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Abstract

Airless tyres are complex structures working in multi-physic contexts. The geometry and
the combination of materials must be wisely chosen to manufacture competitive designs.
Multiple innovations were proposed at different scales, from the micro-scale concerning the
grip of the tread and the thermal response in the contact zone with the ground to the
meter-scale concerning the global architecture of the airless tyre, with structural, vibratory
challenges. At the latter macro-scale, designers particularly focus on the elastic response
of the structure to correctly guide a vehicle towards its trajectory. Different tools based on
several optimization methods exist to assist manufacturers reaching the optimal geometry
responding to the best comprise of performances.

In our special case, we develop the geometric shape optimization in an elastic mechanical
context. We propose a gradient method to minimize optimization criteria. Yet multiple
aspects lead the optimization complex, such as non linearities. We develop the complexity
linked to the contact condition between the airless tyre and the ground. The contact condi-
tion involves non linearities in the mechanical problem. The contact is treated by Nitsche’s
method, which is a consistent method and does not need the use of Lagrangian multipli-
ers. Therefore we study geometric shape optimization with contact through a Nitsche-based
formulation in elasticity. The contact condition also introduces a non differentiability in
the usual sense through the optimization problem. A weaker notion of differentiability is
introduced to ensure the formulation of shape derivatives of the optimization criteria. In
addition, the airless tyre is largely solicited and high deformations might occur, involving
other non linearities in the mechanical problem. Thereby the shape optimization procedure
is first presented in linear elasticity where the mathematical framework offers the possibility
to analyze the shape sensitivity and ensure shape derivatives for the criteria for the gradient
descent method. Then the shape optimization is extended to large deformations for more
realistic applications.
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Résumé

Les pneumatiques sans air sont des structures complexes dont le comportement fait inter-
venir différentes physiques. Afin de proposer une conception performante, la géométrie d’un
pneumatique sans air et les matériaux qui composent une telle structure font 'objet de
choix de recherche rigoureux. Différentes innovations ont marqué I’histoire du pneumatique,
et ce a différentes échelles : de 1’échelle microscopique concernant ’adhérence et la réponse
thermique de la bande de roulement a une échelle macroscopique concernant la réponse vi-
bratoire et mécanique de la structure. A cette derniere macro-échelle, les concepteurs ont
particulierement étudié la réponse élastique du pneumatique sans air pour guider au mieux
le véhicule le long de sa trajectoire. Différents outils de conception existent afin d’obtenir
le meilleur compromis de performances, et en particulier, des stratégies d’optimisation de
forme.

Dans notre cas particulier, nous développons I'optimisation de forme dite géométrique dans
le contexte de I’élasticité. Nous proposons une méthode de gradient afin de minimiser des
criteres de performance. Cependant, différents aspects peuvent faire rendre 'optimisation
difficile comme par exemple des non linéarités. Nous développons la complexité liée a la con-
dition de contact entre le pneumatique sans air et le sol. En effet, cette condition introduit
une non linéarité dans le probleme mécanique. Le contact est approximé par la méthode
de Nitsche, méthode consistante et qui ne nécessite pas 'ajout de multiplicateurs de La-
grange. Ainsi, nous étudions 'optimisation de forme géométrique a travers une formulation
du probleme élastique utilisant la méthode de Nitsche. La condition de contact introduit
également une non différentiabilité au sens classique dans le probleme d’optimisation. Une
notion plus faible de la différentiabilité permet d’assurer la formulation de dérivées de forme
des criteres d’optimisation, et ainsi d’assurer le bon fonctionnement de la méthode de gra-
dient. Par ailleurs, le pneumatique sans air est largement sollicité en grandes déformations,
ce qui introduit de nouvelles non linéarités. Ainsi la stratégie d’optimisation de forme est
présentée d’abord dans le cadre de 1’élasticité linéaire afin de présenter les outils mis en place
et d’analyser la sensibilité de forme permettant d’assurer l'existence de dérivées de forme.
Ensuite 1’étude de forme est étendue aux grandes déformations pour traiter des applications
plus réalistes.

il
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Résumé étendu

Motivations et applications

Introduction

La conception d’une structure pneumatique nécessite un savoir-faire multidisciplinaire pour
répondre aux différentes performances attendues, tout en assurant le meilleur compromis en
terme de masse et d’énergie dépensée. La structure pneumatique fait 'objet d’une somme
d’exigences capitales afin d’assurer ces fonctions principales que sont :

Porter la charge du véhicule (effort normal au sol).

Transmettre les efforts longitudinaux, dans la direction instantanée d’avancement du
pneumatique prise dans le plan du sol, tout en assurant ’adhérence avec ce méme sol
et donc permettre ’accélération et le freinage du véhicule.

Guider le véhicule afin de permettre de suivre une trajectoire assurant la transmission
des efforts transversaux (toujours dans le plan du sol) par adhérence au sol.

Rouler afin de permettre I'avancement du véhicule en limitant la résistance au roule-
ment.

Absorber les différentes perturbations d’efforts et ainsi assurer un confort aux passagers
du véhicule par une fonction d’amortissement et également limiter le bruit aérien.

Durer un temps d’utilisation le plus long possible tout en garantissant les autres
fonctions a un niveau acceptable, en exigeant le meilleur niveau en terme d’usure
et d’endurance.

Ces différentes propriétés se traduisent par des criteres de ”performances” et peuvent étre an-
tagonistes. Parmi ces performances, on peut notamment citer : longévité et endurance, faible
contribution a la consommation du véhicule, adhérence en toutes conditions d’utilisation,
agrément de conduite, bruit aérien, moindre consommation de matieres premieres et d’énergie
pour sa fabrication, etc. La conception respectant un tel cahier des charges suppose donc
des compromis rendant la recherche de solutions technologiques particulierement subtile.
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Résumé étendu 2

La structure pneumatique est ainsi régie par une physique complexe. De par sa structure
composite et la nature des matériaux qui la constituent, elle releve d’une mécanique forte-
ment non-linéaire, hétérogene et anisotrope. Ainsi de nombreux ingrédients mécaniques
et mathématiques sont envisagés conjointement afin d’assurer une modélisation pertinente,
parmi lesquels on peut citer :

e La mécanique du contact entre la structure et le sol.

e Le déplacement du chargement de la structure au cours du temps et donc de la zone
de contact au cours de l'avancement.

e La mécanique en grandes déformations qui opere pour développer une aire de contact
assurant les différentes fonctions de la structure.

Pour toutes ces contraintes, les outils de simulation peuvent apporter une aide précieuse dans
la conception du produit d’abord, mais également dans la compréhension des mécanismes qui
sous-entendent ces performances. En particulier, les méthodes d’optimisation permettent de
fournir a l'utilisateur (les concepteurs) des outils d’aide & la recherche du compromis.

Le pneumatique sans air

Depuis quelques années, les fabricants de pneumatiques s’intéressent a une innovation qui
pourrait révolutionner le marché. Il s’agit des pneumatiques sans air ou roues porteuses,
comme présentés en Figure 1.

Figure 1: Pneumatiques ”sans air” ou roues porteuses congus par l'entreprise MFP MICHE-
LIN : le TWEEL (2012) a gauche et le prototype UPTIS (2019) a droite.

La structure pneumatique sans air est de plus en plus étudiée (appelée en anglais ”airless
tyre”) et sa mise sur le marché est proche, prévue d’ici la fin de la décennie 2020. Il differe
du pneumatique classique principalement dans le fait qu’il ne permet de porter le véhicule
par la pression de l'air. Le pneumatique sans air garantit un risque de crevaison nul et donc
potentiellement une durée de vie plus importante et surtout un risque d’accident réduit. Par
ailleurs, un rechapage permettra de remplacer la bande de roulement lorsque celle-ci sera
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3 Résumé étendu

usée. Ceci permettra de réutiliser la structure porteuse et d’économiser de la matiere. Bien
sur, les concepteurs souhaitent garantir le méme niveau de performances sur ces nouvelles
structures induisant un challenge industriel immense. Notre étude se concentrera sur cette
structure creuse en particulier que nous appellerons pneumatique sans air ou "airless tyre”.

Contexte scientifique

Probleme élastique avec contact

On cherche & optimiser une structure élastique roulante @ C R% d = 2 (en deux dimensions)
ou 3 (en trois dimensions), un exemple étant décrit en Figure 2. Le bord 02 du domaine
) est divisé en trois parties distinctes : 'y, I'c et I'p. Une condition de Neumann est
considérée sur I'y ol une densité de force gy est imposée. Un contact avec frottement peut
avoir lieu entre le bord I'c du pneumatique (correspondant a la bande de roulement) et un
obstacle rigide et plat. Enfin une condition de déplacement imposé ap est considérée sur le
bord rigide I'p et correspond au poids du véhicule sur la jante du pneumatique (ap est une
inconnue supplémentaire qui est déterminée en imposant le poids sur la jante). A noter que
seule la frontiere I'y pourra étre optimisée, la jante I'p et la bande de roulement ' étant
supposées non optimisables dans toute cette étude.

Figure 2: Représentation schématique du pneumatique et de I'obstacle rigide.

On suppose ici que le champ de déplacement uq :  — R? est solution du probleme élastique
suivant :

-div o(ug) = f dans €,
olug) n = gn sur I'y, (1)
Ug = ap sur I'p.

ou, dans le cadre de I'élasticité linéaire,
o(u) = Ae(u) = 2ue(u) + Mr(e(u))ly,

avec 11 et A les coefficients de Lamé, e(u) = £(Vu + Vu?) la déformation linéarisée. La
condition de contact sera explicitée ultérieurement. Comme le pneumatique est supposé
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Résumé étendu 4

rouler sur I’ensemble de la bande de roulement en rotation, on considere Ny cas de chargement
a différentes rotations régulierement espacées. On obtient ainsi N, rotations du pneumatique
correspondant aux domaines €Q; (voir la Figure 3), pour ¢ allant de 1 & Ny. La solution du
déplacement associée au domaine €); est de plus notée uf,.

Figure 3: Représentation du pneumatique a différents angles de rotation. Deux configura-
tions de 2 a differentes rotations pour ¢ = 1, 2.

Contact unilatéral avec frottement

Le sol (ou obstacle) est supposé rigide et plat. On considere la normale entrante n, au sol
et g le gap initial entre I'obstacle et la bande de roulement (voir Figure 4). Le déplacement
u: Q — R est décomposé sur I'c par sa composante normale u,, = u - n, et tangentielle
u = (Ig — ny ® ny)u de sorte que

U = UpNy + Uy

Figure 4: Représentation des surfaces de contact pour une configuration de la rotation du
pneumatique.

Le gap initial est défini sur x € I'¢ par

g=mny-(y—1x),
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5 Résumé étendu

ol y est la projection orthogonale de x sur I'obstacle. On note également la décomposition
de la contrainte de contact sur I'c en composantes normales et tangentielles :

on(u) = (e(u)n) - ny et or(u) = o(u)n — (o(u)n) - n,.

La condition de contact unilatéral sur I'c est décrite par la condition de complémentarité
suivante :

(un —g) <0, on(u) <0, (up — g) on(u) =0, (2)
Nous considérons le frottement de Coulomb statique :

{|at(u)| < —Fou(u) siug =0, 3)

o (u) :]-"an(u)‘:j—z‘ sinon.

On introduit a : V x V — Ret £: V — R, définis pour tout (u,v) € V x V par

a(u,v) = /Q Ae(u) : e(v) da,

g(“):Lf(x)'vdx+/FN9N'Ud5($)>

ot V={ve H(QRY :v=aponp}.
La formulation faible du probleme d’élasticité en élasticité linéaire avec une condition de
contact mene a ce que ug € V satisfasse

Find v € K such that
a(u,v —u) + jw) —j(u) > l(v—u), YveK,

avec j(v) = — Fo,(v)|vg|ds(x) et
|Ne]

K={veV:v,—geKy}, Kj:={vel?’T¢c):v<0}

Formulation faible avec la méthode de Nitsche

La méthode de Nitsche, présentée initialement par J. Nitsche pour une condition de Dirichlet,
a ensuite été introduite pour le contact unilatéral sans puis avec frottement. Elle introduit
un terme qui impose faiblement les conditions de contact frottant (2) et (3) d’une maniere
consistante. La méthode de Nitsche est basée sur une formulation équivalente des conditions
(2) - (3) et vient originellement de la formulation d’une approche Lagrangien augmenté, ce
qui donne

on(u) = —[on(u) — y(u, — g)]-,
o¢(u) = Pgo,pu)) (o (u)n — yu),
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Résumé étendu 6

ou p(u) = Floy(u) — y(u, — g)]- est le seuil de frottement, F le coefficient de frottement,
la partie négative étant définie par [z]- = 3(|z| — z),Vz € R et la projection d’un élément
z € R? sur la boule B(n,, p(u)) de rayon p(u) sur le plan tangent de normale n, est définie
par

. JUa=ny@n)q i |(Ia—ny, ®ny)q| < p,
BNy (@) = (any@ny)g

sinon.
[(Ia—ny®ny)q|

Dans le cas du contact unilatéral, la formulation de Nitsche en élasticité linéaire s’écrit
a(t,0) + T, 0,m) = (v), Yo €V, (4)

avec le terme de contact Zy(u,v,n) tel que

Ta(u,v,m) = — /F %an(u)an(v)ds(x)— /F %Ut(u)-at(v)ds(:c)
[ 2 o) =20 = 9 (0 a(e) = 0)s(a)

i /rc %P By () (T ()1 = 1) - (0 0 (v) — v, )ds (@),

ou # € R est un parametre et v > 0 le parametre de contact. Nous mettrons en évidence les
avantages de la méthode de Nitsche, notamment par rapport a la pénalisation.

Optimisation de forme géométrique

L’objectif de cette these est de développer une méthodologie permettant d’optimiser la forme
d’une structure et donc d’optimiser différents criteres. Les algorithmes d’optimisation utilisés
sont généralement des algorithmes itératifs de type gradient ot I'idée est d’estimer les dérivées
des énergies par rapport a la forme. Dans notre approche, nous n’optimiserons pas les
parametres des modeles de loi d’élasticité et seule la structure de I’ensemble est optimisée.
La conception mécanique d’une structure pneumatique ”sans air” peut étre abordée par de
tels outils dont I'objectif est d’obtenir un optimum multi-critere. Le choix des criteres peut
se faire a partir de la littérature (minimiser la masse, I’énergie de déformation, etc.) ou
encore en choisissant directement les criteres de performances précédemment exposés ou des
criteres de substitution pour les performances. On prendra le soin de formules mathématiques
rigoureuses pour l’expression des criteres afin de mener une optimisation au plus juste. On
cherche & minimiser un critere J(Q2) afin d’obtenir la forme optimale de la structure en
forcant I'évolution des frontieres de la structure. On introduit la forme générique dun
critere d’optimisation (ou critere objectif) :

7(Q) = /Q M(ug)dz + [ N(ug) ds(z),

o0
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7 Résumé étendu

ol ug est la solution de I'équation (1). Ici, M et N sont deux fonctions que I'on suppose
suffisamment régulieres pour que la dérivée directionnelle de J soit bien définie. Soit D C R?
un domaine régulier aux bornes fixes. Soit 2,4 I’ensemble des solutions admissible 2. La
fonction objective J(€2) doit étre minimisée

Qle%fad J(§2). (5)
On cherche & minimiser le critere J(§2) dans (5) sous la contrainte suivante : la formulation
faible avec contact (4) doit étre respectée.
Nous nous concentrerons donc sur 'optimisation de forme de la géométrie, cette méthode
étant relativement facile a implémenter et proposant un potentiel suffisant pour I'aide a la
conception d’une telle structure. Ainsi nous ne nous somme pas intéressés dans cette these a
des techniques de dérivées topologiques. Une boucle d’optimisation de forme se décompose
en trois étapes successives :

e Résolution du probleme mécanique par une approximation en éléments finis :

Trouver u" € V" tel que
a(u ") + Z(uh vl n) = L"), Vol e VI

ot la discrétisation V" de V utilise une méthode de Galerkin continue et sera précisée.

e Evaluation d’une direction de descente dans I'espace des parametres pour permettre la
minimisation de la fonctionnelle de travail. On formule donc un gradient de forme :

D)) = / (0 - n) (Mua, 2) + As(ug) : e(pa) — £(z) - pa) ds(z)

m

+ [ (0 (o Mg, ) + VA (g, 2) ) dsa)

- / (©m) (e po g+ (Voo g3) <) ds(a),

ou D J(N)[O] est la dérivée de forme de J(2) dans la direction ©, I',, est le bord
mobile ou optimisable de €2, x,, est la courbure moyenne de 0€). Ici, pg est la variable
de I'état adjoint que 1'on approxime également avec la méthode des éléments finis :

Trouver p* € V" tel que 6
ol p") + DuT(uly o, 0] = L (a"),  Va* € VP, ©)

avec
lug(q) = —/DuM(uQ)[Q]dx — | DuN(uq)lglds(z),
Q o9
D, M(uq)[g] et D, N (uq)q] étant respectivement les dérivées de forme de M(uq) et
N (ugq) par rapport a la variable v dans la direction g.
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Résumé étendu 8

e Utilisation de cette direction de descente pour formuler une géométrie plus optimale.

Nous utilisons différents outils de modélisation, des méthodes numériques et du calcul sci-
entifique pour rendre cet algorithme d’optimisation le plus précis et le plus rapide possible.
Nous cherchons a développer I'optimisation de forme avec prise en compte du contact. Nous
investiguons notamment 'apport de la méthode de Nitsche dans les modélisations récentes
de la condition de contact afin de fournir plus de robustesse dans le résolution du probleme
mécanique tout en gardant la simplicité d’'une formulation sans ajout de multiplicateur de
Lagrange. Un calcul de sensibilité est ensuite proposé a travers une méthode de descente
de gradient du critere d’optimisation par rapport a I’espace des parametres utilisé, la com-
plexité étant le contexte non-linéaire dans lequel le calcul mécanique est réalisé (grandes
déformations et contact). Ainsi la sensibilité du gradient de forme sera étudiée au moins
dans le cadre linéaire. La méthode de 1’état adjoint permet de rendre explicite le calcul de
sensibilité dans ’algorithme d’optimisation de forme. Nous cherchons également a exprimer
différents criteres d’optimisation et a obtenir un compromis. La structure étant roulante,
nous réalisons cette étude dans un cadre multi-chargement. La méthode des courbes de
niveau (dite ”level set” en anglais) est une technique numérique d’analyse de surfaces ou
de forme qui permet de représenter une géométrie et de mettre en évidence le lieu de la
frontiere de 'objet d’étude comme le lieu d’iso-valeur zéro d’'une fonction distance ou in-
dicatrice. Cette fonction peut alors étre advectée pour modifier 'objet sans manipulation
du maillage et a I'aide d’une équation d’Hamilton-Jacobi. Une étape de redistanciation est
nécessaire pour régulariser le gradient de la fonction sur le domaine d’étude et limiter les
erreurs d’advection.

Contribution de la these

Afin de réaliser cette étude d’optimisation de forme de la structure d’'un pneumatique sans
air, nous proposons différentes étapes.

Optimisation de forme en élasticité linéaire

Le premier chapitre se concentre sur 'optimisation de forme géométrique et la construction
de I'algorithme. Nous prenons pour exemple la roue porteuse traitée par I’élasticité linéaire.
Ceci permet d’introduire les notions physiques et mécaniques nécessaires a la formulation du
contact. On introduit également la formulation d’un gradient de forme et de ’état adjoint
par la méthode de Céa dite de dérivation rapide. On présente ensuite la méthode glob-
ale de I'optimisation menée sur la structure cylindrique en exposant les ingrédients utilisés
dans l'algorithme pour rendre efficient la résolution du probleme. L’objectif de ce premier
chapitre est d’exposer les propriétés avantageuses de la méthode de Nitsche pour approx-
imer la condition de contact, notamment en comparaison avec la pénalisation. On expose
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9 Résumé étendu

également deux criteres d’optimisation permettant déja de mener une optimisation multi-
critere et multi-chargement sur une géométrie simpliste. On introduit notamment un critere
d’uniformité de la contrainte de contact que I’'on formule rigoureusement comme suit

1
Jp,Q(Qy UQ7pmean) - 5”0-(”9)” - pmean”?{71/2(pc’Rd)7

que l'on compare avec d’autres formulations. On montre donc 'intérét de la méthode de
Nitsche pour traiter le contact dans le cadre de 'optimisation de forme et 'importance
d’écrire des criteres cohérents mathématiquement, menant a une optimisation pertinente.

0.001 €
(3]

[ -0.050 2
]

- -0.100 2
—-0.150 §
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— -0200%
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- -0.250T

t -0.300 3
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Figure 5: Optimisation d’'une structure simple. A gauche : situation initiale, au centre :
contact traité par la pénalisation et a droite : contact traité par la méthode de Nitsche.
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Figure 6: Décroissance du critere d’énergie de déformation élastique en fonction de la
méthode d’approximation du contact utilisée.

On expose par exemple en Figures 5 et 6 le fait que la pénalisation n’est pas consistante et
qu’elle autorise de I'interpénétration dans le sol, I’énergie de déformation élastique est alors
sous-estimée.
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Résumé étendu 10

Analyse de convergence de I’état adjoint

L’approximation de la condition de contact introduit un opérateur de projection qui n’est
pas différentiable au sens classique, notamment en présence de zones de contact affleurantes
(qu’on note I'cp). Elle nécessite donc des notions plus faibles de dérivée comme par exemple
la dérivée conique. L’objectif de ce nouveau chapitre est donc d’analyser plus précisément la
convergence de la méthode précédente. On étudie notamment la convergence de 1’état adjoint
discret vers une version continue p, qui s’obtient par la résolution d'une équation d’élasticité
couplée avec des conditions de Dirichlet sur la zone de contact I'c, et des conditions de
Neumann sur la zone hors contact I'c; (voir Figure 7) de sorte que

—div(o(p)) = —M'(ug) in €,

o(p)n = —N"(ugq) on e, Ul Uy,
p = 0 on FD7

(p)n =0 on FC’,aa

oi(p) = —(N'(uq)): on I'cq.

Figure 7: Découpage du bord de contact.

Nous nous sommes alors rendu compte que la méthode précédente ou p" était défini en
utilisant la méthode de I’état adjoint sur la formulation discrete du probléme de contact (6)
n’était pas consistance. En revanche, il est tout a fait possible de définir une nouvelle version
discrete p”, tres proche de la précédente, obtenue en appliquant directement la méthode de
Nitsche pour traiter les conditions de Dirichlet de p. Cela meéne & trouver p" € Vrhc,a

a(v", ph) = — / M (ugy) v do — [ N'(ug) - 0" ds(z), Vo' € V|
Q o9 ’

avec Vi = {¢ € V"|¢,, = 0 presque partout sur Ic,q}.

Ainsi, sous des hypotheses de vitesse de convergence des zones de contact, nous avons réussi a
démontrer un résultat de convergence. La difficulté vient essentiellement du controle d’erreur
dont nous avons besoin sur les zones de contact lorsque le pas de discrétisation h tend vers 0.
Nous expliquons aussi comment relacher les hypotheses de vitesse de convergence en mod-
ifiant légerement cette nouvelle formulation de I'état adjoint. Des expériences numériques
illustrent ce résultat et montrent également qu’en pratique, ces deux approches conduisent a
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11 Résumé étendu

des résultats tres similaires, et cela méme si la premiere discrétisation n’est pas consistante
(voir Figure 8).
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Figure 8: Courbes d’erreur relative avec la norme H'() sur les variables directe et adjointe.
A gauche : état adjoint avec la méthode de Nitsche pour traiter la condition de Dirichlet
et a droite : état adjoint de la formulation discrete du probleme de contact traité par la
méthode de Nitsche.

Optimisation en grandes déformations

On souhaite enfin exposer les limites du cadre de ’élasticité linéaire. En effet, I'hypothese
des petites perturbations est embarrassante si on souhaite simuler 1’écrasement d’un pneu-
matique. Les sollicitations du véhicule font intervenir des déformations importantes dans le
pneumatique. Le bande de roulement en contact avec le sol développe une aire de contact
qui n’a pas de sens physique si on utilise I’élasticité linéaire. Les non-linéarités géométriques
doivent donc étre prises en compte. Qu’en est-il du comportement matériau ? Les pneuma-
tiques sont en majoritairement composés d’élastomeres au comportement non linéaire. Cela
a-t-il un effet sur 'optimisation de forme et sur les géométries optimales attendues 7 Le
troisieme chapitre enfin présente 'optimisation de forme d’une structure pneumatique sans
air en introduisant la théorie des grandes déformations. On introduit notamment la loi de
Saint-Venant Kirchhoff

W(E () = gAG () + i (),

avec W le potentiel énergétique, E le tenseur de Green-Lagrange et i; le premier invariant
principal. On introduit également la loi de Mooney-Rivlin

W(C(u) = e1(j1(C(u)) = 3) + e2(ja(C(u)) = 3) + di(i(C(u))? — 1)?,

avec C' le tenseur de Cauchy-Green, ¢, ¢ des constantes empiriques et d; le parametre
de pénalisation pour Iincompressibilité. j;(C), jo(C), i3 sont des invariants que l'on ex-
plicitera. On présente donc les difficultés liées aux non-linéarités introduites par ces lois,
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notamment géométriques et matériaux. Un gradient de forme est alors formulé en grandes
déformations, un nouveau critere est introduit et on discute de la pertinence de ’optimisation
multi-critere sur des géométries a la topologie plus complexe. On montre également la per-
tinence de différentes lois de comportement matériau. On montre en Figure 9 des exemples
d’optimisation de forme ot 'on compare 'influence des lois élastiques et hyperélastiques.

