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Abstract

This work is devoted to the improvement of the estimation of the mean and stan-
dard deviation of the fatigue limit from experimental tests and numerical simulations
using a staircase method. Once a target life is chosen (e.g. 106 cycles), this approach
consists in applying on each specimen a loading amplitude with ascending or descend-
ing steps until the specimen fails or not. The fatigue limit is then estimated from the
median of a probability distribution. Nevertheless, the step size of the loading is known
to be problematic because it can lead to a poor estimation of the standard. Thus, we
proposed in this work, on the one hand, a non-parametric Kernel approach and, on
the other hand, an approach based on Bayesian maximum entropy sampling combined
with Latin hypercube sampling.

To obtain a first set of experimental data, the tests using the staircase protocol
were performed in vibratory bending on an electro-dynamic exciter (shaker). Indeed,
to reduce the dispersion on the estimation of the fatigue limit, a relatively high number
of specimens is necessary, which can increase the costs and the time of tests, partic-
ularly on a conventional system limited in frequency. Thus, a first work was carried
out to test steel specimens at a frequency close to the first resonance mode. Never-
theless, shakers are known to generate excitations in acceleration. We have therefore
proposed a technique to achieve a strain control at constant amplitude with exci-
tations close to the resonance. The system allows maintaining constant strain levels
along the test despite the variation of the resonance frequency due to the presence
of crack. Post-processing was performed on the experimental data to obtain fatigue
limit distributions and evaluate the uncertainty on the staircase method by Bootstrap
sampling. The results show a large uncertainty in the standard deviation. Thus, we
considered a nonparametric distribution to improve the estimation of the fatigue limit
and its dispersion.

Thus, we proposed a Kernel Density Estimation (KDE) approach combined with
a non-linear correction of the standard deviation bias to optimize the bandwidth. To
test this approach, numerical data were simulated in Python in order to perform a
sensitivity study of a parameter set such as the number of specimens or the step size.
The various comparisons have shown that the non-parametric method is more accurate
than a classical method, especially regarding the estimated standard deviation.

Finally, in the last part of the work, in order to avoid the intrinsic limitations
caused by the step size, a maximum entropy Bayes approach combined with Latin
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Hypercube sampling (Bayes-LHS) has been proposed. This approach eliminates the
requirement for the fixed stepsize and iteratively uses the information from the pre-
vious calculation step to reproduce the staircase method. Even if this work is not
achieved, it tends to prove that the Bayes-LHS provides a fast computational proto-
col to arrive at a promising estimate.

Keywords Fatigue limit distribution, Staircase method, Vibratory strain control,
Electro-dynamic shaker, High-cycle fatigue, Bootstrap sampling, Kernel Density Es-
timation, Bayesian maximum entropy sampling, Latin Hypercube Sampling (LHS)
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Résumé

Cette thèse a pour objectif l’amélioration de l’estimation de la moyenne et de
l’écart type de la limite de fatigue à partir d’essais expérimentaux et de simulations
numériques au travers d’une méthode dite de l’escalier (ou staircase). Une fois la durée
de vie cible fixée (e.g. 106 cycles), cette approche consiste à appliquer sur chaque
éprouvette, une amplitude de chargement avec des paliers ascendants ou descendants
jusqu’à rupture ou non de l’éprouvette. La limite de fatigue est alors estimée à partir
de la médiane d’une distribution de probabilité. Cependant, le pas des paliers de
chargement est connu comme étant problématique car, s’il est mal ajusté il peut mener
à des erreurs dans l’estimation de l’écart type. Ainsi nous avons proposé d’une part,
une approche non paramétrique de type Kernel et, d’autre part, une approche basée
sur l’échantillonnage Bayésien à entropie maximale combinée à un échantillonnage
Latin Hypercube.

Afin d’obtenir un premier jeu de données expérimentales, des essais utilisant le
protocole staircase ont été réalisés en flexion vibratoire sur un excitateur électro-
dynamique (pot vibrant). En effet, pour réduire la dispersion sur l’estimation de la
limite de fatigue, un nombre relativement élevé d’éprouvettes est nécessaire, ce qui
peut augmenter les coûts mais aussi les durées des essais, notamment sur un système
conventionnel limité en fréquence. Ainsi, un premier travail a été mené pour tester
des éprouvettes en acier à une fréquence proche de leur premier mode de résonance.
Cependant, les machines vibratoires de type pot vibrant sont connues pour générer
une excitation en accélération. Nous avons donc proposé une technique pour réaliser
un contrôle en déformation à amplitude constante avec une excitation au plus près
de la résonance. Le système permet de maintenir des niveaux de déformation con-
stants tout au long de l’essai malgré la variation de la fréquence de résonance due à la
présence de fissure. Des post-traitements ont été réalisés sur les données expérimen-
tales afin d’obtenir des distributions de la limite de fatigue et d’évaluer l’incertitude
sur la méthode de l’escalier par un échantillonnage Bootstrap. Les résultats mon-
trent que la méthode staircase présente une incertitude considérable sur l’écart-type.
C’est pourquoi, nous avons envisagé une distribution non paramétrique pour améliorer
l’estimation de la limite de fatigue et sa dispersion.

Ainsi, nous avons proposé une approche de type Kernel - KDE (Kernel Density
Estimation) - combinée à une correction non linéaire du biais de l’écart type pour
optimiser la largeur de bande. Pour tester cette approche, des données numériques
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ont été simulées avec Python, afin de réaliser une étude de sensibilité d’un ensemble
de paramètres, comme le nombre d’éprouvettes ou encore les pas entre les paliers
de chargement. Les différentes comparaisons menées ont permis de démontrer que la
méthode non-paramétrique est plus précise qu’une méthode classique, notamment en
ce qui concerne l’écart type estimé.

Enfin, dans la dernière partie de ce travail, afin d’éviter les limitations intrinsèques
causées par le palier de chargement, une approche de Bayes à entropie maximale com-
binée à un échantillonnage Latin Hypercube (Bayes-LHS) a été proposée. Cette ap-
proche abandonne complètement le pas fixe de chargement et utilise de manière itéra-
tive les informations de l’étape précédente pour reproduire la méthode de l’escalier.
Cette approche, nécessitant encore des développements, est une première étape qui
tend à prouver que le Bayes-LHS fournit un protocole de calcul rapide pour arriver à
une estimation prometteuse.

Mots-clé Distribution de la limite de fatigue, méthode de l’escalier, contrôle de la
déformation par vibration, excitateur électrodynamique, fatigue à grand nombre de
cycles, échantillonnage Bootstrap, estimation de la Densité par Kernel (KDE), échan-
tillonnage Bayésien à entropie maximale, échantillonnage Latin Hypercube
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Chapter 1

Introduction

While selecting a material for design, it is crucial to know its operating conditions.
Under cyclic loading conditions, the fatigue limit or endurance limit is generally re-
quired to delimit the operating range under High Cycle Fatigue (HCF).

In this chapter, the preliminary background information on fatigue is given in order
to understand the objective of the thesis work concerning the notion of fatigue limit.
Section 1.1.1 introduces the fatigue properties of a material and the corresponding
intrinsic variabilities leading to an estimate of the probabilistic distribution of the fa-
tigue limit. The experimental tests being carried out in strain, Section 1.1.2 introduce
the strain-stress linear relationship to provide a simple link between strain and stress
in HCF. Section 1.2.1 describes the staircase methods used to estimate the fatigue
limit, which is the object of this thesis. Section 1.2.2 examines the sensitivity of the
staircase parameters based on the literature studies and analyses the advantages and
disadvantages of the staircase method. The final section summarises the framework
of the PhD study.



CHAPTER 1. INTRODUCTION

1.1. Fatigue and fatigue limit
As mechanical structures move toward lightweight and complexity, fatigue design

becomes more and more critical. Fatigue is the leading cause of failure for mechani-
cal components and structures. It has been estimated that fatigue causes 90% of all
service failures of metal parts [1]. It is a progressive and localised structural dam-
age that occurs when a material is subjected to cyclic loading. Damage in metallic
materials involves the initiation - commonly considered from the material’s surface
- and propagation of cracks by the action of the cyclic loads. The cyclic action may
eventually cause the mechanical part to fail even at low load levels (below the yield
stress of the material). Fatigue failure can be divided into different forms, including
thermal fatigue failure, corrosion fatigue failure and vibration fatigue failure. Vibra-
tion fatigue generally refers to fatigue failure and the process of structures under a
vibration environment. In recent years, many engineering structures must be serviced
in a severe vibration environment [2], resulting in increased structural fatigue. For
example, the Airbus 330 aircraft encountered engine vibration spiked up in 2011 [3],
in which the fuel pump supply line cracked due to high vibrations. In general, vibra-
tion fatigue resistance is an essential criterion for structural design for engineering
structures working in a vibrating environment.

Fatigue properties are primarily associated with the S-N curve and endurance
limit [4]. For some ferrous (iron-based) and titanium alloys, there is a threshold called
endurance limit under which no fatigue failure occurs after an infinite number of
repeated load cycles. For other materials (non-ferrous), this threshold does not exist,
and it is therefore necessary to define a limit for a specific number of cycles. The
evaluation of this fatigue limit is the purpose of the study. In practice, this parameter
is hard to be determined accurately and normally it is considered as the fatigue
strength which display at typically 1× 106−1× 107 load cycles [5, 6, 7, 8, 9]. It must
be identified by experimental fatigue tests using approaches such as staircase methods.

1.1.1. Fatigue properties
The fatigue properties can be defined from the S-N curve (Stress amplitude-

Number of cycles to failure) as shown in Fig. 1.1. The S-N curve, also known as
the Wöhler diagram, represents the fatigue property of a material, which is the most
conventional design basis for fatigue analysis and is still used in engineering today.

2
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Figure 1.1: S-N curve illustration

The constant amplitude fatigue test was first initialled by Wöhler on railway axles
in the 1850s. In general, the classical S-N curve illustrates only a uniaxial load. Fig. 1.2
illustrates the relationship between S-N curve and fatigue limit. High Cycle Fatigue
(HCF) occurs at relatively large numbers of cycles (above 1×104 cycles) is mainly due
to elastic strain under stress amplitudes without obvious macroscopic plastic deforma-
tion (below the yield strength σy). Typical examples of HCF are pistons, crankshafts,
connecting rods or gas turbine engines and components subject to vibratory excita-
tion (e.g. induced by airflow on airfoils or swell on offshore structures). It is usually
expressed by the S-N curve, where the amplitude of cyclic stress is plotted versus the
logarithmic scale of the number of cycles the specimen can sustain before failure. The
fatigue test in Very High Cycle Fatigue (VHCF) - corresponding to fatigue life region
beyond 107 cycles - leads to a long test time, and the failure mechanism in VHCF can
be quite different from that in Low Cycle Fatigue (LCF) and HCF [10].

In the Fig. 1.2, S-N curve becomes horizontal at a higher number of cycles, which
means that when the applied alternating stress is lower than the stress corresponding
to the horizontal line, the structure can withstand an infinite number of stress cycles
without fatigue fracture. The stress value corresponding to the horizontal line repre-
sents the endurance limit of the material [11]. The endurance is not easy to obtain
with experimental tests because it is time-consuming even if relatively high frequency
is used. So in this study, a fatigue limit is sought with a staircase approach below
1× 107 cycles.

From the view of engineering, the endurance limit and the fatigue limit are often
confused and considered similar. However, the endurance limit is the constant stress
amplitude corresponding to the asymptotic value [9]. In some cases, the fatigue limit
is chosen at a specific large number of cycles (e.g., 1×106 cycles) to reduce the testing

3
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Figure 1.2: S-N curve and the fatigue limit

time or to depend on the structural design. Both parameters are important material
properties for various engineering predictions on fatigue [12], in particular, to apply
the mean stress correction through Goodman’s method, for example [13]. In this
dissertation the fatigue limit is defined: fatigue strength (stress amplitude) for a given
number of cycles targeted 1 million from the S-N curve [4, 9, 14, 15].

In body-centred cubic materials (bcc, such as steel and titanium), a pronounced
fatigue resistance can often be determined (endurance limit). In contrary, face-centred
cubic materials (fcc, such as aluminium and copper) do not have a specific limit and
will eventually fail even from small stress amplitudes, the S-N curve drops over the
entire load cycle range for these materials [16]. Therefore, engineers try to design their
parts to keep them under the fatigue limit during work.

However, the fatigue limit assessment has never been an easy task, as fatigue has
considerable dispersion due to variability in the fracture process [17, 18] and uncon-
trolled test conditions in a rigorous manner, which is independent of the experimenter.

Pascual et al. [19] established a random fatigue limit model to describe the variabil-
ity increment in fatigue life around the fatigue limit. As a result of inherent variation
in fatigue data [20], the S-N curve and the fatigue limit must be drawn on the dis-
tribution. Most approaches evaluate the fatigue limit in the form of a distribution
(Cumulative Density Function (CDF) or Probability Density Function (PDF)) to es-
timate a mean or median value of the fatigue limit but also a variance or standard
deviation to give a measure of its variability. The distribution is also used to estimate
the probability of failure or success of an experiment repeated several times. The
median S-N curve and its dispersion (dotted curves) are schematically represented
in Fig. 1.3. During real fatigue tests, the probabilistic fatigue limit performed at the
given number of cycles (NL) [21], which is restricted to the HCF region.
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Figure 1.3: Distribution representing the probabilistic nature of the fatigue tests

In numerical design, the fatigue limits obtained from uniaxial tests (in torsion,
bending or tension) are essential in evaluating fatigue strength when the structure
is subjected to multiaxial loads. The stress-based criteria is expressed as inequality
between the equivalent shear stress and a function of the fatigue limits. When the
structure is submitted to random loads, the function of the fatigue limits, which
is expressed as a probability distribution, can be used in a reliability study. Thus,
Lambert et al. [22] proposed a probabilistic model from the Sines criterion using the
extreme value theory to determine the equivalent shear stress distribution. The fatigue
limit function can be obtained from experimental tests to complete the evaluation by
the constraints-resistance approach. This work is in line with this objective because
it is not easy to reach these distributions owing to the requirements of testing time
and a large number of specimens.

The methods of obtaining the fatigue limit can be classified as follows:

(1) Probabilistic modelling of S-N curves. The statistical fatigue limits are derived
from the probabilistic curves. However, this method is inaccurate because the
data are distributed in the whole S-N curve rather than around the fatigue limit.

(2) Numerical methods. Firstly, Ray-projection and Parallel-projection methods [23].
These two methods extrapolate the HCF property from LCF test data to avoid
long-time tests. Lin [23] proved the parallel-projection method provided reason-
able results for fatigue limit distribution. However, this method gradually lost
its advantage with the development of HCF test equipment. Secondly, Monte-
Carlo simulation (MCS) method [24] aims to generate several fatigue limit val-
ues with different probabilities and confidence values from one reference fatigue
limit according to a specific distribution. Thirdly, many researches [4, 9, 14, 25]

5
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have proposed a fatigue limit prediction model considering the notch or defect in
the structure. The numerical methods are based on previous fatigue information
rather than a direct measurement.

(3) Experimental testing. In fact, the fatigue limits deduced from random fatigue
performance should be verified by true test data. The experimental fatigue test is
the main tool for assessing the fatigue limit of a material [26]. Several experimental
evaluation test strategies have been proposed in the literature, mainly including
staircase method [27], step stress method [28], locati method [29], prot method
[30], probit method [31]. These methods are compared in Tab. 1.1. In addition,
an experimental thermal method [32] can be used to measure the temperature
change during the fatigue process to reach the limit. However, this method requires
infrared thermography.

Table 1.1: Comparison of test protocols for fatigue limit distribution

Method
Number of
specimens

Stress amplitude Evaluation Remarks

Staircase multi
one stress
per sample

distribution - most widely used

Step stress multi
multi stresses
per sample

distribution - much more test times than staircase

Probit multi
one stress
per sample

distribution - much more test specimens than staircase

Locati single
multi stresses
per sample

mean value
- accelerated test time
- need prior fatigue parameter
(e.g. the slope of the S-N curve)

Prot multi
multi stresses
per sample

mean value
- statistical efficiency is less than
that of probit and staircase methods [33]

Despite its drawbacks (mentioned in Section 1.2.2), many studies try to improve
the estimation of the probabilistic fatigue limit by staircase methods. This method
has advantages in both experiments (less number of specimens and less test time)
and statistics (more efficient). This work, therefore, is focused on the staircase test
method presented in Section 1.2.

1.1.2. Strain-stress relationship in HCF
High Cycle Fatigue (HCF) is a type of fatigue caused by small elastic strains under

a high number of load cycles before failure occurs. The stress comes from a combina-
tion of mean and alternating stresses. Let us consider the case of a proportional load
with constant amplitude calculated from the minimum and maximum stress values of

6
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σmin and σmax:
stress range ∆σ = σmax − σmin

mean stress σm = σmax+σmin

2

stress amplitude σa =
∆σ
2

stress ratio R = σmin

σmax

(1.1)

A power formula relating stress amplitude with the number of cycles, proposed by
Basquin in the 1910s [34], is expressed as:

σa = C1 ×NC2
f (1.2)

where, C1 and C2 are constant related with material; σa is the stress amplitude and
Nf is number of cycles to failure.

The S-N curve and the models for describing HCF are widely used to the present
day. Nevertheless, strain-based formulations are required in this study to consider
the measurement means used during the tests (strain gauges, for example). When a
deformable solid (material) is subjected to a uniaxial loading state with a fully reversed
cyclic stress (or strain) loading in the linearly elastic strain range, the stress and strain
correlate linearly with Young’s modulus E. For example, the Fig. 1.4 illustrates cyclic
strain ε(t) as a function of cyclic stress σ(t). It is evident that the strain cycle (0-1-2-
...-11-12) is the same as the stress cycle (0-1-2-...-11-12), and the stress-strain curve
can be simplified as a straight line in the elastic domain.
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Figure 1.4: Stress-strain relationship
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The fatigue limit lies in the high cycle fatigue domain, so the linear relationship
between strain and stress is also valid. Thus, the specimens subjected to a load close
to the fatigue limit have an elastic behaviour. Therefore it can be assumed that the
specimens follow the general Hooke’s law:

σij = Cijklεkl (1.3)

where σij and εkl are the engineering stress and strain, respectively. Cijkl is the elastic-
ity tensor that depends only on the material. The fatigue Stress Concentration Factor
(SCF) can be included in the analysis by multiplying the stress calculated in Eq. 1.3
by Kf given in Appendix A.2.3.

Fig. 1.5 shows a typical log − log plot of strain amplitude versus the number of
cycles to failure.
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Figure 1.5: Typical plot of strain amplitude versus cycles to failure

The total strain (ε) can be considered as the sum of elastic strain (εe) and plastic
strain (εp). The total strain occupies the main part in LCF while the plastic strain
occupies the main part in HCF. Therefore, the strain-number of cycles to failure
(ε − N) curve can be divided into two parts according to elastic strain and plastic
strains. The plastic strain can be expressed by the Manson-Coffin law:

εp = εf ×N c
f (1.4)

where εf and c are fatigue ductility coefficient and the constant, respectively. The
Basquin’s law (given in stress in Eq. 1.2) also can be used to express the elastic strain
as follows:

εe =
σf

E
×N b

f (1.5)

8
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where σf and b are the fatigue strength coefficient and a constant obtained from the
slope of the log-log S-N curve, respectively.

Since the stress in HCF tests is usually within the elastic range, the present work
focuses on the fatigue limit by considering only elastic strain under small deformation.
If we focus on the range within fatigue limit, εp = 0 and ε = εe. Thus, the strain
and stress have a linear relationship with Young’s Modulus E. It can be concluded
that stress control and strain control around the fatigue limit range can reach the
same results when the same test conditions are considered. This strong assumption is
important for this work because it provides us to use strain control in Chapter 2 to
evaluate the fatigue limit.

1.2. Staircase test
The fatigue properties of materials can be appraised on statistical grounds. The

fatigue limit used in the design must be fully characterized by its statistical nature.
The probability fatigue limit can be deduced from probabilistic S-N curve. Tests are
specially conducted to characterize fatigue limit distribution.

The specimens are tested at various stress levels, and the corresponding number
of cycles (fatigue life) is evaluated. The experimental results are usually prepared as
Fig. 1.6.
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Figure 1.6: S-N curve and the staircase test

As the Fig. 1.6 shows, it is natural that the fatigue limit is deduced from S-N
curve. The S-N curve can obtain a fatigue limit value but cannot provide a statistical
distribution. Considering that the fatigue limit can be seen as a random value, the
staircase method [27] is much more suitable for the fatigue limit estimation accuracy.
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1.2.1. Staircase test protocol
Dixon and Mood [27] proposed the classical method for sensitivity tests in 1948,

which is the staircase method. This method is widely used in machinery, medical,
pyrotechnics, etc. Both standard ISO12107 [35] and the standard MIL-STD-331D
[36] recommend this test procedure for experimental test.

As the staircase procedure, fatigue tests are carried out sequentially on specimens
subjected to a constant amplitude stress cycle until a predetermined number of cycles
NL. The first specimen is tested at an initial load amplitude selected arbitrarily.
Suppose the specimen “survival” (runout) until NL cycles. The load amplitude applied
to the next specimen is increased by a step size d. Conversely, the specimen is marked
as “failure”, and the load amplitude for the next specimen will be decreased by a step
size d. The step size is usually constant during the entire experiment process. This
procedure is repeated in sequence, with load levels being increased and decreased in
increments until the number of specimens is reached. Therefore, the staircase approach
provides a reasonable estimate of the median fatigue limit because about half of the
specimens fail and the others do not [37].

Let n be the sample size of a staircase experiment, and the specimens that to be
tested are denoted as random variables X = [x1, x2, . . . , xi, . . . , xn]. The X are chosen
from a discrete and finite set of stress amplitude Sa, Sa = [Sa,1, Sa,2, . . . , Sa,j, . . . , Sa,jmax ].
The Sa is discrete by step size d. After a specimen is tested in xi = Sa,j, the next
specimen must be treated one load level up or down as the current specimen. The
responses of each specimen are denoted as the “0” survival and “1” failure. Repeating
the same staircase rules turns a finite set of stress levels into random variables.

The staircase test methodology was extensively used to evaluate fatigue limit dis-
tribution due to its three outstanding features. Firstly, by its very nature, the staircase
test tends to concentrate data near the median, leading to a high accuracy estimation
of the median. Secondly, the staircase sequence design can result in “30 %to 40%” sav-
ings in the number of specimens compared with creating a whole S-N curve. Thirdly,
it is the relative simplicity of the statistical analysis of staircase data.

However, the staircase method is not always working well because the standard
deviation estimation is greatly affected by step size in the staircase method, which
must be constant during the test, and leads to low standard deviation estimation
accuracy. With this drawback, some simulation studies have shown that deviation bias
is a function of both step size (d) and sample size (n) in staircase testing [38]. The
staircase method cannot eliminate or avoid this problem. However, it can minimize
the error of the standard deviation estimation value in optimizing the experimental
design [39], improving the data processing [40] and creating the correct coefficient[38].
The detailed background are presented in Section 4.1 and Section 5.1.
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1.2. STAIRCASE TEST

1.2.2. Staircase parameters
Four parameters are input for the staircase method, including initial stress, stress

step, number of specimens and the predetermined number of cycles.
(1) Initial stress (Sa,0)

Generally, the engineer could make a qualified guess about the expected fatigue limit
based on the experience with the mechanical properties of the material that are deriva-
tives from the literature and previous tests. Despite the fact that the engineer’s ex-
perience with a particular component and the results from estimations may differ, it
is indispensable to select the initial level. Some research [41] have studied the effect
of initial stress on the staircase outcomes. Usually, the starting stress level should
preferably be taken as close to the mean threshold stress as possible [42]. The initial
level, which is a highly realistic boundary condition, is integrated into the simulation
model. Roué et al. [39] choose a “median-3/2d” as an initial value in the simula-
tion study to reduce the number of specimens to approach the median fatigue limit.
Müller et al. [40] firstly proposed a function for choosing an initial level underlying
the Lognormal distribution.

(2) Step size (d)
Step size is a significant parameter in the staircase method. The first reason is that
if the value of the step is too small, there will be continuous survivals or failures,
resulting in wasted specimen and time. Conversely, if the interval value is too large,
the estimated standard deviation will be much more significant. In the conventional
staircase method, the increment must be constant in one test. The other more crucial
reason is that increments greatly influence standard deviation estimation.

In many researches, the increment was selected as a proper integer value without
deliberate research such as 5MPa, 10MPa or 20MPa.

A number of studies investigated the parameters in the staircase method. In the
assumptions of Dixon-Mood, the increment should keep constant in every stress level,
and the increment should be in the range of 0.5s−2s [27], where s donate the standard
deviation of fatigue limit. Yoshimoto [43] recommended that the step size should be
as close to the standard deviation of fatigue limit as possible in a small sample size
test and applied linear regression analysis of the experimental S − logN curve to
find a “standard deviation”. “5% criterion” [42] is a consensus and an engineering
experience. When the fatigue strength determined by the conventional fatigue test
method is known, the fatigue strength within 5% can be taken as the increment.
However, this assumption relies on the constant increment being less than twice the
actual standard deviation of the tested population. Grove [44] assumed that it is more
robust to the choice of the increment in the range s − 2s, where s is the standard
deviation of the log-stresses. Pollak et al. [38] for a range of increment (Fig. 1.7) and
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found that using larger step sizes in the 1.6s − 1.75s range can significantly reduce
estimation bias. Çalişkan et al. [45] advised to use stress increment around 0.5s−1.5s.

Figure 1.7: Effect of the increment on the standard deviation estimation [38]

So, the standard deviation is required prior to the test to determine the increment.
Standard deviation is available from another testing of the material or similar material
to provide a rough initial estimate of standard deviation.

(3) Number of specimens (n)
In the early research, the sample size of the staircase test should be large enough
(40-50 specimens) for the staircase method. In recent years, staircase tests normally
consist of 10-30 specimens. Pollak et al. [38] found that the method is robust for
sample numbers as small as 5–10 specimens. We believe that too many samples will
consume much test time and money, while too few samples do not yield accurate
results and affect the subsequent probabilistic analysis. This observation is supported
by the study of Roué et al. [39], which proved that a small sample size would greatly
reduce the confidence of fatigue limit. Logically, the uncertainties decrease when the
number of specimens increases for the same distribution (same fatigue test). ISO 12107
[35] and Strzelecki’s research [46] demand that at least 15 specimens to estimate the
mean and the standard deviation for exploratory research. Generally, the sample size
is small, for example, less than 20.

The nominal sample size is used in both simulation and experimental studies to
reduce the effect of starting load level. The nominal sample size [37, 47] is the number
of specimens after and including the first pair of tests with opposite results. The
number of specimens in this study (n) donates the nominal sample size.

(4) Number of cycles (NL)
In practice experiment, it is hard to reach an infinite number of load cycles, and the
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fatigue limit normally is considered as the fatigue strength which displays at typically
1× 106 or 1× 107 load cycles [5, 6, 7, 8]. In this study, we have chosen 1× 106 cycles
for defining the fatigue limit.

In the literature, fatigue limit tests based on the staircase method in recent years
are summarized in Tab. 1.2.

In Tab. 1.2, m is the median (equal to mean in Normal distribution), s is the
standard deviation, NL is fatigue life for defining the staircase test method, and n is
the number of specimens. The number of specimens is less than 30 in most studies. All
tests were conducted considering stress levels, and results were calculated by the clas-
sical Dixon-Mood (DM) method (which is described in [27]) for Normal distribution
unless otherwise specified.

In summary, the staircase methods have four outstanding features: (1) The simple
protocol is the most obvious superiority. Each specimen was tested at given stress
for a specified number of cycles or until failure, and only adjusted stress load for the
different specimens. (2) This method tends to concentrate data near the median by its
nature [37]. (3) In the following, the staircase method requires fewer tests. Compared
with the Probit methods (See Tab. 1.1), it saves the tested number of specimens
30%-40% [27]. (4) Thanks to Dixon and Mood’s research [27], there is the relative
simplicity of the basic statistical analysis of staircase data.

