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Résumé

Le développement et la massification des bases de données d’imagerie médicale et de suivi clinique
ouvrent de nouvelles perspectives pour la compréhension de phénomènes complexes comme le
vieillissement ou les maladies neurodégénératives. En particulier, la connectivité cérébrale, c’est-
à-dire l’étude des connexions et des interactions entre les régions du cerveau, peut maintenant être
étudiée à l’échelle d’une population et non plus d’un individu isolé. Ce cadre offre la possibilité
d’une meilleure prise en compte des spécificités individuelles dans le développement d’outils de
suivi.

Dans cette thèse, nous proposons dans un premier temps de nouvelles approches pour mod-
éliser et comprendre la variabilité de la connectivité cérébrale au sein d’un groupe de sujets. Plus
généralement, nous nous intéressons aux collections de réseaux où chaque réseau décrit des inter-
actions entre les mêmes entités. Nous nous appuyons sur la propriété empirique de rang faible des
matrices d’adjacence de ces réseaux pour rendre compte de leur distribution. Nous proposons deux
approches, l’une variationnelle et l’autre statistique, pour rendre compte de l’hétérogénéité de ces
matrices. En particulier, dans le second cas, nous montrons qu’un nombre restreint de paramètres
suffit à donner une description fidèle et interprétable de la variabilité de la connectivité cérébrale.
Nous montrons également la consistence et l’identifiabilité de notre approche sur le plan théorique.

Dans un second temps, nous étudions un modèle longitudinal pour le suivi de la progression de
la maladie de Parkinson. Dans ce modèle, la trajectoire de chaque patient est divisée en plusieurs
morceaux pouvant correspondre aux différentes phases de la maladie ou d’un traitement. Nous
nous montrons qu’il est possible d’estimer les trajectoires constituées de plusieurs morceaux, et
de sélectionner le nombre de ruptures le mieux adapté pour décrire l’évolution moyenne de la
population.

Abstract

The development and massification of medical imaging and clinical followup databases open up new
perspectives for understanding complex phenomena such as ageing or neurodegenerative diseases.
In particular, brain connectivity, i.e., the study of connections and interactions between brain
regions, can now be studied on the scale of a population scale rather than on an individual basis.
This framework offers the possibility of better taking into account individual specificities in the
development of monitoring tools.

In this thesis, we first propose new approaches to model and understand the variability of brain
connectivity within a group of subjects. More generally, we are interested in collections of networks
where each network describes interactions between the same entities. We rely on the empirical low
rank property of the adjacency matrices of these networks to account for their distribution. We
propose two approaches, one variational and the other statistical, to account for the heterogeneity
of these matrices. In particular, in the second case, we show that a limited number of parameters
is sufficient to give a faithful and interpretable description of the variability of brain connectivity.
We also show the theoretical consistency and identifiability of our approach.

In a second part, we study a longitudinal model for the progression monitoring of Parkinson’s
disease. In this model, the trajectory of each patient is divided into several pieces that may
correspond to the different phases of the disease or of a treatment. We show that it is possible to
estimate trajectories consisting of several pieces, and to select the number of breaks best suited to
describe the average evolution of the population.
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Chapter 1

Résumé en Français

1.1 Modélisation pour les populations de réseaux

Le sujet central de cette thèse est la modélisation statistique pour les populations de réseaux, et
plus particulièrement les réseaux de connectivité cérébrale. Dans cette section, nous motivons cette
question et présentons brièvement les résultats obtenus dans les contributions de la thèse.

1.1.1 Analyse statistique pour les réseaux

L’analyse des réseaux est un domaine de recherche vaste et actif, qui vise au sens large à compren-
dre leur structure à l’aide de mesures et de modèles quantitatifs [Newman, 2012]. Nous définissons
un réseau comme un ensemble d’entités, appelées nœuds, connectées entre elles par un ensem-
ble d’arêtes. Un réseau comportant n entités est ainsi résumé par une matrice d’adjacence A
de taille n × n, où le coefficient Aij donne l’intensité de la connexion reliant les nœuds i et j.
De nombreux phénomènes peuvent être modélisés via ce formalisme: réseaux sociaux, graphes
d’interactions entre espèces vivantes, réseaux informatiques, etc.

Dans cette thèse, nous nous intéressons plus particulièrement à l’application de l’analyse des
réseaux pour l’étude du cerveau humain [Fornito et al., 2016]. Le développement des méthodes
d’imagerie cérébrale (électroencéphalogrammes, imagerie par résonance magnétique nucléaire, etc.)
a permis de spectaculaires avancées dans la compréhension du cerveau, notamment en mesurant
les interactions entre les différentes régions du cerveau. Deux types de connexions sont considérés:
d’un côté, la connectivité structurelle compte les fibres de matière blanche qui relient les régions
du cortex entre elles, et mesure ainsi le lien physique entre les régions. De l’autre, la connectivité
fonctionnelle mesure la corrélation entre les activités de chaque région ; autrement dit, on considère
que deux régions sont très connectées si leurs activations sont synchronisées. Cette deuxième
mesure de connectivité permet de comprendre comment les régions du cerveau interagissent les
unes avec les autres, et décrit ainsi le fonctionnement du cerveau – d’où le nom de connectivité
fonctionnelle.

L’étude de la connectivité cérébrale consiste à appliquer les outils de l’analyse des réseaux aux
données de connectivité issues de l’imagerie cérébrale. Cette étude apporte un nouvel éclairage
sur le vieillissement du cerveau et le développement des maladies neurodégénératives [Damoiseaux,
2017]. Dans ce contexte, on n’analyse non plus un unique réseau, comme c’est souvent le cas en
analyse de réseaux traditionnelle, mais une population de réseaux, dont chaque élément correspond
au réseau de connectivité cérébrale d’un individu. Ce cadre de travail est complexe : d’un point
de vue statistique, il s’agit de modéliser des données de grande dimension (un réseau à n nœuds
est décrit par une matrice A de n2 coefficients) à partir d’un nombre restreint d’observations, la
plupart des études en neurosciences disposant de quelques centaines de sujets.

L’approche la plus courante pour contourner cette difficulté et modéliser une population de
réseaux consiste à résumer chaque réseau par un petit nombre de caractéristiques: par exemple, on
peut résumer chaque matrice d’adjacence A par le nombre moyen de voisins de chaque sommet, ou
encore par la longueur moyenne du plus court chemin d’un nœud à l’autre [Rubinov and Sporns,
2010, Harris, 2014, Ghosh et al., 2018]. Cette approche est simple et interprétable, et elle est
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couramment utilisée en pratique dans les études de neurosciences. Cependant, cette simplicité a
un coût : en résumant chaque réseau par ses caractéristiques, on se prive de l’arsenal des méthodes
statistiques pour le traitement des données en grande dimension.

Dans cette thèse, nous travaillons directement sur les matrices d’adjacence des réseaux de con-
nectivité, sans les résumer en une liste de caractéristiques. Nous proposons d’utiliser les propriétés
naturelles de ces matrices pour construire des modèles simples et interprétables pour les populations
de réseaux.

1.1.2 Une formulation variationnelle rang faible / parcimonie

Dans la première contribution de cette thèse (Chapitre 4), nous proposons une approche simple
pour modéliser une collection de matrices d’adjacence A1, . . . , AN . Nous nous appuyons sur les
propriétés empiriques de ces matrices : pour chaque matrice, de très nombreux coefficients sont
nuls et le rang de la matrice est faible (au sens où les valeurs propres décroissent rapidement). La
première propriété reflète le fait que deux nœuds, pris au hasard, ont peu de chances d’interagir
entre eux. La seconde traduit l’organisation modulaire des nœuds : par exemple, plus les nœuds
tendent à se regrouper en modules clairement délimités, plus leur matrice d’adjacence se rapproche
d’une matrice constante par blocs, dont le rang est en général faible.

En nous appuyant sur ces propriétés, nous postulons que chaque matrice de connectivité Ai est
une déviation simple d’un terme commun de structure simple. Autrement dit, on suppose que l’on
peut écrire Ai = T + Vi + εi, avec T un terme central commun à chaque matrice, Vi une déviation
propre à chaque individu et εi un terme résiduel de faible amplitude. Selon les propriétés formulées
au paragraphe précédent, dire que T et les Vi sont simples au sens des réseaux revient à supposer
que ces matrices ont un rang faible et sont parcimonieuses (c’est-à-dire qu’elles ont de nombreux
coefficients nuls). Le terme central T n’est pas nécessairement égal à la moyenne des matrices Ai :
cette moyenne n’a pas de raison d’être parcimonieuse ou de rang faible. Il se peut également que
les Vi soient à coefficients positifs, auquel cas leur moyenne empirique est également positive.

Nous proposons d’estimer les valeurs pour T et les Vi par une approche variationnelle, c’est-à-
dire en résolvant un problème d’optimisation. Notre approche d’appuie sur les travaux de Richard
et al. [2012, 2013], qui proposent précisément une méthode d’estimation d’une matrice parci-
monieuse de rang faible. Nous étendons leur approche au modèle de décomposition détaillé au
paragraphe précédent. Nous résolvons les problèmes d’optimisation issus de cette formulation
via des méthodes d’optimisation convexe non-lisse [Parikh and Boyd, 2014], et nous validons les
algorithmes obtenus sur des données simulées.

Nous utilisons enfin ces algorithmes sur des données réelles. Appliquée à un réseau de transport
aérien et à des réseaux de connectivité fonctionnelle cérébrale, notre approche produit des résultats
cohérents avec la structure de rang faible des matrices d’adjacence réelles ; les termes résiduels εi
sont systématiquement très faibles comparés aux déviations simples Vi, suggérant que ce modèle
de décomposition est adapté pour décrire des collections de matrices d’adjacence. Les valeurs des
hyperparamètres du modèle laissent une grande flexibilité dans sa formulation : selon le choix, il
est possible d’accorder plus ou moins d’importance à la parcimonie ou au rang faible.

1.1.3 Un modèle statistique pour la décomposition propre

Dans le Chapitre 5, nous étendons le raisonnement du chapitre précédent dans un cadre statistique:
l’approche développée dans le Chapitre 4, bien qu’intéressante de par sa simplicité, ne définit
pas un modèle statistique. Il est plus souhaitable de disposer d’un modèle génératif dont les
réseaux observés seraient des échantillons : un tel modèle sert d’une part à mesurer et comprendre
la variabilité au sein de la population, et d’autre part à réaliser différentes formes d’inférence
(classification, clustering, imputation de données manquantes, régression, etc.). On s’intéresse ainsi
aux modèles statistiques susceptibles de produire des matrices ayant naturellement une structure
de rang faible, éventuellement parcimonieuse.

Plusieurs modèles co-existent dans la littérature scientifique pour aborder ce problème ; citons
par exemple les auto-encodeurs de graphes [Kipf and Welling, 2016] et les modèles de dictionnaire
[D’Souza et al., 2018]. Dans le Chapitre 5, nous nous sommes intéressés plus spécifiquement à
une famille d’approches qui proposent de définir des distributions de probabilités sur l’ensemble
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des matrices de rang faible. Cet espace (courbe) n’est pas explicite, et il est en pratique bien plus
simple de définir la distribution d’une matrice aléatoire de rang faible A par celle de ses valeurs
propres λ et de ses vecteurs propres X, puis de calculer A = X⊤Diag(λ)X + ε, avec ε un bruit
résiduel. Nous suivons cette approche, et définissons ainsi un modèle statistique sur les matrices de
rang faible. Notre approche offre une grande flexibilité : changer la distribution des valeurs propres
ou celle du bruit permet de modéliser simplement des matrices binaires ou à coefficients positifs,
ou encore des matrices aux valeurs propres positives (dans ce cas particulier, d’autres modèles,
plus adaptés, tirent parti de la géométrie de l’espace des matrices positives).

La définition de notre modèle statistique fait appel aux outils de la géométrie Riemannienne : la
variable aléatoire des vecteurs propres X satisfait en effet une contrainte non-linéaire (les colonnes
de la matrice sont unitaires, orthogonales deux à deux). Il est donc impossible de modéliser X
par une distribution Gaussienne classique, qui produirait des valeurs en dehors de l’espace con-
traint. Cependant, des alternatives spécifiques à cet espace ont été développées, et remplissent en
première approximation le rôle des distributions Gaussiennes – au sens où elles se définissent par
un paramètre de «moyenne» et un paramètre de « variance». Ces distributions ont fait l’objet de
nombreuses études, et des méthodes efficaces permettent d’en estimer les paramètres [Khatri and
Mardia, 1977, Kume et al., 2013]. Dans le Chapitre 5, nous utilisons ces résultats, ainsi qu’une
nouvelle méthode d’échantillonnage dans l’espace contraint, pour estimer les paramètres de notre
modèle à l’aide d’un algorithme d’Espérance-Maximisation stochastique [Kuhn and Lavielle, 2004,
Allassonnière et al., 2010]. Nous validons l’implémentation de notre algorithme et fournissons des
exemples simples permettant de comprendre son fonctionnement. Toujours sur données simulées,
nous montrons que le modèle proposé permet de prédire efficacement la valeurs de coefficients
manquants, et d’effectuer des tâches de clustering sur des collections de matrices.

Nous appliquons ensuite notre méthode à une collection de réseaux de connectivité fonctionnelle
cérébrale issus de l’UK Biobank [Littlejohns et al., 2020]. Nous montrons que le modèle que nous
proposons produit une représentation des réseaux à la fois fidèle et interprétable. Les termes
moyens de la décomposition de rang faible font intervenir des groupes de régions bien identifiés,
qui interagissent de façon simple. Les termes de variance permettent de quantifier la variabilité
de chaque type d’interaction d’un individu à l’autre. Un des avantages du modèle réside dans sa
parcimonie : il utilise un nombre restreint de paramètres pour décrire la distribution des matrices,
ce qui assure que ces paramètres peuvent être estimés précisément, même à partir de peu de
données. La fidélité du modèle est mesurée par plusieurs indicateurs, notamment la portion de
variance capturée et la qualité de prédiction de données manquantes.

Bien que simple dans son interprétation, le modèle du Chapitre 5 fait intervenir des objets com-
plexes (modèles hiérarchiques non linéaires et variétés Riemanniennes), qui rendent difficile une
appréhension intuitive de la qualité de l’estimation obtenue par l’algorithme. Dans le Chapitre 6,
nous donnons des éléments de réponse à cette question. Nous montrons que le modèle est iden-
tifiable, c’est-à-dire que deux jeux de paramètres différents produisent toujours deux modèles dif-
férents. Nous nous intéressons ensuite aux propriétés de l’estimation du modèle lorsque le nombre
de réseaux observés devient grand, en nous appuyant sur la théorie des statistiques asymptotiques
[van der Vaart, 1998]. En mettant de côté l’erreur d’optimisation de l’algorithme, nous prouvons
que les paramètres du modèle convergent presque sûrement vers leur valeur optimale. Pour une
version restreinte du modèle, nous retrouvons le résultat classique de normalité asymptotique de
l’estimateur. La difficulté technique provient de la structure hiérarchique de notre modèle, qui
complique l’expression de la vraisemblance des données et de l’information de Fisher.

Ces travaux ouvrent plusieurs perspectives d’améliorations et d’extensions. D’une part, la
précision de l’estimation pourrait être améliorée en utilisant des méthodes Bayésiennes récentes
adaptées à notre cadre de modélisation. D’autre part, le modèle que nous proposons pourrait
être étendu à de nombreuses configurations plus complexes, dont par exemple la régression et
la multimodalité. En particulier, une extension intéressante est la modélisation de l’évolution
temporelle des réseaux de connectivité cérébrale.
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1.2 Modèles longitudinaux segmentés

Dans la dernière contribution de cette thèse (Chapitre 7), nous changeons de perspective et étu-
dions un modèle de population plus mature pour des données longitudinales – c’est-à-dire des
données où chaque sujet est observé plusieurs fois au fil du temps. Bien que ce contexte diffère
du contexte central de l’analyse des réseaux de connectivité cérébrale, les contributions présen-
tées dans cette thèse sur les populations de réseaux pourraient être utilisées comme base pour
une modélisation longitudinale de la connectivité cérébrale. Dans cette mesure, le développement
d’une solide compréhension du fonctionnement et des capacités des modèles longitudinaux est une
étape cruciale.

1.2.1 Modèles à effet mixtes pour les données longitudinales

L’approche standard en statistiques pour les données longitudinales est le cadre des modèles à
effets mixtes. Il décrit l’évolution de chaque patient au fil du temps comme une fonction de ses
caractéristiques connues (sexe, facteurs génétiques, etc.) – les effets fixes – et de facteurs inconnus –
les effets aléatoires. Estimer les paramètres d’un modèle à effets mixtes permet ainsi de comprendre
le rôle des effets fixes et de quantifier l’impact des effets aléatoires [Lavielle, 2014]. De nombreux
travaux considèrent par exemple des modèles à effets mixtes linéaires, où les calculs sont simples
et l’estimation se trouve facilitée. Au cours des deux dernières décennies, plusieurs travaux ont
montré que les modèles non-linéaires peuvent également être estimés, et offrent des outils plus
riches pour modéliser les évolutions longitudinales.

En particulier, nous nous plaçons dans cette thèse dans le cadre de modélisation longitudinale
proposé par Schiratti et al. [2015]. Cette approche consiste à décrire une population de sujets en
deux composantes. D’une part, une trajectoire moyenne est paramétrée, pour décrire l’évolution
représentative d’un sujet moyen de la population au fil du temps. D’autre part, des facteurs
individuels quantifient la déviation entre la trajectoire de chaque sujet et la trajectoire moyenne
– la trajectoire individuelle peut se situer à un autre point de l’espace et du temps, se dérouler
à une vitesse différente de la trajectoire moyenne, etc. L’estimation du modèle consiste alors à
déterminer simultanément la trajectoire moyenne de population et les déviations individuelles.
Ce découplage population-individu a l’avantage d’une grande interprétabilité : la trajectoire de
population peut être interprétée en elle-même, et les déviations de chaque individu informent sur
la variabilité autour de la moyenne.

Cette approche a permis en particulier de modéliser la progression de maladies neurodégénéra-
tives comme la maladie d’Alzheimer ou la maladie de Parkinson [Koval, 2020, Couronné, 2021].
Les initiatives de suivi de population à grande échelle ont permis de collecter des grandes quantités
de données de diverses natures (scores cliniques, imagerie cérébrale, etc.) en parallèle du suivi des
patients. L’objectif des modèles statistiques est d’utiliser ces données pour anticiper le développe-
ment de la maladie, afin d’adapter les traitements aux patients en fonction de leurs caractéristiques
individuelles et des observations déjà enregistrées.

1.2.2 Estimation et sélection de modèle pour les trajectoires segmentées

Dans le Chapitre 7 de cette thèse, nous prolongeons les travaux de Chevallier et al. [2021] sur un
modèle longitudinal segmenté, autrement dit un modèle longitudinal où la trajectoire de population
est définie en plusieurs morceaux – par exemple, la trajectoire peut être une fonction affine par
morceaux. Ce modèle permet d’étudier les cas où la dynamique de chaque sujet est susceptible de
connaître une ou plusieurs ruptures. La principale application est le suivi de patients suivant un
traitement, par exemple une chimiothérapie. Les ruptures peuvent correspondre à l’apparition des
symptômes, leur atténuation suite à la prise du traitement, ou leur éventuel retour en cas de une
rechute.

Nous nous intéressons au suivi de patients de la cohorte PPMI (Parkinson’s Progression Markers
Initiative), dont l’état est mesuré par un ensemble de scores cliniques. Nous modélisons l’évolution
de ces scores par des trajectoires affines par morceaux, et étendons l’estimation proposée par
Chevallier et al. [2021] au cas de plusieurs ruptures. En particulier, nous nous intéressons à la
sélection du nombre de ruptures dans la trajectoire moyenne. Nous montrons que les critères de
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sélections de modèles classique (et plus précisément leur adaptation au cas des modèles à effets
mixtes) permettent, sur des données synthétiques, de sélectionner le nombre correct de ruptures
jusqu’à trois ruptures, même en présence d’un bruit élevé et d’une forte proportion de données
manquantes. Nous montrons que ces critères peuvent être calculés en pratique à l’aide de méthodes
Monte-Carlo basées sur le principe d’échantillonnage préférentiel [Gronau et al., 2017].

Nous appliquons notre méthode à la cohorte PPMI, et étudions les résultat obtenus selon les
groupes de sujets. Le modèle décrit fidèlement l’évolution des patients dans la phase prodromiques
de la maladie de Parkinson, c’est-à-dire la phase d’apparition de symptômes avant-coureurs de la
phase principale de la maladie. Les résultats au niveau de la moyenne de population sont plus
difficiles à interpréter pour les patients qui suivent un traitement : chaque individu commence
son traitement à un stade différent de progression de la maladie, ce qui complique l’obtention
d’une représentation moyenne interprétable. Néanmoins, les trajectoires individuelles demeurent
relativement bien décrites par leur estimation du modèle statistique.
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2.1 From network analysis to population models

The central question that motivated this thesis is the design of statistical models for populations
of networks, with a focus on brain connectivity. In this first section, we motivate this question by
introducing first notions in network analysis and its application to brain networks. We delineate
the core topic of this thesis, by showing how existing network models are used to understand
network structures and build interpretable representations, and how these representations can be
understood from a population modeling perspective.

First, we give a brief introduction to the concepts of network analysis used in this thesis.
Next, we provide an overview of how network analysis can be leveraged to better understand brain
networks. Finally, we move to the central topic, i.e., statistical analysis of populations of networks.
We refer the reader to Newman [2012] for an introduction to network analysis, and to Fornito et al.
[2016] for an introduction to brain network analysis.

2.1.1 Network analysis

From an abstract perspective, a network – or graph – is the summary of interactions among a set
of distinct entities. Entities are called nodes; if two nodes interact together they are connected by
an edge. For binary networks, where each interaction is either one or zero, the complete structure
is thus characterized as a set of nodes V and a list of edges E ⊂ V × V . In this thesis, we
will be studying undirected networks, i.e., networks such that (i, j) ∈ E ⇐⇒ (j, i) ∈ E. The
edges are often also given a weight in real world applications – e.g., the distance between cities,
or the number of interactions between persons. In this case, the network is described by a square
adjacency matrix of weights A, where the coefficient Aij gives the interaction between node i and
node j. More recently, the structure of interaction networks tends to be enriched with additional
information: each node and each edge may have a label or a set of features

The field of network analysis seeks to understand the properties of networks arising in very
diverse applications. For instance, the interactions between computers in a network, species in
an ecological system, users in a social network or cortical regions in a human brain all share this
common graph structure. The development of general tools for network analysis thus has a very
large impact on very diverse fields of application. Essentially, the goal is to analyze the structure
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of the interactions, i.e., to what extent they can be described with simple patterns rather than
pure randomness.

Remark. The term graph often refers rather to a theoretical object, whereas the term network
rather designates real entities and their connections. In this thesis, we will be focusing more on
the latter concept, but both terms are employed, depending on the context, essentially designating
the same objects.

Graph parameters. From this perspective, a fundamental approach is to compute summary
indicators which help analyze the network structure. For instance, in a social network, determining
the maximal distance between two individuals, or the average distance, provides a description of
the global structure. It may contribute to the understanding of fake news diffusion, and how to
prevent it. Other parameters, like the numbers of cliques or the clustering coefficient, measure the
extent to which the nodes tend to gather in groups. More generally, the frequency of patterns like
cycles or other subgraphs provide useful information on the network structure. The topology of
the networks can also be studied: some indicators measure the number of connected components
(or groups of strongly connected nodes), or the similarity with multidimensional lattices. Other
measures focus on the properties of individual nodes, e.g., in order to determine which nodes act
as “hubs”, or which nodes are the most important to preserve connectedness. We refer the reader
to Rubinov and Sporns [2010] for an exhaustive review on network measures, with a focus on brain
network analysis.

These measures are used for two purposes. On the one hand, they summarize very complex
interactions into simple, interpretable indicators which give precise information on the structure
of the network. This information can be used without specific mathematical knowledge, either to
analyze a given network or to understand the differences between several networks, e.g., a young
brain and an old brain. On the other hand, from a statistical and probabilistic perspective, these
measures are used as features to design models relying on them and to theoretically compare
different network models. We will discuss this point further in Section 2.1.3 on populations of
networks.

Stochastic Blockmodel. One of the most important goals of network analysis is to help identify
communities in a population given the interactions between its members. This problem has count-
less applications in very diverse fields, and many approaches have been developed to tackle it – see
Khan and Niazi [2017] for a meta-review. From a statistical modeling perspective, the Stochastic
Blockmodel (SBM) and its variants are the main approach to model a set of communities. The SBM
is a simple interpretable generative model, which assumes that the nodes are independent samples
from the same distribution. Each node i first randomly chooses a community c(i) ∈ {1, . . . ,K}.
Then, for each pair of nodes (i, j), the interaction between nodes i and j is determined by a
Bernoulli random variable with probability Pc(i),c(j). In other words, the probability of nodes i
and j being connected depends exclusively on their respective communities. Alternatively, the
SBM may generate weighted networks by drawing the interaction coefficient between i and j from
a distribution with continuous support, parameterized by a coefficient Wc(i),c(j).

The main purpose of the SBM lies in the estimation of its parameters given an input matrix.
The labels of the nodes are the unknown variables of interest; they are estimated by maximum
likelihood, along with the sizes of the communities and their interaction coefficients. The estimation
of the SBM is a well-studied problem, and has been addressed in numerous setups like weighted
networks, multiscale communities, time-varying networks or Bayesian SBMs [Aicher et al., 2015,
Ho et al., 2012, Zhang et al., 2020a, Peixoto, 2020]. It provides a sound theoretical baseline
for community detection methods. The core assumption is that the nodes are exchangeable in
distribution, i.e., no node plays a unique, specific role determined in advance.

Modeling very large networks. When networks exhibit no clear community structure, the
SBM fails to accurately describe the interactions because of its simplicity. From a theoretical
perspective, this limitation can be lifted by considering an SBM with infinitely many communities,
e.g., one community per real number x ∈ [0, 1]. The nodes label c(i) is then drawn from a uniform
distribution on [0, 1]. The interaction – weighted or binary – between nodes i and j is determined
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by a coefficient w(c(i), c(j)), with w : [0, 1] × [0, 1] → R+ a symmetric function. The function w
is called a graphon; it can be seen as a limit of the SBM, in the sense that the random adjacency
matrices it produces can be seen as a limit in distribution of SBMs with an increasing number of
communities [Lovász, 2012]. Graphons also strictly generalize SBMs, which can be seen as piecewise
constant graphons. Estimating a graphon amounts, given one or several adjacency matrices, to
retrieving the function w as well as the node labels, i.e., their coordinates in [0, 1]. As with the
SBM, the graphon estimation is a well studied problem. Several efficient algorithms can be used
with theoretical convergence guarantees, depending on the context [Wolfe and Olhede, 2013, Gao
et al., 2015, Cai et al., 2015, Sischka and Kauermann, 2022]. Because of its great flexibility,
the graphon model has received increased attention in the literature over the last decade, with
theoretical results on the topology of graphon space and connections with the practical estimation
of network measures or the graph isomorphism problem [Latouche and Robin, 2016, Zhang, 2018].
Figure 2.1 shows three examples of graphons representing different types of networks. The first
column shows an SBM which represents three communities and their interactions. The second
column shows a graphon with a smooth “core-periphery” structure, i.e., a network structure with
a subset of highly connected nodes (the core) interacting with the other nodes (the periphery),
with the periphery nodes sparsely interacting with each other. The third column accounts for a
network structure with a line topology, where nodes tend to interact only with their topological
neighbors on their left and right.
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Figure 2.1: Example of three graphons (top row) and sample graphs with 100 nodes (bottom row).
Darker shades represent a connection (or a strong interaction probability).

Low rank structure of network matrices. In most real-world networks, the adjacency ma-
trices have relatively low rank, in the sense that a few eigenvalues dominate the remaining others.
This phenomenon is well understood, and has been used extensively to build robust estimation
procedures, e.g., to predict missing links [Martínez et al., 2016]. When analyzing single networks,
the low rank property also allows clustering the network nodes with spectral clustering. In this
thesis, we will be relying on this property to design models for populations of networks.

The low rank structure of network adjacency matrices reflects the fact that they often represent
interactions with a strong structure. For instance, in the Stochastic Blockmodel shown in Figure
2.1, the nodes of the first community all interact with each other, and have almost no interaction
with the nodes in the second community. If, in first approximation, the adjacency matrix was
replaced by the graphon value at each pair of nodes, we would obtain a matrix with rank only three;
the Bernoulli sampling step only perturbs this overall structure, so that the observed adjacency

9



matrix has rapidly decaying eigenvalues. More generally, a low rank is observed in networks with
a highly modular structure, i.e., in networks where the nodes tend to group in clusters with simple
interactions.

The low rank property may also arise for graphons with an overall smooth structure. Consider
a smooth symmetric function w : [0, 1] × [0, 1] → R. The function w defines a compact Hilbert-
Schmidt operator Tw(f)(x) =

∫
w(x, y)f(y)dy. Considering the eigenvectors (ϕk)k≥0 of Tw and its

eigenvalues (λk)k≥0 (sorted by decreasing absolute magnitude), we have the decomposition [Lax,
2002]:

w(x, y) =

+∞∑

k=0

λkϕk(x)ϕk(y) .

In general, for smooth functions w, the eigenvectors ϕk are oscillating functions, with the frequency
of the oscillations increasing with k. The smoothness of w directly relates to the rate of decay of
the eigenvalues λk. In particular, a smooth graphon can be well approximated by keeping only the
first p terms of the decomposition:

w(x, y) ≃ wp(x, y) =

p∑

k=0

λkϕk(x)ϕk(y) .

As a consequence, when sampling uniform nodes x1, . . . , xn on [0, 1], the obtained weights ma-
trix W = (w(xi, xj))i,j can be well approximated by Wp = Φ⊤

p ΛpΦp, with Φp = (ϕk(xi))k≤p,i≤n

and Λp = Diag(λ1, . . . , λp). The final adjacency matrix A is obtained, in the case of binary net-
works, by Aij ∼ B(Wij) (and, for instance, by an exponential distribution Aij ∼ Exp(Wij) for
weighted networks). The eigenvalues decay can of A can be related to that of W , which is itself
close to Wp. As a consequence, since Wp has rank p ≪ n, the final sampled adjacency matrix A
also has a relatively low rank, with a restricted number of eigenvalues that are significantly larger
than the remainder.

The low rank property also allows interpreting the interactions between the nodes from a simple
latent space perspective. Consider an n× n symmetric adjacency matrix A with rank p≪ n. The
spectral theorem gives that A can be written as U⊤Diag(λ)U , with U ∈ R

n×p and λ ∈ R
p. This

relation can be rewritten, for all nodes i and j, as

Aij =

p∑

k=1

λkUikUjk .

In other words, the dependency between nodes i and j is obtained as a (linear) function of low-
dimensional vectors Ui and Uj , with Ui denoting the i-th row of U . As we will see in Section
2.1.3, this property suggests designing models representing network nodes by the vectors Ui. This
representation is robust, in the sense that small perturbations of A mostly affect the direction of
the eigenvectors related to small eigenvalues.

2.1.2 Brain network analysis

The techniques of network analysis have been successfully applied to understanding the interactions
between regions of the brain. This was made possible thanks to the progress of medical imaging,
especially electroencephalography and Magnetic Resonance Imaging (MRI). Brain network analysis
is a rapidly evolving field; it greatly contributes to the understanding of the brain functions, and
of the development of neurodegenerative diseases like Alzheimer’s disease.

Measuring the connectivity. The brain is essentially composed of two parts. The cerebral
cortex, also known as gray matter, is the outer layer of the brain where the neurons are located.
The white matter is the inner part of the brain, and consists of axons connecting the different
regions of the cerebral cortex. Neuroimaging devices allow visualizing these components, as well as
other structures of the brain. The types of imaging modalities divide in two main categories [Bigler,
2013]. On the one hand, structural (or anatomical) imaging retrieves static images of the brain.
On the other hand, functional imaging records the brain activity over a given period of time, and
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provides a dynamic view on the role of each brain region. In each of these two categories, several
techniques are used, with their own advantages and drawbacks in terms of spatial and temporal
resolution, but also device cost and ease of use. In this thesis, for the brain networks applications
we will mostly be relying on MRI data, which provides the highest spatial resolution. Combining
all available information on the brain regions, their connections and their interactions results in a
global structure called the human connectome. For this reason, the analysis of brain networks is
also called connectomics.

Structural connectivity. Structural MRI – in particular T1 and T2 MRI – provides 3D images
of the brain, and enables to retrieve the shape and the size of each gray matter region. It is also a
powerful tool to analyze the structural connectivity of the brain, i.e., how the regions of the brain
are connected through fibers of white matter. Using the result of the diffusion weighted MRI,
which gives the diffusion direction of water molecules in the brain, it is possible to reconstruct the
individual fibers of white matter through which the water molecules move. In turn, counting the
number of white matter fibers provides information on how the brain regions are physically wired
to each other.

Functional connectivity. In contrast, Functional MRI (fMRI) provides a more dynamic view
of the brain function. It records, at each point (voxel) of the brain, the evolution of the blood
oxygenation level across time. In turn, this level is directly connected to neuronal activation, which
consumes oxygen. Averaged at the level of each brain region, fMRI time series thus provide details
on when each brain region activates. This information is used by neuroscientists to study the
temporal interaction between the activation of the brain regions. By computing, for each pair of
brain regions, the correlation between their activation time series, a correlation matrix is obtained.
It summarizes the interaction of the brain regions into simple, interpretable coefficients: if the
correlation between two regions is positive, then the regions tend to activate together. On the
contrary, if it is negative the regions tend to activate in distinct periods of time. This matrix
provides information on how the brain regions function together; it is thus called a functional
connectivity matrix.

The analysis of the brain functional connectivity reveals that consistent associations within
groups of brain regions are present across subjects and studies [Damoiseaux et al., 2006]. These
subsets of regions form so-called “functional brain networks”. Understanding the role and the
interactions between functional brain networks is a major focus of the field of brain connectivity
analysis. Depending on the task and the subject, different functional networks activate with varying
intensities. As an example, the default mode network was the first functional brain network to be
identified from fMRI data analysis. It gathers regions active when the subject is at rest with their
mind wandering, and it is thus particularly well identified from resting-state fMRI. The functional
connectivity is affected by the underlying structural connections between the brain regions; in
that regard, the study of the relations between structural and functional connectivity is a complex
question, which remains an active research topic to this day [Hermundstad et al., 2013, Tewarie
et al., 2020, D’Souza et al., 2021a].

Questions arising from brain network analysis. The study of the brain connectivity, and its
connection to individual characteristics – age, sex, activity, neurodegenerative diseases, etc. – has
received increasing attention in the literature over the last decades. This interest has followed the
development of large databases and the steady improvements in the image quality and resolution.
Network analysis gives a rich perspective on brain networks, with many network measures provid-
ing complementary information on the interactions between the regions of the brain [Bullmore and
Sporns, 2009]. It highlights the core-periphery structure of the brain, with a few regions playing a
central role in signal propagation. Further analysis emphasizes the trade-off between segregation
(regions clustering into groups with sparse interactions) and integration (cross-cluster region inter-
actions which allow integrating information across different subnetworks). This trade-off results
in a small-world architecture, where the regions are connected to each other by very short paths
through “core” areas.

The brain architecture evolves with time. As the subjects get older, the connectivity and
the local efficiency – a local measure of information propagation efficiency – decrease, increasingly
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favoring integration over segregation. It is theorized that the increased integration allows mitigating
the impact of degradation to preserve the overall efficiency. In general, except for the visual
network, the connectivity within functional networks decreases with age, especially the default
mode network [Zonneveld et al., 2019]. This overall decrease of functional connectivity is correlated
to cognitive decline. In contrast, the connectivity between the functional networks increases with
age, e.g., between the default mode network and the fronto-parietal network or the dorsal attention
network [Damoiseaux, 2017].

The mechanisms of brain aging are complex, with an important heterogeneity at the individual
level. They also interact with the development of neurodegenerative diseases: for instance, Parkin-
son’s disease and Alzheimer’s disease affect the structural and functional connectivity. For this
reason, the development of disease progression models – and more generally population models –
for brain networks is a question of immediate practical interest. In the case of aging, as noted by
Damoiseaux [2017], no large longitudinal study has yet been carried out. To our knowledge, the
collection of such data is still an ongoing process, and it is likely that further studies on this matter
can be conducted in a few years.

2.1.3 Statistical modeling for populations of networks

The studies on brain network analysis roughly form two categories: those focusing on the network
structure represented by the adjacency matrix, and those considering adjacency matrices as vectors.
The first approach allows for a fine understanding of the network properties, whereas the second
approach naturally lends itself to involved statistical modeling and inference.

In both cases, the goal is to extract information from a data set of adjacency matrices repre-
senting brain networks. This objective is twofold: on the one hand, we wish to identify average
structures and trends. On the other hand, we also need to characterize the individual heterogeneity.
This double perspective is at the core of population models, which define a form of average behavior
and explain how each individual deviates from this average. This modeling aims at capturing the
variability in the data, i.e., explaining how and why each individual observation differs from the
arithmetic average of all samples.

In the context of network analysis, population models need to be tailored: the observations often
have a large dimension, comparable to the number of subjects (typically, a brain divided into n = 20
regions produces a symmetric connectivity matrix with n(n+1)/2 = 210 distinct coefficients; many
neuroimaging studies have less than a hundred subjects). In this context, most simple generative
models have either a simplistic form or too many parameters to be estimated in practice from
such low numbers of samples (e.g., a Gaussian distribution would require 210 + 2102 = 44310
coefficients). This section reviews the various categories of models that have been proposed and
used in the literature over the last two decades to design population models accounting for the
specific structure of network adjacency matrices. This review does not claim to be exhaustive:
the field of network population analysis is very heterogeneous, in particular for brain network
analysis, with numerous approaches coexisting in the literature, sometimes only slightly differing
in methodology. Rather, we attempt to give an overview of the general lines of research that have
been proposed, and to paint a big picture of the evolving state of the art.

Single-network exchangeable models

We start by emphasizing the limits of the models primarily designed to handle a single – possibly
very large – graph. Considering e.g., the Stochastic Blockmodel, the first idea to model a population
of adjacency matrices would consist in considering each matrix as an i.i.d. sample of a single SBM.
The same remark can be made for graphons. This idea is especially relevant to handle a collection
of networks where each network has its own set of nodes, different from the other networks; in
particular, in such collections the number of nodes may differ from one network to another. For
instance, graphons could be used to model a collection of computer networks; SBMs could be used
to describe the interactions between random samples of a large population organized in clusters.

From a similar perspective, probabilistic models like the Barabási-Albert model [Albert and
Barabási, 2002], the non-linear preferential attachment model [Kunegis et al., 2013] or the Erdős-
Rényi model [Erdős and Rényi, 1959] – which is a special case of SBM – provide very simple
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data generating mechanisms such that the nodes play exchangeable roles. As with the SBM, the
generation procedure depends on a very restricted number of interpretable parameters.

These models were designed to provide a basic understanding of phenomena arising in real-
world networks like communication networks, transportation networks or social networks. Their
simplicity grants both a transparent data generation mechanism and a strong theoretical under-
standing. This simplicity arises partially from the exchangeability of the nodes, which limits the
amount of information that can be added to the data generation mechanism. For these reasons,
these models are also not well suited to analyze populations of networks where the nodes remain
the same from one network to another, with changes only in the edges or their weights – this is
typically the case for brain networks. Applied to a data set of networks, they would provide a
simplistic view of the population heterogeneity. As an example, an SBM would by default assume
that each network is generated with different nodes. But if we impose that the node labels remain
the same from one network to another, the only difference between sampled networks is the ran-
dom independent Bernoulli sampling step (or weighted edge sampling for weighted networks). In
other words, if the nodes labels (c(i)) are considered fixed variables, the covariance between two
coefficients Aij and Akl is zero. This is unrealistic from a practical perspective: for instance, the
coefficients in a row or column of an adjacency matrix should not be considered independent, as
they all depend on the state of the same node.

For these reasons, new different models are required to account not only for the structure of the
networks in the population, but also for the variability in the population. Very diverse approaches
have been proposed to this problem. In this introduction, we roughly divide them into three
categories: models relying on graph features, on distances between graphs and on the low rank
structure of the adjacency matrices.

Remark. Recently, Chandna and Maugis [2020] proposed an extension of the graphon model to
better handle populations of networks. They define a so-called multi-graphon w(x, y, z), where the
variable z is a latent state which controls the network structure. Each network is generated by
sampling a value of z, and sampling nodes and edges from the graphon w(·, ·, z).

Feature-based population models

Several network population models proceed by summarizing each network by a set of interpretable
features. These features are then used as input in statistical models to perform inference.

ERGM. First, Exponential Random Graph Models propose to define the probability to observe
an adjacency matrix A by a linear combination of features: up to a normalizing constant, they write
as p(A) ∝ exp(θ1f1(A)+ · · ·+θLfL(A)). Each coefficient θk represents the weight of the feature fk
in the probability p(A): if θk is high, then the feature fk plays a major role to discriminate which
matrices are likely to occur, and vice-versa [Harris, 2014]. The features fk are defined by the user,
and often represent graph features like the average degree, the average shortest path length, the
clustering coefficient or the frequency of patterns (cliques, cycles, etc.). The simple expression
of the probability results in a highly interpretable model, and it is widely used in practice, in
particular for brain network analysis [Fornito et al., 2016, Obando and Fallani, 2017].

Kernel methods. A more inference-oriented approach relies on graph kernels. Kernel methods
allow extending classical vector-based statistics and machine learning algorithms to handle more
complex objects, and in particular graphs. By defining a positive semi-definite similarity measure
between networks, they enable to use methods like ridge regression on data sets of networks. Many
cost-efficient procedures can be used to define a graph kernel [Ghosh et al., 2018]. Most of them can
be seen as representing the network by a – possibly infinite – collection of interpretable features.
Kernel methods are mostly suited for regression or classification purposes. They are widely used
in brain network analysis, especially for the second goal, e.g., in order to detect mild cognitive
impairment Takerkart et al. [2014], Jie et al. [2016], Kong et al. [2022].

Topology-based methods. A recent line of work suggests that topological features can be of
interest to analyze populations of brain networks [Chung et al., 2015, 2017b, 2019, Li et al., 2020a].
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In these papers, the authors propose to represent the topology of brain networks with persistent
homology. In practice, this consists in counting the number of independent cycles and connected
components in the network for a given threshold on the weights. The evolution of these numbers
as the threshold grows gives curves which characterize the network topology. The authors show
that the distribution of the obtained topological features across the population helps understand
changes in the brain organization, e.g., for child maltreatment or the resemblance between the
brains of twins.

Remark. Feature-based models are overall interpretable methods to handle populations of net-
works. They go further than single-network models, as they provide tools to analyze and leverage
the variability in the population. However, they can only provide representations based on the
computed features, which inherently restricts their capacities. For instance, drawing samples from
an ERGM calibrated on brain networks is unlikely to produce matrices that look like brain net-
works: the small amount of features used in ERGMs is insufficient to describe the shape of a
matrix-valued distribution. Graph kernels do not allow to compute the average of several graphs
(or at least the average is not a graph in itself), which prevents from building statistical models
relying on them. Summarizing the networks as a set of features provides advantages in terms of
interpretability and robustness, but it also limits the possibilities of generative modeling.

Distance-based models

Although the Gaussian distribution, which endows the space of adjacency matrices with an elliptic
geometry, is a poor choice to model data sets of networks, alternative models have been proposed,
relying on non-Euclidean distances to compare networks and define the mean of graphs. In par-
ticular, specific approaches have been developed to define distances between networks invariant to
node permutations.

From a geometric perspective, defining a distance d on a space of networks implicitly allows for
generalized Gaussian distributions p(G) ∝ exp(−d(G, Ḡ)2/2σ2), with a mean Ḡ and a variance σ2.
In particular, if a Riemannian manifold structure can be defined on an abstract space of networks, it
enables to consider Fréchet means and covariances using the induced Riemannian distance [Pennec,
2006]. Such an approach is being developed by Calissano et al. [2020, 2022]. The authors define
a graph space by taking the quotient of labeled adjacency matrices with a given size under node
permutations. The resulting space has its own distance function, and it can be used to perform
principal geodesic components analysis or regression. In a similar line of work, Lunagómez et al.
[2021] and Zhou and Müller [2021] propose computing Fréchet means and regressions for adjacency
matrices and graph Laplacians; they use custom distances between matrices with the same number
of nodes.

Chung et al. [2017a] use persistent homology on networks as described in the previous sec-
tion to define topological distances between networks. These distances, like the homology, are
permutation-invariant and measure structure similarities. They provide higher-order characteriza-
tions, in the sense that they do not require that the networks have the same number of nodes.

In graph theory, the cut distance is used to compare adjacency matrices with different numbers
of nodes [Lovász, 2012, Janson, 2013a]. It is intrinsically defined up to permutation, in the sense
that it writes as an infimum over node permutations. It is particularly well suited to theoretical
analysis, as it can be extended to define a distance between graphons, which are defined up to “node
permutation”, i.e., up to measure-preserving bijections from [0, 1] to [0, 1] [Khetan and Mj, 2018].
However, to the best of our knowledge, it has not yet been used as a tool to model populations of
networks. In particular, computing the Fréchet mean of a set of networks or graphons remains an
open problem. Although out of the scope of this thesis, we believe that this question is interesting,
and that it could provide a theoretically-grounded reference point for other permutation-invariant
averaging methods.

Low-rank network models and embedding methods

Finally, low-rank and embedding methods have recently drawn significant attention in machine
learning and in network analysis applications. They provide a more applied perspective on the
network modeling problem, as they naturally connect to regression, clustering and classification
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problems. We divide them into three methodological families (very uneven in sizes): node embed-
dings, dictionary models and low-rank population models. Most of the approaches we present were
designed for brain networks or have been used to analyze them.

Node embedding methods. A first category of models computes a low-dimensional vector for
each node of the network, representing its features and its interactions with the other nodes. Some
node embedding methods are designed to analyze single networks, but they often tightly relate
to the analysis of populations of networks: once a method is proposed to embed the nodes of
a network in a low-dimensional space, statistical modeling can be done on these embeddings to
analyze populations of networks.

As we saw in Section 2.1.1, a first representation of the nodes is given by the leading eigenvectors
of the adjacency matrix. In practice, the graph Laplacian matrix is often preferred to extract low
rank node embedding, in which case the result is called the spectral embedding [Richiardi et al.,
2013]. This approach was recently extended to handle populations of networks, by averaging the
eigendecompositions of the Laplacian matrices [Chen et al., 2020].

Ma et al. [2017] propose a method to find node embeddings combining several “views” of the
same network, e.g., structural and functional connectivity for brain networks. Another approach
adapts the word2vec formalism to network nodes. It relies on deep learning to find low-dimensional
representations of the nodes accounting for their role in random walks on the network. In particular,
it was applied on functional and structural brain networks by Rosenthal et al. [2018], who showed
that the resulting embedding of the brain regions produces interpretable representations of the
connectome. Similarly, using a deep learning approach, Xu et al. [2019] obtained latent brain
node embeddings with a Gaussian uncertainty. This uncertainty was then used to quantify the
effect of an intervention on amnestic mild cognitive impairment patients, by comparing the node
embeddings before and after the intervention.

From a different perspective, Krioukov et al. [2010] found a natural geometric method to repre-
sent networks with a core-periphery structure. Nodes in a network can be embedded in a hyperbolic
space, e.g., the Poincaré disk, which resembles the Euclidean plane at the origin, and grows faster
as the points get closer to the disk’s edge. The authors showed that placing the core nodes at the
center of the disk and the periphery nodes close to the boundary provides a natural embedding of
the network structure in dimension two. This method was successfully applied to the structural
and functional connectivity of the brain, providing alternative interpretations of its architecture
[Cacciola et al., 2017, Tadić et al., 2019, Zheng et al., 2019a, Gao et al., 2020]. The recent works
of Chami et al. [2019], Mathieu et al. [2019] show that deep learning tools can also be leveraged
for hyperbolic network analysis, and this field should keep developing in the years to come.

A large proportion of the current research on node embedding relies on graph neural networks
and auto-encoders. This subject is addressed in a dedicated paragraph below.

Graph Auto-Encoders. Shortly after the Variational Auto-Encoder (VAE) paradigm was pro-
posed by Kingma and Welling [2014], applications to network analysis followed. Generally speak-
ing, auto-encoders learn a low-dimensional representation z of very high-dimensional structured
data x like images. The maps from z to x and back are parameterized with neural networks and
optimized with stochastic gradient descent. The strength of VAEs comes from the neural net-
work architecture, which can be tailored to the data, e.g., convolutions for images. Variational
Graph Auto-Encoders (VGAEs, Kipf and Welling [2016]) extend the VAE idea to networks: given
an n × n symmetric adjacency matrix A and a list F of features for each node (e.g., the shape
and surface of each brain region), the VGAE produces n low-dimensional latent vectors z1, . . . , zn,
assuming for instance that Aij ≃ σ(z⊤i zj), with σ a sigmoid function. The map from (A,F ) to z
is parameterized by a graph neural network [Henaff et al., 2015, Wu et al., 2020]. Graph neural
networks can be considered an equivalent of convolutional neural networks for graphs, in the sense
that they leverage the network structure to aggregate information from one layer to the other. As a
great advantage, graph neural networks can use the features of each node along with the adjacency
matrix, which helps build a better data representation.

Many variants of VGAEs coexist (essentially depending on the graph neural network used in
the architecture), but the general idea often fundamentally relies on the low rank hypothesis of
the adjacency matrix. VGAEs are particularly well suited to analyze a single very large network
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(e.g., academic citation networks), where the effective rank is very low compared to the number
of nodes. They are also widely used for populations of networks, especially brain networks. They
allow incorporating multimodal connectivity information, as in Liu et al. [2019]. The obtained
embeddings can then be used for predictive purposes, e.g., to distinguish patients with Alzheimer’s
disease from patients with late mild cognitive impairment [Banka and Rekik, 2019]

The VGAE framework (and more generally deep learning for graphs – also sometimes called
geometric deep learning) is popular in the current research literature for its flexibility, its repre-
sentation power and its performance on prediction tasks. However, from a statistical modeling
perspective, it leaves aside the generative procedure: as an example, the basic VGAE assumes that
the latent node embeddings zi are drawn from a standard Gaussian distribution N (0, I), which is
simplistic in the case of brain networks. They are thus better suited for regression than population
modeling.

Dictionary models. A complementary perspective was proposed in a series of papers by D’Souza
et al. [2018, 2019a,b], D’Souza et al. [2021b]. It proposes to model each brain connectivity matrix in
a population as a weighted sum of rank one patterns: A = λ1x1x

⊤
1 + · · ·+λnxnx⊤n . The patterns xi

are defined across the population, and the weights λi are defined separately for each individual.
This formulation thus represents the connectivity by a dictionary of patterns with simple structure.
The xi can be learned orthogonal to each other, in order to maximize the model’s expressiveness
– in the sense that the dictionary components xix⊤i are orthogonal to each other if the xi’s are.
The weights λi can then be used as regression variables, e.g., to predict clinical scores for patients
diagnosed with autism spectrum disorder. The advantage of this model is its interpretability: each
pattern xix⊤i can be interpreted as a heatmap on the brain, giving the heat tone xik to the brain
region k. It also directly models the eigendecomposition of the adjacency matrices, by imposing
that the eigenvectors are fixed across the population. In this sense, dictionary models are dual
to graph auto-encoders, which learn latent node embeddings (playing the role of eigenvectors) for
each matrix and consider the weights of the inner product (playing the role of eigenvalues) as fixed
across the population.

Low rank population models. Finally, a line of research proposes tractable statistical models
to simultaneously capture both aspects of the population variability (eigenvalues and eigenvectors).
These models design probability distributions on the eigenvectors and the eigenvalues, and consider
them as latent variables. This approach was first proposed by Hoff [2009a], who showed that data
sets of covariance matrices can be modeled with their eigendecomposition. Later, Durante et al.
[2017] proposed a low-rank non-parametric mixture model for binary networks. As a notable
difference with Hoff [2009a], this work proposes to model the eigendecomposition of the deviations
of the observations from the cluster mean, rather than the decomposition of the adjacency matrices
themselves. Recently, Duan et al. [2020] proposed an eigendecomposition mixture model to handle
spiked graph Laplacian matrices; they showed that this approach allows performing community
detection. The same year, Signorelli and Wit [2020] proposed an alternative low-rank model to
perform clustering on network populations. More generally, the authors of the papers mentioned
here proved that simple hierarchical models are well suited to handle populations of networks.
Their structure allows easily including cofactors, class labels and regression variables [Hoff and
Ward, 2004, Hoff, 2007b, Aliverti and Durante, 2019].

In Chapters 4 and 5 of this thesis, we propose two contributions in line with the low rank
population modeling approach. In particular, Chapter 5 leverages the flexibility of inference algo-
rithms in exponential models and proposes a general low rank model for populations of networks,
which can handle weighted network matrices as well as binary matrices or positive matrices within
the same framework, with only minor algorithmic differences. Low rank models simultaneously
provide a strong representation power using a restricted number of parameters and very good inter-
pretability. Both of these properties are crucial to the objective of integrating statistical methods
in research and medical applications.

Remark. In this thesis, we chose to focus on the population modeling problem, rather than on
network regression and classification tasks. Numerous methods have been proposed to achieve
these goals, in particular using graph neural networks. They have found great success for brain
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network analysis, and are still improving every year (the interested reader may refer to the yearly
conference MICCAI, and especially the GRAIL workshop – exceptionally called GLMI in 2019 –
on graphs and machine learning in medical applications). Regression and classification could be
considered as extensions of the contributions of this thesis. In particular, the hierarchical structure
of the model proposed in Chapter 5 naturally lends itself to the inclusion of cofactors. This point
is further discussed in the conclusion of the thesis in Chapter 8. The population modeling problem
differs from regression in general, in the sense that it aims at understanding the variability in a
population.

2.2 From population models to disease progression analysis

In the last contribution of this thesis, we change our perspective and study a more mature popu-
lation model for longitudinal data. Although this setting differs from the central context of brain
network analysis, the contributions in this thesis on network data sets could be used as a basis
for longitudinal models for brain networks. To this extent, building a solid understanding on the
capacities of longitudinal models is a crucial step toward the design of longitudinal brain network
models.

Longitudinal data analysis. Longitudinal studies consist in the repeated observations of a
given population of subjects across time. They differ from cross-sectional studies, which only
observe each individual once. Cross-sectional studies are more frequent, as they require no long-
term monitoring and resources. However, longitudinal studies are often considered more robust:
following the time evolution of the same subjects allows isolating the impact of external cofactors.
In practice, longitudinal data analysis serves two main purposes. On the one hand, it allows
monitoring physiological evolutions with “normal” aging, i.e., aging unaffected by specific diseases.
On the other hand, it is used to analyze and monitor disease progression. We are especially
interested in the latter, which finds important applications for neurodegenerative diseases like
Parkinson’s disease or Alzheimer’s disease [Koval, 2020, Couronné, 2021].

