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Introduction

This thesis has been conducted in the TOMORADIO team at CREATIS laboratory
in Lyon. Part of the work has been performed in collaboration with the Radiation
Physics Instrumentation Laboratory (RPIL), which is part of Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, in Boston.

Context and objectives
Discovery of X-rays in 1895 byWilhelm Röntgen marked the beginning of medical imaging
history. The hand of the German physician’s wife was, at the end of that year, the first
part of the human body to ever be visualized with radiography. Visualization of organs
and blood vessels was made possible few years later thanks to the use of pharmaceutical
contrast agents. In the 1950’s, nuclear medicine came out as an other tool to inspect the
interior of a body with imaging. In the 1970’s the concept of Computed Tomography
(CT) was developed, combining X-rays acquisition with computer-based technology to
produce images showing slices of the body.

More than 120 years after Wilhelm Röntgen’s discovery, the performance of medi-
cal imaging has drastically improved. This has helped physicians establish accurate and
evidence-based decisions regarding a patient’s health. Today, medical imaging assists
radiologists for administering radiation therapy, overseeing surgical interventions or per-
forming diagnosis. Innovations in this field have paved the way for earlier diagnoses,
better treatments, better recovery outcomes, and overall decreased mortality.

Imaging techniques are for instance an essential part of cancer clinical protocols as
they are able to furnish morphological, structural, metabolic and functional information
[Fass, 2008]. Early detection of cancer, mostly allowed by imaging, is probably the major
contributor to a reduction in mortality for certain cancers. Imaging is involved in staging
of cancer, evaluating the response of treatment, and it can also be a tool to guide cancer
treatment.

Cancer care is far from being the only application of medical imaging; neuroscience
[Jacobs et al., 2003], fracture detection [Markhardt et al., 2009, Ito et al., 2005] are other
examples among the numerous applications for which it is an asset of choice.

There are different imaging modalities, each of them being more or less adapted
depending on the clinical case. Those modalities include CT, Positron Emission To-
mography (PET), Single Photon Emission Computed Tomography (SPECT), Magnetic
Resonance Imaging (MRI), Ultrasound imaging (US). In this thesis we mainly consider
CT and PET.

Imaging techniques in general rely on several key components for which innovation
has lead to more accuracy in screenings: contrast agents and radiopharmaceuticals, in-
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strumentation (scanners, detectors), acquisition methods, tomographic reconstruction,
and finally image processing.

In this thesis we focus on tomographic reconstruction. In the medical context, tomog-
raphy allows observing the interior of a patient from the acquisition data. The design of
efficient reconstruction algorithms is essential as it is one of the key components within
the whole imaging process to assist radiologists. Numerous methods exist; some of them
are general, others are specific to a particular imaging modality. In all cases, tomographic
reconstruction amounts mathematically to solve an inverse problem. .

Over the last few years, a lot of research in the tomographic reconstruction field
has been driven towards methods based on artificial intelligence (AI). AI was originally
performant to solve problems that can be described by a list of formal rules, like playing
chess. It had however issues solving tasks that human beings solve intuitively, such as
recognizing words in speech or objects in images. A solution appeared with machine
learning, which allowed computers to learn from experience: in this realm, there is no
longer the need to formally specify all the knowledge required to solve a specific task.
Machine learning allows computers understanding the world in terms of a hierarchy of
concepts [Goodfellow et al., 2016]. If one draws a graph to show how these concepts are
built with respect to each other in real life, the graph is "deep", i.e with many layers.
Methods using such structural information are part of a particular field of methods: deep
learning. They rely on specific structures that are called neural networks.

The objective of this thesis is therefore to study the interest of deep learning based
methods for image reconstruction in PET and CT imaging, as compared to traditional
methods. We put the emphasis on evaluating the performance of neural networks when
considering criteria that are relevant for medical application. We also propose a deep
learning based method for solving blind deconvolution problems. As the point spread
function is hard to determine in emission imaging, our method is of interest in this
context. We show preliminary results on a particular PET imaging system that aims at
improving the detection of lymph nodes in the context of breast cancer imaging.

Contributions and organization of the manuscript
The first chapter allows understanding the basic elements of inverse problems. We also
describe in this chapter the two modalities of interest in this thesis, namely CT and PET.
Our aim is to understand how tomographic reconstruction can be modeled as an inverse
problem, and we give analytical methods for its resolution.

In Chapter 2 we give an overview of iterative methods for performing image recon-
struction from measurements. Especially, we perform a comparative study on simulated
and real data to show limits of such methods for practical use, and show part of the
extent to which deep learning based methods might be a relevant alternative.

Chapter 3 is a state of the art review of deep learning based methods for tomographic
reconstruction for both CT and PET.

In Chapter 4 we study the impact of the way neural networks learn from data on
the accuracy of quantitative and qualitative parameters in the reconstructed image; the
parameters that we consider are of major significance from a medical point of view. More
specifically, we study the influence of the loss function used for training neural networks
for bone µ-CT imaging. The parameters for which accuracy is evaluated are particularly
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relevant for diagnosis of bone-related diseases such as osteoporosis.
Chapters 5 and 6 are specific to PET, as we perform a study on a time-of-flight (TOF)

PET intraoperative imaging system, in collaboration with the RPIL. The objective of
this system is to allow better detection of lymph nodes in the context of breast cancer
imaging. In Chapter 5 we detail state of the art methods for PET imaging, with a focus
put on both image reconstruction and blind deconvolution techniques. In Chapter 6
we show our experiments in order to assess the performance of neural networks for the
particular application and to validate the effectiveness of the network that we propose,
called PAVENET.
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Chapter 1

Tomographic reconstruction as an
inverse problem

The task that is at the core of this thesis is tomographic reconstruction. As we mentioned
in the introduction, performing this task amounts to solving an inverse problem. The
objective of this first chapter is therefore twofold: in Section 1.1 we introduce the notion
of inverse problems along with standard methods for their numerical resolution. This
allows one to lay a theoretical foundation for all methods presented in the thesis. In
Section 1.2, we present the two main imaging modalities that will be considered in the
next chapters, namely CT and PET. We give practical and theoretical elements for the
associated reconstruction task. In this second section, we especially formulate the inverse
problem associated to CT and PET image reconstruction, and we explain the main
methods for solving it analytically.

1.1 Inverse problems
In this section we formulate the general form of an inverse problem. We show the cor-
responding variational formulation, which represents the inverse problem as a functional
to minimize. The choice of methods to minimize this functional depends on its charac-
teristics: smooth, convex, etc. Depending on these characteristics we describe common
optimization methods for the minimization task. Finally we will see a different approach,
considering an inverse problem from a statistical point of view. General methods for
resolution will be discussed in this case.

1.1.1 General formulation
Some physics problems rely on predicting the state of a system from a set of initial
conditions. For instance, knowing the initial speed of a car, the deceleration generated
by the driver’s action on the brakes and information on the grip between the tires and the
road, a relatively accurate prediction of the car’s stopping distance can be obtained. Now
if we consider the opposite scenario where we observe the stopping distance of the car and
we want to determine the initial parameters, the task becomes more complex. The second
situation belongs to the category of inverse problems, which purpose is to determine
the causes of observed effects. Source reconstruction in acoustics or astronomy, seismic
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tomography in geophysics and image super-resolution in computer vision are among the
numerous examples of such problems. They indeed cover a wide range of applications
including optics, oceanography, non destructive testing and of course, medical imaging.

We will consider the general formulation of an inverse problem as

p = A( f ) (1.1)

where p are the observed measurements, A is some operator that transforms the quantity
of interest f that we aim to retrieve. In the sense of Hadamard, the problem (1.1) is said
to be well-posed if it satisfies the three following conditions :

• a solution exists : p ∈ Im(A)

• the solution is unique : if A is a linear operator, we have Ker(A) = 0

• the solution depends continuously on the data.

In this thesis, the tomographic reconstruction task that we will consider involves
a linear inverse problem. Also, in Chapters 5 and 6, we will introduce the notion of
deconvolution which also corresponds to a linear inverse problem. Therefore in what
follows, A is considered as linear.

1.1.2 Variational formulation
When at least one of the three mentioned conditions is not fulfilled, the problem is said to
be ill-posed. It appears to be the case for most of the real inverse problems. Variational
approaches are generally preferred to direct inversion methods when ill-posedness implies
a too important deterioration of the estimate of the object f . Variational methods consist
in finding f ∗ that minimizes an energy function J such that

J( f ) = d(A( f ), p) + αR( f ) (1.2)

where d is a data-consistency term, R is a regularization term that allows giving a priori
information on the solution and α is a weighting parameter. In what follows we go through
a non-exhaustive list of optimization methods which can be used to reach an estimate
of the solution f ∗ depending on the characteristics of J for the variational formulation
(1.2).

1.1.3 Optimization methods
We consider here cases where J is either smooth or convex.

1.1.3.1 Smooth optimization

Here we consider the discretized problem as this will be the case in practice, with an
energy function J ∈ C2(Rp,R). We denote the gradient of J as ∇J and the Hessian as
HJ . We have ∀ f ∈ Rp,∇J( f ) ∈ Rp and HJ( f ) ∈ Rp×p. We also consider that there is a
constant L such that1 ∀ f ∈ Rp,HJ( f ) � L.I, where I is the identity matrix, which implies

1For matrices U ∈ Rp×p and V ∈ Rp×p, U � V ⇐⇒ ∀x ∈ Rp, xTUx ≤ xTV x
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that ∇J is L-Lipschitz on Rp. The first and second-order optimality conditions for a local
minimizer f ∗ are {

∇J( f ∗) = 0
HJ( f ∗) � 0

(1.3)

From these optimality conditions, several optimization schemes can be derived such
as gradient descent or second order methods.

Gradient descent The iteration scheme for the gradient descent given an initialization
f 0 ∈ Rp is

f n+1 = f n − η∇J( f n) (1.4)

where η is the step size of the descent. Convergence of the algorithm can be shown when
η ≤ 2

L [Nocedal and Wright, 1999]. It is also possible to consider a descent direction dn

such that 〈dn ,∇J( f n)〉 < 0 so that f n+1 = f n+ηdn. Also, methods for finding an optimal
step size η (or ηn as it might change over iterations) are known as linesearch strategies
and they are used in order to accelerate convergence.

Second order methods Second order methods involve the computation of HJ to find
the next iterate. An example is the Newton’s method applied to the gradient of J in
order to find where it equals to zero. The resulting iteration scheme is given by

f n+1 = f n − HJ( f n)−1∇J( f n). (1.5)

1.1.3.2 Convex optimization

In this paragraph we consider cases where J is a convex functional, that might be not
differentiable. The vector g ∈ Rp is a subgradient of J in f if

J(v) ≥ J( f ) + 〈g , v − f 〉 , ∀v ∈ Rp. (1.6)

The notion of subgradient generalizes the notion of gradient. The set of vectors
satisfying (1.6) is called the subdifferential of J in f and is denoted as ∂J( f ).

Subgradient descent It is possible to extend (1.4) to find a minimizer with the fol-
lowing subgradient descent

f n+1 = f n − ηngn , gn ∈ ∂J( f n) (1.7)

where ηn are the stepsizes. Convergence is ensured as long as lim
N→+∞

∑N
n=0 η

n = +∞ and
lim

N→+∞

∑N
n=0(η

n)2 < +∞ [Nocedal and Wright, 1999].

Proximal methods The proximal operator of a function F, computed in z with pa-
rameter σ is defined as

proxσ[F](z) = arg min
z′

{
F(z′) +

1
2σ ‖z − z′‖22

}
.
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In practice, it can be useful to split an objective function into two terms, with one of
the terms that is non-smooth. In such a case, the interest of the proximal operator is to
make this term smooth. A reference method in the tomographic reconstruction research
field is the Chambolle-Pock algorithm [Chambolle and Pock, 2011], which we detail in
what follows.

We consider the objective function as composed of two convex functions F : Y 7→ R

and G : X 7→ R with X and Y two Hilbert spaces, a linear operator K : X 7→ Y such that
the general optimization problem can be written as

min
f

F(K f ) + G( f ). (1.8)

The conjugate F∗ of F is such that F∗(y) = maxy′ {〈y, y
′〉Y − F(y′)}. Considering F as a

proper, lower semi-continuous, and convex function (see e.g [Beck, 2017] for definitions),
the Moreau-Fenchel theorem holds and we have F = F∗∗. Replacing F with F∗∗ in (1.8)
gives the equivalent problem

min
f

max
y
〈y,K f 〉 − F∗(y) + G( f ) (1.9)

which is a saddle point - or minmax - problem. The problem (1.8) corresponds to the
minimization part of (1.9): it is the primal problem. The dual problem corresponding to
(1.9) consists in solving the maxmin problem, which is

max
y

min
f
〈y,K f 〉 − F∗(y) + G( f ). (1.10)

We have

max
y

{
min

f
(〈y,K f 〉 + G( f )) − F∗(y)

}
=max

y

{
−max

f
(−〈y,K f 〉 − G( f )) − F∗(y)

}
=max

y

{
−max

f
(〈−KT y, f 〉 − G( f )) − F∗(y)

}

so that (1.10) can be written as

max
y

{
−G∗(−KT y) − F∗(y)

}
. (1.11)

Problem (1.11) is referred to as the dual problem of (1.9).
The Chambolle-Pock (CP) algorithm - also known as the primal-dual hybrid gradient

method (PDHG) - aims at simultaneously maximizing the dual (1.11) and minimizing
the primal (1.8). In practice this amounts to performing these two steps:

1. A maximization step on y for (1.10), assuming an estimate f̂ that minimizes
〈y,K f 〉 − F∗(y) + G( f ) over f .

2. A minimization step on f for (1.9), assuming an estimate ŷ that maximizes 〈y,K f 〉−
F∗(y) + G( f ).
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The difference between the value of the cost function in steps 1 and 2 is called the
duality gap; convergence of the algorithm can be assessed following the decrease of this
gap.

In the CP algorithm, a proximal gradient algorithm is used to solve both tasks.
This corresponds to a method that can be applied to the general minimization prob-
lem miny g(y) + h(y) where g is differentiable and h is a function for which the proximal
operator is usually not computationally expensive. The proximal algorithm finds a solu-
tion as

yn+1 = proxσ(h)(yn − σ∇g(yn))

= arg min
u

h(u) +
1

2σ | |u − yn + σ∇g(yn)| |22

which, by considering terms that do not depend on u, is equivalent to solving

arg min
u

h(u) +
1

2σ | |u − yn | |22+ < u − yn,∇g(yn) >

= arg min
u

h(u) + g(yn)+ < u − yn,∇g(yn) > +
1

2σ | |u − yn | |22

so that one can observe that yn+1 is actually a minimizer of h(u) plus a quadratic local
model of g(u) around yn.

Let us now apply the proximal gradient method to (1.10) considering an estimate f̂ .
The problem can be written as

min
y

g(y) + h(y) (1.12)

with g(y) = −〈y,K f̂ 〉, so that ∇g(y) = −K f̂ , and h(y) = F∗(y).
Applying the proximal gradient method therefore gives

yn+1 = proxσ(F∗)(yn + σK f̂ ) (1.13)
Assuming an estimate ŷ, minimization of (1.9) can also be written as minf g( f )+ h( f )

where this time g( f ) = 〈ŷ,K f 〉, so that ∇g( f ) = KT ŷ, and h( f ) = G( f ) so that

f n+1 = proxτ(G)( f n − τKT ŷ) (1.14)
where, similarly to σ, τ is a step size.

The pseudo-code of the general Chambolle-Pock algorithm is given in Algorithm 1.
Note that the last update aims at getting faster convergence.

Algorithm 1: Pseudo-code for N-steps of the original CP algorithm
1 initialize τ, σ, θ
2 initialize f 0 and y0 to zero
3 n← 0
4 f̂ 0 ← f 0

5 while n ≤ N do
6 yn+1 ← proxσ[F∗](yn + σK f̂ n)

7 f n+1 ← proxτ[G]( f n − τKT yn+1)

8 f̂ n+1 ← f n+1 + θ( f n+1 − f n)

9 n← n + 1
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To sum up, there are five steps required in order to run the Chambolle-Pock algorithm
for an optimization problem :

1. Put the problem into the form F(K f ) + G( f ).

2. Compute the convex conjugate F∗.

3. Compute the proximal mappings of F∗ and G.

4. Substitute the results into the original Chambolle-Pock algorithm.

5. Run the algorithm monitoring the primal-dual gap for convergence.

More generally there are plenty of algorithms for optimization problems [Nocedal and
Wright, 1999, Beck, 2017], and here we described only a tiny part of them. It is also to
be noted that we considered an energy function J that is either smooth or convex. When
it is not the case, solving the optimization problem involve different methods; we can
for instance mention stochastic gradient methods such as Adam optimization [Kingma
and Ba, 2014] that is commonly used for deep learning based methods as we will see in
Chapters 3 and 4.

We also point out the fact that the scipy library in Python offers a large number
of implemented optimization algorithms and thus can be an interesting tool for such
problems.

1.1.4 Statistical formulation
Inverse problems can also be considered with a statistical point of view [Dashti and Stuart,
2017]. This represents a different paradigm compared to what was detailed before. In that
case the object of interest f and the measurements p are assumed to be random variables.
We denote the likelihood function as πdata(p| f ); it corresponds to the probability of
observing p knowing f . The prior distribution is the probability of having f , under no
other assumption; we denote it as πprior( f ). These two distributions can be combined to
get the posterior distribution with Bayes rule as πpost( f |p) ∝ πdata(p| f )πprior( f ).

Let us illustrate these notions with a simple example. Say one wants to estimate
the age of an ibex located in a certain mountain area by measuring the length of the
animal’s honks. In this case f represents the unknown age and p is the length of the
honks. Knowing πdata(p| f ) corresponding to the honks’ length distribution depending on
the age of an ibex, and knowing the distribution πprior( f ) of all these animals’ age in the
searched area allows obtaining the posterior distribution πpost( f |p). An example is given
in Figure 1.1; it illustrates the importance of the prior distribution since it allows getting
more information on the solution one is looking for. Here in our simple example we
observe that the knowledge of the fact that ibexes are generally old in the investigation
area allows one to obtain a higher estimation of the age of the observed animal given
the length of its honks. The prior knowledge thus shifts the distribution towards higher
values of the ibex age f . This is a major difference between using the likelihood and
using the posterior distribution to estimate a parameter from measurements.

A solution to our inverse problem can be obtained by solving
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Figure 1.1: Illustration of the difference between likelihood and posterior distribution.
We consider a measure of pobs = 65 cm for the honks length. We represent here the
likelihood πdata(p| f ) for p = pobs so it corresponds to the probability that such a measure
is obtained for every age f . The prior πprior( f ) is the age distribution over the searched
area, with a mean of f̄ = 17y.o. The posterior distribution πpost( f |pobs) is the probability
of the ibex age given the measurement pobs.

max
f

πpost( f |p). (1.15)

The resulting estimate f̂ is called the maximum a posteriori or MAP. It is common to
solve the minimization problem that consists of taking the negative logarithm of (1.15).
The variational methods discussed in the previous part can then be used to solve the
equivalent problem

min
f
(− log πdata(p| f ) − log πprior( f )) (1.16)

We derive in what follows some simple examples to illustrate how to obtain an estimate
of the MAP depending on the noise considered on the data and the prior assumed on the
solution.

Gaussian noise, Gaussian prior Considering Gaussian noise we can write

p = A f + ε (1.17)

with ε = (ε1, . . . , εn) is an additive Gaussian noise with zero mean and variance σ. Assum-
ing a Gaussian prior such that f = ( f1, ..., fn) with fi i.i.d that are normally distributed
with zero mean and unit variance, we have

πpost( f |p) =
1

2πσ e−
1

2σ2 | |A f−p| |22−
1
2 | | f | |

2
2 (1.18)
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Taking the negative logarithm we obtain the equivalent problem

min
f
| |A f − p| |22 + σ

2 | | f | |22 (1.19)

which corresponds to a Tikhonov-regularized least squares problem. Denoting the adjoint
of A by A∗, the solution fopt satisfies the equation (A∗A+σ2I) fopt = A∗p; it is then possible
to solve this linear system numerically.

Poisson noise, uniform prior Let us now consider Poisson noise on the data and
a uniform prior. We have a vector of measurements p that are represented as random
variables following a Poisson distribution with mean λ = A f (element-wise). Here the
likelihood can be written

πdata( f |p) =
∏

i

(A f )pii

pi!
e−(A f )i, (1.20)

so maximizing the (log-)likelihood amounts to minimizing the Kullback-Leibler divergence

KL(A f , p) =
∑

i

(A f )i − pi + pi log(pi) − pi log((A f )i) (1.21)

since the term −pi + pi log(pi) does not depend on f .
A common way to solve such a problem when A is the operator for tomographic

reconstruction is to use MLEM algorithm [Shepp and Vardi, 1982] that will be described
in Chapter 2. When A is a convolution operator, the equivalent method is known as
the Richardson-Lucy algorithm [Richardson, 1972, Lucy, 1974] which we will refer to in
Chapter 5.

We see that considering either a variational or a statistical formulation for a given
inverse problem, methods for resolution involve minimizing some functional. Many algo-
rithms for performing the minimization task exist and are more or less efficient depending
on the considered noise and "quality" of the measurements p. In Chapter 2 we will de-
scribe some algorithms that are specific to PET and CT modalities. In what follows we
describe both applications so that we can formulate the inverse problem that is common
to the corresponding tomographic reconstruction task.

1.2 Tomographic reconstruction for CT and PET
We split this section as follows: we first describe computed tomography (CT), then we
focus on positron emission tomography (PET). The last sub-section unifies the recon-
struction task for both modalities by formulating a common inverse problem, for which
analytical methods for resolution are given.

1.2.1 Computed tomography
CT scanners use a rotating X-ray tube and a row of detectors placed in a gantry to
measure X-ray attenuations by different tissues inside the body (Figure 1.2). The multiple
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Figure 1.2: Scheme of a CT scan.1

X-ray measurements taken from different angles are then processed on a computer using
tomographic reconstruction algorithms to produce tomographic (cross-sectional) images
(virtual "slices") of a body. CT scan can be used in patients with metallic implants or
pacemakers, for whom magnetic resonance imaging (MRI) is contraindicated.

Tomography is an imaging technique that reconstructs a volume from external mea-
surements. It is thus a non-invasive technique to observe the inside of an object without
any manual intervention on it. This is for instance the principle that is used in airports
to visualize the content of a passenger’s bag at the gates. There are plenty of applications
for tomography : geophysics, astrophysics, optics or even archeology. The most common
use for such a technique is biology and especially medical imaging. Tomography usually
involves a detector that measures radiation data - photon counts for instance - after these
radiations have interacted with the object of interest and/or with the environment. In
emission tomography, the source of the radiations is the object of interest; in the con-
trary for transmission tomography the source is placed outside of the object, so that
the measurements of the detector can give information on the attenuated/transmitted
radiation.

We focus here on Computed Tomography which is an imaging technique that consists
in 1: making use of X-rays measurements and 2: processing them with tomographic
reconstruction algorithms to produce cross-sectional images of a body. CT has various
applications but the most common and the one that we are interested in here is the use
for medical scanners. CT scans are used for preventive medicine or screening for disease.
They are a tool for almost every part of the body; for the head it is used to detect stroke,
tumors, haemorrhage; for the neck it helps evaluate the presence of thyroid cancer for
instance. CT scans for the lungs have numerous applications such as detecting changes
in the lung parenchyma - the tissue of the lungs - or lung cancer. There are many more
applications of CT scans including angiography, visualization of the heart, the abdomen,
etc.

Overall, X-rays and Computed Tomography have been a breakthrough in the medical
1https://thoracickey.com/basic-principles-in-computed-tomography-ct
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Figure 1.3: Electromagnetic spectrum. Scheme from the European Synchrotron Radia-
tion Facility website.1

field by alleviating the systematic need for clinical intervention to visualize the tissues and
organs of a patient. It is also to be noted that the radiation undergone by the patients
might cause serious damage to the their health when the dose is high [United Nations
Scientific Committee on the Effects of Atomic Radiation et al., 1996, Rehani and Berry,
2000, Staniszewska, 2002], which has lead to an increasing amount of research towards
reducing the radiation dose while keeping the image quality exploitable for clinicians. We
will cover this topic more in depth in Chapter 3.

We present here the physics of CT and then we focus on the mathematical framework
associated to tomographic reconstruction in CT.

1.2.1.1 Physics of CT

From X-rays to CT images X-rays2 are electromagnetic waves with a wavelength
ranging from picometers to nanometers. They are located at the high energy/short
wavelength end of the electromagnetic spectrum, between ultraviolet light and gamma
rays as represented in Figure 1.3. For medical purpose, hard X-rays - as opposed to
soft X-rays - are commonly used thanks to their ability to penetrate the matter. Their
wavelength ranges from 0.01 nm and 0.1 nm. Radiography is based on the fact that X-rays
are more or less absorbed depending on the density of the material they penetrate; more
density means more attenuation/less transmission by the matter, so a detector placed
after such an object will measure less radiation.

Let us consider an object placed between a X-ray source and a detector. The measured
intensity of the X-ray beam I is related to the intensity of the incident beam I0 according
to the Beer-Lambert law as

I = I0e−µρl (1.22)

with l the thickness of the material in cm, µ the mass coefficient (cm2/g) and ρ the volumic
mass of the material (g/cm3), µX = µρ thus corresponding to its linear absorption - or
attenuation - coefficient (cm−1).

The volume of interest can therefore be characterized by its linear attenuation coeffi-
cient, which varies across the space. It is common for radiologists to represent CT images

1https://www.esrf.fr/about/synchrotron-science/synchrotron-light
2X-rays were first described by Wilhelm Röntgen in 1895. He called them X-radiation referring to

the letter X often used for the unknown in mathematical formulas as their true nature was unclear to
him at that time.
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Tissue Hounsfield unit (HU)
Air −1000
Lung −500
Fat −100 to −50
Water 0
Blood +30 to +45
Muscle +10 to +40
Grey matter +37 to +45
Soft tissues +100 to +300
Cancellous bones +700
Cortical bones up to +3000

Table 1.1: Examples of Hounsfield units for different tissues.

in a discretized way with Hounsfield Units (HU)1. The HU value can be obtained with a
linear transformation of the linear attenuation coefficient of the X-ray beam as

HU(X) = 1000 × µX − µwater

µwater
(1.23)

where µX is the linear attenuation coefficient of the studied tissue, and µwater the one for
water. As shown in Table 1.1, bones have a HU value ranging from 700 for cancellous bone
and up to 3000 for dense bones, etc. CT images are thus represented with grayscale, where
dark areas correspond to less dense areas, and more dense tissues are brighter. Examples
of X-ray radiography are given in Figure 1.4.

Physics of X-rays creation The objective here is to cover the physical aspects of
X-rays for CT. Especially, we detail the process for X-ray creation and explain their
interactions with the matter so that they are absorbed by the tissues or detected by the
CT system.

X-rays are produced in a Coolidge tube2. It consists of a glass tube with a cathode
and an anode. The process of X-rays creation is as follows:

1. A metal filament is heated by Joule effect level with the cathode. By thermionic
emission, the superficial electrons leave the cathode to form an electronic cloud.
The intensity of the electron beam is proportional to the intensity of the heating
current and the heating duration.

2. Those electrons are then ejected from the filament and sent to the anode with the
electrical field which results from the cathode/anode difference of potential. Note

1The Hounsfield unit was named after Sir Godfrey Hounsfield who received the Nobel Prize in Phys-
iology or Medicine in 1979, for his part in the invention of CT.

2The first Coolidge tube was produced in 1913 by William Coolidge, as an improvement of the Crookes
tube.
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Figure 1.4: Radiography of a hand (left) and a knee (right)

that the Coolidge tube is placed in an empty space so that the electrons are not
deviated from their trajectory.

3. At the end, the electrons interact with the anode: either they are deviated or they
collide with atoms - we will detail those processes -, but in any case this is where
X-rays are created.

In the case where the electrons are deviated, the emitted X-rays are the consequence
of the Bremmstrahlung radiation1 : the electron is attracted by the nuclei of an atom -
Coulomb’s law - and its trajectory is modified. As the electron is slowed down by the
strong electric field near the nuclei, a photon is emitted due to the loss of the electron’s
kinetic energy. The energy of the emitted photon depends on the loss of kinetic energy.

The second possibility is that the incident electrons collide with an electron of an
anode’s atom. The electron that is hit is then ejected of its layer and the atom is in
an excited state. An electron from an upper layer thus replaces the ejected electron to
stabilize the atom; this results in a loss of energy for the electron of the upper layer which
leads to the emission of a radiation which energy depends on the layers that are involved
during the interaction.

Throughout this process, only a tiny part of the incident energy is converted into
X-rays; 99% of the energy is dissipated into heat. The energy efficiency is low and is
proportional to both the atomic number of the anode and the potential difference between
the electrodes. Generally, the anode is made of tungsten, molybdenum or copper.

As any value can be taken by the loss of energy during the interaction resulting in
the emission of X-ray, the braking radiation has a continuous spectrum. Such a spectrum

1from bremsen "to brake" and Strahlung "radiation"; i.e., "braking radiation" or "deceleration radia-
tion"
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Figure 1.5: Example of the energy spectrum for a tungsten anode. Scheme from the
Australian Radiation Protection and Nuclear Safety Agency.1

can be observed in Figure 1.5 for a tungsten anode. The peaks that can be observed
in the X-rays spectrum corresponds to the quantization of the energy resulting from the
changes of state of the anode’s atoms.

In the X-rays spectrum there are low-energy photons than can be emitted; these are
absorbed by soft tissues when going through the patient, so they are of no interest for
imaging, and could even be a source for scattering. For this reason aluminium is used to
filter those low-energy photons while letting the higher-energy ones go through.

Once it has been emitted from the Coolidge tube, the X-ray beam passes through
the patient. During that pass, photons interact with the matter in different ways. The
nature of the photon-matter interaction depends on the energy of the X-rays and on the
atomic number of the atoms that constitute the matter. We detail here those different
interactions:

• The photoeletric effect : the incident photon ejects an electron of the collided atom
and is completely absorbed. The atom is thus ionized. This interaction happens
when the photon energy is higher than the electron’s binding energy. For a fixed
energy, the probability of a photon being absorbed is higher for high value of the
atom’s atomic number.

• The Compton effect : the incident photon collides with an atom’s electron but is not
completely absorbed. The electron is ejected and the incident photon is scattered in
a random direction with a lower energy. This happens in a similar range of energy
compared to the photoelectric effect, which is a source of noise for medical imaging.

• The Rayleigh scattering : the photon excites an atom without colliding with an elec-
tron. Getting back to a stable state, the atom emits a photon with similar energy.
This however happens for low energy and is less relevant for medical imaging.

1https://www.arpansa.gov.au/understanding-radiation/what-is-radiation/
ionising-radiation/x-ray
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Figure 1.6: Parallel beam (left), fan beam (center) and cone beam (right) CT geometries
[Schlifske and Medeiros, 2016].

• Pair production and photodisintegration are the two other interactions but they
only appear for high energies that are not used in medical imaging.

As we mentioned, the principle of radiography is to make use of X-rays in order to
measure the attenuation between a source and a detector. CT scanners actually use a
rotating X-ray tube in addition to a row of detectors that measure the intensity of the
beam after going through the body, as illustrated in Figure 1.2. Measurements taken
from different angles are then processed with tomographic reconstruction to produce a
3D image of the body: the tomographic reconstruction step represents the core of interest
of this thesis.

As X-rays are a ionizing radiation, their administration to biological tissue is harmful
and needs to be well justified. Different CT geometries exist and their evolution over the
years have improved the image quality with the less radiation for the patient as possible.
Fan beam geometry gradually replaced parallel beam and nowadays cone beam geometry
is widely used. Improvements of the scanner geometry were made to improve the image
quality while reducing the required radiation dose delivered to the patient. Illustrations
of those different geometries are presented in Figure 1.6.

1.2.1.2 Modeling

The objective now is to model the aforementioned physics so that we have a mathematical
framework to work with. We thus need to describe the attenuation of the intensity of a
photon beam going through a material. Let us assume that these photons are emitted
in r = 0 with intensity I0 and detected in r = +∞. Let us consider u(r) = µ(r)ρ(r) the
linear absorption coefficient in r. If we consider a small interval δr, the Beer-Lambert
law states that the attenuation in δr is proportional to the intensity I(r), u(r) and the
width of this interval such as

I(r + δr) = I(r) − u(r)I(r)δr (1.24)
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Figure 1.7: Source-detector pair. The detector is located in (t,0) in the (®α, ®β) basis.
I0 is the source beam intensity, I1 is the received intensity. `(θ, t) is the line that is
perpendicular to ®α and intercepts (0, ®α) in t. The distance between source and detector
is L.

which gives, dividing by δr and taking the limit when δr → 0

d
dr

I(r) = −u(r)I(r), I(0) = I0. (1.25)

Solving (1.25) we get
I(r) = I0 e−

∫ r

0 u(r ′)dr ′ . (1.26)
If we consider a beam source at r = 0 and a received intensity I1 at the detector

located in r = L, we can introduce the notion of projection P` that corresponds to the
following measure

P` = log( I0
I1
) =

∫ L

0
u(r)dr . (1.27)

In other words, taking the logarithm of the ratio between the initial intensity and the
received intensity amounts to measuring the integral of the unknown attenuation u(r)
along the line of length L for each source-detector pair as illustrated in Figure 1.7. Note
that such a model is valid considering a mono-energetic beam.

1.2.1.3 Radon transform

The Radon transform maps a function into the set of its integrals on hyperplanes of Rn.
For all unit vectors ®α ∈ Rn and all t ∈ R, the Radon transform of u can be written as

Ru(®α, t) =
∫
®v.®α=t

u(®v)d®v. (1.28)
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Figure 1.8: Examples of sinograms.

In other words, R f (®α, t) is the integral of f on a hyperplane orthogonal to the vector ®α.
Considering n = 2, we suppose that ®α makes an angleθ with the 0x axis; we can in

this case write the Radon transform as:

Ru(θ, t) =
∫

l(θ,t)
u(r)dr (1.29)

where `(θ, t) is the line that is perpendicular to ®α and intercepts (0, ®α) in t, see Figure 1.7.
In this case we obtain an expression that is similar to (1.27), considering that u(r) = 0
for r < [0, L], with the Radon transform parametrized by an orientation θ and a real
number t that describes all possible X-ray measurements of u. The set of measurements
(Ru(θi, .))i for a finite number of angles θi is referred to as the set of projections of u.

The graphical representation of the Radon transform Ru(θ, t) as a function of the
projection angle θ looks like a superposition of sine and cosine waves; this is the reason
why the set of projections is also called a sinogram. Examples of such sinograms are
represented in Figure 1.8.

Since we can now describe all possible X-ray measurements of an image u(x, y) thanks
to the Radon transform Ru, the question is whether we can obtain u from the mea-
surements Ru and thus exactly solve the inverse problem. This question involves several
elements: the Fourier slice theorem, backprojection and filtered backprojection. We detail
these in Section 1.2.3 as there are associated to both CT and PET modalities.

1.2.2 Positron emission tomography
PET is a medical imaging technique that provides functional information to the radiolo-
gists. It has a lot of applications in oncology, cardiology and neuropsychiatry. Especially,
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it is a method of choice for cancer diagnosis [Coleman, 1999] and for radiation treatment
planning [Macmanamus et al., 2009].

PET is a nuclear medicine technique that relies on the injection of a vector-radionuclide
pair to the patient. The vector’s objective is to get fixed on regions of interest; the ra-
dionuclide’s decay then allows one to localize it through imaging. The choice of such a
pair is motivated by the objective of the imaging protocol: pathology detection, molec-
ular process to track, etc. As tumors consume a relatively high amount of glucose, a
common used pair for cancer detection is the 18F-fluorodeoxyglucose (18F-FDG) [Reske
and Kotzerke, 2001].

Similarly to the previous section, we first describe the physics of PET imaging and
then we describe the model for the of the reconstruction task for PET.

1.2.2.1 Physics of PET

There are different radio-tracers used in PET: we mentioned 18F-FDG, but there are
other choices such as fluorothymidine (FLT), rubidium chloride etc. Isotopes for PET
are β+ emitter, meaning that their radioactive decay consists in the transformation of a
proton into a neutron while a positron and a neutrino are also emitted:

p+ −−−→ n + e+ + νe. (1.30)

After a short distance of a few millimeters maximum [Levin and Hoffman, 1999], the
emitted positrons collide with an electron, leading to their annihilation which gives a pair
of photons. The total quantity of motion being zero considering the center of gravity of
the electron-positron system as referential, the photons are emitted in opposite directions.
The positron’s kinetic energy being negligible, the photons energy corresponds to their
mass : 511 keV.

As illustrated in Figure 1.9, a PET camera is composed of rings composed of elemen-
tary detectors surrounding the patient. Those detectors are optimized for the detection
of 511 keV photons. An event is stored when two photons are detected in coincidence,
which in practice corresponds to the fact that the time between two detections is shorter
than a certain threshold, generally a few nanoseconds.

A single detector is composed of a scintillator and a photomultiplier tube. The former
converts high-energy photons to visible light, i.e photons with energy between 1.6 eV and
3.3 eV. The photomultiplier tube converts those photons into an electric current.

It is the - almost - simultaneous detection of these coincidence photons that enables
the estimation of tracer distribution with image reconstruction. Indeed, we assume that
two photons that are detected in coincidence come from a unique electron-positron anni-
hilation. This annihilation takes place in the line of response (LOR) that can be drawn
between the two detectors. Contrary to CT imaging where one measures the attenuation
of the imaged tissues thanks to an external source, the PET image corresponds to the
distribution of the radiotracer injected inside the patient.

1.2.2.2 Modeling

The first step of the modeling in PET imaging is to represent the imaged object in a
discretized way. As for CT, the space is divided into voxels, but here the value of each
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Figure 1.9: PET camera and photomultiplier tube.

voxel is the activity - in Becquerel - of the radiotracer at the corresponding location.
Let us consider two different detectors d1 and d2 and let α be the direction perpen-

dicular to the LOR. We denote the tracer concentration as λ(®α,r) for each position r in
the LOR L(d1, d2) that has a direction perpendicular to the vector ®α. We denote the
sensitivity function of the system as ψ: it corresponds to the probability of detection for
a photon emitted, per time unit. The number of coincidences detected by d1 and d2 for
an acquisition time τ can be expressed as

Pd1,d2 = τ

∫
L(d1,d2)

λ(®α,r)ψ(r, ®α)dr . (1.31)

The reconstruction task then consists in estimating the tracer concentration λ, given
all LORs. Considering the sensitivity function as uniform, the distance between the LOR
and the center of the detector ring as t and the angle formed by ®α w.r.t the origin as
θ, we can retrieve an expression similar to (1.29) for the Radon transform of the tracer
concentration along the FOV:

Rλ(θ, t) =
∫
`(θ,t)

λ(r)dr (1.32)

where `(θ, t) = L(d1, d2) so that the problem has strong similarities with the one discussed
for CT.

In practice one needs to consider corrected PET data. Those corrections result from
different phenomena:

• Noise: among the stored coincidences, a large part should be discarded for image
reconstruction. Indeed, the Figure 1.10 illustrates the notion of scatter, random
and multiple coincidences. In the first case, at least one of the photons is scattered
before reaching the detector. For random coincidences, two photons coming from
a different annihilation are detected in the considered time window. Multiple co-
incidences appear when two annihilations happen almost simultaneously and more
than two photons are detected in the coincidence window. In all of those cases, the
detected events should not be taken into account as the LORs do not contain the
position of annihilation.
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Figure 1.10: Illustration of scatter, random and multiple coincidences [Bailey et al., 2005].

• Attenuation: when a pair of photons is emitted, it is possible that one of the
photons interacts with the matter and does not hit the detectors, or it does with an
energy lower than the detectability threshold. The probability of such an interaction
depends on the nature of the tissues and can be different for different lines of
response. This is modeled with an attenuation sinogram.

• Normalization: in order to reduce the amount of data to be stored, the closest lines
of response are binned. However the scanner geometry leads to the fact that all
bins do not contain the same number of detector pairs. The normalization sinogram
accounts for such differences, as well as the variations in the crystals efficiency.

All of these corrections - random, scattered, attenuation and normalization - are
estimated and stored before the image reconstruction.

The coincidences can be stored into a sinogram with the x-axis representing the dis-
tance between the LOR and the center of the scanner, and the y-axis corresponds to the
angle between the LOR and a given direction.

However in PET, the coincidences can also be stored in the so-called list-mode format.
In that case each event is recorded into a file that contains the position of the detected
event as well as the corresponding time and energy information. Coincidence time is
of particular importance for time of flight (TOF) PET imaging. We will go back to
the particular case of TOF PET imaging in Chapters 5 and 6 as it represents a major
application of our work.
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1.2.3 Analytical reconstruction
We will go back later in this thesis on the particularities of image reconstruction for the
different imaging modalities that we showed. We focus here on the analytical resolution
of the problem that is common to both PET and CT: retrieving the object which is at
the origin of the measurements.

1.2.3.1 Backprojection

Since we can describe all measurements of an image f (x, y) - whether it represents the
attenuation u(x, y) or the activity λ(x, y) - with the Radon transform (1.29), the question
is whether R is invertible.

The backprojection consists in mapping the projections R f (θ, t) into the image space.
For every angle θ, we add the value R f (θ, t) to each point on the line l(θ, t) i.e to all
(x, y) ∈ R2 such that t = x cos θ + y sin θ so that the backprojection can be written

fBP(x, y) =
∫ π

0
R f (θ, x cos θ + y sin θ)dθ. (1.33)

The backprojection corresponds to the adjoint R∗ of the Radon transform but not the
inverse R−1. It can be shown that

R∗R f (s) =
∫
R2

f (v)
| |s − v | |2

dv (1.34)

i.e the backprojection retrieves the unknown function f convolved to a smoothing kernel.
There are too many low frequencies that are backprojected as compared to the high
frequencies; these low frequencies correspond to the smooth features of the image. We
will see in what follows how it is possible to actually invert the Radon transform.

1.2.3.2 Fourier slice theorem

The Fourier slice theorem states that the Fourier transform of a projection R f (θ, .) cor-
responds to a line in the Fourier transform of the image that we denote as f̃ . This line
intercepts the origin and forms an angle of θ with the horizontal axis.

This theorem theoretically allows reconstructing the image. One just needs to com-
pute the Fourier transform of each projection and report those values for every corre-
sponding line in the frequency domain. We denote the Fourier transform of a projection
for an angle θ as R̃ f (θ, ν) for a frequence ν. Writing νx = ν cos θ, νy = ν sin θ, the value
of the Fourier transform of the image f̃ (νx, νy) can be computed as

f̃ (νx, νy) = R̃ f (θ, ν). (1.35)
The inverse Fourier transform then gives the corresponding slice: for all (x, y) ∈ R2,

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞

f̃ (νx, νy)e2iπ(xνx+yνy)dνxdνy (1.36)

In that sense, R is invertible - since we can use the inverse Fourier transform - but
in practice we only have a finite number of projections so we have missing values in the
Fourier domain of the image, especially for high frequencies.
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Figure 1.11: Filters for backprojection

The missing values can be completed with interpolation but the computation of the
Fourier transform as well as the interpolation on complex numbers make this method
inefficient in practice from a computational point of view.

1.2.3.3 Filtered backprojection

The filtered backprojection (FBP) allows getting rid of the interpolation and resampling
steps in the frequency domain. To put it simply, it consists of two steps: filtering the
projections then performing the backprojection.

Injecting (1.35) into (1.36) and performing the variable change (νx, νy) 7→ (ν, θ) we
have the Jacobian value that is |ν | which gives

f (x, y) =
∫ π

0

∫ ∞

−∞

R̃ f (θ, ν)e2iπν(x cos θ+y sin θ) |ν |dνdθ. (1.37)

The inner integral is the inverse Fourier transform of the filtered projection’s Fourier
transform. The formulation (1.37) corresponds to the inversion of the Radon transform
R with the FBP. Indeed, if we denote the ramp filter operator as H, the FBP corresponds
to R∗H as written in (1.37) and we do have R∗HR = I where I is the identity. If one
has access to all the projections in all possible directions, then it is possible to exactly
reconstruct f .

An interpretation of the FBP is that is counter-balances the over-representation of
the low frequencies in (1.33) by giving more importance to high frequencies. This is made
possible by applying the ramp filter to the projections before backprojecting.

In practice there are several different filters that can be used instead of the ramp
filter. We represent some of them in Figure 1.11. The general idea is that the ramp filter
accentuates the high frequencies, which are generally dominated by noise. The choice
of filters that cut those high frequencies can then be relevant in the case of noisy data,
but the actual choice of the filter is dependent on the finality of the image: detection,
quantification, etc. Also, the choice of cut-offs along with the potential loss of information
that comes with them make the practical use of such filters more complicated compared
to simply using the ramp filter.
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We show in Figure 1.12 examples of reconstructions with simple backprojection along
with filtered backprojections with ramp filter. We observe that when the "quality" of the
measurements data decreases - few projection angles, noise -, even the filtered backpro-
jection is unefficient to get a satisfying reconstruction. This represents the starting point
of our main objective in this thesis which is to study and propose algorithms for image
reconstruction - for both PET and CT - that enhance the quality of the reconstruction
compared to analytical methods.

1.3 Objectives
In this thesis we consider several inverse problems for the tomographic reconstruction
task: a CT application, a PET application and we also have a transmission electronic
microscopy application in the next chapter. Some problems are specific to each appli-
cation, but in this chapter we have shown that there is a common basis for all of the
reconstruction methods. All of them have for objective to solve an inverse problem with
a linear operator - the Radon transform. Analytical reconstructions represent a first
solution to retrieve an image given measurements data. Besides, the quality of a FBP-
reconstructed image might be satisfying enough for some applications. Over the years,
research in tomographic reconstruction has however allowed to improve the quality of
CT or PET images; especially, methods that are more robust to noise or incomplete data
compared to analytical reconstructions received a lot of interest. In the next chapters we
will focus on such methods, namely iterative and deep learning-based methods.
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Figure 1.12: Backprojection (first and second row) and Filtered backprojection (third
and fourth row) with different measurements. The second and fourth rows correspond to
reconstructions obtained when Poisson noise is applied to the projections. The x-label
corresponds to the number of projection angles in the sinogram, with angles that range
from 0 to 180 degrees.
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Chapter 2

Model-based iterative methods for
tomographic reconstruction

An advantage of analytical methods such as the ones presented in the previous chapter
is that they can be expressed in a closed form. In practice their solutions are also fast
to compute. These methods however suffer from a deteriorated quality of the image as
soon as the measurements are not ideal: noise, missing projection angles, etc. When it is
the case, algorithms that consist in iteratively estimating a solution f̂ to minimize a cost
function are generally more robust to data perturbations. We refer to these methods as
iterative algorithms.

Iterative algorithms allow to take into account the physics of the acquisition, the noise
model for the data and potentially an a priori on the unknown solution in the case of
regularized methods. There are plenty of iterative algorithms for tomographic recon-
struction. The choice of one of them depends on the cost function to minimize, but also
on the computation time, convergence speed and numerical stability. We present in this
chapter some of the common iterative algorithms that have been applied to tomographic
reconstruction. The idea is then to focus on specific examples and show how such algo-
rithms can be compared with each other on simulated and real data. In the last section
of this chapter, we discuss the limitations of these methods based on the experiments we
performed.

2.1 Examples of iterative algorithms for tomographic
reconstruction

2.1.1 ART

ART (Algebraic Reconstruction Technique) [Gordon et al., 1970] is the oldest iterative
method used for tomographic reconstruction. Considering the matrix of the Radon op-
erator as A = (ai j)M×N and denoting each row vector i by ai, the discrete tomographic
reconstruction problem consists in solving the linear system A f = p as:
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〈a1, f 〉 = a11 f1 + a12 f2 + · · · + a1N fn = p1

〈a2, f 〉 = a21 f1 + a22 f2 + · · · + a2N fn = p2
...

〈aM, f 〉 = aM1 f1 + aM2 f2 + · · · + aMN fn = pM

(2.1)

Each equation corresponds to the definition of a hyperplane of RN . The solutions of
the system are in the intersection of those hyperplanes. To find such a solution, the
Kaczmarz method is used. It consists in iteratively projecting the current solution onto
those hyperplanes. The orthogonal projections can be written as

Πi( f ) = f −
〈ai, f 〉 − pi

‖ai‖
2 ai

so that the ART algorithm writes
Algorithm 2: ART algorithm
1 Initialize f 0

2 for n = 0,1,2, . . . do
3 for i = 1, . . . ,M do
4 f n+1 ← Πi( f n)

where the speed of convergence for the algorithm depends on the angles formed be-
tween the different hyperplanes.

