N
N

N

HAL

open science

Data augmentation and generation for natural language
processing

Hugo Boulanger

» To cite this version:

Hugo Boulanger. Data augmentation and generation for natural language processing. Computation
and Language [cs.CL|. Université Paris-Saclay, 2023. English. NNT: 2023UPASGO019 . tel-04105431

HAL Id: tel-04105431
https://theses.hal.science/tel-04105431

Submitted on 24 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04105431
https://hal.archives-ouvertes.fr

—
<
o
@
—
@)
@)
)
Ll
)
LLl
W
Ll
T
—

o
(@)
O
w0
<
o
)
Q)
[\
o
~

NNT :

[]
universite
PARIS-SACLAY

Data Augmentation and Generation

for Natural Language Processing.
Augmentation et génération de données d'apprentissage
en traitement automatique des langues.

Theése de doctorat de I'université Paris-Saclay

Ecole doctorale n°580 sciences et technologies de I'information
et de la communication (STIC)

Spécialité de doctorat: Informatique

Graduate School : Informatique et sciences du numérique,
Référent : Faculté des sciences d'Orsay

These préparée dans le Laboratoire Interdisciplinaire des Sciences du
Numérique (LISN, Université Paris-Saclay, CNRS),

sous la direction de Sophie ROSSET, directrice de recherche,

et le co-encadrement de Thomas LAVERGNE, Maftre de conférences

Thése soutenue a Paris Saclay, le 30 mars 2023, par

Hugo BOULANGER

Composition du jury
Membres du jury avec voix délibérative

Fatiha Sais Présidente

Professeure, Université Paris Saclay

Christophe Gravier Rapporteur & Examinateur
Professeur, Université Jean Monnet

Vincent Claveau Rapporteur & Examinateur
Chargé de recherche, CNRS

Benoit Sagot Examinateur

Directeur de recherche, Inria

Laure Soulier Examinatrice

Maitresse de conférences, Sorbonne Université

Acknowledgements

Working on a PhD is an intensive task, both on the energy required to produce the re-
search and on the mental fortitude needed to not lose purpose when faced with negative
results or the unexpected and abrupt disruption of life which was Covid. First, | would like
to thank my supervisors Sophie Rosset and Thomas Lavergne for the trust you have given
me to work on this broad and complex topic. Sophie, thank you for your patience and your
broad vision of the domain. Thomas, thank you for your technical insights, and your teaching
expertise.

| am grateful for the support of my family through the long educational cursus | have
followed. | would like to thank my friends for the continuous support and the connection
that we have kept which helped us through these difficult times.

| want to thank my colleagues and fellow PhD students for their feedback and propo-
sitions. First, | would like to thank Valentin Carpentier for the three years spent as house-
mate and colleague. | would like to thank Mathilde Veron for her advises, energy, and all the
lunches shared. | also want to thank Juan-Manuel Coria for his insightful comments. | would
like to thank all of the fellow researchers that | met at conferences and winter schools for the
broader view they have given me on NLP. | hope to see you at future events.

| am grateful for the constructive feedback on this work given by Vincent Claveau and
Christophe Gravier. This work has been supported by the project PSPC AIDA: 2019-PSPC-09
funded by BPI-France. This work was granted access to the HPC resources of IDRIS under
the allocation 2021-AD011013018 made by GENCI. This work was granted access to the HPC
resources of Saclay-IA through the Lab-IA machine.

Contents

Contents

Terminology

1 Introduction

1.1
1.2
1.3

Motivation e e e e e e
Research objectives e
Outline and contributions

2 Text Generation

2.1
2.2

2.3

Introduction e
Datarepresentation e
2.2.1 Tokenization
2.2.2 Vectorization e e
Language Modeling e
2.3.1 Introduction e
2.3.2 Decodingalgorithms
2.3.3 Model architectures
2.3.4 Pre-trained Large LanguageModels L.
235 Data e
2.3.6 Language modelinginthiswork

2.4 Vector-to-Textgeneration e

2.4.1 Autoencoders s,
2.4.2 Generative Adversarial Networks
2.4.3 Conclusion e

2.5 Augmentation e e e e

2.6

CoNCIUSION . . o o e e e e e e,

3 Methodology

3.1

3.2

3.3

Setting e e e
3.1.1 Resourcetopology e
3.1.2 Targetsetting e e
Evaluationmethods
3.2.1 Evaluating generation
3.2.2 Sequencelabeling
3.2.3 Evaluating sequencelabeling L.
Protocol e
3.3.1 Low-resourcesimulation
3.3.2 Bvaluation.

3.4

3.5
3.6

3.3.3 DISCUSSION e
COrpora o e e
3.4.1 Named Entity Recognition
3.4.2 Natural Language Understanding
TagEerS . . e e e e e e e e
Summary of the methodology

Pattern Filling Generation

4.1
4.2

4.3

4.4

4.5

4.6

Pattern filling generation
Generateddata.
4.2.1 Description e e e e e
422 Results
423 DataAnalysis e e e
4.2.4 Following natural distributions L.
425 Conclusion e
Onthenumber of patterns
4.3.1 ExperimentDescription
43.2 Results
433 Conclusion e
Augmentation L e e e
447 Results
442 Conclusion e e
Final experiments e
451 Settings e e
452 Results
Conclusion e

Language modeling and Semi-supervision

5.1
5.2

53

54

Semi-supervised learning
Tri-training with a static set of generateddata
521 Tri-training L e e e
5.2.2 Generationmethods
5.2.3 Tri-training experimental settings
524 Results
525 Conclusion
Generative Tri-training L
5.3.1 Generationmethods
5.3.2 Semi-supervised learning methods
5.3.3 Experimentalsettings
534 Results
53.5 Conclusion
Impact of a small development set and performances of generated data

5.4.1 Smalldevelopmentset

54.2 Trainingonthedatagenerated
5.4.3 Comparison to pattern-filling generation
55 Conclusion

6 Modeling with patterns
6.1 Span-replacementwithT5
6.1.1 Preliminary experiment
6.1.2 DataAnalysis e
6.1.3 Filteringand prompting
6.2 Combining pattern-filling and tri-training
6.2.1 Concatenation of Pattern-filling and Tri-trainingdata
6.2.2 Applying pattern-filling on semi-superviseddata.
6.3 Conclusion e

7 Conclusions
7.1 Contributions e e
7.2 DISCUSSIONS . . . v v ot e e e e e e e e e e e
7.3 Summaryof Findings e
7.4 Perspectives e e e e e e e e

Bibliography
A ChatGPT conversation
B Pattern Generation Appendix

C BERT tagger architecture results

123

125

127

Terminology

F Measure used to evaluate tagger performance, further
elaborations in subsection 3.2.3.

tp True positives, mentions where the prediction matches
the known labels.

fp False positives, mentions predicted by the tagger that
do not match known labels.

fn False negatives, mentions that were not predicted by
the tagger.

n Number of sentences sampled from the training
corpus.

Sn Natural subset of data sampled from corpora.

G, Generated subset of data generated from §,,.

t Episode number of tri-training.

1,7,k Index of tri-training taggers.

L Pseudo-labeled set of data at episode ¢ for model i.

Ut Unlabeled data of tri-training at episode t.

m; Tagger i, used to describe the tagger in a broader
setting.

mt Tagger i at episode ¢, used for comparisons between
tri-training episodes.

Mot \ Number of mentions in the list associated with the slot.

Size Size of S,, used for generation or augmentation.

Baseline Experiment where the tagger is trained on S,,.

Topline Tri-training experiment where the tagger is trained on
S,, and the unlabeled set is natural data.

PatGen 20k Experiment where the generated data is generated with

PatGen 20k m
PatGen 20k p
PatGen 20k (p+m)

PatGen 20k aug.

pattern-filling generation with uniform distribution.
PatGen 20k where mention (m) natural distributions
are used.

PatGen 20k where pattern (p) natural distributions are
used.

PatGen 20k where pattern (p) and mention (m) natural
distributions are used.

PatGen 20k used in an augmentation setting, can be
combined with the m and p denominations.

Follow-up

Completion

Mention rep.

Context rep.

Combined

AMethod
Method Individual

Method Outputs

F} scores of tri-training ensembles where the
generation method is the generation of follow-up
sentence with causal language modeling.

F; scores of tri-training ensembles where the
generation method is sentence-completion with causal
language modeling.

F} scores of tri-training ensembles where the
generation method is mention replacement with span
replacement.

F; scores of tri-training ensembles where the
generation method is context replacement with span
replacement.

F} scores of tri-training ensembles where the
generation method is sampled from the four previous
generation methods

Average of seed by seed deltas between the Method
and the Baseline.

F; score of individual taggers trained during tri-training
experiment Method.

F; score of taggers trained on the data produced by
experiment Method.

T5 20k mention

T5 20k context

T5 20k both

T5 20k filtered
T5 20k filtered

F} score of taggers trained on data augmented with
mention replacement.

F} score of taggers trained on data augmented with
context replacement.

F; score of taggers trained on data augmented with
either context or mention replacement.

T5 20k both with regex filtering.

T5 20k filtered with prompts added in front of the

prompt. modified sentence.
Follow-up + F; score of taggers trained on data generated in
PatGen Follow-up and PatGen 20k and §S,,.

Mention rep. +
PatGen
PatGen on
Follow-up

F} score of taggers trained on data generated in
Mention rep. and PatGen 20k and S,,.

F} score of taggers trained on Follow-up data outputs
augmented by pattern-filling generation without
natural distributions.

10

1 - Introduction

Natural Language Processing (NLP) is a rapidly growing field that deals with
the interaction between computers and human language. One of the major chal-
lenges in NLP is dealing with low-resource scenarios, where limited amounts of
labeled data are available. In this thesis, we focus on the use of text generation as
a means to produce additional data for improving sequence labeling tasks in low-
resource settings. Sequence labeling is a fundamental task in NLP that involves
assigning labels to individual elements in a sequence, such as words in a sentence
or tokens in a text. The goal of this research is to explore the potential of text gen-
eration to enhance the performance of sequence labeling models by augmenting
the available low-resource training data. We investigate various text generation
techniques and evaluate their effectiveness on different sequence labeling tasks
in low-resource settings. The contributions of this thesis include a novel approach
for using text generation to improve sequence labeling in low-resource settings
and an in-depth analysis of the impact of text generation on the performance of
sequence labeling models in such scenarios.

This first paragraph of the introduction contains good surface knowledge of
the domain and presents the problems faced in this thesis, but it fails to deliver on
the contributions made by this thesis. It is also very short for a thesis introduction;
at this point, you might be wondering why we are discussing the qualities of the
first paragraph. Itis because a human did not write the previous paragraph; it was
generated using ChatGPT'. Thanks to the advances in NLP, generating compelling
text has become as simple as writing some description of the logic and elements
of the wanted text, and this kind of generation will be one of the main topic of this
thesis.

1.1 . Motivation

Using NLP for information extraction requires labeled data to build statistical
models that perform annotation. Usual corpora for sequence labeling typically
contain around fifteen to twenty thousand sentences that have to be cleansed of
private information, manually labeled by multiple people, and for some, have to
be transcribed from speech to text, which adds yet another layer of work. Prob-
lems can arise at every step of the process, which makes it a lengthy and costly
process that can easily hinder innovation and applications of NLP methods to new
domains or domains where the target data contains private information. For ex-
ample, suppose you want to create an application that can extract relevant infor-
mation about treatments, tests, or problems from patient records. In that case,
you will need to have access to patient records that have to be labeled by medical
professionals who have very low time to spare for labeling. Fake medical records
could be written by medical professionals to avoid privacy issues, as can happen
for cases studied in a university or used for exams. This would, however, take

"https://chat.openai.com

11

https://chat.openai.com

even more time from the medical professionals, which goes against the goal of
automating cumbersome tasks through A.l. and automation. If writing sentences
and labeling them could be automated to create datasets, that would solve the
problems highlighted before. This sounds like the serpent eating its own tail, as
it is our aim to be able to automate labeling with machine learning approaches,
which require labeled data. This limitation of needing labeled data is a limitation
of machine learning for which solutions exist, such as using non-labeled data as
additional training examples. Text generation, on the other hand, has improved
to the point of being able to generate compelling text thanks to the ever-larger
models and datasets used for their training.

The following quote is an example of text relevant to the medical task gener-
ated using ChatGPT in the same manner we have generated the introduction, with
mentions manually labeled.

“John Smith, a 54-year-old patient, visited his primary care physician
complaining of chest pain and shortness of breath. The physician
ordered an ECG test, which revealed that the patient was experienc-
ing an acute coronary syndrome. The doctor prescribed aspirin as a
treatment and referred the patient to a cardiologist for further evalua-
tion. The cardiologist recommended a cardiac catheterization proce-
dure to assess the extent of the damage to the coronary artery. Based
on the results, the patient was diagnosed with atherosclerosis, and
the cardiologist recommended a treatment of angioplasty and stent-
ing. The patient underwent the procedure and was discharged from
the hospital the following day. The patient was advised to follow a
healthy lifestyle and to take medications to lower his cholesterol levels
to prevent future cardiac events.” - ChatGPT.

In the previous quote, the cyan-colored text represents the problems, the green
text represents tests, and the red text represents treatments. This text was la-
beled manually as per our understanding of the concepts present, to highlight
the mentions that could exist as ChatGPT doesn't label the data generated. While
ChatGPT did not exist during our thesis, the underlying principles of language
modeling and the architecture of GPT models [Radford et al., 2018] existed and
already produced compelling text. Recent models are trained on large amounts
of data, tens to hundreds of gigabytes of text, which contain information about
a wide amount of subjects. These subjects can directly be linked to the domain
of the downstream tasks we wish to solve or adjacent enough to bring relevant
information in the generation setting. These models are, however, not trained
to produce labeled sentences and would require thousands of sentences to be
fine-tuned without problems for this task.

Our aim is to reduce the barrier of entry of NLP by reducing the quantity of
natural data necessary to train information extraction tools. In particular, we will
work on sequence labeling tasks such as named entity recognition or natural lan-
guage understanding. To reduce the need for data, we propose to study text gen-
eration in order to generate the missing data.

12

1.2. Research objectives

As presented previously, machine learning requires a high quantity of data
to produce well-performing models. If the target task is to predict labels on the
data, the training data must also be labeled, which makes the data more difficult
and costly to produce. The goal of this thesis is to study and devise methods to
improve sequence labeling via the use of generated data. The methods need to
be usable in the context of the AIDA project, the project on which this thesis is
financed. The goal of this project is to build A.l. tools to help the French private
sector have access to A.l. This project needs to easily be applied to new tasks
where data is only available in extremely small quantities due to privacy or indus-
trial constraints. Our goal in this project is to be able to produce labeled data
that can be used to improve the performance of information extraction models.
Our methods must be applied in a setting where the quantity of labeled data is
extremely low due to privacy considerations.

1.3. Outline and contributions

To be able to understand this work, a review of the literature on text gener-
ation, with a focus on language modeling, is given in the following chapter. This
chapter is oriented toward language modeling, which is also a technique used for
the downstream task tackled in this thesis. The methodology is then described,
which sets experimental settings shared between the chapters. This includes set-
ting up the low-resource setting, where the quantity and nature of the data and
resources used are discussed. We propose a method of evaluation for task-driven
data generation and a generic experimental protocol describing how the natural
data is used as a starting point for generation. The corpora and taggers used in
this thesis are also presented in this chapter. The contributions of this thesis are
described in the following paragraphs in the order they are presented.

Pattern-filling generation: The first generation method presented in this the-
sis is the pattern-filling generation method. We have proposed our implementa-
tion? of the method. We have also provided extensive analysis of the performance
of the method in multiple settings [Boulanger, 2020] that has been presented at
RECITAL 2020. The first setting tested is a setting where the entirety of the data
used to train the taggers is generated. The second setting aims at finding the re-
quired number of patterns needed to produce generated data of a quantity. The
third setting is a setting where the generated data is used alongside the natural
data to train the taggers. We also propose the study and evaluation of the meth-
ods used with recent models and methodology to tackle the limits of previous
evaluations.

Tri-training and language modeling: The second approach for labeled text
generation presented in this thesis is the use of language modeling coupled with

“https://github.com/HugoBoulanger/Pattern-Filling-Generation

13

https://github.com/HugoBoulanger/Pattern-Filling-Generation

tri-training, a semi-supervised learning method. We have first contributed a study
presented at Deeplo 2022 of the behavior of the tri-training algorithm with data
generated with language models® [Boulanger et al., 2022]. Our second contribu-
tion to this approach is generative tri-training, a modified tri-training algorithm in-
cluding the language modeling text generation process, which is currently in the
publication process. With this method, we further formalize the language model-
ing methods used for text generation in the first contribution and add new meth-
ods to the pool of available methods. Generative tri-training is both a labeled text
generation technique and a training algorithm, and the previous contributions
evaluated only the taggers trained during the tri-training procedure. Our final con-
tribution to this method is the test of the quality of the labeled data generated by
the generative tri-training process.

Combinating language modeling and patterns: The language modeling tech-
niques used to generate text presented in the previous chapters are combined
in this chapter using different methods. To improve upon the lack of additional
mention or patterns in the pattern-filling generation method, we proposed span-
replacement modeling as a means to produce new labeled sentences with a pro-
cess similar to pattern-filling generation, which did not produce positive results.
This method is inspired by language modeling methods used with generative tri-
training. As each generation method introduced in previous chapters improved
upon the baseline, we also propose using them in parallel and in sequence.

3https://github.com/HugoBoulanger/Tritraining-Gen

14

https://github.com/HugoBoulanger/Tritraining-Gen

2 - Text Generation

Training models on small quantities of data is a difficult task. Gathering more
data for these situations might be a solution, but it is not always possible. While
the availability of some textual data has improved over the years, many domains
and languages remain that do not or cannot benefit from such openness. In
those cases, using available data to augment the small quantity of in-domain la-
beled text might not be the right solution. This thesis aims to provide insights into
tackling the low resource problem through generation. This chapter presents an
overview of NLP techniques used to generate text. Some of these techniques
could be adapted to generate labeled data.

2.1. Introduction

Language is a medium of expression, a means for transmitting information
and emotions. The canals through which language is expressed have evolved
from spoken language to writing, recordings, or signing... They include various
modes of expression across multiple temporalities. In this work, the focus is
brought on the textual representation of language. Textual representation of lan-
guage has been a tool for transmitting information and recording data. Due to
the vast amount of data recorded in textual form throughout history, being capa-
ble of automatically retrieving information from text became a logical goal. The
applications of information retrieval from texts are endless. Being capable of ex-
tracting information from a discussion is key to obtaining dialogue systems that
can effectively do their tasks. Extracting information from documents can lead to
a better and faster access to key documentation. Learning how to automatically
create new texts following the rules of language learned intuitively became a goal.

The field of linguistics has studied language construction to understand better
what mechanisms were at play to form language. Formalizing the properties of
languages has led to theories on the construction of sentences. As such, one of
the results of their studies is the production of methods to construct sentences. “A
generative grammar is formally a collection of statements, rules, or axioms which
describe, define or generate all well-formed utterances in a language and only
those.” [Halle, 1962]

While most linguistic knowledge is turned towards forming correct sentences,
recent applications in NLP aim to solve problems around text which might not be
well-formed and might include lists or tables. The text meant to be processed by
NLP tools is often produced during human interactions. Whether it is a chat in-
teraction, a tweet, or the automatic transcription of a piece of speech, these texts
often contain errors at multiple levels. Chat interactions are prone to typing mis-
takes or wrong auto-corrections, which will change the meaning and structural
information. Tweets are by nature limited in length, which causes users to pro-
duce text with lexical and structural errors to fit the format of tweets. Users use
touches of sarcasm, subtext, and expressions linked to the site to express them-

15

selves in tweets. Tweets will contain URLs and hashtags, which might disrupt the
structure of the tweets. These are the types of problems that are faced with the
data processed by our tools. Our hypothesis is that the modeling techniques are
better suited than linguistic techniques for this sort of data.

This chapter presents an overview of natural language processing oriented
toward text generation. This chapter focuses on the techniques adjacent to lan-
guage modeling. An overview of how text is represented as it contributes to the
techniques used to analyze and generate text is given. Language modeling is pre-
sented, from how to decode a sequence of text to the ever-larger models and
their applications. Text generation conditioned on non-textual data is presented.
Finally, methods aimed at adding data generated from the available data are pre-
sented.

2.2 . Data representation

As NLP included more and more statistical tools, the need for data represen-
tation adapted to the tools used arose. Text representation impacts how text is
processed, which, in turn, impacts how text is generated. This section presents
how textual data can be transformed into a format fit for statistical models. Tex-
tual data is a sequence of bytes, or a sequence of characters if you know the en-
coding, and must first be split into relevant segments before processing. The first
idea would be to split sentences into words. That would require to have shared
definition of what a word is. This definition may vary depending on the mode of
expression of language, the linguistic framework of analysis, and the language it-
self. For text, a first approach might be to use separators like spaces of any types
or punctuations as markers of word frontiers. This approach might work for Euro-
pean languages, but there exist languages such as Japanese in which there are no
separators for words. Keeping only words might also limit the capacity of analysis.
Thus, any segments coming from an appropriate segmentation method are used.
These segments are called tokens. Tokens can be used to represent segments at
different granularities depending on the sentence’s segmentation. The process of
transforming text sequences into sequences of tokens is tokenization and is the
first process described in this section. Tokenization is not the end of the transfor-
mation pipeline necessary to use text with neural networks. These models oper-
ate non-linear transformations on vectors. The tokens need to be transformed
into vectors containing relevant information. The different techniques used to
create appropriate representations are explored in the second subsection. These
representations include semantic information and structural information.

2.2.1. Tokenization

In this work, every experiment is done on strings of text. Transforming text
into our models’ format is the first step of every experimental pipeline made. It
is important to understand the techniques used to process text. The first step of
this process is tokenization. Tokenization is the technique with which a string of
text is split into relevant substrings called tokens. Dividing a sentence into a se-
guence of relevant tokens is a problem. The first idea would be to use words as

16

tokens. As previously stated, this might have been a good idea if strong criteria
existed to define and separate what segments were words. Even if words could be
separated perfectly, they are not the only interesting features of sentences. Punc-
tuation or other segments of characters, such as URLs, dates, or numbers, can
have relevance for the analysis of the sentences. As such, they need to be rep-
resented by tokens. The simplest approach to separating tokens is splitting the
sentences over white spaces. This method mostly works for western languages,
but other languages, such as Japanese or Mandarin, do not contain white spaces.
Techniques presented later can deal with such cases. The problems of such a sim-
ple approach can also be seen with western languages. These tokenizers would
have problems with punctuation like the simple tokenizer in Figure 2.1. The punc-
tuation will not be split from the words in the tokens, thus multiplying the occur-
rences of the same words with different punctuation attached to the vocabulary.
New combinations of words and punctuation would produce unknown tokens.
The unknown token is a token used to represent all the out-of-vocabulary tokens.
This token keeps some integrity for the structure of the text, but the information
is ultimately lost. In the case of the combination of words and punctuation, the
model loses access to information that would be easily available. Pre-processing
can be done to alleviate some of these issues. Punctuation can be split off of the
words to obtain better representation. There exist other problems similar to the
problem of punctuation involving casing. A change of word casing means addi-
tional entries in the vocabulary or more usage of the unknown token. This prob-
lem can be minimized by normalizing the case of the words. Normalization might,
however, result in a loss of information. In our European framework, word case
contains information about sentence boundaries, as most sentences start with an
upper case. Some tokens will not have the same nature with upper or lower case
and will represent different types of entities, such as the word "brown," which is a
color, and the word "Brown," which is a family name. Finally, the case can also rep-
resent tone. In less formal texts, such as tweets, sentences or words in uppercase
often represent shouting, which might be useful for downstream tasks.

The goal of the tokenizer is to represent the strings of text reliably. If two
strings are close, it would be easier for the downstream model to manipulate two
close representations.

Different approaches to this problem have been explored. More meaningful
representations might be found by dividing the word-level tokens into multiple
sub-word tokens. This can be seen to a certain extent in the example of "It's"
being divided into "It" and "'s" in Figure 2.1. Character representations could be a
solution to obtain a more generic approach. Byte-level representations have also
been used. Such methods are even more generic as they are agnostic to character
encoding.

Byte pair encoding [GAGE, 1994] (a.k.a BPE) is a compression technique origi-
nally used to accelerate pattern matching. This algorithm learns a set of merging
rules to compress the data. These merges work by pairing the bytes. If you re-
place the bytes with the base set of symbols used to write text, this method can
produce merging operations that create sub-words. For example, in English, the
letters “t” and “h” are often found together, which means that there is would likely

17

Figure 2.1: Examples of a simple tokenizer versus a complex tokenizer on two close sentences: "It's
not ready!" and "It is not ready." On the first line, the simple tokenizer produces two sequences
of tokens of different lengths, with only one token being shared between the two sequences. On
the second line, the complex tokenizer produces two sequences of tokens of the same length with
three exact matches and two similar tokens for the parts of the sentence that have changed.

be a merge operation that combines them into a subword “th” when possible.
The compression algorithm becomes an algorithm that produces a sequence of
tokens out of a sequence of symbols. BPE can be used to transform words into
sequences of sub-words by using the bytes or the characters as the base unit. BPE
tokenizers learn merge rules that produce a new token for the most frequent pair
of tokens until the maximum vocabulary size is met. As long as the characters
used to produce the words are part of the vocabulary of characters, BPE tokeniz-
ers should be able to produce a token or a sequence of tokens that better repre-
sent the input words than any unknown token would. This technique has recently
been used to improve NLP performance for out-of-vocabulary words. Machine
translation [Sennrich et al., 2016b] was the first task to use this type of encoding.

Wordpiece [Schuster and Nakajima, 2012, Wu et al., 2016] is another represen-
tative of the sub-word tokenizers. The principle is to create subword or word rep-
resentations by iteratively adding tokens that are mergers of other tokens present
in the vocabulary. The choice of the combinations is made by seeing which combi-
nation increases the likelihood of a language model built on the training set with
the current vocabulary. This process is repeated until either a maximum vocabu-
lary size or a quantity of likelihood is reached. Unigram [Kudo, 2018] is a subword
tokenizer built with the aim of regularizing neural language model training. This
subword tokenizer does not produce a unique sentence segmentation but con-
tains probabilities for the appearance of each token. The segmentation can then
be done by taking the most likely sequence or by sampling the tokens with the
probabilities. SentencePiece [Kudo and Richardson, 2018] is another subword

18

tokenizer. While previous tokenizers presuppose that the sentence is already
split into word-level representations, this tokenizer does the entire sentence-to-
subword pipeline. This tokenizer implements both BPE and unigram with further
optimizations. SentencePiece is a lossless tokenizer, which means that it is built
to be able to reconstruct the text exactly as it was before tokenization.

Most recent transformer models use subword tokenizers. This tokenization
has helped capture a better representation of words that would not have been
included in the vocabulary. Subword tokenizers have also reduced the vocabu-
lary size, which is important for the modeling task. Text can be split into relevant
sequences. The next subsection describes how those tokens are represented for
modeling.

2.2.2. Vectorization

Transforming text into information-relevant segments, or tokens, is the first
step toward statistical modeling. This section presents the different techniques
used to represent tokens, a form of discrete data, in a vector space. The tech-
niques that use basic heuristics to represent the context are first presented. The
embeddings and the different techniques that have an impact on learning them
are then presented. Finally, the current works around the representation of struc-
tural information in the embedding space are presented.

\ a and cat cats dogs have | like They
| like cats 0 0 0 1 0 o 1 1 0
They like dogs 0 O 0 0 1 0O 0 1 1
| have a cat 1T 0 1 0 0 1 1 0 0
They have catsand dogs | 0 1 0 1 1 1 0 O 1

Table 2.1: Bag of words examples. On the left column are the sentences, and on the right columns
are the vector weights associated with the tokens at the top of the column.

A bag of words, or BoW, is a method to generate a vector representing which
words or n-grams are within a sentence. This method creates a vector of the vo-
cabulary size with the number of occurrences of each word in the sequence of
text. Examples illustrate this approach in Table 2.1. BoWs are a simple method to
produce vectors representing a sequence of text. This method is prone to many
problems. Firstly, due to the counting of the words in the sentence, words with low
semantic meaning and high frequency might create problems. These stop words,
such as [the], [and], [it], etc., help structure sentences but bring a low amount of
information. Secondly, this vector is very large since its size is the same as the vo-
cabulary size. Finally, this vector does not contain information about word order,
which may Term frequency-inverse document frequency, or TF-IDF, functionsin a
similar manner. It constructs a vector with the frequency of appearance of words
within a sentence weighted by the inverse frequency of the word within the doc-
ument the sentence is taken from. This inverse term lowers the weight of stop
words which bring little semantic information. Those two methods are not usable
as such for word prediction. Still, they represent the first type of information used

19

to build vectors which is the co-occurrence of words within an environment, here
the sentence.

Figure 2.2: Naive representation of the power of representation of vectors. This is a vector rep-
resentation of sentences in the latent space of an auto-encoder using LSTMs after one epoch of
training and. A PCA was applied on the vectors to obtain this representation. The two ribbons cor-
respond to the presence of either a full stop or an interrogation mark at the end of the sentence.
The stripes correspond to the length of the sentence.

Embeddings are a means to represent semantic objects in a vector space. They
can represent tokens, sentences, and images in a vector space. An illustration of
the power of representation of vectors is shown in Figure 2.2 where the represen-
tation of sentences in the latent variable of an auto-encoder at the end of a single
epoch of training. The space is very structured during this training period and
only contains simple structural information about the sentences encoded. Explo-
ration of these objects has been on the rise alongside the popularization of neural
networks. Embeddings are technically a lookup table linking the token to a vector
representation. There are two interesting factors to embeddings, the first is how
to obtain them, and the second is how information is contained within these em-
beddings. In the following paragraphs, the most impactful training methods for
embeddings are reviewed, and the types of information retrieved from these rep-
resentations are discussed.

Continuous bag-of-word [Mikolov et al., 2013] representations use a feed-forward
neural network language model [Bengio et al., 2000] without the hidden layer
trained with the objective of predicting the current word based on the context.
Skip-gram [Mikolov et al., 2013] representations also use a feed-forward neural
network language model without the hidden layer, this time trained with the ob-
jective of predicting the context based on the current token. These embedding
techniques are illustrated in Figure 2.3. These embeddings were designed with
the idea that other language models could use them. They were effectively used

20

INPUT PROJECTION QUTPUT INPUT PROJECTION OUTPUT

w(t-2)

w(t-2)
w(t-1) w(t-1)
_\SUM /
—»{ w(t) I —
w(t+1) / x w(tH1)
w(t+2) w(t+2)

cBow Skip-gram

Figure 2.3: CBOW and Skip-gram description from the original article [Mikolov et al., 2013]. The
CBOW embeddings are learned using the context as an n-gram input to predict the current token.
The Skip-gram embedding is learned by predicting the context n-gram from the current token.

across various models. GloVe [Pennington et al., 2014] embeddings pushed the
analysis of the capabilities of embeddings further. The technique used to produce
GloVE embeddings is a factorization of the co-occurrence matrix. FastText [Bo-
janowski et al., 2017] embeddings use the skip-gram approach over a sub-word
representation of the tokens. These embeddings have been at the forefront of
neural network-based NLP before the rise of large model fine-tuning. They have
improved models' performances on sequence labeling tasks [Chiu and Nichols,
2016]. These improvements have raised questions on what properties of pre-
trained embeddings were the cause of these improvements. Outside of being
a compressed representation of the large quantity of data they were trained on,
pre-trained embeddings have shown that relations existed between certain types
of tokens. Forinstance, if you take the vector of the token “Paris” and you subtract
the vector of the token “France,” you obtain a vector representing the relation “is
capital of.” If you add this relation vector to “Germany,” you might obtain a vector
close to “Berlin.”

Word embeddings were initially used to represent the tokens independently
of the context. The context was used to train the embeddings, as seen with CBOW,
Skip-Gram, and GloVe, but these vectors represented a global representation of
the token. The model’s job was to use these embeddings as the initial represen-
tation of the token and add contextual information to them. New models looked
at the representation of tokens through character representation. FastText and
ELMo [Peters et al., 2018] are representatives of this exploration of the character-
level space. The ELMo embeddings are derived from a language model, which
is composed of a character-level convolution network and a two-layered BiLSTM

21

with residual connections on top. The representations derived are a linear com-
bination of the outputs of each layer. This model is used to produce the repre-
sentations on a sentence-to-sentence basis, not to produce a fixed matrix of em-
beddings. As such, ELMo takes into account local context when producing repre-
sentations. In a way, embeddings were one of the first sources of transfer learn-
ing for neural networks. One of the first use of recent context-focused models
were the creation of contextual embeddings. Rather than fine-tuning the models
for the task, which was a more costly option, the pretrained models were used
to generate embeddings with contextual information. Models such as ELMo and
BERT [Devlin et al., 2018] were at the forefront of this movement. The BERT and
the transformer architecture are described with more details in a future section
and in Figure 2.7. This model was designed to produce embeddings by combining
the outputs of the last layers. One of the major changes BERT brought to the em-
bedding landscape is the use of subwords and not character-level representation.
Using BERT and its’ derivatives became a standard approach in NLP due to the
performance gains it often brought.

The transformer architecture [Vaswani et al., 2017] has become one of the
most used architectures for large language models, or LLMs. Embeddings used
to represent the tokens need to include positional information for transformers.
Multiple methods have been designed to include structural information in the
embedding space. Absolute positional embeddings added to the semantic em-
beddings have been used to include structural information [Vaswani et al., 2017].
In this case, one vector is assigned to every position. These embeddings can take
two forms: a static form based on a mathematical formula or a trainable form.
Rotary position embeddings [Su et al., 2021], or RoPE, have been a highly repre-
sented large language model embedding technique. They are rotation matrices
dependent on the position of the token. The semantic embeddings are multiplied
by these rotation matrices to obtain the final representation.

Most recent models have stopped using pre-trained embedding matrices in
favor of fine-tuning the model producing the vectors. This stop comes from the
wider availability of high-capacity computing resources and the better represen-
tation of contextual information obtained with a fine-tuned model. During this
Ph.D., we used pre-trained embeddings in our first publication at RECITAL [Bou-
langer, 2020] but have since moved to transformer-based model fine-tuning for
those reasons. However, these models still need an initial vector representation
of the tokens, which they train during training. Transformers also need positional
encoding to better represent the structural information. Embeddings are the first
block of many language models. The next section explores language modeling,
focusing on deep learning techniques. Most of these techniques require text to
be processed through the tokenization and vectorization techniques presented
above.

