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Résumé

Grace à la croissance importante des données générées par le secteur, les entreprises s’appuient
davantage sur l’intelligence artificielle pour développer leur activité. En effet, l’application des
modèles d’apprentissage automatique à ces données leur permet de gérer la demande d’énergie,
la consommation et anticiper les défaillances de manière efficace en termes de temps et du coût.
L’apprentissage automatique présente un outil puissant pour découvrir de nouvelles sources
d’énergies durables et optimiser l’utilisation des énergies traditionnelles.
Ces dernières années, l’apprentissage automatique a conduit à de nombreuses applications et
avancées réussies dans le domaine de l’énergie. Cependant, et malgré leur précision, plusieurs
difficultés apparaissent avec les modèles utilisés: leur prédictions sont parfois insatisfaisantes et
manquent d’interprétabilité. En effet, la plupart des modèles d’apprentissage automatiques sont
considérés comme des boîtes noires. Nous n’avons pas d’idée de (i) l’incertitude de la prédiction
ni (ii) de l’impact réel des changements de variables et d’interventions à travers ces boîtes noires.
Il en résulte la sur/sous-estimation de l’incertitude du modèle, ou des prédictions trompeuses
qui contredisent les connaissances des ingénieurs et des experts. Ce problème est assez critique
dans les systèmes énergétiques où la gestion des risques et l’interprétabilité des prédictions sont
primordiales pour des raisons économiques, environnementales et opérationnelles.
Dans la première partie de cette thèse, nous considérons le problème de la quantification
des incertitudes. Le modèle de processus gaussiens est connu comme l’une des méthodes
d’apprentissage automatique bayésien les plus performantes pour quantifier les incertitude.
Les méthodes d’estimation par maximum de vraisemblance ou de validation croisée sont
fréquemment utilisées pour identifier ses paramètres. Néanmoins, elles peuvent échouer et ne
pas estimer correctement les intervalles de prédiction si certaines hypothèses sur le modèle ne
sont pas vérifiées, typiquement la bonne spécification du modèle.
Concernant le problème des modèles de processus gaussiens mal-spécifiés, une approche robuste
en deux étapes est développée pour ajuster et calibrer les intervalles de prédiction du modèle. La
méthode permet d’obtenir des intervalles de prédiction de petites largeurs avec des probabilités
de couverture appropriées. Elle se base sur la validation croisée comme métrique pour ajuster
les hyperparamètres de la covariance et assurer que la probabilité de couverture du modèle final
atteigne le niveau nominal.
Dans la deuxième partie, nous considérons le problème de l’inférence causale et l’estimation
des effets d’interventions. Le modèle causal de Neyman-Rubin est largement utilisé par
les statisticiens pour faire estimer les effets d’un traitement. Cependant, la plupart des
considérations de ce modèle se limitent à un traitement binaire. Or, dans de nombreuses
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applications, la variable d’intérêt peut être discrète ou même continue. En outre, les effets du
traitement varient selon les caractéristiques des unités. L’hétérogénéité du traitement doit être
explorée pour personnaliser mieux la politique d’intervention et optimiser les résultats.
Pour résoudre le problème de l’estimation des effets hétérogènes du traitement, un cadre bien
connu d’estimateurs statistiques, appelé méta-apprenants, est étendu aux traitements multiples
et continus. La discussion sur la consistance des méta-apprenants et l’analyse de leur biais
et variance donne un aperçu des avantages et des inconvénients de chaque méta-apprenant.
Enfin, quelques recommandations et limites ont été mises en évidence quant à l’utilisation des
méta-apprenants pour les traitements continus.
Le travail effectué dans cette thèse est générique. Les applications réelles comprennent, sans s’y
limiter, les puits de gaz conventionnels, les batteries et les systèmes géothermiques améliorés.
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Abstract

With the significant growth of the data generated by the sector, energy companies are relying
more on Artificial Intelligence for their business and development. Indeed, applying Machine
Learning algorithms to this data can help them to predict energy demand and consumption
and anticipate its failures efficiently, with less time and at low cost. Machine Learning presents
a powerful tool to search for new sustainable energy sources and optimize the use of current
traditional sources.
In recent years, Machine Learning has seen many successful applications and advances in the
energy field. However, several difficulties arise despite its accuracy: Machine Learning models’
predictions are sometimes unreliable and lack interpretability. Indeed, most Machine Learning
models are black boxes. We have no idea of (i) the uncertainty of the prediction nor (ii) the real
impact of changes in variables and interventions through these black boxes. This may produce
an over/underestimation of the model uncertainty or misleading predictions that contradict
engineers’ and experts’ knowledge. This problem is quite critical in energy systems where
risk management and interpretability of predictions are vital for economic, environmental and
operational reasons.
In the first part of the thesis, we consider the problem of Uncertainty Quantification. The
Gaussian Process model is known to be one of the most powerful Bayesian Machine Learning
methods for quantifying the uncertainty of predictions. Maximum Likelihood estimation or
Cross-Validation methods are widely used to fit parameters. Nevertheless, they may fail to fit
the optimal model that estimates Prediction Intervals correctly if some assumptions do not
hold, typically the well-specification of the Gaussian Process model.
Concerning the problem of Gaussian process misspecified models, a robust two-step approach
is developed to adjust and calibrate Prediction Intervals for Gaussian Processes Regression.
The method gives prediction Intervals with appropriate coverage probabilities and small widths.
It uses the Cross-Validation and the Leave-One-Out Coverage Probability as a metric to fit
covariance hyperparameters and assess the Coverage Probability to a nominal level.
In the second part, we consider the problem of Causal Inference of interventions. The Neyman-
Rubin Causal model is widely used by statisticians to make Causal Inference and estimate the
effects of a treatment on the outcome. Unfortunately, most considerations of this model are
limited to the setting of a binary treatment. In many real-world applications, the variable of
interest can be multi-valued or even continuous. Furthermore, treatment effects vary across
units with different characteristics. The heterogeneity should be explored to personalize the
intervention policy and optimize the outcome.
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A well-known framework of statistical estimators, called meta-learners, is extended to multiple
and continuous treatments to solve the problem of heterogeneous treatment effects. The
discussion about the consistency of meta-learners and the analysis of their bias and variance
gives an overview of the advantages and disadvantages of each meta-learner. Finally, some
recommendations and limits are highlighted about the use of meta-learners for continuous
treatments.
The proposed methods and contributions of the thesis are generic and can be applied to any
industrial problem. The actual applications include, but are not limited to, unconventional gas
wells, batteries and enhanced geothermal systems.
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CHAPTER 1

Introduction

1.1 Context

1. Energy challenges and sustainability

In recent decades, the development of human society has shown a vital need for energy. Indeed,
energy is considered as the lifeblood of any economic development and one of the main pillars
for increasing the wealth and growth of any nation (Arto et al., 2016; Cottrell, 2009). Moreover,
its importance has become evident in the development process due to its close connection with
various fields, particularly in the industrial, transport and residential sectors (Ministère de la
transition écologique., 2021).

(a) World energy consumption in quadrillion Btu (b) World energy consumption by region

Figure 1.1: From World Energy Outlook 2021 International Energy Agency (2016, 2021)

1



1.1. Context

However, the energy sector faces an increasingly critical set of economic, geopolitical,
technological and environmental challenges. The world’s population is still growing, and,
thus, the energy needs of billions of people in rural and urban areas, particularly in emerging
and non-OECD countries, must be met (International Energy Agency, 2016, 2017, 2021).
Among the essential and main issues related to energy and power plants are their ability to
respond to supply and demand, having optimal performance, and minimal environmental impact
(Bruckner et al., 2014). Nevertheless, up to nowadays, the global energy mix is still provided
by fossil energy sources and hydrocarbons, including oil and natural gas (British Petroleum,
2020). These resources, by nature, have high costs and high potential environmental risks, are
expected to decline in the not-too-distant future and, therefore, are unable to cope with the
continuous rise in demand for energy (International Energy Agency, 2022). Furthermore, the
sustained and excessive consumption of fossil resources has threatened global energy security
and caused severe environmental issues and negative impacts on ecosystems and society, such
as greenhouse CO2 gas emissions and global warming problems (Intergovernmental Panel on
Climate Change, 2015; Jarvis et al., 2012).
Consequently, facing these challenges became no longer an option but an emergency. The
current situation calls for the importance of Energy Transition and the necessity of renewing
the existing energy production and consumption patterns (OCDE, 1999). The benefits seem
to be valuable (UN General Assembly, 2015): environmental balance, sustainable growth and
maintaining a strategic reserve of natural resources for the coming generations.

Figure 1.2: From World Energy Outlook 2021 International Energy Agency (2021)

In addition, a series of local and international conferences (COP’21, COP’22, COP’26 etc.) and
agreements (Paris Agreement 2015) have taken place to set effective steps to face climate change
and search for alternative solutions to ease the pressure on the environment. There was a global
consensus and ambition of the international community to ensure access to affordable, reliable,
sustainable and modern energy (United Nations., 2021). Thereby, achieving environmental
and social sustainability requires supporting renewable energy, reducing energy demand and
reducing the dependence on fossil energy sources.
Based on these recommendations, governments and private organizations, including energy
companies, are expected in their development and action strategies to make a clear and
responsible commitment to preserving the climate for future generations. The action plans
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should consider: fewer CO2 emissions, providing sustainable energy and taking care of the
environment.
In the same context, TotalEnergies revealed its strategy of becoming a multi-energy company
that provides reliable, sustainable and affordable energy (TotalEnergies, 2020). The company’s
ambition is to place sustainable development at the heart of its strategies, projects and operations
and, by doing so, become a major player in Energy Transition and carbon neutrality by 2050
(TotalEnergies, 2022). To this end, TotalEnergies sets an ambitious target in 2050: Produce
50% renewable electricity (solar, wind), 25% new low-carbon molecules from biomass (biofuels,
biogas) or renewable electricity (hydrogen, e-fuels) and 25% hydrocarbons (oil and gas).
Currently, the company is positioning itself for future energy supplies and diversifying its energy
mix by reducing the share of oil products, increasing natural gas and renewable electricity,
and promoting transitional energy. For example, one short-term goal is to maintain and
adapt existing hydrocarbon capabilities and invest in new low-cost and low-emission fields
(TotalEnergies, 2021).

Figure 1.3: From TotalEnergies Sustainability & Climate 2022 Progress Report (TotalEnergies,
2022).

2. Artificial Intelligence (AI) in Energy

In his essay "Dear class of 2017", Gates (2017) wrote about "things he wishes he’d known
when he left college". He called graduate students, seeking advice on which path to take to
maximize their impact in the world, that he "would consider three fields. One is Artificial
Intelligence, [...] it will make people’s lives more productive and creative. The second is energy
because making it clean, affordable, and reliable will be essential for fighting poverty and climate
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change". Bill Gates may not be the first to prefer this path of Artificial Intelligence (AI), and
this is not random. Many scientists and experts are conscious and agree that AI will be a
revolutionary tool to kick in the energy sector, address its challenges and even go beyond
climate and environmental issues.
Indeed, Artificial Intelligence and Machine Learning can support the energy industry by
providing clean, cheap and sustainable energy needed for humanity’s development (United
Nations. (2021) 7th goal). The extraction, analysis, and evaluation of large volumes of data with
statistics and computer science tools have made it much easier to get meaningful information
that contributes to developing new solutions and assists in decision-making. Specifically,
Artificial Intelligence and Machine Learning can leverage massive data and build models that
can significantly impact energy’s production and consumption by enhancing its performance,
cutting energy waste, reducing operating costs and maximizing profitability. It can also help
improve safety measures, maintain resources’ sustainability and achieve better demand-response
management (Makala & Bakovic, 2020).
Bughin et al. (2017) of McKinsey Global Institute, for instance, examine investment in AI
and its return on investment. According to them, in electric utilities, AI and digitization
increase energy productivity by up to 20%, reduce energy waste and CO2 emissions, and
improve Earnings Before Interest, Taxes, Depreciation, and Amortization (EBITDA) by 10%
to 20%. Another successful example is DeepMind (Gao, 2014; Gao & Evans, 2014). With
AI and Machine Learning, they manage to enhance the Google Data center’s efficiency and
reduce energy consumption by 15%. It is, therefore, not a surprise that The World Economic
Forum (2021) calls governments and companies to invest more in AI as it finds a "tremendous
potential" in AI "to accelerate a global reliable and lowest-cost energy transition". So also did
Villani et al. (2018) in his book when he was in charge of the implementation of a French and
European strategy in AI.
Besides, the outstanding performances of Machine Learning models in analyzing and predicting
outcomes from complex and multi-dimensional data have made them very popular in many
areas. This popularity has led to many studies and applications with significant and valuable
impacts in the energy field. The applications include but are not limited to Oil and Gas industry
(Alvarado et al., 2002; Cao et al., 2016; Mohaghegh et al., 2011), geothermal energy (Arslan &
Yetik, 2011; Assouline et al., 2019), well performance analysis (Fulford et al., 2015; Nwachukwu
et al., 2018), nuclear energy and power plants (Iooss & Le Gratiet, 2019; Santosh et al., 2007),
solar power forecasting (Gensler et al., 2016; Li et al., 2016; Voyant et al., 2017), wind power
forecasting (Foley et al., 2012; Heinermann & Kramer, 2016; Jursa & Rohrig, 2008), batteries
lifetime capacity (Li et al., 2019; Ng et al., 2020; Severson et al., 2019), fault detection and
prediction in Energy systems (Dhaou et al., 2021; Gupta et al., 2015; Zhao et al., 2019), energy
load forecasting and demand (Ahmad & Chen, 2018; Bouktif et al., 2018; Raza & Khosravi,
2015), buildings thermal load (Idowu et al., 2016; Jovanović et al., 2015; Wang et al., 2020)
and comfort prediction (Han et al., 2020; Yuce et al., 2014), and enhancing building’s efficiency
and control (Drgoňa et al., 2018; Yang et al., 2020).

1.2 Problem statement

While most people agree that Machine Learning has become a valuable tool for solving business
problems, it is essential to mention that most of these methods focus solely on answering
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predictive questions using regression or classification methods.
However, making predictions without quantifying their uncertainty is generally not trustworthy,
especially for decision-making. For example, energy companies’ investment strategy and
production capacities cannot be planned solely based on the mean predictions or the average
scenario. Therefore, considering uncertainties (weather, terrain, etc.) and risks (economic,
environmental, etc.) is required and reliable forecasts are highly desirable.
In addition, many problems in the energy industry are not always about predicting outcomes
based on the correlation between variables. One must consider causal effects and answer
questions about what would be the effect on the production if just one variable involved in the
process is changed. In other words, it is important to obtain valuable information from the
data and move beyond prediction to causal inference to interpret and understand the results
before using them in decision-making.
For the previous considerations, we raise the following challenges in the R&D:

• It is difficult in multivariate and small data contexts to make reliable predictions for
decision-making.

• Standard statistical inference and Machine Learning models cannot distinguish between
correlation and causation.

1.3 Objective of the thesis

This thesis does not aim to solve a specific industrial problem. It is more concerned with
developing new data-driven approaches to answer generic problems on statistical learning and
causal inference in potentially uncertain environment settings. The approaches will be used
principally for optimization and decision-making purposes, particularly for energy production
analysis and forecasting. The thesis is divided into two major parts:

• The predictive part: predicting outcome with the associated uncertainties.

• The causal part: conducting a causal study and inferring the effects of interventions.

1.4 Outline

The main focus of this thesis lies in the research field of statistics and Machine Learning, more
specifically: statistical learning and causal inference for optimization and decision-making. The
dissertation is organized into two parts with an introduction and a conclusion. Both Chapters 2
and 3 form the first part of the thesis, dedicated to statistical learning and Uncertainty
Quantification. The second part gathers Chapters 4 to 6 and tackles Causal Inference and the
estimation of intervention effects. To be precise, the thesis is structured as follows:

Chapter 1 : In this chapter, we introduce the main context and the industrial motivation of
the thesis.
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Chapter 2 : In this chapter, we review some existing approaches for Uncertainty Quantification.
We present the Gaussian process model, its properties for prediction with uncertainty and
common methods to learn the Gaussian Process model. Unfortunately, these methods do
not always make correct predictions. This situation typically happens for a misspecified
Gaussian Process model.

Chapter 3 : In this chapter, we propose a method to overcome the problem of quantifying
the uncertainty with a misspecified Gaussian Process model. Our approach uses Cross-
Validation and the Gaussian Process model to calibrate Prediction Intervals. By adjusting
the upper and lower bounds, the method gives the appropriate uncertainty, that is,
Prediction Intervals respecting the targeted confidence level and having small widths.

Chapter 4 : In this chapter, we present the state-of-the-art of Causality and Causal Inference.
We review, in particular, the potential outcomes theory and the Rubin Causal model as
one of the most popular models for evaluating the impact of interventions (usually called
treatment effects) on a given outcome.

Chapter 5 : In this chapter, we study the problem of estimating heterogeneous treatment effects:
the effect of interventions across sub-groups of units. We develop statistical frameworks,
called meta-learners, for evaluating heterogeneous effects under multi-valued treatments.
We provide some meta-learners’ error bounds and highlight their performances. We also
describe a semi-synthetic dataset that serves to validate Causal Inference methods and
present our results on it.

Chapter 6 : In this chapter, we extend the estimation of heterogeneous effects to a continuous
treatment (intervention variable). Based on a detailed theoretical analysis, we discuss the
generalization of the so-called meta-learners. We underline the limits they may have and
make some recommendations on their use.

Chapter 7 : In this chapter, we present our conclusion of this thesis and its perspectives.

1.5 Contributions

The contributions mentioned above are included in the following published or to be submitted
peer-reviewed papers:

– Acharki, N., Bertoncello A., and Garnier J. Robust prediction interval estimation for
Gaussian processes by cross-validation method. Computational Statistics & Data Analysis,
178:107597, 2023. ISSN 0167-9473. DOI: 10.1016/j.csda.2022.107597.

– Acharki, N., Garnier J., Bertoncello, A., and Lugo, R. Heterogeneous treatment effects
estimation: When machine learning meets multiple treatment regime. arXiv preprint
arXiv:2205.14714, 2022. Submitted.

– Acharki, N., Bertoncello, A., and Garnier, J. Pseudo-outcome representations for
heterogeneous effects inference: challenges and limits under continuous treatment. Ongoing
work, to be submitted.

6



1.5. Contributions

The author of this thesis is responsible for reviewing the state-of-the-art, defining the basic
concept, the mathematical research, writing the manuscripts and carrying out the numerical
experiments. Both supervisors of this thesis are responsible for supervising, providing critical
feedback, and verifying and validating proofs and results. Ramiro Lugo was responsible for
simulating and generating the semi-synthetic dataset described in Chapter 5.
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PART I

Statistical Learning and Uncertainty
Quantification

Uncertainty is NOT "I don’t know". It is "I can’t know". "I
am uncertain" does not mean "I could be certain".

— Werner Heisenberg
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CHAPTER 2

Tools and State of the art

In this chapter, we begin by presenting a quick introduction to Uncertainty Quantification, and
we review some existing methods used for regression including Bayesian approaches. In Section
2.2, we introduce the Gaussian process model, and we show how its properties are useful for
prediction with uncertainty. In Section 2.3, we present a set of methods used to estimate the
Gaussian Process model’s parameters. We conclude by presenting the ongoing research topics
related to Gaussian Process in Section 2.4.

2.1 Introduction to Uncertainty Quantification

The regression problem

We consider n observations of the output of a model (e.g. an empirical model, computer
code etc.). Each observation of the output corresponds to a d-dimensional input vector
x = (x1, . . . , xd) in a domain D ⊆ Rd. The n points corresponding to measurement points
(i.e. the model/code runs) are called an experimental design X =

(
x(1), . . . ,x(n)) where

x(i) = (x(i)
1 , . . . , x

(i)
d )⊤ ∈ D. The outputs are denoted by y =

(
y1, . . . , yn

)
∈ Rn. It is common

in regression setting to assume that some data generating function f and an additive noise ϵ
exist. The combination of these two quantities produce the observed outcome y for the input
design X. For i = 1, . . . n, we write:

yi = f(x(i)) + ϵi. (2.1)

Following from above, y might represent a solar panel delivered energy, x is information about
its location, design characteristics, surface pressure and other factors, and f could be, for
example, the physical model behind that generates energy given these parameters. Generally, it
is not possible to observe the exact value f(x). This is mainly due to the presence of the noise
ϵ. In many cases, this noise ϵ may be explained by the exclusion of some explanatory variables
(e.g. unmeasured weather conditions) or by the presence of inherently stochastic effects (e.g.
measurement errors).
Given a set of data points D = (X,y) = (x(1), y1), . . . , (x(n), yn) , one would like to know what
would be the associated outcome f(xnew) for a new point xnew?

Remark 2.1.1. In Machine Learning framework, it is usual to assume that (x(i), yi)ni=1
are independent and identically distributed (i.i.d.) for estimation’s consistency and model
assessment.

9



2.1. Introduction to Uncertainty Quantification

This is a classical task that many statisticians, engineers and specialists realize, known as
regression problem: Estimate the unknown function x ∈ D 7→ f(x) in (2.1) given a data D and
make accurate predictions with the associated uncertainty.
Regression problems are at the core of Machine Learning to build a model allowing the prediction
of the output. More formally, we assume that both the inputs and the output are random
variables. We denote X ∈ D and Y ∈ R to indicate the stochastic character. The noise ϵ
associated with the output Y is also random and has the same distribution as ϵ1.
In this setting, we write

Y = f(X) + ϵ, (2.2)

with
E(Y |X = xnew) = f(xnew). (2.3)

The goal of regression is to produce a point estimate of f(xnew), corresponding to the mean
prediction value of Y given X = xnew. The point estimates are adequate to evaluate the
accuracy of predictions but, unfortunately, give no guidance about their reliability or the range
of uncertainty.

From regression to uncertainty quantification

Decision-makers are increasingly relying on Machine Learning models as a result of the successful
applications to real-world prediction problems (van Asselt & Rotmans, 1996). However, the
growing importance of Machine Learning necessitates the ability to reduce and quantify the
uncertainty in model predictions. The point estimates are not sufficient and do not provide
necessary information for risk management. Hence, combining the predictive performance of
such complex models with practical guarantees of the reliability of their results becomes critical.
In recent years, the concept of uncertainty has received increased attention in Machine Learning
research (Sullivan, 2015). Any Machine Learning method should consider a trustworthy
representation of uncertainty as a key feature. Indeed, we need to know how certain we are
about this prediction. This is especially important in high-stakes applications where machine
learning outputs will be used to inform critical decision-making, such as medicine (Begoli et al.,
2019; Wiens et al., 2019), safety (Varshney, 2016) and civil and nuclear engineering (Briggs &
Division, 2009; Podofillini et al., 2015).
Uncertainty Quantification (UQ) is the end-to-end study of the reliability of scientific inferences
(Washington et al., 2008). In the modelling context, Uncertainty Quantification covers the
different dimensions of uncertainty. It is concerned with estimating the impact of uncertain
input data on the model parameter and prediction.
Uncertainty Quantification problems are typically comprised of a mathematical model
representing the system under consideration, which is subject to uncertainty due to uncertain
input values and model parameters. Uncertainty Quantification also entails determining how
these uncertainties propagate throughout the model. The propagation of uncertainty across the
model can be addressed through forwarding or backward modelling. These uncertainties are
then quantified using a probabilistic framework (Ghahramani, 2015).
To understand the concept of uncertainty in observed outputs or phenomena, one should identify
the various sources of uncertainty. Generally, there exist two major sources of uncertainty
associated to an observed outcome (Kendall & Gal, 2017; Morgan & Henrion, 1990).

10



2.1. Introduction to Uncertainty Quantification

Definition 2.1.2 (Epistemic uncertainty (Hüllermeier & Waegeman, 2021)). The Epistemic
uncertainty refers to uncertainty caused by a lack of knowledge. This uncertainty can in principle
be reduced on the basis of additional information, e.g. more observations and insights about the
physical phenomenon.

Definition 2.1.3 (Aleatoric uncertainty (Hüllermeier & Waegeman, 2021)). The Aleatoric
(stochastic) uncertainty refers to the notion of randomness, that is, the natural variability in the
outcome of an experiment (done under the same conditions) which is due to inherently random
effects.

Our aim is to capture the uncertainty of the response Y in (2.1), which can be quantified by its
variance for example.
In a particular case, the epistemic uncertainty is captured in the f(X) component, while the
aleatoric uncertainty is considered in the ϵ term. Indeed, given that both terms of (2.1) have
associated sources of uncertainty, and assuming they are independent, the uncertainty of the
observations σ2

y can be decomposed into aleatoric σ2
noise and epistemic σ2

model uncertainties as:

Total Uncertainty = Epistemic + Aleatoric (2.4)
σ2
y = σ2

model + σ2
noise, (2.5)

where σ2
y = Var(Y ), σ2

model = Var
[
f(X)

]
and σ2

noise = Var(ϵ).

Remark 2.1.4. While most of the work on Uncertainty quantification focuses on the epistemic
uncertainty of the model, the aleatoric uncertainty can also be estimated as part of the model by
learning the errors ϵ.

Description of prediction intervals

The goal of Uncertainty Quantification is to enhance the model’s reliability by producing the
output in a probabilistic framework. One common way to quantify the uncertainty is to use
the notion of Prediction Intervals (PI).
Let X ∈ D be a d-dimensional random vector and Y ∈ R be a random variable whose
distributions are denoted πX and πY . Let D be the random data set with distribution
πD
(
{(x(i), yi)}ni=1

)
= πDX

(x(1), . . . ,x(n))∏i πY |X(yi | x(i)), where πDX
is the joint distribution

of X on D and πY |X is the conditional distribution of Y given X. Let (xnew, Ynew) be the
random vector of interest independent of D with distribution πX,Y (x, y) = πX(x)πY |X(y | x). It
is possible to assume that πDX

(x(1), . . . ,x(n)) = ∏
i πX(x(i)), which means that the observations

(x(i), yi) are i.i.d. drawn from the distribution πX,Y , but this is not necessary in this setting.
Finally, let (1 − α) with 0 < α < 1 define a level of confidence. The following definition is
inspired from (Beran, 1992) and Chen et al. (2021a).

Definition 2.1.5 (Prediction Interval). A Prediction Interval PI1−α ⊆ R is an interval-valued
function PI1−α(xnew; D) = PI1−α(xnew) depending on D where you expect, with a confidence
of (1− α)× 100%, a new observation of the outcome Ynew to fall. In other terms,

P (Y ∈ PI1−α(X)) = 1− α, (2.6)
where P can be taken with respect to the distributions D and (X, Y ) but conditional versions
can also be studied (see below). The Prediction Interval is given by

PI1−α(xnew) =
[
l1−α(xnew), u1−α(xnew)

]
, (2.7)
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where l1−α, u1−α : D 7→ R such that l1−α ≤ u1−α are two mappings trained on the dataset D
and define the upper and lower bounds of the Prediction Interval PI1−α.

Formally, a prediction interval is a range of values that is likely to contain the value of the new
observation Ynew, given the training set D with inputs X, the output y and a given degree of
confidence. The bounds u1−α(xnew) and l1−α(xnew) represent the range of uncertainty, and
therefore, the reliability of the estimation of the outcome Ynew.
The notion of Prediction Intervals is not recent, it dates back many decades. Based on Fisher
(1925) methods for statistical inference, Baker (1935) considers predicting a future sample
mean and how it is being expected to differ from the set of observations available. However,
the term prediction interval seems to have been introduced a little later. Using a frequentist
approach, Proschan (1953) derives the same interval as Fisher and writes: such an interval
might more properly be called a prediction interval, since the term ’confidence interval’ usually
refers to population parameters, which are not random. Thatcher (1964) studies the prediction
of the binomial distribution but refers to the prediction interval as the "confidence limit for the
prediction". Nelson (1968) provides an overview of general theory and methods for computing
prediction intervals. In a detailed review of literature, Patel (1989) states that, in the late
1960s, many articles in engineering and applied statistics journals presented methods for some
specific prediction problems and used the term prediction interval.
Unfortunately, as described before, there is often some confusion about the difference between a
confidence and a prediction interval, leading to a misinterpretation of predictions. A confidence
interval is an interval that does contain, with a given degree of confidence, a deterministic
parameter of interest. For example, if the parameter of interest is the mean of a population
µ = E(Y ), the confidence interval tells you where the population mean µ is, with a given
confidence level.

Remark 2.1.6. In Prediction Intervals, the quantity of interest we are looking for is a random
variable, the outcome Ynew for instance. In confidence intervals, it is a deterministic parameter.

Prediction Intervals are wider than confidence intervals, since the prediction interval must
also include total uncertainty in the output, while the confidence interval does only include
the epistemic uncertainty and excludes the noise. This is why using Prediction Intervals is a
meaningful way of providing information about the uncertainty of predictions. They capture
the contributions from both types of uncertainty on the response.

Uncertainty Quantification with Prediction Intervals

Assessing the quality of Prediction Intervals is not very common in regression, unlike point-wise
prediction metrics. The state-of-the-art offers limited options that are not examined further in
the theoretical aspects (Pearce et al., 2018) as point-wise metrics. In particular, Prediction
Interval’s performances can be measured by two main quantities: their width and coverage
probability (Khosravi et al., 2010; Pearce et al., 2018; Shrestha & Solomatine, 2006).
Zhang et al. (2020) introduce a taxonomy with four coverage types of Prediction Intervals.
The coverage can be marginal (Type I, as defined in 2.1.5) or conditional (on the training set
Type II, on the new point Type III, or both Type IV). While most studies in the literature on
the construction of Prediction Intervals fall in the type I coverage, only a few authors dealt
with conditional coverage (Vovk (2012) for type II and Foygel Barber et al. (2020) for type
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IV). In fact, the conditional coverage (especially type IV) is a much stricter definition than
the marginal coverage and is much more challenging to satisfy, especially in distribution-free
settings (Xu & Xie, 2021). We refer to Barber et al. (2021) for more details between marginal
and conditional coverage.
In the following, we consider the type II conditional coverage of Prediction Intervals.

Definition 2.1.7 (The type II Coverage Probability (CP)). The conditional Coverage Probability
given the training set D, also known as type II Coverage Probability, is the probability

Pπ (Y ∈ PI1−α(X) | D) , (2.8)

where Pπ denotes the probability with respect to the joint distribution π of (X, Y ).

The goal is to construct PI1−α so that the conditional coverage probability becomes as close as
possible to 1− α (and converges to 1− α in probability when n increases). Earlier, Cox (1975)
studied this estimator and developed an algebraic adjustment to reduce its bias, Guttman (1970)
used the coverage probability notion to identify the tolerance region in regression. Now, the
coverage Probability is gaining more popularity in regression problems and Machine Learning
whenever the uncertainty of prediction is raised.

Remark 2.1.8. If the conditional coverage is achieved by some method, then the marginal (type
I) coverage probability is also achieved. Indeed.

PD×(X,Y ) (Y ∈ PI1−α(X)) = ED×(X,Y )
[
1{Y ∈ PI1−α(X)}

]
= ED×(X,Y )

[
Eπ[1{Y ∈ PI1−α(X)} | D]

]
= ED×(X,Y )

[
Pπ (Y ∈ PI1−α(X) | D)

]
= 1− α,

(2.9)

where the probability PD×(X,Y ) (respectively, Pπ) and the expectation ED×(X,Y ) (respectively,
Eπ) are taken with respect to the distribution of D and (X, Y ) (respectively, to the distribution
π of (X, Y )).
However, note that the backward implication is not true.

In other words, for a given confidence level 1− α, Prediction intervals with respect to type II
Coverage Probability are also Prediction Intervals with respect to type I Coverage Probability.

Remark 2.1.9. Not all Prediction Interval methods are exact and some of them are sensitive to
training dataset D. If Pπ (Y ∈ PI1−α(X) | D) ≥ 1− α the procedure is said to be conservative.
If Pπ (Y ∈ PI1−α(X) | D) goes to 1−α as n→∞, we say the method is asymptotically correct.

Definition 2.1.10 (Empirical Coverage Probability). For a given training dataset D = (X,y)
of observed inputs and output, and for a given confidence level 1− α, the Coverage Probability
on the (testing) dataset D′ = {(x′(i), y′

i)}n
′
i=1 of sample size n′, drawn from π, is the percentage

of y′ that fall inside Prediction Intervals PI1−α(x′(i); D)

CP1−α = 1
n′

n′∑
i=1

1{y′
i ∈ PI1−α(x′(i); D)}, (2.10)

where 1{A} is the indicator function of the event A. Here we denote PI1−α(x′(i); D)} to
indicate that Prediction Intervals are built using the training set D.
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2.1. Introduction to Uncertainty Quantification

The empirical Coverage Probability in 2.1.10 corresponds to Pπ̂ (Y ∈ PI1−α(X) | D), where π̂
is probability with respect to the empirical distribution constructed from the data D′. It is the
naive Monte-Carlo estimator of the probability Pπ (Y ∈ PI1−α(X) | D), with, obviously,

CP1−α = 1
n′

n′∑
i=1

1{y′
i ∈ PI1−α(x′(i); D)} n

′→+∞−→ Pπ (Y ∈ PI1−α(X) | D) . (2.11)

In practice, the empirical Coverage Probability CP1−α measures the reliability of the predictions
made using some model or method. If the model is uncertain at some points, then we expect
Prediction Intervals to be larger to cover the observed value.

Remark 2.1.11. Computing the empirical Coverage Probability may be sensitive to the sample
distribution and sample size. Other issues of under-fitting and over-fitting may also arise.

Definition 2.1.12 (Mean of Prediction Intervals Width (MPIW)). The Mean of the Prediction
Interval Width (MPIW) is the average width of the prediction intervals, defined as:

MPIW1−α = 1
n′

n′∑
i=1

∣∣∣PI1−α
(
x′(i); D

)∣∣∣ , (2.12)

where
∣∣∣PI1−α

(
x′(i); D

)∣∣∣ =
∣∣∣u(x′(i))− l(x′(i))∣∣∣ is the length of the interval.

Definition 2.1.13 (Standard-deviation of Prediction Intervals Width (SdPIW)). The Standard-
deviation of the Prediction Interval Width (SdPIW) is the average dispersion of the prediction
intervals, defined as:

SdPIW1−α =

√√√√ 1
n′

n′∑
i=1

[∣∣PI1−α
(
x′(i); D

)∣∣−MPIW1−α
]2
, (2.13)

where
∣∣∣PI1−α

(
x′(i); D

)∣∣∣ =
∣∣∣u(x′(i))− l(x′(i))∣∣∣ is the length of the interval.

Other criteria for quantifying Prediction Intervals are also possible. This includes, for example,
the normalized mean Prediction Interval width (NMPIW) (Khosravi et al., 2010), the Coverage
Width-based Criterion (CWC) (Khosravi et al., 2011), some hybrid loss functions defined on
the CWC with a Lagrangian Hu et al. (2019); Pearce et al. (2018), or a graphic indicator on
Characteristic curve (ROC-PI) Pang et al. (2018).

Existing methods

In the following decades, statisticians developed general methods to construct prediction
intervals. We briefly describe the most used methods, and we refer to Dewolf & Baets (2022);
Patel (1989); Tian et al. (2020) for a review of these methods.

Frequentist methods

Ensemble learning.
Ensemble learning is a popular approach to enhancing predictions by training multiple models
(Dietterich, 2000; Heskes, 1996).
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In traditional statistical learning (e.g. Random Forests), Ensemble learning is known as bagging
(Breiman, 2001). The goal is to aggregate the individual predictions among a large sample of
models. This allows a naive construction of a Prediction Interval by treating the predictions
of the individual models in the ensemble as elements of a data sample. The empirical mean
and variance are computed and used as moment estimators for a normal distribution. The
Prediction Intervals bounds can be determined using the z-score corresponding to a significance
level for the standard normal distribution.
For Deep Learning algorithms, the idea behind deep ensembles is also similar Hansen & Salamon
(1990); Lakshminarayanan et al. (2017): training multiple models to obtain a better and more
robust prediction. The loss functions of these ensembled deep models are aggregated to predict
the mean and variance of the output (Nix & Weigend, 1994).
Bootstrap.
The Bootstrap method is initially introduced by Efron (1979); Efron & Gong (1983) for
independent variables and later extended to deal with more complex dependent variables. It is a
class of nonparametric methods that allow statisticians to conduct statistical inference on a wide
range of problems without imposing structural assumptions on the underlying data-generating
random process.
In the regression setting, the Bootstrap method estimates model uncertainty by constructing
multiple models, with different parameter initialization, on different resampled versions of
the training dataset (Heskes, 1996). It is considered one of the most used methods Efron &
Tibshirani (1993) for estimating empirical variances and constructing Predictions Intervals.
It is claimed to generate valid prediction intervals under some asymptotic frameworks. More
precisely, the bootstrap estimator is

√
n-asymptotically normal and consistent.

Jackknife.
Jackknife resampling, initially developed by Quenouille (1949) for reducing the bias of an
estimator of a serial correlation coefficient by splitting the sample and refined later by Tukey
(1958), is a nonparametric method used for estimating sampling distributions (variance and
bias) of a large population. It involves a Leave-One-Out strategy of estimating a parameter
(e.g., the variance) in a data set of n observations by n− 1 models.
The jackknife method went over continuous improvements. Kunsch (1989) proposed a variant
of the jackknife for general stationary observations rather than i.i.d. data. Jackknife-after-
Bootstrap method (Efron, 1992) was proposed to improve the variance estimate of a bootstrap
estimate. The infinitesimal jackknife method was previously used for quantifying the predictive
uncertainty in random forests (Wager et al., 2014). These methods are, however, bespoke to
bagging predictors.
More recently, general-purpose jackknife estimators were developed in (Barber et al., 2021).
Two specific leave-one-out procedures: the Jackknife+ and the Jackknife-minmax, were shown
to have assumption-free worst-case coverage guarantees.
Quantile regression.
The quantile regression is a type of regression analysis used in statistics and econometrics. This
method estimate in particular the quantile of the conditional distribution of Y given X = x
(instead of estimating the conditional mean as standard regression). It was introduced by
Koenker & Bassett (1978), and developed later Koenker & Hallock (2001), by extending the
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regression to the estimation of conditional quantile functions,
Meinshausen (2006) provides a new method, Quantile Random Forest, for estimating prediction
intervals for ensemble methods (Random Forest, for instance). The idea consists of replacing
the mean-squared error with the Pinball loss or quantile loss (Koenker, 2005) that targets the
a-quantile efficiently.
The main advantage of this approach is that it does not depend on any assumed distribution
of the outcome Y . It is, therefore, a nonparametric tool for estimating Prediction Intervals.
However, it also has some disadvantages: the quantile regression targets a specific quantile a at
each time, which means that the model needs to be retrained if one is interested in different
values of a. Moreover, the quantile regression is only able to capture the aleatoric uncertainty.
High-Quality principle methods.
The High-Quality principle methods Pearce et al. (2018) is a class of direct interval estimators
trained to output a prediction interval, given by its upper and lower bounds. The idea is to
construct a loss function in such a way that the optimal Prediction Intervals achieve the optimal
(marginal or conditional) Coverage Probability and minimize their average width (MPIW).
The first to propose the High-Quality principle are Khosravi et al. (2011) with the Lower
Upper Bound Estimation for Neural Networks. The used loss function, Coverage Width-based
Criterion, combines the coverage and the width of Prediction Intervals. Pearce et al. (2018)
formalize the ideas of the High-Quality principle and developed an alternative to the Coverage
Width-based Criterion, derived from a likelihood principle.

Conformal Prediction

Conformal Prediction, introduced by (Gammerman et al., 1998; Vovk et al., 1999), became
a popular statistical framework that can be used to build Prediction Intervals for arbitrary
Machine Learning models for both regression and classification problems. It provides valid
Prediction Intervals (i.e. achieve nominal marginal coverage, not conditional coverage) in a
finite sample under a certain set of assumptions (e.g., exchangeable data) (Romano et al., 2019).
The original implementation had several computational issues because all calculations had
to be redone for every data point. Inductive Conformal Prediction (ICP) or Split-Conformal
Prediction (Lei et al., 2016; Vovk et al., 2005) was proposed as a solution. This method shed
more interest in Conformal Prediction (Papadopoulos, 2008; Vovk et al., 2018). The recent
development is the jackknife+ (Barber et al., 2021) which offers guarantees that are not possible
for the original Jackknife, a valid coverage and a compromise between the computational and
statistical costs of the two methods.
The current research on Conformal Prediction focuses more on non-exchangeable data.
Tibshirani et al. (2019) introduce the concept of weighted exchangeability to extend conformal
prediction to the non-exchangeable data setting. In a similar work, Barber et al. (2022) use
weighted quantiles that do not treat data points symmetrically. On time-series, Gibbs & Candes
(2021) propose a robust method for predicting distribution-shift time series. Xu & Xie (2021)
consider ensembling time-series predictors that are trained over bootstrapped subsamples.
So far, Conformal prediction is used to achieve the marginal coverage, which has a weaker
property than the conditional Coverage Property as defined in (2.1.7). In other words,
unfortunately, Conformal Prediction methods do not provide sufficient guarantees to achieve
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the nominal level with respect to the conditional coverage (Angelopoulos & Bates, 2021).

Bayesian approaches

The Bayesian framework offers a principled framework for handling uncertainty. Indeed, unlike
classical learning algorithms, Bayesian inference does not attempt to identify best-fit models of
the data. Instead, it computes a posterior distribution over models. More specifically, one tries
to model the distribution of interest (here, the distribution of Y given X = xnew by updating
a prior (e.g. over some parameters) in light of evidence (e.g. observed data). The conditional
distribution given parameters are inferred from a given parametric model or likelihood function
using Bayes’ Rule. The posterior predictive distribution is then calculated by marginalizing the
parameters. The obtained posterior predictive distribution is used to make predictions at new
points.

Definition 2.1.14 (probabilistic model). In statistical Machine Learning, for a new point xnew,
a probabilistic model is a model that is able to predict a probability distribution over a set of
distributions rather than only outputting a single value (corresponding to mean, median or most
probable).

Probabilistic models consider inputs and the output as random variables and assume joint
probability distributions over them. Consequently, using probability theory and Bayesian
inference, the model’s output is also a probability distribution. This represents one of the
significant benefits of probabilistic models because they show how the uncertainty is propagated
in the predictions Ghahramani (2015).
One of the famous probabilistic Bayesian models are Bayesian Neural Networks (MacKay, 1992).
Unfortunately, they frequently attach an over-confidence in predictions made on target data.
Furthermore, the complexity of the approach (due to the number of weights and layers) led to
considering Gaussian Processes prior over function. Since then, Gaussian Processes have become
one of the most popular probabilistic models for regression problems (Williams & Rasmussen,
1995). The main reason for its popularity is that it is one of the few Bayesian methods where
the Bayesian inference is performed exactly since the marginalization of multivariate normal
distributions can be written in closed form (Dewolf & Baets, 2022).
However, probabilistic models also suffer from critical points. Firstly, they do not typically
come with coverage guarantees. Secondly, the coverage of the obtained Prediction Intervals
depends highly on the correctness of the model (well-specified). It can even fail in certain
high-dimensional regimes where the model is well-specified (Bai et al., 2021). Finally, there is
no existing unique method for calibrating Predicting Intervals for these methods. Close work
was developed by Lawless & Fredette (2005) for parametric predictive distributions but not for
probabilistic models.
For all these considerations, we will consider in the following the Gaussian Process regression
for estimating Prediction Intervals.

2.2 Gaussian Process Regression

The history of Gaussian Processes began in the 1940s with the works of Wiener and Kolmogorov
for predicting time series. A few years later, the Gaussian Processes regression was used in
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geostatistics by Krige (1951) (to whom has credited the appellation of Kriging) to model the
distribution of ore content in South African mines.
Afterwards, it became increasingly popular in geostatistics after the 1970s with Cressie (1993);
Matheron (1970); Ripley (1981). It was developed for spatial interpolation problems as it
considers the spatial statistical structure of the estimated variable. Sacks et al. (1989) then
Oakley et al. (2004); Santner et al. (2003) have extended the kriging principles to computer
experiments and surrogate modelling. It has also been used in approximation, interpolation
and smoothing.
Recently, the Gaussian Process regressor, also called Kriging model, became popular in the
machine learning community in the prediction context. Especially after the work of Williams &
Rasmussen (1995) and later in Rasmussen & Williams (2005) where its basis was set up with
probability theory and algebra.
The Kriging model presents several advantages, especially the interpolation and interpretability
properties. Moreover, numerous authors (e.g. Currin et al. (1991); Santner et al. (2003)) show
that this model can provide a statistical framework to compute an efficient predictor with
associated uncertainty.

Gaussian Process and covariance functions

This subsection defines several notions, definitions, and theorems used in Kriging with GP.
Most definitions of this subsection are taken from Rasmussen & Williams (2005) and Bachoc
(2013). In the following, we consider a domain of interest D ⊆ Rd,

Definition 2.2.1 (Stochastic process). A real-valued random process (or random function) on D
is an application Y (·), that associates a random variable Y (x) to each x ∈ D. All the random
variables Y (x), for x ∈ D, are defined on the same probability space (Ω,F ,P).

In other words, a stochastic process Y (·) is a function on Rd that is unknown, or that depends
on underlying random phenomena. If E

[
Y (x)2] < +∞, we can define the mean and covariance

functions of the process Y as

• Mean function m : x 7→ m(x) = E(Y (x)).

• Covariance function k : (x1,x2) 7→ k(x1,x2) = Cov(Y (x1), Y (x2)).

Definition 2.2.2 (Trajectory of a random process). For each fixed ω ∈ Ω, the real-valued function
D : x 7→ Y (ω,x) is called a trajectory (or a realization, sample function, path) of the random
process Y (·).

To understand the distribution of stochastic process Y (·), we need to consider the finite-
dimensional distribution of Y (·).

Definition 2.2.3 (Finite-dimensional distribution). For any n points x(1), . . . ,x(n), the
multidimensional probability distribution of the random vector Y (x(1)), . . . , Y (x(n)) is called
the finite-dimensional distribution of the random function Y (·). It can be characterized, for
example, by the Cumulative Distribution Function F Y such that

F Yx(1),...,x(n)(c1, . . . , cn) = P
(
Y (x(1)) ≤ c1, . . . , Y (x(n)) ≤ cn

)
. (2.14)
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The notion of finite-dimensional distribution is crucial for the predictions and conditional
simulations of the process Y (·). Indeed, the fact that there is a probability distribution for
the random vector Y (x(1)), . . . , Y (x(n)), Y (x) enables us to predict the value of Y (x), after
observing the values of Y (x(1)), . . . , Y (x(n)) (Bachoc, 2013).
We give a short introduction to the Gaussian multidimensional distribution,

Definition 2.2.4 (Gaussian variables). A random variable X is a Gaussian variable with mean
µ and variance σ2 if its characteristic function has the form:

Φ(z) = exp
(
izµ− 1

2z
2σ2

)
∀z ∈ R. (2.15)

When σ2 > 0, then the probability density function of X is well-defined and satisfies:

f(z) = 1√
2πσ

exp
(
−(z − µ)2

2σ2

)
. (2.16)

Definition 2.2.5 (Gaussian vectors). A n-dimensional random vector y = (y1, . . . , yn) is a
Gaussian vector with mean vector m = E(y) and covariance matrix K = Cov(y) when either:

• Any linear combination of its components is a Gaussian random variable.

• The characteristic function of the random vector y has the form:

Φ(z) = exp
(
iz⊤m− 1

2z⊤Kz

)
∀z ∈ Rn. (2.17)

We write y ∼ N (m,K) to specify that y is Gaussian vector.

When K is non-singular, the probability density function of y can be written as

f(z) =
(
(2π)n |K|

)−1/2 exp
(
−1

2(z −m)⊤K−1(z −m)
)
, (2.18)

where z ∈ Rn and |K| is the determinant of covariance matrix K.
However, suppose K is singular. In that case, there exists a hyperplane of Rn which is the
support of y (meaning that, almost surely, y belongs to this hyperplane) and so that, restricted
on this hyperplane, y has a probability density function of the previous form (with respect to
the Lebesgue measure over the hyperplane) (Bachoc, 2013).
Once the Gaussian prior is made on the observations of y, the theorem below is useful to deduce
the distribution of the posterior predictive distribution.

Theorem 2.2.6 (Gaussian conditioning theorem). Let (y1,y2) be a Gaussian vector such as:(
y1
y2

)
∼ N

((
µ1
µ2

)
,

(
K1,1 K1,2
K2,1 K2,2

))
(2.19)

If K1,1 is invertible, then Y2|Y1 = y1 (i.e. Y2 conditionally on Y1 = y1) follows a Gaussian
distribution

Y2|Y1 = y1 ∼ N
(
µ2 + K2,1K−1

1,1 (y1 − µ1) ,K2,2 −K2,1K−1
1,1K1,2

)
. (2.20)

19



2.2. Gaussian Process Regression

We refer to Von Mises (1964) in Section 9.3 for the proof of the theorem.

Remark 2.2.7. The conditional distribution of Y2 given Y1 = y1 can be used to infer many
statistical quantities of interest, such that the most probable prediction value, the threshold
exceedance probability etc.
In particular, the conditional mean E(Y2 | Y1 = y1) is the best in the mean square sense
of Y2 given Y1 and the conditional variance V(Y2 | Y1 = y1) quantify the degree of the
approximation/prediction error.

Definition 2.2.8 (Gaussian Process, (Rasmussen & Williams, 2005)). A stochastic process Y on
Rd is a Gaussian Process when, for all

(
x(1), . . . ,x(n)

)
, the random vector (Y (x(1)), . . . , Y (x(n)))

is Gaussian.

In other words, a random process is a Gaussian process if its finite-dimensional distributions
are multidimensional Gaussian distributions. Since a multidimensional Gaussian distribution
is fully characterized by its mean vector m and its covariance matrix K, a Gaussian process
Y is also fully characterized by its mean and covariance functions, defined in the following
definitions:

Definition 2.2.9. The mean function of a Gaussian process Y is the map m : D 7→ R such that
m(x) = E(Y (x)).

Definition 2.2.10. The covariance function of a Gaussian process Y is the application
k : D ×D 7→ R such that k(x1,x2) = Cov(Y (x1), Y (x2)).

The covariance function k has three main properties: 1) symmetric, 2) positive semi-definite
and 3) stationary. We define the two previous notions below.

Definition 2.2.11 (Positive semi-definite). A bi-variate function k is positive semi-definite if
and only if, for any x(1), . . . ,x(n) ∈ D, the Gram Matrix defined by K = (k(x(i),x(j)))1≤i,j≤n
is positive semi-definite, that is, for all a ∈ Rn : a⊤Ka ≥ 0.

Definition 2.2.12 (Positive definite). A bi-variate function k is positive definite if and only
if, for any distinct x(1), . . . ,x(n) ∈ D, its Gram Matrix K is positive definite, that is, for all
a ∈ Rn\{0} : a⊤Ka > 0.

Definition 2.2.13 (Stationary of Gaussian Process). A random process Y (·) is stationary
if, for all x1, . . . ,xn ∈ D and for h ∈ Rd, the finite-dimensional distribution of Y (·) at
x1 + h, . . . ,xn + h has the same as the finite-dimensional distribution at x1, . . . ,xn ∈ D.

The stationarity of a Gaussian Process can be characterized in terms of mean function and
covariance kernel [Rasmussen & Williams (2005) in Chapter 4].

Definition 2.2.14 (Stationary covariance function). A positive definite mapping k : D ×D 7→ R
is said to be stationary if there exists a mapping r : D 7→ R such that for all x,x′ ∈ D × D:
k(x,x′) = r(x− x′).

Theorem 2.2.15. Let m be any function from D to R. Let k be a function from D×D to R such
that, for any n ∈ N and for any x(1), . . . ,x(n) ∈ D, the Gram matrix K = (k(x(i),x(j)))1≤i,j≤n
is symmetric and positive semi-definite. Then, there exists a Gaussian process Y (·) on D with
mean function m and covariance function k.
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We refer to Dudley (2002)[Theorem 12.1.3] for the proof, which is based on Kolmogorov’s
extension theorem (Billingsley, 1995).
Theorem 2.2.15 highlights a major advantage of the Gaussian Processes present: they are simple
to define and simulate from their mean and covariance functions. In addition, the Gaussian
distribution is reasonable for modelling a large variety of random variables. To indicate that a
random function Y (·) follows a Gaussian process, we write:

Y (·) ∼ GP(m(·), k(·, ·)), (2.21)

where m and k are the mean and covariance functions of Y (·).

Remark 2.2.16. Theorem 2.2.15 proves also the existence of one-to-one correspondence between
the distribution of a Gaussian process Y (·) ∼ GP(m(·), k(·, ·)) and pairs (m, k) of mean function
m and covariance function k. Therefore, most GP’s properties are induced by the specification
of k and m.

Usually, symmetric and positive definite functions are called kernels. We refer to the study of
Schölkopf & Smola (2002) in Chapters 2 and 13, about the positive-definiteness of bi-variate
mappings (kernels). We give in the following subsection a brief introduction to kernels and
RKHS theory.

RKHS Theory : Reproducing Kernel Hilbert Spaces

We begin by introducing Hilbert spaces and kernels, which form the building block of reproducing
kernel Hilbert spaces as presented by Berlinet & Thomas-Agnan (2004).
In the following, we consider X a non-empty subspace of the input space (for example R).

Definition 2.2.17 (Hilbert space). A Hilbert Space H is an inner product space that is complete
and separable with respect to the norm defined by the inner product (i.e. Cauchy sequence
limits).

Definition 2.2.18 (Characterisation of kernels). A function k : X × X 7→ R is a kernel if there
exists a Hilbert space H(k) and a feature map ϕ : X 7→ H(k) such that, for all x, x0 ∈ X , we
have

k(x, x0) := ⟨ϕ(x), ϕ(x0)⟩H(k). (2.22)

The feature map ϕ of every point x ∈ X is a function such that ϕ(x) = k(·, x). In particular,
for any x, y ∈ X , k(x, x0) = ⟨k(x, ·), k(·, x0)⟩H(k) = ⟨ϕ(x), ϕ(x0)⟩H(k).

A kernel k, by definition, satisfies the properties of symmetry and being positive semi-definite.
For simplicity, we say that the kernel k is defined on X . In the following, unless specified
otherwise, the RKHS H(k) is denoted simply by H.

Theorem 2.2.19 (Sum of kernels is kernel). Let α > 0, if k, k1 and k2 are kernels on X , then
αk and k1 + k2 are kernels on X .

Theorem 2.2.20 (Product of kernels is kernel). If k1 and k2 are two kernels defined on X , then
the map k := k1 × k2 defined on X by

(k1 × k2)(x, x0) = k1(x, x0)k2(x, x0) (2.23)

is a kernel.
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We refer to Schölkopf & Smola (2002) in Chapter 13 for the proof of the previous theorems.

Theorem 2.2.21 (Tensorised Product of kernels is kernel). Given two kernels, k1 defined on X1
and k2 defined on X2, then the map k : k1 × k2 defined on X = X1 ×X2 by

(k1 × k2)(x, x0) = k1(x(1), x
(1)
0 )k2(x(2), x

(2)
0 ), (2.24)

where x = (x(1), x(2)) ∈ X1 × X2 and x0 = (x(1)
0 , x

(2)
0 ) ∈ X1 × X2, is a kernel. We call it the

tensorized product kernel.

Definition 2.2.22 (Space of real-valued functions on X ). The space

F(X ) = {g : X 7→ R | g is a function}

together with the standard scalar multiplication and summation defined for all λ ∈ R, and for
all g, h ∈ F(X ), by:

(λg)(x) := λh(x) ∀x ∈ X

,
(g + h)(x) := g(x) + h(x) ∀x ∈ X

, forms a linear space over R. We call F(X ) the space of real-valued functions on X .

The Reproducing kernel Hilbert spaces on X , defined below, are well-behaved sub-spaces of
F(X ).

Definition 2.2.23 (Reproducing Kernel Hilbert spaces). Let H ⊆ F(X ) be a Hilbert space. Then
H is called a RKHS if there exists a kernel k satisfying:

• ∀x ∈ X : k(x, ·) ∈ H.

• ∀g ∈ H, ∀x ∈ X : ⟨g, k(x, ·)⟩H = g(x).

The second property is called the reproducing property of k, we say that k is a reproducing
kernel of H.

Theorem 2.2.24 (Uniqueness of the kernel (Schölkopf & Smola, 2002)). Let H be an RKHS on
X . Assume both k and k̃ are reproducing kernels of H, then k = k̃.

Theorem 2.2.25 (Moore-(Aronszajn, 1950)). Let k : X × X 7→ R be positive definite kernel.
There is a unique RKHS H with reproducing kernel k.

Remark 2.2.26. The feature map ϕ is not unique. Only kernel k is unique.

To summarize up the RKHS theory, if H is a RKHS and X is non-empty set of points, then
,for each x ∈ X , there exists, by the Riesz’s representation theorem a function (i.e feature
map ϕ) such that ϕ(x) = k(x, ·) in H (called representer) with the reproducing property of
Fx(g) = ⟨g, k(x, ·)⟩H = g(x) where Fx(g) denotes the evaluation application of g ∈ H on x.
We recall one of the most used stationary kernels in R, the Matérn kernel:

kνσ2,θ(x, x′) = σ2 21−ν

Γ(ν)

(√
2ν |x− x

′|
θ

)ν
Kν

(√
2ν |x− x

′|
θ

)
, (2.25)

where
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2.2. Gaussian Process Regression

- σ2 > 0 is the variance amplitude, the larger σ2 is, the larger the scale of the trajectories.

- θ > 0 is the characteristic length-scale. It controls how fast the functions sampled from
the Gaussian Processes oscillate.

- ν is the smoothness hyperparameter that controls the degree of regularity (i.e.
differentiability) of the Gaussian Process.

- Γ is the complete Gamma function

- Kν is the modified Bessel function of the second kind.

For a Gaussian Process with Matérn covariance and smoothness parameter ν, the paths are
almost surely ⌈ν − 1⌉ times differentiable on R. Lower values of ν correspond to rougher
functions, whereas higher values of ν correspond to smoother functions.
Some particular cases of Matérn kernel are when ν = 1

2 ,
3
2 ,

5
2 and ν →∞.

• Exponential kernel (ν = 1
2): kExp(x, x′) = σ2 exp

(
− |x−x′|

θ

)
corresponding to the known

Ornstein & Uhlenbeck (1930) process.

• Matérn 3/2 kernel: kMat3/2 (x, x′) = σ2
(
1 +
√

3 |x−x′|
θ

)
exp

(
−
√

3 |x−x′|
θ

)
.

• Matérn 5/2 kernel: kMat5/2 (x, x′) = σ2
(

1 +
√

5 |x−x′|
θ + 5

3
(x−x′)2

θ2

)
exp

(
−
√

5 |x−x′|
θ

)
.

• Gaussian kernel (ν →∞): kGauss(x, x′) = σ2 exp
(
− |x−x′|2

2θ2

)
.

The choice of the covariance function is important as it synthesizes information from the
Gaussian Process. For example, the choice of the Gaussian kernel assumes that the function f
that we want to learn is very smooth of class C∞ (infinitely differentiable). This is often too
strict as a condition. A common alternative is the functions Matérn 5/2 or Matérn 3/2 kernel.
Some cases of the influence of the covariance parameters can be seen on Figures 2.1, 2.2 and
2.3.
In the case of a Gaussian Process defined on D ⊆ Rd, the amplitude σ2 is defined as one value,
but the length-scale θ = (θ1, . . . , θd) ∈ Rd+ is now defined as a vector. When θi is particularly
small, then the variable Xi is particularly important, this allows us to get a rank/hierarchy of
the input variables (X1, . . . , Xd) according to their correlation lengths θ1, . . . , θd.
As mentioned in the Subsection 2.2, it is possible to combine the sum and the product of kernels
(see Theorems 2.2.19 and 2.2.20). Thus, we can obtain more complex covariance models in Rd
based on classical kernels in R:
- The radial model (anisotropic geometric model) defined by:

kradial
σ2,θ (x,x′) = kνσ2,θ


√√√√√ d∑
j=1

|xj − x′
j |2

θ2
j

 . (2.26)
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Figure 2.1: Trajectories of Gaussian processes for different covariance functions with ν = 1/2
from the top left to n→ +∞ in the bottom right.
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Figure 2.2: The influence of the variance amplitude σ2: Trajectories of Gaussian processes with
Matérn 3/2 and an amplitude of (from the left to the right) σ2 = 0.1, 1, 2.

- The tensorized product model defined by:

kTensorProd
σ2,θ (x,x′) = σ2

d⊗
j=1

kν1,θi(xj , x
′
j). (2.27)

- The tensorized additive model defined by:

kTensorSum
σ2,θ (x,x′) =

d⊕
j=1

kνσj ,θj (xj , x
′
j). (2.28)
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Figure 2.3: The influence of the length-correlation θ: Trajectories of Gaussian processes with
Matérn 3/2 and a correlation length of (from left to right) θ = 0.05, 0.2, 1.

