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ABSTRACT 

Tree growth is highly dependent on the absorptive function of fine roots for water and nutrients. 

Fine roots also play a major role in the global carbon (C) cycle, mainly through production, 

respiration, exudation and decomposition processes. Improving our understanding of the 

spatiotemporal dynamics of fine roots and greenhouse gases in deep soil layers is a key 

component to identify more sustainable silvicultural practices for planted forests in a context 

of climate change and to improve the current biogeochemical models.  

Our study aimed to assess the effect of clear-cutting and drought on fine-root production, soil 

CO2, CH4 and N2O effluxes and production throughout deep soil profiles down to the water 

table in Brazilian coppice-managed Eucalyptus plantations. Fine roots (i.e. diameter < 2 mm) 

were sampled down to a depth of 17 m in a throughfall exclusion experiment comparing stands 

with 37% of throughfall excluded by plastic sheets (-W) and stands without rain exclusion 

(+W). Root dynamics were studied using minirhizotron in two permanent pits down to a depth 

of 17 m in treatments -W and +W, over 1 year before clear-cutting, then over 2 years in coppice, 

as well as down to a depth of 4 m in a non-harvested plot (NH) serving as a control. CO2, CH4 

and N2O surface effluxes were measured over three years using the closed-chamber method in 

treatments -W, +W and NH. CO2, CH4 and N2O concentrations in the soil were measured from 

the pits down to a depth of 15.5 m in treatments -W, +W and NH over 3 months before the 

clear-cut and 1.5 years after in coppice. 

After harvesting, spectacular fine root growth of trees conducted in coppice occurred in very 

deep soil layers (> 13 m) and, surprisingly, root mortality remained extremely low whatever 

the depth and the treatment. Total fine-root biomass in coppice down to a depth of 17 m was 

1266 and 1017 g m-2 in treatments +W and -W, respectively, at 1.5 years after the clear-cut and 

was 1078 g m-2 in NH 7.5 years after planting. Specific root length and specific root area were 

about 15% higher in -W than in +W. CO2, CH4, and N2O effluxes were not significantly 

different between treatments -W and +W and did not change after clear-cutting in the coppice-

managed stands compared to non-harvested stand. CO2 and CH4 concentrations greatly 

increased with depth and N2O concentrations remained roughly constant from the soil surface 

down to a depth of 15.5 m. Mean CO2 and N2O concentrations in -W were 20.7% and 7.6% 

lower than in +W, respectively, and CH4 concentrations in -W were 44.4% higher than in +W 

throughout the soil profiles. A diffusivity model showed that CO2, N2O and CH4 production 

and consumption occurred at great depths and were similar in treatments +W, -W and NH. 

Clear-cutting did not increase CO2, CH4 and N2O effluxes and productions, whatever the water 

supply regime. 

Establishing deep root systems in tropical planted forests could help trees withstand the long 

drought periods expected under climate change in many tropical regions. Our study suggested 

that coppice management might be an interesting option in tropical Eucalyptus plantations, both 

to improve tree tolerance to drought and store carbon at great depth in the soil. Consequences 

of climate changes on greenhouse gas emissions could be minor when tropical Eucalyptus 

plantations are coppice-managed.  

 

Keywords: Brazil, Eucalyptus grandis, deep root growth, greenhouse gases, throughfall 

exclusion, very deep tropical soil, coppice 
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RESUME 

Les racines fines jouent un rôle majeur dans le cycle global du carbone, en assurant l'absorption 

d'eau et de nutriments nécessaire à la croissance des plantes ainsi qu'au travers de flux de 

carbone souterrains. Améliorer notre compréhension de la dynamique spatio-temporelle des 

racines fines et des gaz à effet de serre dans les couches profondes du sol est un élément clé 

pour identifier des pratiques sylvicoles plus durables pour les forêts plantées dans un contexte 

de changement climatique et pour améliorer les modèles biogéochimiques actuels. 

Cette étude visait à évaluer l’effet de la coupe des arbres et de la sécheresse sur la production 

de racines fines et la production de CO2, N2O et CH4 dans des profils de sol très profonds en 

plantation d’Eucalyptus conduite en taillis au Brésil. Les racines fines, d’un diamètre inférieur 

à 2 millimètres, ont été échantillonnées jusqu’à une profondeur de 17 m sur un dispositif 

d’exclusion de pluie comparant des peuplements soumis à une exclusion de 37% des pluies (-

W) et des peuplements sans exclusion (+ W). La dynamique des racines a été étudiée à l’aide 

de minirhizotrons installés dans deux fosses permanentes d’une profondeur de 17 m dans les 

traitement -W et + W, pendant un an avant la coupe des arbres, puis pendant deux ans en taillis, 

et jusqu’à 4 m de profondeur dans un peuplement non récolté (NH) servant de témoin. Les 

efflux de CO2, CH4 et N2O à la surface du sol ont été mesurés durant trois ans dans les 

traitements -W, + W et NH. Les concentrations en CO2, CH4 et N2O dans le sol ont été mesurées 

à partir de fosses permanentes jusqu'à une profondeur de 15.5 m dans les traitements -W, + W 

et NH durant 3 mois avant la coupe des arbres et 1.5 ans après la coupe, en taillis. 

La croissance des racines fines était considérable à grande profondeur (> 13 m) chez les arbres 

menés en taillis et, étonnamment, la mortalité des racines fines était extrêmement faible quelle 

que soit la profondeur et le traitement. La biomasse totale de racines fines jusqu’à 17 m de 

profondeur était de 1266 et 1017 g m-2 dans les traitements - W et +W, respectivement, 1.5 an 

après la coupe des arbres et de 1078 g m-2 dans le traitement NH, 7.5 ans après la plantation. 

La longueur spécifique et la surface spécifique des racines fines étaient environ 15% plus 

élevées dans les peuplements -W que dans les peuplements +W. Les émissions de CO2, CH4 et 

N2O à la surface du sol ne différaient pas significativement entre -W et + W et ne changeaient 

pas après la coupe des arbres dans les peuplements menés en taillis par rapport aux peuplements 

non exploités. Alors que les concentrations en CO2 et CH4 augmentaient fortement avec la 

profondeur, les concentrations en N2O étaient pratiquement constantes de la surface du sol 

jusqu'à une profondeur de 15.5 m. Les concentrations moyennes en CO2 et en N2O dans les sols 

-W étaient respectivement inférieures de 20.7% et 7.6% à celles dans les sols +W et les 

concentrations en CH4 dans les sols -W étaient de 44.4% supérieures à celles dans les sols +W. 

Un modèle de diffusivité a montré que les productions de CO2, N2O et CH4 étaient similaires 

dans les traitements + W, -W et NH. Les fortes différences de concentrations en CO2, CH4 et 

N2O dans les sols entre les traitements s'expliquaient principalement par des différences de 

proportion de la porosité du sol occupée par l'eau. La coupe des arbres n'a pas augmenté les 

émissions de CO2, de CH4 et de N2O, quel que soit le régime hydrique. 

La mise en place de systèmes racinaires profonds dans les forêts tropicales plantées pourrait 

permettre aux arbres de résister aux périodes de sécheresse attendues dans un contexte de 

changement climatique. Notre étude réalisée dans des peuplements d'eucalyptus gérés en taillis, 

représentatifs de vastes zones tropicales, suggère que les émissions de gaz à effet de serre 

pourraient être peu influencées par les modifications de régimes de précipitations dus au 

changement climatique. 
 

Mots clés : Brésil, Eucalyptus grandis, croissance racinaire en profondeur, gaz à effet de serre, 

exclusion de pluie, sol tropical très profond, taillis 
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RESUMO 

Melhorar nossa compreensão sobre a dinâmica espaço-temporal de raízes finas e dos gases de 

efeito estufa em camadas profundas do solo é um componente chave para identificar práticas 

silviculturais mais sustentáveis para florestas plantadas num contexto de mudança climática e 

para melhorar os atuais modelos biogeoquímicos.  

Nosso estudo teve como objetivo avaliar o efeito do corte raso e da seca na produção de raízes 

finas, nos efluxos de CO2, CH4 e N2O do solo e da produção ao longo dos perfis profundos do 

solo até o lençol freático nas plantações de eucalipto manejadas em talhadia. A raízes finas 

(diâmetro <2 mm) foram amostradas até 17 m de profundidade num experimento de exclusão 

de chuva comparando parcelas com 37% de precipitação excluída (-W) e sem exclusão de chuva 

(+ W). A dinâmica das raízes foi estudada usando minirhizotron em duas trincheiras 

permanentes até 17 m de profundidade nos tratamentos -W e + W, durante 1 ano antes do corte 

raso e 2 anos depois do corte em talhadia, e tambem até 4 m de profundidade numa parcela sem 

corte (NH), servindo como controle. Os efluxos de CO2, CH4 e N2O na superfície do solo foram 

medidos ao longo de três anos utilizando o método de câmara manual nos tratamentos -W, + W 

e NH. As concentrações de CO2, CH4 e N2O no solo foram medidas a partir das trincheiras até 

uma profundidade de 15.5 m nos tratamentos -W, + W e NH durante 3 meses antes do corte 

raso e 1.5 ano depois em talhadia.  

Após o corte, ocorreu um grande crescimento radicular das árvores conduzidas em talhadia nas 

camadas muito profundas do solo (> 13 m) e, surpreendentemente, a mortalidade das raízes 

permaneceu extremamente baixa, independentemente da profundidade e do tratamento. A 

biomassa total de raízes finas em talhadia até 17 m de profundidade foi de 1266 e 1017 g m-2 

em + W e -W, respectivamente, 1.5 ano após o corte raso, e 1078 g m-2 em NH 7.5 anos após o 

plantio. O comprimento específico e a área específica das raízes foram cerca de 15% maiores 

em -W do que em + W. Os efluxos de CO2, CH4 e N2O não foram significativamente diferentes 

entre -W e + W e não alteraram após o corte raso nas parcelas manejadas por talhadia em 

comparação com o povoamento não colhido. As concentrações de CO2 e CH4 aumentaram 

muito com a profundidade e as concentrações de N2O permaneceram aproximadamente 

constantes na superfície do solo até uma profundidade de 15.5 m. As concentrações médias de 

CO2 e N2O em -W foram 20.7% e 7.6% menores que em + W, respectivamente, e as 

concentrações de CH4 em -W foram 44.4% maiores que em + W em todo o perfil de solo. Um 

modelo de difusividade mostrou que a produção e o consumo de CO2, N2O e CH4 ocorreram 

em grandes profundidades e foram similares nos tratamentos + W, -W e NH. O corte raso não 

aumentou os efluxos e as produções de CO2, CH4 e N2O, independentemente do regime de 

abastecimento de água.  

O estabelecimento de sistemas radiculares profundos em florestas tropicais plantadas pode 

ajudar as árvores a resistir aos longos períodos de seca esperados pelas mudanças climáticas 

em muitas regiões tropicais. Nosso estudo sugeriu que o manejo em talhadia pode ser uma 

opção interessante nas plantações tropicais de eucalipto para melhorar a tolerância das árvores 

à seca e armazenar carbono em grande profundidade no solo. As conseqüências das mudanças 

climáticas nas emissões de gases de efeito estufa podem ser menores quando as plantações 

tropicais de eucaliptos são manejadas em talhadia. 

Palavras-chave: Brazil, Eucalyptus grandis, crescimento de raízes profundas, gases de efeito 

estufa, exclusão de chuvas, solo tropical muito profundo, talhadia 
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RESUMO ESTENDIDO EM PORTUGUES 

Introdução 

O crescimento das árvores é altamente dependente da função de absorção das raízes finas para 

a água e os nutrientes. Raízes finas também desempenham um papel importante no ciclo global 

de carbono (C), principalmente nos processos de produção, respiração, exsudação e 

decomposição. Melhorar a compreensão da dinâmica espaço-temporal de raízes finas ao longo 

de todo o perfil do solo até o lençol freático é importante para identificar práticas silviculturais 

mais sustentáveis para as florestas plantadas. Após uma forte expansão nos últimos 20 anos, as 

plantações florestais representam 7% da área florestal total do mundo (Keenan et al., 2015). 

Em regiões tropicais e subtropicais, as plantações industriais de eucalipto de rápido 

crescimento, participam no armazenamento de carbono atmosférico e ajudam a reduzir a 

exploração das florestas naturais fornecendo um proporção crescente da demanda mundial em 

madeira (Keenan et al., 2015). As plantações de eucalipto de rápido crescimento cobrem cerca 

de 20 milhões de hectares em todo o mundo (Booth, 2013), incluindo cerca de 5.67 milhões de 

hectares no Brasil (IBA, 2016). As florestas tropicais têm uma forte influência nas 

concentrações de dióxido de carbono (CO2), óxido nitroso (N2O) e metano (CH4) na atmosfera. 

As práticas silviculturais nas florestas plantadas afetam os fluxos de gases de efeito estufa na 

superfície do solo e os principais determinantes da produção de gases de efeito estufa nos solos 

florestais (substrato, temperatura, teor de água) variam em função da profundidade do solo. No 

Brasil, a maioria das plantações de eucalipto são estabelecidas em solos com baixa fertilidade 

e submetidas a períodos de seca de até 6 meses (Gonçalves et al., 2013). Apesar das projeções 

sobre o futuro das precipitações ainda sejam difíceis de prever em nível local, estudos 

mostraram que o aquecimento global será associado a uma intensificação das estações secas em 

muitas partes do globo (Solomon et al., 2009). especialmente em regiões subtropicais já sujeitas 

a secas severas (Meehl et al., 2007). Neste contexto, o manejo do Eucalyptus através da talhadia 

tem sido praticado por empresas do setor florestal no Brasil e pode ser uma vantagem contra o 

estresse hídrico, uma vez que as brotações do Eucalyptus já possuem um sistema radicular 

formado em camadas profundas, onde as quantidades de água disponíveis podem ser maiores. 

As conseqüências do corte raso das árvores na dinâmica radicular no primeiro ano de rotação 

de plantações em talhadia implicam questões específicas nunca estudadas nas camadas 

profundas do solo. Além disso, o corte da parte aérea das árvores tem um impacto significativo 

na saída de carbono do ecossistema e nas emissões de gases de efeito estufa. Após o corte, a 

mortalidade das raízes leva à um suprimento de matéria orgânica fresca em diferentes 
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profundidades (Berhongaray et al., 2015). A decomposição da matéria orgânica fresca pode 

promover a degradação da matéria orgânica existente (Fontaine et al., 2007; Derrien et al., 

2014) com um "efeito priming" (Kuzyakov et al., 2000). O "efeito priming" pode afetar o 

armazenamento de carbono pelo ecossistema e afetar indiretamente o ciclo do nitrogênio. Existe 

pouca pesquisa sobre os ciclos biogeoquímicos em plantações florestais manejadas em talhadia, 

e nenhuma comparando experimentalmente estresse hídrico (exclusão de chuva) e precipitação 

normal. A avaliação da contribuição das raízes finas profundas e da dinâmica espaço-temporal 

das concentrações de gases de efeito estufa nas camadas profundas do solo é um verdadeiro 

desafio metrológico e uma grande barreira científica, a qual é importante levantar para estudar 

a sustentabilidade das plantações florestais e sua resiliência no contexto das mudanças 

climáticas globais. O objetivo principal da tese é avaliar o efeito do corte e da redução de chuva 

na produção das raízes finas, CO2, CH4 e N2O ao longo do perfil do solo até o lençol freático. 

Estes efeitos foram acompanhados antes e após o corte raso das árvores em uma plantação de 

Eucalyptus grandis conduzida em talhadia e submetida à dois regimes hídricos contrastantes. 

Os objetivos específicos da tese são: 

- Melhorar a compreensão da influência das chuvas sobre a mortalidade e a produção de 

raízes finas em função da profundidade do solo em plantações conduzidas por talhadia; 

- Avaliar o efeito do corte raso e do manejo em talhadia sobre a dinâmica das raízes finas 

até 17 m de profundidade; 

- Avaliar a dinâmica de raízes finas, CO2, CH4 e N2O próxima ao lençol freático (17 m 

de profundidade) em tratamentos com dois níveis de pluviosidade contrastantes; 

- Determinar o perfil vertical das taxas de produção de CO2, CH4 e N2O a partir da 

superfície até uma profundidade de 17 m, através de amostragens dos gases, seguida de 

análises por cromatografia gasosa e modelagem da produção e do transporte no solo. 

Estratégia de pesquisa 

Os experimentos deste doutorado ocorreram no Brasil, na Estação Experimental de Itatinga 

(Estado de São Paulo), destinada à descrição, quantificação e modelagem do funcionamento 

dos ecossistemas florestais tropicais. A precipitação média anual nesta área é de 1390 mm; a 

vegetação dominante é o eucalipto; o solo é muito profundo (> 15m) do tipo arenoso ferralítico 

(Laclau et al., 2010). Uma plantação de Eucalyptus grandis de mais de dois hectares foi 

instalada em 2010 em um delineamento em parcelas subdivididas (split-plot) com 3 blocos. O 

principal fator estudado é a redução da chuva e o fator secundário é a fertilização potássica. O 
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trabalho de tese concentra-se em modalidades com adubação potássica não limitante como em 

plantações comerciais no Brasil, comparando chuvas não perturbadas e exclusão parcial por um 

sistema de calhas para coletar e excluir 37% das chuvas.  

Duas trincheiras profundas (17 m de profundidade x 1.5 m de diâmetro) foram escavadas no 

início de 2014 em tratamentos com e sem exclusão de chuva e estão equipadas com plataformas 

que facilitam a manipulação e medições em profundidades diferentes. 

As árvores foram cortadas no experimento em junho de 2016, com a idade de 6 anos, e a 

plantação foi conduzida em talhadia após o corte raso. No entanto, uma parcela de referência 

(NH) foi mantida com as árvores existentes (fertilização e chuvas não perturbadas). Nesta 

parcela, uma terceira trincheira de 3 m de profundidade foi escavada e preparada. 

Desde sua criação em 2014, as duas trincheiras profundas foram equipadas com minirhizotrons 

para monitorar a dinâmica das raízes (Maeght et al., 2013). Vinte e quatro tubos transparentes 

de 180 cm de comprimento foram instalados a 45° dentro das trincheiras permanentes (12 por 

trincheira) e permitiram a observação das raízes 130 cm abaixo de cada ponto de instalação (na 

superfície, 1.0, 3.5, 5.5, 7.5, 9.5, 11.5, 13.5 e 15.5 m). Sete tubos foram instalados na parcela 

de referência (superfície, 1 e 3.5 m). 

A observação das raízes foi realizada por aquisição de imagem por meio de um scanner circular 

(CI-600 Root Growth Monitoring System, CID, EUA). Oito imagens (21.59 cm x 19.56 

centímetros) no tubo foram tomadas a cada duas semanas desde Maio de 2015: um ano antes 

do corte das árvores e durante 2 anos após o corte das árvores, em Junho de 2016. As imagens 

foram analisadas usando o software WinRHIZOtron (Regent, Canadá) para traçar as raízes, 

marcando o comprimento e diâmetro para estimar o crescimento ao longo do tempo.  

Raízes finas (diâmetro <2 mm) foram amostradas até a profundidade de 17 m para estimar a 

biomassa (raízes vivas) e necromassa em todo o perfil do solo, 1.5 anos após o corte nos 

tratamentos + W, -W e 7.5 anos após o plantio no tratamento NH. 

As emissões de gases do solo  foram medidas colocando um sino (diâmetro de 40 cm, altura de 

10 cm) sobre uma base de amostragem instalada no local experimental. Quatro câmaras foram 

colocadas aleatoriamente à quatro distâncias das árvores em cada tratamento. As câmaras foram 

fechadas cada vez por 30 minutos. Uma alíquota de ar ambiente foié coletada com uma seringa 

quatro vezes consecutivas (0, 10 min, 20 min e 30 min) após o fechamento. As medições foram 

feitas a cada duas semanas: três meses antes do corte e 1.5 anos após o corte. Câmaras de 
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respiração no solo (9 por tratamento e bloco) também foram conectadas à um analisador Li-Cor 

8100 (Li-cor, Lincoln, Ne, EUA) para monitorar as emissões de CO2 na superfície do solo 

medido a cada duas semanas. Para coletar regularmente os gases do solo (duas vezes por mês: 

três meses antes do corte e 1.5 anos após o corte), as trincheiras foram equipadas com seringas 

instaladas em profundidades (Metay et al., 2007) também cobertas por imagens de 

minirhizotrons (0.1, 0.5, 1.0, 3.5, 7.5, 11.5 e 15.5 m). As concentrações dos gases foram 

determinadas por cromatografia gasosa (GC-ECD). Os dados foram aplicados à um modelo de 

difusividade para estimar os fluxos de CO2, N2O e CH4, bem como a produção de cada camada 

de solo a partir das concentrações medidas nas trincheiras. 

Principais resultados 

O sistema de redução de chuva implantado resultou em uma diminuição significativa do 

conteúdo de água do solo, em média uma redução de 12.9% em -W em comparação ao + W, da 

superfície a uma profundidade de 16 m. Este dispositivo mostrou-se eficaz para estudar dois 

regimes de precipitação contrastante. Após o corte das árvores houve uma interrupção da 

transpiração da parte aérea, e consequentemente o solo foi recarregado com água. O teor de 

água no solo foi menor no tratamento -W em relação ao tratamento + W antes do corte, essa 

diferença entre os dois tratamentos persistiu um ano e meio após o corte. 

Em primeiro lugar investigamos o impacto da redução de chuvas e do corte raso das árvores na 

dinâmica radicular em uma plantação de eucalipto conduzida em talhadia. Nossos resultados 

mostraram que as taxas diárias de crescimento radicular foram fortemente dependentes da 

profundidade e da estação nos tratamentos + W e -W. Após o corte das árvores, o crescimento 

de raízes finas começou nas camadas superiores do solo e foi crescendo ao longo do tempo em 

profundidade em ambos os tratamentos + W e -W. Assim, quando a plantação é conduzida em 

talhadia, após o corte das árvores, o início do crecimento radicular foi observado pela primeira 

vez 6 meses após o corte na superfície. Na profundidade 3.5-4.8 m do solo 12 meses após o 

corte e na profundidade 13.5-14.8 m do solo 16 meses após o corte, nos tratamentos + W e -W. 

As taxas diárias de crecimento alongamento das raízes atingiram o pico no final da estação seca 

para todas as camadas do solo nas profundidades > 6 m, quando o teor de água no solo diminuiu 

nas camadas superficiais. Assim, os valores diários de alongamento das raízes não foram 

necessariamente correlacionados com os níveis de umidade do solo para uma dada camada de 

solo. Observamos uma sincronização entre a diminuição da quantidade de água extraível na 

camada superficial e os picos de alongamento das raízes após o corte no tratamento -W. Além 
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disso, vimos que a densidade das raízes finas reduz abaixo de 20 cm de profundidade, depois 

diminui gradualmente até o lençol freático nos três tratamentos NH, + W e -W. A biomassa 

total de raízes finas em talhadia até 17 m de profundidade foi de 1266 e 1017 g m-2 em + W e -

W, respectivamente, 1.5 ano após o corte raso, e 1078 g m-2 em NH 7.5 anos após o plantio. A 

densidade de raízes finas foi cerca de 25% maior em -W do que em + W e NH na maioria das 

camadas do solo. Em profundidades > 7 m, as densidades de raízes finas foram pelo menos 

duas vezes maiores em -W que em + W e NH, respectivamente. 

Além disso, estávamos também interessados no efeito da redução de chuva sobre a adaptação 

morfológica das raízes finas em todo o perfil do solo. Nos tratamentos NH, + W e -W, 

mostramos que a profundidade teve pouco efeito no comprimento específico das raízes (SRL), 

na área específico das raízes (SRA) e no diâmetro das raízes finas. SRL e SRA foram 

significativamente maiores em -W que em + W, e valores semelhantes foram observados em + 

W e NH. Até 17 m de profundidade, os valores médios de SRL foram 28.8, 30.6 e 34.4 m g-1, 

os valores médios de SRA de 258.8, 267.5 e 305.3 cm2 g-1 e os diâmetros médios das raízes 

finas de 0.31, 0.32 e 0.36 mm nos tratamentos NH, + W e -W, respectivamente. Durante todo 

o período de estudo (3 anos) o comprimento acumulado de raízes mortas representou 6-7% do 

comprimento total de raízes produzido em todo o perfil do solo até 17 m de profundidade em 

ambos os tratamentos W e -W. Surpreendentemente, o comprimento das raízes finas mortas 

não aumentou após o corte raso das árvores e não diferiu entre as profundidades do solo e entre 

os tratamentos + W e -W. 

Em seguida, analisamos o impacto do corte raso das árvores e da redução da precipitação nas 

emissões de gases de efeito estufa, bem como sua produção / consumo em todo o perfil do solo. 

Os fluxos cumulativos de CO2 medidos nos tratamentos + W e -W foram 136.5 ± 21.8 mol m-

2 e 130.3 ± 24.8 mol m-2 ano-1 no último ano antes do corte raso das árvores e 108.0 ± 15.8 e 

119.3 ± 22.5 mol m-2 ano-1 no primeiro ano após o corte raso quando a plantação foi conduzida 

em talhadia. Não encontramos diferenças significativas entre as emissão de CO2, CH4 e N2O 

entre os dois tratamentos + W e -W. Os fluxos de CH4 foram negativos ao longo do período de 

estudo, de março de 2016 a dezembro de 2017, indicando um consumo líquido de CH4 

atmosférico pelo solo. Não foram observadas diferenças significativas entre os tratamentos NH 

e + W nas emissões de CO2, CH4 e N2O mostrando nenhum efeito do corte das árvores. 

Os efluxos de CO2, CH4, e N2O não foram significativamente diferentes entre -W e + W e não 

mudaram após o corte das árvores nas parcelas manejadas em talhadia comparado às parcelas 
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sem corte raso. As concentrações de CO2 e CH4 aumentaram significativamente com a 

profundidade e as concentrações de N2O permaneceram constantes da superfície a uma 

profundidade de 15.5 m. As concentrações médias de CO2 e N2O em -W foram, 

respectivamente, inferior de 20.7% e 7.6% a os de +W e as concentrações de CH4 foram 44.4% 

superior em -W do que em + W sobre a totalidade do perfil do solo. O modelo de difusividade 

mostrou que a produção e o consumo de CO2, N2O e CH4 ocorreu em grandes profundidades e 

foram semelhantes nos tratamentos + W, W, e NH. O corte raso das árvores não aumentou os 

efluxos e as produções de CO2, CH4 e N2O independentemente do regime de água. 

As produções de CO2, CH4, e N2O entre 0.1 e 15.5 m de profundidade, não foram 

significativamente diferentes entre + W e -W. As produções mais elevadas de CO2 e N2O e a 

menor produção de CH4 foram estimadas na superficie do solo devido ao forte gradiente de 

concentrações e a maior difusividade efetiva calculada na camada superficial do solo. A 

produção de CO2 e N2O e o consumo de CH4 ocorreu principalmente na superfície e uma parte 

da produção de CO2 e CH4 atingiu uma profundidade de até 15.5 m. 

Discussão geral 

A principal novidade dos nossos resultados está na primeira observação direta da fenologia das 

raízes finas, bem como nas primeiras medições in situ das concentrações de CO2, N2O e CH4 

em profundidades à mais de 10 m em uma plantação de eucalipto conduzida em talhadia. As 

conseqüências do corte raso das árvores e da redução das chuvas na dinâmica da produção de 

raízes finas e dos gases de efeito estufa em plantações florestais levantam questões específicas 

que nunca foram estudadas em um perfil de solo profundo em clima tropical. 

Efeito da redução de chuva 

Diante de uma seca induzida, o eucalipto aumentou a densidade de raízes finas em grande 

profundidade. O crescimento das raízes em camadas profundas do solo pode aumentar a 

quantidade de água disponível necessária para o crecimento das árvores, o que poderia ser um 

benefício crítico para as árvores em condições severas de seca (Christina et al., 2017). Após o 

corte, observou-se um grande crescimento das raízes à mais de 4 m de profundidade no final da 

temporada seca, independentemente do tratamento. O crescimento das raízes finas nas camadas 

profundas do solo começou quando o teor de água na camada de 0-2 m caiu abaixo de um limiar 

de cerca de 80 mm, sugerindo que o teor de umidade no solo, em uma determinada camada do 

solo, não foi o principal fator responsável pelo crescimento das raízes finas. Sucessivos 
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afrouxamentos no crescimento radicular da superfície do solo para suas camadas mais 

profundas, no final da temporada seca e nos primeiros meses após o início da temporada 

chuvosa nos tratamentos + W e –W, seria devido ao rápido esgotamento dos recursos hídricos 

superficiais, o que induziria as raízes das árvores a buscarem as camadas mais profundas do 

solo (Schenk and Jackson, 2002; Billings, 2015). 

Além disso, mostramos que os eucaliptos em condições de seca adaptaram sua morfologia 

radicular para maximizar a superfície das raízes em contato com o solo para absorver os 

recursos limitados. Os valores de SRL e SRA foram maiores em -W que em + W, o que 

combinado com maiores densidades de raízes finas levaria à um índice de superfície de raiz 

muito maior. Nosso estudo mostrou que o eucalipto pode modificar as características das raízes 

finas para melhorar a captura de recursos e a exploração de camadas muitas profundas do solo, 

a fim de sua sobrevivência em um contexto de mudanças climáticas ajudando assim, a manter 

a absorção de água durante períodos secos (Brunner et al., 2015; Christina et al., 2017). 

A exclusão da chuva não teve efeito nos fluxos de CO2, N2O e CH4 medidos na superfície ou 

calculados em profundidade com um modelo de difusividade. As diferenças na concentração 

de gás no solo, medidas entre + W e -W, são provavelmente devido ao maior teor de água do 

solo em + W que poderia reduzir a difusividade dos gases, enquanto as emissões não foram 

afetadas. No tratamento + W, o alto teor de água no perfil do solo pode induzir a saturação do 

espaço intersticial pela água e causar uma lenta difusão dos gases de efeito estufa para a 

atmosfera (Maier et al., 2017; Wang et al., 2018). A estrutura de poros e agregados do solo está 

diretamente relacionada à liberação de gases de efeito estufa, mas também ao armazenamento 

de carbono (Smith et al., 2004; Mangalassery et al., 2013). 

As produções de CO2, CH4 e N2O não foram significativamente diferentes entre os tratamentos 

+ W e -W até uma profundidade de 15.5 m. No entanto, observamos que a produção pode 

diminuir nas camadas superiores e aumentar nas camadas profundas. Nós mostramos que a 

biomassa de raízes e o índice de área de raiz aumentaram em aproximadamente 25% e 24%, 

respectivamente, no tratamento de exclusão de chuva comparado com a parcela de controle a 

uma profundidade de 17 m, e que a biomassa das raízes aumentou principalmente nas 

profundidades > 7 m. Portanto, a mudança nas produções de CO2 nas camadas mais profundas 

observadas em nosso estudo pode ser devido à uma mudança nas atividades das raízes para 

horizontes mais profundos, indicando um aumento da captação de água na profundidade pelas 

raízes (Sotta et al., 2007; Schwendenmann et al., 2010). 
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Também observamos uma mudança no consumo de CH4 nas camadas profundas no tratamento 

de exclusão de chuva. A mudança no consumo de CH4 para camadas mais profundas pode ser 

devido às condições do solo mais favoráveis à metanotrofia, mas menos à metanogênese. Mais 

estudos são necessários para avaliar os efeitos da exclusão de chuva nas comunidades 

microbianas, suas atividades e interações, e particularmente nas camadas profundas do solo. 

Efeito do corte raso das árvores 

Descobrimos que poucas raízes foram perdidas pela mortalidade (<10% de todas as raízes 

observadas ao longo de 3 anos), sugerindo que a maior parte do sistema radicular permanece 

funcional após o corte raso das árvores conduzidas em talhadia. O nosso estudo sugere que 

árvores de Eucalyptus grandis de 6 anos de idade têm reservas suficientes no sistema radicular 

e que as condições apropriadas do solo para manter a biomassa radicular estabelecida até o 

lençol fréatico após o corte tenha, provavelmente, também contribuído para o crescimento 

inicial das rebrotas (Drake et al., 2013; Brunner et al., 2015). 

A assincronia no sistema radicular, atrasando o crescimento das raízes nas camadas mais 

profundas do solo poderia ser uma estratégia para maximizar a absorção de água e nutrientes 

necessárias para atender a alta demanda das árvores de rápido crescimento. O crescimento das 

raízes ocorreu a uma profundidade de 14 m em menos de um ano após o corte das árvores 

conduzidas em talhadia, enquanto a profundidade máxima atingida pelas raízes de E. grandis é 

de aproximadamente 7 m um ano após o plantio em solos muito profundos (Christina et al., 

2011; Laclau et al., 2013). As raízes profundas permitem o acesso à grandes quantidades de 

água armazenada no subsolo após o corte e, apesar da baixa densidade de raízes finas nas 

camadas mais profundas do solo, são suficientes para absorver grandes quantidades de água 

(Christina et al., 2017). A baixa mortalidade de raízes finas após o corte sugerem que o manejo 

em talhadia das plantações de eucalipto pode ser uma opção promissora para lidar com a seca, 

uma vez que o sistema de radicular existente permite o acesso à água armazenada nos horizontes 

profundos. 

Contrariamente às nossas expectativas, o corte das árvores não levou ao aumento de emissões 

e produção de CO2, CH4 e N2O, independentemente do regime hídrico. A colheita de eucaliptos 

em plantações manejadas em rotações curtas leva a grandes alterações no ambiente do solo, 

provavelmente aumentando o processo de decomposição da matéria orgânica, como o aumento 

da temperatura do solo e umidade do solo, bem como acúmulo de resíduos de colheita na 

superfície do solo (Mendham et al., 2002; O'connell et al., 2004; Rocha et al., 2016; Christina 
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et al., 2017). Nós mostramos que o corte das árvores não levou à um aumento da mortalidade 

das raízes no primeiro ano após o corte, quando a plantação foi conduzida em talhadia, 

independentemente do regime hídrico. Portanto, assumimos que o corte raso resultando em 

emissões da mesma intendisidade que antes do corte das arvores em nosso experimento pode 

resultar de uma diminuição na respiração das raízes após a colheita, compensa-se a um aumento 

na decomposição da matéria orgânica na superfície do solo. 

Conclusão geral 

A fenologia das raízes finas do eucalipto em talhadia submetidas à regimes hídricos 

contrastantes revelou taxas de mortalidade muito baixas. O crescimento inicial da parte aérea 

após o corte das árvores beneficiou-se do sistema radicular estabelecido na rotação anterior, e 

o crescimento assíncrono das raízes finas com a profundidade revelou a plasticidade das árvores 

em resposta às condições do solo. O estabelecimento de sistemas radiculares profundos em 

florestas tropicais plantadas poderia ajudar as árvores a resistir aos longos períodos de seca 

esperados em muitas regiões tropicais num contexto de mudanças climáticas. 

Além disso, mostramos que o corte raso das árvores não aumentou significativamente as 

emissões de CO2, N2O e CH4 quando o plantio é conduzido em talhadia em comparação com 

uma plantação não cortada. As emissões de gases pós-corte são consistentes com as baixas taxas 

de mortalidade de raízes observadas. Por outro lado, raízes profundas também poderiam 

contribuir para sequestrar grandes quantidades de C no solo. As alocações subterrâneas de 

carbono representam cerca de 20-30% da produtividade primária bruta nas plantações de 

eucalipto (Ryan et al., 2010; Epron et al., 2012; Nouvellon et al., 2012). O carbono das raízes 

é geralmente retido por mais tempo no solo do que da serapilheira, que é mais afetada por 

processos físico-químicos e também devido às diferenças na composição estrutural entre as 

folhas e as raízes (Rasse et al., 2005; Schmidt et al., 2011; Menichetti et al., 2015). Mais estudos 

são necessários para determinar se o manejo em talhadia das plantações de eucalipto em solos 

muito profundos pode ser uma opção efetiva para mitigar o aumento de gases de efeito estufa 

na atmosfera e aumentar o armazenamento de C no solo. 

Solos tropicais muito profundos cobrem grandes áreas do mundo e é fundamental aumentar 

nossa compreensão sobre a dinâmica espaço-temporal das concentrações de gases de efeito 

estufa nas camadas profundas, a fim de quantificar com mais precisão fontes / armazenamento 

de C para estimar o orçamento global de carbono, melhorar os atuais modelos biogeoquímicos 
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para a previsão de emissões de gases de efeito estufa e identificar práticas silviculturais mais 

sustentáveis para florestas tropicais plantadas no contexto das mudanças climáticas. 
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RESUME ETENDU EN FRANÇAIS 

Introduction 

La croissance des arbres dépend fortement de la fonction d'absorption des racines fines pour 

l'eau et les nutriments. Les racines fines jouent également un rôle important dans le cycle global 

du carbone (C), principalement dans les processus de production, de respiration, d'exsudation 

et de décomposition. Améliorer la compréhension de la dynamique spatio-temporelle des 

racines fines sur tout le profil de sol jusqu’à la nappe phréatique est important pour identifier 

des pratiques sylvicoles plus durables pour les forêts plantées.  