>
o
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8
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i
WDV ENOU D W =
8350888686688 30
Vertical displacement (cm)
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Wi — D0 ®NC
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Figure 9: Optimisation d’une structure complexe. De gauche a droite : situation initiale,
forme optimale en élasticité linéaire, forme optimale avec le modele Saint-Venant Kirchhoff,
forme optimale avec le modele Mooney-Rivlin.
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Introduction

0.1 Industrial context

Tyres are industrial products designed with complex technologies. Multiple physics must be
taken into account in such a structure. Manufacturers must respect performances more and
more exacting forcing the designers to intricate challenges. Many application fields must be
studied from mathematics and physics to thermo-mechanics and chemistry. The behavior of
each part of the tyre depends on many parameters, such as for instance the combination of
materials used or the geometry. Many tests and experiments are led in R&T (Research and
Technology) teams to understand as best as possible the mechanisms that occur within the
tyres.

In the last recent years, manufacturers focus on the design of airless tyres which are not
supported by air pressure. They can then reduce the risk of puncture as they can not go
flat, resulting in a global much longer life time and the reduction of traffic accident risks.
That product must show the same performances as a ”classical” pneumatic tyre. Actu-
ally, the airless tyre but more generally a tyre must fulfill several criteria of performances,
announced for instance in [53]:

e carry the vehicle load,

e support the longitudinal efforts, in the instantaneous direction of driving - tangentially
to the ground, in a dynamic framework in which the vehicle can accelerate or brake,

e guide the vehicle in the ground plan, supporting the transverse efforts through the
grip, on a dry or wet ground,

e behave appropriately about rolling resistance with accurate visco-elastic properties,

e absorb the perturbations from the relief and the airborne noise thanks to its damping
properties,

e last and prove its durability for a high distance of usage without disturbing the other
properties announced above.

Various criteria, called performances, are then required to assure these properties:

13
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e durability and endurance,

low rolling resistance,

optimal grip,

driving comfort,
e low consumption of energy and materials.

These performances can not be all optimally granted in the same product. Among all the
tools available, numerical modeling permits to consider different physics and test multiple
configurations to understand the airless tyre behavior with less resources than physical ex-
periments, as a first approach. In order to reach the best product, several mathematical
tools exist and more especially in the field of structural optimization.

0.2 Structural optimization

The structural optimization is a set of tools used to estimate the best design of a product
respecting various criteria of performances. Designers often have intuitive solutions to opti-
mize a structure, yet mathematical tools can have a much higher potential to explore new
concepts. Structural optimization is a large field of mathematics, so we focus especially on
the optimization of the shape of the structure. The shape optimization aims at finding the
best shape of a structure. There are three main ways to lead a shape optimization.

1. The easiest one is the parametric optimization where a narrow set of parameter evolves
and modifies the structural geometry (lengths, weights, angles, etc.). It is somehow
the most trivial shape optimization to implement but has a very limited potential. The
topology of the geometry is fixed which constrains the shape possibilities. We intend
to optimize some parameters such as geometric elements: membrane thickness, circle
radius, etc. to obtain all the admissible shapes. We refer to [11, 46, 83] for more details
about that method.

2. More and more studies have been led on the so called geometric shape optimization.
It aims at forcing the frontiers of the structure to evolve in different directions until
the best shape is reached. It can lead to complex geometries and is rather easy to
be implemented provided that the criteria to be minimized is mathematically easily
expressed and differentiable. Yet it is still limited as, despite the topology is optimized,
the optimal shape largely depends on the initial situation and the optimization often
leads to local minima. We can for instance lead a descent gradient method so that
we formulate a shape gradient to reach optimal frontiers. We refer to [41] for the
first idea of the frontiers variation method and then [4, 11, 18, 46, 83, 97| for further
developments, although many other recent works introduce that method.
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3. The third optimization to be implemented is the topological optimization by homo-
geneous methods. The optimization is not led by the frontiers variation, but by the
distribution of matter in a domain containing the geometry. Homogeneous leads to
define a density as 1 where there is matter and 0 in the holes. That density is to be
optimized during the optimization process and varies between 0 and 1. This leads to
optimal structures at macro scales but also at micro scales. Composite materials can
appear as an optimal solution which might lead to a complex manufacturing process.
It is the most complex method to implement. We refer to [75, 105] for the first works
on this method.

The geometric shape optimization is developed in the next sections, since it represents a
good compromise between the easy implementation provided by this method and the wide
range of possibilities assured for the geometry evolution.

0.3 (Geometric shape optimization

Geometric shape optimization is built on successive steps. First, one has to ensure the
existence of an optimal shape, which is not easy without constraints or regularity. Second,
one has to describe the mathematical overview that leads to the derivative with respect to
the studied domain. Then, one has to develop the optimality notion, before using successive
numerical schemes to solve an optimization algorithm. The geometric shape optimization
aims at minimizing a criterion J(£2) in order to find the optimal shape of a structure by
forcing the domain frontiers to evolve. The choice of criteria can come from literature
(minimization of the mass, the elastic energy of deformation, etc.) or directly from the
performances linked to the tyre. It requires the formulation of a shape gradient so that a
descent gradient method is performed.

An geometric shape optimization loop can be decomposed into three successive steps.

e We solve the mechanical problem using for instance a finite element approximation
(see for instance [39, 42, 65, 108, 107, 37]) with the limit conditions considered.

e We evaluate the cost functional of the structure and its derivative to compute the
shape gradient.

o We force the evolution of the geometry in a descent direction to consider a new geom-
etry.

Different tools are exploited to lead an efficient geometric shape optimization through the
implementation of an algorithm. We present first two simple applications to expose the
potentials of that optimization method. Thereby, for the sake of simplicity, we do not
develop the different equations of elasticity or optimization in this part but in the successive
following chapters.
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0.4 Cantilever optimization

Let the domain presented in Figure 10 be a simple study case to introduce the first results
of shape optimization. The example introduced is a cantilever, it must carry a load on one
of its sides being clamped on the other side. The aim of the optimization is to decrease the
structural deformations.

Figure 10: Scheme of the mechanical problem associated to the cantilever.

The domain is clamped on its left boundary called I'p and a load is imposed as a Neumann
condition on its right boundary called I'y. A load of 1 kN is imposed along that same
right boundary. Several inner holes are initially set. One considers a material whose Young
modulus is 20MPa and Poisson ratio of 0.3. A first computation with a finite element method
approximation leads to the mechanical behavior of the structure illustrated in Figure 11.

Figure 11: Vertical displacement approximated with a finite element method.

Then we compute the shape gradient associated to the structure as presented in Figure 12
and we force the evolution of the geometry according to that same shape gradient.
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Normalized shape gradient

Figure 12: Shape gradient computed on the initial geometry.

The geometry evolves through the optimization process in order to decrease the deformation
of the geometry. Figure 13 shows that the load is thereby better and better carried by the
geometry.

§ §

= 000 £

0.00 £ s

[ 0052 [ -0.05 2
o

—-0.100 - 010

—-0.158 - 01538

0208 —-020%

I -0.25 I 0250

0303 0303

b b=

o (]

> >

Figure 13: Optimal shape after 20 iterations on the left and after 50 iterations on the right.

The optimization led to a better structure with stronger mechanical properties. We give
another example to illustrate the method.

0.5 Bridge optimization

Let the domain presented in Figure 14 be a structure representing a bridge that must carry
a load from a side to another. Again, the optimization aims at minimizing the structural
deformations. The domain is clamped on its side boundaries called I'p and a load is imposed
as a Neumann condition on its bottom boundary called I'y. A load of 10 MN is imposed
along that same bottom boundary. Several inner holes are also initially set. One considers
a material whose Young modulus is 20GPa and Poisson ratio of 0.3.
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sO0O03
YYYYVY VYUY

Figure 14: Mechanical scheme of the bridge.

Again, a first computation with a finite element method approximation leads to the compu-
tation of the mechanical behavior of the structure in Figure 15.
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Figure 15: Initial geometry. Vertical displacement after a finite element computation.

Then again we compute the shape gradient associated to the structure and we force the
evolution of the geometry according to the shape gradient.
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Figure 16: Optimal shape after 20 iterations on the left and after 50 iterations on the right.

ent (m)

Vertical

The deflection of the bridge is minimized so as the deformation in the whole structure. Once
again, the optimization was efficient and led to a stronger geometry.

0.6 Airless tyre optimization

We would like now to optimize the structure of the airless tyre structure presented previously.
The optimization process is much more complex than for the tow previous examples. Indeed,
the contact between the tyre and the ground introduces a complex condition in the mechan-
ical and optimization problems. Contact conditions (or Signorini conditions) involve non
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linearities in the mechanical problem and non differentiabilities which harden the formula-
tion of criterion derivatives to consider the shape gradient. What’s more, large deformations
occur in the airless tyre which implies the need to use complex elastic laws. Indeed, the
simple linearized elasticity model is not sufficient. The consideration of hyperelastic laws
to model high deformations involves other non linearities in the mechanical problem. The
geometric shape optimization of such a structure is hence much more intricate. We have to
develop different models and methods to lead the optimization process as precise as possible.

0.6.1 Numerical modeling and methods

We want to develop the geometric shape optimization taking into account a contact condi-
tion. To do so, we follow the Nitsche’s method to deal with the contact conditions to bring
robustness in the finite element approximation but still with a simple formulation without
the use of Lagrange multipliers. A sensitivity calculus is then proposed through the descent
gradient method of the optimization criterion. The adjoint state method will lead to the
formulation of an explicit shape gradient. The complexity relies in the differentiability of
such formulations that must be studied. The other complexity is due to the non linearity
while hyperelastic laws are considered for large deformations. Different criteria will be ex-
pressed and numerical experiments will be performed to reach the best compromise. The
airless tyre being a rolling structure, multiple loads will be performed and so multiple finite
element computations.

In order to describe the geometry, we use the level set method. The latter aims at describing
curves, surfaces and volumes since it highlights the frontier of the structure as the iso-
value zero of, for instance, a distance function. That function has the advantages to be
easily manipulated so that, during the optimization process, the geometry can easily be
transported thanks to a Hamilton-Jacobi equation. By this way, no manipulation of the
mesh is required.

The finite element method permits a good approximation of the structure mechanical be-
havior. We especially exploit the fictitious domains method - based on the XFEM - ma-
nipulating cut finite elements that especially adapt to the geometry at each optimization
iteration. While the fictitious domains method and the level set function are performed in
the same algorithm, only one structured and regular mesh can be used without modification
steps. The mesh is then fixed during all the optimization process which largely accelerate
the algorithm execution.

0.7 Outline

This thesis manuscript is organized in three chapters as follows.

1. The first chapter provides the geometric shape optimization description of a rolling
structure considering the linear elasticity as a first approximation. We present the
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mechanical framework with Nitsche’s method to treat the unilateral contact condition
and the optimization process without any considerations of differentiability of the dif-
ferent formulations and especially of the shape gradient. We expose the relevance of
Nitsche’s method to treat the contact condition. Two criteria are introduced: the clas-
sical elastic energy of deformation and the uniformity of the contact stress, for which
a particular mathematical attention is performed. A very simple geometry of a rolling
structure is proposed and numerical tests are proposed.

2. The second chapter is focused on the sensitivity of the shape gradient in a Nitsche-based
formulation of the optimization problem. Actually, the contact condition involves non
differentiabilities owing to the introduction of projection operators. The criterion is not
differentiable in the classical sense. Yet we introduce a weaker notion of differentiability
so that the shape gradient makes sense. More particularly, we introduce Nitsche’s
method in the adjoint state and we analyze its formulation. An a priori error estimate
is calculated to prove the convergence of discrete variables towards continuous ones.

3. The third chapter introduces the geometric shape optimization with contact through
the finite strain theory. The consideration of large deformations permits to correctly
model the physical behavior of the airless tyre. We expose the mechanical formulation
based on Nitsche’s method again to deal with the unilateral contact condition in the
large strain configuration. More complex geometries are initialized to progressively
reach the airless tyre structure. Hyperelastic laws are proposed to model large defor-
mations and a comparison is done between elastic laws to show in particular the limits
of the linear elasticity. A third criterion is introduced to force the uniformity of the
tyre deflection along its rotation.

This thesis manuscript is then closed by a chapter of conclusions on the achieved work and
the outlook for further potential studies.

In appendix A, we introduce the different mechanisms to force the evolution of the level
set function. The schemes used to transport the level set function are exposed. Along the
optimization process, that same function progressively looses regularity so we propose two
treatments to gain back that regularity: redistancing and smoothing steps. The schemes
associated to these treatments are exposed so as the choice of parameters used in the opti-
mization algorithm.
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Chapter 1

Shape optimization in linearized
elasticity
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1.1 Introduction

The motivation of this first chapter is the optimization of an elastic load-bearing rolling
structure under criteria of compliance and uniformity of the contact stress in a multi-loading
context. This first part follows the same effort as in [14].

In this work, the elastic rolling structure is in contact with a flat ground. This generates
some non-linearity and non-differentiability issues according to the contact approximation.
The latter can be consistent or not, and lead to numerical imprecisions. The elastic rolling
structure is optimized under mechanical criteria such as deformation and stability criteria
while the structure rolls. Thereby, a multi-loading strategy simulates the rotation of the
structure and leads to uniformity criteria on all the loading computations. We derive the
corresponding shape gradient and a descent method classically based on the early ideas of J.
Hadamard [41] and on later developments, such as the formulation in terms of a Lagrangian
due to J. Céa [18] and the adjoint method [66] introduced by J.-L. Lions.

Our purpose is to compare two methods for the approximation of the contact condition in
the shape optimization framework: the penalty approach and Nitsche’s method. We also
introduce two strategies to deal with the uniformity criteria while the structure is rolling. We
propose numerical experiments, representing the geometry thanks to the level set method
to ease its evolution as exposed by G. Allaire, F. Jouve and A.-M. Toader in [9]. We also
use the finite element method to compute the mechanical problem and especially we develop
the fictitious domains method [52, 17| based on cut finite elements to deal with complex
geometries.

We consider a rolling linearly elastic structure occupying in its reference configuration a
domain © C R?,d = 2 or 3 whose shape is to be optimized, an example being depicted in
Figure 1.1. The boundary 0f2 of the domain is split into three non-overlapping parts, I'y, I'c
and I'p. A Neumann condition is considered on I'yy where a force density gy is prescribed.
A contact with friction might occur with a flat and horizontal rigid obstacle on I'c and a
homogeneous Dirichlet condition is prescribed on I'p.
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23 CHAPTER 1. SHAPE OPTIMIZATION IN LINEARIZED ELASTICITY

Figure 1.1: Schematic representation of €2 and the rigid obstacle.

The displacement ug : 2 — R? of the body according to its reference configuration is solution
to the following linearized elasticity problem:

-divo(ug) = f in Q where o(uq) = A e(uq),

olug)n =gy  on Iy, (1.1)
un =0 on ['p,

where A is the fourth order symmetric tensor of elasticity, e(u) is the small deformations
tensor, and n is the outward unit vector to 2. The contact condition on I'¢ will be developed
in the next section. Assuming the isotropy of the material, the tensor A finally reads

o(u) =Ae(u) =2us(u) + Mr(e(u))ly, (1.2)

where ;1 and A are the Lamé material parameters.

For the purpose of our study, we consider that the contact and Dirichlet boundaries I'¢
and ['p are not some optimizable parts. However, the generalization to optimizable contact
and Dirichlet boundaries is rather straightforward. Indeed, in case of optimizable contact
boundaries, the work proposed in [69] should be adapted to Nitsche’s method.

The structure is supposed to roll upon a ground (the obstacle) along its outer radius. We
take this into account by considering NV, load positions, obtained as N; rotations €2; of the
domain 2 (see Figure 1.2), for i from 1 to N;, with regularly spaced rotations of angles
i2m/N;. The displacement for the rotated domain €2; will be denoted u,.
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Q, Q,

Figure 1.2: Rolling structure representation. Two configurations of (2 at different rotations
fori=1,2.

(Classically, the basic optimization criterion we consider corresponds to the strain energy,
which we sum here on each load position:

N
) . 1 ) )

ZJE(Qi,uﬁ) where Jo (€, ug) = /Q §A€(u§2) : e(ug) dz. (1.3)

i=1 i
It aims at minimizing the energy associated to the elastic deformation corresponding to each
domain €2;.
In order to obtain a structure that rolls as uniformly as possible, we introduce a second
criterion. To this purpose, we introduce the mean contact stress on the contact boundary

I'c, where the average is obtained over the different load positions:

A first idea leads to minimize on each load position

L
Jp<QyuQapmean> = / ﬁ(a(uﬁ)n _pmean)QdS(I>> (14>
Te

where L is a characteristic length and E is Young’s modulus.

However, expression (1.4) is not completely satisfactory since the contact stress o(u)n may
not be square integrable in some context and even if it is, continuity of (1.4) with respect
to the problem data cannot be ensured. We develop in section 1.3.3 two more consistent
variants of this criterion.
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Finally, we consider the following global objective function

N
J(Q) = Jy(, ty, Prmean), (1.5)
i=1
where . . |
Jg(Qia Ul(z’pmean) = Je(Qi, UZQ) + aJp<Qia u?)apmean% (16>

and we study the influence of the parameter v on the optimal shape €.

The main contribution of this work is twofold: first of all, we propose a comparison of
the penalty and Nitsche’s method in the framework of shape optimization. The second
contribution of this work is to propose and test an efficient criterion for the uniformization
of the contact stress according to the different load positions.

In section 1.2, we introduce the problem with a frictional contact condition, its approximation
with a penalty approach and a consistent formulation based on Nitsche’s method. In section
1.3, the geometric shape optimization framework is presented. In section 1.4, we introduce
the discretization used and the optimization method. Finally, in section 1.5, we present
some numerical results which highlight the interest of Nitsche’s method and the efficiency
of the geometric shape optimization to obtain optimal domains {2 that minimize the criteria
previously introduced.

1.2 Weak formulation of the contact problem

In this section, we describe the unilateral contact condition with friction on the boundary
I'c and provide the weak formulation of the elastic problem for both a penalized contact
condition and Nitsche’s method.

1.2.1 Classical weak inequality formulations

The displacement ug : 2 — R? of the body according to its reference configuration satisfies
the equations of system (1.1). To derive a weak formulation, let us also introduce the Hilbert
space V = {v € HY(Q;R?) : v = 0 on I'p} and the two applications a : V x V — R and
¢:V — R, defined for all (u,v) € V x V by

a(u,v) = /ﬂAs(u) e(v) dz,
l(v) = /Qf(:)s) -V dx+/FNgN-U ds(z).

Then, using Green’s formula and under regularity assumptions, one shows that the displace-
ment field uqg € V satisfies

a(u,v) — /1“ o(u)n-vds(z) =L(v), Yvel. (1.7)
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The obstacle is supposed to be rigid and flat. We consider n,, the inward unit vector to the
rigid obstacle and g the initial gap between the elastic body and the obstacle (see Figure
1.3). On the contact boundary I'c, the displacement u :  — R? is decomposed into its
normal component u,, = u - n, and its tangent one u; = ( — n, ® n,)u such that

U = UpNy + Uy

Figure 1.3: Contact surface representation for the vertical load configuration.

The initial gap between the body and the obstacle is defined on = € I'c by

g=ny-(y—x),
where y is the orthogonal projection of x upon the rigid obstacle. We note also the decom-
position of the contact stress on ' into normal and tangent parts:
on(u) = (o(u) n) -ny,  ox(u) = (Ia = ny @ny)(o(u) n).
The unilateral contact condition on I'c can be expressed by the following complementary
condition:
(un -9 )
on(u)

(tn — g) on(u)

IA A
o o o

In case of frictionless contact, the displacement uq is the minimizer of the energy %a(u, u)—
¢(u) on the convex K of admissible displacements satisfying the non-interpenetration condi-
tion on the boundary I'c defined as

K={veV:v,—ge€ Ky}, Ko:={vel*Il¢):v<0}
The corresponding optimality system reads (see [32])

{Find u € K such that (1.9)

a(u,v —u) >Ll(v—u), YveK.
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Under standard assumptions, the existence and uniqueness of the solution to problem (1.9)
is a direct consequence of Stampacchia’s theorem (see [34]).
The classical Coulomb law of friction can be written on I'¢ as

lor(u)| < —Fo,(u) ifa, =0,
o(u) = fan(u)ﬁ otherwise,

where F > 0 is the friction coefficient, depending on the couple of materials in contact and
1y is the sliding velocity. The Coulomb law of friction is usually approximated by replacing
the sliding velocity by the finite difference

uy — u?

At
where u) stands for the tangent displacement at an initial time step and At the time step.

For the sake of simplicity, taking u? = 0 leads to the so called static Coulomb’s law of
friction:

{|at(u)| < —Fop(u) ifu =0, (1.10)

o(u) = Fou(u )“Z| otherwise.

In case of contact with friction, the displacement ug is solution to the following weak in-
equality formulation (see [32]):

Find v € K such that (1.11)
a(u,v —u) + j) —ju) > l(v—u), YveK, .
where j(v / Fo,(v)|vg|ds(x). The existence of solutions to Problem (1.11) is ad-

dressed for instance in [60, 33] and is not generally ensured for arbitrary large friction co-
efficients. Condition of uniqueness of the solution to this problem still remains an open
question, partially addressed in [85, 56, 57].

1.2.2 Weak formulation with a penalty method

The penalty method (see [61] for instance) is a simple way to treat contact problems. It
involves an additional weak term in the weak formulation standing for a stiffness at the
boundaries limiting inter-penetration between the body and the obstacle. It is non-consistent
in the sense that it represents a supplementary approximation of the contact condition. For
v > 0 the penalty parameter, the frictional contact conditions (1.8) - (1.10) are approximated
by

on(u) = =7[g = tn]-,

(1.12)
O't(U) = PB(ny,p(u))(’yu)7
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where p(u) = Fylg — u,)- is the friction threshold, the negative part being defined by
[z]- = 1(|z| — x),Vz € R and the projection of an element = € R? on the ball B(n,, p(u)) of
radius p(u) on the tangent plane with respect to n, (see also [84]) is defined by

. - (Ig—ny, ®@ny)q if |(Ig—ny, ®ny)q| < p,
B(ny,p)<Q) - ({a—ny®ny)q

herwise.
P(Ta=ny@ny)d] otherwise

Recall that using (1.7) the displacement field ug € V satisfies
o, v) — / (on(W)vn + ou(u) - v)ds(z) = £(v), Vo€ V. (1.13)
e

Finally, a weak formation for the penalty method can be easily deduced by incorporating
equalities (1.12) in (1.13) which conduces to introduce the solution u5 € V' of

a(u,v) +Ip(u,v,n,) =L(v), Yv €V, (1.14)

where the penalty contact term Zp(u, v, n,) is

Zp(u,v,ny) :/ (V[ — un)= vn — P, pu))(y1) - ve)ds(z). (1.15)

Te

We refer to [32, 28] for the existence of a solution to problem (1.14).

1.2.3 Weak formulation using Nitsche’s method

Nitsche’s method, presented by J. Nitsche in [77], aimed first at treating Dirichlet condi-
tions. The Nitsche method we used to account for the contact condition with friction was
originally introduced in [23, 25] for frictionless contact, then generalized to Tresca’s friction
in [21] and Coulomb’s friction in [24] (see also the overview [22]). The Nitsche method intro-
duces a contact term which weakly prescribed the frictional contact conditions (1.8)-(1.10)
in a consistent manner (see for instance [86] for the numerical efficiency of Nitsche’s method
compared to other classical methods). It is based on the equivalent reformulation of the con-
tact conditions which has been originally derived from the augmented Lagrangian approach
[3] and reads as

on(u) = =lon(u) — y(un, — g)]-,

ot(u) = Psn, o) (0 (w)n —yu), (1.16)

where p is now defined by p(u) = Flo,(u) — y(u, — g)]-. More precisely, incorporating

1 6 1 6
Up = —;(Oan(v) —vn) + ;UNO})’ v = —5(9@:(”) — o) + §Ut(”)7
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29 CHAPTER 1. SHAPE OPTIMIZATION IN LINEARIZED ELASTICITY

for a fixed # € R in the weak formulation (1.7), we see that Vv € V|

a(u, v) — /F 0 (o (v) ds(z) + /F L (1) (B0 (v) — yuu)ds(z)

¥ 8
(1.17)
0 1
- /rc §at(u) op(v)ds(z) + /pc v oy(u) - (0o (v) — yv)ds(x) = £(v),

which becomes

a(u, v) — /F 0 () (v)ds(x) — /F % () - oy(v)ds(z)

ol Y
[ 2 o) =2 = 9 @) s

1
+ / ;st(ny,p(u))(O'(U)n —u) - (0 0u(v) = yv)ds(z) = L(v), Vv eV,
o]

by using additionally (1.16). Finally, the Nitsche approach conduces to define the solution
ud to
a(u,v) + In(u,v,n) = £(v), Yo € V, (1.18)

where the contact term Zy (u, v, n) reads

In(u,v,n) = —/F QO'n(u)O'n(U)dS(l‘) —/F Qot(u) -oy(v)ds(z)

Y v

1
_ /FC - [on () = (un = g)]= (0 on(v) —yvn)ds(z) (1.19)

i /rc %PBwyw(u))(U(U)n —yu) - (0 0¢(v) — yvr)ds(z).

Remark 1. The introduction of the parameter 0 leads to different variants acting on the
symmetry, skew-symmetry or non-symmetry of the contact term (see [25]). In particular, in
the frictionless case, when 8 = 1, the formulation is symmetric and admits a potential energy.
When 60 = 0, a non-symmetric method is set whose formulation is closer to the penalty
approach described in 1.2.2. Finally, when 6 = —1, the contact term is skew-symmetric and
leads to interesting properties independent of the Nitsche parameter ~y.