Mixed-effects models. From a statistical modeling perspective, longitudinal data models are a
category of population models, where each individual may have several measurements. Formally,
each individual i has ni observations yi1, . . . , yini

at times ti1, . . . , tini
. These observations can be

a set of clinical scores, as in this thesis, but more complicated types of data like images and shapes
can be considered. The observations may have a portion of missing data, i.e., each observation is
not necessarily complete. Classical population models assume that the observations are indepen-
dent, which is not the case within the measurements of a single individual. In other words, two
consecutive observations of the same individual could not be considered independent even if the
known characteristics of the individual (age, sex, . . . ) were considered as part of the observations:
the individual is not entirely characterized by its features, and an inherent unknown latent vari-
ability remains to differentiate one individual from another. In terms of modeling, this statement
is formalized by introducing, for each individual i, a latent variable zi which participates in the
data generating mechanism. Such models are called mixed-effect models: they combine both fixed
effects (where the same parameters are used for each individual) and random effects (where the
parameters – the latent variable zi – vary for each individual). In their simplest form, mixed-effects
models assume a linear dependency between the observations and the latent and observed features.
This approach is widely used in the literature, as it allows for explicit computations and simple
interpretations [Lavielle, 2014]. Over the last two decades, non-linear mixed-effects models have
gained increased popularity, with new algorithms allowing for efficient parameter estimation [Kuhn
and Lavielle, 2005]. We refer the reader to [Chevallier, 2019, Ch. 2, Sec. 1] for a more detailed
introduction on linear and non-linear mixed-effects models for longitudinal data.

Segmented progression models. In this thesis, we will be considering the general frame-
work proposed by Schiratti [2017] for working with longitudinal data. This framework defines a
non-linear mixed-effects model that characterizes the trajectory of each individual as a random
modification of an average population trajectory. It brings together a large flexibility in model
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specification, simple interpretability and efficient estimation algorithms. In particular, it was used
to analyze the progression of Alzheimer’s disease and Parkinson’s disease from clinical scores and
anatomical shapes. More recently, an extension was proposed in Chevallier et al. [2021] to account
for the impact of a treatment in the trajectory of subjects affected by a disease. This extension
proposes to consider a trajectory segmented into two or more pieces, with each piece correspond-
ing to a progression stage of the disease, or to the impact of the treatment. It was successfully
applied to chemotherapy monitoring and, more recently, it was included in a more complex model
on mixtures of trajectories with different numbers of pieces [Debavelaere et al., 2020].

With the increasing complexity of disease progression models (latent factors, missing data,
trajectories in several pieces, mixture models, etc.), reliability becomes a crucial issue. In particular,
selecting the best model among a set of competitors becomes an increasingly complex task, which
gets intractable as the problem dimension grows large. Some papers have considered the problem
of selecting models in a longitudinal data context [Azari et al., 2006, Jones, 2011], working in the
setting of linear mixed-effects models. Considering the specific case of selecting the number of
breaks in the trajectory, we will be attempting to quantify the extent to which classical model
selection methods can be adapted to discriminate between several non-linear mixed-effects models
in the framework of Schiratti [2017].

2.3 Outline of this thesis

The remainder of this thesis is organized in six chapters. Chapter 3 introduces the necessary tools
and notions from statistics, optimization and geometry. Chapter 4, 5 and 6 propose modeling
approaches for populations of networks and theoretical consistency results. Chapter 7 studies a
specific longitudinal population model for the progression analysis of Parkinson’s disease. Finally,
Chapter 8 concludes this thesis and presents several perspectives opened by the various topics
explored throughout the other chapters.

• Chapter 3 Tools for Optimization and Inference in Population Models

This chapter gathers five distinct sections, introducing the key algorithmic and theoretical
notions used in the next chapters. We first introduce some concepts on non-smooth convex
optimization, used in Chapter 4. Next, we introduce tools on inference in hierarchical models.
We introduce the Stiefel manifold and its interest for statistical modeling, and in particular
the Cayley transform. We propose two new methods for the Cayley transform. These notions
are used in Chapter 5, where they allow performing MCMC with Metropolis-Hastings on
the Stiefel manifold. Finally, we introduce two classical model selection techniques used in
Chapter 7.

• Chapter 4 Sparse Low Rank Decomposition for Graph Data Sets

This chapter proposes a first decomposition model for populations of networks. It relies
on the empirical low rank and sparsity of real-world network matrices and proposes a new
variational objective. This formulation decomposes the variability of the population into a
fixed sparse and low-rank template, and individual-dependent sparse low-rank deviations.
We use classical proximal methods to optimize the variational objective. We show that
this formulation is suited to describe real world populations of networks like transportation
networks and functional brain networks.

• Chapter 5 A Spectral Model for Populations of Networks

This chapter can be considered a hierarchical modeling counterpart of the previous chapter.
We go further in the understanding of the population variability, by introducing a random ef-
fect model to account for individual-level deviations from the population average. This model
relies on a low-rank truncation of the network matrices eigendecomposition. We provide an
algorithm to estimate the model parameters and show its performance on simulated data.
This algorithm is applied to a data set of functional brain networks from the UK BioBank.
We show that our model provides a compact, interpretable and precise representation of the
population variability.

This chapter was published in the journal Entropy [Mantoux et al., 2021].
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• Chapter 6 Asymptotic Analysis of the Spectral Model

In this chapter, we provide asymptotic guarantees for the statistical model studied in the
previous chapter. We first show that the model is identifiable. Then, we prove the strong
consistency of the Maximum A Posteriori estimator of the model parameters. Finally, we
prove that this estimator is normally asymptotic for a restricted, simplified version of the
model.

This chapter was published in the journal ESAIM-PS [Mantoux et al., 2022].

• Chapter 7 Estimation and Model Selection for Segmented Longitudinal Trajectories

This chapter studies a longitudinal model for disease progression analysis. It takes stock
on previous work modeling the trajectory of subjects affected by Parkinson’s disease and
Alzheimer’s disease; in this chapter, the trajectory of each individual is modeled as a piecewise
affine trajectory. We show that the population average trajectory can be robustly estimated
for trajectories with more than one piece, and that the number of pieces can be selected
robustly even with a very strong noise and a large portion of missing data. We apply our
methodology to the cohort of the Parkinson’s Progression Markers Initiative. We show how
our model can be used to describe the disease evolution, and how it could be extended to
better account for the impact of treatments.
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Chapter 3

Tools for Optimization and Inference

in Population Models

This chapter introduces tools on proximal algorithms, Markov Chain Monte Carlo methods, infer-
ence on the Stiefel manifold and model selection. In particular, Section 3.4 introduces new methods
for sampling and averaging on Stiefel manifold. The next chapters will be relying on these tools
and only briefly recall their definitions.
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3.4.1 The Cayley transform on Stiefel manifolds . . . . . . . . . . . . . . . . 33

3.4.2 A fixed-point algorithm for the inverse Cayley transform . . . . . . . . 34

3.4.3 Metropolis-Hastings sampling with Cayley proposals . . . . . . . . . . 36

3.5 Model selection with information criteria . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 The Akaike Information Criterion . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 The Bayesian Information Criterion . . . . . . . . . . . . . . . . . . . . 42

3.1 Non-smooth convex optimization for regularization

In this section, we briefly review the notions from convex optimization used in Chapter 4. We will
be interested in a variational approach to model populations of networks relying on a non-smooth
convex optimization problem. This formulation allows retrieving real-world network properties
like sparsity and low rank. For detailed introductions to non-smooth convex optimization and
proximal methods, we refer the reader to Nesterov [2018] and Parikh and Boyd [2014]. For a
general introduction to convex optimization, see Boyd and Vandenberghe [2009]. Note that, in
this section, we only consider functions defined on the entire space R

n, taking finite values.
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3.1.1 Non-smooth convex optimization

Subdifferentials. When optimizing a non-smooth convex function f : Rn → R, the gradient
of f is not defined everywhere, so that classical gradient-based methods cannot be used. In this
setting, the notion of gradient is generalized to the notion of subdifferential. Taking stock on the
fact that, for a differentiable convex function g, we have for all x, y ∈ R

n:

g(y) ≥ g(x) + 〈∇g(x), y − x〉 ,

the subdifferential of f at a point x is defined as the set ∂f(x) of vectors v that verify

∀y ∈ R
n, f(y) ≥ f(x) + 〈v, y − x〉 .

In particular, for a differentiable convex function, the subdifferential corresponds exactly to the
singleton containing the gradient. The elements of ∂f(x) are called subgradients of f at x. If they
are known, subgradients can be used as a surrogate for gradients to minimize f . In particular, x∗

is a global minimizer of f if and only if x∗ verifies the optimality condition 0 ∈ ∂f(x∗). This
condition replaces the classical condition ∇g(x∗) = 0 in the differentiable convex case.

Proximal splitting methods. Although several algorithms are available to deal with general
non-smooth convex optimization problems, in this thesis we are interested more specifically in
objective functions with a simple structure – more precisely sums of norms on vector and matrix
spaces. In this specific case, proximal methods provide a simple and powerful framework to derive
optimization algorithms. For a constant λ > 0, given a – possibly non-smooth – convex function f ,
the proximal operator of f at x is defined by:

proxλf (x) = argminy λf(y) +
1

2
‖x− y‖2 .

The proximal operator can be understood as a gradient descent step minimizing a function that
has the same minima as f – see [Parikh and Boyd, 2014, Sec. 3.3]. In particular, the fixed points
of the proximal operator correspond to the global minimizers of f :

x∗ = proxλf (x
∗) ⇐⇒ 0 ∈ ∂f(x∗) .

This equation gives a fixed-point scheme to obtain a global minimizer: if the proximal operator
of f is available, f can be minimized simply by iteratively applying its proximal operator.

The same idea can be used to minimize more complex functions. Generally, we have the
relation proxλf (x) = (I + λ∂f)−1(x) (Eq. 3.4 in Parikh and Boyd [2014]). This formula is to be
understood in the sense that y = proxλf (x) is the unique element such that x ∈ y + λ∂f(y). It
can be used to derive other optimization algorithms, like the proximal gradient method.

Douglas-Rachford algorithm. In Chapter 4, we will be interested in minimizing a function f
which writes as the sum g + h of two non-smooth convex functions whose proximal operators are
known. In this specific case, another fixed-point equation can be derived, relying on the reflexive
proximal operator, defined by:

Rproxλh(x) = 2 proxλh(x)− x .

It can be proved that minimizers x∗ of g + h satisfy the fixed-point equation:
{
z∗ = Rproxλh ◦ Rproxλg(z∗)
x∗ = proxλh(z

∗) .

This equation gives rise to the Douglas-Rachford fixed-point algorithm [Boyd et al., 2011]. For a
step size α ∈]0, 2[, it writes as:

{
zt+1 =

(
1− α

2

)
zt +

α
2Rproxλh ◦ Rproxλg(zt)

xt+1 = proxλh(zt) ,
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and converges to global minimizers of g + h.
In a similar vein, we will also minimize the sum of a differentiable function and functions with

known proximal operator. This case is addressed by the Generalized Forward-Backward Splitting
method, which combines ideas from the Douglas-Rachford algorithm and the forward-backward
algorithm. We refer the reader to the paper proposing the algorithm, which clearly exposes its
structure [Raguet et al., 2013].

3.1.2 Sparse and low-rank regularizations

In the context of this thesis, the main interest of proximal methods is their application to regu-
larization in optimization problems. It is well known that penalizing an optimization problem by
the ℓ1-norm of the variable induces sparsity in the optimal value [Bunea et al., 2007]. In other
words, if instead of minimizing the convex function x 7→ f(x), one minimizes x 7→ f(x) + λ ‖x‖1
with λ > 0, the solution will provide a trade-off between the optimality of f and the sparsity of x.

The sparsity induced by the ℓ1-norm naturally arises from the associated soft thresholding
proximal operator: we have that

proxλ‖·‖1
(x) = sgn(x)⊙max(abs(x)− λ, 0) ,

with sgn the sign and abs the absolute value taken for each coefficient. In particular, the proximal
operator of the ℓ1-norm truncates the coordinates of x below λ. Sparsity inducing penalties are
widely used in compressed sensing to recover structured information from noisy data [Crespo Mar-
ques et al., 2019]. They provide a theoretically sound framework with recovery guarantees on the
support of the optimization variables.

In Chapter 4, we will be using sparsity inducing penalties to account for the fact that real world
network matrices often have a very sparse structure. Additionally, we will be using the low rank
of these matrices to define a network decomposition model.

Consider an optimization problem where the variable of interest X is a square matrix. Like
sparsity, the rank can be regularized using an optimization penalty, given by the nuclear norm:

‖X‖∗ =
n∑

i=1

σi(X) ,

with σi(X) the i-th – possibly null – singular value of X. While the sparsity-inducing penalty sums
the absolute values of the coefficients, the low-rank inducing penalty sums the singular values of
the optimization variable. The same regularization mechanism then induces sparsity among the
singular values of the matrix, and thus reduces the matrix rank of the optimization result.

Low rank regularization is commonly used for matrix completion and network analysis [Hu et al.,
2018]. Like the ℓ1 penalization, it provides a simple and robust tool to design rank-constraining
algorithms with a solid underlying theoretical understanding. The interactions between sparse and
low rank penalties also produce interesting combinations: as an example, in the context of network
analysis, both penalties can be combined to separate an input matrix X into a sum of a low
rank matrix and a sparse matrix [Kanada et al., 2018]. In Chapter 4, we will also be considering
combined penalties relying on both the ℓ1-norm and the nuclear norm.

3.2 Inference in hierarchical models

In this section, we introduce the key tools and concepts used in Chapters 5 and 7, where we will be
working on latent variable models for brain network analysis and longitudinal analysis of disease
progression. For a much more complete introduction on inference in complex models and the
concepts exposed in this section, we refer the reader to Murphy [2012].

3.2.1 Bayesian Inference and Markov Chain Monte-Carlo

In the framework of Bayesian statistics, complex situations can be accounted for by using a hierar-
chical structure in the dependency between random variables. This dependency expresses the fact
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the observed data y is given as a function of hidden latent variables z, whose distribution is deter-
mined by the model parameters θ. Formally, the model consists in a prior distribution p(θ) on the
parameters, a distribution of the latent variables given the parameters p(z | θ), and a distribution
of the observed data given the latent variables and the parameters p(y | z, θ).

Inference methods. When given a set of observations y, two options are available to esti-
mate the model parameters. The first option is standard Bayesian inference: it consists in deter-
mining the posterior distribution of the parameters p(θ | y) = p(y, θ)/p(y). The second option
is to estimate the Maximum A Posteriori, i.e., the maximum value of the posterior distribu-
tion: θ̂ ∈ argmaxθ p(θ | y, z). This second option is cheaper, as it only requires obtaining a single
value of θ rather than an entire distribution. However, it is also less precise, since it gives no infor-
mation on the concentration of the distribution around θ, i.e., on the uncertainty of the maximum
value. It also prevents from considering cases where the distribution p(θ | y) has several modes. We
will discuss the problem of computing the Maximum A Posteriori in the next section on the EM
algorithm, and focus here on the first option, i.e., obtaining information on the distribution p(θ | y).

Posterior distribution inference. In most complex models (and in particular in the models
considered in this thesis), the posterior distributions of interest do not correspond to usual distri-
butions, and are often known only up to the normalizing constant p(y). Obtaining information
on these distributions is a difficult problem in general. Two wide classes of methods have been
developed to find approximate solutions. The first option, called Variational Inference, consists in
finding a distribution among a simple family (e.g., the set of Gaussian distributions) that is closest
to the posterior distribution, in the sense of the Kullback-Leibler divergence. Variational inference
often produces fast algorithms, but may fail to accurately describe the posterior distribution. The
second option, called Markov Chain Monte-Carlo (MCMC), consists in designing a simple Markov
Chain such that the distribution of its samples asymptotically converges to the posterior distribu-
tion. For instance, if the distribution of interest is p(z | y, θ), an MCMC method will provide a
sequence z1, z2, . . . such that, as t → +∞, the sample zt can be considered a true sample of the
target distribution p(z | y, θ). In this thesis, we will be mostly relying on MCMC methods, which
in general are preferable to Variational Inference when they are computationally tractable, in the
sense that they are asymptotically exact.

Metropolis-Hastings algorithm. Many MCMC methods have been developed over the years
(Gibbs sampling, MALA, HMC, NUTS, to name only a few). In this thesis, we will be relying
on the Metropolis-Hastings (MH) algorithm, arguably one of the most simple MCMCs, popular
for its flexibility and its versatility. Although maybe not the most performant in general in very
high dimensional settings, its combination with the Gibbs sampling allows for a fast convergence
without computing the gradient of the density. We briefly present the algorithm for a general
target distribution π. Given a sample xt, the MH algorithm builds a new sample xt+1 based on
any transition kernel q(xt, ·) (for instance, a Gaussian distribution centered at xt). The algorithm
first draws a sample yt from the distribution q(xt, ·). Then, it defines an acceptance probability:

α(x, y) = min

(
1,
π(y)q(y, x)

π(x)q(x, y)

)
.

The new sample xt+1 is chosen equal to yt with probability α(xt, yt), or equal to xt with proba-
bility 1− α(xt, yt). The expression of α ensures that the Markov chain thus obtained is reversible
with respect to π. Along with additional assumptions on π and q, this property allows proving the
convergence of the Markov Chain to the distribution π. Intuitively, the acceptance step “corrects”
the base transition kernel q, by encouraging transitions that increase π(x).

In most cases, the transition kernel is a symmetric random walk: for instance, it may be defined
by a Gaussian density: q(x, ·) = N (x,Σ). Choosing a symmetric transition kernel simplifies the
expression of the acceptance probability into α(x, y) = π(y)/π(x), which speeds up computations
in practice.
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Adaptive MCMC. The choice of the matrix Σ in the Gaussian random walk has an important
impact on the performance of the algorithm: on the one hand, if Σ is too big, the transitions rarely
fall into regions of high probability, and most transitions are thus rejected. On the other hand, if Σ
is too small, the ratio α gets close to one and most transitions are accepted: the MCMC produces
highly correlated samples and the convergence is very slow. In practice, the jump amplitude is often
adjusted along the chain, in order to reach a given target rate of accepted transitions: as long as the
acceptance rate is too high, Σ is increased, and as long as it is too low, Σ is decreased. In dimension
greater than one, the shape of the covariance matrix – i.e., the direction and relative magnitude
of its eigenvectors – also has an important impact: performing jumps with optimal size but in the
wrong direction also results in high rejection rates. In cases where the identity matrix produces
poor results, the covariance Σ can be updated along the MCMC to match the empirical covariance
matrix of the samples. Both of these adaptations – acceptance rate and covariance matrix – are
crucial to obtain a fast convergence and a fast decreasing correlation between consecutive samples.

Metropolis within Gibbs. Finally, a last modification is required to obtain a satisfactory
convergence of the symmetric random walk Metropolis-Hastings algorithm for high-dimensional
distributions. Given the algorithm description we provided above, if a transition from x to y is
such that π(y) > π(x), it will always be accepted (α(x, y) = 1). However, in high dimension,
assuming the jump size is small enough, it is sufficient that only a subset of the coordinates of y
contribute to a significant increase of π for the jump to be accepted. As an example, if x has
1000 components, and if variations of the 999 first components have a strong impact on π(x), then
the value of the last coordinate x1000 will rarely play a role in the acceptance or the rejection
of the transitions. In other words, when a transition occurs, it will impact the value of the last
coordinate x1000 in a direction often independent of the marginal distribution π(x1000). As a
consequence, the Metropolis-Hastings algorithm often performs poorly on certain coordinates, in
the sense that the marginal distributions converge very slowly to the target distribution; this
problem, in turn, may prevent the remaining coordinates to find the regions of high probability.

A widely used solution consists in applying the Metropolis-Hastings procedure within a Gibbs
sampler. The Gibbs sampling is another very simple MCMC method, which iteratively sam-
ples each coordinate of the random variable given the other coordinates. For instance, if the
random variable of interest has three components X = (x, y, z), then the Gibbs sampling al-
gorithm iteratively samples xt+1 ∼ π(x | y = yt, z = zt), then yt+1 ∼ π(y | x = xt+1, z = zt), and
finally zt+1 ∼ π(z | x = xt+1, y = yt+1). The resulting Markov chain converges in distribution to
the distribution π(x, y, z) under certain regularity hypotheses on π. The strong advantage of
Gibbs sampling is the decoupling of sampling procedures for each coordinate. It addresses the
issue of the Metropolis-Hastings algorithm in high dimension, in the sense that each component
is treated equally. However, unlike Metropolis-Hastings, it requires that the conditional distri-
butions π(x | y, z), π(y | x, z), . . . can be sampled from explicitly, which is rarely the case when
working with non-linear hierarchical models.

The Metropolis within Gibbs algorithm overcomes this problem: for each coordinate, instead
of sampling from the conditional density, it performs a Metropolis-Hastings step targeting the
conditional density. The sampling procedure is described in Algorithm 3.2.1. As with Gibbs sam-
pling and Metropolis-Hastings, the Metropolis within Gibbs algorithm can be shown to converge
to the target distribution as the length of the chain grows large. It allows sampling from very
high dimensional densities without the problem faced by Metropolis-Hastings which we described
above. It may be slower than Metropolis-Hastings, in the sense that each step may take more time
to perform; however much fewer steps are required to reach convergence. Finally, the Metropolis
within Gibbs may also benefit from an adaptive MCMC structure: in practice, each coordinate
has its own transition variance, and each variance is tuned to reach the same acceptance rate on
every coordinate.

3.2.2 The EM algorithm and its variants

MLE and MAP. In practice, the posterior distribution p(θ | y) of complex non-linear hier-
archical models is hard to infer. Sampling from the distribution p(θ | y) is a difficult task, for
which MCMC methods may struggle to converge. In these cases, it is often simpler to compute
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Algorithm 3.2.1: The Metropolis within Gibbs algorithm

input : Target distribution π(x1, . . . , xd)

Initialize x(0)1 , . . . , x
(0)
d

for t = 1 to T do

for k = 1 to d do

Define the Metropolis kernel qk targetting π( · | xt1, . . . , xtk−1, x
t−1
k+1, . . . , x

t−1
d )

Sample xtk ∼ qk( · | xt−1
k )

end

end

return (x(t))1≤t≤T

the Maximum A Posteriori (MAP) of the distribution, i.e., a point where the maximum value
of p(θ | y) ∝ p(y, θ) is reached. The MAP is the Bayesian equivalent of the Maximum Likelihood
Estimator (MLE), and it only differs by the presence of the prior term p(θ), which acts as a reg-
ularizer on the parameter space. For instance, a Gaussian prior on θ acts as an ℓ2 penalty, an
exponential prior acts as an ℓ1 penalty, etc.

EM algorithm. In the case of models with latent variables, the MAP and MLE estimations
are not straight-forward, since the model likelihood writes as an integral over the space of latent
variables:

p(y | θ) =
∫
p(y | z, θ)p(z | θ)dz .

This integral is costly to compute in general: it sums over probabilities that may vary by several
orders of magnitude, and naive Monte-Carlo estimation produces very high variance results. For
these reasons, classical optimization methods like gradient descent cannot be used. The EM al-
gorithm, introduced by Dempster et al. [1977], overcomes this hurdle by proposing an iterative
optimization scheme that does not require evaluating the model’s likelihood. For a detailed in-
troduction to the EM algorithm and many of its most classical variants, we refer the reader to
McLachlan and Krishnan [2008]. The main insight leading to the EM algorithm is the definition
of an auxiliary function Q that relies on a previous guess θ̃ for the value of θ:

Q(θ | θ̃) = Ep(z|y,θ̃)[log p(y, z | θ)] .

Note that this Q-function is defined for the MLE estimation. The Q-function for the MAP would
instead have its expectation on the term log p(y, z, θ). The expectation of Q comes in a much more
tractable form than p(y | θ): it sums over logarithms of probabilities, which often have simple ex-
pressions. The key remark motivating its definition is that increasing Q leads to increasing p(y | θ):
it can be shown easily that, for all θ, θ̃,

log p(y | θ)− log p(y | θ̃) ≥ Q(θ | θ̃)−Q(θ̃ | θ̃) .

The EM algorithm uses this remark to build a sequence of parameters (θt)t≥0 such that p(y | θt)
is non-decreasing, by defining:

θt+1 ∈ argmaxθ Q(θ | θt) .
Under suitable regularity conditions, it can be shown that the EM algorithm (as well as all the
variants we introduce in this chapter) converges to a critical point of the objective function. In
practice, the algorithm proceeds in two steps: first, the expectation in the function Q( · | θt) is
computed (e.g., if it is a polynomial, its coefficients are computed). Next, it is maximized to
find θt+1. These two steps (Expectation, Maximization) give their name to the algorithm. The
EM algorithm is a powerful and flexible tool to deal with simple latent variable models. It provides
a general procedure that handles many types of data, from mixture models to time series analysis.

SAEM algorithm. The computation of the function Q is often intractable for complex hierar-
chical models – for instance, when the posterior distribution p(z | y, θ) corresponds to no classical
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distribution. The Expectation step must then be approximated with Monte-Carlo. For instance,
a first idea could be to maximize the approximation

Q̂(θ | θt) =
1

nt

nt∑

i=1

log p(y, zi) ,

with zi ∼ p(z | y, θt). If nt → +∞ as t → ∞, then the Monte-Carlo EM algorithm induced by
this approximation can be shown to converge. However, this convergence comes at a prohibitive
computational cost. The Stochastic Approximation EM overcomes this hurdle by sampling only
one value zt of p(z | y, θ) at each time step [Delyon et al., 1999]. It defines a surrogate Qt(θ)
to the function Q(θ | θt), by aggregating the functions θ 7→ log p(y, zt | θ) of the previous time
steps. More precisely, the function Qt+1 at step t + 1 writes as a weighted average between Qt

and θ 7→ log p(y, zt+1 | θ):

Qt+1(θ) = (1− γt)Qt(θ) + γt log p(y, zt+1 | θ) ,

and θt+1 is defined as a maximizer of Qt+1. The weights (γt)t≥0 are positive, often decreasing, and
must satisfy the conditions

∑
t γt = +∞ and

∑
t γ

2
t < +∞. The idea of the SAEM algorithm is

that, when t grows large and θt starts varying slower,Qt becomes a good approximation ofQ(θ | θt),
so that the maximization of Qt behaves like the EM algorithm, and guarantees convergence.

EM and SAEM for exponential models. In general, computing Qt means storing each
function log p(y, zt | θ), which rapidly becomes intractable as the iterations count grows. However,
in the specific case of statistical models belonging to the (curved) exponential family, the storage
problem becomes much simpler. A curved exponential model is such that log p(y, z | θ) can be
written under the form

log p(y, z | θ) = 〈S(y, z), ϕ(θ)〉+ ψ(θ) .

If ϕ(θ) = θ, the model is simply called an exponential model. In other words, the dependency
between the observations and the parameters is linear; the useful information on y and z is stored
in the so-called sufficient statistics S(y, z). Curved exponential models form a very large family,
including for instance Gaussian graphical models, most linear hierarchical models, as well as the
model proposed in Chapter 5. In the special case of network analysis, the interest for the Expo-
nential Random Graph Model is largely motivated by its exponential form. The specific structure
of exponential models allows for efficient inference, in particular with the EM algorithm. Their
expression of Q simplifies to

Q(θ | θt) = 〈Ep(z|y,θt)[S(y, z)], ϕ(θ)〉+ ψ(θ) .

In practice, this means that the problem of computing the expectation of a function is brought
down to computing its coefficients Ep(z|y,θt)[S(y, z)]. The SAEM algorithm also benefits from this
interesting property: for each t, the function Qt may be written under the form

Qt(θ) = 〈St, ϕ(θ)〉+ ψ(θ) .

At t = 0, S0 is given by S(y, z0). Then, recursively, St+1 is obtained by

Qt+1(θ) = (1− γt)Qt(θ) + γt log p(y, zt+1 | θ)
= (1− γt)(〈St, ϕ(θ)〉+ ψ(θ)) + γt(〈S(y, zt+1), ϕ(θ)〉+ ψ(θ))

= 〈(1− γt)St + γtS(y, zt+1), ϕ(θ)〉+ ψ(θ)

= 〈St+1, ϕ(θ)〉+ ψ(θ) ,

So that we have St+1 = (1−γt)St+γtS(y, zt+1). From a practical perspective, this means that the
sequence of functions log p(y, zt | θ) does not need to be stored, as all the necessary information is
stored in St, which is computed iteratively. This formulation makes the SAEM algorithm a very
powerful tool for inference in exponential models.
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MCMC-SAEM algorithm. Finally, in the case of complex non-linear hierarchical models, the
density of p(z | y, θ) often does not correspond to any classical family of distributions, so that
sampling zt from p(z | y, θt) cannot be achieved directly. A first idea to overcome this issue would
be to run a MCMC chain z1t , z

2
t , . . . , z

T
t at each time step t, and use zTt as an approximate sample

of p(z | y, θt). This procedure would be very costly, requiring a Markov Chain to converge at
every step of the SAEM. A simpler, much faster alternative was proposed by Kuhn and Lavielle
[2004], and later studied by Allassonnière et al. [2010]. It consists in performing one single MCMC
step per SAEM step, using zt as a base point to obtain zt+1. The resulting sequence (zt)t≥0 does
not form a homogeneous Markov Chain: at each time step t, the transition kernel evolves and
targets the distribution p(z | y, θt). But as t grows large and the value of θ stabilizes, so does
the transition kernel. Asymptotically, zt becomes a true sample of the distribution p(z | y, θt),
so that the resulting procedure – called the MCMC-SAEM algorithm – behaves like the SAEM.
The convergence of the MCMC-SAEM is a threefold process: the distribution of zt, the stochastic
approximation St and the estimation θt evolve simultaneously. The improvement of each of the
three helps refine the two others, until the convergence regime is reached.

Remark. The convergence rate of the EM algorithm is asymptotically linear in general, with
model-specific variations. For instance, in the case of Gaussian mixture models, the convergence
speed depends on the overlap between the mixture components of the true model [Ma et al., 2000].
Depending on the choice of γt, the SAEM algorithm converges at an optimal rate of t−1/2.

3.2.3 Inference in non-exponential families

In practice, complex models like non-linear mixed-effects models may not belong to the (curved)
exponential family. Similarly, much more complex models relying on neural networks feature a
highly non-linear dependency between the variables and the model parameters. This is the case
of the model we work with in Chapter 7. Many models used in network analysis, like Graph
Auto-Encoders, do not belong to the curved exponential family. Non-exponential models cannot
be estimated easily using the EM algorithm, and alternatives have been developed to perform
approximate inference.

Making the model exponential. After studying the MCMC-SAEM algorithm, Kuhn and
Lavielle [2005] proposed a trick to approximate any non-exponential model by an exponential
model. Given a model p(y, z, θ), the trick consists in considering θ as a latent variable, introducing
a new parameter θ such that θ ∼ N (θ̄, σ2

θI). The new model p(y, z, θ, θ) is exponential, and the
optimal value of θ is close to the optimal value of θ for the non-exponential model [Debavelaere and
Allassonnière, 2021]. Exponentializing the model comes at a computational cost: it often slows
the convergence, as the MCMC on the latent variable θ must converge along with the rest of the
latent variables. However, it benefits from a great simplicity and allows using the MCMC-SAEM
with no major hurdle.

Fisher identity, towards variational methods Another option to estimate the parameters of
a non-exponential model relies on the so-called Fisher identity, which we will be using in Chapter 6.
It states that

∇θ log p(y | θ) = Ep(z|y,θ)[∇θ log p(y, z | θ)] .
In other words, the (intractable) gradient of the MLE objective function log p(y | θ) can be
seen as an expectation of the (tractable) gradient of log p(y, z | θ). This gradient can often be
computed easily, either by hand or using automatic differentiation. The Fisher identity directly
gives a stochastic gradient algorithm to find a point θ such that ∇θ log p(y | θ) = 0. Draw-
ing at each step a point zt+1 from the distribution p(z | y, θt), the next value of θ is obtained
as θt+1 = θt + γt∇θ log p(y, zt+1 | θt). If the step sizes γt are suitably chosen, this stochastic ap-
proximation converges to a critical point of the model likelihood. For cases where the posterior
distribution p(z | y, θ) cannot be directly sampled from, an MCMC can be used as in the MCMC-
SAEM, performing a single step of MCMC at each stochastic gradient iteration.

The stochastic gradient descent provided by the Fisher identity is a very general method that
can be used for arbitrarily complex models. Yet, in practice it is rarely used under this form,
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because the gradient ∇θ log p(y, z | θ) often has a very high variance, and poor initializations may
prevent the algorithm from converging [Hoffman, 2017, Sec. 3]. The recent work of Fang and
Li [2021] shows that variance reduction techniques can be used to make the algorithm usable in
practice.

Variational Bayes. As we mentioned in Section 3.2.1, complex distributions are classically
handled either with MCMC or with Variational Inference – which approximates the complex dis-
tribution by a close, simple distribution. The MCMC-SAEM and the Fisher stochastic gradient
descent rely on the first approach. Variational Bayes (VB) is a more recent alternative proposed
by Kingma and Welling [2014], which relies on the second approach to estimate the MLE (or
the MAP). It proposes to approximate the posterior distribution p(z | y, θ) by a simple variational
approximation q(z | y, ϕ), e.g., a Gaussian distribution. It defines a new objective to be maximized:

Q(θ, ϕ) = log p(y | θ)−KL[ q(z | y, ϕ) || p(z | y, θ) ] .

This objective simultaneously tries to maximize the likelihood of the observed data, while enforcing
that the variational approximation q(z | y, ϕ) is close to its target p(z | y, θ): maximizing Q thus
gives an estimate for both θ and ϕ.

The main interest of this new objective function is that, unlike maximizing log p(y | θ) alone, Q
can be written in a tractable form. Indeed, it can be shown easily that we have

Q(θ, ϕ) = Eq(z|y,θ) [log p(y, z | θ)− log q(z | y, θ)] ,

which suggests a stochastic gradient algorithm by sampling zt from q(z | y, ϕ). In practice, the
so-called reparameterization trick allows differentiating w.r.t. the dependency of zt on ϕ. We refer
the reader to Kingma and Welling [2014] for more details. The Variational Bayes framework is at
the core of Variational Auto-Encoders, which play a central role in large networks analysis Kipf
and Welling [2017].

Summary. When designing a new model, the choice between SAEM and VB should be done
cautiously, considering the advantages and drawbacks of both frameworks. The SAEM is preferable
for exponential models, as it provides an exact and straightforward estimation procedure, which
often converges relatively fast. However, its extension to non-exponential models comes at the cost
of model exponentialization, which slows the convergence in practice. On the other hand, the VB
method provide a fast, approximate inference procedure. It easily scales to very high-dimensional
data and models by allowing for amortization: for n independent data samples (z1, y1), . . . , (zn, yn),
instead of learning each distribution q(zi | yi, ϕ) separately, the model imposes a common structure
to each posterior distribution, e.g., q(zi | yi, ϕ) = N (µϕ(yi), σ

2I). In practice, VB is preferred for
large scale applications where approximate inference is acceptable, whereas the SAEM is recom-
mended for models in a curved exponential family, and models with small amounts of parameters.
Finally, note that both VB and SAEM are inherently prone to classical inference pitfalls like mode
identification in multimodal posterior distributions. In each case, adaptations must often be made
to obtain satisfactory results in practice.

3.3 Stiefel manifolds and directional statistics

In this section, we introduce the main tools to model and manipulate data and tangent vectors
taking values in the Stiefel manifold. These concepts will be used in Chapter 5 to model the
distribution of the eigenvectors of brain functional connectivity matrices.

3.3.1 Brief reminders on Riemannian geometry

The model we consider in Chapter 5 relies on variables which satisfy a non-linear constraint. This
constraint defines a curved subspace of the ambient Euclidean space. Riemannian geometry is the
appropriate tool to work with this subspace: it consists in the study of smooth manifolds from a
geometric perspective, allowing to measure distances and angles on manifolds.
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Little knowledge on smooth manifolds is assumed in this thesis, apart from the basic definitions
of a manifold and a tangent space. In this section, rather than dwelling on rigorous developments,
we will focus on recalling the main notions important to our purpose (in particular, we only consider
sub-manifolds of Rn). For detailed introductions to the topic, we refer the interested reader to the
excellent books by Lee [2003, 2018].

Riemannian manifold. A d-dimensional Riemannian manifold M ⊂ R
n is a smooth manifold

endowed with a smooth map which, at every point x ∈ M, gives an inner product 〈·, ·〉x on
the tangent space TxM. In practice, this inner product defines the norm ‖u‖x =

√
〈u, u〉x of a

tangent vector u. It defines a local, “straight line” distance on the manifold: informally, if x ∈ M
and u ∈ TxM is very close to zero, the distance between x and x + u is given by ‖u‖x. The
map x 7→ 〈·, ·〉x is called a Riemannian metric on M.

Since M is embedded in R
n, the tangent spaces TxM are naturally embedded in R

n, and a
natural inner product on TxM can be defined as the restriction of the Euclidean inner product
of the ambient space R

n. This method produces a reference Riemannian metric for any smooth
submanifold, called the Euclidean metric.

As an example, when measuring the distance between two places close to each other on Earth,
we often proceed by assuming that the ground in-between is flat – which, in a geometrical sense,
amounts to assuming that each place lives close to the tangent plane of the other place. However,
the “straight line” distance on Earth only works locally: for larger distances, e.g., between countries,
the Earth curvature must be taken into account to obtain accurate results.

Geodesics. The next point of interest is the definition of a “straight line” in the manifold M. A
straight line can be defined, in a Euclidean space, as the shortest curve from one point to another.
This definition can be extended to Riemannian manifolds: once the norm of tangent vectors is
set, it is possible to define the length of a curve γ : [0, 1] → M. This definition generalizes the
Euclidean case, defining the length L(γ) as

L(γ) =

∫ 1

0

‖γ′(t)‖γ(t) dt .

For instance, if the Riemannian norm ‖γ′(t)‖γ(t) is constant equal to v for all t, we have L(γ) = v.
With this definition, a geodesic – equivalent of a straight line in a manifold – is defined as a smooth
curve γ such that no other curve with the same ends has a shorter length. As an example, the
geodesics of the sphere are given by circles with maximal diameter, e.g., the meridians or the
equator for planets.

Geodesics bring a notion of distance on the manifold: as in the Euclidean case, the distance
between two points is defined as the length of the shortest path (i.e., the geodesic curve) between
the two points. The distance between two points x and y is thus defined as the length of the
shortest geodesic curve from x to y.

Exponential map. As with straight lines in the Euclidean case, it is sufficient to give a starting
point x ∈ M and an initial speed vector v ∈ TxM to define a unique geodesic curve γ(t), such
that γ(0) = x and γ′(0) = v. In the case of Stiefel manifolds, that we will define in the next
section, it can be proved that the curve γ(t) is well-defined for all t ∈ R.

The application mapping v to γ(1) is called the exponential map at x, denoted Expx(v). It can
be seen as a way to project the tangent vectors onto the manifold – in the sense that, if v is small,
we have Expx(v) = x+ v + o(v). As an example, let us consider the unit circle at x = (1, 0). The
tangent space at x is given by the vertical vectors, which can be written as v = (0, θ). It can be
proved that, for any θ ∈ R, the exponential map at x sends the vertical tangent vector v = (0, θ)
to the point Expx(v) = (cos(θ), sin(θ)). Note that the map v 7→ Expx(v) is not injective, as two
tangent vectors can lead to the same points.

Logarithm map. If two points x and y are sufficiently close on M, it can be proved that there
exists only one smallest tangent vector v such that y = Expx(v). The vector v is called the
logarithm of y at x, denoted Logx(y). The logarithm map thus inverts the exponential map: given
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a point on the manifold sufficiently close to x, it produces the tangent vector v ∈ TxM such that
the geodesic starting at x in direction v lands on y at t = 1. However, the logarithm is only defined
locally: for instance, on a sphere, there are several ways to go from one point to its antipode.

Riemannian gradient. Finally, an important application of Riemannian geometry is optimiza-
tion on manifolds. Given a smooth function f : M → R, it is possible to compute an equivalent
version of the gradient of f on M, which we denote ∇Mf . In the common classical case where f is
defined over the entire ambient space R

n, and the manifold M is endowed with the Euclidean met-
ric, the Riemannian gradient ∇Mf(x) at a point x simply corresponds to the orthogonal projection
of the Euclidean gradient ∇f(x) onto the tangent space TxM. The definition of the gradient allows
for algorithms like gradient descent or stochastic gradient descent, which make it a central tool to
manipulate manifold-valued data.

3.3.2 The Stiefel manifold

In Chapters 5 and 6, we will be focusing more specifically on the Stiefel manifold. It is defined as
the set of matrices X ∈ R

n×p such that X⊤X = Ip. In other words, an element X of the Stiefel
manifold is given by a set of p orthogonal vectors x1, . . . , xp ∈ R

n with unit norm, which form the
columns of X. In this thesis, such matrices will be used to represent the eigenvectors of low-rank
network adjacency matrices. The Stiefel manifold, denoted as Vnp, has been thoroughly studied for
many application purposes, for instance in rigid body motion analysis [Oualkacha and Rivest, 2012],
classification [Ali and Gao, 2018], graphical models [Adhikary et al., 2019], community detection
[Duan et al., 2020] or financial time series analysis [Meng, 2021]. It also plays an important role in
applications involving Grassmann manifolds. In practice, Stiefel manifold-valued variables often
arise by dropping the last n − p columns of an orthogonal matrix. It allows taking advantage
of setups where p ≪ n: the complexity of basic data manipulation thus scales as O(np) instead
of O(n2).

In particular, many explicit formulas are available for the expression of the tangent spaces and
the exponential map, which we briefly recall here. Most of these formulas, as well as many others,
are given and explained in great detail in Edelman et al. [1998].

Tangent space. For a matrix X ∈ Vnp, it can be shown that any tangent vector D ∈ TXVnp

can be written under the form
D = XA+X⊥B , (3.1)

with A ∈ R
p×p a skew-symmetric matrix (i.e., A⊤ = −A), B ∈ R

n−p×p and X⊥ a list of n − p
vectors completing X into an orthonormal basis of Rn. In particular, for n = p, the tangent space
at an orthogonal matrix X ∈ R

n×n is given by the set {XA | A⊤ = −A}. Given X and D, A can
be obtained as X⊤D, and X⊥B can be computed as (In −XX⊤)D. Note that B is not unique,
as it depends on the choice of X⊥.

For instance, consider I3,2, the 2 × 2 identity matrix padded with zeros on the third row. A
basis of the tangent space at I3,2 is given by

D1 =




0 1
−1 0
0 0


 , D2 =



0 0
0 0
1 0


 , and D3 =



0 0
0 0
0 1


 .

Figure 3.3.2 represents the vectors D1, D2 and D3 in the three-dimensional space. In this specific
case, A is given by the first two rows of the matrices and B by the third row.

Riemannian structure of Vnp Defined as a submanifold of Rn×p, the Stiefel manifold naturally
inherits the Euclidean metric of the ambient space. A second metric can also be used, which comes
from an alternative definition of the Stiefel manifold: Vnp can also be seen as the quotient of
the orthogonal group On(R) by the orthogonal group On−p(R). This amounts to saying that a
matrix X ∈ Vnp can be seen as an orthogonal matrix whose last n−p columns have been quotiented
out. A Riemannian metric can be defined from this quotient structure; it is called the canonical
metric on the Stiefel manifold. Both Euclidean and canonical metrics have a simple expression:
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Figure 3.1: Basis vectors for the tangent space of V3,2 at X = I3,2. The two columns of I3,2 are
represented in red, and each Dk is represented in blue.

given the decompositions (A,B) and (A′, B′) of two tangent vectors D and D′ as in Equation (3.1),
the two metrics respectively write as

{
〈D,D′〉Euclidean,X = 〈A,A′〉F + 〈B,B′〉F
〈D,D′〉Canonical,X = 1

2 〈A,A′〉F + 〈B,B′〉F ,

denoting by 〈·, ·〉F the canonical Frobenius inner product of matrices 〈U, V 〉F = Tr(U⊤V ). Note
that this expression does not depend on the choice of B. The canonical metric gives half its weight
to the skew-symmetric component, which allows counting each degree of freedom only once. For
this reason, in this thesis we chose to use the canonical metric on the Stiefel manifold.

Exponential map. Given a starting point X and an initial speed vector D = XA + X⊥B
(with A⊤ = −A), the geodesic curve t 7→ ExpX(tD) for the canonical metric can be computed
explicitly using a matrix exponential (Corollary 2.2 in Edelman et al. [1998]). Let (Q,R) be the
compact QR decomposition of X⊥B: QR = X⊥B, with Q ∈ Vnp and R a p × p upper triangular
matrix. Defining the two curves:

(
M(t)
N(t)

)
= exp

[
t

(
A −R⊤

R 0

)](
Ip
0

)
,

we have that ExpX(tD) = XM(t)+QN(t). The exponential map on the Stiefel manifold can thus
be computed very simply, by computing the matrix exponential of a 2p× 2p matrix.

Logarithm map. No explicit formula is available for the logarithm map on Stiefel manifolds.
Zimmermann [2017] recently proposed an iterative algorithm to approximate the logarithm. Al-
though this algorithm converges in very few iterations when its input is close to the base point,
it requires computing a matrix exponential and a matrix logarithm at every step, which makes
it difficult to include in large scale algorithms. Furthermore, the convergence becomes more and
more unstable as the dimension grows, and only works for points very close to the base point in
high dimension. As a last drawback, the definition domain of the logarithm map on Vnp has not
been fully characterized to this day, with only a lower bound on its size found by [Rentmeesters,
2013, p. 95].

Function gradients. Given a function f : Rn×n → R, the Riemannian gradient of f for the
canonical metric has a simple expression:

∇Vf(X) = ∇f(X)−X∇f(X)⊤X .

It is thus very simple to compute in practice once the Euclidean gradient of f is known. This will
be the case in the practical application considered in Chapter 5.
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3.3.3 Statistical modeling on the Stiefel manifold

Chapters 5 and 6 consider random variables taking values in Vnp. This problem is at the core of
the field of directional statistics, where the objects of interest are orientations in space (given by
unit vectors), or collections of orientations (orthonormal tuples of vectors belonging to a Stiefel
manifold). The seminal work of Khatri and Mardia [1977] proposed to adapt the well-studied von
Mises distribution on the sphere to the Stiefel manifold. Other distributions were proposed, in
particular to account for antipodal distributions giving equal weight to a vector and its opposite
[Jupp and Mardia, 1979]. Recent work has focused on tractable statistical inference, with sampling
algorithms [Hoff, 2009b, Jauch et al., 2020a], Maximum Likelihood Estimation [Kume et al., 2013]
and Bayesian inference [Pal et al., 2020, Meng, 2021]. For a detailed introduction to statistics on
Stiefel (and Grassmann) manifolds, we refer the reader to Chikuse [2003c], as well as other papers
from the same author [Chikuse, 1990, 2003b, 2006].

Invariant measure. Defining continuous statistical models on the Stiefel manifold requires a
base measure to be used as support for parametric probability densities. The invariant mea-
sure [dX] over the Stiefel manifold is well suited for this purpose. It is defined (up to a constant
factor) as the only measure over Vnp invariant under orthogonal rotations. It can also be shown
that the invariant measure corresponds to the Hausdorff measure over Vnp, which can be considered
a generalization of the Lebesgue measure over Vnp [Jauch et al., 2020b].

Parametric distributions. Using the invariant measure, parametric models on Vnp can be
defined with probability distributions under the form pθ(X)[dX], with θ the model parameter. The
most widely known example is the von Mises-Fisher distribution, that we will use in Chapter 5, and
which defines pθ(X) ∝ exp〈X, θ〉F . Other distributions like the Fisher-Bingham distribution and
its generalization rely on the exponential of quadratic expressions. Most of the models proposed
in the literature share two properties: on the one hand their likelihood has a simple interpretable
density; on the other hand, their normalizing constant is often intractable, and custom methods
must be used to perform inference.

Remark. The default idea of a probabilistic model on general Riemannian manifolds is to gen-
eralize the Gaussian distribution [Pennec, 2006]. It consists in choosing a mean point x ∈ M,
drawing a random variable ε following a Gaussian distribution in TxM, and computing Expx(ε).
Although this method works well in general, the logarithm map is needed to retrieve the mean
and the covariance of ε. Gaussian distributions are thus not well suited to Stiefel manifolds, where
simpler and better tailored alternatives are available.

3.4 New applications of the Cayley transform

This section introduces the Cayley transform on the Stiefel manifold and presents two new con-
tributions. We provide a simple algorithm to compute the inverse of the Cayley transform, and
show that the Cayley transform can be used to perform fast Metropolis-Hastings sampling on the
Stiefel manifold.

3.4.1 The Cayley transform on Stiefel manifolds

As we saw in the previous section, although the exponential and logarithm maps can be computed
with good precision on Stiefel manifolds, their utility is limited in practice by their computational
cost or – for the logarithm – the stability domain of the approximation. The Cayley transform
alleviates the first difficulty and removes the second. Given X ∈ Vnp, it provides an alternative
map from TXVnp to Vnp that is fast to compute and approximates the exponential map at the first
order.

Informal construction. We give a step-by-step construction of the Cayley transform which
informally justifies its formula. We start by defining an initial version C0

X for skew-symmetric
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matrices. For W an n× n skew-symmetric matrix, this version is given by:

C0
X(W ) =

(
I +

1

2
W

)(
I − 1

2
W

)−1

X .

Since the matrix
(
I + 1

2W
) (
I − 1

2W
)−1

is orthogonal, C0
X(W ) also belongs to the Stiefel manifold.

Remark. The matrices of the form I +W , with W a skew-symmetric matrix, are always non-
singular. This can be seen by applying the spectral theorem to the matrix iW , which is a Hermitian
matrix: it gives that W can be diagonalized with imaginary eigenvalues. As a consequence, I +W
can be diagonalized with eigenvalues having real part equal to one; hence the matrix is non-singular.

It can be shown easily that, as W goes to zero,

C0
X(W ) = X +WX + o(‖W‖F ) .

This relation helps design a function that is a first-order approximation of the exponential map,
which verifies ExpX(D) = X + D + o(‖D‖F ). The goal is now to build a matrix W , such
that WX = D.

Remembering the decomposition D = XA+X⊥B introduced in the last section (A⊤ = −A), it
can be noticed that taking W = DX⊤ −XD⊤ gives WX = 2XA+X⊥B = D♯. The map D 7→ D♯

is very simple: mapping D to D♯ amounts to multiplying A by two, and conversely going from D♯

to D amounts to dividing A by two. As a consequence, if we define D∗ = 1
2XA+X⊥B, we obtain

that taking W = D∗X⊤ −X(D∗)⊤ leads to WX = D.
Finally, note that D∗ = (I +XX⊤)D and that D♯ = (I − 1

2XX
⊤)D. With this last remark,

we are ready to give the main definition of the Cayley transform.

Cayley transform. For X ∈ Vnp, let WX(D∗) = D∗X⊤−X(D∗)⊤. The Cayley transform at X
is defined by:

CX(D) = C0
X(WX(D∗)) .

By construction, the Cayley transform satisfies the property CX(D) = X+D+o(‖D‖). In practice,
it only requires matrix additions and multiplications. The inversion of the n × n matrix I − 1

2W
can be avoided by using the Sherman-Morrison-Woodbury formula, which allows decreasing the
cost to that of inverting a 2p × 2p matrix instead of an n × n matrix [Wen and Yin, 2013]. This
property makes the Cayley transform a very appealing candidate to replace the exponential map
when performing gradient descent, and it is widely used in practice [Li et al., 2020b].

Intuitively, the Cayley transform behaves like the exponential map when D is close to zero.
However, unlike the exponential map, when t→ +∞ the point CX(tD) converges to a limit point,
which can be computed explicitly using the spectral theorem. Figure 3.4.1 compares the curves
obtained for the exponential map and the Cayley transform, in the specific case X = I3,2 and the
vectors D1, D3, D3 of Figure 3.3.2.

Remark. The map D 7→ D∗ is nothing but the natural isomorphism from TXVnp to its dual
space T ∗

XVnp (i.e., the space of linear forms from TXVnp to R). The map D 7→ D♯ is the reverse
mapping.

3.4.2 A fixed-point algorithm for the inverse Cayley transform

To the best of our knowledge, no simple algorithm exists to compute the inverse of the Cayley
transform in a general setting. It has been shown that the Cayley transform is injective [Macías-
Virgós et al., 2018] and spans the entire Stiefel manifold apart from a set with measure zero [Jauch
et al., 2020b]. A closed-form inversion method is available for the special case where p is even
[Kaneko et al., 2013]. Computing the inverse of the Cayley transform is a problem of practical
interest. For instance, it enables to compute averages on the Stiefel manifold, as proposed by
Kaneko et al. [2013] (care should be taken when reading this paper: the notations n and p are
reversed compared to ours). It could enable to work with Gaussian distributions, as defined in the
previous section, replacing the exponential map with the Cayley transform.

34



x

1.0
0.5

0.0
0.5

1.0

y
1.0

0.5
0.0

0.5
1.0

z

1.0

0.5

0.0

0.5

1.0

D1

x

1.0
0.5

0.0
0.5

1.0

y
1.0

0.5
0.0

0.5
1.0

z

1.0

0.5

0.0

0.5

1.0

D2

x

1.0
0.5

0.0
0.5

1.0

y
1.0

0.5
0.0

0.5
1.0

z

1.0

0.5

0.0

0.5

1.0

D3

x

1.0
0.5

0.0
0.5

1.0

y
1.0

0.5
0.0

0.5
1.0

z

1.0

0.5

0.0

0.5

1.0

x

1.0
0.5

0.0
0.5

1.0

y
1.0

0.5
0.0

0.5
1.0

z

1.0

0.5

0.0

0.5

1.0

x

1.0
0.5

0.0
0.5

1.0

y
1.0

0.5
0.0

0.5
1.0

z

1.0

0.5

0.0

0.5

1.0

Figure 3.2: For the three vectors D1, D2 and D3 defined in the previous section, we show the
curves ExpI32(tDk) and CI32(tDk) for t ≤ 0.8. The first row shows the exponential curves (in
black), and the bottom row shows the Cayley curves (in green).

We provide a simple algorithm to compute the inverse of the Cayley transform for any value
of p. The unique solution D∗ of the equation Y = C0

X(WX(D∗)) – assuming that it exists – satisfies
the relation:

Y =

[
In − 1

2
(D∗X⊤ −X(D∗)⊤)

]−1 [
In +

1

2
(D∗X⊤ −X(D∗)⊤)

]
X

⇐⇒
[
In − 1

2
(D∗X⊤ −X(D∗)⊤)

]
Y =

[
In +

1

2
(D∗X⊤ −X(D∗)⊤)

]
X

⇐⇒ 2(Y −X)− (D∗X⊤ −X(D∗)⊤)Y = D∗ −X(D∗)⊤X

⇐⇒ 2(Y −X)−D∗X⊤Y +X(D∗)⊤(Y +X) = D∗ .

This finally leads to the fixed point equation:

D∗ =
(
2(Y −X) +X(D∗)⊤(Y +X)

)
(Ip +X⊤Y )−1 . (3.2)

From this equation, we propose the following fixed-point algorithm on D∗:

D∗
t+1 = (1− γt)D

∗
t + γtΠX

[(
2(Y −X) +X(D∗

t )
⊤(Y +X)

)
(Ip +X⊤Y )−1

]
(3.3)

Two additions are made to the base fixed point equation (3.2). First, we project the result of
Equation (3.2) onto the tangent space at X. This operation, denoted ΠX in Equation (3.3),
ensures that D∗

t ∈ T ∗
XVnp in practice (note that ΠX has a simple explicit expression, see Edelman

et al. [1998]). Second, we introduce an averaging scheme with a sequence of positive decreasing
weights γt in order to ensure convergence (we use γt = 1/(1 + t)). Once D∗ is computed, the
resulting value of D is obtained with D = (I +XX⊤)D∗.