However, the staircase method has three defects: (1) The staircase method test
does not have mathematical optimization characteristics, and the accuracy of the
estimation under the same sample size remains to be further increased, or the sample
size needs to be further reduced under the same estimation accuracy. (2) The stress
step size d should be estimated before the staircase test. If the step size is too large, the
probability of generating invalid test data increases, increasing the test uncertainty.
(3) The standard deviation estimation is systematically less accurate and lower than
the true value. Therefore, this study carried out the experimental fatigue test by
staircase method and improved it in terms of post-processing and test strategy.
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Table 1.2: Summary of staircase test and fatigue limit characteristics

Materiel NL

Stress range
(MPa)

d

(MPa)
n Statistical Estimation Ref

Lthium disilicate
glass-ceramic

2.5× 105 790-940N 50N 15 DM m= 879.28 [48]

EN-GJS 700
ductile cast iron

2× 106 190-230 18.88 7 DM
m= 210.90
s= 10.01

[49]

SAE 4340 steel 1× 107 306.8-320.6 3.45 54 DM
m= 319.02
s= 20.03

[50]

Ti-6Al-4V 1× 107 460-590 25 27 DM
m= 540
s= 60

[51]

Alloy A319 (120℃) 1× 108 68.5-82.8 2.8 26
MLE

(censoring)
m= 75
s= 4.2

[52]

Nodular cast iron - 177.3-323.1 18.3 25
MLE

(censoring)
m= 195.5
s= 17.6

[41]

Stainless steel 1× 108 205-225 5 22 DM
m= 3.070
s= 3.2e-3

[47]

C45 steel 5× 106 288-318 6 20 DM
m= 310.3
s= 11.4

[46]

Ti-6Al-4V 1× 109 400-440 20 18 DM
m= 406.36
s= 11.65

[38]

EA4T axle steel - 345-370 5 17 DM
m= 356

s= 13.4596
[24]

35NCDV12 steel
Non-chromium

5× 106 388-529 47 15 DM
m= 393.875
s= 39.088

[53]

35NCDV12 steel
Chromium

5× 106 151-341 115 15 DM
m= 239.214
s= 50.35

[53]

ASTM A743
CA6NM steel

2× 106 337-392 14 15 DM
m= 361.625
s= 11.589

[54]

CL65 steel - 410-420 5 15 DM
m= 414.64
s= 2.65

[24]

LZ50 axle steel - 255-285 10 14 DM
m= 267.14
s= 5.3

[24]

High strength
steel 300 M

1× 109 690-790 20 14 Null m=723±22 [55]

Aluminum
A7N01S-T4

1× 107 125-140 5 12 MLE fit
Lognormal
m= 2.129
s= 2.469e-2

[56]

Bogie cast steel - 134-146 4 12 DM
m= 139.23
s= 3.2479

[47]

Aluminium
7075 T7531

1× 107 187-208 7 11 DM
m= 189
s= 3.7

[57]

Normal distribution: m: median(mean) s: standard deviation
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1.3. SUMMARY

1.3. Summary
Fatigue characterization has been a research topic in mechanical structure design

for decades. A brief review of the fatigue limit and staircase method is presented in
this chapter. Section 1.1 introduces fatigue limit - with its variability property - and
describes the linear elasticity in the HCF test, which is the base of the strain control
method proposed in this work. In Section 1.2, the staircase protocol and parameters
sensitivity analysis are summarized. The studies below are carried out based on the
advantages of the staircase method and aim to reduce the disadvantages.

Experimental test

Strain control vs. Acceleration control 

Strain control 

Vibratory shaker

Constant strain control in electro-dynamic shaker

Strain control test method

Strain control in staircase test

Statistical method

Summary of statistical methods

Kernel density 

estimation 

Reduce the uncertainty of estimated standard deviation 

Non-parametric method based on KDE

Simulation analysis

Bayes improvement

Bayesian staircase framework

Bayes LHS

Bayes-LHS staircase procedure 

Result:    Experimental staircase data

Result:     Fatigue limit distribution

Result:  Compare Bayes-LHS staircase and Bayesian staircase  

Uncertainty in staircase 

Leave-one-out sampling

Staircase data Bootstrap sampling

Comparison of three kinds of specimens

Result:     Staircase has large uncertainty in standard deviation

Figure 1.8: Framework of this study
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The main contributions of this work are organized in 4 chapters as presented in
Fig. 1.8:

Chapter 2 In this chapter, an experimental strain-based vibration control test method
is introduced and conducted with an electro-dynamic shaker . This chapter de-
tails the use of a staircase test procedure on a vibration bending bench, including
parameter selection and a fatigue limit estimation with the classical Dixon-Mood
approach. The test results with the staircase method obtained in this chapter
offer a dataset for uncertainty quantification and statistical study.

Chapter 3 The post-processing leads to one distribution after one staircase test. We
want to evaluate the uncertainty from multi-staircase tests on the same exper-
imental test system. Bootstrap is used to characterize the mean and standard
deviation of the fatigue limit distribution from staircase data, as well as the un-
certainty associated with the staircase test method. Using the bootstrap method,
we also compared the fatigue limit distribution of the DC01 from different kinds
of specimens.

Chapter 4 The use of different methods from the literature led us to investigate
how to approach the statistical treatment to improve the standard deviation
estimation of the fatigue limit distribution. We reached a new method based on
Kernel Density Estimation, that we have detailed in this chapter. A simulation-
based investigation is performed using several probability distributions with
different coefficients of variation.

Chapter 5 In the logic of making improvements to the staircase methods, we chose
to focus on the use of a test design process based on the Bayesian theorem. In
an attempt to improve the results, we also proposed to include Latin Hypercube
Sampling (LHS) regarding both the scientific consideration and the engineer-
ing requirement. The advantage of using the Bayesian theorem in the staircase
method is that it eliminates the step size and makes the most of the previous test
information to decide on the following test. LHS is also involved in preventing
similar results from the same Bayesian Maximum Entropy Sampling (BMES).
The results provide that the optimal staircase method has a faster convergence
than the conventional staircase method.

This dissertation finally ends with general conclusion and perspective work.
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Chapter 2

Experimental strain-based vibration
control to obtain the fatigue limit by
the staircase method

This chapter highlights the possibility of strain control with a vibration fatigue
bench. The combination of a constant strain level and staircase methods provides a
quick evaluation of the fatigue limit distribution.

Low carbon steel specimens with a reduced section were selected to carry out ex-
perimental tests. A staircase test procedure with a vibration bending bench is detailed
in this work, including parameter selection. The results highlight the efficiency of the
strain-controlled staircase method in reaching the fatigue limit.

Section 2.1 is a non-exhaustive overview of the fatigue test machines. Section 2.2
describes the specimen, the experimental vibratory bench and the instruments. Sec-
tion 2.3 presents a methodology for strain control and a comparison with traditional
acceleration control. Section 2.4 gives the validation for the experimental data and
introduces the next chapter, which aims to provide improvements for the estima-
tion of the statistical parameters of the fatigue limit distribution. This part has been
published in an international journal [58].



CHAPTER 2. EXPERIMENTAL STRAIN-BASED VIBRATION CONTROL TO
OBTAIN THE FATIGUE LIMIT BY THE STAIRCASE METHOD

2.1. Fatigue test machines and their
control

As pointed out by Shawki [59], fatigue testing machines can be classified according
to different criteria depending on the requirements. The method of load application
is an essential criterion because it determines the amplitude of the applied force
and the test duration. Usually, hydraulic machines are chosen for their ability to
apply relatively high force amplitudes compared to machines using high frequencies
to excite the components (such as electro-dynamic, electromagnetic, or ultrasonic
systems). Other criteria are essential such as the type of loading (tension, bending,
the combination of bending and torsion, ...) or the need to control by strain or stress.

There are three representative clusters of testing machines usually adopted to
perform fatigue tests of structures: servo-hydraulic machine, electro-dynamic shaker,
and ultrasonic testing system. The difference between these three machines is listed
in Tab. 2.1.

Table 2.1: Difference of fatigue test machines

Servo-hydraulic machine Electro-dynamic shaker Ultrasonic fatigue tester

Frequency
low

(⩽30Hz)
high

(5− 7000Hz)
very high

(20− 30kHz)
Test time long test time large reduction of test time large reduction of test time

Load displacement or force
acceleration, velocity, displacement,

force (with prestress)
displacement (strain)

Response well-controlled variations well-controlled

Drawbacks low frequency indirect control
frequency effect
thermal effect

specific specimen

From Tab. 2.1, the main difference between these three kinds of testing systems
is the working frequency range. In one way, the ultrasonic fatigue tester presents an
excitation frequency of more than 20kHz and is mainly used for VHCF test. In another
way, the load-controlled servo-hydraulic machine and electro-dynamic shaker are used
in HCF tests. However, hydraulic machine may leads to a long time to achieve a large
number of cycles around the fatigue limit due to the relatively low load frequency
(20-50Hz). Whereas, electro-dynamic shaker has a significant advantage in saving the
fatigue test time since they work on high load frequency. For example, it costs about
93 hours for 30Hz in the servo-hydraulic machine to reach 1×107 cycles, while only 13
hours for 220Hz in electro-dynamic shaker. Since testing such large numbers of cycles
is time-consuming, it is desirable to accelerate the tests by electro-dynamic shaker to
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2.1. FATIGUE TEST MACHINES AND THEIR CONTROL

reach a high number of cycles.
These systems offer different ways of applying the load. Hydraulic machine can

directly perform fatigue testing in force (to control stress) or displacement (to con-
trol strain) on the structure. Electro-dynamic shaker is performed chiefly with base-
excitation to obtain a large deflection of the structure with small input excitation. Fur-
thermore, ultrasonic testing system control the displacement of the specimen through
a piezoelectric actuator. The load application determines that the response of the
servo-hydraulic machine and ultrasonic fatigue tester are well-controlled, but not for
electro-dynamic shaker.

To sum up, the servo-hydraulic machine has reasonable constant load control but
leads to a lengthy test duration. The electro-dynamic shaker has an advantage in
reducing test time but has drawbacks in indirect control. The ultrasonic fatigue tester
works in VHCF and must consider other problems like frequency effect and thermal
effect in application [60].

The difficulty of using electro-dynamic shaker in the fatigue test lies in control.
The shaker introduces the motion of the basement by controlling acceleration, velocity
or displacement through a closed-loop system. However, the major drawback of base-
excitation is that the stress or strain response is widely dispersed. Khalij et al. [61]
used the base-excitation in acceleration to establish a fatigue diagram corresponding
to the strain amplitude versus the number of cycles, which highlights the difficulty of
controlling the strain amplitude levels for the same acceleration levels.

Several other works [62, 63] have proposed the development regarding the ob-
jection to keeping stress/strain steady for base-excitation of electro-dynamic shaker
test systems. Among these, a simple approach is to use force as the input excitation.
Hooreweder et al. [57] used an electro-shaker which directly controls the force through
a stiff stinger at the free end of the specimen instead of base-excitation. However, force
control requires a preload for the sensor and loses the advantage of resonant excitation
with the shaker. Another typical approach is to use output sensors to calibrate the
local stress (strain) in the fatigue zone. By measuring displacement, Xue et al. [55] fo-
cused on fatigue limit assessment and used an optical displacement sensor to measure
displacement at the specimen free edge and then measure the applied stress. Morris-
sey et al. [51] performed the fatigue test by calibrating the displacement to give a
feedback loop during testing to control the strain actively. Gautrelet et al. [64] used
the linear relationship between the response in strain or velocity and the excitation
in acceleration to calibrate the strain level of the fatigue zone. Kim [65] proposed a
spectral damage prediction method based on acceleration response without any strain
data, which is based on the spectral relationship between the energy of acceleration
and fatigue damage. George et al. [66] used a laser sensor to measure the velocity of
the specimen to calibrate to the maximum strain. Similarly, Ellyson et al. [67, 68]
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used a closed-loop system to maintain a steady force and frequency of the base exci-
tation, which is controlled against the displacement of a point on the sample. Česnik
et al. [69] designed a closed-loop control system from two accelerometers as output-
input based on a Y-shaped specimen to actually controll the stress in the fatigue zone,
but no real-time was used. However, calibration to strain may be impossible if the
sensor voltage exceeds the test software’s limit in practice. Moreover, the relationship
of output (displacement/velocity/acceleration) – strain/stress is susceptible not only
to structure, such as dynamics characteristics, but also to other factors such as the
material and the environmental temperature [65]. In brief, conventional experimental
calibration measures strain rather than control of strain.

The literature dealing with the vibration-induced fatigue control method still fo-
cuses on indirectly controlling for stress/strain. Since the strain assessment depends
on the frequency response magnitude, strain control is essential to reach the fatigue
parameters.

In previous works, most fatigue tests were controlled by strain using the hydraulic
machine. For example, the strain control fatigue test normally aims at stress-strain [70]
and LCF behavior. A systematic study in this area is the work of strain–life curves.
Procházka et al. [71] dealt with strain-controlled cyclic tests, the results of which
enabled the construction of Manson-Coffin curves and assessment fatigue parameters.
Williams [72] studied the development of accurate statistical strain–life curves, to
predict LCF and HCF based on plastic strain and elastic strain. Carrion et al. [73]
published the experimental data about the strain-controlled fatigue tests on TA6V at
different strain ratios and various strain amplitudes.

In this study, we want to control strain in HCF vibration fatigue test. This section
presents the difficulties encountered related to the use of a vibration system and the
excitation at the resonant frequency of the specimen.

2.2. Experimental setup

2.2.1. Specimen design and material
For experiments, specimens were manufactured from plates using a wire electrical

discharge machine (wire-cut EDM). A stress raiser zone was designed in the middle of
the specimen to localize the crack far from the clamp. The quality level of the finished
machining surface is better on the reduced section. More details about the specimen
dimensions are shown in Fig. 2.1.
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Figure 2.1: Geometry and dimension of the symmetrical specimen (Unit: mm)

The low carbon steel DC01 (EN 10130) [74] plate without heat-treatment is con-
sidered for the study. The fundamental mechanic properties and chemical composition
of material are given in Tab. 2.2 and Tab. 2.3, respectively.

Table 2.2: Mechanical properties of the low carbon steel DC01

Density
(kg/m3)

Young’s modulus
(GPa)

Poisson’s ratio
Yield Strength

(MPa)
7850 205 0.3 350 [61]

Table 2.3: Chemical composition of the steel DC01 material

Element C Mn Si P S Ni Cr Al Mo N
Wt% 0.019 0.160 0.008 0.015 0.019 0.019 0.021 0.030 0.003 0.0024

A modal analysis by Finite Element Method (FEM) of the specimen used in exper-
imental tests is performed using Ansys. The detailed analysis procedure is presented
in Appendix A. Fig. 2.2 illustrates the finite element model and measure points. This
analysis shows the first four mode shapes in Fig. 2.3 with the related normal displace-
ments representing the deformations and the resonant frequencies.

21



CHAPTER 2. EXPERIMENTAL STRAIN-BASED VIBRATION CONTROL TO
OBTAIN THE FATIGUE LIMIT BY THE STAIRCASE METHOD

Strain measure Velocity measureBase excitation

Figure 2.2: The finite element model of the specimen and measurement points

1st mode 2nd mode 

211.35Hz, Bending 1160.3Hz, Plan 

  

3rd mode 4th mode 

1450.9Hz, Bending 1616.3Hz, Torsion  

 

 

 

Figure 2.3: The first four mode shapes of the specimen. (The colors correspond to the
normalized displacement. Red is the maximum)

From the FEM simulation, the resonant frequency of the first bending mode is
211.35Hz. To avoid the effect of the second mode, the specimen has been designed in
order to obtain the second mode away from the first. Besides, the Frequency Response
Function (FRF) are obtained by harmonic analysis range of 100Hz-2000Hz under an
acceleration of 3 g. The FRF of the strain in the central point (the location of strain
gauge) is shown in Fig. 2.4. In this figure, only two peaks represent the first and third
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modes. The plan mode and the torsion mode are not visible because of the normal
measurement. Hence, the first bending leads to the largest deflection and, therefore,
more damage in the reduction area. Therefore, the first mode is chosen for the fatigue
tests.

Figure 2.4: FRF of strain response

2.2.2. Test bench
The electro-dynamic shaker has the capability of the fatigue test with a high num-

ber of cycles, such as 1 × 106 cycles, in a short time. The Laboratory of Mechanics
of Normandy (LMN) has acquired a vibration-based bending fatigue bench which
consists of a motion table driven by a shaker presented in Fig. 2.5. The air-cooled
electro-dynamic shaker is connected to the test specimen through a shaker table. A
closed-loop vibration control ensures real-time adaptive control of tests. The experi-
ments are performed on low carbon steel specimens subjected to cyclic sine excitation
in bending deformation. Pictures of the machine are shown in Fig. 2.6.
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shaker

laser vibrometer
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(software)
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velocityspecimen

signal generator
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Strain gauge

(a) Testing setup
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strain gauge
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(b) Drawing of specimen showing position of instrumen-
tation (Unit: mm)

Figure 2.5: Schematic of the testing setup

strain gauge

vibration table

vibrometer

specimen

accelerometer clamping

shaker

Figure 2.6: Pictures of test machine

For the Dongling GT500M shaker with a horizontal mobile table, the acceptable
working conditions are listed in Tab. 2.4.
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Table 2.4: Configurations of the shaker

Mass of mobile table 21.0 kg

Frequency range 5Hz - 2000Hz
Force in sine mode 3000N (p)

Force in random mode (ISO-5344[75]) 3000 N (eff)
Acceleration sine 14.6 g (p)

Acceleration random (ISO-5344[75]) 14.6 g (eff)
Velocity 2m/s (p)

Displacement 25mm (pp)

(eff: effective value, p:peak value, pp:peak-peak value)

In this test, the instrumentation and software used to capture the signals are:

(1) A PCB 352A24 accelerometer with sensitivity 100mV/g is fixed on the head of
table.

(2) A HBM 350GE LM11 micro-measurement strain gauge with the ability of high
resistance to alternating loads is glued on the stress concentration area of the
specimen. The sensitivity is 0.5mV/(µm/m). The performance of the strain gauge
during the fatigue tests is discussed in Section 2.3.2 because the strain control has
a great significance in this study. The shape and dimension of the strain gauge
used in this study are presented in Fig. 2.7.

4.4

9

2.5

1.5

(mm)

Figure 2.7: Dimension of strain gauge (HBM 1-LM11-1.5/350GE)

The roles of the strain gauge and the accelerometer have been permuted during
the study to have :
- The accelerometer serves as the table control sensor to excite the specimen. In
this case, the gauge measures the strain response of the specimen.
- The gauge is a control sensor of the specimen strain. In this case, the accelerom-
eter becomes a device for measuring the acceleration that compensates for the
displacement of the table according to the imposed strain.
In both cases, the two sensors can have a control role but can also be used to
measure. Indeed, there is always a difference between the control set point and
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the real imposed excitation.
(3) A Polytec OFV-3000 laser vibrometer with sensitivity 1000mV/(m/s) is used in

the test to measure the response in velocity on the free edge of the specimen.
The modal characteristics of specimens can be determined by non-contacting
vibrometer signals.

(4) “Data Physics 901 Series Vibration Control and Signal Analysis Systems” includ-
ing software and hardware was used for test system control and data acquisition.

To carry out the fatigue test on the vibration table, the excitation frequency is selected
near to the first resonance frequency of the specimen, and the specimen is forced to
produce an enormous deflection response due to the resonance amplification.

2.2.3. Variability in the experimental test
Before fatigue testing, it is necessary to identify the factors that affect the test

results. Since the main objective is to reduce uncertainty, this part helps to catego-
rize these factors and make necessary assumptions. Most importantly, as described
in Section 1.1.2, the strain and stress are linear in this high-cycle vibration fatigue
testing.

To prevent uncertainty of the test system, the following arrangements have been
adopted: (1) All tests were performed at constant room temperature; (2) The con-
nection of the test specimen was ensured by clamp on accurate surfaces [76] with a
constant tightened torque at 25N ·m.

Alignment of testing machine and specimens The clamping in the vibration
bench is not precise as the hydraulic machine. Even if the clamp is tightened
with a torque wrench, the positioning of the specimens can have an impact on
the resonance and damping. Moreover, the choice of the first resonance mode
for testing is problematic, as shown in the work of Appert et al. [76]. That is
why a reduced section has been added away from the clamp to reduce its effect.

Specimens mass The test results are highly dependent on the specimens. However,
the specimens have variability in dimensions even if they come from the same
manufacturing batch. Therefore, these dimension variations lead to mass (or
density) variations, and the effect is not negligible when dynamic behaviour is
considered.

Material and micro-structure The specimens being extracted from a plate, vari-
ability of the micro-structure and defects contained in the material, including
size, type, distribution and morphology, have an effect on the fatigue behaviour
[14, 77].

Crack initiation For the damage in HCF, there are micro-damages on the surface of
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the deformed solid (Material) that lead to micro-cracks through slippage (crack
initiation). Then the micro-cracks develop perpendicular to the direction of the
load (crack propagation). It is assumed that cracks are always initiated from
the side face of the reduced area and grow in the transverse direction.

2.2.4. Linearity of the test system in acceler-
ation control

To prove that no other parameter affects the system (for example, plasticity), sine
sweep tests at different acceleration levels were performed to validate the linearity of
the test system. The sine sweep frequency is around the first resonant frequency, which
is 190Hz-220Hz with a sweep speed of 0.3Hz/s. From CES EduPack software[78], we
know that the theoretical fatigue limit of the studied steel does not exceed 1800µm/m.
Therefore, the interest range can be focused on acceleration levels from 1 g to 4 g

every 0.5 g. The FRF, representing the ratio in frequency between the response and
the excitation, are plotted in Fig. 2.8.

(a) FRF Strain (b) FRF Velocity

Figure 2.8: FRF of the strain and the velocity to the base acceleration

These figures reveal a shift of the resonant frequency from 190Hz to 220Hz as
well as a variation of the system damping factor in a range from 2.494 × 10−3 to
5.387 × 10−3 increasing with the acceleration levels. Besides, the maximum strain in
Fig. 2.8 is 1684µm/m, which corresponds to a stress close to 340MPa. This stress
is lower than the yield strength (Tab. 2.2) of steel DC01, which confirms that the
material works in the elastic region in this acceleration range.

Gautrelet et al. [64] have determined the linearity range of the vibratory fatigue
bench is 0-20g. According to this work, the linearity of the test system is studied from
each response value at the frequency fr − 5Hz with different acceleration levels. The
values were extracted to plot the relationship between the response (strain or velocity
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response) and the excitation (acceleration levels). Here, fr is the resonant frequency,
fr − 5 is arbitrarily chosen before the resonance peak to keep the phase between the
input and the output less than 20◦ [69, 64]. Fig. 2.9 shows the relation between strain
response and velocity response over the acceleration levels in resonant mode, and the
linear curves are fitted by the least squares method.

(a) strain (b) velocity

Figure 2.9: Strain and velocity vs. the acceleration level

The fatigue test in this study is conducted within the linearity range of the test
system.

2.3. Strain control strategy
Because of the inherent feature of the vibratory system, the HCF test on vibratory

shaker is usually controlled by acceleration [7, 61, 79, 80, 81]. By controlling the
magnitude of the driving voltage, the acceleration of the vibration table is finally
guaranteed to reach the specified value. This means the drive voltage of the vibration
table can be adjusted slightly to keep the acceleration constant during the fatigue
test. The strain measures obtained from acceleration control are dependent on the
resonance amplification. Despite the use of identical specimens and the steady clamp,
the dispersion in acceleration control leads to different strain amplitude values, so it
is difficult to use in constant amplitude fatigue testing. That is why strain control is
proposed in this study.

An experimental development on the shaker is conducted to define the strain level
as an input control with a strain gauge placed on the specimen (see Fig. 2.10). In
the left part of Fig. 2.10, the conventional vibration test on electro-dynamic shaker
is usually controlled by the base acceleration (movements imposed on the clamping).
Few recent controllers can be deflected to realize strain control.

On the contrary, the strain control in the right part makes sense in fatigue testing
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Specimen

Control: Accelerometer Measure: Strain gauge

Shaker

Specimen

Measure: Accelerometer Control: Strain gauge

Shaker

conventional this study

Figure 2.10: Schema of the change of the bench instrumentation

because the structure response is directly controlled. On the contrary, the acceleration
and displacement depend on the FRF magnitude. The FRF of the test system shows
variations with different specimens and clamping. These variations lead to large fluc-
tuations of the stress or strain response amplitude, which may exceed 10% even for
the same acceleration load. The fluctuation is too large to maintain stability, thereby
reducing the reliability of vibration fatigue test results. Hence, strain control provides
a constant stress or strain amplitude in the fatigue test. Besides, the vibration table
works with the closed-loop control mode.

2.3.1. Experimental development for fatigue
tests

In this study, the strain control fatigue test was implemented with the Sine Res-
onance Track-and-Dwell (SRTD) technique [77], which means the controller auto-
matically maintains the resonance conditions during the test even though a change
occurred (crack, for example). The SRTD test with strain control mode is illustrated
in Fig. 2.11. This SRTD with strain control has two features. Firstly, the aim is to
control the strain amplitude to keep a constant value. The shaker adjusts the base
acceleration to reach the strain level needed for the fatigue test. Secondly, the SRTD
maintains the phase difference between the excitation and response signals at 90
degrees. This ensures that the excitation frequency and resonant frequency of the
specimen remain the same because a resonant frequency reduction is observed when
a crack occurs. In general, the strain amplitude forms a closed-loop in SRTD test,
which ensures a constant strain amplitude and working at the resonant frequency.

In the real test, the source signal for excitation is sent from the computer to the
power amplifier and then driven the shaker to excite. The “Data Physics” software
records the acceleration, velocity and strain signals in the frequency domain. The
SRTD test makes it possible to record the evolution of the resonant frequency used
in post-processing to define a criterion for assessing the presence of a crack on the
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adjustment by shaker
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adjustment
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Accelerometer

Shaker

Strain 

gauge

Figure 2.11: SRTD test with strain control

specimen.
The specimens were subjected to a sine excitation during the SRTD test, and the

fatigue life under this strain amplification was subsequently identified. A schematic
diagram of the data flow in the SRTD experiments is shown in Fig. 2.12. The source
signals for excitation were sent from the computer to the power amplifier and then
driven to the shaker to excite the specimens. The strain amplitude, initial resonant
frequency, and the total number of cycles were defined at the beginning. The strain
was controlled by a gauge and formed a closed-loop by the Data Acquisition (DAQ)
system. The acceleration and velocity signals were also measured to obtain resonant
frequency in real-time and calculate the number of cycles. The resonant frequency and
the number of cycles were used to judge whether an SRTD test finishes. If both two
criteria were not met, the resonant frequency was set as the excitation frequency for
the amplifier to keep the test working at the resonant frequency. Otherwise, the SRTD
test for one specimen was finished. All the signals of the acceleration, velocity, strain
and excitation frequency were recorded in the time domain. The resonant frequency
evolution recorded during the test was used in post-processing to define a criterion
for evaluating the presence of cracks on the specimen.

According to Fig. 2.12, it is necessary to define the initial excitation frequency fr0,
strain amplitude ε, and the fatigue cycles NL beforehand. The test system gives an
excitation of the specimen to keep a constant strain response in resonant frequency.
The system acquits phase shifts between input (strain) and output (acceleration)
to obtain resonant frequency. The test maintains working frequency fr until 1 ×
106 cycles, or stops due to instability caused by the critical crack.

With specimen DC01, the fatigue test procedures are depicted in Fig. 2.13. The
test can be divided into two main steps for each specimen.
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Figure 2.12: Test control and condition system for SRTD test
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SRTD test (strain control)  
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frequency:

 strain  load:

Step 1
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 ' 3,   ' 2fr fr− +



resonant frequency  



Step 2

Step 3

Figure 2.13: Fatigue test procedure with strain control

Note the desired strain amplitude by ε. For step 1, a sine sweep test with acceler-
ation control (in base) is carried out from 190Hz - 220Hz. The excitation amplitude
is arbitrarily chosen with the aim that it leads to a strain response close to ε. This
step has two objectives. Firstly it is necessary to determine the resonant frequency
for the next step with strain control. Secondly, the FRF of this sub-test can be used
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as an examination of the test machine and specimen to reduce the uncertainty of the
test.

The resonant frequency, donated as fr′ and obtained by step 1, is used for step 2.
It should be noted that a much higher excitation voltage is required for the amplifier
to achieve the same response for control in strain relative to control in acceleration.
Since the response depends on modal characteristics in excitation on base, it is hard
to reach high deformation far away from the resonant frequency. Consequently, the
excitation frequency should be close enough to the resonant frequency to avoid sudden
changes in excitation voltage. Upon many tests, the frequency range is set in (fr′-
3, fr′+2), in Hz, for carrying out the sine sweep in strain on the low carbon steel
specimens. Based on this frequency range, a sine sweep test with strain control in
desire level is conducted to record the FRF corresponding to the ratio between the
strain (control on the response) and acceleration (measure on base) channels. Thanks
to this FRF, the related resonant frequency, denoted by fr0, is used as the initial
excitation frequency in the SRTD test.