Après une forte expansion au cours des 20 dernières années, les plantations forestières 

représentent 7% de la superficie forestière totale du monde (Keenan et al., 2015). Dans les 

régions tropicales et subtropicales, les plantations d'essences à croissance rapide stockent de 

grandes quantités de carbone et contribuent à réduire l'exploitation des forêts naturelles en 

fournissant une proportion croissante de la demande mondiale en bois (Keenan et al., 2015). 

Les plantations d'eucalyptus à croissance rapide couvrent environ 20 millions d'hectares dans 

le monde (Booth, 2013), dont environ 5.67 millions d'hectares au Brésil (IBA, 2016). Les forêts 

tropicales ont une forte influence sur les concentrations de dioxyde de carbone (CO2), d’oxyde 

nitreux (N2O) et de méthane (CH4) dans l’atmosphère. Les pratiques sylvicoles dans les forêts 

plantées affectent les efflux de gaz à effet de serre à la surface du sol parce qu’elles modifient 

les principaux facteurs qui déterminent la production de gaz à effet de serre dans les sols 

forestiers (substrat, température, teneur en eau) qui varient en fonction de la profondeur.  

Au Brésil, la plupart des plantations forestières sont établies dans des zones à faible fertilité du 

sol et caractérisées par de longues périodes de sécheresse. Les projections climatiques futures 

prévoient des périodes sèches plus longues et plus fortes en Amérique du Sud (Solomon et al., 

2009). Dans ce contexte, la gestion sylvicole en taillis des plantations d’Eucalyptus peut être 

un avantage contre le stress hydrique parce que les arbres bénéficient d'un système racinaire 

déjà développé et explorant les couches profondes du sol où l’eau y est plus disponible. Les 

conséquences de la coupe des arbres sur la dynamique des racines lors de la première année de 

rotation des plantations menée en taillis posent des questions spécifiques jamais étudiées, 

notamment sur les effets dans les couches profondes du sol. De plus, la récolte des parties 

aériennes des arbres a un impact important sur le bilan de carbone et les émissions de gaz à 

effet de serre de l'écosystème. Après la coupe, la mortalité racinaire conduit à un apport de 

matière organique fraiche à différentes profondeurs (Berhongaray et al., 2015). La 
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décomposition de la matière organique fraîche peut favoriser la dégradation de la matière 

organique préexistante (Fontaine et al., 2007; Derrien et al., 2014) grâce à un "priming effect" 

(Kuzyakov et al., 2000). Le "priming effect" pourrait affecter le stockage de carbone par 

l'écosystème et influer indirectement sur le cycle de l'azote. Peu d’études portent sur les cycles 

biogéochimiques dans des plantations forestières avec une gestion sylvicole en taillis, et aucune 

comparant expérimentalement un stress hydrique (exclusion de pluie) et une pluviométrie non 

perturbée sous climat tropical. L’évaluation de la contribution des racines fines profondes et de 

la dynamique spatio-temporelle des concentrations de gaz à effet de serre dans les couches 

profondes du sol est un véritable défi métrologique et un verrou scientifique majeur qu’il est 

important de lever pour étudier la durabilité des plantations forestières, ainsi que leur résilience 

dans le contexte des changements globaux. L'objectif principal de la thèse est d'évaluer l'effet 

de la coupe et d’une réduction de pluie sur la production de racines fines, de CO2, de CH4 et de 

N2O le long du profil du sol jusqu'à la nappe phréatique. Ces effets ont été suivis avant et après 

la coupe des arbres dans une plantation d’Eucalyptus grandis menée en taillis, soumis à deux 

régimes hydrique contrastés.  

Les objectifs spécifiques de la thèse sont : 

- D’améliorer la compréhension de l'influence des précipitations sur la production et la 

mortalité des racines fines sur l'ensemble du profil de sol dans les plantations menées 

en taillis ; 

- D’évaluer l'effet de la coupe et d’une gestion en taillis sur la dynamique des racines 

fines jusqu'à 17 m de profondeur ; 

- D’évaluer la dynamique des racines fines, du CO2, du CH4 et du N2O près de la nappe 

phréatique (17 m de profondeur) soumis à deux niveaux de précipitations contrastés ; 

- Déterminer la production de CO2, de CH4 et de N2O de la surface à une profondeur de 

17 m 

Stratégie de recherche 

Les expérimentations de ce doctorat se sont déroulées au Brésil sur la station expérimentale 

d’Itatinga (Etat de São Paulo). Ce site expérimental est destiné à la description, la quantification 

et la modélisation du fonctionnement des écosystèmes forestier tropicaux. Les précipitations 

annuelles moyennes sur cette zone sont de 1390 mm, la végétation dominante est l’eucalyptus, 

le sol est très profond (> 15m) et de type ferralitique sableux (Laclau et al., 2010). Une 

plantation d’Eucalyptus grandis de plus de deux hectares a été mise en place en 2010 sur un 
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dispositif en parcelles divisées (split plot) avec 3 blocs. Le facteur principal étudié est la 

réduction de pluie. Les travaux de thèse se sont focalisés sur les modalités avec fertilisation 

potassique non limitante comme dans les plantations commerciales au Brésil, en comparant 

pluviométrie non perturbée et exclusion partielle par un système de gouttière permettant de 

récolter et d’exclure 37% des pluviolessivats. 

Deux fosses profondes de 17 m de profondeur et 1.5m de diamètre ont été creusées début 2014 

sur les traitements avec et sans exclusion de pluies, et équipées de paliers facilitant 

l’instrumentation et les mesures à différentes profondeurs.  

Les arbres ont été coupés sur le dispositif en Juin 2016 à l’âge de 6 ans, et la plantation a été 

ensuite menée en taillis. Une parcelle de référence (NH) est toutefois maintenue avec les arbres 

en place (fertilisation et pluies non perturbées). Sur cette parcelle une troisième fosse de 3 m de 

profondeur a été creusée et instrumentée.  

Depuis leur création en 2014, les deux fosses profondes ont été équipées de minirhizotrons pour 

le suivi de la dynamique racinaire (Maeght et al., 2013). 24 tubes transparents de 180 cm de 

longueur ont été installés à 45° depuis l’intérieur des fosses permanentes (12 par fosse) et 

permettent l’observations des racines sur 130 cm en dessous de chaque point d’installation en 

surface, et à 1, 3.5, 5.5, 7.5, 9 .5, 11.5, 13.5, 15.5 m de profondeur. Sept tubes ont été installés 

dans la parcelle de référence en surface, et à 1 et 3.5 m.   

L’observation des racines est réalisée par acquisition d’images par un scanner circulaire (CI-

600 Root Growth Monitoring System, CID, USA). Huit images (21.59 cm x 19.56 cm) par tube 

sont prises toutes les deux semaines depuis Mai 2015 : pendant 1 an avant la coupe des arbres 

et pendant 2 ans en taillis après la coupe des arbres en Juin 2016. Les images ont été analysées 

en utilisant le logiciel WinRHIZO tron (Régent, Canada) pour tracer les racines en marquant 

leur longueur et leur diamètre afin d’estimer la croissance au cours du temps. 

Les racines fines, d’un diamètre inférieur à 2 mm, ont été échantillonnées jusqu’à 17m de 

profondeur afin d’estimer la biomasse (racines vivantes) et la nécromasse sur l’ensemble du 

profil de sol à 1.5 an après coupe dans les traitements +W, -W et 7.5 ans après la plantation 

dans le traitement NH.  

Les émissions de gaz à la surface du sol ont été mesurées en plaçant une cloche (diamètre 40 

cm, hauteur 10 cm) sur une base de prélèvement installée sur le site expérimental. Quatre 

chambres ont été placées aléatoirement à quatre distances des arbres sur chaque traitement. Les 
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chambres sont fermées pendant 30 min. Une aliquote de l’air de la chambre est collecté avec 

une seringue, à 4 temps consécutifs (0, 10 min, 20 min et 30 min) après la fermeture. Les 

mesures ont été réalisé toutes les deux semaines : 3 mois avant la coupe et 1.5 ans après la 

coupe. Des chambres de respiration du sol (9 par traitements et par blocs) ont également été 

connectées à un analyseur Li-Cor 8100 (Li-cor, Lincoln, Ne, USA) permettant le suivi des 

émissions de CO2 à la surface du sol, avec une mesure toutes les deux semaines. Afin de 

collecter régulièrement les gaz du sol, les fosses ont été équipées de micro-enceintes installées 

aux mêmes profondeurs que les minirhizotrons (0.1, 0.5, 1, 3.5, 7.5, 11.5 et 15.5m), et mesurées 

deux fois par mois depuis 3 mois avant la coupe jusqu’à 1.5 an après la coupe. Les 

concentrations en gaz sont déterminées par chromatographie en phase gazeuse (CPG-ECD). Un 

modèle de diffusivité a ensuite été utilisé à partir des données pour estimer les efflux de CO2, 

N2O et CH4, ainsi que la production de chaque couche de sol à partir des concentrations 

mesurées dans les fosses. 

Principaux résultats 

Le dispositif de réduction de pluie mis en place a entrainé une forte diminution du contenu en 

eau du sol avec en moyenne une réduction de 12.9% dans -W par rapport à +W depuis la surface 

jusqu’à une profondeur de 16 m. Ce dispositif s’est avéré efficace pour étudier deux régimes de 

précipitations contrastés. Les sols se sont rechargés en eau suite à une interruption de la 

transpiration de la partie aérienne après la coupe des arbres. Le contenu en eau du sol était 

inférieur dans le traitement -W par rapport au traitement +W avant la coupe, et cette différence 

a persisté un an et demi après la coupe. 

Dans un premier temps, nous nous sommes intéressés à l’impact de la réduction de pluie et de 

la coupe des arbres sur la dynamique racinaire dans une plantation d’Eucalyptus menée en 

taillis. Nos résultats ont montré que le taux journalier d’élongation racinaire était fortement 

dépendant de la couche de sol et de la saison dans les traitements +W et -W. En effet après la 

coupe des arbres, la croissance des racines fines a débuté dans les couches superficielles du sol 

et s’est propagé de plus en plus en profondeur au fil du temps dans les deux traitements +W et 

-W.  Ainsi, après la coupe des arbres le démarrage des cohortes racinaires s’est d’abord observé 

6 mois après la coupe en superficie, 12 mois après la coupe dans la couche 3.5-4.8 m de sol et 

16 mois après la coupe dans la couche 13.5-14.8 m de sol dans les deux traitements +W et -W 

quand la plantation est menée en taillis. Les valeurs du taux d’élongation racinaire journalier 

ont culminées à la fin de la saison sèche dans toutes les couches de sol à des profondeurs 
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supérieures à 6 m, lorsque le contenu en eau du sol était à son minimum dans les couches 

superficielles. Ainsi, les valeurs d’élongation racinaire journalières n'étaient pas nécessairement 

corrélées avec les teneurs en eau du sol pour une couche de sol donnée. Nous avons observé 

une synchronisation entre la diminution de la quantité d’eau extractible dans la couche 

superficielle et les pics d’élongations racinaires après la coupe dans le traitement -W. De plus 

nous avons observés que la densité des racines fines chute en dessous de 20 cm de profondeur, 

puis diminue progressivement jusqu’à la nappe phréatique dans les trois traitements NH, +W 

et -W. La biomasse totale des racines fines jusqu'à 17 m de profondeur était de 1078 g m-2 dans 

NH, 1017 ± 301 g m-² dans +W et 1266 ± 363 g m-² dans -W. La densité des racines fines était 

environ 25% plus élevée dans -W que dans +W et NH dans la plupart des couches de sol. À des 

profondeurs supérieures à 7 m, les densités de racines fines étaient au moins deux fois plus 

élevées dans -W que dans + W et NH. 

De plus, nous nous sommes intéressés à l’effet de la réduction de pluie sur l’adaptation 

morphologique des racines fines sur tout le profil de sol. Dans les traitements NH, +W et -W, 

nous avons montrés que la profondeur avait peu d'effet sur la longueur spécifique racinaire 

(SRL), la surface spécifique racinaire (SRA) et le diamètre des racines fines. SRL et SRA 

étaient significativement plus élevés dans -W que dans + W, et des valeurs similaires ont été 

observées dans + W et NH. Sur tout le profil de sol jusqu’à 17 m de profondeur, les valeurs 

moyennes de SRL étaient de 28.8, 30.6 et 34.4 m g-1, les valeurs moyennes de SRA de 258.8, 

267.5 et 305.3 cm2 g-1 et les diamètres moyens des racines fines de 0.31, 0.32 et 0.36 mm dans 

les traitements NH, +W et -W respectivement. Sur toute la période d’étude (3 ans), la longueur 

cumulée de racines mortes ne représentait que 6-7% de la longueur cumulée de racines produite 

sur tout le profil de sol jusqu’à 17 m de profondeur dans les deux traitements +W et -W. 

Etonnamment, la longueur des racines fines mortes n'a pas augmenté après la coupe de la 

plantation et n'était pas différentes entre les profondeurs de sol et entre les traitements +W et -

W. 

Ensuite, nous nous sommes intéressés à l’impact de la coupe des arbres et d’une réduction de 

précipitation sur les émissions de gaz à effet de serre ainsi que sur leur 

production/consommation sur tout le profil de sol. Les efflux cumulés de CO2 mesurés dans les 

traitements +W et -W étaient respectivement de 136. 5 ± 21.8 mol m-2 et de 130.3 ± 24.8 mol 

m-2 an-1 la dernière année avant la coupe des arbres et de 108.0 ± 15.8 et de 119.3 ± 22.5 mol 

m-2 an-1 la première année après la coupe quand la plantation est menée en taillis. Nous avons 

observé aucunes différences significatives entre les cumuls d’émissions de CO2, CH4 et N2O 
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entre les deux traitements +W et -W. Les efflux de CH4 ont été négatifs pendant toute la période 

d'étude de mars 2016 à décembre 2017, indiquant une consommation nette de CH4 

atmosphérique par le sol. Aucunes différences significatives ont également été observés entre 

les traitements NH et +W sur les émissions de CO2, CH4 et N2O, signifiant que la coupe des 

arbres n’a eu aucun effet.  

Les efflux de CO2, de CH4 et de N2O ne différaient pas significativement entre -W et +W et ne 

changeaient pas après la coupe des arbres dans les peuplements menés en taillis par rapport aux 

peuplements non exploités. Les concentrations de CO2 et de CH4 augmentaient fortement avec 

la profondeur et les concentrations de N2O restaient à peu près constantes de la surface du sol 

jusqu'à une profondeur de 15.5 m. Les concentrations moyennes de CO2 et de N2O dans -W 

étaient respectivement inférieures de 20.7% et 7.6% à celles de +W et celles de CH4 dans -W 

de 44.4% supérieures à celles de +W sur tout le profil de sol. Un modèle de diffusivité a montré 

que la production et la consommation de CO2, de N2O et de CH4 se produisaient à de grandes 

profondeurs et étaient similaires dans les traitements +W, -W et NH. La coupe des arbres n'a 

pas augmenté les efflux et les productions de CO2, de CH4 et de N2O, quel que soit le régime 

hydrique. 

Les productions de CO2, CH4 et N2O entre 0.1 et 15.5 m de profondeur n'étaient pas 

significativement différentes entre +W et -W. Les estimations de production dans le premier 

mètre de sol ont montré les valeurs les plus élevées de CO2 et de N2O et les plus faibles de CH4 

en raison d’un fort gradient de concentration et d’une diffusivité effective calculée 

particulièrement élevée pour la couche de sol superficielle. La production de CO2 et de N2O et 

la consommation de CH4 se sont produites principalement dans le premier mètre, mais au moins 

une partie de la production de CO2 et de CH4 a atteint une profondeur allant jusqu'à 15.5 m. 

Discussion générale 

Dans cette thèse, nous avons réalisé pour la première fois des mesures in situ de phénologie des 

racines fines et de concentrations de CO2, N2O et CH4 à des profondeurs de plus de 10 m dans 

une plantation d’eucalyptus menée en taillis. Les conséquences de la coupe des arbres ainsi 

qu’une réduction de pluie sur la dynamique de production des racines fines et des gaz à effet de 

serre dans des plantations menée en taillis soulèvent des questions spécifiques qui n’ont jamais 

étudiées auparavant sur un profil de sol profond en climat tropical. 

Effet de la réduction de pluie 
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Face à une sécheresse induite, les Eucalyptus ont augmenté la densité de leurs racines fines en 

grande profondeur. La croissance des racines dans les couches profondes du sol augmente 

l’espace exploré par les arbres, et peut donc augmenter la quantité d'eau disponible nécessaire 

pour assurer leur croissance. Cet effet pourrait constituer un avantage essentiel pour les arbres 

en cas de sécheresse intense (Christina et al., 2017). Après la coupe, une croissance racinaire 

spectaculaire a été observé à plus de 4 m de profondeur à la fin de la saison sèche, peu importe 

le traitement. La croissance des racines fines dans les couches profondes du sol a commencé 

lorsque la teneur en eau dans la couche de sol de 0-2 m est tombée en dessous d'un seuil 

d'environ 80 mm, ce qui suggère que la teneur en eau du sol dans une couche de sol particulière 

n'était pas le principal facteur responsable de la croissance des racines fines. Les flushs 

successifs de croissance des racines de la couche superficielle jusqu'aux couches les plus 

profondes du sol à la fin de la saison sèche et dans les premiers mois qui ont suivi le début de 

la saison des pluies dans les traitements + W et -W seraient dus à un épuisement rapide des 

ressources en eau de la couche superficielle, qui induirait les racines des arbres à s’enfoncer 

plus profondément dans le sol (Schenk and Jackson, 2002; Billings, 2015). 

De plus nous avons montré que les eucalyptus confrontés à la sécheresse ont adapté leur 

morphologie racinaire afin de maximiser la surface racinaire en contact avec le sol pour 

absorber les ressources limitées. Les valeurs de SRL et SRA étaient plus élevées dans –W par 

rapport à +W, ce qui, combiné à des densités de racines fines plus élevées, conduirait à un indice 

de surface racinaire beaucoup plus élevé. Notre étude a montré que les eucalyptus peuvent 

modifier les traits des racines fines pour améliorer la capture des ressources et l'exploration de 

couches de sol très profondes afin de survivre dans un contexte de changement climatique en 

contribuant au maintien de l'absorption d'eau pendant les périodes sèches (Brunner et al., 2015; 

Christina et al., 2017). 

De plus, l'exclusion de pluie n’a eu aucun effet sur les efflux de CO2, N2O et CH4 mesurés à la 

surface ou calculés en profondeur avec le modèle de diffusivité. Les différences de 

concentration de gaz dans le sol, mesurées entre +W et –W proviennent probablement de la 

teneur plus élevée en eau dans le sol en +W, ce qui pourrait par la suite réduire la diffusivité 

des gaz du sol alors que les émissions n’ont pas été affectés. Dans le traitement +W, la teneur 

élevée en eau dans le profil de sol pourrait induire une saturation de l'espace interstitiel par l’eau 

et entraîner une lente diffusion des gaz à effet de serre vers l'atmosphère (Maier et al., 2017; 

Wang et al., 2018). La structure des pores et des agrégats du sol est directement liée à la 



     38 
 

libération de gaz à effet de serre mais également au stockage de carbone (Smith et al., 2004; 

Mangalassery et al., 2013). 

La production de CO2, de CH4 et de N2O n'était pas significativement différente entre les 

traitements +W et -W jusqu'à une profondeur de 15.5 m. Cependant, nous avons observé que la 

production peut diminuer dans les couches supérieures et augmenter dans les couches 

profondes. Nous avons montré que la biomasse racinaire ainsi que l’indice de surface racinaire 

augmentaient d'environ 25% et 24% respectivement dans le traitement d'exclusion de pluie par 

rapport à la parcelle témoin jusqu'à une profondeur de 17 m, et que la biomasse racinaire 

augmentait principalement à des profondeurs supérieures à 7 m. Par conséquent, le déplacement 

de la production de CO2 vers la couche plus profonde observé dans notre étude pourrait être dû 

à un déplacement de l'activité racinaire vers les horizons plus profond, indiquant une 

augmentation de l'absorption d'eau par les racines profondes (Sotta et al., 2007; 

Schwendenmann et al., 2010). 

Nous avons également observé un déplacement de la consommation de CH4 vers les couches 

profondes du traitement d’exclusion de pluie. Le déplacement de la consommation de CH4 vers 

les couches plus profondes pourrait être dû à des conditions de sol plus favorables à la 

méthanotrophie mais défavorable à la méthanogénèse. Des études complémentaires sont 

nécessaires pour évaluer les effets de l’exclusion de pluie sur les communautés microbiennes, 

leur activité ainsi que leurs interactions, en particulier dans les couches profondes du sol. 

Effet de la coupe des arbres 

Nous avons mis en évidence que relativement peu de racines ont été perdues par mortalité, avec 

moins de 10% de mortalité sur toutes les racines observées sur 3 ans, ce qui suggère que la plus 

grande partie du système racinaire reste fonctionnelle après la coupe des arbres quand la 

plantation est menée en taillis. Notre étude suggère que les Eucalyptus grandis âgés de 6 ans 

disposent de réserves suffisantes dans le système racinaire pour maintenir la biomasse racinaire 

établie jusqu'à la nappe phréatique après la coupe, ce qui a probablement contribué à la 

croissance précoce des rejets (Drake et al., 2013; Brunner et al., 2015). 

L'asynchronisme au sein du système racinaire, retardant la croissance des racines dans les 

couches profondes du sol, pourrait être une stratégie employée pour maximiser l'absorption 

d'eau et de nutriments nécessaire pour répondre à la forte demande de ces arbres à croissance 

rapide. La croissance des racines s'est produite à une profondeur de 14 m moins d'un an après 
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la coupe des arbres quand ils sont menés en taillis, tandis que la profondeur maximale atteinte 

par les racines de E. grandis est d'environ 7 m un an après la plantation dans des sols très 

profonds (Laclau et al., 2013; Christina et al., 2017). Les racines profondes permettent un accès 

à de grandes quantités d'eau stockées dans le sous-sol après la coupe et malgré la faible densité 

de racines fines dans les couches profondes du sol, elles suffisent à absorber des quantités 

importantes d'eau (Christina et al., 2017). Les faibles taux de mortalité des racines fines après 

la coupe suggèrent que la gestion en taillis des plantations d’Eucalyptus peut être une option 

prometteuse pour faire face à la sécheresse, étant donné que le système racinaire préexistant 

permet un accès à l’eau stockée dans les horizons profonds. 

Contrairement à ce que nous espérions, la coupe des arbres n'a pas entraîné d'augmentation des 

émissions et de la production de CO2, de CH4 et de N2O, quel que soit le régime hydrique. La 

récolte de la biomasse aérienne entraîne une réduction de l'absorption de carbone par la 

photosynthèse immédiatement après la coupe, mais également des modifications substantielles 

de l'environnement physique du sol, telles qu'une augmentation de la température (Smethurst 

and Nambiar, 1990) et de l'humidité (Cortina and Vallejo, 1994), qui influencent les processus 

de décomposition. En effet, nous avons montrés que la coupe des arbres n'entraînait pas 

d'augmentation de la mortalité racinaire la première année après la coupe lorsque la plantation 

était menée en taillis. Par conséquent, nous supposons que la décomposition des racines mortes 

ne s’est pas accélérée après la coupe. Nous pouvons supposer que la diminution de la respiration 

des racines après la coupe, associée à l’augmentation de la décomposition des litières à la 

surface du sol se compensent, entraînant des émissions similaires à celles d’avant la coupe. 

Conclusion générale 

La phénologie des racines fines d'eucalyptus menée en taillis soumis à des régimes hydriques 

contrastés a révélé des taux de mortalité très faible. La croissance précoce des pousses après la 

coupe des arbres a bénéficié du système racinaire établi au cours de la rotation précédente, et 

l'asynchronisme de la croissance des racines fines en fonction de la profondeur a mis en 

évidence la plasticité des arbres en réponse aux conditions du sol. La mise en place de systèmes 

racinaires profonds dans les forêts tropicales plantées pourrait aider les arbres à résister aux 

longues périodes de sécheresse attendues dans de nombreuses régions tropicales dans un 

contexte de changement climatique.  

De plus, nous avons montré que la coupe des arbres n’entraine pas de manière significative 

l’augmentation des émissions de CO2 et de CH4 quand la plantation est menée en taillis par 
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rapport à une plantation non exploitée. Les émissions de gaz après la coupe sont cohérentes 

avec les faibles taux de mortalité racinaire observés. D'autre part, les racines profondes 

pourraient également contribuer à la séquestration de grandes quantités de C dans le sol. Les 

allocations de carbone vers les parties souterraines représentent environ 20 à 30% de la 

productivité primaire brute dans les plantations d’Eucalyptus (Ryan et al., 2010; Epron et al., 

2012; Nouvellon et al., 2012). Le C des racines est généralement retenu plus longtemps dans le 

sol que celui de la litière aérienne, qui est davantage affectée par les processus physico-

chimiques et qui comporte une composition structurelle différente (Rasse et al., 2005; Schmidt 

et al., 2011; Menichetti et al., 2015). Des études complémentaires sont nécessaires pour 

déterminer si la gestion des plantations d’eucalyptus dans des sols très profonds pourrait 

constituer une option efficace pour atténuer l’augmentation du CO2 dans l’atmosphère et 

augmenter le stockage du C. 

Les sols tropicaux très profonds couvrent de vastes régions du monde et il est essentiel 

d'améliorer notre compréhension de la dynamique spatio-temporelle des concentrations de gaz 

dans les couches profondes du sol afin de quantifier plus précisément les source / puits de C 

pour estimer le budget global du carbone, améliorer les modèles biogéochimiques actuels pour 

la prédiction des émissions de gaz à effet de serre, et identifier des pratiques sylvicoles plus 

durables pour les forêts tropicales plantées dans le contexte des changements climatiques. 
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Table 1: Summary of the root parameters used in this study, how we obtained them and how we can interpret them. 

How to 

measure 
Root parameter Unit 

All roots / 

Individual roots 
Description Interpretation 

Minirhizotron LP Length production cm m-2 Individual root 
Individual root length 

per observed soil area 
Root length observed 

 CLP cumulative length production cm m-2 Ʃ roots Sum of LP Total root length observed 

 RER root elongation rate cm day-1 Individual root 

Root increment 

between two sessions 

over time 

Individual root growth 

 Max RER 
Maximum root elongation 

rate 
cm day-1 

Comparing all 

roots 
Higher value 

Maximum root growth 

observed 

 
Mean 

RER 
Mean Root elongation rate cm day-1 

Taking into 

account all roots 

Mean root elongation 

rate over the study 

period 

Mean root growth 

 DRER Daily root elongation rate cm m-2 day-1 Ʃ roots 
Sum of root elongation 

rate per session 

Total root increment per day 

=> indicator of phenology 

Root 

sampling 
FRB Fine root biomass g kg-1 All roots g of roots per kg of soil 

Indicator of root distribution 

in soil 

 FRD Fine root density g dm-3 All roots 
g of roots per dm-3 of 

soil sampled 

Indicator of root distribution 

in soil 

 SRL Specific root length m g-1 All roots 
Length of roots per g 

of root 

Indicator of root exploration 

and nutrient uptake 

 SRA Specific root area m2 g-1 All roots 
Area of root per g of 

root 

Indicator of root exploration 

and nutrient uptake 

 RLI Root length index m m-2 All roots 
Length of root per soil 

area 
Indicator of root investment 

 RAI Root area index m2 m-2 All roots 
Area of root per soil 

area 
Indicator of root investment 
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CHAPTER 1:  INTRODUCTION 

Many studies have been carried out other the last decades to help facing future dramatic climatic 

and demographic changes (Vogt et al., 1995; Alexandratos, 1999; Cassman, 1999). The 

research work of the IPCC (Intergovernmental Panel on Climate Change), created in 1988, 

highlights the impact of climate change, mainly anthropogenic, on ecosystems (Metz et al., 

2007). The Kyoto treaty was signed in 1997 to fight against the increase in the atmospheric 

concentration of greenhouse gases. The increase of carbon dioxide (CO2) and other greenhouse 

gases (GHG) contents in the atmosphere, mainly methane (CH4) and nitrous oxide (N2O), and 

their role in global warming are undeniable (Graefe et al., 2008; Solomon et al., 2009). 

Reducing those emissions to avoid a temperature increase of more than 2°C above pre-industrial 

era is a real challenge recognized by the entire scientific community (IPCC, 2014). In this 

perspective, the emission of greenhouse gases into the atmosphere can be directly reduced (or 

offset) by the sequestration of carbon in some compartments participating in its cycle. Soil 

represents the largest reservoir of continental organic carbon (Jacobson et al., 2000). It is 

estimated that soil sequester approximately 800 Gt over the first 30 cm and about 1500 Gt when 

considering the first meter (Post et al., 1982; Eswaran et al., 1993; Batjes, 1996). Therefore, a 

tiny variation of those stocks can have a strong effect on the global atmospheric carbon. In this 

context, the French Minister of Agriculture launched the “4 per 1000” initiative whose objective 

is to develop agronomic research in order to increase soil organic carbon stocks by 4‰ per 

year. Such an increase would make it possible to offset greenhouse gases emissions and mitigate 

climate change (Lal, 2016; Chabbi et al., 2017; Dignac et al., 2017; Minasny et al., 2017; 

Corbeels et al., 2019).  Agriculture is the first source of greenhouse gas emissions (FAO, 2015) 

when combined with land-use change and forestry, which both represent approximately 17.4% 

of worldwide GHG emissions. While many studies have been carried out to estimate the carbon 

balance in boreal and temperate forests (Falge et al., 2002; Baldocchi et al., 2005), 

comprehensive studies quantifying the main fluxes of the C cycle are scarce in tropical forest 

ecosystems. More study cases accounting for the interactive effects of (future) climate, soil, and 

management practices are needed in tropical regions to improve global biogeochemical models 

(Penuelas et al., 2013). Hence, it is important to assess the feasibility, timeliness, and 

effectiveness of a potential use of planted forests as a strategy to mitigate greenhouse gas 

emissions. 
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I.1 Forest plantations 

The area of forest plantations has increased sharply in recent decades in response to the increase 

in global demand for timber, mainly as a result of population growth, rising living standards, 

and the emergence of new markets for wood products, such as the use of wood as a substitute 

for fossil fuels (e.g. iron and steel industry). A study based on the Global Forest Products Model 

(Buongiorno et al., 2003) predicts a 20% increase in world demand for wood by 2060, mainly 

driven by the increasing consumption of paper and wood for buildings (Elias and Boucher, 

2014). While natural forests areas decreased from 3961 million hectares in 1990 to 3721 million 

hectares in 2015, forest plantation areas increased from 168 to 278 million hectares during the 

same period (Keenan et al., 2015; Payn et al., 2015). Thus, forest plantations account for 7% 

of the total of forest area in the world in 2015, compared to 4.1% in 1990. In 2000, they 

accounted for 5% of the global forest cover but provided 33% of roundwood harvested and 

reached 46% in 2012, with large disparities between regions in the world: 65% in tropical and 

subtropical regions, 45% in temperate regions and only 14% in boreal regions. In tropical and 

subtropical regions, plantations of fast-growing species (mainly Eucalyptus, Pinus and Acacia 

genera) store large amounts of carbon and contribute to reducing the exploitation of natural 

forests by providing an increasing proportion of the global demand of wood (Keenan et al., 

2015), and accounted for 29% of global forest plantation areas (Payn et al., 2015). Highest 

productivities are reached in tropical and subtropical regions. Plantation productivity is on 

average 4.6 m3 ha-1 year-1 and greatly vary around the world from 1.4 m3 ha-1 year-1 on average 

in boreal regions to 8.4 m3 ha-1 year-1 in tropical regions (Payn et al., 2015). South America 

with an average productivity of 24 m3 ha-1 year-1 is the area with the highest productivity. 

Indeed, in 2012, Brazil’s forest plantations, despite an area of only 7.7 million hectares, 

produced 132 million m3, as much as the United States with an area of 79 million hectares that 

produced 141 million m3. 

I.2 Eucalyptus plantations 

Fast-growing Eucalyptus plantations (Figure I. 1) cover about 20 million hectares throughout 

the world (Booth, 2013) and are the most planted tree species in Brazil with about 5.6 million 

hectares, which represents 72.3% of the area of Brazilian forest plantations and 81% of the 

Brazilian wood production (IBA, 2016). Eucalyptus plantations play an important role in the 

supply of pulp, paper and power generation in Brazil, accounting for 5% of the country's GDP, 

in addition to 2.4 million direct and indirect jobs (IBA, 2016). These forests of great economic 
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interest have a mean annual increment of 40 m3 ha-1 year-1 on rotations of 6-8 years, ranging 

between 25 and 60 m3 ha-1 year-1 depending on forest management practices and regions 

(Oliveira et al., 1999). With a gross primary productivity that can exceed 3500 g C m-2 year-1 

(Ryan et al., 2010; Nouvellon et al., 2012), Eucalyptus plantations in Brazil are among the most 

productive forests in the world (Luyssaert et al., 2007). The significant productivity gains over 

the last 25 years, from 25 m3 ha-1 year-1 in the early 1990s to more than 40 m3 ha-1 year-1 

nowadays, resulted from improvements in silvicultural practices and breeding programs making 

it possible to identify highly performant clones from some Eucalyptus species and hybrids, in 

particular E. grandis, E. urophylla, E. saligna and E. camaldulensis. The diversity of 

Eucalyptus species planted in tropical regions has led to a wide range of products and 

management practices (Gonçalves et al., 2013). Although many Eucalyptus plantations are 

intensively managed to produce raw materials for industry (mainly pulp and paper, but also 

solid-wood products, fiberboards and charcoal for steel production), energy production from 

wood for domestic use also contributes to alleviating poverty in developing countries (Cossalter 

and Pye-Smith, 2003; Nambiar and Harwood, 2014). The development of industries that use 

wood as raw materials has generated more attention from researchers to develop new techniques 

oriented towards the increase of productivity and wood quality. Highly productive industrial 

plantations are generally perceived as a threat to biodiversity, water resources or soil fertility. 

The environmental impact of those highly productive forest plantations has raised many 

concerns in recent decades (Cossalter and Pye-Smith, 2003). Nevertheless, the problems 

associated with these plantations are often site-specific, and how they are managed is of 

paramount importance. 
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Figure I. 1: Eucalyptus plantation located in the southeastern region of Brazil, in São Paulo 

state. 

I.3 Consequences of climate change on the forest plantations management 

In Brazil, most of Eucalyptus plantations are settled in areas with very deep soils (> 5m), low 

soil fertility and prolonged drought periods (Gonçalves et al., 2013). Even if future precipitation 

distributions are still difficult to predict at the local scale, studies have shown that global 

warming will be associated with an intensification of dry periods in many parts of the globe 

(Figure I. 2)(Solomon et al., 2009), especially in sub-tropical areas already subject to severe 

droughts (Meehl et al., 2007). A throughfall exclusion experiment in the Amazon showed that 

a decrease in precipitation can have a considerable influence on the functioning of forest 

ecosystems (Brando et al., 2008). The dynamics of fine roots, litter fall, soil organic matter 

decomposition and nutrient mineralization, as well as soil aeration (affecting the diffusion of 

gases and microbial processes in the soil) are highly sensitive to rainfall (Van Straaten et al., 

2010; Maier et al., 2017). In this context, it is important to better understand the factors 

influencing the response of forest ecosystems and their ability to improve their adaptation to 

drought conditions (Choat et al., 2012). 



A. Germon 2019       57 
 

 

Figure I. 2: Average forecasts of changes in global rainfall distribution. Rainfall variations are 

expressed as a percentage change in precipitation per degree of warming. Predictions are made for 

decadal precipitation variations from 1900-1950 as the reference period (Solomon et al., 2009). 

In tropical and subtropical regions, the productivity of intensively-managed Eucalyptus 

plantations is mainly controlled by water availability in the soil (Smethurst, 2010; Gonçalves 

et al., 2013). The management of fast-growing Eucalyptus plantations should be adapted in the 

future to more frequent drought conditions to avoid tree mortality (White et al., 2009; Battie‐

Laclau et al., 2014b; White et al., 2014). The selection of drought-tolerant clones and hybrids 

will be necessary to reduce tree water requirements, as well as a possible adjustment in planting 

density, fertilization regime and rotation duration (Booth, 2013). 