In practice, the convergence is extremely fast, even for large values of n and p (e.g., n = 1000
and p = 300). For relatively small values of D, in four steps or fewer, the difference between
two consecutive iterates is of the order of machine precision, and the obtained value of D yields
a Cayley transform equal to Y up to machine precision. The convergence is slower for very large
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values of D, but after three steps the error remains of the order of 10−6 in Euclidean norm, which
is more than sufficient in many cases.

Remark. To the best of our knowledge, this method has not been used before to compute the
inverse Cayley transform. Fiori et al. [2012] however suggested that the iterative method of Huang
et al. [2008] could be used for a similar purpose.

3.4.3 Metropolis-Hastings sampling with Cayley proposals

Motivation

As a second application of the Cayley transform, we turn to the problem of sampling from a
general probability distribution π(X) on the Stiefel manifold. This problem has been addressed by
Ouyang [2008], who proposes a Metropolis-Hastings algorithm with a symmetric proposal based
on Gaussian distributions and orthogonal projections. More recently, two papers from Jauch et al.
[2020a,b] propose alternative methods. The first method builds a distribution on square matrices
such that the polar decomposition of the random variable produces samples from the distribution
of interest on the Stiefel manifold. The second method proposes to lift the Stiefel manifold in the
tangent space at the identity Inp via the inverse Cayley transform, and perform sampling in the
(flat) tangent space, where traditional MCMC methods can be used.

The second method, although it can be applied to any distribution, could perform poorly in
cases where the distribution of interest is centered around (or close to) a point unreachable by the
Cayley transform, for instance −Inp. In this thesis, like Ouyang [2008], we use the Metropolis-
Hastings algorithm directly on the Stiefel manifold, except that the proposals are generated with
the Cayley transform. This results in a very simple procedure. Starting from a point Xt, we
generate Xt+1 by drawing a centered isotropic Gaussian variable Dt in TXVnp, and considering the
proposal update Yt = CXt(Dt). The proposal is accepted or refused according to the probability

α(Xt, Yt) =
π(Yt)q(Yt, Xt)

π(Xt)q(Xt, Yt)
,

with q(X,Y ) the Markov kernel defined by the Cayley transition. The main difficulty lies in the
expression of q(X,Y ). It can be derived with computations similar to those carried out in Jauch
et al. [2020b], but in practice this computation is not necessary. Indeed, it turns out that the
proposal density is very close to being symmetric, i.e., that q(Xt, Yt) = q(Yt, Xt). We provide
partial theoretical evidence for this property in the next subsection, partly relying on numerical
experiments. Although this we could not prove this equality formally, it holds in practice with
great accuracy for the typical variances of Dt used in practice. It might be, however, that the
approximation fails for large values of D, as the Stiefel manifold is not a symmetric space.

Metropolis-Hastings-type MCMCs are of particular interest in our application of Stiefel man-
ifold MCMC in Chapter 5: they allow for a fast exploration of a distribution centered around a
mode. In our application, this configuration is of particular interest, as we will be considering
the posterior distribution of the eigenvectors of a matrix given its noisy coefficients, with a prior
imposing a choice on the order and sign of the eigenvectors.

Note that distributions with a high degree of symmetry (e.g., w.r.t. column sign or column
order) can also be explored using Metropolis-Hastings. Jumping from one mode to another can
be achieved by modifying the transition kernel to choose between a Cayley jump and a change of
sign or column order. However, for specific cases like Fisher-Bingham distributions, more efficient,
tailored algorithms are available [Hoff, 2009b].

Proposal symmetry

The density of the random variable Yt can be computed explicitly with a change of variable, as
in the Euclidean case. The change of variable theorem in the Euclidean setting is generalized to
smooth manifolds by Traynor [1994], as pointed out by Jauch et al. [2020b] (Theorem 4.1), to which
we refer the reader for more details. We apply this extension to the change of variable from Dt

to Yt. Let us denote pXt
(Dt) the density of the random variable Dt in the vector space TXt

Vnp.
We have that:

q(Xt, Yt) = pXt(Dt)× J(Xt, Dt) , (3.4)

36



with J(X,D) a generalized Jacobian determinant of CX at D, which accounts for the fact that the
Jacobian matrix dCX(D) is rectangular. More specifically J(X,D) is defined as:

J(X,D) = |dCX(D)∗dCX(D)|1/2 , (3.5)

where the star denotes the adjoint linear operator. In order to show that q(Xt, Yt) = q(Yt, Xt),
we will prove that the two terms in the right hand side of Equation (3.4) take the same values
from Xt to Yt and conversely.

In order to study q(Yt, Xt), we need to introduce Et = C−1
Yt

(Xt). The following proposition
shows that Dt and Et are related to each other by an explicit relationship.

Proposition 1. Let X ∈ Vnp, D ∈ TXVnp, Y = CX(D) and E = C−1
Y (X). Then we have the

relations WX(D∗)X = D, WY (E
∗)Y = E and WX(D∗) = −WY (E

∗).

Proof. The first point (WX(D∗)X = D and WY (E
∗)Y = E) was established in the previ-

ous sections and will not be discussed further. For the sake of brevity, in this proof we de-
note WX =WX(D∗).

Since D∗ (and thus D) can be retrieved from WX , the mapping D 7→WX is injective. Further-
more, the definition of the Cayley transform gives the equation

(
I − 1

2
WX

)
Y =

(
I +

1

2
WX

)
X .

Hence, if we can find a tangent vector Ẽ such that WY (Ẽ
∗) = Ẽ∗Y ⊤ − Y (Ẽ∗)⊤ = −WX ,

then CY (Ẽ) = X, and thus necessarily E = Ẽ and WX = −WY (Ẽ
∗) = −WY (E

∗), by injec-
tivity of the Cayley transform. Knowing the expected result, we consider Ẽ = −WXY : we need
to show that Ẽ∗Y ⊤ − Y (Ẽ∗)⊤ = −WX . We have, by definition of Ẽ∗:

Ẽ∗Y ⊤ − Y (Ẽ∗)⊤ =

(
I − 1

2
Y Y ⊤

)
ẼY ⊤ − Y Ẽ⊤

(
I − 1

2
Y Y ⊤

)

= −
(
I − 1

2
Y Y ⊤

)
WXY Y

⊤ − Y Y ⊤WX

(
I − 1

2
Y Y ⊤

)
.

We reduce this equation by using the decomposition I = Y Y ⊤ + Y⊥Y
⊤
⊥ (which is the sum of the

orthogonal projections onto the column spaces of Y and Y⊥). We obtain:

Ẽ∗Y ⊤ − Y (Ẽ∗)⊤ = −WX − Y⊥Y
⊤
⊥ WXY⊥Y

⊤
⊥ .

We thus need to prove that Y⊥Y ⊤
⊥ WXY⊥Y

⊤
⊥ = 0. First, we have that

Y⊥Y
⊤
⊥ = I − Y Y ⊤

= I −
(
I − 1

2
WX

)−1(
I +

1

2
WX

)
XX⊤

(
I − 1

2
WX

)(
I +

1

2
WX

)−1

= I −
(
I − 1

2
WX

)−1(
I +

1

2
WX

)
(I −X⊥X

⊤
⊥ )

(
I − 1

2
WX

)(
I +

1

2
WX

)−1

=

(
I − 1

2
WX

)−1(
I +

1

2
WX

)
X⊥X

⊤
⊥

(
I − 1

2
WX

)(
I +

1

2
WX

)−1

,

noticing that the order of matrix products containing WX ’s can be interchanged freely. As a
consequence:

Y⊥Y
⊤
⊥ WXY⊥Y

⊤
⊥ =

(
I − 1

2
WX

)−1(
I +

1

2
WX

)
X⊥X

⊤
⊥

(
I − 1

2
WX

)(
I +

1

2
WX

)−1

×WX ×
(
I − 1

2
WX

)−1(
I +

1

2
WX

)
X⊥X

⊤
⊥

(
I − 1

2
WX

)(
I +

1

2
WX

)−1

=

(
I − 1

2
WX

)−1(
I +

1

2
WX

)
X⊥X

⊤
⊥WXX⊥X

⊤
⊥

(
I − 1

2
WX

)(
I +

1

2
WX

)−1

.

Finally, by the definition of WX we have that X⊤
⊥WXX⊥ = 0, so that Y⊥Y ⊤

⊥ WXY⊥Y
⊤
⊥ = 0.
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Proposition 1 shows that Et can be easily computed from Dt, and conversely. With the re-
sult WYt

(E∗
t ) = −WXt

(D∗
t ), we can now prove the equality between pXt

(Dt) and pYt
(Et).

Equality between pXt
(Dt) and pYt

(Et) A first simple fact can be noted: for X,Y,D,E as in
Proposition 1, we have the decompositions D = XA + X⊥B and E = −Y A + Y⊥C. This is the
direct consequence of the following:

Y ⊤WXY = X⊤

(
I +

1

2
WX

)−1(
I − 1

2
WX

)
WX

(
I − 1

2
WX

)−1(
I +

1

2
WX

)
X = X⊤WXX .

A second simple fact gets to the desired equality: for a tangent vector D at X, we have
the equality 2 ‖D‖2X = ‖WX(D∗)‖2F . This can be seen from decomposition D = XA+X⊥B, by
writing:

WX(D∗) =

(
1

2
XA+X⊥B

)
X⊤ −X

(
1

2
XA+X⊥B

)⊤

= XAX⊤ +X⊥BX
⊤ −XB⊤X⊤

⊥ .

The three terms on the right hand side are orthogonal to each other for the Frobenius inner product,
so that

‖WX(D∗)‖2F =
∥∥XAX⊤

∥∥2
F
+
∥∥X⊥BX

⊤
∥∥
F
+
∥∥XBX⊤

⊥

∥∥
F

= ‖A‖2F + 2 ‖B‖2F = 2 ‖D‖2X .

The previous two facts have two consequences. First, using Proposition 1, we obtain that

‖D‖2X = ‖WX(D∗)‖2F /2 = ‖WY (E
∗)‖2F /2 = ‖E‖2Y .

Second, using ‖D‖2X = 1
2 ‖A‖

2
F + ‖B‖2F , we similarly have

‖D‖2F = ‖A‖2F + ‖B‖2F = ‖A‖2F + ‖D‖2X − 1

2
‖A‖2F = ‖A‖2F + ‖E‖2X − 1

2
‖A‖2F = ‖E‖2F .

As a consequence, the isotropic Gaussian probabilities pXt
(Dt) and pYt

(Et) are equal, as they only
depend on the norms of Dt and Et, which are equal. Note that, since the norm equality holds for
both the canonical norm and the Euclidean norm, both can be used in practice to sample Dt.

Remark. It is likely that stronger relationships can be derived between D and E and their norms.
For instance, it can be checked numerically that the weighted norm defined by

‖D‖2w = w1 ‖D1‖2 + · · ·+ wp ‖Dp‖2 ,

with Dk the k-th column of D, coincides for D and E.

Equality of the Jacobian determinants. The equality between the determinants comes from
a relationship between the Jacobians dCXt(Dt) and dCYt(Et), seen as linear applications. Before
going further, we introduce the extended Cayley transform C̃X , which takes as inputs all matri-
ces D such that the expression of CX(D) is well-defined. The relation between CX and C̃X is
formalized by introducing the canonical injection ιX : TXVnp → R

n×p: we have CX = C̃X ◦ ιX .
We define C̃Y (E) similarly. Finally, we define the orthogonal matrix

KXD =

(
I − 1

2
WX(D∗)

)−1(
I +

1

2
WX(D∗)

)
,

such that C̃X(D) = KXDX. With these definitions, we can state the relationships between the
Jacobians of the Cayley transforms.

Proposition 2. Let X,Y,D,E as in Proposition 1. For H ∈ R
n×p, we have the relations
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1. dCX(D) = dC̃X(D) ◦ ιX
2. dC̃X(D)(dD) =

(
I − 1

2WX(D∗)
)−1

WX(dD∗)
(
I − 1

2WX(D∗)
)−1

X

3. dC̃Y (E) =MXD ◦ dC̃X(−D) ◦ PX ◦M∗
XD ◦DY

with MXD the matrix multiplication by KXD, DX the bijection mapping D = XA+X⊥B to D∗ =
1
2XA+X⊥B, and PX its inverse. As a consequence, denoting RXD = ι∗XPXM

∗
XDDY ιY , we have

dCY (E)∗dCY (E) = R∗
XDdCX(−D)∗dCX(−D)RXD .

Furthermore, RXD is an isometry, so that J(Y,E) = J(X,−D).

Remark. Note that, until this point, D∗ and dD∗ denoted DX(D) and DX(dD); E∗ and dE∗

denoted DY (E) and DY (dE). We keep these conventions in the proof in order to alleviate the
equations.

We prove the above proposition below. In order to conclude on the symmetry of the Metropolis
proposal, we need to show the equality of matrix determinants J(X,−D) = J(X,D). Unfortu-
nately, we did not manage to prove this equality formally, even in the case X = Inp where more
explicit formulas are provided by Jauch et al. [2020b]. However, this property can be verified
numerically: when drawing random matrices X and D for various values of n and p (X uniform
over Vnp and D following an isotropic Gaussian distribution with unit variance), and computing
the Jacobian matrices dCX(D) and dCX(−D) using finite differences, we find that the relative
difference between J(X,D) and J(X,−D) is always of the order of 10−7. Computing the same
quantities using the formulas of [Jauch et al., 2020b, App. C] with tangent vectors at Inp gives
a relative difference of less than 10−15. The variance used in this experiment is typically larger
than the Metropolis transition variance used in this thesis (of the order of 10−2), for which the
numerical gap is even smaller.

With this numerical evidence, it comes that q(Xt, Yt) ≃ q(Yt, Xt). As a consequence, the
Cayley transform of an isotropic Gaussian distribution (isotropic either for the Euclidean or for
the canonical measure) produces a (very close to) symmetric random walk over the Stiefel manifold.
The Metropolis-Hastings ratio simplifies to

α(Xt, Yt) =
π(Xt)

π(Yt)
,

which avoids computing the distribution’s normalizing constant and the density of the transition
kernel.

Proof of Proposition 2. We will prove each statement separately. The adjoint in the definition
of J(X,D) in Equation (3.5) can be taken with respect to either the canonical of the Euclidean
metric without altering the proof (in particular, RXD is an isometry for both the canonical metric
and the Euclidean metric).

Proof of the three relations The first relation dCX(D) = dC̃X(D) ◦ ιX comes directly from the
definition of C̃X . The second relation

dC̃X(D)(dD) =

(
I − 1

2
WX(D∗)

)−1

WX(dD∗)

(
I − 1

2
WX(D∗)

)−1

X

is obtained by differentiating each term in C̃X(D) with basic differentiation rules and composing
them into the result. The third relation takes stock on the fact that

WY (E
∗) = KXDWX(K⊤

XDdE∗)K⊤
XD ,

which is proved as follows, recalling that K⊤
XD = K−1

XD:

WY (E
∗) = dE∗Y ⊤ − Y (dE∗)⊤

= dE∗X⊤K⊤
XD −KXDX(dE∗)⊤

= KXD(K⊤
XDdE∗X⊤ −X(dE∗)⊤KXD)K⊤

XD

= KXDWX(K⊤
XDdE∗)K⊤

XD .
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With this expression of WY (dE
∗), the third equation of the theorem is deduced as follows (using

the fact WY (E
∗) = −WX(D∗)).

dC̃Y (E) =

(
I − 1

2
WY (E

∗)

)−1

WY (dE
∗)

(
I − 1

2
WY (E

∗)

)−1

Y

=

(
I +

1

2
WX(D∗)

)−1

KXDWX(K⊤
XDdE∗)K⊤

XD

(
I +

1

2
WX(D∗)

)−1

KXDX

= KXD

(
I +

1

2
WX(D∗)

)−1

WX(K⊤
XDdE∗)

(
I +

1

2
WX(D∗)

)−1

X

= KXD

(
I +

1

2
WX(D∗)

)−1

WX(DX(PX(K⊤
XDdE∗)))

(
I +

1

2
WX(D∗)

)−1

X

= [MXD ◦ dCX(−D) ◦ PX ◦M∗
XD ◦DY ] (dE)

Proof that RXD is an isometry The map RXD takes inputs from TY Vnp, and maps them
into TY Vnp. The isometry property of RXD can be proved either w.r.t the canonical metric or
w.r.t the Euclidean metric. The proof of both cases is very similar, and we only show the Euclidean
case. Let E = Y A+ Y⊥B ∈ TY Vnp. We have:

M∗
XDDY ιY (E) =

1

2
K⊤

XDY A+K⊤
XDY⊥B

= XA+K⊤
XDY⊥B .

Since Y A and Y⊥B are orthogonal to each other, and since K⊤
XD is an orthogonal matrix, XA

and K⊤
XDY⊥B are orthogonal to each other. In particular, K⊤

XDY⊥B can be written as X⊥C,
with C = X⊤

⊥K
⊤
XDY⊥B. We thus get:

PXM
∗
XDDY ιY (E) = XA+X⊥C ,

which in turn implies that

‖RXD(E)‖2F = ‖ι∗XPXM
∗
XDDY ιY ‖2F

= ‖XA‖2F + ‖X⊥C‖2F
= ‖XA‖2F +

∥∥K⊤
XDY⊥B

∥∥2
F

= ‖A‖2F + ‖B‖2F
= ‖E‖2F ,

which proves that RXD is an isometry. Combining this property with the third formula of the
theorem, we obtain:

J(Y,E) = |dCY (E)∗dCY (E)| = |R∗
XD| · |dCX(−D)∗dCX(−D)| · |RXD| = J(X,−D) .

3.5 Model selection with information criteria

This section briefly reviews the derivations of the two main criteria used for model selection: the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). These criteria
will be used and compared in Chapter 7.

Both methods aim at selecting the best model pm among a family of competitors p1, . . . , pK .
They proceed by comparing the log-likelihoods log pm(y) of each model m for the data y. Com-
paring the “raw” log-likelihoods however gives a flawed view of the models’ performance: it favors
the complex models, which for the same amount of data use more parameters to describe the
variability. They are thus naturally prone to overfitting the data. Information criteria penalize
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the log-likelihoods with terms accounting for the complexity of the model, often measured by the
number of parameters.

Note that this section (as well as Chapter 7) does not pretend to exhaustiveness: a very large
number of model selection criteria exist and have their own purposes and motivations. We chose
to focus on the two most widely used criteria for their simple formulation, their performance
and their interpretability. In particular, we chose not to focus on recent criteria taking stock on
Bayesian formulations of the model selection problem, namely the Watanabe-Akaike Information
Criterion and the Deviance Information Criterion [Watanabe, 2013, Spiegelhalter et al., 2014]. For
a general introduction to information criteria and model selection, we refer the reader to Konishi
and Kitagawa [2008].

3.5.1 The Akaike Information Criterion

The Akaike Information Criterion (AIC) was initially introduced by Akaike [1998]. At the core, it
consists in approximating a model’s generalization error. Given a model p(y | θ), we compute θ̂(y)
the MLE given the data y. The data is assumed to come from an unknown distribution q, which
might not be of the form p( · | θ). The MLE is an estimator of the point θ∗ that minimizes the
Kullback-Leibler divergence to the true data distribution:

θ∗ = argminθ KL[ q || p( · | θ) ] .
We assume that θ∗ is unique and well-defined. Under mild regularity hypotheses, it can be shown
that θ̂(y) converges to θ∗ almost surely as the number of samples goes to infinity [van der Vaart,
1998].

Measuring the model performance with log p(y | θ̂(y)) over-estimates the expected log-likelihood
on new unseen data. Suppose that the data y was generated from a model q(y). Then the expected
error on unseen data is measured by

Eq(x)[log p(x | θ̂(y))] .
If we average this error over the input data y, we obtain the model’s generalization performance:

Eq(x)Eq(y)[log p(x | θ̂(y))] .
This performance cannot be observed in practice, as only the sample y is available. The AIC
assumes that θ̂(y) is sufficiently close to θ∗ to estimate the above quantity using Taylor expansions
around log p(y | θ̂(y)). For a clear and detailed derivation of the AIC, we refer the reader to
[Burnham and Anderson, 1998, Ch. 6]. After some computations, the authors derive the following
asymptotic relation (Eq. 6.31):

Eq(x)Eq(y)[log p(x | θ̂(y))] ≃ Eq(y)

[
log p(y | θ̂(y))

]
− Tr

[
J (θ∗)I(θ∗)−1

]
,

with the definitions 


I(θ) = Ep(x|θ)

[
[∇θ log p(x | θ)] [∇θ log p(x | θ)]⊤

]

J (θ) = Eq(x)

[
[∇θ log p(x | θ)] [∇θ log p(x | θ)]⊤

]
.

The second term of the right-hand side, also called the trace term, is the expected difference
between the likelihood on unseen data y and the likelihood on the training data y. The AIC then
consists in a very simple estimation of the trace term: assuming that the best model p(y | θ∗) is a
good approximation of q(x), we have that J (θ∗) ≃ I(θ∗), so that the trace term is approximately
equal to dim(θ).

In other words, the AIC, which is computed as 2 log p(y | θ̂(y)) − 2 dim(θ), assumes that the
sample size is large enough and that the best model is sufficiently close to q(y) to estimate its
generalization performance. In practice, it penalizes the model complexity by the number of
degrees of freedom in the parameter space.

As a summary, the crucial hypothesis for AIC to be valid is that the models of interest are
good approximations of the true unknown model q(y). It can be shown in specific cases that AIC
is equivalent to cross-validation. Both procedures seek to select the model that gives the best
generalization performances, measured in terms of log-likelihood.
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Remark. Other estimations of the trace term can be considered, and lead to new information
criteria. For instance, Monte-Carlo estimation of the matrices I and J in the trace term leads to
the Takeuchi Information Criterion [Takeuchi, 1976].

3.5.2 The Bayesian Information Criterion

The Bayesian Information Criterion (BIC) was first introduced by Schwarz [1978]; we refer the
reader to [Konishi and Kitagawa, 2008, Ch. 9] for a derivation of its formula, which we briefly
expose here. The BIC adopts a Bayesian perspective on the model selection problem: the model of
interest is a mixture of all candidate models, with a prior π(m) on the set of models. In other words,
the true model is considered a random variable M chosen among the candidate models 1, . . . ,K:

p(y) =

K∑

m=1

π(M = m)pm(y) .

Bayesian model selection then consists in choosing model with the highest posterior probability,
i.e., find the maximum value of

p(M = m | y) ∝ π(M = m)pm(y) .

In the above expressions, the model likelihood pm(y) expresses as an integral over θm:

pm(y) =

∫
pm(y | θm)p(θm)dθm .

As the number of samples grows large, the likelihood pm(y | θm) concentrates around the value of
the MLE θ̂m(y), so that the values outside a small region around θ̂m bring almost no contribution
to the integral. The BIC proposes to approximate pm(y) using a Laplace expansion of this integral,
which formalizes this intuition. The Laplace expansion of a highly concentrated integrand consists
in approximating the integrand by a non-normalized Gaussian distribution. The approximation
then equals the normalizing constant of this distribution.

In the case of interest here, it can be shown that:

log pm(y | θm) = log pm(y | θ̂m) + (θm − θ̂m)⊤ ∇θ log pm(y | θ̂m)︸ ︷︷ ︸
=0

− n

2
(θm − θ̂m)⊤Im(θ̂m)(θm − θ̂m) + o(‖θm − θ̂m‖2) ,

with Im defined as in the previous section for the model pm, and n the number of model samples
in y. This expression is coherent with the classical result that the asymptotic variance of θ̂m is
given by 1

nI(θ̂m)−1 [van der Vaart, 1998].

The Laplace expansion theorem can be applied to the density above: assuming that Im(θ̂m) is
non-singular, we get the approximation

pm(y) ≃ pm(y | θ̂m)(2π)dim θm/2
[
(1/n)dim θm/2|I(θ̂m)|−1/2

]
p(θm) .

Using this equation in the definition of p(M = m | y), we obtain:

log p(M = m | y) = log pm(y) + log π(M = m)− log p(y)

≃ log pm(y | θ̂m)− dim θm
2

log(n)− log p(y)

− 1

2
log |I(θ̂m)|+ dim θm

2
log(2π) + log p(θm) + log π(M = m) .

In the above expression, only the first three terms scale with the number of samples n. The third
term − log p(y) does not depend on m, and does thus not affect the model choice. Hence, neglecting
the constant factors, we obtain the BIC approximation:

BIC = 2 log pm(y | θ̂m)− dim(θm) log(n) .
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This approximation is theoretically consistent, in the sense that if the true model is among the
candidate models, then the BIC will almost surely choose this model asymptotically. From a
conceptual point of view, this criterion is different from the AIC, which seeks the model that best
generalizes to unseen data. The BIC asymptotic consistency cannot be achieved in practice, since
there is never a “true model”. Most statistical models are meant to provide a useful description of
a phenomenon rather than a deep understanding of its inner mechanisms.

From a practical perspective, the main difference between BIC and AIC thus resides in the
strength of the penalty on model complexity. While the AIC penalty remains constant as the
number of samples grows large, the BIC applies a heavier penalty that scales with the logarithm
of the number of samples. For this reason, the BIC naturally tends to favor simpler models. As
discussed in Chapter 7, the stronger penalty of the BIC makes it robust to optimization errors in
the parameter estimation.
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Chapter 4

Sparse Low Rank Decomposition for

Graph Data Sets

This chapter introduces a non-parametric model for network data sets. We characterize graphs
as the sum of a sparse low rank common template and sparse low rank deviations from it. This
structure allows accounting for real-world network properties: their adjacency matrices are sparse,
and a low rank reflects their organization into clusters as well as the role of core nodes. We propose
a variational approach to estimate the template and the deviations based on combined sparse and
low rank regularizers. We solve the related optimization problem using classical proximal methods.
We demonstrate the performance of our decomposition model on both simulated and real data sets.
Analyzing air traffic data, we show that sparsity and low rank lead to interpretable results on the
structure of airline traffic.
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4.1 Introduction

Network science and graph theory are at the core of a wide range of applications. When dealing with
a data set of networks defined on a same set of nodes, understanding the variability among samples
is a crucial issue. In neuroscience, the connections between well-defined brain regions are studied
on groups of subjects to better understand the human brain anatomy and function [Obando et al.,
2019]. Computational social science requires also to analyze the evolution of interactions in a fixed
population [Hanneke et al., 2010]. In this setup, it is interesting to work directly on the networks’
adjacency matrices. Yet, up to our knowledge, comparing such matrices remains a difficult problem.
Kernel methods can be employed to evaluate distances between networks [Ghosh et al., 2018], but
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many theoretically interesting graph kernels require solving NP-hard problems. Other metrics like
the cut norm are used in graph theory, but cannot be computed exactly in polynomial time [Alon
and Naor, 2004]. Consequently, statistical modeling for networks has so far focused on parametric
models like Exponential Random Graph Models, which take stock on a small set of graph features
to characterize a data set’s variability.

Non-parametric modeling for multiple networks has only very recently started to draw some
attention in the literature. Chandna and Maugis [2020] represent networks having a common set
of nodes as samples from an extended graphon model. However, this model does not account for
classical properties of real-world networks like edge sparsity and low rank. On the other hand,
much work has been devoted to extracting a denoised estimate having a sparse structure or a low
rank from a noisy matrix [Oymak and Hassibi, 2011, Richard et al., 2012, Zorzi and Chiuso, 2017,
Kanada et al., 2018], but these techniques have not been used yet in a statistical framework for
graph data sets modeling. The issue we wish to address can be formulated as follows: how can the
variability of graph data sets be accounted for in a non-parametric way? For example, given an
airline network, can we identify the base traffic and how daily traffic fluctuations are structured ?

In this chapter, we model the adjacency matrices of weighted networks sharing a common set of
nodes as additive deviations from a template network which represents the reference interactions.
These template and deviations have a sparse low rank structure corrupted by a sparse noise. We
estimate this decomposition using variational matrix recovery techniques. The Douglas-Rachford
algorithm and the Generalized Forward-Backward algorithm [Raguet et al., 2013] allow solving the
related convex optimization problems. We show that taking advantage of the networks’ common
structure allows efficiently estimating the uncorrupted data. Finally, we show how this decompo-
sition operates on real data sets.

4.2 Related work

The recovery of low rank patterns has been widely addressed in the literature, in domains like robust
principal component analysis [Candès et al., 2011], covariance matrix estimation [Koltchinskii et al.,
2016] or link prediction/matrix completion [Candes and Plan, 2010]. Many of them rely on singular
values analysis and the use of the nuclear norm, and consider sparse noise [Oymak and Hassibi,
2011, Zorzi and Chiuso, 2017, Kanada et al., 2018].

More recently, efforts have been made to denoise matrices with both low rank and sparse
structure. Richard et al. [2012] reconstruct such matrices by combining the nuclear and ℓ1 penalties
and obtain convincing results on both simulated and real data. The same idea is used by Zhou et al.
[2015] to reconstruct covariance matrices, with additional theoretical guarantees on the convergence
rate.

When it comes to averaging networks or adjacency matrices, little has been done in the literature
so far. Kernel methods allow computing the mean of several graphs, but the result is not always a
graph in itself. Stochastic block-models divide the nodes of a graph into a fixed known number K
of clusters with simple interactions [Peixoto, 2020]. This amounts to approximating the adjacency
matrix by a block-wise constant matrix with rank less than K. The recent work of Chandna
and Maugis [2020] allows handling multiple adjacency matrices in a single mathematical object.
However, their work does not compare directly to ours, as they focus on a generalized smooth
graphon estimation procedure which assumes that each network is represented by a one-dimensional
latent code. Aggregating adjacency matrices however seems an important step toward developing
coherent complete statistical framework for graph data sets analysis, and is at the core of the model
and algorithms we propose.

4.3 Model and algorithms

We denote ‖·‖F , ‖·‖1 and ‖·‖∗ respectively the Frobenius (ℓ2) norm, the ℓ1-norm and the nuclear
norm (sum of singular values) over the set of adjacency matrices with a given number of nodes m.

46



4.3.1 Model setup

We are interested in data sets of weighted, possibly non-symmetric adjacency matrices A1, ..., An.
We model each Ai ∈ R

m×m
+ as deriving from a common template matrix T . In the example of the

airline network in the introduction, T can be the daily traffic load and Ai−T the traffic difference
due to sample-specific circumstances and random fluctuations. The difference between Ai and T
is thus decomposed into a deviation Vi and noise εi. The decomposition reads:

Ai = T + Vi + εi (4.1)

The template adjacency matrix T has non-negative coefficients, as do the samples (Ai)
n
i=1. The

template T is assumed to be sparse and have a low-rank structure. Although the network’s per-
turbation Vi is not an adjacency matrix in itself, it also seems reasonable to consider it sparse and
low rank. For instance, if a matrix Ai differs from the template only in the connections of one
given node with its neighbors, the resulting deviation has rank 2. Finally, since Ai is sparse the
noise εi is also sparse.

We want to remove the noise and separate the template from the deviations simultaneously. To
that end, we propose a variational formulation for the decomposition of Eq. (4.1). Our approach
follows the idea of Richard et al. [2012]. In order to denoise an adjacency matrix A, Richard et al.
solve a convex optimization problem to estimate an underlying sparse and low rank ground truth:

S ∈ argmin
S

{ℓ(S,A) + τ ‖S‖1 + τ ‖S‖∗} , (SPLR)

where ℓ is a convex loss. This formulation takes stock on both the sparsity-inducing property of
the ℓ1 penalization and the nuclear norm regularizer, often considered as the convex relaxation of
the matrix rank. Richard et al. [2012] showed that using simultaneously both penalties improves
the matrix recovery in terms of support and Root Mean Square Error (RMSE). Later, a better
penalty was proposed by Richard et al. [2013] to account for both the sparsity and low rank property
in a single regularizer, but the related estimation procedure turns out to be very computationally
demanding, which led us to stick to the first regularization method.

As a generalization of the previous framework, we propose to reconstruct the template T and
the deviations V = (Vi)

n
i=1 by solving the following convex optimization problem:

(T, V ) ∈ argmin
T,V1,...,Vn

{
λ ‖T‖∗ + ρ ‖T‖1 +

n∑

i=1

ℓ(Ai, T + Vi) + µ ‖Vi‖∗ + ν ‖Vi‖1

}
. (SPLRD)

As the noise ε = (εi)
n
i=1 in our model is sparse, the ℓ1 loss seems a natural candidate for ℓ. This

choice has proven useful to denoise adjacency matrices [Kanada et al., 2018]. We also implemented
another version of the algorithm using the ℓ2 loss for comparison purposes.

4.3.2 Algorithms

We propose two algorithms to solve the optimization problems related respectively to the models
with the ℓ1 and ℓ2 losses. The objective functions we consider are non-differentiable, and gradient
descent methods can not be employed. The standard way to deal with this problem is to use
proximal methods. Given a non-differentiable, yet simple function g(x), the proximal operator of g
is given by:

proxτg(x) = argmin
z

{
1

2
‖x− z‖2F + τg(z)

}
.

Algorithm for the ℓ1 loss

The objective function is the sum of simple functions whose proximal operator is known. The
Douglas-Rachford algorithm [Boyd et al., 2011] can be employed here. We introduce duplicate
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variables T∗, T1, V∗, V1 and Y and add equality constraints. The loss becomes:

L(T∗, T1, V∗, V1, Y ) = λ ‖T∗‖∗ + ρ ‖T1‖1 + χ{T∗=T1}

+

n∑

i=1

‖Yi −Ai‖1 + µ ‖V∗,i‖∗ + ν ‖Vi,1‖1 + χ{V∗,i=V1,i} + χ{V∗,i+T∗=Y }

where χE denotes the characteristic function of the set E, which takes value 0 over E and +∞
elsewhere. Let X = (T∗, T1, V∗, V1, Y ), the full loss thus writes L(X) = f(X) + χ(T1,V1,Y )=P (T∗,V∗)

with P a linear operator and f(X) = f1(T∗)+ f2(T1)+ f3(V∗)+ f4(V1)+ f5(Y ), where each fi has
known proximal operator.

Known proximal operators. The proximal operator of f is given by those of the fi:

proxτf (X) = (proxτf1(T∗), ..., proxτf5(Y )) .

Furthermore, each proxτfi derives from the following [Parikh and Boyd, 2014]:

• ℓ1-norm. Let STτ (X) = sgn(X) ⊙ (abs(X) − τ)+ the soft thresholding operator. Then the
proximal operator for the ℓ1-norm is given by proxτ‖·‖1

(X) = STτ (X). Consequently,

proxτ‖·−A‖1
(X) = STτ (X −A) +A .

• Nuclear norm. Given a matrix X, let X = UDiag(λ)V T be the singular value decomposition
of X. Then we have proxτ‖·‖

∗

(X) = UDiag(STτ (λ))V
T

Linear projection. The proximal operator of the indicator function corresponds to projecting
onto the set of constraints C = {X | (T1, V1, Y ) = P (T∗, V∗)}. This projection can be computed
explicitly:

Proposition (Peyré [2018], proposition 42). Let P be a linear operator. The projection of (x, y)
onto the set {(x, y) | y = Px} is given by x̃ = (I + PTP )−1(PT y + x), ỹ = Px̃.

For x ∈ {V∗, V1, Y }, let x̄ = 2
2n+6

∑
i xi. In our optimization problem, this proposition writes:

{
T̃∗ = 3

2n+6 (T∗ + T1) + V̄1 − V̄∗ − Ȳ

Ṽ∗,i = − 1
2n+6 (T∗ + T1)− 1

3 V̄1 +
1
6 V̄∗ +

1
6 Ȳ + 1

3 (V∗,i + V1,i + Yi)

And T̃1 = T̃∗, Ṽ1,i = Ṽ∗,i, Ỹi = Ṽ∗,i + T̃∗. For the computation details, we refer the reader to
Appendix 4.A.

Douglas-Rachford splitting. The numerical scheme is detailed in algorithm 4.3.1. It only
requires choosing parameters θDR for the total step size and τDR for the proximal step size. Unless
specified, the Douglas-Rachford algorithm is run for 200 iterations for every experiment in this
chapter with θDR = 0.9 and τDR = 0.1. We return the global variable Xt in its non-projected
version for two reasons. First, once the algorithm has converged,Xt is extremely close to ProjC(Xt).
Second, the projection ProjC does not preserve sparsity nor low rank. On the contrary, T1 and V1
have null coefficients, and T∗ and V∗ have null singular values. Returning these different values
facilitates the quantitative analysis of the solution.

Algorithm 4.3.1: Optimization for the model with the ℓ1 loss (Douglas-Rachford)

Initialize X0 with T∗ = T1 = 1
n

∑
iAi, V∗,i = V1,i = Ai − T∗, Yi = T∗ + V∗,i

repeat

Z0
t+1 = 2Xt − ProjC(Xt)

Z1
t+1 = 2Z0

t+1 − proxτf (Z
0
t+1)

Xt+1 = (1− θ)Xt + θZ1
t+1

until convergence
return Xfinal = (T∗, T1, V∗, V1, Y )
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Algorithm for the Frobenius norm

The case of the Frobenius norm is simpler:

(T, V ) ∈ argmin
T,V1,...,Vn

{
λ ‖T‖∗ + ρ ‖T‖1 +

n∑

i=1

‖Ai − T − Vi‖2F + µ ‖Vi‖∗ + ν ‖Vi‖1

}
.

Since the objective function now contains a differentiable term, we use the Generalized Forward-
Backward algorithm [Raguet et al., 2013]. Let F (T, V ) =

∑
i ‖T + Vi −Ai‖2F . The GFB algorithm

uses the gradient of F and results in a simpler procedure. The numerical scheme is detailed in
algorithm 4.3.2. It requires two parameters θGFB for the total step size and τGFB for the gradient
step and proximal step sizes. In the experiments of this chapter the Generalized Forward-Backward
algorithm is run for 200 iterations with θGFB = 0.1 and τGFB = 1.5.

Algorithm 4.3.2: Optimization for the model with the ℓ2 loss (Generalized Forward-
Backward)

Initialize T = 1
n

∑
iAi, Vi = Ai − T , T∗ = T1 = T , V∗ = V1 = V

repeat
T∗ = T∗ + θ(proxτλ‖·‖

∗

(2T − T∗ − τ∇TF (T, V ))− T )

T1 = T1 + θ(proxτρ‖·‖1
(2T − T1 − τ∇TF (T, V ))− T )

for i ∈ J1, nK do
V∗,i = V∗,i + θ(proxτµ‖·‖

∗

(2Vi − V∗,i − τ∇Vi
F (T, V ))− Vi)

V1,i = V1,i + θ(proxτν‖·‖1
(2Vi − V1,i − τ∇ViF (T, V ))− Vi)

end

T = (T∗ + T1)/2
V = (V∗ + V1)/2

until convergence
return Xfinal = (T∗, T1, V∗, V1)

As a summary, both algorithms take as input n adjacency matrices A1, ..., An and two step
size parameters. Once they have converged they yield estimates for the template T1 ≃ T∗ and the
deviations V1,i ≃ Vi,∗. As the most time-consuming iteration is the SVD applied in the proximal
operators, the time complexity for one step is O(nm3). With a 2.9GHz Intel Core i5 double core
processor, 200 iterations are completed on 10 graphs with 100 nodes under twenty seconds. The
implementation for both algorithms as well as reproducible code for the experiments can be found
in the supplementary material.

4.4 Experiments on simulated data

We present two experiments on simulated data. First, we perform sparse low rank (SPLR) decom-
position on a simple visual example. In the second experiment we consider more complex simulated
data. We study a case where T and V are not always non-negative and have null expectation, and
a case where both T and V have non-negative symmetric coefficients. The latter allows obtaining
adjacency matrices and compare graph features.

4.4.1 A visual example

In order to get a first grasp on the decomposition action on graph data sets, we first study the
simple case of a population with 100 nodes split into five communities sparsely interacting with
each other. We consider a binary template T corresponding to five fully connected communities
with random sizes, and no interaction between communities. In n = 10 occurrences, all individuals
between two random indices p < q interact with individuals between random indices k < l, forming
an additional block of interactions. Finally, we randomly flip 20% of the edges and get directed
adjacency matrices Ai. We wish to identify the communities, and for each network Ai the additional
interaction.
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We tune the parameters (λ, ρ, µ, ν) using the forest_minimize function as a black box op-
timizer from the scikit-optimize library [Head et al., 2018]. We search the parameters in the
space [0, 50]×[0, 5]×[0, 50]×[0, 5] with a uniform prior for 100 iterations, minimizing the RMSE for
the deviations Vi = Ai−T . We used θDR = 0.1 and ran the algorithm for 400 iterations because of
the strong noise amplitude. The results are shown in Figure 4.1. It can be seen that the template
is recovered accurately despite the small number of samples (n = 10), and most of the noise has
been removed from the variation Vi, even though the estimation is less accurate than T ’s. This is
coherent since the template benefits from multiple samples and the noise considered in strong. Up
to a 0.1 threshold which accounts for the residual noise, 100% of the support was correctly recov-
ered for T and 92% for V . The stripes in the estimates are characteristic of low rank reconstruction
methods.
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Figure 4.1: Estimation results for a simulated example with simple cluster structure. This figure
shows the sample, the mean sample, the ground truth template and deviation and their estimates.

4.4.2 More complex simulated data

Unconstrained sign. We generate non-symmetric random sparse low rank matrices T and Vi
using the method described in Appendix 4.B to obtain a data set of matrices Ai = T + Vi + εi.
The matrix coefficients are not non-negative and thus do not represent actual networks. The
ranks of T and the Vi’s, and the sparsity level in T , V and ε can be chosen freely. Here we
use n = 10 samples, m = 100 nodes, rk(T ) = rk(Vi) = 10, and 70% sparsity in T and the Vi’s.
The results we present do not vary a lot with these parameters. As proved in Appendix 4.B, the
non-zero coefficients in T and V have standard deviation

√
rk(T )(1 − s(T )1/r)/(1 − s(T )) ≃ 1.

The noise εi also has sparsity 0.7, and non-zero coefficients follow a Gaussian distribution with
standard deviation 1.

Non-negative symmetric coefficients. Next, we simulate matrices that may represent actual
weighted undirected networks. To that end we perform the same experiment, except now we impose
that T and V have non-negative, symmetric coefficients. The noise ε is drawn from a symmetric
sparse Gaussian distribution ε0 thresholded to get non-negative coefficients: ε = max(ε0,−T − V ).

Optimization details. We perform parameter selection with the forest_optimize function
of the scikit-optimize library with default arguments, and select the parameters with smallest
RMSE for V . We search the parameters in the space [0, 10]× [0, 10]× [0, 10]× [0, 10] for the ℓ1 loss,
and [0, 20]× [0, 10]× [0, 20]× [0, 10] for the ℓ2 loss. This metric is optimized on 5 random data sets
and evaluated on 5 other random data sets drawn with the same parameters.
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Model evaluation. For both data sets we compute the relative RMSE for the estimation of T
and V . To the best of our knowledge, there is no direct concurrent method to compare our algorithm
with. In order to highlight the benefit of the joint estimation of T and V , we perform a sparse low
rank estimation on the empirical mean of the adjacency matrices M = 1

n

∑
iAi, using the original

method from Richard et al. [2012] with the ℓ1 loss, selecting the parameters on the training data set
with scikit-optimize as for our model. This gives us an estimate TM of T . We then apply the
same method to Ai − TM after performing parameter selection on the training data set, and thus
get an estimate VM of V . These results, as well as the naive decomposition Ai =M + (Ai −M),
are compared to the solutions of the joint optimization problems in Table 4.1.

Graph features. Table 4.1 also shows the relative RMSE for the value of several graph features.
We compared the average weighted node degree d, the clustering coefficient C and the average
shortest path length L. The average shortest path length L was computed with the NetworkX
package [Hagberg et al., 2008] using a decreasing function of the edge weights, accounting for
the cases where these weights represent a connection intensity rather than a cost. We computed a
weighted version C of the clustering coefficient proposed by Opsahl and Panzarasa [2009]. For more
details on the definition and computation of graph parameters, we refer the reader to Appendix
4.C.

Comments. In both cases, our decomposition method greatly improves the estimation of the
template compared to the denoised mean TM . The recovery of T is achieved with very accurately
with few samples (n = 10). Consequently, the estimation of V is improved with respect to VM ,
which is only natural since the estimation of each VM

i is based on a biased matrix Ai − TM .
On the other hand, the error of our decomposition model for Vi is within the expected values
for the one-sample SPLR estimation of Richard et al. [2012]. It can be noticed that, while the
estimation performance of the mean sample and its denoised version worsen when using non-
negative coefficients, the performance of the SPLR decomposition stays good. This result points
out the difference between the template T and the average sample. The ℓ1 loss almost always
beats the ℓ2 loss in Table 4.1, which is coherent since the data was simulated with a sparse noise at
first. The results on graph features also show that the SPLR decomposition estimates the initial
samples in a way that is consistent with a graph structure. This is not surprising for the average
degree which depends linearly on the adjacency matrix, but the average shortest path length and
the clustering coefficient estimations are also improved with respect to the noisy samples. Again,
the ℓ1 loss outperforms the ℓ2 loss, except for the average shortest path. This difference will be
analyzed in future work.

Table 4.1: Mean and standard deviation of the relative RMSE. For matrices with unconstrained
signs we show the error for T and V , and for symmetric non-negative coefficients the error for T , V
and the graph features presented in the text.

SPLRD(ℓ1) SPLRD(ℓ2) (TM , VM ) (M,Ai −M)

Unconstrained sign T .04± .01 .34± .06 .42± .08 .55± .10
V .33± .02 .41± .02 .49± .02 .91± .05

Positive symmetric T .07± .02 .25± .08 .55± .22 .64± .27
V .30± .01 .32± .01 .55± .02 .77± .03

Graph features d .01± .01 .12± .02 .09± .04 .27± .09
L .15± .07 .09± .07 .29± .08 .49± .07
C .03± .01 .34± .04 .35± .03 .09± .02
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Figure 4.2: Decomposition result for US flights data set. This figure shows the template T and
the deviation V1, and a zoom on core cities for T, V1, V2 and V3.

4.5 Experiments on real data

We apply our model on two data sets, which illustrate the decomposition into sparse low rank
template and deviations. Both data sets are available online under CC-By Attribution 4.0 Interna-
tional license. In view of the results in the previous section, we use the decomposition model with ℓ1
loss. For both applications, we need to select parameters to use our algorithm. There is no definite
rule to select these parameters, as often with variational methods. We chose the parameters which
allow observing low rank patterns while keeping the decomposition T + Vi close to Ai.

4.5.1 Airplane traffic network

We use a data set of networks from Williams and Musolesi [2016] listing US domestic airplane flights
every hour for 10 days. We sum the total flight count per day to average day/night variability and
get n = 10 directed weighted adjacency matrices. The obtained networks have m = 299 nodes
corresponding to airports. The matrices have 95% null coefficients and rank at most 123, with
very rapidly decaying singular values. We perform SPLR decomposition with the ℓ1 penalty. We
used (λ, ρ, µ, ν) = (10, 0.1, 5, 0.1), which allowed to observe an interesting result while staying close
to the data (8% relative RMSE between samples and the T + Vi’s for the noise removed).

The estimated template has rank 113 and sparsity 94%. The deviations have rank below 85
and average sparsity 95%. As a comparison, the samples have rank at least 110, with the mean
sample having rank 123. The template and the three first deviations are shown in Figure 4.2. The
cities are ordered according to an algorithmically detected core/periphery structure [Kojaku and
Masuda, 2018] and grouping the nodes from the core and the periphery together.

The recovered template T contains the regular traffic; it is high between the core airline hubs,
weak between the core and the periphery and almost null between nodes from the periphery.
The deviations Vi’s account for the fluctuations in the flights planning, as well as events affecting
airports. In Figure 4.2, V1 is mainly constituted of fluctuations in the core and the impact a
few of the core cities onto the periphery nodes. This impact directly translates into a low rank
perturbation: the strongest pattern in V1 is a reduced activity for New York’s western airport
(10th core node), which is close to a rank 2 perturbation. Two symmetric bright spots indicate
unusually high traffic between Denver and New York’s eastern airport. Similar observations can
be made for V2 and V3.

4.5.2 Functional brain networks

Next we consider a data set of human brains analyzed with functional Magnetic Resonance Imaging
(fMRI) in Waschke et al. [2018]. The nodes represent brain regions and the connections the
temporal correlations between their activity signals. The resulting network represents the brain
functional connectivity, i.e., which brain region tends to activate with each other. Correlation
matrices are not actual adjacency matrices since they take negative values, however the conversion
can be done easily by taking the weights’ absolute value. The study considers n = 49 subjects
with m = 312 brain regions. Each subject is recorded during a resting period and while performing
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Figure 4.3: Mean sample matrices M rest, M task, templates, and deviation and original sample for
the first subject at rest (top row) and performing a task (bottom row)

a listening task. For more details on the data processing, we refer the reader to Waschke et al.
[2018] The adjacency matrices in the data set are not sparse but have very low rank, with only one
or two leading singular values. Our decomposition model can be employed using ρ = ν = 0 and
turn into a low rank template + low rank deviation estimation method. Setting λ = 50, µ = 5, we
run the algorithm first separately on the 49 resting state and the 49 active listening matrices, then
together on the 98 matrices. The three decompositions (T rest, V rest), (T task, V task), (T full, V full)
approximate the samples with relative RMSE at most 3.9%. The results are shown in Figure 4.3.

The templates T rest, T task have relatively low rank (resp. 70 and 166), whereas the tem-
plate T full has rank 284 out of 312, showing that our model is more relevant for each separate
task than for the global data set. Over all three models, the deviation ranks range between 54
and 97. Moreover, the ℓ2 distance between T task and T full is 37% larger than that between T rest

and T full. It indicates that the best template for the whole data set is closer to the resting state
brain. This observation can be linked with the results on simulated data with non-negative devia-
tions Vi: the decomposition identifies a template that best fits the T + Vi model rather than the
average sample. The templates provide a sharper perspective than the means for which region’s
activity changes when performing a task. Note that these templates do not have a unit diagonal,
which is inconsistent with a correlation matrix structure, but coherent since the diagonal is a full
rank term.

4.6 Conclusion

Summary. We have presented a new method to decompose data sets of matrices into a sparse
low rank template, sparse low rank deviations and noise. This model relies on observable properties
of real-world adjacency matrices. We have proposed a procedure to fit this model by optimizing a
convex loss function using known reliable algorithms. These algorithms have proven very efficient
to estimate the underlying template from few samples, recovering the deviations with acceptable
accuracy. We proved that this model is relevant to handle graph data sets and showed that the
algorithm is able to recover graph features from noisy simulated data. This decomposition is suited
to real networks like airplane flights and gives a meaningful interpretation for the variability.

Future directions. The framework studied here opens a natural question: what would be the
statistical modeling counterpart of the optimization problem we considered? The objective function
to be minimized does not correspond to the log-likelihood of a model likely to produce sparse
samples, and could thus not be used directly to define a probabilistic distribution. In the next
chapter we try to address this issue. We propose a hierarchical statistical model that naturally
accounts for the low-rank property of the observed matrices, while allowing to produce sparse
matrices.
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An interesting transition between both chapters can be made by mentioning the work of Durante
et al. [2017]. In this paper, the authors propose to model binary network matrices as Bernoulli
samples of weighted matrices. The weighted matrix of each individual is defined as the sum of
a fixed template and a random low-rank deviation. The authors propose a statistical model to
generate these low-rank deviations comparable to the method we used to generate synthetic data
in this study. In the next chapter, we will be considering that the individual deviation consists
in a variation of the template eigendecomposition, rather than an addition to it. Working with a
parametric model for low-rank matrices will allow estimating these new deviations.

Finally, a comparison can be made between the approach proposed in this chapter and low-
rank tensor approximation methods, which here would consist in finding a low-rank truncation of
the (N,n, n) tensor (A1, . . . , AN ) or the tensor (V1, . . . , VN ). Such methods provide an interesting
alternative to ours, in the sense that the shared low-rank constraint allows leveraging the similarities
between the deviations from the template. They are thus well adapted to describe data sets
where the deviations are strongly structured and share common characteristics from one network
to another. On the contrary, our model makes no assumption on the similarities between the
deviations from the template; it is thus likely to perform better on examples such as in Section
4.4.1, where the deviation structure may strongly vary from one network to another.

4.A Douglas Rachford linear projection

The problem we consider writes as

min
T∗,T1,V∗,V1,Y

λ‖T∗‖∗+ρ‖T1‖1+
n∑

i=1

‖Yi−Ai‖1+µ‖V∗,i‖∗+ν‖V1,i‖∗+χ{Yi=T∗+V∗,i}+χ{V1=V∗}+χ{T1=T∗} .

The constraints can be summarized as P
(
T∗

V∗

)
=
(

T1

V1

Y

)
with P defined as

P =



1 0Tn
0n In
1n In


⊗ Im = P0 ⊗ Im ∈ R

m(2n+1)×m(n+1) .

As explained in the main text, the linear projection onto this set of constraints is known: we seek

to compute x̃ = (I + PTP )−1(PT y + x) and ỹ = Px̃, with x =
(
T∗

V∗

)
and y =

(
T1

V1

Y

)
. We have:

Im(n+1) + PTP = (In+1 + PT
0 P0)⊗ Im

=


In+1 +

[
1 0Tn 1

T
n

0n In In

]

1 0Tn
0n In
1n In




⊗ Im

=

(
In+1 +

[
m+ 1 1

T
n

1n 2In

])
⊗ Im

=

[
m+ 2 1

T
n

1n 3In

]
⊗ Im = Q0 ⊗ Im

Furthermore, is can be checked that the inverse of Q0 is:

Q−1
0 =

1

2m+ 6

[
3 −1T

n

−1n
1
31n1

T
n

]
+

1

3

[
0 0Tn
0n In

]

On the other hand, we have:

PT



T1
V1
Y


+

(
T∗
V∗

)
=

([
1 0Tn 1

T
n

0n In In

]
⊗ Im

)

T1
V1
Y


+

(
T∗
V∗

)

=

(
Y1 + ...+ Yn + T1 + T∗

V1 + Y + V∗

)
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Which gives:

(
T̃∗
Ṽ∗

)
= (Im(n+1) + PTP )−1


PT
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
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
PT



T1
V1
Y


+

(
T∗
V∗

)


=




3
2m+6 (T∗ + T1) + Ȳ − 1
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And we thus also obtain T̃1 = T̃∗, Ṽ1 = Ṽ∗ and Ỹ = T̃∗ + Ṽ∗.

4.B Generating random sparse low rank matrices

Random low rank matrices can be generated from their Singular Value Decomposition (SVD):

M = UDiag(σ1, ..., σr, 0, ..., 0)V
T

With U and V chosen uniformly among orthogonal matrices and σ ∼ N (0, Ir). However, this
method almost never produces sparse matrices: random orthogonal matrices are not sparse, and
there does not seem to be a simple way to draw uniformly from a distribution of sparse orthogonal
matrices.

A convenient way to overcome this hurdle is to give up on the orthogonality constraint on
the columns of an orthogonal matrix. We keep the matrix form M = UDiag(σ1, ..., σr, 0, ..., 0)V

T

with σ defined as before. U , V are now generated with s% null coefficients selected with Bernoulli
variables, and the others drawn from a Gaussian distribution. Such matrices U and V may not
have full rank, so we further impose rk(M) = r. Numerically, it amounts to repeating the process
as long as M does not have sufficient rank.

