Since Mo}, C Mo,,, we have E, ¢ CE5[Fqo ] N Mo}, so E, ¢ C05(Fq ). We deduce that E, o=
05 (Eqp), so E, ¢ is Ei-simple. Conversely, let a € Mo},. By Proposition 9.2.24 the number L, a is
simplest in L, (E3[a]"Moy) = L5[Laa] "Noy 4. Since Trj, CNoy , we have Lo, aC L5[Lq a] NTr},
s0 Lo a Tt (Lo a). We deduce that L, a 85 (Ly a) is Lf-simple. O

Corollary 12.3.14. If v is a successor ordinal, then Mo}, = E,NoZ.



Chapter 13
Well-nestedness

This chapter and the two subsequent ones are contained in essence in the pre-print [13] with van
der Hoeven. In this chapter, we prove Theorem 13.2.7, i.e. that each number is well-nested. Using
the terminology from the introduction, the general idea of the proof is as follows:

i. We assume for contradiction that there exists a number a that is not well-nested, and we
choose a simplest (i.e. C-minimal) such number.

ii. By definition, there exists a bad path P=(r;m;);en in a. Recall that a and P give rise to a
sequence (g, Yit1, T4, Lis iy Biy it1,0;)ieN that describes the path P within a. Now consider
the lowest level ¢ at which the branching phenomenon occurs. Then

a; =i+ rielt (Lg, By )+ 6 (13.0.1)

and

M;11 € Supp ¥it1, or
r, ¢ {-1,1}, or
ﬁz‘ 75 0, or

Here we regard a; as a subexpression of a at level i and we may write a = H;(a;) for a suitable
function that involves hyperexponentials and hyperlogarithms .

iii. If m; 1 €supp ;1 1, then we show that the number b; = @; + r;e¥i+1 is strictly simpler than
a;. Otherwise, we show the same thing for b; = p; + sign(r;) eVitt (E;““)L

iv. We next show that the substitution H;(b;) of a; by b; in a is strictly simpler than a.
v. We finally show that P is a path in H;(b;), contradicting the C-minimality of a.

The second step requires a way to expand numbers as hyperseries, as in the formula (13.0.1).
This gives rise to the notion of hyperserial expansions that will be studied in section 13.1.1. The
third and fourth steps requires techniques to derive a relation x C y from similar relations for
subexpressions of x and y. This will be the subject of sections 13.1.3 and 13.2. For the last step,
we must know how to deduce the existence of paths in a number x from the existence of paths in
certain subexpressions of z. Since hyperexponentials in particular have involved expansions around
truncated series (see (5.3.1)), this step requires a careful study of paths which is carried out in
sections 13.2 and 13.1.2. We prove Theorem 13.2.7 in section 13.2.2.
Before we start, we recall a few inequalities. Let v € On~ and write

ai=w".
The first inquality below is immediate by definition and by the fact that H < E,. The others are
Lemmas 12.2.7 and 12.2.9 and Proposition 12.2.15, in that order:

Enw < Ea (13.0.2)
Eeoq < EoHyLa (13.0.3)
(Byiy<a) £ & if vis alimit (13.0.4)
Vy<p<a,Vr,s>1, E,H.L, < E,H,L,. (13.0.5)
From (13.0.5), we also deduce that
{ByHyLy:y<a,r €R}5 &, (13.0.6)

203
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13.1 Hyperserial expansions

We start by introducing our notion of hyperserial expansions of monomials, which will play a crucial
role in the sequel of the thesis.

13.1.1 Hyperserial expansions

Recall that any number can be written as a well-based series. In order to represent numbers as
hyperseries, it therefore suffices to devise a means to represent the infinitely large monomials m
in Mo~. We do this by taking a hyperlogarithm L, m of the monomial and then recursively
applying the same procedure for the monomials in this new series. This procedure stops when we
encounter a monomial in Lop w.

Technically speaking, instead of directly applying a hyperlogarithm L, to the monomial, it
turns out to be necessary to first decompose m as a product m =e¥ n and write n as a hyperexpo-
nential (or more generally as the hyperlogarithm of a hyperexponential). This naturally leads to
the introduction of hyperserial expansions of monomials m € Mo#!, as we will detail now.

Definition 13.1.1. We say that a purely infinite number ¢ € Noy. is tail-atomic if o= 4 ¢ a,
for certain ¢ € No,., 1€ {—1,1}, and a € Mo,,.

Definition 13.1.2. Let m € Mo7'. Assume that there are 1) € Noy, 1€ {—1,1}, a € {0} Uw®®,
B8€0n and ue No~~ such that

m=e" (LgEY)", (13.1.1)
with supp ¢ > Lgy1 Ey. Then we say that (13.1.1) is a hyperserial expansion of type I if
o fw<oa;
e FEjeMoy\ Leo Moy
o a=1=(v=0 and u is not tail-atomic).
We say that (13.1.1) is a hyperserial expansion of type II if « =0 and u=w, so that E{=w and

m=e¥ (Lgw)". (13.1.2)

Note that u is a-truncated in expansions of type I, since EY is in particular L .,-atomic.
Expansions of type II are those for which EY =w. Formally speaking, hyperserial expansions can
be represented by tuples (¢, ¢, «, 3,u). By convention, we also consider

1= eO (Lo EO O)O,

to be a hyperserial expansion of the monomial m = 1; this expansion is represented by the
tuple (0,0,0,0,0).

Example 13.1.3. We will give a hyperserial expansion for the monomial
m=exp(2FE,w —/w+ Ly+1w),
and show how it can be expressed as a hyperseries. Note that
logm=2FE,w—+/w+Lyt1w

is tail-atomic since L, w is log-atomic. Now L, w= L, w is a hyperserial expansion of type II and

we have L,41w < E,w,/w. Hence m= ?Pew =V (I, w) is a hyperserial expansion of type I1.
Let ¢:=2E,w — /w, so m=e¥ (L,w). We may further expand each monomial in supp .

We clearly have E,w € Mo,2. We claim that E,w € Mo,:2\ L.,2Mos. Indeed, if we could write

E,w= Ly Lyma for some a€ Mo,s and n,m € N7, then w = Ly(Lyn Lym a) = Ly (m+1) @ —n and

Ly (m+1)a would both be monomials, which cannot be. Note that E,w = E, (L2 E,w) = Eﬁ;w—H,

Lw2w+1
so B, ,w=F_s

is a hyperserial expansion of type I. We also have /w = exp(%logw) where
1
11
%logw is tail atomic. Thus /w = E? %Y is a hyperserial expansion of type I. Note finally that
logw = Ly w is a hyperserial expansion of type II. We thus have the following “recursive” expansion

of m:

1
L 2w+l SLiw
m=e2Put” “EL (L ). (13.1.3)
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We will study this type of recursive expansion by studying paths in Section 13.1.2
Lemma 13.1.4. Any m € Mo has a hyperserial expansion.

Proof. We first prove the result for m € Mo,,, by induction with respect to the simplicity relation
C. The C-minimal element of Mo, is w, which satisfies (13.1.2) for v»= =0 and :=1. Counsider
mée Mo, \ {w} such that the result holds on mM°. By [12, Proposition 6.20], the monomial m is not
L -on-atomic. So there is a maximal A € W™ with m € Moy, and we have A > w by our hypothesis.

If there is no ordinal v < A such that E' € Moy, then we have m € Moy \ L) Mo,.,. So setting
a=\, 3=0 and u= Lym, we are done. Otherwise, let v <\ be such that a:= EJ' € Mo,,. We
cannot have =0 by definition of . So there is a unique ordinal 7 and a unique natural number
n €N such that y=+'4+w"n and "> w". Note that A > w11, We must have A=w"1!: otherwise,
Lynvim=L. n+1(a)+n where Lnt1imand L., »+1 0 are monomials. We deduce that 7'=0and
v=w"n. Note that LyaxLym, A< Aw, and a € Moy, so a="0),(m). We deduce that aCm. The
induction hypothesis yields a hyperserial expansion a=e? (Lg E%)". Since a is log-atomic, we must
have 9)=0 and t=1. If a= Lgw, then 3> A/, =w", since a€ Moy,. Thus m=L,a=Lg; w is a
hyperexponential expansion of type II. If a= Lg Ey, then likewise 8> w" and thus m= Lg E§
is a hyperexponential expansion of type I. This completes the inductive proof.

Now let m € Mo? \ Mo,, and set ¢:=logm. If ¢ is tail-atomic, then there are 1 € No,,
te{—1,1} and a € Mo,, with ¢ =1 4 ca. Applying the previous arguments to a, we obtain elements
a>w,B,u with a=LgEY and Bw < a, or an ordinal 3 with a = Lgw. Then m=e? (Lg E¥)*
or m=e¥ (Lgw)* is a hyperserial expansion. If ¢ is not tail-atomic, then we have m= EY is a
hyperserial expansion of type I. O

Lemma 13.1.5. Let a € Mo? and assume that a=LgEy is a hyperserial expansion. Let 1> 0
and define p_:=p—1 if p is a successor ordinal and p_ = p if p is a limit ordinal. Let

8 =: '+ 5" where
B = Pepr->wh and
6// = ﬂ<w“*<wui~

a) Then a is Leyr-atomic if and only if B =0 and either a>w* or a=0.

b) If a>wh, then d,u(a) = Ly EX.

Proof. We first prove a). Assume that a is L.,r-atomic. Assume for contradiction that 5”#0
and let w”m denote the least non-zero term in the Cantor normal form of 3”. Since 3" < w#-,
we have w"t! <wH so L n+1a is a monomial. But L n+1a= LB;IME}XL — m where Lﬁ;’wnEg is a
monomial: a contradiction. So 3”=0. If «=0 then we are done. Otherwise E% ¢ Mo, so we
must have avw >w#, whence a > w#. Conversely, assume that a > w# or =0, and that 8”7 =0. If
a#0, then then for all v <w*, we have L, a=Lg; E{ where 3'+ v <a, so L, a is a monomial,
whence a € Mou. If a=0, then for all v <w#, we have L, a= Lg/,w € Mo, whence a € Mo,
This proves a).

Now assume that a > w*. So Lg' EY is L<,r-atomic by a). If 5”=0 then we conclude that
a=Lg E§=0,u(a). If 3”0, then let w”m denote the least non-zero term in its Cantor normal
form. We have w7+! <w" and Lwn+1 a= Lwn+1 Lﬁr E&L —mx Lwn+1 Lﬁr E},f, SO Lﬁr E&L = Dwu(a). g

Corollary 13.1.6. Let p€On~, a:=wh, y<a, and b € Moy, If L,be Mo, \ Mo, then p
is a successor ordinal and v = oy, n for some n € N-.

Proof. Since L, b € Mo, \ Mog., we must have v 0. By Lemma 13.1.4, we have a hyperserial
expansion b=e" (Lg E})*. Since b is log-atomic, we have logb=1) 4t Lg{ 1 Ey € Mo, whence 1) =0
and t=1. So b= LgE;. We have b € Mo,,, so by Lemma 13.1.5(a), we have 3> «. It follows that
L,b=Lg,~Ey is a hyperserial expansion. But then Lg, ., E; € Mo, and Lemma 13.1.5(a) imply
that v > w#~. The condition that v < « now gives u_ < u, whence p is a successor and vy=w"—n
for a certain n € N~, as claimed. O
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Lemma 13.1.7. Any m € Mo has a unique hyperserial expansion (that we will call the hyperserial
expansion, henceforth).

Proof. Consider a monomial m# 1 with
m=e¥(Lga),

where 1 € No,, 1 € {-1,1}, 3,a €w°® a€Mo,, fw < a, and supp ¥ = Lg;1a. Assume for
contradiction that we can write m=e%'(Lz E,/u’)" as a hyperserial expansion of type I with o’ < a.
Note in particular that > 1, so Lg1a is log-atomic. We have

logm=1 + LL5+1 a= ’(/)I-H- I L51+1 Eg:

If /=1, then 8'=0, ¢'=0, /=1, and v’ is not tail-atomic. But ¢ 4 ¢Lg+1 a =1u’, where
Lgi1a€Moy, so u'is tail-atomic: a contradiction. Hence a’>1. Note that ¢ Lgyja and ¢/ Lg/1 Eg
are both the least term of logm. It follows that ¥ =1’ 1=/, and

Lga=Lg EY. (13.1.4)
Since f'w < a’, we have
Y =00/(Lg EX) =00/(Lg ).

Now E% ¢ Moy, 50 04/(Lga) #a and thus Sw > o’. In particular 3> 3’. Taking hyperexpo-
nentials on both sides of (13.1.4), we may assume without loss of generality that 3'=0 or that
the least exponents 1 and 7’ in the Cantor normal forms of 3 resp. 3’ differ. If 8’ =0, then we
decompose b=~ +w”n where n € N> and ~>>w". Since Lga=EY € Mo, \ Mog,, applying
Lemma 13.1.5(a) twice (for w”=a’ and w*=a'w) gives w1 >a’ and w"*! £ a’w, whence o’ =
w1l But then EY = Ly, b, where b:= L. a€ Mo, w by Lemma 13.1.5(a). So E% € L0 Mo g
a contradiction. Assume now that ' 0. Lemma 13.1.5(a) yields both Lga € Moy n+1\ Mo, n+2
and Lﬁ/E;ﬁ: €Mo_, /41 \Mo_, ., which contradicts (13.1.4).

Taking a =w € No and a:=max (a’w, fw?), this proves that no two hyperserial expansions of
distinct types I and I can be equal. Taking a= E} with o> o/, this proves that no two hyperserial
expansions e (Lg EY)", e¥’ (L@E}jﬁ)“ of type I with av# o’ can be equal.

The two remaining cases are hyperserial expansions of type II and hyperserial expansions
eV (L EY)* and ¥ (Lg EX)" of type I with a =«’. Consider a monomial m € Mo? with the
hyperserial expansions m=e? (L, w)" =e¥ (Lyfw)“ of type II. As above we have ¢y =14’, 1 =1/, and
L,w=L, w. We deduce that =1/, so the expansions coincide.

Finally, consider a monomial m =1 with two hyperserial expansions of type I

m=e? (LgEY) =e¥ (Lg EY)Y. (13.1.5)

If =1, then we have ¥»=1'=0 and 3=4'=0 and 1 =:'=1, whence u=1u’, so we are done.
Assume now that o> 1. Taking logarithms in (13.1.5), we see that ¢ =1’, 1 =1/, and

LgEY=Lg EY. (13.1.6)

We may assume without loss of generality that 8> 3’. Assume for contradiction that G > 8’. Taking
hyperexponentials on both sides of (13.1.6), we may assume without loss of generality that 5'=0
or that the least exponents 7 and 7’ in the Cantor normal forms of 3 resp. 3’ differ. On the one
hand, Lemma 13.1.5(a) yields Lg Efy € Mo,,n+1\ Mo,n+2. Note in particular that Lg Ey ¢ Mo,
since Sw < . On the other hand, if 50, then Lemma 13.1.5(a) yields LB/E;L/ €Mo ., \Mo,_,1;
if 8’=0, then Lﬁ/E;ﬁ/ € Mo,. Thus (13.1.6) is absurd: a contradiction. We conclude that 8= 3’

Finally £} = E;‘j/ yields u =u’, so the expansions are identical. O
Lemma 13.1.8. If m=e¥ (LgEY)" is a hyperserial expansion of type I, then we have

supp ¥ Nsuppu=J.

Proof. Assume for contradiction that n € supp ¢ Nsuppu. Since n €supp ¢, we have n> Lg 1 Ej.
Since u > 0, there is r € R~ with u >rmn, so Lgy1 Ey = n: a contradiction. O
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13.1.2 Paths and subpaths

Let A be an ordinal with 0 <A <w and note that i <1+ A<= (i< A<wVi<w=\) for all i € N.
Consider a sequence

P=(P(i))icx=(TP,i)icx=(TP,imp i)icr in (IR7é Mo)*.
We say that P is a path if there exist sequences (up i)i<1ix (¥P.i)i<c1ir (LP,i)i<x, (Qp i)i<x, and
(Bp,i)i<14x With
e upo=71p,and ¢p o=0;
o 7p;Etermp ;or Tp ; €termup ;, for all ¢ < X;
o mpi€RFU{w}=A=i+1, foralli<);
e For i < A, the hyperserial expansion (of type I or II) of mp ; is

L — a¥PLit1 UP,i+1\Lp i
mp,; = € (LﬁP,iEO(pwi ) .

We call A the length of P and we write |P|:=\. We say that P is infinite if |P| =w and finite
otherwise. For a € No, we say that P is a path in a if P(0) € term a. We then set ap ¢:=a. For
0<i<|P|, we define

(sp.iyap.;) = (=L, ¢p,;) if mp; €supp p,;
K1 )i (1,uP,z‘) ime,iESuppup,i.