Furthermore, the main criticism of industrial Eucalyptus plantations is their high-water 

consumption, which can affect the water resources of the regions concerned by large areas of 

afforestation (Jackson et al., 2005). Soil moisture monitoring down to a depth of 10 m in 

Brazilian eucalypt plantations showed no drainage beyond the root system, from the third year 

after planting onward, even though the annual precipitations was relatively high (about 1400 
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mm year-1) (Christina et al., 2011; Laclau et al., 2013). Silvicultural management also has a 

significant impact on the water cycle. The clear-cut of the trees allows a recharge of the deep 

horizons of the soil with a rise of several meters of the water table (Almeida et al., 2007; 

Christina et al., 2017). Improving our understanding of soil water transfers after cutting the 

trees and their impact on the microbial processes involved in C and nutrient cycling is important 

for the management of these planted forests in a context of climate change (Sheffield and Wood, 

2008; Solomon et al., 2009; IPCC, 2014). 

I.4 The importance of fine roots for tree growth 

Being the main organ for water and nutrient uptake by plants, fine roots (diameter ≤ 2 mm) play 

an essential role in plant growth (Hinsinger, 2001; Brunner et al., 2013; Upson and Burgess, 

2013). The establishment of a deep root system can be a strategy for plant species to adapt to 

water stress. In poor soils, most of the fertility is concentrated in the surface horizon as a result 

of deposition and decomposition of aboveground litter, soil organic matter mineralization and 

fine root decomposition. The high root growth rate of Eucalyptus trees allows them to explore 

both the superficial soil layers and very deep soil horizons at early stages. Fine roots in eucalypt 

plantations can reach a depth of 7 m the first year after planting when there is no barrier for root 

growth (Christina et al., 2011; Laclau et al., 2013). However, the relative contribution of deep 

roots to mineral nutrition is still poorly documented in these plantations (Da Silva et al., 2011; 

Bordron et al., 2018). 

Plant species use a large range of rooting patterns to cope with periodic drought, from “drought 

tolerant strategies” with fine roots surviving in periodically dry soil, to “drought avoiding 

strategies” shedding fine roots from dry soil horizons while rapidly developing roots in moister 

areas (Brunner et al., 2015; Vries et al., 2016; Bristiel et al., 2018). Drought can increase the 

root-to-shoot ratio, the root area or root length-to-leaf area ratio, as well as the proportion of 

fine roots in deep soil layers and/or the specific root area (Markesteijn and Poorter, 2009; Ma 

et al., 2018; Zhou et al., 2018). Root growth peaks have been shown in deep soil layers during 

or the first months just after dry periods for eucalypt and rubber trees in tropical soils (Maeght 

et al., 2015; Lambais et al., 2017). Drought tolerance strategies are common for herbaceous 

plants, while drought avoiding strategies are often adopted by trees in evergreen tropical forests 

(Brunner et al., 2015). Despite the crucial role of fine roots to cope with drought, root phenology 

remains poorly understood in comparison to leaf ecophysiology (Radville et al., 2016). 
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Fine root dynamics and turnover depend on the plant species, but also on biotic and abiotic 

parameters. For example, soil water contents and soil properties, such as pH, nitrogen and 

oxygen concentrations can strongly influence fine root dynamics (Vogt et al., 1995; Satomura 

et al., 2007; Guo et al., 2008). Indeed, observations in Eucalyptus plantations suggest a link 

between the vertical distribution of fine roots and nutrient acquisition by the trees (Bouillet et 

al., 2002; Da Silva et al., 2011; Laclau et al., 2013), which can itself develop a high plasticity 

of its root system to colonize preferentially nutrient-rich areas (Hodge, 2004). 

I.5 How to study fine root dynamics 

There is no consensus on the best method to measure fine root production in forest ecosystems, 

and most studies conclude that a combination of different methods gives the most reliable 

results (Vogt et al., 1995; Hertel and Leuschner, 2002; Hendricks et al., 2006; Jourdan et al., 

2008). Successive soil sampling with a sequential coring measurement is the most commonly 

used method to study fine root production in natural or planted forest ecosystems (Persson, 

1978; Mello et al., 2007; Jourdan et al., 2008). It is frequently associated with the installation 

of “ingrowth cores”, both techniques are based on destructive soil samplings. In the last method, 

new fine roots produced in a root-free soil volume are regularly collected and quantified within 

mesh bags every month or more, during an entire year, to estimate the annual fine root 

production (Hendricks et al., 2006). However, several studies have shown that soil disturbances 

(in particular fine root cutting) that occurred during the installation of the mesh bags 

significantly changes fine root dynamics (Vogt et al., 1998; Hertel and Leuschner, 2002; 

Jourdan et al., 2008). Since the 1980s, the minirhizotron technique is widely used to study fine 

root dynamics and turnover (Withington et al., 2003; Graefe et al., 2008; Maeght et al., 2013). 

This technique allows direct observation and measurement of fine root dynamics while 

minimizing soil disturbance if a long period of recovery is observed prior to root measurements. 

It is a non-destructive method that involves the installation of transparent tubes, called 

minirhizotrons, in the soil near the studied plants (Majdi et al., 2001; Tierney and Fahey, 2001; 

Withington et al., 2003). With this transparent interface, fine roots can be measured at 

successive dates to study the dynamics of growth and mortality (Hendrick and Pregitzer, 1996; 

Anderson et al., 2003). The opportunity to study fine roots in a mildly disturbed environment 

is an important asset of this method (Majdi et al., 2001). 
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I.6 Specificities of fine roots in deep soil layers 

Deep fine roots are fundamental organs for the growth and survival of plants. They help to 

avoid nutrient losses through deep drainage (Laclau et al., 2010; Mareschal et al., 2013), and 

to withdraw water at great depth during dry periods (Schwendenmann et al., 2010; Battie‐

Laclau et al., 2014b; Christina et al., 2015). Fine root dynamics at the vicinity of very deep 

water tables have been little studied (Soylu et al., 2014), mainly due to technical difficulties, 

although the fine root behavior can be essential for plant survival during severe drought events 

(Nepstad et al., 2007; Malhi et al., 2009; Markewitz et al., 2010; Ivanov et al., 2012). Fine root 

lifespan depends on many factors such as root order (Guo et al., 2008), diameter (Joslin et al., 

2006) and soil depth (Hendrick and Pregitzer, 1996; Baddeley and Watson, 2005; Germon et 

al., 2016). Most of the studies dealing with fine root production and turnover have been carried 

out in the upper soil layers (depth <1 m) mainly due to the difficulty to realize such 

measurements at great depth (Billings, 2015). Improving our understanding of water and 

nutrient uptake processes at great depth will become more important for forest management in 

a context of climate change since trees will be more (Nepstad et al., 1994; Malhi et al., 2009). 

Studies carried out in Brazil showed that about 10% of the total fine root biomass is distributed 

below 3 m of depth in eucalypt plantations (Christina et al., 2011). Laclau et al. (2013) showed 

that the proportion of fine roots below 4 m deep increased with the age of Eucalyptus trees: fine 

roots below 4 m deep represented 5%, 10% and 20% of the fine root intersects on vertical pit 

walls in plantations of 1, 3.5 and 6 years old, respectively. In Brazil, the first estimates of the 

production and turnover of Eucalyptus fine roots were conducted in topsoil horizons limited to 

a depth of 1 m (Mello et al., 2007; Jourdan et al., 2008), while little is known about these 

processes at depth. Lambais et al. (2017) studied root production and mortality during the first 

rotation of Eucalyptus plantation down to a depth of 6 m. They showed that Eucalyptus fine 

roots colonized quickly the very deep soil horizons (depth > 5 m) and that the root elongation 

rate was higher between the depths of 5 and 6 m compared to the top soil from 2 to 4 years after 

planting. In addition, there was only 3.4% of root length lost by mortality in the 5-6 m soil layer 

during the 2 years of study, whereas 22.7% of the fine roots had died in the superficial layer. 

There is little quantitative data on deep fine root dynamics (> 6 m) and literature tends to 

underestimate the depth of the root system distribution as well as its importance in ecosystems 

functioning and productivity (Schenk and Jackson, 2002; Markewitz et al., 2010; Freycon et 

al., 2015). 
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I.7 Relationships between fine root dynamics and GHG fluxes  

Fine roots participate actively in the C fluxes in forest soils through the emission of C to 

atmosphere by respiratory processes and C storage in the soil from root mortality and exudation 

of carbonic compounds (Balesdent and Balabane, 1996; Strand et al., 2008). Then, it is 

challenging to compare the observations of fine root production and mortality with the 

dynamics of CO2, CH4 and N2O throughout deep soil profiles in the context of climate change. 

Eucalyptus trees allocate about 30% of their gross primary productivity to root maintenance 

and production in highly productive plantations managed in short rotations (Ryan et al., 2010), 

but the difficulty to estimate fine root dynamics throughout the entire soil profile limits the 

estimation of the global soil carbon cycle and the total emissions of greenhouse gases (GHG), 

as well as the understanding of factors controlling them (Wang et al., 2013).  

Greenhouse gases (GHG) emissions from soils are the result of complex production, 

consumption and transport processes (Figure I. 3), and are affected by many factors such as 

microclimate, substrate availability for soil micro-organisms, aboveground photosynthetic 

supply to roots and management factors (Metay et al., 2007). CO2 effluxes at soil surface come 

from root respiration, anaerobic and aerobic microbial respiration and soil organic matter 

decomposition (Figure I. 3) (Versini et al., 2013; Oertel et al., 2016). CH4 effluxes depend on 

the balance between production by methanogenesis under anaerobic conditions and 

consumption by methanotrophic microorganisms (Dutaur and Verchot, 2007; Tate, 

2015)(Figure I. 3). N2O emissions from soil are driven by microbial nitrification (oxidation of 

NH4
+ to NO3

-) and denitrification (reduction of NO3
- to N2O) (Figure I. 3) (Bai et al., 2014; 

Zhong et al., 2014; Ortiz-Gonzalo et al., 2018).  

Production of greenhouse gases by soil microorganisms and roots can change rapidly 

temporally and spatially, which makes modeling efforts challenging (Drewitt et al., 2005; 

Courtois et al., 2018). While most studies dealing with soil greenhouse gas effluxes addressed 

the spatial and temporal variations, the vertical distribution of soil respiration is still little 

documented in very deep soils (Drewitt et al., 2005). Trees with roots at depths of more than 

10 m are common in tropical forests (Nepstad et al., 1994; Saleska et al., 2007; Broedel et al., 

2017). In a Brazilian Amazon forest, the consumption of CH4 occurred mainly in the upper 10 

cm of the soil profile, the production of N2O mainly in the 0-25 cm soil layer whereas CO2 was 

produced down to at least a soil depth of 11 m (Davidson et al., 2004). In another Amazonian 

forest, CO2 production in the 0.5-3 m soil layer accounted for 17 % of the total soil CO2 
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production (Sotta et al., 2007). Even if microbial activity is low in deep soil layers (Fontaine et 

al., 2007), the huge soil volume explored by fine roots might lead to significant CO2, N2O and 

CH4 productions within the entire rooting soil profile.  

Measurements of GHG emissions at the soil surface provide an integrative estimate of the net 

production in the soil, but information on the patterns of production, consumption and transport 

of CO2, CH4 and N2O within the soil profile remain poorly understood (Davidson et al., 2006; 

Hashimoto et al., 2007; Wiaux et al., 2015). Understanding these patterns can provide insights 

into the possibilities of reducing GHG emissions. Data on the time course of GHG 

concentrations throughout soil profiles can provide additional information on heterogeneous 

gaseous exchange processes at depth that may be involved in the control of such surface fluxes. 

The comparison between the dynamics of CO2 contents at various depths and the dynamics of 

production and mortality of fine roots throughout the soil profile observed with minirhizotrons 

could help us to better estimate and characterize the origin of the organic C emitted at the soil 

surface.
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Figure I. 3: Schematic representation of belowground production, consumption and transport processes for Eucalyptus plantations.
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I.8 Root dynamics in forest stands conducted in coppice 

Coppice management could be an interesting option to face water deficit because the trees are 

likely to benefit from a root system already established preserving living biomass for the next 

generation and making it possible to access the deep soil layers where water availability can be 

higher than in the topsoil. Coppice-managed plantations, letting regenerate one or two shoots 

from the stump after the harvest, are common due to lower production costs, shorter cycle times 

and faster financial returns compared to replanting (Gonçalves et al., 2014). The proportion of 

coppice-managed plantations has increased from 10 % of the total area of Eucalyptus 

plantations in 2008 to 25-35% in 2010. The effects of clear-cutting on fine root dynamics in 

coppiced-managed forest plantations are poorly documented and the trends are not clear. 

Sequential coring in Brazilian eucalypt plantations conducted in coppice showed that fine root 

density decreased in the 0-1 m soil layer the first 60 days after harvesting while fine root 

decomposition was accelerated (Mello et al., 2007). Less intense root growth was observed in 

the first 10 cm of the soil at 90 days after cutting the trees. In addition, this study showed that 

the decomposition of fine roots was accelerated after the clear-cut (Mello et al., 2007). An 

earlier study suggested that the growth of fine roots continues during the period after the harvest 

of trees in coppice-managed plantations of E. camaldulensis Dehn in Morocco; however, radial 

root growth was interrupted after cutting the trees (Riedacker, 1973). The most complete studies 

on root dynamics after regrowth have been carried out in coppice-managed Populus plantations. 

Dickmann et al. (1996) observed little changes in fine root production and mortality after clear-

cutting down to a depth of 1 m. Berhongaray et al. (2015) showed that before cutting the trees, 

the mortality of fine roots was much lower than the production, while after the harvest, mortality 

exceeded the root production. However, these results were obtained only in the upper 80 cm of 

the soil, while studies carried out in eucalypt plantations in the state of São Paulo showed that 

approximately 50% of the roots of diameter <1 mm were located below 1 m (Laclau et al., 

2013). Cutting the trees leads to a significant production of organic matter via necromass and 

carbon compound exudates and therefore could be considerable at great depth (Werner and 

Schnyder, 2012; Berhongaray et al., 2015) due to the amount of fine roots produced in these 

soil depths (Laclau et al., 2013). 
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I.9 Root inputs and changes in soil organic matter dynamics in coppice-managed 

stands 

Coppice management may influence carbon sequestration in the superficial soil layers in 

Eucalyptus plantations, but also in very deep soil horizons where the influence of fresh organic 

matter inputs on carbon storage is still poorly understood (Fontaine et al., 2007; Derrien et al., 

2014). Removing the aboveground parts of trees can have a great impact on the ecosystem 

carbon balance and greenhouses gases emissions. Clear-cutting increases the solar radiation 

transmitted to the soil, raising the soil temperature and soil water contents through an 

interruption of stand transpiration (Londo et al., 1999; Mello et al., 2007). This may induce an 

increase in microbial activity, the decomposition of harvest residues left at the soil surface and 

enhance fine root mortality and decomposition (Parfitt et al., 2001; Mello et al., 2007). When 

decomposed, a part of the former tissues from the roots is incorporated into the soil organic 

matter (Strand et al., 2008). Microorganisms are reactivated in response of the input of fresh 

organic matter. Specialized microorganisms develop rapidly and break down fresh organic 

matter. Their metabolites can activate a second class of specialized microorganisms, in 

dormancy, which can degrade the organic matter initially present and stored in the soil: this is 

the "priming effect" (Fontaine et al., 2003). Kuzyakov et al. (2000) emphasizes the importance 

of characterizing microbial communities, their biomass but also their functioning (e.g. catabolic 

profile or enzymatic activity), and their structure (e.g. bacteria / fungi ratio) as a prerequisite 

for the evaluation of the underlying mechanisms. The consumption of soil organic matter by 

microbes results in the emission of CO2 in aerobic conditions and CH4 in anaerobic conditions. 

The “priming effect” could affect carbon storage in the soil and indirectly influence the nitrogen 

cycle. Indeed, CO2 emissions in the soil profile influence the oxygen partial pressure, which is 

one of the factors controlling the transformation reactions of nitrogen substrates in the soil. 

Furthermore, the availability of carbon substrates is one of the main regulatory factors of the 

denitrification reaction (Groffman, 1991). Diffusion and transport of gases are inversely 

proportional to the water-filled pore space (WFPS%). Therefore, when the soil water content 

decreases, CO2, CH4 and N2O reaches the surface quickly, the oxygen diffuses better throughout 

the soil profile, which influences important production and consumption processes (Heincke 

and Kaupenjohann, 1999; Clough et al., 2005). Most of the studies dealing with soil carbon 

storage and greenhouse gas concentrations are limited to the upper meter of the soil profile 

(Harper and Tibbett, 2013). The consequences of tree harvesting on root dynamics and 

greenhouse gases production and consumption over the first year of the rotation in coppice-
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managed plantations ask specific questions never studied within the entire rooting profile in 

deep tropical soils. 

A literature review pointed out the importance of fine roots in deep soil layers for the growth 

and survival of plants and their ability to adapt to biotic and abiotic stresses. The foraging 

strategy adopted by root systems is influenced by water availability, so plants tend to develop 

deeper root systems when they are subject to water stress (Christina et al., 2011; Bristiel et al., 

2018). Coppice management could be an interesting option to face water deficit because the 

trees are likely to benefit from a deep root system already established before harvesting the 

previous stand to produce new shoots. Despite recent insights highlighting the importance of 

fine roots at great depth, current knowledge of their dynamics is still extremely limited. 

Furthermore, root mortality supply organic matter at different soil depths, which is likely to 

affect greenhouse gas production and consumption processes. Therefore, improving our 

understanding of the spatiotemporal dynamics of GHG concentrations throughout deep soil 

profiles is an important issue to assess the environmental impact of silvicultural practices in 

tropical planted forests in a context of climate change. 
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CHAPTER 2:  RESEARCH QUESTION AND SPECIFIC OBJECTIVES 

The evaluation of the contribution of deep fine roots to the spatiotemporal dynamics of GHG 

concentrations throughout deep soil profiles is a metrological challenge and, in fact, a major 

scientific lock. The general objective of the thesis is to gain insight into fine root production 

and mortality in deep soil profiles with a joint characterization of greenhouse gases 

consumption and production. These effects have been monitored before and after harvesting all 

the trees in a highly productive Eucalyptus grandis plantation managed in coppice after clear-

cutting, under two contrasting water supply regimes in São Paulo state, Brazil.  

The specific objectives of the thesis are: 

- To gain insight into the influence of rainfall reduction on fine root production and 

mortality throughout the soil profile in coppice-managed plantations; 

- To assess the effect of clear-cutting and coppice management on fine roots dynamics 

down to the water table, here located at a depth of 17 m;  

- To determine the vertical profile of CO2, CH4, and N2O production rates from the topsoil 

to a depth of 17 m under two contrasting rainfall regimes. 

The results obtained in this thesis are presented as three scientific articles and the organization 

of the different parts are summarized in Figure II. 1: 

➢ Chapter 4: « Deep fine root dynamics in forest ecosystems ». This review will be 

submitted to the Journal Forest Ecology and Management, after co-authors revision. 

➢ Chapter 5: « Consequences of clear-cutting and drought on fine root dynamics down to 

17 m in coppice-managed eucalypt plantations ». This article has been published in the 

journal Forest Ecology and Management. 

➢ Chapter 6: « Consequences of clear-cutting and drought on CO2, CH4 and N2O 

productions throughout deep soil profiles in coppice-managed eucalypt plantations ». 

This article will be submitted to the journal Global Biochemical Cycles. 
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Figure II. 1: Conceptual diagram of the organization of the different parts of the thesis.



A. Germon 2019       69 
 

CHAPTER 3:  STUDY SITE  

To meet our objectives, we used a field trial in a clonal plantation of Eucalyptus grandis W. 

Hill ex Maiden located in the southeastern region of Brazil, in São Paulo state. Very simplified 

forest ecosystems such as monoclonal plantations offer interesting opportunities to understand 

more precisely some ecophysiological and biogeochemical processes impacting carbon and 

nutrient cycling. The studied field trial is particularly of interest to answer our questions because 

Eucalyptus trees exhibit a remarkable deep root system in homogeneous tropical soils, and they 

have the capability to be coppice-managed.  

III.1 Characteristics of the experimental area  

The work presented in this thesis was performed between 2015 and 2017 in Brazil at the Itatinga 

Forest Science Experimental Station owned by the Agricultural Superior School of Luiz de 

Quieroz (ESALQ) of São Paulo State University (USP). This experimental station, of an area 

of 2120 hectares, is located on the western plateau of São Paulo (23°02’S 48°38’W) at 300 km 

from the sea. This experimental site was heavily instrumented to quantify the dynamics of C, 

water and nutrient fluxes and to model the functioning of highly productive eucalypt 

plantations. 

The climate of this region was humid subtropical with a dry winter (Cwa) according to the 

Köppen classification. Over the 15 years prior to this study, the mean annual rainfall was 1390 

mm, the mean air temperature was 20°C and the mean relative humidity was 77%. Two seasons 

can be distinguished, a dry and cold season from June to September with a mean monthly 

temperature of 15°C, and a wet and hot season from October to May, with a mean monthly 

temperature of 25°C and heavy rainfalls (about 75% of the total annual rainfall). 

The experiment was located on the upper part of a hill (slope <3%) at an altitude of 850 m. 

From 1945 to 1998, the area was planted with Eucalyptus saligna and since 1998 wooded with 

a highly productive plantation of Eucalyptus grandis W. Hill ex Maiden. E. grandis are native 

from the east coast of Australia, between latitudes 33°S (New South Wales) and 16°S (northern 

Queensland), in areas where precipitations are greater than 1000 m. In Brazil, the Eucalyptus 

grandis species is widely used due to the high quality of pulpwood, rapid growth and high 

productivity, and its suitability for coppice-management. 

The soils were very deep (> 15 m) Ferralsols (IUSS Working Group WRB, 2015) developed 

on Cretaceous sandstone of medium texture. Clay contents were ranging from 160 mg g-1 in the 
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topsoil to about 250 mg g-1 at a depth of 15 m. Soil mineralogy is dominated by quartz, kaolinite 

and oxyhydroxides. Maquere (2008) characterized in detail the soil chemical attributes down 

to a soil depth of 6 m (Table III. 1). 

Table III. 1: Chemical attributes of the soil of the experimental area down to a depth of 6 meters 

determined by Maquere (2008) (mean value of nine trenches). 

Depth ph K Ca Mg Na H+Al SB CTC V 

m water KCl   mmolc kg-1                                                       % 

0-0.05 4.6 4.0 0.1246 0.2180 0.3115 0.0000 23.54 1.4 24.94 5 

0.05-0.15 5.3 4.4 0.0467 0.0081 0.1303 0.0000 11.66 0.30 11.95 2 

0.15-0.5 5.5 4.7 0.0286 0.0052 0.0316 0.0000 8.80 0.09 8.89 1 

0.5-1.0 5.5 4.6 0.0161 0.0000 0.0124 0.0000 6.49 0.04 6.53 1 

1.0-2.0 5.7 5.2 0.0305 0.0153 0.0153 0.0034 3.94 0.12 4.06 3 

2.0-3.0 6.0 5.3 0.0133 0.0007 0.0103 0.0159 0.80 0.08 0.87 18 

3.0-4.0 5.7 5.3 0.0393 0.0363 0.0375 0.0042 0.28 0.16 0.44 36 

4.0-5.0 5.9 5.5 0.0298 0.0261 0.0253 0.0000 0.04 0.16 0.20 79 

5.0-6.0 5.8 5.6 0.0287 0.0095 0.0164 0.0072 0.13 0.11 0.24 56 

 

III.2 Experimental Layout 

Changing water availabilities is an important issue in a context of global change as the 

continuing rise in atmospheric CO2 levels may come along increased variability in rainfall 

distribution in many regions. A split-plot experimental design was set up in June 2010 with a 

Eucalyptus grandis clone used in commercial plantation by the Suzano Company (São Paulo, 

Brazil), to evaluate the impact of rainfall reduction and contrasting fertilizations on the 

productivity and adaptability of Eucalyptus plantations. The experimental layout contained six 

treatments (three types of nutrient supply x two water regimes) replicated in three blocks. The 

whole-plot factor was the water supply regime (‘‘exclusion” plots, -W, vs ‘‘non-exclusion” 

plots, +W) and the split-plot factor was the fertilization regime (Figure III. 1). In this thesis, we 

studied two treatments out of all those available in the experimental design: one treatment with 

undisturbed rainfall (+W) and one treatment with throughfall exclusion (-W). Treatments -W 

and +W were used to determine the water deficit effect (Figure III. 1). 

The individual plots area was about 864 m2. Trees were planted in June 2010 at a spacing of 3 

m x 2 m with a stocking density of 1666 trees per hectare, e.g. 144 trees per plot totalizing 432 

trees per treatment per 3 blocks. All the plots were fertilized at planting with 3.3 g P m-2, 200 g 
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m-2 of dolomitic lime and trace elements, and at 3 months of age 12 g N m-2 and 0.45 mol K m-

2 were applied as KCl. Field trials at the study site and in nearby areas on the same type of soil 

showed that the amounts of N, P, Ca, Mg and micronutrients applied in this experiment were 

not limiting for tree growth (Gonçalves et al., 2007; Laclau et al., 2009). Herbicides were 

applied to avoid the presence of understory species. 

Since September 2010, throughfall was partially excluded in -W plots, using panels made of 

clear greenhouse plastic sheets mounted on wooden frames at heights ranging between 0.5 m 

and 1.6 m. Plastic sheets covered 37% of the area in the -W plots. A 50 cm deep trench was 

dug around the -W plots to limit the lateral development of Eucalyptus roots between + W and 

-W treatments. The dead leaves, branches and bark that fell on the plastic sheets were collected 

weekly and scattered under the gutters during the entire study. Water excluded from the gutters 

was collected weekly and samples were analyzed monthly to estimate the amounts of nutrients 

excluded during the study period. These amounts of dissolved nutrients in the water were 

replaced each year in each -W treatment (ammonium sulphate, KCl, NaCl, phosphorus ...) to 

distinguish the effect of water exclusion and nutrient deficiency. 

 

Figure III. 1: Throughfall exclusion experiment located in the southeastern region of Brazil, at 

the Itatinga Forest Science Experimental Station in São Paulo state. 

In +W and -W, the eucalypt stands were harvested six years after planting, in June 2016, and 

the plantation was coppice-managed thereafter. Several new shoots were regenerated from the 

stumps after the clear-cut and 1 or 2 shoots per stump were selected to maintain the same 
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stocking density and prevent the growth of additional new shoots. A third treatment served as 

a control, with undisturbed rainfall and no harvest (NH), to assess the clear-cutting effect. 

Two deep permanent pits were excavated in +W and -W to gain access to the complete soil 

profile from the top soil down to the water table. A third pit was excavated in the non-harvested 

treatment (NH) down to 3.5 m to determine the clear-cut effect Figure III. 2).  

 

Figure III. 2: Deep permanent pit down to a depth of 17 m in throughfall exclusion experiment 

at the Itatinga Forest Science Experimental Station in São Paulo state. 

Root dynamics were studied using minirhizotron over 1 year before clear-cutting, then over 2 

years in coppice, as well as in the non-harvested plot (NH) serving as a control, and fine roots 

(i.e. diameter < 2 mm) were sampled down to 17 m in +W, -W and NH. More complete 

descriptions of the methods used as well as the results obtained are presented in Chapter 5 « 

Consequences of clear-cutting and drought on fine root dynamics down to 17 m in coppice-

managed eucalypt plantations » 

CO2, CH4 and N2O surface effluxes at soil surface were measured over three years using the 

closed-chamber method in -W, +W and NH. CO2, CH4 and N2O concentrations in the soil were 
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measured from two permanent pits down to a depth of 15.5 m in -W and +W, as well as down 

to a depth of 4 m in NH. Measurements were carried out every 2 weeks over 3 months before 

clear-cutting, then over 19 months in coppice. More complete descriptions of the methods used 

as well as the results obtained are presented in Chapter 6 « Consequences of clear-cutting and 

drought on CO2, CH4 and N2O productions throughout deep soil profiles in coppice-managed 

eucalypt plantations » 

The chronology of the experiment is summarized in the following Figure III. 3. 
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Figure III. 3: Chronology of the experiment 
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III.3 Summary of the previous works in this field trial (supplementary information) 

Joint monitoring on this site of the main carbon fluxes (soil surface effluxes, aboveground and 

belowground biomass, litter fall, photosynthesis and leaf-level respiration, LAI), water (water 

balance in the soil, sap flow) and nutrients (accumulation in the trees and litter, dissolved fluxes 

in gravitational solutions) provided important advances in understanding the environmental 

control of biogeochemical cycles. 

This experiment was highly instrumented with soil moisture measurements (down to 17 m 

depth), groundwater level (which varies around 17 m depth), soil temperature, growth radial 

(dendrometric ribbons), circumference and height, leaf potential, stomatal conductance, 

photosynthesis, leaf area index, trunk respiration, concentrations of sugars and minerals in the 

phloem, mineral concentrations at different depths in the soil solutions, litterfall, soil 

respiration, carbon allocation, root distribution down to the root front, root surfaces and 

sapwood surfaces… 

Previous studies in this experimental set up studied the effect of K deficiency and/or Na 

deficiency and/or water deficit on cell and leaf expansion i.e. foliar concentration of nutrients, 

polyols and soluble sugars, leaf water parameters and leaf anatomy (Battie-Laclau et al., 2013)  

stomata structural and physiological adjustments (Battie‐Laclau et al., 2014b), gross primary 

production, light use efficiency for carbon assimilation and absorbed radiation as the main 

parameters accounting for the changes (Christina et al., 2015), photosynthetic physiology 

(Battie‐Laclau et al., 2014a), phloem transport of photosynthates (Epron et al., 2015), wood 

formation (Ployet et al., 2019),  water use efficiency (Battie-Laclau et al., 2016), tree water use 

and water seepage (Christina et al., 2018), canopy conductance, sapwood area: leaf area ratio 

(Huber value) and sap flow driving force (Asensio et al., 2019) and deep root functioning 

through rhizosphere versus bulk soil analysis (Pradier et al., 2017). The incorporation of these 

results in process-based models, as well as further studies dealing with long-term effect of water 

availability on soil properties might contribute to evaluate adaptive changes induced by global 

changes in tropical Eucalyptus plantations. 

K deficiency and water deficit affect traits involved in catching light resources, traits controlling 

CO2 assimilation, traits related to transport via xylem and phloem and soil water and nutrient 

resources (Table III. 2). Indeed, K fertilization through drastic modifications in leaves 

physiology greatly increased gross primary productivity and above ground biomass production. 

A modeling approach revealed that soil water uptake parameters and leaf photosynthetic 
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parameters were the main drivers of gross primary productivity and light-use efficiency for 

carbon assimilation. Photosynthesis, anatomical and biochemical leaf treats in E. grandis had a 

functional relationship between K and Na supply. Osmotic adjustment, stomatal closure, higher 

phloem sugar concentration, higher velocity of C transfer in phloem and a decrease in leaf area 

index were observed when trees were subjected to water restriction and K deficiency. K 

fertilization and water availability modified xylem metabolome and transcriptome and impacts 

greatly wood structure, and notably vessel properties. Water deficiency also increased the mean 

soil depth of water withdrawal, decreased the residual soil water content in deep soil layers and 

lead to a drop in the water table.  

Furthermore, reduced rainfall significantly increase exchangeable K and H3O
+

 within the 

rhizosphere and enhanced at great depth. A complementary study showed for the first-time 

ectomycorrhizal symbiosis in deep soil layers and the population of Pisolithus sp., the 

dominated genus, was strongly dependent on soil depth (Robin et al., 2019). Those results 

combined suggest a different root functioning in response to drought condition and especially 

in deep soil layers.  

However, the influence of nutrient and water availability on root traits and root dynamics at 

depth remains poorly known despite its role in: i) microclimate, ii) tree growth during drought 

periods, iii) the potential for carbon sequestration in the deep layers of tropical soils, iv) the 

recycling of nutrients. Improving the understanding of the environmental control of rooting 

strategies in trees is of interest beyond the scope of Eucalyptus plantations in Brazil. 

Furthermore, the huge soil volume explored by fine roots might lead to significant CO2, N2O 

and CH4 productions, and improving our understanding of the spatiotemporal dynamics of gas 

concentrations in deep soil layers is essential to quantify more accurately C source/sink fluxes 

in tropical soils. Comprehensive experimental studies are needed to improve the current 

biogeochemical models used to predict the effect of drought periods on greenhouse gas effluxes.  
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Table III. 2: Main results obtained in the experimental set up on the effects of drought, Na 

deficit and K deficit on soil parameters, tree biomass and anatomy, on the traits involved in the 

capture of light resources and/or controlling CO2 assimilation and traits controlling the transport 

of water into the plant and transpiration.  indicates a positive effect,  indicates a negative 

trend and   indicates predominantly no effect. 

 Na 

deficit 

K 

deficit 

Water 

deficit 
References 

Soil parameters 
    

Soil water content    Battie-Laclau et al. 2014; 

Christina et al. 2015; 

Christina et al. 2018 

Amount of water stored in ground    Christina et al. 2018 

Deep seepage    Christina et al. 2018 

H3O
+ rhizo/ H3O

+ bulk    Pradier 2016 

Kech rhizo / Kech bulk    Pradier 2016 

C rhizo/ C bulk    Pradier 2016 

H+ Al3+ rhizo    Pradier 2016 

Biomass and Anatomy 

Tree height    Christina et al. 2015; 

Epron et al. 2015 

Trunk circumference at breast height    Christina et al. 2015 

Aboveground biomass    Battie-Laclau et al. 2016; 

Battie-Laclau et al. 2014 

Stem wood biomass    Battie-Laclau et al. 2016 

Wood production    Battie-Laclau et al. 2016 

Wood density    Poyet 2017 

Leaf area    Battie-Laclau et al. 2013; 

Battie-Laclau et al. 2014; 

Epron et al. 2015 

Leaf thickness    Battie-Laclau et al. 2014 

Leaf biomass    Epron et al. 2015 

Chlorophyll content    Battie-Laclau et al. 2014 

Leaves palisade    Battie-Laclau et al. 2014 

Leaves spongy    Battie-Laclau et al. 2014 

Leaves intercellular space    Battie-Laclau et al. 2014 

Leaves paracytic stomata    Battie-Laclau et al. 2014 

Traits involved in the capture of light resources and/or controlling CO2 assimilation 

LAI: Leaf area index    Battie-Laclau et al. 2014 

Leaf water potential at predown    Battie-Laclau et al. 2014; 

Epron et al. 2015 

Leaf water potential at midday    Battie-Laclau et al. 2014; 

Epron et al. 2015 

Leaf gas exchange    Battie-Laclau et al. 2014 

Leaf net primary production    Battie-Laclau et al. 2016 

Aboveground net primary production    Battie-Laclau et al. 2016 

Stomatal conductance    Battie-Laclau et al. 2016 

Canopy conductance     

Crown CO2 uptake    Epron et al. 2015 
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 Na 

deficit 

K 

deficit 

Water 

deficit 
References 

Soil parameters     

Traits involved in the capture of light resources and/or controlling CO2 assimilation 

Maximum rate of photosynthetic electron 

transport at 25°C 

   Christina et al. 2015 

Maximum rate of rubisco carboxylase 

activity at 25°C 

   Christina et al. 2015 

GPP: Gross primary production    Christina et al. 2015 

LUE: Light use efficiency    Christina et al. 2015 

aPar: absorbed photosynthetically active 

radiation 

   Christina et al. 2015 

WUE: Water use efficiency    Battie-Laclau et al. 2016 

Traits controlling the transport of water into the plant and transpiration 

Sapwood cross section area    Epron et al. 2015 

Xylem sap flux    Epron et al. 2015 

Cambial activity    Poyet 2017 

Canopy transpiration    Christina et al. 2018 

Soil water stress index    Christina et al. 2018 

Vessel diameter    Poyet 2017 

Hydraulic conductivity    Poyet 2017 

Traits involved in the capture of water and nutrient resources 

SRL   ? This thesis 

SRA   ? This thesis 

Root diameter    ? This thesis 

Root biomass    ? This thesis 

Root necromass   ? This thesis 

Greenhouse gases (CO2, N2O and CH4) 

Effluxes at soil surface   ? This thesis 

Concentration in the soil   ? This thesis 

Production within the soil profile   ? This thesis 
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CHAPTER 4:  DEEP FINE ROOT DYNAMICS IN FOREST ECOSYSTEMS: 

WHY DIGGING DEEPER? 

Abstract   

Deep fine roots have been recently defined as fine roots encountered below a depth of 1 m and 

represent a large part of tree root system. While knowledge on deep root dynamics is constantly 

expending, our understanding of the phenology, morphology, anatomy and role of deep fine 

roots is still largely incomplete. In this review, the current knowledge about fine root 

production, mortality and longevity in deep soil layers, and the magnitude of the impacts and 

significance of deep fine root on carbon and nutrient cycling were discussed and highlighted. 

Deep fine roots are highly plastic in response to environmental conditions and soil resources. 

They present contrasting functional traits and functional specializations compared to shallow 

roots and are mainly oriented toward water acquisition and transport. Deep roots have a large 

impact on plant development and biogeochemical cycles through water and nutrient uptake, 

carbon allocation and sequestration in the soil. Therefore, modeling processes need to consider 

deep root functioning and dynamics accurately to better estimate net ecosystem productivity 

and nutrients, carbon and water cycles.  