Other classical covariance functions can be build, such as the power-exponential by tensorizing
the exponential kernel kExp parameterized also by 0 < p ≤ 2:

kPowExp
σ2,θ (x,x′) = σ2

d∏
j=1

exp
(
−
(
|xj − x′

j |
θj

)p)
, (2.29)

or the quasi-periodic GP (Tolba et al., 2019) by multiplying a periodic kernel by a non-periodic
kernel.
Assume that X = Rd, we show now the important equivalence between the RKHS of Matérn
kernels and Sobolev spaces. We refer the reader to Berlinet & Thomas-Agnan (2004) and
Wendland (2004) in Chapter 10 for more details about Sobolev spaces.

Definition 2.2.27 (Sobolev space). Let f ∈ L2(Rd) be a squared integrable function defined on
Rd. Let f̂(ξ) =

∫
Rd f(x) exp(−iξ⊤x)dx denote the Fourier transform of the function f . The

Sobolev space Hs2(Rd) of order s > d/2 is the Hilbert space

Hs2(Rd) = {f ∈ L2(Rd) s.t. ξ 7→ f̂(ξ)(1 + ∥ξ∥2)s/2 ∈ L2(Rd)}. (2.30)

Remark 2.2.28. The assumption s > d/2 is required to ensure, by the Sobolev embedding
theorem, that every element of Hs2(Rd) is continuous.

For a stationary kernel of the form k(x,y) = r(x− y) with r ∈ L2(Rd), we assume that its
Fourier transform r̂(ξ) satisfies

C1(1 + ∥ξ∥2)−s ≤ r̂(ξ) ≤ C2(1 + ∥ξ∥2)−s, (2.31)

with s > d/2 and two positive constants 0 < C1 ≤ C2. The Matérn covariance (2.26) with
smoothness ν satisfies this regularity condition with s = ν + d/2 (see Theorem 10.12 of
Wendland (2004)). However, Tensor-product covariance functions such as (2.27) do not satisfy
this condition (see Ritter (2000) in Chapter 7).
If the stationary kernel satisfies (2.31), then the induced RKHS H is the Sobolev space
Hs(Rd) of order s = ν + d/2 and the RKHS norm is equivalent to the Sobolev norm
∥f∥Hs

2
= ∥f̂(·)(1 + ∥ · ∥2)s/2∥L2 . For this result, we refer to Wendland (2004) in Corollary 10.13.

Remark 2.2.29. The norm-equivalence is useful for inferring and studying the hyperparameters’
asymptotic bounds (e.g. in Karvonen (2022)).
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2.2. Gaussian Process Regression

Note that the realizations of a Gaussian process with covariance kernel k do not belong to the
RKHS (P(Y ∈ H) = 0) by Driscoll’s theorem, see Lukić & Beder (2001). It is also possible to
introduce Gaussian processes from the general theory of Gaussian measures. The RKHS is
then known as the Cameron-Martin space, see Bogachev (1998).
In the following manuscript, we will consider in particular the Matérn anisotropic geometric
model kradial

σ2,θ defined in (2.26), denoted simply by k, as we have many theoretical and asymptotic
results of Kriging models with anisotropic correlation kernel, we refer to the thesis of Muré
(2018) for more details. In addition, this covariance model is available in many packages such
kergp (Deville et al., 2019). Other Matérn covariance functions are also proposed in this
package or in DiceKriging (Roustant et al., 2012).

Gaussian Process regressor

We recall our initial setting as defined in the introduction. We consider n observations of
some unknown function f (physical model, computer code, production system etc.). Each
observation of the output corresponds to a d-dimensional input vector x = (x1, . . . , xd) ∈ D.
The n points corresponding to the model are called an experimental design and are denoted
as X =

(
x(1), . . . ,x(n)

)
where x(i) = (x(i)

1 , . . . ,x
(i)
d ) ∈ D. The outputs will be denoted as

y = (y1, . . . , yn) with yi = f(x(i)) + ϵi.

Definition 2.2.30 (Gaussian Process model (Rasmussen & Williams, 2005)). The Gaussian
Process model is a Bayesian non-parametric regression which assumes a prior distribution over
the regression function f . In particular, it assumes a Gaussian process prior with some given
mean and covariance functions. This prior is updated and converted into a posterior over
functions once some data points have been observed.

In our case, we assume that mean function has the form

m(x) =
p−1∑
j=0

βjfj(x) = ftrend(x)⊤β, (2.32)

where fj , j = 0, . . . , p− 1 are some predefined functions and β = (β0, . . . , βp−1) are the
regression coefficients.
We assume also that the covariance function satisfies, for i, j ∈ {1, . . . , n},

k(x(i),x(j)) + σ2
ϵ1{i=j}. (2.33)

Remark 2.2.31. Definition 2.2.30 is more relevant in the Machine Learning community. Another
definition by Sacks et al. (1989) is also commonly used by geostatisticians and computer
experiments community. It states that the Gaussian Process modeling treats the response f(x)
as a realization of a random stochastic process ξ(x), for x in D, in the space (Ω,F ,P) such that

ξ(x) = m(x) + Z(x), (2.34)

where Z(x) is a zero-mean stationary Gaussian Process such that

Cov[Z(x), Z(x′)] = k(x,x′) + σ2
ϵ1{x = x′} ∀x,x′ ∈ D ×D. (2.35)
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2.2. Gaussian Process Regression

σ2
ϵ ≥ 0 is called the nugget effect (Matheron, 1970). It is common to assume that σ2

ϵ = 0 in
computer models because they are assumed to be deterministic, and the output is noise-free.
When f(x) is observed, repeated simulations at the same point x should produce the same
result.
However, in many cases, the assumption of a noise-free model is not feasible. One reason is
that the output has an aleatoric uncertainty due to measurement error (as described in Section
2.1). The second reason is the theoretical aspects of smoothness and derivatives of the output.
The other reasons are more computational and linked to the numerical stability of zero-nugget
models. The presence of the nugget effect in the Gaussian Processes model has been studied
in many works (Andrianakis & Challenor, 2012; de Oliveira, 2007; Pepelyshev, 2010), and
we refer to these works to understand the effect of the nugget on the likelihood function and
the predictions made with the Gaussian Process model. There are three sub-cases of Kriging,
depending on the assumption made on the existing knowledge about the model f :

• The Simple Kriging: m is assumed to be known, usually null m = 0. Equivalently, when
working in the simple Kriging framework, we will consider a centered Gaussian process.

• The Ordinary Kriging: m is assumed to be constant but unknown.

• The Universal Kriging: m is assumed to be of the form ∑p−1
j=0 βjfj(x), where fj are

predefined (e.g. affine functions f0(x) = 1 or monomial functions of degree less than one
fj(x) = xj , j = 1, . . . , p− 1) and unknown scalar coefficients βj .

Assumption 2.2.32. In the case of ordinary or universal kriging, we assume that n ≥ p, F is a
full rank matrix, and e ∈ Im F where e = (1, . . . , 1)⊤.

Assumption 2.2.32 is reasonable. Indeed, in the Ordinary Kriging, this assumption is always
satisfied. In the Universal Kriging, the assumption e ∈ Im F is satisfied as soon as the constant
function f0(x) = C is included in the chosen family of functions fj .

Remark 2.2.33. We require F to a full rank matrix in order to ensure that F⊤F is non-singular.

The regression parameters β = (β0, . . . , βp−1) are subject to an estimation by Generalized Least
Squares (GLS), see Section 2.3.

Joint and conditional predictive distribution

Under the hypothesis of the Gaussian Process model (2.2.30) and given β the regression
coefficients, (σ2,θ) the hyperparameters of the covariance function k and σ2

ϵ the nugget effect,
then, for all i = 1, . . . , n, the output Y (x(i)) corresponding to the point x(i) ∈ X is Gaussian

Y (x(i)) | β, σ2,θ, σ2
ϵ ∼ N (ftrend

(
x(i))⊤β, σ2 + σ2

ϵ ), (2.36)

where ftrend
(
x
)

= (fj (x))p−1
j=0, and Cov[Y (x(i)), Y (x(j))] = k(x(i),x(j)) + 1{i=j}σ

2
ϵ for

i, j = 1, . . . , n.
As a result, the prior distribution of Y =

(
Y (x(1)), ..., Y (x(n))

)
on the learning sample X is

multivariate Gaussian
Y | β, σ2,θ, σ2

ϵ ∼ N (Fβ,K), (2.37)

where:
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2.2. Gaussian Process Regression

• F = (Fij) ∈ Rn×p is the regression matrix such that Fij = fj−1(x(i)).

• β = {β0, . . . , βp−1}⊤ ∈ Rp are the regression coefficients when the kriging frame is
specified.

• K =
(
k(x(i),x(j))

)
1≤i,j≤n

+ σ2
ϵ In ∈ Rn×n is the covariance matrix of the learning design

X.

Using this result, we want to predict Ynew = Y (xnew), the output at a new point xnew =
(xnew,1, . . . , xnew,d) ∈ D. The joint probability distribution of (Y , Ynew) is given by:[

Y
Ynew

]
∼ N

([
Fβ

ftrend(xnew)⊤β

]
,

[
K k(X,xnew)

k(X,xnew)⊤ k(xnew,xnew) + σ2
ϵ

])
, (2.38)

where k(xnew,X) =
(
k(xnew,x

(i))
)

1≤i≤n
∈ Rn is the cross-covariance vector and ftrend(xnew) =

(fj(xnew))p−1
j=0 the regression trend vector at xnew.

By the Gaussian conditioning theorem (2.2.6), it can be shown that the conditional distribution
of Ynew is also Gaussian:

Ynew = Y (xnew) | X,y,β, σ2,θ, σ2
ϵ ∼ N

(
ỹ(xnew), σ̃2(xnew)

)
, (2.39)

where ỹ(xnew) and σ̃2(xnew) are the predictive mean and variance at the new point xnew. In
the case of Ordinary or Universal Kriging, ỹ(xnew) and σ̃2(xnew) are given

ỹσ2,θ,σ2
ϵ
(xnew) = ftrend(xnew)⊤β + k(xnew,X)⊤K−1(y − Fβ), (2.40)

σ̃2
σ2,θ,σ2

ϵ
(xnew) = k(xnew,xnew) + σ2

ϵ − k(xnew,X)⊤K−1 k(xnew,X). (2.41)

Hence, the Gaussian Process regression is a Bayesian non-parametric regression which assumes
a GP prior over the regression functions (Rasmussen & Williams, 2005), which can be converted
into a posterior over functions once some data has been observed. It consists in updating the
prior distribution over Y using a training set D of n observations in order to predict Y (xnew)
at a new point xnew.
The predictive mean ỹσ2,θ,σ2

ϵ
in (2.40), denoted now by ỹ without specifying its dependence on

hyperparameters or the nugget effect, is used as a predictor of the mean value of Y at xnew. It
has a regression part ftrend(xnew)⊤β = ∑p−1

j=0 βjfj(xnew) and a local correction. Thus, it can
be written as a linear combination of kernel functions, each one centered on a training point:

ỹ(xnew) = ftrend(xnew)⊤β + k(xnew,X)⊤K−1(y − Fβ)

=
p−1∑
j=0

βjfj(xnew) +
n∑
i=1

αik(x(i),xnew),
(2.42)

where α = K−1(y − Fβ). These coefficients αi are updated each time a new observation is
made (as opposed to the parameters of the kernel, referred to as hyperparameters), which are
not updated once training is over (see Section 2.3).
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2.2. Gaussian Process Regression

Remark 2.2.34. The kernel part of prediction function xnew 7→
∑n
i=1 αik(x(i),xnew) vanishes

when xnew is far from the observation points (x(1), . . . ,x(n)). Therefore, the kriging model is
essentially used for interpolation and prediction.

Remark 2.2.35. When the model is noise-free σ2
ϵ = 0 and if xnew = x(i) for some i, then

ỹ(xnew) = yi and σ̃2(xnew) = 0. This result is expected because the prediction mean of an
observed value is the value itself and the predictive variance correspond only to the measurement
error. We say that the GP model interpolates the experimental design X.
However, when there is a nugget effect σ2

ϵ > 0, the Gaussian Process model does not interpolate
the data y. It approximates them as good as possible with the Mean Squared Error (MSE)
and attaches a positive uncertainty bound around them. (Andrianakis & Challenor, 2012).
Furthermore, the leverage of the nugget effect is also investigated by Bostanabad et al. (2018)
to train the GP model and estimate the optimal hyperparameters efficiently.

The variance formula in (2.41) corresponds to the uncertainty of the predictor and is also known
as the kriging variance σ̃2. It gives a local indicator of the prediction accuracy.
We note here that the predictive mean and variance as defined in (2.40) and (2.41) assume
a complete knowledge about the regression coefficients β. In other terms, we treat β
as a deterministic vector, and we plug it in directly in the formulas of predictive mean
and variance. However, as we will see in Section 2.3, the regression coefficients β are
estimated via the GLS method, so they are treated as a random variable with a given mean
β̂ = E(β) =

(
F⊤K−1F

)−1
F⊤K−1y and a given covariance Cov(β) =

(
F⊤K−1F

)−1
. We do

not present the proofs of this estimation, but we refer to Santner et al. (2003) for further details
of β̂.

Definition 2.2.36 (The Best Linear Unbiased Predictor). Let Y =
(
Y (x(1)), ..., Y (x(n))

)
, we

say that Ŷ (·) is the Best Linear Unbiased Predictor (BLUP) of Y (·) if it satisfies the following:

• Ŷ is linear i.e. Ŷ (x) = v(x)⊤Y for a vector v(x) = (v1(x), . . . , vn(x))⊤ ∈ Rn.

• Ŷ is unbiased estimator of Y i.e. EπY (·) [Ŷ (x)− Y (x)] = 0 for fixed x ∈ D where πY (·) is
the distribution of the process Y (·).

• Ŷ is the best in the Mean Squared Error sense i.e. Ŷ (x) = (v∗(x))⊤Y with v∗(x) =
arg min

v
EπY (·)

[
(v(x)⊤Y − Y (x))2].

The BLUP of the Gaussian Process model has been derived by Sacks et al. (1989). The mean
prediction of the BLUP is given by:

ỹσ2,θ,σ2
ϵ
(xnew) = ftrend(xnew)⊤β̂ + k(xnew,X)⊤K−1(y − Fβ̂). (2.43)

The mean square error of the BLUP satisfies:

σ̃2
σ2,θ,σ2

ϵ
(xnew) = k(xnew,xnew) + σ2

ϵ − k(xnew,X)⊤K−1 k(xnew,X) + (ftrend(xnew)−

FK−1k(xnew,X)
)⊤ (

F⊤K−1F
)−1 (

ftrend(xnew)− F K−1k(xnew,X)
)
.

(2.44)

We refer to Santner et al. (2003) in Chapter 4 for a detailed proof of Equations (2.43) and
(2.44). In particular, we note that the predictive variance of the BLUP considers an additional
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2.2. Gaussian Process Regression

non-negative term. This term is due to the propagation of the non-informative improper form
of the prior distribution on the estimation of β. We also note that the BLUP of the Gaussian
process model does its best to be optimal (in the Mean Squared Error sense) even if we do not
assume a Gaussian distribution over y.
Given a GP regression model and a point xnew ∈ D, the posterior predictive distribution (2.39)
can be standardized into:

Z̃(xnew) = Y (xnew)− ỹ(xnew)
σ̃(xnew)

∣∣ X,y,β, σ2,θ, σ2
ϵ ∼ N (0, 1) . (2.45)

The variable Z̃(xnew) follows the standardized Gaussian distribution. Therefore, for a given
confidence level 1− α, the Prediction Interval PI1−α can be build directly by considering the
quantiles q1−α/2 = Φ−1(1− α/2) and qα/2 = Φ−1(α/2) = −q1−α/2 where Φ is the CDF of the
standard normal distribution

PI1−α (xnew) =
[
ỹ(xnew)− q1−α/2 × σ̃(xnew); ỹ(xnew) + q1−α/2 × σ̃(xnew)

]
, (2.46)

which gives a natural definition for the mappings u1−α, l1−α : D 7→ R (see Definition 2.1.5)
characterizing Prediction Intervals as:

l1−α (xnew) = ỹ(xnew)− q1−α/2 × σ̃(xnew), (2.47)
u1−α (xnew) = ỹ(xnew) + q1−α/2 × σ̃(xnew). (2.48)

In particular, for the confidence level (1−α) = 95%, the corresponding Prediction Intervals are:

PI1−α (xnew) =
[
ỹ(xnew)− 1.96× σ̃(xnew); ỹ(xnew) + 1.96× σ̃(xnew)

]
. (2.49)

It follows that this plug-in interval is an exact type II Prediction Interval

Pπ (Y (x) ∈ PI1−α(x) | D) = 1− α, (2.50)

where π is the posterior distribution of Y (x) given D and x ∈ D is a point sampled according
to the distribution πX .

Remark 2.2.37. The Prediction Intervals in (2.46) are in fact type IV Prediction Intervals,
that is, for the posterior distribution of Y (·) given D, they satisfy the propriety

PπY (·)|D (Y (X) ∈ PI1−α(X) | D,X = x) = 1− α, (2.51)

which is much stronger than Type II Coverage.

The most outstanding advantage of the GP model compared to other models comes from the
previous equations. In fact, Kriging model provides a mathematical formula for the distribution
of the output variable at an arbitrary new point xnew, given by (2.43), (2.44) and (2.46). This
distribution formula can be used in a wide variety of applications such as time series modelling
(Roberts et al., 2013), sensitivity analysis (Le Gratiet et al., 2017; Paananen et al., 2019),
uncertainty quantification (Teimouri et al., 2017), quantile evaluation (Oakley et al., 2004)
as well as the estimation of functional risk Curves Iooss & Le Gratiet (2019). Other possible
extensions of GP modelling can also be found in (Currin et al., 1991; Rasmussen & Williams,
2005).
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2.3 Estimating GP model parameters and hyper-parameters

Defining a GP model and computing the kriging mean and variance as shown in (2.40) and
(2.41) requires the estimation of the regression coefficients, the covariance hyperparameters
(σ2,θ) as well as the nugget effect σ2

ϵ . In practice, we do not know none of the quantities, and
we need to estimate them from the training dataset D = {(x(i), yi)}ni=1.

Estimating the regression coefficients

The regression parameters β = (β0, . . . , βp−1) are subject to an estimation by Generalized Least
Squares (GLS). Given the covariance hyperparameters (σ2,θ) and the nugget effect σ2

ϵ , the
generalized least squares regression weights β̂ satisfy:

β̂ =
(
F⊤K−1F

)−1
F⊤K−1y. (2.52)

We refer to Sacks et al. (1989) and Cox (2004) for the proof of this formula.

Estimating the covariance hyperparameters by Maximum Likelihood

Given a Gaussian Process model i.e. Y | β, σ2,θ, σ2
ϵ ,∼ N (Fβ,K), the likelihood function of

y is given by the probability density function (pdf) of the Multivariate Gaussian distribution
(2.18)

ℓ(y | β, σ2,θ, σ2
ϵ ) = (2π)−n/2(det K)−1/2 exp

(
−1

2(y − Fβ)⊤K−1(y − Fβ)
)
. (2.53)

The Maximum likelihood estimation (Mardia & Marshall, 1984; Stein, 1999) is a common
method used to select the hyperparameters (σ2,θ) within a family of parameterized covariance
functions K = {k(σ2,θ); (σ2,θ) ∈ R+ × (0,+∞)d}. By maximizing the likelihood, this method
seeks to find the optimal mean vector Fβ and covariance matrix K so that the optimized model
produces the observed data with the highest probability.
The negative log-likelihood (Santner et al., 2003; Stein, 1999) of the data y given (β, σ2,θ, σ2

ϵ )
is

− log ℓ
(
β, σ2,θ, σ2

ϵ | y
)

= n

2 log(2π) + 1
2 log(det K) + 1

2(y − Fβ)⊤K−1(y − Fβ). (2.54)

For a given nugget effect σ2
ϵ , if we replace β with the GLS formulas β̂ and if we use the facts

∂K−1

∂·
= −K−1∂K

∂·
K−1 and ∂ log(det K)

∂·
= Tr

(
K−1∂K

∂·

)
, (2.55)

we get closed-form expressions for the gradient of the negative log-likelihood − log ℓ with respect
to σ2 and θ

∂(− log ℓ)
∂·

= 1
2 Tr

(
K−1∂K

∂·

)
− 1

2y⊤K−1∂K
∂·

K−1
y, (2.56)

where K is the matrix defined by

K = K−1 −K−1F
(
F⊤K−1F

)−1
F⊤K−1. (2.57)
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The proof can be found in (Mardia & Marshall, 1984) and (Bachoc, 2013).
Unfortunately, setting the gradient to zero gives some expressions that cannot be solved
analytically. Thus, the likelihood can be optimized using standard numerical methods. Therefore,
the Maximum Likelihood Estimator (MLE) (σ̂2

ML, θ̂ML) of (σ2,θ) is given by a numerical
optimization of

(σ̂2
ML, θ̂ML) ∈ argminσ2,θ y⊤Ky + log (det K) . (2.58)

Once the covariance hyperparameters (σ̂2
ML, θ̂ML) are determined by Maximum Likelihood

estimator, the estimator β̂ is updated using the Generalized Least Squares formulas as shown
in (2.52):

β̂ML =
(
F⊤K−1

MLF
)−1

F⊤K−1
MLy, (2.59)

where KML =
(
kσ̂2

ML,θ̂ML
(x(i),x(j))

)
1≤i,j≤n

+ σ2
ϵ In.

Remark 2.3.1. In the absence of the nugget effect, we have K = σ2Rθ where Rθ is called the
auto-correlation matrix. The negative log-likelihood has now the form (Santner et al., 2003):

− log ℓ
(
β, σ2,θ|y

)
= n

2 log(2π) + n

2 log(σ2) + 1
2σ2 (y − Fβ)⊤R−1

θ (y − Fβ) + 1
2 log(det Rθ).

(2.60)
We see clearly that the new expression of − log ℓ separates the covariance hyperparameters and
makes the maximum likelihood estimator of σ̂ML explicit:

σ̂2
ML = 1

n
(y − Fβ̂ML)⊤R−1

θ (y − β̂ML), (2.61)

where
β̂ML =

(
F⊤R−1

θ F
)−1

F⊤R−1
θ y. (2.62)

Thereby, as the variance σ̂2
ML and the regression coefficients β̂ML depend now on the correlation

length-vector θ, we can substitute them into the negative log-likelihood − log ℓ. Thus, maximum
likelihood estimation θ̂ML of θ consists in numerical optimization of the function

θ̂ML ∈ argminθ − log ℓ̃(θ) = log
(
σ̂2
ML(θ)

)
+ 1
n

log (det Rθ) . (2.63)

We note that Minimizing function − log ℓ in (2.54) and (2.60) is an heavy optimization problem.
The computational cost for calculating a likelihood criterion and its gradient is O(n3). Some
additional difficulties are also raised. The large number of parameters imposes the use of a
sequential method of resolution. Moreover, the non-convexity of the objective function requires
an exploratory algorithm (stochastic gradient, multi-start etc.) able to explore the domain in
an optimal way (Marrel et al., 2008).
It has been shown that the Maximum Likelihood method is optimal when the covariance
function is well-specified (Bachoc, 2013). In this case, the predictive posterior distribution
in (2.39) is fully characterized for any new point xnew. We give below the definition of a
well-specified model.

32



2.3. Estimating GP model parameters and hyper-parameters

Definition 2.3.2 (Well-specified model). Let K = {k(σ2,θ); (σ2,θ) ∈ R+× (0,+∞)d} be a family
of covariance function in Rd+1. The model is said to be well-specified if there exists a couple of
hyperparameters (σ2

0,θ0) such that y comes from a function f that is a realization of a Gaussian
Process model with covariance function k(σ2

0 ,θ0) ∈ K.

Remark 2.3.3. In reality, we do not look for identifying the exact couple (σ2
0,θ0). We rather

say that the model is well-specified if the Leave-One-Out residuals are normally distributed (i.e.
satisfies the normality assumption) given the obtained hyperparameters by MLE estimation
method (σ̂2

ML, θ̂ML). However, we note that it is difficult to assess the normality assumption if
the sample is too small.

When the definition of well-specified model 2.3.2 is no more satisfied, we will say that the model
is misspecified.
The well-posedness of Maximum Likelihood Estimation in the case of misspecified models
was investigated in the literature, particularly noiseless data. On the one hand, Zhang (2004)
show that the simultaneous estimation of the amplitude σ2, length-scale θ, and smoothness
parameters ν of Matérn kernels does not identify the correct solution. Recently, Karvonen &
Oates (2022) proves that the simultaneous Maximum Likelihood Estimation of both amplitude
σ2 and length-scale θ can be ill-posed. On the other hand, estimating only the amplitude
σ2 by Maximum Likelihood can provide significant adaptation against misspecification of the
Gaussian process model as shown by Karvonen et al. (2020). Similarly, the estimation of the
smoothness parameter ν is also shown to be consistent if the other hyperparameters remain
fixed (Chen et al., 2021b).

Learning the nugget effect

In this subsection, we consider the inference of the nugget effect σ2
ϵ . Indeed, the nugget effect

is either known (which is rarely the case) or can be estimated by several approaches, including
the Maximum Likelihood or the method proposed in Iooss & Marrel (2017) for instance.
The approach of Iooss & Marrel (2017), known as GP joint modelling, consists in a sequential
building of two Gaussian Process models to fit the mean Ym and Yd dispersion (variance)
components. These two components are used to estimate the nugget sequentially by targeting
predictions errors. Ym and Yd are given by

Ym (x) = E (Y |X = x),
Yd (x) = Var (Y |X = x) = E

[
(Y − Ym (X))2 |X = x

]
.

(2.64)

Remark 2.3.4. In their original paper, Iooss & Marrel (2017) considered a subset Xexp of
influential inputs variables while building these two models to reduce the complexity of the
GP models. The subset Xexp can be obtained using a screening method (the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al., 2007), for instance). In our case, we assume
that the dimension d is not large so that we can apply the GP joint modelling without screening.

Remark 2.3.5. The approach of Iooss & Marrel (2017) was mainly designed for heteroscedastic
nugget effects. We slightly adapt this approach to homoscedastic nugget (modifications in brown).

At a given iteration j, a first Gaussian Process model, denoted GPjm,1, is built using the
covariance function k with homoscedastic nugget effect (learned by Maximum Likelihood) to
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fit y on the mean component. Then a second model, denoted GPjd,1, is built for the variance
component with the same covariance function k to fit the squared residuals y2

d,1 = (y − ỹm,1)2

where ỹm,1 is the mean predictions of GPjm,1. Here, the model GPjd,1 estimates the dispersion
errors ỹd,1 at training points, it can be considered as the value of the heteroscedastic nugget
effect and thus is updated in the covariance matrix K. If we decide to keep the assumption of a
homoscedastic nugget effect, then we update the covariance matrix K by adding σ̃2

ϵ = En(ỹ2
d,1),

where En denotes the empirical mean, to its diagonal terms.
We repeat the same step by building additional models GPjm,2 and GPjd,2 on the mean and
dispersion component and updating the estimated (heteroscedastic ỹd,2 or homoscedastic
σ̃2
ϵ = En(ỹ2

d,2)) nugget effect.

The final model GPj is built with the updated nugget effect. Its hyperparameters are optimized
by taking hyperparameters obtained at the (j − 1)th iteration as starting point.
The GP joint modelling procedure of Iooss & Marrel (2017) (with the possible adjustment for
homoscedastic nugget effect) can be summarized in the following algorithm:

Algorithm 1 Sequential procedure of joint modeling
(0) Set X, y and K = k

(
X,X

)
with default hyperparameters (σ2,θ) = (1, . . . , 1) and

β =
(
F⊤K−1F

)−1
F⊤K−1y.

for j = 1, . . . ,m do
(1) Build a GP model GPjm,1 with X to fit y and estimate ỹm,1 as the mean prediction of
GPjm,1.
(2) Build a GP model GPjd,1 with X to fit

(
y − ym,1

)2 and estimate ỹd,1 as the mean
prediction of GPjd,1.
(3) Update the covariance matrix K← K + Diag(ỹd,1) if assuming heteroscedastic nugget,
or K← K + σ̃2

ϵ In if assuming homoscedastic nugget with σ̃2
ϵ = En(ỹ2

d,1).
(4) Build a final GP model GPjm,2 to with X and the new covariance matrix K with X
and estimate ym,2 as the mean prediction of GPjm,2.
(5) Repeat (2) and (3) using a GP model GPjd,2 .
(6) Build a GP model GPj with X to fit y.
(7) Estimate the new hyperparameters (β, σ2,θ)j by taking (β, σ2,θ)j−1 as starting point.
(8) Compute the model accuracy Qj2

Q2
j = 1−

∑ntest
i=1 (yi − ŷi)2∑ntest
i=1 (yi − y)2 .

end for

Remark 2.3.6. It has been noticed empirically that two iterations j = 1, 2 are sufficient to
estimate the nugget effect.

Remark 2.3.7. In our work, we do not need to compute the accuracy in step (8); we require
only steps (0) to (7) and for j = 1.
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Estimating the covariance hyperparameters by the full-Bayesian approach

In this subsection, we consider the full-Bayesian treatment of GP models (Williams & Barber,
1998). We recall the likelihood function of y

ℓ(y | β, σ2,θ, σ2
ϵ ) = (2π)−n/2(det K)−1/2 exp

(
−1

2(y − Fβ)⊤K−1(y − Fβ)
)
. (2.65)

It has been shown by de Oliveira (2007) (and Berger et al. (2001) in noise-free case) that the
marginal likelihood can be written as

ℓ(y | σ2,θ, σ2
ϵ ) =

∫
ℓ(y | β, σ2,θ, σ2

ϵ ) dβ

∝ |K|−
1
2
∣∣∣F⊤K−1F

∣∣∣− 1
2
(
σ̂2
)−(n−p

2 )
,

(2.66)

where σ̂2 = y⊤Ky and β̂ =
(
F⊤K−1F

)−1
F⊤K−1y.

The nugget effect σ2
ϵ is assumed to be estimated as described in the previous subsection.

Consequently, the expression in (2.66) implies the marginal likelihood would have to be
estimated jointly with (σ2,θ) or be marginalized with respect to (σ2,θ). Exceptionally in this
subsection and for simplicity purposes, we denote the vector of GP hyperparameters (σ2,θ) by
Θ and we omit conditioning on σ2

ϵ .
The full-Bayesian analysis of the hyperparameters integrates the uncertainty and treats Θ as
a random variable. In this method, the hyperparameters are considered as random and their
posterior distribution is integrated in the predictive distribution.
We recall the Bayes’s rule in Theorem 2.3.8 below:

Theorem 2.3.8 (Bayes’ Rule for parameters distribution). Let Θ be a random variable with a
given probability distribution that best explains the observations y, the Bayes’ Rule assumes
that:

p(Θ | y) = p(y | Θ) p(Θ)
p(y) i.e. Posterior = Likelihood× Prior

Evidence
. (2.67)

The full-Bayesian approach integrates the uncertainty about the unknown hyperparameters and
assumes a prior on the hyperparameters Θ ∼ π(Θ). Therefore, the hyperparameters’ posterior
distribution satisfies, by Bayes’ rule:

p(Θ | y) ∝ π(Θ)ℓ(y | Θ), (2.68)

where π(Θ) is the prior for hyperparameters and ℓ(y | Θ) is the marginal likelihood of y given
the hyperparameters in (2.66).
Consequently, the probability density function of the posterior predictive distribution of Y (xnew)
at a new point xnew can be expressed as an integral over the hyperparameters:

p(ynew | y) =
∫
p(ynew | y,Θ)p(Θ | y) dΘ, (2.69)

where p(ynew | y,Θ
)

is the pdf of Y (xnew) given the hyperparameters Θ in (2.39) and p(Θ | y)
is the hyperparameters’ posterior distribution given by (2.68).
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The implementation of the full-Bayesian approach requires the evaluation of the previous
integral and the posterior p(Θ | y), which is known up to a multiplicative constant. It is
common to use Markov chain Monte Carlo (MCMC) methods (we refer to Robert & Casella
(2004) for more detail about MCMC) for sampling and inference from the posterior distribution
of the hyperparameters to overcome this issue, using, in particular, the Metropolis-Hastings
(MH) algorithm (Robert & Casella, 2004) or Hamiltonian Monte Carlo (HMC) (Neal, 1993,
1996).
Therefore, the predictive distribution is obtained by Monte Carlo

p(ynew | y) ≃ 1
N

N∑
i=1

p(ynew | y,Θi), (2.70)

where N denotes the MCMC sample size and Θi is the i-th sample drawn from the posterior
distribution p(Θ | y).

Finally, one can draw a sample
(
Yi(xnew)

)N
i=1 of Y (xnew) following the posterior distribution

p(ynew | y,Θi) as in (2.39) for each i = 1, . . . , N . This sample is used to estimate either
the empirical mean prediction ỹ(xnew) at xnew or Prediction Intervals PI1−α by taking the
empirical quantiles of order α/2 and 1− α/2 of the sample

(
Yi(xnew)

)N
i=1.

Remark 2.3.9. The MLE method can be seen as a plug-in approach that considers (2.69)
and replaces p(σ2,θ | y) by a Dirac distribution centered on a value such as (σ̂2

ML, θ̂ML) that
maximizes the likelihood function.

To conclude, in contrast to plug-in approaches, the full-Bayesian considers the uncertainty of
the hyperparameters and allows relevant results for estimating Prediction Intervals, but it also
comes with a huge computational cost due mainly to the estimation of posterior distribution
with MCMC.

Covariance hyperparameters estimation by Cross-Validation

We have seen before that the Maximum Likelihood method fits well the data y when the
model is well-specified (see Definition 2.3.2). However, in most cases, the covariance function
is misspecified. The function f is not, or does not seem to be a sample path of a Gaussian
Process with covariance function kσ̂2

ML,θ̂ML
. The Maximum Likelihood estimator may be less

robust, and the obtained Gaussian Process model would perform poorly if asked to make
new predictions for data it has not already observed. The problem of model misspecification
raises the critical importance of an appropriate approach to learn and select optimal covariance
hyperparameters that ensure a better point-wise prediction, whether the model is well-specified
or not.
The Cross-Validation estimation, therefore, represents an alternative to estimate the
hyperparameters (σ2,θ) of the covariance function (Rasmussen & Williams, 2005). Indeed, the
Cross-Validation is a practical tool for training models and assessing their predictive quality
(Hastie et al. (2009) in chapter 7). It consists of leaving out some points in the dataset at a
time and determining how well this data can be estimated from the remaining data for given
hyperparameters, then finding the optimal hyperparameters that maximize the point-wise
prediction of the Gaussian Process model. It has been shown in particular in (Bachoc, 2013)
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that the Cross-Validation method is more efficient and robust when the covariance function is
misspecified
In this section, we consider the same learning set of n observations D = {(x(i), yi)}ni=1. We
assume that the value of the nugget effect σ2

ϵ is known, and we do not consider the estimation of
the regression coefficients β by the Cross-Validation method. We use the optimal GLS estimator
of β in the following. We place us more precisely in the framework of the n-Cross-Validation,
also known as the Leave-One-Out method. The following propositions and results are already
drawn in the paper of Dubrule (1983) and later by Bachoc (2013); Zhang & Wang (2010) for
point-wise prediction. For the multi-folds cross-validation, we refer to Dubrule (1983) for the
Simple Kriging case, and Ginsbourger & Schärer (2021) for the Universal Kriging case.
For i ∈ {1, . . . , n}, the Leave-One-Out method (i.e. n-Cross-Validation) consists in predicting
yi by building a Gaussian Process model, denoted GP−i, when virtually removing (x(i), yi) from
the D. The model GP−i is trained on D−i = {(x(j), yj)}j∈{1,...,n}\{i}. The obtained predictive
mean ỹi and variance σ̃2

i at the point x(i) are functions of parameters (σ2,θ) (we recall that σ2
ϵ

is fixed) as shown in (2.43) and (2.44). The Leave-One-Out prediction error at the point x(i) is
given by

ϵ̃i = yi − ỹi. (2.71)

Dubrule (1983) has shown that the Leave-One-Out prediction errors and variance can be
calculated directly using the matrix K defined in (2.57). It yields thus a very practical and
efficient estimator of the predictive mean and variance. These formulas are known as the Virtual
Cross-Validation formulas and are given by:

yi − ỹi =

(
Ky

)
i(

K
)
i,i

, (2.72)

and
σ̃2
i = 1(

K
)
i,i

. (2.73)

We refer to Dubrule (1983) (or to Ginsbourger & Schärer (2021) for the generalized case in the
Universal Kriging) for detailed proof, which is based on Inverting block matrices and Schur
complement.
Since the predictive mean ỹi and variance σ̃2

i imply the diagonal term Ki,i in the denominator,
we shall make the following assumption:

Assumption 2.3.10. Let (ei)ni=1 be the canonical basis of Rn. We assume that ei ̸∈ ImF for all
i ∈ {1, . . . , n}.

Under this assumption and for all i ∈ {1, . . . , n}, we have Ki,i > 0. So the Leave-One-Out
quantities are well defined. The proof of this result is given in by Lemma A.1.3 in Appendix
A.1.
While using the Cross-Validation method, it is common to consider the Mean Squared prediction
Error to assess the quality of the point-wise prediction of the obtained Gaussian Process model.
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Definition 2.3.11 (The Leave-One-Out Mean Squared Errors criterion (Zhang & Wang, 2010)).
The Leave-One-Out Mean Squared Error criterion is defined by:

LOO(σ2,θ) := 1
n

ϵ̃⊤ϵ̃ = 1
n

n∑
i=1

(yi − ỹi)2 , (2.74)

where, for 1 ≤ i ≤ n, ỹi is the predictive mean of yi by a GP model trained on D−i with
covariance hyperparameters of (σ2,θ).

It has been shown that the Leave-One-Out Mean Squared Error criterion reflects the quality of
the point-wise prediction of the GP model (Bachoc, 2013; Zhang & Wang, 2010). Minimizing
this criterion, in the case of a stationary noise-free model, has been studied by Bachoc (2013)
to address the problem of covariance hyperparameters estimation for a misspecified model.
In our case, it can be showed immediately that LOO can be also written with explicit quadratic
forms as

LOO(σ2,θ) = 1
n

y⊤K Diag
(
K
)−2

Ky. (2.75)

Therefore, the Cross-Validation Mean Squared Error (CV-MSE) estimator of the covariance
hyperparameters (σ2,θ) is given by

(σ̂2
MSE , θ̂MSE) ∈ argminσ2,θ y⊤K Diag

(
K
)−2

K y. (2.76)

The CV-MSE of the covariance hyperparameters (σ2,θ) has the same computational complexity
O(n3) as Maximum Likelihood, but it has the advantage of being more efficient when the
covariance function is misspecified (Bachoc, 2013).

Remark 2.3.12. As already discussed in Bachoc (2013), when there is no nugget effect, the
Leave-One-Out Mean Squared Error criterion (2.75) is a function of the length-scale vector θ.
Consequently, the CV-MSE estimator in this case is

θ̂MSE ∈ argminθ

1
n

y⊤Rθ Diag
(
Rθ

)−2
Rθy, (2.77)

where Rθ = R−1
θ −R−1

θ F
(
F⊤R−1

θ F
)−1

F⊤R−1
θ .

Unfortunately, the previous equation excludes the variance of the model σ2 in the estimation
procedure. We define another Cross-Validation criterion for this purpose which is:

VLOO(σ2, θ̂MSE) = 1
n

n∑
i=1

(yi − ỹi)2

σ̃2
i

, (2.78)

where ỹi and σ̃2
i are the predictive mean and variance obtained using a covariance function with

the length-scale vector θ̂MSE. Cressie (1993) in Section 2.6.4 claimed that this variance should
be close to 1 if the covariance function is correctly specified. Therefore, enforcing the criterion
VLOO to be equal to 1 gives, after direct calculations, a "CV-MSE" estimator of the amplitude
σ2 given by:

σ̂2
MSE = 1

n
y⊤Rθ̂MSE

Diag
(
Rθ̂MSE

)−1
Rθ̂MSE

y. (2.79)

Here, the notation of "CV-MSE" is to indicate that the variance’s model estimator σ̂2
MSE

does not minimize in reality the MSE of the model. It is a more reasonable choice given the
state-of-the-art.
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2.4 Current Kriging-related research

We have seen in this chapter several properties and use of the Gaussian Process model that make
it a powerful tool in Machine Learning and Uncertainty Quantification. However, Gaussian
Processes belong to a field that is in continuous development.
One major axis of GPs research is their computational cost and the necessity of manipulating
large covariance matrices. Recent works aim to approximate GPs in an optimal and efficient to
be used in large-scale data (See Liu et al. (2020) for a review about scalable GPs)
GPs have also been proposed to emulate complex problems. A first example is a multidimensional
output. Indeed, multi-fidelity co-Kriging, which is an extension of ordinary kriging to Multi-
output, was originally proposed by Kennedy & O’Hagan (2000) then developed by Forrester
et al. (2008). It has been successfully used to emulate efficiently hierarchical multi-fidelity
codes Le Gratiet (2013) and time-series output (Kerleguer, 2021). The second example is nested
Kriging (Perrin et al., 2017), where the output of one is the input of the next, called nested
codes. Rullière et al. (2018) propose aggregating small Kriging models in the case of large data.
Moreover, the use of quantitative and qualitative inputs in science, engineering and business
motivated inputs limits GPs. Roustant et al. (2020) extend Gaussian Processes based methods
to categorical inputs (group kernels), Zhang et al. (2021) propose a sparse covariance estimation
approach for both numerical and categorical inputs, and Bachoc et al. (2018) develop a theory
for Kriging of distributional rather than numerical inputs.
Furthermore, additional knowledge about data can be useful in improving the predictive task
of GPs. Veiga & Marrel (2012) introduced a new theoretical framework, with promising results
(López-Lopera et al., 2018), called Constrained Gaussian Processes. It includes some constraints
(e.g. positivity, boundedness, monotonicity and convexity, see Swiler et al. (2020) for a review)
while modelling GPs.
Finally, the model misspecification has also been discussed in the literature. Particularly
with Bachoc (2013) who introduced the Cross-Validation as an alternative to overcome model
misspecification. Wang (2021), and Wynne et al. (2021) also studied the prediction error bounds
and convergence guarantees of misspecified Gaussian Process models. This issue of model
misspecification is discussed further in the next chapter.
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CHAPTER 3

Quantifying Prediction Intervals for Gaussian
Processes using Cross-Validation method

This chapter is contains passages from the paper (Acharki et al., 2023), to appear in
Computational Statistics and Data Analysis Journal.

3.1 Introduction

In Chapter 2, we have defined a framework of regression in 2.1 for an output inference. We have
reviewed different methods for Uncertainty Quantification. We focused more on the Gaussian
Process model as one of the powerful Bayesian nonparametric models. With the Gaussian
Process model, we constructed Prediction Intervals in light of the Definition for a given training
dataset and confidence level. The upper and lower bounds of these prediction Intervals were
fully characterized by the predictive mean and variance of the model.
Recent work has shown that both Maximum Likelihood and the full-Bayesian methods
are optimal when the model is well-specified, according to Definition 2.3.2. The mean
prediction and the prediction intervals are representative of the uncertainty of the model.
In particular, they achieve optimal coverage with respect to Type IV and, consequently, Type
II Coverage Probability. Usually, it is preferable to consider the Maximum Likelihood method
for computational reasons. Indeed, the Full-Bayesian approach is very complex to implement,
typically with a Markov chain Monte Carlo (MCMC) algorithm and can be sensitive to the
choice of the prior distribution of the hyperparameters.
These results, although promising, are valid only if the obtained covariance function and its
hyperparameters fit the assumption of the Gaussian Process on f . They also suppose that the
set of possible covariance functions with corresponding hyperparameters is given prior to the
estimation phase.
The Gaussian process model is misspecified if the observations y do not correspond to
a realization of a Gaussian process with a covariance function belonging to this family.
Consequently, the Maximum Likelihood approach may fail to fit data. The estimated covariance
hyperparameters by Maximum Likelihood do not reflect the uncertainty of the model and
Prediction Intervals are no longer reliable as they do not respect the prescribed coverage.
An interesting example is conjectured by Xu & Stein (2017). When modelling the function
f(x) = xγ on [0, 1] with a Gaussian kernel (ν → +∞), the estimated variance can either go to

40



3.1. Introduction

zero or infinity as the sample size increases to infinity. Prediction Intervals would be either too
short with zero coverage or too wide with 100% coverage.
Unfortunately, in many cases and real-world applications, the Gaussian process is misspecified.
One cannot know easily what would be the form of the covariance function or to what family it
belongs.
When modeling with Gaussian Process, it is common practice to limit the covariance function
family to a predefined set of simplified models (for example, the radial model in 2.26). These
models aid in maintaining a closed-form expression of the likelihood or MSE criterion and
simplifying the optimization procedure. However, they may not be a faithful representation of
the latent function f , resulting in a weak and unreliable approximation.
Improving the modelling of the covariance function seems to be efficient in overcoming the issue
of a misspecified model. Still, it may lead to complex covariance models and severe difficulties in
estimating the covariance function’s hyperparameters, especially in high dimensions. Moreover,
sometimes, it is challenging to find proper modelling without further knowledge of the system
and the sources of uncertainty.
The problem of model misspecification is gaining more attention in the Gaussian Process
community, and many recent works discuss the properties of the Gaussian process regression
given model misspecification. Bachoc (2013) considers the problem of model misspecification to
develop a Cross-Validation method for point-wise prediction. Later, Bachoc (2018) shows that,
asymptotically, the Maximum Likelihood estimator minimizes the Kullback-Leibler divergence
to the misspecified parametric set. Wynne et al. (2021) present error bounds for the mean
predictions of misspecified GP models. They demonstrate the sensitivity of the hyperparameter’s
choice and the experimental design on the error bounds. Wang (2021) provides some insights on
explaining the poor coverage of Prediction intervals. The results indicate that, when applying
a misspecified model, the prediction interval’s reliability and the predictor’s optimality cannot
be achieved simultaneously.
While most literature emphasizes the difficulty of making an accurate and reliable prediction
with misspecified models, the question was whether valid inferences could still be made. The
answer turns out to be optimistic at this stage based on Bachoc (2013) work. Indeed, the
Cross-Validation method allows for the modification and the selection of the covariance function
hyperparameters based on a specific metric (point-wise criterion). However, the Cross-Validation
does not correct the model’s misspecification; rather, it minimizes the integrated mean squared
error, which is insufficient to overcome the main issue. The variance of the MSE Cross-validation
model, in particular, may not accurately estimate the true uncertainty of the model. The
reason relies mainly on the choice of the σ̂2 as explained in Remark 2.3.12. Therefore, the
Prediction interval must be carefully constructed to quantify the uncertainties. An example
is Luna & Young (2003) who propose to calibrate the Maximum Likelihood variance with a
bootstrap approach.
In Chapter 3, we propose a method based on Cross-Validation of the Gaussian Process model to
address the problem of model misspecification. The goal is to calibrate Prediction Intervals by
adjusting the upper and lower bounds. The method gives Prediction Intervals with appropriate
coverage probabilities and small widths.
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3.2. Prediction Intervals estimation with Cross-Validation

3.2 Prediction Intervals estimation with Cross-Validation

In this section, we consider the n-Cross-Validation framework as already defined in 2.3, the
training dataset is denoted by D = {(x(i), yi)}ni=1.
We keep the notations of ỹi and σ̃2

i , the predictive mean and variance on x(i) ∈ X, using the GP
model GP−i, trained on the dataset D−i = {(x(j), yj)}j∈{1,...,n}\{i}. We recall the expression of
ỹi and σ̃2

i as given (2.72) and (2.73), given by the Virtual Cross-Validation formulas of Dubrule
(1983):

yi − ỹi =

(
Ky

)
i(

K
)
i,i

, (3.1)

and
σ̃2
i = 1(

K
)
i,i

, (3.2)

where K = K−1−K−1F
(
F⊤K−1F

)−1
F⊤K−1 (see (Mardia & Marshall, 1984) or (de Oliveira,

2007) for more details about K).
We have seen in Section 2.3 that, using Cross-Validation method, Bachoc (2013) established an
estimator of the covariance hyperparameter’s (σ̂2

MSE , θ̂MSE) based on a point-wise prediction
metric. Unfortunately, the obtained model’s variance σ2 might not represent the model’s
uncertainty. Consequently, the Prediction Intervals could be shorter or wider and do not respect
the required coverage (neither Type II nor Type I).
Based on the Cross-Validation method, our approach proposes Empirical Coverage Probability
in 2.1.10 as a metric. We adjust the hyperparameters (σ2,θ) with respect to this metric. The
upper u1−α and lower l1−α bounds are calibrated. Doing so will guarantee that the prediction
Intervals are well-calibrated and respect Type II coverage.
Let the Leave-One-Out Coverage Probability P̃1−α define the Empirical Coverage Probability
on (x(i), yi) using the dataset D−i:

P̃1−α = 1
n

n∑
i=1

1{yi ∈ PI1−α(x(i); D−i)}, (3.3)

where PI1−α(x(i); D−i) are the Prediction Intervals given by the Leave-One-Out method

PI1−α(x(i); D−i) =
[
l1−α(x(i));u1−α(x(i))

]
= [ỹi + qα/2 × σ̃i; ỹi + q1−α/2 × σ̃i].

(3.4)

Under some assumptions on the Leave-One-Out predictive mean and variance, Steinberger &
Leeb (2018) in Theorem 2.4 provide conditional coverage guarantees of the Leave-One-Out
Prediction Intervals. Moreover, these intervals are asymptotically valid i.e. the Leave-One-Out
Coverage Probability P̃1−α converges asymptotically to 1− α.
When the model is well-specified, the coverage of the Prediction Intervals PI1−α is optimal,
and Leave-One-Out Coverage Probability P̃1−α is close to 1− α. Conversely, if the model is
misspecified, this probability is significantly different from 1− α.
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3.2. Prediction Intervals estimation with Cross-Validation

Therefore, the Prediction Intervals or, equivalently, the upper and lower bounds l1−α, u1−α
need to be appropriately quantified with respect to Leave-One-Out Coverage Probability P̃1−α,
so it achieves the desired level.
As discussed in remark 2.2.37, despite these intervals being Type IV, we do not intend to
calibrate Prediction intervals with respect to Type IV coverage. Unlike the well-specified model
case, this coverage is difficult to achieve in the misspecified case without knowing the posterior
distribution Y (·) | D or making assumptions about its structure.
The Leave-One-Out Coverage Probability P̃1−α can be written as

P̃1−α= 1
n

n∑
i=1

1{yi ∈ PI1−α(x(i); D−i)},

= 1
n

n∑
i=1

1{ỹi + qα/2 × σ̃i < yi ≤ ỹi + q1−α/2 × σ̃i}.
(3.5)

We introduce the Heaviside step function h

h(x) = 1{x ≥ 0} =
{

1 if x ≥ 0
0 if x < 0 , (3.6)

which allows us to write P̃1−α as

P̃1−α = 1
n

n∑
i=1

h

(
q1−α/2 −

yi − ỹi
σ̃i

)
− 1
n

n∑
i=1

h

(
qα/2 −

yi − ỹi
σ̃i

)
. (3.7)

Let a ∈ (0, 1/2) ∪ (1/2, 1) describe a nominal level of quantile. We define the quasi-Gaussian
proportion ψa as a map from [0,+∞)× (0,+∞)d to [0, 1]

ψa
(
σ2,θ

)
= 1
n

n∑
i=1

h

(
qa −

yi − ỹi
σ̃i

)
. (3.8)

Given the Virtual Cross-Validation formulas (Dubrule, 1983), ψa can be written in terms of the
covariance matrix K

ψa(σ2,θ) = 1
n

n∑
i=1

h

qa −
(
Ky

)
i√(

K
)
i,i

 . (3.9)

The quasi-Gaussian proportion ψa describes how close the a-quantile qa of the standardized
predictive distribution is to the level a (ideally, it should correspond to a).
Since there exists a correspondence between u1−α (respectively, l1−α) and ψ1−α/2 (respectively,
ψα/2), the objective is to fit the hyperparameters (σ2,θ) according to the quasi-Gaussian
proportions and find two pairs (σ2,θ) and (σ2,θ) such that ψ1−α/2(σ2,θ) = 1 − α/2 and
ψα/2(σ2,θ) = α/2. This allows us modifying the upper and lower bounds l1−α, u1−α to get
the optimal coverage, by setting the Leave-One-Out Coverage to its nominal level, that is
P̃1−α = 1− α.
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3.2. Prediction Intervals estimation with Cross-Validation

Presence of nugget effect

In this subsection, we assume σ2
ϵ > 0. The quasi-Gaussian proportion ψa is, however, piece-wise

constant and can take values only in the finite set {k/n, k ∈ {0, . . . , n}}. We first need to
modify the problem ψa

(
σ2,θ

)
= a. Let δ > 0, we define the continuous functions h−

δ and h+
δ

h+
δ (x) =


1 if x > δ,
x/δ if 0 < x ≤ δ,
0 otherwise.

h−
δ (x) =


1 if x ≥ 0,
1 + x/δ if −δ ≤ x < 0,
0 otherwise.

(3.10)

If a > 1/2 we define

ψ(δ)
a

(
σ2,θ

)
= 1
n

n∑
i=1

h+
δ

qa −
(
Ky

)
i√(

K
)
i,i

 . (3.11)

If a < 1/2 we define

ψ(δ)
a

(
σ2,θ

)
= 1
n

n∑
i=1

h−
δ

qa −
(
Ky

)
i√(

K
)
i,i

 . (3.12)

Let δ > 0 be small enough so that δ < qa if a > 1/2 (respectively, δ < q1−a if a < 1/2) in such
a way that h+

δ (qa) = 1 (respectively, h−
δ (qa) = 0). We consider the problem

ψ(δ)
a

(
σ2,θ

)
= a, (3.13)

and we denote by Aa,δ the solution set of the problem (3.13)

Aa,δ :=
{

(σ2,θ) ∈ [0,+∞)× (0,+∞)d, ψ(δ)
a (σ2,θ) = a

}
. (3.14)

Assumption 3.2.1. Let kϵ = Card{i ∈ {1, . . . , n}, (Πy)i√
(Π)ii

≤ σϵqa} where Π is the orthogonal

projection matrix on (ImF)⊥ such that Π = In − F
(
F⊤F

)−1
F⊤. We assume that kϵ < na if

a > 1/2 and kϵ > na if a < 1/2.

Remark 3.2.2. The assumption 3.2.1 is typically satisfied in Ordinary and Universal Kriging.
Indeed, Π is the projection on the space (ImF)⊥ and is expected to remove the trend of the
model. It is reasonable to think that (Πy) is centered and that

Card{i ∈ {1, . . . , n}, (Πy)i ≤ 0} ≈ n

2 . (3.15)

If σ2
ϵ is smaller than σ2, then we should also have

Card{i ∈ {1, . . . , n}, (Πy)i√
(Π)ii

≤ σϵqa} ≈
n

2 , (3.16)

so that the assumption 3.2.1 should be fulfilled.
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Proposition 3.2.3. Let us assume the assumptions 2.2.32, 2.3.10 and 3.2.1, then Aa,δ is
non-empty.

Proof. In A.1. ■

The challenge now is to identify and choose wisely the optimal solutions (σ2
opt,θopt) ∈ Aa,δ.

In High-Quality principles methods, some authors (Khosravi et al., 2010; Pearce et al., 2018)
suggest the mean Prediction Intervals width (MPIW) 2.1.12 of Prediction Intervals PI1−α as
an additional constraint to reduce the set of solutions. The upper and lower bounds are built
simultaneously using a Neural Network, which makes computing the MPIW in the loss metric
possible.
In our approach, however, this constraint may not be suitable. Indeed, we target the upper
and lower bounds separately (the other bound of the corresponding interval would be infinite)
and ensure that each bound respects its coverage.
Instead, our strategy consists on comparing these solutions with MLE’s solution (σ̂2

ML, θ̂ML)
(subsection 2.3) or MSE-CV solution (σ̂2

MSE , θ̂MSE) (subsection 2.3) and we will take the closest
pair (σ2

opt,θopt) by using an appropriate notion of similarity between multivariate Gaussian
distributions. Ideally, we aim to solve the following problem

argmin(σ2,θ)∈Aa,δ
d2
(
(σ2,θ), (σ2

0,θ0)
)
, (3.17)

where d is a continuous similarity measure of hyperparameters (σ2,θ) operating on the mean
m and the covariance matrix K, and (σ2

0,θ0) = (σ̂2
ML, θ̂ML) or (σ̂2

MSE , θ̂MSE) as described in
(2.58) or (2.76).
Since the mean m = Fβ̂ and β̂ is a function of the covariance matrix K, the comparison of
two covariance functions with given hyperparameters is equivalent somehow to considering
similarity measure (i.e. distance) between the covariance matrices.

3.3 Similarity measures of covariance matrices

In this subsection, we discuss several distances in the space of symmetric positive semi-definite
matrices S+

n (R) that can be used to compare covariance matrices. The particularity of this
space is that it is non-Euclidean. Thus, non-Euclidean representations are required to compare
matrices belonging to it. The logarithm of a matrix, the square root of a matrix and the
Cholesky decomposition, which is shown to be unique for positive definite matrices (Golub &
Van Loan, 2013), are used for this purpose.
Let K1 and K2 be two covariance matrices, symmetric positive definite i.e. K1, K2 ∈ S++:

n (R).
Unless specified otherwise, we consider a fixed experimental design X = (x(1), . . . ,x(n)) and we
assume that K1 and K2 are the covariance matrices associated to two covariance models k1
and k2.
We define the logarithm and the square root of Ki, for i ∈ {1, 2} from its spectral decomposition
as

log(Ki) = Ui log(Di)U⊤
i ,

K1/2
i = UiD1/2

i U⊤
i .

(3.18)
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3.3. Similarity measures of covariance matrices

Ui ∈ On(R) is an orthogonal matrix UiU⊤
i = In and Di ∈ Dn(R) a diagonal matrix containing

the eigenvalues of Ki.
The Root-Euclidean distance dRoot, the log-Euclidean distance dlog (Arsigny et al., 2007) and
the Cholesky distance dChol (Zhizhou Wang et al., 2004) for K1 and K2 are defined

dRoot(K1,K2) = ∥K1/2
1 −K1/2

2 ∥, (3.19)
dlog(K1,K2) = ∥ log(K1)− log(K2)∥, (3.20)
dChol(K1,K2) = ∥Chol(K1)− Chol(K2)∥, (3.21)

where Chol(Ki) is the Cholesky decomposition of Ki.
Förstner & Moonen (2003) and Pennec et al. (2006) proposed a distance, known also as version
of the canonical invariant Riemannian metric for matrices

dFors(K1,K2) =
√

Tr
(
log2(K−1/2

1 K2K−1/2
1 )

)
. (3.22)

A distance d is said to be

• Invariant under translation of Ki, if d(K1 + tt⊤,K2 + tt⊤) = d(K1,K2) for a translation
vector t ∈ Rn.

• Invariant under simultaneous rotation and reflection of Ki, if d(UK1U⊤,UK2U⊤) =
d(K1,K2) for an orthogonal matrix U ∈ On(R).

• Invariant under scaling of Ki, if d(βK1, βK2) = d(K1,K2) for β > 0.

• Affine invariant, if d(AK1A⊤,AK2A⊤) = d(K1,K2) where A is a general full rank
matrix.

• Inverse invariant, if d(K−1
i , In) = d(Ki, In).

A review of Dryden et al. (2009) shows that dChol is not invariant under simultaneous rotation
and reflection of K1 and K2, dRoot is not invariant under simultaneous scaling, only dlog and
dFors are inverse invariant and affine invariant. However, the inverse matrix in the Forstner
distance dFors may raise some computational issues and lead to unbounded behavior, as we will
see below at the end of the subsection.
Pigoli et al. (2014) proposed also a Procrustes size-and-shape distance to compare two positive
definite matrices:

Π(K1,K2) = inf
R∈On(R)

∥K1/2
1 −K1/2

2 R∥. (3.23)

Proposition 3.3.1. The Procrustes size-and-shape distance Π is invariant under translation,
rotation and reflection.

