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École doctorale n◦ 574
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Abstract

Price and volume dynamics in financial markets exhibit empirical regularities, called stylized
facts. Statistical models capture the interplay between these stylized facts and are widely
used to make quantitative predictions, but they do not explain why prices move in the first
place. Microfounded models instead let the price dynamics emerge from the interactions
between traders’ strategies. The aim of this thesis is to partially bridge the gap between
the literature on microfounded and statistical models. In particular, we explore how the
predictions of a well-known microfounded model change if we relax some of its unrealistic
assumptions. Interestingly, in doing so, we obtain microfoundations for two well-known
statistical models, extending their predictive power.

We provide a microfoundation for the Transient Impact model, which is able to character-
ize the stationary interplay between the dynamics of orders and prices, solving the diffusivity
puzzle. The microfoundation is achieved by generalizing the classic Kyle model of price for-
mation to a stationary setting, assuming that the fundamental price is never made public.
The stationary Kyle (s-Kyle) model that we propose is compatible with experimentally ob-
served universal price diffusion in the short term, and non-universal mean-reversion on time
scales at which correlations of fundamentals vanish. However, the s-Kyle model assumes
strongly rational traders, i.e., each rational agent knows every other player’s strategies and
has unlimited computing power. While the Rational Expectation Hypothesis (REH) is in
line with the Efficient Market Hypothesis (EMH), for which the price always reflects newly
released fundamental innovations, it leads the s-Kyle model to make wrong predictions;
namely, that price volatility is time-independent and smaller than the one related to funda-
mentals. The REH, therefore, prevents the s-Kyle model from solving the excess volatility
puzzle if one does not assume an unrealistically high risk aversion of market actors. In order
to improve that, we propose a second modification of the Kyle model, described below.

Following Shiller and the behavioral finance literature, we propose a behavioral Kyle (b-
Kyle) setup by relaxing the REH. In doing so, we obtain a microfoundation of the General-
ized Auto-Regressive Conditional Heteroscedasticity (GARCH) model. To do so, we assume
that the market maker does not know the precise level of non-informed trading and of funda-
mental volatility; moreover, he updates his prior about fundamental volatility based on the
realized market prices. The updating procedure is constructed such that future expectations
match past outcomes, leading to tâtonnement dynamics reflecting the adaptive learning dy-
namics of traders’ strategies. In this way, not only do we provide a micro-foundation for
excess volatility, but also for the intermittent dynamics of price volatility. In fact, in an
appropriate limit of the b-Kyle model, the dynamics becomes analytically tractable and we
show that excess volatility follows a Kesten process, i.e., a stochastic multiplicative pro-
cess repelled from zero. Accordingly, we provide a microfoundation of the class of GARCH
models. The b-Kyle model is in line with the literature that challenges the EMH; in fact,
it assumes that fundamental price volatility is constant, while it predicts intermittent price
volatility. The explanation the b-Kyle model provides for price volatility clustering therefore
agrees with the empirical finding that a large fraction of price jumps can not be explained
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by fundamental innovations, but is instead caused by the self-exciting dynamics created by
the interplay between traders’ strategies.

We believe that the b-Kyle model can be useful for explaining why prices move, being
parsimonious, yet realistic: it can help rationalize many puzzles tackled in the literature,
ranging from price diffusivity to excess volatility and volatility clustering. Moreover, it can
also interpolate from calm periods with highly fluctuating prices to fragile regimes with
extremely probable flash crashes and liquidity crises.

Keywords: Price dynamics, stylized facts, microfoundations, price impact, volatility
clustering, fundamental price, rational agents, adaptive agents
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Résumé

Les prix sur les marchés financiers présentent une dynamique non triviale dont les régularités
peuvent être résumées en un ensemble de faits stylisés. Alors que les modèles statistiques
capturent l’interaction entre ces faits stylisés et sont utilisés pour faire des prédictions quan-
titatives, ils n’expliquent pas pourquoi les prix évoluent en premier lieu. En revanche,
les modèles micro-fondés laissent la dynamique des prix émerger des interactions entre les
stratégies des agents, fournissant des informations cruciales aux régulateurs et aux décideurs
politiques. Cette thèse propose des micro-fondations pour deux modèles statistiques bien
connus, étendant leur pouvoir prédictif.

Nous fournissons une explication microscopique au modèle à Propagateur, qui est un
modèle statistique capable de caractériser la dynamique stationnaire des ordres et des prix,
fournissant une solution au “puzzle de la diffusivité”. La micro-fondation est obtenue en
généralisant le modèle de Kyle à un cadre stationnaire, dans lequel le prix fondamental n’est
jamais public. Le modèle stationnaire de Kyle (s-Kyle) que nous proposons est compatible
avec la diffusion universelle des prix observée expérimentalement à court terme ainsi que le
retour non universel à la moyenne pour des échelles de temps sur lesquelles les fluctuations
des fondamentaux diminuent. Cependant, le modèle s-Kyle suppose des agents fortement
rationnels. Alors que l’hypothèse d’attente rationnelle (REH) est conforme à l’hypothèse
de marché efficient (EMH), elle conduit le modèle s-Kyle à faire de mauvaises prédictions,
à savoir que la volatilité des prix est indépendante du temps et inférieure à celle liée aux
fondamentaux. Le REH empêche donc le modèle s-Kyle de résoudre l’énigme de l’excès de
volatilité dans la mesure où nous savons que les fluctuations de prix sont supérieures à celles
liées aux fondamentaux grâce aux travaux de Shiller.

Suivant Shiller et la littérature sur la finance comportementale, nous proposons une
model de Kyle comportementale (b-Kyle) en assouplissant REH. Nous supposons que l’agent
qui contrôle le prix ne connâıt pas le niveau précis des ordres non informés ni celui de la
volatilité des fondamentaux et il met à jour son estimation de la volatilité des fondamentaux
en se fondant sur l’historique des prix. La procédure de mise à jour conduit à une dynamique
de tâtonnements qui reflète la dynamique d’apprentissage adaptatif des stratégies des agents.
Nous fournissons non seulement une micro-fondation à la volatilité excessive, mais aussi à
la dynamique intermittente de la volatilité des prix. En fait, dans une limite appropriée
du modèle b-Kyle, nous montrons que l’excès de volatilité suit un processus de Kesten,
c’est-à-dire un processus multiplicatif stochastique repoussé de zéro. En conséquence, nous
fournissons une micro-fondation pour une généralisation des modèles d’hétéroscédasticité
conditionnelle auto-régressive généralisée. Le modèle b-Kyle s’inscrit dans la littérature
qui évalue la validité l’EMH; en fait, il suppose que la volatilité fondamentale des prix
est constante, tout en prédisant une volatilité intermittente des prix. L’explication que le
modèle b-Kyle fournit pour le regroupement de la volatilité des prix est donc en accord avec
la conclusion empirique selon laquelle une grande partie des sauts de prix ne peut pas être
expliquée par les innovations des fondamentaux, mais est plutôt causée par la dynamique
auto-excitante créée par l’interaction entre stratégies des agents.
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Nous pensons que le modèle b-Kyle peut être utile pour expliquer pourquoi les prix
bougent, étant parcimonieux, mais réaliste: il peut aider à rationaliser de nombreuses ques-
tions abordées dans la littérature, allant de la diffusivité des prix à la volatilité excessive et
au regroupement de la volatilité. De plus, il peut également interpoler des périodes calmes
avec des prix très fluctuants à des régimes fragiles avec des crashs et des crises de liquidité
extrêmement probables.

Mots clés: Dynamique des prix, faits stylisés, microfondations, impact prix, clustering
de volatilité, prix fondamental, agents rationnels, agents adaptatifs
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Foreword

Audentes Fortuna iuvat.

Virgil, Aeneid

My understanding of science has been revolutionized by the encounter with statistical
physics, a set of ideas and tools that describe how the properties of a large system emerge
from the interactions of its constituents. It was immediately clear to me that the domain of
applicability of this framework was not limited to the study of phase transitions and criti-
cal phenomena related to physical systems, although I focused my exciting undergraduate
studies on these. Of course, I was only one of the many who got fascinated by this intuition:
Boltzmann, one of the founders of statistical mechanics, wrote [1]

“This opens a broad perspective if we do not only think of mechanical objects. Let’s con-
sider applying this method to the statistics of living beings, society, sociology, and so forth.”

It is also worth mentioning that the origin of the word statistics stems from the analysis
of regularities in social data; one of the leading actors of these investigations was Quetelet
who coined the term social physics [2]. With time, both physics and economics became
more formal and rigid in their specializations, and the social origin of statistical physics was
forgotten. The situation is well summarized by Ball [3]:

“Today physicists regard the application of statistical mechanics to social phenomena
as a new and risky venture. Few, it seems, recall how the process originated the other way
around, in the days when physical science and social science were the twin siblings of mech-
anistic philosophy and when it was not in the least disreputable to invoke the habits of people
to explain the habits of inanimate particles.”

Luckily, while working on my master’s thesis, I became aware of econophysics; from that
moment, the cloudy revolution that occurred a few years back became clearer: econophysics
is the attempt to understand economic phenomena from a statistical physicist’s point of
view.

Of course, empirical data is the starting point for every physicist’s attempt to describe
reality; econophysics is by no means different from physics in this respect. Contrary to
standard physics (but similarly to astrophysics, for example), it is very difficult to perform
laboratory experiments in economic-related disciplines. For this reason, to study economic
and financial systems one usually resorts to data related to real-world operating systems,
such as financial markets, interbank networks, firms, and so on; the advent of computers led
to the accumulation of an enormous amount of data which are nowadays intensively studied
in academia, public institutions as well as in the private sector. In particular, high-quality
financial data is recorded at the event scale every single day, which permits precise analysis
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from intraday to yearly timescales. For this reason, the study of financial markets played a
prominent role in economic-related research during the past 60 years.

The empirical analysis of financial data conducted over the past decades highlighted
a set of statistical properties of price dynamics that are robust with respect to the type
of security traded, market structure, geographic location, and time period; these robust
statistical properties are named stylized facts. The robustness of these statistical properties
begs an explanation. In the language of statistical physics, the stylized facts we observe in
financial markets might be a signature of universality, i.e., the fact that details of the given
stock, or the given market in which stocks are traded, are not essential to describe them. In
physics, universality is displayed, for example, by systems close to their critical point, where
they exhibit large fluctuations driven by their consituents’ collective motion; the properties
of these fluctuations are captured by a few properties, such as symmetries, system’s spatial
dimensionality and range of interactions. It is therefore extremely interesting, and natural
for a statistical physicist, to try to understand if concepts such as universality and phase
transition are applicable to financial markets and economic systems in general.

I was extremely lucky because, while I was doing my master’s thesis, my former su-
pervisor told me that a researcher in quantitative finance was giving lectures in the same
building where I was working. I discovered the EconophysiX Chair, held by Michael Benza-
quen, co-founded between Capital Fund Management and the LadHyX laboratory at École
Polytechnique. Eventually, that researcher, i.e., Bence Tóth became one of my Ph.D. thesis
supervisors.

The question that ignited my Ph.D. was: ‘how do agents’ interactions cause the coupled
dynamics between trades and prices to emerge?’, which was in line with my previous studies
and research interests. Even though this question has been tackled by the discipline known as
market microstructure, which started in the 1980s, no consensus around a given answer has
been reached in the literature. Contrarily to what happens in other sciences, in economics
it is usually harder to reach a consensus on these important subjects; one reason for this is
that, as we recalled above, in economics, it is rare to have reproducible results since it is
not possible to control the behavior of the system. Because of this, often ideologies replace
rigorous scientific statements when we attempt to improve our economic systems. As a
final note, the inertia of mainstream economic ideologies and the “Tarzan complex” of some
physicists prevented ideas coming from different disciplines from interacting effectively.

Therefore, to try to provide an answer to the question above, I started from a well-known
model in theoretical economics, the so-called Kyle model, instead of formulating a new model
inspired by statistical physics. Kyle in 1985 proposed a minimalistic agent-based model to
capture the interplay between trades and prices, starting from a description given in terms of
rational traders possessing asymmetric information sets, interacting in a noisy environment.
Agents’ rationality implies that they know the model as well as the model builder, i.e., they
construct their strategy in a deductive way, in line with the Rational Expectation (REH)
and the Efficient Market Hypothesis (EMH), which were the main paradigms during those
years. This very simple model is able to microfound the stylized fact named price impact,
i.e., the fact that trades impact prices.

Fifteen years after Kyle’s work, the focus in theoretical economics literature shifted
towards descriptions of financial markets in terms of adaptive agents, rather than rational
ones. Within the Adaptive Market Hypothesis (AMH), agents use inductive reasoning
rather than deductive one. This paradigm shift is due to the difficulty encountered by
models based on rational agents to capture stylized facts related to price dynamics, such
as excess price volatility with respect to fundamentals, as well as price volatility clustering
without resorting to ad-hoc, unrealistic assumptions.

My original work consists of two modifications of the Kyle model. The first one is
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an attempt to reconcile the Kyle framework with the Transient Impact Model (TIM) (also
known as the propagator model), a model used in quantitative finance. This is done without
modifying the rationality assumption of traders in the Kyle model but by dropping the
assumption that the fundamental price is revealed at some terminal time; in this way, a
stationary version of the Kyle model can be mapped on the TIM. The second modification
I propose is instead in line with the stream of literature related to the AMH and is able
to recover heteroscedasticity, i.e., the fact that volatility of the price process changes over
time, and excess volatility as a consequence of the ever-evolving agents’ beliefs. In doing so,
I show how the Kyle model with adaptive agents is able to provide a microfoundation for a
particular Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) model. I
also show how one can recover dynamics resembling real markets during liquidity crises and
flash crashes.

17



FOREWORD

The content of this manuscript is organized as follows. Part I includes a self-contained
exposition of the notions useful for understanding my original work. Chapter 1 is a histor-
ical excursus that starts from the first attempt to describe the price dynamics in financial
markets by Bachelier in 1900, then goes through the debate surrounding the EMH, and
ends with the review of the solution to the debate represented by the AMH. Chapter 2
reviews several basic stylized facts related to price dynamics; whenever feasible, I recall
statistical models able to capture them. In doing so, I review GARCH models. Chapter 3
describes the interplay between prices and trades and I introduce the concept of price im-
pact, i.e., the empirical fact that the very act of trading induces fluctuations in the price
process. To rationalize these findings I review the TIM. The discussion about stylized facts
and statistical models is amended with empirical analysis and models’ calibrations against
real-world data. Finally, the Kyle model, i.e., the starting point of my attempt of modeling
the microstructure of financial markets, is introduced.

Parts II and III contain original works. The former is related to my contributions
to the literature related to microfounded models with rational agents. First, Chapter 4
presents the s-Kyle model, a modification of the Kyle framework which relaxes some of
its original assumptions in order to recover a stationary price process. In doing so, I give
a microfoundation to the TIM. Later, in Chapter 5 I will calibrate the stationary Kyle
model on empirical data, providing a piece of original evidence against the EMH. Finally,
Chapter 6 presents the b-Kyle model, which modifies the Kyle framework by relaxing
the traders’ rationality assumption in favor of a modeling approach in line with the AMH,
providing a microfoundation to GARCH models.

The manuscript ends with a critical review of my work, highlighting promising future
research directions 1.

1The end of each chapter contains a box in which take-home messages are condensed, for the reader’s
ease.
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The theoretical minimum
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Chapter 1

An historical excursus

nos esse quasi nanos gigantium humeris insidentes

quote attributed to Bernard de Chartres by Iohannes Saresberiensis, Metalogicon

Financial markets are (physical or electronic) places where traders meet and transactions
take place. On the one hand, they massively contributed to human development, by allowing
a better-performing resource-allocation mechanism. On the other hand, our societies are
periodically victims of economic crises, sometimes triggered and/or amplified by the financial
system. It is therefore important to study how financial markets work, and how they interact
with the rest of the economy. This thesis treats the external economy as a given set of time-
dependent parameters, and I will not consider the consequences that a given financial crisis
can have on an economy. In this Chapter, I hope to convince the reader that financial
markets are interesting in and of themselves.

Figure 1.1: The tulip folly, Jean-Léon Gérôme, 1882.

Keywords: Efficient Market, Rational Expectation, Adaptive Market
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As anticipated in the Foreword, market microstructure literature stemmed from the
Rational Expectation Hypothesis which was used to rationalize Fama’s Efficient Market
Hypothesis; in Section 1.1 I introduce these concepts, which ground the building block I
use in my original modeling approach in Part II and III, i.e., the Kyle model introduced in
Section 3.4.

In doing so, I describe the criticisms around the aforementioned assumptions introducing
the so-called excess volatility puzzle, to which I propose a possible solution via the original
model presented in Part III. this model is in line with the AMH introduced in Section 1.2,
which has been recognized by the economic literature as a promising way to circumvent the
drawbacks of the initial framework.

Finally, in Section 1.3, I briefly review how concepts and methods developed by physicists
have been useful to this last research direction.

1.1 The Efficient Market Theory and its critiques

The study of financial markets can be traced back to Bachelier’s Ph.D. thesis [4] published
in 1900 under the title “The theory of speculation”. Bachelier, under the supervision of
Poincaré, provided a description of financial markets based on the process nowadays known
as the random walk, 5 years before Einstein’s description of Brownian motion [5]. Although
Bachelier’s work has been recognized as the foundation of financial mathematics only ∼ 50
years later, a basic intuition he had is still highly debated even nowadays. In his opening
paragraph, he recognizes that: “past, present and even discounted future events are reflected
in market price, but often show no apparent relation to price changes”. Bachelier’s intuition
about the link between price efficiency and price unpredictability was later taken seriously
by economists once computers could quickly process large amounts of data.

Eventually, Fama confirmed that stock prices are not very predictable [6, 7]. Therefore,
he postulated the so-called Efficient Market Hypothesis (EMH), which states that “the
market effectively reflects into the market price all available information”. This is a very
optimistic statement, but it is not testable, as Fama highlighted in his Nobel lecture [8]
when he explained the joint hypothesis problem. In short, one needs an asset pricing model
to test the EMH, but, if the model fails to reproduce data, one does not know if either the
model or the EMH is wrong. Therefore, in this thesis we adopt the usual approach taken
by scientists, i.e., building more refined theories without being blind by preconceptions.
Needless to say, Fama’s statement is one of the most debated statements in the history of
economic thought.

In 1965, the very same year in which Fama published his first empirical results about
price unpredictability, Samuelson [9, 10] and Mandelbrot [11] argued that although prices are
unpredictable, they do not need to be random walks. In particular, Mandelbrot introduced
martingales, i.e., processes for which the best forecast, given past information, is the current
value, symbolically expressed as:

E[pt+T |pt] = pt. (1.1)

This martingale property is very compelling because it corresponds with the intuition that,
if prices reflect all the available information and since future news is by definition unfore-
castable, the best prediction for the future price is the current one. According to the EMH,
given the information set It and a given fundamental price pFt at time t, the price is con-
structed as follows:

pefft = E
[
pFt |It

]
. (1.2)

Note that, although there are many proxies for the fundamental price, e.g. based on divi-
dends, earnings and announcements, each of these is hard to justify. In modeling, dividends

21
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are usually chosen to construct the fundamental price, which is given by the sum of (dis-
counted) future dividends.

In his well-known review [12], Fama gives a classification of market efficiency, that dis-
tinguishes between three situations based on the information set reflected by the price:

weak: It includes all current and past prices for the assets in the market.

semi-strong: It includes all public information available to investors (e.g. news).

strong: It comprises all information available to investors, including private informa-
tion.

Fama argues that the EMH is quite well substantiated by financial data, but he also reported
some anomalies.

In the 1970s it was somewhat common knowledge that the aggregated market, usually
captured by indices, is a powerful tool to aggregate information, in line with the EMH. To
rationalize this statement, it has been proposed [13] that the aggregate market behaves as
a sort of representative trader that collects all available information and optimally reflects
them into the market price. The Rational Expectation Hypothesis (REH) is nothing but the
statement that financial markets can be described by representative agents who base their
strategies on rational expectations, i.e., knowing the model as well as the model builder.

However, a major theoretical critique of this picture was given by Grossman and Stiglitz
in their paper “On the Impossibility of Informationally Efficient Markets” published in
1980 [14]. They argue that perfectly informationally efficient markets are impossible for, if
markets are perfectly efficient, there would be no incentive to gather information, in which
case there would be little reason to trade and markets would eventually collapse.

Finally, Shiller realized in 1981 [15] (as also did LeRoy and Porter [16], independently),
in his paper “Do Stock Prices Move Too Much to Be Justified by Subsequent Changes in
Dividends?”, that the REH implies a bound on the price volatility, which is violated by
empirical data. In fact, from the efficient market model given by Eq. (1.2), it follows that
pFt = pefft +Ut, where Ut is a forecast error. The forecast error Ut must be uncorrelated with
any information variable available at time t, otherwise, the forecast would not be optimal.
Since the variance of the sum of two uncorrelated variables is the sum of their variances, it
follows that the variance of pFt must be greater or equal to that of pefft , i.e.:

(σF)2 ≥ (σeff)2. (1.3)

By looking at the market price and the dividends related to the S&P-500 index (and many
others) it has been found that in real markets the inequality given by the equation above is
reversed; which means that the price in financial markets fluctuates much more (∼10 times
more!) than the underlying fundamental price. French and Roll in 1986 [17] documented
a related phenomenon: stock return variances over weekends and exchange holidays are
considerably lower than return variances over the same number of days when markets are
open. This difference suggests that the very act of trading creates price volatility, which
may well be a symptom of Kyle’s [18] and Black’s [19] noise traders.

Subsequent years saw much focus on the search for better and better models able to
assess the validity of the EMH. For example, the initial model proposed by Shiller was
later modified in order to account for the time-varying real discount rate or non-stationary
dividends. Eventually, all these tests implied that the EMH in the strong form was rejected
by empirical data. Nevertheless, because of the non-falsifiability of the EMH, these tests
were not able to end the dispute. Eventually, in the 1990s a big part of the academic
discussion shifted away from these econometric analyses. The bottom line of the stream of
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literature related to testing the EMH is well condensed by Shiller’s words that appeared in
2003 in a paper titled “From Efficient Markets Theory to Behavioral Finance” [20]:

After all the efforts to defend the efficient markets theory, there is still every
reason to think that, while markets are not totally crazy, they contain quite
substantial noise, so substantial that it dominates the movements in the aggre-
gate market.

1.2 Behavioral finance

Since the EMH in the version given by Eq. (1.2) is not able to account for the excess price
volatility exhibited by real financial markets, in the 1990s economists started to look at
other possible explanations. In particular, the compelling idea of ‘bubbles’ was eventually
put on the table to explain the financial anomaly which led to the formulation of the excess-
volatility puzzle.

One of the first documented bubbles dates back to the famous tulipmania in Holland in
the 1630s, to which the picture at the beginning of this chapter alludes. In that picture,
soldiers trample the tulip fields to limit their supply. In fact, after an exceptional increase
of the tulip price in the period ranging from November 1636 to February 16371, there was
a sudden collapse. The soldiers in the picture, by limiting the tulip supply, should have
limited the drop in the price. This was not the case, and eventually many of the speculators
who invested in tulips remained only with 5% of their initial investment.

To understand the causes of tulipmania, it is interesting to read a fictional conversation
between two people, Gaergoedt and Waermondt, which was published by one anonymous
observer in 1637 [21]:

Gaergoedt: “You can hardly make a return of 10% with the money that you
invest in your occupation [as a weaver], but with the tulip trade, you can make
returns of 10%, 100%, yes, even 1000%.

Waermondt: “ . . . But tell me, should I believe you?”

Gaergoedt: “I will tell you again, what I just said.”

Waermondt: “But I fear that, since I would only start now, it’s too late, because
now the tulips are very expensive, and I fear that I’ll be hit with the spit rod,
before tasting the roast.”

Gaergoedt: “It’s never too late to make a profit, you make money while sleeping.
I’ve been away from home for four or five days, and I came home just last night,
but now I know that the tulips I have increased in value by three or four thousand
guilders; where do you have profits like that from other goods?”

Waermondt: “I am perplexed when I hear you talking like that, I don’t know
what to do; has anybody become rich with this trade?”

Gaergoedt: “What kind of question is this? Look at all the gardeners that used
to wear white-gray outfits, and now they’re wearing new clothes. Many weavers,
that used to wear patched-up clothes, that they had a hard time putting on, now
wear the glitteriest clothes. Yes, many who trade in tulips are riding a horse,
have a carriage or a wagon, and during winter, an ice carriage, . . .

1at its peak a bunch of tulips was worth a house.
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Figure 1.2: Feedbacks and herding effects, a cartoon by K. Kallaugher, published on the
Baltimore Sun.
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An insight provided by these word-of-mouth communications is that feedback dynamics
can be quite important in order to explain price booms and bursts (as also Fig. 1.2 tries
to illustrate with a funny cartoon). As a consequence of a given price increase, traders
might be tempted to believe that the price will continue to increase. In order to profit from
this expected future price increase, more people tend to buy the asset at hand. Eventually,
someone will recognize that prices exhibited an unrealistic increase in value, and they will
start selling, causing the beginning of an abrupt burst. In short, price dynamics experience
feedback mechanisms, which are nowadays considered key [22, 23] to understanding the
excess price volatility that we talked about in the previous Section, and more generally the
complex price dynamics which we shall investigate more closely in Chapter 2.

The importance of feedback mechanisms can be further substantiated by Cognitive Psy-
chological research, which shows that humans often rely on representative heuristics while
interacting with a complex environment, showing systemic biases. This stream of literature
has been recognized with the Nobel Prize in economics to Kahneman and Tversky in 2002
and can be traced back to their seminal work that appeared in 1974 [24]. A consequence of
their empirical findings is that people may tend to match stock price patterns in two broad
categories, namely upward and downwards trends, thus leading to feedback dynamics, even
if these categories may be rarely seen in the related fundamental price dynamics. More-
over, the findings of Kahneman and Tversky can be seen as a reason why price trajectories
across centuries and across countries show similar empirical regularities; because they reflect
universal parameters of human behavior.

One of the first critiques of the feedback mechanism which can be at the heart of large
price swings is that, naively, the trends created by the feedback itself, strongly correlate
with price changes over time. This is at first irreconcilable with Fama’s empirical finding
that price changes are not predictable. A simple model for feedback dynamics, proposed by
Shiller in 1990 [25], shows that this critique does not hold; consider a model where the price
pt is determined by its own lagged changes and a forcing variable, which we refer to as the
fundamental price pFt introduced in the previous Section. This model assumes the following
price dynamics:

pt = pFt + c

∫ t

−∞
e−k(t−τ)dpτ , (1.4)

where 0 < c < 1 and k > 0. The first condition implies that the price does not explode,
while k > 0, meaning that it is given less weight to the more distant past, reflecting gradual
memory loss. The equation above can be solved in order to give pt in terms of pFt :

pt =
1

1− c
pFt − c

1− c
p̄Ft , (1.5)

where

p̄Ft = λ

∫ t

−∞
e−λ(t−τ)pFτ dτ, λ =

k

1− c
. (1.6)

This model implies that the price pt is cointegrated with pFt , but amplifies its departure from
a weighted average of its own lagged values. The price pt will be higher than pFt if pFt has
been increasing in recent years and lower if decreasing. Over short intervals of time, where
p̄Ft is virtually constant, the price pt has essentially the same short-term stochastic properties
of pFt but amplified. The critique mentioned above regarding the serial correlation of price
changes can thus be evaded by assuming that pFt is still approximatively a random walk.
Thus, the approximate random walk character of stock prices is not a piece of evidence
against feedback mechanisms.

Moreover, even if the feedback mechanism did imply some predictability in price changes,
we can also note that the random walk character of stock prices is really not supported by
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evidence anyway. In fact, there is a tendency for stock prices to continue in the same
direction over intervals of six months to a year, but to revert over longer time intervals
[26–30]. A similar pattern is therefore consistent with some combination of feedback effects
together with a dependence on fundamental prices.

The methodological differences between mainstream and behavioral economics suggest
that an alternative framework may be necessary to reconcile the EMH with its behavioral
critics. One direction is to view financial markets from a biological perspective and, specif-
ically, within an evolutionary framework in which markets, instruments, institutions, and
investors interact and evolve dynamically according to the ‘law’ of economic selection. Un-
der this view, financial agents compete and adapt, but they do not necessarily do so in
sisan optimal fashion. The next section reviews some of the contributions that physicists
provided to the research agenda related to adaptive markets.

1.3 Econophysics

This section collects some material useful to understand how physics benefitted other re-
search areas, including economics and finance2.

The set of technical tools and ideas in physics that bridges the micro-description to the
macro behavior is called statistical mechanics; in this respect, it is similar to the way in
which we study market microstructure in this thesis.

One of the first achievements of the field is the derivation of the ideal gas law, which
describes the behavior of many different real gases, starting from a description given in
terms of Newtonian dynamics. Real gases, however, do not follow the ideal gas law for
every external parameter, i.e., pressure, temperature, or volume. In fact, as we all know,
the gas phase is only one phase of matter: if we reduce the temperature of a system in the
gas phase, eventually the molecules reorganize themselves into liquid or solid phases. This
compelling empirical finding inspired many further achievements. In particular, it suggests
that something crucial is missing in those economic models which predict only one possible
time-independent equilibrium. In fact, economic systems experience crises, which can be
thought of as abrupt changes between two equilibrium states [31, 32].

The ideal gas law is derived by assuming non-interacting molecules; this is a very good
approximation for the gas phase but is obviously not valid in the liquid or in the solid
phase, where the higher density implies crucial interactions. Analogously, economic mod-
els with only one static equilibrium are usually the outcome of dynamics originated by
(non-interacting) rational representative agents. In the same way, as interactions between
molecules are needed to build models accounting for different phases, we need to move from
a rational agent paradigm to one grounded on adaptive interactive agents if we want to
model economic dynamics displaying interesting phenomena, such as economic or financial
crises [33, 34].

Phase transitions at the critical point, i.e., the point in the external parameter space
where different phases co-exist, are characterized by large fluctuations that extend over
the whole system size. Statistical mechanics studies these regimes starting from stylized
micro descriptions which have been able not only to give qualitative but also quantitative
accurate predictions regarding the properties of the fluctuation, for example, the so-called
critical exponents. A major finding is that many different physical systems fall in so-called
universality classes, i.e., classes that display the same set of universal quantities. The final
message we think can be very useful in other disciplines, is that in a situation where the

2Although this section is useful to understand how a physicist thinks, it is not necessary to understand
the content of my original work presented in Part II and III.
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dynamics drives the system in a configuration where collective motions occur, there is no
need to model every single detail of the model to reproduce important behavior, but only
the relevant ones. For example, to model crises in financial markets, a modeling framework
that allows herding can be very effective [34].

How can simple stylized models have such high predictive power? When the relevant
motion happens on large spatial scales, as is the case for systems at their critical point, the
micro description can be simplified by ‘looking at the system at a distance ’; since critical
systems are usually scale-invariant, coarse-graining can be repeatedly applied, revealing
some symmetries which were not encoded in the description of the system at the molecular
level [35]. For instance, consider a crystal composed of atoms sitting on an infinite square
lattice in a two-dimensional space with nearest-neighbor interactions. When we coarse-grain
the system, one should take into account the interactions between the objects sitting at the
nodes of the lattice. These interactions lead to new ‘effective’ terms in the energy function
of the rescaled systems. As one applies the coarse-graining procedure over and over, old
symmetries lead to new emergent ones; for example, translation and reflection symmetries
of the square lattice combine into a rotational symmetry, leading to a unified description
for many different physical systems, providing the key to the observed universality. In fact,
Wilson and Fisher [36] proved that universality classes exist and that different systems lie
in the same universality class if they share the same symmetries, spatial dimensionality, and
range of interactions. We believe that the complex dynamics exhibited by prices in financial
markets can be viewed as a different declination of the universality exhibited by physical
systems: contrary to physics, the building blocks of economic systems are traders and,
therefore, one should start from microfoundations that take into account ubiquitous biases
which affect human beings and their heterogeneities, in line with the findings of Kahnemann
and Tversky.

Further major progress obtained in physics, and in particular in statistical mechanics,
is related to the work of Parisi, Nobel winner in 2022. Parisi extended the analysis of
the universal signature of physical systems beyond the realm of those systems composed
of identical parts and paved the way for applications to systems composed of interacting
heterogeneous objects/agents [37]. This allowed, for example, to completely characterize
the dynamics prescribed by the Minority Game, an archetypal model of financial markets,
conceived by Challet and Zhang in 1997 [38].

1.3.1 The Minority game

The Minority game stems from the El Farol problem. The formulation of the problem came
to Arthur [39], an economist from the Santa Fe Institute, who was inspired by a real-life
problem: the El Farol bar has a limited number of seats, so the best thing for attendees
is to go if there are empty seats. If you go to the bar while it is crowded you should have
stayed home; on the other hand, if you stay at home while the bar is not crowded, you
miss a nice evening. When Arthur proposed his problem to an audience in 1994, economists
skipped the problem by saying that it could have been reformulated as a standard game-
theoretic problem. The problem was instead simplified leading to the Minority game, which
was eventually analytically solved by physicists [40], with the support of researchers from
different backgrounds. The Minority Game provided a framework to understand how traders
co-adapt and the relationship between information and market efficiency.

Let us sketch briefly the Minority game and the major outcomes. Consider a set of
N agents who, at each finite time step, can choose between two possibilities, say ±1. An
agent wins if, after everyone has chosen, he is in the minority. In order to always have a
minority, we suppose that N is odd. Each agent takes action based on the string µ of the
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Figure 1.3: Variance per agent (top) and predictability H (bottom) as a function of the
control parameter α.

last M outcomes. The number strings µ is 2M . The number of possible strategies s, i.e., the
maps that associate actions (±1) to past histories (µ), is 22

M
. Each agent is endowed with

a fixed bag of strategies, which he ranks, as time goes by as if they were actually played;
the strategy is rewarded if it predicts the outcome of the game. In the original Minority
Game, the strategy sit which agent i uses at time t is that with the highest score. Once
every agent has fixed his best strategy, the attendance of the two sides is computed: if N1

is the number of agents who took the choice 1, the difference in attendance of the two sides,
a central quantity of interest, reads:

A = 2N1 −N. (1.7)

Symmetry arguments suggest that none of the two groups −1 or 1 will be systematically
the minority one. This means that At will fluctuate around zero and ⟨A⟩ = 0. The size of
the fluctuations of At, instead, displays a remarkable non-trivial behavior. The variance

σ2 = ⟨A2⟩ (1.8)

of At in the stationary state is a measure of how effective the system is at distributing
resources. The smaller σ2 is, the larger a typical minority group is. In other words, σ2 is a
reciprocal measure of the global efficiency of the system.