While the new matrix distribution induced by the form of M is certainly not equivalent to
the one we could be hoping for (sample U and V from sparse orthogonal matrices), it does pro-
duce matrices with desired rank and sparsity level. Let us denote s(M) the percentage of null
coefficients in M . The expected sparsity E[s(M)] = P(Mij = 0) can be deduced from that of U
and V s(U) = s(V ). Hopefully, both are related by the following simple formula:

Lemma 1. Let M = UDiag(σ1, ..., σr, 0, ..., 0)V
T with U and V defined as above, except for the

rank constraint. We have
E[s(M)] = (1− (1− E[s(U)])2)r

or, equivalently, E[s(U)] = 1−
√
1− r

√
E[s(M)]. Furthermore:

Var(Mij |Mij 6= 0) = r
1− r

√
E[s(M)]

1− E[s(M)]
.

Proof. Let M = UDiag(σ1, ..., σr, 0, ..., 0)V
T . Every coefficient in U is defined as follows: we

choose n2 random coefficients Bij
i.i.d∼ B(1 − sU ), and we set Uij = NijBij , with Nij

i.i.d∼ N (0, 1).
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The same goes for matrix V with matrices B′ and N ′. We have, for any indices i, j:

E[s(M)] = P(Mij = 0) = P

(
r∑

k=1

σkUikVjk = 0

)

= P

(
r∑

k=1

σkBikB
′
jkNikN

′
jk = 0

)

= E

[
P

(
r∑

k=1

σkBikB
′
jkNikN

′
jk = 0

∣∣∣∣∣ B,B
′

)]

= E

[
r∏

k=1

(1−BikB
′
jk)

]

= (1− P(BikB
′
jk = 1))r = (1− (1− E[s(U)])2)r

In order to derive the variance of non-zero coefficients, we use the law of total variance:

Var(Mij) = E[Var(Mij | 1Mij=0)] + Var(E[Mij | 1Mij=0 ])

⇐⇒ Var

(
r∑

i=1

σkBikB
′
jkUikVjk

)
= P(Mij = 0)Var(Mij |Mij = 0)

+ P(Mij 6= 0)Var(Mij |Mij 6= 0) + Var(E[Mij | 1Mij=0 ])

We also have Var
(∑r

i=1 σkBikB
′
jkUikVjk

)
= r(1 − E[s(U)])2, Var(Mij |Mij = 0) = 0 and

E[Mij |Mij = 0] = E[Mij |Mij 6= 0] = 0, so we get:

r(1− E[s(U)])2 = P(Mij 6= 0)Var(Mij |Mij 6= 0)

⇐⇒ Var(Mij |Mij 6= 0) = r
(1− E[s(U)])2

1− E[s(M)]
= r

1− E[s(M)]1/r

1− E[s(M)]

using the previous result on E[s(M)].

Remark. The additional constraint we add on rk(M) changes the expected proportion of null
coefficient in U and V , so in theory the matrix M has a slightly different sparsity level than in
lemma 1. However, in practice s(M) and (1− (1− s(U))2)r remains very close for a wide range of
values of s(U).

In the second experiment, we need random sparse low rank matrices with non-negative sym-
metric coefficients. We generate them using the same procedure, replacing Nij by |Nij | and tak-
ing U = V . This distribution does not cover the whole set of random sparse positive symmetric
matrices, but this problem seems even more difficult than the previous one: there is no orthogo-
nal matrix with non-negative coefficients other than permutation matrices. The expected sparsity
changes as U and V are no longer independent, however the difference is numerically negligible
compared to the standard deviation of s(M).

4.C Computing features for weighted networks

Let A be the adjacency matrix of an undirected weighted graph. In the experiments on simulated
sparse low rank matrices, we compute the following graph features:

• The weighted average degree is defined as 1
m2

∑m
i,j=1Aij .
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• The average shortest path length is computed using the NetworkX Python package [Hag-
berg et al., 2008] which implements the Dijkstra algorithm. When running the experiments,
we faced a recurrent problem: randomly generated sparse low rank adjacency matrices are
often not connected, which yields an infinite average shortest path. In order to circumvent
this issue in the numerical computation of the shortest path, we attributed to each edge (i, j)
a cost 1/(Ai,j +0.1). This attributes a cost equal to 10 to non-existing connections, which is
twice as big as the largest coefficients in the simulated data.

• The clustering coefficient -originally defined for binary graphs- measures the tendency of
nodes to cluster together. In this study we compute a weighted version of this coefficient
proposed by Opsahl and Panzarasa [2009]. A triplet of nodes is a set τ = {i, j, k} such that
two or three edges exist between those nodes. Each triplet of nodes is represented by the
geometric mean of its coefficients, denoted by ω(τ). If the triplet forms a triangle (closed
triplet), the three coefficients are used. If one edge is missing, only the two existing edges
are used. The formula for the weighted clustering coefficient writes:

Cweighted =

∑
τ∆∈closed triplets ω(τ∆)∑

τ∈all triplets ω(τ)
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Chapter 5

A Spectral Model for Populations of

Networks

In this chapter, we study the variability within groups of networks, i.e., the structure of connection
similarities and differences across a set of networks. We propose a statistical framework to model
these variations based on manifold-valued latent factors. Each network adjacency matrix is decom-
posed as a weighted sum of matrix patterns with rank one. Each pattern is described as a random
perturbation of a dictionary element. We apply our model on a large data set of functional brain
connectivity matrices from the UK Biobank. Our results suggest that the proposed model accurately
describes the complex variability in the data set with few degrees of freedom.
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5.1 Introduction

Network science is at the core of an ever-growing range of applications. Network analysis [New-
man, 2012] aims at studying the natural properties of complex systems of interacting components
or individuals through their connections. It provides many tools to detect communities [Ni et al.,
2019], predict unknown connections [Martínez et al., 2016] and covariates [Shen et al., 2017],
measure population characteristics [Banks and Carley, 1994, Rubinov and Sporns, 2010] or build
unsupervised low-dimensional representations [Simonovsky and Komodakis, 2018]. The need to
understand and model networks arises in multiple fields, such as social networks analysis [Pozzi
et al., 2016], recommender systems [Monti et al., 2017], gene interactions networks [Narayanan
and Subramaniam, 2013], neuroscience [He and Evans, 2010] or chemistry [Duvenaud et al., 2015].
Network analysis allows accounting for very diverse phenomenons in similar mathematical frame-
works, which lend themselves to theoretical and statistical analysis [Lovász, 2012]. In this chapter,
we are interested in groups of undirected networks that are defined on the same set of nodes. This
situation describes the longitudinal evolution of a given network throughout time or the case where
the nodes define a standard structure identical across the networks. The former is of interest in
computational social science, which studies the evolution of interactions within a fixed population
[Hanneke et al., 2010]. The latter arises naturally in neuroscience, where the connections between
well-defined brain regions are studied on large groups of subjects. The analysis of brain networks
is the main application of the present study. It has proven an efficient tool to discover new aspects
of the anatomy and function of the human brain [Fornito et al., 2016] and remains a very active
research topic [Zheng et al., 2019b].

In this study, we are interested in the variability of undirected graph data sets, i.e., how
graphs defined on a common set of nodes vary from one network to another. Accounting for this
variability is a crucial issue in neuroscience: predicting neurodegenerative diseases or understanding
the complex mechanisms of aging requires robust, coherent statistical frameworks that model the
diversity among a population. Working on such graphs sharing the same nodes allows comparing
them to one another through their adjacency matrices.

The comparison and statistical modeling of such matrices are difficult problems. If all the
graphs have n nodes, a Gaussian model on the n× n adjacency matrices has a covariance matrix
with n4 coefficients, which is hard to interpret and difficult to estimate from a reasonable number
of observations. Considering adjacency matrices as large vectors allows using classical statistical
methods, such as Principal Component Analysis (PCA), but does not take advantage of the strong
structures underlying the interactions between the nodes. Tailored kernel methods can be employed
to evaluate distances between networks, but many theoretically interesting graph kernels require
solving NP-hard problems [Ghosh et al., 2018]. In the field of brain network analysis, graphs
are often modeled and summarized by features like the average shortest path length, which only
partially characterize their structure [Rubinov and Sporns, 2010]. Recent methods relying on
graphs neural networks often consider the nodes of the network to be permutation invariant,
whereas nodes in brain networks play a specific role likely to remain stable across subjects [Fornito
et al., 2016, Damoiseaux, 2017].

In this chapter, we propose a generative statistical model to express the variability in undirected
graph data sets. We decompose the network adjacency matrices as a weighted sum of orthonormal
matrix patterns with rank one. The patterns and their weights vary around their mean values.
Using rank-one patterns allows understanding each decomposition term, while using only few
parameters. This is comparable to PCA where each observation is decomposed onto orthogonal
elements, which in this case would be matrices. The orthogonal patterns are seen as elements of
the Stiefel manifold of rectangular matrices X such that X⊤X is the identity matrix [Chikuse,
2003c]. This model allows us to use known distributions and perform a statistical estimation of the
mean patterns and weights. We use a restricted number of patterns to get a robust model, which
captures the main structures and their variations. This low-dimensional parametric representation
provides a simple interpretation of the structure and the variability of the distribution. Our model
accounts for two sources of variability: the perturbations of the patterns and their weight. In
contrast, current approaches in the literature only consider one of them, as with dictionary-based
models and graph auto-encoders.

The proposed framework is expressed as a generative statistical model so that it can easily be
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generalized to analyze heterogeneous populations. This corresponds to a mixture of several copies
of the former model where each cluster has its own center and variance parameters.

In Section 5.2, we recall relevant literature references for network modeling and statistics on
the Stiefel manifold. Section 5.3 defines our model and further motivates its structure. Section 5.4
proposes an algorithm based on Expectation-Maximization (EM) to perform Maximum Likelihood
Estimation of the model parameters. In Section 5.5, we present numerical experiments on synthetic
and real data. We use our model to predict missing links using the parameters given by the
algorithm. We show how our model can be used to perform clustering on network data sets,
allowing to distinguish different modes of variability better than a classical clustering algorithm.
Applying our method to the UK Biobank collection of brain functional connectivity networks, we
demonstrate that our model is able to capture a complex variability with a limited number of
parameters. Note that the tools we present here could also be used on any type of network, such
as the ones we mentioned above or gene interaction networks.

5.2 Background

5.2.1 Statistical Modeling for Graphs Data Sets

The analysis of graph data sets is a wide area of research that overlaps with many application
domains. In this section, we review the principal trends of this field that are used in statistics and
machine learning.

The first category of statistical models characterizes graphs in a data set (with possibly varying
number of nodes) by a set of features that can be compared across networks, rather than matching
the nodes of one graph to those of another. These features can be, for example, the average shortest
path length, the clustering coefficient, or the occurrence number of certain patterns. Two examples
of such models are Exponential Random Graphs Models [Harris, 2014] and graph kernel methods
[Ghosh et al., 2018]. Other models are defined by a simple, interpretable generative procedure that
allows testing hypotheses on complex networks. The Erdős-Rényi model [Erdős and Rényi, 1959]
assumes that each node has an equal probability of connecting with one another. The Stochastic
Block Model (SBM, [Peixoto, 2020]) extends this model and introduces communities organized
in distinct clusters with simple interactions. In the limit of a large number of nodes, the same
idea gives rise to the graphon model, which has also recently been used to model graph data sets
[Chandna and Maugis, 2020]. Finally, recent machine learning models leverage the power of graph
neural networks [Zhang et al., 2020b] to perform classification or regression tasks. They are used,
for instance, in brain network analysis to predict whether a patient is affected by Alzheimer’s
disease or how the disease will evolve [Banka and Rekik, 2019, Ma et al., 2020].

In this chapter, we consider undirected graphs on a fixed given set of n nodes connected by
weighted or binary edges. This situation arises when studying the evolution of a given network
across time [Westveld and Hoff, 2011] or when considering several subjects whose networks have
the same structure, for instance, brain networks and protein or gene interaction networks. This
constraint allows building models based on the ideas of mean and covariance of adjacency matrices,
otherwise ill-defined when the nodes change across networks. In particular, little work has been
done in the literature so far on the analysis of the variability of graphs in a data set sharing a
common set of nodes. Dictionary-based graph analysis models [D’Souza et al., 2019b] and graph
auto-encoders [Banka and Rekik, 2019, Liu et al., 2019] are interesting frameworks in that regard.
They allow concisely representing a network in a form that compresses the O(n2) adjacency matrix
representation into a smaller space of dimension O(p) or O(np) (where p is the encoding dimension
that characterizes the model). However, they each focus on one aspect of the variability of graph
data sets, either the variations of patterns for graph auto-encoders or the variations of patterns
weights for dictionary-based models. The model proposed in Section 5.3 builds on these ideas and
accounts for both sources of variability in two latent variables that are combined to obtain the
adjacency matrices. These variables are the dominant eigenvalues and the related eigenvectors.

These eigenvectors are regrouped in matrices with orthonormal columns, which makes them
points on the Stiefel manifold introduced in the next section. Statistical modeling of these matrices
requires taking their geometry into account with manifold-valued distributions.
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5.2.2 Models and Algorithms on the Stiefel Manifold

Compact Stiefel Manifolds of Orthonormal Frames

In this chapter, we will be considering latent variables taking values in the compact Stiefel man-
ifold Vn,p, which is defined, for p ≤ n, as the set of n-dimensional p-frames of orthonormal vec-
tors: Vn,p = {X ∈ R

n×p | X⊤X = Ip}. Since an element of Vn,p can be obtained by taking the p
first columns of an orthogonal matrix, the Stiefel manifold can be seen as a quotient manifold from
the orthogonal group, and thus inherits a canonical Riemannian manifold structure. A detailed
and clear introduction to algorithms for optimization and geodesic path computation on the Stiefel
manifold can be found in [Edelman et al., 1998]. More recently, Zimmermann [2017] proposed an
algorithm to compute the Riemannian logarithm associated with the canonical metric, solving the
inverse problem of the geodesic computation.

Von Mises-Fisher Distributions

Various difficulties arise when dealing with statistical distributions on Riemannian manifolds: for
instance, computing the barycenter of a set of points can be a difficult problem, if not even ill-
posed. The normalizing constant of a distribution is often impossible to compute analytically from
its non-normalized density, so Maximum Likelihood Estimation cannot be performed by standard
optimization.

Luckily, tractable distributions on the Stiefel manifolds circumventing some of these problems
have been brought up and studied over the last decades in the research field of directional statistics.
The most well-studied of them is the von Mises-Fisher (vMF) distribution (also called the Matrix
Langevin distribution in some papers) first introduced in [Khatri and Mardia, 1977], which is the
one we will be using in this chapter. Given a matrix-valued parameter F ∈ R

n×p, the von Mises-
Fisher distribution on the Stiefel manifold is defined by its density: pvMF(X) ∝ exp(Tr(F⊤X)).
Written differently, if we denote by f1, ..., fp the columns of F and by x1, ..., xp those of X, we have

pvMF(X) ∝ exp(〈f1, x1〉+ ...+ 〈fp, xp〉) .
In this expression, each xi is drawn toward fi/|fi| (up to the orthogonality constraint). The

norm |fi| can be interpreted as a concentration parameter that determines the strength of the
attraction toward fi/|fi|. The von Mises-Fisher distribution can be considered analogous to a
Euclidean Gaussian distribution with a diagonal covariance matrix: the density imposes no inter-
action between the components of X, so that the only dependency between the columns is the
orthogonality constraint. The equivalent of the Gaussian mode (which is the same as the Gaussian
mean) is given by the following lemma:

Lemma 2. The von Mises-Fisher distribution with parameter F reaches its maximum density
value at X = πV (F ), where πV is an orthogonal projection onto the Stiefel manifold.

Proof. From the definition of the von Mises-Fisher density, we have:

argmaxX⊤X=Ip Tr(F
⊤X) = argmaxX⊤X=Ip −

1

2
Tr(F⊤F ) + Tr(F⊤X)− 1

2
Tr(X⊤X)

= argminX⊤X=Ip

1

2
‖F −X‖2 ,

with ‖·‖ the Frobenius norm. Hence, by definition, πV (F ) maximizes the von Mises-Fisher density.
Note that the projection onto the Stiefel manifold is not uniquely defined, as Vn,p is not convex.

The following lemma allows us to compute such a projection.

Lemma 3. Let M ∈ R
n×p, and M = UDV ⊤ (U ∈ R

n×p, D ∈ R
p×p, V ∈ R

p×p) the Singular
Value Decomposition of M . If M has full rank, then UV ⊤ is the unique projection of M onto the
Stiefel manifold Vn,p.

Proof. Let us consider the Lagrangian related to the constrained optimization problem πV (M) ∈
argminX⊤X=Ip

1
2 ‖M −X‖2:
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L(X,Λ) = 1

2
‖M −X‖2 − Tr(Λ⊤(Ip −X⊤X)) .

Then the Karush-Kuhn-Tucker theorem [Karush, 1939] shows that, if X∗ is a local extremum
of X 7→ 1

2 ‖X −M‖2 over Vn,p, then there exists Λ∗ such that ∇XL(X∗,Λ∗) = 0. This gradient
writes:

∇XL(X∗,Λ∗) = X∗ −M +X∗(Λ∗ + Λ∗⊤)

= X∗(I + Λ∗ + Λ∗⊤)−M = 0 .

Since X ∈ Vn,p and M has full rank, the symmetric matrix Ω = I + Λ∗ + Λ∗⊤ must be invertible,
so that X∗ =MΩ−1. Hence,

Ip = X∗⊤X∗ = Ω−1M⊤MΩ−1 ⇐⇒ Ω2 =M⊤M = V D2V ⊤ .

The matrix square roots of M⊤M are exactly given by the Ω’s of the form V RV ⊤, with

R = Diag(±D11, ...,±Dpp) .

We get X∗ =MΩ−1 = UDR−1V ⊤, which gives the following value for the objective function:

‖M −X∗‖2 =
∥∥U(D −DR−1)V ⊤

∥∥2 =
∥∥D −DR−1

∥∥2 .

As D has a positive diagonal, this function is globally minimized by R = D, so that the unique
projection is X∗ = UV ⊤.

The simple, interpretable density of the von Mises-Fisher distribution comes with several im-
portant advantages. First, it allows using classical Markov Chain Monte Carlo (MCMC) methods
to sample efficiently from the distribution (see Figure 5.1 for examples of distributions over V3,2).
Next, the form of the density makes it a member of the exponential family, which is a key require-
ment to perform latent variable inference with the MCMC-Stochastic Approximation Expectation-
Maximization algorithm (MCMC-SAEM, [Kuhn and Lavielle, 2004]) used in this chapter. Finally,
reasonably efficient algorithms exist to perform Maximum Likelihood Estimation (MLE) of the
parameter F . This point will be further developed in Section 5.4.
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Figure 5.1: One thousand samples of three von Mises-Fisher distributions on V3,2. The mode of the
distribution is represented by two red arrows along the x and z axes, and the two vectors in each ma-
trix by two blue points. The concentration parameters are set to |fz| = 10 and |fx| ∈ [10, 100, 500]
(from left to right). Samples are drawn with an adaptive Metropolis-Hastings sampler using the
transition kernel described in Section 5.4. A stronger concentration of the x vector impacts the
spread of the z vector.
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Application to Network Modeling

Statistical modeling on the Stiefel manifold has proven relevant to analyze networks. By considering
the matrix of the p eigenvectors associated with the largest eigenvalues of an adjacency matrix as
an element of Vn,p, Hoff [2007a, 2009a,b] showed that probabilistic modeling of the eigenvector
matrix on the Stiefel manifold provides a robust representation while allowing to quantify the
uncertainty of each edge and estimate the probability of missing links. In a similar vein, the recent
work of Duan et al. [2020] models data sets of spiked Laplacian matrices by exploiting their low
rank structure; the authors propose a Bayesian approach to estimate the model parameters. Our
model will be compared to these contributions in more detail in the final section.

5.3 A Latent Variable Model for Graph Data Sets

5.3.1 Motivation

We model graphs in a data set by studying the eigendecomposition of their adjacency matrices.
Given such a symmetric weighted adjacency matrix A ∈ R

n×n, the spectral theorem grants the
existence of a unique decomposition A = XΛX⊤ =

∑r
i=1 λixix

⊤
i , where r is the rank of A,

and λ1 ≥ ... ≥ λr and x1, ..., xr are the eigenvalues and the orthonormal eigenvectors of the matrix.
This decomposition is unique up to the sign of the eigenvectors, as long as the non-zero eigenvalues
values have multiplicity-one, which always holds in practice. The interest of this decomposition
for graph adjacency matrices is threefold.

First, the eigendecomposition of the adjacency matrix reflects the modularity of a network,
i.e., the extent to which its nodes can be divided into separate communities. For instance, in the
case of the Stochastic Block Model (SBM), each node i is randomly assigned to one cluster c(i)
among p possible ones. Nodes in clusters c, c′ are connected independently with probability Pcc′ .
In expectation, the adjacency matrix is equal to the matrix (Pc(i)c(j)), which has the rank of p at
most. In samples of the SBM as well as real modular networks, the decay of the eigenvalues allows
estimating the number of clusters. The eigenvectors related to non-zero eigenvalues are used to
perform clustering on the nodes to retrieve their labels.

Furthermore, this decomposition provides a natural expression of A as a sum of rank-one
patterns xix⊤i . Modeling vectors as a weighted sum of patterns is at the core of dictionary learning-
based and mixed effects models, which have proven of great interest to the statistics and machine
learning research communities. In the specific case of graph data sets, such a model was recently
proposed by D’Souza et al. [2019b] in the context of brain networks analysis. The authors learn a
set of rank-one patterns without orthogonality constraints, and estimate the adjacency matrices as
weighted sums of these patterns, in order to use the weights as regression variables. However, they
consider the patterns as population-level variables only. This choice prevents taking into account
potential individual-level variations.

Finally, the dominant eigenvectors yield strong patterns that are likely to remain stable among
various networks in a data set, up to a certain variability. In other words, given N adjacency ma-
trices A(1), ..., A(N) and their eigendecompositions (X(1),Λ(1)), ..., (X(N),Λ(N)), the first columns
of the X(k)’s should remain stable among subjects (up to a column permutation and/or change of
sign). On the contrary, smaller eigenvalues should be expected to correspond to eigenvectors with
greater variability. The recent work of Chen et al. [2020] takes stock of this remark to analyze the
Laplacian matrices of brain networks (the Laplacian is a positive matrix that can be computed
from the adjacency matrix). The authors propose to compute the ℓ1 mean of the X(k)’s first p
columns in order to get a robust average X representative of the population. As the X(k)’s are
composed of p orthonormal vectors, their average should have the same property: it ensures that
the obtained matrix can be interpreted as a point that best represents the distribution. Its def-
inition thus formulates as an optimization problem over the Stiefel manifold Vn,p. The authors
show that taking this geometric consideration into account leads to better results than computing
a Euclidean mean.

In the next section, we introduce our statistical analysis framework. We model the perturbations
of the adjacency matrix eigendecomposition to account for the variability within a network data set.
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5.3.2 Model Description

We propose to account for the variability in a set of networks by considering the random pertur-
bation of both the patterns (X variable) that compose the networks and their weight (λ variable).
In this study, we consider each pattern xi (column of X) and each weight λi to be independent
of one another. This assumption, although a first approximation, leads to a tractable inference
problem and interpretable results. Future works could consider interactions between the xi’s or
the λi’s, as well as the dependency between both.

The model decomposition of each adjacency matrix A(k) in a data set writes

A(k) = X(k)Diag(λ(k))X(k)⊤ + ε(k) (5.1)

with X(k) a pattern matrix, λ(k) the pattern weight vector and ε(k) the symmetric residual noise.
The X(k) and λ(k) are independent unobserved variables that determine the individual-level speci-
ficity of network k. We model these variables as follows:





X(k) i.i.d∼ vMF(F )

λ(k)
i.i.d∼ N (µ, σ2

λIp)

ε(k)
i.i.d∼ N (0, σ2

εIn(n+1)/2).

(5.2)

The matrix F ∈ R
n×p parametrizes a von Mises-Fisher distribution for the eigenvectors ma-

trix X(k), and the eigenvalues λ(k) follow a Gaussian distribution with mean µ ∈ R
p and inde-

pendent components with variance σ2
λ. We further impose that the columns of F are orthogonal:

this constraint ensures that the maximum of the log-density 〈f1, x1〉 + ... + 〈fp, xp〉 is reached
at πV (F ) = (f1/|f1|, ..., fp/|fp|). In this model, the matrix πV (F ) is the mode of the distribution
of patterns and plays a role similar to the mean of a Gaussian distribution. The mode of the
full distribution of latent variables thus refers to (πV (F ), µ). In the particular case where F has
orthogonal columns, the column norms of F correspond to its singular values. In the remainder of
the chapter we call them the concentration parameters of the distribution. The variability of the
adjacency matrices is thus fully characterized by σε, σλ and the concentration parameters. The
pattern weights λ(k) are the eigenvalues of the X(k)Diag(λ(k))X(k)⊤ term, and we thus call them
eigenvalues even though they are not the actual spectrum of the real adjacency matrices A(k). Our
model is summarized in Figure 5.2.

F, µ, σλ, σε, (π)

X(1), λ(1), (z(1)) X(k), λ(k), (z(k)) X(N), λ(N), (z(N))

Parameters

Latent variables

ObservationsA(1) A(k) A(N)

Figure 5.2: Graphical model for a data set of adjacency matrices A1, ..., AN . The variables π
and z(k) can be added to get a mixture model.

Note that this model may be adapted to deal with other types of adjacency matrices. The dis-
tribution for λ(k) can be effortlessly changed to a log-normal distribution to model data sets of
positive matrices like covariance matrices. Binary networks can be modeled by removing the ε(k)

noise and adding a Bernoulli sampling step, considering X(k)Diag(λ(k))X(k)⊤ as a logit. Adjacency
matrices with positive coefficients are considered by adding the softplus function x 7→ log(1 + ex)
in Equation (5.1). These extensions bring a wide range of possible statistical models for adjacency
matrices for which the estimation procedure is the same as the one developed below.
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Equation (5.1) theoretically requires each A(k) to be close to a rank p matrix. While this
assumption is reasonable for well-clustered networks like samples of an SBM, some real-life networks
exhibit heavy eigenvalue tails and cannot be approximated accurately using low rank matrices.
While our model should not be expected to provide a perfect fit on general networks data sets, its
main goal is to retrieve the principal modes of variability and their weight in an interpretable way,
comparable to probabilistic Principal Component Analysis (PCA) or probabilistic Independent
Component Analysis (ICA) [Allassonnière and Younes, 2012]. An important difference with these
methods is that our model expresses each of the p components using only an n-dimensional vector,
whereas PCA and ICA require an n× n matrix per component to model adjacency matrices.

In the case of well clustered networks, our model can be seen as a refinement of the SBM better
suited to data sets of networks. The SBM is designed to handle one single network and mainly
addresses the problem of identifying the communities. In the case of network data sets, all subjects
share the same node labels and the communities can be more easily identified by averaging the
edge weights over the subjects. The main assumption of the SBM that the connections between the
nodes are independent of one another prevents from further analyzing individual-level variability.
In contrast, our model can account for the impact of a node variation on its connections, as well
as pattern variations affecting the whole network. In the limit where the concentration parameters
become very large and the weight variance is small, the patterns become constant, and our model
becomes equivalent to an SBM for networks organized in distinct clusters.

Another remark can be made on the identifiability of the model: the manifold of matrices of
the form XDiag(λ)X⊤ with X ∈ Vn,p, λ ∈ R

p (also known as the non-compact Stiefel manifold)
has a tangent space T with dimension dim(Vn,p) + p = np − p(p − 1)/2 at X(k)Diag(λ(k))X(k)⊤.
The noise ε(k) can be decomposed into components in T and its orthogonal complement T⊤ with
dimension n2 −np+ p(p− 1)/2. The component in T thus induces an implicit source of variability
on X and λ, which depends on σε. We show in the experiment section that it may lead to
underestimating the concentration parameters (|f1|, ..., |fp|). While aware of this phenomenon,
we consider it an acceptable trade-off regarding the simple formulation of Equation (5.2). This
identifiability problem is a rather practical concern, as we will show in the next chapter that the
model parameters can be formally identified.

5.3.3 Mixture Model

The matrix distribution introduced in the previous section can be integrated in a mixture model
to account for heterogeneous populations with a multi-modal distribution. It amounts to con-
sidering K clusters with, for each cluster, a probability πc and a parameter θc = (F c, µc, σc

ε, σ
c
λ).

The mixture model writes hierarchically:





z(k) ∼ Categorical(π)

(X(k) | z(k) = c) ∼ vMF(F c)

(λ(k) | z(k) = c) ∼ N (µc, (σc
λ)

2Ip)

(A(k) | X(k), λ(k), z(k) = c) ∼ N (X(k)Diag(λ(k))X(k)⊤, (σc
ε)

2In(n+1)/2).

(5.3)

We show in the next section on parameter estimation that the mixture layer only comes at a
small algorithmic cost.

5.4 A Maximum Likelihood Estimation Algorithm

We now turn to the problem of estimating the model parameters θ = (F, µ, σλ, σε) given a set of
observations (A(k))Nk=1. Let us denote λ ·X = XDiag(λ)X⊤. The complete likelihood is expressed
as:

p((A(k)), (X(k)), (λ(k)); θ) =

N∏

k=1

p(A(k) | X(k), λ(k); θ)p(X(k); θ)p(λ(k); θ)
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with




p(A(k) | X(k), λ(k); θ) = 1
|σε|n

2 (2π)n2/2
exp

[
− 1

2σ2
ε
‖A(k) − λ(k) ·X(k)‖2

]

p(X(k); θ) = 1
Cn,p(F ) exp

[
Tr(F⊤X(k))

]

p(λ(k); θ) = 1
|σλ|p(2π)p/2

exp
[
− 1

2σ2
λ
‖λ(k) − µ‖2

]

We compute the maximum of the observed likelihood p((A(k)); θ) using the MCMC-SAEM
algorithm introduced in the next section. The MLE is not unique, as a permutation or a change
of sign in the columns of X (together with a permutation of λ) yield the same model. This
invariance can be broken by sorting the eigenvalues µ in increasing order as long as they are
sufficiently spread. However, in practice, several eigenvalues may be close, and imposing such
an order hinders the convergence of the algorithm. We thus choose to leave the optimization
problem unchanged and deal with the permutation invariance by adding a supplementary step to
the MCMC-SAEM algorithm.

5.4.1 Maximum Likelihood Estimation with the MCMC-SAEM Algo-
rithm

When dealing with latent variable models, the main tool for MLE is the Expectation-Maximization
(EM) algorithm [Dempster et al., 1977]. Given a parametric model p(y, z; θ) with y an observed
variable and z a latent variable, the MLE amounts to maximizing log p(y; θ) = log

∫
p(y, z; θ)dz,

which is intractable in practice with classical optimization routines. The EM algorithm allows
indirectly maximizing this objective by looping over two alternating steps:

1. E-step: Using the current value of the parameter θt, compute the expectation

Qt(θ) = Ep(z|y;θt)[log p(y, z; θ)] ;

2. M-step: Find θt+1 ∈ argmaxθ Qt(θ).

While the EM algorithm proves efficient to deal with simple models like mixtures of Gaussian
distributions, it requires adaptation for the cases of more complicated models where the expectation
in the Qt(θ) function is intractable, and the distribution p(z | y, θn) cannot be explicitly sampled
from to approximate the expectation.

The Markov Chain Monte Carlo-Stochastic Approximation EM algorithm (MCMC-SAEM)
developed by Kuhn and Lavielle [2004] aims at overcoming these hurdles in the case of mod-
els belonging to the Curved Exponential Family. For such models, the log-density expresses
as log p(y, z; θ) = 〈S(y, z), ϕ(θ)〉 + ψ(θ), where S(y, y) is a sufficient statistic. The Qt function
then simply rewrites Qt(θ) = 〈Ep(z|y;θt)[S(y, z)], ϕ(θ)〉 + ψ(θ). In the MCMC-SAEM algorithm,
the expectation of sufficient statistics is computed throughout iterations using Stochastic Approx-
imation. The samples from p(z | y; θt) are drawn using a MCMC kernel q(z | zt; θt) with invariant
distribution p(z | y; θt). The procedure is recalled in Algorithm 5.4.1. Under additional assump-
tions on the model and the Markov kernel, the MCMC-SAEM algorithm converges toward a critical
point of the initial objective log p(y; θ) [Allassonnière et al., 2010].

In the case of the model proposed in this chapter, the MCMC-SAEM is well suited to the
problem at hand as we have to deal with a latent variable model. In a setting with manifold-valued
latent variables, the E-step of the SAEM algorithm becomes intractable; using the MCMC-SAEM
allows overcoming this hurdle. Following the outline of Algorithm 5.4.1, we need to draw samples
from p(X(k), λ(k) | A(k); θ) and perform the maximization step using the stochastic approximation
of sufficient statistics.

5.4.2 E-Step with Markov Chain Monte Carlo

Transition Kernel

The target density p(X(k), λ(k) | A(k); θ) is known up to a normalizing constant, and it is sufficient
to use MCMCs based on the Metropolis-Hastings acceptance rule [Hastings, 1970]. Using a gen-
eral sampler such as Metropolis-Hastings allows keeping a unified MCMC structure, only slightly
varying when changing the type of observed matrices, e.g., weighted matrices and binary matrices.
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Algorithm 5.4.1: The MCMC-SAEM Algorithm
Initialize θ0, z0 and S0

repeat
Simulate zt+1 ∼ q( · | zt; θt) using MCMC
Update St+1 = (1− αt)St + αtS(y, zt+1)
Find θt+1 ∈ argmaxθ〈St+1, ϕ(θ)〉+ ψ(θ)

until convergence
return θT , (zt)Tt=1

The MCMC is structured as a Metropolis within Gibbs sampler alternating simulations of X(k)

and λ(k) for each individual. Note that conditional density p(λ(k) | X(k), A(k); θ) is a Gaussian
distribution. However, when experimenting with the MCMC-SAEM, we find that using Metropolis-
Hastings-based transitions rather than sampling directly from the true conditional distribution
accelerates the Markov chain convergence. This is why we perform a Metropolis-Hastings within
Gibbs sampler for both variables [Robert and Casella, 2010]. We generate proposals for λ with a
symmetric Gaussian kernel with adaptive variance in order to reach a target acceptance rate. We
also use a symmetric Metropolis Hastings transition for X, with the constraint that the variable
stays on the Stiefel manifold. As explained in Chapter 3 (Section 4.3), a viable option is to use the
curves given by the Cayley transform as in Li et al. [2020b]: Cayley curves can be considered a fast
first-order approximation of the exponential map and produce symmetric transitions. Symmetric
Metropolis-Hastings was already used on the Stiefel manifold by [Ouyang, 2008, Ch. 2, p. 20];
such methods allow for a proposal-agnostic MCMC, particularly convenient in cases like the model
proposed in this chapter where the posterior density corresponds to no canonical distribution.

Remark. Our numerical implementation offers the possibility to use the Metropolis Adjusted
Langevin Algorithm (MALA) instead of Metropolis-Hastings, as the gradient of the log-likelihood
can be computed explicitly. While the experiments we have presented rely on the Metropolis-
Hastings kernel, which is faster overall, we find that in some cases where the dimensions n and p
grow large the MALA kernel allows accelerating the convergence.

Permutation Invariance Problem

The non-uniqueness of the MLE translates into a practical hurdle to the convergence of the MCMC:
if two eigenvalues µi, µj are close, we get (µi, µj) ·(xi, xj) ≃ (µj , µi) ·(xi, xj). As a consequence, the
distribution p(X(k), λ(k) | A(k); θ) is multi-modal in X(k), with a dominant mode close to πV (F )
and other modes corresponding to column sign variations and permutations among similar eigen-
values. These modes are numerical artifacts rather than likely locations for the true value of X(k).
Exploring them in the MCMC-SAEM hinders the global convergence: they encourage the samples
to spread over the Stiefel manifold, which in turn yields a very bad estimation of F by inducing a
bias toward the uniform distribution.

We address the permutation invariance problem by adding a column matching step every five
SAEM iterations for the first third of the SAEM iterations. This step is a greedy algorithm that
aims at finding the column permutation of a sample X(k) that makes it closest to M = πV (F ). It
proceeds recursively by choosing the columns mi, xj with the greatest absolute correlation. The
steps are summarized in Algorithm 5.4.2. The greedy permutation algorithm causes the MCMC
samples to stabilize around a single mode, allowing estimation of the F parameter.

5.4.3 M-Step with Saddle-Point Approximations

The maximization step of the MCMC-SAEM algorithm has a closed form expression, except for
the parameter F . In this section, we recall a method to estimate F in a general setting and apply
this method to get the optimal model parameters given sufficient statistics.
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Algorithm 5.4.2: Greedy column matching

input F ∈ R
n×p, X ∈ Vn,p

Compute M = πV (F ), D = (〈mi, xj〉)pi,j=1

Let I = J = {1, ..., p}
Let σ = (0, ..., 0) (column order), η = (0, ..., 0) (column sign)
for t ∈ [1, ..., n] do

Find it, jt ∈ argmaxi∈I,j∈J |Dij |
Set σ(jt) = it, η(it) = sign(Ditjt)
Set I = I\{it}, J = J\{jt}

end

return σ, η

Maximum Likelihood Estimation of von Mises-Fisher Distributions

The main obstacle to retrieving the parameter F given samples X1, ..., XN is the normalizing
constant of the distribution: though analytically known, it is hard to compute in practice (see Pal
et al. [2020] for a computation procedure when n = 2). Jupp and Mardia [1979] proved that the
MLE exists and is unique as long as p < n and N ≥ 2, or p = n and N ≥ 3. Khatri and Mardia
[1977], who first studied the properties of the MLE, showed the following result:

Theorem 1 (Khatri and Mardia [1977]). Let X1, ..., XN be N samples from a von Mises-Fisher
distribution and X = 1

n

∑n
i=1Xi. Let X = UDV ⊤ be the Singular Value Decomposition (SVD)

of X. Then the Maximum Likelihood Estimator can be written under the form F̂ = UDiag(ŝ)V ⊤,
with ŝ ∈ R

p
+.

Maximizing the log-likelihood of samples X1, ..., XN is thus equivalent to solving the optimiza-
tion problem

argmaxs∈Rp Tr[VDiag(s)U⊤X]− log Cn,p(UDiag(s)V ⊤), (5.4)

where Cn,p(F ) is the normalizing constant of the vMF distribution.
Several methods were proposed to solve this problem: the authors of Khatri and Mardia [1977]

provide approximate formulas when the singular values of F are all either very large or very small.
The authors of Kume et al. [2013] propose a method to approximate the normalizing constant,
which in turn yields a surrogate objective for the MLE giving satisfactory results. Finally, in Ali
and Gao [2018], a different formula is proposed, which applies when the singular values are small.
When experimenting with von Mises-Fisher distributions, we found that the method proposed by
Kume et al. [2013] gives the most robust results for a wide range of singular values of F , even in
a high-dimensional setting.

Application to the Proposed Model

Computational details for the likelihood rearrangement are deferred to Appendix 5.A. The model
belongs to the curved exponential family, and its sufficient statistics are:

S(A,X, λ) =





S1 = 1
N

∑N
k=1X

(k)

S2 = 1
N

∑N
k=1 λ

(k)

S3 = 1
N

∑N
k=1

∥∥λ(k)
∥∥2

S4 = 1
N

∑N
k=1

∥∥A(k) − λ(k) ·X(k)
∥∥2 .

These sufficient statistics are updated using the MCMC samples (X
(k)
t , λ

(k)
t )Nk=1 with the

stochastic approximation St+1 = (1 − αt)St + αtS(A,Xt, λt). The optimization problem defined
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by the M-step of the SAEM algorithm gives the following results:

θ̂t =





F̂ = F̂ (S1
t )

µ̂ = S2
t

σ̂2
λ = 1

p

(
‖µ̂‖2 − 2〈µ̂, S2

t 〉+ S3
t

)

σ̂2
ε = 1

n2S
4
t ,

(5.5)

where F̂ (S1
t ) denotes the MLE of the von Mises-Fisher distribution. As explained in the section

above, the method proposed by Kume et al. [2013] allows estimating the normalizing constant of
general Fisher-Bingham distributions. The approximation relies on rewriting the constant to make
it depend on a density that fits into the framework of Saddle-Point Approximations [Butler, 2007].
We recall the main steps of the computation procedure for this approximation in Appendix 5.A
for the specific, simple case of vMF distributions.

In the definition of our model, we impose that the columns of F are orthogonal. As recalled
in Section 5.2.2, the MLE for the vMF mode is M = UV ⊤, where X = UDV ⊤ is the SVD of
the empirical arithmetic mean of samples. Since the column norms correspond to the singular
values when the columns are orthogonal, the MLE under this constraint can be sought under the
form MDiag(s). Hence, the optimization problem is used to estimate F :

argmaxs∈Rp Tr[Diag(s)M⊤X]− log Ĉn,p(MDiag(s)) , (5.6)

with Ĉn,p the approximation of the normalizing constant. We solve this optimization problem using
the open source optimization library scipy.optimize.

The complete procedure is summarized in Algorithm 5.4.3.

5.4.4 Algorithm for the Mixture Model

The mixture model adds a cluster label z(k) for each subject and a list π of cluster probabil-
ities. The model still remains in the curved exponential family, and the MCMC-SAEM algo-
rithm can still be used. The Gibbs sampler now also updates z(k): it consists of sampling from
the probabilities p(z(k) | X(k), λ(k), A(k);π, θ), which can be computed explicitly. The sufficient
statistics S1, S2, S3, S4 are defined and stored for each cluster. The statistics of cluster c are
updated using only the indices k such that z(k) = c. The variable π adds new sufficient statis-
tics: Sπ = (#{k | z(k) = c}/N)Kc=1. The related MLE estimate of π is π̂ = Sπ.

In our implementation, we initialize the clusters using the K-Means algorithm. We use the
tempering proposed by Debavelaere et al. [2020] for the z sampling step in order to encourage
points moving between clusters at the beginning of the algorithm. The vMF parameters F c are
aligned every 5 SAEM iterations using Algorithm 5.4.2 in order to allow the latent variables to
move between the regions of influence of different clusters through small Metropolis-Hastings steps.
The resulting algorithm is detailed in Appendix 5.C.

5.4.5 Numerical Implementation Details

We initialize the algorithm by taking the first eigenvectors and eigenvalues of each adjacency
matrix. Algorithm 5.4.2 is used to align the eigenvectors between samples. In order to accelerate
the convergence, we perform a small number of hybrid MCMC-SAEM steps at the start of the
algorithm, where the MCMC step onX is replaced with a gradient ascent step on the log-likelihood.
These first steps move the X(k)’s to an area of Vn,p with high posterior probability, which accelerate
the convergence of the MCMC, as the X variable is the slowest to evolve along the MCMC-SAEM
iterations. The Riemannian gradient ascent is detailed in Appendix 5.B.

The Metropolis-Hastings transition variance is selected adaptively throughout the iterations
using stochastic approximation. At SAEM step t + 1, the proportion of accepted Metropolis
transitions is computed. The logarithm of the variance is then incremented according to the
rule log σt+1

MH = log σt
MH + ℓt/2t

0.6, with ℓt = ±1 depending on whether the proportion of accepted
jumps should be increased or decreased.
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Algorithm 5.4.3: Maximum Likelihood Estimation algorithm for θ = (F, µ, σε, σλ)

Initialize θ0, X0, λ0 and S0

for t = 1 to T do

if t ≤ T/3 and (t mod 5) = 0 then

for k = 1 to N do

Use Algorithm 5.4.2 to align X(k)
t with πV (Ft).

Permute λ(k)t accordingly.
end

end

Set X̃(k)
0 = X

(k)
t and λ̃(k)0 = λ

(k)
t

for ℓ = 1 to nMCMC do

for k = 1 to N do

Sample X̃(k)
ℓ from the Metropolis kernel qX( · | X̃(k)

ℓ−1, λ̃
(k)
ℓ−1; θt)

targeting p(X(k) | A(k), λ̃
(k)
ℓ−1; θt)

Sample λ̃(k)ℓ from the Metropolis kernel qλ( · | X̃(k)
ℓ , λ̃

(k)
ℓ−1; θt)

targeting p(λ(k) | A(k), X̃
(k)
ℓ−1; θt)

end

end

Set X(k)
t+1 = X̃

(k)
nMCMC and λ(k)t+1 = λ̃

(k)
nMCMC

Update the sufficient statistics St+1 = (1− αt)St + αtS(A,Xt+1, λt+1)
Compute µt+1, (σε)t+1 and (σλ)t+1 using Equation (5.5).
Compute Ft+1 by solving problem (5.6).

end

return θT , (Xt, λt)
T
t=1

During the first half of the T iterations we set αt = 1 in order to minimize the impact of poor
initializations. Then αt decreases as 1/(t − T/2)0.6, which ensures the theoretical convergence of
the algorithm.

The algorithms as well as all the experiments presented in this chapter are implemented with
Python 3.8.6. The package numba [Lam et al., 2015] is used to accelerate the code. We provide
a complete implementation1, which allows reproducing the experiments on synthetic data and
running the algorithm on new data sets.

5.5 Experiments

5.5.1 Experiments on Synthetic Data

Parameters Estimation Performance

First we investigate the ability of the algorithm to retrieve the correct parameters when the data
are simulated according to Equations (5.1) and (5.2). We test the case (n = 3, p = 2), referred to as
low-dimensional, whereX can be visualized in three dimensions as well as the case (n = 40, p = 20),
referred to as high-dimensional.

Small Dimension. We choose F with two orthogonal columns uniformly in V3,2 with column
norms (25, 10). Using these low concentration parameters makes the results simple to visualize.
We set µ = (20, 10) and σλ = 2, and generate N = 100 matrices A(k) with σε = 0.1 and 100 other
matrices with the same X(k)’s and λ(k)’s but a much stronger noise standard deviation σε = 4. We
run the MCMC-SAEM algorithm for 100 iterations with 20 MCMC steps for each maximization
step. The results are shown in Figure 5.3. In both cases, the mode of the vMF distribution πV (F )
is well recovered. In the small noise case, the posterior X samples closely match the true X

1https://github.com/cmantoux/graph-spectral-variability
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samples, and the estimated concentration parameters (23.7, 8.0) remain close to ground truth. In
the strong noise case, the posterior samples spread much farther around F̂ than the true samples:
the estimated concentration is (9.9, 2.8). This result highlights the remark in Section 5.3.2 on the
bias induced by the Gaussian noise on the latent variable spread: the best X variable to estimate
the matrix A(k) is moved apart from the true X(k) in a random direction because of the noise ε(k)

living outside the manifold.
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Figure 5.3: True latent variables X(k) and their posterior MCMC mean estimation. The red arrows
represent the true πV (F ) parameter and its estimate πV (F̂ ). (a) The true mode and samples. (b)
Mode and samples estimates when σε = 0.1. (c) Mode and samples estimates when σε = 4.
The columns are rearranged using Algorithm 5.4.2 to ease visualization. The latent variables are
accurately estimated when the noise is small. A stronger noise causes the estimated latent variables
to spread over the Stiefel manifold.

High Dimension. We now consider a synthetic data set of N = 200 samples generated from 20
latent patterns in dimension 40 and σε = 1, σλ = 2, with various sizes of concentration parameters
and eigenvalues, pairing large eigenvalues together with high concentrations. We run the MCMC-
SAEM algorithm for 100 iterations with 20 MCMC steps per SAEM iteration to obtain convergence.
The convergence of the parameters is shown in Figure 5.4. For both the concentration parameters
and the eigenvalues, the algorithm starts by finding the highest values, only identifying lower values
progressively afterward. The lowest values are associated to patterns with low weight, hence their
recovery is naturally more difficult. As in the previous sections, the concentration parameters tend
to be underestimated, indicating wider spreading around the mode vectors fi/|fi| than the original
latent variable. However, the ordering and orders of magnitude of the concentrations stay coherent,
which, in practice, allows interpreting them and comparing them to each other. The estimation F̂
matches the true parameter with a relative Root Mean Square Error (rRMSE) of 28%. As can be
seen in Figure 5.5, the estimated normalized columns closely correspond to the original ones except
when the concentration parameters get too small to allow for a good estimation, as explained above.

We use this example to illustrate the role of the algorithm hyperparameters on the practical
convergence, namely the number of MCMC steps per SAEM iteration and the column matching
step. We consider the same data set, but we initialize the MCMC-SAEM algorithm with random
latent variables instead of the method described in Section 5.4: this worst-case initialization high-
lights the differences between the settings more easily. It is also closer to the case of real data sets:
the MCMC and model parameters are slower to converge on real data, as the adjacency matrices
are not actual samples of the theoretical model distribution. For different numbers of MCMC steps
per SAEM iterations, we run the MCMC-SAEM algorithm for 200 iterations 10 times to average
out the random initialization dependency, with and without the column matching step. Then we
compute the relative RMSE of the parameters F and µ at the end of the algorithm. The rRMSE
averaged over the 10 runs is shown in Figure 5.6. It can be seen that when the column matching
step is used, increasing the number of MCMC steps at a fixed number of SAEM iterations im-
proves the estimation. It allows accelerating the convergence, as MCMC steps are faster than the
maximization step (which requires repeated vMF normalizing constant computations). However,
when the number of MCMC steps gets too large, the performance improvement stagnates while
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the execution time increases. We find that, in practice, using between 20 and 40 MCMC steps per
SAEM iterations is a good compromise in terms of convergence speed. Figure 5.6 also illustrates
the need for the column matching step proposed in Section 5.4: when not used, the parameters
hardly converge to the right values, even with many MCMC steps per SAEM iteration. When
the eigenvectors are permuted differently across the samples, the related eigenvalues cannot be
estimated accurately, as they mix together when averaged in the maximization step. The absence
of permutations also spreads the eigenvectors over the Stiefel manifold, which prevents estimating
the von Mises-Fisher parameter. Since Algorithm 5.4.2 is very fast to execute, it is not a computa-
tional bottleneck. In our experiments, the number of SAEM iterations between successive column
permutation steps did not have a significant impact as long as it was not too high: values between
5 and 20 produced similar results.

Model Selection. In all the experiments on simulated data presented in this chapter, we
use the correct number of columns p, which we assume to be known. However, when study-
ing real data sets, classical model selection procedures like the Bayesian Information Criterion
cannot be applied to our model: they require computing the complete probability of the observa-
tions p(A | θm) =

∫
Vn,p

∫
Rpm

p(A | X,λ, θm) dX dλ for each model θm. This probability cannot be
computed explicitly, as it requires integrating over the Stiefel manifold, which results in intractable
expressions using the matrix hypergeometric function [Kume et al., 2013].
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Figure 5.4: Convergence of the concentration parameters (|f1|, . . . , |fp|) (left) and the mean eigen-
values µ (right) over the SAEM iterations. The red lines represent the values of the parameters
along the iterations. The black dotted lines represent the true values, which are grouped in batches
to ease visualization. The convergence is fastest for the large eigenvalues and concentration param-
eters. At the start of the algorithm, the biggest changes in the parameters come from the greedy
permutation performed every 5 iterations. As explained in the text, the concentration parameters
are underestimated. However, they keep the right order of magnitude, which allows interpreting
the output of the algorithm in practice.

In practice, several tools can be used to choose the number of latent patterns. First, the
marginal likelihood p(A | X,λ; θ) or the error ‖A− λ ·X‖ can be used to evaluate the model
expressiveness. As p increases, the error will naturally diminish and should be very small for p = n.
As with linear models, the proportion of the variance captured by λ·X can be computed to evaluate
the improvement gained by adding new patterns. The concentration parameters of the von Mises-
Fisher distribution also give important information on pattern relevance: if a pattern has a very
low concentration parameter, it means that the related eigenvectors are widely spread across the
Stiefel manifold. Smaller concentrations are thus related to overfitting, as they do not correspond
to actual patterns contributing to the data set variability. The relative importance of concentration
parameters can be compared numerically with the vMF concentration obtained on samples from
the uniform distribution gathered with Algorithm 5.4.2.

Remark. In this chapter, we approximate the posterior mean of MCMC samples of X(k) by
projecting their arithmetic mean over the Stiefel manifold. We find this procedure a very convenient
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Figure 5.5: Von Mises-Stiefel distribution parameter F and its estimation F̂ . (Top row): the two
parameters and their difference. (Bottom row): mode of the true distribution (given by πV (F )),
mode of the estimated distribution πV (F̂ ) and their difference. The images show each matrix as
an array of coefficients, with pixel color corresponding to coefficient amplitude. Since the matrix
columns are orthonormal, the projection just consists of normalizing the columns. The columns
are sorted by decreasing the concentration parameter. The normalized columns of F corresponding
to the smallest concentration parameters are estimated with less precision.
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Figure 5.6: Relative RMSE of parameters F and µ after 100 MCMC-SAEM iterations depending
on the number of MCMC steps per SAEM iteration. Results are averaged over 10 experiments
to reduce the variance. The shaded areas indicate the extremal values across the repeated exper-
iments. When using the greedy permutation, the rRMSE decreases rapidly when the number of
MCMC steps increases before stabilizing. On the other hand, without the permutation step, the
performance stays poor for any number of MCMC steps per maximization, as the parameters can-
not be estimated correctly. In this experiment only, the latent variables are initialized at random
to highlight the result.
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alternative to computing the Fréchet mean (i.e., the Riemannian center of mass) over the manifold
for two reasons. First, computing the Fréchet mean requires an extensive use of the Riemannian
logarithm. Although a recent paper [Zimmermann, 2017] allows computing this logarithm, the
proposed algorithm heavily relies on matrix logarithm computations and requires points to remain
very close to the mean. Similar iterative algorithms to compute the mean based on other retraction
and lifting maps than the Riemannian exponential and logarithm were proposed and analyzed in
Kaneko et al. [2013], but in our experiments, these alternatives also turn out to require samples
close to the mean point, especially in high dimensions. Second, projecting the mean sample onto the
Stiefel manifold amounts to computing the mode of a vMF distribution. As shown in Appendix
5.D, the vMF distribution is symmetric around its mode, which makes this mode a summary
variable similar to the Gaussian mean.

Missing Links Imputation

Once the parameters θ̂ are estimated from adjacency matrices A1, ..., AN , missing links can be in-
ferred on a new adjacency matrix A. Suppose that only a subset Ω of the edge weights is known: the
weights of masked edges Ω can be obtained by considering the posterior distribution p(AΩ | AΩ; θ).
This distribution is obtained as a marginal density of the full posterior p(AΩ, X, λ | AΩ; θ). Sam-
pling from this distribution yields a posterior mean as well as confidence intervals for the value
of missing links. In the case of binary networks, the posterior distribution gives the probability
of a link existing for each masked edge. Samples are obtained by Gibbs sampling using the same
method as in Section 5.4. We also compute the Maximum A Posteriori (MAP) by performing
gradient ascent on the posterior density of (AΩ, X, λ) given AΩ.