By Lemma 13.1.8, those cases are mutually exclusive so (sp i, ap ;) is well-defined.
For k <|P|, we let P~ denote the path of length |P|—k in ap j with

Vi < |P| —k, TP opyi = TP, k+i-
So P i, is the path obtained by removing the first £ elements of P and reindexing.
Example 13.1.9. Let us find all the paths in the monomial m of Example 13.1.3. We have a
representation (13.1.3) of m as a hyperseries

1w

Lw2u+17
m = e’ Bt (Lyw)

which by Lemma 13.1.7 is unique. There are nine paths in m, namely
e one path (m) of length 1;
e three paths (m, 2E£5Jw+1), (m, —EIELW), and (m,w) of length 2;

e three paths (m,2 EXs*“ ™ Lo2w), (m,2 EL*“ % 1) and (m, —EfLW,%Ll w) of length 3;

w? w?

Llw 1

1
e two paths (m,2E£§“2w+1,szw,w) and (m, -E? ,ELlw,w> of length 4.

Note that the paths which cannot be extended into strictly longer paths are those whose last value
is a real number or w.

Infinite paths occur in so-called nested numbers that will be studied in more detail in Sec-
tion 7.3.2.

Definition 13.1.10. Let a € No and let P be a path in a. We say that an indez i < |P| is bad
for (P,a) if one of the following conditions is satisfied

1. mp ; is not the <-minimum of suppup ;;

2. mp ;=minsuppup; and Bp,;#0;

3. mp ;=minsuppup; and Bp ;=0 and rp ;¢ {—1,1};

4. mp ;=minsuppup ; and Op ;=0 and rp ;€ {—1,1} and mp ; € supp ¥p ;.

The indez i is good for (P,a) if it is not bad for (P,a).
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If P is infinite, then we say that it is good if (P,7p ) is good for all but a finite number of
indexes. In the opposite case, we say that P is a bad path. An element a € No is said to be well-
nested cvery path in a is good.

Remark 13.1.11. The above definition extends the former definitions of paths in [60, 92, 18].
More precisely, a path P with ap ;=1 (whence ¢p ; =0) for all i < |P|, corresponds to a path for
these former definitions. The validity of the axiom T4 for No means that those paths are good.
With Theorem 13.2.7, we will extend this result to all paths.

Lemma 13.1.12. For m€ (Lonw)*! and for any path P in m, we have |P|<2. For a€Low
and for any path P in a, we have |P|<3.

Proof. Let [€ £\ {—1} and let P be a path in [ow. If there is an ordinal v with [=¢,, then the
hyperserial expansion of [ow is L w, so |[P|=1if y=0 and |P|=2 otherwise. If there is an ordinal
~ with [:&71, then the hyperserial expansion of low is (L,w) ™! and |P|=2.

Assume now that [ ¢ E%L. If loglow is not tail-atomic, then the hyperserial expansion of [ow is
low=¢el8!°“ Tfloglow is tail-atomic, then the hyperserial expansion of [ow is [ow=e¥°¥ (aow)*
for a certain log-atomic a € IL. Since ¢ € log L, we have supp ¢ C {{,: p € On}. We also have
acL,={l,: pc On} by Section 4.2.4. So in both cases, P - is a path in some monomial in Lonw,
whence |P_ 1| <2 and |P| <3, by the previous argument. O

Definition 13.1.13. Let P, Q be paths. We say that Q) is a subpath of P, or equivalently that
P extends Q, if there exists a k <|P| with Q=P »;. For a € No, we say that Q is a subpath in
a if there is a path P in a such that Q is a subpath of P. We say that P shares a subpath with
a if there is a subpath of P which is a subpath in a.

So our subpaths are always initial subsequences. Paths can sometimes be concatenated. Indeed,
let P be a finite path and let @ be a path with Q(0) € supp up,|p|Usupp ¢p,|p|. Then we define
P« @ to be the path (P(0),...,P(|P]), Q(0),...) of length |P|+|Q].

Lemma 13.1.14. Let A € w°™ and m € Moy. Let P be a path in m with |P|>2. Then P is a
subpath in Lym.

Proof. By Lemma 13.1.12, we have m ¢ (Lonw)™!. If m has a hyperserial expansion of the form
m=e? (Lyw)*, then P »; must be a path in ¢. So 9 is non-zero and thus A= 1. It follows that P
is a path in logm =1 4 ¢ (L,w)". Otherwise, let m = e¥ (Lg EY)* be the hyperserial expansion of
m. If P~ is a path in v, then it is a path in logm as above. Otherwise, it is a path in u. Assume
that A=1. If a=1, then we have ¢)=0 and logm =¢u so P~ is a path in logm. If & >1, then
logm =1 41 Lg1 Ey where Lgyq Ey is a hyperserial expansion, so P~ is a path in logm. Assume
now that A>1,s0 9=0, t=1, and o> w. We must have 3> )/, so there are '€ On and n €N
with 8> A/, and B= 3"+ X/, n. We have Lyxm = Lg/y\ Ey —n where Lg/ 1\ B is a hyperserial
expansion, so P~ is a path in Lym. O

Lemma 13.1.15. Let a € No> ", a €w®™ and k€ N>. If Pis a path in f.(a) with |P|>2, then
P -1 is a subpath in 0, q.

Proof. We prove this by induction on a k, for any number a € No~>~. We consider a € No~"™,
and a fixed path P in f,(a) with |P|> 2.

Assume that a =k =1. We have #1(a) = a.- and dexpq = €*~. Assume that a. =1 4 ¢ a for
certain 1 € Noy, 1 € {—1,1}, and a € Mo,,. Let a= L, EY be the hyperserial expansion of a. If
A=w, then 7=0 and the hyperserial expansion of e® is e* = Ejj“. Therefore P ~; is a subpath in
Vexpa =¥ (BLT1)4 If A>w, then the hyperserial expansion of e® is e® = L. 1 EY. Therefore P
is a subpath in dexpa=e€¥ (Ly4+1 EY)". Finally, if e~ is not tail-atomic, then P~ is a subpath in
Vexpa = (ET*")¢, where e € {—1, 1} is the sign of a.

Now assume that a« =1, k> 1, and that the result holds strictly below k. We have Era=
Ei_1(expa) where P ~; is a subpath in dcxpq by the previous argument. We have 7 dexpq <fi(expa)
for a certain r € R7, so Q := (r Vexpa) * P 1 is a path in #i(exp a). The induction hypothesis on
k —1 implies that ) ~1 =P ~ is a subpath in g, 4.
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Assume now that o> w and that the result holds strictly below a.. Write v:=44(a). Recall by
(5.3.1) that there exist an n € On, an n <w, and a § € No with f:=w” <« and

E,a= Egn(Lﬁn E}; + 5)

Assume for contradiction that there is a v € On with Ef = L,w. We must have v > a/,, so there
are a number n € N and an ordinal 7' > « with v=7v"4a/,n. We have v= L,/ 1 ow —n. By
Lemma 13.1.12, this contradicts the fact that |P|>2. So by Lemma 13.1.4, there exist 3 € w©®
and v€On with 3> o, yw < 8, B¢ = Ly Ej, and Ej € Mog \ L<sMog,,. Since Ej € Mo,, we
must have v > a,, so there are a number n € N and an ordinal 7' >« with v=+"+a/,n (note
that n =0 whenever o/, = ). Thus v+n= L, Lyita,,nEf+n=LyiqEjfis a monomial with
hyperserial expansion v +n= L.} o I/§. There is no path in n of length >1, so P must be a path
in Ly Ef. We deduce that P is a path in u. Consequently, Q = (L Ej) x P~ is a path in
E¢ with |Q|=|P|>2. Applying n times Lemma 13.1.14, we deduce that @} »1 =P 1 is a subpath
in Lgy, Eg, hence in 3(Lgn Eqa). Consider a path R in #3(Lg, Eqa) with P =R ~ for a certain
i>0. Applying the induction hypothesis for Lg, F,a and Sn in the roles of a and a k, the path
R ~1 is a subpath in OB5,(Lpn Eaa) = OEqa- Therefore P~ is a subpath in 9g,_,. We deduce as in
the case =1 that P ~; is a subpath in dg,_, 4. O

Lemma 13.1.16. Let ¢) € Noy, and m € Mo? with supp ¢ = logm. Let P be a path in m with
|P|>1. Then P 1 is a subpath in e¥m.

Proof. Let m=e¥ (Lg Ey)" be a hyperserial expansion. The condition supp ¢ > log m implies
0+ =@+ 1, whence e¥m=e¥*+¥(LgEY)" is also a hyperserial expansion. In particular P - is
a subpath in e¥ m. O

Corollary 13.1.17. Let a=w” € On, € On with f<a, and ¢ € Noy o. If P is an infinite path,
then P shares a subpath with ¢ if and only if it shares a subpath with LgEY.

Proof. Write B=w™mj+ -+ +w™my in Cantor normal form, with 71 > --- > n and my,...,mp € N~
and let

a;:= Lw”1m1+~ et lm, g E;P
foralli=1,...,k.

Assume that P shares a subpath with ¢. In other words, there is a path R in ¢ which has a
common subpath with P. The path R must be infinite, so by Lemma 13.1.15, it shares a subpath
with £ =a;. Let us prove by induction on i =1,...,k that R shares a subpath with EZ = a;.
Assuming that this holds for i < k, we note that a; is L__ni-1,-atomic, hence L.,n--atomic. So
P shares a subpath with a;; by Lemma 13.1.14 and the induction hypothesis. We conclude by
induction that P shares a subpath with ay=LgE/~.

Suppose conversely that P shares a subpath with Lz E¥ =a;. By induction oni=k —1,...,1, it
follows from Lemma 13.1.15 that P shares a subpath with a;. Applying Lemma 13.1.14 to a; = E7,
we conclude that P shares a subpath with ¢. g

13.1.3 Deconstruction lemmas

In this subsection, we list several results on the interaction between the simplicity relation = and
various operations in (No, +, X, (La)acOn)-

Lemma 13.1.18. [55, Theorem 3.3] For a,b € No, we have

aCb<— —al —b.

Lemma 13.1.19. [55, Theorem 5.12(a)] For m € Mo and r € R7, we have

sign(r)mCrm.

Lemma 13.1.20. [11, Proposition 4.20] Let ¢ € No. For d,¢ with §,e <supp p, we have
oH+oCpHe < JCe.
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Lemma 13.1.21. [18, Corollary 4.21] For m,n€ Mo, we have

mCn < m1Cn L

Lemma 13.1.22. [18, Proposition 4.23] Given ¢, a,b in Noy, with a,b~<supp ¢, we have

e?Cel — ertaCertt,
Lemma 13.1.23. [18, Proposition 4.24] Given m,n€ Mo”™ with logm <n, we have
mCn — e™Ce™

Lemma 13.1.24. Let o € Noy. and r € R7, let m,ne Mo~ NNo~5"P% with me £ [n], and let
0 € Noy with 6 <suppn. Then

mCn e:,p-&&-sign(r)m‘:eap#krn#l»&.

Proof. The condition m € £,[n] yields logm <n. We have e™ Ce" by Lemma 13.1.23. The identity

eMo”™ — Smpp implies that e™ Cel"I"| whence ¢*#2(")™ C ™ by Lemma 13.1.21. Consequently,

erptsign(mmCeetrn by Temma 13.1.22. Since ¢ =1C % € No~, we may apply Lemma 13.1.22 to
@4rnand 47145 to obtain e? ™ Ce¥+ ™+ We conclude using the transitivity of . O

Lemma 13.1.25. Let a €w®™ with a>1. For ¢,v¢ € Noy , with Lo E<,p <1, we have
9Ty = E{CE].
Proof. By (12.3.3), we have

_ pp o Pibdatt
Ea‘p E<a<P,5aEa gaEa .

. Noy o Noy o Noy o Noy o
Since ¢ C 1), we have ¢, 7= Copp o7 and pp 7" C by °7*, whence

Noys o Nos o
EaEY < By <ELESR

Furthermore, we have Lo, Eoq @ <1, s0 Ecqp < Eo‘f We conclude that EZ C ED‘{’ O

13.2 Nested truncation and well-nestedness

In [18, Section 8], the authors prove the well-nestedness axiom T4 for No by relying on a well-
founded partial order gy that is defined by induction. This relation has the additional property
that

Va,bENO#, adgpb=aCb.
In this subsection, we define a similar relation < on No that will be instrumental in deriving results

on the structure of (No, (L,),e,0n). However, this relation does not satisfy a Sb==a T b for all
a,beNo.

13.2.1 Nested truncation
Given a,b e No, we define

def
asb S IneN, a<,b

~n Y,

where (<,,)nen is a sequence of relations that are defined by induction on n, as follows. For n=0,
we set a Sob, if a Qb or if there exist decompositions
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with € R” and m € Mo. Assuming that <, has been defined, we set a <,,41 b if we are in one of
the two following configurations:

Configuration I. We may decompose a and b as

a = p+sign(r)e? (EY)" (13.2.1)
b = p+re? (LgEL) +6, (13.2.2)

where 7 € R7, ¥ € Noy, a €wO, fw<a, te{-1,1}, u,v € Noy 4,
Supp,(/)>_10gEga LB-‘rlEgm
and u <, v. If =1, then we also require that ) =0.

Configuration II. We may decompose a and b as

a = @+sign(r)e? (13.2.3)
b= pg+re¥a 49, (13.2.4)

where r e R7, ¢, ¢’ € Noy_, 1 € {-1,1}, a € Mo, § € No, supp ¢’ =loga, and 3 <, ¢’

Warning 13.2.1. Taking a=1 in the first configuration, we see that < extends «gy. However,
the relation < is neither transitive nor anti-symmetric. Furthermore, as we already noted above,
we do not have Ya,b€No, a <b=-aLCb.

Lemma 13.2.2. Let a € w®™. Let a,b & No>"~ be numbers of the form

a = p+4+rm
b = po4sn4d

where ¢,6 € No, r,s € R” with sign(r) =sign(s), and m,ne Mo=. If m~' < E,n~! for sufficiently
large p < «, then
beNoy o=—=acNo, ,.

Proof. Let v € On and a:=w”. Assume for contradiction that b€ No,. , and a ¢ Noy ,. Assume

1

first that a <1b, so b=a 4 . Then suppb > 5 Letke N~ be such that a4 k05> b. Since
<alia
1

supp (a4 k05) Csupp b, we deduce that supp (a + k05) > T BT )

Modulo replacing b by a + k 04, it follow that we may assume without loss of generality that § =k p
for some k£ € N~ and some monomial p.

On the one hand, a is not a-truncated, so there are q € (supp ¢)< and v with 0 < v < «
and a < L) 7(q~"). We may choose v =w"n for certain n <v and n€ N>, so a < L}“""(p~1). On
the other hand, a + kp is a-truncated, so we have

whence a + k05 € Noy 4.

a+kp>LI N (1) S Ll p=1) s

We deduce that kp> L1 "N (p=1) — L1«""(9=1) If 1 is a successor, then choosing n=1v_,
we obtain kp > LI“"(p~1) + N> — LI*"(p=1), so kp > 1: a contradiction. Otherwise, kp >
Ut gy 0P~ by [14, (2.4)], where £ n+1q) =[] Cy. Thus k= p=! < lpnir gy0p~t,
whence k™1 £y <{£p,n+1 4 a contradiction.

We now treat the general case. By a similar argument as above, we may assume without loss of
generality that b= ¢4 sn. Assume that b<<a. Since a is not a-truncated, there exists a v < a with
m=< (LyEya) ' <(LyEyb)~!, whence m™' = L, E,b. But b is a-truncated, so n™! < L., Eqb. In
particular n=! < L. E, b, so our hypothesis m~' < L,n~! implies that m™' <L, L, E,b=< L, E, b:
a contradiction.

Assume now that b>a. As in the first part of the proof, there are n <v and n <n’ <w with
o4 sn>L1“"™ (1) and L1“™(m~1) > ¢+ rm. Recall that m~! < E,n~! for sufficiently large
p<a. Take n<v and n’ <w such that

L @) > L
< o7l if vis a limit. (13.2.5)

wtl<y<a

Lwn m-
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Thenb—a> L") (m=1) = L]“""(m=1). If v is a successor, then choosing n=v_ yields b—a>1,

which contradicts the fact that m and n are infinitesimal. So v is a limit. Writing ¢ := max (m,n),
1

we have b — a<q. As in the first part of the proof, we obtain q = f[

1 _
o
w1 a) m

, SO q_l '\<€[w+1,a)o

1

m~!<m~L In view of (13.2.5), we also obtain 7! <n~!, so 7! <max (m,n)~!: a contradiction. OJ

Lemma 13.2.3. Let a,a’ € wO™ with o’ >«a. For u,v € No™ ", we have

Lou<&qav — Loy Eau<&y Eqv.

Proof. Assume that L,u<Ey,v. Let h € €, and let A" be its functional inverse in £,.. We have
™ < B Hy Lo by (13.0.5, 13.0.6), whence h > E, Hyy, L. Furthermore, u < Eq Eq v, S0

Eotu<EqEqEqv. (13.2.6)

We want to prove that E,u < (Fo hE,)v. By (13.2.6), it is enough to prove that there is a g €&,
such that the inequality E, FE, g < Eo' hE, holds on No~".