1.2.4 Analysis of a Nitsche-based finite element method

Let V* C V be a family of finite dimensional vector spaces indexed by h coming from a family
T" of triangulations of the domain  supposed to be polygonal for the sake of simplicity
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(h = maxpernhy where hp is the diameter of T'). The family of triangulations is supposed
regular (i.e., there exists o > 0 such that VI' € T" hr/pr < o where pr denotes the radius
of the inscribed ball in T') and conformal to the subdivision of the boundary into I'p, 'y
and I'c (i.e. a face of an element T' € T" is not allowed to have simultaneous non-empty
intersection with more than one part of the subdivision). For instance, a standard Lagrange
finite element method of degree k reads

Vh={o" e €20 v pe (P(T), VT € T",v" =0 on T'p}. (1.20)

Let v be a piecewise constant function on the contact interface I'c defined for any x €
['c lying on the relative interior of I'c N'T" for a (closed) element 7' having a non-empty
intersection of dimension d — 1 with I'c by

)

where 7 is a positive given constant. The generalized Nitsche-based approximation then
reads:

Find u" € V" such that
a(u, o) + Iy (ut, v, n) = L"), Vot e VI

The advantage of Nitsche’s method over the penalty approach is its consistency which can
be established in the following sense.

Lemma 2. Suppose that the solution u of (1.1), (1.8) and (1.10) is in (H2t"(Q))% where
d=2,3 and v > 0. Then u is also solution, Yo" € V", of

a(u, v") + Iy (u,v" n) = £(v").

Proof. Let u be the solution to (1.1), (1.8) and (1.10). Let v be in V. Since u € (H2t(Q))¢
and v > 0, 0,(u) and oy(u) € H"(I'¢) C L*(T'¢). As a result,

a(u, v™) — /F %an(u) o, (V") ds(z) — /F %at(u) oy (v") ds(x),

makes sense, and o, (u) — y(u, — g) and o(u) — yu; € L?*(I'¢). Using the reformulation of
on(u) and oy (u) in (1.16) and formulation (1.17), it holds:
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a(u,v™) — /FC

)

Qat(u) oy (v") ds()

|
Q
3

(1) (") ds(o) ~ [

re

7
_/F %[gn(u)—fy(un—g)]_ (90n(vh)—’yUZ) ds(a:)
# [ Potnsn (o n =30+ (Bo0(a") o) dia)
hy — Qauavh s(x) — QUU'UUh ST
= a(u, ") /m (000" dsta) = [ Zou) o) )
_ / C %mw (B0u(o") — ") ds(z)
+ / %m) (B0, (v") — o) ds(x)

Q

Q
3

= a(u,v") — /FC

In the same time, using an integration by parts, it holds:

(u)v! ds(z) — / oy (u) - vl ds(z).

e

a(u,v™) — / on(u)v! ds(z) — / oy(u) - o ds(z) = £(v"),
I'c I'ec
which ends the proof, as the equality is strictly respected, whatever @ is. O

The well-posedness and the consistency are analyzed in [23] and [25] for the frictionless
formulation. When 6 = —1, the well-posedness does not depend on vy anymore, which
implies that the value of # = —1 is a convenient choice for the rest of the computation if
robustness is required. Concerning the Nitsche-based formulation with the Coulomb law of
friction, the existence of solution is studied in [24].

1.3 Geometric shape optimization

The geometric shape optimization aims at minimizing a criterion J({2) to find the optimal
shape of a structure by forcing the domain frontiers to evolve. The energy of the structure
can be expressed as a target criterion. If several criteria must be minimized, that energy can
be a combination of these criteria and lead to a multi-criterion optimization. The generic
formulation for the energy or the target criterion might be expressed as

J(Q) = /Q/\/l(ug, r)de+ [ N(ug,z)ds(z), (1.21)

o0
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where ugq is defined as the solution of
a(ug,v) + Z(ug,v,n) = L(v), Vv € V.

Here the contact term Z is written as Z(u,v,n) = Zp(u,v,n) or Z(u,v,n) = Iy(u,v,n)
according to the contact approximation used. Here again, M and A are two functions
assumed to be sufficiently smooth so that the shape derivative of J is well defined.

Remark 3. As specified for instance in [69], it is often assumed, in order to ensure that the
criteria and the adjoint state are well defined, that

M) < CO+aP),  IN(u2)| < L+ Juf) o)

M (u, z)[v]|< Clulfv, N (u, z)[v]] < Cluflv], '
or some constants > 0 which includes the case of the compliance energy when it is
f C hich ludes th f th [ h
expressed as

J(Q):/quQ dx—i—/FNgN-uQ ds(z).

Yet using additional frictional contact terms, it is not clear whether this expression takes
properly into account the elastic strain energy or not and we prefer to use the following

formulation

1
J(Q) = / —Ae(ugq) : e(ug)dz,
a2
which unfortunately does not meet the above conditions. However, as we will see later, these
conditions are not necessary to obtain the existence of the shape derivatives of the criteria
we use.

Let D C R? be a fixed bounded and smooth domain whose boundary is split into I'c and I'p,
supposed in our case to be some fixed non-optimizable boundaries. Let €2,, be the admissible
set composed of all smooth open domains €2 having I'c and I'p as parts of its boundary and
having an additional optimizable boundary I'y (see Figure 1.1)

Qua := {Q C D|Q open and of class €', Tc € Q,Tp C Q}.

Then, the shape optimization consists in finding some domains 2 € (2,4 minimizing the
target criterion J(2) with a volume constraint.

Note that we use the following notation of the directional derivative of an element A with
respect to x in the direction y:
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1.3.1 Shape derivative

The differentiation with respect to the domain aims at modifying the reference state of the
domain Q € Q.4 using the boundary method first described by J. Hadamard in [41] and then
developed for instance in [54], [74], [83], [93] and [97]. Let © € WH=(R% RY) N€*H(R?) be a
vector field displacing the reference domain €2 towards different admissible shapes €2; € €,4.
The domain variation in the direction t© reads for ¢ small:

Q, = (Id + t0)(%).

The shape derivative D J(Q)[O] of J(Q) with respect to the reference domain € in the
direction © is defined as the derivative on ¢ = 0 of the application t — J(£2;) when it exists
and gives

J() = J(Q)+t DJ(Q)[O] + o(t).

Recall that the shape gradient for general functional in a context of linear elasticity with
penalized contact is derived in [69]. We develop the case where Nitsche’s method is used to
deal with the contact although the contact boundary I'¢ is not optimized.

Theorem 4. Let Q) € €2 and assume that f € H(Q;R?), gy € H*(Q;R?) and that (1.14) or
(1.18) admits a unique solution ug, € H'(Qy; R?Y) for t small enough and © € WH*(R%, R?).
If we denote D J()[O] the Gateaux derivative of J(S2) with respect to §2 in the direction
O € W (R4 RY) and pq € V defined as the solution of

a(va) + D, I(UQ,p, 77,) [Q] = gun (C]), VgeV, (1'23)

where
Q o0
we have when this derivative exists and for uq,po € H*(Q,RY):

DIQ)O] = / (0 1) (M(ug,z) + Ac(ug) : =(pa) — F(z) - pa) ds(z)

m

+ / (©-n) (km N(ug, ) + VN (ug, ) - n) ds(x)

m

_ / (©0) (5 pa g+ (Ve g)) ) ds().

where Ty, is a moving boundary of Q, assuming 'y, NT¢ =1, NT'p = 0, K, is the mean
curvature of 0€).

Remark 5. As explained previously, the existence of adjoint state problem requires that the
applications q — D, M(ugq, x)[q] and g — Dy, N (uq, x)[q] must be continuous in V', which is
clearly the case under assumptions (1.22). However, these conditions are sufficient but not
necessary to verify these continuity properties.
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We develop now the Lagrangian method introduced by J. Céa [18] which aims at describing
a constrained optimization problem. To this end, we first present two useful results: let €2
be a bounded open and regular set from R

o Let f € HY(Q) and let the application J : Q.4 — R defined by

J(Q) = / (@) da.
Q
Then J is differentiable with respect to € in the direction © € ¢ (R?, R?) and

DJ(Q)[O] = ©-n f(x)ds(x).

oN

e Let g € H(Q2) and let the application J : .4 — R defined by
J(§2) :/ g(x) ds(z).
o)
Then J is differentiable in € and for all © € €*(R? RY) and

DI(Q)[6] = /a 60 (Vg(o) -+ kng(a) difa)

Proof of theorem (4):
We intend to minimize the criterion J(2) given by (1.21) under the constraint that the weak
formulation (1.14) or (1.18) is satisfied. Let £ the Lagrangian application defined by

L(u,v,n,Q) = J(Qu)+ (a(u,v) + Z(u,v,n) — £(v)).
where J(Q,u) = /M(u, x)dx +/ N (u,z)ds(xz). The key is to remark that J(Q2) =
0 o0
J(£2,uq) and then to identify J(Q2) as
J(Q) = L(ug,v,n,Q).
If £ is differentiated with respect to the domain €2 in the direction ©, it gives

D J(Q)[6] = D [L(ug, v, n, Q)] [O]
= Dq L(ugq,v,n,Q)[O - n] + D, L(ug,v,n, 2)[Dqn[O]] (1.24)
+ D, L(ug,v,n,Q), [DqualO]].

Yet Dg uq[O] can not be explicitly calculated. In order to vanish the last term of equation
(1.24) and obtain an explicit formulation of the shape derivative of J, the idea is to follow
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the method of the adjoint state introduced by J.-L. Lions in [66]. More precisely, let po € V'
be defined as the solution of

D, L(ug,pa,n,N)[q] =0, Vge V. (1.25)
Then, evaluating the equation (1.24) at v = pg shows that

D L(ug, pa,n,Q)[O] = Dq L(ugq, pa,n, Q)[O - n]
+Dn£(u97p97n7 Q)[DQ n[@]]7

as Dq uq[B] € V. Moreover, the term D, L(u, p,n,2)[g] can be identified as
Dy L(u, p,n,Q)|g] = alg, p) + DuL(u, p,n)]q|
+ / D, M(u,z)[q] dx + [ D, N(u,x)[q] ds(x).
Q

onN

This leads to the following explicit expression of the shape gradient in linear elasticity:
DJ(Q)O] = / (©-n) (M(ug,x) + Ac(ug) : (pa) — f(x) - pa) ds(z)
+ / (©-n) (Km N(ug, ) + VN (uq, ) - n) ds(z)
- / (@) (mpa gy + (oo~ ga) ) ds),

as I, NT'c = 0 and Z(u,p,n) is an integral term defined on T'¢.

O
Remark 6. In case where the Neumann condition gy corresponds to a pressure term, the
latter depends on n since gy = —p™n where p" is the constant pressure. The shape gradient
reads then

DIQ)O] - / (O 1) (M{un, ) + Ac(un) :<(pr) ~ £(2) - pr) ds(a)
L+ / (O 1) (in Nun,2) + VA (un, ) - ) dsa)
T / (O s pa o (Vi pe) ) A0
of WP r(0) ds(a),

on

where n'(0) = =V4(© -n) = =V(O -n) + (0 - n)n. Recalling the following integration by
parts, if Q is a closed and reqular set of R, f € W2YRY, RY)and for all © € WH (R RY):

/Ffdin@ ds(z) = /F((@ n)(frhm) — Vif - O) ds(x),
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where div r© = divO — V(O - n) - n, which gives
DIQ)O] = / (O) (M, 2) + Ac(a) : <(pa) = F(x) - pa) ds(a)
n /F (O 1) (km Nun,2) + VA (ug, 7) - ) ds(z)
+ / (O (s pa o+ (Vi) ) ds(0)
_ /MFN(@ 1) P (Kmpa - n — divrpa) ds(z),

and it finally holds, in case of pressure term for the Neumann condition:

pI@el = [

Im

+/Fm(

+ /F . (©-n) pdiv (pa) ds(x).

(© - n) (M(ug, z) + Ae(uq) : £(pa) — f(2) - pa) ds(z)
©-n)(k

m N (ug, z) + VN (ug, ) - n) ds(x)

1.3.2 Contact term

In this section, we give an explicit formulation of the contact term and its directional deriva-
tive in the adjoint equation.

Case of the penalty method

In this case, we have Z(u,v,n) = Zp(u,v,n) defined by (1.15). The derivative term D,, Zp(u, p, n)[q]
from (1.23) can then be developed as

Dy Zp(u,p,n)lql = — / (v H(=(9 = un))dn P + Du Pan, o)) (Y1) 1G: - 1) ds(z),

INe;

where H is the Heaviside function defined by H(z) = 1 for z > 0 and H(z) = 0 other-
wise. Moreover, the computation of D, Pg(n ) ((y®)) is obtained thanks to the the partial
derivatives of the projection ball Pz, r)(¢q) according to ¢ and 7. Indeed, it reads (see [84])

0 for 7 <0,
aqf)B(n,‘r) (Q) = Tn if |Qt| S T,

T T qt at s
= — At & 4L) otherwise
|Qt|( L ® \Qt|) ’
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and
0 forT<Oor|g|l <,

otherwise,

aTPB(n,T)(Q) - {q_t

gt

Where T, is defined by T,, = I; — n ®n, ¢ = T,,q. We refer to [19] for the differentiability
of the penalty approach.
Case of Nitsche’s approach

Concerning Nitsche’s method, we now have Z(u,v,n) = Zy(u,v,n) defined by (1.19).
The directional derivative D, Zyr(u, p,n)[q] from (1.23) has the following form

D, T (u,p.n)lq) = / <—§on<q>an<p> —§Ut<q>-at<p>
+ 2 H=(on0) = 3 ~ 9))(0(0) = 702) 0 30(p) — 100 (1.26)
1

2 DuLoiuypa (o(wn = yu)(en(a) =1¢0) - (6 o(p) = p)) ds().

Remark 7. Note that the term D, Zn(u,p,n)[q] is not clearly defined in the continuous
framework because of the possible lack of reqularity of ug and pg. In this chapter, we focus
only on the discrete case which does not pose any existence problem. The analysis of the
convergence of the solutions of the discrete problem will be addressed in the next chapter
where we discover by the way that the above term (1.26) does not lead to a consistent adjoint
state formulation.

1.3.3 Criterion minimization

The main energy that is to be minimized, namely the elastic strain energy and defined by
(1.3) can then be expressed in the general form (1.21) by considering

M(uly, ) = %Ae(u}z) s e(uf) and N (ufy, v) = 0.

Consequently, the associated term in the adjoint equation of the strain energy criterion (1.3)
reads

Dy Jo(Q,uq)lq) = /QAe(q) s e(ug) dz.

Note that a sufficient condition for the adjoint equation to make sense is that ¢ — D, J.(€2, uq)|q]
is continuous in V' which is satisfied here even though the term do not meet the conditions
(1.22).

An additional criterion developed in this work consists of uniformizing the contact stress on
the contact boundary of the rolling structure according to the load positions. As mentioned
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in the introduction, a first natural idea would be to minimize the objective function (1.4).
However, this expression is possibly difficult to define according to the regularity of uf, whose
basic guaranteed regularity is to be in H*(£2, R?). Assuming additionally a square integrable
right hand side, the trace o(uq)n on I'c belongs only to H~/2(T'¢,RY) (see [61]) and not
necessarily to L?(I'¢, R) meaning in particular that there is no continuous dependence of the
objective function (1.4) with respect to the data of the problem.

Two variants of the criterion will be developed to recover this continuity. A first idea is to
thicken the contact boundary of a size € , which leads to the first criterion

L
Jp,l(Qa uQ7pmean) = / E(U(uﬂ)n - pmean)dea (127)
rg, <€

where € > 0 is a fixed small length, I'¢ is an annulus delimited by I'c on the exterior and
of thickness € and n is an extension in the domain I'i, of the unit outward normal vector
on I'c. A second idea is to consider a criterion depending on the H~'/2(T'¢, RY)—norm by
considering the energy

1
Tp2(Q, 10, Pmean) = 5[l (u0)n = pmeanl |21 j2.0c (1.28)

where here and in the rest of this work, || - ||s. stands for the H*(w)—norm.

In order to simplify the minimization of J,; and J, 2, we treat the computation of py,eqn by
freezing it to the value at the previous optimization step. It has the advantage to uncouple
the computation of the adjoint problem on each load position.

Uniformity of the contact stress on the thickened boundary

As explained previously, a first strategy consists in thickening the contact boundary with a
size € which leads to the criterion (1.27). It can be expressed in the general form (1.21) with

L
M(ug,x) = E(O’(UQ>H — Dimean)? xre, (z) and N (ug,z) =0,
1 ifxely,

where xr¢, () = . In that case, the associated term in the adjoint equation

0 otherwise

of the contact stress criterion from equation (1.27), assuming p,eq, known in advance, reads
as

Do T 1 (2, s, Prcan) 6] = / L o (ue)n = pmean) - 0(q)n da.

re, FEe

Note that in this case, ¢ — Dy, Jp1(2, Uq, Pmean)[q] is continuous on V.
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Uniformity of contact stress using a H~'/%(I'¢, RY)—norm

The second strategy consists in minimizing the functional (1.28). It can be expressed con-
structively using a Neumann to Dirichlet operator (see for instance [85] and [2]). Indeed, let
B be a fixed domain whose boundary is decomposed as the union of I'c and I'p. We first

introduce the norm || - || 1 defined by

iy e e

inf |zl

Hw|’Héé2(Fc,Rd) - 2€Vo,z=w on T'¢

where Vy = {v € H'(B;R%),v =0 on I'p} and

2|3, = /BA e(z) : e(z) dz.

The norm || - [|_1/2,r is then defined as the dual of || - HH%Q(FCR) by
lolojare = sup Py 4022
cent2romy a0 1Al meeem 2 (2l

In particular, we can show that
lgll-1/2.0¢ = [lwlglllv,
where w[g] € Vj is defined as the solution of

-divo(w) =0 in B where o(w) = Ae(w),
olwn =g on I'¢, (1.29)
w =0 on I'p.

The weak formulation of (1.29) reads as

/BAs(w[g]) e(z) de = (g, 2),Vz € Vj,

which shows also by using z = w|g] that w[g] satisfies
%/BAE(W[Q]) se(wlg]) de = (g, wlgl) = /FC g - wlglds(x).

Using these equalities, the criterion for the uniformization of the contact stress finally reads

1

1
Tpal 0, ) = 00~ Prscanl1 s = 3wl
1 1
== / o(wgq) : e(wg) de = —/ g - wgq ds(z)
2 /s 2 Jre

- % /Fc (0(uQ)n = Pmean) - wa ds(z).
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where wg = w[o(ug)n — Pmean] 18 the solution to (1.29) for g = o(ug)n — Pmean-

Still assuming p,,eqn known in advance, the associated term in the adjoint equation of the
H~'2(T'¢, R%)—norm criterion reads

D, Jp2(2, U0, Prean)[q] = %/QDU Ae(wq)?[q] dz
- / Ac(wg) - e(wlo(g)n))) da
= [ clam-un dsta).

where w[o(q)n] is defined as the solution to (1.29) for g = o(g)n. As previously, the existence
of the adjoint would expect the continuity of ¢ — D, J,2(2, uq, Pmean)[q] in V' which is not
satisfied but is the case in a subspace H, = {v € V : div(c(v)) € L*(Q)} containing the
solutions of the contact problem.

Remark 8. The Dirichlet to Neumann operator can also be defined by an intermediary
Poisson problem instead of the elasticity problem (1.29). The preference given here to the
elasticity problem 1is guided by mechanical considerations.

1.4 Numerical strategy

The aim of this section is to introduce the optimization method to minimize the objective
function given by (1.5) and (1.6). Since the optimization is to be performed on the whole
structure, it would be necessary to make computations for all the load positions. In order to
save some computational time, we assume a certain periodicity of the structure, using its axi-
symmetry, and we perform computations only for the load positions corresponding to a single
sector of the structure. The structure is divided into Ny = 16 sectors (see Figure 1.4) and we
perform the computations on N, load positions corresponding to only one sector, regularly
spaced in rotations of angles i27w /(NN x N) for ¢ from 1 to Ny. Then the computations for
the load positions corresponding to the other sectors are deduced by a simple rotation, so
that we obtain at the end the computations for N; = N; x N, load positions. In practice,
the load is imposed using Dirichlet boundary conditions on the entire I'p boundary in the
direction n,, i.e. u = apn,, where the constant ap is determined to obtain an overall load
of 300 kg. A more precise description is the subject of section 1.4.2.
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Figure 1.4: Periodicity of the domain €2. On the left: the domain drilled by 16 circular
holes and on the right: focus on the sector corresponding to the load positions for which
computations are performed.

We consider a minimizing sequence 2% of J starting from an initial domain Q° and taking
volume and symmetry constraints into account. From a domain QF, we intend to reach a
domain Q! by performing the following steps:

For each load position on the first sector, for i from 1 to Ny, we compute “ﬁk the
solution to the direct non-linear problem (1.14) or (1.18) approximated by a finite
element method. The solutions u&k for ¢ from Ny + 1 to Ny X Ny are deduced by
rotations of solutions on the first sector.

The mean contact stress p¥,,,, is computed on I'c:

1
pfueanzﬁd i (O-(U';)k)n)

For each load position on the first sector, for ¢ from 1 to N, we compute pézk the
solution to the adjoint problem (1.25) approximated by a finite element method. The
solutions pézk for ¢ from Ny + 1 to Ny x N, are also deduced by rotations of solutions
on the first sector.

For each load position, we compute the shape gradient of .J,(QF, uézk) which we har-
monically extend into the holes by solving a Poisson equation.

We sum each term to obtain the shape gradient GF = V.J (%) of J(QF) on all the load
positions.

We prescribe the volume to remain constant thanks to a penalization on the gradient
as GF = G* — )\ where )\ = 8 % (max(G*) — min(G*)) * (r? — r¥) is the Lagrange
multiplier with ¥ the volume ratio at iteration k.

We compute the new shape Q1 by approximating the equation QF+! = (I;,—8,G*)(QF),
0 being the descent step of the shape optimization.
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As an illustration, Figure 1.5 successively depicts the treatments led on the shape gradients:
The computation of the shape gradient on a load position, the harmonic extension of that
shape gradient, and the summed gradients, periodically repeated on the different sectors
and the additional correction for volume constraint. We describe more precisely the finite
element method, using cut elements, used to compute the mechanical behavior of such a
geometry in section 1.4.3.

45. 0.6
[ 40. l 05 .
- 35.E 0
- 30.5 —03%
2.9 025
25 —o01
—20. 00 &
—15.8 =012
[ -02¥

-0.3

Figure 1.5: Successive shape gradient treatments. Left to right: the shape gradient com-
puted on the cut elements from the solutions uqgr and pqr, the harmonic extension of the
shape gradient on the complete mesh and the symmetry and volume correction of the shape
gradient.

1.4.1 Domain representation and level set function

The level set method has been introduced by S. J. Osher and J. A. Sethian in [79] to
describe a geometry and its evolutions. The first applications of the level set method were
about geodesics, lithography, generation of minimal surfaces, propagation of flame fronts
and fluid interfaces. This method was first introduced for shape optimization applications
by S. J. Osher and F. Santosa in [80] and then by G. Allaire et al. in [8] and [9]. Let D C R?
still being a fixed bounded domain in which the domain 2 is included. The representation
of the domain 2 in D is expressed by a function ¢ defined in D as:

Y(z) =0if z € 09,
U(z) < 0if z € Q,
(x) > 0 otherwise.
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Level set function (cm)

Figure 1.6: Level set representation of the domain.

The interface between holes and matter is represented by the zero value of the level set
function. The level set representation and its evolution is more largely treated in appendix

A.

1.4.2 Load condition on a rigid rim

Aiming at a model closer to a load-bearing rolling structure, the Dirichlet condition on
I'p is replaced by a rigid boundary condition (rim) that is only allowed to have a vertical
rigid motion and is subject to a global load. Denoting gp the prescribed load and ap
the unknown vertical rigid displacement on I'p, the weak formulation reads now: Find

u€V,ap € R, \p € HV/2(T'p)? such that Vv € V,¥pp € R and Yup € H/?(T'p)?,
a(u,v) +I(u,v,n) = / f(z)-vde +/ (Ap v+ (u—apny) - up + (Ap - ny — gp)PBp) ds(x),
0 T'p

where Ap is a multiplier representing the force density on I'p introduced to enforce the
condition.

Consequently, a new term is added to the adjoint problem on I'p and the two new variables
ap and Ap are introduced in the Lagrangian. The adjoint problem now reads Vg € V,Vq,,, €

R and Ygy, € H-Y(T'p)",

Du AC(UJ% ap, >\D7n7 Q)[Q] + DOcD 'C(uapa ap, )\D,?’L, Q)[Q(XD]
+ ,D)\D E(u7p7 ap, >\D7 n, Q)[q)\p] = 07

which leads to find p € V,pa, € R,pr, € H V2('p)" such that Vg € V,Yq,, € R and
Var, € HY2(Tp)"

a(q,p) + Dy Z(u,p,n)[q) = Cu(q) + / (Prp -4+ (P — Papny) - Gy, — Prp - Nylayp) ds(z).
I'p

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



CHAPTER 1. SHAPE OPTIMIZATION IN LINEARIZED ELASTICITY 44

1.4.3 Finite element discretization and fictitious domains method

To compute each direct and adjoint problem on the evolving domain QF, we use a fictitious
domain method with respect to the fixed domain D containing QF. The fictitious domains
method used in this work is close to the Xfem approach proposed first by N. Moés et al.
in [72] for crack growths and then for contact stakes in [31, 38, 76]. The fictitious domains
method is presented in [52, 16] and applied to the unilateral contact and to Nitsche’s method
in [35]. One of the main advantages of this method is its optimal convergence, including when
a high-order base finite element method is used. It mainly consists in considering a classical
finite element method, here a Lagrange P, finite element on the polar grid also used for
the level set discretization, and taking its restriction on the real domain Q2*. Consequently,
only one fixed, regular and polar grid is manipulated for the level set and the finite element
method. As an illustration, Figure 1.7 successively depicts an example of a polar structured
mesh of the fictitious domain D, the mesh cut by the level set representing QF and the
computed direct solution ugr using a Lagrange P, cut finite element method.

The discretized non-linear direct problems are solved with a non-smooth Newton-Raphson
algorithm. The finite element software used for the analysis is GetFEM++ [87] with its
python interface.

0.00
-005L
-0.10E
-~ -0.15 €

-045 9

Figure 1.7: Left to right: the structured polar mesh, the mesh cut by the level set representing
Q% and a direct solution ugr plot on the deformed mesh.