We generate a synthetic data set of N = 200 adjacency matrices with n = 20 nodes and p = 5.
The noise level σε is chosen such that the average relative difference between the coefficients
of A(k) and λ(k) · X(k) is 25%. We estimate the model parameters using the MCMC-SAEM
algorithm. Then, we generate another 200 samples from the same model. We mask 16% of the edge
weights corresponding to the interactions between the last eight nodes. The posterior estimation is
compared with the ground truth for one matrix in Figure 5.7. Both the MAP and posterior mean
allow estimating the masked coefficients better than the mean sample (A1 + ...+AN )/N , which
is the base reference for missing data imputation. They achieve, respectively, 58% (±28%) and
57% (±24%) rRMSE on average, whereas the mean sample has an 85% (±10% over the data set)
relative difference to the samples on average. Finally, we perform the same experiment except we
select the masked edges uniformly at random, masking 40% of the edges. This problem is easier
than the former despite the larger amount of hidden coefficients because the missing connections
are not aligned with each other. The posterior mean and the MAP achieve, respectively, 34%(±9%
over the data set) and 35%(±7%) rRMSE, against 75%(±5%) for the mean sample.
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6

4

2

0

2

4

6
(c) MAP (rRMSE=0.64)
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Figure 5.7: Result for missing link inference using the posterior distribution. (a) Ground truth
input matrix A. (b) Posterior mean of the masked coefficients. (c) MAP estimator. (d) Mean
of model samples for comparison. The area of masked edges is highlighted by a black square.
Aboveeach matrix is the rRMSE with the ground truth. Both the posterior mean and the MAP
give a reasonable estimation for the missing weights, significantly better than the empirical mean of
all adjacency matrices, which is the base reference for missing data imputation. The images show
each matrix as an array of coefficients, with pixel color corresponding to coefficient amplitude.

Link prediction has been a very active research topic in network analysis for several decades,
and numerous methods can be employed to address this problem depending on the setting [Lu and
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Zhou, 2011, Martínez et al., 2016, Zhang and Chen, 2018]. However, the most commonly used
approaches are designed to perform inference on a single network or consider the nodes as permu-
tation invariant. In turn, the new approach we propose allows for population-informed prediction
and uncertainty quantification. It could be used in practice to compare specific connection weights
of a new subject with their distribution given the other coefficients and the population parameters.
This comparison provides a tool to detect anomalies in the subject’s connectivity network stepping
out of the standard variability.

Remark. The error uncertainties reported in this chapter refer to the variance of the estimation
error across the adjacency matrices.

Clustering on Synthetic Data

As explained in Section 5.3.3, our model can be used within a mixture to account for multi-modal
distributions of networks. When experimenting with the clustering version of our algorithm on
data sets with distinctly separated clusters, we noticed that the algorithm provides results similar
to running K-Means and estimating the parameters on each K-Means cluster separately. However,
the clusters in complex populations often overlap, and the ideal case where all groups are well
separated rarely occurs. In this section, we show two examples of simulated data sets where the
variabilities of the clusters makes them hard to distinguish with the sole application of the K-Means
algorithm.

Small Dimension. We test the mixture model estimation in the small dimensional case (n = 3,
p = 2) where results can be visualized. We simulate three clusters of matrices as in Section 5.5.1
with N = 500 samples overall. In order to make the problem difficult, we use the same mean eigen-
values for two clusters. We set the Stiefel modes of these clusters to be very close, differing mainly
by their concentration parameters. We run the tempered MCMC-SAEM for 1000 iterations with
a decreasing temperature profile Tt = 1+50/t0.6. Once the convergence is achieved, the estimated
clusters are mapped to the true clusters. The eigenvalue parameters are estimated accurately with
2% rRMSE. The original and estimated von Mises-Fisher distributions are compared in Figure
5.8. We can see that each cluster distribution is well recovered. In particular, the overlapping
distributions of cluster 1 and 2 are separated, and the higher concentration of cluster 1 is recovered
in the estimation. This example also highlights the relevance of the MCMC-SAEM clustering pro-
cedure compared with its K-Means initialization: up to a label permutation, 50.4% of the K-Means
proposed labels are correct, whereas the posterior distribution p(z(k) | A(k); θ̂) computed with the
final MCMC samples predicts the correct answer for 79.6% of the model samples.

Larger Dimension. We now test the mixture model on a synthetic data set of 500 samples in
dimension (n = 20, p = 10). We generate four clusters with Stiefel modes close to one another,
with equal concentration parameters. The modes mainly differ by their mean eigenvalues µc. The
eigenvalue standard deviation σλ is set to be of the same order of magnitude as the means µ, larger
than most of its coefficients. The resulting data set is hard to estimate with classical clustering:
the K-Means algorithm retrieves 53.6% of correct labels at best. In contrast, running the tempered
MCMC-SAEM algorithm for 1000 iterations yields 99.4% of correct labels. The algorithm achieves
this result by identifying the template patterns of each cluster despite the large variation in their
weights. Once these template patterns are learned, the proportion of correctly classified samples
increases and the mean eigenvalues of each cluster converge to a good estimation.

Model Selection. Selecting the number of clusters K is a known problem addressed for general
mixture models [Celeux et al., 2019]. Although it is well understood for simple Gaussian mixture
models or for low dimensional data, other cases remain challenging problems. For the model pro-
posed in this chapter, likelihood-based procedures cannot be applied, as the complete likelihood
is an integral over the Stiefel manifold (see Section 5.5.1). As with the selection of parameter p,
the concentration parameters and the reconstruction errors could be used to choose the number of
clusters. Using a K that is too small will result in stretching the latent von Mises-Fisher distri-
butions toward low concentration parameters and large reconstruction errors. The reconstruction
error should decrease slower once the right number of clusters has been reached.
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Figure 5.8: True latent variables X(k) and their posterior mean estimation for the clustering
problem. (Top row): the plots (a,b,c) represent the true vMF modes (in red), as well as the
true X(k) samples (in green) in their true class. (Bottom row): the plots (d,e,f) represent the
three estimated vMF central modes (in red) and the estimated X(k) in their estimated class (in
blue). The cluster centers are well recovered, as well as the concentration parameters. In particular,
the two first clusters, which mainly differ by their concentration parameters, are correctly separated.
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Remark. The link prediction procedure described in Section 5.5.1 could also be applied in the
mixture model to infer the coefficients of new networks of which the class is unknown.

5.5.2 Experiments on Brain Connectivity Networks

We test our model on the UK Biobank data repository [Sudlow et al., 2015]. The UK Biobank is a
large scale data collection project, gathering brain imaging data on more than 37,000 subjects. In
this chapter, we are interested more specifically in the resting-state functional Magnetic Resonance
Imaging data (rs-fMRI). The rs-fMRI measures the variations of blood oxygenation levels (BOLD
signals) across the whole brain while the subject is in a resting state, i.e., receives no stimulation.
The brain is then divided into regions through a spatial ICA that maximizes the signal coherence
within each region [Kiviniemi et al., 2003]. Smaller regions give more detail on the brain structure
but are less consistent across individuals. Finally, the raw imaging data are processed to obtain
a matrix that gathers the temporal correlations between the mean blood oxygenation levels in
each region. This matrix thus represents the way brain regions activate and deactivate with one
another. It is called the functional connectivity network of the brain, as it provides information
on the role of the regions rather than their physical connections. In the UK Biobank data used in
the present study, the connectivity matrices are defined on a parcellation of the brain into n = 21
regions. These connectivity matrices illustrate our purpose well: as shown in Figure 5.9, the data
set has a very large diversity of networks that express in patterns with varying weights.

Parameter Estimation

We run our algorithm on N = 1000 subjects for 1000 SAEM iterations with 20 MCMC steps per
SAEM iteration. Working on a restricted number of samples allows for a fast convergence toward
the final values. Indeed, we noticed that, while most of the parameters stabilize relatively fast, the
time to convergence of the concentration parameters grows with the number of samples. Apart
from these concentration parameters, we obtained very similar results when taking all the UK
Biobank subjects. In this section, we consider a decomposition into p = 5 patterns. In Appendix
5.E.1, we show the results obtained by taking different values of p.

In Figure 5.10, we show the p normalized patterns fif⊤i / ‖fi‖2 obtained once the algorithm
has converged. Patterns 3 and 5 have very high concentration parameters and only use a small
subset of the nodes. The three other patterns have smaller concentration parameters. However,
these concentrations are still high enough for the related columns of X to be significantly more
concentrated than a uniform distribution: the average Euclidean distance between these three
columns of X(k) and the related mode columns is 1.1 (±0.2 over the data set). Comparatively, the
average distance between two points drawn uniformly on the Stiefel manifold is 2.4 (±0.2) (over
10,000 uniform samples).

Figure 5.11 displays data set matrices A(k) alongside the respective mean posterior estimates
of λ(k) ·X(k). For comparison purpose, we also compute the approximation given by the projection
onto the subspace of the first five PCA components of the full data set, where each component has
been vectorized. The λ ·X matrices capture the main structure, whereas the PCA approximation
relying on the same number of base components provides a less accurate reconstitution. Quantita-
tively, the λ ·X term has a 47% (±5% over the data set) relative distance to A, whereas the PCA
approximation has a 92% (±12%) relative distance to A. The λ · X representation accounts for
60% of the total variance, whereas the corresponding PCA representation only accounts for 35%.
This difference highlights the benefits of taking into account the variations of the patterns across
individuals. In a classical dictionary-based representation model, the patterns do not vary among
individuals. In contrast, accounting for the pattern variability only adds few parameters (one per
pattern) and increases the representation power.

Pattern Interpretation

Once the patterns are identified, they can be interpreted based on the function of the related
involved brain regions. All brain regions can be found on a web page of the UK Biobank project2.

2https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
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Figure 5.9: Functional connectivity matrices (21×21) of 25 UK Biobank subjects. The connectivity
structure changes a lot depending on the subject, with various patterns expressing with different
weights. The matrices in the data set have no diagonal coefficients; hence, the diagonals are shown
as zero.
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Figure 5.10: Normalized rank-one connectivity patterns. The matrix i repre-
sents sign(µi)fif

⊤
i / ‖fi‖2. The caption above each pattern gives the related concentration

parameter and mean eigenvalue. The diagonal coefficients are set to zero, as they do not
correspond to values in the data set. The images show each matrix as an array of coefficients,
with pixel color corresponding to coefficient amplitude.
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Figure 5.11: (a) UK Biobank connectivity matrices for 5 subjects. (b) Corresponding posterior
mean value of λ·X estimated by the MCMC-SAEM. (c) Projection of the true connectivity matrices
onto the subspace of the first five PCA components. The posterior mean matrix achieves a better
rRMSE than PCA by capturing the main patterns of each individual matrix. As in Figure 5.10,
the diagonal cofficients are set to zero.

The regions analyzed in this section can be visualized on brain cuts in Appendix 5.E.2.
Pattern 3 mainly represents the anti-correlation between regions 1 and 3. Region 1 comprises,

among others, the inner part of the orbitofrontal cortex and the precuneus. These regions are parts
of the Default Mode Network (DMN) of the brain, which is a large-scale functional brain network
known to be active when the subject is at rest or mind-wandering [Horn et al., 2014]. Region 3
comprises part of the insular cortex and the post-central gyrus, which both play a role in primary
sensory functions. The anti-correlation between regions 1 and 3 is a consequence of external
sensations activating the sensory areas and decreasing the DMN activity. This anti-correlation is
also one of the strongest coefficients in pattern 1.

Pattern 5 mainly features the dependency between nodes 2, 4, 8, 9, and 19, which are all related
to the visual functions. Node 2 represents the parts of the occipital and temporal lobes forming
the ventral and dorsal streams: they are theorized to process the raw sensory vision and hearing
to answer the questions “what?” and “where?” [Eysenck, 2010]. Region 4 features the cuneus,
which is a primary visual area in the occipital lobe. Region 8 spans over the whole occipital
lobe, covering primary visual functions and associative functions like the recognition of color or
movement. Region 9 comprises the continuation of the ventral and dorsal streams of region 2 in
the parietal and medial temporal areas. Finally, Region 19 represents the V1 area that processes
the primary visual information. Pattern 5 involving these regions has a very high concentration
parameter, which means that this structure remains very stable among the subjects.

Considering that the subject’s activity in the MRI scanner mainly consists of looking around
and laying still, it is coherent that the most stable patterns (i.e., with the highest concentration
parameters) during the resting-state fMRI measurement are the activity of the vision system and
the anti-correlation between the DMN and sensory areas.

Pattern 4 also shows the interaction between the visual areas 2, 4, 8, and 19. It also includes
the strong correlation between nodes 9, 10, 11, 12, and 17. Regions 10, 11, and 12 are involved in
motor functions. Region 10 features part of the pre-central gyrus, which is central in the motor
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control function, and part of the post-central gyrus, which is involved in sensory information
processing. Region 11 encompasses the entire pre-central gyrus. Region 12 includes a part of
the motor and pre-motor cortex in the frontal lobe and the insular cortex. It also includes the
cerebellum, which plays an important role in motor control, and the insular cortex, which also
acts on the motor control, for instance, in the face and hands motion control [Purves et al., 2017].
Region 17 comprises the medial face of the superior temporal gyrus and the hippocampus, which
are involved in short and long-term memory and spatial navigation.

Pattern 2 combines, to some extent, the structure contained in patterns 4 and 5. It features,
among others, interactions between the visual areas and the correlation between the motor function
areas.

Remark. The results and interpretation we present in this experiment depend on the state of the
subjects -in this case, a resting state- and the brain parcellation used to obtain the definition of
the regions. If we were to analyze another data set of subjects performing a different task, the
connectivity patterns X would likely differ from their resting-state counterpart. It follows from the
fact that two different phenomenons naturally require two different base dictionaries. Analyzing
the pattern difference would thus provide a way to interpret the structure difference between the
two settings. For instance, the role of the occipital lobe in the vision-involved patterns would likely
change for tasks related to vision. However, if the brain regions are defined differently in the two
experiments, the comparison can only be made in a qualitative way.

Link Prediction

We evaluate the relevance of our model on fMRI data by testing the missing link imputation
method introduced in the previous section. First we fit the model on N = 1000 subjects. Then we
take 1000 other test subjects and mask the edges corresponding to the interactions between the
last nine nodes (except the diagonal coefficients, which are unknown and thus considered null).
We compute the MAP estimator of the masked coefficients. For comparison purposes, we perform
a linear regression to predict the masked coefficients given the visible ones. Finally, we truncate
the matrix with masked coefficients to only keep the p dominant eigenvalues. This technique is
at the core of low-rank matrix completion methods [Nguyen et al., 2019], and it relates naturally
with the estimation derived from our model relying on low-rank variability. The result is shown for
one sample in Figure 5.12. The linear model and the MAP estimator give comparable estimates,
both close to the true masked coefficients. Over the 1000 test subjects, these estimators achieve
on average 58% (±14% over the samples) rRMSE for the linear model and 65%(±15%) rRMSE
for the MAP. Interestingly, our model uses only np + p + 2 = 112 degrees of freedom, whereas
the linear prediction model has dimension 26,640 and was specifically trained for the regression
purpose.

Our model captures a faithful representation of the fMRI data set and uses far fewer coefficients
than other models like PCA and linear regression by accounting for the structure of the interactions
between the network nodes. It provides an explanation of the network variability using simple
interpretable patterns, which correspond to known specific functions and structures of the brain.
The variations of these patterns and their weight allow for a representation rich enough to explain
a significant proportion of the variance and impute the value of missing coefficients.

5.6 Conclusion

Summary. This chapter introduces a new model for the analysis of undirected graph data sets.
The adjacency matrices are expressed as a weighted sum of rank-one matrix patterns. The
individual-level deviations from the population average translate into variations of the patterns
and their weight. Sample graphs are characterized by these variations in a way similar to PCA.
The form of the decomposition allows for a simple interpretation: each pattern corresponds to a
matrix with rank one and is thus represented by a vector of node coefficients. The variability of
this decomposition is captured within a small number of variance and concentration parameters.

We use the MCMC-SAEM algorithm to estimate the model parameters as well as the individual-
level variable. The parameter of von Mises-Fisher distributions is recovered by estimating the vMF
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Figure 5.12: From left to right: (a) True connectivity matrix A. (b) MAP estimator for the masked
coefficients framed in a black square. (c) Linear model prediction for the masked coefficients. (d)
Rank 5 truncation of the matrix A with masked coefficients set to zero. (e) Mean of all data set
matrices. Above each matrix is the rRMSE with the ground truth.

normalizing constant, which allows retrieving both the mode and its concentration parameters.
Future work could further investigate the role of the approximation error induced by the use
of saddle-point approximations, comparing its performance with a recently proposed alternative
method [Kume and Sei, 2018]. The impact of noise on the underestimation of the vMF distribution
concentration also requires further analysis.

Experiments on synthetic data show that the algorithm yields good approximations of the true
parameters and covers the posterior distributions of the latent variables. Our model can be used
to infer the value of masked or unknown edge weights once the parameters are estimated. In
practice, the posterior distribution could be compared to the real connections to detect anomalous
connections that step out of the expected individual variability.

The model we introduce is a hierarchical generative statistical model, which easily extends
to mixture models. We show that a mixture of decomposition models can be estimated with
a similar algorithmic procedure and allow disentangling between modes of variability that are
indistinguishable by a traditional clustering method.

We demonstrate the relevance of the proposed approach for the modeling of functional brain
networks. Using few parameters, it explains the main components of the variability. The induced
posterior representation is more accurate than PCA and gives a link prediction performance similar
to a linear model, which has a comparably simple structure, but requires far more coefficients
and was trained specifically to that purpose. The estimated connectivity patterns have a simple
structure and lead to an interpretable representation of the functional networks. We show that
our model identifies specific patterns for the visual information processing system or the motor
control. The related concentration parameters allow measuring the variability of the function of
the related brain regions across the subjects.

Comparison with other eigenmodels. Our model closely relates to the approach proposed by
Hoff [2009a]: in this chapter, the author models data sets of covariance matrices. The eigenvectors
are drawn from Fisher-Bingham distributions of a specific form, and the individual level deviation
is added under the form of a Wishart distribution. The use Fisher-Bingham is better suited than
vMF distributions to model eigenvectors, as they are by construction invariant to eigenvector
changes of sign. Our choice of using vMF distributions instead was motivated by the very simple
interpretability of the distribution’s parameters, which allows discussing on the interpretation of
the results with neuroscientists. The sign indetermination problem is addressed by the column
permutation step in the algorithm. The main computational hurdle - eigenvectors/eigenvalues
permutation invariance - remains present for Fisher-Bingham distributions.

Our choice of computing the Maximum Likelihood Estimator (or the Maximum A Posteriori if
a prior is used) rather working in a Bayesian framework is motivated by computational efficiency.
The algorithm we propose converges very fast in practice, even for mixture models, and can scale
to relatively large numbers of eigenvectors p (e.g., p = 20 in experiments on synthetic data).
Extensions could be considered using Bayesian conjugate posterior distributions.

In terms of flexibility, the formulation of the MCMC-SAEM, with a MCMC method agnostic
to the expression of the density, allows easily changing the model structure, e.g., to account for
positive eigenvalues or binary coefficients, only by modifying the expression of the likelihood and
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its gradient. The model of Hoff [2009a] could also adapt to different settings, by replacing the
Wishart individual-level variability by other forms of perturbation, but this might require changes
in the algorithm.

Another closely related model is the recent work of Duan et al. [2020]. In this chapter, the
authors work with the Laplacian matrices of the networks. The smallest eigenvalues only are of
interest, as opposed to our model. As in Hoff [2009a], the authors work with Fisher-Bingham
distributions, in a Bayesian framework. Their model is used to rely on multiple observations of a
similar network structure to perform clustering on brain regions.

Finally, the works of Wang et al. [2019] and Durante et al. [2017] provide an alternative low-
rank modeling approach for populations of binary network matrices. The authors propose to find
the optimal value for the individual variables characterizing the deviation from the mean, and
solve the related optimization problem. In contrast, we propose a hierarchical model to describe
the variability of the individual variables, and we maximize the likelihood of the observed matrices
p(A; θ), as opposed to the complete likelihood p(A,X, λ; θ). As a central difference with our work,
these approaches are template-based: they model binary matrices by low-rank logits, expressing
the logit matrix of each individual as a sum of a common template and low-rank deviations from
it. Roughly speaking, our method instead relies on the fact that the deviations from the mean
are strongly related to the structure of the mean; this relation is accounted for by removing the
template from the model and working with non-centered low-rank deviations λ ·X.

Future directions. This work focuses on cross-sectional network data sets, i.e., populations
where each adjacency matrix belongs to a different subject and is independent of the others.
Our model could also be used as a base framework for longitudinal network modeling using the
tools proposed by Schiratti et al. [2015]. This would consist of considering time-dependent latent
variables X and λ for each subject, evolving close to a population-level reference trajectory in the
latent space. We could not elaborate this direction further during this thesis, as the UK BioBank
currently only has at most two points per subject.

Future work could investigate the dependencies between the latent variables of the model.
Correlation can be introduced between the patterns by using Fisher-Bingham distributions on the
Stiefel manifold [Hoff, 2009b] and between pattern weights with full Gaussian covariance matrices.
Another direction to develop is the quantification of the uncertainty: by adding prior distributions
on F and µ, a Bayesian analysis would naturally provide posterior confidence regions for the
model parameters [Pal et al., 2020]. Finally, our framework could be adapted to model graph
Laplacian matrices instead of adjacency matrices. The analysis of the eigenvalues and eigenvectors
of the graph Laplacian has proven of great theoretical [Hammond et al., 2011] and practical [Atasoy
et al., 2016] interest in network analysis. Understanding the variability of the eigendecomposition
of graph Laplacians could help to design robust models relying on spectral graph theory.

In the next chapter, we will be investigating on the theoretical soundness of the model we
proposed. In particular, we will prove its identifiability and the convergence of the Maximum A
Posteriori estimator.
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5.A SAEM Maximization Step

5.A.1 Maximum Likelihood Estimates for µ, σ2

λ, σ
2

ε

Up to a constant normalization term c, the complete log-likelihood of the model in the Gaussian
case writes:

log p((A(k)), (X(k)), (λ(k)); θ) =
N∑

k=1

log p(A(k), X(k), λ(k); θ)

=

N∑

k=1

[
− 1

2σ2
ε

∥∥∥A(k) − λ(k) ·X(k)
∥∥∥
2

− 1

2σ2
λ

∥∥∥λ(k) − µ
∥∥∥
2

+Tr(F⊤X(k))

]

(A1)

−Nn2 log σ −Np log σλ −N log Cn,p(F ) + c

= N

[
Tr(F⊤S1) + 〈S2,

1

2σ2
λ

µ〉 − S3
1

2σ2
λ

− S4
1

2σ2
ε

+Ψ(θ)

]

with Ψ(θ) = −n2 log σε − p log σλ − log Cn,p(F ) + c, and




S1 = 1
N

∑N
k=1X

(k)

S2 = 1
N

∑N
k=1 λ

(k)

S3 = 1
N

∑N
k=1

∥∥λ(k)
∥∥2

S4 = 1
N

∑N
k=1

∥∥A(k) − λ(k) ·X(k)
∥∥2

The model thus belongs to the curved exponential family, and its sufficient statistics are given
by (S1, S2, S3, S4). The log-likelihood is component-wise convex in µ, σ2

λ and σ2
ε . Computing its

gradient yields one single critical point, which is thus the maximum value.
In the case of the binary model, the log-likelihood writes:

log p((A(k)), (X(k)), (λ(k)); θ) =

N∑

k=1

n∑

i,j=1

[
A

(k)
ij log h(λ(k) ·X(k))ij + (1−A

(k)
ij ) log(1− h)(λ(k) ·X(k))ij

]

+

N∑

k=1

− 1

2σ2
λ

∥∥∥λ(k) − µ
∥∥∥
2

+Tr(F⊤X(k))

−Np log σλ −N log Cn,p(F ) + c

with h(x) = 1/(1 + exp(−x)) the sigmoid function, which applies component-wise on matrices.
The distribution (A | λ,X) is non-parametric and needs no estimation. Hence, for all the model
parameters F, µ, σλ the MLE remains unchanged.

5.A.2 Saddle-Point Approximation of Cn,p(F )

We recall the main steps to compute the approximation of Cn,p(F ) proposed by Kume et al.
[2013]. For more details on the justification of the approximation and applications to more general
distributions, we refer the reader to the original paper. Our implementation provides a function
spa.log_vmf, which computes this approximation. The approximation Ĉn,p(F ) for von Mises-
Fisher distributions is written in Equation (16) of Kume et al. [2013]:

Ĉn,p(F ) =
2p(2π)np/2−p(p+1)/4

|K̂ ′′|1/2|Ĉ|1/2
exp

{
1

2
vec(F )⊤Ĉ−1vec(F )−

p∑

i=1

ϑ̂ii

}
exp(T − p/2) . (A2)

Using the following definitions:

• C(ϑ) = −2Inp − 2
∑

1≤i≤j≤p ϑij(Jij + Jji). The matrix Jij is composed of p2 blocks.
Block (i, j) is the identity In and all the other blocks are set to zero.
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• K(ϑ) = − 1
2 log |C(ϑ)| − 1

2µ
⊤C(ϑ)−1µ − 1

2vec(µ)
⊤vec(µ). In this formula, µ is the n × p

diagonal matrix with diagonal p singular values ω of F . The function K(ϑ) is the cumulant
generating function.

• ϑ̂ is the unique solution of the so-called saddle-point equation K ′(ϑ) = ϑ. It has the explicit

expression ϑ̂ = −1/(2Diag(φ̂)), with φ̂r =
(
n+

√
n2 + 4ω2

r

)
/(2ω2

r)

• Ĉ is given by C(ϑ̂) and K̂ ′′ by K ′′(ϑ̂).

• K̂ ′′ can be computed explicitly:

K̂ ′′
(r1,s1),(r2,s2)

=





0 r1 6= r2 or s1 6= s2,

nφ̂rφ̂s + φ̂rφ̂s(ω
2
r φ̂r + ω2

s φ̂s) r1 = r2 < s1 = s2,

2nφ̂2r + 4ω2
r φ̂

3
r r1 = r2 = s1 = s2

• The parameter T is defined in Equation (8) of Kume et al. [2013] and computed in the sup-
plementary material of the paper in the case of vMF distributions. In first approximation, T
can be considered zero.

As in the original paper, we validate our implementation by comparing the result with the Monte
Carlo estimate of the normalizing constant produced by uniform sampling on the Stiefel manifold.

Remark. The −p/2 factor comes from using B = −In×p/2 (and thus V = In×p) and compensating
with Equation (22) of Kume et al. [2013] to handle vMF distributions, which otherwise have B = 0.
This point is not stated explicitly in the main text of the paper, but it is explained in the related
MATLAB implementation provided by the authors.

5.B Gradient Formulas

The MCMC-SAEM initialization heuristic, as well as the MALA transition kernel, require the
gradients of the log-likelihood with respect to the latent variables. In this section, we compute
these gradients for the model with Gaussian perturbation and the model with binary coefficients.

5.B.1 Model with Gaussian Perturbation

Consider the log-likelihood for the variables of only one subject (X,λ,A). Using the formula in
Equation (A1), we can compute its gradients with respect to X and λ. For λ, it writes:

∇λ log p(X,λ,A; θ) = −
(

1

σ2
ε

+
1

σ2
λ

)
λ+

1

σ2
(x⊤i Axi)

p
i=1 +

1

σ2
λ

µ ,

with (xi)
p
i=1 the columns of X. Similarly, the Euclidean gradient for X is given by

∇X log p(X,λ,A; θ) =
1

σ2
ε

AXDiag(λ) + F + 4XDiag(λ)X⊤XDiag(λ) .

Following Edelman et al. [1998], the Riemannian gradient on the Stiefel manifold is then given by:

∇V
X log p(X,λ,A; θ) = ∇X log p(X,λ,A; θ)X(k)⊤ −X∇X log p(X,λ,A; θ) .

5.B.2 Binary Model

Similarly, the log-likelihood gradients can be derived for the binary model. Let x̃i be the i-th row
of X and ⊙ denote the entry-wise product. We have:
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∇λ log p(X,λ,A; θ) = − 1

σ2
λ

(λ− µ) +
n∑

i,j=1

[Aijh(−(λ ·X)ij)− (1−Aij)h((λ ·X)ij)](x̃i ⊙ x̃j)

∇X log p(X,λ,A; θ) = F +
∑

i 6=j

[Aijh(−(λ ·X)ij)− (1−Aij)h((λ ·X)ij)]Hij

+
n∑

i=1

[Aiih(−(λ ·X)ii)− (1−Aii)h((λ ·X)ii)]Ki .

In the latter formula, Hij is an n × p matrix with zeros everywhere except the i-th row equal
to λ ⊙ x̃j and the j-th row equal to λ ⊙ x̃i. Ki is the n × p matrix with zeros everywhere except
the i-th row equal to 2λ⊙ x̃i.

5.C Algorithm for the Clustering Model

We summarize in Algorithm 5.C.1 the procedure to estimate the MLE of a mixture model.

5.D Symmetry of von Mises-Fisher Distributions

Let F be the parameter of a von Mises-Fisher distribution. Let expX be the Riemannian expo-
nential map at X. We have the following result:

Proposition 3. Suppose that the columns of F are orthogonal. Let M = πV (F ) be the vMF distri-
bution mode and D ∈ TMVn,p a tangent vector at M . Then pvMF(expM (D)) = pvMF(expM (−D)),
i.e., the vMF distribution is symmetric around its mode.

Proof. Since the columns of F are orthogonal, we can write F = MΛ with M = πV (F ) ∈ Vn,p

and Λ = Diag(λ). Let D ∈ TMVn,p. As proven in Edelman et al. [1998], the geodesic Xt starting
at M with X ′(0) = D is then given by

Xt = (M,M⊥) exp(tKM (D))In,p ,

where exp is the matrix exponential, M⊥ ∈ Vn,n−p is such that M⊤M⊥ = 0 and KM (D) is skew-
symmetric: KM (D)⊤ = −KM (D). Therefore, the von Mises-Fisher log-density along Xt writes
as:

Tr(F⊤Xt) = Tr(ΛM⊤(M,M⊥) exp(tKM (D))In,p)

= Tr(ΛIp,n exp(tKM (D))In,p)

= Tr(I⊤n,p exp(tKM (D))⊤I⊤p,nΛ
⊤)

= Tr(Ip,n exp(tKM (D)⊤)In,pΛ)

= Tr(ΛIp,n exp(−tKM (D))In,p)

= Tr(F⊤X−t)

Therefore, the von Mises-Fisher density is symmetric around its mode.

5.E Additional Details on the UK Biobank Experiment

5.E.1 Impact of the Number p of Patterns

We perform the same experiment as in Section 5.5.2 with different numbers of patterns, p ∈ {2, 10},
always running the MCMC-SAEM for 1000 iterations with 20 MCMC steps per SAEM iteration.
We call the related models M2, M5, and M10. The normalized patterns of M2 and M10 are
reproduced in Figures 5.E.1 and 5.E.2. The patterns of M2 correspond to patterns 1 and 2 of M5
and M10. Similarly, the patterns of M5 correspond to patterns 1 to 5 of M10. This result confirms
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Algorithm 5.C.1: Maximum Likelihood Estimation of θ = (F, µ, σε, σλ, π) for the mix-
ture model

Initialize θ0 and S0.
Initialize X0, λ0 and z0 using the K-Means algorithm.
for t = 1 to T do

if (t mod 5) = 0 then

Align together the parameters (F c, µc)Kc=1 of each cluster using Algorithm 5.4.2.
end

if t ≤ T/3 and (t mod 5) = 0 then

for k = 1 to N do

Use Algorithm 5.4.2 to align X(k)
t with πV

(
F

z
(k)
t

t

)
.

Permute λ(k)t accordingly.
end

end

Set X̃(k)
0 = X

(k)
t , λ̃(k)0 = λ

(k)
t , z̃(k)0 = z

(k)
t

for ℓ = 1 to nMCMC do

for k = 1 to N do

Sample X̃(k)
ℓ from the Metropolis kernel qX( · | X̃(k)

ℓ−1, λ̃
(k)
ℓ−1, z̃

(k)
ℓ−1; θt)

targetting p(X(k) | A(k), λ̃
(k)
ℓ−1, z̃

(k)
ℓ−1; θt).

Sample λ̃(k)ℓ from the Metropolis kernel qλ( · | X̃(k)
ℓ , λ̃

(k)
ℓ−1, z̃

(k)
ℓ−1; θt)

targetting p(λ(k) | A(k), X̃
(k)
ℓ , z̃

(k)
ℓ−1; θt).

Sample z̃(k)ℓ from the distribution p(z(k) | A(k), X̃
(k)
ℓ , λ̃

(k)
ℓ ; θt).

end

end

Set X(k)
t+1 = X̃

(k)
nMCMC , λ(k)t+1 = λ̃

(k)
nMCMC and z(k)t+1 = z̃

(k)
nMCMC .

Update the sufficient statistics St+1 = (1− αt)St + αtS(A,Xt+1, λt+1).

Compute πt+1 using the proportion of samples z(k)t+1 belonging to each cluster.
for c = 1 to K do

Compute µc
t+1, (σ

c
ε)t+1 and (σc

λ)t+1 with Equation (5.5) using only the k such

that z(k)t+1 = c.

Compute F c
t+1 by solving problem (5.6), using only the k such that z(k)t+1 = c.

end

end

return θT , (Xt, λt, zt)
T
t=1
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that our model acts in a way comparable to PCA, selecting first the dominant patterns with the
largest eigenvalues. Figure 5.E.3 compares the posterior means of λ · X given by M2, M5 and
M10 for 5 subjects. Coherently, the approximation λ(k) ·X(k) refines and gets closer to A(k) as p
increases. Over the 1000 subjects, these posterior means achieve, respectively, 57% (±7%), 47%
(±5%) and 35% (±4%) relative RMSE.

However, this observation does not assess whether higher values of p provide additional relevant
features to represent the network structure. The following result illustrates this idea. We repeat
the experiment of missing link MAP imputation on models M2 and M10. We find that both M2
and M10 yield a worse prediction than M5 on this task: model M2 gets 70% (±16%) rRMSE and
M10 gets 76% (±16%) rRMSE, whereas model M5 gets 65% (±15%) rRMSE. While the prediction
performance of M2 is expected to be worse than M5’s, observing a worse prediction performance
in M10 means that the information captured by the additional components does not help infer
the network structure. As with PCA, the components with lesser amplitude are less relevant to
perform regression tasks; this idea is at the core of Partial Least Square Regression Wold et al.
[2001].
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Figure 5.E.1: Normalized connectivity patterns when p = 2, computed as in Figure 5.10.
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Figure 5.E.2: Normalized connectivity patterns when p = 10, computed as in Figure 5.10.

Therefore, the parameter p should be chosen with care when using our model for predictive
purposes. The experiment presented above can be used to quantify the relevance of the obtained
representation, but other methods could be explored. Future work could investigate the question
of parameter selection by adapting Bayesian model selection methods to our method, as well as
likelihood ratio tests or criteria like BIC and AIC.
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Figure 5.E.3: (a) UK Biobank connectivity matrices for 5 subjects. (b) M10 posterior mean value
of λ ·X. (c) M5 posterior mean value of λ ·X. (d) M2 posterior mean value of λ ·X. The rRMSE
coherently increases as p decreases.
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5.E.2 Brain Regions of the UK Biobank fMRI Correlation Networks

As explained in Section 5.5.2, the Regions Of Interest (ROIs) that define the correlation networks
are detected automatically using a spatial ICA Kiviniemi et al. [2003]. Each component of the ICA
attributes a weight to each brain voxel. The brain regions are visualized by selecting the voxels
with weight above a certain threshold. The obtained level set may be scattered over the brain,
which sometimes makes their interpretation difficult. In Figure 5.E.4, we show the brain regions
mentioned in the interpretation of the patterns identified by our model, namely regions 1, 2, 3, 4,
8, 9, 10, 11, 12, 17, 19. In this figure, as well as online, the ICA weight threshold value is set to 5.

90



0

5

9.9

15

20Region 1
L R

y=-80 x=-30

L R

z=24 0

7.2

14

22

29Region 2

L R

y=-15 x=20

L R

z=10 0

5.1

10

15

20Region 3
L R

y=-80 x=10

L R

z=0 0

8.3

17

25

33Region 4

L R

y=-80 x=10

L R

z=0 0

4.8

9.5

14

19Region 8
L R

y=-50 x=-57

L R

z=35 0

3.9

7.8

12

16Region 9

L R

y=-20 x=-30

L R

z=55 0

7.1

14

21

28Region 10
L R

y=-15 x=-50

L R

z=40 0

18

36

54

72Region 11

L R

y=-20 x=0

L R

z=55 0

7.4

15

22

29Region 12
L R

y=-20 x=-50

L R

z=0 0

4.8

9.7

15

19Region 17

L R

y=-90 x=15

L R

z=0 0

8.2

16

25

33Region 19

Figure 5.E.4: Frontal, sagittal, and transverse cuts of the brain for the UK Biobank fMRI brain
regions analyzed in this chapter. As explained in Section 5.5.2, region 1 comprises part of the
Default Mode Network of the brain, which characterizes its activity at rest. Region 3, which is
anti-correlated to region 1, is related to sensory functions. Regions 2, 4, 8, 9, and 19 are involved
in the visual functions. Regions 10, 11, 12 correspond to motor control. Region 17 is involved
in memory and spatial navigation. The L/R letters distinguish the left and right hemispheres.
The black axes on each view give the three-dimensional position of the cut. The color strength
corresponds to the truncated ICA weight.
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Chapter 6

Asymptotic Analysis of the Spectral

Model

Matrix data sets arise in network analysis for medical applications, where each network belongs to
a subject and represents a measurable phenotype. These large dimensional data are often modeled
using lower-dimensional latent variables, which explain most of the observed variability and can be
used for predictive purposes. In this chapter, we provide asymptotic convergence guarantees for the
estimation of the hierarchical statistical model of Chapter 5. This model captures the variability
of matrices by modeling a truncation of their eigendecomposition. We show that this model is
identifiable, and that consistent Maximum A Posteriori (MAP) estimation can be performed to
estimate the distribution of eigenvalues and eigenvectors. The MAP estimator is shown to be
asymptotically normal for a restricted version of the model.
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6.1 Introduction

Latent variable models are powerful tools to capture the complexity of high-dimensional data.
Their hierarchical structure decouples this complexity into a low-dimensional distribution of latent
variables and a mechanism to generate observations from latent variables. Over the last decades,
they have proven relevant to perform regression and classification tasks as well as to provide
interpretable representations of the data. In this chapter, we are interested more specifically in
the analysis of matrix data sets: in this context, an observation is a matrix which represents
the interactions between a given number of entities. The main case of interest is network data
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set analysis, where matrices represent the evolution of a given network across time, or the same
network structure measured in different situations.

Recently, the analysis of network data sets has received increased attention in the literature,
in particular for medical applications, where each network represents a different patient, typically
its brain connectivity network. The need to understand the complex structure of the interactions
within networks has brought the development of low-dimensional representation of these networks,
with methods like sparse dictionary learning or graph auto-encoders [D’Souza et al., 2018, Li
et al., 2019]. In many cases, the core modeling assumption relies on the low rank of the observed
matrices [Chen et al., 2020]. In that regard, such models can be interpreted as constraints on
the distribution of the eigenvalues and the eigenvectors. However, although these recent works
have achieved great performance on practical tasks, little has been done in the literature so far to
analyze their theoretical soundness.

In this chapter, we provide an asymptotic analysis for the network data set analysis model of
Chapter 5 which, in terms of generative modeling, can be considered a generalization of several
current similar models relying on graph auto-encoders [Kipf and Welling, 2017] and dictionary
learning [D’Souza et al., 2019b]. The model quantifies the variability in the spectral decomposi-
tion of network adjacency matrices: the leading eigenvectors, taking values in the Stiefel manifold,
and the related eigenvalues are considered as latent variables in a hierarchical generative model.
It relies on the classical assumption that the relevant information in a matrix of interaction co-
efficients can be captured by a low-rank approximation [Shabalin and Nobel, 2013]. The model
structure introduced in Chapter 5 was shown to be able to account for the complex variability of
functional brain networks using a restricted number of parameters, and provides an interpretable
representation of this variability.

We first show that the model is identifiable, and consider the parameter estimation problem.
We show that, although the Maximum Likelihood Estimator may not be defined, the Maximum
A Posteriori estimator exists for wide classes of prior distributions. Finally, we show the almost
sure consistency of the estimator and its asymptotic normality as the number of samples goes to
infinity. The technical difficulties arise from the hierarchical structure of the model: only a few
specific such cases have received attention in the literature. For instance, the identifiability of
latent variable models remains an open question for most latent variable network analysis models.
Although our results take stock on the model structure, we believe that they can be transposed
without hurdle to many similar models.

Notations

In the next sections, we use the following notations:

• A⊤ denotes matrix transposition, Tr(A) the trace and det(A) the determinant,

• ‖x‖ denotes the canonical Euclidean norm for vectors, and the related operator norm for
matrices,

• ‖A‖F denotes the Frobenius norm and 〈A,B〉F = Tr(A⊤B) the related inner product for
matrices,

• If X is an n× p matrix, xi ∈ R
n denotes its i-th column, so that X = (x1, . . . , xp),

• Vnp is the Stiefel manifold of n× p matrices X such that X⊤X = Ip.

• On(R) is the orthogonal group Vnn,

• For λ a vector and X a matrix, we define λ ·X = X⊤Diag(λ)X,

• For A an n× n matrix and X an n× p matrix, we define A ∗X = (x⊤i Axi)
p
i=1.

Appendix 6.A provides a comprehensive table describing the variables used throughout the chapter.
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6.2 A Statistical Model for Spectral Decomposition

6.2.1 Model Definition

Observations distribution

We study the generative model for sets of weighted graph adjacency matrices A1, . . . , AN ∈ R
n×n

proposed in Chapter 5. It draws symmetric low rank adjacency matrices A by generating their
eigenvectors X = (x1, . . . , xp) ∈ R

n×p and eigenvalues λ = (λ1, . . . , λp) ∈ R
p, and combining them

with an additive noise ε ∈ R
n×n.

A = XDiag(λ)X⊤ + ε (6.1)

In practice, the adjacency matrix A represents a network. n corresponds to the number of nodes
(e.g., in the case of brain connectivity, the number of brain regions), and p≪ n is chosen such that
the residual term ε is small. The eigenvectors take values in the Stiefel manifold Vnp of matrices
such that X⊤X = Ip. Their probability distribution will be described in the next section. The
eigenvalues follow a multivariate Gaussian distribution λ ∼ N (µ, σ2

λIp). The noise ε is a symmetric
matrix whose coefficients above the diagonal also follow a Gaussian distribution N (0, σ2

εIn×(n+1)/2).
We assume that the variables λ,X, ε are independent. This assumption is strong: it might not be
satisfied in practice, as the variation of a pattern xi should be naturally correlated to a variation of
the related λi. However, it also allows keeping a restricted number of parameters, which allows for
robust estimation in practice when the number of observed matrices is low. Their interpretations
will be given in Section 6.2.2 on simpler alternative models.

Eigenvectors distribution

As an element of the Stiefel manifold Vnp, the eigenvector matrix X is described by a probability
distribution over Vnp. The canonical framework for these distributions is exposed in Chikuse
[2003c], and consists in taking a measure with density with respect to the invariant measure over
the Stiefel manifold. The invariant measure [dX] is defined, up to a constant, as the only measure
invariant to orthogonal transformations, i.e., for S ⊂ Vnp and O ∈ On(R), O

′ ∈ Op(R):
∫

S

[dX] =

∫

OS

[dX] =

∫

SO′

[dX] .

It can be rescaled by a constant factor to correspond to the Hausdorff measure over Vnp [Jauch
et al., 2020b].

The distribution considered forX is the von Mises-Fisher (vMF) distribution, also called Matrix
Langevin distribution in the literature. It was first introduced by Khatri and Mardia [1977], who
derived basic properties of the distribution and its Maximum Likelihood Estimator (MLE), and was
further studied for both theoretical and algorithmic purposes [Jupp and Mardia, 1979, Chikuse,
2003a, Kume et al., 2013, Pal et al., 2020]. The von Mises-Fisher distribution over Vnp is defined
by its probability density function (p.d.f.) with respect to the invariant measure:

p(X) =
1

C(F ) exp(Tr(X
⊤F )) =

1

C(F ) exp (s1〈x1,m1〉+ · · ·+ sp〈xp,mp〉) , (6.2)

with C(F ) the normalizing constant and

F = (f1, . . . , fp) =MDiag(s) = (m1, . . . ,mp)Diag(s1, . . . , sp)

the parameter of the distribution (F ∈ R
n×p). In the model considered here, M ∈ Vnp and

the si’s are non-negative to ensure identifiability. By definition, the modal point M has maximal
probability. The si’s control the spread around the modal point, and are called the concentration
parameters of the distribution.

The vMF distribution has a simple interpretation and requires few parameters. It imposes no
dependency between the columns ofX, except the orthogonality constraint. It forms an exponential
family of distributions, and as such lends itself to efficient numerical estimation procedures. The
normalizing constant C(F ) has an analytic expression relying on the hypergeometric function of a
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matrix argument, and represents the main difficulty when analyzing the distribution, as it prevents
from getting an explicit expression of its moments.

With this definition, we can write the full density of the model defined in the previous section.
The likelihood of an observed matrix A writes:

p(A | θ) =
∫∫

Vnp×Rp

p(A | X,λ, θ)p(X | θ)p(λ | θ) [dX]dλ

=

∫∫

Vnp×Rp

1

C(F )(2π)(n2+p)/2σn2

ε σp
λ

exp

(
〈X,F 〉F − 1

2σ2
λ

‖λ− µ‖2 − 1

2σ2
ε

‖A− λ ·X‖2F
)

[dX]dλ ,

where we denote λ ·X = XDiag(λ)X⊤ to lighten the formula, and θ = (F, µ, σλ, σε) regroups the
model parameters.

Remark. The overall model structure (6.1) can be compared with Equation (1.11) in Forrester
[2010], which states that, for any continuous probability distribution p(A) over the space of sym-
metric matrices: for any bounded continuous function h,

∫

Rn×n

h(A)p(A) dA =

∫∫

On(R)×Rn

h(λ ·X)p(λ ·X)
∏

i<j

(λi − λj) [dX]dλ ,

with [dX] the normalized invariant measure over the group of orthogonal matrices On(R). In
other words, any matrix distribution is equivalently characterized by the joint distribution of its
eigenvalues and eigenvectors. In that regard, our main hypotheses consist in constraining on the
number of non-zero eigenvalues and imposing that the distributions of X and λ can be decoupled.

6.2.2 Motivation: Network Modeling

Beyond the graphon model

The graphon [Lovász, 2012] is the standard reference model used in network theory to analyze
large graphs from a probabilistic perspective. Many pieces of work in both the theoretical [Khetan
and Mj, 2018, Janson, 2013b, Xu, 2018] and applied [Latouche and Robin, 2016, Sischka and
Kauermann, 2022, Mukherjee and Chakrabarti, 2019] literatures focus on the properties of the
model it describes and its statistical estimation.

A graphon is a symmetric function w : [0, 1]2 → [0, 1], which is to be understood as a continuous
adjacency matrix with an infinite number of nodes. The graphon defines a distribution over n× n
symmetric adjacency matrices by drawing n uniform numbers U1, . . . , Un ∼ U([0, 1]), and forming
the matrix Aij = w(Ui, Uj), or Aij ∼ B(w(Ui, Uj)) in the case of binary networks. The graphon
inference problem thus consists, given one or several matrices A, in determining both the function w
and the positions (Ui) of the nodes.

The main application of the graphon model is the Stochastic Block-Model (SBM), which as-
sumes that w is block-wise constant. It amounts to dividing the set of nodes into clusters with
given probabilities, and determining the connection between the nodes with the connection be-
tween their clusters. The SBM provides a well-studied [Olhede and Wolfe, 2014, Aicher et al.,
2015, Peixoto, 2020] framework which is particularly relevant for a clustering analysis of networks,
i.e., finding the most relevant partition among the nodes.

Both the graphon model and the SBM were conceived to analyze networks where nodes are
drawn randomly and play interchangeable roles. They mostly focus on understanding the structure
of the hidden graphon dynamic, which requires identifying the Ui’s or the cluster labels.

Given a data set of matrices, both graphon and SBM would either 1) assume that the Ui’s are
drawn independently for each matrix, or 2) take the same Ui’s for each matrix in the data set. The
first case yields a distribution whose expectation has constant coefficients: E[Aij ] = E[w(U,U ′)]
with U,U ′ ∼ U([0, 1]). The second case results in a constant distribution with Aij = w(Ui, Uj) for
every sample matrix A, or a matrix of independent Bernoulli variables Aij ∼ B(w(Ui, Uj)) in the
case of binary networks. Both options lead to simplistic distributions which are not relevant from
a practical perspective.

96



In the context considered here, the nodes remain the same from one matrix to another (e.g.,
brain regions), and cannot be permuted. This allows easily estimating the average interactions,
which is the main difficulty for the graphon and the SBM. Modeling the matrices’ spectral decom-
position goes one step further than the SBM, and induces a dependency between the coefficients.
It allows for instance computing the distribution of a set of matrix coefficients given other observed
matrix coefficients.

Accounting for the full network variability

Two similar approaches currently co-exist in the literature to analyze sets of networks. On the
one hand, Variational Graph Auto-Encoders (VGAE) [Kipf and Welling, 2017] assume that each
node i is represented by a low-dimensional vector zi ∈ R

p, and models the adjacency matrix
as Aij = h(z⊤i zj), with h a non-linear function. The model thus characterizes A by a low-
dimensional representation Z ∈ R

n×p, and retrieves A = h(Z⊤Z) = h(1p ·Z). The matrices 1p ·Z
are constrained to having positive eigenvalues. Additionally, the VGAE model considers all vari-
ables zi as independent and identically distributed.

On the other hand, a dictionary model was proposed by [D’Souza et al., 2019b], and writes
each adjacency matrix A in the data set as a weighted combination of fixed rank-one matri-
ces: A = λ1x1x

⊤
1 + · · ·+ λpxpx

⊤
p , which rewrites as λ ·X. Here, the goal is to find the best λ for

each matrix A, while the matrix X is the same for all networks. This model thus imposes a strong
dimension constraint on the adjacency matrices.

Each of these two approaches capture one aspect of the variability: for the VGAE, only the
“eigenvectors" vary, and for the dictionary model, only the “eigenvalues" depend on the network.
The model we study here simultaneously accounts for these two sources of variability, and thus
allows for a richer representation, while keeping a latent space dimension comparable to that of
VGAE. From the VGAE perspective, the rows (Mki)

p
i=1 shape the distribution of zk, and the

parameters (µ, σ2
λ) determine the (possibly non-positive) inner products between the zi’s. From

the dictionary model perspective, the column mi = (Mki)
n
k=1 gives the i-th dictionary element

and si its concentration; the coefficient Mki gives the strength of the contribution of pattern i
to the interactions of node k in the network. The parameters (µ, σ2

λ) give the distribution of the
dictionary weights.

6.2.3 Conditional Distribution

Summarizing the model definition in Section 6.2.1, we assume that an observed adjacency matrix A
writes as A = λ·X+ε, with (λ,X) ∈ R

p×Vnp being independent latent variables and ε a symmetric
matrix of Gaussian distributed noise coefficients. The full model p.d.f. writes:

p(A,X, λ | θ) = 1

C(F )(2π)(n2+p)/2σn2

ε σp
λ

exp

(
〈X,F 〉F − 1

2σ2
λ

‖λ− µ‖2 − 1

2σ2
ε

‖A− λ ·X‖2F
)
.

From this expression, we can express the conditional distribution of the latent variables (X,λ)
given A as follows. In the remainder of the chapter, we will denote

A ∗X = (x⊤k Axk)
p
k=1,

1

σ2
p

=
1

σ2
ε

+
1

σ2
λ

and µAX = σ2
p

[
1

σ2
ε

A ∗X +
1

σ2
λ

µ

]
. (6.3)

The expression of the conditional density p(X,λ | A, θ) of the latent variables given the observed
variable A writes as: {

p(X | A, θ) ∝ exp
(
〈X,F 〉F + 1

2σ2
p
‖µAX‖2

)

p(λ | X,A, θ) = N (µAX , σ
2
p) .

The proof of this equation follows the same lines as in Lemma 6 in Appendix 6.D. We will
be using this expression of the conditional distribution in Section 6.5 on asymptotic normality.
The 1

2σ2
p
‖µAX‖2 term in the distribution of (X | A) is typically much larger than 〈X,F 〉F as

long as n ≫ p, and it thus determines the shape of the distribution. As shown in the following
proposition, it is maximized by the eigenvectors of A.
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Proposition 4. For A ∈ R
n×n, ‖µAX‖2 is maximized by taking X among the eigenvectors of A.

Furthermore, if the eigenvalues of A all have multiplicity one, this maximization is strict.

Proof. Let A = U⊤DU be the eigendecomposition of A, with U⊤U = In. Without loss of gener-
ality, we take σλ = σε = 1. We have:

max
X∈Vnp

2 ‖µAX‖2 = max
X∈Vnp

p∑

i=1

(x⊤i Axi + µi)
2

= max
Y ∈Vnp

p∑

i=1

(y⊤i (D + µiIn)yi)
2 (setting Y = UX)

= max
Y ∈Vnp

p∑

i=1

n∑

k=1

[(dk + µi)y
2
ik]

2

≤ max
Y ∈Vnp

p∑

i=1

n∑

k=1

(dk + µi)
2y2ik (Jensen’s inequality)

= max
Y ∈Vnp

〈K,Y ⊙ Y 〉F .

With K ∈ R
n×p defined by Kij = dk + µi and Y ⊙ Y the Hadamard (entry-wise) product. If we

extend K to a n × n matrix K ′ by padding zeros, and extend Y to an orthogonal matrix Q by
completing Y into a basis, the objective function remains unchanged: 〈K,Y ⊙Y 〉F = 〈K ′, Q⊙Q〉F .

Since Q is orthogonal, the matrix S = Q⊙Q is doubly stochastic. Furthermore, the Birkhoff-
von Neumann theorem states that the set of doubly stochastic matrices is the convex hull of the
set of permutation matrices. As a consequence, the linear function 〈K ′, S〉F is maximized by
taking for S a permutation matrix. Such matrices are orthogonal and verify S ⊙ S = S, and their
only square roots for the Hadamard product are permutation matrices with negative coefficients
allowed. Therefore, the optimal choice for Y has its columns in the canonical basis. Hence, the
optimal choice for X = U⊤Y is to take its columns among the eigenvectors of A. 1

When Y is a permutation matrix, Jensen’s inequality becomes an equality, so that taking the
related X = U⊤Y is also an optimal choice for the original objective ‖µAX‖2. Furthermore, if A
has n distinct eigenvalues, Jensen’s inequality is strict except when yi is a vector of the canonical
basis. Therefore, in that case, the optimal subset of eigenvectors of A (up to permutation and
change of sign) is the only maximizer of ‖µAX‖2.

Remark. When taking µ = 0, the result can be proved more simply by using Ky Fan’s principle on
eigenvectors [Fan, 1949]. A closely related, yet different result, was recently obtained by Liang et al.
[2021]. We believe that obtaining a closed-form formula for maximizing the complete conditional
density p(X | A, θ) would require significantly more work. The eigenvectors of A are no longer
optimal: the best value ofX is obtained as a trade-off betweenM and the closest optimal eigenvalue
combination of A, with the concentration and variance parameters determining the balance between
both.

6.3 Model Identifiability

Identifiability of statistical model p(x | θ) refers to the property that, if θ1 6= θ2, then the distribu-
tions p( · | θ1) and p( · | θ2) must differ. It is a generally desirable property, as it ensures that the
model is well-defined and behaves in an intuitive way. It is also of immediate theoretical interest,
since it enables to prove that Maximum Likelihood Estimators converge to the correct value when
the data is generated according to the model. For instance, it can be proved by retrieving the
parameter θ from a set of moments of p( · | θ).