Most of the time a solution of (2.1) does not exist; rather ART will compute arg minf | |A f−
p| |22 . A major drawback of such a method is the high sensitivity to noise.

If algebraic methods were initially an alternative to analytical reconstructions, other
techniques such as SIRT (Simultaneous Iterative Reconstruction Technique) or MLEM
(Maximum Likelihood Expectation Maximization) have later outperformed them.

2.1.2 SIRT
SIRT [Gilbert, 1972] aims at minimizing the cost function

| |A f − p| |22 . (2.2)

From a statistical point of view, this is equivalent to maximizing the log-likelihood when
considering data corrupted by Gaussian noise, i.e when p = A f + ε , where ε = (ε1, . . . , εM)

and all the εi are Gaussian random variables - see 1.1.4.
To minimize (2.2) and given an initial estimation f 0, the algorithm writes:

f n+1 = f n − λ
1

A∗1 A∗
[

A f n − p
A1

]
(2.3)

with A∗ the adjoint of the projection matrix A (i.e the backprojection operator), λ is the
step size, 1 is the unit vector and vector-vector operations are performed element-wise.
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The image is therefore updated with the backprojection of the normalized error between
p and the projected estimate, considering sensitivity correction.

The two main differences with SIRT compared to ART are mentioned in [Gilbert,
1972]:

• In each iteration of SIRT, data from all the projections are applied simultaneously
to update f n, whereas for ART they are applied sequentially. This has the major
advantage of increasing the stability of the algorithm.

• Sensitivity correction is performed in SIRT as shown in (2.3), which is not the case
for ART.

2.1.3 MLEM
One of the most common iterative algorithm used in emission tomography is MLEM
(Maximum Likelihood Expectation Maximization). It was proposed in [Shepp and Vardi,
1982] and [Lange et al., 1984] as an algorithm for PET imaging in which Poisson noise
is dominant. The method consists in using a maximum-likelihood solution, for data
corrupted by Poisson noise, that is found thanks to the expectation maximization (EM)
algorithm [Dempster et al., 1977]. The popularity of MLEM came from its ability to
produce good image quality in the presence of high noise levels.

The EM algorithm is a general method to maximize the likelihood Q of some random
variable that depends on parameters θ and on data that cannot be observed. The obser-
vation of the realization of the random variable thus depends on latent variables Z , so
the likelihood Q needs to be estimated. Once Q is estimated, we aim to maximize it over
θ. These two steps are successively realized at each iteration until convergence.

Mathematically, the first step (E-step) consists in assuming a current value θk for the
parameters, and computing the expectation over the latent variables Z as

Q(θ |θk) = EZ (log F(θ, Z)|y, θk) (2.4)

knowing the observed data y, the current value of parameters θk and the probability
density function F. The second step (M-step) is to maximize Q(θ |θk) over all θ to get
θk+1, and the process is then repeated.

We apply here the EM algorithm to a reconstruction problem where we are maximizing
the likelihood of the data. We consider that the projections p are the observed data -
corresponding to y - that follow a Poisson distribution with mean A f . The latent variable
Z corresponds in this case to the contribution of pixel/voxel j to the LOR i such that we
have pi =

∑
j zi j . The quantity of interest is here θ = f , i.e the image. We also assume

that for each (i, j) pair, zi j follows a Poisson distribution with expected value ai j fj . The
likelihood for measurements p, denoted as π(p| f , Z), can be written

π(p| f , Z) =
∏

i

(
∑

j

zi j)
pi e
−

∑
j zi j

pi!
(2.5)

so the function to maximize, considering the expectation over Z of the log-likelihood
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denoted as Q( f | f1, . . . , fK), is then

Q( f | f1, · · · , fK) =
∑

i

(
pi log

∑
j

ai j fj −
∑

j

ai j fj − log pi!
)
. (2.6)

The EM strategy applied to this maximization problem leads to the algorithm known
as MLEM:

f n+1
k = f n

k
1∑
i aik

∑
i

aik pi∑
j ai j f n

j
(2.7)

where fk corresponds to each pixel/voxel of the reconstruction. One can rewrite the
update step in matrix form, with A∗ the adjoint of A as:

f n+1 =
f n

A∗1 A∗
[

p
A f n

]
. (2.8)

Here the update step consists in multiplying the current estimate with the backprojection
of the error, with sensitivity correction.

MLEM ensures the positivity of the estimated image. This is not only the case at
convergence but also at every iteration of the algorithm. We note however some of the
main drawbacks one can encounter when using MLEM:

1. The MLEM algorithm is relatively slow to converge.

2. Once convergence is reached regarding the cost function decrease, the image gets
more and more noisy: in practice early stopping needs to be performed to prevent
the reconstruction from being too noisy. We will see later that regularization is also
a solution.

3. An important issue in PET imaging is the fact that convergence is slower in "cold"
areas, i.e in areas where the activity is less important. Indeed if we denote the
negative log-likelihood in (2.6) as L( f ), then Equation (2.7) can also be written

f n+1
k = f n

k +
f n
k∑

i aik

∂L
∂ fk
( f n

k ) (2.9)

so that it is a gradient descent where the step is proportional to the voxel activity,
which explains the slower convergence for cold areas.

4. The positivity constraint also leads to a positive bias in the reconstructed image.

OSEM and other MLEM variations In order to get a faster algorithm compared
to MLEM, a widely used method in practice is the Ordered Subset Expectation Maxi-
mization (OSEM) algorithm [Hudson and Larkin, 1994]. The idea is to divide the mea-
surements data space into m different subsets. One iteration of OSEM then consists of m
sub-iterations, each of them applying the MLEM update equation (2.8) for a particular
subset, considering only a fraction of all the projections p.

In practice an iteration of OSEM gives an estimate roughly similar to what could
be obtained with m iterations of MLEM, which is a significant improvement in terms of
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computation time. This makes OSEM more used in clinical practice compared to MLEM.
However OSEM does not converge but rather produces a limit cycle.

There are other variations of MLEM in the literature and we do not cover all of them
here. Examples include ABEMML [Byrne, 1998] where authors propose an algorithm
which generalizes MLEM by constraining the solution between two bounds α and β, also
allowing α to be negative.

2.1.4 FISTA acceleration
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009] is
an acceleration technique that increases the convergence rate of first order methods for
non-smooth convex problems. As both SIRT and MLEM can be seen as gradient descent
methods, FISTA acceleration can be applied to those algorithms. Specifically, a sequence
of scalars is computed as t0 = 1 and

tn+1 =
1 +

√
1 + 4(tn)2

2 (2.10)

then the n + 1-th estimate ˆf n+1 obtained with either SIRT or MLEM is updated as

f n+1 ← ˆf n+1 +

(
tn − 1
tn+1

) (
ˆf n+1 − f n

)
(2.11)

It is shown in [Beck and Teboulle, 2009] that FISTA algorithm has a convergence rate of
O(1/n2). In our experiments we will use such an acceleration technique.

2.1.5 Regularization
Algorithms such as ART, SIRT and MLEM have a drawback in common: they tend to
produce a noisy image when measurements are noisy, especially when no early-stopping is
performed. A solution is to consider a priori information on the solution. This consists in
adding a penalty term to the functional to minimize, in addition to the data-fidelity term.
Giving enough weight to this regularization term, this allows obtaining reconstructions
where noise is less visible. We refer to the algorithms that aims at minimizing such a
functional as regularized algorithms.

The functional that we consider can be written

min
f

d(A f , p) + R( f ) (2.12)

where d is a data-fidelity term - chosen depending on the assumed noise on the data - and
R( f ) is the penalty that expresses the a priori knowledge on the image to reconstruct.

Several algorithms that converge to the solution of the penalized function (2.12) have
been proposed. In PET, a modified EM algorithm for penalized likelihood estimation was
used in [De Pierro, 1995]. In clinical practice for PET, the BSREM algorithm [De Pierro
and Yamagishi, 2001, Ahn and Fessler, 2003] has also been widely used.

Here we present the particular case where the penalty term corresponds to the Total
Variation (TV).
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2.1.6 Total Variation
TV is a semi-norm and for images f it can be defined as:

TV( f ) = ‖|∇ f |‖1 (2.13)

where ∇ is the gradient operator and ‖|· |‖1 corresponds to the sum of modulus of gradients
for all pixels/voxels in the image.

Total Variation can be of particular interest for image denoising [Rudin et al., 1992].
It allows solutions to preserve edges whilst smoothing flatter areas. If g is the noisy image
and u is the potential solution, the TV denoising problem assuming Gaussian noise is

min
u
‖u − g‖22 + αTV(u) (2.14)

with α a weighting parameter.
In [Chambolle, 2004] authors propose a method based on the dual formulation of the

problem (2.14) and show that the solution has the form u = g − αdivϕ, where div is the
divergence and with ϕ that can be computed iteratively as ϕ0 = 0 and

ϕn+1 =
ϕn + τ∇ (divϕn − g/α)

1 + τ |∇divϕn − g/α |

with τ ≤ 1/8 (in 2D) the gradient step. We refer to this denoising algorithm as TVDe-
noise.

2.1.7 Total Variation regularization
Initially proposed for image denoising, TV has proven to be efficient in inverse problems
for tomographic reconstruction, especially to restore piece-wise constant images. This
has been made possible by considering TV as a regularization term in the functional
to minimize [Sidky et al., 2006]. This has shown interesting results in missing angle
tomography [Banjak et al., 2018] and in low-statistics emission tomography acquisitions
[Sawatzky et al., 2008]. In what follows we present the regularized versions of SIRT and
MLEM.

2.1.7.1 Regularized SIRT

The minimization problem when considering the TV regularized version of SIRT is

min
f
‖A f − p‖22 + αTV( f ) (2.15)

where α is the regularization parameter.
In [Banjak et al., 2018] the algorithm SIRT-FISTA-TV, a FISTA accelerated version

of SIRT-TV, is used in order to reconstruct volumes where Gaussian noise is considered
on the projections. Each iteration consists of a SIRT update as (2.3), followed by TV
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denoising and FISTA acceleration. The corresponding SIRT-FISTA-TV algorithm can
be written as
Algorithm 3: Pseudo-code of SIRT-FISTA-TV reconstruction algorithm
1 λ,α, f 0, Niter, NTViter
2 t0 ← 1
3 # SIRT-FISTA-TV iteration
4 for n ∈ [1,2, . . . ,Niter] do
5 # SIRT update
6 f n+ 1

2 = SIRT ( f n)

7 # TV minimization
8 ˆf n+1 = TVDenoise( f n+ 1

2 , α,NTViter)

9 # FISTA acceleration

10 tn+1 =
1+
√

1+4(tn)2
2

11 f n+1 = f̂ n +
(

tn−1
tn+1

) (
ˆf n+1 − f n

)
2.1.7.2 Regularized MLEM

Similarly to SIRT-TV for Gaussian noise, it is possible to consider a TV regularized
version of MLEM for Poisson noise, that we denote as EM-TV. The minimization problem
here is

min
f ≥0

KL(A f , p) + αTV( f ) (2.16)

where KL is the Kullback-Leibler divergence.
The following iterative scheme is proposed in [Sawatzky et al., 2008]

f n+ 1
2 =

f n

A∗1 A∗(
p

A f n ) (2.17)

f n+1 = f n+ 1
2 − α

f n

A∗1 hn+1 (2.18)

with hn+1 ∈ ∂TV( f n+1) . One can recognize a MLEM reconstruction step followed by a
TV denoising step.

It is also possible to write the denoising minimization problem at each step as

f (n+1) = arg min
u
{H(u) + αTV(u)} (2.19)

where H(u) = 〈u − f n+ 1
2 log u, s〉 with s = A∗1.

Using the Fenchel-Rockafellar duality theorem as well as the Lagrangian for optimiza-
tion we get:

f n+1 =
s f n+ 1

2

s + α div φ∗ , (2.20)
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with φ∗ that is obtained iteratively with the following semi-implicit gradient descent
scheme:

φk+1 =
φk − τzk

1 + τ |zk |
(2.21)

with zk = ∇(
s f n+1/2

s+div φk ). The convergence of the algorithm is proved in [Maxim et al., 2018]
for α and τ small enough. For instance in 2D, upper bounds are given as α ≤ smin/4 and
τ ≤ (smin−4α)2

8α | |s f n+1/2 | |∞
, where smin is the smallest value of s.

2.1.8 Chambolle-Pock algorithm applied to tomography
We consider here the minimization of (2.12) without isolating the reconstruction and the
denoising steps, with the Chambolle-Pock (CP) algorithm.

We will focus on the problem that involves Poisson noise, with the Kullback-Leibler
divergence as the data-fidelity term. For a KL distance and a TV regularization term,
we rewrite the objective function as

min
f

∑
i

[A f − p + p log p − p log(pos(A f ))]i + αTV( f ) (2.22)

where pos(x) = max(0, x) and log operates on the components of its argument - except
when it is zero, for which case in practice one may consider an output of zero for the
function log.

So we have, in order to fall into the same case as for the general CP algorithm (see
1.1.3.2, Algorithm 1 and the corresponding notations)

F(y, z) = F1(y) + F2(z)

F1(y) =
∑

i

[A f − p + p log p − p log(pos(y))]i

F2(z) = αTV(z)

which amounts to taking K = (A,∇) and G( f ) = 0 in Algorithm 1.
The CP algorithm for our application is given in [Sidky et al., 2012] as:

Algorithm 4: Pseudo-code for N-steps of the KL-TV CP algorithm. ‖(A,∇)‖2
is the largest singular value of (A,∇).
1 L ← ‖(A,∇)‖2; τ ← 1/L;σ ← 1/L; θ ← 1; n← 0
2 initialize f 0, g0 and q0 to zero
3 f̂ 0 ← f 0

4 while n ≤ N do

5 gn+1 ← 1
2

(
1D + g

n + σA f̂ n −

√
(gn + σA f̂ n − 1)2 + 4σp

)
6 qn+1 ← α(qn + σ∇ f̂ n)/max(α1, |qn + σ∇ f̂ n |)

7 f n+1 ← f n − τATgn+1 + τdiv qn+1

8 f̂ n+1 ← f n+1 + θ( f n+1 − f n)

9 n← n + 1
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The Chambolle-Pock algorithm is efficient but appears to have a quite slow rate of
convergence. Several adaptations can be found in the literature, for which the choice
of parameters improves the speed of convergence. These parameters can be fixed or
adaptive. We present here a preconditioned version of the Chambolle-Pock algorithm
(PCP) [Pock and Chambolle, 2011].

The initial parameters are replaced by vectors as follows:

σ → Σ =
1Y

|(A,∇)|1X
(2.23)

τ → T =
1X

|(A,∇)|T1Y
(2.24)

where X is the image space and Y denotes here the measurements space, and |(A,∇)| is
the matrix formed by taking the absolute value of each element of (A,∇).

The proximal mapping is then defined as

proxσ[F](y) = arg min
y′

F(y′) +
1
2 (y − y′)T (

y − y′

Σ
). (2.25)

With PCP, one does not need to compute ‖(A,∇)‖2. In a general case, deriving the
proximal mapping can be non trivial. For the KL-TV optimization problem though, it
appears that one just needs to replace σ by Σ and τ by T in Algorithm 4. In [Sidky
et al., 2012] it is argued that convergence is faster with PCP compared to the ordinary
CP algorithm especially for small α; in our tests, we find the convergence speed to be
improved even for relatively high values of α.

There are others ways to initialize CP algorithm such as n-OCP [Qiao et al., 2019] and
ACP [Chambolle and Pock, 2016] but we do not recall them here since better performance
was observed with PCP in our experiments.

In this section we introduced several - more or less common - algorithms for tomo-
graphic reconstruction. Some of them are better suited to Gaussian noise, and the others
for Poisson noise. Real data generally contain a mix of both type of noise, although
depending on the application one can be dominant over the other. In the next section
we put the emphasis on the evaluation and comparison of these algorithms depending on
the mix between Poisson and Gaussian noise considered in the data.

2.2 Comparative study for a mix of Poisson-Gaussian
noise

We derived algorithms that are commonly used and specifically designed for Poisson
OR Gaussian noise. The Poisson-Gaussian model is often simplified with variance sta-
bilization techniques [Murtagh et al., 1995]. Few studies actually deal with the mixed
Poisson-Gaussian noise often encountered in real data [Benvenuto et al., 2008, Jezierska
et al., 2012, Calatroni et al., 2017]. In [Calatroni et al., 2017] considering both Poisson and
Gaussian noise leads to a cost function with two data-fidelity terms, which implies tuning
an extra weighting parameter. This makes practical parameters tuning more complex.

The study that we aim to perform therefore consists in evaluating the performance of
algorithms derived specifically for one type of noise, on data with mixed Poisson-Gaussian
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noise. The main idea is to see how the performance of these algorithms is affected when
the noise distribution is different than the noise considered when deriving the algorithms.
It is of major importance for practical applications, since this amounts to finding answers
to the general question: how the performance of the reconstruction method is affected if
the assumption made on the noise is not accurate?

For this study we compare three algorithms: Preconditioned Chambolle-Pock with
KL-TV cost function, SIRT-FISTA-TV, and a FISTA accelerated version of the algorithm
from [Maxim et al., 2018] that we call EM-FISTA-TV. The cost function that is minimized
in this study is thus (2.12) with either the `2 norm or Kullback-Leibler divergence as
discrepancy term d and with the total variation as regularization term that is weighted
with the α parameter.

We compare the different algorithms in terms of quality of reconstruction and com-
putational efficiency on simulated and experimental data from transmission electron mi-
croscopy.

The experiments that we perform are split into two parts. The first part consists
in preliminary tests. We fix a configuration for the Poisson-Gaussian noise: we show
how one compare algorithms performance with quantitative results on synthetic data.
We also assess whether the observations made on simulated data are consistent with
real data. For the latter we consider the particular case of three-dimensional data for
a transmission electron microscopy sample: tomographic reconstruction is in this case
similar to CT reconstruction with parallel beams described in Chapter 1. Results from
these experiments were published in [Leuliet et al., 2021a].

In the second part we extend this preliminary study to multiple Poisson-Gaussian
noise configurations. We use synthetic data and we vary the ratio between the amount
of Gaussian and Poisson noise. In this case the performance of the different algorithms
is evaluated with respect to this ratio and we assess the extent to which such algorithms
can be used when actual noise configuration does not match the assumption made on the
data likelihood.

2.2.1 Fixed noise configuration: simulation details
For the synthetic data we use a 256 × 256 pixel Shepp-Logan phantom represented in
Figure 2.1. Projections and back-projections were computed on GPU thanks to ASTRA
Toolbox [van Aarle et al., 2015] in Python. TV denoising is also implemented on GPU to
fasten computation. The dataset is constructed as follows. Random values are drawn from
a Poisson law with mean the exact projections, followed by the addition of a zero-mean
Gaussian noise with standard deviation σ = 2% of the maximum value in the projections.
According to preliminary experiments, the number of iterations to convergence within the
internal denoising loop has been fixed to 100 for SIRT-FISTA-TV and 30 for EM-FISTA-
TV. We evaluate the reconstruction quality with the Mean Squared Error (MSE) defined
for two images f and g ∈ RN as

MSE( f ,g) =
1
N

N∑
i=1
( fi − gi)

2.

The MSE values that we present are the ones obtained when convergence is reached.
The convergence speed of the different algorithms is calculated in terms of outer iterations
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and time; for this we have studied the decrease of both the MSE and the cost function
for each algorithm. As we will discuss in more details later, the regularization parameter
has a major influence on the reconstructed solutions. In this first work we stick to a basic
approach where we study a range of different parameters to find the best reconstruction
results.

Figure 2.1: Shepp Logan phantom used for experiments.

2.2.2 Computational efficiency for simulated data
Reconstructed images of the Shepp-Logan phantom are shown in Figure 2.2 for the Fil-
tered Back-Projection (FBP) algorithm with Hamming filtering and for the three algo-
rithms we study. One dimensional profiles of the reconstructed image (central horizontal
line) are displayed in Figure 2.3.

At convergence, the values of the MSE are respectively 0.13 for EM-FISTA-TV and
PCP and 0.16 for SIRT-FISTA-TV.

We see in Figure 2.4 that decrease of MSE is faster for EM-FISTA-TV in terms
of iterations. However each iteration of SIRT-FISTA-TV and EM-FISTA-TV requires
the computation of a projection and a back-projection in the outer loop, followed by
the iterative resolution of a denoising problem, while PCP is made of a single loop.
This makes each iteration shorter for PCP. The difference in the way these algorithms
are built makes the comparison of the computation time difficult; indeed it depends on
whether projections and back-projections are fast to compute, which depends on the
implementation. Note that the comparison is also dependent on the choice of the number
of inner denoising iterations which we fixed once for all here. This is illustrated in Figure
2.5 where both EM-FISTA-TV and PCP algorithms minimize the same cost function
dKL (A f n, p) + αTV ( f n). One can observe the fact that an iteration of PCP is faster
than EM-FISTA-TV by comparing the two curves. Here we find that EM-FISTA-TV is
slightly faster to converge compared to PCP with our implementation.

The difference between SIRT-FISTA-TV and EM-FISTA-TV in terms of computation
time is less dependent on the computational cost of forward and backward projections
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(a) Filtered Back-Projection (b) SIRT-FISTA-TV

(c) EM-FISTA-TV (d) PCP

Figure 2.2: Reconstructed images of the Shepp-Logan phantom.

since they rely on the same principle. However it is highly dependent on the number of
inner iterations chosen for both. The choice of this number was made so that no difference
could be seen in the denoised images when increasing this number. Based on this choice,
we found EM-FISTA-TV to be faster than SIRT-FISTA-TV as illustrated in Figure 2.4.

2.2.3 Application to experimental data
In order to assess the extent to which observations on convergence are transcribed for real
data, we perform the reconstruction of a three-dimensional sample of CoOCNT observed
in transmission electron microscopy. The data were acquired at IPCMS laboratory in
Strasbourg.

The mixed Poisson-Gaussian noise model is adapted to this imaging modality [Öktem,
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Figure 2.3: Profiles extracted from the reconstructed and phantom images.

Figure 2.4: Evolution of MSE with respect to the number of reconstruction iterations for
the three considered algorithms.

2008]. For these experiments, faceted cobalt–cobalt oxide based nanoparticles (NPs)
with high density and narrow size distribution (50 ± 5 nm) were selectively cast inside
the channels of multi-walled carbon nanotubes (CNTs) through the controlled thermal
decomposition of cobalt stearate in the presence of oleic acid as surfactant. A number of
59 projections of the sample, ranging from -70 to 75 degrees were acquired. One example
of projection is shown in Figure 2.6a. We reconstructed a 3D-volume with dimensions
5123 pixels with regularization parameter α = 0.8. Figure 2.6b shows a slice of the
reconstructed volume. Results for SIRT-FISTA-TV and PCP are visually similar.

We can also observe in Figure 2.7 that convergence is obtained faster for EM-FISTA-
TV on the real TEM data.

2.2.4 Conclusions for a fixed noise configuration
For the Poisson-Gaussian noise considered in our simulations as well as for TEM real
data, results tend to indicate that convergence is slower for SIRT-FISTA-TV compared
to PCP and EM-FISTA-TV algorithms. For the considered noise, the first approach gives
inferior reconstruction results in our simulations in terms of MSE even after numerical
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Figure 2.5: Evolution of the cost function dKL(A f n, p) + αTV( f n) with (a) the number
of iterations (b) time. Due to the FISTA acceleration, EM-FISTA-TV is not always
decreasing. Reconstructions are performed on a Quadro P2000 GPU card.

convergence. This statement however needs to be clearly balanced since the chosen
configuration corresponds to a dominant Poisson noise compared to Gaussian noise - we
will see in what follows how to compare both contributions.

In our tests EM-FISTA-TV requires less iterations than PCP to reach the solution.
Nevertheless for a fair comparison, the structure of these two algorithms need to be
taken into account. Indeed, the first one has an internal loop that aims at denoising
the MLEM-reconstructed image at each iteration. For the second one, the whole re-
construction process, TV denoising included, is performed within a single loop. In that
sense, it is interesting to check convergence as a function of total computation time. In
these particular tests, EM-FISTA-TV is the faster approach. However, these results are
strongly dependent on several factors and may change from one application to another.
First, the number of iterations in the denoising part is chosen to insure convergence in
the internal loop, though there is no indication that less iterations inside this loop could
lead to a similar final solution - and thus in a smaller computation time. Second, the
results depend on the implementation and will not be the same if e.g CPU is used instead
of GPU for denoising. Finally, the computational results depend on the ratio between
the cost of one projection/back-projection pair and the cost of the denoising algorithm.

Another key point concerns memory footprint. We found that memory requirements
are similar for both EM-FISTA-TV and PCP that need the equivalent of 11 copies of
the initial 3D-volume in our implementation. However, if FISTA acceleration is not
performed in the denoising loop of EM-FISTA-TV, it requires only 8 copies of the size
of the volume, so one could choose to slow down convergence in order to reduce memory
requirements.

In this preliminary work we have compared several iterative algorithms based on TV
regularization for tomographic reconstruction with a mixture of Poisson and Gaussian
noise. Results are largely dependent on the ratio between Poisson and Gaussian noise,
so we will perform in what follows a similar study when varying this ratio.
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(a) A projection obtained with TEM
from the studied CoOCNTs sample

(b) Slice of the reconstructed image of
CoOCNTs with EM-FISTA-TV algorithm

Figure 2.6: Experiments on real TEM acquisition data of a CoOCNTs sample1.
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Figure 2.7: Cost function decay with respect to the algorithm running time for recon-
structions on real TEM data. The cost function of PCP and EM-FISTA-TV is different
than the one for SIRT-FISTA-TV, thus the latter has been represented on a different
scale.

2.2.5 Experiments with varying Poisson to Gaussian noise ratio

In this part we consider simulated data that are similar to the previous experiments. The
difference is that the ratio between Gaussian and Poisson noise is variable. The ratio
that we consider is the following :

r =
σp

σg
(2.26)

1Data are the courtesy of Ovidiu Ersen from ICPMS laboratory, Strasbourg.
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r Best algorithm
≤ 0.25 SIRT-FISTA-TV
∈ [0.25,0.70] variable
≥ 0.70 EM-FISTA-TV (PCP close)

Table 2.1: Algorithm with the best perfomance in terms of MSE depending on the ratio
between Poisson and Gaussian noise intensities. Here we assume that Gaussian noise is
under a threshold value σg/P̄ ≤ 11.5% where P̄ is the mean value of the projections pixel
intensities.

where σp =
1
n
∑

i
√

pi is the mean value of the squared roots of each value in the projections
- this corresponds to the mean absolute fluctuation as the variance for Poisson noise is
equal to the mean value -, and σg = σmax(p) since this is the manual choice that we
made for Gaussian noise’s standard deviation. This is representative of the ratio between
the fluctuations in the data due to Poisson noise and the ones due to Gaussian noise.

We make this ratio variable by scaling the values of the Shepp-Logan phantom. We
consider a maximum pixel value between 4 and 100 in our experiments. We also add to
each detector pixel pi a realization of a random Gaussian variable with zero mean and
the standard deviation σmax(p) where σ varies between 0.01 and 0.1.

To evaluate the performance of each algorithm we compute 2 metrics: MSE and time
until convergence. The convergence is considered when the slope of the MSE curve is
below 1% of its final value. Once again, computation time is dependent on the imple-
mentation and we only are able to give results for the one we performed. We consider
the number of iterations until convergence as an irrelevant criteria here for the reasons
mentioned before.

We compute those 2 metrics on 10 different values for σ and 10 different pixel maxi-
mum values for the Shepp Logan phantom, which gives 100 different combinations/values
of r. It is also to be noted that regarding the number of data that these experiments
represent, we fixed the regularization parameter for each algorithm. We took α = 0.8 for
EM-TV and PCP and α = 0.2 for SIRT-TV, as it is a common choice for these algorithms.

2.2.6 Results with varying Poisson to Gaussian noise ratio
Table 2.1 shows the algorithm that has the best MSE depending on the ratio r, for cases
where Gaussian noise is not too high, i.e σg/P̄ ≤ 11.5% where P̄ is the mean value of the
projections pixel intensities.

We also represent a scatterplot in Figure 2.8 that shows the most efficient algorithm
in terms of MSE depending on the considered Poisson and Gaussian noises. The values
on the x-axis represent the Gaussian noise as σg/P̄ and the y-axis corresponds to the
Poisson noise as σp/P̄

We observe that when the Gaussian noise is high enough, i.e σg

P̄
≥ 11.5%, SIRT-

FISTA-TV is the most performant algorithm regardless of the Poisson noise. For a lower
amount of Gaussian noise, the algorithm with the smallest MSE depends on the ratio r.
When r ≤ 0.25, SIRT-FISTA-TV has a lower MSE compared to the two other algorithms.
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Figure 2.8: Algorithm with the lowest MSE depending on the intensity of both Poisson
and Gaussian noise.

For r ∈ [0.25,0.70], there is no significant difference as the MSE of all three algorithms is
very close. When r ≥ 0.70, EM-TV and PCP have better MSE compared to SIRT-TV,
with the best values for EM-TV though the difference with PCP is very slight.

These results are adequate to the expectations as SIRT-TV is adapted to Gaussian
noise and EM-TV and PCP are adapted to Poisson noise. The intermediate zone does
not allow to get one algorithm that outperforms the others; thus for r ∈ [0.25,0.70], we
analyzed the time of convergence to see if this could be a criteria of choice for our three
methods.

We observed that in this range for r, EM-TV was faster in 28% of the cases; PCP
in 19% of the cases and SIRT-TV was faster in 53% of the experiments. This is a slight
advantage for SIRT-TV even if it might not be significative.

For r ≥ 0.70 we compared the convergence time for EM-TV and PCP as their MSE
is very close in such a case; in 31% of the cases EM-TV was faster, against 69% for PCP.

The only clear pattern that we could observe regarding the computation time until
convergence is the following: PCP converges faster than EM-TV for a high Poisson
noise, and the contrary holds for lower Poisson noise. This is true no matter what the
Gaussian noise is; and it holds until the Poisson noise becomes too high in which case the
performance of PCP is affected. This result is illustrated in Figure 2.9 where we consider
a Gaussian noise with σ = 2% and two different configurations for the Poisson noise.

Observations and conclusions that we are able to draw here are true for the particular
case where we fixed the regularization parameter α to 0.8 or 0.2 as explained. We did
so because results seemed visually satisfying; though it is clear that a more sophisticated
approach to tune the parameters depending on the noise level would be beneficial.

On the TEM real data, we evaluated the ratio r as follows: for σp, we computed
σp =

1
n
∑

i
√

pi on an area that is affected by Poisson noise, i.e where the intensities are
important. For σg, we took the standard deviation on a background area. We find the
values σp/P̄ = 5.1% and σg/P̄ = 7.4%, thus corresponding to a ratio r = 0.69. Note also
that the standard deviation is significantly lower in an empty area compared to a high
intensity area which suggests that Poisson noise indeed affects the data.

As a conclusion of this whole study, we find that as expected, SIRT-FISTA-TV is
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Figure 2.9: Convergence of PCP and EM-FISTA-TV algorithms for low Poisson noise
(maximum intensity of 100 in the initial image, left) and high Poisson noise (maximum
intensity of 10 in the initial image, right).

more adapted to cases with higher Gaussian noise and PCP and EM-FISTA-TV are
more performant when the Poisson noise is dominant. For intermediate values, there is
no clear trend to be observed. This is true for a fixed regularization parameter, but results
could be different if one decides to give more or less importance to the regularization term.
An interesting result is that PCP is faster than EM-FISTA-TV for high Poisson noise
and this is the contrary for low Poisson noise. On real TEM data, our experiments show
that EM-FISTA-TV is the fastest algorithm to converge, for visual results that are very
similar for all of the algorithms. This can let us suppose that the Poisson noise is low
in this case. Work on more advanced modelization of the noise could be of interest to
be able to decide which algorithm is the most suitable for a particular task. This is even
more true when considering the fact that we only evaluated three methods here though
there are plenty more. Especially, comparative results might differ when tests are made
on different data [Friot-Giroux et al., 2022].

2.3 Limits on iterative methods: towards deep learn-
ing

Throughout this chapter, we have evaluated the performance of iterative algorithms and
compared them with each other. We found four different points that constitute major
drawbacks and are inherent to such methods:

• All of the methods that we considered here assume that the forward model A is
perfectly known. As soon as it is no longer the case, the performance of these algo-
rithms can be drastically reduced. Depending on the application, the assumption
of the perfect knowledge of the forward model might be valid or not.

• The cost function to use is highly dependent on the nature of the data that one
is working with. Even if we performed experiments that might help for the choice
of a particular algorithm for a specific task, designing the right cost function along
with the most appropriate iterative algorithm among all of the choices is a tedious
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task and it seems hard to find an automatic solution to such an issue for clinical
practice.

• In our experiments we were able to observe the importance of the choice of the
regularization parameter α. In this chapter we kept a basic approach consisting in
manually testing different values. Methods for finding an optimal parameter have
been proposed [Bertero et al., 2010, Ito et al., 2011]. However in practice such
algorithms turned out to be very slow in our tests and convergence could not be
always obtained so that results are not shown here.

• As for the practical point of view, a similarity that exists for all iterative methods
is the high computational cost, whether it is in terms of memory or time. For
this point, it seems that only implementation and/or hardware optimization can be
useful to fasten the reconstruction process. As for the image reconstruction method
itself, it seems that this represents an inevitable limitation.

All of those points represent, according to us, a relevant justification towards the
investigation of deep learning methods for tomographic reconstruction. The rest of this
thesis thus focuses on this particular area of research. In what follows we detail such
methods so that we are able to have an overview on the extent to which deep learning
might be a solution for tackling the aforementioned limitations of traditional reconstruc-
tion methods.
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Chapter 3

Deep learning for tomographic
reconstruction

Following the large success of artificial intelligence - and especially deep learning - that
has been observed over the last ten years for computer vision tasks, the possibility to
benefit from those advances has been investigated in many different research areas. This
is inevitably the case for tomographic reconstruction, for which deep learning methods
have shown very promising results around 2017, with FBPConvNet [Jin et al., 2017] -
that will be discussed in this chapter - as one of the main reference methods.

Deep learning based algorithms represent a paradigm shift compared to iterative meth-
ods. One of the main differences is that parameter tuning is done once for all, before
the actual reconstruction task. This alleviates one of the major constraints implied by
traditional reconstruction techniques. Another key benefit that could be brought by such
methods in clinical routine is the computation time, which is in most cases way shorter
compared to the methods discussed in the previous chapter. This opens the way for
breakthroughs in applications that require ultra-fast image reconstruction. As we also
saw in the previous chapter that knowledge of the noise corrupting the data is of sig-
nificant importance for iterative reconstruction, this is generally no longer the case for
deep learning based methods since the noise statistics can be - implicitly - learned from
the data on which the algorithm is trained. An interpretation that can be made for the
success of these methods is that the learning process make neural networks able to learn
a priori information on the ground-truth image to reconstruct.

Deep learning based methods look like a step forward for the performance of recon-
struction techniques since they have the ability to make use of available data, which is not
the case for traditional algorithms. In clinical practice however, the use of such methods
has been very limited so far. Better understanding of the methods and solid proofs for
robustness need to be achieved in order to become the standard of use in most clinical
cases, and this is the reason why we will focus on this area of research from now on.

There is probably an infinite number of possibilities to design a neural network for the
reconstruction task. In the literature, large reviews of deep learning based methods for
inverse problems [Arridge et al., 2019] or PET imaging in particular [Reader et al., 2020]
have been proposed. This chapter aims at splitting all of those methods into different
categories. As it represents a very active research field, it seems impossible to cover all of
the existing algorithms but we aim here to give an overview of the theory and applications
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that are related to each of the considered category. Especially we will see that some of
the existing methods are fully based on neural networks, while others try to combine
analytical or iterative algorithms with deep learning.

In this chapter we start by giving an overview of what is deep learning in Section 3.1,
in order to handle the main concepts that will be used in this thesis. The rest of this
chapter is then divided as follows: first we cover the most common methods relying on
supervised learning in 3.2. We then put the emphasis on generative adversarial networks
in Section 3.3 since it has been a breakthrough in the computer vision field since 2014;
we detail some of the applications they might have for image reconstruction. Section
3.4 is on the particular case of using neural networks to learn a regularization term, and
Section 3.5 covers the case of self-supervised methods.

3.1 Deep learning for computer vision
Deep learning is part of the broader family of machine learning methods, that aim at
solving problems by learning on data. In this section we give a brief overview on the
main principles of deep learning. The aim is obviously not to cover all the aspects, but
rather to explain the notions that will be used and discussed in the rest of this thesis.
For a comprehensive book on deep learning theory fundamentals, one might refer to
[Goodfellow et al., 2016]; for practical aspects on implementation with Tensorflow, the
book [Géron, 2019] is a valuable asset.

3.1.1 Machine learning
As mentioned, deep learning is only a part of machine learning. Machine learning is
defined in [Géron, 2019] as "the science (and art) of programming computers so they
can learn from data". It is an effective tool for automatizing tasks, finding patterns in
some data that humans could not find in a reasonable amount of time for instance, or
predicting outcomes based on past experience.

Most of machine learning techniques rely on supervised learning. In this case a training
dataset is used to e.g learn to make predictions. For instance, if a task consists in assessing
whether a tumor is present in some CT image, the training dataset consists images that
are paired with a binary output: 1 if a tumor is indeed present, 0 otherwise. The role
of the machine learning model is to, based on the experience acquired from the data, be
able to predict whether a CT image that has never been given to the model contains a
tumor or not.

Mathematically, this corresponds to having a predictor hθ that depends on parameters
θ, that is trained to correctly evaluate a new input x as hθ(x). This is done by giving
paired data (xi, yi) where yi is the true output (or label) corresponding to the input xi,
and finding the optimal parameters θ∗ that minimize some error between the predicted
outputs hθ(xi) and the ground-truths yi. Considering the previous examples, xi ∈ Rn

correspond to CT images and yi ∈ {0,1} are the binary outputs assessing whether a
tumor is present or not. The efficiency of a machine learning model can be assessed by
evaluating the accuracy of the prediction hθ(x) with x that has never been "seen" by the
model. An other example from [Géron, 2019] is given in Figure 3.1 to illustrate how a
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machine learning model can be trained for spam detection/classification.
The supervised learning methodology can be summarized as follows:

1. Training: the predictor hθ is trained with paired (xi, yi) in order to minimize the
error between predictions hθ(xi) and ground-truth yi.

2. Validation: the predictor hθ depends on parameters θ but also on other parameters
that are related to the way hθ is built (linear regressor, artificial neural network,
...) and to the way optimization on θ is performed. These are referred to as hyper-
parameters (HP). The choice of these HP need to be made on a dataset different
than the training set to prevent over-fitting the data, i.e to avoid situations where
the HP are only adapted to the training set but not to new data. Different strategies
for tuning the HP are detailed in [Géron, 2019].

3. Testing: once the HP are chosen on the validation set and the optimal parameters
θ∗ found thanks to the training, the quality of the predictor hθ∗ can be evaluated
before being deployed to production. Once again, this needs to be performed on
data that are not part of either the training or the validation set in order to be
fair: the data on which the predictor will then be actually used are data that are
not part of those datasets. With testing, one is able to evaluate the ability of the
predictor to generalize to new cases.

Note that another major category of machine methods is based on unsupervised learn-
ing. This time, the training dataset does not contain ground-truth yi. Main applications
for unsupervised learning include clustering, anomaly or novelty detection, dimensional-
ity reduction, etc. We will see in this chapter that generative models, used e.g to generate
fake images, are based on unsupervised learning.

When only a small amount of the training data is labeled - the rest being unlabeled
-, this refers to the notion of semi-supervised learning. We will also discuss in Section 3.5
the notion of self-supervised learning.

3.1.2 Deep learning vs machine learning
The major thing that makes a machine learning algorithm a "deep" learning one is the
form taken by the predictor hθ : it corresponds to a so-called Artificial Neural Network
(ANN). An ANN is a Machine Learning model inspired by the networks of biological

Figure 3.1: Example of supervised learning for spam detection [Géron, 2019]
.
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neurons found in humans’ brain. The architecture of ANN is such that they are ideal
to tackle machine learning problems involving large datasets and complex tasks, such as
image classification, speech recognition, or beating the world champion at the game of
Go.

The element at the core basis of neural networks is the neuron, or threshold logic unit
(TLU). A scheme of such a unit is given in Figure 3.2. An artificial neuron takes some
numbers xi as input, computes a weighted sum z = xTw and the output of the neuron
is a(z) where a is an activation function. This activation can be a sigmoid function for
instance or a Rectified Linear Unit function (ReLU) defined as ReLU(z) = max(0, z).

A neural network is therefore a predictor hθ that is a combination of neurons that are
organized in different layers as represented in Figure 3.3 and 3.4. For instance the original
Perceptron proposed in [Rosenblatt, 1958] was composed of a single layer of TLUs, with
each TLU connected to all the inputs as shown in Figure 3.5. In this case, the parameters
θ to optimize in order to find the optimal predictor correspond to the weights w. Note
that a neural network is not necessarily composed of stacked fully-connected layers as in
Figure 3.3, as we will see with Convolutional Neural Networks.

Now that we have an overview of how a neural network is built, a key component of

Figure 3.2: Illustration of a threshold logic unit or artificial neuron [Géron, 2019].

Figure 3.3: Multilayer Perceptron with two inputs, one hidden layer of four neurons, and
three output neurons [Géron, 2019].
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learning based methods is the method to find the optimal weights w, or more generally the
optimal parameters θ of hθ . The reference method was published in [Rumelhart et al.,
1985] as the backpropagation algorithm. The method is based on a gradient descent
to optimize the parameters θ. It makes use of the automatic differentiation technique
named reverse-mode autodiff to compute the gradients of a loss function w.r.t θ. The
loss function computes the error between the predictions hθ(xi) and the ground-truths yi.
The training process aims at finding out how the parameters θ - or weights w - should
be tweaked in order to reduce the error until reaching its minimum. Note that we will
use the terminology of weights in what follows to mention the parameters to tweak for
the neural networks.

Figure 3.4: Illustration of a deep learning model [Goodfellow et al., 2016].

Figure 3.5: Architecture of a Perceptron with two input neurons, one bias neuron, and
three output neurons [Géron, 2019].
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The backpropagation algorithm is summarized in [Géron, 2019] as follows: for each
training instance - e.g paired (xi, yi) -, the algorithm first makes a prediction (forward
pass) and measures the error, then goes through each layer in reverse to measure the
error contribution from each connection (reverse pass), and finally tweaks the connection
weights to reduce the error (Gradient Descent step).

The rule for updating the weights w is given by the optimizer. A simple gradient
descent can be a relevant choice; in this thesis we will mostly use Adam optimizer [Kingma
and Ba, 2014] that is an optimized version of the gradient descend which has proven to
be generally efficient to train neural networks.

3.1.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a particular type of ANN that have shown
excellent results for computer vision tasks and others. Just like the ANN is inspired
from the structure of the brain, CNNs have been inspired by the structure of the visual
cortex. In the visual cortex, biological neurons especially respond to specific patterns in
small regions of the visual field called receptive fields; as the visual signal makes its way
through consecutive brain modules, neurons respond to more complex patterns in larger
receptive fields [Géron, 2019]. A breakthrough for CNNs was presented in [LeCun et al.,
1998] with the famous LeNet-5 architecture.

The building block of a CNN is the convolutional layer, which is represented in Figure
3.6. Contrary to the fully-connected layers presented before, neurons in one convolutional
layer are not connected to every single inputs xi. For image inputs, neurons are only
connected to pixels in their receptive fields, see Figure 3.6. Stacked convolutional layers
proceed in the same way: neurons in some layer l are only connected to few neurons in
the layer l −1. This architecture allows the network to learn low-level features in the first
layers, then higher-level features as the number of layers increases. The main reason for
the success of CNNs in computer vision tasks is the fact that this hierarchical structure
is similar for natural images.

Weights for CNNs can be represented as small images that have the size of the re-
ceptive field: they are called filters. A layer of neurons using the same filter outputs a

Figure 3.6: Convolutional Neural Networks and receptive fields [Géron, 2019].
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so-called feature map. Each layer of the CNN can have several feature maps, depending
on the number of filters that is considered. A scheme of the core structure of CNNs with
feature maps is given in Figure 3.7.

A description of how to compute outputs of neurons is given in [Géron, 2019]: let’s
consider a neuron located in row i, column j of the feature map k in some convolutional
layer l. It is connected to the outputs of the neurons in the previous layer l − 1, located
in rows i× sh to i× sh+ fh−1 and columns j × sw to j × sw + fw −1 where fh and fw are the
height and width of the receptive field. The output zi,j,k of this neuron can be computed
as

Figure 3.7: Convolutional layers with multiple feature maps. Images here are with three
color channels [Géron, 2019].
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Figure 3.8: Original architecture of the UNET [Ronneberger et al., 2015].

zi,j,k = bk +

fh−1∑
u=0

fw−1∑
v=0

f
n
′−1∑

k ′=0

xi+u,j+v,k ′wu,v,k ′,k (3.1)

where:

• xi+u,j+v,k ′ is the output of the neuron located in layer l − 1, row i + u, column j + v
and feature map k

′.

• bk is the bias term for feature map k in layer l.

• wu,v,k ′,k is the connection weight between any neuron in feature map k of the layer
l and its input located at row u column b and feature map k

′.

Note that we do not take into account the notion of stride here for simplicity. More
details on the structure of CNNs can be found in [Géron, 2019].

There has been a lot of research towards the design of efficient CNN architectures.
For tomographic reconstruction, an architecture that is largely used in many methods in
the U-NET architecture. It was originally designed for biomedical image segmentation in
[Ronneberger et al., 2015], but the architecture was adapted to image reconstruction in
many works. A scheme of the original architecture is represented in Figure 3.8. One can
observe that the structure consists of a contracting path and an expanding path with skip
connections. This structure allows learning low-level features while preserving high-level
information from the input data very efficiently.
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3.2 Supervised methods for image reconstruction
In this section we present deep learning based methods that require a training dataset
consisting of paired input and ground-truth data.

There are two main possibilities to acquire such pairs in practice, the first one being
to numerically simulate images, and obtain acquisition data through simulation as well.
The ground truth is then the simulated image, and the input can be the raw simulated
acquisition data or some transformations applied on these. This configuration offers the
advantage to have full flexibility on the considered images. This advantage comes with
the cost that a software for the acquisition simulation is required; another drawback is
that one needs to assess the good transcription of networks trained on simulations and
applied on real acquisition data. We will use this method to get a training dataset in
Chapter 6.

The second possibility is to have patients "real" data. In this case the ground truth is
a reconstruction - obtained with an iterative algorithm for instance - that is considered as
satisfying, and the input of the network is the actual raw data, or some transformation on
it once again. This allows getting networks that can directly be applied to real acquisition
data once they are trained, with potentially more robustness guarantee compared to
networks trained on simulations. Obtaining ground truth data can however be tedious
especially because of the drawbacks of analytical and iterative methods. A common
application of such methods is the low-dose to high-dose task that consists in using a
neural network in order to get a reconstruction similar to what could be obtained in a
high-dose setting, with low-dose acquisition data. We will detail this process in the next
chapter as it corresponds to our application with micro-CT data.

3.2.1 Reconstruction post-processing
Among the advantages mentioned for the neural networks, the computation time might
be one of the most meaningful from a clinical point of view. Compared to the other
methods presented in this chapter, enhancing the quality of a reconstruction obtained
from an analytical1 method with neural networks is the fastest solution.

In addition to the computation time, another advantage of such methods is that they
make use of convolutional neural networks in the image domain, which is specifically the
scope for which CNNs have proven to be efficient in the computer vision realm.

The first methods to appear for CT reconstruction post-processing were FBPConvNet
[Jin et al., 2017] and RED-CNN [Chen et al., 2017]. The scheme of the general recon-
struction pipeline is given in Figure 3.9. Both of them consist in feeding a convolutional
neural network with the FBP of some sinogram data. After being trained to map this
FBP to a corresponding ground-truth, the neural network has the ability to enhance the
quality of the initial FBP reconstruction in limited amount of time. Both methods only
differ in the structure of the neural network; a U-NET for FBPConvNET and a residual
encoder-decoder for RED-CNN.

The same methodology is used in [da Costa-Luis and Reader, 2017] for PET imaging,
with a deep convolutional network that takes as input a pair of PET reconstruction and

1Note that those methods could be applied on reconstructions obtained from iterative algorithms as
well but this annihilates the benefits of having a fast reconstruction.
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T1 MR image; the PET reconstruction being obtained with MLEM algorithm. Results
here suggest that such a network has the possibility to reduce the noise, get sharper
edges, improve resolution and partially remove artefacts.