Assume that o =a'. Setting g := Hy, € &,, we have L, hE, > g, whence E, g < hE,, and
EoEog<FEshE,.

Assume that o' > a. We have E, Hy, > Hy so Eyio Hy, > Eo Hy > E, E, by (13.0.3).
Thus Eo h > Eqro Hijy Lo > E,. Consequently, EqhEy> Eq E,, as claimed. O

If a,b are numbers, then we write [a <« b] for the interval [min (a,b), max (a, b)].

Proposition 13.2.4. For a,b,c € No with a < c and b € [a— ¢], any infinite path in a shares
a subpath with b.

Proof. We prove this by induction on n with a <, ¢. Let P be an infinite path in a. Assume that
a<gec. If a<c, then we have a <b so P is a path in b. Otherwise, there are ¢, 8 € No, r € R¥
and m € Mo with a = ¢ 4 sign(r)m and c=¢ 4 rm+40. Then b= 4 sn+¢ for certain ¢ € No,
s€R7 and n € Mo with sn € [sign(r) m <> 7m]. We must have n=m. If P is a path in ¢, then it
is a path in b. Otherwise, it is a path in sign(r) m, so P~ is a subpath in sm, hence in b.

We now assume that a <, ¢ where n >0 and that the result holds for all a’,b’,¢’ € No and k<n
with a’ <p ¢’ and b’ € [a’ < ¢']. Assume first that (a,c) is in Configuration I, and write

a = @+sign(r)e? (EY)"

ith Sn—10.
¢ = prreV(LgEY +s 0 rtt

Then we can write b= ¢ 4 sm -t like in the case when n=0. If P is a path in ¢, then it is
a path in b. So we may assume that P is a path in sign(r)e? (E¥)". Note that we have m €
[e¥ (EY)' < e¥ (LgEY)Y]. Setting n:=(me~¥)* € [E% > Lz EY], we observe that supplogn < supp ¥,
whence e¥ n* is the hyperserial expansion of m. If P -1 is a path in ), then it is a path in m.

Suppose that P~ is not a path in 1. Assume first that =1, so =0, =0, and P is a path
in (Ef)". Then Lemma 13.1.14 implies that P~ is a subpath in ¢u, so P is a subpath in w.
Otherwise, consider the hyperserial expansion E§ = Lg E/, By € Mog:\ Leq' Moy, of ES. Since
P ~1 is not a path in ¢, it must be a path in w. The number Lg EY is L.,-atomic, so we must
have o’ > a and 3’ > ay,. There are n € N and 3" > «/, such that 8'= 3" + a/,,n. Therefore
u=Lgriq Eyr—n. It follows by Corollary 13.1.17 that P~ shares a subpath with u, whence so
does P.

Let z:=§o(Lan). Recall that ne [E§ < LgE}], so Lan € [u«— Lo LgEZ]. Now (13.0.3) implies
that Lg Eg € Ea[ES], 50 Lo Lp ES € Lo EalEg] = Lafv]. The function f, = Tsmp,  is non-decreasing,
50 2 =Ha(Lan) € [u fo(La Lg ES)] = [u < v]. But u <, —1v, so the induction hypothesis yields
that P o, and thus P, shares a subpath with z. We deduce with Lemma 13.1.15 that P shares a
subpath with n, hence with b.

Assume now that (a,c) is in Configuration II, and write

a = @+sign(r)e?

oHre? a 46 R
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Note that we also have ¢ <,,_1 ¢’ 4 tloga. We may again assume that P~ is a path in ¢). Write b=
@+ s'q4t', where s’ € R7, t’€ No, and q € [e¥ < e¥ ] N"Mo. Then logq € [ 1)’ 4 t1log a] where
<194 tloga. We deduce by induction that P shares a subpath with logq. By Lemma 13.1.15,
it follows that P shares a subpath with ¢, hence with b. This concludes the proof. O

Lemma 13.2.5. Let \,a € w9 and 8 € On with Bw <. Let a € Noy ) be of the form
a=p4reY (LgES) +7,

with ¢ € No, re R*, ¢y €No,_, be Noy o, t€{-1,1}, § € No and logLBEg <supp . Consider
an infinite path P in ¢ € Noy o with ¢ .

1. If log ES A supp ¥, then P shares a subpath with 1.
i. If log ES <supp ¢ and e¥ (ES)' Asupp @, then P shares a subpath with .

iii. If log ES < supp v and e¥ (ES) <supp ¢ and a’:= ¢ + sign(r) e¥ (ES)" ¢ No,y, then P
shares a subpath with ¢.

Proof. i. If log ES A supp v, then we have ¢ #0, so a>1. Let m € supp ¢ with log Eg, = m.
Since log F5 and m are monomials, we have m <log Ef,, whence e™ < ES. Our assumption that
m € supp 1 = log Lz EY, also implies e™ < Lg ES. Hence e™ € [ES «» Lz ES)]. Now P shares a subpath
with ES, by Lemma 13.1.15. Since ES S Lg E%, Proposition 13.2.4 next implies that P shares a
subpath with e™. Using Lemma 13.1.14, we conclude that P shares a subpath with m, and hence
with .

ii. Let m € supp ¢ with m<e¥ (ES)*. It is enough to prove that P shares a subpath with m. Since
m, e¥ (Lz EY)", and e¥ (ES)* are monomials, we have e¥ (Lg E%)* <m<e¥ (ES)". Let n:= (e~ ¥ m)",
so that n€[Lg E? « E¢]. In particular, we have supp ¢ = logn = 1. Moreover ES < Lg E%, so using
Lemma 13.1.15 and Proposition 13.2.4, we deduce in the same way as above that P shares a subpath
with n. If n ¢ Mo,,, then m =e?¥*41°¢" ig the hyperserial expansion of m, so P shares a subpath with
m. If n€ Mo,,, then the hyperserial expansion of n must be of the form n= Eg/ EJ/, since otherwise
logn would have at least two elements in its support. We deduce that P shares a subpath with u
and that the hyperserial expansion of m is e¥ (Eg E%/). Therefore P shares a subpath with m.

iii. We assume that a’ is not A-truncated whereas log ES < supp ¢ and e (ES)* < supp . If
A=1, then we must have e¥ (ES)" < 1, which means that ¢ <0 or that 1) =0 and : = —1. But then
eV (Lg ES)" < 1: a contradiction.

Assume that A >1. By Lemma 13.2.2, we may assume without loss of generality that § =0.
The assumption on a’ and the fact that a € No~ ™ imply that ¢ is non-zero. Write

p = e¥(ES)" and
q = e¥(LgEY)~

So a=¢@+rqand a’= ¢+ sign(r) p. Note that p must be infinitesimal since a’ is not A-truncated.
Thus q is also infinitesimal. By Lemma 13.2.2, we deduce that E-yq~'<p~1. We have f)(a’) < a’,
so #xa(a’) = ¢, since a and ¢ < a are both A-truncated. Since a’ is not A-truncated, there is an
ordinal v < A with p < (L, EY)~L. If ¢ >a, then q > (L) EY) ™!, because a is A-truncated. Thus
q=(Lox EY)7L If p<a, then o+ (Loy EY) "€ Li[¢] < La[a] 2 a= ¢+ 7 q, because p and a are
A-truncated. Now 7 > 0, since ¢ < a. We again deduce that q = (L) EY) L.

In both cases, we have L, E{ € [p~! < q~!] where p~' <q~ %, so P shares a subpath with L, EY,
by Proposition 13.2.4. It follows by Corollary 13.1.17 that P shares a subpath with ¢. g

13.2.2 Well-nestedness

We now prove that every number is well-nested. Throughout this subsection, P will be an infinite
path inside a number a € No. At the beginning of Section 13.1.2 we have shown how to attach
sequences (Tp ;)i<w, (MP.i)i<w, €tc. to this path. In order to alleviate notations, we will abbreviate
Tii=Tpg, MyI=Mp ;, Ui i=Up ;, Vi =Ypj, Lii=1Lp i, a;:=ap;, and B;:=[p; for all i € N.

We start with a technical lemma that will be used to show that the existence of a bad path P
in a implies the existence of a bad path in a strictly simpler number than a.
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Lemma 13.2.6. Let a € No, let P be an infinite path in a and let i €N such that every index k <i is
good for (P,a). For k<i, let or:= (Uk)wm,, Ek: =Tk, and p:= (Ug)<m,, SO that €g,...,e;_1€{—1,1}
and

up = (pk_H_Ekewkﬂ(Eg:H)Lk (k-<2)
u; = %-Hﬂ"iewi“(LgiE:Z“)“-H»pi.

Let x €{0,1} and let ¢; € Noy o, , be a number with ¢; Su; and
¢i= i+ xsign(r;) eVitiph, (13.2.7)

for a certain p € Mo” with logp <supp i1, pEEy " and p € E,[E,] whenever i1 =0.
Fork=i—1,...,0, we define

Chi= QO+ e eVt (Eg’;*l)Lk (13.2.8)

Assume that P shares a subpath with c;. If P shares no subpath with any of the numbers vg, 11, ...,
pi—1, Vi, then we have coCa, and P shares a subpath with cg.

Proof. Using backward induction on k, let us prove for k=¢—1,...,0 that

Lo, ck+1 < EapUk+1 (13.2.9)

log B < supp ¥p41 (13.2.10)%
VR (Egh)™ < supp ¢y (13.2.11);
kS Uk (13.2.12)

P shares a subpath with cj41 (13.2.13),
ck+1 € Noy o, (13.2.14)

k41 B upyga (13.2.15)

and that (13.2.13); and (13.2.15)j also hold for k= —1.

We first treat the case when k=14 — 1. Note that ¢; # 0 since it contains a subpath, so ¢; €
No™>" or x =1. From our assumption that ¢; = ¢; 4+ x sign(r;) e¥i+! p* and the fact that p €
SW[EZ:,'“] if ;41 =0, we deduce that ¢; € E,[u;]. Hence Ly, ,c¢; <&y, ,u; and (13.2.9);_1. Note
that (13.2.13);_1 and (13.2.14);_; follow immediately from the other assumptions on ¢;. If x =
0 then ¢; = ¢;<Qu; If x =1, then pC Lg, E;*Y, since Lg, Byt € £, [EL "] and pC ESiH C
Ea,lEL Y. Hence p“i C (Lg, E5' ™) by Lemma 13.1.21 and sign(r;) e¥i+'p*i Cr;je¥i+t (Lg, Eqi )"
by Lemmas 13.1.19 and 13.1.22. Finally, ¢; Cu; by Lemma 13.1.20, so (13.2.15);_1 holds in general.
Recall that P is a subpath in ¢;, but that it shares no subpath with ¢; or ¢;_1. In view of
(13.2.14);_1, we deduce (13.2.10);_1 from Lemma 13.2.5(i) and (13.2.11);_1 from Lemma 13.2.5(ii).
Combining (13.2.10);-1, (13.2.11);_7 and (13.2.14), 1 with the relation ¢; < u;, we finally obtain
(13.2.12);_1.

Let k€ {0,...,79— 1} and assume that (13.2.9-13.2.15); hold for all ¢ > k. We shall
prove (13.2.9-13.2.15), 1 if k>0, as well as (13.2.13)_7 and (13.2.15)_;1. Recall that

cp= (pk+5ke¢k+1 (E

Ck+1\11

ar )

(13.2.9)—1. Recall that k>0. If v, #0 or ¢r41F#0, then ¢ € Plug] and (13.2.10-13.2.11)
imply (13.2.9)k—1. Assume now that ¢ = 1x11=0. It follows since k >0 that 1p =1, so
ck—1=Eg:  and up_1=FEq, _, up. Since E;*  is a hyperserial expansion, we must have
ug & Moy, _,w, SO a1 2 ag. The result now follows from (13.2.9); and Lemma 13.2.3.

(13.2.13),—1. We know by (13.2.13); that P shares a subpath with c¢j41. Since ¢x4+1 €Noy 4,,
we deduce with Corollary 13.1.17 that P also shares a subpath with EZ’;“, hence with
(Egr ). In view of (13.2.10), and Lemma 13.1.16, we see that P shares a subpath with

e¥kt1 (B 1) . Hence (13.2.11), gives that P shares a subpath with cj.

(13.2.10),—1. By (13.2.12), we have cx Sugk. Now P shares a subpath with ¢ by (13.2.13)g,
but it shares no subpath with ;. Lemma 13.2.5(1) therefore yields the desired result
log ESF < supp Y.

Qg —1
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(13.2.11)_1. As above, P shares a subpath with ¢, but no subpath with ¢ _1. We also have
ek Suy and log ES* < supp ¢, so (13.2.11);_1 follows from Lemma 13.2.5(ii).

Ak —1
(13.2.12)_1. We obtain (13.2.12);,_1 by combining (13.2.9-13.2.12); and (13.2.14).

(13.2.14) 1. The path P shares a subpath with ¢, but no subpath with ¢j. By what
precedes, we also have log B "' < supp ¢y, and e¥* (B8 ™) < supp ¢x. Note finally that

o
ug € Noy o, ,. Hence ¢ € Noy o, ,, by applying Lemma 13.2.5(iil) with ag, ag—1, uk,

Uk+1, and cx41 in the roles of a, A, a, b, and c.

(13.2.15),_1. It suffices to prove that E."' C E ", since

Ck+1 Uk+1
Eak EEak

= (B C (Bt (by Lemma 13.1.21)
— ¥kt (B eVht1 (Bt (by Lemma 13.1.22)
= &y eVr+1 (E;kﬂ)w Ceg eVr+1 (EZ’CH)MC

k — k
= ptere T (EXTC pp 4 epeitt (Bt (by Lemma 13.1.20)
— i T ug.

Assume that o > 1 and recall that
k= Qrptepe i (ES)
Chi1l = Php1eppreltr(ERT)

By Lemma 13.1.25, it suffices to prove that c11 C up41 and that E,cpq1 < E:j:“ for all
v < ay. The first relation holds by (13.2.15)g. By (13.2.9)g, we have Lg, ck11 < Eqy Ukt1-
Therefore cy 11 < E l'LLkJrl < Lcq, Eo, ury1 by Lemma 13.1.25. This yields the result.

(697 2
Assume now that ap=1. For d=0,...,1, let
€ = Ocy—py
Ug = Oyy— gy
We will prove, by a second descending induction on d=1,...,k — 1, that the monomials ¢4

and uy satisfy the premises of Lemma 13.1.24, i.e. ¢cq,uqg> 1, cg € E,[ug), and ¢qg Cug. It will
then follow by Lemma 13.1.24 that e C e"“*, thus concluding the proof.

If d=1, then supp ¢;,suppu; > 1, because a; 1 =1. In particular ¢;,u; > 1. Moreover, ¢; C
u; follows from our assumption that p C E; ", the fact that B C & [EL ]2 Lg, By,
and Lemmas 13.1.22 and 13.1.21. If ;11 %0, then we have ¢; € £,[u;] because supp ;41 >
logp,log E;'"". Otherwise, we have ¢;=p € E,[Eqyi ] = E,[ui.

Now assume that d < i, that the result holds for d+ 1, and that ag=1. Again ay=1 implies
that ¢g41, g1 > 1. The relation c441 E ug41 and Lemmas 13.1.18, 13.1.19, and 13.1.20
imply that ¢g41 Eugyr. If g0 #0, then cgq1 € Euugr1] by (13.2.10)441. Otherwise, we
have 1441 =1, because c¢; € Noy ;. Since ag=1, the number ug41 = @441+ €a+1 E:jﬁ is not
tail-atomic, so we must have ay11 =1. This entails that ¢y 1 =e“*2 and ug, 1 =e"¢*+2. By the
induction hypothesis at d 4+ 1, we have cj12 € E,iti42]. We deduce that cg40 € Eyfugya], so

cd+1 € exp Eyuao] = Eu[e" 2] = Euua ]
It follows by induction that (13.2.15)5_1 is valid.
This concludes our inductive proof. The lemma follows from (13.2.15)_; and (13.2.13)_;. O
We are now in a position to prove Theorem D.

Theorem 13.2.7. FEvery surreal number is well-nested.

Proof. Assume for contradiction that the theorem is false. Let @ be a C-minimal ill-nested number
and let P be a bad path in a. Let i € N be the smallest bad index in (P, a). As in Lemma 13.2.6, we
define g := (Uk) <my Pk:= (Uk)s-m,, and e :=ry for all k <i. We may assume that ¢ > 0, otherwise
the number co:= ¢+ sign(ro) e¥* (E4L)* is ill-nested and satisfies ¢o T a: a contradiction.
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Assume for contradiction that there is a j <4 such that ¢; or 1; 11 is ill-nested. Set x:=01if ¢; is
ill-nested and x:=1 otherwise. If x =1, then P cannot share a subpath with ¢;, so supp ¢; > e¥it1
by Lemma 13.2.5, and ¢; 4 ¢; e%i+1 is ill-nested. In general, it follows that ¢ =i+ XEj e¥itl ig
ill-nested. Let @ be a bad path in ¢; and set P’:=(P(0),...,P(j—1))* Q. Then we may apply
Lemma 13.2.6 to j, ¢j, and P’ in the roles of i, ¢;, and P. Since ¢j # u;, this yields an ill-nested
number cgC a: a contradiction.