It has been noted in [52, 16] that an optimal approximation of the gradient of the solution is
not achieved in the cut element method without the addition of a stabilization term, mainly
on elements having a very small intersection with the real domain QF, as illustrated in Figure
1.8. Since the calculation of the shape gradient requires the computation of the gradient
of the displacement on the level set itself, we added a stabilization term to ensure a good
quality of the approximation. We have chosen to use the so-called ghost penalty method
proposed by E. Burman and P. Hansbo in [15]. It aims at penalizing some inter-element
jumps, on the elements cut by the level set. It consists in adding a stabilization term to the
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direct problem which then reads

Find u" € V" such that Yo" € Vh,
a(uh, Uh, N) + I(Uhy Uha N) + G(uh7 vh7 N) = €<Uh)7

where G is the ghost penalty term

G(u,v,n) = Z %/E%[[O'(u)nﬂ - [o(v)n] ds(z),

Ec&k

where £F denotes the set of edges (for d = 2) or faces (for d = 3) of the mesh having a non
empty intersection with 9QF, [[a(u) nﬂ denotes the inter-element stress jump over E, n is
a unit normal vector to F and £ is the penalty parameter. The same term is imposed in the
adjoint equation (1.23) and reads

D.Glupnld = Y 5 [ Eleton] - [on] dsta).

Ecgk

Figure 1.8: Example of a structured mesh at the interface with a hole. The red areas depict
cut elements having a small intersection with the domain QF where the gradient of the
solution may be of poor quality.
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von Mises stres

Figure 1.9: Focus on the von Mises stress of two solutions of the direct problem near a hole.
On the left the stress jump is not penalized to compute the solution (£ = 0) and on the right
the stress jump is penalized (¢ = 1073).

To illustrate the influence of the stabilization parameter, Figure 1.9 shows that the stress
(here the von Mises stress) can be badly estimated on the elements having a very small
intersection with the real domain in the absence of a stabilization term (£ = 0), whereas the
application of a small stabilization term (¢ = 1073) allows to recover a good approximation.
In the following, all the computations are performed with a penalization parameter £ = 1073.

1.5 Numerical experiments

In this section, we present a set of numerical tests, beginning with a simple initial geometry.
The objective is successively to evaluate the difference in behavior of the penalty and Nitsche
methods for the approximation of the contact condition, and to evaluate the different criteria
of uniformization of the contact force density. Finally, we illustrate the shape optimization
on more complex initial geometries.

1.5.1 Geometry setting

We consider the domain as a ring with an inner radius R; = 20 cm and an outer radius
R. = 34 cm containing sixteen regularly spaced holes of radius r = 4 cm (see Figure 1.10).
The ring width is set to w, = 12 cm. The domain is divided in Ny = 16 sectors for periodic
simplification. We compute N; = 8 mechanical load positions per sector.
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Figure 1.10: Schematic representation of the domain.

The Young modulus is set to £ = 200 MPa and the Poisson ratio is v = 0.48. A contact
might occur on the boundary I'c upon the outer radius R, with a flat rigid body representing
the ground. A load condition is set on the rigid boundary I'p, upon the inner radius R; and
the load is supposed to be 300 kg.

1.5.2 Minimization of the sole elastic strain energy

A first optimization is performed on the simple initial geometry with only a minimization of
the elastic strain energy J.. The result is presented in Figure 1.11 for a contact condition
approximated by Nitsche’s method with parameters v = E/hy and 0 = —1.

1
~-0.10% l -0.05%:
—-0.15E —-0.10 ¢
— 0209 0158
0259 02098
i g-gg 5 0255
0409 0308
0459 0359
o T by

Figure 1.11: Shape optimization for the sole strain energy. The vertical displacement is
displayed. Contact treated by Nitsche’s method. From left to right: first iteration, 20th
iteration and 100th iteration.

The circular holes progressively radially lengthen along the optimization process to bring
stiffness and to reduce deformation whatever the load position is. The evolution of the
objective function J, is presented in Figure 1.12.
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Figure 1.12: Evolution of the elastic strain energy J, for the configuration presented in
Figure 1.11 according to the successive iterations of the shape optimization algorithm.

1.5.3 Comparison of contact methods for the geometric shape op-
timization

In order to compare the two strategies to account for the contact condition, the test of
the previous section is now performed using the penalty method to treat the contact. The
penalty parameter is also taken equal to v = E/hp. The result of the shape optimization is
shown in Figure 1.13.

Figure 1.13: Optimal shapes for different contact methods. On the left: optimal shape with
the contact treated by penalization and on the right: optimal shape with the contact treated
by Nitsche’s method.

It can be noted, comparing with Figure 1.11 that both methods almost lead to the same
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final and optimal shape. A very careful comparison in Figure 1.13 shows that the solution
with penalty corresponds to a slightly higher deflection of the structure.

The difference is more significant in Figure 1.14 where a comparison of the evolution of
elastic strain energy is plotted for the two methods. With the penalty, the elastic strain
energy is underestimated because of the interpenetration.

450

Nitsche’s method
EENEEEEEEEEEE] Penalizaﬁon

425

400

375

Energy of elastic deformation (J)

350
325 ...'...ll...-.Illlllllllllllllllllllll (1] [11] (1]
300
0 10 20 30 40 50 60 70 80 90 100

Iterations

Figure 1.14: Evolution of the strain energy J. during the shape optimization: comparison
between Nitsche’s method and penalization.

To overcome this drawback, the penalty parameter v might be increased so that the contact
would be better estimated. Two other tests are performed with v = 10E/hr for both
methods. The optimal shape and deformation obtained can be seen in Figure 1.15.

-

Figure 1.15: Optimal shapes for different contact methods. 7 = 10E/hy. On the left:
optimal shape with the contact treated by penalization and on the right: optimal shape
with the contact treated by Nitsche’s method.
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The two deformations are very close to each other in that case and the evolution of the strain
energy, plotted in Figure 1.16 is also almost the same.
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§ 425 y=10E/h,
S 400 "_ Nitsche’s method
% 375 “,’“ .............. Penalization
E )
< 350
G
5 325 s rama e e — —
2
w 300
0 10 20 30 40 50 60 70 80 90 100

Iterations

Figure 1.16: Evolution of the strain energy J, during the shape optimization: comparison
between Nitsche’s method and penalization and different values of the parameter 7.

The main conclusion that can be drawn by considering the result presented in Figure 1.16
is that the use of the penalty method leads to a shape optimization more sensitive to the
parameter v than Nitsche’s method whose results are quite independent on . The consider-
ation of Nitsche’s method thus allows the use of a parameter v with a smaller value without
deteriorating the quality of the solution. It also allows to avoid some potential difficulties
which can be encountered when 7 is large and which can result in a stiff problem difficult to
solve numerically. As a consequence of this comparison, for the rest of our numerical study,
we use Nitsche’s method with a parameter v = E/hy.

1.5.4 Frictional contact and pressurized holes analysis

In this section, we perform two different shape optimizations with the Nitsche-based ap-
proach. We first set pressure into the holes with gy = —p/'n where p = 3 bar. In a second

time, we perform a shape optimization taking into account a frictional contact (see section
1.2.1) with F = 1.
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Figure 1.17: Optimal shapes. On the left: Shape optimization with pressure into the holes
(p" = 3 bar) and on the right: Shape optimization with friction (F = 1).

The two physical phenomena show very limited impacts on the optimal shapes in Figure
1.17 compared to Figure 1.11. Both pressure into the holes and frictional contact lead to a
very similar optimal shape as the frictionless contact without pressure into the holes. That
conclusion holds at least in the framework of linearized elasticity where small deformations
occur and when only a vertical load is applied. Therefore we lead the next optimization tests
without friction and without pressure into the holes.

1.5.5 Comparison of contact criterion strategies

A comparison is led between the contact stress criterion strategies described earlier. We recall
that to uniformize the contact stress between the successive load positions, two strategies
were presented in the previous parts: either the contact boundary is thickened with a size
¢ which leads to the criterion J,; given by (1.27), or we consider the norm H~/2(T, R?)
of the criterion J,o given by (1.28). We also recall that the general criterion set in the
optimization algorithm reads as in (1.5). Here, the characteristic length L is chosen to be
equal to €. To perform a comparison between the two strategies J,; and J, 2, the parameter
« is chosen to reach the same criterion amplitude at the first iteration of the optimization
on both contact criterion strategies, i.e.

Ny Ng

2 : 0 .1 § : 0,1
aljp,l(Q 7UQ07pmean> = QQJp,Z(Q 7UQU>pmean)-

i=1 i=1

To this aim, we take in our case a weight oy = 6 for the criterion J,;(£2, U, Prmean) and a
weight ay = 100 for J,»(£2, U’, Pmean)- In order to measure the effect of the uniformization
criteria, Figure 1.18 first gives the optimal shape and the contact stress curves on the different
positions without using these criteria (i.e. with & = 0). One can see a significant disparity
of contact stresses on the different loading positions which obviously corresponds to the
presence or not of a hole near the effective contact area.
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Figure 1.18: Optimization with J. (o = 0). Contact treated by Nitsche’s method. On the
left: optimal shape and on the right: contact stresses on the 8 load positions.
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Figure 1.19: Optimization with .J. and J,; (o = 6). Contact treated by Nitsche’s method.
On the left: optimal shape and on the right: contact stress on the 8 load positions.
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Figure 1.20: Optimization with J. and J, 2 (ae = 100). Contact treated by Nitsche’s method.
On the left: optimal shape and on the right: contact stresses on the 8 load positions.
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The effect of the addition of the uniformization criteria can be seen in Figures 1.19 and
1.20 for J,1 and J,, respectively. Both criteria give some similar results, in particular the
disparities on contact stresses have been significantly reduced compared to Figure 1.18 when
only the strain energy is minimized. One of the effects of both criteria is a certain radial
transfer of the holes away from the contact boundary resulting in some thickening of the ring
of material located between the contact boundary I'c and the holes. It is quite obvious that
this transfer contributes to the desired uniformization. One also notes a slight difference
between the shapes obtained with J,; and J, 9, the thickening being a little more important
for J,1 and ending with a smaller amount of material between the holes. There is also a
difference in the decrease of the two criteria that is presented in Figure 1.21. J, 2 leads to
a proportionally larger decrease which shows that J, o is actually a few more efficient than
Jp1. In addition, one advantage of the criterion .J,, over J,; is that it does not depend on
the parameter e. And so, the calculation with J, > does not require a non-optimizable zone
of thickness € which is more natural than the calculation with J,, ;.
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Figure 1.21: Comparison between the contact criterion strategies J,; and J,2. Evolution

of the contact stress uniformization criteria .J,; and J, o for the configurations presented in
Figures 1.19 and 1.20.

What’s more, the magnitude of parameter oy influences the optimization and the minimiza-
tion of J. and J,5. One notes that ay = 10 leads to a light optimization of J,, as shown
in Figure 1.22 whereas ay = 1000 leads to a good uniformization of the contact stress even
though the deflection of the structure increases (see Figure 1.23). And so J, is less mini-
mized. A wise choice of ay = 100 is a good compromise to minimize both J, and J, o for
this configuration (see Figure 1.20).

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



CHAPTER 1. SHAPE OPTIMIZATION IN LINEARIZED ELASTICITY 54

9
8
P01
0.00 2 7 7 P02
[ P03
i o s 6
0.05: s Po4
0108 3 ° PO5
£ S 4 P06
-0.15 8 :n:- 3 P07
S ] P08
o
-0.20 & 52 Average
-0.25‘_; °
[3)
-0.30:5 0
-0.35>
- Contact boundary (mm)

Figure 1.22: Optimization with J. and J, 5 (ag = 10). Contact treated by Nitsche’s method.
On the left: optimal shape and on the right: contact stresses on the 8 load positions.
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Figure 1.23: Optimization with J. and J,2 (e = 1000). Contact treated by Nitsche’s
method. On the left: optimal shape and on the right: contact stresses on the 8 load positions.

1.5.6 Shape optimization of complex geometries

It is obvious that the final geometry obtained by shape optimization depends on the chosen
initial geometry. This is especially the case since we have chosen to constrain the amount
of material to remain constant. To illustrate the variety of shapes that can be obtained,
optimization results are presented in Figure 1.24 with or without the use of an uniformization
criterion of the contact stress and for an initial geometry with 48 holes. Finally, we present
a case with an initial geometry with 108 holes optimized for the sole strain energy in two-
dimensional in Figure 1.25 and three-dimensional in Figure 1.26.
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Figure 1.24: Optimal designs for 48 initial holes. From left to right: initial geometry with 48
circular holes, optimization with the .J. energy criterion and a multi-criterion optimization
with J. and J, 5 with a = 50.

Figure 1.25: Optimal designs for 108 initial holes with the minimization of the J. energy
criterion in a two-dimensional framework. On the left: initial geometry and on the right an
optimal shape.

Figure 1.26: Optimal design for 108 initial holes with the minimization of the J. energy
criterion in a three-dimensional framework.
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1.6 Conclusion

In this first chapter, we have presented a procedure for the shape optimization of a linearly
elastic rolling structure in contact with a flat ground.

The main ingredients was Nitsche’s method for the contact approximation, the use of cut
finite elements, a level set representation of the geometry approximated on a regular polar
grid. More precisely, the cut finite element method was used on the regular grid for the
approximation of the displacement fields and the adjoint variables. Indeed, thanks to its
optimal convergence, it allows the use of a coarser grid than for other fictitious domain
methods. Finally, the ghost penalty stabilisation allows us to obtain a good quality gradient
on the boundary of the evolving domain.

Beyond these choices, we have presented comparisons of the treatment of the contact con-
dition by penalty and by Nitsche’s method. In particular, these numerical experiments
highlight the advantage of Nitsche’s method which allows a consistent approximation of the
contact condition without the use of Lagrange multipliers. We have also introduced two
variants of a criterion for the uniformization of the contact stress for which the associated
adjoint state is well defined and has a continuous dependence on the data. Eventually, the
numerical experiments using each of these two criteria show very similar optimal elastic
structures.

In this first part, we focused on the discrete case, assuming not to follow a mathematical
care of the shape differentiability concerning the displacement and adjoint state variables,
so that the shape gradient makes sense. In the next chapter, we pay a special attention on
the mathematical formulation of the shape gradient, analysing the shape sensitivity.
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2.1 Introduction

In many industrial applications, shape optimization has become an essential tool to improve
the quality of mechanical properties of workpieces. In some contexts, complexity arises

o7
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while the mathematical formulations involve non-linear or non-differentiable terms. In this
study, the motivation is based on the shape optimization of an elastic structure in sliding
contact via a gradient descent method. This requires in particular the shape derivative of
the optimization criterion. Unfortunately, the introduction of a non-linear contact condition
in the mechanical problem leads to a tricky formulation of the shape gradient. The elastic
problem with sliding contact becomes an elliptic variational inequality whose differentiation
is difficult to obtain especially since it is not well defined in the classical sense.

A first approach consists in defining a weak notion of the differentiability, the so-called conical
differentiability initially introduced by F. Mignot in [70], leading to optimality conditions.
We refer to the work of J. Sokolowski and J.-P. Zolesio [95, 97, 96, 99, 94, 98]. A way to
get optimality conditions is to expose a sequence of penalized problems (see for instance
[12, 10, 106] and for numerical applications see [81, 63, 30]). The case of an elastic structure
with a contact condition has been considered by B. Chaudet and J. Deteix who proves
differentiability of the solution to the contact problem using the penalization method in [19]
and the augmented Lagrangian method in [20].

A second approach to deal with the non-differentiability in the classical sense consists in
formulating the discrete variational inequality and then differentiating the discrete for-
mulation thanks to subdifferential calculus. We refer to the work of J. Haslinger et al.
[50, 43, 45, 51, 47, 46, 48] where the mechanical problem is approximated by the finite ele-
ment method. In that work, Lipschitz regularity on the boundary is assumed to ensure the
existence of an optimum. In particular, a convergence analysis is performed in [49] according
to the discretization parameter.

Another way to reach optimal conditions is to regularize the unilateral contact conditions
using smooth formulations as in [100, 101]. While friction is considered in the contact
conditions, the derivation is even more tricky. The Tresca model for friction is studied in
[97] and a conical derivative is reached for specific directions and only in a two-dimensional
framework. Of course, penalized or regularized formulations ease the compute of shape
derivatives as in [62, 64, 10, 102]. Results are given for Coulomb friction in [43]. In [58] a
general overview of shape optimization results for problems with contact is proposed.

In the previous chapter, we were interested in the optimization of an elastic structure un-
der contact conditions while trying to minimize criteria that couple compliance terms and
additional terms allowing pressure uniformizations. We proposed the use of Nitsche-based
methods [25] to efficiently discretize the contact terms. The optimization of the elastic struc-
ture is also performed using gradient descent method where the gradient is estimated via the
adjoint state method applied directly on the discrete formulation of the problem. Although
the proposed method allows us to obtain convincing structure optimization, no results of
convergence analysis about the discretization of the adjoint state problem were given.The
objective of this chapter is therefore to analyze and propose a development in this direction.

We recall that the weak formulation of Problem (1.1) in case of frictionless contact reads as
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a variational inequality (see [36, 32, 61, 44]):

{Find uq € K such that (2.1)

a(ug,v —ug) > l(v—uq), YveK.

Moreover, the solution to (2.1) is the unique minimizer on K of the functional

1
vlglf( o(v) == ulg}f{ éa(u,u) — l(u).
Contact conditions are often approximated in numerical application using the penalty method,
which has the advantage of simplicity and robustness at the price of a supplementary ap-
proximation. Another classical strategy is the use of Lagrangian or augmented Lagrangian
formulations which are fully consistent in contrary to the penalty approach but requires sup-
plementary unknowns (the Lagrange multipliers) and the satisfaction of inf-sup conditions.
In this work, we consider a third approach, namely Nitsche’s method, which is also fully
consistent and avoids the use of supplementary unknowns. In this chapter and for the sake
of simplicity, we focus on a frictionless contact condition.

First of all, in section 2.2, we give some results about the conical directional differentiability
of the solution to the contact problem and the link with the shape gradient mainly following
20, 68]. In a second step, as in the previous chapter, we present in section 2.3 the discretiza-
tion of the adjoint state problem consisting in applying the adjoint state method on the
discrete Nitsche version of the direct problem. Unfortunately, we note a lack of consistency
of this approach. We then consider alternatively the discrete Nitsche-based approximation
of the continuous adjoint state. We then show an a priori convergence result of this numer-
ical discretization under assumptions of convergence rate of the discrete contact area. We
will also see how to do without these assumptions by slightly modifying the Nitsche-based
formulation of the adjoint state. Finally, numerical experiments will illustrate in section 2.4
these convergence results on the discretization of the adjoint state.

2.2 Shape optimization

The geometric shape optimization aims at minimizing a criterion J(§2) = J(,u(2)). It
explicitly depends on the domain €2, but also implicitly on the solution wug to Problem (2.1).
For each part of the boundary I', I'p and I'y, it is supposed that a part is non-optimizable,
denoted I', Iy and I'}?, the remaining parts I'¢:, '}, and I'{; being optimizable. To preserve
the coervicity of the problem, it is supposed that I'}y is of non-zero Lebesgue measure. Let
D C R? be a fixed bounded and smooth domain having I'%*, "% and I'}? as part of its
boundary. The shape optimization consists in minimizing the criterion J(§2) on the set of
admissible domains composed of all smooth (of class €!) open domains 2 C D accompagned
with a partition I'c,I'p and I'y of its boundary with the constraint I'’Y? C I'c,I'ly C I'p,
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and I'Y C I'y (see Figure 1.1). We recall the generic formulation for the target criterion
(1.21) can be expressed as

J(Q) = / M(ug) dz + | N(ug) ds(x), (2.2)
Q a9

where A is defined on the boundary of Q. In the following, we denote I, = '% UT, UTS

the optimizable (moving) boundary.

2.2.1 Notions of shape derivative

We recall here some results coming mainly from [20, 68]. In addition, we develop more
precisely the previous section 1.3.1. The differentiation with respect to the domain aims at
modifying the reference state of the domain {2 using the boundary method first described
by J. Hadamard in [41] and then developed for instance in [74, 83, 93, 97, 55]. Let © €
Whe(REG RY) NG (RY) be a vector field displacing the reference domain © towards different
admissible shapes €2;. The associated transported domain {2; in the direction © is defined as

for © small enough so that Id + © is a diffeomorphism (see for instance [54]). Then the
classical notion of differentiability in Banach spaces can define shape differentiability. We
refer to [29] for the different notions of derivation. We recall the definition of a conical
derivative as expressed in [70].

Definition 9. Let Vi and V5 be two Banach spaces. A continuous function u : Vi — Vs
admits a conical derivative at x it there exists an operator () : Vi — Vs positively homogeneous
such that:

Vh € Vi,Vt > 0,u(z + th) = u(z) + tQ(h) + oft),

where o 1s to be understood as

L le®)ly

= 0.
0—0 H@”WLOO(Rd,Rd)

For ug € V the solution of a variational formulation posed on (2, there are two ways to
define the derivative of u according to €2 as proposed for instance in [68]: a Lagrangian and
an Fulerian one. First we define the Lagrangian derivative or material derivative following
the point x during its transportation by the diffeomorphism I; + ©.

Definition 10. Let V' be a reflexive Banach set and assume that ug(z) € V, and u([d+@))9($+
O(z)) € V. We call dgu[®], the directional Lagrangian derivative of ug(zx) in the direction
O, the linear form in © from WhH= (R4 R?) to V satisfying:

U0y (T + 0) = ug(z) + dou[O] + 0(0).
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where 0o(©) is to be understood as

L le®)ly

= 0.
0—-0 H@le,oo(Rd’Rd)

The other definition refers to the Eulerian derivative or shape derivative which is more easy
to use but causes additional difficulties to be properly defined. There is actually no difficulty
if we define it for a point = belonging to both 2 and (I; + ©)(€2). Yet it is much more
intricate for points located in the boundary 92 which do not belong to (I; + ©)(£2) or its
boundary. We only differentiate the point values of u(z), without carrying the points on
the boundary which does not lead to rigorous definitions of functional space for u and its
derivative.

Definition 11. We call Dgu[O], the directional Eulerian derivative of uqg(z), the linear
form in © that satisfies:

ur+0)0(r) = ug(r) + Do u[O] + 0(O).

Note that while the additional condition Vug -© € V holds for © € Wh=(R% R?) N ¢! (R?),
we use the following notation of the directional Fulerian or shape derivative of an element
u according to €2 in the direction ©:

The relation (2.3) correctly defines the Eulerian derivative, preventing from the difficulties
previously mentioned. Finally, we note that the solution ug is directionally shape differen-
tiable if it admits a directional derivative for any admissible direction ©. In case the map
O — Dqugq|O] is positively homogeneous from €*(R?) to V, uq is conically differentiable.
Finally, this map is shape differentiable if it is linear continuous from ¢*(R%) to V.

2.2.2 Shape differentiability

It is known that the projection operator used in the contact condition is not Fréchet-
differentiable, the consequence being that ug is not differentiable in a classical sense. How-
ever, it has been proved that the solution ug of (2.1) admits conical material and shape
derivatives in some directions ©. We actually know from [70] that projection operators are
conically differentiable. It has been proved in [96] that Signorini’s problem admits a conical
material and shape derivative.

We make the same usual choice as [20] to restrict the directions of ©. In view of Zolésio-
Hadamard structure theorem, we limit the geometric deformation fields © € ¢1(R?) along
the direction of the normal n. The vector n is extended to €1 (R?) as 92 is assumed to have
€' regularity. To achieve the transport of the domain, the variables need to respect some
regularity for usual differentiability conveniences.
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Assumption 12. (\, ) € (%I(Rd))Q, f e HY(Q;RY) and g € H*(Q;R?).

We suppose also as in [20, 19] that for ug € HE™)(Q) with v € ]0,1[. This implies in
particular 0, (uq) € L*(I'¢). The contact boundary I'¢ is split into three parts as illustrated
in Figure 2.1 (with 0, (uq) a particular representative of its class in L*(T'¢)):

o I'c,:={z elc|o.(ua) <0, (uq), = g}, the active set, or effective contact area,
o I'c, :={x € I'clo,(uq) =0, (un), < g}, the inactive set, or non-contact area,

o I'cy, :={z €l¢lo,(uq) =0, (ug), = g}, the bi-active set, or grazing contact area.

Figure 2.1: Contact area split into three parts.

Theorem 13. Under Assumption 12, the solution ug of (2.1) is conically shape differentiable
with respect to the domain Q and its conical shape derivative Dgu[O] in the direction ©
satisfies Do u[®] € S(Ky) and

a(Dqu[®], p—Dqu[O]) > (¢ —Dqu[O))[O] —d'(ug, p—Dqu[O])[0], Vo e S(Ky), (2.4)

where S(Ko) = {¢ € V|p, <0 a.e. onTeoUTcy and (a(ug, ) = €(¢))} and where

a'(u,v)[0] = / (©-n) Az(u) : e(v) ds(z),

m

l'(v)[O] = /r (©-n) f-vds(z) —i—/ (©-n) (kmgn - v+ V(gn - v) - n) ds(z).

)
Here Ty, is still the optimizable boundary of 2 and k., is the mean curvature of 0S).

The proof can be found in [68], Section 5.2. Note that Formulation (2.4) relies on the set
S(Kj) that is not easy to handle. It is however possible to rewrite this formulation as a
standard optimization problem under the assumption that there exists no isolated point (see
[59]):

Assumption 14. I'c, UT'c, = int(I'c, UTep).
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Theorem 15. Under assumptions 12 and 14, Dqu[O)] is solution of (2.4) if and only if it
solves:

inf %a(qﬁ, ¢) — U'(9)[O] + d'(uq, 9)[O)],

d)eKFC,a

where Vr,, , = {0 € V]¢, =0 a.e. onTcq,¢ =0 a.e. onI'p} and Ky, := {¢ € Vi, |dn <
0 a.e. onTeop}.