Those methods work on 2D slices; the main reason is that it raises less constraints in
terms of computational resources. Working on slices might however lead to the loss of
spatial resolution in the third dimension; also neural networks could potentially benefit
from information of adjacent slices. This idea is exploited in [Xu et al., 2017] for PET
imaging where the network has a multi-slice input that consists of the slice of interest
concatenated with the adjacent slices in order to retrieve the 2D slice of interest as an
output.

Better performance can be expected when working in 3D since it can help capture
spatial information across slices; instead of working with 2D convolutional filters in the
networks, one must then use 3D filters. In the same way, the input and ground truth data
correspond to 3D volume. This has been addressed in [Yang et al., 2017, Shan et al., 2018]
where enhanced quality was observed in the reconstructions. More recently the network
FastPET [Whiteley et al., 2020] made use of such a 3D network for post-processing images
for time of flight PET imaging.

Working with 3D data however implies a significant increase in terms of computational
resources; working on patches rather than on the whole volume is one of the solutions
to deal with the issue, as well with reducing the batch size during training for instance.
It is to be noted that it is not a trivial task to compare the performance of 2D and
3D methods since the 3D networks have more parameters compared to 2D ones for a
fixed architecture; it is hard to isolate the impact of having more training parameters vs
considering spatial information to measure the improvements brought by a 3D method.

A common question that can be raised for reconstruction post-processing method is
the loss of information on the raw data that is caused by the initial reconstruction. It
is hard to evaluate the ability of neural networks to retrieve the solution when a certain
amount of information from the measurements is lost during the first analytical/iterative
reconstruction step.

Figure 3.9: Post-processing networks reconstruction pipeline. Note that in general the
initial reconstruction can be obtained with FBP but also with any other analytical or
iterative method.
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3.2.2 Direct reconstruction methods
Instead of getting a first approximation of the image and then reduce noise or remove
artefacts from it, one can leave the entire reconstruction task to a neural network. The
network can then perform sinogram correction, image domain mapping and image quality
enhancement within a single neural architecture. The general principle for these methods
is illustrated in 3.10.

This is the idea in [Li et al., 2019] where such a network is used to obtain a re-
construction from sinogram data under different acquisition conditions. This approach,
illustrated for CT in the article, allows one to tackle different problems such as limited
angle view, data undersampling or even specific artefacts linked to each modality, within
a single framework. The downside here is that the architecture implies a large number
of parameters for the network; to prevent overfitting, it is then highly desirable to have
a sufficient amount of data for training such networks.

In [Liang et al., 2018], an interesting study is performed to compare direct recon-
struction frameworks with reconstruction post-processing. The study also includes a
comparison with methods that correct the projections with a neural network and take an
anaytical reconstruction such as the FBP afterwards.

Results show that the projection estimation network removes streaking artefacts by
estimating the missing data, though the final images are still blurry with some details
that are lost. The image-domain UNET produces better outputs visually, though some
artefacts might be created. The direct reconstruction network achieves more accurate
reconstructions for the considered metrics e.g RMSE, with streaking artefacts removed
and details well preserved.

Once again, we put the emphasis on the difficulty to compare methods that are intrin-
sically different; even if the direct reconstruction framework shows better performance
here, it has a number of parameters significantly higher compared to the other tested
methods. In this sense it is not clear whether results hold for a limited number of
training data, or if a post-reconstruction UNET-like network would perform better if its
number of parameters was higher.

Another point of attention to be raised for such methods is the complete absence of
model knowledge in the neural network. For reconstruction post-processing networks,
the forward model - which represents the acquisition settings - can be implicitly known
through the reconstruction operator, even if some information might be lost as explained

Figure 3.10: Direct methods’ reconstruction pipeline. FCN is a fully-connected network
as in [Li et al., 2019].
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earlier. Without any information on the forward model here, the question of robustness
can be raised. It seems that such methods are mostly dependent on the amount of training
data available, and medical imaging is a field where data is particularly hard to obtain.

3.2.3 Unrolling iterative methods into neural networks
Unrolled iterative schemes come as a relevant answer to the issue raised by the lack of
model knowledge in the design of direct reconstruction frameworks as well as potential
loss of non-retrievable information for post-reconstruction neural networks. The general
idea is that such methods take the structure of traditional iterative algorithms such as
the ones derived in Chapter 2, but the parameters associated to these algorithms are
learned beforehand thanks to paired input/ground-truth data. The common advantage
of these methods over the two others derived so far is the need for fewer training data;
this can be particularly relevant for medical applications.

One of the first works dealing with such methods was proposed in [Adler and Öktem,
2017], where the concept is derived for the general case of inverse problems. Let’s consider
the example of gradient descent. The usual update at iteration k + 1 for the image f to
retrieve is

f k+1 = f k − wk∇f J( f k, p) (3.2)
with J( f k, p) a cost function depending on the current estimate f k of the solution f ∗

and measurements data p, and wk is an update parameter that is either fixed or adapted
according to some rule. The idea of using unrolled iterative schemes here is to replace
the previous update term by a neural network, which gives

f k+1 = f k − Γk
θk
(∇f J( f k, p)) (3.3)

with Γk
θk

a CNN parametrized by θk . In this sense there are N convolutional neural
networks in the overall architecture if N is the number of iterations of the iterative
algorithms. In the literature the initial estimate f0 can be either a constant image or
some initial reconstruction of the data p like the FBP.

The question is: how to train those CNNs Γk
θk
? In practice, one has access to pairs of

data (pi, f ∗i )i=1..n where f ∗i is the considered ground truth at the origin of data pi. In that
sense the network takes as input data pi, outputs an estimate f N

i and all of the blocks
Γk
θk

are trained simultaneously according to a loss function which can be for instance the
mean squared error between the ground truth and the predicted output as

`θ( f N, f ∗) =
1
n

n∑
i=0
| | f N

i (θ) − f ∗i | |
2
2, (3.4)

with θ = (θ1, ..., θN ). More generally, most iterative algorithms can be replaced by the
following iterative scheme using deep neural networks (DNNs){

f 0 = f0 chosen
f k+1 = Γk

θk
( f k, f k

m,∇f J( f k, p))
(3.5)

with f k
m computed from f k , for example the intermediate estimate f k+1/2 in EM-TV

algorithm. This idea to "optimize over optimization solvers" [Arridge et al., 2019] ] can
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be applied to a wide range of iterative algorithms such as gradient descent or algorithms
that we presented in Chapter 2.

An application of unrolled methods to CT low-dose imaging has been proposed with
the LEARN network [Chen et al., 2018] that corresponds to unrolling a gradient descent
scheme for a cost function including a regularization term. An illustration of the network
is given in Figure 3.11.

For CT reconstruction, the learned primal-dual algorithm [Adler and Öktem, 2018]
has proven to be a reference method. It consists in adapting the Chambolle-Pock algo-
rithm - Algorithm 1 presented in Section 1 - by replacing proximal operators with neural
networks. Here again, sinogram data are used as input data and the forward operator
and its adjoint are part of the network. The resulting learned iterative reconstruction
scheme involves CNNs in both the image and data spaces - or primal and dual spaces.

While efficient, the method however remains heavy in terms of computational re-
sources since the forward operator and its transpose are included in the network. This
can represent a burden for 3D image reconstruction especially for areas such as cone-beam
CT where the computation of projections is time and memory consuming. Another point
to raise is the fact that CNNs do not have the same properties as proximal operators, so
the guarantees on convergence for the learned primal-dual are weaker compared to the
non data-driven version.

To alleviate the constraint of computation time and memory, a stochastic primal-
dual unrolled network was recently proposed in [Tang et al., 2021] which, similarly to
OSEM for MLEM, works on subsets of the forward and adjoint operators. This offers a
significant improvement in terms of computational efficiency, and results on low-dose as

Figure 3.11: LEARN unrolling network [Chen et al., 2018]. The regularization parameter
αt can be different for each iteration block: it is learned. Estimates f t in each iteration
block are obtained via the equation f t = f t−1 − αt AT (A f t − p) − CNN( f t−1) where p are
the projections and CNN the convolutional block represented in the scheme. The CNN
and parameters αt are optimized with supervised training.
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well as sparse-view CT look very promising.
For PET imaging, unrolled iterative schemes also exist and we can mention EMNet

[Gong et al., 2019a] and MAPEM-Net [Gong et al., 2019b] which, as their names suggest,
are adaptation of EM and MAP-EM algorithms into neural networks.

We see that unrolling iterative schemes into neural networks is a very active research
field for tomographic reconstruction and seems quite promising. It especially allows train-
ing networks with fewer amount of data compared to the methods derived so far, which
is of paramount importance in the medical imaging area. Those methods seem to answer
the issues of parameter tuning, though their main limitation remains the computational
aspect. They might therefore not be suited for applications requiring fast reconstruction,
even though algorithms such as [Tang et al., 2021] might open up for some perspectives
in the future.

3.3 Generative networks for image reconstruction

In 2014 a revolution similar to the one observed for CNNs in the 1980s1 emerged in the
computer vision field with the development of Generative Adversarial Networks (GANs)
[Goodfellow et al., 2014]. As we showed previously that the efficiency of CNNs in the com-
puter vision field can be translated to inverse problems and tomographic reconstruction,
it seems relevant to investigate the application of GANs to this realm.

Interest in such methods for tomographic reconstrution has indeed grown very fast
over the past few years [[Yi et al., 2019]. In this section we first derive the theory related
to GANs, with the emphasis put on Wasserstein GANs since these are the networks that
we will mostly consider in the experiments later. We then cover the various applications
that GANs have for the reconstruction task, from supervised to self-supervised methods.

Note also that the realm of generative networks in deep learning also include the
variational auto-encoders [Kingma and Welling, 2013]. We do not focus on such methods
in this thesis so we do not discuss them in this chapter.

3.3.1 Generative adversarial networks
The initial objective of GANs, first proposed in [Goodfellow et al., 2014], is to learn a
probability distribution. Instead of estimating the real probability distribution of some
true images that belong to a space X, which explicit definition cannot be obtained, one
can define a random variable z ∼ πz and build a function gθ : Z → X, parametrized by
θ ∈ Θ which generates samples according to a distribution Pθ . This function gθ takes in
practice the form of a neural network Gθ and its objective is to make Pθ as close to the
true distribution Pr as possible.

This is made possible by a double structure consisting of a generator and a discrim-
inator - or critic - as shown in Figure 3.12. The objective of the generator is to create
realistic data - e.g face images, handwritten digits [Goodfellow et al., 2014] - while the
discriminator aims at distinguishing between true and fake samples. In this setting for

1The actual breakthrough of convolutional neural networks in terms of performance in computer
vision tasks rather appeared in the 2010s thanks to improved computational power, but the concept was
developed in the 1980s.
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Figure 3.12: Generative Adversarial Network. Both the generator and discriminator are
neural networks. The discriminator takes either a real or a generated sample. The losses
are backpropagated to update the corresponding network’s weights. The objective of
adversarial learning is to make the generator able to create outputs in the distribution of
real images.

GAN training, one thus only needs unsupervised data consisting of true samples of the
distribution probability that is estimated.

The advantage of such a network is to easily generate data, noting that one does
not need the expression of the density Pr . The important question to address is how to
correctly measure the distance between two probability distributions Pr and Pθ .

In [Goodfellow et al., 2014], authors use a Jenson-Shannon (JS) divergence and derive
a neural network able to generate such a distribution Pθ . The obtained network however
turns out to be often delicate to train due to its instability. This is the reason why we
focus here on the derivation of Wasserstein GANs (WGAN) [Arjovsky et al., 2017].

3.3.1.1 Wassertein 1-distance

Theory One important characteristic that one might expect when training a neural
network to approximate a probability distribution is the continuity of Pθ w.r.t θ. Indeed,
at each step t of the training, the network is a generator of samples that are distributed
according to a distribution Pθt , where (Pθt )t is expected to converge towards the true
probability distribution. Hence, continuity involves the fact that θt → θ =⇒ Pθt → Pθ .
In this case only it seems reasonable to perform the optimization on parameters θt .

Convergence in terms of probability distributions can be defined in different ways.
Indeed, a sequence of distributions (Pθt )t∈N converges1 if and only if there is a distribution
Pθ such that the distance d(Pθt ,Pθ) tends to zero, which specifically depends on the
distance d that one considers. In [Arjovsky et al., 2017], it is shown that continuity is
not obtained when the convergence of probability distributions is considered w.r.t the
JS distance, neither it is the case with distances like Total Variation or Kullback-Leibler
divergence. The use of such distances between two probability distributions is a major

1Here we only consider convergence in distribution, i.e weak convergence.
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explanation of the difficulty to train GANs. However, authors propose instead to use
the Earth-Mover (EM) distance - or Wasserstein-1 distance - widely used for optimal
transport problems. It is defined as follows :

W(Pr,Pθ) = inf
γ∈π(Pr ,Pθ )

E(x,v)∼γ[| |x − v | |1] (3.6)

where π(Pr,Pθ) is the set of all joint distributions γ(x, v) whose marginals are Pr and Pθ
respectively, and where x ∼ Pr and v ∼ Pθ are samples of the generated one. These joint
distributions can be interpreted as the mass that has to be transported from x to v in
order to transform Pr into Pθ , the EM distance being the cost of the optimal transport
plan.

Authors show that continuity of Pθ w.r.t θ is guaranteed with the EM distance, and
that θ → W(Pr,Pθ) is not only continuous everywhere but also differentiable almost every-
where under mild assumptions. As a loss function to train generative networks, the EM
distance between probability distributions seems therefore more appropriate compared
to KL or JS distances1.

Computation of the EM distance As defined in (3.6), it is not computationally
feasible to evaluate the Wasserstein-1 distance. To address this issue, one might use the
Kantorovitch-Rubinstein dual expression of this distance [Villani, 2008] :

W(Pr,Pθ) = sup
h∈Lip(X)

Ex∼Pr [h(x)] − Ev∼Pθ [h(v)] (3.7)

where Lip(X) denotes real-valued 1-Lipschitz maps on X, X being the image space. Once
again it is not possible to cover the space of all these functions and one can parametrize
them with a neural network (Dw)w where w represent the network’s parameters. Using
this parametrization and according to the way Pθ was built, the Wasserstein-1 distance
is hence defined as

max
w∈W
(Ex∼Pr [Dw(x)] − Ez∼πz [Dw(gθ(z)]). (3.8)

The formulation (3.8) however does not take into account the 1-Lipschitz condition on
the function Dw. To address this, authors in [Arjovsky et al., 2017] used weight clipping
in the corresponding neural network. This amounts to restricting the range of potential
values that can be taken by the parameters in the network„ which reduces the space of
potential functions that can be represented by this network.

A solution is proposed in [Gulrajani et al., 2017] where the authors first show that
the optimal solution h∗ of (3.7) has, under mild assumptions, a gradient norm value of 1
almost everywhere. The resulting distance is hence proposed as follows:

max
w
(Ex∼Pr [Dw(x)] − Ez∼πz [Dw(gθ(z)] + λEx̂∼Px̂

[(| |∇x̂ Dw(x̂)| |2 − 1)2]) (3.9)

where x̂ ∼ Px̂ are straight lines between samples from Pr and the generated distribution
Pθ , and λ is a weighting parameter for which a standard value of 10 is generally considered.
The added term is the gradient penalty that aims at ensuring the 1-Lipschitz condition on

1EM distance is said to be weaker than other distances as for convergence of probability distributions.
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the discriminator. It is two-sided since it appeared to be more efficient and the optimal
solution has a 1-gradient norm almost everywhere.

This WGAN with a gradient penalty term (WGAN-GP) is able to learn much more
complex probability distribution compared to the previous one that makes use of weight
clipping.

In practice the training of such a network consists in alternately updating the gener-
ator’s parameters by minimizing

Ex∼Pr [Dw(x)] − Ez∼πz [Dw(gθ(z)] + λEx̂∼Px̂
[(| |∇x̂ Dw(x̂)| |2 − 1)2] (3.10)

w.r.t θ and the discriminator’s parameters through maximization of (3.10), both with
optimization methods common to neural networks.

3.3.1.2 Conditional GAN

Before delving into the various applications of GANs for tomographic reconstruction, we
detail here the notion of Conditional Generative Adversarial Networks (CGAN) as they
represent an important part of the research towards using for GANs medical imaging.

CGANs for computer vision The first time conditional GANs were introduced was
in 2014 in [Mirza and Osindero, 2014], shortly after the release of the paper from Good-
fellow et al. The idea underlying CGAN is actually really close to traditional GANs; the
generator/discriminator structure is kept, the only difference is that images are generated
conditionally to some information. For instance instead of generating images of hand-
written digits, one can generate them conditionally to the information "1", "2", etc. If the
condition put in the generator is "1", the produced images will - assuming the network has
been correctly trained - still be handwritten digits with different handwriting styles, but
this time only images representing the digit "1" will be generated. From an implementa-
tion point of view, this amounts to concatenating the information to the latent variable
z as input to the generator network, and also concatenating the same information to
the input of the discriminator, namely the generated image. The principle of CGAN is
illustrated in Figure 3.13.

Formally, the minimax game that both the generator Gθ and the discriminator Dw

are playing can be represented by the following optimization process :

min
θ

max
w

LcGAN (Dw,Gθ, y) = Ex∼Pr (y)[log Dw(x |y)] + Ez∼πz(y)[log(1 − D(Gθ(z |y)|y)] (3.11)

with x the real data, z the latent variables and y the condition on which the image
generation is based. For πz a simple distribution - e.g Gaussian - is generally considered
in practice. Note that here the formulation is based on the Jenson-Shannon distance.
Just like traditional GANs, θ and w are updated alternately with some optimizer and
backpropagation of the gradient of the loss function.

The adaptation of CGANs to image-to-image translation was proposed three years
later in [Isola et al., 2017]. Here the condition given to the generator corresponds to
another image. An example can be the generation of a landscape image given the image
of all of its edges; or the generation of a colored image given a gray-scale version of
it. One needs to keep in mind here than the idea is still to generate a distribution of
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images given a single condition; for instance given a gray-scale image, one can generate
an entire probability distribution of corresponding colored images. Indeed the purpose
is to learn a mapping from a given image y and random noise vector z to the output
v, G : (y, z) → v = Gθ(z |y). In practice authors actually add a L1 loss to the objective
function of the generator so that it is trained with

LG(θ) = LcGAN (Dw,Gθ) + ηL1(Gθ). (3.12)

with η a weighting parameter. The reason is that this allows ensuring that the generated
output matches the given conditional image in a pixel-wise manner. Authors mention
that L1 allows capturing the low frequencies, and the GAN discriminator is restricted to
model high-frequency structures. We will go back to more thorough analysis of such loss
functions in the next chapter.

Authors also point out the fact that the input random noise z tends to be ignored by
the network in their experiments which thus gives almost deterministic outputs.

Conditional Wasserstein GAN In [Adler and Öktem, 2018], the concept of Wasser-
stein GANs is extended to conditional generation of images: the so-called conditional
Wasserstein GAN (CWGAN). We will see later how such a method can be applied to
tomographic reconstruction and we derive here the theory. Given an input y ∈ Y , one
wants to approximate the posterior π(x |y) with G(y) that maps each y ∈ Y to a prob-
ability measure on X where X is the set of potential images for example. An optimal
generator G is then

G∗ = arg inf
G∈Γ

Ey∼σ[W(G(y), π(.|y))] (3.13)

Figure 3.13: Conditional Generative Adversarial Network. Both the generator and dis-
criminator are neural networks. The generator has both a random tensor and a condition
as input. The discriminator takes the conditional data as input along with either a
real or a generated sample. The losses are backpropagated to update the corresponding
network’s weights.
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where σ is the unknown distribution that generates the input data; in practice its empiri-
cal counterpart can be taken. Here we measured the distance between the two distribution
probabilities with the Wasserstein-1 distance for all the reasons we mentioned before. The
Kantorovitch-Rubinstein duality theorem gives in this case

W(G(y), π(.|y)) = sup
hy∈Lip(X)

Ex∼π(.|y)
v∼G(y)

[hy(x) − hy(v)]. (3.14)

Moreover, authors prove that

inf
G∈Γ

Ey∼σ[ sup
hy∈Lip(X)

Ex∼π(x |y)
v∼G(y)

[hy(x)− hy(v)]] = inf
G∈Γ

sup
D∈D(X×Y )

[E(x,y)∼µ
v∼G(y)

[D(x, y)−D(v, y)]] (3.15)

where D(X × Y ) represents mappings on X × Y that are 1-Lipschitz in the X-variable for
every y ∈ Y , and µ the joint distribution of data (x, y) which is unknown but which can
be estimated with empirical data.

For some Z-valued realization z ∼ η we have v = Gθ(z, y) and the discriminator D is
also parametrized so that we have

Gθ : Z × Y → X
Dw : X × Y → R

The parameters for the optimal generator are obtained as

θ∗ ∈ arg min
θ∈Θ

sup
w∈W

E(x,y)∼µ
z∼η
[Dw(x, y) − Dw(Gθ(z, y), y)] (3.16)

where in practice parameters w are trained jointly with θ according to (3.16). For training
the joint distribution µ is replaced with training paired data (xi, yi). Note that here also
a gradient penalty term must be added to ensure the 1-Lipschitz condition on Dw.

Such a CWGAN can then be used to generate a probability distribution given an input
data - an image for instance - and we show hereafter that this can have applications for
medical imaging.

3.3.2 Application to image reconstruction
Now that we have derived the theoretical basis underlying (conditional) generative adver-
sarial networks, we present different ways to use such networks for the image reconstruc-
tion task. We will cover the case where a Wasserstein distance is used to train a network
for a reconstruction post-processing task; we also derive an application of CWGAN to
generate a posterior sampling of images given an input data and discuss potential appli-
cations that it can have in the medical imaging realm; we also mention the interest of
GANs when supervised data is not available. Note also that we do not cover in this sec-
tion the possibility to use adversarial networks as regularization functionals in iterative
schemes, nor we will detail the applications for self-supervised learning, as it will be part
of the related specific categories in the next sections.
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3.3.2.1 GANs for reconstruction post-processing

Here the pipeline for reconstruction is the same as for 3.2.1 : some initial reconstruction
- usually the FBP - is fed into a neural network that aims at enhancing the quality of
the obtained image. The difference is that the training of such a network involves an
adversarial loss: the Wasserstein distance for instance. For the reasons explained earlier
for the image-to-image translation network, a content loss - e.g pixel-based losses such
as the mean squared error or the mean absolute error - is almost always added to the
adversarial loss, the objective being not only to retrieve high-frequency features with the
adversarial loss but also to retrieve low-frequency information and similarities with the
input data. In extreme cases without any content loss, one could obtain networks that
generate images from the true image distribution, but that do not correspond to the FBP
given as an input of the network.

In [Yang et al., 2018], an adversarial loss based on the Wasserstein distance is used
to denoise a FBP reconstruction for CT imaging. The objective of the network is to
match this FBP obtained from low-dose acquisition (LDCT) with the FBP that could
be retrieved with normal-dose acquisition (NDCT). The network is thus trained with
paired low-dose/normal-dose FBPs. The content loss used in addition to the Wasserstein
distance is a perceptual loss and we will delve into this type of loss functions in the next
chapter.

The structure of the corresponding network can be represented as in Figure 3.14. In
this case the discriminator takes either a generated image Gθ(LDCT) or a ground-truth
NDCT image and the value of its output is as high as this input "is believed" to be a
generated/false image.

The same idea is considered in DPIR-Net [Hu et al., 2020] for PET imaging. The
only difference here is that the network is directly fed with sinogram data instead of
FBP or some initial reconstruction; so this cannot be considered as a post-processing

Figure 3.14: Scheme of WGAN-VGG. Both the generator and discriminator are updated
during training, while the weights of VGG are fixed. The generator is trained with both
VGG and adversarial (Adv.) losses.
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method but it rather corresponds to an direct reconstruction framework. In this work
both perceptual and pixel-based losses are added to the adversarial loss to generate high-
quality PET images from the raw data.

Application to 3D data was also performed in [Wang et al., 2018] for the enhance-
ment of PET images reconstructed from low-dose data. Here authors refer to conditional
generative adversarial networks but the generated image is unique; this theoretically cor-
responds to a conditional GAN where the sampling distribution is a Dirac distribution.
Their 3D network allows obtaining better performance compared to 2D and the adver-
sarial loss turns out to be particularly efficient at retrieving specific characteristics from
region of interest.

From a general point of view, we see here that there are two ways to interpret such
adversarial networks for post-processing a reconstruction regarding the theory derived so
far. On the one hand, they can be considered as similar to image-to-image translation
networks [Isola et al., 2017] - with a different content loss but this is not our interest
here -, so that they belong to the category of CWGANs. However the output generated
by such a network is deterministic, so the corresponding latent variables follow a Dirac
distribution: in practice there is no need to consider such latent variables and no sampling
is needed here.

On the other hand, one can consider these networks as traditional WGANs, with the
difference that the input distribution πz corresponds to the LDCT images distribution.
Instead of sampling data from a classic Gaussian distribution for instance, the network
maps the distribution of LDCT to the one of NDCT. The content loss is then here to
make sure that both LDCT and NDCT samples correspond to the same data.

In practice the difference between the two interpretations lies on the conditioning of
the discriminator or not; if the input data is concatenated to the discriminator, then it
refers to a CWGAN. Otherwise it is simply a WGAN where the latent distribution is the
distribution of LDCT images.

In the literature for tomographic reconstruction the notion of GAN (or conditional
GAN) is generally used though what really matters is the notion of adversarial loss
- Wasserstein 1-distance in most recent works - that is used to train a network that
predicts the NDCT image. In those methods a deterministic output is generated, which
is different from the initial objective of GANs. We will see in what follows how GAN’s
stochasticity can be used for medical imaging.

3.3.2.2 Conditional GANs to estimate a posterior distribution

An application of conditional Wasserstein GANs for medical imaging was given in [Adler
and Öktem, 2018], for which the theory has been derived earlier. The decribed method
is a conditional GAN as originally defined in [Mirza and Osindero, 2014] and [Isola et al.,
2017] since images are generated in a stochastic manner, conditionally to some FBP data.

Given a LDCT image y, the stochastic network does not reconstruct directly the
NDCT version of y; rather it estimates the posterior distribution x → π(x |y) of the
NDCT images that can correspond to the low-dose version y. In practice for a given y

the generator z → Gθ∗(z, y) thus takes as input both y and random noise z drawn from a
distribution that can be easily computed. It generates a sample Gθ∗(z, y) from π(x |y). It
is possible to consider the mean image as the most likely NDCT version of y, or also to
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compute the variance image from the estimated distribution.
This represents a completely different approach compared to traditional image recon-

struction methods, for which the information brought by the estimation of the posterior
distribution can be of particular interest. One can indeed obtain statistical features by
sampling the posterior; for instance the probability of presence or not of a nodule corre-
sponding to a tumor can be estimated with such a network. Contrary to deterministic
methods, the posterior distribution allows one to assess whether the presence of such el-
ements on some reconstructed image is due to a statistical fluke or if it is indeed relevant
to consider. More generally, hypothesis tests can be performed with such a method.

From a computational point of view, authors show that the formulation (3.16) might
lead to mode collapse, i.e a case where the network does not take noise into account and
the variability of generated images is very low.

Therefore a modification on the discriminator is proposed to address this issue if one
is interested in obtaining variability on the samples generated. The WGAN loss with
the conditional WGAN discriminator is given by the following, the expectation being
replaced by summation over training samples that consist of paired (x, y) data :

LW (θ,w) = E (x,y)∼µ
(z1,z2)∼η

[
1
2 (Dw((x,Gθ(z1, y)), y)+Dw((Gθ(z2, y), x), y))−Dw((Gθ(z1, y),Gθ(z2, y)), y)],

(3.17)
the loss function for the generator being in [Adler and Öktem, 2018]

LG(θ) = LW (θ,w) + 10−4 | |θ | |2 (3.18)

and the loss function for the discriminator is

LD(w) = −LW (θ,w) + 10Lgrad(θ,w) + 10−3Ldrift(θ,w) + 10−4 | |w | |2 (3.19)

with Ldrift a regularization on the discriminator that prevents training from being unstable
because the loss in invariant w.r.t a constant in Dw, and Lgrad is to impose the 1-Lipschitz
constraint on the discriminator as in (3.9). We gave here the values given in [Adler and
Öktem, 2018] for the weighting parameters in the loss functions.

It is shown in [Adler and Öktem, 2018] that θ∗ is a minimizer of LW (θ,w
∗) in (3.17) -

where w∗ is obtained by taking the supremum on w - if and only if it is a minimizer in
(3.16). In practice however, training a WGAN with (3.17) has the advantage to obtain
more variability in the generated outputs, which corrects the tendency of conditional
GANs to ignore the input noise as described first in [Isola et al., 2017]. The reason for
such an outcome is that in (3.17) the discriminator distinguishes between unordered pairs
in the image space containing either true images or random samples generated by the
generative model Gθ .

3.3.2.3 Case with no paired training data

In the previous section we assumed that we had access to paired data; the most common
case being a sinogram - or its FBP - obtained with low-dose settings, paired with a
desirable reconstruction that could be performed with normal dose. For multiple reasons,
medical imaging is known to be a field where such datasets are hard to obtain. Especially,
there might be cases where low-dose and normal-dose reconstructions are available, but
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they are not paired. In practice indeed, only one acquisition is performed so pairs of such
data rarely exist without any simulation involved.

Here again, advances in the computer vision field can be transcribed to tomographic
reconstruction problems. CycleGANs [Zhu et al., 2017] correspond to generative adver-
sarial networks that are specifically designed for applications as the ones described here
when no paired data are available. The initial idea was to map similar images with low-
level features that are different: a paint and a photograph, a winter landscape and its
summer version, two images with different colors, etc.

This amounts to learning to translate an image from a source domain Y to a target
domain X in the absence of paired examples. For this, the aim is to find a mapping G
such that G(y) ∈ X is indistinguishable from true images x ∈ X. This task could be
achieved using a simple adversarial loss; however we want in addition to have an image
that matches its corresponding version in the source domain.

This is the reason why authors suggest that the translation should be cycle-consistent.
If we have a translator G : Y → X and another translator H : X → Y , we would expect
that H(G(y)) ≈ y and G(H(x)) ≈ x. CycleGAN thus combines a cycle consistency loss
with the adversarial losses on domains X and Y .

For a generator G that maps some y ∈ Y into the domain X and a discriminator in
this domain DX , considering the JS distance we have the following adversarial loss:

LGAN (G,DX) = Ex∼Pr [log DX(x)] + Ey∼πdata[log(1 − DX(G(y)))] (3.20)

where πdata (resp. Pr) is the distribution of data in the domain Y (resp. X). The
consistency loss

Lcyc(G,H) = Ex∼Pr )[| |G(H(x)) − x | |1] + Ey∼πdata[| |H(G(y)) − y | |1] (3.21)
is then added to the generator loss function for the reasons explained before. The final
objective function for a CycleGAN can be written

L(G,H,DY ,DX) = LGAN (G,DX) + LGAN (H,DY ) + λLcyc(G,H) (3.22)

with λ a weighting parameter; the aim is then to solve

G∗,H∗ = arg min
G,H

max
DX,DY

L(G,H,DX,DY ) (3.23)

The use of such a CycleGAN was performed in [Lim and Ye, 2019] for microscopy ap-
plications, but this is also relevant for the cases of CT or PET modalities considering
unpaired distributions of low-dose and normal-dose images for instance.

If this method is particularly interesting for the case of unpaired data, one needs to
remember that whenever paired training data are available, image-to-image GANs as
derived before are more efficient compared to a CycleGAN.

3.3.3 Improvements in GAN structures
We saw that GANs can be a method of choice for image reconstruction; an essential
element in the way a GAN is built is the choice of the loss function to consider for the
adversarial training of both the generator and discriminator networks. We mentioned the
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Jenson-Shannon distance which was originally proposed in [Goodfellow et al., 2014] and
the Wasserstein-1 distance as it showed improvements for training the networks. The
latter is derived from optimal transport theory; in [Salimans et al., 2018] an other way to
approximate the Wasserstein 1-distance is proposed with the aim to make training more
stable. In practice however the memory requirements for such a method can be a limiting
factor.

More generally, the choice of the loss function to use for generative adversarial net-
works has represented an active field of research [Genevay et al., 2017, Wu et al., 2019].

It is also to be noted that the performance of GANs has improved fastly over the
past few years, and this might be beneficial in the future for tomographic reconstruction.
Work on the structure of those networks has especially allowed to generate images that
are more and more realistic, and one can especially mention in the chronological order
ProgressiveGAN [Karras et al., 2017], StyleGAN [Karras et al., 2019]1 and the most
recent network at the time of the writing being StyleGAN3 [Karras et al., 2020].

3.4 Learning a regularization term
All of the previous methods consist of a reconstruction operator that involves a neural
network; in all of the cases so far, the network produces an estimated solution. In
this section we consider a different paradigm where a neural network is only used as a
regularization term for solving the optimization problem discussed in Chapter 2 with
traditional iterative methods. Learning a regularization term allows getting rid of the
choice of a handcrafted regularization function. The computation time remains however
roughly the same as the reconstruction is performed with the same algorithms in the end.
We derive here two different methods for such a purpose.

3.4.1 Adversarial regularizer
We recall the objective function in (2.12)

min
f

d(A( f ), p) + αR( f ) (3.24)

with d some data-fidelity distance - l2 or Kullback-Leibler for example -, and R( f ) a
regularizing term for the image f , with weighting parameter α. The focus here is put on
the choice of the term R( f ): it needs to take small values for samples in the distribution
of "true" images (e.g NDCT), and larger values when samples are further from this dis-
tribution. So far we have set fixed the regularization function, considering it especially
as a TV norm. In [Lunz et al., 2018], neural networks are used in order to represent this
function

R( f ) = Sθ( f ) (3.25)
with Sθ a deep neural network parametrized by weights θ. Denoting the distribution of
correct samples as πtrue and the distribution of other images as πf alse, the network S is

1An interesting explanation of the method can be found in
https://www.youtube.com/watch?v=kSLJriaOumA .
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trained according to the loss function

L(θ) = Ef∼πtrue[G1(Sθ( f ))] − Eh∼πf alse[G2(Sθ(h))] (3.26)

with G1 and G2 some monotone functions. In practice the distribution πf alse can cor-
respond to the FBP of n measurements data p while we have access to m ground truth
data f so that we have

θ̂ ∈ arg min
θ

{
1
m

m∑
i=1

G1(Sθ( fi)) −
1
n

n∑
i=1

G2(Sθ(FBP(pi)))

}
. (3.27)

In [Lunz et al., 2018] G1 and G2 both correspond to the identity function. Also a
gradient penalty term is added to the network S so that the function to minimize becomes

L(θ) = Ef∼πtrue[Sθ( f )] − Ef∼π f alse[Sθ( f )] + λE f̂∼πmix
[| |(∇Sθ( f̂ )| | − 1)2] (3.28)

where λ is a weighting parameter and πmix is the distribution of samples drawn on straight
lines between samples drawn from both πtrue and πf alse : we recognize the cost function
of a discriminator in a WGAN-GP scheme. Here instead of having a generator that
produces samples in πf alse, the distribution correspond to known poor-quality FBPs.

The notion of adversarial regularizer thus refers to the training of a neural network
with an adversarial loss - here the Wasserstein 1-distance - so that it acts as a discrimi-
nator which purpose is to distinguish between true and deteriorated images.

3.4.2 NETT approach
In [Li et al., 2020], the aim is also to find a deep architecture to represent the regularization
functional, but the method differs a little bit from the previous one. This time, the
regularization is written as

R( f ) = S(Φθ( f )) (3.29)
with Φθ : X → Θ a DNN. The regularization function S : Θ → [0,∞[ is fixed this time,
but instead of applying it to f directly, it takes values in the space Θ which corresponds
to the output of a network. Once again, S is to take small values for desired images and
penalize those with artefacts or other unwanted structures.

For Φ, authors consider the encoder part of a UNET-like encoder-decoder network; S
is a norm on the output of Φ.

We denote the entire network as Ψ ◦ Φ where Ψ is the decoder with parameters θ′.
The training of Ψ ◦ Φ proceeds as follows: some training phantoms xn are used, as well
as their back-projection images denoted as zn. The difference between these images is
then stored as rn = xn − zn for 1 ≤ n ≤ N . High value of the components of rn should
imply a high value for S(Φθ(zn)) so that the regularizer is efficient. On the other hand,
one can set zn = xn (rn = 0 ) for N ≤ n ≤ 2N, which corresponds to perfect reconstruction
of ground-truth images xn. The way the overall network is trained is by minimizing the
following energy function

θ̂ = min
θ

E =

2N∑
n=1

`(Φθ ◦ Ψθ ′(zn),rn) (3.30)
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considering some distance ` that is generally a mean squared error or mean absolute
error. This makes the network producing outputs that are close to rn; in other words
given some image zn, the whole network is trained to estimate the artifact part of zn.
With this remark, it is to be expected that some norm taken from the encoder part
should be low when the image zn is artifact-free, and high otherwise.

Once the network is trained and the parameters have been optimized, the reconstruc-
tion operator is hence taken as

Γθ̂ = arg min d(A( f ), p) + αS(Φθ̂( f )). (3.31)

NETT and adversarial regularizers thus represent alternatives to deep reconstruction
operators, but the computation time implied by the iterative minimization process is
way higher. It would be interesting to evaluate the performance of such methods against
faster methods such as e.g reconstruction post-processing, where training data can be
obtained in the same way as for the adversarial regularizer. We also note that there are
other methods in the literature for learning a regularization term such as [Zhang et al.,
2017] and [Obmann et al., 2020].

3.5 Self-supervised methods
The methods discussed so far in this chapter require having access to a training dataset,
whether it is supervised - i.e with paired input/ground-truth images - or not. Neural
networks can also be trained in a self-supervised setting. In this case one no longer needs
to have access to a training dataset, but rather learning is performed on the fly with only
the input data to learn from.

With self-supervised methods, the task is to reconstruct an image from data as input:
this is a setting similar to methods discussed in Chapter 2. As the methods that we are
discussing involve neural networks and related notions such as CNN, activation functions,
backpropagation of the gradient to update weights, these methods are referred to as self-
supervised learning methods.

There are several ways to learn without any training dataset; we focus here on a spe-
cific method, namely the Deep Image Prior (DIP) that was proposed for inverse problems
in [Ulyanov et al., 2017]. The reason is that this is a method at the basis of many re-
construction techniques, and we will propose a DIP-based method in Chapter 6. We will
briefly mention other typical methods based on self-supervised learning for tomographic
reconstruction at the end of this section.

3.5.1 Deep Image Prior
Deep Image Prior is a concept developed in [Ulyanov et al., 2017] for general inverse
problems with applications in the computer vision field. It showed excellent results for
various tasks such as denoising super-resolution and inpainting for instance.

The concept is based on a paradigm shift compared to the learning-based methods
that we presented so far. The core of the idea is that priors on images are captured by the
structure of a generator such as a convolutional neural network. This is quite opposite
to the common thought that image priors must be learned from some training data. It
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is argued that the structure of a network "resonates" with the structure of the data that
one aims at generating. For instance, convolutional operations in CNNs naturally impose
self-similarity on the generated images because the filters are applied across the entire
visual field.

In DIP principle, the network weights serve as a parametrization of the image to
be retrieved. An image f can therefore be represented by a neural network Γθ with
parameters θ as

f = Γθ(z) (3.32)
with z that is some fixed input tensor for the network.

In practice, the solution f ∗ is found by finding optimal parameters θ∗. The only
information used by Γθ to do so is the input data - e.g noisy/blurry image, projections -
and the structure of the network that is considered.

If we denote the deteriorated input data as f0, the optimal solution is found by
minimizing an energy function such as

f ∗ = arg min
f

J( f , f0) + R( f ) (3.33)

where R( f ) is a regularization term considered on the image f . The form of J is entirely
dependent on the task, whether it is inpainting, denoising or tomographic reconstruction.
The minimizer θ∗ - such that f ∗ = Γθ∗(z) - is found with typical optimizers such as
gradient descent or Adam, after being randomly initialized. A scheme of DIP principle
is shown in Figure 3.15.

The regularizer R( f ) aims at capturing the regularity on natural images, with Total
Variation for instance, whereas it is shown that a significant amount of information on
the image distribution is contained in the structure of the network Γ.

Figure 3.15: Deep Image Prior scheme [Ulyanov et al., 2017]. At every iteration the
weights θ are mapped to an image f = Γθ(z) where Γ is a neural network with parameters
θ. We consider here an energy function E( f , f0) that depends on the estimate image f
and the input data f0. An example of such an energy function is (3.33).
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3.5.2 Application to tomographic reconstruction
In what follows we show an example on how to use DIP for tomographic reconstruction.

As we mentioned the framework of DIP is general and the difference between tasks
lies on the choice of the energy function J. Also it is shown in [Ulyanov et al., 2017] that
the choice of the architecture of Γ does have an impact on the prior considered for the
image distribution1.

In [Gong et al., 2019] the DIP framework is adapted to the task of PET image recon-
struction. The corresponding framework is named DIPRecon.

Considering PET measurements data y, a natural choice for the energy function is
the log-likelihood considering Poisson noise on the data. Therefore in DIPRecon the
objective function is

J(y, f ) = KL(y, AΓθ(z)) (3.34)

with KL the Kullback-Leibler divergence and A the forward operator for the PET model
geometry that is considered. The network’s architecture is similar to a 3D UNET, and it
is also observed that the performance is enhanced when considering the input tensor z as
an image obtained from an other modality, e.g the T1-weighted MR image in their case.
Overall better performance is observed with DIPRecon compared to traditional iterative
methods such as MLEM.

3.5.3 Other methods
Other self-supervised methods have been successful in the recent years; they mostly
correspond to denoising methods and the paradigm is different compared to DIP. One
can mention Noise2Noise [Lehtinen et al., 2018], Noise2Void [Krull et al., 2019], Noise2Self
[Batson and Royer, 2019], Noisier2Noise [Moran et al., 2020], etc. The latter for instance
proceeds as follows:

1. Degrade the input image y assuming a deterioration process. For instance, add
Poisson noise to an image that is supposed to be corrupted by Poisson noise. Let’s
call this synthetic image y′.

2. Train a neural network to retrieve y from y′.

3. Apply the trained network to y in order to retrieve the clean image.

This process could be potentially adapted to image reconstruction.
Finally we mention a method that has been implemented for cryo-electron microscopy

(cryo-EM) in [Gupta et al., 2021], which pipeline is as follows:

1. Start with an initial estimation of the image.

2. Feed this image into a physics simulator; this corresponds to a forward model
adapted to cryo-EM in the original paper.

1It is shown that different network architectures lead to different priors. However it is shown that
any architecture can reach the optimal solution; the difference is that some architectures allow faster
convergence compared to others depending on the task.
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3. Compare the generated output with the real measurements data using a discrimi-
native network.

4. Update the estimate image with backpropagation of the gradient of the adversarial
loss.

If this scheme seems very promising and able to adapt to tomographic reconstruction
in CT or PET for instance, it is to be noted that the number of projections data in
cryo-EM is way higher, e.g 41,000 in [Gupta et al., 2021]. There is therefore no guarantee
that such a method would be suited for CT or PET.

3.6 Conclusion on deep learning methods
This chapter illustrates how wide the spectrum of deep learning methods for tomographic
reconstruction is. There is probably not one category that is strictly more adequate to
one other regardless of the application. That is to say, one should consider one of the
different categories that we derived here depending on the application requirements: data
availability, requirements for reconstruction time, training time, diversity of the images
of interest, etc. We sum up in Table 3.1 the main - and current - pros and cons for each
type of methods, even if this is of course more complex in reality as within each category
there might be solutions to overcome some of the limitations. The stochastic primal-dual
unrolled network is an example of potential improvements that can be obtained within the
realm of unrolled iterative schemes. Furthermore, the flexibility of deep learning based
methods implies that combinations of different methods can be considered depending on
the applications; this idea will be delved into in Chapter 6.

In what follows we will perform two different studies, the first one on CT data and
the other for PET modality. In the next chapter we will study the impact of the loss
function of deep neural networks on the quality of the reconstructed images; the last
chapters are dealing with blind deconvolution and especially an application on time-of-
flight (TOF) intraoperative PET imaging. As the impact of the loss function can be
studied regardless of the structure of the network, and TOFPET imaging is a modality
that requires very low reconstruction time, from now on we will mainly work with the
first category mentioned in this chapter which are post-processing methods.
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Method Pros Cons
Post-processing Fast reconstruction Large supervised dataset re-

quired
Direct method Knowledge of forward oper-

ator not required + more
flexibility

Large dataset required +
high number of parameters.
Potentially highest recon-
struction time

Unrolling Forward operator included
in the model + less training
data required

Reconstruction time and
memory footprint

GAN : deterministic output High-frequency features in
the reconstructions

Harder to train (+ need for
a content loss)

Posterior sampling (i.e.
GAN)

Statistical information Reconstruction time

Regularizer learning No paired data + better
suited prior compared to it-
erative methods

Reconstruction time

Self-supervised No training data required Slow convergence so high re-
construction time

Table 3.1: Summary of the different categories of deep learning methods for tomographic
reconstruction.
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Chapter 4

Impact of the loss function on deep
learning based bone
microarchitecture reconstruction

We saw in Chapter 3 that the range of possibilities to design a neural network for tomo-
graphic reconstruction in the medical context is wide, and still many more methods are
likely to appear in the future. Modifications of the architecture of networks or training
strategies are among the numerous elements that are tweaked to improve the efficiency of
deep learning methods for the reconstruction task. One thing that is however common to
almost all of those methods is the fact that neural networks rely on the backpropagation
of the gradient of a loss function in order to adjust their parameters. This loss function
has a role of evaluation and answers the question: how good the prediction is compared to
some reference image? This is obviously the case for supervised post-processing methods
and unrolled iterative schemes, but even for self-supervised learning one needs to compare
the output of the network to some data.

The choice of a loss function for training neural networks is a topic of interest for both
the computer vision and the medical imaging fields. This choice can have a significant
impact on the output of a network during inference (i.e for the prediction once the
network is trained). The role of the loss function is key since it is the element given to
the network for it to assess its own performance; for instance, if the mean squared error
between predictions and reference images is decreasing, this suggests that the performance
of the network is improving (on the training set at least). The efficiency of the learning
process is thus based on the capacity of the loss function to be in adequacy with the role
of the network: does minimizing the loss function correspond to producing outputs that
are satisfying with respect to the actual purpose of the network?

In this chapter we put the emphasis on the choice of the loss function used during
training. As the main requirement in practice for a reconstructed image is that it is
reliable and exploitable for diagnosis, we drive our study towards the impact of the loss
function on qualitative and quantitative information that are relevant to this purpose.
As most of the loss functions that we consider have proven to be efficient when evaluated
in the field of computer vision, we aim at extending or not these results when the quality
of a network’s predictions is assessed w.r.t a specific medical aspect.

In order to perform such a study, we need to focus on a particular application. Our
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first objective is to address the case of image reconstruction for low-dose imaging, as it is
currently an important topic for deep learning based methods, and the deterioration of
the images due to corrupted data might have a significant impact on both quantitative
and qualitative information available for the practitioners. We also need to deal with
data that allow to perform a study that is comprehensive enough and that can be useful
to the application domain. For this we consider micro-CT (µ-CT) data for bone microar-
chitecture imaging; the complexity of the corresponding images’ structure is such that
comprehensive analysis can be performed so that significant conclusions can be drawn as
for the comparative study of loss functions. Moreover, a key point is that diagnosis of
bone pathologies is directly linked to the computation of quantitative parameters; hence
it is of major importance to assess whether neural networks allow to retrieve such pa-
rameters accurately, and whether some loss functions are more appropriate than others
towards this purpose.

The chapter is organized as follows: in section 4.1 we explain the need for low-dose
imaging and we give elements on the quantification of bone pathologies, with a focus on
the context of µ-CT imaging. In section 4.2 we perform a study on the impact of different
combinations of loss functions on different metrics and parameters relevant to the medical
context. For this we use a post-processing method as it offers practical advantages from
a computational point of view. Finally in section 4.3 we study the possibility to use a
stochastic CWGAN to get statistical information on quantitative parameters from a bone
sample given a FBP obtained from a low-dose acquisition.

4.1 Low-dose bone microarchitecture imaging

4.1.1 Principle and interest of low-dose CT imaging
Here we derive some medical considerations that justify the need for dose reduction in
CT imaging in general. Two points need to be clarified: first, acquisition techniques of
dose reduction are not the topic of our work. The methods that we discuss rather consist
in enhancing the quality of images that are, in the particular application that we choose,
obtained after a low-dose acquisition. This distinction needs to be done as dose reduction
techniques represent a field of research itself that is out of our scope. The second point is
that the elements given for dose reduction here are associated to CT imaging in general;
our study then focuses on bone microarchitecture µ-CT imaging which represents a tiny
part of the entire field. We will cover this particular case afterwards.

