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Abstract
Maps have been a unique source of knowledge for centuries. Such histori-
cal documents provide invaluable information for analyzing complex spatial
transformations over important time frames. This is particularly true for ur-
ban areas that encompass multiple interleaved research domains: humani-
ties, social sciences, etc. The large amount and significant diversity of map
sources call for automatic image processing techniques in order to extract the
relevant objects as vector features. The complexity of maps (text, noise, digi-
tization artifacts, etc.) has hindered the capacity of proposing a versatile and
efficient raster-to-vector approaches for decades.

In this thesis, we propose a learnable, reproducible, and reusable solution
for the automatic transformation of raster maps into vector objects (build-
ing blocks, streets, rivers), focusing on the extraction of closed shapes. Our
approach is built upon the complementary strengths of convolutional neu-
ral networks which excel at filtering edges while preserving poor topologi-
cal properties for their outputs, and mathematical morphology, which offers
solid guarantees regarding closed shape extraction while being very sensitive
to noise.

In order to improve the robustness of deep edge filters to noise, we review
several, and propose new topology-preserving loss functions which enable
to improve the topological properties of the results. We also introduce a new
contrast convolution (CConv) layer to investigate how architectural changes
can impact such properties. Finally, we investigate the different approaches
which can be used to implement each stage, and how to combine them in the
most efficient way.

Thanks to a shape extraction pipeline, we propose a new alignment pro-
cedure for historical map images, and start to leverage the redundancies con-
tained in map sheets with similar contents to propagate annotations, improve
vectorization quality, and eventually detect evolution patterns for later anal-
ysis or to automatically assess vectorization quality.

To evaluate the performance of all methods mentioned above, we released
a new dataset of annotated historical map images. It is the first public and
open dataset targeting the task of historical map vectorization. We hope that
thanks to our publications, public and open releases of datasets, codes and
results, our work will benefit a wide range of historical map-related applica-
tions.
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Résumé
Les cartes sont une source unique de connaissances depuis des siècles. Ces
documents historiques fournissent des informations inestimables pour anal-
yser des transformations spatiales complexes sur des périodes importantes.
Cela est particulièrement vrai pour les zones urbaines qui englobent de mul-
tiples domaines de recherche imbriqués : humanités, sciences sociales, etc.
La complexité des cartes (texte, bruit, artefacts de numérisation, etc.) a en-
travé la capacité à proposer des approches de vectorisation polyvalentes et
efficaces pendant des décennies.

Dans cette thèse, nous proposons une solution apprenable, reproductible
et réutilisable pour la transformation automatique de cartes raster en objets
vectoriels (îlots, rues, rivières), en nous focalisant sur le problème d’extraction
de formes closes. Notre approche s’appuie sur la complémentarité des réseaux
de neurones convolutifs qui excellent dans et de la morphologie mathéma-
tique, qui présente de solides garanties au regard de l’extraction de formes
closes tout en étant très sensible au bruit.

Afin d’améliorer la robustesse au bruit des filtres convolutifs, nous com-
parons plusieurs fonctions de coût visant spécifiquement à préserver les pro-
priétés topologiques des résultats, et en proposons de nouvelles. À cette
fin, nous introduisons également un nouveau type de couche convolutive
(CConv) exploitant le contraste des images, pour explorer les possibilités de
telles améliorations à l’aide de transformations architecturales des réseaux.
Finalement, nous comparons les différentes approches et architectures qui
peuvent être utilisées pour implémenter chaque étape de notre chaîne de
traitements, et comment combiner ces dernières de la meilleure façon pos-
sible.

Grâce à une chaîne de traitement fonctionnelle, nous proposons une nou-
velle procédure d’alignement d’images de plans historiques, et commençons
à tirer profit de la redondance des données extraites dans des images simi-
laires pour propager des annotations, améliorer la qualité de la vectorisation,
et éventuellement détecter des cas d’évolution en vue d’analyse thématique,
ou encore l’estimation automatique de la qualité de la vectorisation.

Afin d’évaluer la performance des méthodes mentionnées précédemment,
nous avons publié un nouveau jeu de données composé d’images de plans
historiques annotées. C’est le premier jeu de données en libre accès dédié à la
vectorisation de plans historiques. Nous espérons qu’au travers de nos publi-
cations, et de la diffusion ouverte et publique de nos résultats, sources et jeux
de données, cette recherche pourra être utile à un large éventail d’applications
liées aux cartes historiques.
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Chapter 1

Introduction

Historical maps contain rich information on quantitative study of urban mor-
phogenesis which is the key to understanding the dynamics of cities.
In the introduction of this chapter (Section 1.1), we illustrate why vectorizing
historical maps is important for understanding urban morphogenesis. The
existing literature for vectorization of historical maps is explained in Sec-
tion 1.2. The project SoDUCo and corpus of existing map documents are
detailed in Section 1.3 and Section 1.4. The challenges in map resources are
then inventoried in Section 1.5. We develop several research questions in
order to improve the vectorization quality of historical maps in Section 1.6.
Lastly, Section 1.7 and Section 1.8 list the contributions and publications over
the course of my doctoral researches.
Parts of this chapter are extended and adapted from the contents of my pub-
lications [1–3].

1.1 A brief introduction to historical map vectorization

Historical maps are unique and powerful tools for understanding the trans-
formations of the geographical space over significant time spans. They are
invaluable inputs in historical and social sciences, architecture, and urban
planning. The massive digitization of archival collection resources carried
out by heritage institutions dramatically increases the amount of geospatial
information available for certain areas of the world. In the western world,
the rapid development of geodesy and cartography from the 18th century
resulted in massive production of topographic maps at various scales. City
maps are of utter interest. They contain rich, detailed, and often geometri-
cally accurate representations of numerous geographical entities. Maps also
document the distribution in space and the topological relationship of the de-
picted entities, while legends and text labels provide semantic information,
in particular about their functions [4, 5]. Recovering spatial and semantic in-
formation represented in old maps requires a so-called vectorization process.

Vectorizing maps consists in transforming rasterized graphical represen-
tations of geographic entities (often maps) into instanced geographic data
(or vector data), that can be subsequently manipulated (using Geographic
Information Systems, GIS). This is a key challenge today to better preserve,
analyze and disseminate content for numerous spatial and spatio-temporal
analysis purposes.

From an image processing and a document analysis perspective, vector-
ization can be illustrated in the following, often interleaved, problems:
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1. Isolate the map content subregion on pictures of map sheets (leave out
the legend, in particular);

2. Detect and separate the various layers of graphical content: points, lines,
and shape objects, as well as symbols and text;

3. Classify / recognize each graphical object of interest (including text),
while ensuring a topologically and geometrically consistent result (of-
ten considered as an instance segmentation problem [6]);

4. Georeference the geometries previously extracted; defined by Wade et
al. [7] as “Aligning geographic data to a known coordinate system so
it can be viewed, queried and analyzed with other geographic data”.

Currently, shape detection is usually performed manually, using GIS soft-
ware. Such a costly and tedious process leads to heterogeneous data quality.
The latest methodological developments in image processing enable to auto-
matically build a significant number of geo-historical databases, and eventu-
ally benefit to multiple research areas. In this thesis, we focus on closed shape
detection in produced over the course of the 19th and early 20th-century his-
torical map atlases of Paris (France).

1.2 Related work

The digitization of historical maps can be separated into three main cate-
gories: manual, automatic, and hybrid methods. As noted by Ostafin et
al. [8], the manual approach is still a popular solution in digitizing maps
when the dataset is small in coverage and time period. For larger datasets,
collaborative approaches are used with possibly many contributors — so-
called crowdsourcing experiments, as in the works of Budig et al. [9] and
Southall et al. [10]— to speed up the digitization process. However, manual
processes are still limited in time and quality and highly fluctuating through
different contributors, which leads to non-reproducible results. To tackle
such problem requires research on automatic and semi-automatic vectoriza-
tion techniques. In this thesis, we particularly interested in automatic digiti-
zation techniques for historical maps.

An early attempt at automatic digitization from historical maps focuses
on color. The color-based approach is widely used as a preprocessing stage
to separate different object layers through specific thresholds [11–14]. This
approach has been adopted in segmenting 19th and 20th colorized maps [15–
18] which are relatively “modern” historical maps. Dating back to the 18th

century, historical maps rarely had affordable printing colors until the mid-
dle of 19th. Color-based approaches for map processing tasks tend to fail
with the maps in gray or limited colors. Furthermore, segmentation ap-
proaches based on texture information have been proposed to tackle the is-
sue of the limited colors in historical maps. These approaches either focus
on the texture energy [11, 19–21] or hatched areas [22–24]. These texture-
based techniques work well for the maps in regular textural patterns with
manually tuned parameters, but those methods are designed for specific
map applications. Therefore it is difficult to generalize between different
datasets. Since the historical maps are mainly constructed using geometrical
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shapes, morphological-based approaches are highly suitable for extracting
geometries from historical maps with topological properties such as linear
features [19], edges [1, 2] and closed shapes[1, 2, 25–29]. However, morpho-
logical-based methods are sensitive to image noises and overlaps between
different map layers, therefore, some works dedicated to removing unrelated
map overlays from the maps [30, 19, 31, 32], but these methods require prior
knowledge such as size or shapes of the objects. Methods mentioned above
exhibit two main drawbacks:

1. Prior knowledge of color and object shapes narrows down the versatil-
ity power of the methods.

2. No focus is made on extracting multiple closed shapes under a learning
paradigm.

With the development of the theory of neural networks, many deep-based
methods have been used to better extract and separate layers from historical
maps. Liu et al. [33] combine the fully convolutional network (FCN) with the
integer programming for maintaining topologically and geometrically cor-
rected vector of the floor plan; this network (FCN) also achieves great suc-
cess in semantic understanding documents [34] and maps [34–38]. However,
extracting objects by using semantic segmentation [39] might not be always
sufficient particularly when the historical maps have limited colors and tex-
tures. Rather than using information on colors and textures for object ex-
traction from historical maps, Oliveira et al. [34] propose the combinations
of the detection of boundaries of objects with region growing algorithms
watershed for better separating and removing map layers while maintain-
ing closed shapes. Nonetheless, this pipeline has not been comprehensively
studied yet in the regime of modern computer vision and a more general and
learnable pipeline for the automatic digitization of high-scale historical maps
is still in high demand. In this thesis, we propose a supervised framework
that appears to be the best solution for correctly fostering information extrac-
tion from existing samples in an automatic way by combining deep learning
with mathematical morphology for closed-shape extraction.

1.3 Project SoDUCo

The project Social Dynamics in Urban Context (SoDUCo) aims at developing
approaches, models, and usable tools to study the evolution of urban spatial
structure concerning the social and professional practices of the population.
To reach this goal, we conduct our study based on the reconstitution of the
evolution of Paris from 1789 to 1950 with two specific sets of sources, 16
master maps with cadastral maps of Paris and its suburbs, as well as trade
directories. We then need to extract useful information from both resources;
maps and directories. In this thesis, we focus on developing reliable models
and tools for extracting closed shapes from historical maps.

1.4 Corpus of historical atlases

The initial corpus of historical maps identified by the researchers of the So-
DUCo project [40] (see Figure 1.1) contains a number of maps relevant to
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FIGURE 1.1: Corpus of documents listed in Social Dynamics in Urban Context SoDUCo
Project [40]. Short title represents the name of Atlases.

study the morphogenesis of the city of Paris since the late 18th century. Out
of all these sources, certain ones have been the object of specific interest for
researchers [41–44]. The Atlas Municipal, to the best of our knowledge, had
received little interest and only one edition (1888) had been exploited for its
house numbers in the context of historical geocoding [45]. After a more thor-
ough search, it appeared that the Bibliothèque de l’hôtel de Ville de Paris held 24
different versions of the Atlas Municipal, ranging from 1866 to 1937. Given
that these updated versions were made in order to keep track of the differ-
ent road works happening at the time, the interest of this map series for the
study of the morphogenesis of Paris during this very specific time period be-
came obvious. Furthermore, this maps series presents certain properties that
make them especially challenging for map object extraction: thin boundary
of objects (building blocks in particular) as well as very little textures and
color.

1.5 Existing challenges in historical maps

Historical maps provide a very valuable resource for historians and a rich
body of scientific challenges for the document analysis and recognition (DAR)
community: map-related challenges (Figure 1.3, left) and document-related
ones (Figure 1.3, right).

We detail three map-related challenges in this thesis. Firstly, unlike mod-
ern computer-generated maps which follow roughly the same semiotic rules,
these maps vary in terms of legend, level of generalization, type of geo-
graphic features and text fonts [4]. They also usually lack texture informa-
tion, which creates ambiguities in the detection of objects. Popular seman-
tic [39, 46, 47] and instance [48–50] image segmentation algorithms detect
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FIGURE 1.2: Sample map sheet. Atlas municipal des vingt arrondissements de Paris. 1937. Bib-
liothèque de l’Hôtel de Ville. City of Paris. France. Original size: 11136×7711 pixels.

objects based on textures and are prone to fail in our context. Secondly,
color is not a relevant cue either: the palette is usually highly restricted
due to the technical limitations and financial constraints of their produc-
tion. Thirdly, objects in maps are often overlapping, some are thus partially
hidden and hardly separable. Occlusion happens with overlaid textual and
carto-geodetic information in particular (Figure 1.4, rectangles (1) and (2)).
We aim to accelerate the detection of core city structures (building blocks,
rivers, street networks), as well as the georeferencing process while keeping
both very accurate.

Historical maps also exhibit general document-related challenges. Dam-
age paper (Figure 1.4, rectangles (3)), non-straight lines (Fig. 1.3, right), and
image compression create image inconsistency, and missing information and
the change in the topological properties in historical map images leads to the
difficulties of the map digitization process. Moreover, the style of handwrit-
ten texts has inconsistent representations (different font, size, and rotations)
across different maps, where traditional text-related algorithms might suc-
ceed in one map but fail in others.

1.6 Problem statements

To extract reliable closed shapes from historical maps with the existing chal-
lenges, we propose to focus our research on the following questions:
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FIGURE 1.3: Some map-related challenges (left): visual polysemy, planimetric overlap, text
overlap. . . and some document-related challenges (right): damaged paper, non-straight
lines, image compression, handwritten text. . . For more detail of document-related chal-
lenges please refer to Figure 1.4.

(1) (2)(3)

FIGURE 1.4: Contents of a 1925 urban topographic map along with an overview of their
challenging properties for automatic feature extraction. Challenges in historical maps: (1)
planimetric overlap, (2) text overlap, (3) paper folds.

Our main research question is how to automatically extract high-quality
closed shapes from historical maps on a large scale. Then we decompose
the main problem into auxiliary questions which are complementary re-
search directions and it will in turn be addressed in dedicated chapters.

1. How to design a pipeline that can reliably extract closed shapes from
map images? (Chapter 2)

2. How to better filter historical map images? (Chapter 3)
3. How to guarantee topological properties in the predictions? (Chapter 4)
4. How to improve the model robustness in different scanning conditions?

(Chapter 5)
5. How to leverage the redundancies of historical maps? (Chapter 6)
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1.7 Contributions

A two-stage pipeline combining deep learning and mathematical morphology
for historical maps vectorization task. In this thesis, we answer the first re-
search question by proposing a universal pipeline for vectorizing historical
maps. The digitization of historical maps enables the study of ancient, fragile,
unique, and hardly accessible information sources. Main map features can be
retrieved and tracked through the time for subsequent thematic analysis. The
goal of this work is the vectorization step, i.e., the extraction of vector shapes
of the objects of interest from raster images of maps. We are particularly inter-
ested in closed shape detection such as buildings, building blocks, gardens,
rivers, etc. in order to monitor their temporal evolution. This information of
temporal evolution is important for studying urban morphogenesis.

Historical map images present significant pattern recognition challenges.
The extraction of closed shapes by using traditional Mathematical Morphol-
ogy (MM) is highly challenging due to the overlapping of multiple map fea-
tures and texts. Moreover, state-of-the-art Convolutional Neural Networks
(CNN) are perfectly designed for content image filtering but provide no guar-
antee about closed shape detection. Also, the lack of textural and color infor-
mation of historical maps makes it hard for CNN to detect shapes that are
represented by only their boundaries. Our contribution is a pipeline that
combines the strengths of CNN (efficient edge detection and filtering) and
MM (guaranteed extraction of closed shapes) in order to achieve such a task.
The evaluation of our approach on a public dataset shows its effectiveness
for extracting the closed boundaries of objects in historical maps. This work
is explained in Chapter 2.

A benchmark for historical maps vectorization tasks. In this thesis, we study
the general solution for shape vectorization which is a key stage of the digi-
tization of high-scale historical maps, especially city maps. It relies on prob-
able multiple methodological choices that hamper the vectorization perfor-
mances in terms of accuracy and completeness. Investigating the optimal
solution of vectorized historical maps is mandatory. The following contribu-
tions are introduced: a public dataset over which an extensive benchmark
is performed; (i) a comparison of the performance of state-of-the-art deep
edge detectors with topology-preserving loss functions, among which vision
transformers and with deep or classical watershed approaches; (ii) a joint op-
timization of the edge detection and shape extraction stages; (iii) a study of
the effects of augmentation techniques. This work is explained in Chapter 3.

New loss functions for topology-oriented deep image segmentation In this the-
sis, we propose two new topology-oriented loss functions for topological
properties for segmenting historical maps. Most contemporary supervised
image segmentation methods do not preserve the initial topology of the given
input (like the closeness of the contours). One can generally remark that edge
points have been inserted or removed when the binary prediction and the
ground truth are compared. This can be critical when accurate localization of
multiple interconnected objects is required.



8 Chapter 1. Introduction

We present a new loss function, called, Boundary-Aware loss (BALoss),
based on the Minimum Barrier Distance [51] (MBD) cut algorithm. It is able
to locate what we call the leakage pixels and to encode the boundary informa-
tion coming from the given ground truth. Thanks to this adapted loss, we are
able to significantly refine the quality of the predicted boundaries during the
learning procedure. Furthermore, our loss function is backpropable and can
be applied to any kind of neural network used in image processing. We apply
this loss function on the standard U-Net [47] architectures on the historical
map datasets. They are well-known to be challenging due to its high noise
level, thin boundary and to the close or even connected objects covering the
image space.

However, Boundary-Aware loss (BALoss) can not locate the boundaries
with edge pixel which equals to zero. To tackle this issue, we propose a
new topology-preserving deep image segmentation method which relies on
a new leakage loss: the Pathloss. Our method is an upgrade solution of the
BALoss [52], in which we want to improve the leakage detection for better re-
covering the closeness property of the image segmentation. This loss allows
us to correctly localize and fix the critical points (a leakage in the boundaries,
whether the value of pixels is zero or not) that could occur in the predictions,
and is based on a shortest-path search algorithm. This way, loss minimization
enforces connectivity only where it is necessary and finally provides a good
localization of the boundaries of the objects in the image. Moreover, accord-
ing to our research, our Pathloss learns to preserve stronger elongated struc-
ture compared to methods without using topology-preserving loss. Training
with our topological loss function, our method outperforms state-of-the-art
topology-aware methods on our historical maps. This work is explained in
Chapter 4.

Designing a contrast convolution block for historical map segmentation task In
this thesis, we propose a novel contrast convolution block for improving
model robustness in the vectorization task. Detecting curvilinear structures
is a pivotal low-level task in multiple image analysis challenges. Such struc-
tures can be abundantly found in nature and various data sources, e.g., ves-
sels in medical images, roads in remote sensing images, and buildings in his-
torical maps. Several solutions have been proposed but often fail to propose
a unified framework for multiple object recognition. In parallel, with the de-
velopment of complex neural networks architectures, existing networks can
achieve segmentation results that satisfy pixel-level accuracy, but the correct-
ness of the curvilinear structure cannot be guaranteed, hence, we propose a
novel unified solution called contrast convolution, which learns the gradient
information for every pixel to improve curvilinear structure correctness. We
use such contrast convolution to build higher-level modules named contrast
blocks that add extra information in the network to enhance the curvilinear
feature while training the network. By simply stacking our contrast blocks
in front of different architectures, we evaluate our methods on our histor-
ical map dataset and prove the module effectiveness to maintain the high
segmentation accuracy in curvilinear structure segmentation tasks. Surpris-
ingly, these modules have a large potential for model robustness without sig-
nificantly increasing the parameters of the models. This work is explained in
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Chapter 5.

Leveraging the redundancies of historical maps In this thesis, we align histor-
ical maps in an unsupervised fashion to unlock the redundancies of histor-
ical maps. To be able to analyze, extract or leverage the redundancies and
changes of historical maps, it is necessary to align maps in different time pe-
riod. However, most of the existing historical maps are not or poorly aligned
and therefore the redundancies cannot be used for any application such as
improving map geo-referencing or map vectorization. To tackle this issue,
we propose a geometric alignment framework with the help of edges, so-
called edge-guided geometric alignment network where it leverages edge image
(learning the edges are explained in Chapter 3) to guide the alignment of the
original historical map images to minimize the false matches due to the un-
related information (such as texts or textures) in the historical map images.
This work is explained in Chapter 6.

1.8 Publications

Here is the list of publications and contributions we made over the course of
my doctoral researches:

1.8.1 Journal papers

1. Ngoc M Ô V*, Chen Y*, Boutry N, et al. BuyTheDips: PathLoss for im-
proved topology-preserving deep learning-based image segmentation.
(Under review)

2. Chen Y et al. Automatic Vectorization of Historical Maps: a Bench-
mark. International Journal of Geographical Information Science, 2022.
(Under review)

1.8.2 Conference papers

1. Chen Y, Carlinet E, Chazalon J, et al. Combining deep learning and
mathematical morphology for historical map segmentation, International
Conference on Discrete Geometry and Mathematical Morphology. Springer,
Cham, 2021: 79-92.

2. Chen Y, Carlinet E, Chazalon J, et al. Vectorization of historical maps us-
ing deep edge filtering and closed shape extraction, International Con-
ference on document analysis and recognition. Springer, Cham, 2021:
510-525.