Therefore the numbers g, Y1, ..., @i—1, 1; are well-nested. Since i is bad for (P, a), one of the
four cases listed in Definition 13.1.10 must occur. We set

g @i 4 sign(r;) e¥i+? if Definition 13.1.10(4) occurs
) @isign(rg) etitt (BL)y otherwise.

By construction, we have d; < u;. Furthermore P shares a subpath with d;, so there exists a bad
path @Q in d;. We have d; € No, o, , by Lemma 13.2.2. If Definition 13.1.10(4) occurs, then we
must have ;11 £ 0 so d; is written as in (13.2.7) with d; in the role of ¢; and p=x =1. Otherwise,
diis as in (13.2.7) for p=E,:*". Setting P’:=(P(0),..., P(i — 1)) * Q, it follows that we may apply
Lemma 13.2.6 to d; and P’ in the roles of ¢; and P. We conclude that there exists an ill-nested
number dyC a: a contradiction. O



Chapter 14

Nested numbers

In the previous chapter, we have examined the nature of infinite paths in surreal number and shown
that they are ultimately “well-behaved”. In this section, we work in the opposite direction and
show how to construct surreal numbers that contain infinite paths of a specified kind. We follow
the same method as in [11, Section 8§].

Let us briefly outline the main ideas. Our aim is to construct “nested numbers” that correspond
to nested expressions like

J/Togloglogw —e"

Tors oV IoEIoEw +o
a = JwteVloBee (14.0.1)

Nested expressions of this kind will be presented through so-called coding sequences . Once we
have fixed such a coding sequence ¥, numbers a of the form (14.0.1) need to satisfy a sequence of
natural inequalities: for any ¢ € R with ¢> 1, we require that

c o < a < eyw
. —
Vo et VIR o o Gy eVIoEe
T—— _ .cyloglogw T c71¢loglogw
Jo +eVioBeTe < a < Jot+eVloBUTe

,le\/logloglogw '\/logloglogw

Vw —l—e\/log“’_e\/WH < a < \/w—i-e\/log“’—e‘/mﬂe

A

Numbers that satisfy these constraints are said to be admissible. Under suitable conditions, the
class Ad of admissible numbers forms a convex surreal substructure. This will be detailed in
Section 14.1, where we will also introduce suitable coordinates

VTogloglogw —e"

m_e\/loglogw+
a.g = \/u_)Jre\/ & = a
J/Togloglogw —e"

a1 = /logw —eV B = log (a0 — /&)
as = ,/loglogw+e‘/l°glogl°gw76.‘ = log(+/logw —a.1)

for working with numbers in Ad.

The notation (14.0.1) also suggests that each of the numbers a,0—/w, y/logw — a1, ... should
be a monomial. An admissible number a € Ad is said to be nested if this is indeed the case. The
main result of this section is Theorem E, i.e. that the class Ne of nested numbers forms a surreal
substructure. In other words, the notation (14.0.1) is ambiguous, but can be disambiguated using
a single surreal parameter.

14.1 Coding sequences for nested numbers

Let us first define and study the basic properties of sequences of numbers that can occur in nested
expansions.

217
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14.1.1 Coding sequences

Definition 14.1.1. Let X := (¢4, &i, ¥i, ti, @4)ien € (No x {—1,1} x No x {—1,1} x w®?)N. We
say that ¥ is a coding sequence if for all i € N, we have

a) ¥i€Noy;

b) vit1€Noy o,U{0};

) (ai=1)= ($i=0A(Yis1=0= ait1=1));

d) (pi+1=v%i+1=0)= (; > qit1 N\eit1=1tir1=1);
e) 3j>i,(p; 70V ¥; #0).

Taking a; =1 for all i € N, we obtain a reformulation of the notion of coding sequences in [11,
Section 8.1]. If ¥ = (¢;, &4, Vi, L, ;)ien is a coding sequence and k € N, then we write

o

X k= (Phtis Ektis Vk+i> bhitis Mhti)i €N,

which is also a coding sequence.

Lemma 14.1.2. Let P be an infinite path in a number a € No without any bad index for a. Let
©0:=ymp o and @;:=(ap ;i)smp, for all i € N7 Then Xp:= (i, 1P i, YP it1,LP,i» AP i)ieN 15 G
coding sequence.

Proof. Let i € N. We have rp ;€ {—1,1} because i is a good index for (P,a). We have ¢p ;41 € Noy
and ap ;+1 € Noy o, by the definition of hyperserial expansions. If ¢ >0 and ¢; # 0, then we have
;€ No~" because ap ; € No~>”~ by the definition of paths. Lemma 13.2.2 also yields ¢; € Noy ;.
This proves the conditions a) and b) for coding sequences. Assume that «; =1. Then by the
definition of hyperserial expansions, we have ¥p ;11 =0 and up ;1 =ap ;41 is not tail-atomic.
Assume that ¥p ;12=0. Then suppup ;+1>1 5o tpit2=1. We have up ;11 =wit1¥7pit10
where a:= Ezjjif and up ;41 is not tail-atomic. This implies that a is not log-atomic, so ap ;+1=1.
Thus c¢) is valid.

Assume that ;11 =19p ;+2=0. Recall that ap ;11=7p i+1 (EZ;’EIT)“’“ =up ;+1 € No™",
S0 rpi+1=1tp i+1=1. Since Egﬁ“ ¢ Mog,, ,u, we have up ;11 ¢ Moq,, ., whence ap ;11 <ap ;.
This proves d).

Assume now for contradiction that there is an io € N with pp j=1p j4+1=0 for all j >1io. By d),
we have rp j=1tp ;=1 for all j > 1, and the sequence (ap_;);>i, is non-increasing, hence eventually
constant. Let iy > iy with ap ;, =ap ; for all j >4;. For k € N, we have ap ;, = EaP,ilk' ap. i +k SO
ap.iy € Nyen Far i,k M0ap ,, =Moy, , . Therefore ng,zll“ is L<ap ;  w-atomic: a contradiction.

We deduce that e) holds as well. a

We next fix some notations. For all ¢, 7 € N with i < j, we define partial functions ®;, ®;, and
(I)j;i on No by
q)’é(a) = <Pz+ =) ewi71 (Eai—l a)Li715
Pjii(a) = (Pio---o0P;_1)(a),
(bi; = (I)z';o.

The domains of these functions are assumed to be largest for which these expressions make sense.
We also write

o, = oq = ] erw
k<i

Oji = 045 = II Ek Lk
i<k<j

We note that on their respective domains, the functions ®;, ®;;, and ®;,; are strictly increasing if
giti=1, 0;;=1, and oj;; =1, respectively, and strictly decreasing in the contrary cases. We will
write ®.; and ®;.; for the partial inverses of ®;. and ®;,;. We will also use the abbreviations

ai; = ®;(a) aji = Pj(a)

5

a;; = ®;i(a) ai;j = P;j(a)
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For all i € N, we set

LM = (pi— 0, R™ supp p1);; R = (gi+0 R supp )i,
L?] — (%+Eiewi—sio;iR%uppwi)i. Rl[?] ( it ebiteio R>supp¢1)..
) (%] if Cpi+1:0 if SDH»IZO
LE’] = or o,;41€i41=—1 Rl[3] or o,i41€i4+1=1
(Lo Pit1)i+1; otherwise altpz_H i+1; otherwise
Li = rMurPurL? Ri = R” R URY
- U R;
i€N ieIN

Note that
0i=0 «— LW=RW=g and
=0 = LP=RP=g

The following lemma generalizes [11, Lemma 8.1].

Lemma 14.1.3. Ifac (L|R), then a.; is well defined for all i € N.

Proof. Let us prove the lemma by induction on i. The result clearly holds for i =0. Assuming
that a,; is well defined, let j > ¢ be minimal such that ¢; #0 or 1¥; # 0. Note that we have
Qi Z 12 204,50 By oF obBy,=E, where y=o; 4+ @41+ - + ;. Applying ®.; to
the 1nequahty

a¢+1

Li<a<Rj,
we obtain
05 (L)) <03 a5 < 033 (R)) i
Now if ¢;#0, then
pi+eie? (Ey(pj — o, R” supp ;)"
@i +eie? (By(pj+ 0, R” supp ¢)))",

U 1y

whence

) ) Q.5 — Q4
0, e (By (i — 0, R supp ;))" < oy 2%

%

< U;iewi (Ey(¢j+0,;R” supp ¢;))".

Both in the cases when o.;=1 and when o,; = —1, it follows that ((a.; — ;) /&; e¥?)" is bounded
from below by the hyperexponential E., of a number. Thus a.;= L (((a.; — i)/ (€ie¥7))") is well
defined and so is each a,; for i <k < j. If ¢; =0, then we have 9; #0 and

i D piteie?i (Ev(e'l/fj—8j0;jR>Suppw1‘))bi’
;D piteieti (Ev(e'l/)j+8j0;jR>Supp'¢j))Li.
Hence
g;evi (Ev(ewj7810;1R>suppwj))u <. — i <ejeli (B (ebiteioaR7suppey)yu

Both in the cases when &;=1 and when ;= —1, it follows that ((a; — ;) /&;e%?)* is bounded
from below by the hyperexponential E, of a number, so a.; is well defined and so is each a;; for
1<k<j. O

14.1.2 Admissible sequences

Definition 14.1.4. Let X := (i, 4, Vi, Liy @5)ieN be a coding sequence and let a € No. We say that
a is Y-admissible if a.; is well defined for all i €N and
a;; = @i+ eV (Ea, aiv1)",
supp ¢; > log Eq, ait1, and
@it1 < fa(ait1) if pip1 #0.
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We say that ¥ is admissible if there exists a ¥-admissible number.

Note that we do not ask that e¥ (Eq,a;i41)" be a hyperserial expansion, nor even that Fq,a.;4+1
be a monomial. For the rest of the section, we fix a coding sequence ¥ = (¢, &, Vi, L, ;)ieN. We
write Ad for the class of ¥-admissible numbers. If a € Ad, then the definition of Ad implicitly
assumes that a.; is well defined for all i € N. Note that if ¥ is admissible, then so is ¥ »;, for k€ N.
We denote by Ad -, the corresponding class of ¥ ~;-admissible numbers.

The main result of this subsection is the following generalization of [11, Proposition 8.2]:

Proposition 14.1.5. We have Ad= (L | R).

Proof. Let a€ AdU (L | R) and let : € N. We have a,; € No™ . If o,;,=1, then ®;, is strictly
increasing so we have

Mea<RlY — (L,El])_i<a;i<(R,E1])
< ¢;—R”7supp p; < a;; < p; + R~ supp ¢;

3

= G;i — P; < Supp @i
— @idag.
If 0., =—1, then ®;; is strictly decreasing and likewise we obtain L;; < a < R;; <= ¢; < a;.

We have ¢;log Eq, a;i41=1; (logLf). If 0,;=1, then ®;, is strictly increasing so we have
g;et

LEQ] <a< REQ] = Yite; e¥i—eiR7supp v a;; < pi+ g;e¥iteiR7supp i
< —R~”supp ;< loga”;w% <R~ supp ¥;
g;ert

<= supp Y; >~ loga”;ﬁ
g; et

> log E,,a,i41 <supp ¢;.

Likewise, we have P<a< R,E2] <=logE,,a,i+1 <supp ¢; if o;=—1.

%

Assume that ¢;4+1#0 and 0,41 =1. If £;41 =1, then we have a,;11 > ¢;4+1. Hence

3 1 3 1
tPuLll,<a<RPURY, = Lo pini<ainpin<ain
= @it1<fa(ait1) A pir1 <agitr
= Yit1<a(air1)
If €;41=—1, then we have a.;+1> ¢;41, whence
3 1 3 1
LPULl) <a<RIURY, = aii1<LopinApinagn
= fai@iv1) < Qi1 A @ig1 Lagig
= Yit1<a(air1)

Symmetric arguments apply when ¢;11#0 and 0,;41=—1.
We deduce by definition of Ad that Ad= (), (L: | Ri)=(L | R). O

As a consequence of this last proposition and [11, Proposition 4.29(a)], the class Ad is a surreal
substructure if and only if ¥ is admissible.

Example 14.1.6. Consider the coding sequence 3o = (;, €;, Li, ¥;, ;);en where for all i € N, we
have

pi = sziw+Lw2i2w+Lw2i3w+ Tty

& = 17
’(/)z- = Lw2i+1w+Lw2i+12w+Lw2i+13w+"',
ti = —1 and

a; = wtl
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We use the notations from Section 14.1. We claim that ¥ is admissible. Indeed for i € N, set

iy —1\ —1
a;:= po +e¥° (E‘“*ewl(% ) 1)
p= .

w

Given j €N and ¢ > j, we have L; < a; and a; < ;. We deduce that L < R, whence X is admissible.

Lemma 14.1.7. Let a € Ad and b € No be such that a — o and b — ¢¢ have the same sign and
the same dominant monomial. Then be Ad.

Proof. For z,y € No7, we write 2 =y if =y and z and y have the same sign. Let us prove by
induction on 7 € N that b,; is defined and that a.; — ¢; =b,; — ¢;. Since this implies that ¢; <b,;,
that log %= < supp 1y, and that ¢; < fo;_1(bg) if i >0, this will yield b € Ad.

Eq ewi
The result follows from our hypothesis if ¢ =0. Assume now that a.; — ¢; =b,; — ¢; and let us
prove that a,;41 — @i41=0,i11— @i+1. Let

b.i — i
cii=| ——— |.
( Ei e¥i )

. N\ Li
We have ¢;= (u) =Fy,a,i+1€N0"",50b.;41=La,(c;) is defined. Moreover ¢; € E,[Fa,; a:i+1)

Eiewi *

80 .41 € Lo,]a:i+1]. Since @11 < fa,(a;i+1) = fa,(b;i+1), we deduce that b,;41 — @it1~ a1 —
©i+1, whence in particular b.;41 — @i+1=a;4+1 — @i+1. This concludes the proof. O

Corollary 14.1.8. We have Ad ~1 = Ly,[Ad ~].

Proof. For be Ad 1, and c € L,,[b], we have ¢1 <Qay(b) =4a,(c) s0 ¢ — 1 ~b— 1. We conclude
with the previous lemma. O

Lemma 14.1.9. For a,be Ad and i € N”, we have Lo, ,a.;<&En, b

i—1
Proof. Let j >i be minimal with ¢;#0 or v¢; # 0. We thus have a.;, b.; € Plp; + ¢ e%’] so
loga,; <b,;. We have a,;=Fq,+...4a,_ 0 and b;=Fq, .. 4o, , b where a; > --- > a; > 1. We
deduce by induction using Lemma 13.2.3 that Lo, ,a.;; <&, , b O

—1

14.1.3 Nested sequences

In this subsection, we assume that ¥ is admissible. For k € N we say that a X _~;-admissible number
ais X rp-nested if we have Ey, , ag;i+1€Mog, ., \ L<a,., Mog, . for all i € N. We write Ne -
for the class of ¥ ~p-nested numbers. For k=0 we simply say that a is ¥-nested and we write
Ne:=Ne .

Definition 14.1.10. We say that ¥ is nested if for all k € N, we have

Ad/k = Prt+Ek e¥r (Eak. Ad/k+1)”“.

Note that the inclusion Ad - C ¢y +ege?* (Eq, Ad ~41)"* always holds. In [11, Section 8.4],
we gave examples of nested and admissible non-nested sequences in the case of transseries, i.e. with
a; =1 for all i € N. We next give an example in the hyperserial case.

Example 14.1.11. We claim that the sequence ¥ from Example 14.1.6 is nested. Indeed, let k€N
and a € Ad ~41. We have a= 41 4 eVrt (E_21+3b) ! for a certain b€ No™ ™ with b< L 2r+aw.
Let us check that the conditions of Definition 14.1.4 are satisfied for c¢:= @y, + e¥* (E_2x+1a) "

First let m € supp . We want to prove that m > log E_z2r+1a. We have m = L,2x+1,, w for a
certain n € N>, Now a < 2 Ly2++2w, 50 log E2xt1a < EX550 = Ly2esa(w +2) <m.

Secondly, let n € supp ¢x. We want to prove that n>=e%* (E_2x+1a) 1. We have n= L 2r,w for a
certain n € N~. Then e¥* (E_2x+1a) ! <e?¥* by the previous paragraph. Now 2 ¢, + N <3 L k1w
s0 e2Wk < 3Fuwk 1Y
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Finally, we claim that ¢r41 < f,2¢+1(a). This is immediate since the dominant term 7 of
eV +1 (B 2x13b) ! is positive infinite, s0 wg 11 < @rr14 T <Lh2641(a). Therefore Xg is nested.

A crucial feature of nested sequences is that they are sufficient to describe nested expansions.
This is the content of Theorem 14.1.15 below.