It turns out that the only relevant variables affecting the dynamics are the total number
of strings µ and the number of agents, given respectively by 2M and N . In particular, the
only relevant parameter is the ratio given by α = 2M/N . When α ≫ 1 information is too
complex and agents behave randomly. Indeed σ2/N converges to one, i.e., the value it would
take if agents were choosing their side by coin tossing. As α decreases, which means that
M decreases or the number of agents N increases, σ2/N decreases suggesting that agents
manage to exploit the information in order to coordinate. But when agents become too
numerous, σ2/N starts increasing with N . The behavior for α ≪ 1 has been attributed to
the occurrence of crowd effects. These findings are shown in Fig. 1.3
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A further interesting observation is that depending on the value of α the model displays
two different phases. In the asymmetric phase, E[A|µ] ̸= 0 for at least one µ. Hence knowing
the history µ(t) at time t, makes the sign of At statistically predictable. A measure of the
degree of predictability is given by the function

H =
1

2M

2M∑
µ=1

E[A|µ]2. (1.9)

In the symmetric phase E[A|µ] = 0 for all µ and hence H = 0. If α > αc the game is
predictable, meaning that conditionally on the given history, the winning choice is biased
towards +1 or −1. The degree of predictability goes to zero as α → α+

c .
The overall picture offered by the minority game to interpret real financial market dy-

namics is that there is a regime in which markets are predictable and attract a larger amount
of participants. In doing so, eventually, the market becomes crowded and efficient, leading
to unpredictable outcomes. In short, the market self-organizes towards the critical efficient
phase, which displays long-ranged fluctuations; for example, the time during which an agent
keeps playing a given strategy is a power-law variable with an exponent µ = 1/2, of infinite
mean. This opens the door for a mechanism that generates a non-trivial temporal correla-
tion in the total volume of activity, such as those exhibited by financial markets (we will
come back to this point in Chapter 3).
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CHAPTER 1. AN HISTORICAL EXCURSUS

Take home messages from Chapter 1

1. The Efficient Market Hypothesis (EMH), in its strong version, states that all
information is reflected in the market price. Therefore, since by definition news
is unexpected, it provides a theoretical foundation for price unpredictability
observed in empirical data.

2. A major critique of the EMH is provided by volatility bounds. In particular,
ever more refined tests show that the price p fluctuates much more than any
proxy related to the fundamental price pF, i.e., the price volatility σ is larger
than that related to fundamentals σF, contrary to what the Rational Expec-
tation Hypothesis implies.

3. The Adaptive Market Hypothesis (AMH) deviates from the rationality as-
sumption, by assuming that agents may not have an omni-comprehensive in-
formation set. Moreover, even if this is the case, they may not exploit this
information in a rational way, since they may rely on heuristics and biases.

4. Quite intriguingly, the empirical regularities exhibited by financial markets,
the so-called stylized facts, are robust with respect to centuries, countries, and
securities. In light of the findings of Kahnemann and Tversky, stylized facts
might be a signature of the fact that humans are victims of the same biases;
these biases may be the source of feedback mechanisms, which may amplify
and induce large fluctuations in the price process, explaining anomalies such
as the excess price volatility with respect to fundamentals.

5. Statistical Physics provided us with unifying concepts such as phase transi-
tions, critical states, self-organized criticality, and universality, which turned
out to be quite relevant for studying economic and financial systems, being
valuable concepts to explain the ubiquitousness of stylized facts found in real-
world data.

6. This thesis is aimed at investigating the relations between the assumptions
related to traders’ behavior and the predictive power of emerging price dynam-
ics. In doing so, we will construct a bridge from the classic framework used
in market microstructure, which usually relies on the assumption of agents’
rationality, to the more flexible and predictive one used in the AMH literature.
The resulting model stems from the classic Kyle framework (which will be re-
called in Chapter 3), where rational traders are replaced by adaptive ones, and
retrieves feedback effects that are key for reproducing several stylized facts.
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Chapter 2

Price dynamics

If you are going to use probability to model a financial market, then you had better use the right
kind of probability. Real markets are wild.

Benôıt B. Mandelbrot, The (Mis)Behavior of Markets

Although the debate over whether financial markets are efficient or not is still partly
ongoing, the knowledge related to price dynamics is increasing. To explain how it is possible
to decouple the properties of the price from those related to the fundamental value, we shall
invoke a basic argument that stems from Bachelier’s [4] and Black’s [19] analysis. The former
argued that price fluctuations grow as the square root of time, while the latter argued that
the price is always close to the fundamental price by a factor of 2. If this is the case, the
anchor to fundamental values can only be felt on a time scale τ such that purely random
fluctuations σ

√
τ reach the order of 50% the fundamental price, leading to τ = 6 years for

the stock market with a typical annual volatility of σ = 20%; such long timescales suggest
that the notion of fundamental price is secondary to understanding price dynamics at the
scale of a few seconds to a few months.

Keywords: Stylized facts, Multiplicative dynamics, Heteroscedasticity, GARCH
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CHAPTER 2. PRICE DYNAMICS

This Chapter reviews salient properties related to price dynamics. First, I introduce in
Section 2.1 the Limit Order Book, which is the standard way in which financial markets
operate nowadays.

In Section 2.2 I present a set of daily empirical data related to the S&P-500 index,
freely available from Yahoo! Finance, that I use in the following to amend the theoretical
discussion with empirical analysis.

In Section 2.3, price diffusivity at high frequency is discussed. Note that the diffusive dy-
namics of prices at high frequency is a crucial piece of the so-called diffusivity puzzle, which
is a reason why the Transient Impact model, presented in Section 3.3 and microfounded in
Part II, has been proposed.

The remaining part of the Chapter deals with heteroscedasticity, i.e., the fact that price
volatility fluctuates over time; this stylized fact, which is captured by the family of statisti-
cal models named Generalized Auto-Regressive Processes presented in Section 2.7, will be
rationalized by means of an original microfounded model in Part III.

2.1 Limit order book

My original work does not focus on order book dynamics, but to understand some of the
approximations we made and some arguments related to trading strategies, it is necessary
to grasp the basics of the most common mechanism which rules trading nowadays.

Order books offer the possibility for an agent to trade passively or aggressively. With the
first option, an agent can post a buy or a sell order, which consists of a number of shares at
a given price, and wait for a counterpart. This passive order is called a limit order. Agents
can cancel their passive orders if no counterpart has yet been found. The second option,
called a market order, consists of matching existing limit orders. All these limit orders
are stored in the limit order book. A schematic describing the interaction between supply
and demand in financial markets, essential for understanding the price formation process, is
displayed in Fig. 2.1. In the following, we refer to the bid (ask) side for the buy (sell) side.
An important notion emerges from the order book, i.e., liquidity. It refers to the number of
shares available in the order book at a given time. Thus, posting a limit order in the limit
order book provides liquidity while posting a market order takes liquidity.

Let us focus on the quantities and concepts introduced in Fig. 2.1, which are the key
elements for limit order book functioning. The prices on which market participants can
place their orders are fixed: the quotation step is called the tick size and it varies across
assets. For example, it is 0.01$ for US stocks on NASDAQ and 1€ for the EUROSTOXX
future contract. We call the best bid bt (ask at) the best price on the bid (ask) side at
time t. The bid-ask spread st is defined as the difference between the two:

st = at − bt. (2.1)

We can classify assets by looking at their bid-ask spread:

• Large tick stocks have an average bid-ask spread almost equal to one tick.

• Small tick stocks have an average bid-ask spread equal to a few ticks.

The properties of the order book are different for these types of stocks. While large tick
stocks order books are full, small tick stock order books look sparse, i.e., some of the price
levels are empty.
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Figure 2.1: Sketch of the limit order book.

The ‘price’ of the asset is formed within the order book. The most common price is the
mid-price:

pt =
at + bt

2
. (2.2)

Let us note that the mid-price changes when the best ask or the best bid changes. If the
number of shares vbt at the best bid and best ask vat are bigger than the average size of
market orders, the time scale of price changes will be far bigger than the one between two
order book events. If we need a price that evolves on a faster time scale, we can introduce a
price that accounts for supply/demand interactions, such as pt =

(
vat bt + vbtat

)
/
(
vbt + vat

)
.

Whatever definition of the price we choose, it is the basic information on the asset coming
from the order book, that is available to all market participants. Its formation takes place
through the order book, as a dynamic interaction of supply and demand.

2.2 Seventy years of S&P-500 data

The S&P-500 data analyzed in this Chapter are shown in Fig. 2.2. The top panel shows
raw mid-price data; where one can see that the price exhibits an overall upward trend,
sometimes interrupted by large downward swings. The middle panel shows price changes
δpt, defined as:

δpt = pt − pt−1. (2.3)

These fluctuations are clearly increasing with time, suggesting that multiplicative dynamics
are well-suited to describe them. In fact, the trend can be completely removed if one
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CHAPTER 2. PRICE DYNAMICS
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Figure 2.2: (Top) Price, (middle) price changes, and (bottom) returns for S&P-500 from
1970 to 2022.

considers returns, i.e., normalized price changes:

rt =
pt − pt−1

pt−1

. (2.4)

Returns are shown in the bottom panel of Fig. 2.2, from which one can extract interesting
pieces of information: from an aggregate point of view, one can see that fluctuations of
returns are clustered in time and that large swings occur quite frequently; for instance, the
mean daily volatility is of the order of 1%, while on the Black Monday of 1987, the registered
daily return was −20% (!).

From the bottom panel, one can detect major financial crashes that happened in the
past decades:

• Black Monday, 1987.

• Dot-Com bubble, 2000.

• Subprime crisis, 2008.

• Flash Crash, 2010.

• Covid-19 pandemic, 2020.

• Ukraine war, 2022.

Although the origins of these large price swings are very different, the feedback effects which
amplified them are thought to be universal, as explained in Sec. 1.2.
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2.3 Price correlation over multiple timescales

Bachelier [4] proposed modeling the price pt in financial markets via what is known nowadays
as the Random walk or the Brownian motion process, respectively, if in discrete or continuous
time. The First Law of Bachelier states that the variogram Vτ , i.e., the average over squared
price changes, grows linearly with time:

Vτ = ⟨(pt+τ − pt)
2⟩ = σ2τ. (2.5)

Bachelier modeled the price process as an additive process, given by:

pt = pt−1 + δpt, (2.6)

where the price change δpt is time-stationary with zero mean and variance σ2. In order to
compute Eq. (2.5), one needs to know the Auto-Covariance Function (ACF) of price changes
Cδp

τ = ⟨δptδpt+τ ⟩. If Cδp
τ = σ2δτ , then Eq. (2.6) describes the random walk model. If the

price change ACF is positive, the model is a random walk with a positive trend, whereas if
the ACF is negative the price process is a mean-reverting random walk.

A very important remark is that the volatility profile is itself dependent on the sampling
scale used. For instance, if the price is sampled at the tick-by-tick, one can observe mean
reversion at very high frequencies, due to the so-called bid-ask bounce1. This thesis will
consider sampling scales at which these microstructural effects are unimportant.

The variogram profile grows linearly up to a time interval equal to a few months2. For
longer timescales, one observes a mean-reverting behavior, i.e., a sub-linear increase, as one
can see from Fig. 2.3; as argued by Black [19], price is always within a factor 2 from the
price, implying mean-reversion over yearly timescales.

1Inside every market place there is a bid-ask spread. The bid is the top price that someone is willing to
pay. The ask is the lowest price someone is willing to receive in exchange for a trade. In a stable market
structure, there is usually a difference between the two. When someone decides that they need to buy a
stock, and are willing to pay the price of the ask, they will ‘cross’ the bid-ask spread and ‘lift’ the ask. The
price that is recorded from the transaction will be the price of the ask. Now, what happens if the next
trade is someone who wants to sell a stock? They will cross the bid-ask spread again, and ”hit” the bid.
The price that is recorded will be the price of the ask. If we only look at the price, it will have jumped
from the ask to the bid. Imagine that we do this a few more times, all of the trades being executed at the
bid or ask price level. If we were to calculate the variance of price, an important statistic used for other
financial calculations, we will see that the variance is quite high, even if the price never moved from the
tiny range within the bid-ask window. In effect, the bid-ask bounce, if not addressed, will inflate the value
of calculated variance.

2As noted in Chapter 1.2 a trend effect can be seen if a sufficiently large data-set is used. See, for
example, Ref. [41]
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Figure 2.4: Cumulative distribution function of returns related to S&P-500 data. The
power-law exponent is found to be equal to µ = 3.5.

2.4 Statistical description of large price changes

If price changes are independent and identically distributed (iid) and Gaussian, the corre-
sponding Probability Distribution Function (PDF) reads:

P(δp, t) =
1

√
2πσ2

exp

(
−
δp2

2σ2

)
. (2.7)

Accordingly, the PDF of the price pt at time t, defined in Eq. (2.6), is Gaussian with mean
zero and variance σ2t. Figure 2.4 shows a histogram of empirical returns related to the
S&P-500 data. On top of the empirical histogram, we show the outcome of different fits
obtained with different PDFs. As one can clearly see, the Gaussian one (green line) does
not capture the fat tail of the empirical distribution, i.e., extreme events have a higher than
Gaussian probability of occurrence. Another fit (red) line, is related to the Student’s t
distribution, given by:

P(δp, t) =
Γ(µ+1

2
)

a
√
µπΓ(µ

2
)

(
1 +

δp2

a2µ

)−(µ+1)/2

, (2.8)

where Γ is the Gamma function. As one can see from the fit in Fig. 2.4, the Student’s t
distribution assigns a larger probability to extreme events.

In order to gauge the distance of a given PDF from the Gaussian one, it is useful to
consider the so-called excess kurtosis, defined in terms of the fourth moment divided by the
squared variance:

κ =
⟨(δp− ⟨δp⟩)4⟩

σ4
− 3. (2.9)

Note that for Gaussian processes κ is equal to zero, while for the Student’s t distribution,
if µ ≥ 4, κ = 6/(µ− 4). Instead, if 2 < µ ≥ 4, the kurtosis is infinite. In the remaining µ’s
range, the kurtosis is undefined. Note that an increasing κ, means that the probability of
extreme events increases with respect to a Gaussian distribution. In Fig. 2.4 we calibrate
a Gaussian and a Student’s t distribution over S&P-500 data. Interestingly, the kurtosis
found by means of the Student’s t distribution turns out to be infinite, since the fitting
procedure gives µ = 3.5.
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2.5 Multiplicative dynamics

When Bachalier’s work was eventually re-discovered by economists in the 1950s, empirical
analyses showed that a given stock’s price change tends to be proportional to the price itself
(as one can see from Fig. 2.2)3. A simple multiplicative model for the price process is given
by:

pk+1 = pk(1 + rk). (2.10)

The distinction between multiplicative and additive processes will become crucial when
in Chapter 5 I analyze price trajectories over very long time spans.

Note that one can map the multiplicative equation above to the additive one (Eq. (2.6)),
by taking the logarithms while considering (1+ rk) = exp ηk; accordingly, if ηk are iid Gaus-
sian random variables with mean ⟨η⟩ and variance σ2, one obtains a Gaussian distribution
for the log price. Converting it back to the multiplicative case, one obtains the following
so-called log-normal distribution for the price process in Eq. (2.10):

P(p, t) =
1

p
√
2πσ2t

exp

(
−
(ln p− ⟨η⟩t)2

2σ2t

)
. (2.11)

Note that the log-normal distribution is quite similar to the Gaussian one in the body of the
distribution. However, as shown in Fig. 2.4, the Gaussian PDF underestimates the level of
the tails of returns, while the log-normal predicts that positive price jumps are more frequent
than negative ones; this is at odds with empirical findings showing that these jumps are
rather symmetrical, and, more precisely, large negative draw-downs are more frequent than
positive draw-ups.

A way to consider the tail of the log-normal distribution is to expand the argument of
the exponential, obtaining:

P(p, t) =
1

√
2πσ2

exp

(
−
⟨r⟩2

2σ2
t

)
p−1−µ(p,t), µ(p, t) = −

⟨r⟩
σ2

+
ln(p)

2σ2t
(2.12)

and so when 2σ2t ≫ ln p the distribution resembles a power-law with an exponential cut-off.
A final note regarding the log-normal distribution is that it does not describe a stationary
system. In fact, the mean and the variance diverge over time. To obtain a stationary dis-
tribution with exact power-law tails, one must enforce additional constraints. For example,
it is sufficient to add a repulsive barrier, as shown in Sec. 2.7.

2.6 Heteroscedasticity

The study of price volatility is of paramount importance: optimal strategies in financial
markets are the results of a trade-off between expected risk and return (see for example the
Capital Asset Pricing Model [42]); in particular, the risk of a given strategy is related to
the price volatility. Moreover, volatility can also be traded, for instance through options,
where one needs to properly forecast it in order to price them correctly. Estimating price
volatility has been therefore the subject of intensive studies in the 1980s. First, it was
recognized that squared returns were correlated over time, as one can see from the middle
panel of Fig. 2.5. Later, Engle proposed Auto-Regressive Conditional Heteroscedasticity

3Over a short time horizon, however, the market’s microstructure comes into play and a description
based on additive dynamics is better suited; in fact, in real markets, there is always the so-called thick size,
which dictates the minimum possible price change.
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(ARCH) models, defined in the following Section, which describe a system that is locally
non-stationary but asymptotically stationary, meaning that the parameters which control
the PDF of returns fluctuate. This phenomenon is called heteroscedasticity; we will propose
a microfoundation for it in Part III.

Before introducing ARCH models, let us first rationalize the heteroscedasticity phe-
nomenon by following Ref. [43]. If the returns distribution at time t (P(r, t)) varies suffi-
ciently slowly, one can compute an empirical estimate of the volatility over a time range way
greater than the trading scale, therefore collecting many observations, but small compared
to the time scale over which the PDF varies. However, if this is not the case, the PDF
constructed from {rt, rt+1, . . . , rt+T} appears non-Gaussian even if all the P(r, t) are. To
explicitly show this, one can calculate the averaged P(r, t) over the distribution of volatility,
given by:

⟨P(r, t)⟩σ =

∫
P(σ)

1
√
2πσ

exp

(
−

r2

2σ2

)
dσ. (2.13)

Assuming that P(σ) decays for large σ as exp(−σc), c > 0. Through a saddle-point
calculation one easily obtains:

⟨P(r, t)⟩σ ∝ −r
2c
2+c . (2.14)

Since c < 2 + c, this asymptotic decay is always slower than the Gaussian case, which
corresponds to c → ∞. The case where the volatility itself has a Gaussian tail (c = 2) leads
to an exponential decay of P̃(r).

Another signature of heteroscedasticity can be observed by looking at the squared return
ACF. Let us consider the very simple model given by:

rt = ηtσt, (2.15)

where ηt are iid random variables with zero mean with unit variance, and σt is stochastic
and can be correlated in time with the ηt’s. Assuming that ηt and σt are not correlated, the
correlation between returns is given by:

⟨rtrt+τ ⟩ = ⟨σtσt+τ ⟩σ⟨ηtηt+τ ⟩η = δτ ⟨σ2⟩σ. (2.16)

Hence returns are not correlated, but they are not independent, since higher-order, non-
linear, correlation functions reveal a non-trivial structure. For example, the ACF of squared
returns reads:

Cr2

τ = ⟨r2t r2t+τ ⟩ − ⟨r2t ⟩⟨r2t+τ ⟩ = ⟨σ2
t σ

2
t+τ ⟩σ − ⟨σ2

t ⟩σ⟨σ2
t+τ ⟩σ. (2.17)

This ACF reveals a rich structure: for instance, as shown in Fig. 2.5 and 2.6, the ACF of
squared returns is long-ranged. The kurtosis of the sum of returns, therefore, decays slower
than predicted with an uncorrelated variance. Assuming that the above ACF decreases with
τ , the kurtosis of the sum of N returns is given by:

κ(N) =
1

N

[
κ(0) + (3 + κ(0))g0 + 6

N∑
i=1

(
1−

i

N

)
gi

]
, (2.18)

where κ(0) is the kurtosis of the variable ηt, and gl the correlation function of the variance,
defined as:

⟨σ2
t σ

2
t+τ ⟩σ − ⟨σ2⟩2σ = ⟨σ2⟩2σgτ . (2.19)

It is interesting to see that for N = 1, the above formula gives:

κ(1) = κ(0) + (3 + κ(0))g0 > κ(0), (2.20)
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which means that even if κ(0) = 0, fluctuating volatility is enough to produce some kurtosis.
This argument can be viewed as a refinement of the one which led to Eq. (2.14). As can
be seen from the analysis of empirical data in Fig. 2.7, the kurtosis of the sum of returns∑N

i=1 ri decays slower than 1/N , meaning that the variance ACF is correlated over time.
Empirical analysis reveals not only that volatility ACF decays over time as a power law,

or as the sum of different exponential functions, but also that its PDF exhibits fat tails. The
following Section introduces a multiplicative process that admits a stationary equilibrium
with volatility correlations and a fat tail in the distribution of returns.

2.7 Stationary Multiplicative processes

As we have seen in Section 2.5, the multiplicative equation which defines the geometric
Brownian motion (given by Eq. (2.10)) does not lead to a well-defined stationary distribu-
tion. In order to obtain a stationary distribution with power-law tails, one can consider a
stochastic multiplicative process repelled from zero.

In what follows we first consider a model for price heteroscedasticity in discrete time,
followed by a discussion of its continuous limit, for which the PDF exhibiting power-law tail
can be characterized analytically in closed form4. In Chapter 6 I will develop a microfounded
model with adaptive agents whose dynamics implies, in a specific limit, an equilibrium where

4In discrete time, one obtains again power-law tails, which can be characterized by the Kesten-Goldie
theorem.
The starting point is to consider a multiplicative process repelled from zero Xt, which can be thought of

as the price variance or volatility, that reads:

Xt = AtXt−1 +Bt, (2.21)

where the sequences At, Bt are supposed to be iid random variables. The process above has been studied
extensively in the mathematical literature starting with the analysis performed by Kesten [44]. Sufficient
conditions in order to obtain a stationary process are given by E[logA] < 0 and E[logB] < ∞. The condition
E[logA] < 0 ensures that the sums that stem from the iteration of the equation above onto itself constitute
a random walk with negative drift, and therefore the products Πk = AtAt−1 . . . At−k−1 decay to zero at an
exponential rate. This implies the summability of the infinite series which stems from Eq. (2.21). The right
tail of X is determined by the products Πk as well. Indeed, if P(A > 1) > 0, Πk may exceed 1 finitely often
with positive probability. A very important result is the Kesten-Goldie theorem which allows the tail of the
stationary distribution of X to be precisely characterized. If

E[Aµ
t ] = 1, E[Bµ] < ∞ E[Aµ+1

t ] < ∞, (2.22)
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the price undergoes a stationary multiplicative process of the GARCH family, presented
below.

2.7.1 GARCH models

In 1982 Engle proposed a very simple model able to account for heteroscedasticity [45]. The
so-called ARCH(p) model is defined as:

σ2
t = σ2

0 +

p∑
i=1

αir
2
t−i, (2.24)

where σ2
0 and α1, . . . , αp are positive variables and rt in Eq. (2.4) are iid Gaussian random

variables. In order to overcome the problems related to the optimal determination of the
p+ 1 parameters σ2

0, α1, . . . , αp which best describe the time evolution of a given economic
time series, Bollerslev generalized ARCH(p) models in 1986. The GARCH(p, q) model is
defined by [46]:

σ2
t = σ2

0 +

p∑
i=1

αir
2
t−i +

q∑
i=1

βiσ
2
i . (2.25)

Since most of the properties can be addressed considering the GARCH(1, 1) model, in what
follows we analyze this simplified case; from the equation above evaluated with p = q = 1,
the following mean price variance is:

σ2 =
σ2
0

1− α1 − β1

, (2.26)

and the kurtosis is:

κ =
6α2

1

1− 3α2
1 − 2α1β1 − β2

1

. (2.27)

Moreover, from the equation defining the GARCH(1,1) model, it is easy to show that:

Cσ2

t+1 = (α1 + β1)C
σ2

t , (2.28)

which is solved by an ACF given by:

Cσ2

t = Ae−t/τ , (2.29)

where

τ = | ln(α1 + β1)|−1, A =
2σ4

0α
2
1

(1− α1 − β1)2(1− 3α2
1 − 2α1β1 − β2

1)
. (2.30)

The GARCH(1,1) model can be easily calibrated, as described in App. A.1. The outcome
of the calibration is shown in Fig. 2.8. For a general GARCH(p, q) process one obtains
the variance ACF as a sum of exponentially decaying functions. Several modifications of
GARCH models capture additional stylized facts. For instance, asymmetric GARCH models
are able to capture the leverage effect5 (see the bottom panel of Fig. 2.5), while FIGARCH
models [48] describe the long-range volatility exhibited by real data (see Fig. 2.6).

then

P(X) ∼X≫1

1

Xµ
. (2.23)

5Note that the leverage effect can be interpreted as another signature of universal human biases [47].
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Figure 2.8: Estimation of GARCH model on S&P-500 data. The optimal set of parameters
is given by: σ2

0 = 0.0111, α1 = 0.0861 and β1 = 0.9071.

2.7.2 GARCH as a learning process

GARCH models belong to the class of observation-driven models, i.e., models where the
parameters evolve with past observations. Quite recently [49], a general class of observation-
driven models had been proposed, the so-called Score-Driven (SD) one. SD models update
parameters based on past observations.

In what follows, I show how a GARCH model can be rephrased as an SD model and
draw conclusions from this mapping.

Consider returns given by:
rt = σtϵt, (2.31)

where
ϵt ∼ N (0, 1). (2.32)

Let us assume that the probability of observing a return rt, conditional on observing a
volatility σt is Gaussian, as in the GARCH model, where:

P(rt|σt) =
1√
2πσt

e
− r2t

2σ2
t . (2.33)

Note, that the GARCH(1,1) model can be seen as a SD model, defined by

σ2
t+1 = σ0 +Bσ2

t + AI −1/2∇t, (2.34)

where the score ∇t is given by:

∇t =
δ logP(rt|σt)

δσ2
t

, (2.35)

and the weight I is given by:

It = −E

[
δ2 logP(rt|σt)

δ2σ2
t

∣∣∣∣∣σ2
t

]
. (2.36)

The use of the score for updating σ2
t is intuitive. It defines the steepest ascent direction

for improving the model’s local fit in terms of the likelihood or density at time t given the
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current position of the parameter σ2
t . This provides the natural direction for updating the

parameter. In addition, the score depends on the complete density, and not only on the
first- or second-order moments of the observations rt which distinguishes the SD framework
from most other observation-driven approaches in the literature. By exploiting the full
density structure, the SD model introduces new data transformations to update the time-
varying parameter σ2

t . The weight I is the Fisher information matrix, which is defined
as the variance of the score ∇t, which in turn is given by Eq. (2.36) under mild regularity
assumptions [50].

Computing Eqs. (2.35) and (2.36) using the conditional PDF given by Eq.(2.33) and
inserting the results in Eq. (2.34) one obtains:

σ2
t+1 = σ2

0 + α1r
2
t + β1σ

2
t , (2.37)

which is exactly the GARCH(1,1) presented in the previous Section.
These results imply that the GARCH model could be seen as a predictive filter, instead

of the generating process of the true volatility process. We will come back to this point
in Chap. 6, where we will microfound the GARCH model via a stylized agent-based model
with adaptive agents.

2.7.3 Continuous limit of GARCH processes

Kesten processes (see Eq. (2.21)) are widely used in finance to model the feedback dynamics
where past high values of volatility influence present market activity, leading to tails in the
probability distribution and to volatility correlations. Starting from returns rt defined as
in Eq. (2.4) where the variable ηk is iid with unit variance, one postulates that the present
day volatility σk depends on how the market feels past market volatility. If past price
variations happened to be high, the market interprets this as a reason to be more nervous
and increases its activity, thereby increasing σt. One could therefore consider the following
dynamical equation:

σt+1 − σ0 = (1− ϕ)(σt − σ0) + gϕσtξt, 0 < ϕ < 1, (2.38)

by which the price volatility eventually relaxes towards the equilibrium value σ0, but is
continuously excited by the observation of the previous day’s activity through the abso-
lute value of rt. The coefficient g measures the influence of the updated information on
the volatility dynamics. Now, going to a continuous-time formulation, one finds that the
volatility P(σ, t) obeys the following Fokker-Planck equation

δP(σ, t)
δt

= ϕ
δ(σ − σ0)P(σ, t)

δσ
+Dg2ϕ2

δ2σ2P(σ, t)
δσ2

, (2.39)

where D is the variance of the noise ξt. The equilibrium solution Pe(σ) is obtained by setting
the left-hand side to zero, obtaining:

Pe(σ) =
exp(−σ/σ0)

Γ[µ]σ1+µ
, (2.40)

with µ = 1 + (Dg2ϕ)−1. This is an inverse Gamma distribution, which rapidly goes to
zero when σ → 0, but has a long tail for large price volatilities. Note that using a saddle-
point calculation, one finds that the tails of the distribution of σ are bequeathed to those
of r. The distribution of price changes thus has power-law tails, with the same exponent
µ. Interestingly, a short-memory market, corresponding to ϕ ∼ 1, has much wilder tails
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than a long-memory market: in the limit, ϕ → 0, one indeed has µ → ∞. In other words,
over-reactions are a potential causes for power law tails. Similarly, strong feedback (large
g) decreases the value of µ.
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Take home messages from Chapter 2

1. To a first approximation, prices are unpredictable on short timescales, e.g.,
from seconds to months, while on longer ones they are mean-reverting, reflect-
ing an anchor to fundamental values.

2. Extreme returns are more probable than what is predicted by a Gaussian
Probability Density Function (PDF). An important quantity useful to gauge
the distance of the return distribution from a Gaussian one is the tail exponent
µ related to the return PDF.

3. Even if returns are uncorrelated, they are not independent; in fact, the corre-
lation between price volatility, called Heteroscedasticity, implies that squared
returns are correlated in time.

4. Multiplicative processes are well suited to model the intermittent dynamics of
price volatility. For instance, Generalized Auto-Regressive Conditional Het-
eroscedastic (GARCH) models allow for a description that predicts fat tails in
the return PDF as well as volatility correlations.

5. What are the assumptions needed to rationalize from an agent-based perspec-
tive the feedback dynamics assumed in GARCH model to explain volatility
clustering and large price fluctuations? In the final Section of the following
chapter we review the Kyle model, which will be the starting point for the
microfoundation we give to the GARCH model in Chapter 6.
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Chapter 3

Order-driven price dynamics

Some economists, when thinking about long memory, are concerned that it undercuts the Efficient
Market Hypothesis that prices fully reflect all relevant information; that the random walk is the
best metaphor to describe such markets; and that you cannot beat such an unpredictable market.
Well, the Efficient Market Hypothesis is no more than that, a hypothesis. Many a grand theory
has died under the onslaught of real data.

Benôıt B. Mandelbrot, The (Mis)Behavior of Markets

The interplay between trades and prices is key to understanding the price formation
process in financial markets, which can be seen as a collective evaluation system where the
‘fair’ price of an asset is found by the aggregation of information dispersed across a large
number of investors. Non-informed investors also participate in the process, by attempting
to profit from a local imbalance between supply and demand, thus acting as counterparts
when liquidity is needed, or trading for exogenous reasons. Order submission and trading are
the means by which information is aggregated. This process creates statistical regularities
in the price dynamics, which we shall review before discussing the traders’ behavior that
may ignite them.

Keywords: Price Impact, Long Memory, Diffusivity Puzzle, Market Microstructure
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Figure 3.1: Covariance function of trade signs related to E-mini S&P 500 futures contract
data versus event time.

First, in Section 3.1 and 3.2, we review the stylized facts that lead to the so-called
diffusivity puzzle. In a nutshell, the unpredictability of price changes is, at a first glance, at
odds with the empirical finding that buy-initiated or sell-initiated trades are persistent and
the fact that there is a positive correlation between trade signs and future price changes:
if you buy (sell) a stock now, on average the price will increase (decrease); this effect is
called price impact. We then introduce in Section 3.3 the Transient Impact Model and
in Section 3.4 the Kyle model, following Ref. [51] and [52]; the former is able to provide
a solution to the diffusivity puzzle, while the latter causes the concept of price impact to
emerge from traders’ behavior. These models are the starting point for my original research
presented in Part II.

3.1 Long-term correlation of trade signs

Here we investigate the correlations of trade signs by analyzing one month (January 2018)
of trade-by-trade data for the E-mini S&P 500 futures contract. Note that in addition to
data related to the price, this dataset also contains information regarding whether the trade
was a buy or sell initiated trade. Let us define the sign of a trade ϵt in an operative way as
follows: ϵt = −1 if the trade was initiated by an aggressive sell market order (see Sec. 2.1),
else ϵt = 1. It has been found [53, 54] that the ACF of trade signs, defined as

Cϵ
τ = ⟨ϵt+τ ϵt⟩ − ⟨ϵt+τ ⟩⟨ϵt⟩ (3.1)

decays as a power law:

Cϵ
τ =

c∞

τ γ
. (3.2)

This can be seen in Fig. 3.1, where the orange line corresponds to a power law with ex-
ponent γ = 0.5; furthermore, assuming c∞ = 0.5, if we observe a market order now, the
probability that a market order 104 trades in the future is a buy order exceeds that for a
sell order by more than 0.5%. In modern equities markets for liquid assets, a time lag of
104 trades corresponds to a few hours. Interestingly, this predictability does not imply price
predictability: this is the core of the efficiency paradox.

Where does the predictability of trade signs come from? Two explanations have been
presented in the literature, namely herding, in which different market participants submit
orders with the same sign, and order splitting, in which market participants who wish to
execute large trades split their intended volume into many smaller orders, which they then
submit incrementally.
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Herding can occur as a consequence of the arrival, for example, of a buy market order
which may lead a group of market participants to infer that there is a trader able to forecast
a price increase. As a consequence, the group of market participants may decide to create
many more buy market orders. This behavior can cascade and thereby lead to long sequences
of trades in the same direction.