The identifiability of latent variable models is a general, long-standing question, which has
been studied and proved for only few specific models. It relates to the question of identifying the

1The authors thank the math.stackexchange.com community member user1551 for his helpful answer on the

Birkhoff-von Neumann theorem.
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parameters of graphical models where only a fraction of the variables is observed. Much work has
been devoted to the identifiability of finite mixture models [Teicher, 1963, Yakowitz and Spragins,
1968, Holzmann et al., 2004, Tabrizi et al., 2020]. In a similar spirit, classes of statistical models
with discrete latent variables have also recently been proved to be identifiable [Allman et al., 2009,
Gu and Xu, 2021]. Partial results have been shown for mixed-effects models, in particular in
a longitudinal setting [Tabrizi et al., 2020, Lavielle and Aarons, 2016]. In a less closely related
domain, identifiability results exist on time series model with latent variables [Douc et al., 2021].
Finally, general identifiability results are available for (possibly infinite) mixtures of exponential
models [Barndorff-Nielsen, 1965, 1978]. Although the latter result is related to the model we
consider here, its necessary theoretical conditions turn out to be hard to verify in practice.

The main difficulty with identifying latent variable models comes from the expression of the
observations’ likelihood:

p(A | θ) =
∫∫

Vnp×Rp

p(A,X, λ | θ) [dX]dλ .

Even though our full model p(A,X, λ | θ) is identifiable, the marginalized model p(A | θ) may not
be: permuting two eigenvalues µi, µj and the related eigenvector parameters fi, fj , or changing
the sign of fi does not change the distribution of A. This first obvious source of non-identifiability
is easily overcome, by imposing that the normalized columns (m1, . . . ,mp) (denoting mi = fi/|fi|)
are sorted according to the lexicographical order and that each column has its first non-zero element
positive. An additional constraint allows getting a provably identifiable marginal model: we shall
assume that the fi’s are non-zero, i.e., that the concentration parameters si = ‖fi‖ are positive.
These two constraints form the set of identifiable parameters Θid:

Θid = {θ | m1 ≺ · · · ≺ mp and min
i
si > 0} .

With this definition, we have the following result:

Theorem 2. If p < n, over Θid, different parameters θ1 6= θ2 yield different marginal probability
distributions p(A | θ1) and p(A | θ2).

Proof. Given θ ∈ Θid, we show that all parameters (F, µ, σλ, σε) can be retrieved from the dis-
tribution p(A | θ). We first identify the noise variance. This allows identifying the eigenvalue
parameters, and finally the eigenvector parameters.

Identifying σλ and σε. Using Lemma 6 and αIn ∗X = α1p, we have, for all α ∈ R:

p(A = αIn | θ) = 1
√
2π

n2

σn2

ε

σp
p

σp
λ

exp

(
− 1

2σ2
ε

n2α2 +
σ2
p

2σ4
ε

p2α2 + ‖µ‖2
(
σ2
p

2σ4
λ

− 1

2σ2
λ

)
+ α

σ2
p

σ2
λσ

2
ε

〈µ,1p〉
)
,

with σ−2
p = σ−2

ε + σ−2
λ . The function α 7→ log p(A = αIn | θ) is a second-order polynomial, its

coefficients (a0, a1, a2) can thus be identified. In particular, the degree two coefficient gives the
value of

a2 = − n2

2σ2
ε

+
p2σ2

p

2σ4
ε

. (6.4)

Similarly, the computation in Lemma 6 can be used to derive the gradient ∇Ap(A | θ). It
writes, for A = αI:

∇Ap(A | θ) = 1

σ2
ε

p(A = αI | θ) (−αI + E[B]) ,

where B is the random variable given by B = λp ·X, with λp ∼ N
(

σ2
p

σ2
λ
µ+

σ2
p

σ2
ε
α1p, σ

2
p

)
. Further-

more, since we have

E[B] = E[X⊤Diag(λp)X] =

p∑

i=1

E[λp,i]E[xix
⊤
i ] ,
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we deduce:

∇Ap(A = αI | θ)
p(A = αI | θ) =

1

σ2
ε

(
−αI +

p∑

i=1

[
σ2
p

σ2
λ

µi +
σ2
p

σ2
ε

α

]
E[xix

⊤
i ]

)
.

Finally, since Tr E[xix
⊤
i ] = 〈E[xix⊤i ], I〉F = E[x⊤i Ixi] = 1, we have:

Tr

(∇Ap(A = αI | θ)
p(A = αI | θ)

)
=

1

σ2
ε

(
−αn+

σ2
p

σ2
λ

〈µ,1p〉+ p
σ2
p

σ2
ε

α

)
.

As a consequence, the α-linear function above can be deduced from the distribution of A, hence
we know its coefficients. In particular, the leading coefficient a3 writes:

a3 = − n

σ2
ε

+ p
σ2
p

σ4
ε

.

The formulas of a3 and a2 in Equation (6.4) can be combined to obtain − 1
2σ2

ε
(n2−np) = a2−pa3/2.

Therefore, since p 6= n, σε can be identified, along with σλ.

Identifying µ. The moment generating function of A writes as:

GA(T ) = E[e〈T,A〉F ] = E[e〈T,λ·X+ε〉F ] = Gλ·X(T )×Gε(T ) .

Since the distribution of ε has been characterized, Gε(T ) is known, and hence Gλ·X can be deduced
as GA(T )/Gε(T ). As the moment generating function characterizes the probability distribution, if
the distribution λ ·X is identifiable then the distribution of A is identifiable. We thus turn on the
problem of identifying µ given the distribution of λ ·X (and proceed similarly for the eigenvector
parameters in the next paragraph). We have for t ∈ R:

E[etλ·X ] = E

[
∞∑

k=0

1

k!
tkX⊤Diag(λ)kX

]
= E

[
X⊤Diag((etλi)pi=1)X

]

=

p∑

i=1

E[etλixix
⊤
i ] =

p∑

i=1

E[etλi ]E[xix
⊤
i ] =

p∑

i=1

etµi+
1
2σ

2
λt

2

E[xix
⊤
i ] ,

which in particular gives Tr(E[etλ·X ]) =
∑p

i=1 e
tµi+

1
2σ

2
λt

2

.
The functions of the form t 7→ etµi+

1
2σ

2
λt

2

are linearly independent for distinct µi’s: this allows
retrieving both the µi’s and the multiplicity count of each eigenvalue.

Identifying F . From there, we could use the matrices E[xix
⊤
i ] to identify the modal direc-

tions mi. Indeed, as shown in Khatri and Mardia [1977] (Equations 2.9 to 2.11), each mk is an
eigenvector of each E[xix

⊤
i ]. However, the related eigenvalues and remaining n−p eigenvectors are

unknown, and the relevant eigenvectors cannot be identified easily. In the limit of large concentra-
tion parameters, E[xix⊤i ] ≃ mim

⊤
i , so that the largest eigenvalue is the one corresponding to mi.

Yet this argument cannot be quantified, as the eigenvalues involve partial derivatives of log C(F )
which are hard to manipulate.

Instead, we get a better result by expressing the density of the distribution of the random
variable B = λ ·X, which we also denote as B = D(λ,X), with support on the set Im(D) of n×n
square matrices with rank p. The distribution of B is characterized by the expectations E[h(B)]
with h continuous bounded. We have:

E[h(B)] =

∫∫
h(D(λ,X)) · p(λ | θ)p(X | θ) [dX]dλ . (6.5)

We want to perform a change of variable to express the expectation as an integral over Im(D).
However, this cannot be performed directly. First, the mapping D is not injective. Next, the most
relevant change of variable formula for this problem is, to the best of our knowledge, the main
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result of Traynor [1994], which gives a formula for mappings taking inputs in vector spaces (which
is not the case here as X ∈ Vnp).

The first problem can be solved by splitting the integral over domains where D is injec-
tive, which means preventing permutation and change of signs in the columns of X. To that
end, for π ∈ Sp a permutation and f ∈ {±1}p, we denote Xπ,f = (f1xπ(1), . . . , fpxπ(p)), and
by λπ = (λπ(1), . . . , λπ(p)). We also define the sets
{
∆0 = {X ∈ Vnp | x1 ≺ · · · ≺ xp and the first non-zero coefficient of each column is > 0}
∆π,f = {Xπ,f | X ∈ ∆0} ,

(6.6)
where ≺ denotes the lexicographical order over Rn. By construction, we have Vnp = ∪π,f∆π,f : for
each X ∈ Vnp, we can change the sign of its columns and sort the result in the lexicographic order
to obtain a permuted version Xπf ∈ ∆0. Using this decomposition, we get

E[h(B)] =
∑

π,f

∫∫

Rp×∆π,f

h(D(λ,X)) · p(λ | θ) [dX]dλ .

Furthermore, the map X 7→ Xπ,f corresponds to multiplying X by an orthogonal matrix. By
construction, the invariant measure over Vnp is invariant to this transformation [Chikuse, 2003c].
Moreover, the map λ 7→ λπ is also a linear orthogonal transformation, and as such has Jacobian
determinant one. Hence, we can perform the change of variable (λ,X) 7→ (λπ, Xπ,f ), and we get:

E[h(B)] =
∑

π,f

∫∫

Rp×∆0

h(D(λπ, Xπ,f )) · p(λπ | θ)p(Xπ,f | θ) [dX]dλ

=

∫∫

Rp×∆0

h(D(λ,X)) ·
∑

π,f

p(λπ | θ)p(Xπ,f | θ) [dX]dλ

=

∫∫

Rp×∆0

h(D(λ,X)) ·
∑

π,f

p(λ | θπ,f )p(X | θπ,f ) [dX]dλ ,

with θπ,f = (Fπ,f , µπ, σλ, σε).
The first problem is now solved, as D is injective over Rp×∆0. We now need to get to an integral

formulation over a vector space. To that end, we consider the inverse of the Cayley transform
ofX:D = C−1(X). We refer the reader to Appendix 6.B for a definition of the Cayley transform C.
It is a smooth injective map from the tangent space at identity TInpVnp = {

(
A
B

)
| A⊤ = −A} to the

manifold Vnp, which covers the entire manifold apart from a set with measure zero. As explained
in Jauch et al. [2020b] (Theorem 4.1), a change of variable from D to X can be performed, and
amounts to adding a multiplicative factor J1(D), with J1 is a generalized Jacobian determinant.
It follows that we can rewrite:

E[h(B)] =

∫∫

Rp×C−1(∆0)

h(D(λ,C(D))) ·
∑

π,f

p(λ | θπ,f )p(X | θπ,f ) · J1(D) dDdλ .

Since the map D 7→ C(D) is injective on TInpVnp (Equations (1-3) in Jauch et al. [2020b]), the
map (λ,D) 7→ B = D(λ,C(D)) is injective over R

p × C−1(∆0). Given B, we denote by λB , XB

and DB its pre-images by D and C. Since the considered mapping is smooth, the main theorem of
Traynor [1994] applies. Letting J2(λ,D) be the generalized Jacobian determinant involved in the
formula, it writes as:

E[h(B)] =

∫

Im(D)

h(B) ·
∑

π,f

p(λB | θπ,f )p(XB | θπ,f ) ·
J1(DB)

J2(λB , DB)
dB .

where dB denotes the Hausdorff measure over Im(D). Since both maps C and D are diffeomorphic,
the generalized Jacobian determinants involved are non-zero.

As a consequence, the random variable B has density

∑

π,f

p(λB | θπ,f )p(XB | θπ,f ) ·
J1(DB)

J2(λB , DB)
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over its support w.r.t. the Hausdorff measure. Therefore, if the distribution of B is known, we can
deduce the value of the function B 7→∑

π,f p(λB | θπ,f )p(XB | θπ,f ). For X ∈ ∆0 and λ ∈ R
p, it

comes that we know the value of

fλ(X) =
∑

π,f

p(λ | θπ,f )p(X | θπ,f ) .

Since the sum above is invariant by any permutation π and change of sign f , it follows that the
value of this expression is known not only for X ∈ ∆0, but over the whole manifold Vnp. Now, we
consider the specific case λ = µ. Up to a normalizing constant, fµ(X) is a probability distribution
over Vnp: it is a mixture of von Mises-Fisher distributions with parameters (Fπ,f ) and mixture
weights proportional to p(µ | θπ,f ). This structure allows using the main result of Kent [1983],
which grants that the von Mises-Fisher densities given by the Fπ,f are linearly independent. This
result can be combined with the main theorem of Yakowitz and Spragins [1968], which states that
a family of finite mixtures is identifiable if and only if the mixture components form a linearly
independent set.

As a consequence, we identify the parameter F up to a column permutation and change of
sign. Moreover, in the sum above, the probabilities p(µ | θπ,f ) with maximal amplitude are
given by π = Id, and all the other permutations such that for all i, µσ(i) = µi (which encompasses
eigenvalue multiplicity). Since we assumed that all concentration parameters are positive, all (Fπ,f )
are distinct and hence the maximal mixture weights correspond to the matrices (Fπ,f ) with π
as just described. This finally allows matching eigenvalues with eigenvectors, completing the
identification of θ.

6.4 Existence and Consistency of the MAP Estimator

6.4.1 Maximum A Posteriori versus Maximum Likelihood

We turn to the problem of estimating θ from samples A1, . . . , AN when the number of samples N
grows large. In this section, we assume that the samples are distributed according to a distribu-
tion P , which may not be of the form p(A | θ).

However, the MLE may not be defined: the optimal value for F may theoretically be infi-
nite, as the model likelihood does not necessarily decrease at infinity. For instance, if the sam-
ples A1, . . . , AN are drawn from a Gaussian distribution with i.i.d. coefficients and mean equal
to a rank p matrix λ0 · X0, the parameters σλ and si tend to take extreme values (σλ being
very small and si being very large), and the distribution of latent variables is highly concentrated
around (λ0, X0). This phenomenon occurs because the estimated data distribution asymptotically
converges to the true data distribution, which lies at the boundary of the model family (in the
sense that taking very large si’s and a very small σλ yields a distribution close to the true data
distribution).

This problem is overcome numerically by adding a prior distribution p(θ) and considering the
Maximum A Posteriori (MAP) estimator over the set Θ of all parameters:

θ̂N ∈ argmaxΘ p(θ | A1, . . . AN ) = argmaxΘ p(A1, . . . AN | θ)p(θ) .

In this section, we want to account for the possible convergence of latent variable distributions to
constant values. For this purpose, instead of the parameterization θ = (F, µ, σλ, σε), we will be
defining the parameter set by Θ = {θ = (M, s, µ, σλ, σε) | σλ > 0, si < +∞}, with the equivalence
given by F =MDiag(s). In the next section, this representation will allow us to formally consider
an extension of the set Θ accounting for the case where si = +∞ and σλ = 0.

We consider inverse Gamma distributions for the prior p(σλ, σε), the uniform distribution
over Vnp for M , and any p.d.f. decreasing at infinity for p(s) and p(µ). Unlike the MLE, with this
prior specification the MAP estimator is guaranteed to exist.

Theorem 3. Given the proposed model, with parameters following the prior distribution described
above, for any set of matrices (Ai)

N
i=1, there exists θ̂N ∈ argmaxθ∈Θ p(θ | A1, ..., AN ).

102



Proof. The bound obtained in Lemma 7 gives with Bayes’ formula:

log p(θ | A) ≤ −n
2

2
log(2π)− (n2 − p) log σε − p log σλ + log p(θ)− log p(A) .

Since {
p(σλ) =

β
αλ
λ

Γ(αλ)
(1/σλ)

αλ+1 exp(−βλ/σλ)
p(σε) =

βαε
ε

Γ(αε)
(1/σε)

αε+1 exp(−βε/σε) ,

and given the other assumptions on the prior distribution, we have log p(θ | A) → −∞ as any of the
model variables reaches an open boundary of its domain. Furthermore, the function log p(θ | A) is
smooth: the integral representation given by Lemma 6 writes as

p(A | θ) = 1

(2π)n2/2σn2

ε

1

C(F )

σp
p

σp
λ

exp

[
− 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2
] ∫

Vnp

exp

[
〈F,X〉+ 1

2σ2
p

‖µAX‖2
]
dX .

Since the manifold Vnp is compact and the integrand f(θ,X) = exp(〈F,X〉 + ‖µAX‖2 /2σ2
p) is

smooth on Θ × Vnp, classical integration theorems grant that log p(θ | A) is smooth over every
compact subset of Θ: given a compact set K, the domination function g(X) = maxθ∈K f(X, θ) is
smooth over K. Hence, log p(θ | A) is smooth over Θ. In particular, the function log p(A | θ) is
coercive and continuous, and it thus admits a maximizer over Θ.

6.4.2 MAP Consistency

The above result motivates the study of the MAP estimator over the MLE. However, although
adding a prior distribution grants the existence of a maximizer within Θ, the weight of the prior
term decreases as the number of samples grows large, and we should expect the MAP estimator
to diverge to the boundary of Θ for some empirical data distributions P . This phenomenon is
accounted for by considering an extended set of parameters Θ∞ allowing null eigenvector variance
(i.e., λ constant) and infinite von Mises-Fisher concentrations (i.e., xi constant for some i’s):

Θ∞ = {(M, s, µ, σλ, σε) | σλ ∈ [0,+∞), si ∈ [0,+∞]} .

We prove in Lemma 8 that the likelihood p(A | θ) extends continuously to Θ∞. The exten-
sion essentially amounts to considering eigenvalue and eigenvector distributions restricted to a
conditional subspace. With this convention, the objective function ℓ to be asymptotically max-
imized can be defined over Θ∞ as the almost sure (a.s.) limit of the empirical objective func-
tion 1

N

∑N
i=1 log p(Ai | θ) + 1

N p(θ) defined over Θ:

ℓ(θ) = EP (dA)[log p(A | θ)] .

If P has a density with respect to the Lebesgue measure, the function ℓ is equal, up to a constant
term which depends only on P , to the opposite of the Kullback-Leibler divergence between P
and p(A | θ). The MAP estimator is said to be consistent if it converges to the set Θ∗ of maximizers
of ℓ(θ). In the case where P corresponds to some p(A | θ∗) for θ∗ ∈ Θid, ℓ only has one maximizer,
which is the true model parameter θ∗. For large classes of sufficiently regular families of statistical
models, the MLE and the MAP can be proved to be consistent and, in probability, to minimize
the KL divergence to the optimal point [van der Vaart, 1998].

The consistency of MLE for latent variable models has been studied for several classes of models,
like Hidden Markov Models [Douc et al., 2011], Independent Component Analysis [Bonhomme and
Robin, 2009] or longitudinal mixed effects models [Chevallier et al., 2021, Allassonnière et al.,
2007]. Along these results, we obtain the almost sure (a.s.) consistency of the MAP estimator.
We study two particular cases: in the first case, we assume that the parameters which may diverge
stay bounded, and obtain a.s. convergence to the set of maximizers over the constrained set. In
the second case, we show that the unconstrained MAP estimator converges a.s. to the set of
maximizers over Θ∞.

The convergence to the set of maximizers of ℓ(θ) is quantified by the distance d(θ̂N ,Θ∗). How-
ever, the set Θ∞

∗ of maximizers of ℓ over Θ∞ may have some elements with infinite coordinates,
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which prevents from quantifying distances. To overcome this issue, we consider the reparame-
terization ξ(θ) = (M,h(s), µ, σλ, σε), with h : [0,+∞]p → [0, 1]p applying the same continuous
increasing transformation to each si, for instance h(s)i = atanh(si). Over the new parameter
space Ξ∞ = ξ(Θ∞), we also obtain the almost sure consistency of the MAP ξ̂N = ξ(θ̂N ).

Theorem 4. Let Θη be the set of parameters with each si and σ−1
λ upper bounded by η, and let Θη

∗

be the set of maximizers of ℓ over Θη. Consider the following hypotheses:

H1 The number of latent patterns is strictly lower than the number of nodes: p < n.

H2 The samples (Ai)
N
i=1 are independent and identically distributed.

H3 The true data distribution P (dA) has a density w.r.t. the Lebesgue measure and expo-
nentially decaying tails beyond a compact set: there exist a, b > 0, such that for x large
enough, sup‖A‖F≥x P (A) ≤ a exp(−bx).

Then, assuming H1, H2 and H3:

1. For all η > 0, Θη
∗ 6= ∅ and the MAP estimator θ̂ηN on Θη is consistent: for every continuous

metric δ, almost surely,
δ(θ̂ηN ,Θ

η
∗) −→

N→+∞
0 .

2. The extended set of maximizers is non-empty: Θ∞
∗ 6= ∅. Denoting Ξ∞

∗ = ξ(Θ∞
∗ ), for every

continuous metric δ, almost surely,

δ(ξ̂N ,Ξ
∞
∗ ) −→

N→+∞
0 .

Remark. As a consequence, if all the elements of Θ∞ are equal on a coordinate, the correspond-
ing coordinate of θ̂N converges to this value. In particular, for some distributions P we may
have si → +∞ or σλ → 0 almost surely. This explains the phenomenon observed in the previous
section on Gaussian empirical data distributions.

The proof follows the architecture of van der Vaart [1998], Chevallier et al. [2021]. The main
difficulties and specificities lie in the proofs of the required lemmas which are specific to the
model, and the possibility of having partially constant latent variable distributions. We thus only
present here the structure of the main proof, and refer the reader to Appendix 6.C for the detailed
argument. As the proof for the first assertion is a strictly simpler version of the proof of the second
assertion, we omit it for the sake of brevity.

Sketch of the proof. The proof is divided into four parts. We define

E
∗ = sup

θ∈Θ∞

EP (dA)[log p(A | θ)] and Kε = {θ ∈ Θ∞ | δ(ξ(θ),Ξ∞
∗ ) ≥ ε} ,

with Θ∞ the Alexandrov compactification of Θ∞, as detailed in Appendix 6.C.

A) We prove that, for all θ∞ ∈ Θ∞ such that δ(ξ(θ∞),Ξ∞
∗ ) ≥ ε, there exists an open neighbor-

hood U ⊂ Θ∞ of θ∞ such that

EP (dA)

[
sup

θ∈U∩Θ∞

log p(A | θ)
]
< E

∗ .

B) The set Kε described above is compact, and therefore among all the sets U defined in part
A we can extract a finite cover of Kε. This allows proving that

lim sup
N→+∞

sup
θ∈Kε∩Θ∞

1

N

N∑

i=1

log p(Ai | θ) < E
∗ .
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C) Using the definition of θ̂N and the law of large numbers, we show that

lim inf
N→+∞

1

N

N∑

i=1

log p(Ai | θ̂N ) ≥ E
∗ .

D) Finally, combining the two arguments above allows getting a contradiction if θ̂N ∈ Kε for an
infinite number of N . As a consequence, for all ε > 0, θ̂N /∈ Kε almost surely as N → +∞,
which gives precisely δ(ξ̂N ,Ξ∞

∗ ) → 0.

6.5 Asymptotic Normality of the MAP Estimator

A consequence of Theorem 2 is that, if the empirical data distribution P corresponds to p(A | θ0)
for some θ0 ∈ Θid, we have Θid

∗ = {θ0}: thus, by Theorem 4, the MAP estimator over Θid

converges almost surely to θ0. A classical question is then to establish the rate of convergence
of θ̂N toward θ0, as well as the limiting asymptotic distribution. An answer for the more general
case of M and Z-estimators is provided in Chapter 5 of van der Vaart [1998], which we restate
with adapted notations:

Theorem 5 (Theorem 5.23 in van der Vaart [1998]). Let mθ(A) = log p(A | θ). Assume that mθ

is a measurable function such that θ 7→ mθ(A) is differentiable at θ0 for P -almost every A with
derivative ∇Amθ0(A). Assume that there exists a function m with EP (dA)[m(A)2] < +∞, such
that, for every θ1 and θ2 in a neighborhood of θ0:

|mθ1(A)−mθ2(A)| ≤ m(A) ‖θ1 − θ2‖ . (6.7)

Furthermore, assume that the map ℓ(θ) = EP (dA)[mθ(A)] admits a second-order Taylor expansion
at a point of maximum θ0 with nonsingular symmetric second derivative V = ∇2ℓ(θ0). If

1

N

N∑

i=1

mθ̂N
(Ai) ≥ sup

θ∈Θ

1

N

N∑

i=1

mθ(Ai)− oP(1/N) (6.8)

and θ̂N → θ0 in probability, then

√
N(θ̂N − θ0) = −V −1 1√

N

N∑

i=1

∇θmθ0(Ai) + oP(1) .

In particular, the sequence
√
N(θ̂N − θ0) is asymptotically normal with mean zero and covariance

matrix V −1
EP (dA)[∇θmθ(A)∇θmθ(A)

⊤]V −1.

Remark. The notation oP(1/N) designates a random variable ZN such that NZN → 0 in proba-
bility.

The most important condition in the theorem above is the non singularity of the Hessian matrix
at θ0. In general, ∇2

θℓ(θ) is impossible to compute for latent variable models, as it involves the
Hessian of log p(A | θ). However, the problem gets more tractable when the data distribution P
corresponds to p(A | θ0) for some θ0 ∈ Θ. The Hessian matrix at θ0 then classically rewrites as
the Fisher information matrix I(θ0) (see for instance Lemma 5.3 in Lehmann and Casella [2003]):

∇2
θℓ(θ0) = Ep(A|θ0)[∇2

θ log p(A | θ0)] = −Ep(A|θ0)

[
(∇θ log p(A | θ0))(∇θ log p(A | θ0))⊤

]
= −I(θ0) .

The non-singularity of the Fisher information matrix remains difficult to prove for general latent
variable models. Some papers consider it as a base hypothesis to obtain the asymptotic normality,
e.g., for Factor Analysis [Anderson and Amemiya, 1988] or Hidden Markov Models [Bickel et al.,
1998]. In the latter case, the more recent work of Douc [2005] provided a condition to obtain the
non-singularity of the Fisher information matrix. A recent result was obtained by Ren et al. [2015]
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on the asymptotic normality of MLE for Gaussian graphical models and apply it to estimation
from partial observations. In this specific case, the Fisher information has a simple closed form
expression.

For the model considered here, no closed form expression can be expected, as the gradient of
the log-likelihood writes with integrals on Vnp. Instead, we notice that, since the density p(A | θ0)
is continuous and I(θ0) writes as the expectation of (∇θ log p(A | θ0))(∇θ log p(A | θ0))⊤, the
matrix will be non-singular if we can find dim(θ0) matrices Ai such that the related gradi-
ents ∇θ log p(Ai | θ0) are linearly independent. This is formalized in the following lemma:

Lemma 4. Let d = dim(θ0). If A1, . . . , Ad matrices can be found such that the related gradi-
ents ∇θ log p(Ai | θ0) are independent, then I(θ0) is positive definite.

Proof. Let x ∈ R
d. We have:

x⊤I(θ0)x = Ep(A|θ0)

[
〈x,∇θ log p(A | θ0)〉2

]
≥ 0 .

If x⊤I(θ0)x = 0, then 〈x,∇θ log p(A | θ0)〉2 must be zero everywhere. Therefore, since the
map θ 7→ log p(A | θ) is infinitely smooth, x is orthogonal to all the gradients ∇θ log p(Ai | θ0), and
thus to their linear span, which covers the full space, which implies x = 0. As a consequence, I(θ0)
is positive definite.

In the case of our model, it turns out that, although the expression of ∇θ log p(A | θ) is
intractable, it simplifies as ‖A‖F grows large. This simplification comes from the so-called Fisher
identity:

∇θ log p(A | θ) = 1

p(A | θ)∇θp(A | θ)

=
1

p(A | θ)

∫∫

Vnp×Rp

∇θp(A,X, λ | θ) [dX]dλ

=

∫∫

Vnp×Rp

∇θ log p(A,X, λ | θ) · p(X,λ | A, θ) [dX]dλ

= E[∇θ log p(A,X, λ) | A] ,

and the gradient rewrites as an expectation of the complete log-likelihood over the latent variables.
Given the complete expression

p(A,X, λ | θ) = 1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1

C(F ) exp
[
〈F,X〉F − 1

2σ2
ε

‖A− λ ·X‖2F − 1

2σ2
λ

‖λ− µ‖2
]
,

this expectation yields for instance:

∇F log p(A | θ) = −∇F log C(F ) + E[X | A] .

As ‖A‖F → +∞, we show in the upcoming Proposition 5 that the eigenvector distribution
of (X | A) concentrates around the permutations of the p eigenvectors of A related to the p largest
eigenvalues. As a consequence, ∇F log p(A | θ) writes as the sum of ∇F log C(F ) and a linear
combination of all (XA)π,f , with XA the n × p eigenvector matrix of A and π ∈ Sp, f ∈ {±1}p.
However, although XA can be chosen freely, the subsequent linear combination turns out to be
hard to compute and manipulate, which ultimately prevents from getting an explicit expression
for the gradient in F . The same phenomenon happens with the other gradients, which all rely on
an expectation given A.

This observation motivates the main hypothesis for our normality result. We shall consider a
restricted variant of the main model p̃(A,X, λ), where the X variable is constrained to the
set ∆0 defined in Equation (6.6): the density of X writes as

p̃(X | θ) = 1X∈∆0

C′(F )
exp (〈X,F 〉F ) , (6.9)

with C′(F ) =
∫
∆0

exp (〈X,F 〉F ) [dX]. This constraint does not fundamentally change the model in
the limits where si → 0 and si → +∞. For intermediate values, it truncates the other sections ∆π,f
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of the vMF distribution, but does not change the support of the distribution of λ·X, as it still covers
the set of rank p matrices. The resemblance between p and p̃ is optimized when the maximum
of 〈X,F 〉F is reached in ∆0, i.e., when choosing the normalized columns of F to be in ∆0. We
adopt this convention in the remainder of the section, as it also facilitates proving the identifiability
of the restricted model.

In the remainder of this section, the notations ℓ(θ), θ̂N , ... refer to densities and estimators
obtained for the restricted model. We also assume that the empirical data distribution is given
by p̃(A | θ0) rather than p(A | θ0). With this restricted model, we have the following result:

Proposition 5. Let A ∈ R
n×n with rank at least p and distinct eigenvalues, and let At = tA

for t ∈ R. On the restricted model with X ∈ ∆0, the distribution (X | A = At) converges to
the constant value XA, with XA ∈ ∆0 the list of eigenvectors of A corresponding to the p largest
eigenvalues. In particular, E[X | A = At] converges to XA.

Proof. By definition, E[X | A = At] is the expectation of X w.r.t. the probability density propor-
tional to

1X∈∆0
exp

(
〈X,F 〉+ 1

2σ2
p

‖µtA,X‖2
)
.

As t → +∞, the function gt(X) = 1
2σ2

p
‖µtA,X‖2 reaches its maximum to a point which converges

to XA. We have indeed:

gt(X) = ‖µtA,X‖2 = t2
σ2
p

2σ4
ε

‖A ∗X‖2 + t
σ2
p

σ2
λσ

2
ε

〈A ∗X,µ〉+ σ2
p

σ4
λ

∥∥µ2
∥∥ .

By Proposition 4, ‖A ∗X‖2 is only at X = XA on ∆0 (unicity is guaranteed as the eigenvalues
of A are distinct). Let D a region of Vnp with non-zero invariant measure such that XA /∈ D and
let η > 0 such that if X ∈ D then ‖A ∗X‖2 ≤ ‖A ∗XA‖2 − 2η. Let Bη be a neighborhood of XA

such that ‖A ∗X‖ ≥ ‖A ∗XA‖ − η. We have:

P(X ∈ D | A = At, θ) =

∫
D
exp (〈X,F 〉+ gt(X)) [dX]∫

Vnp
exp (〈X,F 〉+ gt(X)) [dX]

≤
∫
D
exp (〈X,F 〉+ gt(X)) [dX]∫

Bη
exp (〈X,F 〉+ gt(X)) [dX]

≤
∫
D
exp

(
〈X,F 〉+ t2

σ2
p

2σ4
ε
(‖A ∗XA‖2 − 2η) + t

σ2
p

σ2
λσ

2
ε
‖A ∗XA‖ ‖µ‖

)
[dX]

∫
Bη

exp
(
〈X,F 〉+ t2

σ2
p

2σ4
ε
(‖A ∗XA‖2 − η)− t

σ2
p

σ2
λσ

2
ε
‖A ∗XA‖ ‖µ‖

)
[dX]

≤ exp

(
2 ‖F‖∗ − 2t2η

σ2
p

2σ4
ε

+ 2t
σ2
p

σ2
λσ

2
ε

‖A ∗XA‖ ‖µ‖
)

|D|Vnp

|Bη|Vnp

−→
t→+∞

0 .

Hence, by the Portmanteau theorem, the sequence of probability distributions (X | A = At)
converges in distribution to the constant XA.

Remark. Proposition 5 can be compared to the decreasing uncertainty on the normalized posi-
tion x/ ‖x‖ of a point x going to infinity. If we used the complete model, the distribution of X
would instead converge to the sum of Diracs at (XA)π,f weighted by p((XA)π,f | θ).

With the result above, we can prove that dimΘ linearly independent gradients ∇θ log p(A | θ0)
can be obtained.

Lemma 5. For all θ ∈ Θ, the log-likelihood gradient map A 7→ ∇θ log p̃(A | θ) of the restricted
model takes dimΘ = np+ p+ 2 linearly independent values.

Proof. As explained above, the Fisher identity reminded here allows computing gradients as A
grows large:

∇θ log p̃(A | θ) = E[∇θ log p̃(A,X, λ | θ) | A] .
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In order to alleviate the notations, the expectations E below refer to the distribution p̃(A,X, λ | θ0).
Since we have:

p̃(A,X, λ | θ) = 1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1X∈∆0

C′(F )
exp

[
〈F,X〉 − 1

2σ2
ε

‖A− λ ·X‖2F − 1

2σ2
λ

‖λ− µ‖2
]
,

we thus get for (F, µ, σλ, σε):

1. ∇F log p̃(A | θ) = −∇F logC(F ) + E[X | A],

2. ∇µ log p̃(A | θ) = 1
σ2
λ
[E[λ | A]− µ],

3. ∇σ2
ε
log p̃(A | θ) = − n2

2σ2
ε
+ 1

2σ4
ε
E[‖A− λ ·X‖2F | A],

4. ∇σ2
p
log p̃(A | θ) = − p

2σ2
λ
+ 1

2σ4
λ
E[‖λ− µ‖2 | A].

Let t ∈ R, consider the matrix At = tA and denote XA ∈ ∆0 the matrix of eigenvectors of A for
the p largest eigenvalues. The expressions above simplify as t→ +∞:

1. For F : Proposition 5 gives for A with p distinct non-zero leading eigenvalues:

∇F log p̃(At | θ) → −∇F logC(F ) +XA .

2. For µ: as seen in Section 6.2.3, (λ | X,At) ∼ N (µAtX , σ
2
p), so that we have

1

t
∇µ log p̃(At | θ) =

1

t

1

σ2
λ

[E[E[λ | X,At] | A]− µ]

=
1

t

1

σ2
λ

[E[µAtX | At]− µ]

=
1

t

1

σ2
λ

[
E

[
σ2
p

σ2
ε

tA ∗X +
σ2
p

σ2
λ

µ | At

]
− µ

]

−→
t→+∞

σ2
p

σ2
λσ

2
ε

A ∗XA .

3. For σ2
ε : similarly, we get

1

t2
∇σ2

ε
log p̃(At | θ) = − n2

2t2σ2
ε

+
1

2t2σ4
ε

E[E[‖At − λ ·X‖2F | X,At] | At]

= − n2

2t2σ2
ε

+
1

2t2σ4
ε

E[E[‖tA‖2F − 2〈λ, tA ∗X〉+ ‖λ‖2 | X,At] | At]

= − n2

2t2σ2
ε

+
1

2t2σ4
ε

E[‖tA‖2F − 2〈µAtX , tA ∗X〉+ ‖µAtX‖2 + pσ2
p | At]

−→
t→+∞

1

2σ4
ε

[
‖A‖2F − 2

σ2
p

σ2
ε

‖A ∗XA‖2 +
σ4
p

σ4
ε

‖A ∗XA‖2
]
.

4. For σ2
λ:

1

t2
∇σ2

p
log p̃(At | θ) = − p

2t2σ2
λ

+
1

2t2σ4
λ

E[‖λ− µ‖2 | At]

= − p

2t2σ2
λ

+
1

2t2σ4
λ

E[E[‖λ− µ‖2 | X,At] | At]

= − p

2t2σ2
λ

+
1

2t2σ4
λ

E[‖µAtX − µ‖2 + pσ2
p | At]

−→
t→+∞

σ4
p

2σ4
λσ

4
ε

‖A ∗XA‖2 .
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In these expressions, A ∗ XA = (λ1, . . . , λp) is the p leading eigenvalues of A. Furthermore, we
have ‖A ∗XA‖2F = λ21 + · · ·+ λ2p and ‖A‖2F = λ21 + · · ·+ λ2n. In the remainder of the proof, we call
these asymptotic rescaled values limit gradients. Using the formulas above, we derive the following
limit gradients.

• Taking X ∈ Vnp, we consider the limit gradient for µ ·Xi. Up to factors t and t2 which do
not affect the linear independence, the result is:




−∇F logC(F ) +X
σ2
p

σ2
λσ

2
ε
µ

1
2σ4

ε

[
1− 2

σ2
p

σ2
ε
+

σ4
p

σ4
ε

]
‖µ‖2

σ4
p

2σ4
λσ

4
ε
‖µ‖2



.

• Taking a vector λ ∈ R
p such that ‖λ‖ = ‖µ‖, we consider matrices of the form λ · Inp. The

resulting limit gradient at t→ +∞ is:



−∇F logC(F ) + Inp
σ2
p

σ2
λσ

2
ε
λ

1
2σ4

ε

[
1− 2

σ2
p

σ2
ε
+

σ4
p

σ4
ε

]
‖µ‖2

σ4
p

2σ4
λσ

4
ε
‖µ‖2



.

• We consider the matrices A = Diag(µ1, . . . , µp, α, . . . , α) with 0 < α < mini |µi|. The
resulting limit gradient is:




−∇F logC(F ) + Inp
σ2
p

σ2
λσ

2
ε
µ

1
2σ4

ε

[
1− 2

σ2
p

σ2
ε
+

σ4
p

σ4
ε

]
‖µ‖2 + 1

2σ4
ε
α2(n− p)2

σ4
p

2σ4
λσ

4
ε
‖µ‖2



.

• Finally, we take the matrix µ · Inp. The resulting limit gradient is:



−∇F logC(F ) + Inp
σ2
p

σ2
λσ

2
ε
µ

1
2σ4

ε

[
1− 2

σ2
p

σ2
ε
+

σ4
p

σ4
ε

]
‖µ‖2

σ4
p

2σ4
λσ

4
ε
‖µ‖2



.

Subtracting the limit gradient at µ · Inp, we can get linear combinations of gradients arbitrarily
close to any vector of the forms:




X − Inp
0
0
0


 ,




0
σ2
p

σ2
λσ

2
ε
(λ− µ)

0
0


 ,




0
0

1
2σ4

ε
α2(n− p)2

0


 .

With X ∈ Vnp and ‖λ‖ = ‖µ‖. We can now use Lemma 13, which states that the elements of the
form X − Inp span R

np. Similarly, elements of the form λ− µ span R
p: taking λ = −µ, the space

contains −2µ and thus µ. Hence, it also contains all elements λ with norm ‖µ‖, which can be
rescaled to get the entire space. As a consequence, the three vector families above span the entire
linear hyperplan R

np × R
p × R × {0}. Furthermore, the limit gradient at µ · Inp has a non-zero

last coordinate and does not belong to this linear hyperplan. As a consequence, the set of all limit
gradients spans the entire gradient space. Therefore, the set of all gradients, which gets arbitrarily
close to limit gradients, also spans the entire gradient space. Finally, we can thus find d = np+p+2
matrices (Ai)

d
i=1 such that the vectors (∇θ log p̃(Ai | θ))di=1 are linearly independent.
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With the result of Lemma 5, we can now obtain the asymptotic normality result.

Theorem 6. Assume that the empirical data distribution is given by the restricted model for some
parameter θ0 ∈ Θid. Then the MAP estimator θ̂N over Θid for the restricted model converges
almost surely to θ0, and θ̂N is asymptotically normal:

√
N(θ̂N − θ0) −→

D

N (0, I(θ0)
−1) .

Proof. As verified in Lemma 14, the restricted model is identifiable on Θid, so that the only
maximizer of ℓ(θ) over Θid is θ0. The proof of the consistency Theorem 4 adapts without hurdle
to the restricted model, proving that θ̂N converges to θ0 almost surely.

We can now check the conditions to apply Theorem 5. Since θ 7→ ℓ(θ) is smooth over Θ, it
admits a second-order Taylor expansion at θ0, and Lemma 4 combined with Lemma 5 ensures that
the Hessian matrix at this point is nonsingular. Lemma 15 shows that the Lipschitz condition (6.7)
is satisfied by log p̃(A | θ). Finally, condition (6.8) is satisfied, as the MAP estimator is such that:

1

N

N∑

i=1

log p(Ai | θ̂N ) =
1

N

N∑

i=1

log p̃(Ai | θ̂N ) +
1

N
log p(θ̂N )− 1

N
log p(θ̂N )

≥ sup
θ∈Θ

(
1

N

N∑

i=1

log p̃(Ai | θ) +
1

N
log p(θ)

)
− 1

N
log p(θ̂N )

≥ sup
θ∈Θ

(
1

N

N∑

i=1

log p̃(Ai | θ)
)

− 1

N
(sup
θ∈Θ

log p(θ) + log p(θ̂N ))

︸ ︷︷ ︸
oP(1/N)

.

Theorem 5 thus applies, and grants the convergence in distribution of
√
N(θ̂N − θ0) to the

centered Gaussian with covariance

[∇2
θℓ(θ0)]

−1
E[(∇θ log p(A | θ0))(∇θ log p(A | θ0))⊤][∇2

θℓ(θ0)]
−1 = I(θ0)

−1 .

6.6 Conclusion

This chapter provides theoretical guarantees for the estimation of the eigenvalue and eigenvector
distributions of the adjacency matrix decomposition model introduced in Chapter 5. The con-
sidered model is identifiable, its MAP estimator exists and converges almost surely to the points
minimizing the Kullback-Leibler divergence to the empirical data distribution. By considering
an alternate restricted model, we obtain the usual 1/

√
N convergence rate and the asymptotic

normality of the MAP estimator using the theory of van der Vaart [1998]. Our results show that
asymptotic statistical analysis can be performed on manifold-valued latent variable models to ob-
tain classical guarantees. Arguments similar to those we presented should allow obtaining results
in related models where little theoretical work has been done. State-space models on Stiefel and
Grassman manifolds [Chikuse, 2006], eigendecomposition models for a single network matrix [Hoff,
2009b] or mixture models [Ali and Gao, 2018] could lend themselves to such an analysis.

The model considered here, as most of the literature on statistics for Stiefel manifolds, is es-
timated with MLE or MAP. Recently, Pal et al. [2020] proposed a Bayesian framework for von
Mises-Fisher distributions which allows computing the posterior distribution of F given observa-
tions of X. An interesting question would be to analyze the behavior of this posterior distribution
in a hierarchical model where X is a latent variable, in a direction similar to the works of Lin et al.
[2017] and Duan et al. [2020].

Finally, another important question on the model we studied is the analysis of its estimation
error. In practice, in Chapter 5 we rely on a variant of the EM algorithm to estimate the model pa-
rameters. EM-based methods are known to produce local maxima of the likelihood, which prevents
from getting a rigorous theoretical analysis of the estimation error. However, even assuming that
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no local maximum is found, the E-step of the EM algorithm behaves in an undesirable way, as the
conditional distribution of (X,λ) given A is multimodal (one mode per permutation and change
of sign for the columns of X). This conditional distribution yields a very low vMF concentration
far from the real one, as the samples X are spread over the manifold. A heuristic thus has to be
employed in practice to ensure that X stays close to ∆0, and get a better estimate of the MAP.
Future work could investigate this question, either formally justifying this approach or proposing
alternate estimation procedures.

6.A Notations

Table 6.A.1 summarizes the main notations used throughout the chapter and the proofs.

6.B Reminders on the Stiefel manifold

The Stiefel manifold is the space of n×p matrices X such that X⊤X = Ip. It inherits a Riemannian
manifold structure either as a submanifold of Rn×p or as a quotient of On(R) by On−p(R). The
equivalence between both corresponds to mapping X to the set of orthogonal matrices (X,X⊥),
with X⊥ completing X into an orthonormal basis. The induced metrics are called respectively the
Euclidean metric and the canonical metric. The notions exposed here are introduced with great
detail and clarity in Edelman et al. [1998].

Tangent space. Let X ∈ Vnp. The relation satisfied by matrices H in the tangent space TXVnp

is obtained by differentiating the relation X⊤X = Ip: this yields H⊤X+X⊤H = 0. This definition
of the tangent space can be made more explicit by writing H under the form

H = (X,X⊥)

(
A

B

)
= XA+X⊥B ,

with A ∈ R
p×p and B ∈ R

(n−p)×p. Such a decomposition is always possible, as (X,X⊥) is an
orthogonal matrix. Using this expression in the equation of the tangent space yields A⊤ = −A. As
a consequence, TXVnp can be defined as the set of XA+X⊥B, with A a skew-symmetric matrix.

Function gradients. Given a function f : Vnp → R, the manifold gradient of f at X is the
matrix-valued function ∇Vf . It is defined by the property that, if Xt is a smooth curve on Vnp

with X0 = X and Ẋ0 = H ∈ TXVnp, then df(Xt)
dt (0) = 〈∇Vf(X), H〉X . Here, 〈·, ·〉X denotes the

inner product on TXVnp of the Riemannian manifold structure of Vnp. Note that the definition of
the gradient depends on the metric choice, which is worth mentioning as this choice varies from
one paper to another.

An important case is the situation where f can be extended to the whole matrix space. This
allows computing the Euclidean gradient of f . Then, depending on the metric choice, explicit
formulas are available for the manifold gradient. With respect to the canonical metric, we have
[Edelman et al., 1998]:

∇Vf(X) = ∇f(X)−X∇f(X)⊤X .

Cayley transform. In Riemannian geometry, the standard way of mapping elements of TXVnp

to the base manifold Vnp is the Riemannian exponential map, defined with geodesic equations.
Although explicit formulas are available for the exponential map on Vnp (see again Edelman et al.
[1998]), they rely on matrix exponential and little is known on the properties of the inverse mapping.

In contrast, the Cayley transform CX behaves better in that regard. It also sends elements
from TXVnp to Vnp and behaves similarly to the exponential map close to X, in the sense that

CX(H) = X +H + o(‖H‖X) .

Denoting K = HX⊤ −XH⊤, the Cayley transform at X is defined by:

CX(H) = (In +K/2)(In −K/2)−1X ∈ Vnp .
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Variable Definition
A Symmetric square matrix representing a network
n Number of rows of the square matrix A
N Number of random model samples
p Number of eigenvalues of A accounted for in the model (p ≤ n).
λ Element of Rp

Vnp Stiefel manifold of n× p matrices X such that X⊤X = Ip
On(R) Orthogonal group Vnn

X Element of Vnp

X⊥ Element of Vn(n−p) completing X into an orthonormal basis
xi Column i of matrix X
XI Element of Vn|I| formed by (xi)i∈I

[dX] Invariant measure over Vnp

Xπ,f For π a permutation and f ∈ {±1}p, we define Xπ,f = (f1xπ(1), . . . , fpxπ(p))
∆0 Subset of Vnp defined in Equation (6.6)
∆π,f ∆π,f = {Xπ,f | X ∈ ∆0}

vMF(F ) von Mises-Fisher (vMF) distribution on Vnp with parameter F ∈ R
n×p

C(F ) Normalizing constant of the distribution vMF(F )
C′(F ) Normalizing constant of the distribution vMF(F ) restricted to ∆0

CX(D) Cayley transform of a tangent vector D at point X
A1, . . . , AN Samples of the model considered in the chapter
X1, . . . , XN vMF samples representing the eigenvectors of A1, . . . , AN (up to noise)
λ1, . . . , λN Gaussian samples representing the eigenvalues of A1, . . . , AN (up to noise)

θ List of the model parameters: θ = F, µ, σλ, σε
p(A | θ) Model marginal likelihood of matrix A

p(A,X, λ | θ) Complete model likelihood
p(θ) Prior distribution on θ
P (dA) Empirical data distribution
F Parameter of a vMF distribution

(M, s) Alternate parameterization of vMF distributions: F =MDiag(s)
σλ Variance of the eigenvalues λi
σε Variance of the noise in the observed matrices Ai

λ ·X Shorthand for XDiag(λ)X⊤

A ∗X Shorthand for (x⊤i Axi)
p
i=1

σ2
p Posterior variance of λ given X and A: σ2

p = (1/σ2
ε + 1/σ2

λ)
−1

µAX Posterior mean of λ given X and A: µAX = σ2
p(A ∗X/σ2

ε + µ/σ2
λ)

ℓ(θ) Almost-sure limit of the MAP objective function as N → +∞
θ̂N Maximum A Posteriori estimator of θ
Θ Space of possible values for θ
Θη For η > 0, Θη represents a truncation of Θ which ensures MAP convergence
Θ∞ Extension of Θ allowing si = +∞ and σλ = 0

Θ∗,Θ
η
∗,Θ

∞
∗ Set of minimizers of the KL divergence to the data distribution

ξ(θ), ξ̂N ,Ξ∗,Ξ
∞
∗ Alternate parameterization of θ, θ̂N ,Θ∗,Θ

∞
∗ .

Θ∞ Alexandrov compactification of Θ∞

Table 6.A.1: Index of notations used throughout the chapter.
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CX was studied in more detailed for X = Inp in Jauch et al. [2020b]. In practice, the Cayley
transform is used in optimization to perform gradient descent [Fraikin et al., 2007], as it allows
projecting the descent direction ∇Vf(X) onto the manifold and requires only simple linear algebra
computations. We prefer it to the exponential map because it has a simple expression, is invertible,
and covers the entire manifold apart from a set with measure zero.

Remark. Note that the definition of the Cayley transform used here chapter slightly differs from
the standard definition introduced in Chapter 3. In the current chapter, the Cayley transform
formula is only used to show that the elements of Vnp span R

n×p, and using a simplified formula
is sufficient to that purpose.

6.C Proof of the consistency of the MAP estimator

We define
E
∗ = sup

θ∈Θ∞

EP (dA)[log p(A | θ)] .

The proof relies on the Alexandrov compactification Θ∞ of Θ∞, which adds an infinity point
for the coordinates σε (for the cases σε ∈ {0,+∞}), σλ (for the case σλ = +∞) and µ (for all the
cases where ‖µ‖ = +∞).

Part A. We prove that, for all θ∞ ∈ Θ∞ such that δ(ξ(θ∞),Ξ∞
∗ ) ≥ ε, there exists an open

neighborhood U ⊂ Θ∞ of θ∞ such that

EP (dA)

[
sup

θ∈U∩Θ∞

log p(A | θ)
]
< E

∗ . (6.10)

Let Uh be a decreasing sequence of open sets such that ∩h≥0Uh = {θ∞}, and let

fh(A) = sup
θ∈Uh∩Θ∞

log p(A | θ) .

Two cases arise:

1. If θ∞ ∈ Θ∞. Since θ 7→ log p(A | θ) is continuous, we have:

fh(A) −→
h→+∞

log p(A | θ∞) .

And the sequence fh(A) is decreasing for every A. Furthermore, Lemma 11 ensures that the
sequence is bounded from above (with the upper bound obtained by taking the whole space
for U). Hence, the monotone convergence theorem applies, and we get:

lim
h→+∞

EP (dA)[fh(A)] = EP (dA)[log p(A | θ∞)] < E
∗

since θ∞ /∈ Θ∞
∗ . Therefore, it is sufficient to take h large enough to have Equation (6.10)

satisfied.

2. If θ∞ /∈ Θ∞, i.e., the variance parameters (σλ, σε) take extreme values, we prove by con-
tradiction that limh→∞ fh(A) = −∞ a.s. Let us assume that there exists a measurable
set E ∈ B(Rn×n) such that P(A ∈ E) > 0 and, for all A ∈ E, infh fh(A) > −∞. Since fh(A)
is decreasing for every A in E, the infimum is reached at infinity.

For each h, let (θh,m) ∈ (Uh ∩Θ∞)N be a sequence such that:

lim
m→+∞

log p(A | θh,m) = sup
θ∈Uh∩Θ∞

log p(A | θ) = fh(A) ≥ inf
h
fh(A) .

By taking for each h a value of θh,m h−1-close to the function’s limit, we obtain a se-
quence θh ∈ (Θη)N such that θh → θ∞ and

lim inf
h→+∞

log p(A | θh) ≥ inf
h
fh(A) > −∞ .
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Since θ∞ /∈ Θ∞, we have σ∞
λ = +∞, σ∞

ε = 0 or σ∞
ε = +∞. Hence, this contradicts Lemma

12. Therefore, P (dA)-almost surely, fh(A) → −∞. We can again apply Lemma 11 and use
the monotone convergence theorem, which grants

lim
h→+∞

EP (dA)[fh(A)] = −∞ < E
∗ .

Therefore, whether θ∞ is in Θ∞ or not, there exists an open neighborhood U of θ∞ such that

EP (dA)

[
sup

θ∈U∩Θ∞

log p(A | θ)
]
< E

∗ .

Part B. Define Kε as:
Kε = {θ ∈ Θ∞ | δ(ξ(θ),Ξ∞

∗ ) ≥ ε} .
By definition of the Alexandrov compactification and by the continuity of δ, Kε is a compact
set, hence we can find a finite open cover (Uh≤H) of it, where each Uh satisfies Equation (6.10).
Let N ∈ N. For all θ ∈ Kε:

sup
θ∈Kε∩Θ∞

N∑

i=1

log p(Ai | θ) ≤ sup
1≤h≤H

N∑

i=1

sup
θ∈Uh∩Θ∞

log p(Ai | θ) .

Since the observations Ai are independent (H2), by the law of large numbers and by the definition
of Uh:

lim
N→+∞

1

N

N∑

i=1

sup
θ∈Uh∩Θ∞

log p(Ai | θ) < E
∗ .

Hence,

lim sup
N→+∞

sup
θ∈Kε∩Θ∞

1

N

N∑

i=1

log p(Ai | θ) < E
∗ .

Part C. For each θ∗ ∈ Θ∞
∗ , the law of large numbers gives

lim
N→+∞

1

N

N∑

i=1

log p(Ai | θ∗) = E
∗ .

Let θk be a sequence of parameters with finite values such that θk → θ∗. Then we have, for all k:

p(AN | θ̂N ) =
p(θ̂N | AN )p(AN )

p(θ̂N )
≥ p(θk | AN )p(AN )

p(θ̂N )
=
p(AN | θk)p(θk)

p(θ̂N )
N∑

i=1

log p(Ai | θ̂N ) ≥
N∑

i=1

log p(Ai | θk) + (log p(θk)− log p(θ̂N )) .

And, since log p(θ) is upper bounded by M , this leads to:

1

N
(log p(θk)− log p(θ̂N )) ≥ 1

N
log

p(θk)

M
.

Hence, lim infN→+∞
1
N (log p(θk)− log p(θ̂N )) ≥ 0 and, almost surely, for all k:

lim inf
N→+∞

1

N

N∑

i=1

log p(Ai | θ̂N ) ≥ EP (dA)[log p(A | θk)] .

And, from the continuity granted by Lemma 12, limk→+∞ EP (dA)[log p(A | θk)] = E
∗, so that

almost surely:

lim inf
N→+∞

1

N

N∑

i=1

log p(Ai | θ̂N ) ≥ E
∗ . (6.11)
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Part D. Finally, if θ̂N ∈ Kε for all N ∈ N, then:

N∑

i=1

log p(Ai | θ̂N ) ≤ sup
θ∈Kε∩Θ∞

N∑

i=1

log p(Ai | θ) .