Lemma 14.1.12. Letb€ Ad ~1. Ifag>1, or ag=1 and b, is not tail-atomic, then the hyperserial
expansion of Eqgfa,(b) is

an ﬁao(b) = Eg?)O(b)

If ag=1, b =1+ b is tail-atomic, and €= Lg E¥ is a hyperserial expansion, then 1 € Ad ~
and the hyperserial expansion of expb. is

expb. =e¥ (Lg EY)".

Proof. Recall that #1(b) =b,.. By Corollary 14.1.8, we have f,,(b) € Ad ~,. So we may assume
without loss of generality that b="{,,(b).

We claim that EZO € Moy, \ L<ca, M0ogy,,. Assume for contradiction that Ego € Loy, Mo,
and write Ef;o = L, a accordingly. Then Corollary 13.1.6 implies that v =0, in which case we define
n:=0, or g =w"*! for some ordinal y and v = (ap),n for some n € N>. Therefore Egj” € Mogow,
so b+mn € Mo,,.. This implies that

b=(b+n)+4(—n).

Recall that ¢ <1b. Assume that n=0, so 1 =0. Since b is log-atomic, we also have 1, =0. Let j > 1
be minimal with ¢;# 0 or ¢; #0. We have oy > --- > ;1 and by;j = La,4 ... 4a;_, 0 € Mog; _ 0.
In particular, the number by;; is log-atomic. If ¢;#0, this contradicts the fact that ¢; by, ;. If

1 #0, then supp 1; = log ((b1,;€~¥/)") implies
log by;j = 1 +log ((byje~%)%).

But then logb;.; is not a monomial: a contradiction. Assume now that n>0. So o1 =b+n and
b= 1+ (—n). But then by,5 is not defined: a contradiction. We conclude that E2 ¢ Lo, Mo

If ag>1, or if ag=1 and b is not tail-atomic, then our claim yields the result. Assume now
that ap=1 and that b=1) 4 ¢ b is tail-atomic where ¢ € {—1,1}, % € No,., and ¢’ = Lg E¥ € Mo,
is a hyperserial expansion. Then the hyperserial expansion of expb is expb=e? (Lg E¥)".

We next show that 1 € Ad ~1. If b ¢ e¥! (E,, Ad )", then ¢; <19}, and we conclude with
Lemma 14.1.7 that ¢ € Ad _~1. Assume for contradiction that b € e¥1 (E,, Ad -2)"'. Since b is log-
atomic, we must have ¥; =0. By the definition of coding sequences, this implies that (; =1 and
ar=1. So b= 14 e1exp(b1,2), whence ) = p1, t =¢1, and b=-exp(b;;2). In particular the number
b1;2 is log-atomic, hence tail-atomic. Since b1,2 € Ad o, the claim in the second paragraph of the
proof, applied to X ~, gives E"3*¢ Mo,,. But then also b ¢ Mo,,: a contradiction. O

We pursue with two auxiliary results that will be used order to construct a infinite path required
in the proof of Theorem 14.1.15 below.

Lemma 14.1.13. For a € Ad, there is a finite path P in a with up p € Ad 1 — N or
1/Jp_’\p|€Ad/171N.

Proof. By Lemma 13.1.16, it is enough to find such a path in E,,a,;. Write agp =:w*. Assume
first that £ =0, so ag=1 and ¥=0. If (a;1), is not tail-atomic, then the hyperserial expansion
of exp (a.1)s is exp (a.1)» = E{%V* and 7 E{*V* is the dominant term of exp a.; for some 7 € R7.
Then the path P with |P|=1 and 7p o:=7 E{*V)~ satisfies up |p|=(a;1)» € Ad_-1. If (a;1)» is tail-
atomic, then there exist ¢ € Ad ~, t € {—1,1} and a € Mo,, such that the hyperserial expansion
of exp (a.1)s is exp (a.1)s =e¥ a*. Let 7e¥ a* be a term in exp a,; with r € R*. Then the path P
with [P|=1 and P(0):=re¥ a* satisfies ¢p |p|=1) € Ad ~; —N.
Assume now that > 0. We recall that there are an ordinal A < ag and a number § with

Eqy ;1= EX(Ly Efyol®?) 4 6).
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If @ is a limit ordinal, then by Lemma 14.1.12; we have a hyperserial expansion m:= Ly Egﬁgo(“?l).
Let 7 € term #,,(a.1) and set Q(0) =m and Q(1):=7, so that @ is a path in m. By Lemma 13.1.15,
there is a subpath in Eq,a;1, hence also a path P in Eq,a;1, with 7p |p|_1 =m. So up p|=
fao(a;1) € Ad ~1. If i is a successor ordinal, then we may choose A=w*~n for a certain n € N. By
Lemma 14.1.12, we have a hyperserial expansion m:= Eg‘go(“ﬂ)_". As in the previous case, there
is a path P in E,,a;1 with 7p |pj=m, whence up |p|=fa,(a;1) —n € Ad ~ —N. |

Corollary 14.1.14. For a€ Ad and k€N, there is a finite path P in a with |P|>k and up |p| €
Ad/kle or l/}p7|p‘ GAd/kle.

Proof. This is immediate if £ =0. Assume that the result holds at k£ and pick a corresponding
path P with up |p| € Ad ~ — N (resp. ¥p |p| € Ad - — N). Note that the dominant term 7 of
up,|p|— @k (resp. Yp | p|— k) lies in e eV (Eq, Ad 141)"* by Lemma 14.1.7. Moreover 7 is a term
of up |p| (resp. ¥p |p|). By the previous lemma, there is a path Q in 7 with ug o€ Ad rx41—N
or ¥g,10 € Ad rr11—N, so (P(0),..., P(|P|—1),Q(0)) * Q satisfies the conditions. O

Theorem 14.1.15. There is a k € N such that ¥ -, is nested.

Proof. Assume for contradiction that this is not the case. This means that the set A of indexes
d € N such that we do not have Ad 4= pq+cqe?? (Eq, Ad ~441)" is infinite. We write A= {d;:
i€ N} where dg<dy < ---. Fix a € Ad and let d:=d; € A. Let u € Ad 441 such that

<pd+€dewd (Eadu)bd¢Ad/d, (14.1.1)
let n €N and let P be any finite path with
up,|p| = Pd+Ed eV (E,,u)"—n.

We claim that we can extend P to a path Q with |Q[>|P|, ug,jg|€ Ad 4, ,— N and such that | P|
is a bad index in (). Indeed, in view of Definition 14.1.4 for Ad -4, the relation (14.1.1) translates
into the following three possibilities:

e There is an n € supp 9 with n<log E,,u. We then have log E,,a.4+1 <n<log E,, u. By
Lemma 14.1.7 and the convexity of Ad 441, we deduce that tg (1)g)n n lies in the class
tglog Eoy Ad ~g41, SO e(ta)nn ¢ (Ea, Ad ~441)*. By Corollary 14.1.14 for the admissible
sequence starting with (0, 1,0, ¢4, og) and followed by ¥ 441, there is a finite path Ry in
e with |Ro| > di+3 —d >2 and ugy,|ro| € Ad 4,,, — N. Taking the logarithm and
using Lemma 13.1.14, we obtain a finite path Ry in (¢4)n 1, hence in g4, with |R1| >2 and
UR,,|R1| = URo,|Ro| € Ad ~q; s — N. Write (Eq,a;q41)"=7m+ p where r € R7” and m€ Mo”.
Then logm < E,, a,q+1 < supp 94, so the hyperserial expansion of e¥m has one of the
following forms

e¥im = eVt (LzEY)" or
elam = (BfHo)

where (LgEg)" is a hyperserial expansion and ¢ is purely large. In both cases, the path R=
(gare¥im)* Ry is a finite path R in eqe¥? (Eq, a;q+1)" with ug, |g|=ur, |r,| € Ad rq,,,— N.
Since R(0) is a term in up |p|, we may consider the path @ := P R. Moreover, since 7 |p|
is a term in 1= vYq,|p|, the index |P| is bad for Q.

e We have log E,,,u < supp 14, but there is an m € supp g with m < e¥?(E, u)". We then have
eV (Eq,a.q41)" "< pmm=e¥d (Ey,u)". By Lemma 14.1.7 and the convexity of Ad g1, we
deduce that (pq)mm lies in ¥ (Ey, Ad ~g+1)". So La,((e™ %4 (¢q)mm)*d) lies in Ad ~g41.
But then also v:=fa,(La,((e ¥ (¢g)mm)*d)) lies in Ad 441 by Corollary 14.1.8. By Corol-
lary 14.1.14, there is a finite path Rg in v with |Ro| >2 and ug,, g, € Ad_~4,,,—N. Applying
Lemma 13.1.15 to this path Ry in v, we obtain is a finite path Ry in (e %4 (¢4)m m)*d with
UR, Ry €A ~q,,,— N. Since (pg)mmeEe??(Eqy, Ad ~441)", we have supp 1> e~ (¢g)mm.
So Lemma 13.1.16 implies that there is a finite path R in (@q)m m, hence in ¢q, with
ug,|r| € Ad q,,, — N. We have R(0) € term g\ R Ctermup |p|, so @ := P R is a path.
Write 7 for the dominant term of g4e%e (E,,u’)*. The index |P| is a bad in @ because
7q,/p| and 7 both lie in termag,|p|, and 7, |p| = 7.
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e We have log E,, u < supp ¥q and supp @g = €% (Ey, u)'4, but ¢ii1 = fa,(@ar1 +
eqp1ebitt (Eayp,w) ). By the definition of ag-truncated numbers, there is a 3 < ag with

ewd“ (Ead+1 U)Ld+1 =< < ewd+1 (Ead+1 a;d+2)bd+1.

1
Using the convexity of Ad 42, it follows that Lg EZ*' €e™ ¥4+ (E,, , Ad »442) ", By
similar arguments as above (using Corollary 14.1.14 and Lemmas 13.1.15 and 13.1.14), we

deduce that there is a finite path R in @441 with ug |r € Ad_-4,,, — N. As in the previous
case Q:= P« R is a path and |P| is a bad index in Q.

i42

Consider a b& Ad 4,1 and the path Fy:= (Ta_wo) in b. So P is a finite path with up, | p,| € Ad _~g,.
Thus there exists a path Py which extends Py with up, |p,| € Ad -4,, where |Pp| is a bad index in
P. Repeating this process iteratively for ¢ =2, 3,..., we construct a path P; that extends P;_; and
such that up, |p, € Ad ~4,, ., and such that |P;_| is a bad index in P;. At the limit, this yields an
infinite path @ in a that extends each of the paths P;. This path @ has a cofinal set of bad indexes,
which contradicts Theorem 13.2.7. We conclude that there is a k € N such that ¥ - is nested. [

14.2 Existence of nested numbers

We finally show that nested sequences enjoy proper classes of corresponding nested numbers.

14.2.1 Preparation lemmas
Lemma 14.2.1. Assume that ¥ is nested. Then we have Ad = g+ £0e? (Eny[Ea, Ad ~1])*.

Proof. Note that £y [Ea, Ad 1] = Eqy Lag[Ad ~1]. The result thus follows from Corollary 14.1.8
and the assumption that X is nested. O

Lemma 14.2.2. Assume that ¥ is nested. Let k€N, a € Ad and ¢, € No with
CL = Ok 4 e Pk ptE (14.2.1)

for a certain p € Mo”7 with pC Eo;a;x41 and p € E,[Eq, a;r11] whenever ¥ =0. If cx € Ad
then we have

(Ck)k; E a.

Proof. The proof is similar to the proof of Lemma 13.2.6. We have a., = ¢ + g e¥* (En, .k+1)"*
and we must have supp 9 > logp since ¢ = ¢ 4 < eVr p‘* € Ad . If follows from the deconstruc-
tion lemmas in Section 13.1.3 that c; C a,;. This proves the result in the case when k=0.

Now assume that k> 0. Setting cx—p:= Pr_p;x(ck), let us prove by induction on p <k that

Ck—p €
Ck—p € N0>,ak,p,1
C

Ck—p

For p=k, the last relation yields the desired result.

If p=0, then we have ¢, € Ad ~; by assumption and we have shown above that c; Ca.;. We
have ¢y <fa, ,(ck) and e¥*p* is a monomial, so (14.2.1) yields ¢ = fa, _,(ck) € NOyx o, _,. This
deals with the case p=0. In addition, we have c;, >0 because k£ >0 and c;, € Ad_~. Let us show that

logcr < ap. (14.2.2)

If ¢ #0, then this follows from the facts that ¢ < a., and ¢r <cg. If pr=0 and ¥y #0, then
log (cx/€k) ~ Yr~1og (a.x/ex) < .. If =1, =0, then a. = Eqs, a.x+1 and ¢ =p € Eyfa.x], so
log ci, < a; .



14.2 EXISTENCE OF NESTED NUMBERS 225

Assume now that 0 < p<k and that the induction hypothesis holds for all smaller p. We have
Ch—p=Ph—p(Ch—p+1) = 1 +er eV (Egh 7)™ (14.2.3)

Since ¥ is nested, we immediately obtain ¢ —p <fa, _,_,(ck—p), whence ¢, _,€Noy 4, _,_, as above.
Since ¢ —p—1€ Ad_~(x—p—1) and X is nested, we have ¢, € Ad »,_p). Using (14.2.3), (14.2.2),
and the decomposition lemmas, we observe that the relation ¢, C a,;—, is equivalent to

Egr T C By, Gk—pt1- (14.2.4)
We have ck—py1Ea;k—pr1, 50 ¢k—pt1CE o, ,(@;6—pt1). Note that
Efgr—p@r=rt) =00 (Ea,_ a—pi1) C Eay_, Gl pi1-
So it is enough, in order to derive (14.2.4), to prove that Eg:-»+ EE&C;CIg;p(“%’“*P“). Now

Lak,pck—'p-‘rl < gakfp ﬂakfp(a/;k_p""l)

by Lemma 14.1.9, whence Eg}-»+ EE&‘;ISP(“W*P“) by Lemma 13.1.25. O

14.2.2 Surreal substructures of nested numbers

For i€ N, g€&,, and a € Ad, we have p; +¢;e%i g(Eqa, a.i+1)" € Ad »; by Lemma 14.2.1. We may
thus consider the strictly increasing bijection

W g:= Ad— Ad;a+— ((pi +&; eV g(Eai a;i+1)”)i;.
We will prove Theorem 4.4 by proving that the function group G:={¥; 4:i €N, g€ &,,} on Ad
generates the class Ne, i.e. that we have Ne =Smpg. We first need the following inequality:

Lemma 14.2.3. Assume that ¥ is nested. Let i,j € N with i < j and let g €E,,. On Ad, we have
Uiog <V m, if 0j 415001 =1 and Wi g < gy if 05115041 =—1.

Proof. It is enough to prove the result for j =%+ 1. Assume that 0;49,;41=1. Let a € Ad and
set a’:= (Y41, 1,(a))i+1;, so that

il = QPit1tEip1 eVt (Ea,yy Gyig2) it
o = Wit1+Eit1 e¥i+1 (2Eai+1 a;i+2)”+1-
Note that

(‘Il’i».(](a’))i—i-l; S Tai[a;i-‘rl]-

If 0,,41=1, then €;41ti41=0,i42/0,i1+1=1 and ¥,;41 is strictly increasing. So we only need to
prove that 7,,[a.;+1] < a', which reduces to proving that #,(a;;+1) <fa,(a’). Let 7 be the dominant
term of Eq, ., a;42. Our assumption that X is nested gives ¢; +¢; e¥i (Eqy, a’)" € Ad_»;, whence
it1 <fa,(a’). We deduce that ;i1 +e;41 e+ (27)"+1 Q. (a’). Lemma 13.2.2 implies that
Qir1Feip1e?¥it(27)1+ 1 is qu-truncated.

foi(@siv1) = it ~ EipreliHITIHY
fai(a) = @it1 ~ eipreir(2)
and €41 t;+1 =1 implies that

€it1 e¢i+1 (2 T)Li+1 — €yl e¢i+1 it

is a strictly positive term. We deduce that fa,(a;it+1) — wit+1 <f#a.(a’) — @it1, whence fo,(ai+1) <
fa.(a’). The other cases when o.;41=—1 or when 0;19,,11=—1 are proved similarly, using sym-
metric arguments. O

We are now in a position to prove the following refinement of Theorem 4.4.

Theorem 14.2.4. If ¥ is nested, then Ne is a surreal substructure with Ne =Smpg.
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Proof. By Theorem 10.2.3, the class Smpyg is a surreal substructure, so it is enough to prove the
equality. We first prove that Smpg C Ne.

Assume for contradiction that there are an @« € Smpg and a k € N, which we choose minimal,
such that a,; cannot be written as a., = @, 4 e my, where my = e¥* (Egj:“)‘k is a hyperserial
expansion. Set m:=04, ¢, 7= (a;x)m and 0 := (a;x)»m-

Our goal is to prove that there is a number m € {k,k+ 1} and p € Mo~ with

p € &a,lPa, tmii]
p C Fu, @it (14.2.5)
p C E., am+1, whenever 6=0andre{-1,1}.