Step 3 is the main fatigue test carried with the SRTD test. The fr0 from step
2 and ε are the input to SRTD test as shown in Fig. 2.12. The vibration excitation
works at strain amplitude ε until the stop criterion.

2.3.2. Strain gauge and failure criterion
The fatigue damage of the strain sensor significantly affects the strain control

strategy because both the specimen and the strain gauge are exposed to fatigue dam-
age. Strain gauges are bonded to the center of the reduced zone to prevent premature
gauge failure.

Empirically, the cracks were mainly observed on the face without the strain gauge.
If the crack of the specimen leads to the fracture of a strain gauge, the specimen was
not used for fatigue limit estimation to ensure all specimens reached the defined
number of cycles.

Also, a threshold is required in the staircase method to define fatigue failure. The
modal parameters of the mechanical system, such as resonant frequency and damping
loss factor [69], shift when repetitive loading is applied to the system. However, Khalij
et al. [61] have shown that the damping loss factor underestimates the number of cycles
to failure. Therefore, the decrease in resonant frequency related to the crack presence
and propagation was used in failure identification.

In order to avoid the different initial resonant frequency for each specimen, a
normalized percentage rate changes between the resonant frequency of after (frend)
and before (fr0) SRTD test is used as s indicator defined as Change of Resonant
Frequency (CRF), which is given by Eq. 2.1:
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%CRF =
fr0 − frend

fr0
× 100 (2.1)

To observe the strain gauge performance and related crack lengths to the thresh-
olds, SRTD were carried out until CRF=2%, CRF=5% and CRF=8% of resonant
frequency decrease. Fig. 2.14 reveals the relationship between frequency decrease and
strain gauge measurement, as well as pictures obtained from a digital microscope
(×300) of corresponding cracks on specimens. We can observe that:

(1) the strain keeps constant for a 2% decrease in frequency, and the cracks were not
visible on the surface;

(2) the strain level drops for a decrease in the resonant frequency of 5% but only
40 µm/m (which is about 3% to defined strain amplitude). The crack length
roughly reached half-width of the reduction area (about 3.3mm);

(3) A dramatic drop of the strain value is observed after a 5% decrease in resonant
frequency. The reason is that the crack on the surface of the specimen causes
damage to the strain gauge. The crack extended over the whole width of the
reduction area (6.8mm) after an 8% frequency decrease.

In addition, the decrease in resonant frequency from 5% to 8% required a relatively
small number of vibration cycles. Due to the severity of the crack, the strain gauge
may lose its effectiveness after a decrease of 5%. Therefore, the stopping criterion for
the staircase method is chosen at CRF = 5% which is also supported by the works of
Gautrelet et al. [82].

To sum up, the following characteristics need to be considered to ensure the accu-
racy and stability of the strain control:

(1) Make sure that the strain gauges of each specimen are bonded at the same posi-
tion, which means the center of the reduced section.

(2) Before the experiment, check whether the resistance value of the gauge is consis-
tent with the nominal resistance value and balance the Wheatstone bridge before
every test.

(3) The fatigue limit of strain gauge HBM 1-LM11-1.5/350GE is 2000µm/m in 1 ×
107 cycles, which is much higher than that of the specimen. The cracks are always
occurred in the specimen, and there is no fatigue crack in strain gauge in this
study.

(4) It must be noted that strain measurement is contact measurement, which means
the effect of temperature evolution during the fatigue test should be examined
first. Liakat et al. [83] deduced that the temperature of MCS 1018 carbon steel
remains fairly unchanged in the HCF test, and the strain gauges are not sensitive
to temperature during the room temperature range (20-30℃). Hence, the effect
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(a) 2%

(c) 8%

(b) 5%

(b) 5%

Figure 2.14: Crack length versus resonant frequency decrease of (a) 2% (b) 5% and
(c) 8%

of temperature on the strain measurement of the fatigue test was considered
negligible for DC01 steel.

2.3.3. Comparative study of fatigue test with
strain control and acceleration control

The essential difference between acceleration control and strain control is that
strain control realizes the control response during the fatigue process directly. In
contrast, acceleration control is concerned with the input excitation of the specimen.
The comparison between traditional acceleration control and proposed strain control
is conducted on the sine sweep test and SRTD test to show the superiority of strain
control.
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2.3.3.1. Sine sweep test
Firstly, a sine sweep test was conducted on one specimen to obtain dynamic charac-

teristics of the specimen by acceleration control in 5 g and strain control in 1400µm/m.
These two amplitudes are chosen because of similar deformation responses.

(a) Acceleration control in 5g

(b) Strain control in 1400 µm/m

Figure 2.15: Comparison of sine sweep test with acceleration control and strain control
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(a) Strain amplitude evolution

(b) Resonant frequency evolution

Figure 2.16: Comparison of SRTD test with acceleration control or strain control

As shown in Fig. 2.15, the resonant frequencies obtained for these two control
modes, 210.25Hz and 210.60Hz, are almost the same. The damping loss factors calcu-
lated from the half-power bandwidth method are similar: 1.132×10−2 and 1.061×10−2,
respectively. In addition, the phase information is displayed by calculating the phase
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difference between the acceleration signal and strain signal. Strain control is a new con-
trol mode that leaves the modal characteristics of the mechanical system unchanged.

2.3.3.2. Sine Resonant Track-and-Dwell test
Secondly, the Sine Resonance Track-and-Dwell (SRTD) test for three specimens

with 5 g acceleration control and for another three with 1400µm/m, 1500µm/m, and
1600µm/m strain control were carried out. The strain amplitude and resonant fre-
quency evolution of the total 6 specimens during SRTD test is compared in Fig. 2.16(a)
and Fig. 2.16(b), respectively.

In Fig. 2.16(a), lines 1-3 represent the acceleration control, which is variable in both
the initial and the decreasing progress of strain amplitude. Khalij’s vibration fatigue
test [61] revealed a reduction in the peak of FRF with a resonant frequency shift.
This leads to two effects: the change in response amplitude during the fatigue test
and an inconsistent response for different specimens. It is the reason for the variation
in acceleration control. Moreover, the existent control ways in base, regardless of
acceleration, velocity, or displacement, have an inherent disadvantage of diversity in
response [84]. While lines 4-6, representing strain control, show a stable and constant
strain amplitude during the test under different defined strain levels. The resonant
frequency of the 6 specimens given in Fig. 2.16(b) differs in both acceleration control
and strain control. The dynamic response of the structure varies a lot with different
specimens due to different modal parameters. It is known that the resonant frequency
decreases when a crack occurs, and this decrease continues with the crack propagation
[61]. Though there are many variations, the strain control keeps a constant strain
amplitude independent of the resonant frequency.

Combining Fig. 2.15 and Fig. 2.16, though the strain control has large fluctua-
tions in amplitude compared to acceleration control, especially close to the resonant
frequency in the sine sweep test, the strain control has a very stable response in the
SRTD test. Hence, strain control is desirable for the purpose of obtaining a stable
response for base vibration.

2.3.3.3. Microstructure observations
Additionally, the fracture surface of two specimens with acceleration control and

strain control was observed to complete the comparison. The fatigue test results of
these two specimens are listed in Tab. 2.5. The specimens were scanned in a high
vacuum chamber of the ThermoFisher microscope. The specimens were positioned
vertically on a glued holder and fracture surfaces were placed perpendicular to the
15 kV electron beam. Fig. 2.17 and Fig. 2.18 display Scanning Electron Microscopy
(SEM) images of fatigue crack surface from strain control and acceleration control.

Fig. 2.17 presents the landscapes of the fracture surfaces of strain control and
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Table 2.5: The selected specimens for fractography analysis

Specimen 1 Specimen 2

Control
Strain control
1360µm/m

Acceleration control
5 g

Resonant frequency (Hz) 203.27Hz 202.65Hz

CRF(%) 15.76 25
Cycles (×105) 6.86078 7.24319

CRF: Change of resonant frequency Eq. 2.1

acceleration control. Following the fatigue test, the specimen with strain control is
submitted to tensile to fracture - to observe the fracture surface - because the vibra-
tion fatigue test does not necessarily lead to complete separation. The crack growth
direction is indicated by yellow arrows. It is observed that the cracks are initiated only
from the surface without strain gauge (points B and C) in strain control, while there
is crack initiation on both surfaces (points A, B, C and D) in acceleration control.

Strain gauge

Ductile zoneA

B C

D

(a) Strain control

A

B C

D

(b) Acceleration control

Figure 2.17: Landscape of the fracture surface

The details are shown in Fig. 2.18. A significant difference between the two control
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modes is that we observed many intergranular fractures in strain control, as shown
in Fig. 2.18(a). The intergranular spread over the fracture surface, including crack
initiation and propagation. Nevertheless, the intergranular fracture occurred but not
so much as shown in Fig. 2.18(b). In accordance with conventional fatigue fracture of
low carbon steel [61], the transgranular fracture is the predominant part of acceleration
control. Indeed, the river-line patterns representative of transgranular fracture are
most noticeable in this figure. In our opinion, this observation could be ascribed to
different kinds of excitation and therefore different stress states between strain and
acceleration controls. The centerline presented in Fig. 2.17(b) leads to the conclusion
that the deformation is of the bending type, whereas Fig. 2.17(a) corresponds more
to a tensile fracture surface. This observation would require further investigation.

Intergranular 

fracture

(a) Strain control

Intergranular 

fracture

(b) Acceleration control

Figure 2.18: Direct observation of fracture surface by SEM

2.3.4. Fatigue curve
To have a preliminary estimation of the fatigue limit, experimental tests with the

strain control were carried out to obtain the ε − N fatigue curve, the corresponding
Basquin’s equation and the confidence. Specimens are cyclically loaded using sinu-
soidal signals at specified strain levels (ε) until the specimen reaches recognizable
failure. SRTD described in Section 2.3.3.2 is used to excite the specimens. Thus, a
number of ε − N points are plotted considering 5% decrease of the initial resonant
frequency. Three strain amplitudes ε =1800µm/m, 1500µm/m, and 1200µm/m are
used as load levels, and three specimens are tested under each strain amplitude. The
corresponding number of cycles to failure (N) - considered as the fatigue life - is then
extracted to plot the fatigue curve depicted in Fig. 2.19 by double logarithmic axis.

The ε−N equation is classically represented using the curve of the median fatigue
data, but the variance information is then lost. It is necessary to construct a ε − N
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curve that characterizes the confidence level and reliability, called the lower band
curve, which ensures that the majority of the fatigue data falls above the lower bound
value. The design curve can be derived by shifting the median ε−N curve, as expressed
in Eq. 2.2.

YP,C = Ŷ ±K × s (2.2)

where the subscripts R and C denote the reliability and confidence levels. Y and
Ŷ donate the fatigue life (N) in the lower band curve and median fatigue curve,
respectively, s is the standard deviation of Y on fatigue strength. ± reflects the lower
limit or upper limit with specific reliability and confidence level. To calculate the
multiplier K, the double-sided confidence intervals approach and the approximate
Owen one-side tolerance limit approach are introduced as follows. The double-sided
confidence intervals approach [85, 86] is used to obtain a confidence band with specific
confidence given by:

KASTM = ±
√

2FC,(2,n−2) ×

√
1

2
+

(Xi −X)2∑n
k=1(Xi −X)2

(2.3)

where FC,(2,n−2) is the F-distribution (also called Fisher–Snedecor distribution) value
with the desired confidence interval C for (2, n− 2) degrees of freedom. n is the test
sample size. KASTM takes the negative value for the upper confidence band whereas
the positive value for the lower confidence band. The approximate Owen one-side tol-
erance limit approach [87] has been proposed to account for confidence and reliability.

Kowen = KD ×Rowen

KD = c1KR +KC

√
c3K2

R + c2a

Rowen = b1 +
b2
f b3

+ b4exp(−f)

(2.4)

in which,
KR = Φ−1(R)

KC = Φ−1(C)

f = n− 2

a =
1.85

n

(2.5)

where Φ is the standard normal Cumulative Density Function (CDF). The coefficients
for empirical forms of Kowen are shown in Tab. 2.6 and Tab. 2.7.

The double-sided confidence intervals provide a 95% confidence band, as presented
in Fig. 2.19, accounting for the uncertainty of the median curve. The lower band curve
is used for the design that ensures that there is a 95% possibility of survival with a
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Table 2.6: Empirical Coefficients bi(i = 1, 2, 3, 4) for Kowen

Confidence level(C) b1 b2 b3 b4

0.95 0.9968 0.1596 0.60 -2.636
0.90 1.0030 -6.0160 3.00 1.099
0.85 1.0010 -0.7212 1.50 -1.486
0.80 1.0010 -0.6370 1.25 -1.554

Ref: Page 116 in [86]

Table 2.7: Empirical Coefficients ci(i = 1, 2, 3) for Kowen

Confidence level(C) c1 c2 c3

f ⩽ 2 1 1 1
2f

f > 2 1 + 3
4(f−1.042)

f
f−2

c2 − c21

Ref: Page 116 in [86]

90% of confidence level above this lower bound.

Figure 2.19: Experimental data and the related Basquin curve with strain control

The identification of the Basquin’s parameters [34] leads to:

ε = 1.255× 104 ×N−0.1606 (2.6)
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Thus, the fatigue strength in 1× 106 cycles - considered as fatigue limit in this study
- is approached by the value of 1364.41 µm/m.

2.4. Application of staircase method for
the fatigue limit estimation

This section describes the experimental staircase test with strain control. The test
procedure and results are presented in this section.

2.4.1. Experimental procedure
The staircase test methodology [27] was extensively used to evaluate fatigue limit

distribution by mean and standard deviation determination because of its simplicity
and high accuracy. The specimens were tested sequentially, one at a time. The initial
strain level ε0 and strain step size d were determined before the test. The first specimen
was tested at the initial strain level. If there is no crack (survival) for a pre-determined
number of cycles NL (for limit value), the strain amplitude of the following specimen
is incremented by one step size. Conversely, if the specimen cracks (failure), the strain
amplitude for the next specimen is decremented by one step size. This manner is
repeated in sequence, with the strain levels increasing and decreasing with the step
size. The outcome is that approximately half of the specimens fail, and the other half
do not.

The increment d has a great influence on standard deviation estimation. Zhao &
Yang [24] and Strzelecki & Sempruch [46], proposed the stress steps of 5MPa and
6MPa for a low carbon steel material. In accordance with these works, a strain step
size of 20 µm/m is used in this study.

In this fatigue study, to carry out vibration tests, the 1× 106 cycles are chosen for
defining the fatigue limit. The first bending mode is excited because it gives the most
severe damage compared to the other modes.

To summarize, the settings for the staircase tests are listed in the tab 2.8.

Table 2.8: The experimental parameters used in staircase test

Resonance mode First bending
Step size (d) 20 µm/m

Stop criterion CRF= 5%
Number of cycles (NL) 1× 106
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With these set-up parameters, the test procedures for all specimens are schemat-
ically depicted in Fig. 2.20. In Fig. 2.13, each specimen was conducted with SRTD
test (Section 2.3.3.2) until 1×106 cycles. After the fatigue test of one specimen, check
the fatigue test results and determine the strain level for the next specimen. If the
CRF was detected below 5% (survival) for 1× 106 cycles, the strain level for the next
specimen was incremented by one step size. Otherwise, it is decremented by a step
size. After, the new strain level for another specimen is up to this test results. In the
end, these steps were repeated on another until all specimens met the following three
requirements for the staircase test.

SRTD test (strain control)  

strain       ,  NL= 1e6

Start Test

End Test

Meet the three 

staircase request?

Yes

No i=i+1

Specimen i

Crack?
Yes

Fatigue test

1i i d + = +1 -i i d + =
No 

i

 Strain

Initialization

 i = 1

i+1

Figure 2.20: Staircase test procedure

(1) Taking the first reverse results as a starting point of valid data, the number of
valid specimens should be no less than 30 [35].

(2) The test contains at least three strain levels.
(3) The strain level of the last specimen should be adjacent to the first strain level

and have the opposite result [47].
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2.4.2. Test results and discussion
In order to obtain the fatigue limit of steel plates, a total of 36 valid specimens

were conducted at staircase strain levels with the resonant frequency, donated as i

from 1 to 36. According to the results, the up-and-down diagram of the staircase test
is shown in Fig. 2.21.

Figure 2.21: Up–and–down diagram for DC01 steel specimens

2.4.2.1. Resonant frequency evolution during the fa-

tigue tests
When choosing the No.21-No.30 specimens for demonstration, the resonant fre-

quency and strain amplitude recorded through the SRTD are presented in Fig. 2.22.
The ordinal number of failed specimens is listed in the figures. Fig. 2.22(a) shows the
decreased resonant frequency. Six specimens failed due to CRF exceeding 5%, while
the other four survived. Correspondingly, Fig. 2.22(b) depicted the strain levels at the
preset value and kept them constant during the test. The disabling process of gauge,
in the end, is speedy and occurs after the stop criterion so that the strain value could
be seen as constant through the SRTD test, regardless of the variation in frequency.
These data demonstrate the reliability of strain control in vibration fatigue test on
electro-dynamic shaker.
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(a) Frequency decrease (normalized with the initial resonant frequency)

(b) Strain amplitude

Figure 2.22: Frequency decrease and strain amplitude during SRTD test. The failure
curves correspond to failed specimen ordinal i

Choosing 11 specimens in the same strain level 1380µm/m, Fig. 2.23 shows the
acceleration and velocity amplitude with the number of cycles. We can see variability
even with constant strain amplitude.
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(a) Response velocity at same strain level

(b) Excitation acceleration in same strain level

Figure 2.23: The acceleration and velocity in same strain level(1380µm/m)

In addition, taking the evolution of the frequency shift of the No. 22 specimen as
an example in Fig. 2.24, three stages can be distinguished in the progress of frequency
decrease: adaptation phase, quasi-stationary phase and rapid failure phase. The de-
crease in resonant frequency was observed when the crack occured, and the decrease
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continues with the crack propagation [88]. Moreover, the 5% decrease chosen for the
failure criterion is located in stage III.
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Figure 2.24: Resonant frequency decrease progress of No. 22 specimen

2.4.2.2. variability of the damage
The detailed test results data of the 36 specimens, including the number of cycles

with respect to different CRF and the number of cracks, are listed in Tab. 2.9.
It can be seen from the second column that the mass is not identical for all spec-

imens, and the first mode resonant frequency may differ by a few Hertz due to the
variability of the test system. However, these two parameters have no direct relation-
ship with the result (survival or failure) and the number of cracks.

Because each of the SRTD test dose not stopped at the same number of cycles, the
number of cycles and CRF at the end of the test is not the same for every specimen.
Hence, the cracks at the end of the specimens are also variable. For example, Fig. 2.25
illustrates the number of cracks with different CRF. Fig. 2.25 (a) and (b) show that
the number of cracks may be different in the same CRF, while Fig. 2.25 (c) and (d)
show that the crack lengths are different with respect to CRF. The location of crack
initiation and the length of crack propagation are variable in real fatigue experimental
tests. However, cracks always occur on the side without the strain gauge.

To sum up, the strain control in a vibratory shaker for the fatigue test is validated
by the staircase method. The estimation of fatigue limit from staircase results is
provided in the following section.
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ESTIMATION

(a) 15-S2 (1 crack with CRF=-6.97%) (b) 28-S2 (2 cracks with CRF=-6.75%)

(c) 02-S2 (2 cracks with CRF=-11.65%) (d) 21-S2 (2 cracks with CRF=-17.3%)

Figure 2.25: Comparison about cracks and CRF

2.4.2.3. Distribution of the fatigue limit obtained from

Dixon-Mood method
As described in Chapter 1, the Dixon-Mood (DM) method [27] is commonly in-

volved in estimating the fatigue limit distribution. The DM method was proposed
by Dixon and Mood [27] in 1948, which provides approximate formulas of maximum
likelihood estimation to calculate the mean and standard deviation under the Normal
distribution.

In DM method, only less frequent events, failure or survival, are used to evaluate
the distribution. The stress amplitude span is split by a step size d into several load
levels numbered by j, where j = 0 stands for the lowest load level and jmax stands
for the maximum stress level. Denoting by nc,j the number of the fewer frequency
events (survival or failure) at the load level j, two auxiliary values A and B can be
calculated by Eq. 2.7:
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A =

jmax∑
j=0

j × nc,j

B =

jmax∑
j=0

j2 × nc,j

nc =

jmax∑
j=0

nc,j

(2.7)

The auxiliary values are used to estimate the median value mDM by Eq. 2.8 and
the standard deviation sDM by Eq. 2.9. The minus sign given in Eq. 2.8 is used if the
failed specimens are evaluated; otherwise, the plus sign is applied.

mDM = Sa,0 + d

(
A

nc

± 1

2

)
(2.8)

sDM = 1.62× d

(
Bnc − A2

n2
c

+ 0.029

)
if

Bnc − A2

n2
c

⩾ 0.3

sDM = 0.53× d if
Bnc − A2

n2
c

< 0.3

(2.9)

From up-and-down diagrams (Fig. 2.21), the Probability Density Function (PDF)
and Cumulative Density Function (CDF) of fatigue limits calculated by the DM meth-
ods are shown in Fig. 2.26 and Fig. 2.27.

Figure 2.26: PDF estimated from DM method

The median and standard deviation are estimated as 1366.67 µm/m and 23.44 µm/m,
respectively. In this case, the corresponding coefficient of variation is 0.01715. More-
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Figure 2.27: CDF estimated from DM method

over, we can observe that the median is close to the value obtained from the fatigue
curve (1364.41µm/m) in Section 2.3.4.

2.4.2.4. Lower limits of the fatigue limit
The rules of the staircase method make the test data concentrated near the median

and distributed on both sides. Conducting fatigue tests at various strain levels in order
to determine the median ε−N curve gives a probability of failure of 50%. With the
DM, it is assumed that the variation of the fatigue limit follows a normal distribution.
The one-sided tolerance limit method is used in this study to calculate the probability
of fatigue strength.

In the fatigue life analysis, there is no problem if the real life is larger than life
expectancy, but it cannot be too small. Similarly, the fatigue limit can be underesti-
mated for safety, and it will be dangerous if the fatigue limit is overestimated. In this
study, the one-sided confidence interval of a normal distribution is provided below.

After the statistical parameters (the mean µ and the standard deviation s) and
the number of specimens n are available, the lower limit of the fatigue limit value for
different confidence levels (C) and survival probability (P ) can be expressed as [35]:

µP−C = µ− k(P, 1− C, n)s (2.10)

k =
µP + µγ

√
1
n
[1− µγ

2

2(n−1)
] + µP

2

2(n−1)

1− µγ
2

2(n−1)

(2.11)

where P means survival probability, k(P, 1−C, n) is the coefficient for the one-sided
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tolerance limit for a normal distribution with point P . µP and µγ are the standard
Normal distribution values with the probability P and γ, respectively. Based on the
µ =1366.67 µm/m and s =23.44 µm/m, the fatigue limit values with specified P˘C

levels of DC01 steel by the previous approaches are exhibited in Tab. 2.10.

Table 2.10: Fatigue limit values with specified P–C levels

C
P

0.5 0.9 0.95 0.99 0.999 0.9999

0.5 1366.67 1336.63 1328.11 1312.14 1294.23 1279.49
0.9 1361.60 1328.99 1319.30 1300.89 1280.05 1262.82
0.95 1360.11 1326.44 1316.31 1297.01 1275.12 1257.00
0.99 1357.21 1321.02 1309.90 1288.61 1264.37 1244.27

Unit: µm/m

2.4.2.5. Comparison to the steel fatigue limit in the

literature
The Comparison of some fatigue limit values of carbon steel in fully reversed

cycling from the literature is summarised in Tab. 2.11.

Table 2.11: Comparison of fatigue limits of carbon steel

Material DC01 Carbon steel C20 steel MCS 1018 steel C45 steel SAE 1045 steel
Ultimate stress

(MPa)
430.9 - 520 520 778 710

Fatigue limit
(MPa)

280.26 268.7 265 263.2 274 300

Load mode Bending Bending Tension Tension Tension Tension
Load frequency 205 - - 15 15 5

Number of cycles 106 - 2× 106 106 - 106

Test method Staircase test - Staircase test S-N fitting Staircase test
Intrinsic

thermal dissipation
Reference This study Papuga [89] Delahay et al. [90] Liakat et al. [83] Colombo et al. [91] Teng et al. [92]

Low carbon steel is widely used in various building components, containers, fur-
naces, industrial machinery applications, etc. Thus, most research on the fatigue of
steel has been carried out. In conventional stress-life domain, the database Papuga [89]
gives the fatigue limit 268.7MPa of carbon steel for fully reverse bending. Delahay et
al. [90] gave a probability distribution of the fatigue strength at 2×106 cycles against
the stress amplitude for C20 steel, as Fig. 2.28 shows. Liakat et al. [83] presented
a S-N curve of MCS 1018 steel form tension-compression fatigue tests, as Fig. 2.29
shows.
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Figure 2.28: The CDF of C20 steel [90]

Figure 2.29: A S–N curve of MCS 1018 steel [83]

Though there are differences in load type and specimen geometry, an agreement
between the results in this study and the literature data can be observed. While
there is no standard test protocol for vibratory fatigue limit on the electro-dynamic
shaker, this study provides a new experimental test and data processing method for
estimating fatigue limit distribution.

2.5. Conclusion
This chapter proposes a strain control test method applied on an electro-dynamic

shaker to conduct a constant amplitude fatigue test. The efficiency of the proposed
approach has been demonstrated by testing DC01 steel plates in the first mode. The
strain amplitudes measured on the specimens remain constant and independent of
the resonant frequency with the strain control, avoiding the diversity response of
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traditional acceleration control in the base. The results highlight the repeatability of
the strain-controlled test with the staircase method. The DM method provides an
estimation of the fatigue threshold and the scatter.

The staircase approach provides a reasonable estimate of the median fatigue limit
because about half of the specimens fail and the others do not [37]. Nonetheless,
it has a poor performance on the estimation of the standard deviation, especially
for small sample tests [93, 94]. The results are: (1) It is more difficult to get an
accurate measuring of dispersion due to the concentration of the data points near
the median. (2) Usually, for the real fatigue tests, the fatigue limit distribution is
hard to evaluate with a small number of specimens (n ⩽ 30). (3) Since the step size is
chosen constant, the estimation of the fatigue limit is less accurate. Otherwise, a large
number of specimens would be required to estimate the fatigue limit accurately. To
avoid this, we propose, in the following chapter, to use bootstrap sampling to estimate
the uncertainties. The next chapter presents a new statistical approach to improve
the fatigue limit distribution estimation.
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Chapter 3

Uncertainty quantification using
resampling methods

In the last part of the previous chapter, the post-processing estimates the fatigue
limit distribution from one experimental staircase test. However, the question arises
as to whether the fatigue limit remains the same if the staircase test is conducted
more than once under the same conditions.

In this chapter, the uncertainty analysis was carried out using the resampling
method. A brief background of uncertainty for the staircase method is given in the
first section. The second section details the resampling methods - leave-one-out and
bootstrap - on the staircase data to evaluate the fatigue limit. Based on the experi-
mental staircase test results of steel DC01, the uncertainty of the staircase test was
evaluated by the bootstrap method. Then, the bootstrap was applied to the exper-
imental data obtained for three kinds of specimens. The chapter ends with a brief
conclusion. This part has been presented in an international congress [93].



CHAPTER 3. UNCERTAINTY QUANTIFICATION USING RESAMPLING
METHODS

3.1. Background
Since the fatigue limit is mainly estimated through experiments, uncertainties are

consequently introduced into the assessment due to the inherent properties of the
specimen as well as the environment of the experiment. These uncertainties may lead
to an inaccurate estimation of the fatigue limit distribution. The uncertainty may
originate owing to the fatigue limits of each specimen are random, and the fatigue
process is affected in practice by many factors, such as the grain size, the type, the
morphology and the loading [14]. The measurement uncertainty of the test results also
affects the fatigue test confidence. Hence, the assessment of measurement uncertainty
is still required to evaluate the test results.

Therefore, it is commonly accepted that the fatigue design, including fatigue limit
estimates, without considering uncertainties, may not be efficient. Pascual et al. [19]
proposed a random fatigue-limit model to describe the variation in the fatigue limit
and all fatigue curves. Rabb [41] analyzed the confidence level of outcomes of stair-
case and reliability of the standard deviation estimation based on the Monte-Carlo
simulation (MCS). Wallin [42] provided a study of the uncertainty of the Maximun
Likelihood Estimation (MLE) method on staircase data. Jamalkhani Khameneh et
al. [49] deduced the mean, standard deviation and lower and upper scatter-band of
the fatigue limit at different confidence levels from the staircase experiment. Karol-
czuk et al. [95] used to predict fatigue life uncertainty by Monte Carlo and Latin
Hypercube Sampling techniques.