Undergoing a CT scan is linked to an increased risk of developing a cancer [Hall and
Brenner, 2008]. As the use of CT scans for diagnosis became the standard of care, the
exposure of patients to radiation increased drastically. In the US, population exposure to
radiation due to X-ray imaging was multiplied by six between 1982 and 2006 [Mettler Jr
et al., 2008]. This was mainly explained by the increase in the number of scans performed
- normalization of the CT scan as a diagnosis tool - and the increase of the dose used in
the scanning procedure.

The exposure to the radiation from X-rays has serious consequences on the patient’s
health. A whole body scan gives tissues doses in the range of 10-30 mSv [Mettler et al.,
2000], which is equivalent to the maximum radiation dose recommended to nuclear plants
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employees. In 2010, more than 400 patients in the US have been exposed to abnormally
high level of radiation in brain CT scans [Bogdanich, 2010]. This risk is all the more
so high as the patient is young; in [Mathews et al., 2013], it is shown that there was an
increased incidence of cancer after CT scan exposure during childhood or adolescence,
mainly due to irradiation.

Even if those long term studies were performed with data from older scanners, it
clearly shows the importance of reducing the radiation dose for CT imaging, and it has
been a major research interest in the last twenty years.

In practice, dose reduction might be obtained with sparse sampling - i.e obtaining less
projections -, though it is not really the current standard. Indeed in most of the com-
mercial CT scanners, the X-ray source delivers X-rays constantly, even though accurate
and fast grid-switching are getting introduced to monitor the X-ray source in modern
scanners [Mei et al., 2017]. The second possibility to lower the radiation dose during a
CT scan is to reduce the tube current and it has been largely studied [Coursey and Frush,
2008].

As detailed in [Kubo, 2019], the current stake is mainly to find methods that are
hardware-independent in order to get CT images while satisfying both the radiation dose
requirements and the quality necessary for diagnosis purposes. This is a very active
research field in deep learning and a lot of work has arisen to make neural networks a
tool to produce quality images from a low-dose CT protocol.

4.1.2 Basics of X-ray bone imaging
As mentioned in the introduction, one of the main concerns in this chapter is to study
how results on loss functions from computer vision translate to medical imaging; hence
we need to delve into the relevant parameters that are used to help establish a diagnosis.
We detail here elements related to bone pathologies as this corresponds to the application
of our study in this chapter.

One of the main pathologies related to bones is osteoporosis, for which it is estimated
that more than 200 million people are suffering from worldwide [Sözen et al., 2017]. It is
a skeletal disorder that reduces the bone strength so that the risk of fracture is increased.
Bone strength depends on two main features:

• Bone mineral density (BMD) which is a projected density value expressed in g/cm2.

• Bone quality which includes many properties of bone, like trabecular bone microar-
chitecture, the presence of micro-fractures or other damage, etc.

The BMD is generally computed within a specific area, e.g the femoral neck, and is
most commonly given as the T-score, which expressed the measured BMD (in g/cm2)
as the number of standard deviations above or below the mean BMD value - measured
within the same area - for a healthy 30-year-old adult of the same sex and ethnicity as
the patient. The choice to compare to 30-year-old adults is due to the fact that this is the
age corresponding to the peak for bone mass. Considering the BMD criteria, osteoporosis
can be defined as a T-score under −2.5. Note also that the Z-score can be used, in which
case the BMD is compared with people with the same age as the patient.

BMD measurement is currently the most common method for osteoporosis diagnosis
and evaluation of the risk of fracture [Oei et al., 2016]. It was shown in [Ammann and
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Rizzoli, 2003] that up to 70% of the variation in bone strength can be attributed to the
measured BMD. Also, each standard deviation decrease of BMD corresponds to a two-fold
increase in fracture risk [Dawson-Hughes et al., 2008]. In clinical use, dual-energy X-ray
absorptiometry (DXA) is the most commonly used and studied bone density measurement
technology1. It is however also possible to estimate BMD from CT images since bone
density can be retrieved for each voxel in this case.

There are limits to the BMD, as for instance a lot of fractures due to bone weakness
happen while the T-score does not indicate osteoporosis. If low bone density as well as
a historic of fractures are important risk factors, they cannot provide a comprehensive
diagnosis tool for the prediction of future bone failure.

Especially, when BMD does not allow distinguishing between population with high-
risk of fracture or not, spatial arrangement of the trabecular bone structure can be a
criterion for distinction [Homminga et al., 2002]. A lot of research has also been conducted
towards the link between bone microarchitecture properties and the risk of failure. For
instance it has been observed that the bone volume to total volume ratio (BV/TV)
is considerably reduced from osteoporotic patients compared to healthy ones [Nazarian
et al., 2006]. The authors conclude that low BV/TV values is an efficient predictor for
failure of cancellous bone, especially when it is computed within subregions of the bone
since bone failure can occur in specific parts of the microstructure. Authors also show that
microstructural indices improves the efficiency of a predictive model based on measured
parameters. BV/TV ratio can also be a tool for assessing the efficiency of some drugs in
placebo-controlled trials [Genant et al., 2008], which illustrates its importance.

Studying connectivity in the bone volume also allows one to get insight on the bone
microarchitecture [Kabel et al., 1999]. Here again this can be a parameter to monitor for
drugs trials; it is the case for the study of paired biopsies taken before and after treatment
with human parathyroid hormone (PTH). It was especially shown in [Fox et al., 2005]
that after 19 months of PTH treatment compared with placebo, BV/TV increased by
44% and connectivity density by 25% demonstrating the usefulness of the drug treatment
to improve bone quality.

BV/TV, BMD, 3D connectivity and other parameters obtained from trabecular bone
images are thus of paramount importance as illustrated by applications such as osteo-
porosis or risk of fracture diagnosis, but also for monitoring the response of patients in
clinical trials. It is hence crucial to ensure that algorithms used for reconstructing bone
microstructure correctly retrieve those different parameters.

Performing low-dose acquisitions can be a factor of degradation of the accuracy of the
parameters retrieved in the reconstructed images. Significant changes in absolute BMD
values were observed in [Mei et al., 2017] when dose reduction was performed by lowering
tube current. Indeed, noise causes in this case an important bias in quantitative values.
This study also shows that a better estimation of BMD was obtained when low-dose
acquisition is performed through sparse-sampling, especially because this reduces photon
noise; even if this may open up brighter perspectives for the future, it is to be noted that
those results are obtained when reconstructions are performed with iterative algorithms,
which are not used in clinical routine because of the computational burden mentioned
in Chapter 2. This highlights the need to perform such a study for metrics obtained on

1DXA is a spectral imaging technique where two X-ray beams with different energy levels are aimed
at the patient’s bones.
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deep learning based reconstructions.

4.1.3 µ-CT imaging
Before delving into our experimental study, we give here the the principle and the appli-
cation range of µ-CT imaging since the data that we will use are obtained from such a
modality.

µ-CT is a CT technique that provides images with spatial resolution at micrometer
scale [Peyrin and Engelke, 2012]. It is an imaging system mostly used for bone samples
as it is non destructive and for in vivo imaging of small animals such as mice and rats
model as it is non invasive. It is however not a modality that can be used for in-vivo
scanning of human tissues.

Early µ-CT used synchrotron radiation [Ebashi et al., 1991, Salome-Pateyron et al.,
1997] but more recent tube-based commercial scanners have been developed, some of them
being specialized for analyzing bone structure thanks to integrated softwares [Hildebrand
and Rüegsegger, 1997]. In [Genant et al., 2008], it is shown that µ-CT is a relevant tool for
studying bones’ features of interest as it can provide accurate parameters in topological
and morphological analysis.

The question on the relevance of considering low-dose imaging for µ-CT in our study
needs to be addressed. First we mentioned the fact that this is an imaging technique
that can be used for in vivo animal studies, so in this case lowering the radiation dose
makes sense. Diagnosis-related parameters are easily evaluated in vitro currently, but
non-destructive/invasive techniques for in vivo use would be even more useful and it is
a field of research for the radiology of osteoporosis [Genant et al., 2008]. Therefore, we
perform our study on available µ-CT, simulating low-dose acquisitions so that it can be
transcribed to further in vivo acquisitions for which reducing the radiation dose will be
inevitable. The fact to use ex vivo bone samples allows one to have quality ground truth
data for the study’s objectives, a quality that potentially could not be obtained from real
patient data with reasonable radiation dose. The results that we obtain here are useful
for the field of µ-CT data, but we stress the fact that the scope of this study is expected
to be larger than this particular modality: we aim at getting insights on the impact
that different loss functions used for training a neural network have on the parameters of
interest in the case of bone related pathologies such as osteoporosis.

To sum up, here are listed the motivations of the study:

1. We focus on deep learning methods for low-dose image reconstruction since it is a
need for the CT imaging field in general.

2. We want to assess whether neural networks are able to reconstruct images from
which one can accurately retrieve quantitative parameters of interest for diagnosis,
with the focus put on the impact of the training loss function on those relevant
parameters. Indeed the loss function is the basis of the learning process so it must
be in adequacy with the final purpose of the neural network which is to produce
reliable images from a medical point of view.

3. We consider µ-CT bone microstructure data since the ground truth real images
that are available have high quality, and the complexity of bone microstructure is
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such that we expect the analysis to clearly emphasize limitations and/or benefits of
different loss functions. Also diagnosis of diseases such as osteoporosis would benefit
from accurate quantitative and structural parameters retrieved in the reconstructed
images, which makes the scope of the study particularly useful for this application.

4.2 Study of the loss function for a post-processing
method

Here we want to assess whether different loss functions, which have proven to be efficient
in the computer vision field, are able or not to produce good quality reconstructions,
the quality being evaluated regarding parameters that were discussed in the previous
section. Indeed, two networks with identical architectures can produce very different
reconstructions depending on the way they have been trained.

It is to be noted that not every loss function can be used to train a neural network.
Indeed the gradient of such a function needs to be computed and backpropagated the
networks’ parameters. For instance, it is not feasible to consider BV/TV as a loss func-
tion. We therefore need to find loss functions that can be differentiated and, in the same
time, be compatible with the desired purpose of the network.

Note also that the effect of loss functions was studied in [Kim et al., 2019] for the
denoising of low dose CT images. There is however, as explained in the previous section,
a need to perform a comparative study with task-specific metrics.

In this section we study combinations of pixelwise, structural and adversarial losses
and evaluate the benefits and drawbacks from each of these. To do so, we consider metrics
that are common to computer vision, but also ones that are relevant for the diagnosis
of bone diseases. To conduct the study, we consider the simplest task that consists in
enhancing the quality of a FBP image obtained from low-dose projections with a deep
convolutional neural network (CNN) trained on high-dose/low-dose paired images. This
work is expected to give some insight on the impact of the loss function in the context of
tomographic reconstruction and provide a guide in selecting the appropriate loss function
when using neural networks to reconstruct bone microarchitecture.

Most of the methods, results and analysis presented here have been published in
[Leuliet et al., 2022a]. We present here all of those elements as it represents one of the
major contributions of this thesis.

4.2.1 Model
Here we recall the model considered in Chapter 3. We consider y ∈ Y the image recon-
structed with FBP from low-dose projections, Y being the space of these low-dose FBP
reconstructions. Let x ∈ X be the corresponding high-dose image, where X is the target
space of images obtained in the high-dose setting. The aim is to find the reconstruction
operator Gθ such that

x = Gθ(y) (4.1)

where Gθ is a deep CNN parameterized by θ. Note that we talk about a reconstruction
operator for simplicity here even though y does not correspond to a projection. In what
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follows we consider paired high-dose and low-dose images (x, y) and a loss function L such
that

θ∗ ∈ arg min
θ

E(x,y)∼µ[L(Gθ(y), x)] (4.2)

where µ is the joint distribution of (x, y) and parameters of Gθ are trained according to
the loss function L with backpropagation. In practice, empirical expectations obtained
with training data are considered.

4.2.2 Training losses
As mentioned above, we distinguish three types of loss functions. Pixelwise losses compare
each pixel of the predicted image with the corresponding pixel in the ground truth and
the average error is then considered. Structural losses compare statistics or features from
the prediction and the ground truth in order to match the way human eye evaluates
similarities between images. Adversarial losses allow to assess whether the predicted
image belongs to the distribution of ground truths or not, i.e if the network is producing
an image that could be reconstructed from a high-dose acquisition in our case.

4.2.2.1 Pixelwise losses

We study here two types of piwelwise losses. The mean squared error (MSE) or L2 loss
is widely used to train a neural network and is often the default loss in deep learning
libraries; it writes

LMSE(Gθ(y), x) =
1
n

n∑
i=1
(xi − [Gθ(y)]i)

2 (4.3)

where n is the total number of pixels in the image and subscript i denotes pixel values of
x. Another widely used loss that performs operations between pixels is the mean absolute
error or L1 loss

LMAE(Gθ(y), x) =
1
n

n∑
i=1
|xi − [Gθ(y)]i |. (4.4)

In both cases, pixels are considered independently and outliers - for instance one
pixel value [Gθ(y)]i that is very far from xi - are largely penalized. MSE might lead to
oversmoothing in the reconstructions, but it is generally efficient to retrieve flat areas.
For sharp objects, MAE is often preferred since less oversmoothing is observed in the
solutions. This can be explained by the fact that MSE corresponds to a Gaussian statistic
of the noise in the likelihood in a Baysesian framework, while MAE corresponds to a more
sparse Laplace prior as mentioned in 1.1.4. Note that in both cases structural features
are not taken into account so that there is no guarantee that the bone microstructure is
well retrieved or even that the retrieved image is consistent with the structure of a real
sample.

4.2.2.2 Structural losses

To ensure the correctness of the reconstruction in terms of anatomical structure, a so-
lution can be to train networks with loss functions that compare images with respect
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to aggregated statistics or features within each of them. SSIM was developed in [Wang
et al., 2004] to measure the similarity of two images with respect to the structure rather
than operating pixel by pixel. Its value ranges between -1 and 1, with a SSIM of 1 corre-
sponding to identical images. A loss function that can be considered is thus the negative
SSIM that writes

LSSIM(Gθ(y), x) = −
(2µgµx + c1)(2σgx + c2)

(µ2
g + µ

2
x + c1)(σ2

g + σ
2
x + c2)

(4.5)

where µg is the average of Gθ(y), µx is the average of x, σ2
g and σ2

x are their corresponding
variance, σgx is the covariance of Gθ(y) and x, c1 = (k1L)2 and c2 = (k2L)2 with L the
dynamic range of the pixel values that is 1 in our case - due to rescaling - and k1 = 0.01
and k2 = 0.03 as we considered standard values. In practice, SSIM index is computed on
sliding Gaussian windows of size 11 × 11 with standard deviation σ = 1.5 and the actual
SSIM value is the average of the local similarities.

Perceptual losses can also be computed by comparing features within the two images.
Those features can be obtained by feeding a trained neural network with the images of
interest and considering some layer output: this is the idea of VGG loss in [Johnson et al.,
2016] that writes

LVGG(Gθ(x), y) =
1
n
| |VGG(Gθ(y)) − VGG(x)| |22 (4.6)

where VGG is the 16th output of the VGG-19 model [Simonyan and Zisserman, 2014]
that performs classification of natural images. Note that the weights that we will use
for computing the VGG loss are the same as those obtained from training VGG-19 on
natural images in [Simonyan and Zisserman, 2014] - we do not retrain this network with
different images here. It is shown in [Zhang et al., 2018] that such a loss better suits
human perception compared to pixelwise losses; their study focuses on natural images
and is not driven towards medical purpose.

The intuition behind both SSIM and VGG losses is that the human eye does not
compare every pixel independently. Rather, it operates on different areas and assembles
the information to draw a conclusion on the similarities between images. If the efficiency
of such metrics is now acknowledged in the computer vision field, it is not proven for
medical imaging.

Whether it is SSIM or VGG, one can still expect that using such losses should allow
to retrieve relevant structures in the bone reconstruction since the network specifically
learns to minimize the difference in terms of structural features during the training stage.
However in SSIM the pixel values are only considered with aggregated statistics and for
VGG loss there is no consideration at all given to pixel values. Those losses could thus
lead to networks that correctly transcribe the bone microstructure but where the BMD
correspondence is missing.

4.2.2.3 Adversarial loss

In Chapter 3 we detailed the concept of generative adversarial networks and especially
adversarial losses such as the approximated Wasserstein distance in WGAN. We recall
the corresponding loss function:
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LWGAN(Dw,Gθ) =Ex∼Px [Dw(x)] − Ey∼Py [Dw(Gθ(y))]

− λEx̂∼Px̂
[(| |∇x̂ Dw(x̂)| |2 − 1)2]

(4.7)

where Dw is a neural network that is - jointly with Gθ - trained to maximize LWGAN,
Py and Px are the empirical distributions of respectively low-dose FBP data and high-
dose images, x̂ ∼ Px̂ are sampled along straight lines between real high-dose images and
generated ones, λ is the weighting term for the gradient penalty, that we fix to 10 in this
study as it is a standard value. Here the expectation is in practice obtained with samples
within a single batch; contrary to previous loss functions it makes less sense to give a
definition for a single pair (Gθ(y), x) - unless the batch size is 1 which will not be the case
for our experiments.

Here we only consider WGAN-like networks; the aim of the discriminator is to evaluate
whether the generated image belongs to the high-dose images distribution or not, but the
network is not stochastic. Rather, Gθ aims to be a mapping from the distribution of low-
dose images onto the one of high-dose images. Here the training loss evaluates whether the
generated image belongs to X, but it does not indicate whether the content corresponds
to the input low-dose FBP. As a consequence, a content loss should be added to ensure
that x matches its low dose version y.

As the WGAN loss evaluates the quality of the generated image thanks to a probability
distribution model, it is reasonable to think that both BMD and bone microstructure are
taken into account in that case, and the impact of the adversarial loss should be studied
accordingly.

4.2.3 Comparative study

We propose to combine different loss functions with weighting parameters to form a more
complex cost function, with the hope to benefit from the strengths of each part. There
are 31 possible combinations from the 5 losses that we presented (and we could have
considered even more possibilities).

Our aim here is to assess the impact of each category of loss functions, and potentially
find the most relevant one from each category. Combining losses from the same category
- for instance L1 and L2 - is thus not interesting for us. This leaves us with 17 potential
combinations, and even only 16 if we do not consider WGAN alone as we mentioned that
it should be used with a content loss. We will report in this work results for 12 of these
combinations - shown in Table 4.1 - as they allow to answer the questions raised in this
study, the 4 other combinations adding no further insights for our problem.

Table 4.1 highlights the potential drawback of using a complex loss function: adding
weighting parameters that need to be tuned during the training stage increases the com-
putation time for a fixed hyper-parameter optimization strategy. For instance, a grid
search strategy consisting in testing n different values for each hyper-parameter requires
n2 times more trainings for WGAN-SSIM-L1 (2 weighting parameters) compared to CNN-
SSIM (no weighting parameter).
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Network Loss function
CNN-L1 LMAE(G)
CNN-L2 LMSE(G)

CNN-SSIM LSSIM(G)
CNN-VGG LVGG(G)

CNN-SSIM-L1 LSSIM(G) + λ1LMAE(G)
CNN-VGG-L1 LVGG(G) + λ1LMAE(G)
CNN-VGG-L2 LVGG(G) + λ1LMSE(G)
WGAN-L1 LWGAN(D,G) + λ1LMAE(G)

WGAN-VGG LWGAN(D,G) + λ1LVGG(G)
WGAN-SSIM-L1 LWGAN(D,G) + λ1LSSIM(G) + λ2LMAE(G)
WGAN-VGG-L1 LWGAN(D,G) + λ1LVGG(G) + λ2LMAE(G)
WGAN-VGG-L2 LWGAN(D,G) + λ1LVGG(G) + λ2LMSE(G)

Table 4.1: Tested networks and their training loss function. λ1 and λ2 are weighting
parameters. (G) implies that the loss function is used to update the generator’s weights,
while (D, G) refers to loss functions that update both the generator and the discriminator.

4.2.4 Metrics
Here we detail the metrics that we use for evaluating the reconstruction performance.
Once again, note that loss functions and metrics are different notions; loss functions
allow the weights of the network to get updated thanks to differentiation, while a metric
is a tool for assessing the quality of the final reconstruction, once the network is trained.
Most of the metrics that we will use are indeed not suited to train a neural network,
though they are relevant for assessing its performance.

4.2.4.1 Metrics from the computer vision field

Even if the main interest of this study is to perform the evaluation on diagnosis oriented
metrics, we still present results for common metrics used in computer vision.

The Peak Signal to Noise Ratio (PSNR) is defined as

PSNR( f ,g) = 10 log
(

L2

MSE( f ,g)2

)
with L the dynamic range of the pixel values and MSE( f ,g) is the mean squared error
between images f and g. The PSNR is a measure of signal transcription in the recon-
structed image compared to the ground truth; it can be a good indicator of the noise
removal capacity of the reconstruction method. However the overall visual quality of the
reconstruction is not evaluated with PSNR.

It is also possible to assess the quality of the reconstruction with SSIM:

SSIM( f ,g) = −LSSIM( f ,g).
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Here the structure of the image is indeed taken into account, but this is a metric that
has been specifically designed for traditional computer vision applications and originally
it was also designed for the evaluation of contrast and luminance of images.

4.2.4.2 Resolution assessment

In our study we found relevant to assess the ability of neural networks to reconstruct
thin details in the images; indeed it does not correspond to any parameter analyzed for
diagnosis but it is intuitive to think that images with better resolution are of higher
interest for medical experts, so it might be a criteria in this comparative study.

The ability to reconstruct thin details can be assessed with the resolution of the
obtained image. In [Banterle et al., 2013],] the authors introduced the Fourier Ring
Correlation (FRC) as a metric to estimate the resolution of a reconstruction. The idea
is to compute the correlation between an estimated 2D image f with respect to some
ground truth g in the Fourier domain as

FRC f ,g(Ri) =

∑
r∈C(Ri)

|<( f̂ ∗(r)ĝ(r))|√∑
r∈C(Ri)

| f̂ (r)|2
∑

r∈C(Ri)
|ĝ(r)|2

(4.8)

where Ri is the radius of the ring C(Ri) in the Fourier domain within which the correlation
is computed, f̂ is the Fourier transform of f , f̂ ∗ denotes the conjugate of f̂ , and< denotes
the real part. The metric aims at measuring the ability of the reconstruction to recover
information at a certain frequency level. The resolution ρ of the reconstruction can then
be determined as

ρ =
1

RFRC(R)≤τ(R)
(4.9)

where RFRC(R)≤τ(R) is the radius for which the FRC is lower than a threshold τ. This
threshold may depend on the radius and in [Banterle et al., 2013] it is computed as

τ(R) =
2√

Np(R)
2

(4.10)

with R the radius in the Fourier domain and Np(R) the number of pixels contained within
the corresponding ring.

4.2.4.3 Diagnosis oriented metrics

Bone mineral density transcription The BMD, which is one important element
to assess bones weakness in the diagnosis of osteoporosis, can be estimated from the
Hounsfield Units (HU) values of the CT image. An accurate reconstruction should then
correctly retrieve the values of density per voxel in HU; indeed if the BMD is computed as
the overall density within a precise area, one needs to ensure that the density value for all
voxels from this area is reliable. To this purpose, we study the flattened HU distribution of
the voxels that are reconstructed for each method. Quantitative analysis of the differences
in terms of voxel values can be performed by computing the Wasserstein-1 distance - see
[Ramdas et al., 2017] - between the 1D distributions obtained when considering each
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voxel of the volume as one realization of a random variable. Indeed we find this approach
more thorough compared to directly computing the BMD which is the overall density
within specific areas; in that case we could get accurate mean values without having the
right density distribution across voxels, therefore a good BMD correspondence could be
obtained "by chance". The Wasserstein-1 distance is more appropriated to this purpose
and it writes in one dimension

W1(φ1, φ2) = inf
π∈Γ(φ1,φ2)

∫
R×R

|u − v |dπ(u, v) (4.11)

where φ1 and φ2 are the two considered 1D distributions and Γ is the set of joint dis-
tributions (φ1, φ2). Note here that this distance does not correspond to the one that is
approximated with neural networks. The latter considers distributions over n-dimensional
vectors, n being the number of pixels in an image. Rather in (4.11), u and v are the dis-
tributions obtained when taking n realizations of a 1-dimensional random variable, which
are drawn from the distributions of the voxels taken in either the ground truth or the
estimated volume. The role of such a metric is here to assess that the density per voxel
distribution across the volume is accurate; a low distance between reconstructions and
ground truths data make the BMD measurement reliable. Also, using the Wasserstein
1-distance instead of MAE allows not penalizing reconstructions with accurate density
per voxel - thus accurate BMD - but with a structure that is slighlty shifted compared
to the ground truth for instance. We compute this Wasserstein-1 distance between HU
distributions with the Stats module of Scipy library in Python.

BV/TV The ratio between the bone volume and the total volume (BV/TV) is a key
information for mechanical failure prediction. Computation of this metric is performed
on images that have been segmented to distinguish between areas corresponding to bones
and the rest of the image. For this, we post-process the reconstructions with Otsu segmen-
tation [Otsu, 1979] and simply compute the fraction of bone volume on this segmentation.

Connectivity Studying connectivity in the bone volume allows one to get insight on
the bone microarchitecture. Connectivity can be determined in an unbiased manner by
the Euler number. We evaluate it to assess the fidelity of the reconstruction in terms of
structure. In actual medical settings, this is performed considering the 3D volume but
since in our study the networks are built for 2D slices, we focus on the comparison for
the 2D Euler number. Indeed there might be inconsistencies in the third dimension as
it is not considered in the training process; those inconsistencies would largely affect the
compuation of the 3D connectivity, which is why we stick to 2D Euler number for the
sake of the study. In the 2D case, computation of this number amounts to counting the
difference between the number of objects and the number of holes that are perceived in the
image obtained after segmentation. We show results considering 4 neighboring pixels for
the objects counts (4-Connectivity), but similar results are observed with 8 neighboring
pixels (8-Connectivity). Computation of the Euler number is performed with the measure
module of scikit-image library in Python.

Note that we also compute the DICE value on the obtained segmentations; it might
help further assess the accuracy of the reconstructions in terms of bone volume fraction,
though this is a metric that is computed at the pixel level. It writes
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Metrics Interest
Computer vision based

PSNR Signal retrieval and noise removal
SSIM Structure of the image

Diagnosis oriented
1D Wasserstein distance BMD accuracy

Euler number Bone connectivity
BV/TV Bone fraction
Others

Resolution (FRC) Thin details restitution
DICE Pixelwise accuracy of the segmentation

Table 4.2: Metrics used during the study and their interest.

DICE( fs,gs) = 2 |I( fs,gs)|

| fs | + |gs |

where I( fs,gs) is the intersection of segmentations fs and gs, an | fs | - resp. |gs |, |I( fs,gs)|

- is the number of 1 in the 0/1 image fs - resp. gs, I( fs,gs).
Finally all of the metrics that we consider for evaluating the quality of the reconstruc-

tions depending on the loss function combinations are represented in Table 4.2.

4.2.5 Data

The ground truth data1 consist of 3D volumes of human radius and tibia structures
obtained on a SCANCO µ-CT 100 with a 24-µm voxel size. The training dataset is
composed of ten volumes from different human donors. Two volumes from two other
subjects are considered for evaluating the methods; the networks are not trained with
those two volumes and the hyperparameters are not tuned according to these data. These
two evaluation volumes have respectively a number of slices, height and width of 164 ×
882 × 752 and 194 × 466 × 372 voxels. The ground truth training data are illustrated in
Figure 4.1 and the volumes for evaluation are illustrated in Figure 4.2.

Denoting by ρ the ground truth volume, projections p(ρ) were computed with the
parallel Radon transform from these volumes. This was performed with ASTRA Toolbox
[van Aarle et al., 2015] in Python. To simulate low dose data, we first consider 400
projections corresponding to approximately 50 % of the total number of projections in
the high-dose setting. We consider a source intensity I0 of 10000 photons per detector
pixel, and simulate the received intensity I at each detector pixel as I = Poisson( I0

K e−p(ρ)),
with K a parameter that we vary to simulate different amounts of dose, similarly to
[Leuschner et al., 2020]. For instance, K = 10 corresponds to 5% of the dose, since

1Data used in this study are the courtesy of Andrew Burghard from University of California, San
Francisco, USA.
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we already consider half of the projections. Then, the noisy projections are taken as
p̃ = ln I0

KI + n with n an additive zero-mean Gaussian noise with standard deviation 1% of
the first term mean value. Finally, we compute the FBP of p̃ with a Hann filter (cutoff
0.4) and consider it as the noisy input data of the network. In the training data, we
varied K to simulate between 5% and 50% of the upper limit of the radiation dose. Note
that we do not clip the value below 0 here to preserve information in the input of the
neural network. When evaluating the FBP we do not clip the values either, though it
could be done if required. Then data are normalized when fed into neural networks. The
normalization is simply performed by dividing the images by a factor ρmax which was
chosen so that all data lie between -1 and 1 for the input FBP, and between 0 and 1 for
the ground truth.

4.2.6 Experiments
In all models, the generator is a 16-layer Convolutional Neural Network (CNN) with 128
filters in each layer, except for the last layer which has only one filter since the output is
the generated image. Worse performance was observed with fewer layers in preliminary
tests. The considered deep CNN is similar to the one used in [Yang et al., 2018]. We
could have used more sophisticated methods here such as unrolled iterative schemes, or
even UNET for the post-processing method but this does not bring any additional value
for the purpose of the study; as we had a simple 16-layer CNN working efficiently, we
kept this simple architecture for the whole study.

For WGAN based networks, we use the same discriminator structure as in [Yang et al.,
2018]. For both the discriminator and the generator, Leaky ReLU activations are used
with parameter 0.3 and He initialization [He et al., 2015], except for the output of the
discriminator that has no activation function. Zero padding is applied for every layer.
Optimization is performed with Adam algorithm [Kingma and Ba, 2014] with β1 = 0.9,
β2 = 0.999. Training is ran on 7,000 steps, which approximately corresponds to 3 epochs.
The gradient weighting parameter λ is fixed to a default value of 10 as in [Gulrajani et al.,

Figure 4.1: Slices of 3D volumes used for training. Each of the 10 volumes has between
152 and 248 slices, whose size ranges from 628 × 508 to 1068 × 928 voxels. Window size
is [−1000,3000] HU.
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Figure 4.2: Volume 1 (left) and Volume 2 (right) used for the evaluation. Their number
of slices, height and width are respectively 164 × 882 × 796 and 194 × 466 × 372 voxels.
Window size is [−1000,3000] HU.

2017].
For a fair comparison, hyperparameters (HP) namely the kernel size, batch size, learn-

ing rate - initial and final since we use exponential decay -, number of generator updates,
λ1 and λ2 are all optimized for every single network, on a validation set that is obtained
by taking 20% of the slices from the 10 training volumes. Two stages of HP optimization
are performed, the second stage allowing to zoom in the range of HP that gives the best
validation PSNR. The same strategy is used for each network. Results show that for all
networks, the optimal kernel size is 3 × 3, compared to 5 × 5 and 7 × 7. We find that
4 generator updates for 1 discriminator update is the best choice for WGAN based net-
works, as we tested ratios between 0.2 and 5 between both number of updates. The best
batch size is 128, i.e the maximum size that could fit in the memory of the resources that
were used for the study. The reason for these HP to be similar for every loss function
is that those hyperparameters mostly depend on both the training data and the general
structure of the networks which is considered as fixed. We only find differences in the
optimal HPs for the learning rate, λ1 and λ2 since these HPs specifically depend on the
loss function. The optimal values for those HPs are represented in Table 4.3. We tested
learning rates between 10−8, for which we observed very slow decrease of the loss function,
and 10−2, for which we observed divergence of the loss function. As for the weighting
parameters we tested values between 10−3 and 103.

Note that we assessed over-fitting by monitoring the PSNR on the validation set with
the considered HP. Figure 4.3 shows the example of CNN-L2 and WGAN-VGG, where
one can observe that with the number of steps considered, the validation curve does not
decrease and it stabilizes, so not over-fitting has been observed with the corresponding
training configuration. It has been checked for every algorithm and conclusions remain
the same. Note that we tracked PSNR only here since other metrics such as the Euler
number would be way too long to compute to make it affordable during training.

Once the hyperparameters optimal values have been found, final training is performed
on 64x64 patches from all 1,992 different 2D slices for a total of 297,976 patches. Figure
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Network lri lrf λ1 λ2

CNN-L1 6 × 10−4 8 × 10−6 - -
CNN-L2 1,5 × 10−4 8 × 10−6 - -

CNN-SSIM 1,5 × 10−4 8 × 10−6 - -
CNN-VGG 10−3 3 × 10−5 - -

CNN-SSIM-L1 1,5 × 10−4 1,5 × 10−5 100 -
CNN-VGG-L1 1,5 × 10−4 1,5 × 10−5 50 -
CNN-VGG-L2 1,5 × 10−4 1,5 × 10−5 100 -
WGAN-L1 1,5 × 10−4 1,5 × 10−5 1000 -

WGAN-VGG 1,5 × 10−4 8 × 10−6 20 -
WGAN-SSIM-L1 1,5 × 10−4 1,5 × 10−5 1 500
WGAN-VGG-L1 1,5 × 10−4 8 × 10−6 10 50
WGAN-VGG-L2 1,5 × 10−4 8 × 10−6 20 50

Table 4.3: Optimal hyperparameters for each method. These hyperparameters have been
optimized on a validation set consisting of 20% of the slices obtained from the 10 training
volumes. The learning rate decreases exponentially from lri to lrf during training.

4.4 shows the evolution of the PSNR on the training set during this final training step
for some of the tested algorithms (we do not represent all for clarity).

Computations are performed on a NVIDIA Tesla V100 GPU. The generator has
slightly more than 2 × 106 trainable parameters, the discriminator has around 18 × 106

trainable parameters, and VGG loss implies 20×106 extra parameters that are not train-
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Figure 4.3: Over-fitting assessment. Training and validation PSNR are represented w.r.t
the number of steps when training on 80 % of the training set and validation on the other
20 %. Results are shown for (a) CNN-L2 and (b) WGAN-VGG
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able but that still need to fit into the memory. Training of a CNN takes approximately
2 hours per epoch, and around 10 hours for WGAN-based networks since one training
step consists of 5 updates: 4 for the generator and one for the discriminator. Tests show
that this difference in terms of computation time cannot be avoided since convergence of
WGAN based networks still require the same number of epochs as CNNs.

Note also that we could use different learning rates for the discriminator and the
generator, choose other architectures, different values of αLE AKY for different activations
and so on, so at the end there is a multitude of hyperparameters combinations that could
be tested.

Here we test only a few hyperparameters, most of the others are standard. For others
(number of layers generator etc), our choice was based on preliminary tests and we took
values that gave satisfying results. The most important thing is that we considered the
same strategy for the different algorithms we want to compare.

As for the architecture we could have taken another generator such as UNET or
even unrolled iterative networks; in this case the performance might be better for every
algorithm, but our aim is to study the impact of the loss functions, so we need to fix the
networks’ architecture.

4.2.7 Evaluation
For evaluation, we simulate 2 configurations: 10% and 20% of the maximum dose. Note
that we control the dose amount, which is not equivalent to controlling the amount
of Poisson noise since the latter depends on the density of the volume: there is more
attenuation and thus more Poisson noise for more dense volumes.

In what follows, we study PSNR, SSIM, resolution (Resol), Wasserstein distance for
the 1D distribution within the whole volume (WV) and within the bone area (WB). In
the segmented reconstructions we study DICE, BV/TV, mean absolute Euler number
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Figure 4.4: Evolution of the PSNR for final training (100% of the training data are used
here) for some of the tested algorithms. CNN-MSE refers to CNN-L2.
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difference compared to the ground truth (E-N) as well as the relative absolute difference
of object counts (O-C).

For the evaluation we do not post-process the outputs of the network. This could
be done otherwise - e.g clipping the values below 0-, but the point is that we want to
evaluate the performance of the algorithms and not hide some of their components by
post-processing data.

4.2.8 Results
4.2.8.1 Pixelwise loss function study

Table 4.4 reports all tested metrics for different configurations, with the emphasis put
on comparing the presence of L1, L2 or no pixelwise loss function in the overall cost
function. Metrics are given for the evaluation volume 1 for 10% dose but results are
similar for 20% and for the other volume. By comparing each row from every block, one
can observe that for resolution, L1 loss improves the performance compared to using no
pixelwise loss or using L2 loss. Also, using no pixelwise loss function with CNN-VGG leads
to a significant performance drop for most of the metrics. We notice that the BV/TV
ratio is higher for L2 loss. The differences between each method are slight when looking
at PSNR, SSIM or DICE. This observation can also be made on the other test volumes
and for different dose configurations, thus we cannot use those metrics to distinguish
between the performance of each loss function. As for connectivity and metrics involving
the Wasserstein-1 distance, different performance can be observed depending on the loss
function, but it is not related to the pixelwise loss according to this table.

Table 4.5 highlights the enhancement of resolution with L1 loss. Indeed, the most
performing networks are those who have the mean absolute error as part of the loss
function, with the exception of WGAN-VGG-L1 that ranks behind CNN-SSIM, but this

WGAN-VGG PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
∅ 28.91 0.811 0.848 0.140 29 ± 20 0.07 ± 0.05 98.6 ± 6.7 21.62 43.81
L1 29.94 0.842 0.864 0.140 24 ± 17 0.07 ± 0.05 86.6 ± 6.0 13.61 19.93
L2 29.63 0.829 0.859 0.141 23 ± 18 0.06 ± 0.04 93.2 ± 5.9 10.53 31.20

CNN-VGG PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
∅ 26.87 0.128 0.858 0.140 40 ± 28 0.20 ± 0.11 98.3 ± 4.4 332.57 581.71
L1 30.43 0.846 0.866 0.140 37 ± 27 0.21 ± 0.05 77.9 ± 4.4 27.75 106.36
L2 30.19 0.851 0.858 0.147 79 ± 40 0.29 ± 0.05 94.1 ± 4.6 41.55 209.64

CNN-SSIM PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
∅ 30.36 0.871 0.865 0.141 44 ± 29 0.23 ± 0.05 83.1 ± 4.1 29.45 103.6
L1 30.35 0.859 0.865 0.139 26 ± 20 0.16 ± 0.05 77.3 ± 5.3 30.47 109.56
L2 30.27 0.863 0.859 0.148 63 ± 37 0.28 ± 0.05 91.1 ± 5.1 39.22 215.16

CNN PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
L1 30.43 0.848 0.866 0.140 33 ± 26 0.19 ± 0.05 78.7 ± 5.0 26.24 107.08
L2 30.17 0.852 0.856 0.148 37 ± 31 0.20 ± 0.05 95.4 ± 5.1 44.48 240.55

Table 4.4: Metrics for volume 1 and 10% dose. Here we study the influence of the
pixelwise loss. Bold entries in the first column indicate the part of the loss function that
is fixed. BV/TV ratio for ground truth is 0.138.
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will be discussed in what follows with the impact of the structural loss.
Figure 4.5 illustrates the increased performance of L1 loss on CNN-SSIM and WGAN-

VGG examples. The figure shows the evolution of FRC value with respect to the maxi-
mum frequency value for which the correlation is considered - the ring radius. Since the
correlation is computed on 2D slices, we selected a slice on volume 1 to display the curves
for the different methods on 10% dose. One can observe that for high frequencies, the
L1 curve is above the other curves. For CNN-SSIM, improvement with L1 is observed
between 9 mm−1 and 11 mm−1 (high frequencies), whereas for WGAN-VGG it is already
observed with lower frequencies, around 6 mm−1. In both cases, this indicates that the
L1 loss better transcribes high frequencies which allows reconstructing finer details.

4.2.8.2 Structural loss function study

By performing a similar ablation study to investigate the impact of the structural part of
the loss - SSIM vs VGG - we find that VGG is more efficient when associated to WGAN
and SSIM with CNN, i.e with no adversarial loss. In the same way as for pixelwise
loss functions, not all of the metrics allow to clearly distinguish between WGAN-VGG
and CNN-SSIM based networks; this is however the case for resolution and connectivity
related metrics. Table 4.6 shows the mean and standard deviation of the difference
between the Euler number of both the predicted slices and the ground truth ones. As the
Euler number computes the difference between the number of objects and the number of
holes estimated in the image, the other column represents the relative difference for the
object count only. This allows one to ensure that the observed performance for the Euler
number metric is not biased by the fact that both the count of holes and objects are not
correct. Results clearly show that WGAN-VGG outperforms CNN-SSIM, independently

Volume 1 Volume 2
Method 10% 20% 10% 20%

WGAN-L1 75.1 ± 5.1 72.4 ± 4.3 74.8 ± 6.2 73.5 ± 5.1
WGAN-SSIM-L1 75.4 ± 4.6 72.3 ± 4.0 75.3 ± 5.9 74.0 ± 5.5
CNN-SSIM-L1 77.3 ± 5.3 73.9 ± 4.3 76.4 ± 5.3 75.3 ± 5.1

CNN-L1 78.7 ± 5.0 75.5 ± 3.9 76.2 ± 6.7 74.7 ± 5.7
CNN-VGG-L1 77.9 ± 4.4 75.4 ± 4.3 76.9 ± 6.4 75.6 ± 6.0
CNN-SSIM 83.1 ± 4.1 80.1 ± 4.0 79.3 ± 5.6 78.6 ± 6.2

WGAN-VGG-L1 86.6 ± 6.0 83.1 ± 5.3 82.9 ± 7.2 79.7 ± 7.1
WGAN-VGG-L2 93.2 ± 5.9 87.8 ± 4.9 85.2 ± 7.8 82.3 ± 7.0
CNN-VGG-L2 94.1 ± 4.7 90.9 ± 4.7 90.4 ± 6.8 90.5 ± 6.7

CNN-L2 95.4 ± 5.1 91.9 ± 5.2 88.8 ± 8.1 87.2 ± 7.8
WGAN-VGG 98.6 ± 6.7 93.6 ± 6.7 94.3 ± 10.8 93.1 ± 10.8
CNN-VGG 98.3 ± 4.4 95.3 ± 4.1 91.2 ± 6.7 90.3 ± 6.7

Table 4.5: Values of resolution in µm for each method and for the test volumes 1 and 2
considering 10% and 20% dose for both.
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from the pixelwise loss function that is potentially associated. Connectivity is thus better
represented with WGAN-VGG according to our results. We also notice that using no
structural loss decreases the performance in terms of connectivity : on volume 1, the error
in terms of objects count is more than 10 % higher for CNN-L1 compared to WGAN-VGG
networks, and on volume 2 the Euler number mean absolute difference is between 2 and
3 times larger for CNN-L1. Nevertheless, it can be observed in Table 4.4 or 4.5 that VGG
loss - especially when associated with WGAN - leads to a higher value for the resolution
which means a reduced ability to transcribe high frequencies.

0 2 4 6 8 10 12 14

spatial frequency (mm−1)

0.0

0.2

0.4

0.6

0.8

1.0

F
R

C

CNN-SSIM

CNN-SSIM-L1

CNN-SSIM-L2

threshold

0 2 4 6 8 10 12 14

spatial frequency (mm−1)

0.0

0.2

0.4

0.6

0.8

1.0

F
R

C

WGAN-VGG

WGAN-VGG-L1

WGAN-VGG-L2

threshold

Figure 4.5: FRC curve on a selected slice on volume 1 for different reconstruction meth-
ods, for 10% dose. The y-axis represents the Fourier Ring Correlation value between 0
and 1, the x-axis is the radius of the ring in the Fourier domain within which the corre-
lation is computed. The threshold to compute the resolution according to (4.10) is also
represented.

Volume 1 Volume 2
10% 20% 10% 20%

Method E-N Obj. c E-N Obj. c E-N Obj. c E-N Obj. c
WGAN-VGG-L2 23 ± 18 0.06 ± 0.04 29 ± 23 0.08 ± 0.05 6 ± 5 0.08 ± 0.06 6 ± 4 0.07 ± 0.06
WGAN-VGG-L1 24 ± 17 0.07 ± 0.05 25 ± 17 0.05 ± 0.04 6 ± 5 0.12 ± 0.09 6 ± 5 0.09 ± 0.07
WGAN-VGG 29 ± 20 0.07 ± 0.05 34 ± 31 0.11 ± 0.06 7 ± 5 0.13 ± 0.08 6 ± 4 0.13 ± 0.08
CNN-SSIM-L1 26 ± 20 0.16 ± 0.05 35 ± 25 0.18 ± 0.04 16 ± 8 0.08 ± 0.06 16 ± 7 0.07 ± 0.06

CNN-L1 33 ± 26 0.19 ± 0.05 39 ± 28 0.20 ± 0.04 15 ± 7 0.08 ± 0.06 16 ± 7 0.07 ± 0.05
WGAN-L1 39 ± 25 0.20 ± 0.05 43 ± 26 0.19 ± 0.04 10 ± 7 0.08 ± 0.06 9 ± 6 0.07 ± 0.05

CNN-VGG-L1 37 ± 27 0.21 ± 0.05 42 ± 28 0.21 ± 0.04 15 ± 8 0.09 ± 0.06 12 ± 7 0.23 ± 0.08
CNN-L2 37 ± 31 0.20 ± 0.05 58 ± 37 0.26 ± 0.05 11 ± 7 0.32 ± 0.09 12 ± 8 0.30 ± 0.09

CNN-SSIM 44 ± 29 0.23 ± 0.05 56 ± 31 0.24 ± 0.04 9 ± 6 0.10 ± 0.07 8 ± 6 0.09 ± 0.06
WGAN-SSIM-L1 55 ± 26 0.22 ± 0.05 67 ± 28 0.23 ± 0.04 8 ± 6 0.07 ± 0.05 7 ± 5 0.06 ± 0.05
CNN-VGG-L2 79 ± 40 0.29 ± 0.05 91 ± 43 0.32 ± 0.05 10 ± 7 0.25 ± 0.09 12 ± 7 0.23 ± 0.08

Table 4.6: Connectivity metrics : Euler number absolute difference and objects count
relative difference compared to ground truth for each method and for test volumes 1 and
2 with 10% and 20% dose.
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4.2.8.3 Adversarial loss function study

Finally, we isolate the impact of the presence or not of an adversarial loss in the cost
function. Table 4.7 shows improved performance of WGAN based network when focusing
on the W1 distance between the 1D distributions, especially when focusing on the distri-
bution within the bone area, which is represented in the second column. Note that this is
not straightforward since the Wasserstein distance that is used for training the networks
is not the same as the one used as a metric (n-dimensional vs 1-dimensional). This results
suggests that the adversarial loss helps retrieve the correct BMD in the volumes, which
is of significant importance for assessing the bone strength.

In order to illustrate those results, Figure 4.6a shows the HU histograms for each
method, including the ground truth, for the volume 1 on 10% dose. Figure 4.6b allows a
better visualization since the graph only represents the 1D distributions when considering
the areas that are segmented as bones with the Otsu threshold.

Figure 4.7 shows reconstructions with the methods that gave the best performance
when taking all metrics into account, and especially resolution, connectivity and W1
distance.