2.3. Language Modeling

Transforming a text into a sequence of representative vectors is the first step
to processing text using statistical models. The role of the model is to take these

22

pieces of information and compute probabilities related to the tasks they are try-
ing to solve. Language modeling is the task of computing the probability distri-
bution of tokens at a given position while knowing other parts of the sentence.
Thanks to transfer learning, many NLP tasks have seen improved methods using
language models at the center of their pipeline. Every aspect of models, from
architectures to the tasks on which they are trained, has seen plenty of develop-
ment. The task of language modeling is a task of text generation conditioned on
the previously known tokens. Language modeling is a key component of NLP and
a possible method for text generation. We will describe the language modeling
landscape in this section for these reasons.

2.3.1. Introduction

Language modeling is the computation of the distribution of probabilities over
a sequence of tokens. The parameters and architecture used to obtain the distri-
bution is the language model. Modeling can be done in two different manners.
The model can produce the probability distribution for each token simultaneously
or sequentially. Simultaneous prediction is called non-autoregressive (NAR) mod-
eling. This method is generally faster to compute because there is no need for
iteration over the sequence of generated tokens. While it may be interesting for
downstream tasks, this type of modeling offers fewer possibilities in terms of gen-
eration.

The most common way of doing language modeling is to sequentially model
the probabilities of the tokens. This method of generation is called autoregressive
(AR) modeling. AR modeling takes longer to train and to use at inference due to
the computation of the model over all the tokens up to the current token for every
token of a sentence being modeled. However, AR modeling tends to produce
better results than NAR modeling. The performances of AR modeling depend on
the algorithm used to choose which token to keep for the following inference.

Obtaining a probability distribution for the tokens helps find the most likely to-
kens for text generation. The model does not, however, make a choice. Decoding
algorithms have been designed to explore the space of possible sentences based
on the probabilities output by the language models and are first presented. Lan-
guage model architectures are then reviewed. An overview of the landscape of
large language models and the datasets used to train and evaluate them is given.
Finally, general model usage and usage in this thesis are discussed.

2.3.2. Decoding algorithms

Language models produce probabilities for tokens based on what they have
learned and the context. However, choosing the token with the highest probabil-
ity is not always a good solution. The choice of a token will impact the probabilities
of the following tokens. Decoding the tokens from a model can be seen as a tree
search. However, searching through all the branches of the tree would take expo-
nential time on the size of the vocabulary, which is too long. The second problem
of a simple tree search is that, in the case of decoding, traveling to the leaves of
a node is very expensive. These two problems combined show the necessity of
finding algorithms that can work with partial information to decode a sequence

23

like

own

cats

dogs

Figure 2.4: Decoding using greedy decoding. The chosen tokens are the token with maximum
probability and are indicated with a red line.

of tokens.

The most simple decoding algorithm is greedy decoding and is illustrated in
Figure 2.4. Greedy decoding functions by selecting the token with the maximum
probability. The strength of this algorithm is its’ simplicity, but the simplicity is also
its" weakness. This algorithm tends to produce less varied and meaningful sen-
tences because meaningful tokens with slightly lower probabilities get ignored.

The beam search algorithm is a decoding algorithm predicting a fixed number
of sequences or beams. This algorithm is illustrated in Figure 2.5. Using a width
of 1 results in having a greedy search. This algorithm is supposed to introduce
more variety to the generated sentences than greedy search, but in practice, this
variety is often localized at the end of the generated sequences. Improvements
to the beam search algorithm in terms of diversity have been brought with the
diverse beam search algorithm [Vijayakumar et al., 2016]. This algorithm forms
groups of beams that are decoded sequentially. Diversity is forced between the
groups by reducing the probability of the chosen tokens of previous groups for the
current group. Repetitions of sequences of tokens are also a common problem
with the beam search decoding algorithm. This problem can be worked around
by reducing the probabilities of tokens generating a previously decoded n-gram
to O [Paulus et al., 2018].

Sampling the next token using the probabilities given by the model is another
solution which improves diversity. The highest probability tokens are almost guar-
anteed to be chosen, but itis also not unlikely to choose a less fitting token. These
low-probability tokens can cause some issues. To solve those issues, limiting
the sampling to the top k tokens [Fan et al., 2018] is possible. This study states
that sampling from the top 10 most likely tokens improved variety in length and
avoided repeating sequences. One of the pros of this technique is the fixed num-
ber of tokens generated which allows for building other algorithms, such as rein-
forcement agents on top. It is also possible to limit the sampling to the top tokens

24

like

own

cats

like dogs

own

cats

like

dogs like

own own

cats cats

dogs like dogs

own

cats

dogs

Figure 2.5: Decoding using beam search with a beam of size 2. The first tokens chosen are the
tokens with maximum probability: | and cats. The blue beam on the second step, “cats like,” has a
probability inferior to another choice from the red beam, “l own,” which explains why it is replaced
by this beam.

whose probabilities sum equals p [Holtzman et al., 2019]. This technique, called
top-p or nucleus sampling, is more flexible than top-k£ sampling. These two tech-
niques allow a better quality of sampling, which in turn lead to better sentences.

Simply taking the maximum probability does not produce useful sentences.
A combination of rules to enforce diversity and sampling seems to provide the
best results in terms of sentence generation. In the following section, the archi-
tectures of the models that produce the probabilities necessary for the decoding
algorithms to work are presented.

2.3.3. Model architectures

Model architectures have played a significant role in the performance of lan-
guage models. The capacities of a model depend on the operations performed
by this model. For language modeling, this comes in the form of being capable of
capturing multiple scales of context. This section will recap the architectures still
relevant for language modeling and downstream labeling tasks. The evolution of
architecture has been informed by the development of new techniques and ad-

25

vancements in hardware technology. The impact of these developments on the
landscape of techniques and architectures for language modeling is discussed.

N-gram models are statistical models using the previous n — 1 tokens as the
context to predict the current token. These models are Markov models. As such,
these models follow the independence assumptions, meaning that the current to-
ken only depends on the previous n — 1 tokens. This hypothesis means that long
dependencies are not explicitly represented. As a result, studying language prop-
erties on such models is limited. But it was never the goal of such models, which
are oriented towards practical applications, such as spelling correction. These
models are cheap in computation power but have a scaling problem in terms of
memory. The higher n is, and the larger the vocabulary is, the more memory the
model takes. Conditional random fields [Lafferty, 2001] (a.k.a CRF) are another
type of statistical model following the Markov properties. These models are still
mainly used for sequence labeling tasks by adding a layer on top of the other
model architectures described below. But they have also been used on tasks close
to text generation, such as machine translation [Lavergne et al., 2011].

One of the issues of previous modeling techniques is the vocabulary size. Neu-
ral network language models were introduced as a means to counter that prob-
lem [Bengio et al., 2000, Schwenk and Gauvain, 2005]. They project the vocabulary
upon embeddings, which are limited in terms of the number of features compared
to the vocabulary size. These models use the n-gram approach for modeling and
combine the representation of the last n — 1 tokens to predict the current token.
These models were small enough to be computed on CPU. Vocabulary was still a
problem for token prediction, and techniques were developed to counter these
problems, such as the structured output layer [Le et al., 2011].

Deep neural networks truly had a breakthrough thanks to the advent of par-
allel computing hardware, namely Graphics Processing Units, or GPUs. This evo-
lution of computing capacities allowed for more complex neural network archi-
tecture to be trained within a reasonable time frame. Convolutional neural net-
works [Le Cun, 1989] (a.k.a CNN) is a type of neural network applying convolution
operations to the data and learning the convolution kernels. This type of model
is commonly used with images, but it can be used for one-dimensional inputs
such as text [Pham et al., 2016, Dauphin et al., 2017]. The convolution operation
works as a filter over a context window, which allows a good representation of
the local context. Recurrent neural networks (a.k.a RNN) are a family of neural
networks that take sequential inputs and, at each step ¢, use the information com-
puted by the model at step t — 1. RNN is also a denomination of models using a
tanh to fuse the current input with the previous output. Long short-term mem-
ory units [Hochreiter and Schmidhuber, 1997] (a.k.a LSTM) is a type of RNN that
shares two types of information between each step. The pieces of information
shared between each step are the previous prediction of the unit and a vector
modified by the unit. These pieces of information, or memories, are supposed to
act as short-term and long-term memory, respectively. Gated recurrent units [Cho
etal., 2014a] (a.k.a GRU) are a type of RNN that uses gates rather than tanh to fuse
the input with the previous output. Gates were previously used by LSTMs to mix
the different memories and inputs. Increasing context information is key to im-

26

proving model performance. While RNNs improved the context by keeping some
information from previous predictions, the biggest improvement was to use of
bidirectional versions of the architectures. Having one model in each direction
helps language modeling by giving a broader context to the token. Sequence-to-
sequence [Cho et al., 2014b] modeling uses an encoder-decoder model architec-
ture where the encoder’s goal is to encapsulate a sentence’s different aspects,
and the decoder’s goal is to use this encapsulation to create an appropriate re-
sponse. An illustration of the sequence-to-sequence architecture can be found
in Figure 2.6 which represents the dialogue response generation task. This tech-
nique was prominently used for machine translation, dialogue response genera-
tion, and summarization. This approach has been used for both RNN-based mod-
els and CNN-based models [Cho et al., 2014al].

Fine ' thank you ! <eos>
[RNN HRNNHRNNHRNNHRNN RNNHRNNHRNN H RNNHRNNHRNN]
How are you ? <eos> <bos> Fine ' thank you !

Figure 2.6: Sequence to sequence model with RNNs.

The self-attention mechanismis a re-weighing technique based on vector prox-
imity [Cheng et al., 2016]. This technique has been introduced to improve long-
distance relations with LSTM models for sequence-to-sequence modeling. Each
output becomes a linear combination of the outputs, with weights being the dot
product between the output computed and the other scaled, so the sum equals
1. While the principles of self-attention have permitted a better representation of
long-distance relations between words, multi-headed attention has been a revolu-
tion for NLP. This type of attention layer was introduced alongside the transformer
architecture [Vaswani et al., 2017]. Instead of computing attention on one set of
fully-sized queries, keys, and values, multi-headed attention computes multiple
attention in parallel on h smaller set of queries, keys, and values. These queries,
keys, and values are obtained by projecting the original queries, keys, and values
to a smaller size through linear projection layers that are independent and train-
able. The output of the multiple heads is then concatenated and projected to the
Size.

Transformers [Vaswani et al., 2017] is an architecture of models using multi-
headed attention layers as the core of the architecture. A description of the ar-
chitecture can be seen in Figure 2.7. This architecture is at the center of recent
language modeling improvements to performances. This architecture uses an
encoder-decoder format. The encoder and decoder are blocks of N consecutive
layers, respectively the encoder and decoder layers. The composition of the en-
coder and decoder layers is different, but they are both built with multiple blocks
made of a computation layer and a normalization layer. The computation layer
can be either a feed-forward network or a multi-head attention layer. The blocks

27

Output
Probabilities

1

Softmax

i

Linear

T

Add & Norm]<—\

Feed ’
Forward

r

(\

——

(—>[Add & Norm [Add & Norm]<—\
‘ Feed Multi-Head ’
Forward Attention
———
NXx xN
[Add & Norm]‘_\
(—>[Add & Norm I
: Masked
Multi-Head Multi-Head
Attention Attention
N T 7
A — —
Positional Positional
Encoding OT OT Encoding
Input Output
Embedding Embedding
))
Inputs Outputs

(shifted right)

Figure 2.7: Transformer architecture from Attention is all you need [Vaswani et al., 2017]. On the
left size is the encoder layer repeated N times and on the right size is the decoder layer which is
also repeated N times.

will be referred to by their computation layer type. Within a block, the outputs
of the computation layer are summed with the inputs before being normalized
through LayerNorm [Lei Ba et al., 2016]. The encoder layer, seen on the left in Fig-
ure 2.7, is composed of a multi-headed attention block and a feed-forward block.
The decoder layer, on the right of Figure 2.7, is composed of three blocks, two
multi-headed attention blocks, and a feed-forward block. The first multi-headed
attention layer takes masked inputs, as the inputs are, in fact, the previously gen-
erated tokens. Rather than padding, what would be the padded space is masked.
The second multi-headed attention layer of the decoder takes the encoded inputs
from the encoder and uses them as the keys and queries, while the outputs of the
first block are used as values. The encoding part is done in a non-auto-regressive
fashion, while decoding is done in an auto-regressive fashion. Many instances of
this model use either the encoder, the decoder, or both.

The transformer architecture has been widely adopted for language model-
ing. These models are often pre-trained on generic data and then fine-tuned on
downstream tasks. This sort of transfer learning strategy is costly as it requires all
parameters to be fine-tuned. Most transformer-based models are huge, with the
number of parameters ranging from tens of millions to hundreds of billion. These

28

models can exist thanks to the ever-increasing size of GPUs and Tensor Processing
Units (TPUs) but also thanks to the creation of larger clusters of computing power
and the parallelism techniques going with it. Fine-tuning these models is costly
in computing power, even for the smaller ones. Adapter [Houlsby et al., 2019]
layers were designed to counterbalance this problem. These layers are added
between the multi-headed attention or feed-forward networks and the residual
connection. While training such a model, only the adapter layers are trained. This
makes this technique a highly efficient technique for training transformer models
on downstream tasks.

The current landscape of neural-based NLP is to use fine-tuned pre-trained
models to adapt them to the task at hand. Most pre-trained recent language
models use the transformer architecture. In the next section, the reasons why
this architecture and those models have taken over the entire neural-based NLP
space are explored.

2.3.4. Pre-trained Large Language Models

Recent progress in language modeling has been made through an increase in
parameter count and a higher quantity of training data. Since the advent of trans-
formers [Vaswani et al., 2017], many models using this type of architecture have
emerged. This architecture has shown that performances scaled with the number
of parameters. These models can be used to try to solve tasks in a zero-shot or
few-shot manner [Brown et al., 2020]. This is helped by the various ways the mod-
els have been trained. These training objectives are part of the self-supervised
paradigm. This learning paradigm is as data-oriented as it can get as the model
learns the task through the unlabeled data it is trained on. The multiple training
objectives encountered in this section are causal language modeling, masked lan-
guage modeling, and translation language modeling. Causal language modeling is
the classic unidirectional modeling objective. The model is used to predict the to-
ken at the end of the sentence using the context from a single side. The common
use is to have the context being the previous tokens from the sentences. Masked
language modeling is a modeling objective where a percentage of the sequence
is replaced by mask tokens. The goal of the model is to predict the tokens that
have been masked. Translation language modeling is a task resembling masked
language modeling in the sense that the goal is for the model to replace mask to-
kens in the token sequence. Masked language modeling and translation language
modeling are illustrated in 2.8. The token sequence is built off of two aligned sen-
tences from two different languages. The alignment comes into play during the
masking process. The tokens masked in the first sequence are not masked in the
second, and vice versa. This means that information exists only in one language in
the input. In the following section, we go through the different pre-trained trans-
former models that have had a significant impact on neural-based NLP.

BERT [Devlin et al., 2018] is an encoder-only transformer initially designed as
an embedding-producing model. This model is non-auto-regressive and is trained
using masked language modeling and next-sentence prediction. The input on
which BERT is trained contains two sentences separated by a separator token. The
next sentence prediction objective consists in having the model predict whether

29

Masked Language X
Modeling (MLM) now

A A A A
| Transformer |
A A A A A A A A A A A A
g‘sgd dings | /s] | |[MASK]| | a | |seat| |[MASK]| |have| | a | |[MASK]| | I/s] | |[MASK]| |relax| | and |
- + + + + + + + + + + + +
emoeagings L0 Lt] [2] [a] [a] [s] [e] [z] [a] [o] [0] []
+ + + + + + + + + + + +
smocangs Lo | [en | [len | [len] [len | [len | [len | [len | [len | [len | [len | [en |
Hodelng (T~
p 4 ? 3
| Transformer |
A
Z‘r;ks:d dings [vsl | | the | |masc| [was| [buwe | | wsl | | vs1 | mas| figeaux| [etaient] [masai| | ©sl |
N + + + + + + + + + + + +
emoeagings L0 L] [2] [a] o] [s] [o] [a] [2] [a] [«] [5]
+ + + + + + + + + + + +
Language | en | | en | | en | | en | | en | | en | | fr | | fr | | fr | | fr | | fr | | fr |

embeddings

Figure 2.8: Masked language modeling and translation language modeling tasks description from
the XLM article [Conneau and Lample, 2019].

the second sentence follows the first. This objective trains the model to produce
a representation of the relations between the two inputs, which can be used for
downstream tasks such as natural language inference or question answering. This
model is not trained for causal language modeling, but it can be used for augmen-
tation like in NLPAug [Ma, 2019] and to work on downstream tasks such as the
sequence labeling task. It is on these downstream tasks that BERT has become a
staple of neural-based NLP. BERT set a trend of other models with similar archi-
tectures but different specificities. RoBERTa [Liu et al., 2019] is an optimization
of BERT by modifying the training objective, optimizing the hyperparameters, and
using a new training dataset. BART [Lewis et al., 2020] is a denoising auto-encoder
using a transformer architecture with a bidirectional encoder. A Lite BERT or AL-
BERT [Lan et al., 2020] is a light version of BERT thanks to cross-layer parameter
sharing and splitting the embedding matrix in half. Techniques like these have
been developed in order to reduce the size of the models while keeping similar
performances.

The GPT family of models [Radford et al., 2018] is a staple of the scaling ca-
pacities of transformers, with their parameter counts ranging from 110 million
parameters for the first iteration to 175 billion parameters in the last iteration
of the model. These models are decoder-only transformer models. Contrary to
the way BERT was pre-trained, GPT was pre-trained on the classic auto-regressive
modeling task. GPT became state of the art on multiple downstream tasks thanks
to its pre-training technique and the multi-task fine-tuning objective. This multi-
task objective is the combination of the modeling task alongside the downstream
task at fine-tuning. The impact of this multi-task objective can be felt in the follow-
ing models. GPT-2 [Radford et al., 2019] aimed at solving the multi-task learning
problem in an unsupervised manner. The multi-task objective is viewed with a

30

meta-learning perspective; as such, each task is viewed as a training example. To
be able to generalize would mean to be able to obtain and produce thousands,
or even more, corpora, each dedicated to its task. This would also require the
model to accommodate each of those tasks with their structure. The authors of
GPT-2 assume that most NLP tasks can be formulated through language alone
and that many of these tasks have been asked, described, and solved by peo-
ple. As such, their approach is to build a corpus that contains as many tasks and
domains as possible. Their first approach was to use Common Crawl, a large in-
ternet scrape, but the data was too fuzzy to be used as is. They instead built a
corpus of human-validated data. They built the WebText [Radford et al., 2019]
dataset, which contains the linked content of Reddit posts with over three user
appreciation points. The use of this larger corpus and a few changes in the archi-
tecture, such as the change of how layer normalization was applied throughout
the model, the extended vocabulary size, the extended context size and batch size,
and the addition of larger models have shown that the transformer-based model
performances scaled with parameter count and that tackling tasks through lan-
guage modeling alone was feasible. GPT-2 can be applied to other tasks through
conditioning applied at inference. Conditioning in this setting means adding infor-
mation in front of the sequence of text meant to be processed. This conditioning
was applied for translation and meant adding a few solved examples of the task
as context for the model to understand what to do.

The study of this mechanism was pushed further with the creation of GPT-
3 [Brown et al., 2020]. This model is similar to GPT-2 with further refinements,
including alternating dense and sparse attention layers as in the sparse trans-
former [Child et al., 2019]. GPT-3 was also trained on a large corpus composed
of CommonCrawl, WebText, and Wikipedia examples. GPT-3 was made with the
explicit intent to use conditioning as a means to solve tasks. Conditioning can be
categorized depending on the quantity and nature of the data used. They consider
the zero-shot setting as a setting where the conditioning is done with a description
of the task written by the users. An example of a sentence conditioned for the En-
glish to French translation task would be: “Translate from English to French </s> |
love cats.” The few-shot setting does not include the description but n examples
of the task being solved. These methods of conditioning have inspired a new wave
of exploratory work on text conditioning or prompting. The family of GPT models
have shown that language modeling could be directly applied to the tasks at hand.
The large size of the models and their capacity to be conditioned on a prompt has
led to new techniques such as prompt design, where the user creates prompts
using available tokens, or prompt tuning, where new special prompt embeddings
are trained to adapt the model to the task without changing the parameters of
the model.

Another model has explored the principle that all tasks can be formulated in
a language-modeling fashion. T5 [Raffel et al., 2020] is the model which explored
this paradigm. This model is an encoder-decoder transformer pretrained on a
task resembling BERT's masked modeling task. This task is the span replacement
task, in which spans of tokens are masked in the input, and the decoder is tasked
with the production of the spans. The dataset produced for the pre-training step

31

is a subsample of 750 GB of Common Crawl named C4. Two versions of the model
exist, a version fine-tuned on downstream tasks (known as T5) and a version only
pre-trained (known as T5v1.1). While the pre-training objective of T5 was pecu-
liar, its fine-tuning developed the model's potential. All the downstream tasks
of T5 were reformulated to be learned as language modeling tasks. Part of the
reformulation of the task was the addition of prompts at the beginning of each
sentence, which would help the model associate with the task. A multilingual ver-
sion of the model exists [Xue et al., 2021]. The particularity of the pre-training
of this model is the span replacement objective used. The model is trained with
sentences where around 15% of the sentences were masked and is tasked with
producing the different missing spans in a structured fashion.

Other pre-trained LLMs have had impacts on various parts of NLP. With the
improvement of language modeling on single languages, multilingual modeling
or cross-lingual modeling became a target. XLM [Conneau and Lample, 2019] is
a transformer-based model pretrained on three tasks. Those tasks are causal
language modeling, masked language modeling, and a combination of masked
language modeling and translation language modeling. Transformer-XL [Dai et al.,
2019]is a decoder transformer architecture with a caching mechanism that stores
long dependencies. As such, it allows faster training and longer sequences to be
processed. XLNet [Yang et al., 2019] is a decoder transformer architecture that
uses the caching mechanism from Transformer-XL and is trained by decoding
auto-regressively but in a disordered manner. The training objective of XLNet is
permutation language modeling. This objective is similar to left-to-tight or right-
to-left auto-regressive modeling, but in this case, the order of decoding can be
permutated. Thus it allows auto-regressive modeling to use bidirectional infor-
mation. Bigscience Large Open-science Open-data Model [Scao et al., 2022], or
BLOOM?, is a recent large language model aimed at providing a public research
implementation of a large transformer model. The particularity of this model is
the transparency of all the parts of the process of its training.

One of the methods to use ever-larger models without increasing the computa-
tional costs is conditional computing. Conditional computing is a method in which
part of the model is deactivated on a per-example basis [Bengio et al., 2013, Davis
and Arel, 2013]. The basic block of this method of computation in neural networks
is the sparsely-gated Mixture-of-Experts (a.k.a MoE) layer [Shazeer et al., 2017].
The MoE layer functions by having a gate selecting two expert layers to perform
the computations on and modulating the combination of the results. Switch-C [Fe-
dus et al., 2022] proposes an encoder-decoder architecture with 1.6 trillion pa-
rameters similar to T5 but using improved MoE layers. GLaM [Smith et al., 2022]
is 1.2 trillion parameters decoder-only architecture using MoE layers. These MoE-
based models effectively use fewer parameters during inference, respectively 1.5
billion and 96.6 billion active parameters. Other models push the engineering lim-
its, such as PaLM [Chowdhery et al., 2022], as the 540 billion parameters of this
model are all active at all times. Pushing the size of models higher is an on-going
race that must be highlighted, and puts into perspective the size of the models
used in this thesis which are not so large compared to these mastodons.

"Thttps://huggingface.co/bigscience/bloom

32

https://huggingface.co/bigscience/bloom

Scaling the models has been a computational arms race. Datasets are nec-
essary to train these models. These datasets have a significant impact on the
performance of the models on downstream tasks [Cattan et al., 2022].

2.3.5. Data

Training LLMs require a high quantity of data. What a high quantity of data
means has evolved through time. Using large datasets to train models is not new;
the Penn Treebank corpus [Marcus et al., 1993], a corpus made for part-of-speech
tagging, has often been used to train language models. Wikipedia has been a
constant source of data for multiple languages. WikiText-2 and WikiText-103 are
two datasets made from favorited and high-quality articles containing respectively
2 million and 103 million tokens [Merity et al., 2017]. The BooksCorpus [Zhu et al.,
2015] dataset used by GPT contains around one billion tokens across 74 million
sentences. WebText [Radford et al., 2019] is a corpus of 40 GB of Reddit-linked
documents used to train GPT-2. The documents kept were documents where the
Reddit post obtained at least three points of user score, ensuring at least a small
quantity of humans gave positive reviews to the post. C4 [Raffel et al., 2020] is a
750 GB corpus of Common Crawl data used to train T5. This dataset is built using
a set of heuristics to filter out noisy, irrelevant, or duplicate text. The trend for
language model pre-training is to use more and more data.

Not everyone has access to the same quantities of data. It can be difficult to
obtain large quantities of data in a target language, but efforts are being made by
the communities of less prolific languages such as Maltese [Micallef et al., 2022]
to produce corpora and LLMs on these languages. The quality of the data can
impact performances on downstream tasks. Camembert [Martin et al., 2020]
obtains varying performances on natural language understanding tasks depend-
ing on the corpus it was trained upon [Cattan et al., 2022]. Specialized LLMs are
trained on corpora collected with the intent to contain more information about a
domain. Corpora such as the PMC OA? or MIMIC-III [Johnson et al., 2016] contain
information through the articles, and that can be of use to train medical LLMs.

One of the goals of training ever larger LLMs was to improve performances in
a zero or few-shot setting [Radford et al., 2019]. Benchmarks to evaluate the per-
formances of such models have been designed by collating existing benchmarks.
The GLUE [Wang et al., 2018a] benchmark is a composite benchmark designed to
evaluate multiple types of downstream tasks. This benchmark has been heavily
used by LLMs to display their performances.

While this is not an in-depth analysis of the multitude of corpora available, it
shows that the size of the corpora necessary to train large language models is
large. The quality and specialization of the data are also important for the perfor-
mance of the end model. In light of these constraints, training high-performing
language models from scratch is not a viable approach for this thesis which fo-
cuses on low-resource generation. Pre-trained LLMs are, however, used for text
generation without any additional training in this thesis. We will also fine-tune
models for sequence labeling.

2PubMed Central Open Access

33

2.3.6 . Language modeling in this work

Language modeling is a great tool for NLP. Language models have evolved
to contain the condensed representation of the knowledge present in the train-
ing dataset or to gain the capacity to represent contextual information. With the
rise of powerful parallel computing hardware, namely GPUs, large language mod-
els have become the centerpiece of recent neural-based NLP models. Large Lan-
guage Models are used to tackle the sequence labeling task in our experiments. In
most of our experiments, the results are computed using a model from the BERT
family of models, fine-tuned on the task. For our earlier experiments, BiLSTMs
were used as the computational power required to train them was much smaller.
These models were used as they were easier to train from scratch, and the method
to use them was tried and tested. Our aim is not to bring improvements to the
sequence labeling pipeline.

Our aim is to develop techniques of data generation that improve sequence
labeling when a low quantity of labeled natural data is available. Exploration of
the generative capacities of language models is done in this thesis. LLMs have
few-shot or zero-shot capacities for downstream tasks, our work does not focus
on these capacities, but our hypothesis is that they can help produce the synthetic
examples for sequence labeling. Causal language modeling is the most direct way
an LLM can generate new text with. This thesis features GPT-2 and BLOOM as
models using this type of language modeling. Our hypothesis is that other types
of modeling, such as text-to-text modeling, can be used for augmentation. T5 and
mT5 are used for their span replacement capacities.

2.4 . Vector-to-Text generation

As seen previously, language modeling is a tool that can produce text with the
help of contextual inputs. These inputs are generally sequences of text that will
direct the generation based on how the model was trained or based on the nature
of these contextual inputs. Some techniques have been developed to manipulate
parts of these inputs to guide the model into producing outputs that try to solve
tasks. Prompt design is a technique that focuses on appending a sequence of text
designed by humans to push the model to produce the wanted outputs, but an-
other technique, prompt tuning, uses a sequence of vectors trained to condition
the model into producing the wanted outputs. This idea of conditioning a gener-
ative process upon a vector is not new. This section explores the different model
architectures that construct text from a vector representation.

2.4.1. Autoencoders

One of the model architectures that can be used to generate text is the au-
toencoder architecture [RUMELHART, 1986]. This type of model uses two sub-
models, an encoder and a decoder, as can be seen in Figure 2.9. The goal of this
architecture is to learn how to reproduce its input. This is the main difference
with sequence-to-sequence modeling, in which the decoder produces an output
based on the task it is trained on. The encoder transforms the input from its origi-
nal representation to a singular vector. The space of this vector is called the latent

34

Wasserstein
Autoencoder Autoencoder

Autoencoder Variational

Figure 2.9: Autoencoder families described in this section. At the left is the most simple autoen-
coder architecture. At the center, the Variational Autoencoder with the reparametrization trick is
displayed. At the right is the Wasserstein Autoencoder with its use of a discriminant network for
latent variable constraint.

space and is supposed to represent the data space in a compact representation.
The decoder then uses this latent representation to reconstruct the inputs of the
encoder.

From this perspective, autoencoders are a good candidate for generating la-
beled text. Finding a way to sample from the latent space is needed. Fortunately,
constraining the latent space to a known space is a technique that exists and is
widely used within variational autoencoders [Kingma and Welling, 2014]. This ar-
chitecture uses the Kullback Leibler divergence [Kullback, 1968] (KL-divergence)
to constrain the latent space to a Normal multivariate distribution. Due to this
constraint, the latent variable needs to be formed by sampling a vector from a
multivariate normal distribution, multiplying it by o, and summing it to ;. as shown
in Figure 2.9. The new optimization objective for VAE is the Evidence Lower Bound,
or ELBo. It is the negative sum of the reconstruction loss and the KL-divergence.

The constraints brought by KL-divergence are strong, which has led to multi-
ple improvements to counterbalance some unfavorable effects. The largest effect
is posterior collapse, which removes all transmission of information from the en-
coder to the decoder. This is characterized by the KL-divergence coefficient being
too strong during optimization and ends up being minimized down to zero. A
controllable hyperparameter g was introduced in S-VAE [Higgins et al., 2017] to
change the importance of the KL-divergence. This parameter can be used to ei-
ther reduce or increase the rate of transmission of the information at the expense
of increasing or reducing the distortion of the output [Alemi et al., 2018].

Another way to constrain the variable is to use Wasserstein autoencoders [Tol-
stikhin etal., 2017]. This architecture is presented in the third column of Figure 2.9.

35

This way of constraining the latent variable is close to how Generative Adversarial
Networks, or GANs [Goodfellow et al., 2014], operate. A discriminant network is
added to the architecture with the role of discriminating the latent variable from
vectors sampled from a multivariate normal distribution. This forces the latent
variable to follow the normal distribution. However, this is supposed to be less
degrading to the transmission of information through the latent distribution than
the original KL-divergence term.

2.4.2 . Generative Adversarial Networks

Generative adversarial networks [Goodfellow et al., 2014] (GANSs) are neural
network models trained to generate target data from sampled noise. For NLP,
the target data is text, but this architecture of models has been used with other
types of data, such as images [Zhang et al., 2017a]. This type of model uses a dis-
criminant model trained jointly to estimate whether the sentence is synthetic or
natural. The interest in GANs has mostly been based on the idea that the adver-
sarial method of learning would solve issues of traditional learning that created
models that would generate uninteresting and repetitive sentences. While GANs
have been effective with other types of data, the discrete nature of text and tokens
has caused some issues. Backpropagating through discrete inputs is still an ongo-
ing problem. One of the solutions to solve this problem for text generation is to
use reinforcement learning. Policy gradient learning [Sutton et al., 1999] was the
first reinforcement learning method used to train the generator. Examples with
a causal LSTM model such as SeqGAN [Yu et al., 2017] or sequence to sequence
models [Li et al., 2017] have been developed using this method. These methods,
however, suffered from mode collapse, a problem where the generator ignores
the input vector. TextGAN [Zhang et al., 2017b] seeks to alleviate this problem by
having the discriminant learn the appropriate features for natural/synthetic clas-
sification and reconstruction of the vector input of the generator. The generator
aims to match the relevant features. GANs are a promising technique, but the
issues raised with text and the randomness of the approach are not suitable for
our goal.

2.4.3. Conclusion

While the techniques described in this section fit the context of this work, none
of them will be featured in the experiments. Multiple reasons motivate this choice.
A series of preliminary experiments have been conducted with autoencoders, as
they are simpler to work with than GANs, which have not yielded positive results.
While the reproduction capacities of the models were correct, generating new
examples via sampling the latent variable proved to be difficult. Generating la-
bels did not go far either. As for GANSs, the difficulties we experienced with auto-
encoders deterred us from pressing in this direction, as GANs are difficult to train
with text.

36

2.5. Augmentation

Augmentation is a paradigm of techniques used to create new data to improve
training. Data augmentation techniques aim to create synthetic data from avail-
able data. The goals of augmentation are varied, as it ranges from better general-
ization through debiasing the data to synthetizing the majority of the training set.
Depending on those goals, the techniques used may vary. Our goal is to generate
a new dataset. As such, we want to create new relevant information with the orig-
inal data and the augmentation method. Techniques such as token corruption or
permutation, which are handy for training more robust models, go against this
goal of creating relevant information. They are not discussed in this thesis.

Training a NER tagger requires a large quantity of labeled data. In natural lan-
guage processing, data augmentation has been used to improve performance.
Techniques such as back-translation [Sennrich et al., 2016a] or Easy Data Aug-
mentation [Wei and Zou, 2019] have been used in sentence classification. Para-
phrasing using BART as a generator [Dopierre et al., 2021] is also a method that
has been successful on the classification task. However, paraphrasing using back-
translation on medical data for a tagging task is not effective [Neuraz et al., 2018].
The span-replacement techniques used can be associated with this family of tasks
which aims at rewriting sentences. In our case, there are fewer constraints on the
outputs, as it is not required to strictly be a paraphrase.