The proof can be found in [20] and shows in particular that S(/K,) = Kr.,. Some additional
results can then be obtained in the case K., = Vr.,, which implies the use of the following
assumption:

Assumption 16. The subset I'cy, is of zero Lebesgue measure in I'c.

The non-differentiability coming from the points in I'c, the analysis can be simplified when
the assumption 16 is considered.

Remark 17. An element x € Iy, is a point where (ug), = g and o,(uq) = 0 at the same
time which means that contact occurs with a vanishing contact pressure. The set I'cy is
often referred as the set of grazing contact. Assumption 16 is verified while the set of grazing
contact points is a zero measure set between contact and non contact areas. Interestingly,
this corresponds, in fact, to most of the practical situations.

Theorem 18. Under assumptions 12 and 14 and if in addition Assumption 16 holds, then
uq solution of (2.1) is shape differentiable in L?(2). Its shape derivative in the direction ©
denoted Dq u|O) is defined as the unique solution of

(Do u[O], ¢) = £(¢)[6] — d'(uq, 9)[O], V¢ € Vi, (2.5)
The proof can be found in [69] Section 1.3.3.

2.2.3 Shape gradient formulation

Still considering the generic formulation for a criterion in (2.2) given by

1) = / M(ug)dz+ [ N(ug) ds(z),
Q P
we assume that the two functions M and A are in ¢! (R?) and their derivatives M’ and N’
are Lipschitz-continuous. Suppose 2 is of class 4 and Assumption 12 holds, then J() is
also conically shape differentiable at  and its derivative in the direction © € W1>(R%; R9)
reads (see [68]):

DJ(Q)[O] = /(M’(ug) ‘Do u[®] + (© - n)M(ug)) dz
‘2 (2.6)
+ /m(/\/"(uQ) -Dqu[®] + (© - n) (Km N(uq) + VN (uq) - n)) ds(x).
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From a numerical point of view, this expression of the shape derivative is difficult to use in
the sense that it does not allow to define a gradient algorithm. Therefore, in order to isolate
a quantity independent of © and get rid of the Eulerian derivative, we classically introduce
the adjoint state variable po € Vr, , solution to the following problem:

a(v, pa) / M (ug) -vde — [ N'(ug)-vds(x), Vv € Vi, (2.7)
)

The corresponding strong formulation is the following:

—div (o(pq)) = —M'(uq) in £,

G(pQ)TL = —NI(UQ) on FQb U FC7’£ U FN,

po =0 on I'p, (2.8)
(pQ)n =0 on FC,aa

oi(pa) = —(N'(uq)) on I'cy.

This allows to rewrite the shape derivative of J in (2.6) for v = Dgu as
DJ(Q)[6] = —a(Dqu[6], po)

+ /(@ -n)M(ugq) dx + / (© - n) (kp N(uq) + VN (uq) - n) ds(z).
Q 09
Considering Assumption 16 and taking ¢ = pq in (2.5), it holds

DIQ)O] = / (0 n) (M(ug) + Ac(ug) : (pe) — £(x) - pa) ds()

m

N / (0 - 1) (ki N(10) + VA () - 1) ds() (2.9)

= [ (© 1) (oo v+ Vi ) 0) ds(a).
Iy
In particular, this formula now allows us to easily obtain the gradient expression of J from
D I(©)[6)] = (VI(©). 0o,y = | TIHQ)()-6(z) ds(a)

which is defined for all x € I',,, by
VJ(Q)(x) = (M(ua(x)) + Ae(ua(x)) : e(pa(z)) — f(z) - pa(z))n(z)
+ (Bm(2) N(ua(z)) + VN (ua(z)) - n(z))n(z) (2.10)
+ (km(2) po - gy (@) + V(pa(z) - gy (x)) - n(x)) X0y (2)0(2).

Note that since a(-,-) is a continuous and coercive bilinear form whereas M and N are
supposed to be Lipschitz-continuous, Lax-Milgram theorem ensures the well-posedness of
problem (2.7) which admits a unique solution po € Vr .

Remark 19. If assumption 16 does not hold, is is not possible to obtain the formulation
(2.9) since the shape derivative depends nonlinearly on the direction ©. In this case, the
functional J s not differentiable in the classical sense.
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2.3 Nitsche-based formulations

In this section, we conduct a convergence analysis of a finite element approximation of the
adjoint state equation (2.7). We introduce Nitsche’s method to deal with the boundary
condition on I'c. We verify its the consistency and finally detail its convergence analysis.

2.3.1 Nitsche-based formulation for the direct problem

We recall that the generalized Nitsche-based approximation uf, € V" (where V" is proposed
in equation 1.20) is defined as the solution of

a(uf, v") + T(ul, v n) = L"), Vo' e VP (2.11)
where the frictionless contact term Z(u, v, n) reads

T(u,v,n) = — / 0 (w)o(v) ds(z) + / L (o) = 4t — )] (8 0u(v) — 70) ds(z).

Y v

We recall some results from the work of P. Hild, F. Chouly and Y. Renard in [25] in the
following result.

Proposition 20. Suppose that the solution u to Problem (2.1) belongs to (H2+"(Q))® with
v €10,k —1/2[ (k = 1,2 is the degree of the finite element method given in (1.20))and
d=2,3. When 6 # —1, suppose in addition that the parameter vy is sufficiently large. The
solution ul, of Problem (2.11) satisfies the following error estimates for C' > 0 a constant
independent of h:

1
lug, = uelle < Ch2™lualls 0. (2.12)
lon(ug) = on(u)llore < CR”Juallz g,

o (ug) = v((ua)y — 9))- + ou(ua)llore < Ch"|ualls,.0- (2.13)

Note that these convergence results make an important use of the following classical property
whose proof can be found for instance in [25]:

Lemma 21. There exists C' > 0 independent of the parameter vy and of the mesh size h,
such that for all v € V"

_1 C
v 2on (W) e < %llvhllig-
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2.3.2 Adjoint state of the Nitsche-based formulation

For the minimization of the discrete criterion
T = [ M) do+ [ A(ul) ds(a),
Q a0

where uf, € V" solution of (2.11), a first approach proposed in the first chapter is to derive
the adjoint state of the discrete formulation, for instance using a Lagrangian approach. This
leads to the following formulation:

DINQ)O] = / (0 n) (M) + Ac(ub) : () — F(x) - ) ds(a)

m

+ /r (©-n) (Fm N(ub) + VN (ud) - n) ds(z) (2.14)

- /r (&) (o By g+ V(P - gw) ) ds(a),

where the discrete adjoint state pii € V" is defined by
( Find pi € V" such that Vg € V"

ol ") — / §on<ﬁ§s>an<qh>ds<x>

1 h h h h ~h ~h <215>
[ ZH () = 2wl = 9Dl e") = 2060 ) = A7) )ds(o)
| = [ M) o [ Al o dsta)

with H(x) = { (1) igi i z 8 being the Heaviside function.

Since expressions (2.14) and (2.9) are more than similar and that there are some convergence
results about the convergence of u? to ugq, a question that naturally arises is to know if a
similar convergence result of pii towards po can be expected. Unfortunately the answer is no
in the general case, due to a consistency issue in the definition of 3" which does not allow to
ensure the right boundary conditions on I'c 4, at least in the case 6 # 1. To be convinced of
this, it is enough to notice that assuming for simplicity H(— (o (ut) —7((uf)n—9)))) = Xre.
then pf satisfies after application of Green’s formula and for simplicity, by example, for § = 0:

Ve /Q<div (0(55)) = M'(uy)) - ¢"der + / (o(Bl)n +N'(ug)) - "ds(x)

FNUFCJ,UFC’Z'
+ / (0(B)n - ¢" + () ny — 0u(@") (B0 + N'(ug) - ¢") ds(x),
FC,EL

which enforces both (pp), = 0 and o(pp)n = —N"(up) asymptotically on I'c, when h goes
to zero. This is symptomatic of the non-self-adjoint nature of Nitsche’s method for 6 # 1.
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Remark 22. Although we cannot demonstrate a convergence result from the discrete adjoint
state to its continuous counterpart, at least for 0 # 1, the use of Py in (2.14) allows to
properly define the gradient of the discrete energy J" which can be use to minimize J" using
a gradient algorithm, as we proposed earlier in the previous chapter.

2.3.3 Nitsche-based formulation for the adjoint state and consis-
tency

A second approach is the discretization of Problem (2.8) with a Nitsche-based method. It
can be formulated as follows
( Find p}, € V" such that V¢" € V"

alphy ") — / §<o—n<p;s> (N (uh))n) (g ds(2)

u %H(—(Un(ufé) = (= 9 (On(pd) + N (ug))n = (1)) (004(q") — van)ds(x)
= — / M (up)-q"dx — [ N'(ub) - ¢" ds(z).
\ Q o0

(2.16)
where # € R and v > 0. Note that expressions (2.16) and (2.15) are identical in the case
6 = 1 (this corresponds to the symmetric version of Nitsche’s method) and when N’(uf)
vanishes on I'c. The advantage of Formulation (2.16) over (2.15) is that a consistency result
can be proved for (2.16)

Lemma 23. The Nitsche-based adjoint state formulation (2.16) is consistent in the following
sense: suppose that the solution pq to (2.8) lies in (H2™(Q)) with v > 0 and d = 2,3.
Then if assumption 16 holds, pq is also solution, Vq" € V", of

alq", pe) — / C §<on<m> (W (u))n) (g ds(x)

1

s §H(—(0n(@m) = ((ug)n = 9)))((@a(pa) + (N (ua))n) = ¥(pa)n) (Bon(q") — v4;)ds(z)

:—/M’(ug)-qh dr — N/(UQ)'qh ds().
Q o0N
(2.17)

Proof. Using Green’s formula on the adjoint state problem (2.8), V¢" € V", it holds

a(q", pa) — /(m(a(pg)n + N (ug)) - ¢"ds(z) = —/Q./\/l’(uQ) " dx — N'(ug) - ¢" ds(z).

o0
As pq satisfies o(po)n = —N'(ugq) in T'e; UTy, we have

| olpan V) dsta) = [ (o) + N () )" s(o) = 0

Loy
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Recall also that pq satisfies (pg), = 0 and o(pq): = —N'(uq); in T'c,, which gives

/F (o(pa)n + N'(ug)) - *ds(z) = / £(0u(pe) + N (u0))n — (pa)u)ds(a),

and / 00,(¢")(pa)nds(z) = 0. These equalities show that the adjoint state field po € V
FC,a

satisfies

alq" pe) - / %(an@m) () () ds () — / 00, (") (p)udls(2)

FC,a

_ /F 4" (0u(pa) + (N (u0))n — ¥(pa)n)ds(z)

=— / M (ug) - ¢"dx — [ N'(uq) - ¢" ds(z), Vq" € V",
Q

[2/9]

leading then to

alq" pa) - / §<an<m> (W (u))n)u(q")ds(2)
+ /F %(Un(pg) + (N (u0))n — v(Pa)n) (00,(¢") — vq)ds(z)

__ / M(ug) g dr = | N'(uq) -q" ds(a).
Since I'cq := {z € T'c|o,(ua) <0, (ua)n = g}, then H(—(on(ua(z)) — v(((ua)a(z) — 9))) =
lifx € Fcya,

_ , which implies that (2.17) is satisfied. ]
0 otherwise.

XFC,a =

Remark 24. In the event that Assumption 16 is not satisfied, one cannot expect a conver-
gence result because (2.7) prescribes a Neumann condition on I'cy, which will not necessarily
be asymptotically satisfied by the solution to (2.16). We address this problem in section 2.5.5
by a slight modification of the equation satisfied by pl.

2.3.4 Convergence analysis

The aim of this section is to present an a priori convergence result of the Nitsche-based
formulation (2.7) with respect to the mesh parameter h. This result requires a supplementary
assumption on the convergence of the effective contact area (i.e. a supplementary condition
on the convergence of ull towards ug). For the sake of simplicity and clarity of this section
and the next one, we will no longer indicate the dependence of the solution with respect to
) and just use

u = ug,u" = u},p = po and p" = pf.
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Moreover, we introduce the two following quantities relative to the contact status:
B = =) + (= 9), B = —u(u) +7(n — g).
and recall that I'c, := {2 € I'¢|f > 0} and introduce also the discrete effective contact area
It , = {z €Tc|B, > 0}.

Remark 25. In practice, § actually depends on h as v = ~yo/hr. However, H(B) being the
1 forxeTlc,

0 otherwise it does not depend on h.

characteristic function of Tco, H(B) = Xre, = {

We first introduce the following lemma on the weak convergence of H(3") that is required
for the main convergence result.

Lemma 26. Suppose that the solution u to Problem (2.1) belongs to (H2™) with v > 0

and d = 2 or d = 3 and that assumptions 16 holds. Then, |H(B) — H(B)| —— 0 in L>®
(Tc), in the sense that V¢ € L' (T'¢)

lim [ |H(8) — H(B4)|¢ ds(z) = 0.

Consequently, H(f3,) — Xre, L (T¢).

Proof. Still for o,,(u) a particular element of its class in L?(T'¢), we introduce the measurable
set
As = {ZL‘ S F(;|0n(u) < —5} - FC,a- (218)

It corresponds to the contact area where contact actually occurs for v and where the contact
pressure is greater than 6. We also introduce N} a subset of A; where the contact does not
occur for u” defined by

N5 = {z € Aslon(u") —~(uy, — g) > 0}.
So on N[, it holds
[l (u") = y(up — 9))- + ()| = 6,

which implies

/ [on(u") = v(uy = 9)]- + ou(w)]* ds(z) > 6% N,
Ny
where | - | stands for the Lebesgue measure. Using (2.13) in Proposition 20, it finally holds

Ch?

N3 < =5

(2.19)
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Now, introducing Is the measurable set where no contact occurs for u with a separation
greater than ¢ defined by
Is ={z eTclu, <g—d},

and
My ={z € I5,0,(u") — y(ul — g) <0},

its subset where contact occurs for u", we can write on M}

a. 'U/h
=2l ) = (- g 2 6

This implies

Y "
Using (2.12) in Proposition 20, it finally holds
Ch1+2u
62
Under Assumption 16, V§ > 0 and V¢ € L'(T¢), we write
[ 1)~ H @ dsta) = [ (1= HED)0 ds(a) + [ H(E)o s
INe;

As Is

h
[ 1= 20— w) as) 2 0t
My

M} < (2.20)

n / H(B) — H(By)|6 ds(a).
T'c/(AsUIs)

However,
| a-HE)0ds@) = - [ ods(a)
As Nk
and using (2.19)
lim ¢ ds(z) = 0.

h—0 Ngl
Similarly
[ o dsto) = [ oasia)

Is M}

and using (2.20)
lim ¢ ds(z) = 0.

Since the measure I'c \ (As U I5) tends to 0 when § tends to 0 under assumption 16, we
finally obtain

lim [ |H(8) — H(B)|6 ds(z) = 0.

h—0 o
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Let us consider the following assumption on the convergence of the effective contact area.

Assumption 27. There ezist w > 0, C' > 0 independent of h such that T ,NT¢; is bounded
as follows:

T¢,NTei| < Ch.

We present now our main convergence result of the discrete Nitsche-based adjoint state
formulation (2.16).

Theorem 28. Suppose that the solution p to Problem (2.7) and w the solution to Problem
(2.1) belong to (H2(Q))* with v > 0 and d = 2 or d = 3. Suppose that the parameter ~q
is sufficiently large and that Assumptions 16 holds, then, it exists C' > 0 independent of h
such that the solution p" € V" to Problem (2.16) satisfies

Ip = "1 + 1HBr)Y 2 (0.(®" — ) — ¥(p — ) ore

<C (/F (1= H(Bn))o(p)ds(x) + H(ﬁh)’ypidS(ﬂ?))

Cc

. _1 1
+C inf {(IhHoula" =Dl + 104 @: —po)lr. +11d" ~lia) }

+C (llu = u"[F o + I(H(B") = HB) N (@))nllorxe) -

Moreover, if Assumption 27 holds for w > 1, we deduce that
1i h—p|?, =0.
lim [|p™ = plf7 g
Proof. Using the coercivity and continuity of a(-,-), we write for any ¢" € V*

allp—p"iq <alp—p",p—p")
=alp—p",p—q"+¢" —p")
<Clp-=p"help—d"lo+ap-2p"¢"—p"

Q C?
< 5llp - Pa+ 5P = "1 +alp.d" —p") —alp" " —p"),

where o > 0 is the ellipticity constant of a(-,-), and C' > 0 a generic constant independent
of h in the whole study. We can rewrite the term a(p, ¢" — p") — a(p", ¢" — p") as p solves
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(2.7), p" solves (2.16) and using Lemma 23, it yields:

=20 < Slp = g - [ Lo = potd =) aste)
2 * T Qo ’ re

+f %H(@hxan(ph)—w%(on(p)—m))(ean(qh—ph)—v(q:;—pz» ds(x)

+ / l(H(ﬁh) — H(B))(0n(p) — vpn) (00, (q" — p") — v(g! — pl)) ds(x).

Ie g (2.21)
n / (1~ HOW (@)~ (1= HEDN @l = ) ds(o)
T / (H(BN () — H(BIN(@"))a(g! — p) ds(z)

- /Q(M’(u) - M'(u")).(¢" = p")dx —/ (N (u) = N'(u").(q" = p")ds ().

o0

The first integral term in (2.21) is bounded as follows, using Young’s inequality for any
& >0

N /rc %Un(ph —p)on(q" — p*) ds(z) = — /Fc g"n((p" — ")+ (¢" = p)on(d" = p*) ds(x)

— /FC %Un(qh —p")on(q" —p") ds(z) - /FC %""(qh —p)on(d" = p") ds(x)

_1 _1 _1
<Ol 2ou(q" = ") 3 re + 101 v 20u(q" = p)llorcllv 2on(d" = p")llore

1 &0% 1 1. 1
<Oy 2on(d" — P")or, + =1l 20,(¢" — p)llor. + Q—&HV 20,(¢" — ") 6.0
1 1 §0% .
<+ 2—&)H7 20, (¢" — ") o0y + =5l 20(¢" = )5 re.s
Co 1 §60%
<—O0+-=)(lp=d"l3a+p=0"130) + v 20u(d" = P) 5 r.-
Y0 251 2

(2.22)

Concerning the second integral term in (2.21), we derive the following estimate for any
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/F %H(ﬁhxan(ph) b — (0a®) — 1)) Bould — ) — A" — p1) ds(x)

— _/F lH(Bh)(an(ph —p) = (P} — pn))* ds(x)

C

+ %H(ﬁh)(an(ph —p) — (P! = pu))(0a(d" — p) — ¥(q} — pn)) ds(x)

-2

Te
£0=1) [ ZHE) 0" = 1) =10k = pa))en(a” — ) ds(a)
<1 UL + )G el —p) =16k~ 2 B 0
+ fnﬂwm—%m(qh —p) =gk = p)) 3 re
2
1 1
+ 510 = W IHE) ou(a" = e,
2
< (141012 + DH G oule ~5) — 1~ 2
1 1 1
+g (D7 20(a" = P + A = po)lE )
Cy 1
+ 7—32—52(”29 —¢"Fa+llp ="} q)
The third integral term in (2.21) is split as follows:
| 2B = HE) o) =92 Ola" — 1) = ek = ) ds(o)
= /F %(H(ﬁh) —1) ou(p)(@on(q" —p") = (gl = pl})) ds() (2.24)
H(B)

For the first integral term of the right hand side of (2.24), on I'c,, we obtain, using the trace
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inequality and for any & > 0

/F LH(B) — 1) ou(p)(O0u(d" — 1) — (g — 1)) ds(a)

2

< /F (1—H(6h))<fi(p)d8(fr)+€3/ (%Gi(qh—p"H(qh—ph)z)dS(:v)

26 .
1 | (2.25)
<36 | (0= HE)oWs) + 60 0la" =P, + Clle =)
3 FC,a
L 62Coh”
< / (1 — H(Bp))oz(p)ds(z) + &l Z OVl — plEa+ b — P 20).
253 T'ca 2

For the second integral term of the right hand side of (2.24) on I'¢;, we obtain for any {, > 0

H

[ (0, 5) = ) 0" = ) =1 = 1) ds(o)

o[ HB,
<% - (vpn)"ds(x)

é H(Bh) h W A h _ P2
T B R R A A AN
<oe [ HEwAs@) 26 HED 00" = 0) =10k p)
42600 — 1 1H(E)T on(a" = 9B e, + 26 HB) Gl —5) = 2(d: = ) e,
<or [ HEws@) 26 HED 0"~ 0) =1k = p)

Co
+ 264]0 — 1|% (lg" = plia+ llp — P13 .0)

_1 1
+ 26 (I 2oula” = DlBre + V30l = p)lEr ) -

(2.26)

The fourth integral term in (2.21) can be estimated as follows using Lemma 21, the Lipschitz-
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continuity of N and for any & > 0

/F %((1 CH(B)N () — (1 — HE)DN ("))uould" — p) ds(z)

- / %<<H<5h> ~ H(@)N'(u) + (1= H(E) N (w) = N'(u")uoulq" — p") ds(x)

<101 ((ICH (8") = H(B) N (@)allo.re + W' () = N (@) lore)lly ™ oula" = p")lorc)
1/2

< C%!emrwwﬂ ~ HB)W' @)allore + llu = u"orc)lg" = "l

B2 1 . /
<ty (gnww )~ HB) N (@)alloxe

1
b= a3, + &l ol + &l —phuig) ,
(2.27)

and similarly for the fifth integral term in (2.21), we obtain

/F (H(B)N(w) — HFWN ("))l — pl) ds(z)

- / (H(B) — H(B")N(u) + H(B") N () — N'(u")a(d" — p) ds(x)

< / (H(8) - H(B")N'(w)a(q! — ) ds(z) + [N (1) — M@ orelld" — 7 lore.

<c (énwwh) ~HB) W (@) lore + éisuu 2o+ Gl — bl + Esllp phuig) ,
(2.28)

and for the two last integral terms in (2.21) using additionally the Lipschitz-continuity of
M/

- / (M () = M) (¢ — ") — /8 W) = N ()" = ' )is(o)

1 (2.29)
<0 (Gplu=at g+ &l — bl + &l 110 )

Gathering now (2.22), (2.23), (2.25), (2.26), (2.27), (2.28) and (2.29) we obtain for &, &3, &,
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and &5 sufficiently small and for 7, sufficiently large the existence of C' > 0 such that

lp — "2 + 1 H(B)y 2 (0n(®" — p) — (0l — p))|2

<C </r H(B))on(p)ds(z) + H(ﬁh)wids(@)

+C (I 0u(d" = P e + I7# gk = P)li3re + la" = pli3a)
+C (="l g+ I(H(B") = HE)N @)alloxe)

Finally, the proof of convergence is obtained thanks to the interpolation error exposed in
[25] (Theorem 3.8), which shows that choosing ¢" the Lagrange interpolate of p leads to

: _h2 : -1 h 2 _ : I h 2
lim [[p —¢"llio =0, lim|y"20.(¢" = p)lor. =0, lim [ly2g; —pa)llor, = 0-

Moreover, thanks to Lemma 26, H(f3,) — xr.., gives }lLir% (1—H(By))o2(p)ds(x) =0
7 - FC’,a

and |H(B) — H(,)| — 0 ensures flg% I(H(B") — H(B))N"(u)nllore = 0. Moreover, the

continuity of p,, ensures |p,| < C with C' > 0. With assumption 27, we can bound the first
term in (2.26) as

H(By)yppds(z) = / v p? ds(z) < Doope < opet,
Tk ACc; h

Te,

It suffices that w > 1 so that

lim v p2 ds(z) = 0.

"0t e
O

Note that in the numerical tests we provide in section 2.4.1, the condition w > 1 is satisfied
for the studied range of mesh size.

2.3.5 Improved convergence result with an extended Neumann
zone for the adjoint state

The aim of this section is to give a convergence result without the consideration of as-
sumptions 16 and 27, i.e. without the consideration of zero measure of I'c;, and without
any assumption on the rate of convergence of the effective contact area. This result is ob-
tained with a slight modification of the discrete adjoint state, extending a bit the part of
the boundary where the Neumann condition is applied and with the use of quadratic finite
elements.
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Let us consider £ > 0 a small parameter which is assumed to tend to zero when A — 0, then
the consideration of the following modified problem for the adjoint state:

( Find p" € V" such that V¢" € V"
i)~ [ C 2ol st
(—(on(u") = y(ul = 9)) — ) on(p") — 0h) (004 (q") — vq)ds(x)

+ -H
re
= — / M@ -g"dx — [ N'(u") - ¢" ds(z),
\ Q o0

(2.30)

allows to state the following result.

Theorem 29. Suppose that the solution u to Problem (2.1) belongs to (H2t" ()% with
v > 1/2 and p the solution to Problem (2.7) belongs to (H2™2(Q))® with v, > 0 and d = 2

or d = 3. Suppose that the parameter 7y is sufficiently large, k = 2 (k being the degree of the
finite element method) and &€ > Ch*=Y? with C > 0 arbitrary small enough and ’lbirr(l)f = 0.
—

Then, the solution p" € V" to Problem (2.30) satisfies
. ho _
lim [[p" = pll1,0 = 0.

Proof. We observe first that the consistency result of Lemma 23 is still valid using the
convention H(0) = 0 (i.e. replacing H(— (o (u) —v(u, — g))) by xre,). Then the proof of
Theorem 28 can be followed with limited modifications that we focus on. Let us denote

B = —on(u") +y(ul — g) — .

The estimate (2.21) of the proof of Theorem 28 becomes

=20 < Clp = g - [ Lo = potd =) aste)
2 * T Qo ’ ¥

+ [ ZHGE)E) =9 = (o) = ) o =) = 5l =) ds(e) (23D
+ [ LB~ HE)on) ~ ) 0o (d" ) =1k = 1) ds(o).