3. Ngoc M Ô V*, Chen Y*, Boutry N, et al. Introducing the Boundary-
Aware loss for deep image segmentation, British Machine Vision Con-
ference (BMVC) 2021.

4. Chazalon J, Carlinet E, Chen Y, et al. ICDAR 2021 competition on his-
torical map segmentation, International Conference on Document Anal-
ysis and Recognition. Springer, Cham, 2021: 693-707.
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5. Chen Y, Zhao Z, Ngoc M Ô V, Géraud T, Mallet C: Rethinking the Pixel
Contrast in Curvilinear Structure Segmentation, submit to CVPR 2023.
(Under review)

1.8.3 Published Dataset

1. Historical map segmentation:
https://zenodo.org/record/4817662
Authors: Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret,
Bertrand Duménieu, Clément Mallet and Thierry Géraud.

1.8.4 Other contribution

1. Competition for historical map segmentation:
https://icdar21-mapseg.github.io/
Organizers: Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret,
Bertrand Duménieu, Clément Mallet, Thierry Géraud.

1.8.5 Published Codes

1. Code for “Combining deep learning and mathematical morphology for
historical map segmentation”:
https://github.com/soduco/paper-dgmm2021.git
Contributors: Yizi Chen, Joseph Chazalon, Edwin Carlinet

2. Code for “Vectorization of historical maps using deep edge filtering and
closed shape extraction”:
https://github.com/soduco/ICDAR-2021-Vectorization.git
Contributors: Yizi Chen, Joseph Chazalon, Edwin Carlinet

3. Code for “Automatic vectorization of historical maps: a benchmark.”:
https://github.com/soduco/Benchmark_historical_map_vectorization.
git
Contributors: Yizi Chen, Joseph Chazalon, Edwin Carlinet

4. Code for “Introducing the boundary-Aware loss for deep image seg-
mentation”:
https://github.com/onvungocminh/MBD_BAL
Contributors: Yizi Chen, Minh On Vu Ngoc

5. Code for “BuyTheDips: pathLoss for improved topology-preserving
deep learning-based image segmentation”:
https://github.com/onvungocminh/PathLoss.git
Contributors: Yizi Chen, Minh On Vu Ngoc

In this chapter, we presented the background information for the vectorization
of historical maps. We are particularly interest in the Paris Atlas Municipal
which contains both document analysis retrieval and map-related challenges
that exist in the source of historical maps. We begin with the main goal of this
thesis which aims at facilitating the manual annotation effort by automating
the process of vectorization of historical maps. This main goal is then di-
vided into five research questions to push the performance of historical map
vectorization as far as possible.

https://zenodo.org/record/4817662
https://icdar21-mapseg.github.io/
https://github.com/soduco/paper-dgmm2021.git
https://github.com/soduco/ICDAR-2021-Vectorization.git
https://github.com/soduco/Benchmark_historical_map_vectorization.git
https://github.com/soduco/Benchmark_historical_map_vectorization.git
https://github.com/onvungocminh/MBD_BAL
https://github.com/onvungocminh/PathLoss.git
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Chapter 2

Pipeline design for historical map
vectorization

To answer our first research question i.e. how to design a pipeline that can
reliably extract closed shapes from map images, we proposed a two-stage
pipeline. It combines a deep edge detector with mathematical morphology
to extract the closed shapes from historical maps. The deep edge detector is
good at filtering edges while watershed can extract closed shapes from edge
probability maps (or likelihood maps).
In Section 2.1, we explain the advantages of a two-stage pipeline and why it is
effective for extracting closed shapes compared to a single stage pipeline. In
Section 2.2, we introduce the background study for the two-stage pipeline.
In Section 2.3, we summarize the test variants of our benchmark. In Sec-
tion 2.4, we present the historical map dataset for the vectorization task. In
Section 2.5, we illustrate the protocols for evaluating the performance of our
proposed methods.
This chapter is an extended and adapted version of the contents of our pub-
lication [1].

2.1 Motivation

We target to recover geometric structures from scans of historical maps. As
mentioned in Section 1.5, due to the limited texture and color content of such
data sources, traditional semantic segmentation approaches of the literature
would fail for most cases. Instead, we cast our problem as a vectorization
challenge that can be turned into a region-based contour extraction task.
Such a problem is traditionally solved through a two-step approach: the de-
tection of edges or local primitives (lines, corners) followed by the retrieval
of structures based on global constraints as proposed by Zhang et al.[53].
Recent works have shown the relevance of a coupled solution [54]. It re-
mains tractable and efficient only for a limited number of structures. Region-
based methods (e.g., based on probability density estimations (PDEs) [55])
may lead to oversimplified results and will not be further analyzed here.

The main issue of two-step solutions is the edge detection step. This low-
level task is achieved by measuring local pixel gradients. Due to the amount
of noise (overlapping objects, map deformation), this would result in many
tiny and spurious elements that any global solution would manage connect-
ing. Instead, we focus on boundary detection, i.e., a middle-level image task
that separates objects at the semantic level according to different geometric
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Historical Map

Deep Contour
Detection

Edge Probability Map

Filtering &
Watershed

Closed Shapes

FIGURE 2.1: We combine an efficient edge detection and filtering stage using a deep network
with a fast closed shape extraction using mathematical morphology tools.

properties of images. This offers two main advantages: (i) a limited sen-
sitivity to noise in maps and (ii) the provision of more salient and robust
primitives for the subsequent object extraction step.

Recently, among the vast amount of literature, CNN have shown a high
level of performance for boundary detection [56, 57]. However, they only
provide probability edge maps. Without topological constraints, image par-
titioning is not ensured. Conversely, watershed segmentation techniques in
mathematical morphology can directly extract closed contours. They run fast
for such a generation, but may lead to many false-positive results. Indeed,
using only low-level image features such as image gradients, watershed tech-
niques may not efficiently maintain useful boundary information [58]. Con-
sequently, we propose here to merge the CNN-based and watershed image
segmentation methods in order to benefit from the strengths of both strate-
gies [59]. A supervised approach is conceivable since we both have access to
reference vectorized maps and CNN architectures pre-trained with natural
image.

2.2 Related work

2.2.1 Image vectorization approaches

Image vectorization approaches can be separated into following three types:

Contour detection with polygon post-processing: Images can be vectorized
through combining contour extraction (marching cubes [60], Grabcut [61])
with polygon simplification method (Douglas-Peucker [62] or simply delau-
nay triangulations [63, 64]). However, this type of vectorization approach has
three main drawbacks. Firstly, the quality of polygons is highly influenced
according to the instability prediction of classification maps by using existing
deep segmentation methods. Secondly, achieving high-quality vectorized
output requires manual refinement processes [65, 66] which are expensive
and complex. At last, these approaches can not be applied to applications
that require detecting complex polygons such as in historical maps.

End to end polygon detection: To speed up annotation speed for polygoniza-
tion images, Castrejon et al. [67] and Acuna et al. [68] propose Polygon-RNN
and Polygon-RNN++, which can annotate polygons in semi-automatically
fashion. Although these two networks produce polygons directly from im-
ages, it still creates invalid polygons due to vertexes self-intersections and



2.2. Related work 13

FIGURE 2.2: KIPPI results for historical map vectorization. We can see that wrong partitions
are created due to miss detected lines, mainly because of text regions.

line overlaps. To eliminate vertex self-intersections and line overlaps, Gi-
rard et al. [69] propose Poly-CNN, but those polygons are limited with only
four vertices which makes it difficult to apply to scenarios requiring complex
polygons with more vertices. PolyMapper [70] uses RNN similar to Polygon-
RNN and Polygon-RNN++, still, it is limited to produce high-quality com-
plex polygons. Moreover, the methods mentioned above highly rely on im-
ages with rich textures and polygons are normally have a low percentage of
shared borders, whereas it might not be sufficient to apply to our historical
map images which have limited colors and share neighbors of objects.

Polygon partitions: Line segment detector (LSD) proposed by Von et al. [71]
is a tool to detect line segment vector from images. However, these line seg-
ments do not guarantee to structure of geometrical partitions or polygons. To
be able to use those line segments for the purpose of creating geometrical par-
titions, Duan et al. [72] construct a Voronoi diagram based on those line seg-
ments to produce shapes with strong geometric properties. Bauchet et al. [73]
propose Kinetic polygonal partitioning (KIPPI) to create image partitions by
progressively extending line segments until they meet each other. However,
this technique heavily relies on the quality of line segments and the wrong
parameter setting could lead to too many falsely detected lines which results
in image over-segmentation shown in Figure 2.2. Furthermore, line segments
are not sufficient to polygonized objects with curve boundaries, which is an-
other limitation of line segments related polygon partition approaches. As
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a results, these methods for producing high quality polygons might not be
sufficient enough for the purpose of vectorization historical maps.

2.2.2 Two-stage pipeline

Therefore, we use a two-stage pipeline by combining the strength of deep
edge filters (good at filtering edge images) with watershed segmentation
(which offer strong geometric guaranties for closed shape extraction).

Watershed segmentation techniques are typically applied on gradient im-
ages to extract closed shapes from natural images. The input image of the
watershed is a single channel image of boundaries’ activation which is also
called probabilistic boundaries (Pb) [74]. Getting the boundaries’ activation
through image features (image gradient) have been comprehensively studied
by Martin et al. [74], where the authors use hand-crafted image features such
as brightness, color, and texture gradients to localize the gradient of the im-
age. Following the idea of Pb, Arbelaez et al. [75] combine different scales of
Pb local cues into multiscale oriented probabilistic boundaries (mPb). Moreover,
applying watershed in Pb proposed by Hanbury et al. [76] and mPb proposed
by Arbelaez et al. [75] are the two early attempts of two stage pipelines to
extract closed shapes from edge images. Due to their effectiveness of two
stages pipeline for extracting closed shapes from images, the methods have
been adapted to the historical map segmentation (vectorization) tasks. Ares
et al. [77] use ridge detection to detect edges objects followed by a flood fill al-
gorithm to extract the buildings from cadastral maps. Similarly to this work,
we propose to combine deep edge detector with watershed to extract closed
shapes in historical maps. The two-stage pipeline is proved to be more ef-
fective compared to one-stage pipeline which are shown in quantitatively
COCO-PQ evaluation scores.

2.2.3 Learning probabilistic boundaries

Learning probabilistic boundaries (or edge probability maps) is a long-term
studied topic in the field of computer vision. Defining a source color image
I ∈ R3, the probabilistic mapping function for boundaries, f transfers the
source image into the target image of probabilistic boundaries y, where f :
I 7→ y; f : R3 7→ R2. The value of a pixel close to 1 means that the pixel is
more likely to be classified as a boundary pixel.

Early probabilistic boundaries are detected through hand-crafted features.
Martin et al. [74] use gradient operators for brightness, color, and textures
(called Cue combination) with a logistic regression classifier to determine
the probability of every pixel whether it should belong to edges or not. To
enhance the image properties with scales, Arbelaez et al. [75] upgrade the
Cue combination with multiscale image combination to predict better prob-
abilistic boundaries. Overcoming the limitations of hand-crafted features,
Dollar et al. [78] invent Boosted Edge Learning (BEL) which selects and com-
bines a large number of computed features in different scales thanks to prob-
abilistic boosting-tree invented by Tu [79]. Similar to the work in Dollar et
al. [78], Lim et al. [80] and Dollar et al. [81] uses a random forest classifier
to determine edge patches. However, these methods are generated through
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hand-crafted or pre-computed image features which have limited visual rep-
resentations that can not be easily adapted in an end-to-end system.

To tackle this problem, Xie et al. [56] develop an end-to-end edge detec-
tion system based on CNN (so-called Holistically-nested Edge Detection
(HED)) which can automatically learn the abstract image features to resolve
the ambiguity in the edges of a natural image. Moreover, several publica-
tions are proposed to boost the architectures of the HED. Liu et al. [82] de-
sign a coarse-to-fine edge detection network with relaxed labels to guide the
HED network. Xu et al. [83] design an Attention-Gated Conditional Ran-
dom Field (AG-CRF) to refine and robustly fuse the intermediate edge rep-
resentations in different scales. He et al. [84] proposed Bi-directional cascade
network (BDCN) which combines a cascaded network architecture with the
Scale Enhancement Module (SEM) to efficiently learn the multiscale repre-
sentations of edges in the network. Since detected edges have very strong
spatial correlations between neighboring pixels, Su et al. [85] proposed a
Pixel Difference Network (PiDiNet) that adds traditional edge detection op-
erators into a CNN architecture which decrease the complexity of the edge
detection models (<0.1M parameters) and also surpass the recorded result of
human perception in BSDS500 datasets [75]. Currently, vision image trans-
formers show the greatest performance in wide range of computer vision
problems, including edge detection. Pu et al. [86] proposed Edge Detection
with Transformer (DETER) with global and local transformer architecture to
capture high-resolution fine-grained features and long-range global context
in the image, becoming the current state-of-the-art in BSDS500 and NYUDv2
datasets.

Traditional VGG- [87] or ResNet-based [88] architectures normally require
a large amount of annotated data to train. These architectures with a high
number of parameters cannot be easily adapted to our historical map dataset.
We annotated our historical maps with limited in image size comparing with
natural image. To train more efficiently for small datasets, Ronneberger et
al. [47] invented U-Net which is a high-performance architecture that uses
a contracting path to capture context and a symmetric expanding path to
maintain a fine spatial accuracy for the prediction.

2.2.4 Watershed segmentation techniques in general

In Mathematical Morphology, the Watershed Transform [89] is a de facto stan-
dard approach for image segmentation. It has been used in many applica-
tions and has been widely studied in terms of topological properties [90, 91],
in terms of algorithms and in terms on computation speed [91, 92].

There are two well-known issues in general watershed segmentation tech-
niques: the over-segmentation due to the high number of minima, and the
gradient leakage that merges regions. There is a third general issue with the
watershed that concerns the separation of overlapping or touching objects,
but this is not a problem in our case since the map components do not over-
lap for a given layer.

The over-segmentation problem is generally solved by filtering the min-
ima first. Soille et al.[93], the h-minima characterize the importance of each
local minimum through their dynamic. When flooding a basin, the dynamic
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actually refers to the water elevation required to merge with another basin.
Attribute filters, filters by reconstruction [94] also allow to eliminate some
minima based on their algebraic properties: size, shape, volume. . . Another
efficient approach consists in first ordering the way the basins merge to cre-
ate a hierarchy of partitions and then performing a cut in the hierarchy to get
a segmentation with non-meaningful basins removed [95–97].

The early leakage problem lies in the quality of the gradient. It has been
noted [98], that (hierarchical) watersheds have better results on non-local su-
pervised gradient estimators. The idea of combining the watershed with high
performance contour detector dates back to Arbelaez et al. [75]. The rele-
vance of a simple closing by area and dynamic on the edge map produced
by our deep-learning edge detector combined with the watershed for this
application lies in three points.

First, the minimum size of the components is known. Indeed, the docu-
ment represents a physical size, and regions whose area is below a certain
threshold. Thus, we have a strong a priori knowledge we want to inject in the
process, the minimum size of the regions (in pixels). This type of constrain is
hard to infer in a deep-learning system, and we cannot have such guarantees
from its output. Having hard guarantees about the shapes and their size is at
the foundation of the granulometry in Mathematical Morphology. Moreover,
the connected (area) filter used for filtering the edge image ensure that we do
not distort the signal at the boundaries of the meaningful regions.

Second, the watershed segmentation method does not rely on the strength
of the gradients to select the regions. Even if the edge response is low (i.e,
the gradient is weak), the watershed is able to consider this weak response
and closes the contour of the region. We do not depend on the strength of
the edge response from a deep edge filter, which is difficult to calibrate and
normalize.

Last but not least, not only the watershed outputs a segmentation, but
some implementations also produce watershed lines between regions. In our
application, watershed lines are even more important than regions because
we need to extract polygons for each meaningful shape. Event if we could
extract boundaries from regions, it avoids an extra processing step. The wa-
tershed lines produced by the algorithm are one-pixel-large and are located
where the edges are the strongest, i.e., where the network has the strongest
response on thick edges. The watershed lines form closed boundaries around
regions which is a guarantee we cannot have from the output of a network.

2.2.5 Meyer and end-to-end deep watershed segmentation

The watershed segmentation is, indeed, a very powerful tool which can lever-
age a global image context, succeed even in the presence of low contrast, and
present strong topological guarantees, like the production of closed shapes
exclusively. Our preliminary works [1, 2] restricted to the use of the Meyer
Watershed [89] and showed that its sensitivity to noise could be mitigated
thanks to the deep edge filtering stage.

The Meyer watershed detects the catchment basins of the minima in the
gradients of images. The watershed process consists in flooding “water”
from each catchment basin (also called regional minima) until regions merge,
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FIGURE 2.3: Our proposed pipeline; DEF: deep edge filter; LOSS: binary cross entropy loss
or topology-oriented losses; DWS: deep watershed; CSE: component labelling (CC) or wa-
tershed segmentation (WS) (Meyer Watershed); ET: edge thinning; LINES: vector output;
epm: edge probability map(image of likelihood); lwl: learned watershed levels; (wl) or (sm):
watershed lines or saliency maps; The number indicates in the top right of the blocks shows
the stages of the processes from 1-4. (Capital letters with box represents the processing steps
and lowercase ones represent intermediate results.)

creating watershed lines. The strength of watershed lines depends on the
height at which basins get connected. The resulting image is called the saliency
map, and shape properties can be subsequently computed for extra filtering.
We used two criterions to perform this shape filtering stage: shape area and
edge dynamic, which is the difference between some basin’s minimum and
the height of the lowest point on its boundary. Such closed shape extraction
stage can reweigh weak edges, filter some weak or small shapes, but cannot
recover lost edges (for which the deep edge filter predicted very low edge
probabilities).

Although Meyer watershed is a powerful tool to extract closed shapes
from edge images, the area and dynamic values are still required to be set
manually and the optimal setting of these two parameters can vary a lot with
different input images. To avoid manual parameter setting based on the prior
knowledge of shapes in traditional watershed transform, Bai et al. [50] in-
vented the so-called deep watershed which learns the watershed transform
in an end-to-end fashion.

2.2.6 Joint optimization

In our previous work [2], the optimal parameters for each deep edge filtering
network is to maximize the COCO-PQ metrics for a simplified pipeline com-
posed of each deep edge filter followed by a threshold of the resulting Edge
Probability Map is at a fixed value (P = 0.5), on a validation set. However, it
is possible to perform a global, joint optimization of the parameters of both
stages. There is no guarantee that the combination of independently opti-
mized stage is globally optimal. To address this issue, we propose a global
optimization procedure.

2.3 Vectorization pipelines under test

In this thesis, we test different vectorization pipelines which are summarized
in Figure 2.3. Chapter 3 demonstrates about the connected component label-
ing and joint optimization of the deep edge filtering and closed shape ex-
traction stages. Chapter 4 introduces extra topological loss functions during
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TABLE 2.1: Summary of the training, validation and test sets used in this study.

Subset image size Num. of closed shapes

train 4,500px × 9,000px 3343 inst.
val 3,000px × 9,000px 2183 inst.
test 6,000px × 5,500px 2836 inst.

the training of the deep edge filters. Chapter 5 introduces the a novelty mod-
ules for improving robustness of models during the training of the deep edge
filters.

2.4 Explaining our dataset (Atlas Municipal)

The dataset used in this thesis was published and publicly release in the con-
text of a publication at the International Conference on Document Analysis
and Recognition in 2021 [2]. This dataset is built using excerpt from the cor-
pus of historical maps we introduced in Section 1.4, the Paris Atlas Municipal.
The performance of the different pipelines under test is assessed using the
protocol of the ICDAR 2021 competition on historical map segmentation [99].
In particular, we follow the protocol of task 1 (Building blocks detection from
historical maps), but use a different dataset, containing fewer images and for
which all closed shapes were annotated — not only building blocks. The
dataset contains 2 large map images, extracted from a series of Paris Atlases
dating from 18981 and 19262.

Each map image was manually annotated to create 8,362 polygons in total
— one for each closed shape. Such annotation procedure makes it possible to
generate the target Edge Probability Map using the boundaries of the polygons,
or to assess the final performance of the vectorization process. Figure 2.4
shows an excerpt of some input image and the associated shape annotations.

The dataset was split into the subsets summarized in Table 2.1. The train-
ing set is an excerpt from the top of the first sheet of the 1926 edition of the
Atlas Municipal, while the validation set is built using the lower part of this
particular sheet and is used in the early stopping mechanism to prevent over-
fitting of the networks. The test set is built using the third sheet of the 1898
edition to test the generalizability of the networks for other historical maps
with different scanning conditions.

2.5 Evaluation protocol

We mainly follow the evaluation protocol used in our previous publications [1,
2], which relies on the COCO-PQ metric proposed by Kirillov et al.[100].
Indeed, such metric effectively focuses on the number of shapes which are
correctly detected (from the point of view of the ground truth) or predicted

1Atlas municipal des vingt arrondissements de Paris. 1898. Bibliothèque de l’Hôtel de Ville. Ville
de Paris. http://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524

2Atlas municipal des vingt arrondissements de Paris. 1926. Bibliothèque de l’Hôtel de Ville. Ville
de Paris. http://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524

http://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524
http://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524
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FIGURE 2.4: Excerpt from the 1926 edition “Atlas municipal” (Scale: 1: 5,000) (top) and
manually-labelled closed shapes (bottom) that we aim at extracting automatically and it is
shown in random colors.

(from the point of view of the prediction), leaving the relative size of the
shapes as an optional extra indication which may or may not be considered.
The COCO-PQ term is to measure the quality of intersection of union (IoU)
between detected and ground truth. ti is the target shapes, pj is the pre-
dicted shapes, TP is true positive detected shapes, FP is false positive de-
tected shapes and FN is false negative detected shapes.