A method using language models to augment data, DAGA [Ding et al., 2020],
has proven successful both in a supervised and semi-supervised learning setting.
This method uses the training data to train a BiLSTM language model to generate
either labeled or unlabeled data. Language models are used to generate new un-
labeled data necessary for semi-supervised learning. Our experiments don't use
BiLSTMs to generate new sentences but the more widely available GPT-2 [Rad-
ford et al., 2019] and T5 [Raffel et al., 2020] models. These models are used in
their 1B parameters version. This data will serve to train our taggers, which use
pre-trained BERT [Devlin et al., 2018] models as the basis of their architecture.

2.6 . Conclusion

Producing synthetic text requires a combination of techniques. Raw text can-
not be processed by the statistical tools used. The techniques used to segment
and transform sentences into sequences of vectors were presented. Neural net-
works can then use these representations to produce probability distributions
that can be used to generate new texts. These language models have shown
promising results on downstream tasks through various methods of application,
such as model fine-tuning or prompt tuning. These techniques can also be used
to change the generative properties of the models. The recent surge in the capac-
ity of these models comes from two factors, the transformer architecture and the
datasets used for pre-training. Pre-training these models requires a large quantity
of data, namely multiple gigabytes of text, and fine-tuning such a model to orient
the generation towards a specific domain requires thousands of sentences. How-
ever, our goal is to be able to produce an in-domain training corpus for tagging

37

tasks while having access only to a small quantity of target data. The constraint of
the small quantity of data removes the possibility of fine-tuning a large model for
text generation. It also removes the possibility of training a model from scratch.
We have to rely on the capacity of the available pre-trained models to generate in-
domain sentences in a few-shot manner. For the generation tasks, T5, GPT-2, and
BLOOM are used in their versions close to 1B parameters as they have multiple
versions ranging from 100M parameters to 176B parameters.

This chapter also presented models used on the downstream task. The models
used in this thesis are BERT, BioBERT[Lee et al., 2020], and mBERT, following the
BERT protocol for sequence labeling. This chapter introduced the techniques used
at multiple levels of our experiments. In the next chapter, the methodology of how
our experiments were conducted is described.

38

3 - Methodology

Research is a domain in which we try to highlight and understand phenomena.
Experiments are designed with the purpose of producing data that should give
insights into the studied phenomena. The validity of these results depends on
the methodology with which the experiments were conducted. Prodding around
might be useful, and some intuitions might be found this way, but justifying these
results, replicating them, and understanding the deeper principles and limits will
not be possible without a clear methodology. This thesis presents different meth-
ods of generation of labeled text for sequence labeling model training. To be
able to evaluate these different generation methods, the setting in which these
methods are applied must first be understood. The purpose of these generation
methods is to be used in a low-resource setting. As such, being able to quantify
the resources used is key to understanding the limitations of our methods. To
be able to analyze the results of our experiments, a solid evaluation framework
is needed. The metrics used to quantify the quality of the synthetic data and the
performances of the trained models are explored. With these pieces of informa-
tion, we have built a protocol of experimentation. These experiments must be
conducted on some corpora that will preferably have previous results computed
on them to have a point of comparison.

3.1. Setting

The goal of our research is to explore generation methods that would improve
the performances of a model trained in a low-resource setting. What setting can
be considered low-resource is a question that must be answered. This section ex-
plores how the different quantities and qualities of data available affect the variety
of techniques that can be used. We place the work presented in this manuscript
in the low-resource topology presented in this section.

3.1.1. Resource topology

Different levels of resources allow different machine-learning techniques to be
used. This subsection explores these scales of data to be able to place our work
in the resource topology.

The first divide of the resource landscape is the language of the corpus. Not
all are equal in the face of data acquisition. English is by far the language with the
most available data. Other languages with large corpora, such as Spanish, Man-
darin, or French, do not compare in terms of data availability. A classification of
the language divide found in Figure 3.1 in six stages was proposed [Joshi et al.,
2020] and took into account the availability of labeled and unlabeled data. In this
study, of the roughly 2500 languages studied, 88% did not have any unlabeled or
labeled data. Training large language models to use in a zero-shot setting or as
bases for transfer learning is not possible in this case. Not all techniques require a
set of labeled or unlabeled data. For example, pattern-filling generation, a gener-

39

/,’.\\
= 103 PARA
S y ‘
= ;)
s l\og. ’,/
S 102 ,"",“::'{\

e \\.\o oy . \\\
- [T~ o TNes *
o \\ _—— :\\. \
% 101 \“\ //’,’. \\\ ..; ¢ ° \\s._/'
N '\ e 0
q \\ ,’o . @ . :\ o J
\ \ \
\ N..___o_:_:__ ° _o_.) .
\ = ==z==zk===-Z1
100 ‘.‘ /,‘ e e e . ..‘»\\
\ // \\
‘l ll “ \\
10° 101 102 10% 104 105 10° 107
Unlabeled data (log)

Figure 3.1: Taxonomy of languages through the available data [Joshi et al., 2020].

ation method presented in the next chapter, does not require such resources, but
it requires a list of patterns and lists of mentions, which would be harder to come
by if nothing is available. For this thesis, we place ourselves in a setting where
language resources are available. This is motivated by the AIDA project being in
French, which is a well-represented language (category five in Figure 3.1). Experi-
ments are also proposed in English to have results comparable to a larger set of
previous works.

Another axis of low-resource is the availability of domain-specific data. This
type of resource allows training or fine-tuning large language models to be spe-
cialized in the domain. These models have better performances on downstream
tasks than models trained on general-purpose data. Our results on 12B2 [Uzuner
et al., 2011] follow this trend. In the following experiments, some of our taggers
use specialized models, such as BioBERT [Lee et al., 2020] on the 12B2, which is a
BERT-like model trained with additional PubMed data.

The last axis on which a low-resource setting can be set is the task-related low-
resource setting. This axis is related to the downstream tasks, such as sentence
classification or labeling. The most restrictive setting is the zero-shot setting. Solv-
ing a task in a zero-shot fashion implies solving the task without having data on
this task. A popular approach to solving tasks in a zero-shot setting is using large
language models and reframing the task as a language modeling task [Brown et al.,
2020]. The second setting, while less restrictive, is the few-shot setting, where a
small quantity of task-related data is available. This data isn't always labeled, but
we assume that if the quantity of data is small enough, the data can be annotated
for a small enough cost. Transfer learning and semi-supervised learning are meth-

40

ods used in this thesis to tackle this setting for the sequence labeling task. Our
setting is the few-shot setting, as we have a small number of labeled sentences,
and we will use available large language models to help with both generation and
sequence labeling.

3.1.2. Target setting

As stated in the previous subsection, this thesis aims to solve sequence label-
ing in a few-shot setting. There is no benchmark for the sequence labeling task in
a few-shot setting. Evaluation is done using existing corpora that are transformed
to respect the few-shot setting to obtain a good evaluation of our methods on the
sequence labeling task. To that end, the methods tested are evaluated across mul-
tiple quantities of data. This allows having a chart of the behavior of the method
at multiple quantities of data. The low-resource setting is a setting that can apply
to multiple situations.

Developing methods to improve model performances at small quantities of
data will improve the applicability of machine learning to new tasks or domains
where data is hard to come by, such as the medical domain or the financial or
banking domain. In the case of AIDA, we work with confidential data and want
the method to be applicable to other confidential data. Our method needs to be
applied to data that can easily be annotated, which means a very small quantity
of data.

3.2. Evaluation methods

A key point of methodology is how to quantify the results. Different tasks re-
quire different evaluations, which will have limitations on what they can measure.
A first instinct would be to evaluate the quality of the generated data and the
quality of the labels produced. Evaluating open-ended text generation is an on-
going problem described in the first subsection. The purpose of our generation
methods is to produce data that improves tagger performances. As such, our
evaluation of text generation can be done through the evaluation of tagger perfor-
mances. Evaluation of the taggers is performed on the labels produced by these
models. The different scores and measures that exist for the sequence labeling
task are explored in the last subsection. With the knowledge learned in this sec-
tion, we will then be able to build a protocol that is used in our experiments.

3.2.1. Evaluating generation

Open-ended text generation is a complex problem. Models can be taught to
reproduce sentences or to continue a previous text. The training objective used
forces the model to produce sentences as close as possible to what the training
sentence is. Other sentences could be viable, but there is no automatic way to
evaluate their relevance. The quality of the synthetic text can be evaluated fol-
lowing grammatical and syntactical correctness. Truthfulness [Oshikawa et al.,
2020] is also a measure that could be explored in order to validate the text. These
measures give partial information on the quality of the synthetic text. Perplexity,
which computes the information needed by the model to predict the sentence, is

41

another good candidate. However, this indicator is as much of an indicator for
the quality of the model evaluating the sentence as an indicator of the difficulty
of the sentence.

These previous methods of evaluation work only on the text generated and not
on the combination of text and labels. Itis complicated to evaluate text generation,
and our goal is not to generate grammatically or factually correct text. Labeled
data is generated in order to improve tagger performances. The quality of the
synthetic text to the human eye is not important for our goal. We have chosen to
have an extrinsic evaluation of the quality of the data generated. The evaluation
is done through the performances of a model trained on it.

The data used to train these models is classified based on the composition of
the data. The data from corpora is named natural data as it comes from corpora
that either used human inputs to a system or human-written data. Generated
data is the data built using generation methods. Augmented data is the data that
contains both natural data and data generated from this natural data. When it
is clear that there are no experiments done using only generated data, the term
generated data is also used to write about augmented data.

Our baseline models are trained on a natural subset of data S,,, which is the
same subset used to generate data. Models are also trained on augmented data
which is the union of the natural subset of data and the generated set of data
S, U G,. This allows us to have an evaluation of what the generation method
adds to the natural data (in some experiments, the models are trained only on
the generated data G,). We value this evaluation method because our goal is
to have better performance on the task. Due to the lack of meaningful automatic
evaluation for text generation and due to the purpose of our generation, we chose
to evaluate the quality of our method on the sequence labeling performance of
the end models trained on the augmented data.

3.2.2. Sequence labeling

To evaluate sequence labeling, we must first understand what sequence label-
ing is. Our work focuses on the sparse sequence labeling task, which may take the
form of named entity recognition or natural language understanding. As opposed
to non-sparse sequence labeling, not all the tokens are labeled with concepts.
This causes one of the labels, the empty or outside label, to be over-represented
compared to the other labels. In practice, the format from CoNLL 2002 [Tjong
Kim Sang, 2002] is used for our sequences. This is a format that uses external
labels and can also be called the BIO format. This format uses three types of tags:
beginning (B), inside (1), and outside (O), where the B and | tags are tied to concepts.
An application of this tagging scheme is presented in Figure 3.2. In this example
from CoNLL 2003, there is only one entity labeled with the ORG or organization
concept. Sentences can contain multiple entities coming from different concepts.
With this tagging scheme, entities cannot overlap.

3.2.3. Evaluating sequence labeling

Measuring the performance of labeling is an easier task than evaluating gener-
ation. Generating a sentence with the same meaning but a different structure or

42

@) 0] O B-ORG I-ORG I-ORG I-ORG

Port conditions from Lloyds Shipping Intelligence Service

Figure 3.2: BIO format example from CoNLL 2003. This sentence contains one entity: [Lloyds
Shipping Intelligence Service], which is an organization.

choice of terminology is hard to evaluate outside of human evaluation. This sort
of problem does not exist for sequence labeling if labeled data is available. How-
ever, due to the sparse nature of our sequence labeling tasks, we cannot simply
use accuracy or error rate. Amodel predicting only outside tags would have a high
score with these measures. A more common measure of tagger performance is
the F) score of the segment prediction. This measure is the harmonic average
between precision and recall. Precision is the number of correctly predicted ele-
ments (true positives) over the number of predicted elements. It measures the
confidence to have in the classification of found elements, in this case, mentions.
The recall is the number of correctly predicted elements over the number of ele-
ments that are correct. It measures the capacity of the model to find and delimit
what is a mention of the correct concept. For sequence labeling, the F; score is
computed over the mentions. A mention is considered correctly labeled if the tags
are exactly the same as in the reference. For example, in Figure 3.2, “Lloyds Ship-
ping Intelligence Service” is labeled as an organization. If only “Lloyds Shipping
Intelligence” is labeled as an organization, this mention counts as a false positive.
If “from Lloyds Shipping Intelligence Service” is labeled as an organization, this
mention also counts as a false positive. For sequence labeling, this measure is
computed for each concept. The final measure obtained is the micro-average of
the F} score of each concept. Micro-averaging takes into account the number of
inputs of each concept. True positives are the exact matches between a ground
truth mention and the predicted mention.

recision - recall 2t
oy p

precision + recall - 2w+ fp+ fn

Most results in this thesis were computed using seqeval [Nakayama, 2018].
The preliminary results of pattern-filling generation were computed using conlle-
val [Ramshaw and Marcus, 1995]. These methods output the same results on the
same sets of data, which allows for a comparison of results.

Other possible measures exist. The concept error rate, or CER, is the ratio of
falsely predicted concepts over the total number of concepts. These falsely pre-
dicted concepts considered for this measure are deleted, inserted, and confused
concepts. CER provides information on the mentions that were wrongly tagged as
opposed to the F} score. The sentence error rate, or SER, is the ratio of the wrongly
tagged sequence over the number of sequences containing a concept. This infor-
mation is interesting when considering how the tagging errors are spread across
the sentences.

43

We have chosen to use the F} score as this measure was most widely used on
the corpora we worked on, which made the comparison to other works easier.

3.3. Protocol

The previous sections describe the target setting of our experiments and the
evaluation metric used in this thesis. These bricks are the foundation of our exper-
iments, but pitfalls still remain. To avoid these pitfalls, a protocol that is shared
between most of our experiments was designed. Our generation methods are
supposed to work in the target low-resource setting. A testing set is needed to
evaluate our generation method, which is not something that you would have in
a real low-resource setting. Our method needs to be comparable to other results.
As such, our work must be on existing corpora on which the low-resource setting
is simulated. We have settled on the [} score as the measure of performances of
sequence labeling. We must outline what is to be compared with this measure in
order to avoid meaningless experiments and incomparable results. At the end of
this section, a generic protocol for generation method evaluation is outlined.

3.3.1. Low-resource simulation

The target low-resource setting is a setting in which language-level and domain-
level resources can be used when available, but specific task-related data is lim-
ited. The task-related data is considered to be small enough to be labeled man-
ually. A means to simulate the low-resource setting needs to be included in the
experimental protocol. In the real case of a new small-sized corpus, a test set
would be of reduced size due to the constraints leading to a small corpus. Small
test sets might cause problems for evaluation as they might not cover enough of
the space to be relevant for evaluation. However, we are not trying to solve this
problem. As such, we chose to keep the test sets as they are. This allows us to
compare our results between the different sizes of the subsets that we work with
and with other studies working in similar settings. Using the real-size test set also
removes the question of whether the sampling or choice of the test set added any
additional bias. It is easier to project the results obtained on the full-size test set
than try to simulate the low resources.

In our publications [Boulanger, 2020, Boulanger et al., 2022], the full validation
set was used. This had the advantage of making sure the training went through
smoothly. However, it does not represent the exact situation of the few-shot set-
ting simulated. As such, we have rerun the experiments in this thesis with a small
validation set. This validation set is obtained with the same method the training
set is obtained, namely sampling.

How do we simulate the few-shot setting for the training set? A first choice
to simulate the few-shot setting would be to sample the data while conserving
the frequencies with which the concepts appeared. While this would probably in-
crease performances, our hypothesis is that it is unlikely that a small sample of
data would keep the same properties as the whole set of data. We do not want
to place ourselves in an ideal case. The data subsets are sampled without forcing
any similarities in distribution from the entire dataset. Due to the natural ran-

44

Figure 3.3: Protocol of evaluation. The corpus is sampled into a subset S,, of size n. S, is used to
train the baseline, which gets evaluated on the test set. .S, is also used to generate G,, and are
together used to train another tagger which is also evaluated on the test set.

domness of this process, multiplying the experiments across seeds is required to
compute the standard deviation and take into account the variations. One would
expect that working in a low-resource setting would consume less computation
due to the reduction of data size. But this reduction of training time for the model
is largely compensated by the amounts of settings tested within each experiment.
Seeding and sample sizes are the biggest factors in the multiplicity of the experi-
ments. In some of the experiments, ten seeds are used, but in most experiments,
only five seeds are used due to computational constraints. Uniform sampling is
used to create our training subsets S,, and their associated validation sets. The
training subsets are sampled from the training set, and the validation subsets are
sampled from the validation set. While the validation set is not represented in
the diagram, this sampling is represented as the first step from corpus to S, in
Figure 3.3. We have described the way the low resource setting is simulated, and
we must now describe how generation is evaluated.

3.3.2. Evaluation

We have settled on the use of F; as our measure of sequence labeling per-
formance. How do we evaluate the impact of synthetic data? As stated in the
previous section, the generation of data is evaluated through the performances
of the taggers learned with the augmented data. This protocol is represented in
Figure 3.3. Rather than a simple evaluation of the model, we employ comparative
evaluation between models. The results of a model trained on the augmented set
S,UG,, are compared to a model trained on the subset S,,. The performances are
compared using the F} scores of the taggers on the test set. The implementation
of the I score for sequence labeling used is segeval [Nakayama, 2018]. With this
protocol, the performances are comparable between the baseline and the aug-
mented training set. We can also compare the results obtained with the full-sized
training set of the different corpora if we ever reach comparable results with a
much lower quantity of data.

45

3.3.3. Discussion

This method of evaluation does not give information on the general quality of
the sentence generated. We do not have information on the impact of sentence
quality on the performance of the models trained on the synthetic data. Generat-
ing sentences following grammar and syntax rules might improve performance.
While this evaluation could be interesting, evaluating the linguistic rightness of
sentences would require additional tools for each language used. Truthfulness is
also an indicator that could be used to improve generation. This is especially true
for tasks where the information extracted can have a critical impact.

Including mentions in the training set that should not be part of a concept
might introduce problems in some cases. This problem might not appear with ev-
ery generation method. For example, the pattern-filling generation method used
has control over the mentions thanks to the mentions list, which is not the case for
language models. Our hypothesis is that the entity-linking systems using the ex-
tractions that are produced by our models would be able to sort out mentions that
are outside of the scope of the task as they would probably not link to any entity.
These problems would require additional testing, which is out of the scope of this
thesis. But we must also acknowledge these issues as our generation methods
are not without any limits. The evaluation used does not evaluate the presence
of this phenomenon unless it degrades the taggers’ performances on the test set.
Solving this issue might require specific knowledge of the domain and the task.
We do not wish to bring individual adjustments to the methods presented as we
want the methods to be applied to any sequence labeling corpora. Our first goal
is to improve the performance of the tagger on the task through data generation,
which is already vast.

3.4. Corpora

Within the previous section, we have seen that the low-resource setting used
is simulated on existing corpora. Our methods need to be applied to existing cor-
pora to obtain a good evaluation. This section describes the various corpora used
within our experiments. Various corpora are used in this project, spanning mul-
tiple sequence labeling tasks. The two major tasks worked on are named entity
recognition, or NER, and natural language understanding, or NLU. First, the NER
corpora used are described, then the NLU corpora. We will describe these corpora
and why we have chosen to work on them.

3.4.1. Named Entity Recognition

The named entity recognition task is a sequence labeling task that aims at ex-
tracting named entities in sentences. A named entity is a real-world instance of
a concept. For example, “Martin Luther King Jr.” is a person, “Rue Victor Hugo" is
a location, and the “Pythagorean theorem” is a theorem. This task can be com-
bined with entity-linking to assign an entity of a knowledge base to the instances
extracted with NER. The first corpus of NER used is a classic NER corpus named
CoNLL 2003. The second corpus is a clinical concept extraction corpus named
I2B2. This task is essentially the same as NER but specialized for clinical entities.

46

Corpus | language | train dev test | tokens vocab | concepts
CoNLL English | 14987 3466 3684 | 302811 30290 4

12B2 English | 11483 4832 27626 | 416790 28393 3
ATIS English | 4478 500 893 65364 950 83
MEDIA French | 12916 1259 3518 | 132256 2460 76

SNIPS English | 13284 500 700 | 132771 14348 40

Table 3.1: Corpora statistics. Train, dev, and test refer to the number of sequences in the train,
dev, and test sets. The tokens column refers to the length of the corpus in the number of tokens.
The vocab column refers to the number of unique tokens within the corpora. A cased and uncased
version of the same word would count as 2 in the vocab column.

CoNLL 2003 English [Sang and De Meulder, 2003]

EU rejects German call to boycott British lamb .
Crohn's is an inflammation of the bowel that can sometimes require surgery .

Rishon - Moshe Sabag (10th minute), Nissan Kapeta (26th),
(Sweden), Nick Faldo (Britain), John Cook, Steve Jones, Phil

Table 3.2: Exemples of sentences from the CoNLL corpus. At the top are some “regular sentences,”
and at the bottom are some table-like sentences.

CoNLL 2003 English is a corpus of Reuters news in English. This corpus con-
tains four concepts: persons, location, organizations, and miscellaneous. Reuter
news contains a high quantity of tables and lists, which can be a problem for lan-
guage modeling. These tables or lists are cut across lines, as can be shown in
Table 3.2. The news comes from between August 1996 and August 1997 and is
mostly focused on sports results, the economy, and politics. The distribution of
the concepts of this corpus can be seen in Table 3.3. The corpus has overall similar
quantities of organizations, persons, and locations. The miscellaneous concept is
less represented, with around half of the other concepts’ entity count. This corpus
is chosen as it is one of the most used corpora for the NER task. While this corpus
is specialized in news, this domain is likely to contain overlap with a more general
domain. This corpus is also chosen to be an example of a more general-focused
corpus.

Type ‘ ORG MISC PER LOC

train | 6321 3438 6600 7140
dev | 1341 922 1842 1837
test | 1661 702 1617 1668

Total ‘ 9323 5062 10059 10645

Table 3.3: Concept table of CoNLL.

47

12B2 VA 2010 [Uzuner et al., 2011]

OTHER ENZYMES & BILIRUBINS Lipase
WHOLE BLOOD , MISCELLANEOUS CHEMISTRY Glucose Lactate Na K Cl
In general , the patient looked acutely and chronically ill .

Table 3.4: Examples of 12B2 sentences.

I2B2 VA 2010 is a corpus of medical records in English. This corpus contains
three concepts: treatment, test, and problem. We can observe that treatments
and test contain roughly the same amount of mentions, with around 14000 men-
tions overall in Figure 3.1, and the problem concept contain more mentions with
19664. The medical records contained in the dataset can have a messy case, a
lot of abbreviated terms, acronyms, or specialized terms such as chemical names.
These examples are highlighted in Table 3.4. A particularity of this corpus is the
size of the test set. The test set contains more sentences than the train and dev
set combined, as can be seen in Table 3.1. This corpus is used as it is a highly
specialized corpus.

Type \treatment problem test

train 3360 4995 3252
dev 1481 2077 1354
test 9344 12592 9225

Total | 14185 19664 13831

Table 3.5: Concept table of [12B2.

3.4.2. Natural Language Understanding

Natural language understanding, or NLU, is a sequence labeling task aimed
at extracting information from conversations. This task is usually used in task-
oriented dialogue systems to understand what a user might want from the system.
The NLU task is usually formed of a sequence labeling and a sequence classifica-
tion task. The sequence labeling aspect of this task is the only aspect of the task
treated. The NLU task is often linked to the information extraction part of a chat-
bot system. This sequence labeling task is highly similar to NER, with entities being
labeled but with additional specificities linked to the task. Other types of token se-
guences can be labeled, which relate to information necessary for the chatbot
system, such as dialog state information and quantities. Three NLU corpora are
represented in this work: ATIS, MEDIA, and SNIPS. We will describe these corpora
and the reasons we have chosen to use them.

ATIS [Dahl et al., 1994]

ATIS, or Air Travel Information System, is a corpus of plane travel booking. This
corpus is a simple corpus as most of the remaining errors stem from labeling er-
rors from the test set [Béchet and Raymond, 2019]. ATIS contains a high quantity

48

of concepts compared to the other corpora, as shown in Table 3.1. The vocabulary
of the corpus is small, with less than a thousand tokens. This corpus is used as val-
idation to see if there are any major problems with the methods when they are ap-
plied toit. This corpus is used in our publication on pattern generation[Boulanger,
2020]. We have not produced results outside of the preliminary experiments of
pattern-filling generation with this corpus, but it will show up in discussions of the
pattern generation method.

Type toloc fromloc depart_date ... booking_class flight
city_name city_name day_name

train 3919 3892 785 0 0

dev 424 434 104 0 0

test 716 704 212 1 1

Total \ 5059 5030 1101 1 1

Table 3.6: Concept table of ATIS. Due to size restrictions, only the three concepts with the highest
quantity of mentions and the two lowest are displayed.

i want to fly from baltimore to dallas round trip
what does fare code y mean
show me the flights from atlanta to denver on friday

Table 3.7: Examples from the ATIS corpus

MEDIA [Bonneau-Maynard et al., 2005]

Type | reponse command nombre .. hotel localisation
tache chambre etat codePostal

train 5926 2102 1761 1 1

dev 552 207 203 0 0

test 1627 554 450 0 0

Total | 8105 2863 2414 1 1

Table 3.8: Concept table of MEDIA. Due to size restrictions, only the three concepts with the highest
quantity of mentions and the two lowest are displayed.

MEDIA is a French corpus of hotel reservations made from telephonic tran-
scriptions. This corpus is still quite complicated, with performances of recent mod-
els only reaching 90 F score [Cattan et al., 2022]. The transcription of the corpus
has kept many specificities of spoken language. The utterances often contain rep-
etitions of words or sequences and even humming, as can be seen in Table 3.9.
This corpus also contains a wide variety of sentence lengths. Most of the “reponse”
concepts come from two one-word sentences, which are “oui” and “non.” Some

49

oui
euh hum est-ce que vous pouvez vérifier la disponibilité a I’ hdtel Novotel
je souhaite deux chambres individuelles des chambres voisines deux étoiles

Table 3.9: Examples of sentences from the MEDIA corpus.

of the utterances reach multiple hundreds of tokens. We use this corpus in all the
experiments designed for this thesis. This corpus brings French to these exper-
iments, which has two aims, testing our method on an additional language and
having an example of French, which is the language of our target task.

SNIPS [Coucke et al., 2018]

Type \ object_type object_name playlist .. poi genre
train 2984 2936 2092 ... 143 144
dev 201 0 0 . 0 0
test 156 151 109 .. 6 3
Total \ 3341 3087 2201 ... 149 147

Table 3.10: Concept table of SNIPS. Due to size restrictions, only the three concepts with the high-
est quantity of mentions and the two lowest are displayed.

SNIPS is a corpus of home assistant queries in English. The queries are spread
between 7 classes, all containing around 2000 sentences. Some of the queries
are very formulaic, such as the addition of music to a playlist, as can be seen in Ta-
ble 3.11. The distribution of conceptsis less disparate compared to other datasets.
SNIPS contains a similar quantity of tokens as MEDIA, but its vocabulary is larger,
with around 14000 unique tokens. We have used SNIPS for pattern generation as
it is a corpus that is more complicated than ATIS on the NLU task, and it is also in
English.

Add Tranquility to the Latin Pop Rising playlist.
Book a table at a french restaurant for fern and |
What is the weather like at Basaseachic Falls National Park

Table 3.11: Examples of sentences from the SNIPS corpus.

3.5. Taggers

This section describes the architecture of taggers used throughout the exper-
iments. The architecture of the taggers used for the set of experiments done to
homogenize the results obtained throughout the three years of the thesis is de-
scribed. We will not go into as much detail about the architectures of the models
coming from the publications if they are different. The first architecture used is a

50

BiLSTM, but to be closer to state-of-the-art methods, the architecture used in most
of our experiments is a different one. The tagger architecture now used is a BERT +
MLP architecture. The results on the full-sized set can be found in Table 3.12 BERT
is here used widely to represent any of the models sharing the architecture with
BERT or derivatives of BERT. In specific, BERT-large-cased' [Devlin et al., 2018] for
CoNLL 2003, BioBERT-cased? [Lee et al., 2020] for 12B2, and mBERT? [Devlin et al.,
2018] for MEDIA are used. The MLP is composed of two dense layers separated
by a RelLU.

CoNLL 12B2 ATIS MEDIA SNIPS

Train sentence count 14,986 11,482 4478 12,916 13,284
Test sentence count 3,683 27,625 893 3518 700

BiLSTM 87.5 79.1 95.3 84.6 91.8
BERT base 90.0 84.0

BERT large 92.0 85.0

BioBERT 86.6

MBERT base 88.2

SOTA 94.6 90.3 99.0 90.0 98.6

Table 3.12: Reference models used as topline for our work and viability check against the current
state of the art. F; of BERT + classifier models on CoNLL and 12B2 using different pre-trained
models. Metrics computed by segeval [Ramshaw and Marcus, 1995, Nakayama, 2018]. The best
model based on development set F1, trained on 50 epochs, with a batch size of 32. The last line
is the state-of-the-art at the time of writing based on papers with code* when available. State-
of-the-art (SOTA) for CoNLL [Wang et al., 2021a], 12B2 [Si et al., 2019], ATIS [Wang et al., 2018b],
MEDIA [Cattan et al., 2022] and SNIPS [Chen et al., 2019a].

3.6 . Summary of the methodology

This chapter has described the method with which our experiments are con-
ducted. We place ourselves in a low-resource setting akin to the few-shot set-
ting because the AIDA project is set in such a setting. This setting is simulated
with existing corpora by sampling training and validation subsets. The test set is
kept intact for comparisons to other results. Our generation method is evaluated
through a comparative evaluation of a tagger trained on the natural subset S,, and
a tagger trained on the augmented subset S,, U G,, as described in Figure 3.3. Fi-
nally, the corpora used throughout our experiments are described. It is now time
to describe the experiments, beginning with pattern generation.

"Thttps://huggingface.co/bert-large-cased
*https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
3https://huggingface.co/bert-base-multilingual-cased
“https://paperswithcode.com/

51

https://huggingface.co/bert-large-cased
https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
https://huggingface.co/bert-base-multilingual-cased
https://paperswithcode.com/

4 - Pattern Filling Generation

An overview of the generation landscape in neural-based NLP was presented.
Amethodology was set up that should allow us to have correct comparable results.
We must now explore and propose generation methods.

The first generation method explored is the pattern-filling generation method.
Using patterns to generate sentences is a simple and efficient method. Patterns
have been used to generate sentences to train models used for automatic speech
recognition [van Schooten et al., 2007]. Corpora created using a rule-based ap-
proach can be interesting to test the capacities of models such as the bAbl tasks [We-
stonetal., 2016] or the dialog state tracking tasks introduced in following works [Bor-
des et al., 2017]. Sequence labeling in the medical domain has been tackled using
pattern-based generation [Neuraz et al., 2018].

As a result, this approach is the first considered and explored for the gener-
ation of data for sequence labeling. This type of method is cheap as it doesn't
require machine learning to generate new examples. Machine learning is heavily
reliant on data, and removing this potential bottleneck in the first method tried
is not a luxury. Pattern-based generation allows control and consistency of what
ends up in the generated data. This is also why methods from this family are used
in commercial applications. Our goal is to obtain a strong baseline for generation
and augmentation with this method.

Our pattern-filling generation method first needs to be introduced. A series
of preliminary experiments were conducted to test and refine this method. In
the first experiment, generated data is the sole source of data for tagger training.
This experiment sets the base experimental settings alongside the first improve-
ments to the generation methods. Analyzing how many patterns are necessary
to produce a tagger that could be used in a bootstrap setting became an objec-
tive to better understand the applicability of the method in a real-case scenario.
Obtaining patterns will most likely result in obtaining valid labeled sentences. In
this case, augmentation would be a more data-savvy solution. These preliminary
experiments mostly don't follow the methodology presented in chapter 3. These
experiments have helped shape the methodology through their limitation, which
includes the lack of multiple seeds or augmentation as the setting in which we
place ourselves. Afinal round of experimentation using the methodology of chap-
ter 3 was done to validate the claims of the preliminary experiments.

4.1. Pattern filling generation

This section describes the pattern-filling generation algorithm used. Patterns
must first be understood to understand the pattern-filling generation method.
Patterns are sentences with empty slots associated with a concept or a class. An
example of pattern would be : <person> is from </ocation>. A slot can be filled by
a mention, which is an instance of a concept.

53

For the pattern-filling generation process, mentions are taken from lists associ-
ated with a class, as shown in Figure 4.1. This gives control over what the taggers
can learn to label. Mention lists can be obtained from knowledge bases if they
exist for the domain related to the task. Mention lists can also be created through
extraction from labeled sentences, as access to sentences is not entirely out of
the window since this thesis places itself in the low-resource setting.

Mention lists Pattern list
location
thesenate | | | <person> went to </ocation> ~
Alaska \\
person
Rick Astley
Homer Simpson Homer Simpson went to Alaska
John Doe /

Figure 4.1: Example of pattern filling generation. This is a diagram showing how a pattern at the
top is filled by taking mentions from lists of the appropriate concepts. The mentions are sampled
uniformly.

Patterns can be extracted from labeled sentences or have to be written. Writ-
ing the patterns might cause problems because they might not fit the natural data.
But it might be the first step to provide a system that would acquire natural data,
which would, in turn, be labeled and used to create patterns. Extracting a pat-
tern is done by following the process from Figure 4.1 in reverse. Given the la-
beled sentence : Homer Simpson went to Alaska. The mentions Homer Simpson
and Alaska would be extracted and placed in their respective mention lists. The
mentions would be replaced in the sentence by special tokens representing the
concepts associated to produce the pattern.

Pattern-filling is the creation of sentences via the association of the patterns
and the mentions, as can be seen in Figure 4.1. The mentions are used to fill
the slots in the patterns. Because of the slots and their associated concepts, the
sequence of tags can be reconstructed by assigning empty tags to the non-slot
parts of the pattern and concept-related tags to the mentions inserted.