Order splitting is instead related to the structure of the limit order book, presented in
Section 2.1; suppose you want to buy 100 times more shares than those available at the best
ask. Sending a market order whose volume is much larger than the volume at the best ask is
a bad idea because it would mean paying a much worse price than the ask price, and could
possibly wreak havoc in the market. Similarly, sending a very rapid succession of smaller
market orders would presumably send a strong signal that there is a hurried buyer in the
market, and would likely cause many sellers to increase their prices. Also placing a large
limit order does not work because observing an unusually large limit order also signals a
large buying interest. This influences both buyers (who are now tempted to buy at the ask
price rather than hoping to achieve a better price by placing their own limit orders) and
sellers (who think that it might be a bad idea to sell now if the price is likely to go up, as
suggested by the new limit order arrival). In fact, limit orders - which are often described
as passive because they provide liquidity - can impact prices considerably. In summary,
a buyer who seeks to purchase a very large quantity of an asset does not have any other
realistic choice than to split the desired trade into many small orders and execute them
incrementally, over a period that might span several days or even months. Intuitively, the
probability of revealing information increases with the size of a (limit or market) order,
because smaller orders are more likely to go unnoticed while larger orders are more likely
to attract attention. These actions are consistent with the idea that market participants’
execution of large metaorders can cause long-range autocorrelations in the observed order
flow.

Although both are likely to play a role, the influence of order-splitting is much stronger
than herding. For instance, the relative importance of these effects has been investigated [55]
using data where the identity of the trader sending the order is known (even if anonymized).
The autocorrelation function of order flow can be exactly decomposed as Cϵ

τ = Csplit
τ +Cherd

τ

where the first (second) term is the contribution to the correlation considering only cases
when the two market orders at time t and t+τ were placed by the same (different) trader(s).
To measure the relative importance of the two components, the authors of Ref. [55] use
brokerage data. Some exchanges provide data where each order contains the coded identity
of the broker who sent the order.

An extensive investigation shows unambiguously that Csplit
τ always explains more than

75% of Cϵ
τ and, except for very short τ (one or two trades) the value is above 85%. This

empirical finding strongly indicates that order splitting is the main driver of the correlated
order flow. Similar results are obtained when using data with agents rather than brokers.

3.2 Response function

This Section investigates whether there is a relation between price changes and trades.

The response function, Rτ , is defined as the average of the time-dependent price change
multiplied by the sign of the trade:

Rτ = ⟨(pt+τ − pt)ϵt⟩. (3.3)

Note that one can also define a response function conditioned with respect to the traded
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Figure 3.2: Response function related to E-mini S&P 500 futures contract data. τ measures
time in event time.

volume at the transaction time t:

RV
τ = ⟨(pt+τ − pt)ϵt⟩|Vt=V . (3.4)

Empirical investigations show RV
1 := RV to be well fitted by a power law with a small

exponent, or by a logarithmic function of the volume traded. Moreover, the dependence
with respect to time and with respect to the traded volume is decoupled [54]

RV
τ ∼ RτR

V . (3.5)

Fig. 3.2 shows the time-dependent part of the response function to be almost flat, meaning
that a given trade, due to the sequence of prior correlated ones, permanently impacts the
price.

The stylized fact captured by the response function can be explained by advancing a few
alternative explanations:

Trades convey a signal about private information. The arrival of new private
information trigger trades, that cause other agents to update their valuations, which
in turn change prices.

Agents successfully forecast short-term price movements and trade accord-
ingly. Thus, there might be a market impact even if these agents have absolutely no
effect on prices. With Hasbrouck’s words [56]: ‘orders do not impact prices. It is more
accurate to say that orders forecast prices’.

Random fluctuations in supply and demand. Fluctuations in supply and de-
mand can be completely unrelated to information, but the net effect on market im-
pact is the same. In this sense impact is a completely mechanical (or statistical)
phenomenon.

In the first two explanations, market impact is both friction and also the mechanism that
let prices adjust to the arrival of new information. In the third explanation, instead, market
impact is unrelated to information and may merely be a self-fulfilling prophecy that could
even occur with no informed traders. Identifying the dominating mechanism in real markets
is therefore of fundamental importance to understanding price formation.

3.3 The Transient Impact model

Why is it that markets are statistically efficient (i.e., the expected future price change is
zero) while trade signs impact prices and display long-range correlations? This question is
the core of the so-called diffusivity puzzle, also known as the efficiency paradox.
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Figure 3.3: Propagator related to E-mini S&P 500 futures contract data versus event time.

In order to offer a unified picture of the stylized fact we discussed in the previous sections
of this chapter, thereby solving the efficiency paradox, one expects that the reactional
component of price impact is mostly transient such that it allows the price to undergo a
diffusive dynamics, despite the long-range correlation of trades signs. This idea is formalized
in the so-called Transient Impact model (TIM), also called the propagator model. The
central equation of this model is the additive model for the price dynamics given by Eq. (2.6)
where the price change δpt is given by the sum of the impact of prior trades signs weighted by
the decaying kernel K and an uncorrelated noise ξ representing exogenous news; therefore,
the price change δpt reads:

δpt =
∑
t′≤t

Kt−t′ϵt′ + ξt, (3.6)

where the propagator Gt, or the price impact function, is defined as

Kt = Gt+1 −Gt (3.7)

and where G0 = 0.
With these equations, the additive price dynamics becomes:

pt = p0 +
∑
t′≤t

Gt−t′ϵt′ +
∑
t′≤t

ξt′ . (3.8)

In App. A.2 we show how one can calibrate the above model to real-world data.
Once the TIM is calibrated against real data, one obtains a shape for the impact function

well described by a power-law decaying function:

Gt ∼t≫1

G∞

tβ
, β < 1, (3.9)

as can be seen from Fig. 3.3. The propagator, therefore, decays to zero so slowly that its
sum over all t is divergent.

Interestingly, in order to solve the diffusivity puzzle, a particular value of β has to be
chosen. One can show this by plugging in the power-law ansatz for the propagator in
the definition of the price, respectively given by the equation above and Eq. (3.8), in the
definition of the variogram; in the asymptotic limit t ≫ 1 one obtains:

Vt ∼
(
G2

∞c∞I(γ, β)t1−2β−γ + Σ2
)
t, (3.10)

where I(γ, β) is a finite integral. As the propagator decays more quickly (i.e., as β increases),
super-diffusion is less pronounced until

β = βc = (1− γ)/2, (3.11)
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for which the long-term volatility is constant. Note that the constraint above is compatible
with the results of the empirical analysis we show in Fig. 3.1 and 3.3.

Therefore, we see that in order to have diffusive prices, the decay of the price impact has
to be precisely related to the decay of the trade signs ACF. With the equation above, one
can analytically compute the long-term response function and, surprisingly, one can observe
that the complicated integral related to the zeroth-order contribution vanishes if β = βc,
leaving a sub-leading term that saturates to a finite value when t → ∞.

We finally note that in the study of the Brownian motion a very interesting result is
the so-called Fluctuation Dissipation Theorem, which relates the intrinsic fluctuation of a
stochastic system with the (small) deviation caused by an external force. A similar relation
can be derived in the present framework, between the variogram and the squared response
function, representing respectively the intrinsic fluctuation of the price and the deviation
caused by a given trade. In particular, an affine relation exists between Vt/t and R2

t which
can be investigated both empirically and analytically [54].

3.3.1 Interpretation in terms of agents

Here, following Ref. [54], we show what could be a possible interpretation of the above
findings in terms of real agents’ strategies. Traders in financial markets can be classified
into two broad categories:

• One is that of ‘liquidity takers’ who submit aggressive orders to the market. These
actors are motivated to trade by the fact that they possess (or think to possess)
some private information about the future price of the stock. Since market orders are
executed immediately, traders who believe they are informed can take advantage of
the immediacy, at the expense of crossing the bid-ask spread (see Sec. 2.1).

• The other category is that of liquidity providers (or market makers), who, in the
simplest instance, offer to buy or sell without taking bare positions and trying to earn
the bid-ask spread s: the sell price is always slightly larger than the buy price, so that
each round trip operation leads to a profit equal to the bid-ask spread s, at least if the
midpoint has not changed in the meantime. More precisely, note that the average gain
per share G can be computed [54]; assuming that market orders do not contain useful
information but are the result of hedging, noise trading, misguided interpretation,
errors, etc., then the price should not move up on the long run, and should eventually
mean revert to its previous value, so that:

G = s+RV
0 −RV

∞ = s+ lnV [R0 −R∞], (3.12)

where we used the decomposition of the response function given by Eq. (3.5) and we
assumed a logarithmic behavior for the volume-dependent part, in line with empirical
observations.

From the equation above, one sees that it is in the interest of the market maker to
mean revert the price, such that R0 > R∞. However, this mean reversion cannot be
too fast, otherwise, a real informed trader might buy stocks at a very modest price.
Hence, this means reversion must be slow.

A very simple model that sheds some light on how to rationalize the propagator model
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in terms of agents’ strategies is [54]:

dpt

dt
= −Ω(pt − p̄t) + ηt, (3.13)

dp̄t

dt
= k(pt − p̄t), (3.14)

where ηt is the driving force due to trading, Ω is the mean-reversion timescale and k−1 is the
memory timescale over which the exponential moving average p̄t is computed. The solution
is given by pt =

∫ t
dt′Gt−t′ηt′ , where the price impact function is given by:

Gt = G∞ + (1−G∞) exp[−(Ω + k)t]. (3.15)

Therefore, the price impact function is given by a single decaying exponential towards a
fixed long-term value given by G∞ = k/(Ω + k). If the fundamental price was known to
every market actor, then k = 0 and G∞ = 0. In the opposite limit where k ≫ Ω the last
known price is taken as the reference price and G∞ → 1. A possible way to obtain an
impact function that resembles a power law is to consider different market makers that use
different timescales. The resulting price impact is a sum of decaying exponential functions
with different timescales which can mimic a power-law behavior.

The message of the above model is quite compelling: it states that nobody knows with
precision what the fundamental price is and that its best estimate is given by the price itself
properly weighted on a given time frame, similar to the model given by Eq. (1.4).

3.3.2 History dependent price impact model

An alternative way to ensure statistical efficiency is to assume that the price impact of each
order is permanent but history-dependent. According to the martingale hypothesis, only
the surprise component of the next trade should have an impact on the price.

In order to rephrase the TIM, we define the conditional expectation ϵ̂t of the trade sign
ϵt with respect to the last observed one:

ϵ̂t = E[ϵt|ϵt−1]. (3.16)

We can then replace Eq. (3.6) with:

rt = G1,t(ϵt − ϵ̂t) + ξt. (3.17)

Since neither the sign surprise (ϵt − ϵ̂t) nor ξt can be predicted, it follows that for any
immadiate impact G1,t,

E[rt|ϵt−1] = 0. (3.18)

Therefore, prices in the model given by Eq. (3.17) are a martingale, even when the sign of
the next trade is highly predictable.

By imposing the condition above, one can get insight on how the market reacts to
different trades, depending on the surprise they convey. To evaluate it, we can decompose
the expectation value as the sum of the different possibilities weighted by their probability.
There are two possibilities, either the sign ϵt matches ϵ̂t or it does not. Let E+

t [rt] denote
the ex-post value of the return given that ϵt matches ϵ̂t and E−

t [rt] the return ex-post value
given that ϵt did not match ϵ̂t. The absence of predictability imposes that:

1 + |ϵ̂t|
2

E+
t [rt] +

1− |ϵ̂t|
2

E−
t [rt] = 0, (3.19)
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where the factors that weigh the expectation values are the probabilities associated with a
binary random variable. As a consequence, one can derive the following inequality:∣∣∣∣∣E+

t [rt]

E−
t [rt]

∣∣∣∣∣ = 1− |ϵ̂t|
1 + |ϵ̂t|

≤ 1, (3.20)

i.e., the most likely outcome has the smallest impact. This mechanism, which is a crucial
condition for market stability, is called asymmetric dynamical liquidity.

In order to prove the equivalence of the history-dependent impact model (HDIM) given
by Eq. (3.17) to the TIM, let us assume that market order signs are well modeled by a
discrete auto-regressive (DAR) process:

ϵ̂t =

p∑
k=1

akϵt−k. (3.21)

Accordingly, one can rearrange the equation that defines the propagator model, i.e., Eq. (3.8),
to give:

pt = pt−1 + θϵn +
∞∑

t′=1

[Gt′+1 −Gt′ ] + ηt, θ = G1. (3.22)

The equivalence is obtained with:

θat = Gt+1 −Gt, or Gt = θ[1−
t−1∑
t′=1

at′ ]. (3.23)

In particular, the power law relaxation with exponent β is obtained if ak ∼ k−β−1. Therefore,
in history-dependent impact models with a DAR hypothesis for the order flow, one recovers
exactly the TIM.

3.3.3 The Propagator model as a reduced description of all the
order flow

A possible argument against the propagator model is that it only takes into account market
orders, and hence it disregards the effect of limit orders. We show that actually, this is not a
valid argument against the propagator model since it incorporates the effect of limit orders
in an effective way. To show this, let us assume that the propagator model is modified to:

pt = p0 +
∑

0≤t′<t

G̃t−t′ϵt′ +
∑

0≤t′<t

Ht−t′ξt′ +
∑

0≤t′<t

ηt′ , (3.24)

where the unobserved events (limit order placements and cancellations) ξt are correlated with
the observed ϵt. Therefore, the unobserved ξt can be expressed in terms of the observed ϵt
via an appropriate linear filter (see Ref. [51] for details). The fitted propagator is therefore
given by

Gt = G̃t +
t∑

t′=1

Ht′Ξt−t′ . (3.25)

What is interesting is that Gt can inherit a time dependence from Ξ even if the true propa-
gators G and H are time-independent. In other words, the decay of a single market order’s
impact should be interpreted as a consequence of the interplay between market orders and
limit orders.
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3.4 The Kyle model

This chapter introduces the micro-founded model which will be the starting point of my
original theoretical approach. The study of market microstructure sometimes allows de-
riving statistical properties observed in empirical market data from a description based on
interacting agents. In order to obtain tractable models, the strong rationality assumption
is usually enforced, meaning that agents know the model as well as the model builder, and
they optimally construct their strategies. Therefore, agents are strategic: an important
aspect of an agent’s decision is the inference made from market statistics about others’
information. The Kyle model is the first model which addresses strategic aspects of infor-
mation. In particular, this model allows the explicit characterization of how an informed
trader would choose to transact to maximize the value of private information. This provides
a way to characterize how information is incorporated into security prices across time given
the strategic use of information by an informed trader. The Kyle model is composed of
two rational traders with asymmetric information, plus a third agent who injects noise into
the system and allows for the overcoming of the no-trade theorem [14]. The two strategic
traders are called the informed trader and the market maker. A single risk-neutral informed
trader and an uninformed liquidity taker submit orders to a risk-neutral market maker who
clears the excess demand while setting the price. In the Kyle model, it is the informed
agent’s conjecture about the market maker’s pricing policy as well as the market maker’s
inference about the informed agent’s information that play a crucial role in determining the
nature (and even the existence) of the equilibrium. The resulting equilibrium price, in the
simplest instance of the model, is given by the excess demand created by the liquidity takers
multiplied by the so-called price impact function (introduced in the previous Section). In
what follows we detail the Kyle model, which we later use to provide a micro-foundation
for the TIM and for the GARCH(1, 1) model.

Before proceding, for clarity purposes, let me note that informational asymmetry is not
the only way to microfound the notion of price impact. An alternative possibility relies on
the interplay between inventory constraint and risk management [57–61]. The idea is that
market makers immediately shift their price quotes after building up inventory in a given
trade, but this price shift then gradually disappears as they unload their positions either to
other clients or on the open market.

3.4.1 The single-auction setting

Initially, Kyle considers [18] a single trading period in which the informed trader submits his
optimal order along with the orders submitted by uninformed traders. Kyle then temporally
extends the model to consider the sequential-auction and continuous-action frameworks. As
the intuition is the same, we focus on the simpler (single-period) version of the model.

The market maker aggregates the orders and clears all trades at a single price. Hence,
Kyle’s model does not allow for a bid-ask spread nor does it analyze the transaction price
for individual trades. For this reason, the Kyle model can be useful to study empirical data
after some aggregation.

Consider a single-asset market populated by three traders:

• At time t = 0, the informed trader discovers private information about the price pF

that the asset will have at t = 1. This liquidation value is assumed to be normally
distributed with zero mean and variance (σF)2. Based on his private information, the
informed trader chooses a volume qIT of the asset, in such a way as to maximize his
expected profit.
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• The noise trader trades for idiosyncratic reasons. In doing so, the noise trader gener-
ates a random order flow with an excess demand of qNT, whose sign and amplitude is
independent of pF. The noise trades have zero mean and variance ω2.

• The market maker clears the excess demand q = qNT + qIT, at a clearing price p. The
market maker’s choice for the price p is such that he breaks even on average.

At time t = 1 the price pF is revealed and the informed trader’s asset is exactly worth pF.
This assumes that he can buy or sell any quantity of the asset at price pF without causing
an impact.

In the tradition of theoretical economics, one then looks for an equilibrium between the
informed trader and the market maker such that:

i) Profit maximization: given the market maker’s price-clearing policy, the informed
trader’s demand qIT maximizes his expected gain. He buys/sells at the clearing price
p, but the asset will be worth pF, so his gain is given by:

G = qIT(pF − p). (3.26)

ii) Market efficiency: the market maker’s clearing price must be such that p = E[pF|q].
This corresponds to a situation where the market maker breaks even on average, given
an excess demand q.

Given that the informed trader knows all of the above, how should he choose qIT to
maximize his expected profit E[G] at time t = 1? To choose an optimal value of qIT to
maximize G, he must consider the market maker’s clearing price. Specifically, the informed
trader is aware of the market maker’s price-clearing rule for choosing p as a function of q,
so he must use this knowledge when deciding how to act.

On the other hand, the market maker observes the excess demand q, but does not know
the value of pF. Since orders are anonymous, he also does not know the values of qNT or
qIT. However, the market maker knows that the insider knows his price-clearing rule, and
also knows that he acts to optimize his gain G with the information at his disposal, given
by pF, which he will try to infer from the excess demand q.

The model also assumes the market maker knows that the excess demand executed by
the noise trader is a Gaussian random variable with zero mean and variance equal to ω2

and that the pF is similarly a Gaussian random variable with zero mean (over time) and
variance (σF)2. The latter quantity is related to the typical amount of information available
to insiders at the time t = 0 but not yet included in the price.

3.4.2 Linear equilibrium

Consider the case where the market maker’s price-clearing rule is linear in the order imbal-
ance, such that:

p = Gq, (3.27)

for some impact parameter G. One can show that the solution to the problem presented
above is self-consistent and can be fully determined. Indeed, profit maximization on the
informed trader’s part leads to:

qIT = argmax
qIT

E[G], (3.28)

G = qIT(pF −Gq). (3.29)
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Since the expected value of the noise trade qNT is zero, one has E[q] = qIT. This leads to a
quadratic maximization problem, the solution of which is:

qIT =
1

2

pF

G
. (3.30)

Since the market maker knows that the informed trader will do this, he attempts to estimate
the value of qIT, when he only observes q. Estimating qIT allows him to guess, using the
equation above, the value of pF used by the informed trader, and chooses G in such a way
that his clearing price p is an unbiased estimate of the future price.

Using Bayes’ theorem, the conditional probability that the insider’s volume is qIT, given
q, is:

P(qIT|q) ∝ P(q|qIT)P(qIT) (3.31)

∝ exp

[
−(q − qIT)2

2ω2

]
exp

[
−2(qIT)2G2

(σF)2

]
, (3.32)

where in the second exponential we have used the relation between qIT and pF (see Eq. (3.30)).
By merging the two exponential terms, we see that the market maker inferred distribution
for qIT is Gaussian, with the following conditional mean:

E[qIT|q] = (σF)2

(σF)2 + 4G2ω2
q. (3.33)

This in turn converts into the market maker’s best estimate of the insider’s view on the
future price; again using Eq. (3.30) one finds:

p = E[pF|q] = 2G
(σF)2

(σF)2 + 4G2ω2
q. (3.34)

Identifying this expression with Eq. (3.27), it also follows that

G =
2G(σF)2

(σF)2 + 4G2ω2
. (3.35)

Simplifying this expression provides the following solution for the price impact function G:

G =
σF

2ω
. (3.36)

By choosing this value of G, the market maker makes sure that the strategic behavior of
the insider and the stochastic nature of the noise trader combines in such a way that the
realized price p is an unbiased estimate of the fundamental price pF, given the publicly
available information at time t = 0.

3.4.3 Discussion

The Kyle model raises several interesting points of discussion. First, the impact of an order
grows linearly with q: the Kyle model leads to a linear impact law. The price impact
G grows with the typical amount of private information present in the market (measured
by σF) but decreases with the typical volume of uninformed trades (measured by ω). This
captures the basic intuition that market makers protect themselves against adverse selection
from informed traders by increasing the cost of trading while benefitting from the presence
of noise traders to reduce price impact.
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[pF] = 0 [pF|q] = Gq

(pF)
(pF|q)

Figure 3.4: Example of prior (blue) and posterior (orange) beliefs of the market maker about
the fundamental price.

Second, using the result for qIT in Equation (3.30), the result for p in Eq. (3.34) and
Eq. (3.36), it follows that the insider’s gain is given by :

E[qIT(pF − p)] =
1

2
σFω. (3.37)

Therefore, the conditional expectation of the insider’s gain increases with the amount of
private information and with the overall liquidity of the market, which is provided by the
noise traders. For typical values of the predictor (i.e. for values of pF of the order of σF),
it follows that qIT ∼ ω, so the insider contributes a substantial fraction of the total traded
volume. This is not very realistic: informed traders tend to limit their trading to a small
fraction of the total volume; this is due to order splitting, as we have emphasized in Sec. 3.1.
Finally, the pricing error at t = 1 can be measured as:

⟨(p− pF)2⟩ = 1

2
(σF)2. (3.38)

Therefore, the market maker is only able to halve the variance of the uncertainty of the
fundamental price known to the insider (see Fig.3.4). The Kyle model provides a clear
picture of the origin of price impact. In the model, market makers fear that someone in
the market is informed, and therefore react by increasing the price when they observe a
surplus of buyers and decreasing the price when they observe a surplus of sellers. The
model also illustrates that even though the model permits the insider to enter an infinitely
large position, his private information only leads to bounded profits, because of impact-
related costs.

Note that when moving slightly away from its core assumptions, the Kyle model be-
comes a self-fulfilling mechanism: suppose that the market maker overestimates σF (i.e. he
overestimates the quality of information available to the insider). In reality, because there
is no ‘terminal time’ when a ‘true price’ pF is revealed, such market makers will overreact
to the excess demand when setting the value of p. In the efficient-market picture, these
pricing errors should self-correct through arbitrage from the informed trader (i.e. with a
signal to trade in the opposite direction at the next time steps). This would lead to excess
high-frequency volatility. However, variograms of empirical data are rather linear at high
frequency (see Fig. 2.3), which instead suggests that the whole market shifts its expectations
around the new traded price.
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Take home messages from Chapter 3

1. Why is it that price is diffusive up to several weeks while the order flow signs are
correlated in time and trades impact the price? This conundrum, also known
as the diffusivity puzzle, can be solved via the Transient Impact Model (TIM).

2. By calibrating the TIM on real price data, one obtains a slow decaying price
impact function. This finding can be substantiated by theoretical investiga-
tions if one assumes a power-law decaying Auto-Correlation Function of the
order flow process and price diffusivity; in fact, one predicts a price impact
function that decays at high frequency over time as a power law, with an ex-
ponent related to that of the order signs. The slow decay of the price impact
function is able to counter-balance the persistence created by the persistence
of the trades’ signs, without preventing the long-time price response function
from reaching a finite level.

3. The Kyle model is an agent-based model with three classes of agents. The
informed trader has private information about the future price and chooses
a trading volume to optimize his profit. The noise trader submits a random
trade volume. The market maker clears the volumes submitted by the in-
formed trader and the noise trader and chooses his clearing price to equal
his expectation of the fundamental price such that his expected profit is zero.
The informed trader and the market maker are rational, i.e., they know each
other’s strategy and use this information to construct their strategy.

4. In the Kyle model volumes impact the price because of their informational
content. This exposes the market maker to adverse selection. By adjusting
the price (negatively) to order-flow imbalance, the market maker ensures that
on average, the impact compensates exactly for this adverse selection.

5. When all distributions are Gaussian, the price change scales linearly with the
informed trader’s volume. The proportionality coefficient is called price impact
function. The value of the price impact function measures market liquidity:
the larger the coefficient, the more a given volume impacts the price and the
more expensive trading is, i.e., the less the market is liquid. The larger the
number of noise traders, the more liquid the market is. In this sense, a market
needs uninformed participants to function smoothly.

6. The Kyle model assumes that the fundamental price is revealed to all market
participants at some terminal time. This is an unrealistic assumption, which
we shall relax in Chapter 4. In doing so, we give a microfoundation for the
Propagator model, which we calibrate against real data in Chapter 5.

7. The Kyle model is not able to explain excess volatility, because it assumes
a perfectly rational market maker. Moreover, it is not able to capture the
intermittency exhibited by price variations observed in real-world data. In
Chapter 6 we replace rational traders with adaptive ones, microfounding the
GARCH(1, 1) model reviewed in Chapter 2.
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Part II

Asymmetrically informed rational
agents
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Chapter 4

The stationary Kyle model

Reality must take precedence over public relations, for nature cannot be fooled. It doesn’t matter
how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with
experiments, it’s wrong.

Richard Feynman

We provide an economically sound microfoundation to linear price impact models, by
deriving them as the equilibrium of a suitable agent-based system. In particular, we retrieve
the so-called propagator model is the high-frequency limit of a generalized Kyle model, in
which the assumption of a terminal time at which fundamental information is revealed is
dropped. This allows describing a stationary market populated by asymmetrically-informed
rational agents. We investigate the stationary equilibrium of the model and show that the
setup is compatible with universal price diffusion at small times, and non-universal mean-
reversion at time scales at which fluctuations in fundamentals decay. Our model suggests
that at high frequency one should observe a quasi-permanent impact component, driven by
slow fluctuations of fundamentals, and a faster transient one, whose timescale should be set
by the persistence of the order flow.

Keywords: Market Microstructure, Price Impact, Statistical Inference
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4.1 Introduction

Financial markets are designed to achieve two seemingly unrelated goals: they allow market
participants to find other agents with whom to transact (thereby solving a liquidity problem),
and at the same time they allow to discover the price at which such transactions should
take place (thereby solving an information-related task).

The Efficient Market Hypothesis (EMH) states that prices integrate all information that
is publicly available [62]. If this is the case, there can be no forecastable structure in
asset returns for agents in possession of public information only. Historically, the EMH was
first rationalized theoretically with the introduction of the Rational Expectation Hypothesis
(REH). According to the REH all agents are rational and perfectly informed about the other
players’ strategies. This hypothesis is appealing since it allows to build analytically tractable
setups [63] in which financial markets are able to deliver the promise they were conceived
for, once some exogenous source of dynamics is injected into the system, thus preventing
no-trade theorems. It has also important drawbacks: for example, the REH implies that
the value of a risky asset is completely determined by its fundamental price, equal to the
present discounted value of the expected stream of future dividends. As already argued by
Shiller [15], the excess volatility puzzle, i.e., the fact that the price deviates substantially
from the fundamental value, cannot be explained by the REH. Nevertheless, the REH is
still considered the main expectation formation paradigm in many economic circles [64].

An important class of REH models is the so-called Information-Based Models. These
models typically involve the presence of agents that trade due to exogenous reasons (noise
traders) that use financial markets in order to find counterparties for satisfying needs that
come from outside of the market, and arbitrageurs that possess privileged information on
the traded goods (informed traders) and thus choose to transact whenever they expect to
use their informational advantage in their favor. From this perspective, informed traders
provide a service (making prices informative) that noise traders can choose to pay in order
to be granted access to liquidity. To lubricate this mechanism, dealers (market makers) are
typically required: instead of letting noise traders and informed traders interact directly,
market makers can temporarily incorporate the imbalance in the trading pressure, accepting
to bear inventory risk for a limited time under the promise of some reward (bid-ask spread,
rebate fees). Their activity allows deferring in time the moment at which the initial buyer
and the final seller meet, thus enabling both informed and noise traders to find more easily
possible counterparties.

A particularly successful class of models to describe statistical regularities in financial
markets involves the notion of propagator, a linear kernel used in autoregressive models that
couples price changes to past order flow imbalances. In this setting, the (discounted) price
of a good at time t, which we denote pt, can be expressed as a function of the past signed
order flow imbalance qt as:

pt :=
t∑

t′=−∞

Gt−t′qt′ , (4.1)

where the causal kernel Gt is the propagator.
1 Propagator models were originally proposed

in order to solve the so-called diffusivity puzzle, namely the fact that price efficiency, and
consequently price diffusion, can be achieved even if the order flow imbalances qt display
long-ranged correlation [54]. Moreover, variations of these models have proven to be effective

1Note that we are omitting from Eq. (4.1) a residual noise term, that can be easily restored in order to
account for price changes that are not explained by the past order flow.
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in order to paint an accurate picture of the market at high frequency [65, 66], in the sense
that a large fraction of the price fluctuations can be explained by the past order flow [67].

On the other hand, the perspective taken in order to construct such models is quite dis-
tinct from the one preferred in theoretical economics. The propagator setup is not properly
microfounded. In fact, it builds on statistical stylized facts, rather than on an economic
rationale. The goal of this Chapter is to bridge this gap in an economically standard setting
by showing how propagator-like models can be rationalized as the equilibrium resulting from
a set of rational agents seeking to achieve optimality. Along this line, our work is closely
related to the classic Kyle setting [18], in which the price discovery mechanism emerges as
a linear equilibrium between three representative agents with asymmetric information. We
think that our minimal model, as the Kyle model, is simple enough to be extended in several
directions.

We establish a setting for an Information-Based Model that gives rise to a stationary
market, where the equilibrium pricing rule is given by Eq. (4.1). A similar setting has been
considered in Ref. [68] in the special case of a stationary Markovian system. Here, instead, we
keep the model general, so to account for memory effects (order flows are strongly correlated
in real markets), thus extending some of the results of the aforementioned investigation.
Our work goes beyond the purely theoretical aspect since the framework we build allows to
explicitly construct kernels Gt that ensure price efficiency under different circumstances.

The organization of the Chapter is as follows. Section 4.2 introduces the notations we
use throughout the Chapter. In Section 4.3 we present the model. Section 4.4 is devoted to
the study of the equilibrium of the model. Section 4.5 discusses the relation of our model
with its building blocks, namely the original propagator and the Kyle model. In Section 4.6
we further investigate the model we propose in the paradigmatic Markovian case, whose
tractable solution allows us to gain intuition on the system. In Section 4.7 we conclude and
propose several extensions of our framework.

4.2 Notations

Throughout the Chapter, we will alternate between scalar notations, in which the time
dependence of the variables is explicit (e.g. Xt), vector notations, and matrix notations.
We will use bold symbols for vectors and Sans Serif symbols for matrices.

For convenience we introduce two types of vectors: X t := {Xt′}tt′=−∞ and X/t :=
{Xt′}∞t′=t. Further, for a given vector X t we define the associated Toeplitz matrix as Xt,t :=
{Xt′−t′′}tt′,t′′=−∞. In some cases, we will omit the time index for brevity. In situations where
such omission would be ambiguous, we will restore time indices explicitly, e.g. to deal with
matrices such as X/t,/t = {Xt′−t′′}∞t′,t′′=t or X/t,t = {Xt′−t′′} with t′ ≥ t and t′′ ≤ t. The
transpose operation will be denoted by the superscript ⊤.

The identity matrix is denoted I, the vector with all components equal to one is written
1, and the upper triangular matrix with all non-zero entries equal to 1 is denoted by U.
The Kronecker delta is represented by a vector et with components et(t

′) = δt,t′ . The lag
operator, i.e., the operator that acts on an element of a time series to produce the previous
element, is denoted L. In this way, we write X t−1 = L X t. Dimensionless quantities are
signified with tildes.
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4.3 A Simple Agent-Based Market Model

4.3.1 Setup of the Model

Consider a market in which agents exchange a risky asset (stock) against a safe asset (cash).
The (discounted) transaction price of the risky asset at time t is denoted by pt. Each unit of
the risky asset entitles its owner to a stochastic payoff µt in cash (dividend) at each unit of
time t. The dividend process µt is modeled as an exogenous, stationary, zero-mean Gaussian
process with autocovariance function (ACF):

Ξµ
τ := E[µtµt+τ ] . (4.2)

The portfolio of each agent comprises a combination of risky and safe assets. The
position of agent i in the risky asset at time t is given by Qi

t, whereas his trades are denoted
by qit := Qi

t − Qi
t−1. With these conventions, the equations for the evolution of cash Ci

t ,
stock-position Qi

t, and wealth W i
t for each agent can be written down respectively as:

∆Ci
t := µtQ

i
t − ptq

i
t (4.3)

∆Qi
t := qit (4.4)

∆W i
t := ∆Ci

t +Qi
tpt −Qi

t−1pt−1. (4.5)

We consider an agent-based market model with asymmetric information akin to the
well-known Kyle model [18], in which the agents take actions at discrete time steps t. A
strategic agent possessing privileged information about the realizations of the stochastic
dividend process (informed trader, or IT) trades with a non-strategic and non-informed
trader (noise trader, or NT) that accesses the market for exogenous reasons. Both the
IT and NT are modeled as liquidity takers. A liquidity provider (market maker, or MM)
provides liquidity for both the NT and the IT and sets the transaction price pt.

At the beginning of each time interval [t, t+1] both the IT and the NT build a demand
for the risky stock qit (with i ∈ {IT,NT}). After the excess demand qt := qITt +qNT

t is formed,
the MM clears the excess demand of the liquidity takers, executing a trade qMM

t := −qt and
setting the transaction price pt. The price pt arises endogenously as the result of the action
of the agents, described in what follows.

Before discussing the information sets and the strategies of the different agents, let us
highlight that both the IT and the MM have exact knowledge of the statistical properties of
the exogenous processes µt and qNT

t , as well as each other’s strategy. Past prices and excess
demands are also public information.

Noise trader The NT acts in a purely stochastic fashion. His demand process qNT
t is a

zero-mean, stationary Gaussian process with ACF given by:

ΩNT
τ := E[qNT

t qNT
t+τ ] . (4.6)

Informed trader The IT is a strategic, risk-neutral (expected) utility maximizer. His
access to privileged information about the dividend process is modeled by assuming that
he observes past realizations of the process µt and uses such information to maximize his
future expected wealth. Moreover, since realized past excess demand is public information,
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the IT can trivially infer the NT’s past trades. The information accessible to the IT at time
t is thus given by:

IIT
t =

{
qt−1,q

NT
t−1,µt−1

}
. (4.7)

So the IT builds his demand without exploiting equal-time information on either pt nor
on the decision of his peers. In order to maximize his wealth, the IT exploits privileged
information on realized dividends.