Which implies almost surely:

lim sup
N→+∞

1

N

N∑

i=1

log p(Ai | θ̂N ) ≤ lim sup
N→+∞

sup
θ∈Kε∩Θ∞

1

N

N∑

i=1

log p(Ai | θ) < E
∗ . (6.12)

Which directly contradicts the point of part C. Furthermore, if θ̂N ∈ Kε is only true up to a
subsequence, the argument remains valid, as all the limits in this proof as N → +∞ can be taken
with respect to any extracted subsequence chosen a priori. Therefore, and since we proved in
Theorem 3 that θ̂N is finite and {θ ∈ Θ∞ | δ(ξ(θ),Ξ∞

∗ ) ≥ ε} ⊂ Kε, δ(ξ̂N ,Ξ∞
∗ ) ≥ ε as N → +∞

almost surely, for all ε > 0. As a consequence, δ(ξ̂N ,Ξ∞
∗ ) → 0 almost surely.

6.D Lemmas

In order to state the required lemmas, let us denote

A ∗X = (x⊤k Axk)
p
k=1,

1

σ2
p

=
1

σ2
ε

+
1

σ2
λ

and µAX = σ2
p

[
1

σ2
ε

A ∗X +
1

σ2
λ

µ

]
. (6.13)

We have the following lemma.

Lemma 6. The model likelihood rewrites as

p(A | θ) = 1

(2π)n2/2σn2

ε

σp
p

σp
λ

exp

(
− 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2
)
EX

[
exp

(
1

2σ2
p

‖µAX‖2
)]

, (6.14)

where EX denotes the expectation taken with respect to X only.

Proof. From the definition of our model,

p(A | θ) =
∫∫

Vnp×Rp

p(A | X,λ, θ)p(X | θ)p(λ | θ) [dX] dλ

=

∫∫

Vnp×Rp

1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1

C(F )
exp

[
〈F,X〉 − 1

2σ2
ε

‖A− λ ·X‖2F − 1

2σ2
λ

‖λ− µ‖2
]
[dX] dλ .

Furthermore:

‖A− λ ·X‖2F = ‖A‖2F − 2

p∑

k=1

λk〈A, x⊤k xk〉F +

p∑

k,l=1

λkλl〈x⊤k xk, x⊤l xl〉F

= ‖A‖2F − 2

p∑

k=1

λk(x
⊤
k Axk) +

p∑

k,l=1

λkλlδkl

= ‖A‖2F − 2〈λ,A ∗X〉+ ‖λ‖2 .
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So that, using 1
σ2
p
= 1

σ2
ε
+ 1

σ2
λ
:

p(A | θ) =
∫∫

Vnp×Rp

1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1

C(F )

exp

[
〈F,X〉 − 1

2σ2
ε

(
‖A‖2F − 2〈λ,A ∗X〉+ ‖λ‖2

)
− 1

2σ2
λ

(
‖λ‖2 − 〈λ, µ〉+ ‖µ‖2

)]
[dX] dλ

=

∫∫

Vnp×Rp

1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1

C(F )

exp

[
〈F,X〉 − 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2 + 〈λ, 1

σ2
ε

A ∗X +
1

σ2
λ

µ〉 − 1

2

(
1

σ2
ε

+
1

σ2
λ

)
‖λ‖2

]
[dX] dλ

=

∫∫

Vnp×Rp

1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1

C(F )

exp

[
〈F,X〉 − 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2 + 1

σ2
p

〈λ, σ2
p

[
1

σ2
ε

A ∗X +
1

σ2
λ

µ

]
〉 − 1

2σ2
p

‖λ‖2
]
[dX] dλ .

Let µAX = σ2
p

[
1
σ2
ε
A ∗X + 1

σ2
λ
µ
]
. We get:

p(A | θ) =
∫∫

Vnp×Rp

1

(2π)n2/2σn2

ε

1

(2π)p/2σp
λ

1

C(F )

exp

[
〈F,X〉 − 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2 + 1

σ2
p

〈λ, µAX〉 − 1

2σ2
p

‖λ‖2 ± 1

2σ2
p

‖µAX‖2
]
[dX] dλ

=

∫

Vnp

1

(2π)n2/2σn2

ε

1

C(F )

σp
p

σp
λ

exp

[
〈F,X〉 − 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2 + 1

2σ2
p

‖µAX‖2
]

∫

Rp

1

(2π)p/2σp
p
exp

[
− 1

2σ2
p

‖λ− µAX‖2
]
dλ

︸ ︷︷ ︸
=1

[dX] .

Thus, we obtain the result:

p(A | θ) = 1

(2π)n2/2σn2

ε

1

C(F )

σp
p

σp
λ

exp

[
− 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2
] ∫

Vnp

exp

[
〈F,X〉+ 1

2σ2
p

‖µAX‖2
]
[dX]

=
1

(2π)n2/2σn2

ε

σp
p

σp
λ

exp

[
− 1

2σ2
ε

‖A‖2F − 1

2σ2
λ

‖µ‖2
]
EX

[
exp

[
1

2σ2
p

‖µAX‖2
]]

.

Lemma 7 (Bound on the log-likelihood). For all matrix A and parameters θ,

log p(A | θ) ≤ −n
2

2
log(2π)− (n2 − p) log σε − p log σλ .

Proof. Using 1
σ2
p
= 1

σ2
λ
+ 1

σε
, Jensen’s inequality gives ‖µAX‖2 ≤ 1

σ2
ε
‖A ∗X‖2 + 1

σ2
λ
‖µ‖2. Propo-

sition 4 implies, for µ = 0, that ‖A ∗X‖ ≤ ‖A‖F . Hence, for all X ∈ Vnp, we obtain the
inequality ‖µAX‖2 ≤ 1

σ2
ε
‖A‖2F + 1

σ2
λ
‖µ‖2. This bound yields in the expression of Lemma 6:

log p(A | θ) ≤ −n
2

2
log(2π)− n2 log σε + p log σp − p log σλ .

Furthermore, from the definition of σp we have σp ≤ σε, which gives the desired bound:

log p(A | θ) ≤ −n
2

2
log(2π)− (n2 − p) log σε − p log σλ .
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Lemma 8 (Continuity of p(A | θ) over Θ∞). The likelihood p(A | θ) extends continuously
when si = +∞ for a subset I of r indices or when σλ = 0. In other words, θ 7→ p(A | θ) is
continuous over Θ∞. With the following notations

• J is the complementary of I in {1, . . . , p},

• XI is the n× r matrix (xi1 , . . . , xir ),

• M⊥
I denotes an n× (n− r) matrix such that M⊤

I M
⊥
I = 0 and M⊥

I ∈ Vn,n−r.

• qvMF(X,F ) is the von Mises-Fisher density with parameter F and variable X,

• F =MDiag(s) is the parameterization of F described in Section 6.2,

the extension reads:

p(A | θ) =
{∫

Vn−r,p−r
qvMF(Y ; (M⊥

I )⊤FJ)p(A | X = (MI ,M
⊥
I Y ), λ = µ, θ) [dY ] if σλ = 0

∫∫
Vn−r,p−r×Rp qvMF(Y ; (M⊥

I )⊤FJ)p(A | X = (MI ,M
⊥
I Y ), λ = µ, θ)p(λ | θ) [dY ]dλ otherwise.

If all latent variables are constant, this yields the Gaussian likelihood A ∼ N (µ ·M,σ2
εIn×n).

Proof. For notational convenience, we suppose that I is composed of the first r indices of {1, . . . , p}.
Let {XI = MI} ⊂ Vnp be the set of values of X such that X and M match on the columns of I.
The continuity at infinity comes from the expression:

p(A | θ) = EX,λ[p(A | X,λ, θ)]
= EXI ,λ[EXJ

[p(A | X,λ, θ) | XI , λ]] .

The conditional expectation, computed below, is continuous (as the parameters in it remain finite).
Furthermore, in distribution, XI → MI and λ → µ, as sI → +∞ and σλ → 0. Therefore, in the
limit the expression reduces to the conditional expectation taken at the limiting final values:

E[p(A | X,λ, θ) | XI ] =
1∫∫

{XI=MI}×Rp exp(〈FJ , XJ〉)p(λ | θ) [dX]dλ
∫∫

{XI=MI}×Rp

exp(〈FJ , XJ〉)f(A,X, λ)p(λ | θ) [dX]dλ ,

where the measure forX here corresponds to the Hausdorff measure over {XI =MI}. Furthermore,
we have {XI = MI} = {(MI ,M

⊥
I Y ) | Y ∈ Vn−r,p−r} and the map Y 7→ (MI ,M

⊥
I Y ) is an

isometry with respect to the invariant measures (which is equal to the Hausdorff measure for
Stiefel manifolds, as noted in Jauch et al. [2020b]). We thus get:
∫∫

{XI=MI}×Rp

exp(〈FJ , XJ〉)f(A,X, λ)p(λ | θ) [dX]dλ

=

∫∫

Vn−r,p−r×Rp

exp(〈(M⊥
I )⊤FJ , Y 〉)f(A, (MI ,M

⊥
I Y ), λ)p(λ | θ) [dY ]dλ ,

and similarly
∫∫

{XI=MI}×Rp exp(〈FJ , XJ〉)p(λ | θ) [dX]dλ = C((M⊥
I )⊤FJ).

Lemma 9 (Better bound on the likelihood). For all parameters θ ∈ Θ and matrices A ∈ R
n×n

such that ‖µ‖ > max(2 ‖A‖F , 2σλ
√
p/2− 1), we have the bound

p(A | θ) ≤ 1

(2πσ2
ε)

n2/2

(
2 ‖µ‖p

Γ(p/2)σp
λ

+ 1

)
exp

(
− 1

2σ2
ε

(‖µ‖ /2− ‖A‖F )2
)
.
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Proof. Using Proposition 4, which in particular grants that ‖A ∗X‖ ≤ ‖A‖F , we have

p(A | θ) = Eλ,X

[
1

(2πσ2
ε)

n2/2
exp

(
− 1

2σ2
ε

‖A− λ ·X‖2F
)]

= Eλ,X

[
1

(2πσ2
ε)

n2/2
exp

(
− 1

2σ2
ε

(
‖A‖2F − 2〈λ,A ∗X〉,+ ‖λ‖2

))]

= Eλ,X

[
1

(2πσ2
ε)

n2/2
exp

(
− 1

2σ2
ε

(
‖A‖2F − ‖A ∗X‖2 + ‖A ∗X − λ‖2

))]

≤ Eλ,X

[
1

(2πσ2
ε)

n2/2
exp

(
− 1

2σ2
ε

‖A ∗X − λ‖2
)]

.

Since ‖A ∗X‖ ≤ ‖A‖F , we have ‖A ∗X − λ‖ ≥ d(λ,B(0, ‖A‖F )) = max(0, ‖λ‖ − ‖A‖F ). And
since ‖µ‖ > 2 ‖A‖F , we have:

(2πσ2
ε)

n2/2p(A | θ) ≤ Eλ,X

[
1‖λ‖≤‖µ‖/2 exp

(
− 1

2σ2
ε

max(0, ‖λ‖ − ‖A‖F )2
)]

+ Eλ,X

[
1‖λ‖>‖µ‖/2 exp

(
− 1

2σ2
ε

(‖µ‖ /2− ‖A‖F )2
)]

≤ P(‖λ‖ ≤ ‖µ‖ /2) + exp

(
− 1

2σ2
ε

(‖µ‖ /2− ‖A‖F )2
)
.

Furthermore,

P(‖λ‖ ≤ ‖µ‖ /2) ≤ P

(
‖λ− µ‖ ∈

[
1

2
‖µ‖ , 3

2
‖µ‖

])

= P

(
1

σ2
λ

‖λ− µ‖2 ∈
[

1

4σ2
λ

‖µ‖2 , 9

4σ2
λ

‖µ‖2
])

.

Since by definition λ ∼ N (0, σ2
λIp),

1
σ2
λ
‖λ− µ‖2 follows a chi-squared distribution with degree p.

Its CDF is given by:

F (x) =
γ(p/2, x/2)

Γ(p/2)
,

with γ(p/2, x/2) =
∫∞

x/2
tp/2−1e−t dt. Therefore, we have:

P(‖λ‖ ≤ ‖µ‖ /2) ≤ P

(
1

σ2
λ

‖λ− µ‖2 ∈
[

1

4σ2
λ

‖µ‖2 , 9

4σ2
λ

‖µ‖2
])

=
1

Γ(p/2)

∫ 9

4σ2
λ

‖µ‖2

1

4σ2
λ

‖µ‖2

tp/2−1e−t dt .

Furthermore, the function t 7→ tp/2−1e−t is decreasing for t > p/2− 1 and ‖µ‖2 > 4σ2
λ(p/2− 1), so

that:

P(‖λ‖ ≤ ‖µ‖ /2) ≤ 1

Γ(p/2)

9 ‖µ‖2 − ‖µ‖2
4σ2

λ

(
1

4σ2
λ

‖µ‖2
)p/2−1

exp

(
− 1

4σ2
λ

‖µ‖2
)

≤ 2 ‖µ‖p
Γ(p/2)σp

λ

exp

(
− 1

4σ2
λ

‖µ‖2
)
.

This finally yields the claimed result:

p(A | θ) ≤ 2 ‖µ‖p
Γ(p/2)σp

λ(2πσ
2
ε)

n2/2
exp

(
− 1

4σ2
λ

‖µ‖2
)
+

1

(2πσ2
ε)

n2/2
exp

(
− 1

2σ2
ε

(‖µ‖ /2− ‖A‖F )2
)

≤ 1

(2πσ2
ε)

n2/2

(
2 ‖µ‖p

Γ(p/2)σp
λ

+ 1

)
exp

(
− 1

2σ2
ε

(‖µ‖ /2− ‖A‖F )2
)
.
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Lemma 10 (Chevallier et al. [2021], Lemma 1). Let p < q be two integers. Then, for any
differentiable map f : R

p → R
q and any compact subset K of R

p, there exists a constant λ
depending only on p and q such that

∫

Rq\f(K)

log+
1

d(A, f(K))
dA < λ

(
sup
K

‖Df‖+ 2

)q

Diam(K) .

Lemma 11. Assume hypotheses H1, H3. We have

EP (dA)

[
sup

θ∈Θ∞

(log p(A | θ))+
]
< +∞ .

Proof. For an observation A and all θ ∈ Θ, we have:

p(A | θ) = E [p(A | X,λ)]

= E

[
1

(σε
√
2π)n2

exp

(
− 1

2σ2
ε

‖A− λ ·X‖2F
)]

≤ 1

(σε
√
2π)n2

exp

(
− 1

2σ2
ε

d(A,Rnp)
2

)
.

Where Rnp denotes the set of n× n matrices with rank less than p. This inequality remains true
for θ ∈ Θ∞, as both sides extends continuously to Θ∞. Hence, for all θ ∈ Θ∞:

log p(A | θ) ≤ −n2 log(σε
√
2π)− 1

2σ2
ε

d(A,Rnp)
2 (6.15)

≤ −n2 log(σε
√
2π)− 1

2σ2
ε

d(A,Rnp)
2 . (6.16)

This quantity is maximized for σ2
ε = 1

n2 d(A,Rnp)
2. Which gives, taking the positive part, up to a

finite additive constant α:

(log p(A | θ))+ ≤ α+ n2 log+
(

1

d(A,Rnp)

)
. (6.17)

We now want to apply Lemma 10 to integrate over A. To that end, we need to parameterize Rnp

with a map from a lower dimensional space. The naive mapping R
p×R

n×p → Rnp mapping (λ,X)
to λ ·X does not work directly, as it is not “coercive”, in the sense that (λ,X) can go to infinity
with λ ·X possibly staying bounded. This problem is overcome by restricting the X domain of the
map (λ,X) 7→ λ ·X to a set of points close to Vnp.

Let f : R
n×p × R

p → R
n×n, defined by f(U, v) = v · U = UDiag(v)U⊤. Then we have

that Rnp = f(Vnp × R
p). We have furthermore

DfU,v(H,w) = UDiag(v)H⊤ +HDiag(v)U⊤ + UDiag(w)U⊤ ,

so that
‖DfU,v(H)‖2 ≤ 2 ‖U‖2 ‖v‖∞ ‖H‖2 + ‖U‖22 ‖w‖∞ .

Hence, the operator norm of the differential (for the matrix operator norm) satisfies the inequal-
ity ‖Dfu,v‖2 ≤ Cnp ‖(U, v)‖2ℓ1 (with Cnp a generic product of norm equivalence constants, whose
definition may implicitly vary depending on the equation).

Let β ∈]0, 1]. Since Vnp is a compact subset of Rn×p, There exists X1, ..., XH ∈ Vnp such that
the union of Frobenius balls ∪H

h=1BF (Xh, β) covers Vnp. In particular, we have

f
((
∪H
h=1B(Xh, β)

)
× R

p)
)
= Rnp .
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Let (h, t) ∈ J1, HK×Z
p: we defineBht asB(Xh, β)×B∞(t, 1/2). Using hypothesis H1 gives np+ p < n2,

hence Lemma 10 applies to f . We get:

∫

Rn×n\f(Bht)

log+
1

d(A, f(Bht))
dA < λ

(
sup
Bht

‖Df‖+ 2

)n2

Diam(Bht)

≤ λ

(
sup

(U,v)∈Bht

Cnp ‖(U, v)‖2ℓ1 + 2

)n2

(
√
n+ β)

≤ λ
(
Cnp(‖Xh‖ℓ1 + ‖t‖ℓ1 + Cnpβ + p)2 + 2

)n2

(
√
n+ 1)

≤ (anp ‖t‖∞ + bnp)
n2

(as ‖U‖F ≤ ‖Xh‖F + β ≤ √
p+ 1) .

With anp, bnp constants depending only on n and p. Let DT = ∪h∈J1,HK,‖t‖
∞

≤TBht. We have:

1/d(A, f(DT )) = sup
(U,v)∈DT

1/d(A, f(U, v)) ≤
H∑

h=1

∑

‖t‖
∞

≤T

sup
(U,v)∈Bht

1/d(A, f(U, v))

≤
H∑

h=1

∑

‖t‖
∞

≤T

1/d(A, f(Bht)) .

Hence, since the sets f(Bt) have zero Lebesgue measure in R
n×n(as np+ p < n2):

∫

Rn×n

log+
1

d(A, f(DT ))
P (A)dA =

H∑

h=1

T∑

j=1

∑

‖t‖
∞

=j

∫

Rn×n\f(Bht)

log+
1

d(A, f(Bht))
P (A)dA

≤
H∑

h=1

T∑

j=1

∑

‖t‖
∞

=j

(anp ‖t‖∞ + bnp)
n2

max
d(A,f(Bht))≤1

P (A) .

Now, if A is such that d(A, f(Bht)) ≤ 1, we have ‖A− f(Xh, t)‖F ≤ 1 + Cnp/2. Furthermore,
since the columns of Xh are orthonormal we have ‖f(Xh, t)‖2 = ‖t‖∞, and we obtain the impli-
cation d(A, f(Bht)) ≤ 1 =⇒ ‖A‖F ≥ Cnp ‖t‖∞ − 1 − C ′

np/2 ≥ c(‖t‖∞ − 1) for some c > 0.
Hence,

∫

Rn×n

log+
1

d(A, f(DT ))
P (A)dA ≤

T∑

j=1

∑

‖t‖
∞

=j

H(anpj + bnp)
n2

max
d(A,f(Bht))≤1

P (A)

≤
T∑

j=1

(j + 1)(np+p)H(anpj + bnp)
n2

sup
‖A‖F≥c(j−1)

P (A) .

Since P has an exponentially decaying tail beyond some compact set (hypothesis H3), this
sum converges to a finite value. Since the sequence

(
log+

(
d(A, f(DT ))

−1
))

T∈N
is non-negative

non-decreasing with limit log+
(
d(A,Rnp)

−1
)
, Fatou’s lemma gives:

∫

Rn×n

log+
(

1

d(A,Rnp)

)
P (dA) =

∫

Rn×n

lim inf
T→+∞

log+
(

1

d(A, f(DT ))

)
P (dA)

≤ lim inf
T→+∞

∫

Rn×n

log+
(

1

d(A, f(DT ))

)
P (dA) < +∞ .

Thus, we finally get the desired result with Equation (6.17):

E

[
(log p(A | θ))+

]
≤ α+ n2

∫

Rn×n

log+
(

1

d(A,Rnp)

)
P (dA) < +∞ .
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Lemma 12. We have:

1. P (dA) almost-surely, for any sequence θk ∈ Θ∞ such that limk→+∞ θk ∈ Θ∞ \Θ∞,

lim
k→+∞

log p(A | θk) = −∞ .

2. For any sequence θk ∈ Θ∞ such that limk→+∞ θk ∈ Θ∞ \Θ∞,

lim
k→+∞

EP (dA) [log p(A | θk)] = −∞ .

3. The mapping θ 7→ EP (dA)[log p(A | θ)] is continuous on Θ∞ and Θ∞
∗ 6= ∅.

Proof. We prove the three points consecutively.

1. Let (θk) ∈ Θ∞ a sequence such that θ∞ = limk→+∞ θk ∈ Θ∞ \Θ∞. By definition,

Θ∞ \Θ∞ = {(M, s, µ, σλ, σε) | s ∈ [0,+∞]p and (σλ = +∞ or σε ∈ {0,+∞} or µ = ∞)} .

We treat the cases separately, depending on the limits σλ, σε ∈ {0, c > 0,∞} and µ ∈
R

p ∪ {∞}.

(a) σλ → ∞, σε → c: then, by Lemma 7, log p(A | θ) → −∞
(b) If σε → +∞ or σε → 0. We can use Lemma 9: since A has density with respect

to the Lebesgue measure, ‖A‖F 6= ‖µ‖ /2 almost surely, so that log p(A | θ) → −∞
as σε → +∞ or σε → 0.

(c) If µ→ ∞ and (σλ → c, σε → c or σλ → 0, σε → c): Lemma 9 grants that log p(A | θ) →
−∞.

2. Let (θk) ∈ Θ∞ a sequence such that θ∞ = limk→+∞ θk ∈ Θ∞ \Θ∞. Let fk(A) = p(A | θk).
We proved above that, almost surely, fk(A) → −∞.

Let m < 0. We have 1fk(A)≥m → 0 almost surely, hence EP (dA)[fk(A)1fk(A)≥m] → 0
as k → +∞.

EP (dA)[fk(A)] = EP (dA)[fk(A)1fk(A)<m] + E[fk(A)1fk(A)≥m] ≤
k→+∞

m+ o(1) .

Therefore, lim supk→+∞ EP (dA)[fk(A)] ≤ m for all m < 0, hence

lim
k→+∞

EP (dA)[log p(A | θk)] = −∞ .

3. Let x > 0. Lemma 8 shows that the map θ 7→ log p(A | θ) is continuous over the set of
parameters Sx = {θ ∈ Θ∞ | σε ∈ [x, 1/x], σλ ≤ 1/x}, which is a compact. It is therefore
bounded, which implies that θ 7→ EP (dA)[log p(A | θ)] is continuous over Sx for every x,
hence continuous over Θ∞. Furthermore, suppose that Θ∞

∗ is empty. Then any maximizing
sequence θk is such that limσλ → +∞ or limσε ∈ {0,+∞}, which contradicts the point
proved above. Therefore, Θ∞

∗ 6= ∅.

Lemma 13. For every neighborhood V of Inp, Span(V ∩Vnp) = R
n×p. Furthermore, the set {X−

Inp | X ∈ V } also spans R
n×p.

Proof. The tangent vectors at Inp write H =
(
A
B

)
with A⊤ = −A. The proof relies on a second-

order expansion of the Cayley retraction map at Inp. Following Jauch et al. [2020b], we define the

Cayley transform on this tangent space as a function of K =

(
A −B⊤

B⊤ 0

)
:

CI(H) = (In +K)(In −K)−1Inp .
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By definition, the map CI is such that CI(H) ∈ Vnp for all H ∈ TIVnp. Furthermore, if an n× n
matrix K is sufficiently small, we have (In +K)−1 = In −K +K2 + O(K3). Taking B = 0, we
get:

CI

(
εA
0

)
− Inp = ε

(
A
0

)
+O(ε2) .

We can thus get linear combinations of elements of Vnp arbitrarily close to elements of the form
(
A
0

)

with A⊤ = −A. Taking A = 0 similarly leads to:

CI

(
0
εB

)
− Inp =

(
−2ε2B⊤B

2εB

)
+O(ε3) .

As with A, we obtain a linear combination
(
CI

(
0
εB

)
− Inp

)
/ε arbitrarily close to matrices of the

form
(
0
B

)
with B ∈ R

(n−p)×p. Furthermore, still taking A = 0, we obtain:

CI

(
0
εB

)
+ CI

(
0

−εB

)
− 2Inp =

(
−4ε2B⊤B

0

)
+O(ε3) .

We can thus get linear combinations close to elements of the form
(
B⊤B

0

)
. This is sufficient to get

all matrices with a symmetric upper part, as any symmetric matrix can be obtained as a weighted
sum of rank-one matrices of the form (x, 0, . . . , 0)⊤ ∈ R

(n−p)×p (x ∈ R
p).

As a consequence, there are linear combinations converging to any matrix
(
A
B

)
, by combining

symmetric and skew-symmetric components for A, and the term for B. In particular, we obtain
linear combinations arbitrarily close to a basis of Rn×p, which thus also span the entire space.

Lemma 14. The restricted model p̃(A | θ) is identifiable on Θid.

Proof. The parameters σλ, σε and µ can be identified as in Theorem 2. It thus remains to iden-
tify F = MDiag(s) from the distribution of λ · X. Here, the argument gets much simpler than
for the full model: since X is constrained in ∆0, the mapping (λ,X) 7→ λ ·X is injective over the
whole support of latent variables. Therefore, the changes of variable using the formula of Traynor
[1994] directly give access to the density of X over ∆0 (with the same argument as the one used
to obtain fλ(X) for the full model).

By the hypothesis we made when introducing the restricted model, the maximum of 〈X,F 〉F
over Vnp is reached in ∆0: this point, which can thus be identified, gives the value of M , the
normalized columns of F (we recall that we introduced the decomposition F =MDiag(s)).

We use the gradient of p̃(X | θ) to identify the concentration parameters (si). Since the
function is defined over Vnp, we only have access to the projection of its gradient onto the
tangent spaces. If we denote by G(X) the Euclidean gradient, the projected manifold gradient
writes: GV(X) = G(X)−XG(X)⊤X [Edelman et al., 1998]. In the case of the function p̃(X | θ),
the manifold gradient thus is: GV(X) = p̃(X | θ)(F −XF⊤X). As a consequence, the func-
tion h(X) = F −XF⊤X is known over ∆0. Coherently, we thus obtain:

h(M) =MDiag(s)−MDiag(s)M⊤M = 0 .

We will now use the first-order variations of h(X) around M to retrieve s. These variations
are retrieved by using a simplified Cayley transform on tangent vectors at M (any other smooth
retraction map could be used here). As reminded in appendix 6.B, such tangent vectorsH ∈ TMVnp

write as H =MA+M⊥B, with A⊤ = −A. Denoting K = HM⊤−MH⊤, we define the simplified
Cayley transform at M by:

CM (H) = (In +K)(In −K)−1M ∈ Vnp .
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In particular, as in Lemma 13, it satisfies CM (εH) =M + εH +O(ε2). This gives:

h(CM (εH)) = F − CM (H)F⊤CM (εH)

= F − (M + εH)F⊤(M + εH) +O(ε2)

= F −MF⊤M︸ ︷︷ ︸
=0

−εHF⊤M − εMF⊤H +O(ε2)

= −ε(MA+M⊥B)Diag(s) + εMDiag(s)M⊤(MA+M⊥B) +O(ε2)

= −εM [Diag(s)A+ADiag(s)]− εM⊥BDiag(s) +O(ε2) .

Taking B = 0 and normalizing by ε, we obtain the value of M [Diag(s)A+ADiag(s)] for every p× p
skew-symmetric matrix A, which gives Diag(s)A + ADiag(s) when multiplying by M⊤. For ev-
ery i, j, taking for A the matrix with Aij = −Aji = 1 and zeros everywhere else gives the value
of si+ sj . This gives an over-determined system of equations which allows identifying the si’s.

Lemma 15. If the empirical data distribution is given by P (A) = p̃(A | θ0), then condition (6.7)
for the asymptotic normality theorem of van der Vaart [1998] is satisfied by the restricted model
on a neighborhood of θ0.

Proof. We are looking for a function L : Rn×n → R+ with E[L(A)2] < +∞ and such that, for θ1
and θ2 sufficiently close to θ0,

| log p(A | θ1)− log p(A | θ2)| ≤ L(A) ‖θ1 − θ2‖ .

Transposed to the restricted model, Lemma 6 gives the marginalized expression:

log p̃(A | θ) = log

[
1

(2π)n2/2σn2

ε

σp
p

σp
λ

]
− 1

2σ2
ε

‖A‖2F−
1

2σ2
λ

‖µ‖2+log

∫

∆0

1

C′(F )
exp

(
〈X,F 〉F +

1

2σ2
p

‖µAX‖2
)
[dX] .

For two parameters θ1 and θ2, all terms apart from the integral over ∆0 can be bounded by a term
of the form (C + ‖A‖2F ) ‖θ1 − θ2‖, with C a constant depending on the neighborhood around θ0.

Now let h(θ,A,X) = exp
(
〈X,F 〉F + 1

2σ2
p

∥∥µ2
AX

∥∥
)
. Denoting

Mθ,A = max
X

‖µAX‖2 ≤ σ2
p(‖A‖2F /σ2

ε + ‖µ‖2 /σ2
λ) ,

we have:

h(θ + dθ,A,X) = exp

(
〈X,F + dF 〉F +

1

2σ2
p + 2dσ2

p

∥∥µ2
AX

∥∥
)

= h(θ,A,X)

(
1 + 〈X, dF 〉F − dσ2

p

2σ4
p

‖µAX‖2 +O((1 + ‖A‖F )2 ‖dθ‖
2
)

)

= h(θ,A,X)
(
1 +O((1 + ‖A‖2F ) ‖dθ‖)

)
,

where the O notation contains constants depending on θ0 and the size of its neighborhood. As a
consequence:

log

∫

∆0

h(θ2, A,X) [dX]− log

∫

∆0

h(θ1, A,X) [dX] = O((1 + ‖A‖2F ) ‖θ2 − θ1‖) .

Finally, the Lipschitz condition (6.7) is satisfied by L(A) = C(1+‖A‖2F ). Furthermore, by Lemma
9, p(A | θ) admits second order moments, so that E[L(A)2] < +∞.
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Chapter 7

Estimation and Model Selection for

Segmented Longitudinal Trajectories

This chapter studies a longitudinal model for disease progression analysis. It takes stock on previous
work modeling the trajectory of subjects affected by Parkinson’s disease and Alzheimer’s disease; in
this chapter, the trajectory of each individual is modeled as a piecewise affine trajectory. We show
that the population average trajectory can be robustly estimated for trajectories with more than one
piece, and that the number of pieces can be selected robustly even with a very strong noise and a large
portion of missing data. We apply our methodology to the cohort of the Parkinson’s Progression
Markers Initiative. We show how our model can be used to describe the disease evolution, and how
it could be extended to better account for the impact of treatments.
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7.1 Introduction

In the growing field of large scale observational studies, longitudinal analyzes (repeated measure-
ments of the same subjects at different time points) play a key role in understanding complex
population dynamics. They allow modeling the progression of diseases like Alzheimer’s disease
or Parkinson’s disease and monitor the impact of treatments like chemotherapies at the level of
individuals.

An increasingly popular approach to model longitudinal data relies on non-linear mixed-effects
models. It defines a hierarchical structure which decouples the average trajectory of the population
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from the individual-level variability. This approach has proved relevant for disease progression
modeling to handle low-dimensional data like clinical scores as well as very high-dimensional data
like shapes or images. Although these models have shown a strong capacity to handle complex
dynamics, little has been done to assess their performance and choose the best model among a set
of candidates. As we will see in more details in the next section, the scientific literature has been
evolving in two distinct directions. On the one hand, much work has been devoted to propose
expressive non-linear models and devise tailored inference procedure. On the other hand, several
papers from the field of model selection have tackled the issue of selecting longitudinal data models.
However, most approaches only consider linear mixed-effects models, where closed-form formulas
are available and explicit computations can be carried out. Such models have limited expressiveness
when it comes to handling real data sets.

In this chapter, we discuss the problem of selecting the best candidate among a set of competing
non-linear mixed effects models. We are interested in piecewise linear longitudinal trajectories, as
introduced by Chevallier et al. [2021] and Debavelaere et al. [2020]. This framework describes
population dynamics with one or more structural breaks, which may correspond to changes in the
disease progression or to the impact of a treatment. We focus on the case of clinical scores possibly
involving missing data, and wish to select the number of breaks in the average population trajectory.
We perform large simulations on synthetic data, and we show that the average population dynamics
comprising more than one break can be robustly estimated, along with the individual variability.
We show how classical model selection criteria can be used in this complex setting to reliably select
the true number of components. We apply our methodology on a longitudinal data set from the
Parkinson’s Progression Markers Initiative (PPMI) of patients undergoing various treatments for
Parkinson’s disease.

Section 2 explores the current state of the literature on longitudinal segmented trajectories,
disease progression modeling and model selection for longitudinal data. Section 3 introduces the
model and details the algorithmic procedure to estimate its parameters and perform model selec-
tion. Section 4 presents the results we obtain on both synthetic data sets and cohorts of the PPMI.
Section 5 provides complementary remarks on model selection and concludes the study.

7.2 Related Work

Models for longitudinal data. Mixed-effects models provide a general framework to analyze
longitudinal observations. They have been widely in the scientific literature, especially in medical
applications [Laird and Ware, 1982, Lavielle, 2014]. Their popularity stems from their interpretabil-
ity and simple formulation, combined to efficient statistical estimation procedures. Mixed-effects
models decompose the variability observed in the population of subjects into average trends defined
across the population and individual-level deviations. The parameterization of the population av-
erage and the individual deviations characterize the model. A large body of work was devoted to
the study of mixed-effect models for longitudinal data [van Montfort et al., 2010]. Over the last
two decades, the development of new estimation algorithms [Kuhn and Lavielle, 2005] has led to
an increased popularity of non-linear mixed-effects models in applications. In particular, it has
allowed for the development of models like the spatio-temporal framework of Schiratti et al. [2015]
which we will be relying on in this study. Other works like Raket [2020] also proposed tailored
non-linear mixed-effects models to monitor the progression of neurodegenerative diseases.

Applications to Parkinson’s disease. Over the last decade, longitudinal modeling for the
progression of Parkinson’s disease has received increased attention in the literature following the
creation of the PPMI [Marek et al., 2011]. For a review on longitudinal studies on Parkinson’s
disease, we refer the reader to Venuto et al. [2016]. More recently, Couronné [2021] showed that
non-linear mixed effects models can be used to compute and extract meaningful information from
the population dynamics. Ren et al. [2021] showed that longitudinal modeling allows predicting
Parkinson’s disease’s evolution based on clinical scores in the early development of the disease.
The work of Severson et al. [2021] relates to our approach of segmenting the disease progression
in distinct phases. The authors studied the PPMI data set with a new approach based on Hidden
Markov Models. This model accounts for longitudinal disease progression with different hidden
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states; it thus provides an alternate way to describe a segmented disease progression.

Information criteria for model selection. The model selection problem has been widely ad-
dressed in the literature. The reference method consists in ranking the candidate models accord-
ing to information criteria penalizing the models’ likelihoods by taking into account the models’
complexity [Konishi and Kitagawa, 2008]. The most widely known are the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC). Although many variants have been
proposed throughout the years [Claeskens and Hjort, 2003, Spiegelhalter et al., 2014, Watanabe,
2013, Owrang and Jansson, 2016], AIC and BIC remain efficient and popular approaches for their
simplicity and practical performance. The current research now focuses on testing and adapting
classical information criteria for specific models and settings [Chen and Chen, 2008, Matsuda et al.,
2021].

Longitudinal model selection. Several papers have considered the specific case of model se-
lection for longitudinal data sets. Azari et al. [2006] considers corrected information criteria to
account for the correlation between the errors in a linear mixed-effects model. In a similar linear
setting, Jones [2011] shows that the number of observations used to compute the BIC can be re-
placed by a term using the model’s Fisher information matrix to capture the effective number of
observations. The question of choosing the number of samples in information criteria (as well as in
other problems such as Markov Chain Monte-Carlo), more generally aims at determining the Ef-
fective Sample Size of correlated inputs, and corresponds to the equivalent number of independent
observations. In the more general case of non-linear mixed-effects models, Delattre et al. [2014]
showed that a BIC-like approximation of the Fisher information can be used to account for both
the number of individuals and the number of observations per individual. More recently, Ariyo
et al. [2022] investigated the sensitivity to the choice of prior in the selection of linear mixed-effects
models for longitudinal data, comparing several tailored Bayesian information criteria.

Segmented regression. Finally, close to our setup of piecewise linear population trajectories
is the field of segmented regression. This variant of the linear regression model assumes that the
linear parameters of the models are piecewise constant. It seeks to determine the position of the
structural breaks and estimate the model’s parameters on each break. This problem has been
well studied, and it was shown that the BIC allows estimating the number of breaks, while the
AIC yields bad performances (see [Bai and Perron, 2003] and the references therein). Strikholm
[2006] later proposed a concurrent approach later to dynamically select the number of breaks while
simultaneously fitting the model, by iteratively testing the curvature of each piece and adding
structural breaks on curved pieces. Although our setup resembles that of segmented regression,
the results and methods cannot be transposed directly to the longitudinal context, where the data
points vary with the individuals and are located on trajectories that differ from the population
average.

7.3 Model and Method

7.3.1 Longitudinal model

Model description

In this chapter, we adopt the framework proposed by Schiratti et al. [2015]. This framework
decomposes the variability of the observed data into an average population trajectory and the
deviations of each individual from this average trajectory. More specifically, we use the model
proposed by Chevallier et al. [2021], where piecewise geodesic average trajectories are modeled
and estimated. In the present study, we will be considering piecewise affine trajectories, which
alleviates part of the computational burden and makes tractable some computations related to
model selection. This assumption is obviously a simplification: a non-negative clinical score which
decreases across the progression of a disease would eventually become negative in this framework.
While this behavior is not realistic, we will see in our application on PD that it provides a good
description of the evolution of the subjects, within the limits of the available observations.
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Formally, we model a population of N subjects. Each subject i has ni data points (yij)1≤j≤ni

measured at times (tij)1≤j≤ni
. A data point yij consists of d feature scores, where some coordinates

may be missing. The model first defines an average population trajectory D(t). This trajectory
is taken as a d-dimensional continuous piecewise linear curve, which allows handling structural
breaks in the disease progression or changes in a treatment. It is parameterized by a reference
point (p0, tB,0) ∈ R

d × R+ such that D(tB,0) = p0, and other breakpoints tB,1, ..., tB,K−1, with K
the number of breaks. The slopes on each of the K + 1 pieces of the trajectory are given by speed
vectors v0, . . . , vK ∈ R

d (where the pieceK = 0 refers to the piece before tB,0). The k-th breakpoint
position pk = D(tB,k) is then recursively given by D(tB,k+1) = D(tB,k) + (tB,k+1 − tB,k)vk+1.

The trajectory of each individual is defined by a space shift and a time reparameterization of
the population trajectory. The space shift represents the difference between the features of each
individual and those of the average trajectory. The time reparameterization allows each individual
trajectory to happen at a different time and at a different pace. More precisely, the trajectory Di(t)
of subject i is defined as Di(t) = D(ϕi(t)) + wi. Here, wi ∈ R

d and ϕi : R → R is a piecewise
linear increasing function. It is parameterized by a time shift τi, and, for each trajectory piece k,
a factor αi,k > 0 which measures the acceleration on piece k compared to the reference trajectory.
Since the acceleration factors are positive, they are expressed as αi,k = exp(ξi,k) (ξi,k ∈ R) for
convenience purpose. With these notations, the time reparameterization writes as:

ϕi(t) =

{
tB,0 − eξi,0(tB,0 − t+ τi,0) if t ≤ tB,0 + τi,0

tB,k + eξi,k(t− tB,k − τi,k) if tB,k + τi,k ≤ t ≤ tB,k+1 + τi,k+1 for some k ,

with the convention tB,K = +∞. The notation τi,k designates the time shift between the posi-
tion tB,k of the break k and its translation on the individual trajectory. It is recursively given
by τi,0 = τi,1 = τi and, for k > 1:

τi,k = τi,k−1 + (tB,k − tB,k−1)(e
−ξi,k−1 − 1) .

This formulation gives rise to a hierarchical statistical model by defining the distribution of
individual variables: 




τi ∼ N (0, σ2
τ )

αi,k = exp(ξi,k), ξi ∼ N (0,Diag(σ2
ξ ))

wi ∼ N (0,Diag(σ2
w))

yij ∼ N (Di(tij),Diag(σ2)) .

To summarize, the measurements yi,1, . . . , yi,ni for each individual are modeled as noised obser-
vation of a hidden trajectoryDi(t). This trajectory is defined as a space shift and time reparameter-
ization of an average population trajectory D(t); the parameters (τi, ξi, wi) of this transformation
are hidden latent variables. The population trajectory D(t) is defined as a piecewise linear curve;
it is parameterized by break times, slope vectors and the intercept. In the context of disease pro-
gression modeling, breaks may account either for structural changes in the disease progression, or
for the impact of a treatment.

Remark. The longitudinal framework of Schiratti et al. [2015] classically requires an orthogonality
condition between wi and the direction v0 of the population trajectory. This condition ensures that
the deviation between D(t) and Di(t) is characterized by a unique set of latent variables (τi, ξi, wi).
In the context of piecewise geodesic trajectories, Chevallier et al. [2021] adapted this condition by
imposing the wi to be orthogonal to all the speed vectors vk. This constraint made sense in the
context of very high-dimensional data, e.g., image or shape analysis. In the lower-dimensional
setting of clinical scores, it becomes more restrictive: e.g., for a trajectory in dimension 2, a
trajectory with one break imposes that wi = 0 for all i. Furthermore, the latent variables of
piecewise affine individual trajectories are completely determined by the position in space and
time of the breaks, which removes the main identifiability issue of the model with no break. For
these reasons, we choose to work on a variant of the model of Chevallier et al. [2021] with no
orthogonality condition.

128



Estimation procedure

Estimating the model amounts to determining its parameters θ = (p0, tB , v, σ
2
τ , σ

2
ξ , σ

2
w, σ

2) as well
as the posterior distribution of the latent variables zi = (τi, ξi, wi) given the observed data. In this
chapter, we compute the parameters using the Maximum A Posteriori estimator (MAP)

θ̂ ∈ argmaxθ p(θ | y) = argmaxθ p(θ, y) ,

which allows accounting for a priori information and regularizes the Maximum Likelihood Esti-
mator (MLE), while theoretically ensuring that the optimal values are not infinite.

Handling missing data. In practice, the data may involve an important proportion of missing
coefficients (around 40% in our application). This problem has been widely studied, in particular
in the case of longitudinal data sets [Ibrahim and Molenberghs, 2009]. In this study, we make the
simple assumption that the data is missing completely at random, i.e., that the data missingness
is independent of the data value, and the missingness of each coordinate is chosen independently
of the others’. We follow the approach of Couronné [2021] and maximize the likelihood of the
observed data yobs: θ̂ ∈ argmaxθ p(θ | yobs). The precise implementation of this formulation is
detailed in Appendix 7.B. In the remainder of the chapter, with a slight abuse of notations, we
designate by y the observed data yobs.

Estimation algorithm. For non-linear mixed effects models belonging to the curved exponen-
tial family, the MAP is computed with the MCMC-SAEM algorithm [Kuhn and Lavielle, 2004,
Allassonnière et al., 2010], which we briefly describe here. Estimating hierarchical models is clas-
sically done with the EM algorithm, which alternates computations of expectations (E-step) with
respect to the latent variables and maximization with respect to the parameters (M-step). It is
especially interesting in the specific setup of curved exponential models, i.e., models where the
likelihood log p(y, z | θ) writes as 〈S(y, z),Φ(θ)〉+Ψ(θ). The EM algorithm then write as:

1. E-step: Compute St = Ep(z|y,θt)[S(y, z)],

2. M-step: Obtain θt+1 ∈ argmaxθ〈St,Φ(θ)〉+Ψ(θ).

In complex latent variable models, the E-step becomes intractable and has to be approximated.
In the specific case of curved exponential models, the SAEM (Stochastic Approximation EM,
[Delyon et al., 1999]) algorithm overcomes this hurdle by estimating St with a stochastic approx-
imation procedure. It consists in sampling from the posterior distribution (z | y, θt) and using
the samples to iteratively estimate Ep(z|y,θt)[S(y, z)]. The samples are aggregates with decreasing
gains γt sequence of the form γt = γ0/t

α. In cases like ours where the sampling step cannot
be performed explicitly, the MCMC-SAEM replaces exact sampling with a single step of Markov
Chain Monte-Carlo. The general procedure is summarized in Algorithm 7.3.1.

Algorithm 7.3.1: The MCMC-SAEM Algorithm
Initialize θ0, z0 and S0

repeat
Sample zt+1 ∼ q( · | zt; θt) from the MCMC kernel q(z | z′, θt) targeting p(z | y, θt)
Update St+1 = (1− γt)St + γtS(y, zt+1)
Find θt+1 ∈ argmaxθ〈St+1,Φ(θ)〉+Ψ(θ)

until convergence
return θT , (zt)Tt=1

Model exponentialization. In our case, the model cannot be written in exponential form,
mainly because of the role of the variables p0, tB and v in each Di(t). Kuhn and Lavielle [2005]
showed that this hurdle can be overcome with a simple trick, which consists in treating p0, tB
and v as latent variables following tight Gaussian distributions centered around “twin” parame-
ters N (p̄0, s

2
p0
Id), N (t̄B , s

2
tBIK), and N (v̄, s2vI(K+1)d). The variance parameters control how close
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the so-called exponentialized model is from the base model. This new model can easily be shown to
be curved exponential, and thus lends itself to estimation with the MCMC-SAEM. The recent work
of Debavelaere and Allassonnière [2021] proved that the estimation error induced by this change of
model is bounded by a power of the exponentialization variance parameters. The formulas for the
sufficient statistics and the maximization step in the MCMC-SAEM are detailed in Appendix 7.B.

Prior distribution. In this work, as in the work of Chevallier et al. [2021], we consider a Bayesian
framework and seek the MAP estimator. High variance Gaussian prior distributions are given for
the population variables p̄0, t̄B and v̄. Similarly, high variance Inverse Gamma distributions are
used for the variance parameters σ2

τ , σ
2
w and σ2.

However, when experimenting with uninformative priors on σ2
ξ when K > 1, we noticed that

the shape of estimated individual trajectories Di(t) tends to strongly differ from the population
template D(t), while still poorly fitting the data. We observed that the estimated values of the ξi’s
may strongly change the length of the trajectory pieces, in such a way that most observations
of each individual are regrouped in one piece. We believe that this behavior might be caused
by the strongly non-convex shape of the posterior distribution, which affects the robustness of
the estimated individual trajectories. In our application to clinical scores, we thus use a strongly
informative prior to regularize σ2

ξ , inducing an implicit penalty on the posterior distribution of
the ξi’s given the observed data. A detailed specification of the prior distribution is given in
Appendix 7.A.

Implementation details. In practice, we initialize the MCMC-SAEM by taking a linear regres-
sion of each feature across time, setting all speed vectors vk equal. In the MCMC-SAEM, we use
a Symmetric Random Walk Metropolis Hastings within Gibbs sampler with Gaussian transitions.
The variance of the proposal Gaussian transitions are tuned along the SAEM steps to reach a
desired Metropolis acceptance rate.

All the algorithms presented in this chapter are implemented in Python 3.9 and compiled at
runtime with the Python module numba, which allows for fast nested loops. The code for the
algorithm, as well as scripts to reproduce the experiments on synthetic data, are available online1.

7.3.2 Model selection

Information criteria for longitudinal data

In order to select the value of the number of breaks K, we compute an information criterion of the
form

IC(y, θ) = −2 log p(y | θ) + pen(y, θ) ,

with pen(y, θ) a penalty term favoring simple models. For the AIC, pen(y, θ) = 2 dim(θ), whereas
the BIC uses pen(y, θ) = log(nobs) dim(θ), with nobs the number of observations. Both penalties
come with their own justifications and theoretical guarantees. When the models are a good ap-
proximation to the true data distribution, the AIC can be seen as a first-order Taylor expansion of
the test error on unseen data. Asymptotically, AIC is equivalent to cross-validation and selects the
model with the best generalization performance. The BIC is an asymptotic Laplace approximation
of the integrated data likelihood log p(y) = log

∫
p(y | θ)p(θ) dθ. If the data was generated from

one of the candidate models, asymptotically the BIC chooses the right model.
As emphasized in Debavelaere et al. [2020], choosing between several non-linear mixed effects

model is a difficult question, as the classical model selection criteria require using the marginal
likelihood of the observed data p(y | θ), which writes as an integral over the latent variables zi:

p(y | θ) =
N∏

i=1

∫
p(yi | zi, θ)p(zi | θ) dzi .

When working with high-dimensional complex longitudinal models, the only option to assess
the estimation performance is to measure a reconstruction error; it often amounts to computing

1https://github.com/cmantoux/longitudinal-segmented-regression
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the conditional likelihood p(y | z, θ). This applies in particular to longitudinal models on shapes
and images, for which the latent space dimension does not allow computing the marginal likeli-
hood p(y | θ) [Debavelaere et al., 2020]. In such cases, the conditional likelihood is used by default,
but one may also wonder to what extent it could also be relevant for models with smaller dimension.
The work of Merkle et al. [2019] answers this question: the authors show that using the conditional
likelihood in information criteria selects models which generalize best on new observations for the
same latent variables. In our longitudinal context, it means that such criteria select models that
generalize well on new observations of the individuals in the training data set, rather than on
new observations on unseen individuals. It is furthermore impossible to obtain new data points
in-between the known measurements, as it would mean going back in time to obtain new data.
Hence, the conditional likelihood does not seem an appropriate solution in our context, and we
thus need to estimate the marginal likelihood p(y | θ). Contrary to the high-dimensional settings
mentioned above, our model is sufficiently small that the marginal likelihoods can be estimated.
As a last remark on this matter, from a model selection perspective, using the conditional likeli-
hood as a performance measure naturally leads to overfit the data : the conditional likelihood uses
the best value for the latent variables, which thus act as supplementary parameters without being
counted as such in information criteria.

Another question arising in the BIC penalty is the choice of the number of observations nobs.
If each individual had only one time point (ni = 1), the observations points would be independent
and we would take nobs = N . Since repeated measurements of a single individual are correlated,
it is unclear to what extent the natural extension nobs = n1 + · · · + nN produces a relevant BIC
approximation, and the choice of the effective sample size requires some consideration. In the case
of longitudinal linear mixed effects model, Jones [2011] proposes to use the Fisher information
matrix, which in this specific case can be computed explicitly. The Fisher information naturally
arises when computing the Laplace approximation which defines the BIC:

log p(y) ≃ log p(y | θ̂MLE)−
dim(θ)

2
log(N)− log det I(θ̂MLE) + log p(θ̂MLE) ,

with θ̂MLE the Maximum Likelihood Estimator (MLE) of θ and I(θ) the Fisher information.
From its definition, the Fisher information scales with the number of observations per individual:
including its determinant in the BIC hence allows accounting for this additional source of infor-
mation. However, in non-linear settings, the Fisher information is hard to compute in general.
Delattre et al. [2014] tackled this issue and showed that, under mild assumptions on the model reg-
ularity, the Fisher determinant can be approximated. They propose a tailored, hybrid expression
of the BIC:

BICh(y, θ) = −2 log p(y | θ) + dim(θR) log(N) + dim(θF ) log(ntot) ,

with ntot = n1 + · · · + nN , θR the components of θ involved in the random effects and θF the
parameters of the fixed effects. In our context, this splitting naturally writes as θR = (σ2

τ , σ
2
ξ , σ

2
w)

and θF = (p0, tB , v, σ
2). In this chapter, we rely on BICh computed from the marginal observa-

tion’s likelihood to perform model selection. To summarize, BICh gather three decisive advantages
over other alternatives: 1) it handles the correlated structure of the observations with a minimal
cost compared to classical information criteria, 2) unlike selection tools based on the conditional
likelihood, it selects model that best generalize on unseen individuals, and 3) it imposes a penalty
stronger than AIC, and it is thus more robust to the parameter uncertainty induced by the esti-
mation procedure.

Marginal likelihood estimation

The estimation of marginal densities, and more generally normalizing constants, is a well-studied
problem. The naive method for estimating p(yi | θ) =

∫
p(y, zi | θ)dzi consists in computing the

Monte-Carlo estimator

p̂MC(yi | θ) =
1

M

M∑

k=1

p(yi | zi,k, θ), with zi,k ∼ p(z | θ) .
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Importance sampling. The above estimator is known for having a very large variance, and
better estimators can be computed without increasing the computation time. The variance issue is
critical for density estimation, as the quantities of interest may vary by several orders of magnitude
from one sample to another. For a thorough review on marginal density estimation techniques, we
refer the reader to Llorente et al. [2022]. The most standard method is importance sampling (IS),
which, given a so-called importance density qIS,i(z), computes the unbiased Monte-Carlo estimator:

p̂IS(yi | θ) =
1

M

M∑

k=1

p(yi | zi,k, θ)
qIS,i(zi,k)

, with zi,k ∼ qIS,i(z) .

It is well known that the optimal choice for the importance density in terms of Monte-Carlo
variance is given by qoptIS,i(zi) = p(zi | yi, θ), the posterior density of the latent variables given the
observed data. Unfortunately, this density is only known up to its normalizing constant, which
happens to be the quantity of interest p(yi | θ). The simplest way to overcome this issue is to
approximate qoptIS,i by a simpler distribution with known normalizing constant. In this chapter,
we use a Gaussian approximation of the posterior density. In practice, the optimal Gaussian
importance density N (µIS,i,ΣIS,i) can be obtained by sampling from the distribution of p(zi | yi, θ)
and computing the sample mean and covariance matrix.

Bridge sampling. Although importance sampling improves on the naive Monte-Carlo estimator,
its variance remains too high to allow discriminating between different models. In this study, we
instead use bridge sampling, an alternate procedure which relies on the importance density but
may also leverage MCMC samples [Mira and Nicholls, 2004, Gronau et al., 2017]. Bridge sampling
relies on the bridge identity:

p(yi | θ) =
EZi∼qIS,i(z)[ p(yi | Zi, θ)h(Zi) ]

EZi∼p(zi|yi,θ)[ qIS,i(Zi)h(Zi) ]
,

with h(zi) a so-called bridge function which can be chosen freely. This identity yields a Monte-Carlo

estimator relying on M1 samples (z
(1)
i,k ) from qIS,i and M2 samples (z

(2)
i,k ) from p(zi | yi, θ):

p̂BS(yi | θ) =
1

M1

∑M1

k=1 p(yi | z
(1)
i,k , θ)h(z

(1)
i,k )

1
M2

∑M2

k=1 qIS,i(z
(2)
i,k )h(z

(2)
i,k )

. (7.1)

As shown by Meng and Wong [1996], the optimal bridge function (in terms of mean squared
error of the estimator p̂BS(yi)) is given by

h(zi) =
1

s1p(yi, zi | θ) + s2p(yi | θ)qIS,i(zi)
, (7.2)

with s1 = M1/(M1 +M2) and s2 = M2/(M1 +M2). In practice, the term p(yi | θ) in h(zi) is
replaced with its estimator p̂BS(yi | θ). This yields a fixed-point equation on p̂BS(yi | θ), which is
solved iteratively. The relative mean-squared error (RMSE) E[(p− p̂)2]/p2 of the bridge sampling
estimator can be approximated by accounting for the sample correlation induced by the MCMC.
This approximation, in turn, asymptotically matches the variance of log p̂BS(yi | θ), which thus
allows for confidence intervals on the information criteria. We refer the reader to Gronau et al.
[2017] for further developments. In our numerical experiments, this variance consistently remains
very low compared to most likelihood differences used for model comparison.