In addition, the Procrustes distance Π has the advantage of dealing efficiently with deficient
rank matrices (Dryden et al., 2009), unlike the invariant Riemannian distance dFors which is
not valid for this purpose.
An important proposition is shown by Masarotto et al. (2019) proving that the Procrustes
distance in (3.23) between two covariance matrices K1 and K2 coincides with the second
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Wasserstein distance between two Gaussian processes Y1 ∼ GP(m1,k1) and Y2 ∼ GP(m2,k2),
given by (Dowson & Landau, 1982)

Π2(K1,K2) = W 2
2 (Y1, Y2) (3.24)

= ∥m1 −m2∥2 + Tr
(

K1 + K2 − 2
√

K1/2
1 K2K1/2

1

)
. (3.25)

The Wasserstein distance, widely used in optimal transport problems (see Chapter 6 of Villani
(2009) for more details). From now on, given an experimental design of inputs X, the distance
Π2(K1,K2) refers to the second Wasserstein between GP(m1,k1) and GP(m2,k2). When
the mean of the two Gaussian processes Y1 and Y2 is constant m1 = m2 = Fβ, the second
Wasserstein distance considers only the difference associated to the term of Tr(·), that is,

Π2(K1,K2) = Tr
(

K1 + K2 − 2
√

K1/2
1 K2K1/2

1

)
. (3.26)

In the following, we will assume a free-noise setting σ2
ϵ = 0, and we will derive additional

properties of the invariant Riemannian and the 2-Wasserstein distance.

Proposition 3.3.2. Let X1 (respectively, X2) be an experimental design in Rn×d, and let
K1 = k(X1,X1) (respectively, K2 = k(X2,X2)) be the Gram matrix by a Mateŕn anisotropic
geometric model k (i.e. the associated covariance matrix), then dFors(K1,K2) is a function of
θ whereas Π(K1,K2) depends on both σ2 and θ.

Proof. Under the assumption of a radial covariance model as in (2.26), the covariance matrices
can be written as Ki = σ2Rθ,i for i ∈ {1, 2}, we obtain by direct calculation :

d2
Fors(K1,K2) = Tr

(
log2(K−1/2

1 K2K−1/2
1 )

)
= Tr

(
log2(σ−1R−1/2

θ,1 σ2Rθ,2σ
−1R−1/2

θ,1 )
)

= Tr
(
log2(R−1/2

θ,1 Rθ,2R−1/2
θ,1 )

)
.

Π2(K1,K2) = Tr
(

K1 + K2 − 2
√

K1/2
1 K2K1/2

1

)
= σ2 Tr (Rθ0) + σ2 Tr (Rθ0)− 2σ2 Tr

(√
R1/2

θ0
Rθ0R1/2

θ0

)

= 2σ2
(
n− Tr

(√
R1/2

θ,1 Rθ,2R1/2
θ,1

))
.

(3.27)

The amplitude σ2 is hence captured with the second Wasserstein distance as a scaling factor. ■

An illustration of Proposition 3.3.2 is shown in Figure 3.1. In this example, we have considered
two experimental designs: a Latin-Hypercube-Sample X1 and a random sample X2. Both
experimental designs are d = 10-dimensional and contains n = 300 observations. We can clearly
see in Figure 3.1a that the Forstner distance dFors(K1,K2) is invariant with respect to σ2 and
the 2-Wasserstein distance Π(K1,K2) has a squared root curve with respect to σ2.

Proposition 3.3.3. For a given length-scale vector θ0 ∈ Rd and an experimental design X in
Rn×d, we denote K0 = k0(X,X) (respectively, K = k(X,X)) the covariance matrix associated
to the covariance model k0 = kσ2

0 ,θ0 (respectively, k = kσ2,θ0). The Forstner and second
Wasserstein distances are scale-variant and can be expressed as:
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Figure 3.1: Comparison of Forstner’s d2
Fors(K1,K2) and the 2-Wasserstein Π(K1,K2) distances,

on Latin-Hypercube-Sample X1 and random sample X2 of d = 10-dimensional and contains
n = 300 observations, given a Matérn anisotropic geometric model k = kσ2,θ with smoothness
ν = 3/2.

• dFors(K0,K) = 2
√
n |log σ − log σ0|

• Π(K0,K) =
√
n

∣∣∣∣√σ2 −
√
σ2

0

∣∣∣∣.
We refer to Figure 3.2a for an illustration of the previous proposition.

Proof. Under the same assumptions and calculations as in the proof of Proposition 3.3.2, we
have :

d2
Fors(K0,K) = Tr

(
log2(σ−1

0 R−1/2
θ0

σ2Rθ0σ
−1
0 R−1/2

θ0
)
)

= Tr
(
log2(σ2/σ2

0In)
)

=
n∑
i=1

log2(σ2/σ2
0)

=
n∑
i=1

4 [log(σ)− log(σ0)]2 = 4n [log(σ)− log(σ0)]2 .

(3.28)

Π2(K0,K) = σ2
0 Tr (Rθ0) + σ2 Tr (Rθ0)− 2 Tr

(√
σ0R1/2

θ0
σ2Rθ0σ0R1/2

θ0

)

= σ2
0 Tr (Rθ0) + σ2 Tr (Rθ0)− 2

√
σ2
√
σ2

0 Tr
(√

R2
θ0

)
= nσ2

0 + nσ2 − 2n
√
σ2
√
σ2

0 = n

[√
σ2 −

√
σ2

0

]2
.

(3.29)

The last line holds because because (Rθ)ii = 1. ■

The variation of the Forstner and second Wasserstein distances with respect to θ is more
difficult to express as it involves the square root and product of multiples matrices. However,
we can simplify it by writing, for A and B symmetric positive definite matrices:

48



3.3. Similarity measures of covariance matrices

5 10 15 20

0
10

20
30

40
50

sigma2

di
st

an
ce

Forstner

Wasserstein

(a) With respect to σ2.

0.5 1.0 2.0 5.0 10.0 20.0

0
20

40
60

80
10

0
12

0

lambda

di
st

an
ce

Forstner

Wasserstein

(b) With respect to λθ.

Figure 3.2: Comparison of Forstner’s d2
Fors(K,K0) and the 2-Wasserstein Π(K,K0) distances

between two covariance matrices K and K0, on a random sample X of d = 10 and n = 300
observations, given by two Matérn anisotropic geometric models k = kσ2,λθ0 and k0 = kσ2

0 ,θ0

with smoothness ν = 3/2 where σ2
0 = 5 and θ0 = (1, . . . , 1).

det (AB− λIn) = det
[
A1/2

(
A1/2BA1/2 − λIn

)
A−1/2

]
= det

(
A1/2BA1/2 − λIn

)
,

det
(
A−1B− λIn

)
= det

[
A−1/2

(
A−1/2BA−1/2 − λIn

)
A1/2

]
= det

(
A−1/2BA−1/2 − λIn

)
.

(3.30)
As consequence, the characteristic polynomials of A−1/2BA−1/2 and A−1B coincide on R and
therefore, they have the same eigenvalues. In addition, Tr (f(A)) = ∑n

i=1 f(λi(A)) for any
function f , we can write:

Tr
(√

R1/2
θ0

RθR1/2
θ0

)
=

n∑
i=1

λi (Rθ0Rθ) ,

Tr
(
log2(R−1/2

θ0
RθR−1/2

θ0
)
)

=
n∑
i=1

log2 λi
(
R−1

θ0
Rθ

)
.

(3.31)

Since Rθ converges to J = ee⊤ the matrix full of ones with e = (1, . . . , 1)⊤, which is singular,
we must have at least one eigenvalue of R−1/2

θ0
Rθ and R−1

θ0
Rθ that converges to 0, this explains

Figure 3.2b where the Forstner distance dFors diverges to +∞ and Π to a finite limit.
As a conclusion of this subsection, considering properties and comparisons above, the final
choice of the optimal similarity d goes to the second Wasserstein distance and all its advantages.

Robust Prediction Intervals Estimation method

From now on, given an experimental design of inputs X, each pair (σ2,θ) is associated to a
Gaussian distribution N (m,K) and we define the similarity measure d as the 2-Wasserstein
distance

d2
(
(σ2,θ), (σ2

0,θ0)
)

= W 2
2 (N (m,K),N (m0,K0)). (3.32)
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where, m = Fβ̂ =
(
F⊤K−1F

)−1
F⊤K−1y, m0 = Fβ̂0 =

(
F⊤K−1

0 F
)−1

F⊤K−1
0 y and K0 is

the covariance matrix associated to covariance hyperparameters obtained by MLE or MSE-CV
methods.
The resolution of Problem (3.17) may be too costly and heavy to solve when the dimension
is high, say d ≥ 10. An alternative is to apply the relaxation method where we redefine this
optimization problem of θ from (0,+∞)d to (0,+∞) by shifting the length-scale vector θ0 by
a parameter λ ∈ (0,+∞).
Let θ0 denote the correlation-length vector obtained by MLE (2.58) or MSE-CV (2.76) and, for
λ ∈ (0,+∞), let Hδ(λ) denote the subset

Hδ(λ) = {σ2 ∈ [0,+∞), ψ(δ)
a (σ2, λθ0) = a}. (3.33)

Assumption 3.3.4. The set-valued mapping (the so-called correspondence function) Hδ :
(0,+∞)→ P((0,+∞)), where P(S) denotes the power set of a set S, is lower semi-continuous,
that is, for all λ ∈ (0,+∞), for each open set U with Hδ(λ)∩U ≠ ∅, there exists a neighborhood
O(λ) such that if λ∗ ∈ O(λ) then Hδ(λ∗) ∩ U ̸= ∅.

In the kriging framework, σ2 should be as small as possible to reduce the uncertainty of the
model, a natural choice of σ2

opt is

∀λ ∈ (0,+∞) : σ2
opt(λ) := min{σ2 ∈ [0,+∞), ψ(δ)

a (σ2, λθ0) = a}. (3.34)

Proposition 3.3.5. The function λ 7→ σ2
opt(λ) is well-defined under hypotheses 2.2.32, 2.3.10

and 3.2.1, and continuous on (0,+∞) under the additional assumption 3.3.4.

Proof. In A.1. ■

The choice of the second Wasserstein distance W2 jointly with σ2
opt makes the Prediction

Intervals PI1−α shorter without the need for an additional metric like the MPIW and without
modifying the distribution of the obtained model significantly. We will see in Section 3.4 that,
empirically, the bary-centers of Prediction Intervals are not far from the predictive means
obtained by MLE or MSE-CV methods.
The relaxed optimization problem in (3.13) for the Prediction Interval bound’s estimation is
given by the problem Pλ

Pλ : argminλ∈(0,+∞) L(λ) := d2
(
(σ2

opt(λ), λθ0), (σ2
0,θ0)

)
. (3.35)

Proposition 3.3.6. Under assumptions 2.2.32 to 3.3.4, the function L : (0,+∞) → R+ is
continuous and coercive on (0,+∞). The problem Pλ admits at least one global minimizer λ∗

in (0,+∞).

Proof. See A.1. ■

Remark 3.3.7. The coercivity of the function L is guaranteed by the assumptions 2.2.32 to
3.2.1 (see Appendix A.1). The function L is also upper semi-continuous (Zhao, 1997). The
assumption 3.3.4 ensures that L is continuous and that a global minimizer exists. This hypothesis
is not easy to check. If it does not hold or cannot be checked, then it is possible to solve the
problem (3.35) on a regular grid by a grid search method.
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(a) The standardized predictive distribution for
the MLE method compared with the standard
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(d) The green curve is the optimal distribution
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Figure 3.3: Summary of our approach: In Subfigure 3.3a the model here is misspecified as
the standardized predictive distribution with MLE is significantly different from the normal
distribution. In Subfigure 3.3b, the upper bound of Prediction Interval with respect to the
quantile q90% is above the coverage of 90%. When trying to ensure the coverage of 90%, we
can identify an infinite set of solutions and each solution would give a different distribution
as shown in Subfigure 3.3c. With the Wasserstein distance, we manage to choose the closest
distribution (green curve in Subfigure 3.3d) to the MLE distribution with the 2-Wasserstein
distance.
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Let β̂opt denote the corresponding regression parameter

β̂opt(λ∗) =
(

F⊤K−1
σ2

opt(λ∗),λ∗θ0
F
)−1

F⊤K−1
σ2

opt(λ∗),λ∗θ0)y. (3.36)

The purpose of this resolution is to create a GP model with hyperparameters
(β̂opt(λ∗), σ2

opt(λ∗), λ∗θ0) able to predict the quantile ỹa such that a proportion a of true
values are below ỹa with respect to the constraint of quasi-Gaussian proportion ψa (see Figure
3.3). Finally, the Prediction Intervals PI1−α will be obtained using two GP models built with
the same method, one for the upper bound u1−α ↔ ψ1−α/2 with optimal relaxation parameter
λ

∗ and the other one for the lower bound l1−α ↔ ψα/2 with parameter λ∗ (here ↔ is to denote
that there is a correspondence between ... ). The Coverage Probability of PI1−α is optimal
and achieved by respecting the coverage of each bound as shown in (3.7). In the following, we
call this method Robust Prediction Intervals Estimation (RPIE).

Remark 3.3.8. It is clear that the GP hyperparameters selected by the RPIE method depends
on the level a. Given the continuity properties of the different steps of the RPIE method, one
may expect, however, that the hyperarameters selected for a specific level a should also give good
CP locally for other levels of coverage a′ close to a. Nevertheless, this local property is certainly
not global. This sensitivity can also be related to the known observation that guarantees for
conditional coverage are more challenging to obtain than for marginal coverage (Foygel Barber
et al., 2020).

Absence of nugget effect

When the nugget effect is null σ2
ϵ = 0, the set of solutions Aa,δ is still non-empty because

one can show that, for θ in the neighborhood of 0 ∈ Rd, the problem ψ
(δ)
a (σ2,θ) = a has a

solution σ2 ∈ (0,+∞) (see A.2). In particular, the correspondence function Hδ is non-empty
valued for λ > 0 small enough, and it may be empty-valued for some large λ ∈ (0,+∞). We
may think, however, that Hδ is non-empty valued and that σ2

opt(λ) exists for λ close to one.
Indeed, assume for a while that the model is well-specified, that is, there exist hyperparameters
(β∗, σ

2
∗,θ∗) such that y corresponds to a realization of a random vector Y ∼ N (Fβ∗, σ

2
∗Rθ∗).

The existence of Hδ(λ) and σ2
opt(λ) depend on the condition kλ ≤ na, where kλ is the integer

defined by
kλ := Card

{
i ∈ {1, . . . , n},

(
Rλθ0y

)
i
≤ 0

}
. (3.37)

Since Rθ∗Y is centered, we can anticipate that

Card
{
i ∈ {1, . . . , n},

(
Rθ∗y

)
i
≤ 0

}
≈ n

2 . (3.38)

Hence, the condition n/2 < kλ ≤ na should be satisfied in a neighborhood of λ = 1 since θ0
should be close to θ∗.
For the coercivity, we show in Appendix A.2 that the function L is coercive for anisotropic
geometric Matérn models with smoothness parameter ν < 2. Nevertheless, for Matérn models
with smoothness parameter ν ≥ 2, the coercivity cannot be satisfied (see A.2 for more discussion),
but this should not be an important issue of the method. On the one hand, we may agree that
Matérn models with smoothness parameter ν ≥ 2 are less robust in Uncertainty Quantification
in the free-noise setting. On the other hand, even though the function L would not be defined
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on (0,+∞), we can solve (3.35) by a grid search method on its domain and pick a minimizer
λ∗, preferably close to 1.

3.4 Numerical Results

Test cases with analytical functions

In this section, we give three numerical examples to illustrate Prediction Intervals estimation
by the RPIE method. We show that for the Wing-Weight function, the model is well-specified
as the CP is optimal for different levels, hence, no robust calibration of Prediction Intervals is
required. However, for Zhou (1998) and Morokoff & Caflisch (1995) functions where the model
is misspecified and for a given confidence level α, we apply the RPIE method as described in
section 3.2 to estimate both upper and lower bounds of Predictions Intervals. The following
metrics: the Leave-One-Out CP P̃1−α defined in (3.7), the Coverage Probability (CP), the mean
(MPIW) and standard-deviation (SdPIW) of the Prediction Interval width, and the accuracy
Q2 (Kleijnen & Sargent, 2000) are used to assess and compare GP models built by MLE or
MSE-CV methods, full Bayesian approach or the RPIE method. They can be used either for
point-wise prediction comparison (Q2 will be given in some cases for information, it does not
represent the main metric of this section):

Q2 = 1−
∑ntest
i=1

(
y

(i)
test − ỹi,test

)2

∑ntest
i=1

(
y

(i)
test − y

)2 , (3.39)

or for quantifying the goodness of Prediction Intervals:

P̃1−α = 1
n

n∑
i=1

1{yi ∈ PI1−α(x(i); D−i)}, (3.40)

CP1−α = 1
ntest

ntest∑
i=1

1{y(i)
test ∈ PI1−α

(
x

(i)
test; D

)
}, (3.41)

MPIW1−α = 1
ntest

ntest∑
i=1

∣∣∣PI1−α
(
x

(i)
test; D

)∣∣∣ , (3.42)

and,

SdPIW1−α =

√√√√ 1
ntest

ntest∑
i=1

[∣∣PI1−α
(
x

(i)
test; D

)∣∣−MPIW1−α
]2
, (3.43)

where ytest =
(
y

(1)
test, . . . , y

(ntest)
test

)
is the vector to predict at

(
x

(1)
test, . . . ,x

(ntest)
test

)
, PI1−α is the

(1− α)× 100% confidence Prediction Interval delimited by the quantiles q1−α/2 and qα/2, and
|PI1−α| is the length of the interval.
Note that the CP1−α may be different from the Leave-One-Out CP P̃1−α, this case can happen
when the distributions of the training and testing sets are different. However, if the Leave-One-
Out CP P̃1−α is close to 1− α and if the assumptions of i.i.d. observations and same joint
distributions πtrain = πtest are respected, then CP1−α should be also close to 1− α.
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This subsection provides results obtained on d = 10-dimensional GP with constant mean
function (Ordinary Kriging). The value of δ is fixed at δ = 10−2. We implement our methods
using the package kergp (Roustant et al., 2020) on R. For the computational time, we use an
Intel(R) Core(TM) i5-9400H CPU @ 2.50GHz with a RAM of 32 Go.

Example 1: Well-specified model - The Wing Weight function

The Wing Weight function is a model in dimension d = 10 proposed by Forrester et al. (2008)
that estimates the weight of a light aircraft wing. For an input vector x ∈ R10, the response y
is:

f(x) = 0.036x0.758
1 x0.0035

2

(
x3

cos2 (x4)

)0.6
x0.006

5 x0.04
6

( 100 x7
cos (x4)

)−0.3
(x8x9)0.49 + x1x10. (3.44)

The components xi denote some physical and aero-dynamical parameters of the light aircraft
wing (e.g. x1 is the wing area in feet squared), see Forrester et al. (2008) and Moon (2010) for
details. They are assumed to vary over the ranges given in Table 3.1.

Table 3.1: The input variables xj and their domain ranges [aj ; bj ].

Component Domain Component Domain

x1 [150; 200] x6 [0.5; 1]
x2 [220; 300] x7 [0.08; 0.18]
x3 [6, 10] x8 [2.5; 6]
x4 [−10; 10] x9 [1700, 2500]
x5 [16; 45] x10 [0.025; 0.08]

We create an experimental design X of n = 600 observations and d = 10 variables where
observations x(i) =

(
x

(i)
1 , . . . , x

(i)
d

)
are sampled i.i.d. with uniform distribution over ⊗d

j=1[aj , bj ].
We generate the response y =

(
y(1), . . . , y(n)

)
such that yi = f(x(i)) + ϵ(i) with f defined in

(3.44) and ϵ(i) are sampled i.i.d. with the distribution N (0, σ2
ϵ = 25). Here the nugget effect is

estimated with the methodology described in Iooss & Marrel (2017) and the covariance kernel
is the Matérn 3/2.
The GP model is trained on 75% of the data (25% of data is left for testing). The diagnostics
of the model are presented in Table 3.2 with the metrics described above. The accuracy Q2 is
moderate for MLE and Full-Bayesian methods. The MSE-CV does much better, an expected
result since the MSE-CV method is more adapted for point-wise prediction criterion. However,
the Leave-One-Out CP P̃1−α for two different levels α = 5%, 10% is far from the required level,
which means that they were poorly estimated with point-wise prediction criterion. In addition,
Table 3.2 shows in particular that the model is well-specified for Matérn 3/2 correlation kernel
with the MLE method since the CPs are optimal and close to the required level. This claim is
empirical and can be verified either by comparing the standardized predictive distribution with
the standard normal distribution as in Figure 3.3 or using Shapiro & Wilk (1965) normality test
(in this example, p-value = 0.203). The Full-Bayesian approach also does well in estimating
Prediction Intervals in the case of a well-specified model. Indeed, the hyperparameters’ posterior
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distribution p(σ2,θ | y) is concentrated around the MLE estimator, so the plug-in MLE approach
and the Full-Bayesian approach give similar predictive distributions and Prediction Intervals.
Morever, the computational cost of the Full-Bayesian approach is extremely long compared to
other methods (e.g. 100 times longer than the MLE method). Concerning the RPIE method,
one can notice that it provides the optimal coverage at each required level, either on training
or testing sets. However, we do not see significant interest in applying it here (except for the
MSE-CV solution).
Example 1 is a case of well-specified model in which the CPs obtained by the MLE method
satisfy the nominal value and the RPIE method does not bring a significant additional value
(at least for the MLE solution).

Example 2: Misspecified model with noise - Morokoff & Caflisch function -

We consider the Morokoff & Caflisch (1995) function defined on [0, 1]d by

f(x) = 1
2
(
1 + 1

d

)d d∏
i=1

(xi)1/d. (3.45)

In Example 2, we consider an experimental design X of n = 600 observations and d = 10
correlated inputs. Each observation has the form x(i) =

(
Φ(z(i)

1 ), . . . ,Φ(z(i)
d )
)
∈ Rd, Φ is the

CDF of the standard normal distribution, z(i) are sampled from the multivariate distribution

Table 3.2: Performances of methods (MLE, MSE-CV and Full-Bayesian) for Wing Weight
function.

Before RPIE After RPIE Full-Bayesian

MLE MSE-CV MLE MSE-CV -

Q2 0.563 0.764 n.c n.c 0.562

P̃99% 99.1 99.8 98.9 98.9 99.1
CP99% 98.7 100 98.7 98.0 98.7
P̃95% 94.0 98.9 94.9 94.9 94.2
CP95% 95.3 99.3 96.7 96.0 95.3

P̃90% 90.1 96.9 90.0 90.0 90.9
CP90% 91.3 96.0 89.3 90.0 91.3

Ct 2min 12s 32min 42s 6min∗ 37min∗ 4h 39min 27s

Q2: Accuracy; P̃1−α: The Leave-One-Out CP in % on the training set; CP1−α: The CP in % on the testing set and Ct:
computational time.
*: The approximated cumulative computational time after running the RPIE method for all levels.
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N (0,C) and C ∈ Rd×d is the following covariance matrix:

C =



1 0.90 0 0 0 0.50 −0.30 0 0 0
0.90 1 0 0 0 0 0 0.10 0 0

0 0 1 0 −0.30 0.10 0.40 0 0.05 0
0 0 0 1 0.40 0 0 −0.35 0 0
0 0 −0.30 0.40 1 0 0 0 0.10 0

0.05 0 0.10 0 0 1 0 0 0 0
−0.30 0 0.40 0 0 0 1 0 0 −0.30

0 0.1 0 −0.35 0 0 0 1 0 0
0 0 0.05 0 0.10 0 0 0 1 0
0 0 0 0 0 0. −0.3 0 0 1


.

The response vector y is generated as yi = f(x(i)) + ϵ(i) with f the Morokoff & Caflisch
function defined in (3.45) and ϵ(i) are sampled i.i.d. with the distribution N (0, σ2

ϵ = 10−4). We
consider the Matérn anisotropic geometric correlation model with smoothness 5/2 as covariance
model and we study the Prediction Interval’s problem with a nugget effect estimated with the
methodology Iooss & Marrel (2017).

Table 3.3: Performances of methods before and after RPIE for Morokoff & Caflisch (1995)
function; here 1− α = 90%.

Before RPIE After RPIE Full-Bayesian

MLE MSE-CV MLE MSE-CV -

Q2 0.892 0.895 n.c n.c 0.891

P̃1−α 93.6 98.3 90.0 90.0 93.8
CP1−α 94.0 98.0 92.6 87.3 93.3

MPIW1−α 1.68 10−1 1.81 10−1 5.51 10−2 5.78 10−2 1.66 10−1

SdPIW1−α 9.61 10−3 4.16 10−2 1.29 10−2 1.41 10−2 9.27 10−3

Ct 1min 16s 24min 18s 3min 55s 27min 43s 4h 43min 38s

Q2: Accuracy; P̃1−α: The Leave-One-Out CP in % on the training set; CP1−α: CP in % on the testing set; MPIW:
Mean of Prediction Interval widths; SdPIW: standard deviation of Prediction Interval widths and Ct: computational time.

The model is not well-specified as Example 1 and the Shapiro & Wilk (1965) test gives p-value
= 1.253 10−7. Table 3.3 summarizes the results of MLE and MSE-CV estimations before and
after applying the RPIE, compared with the Full-Bayesian approach. The accuracy Q2 of both
models is satisfactory and is slightly improved when using the MSE-CV method. However,
before applying the RPIE, the Prediction Intervals are overestimated for both models. The
CP does not correspond to the required level of 90%, and the MSE-CV model performs even
worse. We note that the Full-Bayesian approach does not improve the quality of estimated
Prediction Intervals for the same reason as explained before: the hyperparameters’ posterior
distribution p(σ2,θ | y) is concentrated around the MLE estimator and the performances of
both approaches are similar. We will see that this claim is also valid in Example 3.
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(b) MSE-CV solution θ0 = θ̂MSE

Figure 3.4: The variation of the relaxed Wasserstein distance L for Morokoff & Caflisch (1995)
function; a = 1− α/2 = 95%.

We now address the problem of Prediction Intervals Estimation for each solution of MLE θ̂ML

and MSE-CV θ̂MSE . We consider the upper and lower bounds 1− α/2 = 95% and α/2 = 5%
and we apply the RPIE method as described in section 3.2. The optimal values λ∗ and λ∗

obtained from the resolution of the problem (3.35) are used to build two GP models to estimate
each bound. Figure 3.4 shows the variation of the function L for Morokoff & Caflisch example
while solving the problem (3.35) on the upper bound 1−α/2 = 95%, it illustrates the statement
of Proposition 3.3.6 : L is continuous and coercive on (0,+∞) and reaches a global minimum.
We consider now the Prediction Intervals built according to the RPIE method. In Table
3.3, one observes that these Prediction Intervals are three times shorter than those of MLE,
MSE-CV models or Full-Bayesian approaches and have appropriate variances (e.g. more
heterogeneous than MLE or Full-Bayesian method’s Prediction Intervals). The coverage rate of
1− α = 90% on the training set is achieved, which is the main objective of the RPIE method,
and the CP on the testing set is very close to this level. Concerning the computational time,
it appears that applying the RPIE method to MLE or MSE-CV solutions counts for a short
computational time (only a few minutes to run in this example). The Full-Bayesian approach
is still computationally heavy, as already discussed in the previous example and section 2.3.
This represents a competitive advantage of the RPIE method as it delivers good results at a
relatively small computational cost compared to the full-Bayesian treatment.
Example 2 is a case of misspecified model with noise in which the CP obtained by MLE,
MSE-CV and Full-Bayesian methods are not good. The RPIE method fulfills its purpose: its
reduces Prediction Intervals width and improves the robustness of Prediction Intervals in such
a way that they achieve the optimal coverage rate.

Example 3: Misspecified model without noise - Zhou function -

The Zhou (1998) function, considered initially for the numerical integration of spiky functions,
is defined on [0, 1]d by

f(x) = 10d
2
[
ϕ
(
10
(
x− 1

3
))

+ ϕ
(
10
(
x− 2

3
))]

, (3.46)
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where
ϕ(x) = (2π)−d/2 exp

(
−0.5∥x∥2

)
. (3.47)

In Example 3, we create an experimental design X similar to Example 1, containing n = 600
and d = 10 variables where observations x(i) =

(
x

(i)
1 , . . . , x

(i)
d

)
are sampled independently with

uniform distribution over [0, 1]d. As the Zhou function in (3.46) takes some high values, we
generate the response y by applying a logarithmic transformation:

yi = log f(x(i))/(d log 10). (3.48)

Note that there is no measurement noise here. We will address two situations: In the first
setting, we assume that we know that there is no measurement noise, we impose that there is
no nugget effect in the model σ2

ϵ = 0 and we consider the Exponential anisotropic geometric
correlation model (ν = 1/2) as covariance model. In the second setting, we assume that we do
not know whether there is measurement noise and we estimate the nugget effect of the model.
We consider consequently the Matérn 3/2 anisotropic geometric correlation model (ν = 3/2), a
reasonable choice for a smooth covariance model when assuming a nugget effect (See A.2 for
further discussion).

Table 3.4: Performances of methods for Zhou (1998) function (3.46) in the first setting (σ2
ϵ = 0)

; here 1− α = 90%.

Before RPIE After RPIE Full-Bayesian

MLE MSE-CV MLE MSE-CV -

Q2 0.947 0.947 n.c n.c 0.948

P̃1−α 92.0 42.1 90.0 90.0 92.0
CP1−α 92.7 45.3 90.0 88.0 92.9

MPIW1−α 4.60 10−1 1.46 10−1 4.35 10−1 4.32 10−1 4.59 10−1

SdPIW1−α 1.06 10−1 3.48 10−2 1.00 10−1 1.00 10−1 1.08 10−1

Ct 10s 31min 2s 2min 31s 33min 32s 4h 56min 15s

Q2: Accuracy; P̃1−α: The Leave-One-Out CP in % on the training set; CP1−α: The CP in % on the testing set; MPIW:
Mean of Prediction Interval widths; SdPIW: standard deviation of Prediction Interval widths and Ct: computational time.

In Table 3.4, the models are good in terms of accuracy Q2 with a small advantage for the
Full-Bayesian approach, but none of them satisfies the required level of CP, especially the
MSE-CV model with an extremely low CP. As we do not estimate the nugget effect in this
setting, the computational time of the MLE method is low (a few seconds) where the RPIE still
takes a couple of minutes, as in Example 2. We will notice (also in the industrial application)
that the computational time after the RPIE method is generally twice to three times the
computational time of MLE method when there is a nugget effect.
When proceeding similarly as Example 2 to build robust Prediction Intervals by the RPIE
model, the result is striking in Table 3.4: The estimated Prediction Intervals for the MSE-CV
solution θ̂MSE after RPIE are now four times larger, meaning that the amplitude σ̂2

MSE was
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largely underestimated. Table 3.4 also shows that the CPs for the testing set are close to their
desired value 1− α = 90%.

Table 3.5: Performances of methods for Zhou (1998) function (3.46) in the second setting
(σ̂2
ϵ = 1.71 10−2) ; here 1− α = 90%.

Before RPIE After RPIE Full-Bayesian

MLE MSE-CV MLE MSE-CV -

Q2 0.941 0.944 n.c n.c 0.941

P̃1−α 99.4 100 90.0 90.0 99.3
CP1−α 99.3 100 92.0 85.3 99.6

MPIW1−α 6.48 10−1 1.19 2.26 10−1 2.28 10−1 6.56 10−1

SdPIW1−α 6.88 10−2 2.56 10−1 4.73 10−2 5.27 10−2 6.97 10−2

Ct 1min 20s 31min 22s 3min 39s 33min 37s 4h 25min 59s

Q2: Accuracy; P̃1−α: The Leave-One-Out CP in % on the training set; CP1−α: The CP in % on the testing set; MPIW:
Mean of Prediction Interval widths; SdPIW: standard deviation of Prediction Interval widths and Ct: computational time.

In the second setting, the nugget effect is estimated to σ̂2
ϵ = 1.71 10−2 by using Iooss & Marrel

(2017). The results of MLE, MSE-CV and Full-Bayesian methods are shown in Table 3.5. The
accuracy is still satisfying and similar to the previous setting, but the CP is close to 100%,
meaning that the Prediction Intervals of all three methods are overestimated. Table 3.5 shows
that, with the RPIE method, we reduce Prediction Intervals width, five times shorter than
Prediction Intervals of the MSE-CV solution, and three shorter than Prediction Intervals of
the MLE solution. The variances of the obtained Prediction Intervals are between MLE and
MSE-CV Prediction Intervals variances. One can notice also a decrease of 50% of the MPIW
compared to the first setting, while maintaining an optimal coverage of 1− α = 90%.
Example 3 illustrates a case of misspecified model without noise where the RPIE method
adjusts Prediction Intervals width and improves the robustness of Prediction Intervals so that
the CP is respected. One can also conclude that it is preferable to consider a nugget effect for
shorter Prediction Intervals and optimal coverage.

Application to Gas production for future wells

In this section, we illustrate the interest of the RPIE method in energy production forecasting.
It includes many industrial applications such as battery capacity, wind turbine, solar panel
performance or, more specifically, unconventional gas wells where a decline in production may be
observed. We show that the RPIE can estimate robust Prediction Intervals, covering the lower
bounds of level α/2 = 10% (pessimistic scenario) and the upper bounds of level 1− α/2 = 90%
(optimistic scenario).
Indeed, a fundamental challenge of Oil and Gas companies is to predict their assets and their
production capacities in the future. It drives both their exploration and development strategy.
However, forecasting a well future production is challenging because subsurface reservoirs
properties are never fully known. This makes estimating well production with their associated
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uncertainty a crucial task. The agencies Securities and Exchange Commission and Society
of Petroleum Engineers define specific rules 1P/2P/3P, known as Petroleum Reserves and
Resources Definitions (PRMS), for reserves estimates based on quantile estimates:

• 1P: 90% of wells produce more than 1P predictions (proven).

• 2P: 50% of wells produce more than 2P predictions (probable).

• 3P: 10% of wells produce more than 3P predictions (possible).

These rules are to be disclosed to security investors for publicly traded Oil and Gas companies
and aim to provide investors with consistent information and associated value assessments.
Many Machine Learning algorithms have shown their efficiency in estimating the median 2P
(e.g. using GP with MLE method, or MSE-CV if interested more in point-wise predictions) but
failed to estimate 1P and 3P. Thus, the objective of this study is to build a proper estimation
of the quantiles p90% and p10% by applying the RPIE method described in section 3.2.
Our dataset, field data, is derived from unconventional wells localized in the Utica shale reservoir,
located in the north-east of the United States. It contains approximately n = 1850 wells and
d = 12 variables, including localization, Cumulative Production of natural gas over 12 months
in MCFE, completion design and exploitation conditions. The raw dataset can be found at the
Ohio Oil & Gas well locator of the Ohio Department of Natural Resources (2022).

Table 3.6: Results obtained for GP model, Random Forest and Gradient Boosting; here
1− α = 80%.

MLE Random Forest XGBoost

Q2 0.872 0.870 0.885
CP1−α 92.8 98.1 49.8
MPIW1−α 1.18 1.52 0.48
SdPIW1−α 0.21 0.29 0.22
Ct 14min 37s 2s 1min 36s

Q2: Accuracy; CP: The CP in % on validation set I; MPIW: Mean of Prediction Interval widths; SdPIW: standard
deviation of Prediction Interval widths and Ct: computational time.

We standardized the data (X,y), and we divided into a 60%− 20%− 20% partition of three
datasets: a training set and two validation sets. The response y (Cumulative Production over
12 months in MCFE) is noisy due to the uncertainty of the reservoir parameters in the field.
The nugget effect σ2

ϵ is unknown but estimated to σ̂2
ϵ = 0.16 using the method of Iooss &

Marrel (2017).
Based on results drawn from the previous subsection and for practical reasons (particularly
the computational cost of methods), we will present only the application of the RPIE method
on the MLE solution. Table 3.6 shows the performances of the GP model trained by MLE
compared with two other statistical models: Random Forest and Gradient Boosting whose
Prediction Intervals are estimated using the Bootstrap method. Here we consider the Prediction
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Intervals of level 1−α = 80%: the lower bound is the 10% quantile (p10%) and the upper bound
the 90% quantile (p90%) of the predictive distribution.
The accuracy of the MLE model is 0.873 and has approximately the same accuracy as other
models like Random Forest or Gradient Boosting. Furthermore, the CP of the Prediction
Intervals of 1−α = 80% is not satisfactory, but it is quite reasonable for MLE model compared
to Random Forest (overestimated Prediction Intervals) or Gradient Boosting (underestimated
Prediction Intervals). Finally, it appears that the GP model requires some computing resources
to be built and to estimate its hyperparameters by MLE method.

Table 3.7: Obtained results before and after RPIE method; here 1− α = 80%.

MLE before RPIE MLE after RPIE
P̃1−α 90.9 79.9

CPVal,1
1−α 92.6 81.0

MPIWVal,1
1−α 1.18 1.06

SdPIWVal,1
1−α 2.09 10−1 8.25 10−3

CPVal,2
1−α 94.1 83.2

MPIWVal,2
1−α 1.17 1.06

SdPIWVal,2
1−α 1.68 10−1 7.00 10−3

Ct 14min 37s 59min 25s

CPVal,1
1−α (resp. CPVal,2

1−α ) : The CP in % on Validation set I (resp. Validation set II); MPIWVal,1
1−α (resp. MPIWVal,2

1−α ):
Mean of Prediction Interval widths on Validation set I (resp. Validation set II); SdPIWVal,1

1−α (resp. SdPIWVal,2
1−α ): standard

deviation of Prediction Interval widths on Validation set I (resp. Validation set II) and Ct: computational time.

In the following, we define the MLE’s solution as reference θ0 = θ̂ML in the optimization
problem (3.35) for the quantiles α/2 = 10% and 1−α/2 = 90% and we build robust Prediction
Intervals confidence level 1− α = 80% with the RPIE method. The results are presented in
Table 3.7. When considering the estimated Prediction Intervals by the RPIE method, we can
see the CP is optimal for the training set and is close to 1 − α = 80% for both validation
sets. Therefore, we fulfil the objective of estimating the upper and lower bounds, the obtained
quantiles p90% and p10% respect 1P and 3P rules as mentioned above. Finally, in Figure
3.5a, we present the estimated Prediction Intervals defined by the upper bounds P90 and
lower bounds P10 against the true values of y on Validation set I. The x-axis designs well’s
indices ordered with respect to the barycenters of the Prediction Intervals (engineers choose
this representation for interpretation purposes). We can see that the estimated Prediction
Intervals by the MLE method are not homogeneous, and some of them are longer. The RPIE
method makes them shorter and more homogeneous as it can be seen in Figure 3.5b, and in
the evolution of the standard deviation width SdPIW in Table 3.7.
In a second attempt and following the engineers’ recommendation, we consider a logarithmic
transformation to the raw response y to avoid having non-positive lower bounds and integrate
heterogeneity between performant and less performant well. The accuracy of the MLE method
decreases now to Q2 = 0.615, the MLE method still overestimates Prediction Intervals as it
can be seen in Table 3.8. Most claims of the previous analysis remain true, in particular we
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can clearly see (also in Figures 3.5c and 3.5d) that Prediction Intervals obtained by RPIE are
shorter and have reduced standard-deviations.

Coverage Probability on Validation set I :  92.6 %  
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(a) Before the RPIE on standardized output.
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Figure 3.5: Production data after re-scaling: True values vs 80% confidence Prediction Intervals.

Application to batteries lifetime capacity forecast

The second industrial application is related to Lithium-ion batteries. The original study of
Severson et al. (2019) aimed to determine a Lithium-ion battery’s cycle lifetime after 100 cycles
of discharging. The primary objective is to see if machine learning algorithms are able to
accurately predict battery capacity using early life cycle data.
In this subsection, we consider the problem of predicting the battery’s cycle lifetime with the
associated uncertainty. Indeed, predicting the lower and upper bounds is critical while designing
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Table 3.8: Obtained results before and after RPIE method; 1−α = 80%. Here the output data
are log-transformed.

MLE before RPIE MLE after RPIE
P̃1−α 91.1 79.9

CPVal,1
1−α 94.3 83.2

MPIWVal,1
1−α 1.53 1.40

SdPIWVal,1
1−α 2.20 10−1 1.40 10−2

CPVal,2
1−α 90.4 76.6

MPIWVal,2
1−α 1.54 1.40

SdPIWVal,2
1−α 1.92 10−1 1.42 10−2

Ct 17min 47s 53min 21s

CPVal,1
1−α (resp. CPVal,2

1−α ) : The CP in % on Validation set I (resp. Validation set II); MPIWVal,1
1−α (resp. MPIWVal,2

1−α ):
Mean of Prediction Interval widths on Validation set I (resp. Validation set II); SdPIWVal,1

1−α (resp. SdPIWVal,2
1−α ): standard

deviation of Prediction Interval widths on Validation set I (resp. Validation set II) and Ct: computational time.

new batteries. It may help companies to cover themselves against earlier failures of batteries
(e.g. for maintenance purposes or subscribing to insurance).
The original dataset of Severson et al. (2019) contains 43 cell batteries for training and 42
for validation. However, we combine both datasets in one dataset D of n = ntrain = 85 cell
batteries to minimize the sensitivity of the Leave-One-Out Empirical Coverage Probability

P̃1−α = 1
n

n∑
i=1

1{yi ∈ PI1−α(x(i); D−i)} (3.49)

to changes whenever there is a point that falls (or not) within a prediction interval. There is
no validation set for this application as it will be designed later by engineers.
The experimental design X is d = 8-dimensional. It has eight features, including the change
in discharge capacity, the discharge capacity fade curve features and other features such as
the average charging time, temperature and internal resistance. The output y to predict is
the battery’s cycle lifetime, corresponding to the number of cycles before 80% of the initial
discharge capacity.
We consider a Matérn 3/2 anisotropic geometric model. We assume the existence of a nugget
effect σ2

ϵ , and we consider a confidence level of 1− α = 90%.
The results of both the Maximum Likelihood and the RPIE methods are shown in Figure
3.6. The accuracy of prediction is put as an informative criterion. One can notice that the
initial Prediction Intervals coverage was above the desired level. The upper and lower bounds
overestimate the true bounds of Prediction Intervals. With the RPIE method, we reduce their
width and achieve a reasonable coverage close to 1−α = 90%. We warn the reader that, because
of the sample size, the empirical coverage cannot be set to the exact level of 1− α = 90%.
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3.5 Conclusion

In this chapter, we have introduced a new approach for Prediction Intervals estimation based
on the Cross-Validation method. We use the Gaussian Processes model because the predictive
distribution at a new point is completely characterized by Gaussian distribution. We address
an optimization problem for model’s hyperparameters estimation by considering the notion
of Coverage Probability. The optimal hyperparameters are identified by minimizing the
Wasserstein distance between the Gaussian distribution with the hyperparameters determined
by Cross-Validation, and the Gaussian distribution with hyperparameters achieving the desired
Coverage Probability. This method is relevant when the model is misspecified. It insures an
optimal Leave-One-Out Coverage Probability for the training set. It also achieves a reasonable
Coverage Probability for the validation set when it is available. The method can be also
extended to other statistical models with a predictive distribution, but more detailed work
is needed to consider the influence of hyperparameters on Prediction Interval’s coverage and
solve the optimization problem more efficiently in these cases. Finally, it should be possible to
include categorical inputs in the covariance function by using group kernels (Roustant et al.,
2020), which would extend the application range of the RPIE method.
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Figure 3.6: Batteries cycle lifetime: True values vs 90% confidence Prediction Intervals.
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PART II

Causal Inference and estimation of
treatment effects

Data do not give up their secrets easily. They have to be
tortured to confess.

— Thomas C. Redman, Data Driven

Predicting an event or outcome is good; providing the associated uncertainty to anticipate
risks is even better; however, gaining a deeper understanding of why it would happen is more
important.

Most questions raised in the energy industry are not predictive but rather causal. Causal
relationships, by definition, are invariant and hold across various circumstances and
environments. Causality is thus an exciting tool for overcoming some predictions’ current
limitations.
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CHAPTER 4

State of the Art

In this chapter, we begin in Section 4.1 by presenting a historical introduction to Causality
and its main two directions in research. In Section 4.2, we introduce the Potential outcome
theory and Rubin Causal model In Sections 4.3 and 4.4, we present the framework of estimating
average and heterogeneous treatment effects for a binary treatment. Finally, in Section 4.5
we present the ongoing research on the extension of Rubin Causal Model to multiple and
continuous treatments.

4.1 Introduction to Causality

A historical and philosophical introduction

Causality refers to the study of cause-and-effect relationships observed during day-to-day
experiences. These (relationships) can be related to any field of intellectual, social or political
activities of a human being.
The concept of Causality is fundamental and is one of the most important mechanisms by
which our mind works—seeking questions such as: what causes Y ? Why does Y occur? What
would happen to Y if ...? These questions depend entirely on Causality, which results from the
mechanism of attaching and connecting the cause to its effect. Specifically, Causality seeks to
identify how effects (or events) come to be (or are caused) by their causes.
From the dawn of philosophy, Causality has been a major concern of many philosophers and
scientists due to the constant evolution and persistence of the phenomena of the universe
within their senses. Causality research is an important area in which philosophy in general,
and philosophy of science in particular, have been involved. The philosophical statement of
Causality states that every phenomenon, whether physical, social, political or other, has a
principle (a cause) which explains its existence (to cause it).
Furthermore, Causality raised many problems at anthropological (existential) and epistemolo-
gical (cognitive) levels. It led to paradoxes that have caused confusion among scientists and
philosophers, especially in the early 20th century. One of these contradictions is the grandfather
paradox. When someone travels into the past and kills his grandfather, changing his past, it
cancels out the possibility of its existence. Here the paradox shows how that person (the effect)
can travel into the past and kill the cause for his existence (the grandfather), and the result
becomes a precedent for the cause why it would happen.
Aristotle (ca. 300 BC) is the first philosopher to have considered the theory of the four causes
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to understand the human experience of physical nature and answer the question "because of
what?". He wrote, “We think we have knowledge of a thing only when we have grasped its cause”
(Physics, 194 b17–20). Galilei (1600) was the first scientist to consider an interventionist notion
of the cause, which is a set of necessary and sufficient conditions for an effect to occur. It can
be stated with the condition clause "If... then ...".
In the 18th century, the concept of Causality received revolutionary contributions from David
Hume and formed the bedrock of most contemporary studies about Causality. Hume in his
book [A Treatise of Human Nature (1739-40)] made an explicit definition of Causality based on
the regular succession of event-types: “We may define a Cause to be an object precedent and
contiguous to another, and where all the objects resembling the former are placed in like relations
of precedency and contiguity to those objects that resemble the latter”. This definition implies
four required components 1) The constant conjunction of cause and effect; 2) The temporal
priority of the cause; 3) The contiguity in space and time and 4) the necessary association
between the cause and the effect.
In the contemporary discussions about Causality, three major approaches were proposed:

• Causality as INUS conditions: This notion was introduced by Mackie (1965, 1974) to
describe the cause as “an Insufficient but Necessary part of a condition which is itself
Unnecessary but Sufficient for the result”. Mackie gave the example of a burning house
caused by an electrical short circuit to illustrate the INUS concept.

• Causality as probabilistic causation: Suppes (1968) developed a probabilistic framework
of Causality. He discovered that many causal relationships could be seen as probable
occurrences or chances of events. The cause is an event whose occurrence makes the
occurrence of another event more likely to happen than if the first event had not occurred.

• Causality from Counterfactual perspective: Some contemporary philosophers like
Lewis (1973, 1986, 2000) see that causal relationships can be understood in terms of
counterfactual dependence. That is, ‘if X had not occurred, then Y would not have
occurred. This definition was introduced but never explored by Hume in Section VII "if
the first object had not been, the second never had existed”.

Russell (1912) argued that if Causality had more empirical meaning than just one (effect)
following another (cause) in time, then it would have been worth appearing in the laws of physics.
Indeed, he noticed physical theories are incompatible with causation, as it was understood before
because most laws of physics go both ways. Physicists didn’t notice what Russell observed, but
Statisticians did and raised the need to distinguish causal relationships between two variables.
The concept of correlation emerged as an attempt when Galton (1886) decided to do a survey
on the relationship between arm length and head size and established a dependence between
two variables with abstract numbers. Pearson (1892, 1896), the founder of modern statistics,
did not see the importance of the concept of Causality and thought the idea of correlation was
enough.
Twenty-five years later, Fisher (1925, 1935) introduced randomization as a critical notion for
designing, conducting and analyzing experiments. Randomized Control Trials are popular
among statisticians and have been considered (and still are) one of the scientifically proven
methods for evaluating causal effects in social and clinical experiments.
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However, one of the main reasons that refrained statisticians from the concept of causation
is the lack of a formal mathematical language to describe Causality, from both a theoretical
and a practical perspective. Pearl & Shafer (1995) realized that the concept of conditional
independence was insufficient and argued that a different approach was needed to address the
issue of Causality, which was one of his concerns at the beginning of the 21st century. Pearl
(2009) was the first to bring a causal mathematical framework and was later joined by others
(Pearl & Mackenzie, 2018; Peters et al., 2017) in publishing outstanding works to tackle the
problem of Causality in statistics.
To distinguish between tools for associational modelling and causal modelling, Pearl (2019)
introduces a 3-level hierarchy based on the kind of information required to answer questions
at each level. The three levels are: i) Association, ii) Intervention and iii) Counterfactuals as
illustrated in Figure 4.1 with some examples of questions at each level.
The first level corresponds to associational and predictive reasoning from observations. The
purpose here is to identify statistical relations (correlation, Odds ratio, dependencies etc.) using
exclusively data. Most (but not all) questions at this level can be addressed using classical
Machine Learning models.
The second level corresponds to interventional reasoning and predicts what will happen when a
system is changed. At this level, we focus on understanding the effects of causes as stated by
Holland (1986): “No causation without manipulation”. In many frameworks, the intervention
can be hypothetical.
The third level corresponds to counterfactual reasoning. Questions at this level are more about
what would have happened to the system if circumstances were different not what has happened
to the system. Associational or interventional reasoning are not enough to answer them. The
counterfactual reasoning is mostly used to reason about the causes of effects but also for the
effects of causes from retrospective view.
The second and final layers of Pearl (2019) hierarchy allow to answer many causal questions
such that:

• Medicine: Was it the aspirin that stopped my headache? Would I still have had the
headache if I did not take Aspirin ?

• Economy: How effective are financial incentives for teachers (Imberman, 2015)?

• Sociology: Did busing programs increase the school achievement of disadvantaged minority
youth (Morgan & Winship, 2014)?

• Politics: Do polls influence the electoral choice and behavior of voters (Arceneaux et al.,
2006)?

• Industry: What is the effect of a specific efficiency measure (e.g. type of insulation
material) on the expected return on investment (EROI) ?

Survey on Causality methods

Over the last recent decades, several formal frameworks for causality have been proposed
and aimed to answer rigorously causal questions. These frameworks had multi-disciplinary
applications, especially in epidemiology, economics and statistics. The study of causality is
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Figure 4.1: The three levels of causal hierarchy (Pearl, 2019).

fragmented into two main complementary tasks: causal discovery and causal inference. From a
set of observational data, the first task is to infer the causal relationships between different
variables. The second task is to determine and assess the effect of one variable on the other.

Causal discovery

Causal discovery aims to study and identify causal relationships between a set of variables X.
The idea is to analyze a given dataset and learn a Directed Acyclic Graph (DAG), called causal
diagram (Pearl, 1995), that encodes the causal structure of the system described by the dataset.
However, learning the true causal diagram is not always possible from observational data. One
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would require knowledge or assumptions on the underlying data generating mechanism (Pearl,
2009).
One of the most common assumptions on the underlying true DAG is to assume that the
variables X form a Bayesian Network and that the associated DAG satisfies the global Markov
condition, the d-separation and the Faithfulness assumption. We refer the reader to Pearl (1995,
2009) for more details of these notions.
Once the structure of a Causal diagram is defined, Causal discovery uses methods to scan the
dataset and identify statistical dependencies between variables (Peters et al., 2017; Schölkopf
et al., 2012). It is also common to use Structural Causal Models (SCMs) (Pearl, 2009) to
identify causal relationships between two variables. These models use functional relationships
between ancestor and descendent nodes in DAGs and fit them on the observed dataset.
Often, causal discovery methods (see Guo et al. (2020) for an in-depth review) do not learn only
a unique causal graph but a set of candidate causal graphs that may generate the observational
distributions. We evaluate the learned causal graphs with the ground-truth causal graph using
the concept of the Markov equivalence class (Pearl, 1995). Based on this notion, several popular
structure learning algorithms have been proposed to estimate this Markov equivalence class
from observational data:

• constraint-based algorithms (PC-algorithm, (Spirtes & Glymour, 1991) and FCI-algorithm
(Spirtes et al., 2000)) which rely on statistical tests to verify if a candidate graph fits
all conditional dependencies from the data and choose the candidate that respects the
faithfulness assumption.

• Score-based algorithms relax the faithfulness assumption and use score-based penalties
(e.g. Gaussian likelihood penalization or Bayesian Information Criterion) to replace
conditional independence tests (the Greedy Equivalence Search algorithm (Chickering,
2002)).

• Functional Causal Models algorithms (LiNGAM (Shimizu, 2014; Shimizu et al., 2006))
estimate SCM of a variable and its direct causes by assuming the non-Gaussianity of the
data. They offer a framework to distinguish different DAGs in the same equivalence class.

Causal Inference

Causal inference is the study of the causal effects of variables. It assumes a relationship among
variables and aims to quantify the causal impact of a specific variable over a particular outcome
of interest. One can imagine that causal effects can be quantified in two different settings:
1) Through an intervention or a manipulation in the system, given a causal structure that
describes it or describes the phenomenon of interest. 2) Via some observational data that can
be examined with respect to some causal assumptions when the system’s causal structure is
unknown.
There are two main frameworks for causal inference. The first framework is the Potential
Outcomes theory, which originated from randomized controlled trials (RCTs) in the 1920s by
Neyman (1923) and Fisher (1925) and improved formally by Rubin (1974, 1978, 2005, 1990) to
infer causal effects from observational data.
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The second framework is the do-calculus and Directed Acyclic Graphs (DAGs), developed
by Pearl (2009) few years ago. The do-calculus is a formalization of causal models that uses
do-operator which simulates interventions among systems and allows identifying causal effects.
These frameworks are complementary, with different strengths that make them particularly
appropriate for different questions—both have shown a considerable interest for statisticians and
researchers in various fields. We may refer the reader to Imbens (2020) for in-depth literature
about both approaches.
We will consider the potential outcome theory for causal inference in the following.

4.2 The potential outcome framework

The potential outcome theory, known as Neyman-Rubin Causal Model, found its origins in
the works Neyman (1923) and Fisher (1925). Indeed, in his thesis, Neyman (1923) analyzed
randomized hypothetical agricultural experiments. He introduced the potential outcome
notation to describe the potential yields of crops associated with distinct plots of land. The
potential outcome was developed later by Rubin (1974, 1978, 1990) to perform causal analysis
of randomized and non-randomized experiments. It has taken its place as the primary approach
in causal inference literature shown its applicability in medicine (Alaa & van der Schaar, 2017;
Foster et al., 2011; Robins et al., 2000) economics (Angrist et al., 1996; LaLonde, 1986) and
social sciences (Murnane & Willett, 2010; Sobel, 1995). We refer to Rubin (2005) for a detailed
history of the Potential Outcome theory and to Imbens & Rubin (2015) for a detailed description
of the Rubin Causal Model. Most definitions and notations of this subsection are taken from
the same book.
Let T denote the random variable designing the treatment of interest (e.g. drug, policy). We
suppose in this section that the treatment is binary T ∈ {0, 1}. Let X denote the d-vector of
pre-treatment covariates (e.g. age, design) and let Y denote the response variable, also called
the outcome. To assess the notion of a cause, the treatment T must be manipulable (at least
hypothetically), and Y should define the real-valued effect of this cause.

Definition 4.2.1 (Observed outcomes). We define the observed outcome Yobs as the outcome of
the treatment that is actually assigned.

Definition 4.2.2 (Counterfactual outcomes). We define the counterfactual outcome Ycf as the
outcome that would have been observed if another treatment had been assigned.

Let i be a unit (e.g. a person, a system) with covariates x(i) = (x(i)
1 , . . . , x

(i)
d )⊤ ∈ D subject to

the treatment T . Let ti denote the treatment that is actually assigned to the unit i. When
exposed to this treatment , the unit i responds and shows an outcome yi. In reality, the outcome
yi correspond to the observed outcome yi = Yobs,i that we have observed in the unit i after
assigning the treatment T = ti. Finally, the expression Yi(t) stands for potential outcomes, that
we define below:

Definition 4.2.3 (Potential outcomes). For a unit i, we define the potential outcomes Yi(t) as
the real-valued outcome that would have been observed if the treatment T had been at level t.
In the case of binary treatment T ∈ {0, 1}, the potential outcomes are denoted by Yi(0), Yi(1).

The following assumption is needed to ensure that potential outcome Y (t) is well-defined.
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Assumption 4.2.4 (Stable Unit Treatment Value Assumption (SUTVA)). The potential
outcomes for any unit do not vary with the treatments assigned to other units, and, for
each unit, there are no different forms or versions of each treatment level, which lead to different
potential outcomes.

Potential outcomes can be expressed using the observed Yobs and counterfactual Ycf outcomes
as

Yobs = TY (1) + (1− T )Y (0),
Ycf = (1− T )Y (1) + TY (0).

(4.1)

These notations are more relevant when inferring causal effects (Holland & Rubin, 1988).
Suppose now that we have observed a finite sample of n units Dobs = (Dobs,i)ni=1 = (x(i), ti, yi)ni=1.
Each unit i has a vector covariates denoted x(i) to whom is assigned (actually) a binary treatment
ti ∈ {0, 1} and shows an outcome of interest yi.
Following the ideas of Imbens & Rubin (2015), the observed sample Dobs can be seen as
a random sample drawn from an infinite super-population with a joint distribution pD of
D =

(
X, T, Y (0), Y (1)

)
. We can assume, therefore, that

(
x(i), ti, Yi(0), Yi(1)

)
are independently

and identically distributed (i.i.d.) from the same distribution pD.
Following this framework and the model (4.1), the SUTVA assumption holds immediately and
implies that Yobs,i = Yi(ti) = yi for all units i.
In the following, unless otherwise indicated, P and E refer to the probability and expectation
taken over the joint distribution pD of D =

(
X, T, Y (0), Y (1)

)
. All causal estimands in the

following will be considered with respect to this joint distribution.

Proposition 4.2.5. Let the distribution pY (0),Y (1),X denote the joint distribution of potential
outcomes and X, called the model for Science, and let the distribution pT |X,Y (0),Y (1) denote the
so-called assignment mechanism. For (x, t, yobs, ycf) ∈ D × {0, 1} × R× R, we have

pYcf |X,T,Yobs(ycf | x, t, yobs) ∝ pX,Y (0),Y (1)(x, y0, y1)× pT |X,Y (0),Y (1)(t | y0, y1,x), (4.2)

where y0 = (1− t)yobs + tycf , y1 = tyobs + (1− t)ycf and pYcf |X,T,Yobs is the posterior predictive
distribution of the counterfactual outcomes Ycf given the observed values of T,X and Yobs.

Proof. In Appendix B.1. ■

Therefore, by specifying the assignment mechanism, the model for Science and conditionally on
all observed quantities X, T, Yobs, we can address a Bayesian framework that allows predicting
the counterfactual outcomes. This framework can be used to infer causal effects based on the
notion of counterfactuals. We refer to Rubin (1978, 2005) for more details about the Bayesian
framework of causal inference.
The treatment assignment mechanism pT |X,Y (0),Y (1), which is a function of the covariates and
the potential outcomes, is crucial for causal inference. One must define a probabilistic model for
the treatment assignment mechanism when inferring causal effects. A commonly used treatment
assignments in experiments is randomization.

Definition 4.2.6 (Randomized Experiments). A randomized experiment is an assignment
mechanism such that:
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4.2. The potential outcome framework

• The assignment mechanism is ignorable: the assignment mechanism does not depend on
the counterfactual outcomes, that is,

P(T = 1 |X, Y (0), Y (1)) = P(T = 1 |X, Yobs) (4.3)

• The assignment mechanism is probabilistic: the probability of treatment assignment to a
unit satisfies

0 < P(T = 1 |X, Y (0), Y (1)) < 1. (4.4)

• The assignment mechanism is a known function of its arguments.

Definition 4.2.7 (Randomized Control Trials (RCT)). A randomized controlled trial is a
randomized experiment such that

T |= {X, Y (0), Y (1)}. (4.5)

Definition 4.2.8 (Observational studies). An assignment mechanism corresponds to an
observational study if it is an unknown function of its arguments.

Using the potential outcome theory, we want to infer the effect of the treatment T on the
outcome Y from the sample of n units. Causal Effects can be estimated by comparing the
potential outcomes of a given treatment assignment.

Definition 4.2.9 (The Individual Treatment Effect). The Individual Treatment Effect (ITE)
corresponds to the difference between its potential outcomes under treatment and control

τITE,i = Yi(1)− Yi(0). (4.6)

Remark 4.2.10. τITE,i can be seen as a realization of the (unobserved) random variable
Y (1)− Y (0).