Since the IT is risk-neutral and assuming that the price is a linear function of realized
excess demands (we shall discuss why this is the case in a moment), his demand qITt at time
t is a linear function of his current information set IIT

t :

qIT
t = Rqt−1 + RNTqNT

t−1 + Rµµt−1, (4.8)

where we have introduced the demand kernels (R,RNT,Rµ). Let us give here a first descrip-
tion of these demand kernels. Since we discuss a market with multiple trading periods, the
IT strategically takes into account past trades and past dividends in order to determine his
demand. The demand kernel R accounts for the dependence on past order flow which arises
from the price impact of past traded volumes. The kernel RNT accounts for the dependence
that comes from the price impact induced by expected future trades of the NT, while the
kernel Rµ accounts for the dependence arising from expected future dividends. The demand
kernels are the result of a Model Predictive Control (MPC) [69] strategy. Indeed, as soon as
a new piece of information is available to the IT (i.e. at each time-step t), he will construct
an updated long-term strategy, and he will trade accordingly. More details about IT’s MPC
strategy are provided in Sec. 4.3.3, with explicit expressions of the demand kernels.

Market maker The MM is risk-neutral and competitive. He sets a pricing rule that
allows him to statistically break even on every trade, without controlling the inventory that
he might accumulate while matching the demand. The past realization of the dividend
process µt is unknown to the MM, and so is the proportion of the demand due respectively
to the IT and the NT. Thus, the information set available to the MM at time t is solely
given by realized aggregate excess demand:

IMM
t := {qt}. (4.9)

An important point is that the resulting excess demand qt conveys information to the MM
about the asset’s fundamental value, via the information set used by the IT (Eq. (4.7)) to
construct his trading schedule (Eq. (4.8)). Note also that the information set of the MM is
not contained in the information set of the IT, due to the fact that the excess demand qt is
only available to the IT at time t+ 1.

Since the MM knows that the IT’ s trading schedule is given by Eq. (4.8), from the total
order flow he can infer information about past dividends, albeit this information is distorted
by the presence of noise induced by the NT. From Eq. (4.8), the dynamics of the excess
demand is given by:

qt = (I− RL)−1 [(I+ RNTL
)
qNT
t + Rµµt−1

]
. (4.10)

Due to the Gaussian nature of both µt and qNT
t and the risk-neutral nature of market

participants, the choice of considering a linear (instead of a general) equilibrium implied by
Eq.(4.1) appears natural. On the other hand, we do not have proof of the uniqueness of
the linear stationary equilibrium. Given that such uniqueness holds in a framework similar
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to ours (given by Ref. [70]), it is reasonable to expect that uniqueness should hold even in
our case. Thus, the market can be modeled by the MM as a Linear Gaussian State-Space
Model (LG-SSM) [71]. Actually, while the state of the market, i.e. realized dividends µt

and NT’s trades qt, are not observable by the MM, he can infer these quantities, and in
particular realized dividends, filtering them out from his information set. This procedure
in the LG-SSM literature is referred to as Kalman filtering technique. More details about
these important aspects of the model will be given in the following Section.

4.3.2 Competitive pricing rule

As anticipated above, we assume the MM to be competitive and risk neutral. Thus, by a
Bertrand auction type of argument [18], we postulate a break-even condition for the MM
for each T -period holding strategy built as follows: buy qt units of stock by matching the
demand at time t at a price pt and sell them back at time t + T at a price E[pt+T |IMM

t ],
earning the dividends in the meanwhile. Note that even though the MM cannot choose to
execute with certainty at t + T , we can see T as the time lag at which the MM decides to
mark-to-market his position, even if he might not be actually able to liquidate it. Imposing
competitiveness of the MM, this trajectory should have zero payoff on average, leading us
to postulate a pricing rule of the form:

pt =
t+T−1∑
t′=t

E[µt′ |IMM
t ] + E[pt+T |IMM

t ]. (4.11)

Thus, the price at time t is given by the long-term sum of future dividends plus a boundary
term which in general is non-zero.

Stationary dividends with zero mean

If the boundary term in Eq. (4.11) evaluated at T = ∞ is equal to zero, i.e., the transversality
condition holds, one obtains the standard EMH fundamental rational expectation pricing
rule:

pt = E
[
pFt |IMM

t

]
, where pFt = 1⊤

/t µ/t. (4.12)

In the case of a mean-reverting dividends process with zero mean, the transversality condi-
tion is justified. We will investigate the model with this assumption, for simplicity reasons.
Under this prescription, the job of the MM is to provide the optimal forecast of discounted
future cash flows from infinity to the present time t, given his current information set. No-
tice that restoring a fundamental price with a non-zero mean would simply amount to a
rigid (although, infinite) shift of the price process since the mean of the fundamental price
is public information and so it is immediately incorporated into the price.

It will be interesting to compare the result of the MM’s estimate, given by Eq. (4.12),
with the one constructed by the IT, which is not distorted by the noise induced by the NT:

pITt = E
[
pFt
∣∣ IIT

t

]
. (4.13)

Let us note here that the dividends have to be predictable for the market to be nontrivial.
In fact, if the dividend process is not correlated, i.e., Ξµ

τ = Ξµ
0δτ , then pITt = 0, i.e., the IT

does not have any informational advantage over the MM. Thus, in this case, the MM would
simply set the price equal to zero.
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With the pricing rule given by Eq. (4.12) the MM statistically breaks even for each buy
or sell trade, if he waits enough time for the income due to the dividends to restore his cash
account to zero. This local constraint is thus given by:

E[∆CMM
t ] = 0. (4.14)

As a consequence E[∆CIT
t ] +E[∆CNT

t ] = 0, i.e., the gain of the IT is balanced by the losses
of the NT. This is what typically happens in models where NT are uninformed and non-
rational [63].

In the following we give the explicit expression of the pricing rule (4.12) in terms of the
IT’s trading schedule, i.e., in terms of the IT’s demand kernels introduced in Eq. (4.8).

Dividends regression from observed excess demand

The pricing rule given by Eq. (4.12) prescribes that the MM should estimate the sum of
future dividends by observing realized excess demand. This problem can be solved in two
steps. First, the MM estimates realized dividends by applying a filter on realized excess
demand. The optimal estimator of realized dividends is well known in the LG-SSM literature
as the Kalman filter and it is linear in the measurements, i.e., the realized excess demand
in our model. Then, the MM computes the expected sum of future dividends summing over
the forecasts of future dividends. In the following, we detail these two steps.

The MM’s estimate of realized dividends µ̂t := E[µt|IMM
t ] is given by µ̂t = Kqt, where we

have implicitly defined the (steady-state) Kalman gain K. This matrix can be constructed
in a standard way [71, 72] given the dynamics of the MM’s measurements, i.e., Eq. (4.10).
The Kalman gain K is proportional to the signal noise, i.e., Ξµ, and inversely proportional
to the measurement noise, which is the ACF of the excess demand Ωτ := E[qtqt+τ ] and it is
explicitly given by:

K = Ξµ(Jµ)⊤Ω−1, (4.15)

where2

Jµ = (I− RL)−1 RµL

Ω = JµΞµ (Jµ)⊤ + DNT.
(4.16)

Jµ is the matrix that multiplies the dividends in the r.h.s. of Eq. (4.10) and DNT is the NT’s
dressed ACF, given by:

DNT = (I− RL)−1 (I+ RNTL
)
ΩNT

(
I+ RNTL

)⊤ [
(I− RL)−1]⊤ . (4.17)

The noise ACF is dressed since the noise (i.e., the NT’s trade process) not only affects the
excess demand dynamics by construction (qt = qIT

t +qNT
t ), but also because the IT’s optimal

trading strategy depends upon past and future realizations of the noise (see Eq. (4.8)).

2Using the Woodbury identity on Eq. (4.15), one obtains the alternative expression of the gain matrix
K:

K =
[
(Ξµ)

−1
+ (Jµ)⊤

(
DNT

)−1
Jµ
]−1

(Jµ)⊤
(
DNT

)−1
.

This alternative expression gives a complementary interpretation of the gain matrix K: in fact the ma-
trix inside the square bracket is the dividends posterior information matrix. This matrix is given by the
dividends prior information matrix (Ξµ)

−1
summed to the information added by the measurement, i.e.,

(Jµ)⊤
(
DNT

)−1
Jµ.
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From estimated realized dividends µ̂t, the MM has to estimate the fundamental price
pFt , defined in Eq. (4.12). To do so, he builds the forecast of future dividends as E[µ/t|µ̂t] =
Fµµ̂t, where we introduced the dividends forecast matrix Fµ. Since the dividends process
is Gaussian with zero-mean, Fµ depends only on the ACF of the dividends Ξµ. Finally, by
summing over the estimated future dividends we obtain the following equation for the price
at time t:

pt = 1⊤
/t F

µK qt. (4.18)

Notice, that Eq. (4.18) explicitly gives the rule for the propagator G. In fact, in compact
notation, the propagator model is given by pt = 1⊤

/t G qt
3.

In the following Section, we construct the IT’s optimal trading strategy based on the
maximization of his expected future wealth, as a function of the MM’s pricing rule. This
means that, as anticipated, the IT’s demand kernels (R,RNT,Rµ) are functions of the propa-
gator G introduced in Eq. (4.1), and so is the Kalman gain matrix K introduced in Eq. (4.16).
Because of this, Eq. (4.18) will turn out to be a self-consistent equation for the propagator G.

4.3.3 Optimal insider trading

The utility function U IT
t , whose expectation is maximized by the IT at each time step t, is

defined by the value of his wealth account at a terminal time t+ T (where T is not related
to that introduced in Sec. 4.3.2), given by W IT

t+T , in which his position QIT
t in the risky asset

is flattened. Thus, U IT
t = W IT

t+T subject to the constraint QIT
t′ = 0 for t′ ≥ t+ T .

At each time step t, the IT optimizes his expected utility function over the whole future
trajectory qIT

/t given the information set at the current time IIT
t given by Eq. (4.7), and

trades the first step of the optimal strategy. The IT’s trade at time t is thus calculated as
follows:

qITt = e⊤t argmax
qIT
/t

E
[
U IT
t

∣∣ IIT
t

]
, (4.19)

where e⊤t explicits the fact that only the first step of the future trajectory is executed.
Notice that the presence of a finite liquidation time does not break the assumption of the
time-translational invariance of the model, because the terminal condition is also receding
as time moves on. Indeed, the IT will in general hold a non-zero position QIT

t up to t → ∞
despite the presence of the liquidation constraint. The constraint should then be seen as a
device used by the IT in order to properly mark to market the value of his current stock
positions at time t by taking into account the forecast of their future liquidation value pt+T ,
rather than as a measure taken to prevent him from trading at large times.

In the following, we analyze the case in which T = ∞ with mean-reverting dividends.

Stationary demand kernels of the insider with infinite horizon

If T = ∞ in Eq. (4.19), the IT can neglect the round-trip constraint, since liquidation
costs are pushed to the far-away future and, due to the assumptions of zero-mean and
mean-reverting dividends, the expected price at infinity is zero. Because of this, the actual
trading profile of the IT that we will consider in the following is given by Eq. (4.19) with
U IT
t = CIT

∞ . In doing so, the maximization program is given by

qITt = e⊤t argmax
qIT
/t

E
[
CIT

∞
∣∣ IIT

t

]
, where CIT

∞ = CIT
t−1 −

(
qIT
/t

)⊤ (
p/t − pF

/t

)
. (4.20)

3Compare with Eq. (4.1), where the propagator model is introduced.
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In order to keep the discussion simple, we consider the dividend process with integrable
ACF, such that the IT’s estimate of the fundamental price pFt is finite. One can in fact relax
this hypothesis, with a suitable renormalization of the price and dividends process.

Notice that the introduction of a non-zero mean for the fundamental price does not
affect the IT’s strategy or the price impact function. In fact, since the expectation of the
fundamental price is assumed to be public information, the MM could immediately incor-
porate it into the price, as discussed previously. Then, since the IT’s gain in Eq. (4.20) is
proportional to the difference between the price and the IT’s estimate of the fundamental
price, it follows that the IT’s trading strategy does not depend on the mean of the fun-
damental price. To conclude, since the propagator given by Eq. (4.18) depends only on
IT’s demand kernels (R,RNT,Rµ) and ACFs of dividends and NT’s trades (Ξµ,ΩNT) via the
Kalman filter (Eq. (4.15)) and the dividend forecast matrix Fµ, it follows that the mean of
the fundamental price is immaterial in shaping the price impact function.

The expression for the demand kernels (R,RNT,Rµ) at equilibrium can be determined as
the solution of the quadratic optimization program defined by Eq. (4.20). The expected gain
at infinity CIT

∞ depends on estimated future dividends (via pF
/t) and on estimated future NT’s

trades (via p/t). Thus, in order to write it down explicitly, we need the dividends forecast
matrix Fµ introduced in the previous Section, and the forecast matrix of NT’s trades, FNT,
defined similarly by E[qNT

/t |qNT
t ] = FNTqNT

t .

Since E[CIT
∞ |IIT

t ] depends on past realizations and forecasts, we insert time subscripts
over matrix symbols in order to avoid ambiguities. We obtain:

E[CIT
∞ |IIT

t ] =− 1

2

(
qIT
/t

)⊤
Gsym
/t,/tq

IT
/t

−
(
qIT
/t

)⊤ [
G/t,t−1qt−1 + G/t,/tF

NT
/t,t−1q

NT
t−1 − U/t,/tF

µ
/t,t−1µt−1

]
,

(4.21)

where we dropped CIT
t−1, since it does not depend on IT’s future trades qIT

/t , and we introduced

the symmetric propagator Gsym = (G+G⊤) in order to write in a compact form the quadratic
term in qIT

/t . The quadratic term in qIT
/t of Eq. (4.21) is the cost term that the IT will face

due to his own future market impact, while the linear term in qIT
/t is his signal term. The

first term of the signal comes from price impact due to known order flow realizations, the
second one comes from the expected price impact of future NT’s trades, while the third one
comes from his private information about pF

/t.

The expression for the IT’s demand kernels, defined in Eq. (4.8), can be obtained in
terms of the propagator G and the forecast matrices FNT and Fµ inserting Eq. (4.21) in
Eq. (4.20):

Rt = −e⊤t

[
Gsym
/t,/t

]−1

G/t,t−1, (4.22a)

RNT
t = −e⊤t

[
Gsym
/t,/t

]−1

G/t,/tF
NT
/t,t−1, (4.22b)

Rµ
t = e⊤t

[
Gsym
/t,/t

]−1

U/t,/tF
µ
/t,t−1. (4.22c)

Finally, we have all the ingredients to write down explicitly the functional equation for
the equilibrium pricing rule, which will be given in the following Section.
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4.4 The linear equilibrium

4.4.1 Equilibrium condition and numerical solution

The linear equilibrium of the model can be found by self-consistently taking into account
the competitive pricing rule of the MM and the strategy of the IT, given respectively in
Eqs. (4.18) and (4.22). The self-consistent equation for the propagator, in scalar notation,
reads:

Gt−s =
∞∑
t′=t

t∑
t′′=−∞

F µ
t′,t′′Kt′′,s[G] (4.23)

where we have made it explicit that the filter K is a function of the propagator G itself: in
fact, K is given in terms of IT’s demand kernels (R,RNT,Rµ) by Eq. (4.15), which depend
on the propagator G via Eqs. (4.22).

The linear equilibrium equation (4.23) is a non-linear functional equation for the propa-
gator Gt. As such it is not amenable for analytical treatment in the general case of arbitrary
Gaussian, zero-mean and stationary dividends and NT’s trades process. Nevertheless, we
have been able to solve Eq. (4.23) iteratively, as illustrated in Appendix B.1. In two special
cases, we have been able to validate the result of the iterative numerical solver by means of
the analytical solution of Eq. (4.23) (see Appendix B.2).

Via an extensive analysis of the model based on the iterative numerical solver of Eq. (4.23)
we found that the market at equilibrium exhibits some robust properties, that hold in case
of an integrable and stationary ACF of the NT’s trades and dividends, regardless of the
exact structure of the ACFs. These properties are listed below.

4.4.2 Generic equilibrium properties

Return covariance The equilibrium is characterized by a return ACF Ξτ := E[∆pt∆pt+τ ]
with the same temporal structure as that related to the IT’s price estimate pITt , given by
Eq. (4.13), which will be referred to as ΞIT

τ . In formula:

Ξτ = Ξ0Ξ̃
IT
τ , with Ξ̃IT

0 = 1. (4.24)

The price distortion induced by the noise injected into the system by the NT is thus com-
pletely encoded in a scalar, the return variance Ξ0.

The left panels of Figs. 4.1, 4.2 and 4.3 display numerical results that do confirm
Eq. (4.24). In particular, in top panels, bullet points correspond to Ξτ/Ξ0 obtained by
means of the numerical solver of Eq. (4.23) and show a good collapse on the dashed line,
which corresponds to ΞIT

τ /ΞIT
0 calculated semi-analytically. In the bottom part of the panels

instead, we show the relative cumulative absolute error between the two curves, defined as:

errΞτ =

∑τ
i=0 |Ξi/Ξ0 − ΞIT

i /ΞIT
0 |∑τ

i=0 |Ξi/Ξ0|
. (4.25)

In Figs 4.1 and 4.2, where non-markovian ACFs are examined, these errors are larger
than in Fig. 4.3, where ACFs decay exponentially. This is due to the fact that in the former
case the forecast of future dividends suffers from finite size effects. The estimation of these
effects is carried on in detail in Appendix B.1.1.

The inset of the left-top panels shows the variogram of the price, defined by Vτ :=
E [(pt − pt+τ )

2], which, as expected, is linear at high frequencies and mean-reverting at low
frequencies.
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Excess demand covariance The equilibrium is characterized by an excess demand ACF
Ωτ := E[qtqt+τ ] with the same temporal structure as the one related to NT’s trades, plus an
extra contribution at lag 0. In formula:

Ωτ = a(Ω̃NT
τ + b̃δτ ), with Ω̃NT

0 = 1, (4.26)

where the symbol δτ denotes the discrete delta function, while a and b are scalars. The
excess demand variance is given by Ω0 = a(1 + b̃).

Since IT’s information at time t does not include the current trade of the NT qNT
t (see

Eq. (4.7)), the best that the IT can do in order to hide his trades is to create a trading
strategy such that the excess demand ACF resembles that of the NT apart from the lag 0
term. Because of the distortion at lag 0, we call this property quasi-camouflage strategy4.
Indeed, in order to prolong his informational advantage over the MM, the IT hides his trades
in the excess demand process by creating a strategy that resembles that of the NT alone.

Right panels of Figs. 4.1, 4.2 and 4.3 display numerical results that confirm the quasi-
camouflage property. In top panels bullet points correspond to Ωτ/Ω1 obtained by means
of the numerical solver of Eq. (4.23) which show a good collapse for positive lags on the
dashed line, which corresponds to ΩNT

τ /ΩNT
1 . It is clear, from the insets of the plots on the

left, that the collapse is not reached at lag 0. As it will be shown in the next Section, this
extra contribution at lag 0 depends in a nontrivial way on the ACFs of the dividends and
NT’s trades. On the bottom, the relative cumulative absolute error between the two curves
is presented. In this case, it starts from lag 1, so:

errΩτ =

∑τ
i=1 |Ωi/Ω1 − ΩNT

i /ΩNT
1 |∑τ

i=1 |Ωi/Ω1|
. (4.27)

Again, these errors are larger in the case where non-markovian ACFs are examined.

From the properties given by Eqs. (4.24) and (4.26), together with the MM’s break-even
condition, one is in principle able to find the propagator. In fact, introducing the price ACF
Στ := E[ptpt+τ ], from the definition of the propagator (4.1) follows that:

Στ =
t+τ∑

t′=−∞

t∑
t′′=−∞

Gt+τ−t′Gt−t′′Ω|t′−t′′|, with τ > 0, (4.28)

where the price ACF Στ can be computed from Eq. (4.24) and the excess demand ACF is
given by Eq. (4.26). This program can be accomplished in the case of a Markovian system
and it is described in full detail in Sec. 4.6. There, we shall provide semi-analytical results for
all of the parameters introduced in the equations listed above, which do share qualitative
features with the general non-Markovian case. An interesting finding of this analysis is
given by the fact that as the predictability of the NT’s trades process increases, the IT’s
camouflage becomes exact, allowing him to reduce the cost due to the price impact of his
trading schedule.

But before discussing the Markovian case, let us highlight similarities and differences
with respect to existing models.

4Camouflage is also called inconspicuous strategy in the economics literature [68, 73, 74]
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Figure 4.1: Numerical check of equilibrium properties with ACFs given by (1 + |τ |/τk)−γk

where k = {µ,NT}. We arbitrarily choose (τNT, τµ, γNT, γµ) = (30, 50, 3, 5). The numerical
solver has been implemented with Tcut = 5 · 102 and Tit = 200. (Left) In the upper panel,
we show the good collapse between Ξτ/Ξ0 (bullet points) and ΞIT

τ /ΞIT
0 (dashed line). The

collapse between these two ACFs is quantified in the bottom panel, where the relative
cumulative absolute error between the two curves is displayed. The inset in the top panel
shows the collapse on the variogram. (Right) In the main top panel, we show the good
collapse for positive lags between Ωτ/Ω1 (bullet points) and ΩNT

τ /ΩNT
1 (dashed line), whereas

in the inset we show that the collapse does not involve the lag 0 term. In the bottom panel the
collapse between these two ACFs is quantified, calculating the relative cumulative absolute
error starting from lag 1.
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Figure 4.2: Numerical check of equilibrium properties with ACFs given
by exp−τ/τ1,k sin(x/τ2,k + π/2) where k = {µ,NT}. We arbitrarily choose
(τ1,NT, τ1,µ, τ2,NT, τ2,µ) = (40, 40, 20, 10). The numerical solver has been implemented
with Tcut = 103 and Tit = 500. (Left) In the upper panel, we show the good collapse
between Ξτ/Ξ0 (bullet points) and ΞIT

τ /ΞIT
0 (dashed line). The collapse between these

two ACFs is quantified in the bottom panel, where the relative cumulative absolute error
between the two curves is displayed. The inset in the top panel shows the collapse on the
variogram. (Right) In the main top panel, we show the good collapse for positive lags
between Ωτ/Ω1 (bullet points) and ΩNT

τ /ΩNT
1 (dashed line), whereas in the inset we show

that the collapse does not involve the lag 0 term. In the bottom panel the collapse between
these two ACFs is quantified, calculating the relative cumulative absolute error starting
from lag 1.
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Figure 4.3: Numerical check of equilibrium properties for ACFs given by e−τ/τk where
k = {µ,NT}. We arbitrarily fixed (τNT, τµ) = (10, 20). The numerical solver has been
implemented with Tcut = 5 · 102 and Tit = 200. (Left) In the upper panel, we show the good
collapse between Ξτ/Ξ0 (bullet points) and ΞIT

τ /ΞIT
0 (dashed line). The collapse between

these two ACFs is quantified in the bottom panel, where the relative cumulative absolute
error between the two curves is displayed. The inset in the top panel shows the collapse on
the variogram. (Right) In the main top panel, we show the good collapse for positive lags
between Ωτ/Ω1 (bullet points) and ΩNT

τ /ΩNT
1 (dashed line), whereas in the inset we show

that the collapse does not involve the lag 0 term. In the bottom panel the collapse between
these two ACFs is quantified, calculating the relative cumulative absolute error starting
from lag 1.
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4.5 Relation with existing models

4.5.1 Kyle model

While strongly inspired by the one-period Kyle model, our model is quite different on several
grounds. First, instead of exogenously postulating the presence of a fundamental price, in
our setting it is the integrated-dividend process that plays the role of the fundamental
price, mechanically relating it to the payoff of the asset. Second, we do not have explicit
fundamental price revelation, thus allowing us to consider a stationary set in the model.
Such a stationary regime is relevant in practice because in order to analyze the behavior
of the market at short time scales (minutes, hours) one would like to abstract away the
non-stationary effects potentially induced by the dynamics of the fundamental information
(e.g, dividends, earnings announcements, scheduled news) at slower time scales. Third,
we introduced (integrable) serial correlations both in the dividends – equivalently, in the
fundamental price – and in the order flow.

Let us also point out how we can recover the Kyle model in our setting. Assuming that
(i) the NT’s trades are uncorrelated, (ii) the sum of future dividends pFt follows a random
walk process, (iii) the IT knows the value of pFt at the beginning of each period and (iv) pFt
becomes public information once the MM has set the price, we recover exactly an iterated
version of the single period Kyle model.

4.5.2 Propagator model

Equation (4.28) is the cornerstone equation when dealing with propagator models. It is
typically used in the literature in order to extract a propagator Gt from empirical data
given the order flow correlation and the price volatility. Hence, our framework allows us
to recover the propagator model in an economically standard setting, with three important
caveats:

• The excess demand ACF Ωτ function observed in real markets is typically non-
integrable, due to the strongly persistent nature of the order flow [54, 55].

• The price process observed in real markets is close to be diffusive at high frequency.

• The propagator observed in real markets is found to be a slowly decaying function of
time.

Let us address these empirical facts, showing how one can account for them within our
stylized model.

First, the non-integrability of the excess demand ACF can be retrieved by extending our
framework to the case in which the NT’s trades ACF are themselves non-integrable. This
is due to the fact that the camouflage condition relating excess demand and noise trading
is also expected to extend to the setting of non-integrable NT’s trades.

Second, price diffusivity also can be recovered in our model as the limiting regime in
which dividends are much slower than any other time scale in the model. In order to prove
this, note that the variogram of the price can be written in terms of the price ACF Στ as
follows:

Vτ = V∞(1− Σ̃τ ), where Σ̃0 = 1, (4.29)
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where the first equality holds in stationary conditions, as the one described by the model
introduced here. Thus, we do recover price diffusivity at high frequency if Σ̃τ − 1 ∝ τ/τ ∗

in the high frequency limit of the model, i.e., τ ≪ τ ∗, where τ ∗ is some typical timescale.
Instead, in the opposite low-frequency limit τ ≫ τ ∗, because of the assumption of mean-
reverting dividends, which translates into having a mean-reverting fundamental price, the
price ACF decays to zero, i.e., Στ ∼ 0, and we recover a flat variogram. For example,
in the Markovian case described below, where the dividends ACF is an exponential decay
function with timescale τµ, one has τ ∗ = τµ. To wrap up, if the hypothesis of linear price
ACF Στ in the high-frequency limit holds, the price in our model interpolates between two
very different situations: when the model is probed in its high-frequency limit it describes
a market with diffusive price, while in the low-frequency limit the price is mean-reverting.
This is very satisfactory since it is obtained with a single propagator, which is the solution
of Eq. (4.23). At high frequency, where the dividend process appears highly persistent, price
diffusivity stems from IT’s surprises in dividends’ variations: this is the universal mechanism
that originates the diffusive behavior in our model. In fact, in this limit, the IT’s estimate
of the fundamental price is a martingale, and thus it is described by a diffusive process.
From Eq. (4.24) follows that the price process itself is described by a diffusive process.

Since the first two properties can be retrieved, the third one follows from standard scaling
arguments. Thus, in the high-frequency limit price impact has to be a slowly decaying
function of time in order to ensure price diffusion while having a strongly correlated order
flow process via Eq. (4.28).

It is interesting to notice that in order to observe any impact at all in the model, one
is forced to introduce a non-trivial5 dividend process: the introduction of fundamental
information that gives the IT an informational advantage over the MM is enough in order
to induce non-trivial dynamics into the price, and to typically induce a diffusive behavior of
prices at high frequency. Hence, the price paid in order to micro-found the propagator model
is the introduction of an auxiliary dividend process, whose detailed shape is inessential at
high enough frequency, but whose fluctuations sets the scale of the price response.

4.6 Markovian case

Significant simplifications of the equilibrium condition (4.23) are possible in the case in
which both the dividend and the NT flow are Markovian processes, where their ACFs are
given by:

Ξµ
τ = Ξµ

0α
τ
µ, (4.30a)

ΩNT
τ = ΩNT

0 ατ
NT. (4.30b)

One of these simplifications comes from the fact that the price estimate pITt given by
Eq. (4.13) is proportional to the current dividend realization, i.e., pITt = µt−1αµ/(1 − αµ).
Thus, the price efficiency property given in Eq. (4.24) becomes:

Ξτ = Ξ0Ξ̃
F
τ , with Ξ̃F

0 = 1, (4.31)

where ΞF is the return ACF of the fundamental price pFt . From Eq. (4.31) follows that
the ACF of the price process Στ is a decaying exponential with timescale given by τµ :=

5See the brief discussion under Eq. (4.13)
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−1/ log(αµ). As a result, the price process in the Markovian case is a discrete Ornstein-
Uhlenbeck process with timescale τµ := −1/ log(αµ).

We validated the result of the iterative numerical solution exposed in the previous Section
by solving explicitly the equilibrium condition in two peculiar Markovian cases: the case of
non-correlated NT trades, obtained by replacing the equation for the NT’s trades ACF by
ΩNT

τ = ΩNT
0 δτ , and the case in which the ACF timescale of NT’s trades is the same as the

dividends’ one, i.e., the case given by Eq. (4.30) with αµ = αNT. These findings are reported
in Appendix B.2.

Furthermore, we found the explicit solution to the equilibrium condition by imposing
the generic equilibrium properties listed in the previous Section, together with the MM’s
break-even condition given by Eq. (4.14). Details about the outcome of this procedure are
given in the following Sections.

Let us point out that even though the choice of Markovian dividends and NT’s trades
processes are made in order to obtain analytical results and build an intuition about the
system in a simple case, the main qualitative conclusions found in this Section do extrapolate
to generic stationery, mean reverting processes with integrable ACFs.

4.6.1 Propagator

Non-correlated NT trades This case is particularly simple since the quasi-camouflage
property given by Eq. (4.26) becomes exact. Eq. (4.28) is solved by an exponential decay
propagator with the same timescale as the dividends ACF, i.e., τµ. The amplitude of the
propagator is derived in App. B.2.1.

Correlated NT trades The solution of Eq. (4.23) is obtained in two steps. First, we build
an ansatz based on the quasi-camouflage strategy property, i.e., Eq. (4.26) and the property
about return ACF given by Eq. (4.24). Details about this are given in Appendix B.3.1.
Then we fix the ansatz by imposing the MM’s break-even condition (see Appendix B.3.2).
The results of this procedure described below, do match the results of the iterative numerical
solver of Eq. (4.23).

The propagator we find reads:

Gτ = G0

[
αµ − αNT

αµ − ρ
ατ
µ +

(
1− αµ − αNT

αµ − ρ

)
ρτ
]
, (4.32)

where a new timescale τρ := −1/ log(ρ) appears. This new timescale is given, in the general
Markovian case, by a non-linear combination of the two fundamental timescales τµ and
τNT := −1/ log(αNT) (the implicit expression for ρ and G0 is obtained as illustrated in
Appendix B.3.2). From the left panel of Fig. 4.4, it is clear that in the regime in which
τµ, τNT ≫ 1, τρ approaches a value close to the time-step, i.e., τρ ∼ 1, thus being much
smaller than the two fundamental timescales. This finding and the one related to the case
with non-correlated NT’s trades indicate that when dividends are highly persistent (αµ → 1)
the propagator exhibits a quasi-permanent component and a non-zero transient component.
The former stems from the apparent persistency of the fundamental process when probed
at high frequency, while the latter arises from the nontrivial predictability of the NT’s trade
process.
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Figure 4.4: (Left) Endogenously generated timescale τρ as a function of τµ and τNT. τρ is
never larger than ∼ 2 time-step. (Right) Amplitude of the lag 0 contribution to Στ , i.e., b̃
introduced in Eq. (4.26), as a function of τµ and τNT. As one can see in the inset, b̃ attains
its maximum value for small timescales, while it decreases to zero as τµ and τNT increase,
thus recovering exact camouflage for the IT strategy.

As we shall see below, the large timescale behavior of τρ is related to the behavior of
the excess demand ACF distortion at lag 0, i.e., b̃, introduced in Eq. (4.26). In fact, in the
derivation of Eq. (4.32) (see Appendix B.3.1) one finds:

b̃ =
ρ(1− α2

NT)

αNT(1 + ρ2)− ρ(1 + α2
NT)

. (4.33)

In the right panel of Fig. 4.4 we display b̃ as function of τµ and τNT. This amplitude is
close to 1 in the limit of small dividends and NT’s trades timescales and decreases to zero
as these increase. Thus, the excess demand ACF temporal structure resembles more and
more the NT’s one as soon as the NT’s trades or dividends are strongly correlated.

The interpretation of this finding is the following: the IT wants to hide his own trades
in the excess demand process, by shaping the ACF to resemble the one of NT’s trades.
However, the IT knows only up to time t − 1 the realization of the NT’s trades process
(see Eq. (4.7)). If this process is only weakly correlated, the IT’s information about it does
not allow a good prediction of NT’s trade at time t. Therefore, the IT is not able to hide
his current trade. Instead, if the NT’s trades are strongly correlated, the IT’s information
about NT’s past trades allows him to accurately predict the current NT’s trade, and thus
the IT is able to hide his current trade. Briefly, we find that:

Ωτ → Ω0Ω̃
NT
τ as αNT → 1, (4.34)

thus recovering an exact camouflage trading strategy of the IT, exhibited by many Kyle-like
models [68, 74–76].

The limit αNT → 1 and αµ → 1 can be interpreted as the continuum limit of our discrete
model. In this case, using Ωτ = Ω0Ω̃

NT
τ , and Eq. (4.31) in continuous-time one can solve the

continuous-time analog of Eq. (4.28), finding:

Gτ = G0

(
δτ +

τµ − τNT

τµτNT

e−τ/τµ

)
. (4.35)

From this equation, we can see that the term in the propagator that depends on the en-
dogenously generated timescale (see Eq. (4.32)) approaches a Dirac delta function in the
continuum limit of the model, as a result of the IT’s exact camouflage strategy.
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Figure 4.5: (Left) Ratio between the variance of the excess demand and variance of the NT’s
order flow as a function of τµ and τNT. When the timescale τµ and τNT are small (inset),
the excess demand is higher than the one of the NT’s trades alone. Conversely, when the
timescales τµ and τNT are large, the excess demand variance is lower than the one of the
NT’s alone. (Right) Ratio between the variance of the price and the variance of the IT’s
fundamental price estimate as a function of τµ and τNT. The variance ratio, in this case, is
very small when τµ is close to zero, while it increases as τµ increases.

4.6.2 Excess demand variance

The result for the ratio Ω0/Ω
NT
0 as a function of τµ and τNT is presented in the left panel of

Fig. 4.5. The variance ratio is bounded between 2, for small timescales, and 0.5, for large
timescales. The increase of the ratio of variances, Ω0/Ω

NT
0 , for small τNT can be understood

as follows. In this regime, the NT’s current trade is almost unpredictable, thus the IT’s
current trade is independent of the current trade of the NT. As a consequence, the excess
demand variance increases with respect to the NT’s variance. As soon as the NT component
of the order flow is predictable, the IT uses this information.