However, fatigue limits can be expected to vary not only from specimen to speci-
men in one staircase test but also between different staircase tests. It is interesting to
consider whether one staircase data can represent the real fatigue limit distribution.
Hence, a question is what is the confidence level of one staircase test result.

Intending to evaluate the confidence of a fatigue limit distribution, this chapter
describes the design and implementation of the resampling method on staircase test
data. The resampling method, also used in statistical machine learning, is investigated
in this paper as a possible means of assessing this uncertainty. By convention, no more
than 30 specimens are loaded into an experimental staircase test for cost and time
considerations. Resampling methods allow samples to be extracted repeatedly from
the dataset and obtain additional information without more expensive tests.

This chapter discusses two resampling methods, including Leave-one-out cross-
validation (Loocv) and bootstrap. Loocv is a resampling method that splits all datasets
one by one and computes a statistic with left-out one sample. The bootstrap method,
developed by Efron [96], provides an efficient way to reproduce more samples from
the small-size dataset. It is a reasonable way to estimate the epistemic uncertainty
and provide non-parametric statistical inferences without any assumption about the
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distribution describing the quantity under consideration. In a case that combined
resampling and staircase test, Pollak et al. [38] used the bootstrapping algorithm
to reduce the potential of sizeable standard deviation errors in the staircase tests.
Leonetti et al. [97] employed the Bootstrap method to linear regression of the S-N
curve. A literature review indicated that almost no such resampling method had been
mentioned for the staircase test uncertainty evaluation. We focused on the bootstrap
method analysis, which allows the uncertainty assessment of the fatigue limit based
on only existing test data. In this study, the bootstrap to extract more information
from the limited experimental data is applied initially to assess the uncertainty of the
staircase test data.

3.2. Application of the leave-one-out
resampling

Leave-one-out cross-validation (Loocv) is a typical cross-validation method in ma-
chine learning, especially for small samples conditions. Cross-validation means that
the dataset is randomly divided into k parts, of which there are k − 1 parts in the
training set and 1 part in the test set. The first data group can be used to test the
model fit based on the remaining k−1 pieces of data, and then the second data group
can be used as a test set to examine the adequacy of the corresponding training set.

It is commonly known that the larger the number of specimens, the more accurate
the staircase data can represent the true fatigue limit distribution. In the literature
of the last decades, there is almost no real experimental staircase test that exceeds 30
specimens. Inspired by the Loocv method, a similar Leave-one-out (Loo) resampling
method can be used to measure the number of specimens. For the staircase test,
every single piece of data represents an observation of one specimen in the real test.
Therefore, each strain (or stress) value can be regarded as a part, and all test data
is divided into n parts, where n is the total number of specimens in a staircase test.
Assuming that N = n − 1 samples are taken out in each sampling to realize, leave
one sample is left out. Using all staircase load (e.g. stress or strain amplitude) data
as the dataset, the general procedure is according to Algorithm 3.1. As a resampling
method, Loo has two main advantages:

(1) It is much less biased. We use a repeated sampling set containing n− 1 observa-
tions, which is almost identical to all observations in the entire data set. There-
fore, the Loo method will not lead to other data errors like other cross-validation
methods.

(2) It is not computationally expensive to perform the Loo procedure.
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Algorithm 3.1: Leave-one-out resampling
1 The staircase dataset that including n specimens is represented as

X = [x1, x2, ..., xn]
2 Let N = n− 1, N is the number of samplings
3 Resampling N data from X, to produce n times combination data X̃, which

is donated as X̃ = [x1, x2, ..., xN ]

4 foreach combination data X̃i do
5 Regard X̃i as a new staircase test results
6 Shuffle X̃i randomly
7 Estimate fatigue limit distribution by the same DM method
8 end foreach
9 Calculate the uncertainty factors.

The analysis of the Loo method is performed to determine the efficiency of a single
specimen. In this analysis, the number of samples N is chosen as N = n−1 = 35 in the
numerical test, and a total of 36 times resampling (M) is used. With Loo resampling
method, the distributions from all resampling data are shown in Fig. 3.1.

Figure 3.1: PDFs of fatigue strain limits from Loo re-sampling

Each line in Fig. 3.1 provides one Loo resampled result. The Loo excludes one
data (tested strain level) at each sampling, so 36 samplings were repeated in this
case. However, the Loo sampling for eliminating the same tested strain value leads to
the same result. The maximum difference between the estimated median and standard
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deviation between the experimental data and resampled data is 0.096% and −5.26%,
respectively. It means that the number of specimens, n = 36, is sufficient in this
experimental test. The test with one more specimen will change the result slightly.

3.3. Bootstrap resampling and results

3.3.1. Procedure
The fatigue limit is regarded as a random variable, while the staircase is an ex-

perimental method to estimate the distribution of this variable. Bootstrap provides
a non-parametric method that relies on resampling the observed samples. That is, it
uses several empirical distributions to approximate the population distribution. This
method fully uses the given observation information without other assumptions of
the numerical model and adds any new observations. The critical point of the boot-
strap is unordered sampling with replacement. Combined with the staircase method,
a bootstrap procedure is proposed in Algorithm 3.2. (N is the number of specimens
in a single bootstrap sampling, and M is the number of bootstrap replications).

In order to evaluate the resampling results, the uncertainty factors of the median
and standard deviation, δm and δs, are defined as:

δm =
m−mex

mex

× 100%

δs =
s− sex
sex

× 100%
(3.1)

where m and s are the median and standard deviation, subscript “ex” is the value
from experimental data.

This bootstrap procedure utilizes multiple samples randomly drawn from exper-
imental test results to make a statistical evaluation of the primary dataset. Several
advantages of using bootstrap on the staircase data can be noted. Firstly, compared
with the Loo method, the bootstrap can avoid the problem of reducing the data by
resampling. Secondly, the bootstrap can also create randomness in the data, which
prevents the time-consuming repeated real staircase tests.

3.3.2. Experiment-based hyper-parameter sen-
sitivity analysis

As described in Algorithm 3.2, there are two parameters M and N in the bootstrap
method, where N is the number of specimens in a single sampling and M is the number
of bootstrap replications. A question is how to find a suitable value for M and N with
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Algorithm 3.2: Bootstrap
1 The staircase dataset including n simples is represented as

X = [x1, x2, ..., xn], and the step size is d
2 Define N as the number of samples in a single sampling and M as the

number of bootstrap replications
3 Find all strain (or stress) levels L = [l1, l2, . . . l]
4 Divide X to different part according to different strain (or stress) level l, let

X l = [xl
1, x

l
2, ..., x

l] , that is X1 ∪X2 ∪ ...X l = X
5 Pre-define: select randomly a test strain level l
6 get all test data in strain level l
7 foreach i in M do
8 Reset staircase dataset X = [x1, x2, ..., xn]
9 foreach j in N do

10 Sample a data x from X l randomly
11 if the sampled specimen x is failure then
12 l = l − d // the next sample is selected from specimens in lower

level
13 else
14 l = l + d // the next sample is selected from specimens in upper

level
15 end if
16 get all test point in new level X l

17 end foreach
18 get sampling results: X̃ = [x1, x2, ..., xN ]
19 estimate fatigue limit distribution by the same post-processing method
20 end foreach
21 get all sampling results: [X̃1, X̃2, ..., X̃M ] and corresponding uncertainty

factors.

the bootstrap algorithm. Therefore, a sensitivity analysis is carried out to simulate
the change in the uncertainty factor with M and N in the range of 10 to 200. The
proposed analysis is implemented in Python. To avoid the potential influence of the
number of seeds used in the random process, the proposed procedure is run by 5 times
with different numbers of seeds. All 5 runs converge to the same result, indicating that
the proposed procedure is independent of the random or numerical configurations. A
typical result on the change of M and N are shown in the form of heatmaps in Fig. 3.2
and Fig. 3.3.
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Figure 3.2: Uncertainty factor of the median for different values of M and N

Figure 3.3: Uncertainty factor of the standard deviation for different values of M and
N

In Fig. 3.2 and Fig. 3.3, the abscissa is the number of bootstrap replications (M),
and the ordinate is the number of samples in a single sampling (N). The content is
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uncertainty factors δm and δs that are scaled as the color bar on the right. It can be
seen from the figures that there are blank areas in the upper-right part of the figures,
which means the uncertainty factors values become stable with larger M and N . That
is, uncertainty factors are not sensitive to M and N after 100 samples. Therefore, the
M = 100 and N = 100 are used in the following analysis.

3.3.3. Results and discussion
The bootstrap was performed 100 times with 100 samples in each sampling. The

results are shown in Fig. 3.4. The light blue lines are all bootstrap resampling results,
the blue dash represents an average Probability Density Function (PDF) of all sampled
data, and the red dash represents PDF of the experimental data.

(a) PDF (b) CDF

Figure 3.4: PDF of bootstrap resampling based on the experimental data

(a) Median values (b) Standard deviation values

Figure 3.5: Median and standard deviation from the bootstrap resampling

Each bootstrap result leads to a median value and a standard deviation value.
The distributions of all these 100 median and standard deviation values are shown
in Fig. 3.5. The vertical red dashes in Fig. 3.5(a) and (b) represent the estimated
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median and standard deviation of the experimental data. The black dashes represent
5th percentile and 95th percentile. We can see that the range of 5th percentile and 95th

percentile is no more than 3% for the median value, but it is almost more than 30% for
the standard deviation value. The uncertainty for the standard deviation estimation
is substantial, and much higher than the median estimation.

3.4. Effect of specimen dimensions
Two other kinds of specimens are used in this section to investigate the frequency

and thickness impacts on the fatigue limit uncertainties. The results are also analyzed
by bootstrap sampling.

3.4.1. Staircase tests
Three kinds of specimens, including the one described in Chapter 2, have the same

specimen shape and reduced section, as shown in Fig. 3.6. The structural difference in
thickness and length affects the resonant frequency. The resonant frequencies are ob-
tained from the experimental sine-sweep test of each kind of specimen. The differences
in thickness, length and resonant frequency are listed in Tab. 3.1.

clamp 6.8
R10.88

strain gauge

Length

20

20

vibrometer

laser

10

20

Thickness

20

Figure 3.6: Shape of the specimen with the same reduced section (Unit: mm )

Table 3.1: Effect of dimensions on the resonant frequency

Specimen ID
Thickness

(mm)
Length
(mm)

Resonant frequency
(Hz)

S1 1 100 105
S2 2 100 207
S2L 2 170 107

The material (steel DC01), manufacture, surface treatment and experimental en-
vironment are identical for these specimens. Using the experimental setup and test
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procedures described in Section 2.4, tests on the other two specimens are conducted
with strain control. The same step size d=20 µm/m for the staircase method. The
test results are detailed in Appendix B, including frequency, cracks, and so on. The
up-and-down diagrams for specimens S1 and S2L are shown in Fig. 3.7 and Fig. 3.8,
respectively. Similarly to Section 2.4.2.3, the DM method is used to estimate the dis-
tribution of staircase results, as shown in Fig. 3.9 and Fig. 3.10. These figures show a
difference in fatigue limit between the three kinds of specimens. The estimated distri-
butions of S1, S2 and S2L are represented by orange, blue and pink lines, respectively.
The cross marks used in Fig. 3.10 represent the probability of failure for each test
strain amplitude.

The means and standard deviations are reported in Tab. 3.2. The fatigue limit
medians are different. Indeed, the fatigue limit of S1 is 50.84 µm/m higher than the
S2 value, and fatigue limit of S2 is 54.46 µm/m higher than S2L value. Less difference
in the estimated standard deviation is observed.

Figure 3.7: Up–and–down diagram for specimen S1
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Figure 3.8: Up–and–down diagram for specimen S2L

Figure 3.9: Fatigue limit PDFs obtained for the three kinds of specimens

Based on these different results, the bootstrap is used in the next section to analyze
the uncertainties.
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Figure 3.10: Fatigue limit CDFs obtained for the three kinds of specimens

Table 3.2: Comparison of median and standard deviation (with DM)

Specimen ID
Thickness

(mm)
Length
(mm)

Resonant frequency
(Hz)

Median
(m)

Standard deviation
(s)

S1 1 100 105 1417.51 41.41
S2 2 100 207 1366.67 25.96
S2L 2 170 107 1312.21 56.43

3.4.2. Application of the bootstrap sampling
Choosing N = 100 and M = 100, the bootstrap results obtained for the three

kinds of specimens are shown in Fig. 3.11. The thick lines represent the distribution
estimated from the experimental data by DM method. The thin lines represent dis-
tributions estimated from the bootstrap data. In order to compare the overlapping
of the three clusters of PDF, the median values of all sampled results are marked as
pentagon, star and circle, respectively. From this figure, we can see that there is no
overlap between the three PDFs. We relied on the literature. In this study, the spec-
imens have two main differences: loading frequency (due to the change in the length
of the specimens) and geometry dimensions, such as the thickness of the cross-section
and the length.

66



3.4. EFFECT OF SPECIMEN DIMENSIONS

Figure 3.11: Bootstrap sampling applied to the three kinds of specimens

Figure 3.12: Distributions of median from the bootstrap results of S1, S2, and S2L

Based on all the resampled results in Fig. 3.11, the distributions of all these median
and standard deviation values from different specimens are shown in Fig. 3.12 and
Fig. 3.13.

In Fig. 3.12 and Fig. 3.13, the vertical red dashes represent the estimated median
and standard deviation of the experimental data, other vertical dashes represent 5th

percentile and 95th percentile of each kind of specimen. Similar to the observations
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Figure 3.13: Distributions of standard deviation from the bootstrap results of S1, S2,
and S2L

from Fig. 3.5, the uncertainty for the standard deviation estimation is much higher
than the median estimation. From Fig. 3.13, it can be found that the bootstrap
results always have a more significant deflection on the left of the experiment result
(red dash). It is proof that the estimation of the standard deviation is systematically
less accurate and lower than the true value [98].

Regarding frequency effect, Tsutsumi et al. [99] highlighted the frequency effect
by comparing the fatigue tests at 20 kHz and 10 Hz. The stress-strain curves also
highlighted this effect at a relatively high strain rate by Khalij et al. [61]. However,
the excitation frequency (when less than 200Hz) has little effect on the fatigue limit,
according to the research of Dallali et al. [100] and Tsutsumi et al. [99].

In our opinion, it is the combination of several parameters that affect the fatigue
limit, especially since the tests were carried out in vibration. The biggest difference
here is seen when a change in length and thickness is combined (comparison between
S1 and S2L). It could therefore highlight the effect of bending stress gradient. Indeed,
Narumoto et al. [101] considered that the difference in bending stress gradient is one of
the causes of the size effect. They also showed that the stress intensity factor increases
with thickness, resulting in faster crack growth. Narumoto et al. [101] and Bhuyan
et al. [102] showed that the fatigue strength decreases with increasing thickness. How-
ever, the authors studied plates with greater thicknesses. In another work, Bhuyan
et al. [102] found that the proportion of total fatigue life spent in crack initiation
increases with the thickness decrease. They pointed out that the strain rate, induced
by the thermally activated movement of dislocations in the ferritic microstructure of
low carbon steel, has an effect on the fatigue limit.

68



3.5. CONCLUSION

3.5. Conclusion
This part presents an evaluation of statistical uncertainty in the staircase test for

fatigue limit based on resampling methods. To avoid repetition of the real staircase
tests, a Loo and the bootstrap procedure is used to produce more artificial staircase
data based on one staircase test. Experimental staircase data from the vibration
bending fatigue test on DC01 steel specimens were analyzed.

From the resampling results, the obtained conclusions could be listed as follows:

(1) Loo method can be used to judge if the number of specimens is sufficient in a
staircase test.

(2) To get a steady result, it is necessary to use N ⩾ 100 specimens and conduct
M ⩾ 100 times of staircase test.

(3) The results from bootstrap resampling show that the standard deviation of fatigue
limit is more dispersive with more than 20%, leading to a conclusion that it should
be conservative to use staircase results in fatigue design.

However, variability in the fatigue experiment test is unavoidable. Several main
factors are involved in the scattering of fatigue test results. Some of these have been
addressed by Murakami et al. [10]. Due to this considerable uncertainty in standard
deviation estimation, the improvement to the staircase method from post-processing
is conducted in the next chapter.
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Chapter 4

A non-parametric evaluation method
in staircase test for improving fatigue
limit assessment

The previous works provided experimental staircase test results and the uncer-
tainties of the result. The estimation of uncertainties cannot be obtained directly by
experimental tests because it requires many specimens and time. Under this, a numer-
ical post-processing method is needed. In this chapter, a new evaluation method based
on Kernel Density Estimation (KDE) is proposed to estimate the fatigue limit distri-
bution from staircase tests without prior knowledge. This chapter aims to summarize
the methods, improve the estimation performance, and validate KDE effectiveness by
comparing it to other evaluation techniques.

The first section presents a brief survey of existing statistical methods for stair-
case data. Then a novel non-parametric method was proposed based on KDE. A
simulation-based investigation was performed to compare the effectiveness of the pro-
posed method to other evaluation methods in the following section. The obtained
results in the third section reveal that the proposed technique offers a better estimate
of the median, the standard deviation and the probability distribution of the fatigue
limit. The non-parametric method applied to experimental data is presented in the
fourth section. The work of this part has been published in Probabilistic Engineering
Mechanics [103].



CHAPTER 4. A NON-PARAMETRIC EVALUATION METHOD IN STAIRCASE
TEST FOR IMPROVING FATIGUE LIMIT ASSESSMENT

4.1. Background

4.1.1. Existing evaluation techniques
As described in Chapter 1, the staircase test method [27] is commonly involved

in characterizing the fatigue limit distribution. However, several researchers have in-
vestigated ways to improve the accuracy of the fatigue limit estimation by improving
evaluation techniques in post-processing. Müller et al. [40] compared several evalua-
tion techniques through Monte-Carlo simulation for evaluating experimental results.
However, the fatigue scatter is still strongly dependent on step size. This background
is introduced in detail in following.

The inadequacy of standard deviation estimation on staircase tests has received
considerable attention in the literature. Several evaluations techniques [23, 38, 40, 42,
54] have been proposed since the first development of the staircase method. Tab. 4.1
highlights some notable methods in recent years.

Table 4.1: Overview of existing evaluation techniques for staircase testing

Methods Algorithms Prior Distribution Remarks

Dixon-Mood method [27]
(DM)

MLE Normal

- Simplification
- Recommended by ISO standard [35]
- Strong dependence on step size

Svensson-Lorén [38]
correction on DM

- Function of sample size

Braam-Zwaag [104]
correction on DM

- Function of sample size and step size
- Worse estimation with small sample size

Pollak’s [38]
correction on DM

- Function of sample size and step size

Bootstrap [38, 98]
- Reduce the estimation uncertainty
- Increase in the amount of computation

MLE with
censored data [40] MLE Yes

- Classical method

Correction on
MLE [39]

- Function of sample size
- Valid only for logarithmic standard deviation

Zhang-Kececioglu [105]
method (ZK)

Suspended item
and MLE

Yes

- Applicable to variable step size
- Worse than DM in the negative skew distribution [23]
- Underestimate the standard deviation[23]
- Overestimate evaluation on mean [24]

Generalized MLE [24]
S-N curve
and MLE

Yes
- Incorporate fatigue life in likelihood function
- Paired failure-survival specimens

Wallin’s [42]
method

Binomial Probability(BP)
and MLE

Use BP to select
distribution

- Binomial Probability to fit staircase data
- Strong dependence on step size

IABG [40]
method

MLE
Normal or
Lognormal

- Based on logarithmic values of data
- All specimens are evaluated
- discarded invalid data, add fictitious data

Deubelbeiss’ [40]
method

Probability of
failure

No
- Fitting from probabilities of failure
- Large bias in estimation
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As the author of the staircase test method, Dixon et al. [27] proposed the Dixon-
Mood (DM) method based on Maximun Likelihood Estimation (MLE). However,
several studies reveal that this evaluation technique gives a reasonable estimation
of the mean value but underestimates the standard deviation of the fatigue limit.
To address this bias, some researchers enlarged the DM estimation on the standard
deviation by correcting factors. Svensson [20] proposed a correction function with
number of specimens as variable, Braam et al. [104] used a correction function with
number of specimens and step size but has been proved worse estimated with small
sample size. Pollak et al. [38] improved the estimation by a non-linear function. For
tests with a small number of specimens, Pollak [98] suggested combining the bootstrap
sampling technique with correcting factors to get a better estimate.

An alternative usage of MLE in post-processing staircase data is to use the cen-
sored data [39, 40, 56] with or without a correcting function on the standard deviation
bias. Meanwhile, other research has introduced statistical techniques into the staircase
data processing. Wallin [42] proposed an evaluation method based on binomial prob-
ability to analyze staircase data, whereas the method yields an acceptable estimation
only when the staircase test step size is close to the real value of the standard de-
viation. Zhao et al. [24] developed a general maximum likelihood approach (GMLA)
to assess the fatigue limit by constructing physically paired local S-N relations for
all failure or survival specimens from staircase tests. The IABG (Industrieanlagen-
Betriebsgesellschaft) method [40] provides an estimator by omitting invalid test results
and adding fictitious data. From the simulation study [40], the differences between
the IABG and MLE methods are negligible. Other methods such as Zhang-Kececioglu
method (ZKA) [105] have no inherent improvement in standard deviation estimation
and have been proven to perform less than MLE [40, 47]. Deubelbeiss’ method is
deduced from the regression of the failure probability, but leads to a significant bias
on the standard deviation [40].

To sum up, firstly, most of the proposed statistical analysis methods are based on
the MLE. Therefore, these methods have to make assumptions about the underlying
distribution ineluctably. Secondly, these evaluation techniques lead to different accu-
racy, more or less correct. However, the drawback of the strong dependence on the
step size still exists. Among all these kinds of evaluation techniques, the MLE and
the DM method are generally accepted by researchers. Thus, these two methods are
used as references in this work. The simulation on DM and MLE are illustrated in
Appendix C and Appendix D respectively.
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4.1.2. Dixon-Mood method and corrections
The DM method was proposed by Dixon and Mood [27] in 1948, which provides

approximate formulas of maximum likelihood to estimate the mean and the standard
deviation. It assumes that the fatigue limit should follow the Normal distribution.
Only the less frequent events, failure or survival, are used to evaluate the distribution.
The stress amplitude span is split by a step size d into several load levels numbered
by j, where j = 0 stands for the lowest load level and jmax stands for the maximum
stress level. Denoting by nc,j the number of the fewer frequency events (survival or
failure) at the load level j, two auxiliary values A and B can be calculated by Eq. 4.1:

A =

jmax∑
j=0

j × nc,j

B =

jmax∑
j=0

j2 × nc,j

nc =

jmax∑
j=0

nc,j

(4.1)

The auxiliary values are used to estimate the median value mDM with Eq. 4.2 and
the standard deviation sDM with Eq. 4.3. The minus sign given in Eq. 4.2 is used if
the failed specimens are evaluated and otherwise, the plus sign is applied.

mDM = Sa,0 + d

(
A

nc

± 1

2

)
(4.2)

sDM = 1.62× d

(
Bnc − A2

n2
c

+ 0.029

)
if

Bnc − A2

n2
c

⩾ 0.3

sDM = 0.53× d if
Bnc − A2

n2
c

< 0.3

(4.3)

As listed in Tab. 4.1, some corrections to the DM method have been proposed to
reduce the effect of the step size. The simulation on DM in Appendix C proved that
the correction factor (Eq. 4.4) proposed by Svensson-Lorén (SL) [38] gives a better
improvement to the standard deviation estimation:

sSL =
n

n− 3
× sDM (4.4)

Therefore, the SL correction is used as a reference method in this simulation-based
investigation.
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4.1.3. Maximum Likelihood Estimation method
The Maximun Likelihood Estimation (MLE) provides an appropriate tool for solv-

ing the general problem of estimating the “best fit” line through censored test data.
Thus, the resulting estimates are those that agree most closely with the observed
data. MLE gives a more precise estimate than any other methods, and is adaptive. It
can be used for any kind of method with any type of distribution. Its main drawback
is that the likelihood function has a different form for each specific distribution.

The purpose of the MLE method is to use the known sample results to infer the
most likely, in other words, the maximum probability parameter values that lead to
such results. When the stress amplitude Sa of the staircase test is known, the failed
and survived specimens give information about the probability:

P(x > Sa) = 1− F (Sa)

P(x ⩽ Sa) = F (Sa)
(4.5)

where F (·) denotes the Cumulative Density Function (CDF).
Let nf,j be the number of failures and ns,j be the number of survivals at the stress

level Sa,j, the maximum likelihood function L is given by:

L =

jmax∏
j=0

F (Sa,j)
nf,j (1− F (Sa,j))

ns,j (4.6)

The maximization of L results in the estimation of probability distribution param-
eters. Although an assumption about the underlying distribution is required when
performing the MLE method, this method can deal with the non-Normal distribution
of the fatigue limit and is also widely used in the literature [40]. The simulation study
of MLE method is presented in Appendix D.

4.2. Non-parametric evaluation method
and simulation procedure

In order to improve the standard deviation estimation on fatigue limit for small
sample tests, an evaluation technique based on Kernel Density Estimation (KDE)
and non-linear correction is proposed in this work to post-process staircase tests. The
KDE was applied to estimate the fatigue limit from experimental staircase tests by
the authors [58]. The current work focuses majorly on:

— Implementation of a parameter-free estimator resulting in an accurate estima-
tion of both the median and the standard deviation of the fatigue limit.
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— Effectiveness of the proposed method is less dependent on the test parameters
from the staircase method, especially the step size.

— Probabilistic fatigue limit estimation without prior knowledge of the fatigue
limit distribution.

4.2.1. Non-parametric fatigue limit estimation
As a non-parametric method to estimate the PDF of random variables, KDE

has been proven to be suitable for post-process experiment data like staircase tests
[106]. Compared to other post-processing methods reviewed in the previous section,
the KDE method has the advantage of being non-parametric and non-required on
the prior knowledge of the underlying distribution. In the case of staircase tests,
Dixon [37] pointed out that the load levels fluctuate around the median value of the
fatigue limit. The fatigue limit can be considered as a random variable. Based on the
staircase experiment rules, the ratio between the number of specimens at each load
level and the total number of specimens represents the probability of the fatigue limit
at this load level. The greater the number of specimens is, the higher the probability
of the fatigue limit occurring, i.e., (Eq. 4.7):

P{x = Sf} ∝ nj

n
(4.7)

where, Sf is the fatigue limit, nj is the number of specimens at the load level j and n is
the total number of specimens (or samples). Let a random data set X = {x1, x2, ..., xn}
in the probability space χ, denote all the load amplitudes in the staircase test, the
PDF of the fatigue limit distribution estimated by KDE is:

f̂h(x) =
1

nh

n∑
i=1

K
(
x− xi

h

)
(4.8)

where, h > 0 is a smoothing parameter called bandwidth, K is the non-negative kernel
function using the standard Gaussian Kernel [107] defined as:

K(u) =
1√
2π

exp

(
− u2

2

)
(4.9)

Eq. 4.9 is applied to each sample from staircase tests. The PDF of all samples
is then estimated by the sum of these kernel densities on every data point. The
KDE estimator does not distinguish between specimens with and without failure. To
optimize the performance of KDE in fatigue limit estimation, we compared different
bandwidth (h) methods of KDE as described in the next section.
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4.2.2. Bandwidth selection
In KDE method, a smoothing parameter (a.k.a. bandwidth h) is required to control

the smoothing scale and the density estimation of the underlying distribution [108].
Several methods have been proposed to optimally select this hyperparameter [109,
110].

If the Gaussian kernel function is used to approximate data for an underlying
Gaussian distribution, Scott’s rule (Eq. 4.10) and Silverman’s rule (Eq. 4.11) are two
efficient ways:

hSC =

(
4s5

3n

)1/5

≈ 1.06× sn−1/5 (4.10)

hSI = 0.9×min(s, IQR/1.35)n−1/5 (4.11)

where, n is the number of samples, s is the standard deviation of the data and IQR is
the interquartile range. In addition, some research applied the Sheather-Jones method
which reintroduces a non-stochastic term to reduce bias in estimation without inflat-
ing variance [111]. The Sheather-Jones method is more suitable for processing multi-
modality distribution.