It is impossible to infer this effect directly using Dobs. Indeed, for every unit, by definition
of the potential outcomes, we observe only one potential outcome Yobs corresponding to the
potential outcome receiving the treatment T , all other potential outcomes Ycf are missing. This
is known as the Fundamental Problem of Causal Inference (Holland, 1986). Hence, causal
inference with the Rubin Causal Model can be seen as a missing data problem (Rubin, 2005).
Instead, we can target the Average Treatment Effect (ATE) among the observed sample.

Definition 4.2.11 (The Average Treatment Effect). The Average Treatment Effect is the
treatment effect among the whole sample

τ = E[Y (1)− Y (0)]. (4.7)

Remark 4.2.12. In the SCM framework, the definition of Average Treatment Effect is equivalent
to E[Yobs | do(T = 1)]− E[Yobs | do(T = 0)].

The ATE is much easier to estimate than the ITE because one only needs to compute the
means of the marginal distributions of the two potential outcomes. If the treatment is randomly
assigned as in RCTs, then E[Yobs | T = t] = E[Y (t)] and

τ = E[Yobs | T = 1]− E[Yobs | T = 0]. (4.8)
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However, RCTs are not always conducted, the knowledge of the treatment T and the outcome
Yobs alone does not suffice to identify the true ATE (Hernan & Robins, 2020), this is due to
confounding variables.

Definition 4.2.13 (Confounding variable). In observational studies, confounding variables, also
called confounders, are the variables that influence both the treatment and the outcome.

We shall make the following assumptions for the identifiability of the causal estimands in
observational studies.

Assumption 4.2.14 (Unconfoundedness). The potential outcomes Y (1) and Y (0) are independ-
ent of the treatment assignment T given the covariates X

{Y (1), Y (0)} |= T | X. (4.9)

This assumption, also called “strong ignorability”, assumes that there are no unmeasured
confounding variables given the observed covariates X. The potential outcomes should be the
same for a unit, whether the treatment is assigned or not.

Assumption 4.2.15 (Overlap). The probability of receiving the treatment given the observed
covariates is positive, that is, there exists emin > 0 such that

emin < P(T = 1 |X = x) < 1− emin for all x ∈ D. (4.10)

The overlap condition is necessary for the identifiability of treatment effects on the support D
because it avoids the degenerate case where all units are either treated or untreated.
The previous assumptions allow to identify the counterfactual response E(Y (t) | X = x) for
t ∈ {0, 1}.

Proposition 4.2.16. Under the assumptions ([4.2.14]-[4.2.15])

E(Yobs | T = t,X = x) = E(Y (t) |X = x). (4.11)

Proof.

E(Yobs | T = t,X = x) = E(Y (t) | T = t,X = x) (4.12)
= E(Y (t) |X = x). (4.13)

■

Remark 4.2.17. The conditional expectation E(Yobs | T = t, X̃ = x̃) ̸= E(Y (t) | X̃ = x̃) for a
subset of covariates X̃ = (Xi1 , . . . , Xid) such that {i1, . . . , id} ⊊ {1, . . . , d} does not have causal
interpretation because the unconfoundedness assumption may not be satisfied by X̃.

Definition 4.2.18 (Confounding bias). In observational studies, the confounding bias refers to
the bias responsible for the fact that E[Yobs | T = t] ̸= E[Y (t)].

The confounding bias is structural and occurs because of the statistical dependence of the
treatment assignment on the confounding variables in observational studies (the confounding
variables affect units’ treatment choices). It can lead, therefore, to distortion of causal effect,
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(a) Randomized Controlled Trials (RCT) (b) Observational Studies

Figure 4.2: Causal structure for RCT and observational studies (Li et al., 2020)

i.e. spurious correlation between the treatment T and the outcome Y . Indeed, given the
causal structure shown in Figure 4.2, conditioning on the treatment T without conditioning on
confounding variables is not enough to recover the causal effect on the outcome Y .

Definition 4.2.19 (Selection bias). In observational studies, given a sample of n units, the
selection bias refers to the bias that occurs when directly comparing the observed outcomes of
the treated and the untreated units.

The selection bias is associated with the data-gathering process. It is induced by the preferential
selection of units in the sample given their characteristics or the likelihood of being included in
the observed data.
To understand the selection bias formally, let us consider the following calculations:

E [Yobs | T = 1]− E [Yobs | T = 0] = E [Y (1) | T = 1]− E [Y (0) | T = 0] (Consistency)
=E [Y (1) | T = 1]− E [Y (0) | T = 1] + E [Y (0) | T = 1]

− E [Y (0) | T = 0]
=E [Y (1)− Y (0) | T = 1]︸ ︷︷ ︸

ATT

+E [Y (0) | T = 1]− E [Y (0) | T = 0]︸ ︷︷ ︸
Selection Bias

.

(4.14)
These calculations allow us to identify the first term, called the Average Treatment on the
Treated (ATT), whereas the second term is the selection bias. If the randomization holds as in
RCTs, it follows that

E [Y (0) | T = 0]− E [Y (0) | T = 1] = E [Y (0)]− E [Y (0)] = 0,
E [Y (1)− Y (0) | T = 1] = E [Y (1)− Y (0)] .

(4.15)

Therefore,
E [Yobs | T = 1]− E [Yobs | T = 0] = E [Y (1)− Y (0)] = τ. (4.16)

In observational studies, both selection and confounding biases are due to a lack of randomization
of the treatment assignment, that is Y (1), Y (0) ⊥̸⊥ T . Specifically, the selection bias raises
because of conditioning on common effects while the confounding bias raises because of
conditioning on common causes (Hernan & Robins (2020) in Chapter 6).
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Remark 4.2.20. It is common in the literature to use the term selection bias to describe both
biases. While it may seem to be confusing, this terminology can be understandable. Indeed,
Hernan & Robins (2020) explain that the selection bias is a selection of individuals into the
analysis while the confounding bias is a selection of individuals into treatment.

While the presence of both selection and confounding biases harm and lead to biased causal
estimands, inferring causal effects is still possible by balancing covariates (Johansson et al., 2016;
Shalit et al., 2017) or using the propensity score Curth & van der Schaar (2021b); Hassanpour
& Greiner (2019).

Definition 4.2.21 (Propensity score (Rosenbaum & Rubin, 1983)). The propensity score e is
defined as the probability of receiving the treatment given the observed covariates x ∈ D:

e(x) := P(T = 1 |X = x). (4.17)

The propensity score e, initially introduced in the causality literature by Rosenbaum & Rubin
(1983), have been used to match, stratify or re-weight the samples from the treatment and
control groups in observational studies (Rosenbaum & Rubin, 1984). With the propensity
score, one can recover the randomized setting where both X and T are independent and obtain
similar distributions of observed covariates X across the treatment and control groups. It is
useful with the balancing property (see proposition below) to handle both confounding and
selection bias in observational studies.

Proposition 4.2.22 (Balancing property (Rosenbaum & Rubin, 1983)). The treatment T and
the covariates X are independent given the propensity score e(X)

X |= T | e(X). (4.18)

Logistic regression models has been widely used to estimate propensity score e (Austin, 2011;
Cepeda et al., 2003). They have the advantage of being a simple parametric approach but it
does not offer any guarantees of the goodness of the estimated Propensity score ê. Some studies
show that Machine Learning models are more efficient than logistic regression especially in
terms of predictions (Lee et al., 2010; McCaffrey et al., 2004) and bias reduction with iterative
variables section but they lack of interprebability or require sometimes additional work on
model selection.
As already described previously in Section 4.1, the Potential Outcomes theory is not the only
approach used in causal inference. There is also the do-calculus and directed acyclic graphs
(DAGs) proposed by Pearl (2009). Richardson & Robins (2013) made an attempt to reconcile
and connect these two approaches. Some other works (Pearl, 2011, 2015) show that potential
outcomes can be seen as a special case of the do-calculus under some conditions. Indeed, the
DAG associated to Potential Outcomes is assumed to have the form in Figure 4.2 (on the right).
In this graph, there is no collider nor mediator on X. Therefore, intervening on the covariates
do(X = x) is equivalent to conditioning X = x.
Finally, the potential outcomes theory and its assumptions have received different criticisms
by Dawid (2000). In the same paper, Dawid (2000) suggested another framework for causal
inference without counterfactuals, but it did not gain popularity among causal inference
community.
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4.3. Average treatment Effect

4.3 Average treatment Effect

In this section, we present several methods and approaches to estimate the Average Treatment
Effect (ATE) using the observational sample Dobs. While presenting different estimators, we
do not explicitly distinguish the RCT case to the non-randomized case (with confounding). We
refer to Imbens (2004) and Yao et al. (2021) for detailed review of the literature of existing
methods to estimate the average treatment effect.

The naive estimator

The first and the naive estimator of the ATE is the difference in means estimator. Given the
observational the observational sample Dobs and the three causal assumptions 4.2.14, 4.2.4 and
4.2.15, the difference in means estimator is given by:

τ̂naive =
n∑
i=1

tiyi∑n
i=1 ti

−
n∑
i=1

(1− ti)yi∑n
i=1(1− ti)

. (4.19)

Since TYobs = TY (1) and (1− T )Yobs = (1− T )Y (0), the naive estimator τ̂naive satisfies

τ̂naive =
∑n
i=1 tiYi(1)∑n

i=1 ti
−
∑n
i=1(1− ti)Yi(0)∑n

i=1(1− ti)
. (4.20)

Since (x(i), Yi(1), Yi(0), ti) are i.i.d., the observations (tiYi(1), (1 − ti)Yi(0), ti) are also i.i.d.
drawn from the distribution of (TY (1), (1 − T )Y (0), T ).By the strong law of large numbers,
one obtains

τ̂naive
n→+∞−→ τlim =

E
[
Y (1)T

]
E[T ] −

E
[
(1− T )Y (0)

]
E[1− T ] ,

= E
[
Y (1) | T = 1

]
− E

[
Y (0) | T = 0

]
.

(4.21)

The naive estimator is simple to construct and has sound theoretical guarantees. Indeed, by
the Central Limit Theorem (CLT) and Delta method, one finds that

√
n(τ̂naive − τlim)→ N

(
0, Vnaive

)
, (4.22)

where Vnaive, that we do not explicitly compute, is the variance of the naive estimator τ̂naive.
In the RCT framework, the naive estimator τ̂naive is strongly convergent and its limit satisfies

τlim = E
[
Y (1)

]
− E

[
Y (0)

]
= τ. (4.23)

In the observational framework, we may have τlim ̸= τ .

Propensity score Matching

Propensity Score Matching (PSM) is a statistical matching technique. It aims to mimic
randomization and establish the independence between the covariates X and the treatment T
by matching treated and control units with similar covariates. PSM attempts to reduce the
selection bias in observational studies and provide an unbiased estimation of treatment effects.
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Propensity Score Matching (PSM) builds its fundamentals on the Balancing property of
Rosenbaum & Rubin (1983). Indeed, adjusting units with respect to their propensity score is
sufficient to eliminate confounding bias.
Compared to other matching methods that require a specific metric and compare all covariates
(see Stuart (2010) for an exhaustive review about matching methods in causal inference), PSM
has the advantage of reducing the dimensionality of matching to a single dimension.
In the ideal matching scenario, each treated unit would be matched with one or more control
observations with the same values on all the covariates and/or vice versa. However, this
situation does not always occur: treated and control units may not be perfectly balanced, and
some treated units may differ significantly from other control units. Instead, one can prefer
matching the nearest neighbour. We refer the reader to Abadie & Imbens (2016) for a detailed
review of existing propensity score matching algorithms (e.g. one-to-one exact, exact matching).
Once the matching is done, it is necessary to assess its quality and check the balancing between
treated and control units. The resulting balance quality can be assessed in different ways.
Ideally, one compares the distribution of the joint covariates in both groups after matching, but
this becomes challenging in high-dimensional settings, or one can use summary statistics such
as the Kolmogorov-Smirnov test or multivariate standardized bias (Rosenbaum & Rubin, 1985).

Propensity score Stratification

Stratification (Angrist, 1998) is an alternative method to adjust selection bias due to confounders
in observational studies. The idea of stratification is to split the entire sample into homogeneous
subgroups and compare treatment effects among them. It generalizes matching to treated and
control subgroups, called substrata, with similar covariates distributions.
Ideally, the treated and the control groups in each substratum have similar distributions. The
units in the same substratum can be viewed as sampled from the data under Randomized
Controlled Trials. Therefore, the treatment effect within each substratum can be calculated
directly using the difference in means estimator. After computing the treatment effect within
each substratum, the average treatment effect can be obtained by combining/averaging the
treatment effects of all substrata.
Formally, the idea of stratification consists on dividing the sample Dobs into M substrata
(Sm)Mm=1 for a given criterion (propensity score, covariates etc.), then build an estimator τ̂strat
of the ATE such that:

τ̂strat =
M∑
m=1

nm
n

(
y1(Sm)− y0(Sm)

)
, (4.24)

where M is the number of substrata, nm = Card(Sm) is the number of units in each substratum,
y1(Sm) = 1/n(1)

m
∑
i∈Sm,ti=1 Yobs,i and y0(Sm) = 1/n(0)

m
∑
i∈Sm,ti=0 Yobs,i are the average of the

treated and control outcomes in the m-th substratum Sm.
It has also been shown that stratification effectively decreases the bias of ATE estimation
compared with the difference in means estimator (Yao et al., 2021). However, τ̂strat may be
biased due to the remaining heterogeneity within strata and due the reduced sample size in
each stratum.
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Propensity weighting estimators

Propensity score re-weighting methods is a class of estimators used in observational studies to
estimate treatment effects. Using the observed sample Dobs, these methods seek to reduce
selection bias by incorporating the probability of being assigned to the treatment given its
covariates in the sampling procedure. In these methods, we associate some weights on the
covariates to the sample in order to make treated and control units equate.
Inverse Propensity Weighting (IPW), originally proposed by Horvitz & Thompson (1952), has
been proposed in the context of non-randomized studies by Rosenbaum (1987) as a form of
model-based direct standardization to estimate treatment effects. In particular, the Inverse
propensity weighting (IPW) estimator τ̂IPW of the ATE τ is given by:

τ̂IPW = 1
n

n∑
i=1

(
tiyi

ê(x(i))
− (1− ti) yi

1− ê(x(i))

)
, (4.25)

where ê is an estimator of the propensity score e.
Another normalized version of the IPW estimator τ̂NIPW, known as Hájek estimator, is
introduced by Imbens (2004):

τ̂NIPW =
( n∑
i=1

tiyi
ê(x(i))

)
×
( n∑
i=1

ti
ê(x(i))

)−1
−
( n∑
i=1

(1− ti) yi
1− ê(x(i))

)
×
( n∑
i=1

1− ti
1− ê(x(i))

)−1
. (4.26)

Kang & Schafer (2007) show that the precision of this estimator is generally improved compared
the standard IPW estimator when weighting the averages of the two groups.
In practice, the correctness of the propensity score estimation is critical and highly impacts
the correctness of the IPW estimator. Furthermore, since the propensity score e is present in
the denominator, slightly misspecification of propensity scores would increase ATE estimation
error dramatically Imai & Ratkovic (2014).
The Augmented Inverse Propensity Weighting (AIPW) has been proposed by Robins et al.
(1994) to handle the problem of propensity score misspecifications. We define the AIPW
estimator τ̂AIPW as:

τ̂AIPW = 1
n

n∑
i=1

µ̂1(x(i))− µ̂0(x(i)) + ti
Yobs,i − µ̂1(x(i))

ê(x(i))
− (1− ti)

Yobs,i − µ̂0(x(i))
1− ê(x(i))

, (4.27)

where, for j ∈ {0, 1}, µ̂j is an estimator of µj(x) = E[Yobs |X = x, T = j]
We can see in (4.27) that the original IPW estimator is augmented using two regression
estimators µ̂j , which allows more flexible modelling. These regression models do not have
any causal interpretation and are only used for prediction. The most important property of
the AIPW estimator is its doubly-robustness, that is, τ̂AIPW is consistent and asymptotically
unbiased if either the propensity score estimator ê or the outcomes model estimators µ̂j are
well-specified (Robins et al., 1994).

Covariates Balancing Propensity Score

The Covariate Balancing Propensity Score (CBPS) is proposed by Imai & Ratkovic (2014)
to overcome the drawback of misspecified propensity score. In contrast to other estimation
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methods that use Maximum Likelihood to estimate the propensity score (e.g. logistic regression),
the CBPS creates a parametric solution that focuses on achieving a good balance between the
treated and control groups.
Indeed, the CBPS estimates propensity scores with respect to a parametric form e = e(·, θ) by
solving the following problem:

E
[

TX̃

e(X̃; θ)
− (1− T )X̃

1− e(X̃; θ)

]
= 0, (4.28)

where X̃ = f(X) for a measurable function f and the expectation E is over the joint distribution
pD.
By taking the empirical instead of the expectation and by solving the corresponding minimization
problem, the CBPS directly constructs the covariate balancing score from the estimated
parametric propensity score, which increases its robustness to propensity score model’s
misspecification. In addition, It can improve the accuracy of estimated treatment effects
over parametric models even if the model is well specified (Wyss et al., 2014).

Regression adjustment

Another common way to estimate the ATE is the regression adjustment. In this method,
we assume that the ATE is as parameter of a regression model on the outcome model
µt(x) = E[Yobs | X = x, T = t]. More precisely, for x ∈ D and t ∈ {0, 1}, we assume a
linear functional form on the outcome model:

µt(x) = β0 + β⊤x + τ t, (4.29)

where β0, β ∈ Rd are some regression coefficients and τ is the quantity of interest (ATE).
With the previous model, it can be shown easily that:

τ = E
[
µ1(X)− µ0(X)

]
. (4.30)

Therefore, one can build an estimator of the outcome model µ·, denoted by µ̂·, then target the
ATE by averaging over the empirical distributions of the covariates X for both treated and
control units such that:

τ̂reg = 1
n

n∑
i=1

[
µ̂1(x(i))− µ̂0(x(i))

]
. (4.31)

Note that other regression models, such as kernel regression and generalized linear or additive
models (see Hastie et al. (2009) for a review of different regression models), can be used and
offer more choice without relying on the parametric and linear forms of the outcome model.
Despite the efficiency of the regression adjustment to reduce bias and increase precision in
estimating the ATE, Rubin (1979) points out that regression adjustments are sensitive to model
misspecification when there is insufficient overlap between treated and control units. It can lead,
unfortunately, to more bias when the functional form of the outcome model is misspecified.
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Figure 4.3: Illustration of the difference between the Average Treatment Effect and Individualized
Treatment Effects (Bica et al., 2021).

4.4 Heterogeneity of treatment effects

In many situations, researchers are not interested in aggregated causal effects but would known
how the treatment would affect units with particular covariates. Indeed, it may happen that the
treatment has a no effect in average (i.e. the ATE satisfies τ = 0) for the population but differs
significantly among some subgroups (e.g. being positive for some units and negative for others).
In causal inference literature, varied causal effects for individuals with varied characteristics are
called heterogeneous treatment effects. Figure 4.3 illustrates an example of Treatment effect
heterogeneity where treatment effects are above the average in some regions and below for some
other regions.
Treatment effect heterogeneity is an important topic in many fields, especially in the medical
sciences, economics, public policy. The heterogeneity of treatment effect offer more valuable
information and allow them to adjust and personalize the treatment/policy for different
subgroups of the population.
Crump et al. (2008) develop nonparametric tests for the null of no treatment effect heterogeneity,
which bypass the multiple testing problem but fail to specify exactly which subgroups have
heterogeneity. This has motivated many recent works to estimate heterogeneous treatment
effects and identify subgroups of interest (Alaa & van der Schaar, 2017; Hill, 2011; Imai &
Ratkovic, 2014; Johansson et al., 2016; Knaus et al., 2020b; Nie & Wager, 2020).
In causal Inference framework, estimating heterogeneous treatment effects is equivalent to
estimate the average treatment effect for different subgroups. The subgroups are defined by
specific covariates X = x and the average treatment effect within a subgroup is commonly
known as the conditional average treatment effect (CATE).

Definition 4.4.1 (Conditional Average Treatment Effect (CATE)). For a given vector of
covariates x ∈ D, we define the Conditional Average Treatment Effect (CATE) function
by:

τ(x) = E(Y (1)− Y (0) |X = x). (4.32)

To address the problem of estimating the CATE, several methods and models have been
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proposed by researchers. Some of them incorporate Machine-Learning through modified models,
while others, known as meta-learners, do not require a specific Machine-Learning method.
Caron et al. (2022a) and Knaus et al. (2020a) for provide an in-depth literature review of the
most recent and popular methods for CATE estimation, particularly for Machine-Learning
based models. In the following, we will present quickly Machine-Learning based models for the
CATE’s estimation, but we refer the reader to the same references for a detailed review about
these models, and we focus more on the Meta-Learners framework for estimating the CATE.

Machine-Learning based models

The recent interest and advances in CATEs estimation have led to the development of numerous
algorithms and methods based on Machine-Learning models (e.g. tree ensembles, gradient
boosting methods, neural networks). These models use the observational data to construct
consistent estimators of the CATE.
The first contribution for estimating the CATE belongs to Hill (2011). The idea consisted in
assuming the following functional form of the potential outcomes:

Y (t) = f(X, t) + ϵ, (4.33)

where f is an unknown function and ϵ is additive noise. Hill (2011) proposed to learn f using
Bayesian Additive Regression Trees (BART) and infer the CATE from the learnt function.
Since then, a wide variety of tree-based and, more generally, ensemble methods have been
developed by the Causal Inference community to derive efficient and consistent CATE estimators.
These methods include Causal tree (Athey & Imbens, 2016) Causal Forests (Lechner, 2018;
Wager & Athey, 2018), support vector machines (Imai & Ratkovic, 2013), causal boosting and
causal multivariate adaptive regression splines (MARS) (Powers et al., 2018), LASSO regression
(Zhao et al., 2022), non-parametric kernel smoothing (Fan et al., 2022; Zimmert & Lechner,
2019), Bayesian Causal Forests (Caron et al., 2022b; Hahn et al., 2020) to handle the problem
of confounding and multi-task learning approach using Gaussian Processes (Alaa & van der
Schaar, 2017).
In the deep learning field, several models employing deep neural networks have been proposed
to learn balanced representations and handle confounding. Among them, we can cite Balancing
Counterfactual Regression (BCR) (Johansson et al., 2016), Treatment Agnostic Representation
Networks (TARNET) (Shalit et al., 2017), Causal Effect Variational AutoEncoder (CEVAE)
(Louizos et al., 2017), Generative Adversarial Nets for inference of Individualised Treatment
Effects (GANITE) (Yoon et al., 2018), Similarity Individual Treatment Effect method
(SITE)(Yao et al., 2018) and Dragonnet (Shi et al., 2019). We may refer the reader to
Dorie et al. (2019) for a review of (hybrid) Machine-Learning models for causal inference.
Generally, the previous cited methods are built either upon a single model or upon two distinct
models. They fall into the S- or T-learners class, which we will emphasize further in the
following subsection.

Meta-learners for Heterogeneous treatment Effects estimation

One possible framework to tackle the problem of estimating the CATE are meta-learners as
initially introduced and discussed by Künzel et al. (2019). Meta-learners derive consistent
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estimators of the CATE in both Randomized Controlled Trials (RCT) and Observational
studies.

Definition 4.4.2 (Meta-learner (Künzel et al., 2019)). A Meta-learner is a statistical framework
that models and estimates the CATE model such that

τ(x) = E[Y (1)− Y (0) |X = x]. (4.34)

The advantage of meta-learners is that they do not require a specific Machine Learning method.
They can support any supervised regression parametric or nonparametric method (e.g. random
forest, gradient boosting methods). These methods are called base-learners when applied to a
meta-learner.
All meta-learners fall in a taxonomy of CATE’s estimators given by Curth & van der Schaar
(2021a); Knaus et al. (2020a). Namely, direct plug-in (one step) meta-learners (T- and S-learners),
pseudo-outcome (two-step) meta-learners (X-, M- and DR-learners) and Neyman-Orthogonality
based learners (R-learner).

T-learner

From the definition of CATE in (4.32), the first meta-learner to be considered is the T-learner,
where T refers to two-models procedure. This meta-learner builds a CATE estimator using two
models:

• Regress Y (j) separately on the covariates X using (Dobs,i)i∈Sj where Sj = {i, ti = j} for
j ∈ {0, 1} to build estimators µ̂j of µj(x) = E(Y (j) |X = x).

• Estimate the CATE as τ̂T (x) = µ̂1(x)− µ̂0(x).

Some authors (Curth & van der Schaar, 2021b; Künzel et al., 2019) claim that the main
drawback of the T-learning approach is that it does not take the interaction between treatment
T and the outcome Y and that it may suffer from confounding bias. This problem occurs
typically while sampling (Dobs,i)i∈Sj for j ∈ {0, 1} at the first stage of regression procedure and
the outcome models µj are, therefore, estimated with respect to the wrong distribution of the
training sample, that is,

EX∼p(·)
[
(µ̂j(X)− µj(X))2] ̸= EX∼p(·|T=j)

[
(µ̂j(X)− µj(X))2], (4.35)

where p(·) denotes the marginal distribution of X and p(· | T = j) denotes the conditional
distribution of X given T = j.
Therefore, the optimal µ̂j for j ∈ {0, 1} should be fitted on the sample (Dobs,i)i∈Sj by considering
a weight while minimizing the expected (integrated) error (Curth & van der Schaar, 2021a):

EX∼p(·)
[
(µ̂1(X)− µ1(X))2] = EX∼p(·|T=1)

[p(T = 1)
e(X) (µ̂1(X)− µ1(X))2],

EX∼p(·)
[
(µ̂0(X)− µ0(X))2] = EX∼p(·|T=0)

[P(T = 0)
1− e(X)(µ̂0(X)− µ0(X))2]. (4.36)
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S-learner

The second meta-learner to be defined is the S-learner where S refers to single. It is based on
Proposition 4.2.16 of the identifiability of the counterfactual response, indeed

τ(x) = E[Yobs | T = 1,X = x]− E[Yobs | T = 0,X = x]. (4.37)

Therefore, one can take the treatment T as a feature similar to all the other covariates and
build as follows :

• Regress Y on the treatment T and the covariates X by a single model µ̂ using Dobs.

• Estimate the CATE as τ̂S(x) = µ̂(x, 1)− µ̂(x, 0).

Remark 4.4.3. The T-Learner and the S-Learner may not produce the same result as the
regression procedure is different for each learner.

Using the propensity score e, we may define additional meta-learning algorithms whose objective
is to estimate the CATE in (4.32) more efficiently.

X-learner

The X-learner, where X refers to the cross-learning approach of the algorithm (Künzel et al.,
2019), has been proposed to overcome the problem of unbalancing groups, which adopts
information from the control group to give a better estimator on the treated group and vice
versa.
Let us consider the two random variables D(1) := Y (1) − µ0(X) and D(0) := µ1(X) − Y (0).
We have

E(D(1) |X = x) = E(Y (1)− µ0(X) |X = x)
= E[Y (1)− E(Y (0) |X) |X = x]
= E(Y (1)− Y (0) |X = x) |= τ(x),

(4.38)

and
E(D(0) |X = x) = E(µ1(X)− Y (0) |X = x)

= E[E(Y (1) |X)− Y (0)− |X = x]
= E(Y (1)− Y (0) |X = x) |= τ(x).

(4.39)

The X-Learner can be built from the sample Dobs as follows :

• Similarly to T-Learner, regress Y (j) on the covariates X using the subsets (Dobs,i)i∈Sj
for j ∈ {0, 1} to build estimators µ̂j of µj(x) = E(Y (j) |X = x).

• Estimate the missing potential outcomes D̃
(1)
i = Yobs,i − µ̂0(x(i)) if i ∈ S1 and

D̃
(0)
i = µ̂1(x(i))− Yobs,i if i ∈ S0.

• Regress D(1) and D(0) on the covariates X by two models τ̂1 and τ̂0 using the subsets
(x(i), D̃

(0)
i )i∈S0 and (x(i), D̃

(1)
i )i∈S1 .

• Estimate the CATE by a weighted average function g (e.g. propensity score e) of the
estimated models such that τ̂X(x) = g(x)τ̂0(x) + (1− g(x))τ̂1(x).

85



4.4. Heterogeneity of treatment effects

Remark 4.4.4. τ̂1 and τ̂0 are both estimators for CATE model τ , while g is chosen to combine
these estimators to an improved estimator τ̂X .

The choice of the weighting function g is crucial and affects the final estimation of the CATE
τ (Curth & van der Schaar, 2021a). The same authors suggest as alternative the regression
adjustment learning strategy: a two-steps cross procedure (instead of four as in the original
X-learner) that does not require any weighting function.

Proposition 4.4.5. If the assumptions ([4.2.14]-[4.2.15]) hold, we define the regression
adjustment pseudo-outcome ZRA as

ZRA = T (Yobs − µ0(X)) + (1− T )(µ1(X)− Yobs), (4.40)

then
E(ZRA |X = x) = τ(x). (4.41)

Proof.

E(ZRA |X = x) = E [T (Yobs − µ0(X)) + (1− T )(µ1(X)− Yobs) |X = x] (4.42)
= E [TYobs |X = x]− e(x)µ0(x) + (1− e(x))µ1(x) (4.43)
− E [(1− T )Yobs |X = x] . (4.44)

Since Yobs = Y (T ) = TY (1) + (1− T )Y (0), we have TY = T 2Y (1) + T (1− T )Y (0) = TY (1)
and (1− T )Yobs = T (1− T )Y (1) + (1− T )2Y (0) = (1− T )Y (0) and thus

E(ZRA |X = x) = E [TY (1) |X = x]− e(x)µ0(x) + (1− e(x))µ0(x)− E [(1− T )Y (0) |X = x] .
(4.45)

Therefore, since E[T |X] = P[T = 1 |X] and if the assumption [4.2.14] holds, then

E(ZRA |X = x) = e(x)µ1(x)− e(x)µ0(x) + (1− e(x))µ0(x)− (1− e(x))µ0(x) (4.46)
=
(
e(x) + 1− e(x))(µ1(x

)
− µ0(x)) = τ(x). (4.47)

■

The improved X-Learner can be built as follows:

• Similarly to T-Learner, regress Y (j) on the covariates X using the subsets (Dobs,i)i∈Sj
for j ∈ {0, 1} to build estimators µ̂j of µj(x) = E(Y (j) |X = x).

• Estimate the CATE by regressing the regression-adjustment pseudo-outcome z̃RA =
(z̃RA,i)ni=1 on the covariates X using Dobs, where

z̃RA,i = ti(Yobs,i − µ̂0(x(i))) + (1− ti)(µ̂1(x(i))− Yobs,i). (4.48)

86



4.4. Heterogeneity of treatment effects

M-learner

The M-learner (Athey & Imbens, 2016), where M refers to the modified learned pseudo-outcome
in the algorithm, is inspired from the Inverse Propensity Weighting (IPW) transformation as
proposed by (Rosenbaum, 1987) for estimating the ATE.

Proposition 4.4.6. If the assumptions ([4.2.14]-[4.2.15]) hold, we define the modified pseudo-
outcome ZIPW by IPW as

ZIPW = T

e(X)Yobs −
1− T

1− e(X)Yobs, (4.49)

then
E(ZIPW |X = x) = τ(x). (4.50)

Proof.

E(ZIPW |X = x) = E
[

T

e(X)Yobs −
1− T

1− e(X)Yobs |X = x

]
(4.51)

= E
[

T

e(X)Yobs |X = x

]
− E

[ 1− T
1− e(X)Yobs |X = x

]
(4.52)

= 1
e(x)E [TYobs |X = x]− 1

1− e(x)E [(1− T )Yobs |X = x] . (4.53)

Thus,

E(ZIPW |X = x) = 1
e(x)E [TY (1) |X = x]− 1

1− e(x)E [(1− T )Y (0) |X = x] . (4.54)

Therefore, by assumption [4.2.14]

E(ZIPW |X = x) = 1
e(x)E[T |X = x]µ1(x)− 1

1− e(x)E[(1− T ) |X = x]µ0(x) (4.55)

= µ1(x)− µ0(x) = τ(x)0 (4.56)

■

Hence, the M-learner is built in two stages :

• Estimate the propensity score e by regressing T on the covariates X using Dobs and
denote ê the obtained model.

• Estimate the CATE by regressing the IPW pseudo-outcome z̃IPW = (z̃IPW,i)ni=1 on the
covariates X using Dobs, where

z̃IPW,i = ti
ê(x(i))

Yobs,i −
1− ti

1− ê(x(i))
Yobs,i. (4.57)

However, one needs the consistency of the propensity score estimator ê to get a correct estimation
of the CATE.
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DR-learner

As explained in the previous section, the doubly-robust method was suggested by Robins et al.
(1994) to overcome the problem of model misspecification. It tries to estimate two components:
the outcome model and the propensity score. The consistency of the causal effect estimator is
achieved if at least one of these components is well specified, that is the estimation of either the
outcome model or the propensity score consistent. Under the assumptions ([4.2.14]-[4.2.15]),
we define the augmented inverse probability weighting (AIPW) pseudo-outcome by

ZAIPW = µ1(X)− µ0(X) + T
Yobs − µ1(X)

e(X) − (1− T )Yobs − µ0(X)
1− e(X) . (4.58)

Proposition 4.4.7. Let ZAIPW be the AIPW pseudo-outcome defined previously, then under the
assumptions ([4.2.14] - [4.2.15])

E(ZAIPW |X = x) = τ(x). (4.59)

Proof.

E(ZAIPW |X = x) = E
[
µ1(X)− µ0(X) + T

Yobs − µ1(X)
e(X) − (1− T )Yobs − µ0(X)

1− e(X) |X = x

]
(4.60)

= µ1(x)− µ0(x) + E[T (Yobs − µ1(X)) |X = x]
e(X) − E[(1− T )(Yobs − µ0(X)) |X = x]

1− e(X) .

(4.61)

By uncounfoundedness Assumption [4.2.14], we have

E(ZAIPW |X = x) = µ1(x)− µ0(x) + e(x)E(Y (1) |X = x)− µ1(x)
e(x) (4.62)

− (1− e(x))E(Y (0) |X = x)− µ0(x)− µ0(x)
1− e(x) (4.63)

= µ1(x)− µ0(x) = τ(x). (4.64)

■

However, the definition of ZAIPW implies estimating both the outcome models µ0, µ1 and
the propensity score e. We denote µ0, µ1 and e some arbitrary models of the three previous
models, we define the doubly-robust (DR) pseudo-outcome ZDR below in (4.65) and we show
its doubly-robust property

ZDR(µ0, µ1, e) = µ1(X) + T
Yobs − µ1(X)

e(X) − µ0(X)− (1− T )Yobs − µ0(X)
1− e(X) , (4.65)

where e is also assumed to satisfied the assumption [4.2.15], that is, 0 < emin < e(x) < emax < 1
for all x ∈ D.

Proposition 4.4.8. Let ZDR(µ0, µ1, e) be the Doubly-Robust pseudo-outcome defined previously,
then under the assumptions ([4.2.14] - [4.2.15])

E(ZDR(µ0, µ1, e) |X = x) = τ(x), (4.66)
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if the outcome models or the propensity model is well-specified, i.e. e(X) = e(X) or
(µ0(X), µ1(X)) = (µ0(X), µ1(X)) almost surely.

Proof. We show now the Doubly-Robust behaviour of the DR pseudo-outcome,

E(ZDR(µ0, µ1, e) |X = x) = E
[
µ1(X) + T

Yobs − µ1(X)
e(X) − µ0(X)− (1− T )Yobs − µ0(X)

1− e(X) |X = x
]

(4.67)

= E
[
µ1(X) + T

Y (1)− µ1(X)
e(X) − µ0(X)− (1− T )Y (0)− µ0(X)

1− e(X) |X = x
]

(4.68)

= E
[
Y (1) + µ1(X)− Y (1) + T

Y (1)− µ1(X)
e(X) (4.69)

− Y (0)− µ0(X) + Y (0)− (1− T )Y (0)− µ0(X)
1− e(X) |X = x

]
(4.70)

= E
[
Y (1) +

(
T

e(X) − 1
)

(Y (1)− µ1(X)) |X = x
]

(4.71)

− E
[
Y (0) +

( 1− T
1− e(X) − 1

)
(Y (0)− µ0(X)) |X = x

]
(4.72)

= E(Y (1)− Y (0) |X = x) + η1(x)− η0(x), (4.73)

where η1(x) = E
[
Y (1) +

(
T

e(X) − 1
)

(Y (1) − µ1(X)) | X = x
]

and η0(x) = E
[
Y (0) +(

1−T
1−e(X) − 1

)
(Y (0)− µ0(X)) |X = x

]
.

• If the propensity score e is correctly specified (i.e. e(X) = e(X) almost surely) but the
outcome model is misspecified, we would have

η1(x) = E
[ ( T

e(X) − 1
)

(Y (1)− µ1(X))
∣∣X = x

]
(4.74)

= E
[
E
[ ( T

e(X) − 1
)

(Y (1)− µ1(X))
∣∣X, Y (1)

]∣∣X = x
]

(4.75)

= E
[
(Y (1)− µ1(X))E

[ ( T

e(X) − 1
) ∣∣X, Y (1)

]∣∣X = x
]
. (4.76)

Thus, by the assumption of unconfoundedness [4.2.14]

η1(x) = E
[
(Y (1)− µ1(X))E

[ ( T

e(X) − 1
)∥∥X]∣∣X = x

]
(4.77)

= E
[
(Y (1)− µ1(X))

(E(T |X)
e(X) − 1

) ∣∣X = x
]

(4.78)

= 0, (4.79)

where the last line holds by the definition of the propensity score e.
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• If the propensity model is misspecified but the outcome models are correctly specified
(i.e. µ1 = µ1 almost surely), we would have

η1(x) = E
[ ( T

e(X) − 1
)

(Y (1)− µ1(X))
∣∣X = x

]
(4.80)

= E
[
E
[ ( T

e(X) − 1
)

(Y (1)− µ1(X))
∣∣T,X]∣∣X = x

]
(4.81)

= E
[ ( T

e(X) − 1
)

(E[Y (1) | T,X]− µ1(X)
∣∣X = x

]
(4.82)

Thus, by assumption [4.2.14]

η1(x) = E
[ ( T

e(X) − 1
)

(E[Y (1) |X]− µ1(X)
∣∣X = x

]
(4.83)

= E
[ ( T

e(X) − 1
)

(µ1(X)− µ1(X)
∣∣X = x

]
(4.84)

= 0. (4.85)

Analogously, we prove that η0(x) = 0 if one of the models is misspecified and we end the
proof. ■

Hence, the DR-learner, where DR refers to the Doubly-Robust learned outcome in the algorithm,
is built from observed data (x(i), ti, Yobs,i)1≤i≤n in three stages:

• Estimate by regression the propensity score e and the outcome models µ1 and µ0 using
Dobs, denote ê, µ̂0 and µ̂1 the obtained estimators.

• Estimate CATE by regressing the DR pseudo-outcome z̃DR = (z̃DR,i)ni=1 on the covariates
X with the correspondent estimators (µ̂0, µ̂1 and ê) using

z̃DR,i = µ̂1(x(i)) + ti
Yobs,i − µ̂1(x(i))

ê(x(i))
− µ̂0(x(i))− (1− ti)

Yobs,i − µ̂0(x(i))
1− ê(x(i))

. (4.86)

R-learner

The R-learner is an approach of meta-learning for estimating Heterogeneous Treatment Effects,
based on the Robinson Robinson (1988) decomposition in partially linear models. Let ϵ be the
random variable defined by

ϵ = Yobs − Tµ1(X)− (1− T )µ0(X). (4.87)

Proposition 4.4.9. Let ϵ be the outcome model error defined in (4.87), then E(ϵ | T,X) = 0

Proof. For t ∈ {0, 1} and x ∈ D

E(ϵ | T = t,X = x) = E [Yobs − Tµ1(X)− (1− T )µ0(X) | T = t,X = x] (4.88)
= E [Y (t) |X = x]− tµ1(x)− (1− t)µ0(x) (4.89)

=
{

E(Y (0) |X = x)− µ0(x) = 0 if t = 0,
E(Y (1) |X = x)− µ1(x) = 0 if t = 1.

(4.90)

■
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In binary case, the Robinson decomposition can be written as

ϵ = Yobs −m(X)− (T − e(X)) τ(X), (4.91)

where m(x) = E(Yobs |X = x) and e(x) = E(T |X = x).

Proof. For x ∈ D, we have

E(Yobs |X = x) = E [ϵ+ Tµ1(X) + (1− T )µ0(X) |X = x] (4.92)
= E[E(ϵ | T,X = x)] + E (µ0(X) + T τ(X) |X = x) (4.93)
= µ0(x) + E(T |X = x)τ(x) (4.94)
= µ0(x) + e(x)τ(x). (4.95)

Hence, µ0(x) = m(x)− e(x)τ(x) which leads finally to the Robinson decomposition

ϵ = Yobs −m(X)− (T − e(X)) τ(X). (4.96)

■

The representation above (4.91) has been studied by Nie & Wager (2020) to develop a flexible
Meta-Learner, called the R-Learner. The goal of this representation is to form a squared error
loss based on orthogonalization with respect to both observed outcome and propensity score
estimate. Nie & Wager (2020) show that minimizing this loss function captures the CATE
efficiently and use it to obtain a Quasi-Oracle estimator τ̂(·) of the CATE in two steps:

• Estimate the outcome model m and the propensity score e using Dobs and denote m̂ and
ê the obtained models.

• Find the optimal model τ̂R within a family F of parametric or non-parametric candidate
base-learner models such that

τ̂R(·) = argminτ(·)∈F

( 1
n

n∑
i=1

[ (
Yobs,i − m̂(x(i))

)
−
(
ti − ê(x(i))

)
τ(x(i))

]2
+ Λn

[
τ(·)

])
,

(4.97)

where Λn[τ(·)] is a regularization term of the function τ(·).

4.5 Extension to multi-valued and continuous treatment

The goal of this section is to infer causal effects when the treatment is no more binary but
takes at least three possible values. We follow the extension of the Potential outcome theory to
multiple and continuous treatments regime as developed by Frölich (2002); Imai & Dyk (2004);
Imbens (2000); Lechner (2001) and Galagate (2016).
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The multi-valued treatment regime

Let T = {t(0), t(1), . . . , t(K)} (do not confuse with t1, . . . , tn corresponding to the treatment
assigned to units) be the treatment support for K+1 ordered possible treatment levels of T . We
suppose that we observe always an i.i.d. sample of n units Dobs = (Dobs,i)ni=1 = (x(i), ti, yi)ni=1
where x(i) denotes a vector of covariates with values in D, ti denotes the assigned treatment to
unit i with possible values in T and yi denotes the outcome of the unit i ater .
Following the potential outcome framework, we suppose the existence of Y (t), the real-valued
counterfactual outcome that would have been observed under treatment level t ∈ T =
{t(0), . . . , t(K)}. We suppose also that Dobs is a random sample drawn i.i.d. from a joint
distribution pD where D = (X, T, (Y (t))t∈T ).
Similarly to the binary setting, for a unit i, the observed outcome Yobs,i can be written as a
function of the potential outcomes:

Yobs,i =
∑
t∈T

1{ti = t}Yi(t), (4.98)

where 1{T = t} is the indicator function of the event T = t.
The actual model is a generalization of the Rubin causal model Rubin (1974, 1978, 1990) used
in the causal inference of a binary treatment effect. We may refer to Lopez & Gutman (2017)
for a review of the extension of causal effects estimation in multiple treatments. The consistency
assumption Yobs = Y (T ) holds directly with (4.98), the other assumptions and properties of
this model remain valid when dealing with multiple treatments:

Assumption 4.5.1 (Unconfoundedness). Given the observed covariates X, the treatment
mechanism is unconfounded for all treatment levels

∀t ∈ T : Y (t) |= 1{T = t} | X. (4.99)

The previous assumption is a weak version of the unconfoundedness. Some authors in the
literature may claim the joint conditional independence of the treatment T and all potential
outcomes (Y (t))t∈T given the covariates X.

Assumption 4.5.2 (Overlap). The probability of receiving the treatment T given observed
covariates X = x is positive, i.e. there exists rmin > 0 such that

∀x ∈ D,∀t ∈ T : rmin ≤ r(t,x) := P(T = t |X = x). (4.100)

r is called the Generalized Propensity Score (GPS) (Imbens, 2000) and extends the classical
Propensity Score from e to the multiple treatment setting. It has the same balancing property
as the classical Propensity Score, that is (Imbens, 2004):

X |= 1{T = t} | r(t,X). (4.101)

Under the previous assumptions, causal effects can be identified and the counterfactual response
satisfies:

E(Y (t) |X = x) = E(Yobs | T = t,X = x). (4.102)
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In the multiple treatments regime, one can estimate the Average Dose-Response Function
(ADRF)

µ(t) = E[Y (t)]. (4.103)

It usually describes the magnitude of the outcome of the population when exposed to a specific
level of the treatment (amount of smoked cigarettes, quantity of exposed pollution etc.).
One also can consider the Average Treatment Effect (ATE) between two levels t and s, usually
s = t0 the baseline treatment value

µt,s = E[Y (t)− Y (s)], (4.104)

The ATE between levels t and s can be inferred directly if one has already estimated the
ADRF. The final causal estimands are heterogeneous treatment effects, given by the Conditional
Average Treatment Effect (CATE) between two levels t and s:

τt,s(x) = E[Y (t)− Y (s) |X = x]. (4.105)

The ADRF estimation, also known as exposure-response modelling, was considered (though
less than the ATE in the binary case) and successfully applied in many domains, including
in medicine, economics (Dominici et al., 2002; Flores, 2007; Hu et al., 2020; Lin et al., 2019;
Saini et al., 2019). The CATE’s estimation, however, remains less prominently studied in the
literature. Hill (2011) proposes to model the counterfactual response surface E(Y (t) |X) by
Bayesian Additive Regression Trees (BART) but did not go further for continuous treatments.
Later, Hu et al. (2020) consider the same model and studied it further for the estimation of
counterfactual response and causal effects. Harada & Kashima (2021); Schwab et al. (2020)
applied neural networks and representations learning to estimate counterfactual response curves
for multiple and continuous treatments (more precisely for graph-structured treatments) and
Kaddour et al. (2021) proposed Structured Intervention Networks (SIN) for estimating CATEs
of structured treatments.
Most methods for estimating the ADRF function use approaches similar to the binary case.
Namely, the propensity score weighting (Feng et al., 2012; Imbens, 2000; Mccaffrey et al.,
2013), matching and sub-classification (Yang et al., 2016) and vector matching (VM) (Lopez &
Gutman, 2017). However, this approach appears challenging to implement and costly when the
number of treatments is too large, or the sample is too small. Other methods include regression
adjustment using BART (Hu et al., 2020), Generalized Linear models (GLM) (Guardabascio &
Ventura, 2014), Generalized Additive models (GAM) (Zhang et al., 2016), stratification on the
GPS are also possible. We refer the reader to Zhang et al. (2016) and Galagate (2016) for a
review of existing methods for estimating the ADRF.
Given the importance of using the GPS in most methods to estimate the ADRF, special
attention should be given while evaluating the ARDF. The following subsection reviews some
existing methods for GPS estimation.

Estimating the Generalized Propensity Score (GPS)

The first method of estimating Generalized Propensity Scores (GPS) to appear required some
assumptions on the conditional density of T given X (Imai & Van Dyk, 2004; Imbens, 2004) and
do not offer practical guidance to estimate GPS in general cases. Still, some recent studies have
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proposed parametric estimation of the propensity score via the multinomial logistic regression
(Spreeuwenberg et al., 2010) or ordinal logistic regression model with an iterative approach
(Zanutto et al., 2005), ensemble methods to estimate propensity score (Yan et al., 2019). In
the following, we present three methods for estimating the GPS that we will consider later in
Chapter 5 and in Appendix B.4 (Figures B.1 and B.2), but we refer to Lin et al. (2019) for a
detailed review of existing methods.
The estimation of the propensity score r can be seen as a particular application of the multi-
class classification problem. In the following paragraphs, we consider a problem of multi-class
classification. The covariates X are the inputs. The response is the treatment T with K + 1
possible values in T , each class corresponds to a treatment level t(k), we aim to build learning
model f able to estimate P(T = t |X) from the learning sample Dobs.

Generalized Linear Models (GLM) Generalized linear modelling (GLM) is a framework for
statistical analysis introduced by Nelder & Wedderburn (1972) and developed by McCullagh
& Nelder (1989) to overcome the linear modelling framework issues and to deal with non-
normally distributed response variables, with the condition of belonging to the exponential
family. It models in particular the conditional expectation E(Y | X) of the multi-variate
response Y =

(
1{T = t(0)}, . . . ,1{T = t(K)}

)⊤ ∈ RK given covariates X by a linear model
through a link function.
In our setting, for given x ∈ D, we are interested into π(x) = (πk(x))0≤k≤K , where
πk(x) = P(T = t(k) |X = x) is the conditional probability of getting the treatment value t(k)

given x satisfying ∑K
k=0 πk(x) = 1. With the previous condition, it is sufficient to estimate

only (πk(x))1≤k≤K and deduce immediately π0(x).

Let Y =
(
1{T = t(K)}, . . . ,1{T = t(K)}

)⊤ ∈ RK satisfying

E(Y |X = x) =


E(1{T = t(1)} |X = x)

...
E(1{T = t(K)} |X = x)

 =

π1(x)
...

πK(x)

 = π(x). (4.106)

We assume that the covariates X are related to the multivariate response Y by a continuous
invertible mapping g : RK → RK , called the link function, through a vector linear predictor
η = (η1, . . . , ηK) where ηk(x) = β

(0)
k + β⊤

k x and βk is the regression coefficients vector,
Under these assumptions, π(x) is fully characterized by GLM once the link function g is
specified. Indeed,

π(x) =

π1(x)
...

πK(x)

 =


g−1

1 (η1(x))
...

g−1
K (ηk(x))

 = g−1(η(x)). (4.107)

Here, we consider the canonical link function g :M→ RK ,

gk(π) = log
(

πk

1−∑K
k=1 πj

)
k = 1, . . . ,K, (4.108)

where

M = {π = (πk)1≤k≤K ∈ (0, 1)K ;
K∑
k=1

πk < 1}. (4.109)

94



4.5. Extension to multi-valued and continuous treatment

Hence, under the assumption of GLM, for all k = 1, . . . ,K

πk(x) = g−1
k

(
β

(0)
k + β⊤

k x
)

= exp (β(0)
k + β⊤

k x)
1 +∑K

j=1 exp (β(0)
j + β⊤

j x)
.

(4.110)

Therefore, we obtain the multinomial logistic regression formulas for propensity score’s
estimation, for t(k) ∈ T \{t(0)},

r(t(k),x(i)) = P(T = t(k) |X = x(i)) = exp (β(0)
k + β⊤

k x(i))
1 +∑K

j=1 exp (β(0)
j + β⊤

j x(i))
, (4.111)

and,
r(t(0),x(i)) = P(T = t(0) |X = x(i)) = 1

1 +∑K
j=1 exp (β(0)

j + β⊤
j x(i))

. (4.112)

Finally, the regression coefficients (βk)1≤k≤K are estimated from the data Dobs, by maximizing
the log-likelihood given parameters (βk)1≤k≤K using Newton-Raphson/Fisher’s scoring
algorithm (Nelder & Wedderburn, 1972).

Random Forest models Random forests (Breiman, 2001) is a popular tree-based algorithm
using a substantial version of bagging (Bootstrap aggregating) to build a large collection of
decorrelated decision trees (see (Breiman et al., 1984) for more details about decision trees) to
capture complex nonlinear interaction and to deal efficiently with high-variance and low-bias
cases (Hastie et al., 2001).
Consider the same framework of multi-class classification as defined previously. A decision
tree is a directed graph consisting of nodes and edges. The nodes are either internal (non-
terminal) containing some attribute test conditions to split on covariates X, or leaf (terminal)
corresponding to a class label t(k).
Given the learning data Dobs, the decision tree is built in such a way that its attributes split
the data so that each terminal node is as pure as possible, that is, each leaf in the tree contains
units of a single class.
The impurity of the nodes can be computed by using

• The Gini index:

Gini(L) = 1−
K∑
k=0

p̂2
k. (4.113)

• The Entropy information:

Ent(L) = −
K∑
k=0

p̂k log(p̂k). (4.114)

where p̂k is the relative proportion of class t(k) in the leaf L.
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Once a decision tree fb is trained by minimizing the impurity function over all its leaves, it
predicts the most probable class t(k) among training observations that fall into the same leaf
L(x) as x, using a measure called vote, defined by

vote(fb(x)) = t(k). (4.115)

However, constructing a decision tree may be computationally unfeasible and decision trees
are usually high variance and prone to over-fit the data. Random forests are created to cope
with these drawbacks by growing a multitude of decision trees where each tree is trained on
different samples and covariates selected randomly. Indeed, we generate B bootstrap samples
from the original sample with (or without) replacement. Then we build a decision tree fb for
b = 1, . . . , B using each bootstrapped sample. At each node of fb, a split is performed by
minimizing the impurity criterion as in (4.113) and (4.114). While forming the best split of fb’s
nodes, a random sample of m ≤ d covariates are chosen as split candidates between d covariates
X (In classification, we generally choose m =

√
d (James et al., 2014) and the tree fb is grown

until the minimum node size NL is achieved in each leaf). The parameter node size NL controls
the complexity of each tree. If it is not specified, then the tree fb is expanded until all its leaves
are pure with respect to Gini (4.113) or entropy (4.114) measures.
For a point x ∈ D, as the leaf Lb(x) containing x in each decision tree fb is not necessarily
pure, fb predicts now the class that occurs most frequently in Lb(x)

vote(fb(x)) = arg max
0≤k≤K

p̂kb(x), b = 1, . . . , B, (4.116)

where p̂kb(x) is the proportion of k-th class observations when x is falling in the fb’s tree
terminal node Lb(x) containing | Lb(x) | observations

p̂kb(x) = 1
| Lb(x) |

∑
i,x(i)∈Lb(x)

1{ti = t(k)}, b = 1, . . . , B, (4.117)

When the quantity of interest is the class-probability, the built forest of B trees aggregates
class proportion’s predictions in the terminal node of each decision tree fb and the GPS r̂ is
estimated as

r̂(t(k),x) = 1
B

B∑
b=1

p̂kb(x), k = 0, . . . ,K. (4.118)

The optimal random forest can be obtained by tuning its hyperparameters (the number of trees
B, the maximum number of selected covariates m and the minimum node size NL) using a grid
search combined with a cross-validation method Probst et al. (2019).

Generalized boosted models Generalized Boosted Models (GBM) are a set of automated
data-adaptive algorithms based on a set of standard weak base learners. From these weak
learners, we aim to build a strong learner able to predict more precisely real outcomes and
capture/nonlinear interactive effects of the covariates. The statistical framework of GBM
has been developed by Friedman (2001) for estimating and predicting a function subject to
minimizing a loss function or an empirical risk.
In multi-class classification, we seek to learn a multivariate predictive model ϕ : Rd → RK+1

where ϕ(x) = (ϕk(x))0≤k≤K ∈ (0, 1)K+1 designs the empirical class-probability vector of
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assigning treatment T = t(k) by the model ϕ given covariates x (ϕ is in the end no more than
a predictor of the GPS r). Note that each ϕk can be linked to Fk : Rd → R by the softmax
function

ϕk(x) = exp(Fk(x))∑K
j=0 exp(Fj(x))

, k = 0, . . . ,K. (4.119)

The loss function to be considered is the Cross-Entropy loss L : R× RK+1 → R defined as

L(y,ϕ(x)) = −
K∑
k=0

1{y = t(k)} log(ϕk(x)), y ∈ R, x ∈ Rd. (4.120)

In the boosting framework, each Fk is assumed to be sum of additive functions (base-
learners) belonging to a functional space Fbl, typically the space of decision trees (CART)
FCART = {f1, . . . , fM , fm : Rd → R} where each fm corresponds to a decision tree with a
structure (characterized by the maximum depth or number of leaves for example), and M is
the number of decision trees in the space FCART.
Unlike the random forest, which involves bootstrap aggregating (Bagging), GBM grows base-
learners sequentially (Boosting), and each base-learner fm is fitted on a re-weighted version of
the original data. The new base-learner is chosen to provide the best fit to the residuals on the
loss function L of the previous base-learner model. When adding the new base-learner, the
contribution of each new base-leaser is scaled by a factor 0 ≤ η < 1 to improve the smoothness
of the resulting model and the final model fit (Friedman, 2001; James et al., 2014).
The Gradient Boosting algorithm is originally described by Friedman (2001) and uses negative
gradients to optimize the loss function. However, as the original algorithm is stagewise, adding
base-learners members one after the other may randomly influence the loss function, making
the optimization procedure harder and unfeasible. Some variants of gradient boosting like
XGBoost have been developed to optimize the loss function efficiently, scalable end-to-end
tree boosting method by Chen & Guestrin (2016). In the XGBoost framework, the empirical
loss function to minimize integrates a regularization term Ω penalizing the complexity of the
base-learner models

L((Fk)0≤k≤K) =
n∑
i=1

L
(
ti,ϕ(x(i))

)
+

M∑
m=1

Ω (fm) k = 0, . . . ,K. (4.121)

where Ω(fm) = γJ + 1/2λ0
∑J
j=1 ω

2
j for a decision tree fm, J is the number of leaves in the

tree fm and ωj is the score of the j−th leaf of the tree. The regularization term Ω(f) penalizes
several leaf nodes and avoids over-fitting by selecting simple and predictive regression trees
into the final model FM . In most cases, the regularization parameters take the default values
λ0 = 1 and γ = 0.
Some other variants like the Cyclic Gradient Boosting (Zhang et al., 2019) or BOOMER (Rapp
et al., 2020) can also be used in learning multi-class classification with gradient boosting. In
related work, Mccaffrey et al. (2013) used GBM to estimate initial GPS models (p̂k)0≤k≤K then
fit these models by defining a specific criterion to assess covariates balancing in the optimization
procedure.
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The continuous treatment regime

Suppose now that the treatment assignment variable T is continuous with a support
T = [tmin, tmax] ⊆ R. Following the Neyman (1923) potential outcomes framework and
the generalization of the Rubin (1974, 1978, 1979, 1990) Causal Model, we suppose the
existence of Y (t), the real-valued counterfactual outcome that would have been observed
under a treatment level t ∈ T . As for binary and multi-valued treatments, we consider
D = (X, T, Y (t)t∈T ) with joint distribution pD. We suppose that we observe an i.i.d. sample
of n units Dobs,i =

(
x(i), ti, yi

)
drawn from pD and that yi = Yobs,i = Yi(ti) (consistency

assumption).
The assumptions of unconfoundedness and common support are still necessary to make the
causal inference in continuous treatments.

Assumption 4.5.3 (Unconfoundedness). The treatment mechanism is unconfounded given the
observed covariates Y (t) |= T | X for all t ∈ T .

Assumption 4.5.4 (Overlap). The conditional density fT |X is uniformly bounded from 0 i.e.
there exists rmin > 0 such that rmin ≤ fT |X(t | x) for all t ∈ T and x ∈ D.