In particular, the IT’s current trade is on average anti-correlated with the current NT
trade. This enables the IT to move less the price, founding liquidity in the NT’s trade and
reducing the typical aggregate volume demanded by the MM. When the predictability of the
NT’s trades and dividends process increase, the current IT’s trade is more anti-correlated
with the current NT’s trade, thus enabling him to lose less money due to price impact. The
current IT’s trade is instead positively correlated with the current dividend. Fig. 4.6 shows
these findings.

4.6.3 Price variance

In our model price variance is directly linked to price efficiency, as argued below Eq. (4.24).
As already noted by Shiller, in a Rational Expectation Model where the price is the expected
fundamental price, using the principle from elementary statistics that the variance of the
sum of two uncorrelated variables is the sum of their variances, one then has Σ0/Σ

IT
0 ≤

Σ0/Σ
F
0 ≤ 1, where ΣF

0 is the variance of the fundamental price.

We display the results for the ratio Σ0/Σ
IT
0 in the right panel of Fig. 4.5, as a function

of the dividends and NT’s timescales, which confirm the fundamental constraint exposed
before. Moreover, we find that the ratio of variances strongly depends on τµ. In particular, if
the dividends are weakly correlated the price variance poorly reflects the IT’s price estimate
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Figure 4.6: (Left) Ratio of the covariance between equal-time IT’s and NT’s trades, and the
variance of NT’s trades as a function of τµ and τNT. The IT’s trades are anti-correlated with
the equal-time NT’s trades. (Right) Properly rescaled covariance of current IT’s trade and
dividend as a function of τµ and τNT. The IT’s trades are on average positively correlated
with the equal time dividend. When the predictability of the NT’s trades and dividends
process increase, the current IT’s trade is more positively (negatively) correlated with the
current dividend (NT’s trade), thus enabling him to gain more (lose less).

variance ΣIT
0 . Instead, in the limit of large dividend timescales with respect to the one of

the NT’s trades, the price variance better reflects the IT’s price estimate pITt . In the regime
of small τNT and large τµ the price variance accounts for all the variance of the IT’s price
estimate, ΣIT

0 , as indeed found analytically from the calculations reported in Appendix B.2.1.

4.6.4 Payoffs and market-making risk

As explained around Eq. (4.14), the payoff of the different agents is, on average, the following:
the MM breaks even, the NT loses and the IT gains what the NT loses.

If the dividend process is completely unpredictable (but still stationary with zero-mean),
then the price is set to zero by the MM; thus the IT won’t trade anymore and the NT’s
losses are reduced to zero. When the τµ becomes large with respect to τNT (bottom right
corner of main left panel of Fig. 4.7), the price is more and more efficient as we have
seen in the previous Section. In this case, the IT’s gains are lowered, as well as the NT’s
losses. These findings are reported in the left panel of Fig. 4.7, where we plot the ratio
−E[δqNT

t CNT
t ]/(Ξµ

0Ω
NT
0 )1/2, with δq

NT
t CNT

t = −qNT
t

(
pt −

∑
t′≥t µt′

)
.

Another interesting quantity is the risk per trade experienced by the MM, i.e., rMM
t =

E[(δqtCMM
t )2], where δqtCMM

t = qt
(
pt −

∑
t′≥t µt′

)
. We find:

rMM
t = E[q2t ] E

[(
pt − pITt

)2]
, (4.36)

where we used the break-even condition (Eq. (4.14)) together with Wick’s theorem to calcu-
late higher-order correlations of a Gaussian process. The analytical solution is given in the
right panel of Fig. 4.7. As we can see, the risk experienced by the MM is high when both
the timescales of the two fundamental processes are small, while it decreases when both the
dividends and the NT’s trades become predictable.
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Figure 4.7: (Left) Properly rescaled loss per trade of the NT (or gain per trade of the IT)
as a function of τµ and τNT. When τµ is close to zero (inset) the loss per trade of the NT
is close to zero, while these increase as the predictability of the dividends and NT’s trades
increase. (Right) Properly rescaled MM’s risk per trade as a function of τµ and τNT. From
the inset, we can see that the risk is higher when the NT’s trades and dividends are close
to being unpredictable, whereas the risk is lower as the predictability increase.

4.7 Conclusion

The aim of this Chapter was to provide an economically standard microfoundation for linear
price impact models, customarily used in the econophysics literature. To do so, we presented
a multi-period Information-Based Model and we analyzed its equilibrium. The model is
built by generalizing the seminal Kyle model, which constitutes a theoretical cornerstone of
market microstructure. First, we removed the assumption of fundamental price revelation,
assuming that a stock pays dividends to the owner but only the insider collects and exploits
information about past dividends. Then, we modeled the dividends process and the noise
trader trading schedule as stationary stochastic processes. In order to regularise the model,
we assumed that the dividend ACF was integrable, to ensure a bounded fundamental price
of the traded stock. The model appeared to exhibit a stationary equilibrium, which we
have investigated in detail. A self-consistent equation for the pricing-rule set by the market-
maker has been derived and solved numerically. Two robust properties have been found: the
price ACF retains the same temporal structure as the insider’s fundamental price estimate
and the insider strategy respects a quasi-camouflage condition, i.e., the ACF of the excess
demand retains the temporal structure of the noise trader’s one apart from the lag 0 term.

As a consequence of these findings, we have been able to establish a precise correspon-
dence between the propagator model and the Kyle model: the propagator model arises
here as the high-frequency limit of a suitably stationarized Kyle model. The price impact
function that is found in this regime displays a quasi-permanent component related to the
timescale of variation of the fundamental information, and a transient one whose timescale
is set by the persistence of the order flow.

The assumption of stationary dividends with integrable ACF translates into having a
mean-reverting price process. Since price diffusivity can be retrieved in the high-frequency
limit, the model is able to provide a stylized picture of what happens in real markets at high
and low frequencies. The model alludes also to a relation between the diffusion constant of
the price process and the timescale over which the fundamental price mean reverts. We leave
the empirical check of this finding as an interesting follow-up of the present investigation.
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The minimal model exposed here can be extended in several different ways.

First, further elements of realism (risk-aversion, spreads) could be integrated progres-
sively, in order to see how much our main qualitative findings are impacted by these effects.
Similarly, the non-linear, concave nature of impact [77] should be reconciled with our styl-
ized, linear vision of the market.

The passive agent can be promoted to a rational agent that tracks a given target portfolio,
introducing an element consistent with actual actions in real-world markets, which could
create long-range correlated order flow.

Dividend revelation in real markets is infrequent, so another extension of the model
proposed here is to take explicitly this fact into account, similarly to what is done in Ref. [78],
where market closure is explicitly taken into account.

Finally, in order for our model to be able to account for the excess volatility puzzle, we
need to relax the assumption on either rationality or information used by the agents that
populate our universe. This can be done in different ways: for example, as in Ref. [79], we
can relax the assumption of perfect structural knowledge: for example, we can assume that
the agents do not know all the parameters that define the dividend process and they try to
infer these starting from actual observation. Another interesting path would be, along the
line of Ref. [80], to assume that the agents decide their demand according to a misspecified
equation of motion for the price.
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Take home messages from Chapter 4

1. It is possible to microfound the propagator model starting from a Kyle model
in which the assumption of fundamental price revelation at some terminal time
is relaxed.

2. The self-consistent equation for the price impact function which appears in
the standard Kyle model is replaced by a functional fixed-point equation in
the Stationary Kyle model.

3. The price impact function in the stationary equilibrium is nothing but the
steady state Kalman filter associated with the market maker’s filtering problem
related to extracting the information about the fundamental price from the
excess demand.

4. The functional fixed point equation for the price impact is analytically solved
in the markovian case and numerically solved in the case of general ACF
related to dividends and noise trades.

5. Irrespectively of the chosen ACF related to dividends and noise trades we found
two robust properties related to the excess demand ACF, as well as the price
ACF: the excess demand ACF has the same temporal structure as the ACF
related to noise trades, meaning that the insider camouflages his trades such
that he optimizes the profits stemming from his informational advantage over
the market maker. On the other hand, the market maker is able to construct
a price that has the same ACF’s temporal structure as the one related to the
fundamental price.

6. The coefficient between the price ACF and the fundamental price ACF is
smaller than one, consistently with the hypothesis of rational traders and to
Shiller’s volatility bound (see Eq. (1.3)), but at variance with empirical analysis
related to excess volatility.

7. Is it possible to build, within the Kyle framework, a model able to be con-
sistent with excess volatility found in empirical data? We provide an answer
to this question in Chapter 6, while in the following Chapter we calibrate the
Stationary Kyle model against real data, providing an original piece of evi-
dence against the Efficient Market Hypothesis.
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Chapter 5

Where the strong rationality
assumption fails

People know the price of everything and the value of nothing

Oscar Wilde, Lady Windemere’s Fan, 1982

We compare the predictions of the stationary Kyle (s-Kyle) model, a microfounded
multi-step linear price impact model in which market prices forecast fundamentals through
information encoded in the order flow, with those of the propagator model, a purely data-
driven model in which trades mechanically impact prices with a time-decaying kernel. We
find that, remarkably, both models predict the exact same price dynamics at high frequency,
due to the emergence of universality at small time scales. On the other hand, we find those
models to disagree on the overall strength of the impact function by a quantity that we
are able to relate to the amount of excess volatility in the market. We reveal a crossover
between a high-frequency regime in which the market reacts sub-linearly to the signed order
flow, to a low-frequency regime in which prices respond linearly to order flow imbalances.
Overall, we reconcile results from the literature on market microstructure (sub-linearity in
the price response to traded volumes) with those relating to macroeconomically relevant
timescales (in which a linear relation is typically assumed).
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CHAPTER 5. WHERE THE STRONG RATIONALITY ASSUMPTION FAILS

5.1 Introduction

Financial markets display very different dynamic properties depending on the time window
at which they are probed. If markets are observed in a small enough time window, where
the price exhibits diffusive dynamics, then the slow evolution of fundamentals plays a minor
role: in this regime price dynamics is mostly driven by endogenous variables, such as past
trades [81]. Conversely, by inspecting the market over larger time scales (e.g. months,
years), fundamentals begin to play a more important role, and effects of mean-reversion
to some notion of “fair value” start being visible [41, 82]. Although the literature provides
several phenomenological models capable of providing a multi-scale view of financial markets
[41, 83], no unique theoretical scenario is able to accommodate this crossover in a way that
is both empirically accurate and economically sound.

Seminal contributions in the market microstructure literature [63] include noisy rational
expectation models [18, 84] where the price partially reflects the underlying fundamental
value of the asset, providing an explanation of trade-induced price impact based on a price
discovery mechanism. Unfortunately, some assumptions customarily made in this type of
models make them unsuitable for calibration in real markets, where several aspects diverge
from their idealized counterparts: in real markets, no fundamental price revelation is pro-
vided at any time and the order flow process exhibits long-range correlations [53]. Some
progress has been made in order to bridge the gap between microfounded price impact mod-
els and actual markets. In the Speculative Dynamics model (see [68]) the assumption of
fundamental price revelation is dropped and a stationary price impact model is obtained.
A further extension is provided by the s-Kyle model [85], which considers arbitrary Gaus-
sian signal and noise processes, de-facto including the empirically relevant case of strongly
correlated order flow. In Ref. [85] it is also highlighted that the stationarity property allows
to capture qualitatively the different dynamical regimes discussed above.

Interestingly, in the high-frequency regime of the s-Kyle model, where fundamentals are
slowly varying and the price is diffusive, one recovers a linear equilibrium formally equivalent
to that customarily described by the propagator model [54] (see also Ref. [86]), which is an
agnostic (i.e., not microfounded) model able to provide a statistically accurate picture of
financial markets at high frequency. Nevertheless, as we shall see in this Chapter, from a
practical point of view, these two models are very different. In fact, the excess-volatility
puzzle [15] cannot be solved within the s-Kyle model. This puzzle is instead avoided by the
propagator model, which has no a-priori on what the right price level should be, and is thus
allowed to set the level of price response by calibrating the model directly with the empirical
price. Although the s-Kyle model is not able to provide a solution to the excess-volatility
puzzle, we shall argue that at small timescales, that has no effect on the qualitative price
dynamics, because it only leads to an impact that is off by a multiplicative factor. Thus,
the s-Kyle model provides a microfoundation for the structure of the price impact shape,
even though it misses a magnitude component that relates to the excess-volatility puzzle.

The outline of this Chapter is the following. In Section 5.2 we show how the s-Kyle
model captures the same shape of the price impact function as the propagator model, at
high frequency. Section 5.3 is devoted to show how one can calibrate the stationary Kyle
model against empirical data, while Sec. 5.4 contains the results of the calibration against
150 years of S&P-500 data. Finally, in Section 5.5 we conclude, suggesting an interesting
way to reconcile the microfounded model with empirical price volatility1.

1Since it differs from the focus of the Chapter, the reader will find in App. C a discussion related to the
importance of the sampling scale at which markets are probed. In fact, it is known from the propagator
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5.2 Price impact function in the stationary Kyle model

5.2.1 High- and low- frequency regimes

The price efficiency property (Eq. (4.24)) allows us to identify two different dynamical
regimes according to the mean-reversion time scale related to the IT’s estimate of the fun-
damental price, given by τF. In fact, the variogram Vn = E[(pn+m − pm)

2] calculated with
a sampling scale τ can be expressed (in non-pathological cases) as

Vn = 2Σ0

(
1− ΣIT

n

ΣIT
0

)
=

{
σ2n n ≪ τF/τ
2Σ0 n ≫ τF/τ

, (5.1)

for some positive σ, implying that the behavior of the price at time step n is diffusive when
innovations in the fundamental price process are long-lived with respect to nτ and mean-
reverting in the opposite case.

These two regimes can be equivalently characterized by the response function Rn =
E[qn(pm+n − pm−1)], which is constant for n ≪ τF/τ as a consequence of price diffusion,
and decays for n ≫ τF/τ as a consequence of price mean reversion. The model is thus
consistent with the roughly flat empirical price response function reported in studies about
high-frequency dynamics [54] for nτ smaller than a few days since τF is of the order of
several months/few years [41].

Understanding the behavior of the price impact function Gn in the high-frequency regime
is trickier, as its shape depends on the NT’s order flow ACF. Let us consider two cases.
(a) If the noise trader’s order flow is uncorrelated, the informed trader also trades in an
uncorrelated fashion (due to the camouflage, Eq. (4.26)). In this case, the shape of the
response and impact functions is identical in the high-frequency regime, because only a
permanent price impact function ensures diffusive prices in case of uncorrelated trade flow.
(b) Now, let us consider a noise trader’s order flow auto-correlated over a time window given
by τNT. In this case, in order for the response function to be flat at high frequency, the
impact function has to be a decreasing function [54], meaning that the price response to the
first trade anticipates the correlated flow in the same direction. The impact function will
then relax to a non-zero quasi-permanent value, even though the flat behavior of the response
function will be preserved thanks to a stream of correlated orders of length ∼ τNT. We call
this impact quasi-permanent because it appears as a permanent one to any observer probing
the market at scales n ≪ τNT/τ ≪ τF/τ . Obviously, at long times, i.e., n ≫ τF/τ ≫ τNT/τ ,
all impact functions will decay to zero by construction due to the mean-reverting nature of
the IT’s estimate of the fundamental price.

The qualitative picture in real markets at high frequency is very similar to case (b). In
fact, the order flow displays long-term correlations. More precisely, the order flow ACF is
not integrable (auto-covariance is measured to slowly decay even across days). Because of
this, in order to have diffusive prices and flat response at high frequency, the impact function
should slowly decay to zero in a precise non-integrable way in order to compensate for the
persistence of the order flow [54]. Graphical details about cases (a) and (b) in the high and
in the low-frequency regime are provided in Subsec. 5.2.3.

model literature, that if one studies financial markets at the trade by trade level, microstructural effects
related to order book details (such as selective liquidity taking) are of high relevance. In particular, it is
well-known [54] that a sub-linear price impact model gives higher predictive power than a linear one. We
show that when analyzing coarse-grained data the opposite is true. In doing so, we provide a useful recipe
to relate descriptions obtained with linear price impact models when the sampling scale is varied.
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Figure 5.1: Universal time-dependence at high frequency and non-universal time-dependence
at low frequency, for the case of a Markovian market with independent order flow. (Left)
Variograms from synthetic data come from a Markovian market with parameters given in
Table 1. The different time windows used in the calibration (right panel) are highlighted by
different shades of blues.

5.2.2 Universality at high frequency

The discussion above hints at the fact that a kind of universality emerges in the s-Kyle
model: the specific dynamics of the fundamental price process affects the short-term price
dynamics only through the diffusion constant σ, but does not shape the short-term impact
function.

This statement is tested with synthetic data as follows. We generate two synthetic
datasets, with sampling scale τ = 1 day, that mimic Markovian price dynamics (with mean-
reversion timescales and price volatility in line with those that will be presented in Table
1, i.e., τ emp = 250 × 3.4 and τF = 250 × 2.6 days and V F

∞/V emp
∞ = 0.26), while order flow

data are realizations of a non-correlated stochastic process. Variograms associated to these
price processes are shown in the left panel of Figure 5.1. We then calibrate these data with
different time windows, graphically identified by different blue bands: regions where the
price undergoes pure diffusive dynamics are highlighted by an intense shade of blue, and
as the dynamics becomes affected by price mean reversion, the blue band is lighter. One
can observe from the right panel of Figure 5.1 that, modulo a global prefactor (absorbed by
dividing the propagator function by its value at lag zero), the two price dynamics that we
used (pF and pemp) induce the same behavior for nτ ≪ min{τ emp, τF} given approximately
by a constant (or quasi-permanent) price impact function. On the other hand, we see that
as we approach a time window comparable with τ emp or τF, price impact functions start to
drift away from each other, because they become sensitive to the different mean-reversion
price dynamics.

Even though the collapse between price impact functions at high frequency takes place
by construction (apart from an amplitude related to price volatility), the non-trivial thing
that we are able to predict is up to which point the collapse holds, and how it relates to
effects linked to price mean-reversion dynamics at low frequencies. Therefore, the shape of
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the price impact function at high frequency is only affected by the shape of the order flow
ACF, i.e., it is completely determined by the dynamics of flow anticipation.

5.2.3 Linear price impact functions from different price dynamics

Here, analyzing synthetic data, we provide graphical details about cases (a) and (b) men-
tioned in Subsec. 5.2.1. Two calibrations with different sampling scales (τshort and τlong) are
analyzed for each case. The calibration with τlong is done on a time window that encom-
passes the low-frequency regime. Because of this, fundamental price mean reversion needs
to be taken into account and we calibrate the s-Kyle model (with the numerical scheme
detailed in Ref. [85]) starting from NT’s order flow qNT and it is fundamental price estimate
pIT ACFs. Conversely, the calibration with sampling scale τshort is restricted only to the
high-frequency regime (mimicking what is done usually when analyzing empirical data at
high frequency). In this case, the numerical scheme used to solve the s-Kyle model cannot
be applied because the model is not properly regularized, because ACFs do not have enough
time to decay to zero. Because of this, we calibrate the model defined at sampling scale τshort
with the technique usually employed in the propagator model literature (details about it are
given in App. C.3.1). Figure 5.2 shows that if the price and the order flow processes obtained
at scale τlong are compatible with those defined at sampling scale τshort, the results of the two
calibrations are compatible (via the coarse-graining argument explained in Subsec. C.1.1).
In particular, the price impact functions calibrated with the two different sampling scales
are compatible (see the bottom-left panels in Fig. 5.2). As a consistency check, note that
calibrations related to case (b), where excess demand ACF’s shape is a power law, validate
the well-known constraint between the exponents of the power laws related to the excess
demand ACF (β) and to the price impact functions (γ), given by γ = (1− β)/2 [54].

5.3 Datasets, detrending and calibration procedures

5.3.1 Low frequency

Presentation of the data. The dataset used for the calibration is about the S&P500
index and is publicly available online at github.com/datasets/s-and-p-500. These data in-
clude information about monthly (τ = 1 month) prices (P emp

n ) and dividends (Mn) from
January 1871 until March 2018, but do not include information about order flows.

From data about dividends, an estimate of the fundamental price can be constructed
as PF

n = Mn⟨P emp
n /Mn⟩2. The price and the fundamental price cannot be described by

a stationary process, as one can see from the left panel of Figure 5.3: a clear trend is
exhibited by both processes. Thus, we cannot calibrate the s-Kyle model on these raw data.
One needs to de-trend them. The de-trending procedure’s goal is to retrieve a stationary
empirical price and fundamental price processes, so that the calibration of the s-Kyle model
becomes possible.

We define de-trended quantities as:

xn =
Xn

X0

exp

(
−

n∑
m=0

ηXm

)
, (5.2)

2Let us note that this prescription for the fundamental price is not causal since the mean price-dividend
ratio ⟨Pn/Mn⟩ is calculated with all the data provided by the dataset.
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(a) Independent order flow. Informed trader’s estimates of the fundamental price are Markovian, with a
mean-reversion time scale τF = 50 days. At sampling scale τlong, the variance of the IT’s estimate of the
fundamental price is fixed to one, as well as the variance of the NT’s order flow.
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(b) Power law order flow. Informed trader’s estimates of the fundamental price are Markovian, with mean-
reversion time scale τF = 50 days and NT’s order flow ACF is a combination of exponentials that mimics
a decreasing power law function with exponent β = 0.7. At sampling scale τlong, the variance of the IT’s
estimate of the fundamental price is fixed to one, as well as the variance of the NT’s order flow. Dashed
grey lines in top-right and bottom-left panels refer to decreasing power law functions with exponent β and
γ, respectively.

Figure 5.2: Calibrations related to cases (a) and (b) mentioned in Subsec. 5.2.1, on synthetic
datasets. For each case, we consider two models with different sampling scale, i.e., τ equal to
τshort = 1 day and τlong = 30 days. We identify the high-frequency regime as the interval [0, τlong]
(orange band). The set of input ACFs that specify the s-Kyle model at sampling scale τlong are
related to NT’s trades and to it is fundamental price estimates (red lines). Details about them

are given in sub-captions. Once the s-Kyle model is solved, we obtain V
(τlong)
n ,Ω

(τlong)
n , G

(τlong)
n and

R
(τlong)
n (blue lines). The model with sampling scale τshort, is calibrated with new input ACFs

related to price and excess demand, and with the associated response function (green lines). Note
that in this case the response function is not an output of the model and so it is again presented
as a green line. These new ACFs are such that, after a proper rescaling (see App. C.1.1), the
variogram, the excess demand ACF, and the response function match the one at low frequency, as
shown in the insets. Results of calibrations with sampling scale τshort are given by price impact

functions (orange lines), i.e., G
(τshort)
n .
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where the trend ηXn > 0 is estimated in a causal way as follows.

De-trending. For each time series Xn we define the trend in a causal way, as follows:

ηXn =
1

T/τ
log

(
Xn

Xn−T/τ

)
, (5.3)

where we choose T = 20 years in order to be able to capture phenomena that occur on time
scales as large as a few years, such as the mean-reversion of the fundamental price.
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Figure 5.3: De-trending procedure applied to S&P500 index data. (Left) Empirical price and
estimated fundamental price. In the legend, trend(X) refers to the inverse of the exponential
factor in Eq. 5.2. (Right) Stationary version of empirical price and estimated fundamental price.

The right panel of Figure 5.3 shows the de-trended version of price and fundamental
price processes calculated using Eqs.(5.2) and (5.3). From the right panel of Fig. 5.3 one
can see that the de-trended fundamental price errs less than the de-trended price. This is
the cause of price excess-volatility, as emphasized in the main text.

Information about order flows is necessary to obtain a complete calibration, but in the
dataset we are working with, no information is given about it. As we shall see in what
follows, we can still partially calibrate the model, and obtain a complete description of the
price process.

Calibration via the s-Kyle model. In this section, we detail the calibration procedure,
given the de-trended time series we obtained above. Firstly, we remove the mean price level
from the empirical de-trended price, assuming that it is common knowledge so that price
impact it is insensitive to it.

Let us now detail how we can completely characterize the price process without infor-
mation about the excess demand. Suppose that the signal and the noise ACFs are given by:

ΣIT
n = ΣIT

0 αn (5.4a)

ΩNT
n = ΩNT

0 δn (5.4b)

where 0 < α < 1 and δn is the Kronecker’s delta. The first equation states that the estimate
of the IT of the (de-trended) fundamental price follows an auto-regressive process of order
1, which is a first approximation widely used in the literature (see, e.g., [41]). The second
assumption states that on the scale of months the NT’s order flow is not correlated, which
is a good first approximation at very low frequencies.
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We have been able to characterize analytically the stationary equilibrium that arises
within the s-Kyle model in this case [85]. Interestingly, in the linear stationary equilibrium,
the variance of the price set by the MM is given by:

Σ0

ΣIT
0

=
1−

√
1− α2

α2
, (5.5)

which interpolates between the outcome of the original Kyle model if the signal becomes very
short-lived (α → 0) and the case of a fully revealing price if the signal becomes permanent
(α → 1). Moreover, in this case, information about the excess demand is not needed to
specify completely the price process.

The calibration procedure goes as follows: from the fundamental price shown in the right
panel (red line) of Fig. 5.3 one can calculate the associated empirical ACF. Then, we fit this
empirical ACF with an exponential function, as prescribed by Eq. (5.4a). Although it is not
possible to fix the amplitude of the price impact function G because we lack information
about the excess demand’s variance Ω0, it is still possible to completely specify the price
process by Eqs. (4.24), (5.4a) and (5.5). The results of this calibration are reported in Table
5.1.

5.4 Empirical results

5.4.1 Stationary Kyle model and excess volatility

Our first empirical question is the following: how literally should the s-Kyle model be
taken? More specifically, our construction relates the price impact kernel with properties
of the fundamental price, predicting that even at high frequency the magnitude of trade-
induced price jumps should be related to some notion of fundamental information that is
propagated all the way down from low frequencies to high frequencies. The s-Kyle model
implies in particular that it should be possible to deduce the price impact function from a
proxy of the fundamental price of a stock (e.g., via dividends, earnings) and the properties
of the signed order flow, without ever measuring the market price.

We tested this approach on a sample of monthly data (i.e., with sampling scale τ = 1
month), related to empirical prices (pemp) and dividends (from which we constructed a proxy
of the fundamental price pF) of the S&P-500 index over ∼ 150 years. The presentation of
this dataset, the de-trending and the calibration procedures have been described in detail
in Sec. 5.3. Note that we assume Markovian dynamics for the fundamental price process
(defined by a decay time scale τF and an amplitude ΣF

0 ) and an independent order flow,
which are a good approximation for such a large sampling scale τ .

The left panel of Table 5.1 contains the estimations for the mean-reversion time scale of
the different prices. We find that the mean-reversion time scale of the fundamental price τF

is roughly in line with that deduced by the long-term behavior of the empirical market price
τ emp, although the empirical market price seems to be slightly more persistent with respect
to the fundamental price. Note that the price efficiency condition (Eq. (4.24)) implies that
the mean-reversion time scale of the price implied by the s-Kyle model τ is equal to that
related to the fundamental price, i.e., τ = τF. This means that the persistence amplification
exhibited by the empirical price cannot be captured with the simple setting of the s-Kyle
model.
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τ emp (years) τF (years)
3.4 ± 0.3 2.6 ± 0.3

V F
∞/V emp

∞ V∞/V emp
∞

0.26 ± 0.02 0.15 ± 0.03

Table 5.1: Empirical results based on monthly recorded data about S&P-500 index. (Left)
Mean-reversion time scale of de-trended empirical price, fundamental price, and price set
by the MM in the s-Kyle setting. (Right) Price variance ratios as measures of explained
empirical price volatility.

The second finding of this calibration is related to price volatility. The price volatility
explained via the s-Kyle model is much smaller than that measured empirically as reported
in the right panel of Table 5.1. We see that the squared fluctuations of both the fundamental
price ΣF

0 and of the price set by the market maker Σ0 in the s-Kyle model are much lower
than the squared fluctuations of the empirical price Σemp

0 . This should come as no surprise
in light of well-known results on excess-volatility [15]. In fact, the market price exhibits
higher volatility with respect to what would be implied by any reasonable proxy for price
fundamentals. In our approach, the excess volatility reported in that body of work is
automatically inherited by the price impact function, due to the fact that the price is the
optimal estimator of the fundamental price (see Eq. 4.24). Moreover, as explained above,
the price set by the risk-neutral MM in a noisy environment always reveals less information
than the fundamental price so we have the following chain of inequalities: Σ0 < ΣF

0 < Σemp.

This last result shows that if one was to literally believe to the s-Kyle model, the price
predictions that it implies would only account for a rather small portion of the volatility
of the empirical market price. That is at odds with many empirical results concerning
the predictive power of the propagator model, which is able to account for a very large
portion (up to 60-70% if calibrated using trade by trade data) of the empirical market price
variation. The source of this difference relies on the fact that the propagator model’s input
is the empirical price and not the fundamental price as in the s-Kyle model. In this way,
the propagator model is not affected by the excess-volatility puzzle, because there is not
an explicit link to a notion of fundamental price. This implies that markets respond to the
order flow as if it wasn’t trying to anticipate the fundamental value of the risky asset, but
something that would be much more in line with the market price.

5.5 Conclusions

We highlighted the impossibility to solve the excess-volatility puzzle in the s-Kyle model
with an empirical analysis. This implies that the price impact function calibrated with the
s-Kyle model will attain lower values than the one obtained by calibrating the propagator
model. One can rephrase these findings by saying that the excess-volatility puzzle, in Kyle-
like models are related to the excess price response puzzle. Nevertheless, the shape of the two
obtained price impact functions is the same at high frequency, where the price is diffusive.
This is explained by the microfounded model narrative by saying that the slow evolution
of fundamentals does not shape the high-frequency dynamics of the price process, but only
affects the magnitude of the price impact function via the diffusion constant related to the
price.

Note that the excess-volatility puzzle can be solved in a setting with asymmetric informa-
tion, like the s-Kyle model, if assumptions such as risk-neutrality and/or perfect structural
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knowledge are relaxed. The accuracy of the microfounded model will increase if, for exam-
ple, risk-aversion [87, 88] and/or learning dynamics [79, 80, 89, 90] are introduced.
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Take home messages from Chapter 5

1. Price diffusivity exhibited by empirical data at high and medium frequency is
recovered in the short time limit of the s-Kyle model.

2. We calibrated the s-Kyle model using 150 years of monthly S&P-500 data
related to prices and dividends; we found that empirical prices have a variance
6 times higher than what the s-Kyle model predicts.

4. The calibration using the S&P-500 data fixes the mean-reversion timescale of
the price that stems from the s-Kyle model to 2.6 years, which is in line with
the one extracted by the market price, which is 3.4 years.

5. The assumption related to traders’ rationality prevents the s-Kyle model to
give an answer to the excess volatility puzzle.

6. In the following Chapter we present a modification of the Kyle model able
to account for excess volatility without resorting to an irrealistic risk-aversion
parameter. In doing so, we recover also price volatility clustering, without
assuming that the fundamental price changes cluster in time.
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Part III

Asymmetrically informed boundedly
rational agents
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Chapter 6

Microfounding GARCH Models and
Beyond

In economics, there can never be a “theory of everything”. But I believe each attempt comes
closer to a proper understanding of how markets behave.

— Benôıt B. Mandelbrot, The (Mis)Behavior of Markets

We relax the strong rationality assumption for the agents in the paradigmatic Kyle
model of price formation, thereby reconciling the framework of asymmetrically informed
traders with the Adaptive Market Hypothesis, where agents use inductive rather than de-
ductive reasoning. Building on these ideas, we propose a stylized model able to account
parsimoniously for a rich phenomenology, ranging from excess volatility to volatility clus-
tering. While characterizing the excess-volatility dynamics, we provide a microfoundation
for GARCH models. Volatility clustering is shown to be related to the self-excited dynam-
ics induced by traders’ behavior and does not rely on clustered fundamental innovations.
Finally, we propose an extension able to account for the fragile dynamics exhibited by real
markets during flash crashes.

Keywords: Adaptive Agents, Heteroscedasticity, Excess Volatility, Price Impact
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CHAPTER 6. MICROFOUNDING GARCH MODELS AND BEYOND

6.1 Introduction

There exists a plethora of statistical models [4, 54, 91–96] to account for price dynamics and
stylised facts in financial markets [97, 98]. While most of these models can be very useful
for quantitative predictions, their formulation is not based on interacting agents, that is,
they are not microfounded. An interesting research agenda consists in understanding how
statistical models can be rationalized in terms of sound microfoundations. In particular,
one asks what are the minimal hypotheses regarding agents’ behavior needed to properly
microfound a given statistical model; agent-based models are in fact well-known for their
versatility [99].

During the early years of this research agenda [63], microfounded models relied on the
Rational Expectation Hypothesis (REH), i.e., agents are endowed with perfect knowledge
of the market model and have unlimited and cost-less computing power. While the REH
allows for mathematical tractability and model interpretability, it has severe limitations
regarding actual predictive power [15, 16, 21, 100]. Moreover, the deductive reasoning im-
plied by the REH contrasts with the inductive reasoning on which humans often rely in
complex situations [24, 39]. In face of uncertainty, in fact, humans rely on pattern recog-
nition, hypothesis formation, deduction using currently held hypotheses, and replacement
of hypotheses if needed; this leads to feedback effects, and consequently booms and bursts.
Eventually, the Efficient Market Hypothesis (EMH), implied by the REH, is replaced with
the formulation of the Adaptive Market Hypothesis (AMH) [25, 100, 101]. Although in the
long-time limit of some games with adaptive agents the REH is recovered [102–104], this is
not always the case [105] and, moreover, there is growing evidence that many stylized facts
in financial markets cannot be captured within a framework where the REH holds [106–108].
Nevertheless, classic microfounded models can serve as a useful starting point for building
more refined pictures of how financial markets work.

In his pioneering work, Kyle [18] proposed a highly stylized microfounded model for price
formation: asymmetrically informed traders use rational expectations while interacting in
the presence of noise trading. The corresponding rational equilibrium brings price impact,
namely the fact that trades induce price jumps [54]. Notwithstanding, the Kyle model
predicts that price volatility is smaller than that of the fundamental price and it is time-
independent: if the fundamental price is interpreted as the efficient price, these findings are
in strong contrast with empirical observations; price volatility is actually much larger than
that related to the fundamental price by a factor ∼ 5 [15, 16, 41], and exhibits intricate
statistics with clustering and power law tails [97, 109]. Note that while the linear Kyle
framework can be modified by considering a risk-averse market maker [87], an unrealistically
high risk-aversion parameter [107] is needed in order to match empirical estimates.