Marginalization. Finally, in the specific case of piecewise linear trajectories considered in
this chapter, straightforward computations allow factoring the complete density of p(yi, zi | θ)
as p(yi, (τi, ξi) | θ) × p(wi | yi, (τi, ξi), θ), with p(wi | yi, (τi, ξi), θ) given by a conjugate posterior
Gaussian distribution. This factorization allows reducing the dimension of the integrals of interest
from d +K + 2 to K + 2 by sampling only from the time-related latent variables τi and ξi. The
factorization formulas are detailed in Appendix 7.C. This dimensionality reduction helps reduce
the number of samples required to obtain a sufficiently small variance.
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Remark. As recommended when computing sums, products and differences of small probabilities,
in the numerical implementation of bridge sampling we store the logarithm of the probabilities
rather than their actual value in order to minimize precision loss.

Practical procedure summary

The complete procedure for the marginal likelihood estimation is summarized in Algorithm 7.3.2.
In order to sample from the distributions (zi | yi, θ), we use a Metropolis within Gibbs sampler with
Gaussian transitions. Two differences are to be noted compared with the MCMC in the SAEM.
First, we use an adaptive covariance matrix, estimated along the MCMC iterations from the
samples, and rescaled to target a given acceptance rate. Second, the variables zi are conditionally
independent given y and θ, and can thus be sampled in parallel. This could not be done in the
SAEM procedure, as the maximization step has to be performed after every MCMC step, which
prevents from exploiting the independence. In practice, most of the computation time is spent in
evaluating the model likelihood of the MCMC samples and importance density samples.

Algorithm 7.3.2: Bridge Sampling procedure for the marginal likelihood estimation
of p(yi | θ)

Run a first Metropolis within Gibbs chain z(0)i,1 , . . . , z
(0)
i,M0

targeting the distribution
of p(zi | yi, θ)

Compute the empirical mean µIS and covariance ΣIS of (z(t)i )1≤t≤M0

Define the importance distribution qIS,i = N (µIS ,ΣIS)

Run a second Metropolis within Gibbs chain to draw M1 samples z(1)i,1 , . . . , z
(1)
i,M1

targeting p(zi | yi, θ)
Draw M2 samples z(2)i,1 , . . . , z

(2)
i,M2

from qIS,i

Initialize p̂0 = 0

repeat

Define ĥt, the approximation of h obtained by replacing p(yi | θ) with p̂t in Equation
(7.2)

Compute p̂t+1 using Equation (7.1) by replacing h with ĥt
until convergence
Compute the RMSE estimator for p̂final
return p̂final and the RMSE estimator

7.4 Results

7.4.1 Synthetic data sets

First, we rely on synthetic data sets to validate the estimation algorithm and investigate the
robustness of the model selection procedure. We perform a large number of simulations on a
series of randomly generated data sets to assess the average performance for estimation and model
selection depending on the noise level and the number of breaks.

Data generation and estimation. We simulate data with characteristics similar to the real
data set studied in the next section. We fix a maximum number of breaks Kmax = 5, which is
unlikely to be reached in our practical application, where the observed trajectories have around 15
points on average. Then, for each number of break K, we generate five series of ten data sets
with N = 400 subjects in dimension d = 6 with randomly generated population trajectories. Each
series corresponds to an average noise level. This level is measured by the fraction s of the variance
unexplained by the latent variables. We consider five noise levels evenly spread between s = 10%
and s = 80%: s ∈ {10%, 28%, 45%, 62%, 80%}.
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The variability of the individual trajectories is chosen to roughly match that of the real data;
in particular the time shift variability στ is non-negligible with respect to the distances between
the break times. The time points of each individual are evenly spaced in time. The observation
count per subject is drawn from a Poisson distribution whose average value increases with K:
trajectories at K = 0 have 6 points on average, whereas trajectories at K = 5 have 16 points on
average. Finally, we randomly hide 40% of the coefficients in the observed data as missing values,
which approximately corresponds to the missing data proportion in our application. This setup is
called experiment (A).

Experiment (A) aims at evaluating the feasibility of the estimation task; for this specific pur-
pose, models with only one break need less observations as models with four breaks. However,
this difference in the observation count might induce a bias when comparing the estimation per-
formances across different numbers of breaks. In parallel, we thus perform a second series of tests,
called experiment (B), with a similar setup, except that, for every number of breaks K, the av-
erage number of observations per individual is set to 16. This second experiment measures the
increasing difficulty of estimating more complex models from the same amount of data. Note that
experiments (A) and (B) match for K = 5, this series of simulations is thus only performed once.

For each of these 300 data sets, we run the MCMC-SAEM algorithm for 100,000 iterations
for each value of K ∈ {0, . . . ,Kmax}. We estimate the observations’ marginal likelihood with the
procedure described in Algorithm 7.3.2, running each MCMC for 100,000 iterations and draw-
ing 100,000 samples from the importance density. For both MCMCs, the first 10% samples are
discarded for burn-in. Finally, we repeat experiments (A) and (B), considering only N/2 = 200
subjects to investigate the impact of smaller data on estimation and model selection. We denote
these experiments (A’) and (B’).

Remark. When generating the synthetic data, we initially used the same noise variances for
various values of K. However, it turned out that this process made the estimation harder in terms
of unexplained variance for small values K, mainly because of the data generation procedure (and
more specifically the break time positions). Setting the noise level for each set of parameters
based on the explained variance allows for a fair comparison between models, agnostic to the data
generation choices.
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Figure 7.1: True population trajectories (black) and their estimation (dotted red) for data sets
with K = 3 breaks in experiment (A), with 400 subjects, 12 observations per subject on average
and 40% missing data. Each row shows the d = 6 components of a population trajectory, with
observations sampled with noise level s. In all the similar figures presented in this chapter, the
x-axis represents time and the y-axis the feature value.
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Figure 7.2: True population trajectories (black) and their estimation (red) for data sets with K = 5
breaks in experiment (A), with 400 subjects, 16 observations per subject on average and 40%
missing data.

Population trajectory estimation. We first investigate the estimation of the parameters and
the shape of the population trajectory. Figures 7.1 and 7.2 show some of the generated population
trajectories and their estimator for experiment (A). Additional figures can be found for the other
experiments in Appendix 7.D. It can be seen that, even for high noise levels and N = 200 samples,
the models with K = 3 breaks are robustly estimated: the breakpoints are correctly identified, and
the estimated trajectory matches the ground truth. For higher numbers of breaks (K = 5 in the
figures), the overall shape of the trajectory is recovered, but some breakpoints are estimated very
close to each others, which creates “phantom” trajectory pieces containing very few observations.
The mismatch between the estimated breakpoints and their true position prevents from retrieving
the true trajectory.

Two criteria can be used to measure estimation performance and the overall fit to the data.
First, we compute the estimation error for each of the trajectory parameters (p0, v, tB). For each
noise level and each value of K, average these errors over the ten i.i.d. generated data sets. The
result is shown in Figure 7.3 for experiments (A) and (B). The error coherently increases with the
noise level and the number of breaks. It degrades most significantly beyond K = 4 breaks. The
inaccuracy on the breakpoint position causes the speed vectors to be estimated on time intervals
mixing different pieces of the true trajectory, which only makes the estimation more difficult.
However, as we saw on the trajectory plots, the estimation error remains relatively low for K ≤ 3
and s ≤ 62%. In the case of experiment (B), increasing the number of observations per subjects
yields a performance improvement, and in particular allows for a better estimation at the largest
noise level s = 80%.

Second, the performance of the optimization procedure can also be assessed by considering the
observation’s log-likelihood, which are obtained by Bridge Sampling. By comparing the marginal
log-likelihoods log p(y | θ∗) and log p(y | θ̂) for the true parameters θ∗ and the estimated pa-
rameters θ̂, we can assess the extent to which the MCMC-SAEM algorithm recovers the global
maximum of the MAP optimization problem: if the global optimum were reached, we would
have log p(y | θ∗) ≤ log p(y | θ̂). Figure 7.4 shows the difference between these two quantities for
each experiment. Higher number of breaks cause a negative gap, meaning that the global optimum
is not reached. This is especially true for small noise levels, in experiments (A) and (A’) where
small values of K are generated with fewer observations. Higher noise levels increase the estimated
log-likelihood w.r.t. the true log-likelihood. This can be understood as the loss of signal related to
a large portion of noise: a higher noise in the data means that the observation’s true distribution
is very diffuse, and can thus be well approximated by a wider range of population trajectories.
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Figure 7.3: Estimation error for the model parameters, averaged over the ten data sets of each
noise level s and number of breaks K. The parameters p0 and tB being shift parameters, comparing
their relative errors makes little sense. Instead, we compute for the normalized error ‖p̂0 − p0‖σw

,
where each coordinate k is rescaled by σw,k. Similarly, we compute the errors on tB,0 and the time
increments ∆tB = (tB,1 − tB,0, . . . , tB,K−1 − tB,K−2), normalized by στ . The error shown for v is
the relative error.
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Figure 7.4: Average difference between the log-likelihoods of the estimated parameters and the
true parameters, for each experiment, number of breaks K and noise level s. The log-likelihood
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Individual trajectories. We now examine the reconstruction of the individual trajectories.
We show the trajectories obtained by using the posterior mean of the latent variables given
the data: E[zi | θ, yi]. It is computed by running a MCMC for 10,000 iterations on the densi-
ties (ξi, τi | y, θ) given in appendix 7.C, which also give the posterior mean of wi through the
expression E[wi | yi, θ] = E[E[wi | ξi, τi, yi, θ] | yi, θ]. Note that, from a Bayesian perspective, the
uncertainty on the trajectories and the breakpoint positions could be easily obtained by computing
the individual trajectory computed for each MCMC value of the latent variables. The results are
shown in Figures 7.5 and 7.6 for a sample subject following the corresponding population distribu-
tion shown in Figures 7.1 and 7.2. The trajectories are well estimated for K = 3 breaks, even for
large levels of noise. In particular, the positions of the breakpoints are well identified. In contrast,
the breakpoints are much more difficult to estimate at K = 5 breaks, even for moderate levels
of noise. This may be a combined consequence of the poor estimation of the population average
breakpoints and the strong non-convexity of the posterior distribution landscape.

From a quantitative perspective, the estimation of individual trajectories can be evaluated by
measuring the prediction error on missing data. Figure 7.7 shows the average errors obtained
by estimating the observed and missing values with the posterior mean of the individual latent
variables. Although missing data imputation is not the major focus of this chapter, note that the
prediction could be easily extended to obtain confidence intervals, by predicting the missing data
for each sampled value of the distribution (zi | y). We can see that, in every experiment, the
estimation error mostly depends on the noise level, which is coherent. The error remains stable
as the number of breaks K increases for experiments (A) and (A’) where the average observation
count per subject grows with K. In experiments (B) and (B’) where this average count is the
same for each value of K, the error increases with K; again, this is coherent as the estimation
problem gets more difficult with larger values of K. It can be seen that the error on missing data
is not larger than the error on the full data, which means that the missing data are estimated as
well as observed data. Considering the figures 7.5 and 7.6 representing the estimated individual
trajectories, this result is an understandable consequence of the missing data arrangement, which
is chosen completely at random in these experiments. It is likely that more complex choices for
missing data would lead to degraded performances; however no clear pattern in the missing data
arrangement appeared in our application to the PPMI cohort apart from basic implications (e.g.,
patients having no treatment impact score because their treatment has not started).
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Figure 7.5: True individual trajectories (black) and their estimation (red) displayed with the
observed data (gray) for data sets with K = 3 breaks in experiment (A). Each row shows the d = 6
components of a population trajectory, with observations sampled with noise level s.
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Figure 7.6: True individual trajectories (black) and their estimation (red) displayed with the
observed data (gray) for data sets with K = 5 breaks in experiment (A).
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Figure 7.7: Average error for the individual trajectories. For each individual i and each time
point tij , the values yijk are compared to the prediction Di(tij)k obtained using the posterior mean
of zi given y and the parameters estimated by the MCMC-SAEM algorithm. Each coordinate k
is normalized by 1/σw,k. The mean error of each individual is then averaged over the population.
The top row shows the average reconstruction error on all values; the bottom row shows the error
on missing values only.
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Model selection. We compute the information criteria discussed in Section 7.3.2 from the
marginal log-likelihoods log p(y | θ) obtained by Bridge Sampling. We compare AIC and the hy-
brid BIC of Delattre et al. [2014] introduced in the previous section. In Figure 7.8, we show the
proportion of correctly selected models for each number of breaks K and noise level s. As can be
expected, the model selection performance degrades as the noise level and the number of breaks
increases, and as the number of samples decreases. BICh performs on average better than AIC: in
experiment (A), AIC selects the true model on 67% data sets, versus 73% for BICh, and similar
results are observed on the other experiments. Furthermore, in the cases where the information
criterion selects the correct model, the BICh does so with a higher margin than AIC: the average
margin is 67% higher for BICh for experiment (A) (88% higher for (A’), 32% for (B) and 54%
for (B’)).

For N = 400 subjects (experiments (A) and (B)), it appears that the true model is selected
relatively consistently as long as K ≤ 3 and s ≤ 62%. On experiment (B) for K ≤ 3, where data
sets with smaller number of breaks have as many observations as five breaks models, the selection
often finds the true model even for s = 80% noise in the data. The poor performances obtained
for K ∈ {4, 5} are a natural consequence of the bad estimation of the break times tB : if the
estimator at K = 5 has two breakpoints very close to each other, it does not bring any advantage
over the same model with one of the neighbor breakpoints removed. Besides, the good performance
obtained for K ≤ 3 should not be understood as an absolute guarantee that, in practice, small
selected models are necessarily the correct ones: it could be that the true model has a high number
of breaks, which the selection procedure fail to detect. However, as we mentioned above, given the
restricted number of observations available in practice, it seems unlikely that real world dynamics
are best described by population trajectories with a high number of breaks.

As a last remark, it can be noted that, although the model selection procedure sometimes fails
to detect the true number of breaks, it almost always selects an estimated value K̂ value of K such
that |K̂ −K| ≤ 1. This result is shown on Figure 7.D.7.

Remark. The model selection with the standard BIC yields results comparable to BICh, in the
sense that they often select the same model. However, when the BICh selects the correct model,
it does so with a margin greater than the standard BIC’s (from 10% greater for experiment (B) to
30% for experiment (A’)). The good performance of both BICs (as opposed to AIC) can be partly
attributed to their robustness to a possibly non-negligible optimization error.
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Figure 7.8: Proportion of correctly selected data sets for each experiment, respectively using AIC
(top row) and BICh (bottom row).
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7.4.2 Application to disease progression modeling

We now apply the proposed methods to the case of Parkinson’s Disease (PD). We use a database
from the Parkinson Progression Marker Initiative [Marek et al., 2011]. The PPMI consists in several
cohorts of subjects followed over around a decade. Some subjects are affected by PD because of
specific genetic factors, some for other unknown causes (in which case PD is called idiopathic).
Some subjects, in the so-called prodromal phase, are in the course of developing PD and already
exhibit pre-clinical symptoms. Finally, some subjects (with or without aggravating genetic factors)
are unaffected by PD and form reference control groups. Overall all the 513 subjects studied here,
the ages range from 31 to 92 years old, with 50% of subjects having between 55 and 69 years old
at their first examination.

Most of the subjects affected by PD undergo a treatment aiming at compensating the loss of
dopaminergic neurons that characterizes PD. Dopaminergic neurons are in charge of synthesizing
of the dopamine used in the brain; their death causes most of the symptoms observed in PD.
Dopaminergic treatments supply dopamine to the brain by injecting a dopamine precursor (e.g.,
L-dopa) in the blood, which is then able to cross the blood-brain barrier. Another category of
treatments relies on dopamine agonists, chemical compounds that activate dopamine receptors.

The subjects affected by PD often start a treatment shortly after their situation starts deteri-
orating, but this delay may vary from one individual to another, with some subjects preventively
starting a treatment while still having stable symptoms. In this chapter, the evolution state of
PD is measured by two types of clinical scores. First, the Symbol Digit Modalities Test (SDMT)
and the Montreal Cognitive Assessment (MoCA) measure the subject’s cognitive abilities, which
decline as PD progresses. Second, the Unified PD Rating Scale (UPDRS) measures a wide range of
aspects and symptoms in the patient’s daily life, some being during the examination. The PPMI
relies on a version of the UPDRS produced by the Movement Disorder Society, called the MDS-
UPDRS. It consists in three series of questions and tests on 1) non-motor aspects of experiences
of daily living, 2) motor aspects of experiences of daily living, and 3) a motor examination. The
last series of tests is performed both when the patient’s treatment is active and when its effect
has faded. The MDS-UPDRS results are aggregated into four clinical scores which measure the
seriousness of the symptoms: one score for each of the two first series, and two scores for the third
series, one "on treatment" and one "off treatment". These four scores increase with the symptoms’
gravity, while the two first cognitive scores decrease with the cognitive decline.

The evolution of a patient’s state can undergo several changes depending on the state of the
disease and the treatment effect. It may first start deteriorating, then stagnate due to the effect of
a treatment, and start a second decay phase after the treatment’s impact weakens. In the light of
the segmented longitudinal disease progression modeling framework introduced above, we wish to
determine to what extent the population dynamics in the PPMI cohorts can be described by an
average piecewise linear population trajectory, and how many breaks this trajectory would require
accounting for the population variability.

We apply the estimation procedure to several cohorts. In each case, we run the MCMC-SAEM
algorithm for 200,000 iterations, and perform Bridge Sampling with 500,000 MCMC samples (for
each of the two chains) and 500,000 importance samples. Given the lack of clear tendency in
subjects with few observations, we restrict each cohort to individuals having a minimal number
of observations (at least 10 for large cohorts (N ≥ 200), and at least 8 for smaller cohorts).
We estimate models from K = 0 to K = 5 breaks, and select the model which achieves the
highest BICh. We repeat this procedure for several groups of subjects:

1. subjects with PD with genetic factors (133 subjects after observation count filtering),

2. subjects with idiopathic PD (376 subjects after filtering)

3. subjects with PD (either with genetic factors or idiopathic) (458 subjects),

4. subjects in the above cohort that follow a treatment (dopamine agonist or dopaminergic
treatment) for at least 90% of their observations (135 subjects),

5. subjects in the prodromal phase, which in a large majority have not started following a
treatment (62 subjects).
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For each experiment, the Bridge Sampling variances on the marginal log-likelihoods is much smaller
than increments in the BICh, and much smaller than the margins between the selected model and
the next ranked competitor. In each case, the proportion of unexplained variance lies between 20%
and 30%, which in the equivalent setup for synthetic data allows for consistent results in terms of
estimation and model selection.

Idiopathic and genetic factors cohorts. The selected models have respectively two and three
breaks for the idiopathic and genetic factors cohorts, and two breaks for the combined cohort. The
population trajectories are shown in Figure 7.9. It can first be noted that the three trajectories
have similar overall shapes, with a degradation phase followed by an improvement phase, and a
second degradation phase. The resemblance between the trajectories of the idiopathic cohort and
the grouped cohort is coherent with the dominant proportion of the idiopathic subjects in the data
set. The second piece in the genetic cohort contains only 4% of the observations, the remaining
three pieces having the same profile as for the idiopathic cohort. However, in contrast to the
idiopathic cohort, the breaks in the genetic cohorts are very distant from one another, with the
two last breaks positioned at relatively advanced ages. This phenomenon relates to a very high
concentration of individual trajectories: on average, in the genetic cohort, each individual has of
its 95% observations in one trajectory piece (which varies from one subject to another, as the most
loaded piece gathers only 56% of the observations). This might be a consequence of the restricted
number of subject in the genetic cohort. Note that this phenomenon has a lower amplitude in
the idiopathic cohort, with each individual having 81% of its observations in one piece on average.
However, in both experiments, a large majority of subjects have almost all their observations in
only two pieces.

It can be noted that the cognitive clinical scores (SDMT and MoCA) rarely exhibit strong
ruptures in individual trajectories. This is coherent with the fact that the treatments used against
PD symptoms do not affect the cognitive decline. Most individual trajectories are characterized
by a more or less steady decline. This observation also holds for the other cohorts considered in
this study.

The estimated average trajectories obtained here thus may not represent the evolution of every
patient. Each patient is located in a portion of the population trajectory best corresponding to their
evolution. This fact is best interpreted by looking directly at the estimated individual trajectories.
In Figure 7.10, the estimation results for four representative subjects of the idiopathic cohort are
shown. Individual (a) has points in each of the pieces, and the latent trajectory provides a good
description of their evolution: at first, the disease symptoms are worsening; then, around 78 years
old, the MDS scores improve for a short period; finally they worsen again in the last observations.
Individual (b) only has points in the two last pieces, which again provides a good description of
their observations, with a degradation phase on MDS2 and MDS3 (off treatment) followed by a
progressive aggravation of the symptoms. Individuals (c) and (d) have all their observations either
in the first or in the last piece of the trajectory, and are characterized by a continuous degradation
of the clinical scores.

Two remarks must be made here. First, the individual trajectories displayed here (as with the
other cohorts) are shown to illustrate our point, because their observations and latent trajectories
are relatively simple to interpret. Some other individuals in the same data set have much more
erratic evolutions, with no coherent tendencies from one feature to another. The time evolution
of these individuals would however likely be difficult to account for, even if we used a more so-
phisticated model. Second, on some individuals the estimated trajectories describe the evolution
of some scores better than others. This is a natural consequence of their respective weights in the
likelihood: if a score has many missing data points and shows a trend opposite to the trend of
other features, the estimated trajectory will poorly fit this specific score. This observation holds
similarly for other disease progression models taking stock on the framework of Schiratti et al.
[2015].

Overall, the selected models provide a coherent description of the population average trajectory
and the individual level variability. However, its interpretability is not as straightforward as the
initial model formulation might suggest. For a non-negligible proportion of subjects, the very strong
fluctuations from one examination to another do not exhibit any coherent trend or structural break;
the population average may be partially biased by these subjects. When clear breaks are present
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in the observations, they are often retrieved relatively accurately - in particular when the subjects
start a treatment and the symptoms stop degrading.
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Figure 7.9: Population trajectories obtained on the idiopathic cohort (first row), the genetic factors
cohort (second row) and the grouping of both (third row). Each column shows the time evolution
of a clinical score. The SDMT and the MoCA degrade as PD progresses, and the four MDS scores
increase as PD progresses.

Subjects with high proportion of treatment. The best model for the subset of individuals
following a treatment for at least 90% of their observations has K = 0 breaks, with an affine
trajectory decreasing for the cognitive scores (almost stagnating for the MoCA) and increasing for
the MDS scores. This result is coherent with the fact that, for many individuals, the symptoms
evolution after starting the treatment is relatively monotonous. For some individuals, the symp-
toms stagnate after starting the treatment and their trajectory can be well described by a flat
line; for some individuals the treatment has little effect, and their trajectory approximately follows
an increasing line. This result does however not fully account for the real disease progression of
patients undergoing a treatment. The expected trajectory should a priori feature an initial stag-
nation or improvement phase, followed by a degradation phase. This evolution is clearly present
in some subjects, but enough to select the one break model, which does precisely show such an
evolution. For comparison purposes, we show in Figure 7.11 both the K = 0 and the K = 1
population trajectories. Figure 7.12 shows selected trajectories with three individuals selected to
represent distinct behaviors. Individual (a) has an evolution under treatment in two phases, with
first a slight improvement of the MDS scores, followed by a degradation. Individuals (b) and (c)
have steadier evolutions, with a continuous aggravation of the symptoms for individual (b) and a
relative stagnation for individual (c), with some improvements on the MDS3 scores. The model
with K = 0 breaks models individuals (a) and (b) relatively well by adjusting the slope to fit
the data. On individual (c), it produces an increasing trend, whereas the model with one break
produces an overall decreasing trend. By definition, the model with K = 0 breaks can only change
the magnitude of the slope, and not its sign; this constraint shows its limitations in this example.

Prodromal cohort. Finally, we study the results for the subjects in the prodromal phase of PD.
The best selected model has K = 2 breaks. Its population trajectory is shown in Figure 7.11. It
shows a progressive degradation of the clinical scores, which accelerates across time. On average,
each individual has more than 98% of its observations in only two of the three pieces; the third
piece only gathers 5% of the observations. It is thus relevant, as with the high treatment subgroup,
to also show the estimated model at K = 1 for comparison purposes. Three selected individual
trajectories are shown in Figure 7.13. The evolution of individual (a) undergoes a clear rupture at
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Figure 7.10: Individual trajectories of selected subjects of the idiopathic cohort. Each row repre-
sents the time evolution of a subject, and each column represents a clinical score. The measures
clinical scores are displayed in blue and brown, with blue points denoting examinations where the
subject is not receiving any treatment, in contrast to the brown points, which correspond to the
subject receiving any treatment. The estimated latent trajectory is displayed in red. Note that no
blue point is shown on the MDS3 - ON, which examines subjects while their treatment is active.
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Figure 7.11: Population trajectories obtained on the combined idiopathic and genetic cohorts for
subjects mainly undergoing a treatment for most of their observations points (first row), and the
prodromal cohort (second row). Both rows show the best selected model (in red), and the model
at K = 1 break (in dotted blue) for comparison purpose. The MDS3 (ON) column has a very large
proportion of missing values on the prodromal cohort (most of the subjects are not undergoing
a treatment); it thus does not have a population trajectory. As a consequence, the population
trajectory in the fifth column of the prodromal cohort (in particular the first piece), is estimated
from almost no data point.
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Figure 7.12: Individual trajectories of selected subjects following a treatment on most of their
observations. Each row represents the data and trajectories of an individual. The estimated
trajectories for K = 0 (in red) and K = 1 (in dotted blue) are both displayed for comparison
purpose.

70 years old, where the MDS scores start degrading. Individual (b) shows a regular aggravation of
the MDS scores, and its observations are placed in a single trajectory piece. Individual (c) does
not show signs of degradation; all of its observation are coherently placed in the first piece of the
population trajectory. For most of the individuals in the prodromal cohort, the time evolution has
a profile which can easily be interpreted. The pieces of the population trajectory correspond to
true distinct stages of the disease. In contrast, the interpretation of the population trajectories is
more difficult for the genetic and idiopathic cohorts, as the time evolution of each subject results of
the combined effects of two dynamics: the disease progression and the response to the treatment.
Since each patient starts undergoing the treatment at a different stage of the disease, its overall
time evolution has a stronger variability with respect to the population average.

Remark. In this study, we did not experiment on the cohorts of healthy subjects (with or with-
out aggravating genetic factors). For the clinical scores considered in this chapter, most of the
individuals in these two cohorts show little or no sign of degradation across time.

7.5 Discussion

7.5.1 Practical considerations on the selection of K

Aside from the models selected by information criteria, the overall difficulty of the inference problem
for segmented longitudinal models invites considering alternate indicators to better understand the
estimation results.

Occupation rates. As seen on synthetic data experiments, the algorithm may produce breaks
very close from one another, or trajectories with certain pieces containing very few observations
after time reparameterization. These possible issues can be easily detected in what could be called
the occupation rates of the model, i.e., the proportion of observations falling in each trajectory
piece. The experiments on both synthetic data and the PPMI cohort show that occupation rates
are a relevant tool to understand the output of the estimation algorithm. In particular, if the BICh

selects models with breaks that are almost empty, it may be coherent from a practical perspective
to look at the model with one less break instead.
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Figure 7.13: Individual trajectories of selected subjects from the prodromal cohort. Each row
represents the data and trajectories of an individual. The estimated trajectories for K = 2 (in red)
and K = 1 (in dotted blue) are both displayed for comparison purpose. The MDS3 (ON) column
has no observations, as the three individuals do not follow a treatment.

Small sample sizes. In the settings considered in this chapter, the data is available in sufficient
proficiency that the estimation can be performed on the model parameters with little uncertainty,
apart from the optimization error when the number of breaks gets large. However, in cases where
the number of observations is more restricted (typically 50 subjects or fewer), the uncertainty
on the trajectory parameters becomes non-negligible, and the performance of information criteria
degrades accordingly.

In this setting, considering the posterior distribution of the speed vectors vk given the ob-
served data yobs allows quantifying this uncertainty. In particular, if the posterior distribu-
tion (v | y, θ) produces breaks forming a very low angle, removing the phantom break may
lead to a better data description. The similarity between consecutive speed vectors vk and vk+1

can be measured by computing the Mahalanobis norm µ⊤
k Σ

−1
k µk, with µk = E[vk+1 − vk | y, θ]

and Σk = Cov(vk+1 − vk | y, θ). These means and covariances can be computed simply, by run-
ning a joint MCMC over the individual latent variables and the parameter v. In other words, the
Mahalanobis norm computes the difference between the slopes of two consecutive pieces, rescaled
by the uncertainty on the joint posterior distribution of the slope vectors. Two consecutive vectors
with very small Mahalanobis distance will thus either be very close, or have such a great uncer-
tainty that their difference is not significant - if not both. In particular, trajectory pieces with
fewer observations will have a greater uncertainty, and this similarity measure naturally encourages
removing “phantom” pieces.

Although this criterion produces coherent and interpretable results on the small experiments
we performed, it should only be used in practice as a helpful indicator rather than a decision-
making tool. Deciding to merge pieces based on the Mahalanobis similarity between their slopes
would require choosing a threshold beyond which pieces are considered distinct. The choice of this
threshold is an ill-posed problem, as it depends on the degree of similarity considered meaningful
by the user. Unlike in the classical framework of statistical tests, we are not testing for the equality
of two estimated parameters using a restricted number of model samples - rather, we are comparing
two posterior distributions, which can be sampled from as many times as necessary.

A more Bayesian approach to the idea proposed here would consist in performing a Bayesian
equality test between vk and vk+1, i.e., computing the probability p(vk = vk+1 | y), using a spike
and slab prior on v with a non-zero probability that vk = vk+1. The probability p(vk = vk+1 | y)
would however be much more difficult to compute than the marginal likelihood we used in this
study: in our specific case, p(y) writes as a product of independent integrals in dimension K + 1,
and we are able to compute each integral separately with great precision. This decoupling does
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not work anymore here, as v is considered a random variable to be sampled from, and which is not
independent of the zi’s.

7.5.2 Conclusion and perspectives

The results presented in this study show that segmented longitudinal models can be estimated for
more than one break, large noise and significant proportion of missing data. The case of affine
population trajectories allows for tractable computation of the marginal likelihoods, which allow for
robust model selection using a hybrid BIC criterion. The estimation and model selection capacities
are understandably limited by the number of observations per individual, and in real life scenarios
considering models with four breaks or more are unlikely to be of practical relevance.

We showed that piecewise affine longitudinal trajectories can be used to describe the variability
in cohorts of subjects affected by PD, or in the process of developing the disease. They provide an
interpretable representation of the disease progression. This representation can be used to identify
the impact of a treatment, measure the average evolution pace in each stage of the disease, and
quantify the variability of this pace from one individual to another. This description is particularly
relevant in the prodromal phase of the disease, before the patients start undergoing a treatment
which slows the disease progression.

The proposed approach currently suffers from two inherent limitations to describe the impact of
treatments. First, the description of the individual disease progression as a time reparameterization
of a template trajectory does not allow changing the sign of the slope vectors (which are only
multiplied by eξi,k) from an individual to another. This constraint is not adapted to describe
the impact of a treatment: for some individuals the situation improves, and for others it keeps
degrading, although more slowly. In that regard, the model of Severson et al. [2021] allows for a
more flexible representation in terms of slopes. However, their protocol selects a model with seven
distinct stages of disease progression, which may seem excessive from the perspective adopted in the
present chapter, where the pieces correspond to interpretable stages of the disease. Finding a way
to add some flexibility in the population model would improve the model’s representation capacity.
A possible solution could be to add a second transformation after the time reparameterization,
which could affect the slopes.

Second, our model does currently not rely on the treatment information provided on each
subject (which treatment is used at which time points), and we focused on identifying its impact
on the individual and population trajectories. However, as mentioned in the previous section, it
is difficult to find a coherent population trajectory that simultaneously accounts for the evolution
of patients that start a treatment at different disease stages. A possible direction would be to
include the treatment information as a known variable and use it in the individual deviation from
the population average. Learning the relation between this variable and the disease progression at
each stage of the disease would provide an interesting perspective on the treatment impact.

7.A Prior distribution

In the Bayesian setting considered in this chapter, we need to specify a prior distribution for each
of the model parameters θ = (p̄0, t̄B , v̄, σ

2, σ2
w, σ

2
τ , σ

2
ξ ). The prior distributions for the trajectory

parameters (p̄0, t̄B , v̄) are defined in section 7.3.1 by the Gaussian distributions with large variances
(sp0

= stB = sv = 500) and mean zero. In contrast, the variance of the population latent variables
is set to a much smaller value (σp0

= σtB = σv = 0.1), in order to ensure that the exponentialized
model remains close to the initial model.

Inverse Gamma priors Γ−1(m,β) are used for the variance parameters, with m the shape
parameter and β the scale parameter. We take uninformative priors for στ , σw and σ (with
the hyperparameters βτ = βw = β = 1 and mτ = mw = m = 6). As mentioned in section 7.3.1,
experiments on real data showed that, without regularization, the variables ξi,k may take large
values on some trajectory pieces, and thus yield individual trajectories with a shape very different
from the population trajectory’s. This behavior is undesirable: it often causes some trajectory
pieces to be much longer than in the population trajectory, and hence a large amount (if not
all) the observations may fall into a single trajectory piece, although the trajectory may clearly
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exhibit a slope change. This phenomenon might be a numerical issue related to the strong non
convexity of the posterior landscape of the latent variables given the observed data. It can be
controlled through the variance σξ: by imposing a strong regularization on σξ, the acceleration
factors are constrained to take smaller values. The individual trajectories are thus more similar
to the population trajectories, and they better describe individual breaks. In particular, the
occupation rates are spread more equally between the pieces when applying a strong regularization
on σξ. In the PPMI experiment, we usemξ = N/2 and βξ = 1. This prior depends on the number of
samples, which does not fully fit into a purely Bayesian perspective, but allows obtaining coherent
results for different numbers of samples.

When investigating this issue, we experimented with different values of mξ, and we performed
the same experiment with mξ = N/4 and mξ = N . The first one produces results very similar
to mξ = N/2. The main difference is that the model at K = 3 breaks is selected over K = 2, by a
small BICh margin. However, the K = 3 model has a very short piece containing less than 4% of
all observations, which makes it very close to a model with K = 2 breaks. The models obtained
with mξ = N had a very small value for σξ, so that the individual trajectories would not vary
from the population trajectory. The BICh selected K = 7 breaks, which is not very surprising:
when the individual trajectories have no flexibility (apart from space and time shifts), trajectories
with the highest number of pieces are more likely to produce time and space shifts that fit the
individual observations.

7.B Sufficient statistics and MAP formulas

The model variables are divided between the parameters θ = (p̄0, t̄B , v̄, σ
2, σ2

w, σ
2
τ , σ

2
ξ ), the indi-

vidual latent variables zi = (ξi, τi, wi), the population latent variables zpop = (p0, tB , v) and the
observations yij . For each observation yij , we denote as Dij the set of non-missing coordinates.
The model’s complete log-likelihood of the observed data writes as follows, up to a constant c.

log p(yobs, z, θ) =

N∑

i=1

ni∑

j=1

∑

ℓ∈Dij

log p(yijℓ | zi, θ) +
N∑

i=1

log p(zi | θ) + log p(θ) (⋆)

= −
N∑

i=1

ni∑

j=1

∑

ℓ∈Dij

1

2σ2
ℓ

(yijℓ −Di(tij)ℓ)
2 − 1

2
log(σ2

ℓ )

− 1

2σ2
τ

N∑

i=1

τ2i −
N∑

i=1

K+1∑

k=1

1

2σ2
ξ,k

ξ2ik −
N∑

i=1

d∑

ℓ=1

1

2σ2
w,ℓ

w2
iℓ −

N

2
(log(σ2

τ ) + log(σ2
ξ ) + log(σ2

w))

− 1

s2p0

‖p0 − p̄0‖2 −
1

s2tB
‖tB − t̄B‖2 −

1

s2v
‖v − v̄‖2

− β2
τ

2σ2
τ

− mτ + 2

2
log(σ2

τ )−
K∑

k=1

[
β2
ξ

2σ2
ξ,k

+
mξ + 2

2
log(σ2

ξ,k)

]

−
d∑

ℓ=1

[
β2
w

2σ2
w,ℓ

+
mw + 2

2
log(σ2

w,ℓ) +
β2

2σ2
ℓ

+
m+ 2

2
log(σ2

ℓ )

]

Note that tB has max(K, 1) components: ifK = 0 the variable t0 is still needed in the expression
ofD(t). Estimating the model parameters with missing data amounts to implementing the MCMC-
SAEM procedure with the likelihood described above, deriving sufficient statistics from that only
rely on the observed components. Denoting Nℓ the total number of observations on feature ℓ, the
sufficient statistics are given by:
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S(y, z) =





S1 = p0

S2 = tB

S3 = v

S4 = 1
N

∑N
i=1 τ

2
i

S5,k = 1
N

∑N
i=1 ξ

2
ik (1 ≤ k ≤ K + 1)

S6,ℓ =
1
N

∑N
i=1 w

2
iℓ (1 ≤ ℓ ≤ d)

S7,ℓ =
1
Nℓ

∑N
i=1

∑
j|ℓ∈Dik

(yijℓ −Di(tij)ℓ)
2 (1 ≤ ℓ ≤ d) .

And, given a value S of the sufficient statistics, the optimal value for θ write as:

θ̂(S) =





p̄0 = S1

t̄B = S2

v̄ = S3

σ2
τ =

NS4+β2
τ

N+mτ+2

σ2
ξ,k =

NS5,k+β2
ξ

N+mξ+2

σ2
w,ℓ =

NS6,ℓ+β2
w

N+mw+2

σ2
ℓ =

NℓS7,ℓ+β2

Nℓ+m+2 .

These formulas, coupled with a MCMC procedure can be used directly in Algorithm 7.3.1 to
estimate the model parameters.

7.C Conjugate posterior factorization for the space shifts

Simple computations from the expression (⋆) allow deriving the factorization:

p(wi, ξi, τi, yi | θ) =
d∏

ℓ=1

p(wiℓ | ξi, τi, yi, θ)× p(ξi, τi, yi | θ) .

Let us denote niℓ the number of time points for which the component ℓ is observed for indi-
vidual i; let Di(t) be the latent trajectory for individual i without its space shift (Di(t) is defined
using τi and ξi only), and let σ2

iℓ = (niℓ/σ
2
ℓ + 1/σ2

w,ℓ)
−1. We have

p(wiℓ | ξi, τi, yi, θ) = N


σ

2
iℓ

σ2
ℓ

∑

j|ℓ∈Dij

(yijℓ −D0
i (tij)ℓ), σ

2
iℓ


 ,

and, with ñi = ni1 + · · ·+ nid:

p(ξi, τi, yi | θ) =
σi1 . . . σid
σd
w,ℓ

1

(
√
2πσ)ñi

exp

(
∑

ℓ

σ2
iℓ

2σ4
ℓ

A2
ℓ −

1

2σ2
ℓ

Bℓ

)
p(τi | θ)p(ξi | θ) ,

with the additional notations
{
Aℓ =

∑
j|ℓ∈Dij

(yijℓ −D0
i (tij)ℓ)

Bℓ =
∑

j|ℓ∈Dij
(yijℓ −D0

i (tij)ℓ)
2 .

7.D Additional figures on synthetic data experiments

Figures 7.D.1 to 7.D.7 provide additional information on the synthetic data experiments.
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Figure 7.D.1: True population trajectories (black) and their estimation (red) for data sets
with K = 3 breaks in experiment (A’), with 200 subjects and 12 observations per subject on
average.
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Figure 7.D.2: True population trajectories (black) and their estimation (red) for data sets
with K = 5 breaks in experiment (A’), with 200 subjects and 16 observations per subject on
average.
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Figure 7.D.3: True population trajectories (black) and their estimation (red) for data sets
withK = 3 breaks in experiment (B), with 400 subjects and 16 observations per subject on average.
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Figure 7.D.4: True population trajectories (black) and their estimation (red) for data sets
with K = 3 breaks in experiment (B’), with 200 subjects and 16 observations per subject on
average.
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Figure 7.D.5: Estimation error for the model parameters, averaged over the ten data sets of each
noise level s and number of breaks K, on experiments (A’) and (B’).
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Figure 7.D.6: True individual trajectories (black) and their estimation (red) displayed with the
observed data (gray) for data sets with K = 3 breaks in experiment (B).
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Figure 7.D.7: Proportion of data sets such that K̂, the selected value ofK, is such that |K̂−K| ≤ 1.

7.E Additional results on the PPMI experiment

Table 7.E.1 shows additional information on the estimation results. We show the standard devia-
tion σξ for each experiment, which quantifies to what extent the shapes of the individual trajectories
may differ from the population average. We also give the unexplained variance ratio, which ensures
that the model captures a significant proportion of the observed variability.

Figure 7.E.1 shows the BICh obtained for several values of K. Note that the curves are not
always concave; this is partly due to the fact that the log-likelihoods from one value of K to
another are not always increasing at K ∈ {4, 5}. This may be due to the optimization error,
with the MCMC-SAEM not finding the optimal values of the break times. Another contributing
factor may be that, in the hierarchical model considered in this chapter, increasing the number of
parameters also increases the dimension of the latent space, which does not necessarily lead to a
better marginal likelihood for the observed data.

Standard deviation σξ Unexplained variance ratio

Idiopathic 0.20 25%
Genetic 0.15 26%
Idiopathic + Genetic 0.18 24%
High treatment 0.71 28%
Prodromal 0.38 23%

Table 7.E.1: For each group of subjects, we show a) the variability σξ of the log-acceleration
factors ξi,k, averaged over the pieces; b) the proportion of unexplained variance.
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Figure 7.E.1: BICh values for the five experiments considered on every feature, depending on the
number of breaks K of the considered models.





Chapter 8

Conclusion

We have proposed several contributions in population modeling for network analysis and longitu-
dinal disease progression. This chapter concludes the thesis with general remarks, open questions
and possible research perspectives.

Sparse low-rank modeling for network matrices. The parametric modeling approach pro-
posed in Chapter 5 seems overall better suited than the variational approach of Chapter 4 to
provide a meaningful description of the variability in populations of networks. While it does not
specifically focus on matrix sparsity, sparsity is easily obtained by using Bernoulli sampling, and
considering the low rank matrices as logits (i.e., numbers h such that the Bernoulli probability
is given by 1/(1 + e−h)). This type of approaches can be compared to the highly interpretable
models mentioned in the introduction, like the Exponential Random Graph Model. On the one
hand, our approach is not well suited to analyze network parameters like the average degree or
the clustering coefficient from a theoretical perspective: it seems difficult in general to reconcile
the non-exchangeability of the networks nodes (the brain regions) with simple characterizations
of network parameters. On the other hand, the low-rank approach provides a good compromise
between modeling expressiveness and accounting for real-world network properties. The low rank
representation reflects the modularity of the network and naturally lends itself to clustering.

Extending the sparse low-rank framework. In that regard, the sparse low-rank decom-
position framework of Chapter 4 mainly acts as a denoising method rather than a predictive
statistical model. Nonetheless, very similar computations can be carried out to shift our perspec-
tive and instead perform regression. As an example, if we want to model the brain structural
connectivity matrix Ai of an individual i as a linear function of its age ti, we could estimate the
model Ai = T + tiV + εi, imposing that T and V are both sparse with low rank. This prob-
lem can be solved using the Douglas-Rachford algorithm in a very similar way as in Chapter 4.
Other cofactors like sex or brain damage could be included to compare between different types of
populations.

From a different perspective, the main improvement of Chapter 5 with respect to Chapter 4
is to provide a data generation mechanism to explain the variation between the template and the
observed data. An alternative direction for such a mechanism would have been a “sparse low-
rank ICA” model, i.e., a model assuming that the observations are random linear combinations of
low-rank templates. Formally, this would write as

Ai = a1iT1 + · · ·+ aKi TK ,

with the (Tk)’s fixed sparse low-rank matrices and the (ai)’s independent random coefficients. Such
a model could be estimated using classical EM algorithms combined with sparse low-rank penalties,
replacing the maximization step of the EM by the Douglas-Rachford algorithm (or only a few steps
of the algorithm). This formulation is similar to the dictionary model proposed by D’Souza et al.
[2018], except that the rank of the dictionary elements can be higher than one.
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Exact estimation of the spectral model. An important open question left in Chapter 5 relates
to the estimation of the model parameters. More specifically, we showed that our implementation
of the MCMC-SAEM algorithm systematically over-estimates the variance of the eigenvectors,
despite specific adaptations to prevent the variables from spreading across the Stiefel manifold.
This estimation error may come from either the estimation of the normalizing constant of von
Mises-Fisher distribution provided by Kume et al. [2013], or from the MCMC-SAEM algorithm
itself. Regarding the first point, little improvement is in sight, as no tractable exact inference
algorithm has yet been found for von Mises-Fisher distributions on Stiefel manifolds. The more
recent work of Kume and Sei [2018] proposes an exact method for the special case of distributions
on the unit sphere, but we could not find a simple way to adapt it to higher-dimensional Stiefel
manifolds.

Regarding the second point, it is possible that the model structure is such that the MCMC-
SAEM algorithm tends to land on poor local maxima of the likelihood. This hypothesis is hard to
test in practice, as the likelihood itself cannot be computed explicitly due to the high dimension
of the latent variables. In order to investigate this issue, alternative estimation procedures could
be considered. As an example, a variational Bayesian approach could be proposed, approximating
the posterior distribution of the latent variables with a simple expression, e.g., von Mises-Fisher
distributions. Another option would be to use the recent developments on Bayesian inference on
Stiefel manifolds to work on a fully Bayesian approach, and sample from the posterior distribution
of the model parameters [Pal et al., 2020, Meng, 2021].

Dependency structure in the spectral model. An important assumption in the spectral
model of Chapter 5 is the independence between the eigenvectors and the eigenvalues of network
matrices. This hypothesis allows having a small number of interpretable parameters, but it is
restrictive: in practice, it is likely that eigenvectors are strongly correlated to their eigenvalues.
Two directions could be explored to account for this correlation in the model structure, with only
slight changes in the MCMC-SAEM algorithm structure, exponentializing some parameters when
necessary as in Chapter 7.

A first option would be to use the Cayley transform (or any other retraction) to define the
distribution of the eigenvectors. Given a central point M ∈ Vnp, an eigenvector matrix could be
drawn by sampling a random Gaussian vector D ∈ TMVnp and computing CM (D). The tangent
vector D and the eigenvalues vector λ ∈ R

p could be drawn simultaneously from a joint Gaussian
distribution, which would induce a correlation between eigenvalues and eigenvectors. Another
similar option would be to work in the tangent space at identity, and drawing D ∈ TInp

Vnp from a
non-centered Gaussian distribution. The first approach is more interpretable, but makes the model
non-exponential, whereas the second approach is somewhat less robust (as it could hardly model
points far from Inp) but keeps an exponential model structure.

A second option would be to formalize the fact that knowing an eigenvector xk imposes a
strong constraint on the related eigenvalue λk. In other words, it would consist in considering λk
as a random function of xk, for instance λk ∼ N (µ(xk), σ

2
λ), with µ : Sn−1 → R. This relation

gives a generative model that defines a correlation between each eigenvector and their respective
eigenvalue, leaving the eigenvectors independent – apart from the orthogonality constraint. This
second formulation may be more interesting from a statistical modeling point of view, as it opens
a large choice in the parameterization of the function µ.

Extensions of the spectral model. The model introduced in Chapter 5 is very flexible, in the
sense that it can be easily modified to account for many types of network matrices. Its hierarchical
structure also opens the possibility to model the relationship between the network and cofactors
at the population level. More specifically, the latent variables X and λ could be used as regression
variables to predict factors like age, sex, or more interestingly cognitive scores. Node embedding
and dictionary methods have proven efficient to perform such tasks, so that the application of our
model to this problem would be an interesting question. From a statistical modeling perspective,
the prediction of a cofactor ck could be achieved by specifying its relation toX and λ, for example as

ck ∼ N (c̄k(X,λ), σ
2
c ) ,
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with c̄k, e.g., a linear function. Learning the c̄k’s jointly with the other model parameters could
also change the learned representation of X and λ by accounting for more observations.

Alternatively, cofactors could be considered as the primary source of variability, by defining
the distribution of X and λ conditionally to them. This approach remains relatively unexplored in
the literature on brain network analysis, which rather focuses on a regression-oriented perspective
as in the previous paragraph. However, it has been widely studied in other fields of statistics,
in particular mixed-effect models. Extending the hierarchical model structure of Chapter 5, the
cofactors Ci = (ci1, . . . , ciK) of individual i could be included with a formulation of the type





Ci ∼ N (C̄,Σc)

(Xi | Ci) ∼ vMF(F (Ci))

(λi | Ci) ∼ N (µ(Ci), σ
2
λIp) .

In particular, such models could be used on data sets of brain networks to model aging. In
this context, the main cofactor of interest is the age t, and the distribution of the eigenvectors and
eigenvalues could thus be defined as a function of t. As an example, µ(t) could be chosen as a
linear function, and F (t) could be expressed as F (t) =M(t)Diag(s), with

M(t) = CM(t0)((t− t0)V ) ∈ Vnp

defined with the Cayley transform and s ∈ R
p
+. In other words, the parameter V would parame-

terize the average evolution direction of X, starting from M(t0) at time t0. The work of Chikuse
[2006] on state-space models for Stiefel and Grassmann manifolds could be relied on to devise
tailored models.

Finally, the hierarchical model of Chapter 5 could be used in the longitudinal framework of
Schiratti et al. [2015] to analyze populations of brain networks measured at different time points.
The framework could be adapted to network matrices by describing the time evolution of the
latent variables Xi(t) and λi(t) of each individual. The curve λi(t) could be modeled as in the
classical case of Euclidean data; the evolution of Xi(t) on the Stiefel manifold could be modeled as
a deviation from an average trajectory as in the previous paragraph, by using the Cayley transform
and the vector transport it induces between the tangent spaces [Li et al., 2020b, Zhu and Sato,
2021]. Such longitudinal modeling for brain connectivity networks could provide interpretable
descriptions of aging and the progression of neurodegenerative diseases.

Handling multimodality. This thesis leaves open extensions to multi-view networks, i.e., net-
works where each edge has several weights measuring different types of interactions. The most
important example related to our topic is the multimodal brain connectivity: the joint modeling
of structural and functional connectivity is an interesting problem, which low-rank methods have
already helped understanding [D’Souza et al., 2021a]. Reframing the multi-view approach in the
framework of this thesis could provide an interpretable description of the relations between both
aspects of brain connectivity. In terms of modeling, this goal could be achieved by considering a
coupling between the latent variables of both types of connectivities. However, studies on multi-
view networks require specific data sets where the same brain regions are used for functional and
structural connectivity, which is not often the case and thus requires careful project planning.

Treatment impact for longitudinal models. As noted in the discussion of Chapter 7, the
impact of the treatment is a crucial element of disease progression modeling. This impact has a
great variability, depending on the progression stage of the disease and individual patient charac-
teristics. Rather than considering the treatment impact – which is expected to induce a break in
the patient trajectory – as a new stage of the disease progression, our results suggest that it would
be more interesting to rethink the longitudinal modeling approach to account for the treatment as
an exogenous cofactor rather than an evolution intrinsic to the disease progression. The framework
of Schiratti et al. [2015] and Chevallier et al. [2021] could be adapted, in the case of Euclidean
valued data, by introducing additional non-linear fixed and random effects related to the treatment
impact. The shape of these effects, determined at both the population and individual levels, could
provide a better understanding of the treatment impact, and its relation to other cofactors.
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Résumé : Le développement et la massification des

bases de données d’imagerie médicale et de suivi

clinique ouvrent de nouvelles perspectives pour la

compréhension de phénomènes complexes comme

le vieillissement ou les maladies neurodégénératives.

En particulier, la connectivité cérébrale, c’est-à-dire

l’étude des connexions et des interactions entre les

régions du cerveau, peut maintenant être étudiée à

l’échelle d’une population et non plus d’un individu

isolé. Ce cadre offre la possibilité d’une meilleure

prise en compte des spécificités individuelles dans le

développement d’outils de suivi.

Dans cette thèse, nous proposons dans un premier

temps de nouvelles approches pour modéliser et

comprendre la variabilité de la connectivité cérébrale

au sein d’un groupe de sujets. Plus généralement,

nous nous intéressons aux collections de réseaux

où chaque réseau décrit des interactions entre les

mêmes entités. Nous nous appuyons sur la propriété

empirique de rang faible des matrices d’adjacence

de ces réseaux pour rendre compte de leur distri-

bution. Nous proposons deux approches, l’une varia-

tionnelle et l’autre statistique, pour rendre compte de

l’hétérogénéité de ces matrices. En particulier, dans

le second cas, nous montrons qu’un nombre res-

treint de paramètres suffit à donner une description

fidèle et interprétable de la variabilité de la connec-

tivité cérébrale. Nous montrons également la consis-

tence et l’identifiabilité de notre approche sur le plan

théorique.

Dans un second temps, nous étudions un modèle lon-

gitudinal pour le suivi de la progression de la ma-

ladie de Parkinson. Dans ce modèle, la trajectoire

de chaque patient est divisée en plusieurs morceaux

pouvant correspondre aux différentes phases de la

maladie ou d’un traitement. Nous nous montrons qu’il

est possible d’estimer les trajectoires constituées de

plusieurs morceaux, et de sélectionner le nombre

de ruptures le mieux adapté pour décrire l’évolution

moyenne de la population.
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Abstract : The development and massification of me-

dical imaging and clinical followup databases open

up new perspectives for understanding complex phe-

nomena such as ageing or neurodegenerative di-

seases. In particular, brain connectivity, i.e., the study

of connections and interactions between brain re-

gions, can now be studied on the scale of a population

scale rather than on an individual basis. This frame-

work offers the possibility of better taking into account

individual specificities in the development of monito-

ring tools.

In this thesis, we first propose new approaches to mo-

del and understand the variability of brain connecti-

vity within a group of subjects. More generally, we

are interested in collections of networks where each

network describes interactions between the same en-

tities. We rely on the empirical low rank property of

the adjacency matrices of these networks to account

for their distribution. We propose two approaches, one

variational and the other statistical, to account for the

heterogeneity of these matrices. In particular, in the

second case, we show that a limited number of para-

meters is sufficient to give a faithful and interpretable

description of the variability of brain connectivity. We

also show the theoretical consistency and identifiabi-

lity of our approach.

In a second part, we study a longitudinal model for the

progression monitoring of Parkinson’s disease. In this

model, the trajectory of each patient is divided into

several pieces that may correspond to the different

phases of the disease or of a treatment. We show that

it is possible to estimate trajectories consisting of se-

veral pieces, and to select the number of breaks best

suited to describe the average evolution of the popu-

lation.
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