Assume that this is proved and set ¢, := @m +€m e¥mptm. The first condition and Lemma 14.2.1
yield ¢, € Ad -, and the relations log p < supp ¥, and e¥™ p*™ < supp ¢,,. The second and third
condition, together with Lemma 14.2.2, imply ¢:=(¢n)m; C a. The first condition also implies that
c € Gla]: a contradiction. Proving the existence of m and p is therefore sufficient.

If m # minsupp a;x or m =minsupp a;x and r ¢ {—1,1}, then m:=Fk and p:=0g, a,.,
isfy (14.2.5). Assume now that m=minsupp a. and that r € {—1,1}, whence r=¢¢. If a,p41 ¢
Noy o, then m:=k and p:= Efor(@+1) satisfy (14.2.5). Assume therefore that a.;11 € Noy .
This implies that there exist v < aj and a € Mog,, with Egi*+'= L, a. By the definition of coding
sequences, there is a least index j >k with ¢;#0 or ¢; #0, so

sat-

Egl ' =Eayy o ta, (@i Hejet (Egy 1)) ¢ Mo, ..

We have a € Moy, and L, a € Moy, \ Mog,. So by Corollary 13.1.6, we must have ay, =whtl
for a certain p € On and = (ak)/wn for a certain n € N”. Note that a,541= La, a —n. Recall
that @r4+1<a.k4+1 and Lo, a € Mo™, 80 @gy1 € {La,a,0}. The case pr41=Lq, a cannot occur for

otherwise
Lk+1
ak+2=<—a"k+1_wk“) :—nLkH
’ €k+1ewk+1 €k+1e’¢k+1

would not lie in No~>". So pg1+1=0. Let m:=k+1 and

B Laka Lk+1_ Oa;k+1 Llc+1_0
= ePr+1 T\ e¥rt = YBay Gkt

We have p € Eq, [Fayy, Gik42) and pC Eq, , G;x42, so m and p satisfy (14.2.5). We deduce that
Smpyg is a subclass of Ne.

Conversely, consider b€ Ne and set c:=mg[b]. So there are i1,i2 €N and (g,h) € 50’”.1 X 5;1.2 with
Ui, 0(b) <e< Wy, 4,(b). Let i:=max (i1 + 1,42+ 1). By Lemma 14.2.3, there exist dy, d € {5, 2}
with W;, o, < V; g, and ¥;, 4, < ¥; g, , whence \I/i7de1(b) <c<V¥; g, (b). Since ®,; is strictly

monotone, we get ¢,; — ¢; <b,; — ;. The numbers ¢; (¢;; — ;) and ¢; (b,; — ;) are monomials, so
¢,; — pi=b,; — ;. Therefore b=ce€ Smpyg. O

In view of Theorem 14.2.4, Lemma 14.2.3, and Proposition 10.2.3, we have the following para-
metrization of Ne:

VZGNO, ENeZZ{La\IJ]N,’H ENeZL | lI/]N,’HENeZRaR}-

We conclude this section with a few remarkable identities for Ene.
Lemma 14.2.5. If ¥ is nested, then for i € N and a,b € Ne, we have a Cb<=a,;CD.;.

Proof. By [11, Lemma 4.5] and since the function ®;, is strictly monotone, it is enough to prove
that Va,b€ Ne,a Cb<=a,;Cb,;. By induction, we may also restrict to the case when i=1. So
assume that a,; C b.1. Recall that Lo a1 < Eq, b1 by Lemma 14.1.9. Since a.1, b1 € Noy o, We
deduce with Lemma 13.1.25 that E%' C E5!. Tt follows using the decomposition lemmas that
alCb. O

Proposition 14.2.6. If ¥ is nested, then we have Ne= (Ne 1)1, = g+ o e¥° (E}:)efl)‘“.
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Proof. We have Ne C (Ne ~;)1, by definition of Ne. So we only need to prove that (Ne »1);; CNe.
Consider b€ Ne ~;. Since X is nested, the number a := g+ €g e¥0 (E,,b) is Y-admissible, so we
need only justify that F,,b€ Mo, \ L<aoMO04,.. Since a is 3-admissible, we have @1 < fa,(b). But
bis ¥ ~i-nested, so b= @1+ 7 for a certain term 7. We deduce that b=1,,(b) € Noy ,,, whence
E.,beMo,,.

Assume for contradiction that Ego € Loy Moy, and write Ego = L. a where a € Mo, and
v < ap. Note that 7 # 0: otherwise ; and ; would be zero for all ¢ > 1, thereby contradicting
Definition 14.1.1(e). By Corollary 13.1.6, we must have ag=wH*?! for a certain ordinal ; and
v=w#n for a certain n € N”. Consequently, b= L,,a—n € Mo —n. If ¢;1#0, then the condition
©1 <fao(b) implies @1 =b, which leads to the contradiction that b;.0=0¢ No~". If ¢; =0, then
Ne ~; Ce1 Mo, whence n=0: a contradiction. O

Corollary 14.2.7. If ¥ is nested, then for z € No, we have

ENe 2 = po+egeo (EGNe ~19:1%)to,

Corollary 14.2.8. If ¥ is nested and k €N, then

ENe:(I)k; OENe/kOHU;k.

Proposition 14.2.9. Assume that ¥ is nested with (o, €0, to, to) = (0,1,0,1), assume that
ap € WO and write 3:= (0)/w- Consider the coding sequence X' with (i, e, i, 1}, o) = (i, €4,
Ui, Liy ;) for all i € N, with the only exception that

P1=p1—n.
If 91 <0, or v1=0 and 11 =—1, then X' is nested and we have
ENe’ = Lgn © ENe;
where Ne' is the class of Y nested numbers.

Proof. Assume that ¥; <0, or ¥1 =0 and ¢; = —1. In particular, if a is X-admissible, then
a1 —p1<1,50 a.; — 1 <supp @}. For be No> 7, it follows that F,,(b—n) is X-admissible if and
only if E,,bis ¥-admissible. Let Ad’.; be the class of ¥/ -;-admissible numbers, for each i € N. We
have Lg, Ad=Ad’ by the previous remarks, and ¥’ is admissible. For i >1, we have X', =% ~;, so

Ad'-i=Ad ;D ¢ +eje? (By Ad )",
Moreover, Ad’ ;= Ad _~ —n, so
Ad’ D Lgn AdD Lgn Eq, Ad/l =Lgn Fa, (Adl/l +n)= Ea[[)n] Adl/l
Ad sy D 1 —ntere?t (By Ad )t = ¢l +ef et (E, i Ad’/Q)Li.

So ¥’ is nested. We deduce that Lg, Ne=1Ne’, that is, we have a strictly increasing bijection Lg,:
Ne — Ne'. It is enough to prove that for a,b€ Ne with a Cb, we have Lg, a C Lgy, b. Proceeding
by induction on n, we may assume without loss of generality that n=1. By [12, identity (6.3)],
the function Lg has the following equation on Mo,

Mo, Mo,
VaeMo,, Lga= {Lﬁ ap °° ’ Lgap ™, a}Moao.

So it is enough to prove that Lgb < a. Note that Lgb=E"'""' and a = E%" where b, — o1,

o @o

a1 —p1<1. So b1 —a.; <1, whence b,; — 1 <a.;. This concludes the proof. O

14.2.3 Pre-nested and nested numbers

Let a € No be a number. We say that a is pre-nested if there exists an infinite path P in a without
any bad index for a. In that case, Lemma 14.1.2 yields a coding sequence ¥Xp which is admissible
due to the fact that a € (L | R) with the notations from Section 7.3.2. By Theorem 14.1.15, we get
a smallest k € N such that (Xp) ~ is nested. If k=0, then we say that a is nested. In that case,
Theorem 14.2.4 ensures that the class Ne of Yp-nested numbers forms a surreal substructure, so
a can uniquely be written as a = Ene(c) for some surreal parameter ¢ € No.
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One may wonder whether it could happen that k£ > 0. In other words: do there exist pre-nested
numbers that are not nested? For this, let us now describe an example of an admissible sequence
>* such that the class Nex+ of Y*-nested numbers contains a smallest element b. This number b
is pre-nested, but cannot be nested by Theorem 14.2.4. Note that our example is “transserial” in
the sense that it does not involve any hyperexponentials.

Example 14.2.10. Let ¥ = (©;,£;,0,1,1);en be a nested sequence with 1= —1. Let a be the
simplest 3-nested number. We define a coding sequence ¥* = (¢}, e7,0,1,1);en by

gy = —1
p1—se™i2
py = e 2

(o5 er) == (pie)  foralli>0.
Note that
a1 =1 —e2=1 41 %2,

where %2 is an infinite monomial, so b:= ¢§ —e®*! is X*-nested. In particular, the sequence >* is
admissible.
Assume for contradiction that there is a ¥*-nested number ¢ with ¢ <b. Since ef=¢]=—1, we
have ¢.2 < b.o. Recall that c. and b.p are purely large, so e“2 < e%2 =e%2. In particular
eCil =1 #1772 ©0s
which contradicts the assumption that c is X*-nested. We deduce that b is the minimum of the
class Nexg+ of ¥*-nested numbers. In view of Theorem 14.2.4, the sequence ¥* cannot be nested.

The above examples shows that there exist admissible sequences that are not nested. Let us now
construct an admissible sequence Y% such that the class Ness of X?-nested numbers is actually
empty.

Example 14.2.11. We use the same notations as in Example 14.2.10. Define (¢§,ef):= (e, 1) and
set (p?,e7):=(p;_1,ef_1) for all i > 0. We claim that the coding sequence X7 :=(¢7,e7,0,1,1);en

is admissible. In order to see this, let 1 :=15e%!. Then
ePT a1 — owiHeby y qpbtete’t Z gb,

Since ¢f 4 ¢e1 1 is (¥2) ~1-admissible (i.e. Y*-admissible), we deduce that b+ ePTHev jg 11O
admissible, whence X9 is admissible. Assume for contradiction that Nes;s is non-empty, and let

e’ 4+ me Neso. Then logm is Y*-nested, so logm > b, whence m 3= e’: a contradiction.



Chapter 15
Hyperserial representations

Traditional transseries in x can be regarded as infinite expressions that involve x, real constants,
infinite summation, exponentiation and logarithms. It is convenient to regard such expressions as
infinite labelled trees. In this section, we show that surreal numbers can be represented similarly
as infinite expressions in w that also involve hyperexponentials and hyperlogarithms. One technical
difficulty is that the most straightforward way to do this leads to ambiguities in the case of nested
numbers. These ambiguities can be resolved by associating a surreal number to every infinite
path in the tree. In view of the results from Section 7.3.2, this will enable us to regard any surreal
number as a unique hyperseries in w.

Remark 15.0.1. In the case of ordinary transseries, our notion of tree expansions below is slightly
different from the notion of tree representations that was used in [60, 92]. Nevertheless, both notions
coincide modulo straightforward rewritings.

15.1 Introductory example

Let us consider the monomial m =exp(2 E, w — /w + L,41 w) from Example 13.1.3. We may
recursively expand m as )
L2w+l Fl1w
m=e2Fu? B (Lyw).

In order to formalize the general recursive expansion process, it is more convenient to work with
the unsimplified version of this expression

0. 1.90_(Lw2w)1+1.1 1 0. 1/5-e0.(Lyw)1\1
2:¢0-( B, )4 (=1)e0 (B ) (Low).
Introducing @.: x — x¢ as a notation for the “power” operator, the above expression may naturally
be rewritten as a tree:

m=e

1 X 1 1 Yy X
N AN
N7 |

E %
> E‘wz £y

X
€

~—

In the next subsection, we will describe a general procedure to expand surreal monomials and
numbers as trees.
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15.2 Tree expansions

In what follows, a tree T is a set of nodes N together with a function that associates to each node
v e Ny an arity £, € On and a sequence (v[o)a<r, € N&¥ of children; we write C,,:={v]a]: a0 <0, }
for the set of children of v. Moreover, we assume that Np contains a special element pr, called the
root of T, such that for any v € N there exist a unique h (called the height of v and also denoted
by h,) and unique nodes vy, ..., v, with vo= pp, vp=v, and v;€C,, , for i=1,..., h. The height
hr of the tree T is the maximum of the heights of all nodes; we set hr:=w if there exist nodes of
arbitrarily large heights.

Given a class X, an X-labelled tree is a tree together with a map A\: Np — ;v +—— ), called
the labelling. Our final objective is to express numbers using X-labelled trees, where

3 = ]R7&U{w,z,x,p_l,gol}ULwo,lUEwo.u.

Instead of computing such expressions in a top-down manner (from the leaves until the root), we
will compute them in a bottom-up fashion (from the root until the leaves). For this purpose, it is
convenient to introduce a separate formal symbol ?. for every ¢ € On, together with the extended
signature

3% = X U{?:ceNo}.

We use 7. as a placeholder for a tree expression for ¢ whose determination is postponed to a later
stage.

Consider a 3f-labelled tree T and a map v: Ny — On. We say that v is an evaluation of T if
for each node v € Ny one of the following statements holds:

El. \, e R7U{w}, £,=0, and v(v) =\,;
E2. A\, =37, the family (v(v[a]))a<e, is well based and v(v)=3" _, v(v[a]);
E3. A\, =X, ¢,=2, and v(v) =v(v[0]) v(v[1]);
E4. \,=p, te{-1,1}, £, =1, and v(v) =v(r[0])";
E5. A\, =L,u, £,=1, and v(v) = L,xv(v[0]);
E6. \,=E_u, {,=1, and v(v) = E,xv(v[0]);
E7. A\,=7,,0,=0,and v(v)=q.
We call v(pr) the value of T via v. We say that a € No is a value of T if there exists an evaluation
of T with a=v(pr).
Lemma 15.2.1.
a) If T has finite height, then there exists at most one evaluation of T.
b) Let v and v’ be evaluations of T with v(pr)=v'(pr). Then v="v’.

Proof. This is straightforward, by applying the rules E1-E7 recursively (from the leaves to the
root in the case of (@) and the other way around for (b)). O

Although evaluations with a given end-value are unique for a fixed tree T', different trees may
produce the same value. Our next aim is to describe a standard way to expand numbers using
trees. Let us first consider the case of a monomial m € Mo. If m=1, then the standard monomial
expansion of m is the X% labelled tree T with Nr={p7} and )\, =1. Otherwise, we may write
m=e¥ (Lgg)" with g=w or g= E%. Depending on whether g=w or g= EY, we respectively take

Tu
T |

E,
7y Lg |

T:.= | | or T:= 7y Ls
El £ | |

\X/ El\ /m

X
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and call T' the standard monomial expansion of m. Let us next consider a general number a € No
and let £ € On be the ordinal size of its support. Then we may write a = Zadca m,, for a sequence
(Ca)a<e€ (IR*)E and a <-decreasing sequence (Mg )q <¢ € Mo’. For each o< ¢, let T}, be the standard
monomial expansion of m,. Then we define the Lf-labelled tree

Co TO C1 T1 Co T2

A /N

X X “ e

—

2

T:

/
\

and call it the standard expansion of a. Note that the height of T is at most 6, there exists a
unique evaluation v: Ny — No of T', and v(pr) =a.

Now consider two trees 7' and T’ with respective labellings A\: Ny — 3¢ and \: Ny — 2.
We say that T refines T if Np»D N and there exist evaluations v: Ny — No and v": Ny — No
such that v(v) =v'(v) for all v € Ny and A, = A}, whenever A\, ¢ "No. Now assume that v(pr)=a
for some evaluation v: Ny — No. Then we say that T is a tree expansion of a if for every v € Np
with A, =3, the subtree T of T' with root v refines the standard expansion of v(v). In particular,
a tree expansion T of a number a € No with A, ¢ 7no always refines the standard expansion of a.

Lemma 15.2.2. Any a € No has a unique tree expansion with labels in 3.

Proof. Given n € N, we say that an >t labelled tree T is n-settled if A, ¢ 7No for all nodes v € Np
of height <n. Let us show how to construct a sequence (T},),en of X¥-labelled tree expansions of
a such that the following statements hold for each n € N:

S1. T, is an n-settled and of finite height;

S2. v,(pr,) =a for some (necessarily unique) evaluation v,: Ny,, — No of T;,;
S3. If n>0, then T,, refines T}, _1;

S4. If T is a tree expansion of a with labels in ¥, then T refines T;,.

We will write A,: Np, — > for the labelling of T;,.

We take Tp such that Nz, ={pr,} and \,, =7, Setting vo(pr,) :=a, the conditions S1, S2, S3,
and S4 are naturally satisfied.

Assume now that 7;, has been constructed and let us show how to construct 7;, 1. Let .S be the
subset of Nz, of nodes v of level n with v, () € ?No. Given v € S, let T, be the standard expansion
of v,(v) and let v, be the unique evaluation of T,,. We define T,,41 to be the tree that is obtained
from T;, when replacing each node v € S by the tree T,.