 

Key words: fine root growth, root traits, root longevity, root production, root mortality, carbon 

sequestration, tree plantations 
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IV.1 Introduction 

Roots are plant's underground organs responsible for anchorage in the soil and absorption of 

water and nutrients needed for plant development. The anchorage function is provided by the 

largest roots and mainly involves physical interactions between roots and the soil. The 

absorptive function is more complex as it involves biogeochemical, biochemical and biological 

interactions between fine roots, soil, but also soil microorganism. Roots develop often 

symbiosis with soil bacteria and fungi. Fine roots have the ability to adapt to different 

environments to facilitate the development of the plant. Fine roots link plant metabolism to soil 

nutrient cycles, they are ephemeral and frequently replaced. They can modify the physical, 

chemical and biotic soil properties by their activities which can have repercussions not only at 

the plant scale but also at the ecosystem level (McCormack et al., 2015). Indeed, fine roots play 

a major role in the global carbon (C) cycle, representing significant C input into the soil by the 

incorporation of exudates and root necromass, and generating a return of C to the atmosphere 

through respiration and decomposition processes (Balesdent and Balabane, 1996; Strand et al., 

2008). Root systems are known to be very heterogeneous and plastic, both architecturally and 

functionally, depending on plant age and its phenology, soil conditions and climate (Hodge et 

al., 2009). Roots have the capacity to expand over large soil volume, particularly with shrubs 

and trees, and can be found at very great depths in xeric and drought ecosystems (Canadell et 

al., 1996; Schenk and Jackson, 2002).  

Fine root dynamics are defined as fine root production and mortality (Hendrick and Pregitzer, 

1993; McCormack and Guo, 2014), finer root turnover and survivorship (Anderson et al., 

2003), senescence (Huck et al., 1987) and fine root elongation rate (Germon et al., 2016; 

Lambais et al., 2017). Fine root dynamics are driven by both endogenous and exogenous factors 

like soil temperature and water content (Coll et al., 2012), hormones (McAdam et al., 2016), 

photosynthate and nutrient availability (Tierney and Fahey, 2002; Sloan et al., 2016), which 

may be considerably heterogeneous along the soil profile (Figure IV. 1). However, deep fine 

root dynamics, functional significance and contribution to the water cycles and 

biogeochemistry processes at plant and ecosystem scale, are still poorly known. The objective 

of this study is to provide an up-to-date literature review on deep fine roots through their root 

traits, morphology and phenology, and through the biotic and abiotic interactions with the soil 

environment. Previous studies on deep fine root production, mortality and longevity, 

belowground C sequestration, symbiosis with mycorrhizae, and nutrient uptake will be 

reviewed more specifically.  
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Figure IV. 1: Conceptual model illustrating the relative magnitude of different controls on fine-

root dynamics (according to Coleman et al. 2018). The width of the pyramid and shading 

reflects the relative magnitude of each factor. As the width narrows and shading decreases, the 

magnitude of the response decreases. 

IV.2 Defining deep fine roots 

The importance of deep root system has been highlighted in several reviews (Canadell et al., 

1996; Maeght et al., 2013; Pierret et al., 2016) , but their dynamics and specificities are still 

poorly known. Numerous rooting depth characteristics have been examined since those studies, 

yet studies often claim that physiological and morphological characteristics of deep root 

systems are poorly understood. Recently defined by Maeght et al. (2013), deep roots are roots 

growing below a depth of 1 m. More and more studies highlight that rooting depth has been 

underestimated, particularly for shrubs and trees (Canadell et al., 1996). Even if a small number 

of roots are found at great depth, deep roots likely have a key role in many processes of plant 

physiology, community ecology and geochemical cycles. Studies have demonstrated that deep 

roots are found in many biomes, where drought conditions are commonly exhibited (Nepstad 

et al., 1994; Canadell et al., 1996; Jackson et al., 2000; Schenk and Jackson, 2002), but 

maximum rooting depth reported in the scientific literature is underestimated because few 

studies have focused on deeper horizons (Schenk and Jackson, 2002) and have artificially 

truncated the root distribution. Stone and Kalisz (1991) reported 37 examples of tree root 

colonization between 10 and 60 m below the soil surface, indicating that the maximum rooting 

depth varies considerably with climatic and soil conditions and between species. Canadell et al. 

(1996) reviewed that roots under different vegetation systems extend in deep horizons down to 
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9.5±2.4 m in deserts, 7.3±2.8 m in tropical evergreen forest and 15.0±5.4 m in tropical grassland 

and savannah, with maximum rooting depths of 68 m for Eucalyptus trees.  

Once that considerable rooting depth has been highlighted, deep root distribution and dynamics 

need to be better described as it is still poorly studied compared to shallow root distribution. 

Indeed, deep root studies are scarce despite the recent technical advances and innovations 

because it is still difficult to access, time-consuming, expensive and requires a combination of 

several methods to obtain the most reliable results (Maeght et al., 2013). Methods for 

monitoring deep roots are grouped into direct and indirect techniques depending on the 

equipment needed, research aim and their respective advantages and drawbacks (Vogt et al., 

1998; Hendricks et al., 2006). N budget, ecosystem carbon balance, starch and carbon fluxes 

approaches have been used to study and quantify indirectly deep root functioning at 

considerable soil depths and are described in detail by Vogt et al. (1998). As for the direct 

methods, excavation, trenches, sequential coring, ingrowth cores, rhizotron, and minirhizotrons 

have been used to monitor root dynamics in situ and have been described in detail by Maeght 

et al. (2013). Both indirect and direct approaches present potential biases leading to 

overestimation or underestimation of root growth and decomposition. Despite all these 

methods, there is no scientific consensus on which the most effective and reliable method is 

determining the dynamics of fine roots. Understanding spatial and temporal fine root 

distribution and functioning in deep soil layers is crucial for a better understanding of biosphere-

atmosphere interactions (Zeng et al., 1998; Kleidon and Heimann, 2000), and hence for 

terrestrial biosphere models. Deep roots improve tree tolerance to drought (McDowell et al., 

2008; Nardini et al., 2016) and store C in deep soil layers (Laclau et al., 2013). Their importance 

in the C cycle and water flow has been demonstrated through modeling simulations (Saleska et 

al., 2007; Christoffersen et al., 2014). Therefore, to understand and predict in the proper way 

water cycles, C sequestration, and primary production and many others ecosystem services we 

should consider deep soil layers as dynamics and functional systems where fine roots may be 

different along the soil profile.  

IV.3 Deep fine root morphology, architecture and anatomy 

Root morphology and architecture are important in determining a plant's availability to survive 

in stressful soil conditions and can influence considerably tree growth and ecosystem processes. 

Root system morphology and architecture vary largely between species but also within species 

(Cannon, 1949; Nibau et al., 2008). Functional traits also vary with environmental conditions 
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and resource distribution (Ostonen et al., 2007). Root diameter and root length are two of the 

main criteria taken into account to evaluate root function and behavior. Fine roots have been 

classified into distinct classes for different functions and metabolic activity: i) root for 

acquisition and uptake of soil resources, therefore classified as absorptive roots are extremely 

fine and are the most distal roots; ii) root for transport and storage of nutrients are larger roots 

higher up in the branching order, which are the main structural part of the fine root system. The 

high variability of the environmental conditions such as soil moisture and temperature or 

nutrient availability along the soil depth result in contrasting fine root functional traits among 

depths. 

Deep fine root exploration also leads to an important metabolic cost for plants (Iversen, 2010) 

which affect changes in fine root traits (Prieto et al., 2015). The specific root length (SRL) and 

specific root area (SRA) are the two main root traits affected by depth (Maurice et al., 2010; 

Prieto et al., 2015; Pinheiro et al., 2016). They represent together the volume of the root in 

contact with the soil, and indirectly describe the capacity to take up limited soil resources by 

the plant (Maurice et al., 2010). There are few studies on the variation of specific root length 

and specific root area according to soil depth (Makita et al., 2011; Prieto et al., 2015; Pinheiro 

et al., 2016), but the trends are still not clear. Indeed, Pinheiro et al. (2016) found a slight 

increase in SRL and SRA with soil depth down to 13.5 m for 4 different genotypes of 

Eucalyptus in Brazil. Maurice et al. (2010) also found that SRL increased down to a depth of 3 

m in Eucalyptus plantations of different ages. Adriano et al. (2017) found no significant changes 

in SRL with soil depth down to 8 m in Citrus sinensis plantations, but they observed a tendency 

toward an increase in mean fine root diameters. Gwenzi et al. (2011) found that roots tended to 

be thicker down to a depth of 1.4 m in Acacia rostellifera and Melaleuca nesophila plantations 

in Western Australia. Prieto et al. (2015) measured root functional traits in 20 plant 

communities in 3 climatic zones: tropical climate, montane climate, and sub-humid 

Mediterranean climate. They found that fine roots were thicker in deep soil layer down to a 

depth of 1.6 m compared to the shallow layers. On the contrary, Sochacki et al. (2017) observed 

that root diameter decreased systematically with depth down to 6 m in Eucalyptus globulus 

plantations in southwest Australia, and Bakker et al. (2009) found that SRL decreased with 

depth down to 1.2 m in Pinus pinaster plantations in the southwest of France. Fast-growing 

species require a rapid and efficient acquisition of above and belowground resources; therefore, 

they generally have a higher specific root area and specific root length compared to slow 

growing species particularly in deep soil layers (Ryser, 2006; Reich, 2014; Jo et al., 2015). 
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Roots of high SRL and thinner diameter are often associated with a better exploitation capacity 

(Hodge, 2004), and they increase the amount of root surface area in contact with soil water. 

Establishing a deep root system with a high surface area allows the extraction of water from a 

larger soil volume (Jackson et al., 2000). Deep roots are mainly oriented toward water 

acquisition and transport. Indeed, McElrone et al. (2004) found that deep roots of Juniperus 

ashei, Bumelia lanuginosa, Quercus fusiformis and Quercus sinuate had higher vessel diameter 

and larger tracheid than shallow roots in deep soil layers down to 18-20 m (Figure IV. 2). They 

also found that deep roots had a greater hydraulic conductivity. In line with those results, Pate 

et al. (1995) reported that roots at a depth of 2 m had larger xylem conduits, higher length, 

specific area, and hydraulic conductivities, up to 15 times higher than roots in shallow layers 

for Australian species. Physiological and anatomical adjustment of fine roots in deep soil seems 

to be developed by plants to maximize hydraulic efficiency. Despite those results, studies on 

fine root morphology and anatomy at great depth are still scarce.   

 

Figure IV. 2: Scanning electron micrographs of stems (top row), shallow roots (middle row) 

and deep roots (bottom row, 18-20 m) for Quercus fusiformis, Juniperus ashei Buchh., Quercus 

sinuata (Torr.) C.H. Mull and Bumelia lanuginosa tree species from the Edward’s Plateau 

region of central Texas (According to McElrone et al. 2004). 
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IV.4 Deep fine roots phenology 

Fine roots in deep soil layers present contrasting phenology compared to roots in shallow soil 

layers. Indeed, several studies have shown an asynchrony between shallow and deep root 

emergence. Maeght et al. (2015) observed that shallow fine root emergence of Hevea 

brasiliensis was synchronized with rainfall events and ceased during the dry season. On the 

contrary deep fine root emergence occurred at the end of the wet season and continued during 

the dry season below a depth of 2.5 m. Germon et al. (2016) also observed an asynchrony 

between shallow and deep roots in an agroforestry system in the south of France. They found 

that summer season was dominated by shallow root growth and winter season by deep root 

growth (> 2.5m). Similar results were observed in Eucalyptus plantations in Brazil, where root 

growth peaked below a depth of 3 m at the end of the dry season (Lambais et al., 2017; Germon 

et al., 2019). Germon et al. (2019) even found a negative correlation between the amount of 

extractable water in the topsoil and the flushes of growth in deep soil layers. Deep root growth 

seems to be related to overall tree water demand and controlled by the need for trees to use 

increasingly deeper water resources when water in the topsoil becomes scarce. Studies have 

shown that fine root elongation rates in deep soil are more intense than in the topsoil, reaching 

several centimeters per day (Laclau et al., 2013; Germon et al., 2016; Lambais et al., 2017; 

Germon et al., 2019). A near-symmetrical above and below ground growth rates were observed 

by Christina et al. (2011) in Eucalyptus plantations reaching 10.4 and 19.2 m in height and a 

maximum rooting depth of 9.2 and 15.8 m at ages of 1.5 and 3.5 years, respectively. Those 

results are in line with the growth rates of Eucalyptus observed by Lambais et al. (2017) in 

nutrient-poor soil of Brazil with a mean fine root elongation rate increasing with soil depth up 

to 3.6 cm day-1 below a depth of 3 m. Increasing root growth rate is often seen as another feature 

of drought adaptation (Annerose and Cornaire, 1994). This high root elongation rate in deep 

soil layers could be a response to improve water and nutrients uptake, which confirm the 

positive feedback from developing roots to develop shoot (Friend et al., 1994). Fast root growth 

requires fast and efficient nutrient and water acquisition and thus a fast exploration of the deep 

soil layer. Environmental conditions and plant growth regulators may control those mechanisms 

(López-Bucio et al., 2003). Deep soil layers are assumed to have higher soil water content and 

low-temperature variations compared to shallow layers (Du and Fang, 2014; Radville et al., 

2016). Thus, climatic factors being more buffered in the deep soil layer, fluctuating less during 

day and season, are not affecting equally root phenology along with the soil profile. Deep fine 

root phenology could be also controlled by other factors. Indeed, deep roots are more distant 
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from the shoot and the time to receive photosynthates would take longer to occur. A slow 

process phloem transport could also explain the delay between shallow and deep root growth 

currently observed. Yet there are still major uncertainties about the mechanisms controlling fine 

root phenology in deep soil layers.  

IV.5 Mycorrhizal associations 

Root systems are also characterized by their likelihood of association with mycorrhizal fungi. 

Interactions between plant root system and mycorrhizal fungi have many beneficial effects. It 

can provide a source of C for mycorrhizal respiration in exchange for increased exploitation 

and transfer of water and nutrient from soil to the plant. Soil depth influence the diversity of 

microorganism and community composition as nutrient supply and oxygen is less favorable for 

microbial decomposition (Eilers et al., 2012; Santos et al., 2016). However, an abundant and 

diverse microbial community and high level of bacterial biomass have been found in very deep 

soil layers (Dodds et al., 1996; Gocke et al., 2017; Zheng et al., 2017). Stone et al. (2014) 

studied microbial community characteristics down to a depth of 1.4 m in a tropical soil of 

northeastern Puerto Rico. They unexpectedly found that extracellular microbial activity 

decreased in deep soil layers but C acquiring enzymes activities increased with depth. Recently, 

Robin et al. (2019) observed ectomycorrhizal roots down to a depth of 4 meters in a deeply 

weathered soil under Eucalyptus trees in Brazil. Deep root symbiosis with microorganism could 

potentially impact nutrient acquisition in deep soil layers and may enhance the exploitation of 

nutrient stock throughout the entire soil profile. Indeed, some studies highlighted that deep root 

and shallow roots had a different form of mycorrhizal symbioses (Rosling et al., 2003; 

Clemmensen et al., 2013). However, as for deep root functioning, studies on mycorrhizal 

symbiosis in deep soil are still very limited partly due to the difficulty to collect soil at such 

depths. Studying biological activities in deep soil layers is crucial for the scientific community 

and become increasingly important to address in future studies, yet it remains a methodological 

and technical challenge (Gocke et al., 2017).  

IV.6 Influence of soil resources and environmental parameters 

Soil resources and environment parameters are constantly changing. Deep roots are highly 

plastic in response to heterogeneous resource distributions (Hodge et al., 2009). They have the 

ability to adapt to changing resource availability and in particular to water availability, nutrients 

availability, soil texture, and atmospheric constituents. The variability of environmental factors 
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affecting root growth are buffered in deep soil condition compared to the considerable 

variability observed at the soil surface (Voroney, 2007). Differences in root structure, 

architecture, and production in deep soil layers might be attributed to differences in soil 

resources and physical properties.  

Soil water content is maybe the main driver for root production in the deep soil layers. Adriano 

et al. (2017) observed that fine root mass of Citrus sinensis (L.) Osbeck increased in drought 

conditions, particularly in deep soil layers. Schenk and Jackson (2002) reported that rooting 

depths were correlated with the length of the dry season and annual precipitation in tropical 

climates. The longer dry season and lower annual precipitation, the deeper was the root system. 

Wang et al. (2015) also found a strong correlation between root mass and soil water content 

down to a depth of 21 m in planted grassland and shrubland in China. Drought can increase the 

proportion of fine roots in deep soil layers and/or the specific root area (Markesteijn and 

Poorter, 2009; Ma et al., 2018; Zhou et al., 2018). In a survey of 62 tropical tree species, 

Markesteijn and Poorter (2009) showed that trees increase the belowground biomass and the 

proportion of deep roots in response to dry conditions. Germon et al. (2019) showed an increase 

in SRL and SRA under drought conditions for Eucalyptus trees in Brazil. Root growth peaks 

have been shown in deep soil layers during dry periods for eucalypt and rubber trees in tropical 

soils (Maeght et al., 2015; Lambais et al., 2017). Plant species use a large range of rooting 

patterns to cope with periodic drought, from "drought tolerant strategies" with fine roots 

surviving in periodically dry soil to "drought avoiding strategies" shedding fine roots from dry 

soil horizons while rapidly developing roots in moister areas (Brunner et al., 2015; Vries et al., 

2016; Bristiel et al., 2018). 

Root dynamics are also strongly correlated to the depth of the water table. Li et al. (2015) found 

a higher root growth rate when the water table was artificially deeper for Alhagi sparsifolia 

Shap. (Leguminosae). They found a root front growth of 0.66 cm d-1 when the water table was 

at a depth of 0.8 m and 1.5 cm d-1 when the water table was at a depth of 2.2 m. Canham et al. 

(2012) found a seasonal distribution of fine root biomass in deep soil layers following the 

fluctuations of the depth of the water table. A deeper water table level might induce a higher 

root elongation downwards (Stave et al., 2005; Canham, 2011). 

Soil texture also influences morphological acclimation of a deep root system. Root distribution 

has been showed to be shallower in sandy soils than in soil with a finer texture as shown in a 

tropical evergreen forest by Schenk and Jackson (2002). Xu and Li (2009) observed that root 
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of Haloxyolon ammodendron C.A. Mey penetrated down to a depth of 10 m in a sandy soil, 

while it only reached 3 m in a heavy soil.  Roots had a higher root surface area in the sandy soil 

compared to roots growing in the heavy soil. Freycon et al. (2015) also compared root 

distribution down to 6 m for Entandrophragma cylindricum Sprague (Meliaceae) grown in two 

different soil types: Arenosols and Ferralsols in an African semi-deciduous rainforest. They 

found that fine root intersects on vertical pit walls were lower in coarse-textured soils (e.g. 

Arenosols) than in fine-textured soils (e.g. Ferralsols). However, Canadell et al. (1996) cited 

some examples of roots reaching great depths in rocky soils.  

In most plant-soil systems, the amount of available nutrients is a growth-limiting factor. Indeed, 

McCulley et al. (2004) studied fine roots and nutrient distribution down to a depth of 10 m in 

five semi-arid and arid sites in the southwestern USA. They found that roots responded through 

morphological and physiological adjustment in response to nutrient availability within the soil 

profile. Bordron et al. (2019) found that fertilization increased the capacity of fine roots of 

Eucalyptus grandis to take up nutrients down to a depth of 3.2 m. They also found that adding 

nutrients increased root mass density, specific root length and specific root area along with the 

soil profile down to 3 m. On the contrary, Jourdan et al. (2008) showed that an increase in N 

content did not influence fine root biomass down to 3.0 m. Root growth and functioning are 

inhibited by high pH values due to nutrient deficiencies and specific ion toxicities (Hinsinger, 

2001; Hinsinger et al., 2003; Jacobs and Timmer, 2005). The response of fine root production 

and mortality on nutrient availability in deep soil layers is not completely understood and 

further studies are needed.   

Many studies have focused on the impact of elevated CO2 concentrations in the atmosphere on 

plant growth. Fine root responses in changing CO2 conditions are still poorly known but some 

trends have emerged. Iversen (2010) reviewed that rising atmospheric CO2 concentration tends 

to deeper rooting distributions of forested ecosystems. However, the set of studies used to focus 

on the upper soil profile down to usually a depth of 1 m. To our knowledge, only one study 

reached the threshold of 1 m depth concerning the influence of elevated atmospheric CO2 on 

root properties. Indeed, Duursma et al. (2011) found that root water uptake of Eucalyptus 

saligna plantation in Australia was higher at depth > 1 m when trees are subjected to higher 

atmospheric CO2 concentrations. Studies on the influence of elevated CO2 on root biomass 

production and distribution need to be carried in much greater detail, and particularly in deep 

soil layers.  
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IV.7 Deep fine root biomass and carbon sequestration 

It is essential to assess more precisely the capacity of ecosystems to store carbon to predict their 

potential role on the mitigation of the future economic and ecological challenges linked to 

climate changes. More and more research effort focused on C accounting across ecosystems. 

Fine roots play a major role in the global carbon cycle. They represent a significant C input to 

the soil by the incorporation of exudates and root necromass and generate a return of C to the 

atmosphere through respiration and decomposition processes (Balesdent and Balabane, 1996; 

Strand et al., 2008). Estimating fine root production, biomass and turnover throughout the entire 

soil profile is therefore compulsory in this context.  

Even if root density decrease with depth, some studies evidenced that total root biomass below 

the threshold of 1 m depth can account for more than currently admitted. Indeed, Maeght et al. 

(2015) found that more than 50% of the overall fine root biomass was below 1 m depth in a 

rubber plantation in Thailand. Fine root biomass between 1.0 and 4.0 m was 5.8 t ha-1 and was 

only 4.8 t ha-1 in the soil layer 0-1 m. In line with those results, Pinheiro et al. (2016) found that 

fine root length below 0.5 m represented 61-77% of the total fine root length down to the root 

front in Eucalyptus plantations. In an agroforestry system in the south of France, Cardinael et 

al. (2015) found that 35% of the total fine root intersection densities of walnut trees were below 

a depth of 2 m. In the same site, using the minirhizotron technique, Germon et al. (2016) 

measured that 25% of total fine root production was observed below a depth of 4 m. Falkiner 

et al. (2006) observed that Eucalyptus grandis root proliferation resulted in equal root length 

densities between 0-0.5 m and 2.4-2.8 m soil layers in another agroforestry system in south-

eastern Australia. Germon et al. (2018) observed fine root biomass represented 31% of total 

biomass in Eucalyptus grandis monospecific stands, 52% in Acacia mangium monospecific 

stands and 37% in a mixture stands with 50% of both species in the 0-1 m soil layers. 

Furthermore, the proportion of roots at great depth increase with stand age: Ma et al. (2013) 

found that fine roots below 1 m represented 10.54 %, 29.62% and 42.42% of the total roots in 

2 years, 4 years and 12 years of Ziziphus jujube Mill. CV. Lizao plantation in China, and Laclau 

et al. (2013) found that fine roots below a depth of 4 m represented 5%, 10% and 15% of total 

fine roots in year 1, 3.5 and 6 after planting of Eucalyptus plantation in Brazil. Li et al. (2019) 

observed that rooting depth increased with increasing stand age, reaching 23.2 m in a 22-year-

old apple orchard stand in a sub-humid region of China, and roots below a depth of 1 m 

accounted for 49% of the total root biomass. Therefore, deep roots represent a high proportion 
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of the total root system and might contribute to sequestrating large amounts of C in soil 

(Matamala et al., 2003; Rasse et al., 2005) especially in deep soil layers (Kell, 2012).  

Several studies have shown that root lifespan generally increases with soil depth (Hendrick and 

Pregitzer, 1996; Baddeley and Watson, 2005). Wells et al. (2002) found that root longevity of 

Prunus persica L. significantly increased with soil depth down to 1.6 m. Germon et al. (2016) 

also found a higher proportion of walnut root mortality in the topsoil that in the deep soil layers 

with a median life span of 167 days within the first soil meter and 208 days at 2.5-4.7 m depth 

in an agroforestry system in the south of France. But on the contrary, Maeght et al. (2015) found 

that root life span decreased with soil depth down to a depth of 4.5 m in a rubber tree plantation 

in Thailand. Maeght et al. (2015) found that roots between the depth of 1 and 2.5 m had a 

turnover of about 180-250 days and roots below 3 m of soil depth had a turnover of about 120 

days. Lambais et al. (2017) found no significant differences in root lifespan of Eucalyptus trees 

between the topsoil and a depth of 6 m in Brazil, but root mortality represented almost 20% in 

the topsoil and only 3.4 % between 5 and 6 m depth. It is known that environmental parameters 

(e.g., temperature, water content, N availability, CO2 and probably O2 partial pressure) 

influence fine root turnover to variable degrees (Vogt et al. 1996), which could explain the 

opposite trends observed by those studies. Fine root decomposition rate affects the ability of 

ecosystems to store organic C and act as a sink for CO2. The capacity of a different ecosystem 

to sequestrate carbon is related to the depth where roots are being decomposed. When roots are 

decomposed, parts of the former tissues are incorporated into the soil organic matter (Strand et 

al., 2008). De Camargo et al. (1999) found that fine roots were being decomposed at least down 

to a depth of 5 m in eastern Amazon. Nepstad et al. (1994) estimated using isotopic tracers that 

C stocks below a depth of 1 m exceed organic soil C in the topsoil layer down to 1 m and the 

above-ground organic C in an Amazonian tropical forest. Indeed, the deep root system of this 

Amazonian forest input a large amount of organic carbon into the soil by root exudations, 

mycorrhizal associations and dead root tissues (Nepstad et al., 1994). Moreover, the microbial 

biomass is lower in deep soil layers than in the topsoil, which in combination with oxygen 

limitations could enhance organic C sequestration as a result of low mineralization rates (Taylor 

et al., 2002; Rumpel and Kögel-Knabner, 2011). Organic C derived from roots is generally 

more sequestered in the soil than organic C coming from the aboveground litter. The latter is 

more affected by physicochemical processes and has a different structural composition (Rasse 

et al., 2005; Schmidt et al., 2011; Menichetti et al., 2015). It is therefore essential to estimate 

fine root production, biomass and turnover, and associated microbial communities throughout 
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the entire soil profile according to its environment to estimate adequately the overall C 

sequestration. 

IV.8 Deep fine root functioning and nutrient mobilization 

In addition to their importance for water uptake, deep fine roots may be essential to supply 

trees’ nutrient requirements. Yet deep root functioning may vary over soil depth and the 

presence of roots in a given soil layer may not always correspond to root activity (Phillips et 

al., 2016). Indeed, Göransson et al. (2006) showed that equal root abundance does not mean 

equal uptake of nutrients in Quercus robur L. plantations and that there is a contrasting potential 

uptake between deep and shallow layers. The depth of nutrient uptake performed by tree roots 

is commonly estimated using tracers. Bordron et al. (2019) showed a functional specialization 

of Eucalyptus fine roots to take up cations varying over depth from 15NO3
−, Rb+ (K+ analog) 

and Sr2+ (Ca2+ analog) tracers injected at depths of 10, 50, 150 and 300 cm in a sandy Ferralsol 

soil in Brazil. They demonstrated that potential uptake of fine roots of 2-year-old Eucalyptus 

trees was significantly higher at a depth of 3 m than in the topsoil for Rb+ and Sr2+. Da Silva et 

al. (2011) also found an increase of the uptake rates at depth for K+ and Ca2+ analogs compared 

to the topsoil in a 6-year-old Eucalyptus plantation, and on the contrary, they found that NO3
- 

uptake was higher in the topsoil than at 3 m. Therefore, trees show great flexibility in root 

development and on their capability to adjust resource uptake in layers where the resources are 

available (Jackson et al., 1990; Hutchings and de Kroon, 1994; Robinson, 1996). The functional 

specialization of deep roots is important to reduced nutrient losses through deep drainage 

(Laclau et al., 2010). The previous estimations of nutrient leaching may therefore be over-

estimated, as they were not considering nutrient uptake by deep roots when measuring only soil 

water concentration and fluxes at depth. 

Deep roots strongly influence the water cycles and are essential to sustain high tree transpiration 

in the dry season (Kleidon and Heimann, 2000; Saleska et al., 2007). Soil water content 

monitoring and the use of hydrogen and oxygen isotopes allow to estimate at which depth root 

water uptake is performed (Guderle and Hildebrandt, 2015; Beyer et al., 2016; Koeniger et al., 

2016; Trogisch et al., 2016; Beyer et al., 2018). Stahl et al. (2013) showed that 46.1% of the 

trees were extracting water at or below a depth of 1.2 m in a tropical rainforest. Trees developed 

efficient strategies for water resource acquisition in deep soil layers using deep roots, which 

may also help sustain shallow root functioning during drought through hydraulic redistribution 

(Burgess et al., 1998; Domec et al., 2004; Bleby et al., 2010). Burgess et al. (2001) have 
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demonstrated that Eucalyptus species have the capacity to redistribute water from wetter deep 

layers into shallow soil layers through roots. Furthermore, a modeling approach showed that 

the occurrence of rainfall events, changing from a week to another, had a strong impact on 

which depth water uptake occurs (Christina et al., 2017). Recently, Li et al. (2019) showed that 

the extraction of deep soil water by the root system of apple orchard stands was mainly 

occurring at depths below 12 m in a sub-humid region of China. They also found that roots in 

the 1-12 m layer remained alive mainly to transport the water absorbed below 12 m as they 

might not extract additional water (Li et al., 2019). Therefore, modeling processes need to 

consider deep root functioning to estimate net ecosystem productivity as a deep-water loss 

might contribute equivalently to the evaporation at the global scale than sallow soil water loss.   

IV.9 Deep fine root and modeling approaches 

Modeling architecture development and dynamics of the deep fine roots is hindered by the 

limited data available in the literature, yet indispensable to parametrize and evaluate the models. 

Root number, root diameter, root volume, and root radial distances are the main parameters of 

root system biomechanics (Nicoll and Ray, 1996; Danquechin Dorval et al., 2016), varying 

considerably with soil layers. Soil depth strongly influences the root system architecture due to 

the heterogeneity of its environment. Root architectural models could simulate accurately 

spatial and temporal dynamics through a simulation of the root system in 3D. Integrating a 

vertically discretized soil into a model is particularly important as shallow and deep roots 

present different spatial and temporal dynamics. Model parametrization needs to consider 

shallow and deeper-rooted systems behaving differently according to the environmental factors 

and soil conditions. Indeed, these models are parametrized according to the definition of root 

types (e.g. RootTyp from Pagès et al. (2004) or DigR from Barczi et al. (2018)) or by branching 

order (e.g. OpenSimRoot from Postma et al. (2017)) or through parametric L-system modeling 

(Leitner et al., 2010) which also might vary with soil layer. Such a model without discretized 

processes by soil layers is not capable to simulate accurately the impact of environmental 

conditions and soil resources on root development. Models devoted to simulating water and 

nutrient uptake dynamics need to integrate the functional specialization of deep roots and root 

growth plasticity in response to environmental conditions, in particular in deep soil layers. 

However, most root functioning rules are still not completely understood, especially for the 

ones occurring at great depth due to the extreme difficulty of measuring those processes in situ. 

Therefore, model calibration must cope with this knowledge and experimental limits. 

Architectural models can also be coupled with models simulating nutrient uptake (Mayer, 1999; 
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Bonneu et al., 2012; Mayer et al., 2012), water transport (Doussan et al., 1998) or rhizospheric 

processes (Kim and Silk, 1999) or even reactive transport model (Mayer, 1999; Mayer et al., 

2012; Gérard et al., 2017). Nevertheless, it can be convenient to simulate accurately the overall 

architecture and any specialized functions of deep roots compared to shallow roots.  

Furthermore, deep roots have a strong influence on deep carbon stocks, which represent a 

significant amount of carbon (Jobbágy and Jackson, 2004) and can be partially renewed at the 

10-year scale (Baisden and Parfitt, 2007; Koarashi et al., 2012). Models predicting soil organic 

carbon stocks through a single soil layer modeling approach (Hansen et al., 1991; Sallih and 

Pansu, 1993; Petersen et al., 2005; Pansu et al., 2010; Oelbermann and Voroney, 2011) are 

therefore not considering deep soil and their roots that play an active role in carbon cycling. In 

recent years, an awareness of the importance of deep carbon stocks by the modeling community 

has led to the development of different discretized models depending on the soil depth 

(Braakhekke et al., 2011; Braakhekke et al., 2013; Guenet et al., 2013; Taghizadeh-Toosi et 

al., 2014). However, modeling accurately deep root dynamics and their active role for carbon 

allocation, nutrient and water uptake according to the plant development over time remains a 

major challenge for the next decades. 

Conclusion 

Deep root systems are complex components of ecosystems. Deep roots display different 

functional specialization, anatomy and morphology and are mainly oriented toward water 

acquisition and transport (Table IV. 1). Climatic factors affect differently root phenology along 

with the soil profile as there are more buffered in deep soil layers. Research devoted to deep 

fine root dynamics linking anatomical, architectural and functional characteristics along very 

deep soil profiles to site characteristics, species and soil conditions should be carried out to gain 

insight into their impact on C, water and nutrient cycles. Deep fine root display plasticity by 

responding to changing soil conditions and have an important role for ecosystem functioning. 

It is then crucial to focus the research efforts on the understanding of deep root dynamics and 

associated functions which could have a significant influence on climate change mitigation.  

Table IV. 1: Root traits at depth compared to the top soil.  indicates a predominantly positive 

trend,  indicates a predominantly negative trend and indicates predominantly no effect. 

Categories of root traits and individual root traits are adapted from Brunner et al. 2015, Brunner 

et al. 2009, McCormack et al. 2012, Prieto et al. 2015.  
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Root traits 

categories 
Root trait At depth References 

Growth 

Root biomass  

Markesteijn and Poorter 2009; Jackson 

et al. 1996; Gwenzi et al. 2011; Ma et al. 

2013 

Root density  
Freycon et al. 2015; Gwenzi et al. 2011 ; 

Ma et al. 2013 

Lifespan  

Germon et al. 2016; Hendrick and 

Pregitzer, 1993; Eissenstat and Yanai, 

1997 

Mortality  Lambais et al. 2017; Germon et al. 2016 

Root elongation rates  
Germon et al. 2019; Lambais et al. 

2017 ; Germon et al. 2015 

Architectural Branching  David et al. 2013 

 Root area index  Pinheiro et al. 2016; Germon et al. 2017 

 Root tissue density  Bordron et al. 2019 

 
Specific root length  

Maurice et al. 2010; Pinheiro et al. 

2016 ; Prieto et al. 2015 

 Specific root area  Pinheiro et al. 2016 

 Diameter  Adriano et al. 2016; Prieto et al. 2015 

Anatomical Conduits  McElrone et al. 2004 

 Mean vessel 

diameter 
 

David et al. 2013; McElrone et al. 2004 

Biotic Mycorrhizas  Robin et al. 2019 

Chemical Root Carbon (C) 

concentration 
 

Prieto et al. 2015 

 Root Nitrogen (N) 

concentration 
 

Prieto et al. 2015 

 Soluble 

concentration 
 

Prieto et al. 2015 

Biochemical Cellulose  Prieto et al. 2015 

 Lignin  Prieto et al. 2015 

Physiological Sap velocity  Jonhson et al. 2014 

 Hydraulic 

conductivity 
 

McElrone et al. 2004; McElrone et al. 

2007 Jonhson et al. 2014 

 Specific relative 

uptake potential of 

Rb+ 

 

Da Silva et al. 2011; Bordron et al. 2018 

 Specific relative 

uptake potential of 

SR2+ 

 

Da Silva et al. 2011; Bordron et al. 2018 

 Specific relative 

uptake of NO3
- 

 
Da Silva et al. 2011; Bordron et al. 2018 
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Appendix IV. 1: Images of fine roots of Eucalyptus trees scanned in minirhizotron installed in 

the deep permanent pits in Brazil in the topsoil (top) and at great depth (bottom). 
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CHAPTER 5:  CONSEQUENCES OF CLEAR-CUTTING AND DROUGHT ON 

FINE ROOT DYNAMICS DOWN TO 17 M IN COPPICE-MANAGED 

EUCALYPT PLANTATION 

 

We saw in chapter 4 that despite the actual insights about the importance of fine roots in depth, 

current knowledge of their dynamics is still extremely limited. The evaluation of the 

contribution of fine roots in deep soil layers is a real metrological challenge and, in fact, a major 

scientific lock, which is important to raise to study the sustainability of agroecosystems and 

forest plantation, as well as their resilience, in the context of global changes. 