These data-based methods give a variable bandwidth and it is challenging to de-
limit whether it fits the staircase data. Consider the DC01 staircase experimental data
(in Section 2) as an example, the estimated PDF from SC (Scott), SI (Silverman), SJ
(Sheather-Jones) bandwidths are shown in Fig. 4.1.
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Figure 4.1: Estimated PDF from different bandwidths (SC: Scott; SI : Silverman; SJ:
Sheather-Jones)

With the left y-axis in Fig. 4.1, the orange bars represent staircase experimental
data at five strain levels. The right y-axis corresponds to the estimated PDF from
SC, SI, SJ bandwidths, with the value of the bandwidth listed in the right legend. It
should be noted that the fatigue limit distribution should be subject to flat unimodal
distribution because we only consider one mode of failure. Nevertheless, these four
kinds of bandwidth all give non-smooth distributions. Comparatively, SC uses the
largest bandwidth and only one peak in PDF. Conversely, SJ method uses the smallest
bandwidth and produces extreme multi-peaks PDF curve. SI and Normal-reference
method also leads to obvious multipeaked distribution. SC is only one bandwidth
selector that leads to one peaked distribution but still has signs of multimodality.
In order to make the estimated distribution consistent with the physical meaning of
fatigue, this study try to enlarge the coefficient in SC equation (Eq. 4.10) based on
MCS. For optimizing the bandwidth, the corrected equation based on SC is shown as:

hopt = α×
(
4s5

3n

) 1
5

(4.12)

where α is the coefficient that adapted to Scott’s rule. The simulation study on how
to adjust the parameter is presented in Section 4.3.2, and α = 1.15 is determined in
the end.

Based on experimental data, the KDE estimation with Scott’s rule, given in
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Eq. 4.10 and the improved bandwidth given in Eq. 4.12 are shown in Fig. 4.2. It
is obvious that the improved bandwidth leads to a smooth estimated PDF.

Figure 4.2: Estimated PDF from different bandwidths

4.2.3. Bias correction on fatigue limit stan-
dard deviation

Since it is known that linear correction enlarges the estimation uncertainty [38],
this study developed a nonlinear approach to reduce the standard deviation bias as
follows: sKDE =

(s
d
+ As

)c
if s > d

sKDE =
(s
d
+Bs

)c
if s ⩽ d

(4.13)

where, s is the standard deviation from KDE with optimized bandwidth, sKDE is the
corrected standard deviation. This study proposes this formula based on correction
equations in the literature. Some of them are introduced and simulated in Appendix C.
The coefficients A, B and c, shown in Tab. 4.2, are correction coefficients depending
on the coefficient of variation (CV).

Tab. 4.2 was determined by simulation tests as described in the following Sec-
tion 4.3.1. In order to correct the estimated standard deviation s close to the initial
true standard deviation, we carried out lots of tests to determine the coefficients A, B,
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Table 4.2: The coefficients used in the correction equation (Eq. 4.13)

CV A B c

0.0125 13 7 0.44
0.025 13 7 0.53
0.05 13 7 0.59

and c with respect to different values of CV, like Fig. 4.10. In this study, the coefficient
of variation (CV) is expressed as the ratio of the standard deviation to the mean:

CV =
s

µ
(4.14)

The proposed KDE-based fatigue limit estimation with bias correction is expressed
by the pseudo-code in Algorithm 4.1.
Algorithm 4.1: Non-parametric fatigue limit estimation method
Data: The staircase dataset: X = {x1, x2, ..., xn}, the step size: d

1 Calculate the bandwidth h by Scott’s rule;
2 (m, s) from KDE with bandwidth h ;
3 Correction to s ;

Result: The estimated median m and the estimated standard deviation s of
the fatigue limit distribution

4.3. Numerical validation of the pro-
posed evaluation method

4.3.1. Simulation procedure
In order to evaluate the effectiveness of the proposed method, a numerical simula-

tion modeling the staircase test was practiced. The staircase simulation is configured
as shown in Fig. 4.3. Similar simulation procedure and result evaluation to Reference
[39] were conducted in this work, but more distributions and coefficients of variation
were investigated.

Firstly, a simulated fatigue limit distribution was initialized by a distribution
model and a coefficient of variation (CV) selected by the authors. Since the mean
value µ0 was considered constant in this study, CV controls the standard deviation
of the fatigue limit s0 directly. The simulated fatigue limit distribution is then gener-
ated by the mean value µ0 and the standard deviation s0 with different distribution
models, including Normal, Lognormal and Weibull distributions. In this step, the
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Figure 4.3: Simulation procedure and evaluation for results

mean is arbitrarily fixed at µ0 = 400, and the standard deviation is controlled by CV
(CV=0.0125, 0.025, 0.05). These three values selected in this study come from Roué
et al. [39] and previous experimental data. Then, the distribution was constructed by
mean (µ0 = 400) and standard deviation (s0 = CV × µ0). The shape, location and
scale parameters were calculated from the mean and standard deviation. However,
as pointed out by Müller et al. [40] and Roué et al. [39], the fatigue limit estimated
from the staircase test represents the median threshold with a failure probability of
50%. Consequently, the median value and the standard deviation were used in this
work to describe the fatigue limit distribution. The mean value (µ) and the standard
deviation (s) can be calculated by the discrete PDF as Eq. 4.15. The median (m) can
be obtained from the discrete CDF with cumulative probability 50%.

µ =
max∑
i=0

xiP (xi)

s2 =
max∑
i=0

(xi − µ)2P (xi)∑max
i=0 P (xi)

(4.15)

where i is ordinal number, xi is random variable, P (xi) is the probability density of
variable xi.

Secondly, in the numerical simulation, the specimens were generated successively
with respect to the staircase method. For the ith specimen, a value (a.k.a. fatigue
limit of ith specimen) was randomly extracted from the fatigue limit distribution set
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in the initialization step. All random processes involved in the work are practiced
by “scipy.stats.rv_continuous” class from SciPy package [112]. This value was then
compared to the load level (a.k.a. applied stress amplitude) of the ith specimen. Just
as in experimental tests, the specimen is donated as “survival” if the applied stress
amplitude is below the fatigue limit, otherwise, the specimen is donated as “failure”.
The survival/failure state of the ith specimen determines the stress amplitude that
will be applied to the (i + 1)th specimen. Then, the step size between load levels is
fixed to a constant d. In other words, if the ith specimen is survival at the load level
Si
a, the stress amplitude Si+1

a for the (i+1)th specimen equals to Si
a+d. Contrarily, if

the ith specimen is failure, the stress amplitude Si+1
a for the (i+1)th specimen equals

to Si
a − d. As for the initial specimen (i.e., i = 1), the load level Si=1

a is set at the
mean fatigue limit µ0 of the given distribution. The above steps are repeated until
enough specimens of n are generated. With the consideration of reducing the effect
of starting load level, n is the nominal sample size [37, 47] in this study, which means
that the tests are only valid after the first pair of tests with opposite results..

Thirdly, all results obtained from the staircase simulation are post-processed by
three different evaluation techniques, including KDE, MLE and DM, as compared on
the right side of Fig. 4.3. Each post-processing method estimates the median value
mk, standard deviation sk and probability distribution for the kth staircase test with
k = 1, · · · , N .

In order to evaluate the effectiveness of post-processing methods in fatigue limit
estimation, five cases were constructed by combining a probability distribution with
a CV. For each study case, a total number of N = 1000 trials [39] were performed
to investigate the quality of the estimates with respect to the number of specimens
n ∈ 10, 15, 20, 25, 30, 35, 40, 50, 70, 100 and the normalised step size d ∈ 0.1, 0.2, · · · , 2
listed in Tab. 4.3. The evaluation methods and simulation variables are to be assigned
to each case.

Table 4.3: Parameters in simulation work

Probability Distribution CV Evaluation method Variable Result

Case 1 Normal 0.025
KDE
MLE
DM

n = 10 to 100
d/s0 = 0.1 to 2

(mk, sk)

for k = 1, · · · , 1000

Case 2 Normal 0.0125
Case 3 Normal 0.05
Case 4 Lognormal 0.025
Case 5 Weibull 0.025

In most researches, the fatigue limit distribution is assumed to be the Normal
distribution by default [27, 42]. However, the probability distribution shape may have
little effect on the fatigue limit mean estimate but its tail is important for estimating
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the dispersion [39]. Some recent studies have revealed that the distribution shape of
the fatigue limit is not symmetric [113] and have suggested the usage of Lognormal
distribution [40, 41, 56]. Moreover, the Weibull distribution was also proved to be a
suitable estimation for the fatigue limit standard deviation [39, 45, 114]. Hence, these
three probability distributions (i.e., Normal, Lognormal, and Weibull) are applied in
this work to study the usability of the proposed KDE-based evaluation method. The
CV value close to 0.0125 obtained in the experimental staircase tests carried out by
Shi et al. [58] is used in this work. Meanwhile, Roué et al. [39] proposed to investigate
the CV of 0.025 and 0.05 in the simulation-based staircase test. These three values are
accordingly investigated with the Normal distribution in cases 1 to 3, since it is the
only probability distribution that can be estimated by all evaluation methods, namely
DM, MLE and KDE methods. To analyse the effect of the underlying probability
distribution, the CV was fixed to 0.025 by the authors in cases 4 and 5. Only the
MLE and KDE methods were applied to perform the estimation of the fatigue limit
distribution in these cases, since the DM method assumes that the fatigue limit should
be a Normal distribution [27].

The evaluation of the estimate quality is carried out by normalising the estimated
median value mk and the estimated standard deviation sk to the true median value m0

and the true standard deviation s0 of the given probability distribution, respectively.
The 5th, 50th (a.k.a. median), and 95th percentiles were also estimated by the post-
processing method and were used to evaluate the robustness of the compared method
performance. In addition, the Jensen–Shannon divergence [115], denoted as DJS, was
used as a measure of difference between the estimated probability distribution and
the true probability distribution:

DJS(P̂ ||Q) =
1

2
DKL(P̂ ||M) +

1

2
DKL(Q||M) with M =

P̂ +Q

2
(4.16)

In Eq. 4.16, P̂ denotes the estimated probability distribution from DM, MLE or
KDE(Eq. 4.8) method. Q denotes the true distribution initialized in the first step of
the simulation (Fig. 4.3). DKL is Kullback–Leibler divergence that defines the relative
entropy from Q to P̂ in probability space χ:

DKL(P̂ ||Q) =
∑
x∈χ

P̂ (x) log(
P̂ (x)

Q(x)
) (4.17)

4.3.2. Correction to Scott’s rule
Based on this simulation model, we want to find the optimal bandwidth by tuning

α in Eq. 4.12. This bandwidth can lead the estimated distribution most approach to
the true distribution. The J-S divergence is selected as the factor to evaluate the esti-
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mated PDF. The average J-S divergence of 1000 staircase simulated trials with change
of α = [1, 1.05, ..., 1.4] are list in Tab. 4.4. The J-S divergence of true distribution and
empirical probability density function is selected as the true J-S divergence.

Table 4.4: J-S divergence with different α parameter (×10−2)

Case Setup TRUE 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Normal
CV=0.025

n=30
dn=1.0

1.75 2.08 1.97 1.88 1.81 1.76 1.72 1.71 1.69 1.51

Normal
CV=0.025

n=30
dn=0.1

51.04 49.51 49.09 48.67 48.25 47.82 47.39 46.96 46.53 46.10

Normal
CV=0.025

n=30
dn=2.0

9.83 9.33 9.44 9.59 9.76 9.94 10.14 10.34 10.55 10.76

Normal
CV=0.05

n=30
dn=1.0

0.88 1.59 1.33 1.14 0.98 0.86 0.76 0.68 0.61 0.56

Normal
CV=0.0125

n=30
dn=1.0

32.13 30.53 31.01 31.48 31.92 32.35 32.75 33.13 33.49 33.83

Logormal
CV=0.025

n=30
dn=1.0

1.91 2.18 2.08 2.00 1.94 1.90 1.88 1.87 1.88 1.90

Logormal
CV=0.025

n=30
dn=0.1

50.57 48.99 48.57 48.14 47.71 47.28 46.85 46.42 45.98 45.54

Logormal
CV=0.025

n=30
dn=2.0

9.84 9.35 9.46 9.61 9.78 9.96 10.16 10.36 10.57 10.79

Logormal
CV=0.05

n=30
dn=1.0

13.09 13.36 12.91 12.47 12.04 11.62 11.20 10.78 10.37 9.97

Logormal
CV=0.0125

n=30
dn=1.0

15.07 15.05 15.31 15.59 15.89 16.20 16.52 16.86 17.20 17.55

Weibull
CV=0.025

n=30
dn=1.0

18.07 18.64 18.34 18.05 17.78 17.52 17.26 17.02 16.79 16.56

Weibull
CV=0.025

n=30
dn=0.1

37.20 34.21 33.80 33.38 32.96 32.54 32.12 31.71 31.29 30.87

Weibull
CV=0.025

n=30
dn=2.0

15.77 16.72 16.45 16.24 16.08 15.95 15.84 15.77 15.71 15.67

Weibull
CV=0.05

n=30
dn=1.0

19.82 20.59 20.13 19.69 19.26 18.83 18.41 17.99 17.58 17.17

Weibull
CV=0.0125

n=30
dn=1.0

32.29 32.73 32.56 32.42 32.30 32.19 32.10 32.02 31.96 31.92

dn: Normalised step size

In the Tab. 4.4, the first column lists distribution and CV, the second column
lists number of specimens and normalised step size. The J-S divergence of KDE with
bandwidth approaching to true distribution are listed in third column. The value of
α are listed in other columns, and it equals to original Scott’s rule when α = 1. The
most approaching to the true value are maker with bold text. α = 1.15 is suitable for
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most case. Therefore, the bandwidth selector in this study is determined as Eq. 4.18 .

hopt = 1.15×
(
4s5

3n

) 1
5

(4.18)

4.3.3. Sensitivity analysis of the KDE band-
width

A sensitivity analysis was carried out in this section to validate the proper band-
width by comparing different bandwidth selectors. The KDE results with different
bandwidth selectors are compared in the following.

Fig. 4.4 shows the median and standard deviation estimations for the different
numbers of specimens. Here, the step size is arbitrarily chosen equal to the true
standard deviation d = s0. Similarly, Fig. 4.4 and Fig. 4.5 show the median and
standard deviation estimates for different step sizes with a number of specimens equal
to 30.

(a) (b)

Figure 4.4: Normalised (a) median value and (b) standard deviation estimated with
KDE for different bandwidth selectors and varying number of specimens
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(a) (b)

Figure 4.5: Normalised (a) median value and (b) standard deviation estimated with
KDE for different bandwidth selectors and varying normalised step sizes

In Fig. 4.4 and Fig. 4.5, corrected Scott’s rule (SC), Silverman’s rule (SI) and
Sheather-Jones (SJ) method are illustrated by the red line, blue line and orange line,
respectively. Each vertical bar’s top and bottom represent the 5th and 95th percentile.
The central marker is the estimated median from the 1000 staircase trials. From the
comparison of the results obtained with the three bandwidths, it can be concluded
that:

(1) From Fig. 4.4(a) and Fig. 4.5(a), three kinds of lines overlap, which means that
the estimation of the median values is not sensitive to the bandwidth selector.

(2) Fig. 4.4(b) shows that the bandwidth of all methods has no effect on the standard
deviation when the number of specimens increases (higher than 25-30).

(3) According to Fig. 4.5(b), the standard deviation estimation from these three band-
widths are all affected by the step size significantly.

(4) Focus on Fig. 4.5(b), the difference in the three bandwidth kinds is reflected in
the normalised d > 1. However, the relative difference of the three methods is
smaller compared to the absolute estimation error.

The estimations from corrected Scott’s rule (SC) are closed to the true values
when the normalised step size is equal to 1. The mean J-S divergences of the three
bandwidth selectors in the case of n = 30 are 0.02115 (for SC), 0.03231 (for SI)
and 0.04982 (for SJ). It is clear that the SC gives the smallest J-S divergence and
is therefore applied to the proposed KDE approach. However, Fig. 4.5(b) shows that
the estimated standard deviation obtained from SC is still far from the true value.
Therefore, a correction is introduced to improve the results of the standard deviation
estimation.
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4.3.4. Comparison of the median value esti-
mation

It is generally known that the staircase protocol concentrates data near the center
[42], resulting in a high accuracy estimation of the median value of fatigue limit
distribution. The comparative study firstly focuses on the median estimation. Fig. 4.6
shows the influence of the number of specimens for d = 1.0 and d = 1.5 normalised,
and Fig. 4.7 shows the effect of the step size for a small number of specimens (n = 30)
and a larger one (n = 100).

(a) (b)

Figure 4.6: Distributions of median obtained from simulation for varying numbers of
specimens for (a) d = 1.0 and (b) d = 1.5 normalised

(a) (b)

Figure 4.7: Distributions of median obtained from simulation for different normalised
step sizes for (a) n = 30 and (b) n = 100

In Fig. 4.6, the DM, MLE and KDE methods are illustrated by the green, blue
and red lines, respectively. The estimation uncertainty decreases with the increase of
the specimens number for all three methods. Furthermore, it can be seen from Fig. 4.7
that the step size has little effect on the median value estimation, but a larger step
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size (normalised d > 1) leads to a small bias of median estimation when n = 30. Since
all three methods give a reasonable median estimation, the following study presents
only the results for the standard deviation estimation.

4.3.5. Comparison of the standard deviation
estimation

4.3.5.1. Comparison of standard deviations with the

Normal distribution (case 1)
The divergence of the different statistical methods is mainly reflected in the stan-

dard deviation estimation. To prove the robustness of the KDE method, the standard
deviation estimates of the number of specimens and step sizes are presented with
setup case 1, i.e., Normal distribution and CV=0.025. The results obtained with dif-
ferent numbers of specimens and step sizes are presented in Fig. 4.8 and Fig. 4.9,
respectively.

(a) (b)

Figure 4.8: Distributions of standard deviation obtained from simulation for varying
numbers of specimens for (a) d = 1.0 and (b) d = 1.5 normalised
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(a) (b)

Figure 4.9: Distributions of standard deviation obtained from simulation for different
normalised step sizes for (a) n = 30 and (b) n = 20

The comparison of the three methods suggests the following conclusions:

(1) According to Fig. 4.8, all three methods have relatively stable performance for
different numbers of specimens. For each method, the number of specimens has
no effect on the 50th percentile of all estimations but reduces the uncertainty.

(2) From the red line in Fig. 4.9, the KDE works better for standard deviation esti-
mations when normalised d = 1− 1.5.

(3) According to Fig. 4.9, there are slight differences between DM and MLE methods
for a Normal distribution. This observation was also pointed out by [40].

(4) According to Fig. 4.9(a) and (b), the KDE method shows the closest results to
the true value in most cases of step sizes with smaller uncertainty. This makes
sense because the correction equation focuses on the small sample size.

(5) There is a transition between the normalised step sizes 0.7 − 0.8 in Fig. 4.9.
This discontinuity comes from the piecewise correction equation Eq. 4.13. Taking
simulation case 1 (n = 30) as an example, the estimated standard deviation (s)
and the number of used piecewise equation is shown in Fig. 4.10.
In the upper part of Fig. 4.10, the blue lines represent the results of KDE without
correction, and the red lines represent the results of KDE with correction. In
the lower part of Fig. 4.10, the red line is the number of first piecewise equation
(s > d) used, and the blue line is the number of second piecewise equation (s ⩽ d)
used. A total of 1000 trials have been performed in the simulation. The horizon
axis is the normalised step size in the range of [0.1-2.0]. It is necessary to note
that the green arrow in Fig. 4.10 indicates the crossing point between the blue
line and the red line, as well as the discontinuity of 50% estimation. The reason
that this point locates between 0.7 and 0.8 instead of 1.0 is that the staircase
method has an inherent low biased estimation of the standard deviation [38, 40],
due to concentrating the majority of the data points near the median.
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Figure 4.10: Estimated standard deviation and the number of used piecewise equation

(6) The scatter of the estimation is significantly reduced by applying the KDE method,
especially for step sizes in the range of 1.5s0 − 2.0s0.

In this case, the KDE method has the slightest uncertainty regarding the number
of specimens and the step size. It achieves the goal of reducing the effect of step size
and reducing uncertainty.

4.3.5.2. Comparison of standard deviations with dif-

ferent coefficients of variation (cases 2 and 3)
Since the mean is considered constant, the standard deviation varied with the

coefficient of variation CV=0.0125 and CV=0.05. The results of the related standard
deviation estimation are plotted against the number of specimens in Fig. 4.11 and
Fig. 4.12.

(a) (b)

Figure 4.11: Distributions of standard deviation obtained from simulation with the
Normal distribution and CV=0.0125
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(a) (b)

Figure 4.12: Distributions of standard deviation obtained from simulation with the
Normal distribution and CV=0.05

It is clear that the KDE method shows the best estimation properties in the case of
CV=0.0125 and CV=0.05, which leads to the same conclusions for CV=0.025. With
the help of the correction equation (Eq. 4.13), the estimated standard deviation is less
affected by CV. The results analyzed with the knowledge of the coefficient of variation
highlight the interest of KDE.

4.3.5.3. Comparison of the standard deviation with

Lognormal and Weibull distributions (cases 4

and 5)
In the previous sections, the KDE method was evaluated with the Normal dis-

tribution compared to other evaluation methods. It should be noted that the KDE
method requires no prior information about the underlying distribution. Therefore, it
is necessary to evaluate the effectiveness of the proposed method with other probabil-
ity distributions, such as Lognormal and Weibull distribution. Since the DM method
is incapable of estimating the non-Normal distribution of the fatigue limit, the KDE
method will be compared to the MLE method in this section. The estimation of
the standard deviation with respect to the step sizes is shown in Fig. 4.13 for the
Lognormal distribution and Fig. 4.14 for the Weibull distribution.
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(a) (b)

Figure 4.13: Distributions of standard deviation obtained from simulation with Log-
normal distribution and CV=0.025

(a) (b)

Figure 4.14: Distributions of standard deviation obtained from simulation with
Weibull distribution and CV=0.025

From Fig. 4.13, the outcome considering the Lognormal distribution presents the
same main conclusions as that of the Normal distribution. From Fig. 4.14, the MLE
estimation is not capable of providing reliable information regarding the Weibull stair-
case data. Focusing the KDE results (red line) in Fig. 4.13(b) and Fig. 4.14(b), the
KDE method has better performance for Weibull distribution. From the results of
this work, the KDE method combined with the Weibull distribution will achieve bet-
ter performance for the experimental test. Therefore, the KDE is a distribution-free
statistical assessment method that works better than the MLE even if the MLE fits
the data distribution perfectly.
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4.3. NUMERICAL VALIDATION OF THE PROPOSED EVALUATION
METHOD

4.3.6. Comparison of the probability distribu-
tion estimation

To complete the performance evaluation of the proposed method in terms of me-
dian and standard deviation estimation, the J-S divergence is introduced in this sec-
tion as a means of evaluating the estimate quality with respect to the probability
distribution. The average J-S divergence D̄JS reported in Tab. 4.5 is computed from
1000 trials in each case.

Table 4.5: The J-S divergence of all the methods investigated in the study cases with
d=1.0 and n=30

Probability Distribution CV D̄DM
JS D̄MLE

JS D̄KDE
JS

Case 1 Normal 0.025 0.04235 0.04534 0.02088
Case 2 Normal 0.0125 0.04331 0.04858 0.02131
Case 3 Normal 0.05 0.03248 0.03773 0.01708
Case 4 Lognormal 0.025 - 0.04841 0.02196
Case 5 Weibull 0.025 - 0.19293 0.05780

From case 1 to case 3, all the investigated methods provide a stable estimate of
the probability distribution, as the average J-S divergence is nearly constant for each
method throughout these cases, which reveals that the estimate quality is less affected
by CV. The D̄KDE

JS is always smaller than that of the DM and MLE methods. This
means that the KDE-estimated probability distribution is relatively less different from
the true probability distribution.

As for the cases 1, 4 and 5, the D̄KDE
JS is also better than that of the MLE method.

However, both D̄KDE
JS and D̄MLE

JS are increased in case 5. Considering that the KDE
method has offered a good estimation of the median and standard deviation in the
same study case, the reason for the increase in D̄KDE

JS is probably caused by the neg-
ative skewness of the Weibull distribution. Since the kernel function used by KDE in
this work is symmetric, the estimated probability distribution is relatively less accu-
rate when the underlying distribution is highly skewed. This leads to future research
on the kernel functions used in the proposed KDE-based evaluation method.

In this study, the proposed KDE method is simulated and compared with different
distribution models and different CV. Based on the simulation study, it is possible for
the proposed method to generalize for many material.
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CHAPTER 4. A NON-PARAMETRIC EVALUATION METHOD IN STAIRCASE
TEST FOR IMPROVING FATIGUE LIMIT ASSESSMENT

4.4. Application of KDE method on
experimental data

The non-parametric method is applied in this section in order to characterise
the fatigue limit of the DC01 low carbon steel specimens by using the data in the
up-and-down diagram given in Chapter 2. The estimated PDF and CDF of fatigue
limits calculated by the KDE with optimized bandwidth and DM method are shown
in Fig. 4.15 and Fig. 4.16. Correspondingly, the median and standard deviation of
fatigue limit resulting from the density estimation are shown in Tab. 4.6.

Figure 4.15: PDF of the fatigue limit

Table 4.6: The median and standard deviation from different estimation

Methods Median Standard deviation

DM 1366.67 25.96
MLE (Normal distribution) 1366.71 22.51

KDE (h = 11.56) 1366.66
22.61

12.21(corrected by Eq. 4.13)

Combining the estimated distributions and Tab. 4.6, the following results can be
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4.4. APPLICATION OF KDE METHOD ON EXPERIMENTAL DATA

Figure 4.16: CDF of the fatigue limit

drawn:

(1) The bending fatigue limit of DC01 was obtained in strain domain as 1366.66 µm/m

with the standard deviation 12.21 µm/m ;
(2) For the present results, three methods use different experimental informations.

The sample size by DM is 18 (failure) while by MLE and KDE are 36 (total).
Moreover, the MLE distinguishes the specimens by failure or survival result, while
KDE does not require this information.

(3) Three methods lead to almost same median estimation.
(4) It is apparent that KDE has an estimated results accordance with MLE method.

The median and standard deviation values by KDE and MLE estimations con-
verge to each other.

(5) All estimated median value are consistent with the observed fatigue strength from
ε−N curve in Chapter 2 and comprise in the 95% confidence interval.

(6) A larger standard deviation of fatigue limit is obtained from DM. After the cor-
rection of the standard deviation in KDE method, the predicted value becomes
much smaller.
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CHAPTER 4. A NON-PARAMETRIC EVALUATION METHOD IN STAIRCASE
TEST FOR IMPROVING FATIGUE LIMIT ASSESSMENT

4.5. Conclusion
In this chapter, a non-parametric evaluation method is proposed in this work to

estimate the fatigue limit from the staircase test. The method originally combines the
Kernel Density Estimation (KDE) with nonlinear bias correction. The performance of
the proposed method is optimized by setting dynamically the bandwidth of the KDE.
A simulation-based study is carried out to evaluate the estimate quality compared
to other widely used evaluation methods like the Dixon-Mood (DM) and Maximun
Likelihood Estimation (MLE) methods. In the numerical study, the underlying distri-
bution of the fatigue limit is presumed to be characterized by a couple of probability
distributions and coefficients of variation (CV). The numerical experiment involves
three probability distributions (i.e., Normal, Lognormal and Weibull) that have been
widely studied in related work. The dependence of the estimate quality on the sample
size and the step size of the staircase test was investigated. From the numerical results,
the proposed KDE-based method outperforms the MLE and DM in terms of estima-
tions of the median, standard deviation and probability distribution of the fatigue
limit. For the normally distributed fatigue limit, all the methods investigated (i.e.,
DM, MLE and KDE) result in a good estimation on the median value. But DM and
MLE provide poor estimates of the standard deviation of the fatigue limit, especially
for small sample tests, i.e., when the number of specimens is less than 30. In contrast,
the proposed method offers an estimate that is relatively closer to the true standard
deviation regardless of the number of specimens. This outstanding performance is also
observed for the J-S divergence which measures the similarity between two probabil-
ity distributions. The fatigue limit distribution estimated by the KDE method always
returns a smaller J-S divergence, in other words, the estimated distribution is closer
to the presumed Normal distribution. Not to mention that the estimate quality of
the KDE method is stable with respect to the different CV coupled with the Normal
distribution.