Since each tree T, is of height at most 6, the height of T}, ;1 is finite. Since T;, 11 is clearly (n+1)-
settled, this proves S1. We define an evaluation vy, 4 1: Nz, , — 3% by setting vy, 4 1(0) =v,(0) for
any o € N, and v,11(0) =v,(0) for any v €S and o € Nz, (note that v, 41 is well defined since
v(pr,) = (An)y =vn(v) for all v € S). We have v, 1(p7,,,) = vn(pz,) = @, s0 S2 holds for vy, 1.
By construction, N7, ,, 2 Nr, and the evaluations v, and v, 41 coincide on Nr,; this proves S3.
Finally, let T' be a tree expansion of a with labels in ¥ and let v be the unique evaluation of T with
v(pr)=a. Then T refines T,,, so v coincides with v, on Nr,. Let v € S. Since T is a tree expansion
of a, the subtree T’ of T with root v refines T,,, whence Ny 2 Nr,. Moreover, v(v)=uv,4+1(v), so
v coincides with v, on T,. Altogether, this shows that T refines T}, 4.

Having completed the construction of our sequence, we next define a 3-labelled tree T, and a
map veo: N1, — No by taking Nt =], o N1, and by setting (Aoc) 1= (An)y and veo(v) = vp(v)
for any n € N and v € Np, such that (\,), ¢ ?"No. By construction, we have v(pr,.) =a and
T refines T,, for every n € N.

We claim that T is a tree expansion of a. Indeed, consider a node v € Nt of height n with
Av=>.. Then v € Nr, ., and (A1), =), since T}, 11 is (n+ 1)-settled. Consequently, the subtree
of T,,+1 with root v refines the standard expansion of v,1(r). Since Ty refines T, 1, it follows
that the subtree of T with root v also refines the standard expansion of voo(v) =vy41(v). This
completes the proof of our claim.
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It remains to show that T}, is the unique tree expansion of a with labels in . So let T" be any
tree expansion of a with labelling A\: Ny — 3. For every n € N, it follows from S4 that Ny D Nr,.
Moreover, since T, is n-settled, A coincides with both A, and A on those nodes in Nz that are
of height <n. Consequently, Ny O Nz and A coincides with Ao, on Nr._. Since every node in Np
has finite height, we conclude that T =T. g

15.3 Hyperserial descriptions

From now on, we only consider tree expansions with labels in 3, as in Lemma 15.2.2. Given a class
Ne of nested numbers as in Section 7.3.2, it can be verified that every element in Ne has the same
tree expansion. We still need a notational way to distinguish numbers with the same expansion.

Let a € No be a pre-nested number. By Theorem 14.1.15, we get a smallest £ € N such that
(3p) ~k is nested. Hence ap i, € Ne for the class Ne of (¥p) ~,-nested numbers. Theorem 14.2.4
implies that there exists a unique number ¢ with ap ;= Ene(0,x ¢). We call ¢ the nested rank
of a and write §,:=c. By Corollary 14.2.8, we note that §,, ,=o0,;&, for all i € N. Given an
arbitrary infinite path P in a number a € No, there exists a k¥ > 0 such that P, has no bad
indexes for ap j (modulo a further increase of k, we may even assume ap j to be nested). Let
op.k:=sign(rpo---rpk—1)tp,0- - tp k-1 €{—1,1}. We call {p:=0p 1 &up , the nested rank of P,
where we note that the value of op &y, , does not depend on the choice of k.

Let T be the tree expansion of a number a € No and let v: Ny — No be the evaluation with
a=v(pr). An infinite path in T is a sequence vy, v1,... of nodes in Ny with vo= pr and v;41€C,,
for all ¢ € N. Such a path induces an infinite path P in a: let 7; <is < --- be the indexes with
v, = >~; then we take 7p = v(v4,41) for each k € N. It is easily verified that this induces a one-
to-one correspondence between the infinite paths in 7" and the infinite paths in a. We call £,:=¢&p
the nested rank of the infinite path v = (v,,)nen in 7. Denoting by I the set of all infinite paths
in T, we thus have a map &: Iy — No;v— &,. We call (T, §) the hyperserial description of a.

We are now in a position to prove the final theorem of this paper.

Theorem 15.3.1. Fvery surreal number has a unique hyperserial description. Two numbers with
the same hyperserial description are equal.

Proof. Consider two numbers a, a’ € No with the same hyperserial description (T, §) and let
v,v": Ny — No be the evaluations of T with v(pr)=a and v'(pr) =a’. We need to prove that
a=a’. Assume for contradiction that a # a’. We define an infinite path vy, v1,... in T with
v(vy) #v'(vy) for all n by setting vy := pr and vy, 11 :=vy[m], where m € N is minimal such that
v(vp[m]) # v'(vy[m]). (Note that such a number m indeed exists, since otherwise v(vy,) =v'(vy)
using the rules E1-E7.) This infinite path also induces infinite paths P and P’ in a and o’ with
ap n=v(v;,) and apr , =v'(1;,) for a certain sequence i1 <iz < --- and all n € N. Let n >0 be such
that P ~, and P'/n have no bad indexes for ap , and ap,. The way we chose vy, v1,... ensures
that the coding sequences associated to the paths P, and P/, coincide, so they induce the same
nested surreal substructure Ne. It follows that v(v;,) = ap, n=ENe(0:n &) = apr n =v'(v4,,), which
contradicts our assumptions. We conclude that a and a’ must be equal. O



Conclusion and further research

The presentation of surreal numbers as hyperseries opens several problems on which I started to
work during my PhD. I will now, in a more colloquial tone, describe the main ones and propose a
few research questions related to this thesis.

1 Defining the derivation and composition law on No

Before the year 2022 when the manuscript was finished, a substantial amount of additional material
was considered for this thesis, most of which now consists in manuscripts in preparation. The
main goal in this respect is to define the natural derivation 9: No — No and composition law o:
No x No~»~ — No on surreal numbers by relying extensively on their hyperseries representation.
More precisely, I have proofs of the two following results:

Theorem 1.1. [Work in progress| There is a unique strongly linear derivation 0: No — No
satisfying:
SD1. Ker(9)=R.
SD2. For alla€ No””™ and f €L, we have O(foa)=0(a)-(f'ca).
SD3. If X=(¢4,&4, Wi, ti,)ieN is an admissible sequence and a € No is X-nested, then writing
i = Lo,a)° EZ?“, and
n = e¥ (Egith)m
for alli e N, we have
8(&)12 H epting ke | (O(@s) +€;0(:)). (1.1)
€N \ k<1
Moreover, the ordered valued differential field (No,+, X, <,=<,0) is an elementary extension of the

field of log-exp tramsseries.

The formula (1.1) corresponds to the simplest expression for which the derivation can satisfy
the other conditions.

Theorem 1.2. [Work in progress| There is a unique function o:No x No~~ — No satisfying
the following:
SC1. For all £ € No, the function No— No;ar—ao is a strongly linear morphism of rings.
SC2. For all¢eNo~" and f €L, we have (fow)o&= fok.
SC3. For allaeNo and £, €No~", we have (ao()o&=ao (o).
SC4. For allaeNo”> " and £, €No~", we have { < (= ao & <ao(.

SC5. For all a € No, £ € No”~ and 6 € No with § <& and (O(m)o &) d <mo & whenever
m e suppa, we have

ao(E+6)= Z M(;k,

k!
kEN
SC6. If ¥ =(¢;, &4, Vi, i, )icN is a nested sequence and & € No~" is such that

206:: ((piogag’iadjiogabiaai)ieﬂ\f (12)
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is also a nested sequence, then writing Zx and Exo¢ for the parametrizations of the classes
of Y-nested and (X o £)-nested numbers respectively, we have

VzeNo, (Ex2) 0 =Esoc 2. (1.3)

Moreover, the structure (No~>",0,w, <) is a bi-ordered group in which any two strictly positive
elements are conjugate.

The formula (1.3) corresponds to the simplest value for which the composition law can satisfy
the other conditions. It should be noted that the versions of these conjectures where No is replaced
by its subfield L ow are already proved in [10]. In fact, this subfield will constitute the base case
of an inductive proof of the second conjecture (granted, this base case excludes nested numbers
and thus evacuates the crucial parts SD3 and SC6 of the conjectures).

1.1 Surreal numbers as a hyperserial field

In order to define (9, 0) and prove the results, a first step is to derive further properties of the
structure of No as a hyperserial field. The main ingredients are contained in this manuscript (and
in [13]): the well-nestedness of all surreal numbers (Theorem 13.2.7), the eventual nestedness for
all admissible sequences (Theorem 14.1.15), and the nature of surreal substructure for classes of
Y-nested numbers in the case when ¥ is nested (Theorem 14.2.4). Using this, one can show that
No is the increasing union of confluent hyperserial subfields T, v € On of force (On, On), where
each T, is obtained by adding to T all nested numbers whose coding sequence is nested and
takes values in T, and then closing under hyperexponentials. We take unions of monomial groups
at non-zero limit stages v, and start with Ty=Low.

This also applies to subfields of No of smaller force. Fix v € On~ and set A: =w”. We have a
“force v version” Noy of No. We can define an embedding Noy — No;a — al? of force v whose
effect on the hyperserial description of an a € Noy is to replace each occurring leaf w by the
hyperserial description of the number

EY = Byt

This embedding can be seen as a composition on the right with the hyperexponential of strength A.
Such embeddings have the important feature of simplifying the behavior of derivations and compos-
itions, i.e. derivations and compositions on the right on NOI\/\ :={a'*:a€No,} are easy to describe
in terms of their operator support and relative support respectively, as per Section 1.3.2 (these
properties are more accurately stated by considering near supports and near relative supports, see
[10, Section 1.6]).

1.2 The surreal derivation

It is possible to define 9 by using path derivatives as in [92, Section 4.1]. This is probably the most
sensible method in order to do so. The idea here is the same as in [92]: given a € No every element
P in the set P, of finite and maximal paths P in a with P(|P|) ¢ R7 contributes exactly one term
d(P) € R” Mo to the derivative d(a) of a, in that d(a) can be defined as the sum of the well-based
family (0(P))pep,. Proving that this family is well-based can be done by reducing to the case
when a is Y-nested for a nested sequence ¥, and then using the properties of nested sequences (in
particular Lemma 14.2.1) and compositions with hyperexponentials in order to isolate from one
another the contributions 9(P) for distinct paths P € P,

1.3 The surreal composition law

The definition of the composition law is much more technical. This is in part because a combinat-
orial description of composition laws, in the same vein as the method of path derivatives, seems too
complex to be achieved. That leaves us with SC1-SC6 as sole guides in order to define o, and it
must be shown that they suffice. Understanding when (and why) the sequence in (1.2) should be
nested, and dealing with the well-basedness of complicated families involved in the Taylor series in
SC5 proves particularly difficult. In that respect, many useful tools can be found in the present
thesis, in particular in Chapter 2, as well as in [10].
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2 Model theory of ordered structures with composition

In view of Results 1.1 and 1.2, we have a first-order structure
(NO7 J’»’ X? 87 O’ <7 <)

of a peculiar type which, in view of its interesting closure properties (conjugacy equations, algebraic
differential equations, set-wise order saturation...), deserves to be studied. This feeling is bolstered
by the model theoretic tameness of its reducts: e.g. the first-order theories of (No, <), (No, +, <),
(No, +, x,<), (No,+, x, <, <,d) are all model complete and decidable. Even so, the literature on
the model theory ordered structures with composition laws is scarce. How are we to start studying
this rich structure?

2.1 Growth order groups

One route is to restrain ourselves to studying a small part of the language which includes the
composition law. Accordingly, the natural candidate is the bi-ordered group (No~", o, w, <).
The algebraic theory of non-commutative, linearly (bi-)ordered groups is involved, in comparison
to the commutative case, as constructing and classifying extensions of such groups frequently
leads to open problems and dead-ends (see [53]). However, the ordered group (No~>",0,w, <) has
specific properties which are not often considered by group theorists, but are related to properties
of ordered groups of unary germs definable in o-minimal expansions of real-closed fields, as I will
now explain. In particular, the basic inequality

aob>boa

is valid whenever a,b > w and a lies above all compositional iterates b, n € N of b. This can be
stated as a first-order sentence in the language {-,1, <} of ordered groups. Indeed it can be shown
that the centralizer C(b):={c€No~":cob=boc} of b can be described using real compositional
iterates bl r € R of b, hence it is mutually cofinal with {b"):n € N} (see [10, Section 10.3] in the
case of IL). This leads to the following axiom satisfied by (N0~ o, w, <):

GOGL1. YaVy((z,y>1Az>C(y)) =z -y<y-x).

Along with this, this group satisfies the first-order property GOG2 below which implies that the
relation a3 b <= max (a,a™) >C(b) behaves similarly to a dominance relation on Abelian ordered
groups (in fact, here the relation is given by the Archimedean valuation on ordered groups, see [51,
Section 4.1]):

GOG2. VaVyVaVt((z>y>1Azel(y)) = Tt{teC(x) At>z).

I call growth order groups those ordered groups (including all Abelian ordered groups) which satisfy
GOG1 and GOG2. So (No~",w,0,<) and (]~L>7>,€0,o, <) are growth order groups. In fact,
further important and universal first-order properties, such as the commutativity of centralizers,
require additional axioms in order to be necessary, but I will not go into such details here. Many
growth order groups should originate from tame expansions of the real ordered field:

Conjecture 2.1. Let R=(R,+, X, <,...) be an o-minimal expansion of the real ordered field. Let
G denote the group of germs at 400 of R-definable functions R — R which tend to +00 at +00,
ordered by comparison of germs at +oo. Then G is a growth order group.

I expect that the non-commutative valuation theory of a growth ordered group retains certain
features of the valuation theory of Abelian ordered groups (see [4, Section 2.4]). Just as valuation
theory gives tools to obtain asymptotic expansions of regular growth rates of an additive nature, I
expect that growth rates of functions definable in certain o-minimal structures can be decomposed
as non-commutative compositions of simpler growth rates.

Using real iteration, one can construe the group R~ as a function group on No~%, thus yielding
a surreal substructure Smppr> whose elements are simplest in their convex equivalence class in the
compositional sense (just as monomials in Mo are simplest in the additive sense). Using Conway
brackets, it is then possible to define non-commutative transfinite compositions

O ol (2.1)

F<A
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of well-based families (pb])v<>\ in ((Smpp>)™, €). By convention, I define these as trailing on
the left. We should then have

[r4]

Conjecture 2.2. For each a € No~™, there is a unique well-based family (pw )v<>\ mn

((Smp]R>)[R¢],@) with
a= @ pg”].
y<A

I plan to illustrate these ideas first by proving a case of the Conjecture 2.1, namely when the
expansion of R with the exponential function is levelled in the sense of [79]. I will also show that
Conjecture 2.2 is valid in finitely nested hyperseries and log-exp transseries, where all terms p[v'"”]
lie in the corresponding fields, and where ry must be an integer if po=-e€” in the case of log-exp
transseries. In those cases, the element (2.1) can be defined without relying on the existence of a

composition law on No. Thus this work can be started right away.

2.2 A model theoretic approach to genetic definitions

Genetic, or recursive definitions are, in the language of the thesis, cut equations of a particular
nature. They are sound and uniquely define surreal-valued functions by way of the principle of
definition by induction. I was impressed by unpublished notes of Antongiulio Fornasiero [50] who
derived in a concise way surprisingly strong properties of functions that can be defined in a recursive
way over No.

Of particular importance to us is the possibility of deriving intermediate value properties [50,
Definition 3.3] for such functions. Indeed, intermediate value properties (IVP) for unary terms in
the corresponding first-order language completely axiomatize the first-order theories of (No, +, <),
(No, +, x, <), (No, +, x, <, <, ) over simple finite fragments of those theories (namely and
respectively: linearly ordered Abelian groups, ordered domains, and Liouville-closed H-fields with
small derivation). Moreover, in view of van der Hoeven’s IVP conjecture [4, Conjecture 4.3] for
Hy ~No, it would be interesting to see if such a result could be derived from intrinsic properties
of surreal numbers, rather than from possibly difficult computations on hyperseries. We are far
from being able to prove such things, since there is no known genetic definition of a derivation
(let alone a composition law) on No. It seems well in the realm of possibility to me that no such
definition should exist.

Still, an equally interesting problem concerns the possibility of interpreting first-order languages
and realizing models of corresponding theories within No. More precisely, given a first-order
language £ with < as the only relation symbol, and an L-theory T of dense linear orders without
endpoints (DLOWSs), when and how (and in what order) can one define, in a recursive way,
interpretations of the function symbols f;,7 €1 in £ as functions f;,i € I on No and its Cartesian
powers, in such a way that (No, <, (f;):cs) be a model of T? When doing so, what is the complete
theory Th(No) which we obtain?

The known examples of ordered Abelian groups, ordered rings and real-closed exponential fields
seem to work exceptionally well in the sense that the corresponding recursive definitions (as usual
a’,a” b’',b" range in ay, ag, by, and br respectively, see Chapters 8 and 11)

a+b = {a'+bya+b' | a+b",a"+b},
ab = {a’'b+ab —a'b,a"b+ab”—a"b" | a"b+ab —a"b';a’b+adb” —a’'b"}, and

expa expa’
a—a’lant1’ o —aln

exp(a) = {0, [a—a'lnexpa’, [a—a"]ant1expa’ [

encompass only a very small part of the resulting theory Th(No), but still end up producing the
good complete theory containing the axioms used in the recursive definition. For instance, it is
remarkable that the theory of DLOWSs with a binary operation that is strictly increasing in both
variable suffices to obtain as a result the theory of divisible Abelian linearly ordered groups!