The first and second integral terms in (2.31) are estimated thanks to (2.22) and (2.23),
respectively, replacing (3, by [, and the same convergence to zero is obtained at the end.
The third term in (2.31) is split similarly as in (2.24) taking into account the fact that I'c;
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is no longer supposed to be of zero measure. So it gives

/F %(H(Bh) — H(B))(ounlp) — vpn)(0on(q" — p") — (gl — pl)) ds(x)
1 _

_ /F ~(H(B) = 1) ou(p) (Bon(g" = p") = 1(a; ~ p})) ds(a) (2.32)

i /Fc,¢UFc,b H<’Yﬁh) (00 (p) = pr”)(ean(qh - ph) - v(qZ - pZ)) ds(x).

The first integral term of the right hand side of (2.32) is treated as in (2.25). It remains to
verify that

lim —— /F (1= H(B))o2(p)ds(x) = 0. (2.33)

Let us still denote As the set defined by (2.18) where the contact actually occurs for u and
the contact pressure is greater than ¢, and consider

Ny = {x € Aslon(u") = v(uy — g) > =€},
the subset where the discrete adjoint state is submitted to a Neumann condition. We obtain
on N& for £ < 0,
[on (") = (uy = 9)]- + on(u)] >0 ¢,
so that
/Nh o (u") = y(uyy = 9)]- + on(w)|? ds(z) = (6 — €)°| N5,
§

which leads, using (2.13) in Proposition 20 to |N?| < %. We have

W@+ [ )

0< / (1= HE)(p)ds() < /

Ngb FC,a\AtS
For an arbitrary § > 0, the term o2(p)ds(x) tends to zero as h tends to zero and the
Ny
term o2 (p)ds(z) tends to zero when & tends to zero. So that we obtain (2.33).

I'c,a\As
Now, concerning the second integral term of the right hand side of (2.32), we follow (2.26)

and it remains only to prove that

lim H(By)yp2ds(z) = 0. (2.34)

h=0 | NoR1%) WoN

To this aim, denoting T'¢,, = {z € T'c|3 > 0}, we obtain

/(F - lon(u") = v(u" = g)]- + ou(u)ds(z) > (T UTey) NTE,],
c,:Ul'cp)N Coa
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and still using (2.13) we deduce |(D¢; UTcp) NTE,| < C’%. So that

h2u71
/ H(Bn)ypads(z) = / vpads(z) < Cy
| eR18) WoR

2 7
(FCJUFC’},)HFZV’G g

since p is bounded on I'c. Consequently, (2.34) holds for v > 1/2 and ¢ > Ch*~/? which
ends the proof. n

Extending the part of the boundary on which a Neumann condition is considered, makes the
discrete adjoint problem tend to the continuous adjoint which satisfies a Neumann condition
on I'cp.  Of course, this continuous adjoint may not allow to recover the conical shape
derivative given by Theorem 13 for all direction ©. An interesting and open question would
be to verify that it allows to obtain a descent direction of the shape optimization problem.

2.4 Numerical experiments

In this section, we illustrate the convergence analysis with some numerical tests on an elastic
hollow cylinder in contact with a plane rigid foundation. We refer to [?] for more details
on our optimization method. The different tests are performed using GetFEM++ [87] with
quadratic Lagrange finite elements on a polar mesh shown in Figure 2.2.

1.10 1.00

[ 1.00 [ 0.90
090~ - 080F
080§ 0708
070 BYY
~ 0603 0503
— 050 _040FE
0409 0308
0302 0=
020> “Va

[ 0.10 0.10

0.00 0.00

- .

Figure 2.2: Hollow cylinder in contact with the obstacle. From left to right: structured polar
mesh of the hollow cylinder; approximated displacement; approximated adjoint state.

We consider the elastic hollow cylinder presented in Figure 2.2 with an interior radius R; = 20
cm and an exterior radius R, = 30cm. The contact might occur between the boundary I'c
on the exterior radius with a horizontal and rigid obstacle located at the bottom of the
cylinder. The gravity forces are neglected and f = 0. We impose a vertical displacement
up = [0, —1cm]| on the rigid boundary I'p. The optimization criteria are set to M(u) = F-u
where F' = [0, —1N] and N (u) = 0 for the sake of simplicity. The result of the finite element
computation for both the contact problem and the consistent Nitsche-based adjoint state
problem (2.16) are shown in Figure 2.2.
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2.4.1 Convergence of the Nitsche-based approximation of the ad-
joint state problem

We first focus on the convergence rate of the Nitsche-based approximation of the adjoint
state problem (2.16). The reference solution pl’,; of (2.16) is computed on a very thin mesh
(h = 0.0625 cm). The slopes plotted in Figure 2.3 describe the convergence rates associated
to the direct problem (2.11) for the variable " and the adjoint state problem (2.16) for the
variable p". The relative H'()—norm is

1Pk — 1"

Hp:}efH%,Q

bl

for
||Uh||iQ:/(vh)2dx+/ |V 2da.
Q Q

The left graph of Figure 2.3 presents both the convergence rate for the solution u” to the di-
rect problem (2.11) and the solution p” to the adjoint state problem (2.16). The convergence
rate for u” is in good accordance with the theoretical results given in [25].

100 \ 10

—_—y" (slope = 1.356)

....... SO p" (slope = 0.6764) /
10

’ =t Slope = 1.406 ‘

: /

P

H' ( Q ) relative error (%)
N
\
-s\
%
T8, N Lol em

..... x S 01 P
/ """" e /
ok
0.1 0.01-
0.1 10 0.1 1 10
Element size h (cm) Element size h (cm)
Figure 2.3: Error curves for § = —1. Left: relative H'(Q)-norm on the displacement and

the adjoint state variable. Right: length of I'},, N Tey;.

The convergence of p" towards p solution to (2.7) is also observed, accordingly to our theo-
retical results, but with a slower convergence rate compared to u”. This slower convergence
has at least two causes: a Dirichlet-Neumann transition between I'c, and I'c;, which limits
the regularity of p, and the convergence of F}Cl',a towards ['c, which depends on u”. The
convergence of the effective contact area is illustrated in the right graph of Figure 2.3. The
coefficient w of Assumption 27 is found approximately equal to 1.406, which is compatible
with the requirement of Theorem 28 (w > 1). One can see on the left part of Figure 2.4 that
the maximum of difference between p and p" is indeed located on the transition between
Fc’a and FC,Z‘-
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Figure 2.4: Left: Error map [p" — pl’,|. Right: Error curves for the adjoint state problem

ph for § = —1. Relative H'(2)-norm on the displacement and the adjoint state variable for
different values of C.

Now, concerning the strategy described in Section 2.3.5 with an extended Neumann zone on
the contact boundary, we present a convergence test in the right graph of Figure 2.4. We
recall that this strategy consists in replacing H(8,) by H(B, — &) in the proposed Nitsche-
based method. We choose ¢ = C'v/hy with different values of C' > 0. Theorem 29 ensures the
convergence of p” for any value of C' > 0. The strategy is respectively performed for C' values
of 0.1,1 and 10. We can see that this strategy does not deteriorate the order of convergence
of p" and starts to degrade the approximation error for a too high value of the constant
(C = 10). This strategy can therefore be interesting since it ensures convergence without
degradation of the approximation as soon as the constant C' is taken with a moderate value.

2.4.2 Comparison of Nitsche-based adjoint state formulations

We focus now on the convergence rate of the adjoint state of the Nitsche-based formulation
(2.15). Again, the reference solution pfef is computed on problem (2.16) for a very thin
mesh (A = 0.0625cm). Despite the non-consistence of this formulation, one can see on
the slopes presented in Figure (2.5) that the convergence of p" solution to problem (2.15)
is still ensured, with a convergence rate slightly deteriorated according to the one for the
Nitsche-based approximation of the adjoint state presented in Figure 2.3.
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Figure 2.5: Error curves for the direct problem using Nitsche’s method and for the adjoint
state problem of the Nitsche-based approximation (6§ = —1).

Finally, in Figure 2.6, we present an example of shape optimization process which is taken
from the previous chapter (see Figure 1.24 for the shape optimization with a slightly stronger
load magnitude and for the sole energy criterion minimization J.). The optimizable boundary
is only the interior part, which is submitted to a homogeneous Neumann condition. For the
same initial geometry, the shape optimization is performed either with the adjoint state
variable approximated by (2.16) or (2.15). One can see on Figure 2.6 that both of the two
approximations lead to quasi-identical shapes, meaning that, at least for this example, the
two strategies can be indifferently applied.

Figure 2.6: Shape optimization. The adjoint state variable is displayed. From left to right:
initial geometry, optimal geometry with adjoint state computed on formulation (2.16), opti-
mal geometry with adjoint state computed on formulation (2.15).
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2.5 Conclusion

The context of this chapter is the shape optimization of an elastic structure under sliding
contacts where the contact terms are treated with the Nitsche method and the shape gradi-
ents are calculated using the adjoint state method.

In the previous chapter, we proposed an adjoint state discretization based on the discrete
approximation of the optimization criterion. Unfortunately, this approach does not seem
to be consistent although in practice it allows us to optimize elastic structures. The objec-
tive of this chapter was therefore to propose a more consistent discretization based on the
Nitsche approximation of the continuous adjoint state. We have thus developed an a priori
convergence analysis of our new approach in the case where the bi-active contact area I'c, is
zero and under assumptions of convergence rate of the contact zones. We also explained how
to slightly adapt the discretization method in order to relax these last assumptions while
keeping a convergence result. Some numerical experiments were also presented to illustrate
these convergence results.

We want now to focus on the industrial application that motivated this work: the shape op-
timization of an ”airless” tyre. In this particular industrial application, other non linearities
occur owing to the large solicitations of such a structure. In the next chapter, we illustrate
our shape optimization procedure in large strain and its applications.
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3.6 Conclusion . . . . . @ i i i i i i it e e e e e e e e e e e e e e 118

3.1 Introduction

We saw in the previous chapter that under regularity assumptions, gradient descent direc-
tions exist in linear elasticity and a shape gradient formulation makes sense. We were able to
reach optimality conditions using the linear elasticity model. In other words, assuming the
geometry and material behaviors as linear, we were able to ensure the convergence analysis
of the shape sensitivity. This was performed for a contact problem treated by Nitsche’s
method.

We recall at this step of the study that, in the two first chapters, we optimized the shape of
an elastic load-bearing rolling structure. Actually, the studied structure is called ”airless”
tyre and is for instance described in [103, 89] and can be observed in Figure 1. In our study
case, large deformations occur as the "airless” tyre must bear the load of the vehicule and
so a significant quantity of deformation energy. A contact area occurs and must be large
enough to transmit the different efforts between the tyre and the ground. While large strains
and/or large rotations occur, the assumption from infinitesimal strain theory are invalidate
and a more general framework must be taken into account: the finite strain theory. To
establish the stress-strain relationship, we introduce hyperelastic laws providing models for
the stress-strain behavior of a material (see [78]).

Our contribution consists in presenting geometric shape optimization with contact in the
framework of the finite strain theory. In this chapter, we follow the approach of Cea’s
method leading to a Lagrangian formulation of the optimization problem, as in the first
chapter for linear elasticity. To reach a shape gradient expression, it is much easier to
follow this approach through the finite strain theory than the classical method of derivation.
We introduce the mechanical problem with unilateral contact, approximated by Nitsche’s
method. We compare different elastic laws and show the limits of the small deformations
assumptions while large deformations occur. We also introduce two strategies to deal with the
uniformity criteria while the structure is rolling. The first strategy relies on the uniformity
of the contact stress whereas the second strategy relies on the uniformity of the deflection
of the structure. We show that the two strategies lead to competitive and complementary
results.

The optimization procedure is very similar to the one introduced in the first chapter, only
novelties according to large deformations will be presented here.

Contact or Signorini’s conditions are more intricate conditions than Dirichlet and Neumann
conditions. They lead to a highly non-linear problem classically set in terms of a variational
inequality. In the framework of large deformation, no proof of well-posedness or differentia-
bility exists for geometric shape optimization owing to the non regularity of the mechanical
formulations. Yet we numerically test the performance of such an algorithm with various
geometries and prove the pertinence of such an algorithm.
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(Classically, all the mechanical quantities will be described in their reference configuration.
Let X be a point of Q° (the domain representing the body in its reference configuration)
and x its position in the deformed configuration. The Lagrangian description (or material
coordinates) depicts the motion of a solid body from its reference to its deformed configura-
tion. For an elastic body, some relations can be announced to link both configurations (see
Figure 3.1).

Let & : R, x QY — Qf be the deformation and u : Ry x Q° — QFf the displacement of X as

v =®(X) = X + u(X).

=1t

Figure 3.1: Deformation description of an elastic body.

We consider an airless” tyre occupying in its reference configuration a domain Q° C R?, d =
2 or 3 that we want to optimize the shape, a representation being proposed in Figure 3.2.
The reference boundary 992° of the domain is split into three non-overlapping parts, I'S;, T'%
and T'%. A Neumann condition is considered on I'};, representing holes in the ”airless” tyre
where a force density g% might be prescribed in case where pressure occurs. A contact with
friction might occurs with a flat and horizontal rigid obstacle on the ”airless” tyre tread T'Y,
and as a first approach, a homogeneous Dirichlet condition is prescribed on T'%), representing
the tyre rim. In order to describe a more realistic behavior, a load on a rigid boundary will
be set on the rim "% and will be depicted in section 3.4.1.
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Figure 3.2: Schematic representation of {2 standing for an ”airless” tyre and the rigid obsta-
cle.

Let F' be the deformation gradient as

F(u) =V®=1;+ Vu.

Let C be the Cauchy-Green deformation tensor defined as C'(u) = FT(u)F(u). It denotes
the evolution of local change in distances due to deformation. Let E be the Green-Lagrange
deformation tensor defined as

1 1
E(u) = i(C(U) — 1) = §(Vu + Vol + VUTVU).
(Classically we consider ¢ as the first Piola-Kirchhoff stress which reads

6 = det(F(u)) o F~ " (u), (3.1)
where o is the Cauchy stress tensor and ¢ the second Piola-Kirchhoff stress defined as
6= det(F(u)F Y u)oFT(u) = F(u)é. (3.2)

In case, as in chapter one, we consider a linear elastic constitutive law, the Cauchy stress
tensor is linear related to the small deformation tensor by (1.2). Here, we consider an
hyperelastic constitutive law defined by the strain energy density function W as

b(u) = 2 (Bw) = 227 (C(w),

where the definition of W depends on the considered hyperelastic law, that we will precise
later. Let dX be a infinitesimal vector around X. At the first order, it holds

r+der=0(X +dX) =d(X)+ F(u)dX,
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which gives
dz = det(F)dX.

The deformed outward unit vector n is linked to the reference outward unit vector N by the
-7
following relation: n = % The displacement ugq : Q — R? of the body according to

its reference configuration is solution to the following elasticity problem:

-div (F(ug) o(ug)) = f© in QO,

o(uq) - N = gy(uq) on I'Y,, (3.3)

ug = on I'%.

The "airless” tyre is solicited in large deformations. We wonder if it has a preponderant
influence on the elastic shape optimization. We want to highlight the interest in hyperelastic
law models in order to lead a shape optimization. The main contribution of this chapter is
then the comparison of linear elastic and hyperelastic laws following the same procedure as
in the first chapter concerning the shape optimization.

The present chapter is structured as follows. Section 3.2 is dedicated to the introduction of
the frictional contact problem in large deformations and to a consistent formulation based
on Nitsche’s method. In section 3.3, the geometric shape optimization in the framework
of large deformations is presented. In section 3.4, we introduce the discretization used and
the optimization method. Finally, in section 3.5, we present some numerical results which
highlight the interest of hyperelastic laws while large deformations occur and the efficiency
of the criteria previously introduced to optimize an ”airless” tyre.

3.2 Mechanical problem in large deformations

In this section, we introduce two hyperelastic laws and the unilateral contact condition with
friction on the boundary T'Y. We provide the weak formulation of the elastic unilateral
problem for Nitsche’s method in large deformations.

3.2.1 Hyperelastic material models

An elastic law aims at describing the mechanical and reversible behavior of a material and
depends only on the deformation according to the reference configuration, i.e. a priori F'.
As any physical law, the following objectivity principle must be verified.

Principle 30 (Objectivity Principle). The Cauchy stress vector must not depend on the
orthonormal basis chosen to compute the Cauchy stress tensor from the elastic law.

As a consequence, the Cauchy stress tensor only depends on the deformation tensor E or
C. In case of hyperelastic laws, the stress-strain relationship derives from a strain energy
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density function W (see [26, 40, 78]) as

ow ow
= E(E(U)) = 2%(0(10)),

6 (u)

oW
OB;;
in a 3 dimensional framework (d = 3). Let 1, 72 and 73 be the principal stretches of a 3 x 3
matrix A. Invariants of a squared matrix A can be used to describe the strain energy density

functions. It holds

where the partial derivative is 6;; = . In the present part, the tensors will be described

i1(A) = tr(A) = v+ 72 + 73,
1

(
is(A) = Z((tr(A))* — tr(A4%) = 12 + 7273 + 13N,
(

2
A) = det(A) = 717273,

i3
where tr(A) and det(A) respectively denote the trace and the determinant of A. For an
isotropic material, the strain energy density function depends on the invariants of the

Cauchy-Green tensor C' or equivalently of the Green-Lagrange tensor F, which means that
the elastic law will be written as W (i1 (C),i2(C),i3(C)) or W (i1 (E),i2(E),i3(E)).

Saint-Venant—Kirchhoff model

The Saint-Venant—Kirchhoff model (see [13]) is the simplest hyperelastic model. It depicts
an isotropic material whose law is linear. The strain energy density function reads

1., .
W(E(w)) = 5A0(EW))* + pir(B(u)?),
where A and p are still the Lamé material parameters, depending on the Young modulus and
the Poisson ratio. The first Piola-Kirchhoff stress tensor (3.1) can then be rewritten using
the invariants as
o(u) = Niy(E(u)) g + 2uE (u).

That law is available while the deformation remains small enough. It can be used whether
large rotations appear. Yet, another model must be used to take into account large defor-
mations.

Remark 31. The Saint-Venant-Kirchhoff model is an extension of the geometrically linear
elasticity. The law s identical to the Hooke’s law in linear elasticity

o(u) = Ny (e(w)) g + 2ue(u).

where the deformation is linear e(u) = %(Vu + Vul). In the case of linear elasticity, the
strain enerqy potential reads

Wi(e(u)) = %A(il(ﬁ(w))2 + pir(e(u)?).
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Mooney-Rivlin model

The Mooney-Rivlin model is mainly used for polymers and especially for rubber, as it is the
case in this current study where we want to optimize the shape of an "airless” tyre. The law
is isotropic and takes into account the incompressibility of the material. Mooney proposed
first the model [73] in 1940 which was generalized by Rivlin in 1948 using the invariants [88].
For an incompressible Mooney-Rivlin material, the strain energy density function is

W(C(u) = e1(j1(C(u)) = 3) + e2(ja(C(u)) = 3) + di(i3(C (u))? — 1)%,

where ¢1, ¢y are empirical material constants and d; is a penalization parameter for the
incompressibility. j1(C') and jo(C) are some invariants defined as

I(O) ’ig(O)_l/?’,
§2(C) = i5(C) i5(C) 3.

.
—
—~
Q
~—
I
~

Remark 32. While the material studied is incompressible, det(F(u)) = 1 and the third
invariant i3(C'(u)) = 1. If the material is considered as near-incompressible, det (F(u)) =

The Piola-Kirchhoff stress tensors (3.1) and (3.2) can then be rewritten using the invariants.
We first need some derivative expressions as

S0y =1
%(C) — i (C) ]y — CT,
o =i,
T(0) = i) Ge) - SO T ),
20) = () P GR() - 22D T o),
which leads to
b(u) = T2(E) = 252(C)
= 2c1%(0) + %%(C) +2d,(1 — 2'3(0)—1/2)%(0).

What’s more, the second derivatives of the invariants with respect to the tensor C' can be
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expressed as

0%,
502(C) =0,
0%
5 (Ot = 0,380 — S
0% . 1 IR
a_cé(c)ijkl = 23(C>(Cjilclkl - Ojklcli 1),
where dy,; is the Kronecker delta and for the modified invariants j; (C') and js(C), it holds
0?5 i niays, 4(C) 0i3(0) Di3
@(C)z‘jkl = i3(C) (92.3(0)2 5C (@)@ %(0)

1 i iy i, 9i5(C)
3i3(C) (%(0) ® %(C) + %(C) ¥ =50 (©))
i1(C) 0%i3

3i3 802( )
%), oy, O 10i1(C) 9i5(C) Dis
@(C)ijkl = i3(C) (@(C) + 9i3(C)20C (C)® %(C)

2 i o1 o1 0i3(C

s Ge@ e )+ 5ae e P )
2@2(C> 8 ’L3( ))

323 802 '

For the sake of formulations in the optimization part, we also develop the second derivative
of the strain energy density W (C') as

do O*W

a_E(E)ijkl = W(E)zjkl = (Eijir + Ejirt) /2,

where
0%, 0%,
&= dergea(C) Fage (©)
0% 1 9i5(C) 0i
— -1/2\2 "3 2 —2/30913 Ol
FAdi (1= i5(C) ) S 2(C) + 5in(C) 2P () @ S (0))

3.2.2 Pressure term

The source and boundary terms are generally defined on the reference domain Q° and inde-
pendent on the displacement. A case must be specified: Pressure as a Neumann condition
in large strain. If a pressure gy is imposed on the Neumann boundary I'y in the deformed
configuration of the domain, a density of force must be defined as

gn(u) = —p" n,
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where n is the outward vector in the deformed configuration and p™ is the pressure magnitude
imposed into the hole. The transformation between the reference and deformed domain leads
to

g (u) = det(F(w)) | F~" (w) Nllgn (u) = —p"det(F(u)) F~" (u)N,

where ¢%(u) depends on u and N in its reference configuration.

3.2.3 Frictional unilateral contact condition

The obstacle is supposed to be rigid and flat. We consider N,;, the inward unit vector to the
rigid obstacle and ¢ the initial gap between the elastic body and the obstacle (see Figure
3.3). We note that in this special case, n, is equal to N,. The displacement u : Q — R? is
decomposed on the contact boundary I'Y, into its normal part uy = u - N, and its tangent
part up = (I — Ny, ® N,)u such that

u=unyNy + ur.

Figure 3.3: Contact surface representation for the vertical load configuration.

Two strategies can be developed to map a point X of ', on the obstacle at a point Y. The
classic strategy consists in defining Y as the closest point projection of X onto the reference
surface I'Y, thereby depending on N,. We refer for instance to [65] for more details. Another
strategy consists in defining Y as the closest intersection of the contact surface with the line
passing through point X and directed by N. This strategy, often called ray-tracing, can be
found for instance in [84]. We choose to deal with the first strategy called projection as N,
is constant in this work (flat and rigid obstacle). The initial gap between the body and the
obstacle is defined on X € T'Y, by

g:Ny(Y_X)>

where Y is the orthogonal projection of X upon the rigid obstacle. We also note the decom-
position of the Piola-Kirchhoff stress tensor on 'Y into normal and tangent parts:

on(u) = (6(u)N) - Ny and op(u) = (I — N, ® Ny)(6(u) N).
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The unilateral contact condition on 'Y can be expressed by the following complementary
condition:

N

(uy —g) <0,
6'N<U)

(uy — g) on(u)

IA
o

?

0.

The classical Coulomb law of friction can also be written on T'%, using the Piola-Kirchhoff
stress tensors in large deformations, as

|6'T(U)| S —J’:&N(u if Q.LT = U,

6r(u) = Fon(u)L.  otherwise,
where F > 0 is the friction coefficient, depending on the couple of materials in contact (the
tyre and the ground) and ur is the sliding velocity. The Coulomb law of friction is usually
approximated by replacing the sliding velocity by the following finite difference

UT—U%

At

where u9. stands for the tangent displacement at an initial time step and At the time step.
For the sake of simplicity, we take u% = 0 which leads to the so called static Coulomb’s law
of friction in large deformations:

(3.5)

or(u) = Fon(u)rL  otherwise.

{|[7T(u)| < —Fon(u)  ifdr =0,

Using Green’s formula on Problem (3.3), the displacement field ugq : Q +— R satisfies

/QO(F(u)ﬁ(u)) : Vo dX — g (u) - v ds(X)

Iy

)

with, in addition, the condition u = 0 on I'Y, and Vv : Q — R? sufficiently smooth with v = 0
on T'Y,.

G(u)N-vds(X)= [ f°-vdX,
0o

0
C

3.2.4 A Nitsche-based weak formulation

The Nitsche method introduces a contact term which weakly prescribes the frictional contact
conditions (3.4)-(3.5) in a consistent manner. We adapt the work of R. Mlika et al. in [71]
where the Nitsche method is developed for bilateral contact to the unilateral contact studied

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



95 CHAPTER 3. SHAPE OPTIMIZATION IN LARGE DEFORMATIONS

here. It is based on the equivalent reformulation of the contact conditions which has been
originally derived from the augmented Lagrangian approach [3] and reads as

on(u) = —[on(u) — y(un — 9)]-,

~

or(u) = P, p(u) (0 (u)N — yu),

where p(u) = Flon(u) — y(un — g)]_is the friction threshold.
In case of unilateral contact, the Nitsche-based weak formulation in large deformation reads:

Find u : Q — R? such that u =0 on 'Y,
/ (F(u)o(u)) : Vo dX —
Qo ro,

Vo : Q — R? sufficiently smooth with v = 0 on I'},,

gy(u) - vds(X) +Z(u,v,N)= [ fO-vdX, (3.6)
Qo

where the contact term Z(u, v, N) satisfies

Z(u,v,N) = — /FO %&(U)N - Dy o(u)N[v] ds(X)
= [ 2ot +2(uw = g)l- Pulbin(w) = 2(ux — 9)le] ds(X)

+ /poc %P BNy () (F(W)N = yu) - Dy(067(u) — y(ur — g))[v] ds(X).