The central objective of this following chapter is to assess the effect of clear-cutting and drought 

on fine-root production throughout deep soil profiles down to the water table in coppice-

managed Brazilian eucalypt plantations. These effects were monitored before and after trees 

harvest in a coppice-managed Eucalyptus grandis plantation under two contrasting water 

supply regimes.  

This chapter presents the results of 3 years of root dynamics monitoring and was published in 

the journal Forest Ecology and Management as scientific article with the title: “Consequences 

of clear-cutting and drought on fine root dynamics down to 17 m in coppice-managed eucalypt 

plantations”. Co-authors associated with this project are Christophe Jourdan, Bruno Bordron, 

Agnès Robin, Yann Nouvellon, Lydie Chapuis-Lardy, José Leonardo de Moraes Gonçalves, 

Céline Pradier, Iraê Amaral Guerrini and Jean-Paul Laclau. 

Germon, A., Jourdan, C., Bordron, B., Robin, A., Nouvellon, Y., Chapuis-Lardy, L., Gonçalves, 

JLM., Pradier, C., Guerrini, IA., Laclau, JP. Consequences of clear-cutting and drought on fine 

root dynamics down to 17 m in coppice-managed eucalypt plantations. Forest Ecology and 

Management, v. 445, p. 48-59, 2019. 
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Abstract 

Improving our understanding of the spatiotemporal dynamics of fine roots in deep soil layers is 

of utter importance to manage tropical planted forests in a context of climate change. Our study 

aimed to assess the effect of clear-cutting and drought on fine-root dynamics down to the water 

table in Brazilian ferralsol under eucalypt plantations conducted in coppice. Fine roots (i.e. 

diameter < 2 mm) were sampled down to 17 m deep in a throughfall exclusion experiment 

comparing stands with 37% of throughfall excluded by plastic sheets (-W) and stands without 

rain exclusion (+W). Root dynamics were studied using minirhizotron in two permanent pits 

down to 17 m deep, over 1 year before clear-cutting, then over 2 years in coppice, as well as 

down to 4 m deep in a non-harvested plot (NH) serving as a control. After harvesting, a 

spectacular fine root growth of trees conducted in coppice occurred in very deep soil layers (> 

13 m) and, surprisingly, root mortality remained extremely low whatever the depth and the 

treatment. Total fine-root biomass in coppice down to 17 m depth was 1266 and 1017 g m-2 in 

+W and -W, respectively, at 1.5 year after the clear-cut and was 1078 g m-2 in NH 7.5 years 

after planting. Specific root length and specific root area were about 15% higher in -W than in 

+W. Proliferation of fine roots at great depths could be an adaptive mechanism for tree survival, 

enhancing the access to water stored in the subsoil. The root system established before clear-

cutting provides access to water stored in very deep layers that probably contribute to mitigate 

the risk of tree mortality during prolonged drought periods when the eucalypt plantations is 

conducted in coppice after the clear-cut. 

Key words: Brazil, coppice, deep ferralsol profile, deep root growth, Eucalyptus grandis, 

minirhizotron, throughfall exclusion 
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V.1 Introduction  

Future climate projections predict longer and more severe dry periods in tropical and 

subtropical regions (Dai, 2011; He & Soden, 2017; Solomon et al., 2009). Extensive tree 

mortality triggered by drought and changes in rainfall patterns has been reported worldwide 

(Allen, 2009; McDowell et al., 2018; Williams et al., 2013). Tree survival greatly depends on 

rooting system behavior and functioning (Christina et al., 2017b; Markewitz et al., 2010; 

Nepstad et al., 1994; Pierik  & Testerink, 2014), as plant growth is highly dependent on the 

absorptive function of fine roots for water and nutrients (Hinsinger, 2001). Fine roots also play 

a major role in the global carbon (C) cycle, representing significant C input into the soil by the 

incorporation of exudates and root necromass, and also generating a return of C to the 

atmosphere through respiration and decomposition processes (Balesdent & Balabane, 1996; 

Strand et al., 2008). Improving our understanding of how root systems respond to drought is 

therefore crucial for terrestrial biosphere models to predict the effect of climate change on tree 

survival and carbon sequestration in forest and tree-based ecosystems.  

Plant species use a large range of rooting patterns to cope with periodic drought, from “drought 

tolerant strategies” with fine roots surviving in periodically dry soil, to “drought avoiding 

strategies” shedding fine roots from dry soil horizons while rapidly developing roots in moister 

areas (Bristiel et al., 2018; Brunner et al., 2015; Vries et al., 2016). Drought can increase the 

root-to-shoot ratio, the root area or root length-to-leaf area ratio, as well as the proportion of 

fine roots in deep soil layers and/or the specific root area (Ma et al., 2018; Markesteijn & 

Poorter, 2009; Zhou et al., 2018). Root growth peaks have been shown in deep soil layers during 

dry periods for eucalypt and rubber trees in tropical soils (Lambais et al., 2017; Maeght et al., 

2015a). Drought tolerance strategies are common for herbaceous plants, while drought avoiding 

strategies are often adopted by trees in evergreen tropical forests (Brunner et al., 2015). Despite 

the crucial role of fine roots in coping with drought, root phenology remains poorly understood 

in comparison to leaf ecophysiology (Radville et al., 2016a).  

Deep roots commonly reported as roots growing beyond 1 m in depth can play an important 

role in supplying water to trees (Kell, 2012; Pierret et al., 2016a). Trees can be deeply rooted 

(Canadell et al., 1996; Schenk & Jackson, 2002), and some studies suggest that very deep roots 

(at depths > 10 m) are common in highly weathered tropical soils (Broedel et al., 2017; Nepstad 

et al., 1994; Saleska et al., 2007). Even though low fine root densities are generally found at 

great depth (Pierret et al., 2016a), they can take up substantial amounts of water needed for tree 
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survival during drought periods (McDowell et al., 2008; Nardini et al., 2016). Deep roots can 

also contribute to closing the biogeochemical cycles in tropical forests through nutrient uptake 

in deep soil layers (Bordron et al., 2018; Da Silva et al., 2011; Jobbágy  & Jackson, 2004; 

Lehmann, 2003), which reduces nutrient losses by deep leaching (Laclau et al., 2010; Lehmann  

& Schroth, 2003). While many studies show that the role of very deep roots in tropical forest 

functioning and productivity has been greatly underestimated (Freycon et al., 2015; Jackson et 

al., 2000; Markewitz et al., 2010), as far as we are aware, fine root dynamics and mortality have 

never been studied at depths > 10 m. 

Eucalyptus plantations cover more than 20 million hectares and account for around 8% of forest 

plantations in the world (Booth, 2013). The diversity of Eucalyptus species planted in tropical 

regions has led to a wide range of products and management practices (Gonçalves et al., 2013). 

Although many Eucalyptus plantations are intensively managed to produce raw materials for 

industry (mainly pulp and paper, but also solid-wood products, fiberboards and charcoal for 

steel production), used as a domestic source of energy and also contributes to alleviating 

poverty in developing countries (Cossalter & Pye-Smith, 2003). Most eucalypt plantations are 

located in areas with low soil fertility and prolonged drought periods (Keenan et al., 2015). 

Coppice management could be an adaptive solution to cope with water deficit in these 

plantations, because the sprouts growing on stumps are likely to benefit from the pre-existing 

root system that explores deep soil layers where water availability is generally higher than in 

the topsoil. The effects of clear-cutting on fine root dynamics in coppiced-managed forest 

plantations are poorly documented and tendencies are not clear. Sequential coring in Brazilian 

coppiced-managed eucalypt plantations showed that fine root density decreased in the 0-1 m 

soil layer in the first 60 days after harvesting, while fine root decomposition was accelerated 

(Mello et al., 2007). Fine root mortality exceeded fine root production after clear-cutting in 

Populus stands (Berhongaray et al., 2015). In contrast, Dickmann et al. (1996) observed little 

change in fine root production and mortality in the 0-1 m soil layer after clear-cutting in other 

Populus stands. While 50% of fine root biomass can be found below a depth of 1 m in tropical 

eucalypt plantations (Christina et al., 2011b; Laclau et al., 2013a), fine root dynamics in 

coppice-managed forests have only been studied in the upper meter of the soil profile. 

Our study was carried out in Eucalyptus grandis (Hill ex. Maid) stands planted in a throughfall 

exclusion experiment in Brazil (Battie‐Laclau et al., 2014b). We aimed to gain insight into the 

effects of contrasting rainfall regimes on fine root dynamics in coppice-managed eucalypt 

plantations after tree clear-cutting in very deep tropical soils. We put forward the hypothesis 
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that trees invest in belowground biomass in response to throughfall exclusion, in order to 

increase the exploration of fine roots in deep soil layers (H1), and that they adjust fine root traits 

to increase the specific root area, in order to capture more resources per gram of C invested in 

fine roots (H2). In addition, we put forward the hypothesis that Eucalyptus grandis stands with 

clear-cutting and tree regrowth in coppices stimulate fine root growth in both shallow and deep 

soil layers (H3) and increase root mortality throughout the soil profile (H4). 

V.2 Materials and Methods 

V.2.1 Study site 

The experiments were conducted at the research station owned by the Luiz de Queiroz College 

of Agriculture (ESALQ) near Itatinga (São Paulo, Brazil, 23°02′S 48°38′W). The study area, 

located 300 km from the sea, has a relief typical of the São Paulo Western Plateau, with a 

topography varying from flat to hilly (slopes < 3%). The altitude is 850 m, and the climate is 

humid subtropical with a dry winter (Cwa) according to the Köppen classification. Over the 15 

years prior to this study, the mean annual rainfall was 1390 mm (with 74% between October 

and May), and the mean air temperature and relative humidity were 20°C and 77%, 

respectively. A dry and cool (15°C) season occurs between June and September. The total 

rainfall over the study period (from May 2015 to July 2018) was 5629 mm. The annual rainfall 

was 1,557 mm and 2,303 mm in 2016 and 2017, respectively. The soils are very deep Ferralsols 

(IUSS Working Group WRB, 2015) developed on Cretaceous sandstone. Clay content ranges 

from 160 mg g-1 soil in the topsoil to about 250 mg g-1 soil at a depth of 15 m, and clay minerals 

are mainly kaolinite (Christina et al., 2015). 

V.2.2 Experimental layout 

A split-plot experimental design was set up in June 2010 with a Eucalyptus grandis clone used 

in commercial plantations by the Suzano Company (São Paulo, Brazil). The experimental 

layout with 6 treatments and 3 blocks was described in detail by Battie‐Laclau et al. (2014b). 

We studied two treatments out of all those available in the experimental design: one treatment 

with undisturbed rainfall (+W) and one treatment with throughfall exclusion (-W), which was 

equipped with plastic sheets installed since September 2010, allowing the exclusion of 37% of 

throughfall (Battie‐Laclau et al., 2014b). Treatments -W and +W were used to determine the 

water deficit effect. The trees were planted in June 2010 at a spacing of 3 m x 2 m with a 
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stocking density of 1666 trees per hectare. The plots received a standard commercial fertilizer 

(at planting: 3.3 g P m-2, 200 g m-2 of dolomitic lime and trace elements; at 3 months of age: 12 

g N m-2, 0.45 mol K m-2 applied as KCl) and herbicides were applied to avoid the presence of 

other understory species. In +W and -W, the eucalypt stands were harvested six years after 

planting, in June 2016, and the plantation was coppice-managed thereafter. Several new shoots 

were regenerated from the stumps after the clear-cut and 1 or 2 shoots per stump were selected 

to maintain the same stocking density and prevent the growth of additional new shoots. A third 

treatment served as a control, with undisturbed rainfall and no harvest (NH), to assess the clear-

cutting effect. Tree height and circumference at breast height were recorded each year after the 

clear-cut on 36 central trees per plot during the first rotation (May 2010 - June 2016) and during 

the second rotation in coppice (starting in June 2016). 

V.2.3 Soil water monitoring 

The volumetric soil water content (SWC) was monitored in the +W and -W treatments 

throughout the study period at half-hourly intervals using CS616 probes (Campbell Scientific 

Inc., Logan, UT, USA) installed at the following depths: 0.15, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 14 

and 16 m, with 3 probes at each depth in block 1. Extractable water (mm) was calculated as the 

difference between the current soil water stock (mm) and the minimum soil water stock (i.e. 

lower limit of soil water content in mm) (Granier et al., 1999). 

V.2.4 Deep permanent pits for root phenology observations 

Between February and March 2014, two deep permanent pits were excavated in +W and -W in 

block 1 to gain access to the complete soil profile from the top soil down to the water table. The 

pits were 1.5 m in diameter and reached a depth of 17 m and were located between four 

Eucalyptus trees (Figure V. 1) at a distance of 90 cm, 90 cm, 130 cm and 130 cm from each 

four trees respectively. The pit walls were made of concrete rings in direct contact with the soil. 

Clear-colored roofs of the same diameter as the pits were used to prevent light and rain entering 

the pits. Platforms were set up at two-meter intervals in the pits, equipped with artificial lighting 

and fans used during working sessions, allowing access and safe work down to the water table 

(Figure V. 1). The high cost of opening up and securing these pits prevented further replications 

in the other two blocks. However, other measurements, including deep fine root sampling and 

tree growth were carried out in all three blocks, making it possible to extrapolate some of the 
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observations made in the two deep pits. In October 2015, a third pit was excavated in the non-

harvested treatment (NH) down to 3.5 m to determine the clear-cut effect. 

 

V.2.5 Minirhizotrons  

Fine root dynamics were studied through transparent polyvinyl chloride tubes (length:180  cm; 

inner diameter: 6.5 cm), commonly called minirhizotrons (Maeght et al., 2013). In October 

2014, twenty-four transparent minirhizotrons were installed using a powerhead drill in the +W 

and -W treatments of block 1. Outside the pits, three minirhizotrons were inserted into the soil 

surface in the same plots a minimum of 10 m apart and at a distance of 90 cm from the trunk 

(Figure V. 1). Nine tubes were inserted into the pit walls down to a depth of 17 m: two tubes at 

a depth of 1 m and one tube at depths of 3.5, 5.5, 7.5, 9.5, 11.5, 13.5, 15.5 m (Figure V. 1). The 

tubes were inserted at a 45-degree angle and allowed an observation depth of 1.3 m below the 

depth at which they were inserted into the soil profile. In October 2015, 3 additional tubes were 

installed at the soil surface in the +W and -W treatments of blocks 2 and 3 (12 tubes in total) to 

increase the number of replications in the top meter. In October 2015, seven tubes were installed 

in the NH treatments (3 into the soil surface, 2 tubes inserted at depths of 1 m and 3.5 m into 

the pit walls).  

Root dynamics were recorded using a circular scanner system (CI-600 Root Growth Monitoring 

System, CID, USA). This scanner was selected for the quality of the images it produces, an 

essential element for the analysis (Graefe et al., 2008). In order to have a significant stabilization 

period after soil disturbance from the installation, fine root monitoring began eight months after 

minirhizotron installation (Germon et al., 2016; Graefe et al., 2008). Eight images (21.59 x 

19.56 cm, 100 dpi) per tube (43 tubes in total) were taken every two weeks for more than three 

consecutive years from May 2015 to July 2018: over one year before the clear-cut and two years 

after harvesting, in a coppice. Images were taken at a resolution of 100 dpi, as we obtained the 

same root lengths and diameter compared to images of 300 dpi and 600 dpi, and it was less 

time-consuming in the field than with a higher resolution.  
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Figure V. 1: Layout of the position of the pit in the +W treatment of block 1 and distribution of minirhizotron tubes at the soil surface (n=3) and in 

the permanent pit from 1 m (n=2) down 17 m (n=1 per m in depth). The same set-up was used for the -W treatment.
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V.2.6 Root image processing  

WinRhizoTron™ software (Régent Instrument Inc., Quebec, Canada) was used to analyze more 

than 24,000 root images taken in the minirhizotrons. This software was chosen as it allowed the 

analysis of large number of images and overlayed the images to visualize the time evolution of 

the roots throughout the tubes. This manual root measurement program estimated the length 

and diameter of each root observed and stored each data item in a text file. By comparing two 

consecutive images chronologically, it was possible to estimate changes in root length and 

phenology features. Root mortality was evaluated based on the absence of growth over the 

entire study period up to the last images, when roots turned black and presented clear signs of 

decomposition (Germon et al., 2016; Lambais et al., 2017). For each fine root (diameter < 2 

mm) we recorded the time of the first appearance, the diameter, the length over time, and the 

time of disappearance. In this study, we considered only root appearing during the study period.  

V.2.7 Root length calculations 

As described in Germon et al. (2016) and Lambais et al. (2017) the following metrics were used 

to estimate root production and the root elongation rate: living and dead root length production 

(LP, cm m-2) was calculated for each root as the individual root length (living or dead) at time 

t divided by the observed soil area of each image. The cumulative living or dead root length 

production (CLP, cm m-2) was calculated summing, at each time t, the individual length of all 

the roots observed, divided by the observed soil area of each image. The individual root 

elongation rate (RER, cm day-1) was calculated as the difference in individual root length 

observed between two consecutive sessions (t and t-1) divided by the time in days between t and 

t-1. The daily root elongation rate (DRER, cm m-2 day-1) was calculated by summing, at each 

time t, each individual root elongation rate of all the roots observed, divided by the observed 

soil area of each image. The mean root elongation rate (MeanRER, cm day-1) and the maximum 

root elongation rate (MaxRER, cm day-1) were calculated as the mean and the maximum of 

individual root elongation rates considering all the roots growing during the study period. LLP, 

CLP, RER, DRER, MeanRER and MaxRER were estimated for each treatment (+W, -W and 

NH), each soil layer and between consecutive image sessions over the entire study period. 
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V.2.8 Root sampling 

In order to check the consistency of fine root dynamics in deep soil layers observed by the 

minirhizotron method, total fine root biomass, fine root length and fine root area down to the 

water table were measured in October 2017, i.e. 1.5 years after the clear-cut in the coppices 

(+W and -W) and 7.5 years after planting in NH. Fine roots (diameter < 2 mm) were sampled 

down to 17 m in the two treatments (+W and -W) inside the three blocks and in the non-

harvested (NH) treatment inside one block. Four trees were randomly selected in each plot and 

soil samples were collected around each tree between the topsoil and a depth of  2 m and around 

2 other trees between depths of 2 and 17 m (i.e. 12 sampling points down to a depth of 2 m and 

6 further down to a depth of 17 m in the +W and -W treatments and 4 sampling points down to 

a depth of 2 m and 2 down to a depth of 17 m in the NH treatment). At each sampling position, 

soil layers at 0-0.2, 0.2-0.5, 0.5-1, 1-1.5, 1.5-2 m were collected using a cylindrical auger with 

an inner diameter of 4.5 cm. The Brazilian “cavadeira” tool, a cylindrical auger with an inner 

diameter of 9 cm and a length of 30 cm, was used to collect soil cores every 50 cm from 2 m 

down to a depth of 17 m. From each soil core, about 1.5 and 2 kg of soil was collected using 

the same methodology as described in Germon et al. (2018) and Christina et al. (2011b). To 

avoid contamination of the collected soil samples, only soil blocks from the inner part of the 

auger were considered. Total fresh soil mass was measured, and a sub-sample of 5 g was 

weighed in the laboratory to estimate the soil water content by drying the sample at 105°C for 

72 h. Each soil sample was identified and stored at 4°C before being processed a maximum of 

1 week after sampling. Living roots (i.e. living stele, bright color and elasticity) and dead roots 

(i.e. by sight, touch and flotation) > 1 cm long were carefully separated by hand after gentle 

washing away of the soil with tap water on a sieve with a mesh size of 0.5 mm. For the 0-0.2, 

0.2-0.5 and 0.5-1 m soil layers, 10 % of the weight of each soil sample was used to estimate the 

mass of extremely fine roots (i.e. length < 1 cm). For the other soil layers 100% of the weight 

was considered. Living and dead roots more than 1 cm in length were scanned using a double-

sided scanning procedure at a resolution of 800 dpi. Then, living roots and dead roots over > 1 

cm in length and fragments of living and dead roots less than 1 cm in length were dried for 72h 

at 65° C and weighed (±0.1 mg). For the upper layers where only 10% of the weight of the soil 

was screened for living and dead roots < 1 cm in length, the mass of fragments was multiplied 

by 10 to estimate the mass of fragments of the whole soil sample. Root weight was then obtained 

for each soil layer, sampling position, treatment and block.  
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V.2.9 Root trait calculations 

The fine root scans obtained where analyzed using WinRhizo Version Pro V. 2009c software 

(Régent Instruments Inc., Quebec, Canada) to estimate root lengths and areas per soil layer, 

sampling position, treatments (+W, -W and NH) and blocks. As described in Germon et al. 

(2018) the following metrics were used to estimate fine root traits. The specific root length 

(SRL, m g-1, i.e. total length of scanned roots divided by their dry mass) and specific root area 

(SRA, cm2 g-1, i.e. total area of scanned roots divided by their dry mass) were calculated for 

each soil sample. Fine root mass density (g kg-1 soil) was calculated as the total root dry mass 

divided by the dry weight of the soil used for root separation. Fine root density (FRD, g dm-3 

soil) was obtained by multiplying fine root mass density by the soil bulk densities (measured 

by the standard core method down to a depth of 17 m in each treatment). Fine root biomasses 

(FRB, g m-2) were calculated in each soil layer multiplying the mean fine root density by the 

soil layer volume (dm3). The root area index (RAI, m2 m-2) was calculated as the surface area 

and length of fine roots divided by the sampled soil area respectively. FRD, FRB, SRL, SRA, 

and RAI were obtained for each soil layer from the soil surface down to a depth of 17 m, for 

the sampling position, +W, -W and NH treatments, and blocks. 

V.2.10 Statistical analyses 

Linear mixed-effect models were used to test the effect of soil depth, treatment and the 

interaction between depth and treatment on cumulative length production (CLP), root 

elongation rate (RER), daily root elongation rate (DRER), mean root elongation rate 

(MeanRER), maximum root elongation rate (MaxRER), fine root density (FRD), fine root 

biomass (FRB), specific root length (SRL), specific root area (SRA), root area index (RAI) and 

root diameter for the whole soil profile. Blocks were considered as random effects and residues 

were modeled by a first-order autoregressive correlation model to account for the correlations 

between soil depths. Two-way analyses of variance (ANOVAs) were used to assess the effect 

of treatments and blocks for individual soil layers on CLP, RER, DRER, MeanRER, MaxRER, 

FRD, FRB, SRL, SRA, RAI and root diameter. Measurements within a given soil layer were 

considered independent, since the sampling positions were located near different trees in each 

treatment and plot. The homogeneity of variances was verified, and log-transformations were 

used when the residuals did not follow a normal distribution. Tukey’s post-hoc Honest 

Significant Difference (HSD) was used to determine the significant differences between 

treatments. R software version 3.4.4 (Team R 2013) was used for all the calculations and 
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statistical analyses with a 5% significance level. The “lmerTest” package was used to perform 

the linear mixed-effect models (Kuznetsova et al., 2017).  

V.3 Results 

V.3.1 Tree growth 

Initial vertical growth was faster in the coppices than in the replanting: nine months after 

harvesting (in February 2011 for the replanting, and February 2017 for the coppices), mean tree 

height was 1.3 m and 1.5 m in the +W and -W replanted plots and was 2.7 m and 3.1 m in the 

+W and -W coppice plots, respectively (Figure V. 2). There were no significant differences in 

vertical growth between the +W and -W treatments for either replanting or coppice in the first 

3 years after harvesting.   

 

Figure V. 2: Vertical growth (m) over the first 2.5 years after harvesting of the previous stands 

for the replanting (June 2010-June 2016) and the coppice (from June 2016) in the undisturbed 

rainfall plots (+W, blue) and in the plots with 37% of throughfall excluded by plastic sheets (-

W, orange). Standard errors are shown (shaded area). 
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V.3.2 Volumetric soil water contents (SWCs) 

In both the +W and -W treatments, rainfall events led to large variations in SWC (Figure V. 3). 

At a depth of 0.5 m, SWC ranged from 5.9% to 15.8% in -W and from 7% to 19.4% in +W. At 

a depth of 14 m, SWC ranged from 9.9% to 10.9% in -W and from 11.3% to 18.1% in +W.  

Over the study period, throughfall reduction led to a sharp decrease in SWC, on average, by 

12.9 ± 4.9% from the topsoil to a depth of 16 m. The design turned out to be efficient in 

mimicking two contrasting rainfall regimes. At the end of the rainy season, the mean SWC 

values of the soil profile in April 2016, i.e. 2 months before the clear-cut, were 12.5% and 

14.0% in -W and +W, respectively and in April 2017, i.e. 10 months after the clear-cut, there 

were 14.4% and 16.2% in -W and +W, respectively. After clear-cutting, the soil profiles were 

recharged with water due to the interruption of tree transpiration. In +W, the gravitational soil 

solutions reached a depth of 16 m only 10 months after clear-cutting, while in -W they reached 

a maximum depth of only 12 m 13 months after clear-cutting. Gravitational soil solutions did 

not reach the water table in -W over the study period (one year before the clear-cut and the first 

2 years of coppice management).  

V.3.3 Fine root length production  

The highest cumulative root length production (CLP) over the study period was at depths > 4 

m, in both +W and -W (Figure V. 4). In –W, CLP reached about 19 m m-2 at a depth of 13.5-

14.8 m, and only 3.9 m m-2 in the upper 2.3 m of the soil profile. In +W, the highest CLP was 

found in an intermediate soil layer (5.5-6.8 m deep) with a CLP of 18.9 m m-2. CLP reached 

about 12 m m-2 in very deep soil layers (13.5-14.8 m deep) and only about 2 m m-2 in the upper 

2.3 m of the soil profile in +W. 
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Figure V. 3: Daily rainfall (A) and soil water content (SWC, %) within the soil profiles down to a depth of 16 m in the undisturbed rainfall plots 

(+W, B) and in the plots with 37% of throughfall excluded by plastic sheets (-W, C) from May 2015 to January 2018. SWC graphical representation 

is a contour line interpolation obtained with a marching square algorithm. R software version 3.4.4 and the “plotly” package version 4.8.0 were 

used. The clear-cut date is indicated by a vertical line. The stand was coppice-managed after the clear-cut. 
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Figure V. 4: Cumulated root length production (CLP) on minirhizotron tubes (m m-2 of minirhizotron area) measured every 14 days from May 

2015 to July 2018 in soil layers 0–1.3 m, 1–2.3 m, 3.5-4.8 m, 5.5–6.8 m, 11.5-12.8 m, 13.5–14.8 m and 15.5-16.8 m in the undisturbed rainfall plot 

(+W, A), in the plot with 37% of throughfall excluded by plastic sheets (-W, B) and in the non-harvested plot (NH, C). Standard errors are shown 

(shaded area). The clear-cut date is indicated by a vertical line. The stands were coppice-managed after clear-cutting in +W and -W. The monitoring 

of CLP started in May 2015 in the +W and -W plots, and in March 2016 in the NH stand, where only the first three layers (0-1.3 m, 1-2.3 m and 

3.5-4.5 m) were sampled. 
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Figure V. 5: Daily living root elongation rate (DRER) on minirhizotron tubes (cm m-2 of minirhizotron area day-1) estimated every 14 days from 

May 2015 to July 2018 in soil layers 0–1.3 m, 1–2.3 m, 3.5-4.8 m, 5.5–6.8 m, 11.5-12.8 m, 13.5–14.8 m and 15.5-16.8 m in the undisturbed rainfall 

plot (+W, A), in the plot with 37% of throughfall excluded by plastic sheets (-W, B) and in the non-harvested plot (NH, C). Standard errors are 

shown (shaded area). The clear-cut date is indicated by a vertical line. The stands were coppice-managed after clear-cutting in +W and -W. The 

monitoring of DRER started in May 2015 in the +W and -W plots, and in March 2016 in the NH stand, where only the first three layers (0-1.3 m, 

1-2.3 m and 3.5-4.5 m) were sampled. 
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V.3.4 Fine root elongation rates 

Daily root elongation rates (DRERs) were highly variable between the soil layer and the season, 

in both +W and -W (Figure V. 5). Fine root growth started in the top soil after the clear-cut and 

occurred more and more deeply over time in +W and -W. The intensity (measured as the 

maximum DRER) and the period of fine root growth differed depending on soil depth. DRER 

measured during flushes of root growth was much lower in the topsoil than at great depth in 

+W, -W and NH (no observation below 4.8 m in NH). At a depth of 3.5-4.8 m, flushes of DRER 

in NH came earlier than in clear-cut plots. In the coppices, the first flush of DRER occurred 

about 6 months after clear-cutting in the topsoil, 12 months after clear-cutting in the 3.5-4.8 m 

soil layer and 16 months after clear-cutting in the 13.5-14.8 m soil layer, in both +W and -W. 

Moreover, DRER sharply increased in the 15.5-16.8 m layer of +W 18 months after clear-

cutting.  

DRER peaks ranged from 1.5 cm m-2 day-1 in the topsoil to 94.7 cm m-2 day-1 at a depth of 

about 12 m in +W, and from 3.5 cm m-2 day-1 in the topsoil to 83.7 cm m-2 day-1 at a depth of 

about 14 m in -W. The maximum elongation rate of individual roots (MaxRER) reached 4.3 cm 

day-1 in -W and 3.0 cm day-1 in +W (Table V. 1) and was much higher at great depths than in 

the topsoil (data not shown). DRER values peaked at the end of the dry season in all the soil 

layers at depths > 6 m when SWC decreased in the upper soil layers (Figure V. 3, Figure V. 5). 

Thus, DRER values were not necessarily correlated with soil water contents for a given soil 

layer. A synchrony between the decrease in cumulated extractable water in the topsoil and 

DRER peaks was observed in -W (Figure V. 6) after the clear-cut. Successive DRER peaks 

appeared more and more deeply at the end of the dry season when the extractable water stocks 

in the 0-2 m layer fell below about 80 mm.  

Table V. 1: Mean diameter (mm), maximum elongation rate of individual roots (cm day-1), 

number of roots observed and root mortality over 3 years in the minirhizotron images across all 

the soil layers, from the surface to the water table at a depth of about 17 m, in the undisturbed 

rainfall plot (+W) and the plot with 37% of throughfall excluded by plastic sheets (-W). 

 

 

 

 

   +W -W 

Mean diameter (mm)   0.61 ± 0.31 0.52 ± 0.28  

Maximum root elongation rate (cm day-1)   3.0 4.3  

Number of roots observed   12,247 14,118 

Mortality (%)   7.4  5.7 
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Figure V. 6: A) Time course of soil extractable water (mm) in soil layers 0-1 m and 1-2 m, in 

the -W (37% of throughfall excluded by plastic sheets) coppice of block 1, from March 2017 

(10 months after the clear-cut) to December 2017. The mean daily values of soil extractable 

water were estimated from semi-hourly SWC measurements. B) Daily living root length 

production on the surface of minirhizotron tubes (cm m-2 of minirhizotron area day-1) estimated 

over the same period and same plot as a), at two-week intervals, in soil layers 0–1.3 m, 1–2.3 

m, 3.5-4.8 m, 5.5–6.8 m, 11.5-12.8 m, 13.5–14.8 m and 15.5-16.8 m. Standard errors are shown 

(shaded area). 

V.3.5 Fine root distributions 

Auger sampling carried out on the same date in the NH plot and in the +W and -W coppices 

1.5 years after clear-cutting showed a similar pattern of deep rooting, whatever the treatment 

(Figure V. 7). Fine root densities dropped below a depth of 20 cm, then decreased gradually 
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down to the water table in NH, +W and -W. Fine roots where found down to 17 m in all 

treatments. Total fine root biomass down to a depth of 17 m was 1,078 g m-2 in NH, 1,017 ± 

301 g m-2 in +W and 1,266 ± 363 g m-2 in -W (Table V. 2). Fine root densities were about 25% 

higher in -W than in +W and NH in most of the soil layers. At depths > 7 m, fine root densities 

were at least twice as high in -W as in +W and NH. 

 

Figure V. 7: Mean fine root densities down to the root front in the undisturbed rainfall plots 

(+W, blue), in the plots with 37% of throughfall excluded by plastic sheets (-W, orange) and in 

the non-harvested plot (NH, gray). Standard deviations between blocks (n = 3) for -W and +W 

and between pseudo replicates in a single block for NH are shown. 
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Table V. 2: Total living fine root biomass (g m-2), total fine root necromass (g m-2), mean 

specific root length (m g-1), mean specific root area (cm2 g-1) and mean root diameter down to 

a depth of 17 m in the undisturbed rainfall plots +W, in the plot with 37% of throughfall 

excluded by plastic sheets (-W), both in coppices and 1.5 years after the clear-cut, and in the 

non-harvested plot (NH), i.e. a 7.5-year-old tree plantation. Standard deviations are indicated. 

Different lower-case letters indicate significant differences between treatments +W and -W (p 

< 0.05). NH was not included in statistical analyses because the three soil coring replicates were 

located in the same plot. 

 

 

V.3.6 Fine root traits 

The total root area index (RAI) was significantly higher in –W (32.8 m2 m-2) than in +W (26.5 

m2 m-2) (Figure V. 8). Similar RAI values in the NH stand (26.8 m2 m-2) and in the +W coppice 

suggested that the effect of clear-cutting on fine root dynamics was low, in agreement with 

elongation and mortality rates observed in the upper 4 m on minirhizotron tubes. RAI in the 0-

1 m surface soil layer accounted for only one third of the total RAI down to the water table in 

NH, +W and -W (about 11 m2 m-2 on average). Significant differences between +W and -W 

were found at depths > 5 m (Figure V. 8). In the 5-10 m soil layers, RAI was 5.0 m2 m-2 in -W 

and 2.8 m2 m-2 in +W. At depths > 10 m, RAI was 3.2 m2 m-2 in -W and only 0.4 m2 m-2 in +W. 

In the NH, +W and -W treatments, depth had little effect on specific root length (SRL), specific 

root area (SRA) and fine root diameter (data not shown). SRL and SRA were significantly 

higher in -W than in +W, and similar values were observed in +W and NH, although the 

sampling in NH (pseudo-replication on one block) did not allow a confirmation with statistics 

(Table V. 2). Down to a depth of 17 m, mean SRL values were 28.8, 30.6 and 34.4 m g-1, mean 

SRA values were 258.8, 267.5 and 305.3 cm2 g-1, and mean fine root diameters were 0.31, 0.32 

and 0.36 mm in NH, +W and -W, respectively (Table V. 2). 

 +W -W NH 

Fine root biomass (g m-2) 1,016.5 ± 362.8 1,265.8 ± 301.4  1,078.3 ± 83.9 

Fine root necromass (g m-2) 163.2 ± 55.9 167.9 ± 31.3  139.1 ± 17.7 

Specific root length (m g-1) 30.6 ± 6.9 b 34.4 ± 14.1 a 28.8 ± 7.6 

Specific root area (cm2 g-1) 267.5 ± 55.7 b 305.3 ± 150.1 a 258.9 ± 92.6 

Root diameter (mm) 0.32 ± 0.08 b 0.36 ± 0.13 a 0.31± 0.08 
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Figure V. 8: Root area index (m2 m-2) in the 0-1 m, 1-2 m, 2-5 m, 5-10 m and 10-17 m deep 

soil layers in the undisturbed rainfall plots (+W), in the plots with 37% of throughfall excluded 

by plastic sheets (-W) and in the non-harvested plot (NH). Different upper-case letters indicate 

significant differences between treatments for the cumulative indices and different lower-case 

letters indicate significant differences between treatments within each individual soil layer (p < 

0.05). NH was not included in the ANOVA because the three soil coring replicates were located 

in the same plot. 

 

V.3.7 Fine root mortality 

Cumulative dead root length in the minirhizotron images over the study period of 3 years across 

all soil layers accounted for only 6-7% of cumulative root length production, in both +W and -

W (Table V. 1). Surprisingly, dead fine root length did not increase after clear-cutting and did 

not differ between depths and between the +W and -W treatments. Dead fine root mass 

estimated 1.5 years after clear-cutting amounted to 163.2 g m-2 in +W and 167.9 g m-2 in -W 

(Table V. 2).  
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V.4 Discussion 

The main novelty of our results lies in the first direct observation of fine root phenology at 

depths of more than 10 m and derived knowledge raised from a comparison between the 

treatments. The consequences of tree harvesting on fine root dynamics in coppice-managed 

plantations raise specific questions never studied before along a deep tropical soil profile. Since 

the 1980s, the minirhizotron technique has been widely used to study fine root dynamics and 

turnover (Graefe et al., 2008; Maeght et al., 2013). Many studies have shown that the soil 

environment close to minirhizotrons can be modified relative to undisturbed soil (Majdi & 

Nylund, 1996), which is likely to influence fine root dynamics. However, in our study the very 

low root mortality rates after clear-cutting revealed by minirhizotron monitoring was consistent 

with the small amounts of dead fine roots measured by soil coring. Despite some unavoidable 

limitations, direct observations from minirhizotron tubes or field rhizotrons is for now the most 

accurate way of studying fine root phenology in situ (Dipesh  & Schuler, 2013; Radville et al., 

2016a). 