The conditional density fT |X is also called the generalized propensity score r (Imbens, 2004)
such that r(t,x) = fT |X(t | x). It generalizes the classical propensity score and the multi-valued
generalized propensity score to continuous treatments.
Using different terminology, Imai & Dyk (2004) proposed a generalization of the propensity score
for continuous treatments, called the propensity function (P-Function). In their seminal work,
Imai & Dyk (2004) made an extra assumption to uniquely parameterize the P-Function, that is,
For almost every x ∈ D, (fT |X(t | x))t∈T is characterized by Θ(x), where x ∈ D 7→ Θ(x) ∈ Rq
is a measurable map.
The main difference between the GPS and the P-Function lies in the fact the GPS evaluate
the conditional density fT |X at the observed covariate, whereas the P-Function, under the
assumption above, focuses on uniquely parameterizing it (Zhao et al., 2020).
Both the GPS and the P-Function can be used to eliminate selection and confounding biases.
They are useful with the following properties:

• For the P-Function:

fT |X = fT |Θ(X), (4.122)
X |= T | Θ(X), (4.123)

∀t ∈ T : Y (t) |= T | Θ(X). (4.124)

• For the GPS:

For almost every t ∈ T : fT (t | r(t,X), Y (t)) = fT (t | r(t,X)). (4.125)

Proof. The proofs of (4.122-4.124) are in Appendix B.1. The proof of 4.125 can be found in
Imbens (2004) in Theorem 1. ■

The advantage of the P-Function over the GPS is that Y (t) and T are conditionally independent
given the low-dimensional score (Zhao et al., 2020). This is an interesting balancing property
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and ensures the randomization between balanced units. However, the assumption of the unique
characterization of (fT |X(t | x))t∈T might be too restrictive.
The previous assumptions allow the identification of causal effects. Indeed, the counterfactual
response satisfies:

E(Y (t) |X = x) = E(Yobs | T = t,X = x). (4.126)

Under continuous treatments, we are interested in estimating the Average Dose-Response
Function (ADRF)

µ(t) = E[Y (t)], (4.127)

or the finite difference average treatment effect (ATE),

τt,s = E[Y (t)− Y (s)], (4.128)

for any two levels of treatment of interest t, s ∈ T , or Conditional Average Treatment Effects
(CATEs) between two levels t and s:

τt,s(x) = E[Y (t)− Y (s) |X = x]. (4.129)

Most work in the literature, or maybe all of them, focus only on the estimation of the ARDF
modelling (Colangelo & Lee, 2020; Galagate, 2016; Galvao & Wang, 2015; Imbens, 2004;
Kennedy et al., 2017; Zhao et al., 2020). On the one hand, to the best of our knowledge and
excepting the work of Zhang et al. (2022), the estimation of heterogeneous effects so far is not
studied in its theoretical and practical aspects for continuous, and the existing approaches
such as (Kaddour et al., 2021; Schwab et al., 2020) are more based on learning representations.
On the other hand, the ARDF estimation methods use the generalization (but not the direct
extension because this implies handling the indicator function by kernels methods) of methods
already present for the binary and multi-valued setting. This includes regression adjustment,
propensity-score weighting, matching (Wu et al., 2018), covariates balancing and procedures
based on machine learning algorithms. We may refer the reader to Galagate (2016) thesis for a
review of some of these methods.

Estimating the conditional density

The enormous difficulty of estimating the conditional densities dramatically impacts the causal
inference under continuous treatments.
However, recent advances have been made in the literature, and various approaches and methods
are proposed to estimate the GPS (following the terminology of Imbens (2004)). The developed
estimators can use parametric methods such as the kernel density estimator or non-parametric
and Machine Learning methods such as the Lasso regression and (Su et al., 2019), artificial
neural networks (Chen & White, 1999), random forest (Colangelo & Lee, 2020) and generalized
boosting models (Zhu et al., 2015).
One interesting idea is to follow the scheme of Belloni et al. (2019). Indeed, if we assume that
the treatment T has a density and that

T = m(X) + ϵ, (4.130)

where m is a given function, and ϵ is the model’s error m assumed to be independent of X.
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Proposition 4.5.5. Under the previous model, if the assumption 4.5.4 holds and if ϵ has a
density fϵ, then estimating the GPS is equivalent to estimating the density fϵ of ϵ.

Proof.
R(t,x) = P(T ≤ t |X = x) = P(m(X) + ϵ ≤ t |X = x)

= P(ϵ ≤ t−m(x) |X = x)
= P(ϵ ≤ t−m(x))
= Fϵ(t−m(x)),

(4.131)

where Fϵ is the Cumulative Distribution Function of ϵ.
Let ∆t > 0 be small enough, then

2r(t,x)∆t ≈ P(T ∈ [t−∆t, t+ ∆t] |X = x)
= P(T ≤ t+ ∆t |X = x)− P(T ≤ t−∆t |X = x)
= Fϵ(t+ ∆t−m(x))− Fϵ(t−∆t−m(x)).

(4.132)

Therefore,

r(t,x) = Fϵ(t+ ∆t−m(x))− Fϵ(t−∆t−m(x))
2∆t

∆t→0−→ fϵ(t−m(x)), (4.133)

which ends the proof. ■

Under this proposition, one can estimate the GPS r from observed data Dobs in three-steps
procedure: First, estimate the treatment model m̂ by regressing T on X. Secondly, estimate
the CDF F̂ϵ from the observed residuals (ϵi)ni=1. Finally, compute the estimated GPS r̂(t,x)
with the previous proposition.

Estimating the ADRF

Outcome modelling The outcome regression modelling of the ARDF consists of assuming
some parametric or non-parametric form on the outcome, then performing an estimation
procedure using the observed data Dobs. In addition to BART (Hill, 2011), we present two
other methods.
Imbens (2004) is the first to propose a method for estimating the ARDF, called the Y-model.
For t ∈ T and r ∈ (0, 1), we define η(t, r) by:

η(t, r) = E[Y (t) | r(t,X) = r]. (4.134)

Hence,
µ(t) = E[Y (t)] = E

[
E[Y (t) | r(t,X)]

]
= E [η(t, r(t,X))] . (4.135)

Moreover, using the balancing property (4.125) of the GPS η(t, r) = E[Yobs | T = t, r(T,X) = r].
Therefore, given an estimator r̂ of the GPS, one can regress the observed outcome Yobs on
(ti, r̂(ti,x(i)))ni=1 or model it given a parametric form and get an estimator η̂ of the conditional
expectation η. Finally, for each t ∈ T , one estimate the ADRF function µ̂(t) as

µ̂(t) = 1
n

n∑
i=1

η̂(t, r̂(t,x(i)). (4.136)
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In a similar approach, Imai & Van Dyk (2004) proposed a T-model, which was modified by
Zhao et al. (2020), that uses the P-Function to learn and estimate ADRF. Indeed, by (4.124)

µ(t) = E
[
E[Y (t) | Θ(X)]

]
= E

[
E[Y (t) | Θ(X), T = t]

]
=
∫

E[Yobs | T = t,Θ(X) = Θ(x)]pX(x) dx

=
∫

E[Yobs | T = t,Θ(X) = θ]pΘ(X)(θ) dθ

=
∫
γ(t,θ)pΘ(X)(θ) dθ,

(4.137)

where pΘ(X) denotes the distribution of Θ(X) and γ(t,θ) = E[Yobs | T = t,Θ(X) = θ].
The estimation procedure follows the same ideas as the Y-model. First, we estimate Θ(X) from
observed data Dobs to get Θ̂(X). Second, we fit a smooth-coefficient model on Yobs | T, Θ̂(X)
and estimate the model γ. Finally, for each treatment level t ∈ T and by considering θ̂i = Θ̂(x(i)),
we estimate the ADRF function µ(t) as follows (Zhao et al., 2020):

µ̂(t) = 1
n

n∑
i=1

γ̂
(
t, θ̂i

)
. (4.138)

Inverse Propensity Weighting The Inverse Propensity Weighting is proposed by Flores
et al. (2012) for the ADRF estimation. It can be seen as a version of Horvitz & Thompson
(1952) weighting applied to continuous treatments. If the assumption 4.5.1 holds, then one
can overcome the problem of indicator function (since P(T = t) = 0 when the variable T
has a continuous density) by introducing a kernel Kh, where h is the bandwidth and the
Nadaraya-Watson estimator of the ARDF:

µ̂NW(t) =
∑n
i=1 K̃h(ti − t)yi∑n
i=1 K̃h(ti − t)

, (4.139)

where, for a given estimator r̂ of the GPS,

K̃h(Ti − t) = Kh(ti − t)
r̂(t,x(i))

. (4.140)

The GPS estimator r̂ is used to weight the kernel Kh (Flores et al., 2012).
Flores et al. (2012) perform a local linear regression to propose an estimator with the form

µ̂IPW(t) = D0(t)S2(t)−D1(t)S1(t)
S0(t)S2(t)− S2

1(t) , (4.141)

where, for j = 0, 1, 2 and a weighted kernel function K̃h

Sj(t) =
n∑
i=1

K̃h(ti − t)(ti − t)j , (4.142)

Dj(t) =
n∑
i=1

K̃h(ti − t)(ti − t)jyi. (4.143)
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Another method was also proposed by Galagate (2016) as an extension of IPW with second-
moment. For a unit i and b(t) = (b1(t), . . . , bp(t))⊤ a p-vector of known basis functions, we
assume a linear relationship between the treatment and the outcome,

Yi(t) =
p∑
j=1

θijbj(t) = θ⊤
i b(t). (4.144)

Under the assumed functional form of the outcome, the Inverse Second-Moment Weighting
(ISMW) generates sample weight matrix W using the random vector B = b(T ) such that
Wi =

(
E
[
BB⊤ |X = x(i)])−1

. The ISMW estimator µ̂ISMW of the ADRF is given by

µ̂ISMW(t) = ξ̂⊤b(t), (4.145)

where Bi = b(Ti) for i ∈ {1, . . . , n} and

ξ̂ =
(

n∑
i=1

WiBiB
⊤
i

)−1( n∑
i=1

WiBiyi

)
. (4.146)

The last method is the doubly robust estimation (Kennedy et al., 2017). It has the same
properties of double robustness against model misspecification as already discussed in section
4.4.
For a given arbitrary estimators µ, r of µ(t,x) = E(Yobs | T = t,X = x) and r(t,x) = fT |X(t | x)
Kennedy et al. (2017) consider the following pseudo-outcome:

ZDR(µ, r) = Yobs − µ(X, T )
r(T,X)

∫
D
r(T,x)pX(x)dx +

∫
D
µ(T,x)pX(x)dx. (4.147)

The pseudo-outcome ZDR(µ, r) provides a consistent estimator of the ADRF E[ZDR(µ, r) | T =
t] = µ(t) if either µ = µ or r = r. Bonvini & Kennedy (2022) show that the best convergence
rate attainable would be using the Doubly robust method and non-parametric regression.

Covariate Balancing methods Similarly to binary treatments, covariate balancing methods
are extended to continuous treatments to address the misspecification of a conditional density
model r. The idea of covariate balancing methods is to form modified weights and then solve
them through various optimization criteria. The goal is to ensure that optimal weights satisfy
the balancing condition, that is, the treatment T and the covariates X are independent.
The existing approaches in the literature of covariates balancing under continuous treatments
include the Generalized Covariate Balancing Propensity Score (GCBPS) approach (Fong et al.,
2018), Covariates association eliminating weights (Yiu & Su, 2018), entropy balancing for
continuous treatments (Tübbicke, 2022; Vegetabile et al., 2021), end-to-end balancing (E2B)
based on Generalized Stable Weights (Bahadori et al., 2022) and Generative Adversarial
Deconfounding (GAD) (Li et al., 2020). We do not present these methods in detail, but we
refer the reader to the related papers.
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CHAPTER 5

Meta-learners for multi-valued treatments

Some sections and passages of this chapter are taken from the paper (Acharki et al., 2022),

5.1 Introduction

With the rapid development of Machine Learning and its efficiency in predicting outcomes, the
question of counterfactual prediction "what would happen if ?" arises. Engineers may want to
know how the outcome (e.g. production) would be affected when a parameter is changed to a
specific value. It will help them personalize the parameter at efficient levels and optimize the
outcome. Recently, many companies have relied on supervised machine learning models to find
the optimal intervention strategy. Yet, the results are not satisfactory. Indeed, these models
do not account for other impacting effects (One-At-a-Time approach) and cannot distinguish
between correlations and causal relationships in the data.
In Chapter 4, we have seen that, based on the Potential Outcomes theory (Neyman, 1923;
Rubin, 1974), epidemiologists and statisticians developed a set of statistical tools to make causal
inference and estimate the effects of a treatment on the outcome whether on average among the
whole population or inside different sub-groups. They have been successfully applied in many
fields such as medicine, economics, public policy and advertising/marketing. Nevertheless, they
are still unfamiliar and seldom used in industrial applications.
Further, most existing methods and studies are limited to the setting of a binary treatment,
whereas in many real-world applications, the treatment variable can take multiple values. In
some cases, it would be helpful to give an in-depth analysis of the impact of the treatment across
its possible levels (doses) instead of just considering a binary scenario where the treatment is
either assigned or not. In addition, the heterogeneity of effects may provide valuable information
regarding the effectiveness of this treatment and help companies or governments to personalize
their policies and strategies. Unfortunately, Heiler & Knaus (2021) show that binarizing
multi-treatments can lead to a misleading estimation of heterogeneous effects across different
levels. Consequently, a detailed study of heterogeneous treatment effects is required under
multi-valued treatments.
Finally, randomized controlled trials (RCTs) are not always conducted, and the ground truth
of treatment effects cannot be observed and is rarely available. This fact makes heterogeneous
treatment effects estimation different from a standard supervised learning problem (Alaa
& van der Schaar, 2018). Therefore, it is challenging to assess treatment effect estimators’
performances and select the best model with standard point-wise error metrics such as Mean
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5.2. Meta-learners in the multi-treatment regime

Squared Errors.
In Chapter 5, we study the problem of estimating Heterogeneous Treatment Effects, also known
as Conditional Average Treatment Effects (CATEs), when the treatment is multi-valued. In
Section 5.2, following the same taxonomy as Curth & van der Schaar (2021a); Knaus et al.
(2020a), we establish meta-learners for Conditional Average Treatment Effects under multi-
valued treatment. In Section 5.3, we analyze the error bounds of pseudo-outcome meta-learners
and show the advantage of the X-learner. In Section 5.4, we present a semi-synthetic dataset
that will serve to validate Causal Inference methods. We end this chapter by presenting
some numerical studies and experiments showing the performances of the X-learner in the
multi-valued setting.

5.2 Meta-learners in the multi-treatment regime

We recall the multi-treatment setting as defined in Section 4.5: we consider a treatment variable
T that can takes K + 1 ordered possible levels in T = {t(0), t(1), . . . , t(K)}. We suppose that we
have observe i.i.d sample of n units Dobs = (Dobs,i)ni=1 = (x(i), ti, yi)ni=1 where x(i) denotes a
vector of covariates with values in D, ti denotes the assigned treatment to unit i with possible
values in T and yi denotes the outcome of the unit i. We suppose finally the existence of
potential outcomes (Y (t))t∈T and the causal assumptions (4.5.1-4.5.2). We are interested in the
estimation of the Conditional Average Treatment Effect (CATE) between two levels t and s:

τt,s(x) = E[Y (t)− Y (s) |X = x]. (5.1)

To make notations more simple in the following, we consider CATEs (τk)Kk=1 estimation problem
between t(k) and t(0) for k = 1, . . . ,K such that

τk(x) = E[Y (t(k))− Y (t(0)) |X = x]. (5.2)

To tackle the problem of estimating CATEs under multi-valued treatment, we generalize the
notion of meta-learners to derive consistent estimators of the CATE. This task can be achieved
either by modelling the CATE directly in one step or two steps: by decomposing it into
regularized regression problems or by addressing a minimization problem with respect to an
appropriate loss function. Moreover, all considered meta-learners below, except the R-learner,
can support any supervised regression Machine Learning method (e.g. random forest, gradient
boosting methods).
In the following, we follow a similar taxonomy of CATEs estimators as Curth & van der Schaar
(2021a); Knaus et al. (2020a). Namely, direct plug-in (one-step) meta-learners, pseudo-outcome
(two-step) meta-learners and Neyman-Orthogonality based learners (R-learner).

Direct plug-in meta-learners

In this subsection, we present direct plug-in meta-learners, also known as one-step learners that
estimate the CATE in (5.1) by targeting directly the observed data Dobs. They are the naive
extension of the T- and S-learners in the binary case.
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5.2. Meta-learners in the multi-treatment regime

T-learner with multiple treatments. T-learner is a naive approach to estimating CATEs. It
consists on estimating the two conditional response surfaces µt(x) = E(Y (t) | X = x) using
St = {i, ti = t} for t ∈ {t(k), t(0)} as in the binary case. The T-learning approach does not
account for the interaction between treatment T and the outcome Y and creates different
models for different treatments.
Despite its naivety, the T-learning approach may suffer from selection bias (Curth & van der
Schaar, 2021b), that is, when the outcome models µt are estimated with respect to the wrong
distribution of the training sample. To overcome this issue in the estimation of µt while sampling
(Dobs,i)i∈St , we use Importance Sampling (Hassanpour & Greiner, 2019), and we show the
following proposition.

Proposition 5.2.1. For a treatment level t ∈ T , the expected squared error of the estimator µ̂t
on the outcome surface µt satisfies:

EX∼p(·)
[
(µ̂t(X)− µt(X))2] = EX∼p(·|T=t)

[P(T = t)
r(t,X)

(
µ̂t(X)− µt(X)

)2]
. (5.3)

where p(·) is the marginal distribution of X and p(· | T = t) is the conditional distribution of
X given T = t.

Proof. In Appendix B.1. ■

The proposition 5.2.1 highlights the fact that µt should be estimated by minimizing the expected
squared error on the nominal weighted distribution.
Therefore, the T-learner in the multi-treatment setting can be built as follows

• For t ∈ {t(k), t(0)}, consider the sample (Dobs,i)i∈St and estimate the conditional response
µ̂t by minimizing the expected squared error of the estimator µ̂t.

• Compute the CATE between two treatment levels t(k) and t(0) by:

τ̂
(T)
k (x) = µ̂t(k)(x)− µ̂t(0)(x). (5.4)

S-learner with multiple treatments. Using the identification of the CATE by assumptions
(4.5.1)-(4.5.2), we can write:

τk(x) = E(Yobs | T = t(k),X = x)− E(Yobs | T = t(0),X = x). (5.5)

Therefore, instead of splitting the dataset and building separate models as in T-learning, one
can consider a single model built from the whole dataset and naturally define the S-learner in
case of the multi-treatment setting as

• Regress Yobs on the treatment T and the covariates X by a single model µ̂ using Dobs.
• Estimate the CATE between two treatment levels t(k) and t(0) by:

τ̂
(S)
k (x) = µ̂(x, t(k))− µ̂(x, t(0)). (5.6)

Obviously, including the treatment T as an input feature and sharing some information between
covariates X and T may provide better predictions. However, this result is conditioned by the
ability of the regression model to capture and distinguish contributions of both X and T on
Yobs.
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5.2. Meta-learners in the multi-treatment regime

In the binary cases, the S-learner is usually considered a good choice Curth & van der Schaar
(2021b); Künzel et al. (2019) and has shown its performance. Although, as we will see in Section
5.5, its results are very sensitive to the base learner, particularly for random forests, because it
cannot capture the correct effect of the treatment variable.
Note that the S-learning approach may also suffer from confounding and regularization biases
(Chernozhukov et al., 2018; Hahn et al., 2020) when estimating the counterfactual response
model µ̂.

Pseudo-outcome meta-learners

Despite Proposition 5.2.1 for overcoming selection bias, it implies learning in small samples,
which may harm the quality of the meta-learner when St becomes small for a certain t. This
is all the more critical as the number K of treatments increases. An alternative (and usual)
possibility for mitigating this bias is to consider some specific representations of the observed
outcome Yobs, called pseudo-outcome. These representations incorporate nuisance components
that generally include valuable information such as the dependence between covariates X and
T (i.e. the GPS) and the occurrence of a particular treatment assignment. Further, regressing
the pseudo-outcome produces a new regularized estimator that predicts the right treatment
effect instead of predicting a biased effect while keeping the same sample size as Yobs.

M-learner with multiple treatments. Similarly to the binary case, the M-learner is inspired
from the Inverse Propensity Weighting (IPW) transformation to estimate causal effects by
standardizing the outcome on the GPS.
In the multi-valued setting, for k = 1, . . . ,K, we define the modified pseudo-outcome ZMk in
the multi-treatment regime using the IPW representation as:

ZMk = 1{T = t(k)}
r(t(k),X)

Yobs −
1{T = t(0)}
r(t(0),X)

Yobs, (5.7)

where r(t,x) = P(T = t |X = x) is the GPS.

Proposition 5.2.2. Under the assumptions (4.5.1)-(4.5.2)

E(ZMk |X = x) = τk(x). (5.8)

Proof. For t ∈ T , we consider YM
t the modified IPW representation of Yobs in such way that

ZMk = YM
t(k) − YM

t(0) . By noticing that 1{T = t}Yobs = 1{T = t}Y (t), we have for x ∈ D:

E(YM
t |X = x) = E

[1{T = t}
r(t,X) Yobs |X = x

]
= 1
r(t,x)E [1{T = t}Y (t) |X = x]

= 1
r(t,x)E

[
1{T = t} |X = x

]
E [Y (t) |X = x] (by Assumption 4.5.1)

= E(Y (t) |X = x) = µt(x).
(5.9)

Thus E(ZMk |X = x) = µt(k)(x)− µt(0)(x) and we get the desired result. ■
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5.2. Meta-learners in the multi-treatment regime

Unfortunately, the M-learner is very sensitive to the estimation of the GPS and suffers from
high variance, even when the propensity score is correctly specified or known and constant
(Curth & van der Schaar, 2021a). Moreover, the modified pseudo-outcome can often be null,
leading to an over-fitting problem as the base-learner may try to predict zero instead of τk.
Again, this becomes more critical as the number K of treatments increases as some values of
the GPS r can be smaller than 1/K.

DR-learner with multiple treatments. Requiring the consistency of the GPS estimator may
be hard to get a correct estimation of CATEs. The Doubly Robust (DR) method (Kennedy,
2020; Kennedy et al., 2017; Robins et al., 1994) is helpful in overcoming the problem of the
model’s misspecification by estimating two components, the outcome model µt and the GPS r,
instead of relying on the correctness of one (and the only) parameter.
Let µ denote an arbitrary model of the outcome µ, let r denote also an arbitrary model of
the GPS r, we assume that r respects also Assumption (4.5.2). For k = 1, . . . ,K, we define
doubly-robust pseudo-outcome ZDRµ,r,k as

ZDRµ,r,k = Yobs − µT (X)
r(t(k),X)

1{T = t(k)} − Yobs − µT (X)
r(t(0),X)

1{T = t(0)}

+ µt(k)(X)− µt(0)(X).
(5.10)

Proposition 5.2.3. Let ZDRµ,r,k be the Doubly-Robust pseudo-outcome defined in (5.10), then
under the assumptions (4.5.1)-(4.5.2)

E(ZDRµ,r,k |X = x) = τk(X), (5.11)

if either the outcome model or the propensity model is well-specified, i.e. µt(X) = µt(X) and
µt(0)(X) = µt(0)(X) almost surely, or r(T,X) = r(T,X) almost surely.

Proof. Let µ denote an arbitrary model of the outcome µ, and let r also denote an arbitrary
model of the GPS r satisfying the overlap assumption 4.5.2. Similarly to the previous proof,
we consider Y DR

t the AIPW representation of Yobs such that ZDRµ,r,k = Y DR
µ,r,t(k) − Y DR

µ,r,t(0) , and
we show that

E(Y DR
µ,r,t |X = x) = E

[
Yobs − µT (X)

r(t,X) 1{T = t}+ µt(X) |X = x

]
= E

[
Y (t)− µt(X)

r(t,X) 1{T = t}+ µt(X) |X = x

]
= E [Y (t) |X = x] + E

[
Y (t)− µt(X)

r(t,X) 1{T = t} − Y (t) + µt(X) |X = x

]
= µt(x) + ηt(x),

(5.12)
with ηt(x) = E

[
1{T=t}−r(t,X)

r(t,X)
(
Y (t)− µt(X)

)
|X = x

]
.

We show that the second term ηt is null under the double robustness of the model, that is, if
one of the nuisance components is consistent.
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5.2. Meta-learners in the multi-treatment regime

• If the propensity model r is correctly specified (i.e. r(T,X) = r(T,X) almost surely) but
the outcome model is misspecified, we would have

ηt(x) = E
[1{T = t} − r(t,X)

r(t,X) (Y (t)− µt(X))
∣∣X = x

]
= E

[
E
[1{T = t} − r(t,X)

r(t,X) (Y (t)− µt(X)) | Y (t),X
]∣∣X = x

]
= E

[
(Y (t)− µt(X))E

[1{T = t} − r(t,X)
r(t,X) | Y (t),X

]∣∣X = x

]
= E

[
(Y (t)− µt(X))E[1{T = t} | Y (t),X]− r(t,X)

r(t,X)
∣∣X = x

]
= E

[
(Y (t)− µt(X))E[1{T = t} |X]− r(t,X)

r(t,X)
∣∣X = x

]
(by Assumption 4.5.1)

= E
[
(Y (t)− µt(X))r(t,X)− r(t,X)

r(t,X)
∣∣X = x

]
= 0,

(5.13)
where the last line holds by the definition of the Generalized Propensity Score r(t,x).

• If the propensity model is misspecified, but the outcome model is correctly specified (i.e.
µ(T,X) = µ(T,X) = E(Yobs | T,X) almost surely), we would have

ηt(x) = E
[1{T = t} − r(T,X)

r(T,X)
(
Y (t)− E(Yobs | T = t,X)

)
|X = x

]
= E

[
E
[1{T = t} − r(T,X)

r(T,X)
(
Y (t)− E(Yobs | T = t,X)

)∣∣T,X]
|X = x

]
= E

[1{T = t} − r(t,X)
r(t,X)

(
E [Y (t) | T,X]− E(Yobs | T = t,X)

)
|X = x

]
= E

[1{T = t} − r(t,X)
r(t,X) E

( [
Yobs

∣∣T = t,X
]
− E[Yobs | T = t,X]

)∣∣X = x

]
= 0.

(5.14)

Note that assuming µt = µt = E(Yobs | T = t,X) is sufficient to prove that η(x) = 0. The
result holds similarly for Y DR

µ,r,t(0) . Therefore, the consistency of the DR-learner is achieved if
the propensity score is well-specified or if the potential outcome model is well-specified (at least
for t(k) and t(0)). ■

Therefore, the consistency of the DR-learner is achieved if at least one of the components (the
propensity score model or outcome models) is well-specified. It also has the advantage of having
a small asymptotic variance compared to the M-learner when the propensity score model is
correct, as it will be shown in Section 5.5.

X-learner with multiple treatments. The X-learner Künzel et al. (2019), also known as
Regression-Adjustment (RA)-learning in a developed version by Curth & van der Schaar
(2021a), has been proposed as an alternative to T-learning in the case where one treatment
group is over-represented. The idea consists of a cross procedure of estimation between
observations Yobs and outcome models when one of the treatments occurs.
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5.2. Meta-learners in the multi-treatment regime

In the multi-treatment regime, for k = 1, . . . ,K, we define the Regression-Adjustment pseudo-
outcome ZXk as

ZXk = 1{T = t(k)}(Yobs − µt(0)(X)) +
∑
l ̸=k

1{T = t(l)}×

(µt(k)(X)− Yobs) +
∑
l ̸=k

1{T = t(l)}(µt(l)(X)− µt(0)(X)).
(5.15)

Proposition 5.2.4. Under the assumptions (4.5.1)-(4.5.2)

E(ZXk |X = x) = τk(x). (5.16)

Proof. By direct calculations, we show that

E(ZXk |X = x) = E
[
1{T = t(k)}Y (t(k)) |X = x

]
− r(t(k),x)µt(0)(x) +

∑
l ̸=k

r(t(l),x)
(
µt(k)(x)

(5.17)

− E
[
1{T = t(l)}Y (t(l)) |X = x

] )
+
∑
l ̸=k

r(t(l),x)(µt(l)(x)− µt(0)(x))

(5.18)
= r(t(k),x)µt(k)(x)− r(t,x)µt(0)(x) +

∑
l ̸=k

(
r(t(l),x)µt(x)− r(t(l),x)µt′(x)

)
(5.19)

+
∑
l ̸=k

r(t(l),x)(µt(l)(x)− µt(0)(x)) (by Assumption 4.5.1)

(5.20)
= r(t(k),x)µt(k)(x)− r(t(k),x)µt(0)(x) +

∑
l ̸=k

r(t(l),x)µt(k)(x)−
∑
l ̸=k

r(t(l),x)µt(0)(x)

(5.21)

= (µt(k)(x)− µt(0)(x))
(
r(t(k),x) +

∑
l ̸=k

r(t(l),x)
)

(5.22)

= µt(k)(x)− µt(0)(x) = τk(x). (5.23)

■

Remark 5.2.5. The X-learning approach provides also a new method for estimating the difference
of Average Dose-Response Function (ARDF) η(t) = E(Y (t)− Y (t(0))).

In opposition to the DR-learner, the pseudo-outcome ZXk incorporates only potential outcome
models and does not imply the GPS r. Consequently, the X-learner is likely to have the smallest
variance compared to other meta-learners when the GPS takes some extreme values (i.e. the
overlap assumption (4.5.2) is not sufficiently respected). However, it requires the consistency of
all components (µ̂t)t∈T to estimate the CATE correctly.
The algorithm 2 summarizes CATEs estimation using the previous meta-learners. The
"Transformation" function stands for the pseudo-outcome modification that has been applied to
Yobs for the M-, DR- and X-learning approaches.
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5.2. Meta-learners in the multi-treatment regime

Algorithm 2 Pseudo-outcome meta-learning estimation
Input: data (x(i), ti, yi), level t, model (τk)Kk=1, Components r̂, µ̂·.
if Components not provided then

Estimate r̂ by regressing T on X.
Estimate µ̂· by T-learning or S-learning

end if
for k = 1, . . . ,K do
Zk,i = Transformation(t(k), x(i), ti, yi, r̂, µ̂·)
Regress Zk on X using τk.

end for
Output: Learned model (τ̂k)Kk=1.

In the estimation phase, three main approaches are possible to learn the nuisance components
(r and µ) and then estimate the τk, namely, Full-Sample, Sample-Split and Cross-Fit methods
(Okasa, 2022). This chapter does not discuss estimation procedures and adopts the Full-Sample
strategy.

R-learning approach

The R-learner is based mainly on the Robinson (1988) decomposition to provide a flexible
estimator avoiding regularization bias, with strong convergence rates. Principally, the R-learner
achieves approximately asymptotic error rates as an oracle learner knowing the nuisance
parameters perfectly.
The following proposition, which is slightly different from the work of Kaddour et al. (2021),
aims to generalize the Robinson (1988) representation in the multi-treatment setting without
assuming Product Decomposition of Yobs.

Proposition 5.2.6. In the multi-treatment regime, let ϵ be the outcome model error

ϵ = Yobs −
∑
t∈T

1{T = t}µt(X) = Yobs − µT (X). (5.24)

Then ϵ satisfies E(ϵ | T,X) = 0 (Neyman Orthogonality) and the decomposition

ϵ = Yobs −m(X)−
K∑
k=1

(
1{T = t(k)} − r(t(k),X)

)
τk(X), (5.25)

where m(x) = E(Yobs |X = x) is the observed outcome model and r(t,x) = P(T = t |X = x)
is the GPS.

Proof. We show first the Neyman-Orthogonality propriety, i.e. E (ϵ | T,X) = 0. Indeed, for
t ∈ T and x ∈ D, we have

E
[
ϵ | T = t,X = x

]
= E

[
Yobs − µT (X) | T = t,X = x

]
= E

[
Y (t)− µT (X) | T = t,X = x

]
= µt(x)− µt(x) = 0.

(5.26)
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Thus, the observed outcome model satisfies:

E(Yobs |X = x) = E
[
ϵ+

K∑
k=0

1{T = t(k)}µt(k)(X) |X = x
]

= E
[
E[ϵ | T,X] |X = x

]
+

K∑
k=0

E
[
1{T = t(k)} |X = x

]
µt(k)(x)

=
K∑
k=0

µt(k)(x)r(t(k),x) = µt(0)(x)r(t(0),x) +
K∑
k=1

µt(k)(x)r(t(k),x)

= µt(0)(x)
[
1−

K∑
k=1

r(t(k),x)
]

+
K∑
k=1

µt(k)(x)r(t(k),x)

= µt(0)(x) +
K∑
k=1

r(t,x) [µt(k)(x)− µt(0)(x)]

= µt(0)(x) +
K∑
k=1

r(t(k),x)τk(x) = m(x).

(5.27)

By gathering both quantities :

Yobs −m(X) =
K∑
k=0

1{T = t(k)}µt(k)(X)− µt(0)(X)−
K∑
k=1

r(t(k),X)τk(X) + ϵ

= 1{T = t(0)}µt(0)(X) +
K∑
k=1

1{T = t(k)}µt(k)(X)− µt(0)(X)−
K∑
k=1

r(t(k),X)τk(X) + ϵ

=
(
1{T = t(0)} − 1

)
µt(0)(X) +

K∑
k=1

(1{T = t(k)}µt(k)(X)− r(t(k),X)τk(X)) + ϵ

=
K∑
k=1

(1{T = t(k)}µt(k)(X)− r(t(k),X)τk(X))−
K∑
k=1

1{T = t(k)}µt(0)(X) + ϵ

=
K∑
k=1

(1{T = t(k)}µt(k)(X)− 1{T = t(k)}µt(0)(X)− r(t(k),X)τk(X)) + ϵ

=
K∑
k=1

[
1{T = t(k)} − r(t(k),X)

]
τk(X) + ϵ.

(5.28)
Therefore, we obtain the generalized Robinson decomposition for the multi-treatment regime. ■

As described in the original paper of Nie & Wager (2020), the main interest of the previous
decomposition relies on forming a pseudo-outcome error, implying only the regression of observed
quantities on X (i.e. the observed outcome model m and the GPS r), that isolates CATEs
τk for all k = 1, . . . ,K. The generalized Robinson decomposition is relevant for two reasons.
Firstly, setting up an error to minimize allows us to target CATEs models τk directly Kaddour
et al. (2021). Secondly, requiring the observed outcome model is less restrictive than requiring
potential outcome models µ. as in the DR- and X- pseudo-outcomes.
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In the multi-treatment regime, considering the mean squared error of ϵ as a loss function and
minimizing it implies estimating K models {τ̂ (R)

k }Kk=1 simultaneously such that

{τ̂ (R)
k }

K
k=1 = argmin{τk}K

k=1∈F
1
n

n∑
i=1

[ (
yi − m̂(x(i))

)
−

K∑
k=1

(
1{ti = t(k)} − r̂(t(k),x(i))

)
τk(x(i))

]2
,

(5.29)

where m̂ (respectively, r̂) is an estimator of m (respectively, r) and F is the space of candidate
models [{τk}Kk=1].
Still, the major difficulty with our R-learning approach in the multi-treatment regime comes from
the fact that Problem (5.29) cannot be written similarly as weighted supervised learning problem
with a specific pseudo-outcome. Therefore, only parametric families F can be considered in the
multi-treatment regime.

Proposition 5.2.7. Let us assume that τk belongs to the family of linear regression models.
Then Problem (5.29) admits at least a solution given by the Ordinary Least Squares estimator.

Proof. For k = 1, . . . ,K, we assume that τk belongs to the family of linear regression models
such that:

F =
{{
τk(x) := βk,0 +

p−1∑
j=1

βk,jfj(x)
}K
k=1 / βk = (βk,0, . . . , βk,p−1)⊤ ∈ Rp

}
. (5.30)

fj are predefined functions (e.g. polynomial functions). It is also possible to use a matrix
notation and write τk(X) = Fβk where F = (fj(x(i))) ∈ Rn×p assumed to be full rank matrix
rank(F) = p ≤ n.
Let Y = (Y i)ni=1 and T k = (T i,k)ni=1 such that Y i = yi − m̂(x(i)) and T i,k = 1{ti =
t(k)} − r̂(t(k),x(i)). Let ϵ = (ϵi)ni=1 denote the vector of errors ϵ obtained for the generalized
Robinson (1988) decomposition in Proposition 5.2.6.
We show immediately that L, the loss function associated with the mean squared error of ϵ, is
quadratic with respect to β. Indeed,

L({τk}t̸=t(0)) = 1
n
ϵ⊤ϵ = 1

n

(
Y −

K∑
k=1

T k ⊙ (Fβk)
)⊤(

Y −
K∑
k=1

T k ⊙ (Fβk)
)

= 1
n

Y ⊤
Y − 2

K∑
k=1

Y
⊤(
T k ⊙ (Fβk)

)
+

K∑
k,k′=1

(
T k ⊙ (Fβk)

)⊤ (
T k′ ⊙ (Fβk′)

)
= 1
n

(
Y

⊤
Y − 2

K∑
k=1

Y
⊤DTk

Fβk +
K∑

k,k′=1
β⊤
k F⊤DTk

DTk′
Fβk′

)
,

(5.31)
where ⊙ is the Hadamard product (element-wise product). The last line holds because
T k ⊙ (Fβk) = DTk

Fβk with DTk
is the diagonal matrix of the vector T k = (T i,k)ni=1
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By differentiating ∂L/∂βk = 0 for k = 1, . . . ,K :
−a1 + B1β̂1 +∑K

k=2 C1kβ̂k = 0
...

...
... = 0

−aK +∑K
k=1 CKkβ̂k + BKβ̂K = 0

(5.32)

⇐⇒


B1 C12 · · · C1K
C21 B2 · · · C2K

...
... . . . ...

CK1 CK2 · · · BK




β̂1
β̂2
...

β̂K

 =


a1
a2
...

aK

 , (5.33)

where

aj = 1
n

F⊤DT j
Y ∈ Rp, (5.34)

Bj = 1
n

F⊤D2
T j

F ∈ Rp×p, (5.35)

Cij = 1
n

F⊤DT i
DT j

F ∈ Rp×p. (5.36)

Let β =
(
β⊤

1 , . . . ,β
⊤
K

)⊤
∈ RK×p and consider the block matrix A defined as.

A =


B1 C12 · · · C1K
C21 B2 · · · C2K

...
... . . . ...

CK1 CK2 · · · BK

 . (5.37)

The matrix A is real symmetric and satisfies:

β⊤Aβ =
∑

1≤k,l≤K
β⊤
k F⊤DTk

DT l
Fβl

=
∥∥∥∥ K∑
k=1

DTk
Fβk

∥∥∥∥2
≥ 0.

(5.38)

This result shows that A is positive semi-definite, all its eigenvalues are nonnegative and also
proves the existence of a minimizer β̂ to the loss function L.
The optimal solution β̂ to Problem (5.29) can be given by

β̂ = A+a, (5.39)

where A+ is the Moore–Penrose inverse of A and a =
(
a⊤

1 , . . . ,a
⊤
K

)⊤
.

Remark 5.2.8. If DTk
βk /∈ Im(F)⊥ for all k ∈ {1, . . . ,K}, then

∑K
k=1 DTk

βk /∈ Im(F)⊥ =
Ker(F⊤) which is sufficient to prove that A is positive definite. In this case, the system in
(5.32) admits a unique solution such that
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β̂ =


β̂1
β̂2
...

β̂K

 =


B1 C12 · · · C1K
C21 B2 · · · C2K

...
... . . . ...

CK1 CK2 · · · BK


−1 

a1
a2
...

aK

 . (5.40)

■

Proposition 5.2.9. Let us assume that τk belongs to the Reproducing Kernel Hilbert Space
(RKHS) with a reproducing kernel k and hyperparameters (σ2,θ); then Problem (5.29) admits
at least a solution, whose regression coefficients are given by Ordinary Least Squares estimator
and optimal hyperparameters are solved numerically.

Proof. In this proof, we introduce the Kernel regression framework as developed by Schölkopf &
Smola (2002). This framework is based on considering the Reproducing Kernel Hilbert Spaces
(See Subsection 2.2 in Chapter 2).
The Hilbert space H is defined as a Reproducing Kernel Hilbert Space (RKHS) Berlinet &
Thomas-Agnan (2004) with reproducing Kernel k because it verifies, for any f ∈ H and x ∈ D,

⟨f,k(x, ·)⟩H = f(x), (5.41)

where ⟨·, ·⟩H is the dot product associated to the Hilbert space H.
It is shown by the Representer theorem (Schölkopf & Smola, 2002) that any minimizer to the
empirical risk of the function f ∈ H admits a representation of the form

f̂(x) =
n∑
i=1

αik(x(i),x), (5.42)

where α ∈ Rn.
In the following, we consider the Matérn anisotropic geometric kernel kσ2,θ = σ2rθ as defined in
(2.26) and we assume that, for k = 1, . . . ,K, each τk belongs to H, the RKHS with reproducing
kernel kσ2,θ in such way that

F =
{{
τk(x) =

n∑
i=1

αk,ikσ2,θ(x(i),x)
}K
k=1 / αk = (αk,1, . . . , αk,n)⊤ ∈ Rn

}
. (5.43)

Similarly to linear regression models, it is possible to use a matrix notation τtk(X) = Kαk

where K = (kσ2,θ(x(i),x(j)))1≤i,j≤n is the Gram matrix of kσ2,θ.
For a fixed hyperparameter (σ2,θ), we prove immediately that the R-learning problem in
(5.29) is similar to a linear regression problem. Therefore, by Proposition 5.2.7, the coefficients
α = (α1, . . . ,αK) satisfy

α̂σ2,θ = A+
σ2,θaσ2,θ, (5.44)

where A+
σ2,θ is the Moore–Penrose inverse of Aσ2,θ and aσ2,θ =

(
a⊤

1 , . . . ,a
⊤
K

)⊤
such that

(aσ2,θ)j = 1
n

K⊤DT j
Y ∈ Rn, (5.45)
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(Bσ2,θ)j = 1
n

K⊤D2
T j

K ∈ Rn×n, (5.46)

(Cσ2,θ)ij = 1
n

K⊤DT i
DT j

K ∈ Rn×n. (5.47)

Finally, by considering τ̂k,σ2,θ(x) = ∑n
i=1(α̂k,σ2,θ)i kσ2,θ(x(i),x), one can obtain the optimal

hyperparameters (σ2,θ) by solving the problem:

(σ̂2, θ̂) = arg min
(σ2,θ)

{ 1
n

n∑
i=1

[ (
yi − m̂(x(i))

)
−

K∑
k=1

(
1{ti = t(k)} − r̂(t(k),x(i))

)
τ̂k(x(i))

]2
. (5.48)

This problem admits an explicit solution for σ̂2 by direct calculations as in the proof of
Proposition 5.2.7 such that

σ̂2(θ) =
∑K
k=1 Y

⊤(DTk
Rθ

)
α̂k,σ2,θ∑

k,k′=1 α̂⊤
k,σ2,θ

(
R⊤

θ DTk
DTk′

Rθ

)
α̂k′,σ2,θ

, (5.49)

where DTk
is the diagonal matrix of the vector T k = (T i,k)ni=1 and Rθ = (rθ(x(i),x(j)))1≤i,j≤n.

The optimal length-scale vector θ̂ can be obtained numerically by running, for example, a
multistart gradient descent algorithm or multistart BFGS method.

θ̂ = arg min
θ

{ 1
n

n∑
i=1

[ (
yi − m̂(x(i))

)
−

K∑
k=1

(
1{ti = t(k)} − r̂(t(k),x(i))

)
τ̂k(x(i))

]2
. (5.50)

■

We note that the kernel regression method is heavy to solve (cost of O(n3K3) at each iteration).
Thus, we do not present its results in Section 5.5 and limit ourselves only to R-learners derived
from linear regression.
In recent work, Zhang et al. (2022) demonstrate that the generalized R-learner suffers from the
non-identifiability of the generalized R-loss function in (5.29). In other words, minimizing the
loss function does not uniquely identify CATEs models (τk)Kk=1 and leads to poor estimation
performance. This statement is observed for continuous treatments but seems to hold for
multi-treatments. Zhang et al. (2022) suggest therefore T-identification, based on Tikhonov
et al. (1995) regularization, to get over this problem of identification. We did not consider this
regularization but our numerical results in B.4 confirm that, in the majority of simulations, the
R-learner fails to estimate CATEs (τk)Kk=1.

5.3 Error estimation of pseudo-outcome meta-learners.

Given their nature, pseudo-outcome meta-learners need to estimate component parameters
on the same data Dobs. Unfortunately, some pseudo-outcomes representations may lead to
higher variance (i.e. expected squared error) and poor performance in how these components
intervene.
In this section, we propose to analyze the (upper bounds) error estimation of each pseudo-
outcome. To do so, we will make the assumptions below:
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Assumption 5.3.1. We assume that the outcomes Y (t) are generated from a function f :
R× Rd → R respecting the causal assumptions (4.5.1-4.5.2) such that

Y (t) = f(t,X) + ϵ, (5.51)

where ϵ ∼ N (0, σ2) is an additive noise.

Assumption 5.3.2. We assume the existence of β∗
t ∈ Rp such that, for all t ∈ T and x ∈ D

f(t,x) =
p−1∑
j=0

β∗
t,jfj(x). (5.52)

where fj are some predefined basis functions (e.g. polynomial functions fj(x) = (xjk)1≤k≤d).
We assume in addition that, for all j ∈ {1, . . . , p}, fj(X) has all possible finite moments, i.e.
fj(X) ∈ La for a > 1.

Assumption 5.3.3. We assume that the function f is bounded, i.e. there exists C > 0 such that

∀t ∈ T ,∀x ∈ D : |f(t,x)| ≤ C. (5.53)

Under these three assumptions, the CATE τk can be written as:

τk(x) =
p−1∑
j=0

(β∗
t(k),j − β

∗
t(0),j)fj(x) =

p−1∑
j=0

β∗
k,jfj(x), (5.54)

where β∗
k = (β∗

k,j)
p−1
j=0 = β∗

t(k) − β∗
t(0) ∈ Rp.

When investigating the pseudo-outcomes Zk that we have considered for the M-, DR- and
X-learners, one can see that these pseudo-outcomes have a linear form with respect to Yobs.
Therefore, for k = 1, . . . ,K, we write Zk as

Zk = At(k)(T,X)Yobs +Bt(k)(T,X), (5.55)

where At(k)(T,X) and Bt(k)(T,X) are given for each pseudo-outcome meta-learner.
The regression coefficients β̂k are given by the Ordinary Least Squares (OLS) method

β̂k =
(
H⊤H

)−1H⊤zk, (5.56)

where zk = (Zk,i)1≤i≤n and H = (Hij) ∈ Rn×p is the regression matrix.

Theorem 5.3.4. Under Assumptions (5.3.1-5.3.3), the OLS estimator β̂k has a bias B
(
β̂k
)

=
E(β̂k − β∗

k) that is null if the nuisance parameters are well-specified, and a covariance matrix
V
(
β̂k
)

= C/n, whose terms Cij, for all ϵ > 0, are bounded by:

|Cij | ≤



EM = O
(

1
r1+ϵ

min

)
for the M-learner,

EDR = O
(

err(µ̂
t(k) )+err(µ̂

t(0) )
r1+ϵ

min

)
for the DR-learner,

EX = O
(
K2∑

l ̸=k err(µ̂t(l))
)

for the X-learner,

(5.57)

where err(µ̂t) = E
[(
f(t,X)− µ̂t(X)

)2] is the expected mean squared error of µ̂t.
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Proof. In Appendix B.2. ■

Theorem 5.3.4 is valuable because it allows comparing error estimation of pseudo-outcome
meta-learners under different scenarios. Following this theorem, it appears that:

M-learner. Without surprise, the M-learner has the largest variance, and its error upper
bound is constant.

M- and DR-learners. As the GPS is present in the denominator of the upper bounds of both
M-learners and DR-learners, the variance is likely to be high when there is a lack of overlap in
the propensity score, that is, rmin is close to 0. Besides, when the number of treatments K
increases, rmin becomes more and more smaller by a mechanical effect of rmin ≤ 1/K. One can
expect consequently that the performances of M- and DR-learners decrease for larger K.

X-learner. The upper bounds of the X-learner and DR-learner depend on the quality of the
estimated potential outcomes models µ̂. One can expect that the more precise outcome models,
the lower the variance.

M-learner vs DR-learner. If the potential outcome models are well-specified, the variance’s
upper bound is expected to be lower for the DR-learner. Controversially, suppose the outcome
models are misspecified (but the propensity score is well-specified). In that case, there is no
guarantee that the DR-learner would perform better than M-learner, and it may perform even
worse, as we will see in some numerical results in Table B.6 in Appendix B.4.

X-learner vs M-learner. The X-learner is likely to have low variance if the expected squared
error of all outcome models µ̂· is small enough and if some conditions on K and rmin hold.
More precisely, the idea is to take both errors’ upper bounds and obtain properly conditions
under which the X-learner may perform less than the M-learner.

X-learner vs DR-learner. It is difficult to anticipate which meta-learner would perform better.
This depends mainly on the expected squared error of µ̂, K and rmin, whom, in some cases,
make the X-learner have less error than the DR-learner, and the opposite in other cases. Still,
numerical results in Appendix B.4 (Tables B.1, B.6, B.8 and B.10) show that the X-learner
outperforms the DR-learner when the nuisance components are well-estimated.

Comparison of meta-learners

We end this subsection by presenting a summary table 5.1 of different meta-learners with their
main advantages and drawback:

5.4 A semi-synthetic dataset for causal inference: simulating
Enhanced Geothermal System with physics-based models

Motivation

The difficulty in evaluating a causal model’s performance in real-world applications motivates
the need to create a semi-synthetic dataset. In this subsection, we consider a multistage
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Table 5.1: Summary table of multi-treatments meta-learners.

Meta-learner Advantages Disadvantages
T-learner ✓ Simple approach Selection bias

Low sample regime
S-learner ✓ Simple approach Confounding effects

Regularization bias
M-learner ✓ Consistency High variance

DR-learner ✓ Consistency High variance
✓ Doubly Robust

X-learner ✓ Consistency Complex expression
✓ Low variance

R-learner ✓ Flexible representation Heavy problem
Non-identifiability

fracturing Enhanced Geothermal System (EGS).

Figure 5.1: Schematic diagram of an EGS system (Li & Lior, 2015).

Enhanced Geothermal Systems (EGS) are geothermal wells that generate geothermal energy by
creating fluid connectivity in low permeability conductive rocks through hydraulic, thermal, or
chemical stimulation. The EGS concept (See Figure 5.1) involves extracting heat by constructing
a subsurface fracture system to which water can be added via injection wells [Geothermal
Technologies Office]. Indeed, rocks are permeable due to slight fractures and pore spaces
between mineral grains, and the injected water is heated by contact with the rock and returns
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to the surface through production wells. Moreover, Enhanced geothermal systems (EGS) have
a high potential for developing and supplying renewable energy sources that are more efficient
and cheaper than traditional hydrocarbon resources (Bhatia, 2014).
For energy companies, the goal is to optimize the design of the geothermal well (fracture spacing,
Lateral Length etc.) to generate the maximum geothermal energy. However, some economic
and operational problems present challenges: On the one hand, if the fractures are too small or
too few, rocks will not be exploited sufficiently. On the other hand, if the number of fractures
in a given rock is too high, the fractures may cool down faster. We would have a costly design
that will not maximize the extracted heat.
We assume that the heat extraction performance of the EGS satisfies the following physical
model:

Qwell = Qfracture × ℓL/d× ηd, (5.58)

where Qwell is heat extraction performance delivered by the well (output), Qfracture is the
unknown heat extraction performance from a single fracture that can be generated using a
complex seven-parameter model, including reservoir characteristics and fracture design, ℓL is
the Lateral Length of the well, d is the average spacing between two fractures and ηd is the
stage efficiency penalizing the individual contribution when fractures are close to each other.
We refer to Figure 5.2 for a graphical description of the EGS and its inputs/output.
Finally, the model in (5.58) respects the unconfoundedness assumption (4.5.1), and we can
control all its variables in the simulations. We note that, in practice, all inputs are continuous
with a given density. However, we discretize these variables in their input space to create a full
factorial design.

Description of the data-set

This section describes the data generating process of our semi-synthetic dataset simulating the
heat delivered by a multistage fracturing EGS. The process involved the creation of a conceptual
reservoir model and modelling multiple wells’ completion scenarios. The output (heat extraction
performance) obtained from physics-based simulation experiments was tabulated with inputs
in the semi-synthetic dataset.
The input data for the model were fabricated to ease confidentiality and non-disclosure
information issues. However, data has been selected from reliable sources such as field
observations, journals and books to be within the range of interest. Doing so allowed the
building of a plain but representative reservoir model that would provide realistic results of an
EGS.
The heat extraction performance from a single fracture (Qfracture) is determined using fracture
length, fracture height, fracture width, fracture permeability, reservoir porosity, reservoir
permeability and pore pressure. Modelling and simulation work were done using preprocessor
and reservoir simulation tools PETREL [Schlumberger] and ECLIPSE [Schlumberger].
The four physical parameters of the fracture were investigated, and the list of values used for
each parameter can be observed in Table 5.2. In the end, 10 × 10 × 2 × 3 = 600 fracture’s
simulation cases have been realized.
To emulate distinct reservoir schemes, it was decided to vary three main parameters; porosity,
permeability and pore pressure. For porosity and permeability, the simulator takes the minimum
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Table 5.2: Fracture parameters and their range of variation for simulations.

Variable Range of variation
Fracture length (ft) [100, 1000] by a step of 100 ft
Fracture height (ft) [50, 500] by a step of 50 ft
Fracture width (in) {0.1, 0.2}

Fracture Permeability (md) {30000, 85000, 19000}

and maximum values and estimates the physical properties across the reservoir. Three different
multipliers were applied to define three (Low, Base and High) scenarios. Concerning pore
pressure, three specific values were defined to simulate under-normal, normal (base) and
overpressure (high) gradient conditions. Therefore, 3 × 3 × 3 = 27 possible scenarios were
defined. Table 5.3 displays the range of minimum and maximum values for the three reservoir
parameters to be varied.

Table 5.3: Reservoir parameters and their range of variation for simulations.

Variable Range of variation
(Kmin,Kmax) (md) {(0.0054, 0.0157), (0.054, 0.157), (0.109, 0.314)}

(Pormin,Pormax) (dec) {(0.0054, 0.0157), (0.054, 0.157), (0.109, 0.314)}
Pore pressure (psi) {5000, 7000, 9000}

By combining different reservoir scenarios with single fracture simulations, we obtained a single
dataset with 16,200 possible cases for a fracture in a reservoir then we simulated the heat
extraction performance for each experiment. Simulation’s results were tabulated in the dataset
"Single_Fracture_Simulation_Cases_16200.csv".
The next step is to define well characteristics (lateral lengths and fracture spacing) to evaluate
the heat extraction performance of the well when reservoir and fracture properties are not
changed.

Table 5.4: Well parameters and their range of variation.

Variable Range of variation
Lateral length (ft) [2000, 14000] by a step of 1000 ft

Fracture spacing (ft) [100, 500] by a step of 100 ft

Regarding the spacing efficiency coefficient, this coefficient was used to model interactions
between fractures and penalize the heat extraction performance of a single fracture in the
presence of other close fractures, that is, when the spacing between two fractures is small.
Indeed, if the fractures are spaced too close, there may not be enough thermal energy in the
rock to heat the water, which decreases the heat extraction efficiency. Modelling this efficiency
led to the efficiency table "Fracture_Efficency.csv" that describes what would be the well’s heat
performance behavior with respect to the fracture spacing selected. Based on this table, one
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Figure 5.2: The Causal DAG associated with the multistage EGS. Nodes in yellowish brown
represent the reservoir characteristics, they can only be simulated, but in reality, we cannot
intervene in these variables. Nodes in Dark green represent the fracture design. Engineers
control them, and intervening in them is possible whenever there is a need to make a new
fracture in the well. Nodes in blue represent a well’s design and can be chosen arbitrarily by
engineers or statisticians. Nodes in black denote the outputs. Qfracture is only given by the
simulator, whereas Qwell is given by the physical model in (5.58). Note that this graph contains
nine nodes, but both Kmin and Kmax represent the same physical parameter K, and the same
remark is valid for Pormin and Pormax.

can interpolate the efficiency to draw the curve (see Figure 5.3) and thus obtain the spacing
efficiency coefficient for any desired value fracture spacing.
The final generation of the semi-synthetic dataset "Main_Dataset.csv" was achieved by
combining two main tables created using the R programming language. This table allows
calculating the heat performance of a well for any lateral length and fracture spacing between
500 ft and 100 ft with the associated spacing efficiency coefficient defined in the efficiency table,
following the physical model in (5.58).
The three datasets are available in the zip file in Supplementary Materials "Semi-synthetic-
EGS.zip". They will also be shared in the following repository for public use.
Finally, we emphasize that the designed methodology applied for this study focused on generating
a semi-synthetic dataset using reservoir numerical simulation and creating a new benchmarking
dataset for comparing and validating causal inference methods. Indeed, following the last step
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Figure 5.3: Cross plot between fracture spacing efficiency and average stage spacing.

of creating the final dataset "Main_Dataset.csv", any user can define different distributions
(with different values) on lateral lengths in the range [2000, 14000] and fracture spacing in
range [100, 500], pick-up the corresponding spacing efficiency coefficients using the curve
drawn in Figure 5.3 and generate a new semi-synthetic dataset by extrapolating them with
"Single_Fracture_Simulation_Cases_16200.csv" dataset.

The creation of a non-randomized biased dataset.

The idea of this step was to create a collection of biased data from the main semi-synthetic
dataset to emulate observational data found in real-world situations. For example, geothermal
wells with larger lateral lengths are likely to have more fractures (expensive wells are located
in better geological areas). The opposite is seen for smaller wells that tend to be associated
with fewer fractures. This situation creates a discrepancy between what engineers expect
from physical models and what they observe in the field data. The biased data, with 9,992
observations, was generated by following the preferential selection strategy from the main
dataset. Figure 5.4 shows the difference between the real heat extraction performance of the
EGS and the observed heat extraction performance on the field: low (under-estimated) heat
performance for small wells and high (over-estimated) heat performance for large wells.

5.5 Experiments and numerical results

We remind that our main goal is to build models able to estimate CATEs as precise as possible
for the in-sample counterfactual prediction (i.e. for the same observed covariates X but different
treatment level T ) but also, ideally, for out-sample counterfactual prediction for decision-making
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Figure 5.4: An illustration of selection bias on the heat performance. Red line: The heat
extraction performance on the main dataset (i.e. Ground Truth Model). Blue line: The heat
performance on the biased dataset (i.e. observed response).

purposes. However, as mentioned in Section 5.2, even the task of in-sample prediction is still
tricky as realizations of the true CATE τk are not observable. Therefore, training our models
on sample Dobs and predicting on the same sample is quite different from standard in-sample
prediction and seems somehow as an out-sample prediction if compared to classical supervised
regression problem.

Metric. In the examples where the potential outcome functions and/or CATEs are a priori
known, the error in estimation is given by mPEHE, the mean of the Precision in Estimation
of Heterogeneous Effect (PEHE) (Hill, 2011; Shalit et al., 2017) defined as the mean squared
error in the estimation of the treatment effect τ̂k, over all possible treatment levels t(k) for
k = 1, . . . ,K:

mPEHE = 1
K

K∑
k=1

PEHE(τ̂k), (5.59)

where PEHE(τ̂k) =
√

1
n

∑n
i=1

(
τ̂k(x(i))− τk(x(i))

)2
.

This metric will be used to compare and identify conditions (sample size n, number of possible
treatments K, the correctness of nuisance parameters and base-learners) under which we can
precisely estimate CATEs. We do not consider here model-fitting of base-learners. More
specifically, all hyperparameters (e.g. number of trees, depth etc.) are fixed to their default
values during all experiments.
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Synthetic datasets: analytical functions in randomized and non-randomized
studies

In this subsection, we begin by empirically evaluating the performances of our meta-learners
when the treatment T is taking K + 1 = 10 possible values in [0, 1] in a RCT setting where the
outcome is a linear model and satisfies:

Y (t) | X ∼ N
(
(1 + t)X,σ2), X ∼ U [0, 1], (5.60)

then, we evaluate meta-learners on the hazard rate outcome:

Y (t) |X ∼ N
(
t+ ∥X∥ exp (−t∥X∥) , σ2), (5.61)

for X ∼ N (0, I5) in a non-randomized setting.

Table 5.5: mPEHE for XGBoost and RandomForest; linear model (5.60) in RCT setting with
n = 2000 units.

Meta-learner XGBoost RandomForest
T-Learner 0.061 0.037
S-Learner 0.029 0.040
M-Learner 1.23 1.15

DR-Learner 0.063 - 0.063 0.060 - 0.060
X-Learner 0.059 - 0.030 0.041 - 0.079

RLin-Learner 0.122 0.112

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).

Table 5.6: mPEHE for XGBoost and RandomForest. Hazard rate model (5.61) in observational
setting with n = 10000 units.

Meta-learner XGboost RandomForest
T-Learner 0.184 0.251

RegT-Learner 0.158 0.253
S-Learner 0.166 0.269
M-Learner 1.56 1.55

DR-Learner 0.151 - 0.171 0.275 - 0.288
X-Learner 0.149 - 0.162 0.270 - 0.286

RLin-Learner 0.235 0.178

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).