PQ =
∑(ti,pj)∈TP IoU(ti, pj)

|TP|+ 1
2 |FP|+ 1

2 |FN|
(2.1)

where FP means the predicted instances have smaller overlap with the ground
truth; and FN means the ground truth instances does not pair with any pre-
dicted instances. The term PQ can also be represented as the product of
segmentation quality SQ and recognition quality RQ where:

SQ =
∑(ti,pj)∈TP IoU(ti, pj)

|TP| , RQ =
|TP|

|TP|+ 1
2 |FP|+ 1

2 |FN|
. (2.2)

While this COCO-PQ indicator is fairly sufficient for our study, we pro-
pose to consider several extra indicators to provide a more accurate view
of the performance of each architecture, as well as to exhibit the counter-
intuitive results of other metrics. To these ends, we will consider: exten-
sions of the COCO-PQ metric which enable more qualitative analysis, and
pixel-level metrics which focus on shape boundaries, and also on some extra
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topology-based indicator.
When appropriate, we will show Precision and Recall maps computed us-

ing the same IoU values as the COCO-PQ scores, as introduced by Chazalon
et al. [101]. Precision maps will show, for each predicted shape, the value
of the highest possible IoU between this predicted shape and every ground
truth shape, using a color scale. Recall maps will conversely show, for each
ground truth shape, the value of the highest possible IoU between this ex-
pected shape and every predicted shape, using the same color scale. These
two qualitative indicators, complemented by a study of the detection qual-
ity against shape size, can provide deeper insights about the performance
of the segmentation systems we are studying. The evaluation procedure is
illustrated in Figure 2.5.
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FIGURE 2.5: Our evaluation pipeline. The edge samples are shown in block 1. The prediction and segmentation samples are shown in the block of 2; The
COCO-PQ evaluation measures the intersection over union (IoU) between prediction and ground truth segmentation. The Precision (P) and Recall (R) maps,
which are visual, qualitative indicators, are shown in block 3.
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As outlined in the introductory chapter of this thesis, historical maps may
present many challenges due to their limited color and texture, content over-
lap as well as paper damage and artifacts. To overcome these challenges
for extracting closed shapes for the purpose of vectorizing historical maps,
we propose a two-stage pipeline which combines deep edge filter with wa-
tershed segmentation. Even though this pipeline has been put forward in
previous literature, there remains a need for a comprehensive study and im-
provement within the different stages of this pipeline. The following chap-
ters investigate the existing possibilities for this pipeline, with better deep
edge filters, preserve better topology in edge image, with better model ro-
bustness and by the redundacies can be leveraged through alignment tech-
niques for the purpose of historical map vectorization.
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Chapter 3

Learning edges through deep
neural architectures

To answer our second research question of how to better filter the historical
map images, we compare multiple deep neural architectures for extracting
semantically meaningful edges from historical maps.
In Section 3.1, we exhibit the advantage of applying a multiscale architecture
in the edge detection task, followed by a solid benchmark of two state-of-the-
art methods, HED and BDCN, with and without using pre-trained weights.
In Section 3.2, we benchmark the results of two transformer architectures
which enable to consider longer pixel dependencies with the hope of im-
proving vectorization performance over CNN-based architectures. In Sec-
tion 3.3, we detail our reimplementation of an end-to-end, deep watershed
transform as a replacement of both deep edge filtering and closed shape ex-
traction stages, and report its performance against our optimized pipeline.
In Section 3.4, we carry out the study of using data augmentation techniques
to improve the performance of historical map vectorization task through a
joint optimization strategy. This chapter is an extended and adapted version
of the contents of our publication submitted to IJGIS [3].

3.1 Multi-scale deep neural network architecture

3.1.1 Motivation

Detecting semantic meaningful edges from historical maps is a challenging
task. It requires to separate the meaningful semantic edges (e.g, bound-
aries of objects) from other information (e.g, texts and textures), despite their
similarity in their low-level. Early ways of extracting semantic meaningful
edges are based on color gradient (such as Canny [102] and Local binary pat-
tern (LBP) [103]) and feature learning based methods (such as Probabilistic
boundary (Pb) [104], multiscale probabilistic boundary (mPb) [75] and struc-
tured edge (SE) [81]). Due to the limited colors and texture information espe-
cially in the Paris Atlas Municipal, such approaches are prone to fail at extract-
ing semantic meaningful edges using only low-level features. Recently, deep
learning based methods were developed to extract high-level semantic mean-
ingful edges by learning to combine low-level and high-level features repre-
sentatives. Among those deep learning approaches, multiscale deep neural
network architectures (such as HED [56], RCF [105] and BDCN [84]) have
been proven to be successful for merging low and high-level features, and
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Output layer

Output data

Hidden layer
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(d) (e)

FIGURE 3.1: Five different multiscale architectures for semantic edge detection task recre-
ated from paper [56]. Solid lines: connected layers in the intermediate layer of neural net-
works. Dash lines: connected layers in the output layer of neural networks. (a): multi-
stream; (b): skip-layer; (c): single model in multi-scale inputs; (d): separate training; (e):
holistically nested architecture.

achieve state-of-the-art results in various edge detection applications and we
applied them to the task of historical map vectorization task.

3.1.2 Related work

Feature-based methods for learning the semantic edges from image through
CNN can be classified into five types according to [56]: multi-streams, skip
layer, single model on multiscale inputs, separate training and holistically-
nested which are shown in Figure 3.1.
Multi-stream (a) [106, 107]: The multi-stream architecture uses several par-
allel network streams (related to multiple scales). The input is separated into
several streams and fed into a global output layer.
Skip-layer (b) [108–110]: Different from the (a) architecture, skip layer added
features from different levels of streams and added it by a shared output
layer. These two architectures only requires one loss function to train the
neural network architecture.
Single model on multiscale inputs (c) [111, 112]: This architecture ensembles
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different input images with several scales into only one network.
Separate training (d): The separate training strategy is to separate differ-
ent training streams into three different networks with different output data
and layer per scale compared to the (a) architecture. This strategy enables to
train the network through networks with different settings (different level of
depth, receptive fields) with different losses.
Holistically-nested (e): The holistically-nested architecture is constructed by
creating predictions from multiscale representations of features and eventu-
ally merging them into a single output layer.
In this thesis, we studied two representatives holistically-nested based archi-
tectures(e), which are holistically edge detector (HED)1 and Bi-directional
cascade network (BDCN)2 for probabilistic boundary detection applied to
historical map segmentation.

3.1.3 Multi-scale edge detection

Some mathematical formulation of historical map segmentation (Vector-
ization) task: We denote our map image as I ∈ R(H,W,3) and its correspond-
ing target edge map y ∈ ZH,W , y ∈ {0, 1}. The deep edge detector transfers
the image domain to a likelihood image ŷ ∈ RH,W , ŷ ∈ [0, 1] by learning the
function f : R(H,W,3) → R(H,W). Weighted loss function for imbalanced
positive and negative edges samples: Since the positive y− and negative
y+ edge samples are highly imbalanced (in training and validation set, edge
pixels account for only 2.5% of image pixels), Xie et al. [56] proposed a re-
balanced version of binary cross-entropy loss LBCE by weighting positive
and negative samples using a parameter β and the output X of the deep edge
detector is parameterized by w:

LwBCE = −β ∑
j∈y+

logP(y = 1|X; w)− (1 − β) ∑
j∈y−

logP(y = 0|X; w), (3.1)

β =
|y−|
|y| ; 1 − β =

|y+|
|y| . (3.2)

Holistically-edge detection architecture: The multi-scale side output ym
side in

the holistically-nested architecture is calculated by the sigmoid activation σ
of the intermediate feature output f m

side then fused by a 1×1 convolution layer
fcomb to single channel output y:

ym
side = σ(ym

side); σ(x) =
1

1 + e−x . (3.3)

where wi is the weighted factor for m number of intermediate feature output
of ym

side:

ŷ f use = σ( fcomb(ym
side)) = σ(

m

∑
i=1

wi ∗ yi
side). (3.4)

The total loss of HED Ltotal is the sum of the side output of binary cross
entropy and the fuse binary cross entropy loss, and ŷ f use is the weighted sum

1BSDS500 state-of-the-art 2015
2BSDS500 state-of-the-art 2019
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of the intermediate features:

Ltotal = LwBCE(ŷside, y) + LwBCE(ŷ f use, y). (3.5)

Bidirectional cascade edge detection architecture: To calculate accurate
loss for the intermediate output for the edge detection task, He et al. [84]
designed the BDCN network with shallow to deep (s2d) and deep to shallow
(d2s) propagation of the network to better approximate edges at different
scales:

ys2d = y − ∑
i<s

Ps2d
i ; yd2s = y − ∑

i>s
Pd2s

i , (3.6)

As explained by the BDCN authors [84], the better edge approximation ys for
each scale s can be approximated as:

Ps2d
s + Pd2s

s ∼ 2y − ∑
i<s

Ps2d
i − ∑

i<s
Pd2s

i . (3.7)

To make the edge detection easier to train at different scales s, He et al. [84]
inserted Scale Enhancement Modules (SEM) in intermediate layers of their
neural networks thanks to the use of dilated convolutions:

yij =
h,w

∑
m,n

x[i+r·m,j+r·m] · w[m,n], (3.8)

where r is the dilation rate and w is the parameter. The SEM module is used
to to combine several outputs of dilated convolution into one output yside.
Similar to the total loss calculation in the HED network, where the wside and
w f use are the weights for the side and fuse outputs which can be rewritten as
the total loss of BDCN can be formulated as:

L = wside · L(ŷ, y) + w f use · L(ŷ, y), (3.9)

Ltotal =
S

∑
s=1

L(pd2s
s , yd2s

s ) + L(ps2d
s , ys2d

s ). (3.10)

U-Net (baseline approach): Inspired by FCN [39], this famous U-shaped
architecture features a symmetrical structure that can preserve high perfor-
mance prediction through accurate pixel spatial localization for semantic or
instance segmentation tasks. It is essential for the geospatial applications
(images of remote sensing or historical maps), where the image predictions
require preserving the high accuracy of spatial information.

3.1.4 Experimental settings

To prove the effectiveness of our two-stage pipeline, we designed the follow-
ing training protocols:

• Data Preprocessing: By dividing the original RGB values by 255, we
normalize their value in the [0, 1] range.

• Weight Initialization: We use a Kaiming initialization [113].
• Batch Size: We use a batch size of 4 (following preliminary experiments

with sizes of 1, 2, 4 and 6).
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• Pre-trained weights: We reuse the weights from the PyTorch Image
Models (“timm”) library [114] for the VGG backbone.

• Loss formulation: we use HED’s re-weighting strategy.
We follow the training and selection procedure as follows:
• Training: For a given Deep Edge Filter DEF, using the train set, train the

network for M epochs. At each epoch i, we obtain DEFi which generates
an Edge Probability Map (EPM).

• DEF selection: Using the validation set, compute the corresponding set
of Edge Probability Maps EPMi using DEFi for i ∈ {0, . . . , M}, then us-
ing a naive Closed Shape Extractor CSEnaive (described hereafter), select
the best Deep Edge Filter DEFbest based the topological score (COCO-
PQ) of the predicted shapes:

shapesi = CSEnaive(EPMi)
DEFbest = argmini(PQ(shapesi))

• CSE parameter tuning: Then, using the best Deep Edge Filter DEFbest as
a base, restore or recompute EPMbest, the set of Edge Probability Maps
for the validation set, and grid-search for the best θ parameters of the
Meyer Watershed for Closed Shape Extraction (CSEbest), over the set of
possible parameters Ω:

shapesθ = CSEθ(EPMbest)
CSEbest = argminθ(PQ(shapesθ))

• Global evaluation: The final evaluation on the test set is performed by
combining the best Deep Edge Filter DEFbest and the best Closed Shape
Extractor CSEbest to compute the shapes from test set samples.

We use a threshold of the EPM at 0.5 followed by a connected compo-
nent labelling. However, for a fairer comparison with the watershed CSE, we
add an edge-thinning step which allows obtaining thin, 1-pixel-large shape
boundaries.

We use the same Meyer watershed CSE as the original authors, consider-
ing the following values for area filtering with value of 50, 100, 200, 300, 400,
500 number of pixels, and for dynamic value we use value from 1 to 10 with
step of 1. The area and dynamic filters are the pre-filtering step for remov-
ing non-meaningful local minimum for Meyer watershed. The area is used
to merge the regions with size lower than a specific area threshold, while
the dynamic refers to the water elevation that is used to merge with other
regions. This procedure gives us the opportunity to report the performance
(on test set) of two different pipelines:

• Best Meyer Watershed for the CSE stage: This variant reports the per-
formance of the full pipeline previously described, combining the best
Deep Edge Filter DEFbest and the best Closed Shape Extractor CSEbest to
compute the shapes from test set samples.

• Naive Connected Component Labelling for the CSE stage: This vari-
ant reports the performance DEFbest, combined with the naive Closed
Shape Extractor CSEnaive. The purpose of reporting this simpler pipeline
is to confirm the benefit of using an elaborated CSE stage based on some
watershed.
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TABLE 3.1: The following parameters are static and their respective columns are hidden: the
CSE used is a naive connected component labelling ([2] used a grid search to find the best
threshold θ for EPM binarization while we use a fixed value of 0.5), the loss function is the
binary cross entropy, the best DEF is selected using the protocol of [2], no augmentation is
performed. For the architectures, ∗ indicate pre-trained variants.

DEF CSE Evaluation
Archi. Training config. Param. Val. set Test set

θ PQ SQ RQ PQ SQ RQ

U-Net Proposed 0.5 46.8 87.5 53.5 41.2 85.4 48.2
HED Proposed 0.5 52.2 86.8 60.2 42.7 85.2 50.1
HED∗ Proposed 0.5 32.4 87.0 37.3 44.5 85.2 52.3
BDCN Proposed 0.5 51.4 86.5 59.5 43.4 85.2 50.9
BDCN∗ Proposed 0.5 55.7 87.0 64.0 41.4 86.1 48.1

TABLE 3.2: COCO Panoptic scores on validation and test set for the training configuration
study, using the Meyer Watershed (MWS) for CSE. The following parameters are static and
their respective columns are hidden: the loss function is the binary cross entropy, the best
DEF is selected using the protocol of [2], no augmentation is performed. For the architec-
tures, ∗ indicate pre-trained variants.

DEF CSE Evaluation
Archi. Training config. Param. Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net Proposed 50.0 8.0 59.8 87.7 68.2 46.7 86.9 53.7
HED Proposed 400.0 10.0 47.5 86.8 54.7 41.0 85.2 48.1
HED∗ Proposed 400.0 10.0 51.5 87.5 58.9 43.9 86.2 50.9
BDCN Proposed 400.0 10.0 48.9 86.9 56.3 41.3 85.8 48.1
BDCN∗ Proposed 400.0 10.0 54.7 88.6 61.7 46.4 87.1 53.3

Based on this procedure, we report in Table 3.1 and Table 3.2 results for the
following Deep Edge Filters: U-Net, HED and BDCN. For HED and BDCN,
we report whether we used pre-trained weights as weight initialization be-
fore fine-tuning, or trained the network from scratch.

3.1.5 Numerical results and analysis

These results allow to draw the following conclusions.
• For both HED and BDCN architectures, we demonstrate the superiority

of the pre-trained networks which always exhibit a better performance
than when trained from scratch.

• The U-Net architecture exhibits much higher generalization performance,
and achieves the best overall performance on the test set with a COCO-
PQ score of 46.7%.

3.1.5.1 Results of joint optimization

To enable the joint optimization of both stages, we propose to run a param-
eter selection (using a grid search) for the CSE stage, for each epoch of the
training of each Deep Edge Filter. At the end of each epoch i of the training
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TABLE 3.3: COCO Panoptic scores on validation and test set for the joint optimization study,
using the Meyer Watershed (MWS) for CSE and Joint Optimization (JO) for DEF selection.
The following parameters are static and their respective columns are hidden: we use our
proposed training configuration, the loss function is the binary cross entropy, no augmenta-
tion is performed. For the architectures, ∗ indicate pre-trained variants.

DEF CSE Evaluation
Archi. Param. Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3
HED 400.0 10.0 47.6 86.8 54.9 40.8 85.0 47.9
HED∗ 400.0 10.0 51.8 87.5 59.2 43.7 86.2 50.7
BDCN 400.0 10.0 49.1 86.9 56.5 41.1 86.0 47.8
BDCN∗ 400.0 9.0 55.0 88.5 62.1 47.0 87.3 53.8

of the DEF, generate the set of Edge Probability Maps EPMi for the validation
set using DEFi, then, using a grid-search, select the parameters for the CSE
stage which leads to the best performance (based on the COCO-PQ score) on
the validation set. The overall, final performance is reported on the test set
(which was never used in any part of the joint optimization).

EPMi = DEFi(val. set)
shapesi,θ = CSEθ(EPMi)

{DEF, CSE}best = argmini,θ(PQ(shapesi,θ))

We compare the following segmentation pipelines:
• Finding best DEF parameters by using connected components labelling

for Meyer watershed The best DEF parameters (epoch) are selected
based on the COCO-PQ score obtained on the validation set, using a
simplified CSE stage: thresholding the EPM with a fixed value of 0.5,
then extracting the shapes using CC labelling. The best CSE parame-
ters (for the watershed extractor) are then computed for one DEF model
only. This corresponds to the Best Meyer Watershed (“best MWS”).

• Joint Optimization This variant tests all possible combinations of DEF
and CSE configurations for each epoch, reaching the best possible com-
bination of DEF and CSE systems.

For the DEF stage, the set of possible parameters is defined as the differ-
ent model trainings obtained at each epoch, and for the CSE stage with area
filtering and dynamic filtering for the watershed stage.

3.1.5.2 Results for the U-Net, HED and BDCN networks

Results are reported in Table 3.3, for the same U-Net, HED and BDCN net-
works as previously, and show that the systematic superiority of the joint
optimization strategy over the baseline approach on the validation set (en-
forced by the selection protocol), does not always guarantee to reach the
best performance on the test set for the HED network and the BDCN net-
work trained from scratch. Figure 3.6 provides qualitative samples of the
EPM generated by the predicted edges of HED and BDCN networks with
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FIGURE 3.2: HED FIGURE 3.3: HED∗

FIGURE 3.4: BDCN FIGURE 3.5: BDCN∗

FIGURE 3.6: Predicted EPMs (Size: 500 px×500 px) with U-Net, HED and BDCN with (∗) or
without pre-trained weights. Pre-trained model produces less noise on the edges.

and without using pre-trained weights. The networks of HED and BDCN
with pretrained weights produce less noise on the edges images.
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3.2 Transformer architectures

3.2.1 Motivation

To detect the linear structure from images with topological properties, CNN
architectures can achieve satisfactory results with different topological-based
losses. However, they suffer from the limited range of their receptive field, as
well as the discontinuity of their feature maps which may lead to topological
inconsistencies in the predictions. Transformer architectures [115], applied to
computer vision tasks, can address these issues thanks to their larger recep-
tive field and longer pixel dependencies, and we propose to consider the two
following architectures: Vision Image Transformer (ViT) [116] and Pyramid
Vision Transformer (PVT) [117].

3.2.2 Methods

Basic building blocks of encoder in transformer architectures The basic build-
ing blocks of encoder in transformer module which uses multi-head self-
attention SA can be calculated through Query (Q), Key (K) and Value (V) [115]
and dot products of the query with all keys (will be scaled by

√
Dk, the di-

mension of keys):

SA(z) = so f tmax(Q · KT/
√

Dk) · V. (3.11)

Multi-head attention is used for merging information from different sub-
spaces and positions:

MultiHead(Q, K, V) = Concat(head1, ...headh)WO, (3.12)

headi = Attention(QWQ
i , KWK

i , VWV
i ). (3.13)

Positional encoding The input of transformer architectures are flatten im-
age vectors as well as the architectures have no recurrence and convolutional
operation to keep the sequence order (in NLP tasks) or relatively spatial posi-
tion (in image related task). So positional encodings are designed by Vaswani
et al. [115] to tackle this issue. The positional encodings (PE) is added to the
input image embeddings with sine and cosine functions, where pos is the po-
sition and i is its dimension, dmodel is the dimension of the model:

PEpos,2i = sin(pos/100002i/dmodel), (3.14)

PEpos,2i+1 = cos(pos/100002i/dmodel). (3.15)

Vision Image Transformer (ViT). ([116]) Inspired by the success of transform-
ers architectures ([115]) in the field of natural language processing by Doso-
vitskiy et al. [116], proposed to adapt these architectures to computer vision,
introduced the Vision Image Transformer (ViT). ViT architectures outperform
CNN architectures in many computer vision task (image classifications and
segmentations) due to its self-attention mechanism which integrate global
context of images which is crucial for detecting long range pixel dependen-
cies and consistent shape patterns in historical maps. Recently, Strudel et
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TABLE 3.4: COCO Panoptic scores on validation and test set for transformer architectures.
The following parameters are static and their respective columns are hidden: we use the
Meyer Watershed (MWS) for CSE and Joint Optimization (JO) for DEF selection, we use our
proposed training configuration, the loss function is the binary cross entropy, no augmenta-
tion is performed. For the architectures, ∗ indicate pre-trained variants.

DEF CSE Evaluation
Archi. Param. Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3
ViT∗ 500.0 10.0 38.6 80.9 47.8 34.7 80.4 43.1
PVT∗ 400.0 9.0 45.7 85.4 53.5 36.6 83.0 44.2

al. [118] adapted ViT to semantic segmentation tasks by using two differ-
ent decoder architectures. Although using the transformer architectures as
network backbone achieved new state-of-art performance in many computer
vision tasks, its features are extracted at single scale. Moreover, the com-
putational and memory costs remains high for common input image sizes,
and the output resolution depends on the size of the input patches (the vi-
sual equivalent of textual tokens in transformer), which can lead to blocky
predictions.

Pyramid Vision Transformer (PVT) ([117]) To tackle these two issues, Wang
et al. [117] proposed another pure transformer-based backbone architecture
named Pyramid Vision Transformer (PVT) that enables the network to learn
different scales of features while significantly decreasing the number of pa-
rameters compared to traditional ViT architectures, leveraging the concept
of feature pyramid proposed by Lin et al. [119]. According to recent publica-
tions from Guo et al. [120] and Tuli et al. [121], the combination of CNN and
transformer architectures have become a promising trend in a wide range of
computer vision tasks. These models reach the new state-of-the-art in a wide
range of computer vision tasks.