Remark 33. We precise here that the aim of this chapter is to extend the optimization in
large deformation. We present formal formulations in a continuous framework for the sake
of simplicity.

There exists no proof of the well-posedness for such formulation. Once again, only numerical
tests led in [71] validate the Nitsche’s method in large deformation where the influence of
the contact parameter « for different variants 6 is numerically analyzed.

Remark 34. Note that we can set the parameter 6 to particular values that lead to different
variants acting on the symmetry, skew-symmetry or non-symmetry of the contact term (see
[25]). In particular, in the frictionless case, the formulation is symmetric when 6 = 1 and
admits a potential energy. A classic method close to the penalization approach is recovered
when 6 = 0. The tangent system involves the second order derivative of 6(u)N, which
encourages the use of this variant 8 = 0 for which the second order derivative does not
appear. Finally, when 6 = —1, the contact term is skew-symmetric and leads to crucial
properties for convergence independent of Nitsche’s parameter.

The directional derivative D, 6(u)N[v] = D, d(u)[v]N is detailed in the following proposition
(see for instance [37]).
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Proposition 35. The directional derivatives of F(u) and E(u) are:

D, F(u)[v] = Vu,
D, E(u)[v] = sym (F* (u)Vv),

where sym(-) is the symmetric part of a second order tensor. The directional derivatives of
o and & are:

A

D su)le) = 9o w) - To ] = T (B(w) - sym (FF () 70),
D.6(u)[v] = Dy, F(u) 6(u)[v] = F(u) D, o(u)[v] + Dy F(u)[v] o(u)

= F(u) (aag(E(u)) : sym (FT(u)VU)) + Vv o(u).

Q»
—
S
N—
=,

3.3 (Geometric shape optimization

In this section, we present the geometric shape optimization in the framework of the large
strain theory. It aims at minimizing the energy of the structure J({2) that can be expressed
as a target criterion to find the optimal shape. In case where a multi-criterion optimization is
performed, the energy can be a combination of different criteria and lead to a multi-criterion
optimization. The generic formulation for the energy or the target criterion is presented in
its reference configuration as

J(Q) = . M(ug) dX + - N(ugq) ds(X), (3.7)

where ug is defined as the solution to (3.6).

Here, M and N are two functions assumed to be sufficiently smooth so that the shape
derivative of J makes sense.

As in the previous chapters, we recall that the shape optimization consists then in finding
some domains 2 C Q.4 minimizing the target criterion J(£2) with a volume constraint.

3.3.1 Shape gradient formulation

We follow the same procedure as in chapter one, adapting the formulations to the finite
strain theory.

Theorem 36. Let 2 € €% and assume that f° € HY(Q;R?), ¢% € H?*(;RY) and that (3.6)
admits a unique solution uq, sufficiently smooth for t small enough and © € WH>(R%, R?),
We denote D J(Q2)[O] the directional derivative of J(2) with respect to 2 in the direction

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



97 CHAPTER 3. SHAPE OPTIMIZATION IN LARGE DEFORMATIONS

O € WHe(R% RY), we have when the derivative exists:

DI@)E] = [ (©:N) (Mlua) + Flun) Gy (E(u)) : T~ °(X) - pa) ds(X)

m

+/FO (© - N) (kN (ug) + VN (ugq) - N) ds(X)

m

+ /FO . (© - N) pMdiv (det(F(ug))F (ug) " pg) ds(X),

where T being a moving boundary of Q° assuming T, NT% =T NTY =0 (we recall that
the only boundary T is optimizable), K., is the mean curvature of T° | and pq € V' (where,
in this chapter, V.= {v € HY(Q%RY) : v = 0 on I'%}) is the adjoint state defined as the
solution, Yq € V', of

Dy (Flun)é(ua))la) Vo dX = [ Dugilun)lal - po X

QO

+ D, Z(uq, pa, N)[q] + o D, M(uq)[q] dX + o Dy N (ugq)q] ds(X) = 0.

(3.8)

We develop the method proposed by J. Céa [18] based on the Lagrangian formulation de-
scribing a constrained optimization problem. The method is described for instance by A.
Maury in [69].

Proof of theorem (36):
Céa’s method consists in minimizing the criterion J(£2) in (3.7) under the constraint that
the weak formulation (3.6) is respected. Let £ the Lagrangian application defined by

L(u,v,N,Q) = J(Q,u)

+ /QO(F(U)é(u)) : VodX — % (u) - vds(X) + Z(u,v, N) — . f-vdX.

0
1—‘N

where J(Q,u) = / M(u) dX + N(u)ds(X). The key is to remark that J(Q2) =
Qo 200
J(92, uq) and then to identify J(2) as

J(2) = L(ug,v,N,Q).

If £ is differentiated with respect to the domain €2 in the direction ©, it gives according to
each variable dependent on €2
D J()[0] = D [L(ug, v, N,Q2)] [O]
= Dq L(ug,v, N,Q)[O - N| + D,, L(uq, v, N,Q)[Dq N|[O]] (3.9)
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Yet the shape derivative Dg uq[0] can not be calculted and the shape gradient is not explicit.
In order to vanish the last term of equation (3.9) and obtain an computable formulation of
the shape derivative of J, we follow the method proposed by J.-L. Lions in [66], often called
the adjoint state method. Therefore, we introduce pg € V' the adjoint state, assumed to be
smoothed, as the solution of

D, ‘C(ufpr? Nv Q)[q] =0, \V/q eV.
Now, if we evaluate the equation (3.9) at v = pq, the last term vanishes and we show that

as Dqu[O] € V. What’s more, the term D,, L(u, p,n,2)[q] corresponds to the adjoint state
problem and reads

Dy L(u,p,n,Q)[ql = | Du(F(u)o(u))lq] : VpdX

— | DugX(u)lg)-pdX + D, Z(u,p,N)|q]

Y

+ [ Dy M(u)[q] dX + D, N (u)lq] ds(X),Vq € V.
Qo 2900

And so we have

DI@)E] = [ (©:N) (Mlua) + Flun) Gy (E(u)) : T~ °(X) - pa) ds(X)

+/1“0 (©-N) (/imN(UQ) + VN(UQ) - N) ds(X)

_ /po - (© - N) (kmpa - g¥(uq) + V(pg - g% (ug)) - N) ds(X)
89?\{ “Pa ,

- /1“9,ml“?v on V(@) ds(X).

as T2 NTY% = () and Z(u, p, N) is an integral defined on 'Y, and where N'(©) = —V7(©-N) =
—V(©-N)+(0©-N)N. We recall the following relation, if € is a closed and regular set of
R?, f € W2L(RY R?) and for all © € W (R, R9):

[ divi© ds(x) - /F0<(@ N)(frm) — Virf - ©) ds(X),

where divr® = div® — V(O - n) - n. This leads to the explicit expression of the shape
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gradient in large deformations:

D @] = [ (©:N) (Mlua) + Flun) G- (Blu)) Vo~ °(X) - pa) ds(X)

m

[ (0 N) (inV () + TN (o) - ) ds(X)

m

+ /FO . p" (O - N) (kmpa - (P(uq)N) + V(p - (®(ug)N)) - N) ds(X)

_/ phlw V(0 - N)ds(X),
ro.nry, ON

with ®(u) = det(F(u))F~T(u) that can be rewritten as

D] = [ (0 N) (Mun) + Flun) G (Blun)) : T~ (X) -p) ds(X)

m

10N (s ) + TN o) - ) a5

m

b [ @) iy (@(un)pe) ds(X).

3.3.2 Adjoint state formulation

In this section, we give explicit formulations of the directional derivatives proposed in the
adjoint state equation (3.8).

Pressure term

The directional derivative of the pressure term (see Section 3.2.2) from (3.8) can be computed
as follows

Dugn(u)lg] - p = —p"det(F(u))(F~" () : Vo) la — F~" (w)Vq) " (u)N) - p,

as D, det(F(u))[q] = det(F(u))F~T(u) : Vq.
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Contact term

In this section, we give an explicit formulation of the Nitsche’s term and its directional
derivative in the adjoint state equation. Recall that we have

T(u,v, N) = — / O 5 ()N - Dy 6(u)N[o] ds(X)

0
ro v

_ /I:O %[&N(u) + f)/(UN — g)], DU(Q&N(U) - "Y(UN - g))[’l}] dS(X>

+ /po %Pswy,p)(&(u)N = yu) - D067 (u) = y(ur — g))[v] ds(X),

C

and p(u) = —F[on(u) —y(uy — g)]-.
The directional derivative D, Z(u,p, N)[g| from (3.8) can be computed as follows

6

DuZ(u,p,n)lql = — ; §Du(6(u)N - Du(6(u)N)[p])[g] ds(X)
-, %Du ([on(u) +y(un — g)]- (0 Dy on(u)[p] — vpn))lg] ds(X)
- % Du P(n, p(w) (07 (1) = yur) - (0 Do 61 (u)[p] — ypr)lg] ds(X).

The adjoint state problem reads as follows
( Find po € V such that Vg € V

| PulFun)otuo))ia): Voo dX = [ Dugh(uo)ldl - po A
0 N

— | ZDu(6(ug)N - Du(é(ug) N)[pal)lg] ds(X)

ro
-/, %pu ([on(w) +7((ua)n = g)]- (0 Dy dn(ua)lpal —v(pa)n))lgl ds(X)
" i %DU(PB(Ny,p(uQ))@T(UQ) —(ua)r) - (0 Dy 67(ue)[pel — v(po)r))[pe] ds(X)
=/, D, M(ug)[q] dX — - Dy N (uq)[q] ds(X).

What’s more, the computation of D, Pg(n, p(u))((Y%)) can be obtained thanks to the partial
derivatives of the projection ball Py, r)(¢q) according to ¢ and 7. Indeed, we can find in
[84] the following and useful estimates

0 for 7 <0,
O0gPr(n7)(q) = TN if [gr| < 7,
|qT—T|(TN — % ® ‘Z—;') otherwise,
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and

0 for7T<O0or|gr| <,
8TPB(N,T)(Q> - {(I_T

lar|

Here Ty is defined by Ty = I; — N ® N, qr = Tng.

otherwise.

3.3.3 Criterion minimization

Minimization of the strain energy density

The most classical energy criterion concerns the energy density of elastic deformation and is
defined as the strain energy density function W whose expression depends on the hyperelastic
law:
Jo(Q,ug) = W(E(ug)) dX, (3.10)
0o
This objective functional can then be expressed in the general form (3.7) by considering

M(UQ) = W(E(UQ)) and N(UQ) =0.

The directional derivative of the strain energy potential (3.10) from the adjoint state equation
(3.8) can be computed as follows

Du Je(QquMQ} = DU W(E(u)>[Q] dCL’,

where
DLW (BW)lG) = (B - T2 g = 6() - sym(F* )V

Uniformity of the contact stress

The "airless” tyre must roll as uniformly as possible. It can be depicted through uniform
criteria of optimization. An additional criterion developed in this chapter consists in uni-
forming the contact stress close to the contact boundary of the rolling structure according
to the load positions. To this aim, we introduce the mean contact stress on the tyre tread
or contact boundary T'%, through the expression of the first Piola-Kirchhoff stress tensor:
1 &
0 o
Prean = Nl ' U(uzQ)N7

=1
where N; is the number of load positions (see section 1.4). We try to uniform the stress on
the contact boundary according to the different load positions u}

1.
JP(Q7u97pgmean) - §||O-(UQ>N _pgleanH%l/ZFc' (311>
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As studied in the first chapter in linear elasticity, it is a good strategy to correctly uniform
the contact stress. We follow the exact same approach as the uniformity of the contact stress
using a H~2(I'c, RY)—norm in section 1.3.3. The criterion for the uniformity of the contact
stress reads

1. . 1
JP(Qvuﬂup(r)nean> - §||O-<UQ)N _pgnean‘|2—1/2,1"c = §HwQH%/0

:%/Ba(wg) s e(wq) dx:%/rcg'wﬂ ds()

— %/F (6(ug)N — P2 oun) - Wa ds(X),

0
C

where wq = wlo(ug)n — p',...] is the solution to (1.29) for g = o(ug)n — p',.,, With

1 &
pfnean = Nl Z U(Uél)n

We assume here that pf ... is known in advance so that it is constant according to the
variable ug and its derivative is equal to zero. Again, this criterion can be rewritten as the
general functional form (3.7) by considering

1
M(ug) = 0 and N(ua) = Z(6(ta) N = Prcan) - o

The directional derivative of the H~/2(I'%, R%)-norm criterion (3.11) from the adjoint state
equation (3.8) can be computed as follows

Dy T2 P = 5 | Dulortun) s clun)fa] do
- / o(wg) : e(wDu(o(un)lgl)) dz

= | Du(a(u)N)[g] - wa ds(X),

0
1—‘C

where w[D,(o(u)n)[q]] is defined as the solution to (1.29) for g = D, (o(u)n)[q] as proposed
in the first chapter.

Remark 37. The remark 8 still holds. The preference given here to the linear elasticity
problem is gquided by mechanical considerations and is faster solved than a formulation in
large deformations, as the resolution is direct. Additionally, the deformations are small in
the intermediary problem as the domain B does not contain holes in contrary to €.
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Uniformity of the deflection

Another strategy consists in uniforming the deflection on the Dirichlet boundary among all
the load positions. It reads

E
Jd(Q’ uq, d?nean) = /1"0 %(UQ ) NZ/ - dgnean)Q dS(X)7 (312)
D

where
Rl
d(r)nean = N ui Ny
Nl Zzl Q Y
This objective functional can then be expressed in the general form (3.7) by considering

E
M(UQ) =0 and N(UQ) = W(UQ : Ny — dmean>2~
T

The expression of the directional derivative of the deflection uniformity criterion (3.12) from
the adjoint state equation (3.8) is rather straightforward and can be computed as follows

FE
Du Jd(Qa uﬂapmean)[Q] = /0 E(UQ ’ Ny - dmean)(q ’ Ny) dS(X)
D

Multi-criterion optimization
Finally, we will consider the following global energy
Ny

J(Q) - Z Jg(Qi7 ué)? p?nean? d?nean)’ (313>
i=1

where

Jg(Qi7 UB, p?nean’ d[r)nean) - JE(Qi7 U&) + a‘]P<Qi? ugl’ p?nean) + B‘]d(Q“ uél? d%ean)‘ (314)

3.4 Numerical strategy

In this section, we present the numerical strategy for the shape optimization. As the strategy
is very similar with the one presented in the first chapter, section 1.4, we only present
novelties according to the large strain framework.

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



CHAPTER 3. SHAPE OPTIMIZATION IN LARGE DEFORMATIONS 104

3.4.1 Load condition on a rigid rim

In order to lead a more realistic mechanical load, we change the homogeneous Dirichlet
condition to correctly depict the rigid rim supporting the "airless” tyre. To do so, the
homogeneous Dirichlet condition on I'p is replaced by a rigid boundary condition that the
rim only has a vertical rigid motion and is subject to a global load, standing for the vehicle
weight. Denoting ¢% the prescribed load and ap the unknown vertical rigid displacement
on 'Y, the weak formulation reads now: Find u : Q — R% ap € R and \p € H~V/2(I'p)?
such that Vv : Q — R? VBp € R and Vup € H-V2(T'p)?,

/QO(F(u)a(u)) VodX = [ 4w vds(X) + Zwo.N) = [ ()0 X

ry
+ [ Ot (u=aphy) - up -+ o+ N, = g) ) ds(X),

FD
where \p is a multiplier which represents the density of force on T'%, introduced to enforce

the condition.
As a consequence, a new term appears in the adjoint state problem on I'Y,. We consider ap

and Ap in the Lagrangian. It now reads Vq € V,Vq,, € R and Vg, € Hl/Q(FD)d,

Du 'C(u)pv aD7>\D7N7 Q)[Q] +D04D 'C(u7pa aDvADan Q)[QaD]
+ D)\D E(u7p7 ap, )\DJ N7 Q)[QAD] - 07

which leads finally to find p € V,p., € R,pyr, € Hl/z(FD)d such that Vg € V,Vq,, €
R and Vg, € HY2(T'p)*,

Du(F@itu))al : VpdX = [ Dugk(wld]-pdX + D, T, p. N

QO

+ | Dy M(u)[g] dX + Dy, N (u)[q] ds(X)

Qo 000
= /0 (pAD “q+ (p _paDNy) “Axp — Prp - Nyqap) dS(X)

1—‘lD
3.4.2 Gradient jump penalty
We only notice here that the stabilization term is slightly different than in linear elasticity:

1 2
G(u,o,N)= > = [ ¢yh3[Vu-N] [Vo- N ds(X).
Eegk 2 Jor

where EF denotes the set of edges (for d = 2) or faces (for d = 3) of the mesh having a
non empty intersection with 0Q(k), [[Vu - N ﬂ denotes the inter-element gradient jump over
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E, N is a unit normal vector to F and £ is the penalization parameter. The same term is
imposed on the adjoint state equation (3.8) and reads

DLGlup, Mg = 3 % /8 & [Va- N [Vp- N ds(x).

Ec&k
1400 B -
. 1000 § 1200
@ = 10.00 §
-~ 800 3 @
= — 800 §
—6.00 @ 00 &
400 9 I 2.00 §
2.00 = | T 2
0.00 5 [2'00 =
B 0.00 9

Figure 3.4: Focus on the von Mises stress of two solutions of the direct problem near a hole.
On the left the gradient jump is not penalized to compute the solution (£ = 0) and on the
right the gradient jump is penalized (¢ = 1073).

As for the stress jump penalty in linear elasticity, a gradient jump penalty tends to recover
a good approximation of the stress (here the von Mises stress in Figure 3.4) on elements
largely cut by the frontier. Therefore, the following computations will be performed with a
gradient jump penalty with & = 1073,

3.5 Numerical applications

In this section, we introduce numerical applications of the geometric shape optimization
with contact. Different geometries will illustrate the performances of the presented shape
optimization algorithm. The structure is supposed to be homogeneous and isotropic in the
whole section. The purpose is successively to highlight the optimal shape differences for
several elastic laws, then to emphasize the efficiency of the two criteria aiming at uniforming
the rolling structure.
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3.5.1 Geometries setting

We consider a ring with an inner radius R; = 20 c¢cm and an outer radius R, = 34 cm.
The ring width is set to w, = 22 cm. The inner and outer radii are areas that can not be
optimized. The Young modulus is set to 100 MPa and the Poisson ratio is 0.48. A contact
might occur on boundary I'c upon the outer radius R, (tyre tread) with a fictitious rigid
body representing the ground. A load condition is set on the rigid boundary I'p upon the
inner radius R; (tyre rim). Concerning the Nitsche method, the contact parameter is set
to 79 = 100 MPa and ¢ = —1 to ensure an optimal convergence of the Newton-Raphson
algorithm which is intricate in large deformations (see [71]). For the Mooney-Rivlin model,
we use the following set of parameters [cy, o, di] = [1/3, 11/6, 0]

First we compare three elastic laws on different topologies: linear elasticity, Saint-Venant —
Kirchhoff model and Mooney-Rivlin model. Then, we show the influence of friction in the
contact term and pressure into holes. Finally, we give some multi-criterion shape optimiza-
tion results and we study the influence of the parameters o and g in (3.14).

3.5.2 Comparison of elastic laws

We first intend to minimize the strain energy potential W on the initial geometry proposed
in Figure 3.5 and we compare different elastic models.

Figure 3.5: Initial geometry studied in the next sections with 108 initial holes.

The load is first supposed to be 100 kg, so that the deformation is low. Figure 3.6 shows
that while the deformation is low, the optimal shape looks very similar whatever the elastic
law considered.
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Figure 3.6: Optimal shapes. The load is set to 100 kg. Left to right: linear elasticity,
Saint-Venant-Kirchhoff model and Mooney-Rivlin model.

The three elastic models show very close minimizations of the strain energy as presented
in Figure 3.7, even though the linear elasticity already shows a light under estimate of
the strain energy. Yet while small deformations occur, the three elastic models are almost
equivalent leading to the same optimal shapes and so the linear elasticity model is sufficient
to solve a shape optimization problem whereas considering hyperelastic models slows down
the mechanical problem resolution.
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Figure 3.7: Minimization of the strain energy potential for the models exposed in Figure 3.6.

Nonetheless, an "airless” tyre must show better performances according to its bearing ca-
pacities and is largely solicited in large deformations. We set the load to 500 kg so that
stronger mechanical solicitations occur and we compare the differences between the elastic
laws. Figure 3.8 shows that the optimal shapes and mechanical behaviors differ according
to the elastic model considered. More especially, the two hyperelastic models lead to very
close optimal shapes and the difference largely comes from the linear elasticity model where
the optimal shape differs. In addition, concerning the linear elasticity, we observe the same
shape as the one obtained while the mechanical solicitation is low (see Figure 3.6). Regard-
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ing the strain energy associated to each optimization test in Figure 3.9, we remark that the
strain energy potential W differs according to the elastic law considered.
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Figure 3.8: Optimal shapes. The load is set to 500 kg. Left to right: linear elasticity,
Saint-Venant-Kirchhoff model and Mooney-Rivlin model.
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Figure 3.9: Minimization of the strain energy J,.

We then lead the same study on the initial geometry proposed in Figure 3.10 and we compare
different elastic models.
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Figure 3.10: Initial geometry studied in the next sections with 108 initial holes.

Again, the load is first supposed to be 100 kg, so that the deformation is low. Figure 3.11
shows that the optimal shapes are very similar while the deformation is low, so as the strain
energy evolution in Figure 3.12. And again, while the load is set to 500 kg, the optimal
shapes differ according to the considered law as highlighted in Figure 3.13, so as the strain
energy (see Figure 3.14). This is particularly the case for the linear elasticity.

Figure 3.11: Optimal shapes. The load is set to 100 kg. Left to right: linear elasticity,
Saint-Venant-Kirchhoff model and Mooney-Rivlin model.
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Figure 3.12: Minimization of the strain energy J,. for the models exposed in Figure 3.11.
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Figure 3.13: Optimal shapes. The load is set to 500 kg. Left to right: linear elasticity,
Saint-Venant—Kirchhoff model and Mooney-Rivlin model.
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Figure 3.14: Minimization of the strain energy .J. for the models exposed in Figure 3.13.
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What’s more, if we try to apply the Mooney-Rivlin model on the optimal shape previously
obtained with the linear elasticity model in Figure 3.13, we show that the mechanical be-
havior is a physical nonsense. A detachment appears in the contact between the tyre and
the ground which is not convenient and the deformations are critical as presented in Figure
3.15.

Figure 3.15: Deformations with Mooney-Rivlin model on the optimal shape previously ob-
tained with the shape optimization led with linear elasticity in Figure 3.13.

We can already conclude the pertinence of hyperelastic laws for shape optimization. Even
though the linear elasticity model is faster solved, it leads to inaccurate deformations and
optimal shapes while large deformations occur. The Saint-Venant—Kirchhoff model and
Mooney-Rivlin model show very close performances. This means that we only expose the
geometric non linearity linked to the high rate of deformations and the material non linearity
is not exposed. The Saint-Venant-Kirchhoff model can actually be unrealistic as nothing
prevent the potential det(C') from being zero, leading to a total crushing of the material, or
even worse to its reversal as observed in Figure 3.16.

Vertical displacement (cm)
-2.50-2.00-1.50-1.00-0.50 0.00

Vertical displacement (cm)
-2.50-2.00-1.50-1.00-0.50 0.00
| | |

- e

Figure 3.16: Focus on the contact zone for the initial shapes. On the left: Saint-
Venant—Kirchhoff model and the reversal of the material and on the right: Mooney-Rivlin
model.

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



CHAPTER 3. SHAPE OPTIMIZATION IN LARGE DEFORMATIONS 112

The Saint-Venant—Kirchhoff model must be cautiously manipulated as it can lead to inac-
curate material behaviors. Now if we optimize the shape of a more complex initial geometry
in Figure 3.17, the optimal topologies can change according to the elastic model.

Figure 3.17: Shape optimization. Left to right: initial geometry set with 192 circular holes,
linear elasticity, Saint-Venant—Kirchhoff model and Mooney-Rivlin model.

Two conclusions can be established: First the linear elasticity shows good performances while
small deformations occur. Nevertheless, this simplified model shows limits while large strains
occur and the optimization is inaccurate as the physical behavior of the structure is badly
estimated. The Saint-Venant-Kirchhoff model can be unrealistic while large strains occur.
A wise choice of the hyperelastic law must be done then. Secondly, the optimal geometry
depends on the elastic law set. Finally, in order to lead an accurate shape optimization
of the "airless tyre”, we focus on both the material and geometry behaviors to select the
Mooney-Rivlin model for the next experimental sections. For all the next optimizations, the
load is set to 500 kg.

3.5.3 Multi-criterion optimization

Uniformization of the contact stress

We focus on the geometry initialized with 48 circular holes presented in Figure 3.5. We
intend to minimize the criterion J(2) defined in (3.13) through three different tests where
we respectively set a = 10, o = 20 and a = 50 so that it aims at minimizing J. and J,
(8 = 0) with different weights. The optimal shapes are exposed in Figure 3.18. The criterion
J,, actually tends to minimize the contact stress uniformity (see Figure 3.19) and the optimal
shape differs from the optimization led with only J,. (see Figure 3.5). It is remarkable that
the deformations are larger while J, is implemented with a high weight (o = 50) which
shows that a compromise must be reached in order to minimize J, without disturbing the
minimization of J,.
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Figure 3.18: Optimal shapes with J. and J,. From left to right: optimal shape with a = 10;
a =20 and o = 50.
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Figure 3.19: Minimization of the criterion J, with different values of a.

Uniformization of the deflection

We perform a shape optimization where we intend to minimize the criterion J(2) defined in

(3.13) where we successively set f = 0.05 and § = 0.1, so that Figure 3.20 shows the optimal
shapes while we intend to minimize J, and J; (o = 0).
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Figure 3.20: Optimal shapes with J. and J;. On the left: optimal shape with 5 = 0.05 and
on the right: optimal shape with § = 0.1.