To simulate observational data, instead of removing some rows, we propose to create a selection
bias in the data by selecting preferentially only observations with specific characteristics
(see subsection B.3 in Appendix B). This strategy comes in line with the findings and
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5.5. Experiments and numerical results

recommendations of Curth et al. (2021) about creating a biased sub-sample and evaluating
CATE estimators.
The GPS is estimated using gradient boosting models (XGBoost), and the outcome models µt
are either estimated by the T-learning or S-learning approaches. In the following tables and
Appendix B.4, RLin-learner denotes the R-learner with linear regression models in Proposition
5.2.7 with p = 2, the bold font is to indicate the best meta-learner (row) per base-learner
(column).
In Tables 5.5 and 5.6, we find that, as expected, the M-learner predicts poorly. The T-learner
gives better predictions for Random Forest, whereas the S-learner gives better results for
XGBoost. Regularizing T-learner (RegT-Learner) against selection bias (Proposition 5.2.1)
increases its performances. The X- and DR-learners improve the predictions of the S-learner for
XGBoost, but this improvement is not always observable for Random Forests. Unfortunately, the
actual results (and also additional numerical experiments in Appendix B.4) confirm the statement
of Zhang et al. (2022): The RLin-learner fails to identify CATEs optimally. Surprisingly, the
RLin-learner outperforms when combined with Random Forests for the Hazard rate model.
Despite these satisfying results, we highlight the problem of over-fitted gradient boosting models
and Random Forest by comparing them with the linear model in Appendix B.4. This problem
should be taken further while estimating CATEs. We think that using out-sample prediction
supervised models (e.g. Neural Networks) might solve this problem.
Finally, on the one hand, when K increases, the RLin-learner becomes more effective for CATEs
prediction, but the performance of the T-learner becomes compromised, with a slight impact
on other learners. Therefore, we recommend the S-learner’s estimated potential outcome model
when K ≥ 10 for pseudo-outcome meta-learners. On the other hand, having a large sample size
n improves the performances of all meta-learners (except for the M-learner, we do not have any
explanation for this behavior). To conclude, two-step meta-learners are robust when applying
gradient boosting models as base-learner. In particular, the X-learner improves the quality of
one-step meta-learners; when it does not, the differences are very small.

Table 5.7: mPEHE for XGBoost and RandomForest. Heat Extraction model (5.58) in
observational setting.

Meta-learner XGBoost RandomForest
T-learner 0.167 0.154

RegT-Learner 0.153 0.153
S-learner 0.101 0.216
M-learner 1.05 0.907

DR-learner 0.146 - 0.100 0.162 - 0.199
X-learner 0.140 - 0.095 0.175 - 0.209

RLin-learner 0.336 0.338

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).
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5.5. Experiments and numerical results

Semi-synthetic dataset: estimating heterogeneous treatment effects on the
non-randomized biased dataset.

We consider the Lateral Length as treatment T with K+1 = 13 possible values and the covariates
X ∈ R11 are the remaining variables. We also consider a logarithmic transformation of the
heat performance for a meaningful mPEHE, and we normalize the treatment T . Following the
preferential selection, we sample n = 10000 units such that wells with high lateral length are
likely to have larger fractures and vice versa. The GPS is estimated using gradient boosting
models. Table 5.7 resumes the mPEHE for different meta-learners. Most findings of subsection
5.5 remain valid: XGBoost model is generally a better choice than Random Forests (except for
T-learning); The X-learner, followed by DR-learner, outperforms all other learners.
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Figure 5.5: CATEs estimation on the semi-synthetic dataset. Each line represents τk for
k = 1, . . . ,K. a: The ground truth model; b: A biased estimation of CATEs by regressing on

Fracture_length_ft; c: T-learner estimation; d: X-learner estimation.

Finally, Figure 5.5 shows the ground truth model, what one would obtain by regressing only

126



5.6. Conclusion

on fracture length (correlation) and T-, X-learner’s estimation. It demonstrates the ability of
meta-learners, in particular the X-learner, to rebuild the ground truth.

5.6 Conclusion

In this chapter, we investigated heterogeneous treatment effects estimation under multi-valued
treatment. In addition to standard plug-in meta-learners, we considered representations to
build pseudo-outcome meta-learners, and we proposed the generalized Robinson decomposition
to build the R-learner. Using the bias-variance analysis, we conducted an in-depth analysis of
the error’s upper bound of pseudo-outcomes meta-learners. Thanks to this analysis, we were
able to address the advantages and limits of each pseudo-outcome meta-learner. In particular,
we have identified the impact of K on the X-learner and the lower bound rmin on both M-
and DR-learners. Through synthetic and semi-synthetic industrial datasets, we assessed the
performances of different meta-learners in a non-randomized case where some covariates are
confounded with the treatment. We showed, in particular, the ability of the X-learner to
reconstruct the ground truth model. We also highlighted how the choice of base-learner can
affect the quality of CATEs estimation. Precisely, it is recommended to choose gradient boosting
machines rather than random forests.
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CHAPTER 6

Heterogeneous treatment effects estimation:
Theoretical aspects for continuous treatments

6.1 Introduction

Not all causal questions about Causal Inference are binary. Sometimes, answering such questions
implies going further and considering a continuous treatment. The challenge now is to estimate
the treatment effect (response) for each possible level (dose) of the treatment. This is relevant
in many fields (e.g. modelling dose-response in healthcare, evaluating the impact of price
increase on demand or return-in investment etc.) because it allows us to identify the optimal
intervention policy and personalize it for each unit or subgroup of units.
The state-of-the-art of Causal inference (Section 4.5 with continuous treatments) points out
the lack of theoretical and practical guarantees about estimating the dose-response function. In
particular, the heterogeneity of the dose-response (treatment effects) is still unpopular in the
literature on Causal Inference. The majority of works focus more on learning representations
(Harada & Kashima, 2021; Kaddour et al., 2021; Schwab et al., 2020) for graph-structured
treatments or on Machine Learning-based models (Hill, 2011). Furthermore, the notion of
meta-learners is still (except for the contribution of Zhang et al. (2022) to the R-learner)
unknown for continuous treatments.
From a theoretical point of view, these limitations can be justified for many reasons. Indeed,
the causal assumptions for continuous treatments are more restrictive. The unconfoundedness
assumption, for example, requires the conditional independence of all potential outcomes
(Y (t))t∈T to the treatment T whereas only the conditional independence of Y (t) to the indicator
function 1{T = t} was required for the multi-treatment setting. Another example is the overlap
assumption: assuming the conditional density is uniformly bounded away from zero restricts
heavily the set of accepted densities that satisfy this condition (the Gaussian distribution would
be excluded, for example, if the support is R). From a practical point of view, the fundamental
problem of Causal inference (Holland, 1986) would imply an infinite-dimensional missing data
problem. In addition, adjusting selection/confounding bias is extremely difficult for continuous
treatments.
In this chapter, we propose to discuss the extension of meta-learners to continuous treatments:
The T-learning is meaningless for continuous treatments, and the theoretical properties of the
R-learner were already addressed in the paper of Zhang et al. (2022). The focus of the chapter
will be more on pseudo-outcome meta-learners (M-, DR- and X-learners), and we aim to answer
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6.2. Heterogeneous treatment effects estimation under continuous treatments: Set-up

the following question: "Are pseudo-outcome representations worthy for continuous treatment?".
According to our results, the answer seems to be negative, and our conclusion leans towards
the use of a regularized and deconfounded S-learner (Super S-learner) for the estimation of
treatment effects under continuous treatments.
In Section 6.2, we recall the framework of heterogeneous treatment effects estimation with
continuous treatments and the properties of kernels. In section 6.3, using kernel methods, we
propose the extension of pseudo-outcome meta-learners (M-, DR- and X-learners), and we show
their consistency. In section 6.4, we conduct a bias-variance analysis of these meta-learners and
compare their efficiency with a super S-learner. In Section 6.5, we review the main drawback of
generalized R-learner as discussed in the paper of Zhang et al. (2022). Finally, we draw our
conclusion in Section 6.6.

6.2 Heterogeneous treatment effects estimation under
continuous treatments: Set-up

We suppose that we have observed an i.i.d. sample of n units Dobs = (Dobs,i)ni=1 = (x(i), ti, yi)ni=1
where x(i) denotes a vector of covariates with values in D, ti denotes the assigned treatment to
unit i with possible values in T and yi denotes the outcome of the unit i. We assume that the
treatment assignment variable T is continuous with a support T = [tmin, tmax] ⊆ R. Following
the Neyman (1923) potential outcomes framework and the generalization of the Rubin (1974,
1978, 1979, 1990) Causal Model, we suppose the existence of Y (t), the real-valued counterfactual
outcome that would have been observed under a treatment level t ∈ T . We suppose in addition
the causal assumptions (4.5.3-4.5.4) and that yi = Yobs,i = Yi(ti) (consistency assumption). We
are interested in the estimation of the Conditional Average Treatment Effect (CATE) between
two levels t and t0 in T :

τt(x) = E[Y (t)− Y (t0) |X = x]. (6.1)

Following the overlap assumption 4.5.4 and to avoid any possible confusion with the GPS r, we
refer to the conditional density function by fT |X in the whole chapter.
For direct plug-in meta-learners, as discussed in the previous work, the T-learning approach is
unfeasible when the treatment variable is continuous since (Dobs,i)i∈St St = {i, ti = t} is empty
for almost every t and therefore does not contain enough points to estimate the conditional
response surfaces (counterfactual predictions surfaces) µt(x) = E(Y (t) | X = x). Therefore,
only the S-learning approach is considered as a direct plug-in estimator of CATEs.
We remind that the S-learner considers a single model built from the whole dataset Dobs =
(Dobs,i)ni=1 and estimate the CATE in (6.1) as follows:

• Regress Yobs on the treatment T and the covariates X by a single model µ̂ using Dobs.

• Estimate the CATE between two treatment levels t and t0 by τ̂ (S)
t (x) = µ̂(x, t)− µ̂(x, t0).

In the following, whenever is mentioned, the conditional response surface will be denoted as
µt(x) = E(Yobs | T = t,X = x) and will be estimated using the S-learning approach.
For pseudo-outcome meta-learners, we have seen in Chapter 5 that these estimators incorporate
the indicator function 1{T = t} whose probability of being equal to one is zero when T is
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continuous. Kernel Density Estimation methods seem to be a natural choice and carry over
treatment effects estimation for continuous treatments. Indeed, when building the pseudo-
outcome vector zt = (Zt,i)ni=1 for each unit i, the idea is to replace 1{ti = t} by Kh(ti− t) where
Kh is a weighted kernel with bandwidth h (historically known for approximating smoothly the
Dirac delta function) such that:

Kh(ti − t) = 1
h
K

(
ti − t
h

)
, (6.2)

where K is a kernel function.
We consider a kernel function K satisfying the following properties:

• K is non-negative i.e. for all u ∈ R : K(u) ≥ 0.

• K has the density property i.e.
∫
RK(u)du = 1.

• The roughness of the kernel K, i.e. R(K) =
∫
RK

2(u)du exists and is finite.

• The second moment of K i.e. κ2(K) =
∫
R u

2K(u)du, and the second moment of K2 i.e.∫
R u

2K2(u)du) are finite.

• K is even, which implies κ1(K) =
∫
R uK(u)du = 0 and κ1(K2) =

∫
R uK

2(u)du = 0.

6.3 Generalization of pseudo-outcome meta-Learners to
continuous treatments

In this section, we propose to extend pseudo-outcome meta-learners to the continuous treatment
regime. The M- and DR-learners are naturally generalizable to continuous treatments as they
use known propensity re-weighting methods. However, the extension X-learner is not trivial for
two reasons: Firstly, it requires more reasoning to correct the confounding effect between the
treatment T and the covariates X. Secondly, unlike binary or multi-treatments scenarios, we
cannot easily isolate the level t when T has a density. These two facts would imply significant
changes in the expression of the X-learner.
In this section, to guarantee the consistency of all pseudo-outcome meta-learners, the following
assumptions on fT |X and µ are necessary:

Assumption 6.3.1. The conditional density fT |X is continuous and uniformly bounded away
from 0 and +∞ i.e. there exists rmin, rmax > 0 such that

∀t ∈ T , ∀x ∈ D : rmin ≤ fT |X(t | x) ≤ rmax. (6.3)

Assumption 6.3.2. The conditional response surface µt(x) = E[Yobs | X = x, T = t] is
continuous on T × D.

A consequence of the assumption 6.3.2 is that, for a fixed x ∈ D, µt(x) is bounded for all t ∈ T .
In other terms, there exists Cx > 0 such that

∀t ∈ T : |µt(x)| ≤ Cx. (6.4)
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The M-learner in the continuous treatment setting.

Let t ∈ T be a treatment level, we define the modified pseudo-outcome ZMt in multiple treatment
regime using the Inverse Propensity Weighting representation as

ZMt,h = Kh(T − t)
fT |X(t |X) −

Kh(T − t0)
fT |X(t0 |X)Yobs, (6.5)

where fT |X is the conditional density, and Kh is the weighted kernel described previously.

Proposition 6.3.3. Under the assumptions (4.5.3)-(4.5.4)

E(ZMt,h |X = x) h→0−→ τt(x). (6.6)

Proof. We consider YM
t,h the modified IPW representation of Yobs in such way that ZMt,h =

YM
t,h − YM

t0,h
. We have for x ∈ D:

E(YM
t,h |X = x) = E

[
Kh(T − t)
fT |X(t |X)Yobs |X = x

]

= E
[
E
[
Kh(T − t)
fT |X(t |X)Yobs |X, T

]
|X = x

]

= E
[
Kh(T − t)
fT |X(t |X)E [Yobs |X, T ] |X = x

]

=
∫

Kh(s− t)
fT |X(t | x)E(Yobs | T = s,X = x)fT |X(s | x) ds

=
∫

Kh(s− t)
fT |X(t | x)E(Y (s) |X = x)fT |X(s | x) ds (by Assumption 4.5.3)

=
∫

Kh(s− t)
fT |X(t | x)µs(x)fT |X(s | x)1{tmin ≤ s ≤ tmax}ds

u=(s−t)/h=
∫
R

K(u)
fT |X(t | x)µt+uh(x)fT |X(t+ uh | x)

1{ tmin − t
h

≤ u ≤ tmax − t
h

} du.
(6.7)

For u ∈ R and given the assumptions (6.3.1-6.3.2), we have∣∣∣ K(u)
fT |X(t | x)µt+uh(x)fT |X(t+ uh | x)1{ tmin − t

h
≤ u ≤ tmax − t

h
}
∣∣∣ ≤ rmax

rmin
K(u)Cx. (6.8)

The function u 7→ K(u) is integrable by the properties given in Section 6.2. Therefore, by the
dominated convergence theorem:

E(YM
t,h |X = x) h→0−→

∫
R

K(u)
fT |X(t | x)µt(x) fT |X(t | x)du.

=
∫
R
K(u)µt(x) du = µt(x).

(6.9)

Thus, E(ZMt,h |X = x) h→0−→ µt(x)− µt0(x) and we get the desired result. ■
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The DR-learner in the continuous treatment setting.

Similarly to the binary and multi-valued treatment regimes, the DR-learner with continuous
treatments is defined using on the Augmented Inverse Propensity Weighting (AIPW)
representation (Robins et al., 1994). Let µ̂ denote an arbitrary estimator of the outcome
µ and let f̂T |X denote also an arbitrary estimator of the conditional density fT |X . We assume
that f̂T |X and µ̂ respect also Assumptions (6.3.1)-(6.3.2). For t ∈ T , we define doubly-robust
pseudo-outcome ZDR

µ̂,f̂T |X ,t
as

ZDR
µ̂,f̂T |X ,t,h

= Yobs − µ̂t(X)
f̂T |X(t |X)

Kh(T − t)− Yobs − µ̂t(X)
f̂T |X(t0 |X)

Kh(T − t0)

+ µ̂t(X)− µ̂t0(X).
(6.10)

Proposition 6.3.4. Let ZDR
µ̂,f̂T |X ,t

be the Doubly-Robust pseudo-outcome defined in (6.10), then
under the causal assumptions (4.5.3)-(4.5.4) and (6.3.1)-(6.3.2)

E(ZDR
µ̂,f̂T |X ,t,h

|X = x) h→0−→ τt(x), (6.11)

if the outcome models or the propensity model is well-specified, i.e. µ̂ = µ almost surely, or
f̂T |X = fT |X almost surely.

Proof. Similarly to the previous proof, we consider Y DR
t,h the AIPW representation of Yobs such

that ZDR
µ̂,f̂T |X ,t,h

= Y DR

µ̂,f̂T |X ,t,h
− Y DR

µ̂,f̂T |X ,t0,h
, and we show that

E(Y DR

µ̂,f̂T |X ,t,h
|X = x) = E

[
Yobs − µ̂t(X)
f̂T |X(t |X)

Kh(T − t) + µ̂t(X) |X = x

]

= µ̂t(x) + E
[
Yobs − µ̂t(X)
f̂T |X(t |X)

Kh(T − t) |X = x

]

= µ̂t(x) + E
[
E
[
Yobs − µ̂t(X)
f̂T |X(t |X)

Kh(T − t) |X, T

]
|X = x

]
.

(6.12)

• If the propensity model f̂T |X is correctly specified (i.e. f̂T |X = fT |X almost surely) but
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the outcome model is misspecified, we would have

E(Y DR

µ̂,f̂T |X ,t,h
|X = x) = µ̂t(x) + E

[
E
[
Yobs − µ̂t(X)
fT |X(t |X) Kh(T − t) |X, T

]
|X = x

]

= µ̂t(x) +
∫ E(Yobs | T = s,X = x)− µ̂t(x)

fT |X(t | x) Kh(s− t)fT |X(s | x) ds

= µ̂t(x) +
∫ E(Y (s) |X = x)− µ̂t(x)

fT |X(t | x) Kh(s− t)fT |X(s | x) ds

(by Assumption 4.5.3)

= µ̂t(x) +
∫
µs(x)− µ̂t(x)
fT |X(t | x) Kh(s− t)fT |X(s | x)1{tmin ≤ s ≤ tmax} ds

u=(s−t)/h= µ̂t(x) +
∫
R

µt+uh(x)− µ̂t(x)
fT |X(t | x) K(u)fT |X(t+ uh | x)

1{ tmin − t
h

≤ u ≤ tmax − t
h

}du

h→0−→ µ̂t(x) +
∫
R

µt(x)− µ̂t(x)
fT |X(t | x) K(u)fT |X(t | x) du

(by the dominated convergence theorem)

= µ̂t(x) +
(
µt(x)− µ̂t(x)

) ∫
R
K(u) du

= µ̂t(x) + µt(x)− µ̂t(x) = µt(x).
(6.13)

• If the propensity model is misspecified, but the outcome model is correctly specified (i.e.
µ̂ = µ almost surely), we would have

E(Y DR

µ̂,f̂T |X ,t,h
|X = x) = µ̂t(x) + E

[
E
[
Yobs − µt(X)
f̂T |X(t |X)

Kh(T − t)
∣∣T,X]

|X = x

]

= µt(x) +
∫ E(Yobs | T = s,X = x)− µt(x)

f̂T |X(t | x)
Kh(s− t)fT |X(s | x) ds

= µt(x) +
∫
µs(x)− µt(x)
f̂T |X(t | x)

Kh(s− t)fT |X(s | x)1{tmin ≤ s ≤ tmax} ds

u=(s−t)/h= µt(x) +
∫
R

µt+uh(x)− µt(x)
f̂T |X(t | x)

K(u)fT |X(t+ uh | x)

1{ tmin − t
h

≤ u ≤ tmax − t
h

}du

h→0−→ µt(x) +
∫
R

µt(x)− µt(x)
f̂T |X(t | x)

K(u)fT |X(t | x) du

(by the dominated convergence theorem)
= µt(x).

(6.14)
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The result holds similarly for Y DR

µ̂,f̂T |X ,t0
. Therefore, the consistency of the DR-learner is achieved

if either the propensity score or the outcome model is well-specified. ■

It is essential to discuss the well-correctness of the generalized propensity score function. Indeed,
since the purpose is to estimate the conditional density fT |X in the M- and DR-learners correctly,
the GPS of Imbens (2004) would not be sufficient to achieve the correctness of the conditional
density fT |X . The P-Function of Imai & Van Dyk (2004) is more adapted for this purpose as it
uniquely characterizes the conditional density and ensures the estimation correctness. However,
the use of the P-Function implies the extra assumption of Imai & Van Dyk (2004):

Assumption 6.3.5. For almost every x ∈ D, (fT |X(t | x))t∈T is characterized by Θ(x), where
x ∈ D 7→ Θ(x) ∈ Rq is a measurable map.

Although restrictive, the previous assumption is necessary for the M-learner and the DR-learner
if the outcome model is misspecified.

The X-learner in continuous treatment setting.

In the binary and multi-treatment setting, the X-learner Künzel et al. (2019), also known as
Regression-Adjustment, consists in a cross-procedure of estimation between observations Yobs
and the outcome model when one of the treatments occurs. We remind that the main purpose
of the X-learner (in multi-treatment regime) is to learn the CATE τt using all other treatments
t′ ̸= t, instead of learning directly as τt(x) = µt(x)− µt0(x), which is much easier to do with
an S-learner. The extension of the X-learner to continuous treatments should proceed in a
similar way: learn the CATE τt using other treatments. The issue of modelling the event
that the treatment occurs can be handled by kernel methods. However, as mentioned at the
beginning of the section, when T is continuous and has density, we cannot separate and isolate
a specific treatment level t from other treatments t′ ̸= t ∈ T . Therefore, we propose an adapted
Regression-Adjustment formula that isolates the treatment t in a local neighbourhood and
cross-estimate treatments effects over the treatment support T .
In continuous treatments, for h > 0 and for t ̸= t0 ∈ T , we consider the map ϵ : h 7→ ϵ(h) > 0
and the Regression-Adjustment pseudo-outcome ZXt,h such that

ZXt,h = 2ϵ(h)Kh(T − t)(Yobs − µt0(X)) +
∫ t−ϵ(h)

tmin
Kh(T − t′)

(
µt(X)− Yobs

)
dt′+∫ tmax

t+ϵ(h)
Kh(T − t′)

(
µt(X)− Yobs

)
dt′ +

∫ t−ϵ(h)

tmin
Kh(T − t′)

(
µt′(X)− µt0(X)

)
dt′

+
∫ tmax

t+ϵ(h)
Kh(T − t′)

(
µt′(X)− µt0(X)

)
dt′.

(6.15)

Proposition 6.3.6. Under the assumptions (4.5.3)-(4.5.4)

E(ZXt,h |X = x) h→0−→ τt(x). (6.16)
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Proof. By direct calculations, we show that

E(ZXt,h |X = x) = 2ϵ(h)E [Kh(T − t)(Yobs − µt0(X)) |X = x] +
∫ t−ϵ(h)

tmin
E
[
Kh(T − t′)

(
µt(X)− Yobs

)
|X = x

]
dt′ +

∫ tmax

t+ϵ(h)
E
[
Kh(T − t′)

(
µt(X)− Yobs

)
|X = x

]
dt′ +

∫ t−ϵ(h)

tmin
E
[
Kh(T − t′)

(
µt′(X)− µt0(X)

)
|X = x

]
dt′ +

∫ tmax

t+ϵ(h)
E
[
Kh(T − t′)

(
µt′(X)− µt0(X)

)
|X = x

]
dt′.

(6.17)
By the dominated convergence theorem, we get

E(ZXt,h |X = x) h→0−→
∫ t

tmin
fT |X(t′ | x) (µt(x)− µt′(x)) dt′ +

∫ tmax

t
fT |X(t′ | x)

(
µt(x)− µt′(x)

)
dt′

+
∫ t

tmin
fT |X(t′ | x)

(
µt′(x)− µt0(x)

)
dt+

∫ tmax

t
fT |X(t′ | x)

(
µt′(x)− µt0(x)

)
dt′.

=
(∫ t

tmin
fT |X(t′ | x) dt′ +

∫ tmax

t
fT |X(t′ | x) dt′

)
(µt(x)− µt0(x))

= (µt(x)− µt0(x)) = τt(x).
(6.18)

Therefore, we prove the consistency of the X-learner i.e.

E(ZXt,h |X = x) h→0−→ µt(x)− µt0(x) = τt(x). (6.19)

■

As a conclusion to this section, we can say that the generalization of pseudo-outcome meta-
learners is feasible for continuous treatments, and introducing kernel methods allows for
obtaining consistent estimators of the CATE.

6.4 Bias-Variance analysis of pseudo-outcome meta-learners

In this subsection, we propose to conduct the bias-variance analysis of pseudo-outcome meta-
learners. We need to make the following assumptions (some of them are similar to the
assumptions of Section 5.3 in Chapter 5) to control the behavior of meta-learners:

Assumption 6.4.1. We assume that the outcomes Y (t) are generated from a uniformly bounded
function f : R× Rd → R respecting the causal assumptions (4.5.3-4.5.4) such that

Y (t) = f(t,X) + ϵ, (6.20)

where ϵ ∼ N (0, σ2) is an additive noise.

Assumption 6.4.2. For t ∈ T , we assume the existence of β(t) ∈ Rp such that, for all t ∈ T
and x ∈ D:

f(t,x) =
p∑
j=1

βj(t)fj(x) = f(x)⊤β(t), (6.21)

where fj are some predefined basis functions (e.g. polynomial functions fj(x) = (xj−1
k )1≤k≤d).
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The two previous assumptions, combined, are similar to the assumption made in the paper
of Kaddour et al. (2021). The authors assume a product form on the outcome Y , that is
Y (t) = f(X)⊤β(t) + ϵ for arbitrary functions β and f in Rp, and ϵ is a random noise satisfying
E(ϵ |X, T ) = 0.
The assumption of a product effect is reasonable. Indeed, one can show the universality of this
representation in the Reproducing Kernel Hilbert Space (RKHS) (see Proposition 1 of Kaddour
et al. (2021)) if we allow the dimension p to grow enough.
Under the previous assumptions, the CATE in (6.1) can be written as

τt(x) = f(t,x)− f(t0,x)
= f(x)⊤(β(t)− β(t0)

)
= f(x)⊤β∗(t),

(6.22)

where β∗(t) = β(t)− β(t0). In other words, the CATE can be learned by estimating β∗(t) or,
equivalently, both β(t) and β(t0). We call a super S-learner, a model able to learn "somehow"
τt efficiently, that is, the super S-learner is unbiased E(β̂SSh (t)) = β∗(t) and has a minimal
variance V(β̂SSh (t)) = E

[(
f(x)⊤β∗(t)− f(x)⊤β̂SSh (t)

)2].
Finally, the following assumption is also necessary for the bias-variance analysis:

Assumption 6.4.3. The outcome function f and the conditional treatment density fT |X are
twice differentiable with respect to t. For technical reasons, we also assume that the third
derivative exists and is uniformly bounded in (t,x).

Assumption 6.4.4. Let µ̂ and f̂T |X denote arbitrary estimators of the outcome function f and
the conditional treatment density fT |X . We assume that µ̂ and f̂T |X have the same properties
as f and fT |X (i.e. continuity, boundedness and differentiability).

Bias-Variance tradeoff of the M-Learner

For t ∈ T , we consider the IPW pseudo-outcome with an arbitrary model (estimator) f̂T |X of
the conditional density fT |X :

YM
t,h,i = Kh(ti − t)

f̂T |X(t | x(i))
yi, i = 1, . . . , n, (6.23)

and we denote in the following yMt,h = (YM
t,h,i)1≤i≤n.

Remark 6.4.5. We assume that the conditional density estimator f̂T |X is estimated separately
using a different unlabeled large sample D′ = (t′i,x′(i))n′

i=1.

The regression coefficient β̂Mh (t) are given by the Ordinary Least Squares (OLS) method

β̂Mh (t) =
(
H⊤H

)−1H⊤yMt,h, (6.24)

where H = (Hij) =
(
fj(x(i))

)
∈ Rn×p is the regression matrix.
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Some of the following calculations are similar to what has been done in Appendix B.2.

β̂Mh (t) =
(
H⊤H

)−1H⊤yMt,h =
(
H⊤H

)−1H⊤
(

Kh(ti − t)
f̂T |X(t | x(i))

yi

)n
i=1

=
(
H⊤H

)−1H⊤
(

Kh(ti − t)
f̂T |X(t | x(i))

f(t+ hui,x
(i)) + Kh(ti − t)

f̂T |X(t | x(i))
ϵi

)n
i=1
,

(6.25)

where ui = (ti − t)/h for i = 1, . . . , n.
With the differentiability assumption 6.4.3, we consider a second order Taylor expansion of f
and fT |X :

f(t+ uh,x) = f(t,x) + hu
∂f

∂t
(t,x) + (hu)2

2
∂2f

∂t2
(t,x) + (hu)2ε1,x(uh),

fT |X(t+ hu | x) = fT |X(t | x) + hu
∂fT |X
∂t

(t | x) + (hu)2

2
∂2fT |X
∂t2

(t | x) + (hu)2ε2,x(uh),
(6.26)

where εj,x(t) are functions that are continuous in t, bounded uniformly in (t,x), and such that
εj,x(t)→ 0 as t→ 0. In the following, ε̃x, ε̃

′
x, ε̃

(2)
x etc. refer to functions with similar properties.

Lemma 6.4.6. Let K be a kernel with the defined properties in Section 6.2. Let ε : R → R
be a bounded function such that ε(x) → 0 when x → 0. The integrals

∫
RK(u)ε(uh) du,∫

R uK
2(u)ε(uh) du and

∫
R u

2K(u)ε(uh) du converge to 0 as h→ 0.

Proof. By Assumption 6.4.3, there exists ε∞ such that ε(hu) ≤ ε∞ for all h, u > 0.
For n ∈ {0, 1, 2} and for all h, u > 0:∣∣unk(u)ε(hu)

∣∣ ≤ |u|nK(u)ε∞, (6.27)

where u 7→ |u|nK(u)ε∞ is integrable by the properties given in Section 6.2. The result also
holds for K2.
Therefore, since ε(hu) h→0−→ 0 and by the dominated convergence theorem, we get the desired
proof of the lemma. ■

Given these expansions, we can write:

β̂Mh (t) =
(
H⊤H

)−1H⊤
(

Kh(ti − t)
f̂T |X(t | x(i))

(
f(t,x(i)) + hui

∂f

∂t
(t,x(i)) + (hui)2

2
∂2f

∂t2
(t,x(i)) + (hui)2ε1,i(hui)

)
+ Kh(ti − t)
f̂T |X(t | x(i))

ϵi

)n
i=1

=
(
H⊤H

)−1H⊤(f(t,x(i))
)n
i=1 +

(
H⊤H

)−1H⊤
[(( Kh(ti − t)

f̂T |X(t | x(i))
− 1

)
f(t,x(i))

)n
i=1

+
(

Kh(ti − t)
f̂T |X(t | x(i))

×
(
hui

∂f

∂t
(t,x(i)) + h2(ui)2

2
∂2f

∂t2
(t,x(i))

))n
i=1

+
(

Kh(ti − t)
f̂T |X(t | x(i))

ϵi

)n
i=1

+
(
(hui)2ε1,i(hui)

)n
i=1

]
= β(t) +

(
H⊤H

)−1H⊤(bt,spec + bt,K,h + bt,ϵ
)

+ h2u2 ⊙ ε1,X(hu),
(6.28)
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where
β(t) =

(
H⊤H

)−1H⊤(f(t,x(i))
)n
i=1 (6.29)

is the true regression coefficients, and

bMt,spec =
(( Kh(ti − t)

f̂T |X(t | x(i))
− 1

)
f(t,x(i))

)n
i=1

(6.30)

is the bias term related to the misspecification of the conditional density estimator, and,

bt,K,h =
(

Kh(ti − t)
f̂T |X(t | x(i))

(
hui

∂f

∂t
(t,x(i)) + h2u2

i

2
∂2f

∂t2
(t,x(i))

))n
i=1

(6.31)

is the bias term related to kernel methods estimation with bandwidth h, and,

bt,ϵ =
(

Kh(ti − t)
f̂T |X(t | x(i))

ϵi

)n
i=1

(6.32)

is an unbiased term due to the measurement errors, and,

u2 ⊙ ε1,X(hu) =
(
u2
i ε1,i(hui)

)n
i=1

(6.33)

with E
[
U2ε1,X(hU)

]
→ 0 when h→ 0 by the dominated convergence theorem.

In the following, we denote BM
t,spec (respectively, Bt,K,h and Bt,ϵ) the random variable whose

realizations correspond to bMt,spec (respectively, bt,K,h and bt,ϵ).

Let us consider the vector Z
(n)
t

Z
(n)
t =

( 1
n

H⊤(bt,spec + bt,K,h + bt,ϵ)
)

1, . . . ,
1
n

(
H⊤(bt,spec + bt,K,h + bt,ϵ)

)
p
,

1
n

(H⊤H)11, . . . ,
1
n

(H⊤H)pp
)⊤
∈ Rp+p2

,

(6.34)

that allows us to write β̂Mh (t) = β(t) +ϕ(Z(n)) + o(h2) where ϕ : Rp+p2 −→ Rp is a C1-function.

The vector Z
(n)
t has mean m(h) such that:

m(h) =
(
ht,1, . . . , ht,p, F11, . . . , Fpp

)⊤
, (6.35)

where, for j = 1, . . . , p.

ht,j = E
[
fj(X)

(
BM
t,spec +Bt,K,h +Bt,ϵ

)]
= hMt,spec,j + ht,K,j + ht,ϵ,j ,

(6.36)

and,
Fjj′ = E

(
fj(X)fj′(X)

)
. (6.37)

In some cases, the polynomials fj are chosen to be orthonormal with respect to the distribution
of X (e.g. Polynomials Chaos). A consequence of this choice would imply that F is the identity
matrix.
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Lemma 6.4.7. For j = 1, . . . , p

hMt,j = hMt,spec,j + h2κ2(K)hMt,Kern,j + o(h2), (6.38)

where
hMt,spec,j = E

[
fj(X)

(
fT |X(t |X)
f̂T |X(t |X)

− 1
)
f(t,X)

]
(6.39)

is the misspecification bias such that hMt,spec,j = 0 if the conditional density estimator is well-
specified, and,

hMt,Kern,j = E
[ fj(X)
f̂T |X(t |X)

C ′
t(X)

]
, (6.40)

with

C ′
t(X) = ∂f

∂t
(t,X)

∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X) + 1

2
∂2fT |X
∂t2

(t |X), (6.41)

is the bias induced by the use of kernel methods.

Proof. In this proof, we compute the terms hMt,spec,j , ht,K,j and ht,ϵ,j separately.

For the specification term hMt,spec,j , by the continuity of f̂T |X and the dominated convergence
theorem, we have:

hMt,spec,j = E
[
fj(X)

( Kh(T − t)
f̂T |X(t |X)

− 1
)
f(t,X)

]
h≈0= E

[ fj(X)
f̂T |X(t |X)

( ∫
R
K(u)

(
fT |X(t |X) + hu

∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t |X)

+ (hu)2ε2,X(uh)
)

du− 1
)
f(t,X)

]
.

(6.42)
The first-order moment integral vanishes by the symmetry property of the kernel K. Moreover,
by Lemma 6.4.6, we have

hMt,spec,j = E
[
fj(X)

(
fT |X(t |X) + h2 ∂2fT |X

∂t2 (t |X)
f̂T |X(t |X)

− 1
)
f(t,X)

]
+ o(h2)

= E
[
fj(X)

(
fT |X(t |X)
f̂T |X(t |X)

− 1
)
f(t,X)

]
+ h2κ2(K)

2 E
[ fj(X)
f̂T |X(t |X)

∂2fT |X
∂t2

(t |X)
]

+ o(h2).

(6.43)
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For the Kernel estimations term, we have

ht,K,h,j = E
[
fj(X) Kh(T − t)

f̂T |X(t |X)

(
h(T − t)/h∂f

∂t
(t,X) + h2((T − t)/h)2

2
∂2f

∂t2
(t,X)

)]
h≈0= E

[ fj(X)
f̂T |X(t |X)

(∫
R
K(u)

(
hu
∂f

∂t
(t,X) + (hu)2

2
∂2f

∂t2
(t,X) + (hu)2ε1,X(uh)

)
×
(
fT |X(t |X) + hu

∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t |X) + (hu)2ε2,X(uh)
)

du
)]

= E
[ fj(X)
f̂T |X(t |X)

(∫
R
K(u)

(
hufT |X(t |X)∂f

∂t
(t,X) + (hu)2∂f

∂t
(t,X)

∂fT |X
∂t

(t |X)

+ (hu)2

2 fT |X(t |X)∂
2f

∂t2
(t,X) + (hu)2ε̃X(uh)

)
du
)]

= h2E
[ fj(X)
f̂T |X(t |X)

(∫
R
u2K(u) du

)(∂f
∂t

(t,X)
∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X)

)]
+ o(h2) (The first moment order integral vanishes + Lemma 6.4.6 on ε̃X)

= h2κ2(K)E
[ fj(X)
f̂T |X(t |X)

Ct(X)
]

+ o(h2),

(6.44)
where

Ct(X) = ∂f

∂t
(t,X)

∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X), (6.45)

and κ2(K) =
∫
R u

2K(u) du is the second moment of the Kernel K.
Finally, for the error measurement term, we have

ht,ϵ,j = E
[
fj(X) Kh(T − t)

f̂T |X(t |X)
ϵ
]

= E
[
fj(X) Kh(T − t)

f̂T |X(t |X)

]
E
[
ϵ
]

= 0. (6.46)

By gathering the three previous terms, we obtain the desired result ■

The covariance matrix CM of Zt has entries

(CM )jj′ = Cov
(
Zt,j ,Zt,j′

)
= E(Zt,j ,Zt,j′)− E(Zt,j)E(Zt,j′)

=


E
[
fj(X)fj′(X)

(
Bt,spec +Bt,K,h +Bt,ϵ

)2]− hMt,jhMt,j′ if j, j′ ∈ {1, . . . , p}
E
[
fk(X)fk′(X)fl(X)fl′(X)

]
− Fkk′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
[
fk(X)fk′(X)

(
BM
t,spec +Bt,K,h

)]
− (hMt,spec,j′ + ht,K,j′)Fkk′ otherwise.

(6.47)
where k, k′ = η−1(j) (respectively, l, k′ = η−1(j′)) such that η is the correspondence indexes
map between m(h) and F in m(h)j = Fkk′ when j ≥ p+ 1 (respectively, m(h)j′ = Fll′ when
j′ ≥ p + 1). The last line holds because of the independence of ϵ and thus Bt,ϵ to the other
variables Bt,spec and Bt,K,h.
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If j, j′ ∈ {1, . . . , p} then,

(CM )jj′ = E
[
fj(X)fj′(X)

(
BM
t,spec +Bt,K,h +Bt,ϵ

)2]− ht,jht,j′

= E
[
fj(X)fj′(X)

(
B2
t,spec +B2

t,K,h +B2
t,ϵ + 2BM

t,specBt,K,h + 2Bt,ϵ(BM
t,spec +Bt,K,h

)]
− ht,jht,j′

= E
[
fj(X)fj′(X)B2

t,spec

]
+ E

[
fj(X)fj′(X)B2

t,K,h

]
+ E

[
fj(X)fj′(X)B2

t,ϵ

]
+ 2E

[
fj(X)fj′(X)BM

t,specBt,K,h
]
− ht,jht,j′ (b(n)

t,ϵ is independent of b(n)
t,spec and b

(n)
t,K,h)

= (CM
t,spec)jj′ + (CM

t,K,h)jj′ + (CM
t,ϵ)jj′ + 2(CM

t,K,spec)jj′ + ht,jht,j′ .
(6.48)

The product ht,jht,j′ can be computed easily using Lemma 6.4.7. In our case, we can write
ht,jht,j′ = hMt,spec,jh

M
t,spec,j′ + o(1).

Lemma 6.4.8. The entries of the covariance matrix CM satisfy:

(CM )jj′ =


1
hC

M
1 + CM0 + o(1) if j, j′ ∈ {1, . . . , p},

C2 if j, j′ ∈ {p+ 1, . . . , p2},
CMspec + o(1) otherwise.

(6.49)

where CM1 , CM0 , C2 and CMspec are some given terms such that CM1 ̸= 0.

Proof. Similarly to the proof of the previous lemma, we compute each term of (6.48) separately.
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On the one hand, if j, j′ ∈ {1, . . . , p}, the first term of (CM
t,spec)jj′ is equal to

(CM
t,spec)jj′ = E

[
fj(X)fj′(X)B2

t,spec

]
= E

[
fj(X)fj′(X)

( Kh(T − t)
f̂T |X(t |X)

− 1
)2
f2(t,X)

]
= E

[
fj(X)fj′(X)

(E[K2
h(T − t) |X

]
f̂2
T |X(t |X)

− 2
E
[
Kh(T − t) |X

]
f̂T |X(t |X)

+ 1
)
f2(t,X)

]
h≈0= E

[
fj(X)fj′(X)

( 1
f̂2
T |X(t |X)

( ∫
R

K2(u)
h

[
fT |X(t |X) + hu

∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t |X)

+ (hu)2ε2,X(uh)
]

du
)
− 2
f̂T |X(t |X)

( ∫
R
K(u)

[
fT |X(t |X) + hu

∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t |X)

+ (hu)2ε2,X(uh)
]

du
)

+ 1
)
f2(t,X)

]
= E

[
fj(X)fj′(X)

( 1
f̂2
T |X(t |X)

(1
h

( ∫
R
K2(u) du

)
fT |X(t |X) +

( ∫
R
uK2(u) du

)∂fT |X
∂t

(t |X)

+
( ∫

R
uK2(u)ε̃X(uh) du

))
− 2

fT |X(t |X)
f̂T |X(t |X)

+
∫
R
K(u)ε̃′

X(uh) du+ 1
)
f2(t,X)

]

= E
[
fj(X)fj′(X)

(1
h
R(K)

fT |X(t |X)
f̂2
T |X(t |X)

+ κ1(K2)
∂fT |X
∂t (t |X)

f̂2
T |X(t |X)

− 2
fT |X(t |X)
f̂T |X(t |X)

+ 1

+ o(1)
)
f2(t,X)

]
(By Lemma 6.4.6)

= 1
h
R(K)E

[
fj(X)fj′(X)

fT |X(t |X)
f̂2
T |X(t |X)

f2(t,X)
]

+ E
[
fj(X)fj′(X)

(
1− 2

fT |X(t |X)
f̂T |X(t |X)

)
f2(t,X)

]
+ o(1),

(6.50)
where R(K) =

∫
RK

2(u) du is the roughness of the kernel K.
For the second term (CM

t,K,h)jj′ and by similar argument, we have:

(CM
t,K,h)jj′ = E

[
fj(X)fj′(X) K

2
h(T − t)

f̂2
T |X(t |X)

(
h(T − t)/h∂f

∂t
(t,X) + h2((T − t)/h)2

2
∂2f

∂t2
(t,X)

)2]

= E
[fj(X)fj′(X)
f̂2
T |X(t |X)

E
[
K2
h(T − t)

(
h(T − t)/h∂f

∂t
(t,X) + h2((T − t)/h)2

2
∂2f

∂t2
(t,X)

)2
|X

]]
h≈0= E

[
fj(X)fj′(X)
f̂2
T |X(t |X)

(1
h

∫
R
K2(u)

(
fT |X(t |X) + hu

∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t |X)

+ (hu)2ε2,X(uh)
)(
hu
∂f

∂t
(t,X) + (hu)2

2
∂2f

∂t2
(t,X)

)2
du
)]
.

(6.51)
We consider only the first order term in the expansion of fT |X and the second order term in
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the second expression. Therefore,

(CM
t,K,h)jj′ = E

[
fj(X)fj′(X)
f̂2
T |X(t |X)

(1
h

∫
R
K2(u)

(
fT |X(t |X) + (hu)ε̃X(uh)

)(
(hu)2

(∂f
∂t

(t,X)
)2

+ (hu)2ε̃′
X(uh)

)
du
)]

= 1
h
E
[
fj(X)fj′(X)
f̂2
T |X(t |X)

(
h2
(∂f
∂t

(t,X)
)2
fT |X(t |X)

∫
R
u2K2(u) du+ h2

∫
R
u2K2(u)ε̃(2)

X (uh) du
)]

= h

(∫
R
u2K2(u) du

)
E
[fj(X)fj′(X)
f̂2
T |X(t |X)

(∂f
∂t

(t,X)
)2
fT |X(t |X)

]
+ o(h)

= o(1).
(6.52)

For the third term (CM
t,ϵ)jj′ :

(CM
t,ϵ)jj′ = E

[
fj(X)fj′(X) K

2
h(T − t)

f̂2
T |X(t |X)

ϵ2
]

= E
[
fj(X)fj′(X)

E
[
K2
h(T − t) |X

]
f̂2
T |X(t |X)

]
E
[
ϵ2
]

h≈0= σ2

h
E
[
fj(X)fj′(X)

∫
RK

2(u)
(
fT |X(t |X) + hu

∂fT |X
∂t (t |X) + (hu)2

2
∂2fT |X
∂t2 (t |X)

f̂2
T |X(t |X)

+
(hu)2ε2,X(uh)

)
du

f̂2
T |X(t |X)

]

= σ2

h
E
[
fj(X)fj′(X)

( ∫
RK

2(u) du
)
fT |X(t |X) + h

( ∫
R uK

2(u) du
)
∂fT |X
∂t (t |X)

f̂2
T |X(t |X)

+ h

∫
R uK

2(u)ε̃X(uh) du
f̂2
T |X(t |X)

]

= σ2

h
R(K)E

[
fj(X)fj′(X)

fT |X(t |X)
f̂2
T |X(t |X)

]
+ o(1),

(6.53)
where the last line holds using the fact that K is even and Lemma 6.4.6 .

143



6.4. Bias-Variance analysis of pseudo-outcome meta-learners

Finally, for the last term (CM
t,K,spec)jj′ :

(CM
t,K,spec)jj′ = E

[
fj(X)fj′(X)BM

t,specBt,K,h
]

= E
[
fj(X)fj′(X)

( Kh(T − t)
f̂T |X(t |X)

− 1
)
f(t,X) Kh(T − t)

f̂T |X(t |X)

(
h(T − t)/h∂f

∂t
(t,X)

+ h2((T − t)/h)2

2
∂2f

∂t2
(t,X)

)]
= E

[
fj(X)fj′(X)f(t,X) K

2
h(T − t)

f̂2
T |X(t |X)

(
h(T − t)/h ∂f

∂T
(t,X) + h2((T − t)/h)2

2
∂2f

∂T 2 (t,X)
)]

− E
[
fj(X)fj′(X)f(t,X) Kh(T − t)

f̂T |X(t |X)

(
h(T − t)/h ∂f

∂T
(t,X) + h2((T − t)/h)2

2
∂2f

∂T 2 (t,X)
)]

h≈0= E
[fj(X)fj′(X)f(t,X)

f̂2
T |X(t |X)

(1
h

∫
R
K2(u)

(
hu
∂f

∂t
(t,X) + (hu)2

2
∂2f

∂t2
(t,X)

)(
fT |X(t |X)

+ hu
∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t | x) + (hu)2ε2,X(uh)
)

du
)]
− E

[fj(X)fj′(X)
f̂T |X(t |X)

× f(t,X)
(∫

R
K(u)

(
hu
∂f

∂t
(t,X) + (hu)2

2
∂2f

∂t2
(t,X)

)(
fT |X(t |X) + hu

∂fT |X
∂t

(t |X)

+ (hu)2

2
∂2fT |X
∂t2

(t |X) + (hu)2ε2,X(uh)
)

du
)]
.

(6.54)
As we want to have an expression in o(1) or O(1), we keep only the first order term hu in the
expansion for the first expectation, and we neglect it for the second expectation. Therefore,

(CM
t,K,spec)jj′ = E

[fj(X)fj′(X)f(t,X)
f̂2
T |X(t |X)

(1
h

∫
R
K2(u)

(
hu
∂f

∂t
(t,X)fT |X(t |X) + (hu)ε̃X(uh)

)
du
)]

− E
[fj(X)fj′(X)f(t,X)

f̂T |X(t |X)

(∫
R
K(u)ε̃′

X(uh) du
)]

= E
[fj(X)fj′(X)f(t,X)

f̂2
T |X(t |X)

fT |X(t |X)∂f
∂t

(t,X)
( ∫

R
uK2(u) du

)]
+ o(1) (Lemma 6.4.6)

= o(1).
(6.55)

By gathering the four previous terms, we can write

Cj,j′ = 1
h
CM1 + CM0 + o(1), (6.56)

where
CM1 = R(K)E

[fj(X)fj′(X)
f̂2
T |X(t |X)

fT |X(t |X)
(
σ2 + f2(t,X)

)]
, (6.57)
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and

CM0 = E
[
fj(X)

(
fT |X(t |X)
f̂T |X(t |X)

− 1
)
f(t,X)

]
E
[
fj′(X)

(
fT |X(t |X)
f̂T |X(t |X)

− 1
)
f(t,X)

]
+ E

[
fj(X)fj′(X)

(
1− 2

fT |X(t |X)
f̂T |X(t |X)

)
f2(t,X)

]
.

(6.58)

On the other hand, j ∈ {p+ 1, . . . , p2} and j′ ∈ {1, . . . , p} (or inversely by symmetry), then.

CM
j,j′ = E

[
fk(X)fk′(X)

(
BM
t,spec +Bt,K,h

)]
= E

[
fk(X)fk′(X)BM

t,spec

]
+ E

[
fk(X)fk′(X)BM

t,K,h

]
(By similar calculus to ht,spec,j and ht,K,h,j)

= E
[
fk(X)fk′(X)

(
fT |X(t |X)
f̂T |X(t |X)

− 1
)
f(t,X)

]
+ o(1)

= CMspec + o(1),

(6.59)

where CMspec = E
[
fk(X)fk′(X)

(
fT |X(t|X)
f̂T |X(t|X)

− 1
)
f(t,X)

]
is the misspecification covariance term

with CMspec = 0 if the conditional density estimator f̂T |X is well-specified.

Thus, by gathering all the previous terms of the matrix CM , we get the desired result of the
lemma. ■

Proposition 6.4.9. If the conditional density estimator f̂T |X is well specified, then the estimator
β̂Mh (t) has bias and variance such that

E(β̂Mh (t)) ≈ β(t) + h2F−1hMt ,

V(β̂Mh (t)) ≈ 1
nh

F−1ΣMF−1,
(6.60)

where, for j ∈ {1, . . . , p},

hMt,j = h2κ2(K)E
[ fj(X)
f̂T |X(t |X)

C ′
t(X)

]
+ o(h2), (6.61)

with

C ′
t(X) = ∂f

∂t
(t,X)

∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X) + 1

2
∂2fT |X
∂t2

(t |X), (6.62)

and, for j, j′ ∈ {1, . . . , p},

ΣM
jj′ = (CM )jj′ = R(K)E

[fj(X)fj′(X)
fT |X(t |X)

(
σ2 + f2(t,X)

)]
+ o(1). (6.63)

Proof. The proof of this proposition is not too different from B.2. Indeed, with Lemmas 6.4.7
and 6.4.8, we have all the ingredients of the vector Z(n) (i.e. all components of m(h) and C).
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We consider now the vector S(n) =
√
n
(
Z(n) −m(h)

)
in a manner that β̂Mh (t) = β(t) +

Φ(S(n),m(h)) + o(h2) where Φ : Rp+p2 × Rp+p2 → Rp is also a C1-function.
Even without assuming the well-specification of f̂T |X , we can prove in the general case by the
multivariate Central Limit Theorem and the Delta method:

√
n
[
Φ(S(n),m(h))− Φ(0,m(h))

] L−→ N
(
0, J (1)

Φ (0,m(h))⊤CMJ
(1)
Φ (0,m(h))

)
, (6.64)

where J (1)
Φ (0,m(h)) is the Jacobian matrix at the first p+ p2 coordinates of Φ at (0,m(h)).

J
(1)
Φ (0,m(h)) = J

(1)
Φ
(
0,m + h2(bMt,spec,0)⊤)

= J
(1)
Φ (0,m) + h2

(
J

(2)
J

(1)
Φ

(0,m)
)
(bMt,spec,0)⊤ + o(h2),

(6.65)

where J (2)
J

(1)
Φ

(0,m) is the Jacobian matrix at the second p+ p2 coordinates of J (1)
Φ at (0,m(h))

and bMt,spec is the misspecification bias as defined in (6.30).
For n big enough, the expansions of the first two moments are of the form:

E(β̂Mh (t)) ≈ β(t) + Φ(0,m(h)) + o(h2)

= β(t) + Φ(0,m) + h2J
(1)
Φ (0,m)(bMt,spec,0)⊤ + o(h2),

(6.66)

and,

V(β̂Mh (t)) ≈ 1
n
J

(1)
Φ (0,m(h))⊤CMJ

(1)
Φ (0,m(h))

= 1
nh

J
(1)
Φ (0,m(h))⊤CMJ

(1)
Φ (0,m(h))

= 1
nh

[ (
J

(1)
Φ (0,m)

)⊤
CM

(
J

(1)
Φ (0,m)

)
+ h2

( (
J

(1)
Φ (0,m)

)⊤
CM

J
(2)
J

(1)
Φ

(0,m)

+
(
J

(2)
J

(1)
Φ

(0,m)
)⊤

CM
J

(1)
Φ (0,m)

)
+ o(h2)

]
= 1
nh

(
J

(1)
Φ (0,m)

)⊤
CM

(
J

(1)
Φ (0,m)

)
+ o(1),

(6.67)

where CM = hCM is a normalization matrix.
In the particular case where the conditional density estimator f̂T |X is well-specified. We show
that hMt,spec = 0 and, thus, hMt = h2κ2(K)hMt,Kern + o(h2) where hMt,Kern = (hMt,Kern,j)

p
j=1 are

given in (6.40).
In the following, we denote h2bM = bMt,spec + bt,K,h, we neglect the term o(h2) and we apply the
multivariate Central Theorem Limit (CTL)

1√
n

[
H⊤(bMt,spec + bt,K,h + bt,ϵ

)
− nh2bM

] L−→ N (0, 1
h

ΣM ), (6.68)

where ΣM is a covariance matrix with the same entries as the first block matrix of CM , i.e. for
j, j′ ∈ 1, . . . , p:

ΣM
jj′ = (CM )jj′ = CM1 + hCM0 + o(h), (6.69)
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where CM1 and CM0 are given in (6.58-6.57).
By Slutsky’s theorem,
√
n
(
β̂Mh (t)− β(t)− nh2(H⊤H

)−1
bM
)

= n
(
H⊤H

)−1 1√
n

[
H⊤(bt,spec + bt,K,h + bt,ϵ

)
− nh2bM

]
L−→ N (0, 1

h
F−1ΣMF−1),

(6.70)
which leads finally to the important result of

E(β̂Mh (t)) ≈ β(t) + h2F−1bM ,

V(β̂Mh (t)) ≈ 1
nh

F−1ΣMF−1.
(6.71)

■

Discussion Proposition 6.4.9 shows three main results: Firstly, the bias of the estimator
β̂Mh (t) is in O(h2). It cannot provide a consistent estimation of β(t) unless if h = 0. Secondly,
the variance of β̂Mh (t) is in 1/(nh), which implies that choosing a small bandwidth h would
increase the variance of the estimator. Finally, the bias and variance of β̂Mh (t) consider the
conditional density estimator f̂T |X in the denominator. Thus, both bias and variance of the
M-learner are likely to be sensitive to the lower bound rmin.

Proposition 6.4.10. Under all previous assumptions, the asymptotic Mean Squared Error
(MSE) of the M-Learner β̂Mh (t) is given by

MSE
(
β̂Mh (t)

)
= h4∥F−1bM∥2 + 1

nh
Tr(F−1ΣMF−1), (6.72)

and the optimal bandwidth h∗
t that minimizes the asymptotic MSE satisfies:

h∗
t =

(
Tr(F−1ΣMF−1)

4n∥F−1bM∥2

)1/5

, (6.73)

Proof. Under Assumptions (4.5.3-6.4.3) and if the conditional density estimator f̂T |X is well-
specified. The asymptotic Mean Squared Error (MSE) of the M-Learner is given by

MSE
(
β̂Mh (t)

)
= E

[
∥β̂Mh (t)− β(t)∥2

]
=

p∑
j=1

E
[(
β̂Mj (t)− βj(t)

)2]
=

p∑
j=1

(
Bias

(
β̂Mj (t)

)2 + V
(
β̂j(t)

))
= h4∥F−1bM∥2 + 1

nh
Tr(F−1ΣMF−1).

(6.74)

Optimizing the bias-variance tradeoff of the asymptotic mean squared error, with respect to
the bandwidth h, gives:

∂

∂h
MSE

(
β̂Mh (t)

)
= 4h3∥F−1bM∥2 − 1

nh2 Tr(F−1ΣMF−1) = 0. (6.75)
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Therefore, if the bias term bM is non-zero, the optimal bandwidth h∗
t that minimizes the

asymptotic MSE is

h∗
t =

(
Tr(F−1ΣMF−1)

4n∥F−1bM∥2

)1/5

, (6.76)

and its order is O(n−1/5). ■

We note that a similar result was also proven for the average treatment effects by Colangelo &
Lee (2020).

Bias-Variance trade-off of the DR-learner.

For the DR-learner, the Bias-Variance analysis is quite similar to the M-learner. Indeed, for
t ∈ T , we consider the AIPW pseudo-outcome with arbitrary estimators of the outcome µ̂ and
the conditional density estimator f̂T |X

Y DR
t,h,i = yi − µ̂t(x(i))

f̂T |X(t | x(i))
Kh(ti − t) + µ̂t(x(i)), i = 1, . . . , n. (6.77)

The regression coefficient β̂t,h are given by the Ordinary Least Squares (OLS) method

β̂DRh (t) =
(
H⊤H

)−1H⊤yDRt,h , (6.78)

where yDRt,h = (Y DR
t,h,i)1≤i≤n and H = (Hij) ∈ Rn×p is the regression matrix. Therefore,

β̂DRh (t) =
(
H⊤H

)−1H⊤yDRt,h

= β̂Mh (t)−
(
H⊤H

)−1H⊤
(( Kh(ti − t)

f̂T |X(t | x(i))
− 1

)
µ̂t(x(i))

)n
i=1

= β(t) +
(
H⊤H

)−1H⊤(bMt,spec − (( Kh(ti − t)
f̂T |X(t | x(i))

− 1
)
µ̂t(x(i))

)n
i=1

+ bt,K,h + bt,ϵ
)

+ o(h2)

= β(t) +
(
H⊤H

)−1H⊤(bDRt,spec + bt,K,h + bt,ϵ
)

+ o(h2).
(6.79)

Here,

bDRt,spec =
(( Kh(ti − t)

f̂T |X(t | x(i))
− 1

)
f(t,x(i)) +

( Kh(ti − t)
f̂T |X(t | x(i))

− 1
)
µ̂t(x(i))

)n
i=1

=
(( Kh(ti − t)

f̂T |X(t | x(i))
− 1

)(
f(t,x(i))− µ̂t(x(i))

))n
i=1

(6.80)

is the bias term related to the misspecification of the outcome model estimator or the conditional
density estimator. The other terms bt,K,h and bt,ϵ remain unchanged, and consequently the
previous calculations are similar. The only changes are in the terms corresponding to bDRt,spec.

Lemma 6.4.11. For j = 1, . . . , p

hDRt,j = hDRt,spec,j + h2κ2(K)hDRt,Kern,j + o(h2), (6.81)
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where
hDRt,spec,j = E

[
fj(X)

( Kh(T − t)
f̂T |X(t |X)

− 1
)(
f(t,X)− µ̂t(X)

)]
(6.82)

is the misspecification bias and is equal to zero under the Doubly-Robustness property of the
DR-learner, and,

hDRt,Kern,j = E
[ fj(X)
f̂T |X(t |X)

C ′
t(X)

]
= hMt,Kern,j , (6.83)

with

C ′
t(X) = ∂f

∂t
(t,X)

∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X) + 1

2
∂2fT |X
∂t2

(t |X) (6.84)

is the bias induced by the use of kernel methods.

Proof. The proof holds immediately by adding the corresponding change in hDRt,spec,j . ■

Lemma 6.4.12. The entries of the covariance matrix CDR satisfy:

(CDR)jj′ =


1
hC

DR
1 + CDR0 + o(1) if j, j′ ∈ {1, . . . , p},

C2 if j, j′ ∈ {p+ 1, . . . , p2},
CDRspec + o(1) otherwise.

(6.85)

where CDR1 , CDR0 , C2 and CDRspec are some given terms such that CDR1 ̸= 0.