The number of sentences that can be generated explodes as illustrated in the
following equation where Mg, is the number of mentions in the list associated

with the slot.
Z H Mslot

pEpattern slotEp

A pattern can produce a number of sentences equal to the product across slots
of the number of possible mentions in the slot. This number quickly explodes
when summed across the available patterns. The mentions and patterns used

54

need to be chosen. Because information on possible existing combinations of
patterns and mentions is supposedly unavailable, we have chosen to sample the
mentions. The initial approach is to sample uniformly from lists of mentions that
contain unique mentions. This point will evolve throughout the experiments.

To be able to apply the pattern-filling generation method, access to patterns
and mentions is needed. As stated in the methodology chapter, existing corpora
are used on which our method is applied. From these corpora, a subset S, is
sampled. And from this subset S,,, the mentions and pattern are extracted.

4.2 . Generated data

The objective of this first experiment is to propose a first evaluation of the
pattern-filling generation method. As part of the preliminary experiments sur-
rounding the pattern-filling generation method, the setting and methods are dif-
ferent in some aspects from those presented in chapter 3. They are described in
the first subsection. The results obtained in these conditions are then observed
and analyzed. The behavior of the approach on some corpora raises questions
that require further investigation of the data, both natural and generated, to pro-
pose solutions. Finally, the proposed correctives are applied, and the approach is
evaluated.

4.2.1. Description

This section describes the initial pattern-filling generation experimental set-
ting and protocol applied in the preliminary experiments. Both the setting and
protocol will evolve to question different aspects of the generation methods. This
section is the basis on which the following preliminary experiments are built.

T

Figure 4.2: Overview of the protocol for the generated data experiment. The S,, data subset is
sampled from the training corpus. Patterns and mentions are extracted from this subset and
used to generate G,, of size 20k. Both S,, and G,, are used to train BiLSTMs that end up being
evaluated on the Test set from the corpus.

A compelling setting to use pattern-based generation is a setting where knowl-
edge bases and patterns are accessible. In this setting, the generated method
produces a generated set and not an augmented set. The choice made was to

55

sample sentences from the training set of the corpora to extract the mentions
and patterns from. The problem with this method is that it possibly doesn't rep-
resent the way data will be distributed in the pattern and mention lists in a real
setting. This problem can, however, not be answered, as it is relative to the task,
the domain, the project, or the organization you are part of. The benefit of this
choice is to have a clear set of data that can be used for comparative evaluation.
The generated data can be compared to the natural data it was generated from.
In this setting, the generated training set can be of almost any size. The size of this
set was chosen to be higher than the largest training set of the corpora used but
in a similar size bracket. On the sequence labeling task on a specific dataset, the
more data available, the better the tagger performs. A single number of gener-
ated data was evaluated whatever the size of the natural subset used to produce
it. This allows comparison between these different sizes of initial data used.

With the setting now described, the protocol of the experiment is as follows.
Our patterns and mentions are obtained by extracting them from the subset S,, of
data, as can be seen in Figure 4.2. For this experiment, the mentions and patterns
are extracted without duplicates. This means that the mentions and patterns are
uniformly distributed, with only a single occurrence of each within the lists. This
detail will be useful for understanding the differences between this experiment
and future experiments. The size n of the subset S,, sampled from the corpora
varies between 100 sentences and the full size of the corpus. The subsets S, fol-
low this rule : S;<; € S;. This is done by shuffling the training set once and taking
the n first sentences for each n. This experiment was done using a single seed
as a result of former blind spots in methodology. Twenty thousand utterances
were generated with the pattern generation method, regardless of the size of the
original subset. The corpora on which the experiment was applied are ATIS [Dahl
et al., 1994], 12B2 [Uzuner et al., 2011], MEDIA [Bonneau-Maynard et al., 2005],
and SNIPS [Coucke et al., 2018]. For this experiment, the tagger used is a BiL-
STM [Hochreiter and Schmidhuber, 1997]. Using a BiLSTM allows us to plug in
pre-trained embeddings. The embeddings used were pre-trained on Wikipedia
using the CBOW method [Ghannay et al., 2020]. The development set used for
training was the full-sized development set. Evaluation of the pattern-filling gen-
eration method was done by comparing the performances on the test set of the
BiLSTMs trained on the natural data S,, and the generated data G,,.

4.2.2 . Results

This section presents the results obtained with this first experiment. The F}
scores of the model of this first experiment are presented in Figure 4.3. The re-
sults are mostly positive for 12B2, ATIS, and SNIPS, where the F; score of the mod-
els trained on the generated data is higher than on natural data for lower-sized
subsets, and this tendency flips for SNIPS and I2B2 on the largest sizes. For 12B2,
at size 100, the taggers trained on the generated set improve their performance
by 6.5 points and then stay within 2.5 points of the natural results, whether itis for
improvements or degradation, with mostly positive results. For ATIS, the taggers
are improved at every size step, from a 3.9 improvement at size 100 to a 0.5 im-
provement at full size. For SNIPS, the results are impressive as pattern generation

56

100 12B2 100 ATIS

—— natural
80{ — generated 80
o o
5 60 g 60
3 Q
0 w
w40 T 40
20 201 — natural
—— generated
R S 4 e 2@ o Y) ‘
() 3, 7 (7 0 0 2. () 3 0 (o o 0 “2
(4 o (4 00 00 00 7@\9 (4 (% (4 00 00 00)&
Size of Sn Size of Sn
MEDIA SNIPS
100 100
—— natural —— natural
80{ — generated 80{ —— generated

60 60

F1 score

40 40

F1 score

20 20

) Ry o o BN 2 2 Ry o o BN
S () (@) () [@) <, () S () O, () [?) o
o (7] 00 00 OO 9 (7] (7] (7] 00 00 v)&

Size of Sn Size of Sn

Figure 4.3: F} score of natural and generated data with BiLSTM taggers.

allows to train model at size stamp n with better performances than the baseline
at size stamp n + 1 for n € [100 ; 500]. The performances are increased over
the baseline up to the full size. The case of MEDIA is much more dramatic, with
high increases in performance (+9.5 points) at size 100 but high degradation of
performances (-15 points) at full size. The first observation of these results shows
an overall tendency to have better performances with low quantities of data and
lower performances with higher quantities of data. Observation shows that ATIS is
the most simple task by the way its natural data curve behaves. It starts very high,
even with the smallest amount of data, which is 100 labeled sentences, reaches
over 80 F; score at 250 sentences, and finally reaches a plateau at around 95 F
score for 2000+ sentences. The results from MEDIA are also concerning. Degrada-
tion at high quantities of data can be expected, but this degradation appears with
larger quantities of natural data than for MEDIA. Investigation of the data needs
to be done in order to understand what causes the problem with MEDIA.

4.2.3 . Data Analysis

This section describes the analysis performed on the natural and generated
data to understand the problems raised previously and devise ways to counter
these problems. The initial results of pattern generation using generated data
are mixed. For multiple corpora such as 12B2, ATIS, and SNIPS, the results are
mostly positive, but for MEDIA, the results were positive on small quantities of
data but highly negative on higher quantities of data.

57

12B2 ATIS
08 mmm Natural 08 mmm Natural
: B Generated : B Generated
0.7 0.7
0.6 0.6
0.5 0.5
g g
§0.4 g0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0+ 0.0
0 3 0 3 5+
Length of mentions Length of mentions
MEDIA SNIPS
0.8 B Natural 0.8 B Natural
: mmm Generated : mm Generated
0.7 0.7
0.6 0.6
0.5 0.5
H H
0.4 $0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0+ 0.0
0 1 2 3 4 5+ 0 1 2 3 4 5+

Length of mentions Length of mentions

Figure 4.4: Distribution of the length of mentions in the natural and generated data. Each his-
togram represents the percentage of mentions in the category. The categories are the sizes of the
mentions in the number of tokens from one to four, and a category combining the mentions of
five tokens and above.

First, finding indicators that could be representative of issues must be done
in order to be able to pinpoint the issue and then correct it. Because the results
were mostly worse at higher quantities of data, the data is analyzed at full size.

One of the things that generation has changed compared to the natural data is
how the mentions and patterns are distributed. Due to the unicity of the mentions
and patterns in the lists and due to the uniform sampling, the mentions and pat-
terns are uniformly distributed with regard to their concepts in the data. However,
the natural distribution is different because duplicate sentences and mentions ex-
istin the natural corpora. Figuring out the difference in the individual distribution
for mentions and patterns is not that interesting because this knowledge cannot
be transferred to a real-case scenario where the mentions are extracted from a
knowledge base, and patterns are written by hand. Indicators that could be used
in these scenari are needed to inform users of the generation method on how to
proceed to improve their generated data.

Our first hypothesis is that mention length plays a role in the difficulty of the la-
beling task because it might become harder for a model to delimit the frontier of a
longer mention. Longer mentions could contain parts that would be related to an-
other concept, such as the name of a person in a street name, which is a location.
The distribution of mention length will be impacted by the change in mention dis-
tribution. Figuring out a trend in how the mentions are distributed following their
length in a natural setting will help try to replicate this distribution in a real-case

58

12B2 ATIS

mmm 12B2 natural Bl ATIS natural
B 12B2 synthetic Il ATIS synthetic

Frequency
=}
W
Frequency
=}
W

o
N
o
N

=]
=
=]
-

o
o
o
o

1 2 3 4 ’ 0 1 2 3 4

Number of mentions found in an utterance Number of mentions found in an utterance
MEDIA SNIPS
0.6 0.6
B MEDIA natural B SNIPS natural
mm MEDIA synthetic Bl SNIPS synthetic
0.5 0.5

o
~
o
~

Frequency
o
w
Frequency
o
w

0.2 0.2
0.1 0.1
0.0 0.0
0 1 2 3 4 5+ 0 1 2 3 4

Number of mentions found in an utterance Number of mentions found in an utterance

Figure 4.5: Distribution of the number of mentions per utterances in natural and generated data.
Each histogram represents the percentage of utterances in the category. The categories are the
number of mentions in the utterance from zero to four and a category combining the utterances
containing five mentions and above.

setting. The results of this analysis can be found in Figure 4.4. Natural data show
a Zipf-like distribution in the mention length on the five datasets. The longer the
mentions, the less they are represented. This distribution shifts towards longer
mentions in the generated data. That shows that short mentions exist with more
multiplicity in the natural setting than longer mentions. ATIS and SNIPS have mini-
mal changes in the distribution. 12B2 changes are greater, with close to 15% of the
mentions of length one being shaved off and distributed across the other length.
The most represented length of 12B2 shifted from 1 to 2. This did not seem to
affect the pattern generation method negatively. The distribution shift on the ME-
DIA corpus was the strongest shift. The Zipf-like distribution turned into a very flat
Gaussian distribution centered between 2 and 3-word mentions if you consider
the 5+ mentions to spread like a classic tail.

Exploring the impact of pattern distribution is important as patterns dictate
the concepts present in the generated sentences. Because of that, pattern distri-
bution controls concept distribution. Our hypothesis is that controlling pattern
distribution might have a high impact on the performances of taggers due to the
linked concept distribution. Patterns are inherently linked to concepts as the num-
ber of slots in a pattern represents the number of mentions in the utterance or
sentence made from the pattern. We have chosen to look at the distribution of
mentions across sentences. This quantity gives us information on how the change
in pattern distribution has impacted the landscape of mentions and, by extension,

59

12B2 ATIS

08 mmm Natural 08 s Natural
: s Generated : B Generated
0.7 Generated with 0.7 Generated with
== mention distribution == mention distribution
0.6 0.6
205 205
]]
§0.4 g0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0+ 0.0
0 3 4 0 3 4 5+
Length of mentions Length of mentions
MEDIA SNIPS
0.8 B Natural 0.8 mmm Natural
: s Generated : B Generated
0.7 Generated with 0.7 Generated with
== mention distribution == mention distribution
0.6 0.6
0.5 0.5
g g
g]
§0.4 §0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0+ 0.0
0 1 2 3 4 5+ 0 1 2 3 4 5+

Length of mentions Length of mentions

Figure 4.6: Distribution of the length of mentions in the natural and generated data. Each his-
togram represents the percentage of mentions in the category. The categories are the sizes of the
mentions in the number of tokens from one to four, and a category combining the mentions of
five tokens and above.

concepts. The distributions of mentions per utterances across corpora can be
found in Figure 4.5. The way this quantity is distributed does not follow a general
rule like the length of mentions. The corpora can nevertheless be divided into two
categories: containing empty sentences or not. Empty refers to the absence of a
mention in the sentence. SNIPS does not contain any empty sentences, and ATIS
contains almost zero empty sentences. The other corpora contain a significant
amount of empty sentences. The distribution of the number of mentions per ut-
terance in 12B2 follows a Zipf-like distribution. For ATIS, the distribution is close
to a Gaussian distribution centered on three mentions per utterance. For SNIPS,
the distribution is close to a Gaussian distribution centered a little higher than
two mentions per utterance. Finally, for MEDIA, there is a spike of sentences with
one mention and a long tail. The generated data shifts the distributions towards
more mentions per sentence. The effects are not that important except for ME-
DIA, where the spike gets flatted, and the quantity of sentences containing more
than five mentions explodes. The reduction of the 1-mention per sentence spike
can almost fully be explained by a pattern containing only the concept “reponse.”
Around 5000 sentences of “oui” or “non” are part of this spike in the natural distri-
bution.

The effects of pattern-filling generation on the distributions have been shown.
How can it be solved? As the data used doesn't come from knowledge bases, the
natural distribution of mentions and patterns is available. Applying these distribu-

60

tions requires adding small changes to the extraction pipeline. The pattern-filling
generation follows the same behavior. The changes are the pattern list and the
mention lists fed to the algorithm. Options were added to the extraction pipeline
to either add mention with multiplicity or add patterns with multiplicity to the re-
spective lists. This can be applied if data is available initially but not in the knowl-
edge base scenario. If it doesn't work with this setting, our hypothesis is that man-
ual changes to the distribution won't solve the problem either. While there can
still be a difference in mention length when applying mention distribution due to
the shift in pattern distribution as slots are linked to the patterns, the number of
mentions per utterance should be exactly the same. Informing pattern genera-
tion with the mention distribution generally solves the distributional shift, as can
be seen in Figure 4.6. Some small differences can still be found due to the way
pattern distribution might change the concept distributions. MEDIA is highly im-
pacted by uniform distributions. Using the natural distribution of the mentions
and then the patterns correct these distributional divergences can be seen the in
both Figure 4.6 and Figure 4.5. Let us see what the results of the taggers trained
on the corrected generated data are.

4.2.4 . Following natural distributions

This section presents the results of changing the distributions in the pattern-
filling generation method to the natural distributions. Two sets of experiments
have been done. The first one preserves the natural distribution of the mentions
in the generated data. The second one preserves the natural distribution of the
patterns in the generated data. Outside of these changes, the protocol remains
the same as the one presented in subsection 4.2.1.

The results obtained can be observed in Figure 4.7. Precise scores are avail-
able in Appendix B. For I12B2, at size 100, natural pattern and mention distribution
bound the uniform score and are respectively 7.3 and 6.3 points ahead of the nat-
ural data. At size 250, the new methods perform similarly and are better than the
uniform method, with a 47.8 F} score against 46.8. From sizes 500 to 3000, the
natural mention and pattern distributions are bounding the uniform distribution
with patterns being worse. For 7000+ sentences, the new methods are better than
the simple pattern-filling generation method, as they are better than the taggers
trained on natural data at 7000, but still obtain lower performances than natu-
ral data at full size. For ATIS, both new methods obtain positive results at every
size step. Both methods obtain 2.8 points more than the baseline for size 100
but are still 1.1 points below the previous pattern-filling generation results. Us-
ing the natural distribution of patterns obtains the overall best results with 95.8
points at size 3000 which is equivalent to the results of the previous experiments
at full size. For MEDIA, the results have improved at large numbers of sentences
when following the distribution of mentions. With natural mention distribution,
the degradation has gone from -15 points at full size to -1.9 points. The gap is
further increased by another point when using the natural pattern distribution.
Both methods improve results at size 100, with mentions obtaining better results
with a 14.5 increase from the baseline. Both methods obtain better results than
the baseline up to size 1000 and obtain better scores than the uniform distribu-

61

100 12B2 100 ATIS

—— natural
80 mention distribution 80 Z
—— pattern distribution =

— =
60

o))
o

I
o

F1 score
F1 score

40
—— natural

mention distribution
—— pattern distribution

20

N
o

o

o o > 2 2 2 s o 2 > 7
(o) O, (@) . (@) S (#) (o) O, O, 4
(7] 00 00 00 7@\9 (7] (7] 00 00)&

o
Size of Sn Size of Sn
100 MEDIA 100 SNIPS

80 80

60 60

40 40

F1 score
F1 score

—— natural —— natural
20 mention distribution 20 mention distribution
—— pattern distribution —— pattern distribution
< < Ny <, o - < < < Ny N > = <
@) S (o)) (o) [@) < o, S (9 (@) (o) (@) 9
(% o 00 00 OO \9‘)6‘ (% (% (% 00 00 00 9&7
Size of Sn Size of Sn

Figure 4.7: F} score of natural and generated data with BiLSTM taggers. The generated data either
preserves natural mention distribution or natural pattern distribution.

tions from 500 onward for mention distribution and from 500 to 3000 for pattern
distribution. For SNIPS, both methods are roughly equivalent and obtain better
results than the uniform method from 500 sentences onwards.

Our hypothesis that controlling pattern distribution might have a high impact
on the performances of taggers does not seem to hold as following the natural
pattern distribution performs worse than following the mention distribution. The
performances of the taggers trained with pattern distribution on MEDIA are sim-
ilar to taggers trained with uniform distribution. However, following the natural
mention distribution seems to sort out the problem.

4.2.5. Conclusion

We tried to use pattern-filling generation to create generated training sets for
our taggers. This method has been successful for the majority of the corpora us-
ing a uniform distribution of mentions and patterns. A problem was found for
the MEDIA corpus where a high degradation of performances appeared at high
quantities of data. This problem has pushed us to look deeper into the corpora
and understand that the distribution of the number of tokens in a mention played
a key role in the difficulty of the corpus. Pattern distribution was expected to play
a key part, but the performances of the taggers trained on data with natural pat-
tern distribution did not show any significant improvement, especially on MEDIA.
The distribution of data has an impact on the model performances. Mentions are
likely more available than patterns through the use of knowledge bases. Obtain-
ing patterns is done via writing them or labeling sentences. These processes are

62

difficult and tedious. Figuring out how performance scales with the availability of
patterns becomes an important question.

4.3 . On the number of patterns

Generation with pattern-filling generation requires patterns and lists of men-
tions. Lists of mentions can be extracted from knowledge bases. What about pat-
terns? Patterns are a limiting factor because they will likely require the most effort
to produce or obtain. Access to sentences in the domain of the task is not guaran-
teed due to privacy issues, a domain not covered by readily available data, or any
other type of problems that occur during data acquisition. Even if you have access
to data, patterns are extracted from labeled sentences. Labeling the sequences
is not an easy task, as it requires multiple points of view to avoid biases, and that
does not guarantee the quality of the annotation. If you don't have access to unla-
beled data, you have to produce the patterns by hand with the same problems as
annotating. For both of those cases, understanding the way performances scale
with the number of patterns becomes an important problem to avoid spending a
lot of time and energy on something that could bring little to no improvement.

4.3.1 . Experiment Description

This section studies the impact of the number of patterns on the tagger per-
formances. For this experiment, the quantity of natural data used is irrelevant. As
the focus is on the impact of patterns, the quantity of data that will vary in the
experiment is the number of patterns used for generation. The whole training
set is used for the extraction of the patterns and mentions. For this experiment,
the patterns and mentions extracted are unique, as in the first pattern-filling ex-
periment. The patterns are then shuffled once, and the sets of patterns used are
the first patterns of the list. Since the number of patterns is the quantity that is
studied, the list of mentions must be of fixed size and content. Models are prone
to over-fitting. The more mentions there are in the lists, the higher the quantity
of overlap there will be with mentions in the test set. This will positively impact
the performances of the taggers through means that are not the means studied.
As a result, we have chosen to cut the mention lists obtained from the extraction
over the full training set in half.

4.3.2. Results

The results of this experiment can be found in Figure 4.8. Before analyzing the
impact of patterns, let us note the impact of the reduction of mentions. The NLU
corpora (ATIS, MEDIA, SNIPS) seem to be more affected by the reduction of men-
tions at a high number of patterns than the NER corpus (12B2). This degradation is
most important for ATIS, where the F; score with high quantities of data is below
80 points versus around 95 points with full-sized mention lists. Apart from ATIS,
the F} score is below 20 points for ten or fewer patterns. ATIS's score is around
40 points which might indicate the presence of a pattern containing one or more
slots of the most populated concepts. A difference appears between the behavior
of NER corpus and NLU corpora. On NLU corpora, the performance of additional

63

12B2 ATIS

100 100
12B2 ATIS
80 80
2 60 2 60
o o
O 1%
Q Q
o 40 o 40
20 20
R S S N A VS 0 S O O Sl On S v D O
o 3 Yo 00 \5\0 00 000 000))\5‘ o N8 Yo 00 6\0 00 000 000 \)&\)
Number of patterns Number of patterns
100 MEDIA 100 SNIPS
MEDIA SNIPS
80 80
2 60 2 60
o o
Q Q
9 9
o 40 T 40
20 20
D N A O S D N A O S
o S8 Yo 00 6‘0 00 000 000 7)7 o S8 Yo 00 \5‘0 00 000 000 Oc%)
Number of patterns Number of patterns

Figure 4.8: F; score of BiLSTM trained on generated data. The generated data was generated
using half of the full-sized corpora’s available mentions and a number of patterns found in the
abscissa.

patterns reaches a plateau early on, whereas, for the NER corpus, the plateau
might have been apparent with more data. This plateau is located around 100
patterns for ATIS, 250 patterns for SNIPS, and between 500 and 1000 patterns
for MEDIA. Pattern scaling is much more pronounced with NER corpora, as can
be seen in Figure 4.8. The F} score of the taggers trained on the data scaled up
to 3000 patterns for 12B2. This number of patterns is not something that can be
achieved in a low-resource setting without any pattern-based generation method.
The only recommended quantity we can give is to prepare at least 500 patterns
for the training set. This quantity is enough to reach the plateau in NLU tasks and
brings the taggers to over 50 F} score for NER.

4.3.3. Conclusion

To generate a training set, at least 250 patterns are needed before diminishing
returns start to be felt on some corpora. This quantity varies from 250 patterns
for ATIS to 3000 for 12B2. From this state of affairs, the best compromise is to
collect at least 500 patterns to generate a generated training set. This amount
of patterns does not cover validation or testing, which would probably require
naturally labeled data to be effective. To obtain patterns, one might write them
or label sentences. If the chosen method is to write the patterns, during writing,
you will likely produce a sentence that might be used. Ifitis to label available data,
you have labeled data at hand. This data might as well be used during training. In
the next section, we take a look at augmentation using pattern-filling generation.

64

4.4 . Augmentation

The previous experiments have been with generated data. Obtaining patterns
is either done through labeling sentences or writing the patterns or sentences. It
is highly likely that the writing process will result in valid examples rather than just
patterns. Natural labeled sentences are likely to be obtained through the pattern
obtention process. These natural sentences should be used in the training data
set as they most likely are better examples than generated ones.

Figure 4.9: Overview of the pattern generation pipeline for augmentation. The S,, data subset is
sampled from the training corpus. Patterns and mentions are extracted from this subset and used
to generate G,, of size 20k. Both S,, and G,, are used to train BiLSTMs that end up being evaluated
on the Test set from the corpus.

For this experiment, a similar setup to the one in the generated data section
with a major revision is used, as can be seen in Figure 4.9. This time, the natu-
ral subset S, is augmented with the generated set G, to train the BiLSTM for the
generated side. This configuration of the experiment is tested using natural dis-
tribution in the generation process. The natural distribution of mentions is used
as it was the overall best method, but a method is also tested where both the
patterns and mentions’ natural distributions were preserved.

4.4.1. Results

F} score curves can be observed in Figure 4.10 and the exact results can be
found in Annex B. A tagger trained on augmented data following both mention
and pattern distribution is better than a tagger trained on natural data at lower
quantities of data. For 12B2, a tagger trained on augmented data using both dis-
tributions is better than a tagger trained on augmented data that follows the dis-
tribution of mentions. They are, however, equivalent between 500 and 1000 sen-
tences. For the ATIS and MEDIA corpora, both experiments produce equivalent
results. For SNIPS, taggers trained on augmented data following the natural dis-
tribution of patterns and mentions are better than their counterparts trained on
data following the distribution of mentions. This is true on all sizes of subsets
except full size. As expected, the results of augmentation are better than fully
generated data sets.

65

100 12B2 100 ATIS

80 /ﬁf—/

60

80

60

F1 score

40 —— natural 401 —— natural

F1 score

mentions mentions
distr. aug. distr. aug.
20 all 20 all
distr. aug. distr. aug.
0 \ T 00— \ \ T T T T
< < 3 <, > = <l < < 3 < < N b4
o) S (@) (@) (@) (o) <. o) S (@) [@) [@) (@) 4
o (4 00 00 00 7@\9 (% (% (% 00 00 00)0
Size of Sn Size of Sn
MEDIA SNIPS
100 100
80 80
(] (]
5 60 2 60
@ | @ |
o 40 _— natu;a o 40 _— natutr.a
mentions mentions
distr. aug. distr. aug.
20 all 20 all
distr. aug. distr. aug.
0 \ \ T T T 0 \ T T T T
< < Ny <, o - < < < Ny N > = <
@) ‘5\0 00 000 000 000 \-’\9\) o, S 00 000 000 000 9 e&
6 b4
Size of Sn Size of Sn

Figure 4.10: F; score of natural and generated data with mention and pattern redistribution with
BiLSTM taggers.

4.4.2 . Conclusion

The source of patterns is most likely going to be labeled natural data. This data
should be in the training set of the taggers. This section has explored the use of
augmentation instead of pure generated data. As expected, using available nat-
ural data does not degrade previous performances and can be better for tagger
performances.

In these preliminary experiments, we have explored multiple ways of using
the pattern-filling generation method. These experiments have led us to the con-
clusion that augmentation was the most effective use of this generation method.
However, the scope of these experiments was limited. In the next section, we
propose a final experiment in which augmentation is used while following the
methodology from Chapter 3.

4.5 . Final experiments

Previous sections have shown that pattern-filling generation can be used to
generate generated training sets. They have also shown that pattern-filling gen-
eration can be used as an augmentation tool for the training sets of sequence
labeling tasks. However, the experiments used to make these claims had many
limitations. They were done using the full-sized validation set. This is not realistic
with regard to the few-shot setting the experiments should be set in. The setting
is low access to data, which means that the natural data should be funneled to-

66

ward the training set and not the development set. The oversized development
set might have an impact on the performances of the methods. Another problem
that needs to be addressed is the absence of measurements of the variability of
the method. This information is needed in order to bring a stronger validation of
the previous results and frame them as more than possible good runs. The mul-
tiplicity of corpora in the previous experiments served this purpose but was not
enough. Finally, the taggers used to produce the results in the previous sections
are outdated. These BiLSTM taggers were cheap to train and produced correct
results at the time of the experiments. Stronger baselines exist, such as BERT [De-
vlin et al., 2018]. We use BERT-based taggers for this experiment. This section
presents an experiment tackling these issues.

4.5.1. Settings

The experiments in this section follow the methodology presented in the method-
ology chapter 3. The BERT + MLP taggers replace the BiLSTM taggers used previ-
ously. The BERT models used are pre-trained models trained on large quantities
of data. This architecture provides better results on the full-sized corpora than
the previous BiLSTM architecture.

The multiplication of experiments means that it becomes more costly to run
such experiments. Some of the previous experiments were cut to reduce the cost
of the experiments. Only the augmentation experiments are done in this section,
as in a real-case scenario, no one would discard its natural data. The number of
corpora used for the experiments has been reduced. The corpora we have chosen
to use are CoNLL 2003, 12B2, and MEDIA. These corpora cover multiple problems
linked with our objective dataset, which is AIDA. They cover the target language
with MEDIA, a specialized domain with 12B2, and the Named Entity Recognition
task with CoNLL 2003.

In particular, while doing the experiment on multiple corpora gave us indica-
tions on the viability of the methods employed, it did not give us a true account of
the capacity of the method. To be able to assess the performances of the method
on a single corpus, the sampling bias coming from the creation of the subsets
needs to be taken into account. Experimenting using multiple seeds becomes
crucial to be able to bring a definitive assessment of the pattern-filling generation
method. The results presented are the average and standard deviation across five
seeds. Multiplying the seeds comes at a cost. Five seeds are used and not more in
order to have an indicator of the dispersion of the results but stay within reason-
able energy and time consumption. Finally, our target setting has been reduced
to a low-resource setting. Our results are computed with subsets S,, with sizes
ranging from 50 to 1000 sentences. The development sets are sampled from the
natural development set and are of the same size as S,, unless S, is larger than
the natural development set. The generated set GG, is still composed of 20,000
sentences.

4.5.2 . Results

The results are presented in Table 4.1. The BERT + MLP architecture shows im-
provements on the baseline compared to the BiLSTM, with around 10 additional

67

Size \ 50 100 250 500 1000
CoNLL 2003 EN

Baseline 57.84+29 70.14+56 81.24+1.8 85.341.1 88.040.3
PatGen 20k 66.8433 71.7428 80.3+1.6 83.6+1.8 86.740.7
PatGen 20k (p+m) | 66.3+2.6 74.3+2.1 80.8+1.3 84.5+1.7 86.8+0.7
12B2
Baseline 37.0+£32 494416 63.2+16 72.0407 77.3+04
PatGen 20k 457+44 56.6+2.2 67.4+02 73.8+09 79.1+0.8
PatGen 20k (p+m) | 44.0+6.7 56.0+1.6 67.841.2 73.54+1.3 79.1+0.8
MEDIA
Baseline 443430 53.94+13 66.4+1.1 74.3+14 79.1+038
PatGen 20k 50.7438 57.54+15 67.14+22 74.0+09 78.040.3
PatGen 20k (p+m) | 50.04£3.9 57.94+2.1 68.3+1.1 74.3+0.8 78.84+03

Table 4.1: Fy score of taggers trained following the methodology of Section methodology. The
results are the average and standard deviations over five seeds. Baseline taggers are trained
using only the subset S,,. PatGen 20k taggers are trained using the subset S,, and the training set
generated with the pattern-filling generation method. PatGen 20k (p+m) taggers are trained using
the subset S,, and the training set generated with pattern filling generation with natural pattern
and mention distributions. The size of the subset is a number of sentences.

points at each size step for CoNLL and MEDIA and around 15 additional points at
each size step for 12B2. For 12B2, BioBERT + MLP on a subset of size 1000 with aug-
mentation obtains performances close to the performance of the BiLSTM trained
on the full-sized corpora with 77.3 against 79 as can be seen in Table B.1 in Ap-
pendix B. The bulk of this improvement is thanks to the architecture as it obtains
better performances with Sy at 77.3 F} score than a BiLSTM with Syq0 at 76.5.
However, the missing 1.5 points to bridge the gap to full-sized BiLSTM is reached
thanks to pattern-filling generation. For CoNLL, the performance of BERT + MLP is
over the performance of the BiLSTM at full size, with 88.0 points against 87.5 Such
a behavior is not as prevalent for MEDIA, where the current score for size 1000
is over the score of the BiLSTM with 79.1 against 77.5. As expected, the standard
deviation is greater with smaller subsets of data for all methods and all corpora,
with values ranging from 2.6 to 6.7 at size 50 and values ranging from 0.3 to 0.8
at size 1000.

In our results, the performances of the base pattern-filling generation method
and the method using natural pattern and mention distribution are presented.
For 12B2, both methods produce data that allows the model to outperform the
baseline with 45.7 and 44.0 for the base and redistributed method against 37.0
for the baseline. The uniform distribution works better than using pattern and
mention distribution with S5, and S;o, with 45.7 and 56.6 versus 44.0 and 56.0.
For CoNLL, the method not following the natural distribution and the methods
following the natural distributions produce improvements over the baseline for
sizes 50 and 100, with respectively 66.8 and 66.3 against 57.8 for the baseline and

68

71.7 and 74.3 against 70.1 for the baseline. The pattern-filling generation then
degrades the score of the baseline at larger sizes of S,,. For MEDIA, the situation
is close to the CoNLL situation, with the augmented set improving performances
up to size 500 and then degrading the performances at size 1000 with 78.0 and
78.8 for the base pattern-filling method and the method preserving the natural
distribution against 79.1. This degradation changes the results seen in the pre-
vious experiment, where augmentation improved performances for MEDIA. This
change can come from the reduction of the development set or a change of be-
havior due to the change of model.

4.6 . Conclusion

This chapter presented our interpretation of the pattern-filling generation me-
thod. This method is a computationally cheap algorithm that combines empty-
slotted sentences with mentions. We have shown that training sets generated
with this algorithm produce taggers with equivalent or better performances than
the natural data from which the patterns and mentions are extracted. The lower-
sized subsets of data benefited the most from using generated data. Generating
new sentences with pattern-filling requires patterns and mentions. It is hard to
quantify the number of mentions needed to produce data containing enough in-
formation for training a tagger, as the number of mentions found for each con-
ceptvaries greatly. We also made the claim that obtaining mentions is easier than
obtaining patterns. Further experimentation using outside sources of mention is
needed to validate those claims. We have instead chosen to focus on quantifying
the number of patterns. Patterns are harder to obtain as they are task-related
and are not part of knowledge bases. Our results on tagger performance scaling
depending on patterns are that 500 patterns are enough to produce good results
on easy and medium tasks, but more difficult tasks require as many patterns as
they can get. For simpler tasks, this number of patterns is more than enough
to reach a plateau of performance. For harder tasks, the more patterns the bet-
ter, but 500 should be enough to train a first tagger. Obtaining patterns is done
through manual labeling or writing. In these cases, it is likely that the patterns
are obtained from labeled sentences. Using pattern-filling generation as a tool to
augment these labeled sequences was a successful endeavor. Performances of
taggers were increased at all sizes of data used for the BiLSTMs. The final exper-
iment showed that with better-performing models, the methods obtained more
nuanced results. On I2B2, the results are positive at all natural subset sizes, but
for MEDIA and CoNLL, this is only true for the smaller sizes of data.