The intermittent dynamics of price volatility can be accounted for by means of statistical
descriptions, such as GARCH [94] models. While GARCH models are compatible with
volatility clustering and power law tails, they are not order-driven models [63] and hence they
cannot account for price impact. Moreover, no connection with the concept of fundamental
price is given, and thus excess volatility is hardly definable. As a final note, since these
statistical models are not microfounded, they leave the question of ‘why do large price
fluctuations cluster in time?’ without a formal answer. The classic explanation for volatility
clustering is stated by Engle, the doctoral advisor of Bollerslev, the author of GARCH
models, in his Nobel prize lecture [110]: ‘So at a basic level, financial price volatility is due
to the arrival of new information. Volatility clustering is simply clustering of information
arrivals. [...]’. This explanation is in line with EMH, which assumes that all the available
information is encoded in the price. However, starting from the work of Cutler, Poterba
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and Summers in 1988 [111], there is growing evidence that fundamental innovations only
account for a small fraction of price jumps [67, 112], and clusters of jumps [113]. Thus, an
alternative explanation is needed for volatility clustering. The REH accounts neither for
excess volatility nor for the volatility clustering that is unrelated to fundamental innovations.

Here we provide a microfounded explanation for excess volatility and volatility clustering
without the need to assume highly risk-averse agents or that fundamental innovation breaks
in clusters. Instead, we consider agents in a Kyle setup who adapt their strategies over
time [39, 80], in line with the AMH. We suppose that traders adapt their strategy because
the environment is changing, namely, the noise trade level fluctuates over time. In this
way, we recover a stationary regime in which the market maker sets the price according to
temporarily fulfilled expectations or beliefs, which, in turn, give way to different beliefs when
they cease to be fulfilled, and so on and so forth. As we shall see, these minimal ingredients
introduce feedbacks and thus account for extreme events such as flash crashes. In doing so,
we provide a microfoundation for GARCH models as well. We mention that a framework
similar to ours has been recently proposed in Ref. [114] and [115], and previously in Ref. [116];
however, to our knowledge, this is the first model that gives a full microfoundation for
volatility clustering, excess volatility and price impact; therefore the b-Kyle model seems
a useful tool to understand the interplay between trades and prices, and eventually to
investigate the nature of liquidity crises and flash crashes.

The Chapter is organized as follows. In Section 6.2 we present the model. Section 6.3
contains our main results, which is an analytical characterization of the dynamics in a
simplified yet realistic limit, together with a numerical investigation of the intermittent price
dynamics. In Section 6.4 we present two interesting extensions of the model, accounting for
a risk-averse liquidity provider, and a cost-averse liquidity taker. Finally, in Section 6.5 we
discuss our findings.

6.2 Model – Evolving market conditions and adaptive

agents

Consider three agents, two liquidity takers, and one liquidity provider. They trade a single
security over multiple trading rounds. At each trading round t = 1, 2, . . . , the liquidity
takers first build their own demands: the informed trader (IT) knows the fundamental price
pFt of the security, and exploits this private information to make profits, while the noise
trader (NT) trades for exogenous reasons. The liquidity provider, therein called the market
maker, filters the information about the fundamental price from the excess demand created
by the liquidity takers, reflecting it into the price pt.

The market conditions are specified by the statistics related to the signal and the noise
process, respectively the fundamental price pFt and the noise trader order flow qNT

t . These
are modeled as Gaussian processes with zero mean and variance respectively given by ω2

and ω2
t , where

ω2
t = ω2 + δω2

t . (6.1)

The fluctuations δω2
t follow an Auto-Regressive process of order one (AR(1)) with zero

mean, volatility δω2 ≪ ω2 and typical timescale τNT; in formulas:

δω2
t = exp(−1/τNT)δω

2
t−1 + ηt

√
1− exp(−2/τNT), (6.2)

where ηt is a Gaussian process with zero mean and volatility given by δω2. Note that
although the fluctuations δω2

t can be negative, we are considering them small enough

97



CHAPTER 6. MICROFOUNDING GARCH MODELS AND BEYOND

(δω2 ≪ ω2) such that the overall noise trade variance ω2
t is always positive. Other choices

can be made for the structure of noisy order flow volatility fluctuations δωt that will not
change qualitatively our results on intermittent volatility dynamics. Moreover, keeping
the fundamental price volatility σF fixed while considering a time-varying noisy order flow
volatility ωt, is a matter of choice for the modeler, and will not change our results; in fact,
the crucial point to obtain intermittent dynamics for price volatility, as we shall see, is that
the market conditions evolve through time. However, we are implicitly assuming that the
volatility of the fundamental price varies slower than that of noisy order flow. This seems
to be a sound choice: fundamental price volatility varies slowly, consistent with the slow
dynamics of the fundamental price, while noisy order flow fluctuations change rapidly, re-
flecting the fast, yet persistent, ‘sentiment’ dynamics in real markets.

The excess demand is the sum of the noise trader’s and informed trader’s demands:

qt = qNT
t + qITt . (6.3)

It is cleared by the market maker, who sets the price pt of the security reflecting the un-
known fundamental price pFt . This is done by filtering out from the only observable the
market maker has access to, specifically, the excess demand qt, the information about the
fundamental price injected by the informed trader. To do so, the market maker needs a
prior about the liquidity takers’ strategies. The outcome of the market maker’s decisions is
a price pt given, at each timestep t, by:

pt = Gtqt, (6.4)

where Gt is the price impact function. In what follows, we explain how Eqs (6.3) and (6.4)
are microfounded in terms of agents’ strategies.

The informed trader knows that the price is set at each step by Eq. (6.4). Moreover, past
prices and excess demands are public. This implies that at the beginning of each trading
round t, the informed trader knows the price impact function realized at the previous step.
Accordingly, the informed trader adapts his strategy over time by observing the evolving
market conditions, which he captures via the evolving price impact function. We assume
that the informed trader’s best estimate for the one-step-ahead price impact function is the
last observed one, which is a plausible heuristic rule. The informed trader is modeled as a
risk-neutral utility maximizer, implying that his strategy, at each trading round t, reads [18]:

qITt =
pFt

2Gt−1

. (6.5)

The market maker knows about the liquidity takers’ strategies, but he can only observe
the realized excess demand qt. Therefore, the market maker does not know the volatility
of the fundamental price and of non-informed (or noise) trades: the market maker believes

that these are (̂σF)t and ω̂, respectively. We are therefore assuming that the market maker
does not update his belief about noisy order flow volatility ω̂, while he updates his belief
about fundamental price volatility.1 Note that the market maker’s beliefs are denoted by
hatted symbols, at variance with the ground-truth parameters that characterize the market
conditions. The market maker is modeled as a risk-neutral, expected utility maximizer. This

1The idea, which will be formalized in what follows, is that the market maker revises his own belief about
fundamental price volatility such that the price volatility expectation matches the price volatility estimate
constructed from past price history. We shall see that this implies a feedback loop between past and future
price volatility leading to the volatility clustering effect observed in empirical data.
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implies that the price at step t is set to be the optimal estimator of the fundamental price

pFt , given the beliefs {(̂σF)t, ω̂} and the functional form of the informed trader’s strategy
qITt . Accordingly, the price impact at each trading round t reads:

Gt = 2Gt−1
(̂σF)

2

t

(̂σF)
2

t + 4G2
t−1ω̂

2

. (6.6)

Note that the equation above has the same structure as the standard solution for the risk-
neutral Nash equilibrium of the single-step Kyle model [18, 51]; however, the price impact
function Gt does not correspond to the real Nash equilibrium, due to the imperfect knowl-
edge of the market maker about fundamental and noise trade volatilities.

We assume that (̂σF)t is a slowly varying function of t, meaning that the market maker’s
belief varies on timescales larger than that at which trading occurs. As we shall see, the
dynamics allows for timescale separation: fast dynamics, which take place on timescales over

which the beliefs (̂σF)t do not change, and slow dynamics, which take place on timescales
over which the market maker revises his own beliefs. In the next subsections, we describe
these dynamics.

6.2.1 Dynamics with constant belief

Consider a market maker’s model that remains constant: (̂σF)t = σ̂F for every t. In Fig. 6.1
we show schematically the dynamics with constant beliefs of the market maker. The price
impact dynamics, given by Eq. (6.6), admits a fixed point G∞ regardless of the initial
condition G0, and implicitly defines a relaxation timescale, given τfast, such that if t ≫ τfast,
then Gt ∼ G∞. The choice for the subscript ‘fast’ will become apparent shortly. The price
impact and the expected price variance at the fixed point read:

G∞ =
(̂σF)

2ω̂
, (6.7)

σ̂2
∞ =

(̂σF)
2

2
, (6.8)

which are reminiscent of the standard result of the Kyle model [18, 51], albeit these are
calculated with market maker’s beliefs. The relaxation timescale τfast is obtained from a
standard dynamical system argument and it is found to be equal to one trading round.2

Therefore, the subscript ‘fast’ relates to the fast equilibration dynamics of the price impact
function.

6.2.2 Dynamics with belief revision

Consider a periodic updating procedure of the market maker’s model, with period τrev. We
refer to k = 0, 1, 2, . . . to denote the k’th update. In formulas, starting from t = 1 and
k = 0, the fundamental price volatility belief at time t reads:

(̂σF)t = (̂σF)kτrev , for kτrev < t ≤ (k + 1)τrev. (6.9)

2Let us mention here that τfast can have a more interesting behavior if the noise trader is cost-averse.
We shall come back to this in Sec. 6.4.2
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Figure 6.1: Dynamics with constant beliefs of the market maker, given by ω̂ and (̂σF). Two trading
rounds are explicitly shown, i.e., t and t+ 1. The arrow of time in each trading round flows from
the top to the bottom. Consider the trading round t. First, a realization of the fundamental price
pFt and of the noise trade qNT

t are obtained from two independent Gaussian processes with zero
mean and variance respectively given by (σF) and ωt. Then the liquidity takers create the excess
demand qt. Finally, the market maker clears the excess demand setting the price pt with a price
impact function Gt, which becomes available information to the informed trader at the trading
round t + 1. Green and orange arrows refer to the dynamics related to the noise trade variance
and to the price impact function, respectively given by Eqs. (6.1),(6.2) and (6.6).
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noise trade variance update

price impact function update

fundamental variance MM's belief update

LEGEND ARROWS
TIMESCALES

noise trade variance timescale

price impact relax timescale

MM's update timescale

Figure 6.2: Dynamics with belief revision, starting from t = 1. For the first τrev trading rounds
the dynamics is represented, within each trading rounds, by boxes, as in Fig. 6.1. The updating
procedure at the end of step τrev is the only new feature: from the string of past τrev prices, the
market maker computes the empirical estimate σ̄2

τrev . From this estimate the market maker updates

his belief about the fundamental price variance (̂σF)
2

τrev
accordingly to Eq. (6.10). In addition to

the green and orange arrows, already present in Fig. 6.1, we show cyan arrows that represent the
belief revision dynamics.

According to the equation above, at the end of the trading rounds t = kτrev with k ≥ 1, the
market maker revises his belief about the fundamental price volatility.

The revision procedure comprises two steps. First, the market maker calculates an
estimate of price volatility σ̄kτrev taking into account the last τrev recorded prices. The
updating timescale τrev controls the measurement error of the price volatility estimate: the
larger τrev, the smaller the measurement error, that is the more precise is the estimate σ̄kτrev .

Then, the market maker updates his fundamental price volatility belief (̂σF)kτrev such that
his current price volatility estimate σ̄kτrev equals the new long-time expected price volatility.
Note that the relation between the expected long-time price volatility and fundamental price
volatility belief is given by Eq. (6.8). Accordingly, the updated belief about the fundamental
price variance satisfies the following condition:

(̂σF)
2

kτrev

2
= σ̄2

kτrev . (6.10)

The dynamics with belief revision is shown schematically in Fig. 6.2.

The heuristic rule given above coincides with σ̂kτrev = σ̄kτrev , if τrev ≫ τfast so that
Gt = G∞ given by Eq. (6.8). In what follows, we shall refer to this regime as the sticky
expectation one. In this regime the market maker is conservative, meaning that he slowly
updates his belief; therefore, he constructs precise price volatility estimates, given that he
uses a large number of past prices.

Now we have all the ingredients needed to understand why we choose to consider a time-

varying fundamental price volatility belief (̂σF)t: this choice allows to create a feedback loop
between past prices and future price volatility. Specifically, past prices affect fundamental
price volatility beliefs (see Eq. (6.10)), which in turn affect prices via the price impact
function (see Eqs. (6.4) and (6.6)). This general feedback is well-known to be a feature of
real markets [25], where price volatility exhibits intermittent dynamics [97].

We anticipate here that the slow dynamics of updating beliefs can reach a stationary
regime, which will be investigated in the next section. In this case, given an initial belief

(̂σF)0, there will be an associated relaxation timescale with which the stationary regime is
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achieved, denoted by τslow = kslowτrev. Note that we used the subscript ‘slow’ to distinguish
the slow relaxation timescale, from the fast relaxation one denoted by ‘fast’, related to the
market maker’s belief and the price impact function, respectively.

6.3 Results

6.3.1 Sticky expectation regime

In this section we show that in the sticky expectation regime (τrev ≫ τfast) the model
simplifies, allowing for analytical characterization of price volatility dynamics. Later, we
elucidate the connection to GARCH models.

Kesten dynamics

The timescale with which the price impact relaxes to its long-time limit τfast is of order one,
as stated in Sec. 6.2.1; therefore, we construct the sticky expectation regime as follows:

τfast
τrev

→ 0,
τNT

τrev
= r. (6.11)

The first condition implies that the updating timescale τrev is way larger than the equilib-
rium timescale τfast of the price impact dynamics. This allows to compute analytically the
price volatility estimate σ̄kτrev , thanks to two simplifications. First, it allows to replace, in
the calculation for price volatility estimate σ̄kτrev , the price impact function with its fixed

point value given by Eq. (6.7); note that one has to replace in Eq. (6.7) (̂σF) with its
time-dependent value according to Eq. (6.9). Second, since the price volatility estimate is
constructed with a large number of observations (τrev → ∞), we can neglect the associated
measurement error. Accordingly, we simplify the notation of price volatility expectation
σ̄kτrev by removing the bar symbol. The second condition in Eq. (6.11) implies that noisy
order flow volatility varies in the intervals (kτrev, (k + 1)τrev] if r < ∞. In the remaining
part of the section, we measure time in units of τrev, leaving only the index k, introduced in
Eq. (6.9) to denote the trading rounds at which market maker’s beliefs are updated.

The excess volatility σk/(σ
F) dynamics can be analytically characterised in the sticky

expectation regime starting from Eq. (6.10) and using Eqs. (6.3), (6.4), (6.5) and (6.7).
With the simplified notation detailed above, the dynamics for the excess variance reads:

σ2
k

(σF)2
=

1

4
+

ω2
k

2ω̂2

σ2
k−1

(σF)2
. (6.12)

Therefore, the excess variance is a Kesten process [44], i.e., a stochastic multiplicative process
repelled from zero. The Kesten dynamics implies the possibility of having intermittent dy-
namics for price volatility together with large price volatility fluctuations captured by power
law behavior. In fact, the dynamics depends crucially on the mean value of the stochastic
multiplicative factor ω2

k/(2ω̂
2). In the case where δω2

k are iid, if ⟨ω2
k/(2ω̂

2)⟩ > 1, the Kesten
process diverges and no stable distribution is reached. Conversely, if ⟨ω2

k/(2ω̂
2)⟩ < 1, the

Kesten process is stable and approaches a limiting distribution for large times.3 This condi-
tion has an implication for the market maker’s belief about noisy order flow volatility: the

3We will clarify what we mean by large times below when we analyze the dynamics more precisely.
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stationary regime can be reached if and only if the market maker’s underestimation of the
noise trade variance ω̂2 is smaller than a critical threshold ω̂2

c . More details about this and
about the generalization to the case of correlated δω2

k are given below. The equation above,
after some manipulation involving Eq. (6.1), can be rewritten as:

σ2
k =

〈
σ2
〉
+

ω2

2ω̂2

(
σ2
k−1 −

〈
σ2
〉)

+
δω2

k

2ω̂2
σ2
k−1, (6.13)

Accordingly, price volatility dynamics is the sum of three terms: a constant long-time
contribution ⟨σ2⟩, a deterministic mean-reverting contribution, and a stochastic one, which
represents the update based on the last empirical observation, which in turn reflects the
evolving market conditions, i.e., the noise trades fluctuations δω2

k.

Comparison to GARCH models

In the quantitative finance literature, GARCH models [94] are very well-known [43, 117].
These are statistical models constructed explicitly in order to capture the intermittent dy-
namics of price volatility. In these models, price changes δpk are modeled as the product
between the equal time volatility and Gaussian iid random variables ξk with zero mean and
unit volatility. The simplest model of this class is completely characterised by Eq. (6.13),

with the substitutions ω2

2ω̂2 = α and
δω2

k

2ω̂2 = g(δp2k−1 − 1), following the notation in Ref. [43],
where α < 1 and g > 0. This model is coined GARCH(1, 1), since only the previous time
price volatility (σk−1) and price changes (δpk−1) are taken into account. Although the sticky
expectation regime of our model is characterized by a GARCH-like structure, the model we
set up has a richer structure, highlighted below.

• In GARCH models no connection between market price and fundamental price is
provided, at variance with our Kyle-inspired model. In our model, excess volatility is
the variable of interest, and not price volatility by itself (see Eq. (6.12)).

• Although the price volatility in the sticky expectation regime of our model is of the
GARCH type, our model is able to provide a microscopic interpretation for each of
the three terms which appear in Eq. (6.13). The first one, i.e., the long-time price
variance ⟨σ2⟩ in our model is related to the distance between the market condition
and market maker’s beliefs, as we shall see in Sec. 6.3.2. Similarly, the second, i.e., the
coefficient of mean-reversion is related to the ratio ω2/(2ω̂2). Finally, the variability of
the interaction term, in the sticky expectation regime of our model, is not due to the
measurement error of price volatility, as in the GARCH(1, 1) model, but rather to the
time variability of noisy order flow volatility: in the GARCH(1, 1) model, the price
volatility estimate (δpk) is calculated only with the previous price change, implying a
sensible measurement error; conversely, in the sticky expectation regime of our model,
price volatility estimate is constructed from the past τrev → ∞ prices, obtaining an
estimate without measurement error.

• Individual returns, in the sticky expectation regime of our model, are not explicitly
modeled, because only their volatility and the volatility of the noise trades affect the
excess-volatility dynamics (see Eq. (6.12)). This is not the case for the GARCH(1, 1)
model, where the kurtosis of returns can be calculated [43, 117]. In order to address
directly this quantity, one must resort to the full model described in Sec. 2.
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• The stochastic multiplicative factor δp2k of GARCH models is uncorrelated, whereas
the one in our model (δω2

k) it is an AR(1) process. Accordingly, in the GARCH(1, 1)
model, the Auto-Correlation function (ACF) of price variance is a single decaying ex-
ponential [117], with correlation timescale τACF = 1/| log(α)|. The sticky expectation
regime of our model recovers this result if r → 0; as we shall see below, in the generic
case of finite r, the ACF of price volatility is more complicated than that predicted
by GARCH model.

• The model we built allows also to make predictions on a non-observable quantity,
namely the ratio between informed and non-informed orders. Further details on this
matter are given in Sec. 6.3.2.

6.3.2 Excess volatility

In the following, we characterize the excess volatility. First, we consider the case with fixed
noise trade variance, then we consider the case where it fluctuates. For each investigation,
first, the sticky expectation regime is considered as it is easily interpretable and manageable;
later, we highlight the differences with the simulation of the model presented in Sec. 6.2,
which are affected by the measurement error on the price volatility estimate of the market
maker. In Appendix D.1 we present a pseudo-code for the simulation.

Static market conditions

Consider the case where the noise trade volatility does not fluctuate over time ωk = ω.
In what follows we refer to this case as the Mean Field (MF) regime. In this regime, the
excess-volatility dynamics in the sticky expectation regime of our model, given by Eq. (6.12),
becomes a deterministic dynamical equation. In the stable regime (ω2/(2ω̂2) < 1), the
excess volatility converges to a finite fixed point. The relaxation is exponentially fast with
a timescale

τslow = τrev

(
1− ω̂2

c |MF

ω̂2

)−1

, (6.14)

where ω̂2
c |MF = ω2/2. Therefore, the timescale with which the stationary regime is achieved

τslow diverges as the market maker underestimation ω̂2 approaches the critical value ω̂2
c |MF.

The mean excess volatility can be easily computed from Eq. (6.12), obtaining:〈
σ2

(σF)2

〉
MF

=
1

4

(
1− ω̂2

c |MF

ω̂2

)−1

. (6.15)

The equation above implies that the more the market maker underestimates the level of
noise trading, the more the fixed point for the mean excess volatility grows. This can be
easily explained as follows: if the market maker underestimates the mean value of noisy
order flow volatility, he will overestimate the price impact function, leading to excessively
volatile prices. In the case where the fluctuations δωk are iid, we recover the MF result,
because ⟨ω2

kσ
2
k−1⟩ = ω2⟨σ2⟩.

Interestingly, our model allows predicting the ratio between informed and non-informed
trades. In fact, in the MF limit of the sticky expectation regime of our model, one finds:〈

ω2

ω2
IT

〉
MF

=
ω2

ω̂2

(
2−

ω2

ω̂2

)−1

, (6.16)
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Figure 6.3: PDFs of excess variance with constant noise trade variance fluctuations (δω2 = 0),
varying the updating timescale τrev. The more the updating timescale becomes large, the more
the excess-variance PDF is peaked on the mean value. (Top) Noise trade variance belief is equal
to the true value. (Bottom) Noise trade variance belief lower than true value: ω̂2/ω2 = 0.7. Black
dashed vertical lines show the MF level of excess variance. Insets compare the MF level of excess
variance with simulation outcomes (with error bars).

where ω2
IT is the informed trade variance.

Numerical simulations First, we analyze the case where the market maker knows per-
fectly the statistical properties of the noisy order flow volatility, i.e., ω̂ = ω; this is the case
in which the REH holds. In the top panel of Fig. 6.3 we show results about the Probability
Distribution Function (PDF) of excess variance for different values of the updating timescale
τrev. There, one sees that the larger τrev is, the more the excess variance is peaked around
the strong rationality equilibrium value ⟨σ2/(σF)2⟩ = 1/2 [18, 51]. Fluctuations are induced
by measurement errors that affect the price variance estimate. Note also that the larger
τrev, the more the distribution is peaked since more past prices are considered to obtain the
estimate for price variance. The inset shows in a clearer way that the mean excess variance
agrees with the MF value of the sticky expectation regime that we analyzed in the previous
section.

Next, we consider the case where the market maker underestimates the level of noisy
order flow volatility, i.e., ω̂ < ω. In this case, the excess variance is shifted to larger values,
as we show in the bottom panel of Fig. 6.3. Note that fluctuations of the excess variance
are more pronounced since underestimating the noise trade level boosts the effect of the
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Figure 6.4: Mean excess variance as a function of the timescale ratio r and of market maker’s
underestimation of noise trade variance, measured by ω2/ω̂2. We set the variance of noise trade
fluctuations to δω2/ω2 = 0.1. (Left) Normalized by the mean-field level. One can observe the
departure from the mean-field description, due to the combined effect of fluctuations and of market
maker’s underestimation of the noise trade variance. (Right) Mean excess variance. One can
observe that a given level of excess variance can be obtained with different combinations of the
parameters.

noise trade variance fluctuations. The inset shows again that the mean excess variance is
in agreement with the MF value of the sticky expectation regime (see Eq. (6.15)).

Dynamic market conditions

Consider a fluctuating noise trade variance modeled as an AR(1) process with positive
and finite correlation timescale τNT, as the noise trade variance we defined in Eq. (6.1).
In principle, we can compute the mean value of excess variance in the sticky expectation
regime of our model starting from Eq. (6.12). However, the correlation of the noise term
complicates the analysis. Therefore, we consider the regime of fast vanishing ACF of noise
trade variance fluctuations (r ≪ 1) (or small overall level of fluctuations, i.e., δω2 ≪ 1). In
fact, since ω2

k is Gaussian, all high-order auto-correlations boil down to terms proportional
to products of two-time correlation functions between fluctuation δω2

k terms, which are
proportional to δω2 exp(−1/r) ≪ 1. The summation to first order in δω2 exp(−1/r) leads
to a modified mean excess variance. In particular, the mean excess variance is still of the
form given by Eq. (6.15), but the critical value of market maker’s belief about noise trade
variance is modified to:

ω̂2
c = ω̂2

c

∣∣
MF

+
δω2

2
exp(−1/τNT). (6.17)

Similarly, the slow relaxation timescale kslow is given by Eq. (6.14), where one has to replace
the MF critical parameter with its ‘fluctuations aware’ version given above. These findings
imply that a given level of mean excess variance can be obtained with a smaller underes-
timation of the market maker about noise trade variance if fluctuations are present, as we
show in Figure 6.4. There, in the left panel, one can see that mean excess variance is equal
to its MF value if r is small (bottom part of the plot) or if ω̂2 is negligible (left part of the
plot). Conversely, as ω̂2 gets closer to the critical value (right part of the plot), one can
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see a sharp multiplicative increase as the fluctuations are increased (top-right corner in the
plot). The increase of the mean excess variance as fluctuations are more persistent (larger
r) can be interpreted by saying that 1 − ω̂2

c/ω̂
2 is getting smaller, implying an increase of

the overall mean excess variance (see Eq. (6.15) properly modified by Eq. (6.17)). The right
panel of Fig. 6.4 shows that a given level of price variance can be obtained with different
choices of market maker’s underestimation of noise trade variance level and the persistence
of noise trade variance fluctuations.

While in Fig. 6.4 a high mean excess variance requires in any case an underestimation of
noise trade variance level, note that high excess variance can be obtained also if the market
maker is right about the mean level value of fundamental price variance, but noise trade
variance fluctuations are large in magnitude and are persistent. In this case, in fact, the
situation our model describes is qualitatively similar to that encountered in economic models
where quasi-non-ergodicity is taken into account [118]; quasi-non-ergodicity occurs when a
stochastic process is ergodic at very long-time horizons, but where ergodicity breaks down
on a time scale at which realizations from the process might realistically be observed by a
human agent. This is exactly the situation the market maker faces if r < ∞; in this case,
in fact, his belief about the fundamental price variance is sensitive to noise trade variance
fluctuations.

Numerical simulations We analyze simulations with fixed updating timescale τrev and
different timescales of fluctuations of noisy order flow volatility τNT. In the left panel of
Fig. 6.5, one sees that the more persistent the fluctuations (large r), the more the PDF of
excess variance is skewed toward large values (the shift is related to the underestimation
of the noise trade’s level, as before). The reason why this occurs can be understood from
Eq. (6.12): the more the noisy order flow volatility is serially correlated, the more the feed-
back dynamics on price volatility persists in the same direction, leading to large fluctuations
of excess volatility. In the following section, we characterize analytically the tail behavior in
the sticky expectation regime. The inset shows that the more persistent the fluctuations of
noisy order flow volatility, the higher the mean excess volatility, consistent with the results
presented in Fig. 6.4.

6.3.3 Intermittent volatility dynamics

In the following, we characterize the intermittent volatility dynamics. As in the previous
section, first, the sticky expectation regime is considered, and then our findings are further
substantiated by the outcomes of the simulation of the model.

The intermittent dynamics of excess volatility can be characterized, at a first approxima-
tion, by the tail exponent of the Cumulative Distribution Function (CDF) of price volatility,
and by the temporal decay of the ACF of the price variance, respectively given by µ and τACF

(actually, to provide an accurate description of empirical findings, more than one timescale
is needed to characterize the ACF of the price variance [43]). Results regarding the CDF’s
power law tail and the structure of the ACF of price variance are available for Kesten pro-
cesses with iid multiplicative noise in the stable regime, where ⟨ω2

k/(2ω̂
2)⟩ < 1. Below, we

recall these important results, and we highlight how they change when an AR(1) process is
considered.

4Note that we anticipated the MF result regarding the ACF of excess variance in Sec. 6.3.1.
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Figure 6.5: Simulations varying the timescale ratio r, while keeping fixed the updating time to
τrev = 1000. We set δω2/ω = 0.2 and ω̂2/ω2 = 0.6. (Left) PDF of excess variance. Inset: MF
level of excess variance compared with simulations outcomes (with error bars). (Right) ACF of
excess variance. Black dashed lines are related to MF results in the sticky expectation regime of
our model.4

If the noise trade variance ω2
k is iid, the CDF of excess volatility decays asymptotically

as a power law with exponent µ, which has the following form [119, 120]:〈(
ω2
k

2ω̂2

)µ/2〉
= 1. (6.18)

Accordingly, the tail of the price volatility CDF is thicker, i.e., µ is smaller, and the more
the market maker underestimates the mean level of noisy order flow volatility. Equation
(6.18) implies that the power law tail of the probability distribution shape is robust with
respect to the underlying distribution of the multiplicative term ω2

k/(2ω̂
2). This insensitiv-

ity to micro-structural details justifies Kesten processes as an effective description of the
universal intermittent dynamics exhibited by price volatility. If ω2

k are realizations of an
AR(1) process, from numerical simulations we observe that the excess volatility has again
an exponent µ which gets smaller with increasing persistence in noisy order flow volatility
fluctuations.

If ω2
k are iid, the long-time ACF of price volatility is a single decaying exponential

function. If µ > 2, which is the case for real markets [43], the correlation timescale τACF of
price volatility writes [120]:

τACF =
8

µ− 1

(
ω̂

δω

)4

. (6.19)

Note that an interesting relation for µ can be obtained in the case of uncorrelated noisy
order flow volatility fluctuations by comparing the equation above for τACF with the one
given in Sec. 6.3.1. According to the equation for τACF given there, τACF increases when ω̂
approaches the critical value ωc. From the equation above instead we conclude that τACF

increases if the level of fluctuations of noisy order flow volatility δω decreases, recovering the
MF regime we analyzed in the previous section in the limit case where δω = 0. In the case
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Figure 6.6: CDF of price volatility and price obtained from simulations with r = 1, varying the
updating timescale τrev. The other parameters are chosen to be δω2 = 0.1, ω̂2 = 0.52. (Left)
CDF of normalized price volatility. (Right) CDF of normalized price. The dotted line refers to the
results of the related Kesten process, while the dashed line is superposed for illustrative purposes.

where ω2
k is an AR(1) process, the more persistent the noise trader’s volatility fluctuations,

the more correlated price volatility, and the larger τACF.

Empirical analysis conducted on the ACF of price volatility shows that at least two
timescales are needed in order to capture its temporal structure [43]. In the case where δω2

k

is an AR(1) process, the ACF of price variance obtained with finite r is captured by two
decaying exponential functions, as we shall see below from numerical simulations.

Numerical simulations Here we compare the results of the simulation of the model we
presented in Sec. 6.2 with the prediction of the Kesten process given by Eq. (6.18). To do so,
we run different simulations with a fixed ratio r = 1 approaching the limit τrev → ∞, where
the measurement error on the price volatility estimate vanishes and the Kesten dynamics is
recovered by construction. We set the model parameters in line with empirical predictions
about mean excess volatility: ⟨σ/(σF)⟩ ∼ 3.5 is obtained if ω̂2/ω2 = 0.52 and δω2/ω2 = 0.1.
Interestingly, from Eq. (6.16), for every stock bought/sold by an informed trader, there are
∼ 25 stocks bought/sold by the noise trader, which means that more than 90% of the overall
liquidity is made of non-informed trades. In the left panel of Fig. 6.6, we show the CDF
of normalized price volatility. A clear result is that the larger the updating timescale τrev,
the thinner the tail. This agrees with intuition: the lower the measurement error on the
price volatility estimate is, the lower the fluctuations of market maker’s belief. The power
law tail related to CDF of excess volatility obtained with τrev = 800 is well approximated
by µ∞ = 8, according to the result obtained from the simulation of the Kesten process,
where the measurement error on the price volatility estimate is neglected since τrev → ∞.
In the right panel of Fig. 6.6, we show that the power law tail of the price CDF does
not change with respect to that related to price volatility, as expected. Let us mention
here that one can obtain a thicker tail assuming a more realistic excess-demand process,
specifically a long-range correlated process, typically with a power-law tail with exponent
1/2 [53]. Finally, the analysis of the ACF of price variance is done in the right panel of
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Fig. 6.5. One sees that the more persistent the noise trader fluctuations, that is, the larger
r, the slower the decay of the ACF of price variance. This result can be explained again
by recalling the analysis of the sticky expectation regime given in the previous section: the
more correlated the multiplicative factor in Eq. (6.12), the more correlated price volatility
as well. In the opposite limit, the results of the simulations match the mean-field result of
the sticky expectation regime we analyzed in the previous section, as expected. Note that
the ACF for r = 2 is clearly not captured by a single decaying exponential, as is the case
for empirical data [43].

6.4 Extensions

6.4.1 Risk-averse market maker

It is well-known that risk-aversion of the market maker implies in Kyle-like frameworks
higher price volatility with respect to the risk-neutral case; see for example Ref. [87], where
the case of an absolute relative risk-averse (CARA) market maker is considered. However,
in order to explain the excess volatility encountered in empirical data an unrealistically high
risk-aversion parameter has to be chosen [107]. It is interesting to evaluate the importance
of market maker’s risk aversion in driving the mean price volatility in our framework. To
do so, we modify the market maker’s model behavior, so that risk-aversion is enforced with
CARA while the linearity of Eq. (6.4) is retained. The task of the market maker, in this
case, is to choose Gt such that:

E[UMM
t |qt, (̂σF)t, ω̂] = E[qt(pt − pFt )|qt, (̂σF)t, ω̂]− ρtvar[qt(pt − pFt )|qt, (̂σF)t, ω̂] = 0. (6.20)

The risk-averse market maker’s strategy depends now also on a risk-aversion parameter
ρt, in addition to the beliefs about noise trades and fundamental price volatility. Accordingly,
the self-consistent equation for the price impact function writes [87]:

Gt =
2Gt−1(̂σF)

2

t

(̂σF)
2

t + 4G2
t−1ω̂

2

(1 + 2Gt−1ρtω̂
2). (6.21)

It is standard in the quantitative finance literature to express the degree of risk-aversion
in term of the Sharpe ratio, defined as the ratio between the expected gain and the square
root of the risk associated to a given strategy. We define the Sharpe ratio per period as:

S =
E[E[qt(pt − pFt )|qt]]√
E[var[qt(pt − pFt )|qt]]

(6.22)

In order to have a constant Sharpe ratio per period, the market maker has to choose a

risk-aversion coefficient ρt = S/(ω̂(̂σF)t).