3.2.3 Experimental settings

As training transformer architectures from scratch huge amount of training
data (millions of images) which are not available in the case of historical map
images, we use weights pre-trained on the Cityscape dataset [122] to initialize
our network. We use the ADAMW optimizer for both transformers with a
learning rate of 1 · 10−5.

3.2.4 Experimental results and analysis

Results, summarized in Table 3.4, show that despite their larger receptive
field, transformer architectures reach much lower validation and test scores
in our experiments, compared to the traditional U-Net architecture. This low
performance is caused by the fact that ViT has a low-resolution output, and
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FIGURE 3.7: Input (MAP) FIGURE 3.8: EPM (U-Net)

FIGURE 3.9: EPM (ViT) FIGURE 3.10: EPM (Pvt)

FIGURE 3.11: Comparison of the edge filtering produced by U-Net and ViT. ViT exhibits a
zigzag effect, mainly because of the tokenization of the input image.

that ViT and PVT may require a much larger dataset for fine-tuning. How-
ever, the performance of these architectures is not always worse than the U-
Net one, especially for larger shapes (log(area) > 15) where ViT outperforms
U-Net as shown in Figure 3.12. It may indicate that transformer architectures
can better preserve line consistency, compared to CNN architecture, thanks
to their richer context. Some combination of these systems may be possible
to obtain the best possible performance; keeping only smaller objects from
U-Net and larger ones from ViT. Regarding PVT, its overall performance is
not better compared to the conditions (U-Net) we tested it against. Looking
at the values of the best parameters for the area and dynamic filtering, we
can see that both ViT and PVT models require stronger filtering compared
to U-Net. This suggests that transformer-based models are suffering from
false positive background noise in the predicted EPMs.
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FIGURE 3.12: Shape statistics of convolutional-based (U-Net) and transformer-based (ViT
and PVT) models. The figure represents the average IoU with steps of 0.5 in logarithmic
scale. The green dash line corresponds to the distribution of number of regions with cor-
responding area values. ViT and PvT transformer-based architecture have better perfor-
mance for detecting large objects, while U-Net better preserves the boundaries of small ob-
jects (leading to a superior IoU).

3.3 Deep watershed transform

3.3.1 Motivation

To tackle the key limitations of classical watershed techniques, i.e. noise sen-
sitivity and difficulty to select filter parameters, Bai et al. [50] proposed a
Deep Watershed Transform which learns the discrete watershed levels di-
rectly from multichannel images. However, learning watershed levels from
original images is a difficulty task because of the limited receptive field of
convolutional networks. To be able to learn the long-range dependencies be-
tween pixels and capture their level of inclusion (or distance to object bound-
aries), the authors introduced an intermediate step where a direction fields
is learned, mimicking the water flow of the watershed segmentation algo-
rithm. This integrated architecture is supposed to exhibit good images filter-
ing properties, which can prevent the over-segmentation issues of traditional
watershed approaches, while avoiding the need for extra prior knowledge of
the filtering attributes and their optimal values.

3.3.2 Method

Mathematical notations of deep distance transform The traditional distance
transformation function Dt : Î → T is to map each point of binary im-
age Î ∈ Z(H,W) to its closest boundary, resulting in a transformation image
T ∈ R(H,W,2). Instead of computing the distance transformation over the bi-
nary image, the deep distance transform directly transforms the multichan-
nel image (RGB) I ∈ R(H,W,3) into the transformation image T ∈ Z(H,W) by
using a neural network as a non-linear transformation function. However,
as mentioned by Bai et al. [50], learning the transformation through a neural
network directly is a complex task since distance transform requires informa-
tion from a global context, while existing CNN architectures have a limited
receptive field to capture global information.
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Learning the direction field from image To tackle this problem, Bai et al. [50]
add an intermediate step by firstly learning the direction of the distance
transform which is also the gradient of the distance transformation image.
The direction of the distance transform of the ground truth image vgt ∈
R(H,W) is calculated through normalized image gradient of distance trans-
form as follows:

v⃗gt =
∇Tgt

|Tgt|
. (3.16)

The angular loss Lang is used to learn the ground truth direction through
measuring the cosine similarity between vector of prediction ⃗vpred and ground
truth v⃗gt with parameter wp which is the weighting factor based on the area
of instances Aobj:

lang = wp||cos−1 < ⃗vpred, v⃗gt > ||2; wp =
1

Aobj
. (3.17)

Learning the distance transform from direction field Once the direction field of
distance transform is learned, the next step is to learn the function f : v → T
which integrates the direction field and turns it into a distance field. To better
learn the levels of distance transform, Bai et al. [50] quantized the distance
transform into 16 inhomogeneous level sets by using a scaling factor ck which
is the pre-defined weight for each level. Since the levels of distance transform
are sorted in descending order, the parameter ck is used to emphasize and
give stronger weight close to the boundary of instances instead of the center
of the instances. In the end, a modified cross entropy loss Ldt is used to train
the distance transform between quantized prediction Pls and ground truth
Gls level sets, K is the number of discrete watershed levels with common
value of 16 and wp is the weighting factor to adjust the importance of the
objects based on the size of the objects:

Ldt =
K

∑
k=1

wpckLce(Pls, Gls). (3.18)

Joint learning of direction field and distance transform The architecture pro-
posed by Bai et al. [50] is replaced by two U-Net [47] networks for main-
taining better spatial localization in the prediction during the training of the
direction field (direction network) and distance transform (deep watershed).
We modified the original training strategy to better fit the historical map
data. Instead of training direction field and watershed level separately, we
use weight trained from direction field and jointly trained for discrete water-
shed levels. The resulting training process is composed of the two following
steps:

1. Train the direction field network/predictor in order to obtain pre-trained
weights for the second step;

2. Jointly train the distance transform network, using the pre-trained weights
of the direction network, with the following global loss.

Ltotal = Lang + Ldt. (3.19)
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TABLE 3.5: COCO Panoptic scores on validation and test set for U-Net+Meyer Watershed vs
Deep Watershed. We use the MWS as a post-processing without filtering on Deep Watershed
outputs to thin the prediction edges. The following parameters are static and their respective
columns are hidden: no augmentation is performed, and DEF selection is performed with
Joint Optimization (JO).

DEF CSE Evaluation
Archi. Method Param. Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net MWS 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3
DWS MWS 0.0 0.0 54.0 87.4 61.7 28.5 84.9 33.5

3.3.3 Experimental settings

The training strategy of deep watershed is to train direction field and dis-
crete watershed level separately, then perform fine-tuning in an end-to-end
style. We trained the direction network using an ADAM optimizer with the
initial learning rate of 1 · 10−5, a momentum of 0.9 and a weight decay of
1 · 10−5. Then end-to-end fine-tuning used the same settings except for a
smaller learning rate of 1 · 10−6. In order to ensure a fair comparison with
other approaches, we generate object boundaries with the following process:
we first perform the equivalent of a “watershed cut” by selecting the highest
value on the learned watershed levels (this creates thick boundaries), then we
perform an edge-thinning to recover thin, 1-pixel large object boundaries.

3.3.4 Numerical experiments and conclude remark

We compare in Table 3.5 the results of the Deep Watershed approach and of
the leading approach, composed of a U-Net Deep Edge Filter combined with
a Meyer Watershed for Closed Shape Extraction, trained using the joint opti-
mization procedure. Despite encouraging performance on our validation set,
the Deep Watershed fails to generalize on our test set, reaching much lower
performance than our leading approach. It is due to the fact that deep water-
shed learns an approximated function which transforms images into wa-
tershed levels without providing any topological guarantee (about closed
shapes) in the final prediction of watershed levels due to limited spatial
context.

3.4 Data augmentations

3.4.1 Motivation

Though many data augmentation techniques were proposed for computer
vision (we refer the reader to the work of [123] for an overview), [124] ap-
propriately pointed out that not all of these transformations can be safely ap-
plied to historical map images. Indeed, while color transformation, noise and
geometric transformations, to some extent, can preserve the original signal,
augmentation techniques like feature space transformation, mixups, as well
as strong geometric transformation, would break object boundaries and may
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prevent the network from capturing local edge consistencies. Furthermore,
some text and symbols may not appear in all orientations, and their symmet-
ric counterparts may not exist. The effects of such augmentation are not well
studied. We prefer to avoid them by restricting our study to a safe subset of
image augmentation techniques, in order to mimic the variations from differ-
ent scanning conditions of historical maps: contrast and color changes, and
paper rotation and bumps. We therefore propose to consider the following
augmentation techniques: contrast stretch and geometric transformations.

3.4.2 Methods

Image Contrast : The contrast and brightness adjustment can be controlled
through α and β parameters, respectively:

f (I) = α ∗ I + β, α ∈ [a, b], β = 0. (3.20)

When 0 < α < 1 is to decrease the contrast of the image and α > 1 is to
increase the contrast. The contrast value is picked in the value range [a, b]
with uniform distribution. In this thesis, we only apply contrast change, and
do no consider brightness. Hence, β = 0.

Geometric transformations : Online data augmentation at training time can
improve the generalization performance of the Deep Edge Filters. We con-
sider the following geometric augmentation techniques: affine transforma-
tion, homography transformation (full perspective), and thin-plate splines
(TPS) transformation. These geometric transformations can maintain the
topology properties in historical map images shown in Figure 3.13.

Affine Transformation: Affine transformation is a category of linear image
transformations which include rotation, translation, non-isotropic scaling and
shearing. This transformation has 6 degrees of freedom which can be en-
coded in a 2 × 3 matrix A with offset x and y:

A =

[
a1 a2 x
a3 a4 y

]
(3.21)

The affine transformation from point pa to point pb can be calculated
through:

pa =

[
a1 a2
a3 a4

]
pb +

[
transx
transy

]
(3.22)

The matrix A is defined according to the Singular Value Decomposition
(SVD) of the affine transformation through rotation angle θ, shear angle σ,
anisotropic scaling factor λ and transformation vector x and y which equals
to:

A = R(θ)R(−σ)diag(λ1, λ2)R(σ). (3.23)

Homography transformation: Homography transformation is another linear
transformation which can be through the transformation applied to the four
corners of images. The homography transformation of four coordinates can
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be generated through a controllable offset δxi and δyi, where the four point
homography matrix can be calculated as:

H4p =


x1 + δx1 y1 + δy1
x2 + δx2 y2 + δy2
x3 + δx3 y3 + δy3
x4 + δx4 y4 + δy4

 . (3.24)

Then 4 × 2 homography transformation matrix can be transformed into
3 × 3 homography transformation matrix from every corresponding source
points (x, y) into target points (x

′
, y

′
) through Linear direct transform (LDT)

where Ah3×3 = 0, h3×3 = {h1, h2, ...h9}:

[
−x −y −1 0 0 0 xx′ yx′ x′
0 0 0 −x −y −1 xy′ yy′ y′

]


h1
h2
h3
h4
h5
h6
h7
h8
h9


=



0
0
0
0
0
0
0
0
0


, (3.25)

where this matrix can be formulated from source points to target points by
elements in the homography matrix H = {h11, h12, h13, h21, h22, h23}:

x =
h11x′ + h12y′ + h13

h31x′ + h32y′ + h33
, y =

h21x′ + h22y′ + h23

h31x′ + h32y′ + h33
. (3.26)

In the end, we can get the 3 × 3 homography transformation matrix (h3×3)
through SVD.

Thin-plate spline transformation (TPS): TPS is a transformation which trans-
form set of source points ps = {ps1, ps2, ...psi} into target points pt = {pt1, pt2, ...pti}.
The source points are selected through a k × k uniform grid in the source im-
age, while target points can be generated through random value of offset σ
with uniform distribution so that:

pt = ps + σ (3.27)
The TPS transformation is estimated through:

f (x, y) = a1 + axx + ayy +
N

∑
i=1

wiU(||(xi, yi), (x, y)||), (3.28)

and should satisfy:
N

∑
i=1

wi = 0, (3.29)

and
N

∑
i=1

wixi =
N

∑
i=1

wiyi = 0. (3.30)
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Map. Brightness. Affine.

Homography. TPS.

FIGURE 3.13: Image examples with four different augmentation methods.

The function U(r) = r2log(r) is a TPS kernel, where points close to the
center will return a higher value.

The TPS can be calculated through a linear system:[
K P
pT O

]
×

[
w
a

]
=

[
v
o

]
(3.31)

where kij = U(||(x
′
i, y

′
i), (xj, yj)||) is the distance between two points, P is the

coordinates, O is 3 × 3 matrix of zeros; we can compute a and w by solving
the linear equation.

3.4.3 Experimental settings

We study the effect of separate and combined geometric and contrast aug-
mentation.

Furthermore, we choose contrast range of α from 0.8 to 1.2 (to prevent
unrealistic dark or bright cases which will not occur in scanned maps) with
uniform distribution. For the setting of geometric transformation, we change
settings in the work of [125] to prevent large geometric transform. For affine
transformation, we choose rotation angle θ ∼ U (−10◦, 10◦)3, translation tx, ty ∼
U (−0.1, 0.1), anisotropic scaling factor λ1, λ2 ∼ U (0.9, 1.1) and shear angle
ϕ ∼ U (−10◦, 10◦). For homography transformation, we add a random trans-
lation σx, σy ∼ U (−0.1, 0.1) to four control points in the corner. For TPS trans-
formation, we use 9 points with random translation δx, δy ∼ U (−0.1, 0.1) to
prevent strong deformations.

3U is the uniform distribution.
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TABLE 3.6: COCO Panoptic scores on validation and test set for the augmentation study. The
following parameters are static and their respective columns are hidden: model architecture
is U-Net (trained from scratch), the loss function is the binary cross entropy, the best DEF is
selected using joint optimization, and Meyer Watershed (MWS) is used for CSE.

DEF CSE Evaluation
Augmentation Param. Val. set Test set
Contrast
streching

Geometric
transform

σ δ PQ SQ RQ PQ SQ RQ

no none 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3
yes none 100.0 6.0 57.3 88.2 65.0 47.2 86.7 54.4
no Aff. 100.0 9.0 61.0 87.9 69.4 47.7 86.5 55.1
yes Aff. 100.0 10.0 61.1 88.1 69.4 50.7 86.8 58.5
no Hom. 200.0 10.0 58.4 87.9 66.5 49.6 86.9 57.1
yes Hom. 200.0 10.0 59.5 88.2 67.4 50.4 86.7 58.2
no TPS 100.0 10.0 59.8 88.3 67.8 47.9 86.9 55.1
yes TPS 100.0 7.0 59.6 88.2 67.5 51.1 86.8 58.8

3.4.4 Numerical experiments and analysis

Table 3.6 reports the results for the various combinations of contrast and ge-
ometric augmentations. The combination of the contrast and affine transfor-
mation have the highest improvement leading to a COCO-PQ score of 0.79
on the val. set compare to U-Net baseline. All methods lead to improved
performance on the test set. The combined use of contrast and TPS augmen-
tations leads to the best COCO-PQ score, reaching 51.1%, which represents
between 0.7 and 4.6 points of improvement over the other combinations and
all variants lead to similar results, TPS being slightly superior to the others
in our experiments. As the results, the contrast+TPS achieves the highest
COCO-PQ score 51.08 in our dataset.

To conclude, data augmentations are proved to an effective training tool
which improves the generalization performance of a network trained for
historical map vectorization.
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This chapter describe and compare different techniques for filtering edges
from historical maps and subsequently extracting closed shapes. Firstly, we
observed that multiscale neural network architectures have worse perfor-
mance compare to baseline U-Net due to overfitting because we have little
training data in Paris Atlas Municipal. Moreover, multiscale neural network
architectures using pre-trained weights exhibit less noise on the predicted
edges images compared to the ones not using pre-trained weights. Secondly,
transformer architectures achieve good performances on recovering objects
with larger sizes compare to our baseline CNN-based U-Net architecture
while the latter exhibits a better performance over a large scale of shapes,
globally resulting in superior performance. Thirdly, we reimplemented a
deep watershed transform to extract watershed lines that are similar to an
edge extraction process. Yet, the deep watershed transform has worse gen-
eralizability to test data, and we also show that this architecture cannot offer
any topological guarantee about the closed shapes formed by its watershed
lines. Lastly, we proved that data augmentations techniques based on con-
trast stretch and geometric transformations significantly improve the gener-
alizability of our proposed pipeline when facing unseen historical map im-
ages.
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Chapter 4

Topology-aware loss functions

To answer the third research question of how to guarantee the topologi-
cal properties in the prediction, we overcome this challenge by introduc-
ing new loss functions which aim to preserve the topological properties of
the predicted edge images. In spite of the fact that deep edge filtering with
joint optimization strategy achieves satisfactory results for extracting closed
shapes from historical maps, the problem of missed detection of critical pix-
els in the object boundaries can lead to the failure of extracting closed shapes
from edge images. This is also called a topological failure because the edges
predicted by the CNN do not maintain topology properties of the original
shapes.
We divided this chapter into two sections. Section 4.1 details the motivations
for topological loss functions. Afterwards, the mechanism of topological loss
functions is introduced and four topology-oriented loss function (two exist-
ing SOTA and our two novel topology-oriented loss functions) are tested to
maintain the topological correctness in the predicted edge output. Section 4.2
explores another direction to solve topological correctness by using informa-
tion on local pixel connectivity to enhance topological correctness in the final
predicted edges.
This chapter is an extended and adapted version of the contents of our pre-
viously published [52] and submitted [3, 126] publications. Our two novel
topology-preserving loss functions are initially tested in the neuron segmen-
tation and then adapted into historical map segmentation.

4.1 Introduction to topology-awareness loss functions

4.1.1 Motivation

When evaluating the topological quality of the extracted map objects, the
pixel-level performance of boundary detection does not always correlate well
with shape-level performance. Indeed, a missed detection for a single criti-
cal pixel on the boundary of an object may create some leakage, and lead to a
topological error at the shape level, while the error at pixel level remains neg-
ligible shown in Figure 4.1. Although CNN perform well at filtering images,
such networks are trained to minimize pixel-based losses: the limited range
of pixel dependencies and restricted spatial context in CNNs do not permit to
guarantee the expected topological properties in the predictions (which can
leads to a significant drop in topology-level performance over the course of
training). Recent approaches proposed to improve the topology performance
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FIGURE 4.1: Connected component extraction (CC labelling): we threshold the edge proba-
bility map and run connected component analysis to get instances from the images. The red
circle shows a weak boundary that disappears after threshold.

by adding a topology-oriented loss to approximate the correct topology in the
predictions. We propose to consider the following three categories of main-
stream methods to preserve topology in edge prediction: architecture-based,
persistent-homology-based and boundary-based loss functions.

As previously mentioned, several loss functions were designed in the
literature [127, 128] to better comply with the topological requirements of
several tasks. We also contributed new loss functions BALoss [52] and
Pathloss [126] to preserve topology properties in image segmentation tasks.

4.1.2 Related work

Topology-preserving image segmentation methods mainly consist of indirect
and direct ways. The indirect way uses an iteration framework to gradu-
ally refine the elongated structure in the predicted output, while latter one
directly uses strong topology priors and constraints to improve topological
results in the predictions. The worth noted indirect way stems from Mosin-
ska et al. [129], where a topology-awareness loss is proposed by measuring
the similarities of features in VGG-19 [87] between ground truths and predic-
tions. However, this work assumed that the line continuity of trained filters
in the VGG-19 can maintain the topology properties in the predicted proba-
bility map, albeit it does not have any guarantee of high dimensional topol-
ogy such as loops (or closed boundaries). Therefore, the detected objects
might not be topologically correct. Different from the Mosinka et al. [129]
where the predicted likelihood is joined to the image input for refinement
purposes, the work in Iternet [130], Multi-stage multi-recursive-input net-
works [131] and Flood-Filling Networks [132] stack several networks to grad-
ually refine the likelihood in each stage of the networks. Still, those methods
suffer the similar issue.

The direct topology-preserving methods focus on using persistent homol-
ogy [133] to measure the topology features of image predictions [133]. Chen
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Model M TA Bo-Pi Cri-P Cri-P-F
Iternet[130] IN ✗ ✗ ✗ –
Mosin[127] IN+Loss ✗ ✗ ✗ –

BL[139] Loss ✗ ✓ ✗ –
clDice[138] Loss ✓ ✓ ✗ –
BALoss[52] Loss ✓ ✓ ✗ –

Topoloss[128] Loss ✓ ✓ ✓ ✗

Pathloss[126] Loss ✓ ✓ ✓ ✓

TABLE 4.1: A comparison between our method and state-of-the-art methods: M: methods
use IN (iteration based network) or Loss (topology-preserving loss); TA: The topology aware
in the training process of the method; Cri-P: methods use information of critical points or
not; Bo-Pi: methods focus on boundary pixels; Cri-P-F: methods do not require filtering the
critical points. In this thesis, we aim to close more shapes based on the condition of the first
dimensional topology and focused on fixing the critical points in the boundary pixels.

et al. [134] introduced the topology priors and integrate them into Condi-
tional Random Fields (CRF) image models to improve the image segmenta-
tion task. Persistent homology has been widely used as a topology feature.
Recently, persistent homology has been re-designed and has proved its dif-
ferentiable properties. Then it can be used as a topology-preserving loss func-
tion and can be applied to any end-to-end deep neural networks [128, 135–
137]. However, the limitations of using persistent homology in deep image
segmentation tasks are its memory consumption, convergence speed, and
sometimes the training difficulty when combined with other loss functions.
Shit et al. [138] proposed a new topology-aware metrics to measure the simi-
larity between images based on morphological skeletons so called centerline
dice (clDice). However, clDice still yield missing centerlines on the leakage
locations in the prediction image.

4.1.3 Types of topology-aware loss functions

VGG architecture based loss function (MosinLoss) This early design of a topol-
ogy oriented loss leverages elongation properties of the features of the VGG-
19 architecture. To preserve line consistency in the trained features, the dif-
ferences between the VGG-19 features of the predicted and ground truth im-
ages are calculated for each layer to form a global loss. Although the MOSIN
loss function can improve the pixel consistency in the output (e.g. road de-
tection), it does not directly improve the performance of detecting the closed
instances.