V.4.1 Root behavior in response to drought 

The main purpose of our study was to investigate whether fine roots explore very deep soil 

layers and do so more intensively when trees are subjected to prolonged drought periods. This 

study, carried out in a throughfall exclusion experiment and including a non-harvested plot, 

made it possible to assess the effect of clear-cutting under two contrasting rainfall regimes. In 

agreement with our first hypothesis, Eucalyptus trees responded to drought by increasing fine 

root densities at great depth. Previous studies in Brazil showed that Eucalyptus trees have the 

ability to explore very deep layers in soils without hindrance to root growth (Christina et al., 

2011b; Pinheiro et al., 2016b). In a survey of 62 tropical tree species, Markesteijn and Poorter 

(2009) showed that trees increase belowground biomass and the proportion of deep roots in 

response to dry conditions. Root growth in deep soil layers can increase the amount of water 

available to sustain tree growth, which could be a key advantage for eucalypt trees in coping 

with severe drought events (Christina et al., 2017b).   

After clear-cutting, fine root growth at more than 4 m deep was spectacular at the end of the 

dry season, whatever the water supply regime. Lambais et al. (2017) also showed flushes of 

fine root growth down to a depth of 6 m at the end of dry periods in a Brazilian eucalypt 

plantation. Fine root growth in deep soil layers was initiated when the extractable water content 
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in the 0-2 m soil layer fell below a threshold of about 80 mm, which suggests that soil water 

content in a particular soil layer was not the main driver of fine root growth. Endogenous and 

exogenous factors are major drivers of fine root phenology (Abramoff & Finzi, 2015; Moroni 

et al., 2003; Tierney et al., 2003), but are difficult to disentangle in deep soil layers. The 

successive flushes of fine root growth from the topsoil to the deepest soil layers at the end of 

the dry season and the first months after the onset of the rainy season in +W and -W might have 

resulted from a rapid exhaustion of water resources in the topsoil, inducing tree roots to grow 

deeper in the soil (Billings, 2015; Schenk & Jackson, 2002). Furthermore, a strong increase in 

sugar sap concentration and sugar allocation belowground has been shown in forests during dry 

periods (Pate & Arthur, 1998; Scartazza et al., 2015), which could be a physiological response 

to a rapid exhaustion of water in the top soil and could help to explain the root growth in deep 

soil layers at the end of dry periods in our study.  

In agreement with our second hypothesis, Eucalyptus trees facing drought adapted their root 

morphology to maximize the root surface area to take up limited resources. SRL and SRA were 

higher in –W than in +W, which in combination with higher fine root densities led to a much 

higher root area index. In a meta-analysis, Ostonen et al. (2007b) showed that SRL response to 

drought varies greatly between species. While Arend et al. (2011) did not observe any 

significant change in SRL, root area index and root tissue density for oak trees (Quercus sp.) 

exposed to drought, Olmo et al. (2014) showed an increase in SRL and root tissue density under 

drought conditions for 10 tree species. Eucalyptus grandis trees coped with drought in our 

experiment by increasing their capacity to take up soil resources for a relatively low investment 

in belowground biomass. A large increase in SRL and SRA was recently shown throughout 

deep soil profiles down to 17 m deep for Acacia mangium Wild and E. grandis roots in response 

to the mixture relative to monospecific stands (Germon et al., 2018). Our study showed that 

Eucalyptus trees can modify fine root traits to enhance resource capture and the exploration of 

very deep soil layers to survive in a context of climate change, which contributes to maintaining 

water uptake during dry periods (Brunner et al., 2015; Christina et al., 2017b).  

V.4.2 Key role of deep roots in coppice management 

Contrary to our fourth hypothesis, relatively few roots were lost by mortality (< 10% out of all 

the roots observed over 3 years), which suggested that most of the root system remained 

functional after clear-cutting. The effect of clear-cutting on fine root mortality remains unclear 

in coppice-managed forest plantations. Unlike our observations, sequential coring in the 0-1 m 
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soil layer showed a decrease in fine root density after harvesting coppice-managed E. grandis 

stands in Brazil (Mello et al., 2007). Wildy and Pate (2002) also showed high fine root mortality 

rates after cutting the trees in plantations of Eucalyptus kochii Maiden & Blakely subsp. 

plenissima Gardner (Brooker), but the root system superstructure was sustained down to a depth 

of at least 4 m. Teixeira et al. (2002) showed from sequential coring in the 0-0.6 m soil layer 

that fine-, medium- and coarse-root biomasses increased over time after harvesting coppice-

managed Eucalyptus urophylla S. T. Blake trees. Using the minirhizotron technique, Dickmann 

et al. (1996) showed an absence of root mortality for coppice-managed poplar clones. Our study 

suggested that 6-year-old Eucalyptus grandis trees have enough reserves within the root system 

and the appropriate edaphic surrounding conditions to maintain the fine root biomass 

established down to the water table after clear-cutting, which probably contributed to promoting 

early shoot growth (Brunner et al., 2015; Drake et al., 2013).  

Fine root growth after clear-cutting started in the topsoil, then continued successively in deeper 

and deeper soil layers, which confirmed our third hypothesis, even though the lapse of several 

months after clear-cutting was not expected. This pattern might have resulted from high nutrient 

and water availabilities in the upper layers after harvesting Eucalyptus stands due to an 

interruption of tree water uptake and fertilizer application (Laclau et al., 2010). The asynchrony 

within the root system, delaying root growth in deep soil layers, might be a strategy for 

maximizing the water and nutrient uptake needed to meet the high demand of these fast-growing 

trees. Root growth occurred at a depth of 14 m less than one year after clear-cutting of coppice-

managed E. grandis trees, while the maximum depth reached by E. grandis roots one year after 

planting is about 7 m in very deep soils (Christina et al., 2011b; Laclau et al., 2013a). Deep 

roots can provide access to large amounts of water stored in the subsoil after clear-cutting and 

small fine root densities in deep soil layers can be sufficient to take up substantial amounts of 

water (Christina et al., 2017b). Low fine root mortality rates after clear-cutting suggest that 

coppice-management of Eucalyptus plantations might be a promising option for coping with 

water scarcity, since the pre-existing root system can provide access to water stored throughout 

deep soil profiles.  

V.4.3 Carbon sequestration and implication for the management of eucalypt plantations  

Surprisingly, cutting the trees did not lead to an increase in root mortality throughout the soil 

profile, whatever the water supply regime. Fine roots play an active role in carbon (C) cycling 

in forest ecosystems, through respiratory processes, exudation and root mortality (Balesdent & 
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Balabane, 1996; Marsden et al., 2008; Strand et al., 2008). The consequences of deep rooting 

on subsoil C stocks in tropical planted forests and other forest ecosystems remain poorly known 

(Gao et al., 2018; Harper & Tibbett, 2013; Meyer et al., 2018; Nepstad et al., 1994). On the one 

hand, the supply of fresh carbon might promote the activity of microbes and affect the stability 

of pre-existing organic matter through a “priming effect” (Derrien et al., 2014a; Fontaine et al., 

2007; Kuzyakov et al., 2000). Promoting the mineralization of ancient C would result in high 

emissions of carbon dioxide (CO2) under aerobic conditions and of methane (CH4) under 

anaerobic conditions. However, a complementary study in our plots showed that CO2 and CH4 

emissions did not increase significantly after clear-cutting in the coppice-managed stands 

compared to the non-harvested stand (Germon et al. in prep.). Gas emission rates after clear-

cutting in our experiment were therefore consistent with the low rates of root mortality 

observed. On the other hand, deep roots might also contribute to sequestrating large amounts 

of C in soil. Total below-ground carbon allocations account for about 20-30% of gross primary 

production in Eucalyptus plantations (Epron et al., 2012; Nouvellon et al., 2012a; Ryan et al., 

2010). Fine root elongation rates were higher at great depth compared to the topsoil, with an 

increase in fine root density after the clear-cut in very deep horizons. Moreover, microbial 

biomass is lower in deep soil layers than in the topsoil, which in combination with oxygen 

limitations could enhance C sequestration as a result of low mineralization rates (Rumpel & 

Kögel-Knabner, 2011; Taylor et al., 2002). C from roots is generally retained more in the soil 

than C from aboveground litter, which is more affected by physicochemical processes and also 

due to structural composition differences between leaves and roots (Menichetti et al., 2015; 

Rasse et al., 2005; Schmidt et al., 2011). Further studies are needed to assess whether the 

management of Eucalyptus plantations in very deep soils could be an effective option to help 

mitigate the increase in CO2 in the atmosphere.  

V.5 Conclusions 

The fine root phenology of coppice-managed Eucalyptus trees under contrasting water supply 

regimes revealed unexpected low rates of root mortality. The early growth of the sprouts after 

cutting the trees benefited from the root system established over the previous rotation cycle, 

and the asynchrony of fine root growth depending on depth highlighted tree plasticity in 

response to soil conditions. Establishing deep root systems in tropical planted forests could help 

trees withstand the long drought periods expected under climate change in many tropical 

regions. Our study suggested that coppice management might be an interesting option in 
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tropical Eucalyptus plantations, both to improve tree tolerance to drought and store carbon at 

great depth in the soil.  
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Appendix  

Appendix V. 1: Images scanned in the minirhizotron installed at 11.5 m depth in the deep permanent pit of the undisturbed rainfall plot between 

September and November 2017. A spectacular fine root growth was observed in deep soil layer. 
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Appendix V. 2:  Images scanned in minirhizotron tube comparing different image quality (100 

dpi, 300 dpi and 600 dpi). 
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Appendix V. 3: Images scanned in the minirhizotron installed at 10 m depth in the deep 

permanent pit of the undisturbed rainfall plot in May 2015 (left) and July 2018 (right). No root 

growth and mortality were observed in 3 years in this tube. 
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Appendix V. 4: Images scanned in the minirhizotron installed at 14 m depth in the deep permanent pit of the undisturbed rainfall plot in March 

2016 (left), March 2017 (center) and March 2018 (right). No root mortality was observed even after the clear-cut and a root grow 10 months after 

the clear-cut was observed at 14 m depth in this tube. 
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What to remember from Chapter 5? 

The main results of this chapter are summarized in the following Table V. 3.  

Table V. 3: Main results obtained in the experimental set up on root traits categories in deep 

soil layers, subjected to drought and in response of clear-cutting and coppice management.  

indicates a positive effect,  indicates a negative trend and   indicates predominantly no 

effect. 

Root traits 

categories 
Root trait Depth Drought Clear-cut 

Growth Fine root density (g dm-3)    

Fine root biomass (g m-2)    

Fine root necromass (g m-2)    

Root elongation rates (cm day-1)    

Architectural Root area index (m2 m-2)    

 Specific root length (m g-1)    

 Specific root area (cm2 g-1)    

 Fine root diameter (mm)    

     

 

.  
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CHAPTER 6:  CONSEQUENCES OF CLEAR-CUTTING AND DROUGHT ON 

CO2, CH4 AND N2O PRODUCTIONS THROUGHOUT DEEP SOIL PROFILES IN 

COPPICE-MANAGED EUCALYPT PLANTATIONS 

 

We saw in chapter 5 that harvesting did not lead to an increase in root mortality in the stands 

coppice-managed, whatever the water supply regime. Fine root biomass and root area index 

increased about 25 and 24 % respectively in the throughfall exclusion plot compared to the 

control plot down to a depth of 17 m. The changes in root distribution occurred mainly at depth 

> 7m. Therefore, the huge soil volume explored by fine roots might lead to significant CO2, 

N2O and CH4 productions within the entire rooting soil profile. A deeper root system could 

increase greenhouse gases emissions through an increase in production, respiration, exudation 

and decomposition processes. 

The central objective of this following chapter is to assess the effect of clear-cutting and drought 

on greenhouse gases production throughout deep soil profiles down to the water table in 

coppice-managed Brazilian eucalypt plantations. These effects were monitored before and after 

trees harvest in a coppice-managed Eucalyptus grandis plantation under two contrasting water 

supply regimes.  

This chapter presents the results of 1.8 years of greenhouse gases monitoring and is titled is 

“Consequences of clear-cutting and drought on CO2, CH4 and N2O productions throughout deep 

soil profiles in coppice-managed eucalypt plantations”. Co-authors associated with this project 

are Lydie Chapuis-Lardy, Yann Nouvellon, Christophe Jourdan, Agnès Robin, Joannès 

Guillemot, Ciro Antonio Rosolem, José Leonardo de Moraes Gonçalves, Iraê Amaral Guerrini 

and Jean-Paul Laclau.  
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Abstract  

The major factors driving greenhouse gas exchanges in forest soils (substrate supply, 

temperature, water content) can vary considerably with depth. Our study aimed to assess the 

effects of clear-cutting and drought on the temporal variability of CO2, CH4 and N2O fluxes 

throughout very deep soil profiles in Brazilian coppice-managed eucalypt plantations. CO2, 

CH4 and N2O surface effluxes at soil surface were measured over three years using the closed-

chamber method in a throughfall exclusion experiment comparing stands with 37% of 

throughfall exclusion (-W) and stands without rain exclusion (+W). CO2, CH4 and N2O 

concentrations in the soil were measured from two permanent pits down to a depth of 15.5 m 

in -W and +W, as well as down to a depth of 4 m in a non-harvested control plot (NH). 

Measurements were carried out every 2 weeks over 3 months before clear-cutting, then over 19 

months in coppice. CO2, CH4 and N2O effluxes were not significantly different between -W 

and +W and did not change after clear-cutting in the coppice-managed stands compared to non-

harvested stand. CO2 and CH4 concentrations greatly increased with depth and N2O 

concentrations remained roughly constant from the soil surface down to a depth of 15.5 m. 

Mean CO2 and N2O concentrations in -W were 20.7% and 7.6% lower than in +W, respectively, 

and CH4 concentrations in -W where 44.4% higher than in +W throughout the soil profiles. A 

diffusivity model showed that CO2, N2O and CH4 production and consumption occurred at great 

depths and were similar in +W, -W and NH plots. Clear-cutting did not increase CO2, CH4 and 

N2O effluxes and productions, whatever the water supply regime. Our study suggests that the 

consequences of changes in rainfall regimes and silvicultural practices on greenhouse gas 

emissions could be minor in tropical eucalypt plantations. 
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VI.1 Introduction  

Climate changes are expected to increase the contrast between dry and wet seasons in tropical 

and subtropical regions (Dai, 2011; He & Soden, 2017; Solomon et al., 2009). Climate models 

predict longer and more severe seasonal droughts in the future, as well as more frequent extreme 

rainfall events during rainy seasons (Chen et al., 2017). Changes in precipitation regimes may 

also have important feedback effects on climate through a modification of carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O) fluxes in forest soils (Davidson et al., 2004; 

Hashimoto et al., 2007). Understanding how precipitation changes, and especially extended 

drought periods, influence greenhouse gas effluxes in forest soils is crucial to improve the 

prediction of terrestrial biosphere models.  

The balance between production and consumption of CO2, CH4 and N2O in forest soils can be 

greatly affected by precipitation changes (Davidson et al., 2000b). Throughfall exclusion in 

tropical and subtropical forests has either decreased (Cleveland et al., 2010) or increased (Van 

Straaten et al., 2011; Wood & Silver, 2012) soil CO2 emissions, either increased consumption 

(Wood & Silver, 2012) and production (Cattânio et al., 2002) of CH4 and either lowered 

(Davidson et al., 2004) and increased (Cattânio et al., 2002) soil N2O emissions. An increase in 

soil water contents inhibits gas diffusion within soil profiles to the atmosphere as well as 

microbial production and consumption of greenhouse gases (Qi et al., 2018; Sotta et al., 2007). 

Root:shoot ratios generally increase in response to dry conditions as well as the proportion of 

deep roots (Germon et al., 2019; Markesteijn & Poorter, 2009), which can increase CO2 

production due to higher root respiration.  

Production of greenhouse gases by soil microorganisms and roots can change rapidly 

temporally and spatially, which makes modelling efforts challenging (Courtois et al., 2018; 

Drewitt et al., 2005). While most studies dealing with soil greenhouse gases effluxes address 

the spatial and temporal variations, the vertical distribution of soil respiration is little 

documented in very deep soils (Drewitt et al., 2005). Trees with roots at depths of more than 

10 m are common in tropical forests (Broedel et al., 2017; Nepstad et al., 1994; Saleska et al., 

2007). In a Brazilian Amazon forest, the consumption of CH4 occurred mainly in the upper 10 

cm, the production of N2O mainly in the 0-25 cm soil layer whereas CO2 was produced down 

to at least a depth of 11 m (Davidson et al., 2004) . In another Amazonian forest, CO2 production 

in the 0.5-3 m soil layer accounted for 17 % of the total soil CO2 production (Sotta et al., 2007). 
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Even if microbial activity is low in deep soil layers (Fontaine et al., 2007), the huge soil volume 

explored by fine roots might lead to non-neglectable CO2, N2O and CH4 productions.  

Fast-growing Eucalyptus plantations cover more than 20 million hectares  and are expanding 

rapidly to produced raw material for the industry (paper, wood panels, and biofuel) as well as 

firewood and charcoal in developing countries (Booth, 2013). In Brazil, Eucalyptus plantations 

cover about 5.6 million hectares and are mainly established on deep soils with low fertility and 

many plantation areas are subjected to prolonged drought periods (Keenan et al., 2015). The 

management of Eucalyptus plantations through coppice has been practiced by forestry 

companies due to lower production costs, shorter rotations and faster financial returns compared 

to replanted stands (Gonçalves et al., 2013). The root system established during previous 

rotations makes possible a rapid regrowth from the stump after harvesting. Eucalyptus fine roots 

can explore rapidly after planting both the superficial soil layers and very deep soil horizons 

(Germon et al., 2019; Laclau et al., 2013) and allocate about 30% of the gross primary 

productivity belowground, for root growth, root respiration and C exudation (Epron et al., 2012; 

Nouvellon et al., 2012; Ryan et al., 2010). Coppice management constitutes an advantage over 

sites with pronounced stress conditions, as the established root system preserves carbon for the 

next generation. However, removing the aboveground parts of trees has a great impact on 

carbon balance and greenhouses gases emissions of the ecosystem. Clear-cutting  increases the 

solar radiation transmitted to the soil, raising the soil temperature and soil water contents 

through an interruption of stand transpiration (Londo et al., 1999; Mello et al., 2007). This may 

induce an increase in microbial activity, the decomposition of harvest residues left at the soil 

surface and enhance fine root mortality and decomposition (Mello et al., 2007; Parfitt et al., 

2001).As far as we know, concentrations of greenhouse gas in deep soil layers have never been 

quantified in tropical planted forests in response to throughfall exclusion and coppice 

management. 

Our study aimed to assess the consequences of contrasting rainfall regimes on CO2, CH4 and 

N2O fluxes throughout very deep tropical soils in coppice-managed Eucalyptus grandis (Hill 

ex. Maid) stands after clear-cutting. We put forward three hypotheses: (H1) throughfall 

exclusion lower soil water contents, which increases gas diffusivity and modify greenhouse 

gases production and consumption, (H2) throughfall exclusion increases the partition of C to 

deep roots, which increases the production of CO2 in deep soil layers, and (H3) fine root 

mortality and slash decomposition after harvesting Eucalyptus grandis trees managed in 
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coppice increase substrate availability for microbes throughout the soil profile, which increases 

CO2, CH4 and N2O effluxes at soil surface.  

VI.2 Materials and Methods 

VI.2.1 Study site 

Our study was carried out at the research station owned by the Luiz de Quieroz College of 

Agriculture (ESALQ) near Itatinga (São Paulo state, Brazil, 23°02′S 48°38′W), at an altitude 

of 850 m. The relief is typical of the São Paulo Western Plateau, with a topography varying 

from flat to hilly (slopes < 3%). The soils are very deep Ferralsols according to the ISS Working 

Group WRB (2015) developed on Cretaceous sandstone. Clay contents range from 160 mg g-1 

in the topsoil to about 250 mg g-1 at a depth of 15 m (Christina et al., 2015). The local climate 

is humid subtropical (Cwa according to the Köppen classification) with a rainy season from 

October to May and a dry and slightly cold season from June to September. Over the last 15 

years, the mean air temperature was 20°C, the relative humidity was 77% and the mean annual 

precipitation was 1390 mm.  

VI.2.2 Experimental Layout 

A split-splot experimental design was installed on 2 hectares in June 2010, with the planting of 

a Eucalyptus grandis clone used in commercial plantations (Suzano Company). Three 

fertilization regimes and two rainfall regimes were compared in 3 blocks to gain insight into 

the interaction between tree nutrition and water availability on tree functioning (Battie‐Laclau 

et al., 2014a; Christina et al., 2015; Christina et al., 2018; Ployet et al., 2019). The experimental 

layout was described in detail in Battie‐Laclau et al. (2014b). Each plot was made of 144 trees 

(12 rows with 12 trees per row, spacing 3 x 2 m) and each experimental unit consisted of 36 

trees (excluding 3 buffer rows to avoid bordure effect). We studied two treatments out of the 6 

treatments in the experimental design as well as a non-harvested control plot in the same stand: 

• -W: plots were equipped with plastic sheets in September 2010 to exclude 37% of 

throughfall and fertilizers were applied to avoid any nutritional limitation of tree growth. 

• +W: undisturbed rainfall and same fertilization as in -W plots 

• NH: undisturbed rainfall and same fertilization as in -W and +W plots. Contrary to -W 

and +W, the trees were not harvested in June 2016. 
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Trees were planted in June 2010 and received at planting 3.3 g P m-2 and 200 g m-2 of dolomitic 

lime and trace elements. At 3 months of age, 0.45 mol K m-2 were applied as KCl and 12 g N 

m-2. These fertilizers inputs are not limiting for the tree growth (Laclau et al., 2009). Herbicides 

were applied to avoid the presence of understory species. The Eucalyptus stands were harvested 

six years after planting, in June 2016, and coppice-managed thereafter. Several new shoots were 

regenerated from the stumps after the clear-cut and 1 or 2 shoots per stump were selected to 

maintain the same stocking density and prevent the growth of additional new shoots.  

VI.2.3 Soil water monitoring and soil bulk density 

Between February and March 2014, two deep permanent pits were excavated in the +W and -

W treatments to set up sensors and to measure soil properties from the top soil down to the 

water table (Germon et al., 2019). The volumetric soil water content (SWC, m3 water m-3 soil) 

was monitored through the study period at half-hourly intervals using CS616 probes (Campbell 

Scientific Inc., Logan, UT, USA). Probes were installed in the +W and -W treatments at a depth 

of 0.15, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 14 and 16 m, with 3 probes at each depth in block 1. Soil 

bulk densities were measured by the standard core method down to a depth of 17 m in the +W 

and -W treatments. The total porosity was calculated from bulk density: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 −
𝐵𝐷

𝑃𝐷
 

where BD is measured bulk density and PD is an assumed particle density of 2.65 g cm-3 

(Davidson et al., 2006; Oerter et al., 2018; Sotta et al., 2007). The soil water content was 

expressed as the percentage of water filled pore space (WFPS, %) and was calculated for each 

depth as the volumetric water content (SWC) divided by the total porosity. 

VI.2.4 Gas sampling at the soil surface 

Soil CO2 efflux was monitored in the +W and -W treatments using a dynamic closed-path 

Li8100 system equipped with a 20 cm diameter Li8100-103 respiration chamber (LiCor Inc., 

Lincoln, NE, USA). 54 PVC collars (9 per plot in treatments +W and -W and 3 blocks) were 

installed in May 2010 to sample different distances from the tree (Figure VI. 1), using the 

methodology described in Nouvellon et al. (2008). Soil CO2 efflux was measured every 14 days 

over 3 years from December 2014 to December 2017, which represented 1.5 year before the 

clear-cut and 1.5 year after the clear-cut. In October 2016, 27 PVC collars were installed in the 

NH treatment to measure soil CO2 efflux from November 2016 to December 2017. 



     156 
 

Soil CO2, N2O and CH4 fluxes were measured simultaneously to the Li8100 measurements in 

the same plots. Chamber (diameter 40 cm, height 10 cm) collars were permanently set up in the 

+W, -W and NH plots (Metay et al., 2007). Four anchors were placed randomly in each plot at 

four distance from the trees, one month before the beginning of greenhouse gas efflux 

measurements (Figure VI. 1). Anchors were temporarily removed during stand harvest, then 

they were returned to the same location. Measurements were made every 14 days over one year 

from March 2015 to March 2016, then once a month between April 2016 and December 2017. 

Soil CO2, N2O and CH4 fluxes were monitored over 3 months before the clear-cut and over 19 

months after the clear-cut in the coppice-managed treatments +W and -W, as well as over 22 

months in the NH treatment. The chamber atmosphere was sampled 4 consecutive times (0, 10 

min, 20 min and 30 min after closure) during this period with 5 mL syringes previously purged.  

Gas samples were analyzed using electron capture gas chromatography (CPG-ECD, at the Plant 

Production Department - FCA, UNESP, Botucatu, Brazil). Gas samples were analyzed in less 

than 36 hours after sampling (the validity of this period was verified in a preliminary study). 

Concentrations of CO2, N2O and CH4 in soil air were calculated by comparison of integrated 

peak areas of samples with standard gases, which were used to make a four-point calibration. 

Calibration was done for each sampling date. More than 4000 gas samples have been analyzed 

in our study. 

Gas fluxes at the soil surface were calculated from the following equation: 

𝐹𝑠 =  
∆[𝐺𝑎𝑠]

∆𝑡
×

1

𝑆
×

𝑃𝑉

𝑅𝑇
 

where Fs is gas flux (µmol m-2 s-1 or nmol m-2 s-1), 
∆[𝐺𝑎𝑠]

∆𝑡
 is the slope of the regression line of 

gas concentrations (ppm or ppb) over time (s), S is the chamber surface (m2), V the chamber 

volume (m3), P the atmospheric pressure (Pa), R the perfect gas constant (8.3143 J K-1 mol-1) 

and T the temperature (K). 

Cumulative soil CO2, N2O and CH4 fluxes were estimated for each PVC collar and each 

chamber using linear interpolations of fluxes between each measurement date for all treatments.  

Gana et al. (2018) checked in a nearby eucalypt stand the validity of this method for CO2 

effluxes in comparison with monitoring every hour using automatic Li-cor chambers. Annual 

estimates of gas fluxes were made for each individual flux chamber.     
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VI.2.5 Gas sampling at different soil depths 

The permanent pits in the +W and -W treatments were 1.5 m in diameter and reached a depth 

of 17 m (Figure VI. 1). They were maintained by concrete rings to reduce potential soil collapse 

and disturbances of the soil system. To prevent light and rain entering the pits, clear-colored 

roofs of the same diameter as the pits were used. Platforms were set up at two-meter intervals 

in the pits, equipped with artificial lighting and fans used during working sessions, allowing 

access and safe work down to the water table (Germon et al., 2019). The high cost of opening 

and securing these pits prevented further replications in the other two blocks. However, other 

measurements, including CO2, N2O and CH4 effluxes, were made in the three blocks, making 

it possible to extrapolate some of the observations made in the two deep pits. In October 2015, 

a third pit was excavated in the non-harvested treatment (NH) down to a depth of 3.5 m to study 

the clear-cut effect. 

Soil CO2, N2O and CH4 concentrations were measured at a depth of 0.1, 0.5, 1.0, 3.5, 7.5, 11.5 

and 15.5 m (3 repetitions per depth, Figure VI. 1) in the +W and -W treatments and at 0.1, 0.5, 

1.0 and 3.5 m depths (3 repetitions per depth) in the NH treatment. Soil-gas samples were 

collected using a passive method: a 20 mL syringe was driven into the ground at 1.2 m from 

the lateral pit wall for each sampling depth (to be sure to sample an undisturbed soil area) and 

remained permanently in the soil throughout the study period (Chapuis-Lardy et al., 2009; 

Metay et al., 2007). Additional 1 m deep pits (3 per treatment in +W, -W and NH) were 

excavated to collect soil-gas samples at depths of 0.1, 0.5 and 1 m to increase the number of 

replications in the top meter, and then backfilled with soil horizons in their correct order. Soil 

gas was pumped from the inside of the pit (for permanent deep pits) or from the soil surface 

into a 5 mL syringe (after several “micropurge” to prevent gas sample from contamination). 

This equipment was installed into the soil more than one month prior to the first soil gas 

measurement to allow for passive diffusion from the soil into the syringe. Soil CO2, N2O and 

CH4 concentrations were measured on the same days as CO2, N2O and CH4 effluxes at the soil 

surface from March 2016 to December 2017: over 3 months before clear-cutting and 19 months 

after the clear-cut in the coppice-managed +W and -W treatments and over 22 months in the 

NH treatment. 
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Figure VI. 1:  A) Layout of the position of the pit in the +W treatment of block 1 and distribution of the PVC collars for closed-path Li8100 Licor 

system (n=9) and anchors for closed-chamber method (n=4). B) Layout of the position of the syringes for soil-gas sampling from the soil surface 

at 0.1, 0.5 and 1 m (n=3 per depth) and in the permanent pit at the depths of 3.5, 7.5, 11.5 and 15.5 m (n=3 per depth). The same set-up was used 

in the -W treatment.  The photographs show a view from the bottom of each pit, the top of one pit and the tube used to sample soil gas.  
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VI.2.6 Modeling effective diffusivity of CO2, N2O and CH4 1 

Gas production at each depth was calculated as the difference between the flux across soil layers 2 

(Risk et al., 2002). To estimate soil gas fluxes within the soil profile we used CO2, N2O and 3 

CH4 concentrations, soil physical properties and soil textural properties. Interlayer flux was 4 

determined from Fick’s Lax in one dimension. 5 

𝐹(𝑔𝑎𝑠) = −𝐷𝑠 
𝛿𝐶

𝛿𝑧
 6 

where Ds is the gas diffusivity in the soil, C is the concentration and z is the depth. This 7 

approach assumes that the concentration profile is momentarily at steady state. This model 8 

provides an estimate of the production that occurred below the depth of the calculated flux. The 9 

flux rates from soil gas concentrations depend on the soil gas diffusion coefficient. Effective 10 

diffusivity was estimated using the model of Moldrup et al. (1999), recommended for soils with 11 

clay contents < 30%: 12 

𝐷𝑠

𝐷𝑜
=  

𝜀2.5

√𝜑
 13 

where Do is the diffusivity of gas in air assumed to be 0.138, 0.144 and 0.195 cm2 s-1 for CO2, 14 

N2O and CH4, respectively, according to Massman (1998), 𝜀 is air-filled porosity and 𝜑 is the 15 

total porosity (Moldrup et al., 1999; Oerter et al., 2018). Air-filled porosity was calculated by 16 

difference between total porosity and soil volumetric water content at each depth.     17 

VI.2.7 Statistical analyses  18 

Linear mixed-effect models were used to test the effects of soil depth, treatment (+W and -W) 19 

and the interaction between depth and treatment on CO2, N2O and CH4 concentrations in soil 20 

air, as well as CO2, N2O and CH4 productions for the whole soil profile at each measurement 21 

date. Blocks were considered as random effects and residues were modelled by a first-order 22 

autoregressive correlation model to account for the correlations between soil depths. Two-way 23 

analyses of variance (ANOVAs) were used to assess the effect of treatments (+W, -W and NH) 24 

for individual soil layers on CO2, N2O and CH4 soil concentrations. CO2, N2O and CH4 fluxes 25 

at the soil surface were tested for statistical significance at each measurement date. The same 26 

analysis was made for cumulative CO2, N2O and CH4 fluxes over the study period. The 27 

homogeneity of variances was verified, and log-transformation were used when the residuals 28 
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did not follow a normal distribution. Tuckey’s post-hoc Honest Significant Difference (HSD) 29 

were used to determine the significant differences between treatments. Linear regressions were 30 

used to identify the correlation between CO2 production and root biomass as well as soil CO2 31 

effluxes measured with the closed chamber method and the close-path Li8100 system. R 32 

software version 3.4.4 (Team R 2013) was used for all the calculations and statistical analyses 33 

with a level of significance of 5%. The lmerTest package was used to perform the linear mixed-34 

effect models (Kuznetsova et al., 2017). 35 

VI.3 Results 36 

VI.3.1 Water filled pore space (WFPS) 37 

WFPS values throughout the soil profiles were strongly influenced by throughfall exclusion 38 

and reflected the distribution of rainfall events (Figure VI. 2). Mean WFPS from March 2016 39 

to December 2017 was 38.5 ± 12.7 % in the +W treatment and 31.7 ± 8.5 % in the -W treatment. 40 

At a depth of 0.5 m, WFPS ranged from 15.6% to 41.1% in the +W treatment and from 14.0% 41 

to 34.0% in the -W treatment. At a depth of 14 m, WFPS ranged from 34.7% to 53.7% in 42 

treatment +W and from 28.5% to 30.9% in treatment -W. At the end of the rainy season, mean 43 

WFPS in the 0-14 m soil layer were 37.9% and 30.7% in the +W and -W treatments, just before 44 

the clear-cut (June 2016), respectively, and 42.1% and 36.1%, 1 year after the clear-cut (June 45 

2017). The soil profiles were refilled with water after the clear-cut as a result of an interruption 46 

in tree transpiration in coppice-managed stands. Water contents were lower in the -W treatment 47 

than in the +W treatment before the clear-cut and the difference between the two treatments 48 

persisted over the first 1.5 year after the clear-cut.49 
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Figure VI. 2: Daily rainfall (A) and water filled pore space (WFPS, %) within the soil profiles down to a depth of 16 m in the undisturbed rainfall 

plots (+W, B) and in the plots with 37% of throughfall excluded by plastic sheets (-W, C) from March 2016 to December 2017. Water filled pore 

space graphical representation is a contour line interpolation obtained with marching square algorithm. R software version 3.4.4 and the “plotly” 

package version 4.8.0 were used. The clear-cut is indicated by a vertical line and the stand was coppice-managed after the clear-cut.  
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VI.3.2 CO2, N2O and CH4 effluxes at the soil surface  

Soil CO2 effluxes measured with the Li-8100 device exhibited pronounced seasonal variations 

and reflected the dynamics of WFPS in the upper soil layers, with low values over the dry 

season (from June to September) and high values over the wet season (Figure VI. 3). Soil CO2 

effluxes over the study period ranged from 1.5 to 7.0 µmol m-2 s-1 in treatment -W and from 1.5 

to 7.3 µmol m-2 s-1 in treatment +W. Cumulative surface effluxes the last year before the clear-

cut were 136.5 ± 21.8 and 130.3 ± 24.8 mol m-2 year-1 in treatments +W and -W, respectively, 

and they were 108.0 ± 15.8 and 119.3 ± 22.5 mol m-2 year-1 the first year after the clear-cut in 

coppice-managed stands (Figure VI. 3). These cumulative soil CO2 effluxes were not 

significantly different between treatments +W and -W. Soil CO2 effluxes measured with the 

home-made closed-chamber system exhibited the same seasonal pattern and similar range of 

values as the soil CO2 effluxes measured using the closed-path Li8100 system. The correlation 

between soil CO2 effluxes measured from October 2016 to October 2017 by the two methods 

was high (r2= 0.80), which suggests accurate estimates of N2O and CH4 fluxes using the closed-

chamber method at our site (Appendix VI. 1). The clear-cut did not significantly (p = 0.379) 

affect soil CO2 effluxes measured using the Li-8100 device (0.58 ± 0.19 and 0.47 ± 0.14 kg 

CO2 m
-2 months-1 in NH and +W, respectively, from June 2016 to December 2017). 



     164 
 

 



A. Germon 2019       165 
 

Figure VI. 3: A) Time course of soil CO2 efflux (µmol m-2 s-1) measured using the Li-8100 device in the undisturbed rainfall treatment (+W, blue) 

and in the treatment with 37% of throughfall excluded by plastic sheets (-W, orange) measured every 14 days from December 2014 to December 

2017. Standard errors are shown (shaded area). The vertical line indicates the date of the clear-cut. B) Boxplots of soil CO2 effluxes in treatments 

+W (blue) and -W (orange) from December 2014 to December 2017. Overlapping notches between boxplots suggest that the medians did not 

significantly differ. C) Cumulative soil CO2 effluxes (mol m-2 year-1) at yearly time scale in treatments +W (blue) and -W (orange), the last year 

before the clear-cut (between 5 and 6 years after planting) and the first year after the clear-cut in coppice-managed stands. 
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Soil CH4 effluxes ranged from -6.1 to -1.4 nmol m-2 s-1 in treatment +W (-3.7 ± 1.5 nmol m-2 s-

1 on average) and from -5.6 to -1.2 nmol m-2 s-1 in treatment -W (-3.3 ± 0.8 nmol m-2 s-1 on 

average) throughout the study period (Figure VI. 4).  Negative effluxes of CH4 at soil surface 

indicated a net consumption of atmospheric CH4 by the soil. Similar cumulative soil CH4 

effluxes over 1.5 year after the clear-cut between treatments +W and -W (F = 4.002, P = 0.465), 

as well as between treatments +W and NH (F = 3.262, P = 0.116), showed that throughfall 

exclusion and clear-cutting did not significantly influence soil CH4 effluxes (data not shown). 