As in the case of a risk-neutral market maker, the timescale needed for the price impact
to reach the fixed point is still of order one, i.e., τfast = 1. The fixed point of Eq. (6.21)
can be again computed, as we did in Sec. 6.2.1: assuming market maker’s belief about the

fundamental variance to be constant, (̂σF)t = (̂σF), the price impact and the expected price
variance are respectively given by:

G∞ =
S +

√
1 + S2

2

(̂σF)

ω̂
, (6.23)

σ̂2
∞ =

(̂σF)
2

2

[
1 + S(S +

√
1 + S2)

]
. (6.24)
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The risk-aversion of the market maker increases the value of the price impact, and, conse-
quently, it increases the value of the expected price volatility, leading, as we shall see, to an
increase in the actual price volatility.

The slow dynamics of excess variance in the sticky expectation regime defined by Eq. (6.11)
is again of the Kesten type. In fact, following the same steps which led to Eq. (6.12), one
finds:

σ2
k

(σF)2
=

1

4
+

(
S +

√
1 + S2

)2
2(1 + S(S +

√
1 + S2))

ω2
k

ω̂2

σ2
k−1

(σF)2
. (6.25)

The MF version of the equation above obtained with ωt = ω, admits a positive finite

fixed point only if ω̂2 > ω2
c,S|MF = ω2

(
S +

√
1 + S2

)2
/[2(1 + S(S +

√
1 + S2))]. Note that

ω2
c,S ≥ ω2

c,S=0: therefore, if the market maker is risk-averse, the maximum error he can
make (without preventing the stationary regime to establish) on the mean noisy order flow
volatility is lower than that of the risk-neutral case. The contribution to the overall price
volatility due to the risk-aversion of the market maker is qualitatively similar to what we
investigated in Sec. 6.3.2, where we compared the critical value of market maker’s belief
about noisy order flow volatility in the presence or in absence of noisy order flow volatility
fluctuations.

In the following we consider the risk-averse case with realistic values of the parameters,
simulating the dynamics in the sticky expectation regime equilibria with uncorrelated noisy
order flow volatility. We do so by setting an equal value for the mean excess volatility
compatible with empirical results reported in the literature [15, 41], i.e., ⟨σ/(σF)⟩ ∼ 2.5.
For example, this level of excess volatility can be achieved in the risk-averse case with the
choice of parameters S = 0.1, ω2/ω̂2 = 1.75 and δω2/ω2 = 0.15. We obtain a price volatility
correlation timescale of τACF ∼ 25 and an exponent µ ∼ 5 for the tail of the price volatility
CDF. Since in empirical works the ACF timescale of price volatility is of the order of months,
when asking for a realistic value of the annualized Sharpe ratio (in a competitive market
one would expect it to be of order 1), one obtains plausible values for the daily Sharpe
ratio S of the order of ∼ 0.1. This illustrative example highlights the fact that in order to
describe a reasonably competitive market (S ∼ 0.1), excess volatility cannot be accounted
for solely on the basis of risk aversion, and needs to be justified by a large negative bias
in the estimation of the average noise trade level ω̂2/ω2, possibly boosted by the effect of
the fluctuations. Indeed, one can explore the excess volatility for different values of r as we
did in Sec. 6.3.2. As it is shown in Fig. 6.7, the mean excess volatility increases if the noise
trade variance is correlated over time.

We thus provided a mechanism to generate a realistic mean excess-volatility level while
recovering intermittent dynamics for price volatility which does not rely primarily on the
risk-aversion of the market maker, providing a possible solution, in line with the AMH, for
a long-lasting problem in economic literature [107].

6.4.2 Cost-averse noise trading, liquidity crises, and flash crashes

Up to now, we considered a passive noise trader, namely a noise trader who does not modify
his trading intensity even if the price impact increases, resulting in higher trading costs.
Moreover, the passive noise trader hypothesis implies that the level of liquidity is always
finite and bounded from below by the constant liquidity provided by the noise trader. In
reality, instead, the overall level of liquidity fluctuates over time; the market can experience
liquidity crises, that is, situations in which the overall liquidity vanishes, while the price
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Figure 6.7: Mean excess variance as a function of the timescale ratio r and of market maker’s
underestimation of noise trade variance, measured by ω2/ω̂2 in the presence of a risk-averse market
maker with S = 0.1. We set the variance of noise trade fluctuations to δω2/ω2 = 0.15. (Left)
Normalized by the mean-field level. One can observe the departure from the mean-field description,
due combined effect of fluctuations and of market maker’s underestimation of the noise trade
variance. (Right) Mean excess variance. One can observe that a given level of excess variance can
be obtained with different combinations of the parameters. The example analyzed in the main
text corresponds to the set of parameters identified by the bottom-right corners.

impact goes virtually to infinity. In what follows we consider a cost-averse noise trader and
we show how this modification can account for the fragility exhibited by financial markets.

The noise trader demand qNT
t minimizes the expectation of a cost function CNT

t made
of two terms: the first is the usual profit and loss term multiplied by the cost-aversion
parameter ϕ > 0, while the second is the squared difference between the actual demand qNT

t

and a (moving) trading target qtgtt :

CNT
t = (qNT

t − qtgtt )2 − ϕqNT
t pt, (6.26)

where qtgtt are realizations of a Gaussian process with zero mean and time-varying volatility
ωt which we assume to be known by the cost-averse noise trader. The time-varying volatility
ωt has an AR(1) structure. We assume that, as was the case for the informed trader, the
noise trader can infer past price impact functions and use the last known value in order
to construct his strategy. Accordingly, the trading strategy of the cost-averse noise trader
reads:

qNT
t =

qtgtt

1 + ϕGt−1

, (6.27)

We can relate the cost-aversion parameter ϕ with a tracking error ξ > 0 which measures how
much the noise trader can afford to be off with respect to his trading target. The squared
tracking error ξ2 is defined as follows:

ξ2 =
⟨(qNT

t − qtgtt )2⟩∞
ω2

(6.28)

where the subscript ∞ means that the noise trader sets his tracking error ξ assuming that
the price impact is equal to its fixed point value, which we assume can be computed by

112



the noise trader. The link between the cost-aversion parameter ϕ and the tracking error

parameter ξ is given by ϕ = 2ξω̂/(̂σF).

We suppose that the risk-neutral market maker does not know the volatility of the noise
trader’s target, but he has a prior about it, namely, ω̂. Moreover, we assume that the
market maker knows the cost-aversion parameter ϕ (or, equivalently, ξ) of the noise trader,
for simplicity. The dynamics of the price impact function is therefore again given by Eq. (6.6)
where one has to take into account the new expression for the noise trade variance belief
which stems from Eq. (6.27); this amounts to employ the substitution ω̂2 → ω̂2/(1+ϕGt−1)

2

in Eq. (6.6). Accordingly, the long-time price impact function reads

G∞ =
1

2(1− ξ)

σ̂F

ω̂
, (6.29)

while the expected price volatility is given again by Eq. (6.8). Note that the price volatility
is not affected by the noise trader’s cost aversion ϕ (or ξ) in the case where the market
maker knows with absolute precision this parameter. We assume that these fixed points are
known by the noise trader, who uses such information to construct his strategy based on
Eq. (6.28). The noise trade variance at the fixed point is (1−ξ)2ω2

t and vanishes if the noise
trader’s cost aversion is high, i.e., in the limit ξ → 1; accordingly, also the overall liquidity
scales with (1− ξ)2. Therefore, the higher the cost-aversion of the noise trader, the smaller
the overall level of liquidity in the market. At the same time, the price impact function
diverges as ξ → 1 such that the price volatility remains constant.

Interestingly, the cost-aversion of noise trades results in a kind of friction force that
delays the approach of the price impact function to the fixed point. In fact, we find that
the relaxation time related to the price impact dynamics with a constant belief is given by:

τξ =
1

1− ξ
. (6.30)

An important difference with the case of the passive noise trader is that the relaxation
timescale τξ is now ξ-dependent. In particular, it diverges as the noise trader becomes
extremely cost-averse (ξ → 1), resulting in a market that evolves in a strongly out of
equilibrium regime, where the liquidity vanishes, the price impact diverges, while price
volatility remains bounded.

The overall liquidity fluctuates much more than what was implied by the first version
of our model, where the strategy of the noise trader was cost-independent. We present
this finding in Fig. 6.8, where we show the results of the modified model simulation in the
sticky expectation regime given by Eq. (6.11). One can see in blue the results of simulations
where the noise trader is cost neutral, while in orange one sees the results where the noise
trader is cost averse. It is clear that the orange lines represent a regime where the liquidity
and the price impact dynamics are more intertwined. In particular, the peak in the price
impact function (orange line in the top panel) corresponds to the period in which the overall
liquidity is small. Regarding the price volatility in presence of the cost-averse noise trader
(orange line in bottom panel), while it rises in the proximity of the liquidity crises, the values
attained are still comparable with those in absence of the noise trader’s cost aversion. In
fact, as we highlighted above, the equation for the price volatility does not change with
respect to the case of a cost-neutral noise trader if the market maker knows exactly the cost
aversion parameter of the noise trader.

To obtain a volatility profile that reacts to liquidity crises one has to relax the assumption
that the market maker knows the true cost-aversion parameter of the noise trader ξ. With
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Figure 6.8: Comparison between sticky expectation regime dynamics with cost-averse and cost-
neutral noise trader, with parameters ω̂2/ω2 = 0.52, δω2/ω2 = 0.15 and τNT = 0. (Top) price
impact dynamics. (Middle) Total excess-demand dynamics. (Bottom) Price volatility estimate.
Blue lines are related to cost-neutral noise trading, while orange lines are related to the cost-averse
case. The black dashed line points at the regime where, in the case of a cost-averse noise trader,
the liquidity vanishes.

this modification, in fact, the resulting excess-volatility dynamics in the sticky expectation
regime reads

σ2
k

(σF)2
=

1

4

[
1 +

(
1− ξ2k

1− ξ̂2

)2
ω2
k

2ω̂2

σ2
k−1

(σF)2

]
, (6.31)

where ξ̂ denotes the market maker’s belief about the true tracking error parameter of the
noise trader. The equation above shows that if the market maker overestimates the noise
trader’s cost aversion, and if ξ̂ → 1, then the fixed point price volatility diverges, simulating
a flash crash where the liquidity vanishes while the price volatility diverges.

6.5 Conclusion and outlook

Let us summarise what we have achieved. The aim of this Chapter was to modify the classic
framework of asymmetrically informed agents in presence of noise in order to capture the ex-
cess volatility and volatility clustering exhibited by real financial markets, without resorting
to unrealistic risk-averse agents [107] nor fundamental innovation clustering. We proposed a
modification of the paradigmatic Kyle model of price formation, where agents adapt to the
ever-evolving market conditions. Accordingly, each trader has its own model of reality, which
does not generally match that of other traders; for example, we assumed that the market
maker sets prices, while he does not know the precise level of signals and noise, that is, of the
fundamental price and the non-informed trades variance. Moreover, we allowed the market
maker to update his belief about the unobservable fundamental price variance by comparing
the price variance expectations with empirical estimates. The market maker, therefore, acts
based on a system of temporarily fulfilled expectations [39]. We analytically characterized
the model in a realistic limit: the resulting stationary dynamics of excess volatility is of
the Kesten type [44], i.e., a stochastic multiplicative process repelled from zero [119], which
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exhibits intermittent dynamics and power law tails. Interestingly, power law behavior is ro-
bust against changes in the way market conditions evolve over time. This important finding
is in line with the idea that adaptive behavior in the presence of noise, being a universal
feature of human behavior, can be reflected in the universality of price dynamics across
time and across markets. As a side, yet compelling, result, the microfoundation we propose
is able to rationalize GARCH models while taking into account the relation of the price
with fundamentals; as a consequence, the parameters that define the GARCH process are
directly linked with non-observable quantities such as volatility of fundamentals and of noise
trades. Hence, the microfoundation we propose enhances the interpretability as well as the
predictive capacity of GARCH models. Our model predicts that some excess volatility can
be accounted for by a mechanism based on quasi-non-ergodicity which has been recently
proposed as a way to overcome the classic strong rationality paradigm [118]; in fact, we
have shown that excess volatility is higher in situations where the updating timescale of the
market maker is of the same order of magnitude as the timescale with which the market
conditions vary.

The microfoundation we propose seems suitable to describe the large fraction of price
jumps not directly linked to fundamental innovations’ arrivals. In fact, it predicts symmet-
ric price jumps, in line with empirical findings [113]; therefore, it points at the fact that
symmetric GARCH models are more prone to describe price jumps not related to external
fundamental innovations, at odds with the EMH story which relies on fundamental innova-
tion clustering.

The present framework is versatile. For instance, in Sec. 6.4.2 we chose to analyze the
case of a cost-averse noise trader, and showed that the more cost-aversion there is, the more
fragile and illiquid the market is. If the market maker does not know precisely the noise
trader’s cost aversion, flash crashes can occur. Yet, we analyzed only the case of constant
cost aversion. It could be of real interest to couple the cost-aversion of the noise trader and
the updating timescale of the market maker’s model with the current price volatility level.
This coupling should lead to a more realistic description of the fragile and highly intertwined
endogenous dynamics able to account for flash crashes in financial markets [121]. Another
relevant extension, that may interest researchers dealing with financial contagion [122, 123],
is to consider a multi-asset generalization. In fact, by assuming a network of interdependent
fundamental prices, one can explore the extra fragility due to traders’ interactions. Unlike
Ref. [124], in which the effect of transaction costs is investigated, we consider the limit case
in which spread costs are negligible, mimicking a market in which price movements are
primarily driven by informational effects rather than by microstructural ones. Integrating
transaction costs and, more generally, microstructural effects in our framework is an inter-
esting extension that should be addressed along those lines. Another interesting extension
is to consider several traders for each category, namely, informed traders and market makers
(and cost-averse noise traders); this is expected to introduce additional effects, e.g., compe-
tition among market makers and the front-running of liquidity takers [125] and fat tails in
the correlation volatility ACF [126–128]. Moreover, a description similar to that of Mean-
Field Games [129] could emerge in the limit of infinitely many agents; note, however, that
we don’t expect the technical machinery of Mean Field Games to apply as it is since we are
considering heuristic rules and not purely strategic behaviors. Finally, one could think of an
extension with a correlated excess-demand process, in line with empirical observations [53].
See Refs. [85, 130, 131] for inspiration on how to tackle such ideas.
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Take home messages from Chapter 6

1. The Kyle model has two major drawbacks if it is employed to describe real price
dynamics. First, it is not able to account for the level of excess volatility found
in empirical data without resorting to an unrealistically high risk-aversion
parameter. Second, it is not able to capture the price volatility dynamics,
which we investigated in Chapter 2.

2. We decided to break the assumption of perfect agents’ rationality in the Kyle
model to circumvent the above inconsistencies with empirical data. To do this,
we replaced rational agents who use deductive reasoning to adaptive agents
who use inductive reasoning.

3. We assumed that the external world parameters have dynamics on their own.
We modeled this feature by assuming that the level of noise trading fluctuates
over time.

4. We assumed that the market maker does not know with absolute precision the
variance related to noise trader, nor the variance related to the fundamental
price.

5. The learning dynamics of the market maker couples past prices with future
ones, creating a feedback mechanism that induces a dynamics in the price
volatility.

6. The dynamics of the price volatility is of the GARCH type. The assumption
of periodic updates of the market maker’s belief leads to a microfoundation of
the GARCH(1, 1) model, which predicts price volatility dynamics affected by
one single timescale.

7. Excess volatility is recovered without assuming a high risk-aversion parameter
of the market maker but stems only from the mismatch between the market
maker’s beliefs about the true noise trade variance.

8. The model can be easily extended, by assuming a cost-averse noise trader, to
account for liquidity crises, i.e., regimes in which the liquidity goes to zero,
while the market fragility increases.
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Conclusion and future research

My goal was to provide a bridge between the standard theoretical economics literature and
well-known statistical models, having in mind that the modeler’s ultimate aim is to explain
the ubiquitous stylized facts that we observe in real financial data. To this end, I proposed
two models rooted in the well-known framework proposed by Kyle in 1985, where rational
agents with different information sets trade in the presence of noise [18]. This choice is
motivated by two reasons: first, the Kyle model accounts for the trading mechanism in a
stylized but effective way, which implies flexibility while allowing for tractability; second,
my aim was to propose new models to a large audience including economists, and a model
known to everyone who studies market microstructure sounded to me like a promising
starting point. I tackled several drawbacks of the Kyle model.

In Part II, I dropped the unrealistic assumption of fundamental price revelation at
a given terminal time. This allowed me to obtain the stationary Kyle (s-Kyle) model,
presented in Chapter 4. In doing this, I provided a microfoundation for the Transient
Impact model (TIM) [54], well known in econophysics, which allows for solving the diffusivity
puzzle; interestingly, the TIM is recovered in a universal way in the high-frequency regime,
where the price is diffusive; in the slow frequency regime, price dynamics exhibits a non-
universal mean reversion as is the case in real financial markets. Although a very similar
model was already obtained in the literature [68], I extended it to general non-markovian
settings, which are needed to describe real markets [53]. I analyzed the model analytically
in the markovian setting and numerically in the generic non-markovian one. I found two
robust properties of the model, concerning the dynamics of excess demands and prices: the
Auto-Correlation Function (ACF) of the excess demand has a temporal structure identical
to the one resulting only from noise trading, which is reminiscent of standard results in
multi-step Kyle frameworks and undergoes the name of insider’s inconspicuousness. The
price ACF reflects the temporal structure of the underlying fundamental price, albeit with
a smaller amplitude; this last result is a consequence of the rationality assumptions and
implies that the price volatility is smaller than the one related to the fundamental price, in
stark contrast with empirical results [15].

Then, I presented in Chapter 5 the calibration of the s-Kyle model against ∼ 150
years of S&P-500 data that included prices as well as dividends, from which I derived a
fundamental price proxy. The results of the calibration highlighted several drawbacks of
the s-Kyle model, inherited by the traders’ rationality assumption: first, the empirical price
variance was found to be ∼ 6 times larger than the one reconstructed via the s-Kyle model;
in light of the mapping to the TIM this amounts to saying that the predicted price impact
function is qualitatively consistent in shape, but it is off in magnitude.

Having touched by hand the drawbacks of the traders’ rationality assumption, I decided
to modify the Kyle framework to be able to capture phenomena ranging from excess price
volatility to price volatility clustering. I did this without resorting to assumptions such
as extreme risk aversion of the market maker or high-frequency clustering of fundamental
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innovations, which are not substantiated by empirical analyses. To accomplish this task, the
discovery of the work by Hommes named “Behavioral Learning Equilibria” [106] was key: in
that work, the author derives excess price volatility and excess price correlation persistence
with respect to fundamentals by assuming that agents do not know the real underlying
dynamics, which they try to infer by periodically updating a misspecified model. In this
way, traders’ rationality is broken assuming that the structural knowledge assumption does
not hold, i.e., agents do not know the model as well as the model builder. The Kyle setup
with adaptive agents, or behavioral Kyle (b-Kyle) model, presented in Part III, is built on
similar assumptions but, contrary to Ref. [106], takes explicitly into account the coupled
dynamics between prices and trades.

In Chapter 6, I gave a microfounded explanation of excess volatility and volatility
clustering based on an endogenous feedback mechanism. I assume that traders do not know
the exact parameters of the external world, which vary over time. The external world is
parametrized by the variance of the noise trades and of the fundamental price. I assumed
that the first varies over time, while the second is constant, mimicking the dynamics at
high/medium frequency, where the sentiment dynamics, modeled by the noise trade variance,
is important, while the fundamentals’ one does not change on average. The agents have
a wrong prior about the parameters of the external world and/or about the strategies of
other players, and they adapt their own strategy as time goes by, reducing the gap between
their priors and the actual price history. Since their model is wrong, this adaptive dynamics
never settles down. Eventually, a realistic stationary equilibrium arises from the interaction
between the traders’ learning dynamics and the noisy environment, which affects and is
affected by agents’ beliefs. Contrary to the stationary equilibrium of the s-Kyle model, price
volatility fluctuates forever, as in real markets. I characterized analytically the dynamics
of the b-Kyle model in the regime of slow prior updating, giving a microfoundation to
the well-known GARCH(1, 1) model. Therefore, we obtained a stationary equilibrium with
power-law tails in the price and price volatility processes, in line with empirical analysis. I
showed how to modify the b-Kyle model to model liquidity crises: by considering a cost-
averse noise trader, I coupled order flow and price dynamics, so that when the price impact
is high, the liquidity is small. The b-Kyle model is quite an effective attempt to provide a
flexible microfoundation to financial markets. Figure 6.9 shows how I enriched the state of
the art in market microstructure literature.

There are a few extensions of the b-Kyle model which I think can be very interesting as
well as relevant.

• Microfounded order splitting: as we have seen in Chapter 4, I accounted for a non-
markovian order flow in the stationary Kyle model only in an effective way. In other
words, I did not propose a mechanism able to generate power-law-decaying ACF for the
order flow directly from traders’ interaction. A preliminary investigation [132], showed
that it was possible to recover, within the stationary Kyle model, a correlated ACF of
the order flow by considering a cost-averse noise trader, who needed to maintain his
inventory close to a stochastic trading target. Quite intriguingly, the model exhibits
a phase transition to an unstable market if the noise trader is too cost averse; in this
case, the market maker is unable to find a finite positive value for the price impact
function (a situation that closely resembles the market instability exhibited by the
Glosten-Milgrom model [51]).

• Microfounded mechanism to explain flash crashes: as we have seen in Chap-
ter 6, I was able to account for liquidity crises in the Kyle model with adaptive agents,
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Figure 6.9: Thesis’ roadmap. Part I contains useful material to understand the original work in
the remaining parts of the thesis, with a particular focus on stylized facts and models able to
rationalize (some) of them. Note how the original models I proposed in this manuscript enriched
the predictive power with respect to the Kyle model, encompassing several stylized facts captured
by ad-hoc statistical models.

by considering a cost-averse noise trader. To model a flash crash, i.e., a regime where
not only the liquidity vanishes but the price volatility increases as well, an ingredient is
missing: if the market maker does not know precisely the noise trader’s cost-aversion,
flash crashes can occur. Yet, we analyzed only the case where the market maker knows
the constant level of cost aversion of the noise tader. It could be of real interest to
couple the cost-aversion of the noise trader and the updating timescale of the market
maker’s model with the current price volatility level. This coupling should lead to a
more realistic description of the fragile and highly intertwined endogenous dynamics
able to account for flash crashes in financial markets [121].

• Microfounded GARCH with long ranged ACF of price volatility: as we
have seen in Chapter 6, I was able to microfound the GARCH(1, 1) model in a specific
limit of the b-Kyle model. In generic situations, the b-Kyle model is able to generate a
price volatility correlation that decays as the sum of two exponentials, but it does not
recover the realistic regime, where it decays as a power-law function. To reproduce
the fact that price volatility decays in such a complex way, an ad hoc assumption has
been put on the table, the so-called heterogeneous market hypothesis [133–135]. This
assumption states that the market is populated by heterogeneous agents with different
updating timescales. In contrast, our model assumes that the market maker uses a
periodic updating rule.

I think that a very interesting research question is: how the heterogeneous market
assumption can be microfounded? Inspired by recent works on (market) ecology [136–
139], I think a promising framework consists in thinking about traders in financial
markets as animals in an environment with limited resources, i.e., as ecological com-
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munities. How can the b-Kyle fit such a framework? The resources come from the
breaking of the structural knowledge assumption; if agents do not know the parameters
of the external world, (profit) space is available for an agent who understands before
others the state of the world. In this setup, the heterogeneous market hypothesis can
be microfounded by supposing that different market makers with different updating
timescales exploit the strategy space as animals exploit different food niches. The eco-
logical equilibrium should arise as the outcome of Darwinian dynamics where market
makers change their strategies’ time span by exploration/exploitation dynamics while
undergoing a selection process (see, for example, Ref. [140]). Eventually, one should
obtain a network of interacting traders, whose properties might be studied with tools
and ideas already developed in theoretical ecology (see, for example, Ref. [141]).

I believe that my work demonstrated how a well-established framework in theoretical
economics can be enriched to account for a more realistic phenomenology. Market mi-
crostructure is an incredibly complex field, where not only economic and mathematical
backgrounds are useful; one needs also to account for notions coming from cognitive psy-
chology, sociology as well as ecology. I truly hope that market microstructure can serve as a
catalyst able to foster interactions between different research communities. I think that this
interaction is the key to overcoming the biases that each discipline develops, and, therefore,
to develop more and more realistic and useful models regarding how human actions affect
and are affected by the environment in which they operate, be these financial markets,
macro economies, or the planet Earth’s biosphere.
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[59] Nicolae Gârleanu and Lasse Heje Pedersen. Dynamic trading with predictable returns
and transaction costs. The Journal of Finance, 68(6):2309–2340, 2013.
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[125] Ioanid Roşu. Fast and slow informed trading. Journal of Financial Markets, 43:1–30,
2019.

[126] François Ghoulmie, Rama Cont, and Jean-Pierre Nadal. Heterogeneity and feedback
in an agent-based market model. Journal of Physics: Condensed Matter, 17(14):
S1259, mar 2005. doi: 10.1088/0953-8984/17/14/015. URL https://dx.doi.org/

10.1088/0953-8984/17/14/015.

[127] Rama Cont. Volatility clustering in financial markets: empirical facts and agent-based
models. In Long memory in economics, pages 289–309. Springer, 2007.

[128] Robert L Axtell and J Doyne Farmer. Agent-based modeling in economics and finance:
Past, present, and future. Journal of Economic Literature, 2022.

[129] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of
Mathematics, 2:229–260, 03 2007.

[130] Michele Vodret, Iacopo Mastromatteo, Bence Tóth, and Michael Benzaquen. Do
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Appendix A

Calibration of statistical models

A.1 Calibration of the GARCH(1, 1) model

The outcome of the calibration is given by: θ = {σ0, α1, β1}. Given a string of returns
{rt}Tt=1, we are interested in the joint distribution:

P(ϵ0, · · · , ϵT ; θ) = P(r0; θ)P(r1, · · · , rt|r0; θ) (A.1)

= P(r0; θ)
T∏
t=1

P(rt|rt−1, · · · , r0; θ) (A.2)

= P(r0; θ)
T∏
t=1

P(rt|rt−1; θ) (A.3)

= P(r0; θ)
T∏
t=1

1√
2πσ2

t

exp

(
−

r2t
2σ2

t

)
. (A.4)

Dropping P(r0; θ) and taking logs, we obtain the conditional log-likelihood function:

L(θ) =
T∑
t=1

1

2

[
−2 log 2π − log σ2

t −
r2t
σ2
t

]
, (A.5)

which is maximized by the optimal set of parameters θ.

A.2 Calibration of the Propagator model

In principle, since the response function and the trade signs ACF is empirically measurable,
one could obtain the price impact function given the following equation:

Rt = Gt +
∑

0<t′<t

Gt−t′C
ϵ
t′ +

∑
t′>0

[Gt+t′ −Gt′ ]C
ϵ
t′ . (A.6)

However, this direct method is very sensitive to finite-size effects, providing a poor estimate
of Gt.

An alternative calibration procedure consists in using the lagged sign-return correlation,
defined as

Sτ = ⟨rt+τϵt⟩ = Rt+1 −Rt. (A.7)
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By substituting Eq. (3.6) into the equation above one obtains:

St =
∑
t′≥0

C|t′−t|Kt′ , (A.8)

which can be rewritten in matrix form as

S = CK. (A.9)

Inverting the above equation provides an explicit expression for Kt:

Kt =
T∑

t′=0

(C−1)t,t′St′ . (A.10)
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Appendix B

A stationary Kyle setup

B.1 Numerical solver

The iterative numerical scheme is as follows:

• Choose a maximum time Tcut − 1 which is the maximum time lag at which the prop-
agator can be evaluated. In doing so the propagator is a vector of Tcut elements.

• Choose a “seed” propagator.

• Plug this seed in the r.h.s. of Eq. (4.23).

• Insert the result obtained with this procedure in the r.h.s. for a number of iterations
equal to Tit, checking for convergence.

The only issue of this procedure is the following: as one can see from the first of
Eqs. (4.22), in order to compute Rt one has to evaluate the block matrix given by G/t,t.
This matrix has entries that cannot be calculated, due to the truncation constraint of our
numerical procedure. Nevertheless, because of the mean-reverting assumption of the divi-
dends, we know that the propagator should decay to zero at large times, so the large lags
terms in G/t,t can be simply set to zero.

B.1.1 Convergence

In this Section we give further details about the convergence of the results of the iterative
numerical solution of Eq. (4.12).

In Fig. B.1 we show results about the relative cumulative absolute error for the price
ACF Στ and the excess demand ACF Ωτ . The first one is calculated as in Eq. (4.25), while
the second one is given by (4.27).

We choose Tit = 100, power law ACFs for dividends and NT’s trades. We plot the result
for Tcut,i = ∆t × i, for different i. The plots on the left are obtained with a power law
ACF that decays faster than the one used to obtain the plots on the right. We can see, as
expected, that the slower the decay of the power law, the slower the convergence.

We have investigated the behavior of the error for higher Tit, but we didn’t find quanti-
tative differences.
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Figure B.1: Numerical check of equilibrium properties with ACFs given by (1 + |τ |/τk)−γk where
k = {µ,NT}. We arbitrarily choose τNT = τµ = 10. (Left panels) γNT = γµ = 5 and ∆t = 200.
(Right panels) γNT = γµ = 3.5 and ∆t = 500.

B.2 Particular solutions of equilibrium condition in

the Markovian case

B.2.1 The case of non-correlated Noise

In the case of non-correlated NT’s trades, the IT’s forecast of future NT’s trades is zero,
and so the demand kernel RNT, explicitly given in Eqs. (4.22), is zero. Since we are dealing
with a Markovian dividend process, the IT’s forecast at time t of future dividends relies
only on the last known dividend, i.e., µt−1 and so Rµ = RµI, where Rµ is a scalar.

The self-consistent equilibrium condition given by Eq. (4.23) for the dimensionless prop-
agator is given by:

G̃t−t′ =
1

1− αµ

e⊤t Γ̃(I− RL), (B.1)

where

Γ̃ =
[
(Ξ̃µ)−1 + (R̃µL)⊤R̃µL

]−1

(R̃µL)⊤. (B.2)

The solution of Eq. (B.1) is constructed in three steps. i) First we analyze the vector e⊤t Γ̃
and we show that it is related to the inverse of a tri-diagonal matrix with modified corner
elements, for which the explicit expression is known [142]. Then, ii) we prove that a single
exponential propagator solves Eq. (B.1) and we identify the amplitude and the timescale of
the propagator in terms of αµ and Rµ. iii) Finally, we can calculate the expression of Rµ in
terms of αµ from its general expression given in Eqs. (4.22). In this way, we fix completely
the shape of the propagator only in terms of αµ.

i) Since in the Markovian case Rµ is proportional to the identity matrix, from Eq. (B.2)
we obtain:

e⊤t Γ̃ = (at,bt−1)(R̃
µL)⊤ = R̃µbt−1, (B.3)
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where the vector bt−1 can be found by means of the block matrix inverse formula applied
to the matrix inside the square brackets of Eq. (B.2), given by:

M = (Ξ̃µ)−1 + (R̃µL)⊤R̃µL =

[
at Bt−1

B⊤
t−1 C

]
. (B.4)

In particular, using the block inverse formula, the vector bt−1 is given by

bt−1 = −a−1
t B⊤

t−1(M/at)
−1 = αµe

⊤
t−1(M/at)

−1, (B.5)

where the last equality has been obtained with the following property (checked by direct
inspection of Eq. (B.4)): B⊤

t−1 ∝ e⊤t−1. (M/at) is the Schur’s complement of M with respect
to at, which is given by

(M/at) = C−B⊤
t−1a

−1
t Bt−1 = (Ξ̃µ)−1 + (R̃µ)2I. (B.6)

(M/at) is a tri-diagonal matrix with modified corner elements. Thus, the inverse of the
Schur’s complement of M with respect to at can be calculated explicitly (see Ref.[142]). The
explicit expression of Eq. (B.5) is given by a single decaying exponential:

bt−1 = b0{γτ}∞τ=0, (B.7)

where

b0 = αµ
(R̃µ)2 − g

(R̃µ)4
, γ =

gαµ

(R̃µ)2
(B.8)

and g is given by:

g =
β −

√
β2 − 4

2(R̃µ)−2αµ

, β =
(R̃µ)−2 + 1 + (R̃µ)−2α2

µ − α2
µ

(R̃µ)−2αµ

, (B.9)

so that bt−1 is completely specified by αµ and R̃µ.

ii) We are going to prove that an ansatz for the propagator given by a decaying expo-
nential towards zero actually solves Eq. (B.1). The ansatz for the propagator reads:

Gt−t′ = G0ρ
t−t′ . (B.10)

As a preliminary result, from this ansatz, one can compute the elements of the vector Rt,
which appear in Eq. (B.1), by means of the first equation in Eqs. (4.22) . This is given by:

Rt−t′ = −R0ρ
t−t′ , (B.11)

where

R0 = 1− gs, gs =
1−

√
1− ρ2

ρ2
. (B.12)

Equipped with this result, together with Eq. (B.7) one can easily show that Eq. (B.1) is
solved with the ansatz given by Eq. (B.10). The ansatz is constraint to satisfy the following
equations:

G̃0 =
b0

1− αµ

, ρ =
γ

(1−R0)
. (B.13)
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iii) Since we proved that G is of the exponential form we are now able to compute the
explicit form of Rµ, starting from its definition in Eq. (4.22). The explicit expression for R̃µ,
which completely specifies Rµ, is given by:

Rµ =
1

(1− α)G0

(
αµgs −

α2
µ

ρ

1− (2− ρ2)gs
1− gsραµ

)
. (B.14)

Now, we can use insert in the above equation the expression for g , gs, G0, ρ given respectively
by Eqs. (B.9), (B.12) and (B.13) and solve for R̃µ. In doing so we find

R̃µ = 1. (B.15)

Finally, reintroducing the variance terms, i.e., using ΩNT
τ = ΩNT

0 δτ and Ξµ
τ = Ξµ

0α
τ
µ, then

the solution to Eq. (B.1) is given by

Gτ =

(
Ξµ
0

ΩNT
0

)1/2
αµ

1− αµ

(
1−

1−
√
1− α2

µ

α2
µ

)
ατ
µ. (B.16)

B.2.2 The case of Noise and Signal with equal autocovariance
timescales

In this section we deal with the Markovian case specified by Eqs. (4.30) with αµ = αNT. A
difference with the previous case is given by the fact that now RNT = RNTI, where RNT is
a nonzero scalar. The solution of the self-consistent equilibrium condition (4.23) is akin to
the one exposed in the previous section, due to a simplification induced by the assumption
given by αµ = αNT. In order to show this we define ENT as:

ENT
t =

(
I+ RNTL

)
ΩNT

(
I+ RNTL

)⊤
. (B.17)

The simplification is the following:{[
(Ξµ)−1 + (RµL)⊤(ENT)−1RµL

]−1
(RµL)⊤(ENT)−1

}
t,t′

= αµR
µL
{[

ENT(Ξµ)−1 + (Rµ)2I
]−1
}

t,t′
,

(B.18)

where the matrix inside the square bracket on the r.h.s. is a tri-diagonal matrix with
modified corner elements, for which, as seen before, analytical results are available. Thus,
akin to the previous case, a propagator given by a single exponential decay term given by
Eq. (B.10) is a solution of the self-consistent equation for the propagator (4.23). The result
of the calculation that we do not report here is given by

RNT : (RNT)4 − 3(RNT)2α2
µ +RNT

(
2α3

µ + 2αµ

)
− α2

µ = 0, (B.19)

where one has to retain the only positive real solution. Then,

Rµ =

√
ΩNT

0

Ξµ
0

√
1 + (RNT)2 + 2RNTαµ, (B.20)

ρ =
RNT

1 + (RNT)2 +RNTαµ

(B.21)
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and finally

G0 =

√
Ξµ
0

ΩNT
0

αµ

√
(RNT)2 − 2αµRNT + 1

(1− αµ)RNT

−3αµ +RNT

2− 1

((RNT)2−αµRNT+1)

(√
1− (RNT)2

((RNT)2−αµRNT+1)2
+1

)
+ 2

RNT

 .