Denote input historical map image as I ∈ R(H,W,3), where its correspond
binary ground truth labelling y ∈ 0, 1H,W represents the boundary of the
objects. The MOSIN architecture features two stages. The first one is a U-Net
which assigns to each pixel an edge probability ŷ as f : I → ŷ; ŷ ∈ [0, 1](H,W).
Then, the BCE loss is used to measure the difference between prediction ŷ
and the ground truth y as:

Lbce(x, y, w) = −
N

∑
i
(1 − yi) · log(1 − fi(x, w)) + yi · log fi(x, w). (4.1)
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The second stage is to measure the topology difference between predic-
tion ŷ and the ground truth y through measuring the intermediate feature
differences as:

Lvgg(x, y, w) = −
N

∑
n=i

1
Mn · Wn · Hn

Mn

∑
m=1

||lm
n − lm

n ( f (x, w))||22, (4.2)

where lm
n is the m feature map in the nth layer, Mn is the number of chan-

nels and Wn, Hn are the width and height in nth layer, respectively. The total
MOSIN loss is the sum of binary cross entropy loss Lbce(x, y, w) with the
topology-oriented loss Lvgg(x, y, w) with weighted factor λ:

Ltotal = Lbce(x, y, w) + λLvgg(x, y, w). (4.3)

4.1.4 Persistent-Homology-Based loss function (TopoLoss)

This loss is based on the theory of persistent homology which enables to
identify the critical failure points of the predicted objects boundaries. It
takes into account the width and depth of the gaps in a differentiable loss
function which will encourage the network to recover lost boundary compo-
nents. However, this loss function is highly sensitive to noisy images. De-
note a historical map image I ∈ R(H,W,3) and a binary ground truth labelling
y ∈ {0, 1}(H,W), the likelihood image ŷ is predicted by a deep neural network.
The Topoloss the topological difference between the likelihood ŷ and ground
truth image y through persistence diagrams Dgm which capture all possible
topological structures both of likelihood Dgm(ŷ) and ground truth Dgm(y).
The goal is to minimize the Wasserstein distance between ith persistent dots
pi of likelihood and ground truth. Each persistent dot encodes the birth and
death information of a topology structure.

min Dgm(ŷ, y) = min
N

∑
i=1

||pi(ŷ)− pi(y)||2. (4.4)

Every persistent dot p corresponds to a topological structure which borns
at a specific threshold a (y-axis in persistent diagram as birth time) and dead
at threshold b (x-axis in persistent diagram as death time).

min Dgm(ŷ, y) = ∑[birth(ŷ)− birth(y)]2 + [death(ŷ)− death(y)]2. (4.5)

The Topoloss Ltopo is trained combined with the binary cross entropy loss
Lbce to preserve topology structure in the likelihood image with balanced
weight λ:

Ltotal = Lbce + λ · Ltopo. (4.6)

Boundary-awareness loss function (BALoss)

Overview of the method Compared to Mosin [127] and Topoloss [128], we
proposed BALoss [52] to preserve topology in deep image segmentation task.
Our method is a seeded two-step approach (Figure 4.2), in which the object
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Image Boundary prediction

Set of seeds MBD cut

LBAL

A

CNN
LBCE

Ground truth

B

FIGURE 4.2: Overview of our approach. A set of seed points (red points) are placed from
the ground truth. A boundary prediction image is the output of the CNN network (step A).
Leakage positions are highlighted inside the red squares. We locate the boundaries of re-
gions by using the MBD cut algorithm (blue lines), then compute the BALoss function (step
B).

boundaries can be extracted during training and eventually encourage the
network to focus on boundary structures. To train the neural network, we
are using the combination of the binary cross-entropy (BCE) and the BALoss.
First, a convolutional neural network predicts a boundary likelihood map
from the original image. Secondly, the BALoss is computed from the ex-
tracted boundaries of regions by using with a seed node provided inside each
connected component of the training and validation ground truth label im-
ages. These seeds are the points that have the maximum Euclidean distance
value w.r.t the boundary of each connected component. We respectively
consider the inside/outside seeds of the region as foreground/background
seeds, then compute a foreground/background distance map on the predic-
tion image thanks to the MBD distance. Through comparing the values on
these two distance maps, the boundaries of the regions are identified and
a newly designed BALoss is derived by computing the pixel-wise error be-
tween the extracted boundaries and the ground truth image. The advantage
of our BALoss function is that it helps the network to focus on important
missing pixels on each region (the ones which cause breaks in the bound-
aries), thus preserving the topological structure of the image, without any
class information.

MBD-cut The boundaries of the regions are extracted using a method so-
called MBD-cut. This preserves the topology of the image and measures
the quality of the segmentation. The MBD distance has a low sensitivity
to noise, blur, and seed positions [51, 140]. In our approach, we push the
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(a) Likelihood image
from the CNN net-
work

(b) Background MBD
distance map

(c) Foreground MBD dis-
tance map

(d) The density map

FIGURE 4.3: (a) Prediction image from CNN network (green/red points are fore-
ground/background seeds). (b) Background MBD distance map from the seed of neighbor
regions. (c) Foreground MBD distance map and the MBD cut (pink contour). (d) The density
map represents the values of the prediction image. Z-axis represents the value of pixels the
prediction image. Leakage position is shown inside the highlight square.

idea of seeded graph-cut based segmentation further by using the high-level
features computed from a CNN.

We denote the likelihood prediction map as u, and the ground truth label
image as S. We respectively consider the seed point xi inside the region Si
as the foreground seed and all the seeds xj of the neighbor connected compo-
nents Sj as the background seeds. We respectively compute the MBD distance
map from the background/foreground seeds by using the front propagation
approach [141]. The idea behind is that we consider the seed pixels as sources
of water, the water can flow from source pixels to other pixels with a differ-
ent priority which is determined by the MBD cost. We use the priority queue
to keep track of the order of pixels to propagate the distance value to every
pixel in the image (lower cost means earlier flow). The algorithm stops when
all pixels in the image were scrutinized.

The complexity of our front propagation algorithm is O(n log n), where
n is the number of pixels in the image. Our method is efficiently computed,
so that we can get the MBD distance map immediately from the set of the
foreground and background seed points. The background/foreground MBD
distance maps are illustrated in Figure 4.3(b) and Figure 4.3(c). After com-
puting these maps, we are able to label the pixels as background or foreground
based on their distances to the seed set. We also recover the boundary of the
region Ci (pink contour in Figure 4.3(d)). The segmented boundary is pivotal
in computing the Boundary-Aware loss function.

Training using the Boundary-Aware loss Most CNN-based segmentation net-
works use the binary cross-entropy (BCE) as a loss function. It is defined
as a measure of the difference between two probability distributions for a
given random variable or set of events [142]. BCE is known to be adapted
to measure boundary shifts [143, 144]. Here, we present a new BAL function
to enhance segmentation results and detail how to implement it. The BAL
function is computed from the values of the binary extracted contour Ci of
the region Si using the MBD-cut. The total loss is the sum of the BALoss for
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Network

Seed points

Pathloss

Image Prediction

Ground truth

Shortest path

Set of seeds

FIGURE 4.4: The pipeline of our method. We first generate the set of seeds (red dots) which
correspond to each region in the ground truth image. We then combine the set of seeds and
the boundary prediction (the output of the network), to correctly identify the topological
errors on the boundaries (red rectangle). To do so, we search for the intersections (green
dots) of the boundaries in the ground truth and the shortest paths (blue lines) between red
dots in the prediction. These green dots are the critical points, with possible leakages. Then
we compute our Pathloss function using these critical points.

every region:

LBAL(u, GT) = ∑
i∈N

BCE(u ⊙ Ci, GT ⊙ Ci), (4.7)

where u represents the likelihood prediction map, GT is the boundary ground
truth image, and ⊙ is the Hadamard product.

Our loss function measures the segmentation quality for each region. We
check if there are leakage positions on the boundaries, thereby ensuring the
topological structure in the image. A high value of the Boundary-Aware loss
corresponds to many broken connections. When the loss function LBAL is
zero, the prediction image is exactly the same as the ground truth image.
The pixel-wise binary cross-entropy remains crucial to maintain the global
information of every pixel in the image.

Ltotal = LBCE(u, GT) + λ LBAL(u, GT), (4.8)

where λ tunes the trade-off between both losses.

Activating critical points through path-based loss (Pathloss) We design a path-
based loss function based on geodesic distance to activate critical points in
the boundary which improves the topology correctness of detected shapes.
The Pathloss aims to enforce the activation in the broken connections on the
boundaries of the regions.

Geodesic distance at a glance We recall the definition of the geodesic dis-
tance, a simple but effective method to find the shortest path between two
points in the image. Formally, an image is modeled as a 2D function u : Ω →
R, where Ω is the image domain. The geodesic strength τ of a smooth curve
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γ between two pixels s, s′ in the given image is defined as:

τ(γ) =
∫

˙∥γ(t)∥γ(t)dt, (4.9)

in which γ̇ is the velocity vector of γ and ∥.∥γ(t) is a norm (see Sommer et
al. [145] for more details). Note that the geodesic strength is computed by
splitting the integration into pieces where the curve is smooth [146]. From
that definition, the geodesic distance d(s, s′) between two points s, s′ is de-
duced as the minimum of the geodesic strengths of all the curves between
two given points:

d(s, s′) = min
γ∈Π(s,s′)

τ(γ), (4.10)

where Π(s, s′) is the set of paths π going from s to s′. In the topographical
view, the geodesic distance is computed by considering an image as a land-
scape. Distances between pixels on the flat terrain are shorter than pixels that
have hills and valleys in the heightmap [147].

In discrete form, the image can be modeled as a graph, in which Wsi,sj rep-
resents the weight along the edge [si, sj] on the graph. The geodesic distance
on the graph is:

d(s, s′) = min
π∈Π(s, s′)

N−1

∑
si∈π,i=0

Wsi,si+1 , (4.11)

where s0 = s and sN = s′. The integration becomes the sum of edge weights
along the path connecting s and s′. Then, the geodesic distance is the dis-
tance along a path where the accumulation of image gradient reaches the
minimum. In a flat zone, the shortest path is similar to the Euclidean dis-
tance. We propose to use this distance to recover the shortest path between
points in the image, as a basis to compute our Pathloss function.

Overview of Pathloss The overview of our method is exposed in Figure 4.2.
The total loss of the network is defined as Ltotal(u, g) (where u is the pre-
dictions and g is the ground truth), which equals the sum of the weighted
pixel-level binary cross entropy LBCE and Pathloss LPL:

Ltotal(u, g) = LBCE(u, g) + λ · LPL(u, g), (4.12)

where the selected hyperparameter α is used to control the trade-off between
the two losses. The usage of the LBCE is already efficient to train a deep
neural network to segment an image. However, it may lead to leakages on
the boundaries. The idea with the Pathloss is to detect these leakages on the
boundaries and to penalize them. We detail in the following subsections how
to detect and use these leakages to improve the segmentation.

Critical points detection In order to treat the leakage problem during the
learning process of the neural network, we have to correctly locate these
points. Our method initiates with considering the likelihood map (the out-
put of the network) as a landscape with mountains and valleys. In this map,
a broken connection on the boundary of the region corresponds to a dip on
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Algorithm 1: Shortest path computation between two pixels s, s′ in the im-
age.

Data: Image U, Point s, s′, Geomap D, Parent image par
Result: π(s, s′)

1 Initiate Q = ∅; D(s) = 0 ;
2 Q.push(s, D(s)) ;
3 par(s) = s ;
4 while !Q.empty do
5 p = Q.pop() ;
6 if p! = s′ then
7 for n ∈ N8(p) do
8 d = Update distance(n) (Eq. 4.11);
9 if d < D(n) then

10 D(n) = d ;
11 Q.push(n, D(n)) ;
12 par(n) = p ;

13 else
14 π(s, s′) = Trace back the par relationship;
15 return(π(s, s′))

S0

S1

S2

S3S4

S5

FIGURE 4.5: Leakage (critical points) detection at the intersection of the shortest path and
the boundaries of regions. The blue lines represents the shortest path between two seeds.

the mountain ridge. The idea of the Pathloss function is inspired by Liebig’s
law [148] (law of the minimum). This law was first developed in agricultural
science. It states that a growth is dictated not by total resources available, but
by the scarcest resource (limiting factor). The broken connection can also be
called a critical point, which is a pixel that has the weakest value compared
to other pixels located in the boundary of the region. If we drop water to
the basin, the critical point is the position where water first leaks from one
region to its neighbor. Therefore, the values of the critical points relate to the
correct topology in the image. By finding these critical points, we are able
to capture missing pixels, thereby aiding the network to penalize pixels near
these structures using the Pathloss function.

We formulate the segmentation problem as follows: given the input im-
age I, we aim to provide a prediction u (output of the network) that is topol-
ogy equivalent to the ground truth image S. To do that, a set of seed nodes
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M = m1, m2, ..., mN with mi ∈ Si is provided inside each region Si in the
ground truth image. The inter-segment topology A is defined by the pair-
wise adjacency relations among all the segments, i.e., Si, Sj ∈ A iff Si and Sj
are adjacent in segmentation ground truth.

To preserve the topology of the boundary and measure the quality of seg-
mentation, the shortest path πij between the pair composed of the seed of mi
and each of its neighbors mj is computed using the geodesic distance. The
intersection point χij between the shortest path πij and the boundary of the
connected component Si provides the lowest value on the boundary or the
weakest edge (Figure 4.5). These weak points must be enhanced during the
learning process to improve the quality of the segmentation.

This is the reason why we must find the shortest path between two re-
gions using the geodesic distance. Such an algorithm is explained in Algo-
rithm 1. It is a shortest path algorithm (also can be called as Dijkstra algo-
rithm). We use the 8 adjacency N8 to define the relationship between neigh-
boring pixel. The propagation procedure is employed by using a priority
queue Q. Firstly, the geodesic distance map D(s) and the parent relation
par(s) are initiated at the seed pixels. The starting point s is then put into
the queue Q. In the next step, we pop out pixels p from the queue Q for the
propagation process. Next, we need to update the geodesic distance value D
(in Algorithm 1) at every neighboring pixel n of p along the path using Equa-
tion (4.11). For pixels that can be reached from different paths, we select the
path that minimizes the distance between the starting point and the current
point. We then sort pixels in the queue according to the geodesic distance
D. If the updated distance d is lower than its previous value, we update the
parent relation par and its new distance value D(n). The process is repeated
until the destination point s′ is found. The shortest path between two points
s, s′ is easily traced back using the parent relation par that we updated in the
propagation step.

We present here our method to compute the LPL function for granting the
closed shape properties in image segmentation task. From the shortest path,
we deduce critical pixels as the intersection points χij of the shortest paths
πij and the object boundaries Ci to find the weakest edge on the boundary.
Example of the shortest path is illustrated in Figure 4.5. The higher value of
the intersection point χij, the better the segmentation result. The Pathloss LPL
is the sum of the Pathloss for every connected component, which is defined
as:

LPL(u, g) = ∑
i∈N

∑
j∈A(i)

MSE(u(χij), g(χij)), (4.13)

where u and S are respectively the likelihood and ground truth images, N is
the number of regions in the ground truth label image.

Our loss function is used to quantize the value of the critical points in
the image, thereby evaluating the segmentation quality. A high value of the
Pathloss corresponds to many broken connections on the boundary of the
connected component. When the loss function LPL is zero, the likelihood of
the critical points is 1, i.e., the prediction image is exactly the same as the
ground truth image. The advantage of our LPL loss function is that it helps
the network to focus on important broken missing pixels on each region, thus
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preserving the topological structure of the image.

Discussion on the Pathloss and training details We choose to predict edge
probability maps instead of labeling the regions to allow our method to han-
dle the relation between neighboring regions in the image. Let call M the
binary mask that represents a set of all detected critical pixels, which are in-
tersections between the shortest paths between seed pixels in the image and
the region boundaries. It guarantees that all the critical points belong to the
ground truth boundary of the image. The set of critical pixels is used to check
if there are leakage positions or broken connections on the boundaries. If so,
the LPL will force the network to improve the likelihood values on these
structures.

We also notice that the edge probability map u will be updated at every
epoch. That leads to a re-computation of the shortest path between the neigh-
bor seeds and the critical points. Our method locates the intersection pixels
which only depends on u, and the change on the mask M at each epoch is not
continuous. This set of critical points is not directly predicted by the network.
Therefore, the gradient of LPL exists and can be computed naturally.

Our PL function is architecture-agnostic: it can be integrated into any kind
of CNN. In practice, we first pre-train the neural network with only the LBCE
to get the global prediction of the edge probability map, and then train the
network with the combined loss (binary cross entropy loss + Pathloss). This
way provides us more precise intersection pixels of the region boundary, that
lead to a better computation of the LPL.

4.1.5 Experimental settings

We report here the performance of a U-Net network trained alternatively
with each of the following loss functions: Mosin: We set the λ = 0.001.
BALoss: We set the λ = 1000. Topoloss: We set the λ = 0.01. Pathloss: We
set the λ = 0.01. Binary cross-entropy: As a baseline.

All variants are trained using ADAM optimizer except for the Topoloss
one, which is trained using SGD according to authors’ recommendation. We
set the initial learning rate to 1 · 10−4, a momentum of 0.9 and a weight decay
of 1 · 10−5.

We report results based on the joint optimization detailed in Section 2.2.6
of the Deep Edge Filter and Closed Shape Extraction stages, and joint opti-
mization leads to the best performance.

4.1.6 Numerical experiments and analysis

Table 4.2 summarizes the results for the different variants, and shows that
the Pathloss variant is able to achieve a better performance on the valida-
tion set, and it provides a slightly better performance than the baseline ver-
sion (U-Net) on the test set. This proves that the Pathloss leads to the best
generalization among all the topology-oriented loss functions. Hence, using
the Pathloss to preserve topology in the predicted edges seems the most
promising topology-oriented loss function for the validation and testing
datasets.
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TABLE 4.2: COCO Panoptic scores on validation and test set for study on topological on
BALoss and Pathloss. The following parameters are static and their respective columns are
hidden: we use the Meyer Watershed (MWS) for CSE and Joint Optimization (JO) for Deep
Edge Filtering (DEF) selection, no augmentation is performed. For the architectures, ∗ indi-
cate pre-trained variants: the network is trained by using binary cross entropy for 50 epochs
then trained with BALoss and Pathloss.

DEF CSE Evaluation
Archi. Loss function Param. Val. set Test set

σ δ PQ SQ RQ PQ SQ RQ

U-Net BCE 50.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3
U-Net∗ BALoss 50.0 1.0 63.1 87.6 72.0 45.6 86.3 52.9
U-Net∗ Topoloss 100.0 6.0 59.9 88.1 68.0 36.9 84.2 43.8
U-Net∗ Mosin 50.0 1.0 57.7 88.3 65.3 36.0 87.4 41.2
U-Net∗ Pathloss 100.0 3.0 62.4 88.4 70.6 47.3 86.4 54.7

The qualitative results of three different topology-preserving techniques
are shown in Figure 4.6. The first/second row in each example, respectively,
shows the edge prediction map (EPM) and the recall map for each method.
At the first glance, we can see that even a small discontinuity on the EPM
can significantly damage the structure of the image, as depicted by the red
regions on the recall map. The Pathloss function is able to identify and penal-
ize topological errors on the prediction image to maintain the closeness prop-
erty. As a consequence, our proposed method outperforms the Topoloss
and Mosin methods to recover more correct objects on the historical map.1

4.2 Enhancing pixel connectivity as a loss function

4.2.1 Motivation

The pixel connectivity is one of the important elements for maintaining the
correct topology in EPM images. However, the conventional neural network
learns single-pixel probability instead of connectivity probability between
two pixels. To leverage the pixel relationships while in training, we learns
whether two pixels should be connected by using so-called pixel connectiv-
ity loss mentioned in the paper ConnNet [149]. Unlike BCE loss which is
considered independent pixel values, pixel connectivity loss (PCL) predicts
the probability of connectivity for every single pixel instead of predicting the
pixel-wise probability of edges. For example, the center pixel is considered
positive if the probability of at least (exactly one / at most one) neighbor pixel
for laying on an edge is larger than a pre-defined threshold. In this section,
we describe PCL method and report its performance in COCO-PQ.

4.2.2 Related work

By considering the image as a graph, maximin affinity learning of image seg-
mentation (MALIS) [150] classifies the connectivity between pixel pairs (also

1We don’t put the BALoss qualitative results here since Pathloss is an upgraded version of BALoss.
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FIGURE 4.6: Qualitative results of our proposed method compared to state-of-the-art meth-
ods. The first/second of each example respectively corresponds to the edge probability map
(EPM) and the recall map of each method. As indicated in the color scale, the quality of the
segmentation ranges from bad (red), with low IoU between predicted and target shapes, to
good (green) with high IoU.

called affinity graph), the threshold affinity graph can be used to form con-
nected components for instance segmentation purposes. However, using a
simple thresholding to partition the grap can lead to misclassify of one or a
few edges of the affinity graph. Inspired by ideas from MALIS [150], Oner
et al. [151] first predicted the Euclidean distance map and used a hybrid loss
by combining the correctness of the distance map and the pairwise shortest
cost between two connected components to improve the connectivity in road
segmentation task.

One way to maintain topology properties in the object detection task is
to make sure information of inter-pixel correlations (also called pixel con-
nectivity) is correct. Nowozin et al. [152] proposed a method which con-
sists in learning the parameters of a Markov Random Field (MRF) by incor-
porating global connectivity information to connect pixels of every object.
Kampffmeyer et al. [149] proposed a network ConnNet for saliency object de-
tection which first encodes and predicts the inter-pixel relationships as well
as the number of foreground neighboring pixels by using neural networks.
Since pixel connectivity has symmetry properties, Yang et al. proposed Bi-
connect [153], which improves the connectivity network by using shared
weights between pairwise neighboring pixels (so-called bilateral voting), in-
stead of using independent weights for pair-wise connectivity. Leveraging
previous works [149, 153], we use the connectivity network to detect more
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consistency edges in historical map segmentation task. Alternatively, Jie et
al. [154] proposed a spatial attention network that jointly learns the segmen-
tation and connectivity information for road detection to focus on the pixels
that are connected to their neighbors. In [155], Yan et al. used a graph neu-
ral network (GNN) to propagate and aggregate the features of the vertices
for regularized road extraction. To conclude, the aforementioned approaches
apply information of pixel connectivity (zero-dimensional topology proper-
ties) that can boost the performance of object segmentation results.