 

Soil N2O effluxes ranged from -0.09 to 1.68 nmol m-2 s-1 in treatment +W (0.48 ± 0.46 nmol m-

2 s-1 on average) and from -0.08 to 1.27 nmol m-2 s-1 in -W (0.43 ± 0.33 nmol m-2 s-1 on 

average)(Figure VI. 4). Similar cumulative soil N2O effluxes over 1.5 year after the clear-cut 

between treatments +W and -W (F = 0.675, P = 0.412), as well as between treatments NH and 

+W (F = 2.748, P = 0.616), showed that throughfall exclusion and clear-cutting did not 

significantly influence soil N2O effluxes (data not shown). 
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Figure VI. 4: Time course of soil CO2 (µmol m-2 s-1, A), CH4 (nmol m-2 s-1, C) and N2O (nmol m-2 s-1, E) effluxes in the undisturbed rainfall 

treatment (+W, blue) and in the treatment with 37% of throughfall excluded by plastic sheets (-W, orange) measured every 14 days from March 

2016 to October 2017. The vertical line indicates the date of the clear-cut. Standard errors are shown (shaded area). Boxplots of soil CO2 (B), CH4 

(D) and N2O (F) effluxes from March 2016 to October 2017 in treatments +W and -W are shown. Overlapping notches between boxplots suggest 

that the medians did not significantly differ. 
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VI.3.3 Gas concentrations throughout deep soil profiles 

Mean CO2 concentrations from March 2016 to December 2017 were 22.1% higher in treatment 

+W than in treatment -W across the sampling depths (Figure VI. 5 A, B). CO2 concentrations 

sharply increased with depth in treatments +W and -W. At a depth of 0.1 m, CO2 concentrations 

ranged from 2438 to 9560 ppm in treatment -W (4774 ppm on average), and from 1700 to 9844 

ppm in treatment +W (4178 ppm on average). At a depth of 15.5 m, CO2 concentrations ranged 

from 9174 to 21784 ppm in treatment -W (13467 ppm on average), and from 13220 to 23938 

ppm in treatment +W (18303 ppm on average).  

 

Mean CH4 concentrations from March 2016 to December 2017 were 37.5% lower in treatment 

+W than in treatment -W across the sampling depths (Figure VI. 5 C, D). CH4 concentrations 

increased with depth in treatments +W and -W. At a depth of 0.1 m, CH4 concentrations ranged 

from 0.14 to 0.92 ppm in treatment -W (0.37 ppm on average), and from 0.18 to 0.96 ppm in 

treatment +W (0.44 ppm on average). At a depth of 15.5 m, CH4 concentrations ranged from 

0.47 to 1.29 ppm in treatment -W (0.92 ppm on average), and from 0.27 to 0.89 ppm in 

treatment +W (0.61 ppm on average).  

 

Mean N2O concentrations from March 2016 to December 2017 were 7.6% higher in treatment 

+W than in treatment -W across the sampling depths (Figure VI. 5 E, F). At a depth of 0.1 m, 

N2O concentrations ranged from 352 to 634 ppb in treatment -W (447 ppb on average), and 

from 355 to 685 ppb in treatment +W (454 ppb on average). At a depth of 15.5 m, N2O 

concentrations ranged from 347 to 545 ppb in treatment -W (454 ppb on average), and from 

400 to 573 ppb in treatment +W (496 ppb on average).  
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Figure VI. 5: Time course of CO2 concentrations (ppm) within the soil profile down to a depth of 16 m (A) in the undisturbed rainfall treatment 

(+W) and (B) in the treatment with 37% of throughfall excluded by plastic sheets (-W), from March 2016 to December 2017. Time course of N2O 

concentrations (ppb) within the soil profile down to a depth of 16 m in treatment +W (C) and in treatment -W (D). Time course of CH4 

concentrations (ppm) within the soil profile down to a depth of 16 m in treatment +W (E) and in treatment -W (F). Graphical representations are 

contour line interpolations using a marching square algorithm (R software version 3.4.4 and the “plotly” package version 4.8.0). The clear-cut date 

is indicated by a vertical line and the stand was coppice-managed after the clear-cut. 
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VI.3.4 CO2, CH4 and N2O productions throughout soil profiles 

CO2, CH4 and N2O productions over the study period were much less influenced by throughfall 

exclusion than the concentrations throughout the soil profiles (Figure VI. 6). CO2 and N2O 

productions were highest and CH4 production lowest in the upper soil layer (0-1 m), as a result 

of a large gradient of concentrations in the topsoil and high effective diffusivity. CO2 and N2O 

productions at depths of more than 4 m were close to 0 throughout the study period, and CH4 

productions were generally slightly positive in very deep soil layers (Figure VI. 6). At a depth 

of 0.1 m, CO2 production ranged from 0.4 to 4.6 µmol m-2 s-1 in treatment -W and from 0.9 to 

6.7 µmol m-2 s-1 in treatment +W, CH4 production ranged from -26.4 to 21.3 nmol m-2 s-1 in 

treatment -W and from -41.1 to 5.2 nmol m-2 s-1 in treatment +W, and N2O production ranged 

from -5.2 to 3.8 nmol m-2 s-1 in treatment -W and from -4.4 to 6.4 nmol m-2 s-1 in treatment +W. 

At a depth of 11.5 m, CO2 production ranged from -0.06 to 0.08 µmol m-2 s-1 in -W and from -

0.04 to 0.03 µmol m-2 s-1 in +W, CH4 production ranged from -0.63 to 1.41 nmol m-2 s-1 in -W 

and from -0.13 to 0.41 nmol m-2 s-1 in +W and N2O production ranged from -0.20 to 0.04 nmol 

m-2 s-1 in -W and from -0.04 to 0.04 nmol m-2 s-1 in +W.  CO2 production and fine root biomass 

(diameter < 2 mm) were strongly positively correlated across the soil layers (r2= 0.76 for +W 

and r2= 0.56 for -W) (Appendix VI. 2). 

Whatever the soil layer, cumulated CO2, CH4 and N2O fluxes over the first year after the clear-

cut in coppice-managed stands were not significatively different in treatments +W and -W 

(Figure VI. 7). The cumulative CO2 flux through the 0.1-0.5 m soil layer accounted for 76% 

and 53% of the cumulative CO2 efflux at the soil surface in treatments +W and -W, respectively. 

The cumulative CH4 flux through this soil layer accounted for 55% and 53% of the cumulative 

CH4 efflux at the soil surface in treatments +W and -W, respectively. The cumulative N2O flux 

through this soil layer accounted for 80% and 58% of the cumulative N2O efflux at the soil 

surface in treatments +W and -W, respectively. The CO2, CH4 and N2O fluxes through the soil 

layers dropped below a depth of 1 m. The small CO2, CH4 and N2O productions in deep soil 

layers corresponded to high soil water contents (Figure VI. 8). The temporal variability of CO2, 

CH4 and N2O production was high when the water filled pore space was below a threshold of 

40%, with either CH4 consumption or production in the upper soil layers depending on the 

sampling period.  
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Figure VI. 6: Time course of CO2 production (µmol m-2 s-1) calculated with the diffusivity model within the soil profile down to a depth of 16 m 

(A) in the undisturbed rainfall treatment (+W) and (B) in the treatment with 37% of throughfall excluded by plastic sheets (-W), from March 2016 

to December 2017. Time course of N2O production (nmol m-2 s-1) within the soil profile down to a depth of 16 m in treatment +W (C) and in 

treatment -W (D). Time course of CH4 production (nmol m-2 s-1) within the soil profile down to a depth of 16 m in treatment +W (E) and in 

treatment -W (F). Graphical representations are contour line interpolations using a marching square algorithm (R software version 3.4.4 and the 

“plotly” package version 4.8.0). The clear-cut date is indicated by a vertical line and the stand was coppice-managed after the clear-cut. 
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Figure VI. 7: A) Cumulative CO2 fluxes (mol m-2 year-1), B) cumulative CH4 fluxes (mol m-2 year-1), and C) cumulative N2O fluxes (mmol m-2 

year-1) the first year after the clear-cut in coppice-managed stands in the undisturbed rainfall treatment (+W, blue) and in the treatment with 37% 

of throughfall excluded by plastic sheets (-W, orange). Cumulative fluxes of CO2, CH4 and N2O were not significantly different (P < 0.05) between 

treatments +W and -W, whatever the soil layer.  
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Figure VI. 8: Relationship between water filled pore space (WFPS) and CO2 (A), CH4 (B) and N2O (C) production obtained using the diffusivity 

model for each soil layer 0.1-0.5 m, 0.5-1 m, 1-3.5 m, 3.5-7.5 m and 7.5-11.5 m in the undisturbed rainfall treatment +W.  
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VI.4 Discussion 

VI.4.1 Effect of depth on soil CO2, CH4 and N2O productions 

The main novelty of our results lies in the first in situ measurements of CO2, N2O and CH4 

concentrations at depths of more than 10 m in tropical planted forests, which made it possible 

to estimate the dynamics of production of major greenhouse gases in response to contrasting 

management and environmental conditions. While CO2 and CH4 concentrations increased 

sharply with depth throughout the soil profile, N2O concentrations where much less influenced 

by the depth. A strong increase in soil CO2 concentration with depth has been reported in deep 

tropical soils with an order of magnitude consistent with our results. Soil CO2 concentrations 

reached 80,000 ppm in a Brazilian Amazon rainforest (Davidson et al., 2004; Sotta et al., 2007; 

Trumbore et al., 1995), 30,000 ppm in a tropical rainforest in Costa Rica (Schwendenmann & 

Veldkamp, 2006) and 140,000 ppm in an agroforestry system in Indonesia (Van Straaten et al., 

2010). The highest soil CO2 concentration reached 25,000 ppm in our study at a depth of 15.5 

m. Physical, chemical, mineralogical and biological properties can change considerably 

throughout deep soil profiles (Davidson et al., 2006; Fierer et al., 2003; Oerter et al., 2018; 

Wiaux et al., 2015). In our study, higher soil water contents in deep soil layers than in the topsoil 

led to a low proportion of air-filled pore space in deep soil layers and therefore a slow diffusion 

rate of the greenhouse gases to the atmosphere. Eucalyptus fine roots have been found down to 

the water table at a depth of 17 m in our experiment (Germon et al., 2019), and the deepest roots 

have an important functional role to withdraw water during dry periods (Christina et al., 2018). 

The sharp increase in CO2 concentrations with soil depth might therefore reflect both CO2 

production in deep soil layers through root respiration and microbial decomposition of organic 

matter (dead roots, exudates, dissolved organic matter,…) and slow upward diffusion rates of 

gas in soil layers with a high proportion of water-filled pore space (Davidson et al., 2004; 

Schwendenmann & Veldkamp, 2006; Sotta et al., 2007). CO2 production estimates from Fick’s 

law highlighted that CO2 production occurs mainly in the upper soil layers but small production 

rates occur down to a depth of 15 m. A low availability of microbial available C, very small 

nutrient concentrations in soil solutions and very low fine root densities in deep soil layers in 

our experiment (Germon et al., 2019; Laclau et al., 2010; Pradier, 2016) contributed to limiting 

the microbial activity (Fierer et al., 2003). The strong positive correlation between CO2 

production and fine root biomass along the soil profiles suggest that Eucalyptus roots are 

probably the main source of CO2 in deep soil layers, both through root respiration and organic 
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inputs decomposed by microbes. The same pattern was shown down to a depth of 7 m in a moist 

tropical forest (Davidson et al., 2004). The seasonality of CO2 production was stronger in the 

topsoil than in deep soil layers. CO2 production was close to 0 above a threshold of water filled 

pore space of 45% and small negative values of CO2 production were estimated in some deep 

soil layers. Negative values for CO2 production in deep soil layers have been reported in other 

studies (Davidson et al., 2004; De Jong & Schappert, 1972; Risk et al., 2002). We speculate 

that high transpiration rates of E. grandis trees in our experiment (Christina et al., 2018) might 

lead to a withdrawal of dissolved CO2 from deep soil layers to leaves through sap flow (Aubrey 

& Teskey, 2009; Bloemen et al., 2013; Ford et al., 2007; Hanson & Gunderson, 2009). Further 

studies are needed to quantify the flux of dissolved CO2 via the xylem as Eucalyptus transform 

almost all incoming energy into latent heat flux through transpiration (Vezy et al., 2018).  

CH4 concentrations increase with soil depth in our study but they usually remain below the 

concentration in ambient air. CH4 concentrations higher than in ambient air were measured at 

a few sampling dates in deep soil layers. As in our study, Davidson et al. (2004) found some 

soil areas with high CH4 productions down to a depth of 11 m in a moist tropical forest. Spikes 

of CH4 concentration within the soil profile suggested that CH4 production occurred at various 

depths (down to 8 m) in a forest of the eastern Amazonia (Verchot et al., 2000). We show a 

CH4 consumption in the topsoil and a weak CH4 production in deep soil layers whatever the 

water supply regime in our experiment. CH4 production primarily depends on the balance 

between two simultaneously occurring processes, production by methanogens and consumption 

by methanotrophic microorganisms (Dutaur & Verchot, 2007; Tate, 2015). Diffusion of gases 

are inversely proportional to the water-filled pore space. When the water-filled pore space 

decreases, the oxygen diffuses better and small changes in oxygen availability impact the 

balance between the two processes (Sanz-Cobena et al., 2014; Wang et al., 2018). Indeed, drier 

soil condition enhance CH4 consumption whereas CH4 production is favored by microsites 

deprived of O2 in wet soil (Davidson, 1995).  

Surprisingly, soil N2O concentrations were little influenced by the depth in our eucalypt stands. 

By contrast, Verchot et al. (1999) showed a sharp gradient of N2O concentrations down to a 

depth of 8 m in a tropical forest of the eastern Amazonia, which suggested a low production in 

deep soil layers. N2O production in soils is driven by microbial nitrification (i.e. oxidation of 

NH4
+ to NO3

-) and denitrification (i.e. reduction of NO3
- to N2O) (Bai et al., 2014; Ortiz-

Gonzalo et al., 2018; Zhong et al., 2014). Soil microbes consuming N2O have been identified 

recently (Jones et al., 2013; Jones et al., 2014; Orellana et al., 2014; Sanford et al., 2012), and 
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the low changes in N2O concentrations with depth in our study might result from a simultaneous 

production and consumption throughout the soil profile. The diffusivity model estimated 

slightly negative N2O productions in some soil areas, which might a result of a reduction from 

dissolved N2O to N2 and/or a withdrawal from deep soil layers to leaves through sap flow 

(Chapuis‐Lardy et al., 2007).  

VI.4.2 Effect of throughfall exclusion on soil CO2, CH4 and N2O productions 

Contrary to our first hypothesis, throughfall exclusion did not significantly influence CO2, N2O 

and CH4 effluxes at the soil surface as well as the production throughout the soil profile 

estimated with the diffusivity model. In both treatments +W and -W, soil CO2 effluxes were 

within the range of measurements in tropical forest ecosystems (Cattânio et al., 2002; Davidson 

et al., 2004; Davidson et al., 2008; Nouvellon et al., 2012; Sotta et al., 2007). Higher CO2 

effluxes in wet season than in dry season suggest that soil moisture could be a strong driver of 

soil CO2 emissions, as pointed out in other tropical and subtropical forests (Courtois et al., 2018; 

Davidson et al., 2010; Davidson et al., 2004; Sotta et al., 2007). Davidson et al. (2008) also 

found strong seasonal variations and no significant differences between control and throughfall 

exclusion treatments on CO2 effluxes in an Amazonian forest. Unlike our observations, Sotta 

et al. (2007) showed in an Amazonian forest that CO2 effluxes were lower in a throughfall 

exclusion plot than in the control plot during the dry season, and no differences were found 

between the control plot and the throughfall exclusion plot during the wet season. Fine root area 

index in treatment -W (32.8 m2 m-2) was significantly higher than in treatment +W (26.5 m2 m-

2) in our 1.5-year-old coppice-managed Eucalyptus plantation (Germon et al., 2019), which may 

have offset the depressive effect of throughfall exclusion on microbial activity via a decrease 

in soil moisture.  

In both treatments +W and -W, CH4 effluxes at soil surface were strongly negative over the 

entire study period, which shows a net consumption of atmospheric CH4 by the soil. CH4 

consumption is common in nearly all types of aerated soils: in forests (Davidson et al., 2004; 

Davidson et al., 2008; Nakano et al., 2004), deserts (Hou et al., 2012; McLain & Martens, 2006; 

Oerter et al., 2018), grasslands (Fang et al., 2014; Mosier et al., 1991) and tundra (Whalen & 

Reeburgh, 1990). A wide diversity of methanotrophs in tropical soils might account for steady 

CH4 effluxes at the soil surface in treatments +W and -W despite strong seasonal changes in 

soil water contents (Knief et al., 2005). N2O effluxes at the soil surface were also similar in 

treatments +W and -W, with low seasonal variations. N2O effluxes were generally lower in dry 

season than in wet season in an Amazonian forest, and throughfall exclusion decreased the 
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seasonal variability (Davidson et al., 2004). N2O production is favored in wet soils while dry 

conditions favor the production of NO (Davidson et al., 2000a; Firestone & Davidson, 1989). 

Interruption of tree transpiration after cutting the trees in our experiment led to high soil water 

contents in the topsoil over most of the study period, which might explain the low influence of 

treatments +W and -W on greenhouse gas effluxes.  

While CO2, N2O and CH4 effluxes at the soil surface were not influenced by throughfall 

exclusion in our study, the concentrations of CO2 and N2O were 18.1 and 6.9% lower, 

respectively, and  CH4 concentrations were 60% higher in treatment -W than in treatment +W. 

Modeling effective diffusivity showed that the cumulated production rates of CO2, N2O and 

CH4 in each soil layer were similar in the two treatments. The effects of throughfall exclusion 

on gas concentrations throughout the soil profiles were mainly a result of the influence of soil 

water contents on soil gas diffusivity. High soil water contents in the +W treatment lead to a 

saturation of the pore-space with water, which results in a slow diffusion of greenhouse gases 

to the atmosphere also pointed out in other studies (Maier et al., 2017; Wang et al., 2018). 

Throughfall exclusion experiments in tropical and subtropical forests show site-dependent 

responses to a decrease in throughfall for CO2, N2O and CH4 concentrations in very deep soil 

profiles (4 m deep or more). Throughfall exclusion can either decrease (Cattânio et al., 2002) 

or increase (Davidson et al., 2004), N2O concentrations in deep soil profiles and can lead to 

either similar (Davidson et al., 2004) or lower (Sotta et al., 2007; Van Straaten et al., 2011), 

CO2 concentrations than in control plots. CH4 concentrations in deep soil profiles were either 

similar (Davidson et al., 2004) or higher (Cattânio et al., 2002) in response to throughfall 

exclusion than in control plots.  

VI.4.3 Effect of harvesting trees on soil CO2, CH4 and N2O effluxes 

Contrary to our third hypothesis, cutting all the trees did not lead to an increase in CO2, CH4 

and N2O effluxes, whatever the water supply regime. Harvesting Eucalyptus trees in plantations 

managed in short rotations lead to huge changes in soil environment likely to enhance organic 

matter decomposition, with an increase in soil temperature and soil moisture as well as 

accumulation of harvest residues at soil surface (Christina et al., 2017; Mendham et al., 2002; 

O'connell et al., 2004; Rocha et al., 2016). Another study in our experiment showed that 

harvesting did not lead to an increase in root mortality in the stands managed in coppice, 

whatever the water supply regime (Germon et al., 2019). We speculate that the lack of effect of 

clearcutting on CO2 effluxes in our experiment may result from a decrease in root respiration 

after the harvest offsetting an increase in decomposition of organic matter at the soil surface.  
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Replanting present several drawbacks. Parfitt et al. (2001) showed that harvesting and 

replanting Pinus radiata resulted in a reduction of N status in soil, a loss of organic matter and 

an increase in soil respiration because roots from the previous rotation are decomposed and 

surface-soil microbial activity is enhanced following the clear-cut. Furthermore, harvesting and 

replanting are usually accompanied by considerable soil disturbance and also are longer 

exposed to wind and to erosion (Berhongaray et al., 2017). Coppice management might be an 

interesting option in Eucalyptus plantations managed in short rotation, to help mitigate the 

increase in CO2, CH4 and N2O in the atmosphere and to limit soil erosion compared to 

systematic replanting.  

Very deep tropical soils cover large areas worldwide and improving our understanding of soil- 

plant interactions throughout deep soil profiles is needed to improve the biogeochemical models 

used to predict the consequences of climate change on greenhouse gas effluxes in tropical 

planted forests. The dynamics of greenhouse gas concentrations in soil profiles result from the 

activity of microbial communities and can help gaining insight into the factors controlling 

biological activity in deep soil layers. 
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Appendix 

Appendix VI. 1: Time course of soil CO2 efflux (µmol m-2 s-1) in the undisturbed rainfall 

treatment (+W, blue) and in the treatment with 37% of throughfall excluded by plastic sheets (-

W, orange) measured every 14 days from October 2016 to October 2017 A) using the Li-8100 

closed-path system and B) the closed-chamber method. Standard errors are shown (shaded 

area). Relationship between soil CO2 efflux (µmol m-2 s-1) measured using the Li-8100 closed-

path system and the closed-chamber method in exclusion and undisturbed rainfall treatments 

(C).   
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Appendix VI. 2: Relationship between fine root biomass (diameter < 2mm) and CO2 production 

cumulated over 1 month (October 2017) in soil layers 0.1-0.5 m, 0.5-1 m, 1-3.5 m, 3.5-7.5 m 

and 7.5-11.5 m in the undisturbed rainfall treatment (+W, blue) and in the treatment with 37% 

of throughfall excluded by plastic sheets (-W, orange). Fine roots were sampled in October 

2017. 
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What to remember from Chapter 6? 

The main results of this chapter are summarized in the following Table VI. 1.  

Table VI. 1: Main results obtained in the experimental set up on water filled pore space, CO2, 

CH4 and N2O in deep soil layers, subjected to drought and in response of clear-cutting and 

coppice management.  indicates a positive effect,  indicates a negative trend and   

indicates predominantly no effect. 

Categories Sub-categories Depth Drought Clear-cut 

Water Water filled pore space (%)    

CO2 Effluxes at soil surface    

 Concentration in the soil    

 Production within the soil profile    

N2O Effluxes at soil surface    

 Concentration in the soil    

 Production within the soil profile    

CH4 Effluxes at soil surface    

 Concentration in the soil    

 Production within the soil profile    
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CHAPTER 7:  GENERAL DISCUSSION AND PERSPECTIVES 

The general objective of this study was to assess the effect of clear-cutting Eucalyptus stands 

managed in coppice on fine root production as well as CO2, N2O and CH4 fluxes throughout 

the entire soil profile, down to the water table, with a focus at great depth. The study was carried 

out in Eucalyptus plantations in Brazil, which has already been proven to be an excellent model 

to understand more precisely aboveground and belowground ecophysiological and 

biogeochemical processes (Laclau et al., 2010; Battie-Laclau et al., 2016; Pradier et al., 2017). 

Two contrasting water regimes were studied to gain insight into the effects of drought periods 

that are predicted to be more frequent over the next decades. The current, natural water regime 

(+ W) was compared to a reduced water regime (-W), simulating a reduction in precipitation of 

about one third. Fine roots and greenhouse gases were sampled down to the water table (here 

located at a depth of 17 m) through large and deep wells, over one year before the clear-cut and 

two years after harvesting, in coppice-managed plantations as well as down to a depth of 4 m 

in a non-harvested plot (NH) serving as a control. 

This study aimed to test four hypotheses: 1/ Eucalyptus trees are able to adapt their fine root 

dynamics depending on their environment to better access the soil resources,  2/ a change in 

fine root dynamics can occur between the topsoil and deep soil horizons when trees are 

subjected to drought conditions, 3/ throughfall exclusion can significantly affect greenhouse 

gas production and consumption within the soil profile by modifying gas diffusivity, 4/ coppice 

management increases the efflux of GHG as a result of fine root mortality and decomposition 

of harvest residues. The consequences of tree harvesting on fine root dynamics and the 

production of greenhouse gases over the first year of the rotation in coppice-managed 

plantations ask specific questions never studied in very deep soil layers. 

Through this work, we wanted to answer four scientific questions: 

1. What are the dynamics of eucalypt fine roots, CO2, N2O and CH4 concentrations 

throughout the entire soil profile down to a depth of 17 m? 

 

2. Are fine root dynamics and fine root traits differently impacted by a change in water 

regime depending on soil depth? 

 

3. What are the consequences of drought on greenhouse gas production in eucalypt 

plantations established in deep Ferralsols?  
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4. How clear-cutting affect root production and mortality but also greenhouse gas 

production in coppice-managed eucalypt plantations? 

The work in this thesis consisted in collecting greenhouse gases down to a depth of 15.5 m, 

measuring greenhouse gas effluxes, collecting root samples down to the water table and 

monitoring root dynamics over 3 years (Chapters 5 and 6). This approach provided original 

results on fine root dynamics and greenhouse gas production in very deep soil layers in coppice-

managed Eucalyptus plantation subjected to two contrasted rainfall regimes. A modeling 

approach was then used to gain insight into the processes governing CO2 transfer at a local scale 

but revealed several issues that we could not overcome over the available time of 6 months at 

the end of the thesis (Additional work). Finally, this last chapter aims at discussing the results 

obtained throughout the thesis and is organized in two parts. In the first one, we discuss the 

contribution of deep roots in tree adaptation to drought conditions and the importance of 

considering the entire soil profile when evaluating stand-scale greenhouse gases emissions. In 

the second, we argue, according to an operational point of view, that coppice management 

might be an interesting option in tropical plantations to improve tree tolerance to drought and 

store carbon in deep soil layers.  

VII.1 Scientific discussion: contribution for global concepts 

VII.1.1  Effect of climate change on forest plantations: Let’s look deeper!  

Understanding the effects of climate changes, predicting its potential impacts and anticipating 

adaptation is mandatory for the sustainability of fiber and food production in a context of 

increasing human population. If greenhouse gas emissions maintain their current increase, 

climate change may increase the vulnerability of agricultural and forestry systems and reduce 

production in some parts of the world. Perennial plantations will be particularly affected by 

climate change, because a plot planted today must be able to cope with all the climatic 

conditions that will be encountered up to tree harvest, from a few years to several decades after 

planting. Predicting accurately the future climate is challenging. It requires complex models 

that consider many processes that can potentially greatly influence the predictions when the 

model is sensitive to some parameters. Yet, many processes are still not completely understood 

for deep rooted species, especially for the ones occurring at great soil depth. Deep rooting is 

common in tropical forests (Nepstad et al., 1994; Canadell et al., 1996; Jackson et al., 2000)  

where severe drought events are predicted to occur over the next decades. In tropical forest 
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plantations, it is then crucial to focus the research efforts on the understanding of deep soil 

processes to assess the potential impacts of climate changes.  

Current climate models predict a reduction in rainfall associated with an intensification of dry 

seasons in many parts of the word, and in Brazil particularly. Assessing how trees will adapt to 

climate changes is a major challenge. Therefore, field experimentations simulating future 

climates are crucial to parameterize biogeochemical global models making it possible to predict 

how ecosystems will respond to climate changes. 

Anthropogenic climate changes are caused mainly by greenhouse gas (GHG) emissions. GHGs 

refer to all gases of natural or anthropogenic origin that contribute to the greenhouse effect. 

Potential efficiency of greenhouse gases regarding global warming is highly variable. By 

definition, the overall global warming potential of CO2 is equal to 1 and CH4 and N2O are 23 

and 298 times more efficient to warm the earth over a 100-year period as compared to CO2, 

respectively. In the early 1990s, through the multiplication of scientific evidence and 

international conferences on climate (including the conference of Kyoto in 1997), the 

international community has become aware of the potential importance for climate changes of 

increasing concentrations of anthropogenic GHGs in the atmosphere (mainly CO2, N2O and 

CH4) and the need to reduce them. To reduce the concentrations of GHGs in the atmosphere, 

two types of actions can be considered: 

1. Decrease sources, in other words, reduce the level of GHG emissions. 

2. Increase sinks, in other words, favor the transfer and storage of GHGs in other 

compartments where they would be stabilized, for example, in the form of carbonate 

sediments, woody plant biomass and / or stabilized organic matter. 

Our study puts forward the need to consider deep soil layers to evaluate both actions. Indeed, it 

is mandatory to study deep soil layers in order to quantify accurately C source/sink fluxes as 

part of the global carbon budget. Quantifying C fluxes in deep soil layers is needed to improve 

the biogeochemical models predicting the effect of drought periods on greenhouse gas effluxes, 

and to identify more sustainable silvicultural practices for tropical planted forests in a context 

of climate changes. 
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VII.1.2  Looking deeper to quantify sinks accurately   

Our study in a 2-ha split-plot experimental design manipulating water availability contributed 

to evaluating the impact of rainfall reduction on the productivity and adaptability of Eucalyptus 

plantation in a context of global change. Our results clearly show that Eucalyptus trees facing 

drought invest more in belowground biomass to increase the exploration of fine roots in deep 

soil layers (Figure VII. 1). This adaptive strategy to drought stress of perennial plant species, 

investing assimilates to develop the deep root system, increases the availability of water stored 

in very deep soil layers to maintain tree growth during drought periods (Christina et al., 2017). 

Furthermore, the increased surface of root in contact with soil through an adjustment of fine 

root morphology (SRA, SRL, diameter, Figure VII. 1) reflects a significant expression of root 

plasticity in response to limited soil resources (Hodge, 2004; Fort et al., 2015; Roumet et al., 

2016).  

A higher investment in deep roots in response to a rainfall reduction might also influence other 

key processes such as tree functional status (i.e. growth and senescence), C rhizodeposition and 

rhizosphere biogeochemical properties. For instance, we found a non-negligible production of 

greenhouse gases down to the water table, probably resulting from the respiration of fine roots 

and their decomposition at depths of more than 10 m. On the other hand, deep roots might also 

contribute to sequestrating large amounts of C in soils (Pierret et al., 2016). We showed that 

fine root biomass increased in deep soil layers when the plantation was subjected to water 

deficit (Figure VII. 1). As long-term C sequestration is more likely to occur in deep soil horizons 

than in the topsoil (Gill and Burke, 2002), the increased C allocation to fine roots in deep soil 

layers could have significant role for mitigating global changes.  

Consequently, because changing precipitations can greatly modify C allocation between soil 

layers, C sequestration must be studied not only the topsoil, but also throughout the whole soil 

profile explored by roots.  

VII.1.3  Looking deeper to quantify sources accurately 

Several studies reported that total below-ground carbon allocations account for 20-30% of gross 

primary production in Eucalyptus plantations (Ryan et al., 2010; Epron et al., 2012; Nouvellon 

et al., 2012). The results of our study emphasize that Eucalyptus roots do not only represent a 

non-negligible part of the biomass of the trees, but also that a large proportion is allocated at 

great depth, especially under drought conditions (Figure VII. 1). This is particularly of interest 
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considering that plants play a major role in sequestrating CO2 from the atmosphere into the soil. 

In order to assess the carbon fluxes from the soil to the atmosphere, we conducted 

measurements of CO2 fluxes along the soil profile and at the soil surface. 

CO2 productions estimated with the diffusivity model were strongly correlated to the 

distribution of fine root biomass along the soil profile, down to a depth of 15.5 m. The CO2 

production shifted to deep soil layer in response to throughfall exclusion, which could be due 

to a shift of root growth to deep layers likely to enhance tree water supply (Sotta et al., 2007; 

Schwendenmann et al., 2010). When decomposed, a part of the dead root tissues is incorporated 

into the soil organic matter (Strand et al., 2008). Microorganisms can be reactivated in response 

to the input of fresh organic matter. Specialized microorganisms develop rapidly and break 

down fresh organic matter. Their metabolites can activate a second class of specialized 

microorganisms, in dormancy, which can degrade the organic matter initially present and stored 

in the soil: this is the "priming effect" (Fontaine et al., 2003). We observed a decrease in 

greenhouse gas production in the upper layers and an increase in the deep layers in response to 

throughfall exclusion. Changes in deep soil conditions in response to water deficit might affect 

considerably the functioning and composition of microbial communities and therefore the 

production of CH4, CO2 and N2O. A study down to a depth of 4 m at the same site showed that 

total organic C and N concentrations in the rhizosphere increased with depth and in response to 

throughfall exclusion (Pradier, 2016). This increase can be explained by two major processes: 

(i) the increase in the quantity of organic compounds released by deep roots, and/or (ii) an 

identical amount of organic compounds released but a difference in their residence time within 

the rhizosphere (Pradier, 2016). It is therefore essential to clarify the functional role of deep 

roots and associated microbial communities to estimate adequately the overall C sequestration 

and greenhouse gas emissions in tropical ecosystems.  

Furthermore, the production of greenhouse gases shifted over depth under dry conditions in this 

study, showing that it is important to simulate the changes along the entire soil profile in 

biochemical models to estimate CO2 emissions under future conditions. Therefore, only 

considering greenhouse gas production in the topsoil layers will not be adequate to evaluate the 

impact of climate changes in tropical forest ecosystems over long time periods.  
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VII.2 Operational discussion: consequences for the management of tropical 

planted forests 

Eucalyptus plantations are not natural forests and are devoted to the provision of wood products, 

as viticulture is devoted to wine production or coffee plantations to coffee production. The 

sustainability of Eucalyptus plantations requires the control of criteria and indicators of 

sustainable ecological and social management practices, but also economic and institutional 

aspects. Eucalyptus plantations cover large areas worldwide, with more than 20 million 

hectares. The large production of wood in fast-growing plantations helps to reduce the pressure 

on native forest to supply wood and especially the high emissions of greenhouse gases caused 

by deforestation. However, much remains to be done regarding environmental impacts, 

sustainable management and adaptation to global change in order to reconcile production issues 

and preservation of natural resources. In this perspective, our study contributes to demonstrating 

that coppice management of Eucalyptus plantations could be an interesting trade-off between 

economic, societal and environmental requirements. 

VII.2.1  Coppice-managed forest plantations: an option to limit GHG emissions 

Regeneration of forest plantation by sprouting is a viable alternative for many production 

systems. More and more forest companies opt for coppice-managed Eucalyptus plantations 

instead of systematic replanting for cost and profitability reasons (Gonçalves et al., 2014). 

About one third of commercial Eucalyptus plantations in Brazil have been managed in coppice 

management since 2010 (IBA, 2016). However, the consequences of this type of management 

on the functioning of deep roots have never been investigated in tropical planted forests. 

Such a research effort is a prerequisite to orient the management of tropical planted forests 

toward a limitation of greenhouse gas emissions in the atmosphere. Our study shows that 

managing the eucalypt plantations in coppice after cutting the previous stand did not led to an 

increase in CO2, CH4 and N2O emissions (Figure VII. 2). Fine root mortality was very low the 

first year after the clear-cut when the plantation was coppice-managed (Figure VII. 1). The 

management in coppice after the clear-cut did not increase the production of dead roots and the 

subsequent release of CO2 resulting to fine root decomposition. Furthermore, coppiced-

managed plantations are less prone to erosion compared to replanted stands because the soil is 

exposed for a shorter period (Berhongaray et al., 2017). Hence, coppice management might be 
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an interesting option in tropical Eucalyptus plantations, to help mitigate the increase in CO2, 

CH4 and N2O in the atmosphere and to limit soil erosion compared to systematic replanting. 

VII.2.2  Coppice-managed forest plantations: an option for areas of climatic constraints 

Our study also showed that coppice management for Eucalyptus plantation might be a 

promising option to face water scarcity. Indeed, we found an intensive root growth in very deep 

soil layers (depth > 14m) less than one year after the clear-cut, with only few roots lost by 

mortality.  These findings are particularly impressive considering that E. grandis roots typically 

reach only a depth of 7 m at one year after planting in systematic replanting (Christina et al., 

2011; Laclau et al., 2013). Root production and maintenance represent a significant cost to a 

plant’s overall economy.  The establishment of a deep root system requires the allocation 

belowground of large amounts of carbon, which is at the expense of the production of 

aboveground biomass. By maintaining the root system, coppice-managed Eucalyptus 

plantations preserve belowground biomass for the next generation. Our results suggest that the 

carbon cost to maintain the root system down to the water table could be lower than shedding 

roots and producing new roots when the plantation is coppice managed. Six-year-old 

Eucalyptus grandis trees in our experiment have enough reserves within the root system, with 

or without throughfall exclusion, and the appropriate edaphic surrounding conditions to 

maintain the fine root biomass after clear-cutting, which probably contributed to promoting the 

early shoot growth (Drake et al., 2013; Brunner et al., 2015).  