Proof. This proof is similar to the proof of Lemma 6.4.8. The change in the expression of bDRt,spec
implies only changes in (CDR

t,spec)jj′ for j, j′ ∈ {1, . . . , p} and CDR
j,j′ for j ∈ {p+ 1, . . . , p2} and

j′ ∈ {1, . . . , p} (or inversely, by symmetry).
The first term (CDR

t,spec)jj′ can be computed using similar calculations for (CDR
t,spec)jj′ . Indeed,

(CDR
t,spec)jj′ = E

[
fj(X)fj′(X)B2

t,spec

]
= E

[
fj(X)fj′(X)

(E[K2
h(T − t) |X

]
f̂2
T |X(t |X)

− 2
E
[
Kh(T − t) |X

]
f̂T |X(t |X)

+ 1
)(
f(t,X)− µ̂t(X)

)2]

= E
[
fj(X)fj′(X)

(1
h
R(K)

fT |X(t |X)
f̂2
T |X(t |X)

+
(
κ1(K2)

∂fT |X
∂t (t |X)

f̂2
T |X(t |X)

− 2
fT |X(t |X)
f̂T |X(t |X)

+ 1

+ o(1)
)(
f(t,X)− µ̂t(X)

)2]
= 1
h
R(K)E

[
fj(X)fj′(X)

fT |X(t |X)
f̂2
T |X(t |X)

(
f(t,X)− µ̂t(X)

)2]+ E
[
fj(X)fj′(X)

×
(

1− 2
fT |X(t |X)
f̂T |X(t |X)

)(
f(t,X)− µ̂t(X)

)2]+ o(1),

(6.86)
where R(K) =

∫
RK

2(u) du is the roughness of the kernel K.
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Thus, for j, j′ ∈ {1, . . . , p}, we write:

Cj,j′ = 1
h
CDR1 + CDR0 + o(1), (6.87)

where
CDR1 = R(K)E

[
fj(X)fj′(X)

fT |X(t |X)
f̂2
T |X(t |X)

(
σ2 +

(
f(t,X)− µ̂t(X)

)2)]
, (6.88)

and

CDR0 = hDRt,spec,jh
DR
t,spec,j′

= E
[
fj(X)

( Kh(T − t)
f̂T |X(t |X)

− 1
)(
f(t,X)− µ̂t(X)

)]
E
[
fj′(X)

( Kh(T − t)
f̂T |X(t |X)

− 1
)

×
(
f(t,X)− µ̂t(X)

)]
+ E

[
fj(X)fj′(X)

(
1− 2

fT |X(t |X)
f̂T |X(t |X)

)(
f(t,X)− µ̂t(X)

)2]
.

(6.89)
For the second term, if j ∈ {p+ 1, . . . , p2} and j′ ∈ {1, . . . , p} (or inversely by symmetry), then

CDR
j,j′ = E

[
fk(X)fk′(X)

(
bt,spec + bt,K,h

)]
= E

[
fk(X)fk′(X)bt,spec

]
+ E

[
fk(X)fk′(X)bt,K,h

]
= E

[
fk(X)fk′(X)

(
fT |X(t |X)
f̂T |X(t |X)

− 1
)(
f(t,X)− µ̂t(X)

)]
+ o(1)

= CDRspec + o(1).

(6.90)

Finally, by gathering all the previous terms,

(CDR)jj′ =


1
hC

DR
1 + CDR0 + o(1) if j, j′ ∈ {1, . . . , p}

C2 if j, j′ ∈ {p+ 1, . . . , p2}
CDRspec + o(1) otherwise,

(6.91)

with CDRspec = E
[
fk(X)fk′(X)

(
fT |X(t|X)
f̂T |X(t|X)

− 1
)(
f(t,X) − µ̂t(X)

)]
is the misspecification

covariance term with CDRspec = 0 if doubly robustness property is satisfied. ■

Proposition 6.4.13. If the doubly-robustness property of the DR-learner holds, then the estimator
β̂DRh (t) has bias and variance such that

E(β̂DRh (t)) ≈ β(t) + h2F−1hDRt ,

V(β̂DRh (t)) ≈ 1
nh

F−1ΣDRF−1,
(6.92)

where, for j ∈ {1, . . . , p},

hDRt,j = h2κ2(K)E
[ fj(X)
f̂T |X(t |X)

C ′
t(X)

]
+ o(h2), (6.93)
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with

C ′
t(X) = ∂f

∂t
(t,X)

∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X) + 1

2
∂2fT |X
∂t2

(t |X), (6.94)

and, for j, j′ ∈ {1, . . . , p},

ΣDR
jj′ =


σ2R(K)E

[
fj(X)fj′ (X)
fT |X(t|X)

]
+ o(1) if both models are well-specified,

σ2R(K)E
[
fj(X)fj′(X)fT |X(t|X)

f̂2
T |X(t|X)

]
+ o(1) if µ̂ is well-specified,

R(K)E
[
fj(X)fj′ (X)
fT |X(t|X)

(
σ2 + (f(t,X)− µ̂t(X))2)]+ o(1), if f̂T |X is well-specified.

(6.95)

Proof. Based on Lemmas 6.4.11-6.4.12 and similar to the proof of Proposition 6.4.9. The
expression of ΣDR under the well-specification of one or both models can be established
easily. ■

Discussion For the DR-learner, the first two results of the M-learner are still valid: a bias in
O(h2) and variance in 1/(nh). The variance of the DR-learner is also sensitive to the lower
bound rmin in the denominator. Regarding the numerator, it can be reduced by minimizing the
Mean Squared Error of the outcome model µ̂.
It is also interesting to see that, for both M- and DR-learners, the kernel K impacts the induced
bias and variance in a similar way: through the second moment κ2(K) for the bias and the
roughness R(K) for the variance.

Proposition 6.4.14. Under all previous assumptions, the asymptotic Mean Squared Error
(MSE) of the DR-learner β̂DRh (t) is given by

MSE
(
β̂DRh (t)

)
= h4∥F−1bDR∥2 + 1

nh
Tr(F−1ΣDRF−1), (6.96)

and the optimal bandwidth h∗
t that minimizes the asymptotic MSE satisfies:

h∗
t =

(
Tr(F−1ΣDRF−1)

4n∥F−1bDR∥2

)1/5

, (6.97)

Proof. Similar to the proof of Proposition 6.4.10. ■

Bias-Variance trade-off of the X-learner.

For the X-learner, the Bias-Variance analysis is different to M- and DR-learners and
computationally heavy to establish. This time, we target β∗(t) = β(t) − β(t0) instead of
targeting β(t) or β(t) separately. For t ∈ T , we recall the Regression-Adjustment pseudo-
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outcome with an arbitrary estimator of the outcome µ̂ such that

ZXt,h = 2ϵ(h)Kh(T − t)(Yobs − µ̂t0(X)) +
∫ t−ϵ(h)

tmin
Kh(T − t′)

(
µ̂t(X)− Yobs

)
dt′+∫ tmax

t+ϵ(h)
Kh(T − t′)

(
µ̂t(X)− Yobs

)
dt′ +

∫ t−ϵ(h)

tmin
Kh(T − t′)

(
µ̂t′(X)− µ̂t0(X)

)
dt′

+
∫ tmax

t+ϵ(h)
Kh(T − t′)

(
µ̂t′(X)− µ̂t0(X)

)
dt′.

(6.98)

The regression coefficient β̂Xh (t) are given by the Ordinary Least Squares (OLS) method

β̂Xh (t) =
(
H⊤H

)−1H⊤zXt,h, (6.99)

where zXt = (ZXt,h,i)1≤i≤n and H = (Hij) ∈ Rn×p is the regression matrix.
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Therefore,

β̂Xh (t) =
(
H⊤H

)−1H⊤zXt,h

=
(
H⊤H

)−1H⊤
(

2ϵ(h)Kh(ti − t)(yi − µ̂t0(x(i))) +
∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t(x(i))− yi

)
dt′+∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t(x(i))− yi

)
dt′ +

∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′

+
∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′
)n
i=1

=
(
H⊤H

)−1H⊤
(

2ϵ(h)Kh(ti − t)(f(ti,x(i)) + ϵi − µ̂t0(x(i))) +
∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t(x(i))− f(ti,x(i))

− ϵi
)

dt′ +
∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t(x(i))− f(ti,x(i))− ϵi

)
dt′ +

∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′

+
∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′
)n
i=1

=
(
H⊤H

)−1H⊤
((

2ϵ(h)Kh(ti − t)−
∫ t−ϵ(h)

tmin
Kh(ti − t′) dt′ −

∫ tmin

t+ϵ(h)
Kh(ti − t′) dt′

)
ϵi

)n
i=1

+
(
H⊤H

)−1H⊤
(

2ϵ(h)Kh(ti − t)
(
f(ti,x(i))− µ̂t0(x(i))

))n
i=1

+
(
H⊤H

)−1H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

×
(
µ̂t(x(i))− f(ti,x(i))

)
dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t(x(i))− f(ti,x(i))

)
dt′
)n
i=1

+
(
H⊤H

)−1H⊤

×
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′
)n
i=1

=
(
H⊤H

)−1H⊤
((

2ϵ(h)Kh(ti − t)−
∫ t−ϵ(h)

tmin
Kh(ti − t′) dt′ −

∫ tmin

t+ϵ(h)
Kh(ti − t′) dt′

)
ϵi

)n
i=1

+ 2ϵ(h)
(
H⊤H

)−1H⊤
(
Kh(ti − t)

(
f(ti,x(i))− µ̂t0(x(i))

))n
i=1

+
(
H⊤H

)−1H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

×
(
µ̂t(x(i))− f(ti,x(i))

)
dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t(x(i))− f(ti,x(i))

)
dt′
)n
i=1

+
(
H⊤H

)−1

×H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′
)n
i=1

(6.100)
To simplify calculus in the following, we denote

bt,ϵ =
((

2ϵ(h)Kh(ti − t)−
∫ t−ϵ(h)

tmin
Kh(ti − t′) dt′ −

∫ tmax

t+ϵ(h)
Kh(ti − t′) dt′

)
ϵi

)n
i=1

(6.101)
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the term corresponding to the bias due to error measurement, and,

bf,t0,Kh =
(
Kh(ti − t)

(
f(ti,x(i))− µ̂t0(x(i))

))n
i=1
,

bt,f,Kh =
(
Kh(ti − t)

(
µ̂t(x(i))− f(ti,x(i))

))n
i=1
,

bt,t0,Kh =
(
Kh(ti − t)

(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1
.

(6.102)

The remaining terms where the integral appears can be rearranged as follows:

I =
(
H⊤H

)−1H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t(x(i))− f(ti,x(i))

)
dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t(x(i))

− f(ti,x(i))
)

dt′
)n
i=1

+
(
H⊤H

)−1H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′

+
∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− µ̂t0(x(i))

)
dt′
)n
i=1

=
(
H⊤H

)−1H⊤
((∫ t−ϵ(h)

tmin
Kh(ti − t′) dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′) dt′

)(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

+
(
H⊤H

)−1

×H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
)n
i=1

= I1 + I2,
(6.103)

where

I1 =
(
H⊤H

)−1H⊤
((∫ t−ϵ(h)

tmin
Kh(ti − t′) dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′) dt′

)(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

=
(
H⊤H

)−1H⊤
((∫ tmax

tmin
Kh(ti − t′) dt′ −

∫ t−ϵ(h)

t−ϵ(h)
Kh(ti − t′) dt′

)(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

=
(
H⊤H

)−1H⊤
((∫ tmax

tmin
Kh(ti − t′) dt′ − 2ϵ(h)Kh(ti − t)

)(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

=
(
H⊤H

)−1H⊤
((

1− 2ϵ(h)Kh(ti − t)
)(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

=
(
H⊤H

)−1H⊤
((
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1
− 2ϵ(h)

(
H⊤H

)−1H⊤
(
Kh(ti − t)

(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

=
(
H⊤H

)−1H⊤
((
µt(x(i))− µt0(x(i))

))n
i=1
− 2ϵ(h)

(
H⊤H

)−1H⊤
(
Kh(ti − t)

(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

= β∗(t) +
(
H⊤H

)−1H⊤
((
µ̂t(x(i))− f(t,x(i))

)
−
(
µ̂t0(x(i))− f(t0,x(i))

))n
i=1
− 2ϵ(h)

(
H⊤H

)−1H⊤

×
(
Kh(ti − t)

(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

= β∗(t) +
(
H⊤H

)−1H⊤
((
µ̂t(x(i))− f(t,x(i))

)
−
(
µ̂t0(x(i))− f(t0,x(i))

))n
i=1
− 2ϵ(h)

(
H⊤H

)−1H⊤bt,t0,Kh

(6.104)
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and

I2 =
(
H⊤H

)−1H⊤
(∫ t−ϵ(h)

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′

+
∫ tmax

t+ϵ(h)
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
)n
i=1

=
(
H⊤H

)−1H⊤
(∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′ −

∫ t+ϵ(h)

t−ϵ(h)
Kh(ti − t′)

(
µ̂t(x(i))− f(ti,x(i))

)
dt′
)n
i=1

=
(
H⊤H

)−1H⊤
((∫ t−ϵ(h)

tmin
Kh(ti − t′) dt′ +

∫ tmax

t+ϵ(h)
Kh(ti − t′) dt′

)(
µ̂t(x(i))− µ̂t0(x(i))

))n
i=1

+

=
(
H⊤H

)−1H⊤
(∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′ − 2ϵ(h)Kh(ti − t)

(
µ̂t(x(i))− f(ti,x(i))

))n
i=1

=
(
H⊤H

)−1H⊤
(∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
))n

i=1
− 2ϵ(h)

(
H⊤H

)−1H⊤bt,f,Kh .

(6.105)
By gathering all previous terms:

β̂Xh (t) = β∗(t) +
(
H⊤H

)−1H⊤
((
µ̂t(x(i))− f(t,x(i))

)
−
(
µ̂t0(x(i))− f(t0,x(i))

))n
i=1

+
(
H⊤H

)−1H⊤bt,ϵ + 2ϵ(h)
(
H⊤H

)−1H⊤(bf,t0,Kh − bXt,t0,Kh − bt,f,Kh
)

+
(
H⊤H

)−1H⊤
(∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
))n

i=1

= β∗(t) +
(
H⊤H

)−1H⊤bt,ϵ − 4ϵ(h)
(
H⊤H

)−1H⊤bf,t,Kh +
(
H⊤H

)−1H⊤
((
µ̂t(x(i))− f(t,x(i))

)
−
(
µ̂t0(x(i))− f(t0,x(i))

)
+
∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
))n

i=1
.

(6.106)
As seen previously with the M- and DR-learners, the bias terms are either in O(1) or O(h2).
It is sufficient to choose ϵ(h) = o(h2) to neglect the bias term ϵ(h)

(
H⊤H

)−1H⊤bf,t,Kh that
involves ϵ(h). This choice does not exclude other possible choices, typically in o(h) or o(1).
However, our purpose is to eliminate as much as possible all bias with order term below h2.
The choice of ϵ(h) = o(h2) is reasonable for that.
Under this condition, we can write:

bt,ϵ ≈ −
(∫ tmax

tmin
Kh(ti − t′) dt′ ϵi

)n
i=1

= −ϵ. (6.107)

Therefore,

β̂Xh (t) = β∗(t)−
(
H⊤H

)−1H⊤ϵ +
(
H⊤H

)−1H⊤
((
µ̂t(x(i))− f(t,x(i))

)
−
(
µ̂t0(x(i))− f(t0,x(i))

)
+
∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
)n
i=1

= β∗(t) +
(
H⊤H

)−1H⊤bXt,spec +
(
H⊤H

)−1H⊤bXt,spec,K,h −
(
H⊤H

)−1H⊤ϵ,
(6.108)
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where
bXt,spec =

((
µ̂t(x(i))− f(t,x(i))

)
−
(
µ̂t0(x(i))− f(t0,x(i))

))n
i=1
, (6.109)

and
bXt,spec,K,h =

(∫ tmax

tmin
Kh(ti − t′)

(
µ̂t′(x(i))− f(ti,x(i))

)
dt′
)n
i=1
, (6.110)

are the bias terms due to the misspecification of the outcome model estimator µ̂.
Since E(ϵ) = 0, the previous equation allows us to write, for j = 1, . . . , p.

ht,j = hMt,spec,j + ht,spec,K,j . (6.111)
.

Lemma 6.4.15. For j = 1, . . . , p

hXt,j = hXt,spec,j + hXt,spec,K,j , (6.112)

where hXt,spec,j and hXt,spec,K,h are the model’s misspecification bias such that

hXt,spec,j = E
[
fj(X)

(
µ̂t(X)− f(t,X)

)]
+ E

[
fj(X)

(
µ̂t0(X)− f(t,X)

)]
, (6.113)

and

hXt,spec,K,h,j = E
[
fj(X)

∫ ((
µ̂t′(X)− f(t′,X)

)
fT |X(t′ |X) dt′

]
− h2κ2(K)

× E
[
fj(X)

∫ tmax

tmin
C

(2)
t′ (X) dt′

]
+ o(h2),

(6.114)

with
C

(2)
t′ (X) = ∂f

∂t
(t′,X)

∂fT |X
∂t

(t′ |X) + 1
2fT |X(t′ |X)∂

2f

∂t2
(t′,X)

+ 1
2
∂2fT |X
∂t2

(t′ |X)
(
f(t′,X)− µ̂t′(X)

)
.

(6.115)

Proof. The specification term hXt,spec,j can be computed easily as

hXt,spec,j = E
[
fj(X)

(
µ̂t(X)− f(t,X)

)]
+ E

[
fj(X)

(
µ̂t0(X)− f(t,X)

)]
. (6.116)

For the other specification term, we show that

hXt,spec,K,h,j = E
[
fj(X)

( ∫
Kh(T − t′)

(
µ̂t′(X)− f(T,X)

)
dt′
)]

= E
[
fj(X)

∫
E
[
Kh(T − t′)

(
µ̂t′(X)− f(T,X) |X

]
dt′
]

= E
[
fj(X)

∫ ( ∫
Kh(s− t′)

(
µ̂t′(X)− f(s,X)

)
fT |X(s |X) ds

)
dt′
]

u=(s−t′)/h= E
[
fj(X)

∫ ( ∫
K(u)

(
µ̂t′(X)− f(t′ + uh,X)

)
fT |X(t′ + uh |X) du

)
dt′
]

h≈0= E
[
fj(X)

∫ ( ∫
R
K(u)

(
µ̂t′(X)− f(t,X)− hu∂f

∂t
(t,X)− (hu)2

2
∂2f

∂t2
(t,X) + (hu)2ε1,X(uh)

)
×
(
fT |X(t |X) + hu

∂fT |X
∂t

(t |X) + (hu)2

2
∂2fT |X
∂t2

(t |X) + (hu)2ε2,X(uh)
)

ds
)

dt′
]
.

(6.117)
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By similar calculus to what have been done for the M- and DR-learners, we show that

hXt,spec,K,h,j = E
[
fj(X)

∫ ((
µ̂t′(X)− f(t′,X)

)
fT |X(t′ |X)− h2κ2(K)

(∂f
∂t

(t′,X)
∂fT |X
∂t

(t′ |X)

+ 1
2fT |X(t′ |X)∂

2f

∂t2
(t′,X) + 1

2
∂2fT |X
∂t2

(t′ |X)
(
f(t′,X)− µ̂t′(X)

))
dt′ + o(h2)

]
= E

[
fj(X)

∫ (
µ̂t′(X)− f(t′,X)

)
fT |X(t′ |X) dt′

]
− h2κ2(K)E

[
fj(X)

∫
C

(2)
t′ (X) dt′

]
+ o(h2),

(6.118)
where

C
(2)
t′ (X) = ∂f

∂t
(t′,X)

∂fT |X
∂t

(t′ |X) + 1
2fT |X(t′ |X)∂

2f

∂t2
(t′,X)

+ 1
2
∂2fT |X
∂t2

(t′ |X)
(
f(t′,X)− µ̂t′(X)

)
.

(6.119)

■

Lemma 6.4.16. The entries of the covariance matrix CX satisfy:

(CX)jj′ =


CX1 + o(1) if j, j′ ∈ {1, . . . , p},
C2 if j, j′ ∈ {p+ 1, . . . , p2},
CXspec + o(1) otherwise.

(6.120)

where CX1 , C2 and CXspec are some given terms such that CX1 ̸= 0.

Proof. For j, j′ ∈ {p+ 1, . . . , p2}, the term (CX
t,spec)jj′ can be written as

(CX
t,spec)jj′ = E

[
fj(X)fj′(X)B2

t,spec

]
= E

[
fj(X)fj′(X)

(
µ̂t(X)− f(t,X)

)2]+ E
[
fj(X)fj′(X)

(
µ̂t0(X)− f(t0,X)

)2]
− 2E

[
fj(X)fj′(X)

(
µ̂t(X)− f(t,X)

)(
µ̂t0(X)− f(t0,X)

)]
.

(6.121)
For the second term (CX

t,spec,K,h)jj′ and considering that we want to collect only expansion
terms with order lower than o(1), we have

(CX
t,spec,K,h)jj′ = E

[
fj(X)fj′(X)B2

t,spec,K,h

]
= E

[
fj(X)fj′(X)

( ∫
Kh(T − t′)

(
µ̂t′(X)− f(T,X)

)
dt′
)2]

u=(T−t′)/h= E
[
fj(X)fj′(X)

( ∫
K(u)

(
µ̂T−hu(X)− f(T,X)

)
du
)2] (6.122)

The function µ̂ is continuous on t by Assumption 6.4.4 and uniformly bounded on (t,x). Thus,
by the dominated convergence theorem:

(CX
t,spec,K,h)jj′

h→0−→ E
[
fj(X)fj′(X)

( ∫
R
K(u)

(
µ̂T (X)− f(T,X)

)
du
)2]

. (6.123)
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Therefore, we can write:

(CX
t,spec,K,h)jj′ = E

[
fj(X)fj′(X)

(
µ̂T (X)− f(T,X)

)2]+ o(1). (6.124)

For the covariance term (CX
t,K,spec)jj′ between BX

t,spec and BX
t,spec,K,h:

(CX
t,K,spec)jj′ = E

[
fj(X)fj′(X)BX

t,specB
X
t,spec,K,h

]
= E

[
fj(X)fj′(X)BX

t,specE
[
BX
t,spec,K,h |X

]]
= E

[
fj(X)fj′(X)

∫ (
µ̂t′(X)− f(t′,X)

)
fT |X(t′ |X) dt′

]
+ o(1).

(6.125)

Finally, the covariance term (CX
t,ϵ)jj′ corresponds to

(CX
t,ϵ)jj′ = σ2. (6.126)

If j ∈ {p+ 1, . . . , p2} and j′ ∈ {1, . . . , p} (or inversely by symmetry), then

CX
j,j′ = E

[
fk(X)fk′(X)

(
bXt,spec + bXt,spec,K,h

)]
= E

[
fk(X)fk′(X)bXt,spec

]
+ E

[
fk(X)fk′(X)bXt,spec,K,h

]
(By similar calculus to ht,spec,j and ht,spec,K,h,j)

= E
[
fk(X)fk′(X)

(∫ (
µ̂t′(X)− f(t′,X)

)
fT |X(t′ |X) dt′

)
+
(
µ̂t(X)− f(t,X)

)
−
(
µ̂t0(X)− f(t0,X)

)]
+ o(1)

= CXspec + o(1),

(6.127)

where CXspec is the misspecification covariance term with CXspec = 0 if the conditional density
estimator is well-specified for all t ∈ T .
Thus, by gathering all the previous terms,

(CX)jj′ =


CX1 + o(1) if j, j′ ∈ {1, . . . , p}
C2 if j, j′ ∈ {p+ 1, . . . , p2}
CXspec + o(1) otherwise.

(6.128)

with

CX1 = E
[
fj(X)fj′(X)

(
µ̂t(X)− f(t,X)

)2]+ E
[
fj(X)fj′(X)

(
µ̂t0(X)− f(t0,X)

)2]
− 2E

[
fj(X)fj′(X)

(
µ̂t(X)− f(t,X)

)(
µ̂t0(X)− f(t0,X)

)]
+ E

[
fj(X)fj′(X)

(
µ̂T (X)− f(T,X)

)2]
.

(6.129)

■
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Proposition 6.4.17. If the outcome model µ̂ is well-specified, then the estimator β̂Xh (t) has bias
and variance such that

E(β̂Xh (t)) ≈ β(t) + h2F−1hXt ,

V(β̂Xh (t)) ≈ 1
n
γ(h)C,

(6.130)

where, for j ∈ {1, . . . , p},

hXt,j = κ2(K)E
[
fj(X)

∫
Ct′(X) dt′

]
, (6.131)

with
Ct(X) = ∂f

∂t
(t,X)

∂fT |X
∂t

(t |X) + 1
2fT |X(t |X)∂

2f

∂t2
(t,X), (6.132)

C is a fixed matrix and γ : R→ R is a function such that γ(h)→ 0 when h→ 0.

Proof. Based on Lemmas 6.4.15 and 6.4.16, and similar to the proof of Proposition 6.4.9. More
precisely, when the outcome µ̂t(X) is well specified then µ̂t(x) = f(t,x) and most terms become
equal to zero. In the bias term hXt , we obtain C

(2)
t′ (X) = Ct′(X) where Ct′(X) is given in

(6.45). For the covariance term, we have simply CX1 = 0 and therefore only terms in o(1) remain
in (CX)jj′ for j, j′ ∈ {1, . . . , p}. ■

Discussion The first result of the M- and DR-learners is also valid for the X-learner: Kernels
methods induce a bias that is in O(h2). Furthermore, the X-learner is likely to have the lowest
variance compared to the M- and DR-learners. However, the comparison of the bias between
X-learner and M- and DR-learners seems to be more challenging.

Proposition 6.4.18. Under all previous assumptions, the asymptotic Mean Squared Error
(MSE) of the X-Learner β̂Xh (t) is given by

MSE
(
β̂Xh (t)

)
= h4∥F−1bX∥2 + γ(h)

n
Tr(C), (6.133)

and the optimal bandwidth h∗
t that minimizes the asymptotic MSE h∗

t = 0.

Proposition 6.4.18 proves that the X-learner with kernel density methods does not bring any
additional value. In addition, when considering the pseudo-outcome ZXt,h with ϵ(h) = 0 (or
h = 0 if ϵ(0) = 0, with an abuse of the notation), one gets E(ZXt,h |X) = µt(X)− µt0(X). In
conclusion: the optimal X-learner in continuous treatments is no more than a simple S-learner.

6.5 Discussion of the R-learner in the continuous treatment
setting.

In this section, we consider the extension of the R-learner to continuous treatments, and we
discuss some ideas elaborated in Zhang et al. (2022) work.
The generalization of the Robinson (1988) decomposition from multi-treatments to a continuous
treatment is natural. Indeed, if we replace ∑K

k=1 by
∫
t∈T in Equation (5.2.6), we get:

Yobs −m(X) = τT (X)−
∫
t∈T

τt(X)fT |X(t |X)dt+ ϵ, (6.134)
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where m(x) = E(Yobs |X = x) is the observed outcome model, and ϵ is the error and satisfies
E(ϵ |X) = 0 (Neyman Orthogonality). We may refer to the same paper for this extension.
With the previous equation, we define the generalized R-loss function as:

ℓR(τ) = E
[(
Yobs −m(X)− τT (X) +

∫
t∈T

τ t(X)fT |X(t |X)dt
)2]
. =, (6.135)

for some function τ .
The generalized R-loss function ℓR has two main issues: On the one hand, and in contrast to
binary or multi-treatment settings, it is impossible to solve this problem separately for each
level t ∈ T as it would require estimating an infinite number of models {τ̂t}t̸=t0 in one problem.
Instead, one must consider bi-variate functions τ : T × D → R and minimize the generalized
R-loss function with respect to this functional form of τ . On the other hand, the problem of the
non-identifiability of τ(t,x) for a given t ∈ T and x ∈ D shows up. It has been shown by Zhang
et al. (2022) that, if τ(t,x) is the true CATE, then all functions of the form τ(t,x) + s(x) for a
function s with a finite second moment (i.e. ∥s∥L2 = E(s2(X)) < +∞) are also solution to the
R-loss minimization problem.
To overcome the problem of the non-identifiability, Zhang et al. (2022) propose Tikhonov et al.
(1995) regularization to the generalized R-loss function ℓR and define the ℓ2-penalized loss as:

ℓ(τ | ρ) = ℓR(τ) + ρ∥τ∥2L2 , (6.136)

where ρ is a penalty term and ∥ · ∥2L2 is the L2 norm. The so-proposed ℓ2-penalized R-learner
identifies efficiently and uniquely the true CATE τ(t,x) (Zhang et al., 2022).
Another alternative to R-learning to continuous treatments is proposed by Kaddour et al. (2021).
The approach considers both Assumptions 6.4.1 and 5.3.2 on the outcome Y (t) = f(X)⊤β(t)+ϵ,
then established the binarized Robinson (1988) decomposition such that

Yobs −m(X) = f(X)⊤(β(T )− eβ(X)) + ϵ, (6.137)

where m(x) = E(Yobs |X = x) and eβ(x) = E(β(T ) |X = x).
Considering the mean squared error of ϵ as loss function and minimizing it allows us to identify
the optimal functions f̂ and β̂ and therefore the CATE τt(X) = f(X)⊤(β(t)− β(t0)). One
needs to solve the following problem:

f̂ , β̂ = argminf ,β∈F
1
n

n∑
i=1

[ (
yi − m̂(x(i))

)
− f(x(i))⊤(β(ti)− eβ(x(i))

)]
, (6.138)

where eβ(x) = E(β(T ) |X = x) and F is the space of candidate models f and β. In the end,
although this approach is simple, it is computationally heavy. It also requires specifying the
family of models F and precise the dimension p for the assumption 6.4.2.

6.6 Discussion

In this chapter, we extended heterogeneous treatment effects estimation to continuous treatment.
Using the adapted framework of potential outcomes under continuous treatments and kernel
density methods, we developed pseudo-outcome meta-learners (M-, DR- and X-learners) under
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continuous treatments. We performed a bias-variance analysis of this class of meta-learners.
We compared their behavior with a super S-learner that would have learned to estimate
heterogeneous treatment effects without relying on pseudo-outcome representations. Our
results are surprising: For all pseudo-outcome meta-learners, kernel density methods induce
an estimation bias, and this bias cannot be avoided and is intrinsic to kernels. The variance
of both M- and DR-learner may increase significantly because of the bandwidth of the kernel
and the lower bound of the generalized propensity score. The X-learner would perform as the
S-learner in terms of variance but still suffers from induced bias. This claim is proper only
when the outcome model is well-specified. The following question remains unanswered: under
which conditions of a misspecified µ̂ would the X-learner have an advantage over the S-learner?
For the moment and unless proven otherwise, we recommend focusing on efficiently estimating
heterogeneous treatment effects for continuous treatments using S-learning instead of relying on
pseudo-outcome representations. This conclusion opens new perspectives on new methods and
approaches for building efficient S-learners. One of them could be, for example, the binarized
R-loss function in (6.137).
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CHAPTER 7

Conclusion and Perspectives

Conclusion

The interpretability of Machine Learning models in Energy industry motivated the work in
this thesis. Beyond prediction, it was necessary to estimate the uncertainty of predictions and
answer causal questions.
The objective of this thesis was twofold: The first goal was to develop a new method for
uncertainty quantification for a misspecified Gaussian Process model. We were able to construct
reliable prediction intervals with respect to some coverage and confidence criteria. This method
was applied successfully to two real cases: natural gas fields and battery charging capacities. It
could also be used for more generic problems for industrial and energy systems where a decline
in production capacity may be observed in time.
The second goal was in the context of Causal Inference with multi-valued and continuous
treatments. We developed frameworks and estimators for inferring the heterogeneity of
treatment/intervention effects. However, because of the fundamental problem of Causal
Inference (i.e. the counterfactual outcomes are unobserved, and only the factual outcome
corresponding to the intervention are observed), we could not validate our estimators on a
real-world dataset. We created, therefore, a semi-synthetic dataset simulating an enhanced
geothermal system for this purpose. The ground truth effect of causal effects is known and
used to assess different estimators. We provided some statistical guarantees and elaborated
a detailed discussion about the use of meta-learners when inferring heterogeneous treatment
effects under various circumstances and conditions. The possible real-case applications of this
work include evaluating the impact of different insulation materials on energy efficiency and
the effect of solar cell type on the energy storage of a solar panel. More generally, it can cover
any application where the causal impact of a variable is crucial to optimize the outcome of the
system (and also for decision-making).
The next step could be to combine the two parts of the thesis to address the issue of risk
management and reliability in heterogeneous treatment effect inference. Indeed, providing
causal estimations with a significance level is crucial to guarantee sufficient evidence and
confidence for reliable decision-making. The Gaussian Process model seems to be the reasonable
choice to tackle this problem. Nevertheless, treatment effects estimation can be seen as a
missing-data problem (i.e. an extrapolation problem for the treatment T ), whereas the Gaussian
Process model is basically meant for interpolation. This issue would necessitate significant
considerations in modelling the covariance function to estimate causal treatment effects with
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their uncertainty. Another possibility is to consider the transposition of the Gaussian Process
model from the learning domain to the extrapolation domain.
Despite the contributions to Gaussian process modelling and causal inference made in this
thesis, several issues are not addressed. They are discussed in the following sections:

On uncertainty quantification with Gaussian Process

Firstly, in our work, we did not consider the asymptotic properties of the RPIE method. The
asymptotic results on an expansion-domain or in a fixed-domain (Bachoc, 2013; Stein, 1999) of
the method may provide additional information about the consistency of the Leave-One-Out
Coverage Probability and its convergence rate. Secondly, as already discussed in the conclusion
of Chapter 3, the approach at this stage only considers continuous inputs. An extension
with categorical and non-continuous variables should be developed in the future. Thirdly, the
evaluation of the RPIE method on a new validation set is based on the assumption of random
sampling (i.e. the training and the validation sets have the same distribution). In the case of
sequential experimental designs, this could be problematic and compromises the RPIE method.
Finally, it may be worthwhile to investigate the influence of outliers on misspecified models
and the misspecification of the errors’ ϵ distribution on the RPIE method.

On Causal inference and treatment effects estimation

Although its efficiency and popularity, the Rubin Causal model has some critical limitations,
primarily due to the untestable nature of causal assumptions (i.e. the unconfoundedness, Stable
Unit Treatment Value Assumption).
The violation of these assumptions compromises the estimation of causal effects. The lack of
unconfoundedness would lead to biased causal effects. Quantifying the influence of unmeasured
confounding on estimating treatment effects should be considered in the future. Some recent
works, namely Marginal Sensitivity Model (Jin et al., 2021; Kallus et al., 2019; Yin et al.,
2022) has gained popularity for unmeasured confounding effects. It presents an exciting tool
for characterizing the strength of unmeasured confounding necessary to explain causal effects
estimands.
Another challenge we have not considered in the thesis is to train and optimize the S-learner:
In addition to the binarized R-loss, a perspective could be developing specific representations
of the covariates that will lead to a deconfounded S-learner. One of them is the Invariant Risk
Minimization (Arjovsky et al., 2019; Shi et al., 2021).
Finally, in a completely different framework to this thesis, the SUTVA assumption may
be relaxed using Networked Interference (Ma & Tresp, 2021) or multiple causal inference
(D’Amour, 2019). Inferring heterogeneous treatment effects under this framework should also
be investigated.
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APPENDIX A

Appendix for Part I

A.1 Proofs of Propositions 3.2.3 - 3.3.6.

Preliminary lemmas

Lemma A.1.1. Let F be a full rank matrix (Assumption 2.2.32), let K be a positive definite
matrix and let K defined by K = K−1

(
In − F

(
F⊤K−1F

)−1
F⊤K−1

)
then Ker K = Im F and

K is singular.

Proof. Let K be the matrix defined above. Suppose that x ∈ Im F, then there exists y such
that x = Fy, and Kx = K−1

(
Fy − F

(
F⊤K−1F

)−1
F⊤K−1Fy

)
= K−1 (Fy − Fy) = 0.

Thus x ∈ Ker K.
If x ∈ Ker K, then K Kx = 0, and x = F(F⊤K−1F)−1F⊤K−1x = Fx′ ∈ Im F.
In case of Ordinary or Universal kriging, p = rank(F) = dim(Ker K) ≥ 1 which means that K
is not invertible. ■

Lemma A.1.2 ( de Oliveira (2007)). Under the hypotheses of Lemma A.1.1 and given the full
rank regression matrix F, there exists a matrix W ∈ Rn×(n−p) satisfying :

W⊤W = In−p, (A.1)
F⊤W = Op×(n−p), (A.2)

and
K = W

(
W⊤KW

)−1
W⊤. (A.3)

Lemma A.1.3. Under the hypotheses of Lemma A.1.1, if additionally assumption 2.3.10 holds
true, then Kii > 0 for all i ∈ {1, . . . , n}.

Proof. K is a positive semi-definite matrix by Lemma A.1.2 and we can write

K =
n∑
j=1

λjuju
⊤
j , (A.4)

with λj ≥ 0 the eigenvalues of K and (uj)nj=1 the orthonormal basis of the eigenvectors. We
have
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Kii = e⊤
i Kei =

n∑
j=1

λj(u⊤
j ei)2. (A.5)

If Kii = 0, then u⊤
j ei = 0 for all j such that λj > 0. Therefore

Kei =
n∑
j=1

λj(u⊤
j ei)uj = 0, (A.6)

which shows that ei ∈ Ker K, that is, ei ∈ Im F by Lemma A.1.1. ■

Lemma A.1.4. Let Π = WW⊤ = In − F
(
F⊤F

)−1
F⊤ the orthogonal projection matrix on

ImF)⊥ then, with the assumption 2.3.10, (Π)i,i ̸= 0 for all i ∈ {1, . . . , n}.

Proof. This lemma is a direct application of Lemma A.1.3 by choosing K = In. ■

Proof of Proposition 3.2.3

From preliminary lemmas, we show now the stronger result (stronger than Proposition 3.2.3):

Lemma A.1.5. Under the assumptions 2.2.32-3.2.1, for any θ ∈ (0,+∞)d, there exists
σ2 ∈ (0,+∞) such that (σ2,θ) ∈ Aa,δ.

Proof. Here σ2
ϵ > 0. Let us assume that a > 1/2 (i.e. qa > 0), then for θ fixed in (0,+∞)d, the

limit of K when σ2 → 0 is well defined and is equal to

lim
σ2→0

K = σ−2
ϵ WW⊤ = σ−2

ϵ Π. (A.7)

By Assumption 2.3.10 and from Lemma A.1.4, we can write for all i ∈ {1, . . . , n}(
Ky

)
i√(

K
)
i,i

σ2→0−→ 1
σϵ

(Πy)i√
(Π)i,i

. (A.8)

Since h+
δ ≤ h for all δ > 0, then

lim
σ2→0

ψ(δ)
a (σ2,θ) ≤ lim

σ2→0
ψa(σ2,θ) = 1

n

n∑
i=1

h

qa − 1
σϵ

(Πy)i√
(Π)i,i

 = kϵ
n

(A.9)

When σ2 → +∞, we have
K σ2→+∞∼ σ−2 Rθ, (A.10)

where
Rθ = W

(
W⊤RθW

)−1
W⊤. (A.11)
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By lemma A.1.3, we have
(
Rθ

)
i,i
> 0 for all i ∈ {1, . . . , n} and we obtain that

1
σ

(
Rθy

)
i√(

Rθ

)
i,i

σ2→+∞−→ 0. (A.12)

With δ small enough satisfying δ < qa, we obtain

ψ(δ)
a (σ2,θ) σ

2→+∞−→ 1
n

n∑
i=1

h+
δ (qa) = 1. (A.13)

Since kϵ < an < n by Assumption 3.2.1 and since ψ(δ)
a is continuous, the Intermediate Value

Theorem gives the existence of σ2
δ ∈ (0,+∞) such that

ψ(δ)
a (σ2

δ ,θ) = a, (A.14)

which gives the desired result.
Similarly, if a < a/2 then qa < 0 and

lim
σ2→0

ψ(δ)
a (σ2,θ) ≥ lim

σ2→0
ψa(σ2,θ) = 1

n

n∑
i=1

h

qa − 1
σϵ

(Πy)i√
(Π)i,i

 = kϵ
n
> a. (A.15)

When δ < q1−a, one obtains

ψ(δ)
a (σ2,θ) σ

2→+∞−→ 1
n

n∑
i=1

h−
δ (qa) = 0. (A.16)

By the assumption 3.2.1, one has the existence of σ2
δ ∈ (0,+∞) such that

ψ(δ)
a (σ2

δ ,θ) = a, (A.17)

which completes the proof of the lemma. ■

Proof of Proposition 3.3.5

The existence of σ2
opt(λ) for all λ ∈ (0,+∞) results directly from the following lemma A.1.6 :

Lemma A.1.6. For all λ ∈ (0,+∞), Hδ(λ) is a non-empty and compact subset of R+ i.e. Hδ

is compact-valued.

Proof. By Lemma A.1.5, Hδ(λ) is non-empty for all λ ∈ (0,+∞).
Hδ(λ) is closed since the functions h+

δ , h
−
δ are continuous and the map (σ2,θ) 7→ K is also

continuous for all (σ2,θ) by the continuity of the kernel function kν.,.(x,x′) for any ν > 0 and
x,x′ ∈ D.
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A.1. Proofs of Propositions 3.2.3 - 3.3.6.

We now prove that Hδ(λ) is bounded. Let us assume that a ∈ (1/2, 1). If Hδ(λ) is not bounded
then there exists a sequence

(
σ2
m

)
m∈N of Hδ(λ) such that lim

m→+∞
σ2
m = +∞ and, by continuity

of ψ(δ)
a

a = lim
m→+∞

ψ(δ)
a (σ2

m, λθ0) = 1
n

n∑
i=1

h+
δ (qa) = 1, (A.18)

which is a contradiction. Therefore, Hδ(λ) is closed and bounded, Hδ(λ) is compact. ■

σ2
opt(λ) can be seen the solution of a constrained maximization problem

σ2
opt(λ) = − max

σ2∈Hδ(λ)
u(σ2, λ), λ ∈ (0,+∞), (A.19)

where u(σ2, λ) = −σ2 is a continuous function. Hδ is non-empty-valued and compact-valued
by Lemma A.1.6, upper semi-continuous since ψ(δ)

a is continuous on [0,+∞)× (0,+∞)d, and
continuous if the assumption 3.3.4 is satisfied, the Maximum theorem (Berge (1963), p. 116)
provides the continuity of σ2

opt on (0,+∞).

Proof of Proposition 3.3.6

Let θ0 be a solution of one of the problems described in (2.58) or (2.76). The continuity of L
on (0,+∞) follows from the continuity of the trace function Tr(·), the continuity of the map
(σ2,θ) 7→ K and the continuity of σ2

opt by proposition 3.3.5.
Assume that lim

λ→+∞
σ2

opt(λ) < +∞, then there exists M > 0 such that for all λ > 0 there exists
λ′ ≥ λ and σ2

opt(λ′) ≤M . Hence, we can recursively build a sequence (λm)m∈N of integers such
that λm+1 ≥ λm + 1 and σ2

opt(λm) ≤M for all m ∈ N.

By the Bolzano-Weierstrass theorem, we extract a convergent sub-sequence
(
λϕ(m)

)
m∈N

where

ϕ : N→ N such that σ2
opt(λϕ(m))

m→+∞−→ σ2
∞ < +∞ and

Kσ2
opt(λϕ(m)),λϕ(m)θ0

m→+∞−→ σ2
∞J + σ2

ϵ In = K∞. (A.20)

When there is a nugget effect σ2
ϵ > 0, the limit of Km := Kσ2

opt(λϕ(m)),λϕ(m)θ0 when m→ +∞
exists because the matrix K∞ is nonsingular by the auxiliary fact 1 of Berger et al. (2001)

det K∞ =
(
σ2
ϵ

σ2
∞

)n(
1 + σ2

ϵ

σ2
∞

e⊤Ine

)
=
(
σ2
ϵ

σ2
∞

)n(
1 + n

σ2
ϵ

σ2
∞

)
> 0. (A.21)

From Assumption 2.2.32, e is a column of F and we can prove that

Km
m→+∞−→ K∞ : = W

(
W⊤

(
σ2

∞J + σ2
ϵ In
)

W
)−1

W⊤

= σ−2
ϵ W

(
W⊤W

)−1
W⊤ = σ−2

ϵ Π.
(A.22)
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A.2. The no-nugget case.

By the assumption 2.3.10, the Leave-One-Out formulas (2.72-2.73) give for all i ∈ {1, . . . , n}(
Kmy

)
i√(

Km

)
i,i

m→+∞−→ 1
σϵ

(Πy)i√
(Π)i,i

. (A.23)

If a > 1/2 for example and by definition of σ2
opt(λϕ(m)), one obtains

a = 1
n

n∑
i=1

h+
δ

qa −
(
Kmy

)
i√(

Km

)
i,i


m→+∞−→ 1

n

n∑
i=1

h+
δ

qa −
(
K∞y

)
i√(

K∞
)
i,i


= 1
n

n∑
i=1

h+
δ

qa − 1
σϵ

(Πy)i√
(Π)i,i

 = kϵ
n
< a,

(A.24)

which is contradictory. Therefore, lim
λ→+∞

σ2
opt(λ) = +∞ and L is coercive. The case a < 1/2

can be addressed in the same way.

A.2 The no-nugget case.

Proof of the existence of a solution to Problem (3.13)

In the absence of σ2
ϵ = 0, it follows from the Leave-One-Out formulas that, for all i ∈ {1, . . . , n}(

Ky
)
i√(

K
)
i,i

= 1
σ

(
Rθy

)
i√(

Rθ

)
i,i

, (A.25)

which is a monotonic function in σ2 when θ is fixed in (0,∞)d.

Let θ be fixed in (0,+∞)d and let a > 1/2. The proportion ψ
(δ)
a (σ2,θ) has the limit

lim
σ2→+∞

ψ(δ)
a (σ2,θ) = 1

n

n∑
i=1

h+
δ (qa) = 1, (A.26)

and, if σ2 → 0, it has the limit

lim
σ2→0

ψ(δ)
a (σ2,θ) = 1

n
Card

{
i ∈ {1, . . . , n},

(
Rθy

)
i
≤ 0

}
= kθ

n
. (A.27)

Let θ denote the norm of θ (i.e. θ = ∥θ∥) and consider the set J = {i ∈ {1, . . . , n}, (Πy)i ≤ 0}.
For i ∈ J c, one has (Πy)i > 0, and, since Rθ converges to Π when θ → 0

∀i ∈ J c :
(
Rθy

)
i

θ→0−→ (Πy)i > 0. (A.28)
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A.2. The no-nugget case.

It results that, there exists θc > 0 such that if θ ∈ Br(0,θc) (the open ball of radius θc centered
at 0) then

(
Rθy

)
i
> 0 for any i ∈ J c. Consequently, one gets for any θ ∈ Br(0,θc)

Card
{
i ∈ {1, . . . , n},

(
Rθy

)
i
> 0

}
≥ Card(J c) = n− kϵ. (A.29)

Hence
kθ = Card

{
i ∈ {1, . . . , n},

(
Rθy

)
i
≤ 0

}
≤ kϵ. (A.30)

Therefore, if θ belongs to a neighborhood of 0, the condition kθ ≤ kϵ is satisfied and, under the
assumption 3.2.1, the set of solutions Aa,δ is also non-empty.

Proof of the Coercivity

Let us assume that, under some conditions on y, λ 7→ σ2
opt(λ) is well-defined for all λ ∈ (0,+∞).

In the absence of nugget effect σ2
ϵ = 0, the limit of Rλθ0 does not exist when λ→ +∞. Still,

we can assume that the correlation matrix Rλθ0 satisfies (Berger et al., 2001)

Rλθ0 = F + gλ (D0 + o(1)) , (A.31)

where

– λ 7→ gλ is a continuous function such that lim
λ→+∞

gλ = 0.

– D0 and J = ee⊤ are fixed symmetric matrices.

D0 can be singular or nonsingular depending on the chosen kernel k. A review of Yagloom’s
book (Rosenblatt, 1989) shows that D0 is nonsingular only for Power-Exponential (q < 2) and
Matérn kernels with smoothness parameter ν < 1 like the Exponential kernel (See subsection
2.2). For the rest of Matérn kernels with smoothness parameter ν ≥ 1 D0 becomes singular.

Case 1: D0 is nonsingular.

In this case, let Dλ = gλ D0 (1 + o(1)) such that

Rλθ0 = J + Dλ. (A.32)

We consider the matrix Rλθ0 in K = σ−2 Rλθ0 , we have

Rλθ0 = R−1
λθ0

[
In − F

(
F⊤R−1

λθ0
F
)−1

F⊤R−1
λθ0

]
. (A.33)

By using Lemma 4, Appendix B3 in Berger et al. (2001) and under assumption that e ∈ ImF
(hypothesis 2.2.32), we have

Rλθ0 = D−1
λ

[
In − F

(
F⊤D−1

λ F
)−1

F⊤D−1
λ

]
. (A.34)

Then we get
Rλθ0 = g−1

λ

[
D−1

0

(
In − F

(
F⊤D−1

0 F
)−1

F⊤D−1
0

)
+ o(1)

]
. (A.35)
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A.2. The no-nugget case.

Finally
Rλθ0

λ→+∞∼ g−1
λ A, (A.36)

where
A = D−1

0

(
In − F

(
F⊤D−1

0 F
)−1

F⊤D−1
0

)
. (A.37)

Assumption A.2.1. Let A be the matrix defined in (A.37). We assume that y does
not belong to a family of vectors such that (Ay)i = 0 for all i ∈ {1, . . . , n} and that
Card {i ∈ {1, . . . , n}, (Ay)i ≤ 0} ≠ na.

By applying Lemmas A.1.1 and A.1.2 on D0, we show that (A)ii ≠ 0 and we can write for all i
in {1, ..., n} (

Rλθ0y
)
i√(

Rλθ0

)
ii

λ→+∞∼ g
−1/2
λ

(Ay)i√
(A)ii

. (A.38)

Analogously to the proof of Proposition 3.3.6, if we assume that lim
λ→+∞

σ2
opt(λ) ̸= +∞ and by

taking a sub-sequence
(
σ2

opt(λψ(m))
)
m∈N

converging to σ2
∞

1
σ∞

g
−1/2
λψ(m)

(Ay)i√
(A)ii

m→+∞−→
{

+∞ if (Ay)i > 0
−∞ otherwise . (A.39)

The limit ψ(δ)
a (σ2

opt(λψ(m)), λψ(m)θ0) when m→ +∞ exists and is equal to

a = lim
m→+∞

ψ(δ)
a (σ2

opt(λψ(m)), λψ(m)θ0) = 1
n

Card {i ∈ {1, . . . , n}, (Ay)i ≤ 0} , (A.40)

which is contradictory and completes the proof.

Case 2: D0 is singular.

In this case, one needs to go further in the Taylor expansion of Rλθ0 . We consider the matrix
W in Lemma A.1.3, by Lemma 6 of Ren et al. (2012)

Rλθ0 = W
(
W⊤Rλθ0W

)−1
W⊤. (A.41)

By setting Σλ = W⊤Rλθ0W, the asymptotic study of Rλθ0 is equivalent to the asymptotic
study of Σλ. In case of Matérn kernel with noninteger smoothness ν ≥ 1, the matrix Σλ can
be written as (Muré, 2021)

Σλ = gλ
(
W⊤D1W + g∗

λW⊤D∗
1W + Rg(λ)

)
, (A.42)

where

- Either gλ = cλ−2k1 with k1 a nonnegative integer, or gλ = cλ−2ν .

- g∗
λ = c∗λ−l with l ∈ (0,+∞) .
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A.2. The no-nugget case.

- Rg is a differentiable mapping from [0,+∞) to Mn such that ∥Rg (λ)∥ = o(λ−2l).

- D1 and D∗
1 are both fixed symmetric matrices with elements ∥xi−xj∥2k where k ∈ k1 ∪ ν

for D1 and k = l for D∗
1.

The matrix W⊤D1W + g∗
λW⊤D∗

1W is nonsingular when λ→ +∞, whether if W⊤D1W is
nonsingular or if it is singular.
The case where W⊤D1W is nonsingular happens for Matérn kernels with smoothness 1 ≤ ν < 2
(Muré, 2021), whereas the other case occurs for regular and smooth Matérn kernels with ν ≥ 2.

Case 2.a) W⊤D1W is non-singular.

In this case, we write Σλ in (A.42) as

Σλ = gλW⊤D1W
(

In + g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
))

. (A.43)

As W is full rank matrix, Σλ is non-singular and

Σ−1
λ = g−1

λ

(
In + g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
))−1 (

W⊤D1W
)−1

. (A.44)

Let Mλ = g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
)
, since ∥Mλ∥

λ→+∞−→ 0, we can assume that
∥Mλ∥ < 1 when λ is large enough and apply the Taylor series expansion at order 1[

In + g∗
λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
)]−1

= In − g∗
λ

(
W⊤D1W

)−1

×
(
W⊤D∗

1W + Rg(λ) + o(g∗
λ)
)
.

(A.45)

Then, we plug this quantity into the equation (A.44)

Σ−1
λ = g−1

λ

(
In − g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
))(

W⊤D1W
)−1

= g−1
λ

[(
W⊤D1W

)−1
− g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
) (

W⊤D1W
)−1

]
.

(A.46)
Finally, we can write the matrix Rλθ0 as

Rλθ0 = g−1
λ W

[(
W⊤D1W

)−1
− g∗

λ

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
) (

W⊤D1W
)−1

]
W⊤.

(A.47)
We can also simply the previous expression into

Rλθ0 = g−1
λ (A−Bλ) , (A.48)

where A is a fixed matrix and Bλ
λ→+∞= o(1) such that

A = W
(
W⊤D1W

)−1
W⊤ (A.49)
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A.2. The no-nugget case.

Bλ = g∗
λ W

(
W⊤D1W

)−1 (
W⊤D∗

1W + Rg(λ)
) (

W⊤D1W
)−1

W⊤. (A.50)

Or, equivalently,
Rλθ0

λ→+∞∼ g−1
λ A. (A.51)

Lemma A.2.2. Let A be the matrix defined in (A.49) , then Aii ̸= 0 for all i ∈ {1, . . . , n}.

Proof. A is non-singular because

det A = det W
(
W⊤D1W

)−1
W⊤ = det

(
W⊤D1W

)−1
̸= 0. (A.52)

A is then a positive definite matrix

Aii = e⊤
i Aei > 0. (A.53)

■

Assumption A.2.3. Let A be the matrix defined in (A.49). We assume that y does
not belong to a family of vectors such that (Ay)i = 0 for all i ∈ {1, . . . , n} and that
Card {i ∈ {1, . . . , n}, (Ay)i ≤ 0} ≠ na.

With Lemma A.1.6 and Assumption A.2.3, the proof of the divergence of σ2
opt(λ) when λ→ +∞

is similar to the previous case when D0 is nonsingular.

Remark A.2.4. The assumptions A.2.1 and A.2.3 are not restrictive, one can verify numerically,
that each component of Ay is not null where A is one of the matrices defined in (A.37) or
(A.49).

Case 2.b) W⊤D1W is singular.

Let us denote A = W⊤D1W and B = W⊤D∗
1W the two non-null symmetric matrices defined

in (A.42). Let Σ̃λ such that Σλ = gλΣ̃λ, we consider Σλ as a Maclaurin serie:

Σ̃λ = A + a1(λ)B + Rg(λ), (A.54)

where a1(λ) = g∗
λ with a1(λ) = o(1).

This case is complex because, due to the singularity of A , some eigenvalues tend to have
unstable behaviour and compromise the convergence of some limits.
Indeed,(

Rλθ0y
)
i√(

Rλθ0

)
ii

=
g−1
λ

(
W⊤Σ̃−1

λ Wy
)
i√

gλ
(
W⊤Σ̃−1

λ W
)
ii

= g
−1/2
λ

(Aλy)i√
(Aλ)ii

= g
−1/2
λ λ

−1/2
n−p (Σ̃λ)×

(
λn−p(Σ̃λ) (Aλ)ii

)−1/2
× λn−p(Σ̃λ) (Aλy)i ,

(A.55)

where λn−p(Σ̃λ) is the smallest eigenvalue of Σ̃λ.
We can summarize the key points of the proof in the following points:
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A.2. The no-nugget case.

• With Lemma A.2.5, we prove that λn−p(Σ̃λ) has the same convergence rate as g∗
λ.

• With Lemma A.2.9, we prove that the limits of the upper and lower bounds of
λn−p(Σ̃λ) (Aλ)ii exist and are non null.

• We cannot prove, given the actual assumptions, that the limit lim
λ→∞

λn−p(Σ̃λ)(Aλy)i,
exist or examine if it is non null.

Indeed, A, B and Σ̃λ are real symmetric so they are orthogonally diagonalizables by the
Spectral theorem, we denote (λj(A))n−p

j=1 , (λj(B))n−p
j=1 and

(
λj(Σ̃λ)

)n−p

j=1
the sequences of ordered

eigenvalues of each matrix.
Rλ is symmetric positive definite, and the kernel of W is trivial, this implies that Σλ and Σ̃λ

are both positive definite. The sequence
(
λj(Σ̃λ)

)n−p

j=1
satisfies

λ1(Σ̃λ) ≥ λ2(Σ̃λ) ≥ . . . ≥ λn−p(Σ̃λ) > 0. (A.56)

By the singularity of A, there exist r positive eigenvalues (r ≥ 1) such that

λ1(A) ≥ λ2(A) ≥ ... ≥ λr(A) > λr+1(A) = . . . = λn−p(A) = 0 (A.57)

The following inequalities hold when λ is large enough:

∀j ∈ {1, ..., r} : λj(A) + g∗
λ λn−p(B) ≤ λj(Σ̃λ) ≤ λj(A) + g∗

λ λ1(B).
∀j ∈ {r + 1, ..., n− p} : 0 ≤ λj(Σ̃λ) ≤ g∗

λ λ1(B).
(A.58)

These inequalities give in particular the convergence of the eigenvalues λj(Σ̃λ) λ→+∞−→ λj(A) for
all j ∈ {1, . . . , n− p}.

Let
(
u

(1)
j

)r
j=1

be the orthonormal basis of the eigenvectors corresponding to the first eigenvalues

(λj(A))rj=1 and
(
u

(2)
j

)n−p

j=r+1
be the orthonormal basis of the eigenvectors corresponding to the

last eigenvalues (λj(A))n−p
j=r+1.

We denote E1 the eigenspace spanned by the first r eigenvalues of A and E2 = E⊥
1 the

eigenspace
Rn−p = E1 ⊕ E2 (A.59)

Note that E2 = Ker(A) because A is diagonalizable.

Similarly, we denote
(
u

(1)
λ,j

)r
j=1

the orthonormal basis of the eigenvectors corresponding to the

first eigenvalues
(
λj(Σ̃λ)

)r
j=1

and
(
u

(2)
λ,j

)n−p

j=r+1
be the orthonormal basis of the eigenvectors

corresponding to the last eigenvalues
(
λj(Σ̃λ)

)n−p

j=r+1
.

For a given λ, we denote Eλ,1 the eigenspace spanned by the first r eigenvalue and Eλ,2 the
eigenspace spanned by the last eigenvalues such that

Rn−p = Eλ,1 ⊕ Eλ,2 (A.60)
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A.2. The no-nugget case.

We define the limit lim
λ→∞

Eλ,1 = E1 as the eigenspace spanned by the first r eigenvectors of A
and we define the limit lim

λ→∞
Eλ,2 = E2 by its orthogonal E2 = E⊥

1 because the eigenspaces are
of A mutually orthogonal.

Lemma A.2.5. there exist two positive constants c1, c2 > 0 such that :

c1g
∗
λ ≤ λn−p(Σ̃λ) ≤ c2g

∗
λ (A.61)

Proof. Ker(A) is non trivial, Ker(A) ∩Ker(B) is trivial and Σλ is positive definite for λ large
enough by Lemma 3.14 (Muré, 2018). The result holds directly from inequalities (A.58). ■

Lemma A.2.6. For all j ∈ {r + 1, . . . , n− p}, the eigenvalue λj(Σ̃λ) satisfies

lim
λ→∞

inf λn−p(Σ̃λ)λ−1
j (Σ̃λ) > 0 (A.62)

lim
λ→∞

supλn−p(Σ̃λ)λ−1
j (Σ̃λ) ≤ 1 (A.63)

Proof. The lemma is a direct application of result of the inequality A.58 and A.61 which show
the existence of two positive constants c1, c2 such that

c1
c2
≤ λn−p(Σ̃λ)λ−1

j (Σ̃λ) ≤ λn−p(Σ̃λ)λ−1
n−p(Σ̃λ) = 1 (A.64)

■

Assumption A.2.7. Let (ei)ni=1 be the canonical basis. We assume that W⊤ei ̸∈ E1 for all
i ∈ {1, . . . , n}.

Lemma A.2.8. With the assumption A.2.7, if pλ,1(x) (resp. p1(x)) designs the orthogonal
projector of x on Eλ,1 (resp. E1) then

lim
λ→∞

∥pλ,1(x)∥2 = ∥p1(x)∥2. (A.65)

Similarly, if pλ,2(x) (resp. pλ(x)) designs the orthogonal projector of x on Eλ,2 (resp. E2) then

lim
λ→∞

∥pλ,2(x)∥2 = ∥p2(x)∥2. (A.66)

Proof. The lemma results directly from the convergence of the spaces Eλ,1, Eλ,2 to E1 and
E2. ■

Lemma A.2.9. With Assumption A.2.7, lim
λ→∞

inf λn−p(Σ̃λ)(Aλ)ii, supλn−p(Σ̃λ)(Aλ)ii > 0 for
all i ∈ {1, . . . , n}.