4.2.3 Encoding pixel connectivity

We encode and predict pixel connectivity information for every pixel in the
output. It is a learnable way to binarize EPM, making use of pixel-based
spatial information at training time. The original ConnNet exhibits a signif-
icant amount of parameters and may not be efficient on our data. We use a
U-Net to encode information of pixel connectivity (any deep edge detector
can work). We denoted input image as I ∈ R(H,W,3), the connectivity output
C ∈ R(H,W,N), where N equals 4 or 8, number of connectivity C with each of
its neighbors. To optimize the PCL for historical vectorization, the connectiv-
ity loss LConn is calculated through measuring the binary cross entropy loss
between prediction connectivity Ĉ and ground truth of connectivity Ci:

Lconn =
1
N

C

∑
c=1

[Ĉi log yi + (1 − Ĉi) log Ci]; C ∈ {4, 8}. (4.14)

At inference time, the pairwise connectivity probability should satisfy the
bilateral condition with the threshold γ:

C(i,j) =
{

1, if C(i,j),(i+a,j+b) = C(i+a,j+b),(i,j)

0, otherwise,
(4.15)

and the final output ŷ ∈ R(H,W,1) is the argmax value of encoded pixel con-
nectivity:

ŷ = argmax(C). (4.16)

4.2.4 Experimental settings

We report here the performance of the PCL trained by using the ADAM op-
timizer. We set the initial learning rate to 5 · 10−5, a momentum of 0.9, and
a weight decay of 0.02. Furthermore, we use an early-stopping scheme that
limits the number of total epochs to consider, setting an upper limit to 60
epochs for each network.

4.2.5 Numerical experiments and analysis

We test PCL in Paris Atlas Municipal and reported the benchmark results
against our U-Net pipeline (with BCE loss without using relations between
pixels) in Table 4.3. It should be noted that PCL we introduced here for deep
edge detection has a lower performance compared to our baseline, where it
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achieves a 29.9 COCO-PQ score, compared to the score of 47.1 of the U-Net
baseline on the testing set. Still many object missing shown in Figure 4.7. To
conclude, PCL does not directly use and guarantee any topological prop-
erty compared to watershed segmentation and other topology-awareness
loss functions by using much stronger topology guarantees.

TABLE 4.3: Global COCO-PQ results (in %) of our evaluation, for each combination of deep
edge detector. Best results on validation and test sets are indicated in bold.

Connected Component Labeling

Parameters Validation Test

Stage 1 θ PQ SQ RQ PQ SQ RQ

U-Net 5.0 10.0 60.4 88.2 68.5 47.1 86.8 54.3
PCL 0 0 51.6 86.6 59.5 29.9 85.3 35.0

We used topological-oriented or pixel connectivity loss functions to main-
tain the topological properties of edges predicted by a traditional neural net-
work. According to the evaluation results with these topology-oriented loss
functions, we found that boundary- and path-based topological preserving
loss functions can maintain a better topology structure in the edge predic-
tions compared to other topology-oriented loss functions. It is due to the fact
that the pixel connectivity loss function capture only local information while
topological correctness requires the predicted edge pixels to maintain global
maintain a global context to ensure consistency.
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Image EPM

PCL precision Map PCL Recall Map

0 IoU = 0.5 1

FIGURE 4.7: Image, EPM, Precision, and Recall maps of pixel connectivity loss (PCL). Many
objects are miss detected shown in precision and recall maps due to miss detected pixels in
the boundaries.
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Chapter 5

Improving model robustness of
deep edge detectors

To answer the fourth question of how to improve the model robustness of
deep edge detectors, we propose a novel module to improve the quality of
curvlinear detection task as well as the model robustness in different contrast
conditions. As discussed in the previous chapters, improving deep neural
network architectures and topological-oriented loss functions with joint op-
timization can both achieve satisfactory results in extracting closed shapes
from historical map images. However, these methods may capture irrelevant
texture information instead of learning the specific properties of the curvilin-
ear signal used to draw objects’ contours. This could be explained by the thin
boundaries, biasing the training in favor of texture data. Our designed mod-
ule encodes the pixel gradient into a traditional convolution kernel, so-called
contrast convolution CConv. We reveal the potential of both segmentation
quality and robustness to different image contrast conditions by applying
this module to historical map vectorization tasks.
The content of this chapter is organized as follows. In Section 5.1, we demon-
strate the challenges in the curvilinear structure segmentation task. In Sec-
tion 5.2, we illustrate the existing literature for curvilinear structure segmen-
tation, learning inter-pixel relationships, and residual and attention mecha-
nisms for improving network performance. In Section 5.3, we are going into
detail about how these modules are designed. Lastly in Section 5.4 and Sec-
tion 5.5, we detailed the experimental settings and report the segmentation
and contrast robustness with our designed modules on our historical map
dataset.
This chapter is an adapted version of the contents of the submitted paper
[156].

5.1 Motivation

The segmentation of the curvilinear structures is a key challenge in many
domains [157–160] ranging from medical images (retinal vessel and neu-
ron segmentation) to geographical data and mapping (object detection in
historical maps and road segmentation). In these applications, curvilinear
structure enhancement is pivotal e.g., for flow computation or change de-
tection, and calls for designing detection methods that enhance the curvi-
linear feature by using some traditional method such as local binary pat-
terns (LBP) [161], Sobel operator [162], or Roberts cross [163]. The rapid
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development of convolutional neural networks has significantly improved
the performance in detecting curvilinear structures. These methods rely on
the increasing complexity of CNN architectures, with advanced concepts
such as attention module [164], residual corrections [165], adversarial train-
ing [166] or pre-processing and post-processing methods [167]: e.g., a prede-
fined number of objects or spatial scales [168], integration of human-annotated
data. While per-pixel-level performance has been boosted, they often fail to
maintain the correct structures in the predictions. For a successful detection
of curvilinear patterns, not only the pixels should be correctly individually
detected, but also keep spatial coherence among inter-pixels [131, 169–171].
These coherences can also be considered as contrast relationships between
pixels.

Three main issues lead to such failure cases. First, the inherent down-
sampling process of CNNs makes it difficult to maintain the fine structure
of the learned features in the original image when the networks go deeper,
even if Fully Convolutional Networks [39]. For detecting curvilinear struc-
tures, Mosinka et al. [127] found that more pixels are connected at the early
layers. It was because the segmentation model began to learn progressively
the low, middle and high-level features, from the bottom, intermediate to
top convolutional layers [172, 173]. It caused that the curvilinear structure is
more prominent in low-level features, so we added our propose method in
the bottom of segmentation networks. Secondly, rigid convolutional kernels
are not always adapted for detecting fine multiscale non-linear patterns. Dif-
ferent receptive fields allow to handle multiple spatial scales and image res-
olutions, e.g., Atrous convolution [174, 175] or deformable convolution [176]
(Figure 5.1), yet assuming such scales are known. These convolution oper-
ations calculate the linear sum of learned kernels and ignore the correlation
between neighboring pixels (e.g, the difference between two pixels). Thirdly,
a key issue remains poor cross-domain and unseen dataset generalization.
Alleviated by data augmentation strategies [177, 178] and transfer learning
methods [179, 180], these methods are all from the perspective of increasing
data or data characteristics, and do not reduce the differences between the
datasets from the model. This explains why current state-of-the-art methods
(are tailored to) perform well only on specific datasets.

To tackle these issues, inspired from the traditional edge detection opera-
tors, we propose contrast convolution (CConv, Figure 5.2) which integrates
the pixel gradient into the contrast convolution, thereby combining the effi-
ciency of the low-level method with the strength of the deep neural network.
The CConv is a mask-guided learnable operation, which can improve the
data generalizability of the model. In addition, we design module so called
contrast blocks based on our proposed contrast convolution: concatenation,
addition (residual block), or multiplication (soft attention) [181].

5.2 Related work

Curvilinear structure segmentation networks For the historical map segmen-
tation, our publications and this thesis benchmarked U-Net [47], HED [56],
BDCN [57] and ConnNet [149] to estimate the probability of building bound-
aries in order to extract instances from the map images.
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(a) Std. Conv. (b) Atrous (c) Deformable (d) CConv(ours)

FIGURE 5.1: Sampling positions in 3×3 convolution kernels. Red points denote the pixels
of interest. (a) Standard convolution[182]. (b) Atrous convolution [174, 175]. (c) Deformable
convolution [176]. (d) Contrast convolution (our method): the blue arrows give the relative
directions between the center point and the eight neighbors, and its length represents the
degree of influence on the center point. CConv takes such pixel contrast into consideration
more finely.

Learning inter-pixel relationships Inter-pixel relationships in the images are
used in training procedures standard with MRF/CRF [152, 183–185]. Re-
cently, inter-pixel relationships are used for salient object detection tasks.
Kampffemeyer et al. [149] proposed ConnNet for salient object segmenta-
tion, where the ground truth of binary salient objects was encoded into eight
directions of pixel connectivity, which can be predicted through designed
neural networks. Similar to ConnNet, Yang et al. [153] proposed BiconnNet,
which added a bilateral voting module to pay extra attention to the probabil-
ity misclassified direction. Both approaches are designed to fully leverage the
inter-pixel relationships as loss function in the salient object detection tasks
compared to traditional loss functions based on intersection of unions (IoU).

Residual and attention units The residual learning is first proposed by He
et al. [88] to fasten network convergence and solve the vanishing/exploding
gradient problems when we stack more layers in the networks. Shortcut con-
nections are also used in residual blocks [88] to learn the residual functions
and make all information easily passed through the whole network. The
gating function can be added in shortcut connections [186], transferring the
block between residual and non-residual functions to control the information
passing.

Soft attention has been deeply studied in [187, 188]. Chen et al. [187] used
attentions to soften the weight of unimportant features in different scales.
Compared with traditional pooling methods (average pooling or max pool-
ing), attention can help networks better select the important features for each
region [188, 181]. Jaderberg et al. [188] proposed a differential module called
spatial transformer that learns invariance to translation, scale, rotation, and
more generic warping of images. The module contains a localization net-
work that progressively learns the transformation parameters. Then a soft-
attention mechanism merges information from the original images according
to the transformation parameters, to achieve spatial invariance. Therefore, in
this thesis, we use the advantage of these units to prevent the loss of detailed
information about curvilinear structure along the network.
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FIGURE 5.2: Illustration of 3×3 contrast convolution. The existence of the binary masks
shown with value of 0 and 1 which makes the connection method between neighboring pix-
els constantly change during the training process, because the binary masks are constantly
changed with the relationship between the center pixel and the surrounding pixels.

5.3 Method

Contrast convolution The standard 2D convolution operation is mainly com-
posed of two parts. First, the input feature map is sampled by k×k convo-
lution kernels, and then the sampled values are weighted and eventually
summed and fused. Let us take k=3 as an example, and the standard 3×3
convolution operation is defined as follows:

Conv (x, y) =
1

∑
dx=−1

1

∑
dy=−1

ω (dx, dy) I (x + dx, y + dy) . (5.1)

where Conv (·) is the feature map after convolution operation. I (·) denotes
the original feature map. x and y represent the location of the pixel in the
image coordinate system. ω (dx, dy) denotes the weight of convolution ker-
nel. Each position of the convolution kernel is designed by −1 ≤ dx ≤ 1 and
−1 ≤ dy ≤ 1.

According to Equation (5.1), the standard convolution operation does not
specifically emphasize the spatial coherence between pixels whether there is
a connectivity between I (x + dx, y + dy) and I (x, y). The following contexts
describe the details of how contrast convolution is calculated. Firstly, the 3×3
convolution kernel is designed to measure the gradient between the center
pixel I(x, y) with the eight neighboring pixels I(x ± 1, y ± 1).

Inspired by the boolean pruning mask [189] that categorizes filters into
important ones and unimportant ones, considering the fact that large dif-
ferences often happen on the boundary, we use two criteria to define the
relationship between pairs of pixels.

The first criterion is: If the center pixel is greater than the neighboring
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pixel, it is considered as positive contrast as shown in Equation (5.2), and vice-
versa in Equation (5.3).

mask+(x + dx, y + dy) = 1 if I(x, y) ≥ I(x + dx, y + dy),
0 otherwise, (5.2)

mask−(x + dx, y + dy) = 1 if I(x, y) < I(x + dx, y + dy),
0 otherwise. (5.3)

where dx and dy ∈ {+1, 0,−1}, except center pixels which have dx = dy ̸= 0.
Here is the reason why we need to define two masks at Equation (5.2)

and Equation (5.3), for example, when I(x, y) > I(x + 1, y + 1) and I(x, y) <
I(x − 1, y + 1), |I(x, y) − I(x + 1, y + 1)| = |I(x, y) − I(x − 1, y + 1)|, but in
terms of I(x, y), I(x + 1, y + 1) and I(x − 1, y + 1) have completely differ-
ent meanings. The positive and negative contrast cases are separated by the
function of guided masks to separate the weights sharing. It is a heuristic
approach that these two cases should be learned separately through channel
aggregation process. As shown in Figure 5.5, if the proposed contrast block
is used without the binary mask, the curvilinear features are not enhanced.

The second criterion is based on the normalization of pixel difference
σ(dx, dy):

dd(x + dx, y + dy) =
|σ(x + dx, y + dy)|

∑1
dx=−1 ∑1

dy=−1 |I(x, y)− I(x + dx, y + dy) + δ|
. (5.4)

where δ is a tolerance value equals to 1e-6 to prevent that the denominator
from being null. Finally, the contrast convolution is defined by combining
Equation (5.2), Equation (5.3) and Equation (5.4):

CConv(x, y) = ∑ 1
dx=−1 ∑ 1

dy=−1ω+ (dx, dy) (5.5)

(dd(x + dx, y + dy)× mask+(x + dx, y + dy))
+ω− (dx, dy) (dd(x + dx, y + dy)× mask−(x + dx, y + dy)).

As mentioned above, the contrast convolution is very different from the
standard 2D convolution. For the features on feature maps and convolutional
kernels, the standard 2D convolution directly uses the calculation method of
mult. and sum ops and is trained to maximize the correctness of learned
convolutional kernels. However, the contrast convolution uses the absolute
difference between neighboring pixels to separate neighboring pixels, which
makes the convolutional learn for specific directions for pairwise contrast
difference between pixels.

Contrast blocks Residual learning [88] and attention mechanism [190] have
achieved a wide range of applications in the field of deep learning. We design
three different blocks which is the most common way to fuse data (concate-
nate, attention and residual) shown in Figure 5.3. The output of Concatenate
block (CB) OCB is defined by

OCB = Concatenate(I(x, y), CConv(x, y)) (5.6)
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CConv

Input

Op.
Output

FIGURE 5.3: Different contrast convolution (CConv) blocks. Input: RGB historical maps
with three channels. Op. includes three optional operations (concatenate, add and multiply
operations).

FIGURE 5.4: Example of Drive datasets [191].

The outputs of Attention block (AB) OAB and Residual block (RB) ORB
are defined by:

OAB = I(x, y)⊗ CConv(x, y), (5.7)
ORB = I(x, y)⊕ CConv(x, y). (5.8)

The CB is different from RB and AB because it increases the number of
feature maps, while RB and AB update the features on each channel and
do not change the channel count. As shown in Figure 5.5, we verify that our
proposed modules learn the linear structures that are important for detecting
curvilinear structures. With CConv, the network is fed with the knowledge
of curvilinear structures in Figure 5.5(c).

5.4 Experimental settings for segmenting historical maps

To evaluate the relevance of our contrast blocks, we compare these blocks
with our baseline methods (U-Net), and simply add after the input layer of
these methods. We add RB/AB/CB layers with kernel size of 3x3 (common
choice in most of deep neural networks) in the early layer of the neural net-
works respectively. Our experiments on historical maps were conducted us-
ing Nvidia Quadro P6000 and RTX 8000 GPUs servers. Since the image sizes
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(a) U-Net

(b) AB-U-Net without the binary mask

(c) AB-U-Net

FIGURE 5.5: Filter visualization of the convolution layers of U-Net after CConv layer on
DRIVE [191] dataset which use Figure 5.4 as input image. Here is an example with our
attention block (AB). We verify that our proposed modules learn the linear structures that
are important for detecting curvilinear structures. Encoder-decoder segmentation methods
propagate the linear structure information through the layers (skip/residual connections),
assuming such information exists. Otherwise, (Figure 5.5(a)), the curvilinear structure fea-
ture cannot be guaranteed. With CConv, the network is fed with the knowledge of curvilin-
ear structures (Figure 5.5(c)).

of our map images are too large (4500 × 9000 pixels for training), the image
is cropped into patches of 500 × 500 pixels. The ADAM [192] is used with a
learning rate of 1 · 10−4 as an optimizer in our experiments. The BCE loss is
used to train dataset of historical maps.

5.5 Experimental results and analysis

5.5.1 CConv improves segmentation performance

We first evaluate the performance of segmentation models for adding con-
trast layer for segmenting historical maps for the year 1926 where the train-
ing and validation datasets are from the same map. The results are listed in
Table 5.1. Compared to the baseline results without applying contrast blocks,
the contrast blocks maximally improve the COCO-PQ score by 4.5 points (of
percentage) (2.0 points with pre-training), and BDCN with no pre-trained
weight with 5.02% and pre-trained 4.71% in the validation dataset. It implies
that contrast blocks consistently improve the segmentation quality.

5.5.2 CConv improves contrast robustness

By applying the contrast blocks to the traditional architectures, contrast blocks
lead to a significant improvement of the robustness to contrast performance
with the neural networks in test datasets both in the instance and pixel eval-
uations. As shown in Figure 5.7, using contrast blocks improves detection
quality for the boundaries of map objects. The contrast robustness the seg-
mentation model in historical maps can help creating accurate EPM for his-
torical maps with style shift (see Figure 5.7).
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TABLE 5.1: The segmentation results on Atlas Municipal. The baseline U-Net results are
copied and tested with the same setting according to our publication [2].

Method Validation Test
PQ ↑ SQ ↑ RQ↑ PQ ↑ SQ ↑ RQ ↑ Dice ↑

UNet [47] 34.80 80.50 43.30 8.10 78.20 10.40 68.12
RB-UNet (ours) 31.86 79.13 40.26 25.52 78.00 32.72 74.49
AB-UNet (ours) 32.20 79.52 40.50 24.06 78.20 30.77 74.42
CB-UNet (ours) 32.63 79.07 41.28 24.50 78.36 31.27 74.25

HED-Scratch [56] 23.20 76.50 30.30 14.00 74.80 18.80 24.03
RB-HED-Scratch (ours) 28.85 77.65 37.15 18.94 77.56 24.41 71.67
AB-HED-Scratch (ours) 28.19 77.72 36.27 21.73 77.03 28.21 69.50

HED-Pretrain [56] 27.60 76.50 30.30 16.20 76.10 21.30 53.98
RB-HED-Pretrain (ours) 28.69 78.07 36.75 17.91 76.91 23.29 69.68
AB-HED-Pretrain (ours) 29.57 77.98 37.92 23.98 76.88 31.19 71.74

BDCN-Scratch [57] 27.70 80.60 34.30 14.00 74.80 18.80 61.21
RB-BDCN-Scratch (ours) 29.28 78.88 37.12 19.68 77.40 25.43 74.27
AB-BDCN-Scratch (ours) 32.72 79.19 41.31 23.63 78.62 30.06 72.38

BDCN-Pretrain [57] 27.60 82.10 33.70 8.90 82.80 10.70 61.90
RB-BDCN-Pretrain (ours) 32.31 78.77 41.01 18.03 78.94 22.84 72.09
AB-BDCN-Pretrain (ours) 32.00 79.49 40.26 24.01 79.41 30.23 74.10

ConnNet [149] – – – 14.2 73.6 19.3 –

TABLE 5.2: Average of the COCO-PQ score after contrast perturbations Atlas Municipal

Method PQ↑ SQ↑ RQ↑ Parameters ↓
U-Net 6.19 85.34 7.92 31,032,837 (∼31M)

RB-U-Net (Ours) 11.93 78.87 15.36 31,032,984 (∼31M)
AB-U-Net (Ours) 14.59 78.38 18.77 31,032,984 (∼31M)
CB-U-Net (Ours) 10.29 82.08 13.03 31,034,712 (∼31M)

To assess the contrast robustness capability of the proposed contrast block,
we evaluated the performance of the proposed architecture. First we tested
on the same test set but with different image contrast to mimic different scan-
ning conditions. We also test the testing set of historical maps with different
image contrast to mimic different scanning conditions of the historical maps.
Then the COCO-PQ score is measured for contrast value range from 0.05 to
0.8 with the step of 0.05. As it is shown in Table 5.2 and Figure 5.6, the AB-
U-Net, RB-U-Net, and CB-U-Net have better average COCO-PQ scores and
area under curves (AUC) compared to original U-Net architecture.
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FIGURE 5.6: The COCO-PQ score of AB-, RB-, and CB-U-Net in different contrast conditions
ranging from 0.05 to 0.8. This figure shows that our methods have better contrast tolerance
compared to the original U-Net architecture.