Pattern-filling generation is a viable method of augmentation to obtain signif-
icant improvements in tagging performances at low-resource. This method has
been used in practical situations [Roca et al., 2020]. This method creates rigid
sentences due to the fixed nature of patterns. It is possible that further improve-
ments could be made with less rigid sentence generation. We will explore using
language modeling for labeled sentence generation in the next chapter.

69

5 - Language modeling and Semi-supervision

In previous experiments, language models were not used to generate text.
Language models have, however, shown a high capacity for generating text. Re-
cent language models can generate human-like text. We want to use this genera-
tive capacity to generate labeled text. Generating text with labels would require
fine-tuning, which requires high quantities of data to avoid over-fitting. With this
in mind, using pre-trained language models to generate the text became a natural
step of the process. The question is how labels are assigned to the newly gener-
ated examples. Since a small quantity of labeled data and a possibly very large
quantity of unlabeled data are available, supervised learning cannot be applied
to train taggers. However, another paradigm of machine learning exists that can
use a mix of labeled and unlabeled data to train models. This paradigm is semi-
supervised learning. Our first goal is to show that semi-supervised learning can
use synthetic data as its unlabeled set. Our second goal is to evaluate the qual-
ity of the pseudo-labeled dataset generated by the language models and labeled
during the semi-supervised process.

This chapter presents our work combining semi-supervised learning and lan-
guage modeling. The semi-supervised paradigm is described in the first section.
From this paradigm, we have chosen to use the tri-training algorithm first with a
static set of data, then with a set of data dynamically generated. To generate these
sets of data, multiple generation setups are proposed based on existing language
modeling objectives. Finally, the quality of the data generated is tested by training
taggers on it.

5.1. Semi-supervised learning

Semi-supervised learning is a learning paradigm aiming at improving the per-
formance of the models trained by adding unlabeled examples to the training
set [Van Engelen and Hoos, 2020]. This paradigm has multiple branches depend-
ing on how the unlabeled data is used. Inductive semi-supervised learning [Van En-
gelen and Hoos, 2020] aims at improving the performances of models through
the addition of unlabeled data. For Named Entity Recognition, pseudo-labeling is
a method that has been used [Chen et al., 2019b]. Pseudo-labeling is one of the
semi-supervised learning methods. The unlabeled data receives pseudo-labels
from the models trained. This pseudo-labeled data is then used alongside labeled
data to train the models. Using weak labels or pseudo-labels at various stages of
training has worked for NER [Wang et al., 2021b]. The models at previous learning
states generate these pseudo-labels.

This branch of semi-supervised learning contains a variety of algorithms. These
algorithms depend on how many models are trained and which models are used
to generate the pseudo-labels. The most simple algorithm is self-training [Yarow-
sky, 1995], which trains one model and uses the model to create the pseudo-
labels, with all the caveats that ensue. DAGA [Ding et al., 2020] successfully used

71

this method with synthetic data. Other methods using ensembles of models were
created to reduce the biases induced by having the same model generate its
pseudo-labels. Co-training [Blum and Mitchell, 1998] is a method for training two
models in which each model generate the pseudo-labels for the other. A gener-
alization of this method exists in which an ensemble of n models is trained, and
the pseudo-labels for a model m; are produced using a voting system across the
n other models.

The semi-supervised algorithm used in this section is a variant using three
models called tri-training [Zhou and Li, 2005]. This method has been used to
solve Clinical Concept Extraction in the medical domain [Chen et al., 2019b] on
new data. Each model is trained on unlabeled data that receives pseudo-labels
from the other two models. Pseudo-labeled sentences are used when the two
models labeling the sentence reach an agreement. In tri-training with disagree-
ment [Segaard, 2010], the sentences are discarded when all the models reach
an agreement. Our goal is to produce data with tri-training. This version of tri-
training is not implemented as it would reduce the quantity of relevant generated
data when tri-training is used dynamically. We propose a generative tri-training
algorithm, which uses the voting system to discard newly generated samples on
which there is no agreement.

5.2. Tri-training with a static set of generated data

As presented in the previous section, semi-supervised learning is classically
applied to a dataset composed of labeled and unlabeled examples. The available
data is a small quantity of task-related data in the low-resource setting tackled.
This small quantity of data is assumed to be labeled because the size of the data
should allow it. As semi-supervised learning requires additional unlabeled data,
some additional unlabeled data is needed. We chose to produce this unlabeled
data using pre-trained large language models. This section presents the prelimi-
nary experiments that examine the feasibility of using LLMs to generate the unla-
beled data needed by a semi-supervised learning method: tri-training. The ques-
tion is whether the data generated by LLMs is of sufficient quality to be used in the
semi-supervised scenario. The semi-supervised algorithm used, the tri-training al-
gorithm [Zhou and Li, 2005], is introduced in the first subsection. The generation
methods using GPT-2 [Radford et al., 2019] used to generate the synthetic data
are then presented. This section is concluded with an analysis of the results ob-
tained.

5.2.1. Tri-training

This section provides details on the tri-training process for sentence tagging
and how language modeling is levied as an unlabeled data provider. Tri-training
is an inductive semi-supervised learning [Van Engelen and Hoos, 2020] method
using an ensemble of three models. Pseudo-labeled sentences are sentences la-
beled by the models during training. Pseudo-labels are subject to change through-
out the training procedure depending on model predictions. In this work, pseudo-
labeled sentences are trained upon without distinction from regular labeled sen-

72

Algorithm 1 Tri-training ([Zhou and Li, 2005], [Ruder and Plank, 2018])
foric[1; 3] do

1.

2: my < train_model(sampling(S,), m;)
3: end for

4. while Any m; still learns do

5. foric[l; 3] do
6
7
8

Li+ 0
ok <15 3] — il
forx € G, do

o: if m;(z) = my(x) then
10: Li LEu{(z,m! (x))}
11: end if
12: end for

13: end for

14: foric[1; 3] do

15: mt < train_model (Lt U S, m!™")
16: end for

17: end while

tences. It is possible to do special treatment such as balancing the batches be-
tween natural and pseudo-labeled data or adding a weight to the loss of the
pseudo-labeled data. These techniques are not done within tri-training, so they
will not be done in this thesis. During tri-training, the models are trained in a su-
pervised learning manner on a set of labeled and pseudo-labeled data. The mod-
els used for the ensemble are taggers that are trained to perform the sequence
labeling task. Further description of the taggers can be found in chapter 3. The tri-
training algorithm found in Algorithm 1 is described in the following paragraphs
and in Figure 5.1. The addition of GPT-2 as a generator is highlighted in the fig-
ure. Tri-training is an episodic training method that stops when each model of
the ensemble has stopped improving. The most crucial feature of tri-training is
the construction of the training set of the models. This is shown from line 4 to
line 9 in Algorithm 1 and in the second line of Figure 5.1. In the following lines,
the indexes i, j, and k represent the elements of [1 ; 3] where i is the referencing
the current model, and j and k reference the other models. For each model m;, a
pseudo-labeled set L; is constructed. L; is composed of the unlabeled sentences
r € G, for which the predictions of the models m; and m;, i ¢ {j, k} are equal.
These predictions are added to L, alongside z as their pseudo-labels. A threshold
can also be used to remove uncertain annotations. However, it was concluded
that it was not necessary for simple tri-training [Ruder and Plank, 2018]. The mod-
els arethentrained on both the natural and synthetic data S,,UL;. S,, is the labeled
training data. The operations described above are repeated until all models have
stopped learning.

The central part of Algorithm 1 described above assumes that models are suf-
ficiently trained and different to create varied pseudo-labels. The models are pre-
trained to achieve these prerequisites. The models m; are pre-trained on different

73

time = ¢, tagger = m;

Figure 5.1: Tri-training with unlabeled data G,, generation. In rectangles are the data sets, and in
rounded rectangles are the different models. The procedure is shown at episode ¢ for model m;.
The initialization is not represented and is done by sampling with replacement from S,.

random subsets of the labeled data S,,. These subsets are made by sampling with
replacements from the training set [Ruder and Plank, 2018]. This operation is also
referred to as bootstrap sampling in [Zhou and Li, 2005]. Sampling the pre-training
data is done to introduce variety in the train sets of the three models without in-
curring performance losses.

For inference, the ensemble of the three different models is used together
with a voting system. The labels with the highest summed score across the three
models are kept.

As a semi-supervised learning algorithm, tri-training requires a great amount
of unlabeled examples. The specificity of our study is the use of a generator to
create unlabeled examples. Applying semi-supervised learning methods is more
complicated when there is no unlabeled data. The text of the labeled data is used
as the context for the generation model. The generative model is used in two
different ways: (i) follow-up sentence generation, where the next sentence is gen-
erated using causal modeling, and (ii) sentence completion, where a sentence is
cut short and completed with, as shown in Figure 5.2.

The first generation method used is follow-up sentence generation. Large lan-
guage models like GPT-2 [Radford et al., 2019] are trained on texts containing
multiple sentences. This kind of model should be able to generate the follow-up
sentence from the context. Using these models out-of-the-box should work with-
out any fine-tuning. Follow-up sentence generation is applied to generate new ex-
amples. With this method, our aim is to generate new sentences that are within
the same domain but have different structures. The second method used is sen-
tence completion. The end of the sentence is removed and completed using the
language model for this method. Our aim is to generate alternative contexts to
the part of the sentence that is kept with this method.

74

5.2.2. Generation methods

The unlabeled set GG,, is generated with GPT-2 [Radford et al., 2019]. Hugging-
Face's implementation' is used. In this preliminary experiment, the small version
of GPT-2 is used. This packet is generated once before training. The text from the
labeled train set is used as the context to generate entailed examples. For each
labeled example, five follow-up sentences are generated. The language model is
also used for sentence completion. In this case, the original text is cut arbitrarily
and completed using the model. Each labeled example is cut to 75%, 50%, and
25% of its length. In each of these cases, five completed sentences are generated.
This amounts to a total of 20 synthetic examples per natural example. It is, in
practice, slightly less than that because sequences made exclusively of different
types of whitespace, newlines, and other such noise are filtered out. Generated
examples can be seen in Figure 5.3.

This is an example

Figure 5.2: Generation methods examples. In blue is the initial example and in red is the generated
text. The first generated example is from sentence follow-up, and the second is from sentence
completion.

5.2.3. Tri-training experimental settings

The main focus of this experiment is the use of tri-training without natural
unlabeled data. As explained previously, the unlabeled data generated is used
as the unlabeled data of tri-training. Tri-training requires one development set
and one validation set: the first for the training of each model m;, the second
to validate the stagnation of the models across episodes. We chose to split the
corpora’s initial development set in half to fulfill each of those purposes, as shown
in Figure 5.4. As this is a preliminary experiment, the sentences without tags are
excluded from the pseudo-labeled set. This is done to avoid a possible problem
at very low resources where the pre-trained models are not trained enough and
produce sentences with empty tag sequences where they should not. However,
our results show that these precautions might not be necessary. The result of
the tri-training procedure is an ensemble of three models. Inference using this
ensemble is made with a simple voting system. Voting is done by summing the
scores output of each tag across all models and picking the highest.

5.2.4. Results

This section presents the results obtained on the CoNLL [Sang and De Meulder,
2003] and 12B2 [Uzuner et al., 2011] corpora. The results are a comparison of

"https://huggingface.co/gpt2

75

https://huggingface.co/gpt2

MDS was founded in 1978.
And it was then that Jussi Graf's

3_x86_64.tar.gz""); // We'll add this [...]

FOLLOW US ON TWITTER!
Disease tolerance test for benz

-12 10:27:28 1 RavenQueen > she's been so [...]

Figure 5.3: Examples of generation. The first three examples are from CoNLL, and the last three
are from 12B2. Each series is formed of an example of completion and two examples of sentence
follow-up. The examples were cherry-picked to show both positive and negative aspects of gener-
ation, be of short length, and be labeled by the models. On CoNLL's completion example, only a
full stop was added. In [2B2's completion example, the context was "FOLLOW" and was too short
and generic to bring the sentence to the medical domain. The second examples for both corpora
are okay. The third example for both corpora happens when short formulaic sentences are used
as context. For CoNLL, it is the common -DOCSTART- and for 12B2, it is a date.

scores from a baseline against the individual performances of taggers trained in
the tri-training process and the ensemble of three taggers.

Baselines are the results of models trained in a supervised manner only on
the natural training data. The experiments are done using ten seeds. The re-
sults for each size n are the average and the standard deviation over the scores
obtained with the ten different seeds. The results in Table 5.1 show consistent
performance increases between each subset size. Seqgeval [Ramshaw and Mar-
cus, 1995, Nakayama, 2018] is used to compute the results. 12B2 F}; ranges from
36.2 (size 50) to 77.4 (size 1000), and CoNLL F'1 ranges from 59.9 (size 50) to 87.7
(size 1000). Smaller sizes show a higher standard deviation, with 5.8 for I2B2 and
3.3 for CoNLL at size 50.

Tri-training produces three trained models supposed to be used as an ensem-
ble of models. With constraints such as memory consumption or inference time,
one might want to use a single model for inference. For such cases, the results of
single models have been reported. The Aunique results show the deltas between
each of the three individual models m; and the baseline. For each subset S,,, it is
an average of 30 deltas.

The purpose of tri-training is to obtain an ensemble of three models. The re-
sults of the ensembles reported are the deltas between the performances of the
ensembles and their respective baselines. These results can be found within Ta-
ble 5.1 at the Aensemble line and in Figure 5.5.

Our method obtains higher results on average on all subsets and on both cor-
pora. Generally, on I2B2, tri-training allows for a Aensemble to range from +4.32
(S50) to +1.80 (S1000). On CoNLL, it otherwise ranges from +2.98 (S50) to +0.71

76

Training

Evaluation

Figure 5.4: Validation mechanism for a model m;. We split the development set in two, one to
optimise the model within a training episode, the other one to optimise across episodes.

Subsets ‘ Sx0 S100 S50 S500 S1000
~ Baseline 36.24+5.8 49.24+32 64.3+1.4 71.4+08 77.44+0.6
@ AUnique +3.94+1.9 +2.6+24 +1.9+13 +1.9407 +1.34+0.8
— AEnsemble | +4.3+18 +3.1+24 +25+12 +2.54+07 +1.84+08
- Baseline 59,9433 69.2+3.9 80.7+£2.0 84.74+09 87.71+0.4
CZD AUnique +2.34+20 +0.1+36 +1.14+1.1 +0.5+08 +0.34+04
U AEnsemble | +3.0+2.0 +0.8+3.7 +1.8412 +1.140.7 +0.7+0.4

Table 5.1: Average and standard deviation of F} score across ten seeds for the baseline results.
Average and standard deviation of the deltas between the performances of each individual tri-
trained tagger and their respective baselines at Aunique lines. Average and standard deviation of
the deltas between the performances of tri-trained ensembles and their respective baselines at
Aensemble lines. Corpora used are 12B2 and CoNLL.

(S1000)- The Aunique shows, as expected, lower gains than Aensemble, ranging
from +3.93 (S50) to +1.28 (S1p00) for 12B2 and +2.33 (S5g) to +0.27 (S;1000) for CoNLL.
Out of the 50 individual runs for each corpus, one is negative for 12B2, and five are
negative for CONLL. Impacts of the negative results are seen on the average results
of CoNLL at subset size 100. Three seeds yield negative gains at this size, with one
having extreme (-8.6 points) negative gains. Removing this extreme result in the
average calculation brings the Aensemble score closer to expected values (+1.89).
Performances of individual models on CoNLL are within the standard deviation of
negative results. This is not the case for 12B2. These results show that using the
ensemble is a more stable solution. Overall, the method is most consistent with
subsets of size 250 plus, as the average performance of tri-trained ensembles is
above the standard deviation of the baseline.

5.2.5. Conclusion

Leveraging pre-trained models to improve performances on specific tasks is
a common approach. With recent improvements to language modeling, recent

77

F1 delta between tritrained ensemble and baseline

CoNLL
12B2

F1

I

50 100 250 500 1000
Size of subset

Figure 5.5: Boxplot of CoNLL and I2B2 deltas between tri-trained ensemble and baseline (Aen-
semble). For each subset size, the left boxplot is CONLL, and the right boxplot is 12B2.

models are often used directly to solve tasks. We have shown that models can be
used to generate data that brings improvements to the performances of taggers
on NER and Clinical Concept Extraction in a low-resource context. The gains are
between 3 and 4 points of F} score on subsets of data of size 50. Gains are overall
positive on the sizes of the subsets tested. The higher the data size, the lower the
gain is. This preliminary experiment has shown that large language models are
suitable tools to generate unlabeled examples for semi-supervised learning for
NER. In the next section, we will improve the experimental setting and merge the
generation process in the tri-training algorithm.

5.3. Generative Tri-training

Generating a static set of unlabeled sentences has allowed us to produce im-
provements in performances for both the ensemble of taggers and the individ-
ual taggers trained. However, some of the generated data wasn't used. Gener-
ated data that was labeled at some point should be used as a new prompt for
text generation. For that reason, we have made the generation process closer
to the tri-training algorithm. The tri-training algorithm adds pseudo-labeled train-
ing examples to the training set when two out of the three taggers produce the
same pseudo-label sequence. Generation is now done at each episode of the tri-

78

training process and uses the ensemble of models as a filter with the mechanism
described in the previous sentence. This allows previously generated sentences
to be used for generation. Our hypothesis is that this process plays to the strength
of generation by producing a high quantity of varied examples.

This set of experiments uses new and improved generation methods with an
independent evaluation of each method. We then present how these methods
are used inside the generative tri-training process. Additional experiments with
self-training using a similar generative approach were introduced to have better
baseline comparisons.

5.3.1. Generation methods

How to generate new unlabeled samples is at the core of this chapter. Lan-
guage modeling is the tool used to generate new examples. The most traditional
way to do language modeling is to predict tokens left-to-right. These models use
the context on the left to predict the following tokens on the right. Causal mod-
eling is used for our first two methods of generation. The model used for these
generation methods is GPT-2? [Radford et al., 2019]. In particular, we have up-
graded to the large version of GPT-2 as compared to the previous section.

Other methods of language modeling exist, such as masked language model-
ing. These models predict tokens that have been masked within the sequence
using the overall context. This type of modeling is not used for generation in our
experiments, but we will use T5 [Raffel et al., 2020], which was trained using span
masking.

Text-to-text modeling is a recent approach to NLP brought by T5 [Raffel et al.,
2020], where every task is seen as a text to which the model must produce a
text response. The task on which T5 was pretrained is a span replacement task.
Our last two generation methods use this span replacement capacity to edit the
mention or the context of a labeled or pseudo-labeled sentence. For these meth-
ods, T5 v1.13, which is a version of T5 with updated activations and which is not
trained for the end tasks, is used. All generated methods are applied to labeled or
pseudo-labeled sentences. An example of each generation method can be seen
in Figure 5.6.

Follow-up

The first generation method tested is follow-up sentence generation. It is the
same as in the previous setting. The principle of this method lies in the left-to-
right modeling of the following text. The text from a labeled or pseudo-labeled
sentence is used as the left context for modeling. As the left context is a sentence,
consequently, follow-up generates the following sentence. Our hypothesis is that
the new sentences brought to the dataset by this method will bring variety to the
set while still being in the domain.

*https://huggingface.co/gpt2-large
3https://huggingface.co/google/t5-v1_1-large

79

https://huggingface.co/gpt2-large
https://huggingface.co/google/t5-v1_1-large

Completion

In a similar manner to follow-up, completion is a method using left-to-right model-
ing. In this case, modeling is used to complete the sentence. The principles behind
this method are the same as in the previous experiment, but with modifications.
The position from which to generate is chosen by sampling between the first to-
kens of the mentions within the sentence. If the sentence does not contain any
mention, the position is sampled between 25% and 75% of the sentence length.
Our hypothesis is that this method will bring variety to the mentions while keeping
the classic modeling approach.

Mention replacement

This method is the first method of text-to-text modeling. Our aim is to bring diver-
sity directly to the objects of interest with this method. The mentions of labeled
sentences are replaced using the model through span masking. Span masking
is the technique used to pre-train T5. One mention from the initial sentence is
replaced each time this type of generation is used. If more than one mention
is present, the mention that should be replaced is sampled. Sentences without
mentions are ignored.

Our hypothesis is that language models have learned information about any
subject during their training. The subjects of our interest are the concepts we
wish to label in sentences. Our hypothesis is that given a context that contains
an instance of a given concept, the model will be able to replace this instance
with other instances of the same concept. We expect this method to work best in
combination with other methods.

O O B-MISC I-MISC O O

Figure 5.6: Generation methods examples. In blue is the initial example and in red is the generated
text. In light blue is the label sequence, which is used to select mentions and context. The first
generated example is from follow-up, the second is from sentence completion, the third from
mention replacement, and the fourth from context replacement.

80

Context replacement

Context replacement functions in a similar way to mention replacement. It is the
non-labeled text that is replaced. A list of spans containing all the context spans
is created. Context spans are spans of contiguous outside tokens. The size of the
spans is not limited. The span which gets replaced is sampled. Sentences without
mentions are ignored. Our hypothesis is that taggers learn to predict both from
the context and the mentions. From this hypothesis, we derive that learning from
more varied contexts might benefit the tagger.

5.3.2. Semi-supervised learning methods

This section describes the tri-training algorithm with on-the-fly generation. Gen-
erating a fixed-sized unlabeled dataset for semi-supervised learning seems arbi-
trary. There is no guarantee that the models will use the data to learn because
there is no guarantee that the models will reach an agreement on the pseudo-
labels. In practice, some of the data will never be used. To solve this issue, we
have devised the generative tri-training algorithm. This algorithm is a modifica-
tion of the tri-training algorithm to fit generation.

Tri-training requires a step of training to initialize the taggers to be able to
produce pseudo-labels. This step is called the pre-training step when discussing
the tri-training algorithm. It is represented between lines 1 and 4 of Algorithm 2.
Any reference to pre-training refers to this step. Normally, the pre-training step is
done on subsets of data sampled with replacement from the labeled set. However,
we have found that adding an episode of training on the complete labeled set .S,
after the sampled setimproved performances of tri-training greatly. This addition
is found in line 3 of Algorithm 2.

Algorithm 2 and Figure 5.7 reflect the changes made to tri-training. With tri-
training, an ensemble of three models m;,i € [1; 3] is trained. Training is split
into episodes during which all three models are trained. For a given model m;,
episodic training stops when the model’s score on the validation set is lower than
the previous episode; this process is described in Figure 5.4. At the beginning of
each episode (line 8 of Algorithm 2), new subsets of pseudo-labeled data L! are
generated. These subsets are generated from the labeled and previously pseudo-
labeled sets. The newly generated examples L! are added without their labels to
the previously generated examples U* for the next episode. Each of these pseudo-
labeled sets L! is then augmented using previously generated examples U* with
the classic tri-training mechanism (lines 10 to 17 of Algorithm 2). Finally, between
lines 18 and 22, the models that still require training are trained.

This algorithm solves the issue of unused data by discarding freshly gener-
ated examples on which there is no agreement, as shown in Figure 5.7. A soft
disagreement modification is added to the tri-training algorithm by having a 50
percent chance for each model to keep pseudo-labeled examples on which there
is a complete agreement, as shown in lines 13 and 14. Our motivation behind this
change is to keep 'solved’ examples seen by the models once in a while to avoid
forgetting but still benefit from a lower quantity of data to improve training speed.

For tri-training and semi-supervision in general, two sets of validation data are
needed to evaluate our training. The development set from our corpora is splitin

81

Algorithm 2 Generative Tri-training

1: fori e [1; 3] do
2. m;? « train_model(sample(S,), BERT)
3 m; ' <« train_model(S,, m;?)
4: end for
5 1+ 0
6: U Ly Lyt Lyt « ()
7: while Any m; still learns do
8 LY, Lb, LY« gen_with LM (S, UU;_, Li™)
9: Ut « U' U remove_label (U?;l Lﬁ)
10 foriec[l; 3] do
11: gk < [1; 3] —{i}
12: forz € U' do
13: if mz._l(x) =m} (z) and (ml ' (z) # mz_l(m) or drop(p > .5)) then
14; Li LEU{(z,m! (x))}
15: end if
16: end for
17 end for
18: foriec[1; 3] do
19: if m; still learns then
20: mt < train_model(S, U L, m!™")
21: end if
22: end for

23: t+—t+1
24: end while

two. The first half serves as a development set for the training during one episode.
The second half is used to compare models across episodes and define when a
model should stop learning. This mechanism is described in Figure 5.4.

5.3.3. Experimental settings

We have devised a set of experiments to evaluate our tri-training with gener-
ation. These experiments compare our method to standard supervised training
and tri-training with available task data. Generation with semi-supervision is also
tested with two semi-supervised learning algorithms: tri-training and self-training.

Our baseline is supervised learning on natural data without any semi-supervi-
sion. Our topline is tri-training with natural data as the unlabeled data. These
results will be the comparison points for generative tri-training. The topline uses
part of the remaining sentences from the corpora as unlabeled data for tri-training.
We consider a set of 10,000 sentences from which we extract the supervised (base-
line) and the unlabeled set for tri-training (topline) corpora.

At each episode of semi-supervised learning, a fixed quantity of data is gen-
erated. Our aim is to generate 5,000 examples for each episode. This quantity
is large enough to bring a good amount of information but not too large in or-
der to avoid slowing down the training process. A lower amount of data is gen-

82

Episode t

Figure 5.7: Generative tri-training step. In rectangles are the data sets, and in rounded rectangles
are the different models. The initialization is not represented and is done by sampling with re-
placement from L. Data generated by the language model LM where models;_, have not reached
an agreement are discarded.

erated for earlier episodes as the quantity of context available, the labeled and
pseudo-labeled data, is smaller. This small quantity of data might also see its sig-
nal drowned if too much data is generated, as seen with the topline method. The
first two steps are eased in by only generating 500 and 2,500 instead of 5,000
examples.

Generation is done in the context of semi-supervised learning. For tri-training,
the generated examples are split among three sets, one for each model being
trained within tri-training. The new sets of data are generated by applying the re-
spective generation method to sampled examples from the natural dataset and
the pseudo-labeled sets from the previous episode. The three models then la-
bel the generated text output by the generation method. If two or more models
reach an agreement, the new data is saved for training. This pseudo-labeled data
is sent to either the packet of the model that disagrees if two models agree or
one of the sets at random if the three models are in agreement. This is done to
make the model that disagrees learn the information of the two other models.
If no agreement is reached, the data is discarded. New examples are generated
until the expected quantity, or the maximum number of generation operations al-

83

Corpus | CoNLL

Size | 50 100 250 500 1000

Baseline 60.0+29 70.5+4.7 81.3+1.7 84.6+t12 87.7403
ATopline +8.6+25 +5.6+2.0 +4.240.7 +3.8+£1.0 +2.140.3
AFollow-up +8.9+26 +4.4428 +3.1+04 +2.8+1.0 +1.7+0.2

ACompletion +7.8+19 +4.7+40 +2.7+1.0 +2.9+07 +1.7+0.2

AMention rep. | +9.0£2.1 +4.1£26 +2.8+1.1 +2.6+08 +1.2+0.3
AContextrep. | +7.3£19 +2.9+23 +1.2+04 +1.7£07 +1.3£04

ACombined ‘+9.3:|:2.7 +4.6+2.6 +3.4+1.0 +2.9+1.0 +1.6+04

Corpus | 12B2

Size | 50 100 250 500 1000
Baseline 39.3+3.1 50.4+1.4 63.8+0.7 71.5+£1.0 77.6%0.5
ATopline +8.3+22 +8.9+22 +6.7£12 +5.4+07 +3.440.7
AFollow-up +6.3+2.6 +4.5+26 +4.24+1.6 +3.6+1.0 +2.3£08

ACompletion +6.3+1.6 +5.6+2.8 +4.94+15 +4.3+1.7 +2.4+41.0

AMention rep. | +10.4+45 +7.4+29 +7.1£1.7 +4.6+1.0 +2.61+0.5
AContextrep. | +5.6+1.5 +7.743.1 +6.0+12 +4.2+410 +2.4+04

ACombined \+7.7i1.5 +6.4+1.7 +5.74+19 +4.44+12 +2.9+05

Table 5.2: Table of results of generative tri-training. The size row refers to the number of sentences
in S,. The results are averages and standard deviations computed on five seeds. Follow-up and
completion use GPT-2 as a generator. Mention and context replacement use T5v1.1.

lowed, is reached. This limit is put in place as a safeguard, but it is never reached
in practice. This limit is set at 10,000 generation steps. Each generation method
generates five new sentences for each input sentence.

5.3.4. Results

This section presents the results of our experiments. First, the baseline and
topline results are presented to set up the comparison points for our method.
The results of generative tri-training and self-training are then presented.

The results of baselines and the A’s between topline and baseline can be seen
in Table 5.2. As expected, the topline results are way above the baseline results.
Baseline results range from 60.0 F} score with subsets of size 50 to 87.7 F} score
at size 1000 for CoNLL. The topline gain on CoNLL ranges from 8.6 for the smallest
subset to 2.1 for the largest subset. For 12B2, the baseline results are smaller than
CoNLL's, ranging from 39.3 to 77.6 Fj score. 12B2's topline gains range from 8.9
at size 100 to 3.4 at size 1000. The gains at size 50 are slightly below, with 8.3.

In this first experiment, each generation method is used independently. This
experiment aims to test each of the methods to assess the impact on perfor-
mance. The results related to tri-training in this section can be found in Table 5.2
for low-resource and in Table 5.4 for full-sized results. Self-training results are

84

Corpus | CoNLL

Size | 50 100 250 500 1000
Baseline | 60.0+2.9 70.5+47 81.3+17 84.6+12 87.7+03
AFollow-up +4.84+29 +1.4436 -0.1£1.1 +0.6%+1.0 -0.0+0.3

+3.94+2.7 +0.842.0 -0.4+1.0 +0.6+£09 +0.1+£0.5

+6.0+2.9 +2.5428 +0.74+06 +0.8+04 +0.2+0.5
+4.3£+2.0 -0.5+40 -1.14+12 -0.24+07 -1.0£0.4

ACombined \+4.9i3.5 +1.44+31 -0.4+04 +094+12 +0.14+04

ACompletion

AMention rep.
AContext rep.

Corpus 12B2
Size 50 100 250 500 1000
Baseline 39.3+3.1 50.4+14 63.8+0.7 71.5£1.0 77.6%0.5

ACompletion | -0.5+1.6 +0.3£29 -1.4+08 -0.9+1.8 -0.7+0.5

+4.54+26 +2.94+18 +3.0£1.1 +2.0£1.1 -0.1103
+3.6£1.8 +3.6+£25 +3.9+09 +2.2+0.7 +0.310.1

+1.6+1.0 +0.74+1.7 -0.1£1.2 +0.6+£1.6 -0.5+0.2

AMention rep.
AContext rep.

AFollow-up +0.8+17 +0.2423 -0.7413 -0.2405 -0.840.9
ACombined |

Table 5.3: Table of results of generative self-training. The size row refers to the number of sen-
tencesin S,,. The results are averages and standard deviations computed on five seeds. Follow-up
and completion use GPT-2 as a generator. Mention and context replacement use T5v1.1.

found in Table 5.3. For tri-training, each method displays positive gains at each
subset size. Some individual generation methods even overtake the topline. This
is the case for the follow-up and mention replacement generation methods for
CoNLL with 8.9 and 9.0 F; score average gains. It is also true for the mention
replacement method for 12B2 with 10.4 and 7.1 F; score average gains at size
50 and 250, respectively. The gains follow the same trends as the topline, with
diminishing returns the higher the size of the training subset. For CoNLL, con-
text replacement is the lowest-performing generation method overall. For 12B2,
the answer is not as clear-cut. With a training subset of size 50, context replace-
ment is the worst-performing method. Still, at higher quantities of data, it be-
comes the second best-performing method, and follow-up generation becomes
the worst-performing method. Mention replacement is the best individual gener-
ation method on 12B2, with the best or second-best results at every subset size.
Overall, GPT-2-based methods yield lower results than T5v1.1-based methods on
I2B2. For self-training, as expected, the results are not as good as tri-training.
Overall, all gains are lower than their tri-training counterparts, with some nega-
tive results. Mention generation remains the best individual method as it is the
best method for CoNLL and is contending with context replacement depending
on the subset size for 12B2.

85

CoNLL 12B2
Caseline 92.0 86.6

Follow-up 91.8 88.0
Completion 92.1 87.5

Mention rep. 92.2 87.7
Context rep. 92.2 87.6

Combined 92.3 87.5

Table 5.4: F} scores of generation methods on full-sized corpora. Results computed on one seed.
Follow-up and completion use GPT-2 as a generator. Mention and context replacement use T5v1.1.

The combined method is done by sampling the generation method from the
available methods for each generation step. As every generation method yields
positive results, they were all added to the pool of available methods. Results of
the combined generation method for tri-training can be found in Table 5.2. The
method displays two different behaviors on the two corpora. For CoNLL, the com-
bined generation method is the best generation method. For 12B2, the combined
generation method is more akin to an average method. It is the best method with
subsets of size 1000 with a 2.9 F; score. It is otherwise lower or equal to the re-
placement methods, except for context replacement on the smallest subset. The
combined generation is higher than the left-to-right modeling methods for 12B2.
Overall the combined method has a higher Pearson correlation factor for follow-
up and completion methods with .98 and .97 than with mention and context re-
placement with .92 and .80, respectively. Those coefficients were computed with
the results reported in Table 5.2.

Results for generative tri-training on the full-sized corpora can be observed in
Table 5.4. For CoNLL, our best results are with the combined method with a .3
improvement. There is, however, a .2 deterioration with follow-up. Overall, on
full-sized CoNLL, positive results are obtained. For 12B2, all methods significantly
increase the F score with improvements ranging from .9 for completion and the
combined method to 1.4 for follow-up.

5.3.5. Conclusion

Our proposed method works when generic language models are available. The
method was tested on a general-purpose domain with CoNLL and on a specialized
domain with 12B2. GPT-2 based generation methods are less effective in the spe-
cialized domain than in the general-purpose domain. Thus the model used will
have an impact on the qualitative results of the generation methods. Furthermore,
our methods are not tested with a reduced validation set. There is no guarantee
that the generated data is meaningful or within the domain. We know from the
generated data that some examples are outside the domain. This is especially
true for the completion method if the mention where the generation starts from
is close to the beginning of the sentence.