Proof. Aλ is a positive semi-definite matrix

Aλ =
n−p∑
j=1

λ−1
j (Σ̃λ) Wuλ,j (Wuλ,j)⊤ (A.67)
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A.2. The no-nugget case.

We have for all i ∈ {1, . . . , n}

λn−p(Σ̃λ)(Aλ)ii = λn−p(Σ̃λ) e⊤
i Aλ ei

=
n−p∑
j=1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

[ (
e⊤
i W

)
uλ,j

]2
=

r∑
j=1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

[(
e⊤
i W

)
u

(1)
λ,j

]2
+

n−p∑
j=r+1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

[(
e⊤
i W

)
u

(2)
λ,j

]2
(A.68)

On the one hand, from the first inequality of (A.58), the first term of the sum converges to 0.
Thus lim

λ→∞
inf λn−p(Σ̃λ)λ−1

j (Σ̃λ)
[ (

e⊤
i W

)
uλ,j

]2 = 0 for all j ∈ {1, . . . , r}.

On the other hand,
n−p∑
j=r+1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

[(
e⊤
i W

)
u

(2)
λ,j

]2
≥
(

min
j∈J

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

) n−p∑
j=r+1

[(
e⊤
i W

)
u

(2)
λ,j

]2
≥
(

min
j∈J

inf λn−p(Σ̃λ)λ−1
j (Σ̃λ)

) n−p∑
j=r+1

[(
e⊤
i W

)
u

(2)
λ,j

]2
≥
(

min
j∈J

inf λn−p(Σ̃λ)λ−1
j (Σ̃λ)

)
∥pλ,2

(
W⊤ei

)
∥2

(A.69)
Hence, for all λ ∈ (0,∞)

λn−p(Σ̃λ)(Aλ)ii ≥
r∑
j=1

inf λn−p(Σ̃λ)λ−1
j (Σ̃λ)

[ (
e⊤
i W

)
uλ,j

]2
+
(

min
j∈J

inf λn−p(Σ̃λ)λ−1
j (Σ̃λ)

)
∥pλ,2

(
W⊤ei

)
∥2

(A.70)

Hence, considering that ∥pλ,2
(
W⊤ei

)
∥2 λ→+∞−→ ∥p2

(
W⊤ei

)
∥2 > 0 by Lemma A.2.8 and

lim
λ→∞

inf λn−p(Σ̃λ)λ−1
j (Σ̃λ) > 0 by Lemma A.2.6, we get the desired result on the limit of

the lower bound lim
λ→∞

inf λn−p(Σ̃λ)(Aλ)ii.

Similarly, we show that, for all i ∈ {1, . . . , n}
n−p∑
j=r+1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

[(
e⊤
i W

)
u

(2)
λ,j

]2
≤
(

max
j∈J

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

) n−p∑
j=r+1

[(
e⊤
i W

)
u

(2)
λ,j

]2
≤
(

max
j∈J

supλn−p(Σ̃λ)λ−1
j (Σ̃λ)

) n−p∑
j=r+1

[(
e⊤
i W

)
u

(2)
λ,j

]2
≤
(

max
j∈J

supλn−p(Σ̃λ)λ−1
j (Σ̃λ)

)
∥pλ,2

(
W⊤ei

)
∥2

≤ ∥pλ,2
(
W⊤ei

)
∥2. (by Lemma A.2.6)

(A.71)
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and, for all λ ∈ (0,∞)

λn−p(Σ̃λ)(Aλ)ii ≤
r∑
j=1

supλn−p(Σ̃λ)λ−1
j (Σ̃λ)

[ (
e⊤
i W

)
uλ,j

]2 + ∥pλ,2
(
W⊤ei

)
∥2

λ→+∞−→ ∥p2
(
W⊤ei

)
∥2 > 0,

(A.72)

which gives finally the limit of the upper bound lim
λ→∞

supλn−p(Σ̃λ)(Aλ)ii and ends the proof.

■

Now we consider the last term of (A.55). Let i ∈ {1, . . . , n} and let y ∈ Rn

λn−p(Σ̃λ)(Aλy)i =
n−p∑
j=1

λn−p(Σ̃λ)λ−1
j (Σ̃λ) e⊤

i Wuλ,j (Wuλ,j)⊤ y

=
r∑
j=1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

(
e⊤
i Wu

(1)
λ,j

) (
Wu

(1)
λ,j

)⊤
y

+
n−p∑
j=r+1

λn−p(Σ̃λ)λ−1
j (Σ̃λ)

(
e⊤
i Wu

(2)
λ,j

) (
Wu

(2)
λ,j

)⊤
y.

(A.73)

It is clear that the first term of the sum converges to zero by the first inequality of (A.58). Now
by Lemma A.2.6, we consider the lower bound of the second term:

c1
c2

n−p∑
j=r+1

(
e⊤
i Wu

(2)
λ,j

) (
Wu

(2)
λ,j

)⊤
y = c1

c2

n−p∑
j=r+1

(
e⊤
i Wu

(2)
λ,j

) (
u

(2)
λ,j

)⊤
W⊤y

= c1
c2

 n−p∑
j=r+1

(
e⊤
i Wu

(2)
λ,j

) (
u

(2)
λ,j

)⊤
W⊤y

= c1
c2

[
pλ,2

(
W⊤ei

) ]⊤
W⊤y

λ→+∞−→ c1
c2

[
p2
(
W⊤ei

) ]⊤
W⊤y.

(A.74)

Similarly, the upper bound of the second term satisfies

n−p∑
j=r+1

(
e⊤
i Wu

(2)
λ,j

) (
Wu

(2)
λ,j

)⊤
y
λ→+∞−→

[
p2
(
W⊤ei

) ]⊤
W⊤y. (A.75)

Unfortunately, we do not have any proof if the lower bound would be positive nor if the
upper bound is negative. In addition, even though p2

(
W⊤ei

)
̸= 0 by Assumption A.2.7, it

might happens that
[
p2
(
W⊤ei

) ]⊤
W⊤y gives zero, leading therefore to an indeterminate

form. Requiring the vector product to be non zero would imply additional assumptions that
may restrict heavily the set of observations y. Finally, we have noticed numerically that the
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asymptotic behaviour is unstable as
(
Rλθ0y

)
i

for i ∈ {1, . . . , n} oscillates randomly through
zero.
For these considerations, we conclude that the coercivity cannot be guaranteed theoretically for
Matèrn kernels with smoothness parameters ν > 2.
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APPENDIX B

Appendix for Part II

B.1 Proofs of some propositions of Chapters 4 and 5

Proof of Proposition 4.2.5: Identification of the counterfactual response using observed
quantities.

Proof. Let (x, t, yobs, ycf) ∈ D × {0, 1} × R × R and let p(·) refer to the joint/conditional
distribution of the corresponding random variable. We have

pYcf |X,T,Yobs(ycf | x, t, yobs) = (1− t) pY (1)|X,T,Y (0)(ycf | x, t, yobs) + t pY (0)|X,T,Y (1)(ycf | x, t, yobs)

= (1− t)
pX,T,Y (0),Y (1)(x, 0, yobs, ycf)

pX,T,Y (0)(x, 0, yobs)
+ t

pX,T,Y (0),Y (1)(x, 1, ycf , yobs)
pX,T,Y (1)(x, 1, yobs)

= (1− t)
pX,T,Y (0),Y (1)(x, 0, yobs, ycf)∫
pX,T,Y (0),Y (1)(x, 0, yobs, y′) dy′ + t

pX,T,Y (0),Y (1)(x, 1, ycf , yobs)∫
pX,T,Y (0),Y (1)(x, 1, y′, yobs) dy′

= (1− t)
pX,T,Y (0),Y (1)(x, t, (1− t)yobs + tycf , tyobs + (1− t)ycf)∫
pX,T,Y (0),Y (1)(x, t, (1− t)yobs + ty′, tyobs + (1− t)y′) dy′

+ t
pX,T,Y (0),Y (1)(x, t, (1− t)yobs + tycf , tyobs + (1− t)ycf)∫
pX,T,Y (0),Y (1)(x, t, (1− t)yobs + ty′, tyobs + (1− t)y′) dy′ .

= (1− t)
pX,T,Y (0),Y (1)(x, t, y0, y1)∫

pX,T,Y (0),Y (1)(x, t, (1− t)yobs + ty′, tyobs + (1− t)y′) dy′

+ t
pX,T,Y (0),Y (1)(x, t, y0, y1)∫

pX,T,Y (0),Y (1)(x, t, (1− t)yobs + ty′, tyobs + (1− t)y′) dy′

=
pX,T,Y (0),Y (1)(x, t, y0, y1)∫

pX,T,Y (0),Y (1)(x, t, (1− t)yobs + ty′, tyobs + (1− t)y′) dy′ ,

(B.1)
where y0 = (1− t)yobs + tycf , y1 = tyobs + (1− t)ycf . The last line shows that, as function of
ycf , pYcf |X,T,Yobs is proportional to pX,T,Y (0),Y (1).
Finally, given that pX,T,Y (0),Y (1)(x, t, y0, y1) = pX,Y (0),Y (1)(x, y0, y1)pT |X,Y (0),Y (1)(t | x, y0, y1),
we get the desired result of the proposition. ■

Proof of Balancing properties (4.122 - 4.124) of the P-Function.
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Proof. Let ϕ : R→ R denote an arbitrary real function.

E[ϕ(T ) | Θ(X)] = E[E[ϕ(T ) |X] | Θ(X)] = E
[ ∫

ϕ(t)π(t |X) dt | Θ(X)
]
. (B.2)

With Assumption (6.3.5),
∫
ϕ(t)π(t |X) dt is Θ(X)-measurable, thus

E[ϕ(T ) | Θ(X)] =
∫
ϕ(t)π(t |X) dt = E[ϕ(T ) |X], (B.3)

which proves Equation (4.122): fT |X = fT |Θ(X). ■

Proof. Let ϕ1, ϕ2 : R → R denote two arbitrary real bounded functions and let t ∈ T be an
arbitrary treatment value:

E[ϕ1(X)ϕ2(T ) | Θ(X)] = E[ϕ1(X)E[ϕ2(T ) |X] | Θ(X)] (B.4)

= E[ϕ1(X)
∫
ϕ2(t)π(t |X)dt | Θ(X)]. (B.5)

With Assumption (6.3.5):

E[ϕ1(X)ϕ2(T ) | Θ(X)] = E[ϕ1(X) | Θ(X)]
∫
ϕ2(t)π(t |X)dt (B.6)

= E[ϕ1(X) | Θ(X)]E[ϕ2(T ) | Θ(X)], (B.7)

which proves Equation (4.123): X |= T | (π(t |X))t∈T . ■

Proof. Let ϕ1, ϕ2 : R → R denote two arbitrary real bounded functions and let t ∈ T be an
arbitrary treatment value:

E[ϕ1(Y (t))ϕ2(T ) | Θ(X)] = E[E[ϕ1(Y (t))ϕ2(T ) |X] | Θ(X)]. (B.8)

By the uncounfoundedness assumption 4.5.3, Y (t) and T are conditionally independent to X

E[ϕ1(Y (t))ϕ2(T ) | Θ(X)] = E[E[ϕ1(Y (t)) |X]E[ϕ2(T ) |X] | Θ(X)] (B.9)

= E[E[ϕ1(Y (t)) |X]
∫
ϕ2(t)π(t |X) dt | Θ(X)] (B.10)

With Assumption (6.3.5),
∫
ϕ2(t)π(t |X) dt is Θ(X)-measurable, thus

E[ϕ1(Y (t))ϕ2(T ) | Θ(X)] = E
[
E[ϕ1(Y (t)) |X] | Θ(X)

] ∫
ϕ2(t)π(t |X) dt (B.11)

= E
[
ϕ1(Y (t)) | Θ(X)

] ∫
ϕ2(t)π(t |X) dt (B.12)

= E
[
ϕ1(Y (t)) | Θ(X)

]
E
[
ϕ2(T ) | Θ(X)

]
, (B.13)

which proves Equation (4.124): ∀t ∈ T : Y (t) |= T | Θ(X). ■
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Proof of Proposition 5.2.1: Regularizing the T-learner to selection bias.

Proof. This proof is similar to the proof of equation (5) in supplementary of Curth &
van der Schaar (2021a). Let pX(x) denote the probability distribution function of X,
let p(x | T = t) denote the probability distribution function of X given T = t and let
Rt =

∫
(µ̂t(x)− µt(x))2p(x | T = t)dx

EX∼p(·)
[
(µ̂t(X)− µt(X))2] =

∫
(µ̂t(x)− µt(x))2p(x)dx

= P(T = t)
∫

(µ̂t(x)− µt(x))2p(x | T = t)dx +
∑
t′ ̸=t

P(T = t′)
∫

(µ̂t(x)− µt(x))2p(x | T = t′)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t′)
∫

(µ̂t(x)− µt(x))2 p(x | T = t′)
p(x | T = t) p(x | T = t)dx

= P(T = t)Rt +
∑
t′ ̸=t

P(T = t′)
∫

(µ̂t(x)− µt(x))2
P(T=t′|x)p(x)

P(T=t′)
P(T=t|x)p(x)

P(T=t)

p(x | T = t)dx (Bayes rule)

= P(T = t)Rt + P(T = t)
∑
t′ ̸=t

∫
(µ̂t(x)− µt(x))2P(T = t′ | x)

P(T = t | x) p(x | T = t)dx

= P(T = t)Rt + P(T = t)
∫

(µ̂t(x)− µt(x))2
∑
t′ ̸=t P(T = t′ | x)
P(T = t | x) p(x | T = t)dx

= P(T = t)Rt + P(T = t)
∫ 1− r(t,x)

r(t,x) (µ̂t(x)− µt(x))2p(x | T = t)dx

= P(T = t)
∫ (

1 + 1− r(t,x)
r(t,x)

)
(µ̂t(x)− µt(x))2p(x | T = t)dx

= EX∼p(·|T=t)

[P(T = t)
r(t,X) (µ̂t(X)− µt(X))2

]
.

(B.14)
■

B.2 Error estimation of two-step meta-learners.

In the following subsection, we will analyze the error estimation of each two-step meta-learner.
Given the assumption (5.3.1) stating that the observations are generated from a function f
respecting the two causal assumptions (4.5.1-4.5.2), each unit i has the following observed and
potential outcomes

yi = Yobs,i = f(ti,x(i)) + ϵi,

Yi(t) = f(t,x(i)) + ϵi(t),
Yi(t(0)) = f(t(0),x(i)) + ϵi(t(0)).

(B.15)

where ϵi(t(0)) and ϵi(t(0)) are some Gaussian noise like ϵ.

Remark B.2.1. We recall that (Yi(t))1≤i≤n and (Yi(t(0)))1≤i≤n are virtual vectors and cannot
be observed.
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B.2. Error estimation of two-step meta-learners.

The CATE model τk for each k = 1, . . . ,K can be written as:

τk(x) = E(Y (t(k))− Y (t(0)) |X = x)
= E(f(t(k),X)− f(t(0),X) + ϵ∗ |X = x)
= f(t(k),x)− f(t(0),x)

(B.16)

with ϵ∗ is a noise independent of X and satisfying E(ϵ∗) = 0.
Under the assumption 5.3.2, we write τk(X) = f(t(k),X) − f(t(0),X) = Hβ∗

k where
β∗
k = βt(k) − βt(0) and H = (Hij) ∈ Rn×p is the regression matrix, assumed to be full rank

matrix, such that Hij = fj(x(i)) for i = 1, . . . , n and j = 0, . . . , p− 1. With pseudo-outcome
meta-learners, we consider a random variable Zk for a fixed t(k) such that

Zk,i = At(k)(ti,x(i))yi +Bt(k)(ti,x(i)), i = 1, . . . , n,

where the functions At(k)(T,X) and Bt(k)(T,X) are given for each pseudo-outcome meta-
learners.
The regression coefficients β̂k are given by the Ordinary Least Squares (OLS) method

β̂k =
(
H⊤H

)−1H⊤zk, (B.17)

where zk = (Zk,i)1≤i≤n. Thus,

β̂k =
(
H⊤H

)−1H⊤zk

=
(
H⊤H

)−1H⊤(At(k)(ti,x(i))Yobs,i +Bt(k)(ti,x(i))
)n
i=1

=
(
H⊤H

)−1H⊤(At(k)(ti,x(i))f(ti,x(i)) +Bt(k)(ti,x(i)) +At(k)(ti,x(i))ϵi
)n
i=1

=
(
H⊤H

)−1H⊤(τk(x) +At(k)(ti,x(i))f(ti,x(i))− τk(x) +Bt(k)(ti,x(i)) +At(k)(ti,x(i))ϵi
)n
i=1

=
(
H⊤H

)−1H⊤(Hβ∗
k +At(k)(ti,x(i))f(ti,x(i))− τk(x) +Bt(k)(ti,x(i)) +At(k)(ti,x(i))ϵi

)n
i=1

= β∗
k +

(
H⊤H

)−1H⊤(At(k)(ti,x(i))f(ti,x(i))− τk(x) +Bt(k)(ti,x(i)) +At(k)(ti,x(i))ϵi
)n
i=1

= β∗
k +

(
H⊤H

)−1H⊤ϵ̃k

where ϵ̃k,i = ψk(ti,x(i)) + At(k)(ti,x(i))ϵi and ψk(ti,x(i)) = At(k)(ti,x(i))f(ti,x(i))− τk(x(i)) +
Bt(k)(ti,x(i)) to simplify notations.

Let us consider the random vector Z
(n)
k such that

Z
(n)
k =

( 1
n

(H⊤ϵ̃k)1, . . . ,
1
n

(H⊤ϵ̃k)p,
1
n

(H⊤H)11, . . . ,
1
n

(H⊤H)pp
)⊤ ∈ Rp+p2

, (B.18)

that allows us to write β̂k as

β̂k = β∗
k +

(
H⊤H

)−1H⊤ϵ̃k

= β∗
k +

( 1
n

H⊤H
)−1( 1

n
H⊤ϵ̃k

)
= β∗

k + ϕ(Z(n)
k ),

(B.19)

where ϕ : Rp+p2 −→ Rp is a C1-function.
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In order to apply the Central Limit Theorem (CLT) later, we show that the vector Z
(n)
k can be

written as sum of i.i.d random vectors Z
(k)
i .

Z
(n)
k =

( 1
n

(H⊤ϵ̃k)1, . . . ,
1
n

(H⊤ϵ̃k)p,
1
n

(H⊤H)11, . . . ,
1
n

(H⊤H)pp
)⊤ ∈ Rp+p2

=
( 1
n

n∑
i=1

Hi1ϵ̃i, . . . ,Hipϵ̃i,
1
n

n∑
i=1

Hi1Hi1, . . . ,
1
n

n∑
i=1

HipHip
)⊤

= 1
n

n∑
i=1

(
Hi1ϵ̃i, . . . ,Hipϵ̃i,Hi1Hi1, . . . ,HipHip

)⊤ = 1
n

n∑
i=1

Z
(k)
i .

(B.20)

The mean m of the vector Z
(n)
k satisfies

m = E(Z(n)
k ) = 1

n

n∑
i=1

E(Z(k)
i ) = E(Z(k)

i )

=
(
h1, . . . , hp, F11, . . . , Fpp

)⊤
,

(B.21)

where
hj = E

[
fj(X)

(
ψk(T,X) +At(k)(T,X)ϵ

)]
= E

(
fj(X)ψk(T,X)

)
Fjj′ = E

(
fj(X)fj′(X)

)
,

(B.22)

and a covariance matrix C with entries

Cjj′ = Cov
(
Z

(k)
j ,Z

(k)
j′
)

= E(Z(k)
j ,Z

(k)
j′ )− E(Z(k)

j )E(Z(k)
j′ )

=


E
(
fj(X)fj′(X)

(
ψk(T,X) +At(k)(T,X)ϵ

)2)− hjhj′ if j, j′ ∈ {1, . . . , p}
E
(
fk̃(X)fk̃′(X)fl(X)fl′(X)

)
− Fkk′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
(
fk̃(X)fk̃′(X)fj(X)

(
ψk(T,X) +At(k)(T,X)ϵ

))
− hjFkk′ otherwise.

=


E
(
fj(X)fj′(X)ψ2

k(T,X)
)

+ σ2E
(
fj(X)fj′(X)A2

t(k)(T,X)
)
− hjhj′ if j, j′ ∈ {1, . . . , p}

E
(
fk̃(X)fk̃′(X)fl(X)fl′(X)

)
− Fkk′Fll′ if j, j′ ∈ {p+ 1, . . . , p2}

E
(
fk̃(X)fk̃′(X)fj(X)ψk(T,X)

)
− hjFkk′ otherwise,

(B.23)
where k̃, k̃′ = η−1(j) (respectively, l, l′ = η−1(j′)) such that η is the correspondence indexes
map between m and F in mj = Fk̃k̃′ (respectively, mj′ = Fll′) when j ≥ p+ 1 (respectively,
j′ ≥ p+ 1).
By considering now the vector

S(n) =
√
n
(
Z

(n)
k −m

)
= 1√

n

n∑
i=1

(
Z

(k)
i −m

)
, (B.24)

one can show by the multivariate Central Limit Theorem (CLT) that

S(n) =
√
n
(
Z

(n)
k −m

) L−→ N (0,C). (B.25)
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This allows us to write β̂k as function of S(n) and m. Indeed,

β̂k = β∗
k +

(
H⊤H

)−1H⊤ϵ̃

= β∗
k + ϕ(Z(n))

= β∗
k + ϕ

(
m + S(n)/

√
n
)

= β∗
k + Φ(S(n),m),

(B.26)

where Φ : Rp+p2 × Rp+p2 −→ Rp is also C1-function.
Since

√
n
(
S(n) − 0

) L−→ N (0,C), one obtains by the Delta method

√
n
[
Φ(S(n),m)− Φ(0,m)

] L−→ N
(
0, J (1)

Φ (0,m)⊤CJ (1)
Φ (0,m)

)
, (B.27)

where J (1)
Φ (0,m) is the Jacobian matrix at the first p+ p2 coordinates of Φ at (0,m).

By denoting gn, a Gaussian noise with zero-mean and covariance matrix C′ =
J

(1)
Φ (0,m)⊤CJ (1)

Φ (0,m), the previous equation is equivalent to

β̂k = β∗
k + Φ(Sn,m) ≈ β∗

k + Φ(0,m) + gn/
√
n. (B.28)

For n large, the expansions of the first two moments are of the form:

E(β̂k) ≈ β∗
k + Φ(0,m). (B.29)

and,
V(β̂k) ≈

1
n
J

(1)
Φ (0,m)⊤CJ (1)

Φ (0,m). (B.30)

This result holds whether the nuisance parameters in At and Bt are well-specified or not, so
there is no guarantee that Φ(0,m) = 0 and the estimator β̂k may be biased.
In the following, we assume that the nuisance parameters in At and Bt are well-specified
i.e. E

(
ψk(T,X)) | X = x

)
= 0 in such way that E(Zk | X = x) = τk(x), or equivalently,

E
(
H⊤ϵ̃k

)
= 0. Consequently, the estimator of β̂k is unbiased. In this case, computing the

variance V(β̂k) becomes much easier and explicit.
On the one hand, by the multivariate Central Theorem Limit (CTL)

1√
n

H⊤ϵ̃k
L−→ N (0,Σ) (B.31)

which is equivalent to
1√
n

H⊤ϵ̃k ≈ gn, (B.32)

where gn is a Gaussian noise with zero-mean and covariance matrix of Σ with entries

Σjj′ = E
[
fj(X)fj′(X)

(
ψk(T,X) +At(k)(T,X)ϵ

)2]
= E

(
fj(X)fj′(X)ψ2

k(T,X)
)

+ σ2E
(
fj(X)fj′(X)A2

t(k)(T,X)
)
.

(B.33)
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On the other hand, by the law of large numbers, we have 1/n
(
H⊤H

) a.s−→ F, thus
1/n

(
H⊤H

) P−→ F. Since F is invertible, then

n
(
H⊤H

)−1 P−→ F−1, (B.34)

where F = (Fjj′)1≤j,j′≤p and Fjj′ = E
(
fj(X)fj′(X)

)
.

By Slutsky’s theorem, √
n
(
β̂k − β∗

k

)
= n

(
H⊤H

)−1 · 1/
√
n H⊤ϵ̃

L−→ N (0,F−1ΣF−1),
(B.35)

which leads to
E(β̂k) = β∗

k,

V(β̂k) ≈
1
n

F−1ΣF−1.
(B.36)

The determinant of the variance matrix, also known as the generalized variance by Wilks (1967,
1932) is usually used as a scalar measure of overall multidimensional scatter and can be useful
to compare the variance of each meta-learner.

In our case, comparing the generalized variance is equivalent to comparing det
(

1
nΣ
)

of each
pseudo-outcome meta-learner since

det
(
V(β̂k)

)
=
(

det F−1)2 det
( 1
n

Σ
)

= 1(
det F

)2 det
( 1
n

Σ
)
, (B.37)

with, obviously, det (Σ) > 0 because Σ is symmetric positive definite.
The assumptions (4.5.2-5.3.3) will be used in the following calculations.

Error estimation of the M-learner

Lemma B.2.2. If X1, . . . , Xm is a sequence of random variables and b > 1, then∣∣∣∣E[( m∑
i=1

Xi

)2]∣∣∣∣ ≤ m m∑
i=1

E
[∣∣X2

i

∣∣],
∣∣∣∣E[( m∑

i=1
Xi

)b]∣∣∣∣ ≤ m(b−1)
m∑
i=1

E
[∣∣Xb

i

∣∣]. (B.38)

Proof. The first inequality is obtained by Cauchy-Schwartz, whereas the second inequality can
be proved by Jensen inequality. Indeed, for b > 1, the function x 7→ xb is convex for x > 0 and∣∣∣∣∑m

i=1Xi

m

∣∣∣∣b ≤ ∑m
i=1 |Xi|b

m
. (B.39)

Therefore, ∣∣∣∣E[( m∑
i=1

Xi

)b]∣∣∣∣ ≤ E
[∣∣∣ m∑
i=1

Xi

∣∣∣b] ≤ m(b−1)
m∑
i=1

E
[∣∣Xb

i

∣∣]. (B.40)

■
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B.2. Error estimation of two-step meta-learners.

Let a, b > 1 such that 1/a+ 1/b = 1. We assume that fj(X) ∈ La (i.e. fj(X) has all possible
finite moments) for all j ∈ {1, . . . , p} and we denote δ(a)

jj′ =
∣∣∣E(faj (X)faj′(X)

)∣∣∣1/a. By Hölder
inequality we show that for the M-learner:

∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣ ≤ ∣∣∣E(faj (X)faj′(X)
)∣∣∣1/a · ∣∣∣E(ψ2b

k (T,X)
)∣∣∣1/b (Hölder)

≤ δ(a)
jj′

(
22b−1 E

[(1{T = t(k)}
r(t(k),X)

− 1
)2b

f2b(t(k),X)

+
(1{T = t(k)}
r(t(k),X)

− 1
)2b

f2b(t(0),X)
])1/b

(Lemma B.2.2 with m = 2)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[
22b−1

(1{T = t(k)}
r2b(t,X) + 1

)
f2b(t(k),X)

]
+ E

[
22b−1

(1{T = t(0)}
r2b(t(0),X)

+ 1
)
f2b(t(0),X)

])1/b
(Lemma B.2.2)

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[
E
(1{T = t(k)}
r2b(t,X) + 1

)
|X

)
f2b(t(k),X)

]
+ E

[
E
(1{T = t(0)}
r2b(t(0),X)

+ 1
)
|X

)
f2b(t(0),X)

])1/b

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[( 1
r2b−1(t,X) + 1

)
f2b(t(k),X)

]
+ E

[( 1
r2b−1(t(0),X)

+ 1
)
f2b(t(0),X)

])1/b

≤ 22(2b−1)/b δ
(a)
jj′

( 1
r2b−1

min
+ 1

)1/b(
C2b + C2b

)1/b
(Bounding r and f)

≤ 22(2b−1)/b δ
(a)
jj′

( 1
r2b−1

min
+ 1
r2b−1

min

)1/b
21/bCb

≤ 22(2b−1)/b δ
(a)
jj′

21/b

r
(2b−1)/b
min

21/bCb

≤ 24 δ
(a)
jj′

1
r

(2b−1)/b
min

Cb = 16
r

(2b−1)/b
min

δ
(a)
jj′C

b.

(B.41)
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B.2. Error estimation of two-step meta-learners.

On the other term, one obtains similarly:

∣∣E(fj(X)fj′(X)A2
t(k)(T,X)

)∣∣ ≤ ∣∣∣E(faj (X)faj′(X)
∣∣∣1/a · ∣∣∣E(A2b

t(k)(T,X)
)∣∣∣1/b (Hölder)

≤ δ(a)
jj′

∣∣∣E(A2b
t(k)(T,X)

)∣∣∣1/b
≤ δ(a)

jj′

(
22b−1 E

(1{T = t(k)}
r(t(k),X)

)2b
+ E

(1{T = t(0)}
r(t(0),X)

)2b
)1/b

(Lemma B.2.2)

≤ 2(2b−1)/bσ2δ
(a)
jj′

(
E
(1{T = t(k)}
r2b(t(k),X)

)
+ E

(1{T = t(0)}
r2b(t(0),X)

))1/b

≤ 2(2b−1)/bσ2δ
(a)
jj′

( 2
r2b−1

min

)1/b
= 4
r

(2b−1)/b
min

σ2δ
(a)
jj′ .

(B.42)
Thus, by combining the two terms, one gets:∣∣∣Σ(M)

jj′

∣∣∣ ≤ ∣∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣∣+ σ2
∣∣∣E(fj(X)fj′(X)A2

t(k)(T,X)
)∣∣∣

≤ 16
r

(2b−1)/b
min

δ
(a)
jj′C

b + 4
r

(2b−1)/b
min

σ2δ
(a)
jj′

≤ 1
r

(2b−1)/b
min

(
16 Cb + 4σ2)δ(b)

∗ ,

(B.43)

where δ(b)
∗ = maxj,j′

∣∣∣E(f b/(b−1)
j (X)f b/(b−1)

j′ (X)
)∣∣∣(b−1)/b

= maxj,j′ δ
(a)
jj′ .

Therefore, for all ϵ = b− 1 > 0, there exists CM = 4C + σ2 such that∣∣∣Σ(M)
jj′

∣∣∣ ≤ 4r1/(1+ϵ)−2
min δ

(1+ϵ)
∗ CM . (B.44)

In particular, if ϵ≪ 1 then 1/(1 + ϵ)− 2 ≈ −(1 + ϵ) and∣∣∣Σ(M)
jj′

∣∣∣ ≤ 4
r1+ϵ

min
δ

(1+ϵ)
∗ CM (B.45)

Error estimation of the DR-learner.

In this case, we have

At(k)(T,X) = 1{T = t(k)}
r(t(k),X)

− 1{T = t(0)}
r(t(0),X)

, (B.46)

Bt(k)(T,X) = µt(k)(X)− µt(0)(X)−
(

1{T = t(k)}
r(t(k),X)

− 1{T = t(0)}
r(t(0),X)

)
µT (X). (B.47)
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B.2. Error estimation of two-step meta-learners.

We need just to compute the upper bound of E
(
fj(X)fj′(X)ψ2

k(T,X)
)

such that

ψk(T,X) = At(k)(T,X)f(T,X)− τk(x) +Bt(k)(T,X)

=
(1{T = t(k)}
r(t(k),X)

− 1
)
f(t(k),X)−

(1{T = t(0)}
r(t(0),X)

− 1
)
f(t(0),X) + µt(k)(X)

(
1− 1{T = t(k)}

r(t(k),X)

)

− µt(0)(X)
(

1− 1{T = t(0)}
r(t(0),X)

)

=
(1{T = t(k)}
r(t(k),X)

− 1
)(
f(t(k),X)− µt(k)(X)

)
−
(1{T = t(0)}
r(t(0),X)

− 1
)(
f(t(0),X)− µt(0)(X)

)
(B.48)

Similarly to the previous calculus, we show that for the DR-learner

∣∣|E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣ ≤ ∣∣∣E(faj (X)faj′(X)
)∣∣∣1/a · ∣∣∣E(ψ2b

k (T,X)
)∣∣∣1/b (Hölder)

≤ δ(a)
jj′

(
22b−1 E

[(1{T = t(k)}
r(t(k),X)

− 1
)2b(

f(t(k),X)− µt(k)(X)
)2b

+
(1{T = t(k)}
r(t(k),X)

− 1
)2b(

f(t(0),X)− µt(0)(X)
)2b])1/b

(Lemma B.2.2)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[(1{T = t(k)}

r(t(k),X)
− 1

)2b(
f(t(k),X)− µt(k)(X)

)2b]
+ E

[(1{T = t(k)}
r(t(k),X)

− 1
)2b(

f(t(0),X)− µt(0)(X)
)2b])1/b

≤ 2(2b−1)/b δ
(a)
jj′

(
E
[
22b−1

(1{T = t(k)}
r2b(t,X) + 1

)(
f(t(k),X)− µt(k)(X)

)2b]
+ E

[
22b−1

(1{T = t(0)}
r2b(t(0),X)

+ 1
)(
f(t(0),X)− µt(0)(X)

)2b])1/b
(Lemma B.2.2)

≤ 22(2b−1)/b δ
(a)
jj′

(
E
[ ( 1

r2b−1(t,X) + 1
)(
f(t(k),X)− µt(k)(X)

)2b]
+ E

[( 1
r2b−1(t(0),X)

+ 1
)(
f(t(0),X)− µt(0)(X)

)2b])1/b

≤ 22(2b−1)/b δ
(a)
jj′

( 1
r

(2b−1)/b
min

+ 1
)(

E
[ (
f(t(k),X)− µt(k)(X)

)2b]
+ E

[(
f(t(0),X)− µt(0)(X)

)2b])1/b

≤ 22(2b−1)/b δ
(a)
jj′

( 1
r

(2b−1)/b
min

+ 1
)[(

E
(
f(t(k),X)− µt(k)(X)

)2b)1/b

+ E
(
f(t(0),X)− µt(0)(X)

)2b)1/b]
(Subadditivity of |X|1/b)

(B.49)
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Hence, ∣∣∣Σ(DR)
jj′

∣∣∣ ≤ 22(2b−1)/b δ
(a)
jj′

( 1
r

(2b−1)/b
min

+ 1
)[(

E
(
f(t(k),X)− µt(k)(X)

)2b)1/b

+
(
E
(
f(t(0),X)− µt(0)(X)

)2b)1/b]
+ 4
r

(2b−1)/b
min

σ2δ
(a)
jj′

≤ 22(2b−1)/b δ
(b)
∗
( 1
r

(2b−1)/b
min

+ 1
)[(

E
(
f(t(k),X)− µt(k)(X)

)2b)1/b

+
(
E
(
f(t(0),X)− µt(0)(X)

)2b)1/b]
+ 4
r

(2b−1)/b
min

σ2δ
(b)
∗

(B.50)

We consider now ϵ = b− 1 > 0, and we assume that ϵ≪ 1, then

22(2b−1)/b δ
(b)
∗
( 1
r

(2b−1)/b
min

+ 1
)[(

E
(
f(t(k),X)− µt(k)(X)

)2b)1/b
+
(
E
(
f(t(0),X)− µt(0)(X)

)2b)1/b]
+ 4
r

(2b−1)/b
min

σ2δ
(b)
∗ ≈ 4 δ(1+ϵ)

∗
( 1
r1+ϵ

min
+ 1

)(
E
(
f(t(k),X)− µt(k)(X)

)2 + E
(
f(t(0),X)− µt(0)(X)

)2)
+ 4 σ2δ

(1+ϵ)
∗

1
r1+ϵ

min
.

(B.51)
Consequently, ∣∣∣Σ(DR)

jj′

∣∣∣ ≤ 4
(C∗

DR + σ2

r1+ϵ
min

+ C∗
DR

)
δ

(1+ϵ)
∗ , (B.52)

where C∗
DR = E

(
f(t(k),X)− µt(k)(X)

)2 + E
(
f(t(0),X)− µt(0)(X)

)2 = err(µt(k)) + err(µt(0)).

Error estimation of the X-learner.

In this case, we have

At(k)(T,X) = 2× 1{T = t(k)} − 1, (B.53)
Bt(k)(T,X) = (1− 1{T = t(k)})µt(k)(X)− µt(0)(X) +

∑
l ̸=k

1{T = t(l)}µt(l)(X). (B.54)

One can write ψk as

ψk(T,X) = At(k)(T,X)f(T,X)− τk(x) +Bt(k)(T,X)
=
(
2 1{T = t(k)} − 1

)
f(T,X)− (f(t(k),X)− f(t(0),X)) +

(
1− 1{T = t(k)}

)
µt(k)(X)− µt(0)(X) +

∑
l ̸=k

1{T = t(l)}µt(l)(X)

=
(
1− 1{T = t(k)}

)
(µt(k)(X)− f(t(k),X))− (µt(0)(X)− f(t(0),X))

+
∑
l ̸=k

1{T = t(l)}
(
µt(l)(X)− f(t(l),X)

)
= ak +

∑
l ̸=k

bl.

(B.55)
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where

ak =
(
1− 1{T = t(k)}

)
(µt(k)(X)− f(t(k),X))− (µt(0)(X)− f(t(0),X)), (B.56)

bl = 1{T = t(l)}
(
µt(l)(X)− f(t(l),X)

)
. (B.57)

Similarly to the M- and DR-learners calculus, and using lemma B.2.2:

∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣ ≤ ∣∣∣E(faj (X)faj′(X)
)∣∣∣1/a · ∣∣∣E(ψ2b

k (T,X)
)∣∣∣1/b

≤ δ(a)
jj′

∣∣∣E(at +
∑
l ̸=k

bl
)2b∣∣∣1/b (Hölder)

≤ δ(a)
jj′

(
22b−1

(
E
(
a2b
t

)
+ E

(∑
l ̸=k

bl
)2b))1/b

(Lemma B.2.2 with m = 2)

≤ 2(2b−1)/b δ
(a)
jj′

(
E
(
a2b
t

)
+ E

(∑
l ̸=k

bl
)2b)1/b

≤ 2(2b−1)/b δ
(a)
jj′

[
22b−1

(
E
((

1− 1{T = t(k)}
)2b(µt(k)(X)− f(t(k),X)

)2b)
+ E

(
µt(0)(X)− f(t(0),X)

)2b)+ (K − 1)2b−1

×
∑
l ̸=k

E
(
1{T = t(l)}

(
µt(l)(X)− f(t(l),X)

)2b]1/b
(Lemma B.2.2 with m = 2 on the 1st term, and m = (K − 1) on the 2nd term)

≤ 2(2b−1)/b δ
(a)
jj′

[
22b−1

(
E
(
µt(k)(X)− f(t(k),X)

)2b + E
(
µt(0)(X)− f(t(0),X)

)2b)
+ (K − 1)2b−1∑

l ̸=k
E
(
µt(l)(X)− f(t(l),X)

)2b]1/b
≤ 2(2b−1)/b δ

(a)
jj′

[
2(2b−1)/b

(
E
(
µt(k)(X)− f(t(k),X)

)2b)1/b
+ 2(2b−1)/b

(
E
(
µt(0)(X)

− f(t(0),X)
)2b)1/b

+ (K − 1)(2b−1)/b∑
l ̸=k

(
E
(
µt(l)(X)− f(t(l),X)

)2b)1/b]
≤ 22(2b−1)/b δ

(a)
jj′

[(
E
(
µt(k)(X)− f(t(k),X)

)2b)1/b
+
(
E
(
µt(0)(X)− f(t(0),X)

)2b)1/b

+
(K − 1

2
)(2b−1)/b∑

l ̸=k

(
E
(
µt(l)(X)− f(t(l),X)

)2b)1/b]
.

(B.58)
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Given that E
(
fj(X)fj′(X)A2

t(k)(T,X)
)

= E
(
fj(X)fj′(X)

)
= δ

(1)
jj′ , we deduce finally∣∣∣Σ(X)

jj′

∣∣∣ ≤ ∣∣∣E(fj(X)fj′(X)ψ2
k(T,X)

)∣∣∣+ σ2
∣∣∣E(fj(X)fj′(X)A2

t(k)(T,X)
)∣∣∣

≤ 22(2b−1)/b δ
(a)
jj′

[(
E
(
µt(k)(X)− f(t(k),X)

)2b)1/b
+
(
E
(
µt(0)(X)− f(t(0),X)

)2b)1/b

+
(K − 1

2
)(2b−1)/b∑

l ̸=k

(
E
(
µt(l)(X)− f(t(l),X)

)2b)1/b]
+ σ2δ

(1)
jj′

≤ 22(2b−1)/b δ
(b)
∗
[(
E
(
µt(k)(X)− f(t(k),X)

)2b)1/b
+
(
E
(
µt(0)(X)− f(t(0),X)

)2b)1/b

+
(K − 1

2
)(2b−1)/b∑

l ̸=k

(
E
(
µt(l)(X)− f(t(l),X)

)2b)1/b]
+ σ2δ

(1)
∗

(B.59)
where δ(1)

∗ = maxj,j′ E
(
fj(X)fj′(X)

)
.

As in the previous cases, we consider now ϵ = b− 1 > 0 with ϵ≪ 1, then

22(2b−1)/b δ
(b)
∗
[(
E
(
µt(k)(X)− f(t(k),X)

)2b)1/b
+
(
E
(
µt(0)(X)− f(t(0),X)

)2b)1/b

+
(K − 1

2
)(2b−1)/b∑

l ̸=k

(
E
(
µt(l)(X)− f(t(l),X)

)2b)1/b]
+ σ2δ

(1)
∗

≈ 4 δ(1+ϵ)
∗

(
E
(
f(t(k),X)− µt(k)(X)

)2 + E
(
f(t(0),X)− µt(0)(X)

)2
+ (K − 1)2

4
∑
l ̸=k

E
(
µt(l)(X)− f(t(l),X)

)2 + σ2δ
(1)
∗ .

(B.60)

Therefore, ∣∣∣Σ(X)
jj′

∣∣∣ ≤ 4δ(1+ϵ)
∗ CX + σ2δ

(1)
∗ . (B.61)

where CX = err(µt(k)) + err(µt(0)) + (K−1)2

4
∑
l ̸=k err(µt(l)).

Analysis and comparison:

From equation (B.44), (B.52) and (B.61), one can deduce that:

M-learner. The M-learner has the largest variance and its variance upper bound is constant.

M- and DR-learners. As the term rmin is present in the denominator of the upper bounds
of both M-learners and DR-learners. The variance is likely to be high when there is a lack of
overlap in the propensity score, i.e. when rmin is close to 0. In addition, having more treatments
values K makes the lower bound rmin smaller because rmin ≤ 1/K.

X-learner. Since the upper bounds of the X-learner and DR-learner depend on the expected
squared error err(µt) = E

[
f(t,X)− µt(X))2]. One can expect that, the more outcome models

are precise, the lower the variance is.
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B.2. Error estimation of two-step meta-learners.

M-learner vs DR-learner. If the potential outcome models are well-specified, then the expected
squared error µt is minimal and the upper bound of Σ(DR)

jj′ is expected to be lower for the
DR-learner. One can anticipate the estimator β̂k of the DR-learner would have a variance
smaller than the M-learner. Controversially, suppose the outcome models are misspecified (but
the propensity score is well-specified). In that case, there is no guarantee that the DR-learner
would perform better than M-learner, and it may perform even worse.

X-learner vs M-learner. The X-learner is likely to have low variance if the expected squared
errors of all outcome models µt(l) are not big enough. We do not establish the discussion
here about conditions on K and rmin under which the X-learner may perform less than the
M-learner. The idea is to take both error upper bounds and obtain properly these conditions.
Unfortunately, the general comparison of rmin and K is very difficult, we would require to
specify the form of rmin given K to make it simpler.

X-learner vs DR-learner. It is difficult to anticipate which meta-learner would perform better
in terms of variance. This will depends mainly on the expected squared error err(µt(l)) for
l ̸= k ∈ {1, . . . ,K}, K and rmin, whom, in some cases, will make the X-learner having less
variance than the DR-learner, and the opposite in the other cases.
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B.3 Additional details about simulated analytical functions in
section 5.5.

In this section, we consider a treatment T with K + 1 = 10 possible values in T = {t(k) :=
k
K , k ∈ {0, . . . ,K}}, drawn from an uniform distribution, and the following outcome functions.
The linear model outcome for X ∈ R:

Y (t) | X ∼ N
(
(1 + t)X,σ2). (B.62)

The multivariate hazard rate (Imbens, 2000) outcome satisfies for X ∈ R5:

Y (t) |X ∼ N
(
t+ ∥X∥ exp (−t∥X∥) , σ2). (B.63)

We compute in the following subsections the exact components of each model: the GPS r, the
potential outcome models µt and the observed outcome model m.

The Generalized Propensity Score.

Randomized Controlled Trials (RCT) setting.

In the first design (RCT), we sample n units such that T and X are independent. The true
propensity score is known

r(t,X) = P(T = t) = 1/(K + 1) for t ∈ T . (B.64)

Observational non-randomized setting.

In the second design (observational studies), we combine K + 2 samples in a single sample of
n units. The first sample DK+1 contains nK+1 = n/2 units where the treatment is assigned
randomly: X and T are independent, P(T = t) = 1/(K + 1), X ∼ N (0, I5) when the hazard
rate model is applied and X ∼ U(0, 1) when the linear model is applied. For k = 0, . . . ,K, the
sample Dk contains nk = n/(2(K + 1)) units and the distribution of (X, T ) does not respect a
RCT setting. For the linear model, the joint distribution of (X,T ) is given by:

T = k

K
and X follows a uniform distribution U(Ik) with Ik =

[ k

K + 1 ,
k + 1
K + 1

)
. (B.65)

For the hazard rate model, the joint distribution of (X, T ) is given by:

T = k

K
, X1 follows a truncated standardized normal distribution on Ik =

[
q k
K+1

, q k+1
K+1

)
and Xj follow a standardized normal distribution N (0, 1) for j ≥ 2,

(B.66)
where qα is the α-quantile of the standardized normal distribution. This strategy of selecting
preferentially only observations with certain characteristics is called preferential selection
sampling and creates thus a selection bias on observed data.
For all k ∈ {0, . . . ,K}, the true propensity score satisfies for the linear model:

r(t(k), x) =


K+2

2(K+1) if x ∈ Ik,
1

2(K+1) otherwise. (B.67)
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and, for the hazard rate model, it satisfies for x ∈ R5:

r(t(k),x) =


K+2

2(K+1) if x1 ∈ Ik,
1

2(K+1) otherwise. (B.68)

Proof. We show the proof for the hazard rate model with normal distribution. The proof
remains the same for the linear model in a non-randomized setting.
Let A be a random event, then

P(A) =
K+1∑
k=0

nk
n
Pk(A), (B.69)

where P is the observed probability distribution of the combined sample and Pk denotes the
probability measure induced by (B.64), (B.66) and the unconfoundedness assumption 4.5.1.
Given the treatment T = t(j) and covariate vector x = (x, x2, . . . , x5), we have

r(T = t(j),x) = P(T = t(j) | X1 = x)
= lim

δ→0
P(T = t(j) | X1 ∈ [x, x+ δ])

= lim
δ→0

P
(
T = t(j), X1 ∈ [x, x+ δ]

)
P (X1 ∈ [x, x+ δ]) .

(B.70)

On the one hand,

P(T = t(j), X1 ∈[x, x+ δ]) =
K+1∑
k=0

nk
n
Pk(T = t(j), X1 ∈ [x, x+ δ])

= nj
n

Pj(T = t(j), X1 ∈ [x, x+ δ]) + nK+1
n

PK+1(T = t(j), X1 ∈ [x, x+ δ])

= nj
n

Pj(X1 ∈ [x, x+ δ]) + nK+1
n

PK+1(T = t(j))PK+1(X1 ∈ [x, x+ δ])

= 1
2(K + 1) Pj(X1 ∈ [x, x+ δ]) + 1

2(K + 1) PK+1(X1 ∈ [x, x+ δ]).

(B.71)
For x ∈ R, there exists a unique j0 such that x ∈ Ij0 . For δ small enough, we have [x, x+δ] ⊂ Ij0
and, consequently, [x, x+ δ] ∩ Ij = ∅ for all j ̸= j0. This implies:

Pj(X1 ∈ [x, x+ δ]) = PK+1 (X1 ∈ [x, x+ δ], X1 ∈ Ij)
PK+1 (X1 ∈ Ij)

= PK+1 (X1 ∈ [x, x+ δ])
PK+1 (X1 ∈ Ij)

1{j = j0}.

(B.72)
Therefore,

P(T = t(j), X1 ∈ [x, x+ δ]) = 1
2(K + 1)PK+1(X1 ∈ [x, x+ δ]) ( 1{j = j0}

PK+1(X1 ∈ Ij0) + 1)

=
(1

21{j = j0}+ 1
2(K + 1)

)
PK+1(X1 ∈ [x, x+ δ]).

(B.73)
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On the other hand,

P(X1 ∈ [x, x+ δ]) =
K+1∑
k=0

nk
n
Pk(X1 ∈ [x, x+ δ])

= 1
2(K + 1)

K∑
k=0

PK+1 (X1 ∈ [x, x+ δ], X1 ∈ Ik)
PK+1 (X1 ∈ Ik)

+ 1
2PK+1(X1 ∈ [x, x+ δ])

= 1
2(K + 1)

PK+1(X1 ∈ [x, x+ δ])
PK+1(X1 ∈ Ij0) + 1

2PK+1(X1 ∈ [x, x+ δ])

= 1
2PK+1(X1 ∈ [x, x+ δ]) + 1

2PK+1(X1 ∈ [x, x+ δ])

= PK+1(X1 ∈ [x, x+ δ])
(B.74)

Finally,

r(t(j),x) = lim
δ→0

P
(
T = t(j), X1 ∈ [x, x+ δ]

)
P (X1 ∈ [x, x+ δ])

= lim
δ→0

(
1
21{j = j0}+ 1

2(K+1)

)
PK+1(X1 ∈ [x, x+ δ])

PK+1(X1 ∈ [x, x+ δ])

= 1
21{j = j0}+ 1

2(K + 1)

= (K + 1)1{j = j0}+ 1
2(K + 1)

=


K+2

2(K+1) if x ∈ Ij ,
1

2(K+1) otherwise.

(B.75)

■

Triple treatment toy example:

In this section, we assess the performance of the three different GPS estimators in the case
of three-level treatment T ∈ {0, 1, 2} drawn from an uniform distribution. We consider
1-dimensional covariate (X = X) where X follows a discrete uniform distribution in
{ 100

1000k, k ∈ {1, . . . , 10}}.
In the first setting design, we sample n = 10000 units following Randomized Controlled Trials
setting, the true propensity score is known

r(t,X) = 1/3 for t ∈ {0, 1, 2}. (B.76)

In the second setting design, we combine two samples in a single sample of n = 10000 units. The
first sample D3 contains n3 = n/2 units where the treatment is assigned randomly (RCT), and
for j = 0, 1, 2 the sample Dj contains nj = n/6 units satisfying, with x1 = 300 and x2 = 600,

In D0, Ti = 0 and the Xi are i.i.d uniformly distributed over [100, x1] = I0.

In D1, Ti = 1 and the Xi are i.i.d uniformly distributed over (x1, x2] = I1.

In D2, Ti = 2 and the Xi are i.i.d uniformly distributed over (x2, 1000] = I2.
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This case corresponds closely to an observational study where the treatment T is confounded
with the covariate X (e.g. the larger X is, the more likely we have chance to receive the
treatment T = 2).
The true propensity score (can be proved with similarly to B.68) to is a step-wise function such
that:

r(0, x) =


13
19 if x ≤ x1
3
19 if x1 < x ≤ x2
4
22 if x > x2

r(1, x) =


3
19 if x ≤ x1
13
19 if x1 < x ≤ x2
4
22 if x > x2

r(2, x) =


3
19 if x ≤ x1
13
19 if x1 < x ≤ x2
14
22 if x > x2

(B.77)

The following figures show GPS’s estimation for a given estimation method:
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Figure B.1: Estimation of the GPS in the first setting design. a: Using the Generalized Linear
Models; b: Using XGBoost model.

The potential outcome models.

The potential outcome models are given directly by the conditional mean. For the linear model,
µt satisfies for all t ∈ T and x ∈ [0, 1]:

µt(x) = (1 + t)x, (B.78)

and, for the hazard rate model, µt is given by:

µt(x) = t+ ∥x∥ exp (−t∥x∥). (B.79)
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Figure B.2: a: The true GPS; b: Using the Generalized Linear Models; c: Using XGBoost
model.

The observed outcome models.

For the linear model, the observed outcome model m can be computed as:

m(x) = E(Yobs | X = x)
= E((1 + T )X | X = x)
= (1 + E(T | X = x))x

=
(
1 +

K∑
k=1

r(t(k), x)t(k))x,
(B.80)

where r is given by (B.67).
and, for the hazard rate model, m can be computed as:

m(x) = E(E(Yobs |X, T ) |X = x)
= E(T + ∥X∥ exp (−T∥X∥) |X = x)
= E(T |X = x) + ∥x∥ E(exp (−T∥X∥) |X = x)

=
K∑
k=1

r(t(k),x)t(k) +
K∑
k=1
∥x∥ r(t(k),x) exp (−t(k)∥x∥),

(B.81)

where r is given by (B.68).
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B.4. Additional numerical results and plots.

B.4 Additional numerical results and plots.

In this section, we present the results of different simulations and scenarios for both linear (5.60)
and hazard rate (5.61) models with K + 1 = 10, n = 2000 for the linear model, and n = 10000
for the Hazard rate model. In randomized setting, the sample Dobs is sampled randomly and
the propensity score is given by (B.64). In non-randomized setting, the sample Dobs is given by
preferential selection as described in Section B.3 and the GPS is given by (B.67). When we say
that the models nuisance components are exact, then we replace the expression of µt,m or r by
the expressions obtained in Section B.3.

Linear model (5.60) in randomized setting.

Table B.1: mPEHE for three different Machine Learning base-learners; Case where nuisance
components are exact.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 2.248 2.07 0.099

DR-Learner 0.159 0.134 7.04 10−3

X-Learner 0.022 0.028 1.53 10−3

RLin-Learner 7.33 10−3

Table B.2: mPEHE for three different Machine Learning base-learners; Case when nuisance
components are well-specified.

Meta-learner XGBoost RandomForest Linear Model
T-Learner 0.061 0.037 7.37 10−3

S-Learner 0.029 0.040 3.65 10−3

M-Learner 1.23 1.15 0.210
DR-Learner 0.063 - 0.063 0.060 - 0.060 7.22 - 3.39 10−3

X-Learner 0.059 - 0.030 0.041 - 0.079 7.36 - 3.59 10−3

RLin-Learner 0.122 0.112 0.046

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).

Table B.3: mPEHE for three different Machine Learning base-learners; Case when the
propensity score is misspecified.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 3.54 3.31 1.31

DR-Learner 0.119 0.104 0.011
X-Learner 0.030 0.041 3.59 10−3

RLin-Learner 0.318 0.313 0.334

198



B.4. Additional numerical results and plots.

Table B.4: mPEHE for three different Machine Learning base-learners; Case when the outcome
models are misspecified.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 1.23 1.15 0.210

DR-Learner 0.737 0.800 0.217
X-Learner 0.282 0.282 0.246

RLin-Learner 0.045

Table B.5: mPEHE for three different Machine Learning base-learners; Case when nuisance
components are misspecified.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 3.54 3.31 1.31

DR-Learner 1.66 1.85 0.758
X-Learner 0.282 0.282 0.246

RLin-Learner 0.280

Linear model (5.60) in non-randomized setting

Table B.6: mPEHE for three different Machine Learning base-learners; Case where nuisance
components are exact.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 3.68 2.33 0.68

DR-Learner 0.287 0.147 0.014
X-Learner 0.023 0.030 1.57 10−3

RLin-Learner 9.44 10−3

Table B.7: mPEHE for three different Machine Learning base-learners; Case when nuisance
components are well-specified.

Meta-learner XGBoost RandomForest Linear Model
T-Learner 0.061 0.042 7.37 10−3

RegT-Learner 0.052 0.042 7.60 10−3

S-Learner 0.029 0.050 3.65 10−3

M-Learner 1.23 1.15 0.209
DR-Learner 0.060 - 0.055 0.068 - 0.095 7.60 - 3.95 10−3

X-Learner 0.051 - 0.030 0.045 - 0.079 7.33 - 3.95 10−3

RLin-Learner 0.122 0.127 0.046

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).
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Hazard rate model (5.61) in randomized setting

Table B.8: mPEHE for three different Machine Learning base-learners; Case where nuisance
components are exact.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 4.25 4.22 0.52

DR-Learner 0.127 0.139 0.099
X-Learner 0.045 0.085 0.098

RLin-Learner 0.100

Table B.9: mPEHE for three different Machine Learning base-learners; Case when nuisance
components are well-specified.

Meta-learner XGBoost RandomForest Linear Model
T-Learner 0.171 0.267 0.105
S-Learner 0.154 0.267 0.649
M-Learner 1.52 1.76 0.792

DR-Learner 0.154 - 0.163 0.286 - 0.282 0.106 - 0.461
X-Learner (0.149) 0.161 0.284 - 0.285 0.105 - 0.637

RLin-Learner 0.227 0.241 0.691

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).
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Hazard rate model (5.61) in non-randomized setting

Table B.10: mPEHE for three different Machine Learning base-learners; Case where nuisance
components are exact.

Meta-learner XGBoost RandomForest Linear Model
M-Learner 6.33 5.81 3.52

DR-Learner 0.138 0.140 0.100
X-Learner 0.044 0.085 0.098

RLin-Learner 0.290

Table B.11: mPEHE for three different Machine Learning base-learners; Case when nuisance
components are well-specified.

Meta-learner XGboost RandomForest Linear Model
T-Learner 0.184 0.251 0.128

RegT-Learner 0.158 0.253 0.111
S-Learner 0.166 0.269 0.642
M-Learner 1.56 1.55 0.866

DR-Learner 0.151 - 0.171 0.275 - 0.288 0.111- 0.495
X-Learner 0.149 - 0.162 0.270 - 0.286 0.114 - 0.627

RLin-Learner 0.235 0.178 1.00

For the DR and X-learners: µt are estimated by T-learning (left value) or S-learning (right value).
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Asymptotic performances when n and K increase.
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Figure B.3: Variation of meta-learner’s performances when number of possible treatment
values K for the hazard rate function in observational design setting. a: All meta-learners; b:
When the potential outcome models µ. are estimated by regT-learning; c: When the potential

outcome models µ. are estimated by S-learning.
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Figure B.4: Variation of meta-learner’s performances with the observed sample size n for the
hazard rate function in observational design setting. a: All meta-learners; b: Without the

M-learner; c: Without the M-learner with a focus on low sample regime.
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Titre : Apprentissage statistique et inférence causale pour la production de l’énergie

Mots clés : Apprentissage statistique, Inference causale, uncertitudes, effets hétérogènes, optimisation, pro-
duction

Résumé : Les modèles d’apprentissage automa-
tique offrent des solutions efficaces pour répondre
aux besoins du domaine énergétique. Les résultats
de ces modèles peuvent être contestables. Il est
donc nécessaire de quantifier les incertitudes de
prédictions et prédire l’effet causal d’un change-
ment ou d’une intervention. Ce travail de recherche
développe des approches data-driven pour l’optimisa-
tion de la production d’énergie : l’une est prédictive
pour améliorer la quantification d’incertitudes du

modèle. L’autre est causale pour évaluer l’impact des
interventions sur le syst ‘eme. Ces approches servent
à l’identification des stratégies optimales pour aug-
menter la production et la prise de décision. L’ap-
proche prédictive est basée sur le modèle de pro-
cessus gaussiens et la méthode de validation croisée
pour calibrer les intervalles de prédiction. L’approche
causale est basée sur des cadres statistiques et es-
time les effets hétérogènes de l’intervention pour des
variables discrètes et continues.

Title : Statistical learning and causal inference for energy production

Keywords : Statistical learning, Causal Inference, uncertainty, heterogeneous effects, optimization, production

Abstract : The energy domain is growing rapidly to
meet the needs of the economy. Machine learning
models can support the field in facing challenges in an
efficient manner. Sometimes, the results of these mo-
dels are not always convincing. One needs to make
reliable predictions whose uncertainties can be quan-
tified and predicts the causal effect of a change or an
intervention. This research work develops data-driven
approaches for energy production optimization: one
is predictive to improve the uncertainty quantification

of the model. The other is causal to evaluate the im-
pact of interventions in the system. Such approaches
serve to find the optimal strategies to increase pro-
duction and for decision-making. The predictive ap-
proach uses the Gaussian Process model and the
cross-validation method to calibrate of prediction in-
tervals. The causal approach is based on statistical
frameworks to estimate the heterogeneous effects of
intervention for discrete and continuous variables.
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