In this chapter, we evaluated the performance of curvilinear structure seg-
mentation with our designed CConv module. These modules encode and
learn the information of pixel gradients inside the neural networks. Our con-
trast blocks are built from the contrast convolution and residual, attention,
and concatenate operations to merge original inputs with outputs from con-
trast convolution operations. Moreover, we proved that simply stacking the
contrast blocks to existing neural networks can significantly improve the per-
formance in predicting curvilinear structure in historical map segmentation
tasks. Furthermore, we found that networks with added contrast blocks are
more robust to contrast changes in the images compared to the baseline ar-
chitectures by only adding a maximum of thousands of parameters to the
models. Finally, the invention of contrast blocks opens a new and promis-
ing research direction on directly bringing structural properties inside deep
neural architectures.
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Ground truth U-Net RB-U-Net AB-U-Net

Original image HED RB-HED AB-HED

BDCN RB-BDCN AB-BDCN

FIGURE 5.7: Visualization of the segmentation results on Atlas Municipal using different
state-of-the-art segmentation architectures as base network.
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Chapter 6

Leveraging redundancies of
historical maps

To answer the fifth question of how to leverage the redundancies of his-
torical maps, we align historical map sheets representing the same area for
different years in the Atlas Municipal map series. These alignment results can
be used to build edge consensus which can be used to refine predicted EPMs
and subsequently improve per-date segmentation and feed change detection
pipelines.
The content of this chapter is organized as follows. In Section 6.1, we demon-
strate our incentives and challenges in aligning historical maps. In Sec-
tion 6.2, we explain the related work for the non-parametric and parametric
geometric alignment techniques. In Section 6.3, we demonstrate the unsu-
pervised alignment techniques for aligning a pair of historical maps without
requiring any annotation key points. In the end, Section 6.4 and Section 6.5,
we explain our experiment setups with some findings of our alignment re-
sults and future works.

6.1 Motivation

One of the most important properties of the Paris Atlas Municipal is the redun-
dancies that are visible over different periods, as shown in Figure 6.1. These
redundancies can be useful in three aspects. Each useful aspect depends
on the previous ones: geo-referencing (thanks to proper alignment), refine
segmentation and self-supervision for training some segmentation networks
(automatic ground-truth generation from reliable results predicted using the
first network).

1. Alignment helps geo-referencing: by only georeferencing one map, the
georeferencing information can be propagated through other maps.

2. Refine segmentation: the redundancy information existing in the same
and different time series of atlases can be used to refine the quality of
segmentation.

3. Self-supervision for training some segmentation network: map re-
dundancies can be used to create pre-generated weak ground truth which
can be used in training a self-supervision network.

We keep the last point as future work and it will not be discussed further.
In this thesis, we are particularly interested in using aligned historical maps
to refine EPMs for improving the quality of closed shapes extraction process.
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1882 1893 1900 1912 1926 1937

1

FIGURE 6.1: How maps change over their successive editions. Most of the objects of the
map are consistent between the 1882 and 1900 editions, as well as between the 1926 and
1937 editions, where these redundancies can be used. Significant change is visible between
the 1900 and 1912 editions and little redundant information can be found.

To leverage the redundancies in the historical maps, aligning the maps is a
prerequisite. However, aligning historical maps is a challenging task. Firstly,
the topological properties should remain after the map alignment process.
Secondly, finding the correspondences of manually annotated key points of
two historical maps is not yet practical, since the quality varies for different
people who annotate the maps, and it is a very time-consuming process to
annotate the key points for large-scale historical maps. Thirdly, historical
map images contain many repeated patterns and noises (such as texts and
textures) that will create many false alarms when using classical registration
frameworks like SIFT [193] (local detector/descriptor) + RANSAC [194].

To make sure the aligned image can maintain its topological properties,
we choose to use geometric alignment instead of optical flow. We test an
off-the-shelf unsupervised image alignment technique based on deep optical
flow, RANSAC-flow [195], and report the qualitative results in Figure 6.2.
Despite the fact that the two historical map sheets have a high quality align-
ment, as shown in Figure 6.2, the texts and texture can not be recognized
for the aligned source image and topological properties such as line consis-
tency are changed due to the lack of smoothness of optical flow. To address
the challenge of generating expensive annotated key-points for the fine align-
ment of two images, we use a weakly supervised instead of a fully supervised
or self-supervised techniques.

For the purpose of eliminating the effects of unrelated information in the
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FIGURE 6.2: Results of aligning historical maps by using unsupervised state-of-the-art image
alignment with geometric transformation + optical flow (RANSAC-flow) [195]. Left: two
image aligned by optical flow. Right: Source image after fine alignment.

maps (textures and texts), which can significantly downgrade the perfor-
mance of the fine image alignment process, we adopt the EPM for fine align-
ment instead of the original RGB map images which is also called sparse
registration.

To refine missing edge pixels, we use a voting strategy as a baseline to
find a consensus between predicted edges in different map sheets. We aim
at keeping reliably aligned edges while filtering out other edges caused by
bad alignment quality as well as changes over different map sheets. This
voting strategy can be used to refine predicted edges based on the consensus
in historical map alignment results. At last, the aligned historical map time
series with redundancies information can be potentially used to refine the
segmentation.

6.2 Related work

Early techniques for geometric alignment consist in optimizing a matching
energy and are based on the combination of traditional image descriptors
(such as SIFT [196] or HOG [197]) with hand-crafted alignment models [198–
200]. More recently, techniques [201–204] have been proposed to improve the
performance of image alignment by replacing traditional image descriptors
by CNN descriptors with pre-trained networks. Other techniques [205–207]
improve the geometric alignment models with trainable image descriptors.
To make image alignment end-to-end trainable, Rocco et al. [125] proposed a
parametric geometric pipeline where image descriptors can be trained, and
the pixel correspondence is differentiable. Nonetheless, these methods are
trained in a self-supervised fashion with synthetically warped image pairs as
ground truth, which is difficult to generalize to unseen data with significantly
variations and changes. To leverage the limitation of strong supervision in
the existing geometric alignment techniques, Rocco et al. [208] developed a
weakly-supervised end-to-end trainable technique for dense alignment with-
out requiring any ground truth of pixel correspondence. This technique fits
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Is DEF ys CA FA ŷai EC&Re ŷtr

It DEF yt

FIGURE 6.3: Pipeline for refining edges by leveraging redundancies. DEF:Deep edge filter;
CA: Coarse alignment (graticule alignment); FA: fine alignment (weakly supervised image
alignment); EC&Re: Edge consensus and refinement.

our alignment task where the ground truth of pixel correspondence is expen-
sive to produce and impractical to generate in large-scale historical maps.

6.3 Map image alignment method

6.3.1 Overview of our pipeline

Our pipeline for aligning historical maps consists in three stages : the coarse
alignment, the fine alignment and the edge consensus stages. The coarse
alignment stage is used to prevent large displacement of two aligned maps
by finding global geometric transformation, while the fine alignment stage is
used to match the boundary of objects at pixel level by finding local geomet-
ric transformations between two local image patches.

6.3.2 Coarse alignment

We use graticule point which is intersection of gratiucule, each represent a
constant coordinate as key points for aligning two map images coarsely, as
illustrated in Figure 6.4. Graticule points for our dataset have been man-
ually annotated and can be obtained from the database of the ICDAR 2021
Competition on Historical Map Segmentation [99]. Given N graticules points
pg = {p1, p2, ...pi}; i ∈ [1, N] in source map images Is and N other points
p′g = {p1, p2, ...pj}; j ∈ [1, N] in target map images It, performing the coarse
alignment of two map images consists in estimating the geometry transfor-
mation between pg and p′g. In this thesis, we use a homography for our coarse
alignment stage, but another geometric transformations such as affine or TPS
could also be used.

6.3.3 Refined alignment

We can see that global coarse alignment by using graticules is not sufficient
enough to align the boundaries of two images shown in Figure 6.5. The mis-
alignment of object boundaries can lead to failure of finding good edge con-
sensus between different map series. Thus, we adapt fine alignment between
two maps, which can achieve better alignment quality of boundaries of ob-
jects shown in Figure 6.6.

This stage is based on the weakly-supervised image alignment techniques
proposed by Rocco et al. [208], whose original publication contains the details
we summarize here. Once the source Is and target image It are transferred
into EPMs ys and yt, both ys and yt are used as input for the weakly su-
pervised geometric alignment module. The optimization objective function
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FIGURE 6.4: Graticule points of historical maps (red dots). In this example, 8 graticules
points are visible and usable for coarse alignment.

S( fs, ft) of the weakly-supervised geometric alignment module is the pair-
wise cosine similarity score between image of source and target feature maps
fs and ft. The feature maps fs, ft : RH,W,D are the mapping of source and
target images Is, It : RH,W,D by using a fully-convolutional neural network
with pre-trained weights. Then the feature maps of fs, ft are used to calcu-
late pairwise similarity matrices as:

sijkl = S( f s, f t)ijkl : RH,W,D × RH,W,D → RH,W,H,W , (6.1)

with the pairwise score S( fs, ft) defined by Rocco et al. [208]:

sijkl = S( f s, f t)ijkl =
< f s

ij, f t
kl >√

∑i,j < f s
ij, f t

kl >
2

. (6.2)

According to the mathematical definition in Equation (6.2), we want to max-
imize the pairwise similarity score S(ys, yt) through S( fs, ft). To filter ele-
ments which are not boundaries in the content (like text which can be printed
at different location over time) to avoid perturbing the alignment module:

max S(ys, yt) ≈ max S( fs, ft). (6.3)

The final step of the alignment pipeline is to predict a geometric transforma-
tion function G : RH,W,H,W → Rp which is the mapping between the pairwise
similarity S and the geometric transformation θ, where p is the number of pa-
rameters in θ: p = 6 for the affine transformation, p = 9 for the homography
transformation, and p = 18 for the thin-plate-spline transformation with 8
control points.
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FIGURE 6.5: Global coarse alignment by
using graticules.

FIGURE 6.6: Local fine alignment with
geometric alignment.

FIGURE 6.7: Results of two aligned EPMs predicted from the map in the years 1898 and
1909.

Each transformation parameter θ can create geometric 2D warping-grid
Ggeo : R2 → R2 from source image to the target image. We apply the idea of
soft-inlier count proposed by Rocco et al. [208] and inspired by the RANSAC
method [194]. It is differentiable and can be used with any neural networks.
The idea is to calculate a soft-inlier count c ∈ R by multiplying pairwise simi-
larity sijkl and the discrete inlier mask mijkl:

c = ∑
i,j,k,l

sijkl · mijkl. (6.4)

This mask mijkl is generated using a spatial transformer [188] layer by wrap-
ping the source image into target image with spatial attention. Finally, the
best alignment is selected based on the highest value of soft-inlier count c.

6.3.4 Refining edges with consensus

The purpose of this stage is to produce a new, more reliable EPM ytr for a
map image It by considering its original predicted EPM yt as well as the pre-
dicted EPMs yai for other similar map sheet images Ii, transformed using the
previous stages of our pipeline, so they are aligned with yt. Each edge image
aligned with yt (corresponding to different editions of the map sheets) are
represented as yai ∈ ZH,W,N, i ∈ [1, N] and its binarized version is calculated
in Equation (6.5)1.

ŷai = 1 where yai > 0.5, 0 elsewhere. (6.5)

Finally, the consolidated EPM ŷtr is calculated as follows:

ŷtr = 1 where ŷt + ∑
i∈[1,...,N]

ŷai > τ, 0 elsewhere. (6.6)

1We choose value of threshold as 0.5 for binarization of image.
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6.4 Experimental settings and results

To be able to evaluate the alignment quality, we selected the map sheet num-
ber 2 from the 1898 edition as the target image whose segmentation need to
be improved. We chose this image because some ground truth segmentation
was manually created for it. Then, we sequentially align the map sheets from
the 1888, 1895, 1909, and 1912 editions against this target image. All the maps
are aligned to the map in year 1898 which is the middle of time sequence of
historical map atlases which can minimize the effect of object changes.

In our experiments to train the map alignment, an ADAM optimizer [192]
is used with a learning rate of 1 · 10−6 and a batch size of 1. We select the best
alignment results of two images with the highest number of inlier scores in
the feature space generated by the pre-trained network of the refined align-
ment module.

Evaluation matrices We use pixel and COCO panoptic evaluation protocols
to evaluate our edge consensus strategy in terms of improving both cor-
rectly detected pixels and segmentation quality in historical map segmen-
tation. The COCO panoptic evaluation is explained in Section 2.5. The pixel
evaluation protocol includes Precision, Recall and Fscore measures which are
calculated based on TP true positive; TN: true negative, FP: false positive
and FN: false negative:

Precision =
TP

TP + FP
, (6.7)

Recall =
TP

TP + FN
, (6.8)

F1 =
2 × (Precision × Recall)

Precision + Recall
. (6.9)

6.4.1 Pixel-based analysis

Based on the pixel evaluation results in Table 6.1, we note two findings:
1. We monitor that the fine alignment consistently improves the number

of corrected detected pixels in different value of τ, shown in recall
value.

2. However, fine alignment has a lower average F1 score compared with-
out fine alignment, due to the fact that the refined process added more
background noise which lowers the precision value. More advanced
techniques are required to filter the background noises to improve pixel-
level accuracy in future studies.

6.4.2 Segmentation-based analysis

Based on the COCO-PQ results in Table 6.1, we note two findings:
2Atlas municipal des vingt arrondissements de Paris. 1898. Bibliothèque de l’Hôtel de Ville. Ville

de Paris. http://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524

http://bibliotheques-specialisees.paris.fr/ark:/73873/pf0000935524
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1. Higher τ leads to lower COCO-PQ values. It is due to the fact that a
higher value of the consensus will increase the noise level in the back-
ground.

2. Unfortunately, fine alignment does not produce better COCO-PQ val-
ues compared to the one without fine alignment. There are two rea-
sons. Firstly, there exist object changes in different map series which
increases the difficulties for unsupervised fine alignment of two histori-
cal maps. Secondly, fine alignment creates poor alignment results which
leads to over-segmentations.

To sum up, our proposed edge consensus strategy of improving segmen-
tation results fails due to poor alignment results, unexpected background
noise level and object changes between different maps. More advanced strate-
gies for weakly unsupervised image alignment and edge voting are required
as future work.
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Fine align.
Extra sheets (ed. year) Con. Pixel-based Shape-based

1888 1895 1909 1912 τ P R F PQ RQ SQ

✗ ✗ ✗ ✗ ✗ — 22.81 83.47 35.83 43.52 85.27 51.03

✗ ✓ ✗ ✗ ✗ 1 13.48 85.80 23.30 24.78 77.34 32.04
✗ ✗ ✓ ✗ ✗ 1 13.45 85.76 23.25 22.45 76.74 29.26
✗ ✗ ✗ ✓ ✗ 1 12.96 86.64 22.55 25.49 75.70 33.68
✗ ✗ ✗ ✗ ✓ 1 13.70 87.43 23.68 29.74 78.05 38.11

✗ ✓ ✓ ✗ ✗ 2 10.86 87.17 19.31 22.49 74.72 30.10
✗ ✓ ✗ ✓ ✗ 2 10.00 88.29 17.97 20.38 73.79 27.62
✗ ✓ ✗ ✗ ✓ 2 10.39 88.95 18.60 21.74 74.49 29.19
✗ ✗ ✓ ✓ ✗ 2 10.11 88.21 18.13 20.40 73.42 27.78
✗ ✗ ✓ ✗ ✓ 2 10.38 88.94 18.59 21.66 74.10 29.23
✗ ✗ ✗ ✓ ✓ 2 10.23 89.39 18.36 22.24 74.42 29.89

✗ ✓ ✓ ✓ ✗ 3 8.85 89.28 16.11 19.93 72.77 27.38
✗ ✓ ✓ ✗ ✓ 3 9.06 89.92 16.46 20.52 73.02 28.10
✗ ✓ ✗ ✓ ✓ 3 8.61 90.55 15.73 18.72 73.10 25.61

✗ ✓ ✓ ✓ ✓ 4 7.89 91.28 14.53 18.63 72.44 25.72

✓ ✓ ✗ ✗ ✗ 1 14.05 86.02 24.16 28.78 78.66 36.59
✓ ✗ ✓ ✗ ✗ 1 13.96 85.94 24.02 27.12 77.98 34.77
✓ ✗ ✗ ✓ ✗ 1 13.16 86.67 22.85 27.07 76.64 35.32
✓ ✗ ✗ ✗ ✓ 1 13.08 86.51 22.72 25.85 76.72 33.70

✓ ✓ ✓ ✗ ✗ 2 11.21 87.61 19.87 26.99 76.28 35.39
✓ ✓ ✗ ✓ ✗ 2 10.57 88.32 18.88 24.61 74.63 32.98
✓ ✓ ✗ ✗ ✓ 2 10.55 88.19 18.85 23.94 74.45 32.15
✓ ✗ ✓ ✓ ✗ 2 10.59 88.33 18.91 25.22 74.74 33.74
✓ ✗ ✓ ✗ ✓ 2 10.50 88.20 18.76 23.62 74.47 31.72
✓ ✗ ✗ ✓ ✓ 2 10.34 88.46 18.52 23.13 74.56 31.02

✓ ✓ ✓ ✓ ✗ 3 9.32 89.49 16.89 24.55 74.09 33.13
✓ ✓ ✓ ✗ ✓ 3 9.06 89.71 16.47 22.33 73.36 30.43
✓ ✓ ✗ ✓ ✓ 3 9.06 89.74 16.46 22.64 73.71 30.71

✓ ✓ ✓ ✓ ✓ 4 8.33 90.63 15.26 22.17 73.51 30.16

TABLE 6.1: Pixel and COCO-PQ results (in %) for our preliminary edge refinement process
from the sheets 1888, 1895, 1909, 1912 to target map sheet edited in 1898 in Paris Atlas Munic-
ipal. Fine align.: whether fine alignment is used; Con.: value of edge consensus τ ∈ [1, 4]; P,
R, F: precision, recall and F1 score for pixel-based evaluation; PQ, RQ, SQ: panoptic, recog-
nition and segmentation quality for shape-based evaluation.
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FIGURE 6.8: Maps alignment results for our test image. The right image shows the edge consensus value for each pixel of the aligned image stack. Strong
consensus is indicated in red, while dark blue indicates background for all map sheets.
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Ground Truth Target =0 =1 =2 =3 =4

FIGURE 6.9: Edge refinement for an excerpt of our test image. From left to right: ground truth edges; edges predicted using our best deep edge filter; refined
edge predictions produced by our consensus refinement considering 4 images for all values of τ. We use coarse with refined alignment in this example.
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6.5 Perspectives

To unlock the automation of temporal analysis and change detection for large-
scale historical maps, we propose a new pipeline, by aligning historical maps
to leverage the redundancy information through multiple map EPMs from
time to time, and building up the edge consensus to refine the target EPM.
This eventually can improve the pixel and segmentation quality in the target
EPM. The pipeline consists in three parts, including coarse alignment, fine
alignment and edge consensus. Whereas the quality of EPMs, alignment and
edge refinement influence the final pixel and segmentation quality of the tar-
get EPM that have not been fully evaluated yet due to the missing ground
truths and changes of object boundaries (for EPM evaluation), key points
(for alignment evaluation) and object changes (for consensus evaluation) in
historical map atlases. It is still an open question of which stages are the bot-
tleneck for improving the quality of the target EPM and worth studying in
our future work.
In this chapter, we leverage the redundancy information contained in the
Atlas Municipal by aligning historical map sheets. Although the coarse align-
ment stage requires very limited graticules (≤ 9 points) to align two histori-
cal map images, the fine alignment stage does not require any annotated key-
point (which would be difficult to get given the number of map sheets we are
dealing with). The alignment maps images can be to compute a pixel-wise
edge consensus among the predictions. This consensus information is used
to determine detect missed edge pixels and bring the back in the predicted
EPM, in the hope of repairing broken edges and improving the final resulting
segmentation. However, our first baseline approach adds more noise pixels
than it recovers missing ones, lowering the global COCO-PQ in our quantita-
tive assessment. Based on these findings, more advanced strategies for edge
refining would be required.
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Chapter 7

Conclusions and perspectives

7.1 Conclusion

In this thesis, we focused on vectorizing closed shape in late 19th and early
20th century historical map atlases of Paris. The vectorization step is con-
sidered as the pre-requisite for understanding the morphogenesis of the city.
Such vectorization is usually manually performed in GIS software which is
expensive and have heterogeneous data quality. To tackle this issue, we pro-
posed five research questions to leverage the human annotation effort as well
as providing reliable and consistent historical map vectorization outputs for
building a geo-historical database which can eventually benefit for multiple
research areas. These research questions were separated into finding a uni-
versal solution for historical map vectorization (Chapter 2) as well as better
filtering unrelated map contents (Chapter 3) while maintaining topologi-
cal properties (Chapter 4) and model robustness (Chapter 5) and leverage
redundancies by using temporal properties in our historical map dataset
(Chapter 6).

To address our first research question of how to design a pipeline that
can extract reliably closed shapes from map images, we proposed a two-
stage pipeline (explained in Chapter 2) and explored numerous possibilities
on both sides of the framework for automatic and efficient vectorization of
historical maps. Joint optimization was proved to be an effective tool which
improves the closed shape extraction of Edge Probability Maps by using wa-
tershed segmentation. We also found that the joint optimization did not al-
ways improve the vectorization performance due to the fact that watershed
segmentation suffers from the noisy Edge Probability Maps.

We developed our second research question of how to find better edge
filtering techniques of the historical map images in Chapter 3. Multiscale
neural networks using pre-train weights generate less background noise in
the edge predictions compare to the model without using pre-train weights.
Transformer-based architectures with self-attention mechanism and longer
pixel context compared to traditional convolutional architecture, and they
are proven to be effective in detecting large instances compared to convo-
lutional neural networks. However, they lack the ability in detecting fine-
grained local cues which leads to the failure of detecting objects with small
areas. The end-to-end learnable watershed level (Deep watershed) for adapt-
ing the historical map vectorization tasks where it is proved to have worse
performance compared to our joint optimization process. The reason is that,
deep watershed does not guarantee the topology properties in the predicted
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likelihood image. Concerning data augmentation strategies, contrast stretch
combined with thin-plate-spline has the most generalizability.