4.2.9 Analysis and conclusion of the study
In our study PSNR, SSIM and DICE did not allow to distinguish between pixelwise,
structural and adversarial losses. It is an argument to encourage future studies to eval-
uate methods regarding task-specific metrics since they allow to do so according to our

Volume 1 Volume 2
10% 20% 10% 20%

VGG WV WB WV WB WV WB WV WB
CNN 332.57 581.71 319.16 499.60 350.40 703.88 347.73 653.04

WGAN 21.62 43.81 28.97 98.68 35.27 85.67 40.59 78.73
L1 WV WB WV WB WV WB WV WB

CNN 26.24 107.08 22.04 41.43 44.20 161.46 34.55 117.62
WGAN 22.75 59.95 22.11 22.13 39.49 142.54 30.40 88.64
VGG-L1 WV WB WV WB WV WB WV WB
CNN 27.75 106.36 20.72 30.38 43.02 148.86 33.42 103.89

WGAN 13.61 19.93 23.22 65.17 43.68 126.14 39.45 75.97
SSIM-L1 WV WB WV WB WV WB WV WB
CNN 30.47 109.56 21.95 29.49 46.01 125.38 38.30 73.50

WGAN 17.55 32.62 24.50 43.50 35.18 106.09 27.17 54.11

Table 4.7: Wasserstein 1 distance for the 1D distributions in the entire volume (WV)
and in areas considered as bone (WB) by the segmentation algorithm. Here we study
the influence of the adversarial loss on those metrics. Bold entries in the first column
indicate the part of the loss function that is fixed.
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experiments.
Our results clearly suggest that pixelwise loss functions have a major role in the

obtained resolution in the reconstructions. We showed that the L1 loss is the most suited
one for the task of reconstructing images with the best resolution. Moreover, the choice of

−1000 0 1000 2000 3000 4000
HU

0.000

0.001

0.002

0.003

0.004

0.005

fr
eq

u
en

ce

Ground Truth

WGAN-VGG

WGAN-VGG-L1

WGAN-VGG-MSE

CNN-SSIM

CNN-SSIM-L1

CNN-SSIM-L2

WGAN-L1

CNN-L1

(a) Entire volume distribution

0 500 1000 1500 2000 2500 3000 3500 4000
HU

0.000

0.001

0.002

0.003

0.004

0.005

0.006

fr
eq

u
en

ce

Ground Truth

WGAN-VGG

WGAN-VGG-L1

WGAN-VGG-MSE

CNN-SSIM

CNN-SSIM-L1

CNN-SSIM-L2

WGAN-L1

CNN-L1

(b) Bone area distribution

Figure 4.6: Histogram of the HU distribution for each method on the volume 1 for 10%
dose. Frequencies for lower densities are hidden in 4.6a to put the emphasis on the more
dense areas, knowing that the bone ratio in the entire volume is around 15 %. In 4.6b,
only densities above the segmentation threshold are considered in the distributions to
focus on the bone area.
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L1 loss has no negative impact on all the other metrics that were tested. We also showed
that L2 loss, besides deteriorating the resolution, tends to increase the BV/TV ratio in
the segmented reconstruction. This can be explained by the common tendency of such
a loss to oversmooth images, which encourages the segmentation algorithm to consider
bone areas wider than they really are. Our results therefore strongly suggest L1 to be
considered as part of the loss function for its ability to improve resolution performance
without decreasing the quality of the reconstruction considering other metrics.

As for the structural loss, experiments show that using VGG loss alone implies a sig-
nificant drop in performance for quantitative metrics. This is due to the fact that VGG
network was trained to perform classification on natural images; only the structures are
helpful for VGG to perform this task. The pixel intensities are not considered as relevant
features for this purpose. The satisfying performance of CNN-VGG in terms of connectiv-
ity metrics, DICE and BV/TV compared to its poor performance in terms of quantitative
metrics such as PSNR or Wasserstein distance is a perfect example that highlights the

(a) FBP (b) Ground truth (c) CNN-L1

(d) CNN-SSIM-L1 (e) WGAN-L1 (f) WGAN-VGG-L1

Figure 4.7: ROI from volume 1 of size 140 × 140 voxels obtained with different methods.
Window size is [−1000,3000] HU. FBP is obtained after simulation of 10% of the normal
dose to obtain the projections from the ground truth. Networks are fed with this FBP
as input.
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need for a loss function to contain elements that take both structure and pixel values into
account. Following this observation, we find enhanced overall performance when VGG is
associated to an adversarial loss. WGAN-VGG networks showed to significantly improve
performance in terms of connectivity in the reconstructions. This however results in a
decreased performance in terms of resolution, even with L1 loss. SSIM does not present
this drawback in terms of resolution, but on the other side it only shows limited improve-
ment in terms of connectivity. The positive impact of the structural loss on connectivity
metrics is thus more significant for WGAN-VGG than for CNN-SSIM, but it appears
to induce a less optimal resolution. We suggest that depending on the application, the
trade-off could be dealt with by tuning λ1 and λ2 accordingly while using a network like
WGAN-VGG-L1.

The last point of interest is the presence or not of an adversarial loss in the cost func-
tion. We showed in the previous point that when associated with VGG, the adversarial
loss has a positive impact on the connectivity metrics. This can be understood by the fact
that learning the probability distribution of high-dose reconstructions helps capture the
anatomically correct shapes in the bone microstructure. We also observe better accuracy
in terms of density per voxel distribution. As WGAN-based networks try to learn the
n-dimensional distribution of high-dose images, n being the total number of pixels, it is
reasonable to think that such networks are more likely to retrieve the 1-dimensional dis-
tribution of density values since it can be induced by the knowledge of the former. Since
it is required to have reliable BMD in order to diagnose various bone-related diseases, our
results strongly suggest using such a loss for training neural networks for bones imaging.

Another aspect to consider when making the choice of a loss function is the computa-
tion time and memory requirement for training the networks. In our case, the reconstruc-
tion time during inference is the same for all methods since we use a similar generator for
all of them. However, we mentioned that using VGG loss increases the memory consump-
tion. This can for instance reduce the maximum batch size to use for training compared
to other methods and potentially decrease performance, even if this is not an issue that
we experienced in our tests. Also, using the adversarial loss increases the training time
by a factor of 5 in our experiments, which also needs to be taken into account when
considering the improvement brought by such a loss for BMD accuracy. Finally, when
considering a loss function composed of different parts, this adds extra hyperparameters
to tune during the training phase.

The fact of increasing the training time or the number of hyperparameters might
have a negative impact on the final performance of the network. Indeed, for a fixed
computational budget, the number of hyperparameters that can be tested to validate
the performance of the networks can be significantly reduced for complex loss functions
and particularly those which require an adversarial loss. Our study does not put the
emphasis on such constraints, and it is not clear whether the focus should rather be
put on spending time finding optimal hyperparameters with a simpler loss function or
not. Analyzing the results considering the computational cost of the loss function could
therefore be the subject of another study.

Also, our hyperparameters selection was performed by choosing PSNR as the val-
idation metric since it is common practice and we did not want results to be biased
towards a stronger importance given to a specific metric. Our results however suggest
that the choice of those hyperparameters should be driven by task-dependent metrics
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since we noticed that they do not necessarily match common evaluation metrics such
as PSNR or SSIM. For practical purpose, the metrics used for optimizing the network’s
hyperparameters need to be carefully chosen.

Our work mainly focuses on the study of the reconstruction depending on the loss
used for training the network. One needs to keep in mind that the method still relies on
applying a CNN on the low-dose FBP as input; there is no guarantee that such a method
is optimal. It can be expected that better results should be observed when considering
a different architecture like it has been detailed in Chapter 3. 3D networks and use of
a U-NET generator could for instance be solutions to improve performance. We make
the assumption that these architectures would benefit to every training scheme without
modifying the comparative results that we obtained: the loss function indeed aims at
assessing the quality of a prediction, independently from the way this prediction has
been generated. In any case, our results allow to understand the impact of different types
of loss functions when reconstructing bone microarchitecture with deep learning based
methods and remain of interest even if more complex networks are used for practical
application.

Comparisons between algorithms hold as long as networks are able to correctly re-
construct images, which is no longer the case when the initial FBP is too deteriorated;
in that case all networks fail to retrieve an accurate reconstruction, which is due to the
limits of the reconstruction method itself and not to the choice of the loss functions.

Another point is that this study only focuses on bone microarchitecture reconstruc-
tion. Finding in terms of comparative results are therefore specific to this particular
application. It is to be noted that the better performance that is observed with L1 loss
compared to L2 loss for instance is dependent on the structures one wants to reconstruct;
these negative findings for L2 may well not carry through other tasks for images with i.e.
ground truths of smooth edges.

As a conclusion, the assessment of the quality of the reconstruction of bone microstruc-
tures seems to be insufficient when only considering PSNR and SSIM. Instead, relevant
features such as the BV/TV ratio, Euler number to study connectivity, Wasserstein dis-
tance between the HU distributions of bones densities to study BMD transcription, are
among metrics that allow the evaluation of the retrieval of key parameters used for post-
reconstruction diagnosis. We showed that the loss function used to train a neural network
has a major influence on those metrics; hence this should be a major concern when de-
signing a neural network for medical imaging tasks. Pixelwise loss functions were found to
improve the resolution observed in the reconstructions, with L1 loss being the most effec-
tive in our tests. Structural loss functions play a role on the ability of networks to retrieve
bone structures as shown by connectivity metrics, and VGG loss improves performance
in that sense, at the cost of a deteriorated resolution. Adding an adversarial loss leads
to reconstructions with more accuracy in terms of BMD. When choosing the most suited
loss function for the particular task of reconstructing bone microstructure with accurate
BMD values, one needs to keep in mind the trade-off between the computational cost of
complex losses and the improved performance that they bring.

Finally, improvements of this study could include a larger database for evaluation
to get results that are statistically more significant; availability of such a database for
bone microstructure is however not guaranteed. Also, more combinations and more loss
functions exist and could nourish the analysis; our main point here was however to show
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that there is indeed a major impact of the loss function on the reliability of relevant
parameters in the reconstructed images so that it should be a main criteria when designing
a neural network for medical purpose.

4.3 Stochastic Conditional Wasserstein GAN to re-
construct bone microarchitecture

In this section we mention tests that we performed in order to make use of conditional
generative adversarial networks towards a medical purpose. Our aim here is to learn a
posterior distribution given a deteriorated bone sample; instead of having a single high
quality image as the output of the network, we want to be able to perform posterior
sampling and thus approximate the distribution of true bone images that could be at
the origin of the retrieved reconstruction. The interest of such a method is to be able to
get statistical information on the different parameters of interest for bone diagnosis that
we derived throughout this chapter. For instance, here is a scenario that could have a
medical interest:

1. Learn a conditional probability distribution given some low-dose acquisition (or the
corresponding FBP).

2. Sample n images from this learned distribution.

3. Compute the T-score for each of these samples.

4. Get the mean T-score as well as intervals of confidence for its true value.

With such a method one could have more or less confidence on the retrieved metric,
which could therefore help for the related diagnosis.

Our experimental protocol was split into two parts:

1. Evaluate the performance of a CWGAN as a reconstruction algorithm. For this we
consider a reconstruction as the mean image from the learned posterior distribution.

2. Check the reliability of statistical information retrieved from posterior sampling.

Main results of the first part were published in [Leuliet et al., 2021b]; in this work we
combined both CWGAN with a VGG perceptual loss for image content matching. We
present in this section a summary of the work performed for this aim. Unfortunately the
second part did not give exploitable results and we present here some explanations.

4.3.1 Principle
In [Adler and Öktem, 2018], authors propose a conditional Wasserstein GAN (CWGAN)
to capture the probability distribution of some volume conditionally to the FBP obtained
from low-dose projections. We detailed such a method in Chapter 3.

In this work we combine this CWGAN with VGG perceptual loss; indeed the aim is
to provide the network with a content loss so that it should preserve bone microstructure
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information. The resulting CWGAN-VGG network also learns a probability distribution
conditionally to the FBP obtained from low-dose projections. Our objective is to use
this distribution in order to exploit statistical information from quantitative parameters
useful for diagnosis.

The preliminary study [Leuliet et al., 2021b] has two objectives; first we want to
evaluate the performance of a reconstruction obtained by averaging the outputs of the
stochastic generator. We also evaluate two main features of such a network: the impact
of conditioning the network and the interest of stochasticity, i.e the ability of the network
to produce outputs with enough variance so that statistical information can be exploited.

Both [Isola et al., 2017] and [Adler and Öktem, 2018] pointed out the difficulties of
CWGAN to generate stochasticity, as the network tends to ignore the input noise. In
our tests, we also implement a deterministic CWGAN-VGG (Det-CWGAN-VGG) that
only learns a Dirac distribution, for comparison. This is equivalent to fixing the latent
variable z that the generator takes as an input. In practice we simply ignore z so that
the input of the network is the FBP alone.

We also implement a second version of the CWGAN’s discrimnator as in (3.17), which
should allow to produce variability in the generated samples as explained in [Adler and
Öktem, 2018].

Therefore the different algorithms of comparison were in this study:

• CNN-L2

• WGAN-VGG

• CWGAN

• Det-CWGAN

• CWGAN D2

• CWGAN-VGG

• Det-CWGAN-VGG

• CWGAN-VGG D2

where Det-CWGAN is the deterministic version of CWGAN, and CWGAN D2 and
CWGAN-VGG D2 refer to networks trained with (3.17).

4.3.2 Materials and methods
In this study we use the same dataset as in the previous section, with slightly different
simulations performed for training the networks as shown in [Leuliet et al., 2021b]. The
trained networks are here evaluated with PSNR, SSIM, DICE and BV/TV. For compar-
ing the different algorithms we need to consider a single reconstruction. Since CWGAN
and CWGAN-VGG (and their second version) produce stochastic outputs, we average
each voxel of 10 generated outputs to produce the volume for evaluation. In our tests,
increasing this number does not improve the performance. Study of the statistical infor-
mation obtained from posterior sampling will be discussed afterwards. We use a strategy
to optimize hyperparameters that is the same as in the previous study.
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4.3.3 Results

In our preliminary results, we find - as in the previous section - that it is efficient to use a
perceptual loss for training the generator; indeed CWGAN-VGG outperforms CWGAN
for the different metrics, whether it is on the deterministic or stochastic version.

We find that conditioning the discriminator enhances the performance of the network.
This is the case in our tests, where CWGAN-VGG (both versions) produces better results
than WGAN-VGG for 3 out of the 4 tested metrics, and the DICE index for both methods
is very close.

Deterministic networks give similar results compared to CWGAN (and CWGAN-
VGG) trained with (3.16). In the contrary we found that the strategy of averaging
several stochastic outputs from CWGAN D2 and CWGAN-VGG D2 gives an improvement
compared to using a deterministic network. The apparent reason is that CWGAN and
CWGAN-VGG do not manage to generate high variance. In Figure 4.8 that represents
the variance images obtained by sampling 100 outputs of each stochastic generator, one
can observe that the second formulation (3.17) of the discriminator gives predictions with
higher variance compared to the original formulation.

This, at first, may lead to think that the conditional distribution is well retrieved
since uncertainties on the reconstruction are highlighted.

However in Figure 4.9 we observe the hidden drawback behind both the enhanced per-
formance (for averaged outputs) and higher variability in the outputs of CWGAN-VGG
D2. The curves represent PSNR w.r.t the number of outputs that are averaged from the
stochastic generator. For D2 networks, we observe that when a certain number of out-
puts are averaged - around 5 - the performance significantly increases and it outperforms
the original CWGAN or CWGAN-VGG. For the latter, there is no significant variation
in the metrics especially because we showed that there is only limited variability in the
outputs that are generated. These curves allow to understand why the performance of
CWGAN-VGG D2 in the results presented in [Leuliet et al., 2021b] is indeed interesting,
since averaging 10 outputs voxel-wise allows enhancing the quality of the mean image.

The problem though is that the quality of a single generated image is very low com-
pared to other algorithms as seen in Figure 4.9. Note that we have repeated this eval-
uation several times so that we ensure that poor performance from a single generated
image is not a statistical fluke. To illustrate, we show in Figure 4.10 examples of gener-
ated samples from CWGAN-VGG D2. Compared to the ground-truth in Figure 4.7, one
can observe that the averaged image is visually accurate, though inconsistencies can be
observed in each of the generated samples.

With the discriminator D2, the information given by a single generated output can
not be reliable; the learned probability distribution is very likely to be incorrect, even
if averaging the voxels from each sample from this distribution gives an image with
satisfying quality. If we consider our example scenario that aims at getting statistical
information on the T-score, none of the stochastic networks would provide a reliable
information. Indeed, with the first formulation of CWGAN or CWGAN-VGG, only
limited variability is produced in the outputs, so that very few statistical information can
be obtained compared to a deterministic network. On the other hand, computing metrics
on a single generated output of CWGAN D2 or CWGAN-VGG D2 is irrelevant due to
the poor-quality of the generated sample.
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To illustrate this, we cannot use BMD as this is a metric that is linear w.r.t values
of voxels so averaged BMD values would likely be accurate. We do not use the T-
score as we do not have the reference BMD required for its computation. Therefore we
illustrate the poor accuracy of the statistical information given by CWGAN-VGG D2
with the BV/TV ratio which is not linear w.r.t voxels values. In Figure 4.11 we show
the histogram representing the BV/TV ratio computed on 100 different images sampled
from the posterior distribution of CWGAN-VGG D2. Compared to the ground-truth, all
BV/TV ratios are underestimated. Using the learned posterior distribution therefore does
not allow to get reliable statistical information on a non-linear metric such as BV/TV.

As a consequence, the only conclusion that we were able to draw in this study is the
fact that we managed to improve the quality of a reconstruction when we considered an
average image taken from 10 different outputs of CWGAN-VGG D2. This results has
limited benefits since this implies increasing the computation time by a factor of 10. This

Figure 4.8: Variance in the posterior distribution in Hounsfield Units. Computation of
the variance is performed by sampling 100 outputs of the stochastic generator. Results
are shown for networks trained with (3.16) (CWGAN and CWGAN-VGG, top row) and
with (3.17)(CWGAN D2 and CWGAN-VGG D2, bottom row).
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Figure 4.9: Evolution of PSNR depending on the number of outputs that are averaged
from the stochastic generator on volume 1 (left) and 2 (right) for 10% dose. CWGAN
D1 refers to the initial CWGAN.

might be a drawback in practice especially when dealing with large 3D volumes. The
initial objective to get statistical guarantees on parameters computed from the different

Figure 4.10: Examples of ROI from generated outputs by CWGAN-VGG D2 in (b), (c),
(d), (e) and (f). In (a) we represent the voxel-wise averaged image. In red we show areas
where inconsistencies can be observed in the generated samples.
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reconstructions can therefore not be validated with the experiments that we performed
here.

It is still unclear why exactly do D2 networks perform so well on the computed met-
rics when we average a number of outputs which, when considered separately, are of
poor-quality. We conjecture that smoothing due to averaging might be a part of the
explanation, though we have no evidence for that.

4.3.4 Conclusion
Even if the initial objectives of this study were not fulfilled, we can draw several conclu-
sions:

• Averaging a number n ≥ 5 of samples from a CWGAN-VGG trained with (3.17)
(CWGAN-VGG D2) improves the tested metrics; though it is hard to fully under-
stand the reason for such a positive result since the quality of each of the produced
output is poor.

• On the tested metrics, both conditioning the discriminator and using the VGG loss
in the generator gave benefits.
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Figure 4.11: Histogram of BV/TV ratios for different samples of CWGAN-VGG D2.
The BV/TV ratio is computed on the ROI of the volume 1 for reconstruction from 10%
dose. The ground-truth value is 0.306 (the value is different than in Table 4.4 because
the zone is restricted to the ROI. One can observe that every single generated sample
under-estimates the BV/TV ratio. However we showed in [Leuliet et al., 2021b] that
the voxel-wise averaged image correctly estimated the BV/TV ratio. This illustrates the
nuance between good averaging performance and poor-quality estimation for every single
sample.
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• It is clear that, as suggested in [Adler and Öktem, 2018], more variability in the
outputs can be obtained when training the network with (3.17) compared to (3.16).

• The main issue found in this study is the poor quality of each of the generated
outputs from CWGAN(-VGG) D2 which does not allow to obtain reliable statistical
information on parameters such as T-scores, BV/TV etc.
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Chapter 5

PET imaging and blind
deconvolution

In this chapter and in the next one, the focus is put on PET imaging. Especially,
experiments in the next chapter are performed on time-of-flight (TOF) PET data. This
particular application leads us to consider a more specific forward model in the inverse
problem to solve. In this chapter we detail the elements from physics that justify the
need for a more accurate - yet more complex to solve - formulation of the inverse problem
for TOF PET imaging. The notion of point spread function is explained and we discuss
several ways to consider the forward model. As this leads to a forward operator that
is partly unknown, we will see that solving the related inverse problem includes a blind
deconvolution step. Similarly to Chapters 2 and 3, we describe methods for solving such
an inverse problem with analytical and iterative methods, as well as with data-driven
methods in the last section of this chapter.

5.1 Partial volume effect and point spread function
in PET systems

The purpose of this section is to lay the basis for the inverse problem formulation that
we consider from now on. Physics of PET imaging was described in Chapter 1 but we
focus here on a particular aspect: the partial volume effect. We will see that this effect
implies that when imaging a point source in PET systems, the reconstructed image does
not show a point also. Rather, a spread can be observed, which justifies the term of point
spread function (PSF). We will also see in this section how the shape of the PSF can be
partly determined by TOF reconstruction characteristics.

5.1.1 Partial volume effect in PET imaging
We mentioned in Chapter 1 the need for correcting physical factors in PET imaging such
as photon attenuation, Compton scattering or random coincidences. As we are interested
in an accurate transcription of the imaged tissues’ activity, the limited spatial resolution
of PET imagers should also be taken into consideration. The effects of such limited
spatial resolution are referred to as partial volume effects (PVE); those can depend on
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both the imaging system and the imaged object, as it is described in [Erlandsson et al.,
2012].

There are two main types of PVE, the main one being the spill-over of counts, also
known as cross-contamination, between different image regions. This refers to the fact
that the activity retrieved in one particular voxel is contaminated by the true activity
of adjacent voxels because of the limited resolution of the system. In the same time the
true activity of the same voxel affects the retrieved activity in adjacent voxels. Also, the
location of the radioactive decay at the origin of a detected event might not be exactly
in the LOR. Reasons for such spill-over of counts include:

• Positron range: the positron covers a small distance before being annihilated by an
electron.

• Photon acollinearity: photons from the annihilation may not be emitted in exactly
opposite directions.

• Detector resolution which is limited for non position-sensitive electronics due to
finite crystal size.

• Volume discretization since a voxel size larger than the crystal size can enhance the
effect of limited resolution.

• Inter-crystal scatter.

• Parallax or depth of interaction (DOI) effect which corresponds to photons that are
detected at a certain depth in the detector, thus creating a distance between the
true annihilation position and the LOR.

• Limited angle effect for some PET imagers.

Figure 5.1 illustrates the notions of positron range and photon accolinearity. PVE
therefore depends on both the system and the imaged object. The fact that it depends
on the object will be at the core of the methods derived in the next chapter. PVE results
in quantitative bias especially when imaging small objects, so partial volume correction

Figure 5.1: Positron range and photon accolinearity in PET imaging.
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(PVC) is all the more so needed in emission tomography involving tracer uptakes in small
structures. For instance, this effect can be a major issue when the activity concentration
needs to be quantified in one specific target region, e.g. grey matter tissue in neurology, or
a tumour in oncology. In this case adjacent voxels are considered as background regions
and their potential activity should not affect the target region retrieved activity.

The second type of PVE corresponds to the fact that because of image discretization,
a single voxel might contain two or more different tissue types (grey matter and white
matter, tumourous and normal tissue...). This is referred to as the tissue-fraction effect.

Depending on the type of PVE that is considered, methods for correction might dif-
fer. In [[Tohka and Reilhac, 2008], it is argued that cross-contamination can be corrected
based on the PET image whereas tissue-fraction correction requires anatomical infor-
mation. When the image reconstruction process includes PVE correction, a common
consequence is the so-called ringing (or ring) artefacts that can be visible at the edges of
some structures, see Figure 5.2. Study of such ring artefacts due to PVE correction was
performed in [Tong et al., 2011] and [Thielemans et al., 2010], as it represents a major
issue in PET imaging.

Note also that we focus here on PVE linked to spatial factors but it can also be due
to temporal factors in the case of motion blurring.

5.1.2 Point spread function
We saw that the positron emission at the origin of the detected count might not be located
exactly in the LOR between the two coincidence detection crystals. If this phenomenon

Figure 5.2: Example of Gibbs-like ringing artefacts [Kangasmaa et al., 2011], i.e ring
artefacts. Image (a) represents a reconstructed slice of a phantom with active spheres
without PVE correction. Image (b) shows the same slice reconstructed with PVE correc-
tion. In image (b) the resolution is improved but typical artefacts can be seen as pointed
by the arrows.
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is not taken into account during the reconstruction process, a blur can be observed in the
reconstructed image when a point source is considered as shown for example in Figure
5.2a. This blur corresponds to the point spread function (PSF), and it characterizes the
spatial resolution of the imaging system. The notion of blur kernel can also be used since
the reconstruction of an image f̂ can in this case be modeled as the convolution of the
true image f and this blur kernel k such as

f̂ = k ∗ f (5.1)

where k is the convolution kernel of the PSF.
The PSF can also be expressed in the Fourier domain as the modulation transfer

function (MTF). The MTF contains the same information as the PSF; it can be of
particular interest from a computational point of view for instance, as the convolution
with a PSF in the spatial domain is equivalent to the multiplication with the MTF in
the frequency domain. The fact that convolution between the true image with the PSF
is equivalent to multiplying the Fourier transform of the image with the MTF helps
understand the loss of high-frequency information in reconstruction: indeed the MTF
at high frequencies is essentially zero. Restoring these image components might lead to
image artefacts and/or noise-amplification for those high frequencies.

The shape and width of the PSF are directly linked to the elements that have been
listed before (positron range, DOI effect, etc). Estimation of the PSF might be non-trivial
in some cases, yet mismatch between the estimated and the true PSF can be a major
reason for ringing artefacts as shown in [Tong et al., 2011].

Especially, accurate estimation of the PSF should take into account the position of
the source. Response of the detector - i.e the distribution of values around the position of
the point source - might indeed vary depending on the position of the source in the field
of view, which leads to a spatially-variant PSF. In many situations however, it can be
reasonable to assume that the PSF is position-invariant [Erlandsson et al., 2012, Panin
et al., 2006, Sureau et al., 2008, Alessio et al., 2010]. In this case, the reconstructed PET
image can be described as a convolution of the true activity distribution with the PSF
as in (5.1). It is also common to model the PSF as a Gaussian function, characterized by
its full width at half maximum (FWHM), which can be different in different spatial di-
rections. Alternative models describing the PSF can also be considered, e.g. [Taschereau
et al., 2011]. Note that the fact to approximate the PSF as being position-invariant
has computational advantages as we will describe in the section dedicated to solving the
inverse problem.

There are cases where the geometry of the PET imaging system is such that it is no
longer relevant to approximate the PSF as position-invariant. This is the case in [Gravel
et al., 2019] where experiments are performed on a dual-panel breast PET imager. This
type of imaging system has the advantage to offer increased sensitivity, in addition to
being cost-effective, but limited angle geometry as well as the depth of interaction effects
that are too important make the PSF highly deformed and spatially variable. Especially
the PSF is strongly anisotropic and one can observe asymmetric kernel deformations in
the direction that is orthogonal to the detectors.

In what follows we will clearly indicate when the PSF is considered as spatially-variant;
otherwise it is considered - or at least approximated - as spatially-invariant.
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5.1.3 Forward model and blind deconvolution
So far we saw that partial volume effect implies the consideration of the PSF in the
inverse problem formulation. Indeed the model considered in Chapter 1 as p = A f -
with p the projection data, A the Radon operator and f the image - is unsufficient to
explain the fact that a point source is not reconstructed accurately without taking the
PSF into account. Equation (5.1) gives a first approach to model the underlying problem
in the image space. This implies that some algorithm is used to transform measurements
into an initial reconstruction. The question on how to model the whole tomographic
reconstruction problem is largely studied in the literature and we detail here different
ways to model the whole PET image reconstruction problem.

In [Gravel et al., 2019], the general model is expressed as

p = NKdataBAKimg f (5.2)

with Kimg an operator that contains the potentially spatially-variant degradation effects
in image space (positron range, photon acollinearity), Kdata contains the degradation
effects in data space (DOI, inter-crystal scatter), B contains the attenuation factors and
N the normalization factors.

In [Sureau et al., 2008] the considered inverse problem rather writes

p = BN AKimg f + s + r (5.3)

where s and r are respectively the scatter and random coincidences.
In our work we will not focus on scatter, random, attenuation and normalization

corrections, even though in practice this needs to be considered. We rather put the focus
on methods to correct for the PSF so in the model that we derive we will no longer use
N, B, s or r.

Considering all this, we can write the general forward model that we are interested in
as:

p = Kdata AKimg f (5.4)

for which (5.3) is a particular case where Kdata is the identity.
The question of considering resolution modeling (i.e consideration of the PSF in the

model) in the data space, in the image space or both therefore needs to be addressed. A
major criteria mentioned in [Gravel et al., 2019] is the fact that resolution modeling in
the data space is complex and computationally demanding. This is one of the reasons
why in their work they end up considering image-based resolution modeling only. Also,
the choice of the model might be based on the fact that Kimg and Kdata do not account
for the same physicals factors as explained earlier.

In [Tohka and Reilhac, 2008], the PSF is a 3D Gaussian kernel in the image domain;
resolution modeling in the image domain is also considered in [Sureau et al., 2008], as well
as in [Erlandsson et al., 2012] where the model is reduced to a simple convolution such
as in Equation (5.1). Especially in [Sureau et al., 2008] an other mentioned advantage of
including the PSF in the image space is to facilitate list-mode reconstruction in dynamic
studies. Nevertheless in [Thielemans et al., 2010] and [Tong et al., 2011] the PSF is
considered in the projection domain.
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More generally in the literature one can find different modelizations of the problem
where resolution modeling is considered either in the image domain or in the projection
domain, depending on the application. In addition to computational and acquisition
physics elements (e.g DOI vs positron range), the fact to consider a spatially-variant
PSF might be a criteria for the choice of resolution modeling. This is one of the reasons
why the PSF is modeled in the image domain in [Gravel et al., 2019], as it is easier to
consider spatially-variant kernels in this case. Authors consider for Kimg several PSF
kernels that are parametrized by fitting each point source using a Gaussian mixture
model. For this, they simulate separate point sources equally spaced and reconstruct each
of them separately; then each PSF kernel is parametrized in image space by fitting the
reconstructed point source with the gaussian mixture model, so that the PSF parameters
depend on the source location.

We see that solving the inverse problem in the case of PET imaging is not only a
tomographic reconstruction problem, but also a deconvolution problem. As the PSF is
dependent on the imaged object and on physical elements that are hard to estimate accu-
rately, the convolution operators Kdata and Kimg are unknown, contrary to the operator
A. The problem is therefore referred to as blind deconvolution. For some applications
Kdata and Kimg can be parametrized so that only parameters are unknown; in this case
the term semi-blind deconvolution is more appropriate.

In what follows, we will discuss the impact of TOF in the formulation of the PSF in
the general model (5.4).

5.1.4 Time of flight and impact on PSF

Time-of-Flight (TOF) PET systems1 refer to imaging systems that are able to measure
the time difference between the detection of two photons that form a coincidence event.
The information on the annihilation position is therefore more accurate; instead of only
knowing the LOR where the photon annihilation took place, such systems allow to know
the location of such an event in the LOR, with an accuracy that depends on the timing
resolution. In the particular case of limited-angle data, TOF can for instance provide new
information by reducing the missing cone region in frequency domain [Li et al., 2016]. A
scheme of TOF imaging is given in Figure 5.3.

Usually the timing resolution of the imaging system can be estimated with experi-
mental measurements, see e.g [Sajedi et al., 2022]. For backprojecting the data, timing
resolution is used to match the reconstruction TOF kernel. In the image space, data is
backprojected as a Gaussian function with a kernel that has a width equal to the mea-
sured coincidence timing resolution: if tFWHM is the measured timing resolution FWHM,
then the FWHM considered for the Gaussian function is dFWHM = ctFWHM with c the
speed of light in vacuum. The center of the Gaussian kernel is located at the distance
measured from the timing difference between both detected photons.

If we consider the case of reconstructing a point source fPS, the TOF backprojection
fTOF can be expressed as

fTOF = kTOF ∗ fPS (5.5)

1All the main manufactures (GE, Siemens, Philips) currently offer TOF information for image recon-
struction. The Gemini TF scanners were the first to have the TOF option in 2006.
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where kTOF is the TOF kernel associated to the convolution operator KTOF. This is
valid when omitting the spatial resolution modeling represented by Kimg previously. In
practice we saw in (5.1) that a blur is observed when reconstructing a point source even
without considering TOF information. In what follows we keep the unique notation of
the operator Kimg and the kernel kimg. Therefore when data are obtained from TOF PET
imagers, Kimg accounts for both the physical fluctuations related to PET imaging (e.g
positron range) and TOF blurring due to imperfect timing resolution in such systems
[Matej et al., 2009].

We can therefore write the TOF reconstruction problem as fTOF = kimg ∗ f , or when
considering the more general operator Kimg:

fTOF = Kimg f (5.6)

where fTOF is the reconstruction obtained with TOF backprojection and f is the imaged
object. It is important to note that the contribution of both factors in Kimg (partial
volume effect vs blurring from TOF reconstruction) is not equivalent. Indeed in the first
case, the FWHM of the PSF kernel (if it is considered alone without TOF) is generally
considered as ranging from approximately 1 to 10 mm [Stute and Comtat, 2013]. Recent
PET scanners can on the other hand offer a coincidence timing resolution (CTR) of less
than 300 ps [Conti and Bendriem, 2019], as shown by the recently commercialized PET
system from Siemens that has a measured timing resolution of 210 ps [Reddin et al.,
2018]. Even more recent work has shown the possibility of having a timing resolution of
less than 100 ps [Cates and Levin, 2018]. Considering a CTR between 100 ps and 300 ps,
the corresponding FWHM of the TOF kernel ranges between 30 mm and 90 mm, which
is considerably larger than the width due to positron range, photon accolinearity etc.

The model that we assume for TOF reconstruction is (5.6), which is the considered
model in e.g [Matej et al., 2009]. It especially allows keeping the same formulation for
analytical and iterative methods. With the model (5.6), the projections and backprojec-
tions within an iterative scheme are performed in the image domain since they are related
to the operator Kimg. Also, this model is particularly adapted to list-mode data and al-
lows one to work only in the image space, which has computational benefits. As Kimg

Figure 5.3: Illustration of reconstruction taking time of flight into account. In the right
image, the length of the LOR depends on the coincidence timing resolution(CTR). A
better timing resolution (lower CTR) implies a smaller LOR: the position of the back-
projected event is more accurate.
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is a convolution operator, retrieving f in (5.6) therefore corresponds to a deconvolution
problem.

When considering list-mode data, fTOF is also referred to as the histo-image corre-
sponding to all detected events. An histo-image fHI(S) for a subset of events S corresponds
to the backprojection of those events only. In this case the group of events is referred to
as a view. This is useful for reconstruction algorithms that consider data subsets such as
OSEM described in Chapter 2. It is possible to form those groups of events by considering
geometrically ordered subsets [Popescu et al., 2004] - gathering a certain number of LOR
for instance - or time ordered subsets [Reader et al., 2002].

5.2 Methods for resolution
In Section 5.1 we detailed the specific forward model for PET imaging, depending on
whether we consider TOF or not. It was important to study how physics of PET imaging
as well as consideration of TOF impact the formulation on the inverse problem; it is now
important to review the methods that can be used to solve such a problem. We remind
that in addition to the forward model derived in Chapter 1, we have here a convolution
operator which might be considered in both the image domain and the projection domain.
In most of the reconstruction methods however, it is considered in only one out of the
two domains, in which case it accounts for the PSF of the system. We also remind that
the PSF can be spatially-variant and it can depend on the object f to reconstruct; in the
general case it is then unknown.

A first solution is to use some inverse filtering technique such as Wiener filter, however
this usually leads to noise amplification or image artefacts similarly to analytical methods
for tomographic reconstruction derived in Chapter 1. Some methods may also rely on
inter-modality, making use of high-frequency information obtained from a high-resolution
anatomical image (CT/MRI) for instance [Erlandsson et al., 2012]. The structural infor-
mation from other imaging modalities can in this case be used as a priori information.
This allows for instance segmenting an image into a number of compartments where the
distribution is considered as uniform; in that case correction is performed between voxels
in different regions but not between voxels within the same region. There are also meth-
ods that do not specifically require retrieving the image f , but only mean values in some
ROI for instance; in such cases correction can be done in the projection domain without
reconstructing the image [Huesman, 1984, Carson, 1986]. We do not elaborate on such
methods here since multi-modality is out of our scope and we aim at retrieving the entire
image f .

Instead, in a first part we focus on classic iterative methods to retrieve the image while
retrieving the PSF in the same time, or methods that require prior PSF estimation. We
then study data-driven methods that are specific to blind deconvolution.

5.2.1 Model-based methods
The objective of this section is to provide an overview of methods for solving (5.4) -
or (5.6) for TOF image reconstruction - that do not rely on neural networks. In this
section we split these methods for tomographic reconstruction and PSF correction for
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PET imaging into two main categories:

• Estimation of the unknown PSF beforehand; then resolution modeling is either used
for post-reconstruction deblurring of the image with model (5.6), or incorporated
within an iterative reconstruction algorithm.

• Blind (or semi-blind) deconvolution in which both the PSF and the image are
unknown and should be retrieved by the reconstruction algorithm.

5.2.1.1 Decoupled PSF estimation and image reconstruction

In the case of prior PSF estimation, the approximation is made that the PSF is not object
dependent. The PSF estimation can be obtained through Monte Carlo simulations or
with experimental measurements. For instance in [Sureau et al., 2008] where resolution
modeling is considered in the image domain, estimation of the convolution kernel kimg
for the operator Kimg is performed with two different methods, each of them considering
two different isotropic and stationary resolution kernels. In the first case the considered
kernel writes

kimg(r) =
1
N
(e−αr +β) (5.7)

and in the second test it is written as

kimg(r) =
1
N
(β e−α1r +(1 − β) e−α2r) (5.8)

where N is such that the kernel is normalized to 1, and α, α1, α2, β are parameters that
are estimated by reconstructing a 1 mm point source of known activity.

In the experiments authors find improved performance in the reconstruction with
the formulation (5.8) which might be considered as more complex/comprehensive. This
particularly encourages work towards obtaining more complex - understand with less
constraints in the formulation - convolution kernels, with deep learning methods for
instance; we will discuss such possibilities in this chapter and in the next one. Especially
authors argue that more complex kernels should be used in cases where there is an
important degradation of the resolution and if the PSF is spatially variant. However
one needs to remember that spatially-invariant kernels have the advantage to speed up
the reconstruction, thanks to computation in the Fourier domain. In addition to these
considerations, the number of voxels used to model the PSF is also found to be important
to limit ringing artefacts.

When the PSF is estimated beforehand, the problem then amounts to perform de-
convolution and/or reconstruction with a known forward operator. We first mention
methods that perform the reconstruction without resolution modeling then deconvolve
the obtained image with the estimated PSF; then we derive methods that include the
PSF in the forward operator within tomographic reconstruction.

Reconstruct then deconvolve with estimated PSF As mentioned, a straightfor-
ward method is to perform reconstruction with methods similar to those derived in Chap-
ter 2 with the forward operator A. If we consider that Kdata is the identity - resolution
modeling in the image space -, then this amounts to retrieving Kimg f . Post-reconstruction
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deblurring is then needed to retrieve the image f , and this can be performed with classic
deconvolution methods.

In [Tohka and Reilhac, 2008] for instance, two methods are compared. The first case
is the Richardson-Lucy (RL) algorithm [Richardson, 1972, Lucy, 1974]. It is an algorithm
similar to the MLEM algorithm derived in Chapter 2, but it is generally mentioned with
this name in the field of astronomy for instance, and also for deconvolution tasks. The
only difference with the MLEM mentioned before is that the forward operator here is
Kimg instead of A since reconstruction from projection data has already been performed.
The algorithm writes in this case

f i+1 = f i(KT
img

fnoRM
Kimg f i ) (5.9)

where f 0 is a non-zero initialization and fnoRM is the initial estimation of f obtained
after reconstruction, i.e it is supposed to correspond to Kimg f . We also recall that mul-
tiplications and divisions between vectors are performed element-wise.

Another iterative algorithm presented in [Tohka and Reilhac, 2008] makes use of the
reblurred Van Cittert iteration [Carasso, 1999] which writes

f i+1 = f k + λKT
img( fnoRM − Kimg f i). (5.10)

with λ a weighting parameter.

Resolution modeling within tomographic reconstruction An other possibility
to use the estimated PSF is to incorporate the corresponding operator into the forward
model so that reconstruction can be performed as a single step using iterative algorithms
[Reader et al., 2003, Sureau et al., 2008], with AKimg or Kdata A for forward and back-
projections. An argument given in [Erlandsson et al., 2012] is that this helps reduce
noise.

In [Sureau et al., 2008], resolution modeling is considered in the image domain and
OSEM (see 2.1.3) algorithm is used with AKimg as the forward operator so that the
algorithm simultaneously performs reconstruction and deconvolution. By running exper-
iments on phantoms and on brain real data authors show reduced PVE compared to
no resolution modeling. It is however observed that ringing artefacts can appear in the
reconstructed image, especially when the resolution effects are overestimated, but also
when the PSF perfectly matches the true one. In the study slower convergence is also
observed when taking resolution modeling into account.

Reconstruction with MLEM algorithm with resolution modeling in the projection
domain was performed in [Tong et al., 2011] and [Thielemans et al., 2010]. In this case
the EM update equation writes

f i+1 = f i 1
AT KT

data1
AT KT

data[
p

Kdata A f i ] (5.11)

Results in [Thielemans et al., 2010] show that at first iterations, the reconstructed
image has a lower resolution than without including the PSF. At later iterations this is no
longer the case but the algorithm generates too high contrast. For large sources, ringing
artefacts are also observed, even though overshooting decreases slowly over iterations. In
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[Tong et al., 2011] also, artefacts in the reconstructed image are observed especially at the
edges of structures. Especially, mismatch between the kernel used in the reconstruction
and the actual system PSF can strengthen the presence of such artefacts since the mis-
match is somehow amplified throughout the reconstruction process. Specifically, a study
of the object-specific modulation transfer function (OMTF) is performed. The OMTF is
defined as the spectrum of the reconstruction divided by the spectrum of the true object
(division in terms of amplitude in the frequency domain). When PSF is not taken into
account in the reconstruction, OMTF shows the loss of high-frequency information, i.e
a value of zero for high frequencies. This results in a blurred reconstructed object. For
the case where PSF is taken into account, high-frequency can be preserved, but there is
an amplified band in the OMTF, i.e a band of frequencies where the amplitude for the
reconstructed object is higher compared to the true one. This amplified band appears to
be correlated with the presence of ringing in the PSF-reconstructed images.

Iterative reconstruction with resolution modeling is also performed in [Gravel et al.,
2019]; the PSF is considered in the image domain but more important, it is considered as
spatially-variant. In this case reconstruction is performed with the row-action maximum
likelihood algorithm (RAMLA) [Browne and De Pierro, 1996], an accelerated maximum-
likelihood algorithm similar to OSEM and adapted to emission tomography in particular.
Instead of performing image reconstruction using separate reconstructions that consider
spatially invariant image-based resolution for each of the different PSF kernels (cf [Matej
et al., 2009]), the spatially-variant image-based resolution model is included within a
single reconstruction. Results show that such a method allows enhanced quality in the
reconstructed image, however convergence is slower and computation time is increased
compared to e.g a post-reconstruction deconvolution approach. Indeed 3D convolution
operations have to be applied to the image at each forward and backward projection
operations for each view in the case where PSF modeling is included in the reconstruction
algorithm.

Overall we see that whether resolution modeling is considered in the image domain
or in the projection domain, artefacts are often visible in the reconstructed image, even
if performance is enhanced compared to no resolution modeling. Also, poor-quality esti-
mation of the PSF leads to amplification of the artefacts.

Reconstruction with estimated kernel for TOF The study of mismatch between
the estimated and true kernel of Kimg was performed in [Daube-Witherspoon et al., 2006],
but in this case considering TOF and a corresponding estimated kernel k. Performing the
reconstruction with OSEM algorithm, the study shows that when the considered kernel
is narrower compared to the true timing resolution of the PET system, this results in
a decreased contrast in the reconstructed image. Using a larger kernel does not affect
the outcomes in this study which focuses on complete data. However when dealing with
limited-angle data, using larger kernels compared to the true timing resolution leads
to ringing artefacts that are similar to the edge effects observed with LOR resolution
modeling, as shown in [Gravel et al., 2020] with the dual-panel breast-PET scanner
mentioned in 5.1.2. Those artefacts are even wider compared to the ones mentioned
before since the spatial extent of the TOF uncertainty is larger compared to the width
of LOR resolution blur, see 5.1.4.

The conclusion that we can draw from this review of methods is that when the decon-
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volution is performed in the image domain as a post-reconstruction method, this generally
results in noise amplification. If the PSF is incorporated within the iterative reconstruc-
tion - in the image or projection domain -, the performance in terms of noise is enhanced.
Both methods however suffer from artefacts that correspond to ringing in the vicinity of
sharps boundaries (Gibbs artefacts), due to missing high frequency information because
of limitations of the detector system and/or too large voxels. Also we note that mismatch
between the true kernel and the estimated kernel leads to amplified artefacts, whether
the kernel accounts for spatial or timing resolution. Therefore it seems of paramount
importance to correctly estimate such a kernel and/or correcting for the artefacts caused
by the spatial/timing resolution of the PET system.

5.2.1.2 Blind deconvolution

Estimating the PSF beforehand limits the extent to which it can be formulated; for
instance, considering object dependent PSF is hardly possible with such a method. As
we saw the importance of correctly estimating the convolution kernel, we derive here
methods referred to as blind deconvolution; the operator Kimg or Kdata is considered as
unknown prior to the reconstruction process. The reconstruction task then amounts to
retrieving both the image and the convolution operator. In this case the estimated PSF
can be different from a reconstruction to another. The difficulty here lies on the non-
uniqueness of the solution; when imaging an object with soft edges for instance, one needs
to identify the kernel from the smooth-edged object. There are infinitely many solutions
to the problem which makes blind deconvolution a particularly hard reconstruction task.

The methods that we mention here are specific to the realm of blind deconvolution
where the problem is limited to retrieving Kimg (or semi-blind if retrieving only parameters
of the kernel kimg) and f where the data y is such that

y = Kimg f (5.12)

so that in our case this can be viewed as a post-reconstruction method. When considering
TOF data, Equation (5.12) is equivalent to (5.6) with y = fTOF. Otherwise one can
assume that y = fnoRM, i.e a reconstruction obtained by solving (5.4) with no resolution
modeling: a FBP for instance. Note that methods discussed here are performed in
the image domain so the convolution operator and kernel will be written K and k for
simplicity.

To solve (5.12) considering a kernel k for the convolution operator, one can consider
a functional such as | |y − k ∗ f | |22 to minimize. The functional is convex w.r.t f or
k, but it is not jointly convex so that it is possible to reach a local minima. The usual
strategy adopted for (semi-)blind deconvolution is then to perform alternate minimization
on f (with k fixed) and on k (with f fixed). Such alternating strategies were used for
minimization of a (regularized) least-squares functional [Ayers and Dainty, 1988, You and
Kaveh, 1996].

Alternating minimization on both the kernel and the image was also performed using
the Richardson-Lucy algorithm in [Fish et al., 1995], considering the Kullback-Leibler
divergence KL(y, k ∗ f ). The different updates are in this case:

ki+1 =
ki

( f i)T ∗ 1
.( f i)T ∗

y

ki ∗ f i (5.13)
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f i+1 =
f i

(ki+1)T ∗ 1
.(ki+1)T ∗

y

ki+1 ∗ f i . (5.14)

In practice a different number of iterations can be used for the kernel and the image
updates; one can do m iterations on k before doing n iterations on f , with m potentially
not equal to n.

In [Lecharlier and De Mol, 2013] an algorithm is proposed for minimizing over k and
f a cost function involving the Kullback-Leibler divergence - thus adapted to Poisson
data - and regularization on both the image and the convolution kernel. Especially,
regularization is applied on the PSF to avoid converging towards a trivial solution with
an impulse kernel [Levin et al., 2009]. The function to minimize can be written

J(k, f ) = KL(y, k ∗ f ) +
µ

2 | |k | |
2
2 + λ | | f | |1 +

ν

2 | | f | |
2
2 (5.15)

under the constraint that the sum of k equals 1, with µ, λ and ν weighting parameters.
Algorithm 5 represents the different steps for updating both the kernel and the image in
this case, where one can recognize the alternating Richardson-Lucy algorithm when reg-
ularization parameters are set to zero. Note that TV regularization can also be included
in such a framework; in this case one may perform TV denoising after the update of f i+1

with e.g Chambolle Pock algorithm for Poisson noise.
Algorithm 5: Alternating minimization of the regularized Kullback-Leibler di-
vergence. In practice the α parameter is found with Newton method. However
it might not converge sometimes, in this case a solution is to set α to 0 and
force the sum of the PSF to be 1 after the update of ki+1. Here f and k are
n-dimensional vectors of component fs and ks.
1 initialize f 0, k0,

∑
s k0

s = 1
2 U = ki .(

y

ki∗ f i ∗ (( f
i)T ))

3 Find α Lagrange parameter s.t
4 if µ > 0, µ + n2(α +

∑n
s f i

s ) −
∑

s(
√
(α +

∑
s f i

s )
2 + 4µU)s = 0

5 else α = ∑
s ys −

∑
s ks

6 B = α +
∑

s fs
7 ki+1 = 2U

B+
√

B2+4µU

8 C = f i .(ki+1)T ∗ y

ki+1∗ f i

9 D = λ +
∑

s ks

10 f i+1 = 2C
D+
√

D2+4νU

These two algorithms - regularized or not - offer the possibility to estimate the PSF
in the same time as the image. No prior experimental estimation is needed, and the
PSF estimation entirely depends on data y - that is obtained from the projections p
initially -, thus it is object-dependent. The main drawback of such methods however
is that regularization is much needed so that the kernel estimation does not converge
towards a trivial solution with k being the identity. Similarly to algorithms in Chapter 2,
it is hard to find a once-for-all strategy for the regularization choice. In what follows we
will, for these reasons, focus on deep learning based methods that aim to perform blind
deconvolution.