The proposed method is also applied to experimental data, which obtain the fa-
tigue distribution from staircase data. With respect to the non-Normal distribution of
the fatigue limit (i.e., Lognormal and Weibull), the estimations made by the proposed
method are always better than those of the MLE method. The estimated standard de-
viation of the fatigue limit is really noticeable with the KDE method and the Weibull
distribution, nevertheless the estimate quality measured by the J-S divergence is rel-
atively poor. This leads to further research on the kernel functions of the proposed
KDE-based method.

In the following chapter, a staircase procedure improvement is presented.
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Chapter 5

Bayesian improved staircase
experimental design

To address the essential deficiency of the conventional staircase test method, this
chapter proposes an optimized test method based on Bayesian Maximum Entropy
Sampling (BMES) and Latin Hypercube Sampling (LHS) to determine the fatigue
limit distribution of the structure. The proposed method integrates the prior infor-
mation from samples to obtain the posterior probability as well as the fatigue limit
distribution. It reduces the statistical analysis error caused by the small number of
samples in the fatigue limit test.

The current chapter is structured as follows: a summary of the staircase problems
and several optimizations for test protocol are given in Section 5.1. The background
of fatigue limit test, the Bayesian theory, the BMES and the LHS methods are in-
terpreted in Section 5.2, Section 5.3 and Section 5.4, respectively. Then, Section 5.5
introduces the proposed improved Bayes-LHS staircase method based on BMES and
LHS. Section 5.6 defines the numerical simulation setup for the conventional stair-
case method, the Bayesian staircase method and the proposed improved Bayes-LHS
method. Lastly, Section 5.7 presents the simulation results, and evaluates the effec-
tiveness of the proposed Bayes-LHS method by comparing the estimated distributions
under the same condition.



CHAPTER 5. BAYESIAN IMPROVED STAIRCASE EXPERIMENTAL DESIGN

5.1. Background
It is well known that the estimated sample median (or mean) from the staircase

method is usually much closer to the true value. However, due to the nature of the
staircase test, it is challenging to obtain a proper estimation of the sample standard
deviation [41].

The improvement of the accuracy of the fatigue limit estimation can be classified
into the evaluation techniques and the experimental protocol. In the last decades,
several researchers have investigated ways of post-processing. For example, Pollak
et al. [38] formulated a non-linear correction on the standard deviation of fatigue
limit and involved bootstrapping sampling for a small number of specimens. Müller
et al. [40] compared several evaluation techniques through Monte-Carlo simulation
(MCS) and introduced the usage of statistical hypothesis tests in evaluating experi-
mental results. Nevertheless, both methods didn’t solve the disadvantage of the de-
pendency to step size of fatigue limit test.

Due to the intrinsic limitations of the staircase method, recent studies focus on
improving the test protocol. To date, several studies have focused on experimental de-
sign optimization. Wallin [42] simulated a modified staircase procedure with a small
step size to cover all anticipated standard deviation ranges. However, a small step
size may lead to larger sample size. Bai et al. [56] proposed a Monte-Carlo method
that offers higher test data efficiency and can be variable in step size. However, the
step size still needs to be guessed before the test, and the result strongly depends
on the step size. Roué et al. [39] developed a new experiment staircase procedure
and reduced the uncertainty in the standard deviation estimation by reloading un-
broken specimens. Magazzeni et al., Magazzeni et al. [116, 117] proposed protocols
using Bayesian Maximum Entropy Sampling (BMES), in which a faster convergence
is obtained.

To the moment of writing, the application of parametric models based on robust
initial assumptions, enriched by the Bayesian theorem, provides a more reliable fa-
tigue characterization of materials without resorting to black boxes. The Bayesian
staircase strategy was firstly proposed by Engler-Pinto et al. [118]. Then, Engler-
Pinto et al. [118] incorporated the Bayesian staircase strategy into Life-Regression
Models (S-N curve) [52]. Alcalá-Quintana et al. [119] carried out a numerical study
to compare the fixed-step-size and the Bayesian staircase method. The authors found
that the standard deviation of Bayesian estimates is systematically lower than that
of the conventional staircase in the same condition.

Based on the idea of Bayesian theory in the experimental test [120, 121], an appli-
cation is carried out by using maximum entropy sampling as a criterion for choosing
experiments to maximize the gain in information regarding prediction at unsampled
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5.2. BAYESIAN THEOREM IN FATIGUE TEST

sites. Sebastiani et al. [122] introduced an extension of the Bayesian principle to the
estimation problems. Magazzeni et al. [117] described the improved staircase method
using Bayesian Maximum Entropy Sampling (BMES) with details.

According to these studies, the Bayesian staircase method requires very little in-
formation about the sample set prior to the testing. The Bayes and the LHS are
proposed to improve the conventional staircase tests in this work. The LHS [95] are
incorporated into BMES to make sampling more uniform in the cumulative density
probability domain. The current chapter focuses majorly on the implementation of
BMES and LHS for improving conventional staircase protocol, in which the stress
step size is not constant and is calculated after every test.

5.2. Bayesian theorem in fatigue test
Let be a random data set x = {x1, x2, ..., xn} that denotes the specimens from

fatigue limit test, x is subject to a PDF P (x|θ) where, θ is model parameter, and x

is the fatigue limit (test results in fatigue test). Bayes rule is built as:

P (θ|x) = P (x|θ)P (θ)

P (x)
(5.1)

where, P (x|θ) is the likelihood function, P (θ) is the prior probability, P (x) is the
observations from experimental test (a.k.a, marginal probability), P (θ|x) is the pos-
terior probability on the left side of the equation.

5.2.1. Model parameter
In the practical computation, the matrix θ includes all possible model parameters

that are described by shape, location, and scale (see Appendix E). For example, the
θ in Normal distribution is created as:

θ =


(m1, s1), (m2, s1), . . . , (ma, s1)

(m1, s2), (m2, s2), . . . , (ma, s2)

. . . , . . . , . . . , . . .

(m1, sb), (m2, sb), . . . , (ma, sb)

 (5.2)

where, m and s are the location and scale for Normal distribution . The mean range
and standard deviation range are discredited with the number of a and b. For example,
a = 100 and b = 100 are used in the following analysis.

The model parameters also define all possible stresses for tested specimens. That is,
Sa = [m1,m2, . . . ,mmax]. Each stress amplitude Sa corresponds to a result x (failure
or survival).
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5.2.2. Likelihood with censored data
Considering the one result x from a staircase test, the likelihood that contains

information in test results (e.g., failure or survival) is:

L = P (x|θ) =
∫ Sa,up

Sa,low

f(Sa,θ)dSa = F (Sa,θ) (5.3)

where, f(θ) and F (θ) are the PDF and CDF for the model parameter θ, Sa is the
stress amplitude, Sa,low and Sa,up are the boundary limits of the stress Sa.

For example, based on the Normal distribution, the model parameter θ consists of
all possible median and standard deviation values. The aim is to calculate the CDF
related to a chosen stress amplitude Sa based on the model parameters [m, s] in θ. In
case of Normal distribution, F is a CDF that has same dimensions with θ.

F = Φ(Sa,θ) (5.4)

In practice, it should be distinguished between the survival stress amplitude and
the failed stress amplitude and calculate separately the CDF with these stress ampli-
tudes. There are two kinds of likelihood on one specimen with left- or right-censoring:

Li =

{
Lf
i = F (Sa, i)

Ls
i = 1− F (Sa, i)

(5.5)

where, i is the ordinal number of the specimen, Sa, i is the stress amplitude of ith

specimen.
Total likelihood with all previous specimens x = ximax , x2, . . . , ximax :

L = P (x|θ) =
imax∏
i=1

Li (5.6)

In computational practice, the likelihood (L) is in the logarithm form. With the
prior in logarithm, the Eq. 5.6 is carried out as follows:

lnL = lnP (x|θ) =
imax∑
i=1

lnLi (5.7)

5.2.3. Prior and posterior
The prior and posterior are usually done in the logarithm form to avoid numerical

issues with small values. The prior (or posterior) is built as a discrete matrix with the
same dimensions as θ.
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5.2. BAYESIAN THEOREM IN FATIGUE TEST

Here we present how to update the posterior by prior after a single test. During
the staircase test, after ith specimen has been tested, the prior before ith specimen
becomes:

P (θ) = P (θ|x1:i−1) (5.8)

In the logarithmic form:

lnP (θ|x1:i−1) =
t=i−1∑
t=1

lnP (θ|xt) (5.9)

where t is the iteration number.
In the experimental staircase test, the x and θ are discrete values, and the total

probability equation is:

P (x) =
∑
θ

P (θ) · P (x|θ)

=
∑
θ

P (θ|x1:i−1)P (xi|θ)
(5.10)

Taking Eq. 5.8 and Eq. 5.10 into Eq. 5.1, the update of the prior for the ith

specimen P (θ|x1:i) according to P (θ|x1:i−1) is described as:

P (θ|x) = P (x|θ)P (θ)

P (x)

P (θ|x1:i) =
P (xi|θ)P (θ|x1:i−1)∑
θ P (θ|x1:i−1)P (xi|θ)

(5.11)

where i is the specimen ordinal number. The posterior P (θ|x1:i) calculated from the
prior of the previous specimens P (θ|x1:i−1). P (xi|θ) is the likelihood Li.

In practice, incorporating Eq. 5.7 and Eq. 5.9, the update of posterior (Eq. 5.11)
in logarithm is described as:

lnP (θ|x1:i) = ln[P (θ|x1:i−1)P (xi|θ)]−
∑
θ

ln[P (θ|x1:i−1)P (xi|θ)] (5.12)

In order to simplify the description, a normalized matrix M is defined by:

M = ln[P (θ|x1:i−1)P (xi|θ)]

= ln[P (θ|x1:i−1)] + ln[P (xi|θ)]
(5.13)

It must be ensured that the element of M is greater than 0. For the element less than
0, it is set to a tiny number (such as 1× 10−7 ).
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With Eq. 5.13, Eq. 5.12 can be written as:

lnP (θ|x1:i) = M −
∑
θ

M (5.14)

The posterior after ith specimen is the prior for (i+ 1)th specimen.
It is necessary to define a initial prior matrix before the test. The fully flat ini-

tialised to the prior has been proved to work better in convergence [116]. A flat prior
is equivalent to assuming no prior at all, which means it is created by an array of
equal values. Consistent with the calculation of posterior in Eq. 5.11 and Eq. 5.14,
the matrix M , as described in Eq. 5.13, is initialised as:

M = Ja,b (5.15)

where a, b are the dimensions of θ, the Ja,b is all-ones matrix of the same dimension
as θ. The initial prior is obtained by taking Eq. 5.15 into Eq. 5.14.

5.3. Bayesian maximum entropy sam-
pling

Bayesian Maximum Entropy Sampling (BMES) contributes to predicting the ex-
pected result by maximizing the entropy gain. After testing i specimens, the stress
amplitude for (i+ 1)th specimen can be selected by maximizing the expected gain in
Shannon information in the posterior.

5.3.1. Shannon entropy
The Shannon entropy measures the uncertainty of the system. Shannon informa-

tion I included in the posterior is:

I(P (θ|x)) = − ln(P (θ|x)) (5.16)

This information indicates the uncertainty of the posterior P (θ|x). According to
this information, the Shannon entropy is defined as:

H(P (θ|x)) = E(I(P (θ|x))) = −
∫ θmax

θmin

dθP (θ|x) lnP (θ|x) (5.17)

where we see that the Shannon entropy is the product of the probability and the
uncertainty. When taken from a discrete θ and finite samples x, the Shannon entropy
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formula can be explicitly written as follows:

H(P (θ|x)) = −
∑
θ

P (θ|x) lnP (θ|x) (5.18)

After the ith specimen, we need to find the proper stress amplitude for the next
(i+ 1)th specimen based on Bayesian progression.

In order to obtain an optimized stress amplitude, the objective is to maximize the
information of the test stress amplitude. The entropy for (i+1)th specimen is defined
as:

H(P (θ|x1:i+1)) = −
∑
θ

P (θ|x1:i+1) lnP (θ|x1:i+1) (5.19)

where P (θ|x1:i+1) is posterior for the (i+1)th specimen with design of stress amplitude
Sa and result xi. The model parameters θ are kept unchanged during the staircase
test.

Note: The gain in entropy (∆H , entropy difference between the (i + 1)th and ith

specimen) can also be used to replace the Eq. 5.19. However, the same results are
obtained but with more computation.

Shannon entropy provides the information of staircase data but not the quality
of the estimation results. The minimum Shannon entropy may not consist of the
best posterior for estimation. The minimum Shannon entropy could not be used as a
stopping criterion for the test.

5.3.2. Utility function
After testing i specimens, the next stress is chosen to maximize the expected

information gained by sampling at a subsequent specimen xi+1.
In the staircase test, a utility function is built by considering the expected infor-

mation with both results of a specimen, survival or failure, at the expected stress
amplitude (a stress amplitude possible to be tested). The utility function with the
stress amplitude Sa,i+1 is defined as:

U(Si+1) = Hs(Sa,i+1,x)p
s(x|Sa) +Hf (Sa,i+1,x)p

f (x|Sa) (5.20)

where, U is the utility function that describes the entropy gain with the result xi+1.
x is a vector of all previous tests. U , H, p are all (float) values. The superscript “s”
represents the “survival” and superscript “f ” represents the “failure”.
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Similar to Eq. 5.18, the Shannon entropy is expressed as Eq. 5.21:

Hs(Sa,i+1,x) = −
∑
θ

P (θ|x) lnP (θ|x) with survival

Hf (Sa,i+1,x) = −
∑
θ

P (θ|x) lnP (θ|x) with failure
(5.21)

The difference between these two equations is posterior P (θ|x), which is calculated
with Eq. 5.11. Two cases, including survival and failure, are considered for posterior
with different likelihood as Eq. 5.5.

It should be noted that the probabilities ps and pf are the multiplication of the
likelihood and the prior, after integrating to reach the marginal probability.

ps(Sa,i+1,x1:i) =
∑
θ

[P (θ|x1:i+1) · (1− Φ(Sa,i+1))]

pf (Sa,i+1,x1:i) =
∑
θ

[P (θ|x1:i+1) · Φ(Sa,i+1)]
(5.22)

To summarise, the calculation of the utility function is illustrated in the flowchart
of Fig. 5.1.

prior stress Sa

posterior

failure survival

posterior

Shannon 

entropy

Shannon 

entropy

probability probability

Utility function

Load stress for next specimen

max

Possible load stress levels

fH sH

fp
sp

ifif

Figure 5.1: Utility function diagram

In this study, the utility function is calculated by the differential evolution opti-
mization method, and the stress corresponding to maximum utility is the expected
load level for the next specimen.
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5.3.3. Bayesian staircase method
By applying the utility function to select the stress amplitude, the Bayesian stair-

case procedure [116] can be shown as Fig. 5.2.
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Figure 5.2: Workflow of the Bayesian staircase procedure

Assuming that the number of specimens is n = 30, an example of an up-and-down
result is shown in Fig. 5.3. It can be seen that the first test is searched as the center
of the mean range because there is no prior information. The second test is located
closer to the boundary in a large load amplitude. Then, the load amplitude gradually
decreases, until the opposite result appears. After that, the tests converged to near
the mean value. All load amplitudes are optimized by the utility function as described
before. So we can find variable load amplitudes during the simulated staircase test.
In this study, the number of specimens n = 30, 35, 40, 50, 70, 100 are simulated, and
similar results are found. The variable step size is used to maximize the utility function
that based on Shannon entropy and probability.

From the Fig. 5.3, the Bayesian staircase method has two shortcomings. Firstly,
this method relies on BMES to select the stress amplitude but ignores the test results
(failure or survival). Secondly, the stress amplitudes gradually converge to the same
values. Similarly, as shown in Fig. 5.4, Shannon entropy has a slower decrease rate
after several tests. The fatigue tests in the later stages provide less information for
searching for the best fit distribution. In order to improve the Bayesian staircase
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in Magazzeni et al. [116] study, this part introduces the Latin Hypercube Sampling
(LHS) into the Bayesian framework.

Figure 5.3: Up-and-down diagram of a simulated Bayesian staircase

Figure 5.5: Posterior of the Bayesian staircase
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Figure 5.4: Shannon entropy of the Bayesian staircase

5.4. Improvement by using Latin Hy-
percube Sampling

Latin Hypercube Sampling (LHS) is a statistical method for generating a near-
random sample of parameter values from a distribution [123]. As one-dimension LHS
sampling strategy, the cumulative distribution function [0, 1] is firstly divided into N

equal parts to get [0, 1/N ], [1/N, 2/N ], ..., [(N − 1)/N,N ]. For these N partitions,
a sampling point can be randomly selected in each partition, and then obtains N

sampling values. This strategy maintains the independence between the samples at
the same time.

The LHS has good uniformity with regard to the individual sub-layer. The CDF
and PDF of an example of LHS are presented in Fig. 5.6. The 10 points sampled
from a Normal distribution subject to N(400, 102) in CDF and PDF can be shown in
Fig. 5.6.

In the Fig. 5.6(a), the CDF curve is divided into 10 non-overlapping layers along
y-axis (the blue lines). So that each interval (red lines) has the same cumulative
probability. Selecting centring points (green points) in each interval, and total 10
sampling results (purple points) are obtained. Correspondingly, these sampling data
with PDF is shown in the Fig. 5.6(b).
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(a) CDF from LHS (b) PDF from LHS

Figure 5.6: An example of LHS

In protocol design, the sampling procedure takes into account the previous stress
amplitude. The LHS divides the CDF into N intervals and samples N points. To main-
tain uniformity during all the tests, the interval with the least number of specimens
is selected as the stress amplitude.

An assumed distribution is needed to use the LHS in the experimental design.
Hence, the LHS is used after BMES. Besides, the LHS requires less calculation and
works faster than BMES

5.5. Application of the Bayes-LHS method
for staircase representation

5.5.1. Input parameters
For the Bayes-LHS staircase test protocol, the parameters that need to be set

before the test are:

(1) The distribution type. In this work, the Normal distribution is chosen to con-
duct the simulation study, though other models such as Weibull distribution and
Lognormal distribution are also examined.

(2) The possible range of the median of the fatigue limit distribution. This
proposed method is not sensitive to predefined ranges. In the practical application
of this protocol, the median range in model parameter can be selected from a small
value to yield strength.

(3) The possible range of the standard deviation of the fatigue limit dis-
tribution. The selection of the standard deviation range should come from the
references and rely on the engineering experience.
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REPRESENTATION

The input parameters under the Normal distribution can be expressed as:[
m

s

]
=

[
m1, m2, . . . , ma

s1, s2, . . . , sb

]
(5.23)

where m is the median and s is the standard deviation. Based on the input range,
all possible model parameters (θ) for the fatigue limit distribution are created as a
combination of the shape, location and scale according to the specific distribution
initially assigned.

5.5.2. Bayes-LHS staircase protocol
The flowchart of the Bayesian staircase procedure is presented in In Fig. 5.7. The

specimens tested by BMES are indicated as light blue, while the LHS are indicated
as light red. i is the ordinal number of the specimens. The improved experimental
procedure includes the stress amplitude determined from BMES and LHS.
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Figure 5.7: Workflow of the Bayes-LHS staircase procedure

For the first step (first specimen), the initial prior is created as described in Sec-
tion 5.2.3. The possible stress values are chosen from the median range of the input
parameter. The utility function, as described in Section 5.3.2, is used for searching
this stress amplitude. After experimental test, the stress amplitude and test result
(survival or failure) are obtained, and the posterior P (θ|x1:i+1) is updated based on
this test result. This posterior is the prior for the next specimen.

109



CHAPTER 5. BAYESIAN IMPROVED STAIRCASE EXPERIMENTAL DESIGN

The same procedure is repeated identically for other samples with BMES until the
posterior has a convergence. The convergence means only one distribution corresponds
to the maximum posterior. In the next step, the LHS is applied to determine the stress
amplitude and update the posterior.

Then, the LHS and BMES are alternately used to determine the stress amplitude.
The posterior is updated after each test. Finally, the posterior P (θ|x1:n) is obtained
after the total n specimens.

The resulted posterior, P (θ|x1:n), presents the probability of the observations
under the given possible model parameters. The estimated model parameters are
obtained by searching the maximum in the posterior after the last step (last specimen).
In summary, the improved staircase protocol is detailed in Algorithm 5.1.

Algorithm 5.1: Framework of Bayes-LHS staircase protocol
Data: Distribution; ranges of median and standard deviation;

1 Generate model parameter θ Initial the prior P (θ)
2 if P (θ|x1:i) convergence then
3 Determine the load stress amplitude by BMES
4 else
5 Determine the load stress amplitude by LHS and BMES alternatively
6 end if
7 Test the specimen
8 Calculate the posterior P (θ|x1:n) and Shannon entropy after each test
9 Final posterior

Result: The estimated median m and the estimated standard deviation s of
the fatigue limit distribution

Compared to the Bayesian staircase method in Section 5.3.3, this Bayes-LHS
method enriched it in two areas: Firstly, the principle is kept since the stress am-
plitude must decrease after a failure result. In contrast, the load level must increase
after a survival result. Secondly, the LHS is applied as a tool to select the stress
amplitude, which offers more choice for stress amplitudes.

5.5.3. Example of Bayes-LHS procedure
Based on the Normal distribution assumption, an example in the case of n = 30

is presented in this section. The up-and-down figure from Bayes-LHS is shown in
Fig. 5.8.

Similar to the conventional staircase procedure, the specimens are tested sepa-
rately. The first few specimens perform a preliminary search of the median fatigue
limit, and the test data gradually converge towards the solution. After posterior con-
vergence to a single estimated distribution, the BMES and LHS alternate in picking
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5.5. APPLICATION OF THE BAYES-LHS METHOD FOR STAIRCASE
REPRESENTATION
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Figure 5.8: Up-and-down diagram of a simulated Bayes-LHS staircase test

the stress amplitude, with each sample using the previous posterior information. In
the end, the maximum value in the final posterior is the estimated distribution, as
shown in Fig. 5.9. The evolution curve of Shannon entropy during the test is reflected
in Fig. 5.10.
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Figure 5.9: Posterior and estimation of a Bayes-LHS staircase test

Figure 5.10: Shannon entropy of a Bayes-LHS staircase test
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5.6. NUMERICAL SIMULATION OF THE BAYES-LHS TEST PROTOCOL

5.6. Numerical simulation of the Bayes-
LHS test protocol

In this study, the possibly unknown distribution is asymptotically approached
by the Normal distribution. However, other distribution models, such as Lognormal
distribution and Weibull distribution, can also be used as the underlying distribution.

In order to evaluate the effectiveness of the proposed method, a numerical simula-
tion modelling the staircase test is carried out. The staircase simulation is configured
as shown in Fig. 5.11.
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Figure 5.11: Simulation procedure and evaluation of the results
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5.7. Results and discussions
A total of 400 trials are conducted for the Bayesian staircase and the Bayes-LHS

staircase, respectively. Firstly, the evolution in the Shannon entropy indicates the
efficiency of the test. Taking the n = 30 as an example, the decrease of Shannon
entropy within a test from 400 simulations is shown in Fig. 5.12.

Figure 5.12: Decrease of the Shannon entropy in case of n = 30

In the Fig. 5.12, the blue area represents 5th − 95th percentile of the Shannon
entropy from the Bayesian staircase method, while the red area represents that from
the Bayes-LHS method. The blue and red lines are 50th percentile of all entropy values.
It can be found that both methods give the same tendency for entropy to decrease.
The entropy value decreases fastest for the first several specimens, which also have
the same results because the both methods start from the same model parameters
(θ).

5.7.1. Sensitivity analysis of input parameters
To reach the better solution, it is necessary to analyse their sensitivity to input

parameters, including guessed median range and standard deviation range. This study
chooses three different median ranges and three standard deviation ranges for the
simulation work, as listed in Tab. 5.1. Note that the true distribution is assumed as
a Normal distribution [400, 102]. 200 trials are simulated for the comparison.
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Table 5.1: Different input parameters

Probability Distribution Median range Standard deviation range

Case 1 Normal 300-500 1-20
Case 3 Normal 200-600 1-20
Case 2 Normal 100-700 1-20
Case 4 Normal 200-600 1-30
Case 5 Normal 200-600 1-40

The estimated results for the median and the standard deviation are compared
in Fig. 5.13 and Fig. 5.14 which show the effect of median range and the effect of
standard deviation range, respectively.

(a) (b)

Figure 5.13: Normalised (a) median value and (b) standard deviation with the different
median ranges

(a) (b)

Figure 5.14: Normalised (a) median value and (b) standard deviation with the different
standard deviation ranges
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In Fig. 5.13 and Fig. 5.14, case 2, case 4, case 5 (as listed in Tab. 5.1) are illustrated
by the blue, red and green line, respectively. Each vertical bar represent the 5th and
95th percentiles, and the central marker represent the 50th percentile (median).

From Fig. 5.13, the difference occurs for a number of specimens less than 20. For
the Bayes-LHS test with a number of specimens greater than 20, the input median
range has almost no influence on the estimation results. It is possible to choose between
a small value and the yield stress as the median range in a real experiment. The same
findings can be observed in Fig. 5.14. The estimated standard deviation does not rely
on the guessed standard deviation range.

In a word, the Bayes-LHS method is not sensitive to input parameters with a
sufficient number of specimens in the test (n ⩾ 20).

5.7.2. Comparison of the Bayesian staircase
and Bayes-LHS method

Choosing Case 4 of Tab. 5.1 as input, the estimated results for median and stan-
dard deviation is shown in Fig. 5.15.

(a) (b)

Figure 5.15: Normalised (a) median value and (b) standard deviation with respect to
the number of specimens

In Fig. 5.15, the Bayesian staircase and Bayes-LHS method are illustrated by the
blue line and the red line, respectively. It can be observed that:

(1) Similar to the conventional staircase method, the estimated results of the Bayes
staircase and Bayes-LHS method become more accurate with more specimens.

(2) From Fig. 5.15(a), the Bayes-LHS method is more stable on the median estima-
tion. The estimated median is centred on the true value.

(3) From Fig. 5.15(b), the estimated standard deviation obtained from the Bayesian
staircase method and Bayes-LHS method have almost the same uncertainty. More-
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over, both methods have an underestimated bias for the standard deviation, es-
pecially with fewer number of specimens.

5.7.3. Comparison to the conventional stair-
case using KDE

In order to show the advantage of the Bayesian staircase method, the comparison
between Bayes-LHS method and the conventional staircase method using KDE is
presented in this section. In this comparison, the number of specimens is fix at 30.
For the step size only existed in the conventional staircase method, the normalized
step size 0.5, 1.0, 1.5 are selected for comparison. 200 trials are conducted for each
method.

For Bayes-LHS method, the input parameter of Case 4 (see Tab. 5.1) is adopted.
The conventional staircase is simulated as the procedure given in Section 4.2. For
comparison with respect to the number of specimens n = 30 (Fig. 5.16), we choose
the normalised step size d=0.5, 1.0 and 1.5 as examples. Since there is no step size
in the Bayes-LHS method, the results are presented for comparison with respect to
the step size (Fig. 5.16(b)). Based on 200 trials, the estimated median and standard
deviation is shown in Fig. 5.16 and Fig. 5.17.

(a) (b)

Figure 5.16: Normalised (a) median value and (b) standard deviation with respect to
the number of specimens

It can be observed that:

(1) From Fig. 5.16(a), four line kinds almost overlap. The estimated median results
obtained from the Bayes-LHS method and KDE are almost identical. The Bayes-
LHS method is worse when the number of specimens is less than 20. The same
observation can also be made for Fig. 5.17(a).

(2) From Fig. 5.16(b), the estimated standard deviation of Bayes-LHS method always
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(a) (b)

Figure 5.17: Normalised (a) median value and (b) standard deviation with respect to
step size in conventional staircase method

includes the true value, while that of the conventional staircase is affected by the
step size. However, the vertical red line is longer than others, which means that the
estimation uncertainty of Bayes-LHS method is lower than KDE with correction.

(3) From Fig. 5.17(b), the results of the conventional staircase method are dependent
on the step size even though the correction is applied to KDE.

(4) From Fig. 5.16(b) and Fig. 5.17(b), the horizontal red dash are below the hori-
zontal black line. This means, the Bayes-LHS method has a disadvantage of un-
derestimating the standard deviation, especially when the number of specimens
is in the range of [20-40].

5.8. Conclusion
This chapter presents an improved experimental staircase procedure, Bayes-LHS

method, based on Bayesian Maximum Entropy Sampling (BMES) and Latin Hyper-
cube Sampling (LHS). This method uses the BMES and LHS to select the stress
amplitude (load level) in staircase testing, which removes the step size parameter. A
simulation is conducted to compare the Shannon entropy and estimated median and
standard deviation for the numerical validation of this new protocol.