86

Our proposed method of augmentation combining the semi-supervised learn-
ing method known as tri-training with generation using large language models is
effective in the setting tested. We have proposed several methods of generation
and their combination to use within this augmentation framework and a combina-
tion of those methods. These methods were compared in a low-resource setting
against supervised training and tri-training with natural unlabeled data. Gener-
ating data for self-training was also tested. Overall, generation works best with
tri-training and improves performances from the baseline. Having unlabeled data
from the task still results in better performances in most cases. The best genera-
tion method for both CoNLL and 12B2 is mention replacement using T5 v1.1 as a
span-replacement tool.

In the following section, we will evaluate the impact of the quantity of data in
the development set.

5.4. Impact of a small development set and performances of generated
data

We have shown previously that language models could be used to generate
the unlabeled training set for tri-training. These experiments were done using
the full-sized development set of the corpora experimented on. As shown in the
previous section and in Figure 5.4, the development set played a more important
role in pseudo-label-based semi-supervised learning. It is divided to be used for
both model training evaluation and episodic evaluation. As such, reducing the
size of the development set might have a large impact on the final performances.
In this section, the impact of following the methodology presented in Chapter 3
is studied. Our expectations are that the smaller size of the development set will
have a large impact on generative tri-training.

5.4.1. Small development set

Let us first take a look at the impact of the development size on the baseline.
The impact is mainly felt at smaller sizes where there is a degradation of perfor-
mances of a couple of points. The impact is not felt at higher quantities of data.
The impact is expected to be stronger for tri-training.

The results of generative tri-training with a smaller set of data can be observed
in Table 5.5 for CoNLL, Table 5.6 for 12B2 and Table 5.7 for MEDIA. Performances
have overall shifted towards lower scores for both the baseline and the ensembles
of models. The behavior of the different generation methods for CoNLL is not
strongly affected, with the combined method being the overall best method. The
combined method is not the best for subsets .S,, containing 50 and 1000 sentences,
but it is quite close to the best methods at these sizes, with a 0.3 difference at 50
and a 0.1 at size 1000. The GPT-2 based methods are not as clearly ahead of
the T5-based methods as they were with large development sets. For [2B2, the
behavior of the various methods is quite different. Below 500 sentences, causal-
based methods are outperformed by span-replacement methods. They become
equivalent from subsets of 500 sentences onward. The combined method is hit
by the reduction of the development set at size 50, where it performs the worst.

87

Size | 50 100 250 500 1000
Baseline | 57.8+2.9 70.1+56 81.2+18 853+1.1 88.0+0.3

Follow-up 64.3+22 73.7433 83.5+1.1 87.2+0.7 89.4+0.2
Completion | 63.5+22 71.6+28 83.4+13 86.840.7 89.24+0.3

Mention rep. | 64.5+1.2 72.7+3.1 82.8+19 87.2+0.7 89.1+04
Contextrep. | 62.8+£3.2 72.3£27 825£14 86.3£0.7 89.0£0.1

Combined \64.2i3.5 74.6+3.3 83.6+1.1 87.3+09 89.340.5

Table 5.5: Table of results of the ensemble of taggers trained with generative tri-training with small
development set on CoNLL. The size row refers to the size of S,, as a number of sentences. The
results are averages and standard deviations computed on five seeds. Follow-up and completion
use GPT-2 as a generator. Mention and context replacement use T5v1.1.

Size ‘ 50 100 250 500 1000
Baseline ‘37.0:&3.2 494416 63.2+16 72.0+07 77.31+04

Follow-up 38.9+3.0 50.5£24 66.1+04 75.1+1.4 79.6+0.8
Completion | 38.2+4.7 51.6+25 67.8+14 744406 80.5+0.5

Mention rep. | 41.443.0 54.9420 68.9+19 75.3+0.8 79.91+0.7
Contextrep. | 42.8+2.4 55.0+3.2 68.2+1.1 74.3+05 79.4+0.7

Combined ‘37.9:1:4.6 52.4+22 68.1£05 74.7£0.7 79.9£0.8

Table 5.6: Table of results of the ensemble of taggers trained with generative tri-training with small
development set on 12B2. The size row refers to the size of S,, as a number of sentences. The
results are averages and standard deviations computed on five seeds. Follow-up and completion
use GPT-2 as a generator. Mention and context replacement use T5v1.1.

For MEDIA, this is the first tri-training experiment. All the tri-training examples
produce higher than baseline results. The higher the size of natural data, the
closer the results of the methods are to each other. At size 50, the results range
from a 46.5 score for follow-up generation to 48.3 for both completion and context
replacement against 44.3 for the baseline. At size 100, the results range from
55.6 for follow-up generation to 57.4 for mention replacement against 53.9 for
the baseline. Follow-up is still behind the other generation methods at size 250,
with a 67.9 score against 68.6 for completion, but it is still higher than the baseline,
which garners a 66.4 score. At size 500, the results range from 75.6 for follow-up
generation and the combined methods to 76.2 for completion against 74.3 for the
baseline. Finally, the scores range from 81.2 to 81.4 at size 1000 against 79.1 for
the baseline. Follow-up is clearly the worst method using BLOOM for the MEDIA
corpus. Completion is the method that obtains the best performance the most
amount of time.

The Pearson correlation factor is computed with the delta of the methods
with the baseline. This factor is used to understand the correlation of the indi-
vidual methods with the combined method. The correlation factors with the com-
bined method show a similar trend to the results with a large development set

88

Size \ 50 100 250 500 1000
Baseline \44.3i3.0 53.9+1.3 66.4+1.1 743414 79.14+0.8

Follow up 46.5+3.0 55.6+1.7 67.9+1.7 75.6+£1.0 81.2+05
Completion | 48.3+3.3 56.5+£1.0 68.6+1.7 76.2+0.9 81.34+0.3

Mention rep. | 47.7+26 57.4+1.0 685+14 75.9+1.0 81.4+06

Contextrep. | 48.3+3.2 56.6+09 683+14 75.9409 81.14+0.5
Combined \47.4i2.9 57.0+08 68.3+1.8 75.6+t1.2 81.2+06

Table 5.7: Table of results of the ensemble of taggers trained with generative tri-training with small
development set on MEDIA. The size row refers to the size of S,, as a number of sentences. The
results are averages and standard deviations computed on five seeds. Follow-up and completion
use BLOOM as a generator. Mention and context replacement use mT5.

with a Pearson of 0.83 and 0.79 for follow-up and completion with the combined
method and 0.69 and 0.42 for mention and context replacement with the com-
bined method. The performances of the combination of the method still depend
more on the causal-language-modeling-based methods.

For CoNLL, combining the methods is still the best approach. For 12B2, the
span-replacementtechniques overall perform better. Generative tri-training yields
better results than the baseline in all cases. While tri-training is a good method,
the final ensemble of models is three times the size of an individual model. The en-
semble trained might profit from being an ensemble against a single tagger. For
thisreason, acomparisonto a single tagger trained on the data generated through
the tri-training process is necessary. In the next section, we will test whether the
performances of the ensemble be replicated by a single model.

5.4.2 . Training on the data generated

Our goal is to produce generation methods capable of creating synthetic text
with tags. The way tri-training is evaluated in the previous sections does not reflect
this goal. The capacity of tri-training to produce an ensemble of taggers using syn-
thetic unlabeled datasets was evaluated. This endeavor has been successful. The
capacity of the generated data to train a single tagger is evaluated in this section.
The performance of these taggers to the performances of the individual taggers
trained during tri-training are compared. Using the individual taggers trained dur-
ing tri-training would be the simplest way to obtain another single tagger. The in-
dividual taggers behave in a similar manner to the ensembles, albeit with smaller
scores, as is shown in Tables 5.8 5.9 5.10. Degradation of performances is ob-
served for context replacement when applied to CoNLL when using subsets of
size ranging from 100 to 500. Sentence completion also obtains negative results
at size 50 for 12B2. For MEDIA, context replacement also obtains negative results
on the single models at size 500.

Generative tri-training adds pseudo-labels to the unlabeled generated set. Each
of the individual models is trained on synthetic data for which the other two mod-
els have produced equal pseudo-labels. How do we choose the data that is output
by generative tri-training? We have chosen the simple approach of keeping only

89

Size | 50 100 250 500 1000
Baseline | 57.8+2.9 70.1+56 81.2+18 853+1.1 88.0+0.3

Follow-up 63.1+£3.0 72.3+33 82.2+12 86.2+0.8 88.6+0.5
Completion | 62.2+2.7 70.4+28 82.3+1.5 85.5+13 88.5+04

Mention rep. | 62.9+19 71.0+33 81.3+19 85.84+0.9 88.2+05
Contextrep. | 60.3£4.6 69.6£25 80.9£1.9 84.8+£1.1 88.0+0.3

Combined \62.7i3.2 72.6+3.6 81.542.0 86.3+1.0 88.440.5

Table 5.8: Table of results of the unique taggers trained with generative tri-training with small
development set for CoNLL. The size row refers to the size of S,, in number of sentences. The
results are averages and standard deviations computed on five seeds and the three models for
each tri-training run. Follow-up and completion use GPT-2 as a generator. Mention and context
replacement use T5v1.1.

Size ‘ 50 100 250 500 1000
Baseline ‘37.0:&3.2 49.4+16 63.2£1.6 72.0£07 77.3£04

Follow-up 37.7428 495425 64.7£12 739416 78.6+0.8
Completion | 36.94+5.0 50.44+25 66.54+1.7 73.1+1.0 79.5+0.9

Mention rep. | 39.9433 53.54+2.0 67.44+24 74.0+12 78.6%+1.0
Contextrep. | 40.5+3.0 53.0+34 66.4+1.4 729+1.0 78.1+08

Combined ‘37.0:1:4.7 51.1£29 66.6£1.2 73.2£15 78.9£1.0

Table 5.9: Table of results of the unique taggers trained with generative tri-training with small
development set for 12B2. The size row refers to the size of S,, in number of sentences. The
results are averages and standard deviations computed on five seeds and the three models for
each tri-training run. Follow-up and completion use GPT-2 as a generator. Mention and context
replacement use T5v1.1.

the data where the three models produce the same sequence of tags. Other ways
of creating the synthetic corpus are not studied. It is a possible axis of develop-
ment of this method. BERT+MLP taggers are trained on S, with the addition of
the synthetic corpus produced with generative tri-training. The F} scores of the
taggers on the test sets can be found in Table 5.11 for CoNLL, in Table 5.12 for
I2B2, and in Table 5.13. The results are, in general, better than the singular tag-
gers, except for MEDIA, where the difference is less clear. Exceptions exist, such
as context replacement for CoNLL with the degradation from the baseline score
at size 1000 and the degradation from the singular taggers at size 250. Context re-
placement for I12B2 also performs worse than with the singular taggers at sizes 50
and 100. For MEDIA, on the 25 generation method x size settings, 13 obtain better
results when taggers are trained on the data produced, versus three that obtain
equivalent results and nine that obtain negative results versus the single taggers
trained during tri-training. This phenomenon is accentuated at sizes 50 and 100,
for which there are only three positive results against six negatives. At size 250
and above, the results are mostly positive, with ten positive comparisons against

90

Size \ 50 100 250 500 1000
Baseline \44.3i3.0 53.9+1.3 66.4+1.1 743414 79.14+0.8

Follow-up 451435 547417 66.9+14 744411 80.2+0.6
Completion | 47.1+£3.2 55.5+12 67.2+1.6 74.7+1.0 80.1+0.5

Mention rep. | 46.4+28 54.3+4.1 67.1+£15 74.7+1.1 79.8£15
Contextrep. | 46.8£3.3 55.6£1.0 66.8+£14 73.8+1.8 80.1+0.7

Combined \47.2i3.9 55.6+1.2 67.0+1.7 74.6+1.2 79.9+0.6

Table 5.10: Table of results of the unique taggers trained with generative tri-training with small
development set for MEDIA. The size row refers to the size of S,, in number of sentences. The
results are averages and standard deviations computed on five seeds and the three models for
each tri-training run. Follow-up and completion use BLOOM as a generator. Mention and context
replacement use mT5.

three negative. The methods of generation also play a role in the improvement of
taggers trained on the outputs against the single taggers. Follow-up generation
and mention replacement have four out of the five sizes tested where the taggers
trained on the outputs outperform the taggers trained during tri-training. Outside
of these occurrences cementing context replacement as the worst method, the
scores obtained by training a tagger on the generated sets are mostly better than
the individual models trained during generative tri-training. The performance of
the taggers trained on the outputs rivals the performance of the ensembles of tag-
gers on some generation methods. Follow-up obtains equivalent performances
on CoNLL and better performances for the taggers trained on the outputs for 12B2.
For sentence completion, the ensembles perform better at over 500 sentences on
CoNLL but worse on smaller sizes. The same behavior is seen on 12B2. Mention
replacement follows the same pattern, with ensemble performances being better
with more than 250 sentences for CoONLL. However, for 12B2, the mention replace-
ment method is better with a single model except at a subset of size 1000 where
it is equivalent. For context replacement, the scores are clear, and the ensembles
outperform the single taggers on all settings except 12B2 with size 250. The com-
bined method is worse on all sizes for CONLL and better on all sizes for 12B2. For
MEDIA, the results are not as positive, as only the combined method at size 50
produces better results than the ensembles of models.

Generative tri-training generates data that can be used to train taggers. Men-
tion replacement and follow-up generation seem to be the most consistent gen-
eration methods. With 100 or more sentences, the combined method is also a
safe option if you want to generate synthetic text using the generative tri-training
method. It must be noted that the generation methods behave differently be-
tween the two corpora. This might be inherent to the generation methods, but it
can also come from the models used by these generation methods. GPT-2 was
trained using WebText [Radford et al., 2019], a corpus of articles and pages linked
from Reddit. T5, on the other hand, was trained using a corpus of examples ex-
tracted from Common Crawl they have named C4 [Raffel et al., 2020]. These pre-
training corpora might not contain similar quantities of information related to the

91

Size | 50 100 250 500 1000
Baseline | 57.8+2.9 70.1+56 81.2+18 853+1.1 88.0+0.3

Follow-up 64.2+2.1 73.6+3.0 83.9+09 87.3+0.6 89.0+0.7
Completion | 63.9+33 72.1+2.6 83.3+£14 86.64+0.9 88.640.1

Mention rep. | 65.2+1.6 72.9+32 82.6+1.6 86.3+09 88.4+04

Contextrep. | 61.24+47 70.4+28 80.2+18 85.3+14 87.31+03
Combined \62.9i3.2 74.44+26 82.8413 87.0+06 88.640.5

Table 5.11: Table of results of BERT+MLP taggers trained on data generated with generative tri-
training with small development set on CoNLL. The size row refers to the size of S,, in number of
sentences. The results are averages and standard deviations computed on five seeds. Follow-up
and completion use GPT-2 as a generator. Mention and context replacement use T5v1.1.

Size ‘ 50 100 250 500 1000
Baseline \37.0j:3.2 49.4+16 63.2£1.6 72.0£07 77.3£04

Follow-up 414426 51.1+16 67.8+13 75.4+11 79.8+07
Completion | 39.1+£3.3 52.6+26 68.2+£13 74.1£1.1 80.31+0.4

Mention rep. | 43.0+2.8 56.1+1.2 70.2+13 75.7+1.0 79.8406
Contextrep. | 39.8+2.0 52.5+£2.6 68.5%1.1 73.7£1.1 78.940.8

Combined | 39.1+36 53.5+26 69.1+08 74.8+09 80.3+05

Table 5.12: Table of results of BERT+MLP taggers trained on data generated with generative tri-
training with small development set on 12B2. The size row refers to the size of S,, in number of
sentences. The results are averages and standard deviations computed on five seeds. Follow-up
and completion use GPT-2 as a generator. Mention and context replacement use T5v1.1.

domain of training sets used. Other models could be used instead of GPT-2 and
T5, which might change the landscape of the results. Due to these various fac-
tors, we cannot recommend the best generation method if you want to use this
method. However, avoid starting experimenting with context replacement as it
is the least safe generation method with our settings. Our recommendation is to
use follow-up or mention replacement first. While we have seen that generative
tri-training creates data that improves the training of taggers, it is not the only
method presented in this work. How does this method fare against pattern-filling
generation?

5.4.3 . Comparison to pattern-filling generation

In the previous chapter, a pattern-filling generation method was introduced.
This method produced labeled synthetic data that improved tagger performance
for 12B2 at all sizes and improved tagger performance at the smaller sizes for
CoNLL. The results of the pattern-filling generation method found in Table 4.1
are compared to the result of the taggers trained on the outputs of the genera-
tive tri-training algorithm found in Tables 5.11 5.12 5.13. With subsets containing
50 sentences, taggers trained with pattern-filling generation data outperform the

92

Size \ 50 100 250 500 1000
Baseline \44.3i3.0 53.9+1.3 66.4+1.1 743414 79.14+0.8

Follow-up 46.4+26 54.6+28 67.2+£12 749409 80.3+0.4
Completion | 47.1+2.6 55.1+04 67.0£1.2 75.0+1.3 80.14+0.6

Mention rep. | 46.9+3.0 56.6+1.4 67.6+t1.8 74.4+0.7 80.1£05
Contextrep. | 46.3£3.1 55.0£1.1 67.1£0.6 75.0£1.0 79.8£0.5

Combined \47.0i2.6 55.4412 67.5+1.0 74.6+09 80.0+0.7

Table 5.13: Table of results of BERT+MLP taggers trained on data generated with generative tri-
training with small development set on MEDIA. The size row refers to the size of S,, in number of
sentences. The results are averages and standard deviations computed on five seeds. Follow-up
and completion use BLOOM as a generator. Mention and context replacement use mT5.

taggers trained with generative tri-training data. There is a 1.6 points difference
between the best methods for CoNLL and a 2.7 points difference between the
best methods for 12B2. With 100 sentences, the combined method is better than
pattern-filling generation for CoNLL. For 12B2, the taggers trained on the uniform
distribution pattern-based data are still 0.5 points over mention replacement. For
250 and more sentences, the generative tri-training data is overall better than
pattern-filling generation data, with only context replacement being lower at 250
sentences for CoNLL and 500 and 1000 sentences for I2B2. For MEDIA, at sizes
50 and 100, using either the uniform distribution or the natural distribution in
pattern-filling generation outperforms all taggers trained on the outputs of tri-
training. At size 250, the uniform method of pattern-filling generation is outper-
formed by taggers trained on the outputs of tri-training with most methods of
generation, but the taggers trained on data generated with natural distribution
are still best. For sizes 500 and above, the taggers trained on the outputs of tri-
training are better than the taggers trained using pattern-filling generation.
Pattern-filling generation remains the best method to use for smaller sizes
of available data. However, this method does not scale as well as generative tri-
training and even hinders performances on CoNLL at higher quantities of data.
These methods both have their strength, and it is possible that improving the
quality of the tri-trained taggers using pattern-filling generation could improve
the final performances. Using pattern-filling generation on a set of synthetic data
produced by the tri-training generation method is also a possible improvement.

5.5. Conclusion

Using language models to generate unlabeled data for semi-supervised learn-
ing is a successful method. Generation was mostly tested for the tri-training algo-
rithm. Self-training was also tested in its simplest form. An improved self-training
algorithm exists, which might improve the results obtained. Improvements to the
tri-training method also exist, especially on the filtering side of the algorithm. We
had chosen to compare the base versions of the algorithms as they are easier

93

to implement when the generative process is added on top of them. Tri-training
performed better than self-training with these settings.

Models that perform better, thanks to the generation of data, were produced.
The tri-training algorithm trains an ensemble of three taggers that were trained
using synthetic data. We have shown that a single tagger trained on the synthetic
data containing all the examples where the three taggers from tri-training had
an equal tagging scheme obtained better performance than the ensemble. The
performance of these taggers was compared to the performances obtained with
pattern-filling generation in the previous chapter, and we have observed that tri-
training synthetic data is better with 100 or more sentences as the pool of initial
data. Both the ensembles of models and taggers trained on the product of tri-
training outperform the models produced with pattern generation at higher quan-
tities of data. However, the combination of the ensemble method and episodic
training and the use of large language models causes this method to be quite
heavy in terms of computation. This might be a factor when choosing the method
to use when generating data.

We have raised questions on the performances of the generation methods
relative to the models used. The performance of models reflects the data they
were trained on. We have used GPT-2, BLOOM, T5, and mT5, which were not pre-
trained on the same dataset. The impact a model has on the quality of the results
obtained by a generation method is unknown. Studying the impact of different
generators is a path that can be explored in the future. For now, we have chosen
to explore the use of replacement methods to produce labeled text in the next
chapter.

94

6 - Modeling with patterns

In the previous chapters, two approaches to labeled sentence generation were
presented and studied. The first approach uses pattern-based methods for la-
beled text generation. The second approach focuses on combining language mod-
eling with semi-supervised learning to produce labeled sentences. This chapter
looks into the possible connections that could be made between these two ap-
proaches.

Thus, the first approach is the pattern-filling generation method which works
by replacing parts of the sentences associated with a concept with other parts
associated with the same concept. The choice of the replacement parts is made
via a sampling method. The benefit of this method is to leverage the structural
knowledge from the pattern and the semantic knowledge of the lists of men-
tion. Pattern-filling generation is the best method of the two previously shown
below 100 sentences. The second approach studied is language modeling cou-
pled with tri-training. This method uses language modeling to produce new sen-
tences. These sentences are both filtered by the ensemble of three taggers and
used as part of the training procedure. The benefit of this method is to leverage
the knowledge instilled in the pre-trained large language models to produce sen-
tences thatimprove tagger performances. This method is the best of the two with
larger quantities of data, meaning 250 and more sentences.

Using language models to replace parts of sentences is used in NLPAug [Ma,
2019] and in a more recent study [Sutiono and Hahn-Powell, 2022]. New models
exist, such as T5 [Raffel et al., 2020], which are trained on a more suitable task
for replacement. T5 is a model trained on the span replacement task. This task
consists of reconstructing 15% of the sentences that were replaced by a special
token. This technique can be used to replace parts of a sentence. This highly re-
sembles what the pattern-filling generation does. In the previous chapter, T5 was
used to replace mentions or context from labeled sentences with semi-supervised
learning. The labels associated with the sentences were, however, not kept with
semi-supervised learning. In this chapter, we evaluate the use of T5 to apply span
replacement while keeping the labels.

6.1. Span-replacement with T5

In the previous chapter, T5 was used to generate text, whereas, in this section,
T5 is used to generate text while keeping the label structure, which ultimately gen-
erates labeled text. Our goal with such a method is to compare the pattern-based
approach to a language modeling approach that works in similar ways. The spans
selected for replacement are bound by the tags. They either replace a mention
or a part of the context. This works like patterns-filling generation, with the ex-
ception that patterns can be generated with this method. However, applying the
original tagging structure can be done by applying the tagging scheme of the re-
placed part to the generated part. A mention of a certain concept ¢ would be

95

replaced by a string of text that would also be labeled with the concept ¢, and the
replaced context would retain the empty annotations. Will the plethora of infor-
mation stored within a language model be useful for this sort of task? The previ-
ous work with semi-supervised learning has shown that these methods brought
an improvement to baseline performances. Can they bring similar improvements
without the need for the tri-training process, which has both the benefits of filter-
ing the generated data and the cost of iteratively training the taggers?

A preliminary experimentis done in which the span-replacement method is ap-
plied without any additional parts. This first experiment obtains negative results.
Data needs to be analyzed to understand the problems that cause the taggers
to obtain degraded performances. From these analyses, we add filtering mecha-
nisms to the method in order to try to improve the results.

DRX won their first title in San Francisco
i
<span_0> won their first title in San Francisco

LI

The Giants won their first title in San Francisco

Figure 6.1: Example of augmentation using T5 with labels. The first mention is replaced by a special
token indicating to T5 which part to generate. The sentence with the special token is fed to T5. T5
outputs a span that is placed instead of the special token. Information about the tags is kept. Here
in red are organizations, and in blue locations.

6.1.1. Preliminary experiment

This section presents the experimental settings for the span replacement ex-
periment. Span replacement is applied to three corpora: CoNLL, I2B2, and MEDIA.
These corpora cover two languages: English and French. Multiple versions of T5
exist, such as the multilingual version mT5'[Xue et al., 2021], the pre-trained ver-
sion T5v1.1 and the fine-tuned on downstream tasks version T5. T5v1.1 and mT5
are pre-trained on the span-replacement task, which is why they are used in this
section and in the previous chapter. We have chosen to use T5v1.12 for the En-
glish corpora as it is likely the most performant model for this language. It also
contains small architectural improvements over T5, such as the change of activa-
tion functions. The multilingual model mT5 is used for the French corpus MEDIA
to display the feasibility of this method with multilingual resources. It follows the
T5 architecture and is pre-trained on the mC4 corpus. This task is heavily reliant
onT5 as itis a span-replacement model. We will focus on T5 as it is the model we
have used in previous experiments.

"Thttps://huggingface.co/google/mt5-large
*https://huggingface.co/google/t5-v1_1-large

96

https://huggingface.co/google/mt5-large
https://huggingface.co/google/t5-v1_1-large

Span replacement is used within our experiments. What is it, and how is it
used? The span replacement objective on which T5 was trained works by replac-
ing parts of the sentences with special tokens. The model uses this span-replaced
sentence to model its output. The output of a pre-trained T5 model is a sequence
of spans delimited by the special span tokens, which are numbered to allow mul-
tiple spans to be replaced at once. Using the example in Figure 6.1, the outputs of
T5 would be a sequence like “<span_0> The Giants <span_1>[...]" where the span
is chosen according to the span token in the input sentence. Our goal is to use
this task to replace parts of labeled sentences. The replaced spans are chosen
depending on what the experiment is on: either a mention or a span of context.
A list of the available spans is built, and the span is chosen through uniform sam-
pling of this list. Modeling is done with nucleus sampling where the number of
highest probability words k = 50 and the maximum cumulative probabilities p =
0.95. These numbers were chosen arbitrarily following common practices, with a
human check to make sure the resulting sentences were not unusable. Twenty-
five sequences are produced, from which five are kept via uniform sampling. This
allows filtering to happen before the final sampling. The spans are extracted from
the sequences of spans, and they replace the special span token in the initial sen-
tence. The spanis split using white space to know how many tags must be inserted
into the sequence of tags. These additional tags are inserted in the right slot of
the sequence of tags. This whole process is summarized in Figure 6.1 where a
mention is replaced using T5.

Experiments have been run in three different configurations. The first config-
uration is mention replacement, a direct analogy to the pattern-filling generation
method. The second configuration is when the context around mentions is re-
placed by the language model. For context replacement, the spans are the series
of tokens between mentions. We have tried this method as the possibility of gen-
erating new patterns would be removing the limiting factor of pattern-filling gen-
eration, which is obtaining new patterns. The third configuration is when the two
methods can be applied. The choice of the method is made via sampling.

For this experiment, the methodology from chapter 3 was used. Five seeds
were used to obtain an indicator of the randomness of the process. The taggers
are trained on data augmented with the tested generation methods. The taggers
trained are the BERT + MLP taggers, with the pre-trained BERT models being BERT-
large-cased? for CoNLL and BioBERT-base-cased* for I2B2. The generated set with
this method contains 20,000 examples. We will take a look at the F} scores of the
taggers trained on the augmented sets produced with the methods presented.

In this first experiment, our main objective was to create augmented sets using
mention replacement, context replacement, and a set containing examples from
both methods. The F} scores for CoNLL, I12B2 and MEDIA can be observed respec-
tively in Table 6.1, Table 6.2 and Table 6.3. All three methods at all natural data
sizes for CoNLL display degradation of performances from the baseline. Context
replacement degrades less than the other settings, with the method using both
replacements being second. The mention replacement method provides small

3https://huggingface.co/bert-large-cased
“https://huggingface.co/dmis-lab/biobert-base-cased-vi.1

97

https://huggingface.co/bert-large-cased
https://huggingface.co/dmis-lab/biobert-base-cased-v1.1

Size | 50 100 250 500 1000
Baseline | 57.8+29 70.1+56 81.2+18 85.3+1.1 88.0+03

T5 20k mention | 50.1£4.0 55.74+22 64.94+25 70.24+1.2 77.1+0.8
T5 20k context | 52.0£3.5 62.3+3.2 72.6+2.2 78.840.6 83.6+0.5
T5 20k both 53.8+22 61.9+£1.7 70.1£24 75.4+£14 80.6£1.1

Table 6.1: CoNLL F} scores for taggers trained on data augmented with T5 span replacement.

Size ‘ 50 100 250 500 1000

Baseline ‘37.0:&3.2 494+16 63.2+16 72.0+07 77.31+04

T5 20k mention | 38.2+24 49.34+35 63.2+1.2 71.5+1.8 77.9+1.0
T5 20k context | 28.8+24 37.942.0 49.9+3.0 579+18 66.8£1.3
T5 20k both 37.7+17 447+13 543+14 61.6£12 67.7£05

Table 6.2: 12B2 F} scores for taggers trained on data augmented with T5 span replacement.

improvements for 12B2 at size 1000 with 77.9 against 77.3 and larger improve-
ments at size 50 with 38.2 against 37.0, otherwise being similar to the baseline
results. The method replacing both mention and context achieves better perfor-
mances at size 50 with 37.7 against 37.0. Otherwise, the other methods provide
degradation at all other size points, with the method replacing both context and
mention also being in the middle. For MEDIA, span-replacement degrades the per-
formances of the baseline for all data points except two. The context replacement
achieves improvements at sizes 50 and 100, with 47.9 and 55.7 against 44.3 and
53.9, respectively. At higher data sizes, the method obtains negative results with
degradation of up to two points. The other methods obtain lower results. We did
not expect such negative results with regard to the performances obtained with
tri-training. This shows that the filtering of tri-training had some impact on the
examples included in the training set. We must investigate the generated set to
understand what has happened in the generation process to degrade the training
of the downstream models to this extent.

6.1.2. Data Analysis

The results of this first experiment are negative. Analyzing the generated text
is the first step to understanding and fixing the potential sources of performance
degradation. A first look at the data gives us a hint of why the results are as they
are. Many of the mentions were replaced using numbers, punctuation, or special
characters. Examples of the generated mentions can be seen in Table 6.4. The
examples contain a variety of cherry-picked mentions from CoNLL. Some of these
mentions are correct, but others display some problems. Codes such as “500 12
1/2 63" appear within the mentions, and other uninformative parts of speech such
as “the u” or “, the” were introduced. Codes can potentially be sorted with regular
expression, but the other types of errors cannot.

98

Size | 50 100 250 500 1000
Baseline | 443430 539413 66.4+1.1 743414 79.1+08

T5 20k mention | 35.24+12 429414 55.64+2.1 65.6£09 73.640.8
T5 20k context | 47.9+2.0 55.7+1.1 65.5+1.3 72.4408 78.04+0.38
T5 20k both 413426 489+15 60.9£15 69.441.0 75.54009

Table 6.3: MEDIA F} scores for taggers trained on data augmented with T5 span replacement.

Our first method is to try to evaluate how much of the augmented data con-
tained such mentions. A simple regex matching everything except words is used
to find such mentions. An example of the distribution of these problematic exam-
ples can be seen in Table 6.5. A first look at these results on seed one at size 50
shows that there is a significant quantity of noisy mentions. The interesting fact
is that these mentions are not distributed equally between the different concepts.
The MISC concept contains far fewer problematic mentions than the other con-
cepts, with 16 out of the 1433 mentions being problematic. The number of these
mentions can vary from simple to double for the other concepts. This ranges from
196 out of the 2030 PER mentions to 410 out of the 2141 LOC mentions. Looking
at the problem in one example run is not enough to reach any conclusion.

The results across the multiple experiments of these matches can be seen in
Table 6.6. A couple of mentions are matched for 12B2 at size 1000 on two seeds,
but it was so few that it did not get represented in the average. We can also see
that T5 does not produce the same quantity of these peculiar mentions for CONLL
and 12B2. For CoNLL, the quantity is around 15% of the unique mentions gener-
ated. For 12B2, this quantity is closer to 7%. This quantity varies with the size of §,,.
This can be explained by the number of natural mentions being higher in these
sets. The mention replacement also produces fewer of these mentions relative to
the number of mentions generated.

ORG LOC

over terrorism Polish Federation
50012 1/2 63 26 August-29
Commonwealth summit 1)

PER MISC

Mario Gardin traders said. The
and the Englishman a city gov

the u , the

Table 6.4: Examples of mentions generated by T5 for the CoNLL corpus.

6.1.3. Filtering and prompting

We believe that this method can be improved to avoid the pitfalls of the first ex-
periment. Solutions can be putin place to feed data that contains more and better

99

ORG LOC PER MISC
25

25 21 15
0 0 0 0

1593 2141 2030 1433
359 410 196 16

Baseline 50 seed 1 sp

T5 20k mention 50 seed 1

Baseline 50 seed 1
T5 20k mention 50 seed 1 sp

Table 6.5: Analysis of unique mentions in seed one at size 50 of CoNLL. These mentions can be
repeated within the dataset. Sp lines represent the amount of mentions that are filtered.

Size | 50 100 250 500 1000
CoNLL

T5 mentions | 15.3+3.2 14.24+13 13.8£14 13.6£1.1 13.4+07
T5 both 16.4+32 154417 146414 14.04£09 13.6+08
12B2 |

T5 mentions | 6.5+£0.7 6.6£13 6.6£0.7 6.1£05 6.0£05
T5 both 7.5+09 7.44+14 7.5+08 6.9+07 6.61+04

Table 6.6: Percentage of mentions that can be removed using a simple filter regex. Context is not
shown as it cannot be matched.

information, thus enabling better generation. Filtering can also be put in place to
remove obvious bad examples from the generated sentences. The experiments
with semi-supervised learning have shown that these methods of generation can
function as-is, but the models sort out the worse examples.

Two experiments were done. The first experiment introduces filtering on the
generated spans. In the previous experiment with T5, 25 spans were generated,
but five were kept. Filtering is introduced on those 25 generated spans. We apply
the regular expression used in the data analysis section to remove the obviously
out-of-scope spans. The second experiment adds prompting on top of the filter-
ing. Itis possible that the context provided for text generation was not sufficient.
For this reason, we sample and concatenate a sentence from the natural data in
front of the span-replaced sentence. The experiments were only run on the use of
both context and mention replacements because it was the average method, and
the performances of the methods varied greatly between the corpora, making it
impossible to outline the best method.