123

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0093/these.pdf 
© [T. Leuliet], [2022], INSA Lyon, tous droits réservés



5.2.2 Data-driven methods for blind deconvolution
For data-driven methods, resolution modeling with initial PSF estimation will not be
discussed. Indeed this amounts to modifying the forward operator within the methods
already described in Chapter 3.

Methods that we describe here are therefore mainly related to blind deconvolution,
where both the image and the convolution operator are unknown, corresponding to model
(5.12). In what follows we split the data-driven methods for blind deconvolution into
supervised and self-supervised methods.

5.2.2.1 Supervised methods

Here we focus on methods that require a training dataset with paired blurred/true image,
as well as true kernel potentially.

Direct methods Wwith deep learning methods, it is possible to ignore the forward
model and to map a deteriorated image to an estimate of the true image. This is done
for PET imaging in e.g [da Costa-Luis and Reader, 2017] where a deep convolutional
network acts as a post-reconstruction image processing method to reduce artefacts.

For blind deconvolution it is similar; it is not essential to have an estimate of the true
kernel at the origin of the blurred data y. Solution for such a direct method include using
a UNET, taking y as an input and some ground-truth f as the output. Some variations
of the network might be used for such a task, as we will see in the experiments in the
next chapter:

• 2D UNET in the coronal, axial or sagittal plane.

• 2.5D UNET similarly to [Perslev et al., 2019] where outputs from all of the three
UNETs in each plane are merged - averaged for instance.

• Multi-slice UNET or residual network as in [Xu et al., 2017].

• 3D UNET as for FastPET in [Whiteley et al., 2020].

We will comment more on those variations in the next chapter but we mention here
that using multi-slice input or 3D networks in the case of PVE or TOF correction partic-
ularly makes sense since it is likely that information in adjacent slices can be useful for
the estimation of each slice, since the PSF spreads the activity across different slices.

Model aware methods There are also methods that perform blind deconvolution
with deep neural networks while taking into account the fact that both the PSF and the
image are unknown. In [Rego et al., 2021] for instance, both the image and the kernel
are retrieved by a single network. The corresponding network is applied to image recon-
struction for lensless camera1 for which the model (5.12) is totally adapted. Especially,
it is not possible in this application to have an estimation of the PSF done beforehand
as for these cameras it can be very different for every acquisition.

1The purpose of lensless camera is to reduce size, weight and cost of a camera. Withdrawing the lens
however reduces performance, thus there is a need to improve image reconstruction.
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The architecture of such a network is represented in Figure 5.4. Two different UNETs
are used for either retrieving the image or the PSF from the blurred image. For image
comparison, the loss function Lim is a combination of adversarial, perceptual and L2
losses. For the PSF, the loss LPSF is a combination of adversarial and L1 losses. Training
of the two UNETs is however not independent; in order to assess if the convolution of the
obtained image and PSF corresponds to the input data, a MSE consistency loss is added
to each loss function used for training the two UNets. Denoting the estimated kernel as
k̂ and estimated image as f̂ , the loss function then writes

L(k̂, f̂ ) = Lim( f̂ , fGT ) + λ1LPSF(k̂, kGT ) + λ2 | | k̂ ∗ f̂ − y | |22 (5.16)

where subscript GT stands for ground truth.
Weights from both networks are therefore updated in an alternate manner with train-

ing data consisting of simulated blurred images and corresponding true kernels and true
images. It is shown in the study that this decoupled architecture performs better than a
simple UNET that does not account for the PSF model. Also, authors note that the PSF
network does not retrieve the identity PSF because it has been trained to also recover
the right PSF.

It is to be mentioned here that such methods are indeed efficient, however they rely
on accurate ground-truth PSF for training the neural network. Depending on the appli-
cation, the accuracy of this PSF, especially when considered as object-dependent, might
be discussed.

5.2.2.2 Self-supervised methods

A lot of methods for blind deconvolution using neural networks involve self-supervised
learning. Here methods only require the input blurred image y, and no training dataset is

Figure 5.4: Double UNET architecture for image and PSF retrieval in [Rego et al., 2021].
Both PSF and image generators are trained with the mentioned loss: adversarial, percep-
tual and L2 for the image, adversarial and L1 for the PSF. A self-supervised consistency
loss with respect to the forward imaging model is incorporated.
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needed: update of the weights and thus reconstruction are performed on the fly, similarly
to traditional iterative methods.

These methods are mostly based on the Deep Image Prior (DIP) principle mentioned
in Chapter 3. We recall that the general idea of DIP networks is to assume that a natural
image can be represented by a convolutional neural network. In practice the solution is
characterized by a neural network that takes as input a fixed random tensor z, the k-th
estimation of the solution being

fk = Γθk (z) (5.17)

where Γ is some neural network with parameters θk . Here training is only performed with
one reference data, i.e the blurred image y. At each epoch - or iteration k -, the weights
θk are updated by backpropagation of the gradient of a loss function that involves Γθk (z)
and y. In what follows we will mention different loss functions and/or architectures that
are used for blind deconvolution based on self-supervised learning. We remind that in
[Ulyanov et al., 2017] it is shown that the the prior on the data implied by the DIP
structure depends on the architecture of the network.

Model-aware methods In [Ren et al., 2020], the architecture of the network is similar
to the one used in [Rego et al., 2021] with supervised learning, in the sense that it is a
double architecture in order to retrieve both the image and the convolution kernel at the
origin of data y. The main difference for the architecture is that the sub-network that
retrieves the PSF is a fully-connected network. As mentioned before, it relies on the DIP
principle, so the input of the image generator G f

φ is a fixed random image zf and the PSF
generator Gk

θ also takes some random zk vector as an input. Here note that these inputs
never change through the training process. The weights φ - resp. θ of G f

φ - resp. Gk
θ -

are initialized and then updated with backpropagation with:

min
θ,φ
| |Gk

θ (zk) ∗ G f
φ(zf ) − y | |22 + λTV(G f

φ(zf )) (5.18)

where one can notice that TV regularization is considered on the generated image. With
this method, no prior training is required since weights are updated only according to the
given data at test-time. Also it is mentioned that prior on both the image and the kernel
are included within the structure of the neural networks. For instance, they are designed
such that positivity constraints are considered in the image - with activation functions -,
and a layer in the fully-connected network forces the sum of the PSF pixels to be equal
to one. Experiments also show that the structure of the networks allow not to reach the
trivial solution of an impulse kernel.

Here the model is taken into account mainly thanks to the double architecture of
the network; also the loss function is clearly chosen so that it is adapted to the problem
(5.12). It is also possible to consider unrolled iterative scheme for blind deconvolution.
We mentioned in this chapter iterative methods, and similarly to what was presented
in Chapter 3, those methods can be adapted to neural networks in order to learn the
parameters involved in their formulation. Following this idea, the blind Richardson-Lucy
algorithm [Fish et al., 1995] was unrolled into a neural network in [Agarwal et al., 2020].
The network, named Deep-URL for Deep Unfolded Richardson Lucy, has a two-fold
structure that consists of an image and a kernel generator. Both sub-networks’ weights
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are updated with backpropagation of a loss function similar to (5.18), with the negative
SSIM instead of the L2 norm. The difference however lies in the structure of G f

φ and Gk
θ

networks. Instead of mapping zk or zf to the estimated kernel or image with a simple
UNET or fully-connected network, rather the overall architecture is derived from the
blind RL algorithm. We recall the classic blind RL updates for both the image and the
kernel at iteration i + 1:

ki+1 = ([
y

f i ∗ ki ∗ f i†).ki (5.19)

f i+1 = ([
y

f i ∗ ki+1 ∗ ki+1†). f i (5.20)

where (.)† is the flipped version of the vector/matrix argument. The unrolled version
of the blind RL algorithm then consists of updating weights W i

f and W i
k for both the

image and the kernel. The number of simulated iterations is fixed to a number L, the
output of the image generator being G f

φ(zf ) = f L and the output of the kernel generator
is Gk

θ (zk) = kL with

ki+1 = σ(ReLU([
y

ReLU( f i ∗W i
k)
∗ f i†).W i

k) (5.21)

f i+1 = σ(ReLU([
y

ReLU(W i
f ∗ ki+1)

∗ ki+1†).W i
f ) (5.22)

where f 0 = zf , σ(.) is the sigmoid activation function in order to ensure some range
constraints for both the image and the kernel, and ReLU activation is used in order to
ensure the constraint of non-negativity.

One element that is particularly interesting with this method is the fact that once the
self-supervised model is optimized for a given blur kernel, it is argued that the learned
weights W i

f and W i
k can be directly used for performing deconvolution of any image blurred

with the same kernel. Overall, results show that such a network outperforms the blind
RL iterative method and in the experiments, it does not converge to trivial solution of
an impulse kernel.

Other methods An other possibility of using self-supervised learning for blind decon-
volution is presented in [Asim et al., 2020]. Here the paradigm is different compared to
what was presented with the DIP-like frameworks. Indeed, unsupervised training is used
to learn priors on both the images and the kernels with generative networks (GAN or
VAE). Once these priors - i.e the generative networks - are learned, the optimization is
performed on the latent spaces by backpropagating the gradients of the loss function com-
puted from the blurred image y. Only the latent space values are modified throughout the
self-supervised learning so that one ensures that the generated image/kernel belongs to
the range of the generative networks. Therefore the difference with previous algorithms
is that the input random noise is no longer fixed; instead the weights of the image/kernel
generators are fixed. We denote these generators with fixed weights as GI and GK .

Such a network is represented in Figure 5.5 and the optimization process corresponds
to the following minimization:

min
zk,zi
| |y − GK(zk) ∗ GI(zi)| |

2
2 (5.23)
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Experiments also contain modification of the loss function, including TV regulariza-
tion but also methods that give the possibility for the generated image or kernel to be
slightly out of the range of the learned generative models. We will not discuss details
here but this is to be noted since the method presented as in (5.23) highly relies on the
quality of the priors GI and GK .

We also note the possibility to use Cycle GAN-like architectures in the case of unpaired
blurred/clean images, though this does not apply to our application in the next chapter.
We refer to works from [Pan et al., 2020] and [Lim and Ye, 2019] for the reader interested
in such methods.

5.3 Conclusion
Overall we saw that the inverse problem that includes some unknown convolution kernel -
whether it comes from resolution modeling or TOF blurring - in the forward model leads to
increased difficulties in retrieving a clean image. For non data-driven methods, a solution
can be to estimate this convolution kernel beforehand, whether the estimated PSF is
included in the forward operator within reconstruction methods from projection data,
or for deconvolving an image once an initial reconstruction is obtained. This does not
allow considering object-dependent PSF, but this is a method that is commonly used in
practice. Mismatch between the true and estimated kernel can however lead to amplified
artefacts in the reconstruction. It is also possible to perform blind deconvolution from
an initially reconstructed image, in which case the PSF does not need to be estimated
beforehand. We saw that in this case though, regularization is key in order to avoid
trivial solutions. In any case with all of those methods, we observe that ringing artefacts
are the main cause of decreased performance for the reconstruction task.

Deep learning based methods allow to get rid of the need for handcrafted regular-
ization. They also have the possibility to reduce artefacts in the reconstructed images.
We saw in this chapter that some of these methods rely on supervised training; results
seem encouraging but one needs to remember that these methods require ground-truth
PSF, which can be particularly hard to obtain especially when the PSF is considered as

Figure 5.5: Self-supervised scheme for blind deconvolution in [Asim et al., 2020]. Weights
from both GI and GK are fixed here. They have been trained before hand to learn the
distribution of images and kernels. The only variables that are updated in the learning
process here are zi and zk with L(zi, zk) corresponding to (5.23).
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object-dependent. This is one of the reasons why many methods in the literature rely
on self-supervised learning; they are less constrained compared to traditional iterative
methods since they require less parameter tuning. Nevertheless such methods are gener-
ally slow to converge. For the medical application that we are focusing on in the next
chapter, the PSF is object-dependent and computation time is a key parameter. This
lead us to propose a method that enables taking the benefits from the deep learning
based techniques discussed in this chapter, without suffering from some of their main
drawbacks, especially the computation time associated to self-supervised learning.
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Chapter 6

A neural network for image
reconstruction and blind
deconvolution: application on TOF
PET intraoperative imaging

This last chapter is dedicated to the application of deep learning based methods for image
reconstruction on a TOF PET system that is designed for intraoperative imaging. This
work results from a collaboration between the CREATIS laboratory in Lyon and the
Radiation Physics Instrumentation Laboratory (RPIL), which is part of Department of
Radiology, Massachusetts General Hospital, Harvard Medical School, in Boston. Work in
RPIL has been done to design an innovative PET imaging system, optimize the geometry
and the overall configuration of the device regarding the objectives that will be detailed in
this chapter. Also, experimental data have been acquired to establish a proof of concept
for such a system. On the other hand the expertise of the CREATIS laboratory in image
reconstruction is expected to improve the current performance of the detector regarding
the image quality and metrics of interest. Especially, existing deep learning methods
derived in the previous chapter as well as a newly proposed architecture/training method
have been studied for the specific application. This chapter focuses on the corresponding
experiments.

The underlying reconstruction problem is consistent with the modelization described
in Chapter 5. Constraints related to the requirements for the expected clinical use also
lead us to design a deep learning based method that is particularly adapted to a blind
deconvolution problem that involves TOF information.

In Section 6.1 we detail the imaging system that is at the core of this study, as well
as the corresponding medical applications it can have. Section 6.2 aims at exploring the
potential solutions for image reconstruction regarding the constraints of the application,
and we also detail the concept of our solution. In Section 6.3 we perform a proof of concept
for our solution on a simplified simulated dataset. Tests are pushed further in Section
6.4 where we perform our tests on GATE [Jan et al., 2004] simulations of acquisitions
corresponding to the actual imaging system. Finally in Section 6.5 we mention the
on-going tests that aim at further validating the solution on realistic simulations and
experimental data, as well as potential improvements that can be added to the current
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method for reconstruction.

6.1 TOF PET intraoperative imaging
As experiments in this chapter are performed on data from a TOF PET intraoperative
imaging system, we detail here the clinical use for such a device and the context for
which it can be particularly interesting. Also we describe here the specifics of the imager
studied in RPIL that will be used for the experiments.

6.1.1 Presentation of the studied imaging system
The ultimate goal of the studied imaging system is to be a tool for determining the
metastatic status of the regional nodes draining a primary tumor, as it is a key prognostic
factor in patients with early stage cancer [Sajedi et al., 2019]. This metastatic status can
indeed be a valuable asset for evaluating the tumor staging as well as choosing the right
therapy for the patient.

The first nodes draining from the tumor are called the sentinel lymph nodes (SLN).
SLN identification is used as standard of care in breast and skin cancer patients. A
common procedure consists in injecting the patient intratumorally with e.g 99Tc colloid.
The first node that is draining the tumor is then identified as SLN, and sent out for
histological evaluation regardless of being cancerous or not. If it is evaluated as cancerous,
all the secondary nodes connected to the SNL are removed, here also regardless of their
cancerous status. Nodes dissection is not without consequences for the patient, and the
current standard of care usually does not allow for the evaluation of more than few nodes.

There are guidelines from the American Society of Clinical Oncology (ASCO) re-
garding SLN identification: the aim is to have more than 85% of detected lymph nodes
actually corresponding to lymph nodes (identification rate), and less than 5% of the true
nodes that are not detected (false negative rate) [Lyman et al., 2005]. The objective
concerning the false negative rate (FNR) is not reached in breast cancer with histologi-
cal examination as shown in [Pesek et al., 2012]. Tools that enable examination of these
nodes accurately, and especially offering the possibility to examine a large enough number
of nodes are still required.

In this sense, the argument in [Sajedi et al., 2019] is that neither SLN or secondary
nodes need to be removed if one can determine their status during surgery post intra-
venous (as opposed to intratumoral) injection of radiotracer.

If standard whole-body PET (WB-PET) images can be used to detect lymph nodes
larger than 1 cm [Yamamoto et al., 2007], they are not reliable when it comes to detecting
nodes smaller than 5 mm [Kalinyak et al., 2014]. Reasons for such results from WB-PET
images include low spatial resolution (4-5 mm FWHM) [Sajedi et al., 2022], low uptake
value due to the use of 18F-FDG, and low sensitivity of conventional WB-PET scanners.
Such limitations are part of the reasons why methods for imaging in an intraoperative
context have raised interest.

The current standard of care for SLN identification in a breast cancer patient is to
use a two-fold method:

1. Direct visual inspection during surgery, using injection with blue-dye.
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2. Use of a gamma-probe thanks to peri-tumoral injection of radiopharmaceuticals.

However, gamma probes as well as near infrared (NIR) probes currently fail to obtain
a FNR lower than 5%. Detectability of nodes with such systems is dependent on the
tumor location: performance is especially poor near the injection site and for tumors
that are deeply located.

Regarding the current limitations of existing methods, the potential of TOF PET for
such applications looks promising; it has indeed shown great potential to increase the
reconstructed image signal to noise [Cates and Levin, 2018]. As mentioned in Chapter 5,
the Coincidence Timing Resolution (CTR) of such detectors have been reduced thanks to
recent developments in PET detectors. These developments have encouraged the RPIL
group to investigate the potential of TOF PET intraoperative imaging as an alternative to
intraoperative gamma probes, 3D gamma cameras [Bluemel et al., 2013] and preoperative
PET [Jiang et al., 2019a, Jiang et al., 2019b]. In [Sajedi et al., 2019] and [Sajedi et al.,
2022] in particular, a proof of concept for intraoperative TOF PET imaging was performed
on simulations and experimental data; the studied imaging system therefore corresponds
to the basis for our study.

The overall configuration of the conceptual imaging system is presented in Figure
6.1. The idea is to place a high-resolution PET detector - the probe - atop the patient,
as well as a detector underneath the patient’s bed, the objective being to incorporate
detectors with excellent CTR to compensate for the lacking data in such limited angle
geometry. An illustration of the two detectors is given in Figure 6.2. As one can observe,
the detectors are placed in a configuration such that solid angle coverage is limited. It
was shown in [Sajedi et al., 2019] that bringing the detector modules close to the patient
increases the detector solid angle and thus the geometrical sensitivity. Experiments in
[Sajedi et al., 2022] - see Figure 6.3 - then consisted in considering flat panel detector
geometries placed in parallel planes.

One can observe in Figure 6.1 that the configuration includes the possibility for the
top detector to be moved vertically in order to indeed get closer to the patient. The X-Y
coordinates of the two detector panels are however considered as fixed with respect to
each other. Both top and bottom detector buckets are comprised of arrays of TOF PET
detector modules with coincidence timing resolution (CTR) lower than 300 ps.

6.1.2 Current reconstruction method and results
The ultimate objective of this imaging system is to obtain images that are able to meet
the requirements listed before, e.g having a FNR lower than 5% for SLNs. In addition to
the optimization of the geometry of the detectors, the method to reconstruct the image
from acquisition data is of paramount importance as we saw throughout this thesis. The
current method used for image reconstruction is based on non-iterative 3D backprojection
of the detected coincidence events, taking into account the TOF information. Note also
that the current method involves oversampling of the LORs since detector pixels are
large (around 4 mm) compared to the image voxel size (1 mm) in this proof of concept
detector unit; oversampling then allows obtaining smoother images and to reduce the
speckles artefacts that can be observed in the reconstruction. A major advantage of using
a non-iterative method is the short reconstruction time which is key for intraoperative
use.
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Tests shown in [Sajedi et al., 2022] for proof of concept include experimental data.
The experimental details are listed below:

• use of two Hamamatsu TOF PET detector modules (C13500-4075YC-12) featuring
12×12 array of 4.14×4.14×20 mm3 lutetium fine silicate (LFS) crystal pixels with
4.2 mm pitch, one-to-one coupled to silicon photomultiplier (SiPM) pixels. The
overall active area of the detector module is 51×51 mm2.

• Detector coincidence timing resolution (CTR) was measured at 271 ps FWHM for
the whole detector.

• 3D phantom was used, containing spheres ranging from 2 to 10 mm diameter, repre-
senting lymph nodes and placed inside a 10-liter warm background water phantom
of 25 cm thickness.

Figure 6.1: Illustration of the conceptual design of the studied intraoperative imaging
platform [Sajedi et al., 2019].

Figure 6.2: Simplified scheme (GATE) of two flat panel detectors placed in parallel planes.
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With simple backprojection as the reconstruction method, experiments showed that
6 mm diameter spheres can be identified when the activity ratio between the sources and
the background is 10:1, with sub-minute data acquisition. Note that the spheres were
placed at 2 cm depth; this distance was chosen since it corresponds to a distance for which
no existing optical based intraoperative camera can detect lymph nodes as penetration of
visible and NIR photons is limited to only a few millimeters in tissue [Sajedi et al., 2022].
Also, GATE simulations showed that the image quality improves as the CTR improves
and with smaller water phantom depth or higher lesion to background activity ratio. An
example of reconstruction obtained from both GATE simulations and experimental data
can be observed in Figure 6.4.

6.1.3 Modelization
Because it involves PET limited angle data and TOF information, the context is similar
to what has been derived in Chapter 5. The model that we therefore assume is the one
in Equation (5.12) that we recall here as

y = K f (6.1)

where the blurred data y is the TOF reconstruction obtained with backprojection as in
Figure 6.4 - however here we do not consider oversampling of the data-, and K is the

Figure 6.3: Experiments to obtain real acquisitions data in RPIL [Sajedi et al., 2022]. The
images represent (a) the overall experimental setup and (b) a zoom on the top detector
module right above the hot spheres.
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convolution operator. Note that due to the Poisson noise on the data - photon counting
noise -, noise also affects y.

Coincidence timing resolution will mostly be considered as ranging between 200 ps
and 300 ps in this chapter; this corresponds to 30 to 45 mm localization along the LOR.
Compared to the 1-10 mm FWHM uncertainty related to resolution modeling, the effect
of TOF uncertainty is predominant in the operator K.

In Section 6.4 the accuracy of the model (6.1) will be assessed with GATE simulated
data. Experiments that will be presented in the next sections are performed considering
a spatially-invariant PSF. The validity of such an approximation will also be evaluated
with GATE experiments. Considering spatially-variant PSFs will be the object of further
experiments in the future.

6.2 PAVENET: a hybrid learning method

6.2.1 Requirements for the reconstruction method

Now that the application has been described and the reconstruction problem modeled, the
natural next step is to have a reconstruction method that enables reaching the objectives
such as detecting spheres/nodes smaller than 6mm and having a FNR lower than 5%,
with data acquired from the TOF PET configuration that we have detailed.

Considering the model (6.1), one can draw up a list of groups of methods as mentioned
in Chapter 5:

• Model-based methods with no learning process: difficulties to find optimal param-
eters and computation time are reasons why we do not investigate such methods.

• Decoupled PSF estimation and image reconstruction: we consider here object-
dependent PSF, which makes even more sense when covering the case of spatially-
variant PSF in the future, so these methods are not adapted.

• Self-supervised learning based methods: here the computation time is once again
an issue because of slow convergence for these methods.

Figure 6.4: Reconstructions obtained by the RPIL group on experimental data (left) and
GATE simulated acquisitions (right).
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• Supervised learning methods such as UNET from a reconstructed image or a net-
work for retrieving both the image and the PSF considering a consistency loss as
in [Rego et al., 2021].

We see that most of the methods presented in the previous chapter are not adapted to
our specific task here. It is however possible to consider supervised learning based meth-
ods. For instance, a UNET with a TOF backprojection (TOFREC) as input might be a
solution. Variations of such a method, especially taking into account spatial information,
will be studied in Section 6.4.

Another possibility is to adapt the double architecture from [Rego et al., 2021] - see
5.2.2.1 - to the problem (6.1) by considering the TOF backprojection as the input of the
network and the reference image for the consistency loss.

In practice however, the data on which one trains a neural network might belong to
a distribution that is shifted compared to the testing data, i.e the data on which the
reconstruction actually matters. This is referred to as "distribution shift" in [Darestani
et al., 2022]. It can correspond to change of image class, noise level or forward operator
at test time. In our case, training will be performed via GATE simulations of realistic
acquisitions, but the objective then is to apply the trained networks on data obtained with
the real experimental setup. Difference between reconstructions from GATE simulated
data and experimental data can be observed in Figure 6.4. Another major concern is the
fact that because the position of the top detector can vary continuously in the considered
setting, the shape of the PSF can be very different depending on this position, and it is not
feasible to include every potential position of the top detector into a training database.
Finally, the memory footprint of creating a database from GATE simulations is such that
the amount of volumes used for the training process is limited - around 100 volumes is
an upper bound in our experiments -, so that the diversity of the considered structures
within these volumes is necessarily limited. All of those considerations tend to indicate
that our reconstruction method would benefit from a self-supervised scheme, since its very
principle is to adapt a network’s weights to any input data. As self-supervised networks
with random initialization of the weights are slow to converge, they are not suited to
intraoperative imaging.

6.2.2 Motivations of PAVENET
Following the multiple requirements listed above, our idea is to consider a self-supervised
learning scheme where the weights are carefully initialized. This initialization is, in our
method, performed with a pre-training that is supervised, using paired ground truths
and TOF reconstructions from GATE simulated acquisitions. Such a method allows one
to get rid of the drawbacks mentioned in the previous paragraph since self-supervised
learning theoretically allows adapting to any kind of data, and we expect the pre-training
to significantly hasten convergence time.

Note that this idea of updating the weights of a network initially trained with super-
vised data has recently been studied in [Darestani et al., 2022] and in [Barbano et al.,
2021]. In the former, this is referred to as test-time training, while in the latter this is
interpreted as a DIP-like network where pre-training is performed to "warm-start" the
network. Yet, this is a method that has not received a lot of attention for reconstruction
tasks or even in the computer vision field more generally. In what follows we will use the
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notion of pre-training when referring to the initial supervised training of our network, and
test-time training for the self-supervised part. The overall training method is considered
as a hybrid learning method.

The combination of pre-training and test-time training represents the main aspect of
our proposed method for reconstruction TOF PET images. As for the architecture to
use, one needs to remember the DIP principle; with this self-supervised method, the idea
is to represent the estimated image f̂ as a neural network, and compare the input data
y to k ∗ f̂ in order to update the weights of the network. Knowledge of k is required to
perform self-supervised training. As the PSF is unknown, dependent of the object, etc,
a simple UNET architecture would hardly allow to perform hybrid learning. Inspired by
the double architecture from [Rego et al., 2021], we thus consider two sub-networks: one
aims at retrieving the image, the other one being responsible for retrieving the PSF.

To conclude on this part, the reasons that led us to consider this approach are:

1. Self-supervised learning only or non-data driven methods are not suitable for our
task because of the high reconstruction time.

2. Any method requiring an initial accurate estimation of the PSF is not suitable since
we consider it as unknown and object-dependent.

3. Supervised learning methods are the only existing viable option but they may be
not robust to distribution shifts between training and testing data.

4. Hybrid learning appears to be a solution to obtain fast reconstruction while being
robust to these distribution shifts.

5. As self-supervised learning based on DIP is involved, the architecture of the network
needs to be two-fold for PSF and image retrieval, similarly to the supervised method
in [Rego et al., 2021].

6.2.3 Description of the proposed method
The proposed network, PAVENET - the name was originally given for PArtial Volume
Effect NETwork - consists of two blocks as mentioned previously. We are considering
convolutional neural networks - UNET especially - so we mostly work in the image space.
From a general point of view, the input data corresponds to an analytical reconstruction
denoted as y. It can be the TOF backprojection for TOF-PET imaging, or e.g the FBP
for cases where no TOF information is available. The first block Hw then maps y to the
estimated image; the second block Gθ maps y to the estimated kernel of the PSF. We will
detail the exact architecture of those blocks in the experiments later; the main difference
however between both blocks is that the last layer of Gθ is a sigmoid layer followed by
a normalizing layer in order to put the sum of the kernel pixels to 1. The scheme of the
resulting network is given in Figure 6.5.

For pre-training, we assume we have access to ground-truth images and PSF, so that
classical methods for training can be used to train each sub-network. The method for
estimating ground-truth PSF in practice will be explained in Section 6.4. Both sub-
networks are not trained independently. Similarly to [Rego et al., 2021], we consider a
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consistency loss that ensures that the estimations are consistent with the input data y.
The loss function during pre-training thus takes the general form:

Lw,θ(k̃, f̃ ) = Lim( f , f̃ ) + LPSF(k, k̃) + Lcons(k̃, f̃ , y) (6.2)
where f̃ = Hw(y) and k̃ = Gθ(y) are respectively the estimated image and PSF, and f
and k are the corresponding ground-truths. The loss functions Lim and LPSF are typically
MSE or MAE in our case but one could also use adversarial or perceptual losses as well.

The consistency loss used in (6.2) is used afterwards for the test-time training in the
self-supervised learning step. Our experiments show that including the consistency loss
during pre-training is required for correctly initializing the weights; if both sub-networks
are trained independently - i.e only with Lim and LPSF-, pre-training does not bring any
value to the self-supervised learning at test-time.

The actual loss function that we thus consider for pre-training Hw and Gθ is the
following:

Lw,θ( f̃ , k̃) = | | f − f̃ | |1 + λ1 | |k − k̃ | |1 + λ2 | |y − k̃ ∗ f̃ | |22, (6.3)
where w and θ are alternately updated with backpropagation of the gradient, λ1 and λ2
are weighting parameters. During test-time training (TTT), only the consistency loss is
used to update the weights of PAVENET, the loss function being

LTTT
w,θ ( f̃ , k̃) = | |y − k̃ ∗ f̃ | |22 . (6.4)

The loss function during TTT suggests that noise and/or artefacts might appear
after some iterations. We recall that in the DIP paradigm, regularization comes from the

Figure 6.5: Architecture of PAVENET for TOF backprojection input. The network is
first pre-trained with supervised data. Weights are then updated at test-time given some
TOF backprojection new input. The architecture is similar to [Rego et al., 2021] but the
training method is different.
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architecture of the network, so that clean images can be predicted by the network even
with noisy data. In our experiments, we also consider early-stopping and we test explicit
regularization terms to prevent the network from generating noisy images.

For the regularization during test-time training, one can for instance consider TV
regularization as it is done in most DIP-based methods. In preliminary experiments we
also considered a regularization term that forces the estimated image - or PSF - to be close
to the initial prediction after supervised pre-training. As neural networks after supervised
training are able to remove noise from the image and generate smooth background for
instance, we expected such a regularization to prevent the image from getting too noisy
after many TTT iterations. We found that such a regularization term is equivalent to
reducing the learning rate during TTT for a fixed number of iterations, so we do not
elaborate on such a method.

We put the emphasis on the fact that the proposed method needs to be considered as
a general framework that relies on two pillars: hybrid learning and double architecture
to retrieve both the image and the PSF. We will consider in the experiments spatially-
invariant PSF as this alleviates a constraint for the experiments, especially regarding
the architecture of the network and the computation time for hyperparameter tuning.
Considering spatially-variant PSF is however part of perspectives for future work that
we will detail in Section 6.5. We also remind that in Section 6.4, the validity of the
model (6.1) along with the fact to estimate spatially-invariant ground-truth PSF will be
evaluated.

Now that we have derived the steps that lead to the design of PAVENET, the validity
of such a method needs to be assessed. Our experimental protocol for this task is the
following:

1. As a proof of concept, we evaluate the solution on Python simulations of simple
objects, considering a known model with known PSFs for generating the data. The
objective of evaluating the method on a simplistic dataset is to assess whether
PAVENET is indeed efficient when the considered model is exact; if it is not the
case, there is no reason to go further with experiments where the model is only
assumed.

2. The second step is to consider the actual geometry of the TOF PET system detailed
in Section 6.1; we consider volumes with hot spheres inside and perform GATE sim-
ulated acquisitions from these volumes with a realistic configuration of the imaging
system. The PSF for pre-training thus needs to be estimated, and we have no
guarantee that the model (6.1) is coherent with the obtained data. PAVENET is
then evaluated on such volumes and compared with supervised learning methods
(UNET).

3. The final step - which will not be presented in this thesis as it is an on-going
work - will be to validate the method on more complex GATE simulations, i.e with
lower activity to background ratio, larger phantom depth, etc. Tests will also be
performed on experimental data to evaluate the robustness of the method when
applied to non-simulated data.
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6.3 Proof of concept on simulated data with known
forward model

In this section we show the first step of the experimental protocol, i.e evaluation of
the method on simulations based on the explicit model. Part of the results have been
presented in [Leuliet et al., 2022b].

6.3.1 Experiments
The different steps of our experiments can be listed as follows:

1. Generate a database for pre-training PAVENET, and also for training the super-
vised method for comparison.

2. Generate 4 different testing sets for evaluating the performance of the networks,
and especially evaluate the robustness regarding distribution shift.

3. Perform supervised pre-training on the training set, with optimization of the hy-
perparameters (HPs) on a separate validation set. Once all HPs are optimized,
training on the full training+validation dataset is performed.

4. Tune the HPs for test-time training on a validation set, the weights being initialized
thanks to pre-training. We will detail the nature of the HPs related to test-time
training in this section.

5. Once HPs are optimized, we use them to perform test-time training - i.e reconstruc-
tion - on the different testing sets with the values of HPs obtained in the previous
step.

In our simulations in Python with Astra toolbox, no TOF information can be consid-
ered. Therefore we generate projections data p = AK f , where A is the Radon operator.
This is still consistent with the model (6.1) since we will consider an initial noisy recon-
struction y corresponding to the FBP, instead of the TOF backprojection. We consider
here that the convolution operator K can be represented by a convolution kernel k so
that the PSF is spatially-invariant. Also we consider a simple Gaussian kernel for k that
depends on σx and σy which are the standard deviations with respect to both 2D-axis.
Poisson noise is considered for each pixel of the projections p, the initial pixel intensity
being the mean value for the Poisson noise.

Our objective is first to evaluate the benefits of including the model knowledge within
the supervised training part; then we evaluate the effect of test-time training on the qual-
ity of the reconstructed images. As mentioned, a key element for evaluation is the ro-
bustness of the tested methods regarding distribution shifts between training and testing
data. For this, the testing datasets are generated with different characteristics compared
to the training dataset.

In order to check that the potential performance improvement due to test-time train-
ing is allowed thanks to the architecture of PAVENET, we also consider a hybrid learning
version of the UNET in which the weights are updated at test-time with (6.4) considering
k̃ as the identity since no estimation can be obtained with this network.
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6.3.2 Data
The supervised training database is simulated with Python. It consists of 20,000 images
of size 128×128 in which disks of different sizes are randomly placed. The size of the disks
is different from a disk to another within a single image. The considered activity ratio
is different from one image to another, however it is kept constant for all disks within
a single image. For the PSF, we consider Gaussian kernels of size 16 × 16, with varying
σx and σy. For each image-kernel pair, projections data p is generated according to the
pipeline mentioned above, the parallel projections being obtained with Astra library [van
Aarle et al., 2015]. Ramp filter is considered for the FBP that is given as input of the
networks and as reference for the consistency loss.

We consider 20% of the database, i.e 4,000 images, as a validation set in order to tune
the hyperparameters and check that no overfitting could be observed during training.
Indeed, poor performance on a testing set can be explained either by overfitting during
training, or by the lack of robustness when testing a network on different data. As no
overfitting was observed in our case, we ensure that the potential drop in performance
on testing set is likely related to lack of robustness w.r.t distribution shift.

Four different test sets are generated, each of them consisting of 100 images. These are
the images on which supervised methods are tested, and also on which test-time training
is performed for hybrid learning based methods. The parameters that vary across all the
datasets are the radius of the disks, the lesion to background activity ratio, and the width
of the PSF. The advantage of using a simplified database is to be able to manipulate these
parameters for evaluating the robustness to distribution shifts. The parameters used for
each of the testing sets are represented in Table 6.1. One can observe that distribution
shift is modeled as smaller or larger disks (tests B and C) or larger standard deviation
for the PSF (test D). Also note that the choice of the width for the PSF is done in
accordance to the typical values for uncertainties due to spatial resolution; we mentioned
in the previous chapter that FWHM for PSF accounting for the physical fluctuations
inherent to PET imaging is inferior to 10 mm. For a Gaussian kernel, we have the
formula of the FWHM depending on the standard deviation σ:

FWHM = 2
√

2 ln 2σ (6.5)

so that the chosen standard deviations in the training set (and tests A, B and C) corre-
spond to a FWHM between 2.5 and 10 mm.

Finally, for each method, supervised training is performed 10 times. This allows
having 10 different random initializations of the weights, thus 10 different predictions for
each method. Therefore we have 10 different values for the metrics. The results that we
present account for the statistical fluctuations due to this random initialization, so that
we expect to have metrics values that are statistically significant.

6.3.3 Networks
As mentioned, we consider the FBP as input to the networks instead of fTOF, only for
those experiments. The UNET that we use for comparison is a slightly modified version
of [Ronneberger et al., 2015], where we consider LeakyReLU activation [Maas et al., 2013]
instead of ReLU activations, with parameters α = 0.3 for the encoder and α = 0.01 for
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Disks radius (mm) σPSF (mm)
Training [6,10] [1,4]
Test A [6,10] [1,4]
Test B [4,6] [1,4]
Test C [10,15] [1,4]
Test D [6,10] [4,6]

Table 6.1: Parameters for all datasets. On each image, between 6 and 12 disks are placed
at a random position, with an activity between 6 and 16 Bq/mm2, the background having
an activity of 1 Bq/mm2. The activity is the same for all disks within a single image; it
only varies across different images.

the decoder. There is no fully-connected layer. We do not use any activation function at
the end of the network, and we use 32 filters for the first UNET layer instead of 64 in
the original paper; this allows reducing the number of parameters while the performance
is unchanged as the complexity of the studied structures is simple compared to actual
medical images.

The two PAVENET blocks Hw and Gθ are similar to the described UNET; for the
PSF block, sigmoid and normalizing layers are added so that the sum of the kernel pixels
is equal to 1. Note that using a UNET architecture for Hw seems natural as its role is to
perform an image-to-image mapping. For Gθ however, this might be less straightforward.
We first tried a network with the same architecture as the encoder part of the UNET
that maps the 128 × 128 image to the 16 × 16 PSF, but results were not convincing. The
performance of Gθ turned out to be satisfying enough with the UNET architecture as is
so that we did not look further for a - maybe - more appropriate architecture. Removing
skip connections from the UNET could for instance be a solution, though we have not
tried it in our experiments. Note also that the output of Gθ is of size 128 × 128 in order
to suit the UNET architecture; however, convolution operation in the consistency loss is
performed by only considering the 16 × 16 center of the output since the ground-truth
that we consider is of size 16 × 16. This also allows hastening computation.

Supervised training of the neural networks is performed with Adam optimization, on
200 epochs for UNET and 250 for PAVENET, the first 50 epochs in the latter being
made withouth the consistency loss because intial predictions f̃ and k̃ are of poor quality
during the first epochs. For the 200 epochs including the consistency loss, optimization
of Hw and Gθ is performed alternately. Simultaneous optimization and different ratios
between optimization steps for both sub-networks - e.g 3 steps for one and 1 for the other
- do not improve performance. The batch size that we have considered for training is 8.
Supervised training of the UNET takes around 4h and for PAVENET it takes around
14h on a Nvidia Tesla V100 GPU. Prediction of an image - without test-time training -
takes less than a second even on CPU.

For test-time training, PAVENET is optimized according to (6.4) with Adam opti-
mizer also. We show results after 1,000 iterations - or epochs - since this is the value that
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we fixed for optimizing the TTT hyperparameters on the validation set, as it corresponds
to a reasonable 40 seconds computation time on the mentioned GPU. We will also show
some results for the TTT performed on UNET only.

Hyperparameters such as batch size, number of filters and standard values for pa-
rameters related to activation functions or Adam optimizer were selected manually as an
initial step in our experiments. As for the learning rate for both Hw and Gθ , λ1, λ2, we
performed a grid-search optimization on the validation set. Following this optimization
step, the simple UNET learning rate was set to 10−3. Hw is pre-trained on 50 epochs with
a learning rate of 10−3, then 10−5 for 200 epochs and finally 10−6 for test-time training.
Gθ is pre-trained on 50 epochs with a learning rate of 10−4 then 10−5 for 200 epochs and
10−6 for test-time training.

The metrics that we show (mean and standard deviation) correspond to mean values
across the 10 different predictions obtained from different weights initializations. Each
of them is a mean over the 100 predictions corresponding to the 100 test images. The
standard deviation over the 100 predictions, for a single weights initialization, is relatively
low compared to the standard deviation we show.

6.3.4 Results
Figure 6.6 shows images reconstructed with FBP, UNET and PAVENET on test A that
has similar characteristics compared to the training dataset. One can observe that in
this case, the UNET seems to accurately reconstruct the image; retrieved activities are
however slightly under-estimated compared to the ground-truth, which is not the case
for PAVENET.

Figure 6.6: Example of reconstruction for an image from the test A dataset. (a) Ground
truth, (b) FBP, (c) UNET, (d) PAVENET, after pre-training only.

On test B that contains disks of smaller size, limits of a supervised method like UNET
can be observed in Figure 6.7, as the radius of the reconstructed disks is clearly larger
compared to the ground-truth disks. Visually, it seems that the radius of the size of those
disks correspond to the minimum size for which the network has been trained. The fact to
include model knowledge during supervised training helps retrieve smaller disks as it can
be observed in Figure 6.7 where the initial prediction of PAVENET after pre-training
is shown in the image (c). Test-time training seems particularly efficient as shown by
the PAVENET prediction after 1,000 epochs of self-supervised learning. Especially, we
observe the ability of the network to retrieve disks with radius significantly smaller than
the ones used for pre-training. In Figure 6.7 the PSF prediction of the network is similar
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to the ground-truth; this allows the consistency loss to be particularly efficient during
test-time training.

Figure 6.7: Test B : Image (left) and PSF (right) for (a) the ground-truth, (b) UNET,
(c) PAVENET after pre-training only, (d) PAVENET after test-time training. Note that
no actual explicit kernel is retrieved by the UNET which amounts to consider a identity
kernel as shown in the Figure.

In addition to this visual assessment, we compute metrics for the reconstructions on
the different testing sets. We mentioned in Section 6.1 the importance of the FNR for
which we aim at "missing" less than 5% of the spheres in the experimental setting. An
other point is the objective of 85% identification rate, i.e the fact to have a reconstruction
method that achieves less than 15% of false positives, corresponding to spheres that
should not have been identified as hot spheres. Both of these metrics are not adapted
to this preliminary study; indeed the task being simpler compared to reconstructing
actual experimental data, all methods including FBP manage to have a 0 % FNR or
100 % identification rate. Another aspect to evaluate is the activity that is retrieved
in the reconstructed image; indeed the value of activity - or uptake value - within a
hot sphere might provide important information for the image analysis. We therefore
compute the Concentration Recovery Coefficient (CRC) which is defined as the ratio
CRC = f̃act/ fact where subscript act refers to the mean activity inside disks in the image
. For the reconstructed images we use Otsu thresholding [Otsu, 1979] to delineate disks
and background so that we can compute the mean activity value within the disks. As
the ratio should be close to 1, we present results for CRCerr = |CRC − 1|.

Also, we observe that test-time training with the consistency loss leads to noisy areas
in the reconstructed images after some iterations, because of the fact that the data-
fidelity term is related to the noisy FBP. This noise does not deteriorate the accuracy
of the reconstructed image in terms of activity and shape of the retrieved disks because
it essentially corresponds to background zones. This however leads to decrease of the
SSIM metric in our tests; we therefore propose a corrected SSIM (SSIM Corr.) that
computes SSIM between images where all the pixels that are not part of a disk - w.r.t
Otsu thresholding - are set to 0. This allows comparing the structure of images focusing

145

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0093/these.pdf 
© [T. Leuliet], [2022], INSA Lyon, tous droits réservés



Test A Test B
Methods PSNR (dB) SSIM CRC Err. (%) SSIM Corr. PSNR (dB) SSIM CRC Err. (%) SSIM Corr.
FBP 12.86 ± 0.00 0.093 ± 0.000 34.31 ± 0.00 0.284 ± 0.000 14.65 ± 0.00 0.058 ± 0.000 61.90 ± 0.00 0.109 ± 0.000
UNET 44.66 ± 3.29 0.950 ± 0.031 1.60 ± 0.78 0.999 ± 0.001 21.89 ± 0.14 0.883 ± 0.029 22.70 ± 0.95 0.931 ± 0.003
PAVENET-0 50.29 ± 0.24 0.993 ± 0.001 0.54 ± 0.12 0.999 ± 0.001 21.79 ± 0.26 0.924 ± 0.004 21.50 ± 1.08 0.930 ± 0.005
PAVENET-1000 43.31 ± 0.32 0.932 ± 0.017 1.06 ± 0.42 0.997 ± 0.004 22.58 ± 0.28 0.899 ± 0.015 19.25 ± 1.13 0.940 ± 0.004

Test C Test D
PSNR (dB) SSIM CRC Err. (%) SSIM Corr. PSNR (dB) SSIM CRC Err. (%) SSIM Corr.

FBP 10.60 ± 0.00 0.116 ± 0.000 17.37 ± 0.00 0.255 ± 0.000 12.24 ± 0.00 0.052 ± 0.000 59.21 ± 0.00 0.066 ± 0.000
UNET 18.64 ± 0.39 0.775 ± 0.034 4.23 ± 1.28 0.895 ± 0.008 25.91 ± 0.71 0.903 ± 0.042 11.11 ± 1.11 0.977 ± 0.007
PAVENET-0 18.50 ± 0.25 0.818 ± 0.008 7.81 ± 0.78 0.903 ± 0.009 26.90 ± 0.38 0.947 ± 0.007 8.57 ± 0.87 0.971 ± 0.005
PAVENET-1000 20.96 ± 0.42 0.783 ± 0.016 3.27 ± 0.78 0.935 ± 0.006 27.64 ± 0.20 0.891 ± 0.015 9.01 ± 0.79 0.980 ± 0.003

Table 6.2: Metrics for all tested methods. PAVENET-0 refers to the reconstructed images
from PAVENET after pre-training only, while PAVENET-1000 corresponds to predictions
after 1000 epochs of self-supervised learing.

only on areas of interest. Note that PSNR might be affected by the presence of residual
noise also, but as the objective of the metric is specifically to measure the signal to noise
ratio, no corrected PSNR is proposed.

In Table 6.2 we show the results for these metrics. We present results for PAVENET
before test-time training, i.e after supervised pre-training, as PAVENET-0. The results
for 1000 epochs of test-time training are given in the row PAVENET-1000. On test A,
quantitative evaluation confirm the good performance observed for the UNET in terms
of noise removal and accuracy of the structure in reconstructed images, even if using
PAVENET for supervised training allows obtaining even better results for PSNR and
SSIM. Small decrease of PSNR can be observed for PAVENET-1000, probably because
of the presence of residual noise in the reconstructed images, but overall the performance
is satisfying for all networks in this testing set corresponding to similar configuration
compared to the training database.

When testing on disks with smaller radius, self-supervised learning with PAVENET
shows significant improvement compared to UNET in terms of PSNR and CRC, with
an error on the retrieved activity ratio reduced by almost 4%. This improvement is also
visible on PSNR and CRC for test sets C and D with larger sphere size or PSF. As
for the SSIM, the improvement compared to UNET is only visible when considering the
corrected version for the reasons that we mentioned earlier.

Figure 6.8 shows the evolution of PSNR and CRC error with respect to the number
of epochs during self-supervised learning. We include results for PAVENET, and also
for UNET where we use self-supervised learning with the identity for the estimation of
the PSF as explained earlier. Value of metrics at epoch 0 correspond to predictions
obtained after pre-training on the supervised dataset. One can observe in these graphs
that self-supervised learning for UNET is not efficient despite fine-tuning of the learning
rate. Therefore, it is the fact of including model knowledge, in addition to an accurate
estimation of the PSF, that allows PAVENET to benefit from the self-supervised learning
scheme, as we observe a clear improvement on PSNR and CRC for the considered test.
This statement is valid when considering test B, C and D; when it comes to test A,
performance of PAVENET might slightly decrease as mentioned before.
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Figure 6.8: Metrics during test-time training on test B with smaller disks.