I have found conditions on such languages and theories which, when satisfied should make
such a recursive interpretation over No possible. These conditions are extremely restrictive, still
I believe that the game is worth the sacrifice.
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3 Analytico-geometric interpretation of surreal numbers

As told in the introduction of the thesis, this work is part of a program whose origins are questions
about the growth rates of concrete, very regular, and commonplace real-valued functions. Yet, after
only a reasonable amount of pages, these grounded questions have sprouted a class-sized array of
ordinal indexed hyper-fast growing functions, the first of which, already, would but raise eyebrows
among analysts and geometers; a stack of “fields-with-no-escape” containing arbitrarily long series
and infinitely deep vertical expansions thereof; full binary trees of fixed points for well-behaved
operators; and so on... Maybe it is now time to look back?

3.1 Real hyperexponentiation

One long standing open question in o-minimality is the existence of an o-minimal expansion of
the real ordered exponential field which defines a transexponential function. As we have seen in
Chapter 12, Abel’s equation

yo(w+1l)=e“oy (3.1)

naturally arises when studying surreal-valued functions with transexponential asymptotics. In fact,
the simplicity theorem [15, Theorem 21| can be strengthened by discarding the condition b), i.e.
Abel’s equation.

Thus, functions like Kneser’s [66] solution E of Abel’s equation on RZ are natural candidates
for such o-minimal investigations. However, despite interesting unique properties of F [29, Propos-
ition 1], it is unclear whether it is more interesting than other similar solutions (e.g. [95]), see [39,
Chapter 8]. More generally, there doesn’t seem to be known non-trivial model theoretic constraints
of a solution of Abel’s equations for it to generate an o-minimal expansion.

If there are no such conditions, then our hope is that the calculus of hyperseries on No faithfully
represents asymptotic properties of real-valued germs which are solutions of (3.1), and that it can
help in understanding them. The use of formal series in order to understand functions with tran-
sexponential growth rates is convincingly illustrated in [83]. Padgett’s first-order theory Tiransexp
for (R, +, %, E) in an expanded language Liransexp is indeed sufficient to order the field Hiransexp
of germs of unary terms in Liransexp [83, Theorem 1.1.5]. This is shown by embedding such germs
into fields of formal series. Let exp,, extend E,, to NoZ? via the restricted analytic function method
(see Section 2.4) applied to the analytic function E. Then (No, +, X, exp,,) is a natural model of
Tiransexp, Which raises questions as to the compatibility between No and Hiransexp- There should
exist a natural inclusion

ve:Htransexp — No
t(x) — t(w).

We make the following conjectures, on which we have worked with good progress together with
Adele Padgett and Elliot Kaplan:

Conjecture 3.1. The function ev, is a well-defined Liransexp-embedding.

Conjecture 3.2. The function ev,, commutes with the derivations and composition laws on
Htransexp and NO-

In Conjecture 3.2, one can replace No with LL or some set-sized subfields thereof, for which the
derivation and composition are already defined in [10] and known to be well-behaved. A positive
answer to Conjecture 3.2 would have consequences for the differential algebra of Hiransexp:

Conjecture 3.3. The field Hiransexp 15 an w-free H-field with small derivation.

The property of w-freeness is a very robust property pertaining to the behavior of differential
polynomials (see [4, Section 11.7]). Finally, we expect that, like the Hardy field Hap exp Of the real-
exponential field with restricted analytic functions [49], the field Hiransexp Sits nicely within No:

Conjecture 3.4. The set evy,(Hiransexp) C NO is initial, i.e. downward closed in (No,T).
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3.2 Nested germs

A unique feature of surreal numbers is that they naturally contain nested numbers. Les us draw,
one last time, our favourite nested expansion

Vw4 e\/@+e\/m+”' »

)

which we recall only specifies a proper class Ne ~ No of numbers. It should be of little surprise to
learn that these nested numbers will exactly be the solutions of the functional equation

y=+/w+exp(yologw), with the condition Yy~ Jw. (3.2)

This equation makes perfect sense for germs of real-valued functions, and can thus be solved in
various classes of regularity. Such equations and solutions have barely been studied in the past
(with the notable exception of [61]), so simple questions remain open. Ecalle suggested to us that
the geometric relevance of nested numbers is questionable. Therefore it would be interesting to test
whether problems arise when considering germs with the corresponding nested expansions, with
the help of the functional equation.

Among the least degrees of regularity for germs, we can consider van den Dries’ notion of
Hardian germs, i.e. germs lying in a Hardy field. Two Hardian solutions of (3.2) living in a common
Hardy field must be, in particular, comparable. If surreal numbers really are deeply connected to
growth rates of regular functions, then one would expect that the existence of a very large class
of solutions of (3.2) in No is reflected in properties of solutions sets in Hardy fields. It is sensible,
when considering germs of real-valued functions, to restrict ourselves, at most, to the field No(w;)
of surreal numbers with countable birth day (under the continuum hypothesis, this field can be
represented as a Hardy field: see [5, p. 11]). Still, the existence of as many as |[No(w;)| comparable
solutions of a functional equations is puzzling.

In contrast, the set of surreal solutions E“1", r € R of Abel’s equation (3.1) is only parametrized
by real numbers. Yet given a Hardian solution y of (3.1), all other Hardian solutions y o ¢, most
of which lie in distinct Hardy fields, are parametrized by functions ¢ with po(x +1)=p + 1,
most of which are non-Hardian and pairwise incomparable. It is conceivable that (3.2) is much
more compatible with a linear ordering of its solutions than Abel’s equation, so that its solution
set in a common Hardy field may be parametrized by a linearly ordered set of germs, possibly
of size |No(w1)|. Or, the amount of solutions in No may be an artifact of algebraic and model
theoretic properties of the functional equation, without analytic meaning. In any case, an aspect
of the correspondence between numbers and regular growth rates can be reduced to the following
question, which I plan to investigate:

Question. What linear orderings can be represented by the set of solutions of (3.2) lying in a
common Hardy field? In particular, does (3.2) have a Hardian solution?

Here, it would be more daring to state a definite conjecture, but is it ever in bad taste to end
with a question?
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Appendix A

Résumé en francais

Ce travail de thése, intitulé “Hyperséries et Nombres surréels”, consiste a effectuer deux taches:

Probléme I. Proposer une définition axiomatique (d’ordre supérieur) pour des corps de séries
généralisées équippés de fonctions a croissance hyper-forte ou hyper-faible jouant le réle
d’itérées transfinies de la fonction exponentielle et du logarithme respectivement. Nous

appelons ces corps des corps hypersériels.

Probléme II. Définir une structure de corps hypersériel sur la classe No des nombres surréels
de Conway, de maniére a identifier les nombres surréels a des « hyperséries » formelles.

Il s’agit donc essentiellement d’un travail de définition et de construction, dans lequel la théorie
des modéles n’intervient que comme outil simplificateur. Dans la suite, je présente mes résultats
concernant ces deux problémes.

A.1 Préliminaires formels

La Partie I est constituée de rappels et de développements techniques sur les séries formelles
généralisées dites séries de Hahn. Je rappelle ici que les corps de séries de Hahn admettent une
notion formelle, combinatoire, de somme transfinie de certaine familles dites sommables. On parle
de fonctions fortement linéaires entre deux tels corps U, V pour désigner les fonctions R-linéaires
®: U —V qui commutent avec les sommes transfinies au sens ott ®(3,.;s:)=>_,.; ®(s;) pour
toute famille sommable (s;);er dans U.

A.2 Corps hypersériels

Le corps IL des hyperséries logarithmiques, défini par van den Dries, van der Hoeven et Kaplan
avant que je ne commence mon travail de thése, est le plus petit corps de séries formelles clos
par sommes et produits infinis, par dérivation et intégration. Il est construit a partir d’éléments
Ln, pour p ordinal quelconque. Le premier terme ¢ correspond au logarithme, tandis que les £,,»
pour p >0 sont vus comme des fonctions strictement croissantes tendant vers +oo extrémement
lentement, ce qui est illustré par les équations fonctionnelles

Lyoly=4L,—1,
et en général
bont10lyn="L n+1—1.

Puisque £« croit trés lentement vers +o0o, sa dérivée devrait décroitre trés rapidement vers 0, sans
) )
que cette décroissance soit si forte que £, admette une limite finie en +o00. Ainsi, on devrait avoir

!/
(%) <, <ty

pour tout n € N, ou £, =/{10--- 0/l est 'itérée n-iétme du logarithme. Un choix naturel de valeur

pour /., est alors

1
A (A.2.1)
Hn<w€"
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produit formel qui satisfait en effet aux conditions (A.2). Cette formule se généralise dés lors que
I'on dispose dans le langage de produits formels infinis de termes de la forme ¢, pour tout ordinal
a. On obtient en étendant ces formules un corps ordonné différentiel (I, +, -, <, 9, o) avec une loi
de composition.

Le premier probléme, situé dans le cadre formel, consiste a donner des conditions sur un corps
T de séries de Hahn a coefficients réels, pour qu’une loi de composition telle que définie ci-dessous
existe.

Une loi de composition est une fonction o: L x T>® — T satisfaisant notamment:

HF1. L —T; f+— fos est un morphisme de corps ordonnés fortement linéaire pour chaque s €
T>R,
HF2. fo(gos)=(fog)os pour tous f €L, gc L>R et s TR

6
HF3. fo(t+5):zke]N%5k pour tous f €L, t€ T>R, et § €T avec 6 <t.

HF4. (.05 </ uot pour tous les ordinaux pu, v <wh, et les s,t € T>R avec s < t.

On dit alors que (T, o) est un corps hypersériel, et 'existence de o est équivalente a celle de fonctions
partielles L« 4 € On satisfaisant un petit nombre de conditions axiomatiques notées Ax ici. Les
résultats principaux de ce travail, contenus dans la Partie II, sont les suivants:

Theorem A.2.1. Si T est un corps de séries de Hahn et (Lyn)con est une famille de fonction
partielles satisfaisant Ax, alors il existe une unique loi de composition o:IL x T>R® — T faisant
de (T, o) un corps hypersériel avec Lm0 8= Lyn(s) sur le domaine de Ly».

On définit les plongements entre corps hypersériels comme morphismes d’anneaux fortement
linéaires qui commutent avec o.

Theorem A.2.2. Soit (T, o) un corps hypersériel. Il existe un corps hypersériel (’]~T, o) et un
plongement ®: T — T tel que:

e Toute fonction hyperlogarithme I;: s— L, 0s: T>R — T>R gt bijective.

e Si (%,0) est un corps hypersériel ot toute fonction L~7 est bijective, et si A: T — 8 est un

plongement, alors il existe un unique plongement ¥: T — 8 avec A=V o .

Le premier point ci-dessus signifie que l'on peut étendre les corps hypersériels afin que les
réciproques des fonctions hyperlogarithmes LNV, appelées fonctions hyperexponentielles, soient
définies. Le second point est une propriété initiale pour ’extension 'JT/ T, qui est donc unique
A unique isomorphisme prés.

A.3 Nombres en tant qu’hyperséries

Le second probléme consiste & appliquer ces résultats & T =No, et & utiliser la loi o: L x No”® —
No, pour décrire chaque nombre surréel comme une hypersérie. Le fait que No soit naturellement
isomorphe a un corps de séries de Hahn fut établi dés le départ par Conway. On sait aussi [18]
que No, équipé de la fonction logarithme de Gonshor, est un corps de transséries. Ces faits sont
rappelés en Partie ITI. Nous étendons dans la Partie IV ce résultat pour les hyperséries comme suit:
Theorem A.3.1. Il existe une loi de composition o:1L x No”® — No telle que (No, o) est un
corps hypersériel. De plus, les fonctions hyperlogarithmes sont bijectives.

Nous prouvons également un théoréme de structure qui décrit la fagon dont les nombres peuvent
étre représentés comme des hyperséries. Un nombre ¢ € No admet un développement comme série
de Hahn, série de termes 7=rm ol r € R et m est un mondme, c’est-a-dire un terme additivement
indécomposable. La classe Mo des mondémes est un groupe isomorphe au groupe additif surréel.
Chaque monoéme non trivial m= 1 peut se développer comme

m= e"/’ (Lﬁ Ewu U)L



A.3 NOMBRES EN TANT QU’HYPERSERIES 245

pour un unique tuple (¥, ¢, 5, u,u) ot u, € No, t€ {—1,1} et 5, u sont des ordinaux, satisfaisant
certaines conditions. En développant v et u & leur tour et en poursuivant inductivement, on obtient
une décomposition des nombres en expressions formelles (arbres indexés par des ordinaux et des
nombres réels) appelée hyperséries.

Il s’agit alors d’investiguer 1’existence hyperséries de profondeur infinie, dites nidées. J’ai isolé
une qualité de ces séries nidées, un peu technique, mais qui peut étre considérée comme le fait que
le processus de représentation des nombres comme hyperséries aboutit & une expression dite « bien
nidée », telle que 'expression détermine la place du nombre en question dans la droite surréelle.
Ainsi, chaque nombre conduit & une expression éventuellement bien nidée:

Theorem A.3.2. Tous nombres surréels sont éventuellement bien nidés.

Les nombres correspondant aux expressions bien nidées sont quant a leur quantité en bijection
naturelle avec la classe No elle-méme. Enfin, tout nombre surréel peut étre décrit sans ambiguité
comme une hypersérie. Nous appelons cela la représentation hypersérielle de ce nombre.

Theorem A.3.3. Tout mombre surréel admet une unique représentation hypersérielle, et la
représentation détermine le nombre.

En ce sens, les nombres surréels sont des hyperséries.
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Titre : Hyperséries et nombres surréels

Résumé : Les hyperséries sont des transséries
généralisées construites a partir d’exponentielles e*
et de logarithmes log x d’'une variable positive et in-
finiment grande z, ainsi qu’a partir d’itérateurs trans-
finis e, et {,. de e® et logx respectivement, pour
tout ordinal «. Par exemple, les éléments ey, e, ...
peuvent étre vus comme des avatars formels de so-
lutions régulieres (en particulier monotones et analy-
tiques) de I'équation d’Abel

E o (T + 1) = F o (EwaJrl (T))

pour r € R suffisamment grand, ou FE; exp
est la fonction exponentielle réelle. De telles fonc-
tions, exotiques en apparence, sont particulierement
intéressantes du fait qu’il est possible d’effectuer un
"calcul hypersériel” simple et bien défini avec leur
contrepartie formelles e, £,«. Selon ces regles de
calcul, il doit étre possible de définir de fagon natu-
relle des dérivations et lois de composition sur les

Mots clés : nombres surréels, théorie des modeéles, transséries

hyperséries, de sorte qu’il en résulte des structures
modérées des points de vue de la géométrie et de la
théorie des modeéles.

Lobjectif de cette thése est de définir une structure
de corps d’hyperséries sur le corps No des nombres
surréels de Conway. Nous prouvons que tout nombre
surréel est représenté canoniqguement par une hy-
persérie dans laquelle le nombre w € No joue le réle
de la variable infinie x.

A cette fin, nous montrons comment définir
les itérateurs transfinis L,. et E, . sur des corps
généraux d’hyperséries, et nous prouvons que ces
opérateurs peuvent étre définis de fagon naturelle sur
les nombres surréels. Nous introduisons ensuite un
moyen de représenter chaque nombre surréel comme
une série formelle en w impliquant les opérateurs L«
et E,«, des coefficients réels, et des sommes transfi-
nies.

Title : Hyperseries and surreal numbers

Abstract : Hyperseries are generalized transseries
that involve exponentials ¢*, logarithms log = of a po-
sitive infinite variable z, as well as so-called transfi-
nite iterators e, and /. of e and log x respectively,
for any ordinal index «. For instance, the elements
e1,€w, - .- Can be construed as a formal counterparts
to regular (e.g. monotonous and analytic) solutions of
Abel’s equation

Bt (r 1) = Byo (Byons (1))

for large enough r € R, where E; = exp is the real
exponential function. Such seemingly exotic functions
are of particular interest because their formal counter-
parts e,«, - are amenable to a simple “hyperserial
calculus” according to which derivations and compo-

Keywords : surreal numbers, model theory, transseries

sitions of hyperseries are naturally defined, with tame
properties.

The goal of the thesis is to define a structure of field
of hyperseries on Conway’s field No of surreal num-
bers. We show that each surreal number can be ca-
nonically represented as a hyperseries in which the
number w € No takes the role of the positive infinite
variable z.

To that end, we show how transfinite iterators L
and E,. can be defined on general fields of formal
hyperseries, and we show that these functions can be
defined in a natural way on surreal numbers. We then
introduce a way to represent each surreal number as
a formal series in w involving the operators L, and
E_, real numbers, and transfinite sums.
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