Size ‘ 50 100 250 500 1000
Baseline ‘ 57.8t29 70.1+56 81.2+1.8 85.3+1.1 88.0+0.3
T5 20k filtered 57.1+£19 62.14+23 70.2+1.7 76.2+1.3 81.11+06

T5 20k filtered prompt. | 55.44+2.9 64.14+2.0 73.842.7 78.9+25 81.9+03

Table 6.7: Fy score of filtered CoNLL. C stands for context replacement, and m stands for mention
replacement.

100

Size | 50 100 250 500 1000
Baseline | 37.0+32 49.4+16 63.2+16 72.0+07 77.3+04

T5 20k filtered 37.8+1.6 43.3+25 543415 61.7+14 68.5+06
T5 20k filtered prompt. | 38.8+2.7 45.0+2.6 52.3£15 67.04£54 72.1+438

Table 6.8: F score of filtered 12B2. C stands for context replacement, and m stands for mention
replacement.

Size \ 50 100 250 500 1000
Baseline \ 44.3+3.0 53.9+13 66.4+1.1 74.3+14 79.1+08
T5 20k filtered 39.8+1.7 47.5+£1.0 59.7£17 68.1£1.2 74.6+0.9

T5 20k filtered prompt. | 40.6+1.6 47.24+1.0 59.3+2.0 67.9+1.8 74.2+1.0

Table 6.9: F} score of filtered MEDIA. C stands for context replacement, and m stands for mention
replacement.

The results from CoNLL, 12B2 and MEDIA can respectively be found in Tables 6.7,
Table 6.8 and Table 6.9. The performances of the taggers trained with these meth-
ods are still below the baseline for the majority of the sizes of subsets used. Im-
provements over the baseline are seen for 12B2 at size 50 for both prompting and
not prompting, with respectively 38.8 and 37.8 against 37.0. Prompting obtains
better performances on all experiments from CoNLL and 12B2 except 12B2 at size
250. The new results decrease the performances for MEDIA. While this method
has not been fruitful, it is possible that prompting could be used to improve the
previous generative tri-training experiments. This would require testing that we
will not be able to provide in this work. The additional filtering and prompting
were not enough to bring positive performances to this method. Using the base-
line models to filter the generated data as it is done for tri-training would be a
potential solution to this hurdle. Unfortunately, this will have to be tested in fu-
ture works.

6.2 . Combining pattern-filling and tri-training

In the previous chapters, generation techniques were presented and studied.
In the previous section, two of the generation methods introduced for semi-super-
vised learning were used in a pattern-based fashion. Simpler ways of combining
the generation methods exist. Generated sets of data are produced by the gener-
ation methods. These methods can be used in parallel to produce generated data
which can be concatenated to obtain a final set of generated data that is larger and
contains more various examples. These methods can also be used in sequence
to iteratively improve on the previous augmented set. This section studies the
impact of such uses of the generation methods.

101

6.2.1. Concatenation of Pattern-filling and Tri-training data

The experiment we have conducted for parallel use of pattern-filling and tri-
training is to concatenate the datasets obtained with pattern-filling generation
and generative tri-training. With this experiment, our objective is to show that
adding data from different sources of generation can improve the end result. In
this setting, the taggers are trained on the natural subset S,, with the generated
set from pattern-filling generation G2 and the generated set from generative tri-
training G. Fixing the total quantity of data would not have been possible as the
number of sentences in the outputs of generative tri-training varies from seed to
seed due to the requirement that all three models must output the same tagging
scheme. Performance indicators were also computed using these fully generated
sets for training. Changing the sizes of G? and G’ would add other biases that
would be difficult to take into account. As such, we know that the training set is
larger than in the previous experiment and expect an increase in performance.
These experiments were only conducted with two generation methods from tri-
training: sentence follow-up generation and mention replacement. These meth-
ods were the overall best generation methods from generative tri-training.

Size | 50 100 250 500 1000

Baseline 57.8429 70.1+56 81.24+1.8 85.3+1.1 88.0+0.3
PatGen 20k 66.8+33 71.7+2.8 80.3+1.6 83.6+1.8 86.7£0.7
Follow-up Outputs 64.2+2.1 73.6+3.0 83.9+09 87.3+06 89.0+0.7
Follow-up + PatGen 64.6+3.1 74.1+1.9 83.1+09 86.4+15 88.4+03
Mention rep. Outputs | 65.2+1.6 72.9+32 82.6+16 86.3+09 88.4+04
Mention rep. + PatGen | 64.7+1.2 74.1+19 81.4421 85.84+1.2 86.8405

Table 6.10: F} score of S,, U GE U G?, for CoNLL. Follow-up and mention rep. are the tri-training

generation method from which the data is used. PatGen refers to the pattern-filling generation

method in a uniform setting.

Size | 50 100 250 500 1000

Baseline 37.0+£32 494416 63.2+16 72.0+£07 77.3+0.4
PatGen 20k 45.7+44 56.6+22 67.4402 73.8409 79.11+0.8
Follow-up Outputs 414426 51.1+16 67.8+1.3 75.4+1.1 79.8£07
Follow-up + PatGen 42.7433 53.04+27 68.8+0.7 75.9+1.2 80.7+0.5
Mention rep. Outputs | 43.0+2.8 56.14+1.2 70.24+1.3 75.7+1.0 79.8406
Mention rep. + PatGen | 42.94+2.2 56.84+3.1 70.6+1.4 75.34+05 80.2+0.4

Table 6.11: F} score of S,, U GP U G¢, for 12B2. Follow-up and mention rep. are the tri-training
generation method from which the data is used. PatGen refers to the pattern-filling generation
method in a uniform setting.

The results of this experiment can be found in Table 6.10 for CoNLL, in Ta-
ble 6.11 for 12B2, and in Table 6.12 for MEDIA. The original pattern-filling genera-

102

Size \ 50 100 250 500 1000

Baseline 443430 53.9+1.3 66.4+1.1 743414 79.14+08
PatGen 20k 50.7+3.8 57.54+15 67.1+22 74.0+09 78.01+0.3
Follow-up Outputs 46.4+2.6 54.6+28 67.2+12 749409 80.3+0.4

Follow-up + Patgen 49.5+24 57.6£1.0 67.7£24 74.44+08 79.040.5

Mention rep. Outputs | 46.9+£3.0 56.6+14 67.6+1.8 74.44+0.7 80.1%0.5
Mention rep. + Patgen | 50.0+3.3 58.6+1.6 68.4+12 74.8+1.0 79.1+06

Table 6.12: Fy score of S,, U G U G%, for MEDIA. Follow-up and mention rep. are the tri-training
generation method from which the data is used. PatGen refers to the pattern-filling generation
method in a uniform setting.

tion method is still the best method at size 50, with a 66.8 F; score. The models
trained on the data from tri-training with follow-up from previous experiments
are still the best methods for sizes 250 to 1000, with 83.9, 87.3, and 89.0 scores.
Follow-up with pattern-filling generation improves the scores of the baseline at
each tested size for both corpora and is the best method alongside with men-
tion replacement with pattern generation at size 100 with a 74.1 score. Men-
tion replacement with pattern-filling generation improves the scores of the base-
line for subsets of sizes under 500 and degrades performances at size 1000 for
CoNLL. The performance of pattern-filling generation for CoNLL is degraded for
subsets of size 250 and more. This impact is felt more strongly for mention re-
placement as the size 1000 shows performance degradation. For 12B2, the per-
formances of the taggers trained are lower than pattern-generation at size 50
for both methods and are otherwise higher, or equivalent to the performances of
pattern-generation and tri-training generated data with the respective generation
method. The best method at sizes 100 and 250 is the new mention replacement
with the pattern-filling generation with 56.8 against 56.6 and 56.1 for the pattern-
filling generation method and the mention replacement method, and 70.6 against
67.4 for pattern-filling and 70.2 for mention replacement. Mention replacement
with pattern-filling also improves performances over the initial methods at size
1000 with 80.2 against 79.1 for pattern-filling and 79.8 for mention replacement.
The best method at sizes 500 and 1000 is the follow-up with pattern-filling gen-
eration method, with 75.9 against 73.8 and 75.4 for the pattern-filling genera-
tion method and the follow-up method, and 80.7 against 79.1 for pattern-filling
and 79.8 for follow-up generation. This method also outperforms both the ini-
tial pattern-filling method and follow-up generation on size 250 with 68.8 against
67.4 and 67.8, respectively. For MEDIA, adding pattern-generated data to the tri-
training-generated data improves the results at sizes up to 250. Pattern-filling
generation remains the best method at size 50 with 50.7 against 49.5 for the addi-
tion of follow-up data and 50.0 for the addition of the mention replacement data.
The best method for 100 and 250 is mention replacement with pattern-filling gen-
eration with 58.6 against 57.5 and 58.6 for the pattern-filling generation method
and the mention replacement method and 68.5 against 67.1 and 67.6, respec-
tively. Mention replacement with pattern generation is also better than mention

103

replacement alone at size 500 with 74.8 against 74.4. Follow-up with pattern-filling
generation is worse than follow-up alone at sizes 500 and 1000.

The addition of both generated sets has an averaging effect on the perfor-
mance of the taggers trained for CoNLL. For I12B2 and MEDIA, adding the data
from pattern-filling generation with mention replacement is better at sizes 100
and 250. It is only better at size 100 for CoNLL. Adding pattern-generated data to
the mention replacementimproves performances at size 100 consistently. Adding
more data seems to not be the answer to tagger improvement with the quantities
we can now generate overall. This raises the question of how to create a better
dataset from multiple generation techniques that have been run in parallel. This
question is, however, not answered in this work. In the next section, we will study
the effect of applying the generation techniques sequentially.

6.2.2. Applying pattern-filling on semi-supervised data

This section presents the application of the generation methods in sequence.
Our hypothesis is that since the generation methods improve the performances
of taggers through the augmentation of the training data, augmenting an aug-
mented set can potentially improve performances further. We, however, acknowl-
edge that this could also be degenerative and produce degradation to the perfor-
mances. That is why this process must be investigated. The experiments pre-
sented contain the pattern-filling generation method applied to data augmented
with generative tri-training.

In this experiment, pattern-filling generation is applied to the augmented set
of data from generative tri-training S,, U G'. The experiments were conducted
using the data from the follow-up sentence generation method. It is one of the
two best methods of generative tri-training. The other method is mention replace-
ment. As mention replacement is similar to the pattern-filling generation method
in nature, we have chosen not to use it in this set of experiments. The method-
ology from chapter 3 was applied. Twenty thousand examples were generated
using pattern-filling generation. For CoNLL, for some seeds, there are slightly less
than 20,000 examples that were generated due to patterns or mentions contain-
ing problematic sequences of characters for the regular expression library that
we have chosen to ignore and have not implemented replacement mechanisms.

Size | 50 100 250 500 1000
Baseline 57.8+2.9 70.1+56 81.2+1.8 85.3+1.1 88.0+0.3
PatGen 20k 66.8+33 71.7+2.8 80.3+1.6 83.6+1.8 86.7£0.7

Follow-up Outputs 64.24+2.1 73.6+3.0 83.9+0.9 87.3+0.6 89.0+0.7
PatGen on FoIIow-up\63.2j:3.7 72.84+4.0 80.841.7 85.4+08 87.9+03

Table 6.13: F} score of BERT + MLP taggers trained on an augmented set of data generated with
pattern-filling generation on an augmented set produced by generative tri-training for CoNLL.

The F; scores obtained with this method for CoNLL, 12B2 and MEDIA can be
observed respectively in Table 6.13, Table 6.14 and Table 6.15. Performances
of the taggers have been degraded from the taggers trained on the generative

104

Size \ 50 100 250 500 1000

Baseline 37.0+£32 494416 63.2+1.6 72.0+0.7 77.34+04
PatGen 20k 45.7+44 56.6+22 67.44+02 73.840.9 79.1+0.8
Follow-up Outputs 41.4+26 51.1+16 67.841.3 75.4+1.1 79.840.7

PatGen on FoIIow-up\39.Si3.5 50.3+2.1 65.9+1.2 74.3+14 79.5+0.2

Table 6.14: F; score of BERT + MLP taggers trained on an augmented set of data generated with
pattern-filling generation on an augmented set produced by generative tri-training for 12B2.

Size \ 50 100 250 500 1000
Baseline 443430 53.9+13 66.4+11 7434+1.4 79.1+038
PatGen 20k 50.7+3.8 57.5+15 67.14+22 74.040.9 78.04+0.3

Follow-up Outputs 46.4+2.6 54.6+28 67.2+12 74.9+09 80.3+04
PatGen on Follow-up | 47.841.9 55.7+19 66.94+1.6 73.6+13 79.1406

Table 6.15: F; score of BERT + MLP taggers trained on an augmented set of data generated with
pattern-filling generation on an augmented set produced by generative tri-training for MEDIA.

tri-training data for CoNLL and 12B2. At 250 sentences and 1000 sentences, the
performances of the taggers drop below the baseline results for CoNLL. These
consequences were expected for CoNLL, as pattern-filling generation degraded
the baseline performances overall. The results of this experiment are not as neg-
ative for 12B2 as the augmented set is still obtaining better performances than
the baseline. For MEDIA, the Fj scores at size 50 and 100 are higher than gener-
ative tri-training with 47.8 and 55.7 against 46.4 and 54.6, but it is still below the
pattern-filling generation results that are 50.7 and 57.5. The results drop below
the baseline at size 500 with 73.6 against 74.3.

Pattern-filling generation cannot be used to improve augmented data. This
method performed well at low quantities of data but is now hindered by the addi-
tional data provided by generative tri-training. This shows that the filtering mech-
anism that generative tri-training uses could still be improved. This improvement
to the filtering mechanism will most likely come from improving the initial perfor-
mances of the ensemble of taggers. Pattern-filling generation could serve as a
way of improving the initial quality of the model, as it has shown its potential for
all corpora at low resources. This experiment will, however, not be treated in this
work due to time and computing constraints.

We did not have the time to do any experiment where the generative tri-train-
ing algorithm is applied to a set of data augmented with pattern-filling generation.
These experiments would likely result in better performances for multiple rea-
sons: wrong annotations are not spread by the pattern-filling generation method,
and tri-training depends on initial tagger performances, which would be increased
by pattern-filling in most cases. This remains to be tested.

105

6.3 . Conclusion

In this chapter, the combination of pattern-based generation and language
modeling with semi-supervised learning was studied. Our hypothesis was that
it would be able to bring the best of both methods and improve them by mak-
ing them work together. Using the span-replacement methods presented with
tri-training in a pattern-filling manner has proven unfruitful. This has highlighted
the requirement of the filtering brought by tri-training. A future experiment with
these methods is needed where the baseline would be used in a similar fashion
as the ensemble is used to filter the generated examples. The generation meth-
ods from the previous chapters were also combined in a more pragmatic manner.
Running the generation methods in parallel has shown an averaging effect on
the performances of the taggers. Sequential use of the methods has not shown
promising results. However, this is mainly due to pattern generation being ap-
plied after tri-training generation for CoNLL. This method did not work well with
natural CoNLL data, and it also did not work well with augmented data. Revers-
ing the order of the generation methods is a possible improvement, especially for
I2B2, because both methods bring improvements. Combining the methods has
not been a successful endeavor. Adding more data is not the issue at this point.
Experimentation needs to be done on how to filter and extract the most useful ex-
amples for training from these synthetic sets. This thesis does not provide these
experiments. Itis one of the axes of improvement of these experiments for future
works.

106

7 - Conclusions

In this thesis, we studied generation techniques with the purpose of generat-
ing or augmenting datasets of labeled sequences for the sequence labeling task.

The work from this thesis is aimed at improving the pipeline of the AIDA project
on which it was financed. One of the objectives of the application of the methods
studied was to augment data provided by the AIDA project. The data was not
available in due time to be used and presented in this thesis. The corpora chosen
to apply our methods on in the experiments cover many of the aspects of the AIDA
corpus, such as the language with MEDIA or the heavy influence of the domain
with 12B2.

The contributions made during this thesis are first described. This process
has raised questions that we will discuss. The experiments we have done also
procured findings. These studies had blind spots that still need to be explored.

7.1. Contributions

We have made contributions in the pursuit of improving performance for the
sequence labeling task.

Pattern-filling generation: We have proposed our implementation' of the pat-
tern-filling generation method. We have also provided an analysis of the perfor-
mance of the pattern-filling generation method [Boulanger, 2020]. This analysis
covers multiple settings, which include a generation setting and augmentation set-
ting, and the study of the number of patterns necessary to apply this generation
method in a real-life setting. We also propose the study of the method used with
recent models.

Tri-training and language modeling: The second approach for labeled text
generation presented in this thesis is the use of language modeling coupled with
a semi-supervised learning method, tri-training. Our first contribution with this
approach is a study of the behavior of the tri-training algorithm with data gen-
erated with language models [Boulanger et al., 2022] and its implementation?.
Our second contribution to this approach is generative tri-training, a modified
tri-training algorithm including the language modeling text generation process,
which is currently in the publication process. Multiple methods of generation
were used in this contribution which made use of causal language modeling and
of span-replacement. The implementation will be available in the same repository
as the other tri-training implementation at the time of publication. Our goal is to
produce labeled data, and as such, our final contribution to this method is to test
the quality of the labeled data generated by the generative tri-training process.

"Thttps://github.com/HugoBoulanger/Pattern-Filling-Generation
2https://github.com/HugoBoulanger/Tritraining-Gen

107

https://github.com/HugoBoulanger/Pattern-Filling-Generation
https://github.com/HugoBoulanger/Tritraining-Gen

Combining language modeling and patterns: Our third approach is to com-
bine the approaches of the previous contributions. To improve upon the lack of
additional mention or patterns in the pattern-filling generation method, we pro-
posed span-replacement modeling as a means to produce new labeled sentences
with a process similar to pattern-filling generation, which did not produce positive
results. This contribution uses the span-replacement methods introduced with
generative tri-training while keeping the tagging scheme of the natural sentences
used. As each generation method introduced in previous contributions improved
upon the baseline, we proposed using them in parallel and in sequence.

7.2 . Discussions

The experiments in this thesis have raised discussions on various subjects.
These discussions are focused on the low-resource setting. The first idea would
be that this setting would not consume much carbon. We will, however, see that
it is not that straightforward. The second subject of discussion is the impact of
the pre-trained language models.

The question of the carbon cost of the thesis was not a question that we had
considered at the inception of the thesis. As such, we have not used any carbon
cost measurement tool. We will do our maximum to measure and mitigate car-
bon emissions considering the minimum threshold of the carbon emitted that
will be presented and the importance of energy efficiency in the current context
of the world. We can, however, give a minimum threshold for this thesis based
on computing resource consumption that was clocked in by the data centers on
which they were run. Over the year 2022, we have consumed about 30,000 GPU
hours of Nvidia V100 32Go at Jean Zay, mostly tri-training related. We consumed
5,000 GPU hours at the end of 2021, mostly VAE-related. Previous work was done
mostly on Lab-IA or directly on a laptop on which the consumptions were not
recorded. These 35,000 hours of GPU usage amount to 35,000 x 0.482 = 16,870
kWh or 956 kgCO2e using France's 2021 emission factor. This is equivalent to
3000 km of planes, which is a third of the total plane usage going to NAACL. This
duality of working in a low-resource setting is something to have in mind when
willing to evaluate low-resource methods. Due to the reduction of data required
to simulate the low-resource setting, tempering sampling bias becomes an even
more important part of the experiments. Thus experiments need to be multiplied,
which results in high computing time and a high carbon cost. Code optimization
will play a part in reducing the carbon footprint, but the biggest impact is proba-
bly model optimization. Using lighter models is something we have tried and will
continue to pursue our experiments by limiting ourselves to the 1B parameters
models for inference and BERT-large for training. Using even lighter models such
as AIBERT [Lan et al., 2020] and their derivatives was on our radar, but we did not
have the time for additional experiments. But the multiplicity of training, espe-
cially with methods such as tri-training, can be addressed. A hypothetical way of
addressing the issue would be to use Adapters [Houlsby et al., 2019] instead of
fine-tuning the full models. This requires further investigation.

108

The other topic of discussion for the low-resource setting is the use of pre-
trained large language models, not for their ecological impact but due to the sheer
amount of data used to train them. We have shown that our methods work using
pre-trained models as the centerpiece of our taggers. The pattern-filling genera-
tion method worked when used with a tagger that used less pre-trained informa-
tion, but not none, as the embeddings were pre-trained on Wikipedia. The effect
of the pre-training data for the taggers can be seen in the performances obtained
on the full corpora. The effect of the models used for generation is much harder
to quantify. First, this would require to have done experiments with different mod-
els for the same corpora. This was not done in this thesis, but the same models,
GPT-2 and T5, were used for two corpora, CoNLL and 12B2. They have shown dif-
ferent behaviors, with GPT-2 producing better results on CoNLL and T5 producing
better results on I2B2. Is this a result of the downstream task of the data used to
train the large language models, or both? This work doesn’t aim to tackle such a
question, but it is clear that any data found in any part of the training process can
have an impact on the end result.

7.3 . Summary of Findings

Pattern-filling generation: In our domain of studies and publications, rule-ba-
sed approaches have led the stage to machine learning-based approaches. Lan-
guage modeling using large language models has become the predominant ap-
proach to solving many problems. We believed that building synthetic labeled
data with patterns and mentions could be a means to use the best of both worlds.
The first contribution to this thesis is the pattern-filling generation method. We
have found that pattern-filling generation was a viable option for labeled sen-
tence augmentation when 50 or 100 sentences are available. The results at higher
qguantities of data vary from corpora to corpora, sometimes degrading the perfor-
mances of the tagger. This raises the question of how to improve this method
further, especially when more data is available.

Tri-training and language modeling: We studied the use of semi-supervised
learning as a means to add tags to sentences generated with language modeling
methods. Positive results were obtained for tri-training using a static set of data
which validated the approach of generating data. The generated data was not
completely used by the taggers during this experiment which led us to try to in-
clude the generation process during the tri-training process. By integrating the
generation process in the tri-training algorithm, we aimed to use the ensemble of
models trained and the pseudo-labeling mechanism as a filtering mechanism for
the text generator. The generation methods used in tri-training are language mod-
eling methods applied to sentences. Generative tri-training allows the methods
to be applied to previously generated sentences. The ensemble of models trained
with this method is the best-performing taggers in our arsenal at 500 and 1000
sentences. The quality of the data generated was tested, and it showed improve-
ments over the performances of individual models trained during tri-training, and
for some corpora, it even brought improvements over the ensemble.

109

Combining the previous techniques: The final findings relate to the combina-
tion of the techniques of generation through language modeling with the infor-
mation available in patterns and in the available labeled natural data. Tri-training
introduced mention replacement and context replacement methods which used
T5 for its span replacement capacities and used the information from the tagging
scheme to choose the span to be replaced but did not fit the tagging scheme to the
generated data, and it was the ensemble’s role to add the labels. We have tested
to keep the tagging scheme from the natural data to no avail, and it degraded the
performances of the baseline. The data produced requires more filtering to be
useful, as the same techniques used with tri-training have shown better results.
Filtering and prompting were used to improve the results, and they did, but it still
degraded baseline performances. Additional techniques could be employed to
improve generative tri-training. This also shows that the filtering capacity of the
ensemble of models in tri-training and the iterative application of the generation
methods might be a huge help, and a better understanding of the interactions
of these functionalities of tri-training to replicate or improve them is a work left
for the future. The generation methods presented in previous chapters were also
used in parallel and in sequence. The performance of taggers decreases when
trained on data from both tri-training and pattern-filling generation against the
best of both methods. This shows that adding more generated data is not an im-
provement venue at this point, and the priority should now be to improve the
quality of the generated data. Sequentially applying the generation methods has
potential, but only one order of application was tested due to constraints: pattern-
filling applied to tri-training data. This did not produce good results, and it is pos-
sible that the order in which the generation processes are used has importance
for tri-training.

7.4. Perspectives

This work has proposed methods to generate additional tagged sentences
for the sequence labeling task. We have mostly explored pattern-based gener-
ation and semi-supervised learning used for the addition of tags over language-
modeled sentences. The methods explored have not permitted taggers to reach
full-sized corpus performance when trained on a small set of data with augmen-
tation, but they have improved the performances of the taggers at low quantities
of data. This improvement can allow these taggers to be used as a first step in an
application setting or a helping tool for labeling, but they definitely need further
improvements to be used as is. These methods have opened trails of potential
experiments and applications that we have not explored.

Pattern-filling generation can degrade performances at higher quantities of
data depending on the corpus but also depending on the tagger architecture. Fur-
ther exploration of these limitations is needed to obtain a more reliable method
of generation at higher quantities of data.

The problem with tri-training is computation, as it requires multiple training
sessions and multiplies the size of the tagger as it is an ensemble. Exploring ar-
chitectural improvements such as parameter sharing could help reduce this com-

110

putational issue and might allow more taggers to be included in the ensemble.
Tri-training has also raised interrogations upon the filtering operated by the en-
semble, which allows models trained on the augmented data to obtain the best
performances. If the performance of this mechanism can be replicated without
the need for the ensemble of taggers, it could be a good tool to improve other
generation methods and allow iterative modifications with the generation meth-
ods.

Using the span-replacement methods introduced with tri-training in a stan-
dalone setting has not provided improvements. We have explored some meth-
ods, such as filtering and prompting, which have improved the results but have
not redeemed the approach. These improvements should be tested in tri-training
as they could also improve this process. Finding a cheaper and more effective fil-
tering mechanism than tri-training is a goal that needs to be pursued as both a
means to improve existing working methods and allow other methods, such as
the T5 augmentation method, to work outside of tri-training.

Applying the generation methods consecutively did not bring the expected
improvements. Running pattern-filling generation on data augmented with tri-
training did not provide improvements over using only the tri-trained data. The
potential of applying first the pattern-filling generation method is greater as the
better the taggers from within the tri-training process, the better their filtering
and annotations of the generated text.

This thesis aimed to produce data for the AIDA project. While the data was not
available in a quality sufficient for application during the thesis, it is one of the
tasks that will be done after the redaction of this thesis.

In this thesis, we aimed to develop techniques to augment data for sequence
labeling. We have shown that pattern-filling generation improves tagger perfor-
mances for all the tested corpora at the smallest quantities of data, whereas the
performance can degrade on a corpus basis at higher quantities of data. Using
large language models with tri-training has proved to be a more reliable solution,
with the caveat of the higher computation cost. The use of large language mod-
els to replace parts of labeled sentences has not produced positive results. As
a whole, we have shown that generating additional data can improve the perfor-
mance of models on the downstream task. It is, however, not enough to reach
performances of full-sized datasets with only 1000 or lower natural examples as
of the current state of our research. All of the code used for experimentation is or
will be available on this repository: https://github.com/HugoBoulanger/NERAug.

111

https://github.com/HugoBoulanger/NERAug

Bibliography

[Alemi et al., 2018] Alemi, A., Poole, B., Fischer, 1., Dillon, J., Saurous, R. A., and
Murphy, K. (2018). Fixing a broken elbo. In International Conference on Machine
Learning, pages 159-168. PMLR.

[Béchet and Raymond, 2019] Béchet, F. and Raymond, C. (2019). Benchmarking
Benchmarks: Introducing New Automatic Indicators for Benchmarking Spoken
Language Understanding Corpora. In Kubin, G. and Kacic, Z., editors, Inter-
speech 2019, 20th Annual Conference of the International Speech Communication
Association, Graz, Austria, 15-19 September 2019, pages 4145-4149. ISCA.

[Bengio et al., 2000] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural
probabilistic language model. Advances in neural information processing systems,
13.

[Bengio et al., 2013] Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv e-prints, pages arXiv-1308.

[Blum and Mitchell, 1998] Blum, A. and Mitchell, T. (1998). Combining labeled and
unlabeled data with co-training. In Proceedings of the eleventh annual conference
on Computational learning theory, pages 92-100.

[Bojanowski et al., 2017] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword information. Transactions of the
association for computational linguistics, 5:135-146.

[Bonneau-Maynard et al., 2005] Bonneau-Maynard, H., Rosset, S., Ayache, C,
Kuhn, A., and Mostefa, D. (2005). Semantic annotation of the french media
dialog corpus. In Ninth European Conference on Speech Communication and Tech-
nology.

[Bordes et al., 2017] Bordes, A., Boureau, Y.-L., and Weston, J. (2017). Learning
end-to-end goal-oriented dialog. In International Conference on Learning Repre-
sentations.

[Boulanger, 2020] Boulanger, H. (2020). Evaluation systématique d'une méthode
commune de génération. In 6e conférence conjointe Journées d’Etudes sur la Pa-
role (JEP, 33e édition), pages 43-56. ATALA; AFCP.

[Boulanger et al., 2022] Boulanger, H., Lavergne, T., and Rosset, S. (2022). Gener-
ating unlabelled data for a tri-training approach in a low resourced NER task.
In Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural
Language Processing, pages 30-37, Hybrid. Association for Computational Lin-
guistics.

113

[Brown et al., 2020] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Lan-
guage models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901.

[Cattan et al., 2022] Cattan, O., Ghannay, S., Servan, C., and Rosset, S. (2022).
Benchmarking transformers-based models on french spoken language under-
standing tasks. In INTERSPEECH 2022.

[Chen et al., 2019a] Chen, Q., Zhuo, Z., and Wang, W. (2019a). Bert for joint intent
classification and slot filling. arXiv e-prints, pages arXiv-1902.

[Chen etal.,, 2019b] Chen, Y., Zhou, C., Li, T., Wu, H., Zhao, X,, Ye, K., and Liao, J.
(2019b). Named entity recognition from chinese adverse drug event reports
with lexical feature based bilstm-crf and tri-training. Journal of Biomedical Infor-
matics, 96:103252-103252.

[Cheng et al., 2016] Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term
memory-networks for machine reading. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 551-561.

[Child et al., 2019] Child, R., Gray, S., Radford, A., and Sutskever, I. (2019). Generat-
ing long sequences with sparse transformers. arXiv e-prints, pages arXiv-1904.

[Chiu and Nichols, 2016] Chiu, J. P. and Nichols, E. (2016). Named entity recogni-
tion with bidirectional Istm-cnns. Transactions of the association for computa-
tional linguistics, 4:357-370.

[Cho et al., 2014a] Cho, K., van Merriénboer, B., Bahdanau, D., and Bengio, Y.
(2014a). On the properties of neural machine translation: Encoder-decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, pages 103-111.

[Cho et al., 2014b] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014b). Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. In EMNLP.

[Chowdhery et al., 2022] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C., Gehrmann, S., et al.
(2022). Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311.

[Conneau and Lample, 2019] Conneau, A. and Lample, G. (2019). Cross-lingual
language model pretraining. Advances in neural information processing systems,
32.

[Coucke et al., 2018] Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy,
D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., Lavril, T., et al. (2018). Snips
voice platform: an embedded spoken language understanding system for
private-by-design voice interfaces. arXiv preprint arXiv:1805.10190.

114

[Dahl et al., 1994] Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K.,
Pallett, D., Pao, C., Rudnicky, A., and Shriberg, E. (1994). Expanding the scope
of the ATIS task: The ATIS-3 corpus. In Proceedings of the workshop on Human
Language Technology, pages 43-48. Association for Computational Linguistics.

[Dai et al., 2019] Dai, Z,, Yang, Z., Yang, Y., Carbonell, J. G, Le, Q., and Salakhut-
dinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-
length context. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2978-2988.

[Dauphin et al., 2017] Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2017).
Language modeling with gated convolutional networks. In International confer-
ence on machine learning, pages 933-941. PMLR.

[Davis and Arel, 2013] Davis, A. and Arel, I. (2013). Low-rank approximations for
conditional feedforward computation in deep neural networks. arXiv e-prints,
pages arXiv-1312.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

[Ding et al., 2020] Ding, B., Liu, L., Bing, L., Kruengkrai, C., Nguyen, T. H., Joty, S., Si,
L., and Miao, C. (2020). Daga: Data augmentation with a generation approach
for low-resource tagging tasks. arXiv preprint arXiv:2011.01549.

[Dopierre et al., 2021] Dopierre, T., Gravier, C., and Logerais, W. (2021). Protaug-
ment: Intent detection meta-learning through unsupervised diverse paraphras-
ing. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 2454-2466.

[Fan et al., 2018] Fan, A., Lewis, M., and Dauphin, Y. (2018). Hierarchical neural
story generation. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 889-898.

[Fedus et al., 2022] Fedus, W., Zoph, B., and Shazeer, N. (2022). Switch transform-
ers: Scaling to trillion parameter models with simple and efficient sparsity. Jour-
nal of Machine Learning Research, 23(120):1-39.

[GAGE, 1994] GAGE, P.(1994). A new algorithm for data compression. The C Users
Journal, 12(2):23-38.

[Ghannay et al., 2020] Ghannay, S., Neuraz, A., and Rosset, S. (2020). What is best
for spoken language understanding: small but task-dependant embeddings or
huge but out-of-domain embeddings? In ICASSP 2020-2020 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pages 8114-8118.
IEEE.

115

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative ad-
versarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K., editors, Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc.

[Halle, 1962] Halle, M. (1962). Phonology in generative grammar. <i>WORD</i>,
18(1-3):54-72.

[Higgins et al., 2017] Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X,
Botvinick, M., Mohamed, S., and Lerchner, A. (2017). beta-VAE: Learning ba-
sic visual concepts with a constrained variational framework. In International
Conference on Learning Representations.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory. Neural computation, 9(8):1735-1780.

[Holtzman et al., 2019] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
(2019). The curious case of neural text degeneration. In International Confer-
ence on Learning Representations.

[Houlsby et al., 2019] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and Gelly, S. (2019). Parameter-
efficient transfer learning for nlp. In International Conference on Machine Learn-
ing, pages 2790-2799. PMLR.

Johnson et al., 2016] Johnson, A. E., Pollard, T.J., Shen, L., Lehman, L.-w. H., Feng,
M., Ghassemi, M., Moody, B., Szolovits, P., Anthony Celi, L., and Mark, R. G.
(2016). Mimic-iii, a freely accessible critical care database. Scientific data, 3(1):1-
9.

Joshi et al., 2020] Joshi, P., Santy, S., Budhiraja, A., Bali, K., and Choudhury, M.
(2020). The state and fate of linguistic diversity and inclusion in the nlp world.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 6282-6293.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-Encoding
Variational Bayes. In 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16.