Compared to the conventional staircase method, the advantage of Bayes-LHS
method can be listed as follows:

(1) The Bayes-LHS method avoids the use of guessed start stress and fixed step size. It
should artificially select a range of possible model parameters before the Bayesian
staircase test.

(2) Due to the non-sensitivity of input parameters, very little information is required
on the sample set before the test.

(3) The conventional staircase method with corrected KDE has an advantage in re-
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ducing the estimation uncertainty. Therefore, it is suitable if the standard devi-
ation is well-guessed. Otherwise, the Bayes-LHS method is recommended for the
fatigue limit distribution assessment.

(4) There is no need to use a post-processing method. The distribution model param-
eter is obtained directly from the posterior.
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Chapter 6

Conclusion and perspective work

The present work depicts the subject of fatigue limit assessment. The thesis covers
aspects from mechanical fatigue experiments to statistical methods. This final chap-
ter summarises what we have learned from previous works and points out the most
promising directions for future research.

According to the literature review, fatigue limit assessment is a challenging prac-
tical problem as the structure is exposed to vibration conditions, thus is crucial a
reliable structural design. To achieve probability distribution of the fatigue limit, the
critical challenges come from the experimental test method and an advanced evalua-
tion technique of the test data.

The fatigue limit assessment begins with the experiment test. A vibration bench
is a reasonable solution to reduce fatigue test time. In contrast, the fatigue limit test
requires the specimen to be subjected to a constant stress amplitude for a certain
number of cycles. A strain control technique applied to an electro-dynamic shaker is
proposed to conduct a constant strain amplitude test. The efficiency of the proposed
approach has been demonstrated by testing in bending DC01 steel plates at their
first resonant frequency. The strain control on resonance (amplification of the signal)
and relatively high-frequency excitation leads to a reduction of the testing time to
reach a large numbers of cycles. This approach is therefore effective for testing the
staircase method. The fatigue threshold and the scatter of steel DC01 is estimated by
the staircase results.

The statistical method offers approaches to provide the fatigue limit distributions
for each staircase test. The key question is: what results from a re-conducting execu-
tion of the staircase test? Uncertainty analysis is carried out to evaluate the fatigue
limit distributions of a material obtained from the staircase test. For this purpose we
applied the resampling method, leave-one-out and bootstrap on the staircase data in
order to deduce the scatter of the mean and standard deviation of the distribution.
The results of this study highlighted the high inherent uncertainty in the standard
deviation estimation.

To reduce this uncertainty, we propose to use the Kernel density estimation (KDE)
in this study due to its non-parametric and independence from the distribution model.
To compare it with other assumption-based methods, the KDE is tested on different
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distributions to validate its efficiency. The dependency of the KDE hyperparameter
is also studied and optimized to improve its performance in in assessing fatigue limit.
Moreover, as the staircase method requires to define an initial step size, a non-linear
corrected factor is formulated to reduce its influence in estimating the standard devia-
tion. The numerical approach uses the Monte-Carlo simulation and allows to examine
the effect of the number of specimens and the step size. The estimation performance is
evaluated on the mean and standard deviation of the fatigue limit involving different
distributions and coefficient of variation.

Intending to solve the limitation of step size in the staircase method, a Bayes-
LHS staircase protocol is presented to remove the step size in the conventional stair-
case. The Bayesian theory in fatigue test and Bayesian Maximum Entropy Sampling
(BMES) are detailed, and then the Bayesian staircase protocol is provided with an
example. This study called Bayes-LHS method enriched the Bayes approach with the
Latin Hypercube Sampling (LHS). This proposal is described for staircase procedure.
The results are sufficiently optimistic to consider that the Bayes-LHS protocol could
replace the conventional staircase method for fatigue limit estimation.

The original contributions of our work mainly involve:

1. For the present approach, staircase tests for deducing the fatigue limit are ac-
cessible by using the strain control method. The strain control is effective for
low-carbon steel and provides a stable vibration control method to reach the
High cycle fatigue domain in a relatively short time.

2. The bootstrap resampling is applied to evaluate the uncertainty of the staircase
test. It provides a numerical sampling method to avoid the real experimental
tests.

3. A non-parametric evaluation method based on Kernel Density Estimation (KDE)
estimates the fatigue limit distribution in a data-driven way rather than using
handcrafted heuristic strategies. The proposed method estimates the fatigue
limit distribution without prior knowledge. It is not sensitive to its hyperpa-
rameter, and is less affected by the test parameters of the staircase method,
such as the number of specimens and the step size.

4. Bayesian including the LHS for optimizing the staircase method to eliminate
the effect of the step size. The improved test procedure uses the previous infor-
mation during the test, and requires less information before numerical testing.
Also, there is no need to use a post-processing method such as Maximun Likeli-
hood Estimation (MLE) or KDE. Because the distribution model parameter is
obtained directly from the posterior.

In the experiment part of this study, low carbon steel specimens were selected to
carry out fatigue tests with strain control. We found that this material is the simplest
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to study with this type of excitation (control of the deformation in vibration). We
had previously tested Ti-6Al-4V and steel 304L. However, for some unknown reasons
(different hypotheses were put forward but none of them gave satisfaction), it was
possible to test materials in acceleration but not in strain control. In fact, the balance
point (zero) of the strain measurement is shifted during the test.

Lots of Ti-6Al-4V and steel 304L specimens were tested with strain control. Some
Ti-6Al-4V specimens with different treatments are presented as examples in Fig. 6.1.
In this figure, different treatment for specimens and load strain amplitude are list in
Tab. 6.1

Table 6.1: Different treatments for Ti-6Al-4V specimens used in Fig. 6.1

Curve
Vibration

stress relief
Heat-treatment

(℃)

Resonant
frequency

(Hz)

Strain
(µm/m)

C1-1200 - - 331 1200
C1-1500 - - 330 1500
C2-700

√
- 359 700

C2-900
√

- 353 900
C2-1200

√
- 353 1200

C2-1500
√

- 357 1500
C3-3000 - 650 340 3000
C4-900 - 1050 335 900
C4-1200 - 1050 327 1200

Figure 6.1: Decrease of strain mean value from Ti-6Al-4V specimens
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From the Fig. 6.1, the obtained strain signals show a decrease with the number of
cycles. The higher strain amplitude for the specimens with the same treatment leads
to a faster decrease. Comparing C1 and other cases, the vibration stress relief and the
heat-treatment before the track dwell test did not improve the test performance.

Indeed, we have found that strain control is not possible on Ti-6Al-4V titanium
alloy and 304L stainless steel. One of the reasons is stated by Barbier [124] who
indicates that 304L has a cyclic behavior that evolves over several cycles and does
not stabilize even beyond several million cycles. Therefore, we preferred to direct this
study toward standard steel. Hence, a research is required to evaluate the applicability
of strain control for different materials.

To improve the study, several other ways will be investigated for further work:

1. Another investigation concerns the effect of frequency and geometric dimensions
of the specimens on the fatigue limit. Because this research could lead to a
"perfect" specimen to reach the fatigue limit distribution

2. An improvement of the Bayes-LHS approach is necessary to achieve a well-
performing approach. For example, a way is to use the chaos polynomial to fit
the distribution. The interest can be to adjust the coefficients on the basis of
the uncertainties related to the experimental tests (e.g. the clamp).

3. In this work, we have carried out the tests on the bending mode. Another way
would be to perform the tests in torsion mode. The torsional fatigue limit could
then be used to build a reliability model as presented in the work of Lambert
et al. [22].
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Appendix A

Dynamics analysis of the specimen

Before the experiment fatigue test, it is desirable to obtain the dynamics charac-
terization of the specimen by numerical model. In this study, the numerical model is
established by finite element analysis (FEA) based on Ansys software 1.

A.1. Finite element modelling

A.1.1. Mesh and element
In this study, the shell 181 element is used to create the Finite Element model.

Shell 181 is a four-node element with six Degree Of Freedom (DOF), that is suitable
for analyzing thin shell structures in out-of-plane excitation. The FE model is shown
in Fig. A.1 and it is built from 2293 nodes and 2267 elements, the size of elements is
1mm.

Figure A.1: Finite element model of the specimen

1. Ansys® Academic Research Mechanical, Release 17.0
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A.1.2. Boundary condition
The second issue in modelling is how to simulate the constraints in experiment,

that is boundary condition of the FE model . The specimen is fixed in the shaker by
two mass blocks and pre-tightened by machine screw. The clamping of the shaker is
illustrated in Fig. A.2.

Figure A.2: A sketch of the clamp in the shaker [76]

A previous study was carried out by Appert et al. [76] on the same kind of clamp-
ing. The authors carried out a non-linear quasi-static finite element analysis in Code
Aster to study the contact pressure in the fixture. The resulting design is reported in
Fig. A.3, where the red color corresponds to no pressure and blue color corresponds
to maximal pressure. Both two faces of the specimen have same pressure state.

Figure A.3: Deformed shape and contact pressure of the clamp [76]

From Appert’s conclusion, it is clear that the specimen is clamped only close to
the screw. The screw is modeled as a regular cylinder in Appert’s research. Therefore,
the outer circumference line of the screw is used to define the clamp as the boundary
condition.
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To check the effects of the constraints on the first mode, we tested different combi-
nations of the 6 DOFs. The results on the resonant frequency are listed in Table A.1.
DX, DY, DZ represent the displacement and DRX, DRY, DRZ the rotation along x,
y and z.

Table A.1: The first resonant frequencies estimated for several boundary conditions

DX DY DZ DRX DRY DRZ frequency (Hz)
√ √ √ √ √ √

211.35
√ √ √ √

× × 211.14
√ √ √

×
√

× 205.96
√ √ √

× ×
√

206.66
√ √ √

×
√ √

206.36
√ √ √ √

×
√

211.35
√ √ √ √ √

× 211.14
√ √ √

× × × 205.96

Note:
√

: Constraint; ×: Free

As shown in Fig. A.2, the experimental clamping is intended to ensure a high
rigidity in the translate direction of DX, DY and DZ. Also, the rotation DRZ is fixed
by two plates. DRY is fixed by the lower plate, DRX is also fixed because the mass of
specimens is much lower than the vibratory bench (not directly connected with the
shaker armature) [76]. The boundary condition of all 6 DOFs in FE model is marked
in Fig. A.4.

Figure A.4: Representation of the clamp in finite element model
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From Tab. A.1 and Fig. A.4, the constraints in DX, DY, DZ, DRY, DRZ are
adopted in this study.

A.2. Dynamics characterization

A.2.1. Modal analysis
A FEM of the experimental specimen is studied based on Ansys . Considering the

clamp in the base, the modal behaviour of the specimen is shown in Fig. A.5.

1st modal 2nd modal 

211.35Hz, Bending 1160.3Hz, Plan 

  

3rd modal 4th modal 

1450.9Hz, Bending 1616.3Hz, Torsion  

 

 

 

Figure A.5: The modals of the specimen with thickness 2mm

A.2.2. Harmonic analysis and test validation
Firstly, the FRF are obtained by harmonic analysis range of 100Hz-2000Hz under

acceleration 3 g. The FRF of stress in central point (the location of strain gauge) is
shown in Fig. A.6.
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Figure A.6: FRF of strain

Figure A.7: Harmonic analysis and experiment result

According to the FEM simulation, the resonant frequencies of the first bending
mode of the specimens with thickness 2mm is 211.35Hz. The second mode is far away
from the first mode. Comparing these four modes, the first bending leads to the most
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large damage in reduction area. Therefore, the first bending is chosen in fatigue test.
Secondly, the harmonic analysis and the two sine sweep experiments are carried

out in range of 190Hz-220Hz under acceleration 3 g. The strain response are compared
in Fig. A.7.

It can be seen that the resonant frequency and the strain response from simulation
and experiment are close. These results provide verification for the FE model .

A.2.3. Stress concentration factor
At the notch area of the specimen, the local stress is much greater than the nominal

stress, which is known as stress concentration. Fatigue failure typically occurs at the
notched edge because the local stress is much greater than the nominal stress. To
simplify the description, two sample models are established: specimen without notch
(SWON) for nominal stress, and specimen with notch (SWN) for maximum stress.

The Stress Concentration Factor (SCF) can be expressed as:

Kt =
σmax

σnom

(A.1)

σmax is the local maximum stress and σnom is nominal stress. Assuming the axial force
(F = 1N) and the dimension of specimen without notch, σnom is given by:

σnom =
My

Ix
=

F (L− Lr)
h
2

bh3

12

= 3.38MPa (A.2)

This result is in accordance with the results of Ansys. Then, the static SCF is
calculated as:

Kt =
10.6

3.2958
= 3.21621 (A.3)

In terms of the fatigue limit, tests indicate [86] that the presence of a notch on
specimen under cycling nominal stresses reduces the fatigue strength of the smooth
specimen by a fatigue notch factor Kt given by:

Kf =
unnotched fatigue limit
notched fatigue limit

(A.4)

In general, Kf is equal to or less than Kt. The Kf is related to both the notch root
radius and ultimate tensile strength. More information about Kf can be found in Liu
et al. [4].
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A.2.4. Location of strain gauge
There is an important experimental particularity about strain gauge which must

be addressed. For the first mode, the strain is homogeneous as shown in Fig. A.8.

Figure A.8: Strain distribution for the first mode

The real maximum stress occurred in the edge of the arc, while it is easier to
manipulate if the gauge is placed at the center of the notch area (as shown in Fig. A.9)
So, it needs a calibration test to investigate both positions in stress estimation. This
problem is discussed here with respect to numerical study, sine sweep test and track
dwell test.

clamp
Position 1 
(center)

Position 2
(edge)

Arc edge

Figure A.9: Two positions for strain gauge

Firstly, the stress at two different locations can be calculated from a harmonic
analysis. The maximum stress at the notch edge is about 1.325 (tension) and 1.06
(bending) higher than the stress in the middle of the specimen, as can be seen in
Fig. A.10.

Secondly, Ansys results were also verified by testing. Two strain gauges are mounted
in the center and on the edge of the reduced section of one specimen. The sine sweep
test and SRTD are performed respectively to compare responses from these two loca-
tions of interest. The strain responses in the sine sweep test with acceleration control
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Figure A.10: Stress gradient evolution from the center to the edge (orange line in
Fig. A.9)

in 2 g, 4 g, 6 g and 8 g are shown in Fig. A.11. The red line and blue dash are the values
obtained from the strain gauge in the arc and the center of the stress concentration
zone respectively. The strain value close to the notched edge is 1.015 times as high as
the strain value in the center of the specimen.

Thirdly, the track dwell test controlled by the strain in 760µm/m for 280 s, the
responses of the velocity are shown in Fig. A.12. The highest strain at the notched
edge is only 0.55% higher than the strain at the middle of the specimen, as presented
in Fig. A.12.

In conclusion, the strain value at the edge and the middle of the specimen reduced
section are almost the same as predicted by the numerical model in Fig. A.8. Consid-
ering the feasibility of sticking the strain gauge, the difference in the two locations is
neglected, and the strain gauge is glued on the center of the specimen for all tests.
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(a) (b)

(c) (d)

Figure A.11: Comparison between the response in the specimen center and on edge
obtained by experimental tests

Figure A.12: Velocity response in specimen center and on the edge of the notch
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Appendix B

Staircase test data

The detailed data for the specimens in the staircase tests are listed in this section.
The specimen names are listed in Tab. B.1.

Table B.1: Effect of dimensions on the resonant frequency

Specimen Id
Thickness

(mm)
Length
(mm)

Resonant frequency
(Hz)

S1 1 100 105
S2L 2 170 107
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Appendix C

Comparison study using the
Dixon-Mood method

C.1. Dixon-Mood method
The Dixon-Mood (DM) method was proposed by Dixon and Mood [27] in 1948,

which provides approximate formulas of maximum likelihood estimation to calculate
the mean and standard deviation of the fatigue limit. This method is a development
and simplification from Maximun Likelihood Estimation (MLE) and the parameter
distribution is assumed to be a normal distribution. Though there are many post-
processing methods that have been studied in recent years, DM is still classic and the
most widely used method for staircase data.

In DM method, the less frequency event (survival or failure) is used to calculate
the following quantity. The load levels Sa are discrete by step size d and ordinally
numbered by j, where j = 0 for the lowest load level Sa,0. Denoting by nc,j the
number of the fewer frequency events (survival or failure) at the load level j, two
auxiliary values A and B can be calculated by Eq. C.1:

A =

jmax∑
j=0

j × nc,j

B =

jmax∑
j=0

j2 × nc,j

nc =

jmax∑
j=0

nc,j

(C.1)

The auxiliary values were used to estimate the mean mDM by Eq. C.2 and the
standard deviation sDM by Eq. C.3. The minus sign given in Eq. C.2 is used if the
failed specimens are evaluated and otherwise, the plus sign is used.

mDM = Sa,0 + d

(
A

nc

± 1

2

)
(C.2)
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sDM = 1.62× d

(
Bnc − A2

n2
c

+ 0.029

)
if

Bnc − A2

n2
c

⩾ 0.3

sDM = 0.53× d if
Bnc − A2

n2
c

< 0.3

(C.3)

In which the subscript “DM” represents the Dixon-Mood method. The DM equa-
tions for the staircase method are also recommended by ISO 12107[35].

C.2. Standard deviation correction for
DM method

The small sample in the staircase test means that a lot of samples are needed under
high confidence and high probability, but it is actually impossible to do so much. There
is a drawback to the staircase test. The staircase method test is unbiased for the mean
value estimation, and the standard deviation estimation is inherently low [118, 36].
One reason is that the staircase method focuses on the majority of the data points
near the mean, it is more difficult to get an accurate measure of dispersion

Randall D. Pollak [38, 98] gave detailed research discussing standard deviation
estimation and presented a bootstrap correction method.

The deviation bias is a function of both step size(d) and sample size(n) in staircase
testing [38]. The staircase method cannot eliminate or avoid this problem, but it can
minimize the error of the standard deviation estimation value in terms of optimizing
the experimental design [42], improving the data processing [39] and creating correct
coefficient.

It can only minimize the error of the variance estimation value in terms of op-
timizing the experimental design, improving the data processing, and modifying the
coefficients. Brownlee [125] corrected the estimation of the mean to improve the sit-
uation that the first few trials all have the same outcome, and conclude that over
200 trials would be required to estimate standard deviation within 20% with the
confidence of 95%.

Some researchers put forward the corrections for DM method for better estimation
of standard deviation.

Svensson-Lorén Correction (SL)
In Svensson’s simulation works [20], a linear correction factor was proposed to

improve maximum likelihood evaluation procedures.

sSL = sDM
n

n− 3
(C.4)
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A similar equation but with a different constant parameter was also introduced in [42]
research.

sSL = sDM
n

n− 3.5
(C.5)

where sSV represents the Svensson-Lorén corrected standard deviation estimate,
and n is the total number of specimens. The equation can improve the low bias of
the estimated standard deviation. However, it only considers the sample size and only
increases the standard deviation estimated from DM method.

Pollak’s Correction (PO)
Based on the Svensson-Lorén equation, Pollak [38] conducted lots of simulation

works and proposed a non-linear form including step size.

sPO = AsDM(
n

n− 3
)(1.2

sDM

d
)b (C.6)

Where, the parameters A and b are constant dependent on the number of specimens
(as shown in Tab. C.1).

Table C.1: Constants used in standard deviation correction (Eq. C.6)

Number of specimens
(n)

A b

8 1.30 1.72
10 1.08 1.10
12 1.04 0.78
15 0.97 0.55
20 1.00 0.45
30 1.00 0.22
50 1.00 0.15

PO standard deviation shows a more robust than Svensson-Lorén correction in
different step size. But the effectiveness of this correction is not good enough, for
staircase tests with step size too large or too low may have errors magnified.

Braam-Zwaag Correction (BZ)
Braam and Zwaag [104] proposed a correction equation that accounts for both the

sample size as well as the step size to address this standard deviation bias.

sBZ = sDM + d× (
sDM

n
− 0.95)× exp(− n

4.93 sDM

n
+ 24.48

) (C.7)
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C.3. Comparison results and discussions
Let’s give two figures about median estimation with respect to the number of

specimens and step size.

(a) (b)

Figure C.1: Distributions of the median from DM - Number of specimens

(a) (b)

Figure C.2: Distributions of the median from DM - Normalised step size

From the above figures, the median value from DM method always approaches the
true value and is almost independent of the number of specimens and the step size.
Next, we will focus on the standard deviation estimation and its corrections (Fig. C.3
and Fig. C.4).
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(a) (b)

Figure C.3: Distributions of standard deviation from DM (corrections) - Number of
specimens

(a) (b)

Figure C.4: Distributions of standard deviation from DM (corrections) - Normalised
step size

By comparing the Fig. C.3 and Fig. C.4, some conclusions can been drawn:

1) The uncertainty of mean and standard deviation will decrease with the increase in
the number of samples;

2) the estimation of standard deviation is highly affected by the step size.
3) All methods including DM and DM with bootstrap give almost the same and

accurate estimation for the mean.
4) From Fig. C.4, the SL correction indeed improves original DM especially for N =

30.
5) PO correction include the parameter n and d, so it provides the estimations closer

to real value. However, it leads to large diversity and is not easy to use due to the
un-constant parameters.

6) From Fig. C.3, and Fig. C.4(a), The BZ correction appears not to better results[38],
it is not considered for following comparative study.
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Comparatively, DM with Svensson-Lorén(SL) Correction gives the best results.

C.4. Conclusions
It can draw the same conclusions from the figures. For both SL and PO correc-

tions, the results with bootstrap enlarge the bias. if we only focus on SL corrections,
the figures also give the same conclusion. Though bootstrap reduced the estimation
scatter, it increased the bias and computational cost.

The SL correction improved the standard deviation estimation by a simple equa-
tion. Comparatively speaking, DM with Svensson-Lorén(SL) Correction gives the best
estimation for standard deviation.
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Appendix D

Comparison study with Maximum
Likelihood Estimation

D.1. MLE method
The Maximun Likelihood Estimation (MLE) method is the most common tech-

nique to analyse the staircase data[39, 56] and general fatigue test data. The purpose
is to use the known sample results to infer the most likely (maximum probability)
parameter values that lead to such results. The MLE can be used to staircase data
with variable step size and any kind of distribution. It is able to derive the estimated
distribution parameters, however, the MLE needs a prior assumed distribution.

MLE method
The goal of the MLE is to combine the observations of each specimen in order to

estimate the initial distribution. A likelihood function is created to evaluate the pa-
rameters of this distribution. In the general case with a dataset containing n samples,
the likelihood function L is defined as:

L =
n∏

i=1

f(Sa,i) (D.1)

where the f is the PDF of assumed distribution, which is the function of the distribu-
tion parameters, such as shape, loc, scale and so on. Sa,i is the load amplitude of the
specimen i. The evaluation of the distribution parameters is performed by maximizing
function L.

MLE with censored data
Considering the data set X={ x0, ..., xj, ..., xn} resulting in the staircase approach,

xj being a state of survival or failure experienced by a specimen (without censor).
When the fatigue strengths Sa,j of the n specimens are known, For the staircase data,
the specimen with failure and with survival gives different information of fatigue limit:
the fatigue limit is lower than the applied stress (left censored) in case of failure and
the fatigue limit is higher than the applied stress (right censored) in case of survival
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(run-out).

F

survival

(right censored)

failure

(left censored)

Load amplitude

P
D

F

1-F

Sa

Figure D.1: Left and right censored data distribution and likelihood

As shown in Fig. D.1, if the specimen failed at the load level Sa, the information
we derive from the test is that Sf < Sa. It corresponds to left censoring and the
observed probability is then described using the CDF as Eq. D.2:

P (x ⩽ Sa) = F (Sa) (D.2)

While it can be known that survival can occur as a result of the load level is less
than the corresponding fatigue limit, that is Sfl > Sa. The right censoring can be
expressed as Eq. D.3:

P (x ⩾ Sa) = 1− F (Sa) (D.3)

where F is the CDF of the distribution. The maximum likelihood function L is ex-
pressed as Eq. D.4

L =
n∏

i=1

F nf,i (̇1− F )ns,i (D.4)

The maximization of L results in the estimation of the distribution parameters.
The logarithm of the minimized equation is strongly recommended in order to reduce
some numerical computational problems. The new function to optimize minimum is:

lnL = −
n∑

i=1

[nf,ilnF + ns,iln(1− F )] (D.5)
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where ’ln’ holds for natural logarithm in this study. The gradient descent methods,
such as Newton method, are frequently used to find the extreme value. This study used
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to find the optimum global
resolution of the likelihood function. For the staircase data, it should be noted that
the MLE with censoring is only suitable for load levels greater or equal to 4 (j ⩾ 4).

An example is given as: a staircase including 30 specimens with initial distribution
N (400, 10). The estimated results of classical MLE and MLE with censoring are listed
in Fig. D.2.

Figure D.2: Comparison of estimated PDF from MLE and MLE with censored data

The optimization of the likelihood function is shown in Fig. D.3. It can be seen
that the BFGS algorithm finds the minimum value of the likelihood function and
obtain better results in this case.
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Figure D.3: An example of likelihood function optimization

Corrections to MLE
Müller[40] has concluded that the MLE has a better estimation quality, and he

also gave a coefficient(Eq. D.6) to correct logarithmic standard deviation.

sMUL =
n− 1

n− 6.5
× sMLE (D.6)

This correction is only for logarithmic standard deviation, so it is not considered
in this study.

D.2. Comparison results and discussions
Using the simulation described in Section 4.3.1, the median and standard devia-

tion estimation is compared in this section. Firstly, the simulation based on Normal
distribution, Lognormal and Weibull distribution will be discussed later. Fig. D.4 and
Fig. D.4 show the median estimation with respect to the number of specimens and
step size.
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(a) (b)

Figure D.4: Distributions of median from MLE (Normal) - Number of specimens

(a) (b)

Figure D.5: Distributions of median from MLE (Normal)- Normalised step size

The median value from MLE method always approach to the true value and almost
independent to the number of specimens and the step size. Next, we will focus on the
standard deviation estimation and its corrections.
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(a) (b)

Figure D.6: Distributions of standard deviation from MLE (Normal) - Number of
specimens

(a) (b)

Figure D.7: Distributions of standard deviation from MLE (Normal) - Normalised
step size

From the results of Normal distribution, some conclusions can been drawn:

1) The uncertainty of median and standard deviation will decrease with the increase
of number of samples;

2) Both classical MLE and the censoring MLE give perfect estimation to median
value. and it is independent to the number of samples and step size.

3) For the classical MLE method, the estimation of standard deviation is highly
affected by step size.

4) From Fig. D.7, the censored MLE underestimated standard deviation, but not
much.

Next, the estimation based on Lognormal distribution and Weibull distribution
are also compared and the results about standard deviation are shown following.
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(a) (b)

Figure D.8: Distributions of standard deviation from MLE (Lognarmal)

(a) (b)

Figure D.9: Distributions of standard deviation from MLE (Weibull)

Some conclusions can been drawn:

1) There are almost same conclusions for Lognormal distribution and Normal distri-
bution.

2) From Fig. D.9(a), there are a weird peak when n = 30. This may caused by
Monte-Carlo simulation.

3) From Fig. D.9(b), the MLE with censoring has a poor performance when normal-
ized step size close to 1. However, it is better than classical MLE when normalized
step size in range of [1.5-2.0].

D.3. Conclusion
There is no doubt that the MLE with censoring data leads to a better results than

classical MLE. Though the correction is not perfect in all case, but it is suitable for
most estimation problems.
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Appendix E

Distributions: Normal, Lognormal
and Weibull

Note that the Normal, Lognormal and Weibull distribution are implied in sev-
eral studies on staircase test, and represent non-skewed, negative skewed and positive
skewed distributions respectively. Hence, this section describes the definition and prop-
erties of three distributions. Based on Scipy [112] statistics package (scipy.stats), the
formulas are uniformly expressed with location, scale and shape parameters.

For each distribution, the definition of Probability Density Function (PDF) and
Cumulative Density Function (CDF) are given. Then we introduce the statistical
properties and transformation of distribution parameters and population parameters.
Lastly, an example of the distribution with desired mean 400 and desired standard
deviation 10 are created. Total 100000 data are sampled from the distribution. And we
can obtain the mean, standard deviation and median of sampled data (population),
which are consistent with desired mean and desired standard deviation.