6.3.5 Analysis and first conclusion

We showed in this simplified context of PET acquisitions data that model knowledge
included in the neural network enhances the performance of the reconstructed images for
the considered metrics. Indeed, comparing only the supervised methods, PAVENET-0
outperforms UNET on images from the test A dataset. The limitations of UNET become
clearly visible when a distribution shift is simulated in the testing dataset. The hybrid
learning method that we propose for PAVENET allows overcoming those limits as shown
by the ability of the network to retrieve disks with a radius considerably smaller compared
to the disks used in the training set. This is mainly due to the self-supervised learning
scheme that allows adapting to new characteristics of the data. When considering self-
supervised learning, we saw that it is crucial to use a network such as PAVENET that
takes into account - and estimates correctly - the convolution operator when computing
the consistency loss, as shown by the drop of performance when using test-time training
on the UNET only. Note also that results that we showed are obtained after 40 seconds
of test-time training, knowing that implementation can probably be optimized. When no
pre-training is performed however, we found no way to get decent results with PAVENET
in a reasonable amount of time; we tried up to 10,000 epochs. This is an argument that
is consistent with results shown on other applications as in [Darestani et al., 2022] and
[Barbano et al., 2021].

The increased performance of PAVENET on smaller disks is particularly encourag-
ing at this point, since the application for TOF PET intraoperative imaging especially
requires identifying small spheres for getting a FNR inferior to 5%. The current TOF
reconstruction method indeed only achieves identification of 6 mm diameter spheres.

Overall, the results that are shown in this section correspond to tests on generated
data where the forward model is known. These experiments allow to validate PAVENET
when the model which is considered for coming up with the method itself is correct on
the training and testing data. In the next section we will assess whether this holds when
we do not entirely control the model at the origin of the data, so that we can only assume
that it corresponds to (6.1).

147

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0093/these.pdf 
© [T. Leuliet], [2022], INSA Lyon, tous droits réservés



6.4 Experiments on GATE simulated data
Since tests in Section 6.3 suggest that PAVENET is a viable alternative to supervised
post-processing methods, it is relevant to perform experiments on data corresponding
to the studied TOF-PET imaging system. Here the data are acquired via Monte-Carlo
simulations, so that we can only assume that the forward model corresponds to (6.1).

Our first objective is to evaluate the performance of PAVENET compared to a post-
processing UNET. The choice to compare PAVENET with such a method is motivated
by the fact that this is the most adapted state-of-the art deep learning based method
regarding the constraints of TOF-PET intraoperative imaging, as justified in 6.2.1.

In our experiments we have considered a more general second objective, which is
to assess the ability of deep learning based methods to enhance the quality of TOF
reconstructions for the particular studied device, since it has not been done before. UNET
and PAVENET are therefore the two algorithms that we consider towards this objective.
Variations of UNET will be tested in the experiments for this purpose: use of adjacent
slices as input, training in different directions (i.e on slices parallel and/or orthogonal to
the detectors), etc. Study of these variations is mostly decoupled from the PAVENET vs
UNET study since for PAVENET we only tested training on coronal or sagittal slices so
comparison would not be entirely fair.

Our experimental procedure is similar to the one considered in 6.3.1. There are only
two differences:

• The initial reconstructions are obtained by backprojection using TOF information,
from list-mode data obtained with GATE simulations.

• As the ground-truths that we manually generate only consist of images - instead
of kernels and images before -, the ground-truth kernels need to be estimated for
pre-training PAVENET. We will detail the method for PSF estimation in 6.4.2.

6.4.1 Data
For the training set we were able to simulate acquisitions for 100 different volumes. For
each of the testing sets, 5 volumes are used. For training the networks we need paired
ground-truth volumes and TOF reconstruction. The method to generate ground-truth
volumes is presented in 6.4.1.1. We detail in 6.4.1.2 the detectors geometry, in 6.4.1.3
we explain how acquisition is performed with GATE and in 6.4.1.4 we describe the TOF
reconstruction method that we use to consider the input of the networks. TOF recon-
struction also corresponds to the reference for which we compare the tested algorithms
since it is the currently used method. For PAVENET, ground-truth PSF are required
and we explain the method to obtain them in 6.4.2.

6.4.1.1 Phantom and hot spheres

The phantom for all volumes is the same. It consists of a rectangular container measuring
350× 50× 350 (L ×H ×W) mm3, corresponding to a simulation of a slice of patient body
placed in the scanner field of view. Similarly to [Sajedi et al., 2022], the container is filled
with 5.3 kBq/cc back-to-back gamma source, i.e a source where two annihilation photons
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Sphere Radius (mm)
Training [1.5,5]
Test A [1.5,5]
Test B 1

Table 6.3: Parameters for all datasets. In each volume, between 8 and 16 spheres are
placed at a random position, with a 10:1 sphere-to-background activity ratio.

are emitted in opposite directions. The background tracer concentration is based on a 10
mCi injection of 18F-FDG into a 70 kg human.

Between 8 and 16 hot spheres are randomly placed inside each volume. Spheres can be
placed at any depth inside the phantom; we restrict the range of the position of spheres
center for the X and Z axis to [−40,40] mm so that they are placed under the top detector
(see 6.4.1.2). Similarly to our first experiments, we consider two testing sets, one of which
consisting in smaller spheres compared to the training database as shown in Table 6.3. We
consider a 10:1 sphere-to-background activity ratio for every sphere in the training and
testing sets in order to simulate tumor and lymph nodes. In our experiments the spheres
are filled with back-to-back gamma sources, for two main reasons. First, we wanted to
take a similar configuration compared to [Sajedi et al., 2022]. Second, running GATE
acquisitions for many volumes in order to create training and testing data, is time and
memory consuming. The fact to use back-to-back gamma sources hastens computation
compared to positron sources. The consequence of such a choice is that positron range is
not taken into account in these experiments. For the second phase of experiments (item
4 in the experimental protocol), this can be included.

6.4.1.2 Geometry

For the geometry of the detectors we simulated a configuration that is illustrated in Figure
6.9. There are two detector panels with different numbers of detector modules per panel.
The top detector refers to the detector placed above the patient during intraoperative
imaging. The bottom detector is the detector located underneath the patient’s bed.

In our simulations the top detector consists of a 3 × 3 array of same size modules.
Each module is comprised of 24 × 7 × 24 array (7 DOI levels) of 2.1 × 5.0 × 2.1 mm3

lutetium fine silicate (LFS) crystal pixels with 2.2 mm pitch one-to-one coupled with
silicone photomultiplier (SiPM) pixels. The overall dimensions of the top detector are
159 × 35 × 159 mm3.

The bottom detector consists of a 7 × 7 array of modules. Each module is comprised
of 12 × 7 × 12 array (7 DOI levels) of 4.1 × 5.0 × 4.1 mm3 similar crystal pixels with 4.2
mm pitch. The overall dimensions of the nottom detector are 371 × 35 × 371 mm3.

For a given number of modules and corresponding crystal size, this configuration was
shown to be optimal by the RPIL.

Also, the face to face distance between the two detector panels is 287.5 mm. Note
that in our experiments the top of the phantom is placed at 2.5mm from the top detector,
similarly to what could be done with intraoperative imaging.
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6.4.1.3 Acquisition

Simulation was performed across 20 CPU threads with 3 seconds acquisition time per
thread using random engine with automatic seed. Based on [Sajedi et al., 2022], detectors
were modeled with 300 ps CTR and 16.7 % energy blurring with 511 keV as the energy
of reference.

Simulations were performed with version 8.2 of GATE. The physical processes1 that
we considered are:

• Photoelectric effect

• Compton scattering

• Rayleigh scattering

• Ionization

• Bremsstrahlung

• Positron annihilation

• Multiple scattering.

6.4.1.4 Method for reconstruction

For reconstruction we used a C++ code developed by the RPIL that takes list-mode
data as input. It consists of a simple 3D back-projection method with TOF information
[Sajedi et al., 2019]. In this method, a Gaussian curve is back-projected with 300 ps
FWHM into the image matrix, and sensitivity correction is performed.

1See GATE documentation.

Figure 6.9: GATE render of the intraoperative PET system geometry considered in our
simulations. There are 49 (7 × 7) and 9 (3 × 3) detector modules under and above the
patient. All modules have a 53 mm width and length, with 35 mm depth. The crystal
pitch is different for top and bottom detectors (2.2 mm vs 4.2 mm).
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In our experiments we consider a 192 × 100 × 192 image matrix with 0.5 mm voxel
size. We do not reconstruct the entire volume since we know that spheres are located
inside the 96 × 50 × 96 mm3 area corresponding to this image matrix.

In [Sajedi et al., 2022] the small image voxel when used with 2.2 mm or 4.2 mm detec-
tor pixels leads to speckle artefact in the reconstructed image. To minimize this artefact,
authors used oversampling of the interaction position in X-Z directions across the detec-
tor. A 10x oversampling factor in each dimension was considered, creating 100 LORs from
one LOR in the list-mode data. However in our case we do not perform oversampling.
Indeed, we aim at having fast reconstruction, whether it is for practical use but also be-
cause database creation is time-consuming. Also, we argue that post-processing methods
can remove the speckle artefact. Considering this, the TOF reconstruction that we will
consider for reference when showing results is the one obtained without oversampling.

6.4.2 Methods
The deep neural networks that we use for post-processing the TOF reconstruction are
2D. We list several reasons for this choice:

• Time and memory are limiting factors to build the training database. Here we were
able to create 100 volumes; for a deeper phantom - 25 cm vs 5 cm, that we will
consider in the next phase of experiments - computational cost is higher for GATE
acquisitions. In this case we were able to generate only 40 volumes. The relatively
low number of volumes can be limiting when using 3D networks, whereas working
with 2D slices allows increasing the number of data points and use less networks’
parameters.

• Current implementation of PAVENET is only adapted to 2D. For a fair comparison
all the networks are 2D. Note that the comparison between 3D and 2D networks
might be biased since number of data points and networks parameters are inevitably
different.

• 2D networks allow to easily select a number of slices at test-time, e.g reconstruct
only slices at a certain depth. Conditionally to the possibility of parallelizing the
computation, this allows getting faster reconstructions.

6.4.2.1 Model

We consider the forward model (6.1) where y is the TOF reconstruction, and k and f are
respectively the unknown PSF kernel and image. For pre-training PAVENET we need
to have access to ground-truth PSF. Contrary to our previous experiments, we do not
generate these PSF, so we need to estimate them.

Method for estimating the ground-truth PSF For each ground-truth f in the
training set with a 10:1 sphere-to-background activity ratio, we simulate the correspond-
ing high-dose reconstruction fHD with 200:1 activity ratio. The TOF reconstruction of
fHD, denoted as yHD, is therefore much less noisy compared to y. This allows one to use
an iterative algorithm without regularization to find an estimate kernel ki from each 2D
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pairs (yi
HD, f i

HD) in the training dataset. Tuning a regularization parameter for each data
pairs in the training set would indeed be impractical.

Note that we are considering 2D convolution with PAVENET; therefore the pairs that
we consider correspond to 2D slices. This means that there is a ground-truth kernel for
every slice in the training set. As PAVENET can be trained either on coronal or sagittal
slices, the kernel is obtained from the deconvolution performed in the corresponding
direction.

To retrieve ki from (yi
HD, f i

HD), we solve the following minimization problem:

min
ki

KL(yi
HD, k ∗ f i

HD). (6.6)

This corresponds to a non-blind deconvolution problem that we solve with 100 iterations
of Richardson-Lucy algorithm. Once the kernel is obtained, the training data points
consist of corresponding (yi, f i, ki) triplets.

We consider 32 × 32 PSF with 0.5 mm pixel size. This is relatively small compared
to the standard deviation of the Gaussian function used for 3D backprojection, which is
around 19 mm considering 300 ps FWHM CTR. This is especially the case considering
kernels on sagittal slices, as TOF blurring is mostly in the Y direction, i.e the direction
orthogonal to both detectors. However in our tests we found that increasing the size
of the PSF array did not reduce KL(yi

HD, k ∗ f i
HD), with the drawback that larger PSF

implies higher computation time for PAVENET.

Examples of training data In Figures 6.10 and 6.11 we show some examples of PSF
in the training sets, for sagittal and coronal slices. This allows one to have a visual
assessment on the quality of the PSF estimation. Especially we show in Figure 6.12 the
convolution between the estimated ground-truth kernel k and the ground-truth f for
several examples. One can notice that this is visually similar to a non-noisy version of
the TOF reconstruction y. This is consistent with the fact to use a data-fidelity term
between y and the convolution of the estimates of k and f in the consistency loss for
PAVENET.

Also, one can observe that the kernels considered as ground-truths are different de-
pending on the object/slice. This supports the fact that we consider an object-dependent
PSF in the model (6.1).

6.4.2.2 Networks and training

In what follows we give details on architectures and training parameters that are used
to train networks for which we show the results afterwards. Once again, 20 % of the
training data are used as validation to tweak the different hyperparameters. Once these
HP are found, training is performed on the entire training set.

UNET and PAVENET In the preliminary study we considered 2D images; here the
images in the database are 3D. As mentioned, we use 2D networks. Therefore, one can
train the networks either with axial, coronal or sagittal slices. The symmetry of the
geometry described in 6.4.1.2 is such that it is equivalent to consider either axial or
sagittal slices. All networks are thus trained in two different configurations: coronal and
sagittal.
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3D images are 192 × 100 × 192; the size of the images considered for the networks
trained with coronal slices is therefore 192 × 192, and for sagittal slices it is 100 × 192.
The architecture of PAVENET is such that the output kernel size is the same as the input
image; however we only consider a 32 × 32 area for computing the convolution and the
loss function with the ground-truth kernel, so that most of pixels in the actual output of
Gθ are not significant.

Configuration for both UNET and PAVENET is mostly similar to our initial experi-
ments in 6.3.3. We have however tested different number of layers depth for the UNET
block; on the validation set, a 4-layer deep UNET gave similar performance compared to
the original 5-layer. We explain this by the low complexity of images compared to CT
images used in the original paper [Ronneberger et al., 2015]. We therefore use a depth

Figure 6.10: Examples of PSF in the database for training network on sagital slices.

Figure 6.11: Examples of PSF in the database for training network on coronal slices.
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of 4 for the UNET and for the two PAVENET blocks, as it does not change performance
though it reduces the number of parameters. This can help avoid overfitting especially.

Supervised training of the neural networks is performed with Adam optimization, on
60 epochs for both UNET and PAVENET. For the latter the first 30 epochs are done
without the consistency loss for the reasons mentioned in the previous study. The number
of epochs is lower compared to the previous study in order to avoid overfitting, see Figure
6.13.

PAVENET is optimized according to (6.4) with Adam optimizer and, except when we
mention otherwise, results are shown for 1,000 test-time training epochs corresponding
to approximately 40 seconds computation. Parallelization of the test-time training for
multiple slices in order to get the 3D volume is possible, since this amounts to considering
a batch size of 100 for coronal slices or 192 for sagittal ones. Note also that we performed
experiments with TV regularization included in (6.4), but performance was unchanged
so we do not present the corresponding results.

A grid-search strategy was used for hyperparameter tuning. The HPs that we con-
sidered were the batch size, learning rates for both Hw and Gθ , λ1, λ2. The specific
values are given in Table 6.4, where we have denoted the UNET trained on coronal (resp.
sagittal) by UNET-C (resp. UNET-S), with similar signification for PAVENET-C and
PAVENET-S. HP tuning is performed on a validation set consisting of slices from 20 out
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Figure 6.12: Evaluation of the method for creating ground-truth PSF. We show different
slices of ground-truth images (left) and the corresponding TOF reconstruction (center).
We show the convolution of the ground-truth with the estimated ground-truth PSF in
the database (right). The data-fidelity term used to train PAVENET compares the TOF
reconstruction with the convolution of the estimated image and PSF.
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of the 100 volumes in the training set.

UNET and spatial information One of the objectives of this study is to evaluate the
performance of deep learning based methods, thus not only PAVENET. Among existing
methods, we saw that we could train UNET in different directions. TOF backprojection
is such that the PSF has an large width in the Y direction, i.e across coronal slices. We
will see that on 2D coronal slices, the TOF reconstruction includes areas with significant
activity though no sphere is located in the same slice for the ground truth. This is due to
TOF blurring that is important the Y direction. The contribution of TOF blurring in the
overall blur within a coronal slice in the X and Z directions is way less important. This
suggests that UNET-S and UNET-C might have a significant difference in performance
since the input/ground-truth pairs are not comparable. This also suggests that both
could benefit from spatial information in the third dimension. As we do not consider
3D networks in this study, a first solution is to consider a network such as [Xu et al.,
2017]. The corresponding architecture is given in Figure 6.14. The major difference with
networks described before is the fact that several slices are given as inputs of the network:
the slice of interest along with adjacent slices. This allows the 2D network to get spatial
information in the third dimension. The architecture is a residual network (ResNet),
which means that the slice of interest is added to the output of the encoder-decoder. The
latter therefore learns the residual between the ground-truth and the TOF reconstruction.
In practice, this especially allows the network to "know" which of the input slices is the
one of interest, since ordering of the slices is meaningless in the implementation.

We name such a network trained on coronal slices with spatial information in the Y
direction MS-RESNET-C, MS referring to multi-slice. It is also possible to use the same
architecture for sagittal slices; we refer to this network as MS-RESNET-S. In this case,
the network gets spatial information in the X direction.

In our experiments for the encoder-decoder we have considered a similar architecture
compared to the UNET described before. The number of adjacent slices was however
considered as a hyperparameter to tune. We observed that performance was improved
for 2 adjacent slices (1 on each side) as compared to the classic UNET, and even more with
4 adjacent slices. When increasing this number, no improvement was then observed. This

Figure 6.13: Training (blue) and validation (orange) MSE computed between estimated
and GT images for PAVENET trained on coronal (left) and sagittal (right) slices. One
can observe that MSE is not decreasing after 45-50 epochs in both cases.
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Network LR Hw LR Gθ λ1 λ2 Batch size Channels
UNET-C 10−3 - - - 8 1
UNET-S 10−4 - - - 8 1

PAVENET-C 10−7 10−6 1000 0.01 8 1
PAVENET-S 10−7 10−7 1000 0.01 8 1

MS-RESNET-C 10−3 - - - 64 5
MS-RESNET-S 10−3 - - - 64 5

Table 6.4: Optimal hyperparameters for each method. These HPs for PAVENET are
only related to supervised training. For test-time training, both Hw and Gθ are trained
with the cost function given (6.4) and a 10−7 learning rate.

is valid for both MS-RESNET-C and MS-RESNET-S, so we consider 4 adjacent slices
in the results, which corresponds to 5 input channels (cf Table 6.4). It might seem not
totally fair to compare a UNET with a residual network. We therefore tested RESNET
with a single input slice; the corresponding performance was decreased in our experiments
compared to UNET, so we do not report the results.

An other possibility to make use of the spatial information is to train 3 different
networks: one UNET on coronal slices, one on axial and the other on sagittal slices. The
considered output is the weighted average of the 3 generated volumes, the average being
considered voxel-wise. These weights were optimized on the validation set, and we show
results for the optimal observed configuration: 0.45 for axial and sagittal UNETs, and
0.10 for the coronal UNET. This network is referred to as 2.5D UNET in what follows.

MS-RESNET and 2.5D networks could be considered for PAVENET as well but in
this study we separate the impact of using PAVENET and test-time training, with the
impact of using spatial information by using MS-RESNET or 2.5D. We will discuss in
the analysis whether such methods could benefit PAVENET or not.

Figure 6.14: Multi-slice ResNet [Xu et al., 2017].
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6.4.2.3 Metrics

There are five different metrics that we consider for evaluating the networks. The first
one is PSNR; similarly to Chapter 4, this might not be the most appropriate. Indeed, the
major interest here is to focus on the detectability of the spheres and the retrieved activity
in the areas where spheres are located. Also, there is a high proportion of background in
the volumes. PSNR however gives the same importance for every voxel, similarly to MSE.
Therefore the areas of interest - the spheres - only account for a tiny part of the overall
metric. For instance, we found in test B with 1 mm radius spheres that a reconstruction
which retrieves zero sphere still has a PSNR above 40dB as the ground-truth volume is
almost empty.

The four other metrics focus on areas corresponding to spheres. First, in the same
way as the previous study, we computed the error in terms of CRC (CRC Err.).

In Section 6.1 we mentioned the major criteria of having less than 5% of False Negative
Rate (FNR) for detection of SLNs. A way to assess whether a sphere is detected or not
is to compute the Contrast to Noise Ratio (CNR). It is defined as

CNR =
|actS − actBG |

stdBG
(6.7)

where actS is the mean activity in the reconstruction within an area where a sphere is
located in the ground-truth; actBG and stdBG are the mean and standard deviation for the
activity in the background of the reconstruction. It corresponds to the ratio of the image
contrast (in the ROI) to the noise in the background. A common criteria for a sphere
to be considered as detected is to have a CNR higher than 3. Therefore we compute
the FNR (%) as the ratio of the spheres not detected to the total spheres, considering
the detectability criteria as CNR > 3. When computing this ratio, we do not distinguish
between volumes from a test set. Instead we consider all spheres within the five test
volumes.

For TOF reconstructions, it can be relevant to show the mean and standard deviation
of the CNR across all spheres. However for reconstructions obtained with neural networks,
we find these values not to be relevant. Indeed neural networks have the ability to remove
noise correctly, which makes stdBG close to zero in some areas. Value of CNR for some
spheres are therefore very high so taking the mean value across all spheres gives biased
information. Rather, we show results considering only the numerator of the CNR, i.e the
contrast retrieved in an area of interest. As the ground-truth contrast value is known
(difference between hot spheres and background activity in the simulations), we show the
contrast error as the relative absolute difference with the ground-truth contrast as

CNRcorr =
|(actS − actBG) − cstGT |

cstGT
(6.8)

where cstGT is the known ground-truth contrast. This allows further evaluating the ability
of neural networks to detect spheres, with more precision compared to only using FNR
which relies on a threshold.

Finally, we also show results for the False Positive Rate (FPR), i.e the ratio of spheres
retrieved in the reconstruction that are not in the ground truth. We recall the guideline
from ASCO which is to have an identification rate of more than 85% i.e less than 15%
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FPR. We use the Otsu thresholding method [Otsu, 1979] for the segmentation of the
volumes so that we can assess whether a sphere is generated by the network (or TOF
reconstruction) or not.

Each test set is composed of 5 test volumes. For each of these tests, PSNR is com-
puted for each volumes, so results are shown with inter-volumes standard deviation (SD).
CNRcorr and CRCerr are computed on each sphere in the 5 test volumes. Results are
shown for inter-spheres SD in these cases. For the FNR and the FPR, we only represent
the ratio, computed considering all spheres in the 5 test volumes.

6.4.3 Results
6.4.3.1 PAVENET vs UNET

Here we compare the performance of PAVENET with UNET and the TOF reconstruction
reference. Figure 6.15 shows a slice reconstructed with different methods, on test A with
spheres with radius between 1.5 mm and 5 mm. We also represent the estimated PSF from
PAVENET-C, after 1000 test-time training iterations. One can observe that TOF blurring
leads to areas in the TOF reconstruction with high activity compared to the background,
though no ground-truth sphere is located at the corresponding depth. At the considered
depth, 2 out of 3 ground-truth spheres are retrieved in UNET-C reconstruction. All of
the spheres are visible in the slice reconstructed with PAVENET-C.

Figure 6.16 shows two different sagittal slices (top and bottom row) obtained with dif-
ferents methods including UNET-S and PAVENET-S. The top row shows a particular case
where two spheres are almost touching in the ground-truth. In the TOF reconstruction
one can observe that blurring in the Y direction makes those spheres indistinguishable.
None of the neural networks are able to distinguish between those spheres either. The
bottom row shows a case where reconstruction seems accurate for both UNET-S and
PAVENET-S. The corresponding PSF retrieved by PAVENET-S are shown in Figure
6.17.

Table 6.5 shows metrics computed on all spheres from test A. The performance of both
deep learning based methods is significantly better compared to the TOF reconstruction.
We observe only slight difference for CRC values. Decreased performance for PSNR can
be observed for PAVENET-S compared to UNET-S.

There is a 4.8 % improvement with PAVENET compared to UNET for the FNR,
when networks are trained on coronal slices. This allows PAVENET-C to have a FNR

Figure 6.15: Example of a coronal slice obtained with different methods. Both UNET
and PAVENET are trained on coronal slices here. Image and PSF for PAVENET-C are
obtained 1000 iterations of test-time training.
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below 5%, considering the criteria CNR > 3. For comparison, the TOF reconstruction
has a 22.5% False Negative Rate. Note also that we found in our experiments that all
spheres of radius equal or above 2 mm are detected by the deep learning based methods.
For the TOF reconstruction, all spheres with radius 3 mm or larger are detected. All
spheres are detected for networks trained on sagittal slices.

The amelioration of sphere detectability for PAVENET-C vs UNET-C can also be
seen with CNR Corr. Indeed the retrieved contrast is 10 % closer to the ground truth in
average. Note that there is a high standard deviation for this metric since it is computed
on spheres with radius ranging from 1.5 mm, for which CNR Corr. might be high, to
5 mm for which CNR Corr. is close to 0 %. We also notice that even though UNET-S
allows the detection of all spheres w.r.t the CNR criteria, the retrieved contrast is more
accurate for PAVENET-S, with a mean relative contrast difference (CNR Corr.) of 7.5%
compared to 16.1 % for UNET-S.

The results of a statistical study that focuses on spheres of 1.5 mm are shown in Figure
6.18. We do not represent the FNR for UNET-S and PAVENET-S since it is 0 %. One can
notice that whether networks are trained on coronal or sagittal slices, the performance is
improved when using PAVENET. Especially the mean relative contrast difference is 84.7

Figure 6.16: Example of sagittal slices obtained with different methods. Both UNET
and PAVENET are trained on sagittal slices here. Images for PAVENET-C are obtained
1000 iterations of test-time training. Each row corresponds to a similar slice.

(a) (b)

0.005

0.000

0.005

Figure 6.17: Example of PSF obtained with PAVENET-S after 1000 iterations. (a)
corresponds to the slice in top row of Figure 6.16 and (b) to the slice in bottom row.
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PSNR CRC Err. (%) CNR Corr. (%) FNR (%) FPR (%)
TOFREC 14.98 ± 0.11 71.7 ± 0.3 84.2 ± 6.7 22.5 100.0
UNET-C 29.66 ± 0.61 2.3 ± 0.1 34.7 ± 29.9 9.6 7.6

PAVENET-C 30.49 ± 0.22 3.4 ± 0.3 24.7 ± 26.8 4.8 6.0
UNET-S 32.43 ± 0.39 1.1 ± 0.1 16.1 ± 20.6 0.0 1.2

PAVENET-S 30.48 ± 0.43 0.9 ± 0.3 7.5 ± 14.1 0.0 1.5

Table 6.5: Metrics on Test A for spheres of radius between 1.5 mm and 5 mm. UNET-C
and PAVENET-C have been trained on coronal slices, while UNET-S and PAVENET-S
have been trained on sagittal slices.

% for UNET-C and 70.8 % for PAVENET-C. It is 57.0 % for UNET-S and 31.4 % for
PAVENET-S which is a significant improvement for the sphere detectability.

Finally, the False Positive rate is below 8% for all UNET and PAVENET, which is
satisfying considering the 85% identification rate criteria. Note that we find a 100% FPR
for TOF reconstruction because our computation relies on a segmentation which quality
is quite poor on those volumes.

Overall, better performance can be observed for networks trained on sagittal slices
compared to those trained on coronal slices, for spheres between 1.5 mm and 5 mm radius
in Test A.

Test B consists of spheres with 1 mm radius. We observe in our experiments that
neither UNET-C nor PAVENET-C is able to detect such small spheres.

PAVENET-S is however able to retrieve 10.4 % of the spheres, vs only 3.5 % for
UNET-S. Especially, it is interesting to note that the FNR decreases with the number
of test-time training iterations as shown in Figure 6.19. The CRC value is also better
for PAVENET in this case with 46.2% error after 1000 iterations, compared to 69.4% for
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Figure 6.18: Comparison of CRC Err., CNR Corr. and FNR for TOFREC, UNET and
PAVENET. Metrics are computed on Test A, only for 1.5 mm radius spheres. All metrics
are in percentage. FNR is not represented fornetworks trained on sagittal slices since it
is 0 % for both UNET-S and PAVENET-S.
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UNET-S. We have not tested more iterations so far so we are currently not able to tell if
the improvement in FNR continues with more iterations. Note that too many iterations
is not necessarily desirable as we aim for fast reconstruction methods for intraoperative
imaging.

6.4.3.2 UNET and variations

Here we assess the performance of networks trained with spatial information in the third
dimension, whether it is for MS-RESNET or 2.5D.

We show metrics on Test A in Figure 6.6. No significant improvement from MS-
RESNET-S compared to UNET-S can be observed. Multi-slice input strategy however
improves metrics when considering networks trained on coronal slices. There is a 4.8 %
decrease in the FNR for MS-RESNET-C compared to UNET-C. Here also all spheres
larger than 2 mm radius are detected. The improvement of 4.8 % FNR overall therefore
corresponds to a FNR reduced from 60 % to 30 % on 1.5 mm spheres. These values
are however higher compared to UNET-S and MS-RESNET-S for which all spheres are
detected. More generally, there is no metric for which MS-RESNET-C has a better
performance compared to networks trained on sagittal slices.

As for the 2.5D network, the only observed improvement is on PSNR. Note that all
spheres are also detected with 2.5D.

For intra-operative imaging, the operator is placed above the patient, so slices of inter-
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Figure 6.19: Comparison of CRC Err. and FNR for TOFREC, UNET and PAVENET.
The networks are trained on sagittal slices. Results for PAVENET are given depending
on the number of test-time training iterations. Metrics are computed on Test B for 1 mm
radius spheres. All metrics are in percentage.
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PSNR CRC Err. (%) CNR Corr. FNR (%) FPR (%)
TOFREC 14.98 ± 0.11 71.7 ± 0.3 84.2 ± 6.7 22.5 100
UNET-C 29.66 ± 0.61 2.3 ± 0.1 34.7 ± 29.9 9.6 7.6

MS-RESNET-C 31.43 ± 0.37 3.4 ± 0.7 19.4 ± 27.7 4.8 2.8
UNET-S 32.43 ± 0.39 1.1 ± 0.1 16.1 ± 20.6 0.0 1.2

MS-RESNET-S 32.91 ± 0.64 0.7 ± 0.3 17.4 ± 22.8 0.0 2.8
UNET 2.5D 34.02 ± 0.20 6.1 ± 0.8 17.9 ± 18.4 0.0 2.6

Table 6.6: Metrics on Test A for spheres of radius between 1.5 mm and 5 mm. Results
are shown for UNET trained on coronal slices (UNET-C), sagittal slices (UNET-S) and
on different strategies to include the third spatial dimension.

est might in this case be the coronal ones. We show in Figure 6.20 an example of coronal
slice reconstructed with all methods, PAVENET included. We note a clear improvement
in the visual aspect of hot spheres for networks trained on coronal slices compared to
those trained on sagittal slices. For the latter, all present spheres are detected, and the
False Positive observed in UNET-C is less visible, but the retrieved spheres are less sharp.
This is an element to balance the improved performance in terms of metrics for networks
trained on sagittal slices.

Note that we can also observe similar results when visualizing sagittal slices as in Fig-
ure 6.21: spheres in reconstructions from networks trained on sagittal slices are sharper.

6.4.4 Analysis and conclusion

6.4.4.1 Performance of PAVENET

Regarding metrics, the only observed drawback of PAVENET is the drop of performance
in terms of PSNR for PAVENET-S. As mentioned, PSNR is not the most relevant metric
for the type of data that we study here. This metric is indeed largely impacted by back-
ground voxels, which are of limited interest. An explanation of the drop of performance
for PAVENET is that the data-fidelity term used for test-time training leads to appear-
ance of noise in the background in PAVENET reconstruction, due to noise visible in the
TOF reconstruction. This reduces the PSNR, but we are more interested on metrics
specifically related to hot spheres, e.g evaluation of the performance in terms of nodes
detection and activity quantification.

For networks trained on coronal slices, improved performance for PAVENET over
UNET is clear. It seems especially hard for the UNET to distinguish between slices con-
taining actual spheres or slices where areas with high activity are due to spheres located
in adjacent slices, and visible in the TOF reconstruction due to blurring in the Y direc-
tion. Test-time training allows PAVENET to correct for such errors in the predictions.
TTT can only be efficient if the estimated PSF is accurate, which seems to be the case in
our experiments. When spheres are too small - 1 mm radius -, PAVENET-C is however
not able to detect them.

Improvement of the performance linked to PAVENET is also visible when networks are
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trained on sagittal slices even if results from UNET-S are significantly better compared
to UNET-C. For 1.5 mm radius or larger spheres, UNET-S has a 0 % FNR; this is
particularly due to the ability of the network to smooth background so the CNR is
higher than the considered threshold for detectability. We however observed that the
contrast retrieved for spheres with 1.5 mm radius is more important for PAVENET-S as
shown by CNR Corr.

An interesting point is the FNR decrease w.r.t test-time training iterations for PAVENET.
This emphasizes the fact that test-time (or self-supervised) training allows overcoming
limits of supervised methods. We recall the fact that the efficiency of test-time training is
only enabled when using an adequate architecture. Including a correctly estimated kernel
in the consistency loss is necessary as shown in experiments in 6.3.1. This is the reason
why we did not try a self-supervised strategy for a simple UNET architecture here.

Overall, whether it is trained on coronal or sagittal slices, we have found PAVENET
able to improve the performance of UNET, thanks to a combination of test-time training
with an architecture adapted to the task.

(a) GROUND TRUTH (b) TOFREC (c) 2.5D

(d) UNET-C (e) MS-RESNET-C (f) PAVENET-C

(g) UNET-S (h) MS-RESNET-S (i) PAVENET-S
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Figure 6.20: Example of a coronal slice obtained with all methods. Images for PAVENET
are obtained with 1000 iterations of test-time training.
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6.4.4.2 Impact of the training strategy for UNET

On metrics, no improvement is observed for the multi-slice input strategy when networks
are trained on sagittal slices, whereas it is the case when training is performed on coronal
slices. This is mostly due to the fact that the PSF is essentially oriented in the Y direction
due to TOF blurring. We especially considered 300 ps CTR in these experiments which
is relatively high and makes TOF blurring significant compared to resolution blurring.
Also, positron range is not considered in GATE simulations which reduces the blur in X
and Z directions even more. Therefore, the spatial information in the Y direction given
to MS-RESNET-C is particularly important, whereas we observe that it has almost no
impact for MS-RESNET-S.

The 2.5D network only improves the PSNR. The main reason is that averaging voxels
from 3 different predictions has a smoothing effect in the reconstructions. Otherwise, we
do not observe improvements for metrics of interest related to hot spheres.

6.4.4.3 Overall analysis

A first and major result is that deep learning based methods significantly improve the
tested metrics compared to the initial TOF reconstruction. An improvement of at least
2 mm in the diameter for which all spheres are detected is observed with these methods.
Indeed TOF reconstruction does not allow to retrieve all spheres between 4 mm and
6 mm diameter, while it is the case for all of the networks. We recall that no over-
sampling is performed on the TOF reconstructions in our experiments; over-sampling
could potentially improve the metrics, though it significantly increases the computation

(a) GROUND TRUTH (b) TOFREC (c) 2.5D

(d) UNET-C (e) MS-RESNET-C (f) PAVENET-C

(g) UNET-S (h) MS-RESNET-S (i) PAVENET-S
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Figure 6.21: Example of a sagittal slice obtained with all methods. Images for PAVENET
are obtained 1000 iterations of test-time training.
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time on CPU (no GPU implementation is currently available for the reconstruction code).
Even if MS-RESNET-C has a better performance compared to UNET-C, networks

trained on coronal slices are overall less performant than those trained on sagittal slices
regarding all metrics. This can be explained by the improved quality of the input given
to the network, since 2D coronal slices from TOF reconstruction are of poor-quality due
to TOF blurring in the Y direction. In practice however it is more likely that coronal
slices are the ones of interest. Visual assessment of coronal slices shows that hot spheres
look sharper for networks trained in the corresponding direction. This might be a criteria
to balance the overall better performance for networks trained on sagittal slices.

If visual aspect is an important criteria, a trade-off could be to use either MS-
RESNET-C or PAVENET-C since visual quality is satisfying on coronal slices and overall
performance regarding metrics is enhanced compared to UNET-C. In our experiments
both networks have the same FNR, and CNR Corr. is 5 % better for MS-RESNET-C.
It would therefore be interesting to test a multi-slice input strategy for PAVENET-C.
Such a strategy is less likely to benefit PAVENET-S; indeed we observed no significant
difference between UNET-S and MS-RESNET-S so multi-slice inputs in this direction
does not seem to improve the reconstruction.

Finally, the performance of neural networks need to be balanced. Indeed, TOF re-
construction does not rely on prior training with some database. Supervised methods
(UNET, MS-RESNET, 2.5D) show good performance on the testing sets but they have
been trained on similar images. For different applications, it is likely that the train-
ing strategy should be adapted (e.g other training database) to reach similar perfor-
mance, whereas TOF reconstruction is not affected by such a change in the testing data.
PAVENET is built so that it can adapt to new data, thanks to self-supervised learning.
For now we have only assessed the robustness of the network regarding distribution shift
by simply testing it with different spheres sizes. This currently does not ensure that it
can adapt to any data, e.g more or less noise in the images, different structures, etc. The
influence of pre-training is also not entirely evaluated. We know that it clearly accelerates
convergence for self-supervised training; however it is not clear whether self-supervised
training would also be efficient when the data is of different nature compared to super-
vised data used for pre-training. This is an aspect to elaborate as we will mention in the
perspectives.

6.4.4.4 Conclusion

These experiments on GATE simulations show that deep learning based methods have
the potential to meet the objectives for nodes identification with the studied TOF intra-
operative imaging system. Robustness of such methods however still need to be assessed
on experimental data.

The consideration of spatial information in the third dimension for 2D networks was
shown to be useful only when working on coronal slices. However regarding the metrics
of interest used for this study, it seems preferable to train neural networks on sagittal
slices (if 3D is not an option).

We also showed that PAVENET is able to overcome the limits of a post-processing
UNET, especially thanks to test-time training. The ability of the network to retrieve
smaller spheres is particularly promising. The second step of the experimental proce-
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dure to validate such a method being satisfied, tests can now be performed on more
complex/realistic data and it will be discussed in the perspectives.

PAVENET is still a network that needs to be studied further; especially we will
mention in the next section methods that could improve the network’s performance and
robustness, as well as ways to evaluate the network in a more comprehensive manner.

6.5 Perspectives
The elements that we mention in this section either concern methods that can be included
for comparison or that can be incorporated to PAVENET to improve its performance.
We also mention tests that can be performed to further assess the efficiency of such a
network. Some of the mentioned tests and methods are work in progress, others are
perspectives for the future.

6.5.1 Current and planned tests
Our first priority is to finalize the experimental protocol that we proposed in order to
validate PAVENET. For this we will train neural networks on more realistic and complex
acquisition data from GATE simulations. This includes e.g lower activity to background
ratio, larger phantom depth and lower crystal thickness. We will also test the performance
of the networks on experimental data obtained in [Sajedi et al., 2022].

Tests in order to further evaluate the ability of the networks - especially PAVENET
- to adapt to new configuration could also be performed. This includes tests on already
obtained experimental data, but also tests with:

• Different activity ratio compared to the supervised training configuration. Also
varying activity across spheres might be considered.

• Different phantom depth compared to supervised (pre-)training.

• Top detector moved vertically, which modifies the true PSF similarly to Test D in
experiments 6.3.1.

These tests seem to be indeed more complete compared to only modifying the size of
the hot spheres in order to evaluate networks’ performance w.r.t distribution shift.

6.5.2 Spatially-variant PSF
In these experiments we computed a spatially fixed PSF. We gave a visual assessment of
the accuracy of this model in Section 6.4, but the system’s geometry is such that spatially
variant PSF might be more accurate for the forward model.

If so, we note two things that need to be performed so that PAVENET can be adapted
to such PSF:

1. Estimate the ground-truth PSFs considering sub-regions in the field of view.

2. Adapt the architecture of PAVENET so that it is able to retrieve a different PSF
depending on the image sub-region.
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However before going into this direction, we need to assess whether significant PSF
deformations are observed across the FOV.

6.5.3 Others
There are several methods that might offer benefits to reconstructions based on deep
learning for the studied imaging system. The first one is the fact to use 3D networks.
Indeed our experiments showed the limits of missing one spatial dimension for training
the networks. With similar architecture, 3D networks have more parameters so the risk of
overfitting is high for supervised methods. This is even more true considering the limited
size for the database, which is a limit that is hard to overcome due to high memory and
time related to the database creation. Considering a 3D architecture for PAVENET can
on the other side become a computation burden if one wants to keep a fast reconstruction
method.

Another aspect that could be studied further is the impact of the number of test-
time training iterations. The "right" choice for early stopping is actually dependent
on the learning rate used during self-supervised learning. It can also be dependent on
some regularization considered on the predicted image and kernel. The upper limit for
the number of iterations can be determined by the desired reconstruction time. As for
the rest, it is likely that the optimal number of TTT iterations and learning rates are
dependent on the input data.

We saw that test-time training increases the performance of neural networks. It
can only be true if the PSF prediction is accurate: otherwise the consistency loss is
irrelevant. Study on the optimal architecture for the PSF generator could therefore be
useful, along with methods to better estimate the ground-truth PSF before supervised
training. For instance, the estimated ground-truth PSF for slices where no sphere is
present might not be relevant; giving such groud-truth to PAVENET during pre-training
can in this case reduce its performance. Another strategy to overcome the limit of having
to estimate ground-truth PSF is to perform pre-training with known simulated PSF, and
then perform test-time training with actual acquisitions data. Currently we have not
performed experiments that could confirm that pre-training accelerates convergence of
self-supervised learning in this case.

Overall, PAVENET seems to offer the possibility to better adapt to new data, but
robustness on different acquisition configurations still needs to be studied further.
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Conclusion

In this thesis we have studied deep learning based methods for tomographic reconstruction
in CT and PET imaging. We have explored their potential to overcome some of the limits
encountered with analytical and iterative methods. The analysis of their performance
was, when possible, driven towards medical purposes.

In the first part we have compared the performance of three selected iterative algo-
rithms on simulated and experimental data. This simple study showed that the choice of
a particular algorithm and its related hyper-parameters depending on the data charac-
teristics, e.g the nature of the noise, is a tedious task in practice. This choice has a high
impact on the reconstruction performance. The computational cost is an other major
drawback of iterative algorithms.

In the second part we used the example of bone microarchitecture imaging to see how
the transcription of quantitative parameters in the reconstructed image can be affected
by the learning method, when considering supervised data. Supervised methods rely on
a feedback mechanism that involves comparing an estimated image with the correspond-
ing ground-truth: we have shown that the way to assess the quality of the estimated
image during training has a strong impact on the accuracy of the reconstructed image
at test-time. Especially, the study of pixel-wise, perceptual and adversarial losses in our
experiments emphasized the need to evaluate the performance of neural networks with
respect to metrics related to diagnosis and quantification of pathologies.

Finally, we saw that the structure of a neural network along with the training method
should be adapted to the application. Study on simulations of TOF PET data showed
the need for designing innovative solutions to overcome limits of existing neural networks
for the considered intraoperative imaging system. We proposed PAVENET to satisfy the
main criteria imposed by the application: having a fast reconstruction that is robust to
different data and acquisition settings. On Monte-Carlo simulations, we showed that the
network has a better ability to retrieve small spheres from TOF PET acquisitions com-
pared to UNET. We also showed enhanced performance in terms of robustness regarding
distributions shifts for the data. Further experiments on more realistic settings for the
acquisitions along with tests on experimental data need to be performed to validate the
solution. These experiments also highlighted the potential of deep learning based meth-
ods for TOF PET imaging, since they allow significantly reducing the False Negative Rate
for nodes detection compared to TOF backprojection. These results have huge interest
in the context of breast cancer staging but the robustness of such methods still needs to
be further assessed.

Overall, we saw how advances in the computer vision field with neural networks can
translate into advances in the tomographic reconstruction field. One can therefore expect
that the continuous improvements in deep learning can largely benefit the medical imaging
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research community. Especially, methods such as generative adversarial networks or self-
supervised learning could be a major step forward for tomographic reconstruction in the
future.
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Synthèse

Dans cette thèse nous nous intéressons à la reconstruction tomographique. Dans un
contexte médical, la tomographie est ce qui permet d’observer l’intérieur d’un patient à
partir de données d’acquisition. Pour le diagnostic, le traitement ou le suivi de l’évolution
d’une pathologie, il est indispensable que l’algorithme de reconstruction soit précis afin
d’assister le radiologue du mieux que possible dans sa prise de décision. D’un point de vue
mathématique, la reconstruction tomographique revient à résoudre un problème inverse.

L’objectif de cette thèse est d’étuder les méthodes d’apprentissage profond pour la
reconstruction tomographique en CT (Computed Tomography, ou tomodensitométrie
TDM) et en TEP (Tomographie par Emission de Positons). Nous mettons notamment
l’accent sur l’évaluation de la performance des réseaux de neurones par rapport à des
critères propres à l’application médicale.

Nous proposons également une méthode d’apprentissage profond pour résoudre des
problèmes de déconvolution aveugle. La fonction d’étalement du point (PSF) étant dif-
ficile à estimer pour l’imagerie d’émission, notre méthode présente un intérêt partic-
ulier pour la TEP. Nous montrons des résultats préliminaires sur un dispositif d’imagerie
péropératoire TEP qui a pour objectif de déterminer le statut métastatique des ganglions
lymphatiques pour le cancer du sein.

Reconstruction tomographique en TEP et TDM: résolution d’un
problème inverse
Avant d’expliquer les méthodes de résolution pour le problème de reconstruction tomo-
graphique, nous donnons ici les éléments nécessaires à sa formulation pour la TEP et la
TDM. Dans les deux cas, il s’agit de résoudre un problème inverse.

Problème inverse

La formulation générale du problème inverse que nous considérons peut s’écrire de la
façon suivante:

p = A( f ) (1)

où A est un opérateur qui transforme un volume d’intérêt f en ses projections p. Nous
considérons A comme étant linéaire dans cette thèse.

Reconstruction tomographique pour les différentes modalités d’imagerie

En tomographie, un détecteur est utilisé pour mesurer l’intensité d’un rayonnement après
qu’il ait intéragi avec un objet d’intérêt et son environnement. La source du rayonnement
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peut être placée autour de l’objet, le détecteur mesurant ainsi l’atténuation de ce ray-
onnement par la matière. Pour la tomographie d’émission en revanche, la source du
rayonnement est interne à l’objet d’intérêt.

TDM Les scanners CT utilisent un tube à rayons X tournant ainsi qu’un ensemble de
détecteurs permettant la mesure de l’atténuation par les tissues du corps. Les mesures
d’atténuation, obtenues à partir de positions angulaires différentes, sont traitées par or-
dinateur à l’aide d’algorithmes de reconstruction.

Si l’on considère un faisceau source en position r = 0 et une intensité mesurée I1 pour
un détecteur situé en r = L, nous pouvons introduire la notion de projection P`, qui
dépend de l’atténuation linéaire u(r), telle que:

P` = log( I0
I1
) =

∫ L

0
u(r)dr . (2)

Ainsi, en calculant le logarithme du ratio entre l’intensité initiale et l’intensité reçue,
nous pouvons mesurer l’intégrale de l’atténuation inconnue u(r) à travers la ligne de
longueur L pour chaque paire source-détécteur.

TEP La TEP est une technique d’imagerie médicale qui permet d’obtenir des informa-
tions fonctionnelles sur les tissues imagés. Le principe est d’injecter une paire vecteur-
radionucléide au patient. Le rôle du vecteur est de se fixer sur des régions d’intérêt (une
tumeur par exemple); la désintégration radioactive du radionucléide permet ensuite de
localiser l’objet d’intérêt et de quantifier son activité.

Le principe de la TEP repose sur la détection simultanée de deux photons obtenus à
la suite de l’annihilation du positon émis avec un électron du milieu. Ces deux photons
étant détectés en coïncidence, les données d’acquisition en TEP correspondent à un en-
semble de lignes de réponse (LOR). A partir de ces lignes de réponse, un algorithme de
reconstruction permet de retrouver la concentration du traceur dans l’espace, notée λ(r).

On note t la distance entre une certaine LOR et le centre de l’anneau de détection,
et θ l’angle formée par la direction orthogonale à la LOR par rapport à l’origine. Nous
pouvons dans ce cas exprimer l’activité totale détectée sur cette même LOR comme:

Rλ(θ, t) =
∫
`(θ,t)

λ(r)dr (3)

où `(θ, t) correspond à la LOR à laquelle nous nous intéressons. Le problème est donc sen-
siblement similaire à celui de la tomodensitométrie. Les détecteurs ici mesurent l’activité
totale sur une ligne et non pas l’atténuation totale sur cette même ligne comme en TDM.