To answer our third research question about how to guarantee the topo-
logical properties in the prediction, several signature loss functions were
tested and analysed in Chapter 4 and our newly designed Pathloss appeared
to perform best loss among all the topology-related variants. Similar to the
cell counting problem in biomedical applications, historical maps also have
very little texture and object’s edges are very thin which will lead to topol-
ogy failure. We design BALoss and Pathloss which can activate the bound-
ary and critical pixels in the predicted EPM, eventually enhance the topol-
ogy properties in EPMs. Moreover, the Pathloss successfully extended the
BALoss [52] for recovering the closeness property of the image segmenta-
tion and it was able to penalize the leakages between the neighboring ob-
jects to preserve the first dimensional topological structure in the deep image
segmentation task. These two loss functions can be applied to improve the
perceptual edge detection in the natural, satellite and biomedical images.

The fourth research question how to improve the model robustness was
addressed in Chapter 5. Our contrast modules were built upon the contrast
convolution CConv with residual, attention, and concatenate operations to
merge original inputs and outputs from contrast convolution operations. We
proved that simply stacking the contrast modules to existing neural networks
can improve the segmentation performance as well as model robustness to
the variation of contrast in historical map vectorization task by only adding
thousands of parameters to the models.

First attempts to tackle the fifth research question on how to leverage
the redundancies of historical maps were illustrated in Chapter 6. The re-
dundancies of historical maps was leveraged through aligning the histori-
cal maps in a unsupervised manner without requiring any ground truth of
pixel-correspondence, which is impractical to retrieve in large-scale historical
maps. We monitored that the edge consensus created by our current voting
strategy refined missing edges. However, the voting strategy also created
noise which downgraded the performance in extracting polygons as shown
by the PQ score. A better voting strategy is required to eliminate the unex-
pected noise.

To conclude, we wish this thesis work can help researchers to extract high
quality vectorizations from historical maps as well as leverage the human
annotation effort. Our research is open-source and all the code, dataset, and
results are freely available.

7.2 Perspectives

This section demonstrates some perspectives and future work of this thesis.

7.2.1 Explore all the experiment variants

There are many other variants we did not test in Chapter 3, such as the combi-
nation of data augmentation techniques with multiscale and transformer ar-
chitectures (which requires heavy computation resource and a large datasets)
with different topology-preserving loss functions in Chapter 4 or even CConv
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in Chapter 5. These variants can potentially improve the segmentation qual-
ity or model robustness of the historical map vectorization process.

7.2.2 Run experiments in larger dataset

Other historical maps such as the Verniquet Atlas, old IGN maps and cadasters
also contain rich information for studying urban morphogenesis. Extending
our methods in terms of robustness and generalizability for vectorizing those
maps is a very challenging perspective.

7.2.3 Try to train some CNNs with CConv modules only

In Chapter 5, despite CConv improve the contrast robustness by only adding
limited parameters, these modules have been only added in an early stage
of the neural network. It is an interesting research direction to see whether
modules can replace all the convolutional operations in the whole network.
This would boost performance while being memory efficient at the same
time.

7.2.4 Assess how map alignment can facilitate geo-referencing

In Chapter 6, the aligned historical maps are used to refine the quality of
map segmentation. Moreover, map redundancies (or aligned maps) can be
used to provide fast and better map geo-referencing. The geo-referencing as-
pects of the map (or map sheet) alignment problem have not been thoroughly
discussed in this thesis. Providing better approaches to the automatic geo-
referencing of historical maps is a very promising perspective of our work.

7.2.5 Improve the redundancy model

In Chapter 6, we presented the voting mechanism to create edge consensus
for refining the segmentations. However, this voting mechanism brings more
noise to the background which decreases the performance of closed shape
extraction. One way of solving the background noise is to model the dis-
tributions of stable edge probabilities by using some generative model such
as probabilistic U-Net [209]. This would enable to learn the voting strategy
automatically instead of setting it manually.

Furthermore, we can leverage the temporal model of object changes pro-
posed by Costes et al. [43] to better filter the background noises. The tempo-
ral model requires a list of ordered binary values which are easily retrieved
through aligned historical maps. Combining the temporal model with our
map alignment results is a very promising perspective of our work to better
detect object changes in historical maps.

7.2.6 Fully explore map redundancies

Redundancies not only appear between different editions of the map atlas,
but also exist within each atlas between maps sheets as shown in Figure 7.1.
These redundancies can be useful for stitching separate map sheets together.
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Moreover, these redundancies can be used as data augmentation to create
more diverse training data for improving historical map vectorization.

7.2.7 Predict polygons directly

Mentioned in Section 2.2, polygons can be learned and extracted from images
by using Polygon-RNN [9], Polygon-RNN++ [68] or Poly-CNN [69]. More-
over, if we add a decoder module to Vision Image Transformer (VIT) or any
other transformer-based encoder, we can try to predict a sequence of polygon
nodes directly instead of using an RNN structure. Such sequences are con-
sidered learnable by using curriculum learning as recently demonstrated by
Coquenet et al. [210]. Predicting polygons by using these end-to-end poly-
gon prediction architectures is end-to-end learnable compared to our existing
two-stage pipeline. However, these models might generate invalid polygons
since it does not have any topological guarantees in training. Tackling this
issue is a challenge for extracting closed shapes from historical maps which
can be considered as future work of this thesis.



7.2.
Perspectives

85

FIGURE 7.1: The red rectangle shows the redundancies information between two maps.
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Appendix A

Résumé substantiel

A.1 Introduction

Cette thèse discute de l’importance des cartes historiques pour comprendre
les changements dans l’espace géographique au fil du temps et de leur valeur
dans les sciences historiques et sociales, l’architecture et l’urbanisme. La
numérisation des collections d’archives a augmenté la quantité d’informations
géospatiales disponibles. La vectorisation, le processus de transformation
de représentations graphiques en données géographiques instanciées, est es-
sentielle pour mieux préserver, analyser et diffuser le contenu à des fins
d’analyse spatiale et spatio-temporelle. La thèse expose les défis de la vec-
torisation et les derniers développements en traitement d’image qui perme-
ttent la construction automatique de bases de données géo-historiques, en
mettant l’accent sur la détection de formes fermées dans les atlas de cartes
historiques de Paris du XIXe et du début du XXe siècle.

Les cartes historiques posent des défis liés à la fois à leur caractère car-
tographique et à leur caractère historique, du point de vue de la commu-
nauté d’analyse et de reconnaissance de documents (DAR). Les défis liés
au caractère cartographiques comprennent les variations de sémiotique, le
manque d’informations de texture, la palette de couleurs limitée et les objets
superposés. Les défis liés au caractère historique incluent le papier endom-
magé, les lignes non droites, l’incohérence de l’image, les informations man-
quantes, le changement des propriétés topologiques et les représentations in-
cohérentes des textes manuscrits. Cette thèse vise à accélérer la détection des
structures urbaines essentielles et leur processus de géoréférencement tout
en assurant une grande précision.

Le principal défi scientifique à relever consiste à extraire automatique-
ment des formes fermées de haute qualité à grande échelle à partir de cartes
historiques. Pour y répondre, le problème est décomposé en cinq questions
auxiliaires, qui seront abordées dans des chapitres dédiés. Les questions
comprennent la conception d’une chaîne de traitement pour extraire de manière
fiable des formes fermées, un meilleur filtrage d’images de cartes historiques,
la garantie des propriétés topologiques dans les prédictions, l’amélioration
de la robustesse du modèle dans différentes conditions de numérisation et
l’exploitation des redondances des cartes historiques.

Les contributions de cette thèse sont énumérées comme suit. Pour vec-
toriser les cartes historiques, cette thèse propose une chaîne de traitement
universelle, axée sur l’extraction de formes closes qui représentent des ob-
jets cartographiques variés tels que les bâtiments, les îlots, les jardins ou les
cours d’eau pour l’étude de la morphogenèse urbaine. L’approche proposée
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combine les forces des réseaux de neurones convolutifs et de la morpholo-
gie mathématique pour l’extraction de formes fermées. Un benchmark est
introduit pour la tâche de vectorisation de cartes historiques, comprenant
une comparaison approfondie des détecteurs de contours profonds avec des
fonctions de perte préservant la topologie, une optimisation conjointe des
étapes de détection de contours et d’extraction de forme, et une étude des
effets des techniques d’augmentation. De plus, deux nouvelles fonctions
de perte orientées topologie sont proposées pour préserver les propriétés
topologiques de la segmentation des cartes historiques : BALoss et Pathloss.
Enfin, un nouveau bloc de convolution de contraste (CConv) est proposé pour
améliorer la robustesse du modèle dans la tâche de vectorisation, en se con-
centrant sur la détection de structures curvilignes.

A.2 Conception d’une chaîne de traitement pour la vectori-
sation de cartes historiques

Les chaînes de traitement à une seule étape existantes présentent plusieurs
limitations. L’approche de détection de contour implique de combiner l’ex-
traction de contour avec la simplification de polygones, mais elle présente
des inconvénients comme une qualité limitée des polygones provoquée par
une instabilité des cartes de classification et la nécessité d’un processus de
raffinement manuel. Bien que l’approche de détection de polygones de bout
en bout comprenne des réseaux tels que Polygon-RNN, Polygon-RNN++ et
PolyMapper, ces réseaux peuvent générer des polygones invalides en rai-
son de l’auto-intersection des sommets et des chevauchements de lignes.
Cela pose un défi pour l’ajustement fin de ces méthodes pour les cartes his-
toriques, que nous avons laissé pour des travaux futurs. L’approche de par-
tition de polygones consiste à utiliser des outils tels que LSD et à construire
un diagramme de Voronoï ou à utiliser KIPPI, mais ces techniques dépen-
dent fortement de la qualité des segments de ligne et ne sont pas suffisantes
pour vectoriser des objets avec des frontières courbes. Ces limites rendent
ces approches insuffisantes pour la vectorisation de cartes historiques.

La conception d’une chaîne de traitement à deux étapes est proposée pour
extraire les structures géométriques à partir de scans de cartes historiques.
Les approches de segmentation sémantique traditionnelles sont insuffisantes
en raison du contenu limité en texture et en couleur des données. Au lieu de
cela, le problème est formulé comme une tâche de segmentation d’instance
qui peut être transformé en une tâche d’extraction de contour et de détection
de formes closes. La chaîne de traitements proposée combine une étape de
détection de contours basée sur un réseau de neurones convolutifs (CNN)
avec une étape d’extraction de formes fermées basée sur la morphologie
mathématique pour combiner des forces des deux stratégies. Elle est su-
pervisée et tire profit à la fois des cartes vectorisées de référence et des ar-
chitectures CNN pré-entraînées qui sont disponibles. L’avantage principal
de l’approche proposée est sa faible sensibilité au bruit dans les cartes et la
fourniture de primitives plus saillantes et robustes pour l’étape d’extraction
d’objet subséquente. L’image d’entrée de l’étape de Watershed (issu de la
morphologie mathématique) est une image à canal unique d’activations de
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frontière. L’efficacité de cette approche a été démontrée dans divers travaux.
La méthode proposée est évaluée quantitativement en utilisant la métrique
COCO Panoptic (COCO PQ), et montre des résultats supérieurs à ceux des
chaînes de traitement à une seule étape.

A.3 Apprentissage des contours à travers des architectures
de réseaux neuronaux profonds

Différentes techniques sont comparées, et il est constaté que les architectures
de réseaux neuronaux multiéchelle sont moins performantes que U-Net, ar-
chitecture de référence, à cause d’un phénomène de sur-apprentissage. Les
architectures de type transformer fonctionnent mieux pour les objets de plus
grande taille, tandis que U-Net est plus performant pour une large gamme
de formes. Les deep transformers ont en effet une faible capacité de général-
isation et ne garantissent pas la production de formes fermées. Les tech-
niques d’augmentation de données améliorent la capacité de généralisation
de la chaîne de traitement proposée lors du traitement de nouvelles images
de cartes historiques.

La tâche de détection des contours sémantiques des cartes historiques est
difficile, et les méthodes traditionnelles utilisant le gradient de couleur et
l’apprentissage de caractéristiques échouent souvent. Les méthodes basées
sur l’apprentissage profond ont été développées pour extraire des contours
sémantiques de haut niveau en combinant des caractéristiques de bas et haut
niveau. Les architectures de réseaux neuronaux profonds multiéchelle tels
que HED, RCF et BDCN ont réussi à fusionner les caractéristiques de bas
et haut niveau et à obtenir des résultats de pointe dans les applications de
détection de contours. Ces architectures ont également été appliquées à la
tâche de vectorisation de cartes historiques.

Les architectures de réseaux neuronaux convolutifs sont limitées par deux
éléments dans la détection de structures linéaires à partir d’images possédant
des propriétés topologiques : leur champ réceptif est limité spatialement, et
les cartes de caractéristiques qu’ils construisent présentent des discontinu-
ités. Pour résoudre ces problèmes, nous proposons l’utilisation d’architectures
de transformateurs telles que Vision Image Transformer (ViT) et Pyramid Vi-
sion Transformer (PVT) qui ont des champs réceptifs plus larges et permet-
tent, théoriquement, de capturer des dépendances spatiales plus longues.

Nous discutons des défis liés à l’application des techniques d’augmenta-
tion de données aux images de cartes historiques, car certaines transforma-
tions peuvent rompre les limites d’objets et causer d’autres problèmes. Au
lieu de cela, nous proposons d’utiliser un sous-ensemble sûr de techniques
incluant l’étirement de contraste et les transformations géométriques, pour
imiter les variations des différentes conditions de numérisation des cartes
historiques.

La technique de Deep Watershed surmonte les limites des techniques clas-
siques du Watershed en apprenant directement les iso-niveaux discrets à par-
tir d’images multicanaux. Pour capturer les dépendances à longue distance
entre les pixels et la distance aux contours des objets, une étape intermédiaire
a été introduite dans laquelle un champ de direction est appris pour imiter
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la propagation de front à la base de l’algorithme du Watershed. Cette archi-
tecture intégrée évite le besoin de connaissances préalables sur les attributs
de filtrage et leurs valeurs optimales, mais ne présente qu’une performance
limitée en pratique.

En résumé, nous comparons différentes techniques pour filtrer les con-
tours et extraire des formes fermées à partir de cartes historiques. Les ar-
chitectures multiéchelle donnent de moins bons résultats que U-Net à cause
de problèmes de sur-apprentissage, bien que l’utilisation de réseaux pré-
entraînés réduise le bruit sur les contours prédits. Les architectures de trans-
formateurs fonctionnent bien pour les objets de grande taille, mais U-Net est
meilleur pour une plus large gamme de formes, ce qui se traduit par des per-
formances globales supérieures. Le Deep Watersed présente une faible capac-
ité de généralisation et ne peut pas garantir des formes fermées. Les augmen-
tations de données en utilisant l’étirement de contraste et les transformations
géométriques améliorent considérablement la capacité de généralisation de
la chaîne de traitement proposée pour les images de cartes historiques incon-
nues.

A.4 Fonctions de perte sensibles à la topologie

Nous décrivons le développement de nouvelles fonctions de perte pour préserver
les propriétés topologiques des images de contours prédites, afin de résoudre
le problème de détection manquée de pixels critiques dans les contours des
objets conduisant à une défaillance topologique. Deux sections sont présen-
tées. La première détaille les motivations et les mécanismes des fonctions
de perte topologiques, et la seconde explore l’utilisation de la connectivité
locale des pixels pour améliorer la précision topologique dans les contours
prédits finaux. Quatre fonctions de perte orientées topologie (deux existantes
et deux nouvelles) sont testées pour maintenir la précision topologique dans
la carte de contours prédite.

Tout d’abord, nous discutons de la connectivité des pixels dans les im-
ages prédites, qui est importante pour maintenir la topologie correcte. Les
réseaux de neurones classiques apprennent les probabilités de pixels indi-
viduels plutôt que les probabilités de connectivité entre deux pixels. Pour
surmonter ce problème, nous proposons l’utilisation de la Pixel Connectivity
Loss (PCL) qui prédit la probabilité de connectivité pour chaque pixel indi-
viduel, plutôt que de prédire la probabilité de contour pixel par pixel. Le
pixel central est considéré comme positif si la probabilité qu’au moins un (ex-
actement un/au plus un) pixel voisin se trouve sur un contour est supérieure
à un seuil prédéfini. La méthode PCL est décrite en détail, et ses perfor-
mances au regard de la métrique COCO Panoptic sont rapportées.

Ensuite, nous abordons le défi de maintenir la précision topologique dans
les tâches de segmentation d’images, qui ne peut être assurée par l’op-ti-
mi-sa-tion de pertes basées sur les pixels seuls. Nous étudions trois méth-
odes préservant la topologie pour relever ce défi : TopoLoss (méthode déjà
existante), ainsi que BALoss et Pathloss (deux méthodes que nous avons pro-
posées). Nous présentons ensuite les contributions de ces deux nouvelles
fonctions de perte préservant la topologie, BALoss et Pathloss, qui sont testées
dans des tâches de segmentation de neurones et de cartes historiques.
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En résumé, des fonctions de perte orientées vers la topologie ou la connec-
tivité des pixels sont évaluées afin d’estimer leur capacité à préserver les pro-
priétés topologiques des contours prédits par un réseau neuronal tradition-
nel. Sur la base des résultats d’évaluation, nous avons constaté que les fonc-
tions de perte proposées BALoss et Pathloss peuvent maintenir une meilleure
structure topologique dans les prédictions de contours par rapport à d’autres
fonctions de perte orientées vers la topologie. Nous avons également noté
que bien que la correction de la connectivité des pixels soit fortement cor-
rélée à la précision topologique, les fonctions de perte de connectivité des
pixels ont tendance à ne capturer que des informations locales, tandis que la
précision topologique exige que les pixels de contours prédits maintiennent
un contexte global pour assurer la cohérence.

A.5 Améliorer la robustesse du modèle des détecteurs de con-
tours profonds

Pour améliorer la qualité des tâches de détection de concours courbes et la
robustesse du modèle dans différentes conditions de contraste, nous intro-
duisons un nouveau module appelé convolution de contraste (CConv). La
performance de la segmentation des structures curvilignes est évaluée en
utilisant le module CConv conçu, qui code et apprend l’information des gra-
dients de pixels à l’intérieur des réseaux neuronaux. Les blocs de contraste
sont construits à partir des opérations de convolution, de résidus, d’attention
et de concaténation de contraste, qui peuvent améliorer significativement la
performance de la prédiction des structures curvilignes dans les tâches de
segmentation de cartes historiques. L’inclusion de blocs de contraste dans les
réseaux a entraîné une augmentation de la robustesse aux changements de
contraste d’image, par rapport aux architectures de base. Cela a été réalisé en
ajoutant un nombre marginal de paramètres supplémentaires aux modèles
existants. L’invention de blocs de contraste offre une nouvelle direction de
recherche prometteuse pour intégrer les propriétés structurales à l’intérieur
des architectures de réseaux neuronaux profonds.

A.6 Exploitation des redondances des cartes historiques

La redondance présente au sein de l’Atlas Municipal de Paris est une pro-
priété utile qui peut être exploitée pour le géoréférencement, l’affinage de
la segmentation et l’auto-supervision pour l’entraînement des réseaux de
segmentation. Dans cette thèse, les cartes historiques sont alignées pour
améliorer la qualité de l’extraction de formes fermées. L’alignement des
cartes historiques est difficile en raison de la préservation des propriétés
topologiques, de la recherche de correspondances entre des points clés an-
notés manuellement, ainsi que des motifs répétitifs et du bruit dans les im-
ages. Pour relever ces défis, l’alignement géométrique est utilisé au lieu du
flux optique, des techniques faiblement supervisées sont utilisées sur la base
des cartes de contours prédites par les filtres profonds proposés, au lieu des
images de carte RVB, afin de limiter l’impact du bruit dans le procédé. Nous
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utilisons une stratégie de vote pour restaurer les pixels de contours man-
qués en trouvant un consensus entre les contours prédits dans différentes
planches. Le but est de maintenir des contours alignés de manière fiable tout
en filtrant les autres contours causés par une mauvaise qualité d’alignement
ou des changements sur différentes planches. Cette stratégie peut être util-
isée pour affiner les contours prédits en fonction du consensus dans les ré-
sultats d’alignement de la carte historique. Enfin, la série chronologique de
cartes historiques alignées à l’aide de leurs redondances peut potentiellement
être utilisée pour affiner la segmentation.

Nous alignons les planches de cartes historiques en exploitant les infor-
mations de redondance contenues dans l’Atlas Municipal de Paris. La méth-
ode d’alignement est basée sur l’apprentissage non supervisé qui nécessite
très peu de points de contrôle pour un alignement grossier et aucun point
de contrôle annoté pour un alignement précis. Les images alignées sont en-
suite utilisées pour calculer un consensus de bord pixel par pixel pour ré-
parer les contours interrompus et améliorer la segmentation. Cependant,
l’approche de base ajoute plus de pixels de bruit qu’elle ne récupère de pixels
manquants, il est donc nécessaire d’utiliser des stratégies plus avancées pour
l’affinage des contours.

A.7 Perspectives

Nous suggérons plusieurs orientations pour les travaux futurs. Première-
ment, explorer d’autres variantes d’expériences telles que la combinaison de
techniques d’augmentation de données avec des architectures multiéchelles
et des transformers, ainsi que différentes fonctions de perte préservant la topolo-
gie. Deuxièmement, réaliser des expériences sur un ensemble de données
plus large, comprenant d’autres cartes historiques telles que l’Atlas Verni-
quet, les anciennes cartes IGN et les cadastres. Troisièmement, essayer d’entraîner
certains CNN avec des modules CConv exclusivement afin de remplacer
toutes les opérations de convolution dans l’ensemble du réseau. Quatrième-
ment, évaluer comment l’alignement des cartes peut faciliter la géoréférence-
ment des cartes historiques. Cinquièmement, améliorer le modèle de re-
dondance en modélisant les distributions des probabilités de contours sta-
bles à l’aide d’un modèle génératif et en exploitant le modèle temporel des
changements d’objet. Sixièmement, explorer pleinement les redondances de
cartes pour assembler des planches de cartes séparées et créer des données
d’entraînement plus diverses pour améliorer la vectorisation de cartes his-
toriques. Enfin, prédire directement des polygones à l’aide d’architectures de
prédiction de polygones de bout en bout pour générer des polygones valides
et extraire des formes closes des cartes historiques.
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