In the following formulas:

f(x) : probability density function (PDF)
F (x) : cumulative density function (CDF)
x : random variates (> 0)
α : location parameter (> 0)
β : scale parameter (> 0)
γ : shape parameter (> 0)
Φ : CDF of the standard Normal distribution
µX : mean of population
sX : standard deviation of population
mX : median of population
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E.1. Normal distribution
The PDF and CDF of Normal distribution is given such as:

f(x) =
1

β
√
2π

exp

[
−1

2

(
x− α

β

)2
]

F (x) = Φ

(
x− α

β

) (E.1)

where α, β are location (mean) and scale (standard deviation) parameters respectively.
The statistical parameters of Normal distribution can be obtained:

µX = mX = α

sX = β
(E.2)

The distribution with desired mean 400 and desired standard deviation 10 are
created, and 100000 data are sampled from the distribution. a sample is illustrated in
Fig. E.1.

Figure E.1: Normal distribution test

For the observed data, µX = mX = 399.9790 and sX = 10.0019.
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E.2. Lognormal distribution
The failure rate curves of Lognormal distribution regularly increase with the fa-

tigue cycling with inherently positively skewed PDF.
The PDF and CDF of Lognormal distribution are given as ref:

f(x) =
1

xλ
√
2π

exp

−

[
ln
(

x
β

)]2
2λ2


F (x) = Φ

(
ln(x)

λ

) (E.3)

where λ is the shape parameter (and is the standard deviation s of the Lognormal
distribution), β is the scale parameter (and is also the median of the population).

If we want to create a Lognormal distribution from desired population with mean
µX and sX :

µ = ln

(
µ2
X√

µ2
X + s2X

)

s =

√
ln

(
s2X
µ2
X

)
λ = s

β = exp (µ) (= mX)

(E.4)

The statistical parameters of Lognormal distribution can be obtained:

µX = exp

(
µ+

s2

2

)
sX =

√
[exp (s2)− 1]× µ2

X

mX = exp (µ)

(E.5)

As shown in Fig. E.2, The Lognormal distribution with desired mean 400 and
desired standard deviation 10 are created with 100000 data.

For the observed data, µX = 400.0116 and sX = 10.0249, mX = 399.9219.

E.3. Weibull distribution
The PDF and CDF of two-parameter Weibull distribution is given as:
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Figure E.2: Lognormal distribution test

f(x) =
γ

β

(
x

β

)γ−1

exp

[
−
(
x

β

)λ
]

F (x) = 1− exp

[
−
(
x

β

)λ
] (E.6)

The statistical parameters of Weibull distribution can be obtained:

µX = βΓ(1 +
1

λ
)

sX = β

√
Γ(1 +

2

λ
)− [Γ(1 +

1

λ
)]2

mX = β(ln 2)
1
λ

(E.7)

The shape and scale parameters of the Weibull distribution can be calculated using
desired population with mean µX and sX :

λ :
s2X
µ2
X

−
Γ(1 + 2

λ
)

(Γ(1 + 1
λ
))2

+ 1 = 0

β = µXΓ(1 +
1

λ
)

(E.8)

In the fatigue analysis, the shape parameter (λ) of a Weibull distribution should be
greater than 1 in order to have the meaning of failure rate curve increases with the
fatigue cycling. Generally, for λ < 2.6 the Weibull PDF is positively skewed (has a
right tail), for 2.6 < λ < 3.7 its coefficient of skewness approaches zero (no tail).
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Consequently, it may approximate the normal pdf, and for λ > 3.7 it is negatively
skewed (left tail).

As shown in Fig. E.2, The Weibull distribution with desired mean 400 and desired
standard deviation 10 are created with 100000 data.

Figure E.3: Weibull distribution test

For the observed data, µX = 399.9766 and sX = 10.0523, mX = 401.5406.
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Annexe F

Résumé en français

F.1. Introduction générale
Presque tous les équipements mécaniques sont soumis à des vibrations. Les charges

vibratoires transférées aux structures réduisent la durée de vie et entraînent des fis-
sures dues à la fatigue. Par conséquent, l’exigence d’une distribution probabiliste de la
fatigue est critique en ce qui concerne la sécurité des structure. Comme la limite de fa-
tigue indique l’amplitude de charge endurable sous un nombre de cycles suffisamment
élevé, l’obtention de la limite de fatigue d’un matériau est cruciale pour la conception
de la fatigue structurelle. Cependant, la machine expérimentale, le protocole d’essai
et la méthode statistique posent certains problèmes.

La limite de fatigue est un paramètre important qui reflète la performance des
matériaux en matière de fatigue. L’évaluation de la limite de fatigue dans la concep-
tion technique est encore fortement basée sur le test expérimental, en particulier la
méthode de l’escalier. Cependant, l’essai conventionnel présente des limites intrin-
sèques concernant la dérivation des données et son influence sur la caractérisation de
la fatigue. Pour surmonter ces limites dans l’évaluation de la limite de fatigue, les
solutions appropriées pourraient résider dans la machine de test, le post-traitement
des données et la stratégie d’essai. Les objectifs sont de réaliser l’essai de fatigue sur
agitateur électro-dynamique et de réduire l’erreur d’estimation de la limite de fatigue
dans l’évaluation des données et le protocole d’essai.

Cette thèse développe des expériences et des statistiques basées sur la méthode
de l’escalier pour l’évaluation de la distribution des limites de fatigue. Elle détaille le
processus de conception comprenant le but du développement de contrôle de la défor-
mation pour les tests de fatigue, l’évaluation de l’incertitude, une méthode statistique
initiale pour le post-traitement et l’optimisation de la conception du protocole de test
en utilisant l’algorithme de Bayes.

Les principaux axes de recherche de ce document sont organisés comme suit :

Chapter F.2 : court revue de la limite de fatigue et de la méthode de l’escalier
démontrant le but du développement de la méthode d’essai expérimentale de
contrôle de la déformation, de la technique d’évaluation des données avec cor-
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rection de l’écart type et de la conception du protocole d’essai basée sur le
théorème de Bayes.

Chapter F.3 : description d’une méthode d’essai expérimentale de contrôle des vi-
brations basée sur la déformation réalisée sous agitateur électro-dynamique. Ce
chapitre détaille une procédure d’essai en escalier avec un banc de flexion vibra-
toire et la sélection des paramètres. Les résultats des essais avec cette méthode
offrent un ensemble de données pour la quantification des incertitudes et l’étude
statistique.

Chapter F.4 : présentation du Bootstrap utilisé pour caractériser la moyenne et
l’écart type de la distribution de la limite de fatigue à partir des données issues
de la méthode des escaliers, ainsi que l’incertitude associée à cette méthode
d’essai. Les résultats comparent la distribution de la limite de fatigue du DC01.

Chapter F.5 : traitement statistique des données d’essais de fatigue sur éprouvettes.
Une nouvelle méthode d’évaluation basée sur l’estimation de la densité du noyau
est proposée pour estimer la limite de fatigue à partir des essais en escalier. Une
étude basée sur la simulation est réalisée en utilisant plusieurs distributions de
probabilité avec différents coefficients de variation.

Chapter F.6 : proposition d’un processus de conception de test avec le théorème
bayésien en ce qui concerne à la fois la considération scientifique et l’exigence
d’ingénierie.

Cette thèse se conclut avec des perspectives de travail (Chapter F.7).

F.2. Chapitre 1 : Vue d’ensemble de la
limite de fatigue

Lors de la sélection d’un matériau pour la conception, il est crucial de connaître
les conditions de fonctionnement auxquelles il sera soumis. Dans des conditions de
chargement cyclique, la distribution statistique de la limite de fatigue est généralement
requise pour délimiter la plage de fonctionnement en cas de fatigue à un nombre de
cycle élevé. La limite de fatigue est un niveau de contrainte en dessous duquel la
rupture par fatigue ne se produira pas même sous un nombre suffisamment élevé de
cycles de charge appliqués à la structure.

Depuis longtemps, la limite de fatigue est considérée comme une propriété essen-
tielle du matériau. C’est une constante matérielle utilisée pour évaluer la valeur d’un
matériau et un paramètre nécessaire à la conception de structures résistantes à la
fatigue. Dans la conception mécanique d’un matériau, il est important de comprendre
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non seulement la limite de fatigue moyenne, mais aussi la variance de cette résistance
et la probabilité de rupture pour une certaine amplitude de contrainte spécifique.

En ingénierie, la courbe S-N et la limite de fatigue sont souvent utilisées pour
évaluer la performance des matériaux et des structures en termes de fatigue. Les
spécimens sont testés à différents niveaux de contrainte et le nombre de cycles cor-
respondant (durée de vie en fatigue) est mesuré. Les résultats expérimentaux sont
habituellement présentés sous la forme d’un diagramme logS − logN (voir Fig. F.1).
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Figure F.1 : Courbe S-N et test de l’escalier

Comme le montre la Fig. F.1, il est normal que la limite de fatigue soit déduite
de la courbe S-N. Cette dernière peut obtenir une valeurde limite de fatigue mais
ne peut pas fournir une distribution statistique. En considérant la limite de fatigue
comme une valeur aléatoire, la méthode de l’escalier [27] est beaucoup plus adaptée
à la précision de l’estimation de la limite de fatigue.

Dixon et Mood [27] ont proposé une méthode classique de test de sensibilité en
1948 : méthode de l’escalier. Elle est largement utilisée dans les secteurs de la machine-
rie, de la médecine, de la pyrotechnie, etc. Avec cette méthode, les essais de fatigue sont
effectués séquentiellement sur des spécimens soumis à un cycle de contrainte d’ampli-
tude constante jusqu’à un nombre prédéterminé de cycles NL. La première éprouvette
est testée à une amplitude de charge initiale choisie arbitrairement. En supposant
que l’éprouvette "survive" (runout) jusqu’à NL cycles, l’amplitude de charge appli-
quée à l’éprouvette suivante est augmentée d’un pas d. Inversement, si l’éprouvette
est marquée comme "défaillante", alors l’amplitude de la charge appliquée à l’éprou-
vette suivante sera diminuée d’un pas d. La taille du pas est généralement constante
pendant toute la durée de l’expérience. Cette procédure est répétée en séquence. Les
niveaux de charge étant augmentés et diminués par paliers jusqu’à ce que le nombre
de spécimens soit atteint. Par conséquent, l’approche de l’escalier fournit une estima-
tion raisonnable de la limite de fatigue médiane, car environ la moitié des spécimens
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échouent et les autres non[37].
En résumé, la méthode d’essai en escalier a été largement utilisée pour évaluer la

distribution des limites de fatigue. Elle présente deux caractéristiques remarquables :
tout d’abord, de par sa nature, cette méthode tend à concentrer les données près
de la moyenne. Ensuite, elle permet une simplicité relative de l’analyse statistique
des données obtenues. Cependant, cette méthode présente également trois défauts :
premièrement, le test n’a pas de caractéristique d’optimisation mathématique. De
plus la précision de l’estimation avec la même taille d’échantillon doit être encore
augmentée ou bien la taille de l’échantillon doit être réduite pour la même précision
d’estimation. Deuxièmement, la taille du pas de contrainte doit être estimée avant
le test. Si la taille de pas est trop grande, la probabilité de générer des données
invalides augmente, ce qui accroît l’incertitude de l’essai. Troisièmement, l’estimation
de l’écart-type est systématiquement moins précise et inférieure à la valeur réelle. Par
conséquent, cette étude a réalisé l’essai de fatigue expérimental par la méthode de
l’escalier mais a également amélioré cette méthode en termes de post-traitement et
de stratégie d’essai.

F.3. Chapitre 2 : Contrôle expérimen-
tal des vibrations basé sur la dé-
formation

Cette étude est une combinaison d’essais expérimentaux de fatigue à amplitude
constante avec la technique de contrôle des déformations et la méthode de l’escalier
pour évaluer la limite de fatigue dans le domaine des déformations. Le contrôle des
déformations permet de réaliser des essais de fatigue en régime permanent jusqu’à
la rupture grâce à une jauge de déformation collée au centre de la section réduite
de l’éprouvette. Une procédure d’essai en escalier avec un banc de flexion vibrant,
comprenant la sélection des paramètres, est détaillée dans ce travail. L’analyse des
résultats est basée sur l’estimation de la densité du noyau. Elle est utilisée pour accéder
à la limite de fatigue sur une distribution non paramétrique. Des échantillons d’acier à
faible teneur en carbone avec une zone de fatigue ont été sélectionnés pour évaluer les
caractéristiques statistiques de la limite de fatigue. Les résultats mettent en évidence
l’efficacité de la méthode de l’escalier combinée à celle des déformations contrôlées
pour atteindre la limite de fatigue.

Dans cette étude, l’agitateur électro-dynamique, refroidi par l’air, est relié à l’éprou-
vette par une table vibrante. Les expériences sont réalisées sur des éprouvettes en acier
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à faible teneur en carbone soumises à une excitation cyclique sinusoïdale en déforma-
tion par flexion.

L’essai de fatigue avec contrôle de déformation est mis en œuvre avec la tech-
nique SRTD [77]. Les conditions de résonance sont maintenus automatiquement tout
au long de l’essai même si un changement se produit (fissure, par exemple). Il y a
deux caractéristiques dans le SRTD avec contrôle de la déformation. Tout d’abord, il
s’agit de contrôler l’amplitude de la déformation pour maintenir une valeur constante.
L’agitateur ajuste l’accélération de base pour atteindre le niveau de déformation né-
cessaire à l’essai de fatigue. Ensuite, le SRTD maintient la différence de phase entre
les signaux d’excitation et de réponse à 90 degrés, ce qui garantit que la fréquence
d’excitation et la fréquence de résonance de l’échantillon restent les mêmes, car une
réduction de la fréquence de résonance est observée lorsqu’une fissure se produit. En
général, l’amplitude de déformation forme une boucle fermée dans l’essai SRTD, ce
qui garantit une amplitude de déformation constante et le maintien à la fréquence de
résonance. Ainsi, le contrôle de la déformation a une réponse très stable dans l’essai
SRTD.

Dans l’expérience, le contrôle de la déformation dans le vibrateur pour l’essai de
fatigue est validé par la méthode de l’escalier. Le diagramme en escalier de l’essai en
escalier est présenté dans la Fig. F.2.

Figure F.2 : Diagramme up–and–down pour les échantillons d’acier DC01

Pour conclure, les résultats montrent les niveaux de déformation à la valeur pré-
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définie et maintenue constante pendant l’essai, indépendamment de la variation de la
fréquence. Ces données démontrent la fiabilité du contrôle de la déformation lors d’un
essai de fatigue par vibration sur l’agitateur électro-dynamique.

F.4. Chapitre 3 : Évaluation de l’in-
certitude par les méthodes de ré-
échantillonnage

Le post-traitement donne une estimation précise de la distribution de la limite de
fatigue. Cependant, on peut se demander quels seront les résultats si l’essai en escalier
est effectué plus d’une fois sur le même système d’essai.

Le Bootstrap est une méthode non paramétrique qui repose sur le rééchantillon-
nage des échantillons observés. Le point clé du bootstrap est l’échantillonnage non
ordonné avec remplacement. Combinée à la méthode de l’escalier, une procédure
bootstrap est proposée comme l’Algorithm F.1 :

Tout d’abord, une analyse de sensibilité est effectuée pour simuler la variation du
facteur d’incertitude en fonction du nombre de spécimens dans un seul échantillonnage
et des périodes d’échantillonnage. Ensuite, un total de 100 bootstrap avec 100 échan-
tillons dans chaque échantillonnage est effectué. Nous avons constaté que l’incertitude
pour l’estimation de l’écart-type est très élevée, bien plus élevée que l’estimation de
la moyenne.

Pour valider la technique de contrôle de la déformation et l’essai en escalier par des
méthodes statistiques, trois types de spécimens avec des dimensions différentes ont
été utilisés. Sur la base des différents résultats expérimentaux obtenus, le bootstrap
est utilisé pour analyser la relation entre les résultats et les causes de leur dispersion.
Plusieurs facteurs principaux, notamment la fréquence de résonance et l’épaisseur,
sont impliqués dans la dispersion des résultats des tests de fatigue. Ils sont discutés à
la fin.
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DANS UN TEST D’ESCALIER POUR LA LIMITE DE FATIGUE

Algorithm F.1: Bootstrap
1 L’ensemble de données en escalier qui comprend n simples est représenté par

X = [x1, x2, ..., xn], et la taille de l’étape est d
2 Définir N comme le nombre d’échantillons dans un seul échantillonnage et M

comme les durées d’échantillonnage
3 Déterminer tous les niveaux de déformation (ou de contrainte) L = [l1, l2, ...l]
4 Diviser X en différentes parties selon les différents niveaux de déformation (ou

de contrainte) l, soit X l = [xl
1, x

l
2, ..., x

l] , c’est-à-dire X1 ∪X2 ∪ ...X l = X
5 Pré-requis : Sélectionner aléatoirement un niveau de souche d’essai l
6 Obtenir toutes les données de test du niveau de souche l
7 foreach i in M do
8 Réinitialiser l’ensemble de données en escalier X = [x1, x2, ..., xn]
9 foreach j in N do

10 Echantillonner une donnée x à partir de X l de façon aléatoire
11 if l’échantillon x est défaillant then
12 l = l − d // l’échantillon suivant est sélectionné parmi les

spécimens du niveau inférieur
13 else
14 l = l + d // l’échantillon suivant est sélectionné parmi les

spécimens du niveau supérieur
15 end if
16 Obtenir tous les points de test dans le nouveau niveau X l

17 end foreach
18 Obtenir les résultats de l’échantillonnage : X̃ = [x1, x2, ..., xN ]
19 Estimer la distribution de la limite de fatigue par la même méthode de

post-traitement
20 end foreach
21 Obtenir tous les résultats de l’échantillonnage : [X̃1, X̃2, ..., X̃M ] et les facteurs

d’incertitude correspondants

F.5. Chapitre 4 : Méthode d’évalua-
tion non paramétrique dans un test
d’escalier pour la limite de fatigue

Les travaux précédents ont fourni des résultats d’essais expérimentaux en escalier.
Ainsi, une méthode de post-traitement est nécessaire pour obtenir la distribution de
la limite de fatigue.

Une nouvelle méthode d’évaluation basée sur l’estimation de la densité du noyau
(KDE) est proposée pour estimer la distribution de la limite de fatigue à partir d’essais
en escalier sans connaissance préalable. Le PDF de tous les échantillons est ensuite
estimé par la somme de ces densités du noyau. Sur la base de données expérimentales,
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l’estimation du KDE avec la règle de Scott et la largeur de bande améliorée conduit à
un PDF estimé lisse. Puisque la correction linéaire élargit l’incertitude de l’estimation
[38], le développement d’une approche non linéaire pour réduire le biais de l’écart type
est nécessaire.

L’estimation proposée de la limite de fatigue basée sur le KDE avec correction du
biais est exprimée par pseudo-code dans l’Algorithm F.2.
Algorithm F.2: Méthode non paramétrique d’estimation de la limite de
fatigue
Data: L’ensemble de données sur les escaliers : X = {x1, x2, ..., xn}, la taille

de l’escalier : d
1 Calcul de la largeur de bande h par la règle de Scott;
2 (m, s) de KDE avec une largeur de bande h ;
3 Correction de s ;

Result: La médiane estimée m et l’écart type estimé s de la distribution de
la limite de fatigue

Une simulation numérique modélisant l’essai en escalier est réalisée avec différentes
distributions et coefficients de variation. La valeur médiane (m) et l’écart-type (s) sont
utilisés dans ce travail pour décrire la distribution des limites de fatigue. Il apparaît
que la méthode KDE a un résultat estimé conforme à la méthode MLE. La médiane
et l’écart-type des estimations de KDE et MLE convergent les uns vers les autres. En
comparant les distributions estimées par KDE, MLE et DM, les principaux résultats
peuvent être tirés :

(1) : MLE distingue les spécimens en fonction du résultat de l’échec ou de la survie,
tandis que KDE ne requière pas cette information

(2) KDE a un résultat estimé selon la méthode MLE. La médiane et l’écart-type des
estimations de KDE et MLE convergent les uns vers les autres

(3) DM donne un plus grand écart-type de la limite de fatigue. Alors qu’après la cor-
rection de l’écart-type dans la méthode KDE, la valeur prédite devient beaucoup
plus petite

Pöur conclure, la méthode KDE proposée réduit considérablement le biais de
l’écart-type de la limite de fatigue à partir d’essais sur petits échantillons. De plus, les
performances de cette méthode sont insensibles aux paramètres d’essai de la méthode
de l’escalier.
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F.6. Chapitre 5 : Plan d’expérience op-
timal en escalier par échantillon-
nage bayésien à entropie maximale

Pour remédier aux défauts intrinsèques de la méthode d’essai conventionnelle en
escalier, ce chapitre propose une méthode d’essai optimisée, basée sur les Echantillo-
nages Bayésiens à Entropie Maximale (BMES) et les Echantillonages Latins Hyper-
cubes (LHS) pour déterminer la distribution de la limite de fatigue de la structure.
Cette méthode combine les informations préalables avec les informations de l’échan-
tillon pour obtenir la probabilité postérieure. La distribution de la limite de fatigue
est estimée sur la base de la probabilité postérieure, ce qui réduit l’erreur d’analyse
statistique causée par les caractéristiques du petit échantillon de l’essai de limite de
fatigue.

Pour le premier spécimen, la priorité initiale est créée à partir de la priorité nulle
comme détaillé dans Section 5.2.3. Les contraintes possibles proviennent de la plage
de la médiane de distribution des limites de fatigue dans le paramètre d’entrée. La
fonction d’utilité, décrite dans Section 5.3.2, est utilisée pour rechercher la contrainte
de charge. Après l’essai, l’amplitude de la contrainte et le résultat de l’essai (survie ou
échec) sont obtenus, et la postérieure est mise à jour sur la base de ce résultat d’essai.
Cette dernière devient l’antérieur pour le spécimen suivant.

Cette procédure est répétée pour les autres échantillons avec BMES jusqu’à ce que
la postérieure ait une convergence. Cela signifie qu’une seule distribution peut être
estimée à partir de la postérieure. À partir de cette étape, le LHS est appliqué pour
déterminer la contrainte de charge et mettre à jour la postérieure. Ensuite, les LHS
et BMES sont utilisés alternativement pour déterminer la contrainte de charge. La
postérieure est mise à jour après chaque test, quel que soit le LHS ou le BMES. Enfin,
la valeur postérieure P (θ|x1:n) est obtenue après un total de n spécimens.

La postérieure finale, P (θ|x1:n), présente la probabilité des observations compte
tenu des paramètres possibles du modèle. L’estimation des paramètres du modèle est
obtenue en recherchant le maximum dans la postérieure après le dernier spécimen. Le
protocole optimal de l’escalier est donné dans l’ Algorithm F.3.

Par rapport à la méthode de l’escalier classique, les avantages de la méthode
Bayes-LHS peuvent être énumérés comme suit :

(1) Cette méthode évite l’utilisation d’une contrainte de départ devinée et d’une taille
de pas fixe. Elle sélectionne artificiellement la gamme des paramètres possibles
du modèle avant le test bayésien en escalier.
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Algorithm F.3: Framework of Bayes-LHS staircase protocol
Data: Distribution ; plages de la médiane et de l’écart-type ;

1 Générer le paramètre de modèle θ. Initialisation de l’antériorité P (θ) ; if
P (θ|x1:i) convergence then

2 Déterminer l’amplitude de la contrainte de charge par BMES
3 else
4 Déterminer l’amplitude de la contrainte de charge par LHS et BMES

alternativement
5 end if
6 Tester l’éprouvette
7 Calculer la postérieure P (θ|x1:n) et l’entropie de Shannon après chaque test
8 Postérieure finale

Result: La médiane estimée m et l’écart type estimé s de la distribution de
la limite de fatigue

(2) L’utilisation d’informations antérieures pendant le test permet une convergence
plus rapide [116], ce qui signifie moins de spécimens pour atteindre les mêmes
résultats.

(3) Très peu d’informations sont nécessaires sur le jeu d’échantillons avant le test.
(4) Il n’est pas nécessaire d’utiliser une méthode de post-traitement. Le paramètre

du modèle de distribution est obtenu directement à partir du modèle postérieur.

En outre, par rapport à la méthode bayésienne en escalier, la méthode Bayes-LHS
optimisée fournit un protocole de calcul plus rapide tout en conservant l’exactitude
et la précision.

F.7. Chapitre 6 : Conclusion et pers-
pectives

Le présent travail décrit le sujet de l’évaluation des limites de fatigue. La thèse
couvre des aspects allant des expériences de fatigue mécanique aux méthodes statis-
tiques. Ce dernier chapitre résume ce que nous avons appris des travaux précédents
et indique les directions les plus prometteuses pour les recherches futures.

Selon la revue de la littérature, l’évaluation de la limite de fatigue est un problème
pratique difficile car l’éprouvette est exposée à des conditions de vibration, ce qui
est crucial pour une conception structurelle fiable. Pour parvenir à une distribution
de probabilité de la limite de fatigue, les principaux défis proviennent de la méthode
d’essai expérimentale et d’une technique d’évaluation avancée des données d’essai.

L’évaluation de la limite de fatigue commence par l’essai expérimental. Un banc de
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vibration est une solution raisonnable pour réduire la durée de l’essai de fatigue. En
revanche, l’essai de limite de fatigue exige que l’éprouvette soit soumise à une ampli-
tude de contrainte constante pendant un certain nombre de cycles. Une technique de
contrôle de la déformation appliquée à un electro-dynamic shaker est proposée pour
réaliser un essai à amplitude de déformation constante. L’efficacité de l’approche pro-
posée a été démontrée par des essais de flexion de plaques d’acier DC01 à leur première
fréquence de résonance. Le contrôle de la déformation à la résonance (amplification du
signal) et l’excitation à relativement haute fréquence permettent de réduire le temps
d’essai pour atteindre un grand nombre de cycles. Cette approche est donc efficace
pour tester la méthode de l’escalier. Le seuil de fatigue et la dispersion de l’acier
DC01 sont estimés par les résultats de l’escalier. Les résultats montrent une bonne
répétabilité avec la méthode de l’escalier.

La méthode statistique offre des approches permettant de fournir les distributions
des limites de fatigue pour chaque essai en escalier. La question clé est : quels sont
les résultats d’une nouvelle exécution de l’essai de l’escalier ? Une analyse d’incerti-
tude est effectuée pour évaluer les distributions des limites de fatigue d’un matériau
obtenues à partir de l’essai en escalier. Pour cela, nous avons appliqué la méthode
de rééchantillonnage, leave-one-out et bootstrap sur les données de l’escalier afin de
déduire la dispersion de la moyenne et l’écart type de la distribution. Les résultats de
cette étude ont mis en évidence la forte incertitude inhérente à l’estimation de l’écart-
type. Les résultats du rééchantillonnage bootstrap montrent que l’écart-type de la
limite de fatigue présente une grande dispersion, ce qui permet de conclure qu’il faut
être prudent pour utiliser les résultats des escaliers dans la conception de la fatigue.

Pour réduire cette incertitude, nous proposons d’utiliser l’estimation de la densité
du noyau (KDE) dans cette étude en raison de son caractère non paramétrique et de
son indépendance par rapport au modèle de distribution. Pour la comparer à d’autres
méthodes basées sur des hypothèses, la KDE est testée sur différentes distributions
afin de valider son efficacité. La dépendance de l’hyperparamètre KDE est également
étudiée et optimisée pour améliorer ses performances dans l’évaluation de la limite de
fatigue. De plus, comme la méthode de l’escalier nécessite de définir une taille de pas
initiale, un facteur corrigé non linéaire est formulé pour réduire son influence dans
l’estimation de l’écart-type. L’approche numérique utilise la simulation de Monte-
Carlo et permet d’examiner l’effet du nombre de spécimens et de la taille du pas. La
performance de l’estimation est évaluée sur la moyenne et l’écart-type de la limite de
fatigue impliquant différentes distributions et coefficients de variation.

Dans le but de résoudre la limitation de la taille des marches dans la méthode de
l’escalier, un protocole d’escalier Bayes-LHS est présenté pour supprimer la taille des
marches dans l’escalier conventionnel. La théorie bayésienne des essais de fatigue et des
Bayesian Maximum Entropy Sampling (BMES) est détaillée, puis le protocole d’es-
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calier bayésien est fourni avec un exemple. Cette étude appelée méthode Bayes-LHS
enrichit l’approche Bayes avec les Latin Hypercube Sampling (LHS). Cette proposition
est décrite pour la procédure en escalier. Les résultats sont suffisamment optimistes
pour considérer que le protocole Bayes-LHS pourrait remplacer la méthode classique
de l’escalier pour l’estimation des limites de fatigue.
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