Reconstruction analytique

La transformée de Radon transforme une fonction en l’ensemble de ses intégrales sur des
hyperplans de Rn. Pour tout vecteur unité ®α ∈ Rn et pour tout t ∈ R, la transformée de
Radon d’un objet f s’écrit

R f (®α, t) =
∫
®v.®α=t

f (®v)d®v. (4)
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Ainsi, R f (®α, t) est l’intégrale de f sur un hyperplan orthogonal au vecteur ®α. Dans ce
que nous avons présenté précédemment, le vecteur ®α correspond au vecteur orthogonal à
la ligne entre deux détecteurs.

Puisque nous pouvons décrire l’ensemble des mesures obtenues à partir de f à l’aide
la transformée de Radon R f , la question est de savoir s’il est possible de résoudre le
problème inverse visant à retrouver f à partir de R f .

Rétroprojection La rétroprojection consiste à reporter les projections R f (θ, t) dans
l’espace image. Pour chaque angle θ, on ajoute ainsi la valeur R f (θ, t) à chaque point de
la ligne l(θ, t), c.a.d à chaque (x, y) ∈ R2 tels que t = x cos θ + y sin θ.

La rétroprojection correspond à l’adjoint R∗ de la transformée de Radon mais pas
à son inverse R−1. Elle permet de retrouver la fonction inconnue f convoluée avec un
noyau de lissage. En comparaison avec les hautes fréquences, un grand nombre de basses
fréquences sont reportées dans la rétroprojection, ce qui donne un aspect lisse à l’image
reconstruite.

Rétroprojection filtrée La rétroprojection filtrée (FBP) permet de ne pas recourir à
l’interpolation des valeurs dans le domaine fréquentiel, nécessaire en raison du nombre fini
de projections en pratique. La FBP procède en deux étapes: filtration des projections,
puis rétroprojection.

La FBP correspond à l’inverse de la transformée de Radon. Si nous avons accès à
l’ensemble des projections dans toutes les directions, il est alors possible de reconstruire
exactement f .

Objectifs

Dans cette thèse nous considérons plusieurs problèmes inverses pour la reconstruction
tomographique, notamment pour la TDM et la TEP. L’objectif commun correspond à
la résolution d’un problème inverse en considérant un opérateur linéaire, à savoir la
transformée de Radon. Les reconstructions analytiques telles que la rétroprojection et
la FBP représentent une première solution à ce problème. Néanmoins ce dernier est en
pratique mal posé, ce qui rend la qualité de ce type de reconstruction limitée, notamment
en présence de bruit et/ou de données sous-échantillonnées. Des méthodes plus robustes
au caractère mal posé du problème ont été étudiées au fil des années: les méthodes
itératives et, plus récemment, les méthodes basées sur l’apprentissage profond.

Méthodes itératives et limites
Les méthodes itératives correspondent à des algorithmes qui ont pour but d’estimer et
de mettre à jour, de façon itérative, une solution f̂ afin de minimiser une fonction coût.
Ces méthodes sont généralement plus robustes face aux perturbations des données. Elles
permettent notamment de prendre en compte la physique de l’acquisition, le modèle
pour le bruit et également un potentiel a priori sur la solution recherchée dans le cas des
méthodes régularisées.

De nombreux algorithmes itératifs existent pour la reconstruction tomographique,
et le choix de l’un d’entre eux dépend en partie de la fonction coût considérée, mais
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aussi du temps de calcul, ses propriétés de convergence, et de la stabilité numérique de
l’algorithme.

La fonction à minimiser peut s’écrire de la façon suivante:

min
f

d(A f , p) + αR( f ) (5)

où d est un terme d’attache aux données, R( f ) est un terme de pénalité permettant de
retranscrire la connaissance a priori des caractéristiques de l’image à reconstruire, et α
est un paramètre de pondération.

Nous avons réalisé une étude comparative de la performance de différents algorithmes
itératifs lorsque les données sont entâchées à la fois d’un bruit Gaussien et également d’un
bruit de type Poisson. Les algorithmes que nous comparons sont: SIRT-FISTA-TV et
EM-FISTA-TV qui sont des versions régularisées (TV pour variation totale) et accélérées
de SIRT et MLEM respectivement, ainsi qu’une version préconditonnée de l’algorithme
de Chambolle-Pock (PCP) pour un terme d’attache aux données type Kullback-Leibler
et une régularisation TV.

Dans cette étude nous observons que, comme attendu, SIRT-FISTA-TV est plus
adapté dans les cas où le bruit Gaussien est élevé, alors que PCP et EM-FISTA-TV
sont plus performants quand le bruit Poisson domine. Pour des valeurs intermédiaires de
ce ratio, nous n’observons pas de tendance particulière. Nous observons également que
pour converger, PCP est plus rapide que EM-FISTA-TV pour un bruit Poisson impor-
tant, alors que c’est le contraire pour un ratio Gaussien/Poisson élevé. Ces résultats sont
obtenus pour un paramètre de pondération donné, et il n’est pas garanti que ces résultats
soient les mêmes pour différents paramètres α.

Ces tests nous ont surtout permis de voir les limites inhérentes aux méthodes itératives
pour la reconstruction d’image. Elles peuvent être résumées comme suit:

• Toutes les méthodes considérées reposent sur l’hypothèse que l’opérateur A est
parfaitement connu, ce qui n’est pas toujours le cas selon l’application.

• Le choix de la fonction coût et de l’algorithme adéquat représente une limite pour
l’utilisation clinique, sachant qu’une solution pour effectuer ce choix de manière
automatique semble difficilement envisageable.

• Nous avons pu, au cours de nos tests, constaté l’importance du choix du paramètre
de pondération α. Ce choix a un impact non négligeable sur la qualité de l’image
reconstruite et il est peu pratique de l’effectuer pour chaque acquisition.

• La complexité en temps et en mémoire de ces algorithmes représente un frein indé-
niable pour l’utilisation clinique.

Tous ces éléments représentent selon nous une raison suffisante pour la recherche de
solutions basées sur l’apprentissage. Les travaux effectués dans la suite sont ainsi orientés
sur ces méthodes plus récentes. Nous cherchons ainsi à voir un aperçu de la capacité de
ces méthodes à surmonter les limites des méthodes traditionnelles.
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Méthodes d’apprentissage profond

Les algorithmes basés sur l’apprentissage profond reposent sur un paradigme différent par
rapport aux méthodes itératives. Une différence notable est que l’ajustement des hyper-
paramètres est réalisé une fois pour toutes, indépendamment - en théorie - de l’image
à reconstruire. En routine clinique, le temps de reconstruction étant souvent largement
réduit, il s’agit également d’un critère majeur pour lequel ces méthodes sont une solution
intéressante par rapport aux méthodes itératives. Aussi, la connaissance précise de la
nature du bruit sur les données n’est plus aussi importante pour les reconstructions
obtenues avec des réseaux de neurones. En effet, ce bruit peut être implicitement appris
grâce aux données sur lesquelles l’algorithme est entraîné. Une interprétation de ces
méthodes est que le processus d’apprentissage permet aux réseaux d’apprendre un a
priori sur les images à reconstruire en s’appuyant sur des vérités-terrain.

Il y a plusieurs catégories de méthodes pour la reconstruction d’image avec des méth-
odes d’apprentissage profond. Les méthodes supervisées utilisent des données appareillées
constituées de paires "données/image de référence" (ou "reconstruction détériorée/image
de référence"). Il est possible par exemple d’améliorer une image reconstruite avec un
algorithme classique: en général la rétroprojection, potentiellement filtrée. Ces méthodes
sont des méthodes dites de post-processing. Un réseau de neurones peut également faire
la tâche de reconstruction dans son ensemble, en prenant des projections en entrée et en
les transformant en une image reconstruite: ce sont les architectures end-to-end. Enfin
certains réseaux de neurones reproduisent le schéma des méthodes itératives, à la dif-
férence près que la stratégie de mise à jour de l’image estimée ainsi que les paramètres
de mise à jour correspondants sont obtenus après un processus d’apprentissage grâce à
des données appareillées.

L’utilisation de réseaux antagonistes génératifs (GAN) permet quant à elle de pro-
duire des images appartenant à la distribution - apprise et donc estimée - des images
de référence. Les sorties de ce type de réseaux peuvent être déterministes, auquel cas
ils ne se distinguent des autres réseaux que par l’utilisation d’une fonction coût antago-
niste: la distance de Wasserstein par exemple. Il est également possible d’apprendre la
distribution d’images conditionnellement à la donnée d’entrée, qui peut être la FBP de
faible qualité par exemple. Dans ce cas, il est possible d’estimer une image reconstruite
de façon stochastique, et ainsi d’avoir de potentielles informations statistiques (moyenne
et variance par voxel, intervalles de confiance sur des paramètres quantitatifs à partir de
l’image, etc).

D’autres méthodes existent et permettent d’apprendre uniquement un terme de régu-
larisation adéquat pour l’inclure dans une fonction coût de type (5). Un algorithme
itératif peut ensuite être utilisé pour minimiser cette fonction coût.

Enfin, les méthodes d’apprentissage auto-supervisées permettent d’utiliser des réseaux
de neurones pour estimer une image reconstruite sans avoir besoin d’une base de données
d’apprentissage. Les poids des réseaux sont mis à jour directement à partir des données
d’entrée.

Un résumé des avantages et inconvénients de ces différentes méthodes est donné dans
le Tableau 6.7.
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Etude de l’impact de la fonction coût de réseaux de neurones
pour la reconstruction de la micro-architecture osseuse
Le champ des possibilités afin de créer un réseau de neurones pour la reconstruction to-
mographique dans un contexte médical est très vaste. Un élément cependant commun à
toutes les méthodes est le fait que les réseaux de neurones dépendent de la rétropropaga-
tion du gardient d’une fonction coût afin d’ajuster ses paramètres. Cette fonction coût
a un rôle d’évaluation et permet de répondre à la question: à quel point la prédiction
est-elle similaire à une image référence (vérité-terrain)?

Le choix de la fonction coût pour entraîner les réseaux de neurones est un sujet
d’intérêt majeur notamment dans le domaine de la vision par ordinateur, mais aussi pour
l’imagerie médicale. Ce choix peut avoir un impact non négigeable sur la sortie d’un
réseau à l’inférence (au moment de la prédiction une fois que le réseau est entraîné).
L’efficacité du processus d’apprentissage dépend donc de la capacité de la fonction coût
à être en accord avec le rôle du réseau: est-ce que minimiser cette fonction coût permet

Méthode Avantages Inconvénients
Post-processing Reconstruction rapide Nécessité d’une base de don-

nées supervisée de taille im-
portante

End-to-end Pas la nécessité de connaître
l’opérateur direct et + de
flexibilité

Beaucoup de données req-
uises pour l’apprentissage
et plus grand nombre
de paramètres pour les
réseaux. Potentiellement
temps de reconstruction
plus long.

Schéma itératif déroulé Opérateur direct inclus
dans le modèle + moins de
données d’apprentissage

Temps de reconstruction et
impact mémoire

GAN : sortie déterministe Informations hautes-
fréquence retranscrites

Difficulté accrue pour
l’entraînement

GAN : sortie stochastique Informations statistiques
sur différents paramètres

Temps de reconstruction

Apprentissage de régulari-
sation

Pas de données appareillées
et régularisation adaptée au
type de données

Temps de reconstruction

Auto-supervisé Pas d’apprentissage initial
donc pas de base de données

Convergence lente donc
temps de reconstruction
important

Table 6.7: Différentes catégories de méthodes d’apprentissage profond pour la reconstruc-
tion tomographique
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en effet de produire des sorties qui sont satisfaisantes par rapport au but final du réseau?
Dans ce travail nous nous focalisons donc sur ce choix de fonction coût pendant

l’apprentissage. Etant donné que le critère principal en pratique est que l’image recon-
struite soit précise et exploitable dans l’optique de réaliser un diagnostic (ou une décision
médicale de manière générale), nous effectuons notre étude sur l’impact de la fonction
coût par rapport à des critères quantitatifs et qualitatifs qui sont pertinents en ce sens.

Notre objectif principal est de travailler sur le cas de la reconstruction d’images à
partir de données acquises avec une faible dose de radiation; il s’agit en effet d’un axe
de recherche particulièrement important pour les méthodes d’apprentissage profond. La
dégradation des images liée à la faible qualité des données acquises dans de telles condi-
tions peuvent en effet avoir des conséquences importantes sur la précision des informations
quantitatives et qualitatives obtenues. Nous devons également nous assurer d’avoir à dis-
position des images permettant une étude suffisamment complète, qui puisse aussi être
utile pour le domaine d’application. Pour cela nous considérons des données micro-CT
(µ-CT) pour l’imagerie de la micro-architecture osseuse. La complexité de la structure
des images correspondantes est telle qu’elle permet d’évaluer l’impact de la fonction coût
de façon détaillée. Aussi, le diagnostic des pathologies osseuses est directement lié au cal-
cul de certains paramètres quantitatifs; il est donc nécessaire de s’assurer que les réseaux
de neurones permettent de retrouver des valeurs fiables pour ces paramètres. Nous pou-
vons ainsi évaluer la capacité ou non de certaines fonctions coût à être plus fiables que
d’autres en ce sens.

Une des pathologies principales en lien avec les os est l’ostéoporose, pour laquelle on
estime que plus de 200 millions de personnes souffrent dans le monde [Sözen et al., 2017].
Il s’agit d’une maladie diffuse du squelette qui fragilise l’os et donc augmente le risque
de fracture. La fragilité de l’os dépend notamment de deux facteurs principaux:

• La densité minérale osseuse (DMO) qui est une mesure en g/cm2 de la densitée
projetée sur une zone d’intérêt.

• La "qualité" osseuse qui peut être caractérisée par différentes propriétés comme la
micro-architecture osseuse de l’os trabéculaire, la prèsence de micro-fractures, etc.

Expériences

Méthodes Nous étudions différentes combinaisons de fonction coût: par pixel, struc-
turelles et antagonistes notamment. Nous cherchons à évaluer les avantages et incon-
vénients de chacune de ces catégories, et nous voulons également déterminer si certaines
fonctions coût sont plus adaptées que d’autres au sein même de ces catégories. Afin de
réaliser cette étude nous considérons des métriques qui sont propres au domaine de la
vision par ordinateur, mais également des métriques pertinentes vis à vis du diagnostic
post-reconstrution de pathologies osseuses. Nous considérons une tâche simple qui con-
siste à améliorer la qualité d’une FBP obtenue à partir de projections en faible dose avec
un réseau de neurones convolutionnel (CNN) entraîné sur des paires d’images "dose nor-
male/faible dose". Ce travail à pour objectif de donner des indications sur l’impact de la
fonction coût dans le contexte de la reconstruction tomographique et également de don-
ner des recommendations sur la stratégie à adopter pour le choix de cette fonction coût
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Métrique Intérêt
Vision par ordinateur

PSNR Récupération du signal et débruitage
SSIM Structure de l’image

Orienté diagnostic
Distance de Wasserstein 1D Fiabilité de la DMO estimée

Nombre d’Euler Connectivité de l’os
BV/TV Fraction volumique de l’os
Autres

Résolution (FRC) Restitution des détails de l’image
DICE Précision de la segmenation par pixel

Table 6.8: Métriques utilisées pour l’étude et leur intérêt respectif.

lorsque la reconstruction de la micro-architecture osseuse est effectuée par apprentissage
profond.

Pour les fonctions coût par pixel, nous considérons les distances l1 et l2. Pour les
fonctions coût structurelles, nous utilisons soit SSIM, soit une fonction coût de type
VGG, qui est une distance entre les caractéristiques (features) des images, basée sur
le réseau de neurones VGG-19 pré-entraîné sur des millions d’images pour des tâches
de classificiation. Enfin, nous considérons la distance de Wasserstein estimée avec des
réseaux de neurones (de type Wasserstein GAN) pour la catégorie des fonctions coût
antagonistes.

Les métriques que nous incluons dans l’étude afin d’évaluer la qualité des reconstruc-
tions sont résumées dans le Tableau 6.8.

Données Les données de référence sont des volumes correspondants à des radius et
tibias humains obtenus sur un SCANCO µ-CT 100 avec une taille de voxel de 24-µm.
La base de données d’entraînement est composée de dix volumes de différents donneurs.
Deux volumes provenant de deux autres sujets sont utilisés uniquement pour l’évaluation
des méthodes.

Nous calculons la transformée de Radon (parallèle) à partir de ces volumes. Afin
de simuler des données à faible dose, nous considérons d’abord 400 projections, ce qui
correspond à environ 50 % du nombre total de projections pour une dose normale. Nous
considérons ensuite un bruit Poisson sur le nombre de photons reçus par le détecteur. En
faisant varier l’intensité du rayonnement I0, c’est à dire le nombre de photons envoyés
par la source, nous pouvons simuler différents niveaux de dose. Dans la base de données
d’entraînement, nous considérons ainsi entre 5% et 50% de la dose normale pour les
données d’acquisition.

Les hyper-paramètres des réseaux de neurones sont optimisés sur des données de
validation correspondant à 20 % des données d’entraînement, la stratégie étant la même
pour tous les réseaux. Pour l’évaluation, nous simulons deux configurations: 10 % et 20
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% de la dose, ce pour chacun des deux volumes.

Résultats Le Tableau 6.9 montre les valeurs des métriques pour tous les réseaux consid-
érés, pour le volume test 1 avec 10 % de la dose. Les résultats comparatifs sont similaires
pour l’autre volume et 20 % de la dose.

Analyses et conclusion Dans notre étude, PSNR, SSIM et le DICE ne permettent
pas de faire la distinction entre les fonctions coût par pixel, structurelles et antagonistes.
L’évaluation de la qualité de la reconstruction des micro-structures osseuses semble ainsi
insuffisante en ne considérant que ces métriques.

Au contraire, le ratio BV/TV, le nombre d’Euler afin d’étudier la connectivité de
l’os, la distance de Wasserstein entre les distributions de densité par voxel pour évaluer
la fiabilité de l’estimation de la DMO, sont autant de métriques permettant de juger la
capacité des réseaux de neurones à retrouver des paramètres clés pour le diagnostic post-
reconstruction. Nous avons montré que la fonction coût utilisée pour l’entraînement a
une influence majeure sur ces métriques. Par conséquent, le choix de la fonction coût doit
être un élément important dans la construction d’une méthode basée sur l’apprentissage
profond adaptée à l’application médicale. L’utilisation d’une fonction coût par pixel, no-
tamment l1, permet d’améliorer la résolution de l’image reconstruite. Les fonctions coûts
structurelles ont un rôle important pour permettre au réseau de retrouver des structures
osseuses précises comme le montrent les métriques de connectivité. La fonction coût
VGG améliore les performances du réseau dans ce sens, au détriment d’une diminution
observée de la résolution. L’ajout d’une fonction coût antagoniste permet d’obtenir des
reconstructions plus précises en terme de DMO. Lorsque le choix de la fonction coût est
réalisé, il est en revanche important de garder à l’esprit qu’un compromis doit être fait
entre coût en ressources de calcul, du à la complexité de la fonction coût, et performance

WGAN-VGG PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
∅ 28.91 0.811 0.848 0.140 29 ± 20 0.07 ± 0.05 98.6 ± 6.7 21.62 43.81
L1 29.94 0.842 0.864 0.140 24 ± 17 0.07 ± 0.05 86.6 ± 6.0 13.61 19.93
L2 29.63 0.829 0.859 0.141 23 ± 18 0.06 ± 0.04 93.2 ± 5.9 10.53 31.20

CNN-VGG PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
∅ 26.87 0.128 0.858 0.140 40 ± 28 0.20 ± 0.11 98.3 ± 4.4 332.57 581.71
L1 30.43 0.846 0.866 0.140 37 ± 27 0.21 ± 0.05 77.9 ± 4.4 27.75 106.36
L2 30.19 0.851 0.858 0.147 79 ± 40 0.29 ± 0.05 94.1 ± 4.6 41.55 209.64

CNN-SSIM PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
∅ 30.36 0.871 0.865 0.141 44 ± 29 0.23 ± 0.05 83.1 ± 4.1 29.45 103.6
L1 30.35 0.859 0.865 0.139 26 ± 20 0.16 ± 0.05 77.3 ± 5.3 30.47 109.56
L2 30.27 0.863 0.859 0.148 63 ± 37 0.28 ± 0.05 91.1 ± 5.1 39.22 215.16

CNN PSNR SSIM DICE BV/TV E-N O-C Resol (µm) WV WB
L1 30.43 0.848 0.866 0.140 33 ± 26 0.19 ± 0.05 78.7 ± 5.0 26.24 107.08
L2 30.17 0.852 0.856 0.148 37 ± 31 0.20 ± 0.05 95.4 ± 5.1 44.48 240.55

Table 6.9: Métriques pour le volume 1 obtenu avec 10 % de la dose. Les entrées en gras
dans la première colonne indiquent la partie fixe de la fonction coût. Le ratio BV/TV de
référence est 0.138.
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finale.
La plupart des méthodes, résultats et analyses liés à cette étude ont été publiés dans

[Leuliet et al., 2022a].

Déconvolution aveugle pour la TEP
Nous nous intéressons à présent à l’imagerie TEP. Les tests que nous effectuons par la
suite sont réalisés sur des données TEP avec temps de vol (TOF). Cette application nous
amène à considérer un modèle direct plus spécifique pour le problème inverse à résoudre.

Effet de volume partiel L’effet de volume partiel fait référence au fait que l’activité
retrouvée dans un voxel en particulier est liée à la véritable activité des voxels adjacents
en raison de la résolution limitée du système d’imagerie. De la même façon, la véritable
activité de ce voxel affecte l’activité retrouvée dans les voxels adjacents. Aussi, la position
de la désintégration radioactive à l’origine de l’événement détecté peut être légérement
en dehors de la ligne de réponse. Plusieurs raisons peuvent expliquer ce phénomène:
le positron range, l’accolinéarité des photons émis, la résolution du détecteur limitée, la
discrétisation du volume, la diffusion inter-crystal, l’effet de la profondeur d’interaction,
etc.

Si le fait que la position de l’émission du positon à l’origine de l’événement détecté
n’est pas pris en compte dans le processus de reconstruction, un étalement peut être
observé sur l’image reconstruite, même lorsque que l’on considère une source ponctuelle.
Ceci fait référence à la notion de fonction d’étalement du point (PSF), qui caractérise
ainsi la résolution spatiale du système d’imagerie.

Reconstruction avec temps de vol Les systèmes TEP avec temps de vol (TOF)
correspondent à des systèmes d’imagerie capables de mesurer le temps entre deux dé-
tections de photons formant un même événement de coïncidence. L’information obtenue
sur la position de l’annihilation est par conséquent plus précise; au lieu de connaître la
ligne de réponse sur laquelle l’annihilation a eu lieu, ces systèmes permettent de connaître
directement cette position, avec une précision qui dépend de la résolution temporelle.

Dans l’espace image, les données sont rétroprojetées avec une fonction Gaussienne
dont le noyau a une largeur correspondante à la résolution temporelle; si tFWHM est le
FWHM (full width at half maximum) mesuré pour la résolution temporelle, alors le
FWHM considéré pour la fonction Gaussienne est dFWHM = ctFWHM avec c la vitesse
de la lumière dans le vide. L’intensité maximale de la Gaussienne rétroprojetée est elle
située au niveau de la distance mesurée à partir de la différence temporelle entre les deux
détections.

Déconvolution aveugle Le modèle que nous considérons pour la reconstruction avec
temps de vol est le suivant:

y = k ∗ f (6)

où y est la reconstruction TOF, k est le noyau de convolution de la PSF, qui correspond
donc à la fois à l’étalement du à la rétroprojection TOF et à la résolution spatiale du
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système liée à la PSF. Nous considérons ce noyau k comme inconnu et dépendant de
l’objet. Le problème auquel nous nous intéressons dans (6) est donc un problème de dé-
convolution aveugle. Du bruit est également présent sur y. Ce modèle permet notamment
de conserver une formulation unique pour les méthodes de reconstruction analytiques et
itératives. Il est également particulièrement adapté aux données obtenues en list-mode
et permet de travailler uniquement dans le domaine image, ce qui présente des avantages
du point de vue de l’implémentation.

Méthodes de résolution Parmi les méthodes classiques de résolution de ce problème
de déconvolution aveugle, il est possible de découpler l’estimation de la PSF et la recon-
struction de l’image. Une possibilité est de reconstruire l’image sans prendre en compte
la PSF, et de résoudre ensuite un problème de déconvolution avec une PSF estimée grâce
à des mesures effectuées expérimentalement. L’estimation de la PSF permet également
d’utiliser des algorithmes de reconstruction en considérant un opérateur direct incluant
l’opérateur de convolution représentant la PSF.

Une autre possibilité, plus adapté au problème que nous considérons étant donné que
la PSF n’est pas supposée connue, est de résoudre le problème de déconvolution aveugle
avec des méthodes itératives. Dans ce cas, l’estimation alternée de la PSF et de l’image
peut être effectuée avec l’algorithme de Richardson-Lucy par exemple.

Les méthodes d’apprentissage sont également adaptées au problème de déconvolution
aveugle. Il est possible d’utiliser des méthodes directes qui permettent d’améliorer la
qualité d’une reconstruction de faible qualité (voire de faire la reconstruction à partir des
projections) à l’aide d’un réseau de neurones, par exemple un U-NET. Ce réseau peut
être un réseau 2D ou 3D. Lorsqu’il n’est pas concevable en pratique de considérer un
réseau 3D, il est possible de prendre en compte l’information spatiale manquante avec
des réseaux prenant plusieurs coupes adjacentes en entrée par exemple.

D’autres méthodes basées sur l’apprentissage supervisée existent, en prenant cette fois
en compte le modèle direct considéré. Une solution est par exemple d’estimer à la fois
l’image et la PSF à partir des données d’entrée; ainsi, une fonction coût de cohérence
peut être utilisé pour mettre à jour les poids du réseau. Elle permet de s’assurer que la
convolution de l’image et de la PSF est en adéquation avec les données d’entrée, selon
(6) [Rego et al., 2021].

De nombreuses méthodes pour la déconvolution aveugle reposent sur l’apprentissage
auto-supervisé. Certaines sont notamment inspirées du principe DIP (Deep Image Prior).
L’idée des réseaux DIP est de considérer qu’une image peut être représentée comme un
réseau de neurones convolutionnel. En pratique, la solution est caractérisée par un réseau
de neurones qui prend un tenseur aléatoire fixe z en entrée, la k-ième estimation de la
solution correspondant ainsi à fk = Γθk (z) où Γ est un réseau de neurones avec paramètres
θk . Ici l’entraînement est uniquement réalisé avec une seule donnée de référence, à savoir
l’image dégradée y. A chaque epoch - ou itération - k, les poids θk sont mis à jour par
rétropropagation du gradient d’une fonction coût incluant à la fois Γθk (z) et y.

Une première solution basée sur le modèle DIP est d’estimer à la fois l’image et la PSF
en sortie du réseau, et d’utiliser une fonction coût de cohérence comparant uniquement
la convolution de ces deux estimations avec y [Ren et al., 2020]. Il est également possible
de considérer un réseau itératif déroulé comme c’est le cas pour le réseau Deep-URL
[Agarwal et al., 2020] par exemple.
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Application à des données TEP avec temps de vol pour l’imagerie
péropératoire
L’objectif final du système d’imagerie que nous étudions est d’être un outil permettant
de déterminer le statut métastatique des ganglions drainant une tumeur primaire: les
ganglions sentinelles. Il s’agit en effet d’un facteur clé pour le pronostic des patients ayant
un cancer [Sajedi et al., 2019]. Ce statut métastatique permet notamment d’évaluer le
stade du cancer, et il permet d’orienter le choix de la thérapie adéquat pour le patient.

Notre étude porte sur un système d’imagerie péopératoire dont le dispositif est illustré
sur la Figure 6.22.

En utilisant une rétroprojection simple pour reconstruire l’image à partir des données
d’acquisition, des expériences ont montré que des sphères de diamètre 6 mm correspon-
dant à des sources radioactives peuvent être identifiées grâce à ce dispositif d’imagerie
lorsque le ratio de l’activité entre les sources et le fond est de 10:1, avec un temps
d’acquisition d’au plus une minute.

Motivations pour la méthode proposée

L’ensemble des méthodes pour le problème que l’on considère peut être résumé de la
façon suivante:

• Les méthodes itératives ne sont pas adaptés à notre tâche en raison du temps de
reconstruction trop important pour l’imagerie péropératoire.

• Les méthodes nécessitant une estimation préalable de la PSF ne sont également pas
adaptées: la PSF est en effet considérée comme inconnue et dépendante de l’objet
imagé. Aussi, la possibilité de déplacer le détecteur au-dessus du patient fait que
cette PSF est nécessairement variable.

Figure 6.22: Illustration du concept du dispositif étudié pour l’imagerie péropératoire
[Sajedi et al., 2019].
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• Les méthodes d’apprentissage supervisé peuvent être adéquats mais elles sont po-
tentiellement non robustes face au décalage existant entre les données disponibles
pour l’entraînement et les données tests. Ce décalage peut être expliqué par une
difficulté de création d’une base de données suffisamment grande en raison des simu-
lations Monte-Carlo qui sont requises. Aussi, le lien entre simulations Monte-Carlo
et données réelles, ainsi que l’impossibilité de représenter l’ensemble des config-
urations pour la position du détecteur et l’objet d’intérêt font que ces méthodes
peuvent être peu robustes.

• Les méthodes d’apprentissage auto-supervisé doivent nécessairement faire l’estimation
de la PSF afin d’avoir une fonction coût de cohérence pertinente. Un problème ma-
jeur est que les méthodes existantes présentent un temps de reconstruction trop
long pour l’imagerie péropératoire.

Tous ces élements nous amènent à proposer une méthode permettant de bénéficier
des avantages des méthodes d’apprentissage profond sans pâtir des conséquences telles
que le temps de reconstruction non adéquat lié à l’apprentissage auto-supervisé.

PAVENET

Le réseau que nous proposons, appelé PAVENET, est composé de deux blocs distincts.
Nous considérons un UNET pour ces deux blocs, et nous travaillons uniquement dans le
domaine image. L’entrée de ces deux réseaux correspond à une reconstruction analytique
y; dans notre cas, il s’agit de la reconstruction TOF. Le premier bloc Hw estime l’image
à partir de y; le second bloc Gθ estime le noyau de convolution de la PSF à partir de y.
Le schéma du réseau de neurones est représenté sur la Figure 6.23.

La méthode est basée sur l’apprentissage auto-supervisé; les poids de Hw et Gθ sont
en effet mis à jour à l’inférence, pour toute nouvelle donnée d’entrée y. Afin de pallier
au problème de convergence lente lié à l’apprentissage auto-supervisé, nous effectuons
un pré-entraînement afin d’initialiser les poids des deux blocs de façon optimisée. Nous
utilisons pour cela une base de données d’entraînement en considérant des images et PSF
de référence connues. Nous pré-entraînons ainsi les deux blocs avec une fonction coût
telle que:

Lw,θ(k̃, f̃ ) = Lim( f , f̃ ) + LPSF(k, k̃) + Lcons(k̃, f̃ , y) (7)

où f̃ = Hw(y) et k̃ = Gθ(y) sont respectivement l’image et la PSF estimées, et f et k sont
les vérités-terrain correspondantes. Les fonctions coût Lim et LPSF sont typiquement les
distances l2 et l1 dans notre cas.

La fonction coût de cohérence Lcons est par la suite utilisée pour l’entraînement auto-
supervisé afin de mettre à jour w et θ.

Il est important de noter que la méthode proposée est une méthode générale qui repose
sur deux principes majeurs: un apprentissage hybride (auto-supervisé avec initialisation
des poids grâce à un pré-entraînement supervisé), et une double architecture permettant
d’estimer à la fois la PSF et l’image. Cette méthode peut ainsi être adaptée à tout
problème de reconstruction faisant intervenir une étape de déconvolution aveugle.
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Protocole expérimental

Nous cherchons à valider l’efficacité de PAVENET. Le protocole expérimental que nous
considérons est le suivant:

1. Pour preuve de concept, nous évaluons la performance de PAVENET sur des simula-
tions Python avec des objets simples (des disques, en 2D), en considérant le modèle
direct comme connu avec des PSF également connues afin de générer les données.
L’objectif de cette étape est de s’assurer que PAVENET est en effet performant
lorsque le modèle considéré est exact; si ce n’est pas le cas, il n’y a pas de raison
d’aller plus loin dans les tests lorsque le modèle est simplement estimé.

2. Pour la deuxième étape nous considérons la véritable géométrie du système TEP
d’intérêt. Nous considérons des volumes 3D en plaçant des sphères radioactives et
nous réalisons des simulations GATE d’acquisitions à partir de ces volumes. La PSF
pour le pré-entraînement doit ainsi être estimée, et nous n’avons pas de garantie que
le modèle (6) est en adéquation avec les données obtenues. PAVENET est ensuite
évalué sur de tels volumes et comparé avec une méthode d’apprentissage supervisé:
UNET.

3. La dernière étape, non présentée dans cette thèse car il s’agit de tests en cours,
sera de valider la méthode sur des simulations GATE plus complexes et réalistes,
en considérant une activité plus faible pour les sources chaudes, un phantom plus
profond, etc. Des tests seront également réalisés sur des données expérimentales
pour évaluer la robustesse de la méthode vis à vis de données non simulées.

Figure 6.23: Architecture de PAVENET pour une entrée correspondant à une reconstruc-
tion TOF. Le réseau est pré-entraîné avec des données supervisées. Les poids sont ensuite
mis à jour à l’inférence étant donné une reconstruction TOF en entrée. L’architecture
est similaire à [Rego et al., 2021] mais la méthode d’entraînement est différente.
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Test A Test B
Methods PSNR (dB) SSIM CRC Err. (%) SSIM Corr. PSNR (dB) SSIM CRC Err. (%) SSIM Corr.
FBP 12.86 ± 0.00 0.093 ± 0.000 34.31 ± 0.00 0.284 ± 0.000 14.65 ± 0.00 0.058 ± 0.000 61.90 ± 0.00 0.109 ± 0.000
UNET 44.66 ± 3.29 0.950 ± 0.031 1.60 ± 0.78 0.999 ± 0.001 21.89 ± 0.14 0.883 ± 0.029 22.70 ± 0.95 0.931 ± 0.003
PAVENET-0 50.29 ± 0.24 0.993 ± 0.001 0.54 ± 0.12 0.999 ± 0.001 21.79 ± 0.26 0.924 ± 0.004 21.50 ± 1.08 0.930 ± 0.005
PAVENET-1000 43.31 ± 0.32 0.932 ± 0.017 1.06 ± 0.42 0.997 ± 0.004 22.58 ± 0.28 0.899 ± 0.015 19.25 ± 1.13 0.940 ± 0.004

Test C Test D
PSNR (dB) SSIM CRC Err. (%) SSIM Corr. PSNR (dB) SSIM CRC Err. (%) SSIM Corr.

FBP 10.60 ± 0.00 0.116 ± 0.000 17.37 ± 0.00 0.255 ± 0.000 12.24 ± 0.00 0.052 ± 0.000 59.21 ± 0.00 0.066 ± 0.000
UNET 18.64 ± 0.39 0.775 ± 0.034 4.23 ± 1.28 0.895 ± 0.008 25.91 ± 0.71 0.903 ± 0.042 11.11 ± 1.11 0.977 ± 0.007
PAVENET-0 18.50 ± 0.25 0.818 ± 0.008 7.81 ± 0.78 0.903 ± 0.009 26.90 ± 0.38 0.947 ± 0.007 8.57 ± 0.87 0.971 ± 0.005
PAVENET-1000 20.96 ± 0.42 0.783 ± 0.016 3.27 ± 0.78 0.935 ± 0.006 27.64 ± 0.20 0.891 ± 0.015 9.01 ± 0.79 0.980 ± 0.003

Table 6.10: Métriques pour les différentes méthodes testées. PAVENET-0 correspond
aux images reconstruites par PAVENET uniquement après le pré-entraînement, et
PAVENET-1000 correspond aux prédictions faites après 1000 itérations d’apprentissage
auto-supervisé.

Validation avec images et PSF simulées

Nous simulons 20 000 images/PSF pour l’entraînement du UNET, qui sont également
utilisées pour pré-entraîner PAVENET. Des disques de taille et activité variable sont
placés dans ces images. L’étalement de la PSF est également variable à travers la base de
données. Les données d’entrée correspondent à la FBP des projections bruitées à partir
de la convolution de ces paires image/PSF.

Pour évaluer la performance de PAVENET en comparaison avec le UNET super-
visé, nous créons 4 jeux de données test. Le jeu de données test A possède les même
caractéristiques que l’entraînement (disques de taille similaire, étalement de la PSF simi-
laire). Le test B contient uniquement des disques de rayon inférieur aux rayons considérés
dans l’entraînement; le test C contient des disques de rayon supérieur. Enfin, le test D
est obtenu avec des PSF dont l’étalement est plus large que celui considéré pendant
l’entraînement.

Les résultats en terme de métriques sont représentés sur le Tableau 6.10. Notamment,
nous représentons le Concentration Recovery Coefficient (CRC), défini comme le ratio
CRC = f̃act/ fact où l’indice act fait référence à l’activité moyenne retrouvée à l’intérieur
des disques de l’image. Comme ce ratio doit dans l’idéal être proche de 1, nous présentons
les résultats pour CRCerr = |CRC − 1|.

Dans ce contexte très simplifié d’acquisitions de données TEP, nous montrons que
la connaissance du modèle dans le réseau de neurones permet d’améliorer la qualité de
l’image reconstruite pour les métriques considérées.

Les limites du UNET sont clairement visibles quand un décalage entre les données
tests est observé par rapport aux données d’entraînement. La méthode d’apprentissage
hybride proposée pour PAVENET permet de surmonter ces limites comme le montre la
capacité du réseau à reconstruire des disques de rayon considérablement plus petit en
comparaison avec les disques utilisés pour l’entraînement: une illustration est donnée sur
la Figure 6.24.

Cette différence de performance est essentiellement liée à l’apprentissage supervisé
qui permet de s’adapter à de nouvelles caractéristiques sur les données. Lorsque nous
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Figure 6.24: Test B: image (gauche) et PSF (droite) pour (a) la vérité-terrain, (b) UNET,
(c) PAVENET initialisé après pré-entraînement (d) PAVENET après apprentissage auto-
supervisé.

considérons les méthodes d’apprentissage auto-supervisé, nous voyons également qu’il est
primordial d’utiliser une structure du type PAVENET qui prend en compte - et estime
correctement - l’opérateur de convolution pour calculer la fonction coût de cohérence. En
effet dans nos tests nous montrer une baisse de performance lorsque l’apprentissage auto-
supervisé est utilisé sur un seul bloc image UNET, correspondant à une estimation d’un
opérateur de convolution égal à l’identité. Les résultats que nous montrons sont obtenus
après 40 secondes d’apprentissage auto-supervisé, en sachant que l’implémentation peut
encore être améliorée. Lorsqu’aucun pré-entraînement n’est effectué, nous n’avons trouvé
aucun moyen d’obtenir des résultats satisfaisants dans un temps raisonnable, correspon-
dant dans notre cas à 10 000 itérations.

Validation sur simulations Monte Carlo

Méthode La méthode pour simuler les jeux de données ici est similaire à la précédente,
avec deux différences notables:

• Les reconstructions initiales sont obtenues par rétroprojection TOF à partir des
données list-mode obtenues sur les simulations GATE.

• Les vérités-terrain que nous simulons sont ici uniquement des volumes. Nous
n’avons donc pas de PSF vérité-terrain pour le pré-entraînement. Nous donnons la
méthode pour estimer ces PSF ci-après.

Nous simulons des volumes en trois dimensions, mais les réseaux que nous considérons
sont des réseaux 2D. Par conséquent, la base de données d’entraînement est constituée
de coupes. Nous allons séparer les résultats obtenus lorsque l’entraînement est effectué
selon les coupes coronales, et lorsqu’il est effectué selon les coupes sagittales.

Pour chaque image de référence f dans le jeu de données d’entraînement créé avec un
ratio de 10:1 pour l’activité des sources chaudes, nous simulons un volume correspondant
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à haute dose fHD avec un ratio d’activité de 200:1. La reconstruction TOF de fHD, notée
yHD, est par conséquent moins bruitée que y. Cela nous permet d’utiliser un algorithme
itératif sans régularisation afin d’estimer le noyau ki à partir de chaque paire 2D (yi

HD, f i
HD)

dans la base de données d’entraînement. Régler un paramètre de régularisation ne serait
en effet pas envisageable au vu du nombre de données dans la base d’entraînement.

PAVENET est un réseau qui est implémenté en 2D; les paires sur lesquelles il est
entraîné sont des coupes 2D. Ainsi, nous considérer un noyau de convolution référence
pour chaque coupe dans la base de données d’entraînement. Ces noyaux de convolutions
sont donc différents dépendamment du fait que le réseau soit entraîné sur les coupes
coronales ou sagittales.

Pour retrouver ki à partir de (yi
HD, f i

HD), nous résolvons le problème de minimisation
suivant:

min
ki

KL(yi
HD, k ∗ f i

HD). (8)

Cela correspond à un problème de déconvolution (non aveugle) que nous résolvons avec
100 itérations de l’algorithme de Richardson-Lucy. Une fois le noyau de convolution
estimé, les données pour le pré-entraînement de PAVENET correspondent aux triplets
(yi, f i, ki).

Un critère majeur pour l’application médicale ici est un taux de faux négatifs (FNR)
pour la détection de ganglions sentinelles de moins de 5 %. Un moyen d’évaluer la
détection ou non d’une sphère est d’utiliser le Contrast to Noise Ratio (CNR), défini
comme:

CNR =
|actS − actBG |

stdBG
. (9)

où actS est l’activité moyenne de la sphère sur la reconstruction, actBG est l’activité
moyenne du fond et stdBG son écart-type.

Nous calculons le FNR (%) comme le ratio de sphères non détectées sur le nombre
total de sphères, en considérant un critère de détectabilité CNR > 3.

La valeur du contraste de référence cstGT est connue: il s’agit de la différence d’activité
entre source chaude et fond sur les simulations. Nous présentons ainsi l’erreur sur le
contraste retrouvée comme la différence absolue relative par rapport à cette valeur de
référence, notée CNRcorr et telle que:

CNRcorr =
|(actS − actBG) − cstGT |

cstGT
. (10)

Enfin, nous montrons les résultats pour le taux de faux positifs (FPR), c’est à dire le
ratio de sphères dans la reconstruction qui ne sont pas prèsentes sur l’image de référence.
Un critère de l’ASCO est d’avoir un FPR inférieur à 15% .

En plus de tester UNET et PAVENET dans deux directions différentes, nous testons
également un réseau similaire à [Xu et al., 2017], qui prend en entrée plusieurs coupes
adjacentes à la coupe d’intérêt. Il s’agit d’un réseau de neurones résiduel ici (ResNet).
Nous testons également un UNET 2.5D, où chaque voxel de l’image prédite est la moyenne
pondérée de 3 UNET entraînés selon les coupes axiales, coronales et sagittales.
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PSNR CRC Err. (%) CNR Corr. (%) FNR (%) FPR (%)
TOFREC 14.98 ± 0.11 71.7 ± 0.3 84.2 ± 6.7 22.5 100.0
UNET-C 29.66 ± 0.61 2.3 ± 0.1 34.7 ± 29.9 9.6 7.6

PAVENET-C 30.49 ± 0.22 3.4 ± 0.3 24.7 ± 26.8 4.8 6.0
UNET-S 32.43 ± 0.39 1.1 ± 0.1 16.1 ± 20.6 0.0 1.2

PAVENET-S 30.48 ± 0.43 0.9 ± 0.3 7.5 ± 14.1 0.0 1.5

Table 6.11: Métriques sur le test A pour des sphères de rayon entre 1.5 mm et 5 mm.
UNET-C et PAVENET-C sont entraînés sur les coupes coronales, UNET-S et PAVENET-
S sur les coupes sagittales.

Résultats principaux Nous montrons sur la Figure 6.25 un exemple de reconstruction
d’une coupe coronale obtenue avec différents réseaux, entraînés sur les coupes coronales.
Les réseaux entraînés sur de telles coupes sont mentionnées avec "-C", et la mention "-S"
est ajoutée pour les réseaux entraînés sur les coupes sagittales.

Les métriques sur le test A, avec des sphères de diamètre similaire à la configuration
d’entraînement, sont restituées sur la Table 6.11.

Lorsque nous testons les différents réseaux sur des volumes contenant des sphères de
rayon 1 mm (plus petites donc que la base de données d’entraînement), nous observons
que UNET-C et PAVENET-C ne sont pas capables de détecter ces sphères.

PAVENET-S est en revanche capable de retrouver 10.4 % de ces sphères, contre
seulement 3.5 % pour UNET-S. Aussi, nous notons que le FNR décroît avec le nombre
d’itérations pour l’apprentissage auto-supervisé de PAVENET-S. La valeur du CRC est
également meilleure pour ce réseau dans ce cas, avec 46.2% après 1000 itérations contre
69.4% pour UNET-S.

Synthèse des résultats Un premier constat majeur est que les méthodes d’apprentissage
profond permettent d’améliorer significativement les résultats en considérant les métriques
présentées, lorsque nous comparons la performance avec la reconstruction TOF initiale.
Une amélioration d’au moins 2 mm sur le diamètre pour lequel toutes les sphères sont
détectées est en effet observée grâce à ces méthodes.

Les réseaux entraînés sur des coupes coronales sont de façon générale moins perfor-

Figure 6.25: Exemple de coupe coronale reconstruite par différentes méhtodes. UNET et
PAVENET sont entraînés sur des coupes coronales ici. L’image et la PSF obtenue par
PAVENET-C sont obtenues après 1000 itérations d’apprentissage auto-supervisé.
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mants comparés à ceux entraînés sur les coupes sagittales. En revanche visuellement, les
sphères sont plus nettes lorsque nous observons les coupes coronales reconstruites avec
UNET-C et PAVENET-C.

Pour les réseaux entraînés sur les coupes coronales, une nette amélioration est observée
pour PAVENET en comparaison avec UNET. L’apprentissage auto-supervisé permet à
PAVENET de corriger les erreurs de prédiction après apprentissage uniquement supervisé.
Cet apprentissage auto-supervisé ne peut être pertinent et efficace que si la PSF est
estimée de façon précise, ce qui semble être le cas dans nos tests. Lorsque les sphères
sont trop petites en revanche - rayon d’1 mm -, PAVENET-C n’est pas capable de les
détecter.

L’amélioration de la performance liée à PAVENET est également visible lorsque les
réseaux sont entraînés sur les coupes sagittales, même si les performances de UNET-S
sont meilleures que UNET-C. Pour des sphères de rayon 1.5 mm ou plus, UNET-S a
un taux de faux négatifs de 0 %. Cela est du à la capacité du réseau à lisser le fond,
permettant ainsi au CNR d’avoir une valeur supérieure au seuil fixé à 3. Nous observons
cependant que le contraste obtenu pour les sphères de rayon 1.5 mm est plus important
pour PAVENET-S.

Un dernier point d’intérêt est la diminution du FNR avec les itérations de PAVENET.
Cela montre notamment que l’apprentissage auto-supervisé permet de surmonter les lim-
ites des méthodes supervisées dans notre étude.

Conclusion Ces tests sur simulations GATE montrent que les méthodes basées sur
l’apprentissage profond ont le potentiel de répondre aux objectifs sur l’identification des
nodules pour le système d’imagerie TEP péropératoire étudié. La robustesse de ces
méthodes doit cependant être validée sur données expérimentales.

Le fait de considérer l’information spatiale dans la troisième dimension pour les
réseaux 2D ne semble être efficace que dans le cas où les coupes considérées pour l’entraînement
sont les coupes coronales. Néanmoins, selon les métriques considérées pour l’étude, il sem-
ble préférable d’entraîner les réseaux de neurones sur les coupes sagittales si les réseaux
3D ne sont pas une option.

Nous avons également montré que PAVENET, grâce à l’apprentissage auto-supervisé,
permet de surmonter les limites de l’apprentissage supervisé pour un réseau de type
UNET. La capacité de PAVENET à reconstruire des sphères de petite taille est partic-
ulièrement encourageante. La deuxième étape du protocole expérimental afin de valider la
méthode étant satisfaisante, des tests peuvent être réalisés sur des données plus réalistes
et il s’agit d’un travail en cours.

De façon générale, PAVENET reste un réseau qui mérite d’être étudié plus en pro-
fondeur. Certaines méthodes peuvent notamment améliorer sa performance; aussi, d’autres
tests permettraient d’évaluer sa performance de façon plus globale.
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