[Kudo, 2018] Kudo, T. (2018). Subword regularization: Improving neural network
translation models with multiple subword candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 66-75.

[Kudo and Richardson, 2018] Kudo, T.and Richardson, J.(2018). Sentencepiece: A
simple and language independent subword tokenizer and detokenizer for neu-
ral text processing. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 66-71.

116

[Kullback, 1968] Kullback, S. (1968). Information theory and statistics. New York:
Dover.

[Lafferty, 2001] Lafferty,].(2001). Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc. 18th International Confer-
ence on Machine Learning, 2001, pages 282-289.

[Lan et al., 2020] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Sori-
cut, R. (2020). Albert: A lite bert for self-supervised learning of language repre-
sentations. In International Conference on Learning Representations.

[Lavergne et al., 2011] Lavergne, T., Allauzen, A., Crego, J. M., and Yvon, F. (2011).
From n-gram-based to crf-based translation models. In Proceedings of the sixth
workshop on statistical machine translation, pages 542-553.

[Le et al.,, 2011] Le, H.-S., Oparin, I., Allauzen, A., Gauvain, J.-L., and Yvon, F. (2011).
Structured output layer neural network language model. In 2017 |IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5524~
5527. IEEE.

[Le Cun, 1989] Le Cun, Y. (1989). Generalization and network design strategies.
Connectionism in perspective.

[Lee et al., 2020] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, |.
(2020). Biobert: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics, 36(4):1234-1240.

[Lei Ba etal., 2016] LeiBa,)., Kiros, J. R., and Hinton, G. E. (2016). Layer normaliza-
tion. ArXiv e-prints, pages arXiv-1607.

[Lewis et al., 2020] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A.,
Levy, O., Stoyanov, V., and Zettlemoyer, L. (2020). Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 7871-7880.

[Li et al, 20171 Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. (2017).
Adversarial learning for neural dialogue generation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 2157-
21609.

[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692.

[Ma, 2019] Ma, E.(2019). NIp augmentation. https://github.com/makcedward/nlpaug.

[Marcus et al., 1993] Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993).
Building a large annotated corpus of english: The penn treebank. Computational
Linguistics, 19(2):313-330.

117

[Martin et al., 2020] Martin, L., Muller, B., Suarez, P. J. O., Dupont, Y., Romary, L.,
De La Clergerie, E. V., Seddah, D., and Sagot, B. (2020). Camembert: a tasty
french language model. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 7203-7219.

[Merity et al., 2017] Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2017).
Pointer sentinel mixture models. In International Conference on Learning Rep-
resentations.

[Micallef et al., 2022] Micallef, K., Gatt, A., Tanti, M., van der Plas, L., and Borg,
C. (2022). Pre-training data quality and quantity for a low-resource language:
New corpus and BERT models for Maltese. In Proceedings of the Third Workshop
on Deep Learning for Low-Resource Natural Language Processing, pages 90-101,
Hybrid. Association for Computational Linguistics.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient estimation of word representations in vector space in 1st international
conference on learning representations, iclr 2013, scottsdale, arizona, usa, may
2-4,2013. In Workshop Track Proceedings.

[Nakayama, 2018] Nakayama, H. (2018). seqgeval: A python framework for se-
quence labeling evaluation. Software available from https://github.com/chakki-
works/seqeval.

[Neuraz et al., 2018] Neuraz, A, Llanos, L. C., Burgun, A., and Rosset, S. (2018).
Natural language understanding for task oriented dialog in the biomedical do-
main in a low resources context. CoRR, abs/1811.09417.

[Oshikawa et al., 2020] Oshikawa, R., Qian, J., and Wang, W.Y. (2020). A survey on
natural language processing for fake news detection. In Proceedings of the 12th
Language Resources and Evaluation Conference, pages 6086-6093.

[Paulus et al., 2018] Paulus, R., Xiong, C., and Socher, R. (2018). A deep reinforced
model for abstractive summarization. In International Conference on Learning
Representations.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP), pages 1532-
1543.

[Peters et al., 2018] Peters, M. E., Neumann, M., lyyer, M., Gardner, M., Clark, C.,
Lee, K., and Zettlemoyer, L. (2018). Deep contextualized word representations.
In Proceedings of the 2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Com-
putational Linguistics.

118

[Pham et al., 2016] Pham, N.-Q., Kruszewski, G., and Boleda, G. (2016). Convolu-
tional neural network language models. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 1153-1162.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I.
(2018). Improving language understanding by generative pre-training.

[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, 1. (2019). Language models are unsupervised multitask learners.
OpenAl Blog, 1(8):9.

[Raffel et al., 2020] Raffel, C., Shazeer, N., Roberts, A,, Lee, K., Narang, S., Matena,
M., Zhou, Y., Li, W., and Liu, P.]. (2020). Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Research,
21:1-67.

[Ramshaw and Marcus, 1995] Ramshaw, L. and Marcus, M. (1995). Text chunking
using transformation-based learning. In Third Workshop on Very Large Corpora.

[Roca et al., 2020] Roca, S., Rosset, S., Garcia, J., and Alesanco, A. (2020). Evalu-
ation of embeddings in medication domain for spanish language using joint
natural language understanding. In European Medical and Biological Engineering
Conference, pages 510-517. Springer.

[Ruder and Plank, 2018] Ruder, S. and Plank, B. (2018). Strong baselines for neu-
ral semi-supervised learning under domain shift. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1044-1054.

[RUMELHART, 1986] RUMELHART, D. (1986). Learning internal representations by
error propagation. Parallel Distributed Processing, 1:318-362.

[Sang and De Meulder, 2003] Sang, E. T. K. and De Meulder, F. (2003). Introduc-
tion to the conll-2003 shared task: Language-independent named entity recog-
nition. In Proceedings of the Seventh Conference on Natural Language Learning at
HLT-NAACL 2003, pages 142-147.

[Scao et al., 2022] Scao, T. L., Fan, A., Akiki, C., Pavlick, E., lli¢, S., Hesslow,
D., Castagné, R., Luccioni, A. S., Yvon, F., Gallé, M., et al. (2022). Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint
arXiv:2211.05100.

[Schuster and Nakajima, 2012] Schuster, M. and Nakajima, K. (2012). Japanese
and korean voice search. In 2012 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 5149-5152. IEEE.

[Schwenk and Gauvain, 2005] Schwenk, H. and Gauvain, J.-L. (2005). Training neu-
ral network language models on very large corpora. In Proceedings of human
language technology conference and conference on empirical methods in natural
language processing, pages 201-208.

119

[Sennrich et al.,, 2016a] Sennrich, R., Haddow, B., and Birch, A. (2016a). Improving
neural machine translation models with monolingual data. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 86-96.

[Sennrich et al., 2016b] Sennrich, R., Haddow, B., and Birch, A. (2016b). Neural
machine translation of rare words with subword units. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1715-1725.

[Shazeer et al., 2017] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hin-
ton, G., and Dean, J. (2017). Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer. In International Conference on Learning Repre-
sentations.

[Sietal., 2019] Si, Y., Wang, J., Xu, H., and Roberts, K. (2019). Enhancing clinical
concept extraction with contextual embeddings. Journal of the American Medical
Informatics Association, 26(11):1297-1304.

[Smith et al., 2022] Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari,
S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G., Korthikanti, V., et al. (2022).
Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale
generative language model. arXiv e-prints, pages arXiv-2201.

[Segaard, 2010] Segaard, A. (2010). Simple semi-supervised training of part-of-
speech taggers. In Proceedings of the ACL 2010 Conference Short Papers, pages
205-208.

[Suetal, 2021] Su, J., Lu, Y., Pan, S., Wen, B. and Liu, Y. (2021). Ro-
former: Enhanced transformer with rotary position embedding. arXiv preprint
arXiv:2104.09864.

[Sutiono and Hahn-Powell, 2022] Sutiono, A. and Hahn-Powell, G. (2022). Syntax-
driven data augmentation for named entity recognition. In Proceedings of the
First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning,
pages 56-60, Gyeongju, Republic of Korea. International Conference on Com-
putational Linguistics.

[Sutton et al., 1999] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999).
Policy gradient methods for reinforcement learning with function approxima-
tion. Advances in neural information processing systems, 12.

[Tjong Kim Sang, 2002] Tjong Kim Sang, E. F. (2002). Introduction to the CoNLL-
2002 shared task: Language-independent named entity recognition. In COLING-
02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002).

[Tolstikhin et al., 2017] Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B.
(2017). Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558.

120

[Uzuner et al., 2011] Uzuner, O., South, B. R., Shen, S., and DuVall, S. L. (2011).
2010 i2b2/va challenge on concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Association: JAMIA, 18(5):552.

[Van Engelen and Hoos, 2020] Van Engelen, J. E. and Hoos, H. H. (2020). A survey
on semi-supervised learning. Machine Learning, 109(2):373-440.

[van Schooten et al., 2007] van Schooten, B. W., Rosset, S., Galibert, O., Max, A.,
op den Akker, R., and lllouz, G. (2007). Handling speech input in the ritel ga
dialogue system. In INTERSPEECH, pages 126-129.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, |., Jones, L.,
Gomez, A. N., Kaiser, t., and Polosukhin, I. (2017). Attention is all you need. In
Advances in neural information processing systems, pages 5998-6008.

[Vijayakumar et al., 2016] Vijayakumar, A. K., Cogswell, M., Selvaraju, R. R., Sun,
Q. Lee, S., Crandall, D., and Batra, D. (2016). Diverse beam search: Decoding
diverse solutions from neural sequence models. arXiv preprint arXiv:1610.02424.

[Wang et al., 2018a] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. R. (2018a). Glue: A multi-task benchmark and analysis platform for natu-
ral language understanding. In International Conference on Learning Representa-
tions.

[Wang et al., 2021a] Wang, X., Jiang, Y., Bach, N., Wang, T., Huang, Z., Huang, F.,
and Tu, K. (2021a). Automated concatenation of embeddings for structured
prediction. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 2643-2660.

[Wang et al., 2021b] Wang, Y., Mukherjee, S., Chu, H., Tu, Y., Wu, M., Gao, J., and
Awadallah, A. H. (2021b). Meta self-training for few-shot neural sequence label-
ing. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1737-1747.

[Wang et al., 2018b] Wang, Y., Shen, Y., and Jin, H. (2018b). A bi-model based rnn
semantic frame parsing model for intent detection and slot filling. In Proceed-
ings of NAACL-HLT, pages 309-314.

[Wei and Zou, 2019] Wei, J. and Zou, K. (2019). EDA: Easy data augmentation tech-
niques for boosting performance on text classification tasks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-//CNLP),
pages 6382-6388, Hong Kong, China. Association for Computational Linguistics.

[Weston et al., 2016] Weston, J., Bordes, A., Chopra, S., and Mikolov, T. (2016). To-
wards ai-complete question answering: A set of prerequisite toy tasks. In Ben-
gio, Y. and LeCun, Y., editors, 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceed-
ings.

121

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey,
W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google's neural
machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144.

[Xue et al., 2021] Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant,
A., Barua, A., and Raffel, C. (2021). mt5: A massively multilingual pre-trained
text-to-text transformer. In Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 483-498.

[Yang et al., 2019] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and
Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems, 32.

[Yarowsky, 1995] Yarowsky, D. (1995). Unsupervised word sense disambiguation
rivaling supervised methods. In 33rd annual meeting of the association for com-
putational linguistics, pages 189-196.

[Yuetal, 2017] Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqggan: Sequence
generative adversarial nets with policy gradient. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 31.

[Zhang et al., 2017a] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and
Metaxas, D. N. (2017a). Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 5907-5915.

[Zhang et al., 2017b] Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., and
Carin, L. (2017b). Adversarial feature matching for text generation. In Interna-
tional Conference on Machine Learning, pages 4006-4015. PMLR.

[Zhou and Li, 2005] Zhou, Z.-H. and Li, M. (2005). Tri-training: Exploiting unla-
beled data using three classifiers. IEEE Transactions on knowledge and Data En-
gineering, 17(11):1529-1541.

[Zhu et al., 2015] Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Tor-
ralba, A., and Fidler, S. (2015). Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In Proceedings of
the IEEE international conference on computer vision, pages 19-27.

122

A - ChatGPT conversation

This chapter contains the whole exchange with ChatGPT'. This conversation
used the January 9th 2023 release of ChatGPT. The intention of this conversation
was to generate a factice introduction and a sequence labeling example. The
prompts are as they were used, which includes grammatical and spelling mis-
takes.

Me: “Can you please write the introduction to a Ph.D. thesis about nlp. In this
thesis, text generation is used as a means to produce additionnal data to improve
sequence labeling.”

ChatGPT: “Natural Language Processing (NLP) is a rapidly growing field that
deals with the interaction between computers and human language. In this the-
sis, we focus on the use of text generation as a means to produce additional data
for improving sequence labeling tasks. Sequence labeling is a fundamental task
in NLP that involves assigning labels to individual elements in a sequence, such
as words in a sentence or tokens in a text. The goal of this research is to explore
the potential of text generation to enhance the performance of sequence label-
ing models by augmenting the available training data. We investigate various text
generation techniques and evaluate their effectiveness on different sequence la-
beling tasks. The contributions of this thesis include a novel approach for using
text generation to improve sequence labeling and an in-depth analysis of the im-
pact of text generation on the performance of sequence labeling models.”

Me: “Can you try again. But this time add the constraint of low-resource on
the available data.”

ChatGPT: “Natural Language Processing (NLP) is a rapidly growing field that
deals with the interaction between computers and human language. One of the
major challenges in NLP is dealing with low-resource scenarios, where limited
amounts of labeled data are available. In this thesis, we focus on the use of text
generation as a means to produce additional data for improving sequence label-
ing tasks in low-resource settings. Sequence labeling is a fundamental task in
NLP that involves assigning labels to individual elements in a sequence, such as
words in a sentence or tokens in a text. The goal of this research is to explore the
potential of text generation to enhance the performance of sequence labeling
models by augmenting the available low-resource training data. We investigate
various text generation techniques and evaluate their effectiveness on different
sequence labeling tasks in low-resource settings. The contributions of this thesis
include a novel approach for using text generation to improve sequence labeling
in low-resource settings and an in-depth analysis of the impact of text generation
on the performance of sequence labeling models in such scenarios.”

Me: “Write a text that can be used for sequence labeling containing the follow-
ing concepts : locations, organizations, and persons.”

ChatGPT: “The United Nations headquarters is located in New York City, where
representatives from various countries and organizations gather to discuss global

"https://chat.openai.com

123

https://chat.openai.com

issues. The Secretary-General, Antonio Guterres, opened the meeting by address-
ing the ongoing crisis in Syria and the need for humanitarian aid. He was joined by
representatives from the International Committee of the Red Cross and the World
Health Organization, who provided updates on their efforts to provide aid to af-
fected areas. In addition, representatives from the governments of Russia and
the United States also participated in the meeting, discussing potential solutions
to the crisis.”

Me: “Now write a text that can be used for sequence labeling containing med-
ical concepts such as: problems, treatments, and tests.”

ChatGPT: “John Smith, a 54-year-old patient, visited his primary care physician
complaining of chest pain and shortness of breath. The physician ordered an
ECG test, which revealed that the patient was experiencing an acute coronary syn-
drome. The doctor prescribed aspirin as a treatment and referred the patient
to a cardiologist for further evaluation. The cardiologist recommended a cardiac
catheterization procedure to assess the extent of the damage to the coronary
artery. Based on the results, the patient was diagnosed with atherosclerosis, and
the cardiologist recommended a treatment of angioplasty and stenting. The pa-
tient underwent the procedure and was discharged from the hospital the follow-
ing day. The patient was advised to follow a healthy lifestyle and to take medica-
tions to lower his cholesterol levels to prevent future cardiac events.”

124

B - Pattern Generation Appendix

Size \ 100 250 500 1000 3000 7000 11483
Baseline ‘ 358 46.6 56,5 624 71.3 765 79.1
PatGen 20k \ 426 468 590 636 729 757 778
PatGen 20k m 421 478 59.2 641 734 774 78.6
PatGen 20k p 431 478 586 633 722 776 779
PatGen 20k (m + p) 37.0 479 58.2 64.8 73.1 76.2 75.4
PatGen 20k aug. m 41.4 471 584 65.1 72.4 771 78.7
PatGen 20k aug. (m+p) | 43.5 49.1 586 650 740 78.2 80.0
Table B.1: BiLSTM results of 12B2.
Size ‘ 100 250 500 1000 2000 3000 4478
Baseline \ 67.8 83.6 87.6 91.1 943 953 953
PatGen 20k \ 717 86.0 905 929 949 954 958
PatGen 20k m 706 873 91.0 934 951 953 0956
PatGen 20k p 706 85.7 90.7 93.2 953 958 0955
PatGen 20k (m + o)) 725 87.1 91.1 93.7 949 951 95.6
PatGen 20k aug. m 70.4 86.1 91.3 935 950 955 956
PatGen 20k aug. (m+p) | 71.2 86.4 90.4 935 955 959 96.0

Table B.2: BiLSTM results of ATIS.

125

Size \ 100 250 500 1000 3000 7000 12916
Baseline \ 345 452 557 680 775 814 846
PatGen 20k \ 44.0 583 609 663 704 71.7 69.6
PatGen 20k m 49.0 57.0 652 722 79.0 808 827
PatGen 20k p 47.6 572 645 696 71.0 706 68.9
PatGen 20k (m + p) 49.2 573 657 728 790 806 81.8
PatGen 20k aug. m 48.8 56.9 656 735 799 823 845
PatGen 20k aug. (m+p) | 48.7 56.4 659 735 79.6 825 847
Table B.3: BiLSTM results of MEDIA.
Size \ 100 250 500 1000 3000 7000 13284
Baseline | 253 463 548 651 785 875 91.8
PatGen 20k \ 46.4 58.7 656 736 824 886 895
PatGen 20k m 454 584 66.6 740 83.6 884 908
PatGen 20k p 46.7 56.9 665 747 832 884 89.8
PatGen 20k (m + p) 469 59.2 673 73.6 837 882 909
PatGen 20k aug. m 447 56.2 67.1 75.1 83.6 89.0 93.1
PatGen 20k aug. (m+p) | 45.9 59.1 68.7 745 83.8 895 916

Table B.4: BiLSTM results of SNIPS.

126

C - BERT tagger architecture results

127

Size \ 50 100 250 500 1000
Baseline \ 57.8+29 70.1+5.6 81.2+1.8 85.3+1.1 88.0+03
Pattern Generation
PatGen 20k 66.8433 71.7+2.8 80.3+1.6 83.6+1.8 86.7+0.7
PatGen 20k all dist 66.3+2.6 74.3+2.1 80.8413 84.5+1.7 86.8+0.7
Generative Tritraining
Follow-up 64.3+22 73.7433 83.54+1.1 87.2+0.7 89.4+0.2
Completion 63.5+22 71.6+28 83.4+13 86.8+0.7 89.2+03
Mention rep. 64.5+1.2 72731 82.8+£19 87.2+0.7 89.1+04
Context rep. 62.8£3.2 72.3£27 82.5£1.4 86.3£0.7 89.0£0.1
Combined 64.2+35 74.6+33 83.6+1.1 87.3+09 89.3+05
Follow-up Individual 63.1+3.0 72.3+33 82.2+12 86.2+0.8 88.6+0.5
Completion Individual | 62.24+2.7 70.44+2.8 82.3+15 85.5+13 88.5+04
Mention rep. Individual | 62.94+1.9 71.0+33 81.3£19 85.840.9 88.24+0.5
Context rep. Individual | 60.3+4.6 69.6+£25 80.94+1.9 84.841.1 88.0+0.3
Combined Individual 62.7£3.2 72.6+3.6 81.5+2.0 86.3+1.0 88.4+05
Follow-up Outputs 64.2+2.1 73.6+3.0 83.9+09 87.3+0.6 89.0+0.7
Completion Outputs 63.9£33 72.1£26 83.3£1.4 86.6£0.9 88.6£0.1
Mention rep. Outputs | 65.2+1.6 72.9+32 82.6t1.6 86.3+£0.9 88.4+04
Context rep. Outputs 61.2+47 70.4+28 80.2+1.8 85.3+14 87.3+03
Combined Outputs 62.9+32 74.4+26 82.8413 87.0+0.6 88.6+0.5
T5 patterns
T5 20k mention 50.1+4.0 55.7422 64.9425 70.2+1.2 77.1+08
T5 20k context 52.04£3.5 62.34+3.2 72.64+2.2 78.8+06 83.6+05
T5 20k both 53.8+22 61.9+17 70.1£24 754414 80.6%1.1
T5 20k filtered 57.1£19 62.14+23 70.2+1.7 76.2+13 81.1+06
T5 20k filtered prompt. | 55.44+2.9 64.1+2.0 73.8+27 78.9+25 81.94+03
Patterns with Tri-training
Follow-up + PatGen 64.6+3.1 74.1+19 83.1+09 86.4+15 88.4+03
Mention rep. + PatGen | 64.7+1.2 74.1+19 81.4+21 85.8+1.2 86.8+05
PatGen on Follow-up | 63.2+37 72.8+40 80.8+1.7 854408 87.9403

Table C.1: All results of BERT experiments trained on CoNLL following chapter 3 methodology.

128

Size ‘ 50 100 250 500 1000

Baseline \ 37.04+32 49.4416 63.2+16 720407 77.3+04
Pattern Generation
PatGen 20k 45.7+44 56.6+2.2 67.4402 73.8409 79.14+08

PatGen 20k (p+m) dist | 44.0+6.7 56.0£1.6 67.841.2 73.5+1.3 79.1+0.8

Generative Tritraining (small dev)

Follow-up 38.943.0 50.54+2.4 66.1+04 75.1+1.4 79.6+0.8
Completion 38.2+47 51.6+25 67.8+1.4 744406 80.5+0.5
Mention rep. 41.4+3.0 549420 689+1.9 75.3£08 79.9+0.7
Context rep. 42.842.4 55.0432 682411 743405 79.4407
Combined 37.9+46 52.4+22 68.1+05 747407 79.940.8
Follow-up Individual 37.7+28 49.5+25 64.7+£12 739+1.6 78.6+0.8

Completion Individual | 36.94+5.0 50.4+25 66.5+1.7 73.1£1.0 79.5+0.9
Mention rep. Individual | 39.943.3 53.5+2.0 67.4+24 74.0£12 78.6%+1.0
Context rep. Individual | 40.5+3.0 53.0£34 66.4+14 7294+1.0 78.1+0.8
Combined Individual 37.0+47 51.14+29 66.6+1.2 73.2+15 78.9+£1.0

Follow-up Outputs 41.4+26 51.1£16 67.84£1.3 754411 79.840.7
Completion Outputs 39.14£33 52.6+26 68.2+13 74.1£1.1 80.3+04
Mention rep. Outputs | 43.0+2.8 56.14+1.2 70.2+13 75.7+1.0 79.8406
Context rep. Outputs 39.8+2.0 52.5+26 68.5£1.1 73.7£1.1 78.9+08

Combined Outputs 39.143.6 53.5£26 69.14+0.8 74.840.9 80.3+0.5
T5 patterns

T5 20k mention 38.24+24 49.3435 63.2+1.2 71.5+1.8 77.9£1.0

T5 20k context 28.84+2.4 37.9+20 49.9+30 57.9+18 66.8+1.3

T5 20k both 37.7+17 447413 543+14 61.6+£1.2 67.7£05

T5 20k filtered 37.8+£16 43.3+25 54.3£15 61.7£14 68.5%0.6

T5 20k filtered prompt. | 38.84+2.7 45.0+2.6 52.3+15 67.0£54 72.14+4.38

Patterns with Tri-training

Follow-up + PatGen 427433 53.0£2.7 68.84£0.7 75.9+1.2 80.7+0.5
Mention rep. + PatGen | 42.9+22 56.8+3.1 70.6+t1.4 75.3+0.5 80.2+04

PatGen on Follow-up | 39.8435 50.3+2.1 65.9+1.2 74.3+14 79.540.2

Table C.2: All results of BioBERT experiments trained on 12B2 following chapter 3 methodology.

129

Size ‘ 50 100 250 500 1000

Baseline | 443430 53.9413 66.4+1.1 743+14 79.1408
Pattern Generation
PatGen 20k 50.7+3.8 57.5+1.5 67.1+£22 74.0409 78.0+03

PatGen 20k (p+m) dist | 50.0+3.9 57.9+2.1 68.3+1.1 74.3+0.8 78.8+0.3

Generative Tritraining

Follow-up 46.5+3.0 55.6+1.7 67.9+1.7 75.6£1.0 81.2+05
Completion 48.3+33 56.5+1.0 68.6+1.7 76.24+0.9 81.34+0.3
Mention rep. 47.7+£2.6 57.4£1.0 685£14 759£1.0 81.4+06
Context rep. 48.3£3.2 56.6+£0.9 68.3£14 759£09 81.1£05
Combined 474429 57.0+08 68.3+18 75.6£12 81.2+0.6
Follow-up Individual 451435 547417 669414 744411 80.2+0.6

Completion Individual | 47.14+3.2 55.5+1.2 67.2+16 74.7+£1.0 80.1£0.5
Mention rep. Individual | 46.44+2.8 54.3+41 67.1£15 74.7+£1.1 79.84+15
Context rep. Individual | 46.843.3 55.6+1.0 66.8+14 73.8+1.8 80.1+0.7
Combined Individual 47.2439 55.6+1.2 67.0£1.7 74.6£12 79.9£0.6

Follow-up Outputs 46.4+26 54.6+28 67.2+12 749409 80.3+0.4
Completion Outputs 471426 55.1+04 67.0+1.2 75.0+1.3 80.1+06
Mention rep. Outputs | 46.943.0 56.6+14 67.6+1.8 74.4407 80.14+05
Context rep. Outputs 46.3£3.1 55.0£1.1 67.1£06 75.0£1.0 79.8£0.5

Combined Outputs 47.0£26 55.44+12 67.5+1.0 74.6+09 80.0+0.7
T5 patterns

T5 20k mention 351413 42.6+1.4 55.74+2.1 64.7+0.0 74.1£0.1

T5 20k context 47.9+2.0 55.7£11 65.6+08 72.1+0.8 78.7405

T5 20k both 41.3+2.6 48.9+£15 60.1+£20 69.5+1.4 75.840.1

T5 20k filtered 39.54+1.7 47.5+1.0 59.5417 68.1+1.0 75.3£0.0

T5 20k filtered prompt | 40.6+1.6 47.2+£1.0 59.4+24 68.44+0.6 75.04+0.2

Patterns with Tri-training

Follow-up + Patgen 49.5+24 57.6+£1.0 67.7+£24 74.4+08 79.0+0.5
Mention rep. + Patgen | 50.0+33 58.6+1.6 68.4+12 74.8+£1.0 79.1+06

PatGen on Follow-up \47.8j:1.9 55.7+19 66.9+16 73.6+13 79.1406

Table C.3: All results of MBERT experiments trained on MEDIA following chapter 3 methodology.

130

ECOLE DOCTORALE

®
universite
PARIS-SACLAY !

Sciences et technologies
de I'information et de
la communication (STIC)

Titre: Augmentation et génération de données d'apprentissage en traitement automatique des langues.
Mots clés: Apprentissage, génération, TAL, extraction d'information.

Résumé: De plus en plus de domaines cherchent
a automatiser une partie de leur processus. Le
traitement automatique des langues contient des
méthodes permettant d'extraire des informations
dans des textes. Ces méthodes peuvent utiliser
de I'apprentissage automatique. L'apprentissage
automatique nécessite des données annotées pour
faire de I'extraction d’information de maniére opti-
male. L'application de ces méthodes a de nouveaux
domaines nécessite d'obtenir des données annotées
liée a la tache. Le probléme que nous souhaitons
résoudre est de proposer et d'étudier des méthodes
de génération pour améliorer les performances de
modéles appris 3 basse quantité de données. Nous
explorons différentes méthodes avec et sans ap-
prentissage pour générer les données nécessaires a
I'apprentissage de modéles d'étiquetage.

La premiére méthode que nous explorons est le
remplissage de patrons. Cette méthode de généra-
tion de données permet de générer des données
annotées en combinant des phrases a trous, les
patrons, et des mentions. Nous avons montré que
cette méthode permet d'améliorer les performances
des modéles d'étiquetage a trés petite quantité de
données. Nous avons aussi étudié la quantité de
données nécessaire pour I'utilisation optimale de
cette méthode.

La deuxiéme approche de génération que nous
avons testé est |'utilisation de modéles de langue
pour la génération couplée a I'utilisation de méth-
ode d'apprentissage semi-supervisé. La méthode
d'apprentissage semi-supervisé utilisé est le tri-
training et sert 3 ajouter les étiquettes aux données
générées. Le tri-training est testé sur plusieurs
méthodes de génération utilisant différents modéles

de langue pré-entrainés. Nous avons proposé une
version du tri-training appelé tri-training génératif,
ol la génération n'est pas faite en amont, mais du-
rant le processus de tri-training et profite de celui-ci.
Nous avons testé les performances des modéles en-
trainés durant le processus de semi-supervision et
des modéles entrainé sur les données produites par
celui-ci. Dans la majeure partie des cas, les données
produites permettent d'égaler les performances des
modéles entrainés avec la semi-supervision. Cette
méthode permet |'amélioration des performances
a tous les niveaux de données testés vis-a-vis des
modéles sans augmentation.

La troisiéme piste d'étude vise & combiner cer-
tains aspects des approches précédentes. Pour cela,
nous avons testé différentes approches. L'utilisation
de modéles de langues pour faire du remplacement
de bouts de phrase a la maniére de la méthode
de remplissage de patrons fut infructueuse. Nous
avons testé |'addition de données générées par dif-
férentes méthodes qui ne permet pas de surpasser
la meilleure des méthodes. Enfin, nous avons testé
I'application de la méthode de remplissage de pa-
trons sur les données générées avec le tri-training
qui n'a pas amélioré les résultats obtenu avec le
tri-training.

S'il reste encore beaucoup a étudier, nous avons
cependant mis en évidence des méthodes simples,
comme le remplissage de patrons, et plus com-
plexe, comme I'utilisation d'apprentissage supervisé
avec des phrases générées par un modéle de langue,
permettant d'améliorer les performances de mod-
éles d'étiquetage grace a la génération de données
annotées.

Title: Data augmentation and generation for natural language processing.
Keywords: Machine learning, generation, NLP, information extraction.

Abstract: More and more fields are looking to au-
tomate part of their process. Automatic language
processing contains methods for extracting informa-
tion from texts. These methods can use machine
learning. Machine learning requires annotated data
to perform information extraction. Applying these
methods to new domains requires obtaining anno-
tated data related to the task. In this thesis, our
goal is to study generation methods to improve the
performance of learned models with low amounts
of data. Different methods of generation are ex-
plored that either contain machine learning or do
not, which are used to generate the data needed
to learn sequence labeling models.

The first method explored is pattern filling.
This data generation method generates annotated
data by combining sentences with slots, or patterns,
with mentions. We have shown that this method
improves the performance of labeling models with
tiny amounts of data. The amount of data needed
to use this method is also studied.

The second approach tested is the use of lan-
guage models for text generation alongside a semi-
supervised learning method for tagging. The semi-
supervised learning method used is tri-training and
is used to add labels to the generated data. The
tri-training is tested on several generation methods
using different pre-trained language models. We
proposed a version of tri-training called generative

tri-training, where the generation is not done in ad-
vance but during the tri-training process and takes
advantage of it. The performance of the models
trained during the semi-supervision process and of
the models trained on the data generated by it are
tested. In most cases, the data produced match the
performance of the models trained with the semi-
supervision. This method allows the improvement
of the performances at all the tested data levels
with respect to the models without augmentation.

The third avenue of study combines some as-
pects of the previous approaches. For this purpose,
different approaches are tested. The use of lan-
guage models to do sentence replacement in the
manner of the pattern-filling generation method is
unsuccessful. Using a set of data coming from the
different generation methods is tested, which does
not outperform the best method. Finally, applying
the pattern-filling method to the data generated
with the tri-training is tested and does not improve
the results obtained with the tri-training.

While much remains to be studied, we have
highlighted simple methods, such as pattern fill-
ing, and more complex ones, such as the use of
supervised learning with sentences generated by a
language model, to improve the performance of la-
beling models through the generation of annotated
data.

	Contents
	Terminology
	Introduction
	Motivation
	Research objectives
	Outline and contributions

	 Text Generation
	Introduction
	Data representation
	Tokenization
	Vectorization

	Language Modeling
	Introduction
	Decoding algorithms
	Model architectures
	Pre-trained Large Language Models
	Data
	Language modeling in this work

	Vector-to-Text generation
	Autoencoders
	Generative Adversarial Networks
	Conclusion

	Augmentation
	Conclusion

	 Methodology
	Setting
	Resource topology
	Target setting

	Evaluation methods
	Evaluating generation
	Sequence labeling
	Evaluating sequence labeling

	Protocol
	Low-resource simulation
	Evaluation
	Discussion

	Corpora
	Named Entity Recognition
	Natural Language Understanding

	Taggers
	Summary of the methodology

	Pattern Filling Generation
	Pattern filling generation
	Generated data
	Description
	Results
	Data Analysis
	Following natural distributions
	Conclusion

	On the number of patterns
	Experiment Description
	Results
	Conclusion

	Augmentation
	Results
	Conclusion

	Final experiments
	Settings
	Results

	Conclusion

	 Language modeling and Semi-supervision
	Semi-supervised learning
	Tri-training with a static set of generated data
	Tri-training
	Generation methods
	Tri-training experimental settings
	Results
	Conclusion

	Generative Tri-training
	Generation methods
	Semi-supervised learning methods
	Experimental settings
	Results
	Conclusion

	Impact of a small development set and performances of generated data
	Small development set
	Training on the data generated
	Comparison to pattern-filling generation

	Conclusion

	Modeling with patterns
	Span-replacement with T5
	Preliminary experiment
	Data Analysis
	Filtering and prompting

	Combining pattern-filling and tri-training
	Concatenation of Pattern-filling and Tri-training data
	Applying pattern-filling on semi-supervised data

	Conclusion

	Conclusions
	Contributions
	Discussions
	Summary of Findings
	Perspectives

	Bibliography
	ChatGPT conversation
	Pattern Generation Appendix
	BERT tagger architecture results