(B.22)

B.3 Solution of the Markovian case

B.3.1 Construction of the Ansatz

In this section we prove the results presented in Sec. 4.6.1, in particular Eqs. (4.32) and
(4.33). i) First, we rewrite the property exposed in Eq. (4.31) in expectation form. ii) Then
we inject in this form the quasi-camouflage property and we find a simple finite-difference
equation for the propagator whose solution gives the formulas presented in Eqs. (4.32) and
(4.33).

i) If the price ACF is exponentially decaying with the dividends timescale, as found by
means of the numerical solver, then the following relation holds:

E[pt+1|IMM
t ] = αµpt. (B.23)

Equation (B.23) gives us a relation between the excess demand ACF and the propagator.
In fact using the equation that defines the propagator model, i.e., pt =

∑
t′≤t Gt−t′qt′ , it can

be rewritten as:

G0E[qt+1|IMM
t ] = αµ

t∑
t′=−∞

Gt−t′qt′ −
t∑

t′=−∞

Gt+1−t′qt′ . (B.24)

This equation is particularly interesting and it holds regardless of the structure of the NT’s
trades auto-covariance.

Let us give a first example of how the above equation can be used in order to derive the
result about non-correlated NT’s trades. The camouflage is exact in this case, so the excess
demands are uncorrelated, i.e., the l.h.s. of the above equation is zero, then we can see that
G decays itself exponentially with the dividends time-scale. This is precisely what happens
if the noise trades are not correlated, where the propagator is given by Eq. (B.16).

ii) In the following we deal with the case of arbitrary Markovian NT’s trades process.
Using the expression of the general forecast matrix of a Gaussian process with zero mean,
we can rewrite Eq. (B.24), as[

(Ω̃)−1
0

]−1

(Ω̃)−1
t+1−t′ = G̃t+1−t′ − αµG̃t−t′ , G̃τ = Gτ/G0. (B.25)

Since we found that in generic situations an approximate camouflage relation holds, we
know that the structure of the excess demand ACF matrix is given by Eq. (4.26). The
inverse of the excess demand ACF can be computed, and it is given by:

(Ω̃)−1
0 =

ω −
√
ω2 − 4

2b̃αNT

, ω =
b̃+ 1 + b̃α2

NT − α2
NT

b̃αNT

, (B.26)
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and

(Ω̃)−1
t+1−t′ = − 1

αNTb̃

(
1− (1 + b̃− α2

NT)(Ω̃)
−1
0

) [
(Ω̃)−1

0 αNTb̃
]t−t′

. (B.27)

Then, we can rewrite Eq. (B.25) as

G̃t+1−t′ = αµG̃t−t′ + Pρt−t′ , (B.28)

where we defined

P = − 1

αNTb̃

(
1− (1 + b̃− α2

NT)(Ω̃)
−1
0

) [
(Ω̃)−1

0

]−1

, ρ = (Ω̃)−1
0 αNTb̃. (B.29)

The solution of Eq. (B.28) is Eq. (4.32) introduced in the main text. Moreover the
second equation in Eqs. (B.29) gives Eq. (4.33).

B.3.2 Solving the ansatz

In this Appendix, we present the calculations which allowed us to obtain the results pre-
sented in the figures of Secs. 4.6.2, 4.6.3 and 4.6.4.

From the expression of the propagator given by Eq. (4.32), one is able to derive the
inverse of the symmetrized propagator, which is given by

(G̃sym)−1
t,t′ = Γ1γ

t−t′

1 + Γ2γ
t−t′

2 + δ(t− t′), (B.30)

where Γ1 and Γ2 are the solution of the following set of equations:

Γ1
αµ

αµ − γ1
+ Γ2

αµ

αµ − γ2
+ 1 = 0,

Γ1
ρ

ρ− γ1
+ Γ2

ρ

ρ− γ2
+ 1 = 0,

(B.31)

whereas γ1 and γ2 are the two real positive solution of the equation below:

αµ − αNT

αµ − ρ

(
1

1− αµγ1
− αµ

αµ − γ1

)
+

(
1− αµ − αNT

αµ − ρ

)(
1

1− ργ1
− ρ

ρ− γ1

)
+1 = 0. (B.32)

With the explicit expression of Gsym given above one is able to calculate the IT’s demand
Kernels given by Eqs. (4.22). These are given by

Rt−t′ = −αt−t′αµ − αNT

αµ − ρ

(
Γ1

1− γ1αµ

+
Γ2

1− γ2αµ

+ 1

)
− ρt−t′

(
1− αµ − αNT

αµ − ρ

)(
Γ1

1− γ1αµ

+
Γ2

1− γ2αµ

+ 1

)
RNT

t−t′ = δt′−tR
NT

Rµ
t−t′ = δt′−tR

µ

(B.33)

where

RNT =− αNT

[
αµ − αNT

αµ − ρ

(
Γ1

(1− αµγ1)(1− αNTγ1)
+

Γ2

(1− αµγ2)(1− αNTγ2)

)
+

(
1− αµ − αNT

αµ − ρ

)(
Γ1

(1− αNTγ1)(1− ργ1)
+

Γ2

(1− αNTγ2)(1− ργ2)

)
+ 1

]
,

Rµ =
αµ

G0(1− αµ)

(
Γ1

1− γ1αµ

+
Γ2

1− γ2αµ

+ 1

)
.

(B.34)
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Moreover, by a careful inspection of previous formulas and numerical solver results of
Eq. (4.23) in the markovian case, one realizes that the following property holds:

Rµ =

√
ΩNT

0

Ξµ
0

√
(RNT)2 + 2αNTRNT + 1. (B.35)

From the equation above one is able to deduce the expression of G0, by inverting the previous
equation for Rµ.

Finally, imposing the break-even condition per trade of the MM given by Eq. (4.14), one
is able to derive the following identity:

Ω0 = Ξµ
0(R

µ)2
αµρ

γ1γ2

(
b̃+

αµ − αNT

αµ − ρ

1

1− αµαNT

+

(
1− αµ − αNT

αµ − ρ

)
1

1− αNTρ

)
. (B.36)

In order to close the ansatz on itself, we have to compute the total order flow ACF. To do
this, we need to calculate the first row of the inverse (I−RL)−1 which appear in Eq. (4.10).
This is given by

{(I− RL)−1}t−t′ =
{(Gsym)−1}t,t′
{(Gsym)−1}t,t

=
αµρ

γ1γ2
{G̃sym}t−t′ . (B.37)

The explicit expression of the excess demand at time t is given by

qt =
αµρ

γ1γ2

{[
qNT
t +

t∑
t′=−∞

(
Γ1γ

t−t′

1 + Γ2γ
t−t′

2

)
qNT
t′

]

+RNT

[
qNT
t−1 +

t−1∑
t′=−∞

(
Γ1γ

t−t′−1
1 + Γ2γ

t−t′−1
2

)
qNT
t′

]

+ Rµ

[
µt−1 +

t−1∑
t′=−∞

(
Γ1γ

t−t′−1
1 + Γ2γ

t−t′−1
2

)
µt′

]}
.

(B.38)

With this equation, one is able to compute explicitly the excess demand ACF. In par-
ticular, by comparing the lag-0 term of it with the functional form given in Eq. (4.26) and
using Eqs. (4.33) and (B.36) one is able to compute an implicit very complicated equation
for ρ, fixing completely the ansatz given by Eq. (4.32).

The figures presented in Sec. 4.6 have been obtained by fitting the result of the numerical
solver with Eq. (4.32), obtaining numerical values for ρ which have been cross-validated using
the aforementioned analytical implicit equation for ρ, and then using the equations exposed
in this section to compute the other quantities of interest.
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Appendix C

Do fundamentals shape the price
response?

C.1 Linear models for price impact

C.1.1 The Transient Impact Model revisited

While the s-Kyle model is microfounded in terms of noisy heterogeneous agents where the
price is the optimal estimator of the fundamental price (pFn), the Transient Impact model is
meant to explain the empirical price (pemp

n ) in terms of past order flows (see Sec. 3.3). The
equation that defines the linear propagator model is simply given by

pPn =
∑
m≤n

GP
n−mqm. (C.1)

One finds that, besides its simplicity, the propagator model is able to explain a large fraction
of price volatility, meaning that a large fraction of price moves are not related to exogenous
shocks. In order to test the stationary Kyle model, in the following, we confront it with the
propagator model.

The calibration of the stationary Kyle and of the propagator model requires different
input processes. The input processes needed for the calibration of the stationary Kyle
model are given by ACFs related to signal and noise, i.e., ΣIT

n and ΩNT
n . On the other

hand, the propagator model, which is not microfounded, is calibrated using only publicly
observable processes. In particular, the excess demand ACF Ωn and the response function
Remp

n = E[qn(pemp
m+n − pemp

m−1)] are needed [54].

In the regime where the price is diffusive, the shape of the price impact function is the
same as that given by the s-Kyle model, since it solely depends on the total order flow ACF
(see Sec. 5.2). The only difference in terms of prediction of these two models, if calibrated in
a regime where the price is diffusive, is given by the magnitude of the price impact function.
In particular, GP

0 ≥ G0, since empirical prices are far more volatile than fundamental values
[15, 143] , as further discussed in Subsec 5.4.1.

As a final remark, note that the propagator model proposed in Ref. [54] is not imple-
mented in the linear form given by Eq. (C.1). In fact, the calibration in that work was
made using trade-by-trade data, and the predictive power was maximized using a sub-linear
function of signed volumes of past trades. In Subsec. C.1.2, where aggregated data on sam-
pling scale τ ≥ 1 minute are analyzed, we calibrate assuming the propagator to be a linear
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function of signed volumes of past trades in Eq. (C.1), showing how the predictive power
increases with respect to a propagator model extremely concave in past total traded volumes
(i.e., linear in the sign of the trades). In order to conduct this analysis, it will be interesting
to compare linear price impact models’ outcomes when the sampling scale of the dataset
varies. In the following, we detail how one can relate predictions coming from calibrations
conducted with data aggregated over different time windows.

Scaling relations as the sampling scale varies In order to relate the prediction of a
discrete model with well-known time-dependent quantities (such as the mean-reversion time
scale of the de-trended fundamental price), we need to specify the real-time counterpart τ of
1 lag, i.e., the discretization time step (or the sampling scale). In practice, this timescale is
set by the time resolution τ of the dataset at hand. For this reason, it will be convenient to
introduce a notation that makes this detail explicit. For example, if the price comes from a
dataset with a one-minute resolution, τ = 1 minute, then we define p

(τ)
n=1 as the price at time

1 minute. This notation will be handy when comparing predictions coming from calibrations
performed on different coarse-grained versions of the same dataset. In the following, we will
be interested in comparing objects, like the price impact function, constructed from processes
defined at different sampling scales. In those cases, the dependence on the sampling scale τ
will be made explicit. If in a given equation, no mention of a scale τ is made, it means that
all the objects that appear are constructed with the same sampling scale τ .

Suppose we have a dataset related to prices and total excess demand with a given
sampling scale τshort. We can calibrate the linear propagator model on it. Then, starting
from the original dataset, one can construct a coarse-grained version of it with a sampling
scale τlong = rτshort > τshort. The relations between excess demand and price variables at
different sampling scales are given by:

q
(τlong)
n =

∑nr
m=(n−1)r+1 q

(τshort)
m , (C.2a)

p
(τlong)
n = p

(τshort)
nr . (C.2b)

Below we discuss the relations between total order flow ACF and response function
calibrated at different sampling scales. Taking into account Eq. (C.2a), a power law decay
with exponent β for the excess demand ACF (similar to the one empirically found in [53])
and starting from the definition of excess demand auto-covariance, one obtains the following
relation between total order flow ACFs at different sampling scales:

Ω
(τlong)
n ≈ Ω(τshort)

n (τlong/τshort)
(2−β). (C.3)

In the diffusive regime, a similar calculation for the empirical response function gives:

R
(τlong)
n ≈ R(τshort)

n (τlong/τshort)
1/2+(2−β)/2. (C.4)

In the following, for the sake of argument, we shall consider also total order flow processes
following a non-correlated noise, instead of a strongly correlated one. Note that in this case
the two equations above still holds, using β = 1. Due to the linearity of the price impact
models we are working with, it is easy to understand the price impact function behavior
when coarse-graining. We find that (see App. C.2)

G
(τlong)
n ≈ 1

r

nr∑
m=(n−1)r+1

G(τshort)
m , (C.5)

i.e., the price impact function on sampling scale τlong is roughly the price impact function
at sampling scale τshort averaged over a time window of length τlong.
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C.1.2 Predictive power of agnostic linear price impact models

Here we investigate the predictive power of the linear version of the propagator model given
by Eq. (C.1), showing that for sampling scale τ ≥ 1 minute the results are satisfactory. Our
dataset contains order flow and price time-indexed data at the trade resolution for a variety
of stocks for a time range of 8 years (see details about data, de-trending and calibration
procedures can be found in App. C.3.1).

Figure C.1: Rescaled inputs and output of propagator model calibrations with different coarse-
grained high-frequency data, averaged across stocks. Sampling scales τ related to different coarse-
grained data are given in the legend, in units of minutes. Volumes are measured in units of 1% of
average daily volume (ADV), while prices are measured in basis points (bp). (Top) Signed order
flow ACFs, rescaled according to Eq. (C.3) and taking as a reference the total order flow ACF
with sampling scale τ = 1 minute. (Middle) Response functions, rescaled according to Eq. (C.4)
and taking as a reference the response function with sampling scale τ = 1 minute. (Bottom) Price
impact functions. The dashed black lines in the middle and bottom panels refer to decreasing
power law function with exponents β and γ, respectively, whose values are reported in the legends.

In Figure C.1 we show the order flow covariance, the price response, and the price
impact function at sampling scales of 1, 5, 30, 65, 130, or 250 minutes. Note that for each
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calibration, the analyzed time window is such that the price undergoes diffusive dynamics.
Order flow ACFs show a slow decay, compatible with a power law, with an exponent lower
than one. We find the power law exponent to be β ≈ 0.7. A good collapse of the curves is
obtained using the scaling given by Eq. (C.3). The unit for the covariance is a fraction of the
average daily volume (ADV) squared. As known from the literature, the price response has a
step-like shape, with a very quick increasing period and a plateau afterward. This flattening
out of the response is a sign of the diffusivity of the prices: no trivial future price prediction
can be made from observing the trade flow. A good collapse of the curves is obtained using
the scaling given by Eq. (C.4). The unit for the price response is basis points of the price
times fraction of the average daily volume (ADV). For the propagators at different sampling
scales, we do not apply any rescaling, consistent with Eq. (C.5). We see that the propagator
curves are comparable and quite similar at different sampling, validating the scaling found
above. Furthermore, the relation between the exponents related to power laws that fits the
order flow ACF (β) and the propagator (γ) [54] holds, i.e., γ = (1−β)/2 ≈ 0.15. The units
are basis points of the price for a fraction of the average daily volume (ADV).

The price impact function at lag zero GP
0 suggests that a trade flow imbalance of 1% of

the average daily volume (ADV) leads to a price move of 26, 24, 18, 16, 14, or 13 basis points
if executed in 1, 5, 30, 65, 130 or 250 minutes respectively. This decay of GP

0 for increasing
τ is of importance. In fact, even though the total exchanged volume dominates the overall
price impact of a sequence of trades, the way in which the order flow is realized at the
trade-by-trade level has a measurable effect, since the impact function is in fact decaying
(albeit, at a small rate) and thus the concentration of trades plays a role. The problem of
optimal order execution (see, e.g., Refs. [144–148]) deals precisely with the minimization of
price impact induced costs under an exogenous constraint for the total size of the trade. It
is known in that context that it is possible to decrease transaction costs by exploiting the
decay of the propagator function and that such a decrease is moderate whenever the decay
of the impact function is slow. In case of a power-law decreasing Gn ∝ n−γ, the price impact
related cost of an execution at constant rate ϕ during a period T scales as T−γ [149]. This

is explicitly shown in Fig. C.2, where G
P,(τ)
0 is taken as a proxy for execution costs with

different execution times (τ playing the role of T ).
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Figure C.2: Instantaneous price move in bp for a trade of 1%ADV executed in a time-window of
size τ .

In the remaining part of the section, we study how much price volatility can be explained
by the linear version of the propagator model calibrated at different sampling scales. We
define the ratio between predicted and empirical price variograms as

ΦP
n =

V P
n

V emp
n

. (C.6)

143



APPENDIX C. DO FUNDAMENTALS SHAPE THE PRICE RESPONSE?

Figure C.3 shows the metric ΦP,(τ) at a lag corresponding to ∼ 4 days. We show two
curves. The blue one (q) corresponds to a calibration using the sum of signed trade flow
in the bin as before. The orange one (ϵ) corresponds to a calibration using the sum of the
signs of the trades in a bin. Let’s first concentrate on the blue curve (q). We find that
the explained variance increases initially as the bin size increases, flattening out for longer
sampling scales of a few tens of minutes. Most importantly, for all values of τ the explained
variance is well above the ratio of ΣF

0 /Σ
emp
0 = 0.26 that can be found in Table 5.1. This

means that necessarily we have excess price response, which implies excess volatility. This
carries a very important message: the total trade flow imbalance is indeed of high relevance
to explaining price moves when considering aggregated data. Let’s now look at the orange
curve (ϵ), for which, interestingly, one observes a better explanatory power than the (q)
model for short τ scales. Indeed, at the microstructural level, the actual traded volume is
very much conditioned on the available liquidity in the limit order book, and the sign of the
trade is more informative than the trade itself. In fact, it is rare that a trade penetrates
more than one price level. This means that agents condition the size of their transactions
on liquidity, making large transactions when liquidity is high and small transactions when
it is low. Thus, the information content is not related to the volume traded, but rather
to the trade’s sign. This effect undergoes the name of selective liquidity taking. When
one considers aggregated data, however, the relation flips: as τ increases, the information
contained in q becomes more valuable. A heuristic argument for this phenomenon is that the
easier to manipulate a market variable, the less it should carry information: manipulating q,
the exchanged volume means taking an actual risk. For ϵ, on the other hand, manipulation
is much less risky: it can be done for example by placing many small trades in the market
instead of a few large trades.

1 5 30 65 130 250
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Figure C.3: Ratio between predicted and empirical variograms at lag ∼ 4 days, as a function of
the sampling scale τ . Two linear propagator models are analyzed: price impact linear in signed
order flows (blue line) and linear in the sum of trades signs (orange line).

We stress-tested the linearity assumption of the analyzed price impact models, demon-
strating that the Propagator model has a high predictive power if the sampling scale is
larger than the typical trading timescale because effects related to order book dynamics
(such as selective liquidity taking) can be neglected. In order to check the robustness of
our findings, we applied scaling arguments to obtain relationships between price impact
functions at different sampling scales.
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C.2 Price impact function scaling varying the sam-

pling scale

Consider a slowly varying kernel G
(τshort)
n (assumption which will be realized empirically at

small enough sampling scales τshort). One can ‘zoom-out’ in time, by defining a new coarse-
grained model with sampling scale τlong = rτshort > τshort. We show how the impact function
changes when the sampling scale is changed. The argument goes as follows:

p(τshort)nr =
∑
m≤n

(
G

(τshort)
(n−m)rq

(τshort)
mr +G

(τshort)
(n−m)r−1q

(τshort)
mr−1 + · · ·+G

(τshort)
(n−m)r−r+1q

(τshort)
mr−r+1

)
≈

∑
m≤n

1

r
(G

(τshort)
(n−m)r +G

(τshort)
(n−m)r−1 + · · ·+G

(τshort)
(n−m)r−r+1)︸ ︷︷ ︸

G
(τlong)

n−m

(q(τshort)mr + q
(τshort)
mr−1 + · · ·+ q

(τshort)
mr−r+1︸ ︷︷ ︸

q
(τlong)
m

)

= p
(τlong)
n .

Equations above indicate that when downsampling the model to scale τlong, the price is
linear -at a first approximation- in the total imbalance over bins of size equal to τlong. The
price impact function at scale τlong is the arithmetic mean over a time window equal to τlong
of the price impact function defined at scale τshort. Even though one has exact equality
only in the case of a perfectly constant kernel or a perfectly constant order flow imbalance,
the approximation will still retain a good explanatory power as long as G

(τshort)
n is smooth

enough.

C.3 Datasets, detrending and calibration procedures

C.3.1 High frequency

Presentation of the data We analyzed data about some of the most traded stocks,
during the period January 2013 - December 2020.

The tick size of all the stocks is 0.01 USD. We reshaped the data removing effects coming
from stock splitting. The bid-ask spread of a large tick stock is most of the time equal to one
tick, whereas small tick stocks have spreads that are typically a few ticks. There exist also
a number of stocks in the intermediate region between large and small tick stocks, which
have the characteristics of both types. We choose 5 different stocks and we placed them
all in the same pool. Data are indexed by a time label with precision at the microsecond
(τ = 1µs), where information about the precise timing of the transaction is stored.

The empirical mid-price P emp
n is calculated as the mean between the bid and the ask. At

the transaction level, we constructed order signs by labeling trades for which the transaction
price is above the mid-price by ϵn = +1 and all trades below as ϵn = −1. Trades exactly at
the mid-price were discarded. Signed order flow qn are then constructed by multiplying the
trade’s sign by the quantity traded. Data about volumes are normalized by a rolling mean
of the total daily volume exchanged over a time window ∼ 50 days.

The empirical price exhibits a positive trend (as one can see from the left panel of Figure
C.4), thus a de-trending procedure has to be implemented in order to meet the assumptions
on which the stationary Kyle model is constructed. The de-trending procedure is discussed
in detail below.
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Figure C.4: High-frequency empirical data about AMZN stock. The sampling scale is equal to
τ = 1µs. (Left) The raw empirical price is shown (blue line). The trend in the mean of the raw
empirical price is removed if we remove overnight jumps (orange line). (Right) We show the mid
after the multiplicative de-trending procedure. The de-trended price doesn’t exhibit a trend in the
mean, nor in the volatility.

De-trending data at high frequency In order to proceed further, let us note that the
main contribution to the trend in the price level is realized overnight, as the left panel of
Figure C.4 shows. Removing overnight jumps is not enough to make the price stationary.
In fact, as one can see from the orange line in the left panel of Fig. C.4, we still have a
trend in volatility. In order to deal with this, we start from the price with overnights and
we apply a logarithmic transformation. In doing this we obtain:

log (P emp
n ) = log(P emp

0 ) +
n∑

m=0

ηm + log(pemp
n ), (C.7)

where pemp
n is the residual part of the price, after the trend ηn is removed. After this loga-

rithmic transformation, we remove the overnight jumps, removing -effectively- the trending
component which depends on ηn. We do this by considering the trading activity in the
period 9:30-16:00 on all days under analysis. For each stock, we concatenate the data on
different trading days. Then, we apply an exponential transformation in order to get back
to the de-trended price. The result of this operation on the AMZN stock is shown in the
right panel of Figure C.4.
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Appendix D

Microfounding GARCH Models and
Beyond

D.1 How to simulate the model

Below we present a pseudo-code to perform simulations of the model presented in Sec. 6.2.

Consider a simulation which starts from t = 1 and k = 0, with initial conditions
{Λ0, ω̂0, δϵ1} and total duration T = τrevK, with K a positive integer.
The other parameters needed to run the simulations are {ω, ϵ, δϵ, ϵ̂, τNT, τrev}. We

set ω = ϵ = 1.

for t ≤ T do
Build the excess demand qt = qITt + qNT

t : the informed trade qITt is given by
Eq. (6.5), i.e., it is the ratio between a realization of the fundamental price pFt ,
obtained from a Gaussian process with zero mean and volatility ω, and the last
observed price impact function Λt−1; the noise trade qNT

t is a realization of a
Gaussian process with zero mean and volatility ϵt.
Then, the price pt is given by Eq. (6.4) and Eq. (6.6), with fundamental price

and noisy order flow volatility beliefs respectively given by ω̂kτrev and ϵ̂; in doing
this last step, one updates the price impact function.

if t ̸= (k + 1)τrev then
t++.
Update noisy order flow volatility ϵt according to Eqs. (6.1) and (6.2).

end
else

First, construct a price volatility estimate σ̄kτrev from the past τrev prices
pt.
Then, update the fundamental price volatility ωkτrev according to

Eq. (6.10). t++, k ++.
end

end

Note that the simulation is characterized by four (+1 timescale, if the market is stable)
timescales:
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1. t, over which trading takes place.

2. τNT, over which noisy order flow volatility fluctuates. This is a parameter that the
modeler has to fix.

3. τfast, over which the fast dynamics of price impact reaches the stationary regime. This
parameter controls the fast dynamics of price impact, given by Eq. (6.6), which has
been analyzed in Sec. 6.2.1.

4. τrev, over which the market maker updates his belief about fundamental price volatility.
This is a parameter that the modeler has to fix.

5. τslow, over which the belief of the market maker converges in distribution if the market
is stable. In this case, this parameter controls the slow dynamics of market maker’s
belief, given by Eq. (6.10) analyzed in Sec. 6.2.2.
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Titre : Microfondation théorique des mécanismes de formation des prix

Mots clés : Dynamique des prix, faits stylisés, microfondations, impact prix, clustering de volatilité, prix fon-
damental, agents rationnels, agents adaptatifs

Résumé :
Les prix sur les marchés financiers présentent une dynamique non triviale
dont les régularités peuvent être résumées en un ensemble de faits sty-
lisés. Alors que les modèles statistiques capturent l’interaction entre ces
faits stylisés et sont utilisés pour faire des prédictions quantitatives, ils n’ex-
pliquent pas pourquoi les prix évoluent en premier lieu. En revanche, les
modèles micro-fondés laissent la dynamique des prix émerger des interac-
tions entre les stratégies des agents, fournissant des informations cruciales
aux régulateurs et aux décideurs politiques. Cette thèse propose des micro-
fondations pour deux modèles statistiques bien connus, étendant leur pouvoir
prédictif.
Nous fournissons une explication microscopique au modèle à Propagateur,
qui est un modèle statistique capable de caractériser la dynamique station-
naire des ordres et des prix, fournissant une solution au “puzzle de la dif-
fusivité”. La micro-fondation est obtenue en généralisant le modèle de Kyle
à un cadre stationnaire, dans lequel le prix fondamental n’est jamais public.
Le modèle stationnaire de Kyle (s-Kyle) que nous proposons est compatible
avec la diffusion universelle des prix observée expérimentalement à court
terme ainsi que le retour non universel à la moyenne pour des échelles
de temps sur lesquelles les fluctuations des fondamentaux diminuent. Ce-
pendant, le modèle s-Kyle suppose des agents fortement rationnels. Alors
que l’hypothèse d’attente rationnelle (REH) est conforme à l’hypothèse de
marché efficient (EMH), elle conduit le modèle s-Kyle à faire de mauvaises
prédictions, à savoir que la volatilité des prix est indépendante du temps et
inférieure à celle liée aux fondamentaux. Le REH empêche donc le modèle
s-Kyle de résoudre l’énigme de l’excès de volatilité dans la mesure où nous
savons que les fluctuations de prix sont supérieures à celles liées aux fonda-
mentaux grâce aux travaux de Shiller.
Suivant Shiller et la littérature sur la finance comportementale, nous propo-

sons une model de Kyle comportementale (b-Kyle) en assouplissant REH.
Nous supposons que l’agent qui contrôle le prix ne connaı̂t pas le niveau
précis des ordres non informés ni celui de la volatilité des fondamentaux et il
met à jour son estimation de la volatilité des fondamentaux en se fondant sur
l’historique des prix. La procédure de mise à jour conduit à une dynamique
de tâtonnements qui reflète la dynamique d’apprentissage adaptatif des
stratégies des agents. Nous fournissons non seulement une micro-fondation
à la volatilité excessive, mais aussi à la dynamique intermittente de la vo-
latilité des prix. En fait, dans une limite appropriée du modèle b-Kyle, nous
montrons que l’excès de volatilité suit un processus de Kesten, c’est-à-dire
un processus multiplicatif stochastique repoussé de zéro. En conséquence,
nous fournissons une micro-fondation pour une généralisation des modèles
d’hétéroscédasticité conditionnelle auto-régressive généralisée. Le modèle
b-Kyle s’inscrit dans la littérature qui évalue la validité l’EMH; en fait, il sup-
pose que la volatilité fondamentale des prix est constante, tout en prédisant
une volatilité intermittente des prix. L’explication que le modèle b-Kyle four-
nit pour le regroupement de la volatilité des prix est donc en accord avec
la conclusion empirique selon laquelle une grande partie des sauts de prix
ne peut pas être expliquée par les innovations des fondamentaux, mais est
plutôt causée par la dynamique auto-excitante créée par l’interaction entre
stratégies des agents.
Nous pensons que le modèle b-Kyle peut être utile pour expliquer pourquoi
les prix bougent, étant parcimonieux, mais réaliste : il peut aider à rationaliser
de nombreuses questions abordées dans la littérature, allant de la diffusivité
des prix à la volatilité excessive et au regroupement de la volatilité. De plus, il
peut également interpoler des périodes calmes avec des prix très fluctuants
à des régimes fragiles avec des crashs et des crises de liquidité extrêmement
probables.

Title : Microfounded theories of price formation

Keywords : Price dynamics, stylized facts, microfoundations, price impact, volatility clustering, fundamental
price, rational agents, adaptive agents

Abstract :
Price and volume dynamics in financial markets exhibit empirical regularities,
called stylized facts. Statistical models capture the interplay between these
stylized facts and are widely used to make quantitative predictions, but they
do not explain why prices move in the first place. Microfounded models ins-
tead let the price dynamics emerge from the interactions between traders’
strategies. The aim of this thesis is to partially bridge the gap between the
literature on microfounded and statistical models. In particular, we explore
how the predictions of a well-known microfounded model change if we re-
lax some of its unrealistic assumptions. Interestingly, in doing so, we obtain
microfoundations for two well-known statistical models, extending their pre-
dictive power.
We provide a microfoundation for the Transient Impact model, which is able
to characterize the stationary interplay between the dynamics of orders and
prices, solving the diffusivity puzzle. The microfoundation is achieved by ge-
neralizing the classic Kyle model of price formation to a stationary setting, as-
suming that the fundamental price is never made public. The stationary Kyle
(s-Kyle) model that we propose is compatible with experimentally observed
universal price diffusion in the short term, and non-universal mean-reversion
on time scales at which correlations of fundamentals vanish. However, the s-
Kyle model assumes strongly rational traders, i.e., each rational agent knows
every other player’s strategies and has unlimited computing power. While the
Rational Expectation Hypothesis (REH) is in line with the Efficient Market
Hypothesis (EMH), for which the price always reflects newly released fun-
damental innovations, it leads the s-Kyle model to make wrong predictions ;
namely, that price volatility is time-independent and smaller than the one re-
lated to fundamentals. The REH, therefore, prevents the s-Kyle model from
solving the excess volatility puzzle if one does not assume an unrealistically
high risk aversion of market actors. In order to improve that, we propose a

second modification of the Kyle model, described below.
Following Shiller and the behavioral finance literature, we propose a behavio-
ral Kyle (b-Kyle) setup by relaxing the REH. In doing so, we obtain a micro-
foundation of the Generalized Auto-Regressive Conditional Heteroscedasti-
city model. To do so, we assume that the market maker does not know the
precise level of non-informed trading and of fundamental volatility ; moreo-
ver, he updates his prior about fundamental volatility based on the realized
market prices. The updating procedure is constructed such that future expec-
tations match past outcomes, leading to tâtonnement dynamics reflecting the
adaptive learning dynamics of traders’ strategies. In this way, not only do we
provide a micro-foundation for excess volatility, but also for the intermittent
dynamics of price volatility. In fact, in an appropriate limit of the b-Kyle mo-
del, the dynamics becomes analytically tractable and we show that excess
volatility follows a Kesten process, i.e., a stochastic multiplicative process re-
pelled from zero. Accordingly, we provide a microfoundation of the class of
Generalized Auto-Regressive Conditional Heteroscedasticity models. The b-
Kyle model is in line with the literature that challenges the EMH; in fact, it
assumes that fundamental price volatility is constant, while it predicts inter-
mittent price volatility. The explanation the b-Kyle model provides for price
volatility clustering therefore agrees with the empirical finding that a large
fraction of price jumps can not be explained by fundamental innovations, but
is instead caused by the self-exciting dynamics created by the interplay bet-
ween traders’ strategies.
We believe that the b-Kyle model can be useful for explaining why prices
move, being parsimonious, yet realistic : it can help rationalize many puzzles
tackled in the literature, ranging from price diffusivity to excess volatility
and volatility clustering. Moreover, it can also interpolate from calm periods
with highly fluctuating prices to fragile regimes with extremely probable flash
crashes and liquidity crises.
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