We calculate the standard deviation on all the deflections uf, in Table 3.1 so that

1 .
— [ _ 2
O stdev = Nd E (UQ -N dmean) .

We can conclude that the deflection uniformity criterion is efficient in the optimization
process as we minimize the standard deviation of the deflection on all the load positions
while Jj is set.

=0|5=0.05]5=0.1
0.0561 | 0.0497 | 0.0304

Table 3.1: Comparison of the standard deviations obtained in the shape optimizations ac-
cording to the criterion weight 3 set.

Once again, the deformations are larger while J; is implemented with a strong weight. A
compromise must be reached in order to minimize J; without disturbing the minimization

of J..

Shape optimization with the three criteria

We now perform a shape optimization where we intend to minimize the criterion J(€2) defined
in (3.13) considering J., J, and J;. We set [o, ] = [10,0.05] as a compromise to actually
minimize the three criteria as exposed in Figure 3.21.
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Figure 3.21: Optimal shape with J., J, and J;.

The three criteria don’t necessary respectively lead to the same minimization directions and
the same optimal shapes. Setting a multi-criterion optimization is a sensitive manipulation
that can lead to a compromise in the criteria minimization (see Figure 3.22 and Table 3.2).
Therefore a careful choice of the criteria weight must be observed.
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Figure 3.22: Evolution of the criteria. On the left: minimization of the strain energy .J.
criterion and on the right: minimization of the contact stress uniformity criterion .Jj,.

a=0and =0 | a=10 and = 0.05
0.0561 0.0481

Table 3.2: Comparison of the standard deviation deflection in the shape optimizations ac-
cording to the criterion weights o and 5.

Now if we lead a multi-criterion optimization on the geometry presented in Figure 3.10 with
Je, Jp and Jy , we see in Figure 3.23 that the different elastic models can lead to different
optimal topologies.
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Figure 3.23: Shape optimization of the initial geometry with 108 holes (see Figure 3.10).
Multi-criterion optimization J., J, and J; (o = 50, 8 = 0.005). Left to right: linear elasticity,
Saint-Venant-Kirchhoff model and Mooney-Rivlin model.

3.5.4 Physical parameters analysis

In this section, we perform two different shape optimizations on the previous initial configu-
ration with 48 holes (see Figure 3.5). We first set pressure into the holes (see section 3.2.2)
with p" = 3 bar. In a second time, we perform a shape optimization taking into account a
frictional contact (see section 3.2.3) with F = 1.
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Figure 3.24: Optimal shapes. On the left: Shape optimization with pressure into the holes
(p" = 3 bar) and on the right: Shape optimization with friction (F = 1).

It is obvious that pressure and friction change the optimization as optimal shapes in Figure
3.24 are different than the one obtained with the Mooney-Rivlin model in Figure 3.8.

3.5.5 Shape optimization with a variable volume

We finally perform a shape optimization intending to minimize J, and changing the volume
constraint. Concerning the initial geometry with 48 holes (see Figure 3.5), the volume was
forced to be close to 32% of matter amount for all the previous tests performed. First we
force the evolution of the volume from 32% of matter to 26%. This leads to the increase of
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the material deformation since the matter decreases. Second, we free the volume constraint
but we force the mean deflection to be close to —1.2 cm on all the load positions, which
causes a volume decrease and in the same time, the increase of the deformations in the
material. The results can be observed in Figure 3.25.
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Figure 3.25: Optimal shapes with J.. On the left: optimal shape with a target volume ratio
of 26% and on the right: optimal shape with a target mean deflection of —1.2 cm.

3.5.6 More complex geometries

We aim at enlarging the numerical experiments with more complex initial geometries, as we
know that shape optimization is largely dependent on the initial geometry. Different optimal
shapes can be obtained from geometries where a multitude of small holes are initialized. We
intend to minimize J., J, and J; on a geometry with 432 initial holes presented in Figure
3.26. The material characteristics are similar as the previous tests and we propose the
Mooney-Rivlin model.

Figure 3.26: Shape optimization of a more complex geometry. From left to right: the initial
geometry with 432 holes; optimal shape with J. (o = 8 = 0); optimal shape with J., J,
(a=1) and J; (8 = 0.05).

Cette thése est accessible a I'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0118/these.pdf
© [J. Chapelat], [2022], INSA Lyon, tous droits réservés



CHAPTER 3. SHAPE OPTIMIZATION IN LARGE DEFORMATIONS 118

3.6 Conclusion

Shape optimization of an ”airless” tyre requires the right choice of material behavior laws.
Especially while large deformations occur, linear elasticity, which could be natural in a first
model approximation as it is easy to be implemented, leads to inaccurate optimal shapes and
bad estimates of deformations. Hyperelastic laws must be considered while high solicitations
occur.

A multi-load strategy is determinant to illustrate the tyre rotation and leads, in this chapter,
to the formulation of two criteria to uniform the structure. Both strategies are efficient and
seem complementary but can be concurrent in the criteria minimization process. A sensitive
choice of the criteria weights must be perform according to the wanted shape optimization
and a compromise is unavoidable to satisfy the criteria optimization.
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Conclusion and prospects

Shape optimization shows convincing results to improve mechanical structures and help
industrial deciders in their designs. We saw that many results already exist concerning the
optimization of an elastic linear structure with classical boundary conditions and through
the small perturbations assumption. Nevertheless, our special study case, the ”airless” tyre,
operates in much more complex conditions. The non linearities introduced by the contact
condition between the tyre and the ground, in addition to the large deformations that might
occur while soliciting the tyre, involve some difficulties to solve the mechanical problem but
also the shape optimization. Many questions were raised in that sense, especially according
to the non differentiability of elements at stake. In this study, we decided to decompose
the problem to progressively build the shape optimization responding to the initial need:
optimize the shape of the "airless” tyre with contact in large deformations.

In the first chapter, we focus on a shape optimization algorithm, presenting a simple study
case in linear elasticity. We introduce the contact condition with simple mathematical con-
cerns, in order first to compare different approximation methods. That leads to emphasize
the quality of Nitsche’s method to deal with contact, the latter being used for the rest of the
study. We also introduce the shape optimization process, describing the studied structure
as a periodic object. The multi-load optimization is then proposed to optimize the tyre
all around its rotation. We then compare different criteria. The first criterion, called the
energy of elastic deformation, is present in the whole study as a crucial criterion in shape
optimization. Yet, based on the multi-load optimization, a second criterion appears dealing
with the uniformity of the contact stress. We pay a special attention to its mathematical
formulation and compare different approaches to finally highlight the interest of a rigorous
mathematical approach. That first chapter follows the Lagrangian approach to deal with
shape optimization, also called the fast derivation where we did not focus on mathematical
issues. This brings tricky questions about convergence owing to the non differentiability of
the contact terms, which opens the second chapter.

Actually, the adjoint state of the Nitsche-based formulation introduced in the first chapter is
not consistent. We want to focus on a different approach where we apply Nitsche’s method
to the adjoint state, which brings to a consistent formulation. In the second chapter, we
mainly perform an a priori convergence analysis of the shape sensitivity of a contact problem
approximated by a Nitsche-based finite element method. Indeed, due to the non-self-adjoint
characteristic of Nitsche’s method, especially the § # 1 variants, we study two different
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approximations of the shape gradient. We prove that the second one is consistent and
converges under reasonable assumptions, which we illustrate on a simple numerical example.
An aspect on which our study could be extended is the case of a non-zero size grazing
contact zone I'cp,. In this non-differentiable case, it would be interesting to extend the
notion of shape gradient (2.10), possibly by a generalized shape gradient. It is then possible
that the improved convergence result given in section 2.3.5 can be seen as the convergence
towards an element of the generalized gradient. This would justify the use of the presented
adapted method in case of non-zero size I'c;. After having solved mathematical issues
according to the shape gradient formulation in linear elasticity, we want to focus on the
physical application that motivated this whole study. This leads to the third chapter.

In the third chapter, we care about the shape optimization in the finite strain framework.
We first depict hyperelastic laws that model the mechanical behavior while elastic large
deformations occur. We use a Nitsche-based formulation to deal with contact in large de-
formations. We also introduce the shape optimization process in case of large deformations.
We follow the fast derivation method to formulate the shape gradient and the adjoint state
problem, as in the first chapter, which is easier than the classical method. We adapt the
process in the large deformations case and we derive new shape gradient and adjoint state
formulations. Then numerical results highlight the interest in the hyperelastic laws to model
the tyre mechanical behavior. We illustrate the efficiency of various criteria and the perti-
nence of our shape optimization algorithm for a multi-load and multi-criterion optimization,
leading to relevant optimal shapes.

That third chapter leads to prospects that could extend our work and especially the opti-
mization of the contact area. We could propose other criteria concerning the durability or
the dynamic behavior. In addition, other physical phenomena could be taken into account,
such as thermal solicitation as it is the case in the tyre behavior. We could also study the
aerodynamic or hydrodynamic phenomena while the tyre rolls at high speed and formulate a
multi-physics shape gradient in consequence. We could also study multi-material structures
and intend to optimize different areas with different mechanical properties.
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Appendix A

Geometric representation

A.1 Introduction

Geometric shape optimization requires an efficient representation of the geometry to permit
its evolution. Classical strategies consist in adapting the mesh to geometry at each opti-
mization iteration according to the evolutions forced by the frontier variation method and
so displace the boundary between matter and vacuum. Some methods arised in litterature
to split the manipulation of the mesh and the geometry, in particular the level set method.
This method was first presented in the shape optimization framework in [92] where an elastic
problem is exposed with immersed interface methods, then in [80] that studied a Laplacian
problem with two materials for matter and vacuum, and finally in [8] where an elastic prob-
lem is analysed and the shape gradient is formulated to reach descent directions. Some works
deal then with the adaptation of the mesh according to the level set function (see the work of
C. Dapogny et al. in [5, 6, 7]) to correctly approximate the mechanical problem. We present
here how the level set method is treated on a polar grid and the different manipulations to
ensure its regularity, in order to maintain the quality of the geometric evolution.

A.2 Level set method

Osher and Sethian introduced in [79] the level set method to describe the geometry and its
evolutions. The first applications of the level set method were about geodesics, lithography,
generation of minimal surfaces, propagation of flame fronts and fluid interfaces. This method
is also efficient for shape optimization applications. The main idea developed by Osher and
Sethian is to describe the boundaries of any structure by an implicit function. This method is
indeed particularly efficient to compute fronts propagation and their evolutions. Let D C R¢
be a bounded domain in which the domain €2 is included. The representation of the domain
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Q in D might be expressed by a function ¢ defined in D as:

Y(x) =0if z € 09,
Y(z) <0if z € Q,
¥(z) > 0 otherwise.

The interface between holes and matter is represented by a zero value of the level set function,
which draws a curve whose value is set to 0 in a two-dimensional framework (d = 2) or a
surface in a three dimensional framework (d = 3). This curve (respectively this surface)
stands for the interface between the two regions and creates a clear boundary.

One way to represent the level set function ¢ is to define the latter as a signed distance
function according to the domain boundaries:

—d(z,09) ifzeQ,
v(@) = 4 0 |
d(z,00) otherwise,

where d(z,00) is the distance between z and 0.

Let a ring of minor radius R; and of major radius R, be the domain {2 illustrated in Figure
A.1. Six holes are set through the ring as the optimization process only takes place at the
interface of the different holes.

A

o >
Level_set_function (cm)
-25. -20. -15. -10. -5. 0. 5.

| e—

Figure A.1: Representation of domain 2 C D by the level set function. The white curve
stands for the 0-curve of the level set.
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Remark 38. In this work, we use a unique, structured and regular grid to build both the finite
element method and the level set method, independently of the geometry. This is another
advantage as a unique mesh is used for both usages and makes the computations faster.
Indeed, the mesh does not need to adapt to the geometry changes at each optimization step.
Only cut elemen for the mechanical computation must adapt at each iteration, which is much
faster than a total remeshing.

A.2.1 Algorithms for the level set function evolution

For each step, the domain QF is represented by the function 1*. The crucial step consists of
transporting the level set function 1* by the perturbed shape gradient G* (see section 1.4).
To do so, we solve the following transport equation

p(0,2) = vF(a),
where we take Y"1 = (dy, ), for §; the descent step in the shape gradient algorithm.

To numerically approximate this transport step, we develop in the next part the Sethian’s
schemes presented in [91] adapted to a polar grid for the sake of efficiency and simplicity.

Level set redistancing

After a few steps of transport, it is well-known that the level set properties can be deprecated.
In particular, the function gradually moves away from a signed distance. In order to rectify
this degradation, we classically apply some reinitialization steps (see for instance [104]), also
based on Sethian’s schemes. Thereby, the following system of equations is solved at each
optimization iteration k:

{W(x) = ¢'(2) + 6.5 (W (@) (1~ [Ve(2))), (A.2)
#(z) = ¥ (@),

for 8, the step in the redistancing algorithm and where S(¢*(x)) stands for the sign of *(z)
in D, ensuring that the redistancing of the level set does not impact the definition of the
domain QF. The number of iterations ¢ and the descent step §, will be discussed in the
further section A.3.3.

Level set smoothing

The level set redistancing tends to force the function v to look like a distance function, but
does not prevent from sharp gradients of the function that might appear. Additionally, some
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smoothing steps are also performed to avoid irregularities brought by the level set transport.
It consists in finding, for each smoothing step j, the minimum of

_ 1 , 5,
E((@) = [ 3@ - ¢ e)do+ [ ZI94 )P,

D 2 D 2
as proposed in [27] for example. The smoothing parameter 5 must be wisely set to smooth
the solution without disrupting it. The associated gradient of this cost function reads

B () = / (& (2) — ¢ (2))da + / 5. AG (2)|dx = / (¢ (2) — o) 4 6| A () ).
D D D
A minimum of F is reached when its gradient equals zero. It holds
B (2) = 0 & ¢ (1) = ¢ (2) + 6. A (2)], (A3)

where /7! is the smoothed level set function of ¢/. Again, the number of iterations of j
and the step 6, will be discussed in the further section A.3.3. We then use the weak form
associated to (A.3) and a classical Galerkin decomposition to obtain

(M(2) + 0, (z))¢’ (x) = M ()" (x) (A.4)

with
M,.(z) = /ngy(:v)gbz(x)dx and K,,(z) = /Dngy(x) -Vo.(x)dz.

The method is close to the curvature effects explained for instance in [91] where the curvature
is taken into account in the front propagation, which leads to a better representation of the
level set evolution.

A.2.2 Computation of the mean curvature

We saw in the previous sections that, in order to compute the shape gradient, we need to
estimate the mean curvature x,, = divn on the optimizable frontier of €2, where n is the
outward unit vector of that same boundary. One of the main advantages of the level set
representation is that it considerably eases the estimation of n and so of k,, as n = %.
Two methods lead to an estimation of k,, according to n. The first method is said to be
explicit and consists of directly computing k,, = divn. The second method is said to be
implicit and we use the same tools previously presented to smooth the level set function in

order to compute the mean curvature since

fim = 5= (M () + 6, K (2)) " M (2)¢h(x) = (=)
where d5, M (z) and K () were presented in equation (A.4). Both methods are illustrated in
Figure A.2. For the computation of the mean curvature x,, in the optimization algorithm,
we prefer the implicit calculation as it is much smoother and avoids irregularities.
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Figure A.2: Computation of the mean curvature on the domain previously initialized. On
the left: the implicit representation and on the left: the explicit representation.

A.3 Numerical implementation

A.3.1 General schemes

In the previous section, the two equations expressed for the transport (A.1) and the redis-
tancing (A.2) of the level set function might both be written as an Eikonal equation with a
generic time step:

Oy (x) — F(z) |V (z)| = 0.

Two parallel resolutions can be performed according to the expression of F'(z):

1. F(z) = —G(z) the perturbed shape gradient in the transport case of the level set
function in equation (A.1).

2. F(x) = =S(to(x))(1 — m) in case of redistancing of the level set function corre-
sponding to the equation (A.2).

The generic Hamilton-Jacobi equation is solved with the variable v which is always the level
set function and F' the generic function. Thereby, whatever the resolution led, the Sethian’s
first order schemes developed in [79] are used. The schemes are solved by finite differences.
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Figure A.3: Regular and polar mesh used both for the finite element and the level set
methods.

The different schemes and equations are performed on a polar grid, as presented in Fig-
ure A.3. The two dimensional framework here is exposed although the three dimensional
framework is straightforward. The Sethian’s first order schemes read

P gt~ 5H (i, D, DY, D, D),

where the Hamiltonian operator H (xij, D", D, Digez/;, D;;%ﬂ) is an approximation of

H (xij, V@D(%)),

- Yij — i1y . Yiy1; — Vij
D"jw:jA—rlj’ D;;@g,:%’
and
_ Yij — Yij1 0 Yijp1 — Vi
Dby =21 TumL iy, 7Y J
4 v rA6 Y v rAf

1 and j are the indexes of the grid in the two dimensional framework. In our particular
case, the equation might be solved as the advection equation thanks to an upwind first order

scheme [82] as
B = 0l — 8 [V 4 F V)

ij

with V7¢ and V' as
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Vit = (max(max(Dijrwij, 0), —min(D;;";;,0))?
0.5
+ max(maX(Di_jewij, 0), — miH(nggwm 0))2) ,
and
Vi = (max(maX(D;;’"wij, 0), —min(D;;";;,0))?
0.5
+ max(maX(Di';ewij, 0), — min<D7j_j€¢ij7 0))2> ,

with 7 = max(Fj;,0) and F; = min(F;,0).

Remark 39. The generic schemes are told to be upwind since the finite differences respect
the propagation direction of the information concerning the level set evolution.

These schemes are consistent (see [1] for the analysis). It is moreover monotonous if the
Courant-Friedrichs-Lewy - also called CFL - condition (see [67]) is fulfilled, so that the
information is spread a few less than an edge of the grid per step, i.e.

)
Foy— <1
Sg-p( ”)min(Ar,TAQ) -

and so the schemes converge.

A.3.2 Applications and results

A few tests have been led on the transport, the redistancing and the smoothing of the level
set function in simple cases to show the effects of each treatment.

Transport results

Let G be the advection velocity (shape gradient) as defined in (A.1). We do not impose the
redistancing and the smoothin of the level set in this unique section. As an example, G is
set with a simple value to observe the level set transport and the 0-curve propagation:

G(x) =1if0€][0,n]
G(z) = —1 otherwise.
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Level_set_function
-25. -20. -15. -10. -5. 0. 5.

Figure A.4: Level set transport for a ring drilled in 6 positions after 10 iterations.
In Figure A.4, the white curve stands for the initial O-curve of the level set whereas the black
curve was transported and stands for the new level set O-curve.

Redistancing results

To force the level set redistancing, we initialize the level set with a gradient higher than
1. The following domain in Figure A.5 shows a level set function whose gradient is set to

V| = 1.5.

Gradients Magnitude
0.0 025 050 075 1.00 1.25 1.5
| | i

Figure A.5: Level set gradient for a ring drilled in 6 positions. |V| is forced to 1.5 around
the holes.

Then we initialize the redistancing of the level set function in Figure A.6.
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Gradients Magnitude
00 025 050 0.75 1.00 125 15

Figure A.6: Redistancing of the level set function. 200 iterations, redistancing step 9§, =

he/100.

A few observations might be done:

1. The redistancing of the level set function spreads from the 0-curve. This is an im-

portant property. Indeed, the evolution of the level set function starts from the sign
change of the level set function, i.e. at the interface between matter and holes and
the schemes used are upwind (see Remark 39). This is exactly where it is necessary
to redistanciate the level set function in order to transport it later. It is then possible
to locally redistanciate around this interface without treating the areas far away from
the interface.

It is remarkable that a high number of iterations might slightly displace the 0-curve
during the redistancing process, whereas this phenomenon is not beneficial. The gener-
ated displacement of the level set is yet smaller than a cell size, as values of the level set
at nodes can not change of sign, and so the boundary displacement is limited. However,
the redistancing should not displace the geometry boundaries. This implies to find out
a good compromise between the time step and the number of iterations, to regularise
the level set function without displacing the O-curve, in a acceptable duration. That
analysis is led in A.3.3.

Smoothing results

Redistancing results previously exposed do not prevent from local discontinuities of the level
set gradient. A smoothing step might be implemented as proposed in section A.2.1 and the
result is presented in Figure A.7.
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Gradients Magnitude
00 025 050 075 1.00 125 1.5

Figure A.7: Level set function redistanciated and smoothed. 200 iterations, redistancing
step 0, = hy/100 and smoothing step d, = hy/200.

It seems that the smoothing treatment tends to improve the redistancing effects around the
O-curve. What’s more, the sharp gradients, previously observed at sector interfaces, have
been smoothed. That smoothing process involves a higher processing time as a linear matrix
system (A.4) must be solved, but worths it since the level set function is much more stable
if regularised and smoothed at each optimization step. The solving time is calculed with the
python function process_time() and the durations are presented in Table A.1.

Process time (s)
Redistancing 146
Redistancing and smoothing 257

Table A.1: Solving time for the redistancing and the smoothing process computed by the
python function process_time(). 30132 grid nodes. 200 iterations, redistancing step ¢, =
hr/100 and smoothing step ds = hy/200.

The smoothing of the level set is however very deprecating as shown in Figure A.8: if the
level set is too much smoothed, the 0-curve might move and thus change the geometry
representation. The smoothing step is analysed in the following section A.3.3.
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10 = |pitial solution
- Redistanciation
Redistanciation (smoothed solution)

Level-set magnitude
1
(3]

Circle segment

Figure A.8: Level set magnitude on the mean radius of the domain (right semi-circle segment
crossing the hole centers).

A.3.3 Setting choice

The steps for the different treatments must be judiciously chosen to efficiently bring regularity
on the level set function without disturbing it. As written previously, the 0-curve must not
be displaced to accurately describe the geometry. Two tests are performed with the same
geometry whose level set function gradient was initialized to |Vi| = 1.5. For the first test,
the level set is only redistanced whereas for the second test, the level set is redistanced and
smoothed.

Redistancing step

In Figure A.9, a zoom is performed on a unique hole to observe more precisely the level
set gradient and the O-curve behaviors. The bigger is the redistancing step, the more the 0-
curves displaced are. On the other hand, the level set redistancing spreads if the redistancing
step is high. For §, = hy/200, the redistancing is not significant enough to bring stability.
The redistancing step 6, = hp/100 seems sufficient. What’s more, the O-curve is slightly
displaced. For 4, = hr/20 and §, = hr/50 the redistancing process is too high as the
accuracy on the O-curve might be lost.
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Figure A.9: Comparison of level set gradient according to the redistancing step on the
level set function, 50 iterations. From top left to bottom right: the redistancing step is
successively set to 6, = [hy/200, hy/100, hy/50 and hp/20]. The black curve stands for the
initial 0-curve whereas the white curve is the 0-curve of the redistanced level set function.

Smoothing step

The same test is performed but that time with the smoothing step. 50 iterations are per-
formed on the redistancing and the smoothing algorithm with different smoothing steps
according to the mesh size h. The redistancing step is fixed to d, = hy/100.

In Figure A.10, the smoothing process tends to spread the redistancing as previously ex-
pected. However, if the smoothing step is too high, the algorithm displaces the 0-curve of
the level set function which is strongly inappropriate, as the representation of the geometry
changes. For d; = hy/100, the O-curve is too displaced. For d; = hp /1000, the smoothing
step does not visually affect the level set gradient. A smoothing step set to 65 = hr/500 is
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more appropriate. Below this value, the smoothing process does not significantly affect the
treatment on the level set function. Above this value, the smoothing displaces the 0-curve.

Figure A.10: Comparison of level set gradient according to the smoothing step on the level
set function, redistancing step d, = hr/100, 50 iterations. From top left to bottom right:
the smoothing step is successively set to ds = [hy/1000, hr /500, hy /200, hr/100]. The black
curve stands for the initial O-curve whereas the white curve is the 0-curve of the redistanced
and smoothed level set function.

A.3.4 Boundaries treatments

In the following section, a special geometry is set. This geometry - presented in figure A.11
- shows six sectors where for each, one hole is crossing the interior radius R; and the other
the exterior radius R,.
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Level_set_function
* l20. -15. -10. -5. 0. 5.

—— | —

Figure A.11: Level set function for a ring drilled in 12 positions.

That representation only aims at showing the treatments of limit conditions on the bound-
aries R; and R.. Indeed, bad boundary conditions could have an undesired effect on a O-curve
crossing a domain boundary. Concerning the redistancing, two boundaries treatments must
be done. First, a periodicity condition is imposed in the angular direction. Second, on R;
and R, of the drilled ring, the treatment |V (z)| = 1 is applied and gives

Duap(x) = /1 — (Derp(2))2, YV € (r = R; or R.,0).

As previously performed, we initialize in Figure A.12 the level set function with |V (x)| = 1.5
and we force its redistancing and smoothing.

Gradients Magnitude Gradients Manitude

- -
000 025 050 075 100 125 1.50 000 025 050 075 1.00 125 1.50

Figure A.12: Level set gradient initialised to |[V¢| = 1.5. On the left: the level set is only
redistanciated and on the right: the level set is redistanciated and smoothed. 50 iterations,
redistancing step 6, = hy /100, smoothing step s = hr/500.
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It is judicious to correctly deal with the boundaries conditions on the smoothing process,
for the same reasons announced above for the redistancing. The matrix system solved in
(A.4) is adjusted to impose correct boundary conditions. In that case, a Dirichlet condition
is imposed on the inner and outer radii.

A.4 Conclusion

The level set function is easily treated thanks to the schemes introduced in this section. Its
transport is efficient to convert the evolution of the geometry in the optimization process.
The redistancing and smoothing steps prevent from the deprecation of the level set function
quality although it extends the duration of the calculations. Another method could have
been used, called the fast marching method (see for instance [90]). The Sethian’s schemes
adapted to a polar configuration are both used for the transport and the redistancing of
the level set. They lead, for the redistancing stake, to a satisfying control of the level set
function accuracy.
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