The maintenance of a deep root system represents a double "safety net" for nutrients and for 

water uptake that are taken up throughout the entire soil profile before being lost for tree growth 

by deep drainage (Mareschal et al., 2013). In tropical Eucalyptus plantations growing on highly 

weathered soils in regions with rainfall events of high intensity, deep roots can provide access 

to large amounts of water stored in the subsoil and can play a crucial role in nutrient capture, 

which is essential to avoid large losses of nutrients leached from the upper horizons (Laclau et 

al., 2010). Therefore, the pre-established root system in coppice-managed plantations can act 

as a safety net by catching up large amounts of nutrient released after tree harvest and probably 

contribute to reducing the risk of tree mortality during prolonged dry periods. 
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Figure VII. 1: Conceptual representation of the influence of A) throughfall exclusion and B) 

clear-cutting on mean specific root area (yellow), total root biomass (orange), mean diameter 

(green), mean root area index (purple), total root necromass (black) and mean specific root 

length (blue) across deep soil profiles. The size of the circles is not at scale, the idea is only to 

visualize trends between soil layers 0-1 m, 2-6 m and 10-16 m, and between treatments +W, -

W and NH. Ref in A) and B) are the reference values. 
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Figure VII. 2: Conceptual representation of the influence of A) throughfall exclusion and B) 

clear-cutting on mean CO2 (blue), N2O (green) and CH4 (red) concentrations across deep soil 

profiles. The size of the circles is not at scale, the idea is only to visualize trends between soil 

layers 0-1 m, 2-6 m and 10-16 m, and between treatments +W, -W and NH. Ref in A) and B) 

are the reference values. The arrows at soil surface indicate whether the net gas efflux from soil 

to atmosphere is positive or negative. 
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VII.3 Contributions of the study and perspectives 

The outputs of this work are multiple (Figure VII. 1, Figure VII. 2) To our knowledge, it is the 

first time that fine root dynamics and greenhouse gas concentrations and productions are studied 

down to the water table (here at a depth of 17 m) in Eucalyptus plantations. The effects of water 

deficit in interaction with the consequences of clear-cutting in coppiced-managed Eucalyptus 

plantations have never been studied.   

However, further studies dealing with the anatomical, architectural and functional 

characteristics of fine roots across very deep soil profiles should be carried out. These studies 

would help gain an insight into the potential impact of management practices on C, water and 

nutrient cycles in tropical regions. A better knowledge of microbial communities in terms of 

biomass and diversity, but especially in terms of metabolic capacity is also needed. Improving 

our understanding of the factors controlling microbial activity, nutrient and C availability and 

their interactions in deep soil layers is a major scientific lock to model the global 

biogeochemical cycles (Fierer et al., 2003; Jones et al., 2018; Sosa-Hernandez et al., 2018). 

From a methodological point of view, the field measurements in our study showed the great 

variability of GHG effluxes and the importance of monitoring the determinants of these 

emissions. Unlike micro-meteorological techniques, the closed-chamber method is simple, 

relatively inexpensive and can be installed on any type of field (forest, cultivated field, 

grassland ...). Problems related to the use of closed chambers (leaks, overpressure ...) can be 

avoided or minimized by an adapted methodology. The main limitation of this technique is the 

small area covered by the measurement, which may not encompass large-scale processes. A 

large number of samples in each treatment were set to catch the potential intra-plot variability, 

but those sampling efforts required a significant labor load and the measurements remained 

punctual in time and space. The use of automatic chambers allows to better capture the temporal 

fluctuations of greenhouse gas emissions (Makita et al., 2018). This is particularly an advantage 

in places where environmental factors, contributing to the regulation of greenhouse gas 

emissions (such as soil temperature), lead to large differences in daytime / nighttime GHG 

effluxes. 

In situ measurements are needed to explore the dynamics of greenhouse gas concentrations 

throughout soil profiles. However, manual in situ measurements require a lot of time and 

resources and are therefore often limited in time and space. Modeling makes it possible to 

interpolate in space and time the data acquired punctually. These interpolations are particularly 
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interesting for the greenhouse gas effluxes that are characterized by strong spatial and temporal 

variations, as observed in this study. The sensibility of model outputs to specific processes can 

also be assessed by analyzing the differences between experimental and simulated data. 

Moreover, models can be used to assess the consequences of contrasting scenarios on 

greenhouse gas production. Nevertheless, the mechanistic modeling of GHG effluxes still 

presents many uncertainties because the main factors used in the models (mineral N dynamics, 

water contents, organic C contents, soil temperatures, soil pH, …) and their interactions are not 

fully understood, in particular throughout deep soil profiles. Understanding how precipitation 

changes, and especially extended drought periods, influence greenhouse gas production in deep 

soils is crucial to improve the prediction of terrestrial biosphere models. 

While many studies continue to consider only the upper 30 centimeters of soil, this work 

highlights the urgent need to study deep soil horizons in a context of climate change, not only 

for the evaluation of the changes in soil carbon sequestration, but also to quantify accurately 

the production of greenhouse gases. Comprehensive studies dealing with the microbial ecology 

of deep soil horizons in response to environmental changes and management practices are 

crucial to predict the behavior of huge soil volumes over the next decades. 
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ADDITIONAL WORK:  MODELING CO2 PRODUCTION AND TRANSPORT 

IN A DEEP FERRALSOL UNDER EUCALYPTS PLANTATIONS SUBJECTED 

TO CONTRASTED RAINFALL REGIMES 

 

The additional work is entitled « Modeling CO2 production and transport in a deep Ferralsol 

under eucalypt plantations subjected to contrasted rainfall regimes ». The central objective of 

this work is to present the advances on a modeling approach carried out in this thesis in order 

to gain insight into the processes governing CO2 transfer at a local scale. We aimed to couple a 

Numerical Model for the Analysis of the Geochemical Evolution of Mineral-Water-Air 

Systems (Min3P) with a simple root architecture model, Root-Typ. 

To consider the distribution of eucalypt fine roots within the entire root profile, including the 

deep soil horizons, we first tried to calibrate the Root-Typ model (Part 1) with eucalypt root 

data measured at Itatinga, then we tried to include fine root dynamics in Min3P (Part 2). 

This additional work will not be published in a scientific journal because the development 

initiated in this thesis could not lead to exploitable results. 

However, the following co-authors are associated with and involved in the work: Loic Pagès, 

Christophe Jourdan, Jean-Paul Laclau and Céline Blitz-Frayret for the calibration and 

parametrization of the Root-Typ Model, and Frédéric Gerard, Guerric Le Maire, Jean-Paul 

Laclau and particularly Céline Blitz-Frayret for the calibration and parametrization of the 

Min3P model. 
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VIII.1 Introduction 

After a strong expansion in the last 20 years, forest plantations account for 7% of the total forest 

area in the world (Keenan et al., 2015). In tropical and subtropical regions, plantations of fast-

growing tree species store large amounts of carbon and contribute to reducing the exploitation 

of natural forests by providing an increasing proportion of the global demand of wood (Keenan 

et al., 2015). Fast-growing Eucalyptus plantations cover about 20 million hectares throughout 

the world (Booth, 2013) with about 5.6 million hectares in Brazil (IBA, 2016). In Brazil, most 

of Eucalyptus plantations are settled in areas with very deep soils (> 5m) with low fertility and 

prolonged drought periods (Gonçalves et al., 2013). 

Future climate projections predict longer and stronger dry periods for eastern-south America 

(Solomon et al., 2009). In this context, coppice management of eucalypt plantations could be 

an interesting option to face water deficit because, after the harvest, the trees are likely to benefit 

from an already installed root system making it possible to access to deep soil layers where 

water availability is higher than in the topsoil. Our aim was to gain insight into the consequences 

of drought on fine root production and mortality as well as on the production of greenhouse 

gases down to the water table (at a depth of 17 m). These effects have been monitored before 

and after harvesting in a coppice-managed Eucalyptus grandis stand under two contrasting 

water supply regimes: the undisturbed rainfall as a control and 37% throughfall reduction to 

assess the effects of water deficit on tree and soil functioning.  

The consequences of tree harvesting on root dynamics the first year of the rotation in coppice-

managed plantations ask specific questions never studied, particularly in deep soil layers. After 

the harvest, fine root mortality leads to an input of organic matter at different depths 

(Berhongaray et al., 2015). Decomposition of fresh organic matter may enhance the degradation 

of pre-existing organic matter, stabilized or not (Fontaine et al., 2007; Derrien et al., 2014) 

through a "priming effect" (Kuzyakov et al., 2000). The "priming effect" could affect carbon 

storage by the ecosystem and indirectly influence the nitrogen cycle. Most of the studies dealing 

with soil carbon storage are limited to the upper meter of the soil profile (Harper and Tibbett, 

2013). The dynamics of CO2 concentrations across soil profiles down to a depth of more than 

10 m have never been studied in tropical forest plantations. 

We have studied fine root dynamics (production and mortality) using the minirhizotrons 

technique and measured the concentrations of CO2 down to the water table in the chapters 5 

and 6. Root dynamics and gas concentrations were monitored before and after the harvest of 
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Eucalyptus grandis trees in a throughfall exclusion experiment, comparing plots with 37% of 

throughfall excluded by plastic sheets (-W), and plots without rain exclusion (+W). The main 

results obtained over 3 months before clear-cutting, then over 18 months in coppice, showed 

that CO2 concentrations increased on average from 4475 ± 2180 ppm at a soil depth of 10 cm 

to 15885 ± 3538 ppm at a depth of 15.5 m across the two water supply regimes. CO2 

concentrations measured in treatment -W were on average 20.7% lower than in treatment +W, 

across the sampling depths.  

We intended to go beyond the current measurements of gas concentrations at different depths 

in the soil profile through a mechanistic modeling approach making it possible to assess the 

production of gas throughout the soil profiles and to infer the sensibility of gas production to 

environmental factors. To better understand the dynamics of organic matter in deep tropical 

soils and to improve the modeling of element flows, it is necessary to quantify in situ the carbon 

(CO2 as well as dissolved inorganic and organic C) concentrations throughout entire soil 

profiles (down to the root front), and to characterize the carbon stabilization/destabilization 

processes, as well as the main regulatory factors. A modeling approach was required to (i) 

quantify the production of CO2 in different soil horizons from soil properties, root growth and 

gas concentration measurements throughout the profile, and (ii) to improve our understanding 

of transfer processes and the contribution of CO2 deep production mechanisms to soil surface 

emissions (Maier and Schack-Kirchner, 2014).   

Reactive transport models derived from Darcy’s law allows a dynamic description of transient 

water flow in soils but also chemical processes controlling soil solution chemical composition 

(Feyen et al., 1998; Simunek et al., 2006; Samouëlian et al., 2007; Steefel et al., 2015). Reactive 

transport models require a vast number of input parameters and careful calibration procedures. 

Steefel et al. (2015) compared the key flow and transport features of the most commonly used 

reactive transport models: PHT3D, OpenGeoSys (OGS), ORCHESTRA, TOUGHREACT, 

eSTOMP, HYDROGEOCHEM, Crunch-Flow and MIN3P (Table VIII. 1). 



     218 
 

Table VIII. 1: Comparison of the key flow and transport features of reactive transport models (adapted from Steefel et al. (2015)). 

Capabilities/features PHT3D OpenGeoSys ORCHESTRA TOUGHREACT eSTOMP HYDROGEOCHEM CrunchFlow MIN3P 

Dimensions 1,2,3 D 1,2,3 D 1D 1,2,3 D 1,2,3 D 1,2,3 D 1,2,3 D 1,2,3 D 

Flow         

Saturated flow Yes Yes Yes Yes Yes Yes Yes Yes 

Richards equation No Yes Yes Yes Yes Yes No Yes 

Multiphase-

multicomponent flow 
No No No Yes Yes Yes No No 

Variable density flow No Yes No Yes Yes Yes Yes Yes 

Non-isothermal flow No Yes No Yes Yes Yes No Yes 

Transport         

Advection Yes Yes Yes Yes Yes Yes Yes Yes 

Molecular diffusion Yes Yes Yes Yes Yes Yes Yes Yes 

Electrochemical diffusion Yes No Yes No No No Yes Yes 

Dispersion tensor Diagonal Diagonal Diagonal No Diagonal Full Diagonal Diagonal 

Gas phase advection No Yes Yes Yes Yes Yes Yes  

Gas phase diffusion No Yes Yes Yes Yes Yes Yes  
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After a careful evaluation of the reactive transport models in the literature and their advantages 

and constraints to be adapted to the specificity of our study site (in particular very deep soil and 

monitoring over a long period), we selected the Min3P model already in use at the UMR 

Eco&Sols. This model was used in order to try to carry out simulations of the biogeochemical 

processes coupled with the transport of water, solutes and gases in soil (Mayer et al., 2012). 

Indeed, gas transport is highly dependent on soil moisture and modeling soil water fluxes is 

therefore compulsory. The fate of organic matter in very deep soil horizons remains poorly 

documented, which is a serious concern of the current modeling approaches of soil carbon 

dynamics (Fontaine et al., 2007; Rumpel and Kögel-Knabner, 2011; Mathieu et al., 2015). 

A modeling approach was needed to answer to the following questions: 

- What are the main transport and reaction processes accounting for the observed CO2 

concentrations in a deep tropical soil explored by roots in eucalypt plantations? 

- What is the contribution of fine roots in CO2 effluxes at the soil surface? 

- What are the consequences of drought periods on CO2 production and efflux in eucalypt 

plantations established in deep Ferralsols? 

- What are the consequences of future climatic scenarios on CO2 production in deep soil 

layers and the effluxes at the soil surface? 

Process-based models are needed to gain insight into the biogeochemical processes driving the 

concentrations of greenhouse gases measured at a few dates in soil profiles. 

Modeling root architecture development is important to simulate temporal and spatial dynamics 

of the root system architecture. Root architectural models are also useful to estimate global root 

variables like biomass or surface over depth and time. They are parameterized by root type (e.g. 

RootTyp, Pagès et al. (2004); ArchiSimple, Pagès et al. (2014); DigR, Barczi et al. (2018)) or 

by branching order (e.g. OpenSimRoot; Postma et al. (2017);  parametric L-system modeling; 

Leitner et al. (2010)). The number of parameters needed to simulate root architecture vary 

among models and infer their level of complexity (Dunbabin et al., 2013). Root number, root 

diameter, root volume, and root radial distances are the main parameters of root system 

biomechanics (Nicoll and Ray, 1996; Danquechin Dorval et al., 2016). RootTyp model showed 

promising efficiency in modeling root system development of Quercu petraea (Collet et al., 

2006) but also several species with various structures (Bingham and Wu, 2011; Chen et al., 

2011; Couvreur et al., 2012). RootTyp model is easy to calibrate while combining many 

processes of root system development: (1) emission of new roots from the shoot system, (2) 
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elongation, (3) branching, (4) radial growth and (5) decay and self-pruning of existing roots. 

This architectural model can also be coupled with models simulating nutrient uptake (Mayer, 

1999; Bonneu et al., 2012; Mayer et al., 2012), water transport (Doussan et al., 1998) or 

rhizospheric processes (Kim and Silk, 1999) or even reactive transport model (Mayer, 1999; 

Mayer et al., 2012). 

We aimed to couple a Numerical Model for the Analysis of the Geochemical Evolution of 

Mineral-Water-Air Systems (Min3P) with a simple root architecture model, Root-Typ (Pagès 

et al., 2004), to gain insight into the processes governing CO2 transfer at a local scale. To 

consider the distribution of eucalypt fine roots within the entire root profile, including the deep 

soil horizons, we first tried to calibrate the Root-Typ model (Part 1) with eucalypt root data 

measured at Itatinga, then we tried to include fine root dynamics in Min3P (Part 2). 

VIII.2 Part 1: The Root Typ model 

VIII.2.1 Calibration and parameterization of the Root Typ model 

Description and parameterization of the Root Typ model 

The Root Typ model (Pagès et al., 2004) simulates root growth processes at a daily time step: 

emission of new roots, elongation, branching and radial growth of various plant species by 

computing at each time step the root segments and the corresponding root length densities on a 

Cartesian grid. The model implements several developmental processes including root 

emission, axial and radial growth, sequential branching, reiteration, transition, decay and 

abscission. To simulate tree root systems, additional parameters are needed to simulate 

reiteration, senescence and late emission processes. All the parameters of Root Typ model are 

indexed to the apical diameter of all roots without distinction of root typology, which is 

impossible to assume in order to simulate growth and distribution of all types of roots of 

Eucalyptus trees within the soil profile. The issue was thus to adapt the Root Typ model to 

Eucalyptus trees. 

Definition of root types 

The Root Typ parametrization started with the definition of root types. In order to represent the 

most accurately Eucalyptus root systems we defined 6 root types. They are described and listed 

below (Figure VIII. 1). 
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Figure VIII. 1: Schematic representation of Eucalyptus root system in vertical view, with the 

different root types and their characteristics. 

 

The root segments are not indexed to the position, so we had to create each time intermediate 

types for the macrostructure to distinguish between proximal and distal systems. 

 

• Type 1: Juvenile tap root, orthotropic root from the radicle.  

• Type 2: Mature tap root, orthotropic root that follow the juvenile tap root by 

transformation, can be carried by plagiotropic roots.  

• Type 3:  Juvenile plagiotropic macrorhize, plagiotropic root from the juvenile tap root. 

• Type 4:  Mature plagiotropic macrorhize, plagiotropic root that follow the juvenile 

plagiotropic roots by transformation. 

• Type 5: Intermediate roots between macrorhizes and brachyrhizes 

• Type 6: brachyrhizes. Extremely fine roots.  

 

Parameters needed for modeling 

For each root type, several root parameters are needed for this dynamic developmental model. 

There are listed below: 

• Average and standard deviation of the insertion angle 

• Duration before emergence  
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• Growth parameters: maximum, average and standard deviation of growth rate  

• Inter-branch distance along the root  

• Indicator of tropism type and tropism intensity 

• Sensibility to mechanical constraint 

• Apical diameter  

• Necrosis duration  

• Dates of reiterations and probability for reiteration at the reiteration dates 

• Minimal and maximal number of reiterated roots 

• Age from which transition may happen and daily probability of transition 

• Proportions of type among the branches  

 

A literature review made it possible to estimate all the parameters needed for the simulations. 

We mainly used data obtained in Eucalyptus plantations in Brazil and Congo. Most of the data 

dealing with root architecture came from the PhD thesis “Study of the root system of Eucalyptus 

in tropical plantation: architectural analysis, growth and respiration” of Armel Thongo M’Bou 

in Congo (Thongo M’Bou, 2008). 

The next step was to include for each root type a coefficient for diameter increases throughout 

tree growth. Then we included into the code the possibility of choosing the seed to start the 

simulation. Those changes were important to represent accurately Eucalyptus root systems and 

to validate the output simulations made.     

 

Setting up a R routine for calculation of root length per volume of soil 

In order to represent an accurate root system, we had to estimate the root length simulated per 

volume of soil. A R routine was coded using the output of the Root Typ model to compare the 

results simulated with the data obtained in the field.  

 

Modification of root density and ramification varying within the soil profile 

We modified the soil profile component of the Root Typ model to include changes in root 

density and ramification within the soil profile. We also increased the soil profile depth down 

to 17 m.  

VIII.2.2  Main results obtained by simulations using the Root Typ model 
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We succeeded in simulating realistic root systems throughout the development of Eucalyptus 

trees (Figure VIII. 2, Figure VIII. 3, Figure VIII. 5). 

 

Figure VIII. 2: Simulated Eucalyptus root system using the Root Typ model at age 6 months, 

in a XZ orientation and representation within the soil profile (left) and traced viewing from 

above the soil surface (XY) orientation (right). 
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Figure VIII. 3: Simulated Eucalyptus root system using the Root Typ model at age 1 year (A), 

2 years (B) and 3 years (C), in a XZ orientation representation within the soil profile (left) and 

traced viewing from above the soil surface (XY). 
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Figure VIII. 4: Fine root length (m m-2) per soil layer simulated using the Root Typ model 

(blue) and measured (collected in the field) for Eucalyptus plantations of age 3 years 

Total root length obtained with the simulations using Root Typ Model were consistent with the 

measured data (observed in the field) for Eucalyptus plantations of 3 years of age, but the 

distribution throughout the different soil layers were not accurately simulated (Figure VIII. 4).  

 

Figure VIII. 5: Simulated Eucalyptus root system using the Root Typ model at age 6 years, in 

a XZ orientation and representation within the soil profile (left) and traced viewing from above 

the soil surface (XY) (right). 
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VIII.2.3 Discussion and perspectives 

Despite several attempts of simulations and 6 different modified versions of the Root Typ 

model, we did not succeed in designing simulated fine root densities close to the values 

measured in the field, especially between layers within the soil profile.  Particularly, we did not 

manage to simulate the measured dynamics (too sharp mortality, high variability between the 

simulations). Therefore, we decided to force measured values as input values for root length 

density into the Min3P model in order to achieve the objectives of the project. 

However, the improvement we made for the Root Typ model were important and more time is 

needed to parametrize and calibrate this model to tree root system development throughout an 

entire rotation. This work showed that the Root Typ model can be used to simulate tree root 

development over short period (up to 1-2 years) but more research is needed to simulate an 

entire rotation, as planned in our study. The two main issues rose in our project are listed and 

discussed here after. 

Too much variability between seeds (simulations) 

This is indeed a problem with stochastic models, when an event arriving early is very structuring 

for the future. In reality, compensating regulations operate, which are difficult to account for in 

this type of model. We should avoid in the setting up of the model, the very unlikely events that 

have a strong impact. For example, there must be a sufficient number of plagiotropic roots, 

varying their asymptotic lengths.  

Exclusive pruning 

All root branches have shorter root longevity than the bearing roots, therefore when branches 

are pruned the bearing axes become bare, which is never the case in the field. Therefore, a gap 

in the root length density was observed according to soil depth in the output simulations that 

we did not observe in field measurements within the entire soil profile.  

Indeed, the fact of having a fixed lifespan for all roots belonging to the same diameter class 

generates unrealistic simulations. Several options could be tested in further studies, not 

necessarily exclusive: 
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• To create a root type that does not grow too fast with a wide range of length. Some will 

be pruned quickly and other should stay longer throughout the soil profile simulated 

• To include into the code the possibility to have little branches (small branching 

densities) in such way that the longer roots carry some branches and therefore do not 

prune.   

• To create a new root type of extremely fine roots that grow for longer period and branch 

or live longer than extremely fine roots that are pruned quickly. 

• Include into the code a proximal reiteration regularly, to keep alive roots everywhere. 

• Include into the code for a root lifespan different within the soil profile and for each root 

type. 

Modeling architecture development and dynamics of deep fine roots are hindered by the limited 

data available in the literature yet indispensable to parametrize and evaluate the models. Root 

number, root diameter, root volume, and root radial distances are the main parameters of root 

system biomechanics (Nicoll and Ray, 1996; Danquechin Dorval et al., 2016), varying 

considerably with soil layers. The plasticity of root system architecture development 

responding to their environment is strongly influenced by soil depth. Root architectural models 

through a simulation in 3D space of the root system could simulate accurately spatial and 

temporal dynamics. But integrate into a model a vertically discretized soils is particularly 

important as shallow and deep roots present different spatial and temporal dynamics. Model 

parametrization needs to consider shallow and deeper-rooted root system behaving differently 

to environmental factors and soil conditions. 
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VIII.3 Part 2 : Min3P model 

VIII.3.1 Calibration and parameterization of the Min3P model 

Description of Min3P model 

Min3P (Mayer et al., 2012) is a finite-volume reactive transport model including flow in the 

aqueous phase using Richard’s equations and transport in the aqueous and gas phase. The flow 

and transport are computed on a representative domain of the field, composed of a Cartesian 

grid with elementary volumes called ‘control volumes’. Primary variables of the model are 

aqueous concentrations, which are considered in equilibrium with gas-phase concentrations 

according to Henry’s law.  The use of the Dusty Gas Model for gas-phase transport allows the 

implementation of the transport mechanisms often neglected in previous studies (Molins et al., 

2008). The model formulation includes diffusion and advection to account for gas transport. 

Diffusion of gases is described by Stefan-Maxwell equations. To model diffusive fluxes with 

gases characterized by different molecular weights, a non-separative component may be 

present. Gas fluxes included in the experiment can be large enough to generate significant 

pressure gradients, leading to advective fluxes computed by Darcy’s law. Field observations 

and laboratory studies have revealed that additional processes can control biogeochemical 

evolution in the vadose zone, possibly attenuating gas emissions in the atmosphere. For this 

reason, reactions taking place in the aqueous phase such as oxidation of methane by bacteria 

producing carbon dioxide, water and organic carbon, are also implemented. Finally, diffusive 

and advective gas fluxes and reaction source-sink term contribute to the mass balance. 

Min3P is particularly suitable for the current study thanks to its implementation of the uptake 

of water and solute by plants (Gérard et al., 2004; Gérard et al., 2008). Indeed, gas transfer in 

the soil is highly dependent on soil water content and modeling soil water fluxes is therefore 

compulsory (Figure VIII. 6). Separate sink terms have been implemented in the Richard’s 

equation to account for physical evaporation and transpiration (components of the root water 

uptake) in Min3P. For each control volume of the grid, the physical evaporation is depending 

on the local water saturation and is considered as a one-dimensional process in vertical direction 

along a soil column. To model the biological plant transpiration process, the evaporative budget 

must be estimated and is determined with the soil moisture, allowing the consideration of the 

negative effects of water stress on plant transpiration. Finally, the solute uptake has been 

implemented by an additional sink term in the mass balance equation. Then, two uptake regimes 
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are considered: 1) passive solute uptake where the solute uptake rate is equal to the water uptake 

rate and 2) rejective or active solute uptake. Rejective uptake implies the solute to be left behind 

water during uptake by the root (leading to an increase of solute quantity in the root zone) and 

active uptake implies a preferential solute uptake by the plant root (leading to a solute depletion 

in the root zone).  

The first key step was to calibrate and parameterize the water transport. The simulations of 

water dynamics were validated using measurements of: (i) actual transpiration fluxes and (ii) 

volumetric soil water content monitored over the whole study period. The climatic variables 

(potential and actual transpiration fluxes, precipitation) determined at the experimental site 

were used either to constrain the model or to validate it.  
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Figure VIII. 6: Graphical representation of the close link between water transport and CO2 production, transport and effluxes. 
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Soil parameterization and root profiles 

Three layers of 33.3 cm thickness were defined to account for the variability of soil and root 

characteristics in the upper meter. Layers of 50 cm were defined from a depth of 1m to a depth 

of 18 m. Soil retention curves and hydraulic conductivity were estimated at the same site using 

Van Genuchten equations. In each soil layer, the soil water potential was linked to the soil water 

content by the relation of Van Genuchten (1980). 

𝑆𝑎 = 𝑆𝑟𝑎 +  
1 − 𝑆𝑟𝑎

(1 + |𝛼𝛹𝑎|𝑛)𝑚
 

𝑚 = 1 −
1

𝑛
                  𝑆𝑎 =

𝛩𝑎

𝛩𝑠𝑎
                   𝑆𝑟𝑎 =

𝛩𝑟𝑎

𝛩𝑠𝑎
 

 

With: 

Sa  saturation of the aqueous phase 

Sra  residual saturation of the aqueous phase 

𝛩a  volumetric water contents 

𝛩sa  volumetric water content at saturation 

𝛩ra  residual water content 

𝛹a  pressure head 

 

Residual soil water content in each soil layer was calibrated using MAESPA model (Christina 

et al., 2017) used at the same site. The MAESPA model, fully described in Duursma and 

Medlyn (2012), is a soil-plant-atmosphere model simulating forest canopy radiation absorption, 

photosynthesis and water balance. Soil hydraulic conductivity at saturation was measured at the 

same site down to a depth of 3 m (Maquere, 2008) and assumed to decrease linearly from 3 to 

7 m depth and to be constant for the soil layers below 7 m down to 18m. Soil porosity was also 

measured down to 3 m and assumed constant below 3m. Evapotranspiration and soil 

evaporation were obtained by simulations using MAESPA model each day over the entire 

rotation (6 years).   

A literature review and simulations of the MAESPA model were realized to obtain the initial 

condition variability-saturated flow. The initial condition of hydraulic charge, pressure head, 

saturation, soil water content and root evaporation are necessary for flow simulations. Other 

inputs needed for the simulation are the daily climatic data.  
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We were not able to use the outputs of the Root Typ model, so we estimated a relation between 

root length density, depth and time using root distributions along the soil profile measured at 1, 

2, 3 and 7 years after planting. Root distributions were measured by soil coring (see Germon et 

al. (2018) and Christina et al. (2011) and Chapter 5 for the method). 

 

𝑅𝐿𝐷𝑆𝑖𝑚 = exp (−12.48 + 1.725 ∗ √𝐷𝑒𝑝𝑡ℎ + 0.0017 ∗ 𝑡𝑖𝑚𝑒 + 0.003961 ∗  √𝐷𝑒𝑝𝑡ℎ ∗ 𝑡𝑖𝑚𝑒) 

 

With:  

RLDSim, Simulated root length density  

Depth, Soil depth in cm   

Time, time in days 

This equation was added into the Min3P code and we also modified the code to print soil water 

content outputs every day along the simulation time.  

VIII.3.2  Discussion and perspectives from simulations using Min3P model  

The simulations results in Figure VIII. 7 show that the soil water contents can be modeled over 

an entire rotation, but improvements are still needed. Unfortunately, we did not have enough 

time to conclude the parameterization and calibration of the Min3P model. 
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Figure VIII. 7: Soil water contents (Theta_a %) within the soil profile down to a depth of 18 m simulated with the Min3P model (Cmvs 2, top) and 

simulated with the MAESPA model (Maespa, bottom) every day from June 1st, 2010 to May 31, 2016, which was the entire rotation for this 

Eucalyptus grandis plantation in the undisturbed rainfall plot. Soil water content graphical representation is a contour line interpolation using 

marching square algorithm. R software version 3.4.4 and the package plotly version 4.8.0 were used.
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Model parameterization should be better described, particularly regarding the accuracy at which 

the root system and potential transpiration are simulated over time. Further studies dealing with 

long-term effects of rainfall regimes on soil water resources, could contribute to evaluating 

adaptive changes induced by drought periods in tropical Eucalyptus plantations. 

plantations. 

CO2 production during fine root decomposition and root respiration 

Simulations should include CO2 gas emissions produced at each time step by fine roots 

(mortality and decomposition, root respiration, …). From these results, a comparison with the 

measurements of CO2 performed throughout the soil profile need to be performed to assess the 

main gas transport processes and sources.  

CO2 production has been found to be correlated to root biomass throughout the soil profile 

(Chapter 6). Mechanistic biogeochemical models need to include the relationships between soil 

CO2 production and soil water potential, soil temperature over time, but also fine root growth 

and root activity across soil layers. Indeed, incorporating the different level of processes of root 

respiration and microbial decomposition over depths should provide more accurate estimations 

and could reduce uncertainty in model simulations.   

Prediction of CO2 production in deep soil profiles under climate change 

Simulations to explore the effects of future climate scenarios on CO2 production and transfer in 

deep tropical soils could be performed including the current measurements as initial boundary 

conditions, and by comparing climatic series representing future climatic scenarios at the 

experimental field location. The predictions could be useful to assess qualitatively the 

consequences of climate change on CO2 production in tropical eucalypt plantations growing on 

deep Ferralsols. 

  



A. Germon 2019       235 
 

Conclusion 

The modeling approach used in this thesis revealed promising efficiency in a model that couple 

root system architecture and functions, the Root Typ model, with reactive transport processes 

in soils, the Min3P model. Unfortunately, this thesis also revealed several issues that we could 

not overcome over the available time of 6 months at the end of the thesis. This chapter showed 

that additional experimental researches and model developments are required to assess the 

production of gas throughout the soil profiles and to infer the sensibility of gas production to 

environmental factors in this Eucalyptus plantation. Therefore, a specific thesis in modeling is 

required to reinforce and further explore the possibilities of coupling Min3P and RootTyp to 

gain insight into the processes governing greenhouse gases transfer at a local scale.  
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Supplementary Article 

In addition to the studies presented in this thesis, during my thesis, I had the opportunity to 

study the consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil 

exploration by roots down to the water table at 17 m depth in a tropical planted forest. 

Eucalyptus plantation mixed with nitrogen fixing trees can be considered as a form of ecological 

intensification through the increase of forest plantations production and nutrient availability in 

the soil (Bouillet et al. 2012, Forrester et al., 2005; Kelty, 2006). Multi-purpose plantations can 

provide key ecosystem services (Paquette & Messier, 2010), in some situations, increase the 

total biomass production (Forrester, 2014; Richards et al., 2010) and positive relationships 

between tree diversity and soil fauna, microbial diversity, and soil carbon (C) sequestration are 

well documented (Blaser et al., 2014; Forrester, 2014; Richards et al., 2010). But the 

consequences of mixing trees on root growth and fine-root morphology in very deep soil layers 

is poorly know.  

In this study, root sampling was realized down to 17 m in A. mangium and E. grandis 

monospecific stands and a mixture with 50% of each species using the method described in 

chapter 5. In this study, I did not contribute to the acquisition of the data, but I contributed to 

the data analysis as well as the statistical analyses and the writing of the paper. 

This article is intitled “Consequences of mixing Acacia mangium and Eucalyptus grandis trees 

on soil exploration by fine-roots down to a depth of 17 m”. Co-authors associated with this 

project are Iraê Amaral Guerrini, Bruno Bordron, Jean-Pierre Bouillet, Yann Nouvellon, José 

Leonardo de Moraes Gonçalves, Christophe Jourdan, Ranieri Ribeiro Paula and Jean-Paul 

Laclau. 

This article was published in the journal Plant and Soil.  
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Abstract: 

Background and Aims Fine-root functioning is a major driver of plant growth and strongly 

influences the global carbon cycle. While fine-root over-yielding has been shown in the upper 

soil layers of mixed-species forests relative to monospecific stands, the consequences of tree 

diversity on fine-root growth in very deep soil layers is still unknown. Our study aimed to assess 

the consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration 

by roots down to the water table at 17 m depth in a tropical planted forest.  

Method Fine roots (diameter < 2 mm) were sampled in a randomized block design with three 

treatments: monospecific stands of Acacia mangium (100A), Eucalyptus grandis (100E), and 

mixed stands with 50% of each species (50A50E). Root ingrowth bags were installed at 4 depths 

(from 0.1 m to 6 m) in the three treatments within three different blocks, to study the fine-root 

production over 2 periods of 3 months.  

Results Down to 17 m depth, total fine-root biomass was 1127 g m-2 in 50A50E, 780 g m-2 in 

100A and 714 g m-2 in 100E. Specific root length and specific root area were 110-150% higher 

in 50A50E than in 100A for Acacia mangium trees and 34% higher in 50A50E than in 100E 

for Eucalyptus grandis trees. Ingrowth bags showed that the capacity of fine roots to explore 

soil patches did not decrease down to a depth of 6 m for the two species.  

Conclusions Belowground interactions between Acacia mangium and Eucalyptus grandis trees 

greatly increased the exploration of very deep soil layers by fine roots, which is likely to 

enhance the uptake of soil resources. Mixing tree species might therefore increase the resilience 

of tropical planted forests through a better exploration of deep soils.  
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IX.1 Introduction 

Plantations of fast-growing trees are expanding rapidly to meet the increasing demand for wood 

products (Keenan et al., 2015). The area covered by planted forests increased from about 168 

million ha in 1990 to 278 million ha in 2015, and a large share of the new forest plantations are 

at sites with in highly weathered tropical soils (Keenan et al., 2015). Fast-growing Eucalyptus 

plantations cover about 20 million hectares throughout the world (Booth, 2013) with about 5.6 

million hectares in Brazil (IBA 2016). Eucalyptus plantations provide raw material for pulp and 

paper, charcoal and firewood in Brazil (Battie-Laclau et al., 2014; Gonçalves et al., 2013). 

While most of these eucalypt plantations are monospecific, mixed-species stands including 

nitrogen (N) fixing trees can help to balance the N budget, improve the N status of the eucalypts 

(Forrester et al., 2006; Paula et al., 2015) and, in some situations, increase the total biomass 

production (Forrester, 2014; Richards et al., 2010). Multi-purpose plantations can provide key 

ecosystem services (Paquette & Messier, 2010), and positive relationships between tree 

diversity and soil fauna, microbial diversity, and soil carbon (C) sequestration are well 

documented (Blaser et al., 2014; Forrester, 2014; Richards et al., 2010). Acacia mangium Wild 

is another fast-growing tree species widely planted in South-East Asia for pulpwood. 

Introduction of Acacia mangium trees into commercial eucalypt plantations has been tested 

recently in Brazil and Congo (Bouillet et al., 2013; Santos et al., 2016; Voigtlaender et al., 

2012). Those studies showed that mixed A. mangium and Eucalyptus stands had higher 

available mineral N in the soil than monospecific eucalypt stands (Tchichelle et al., 2017; 

Voigtlaender et al., 2012) and that, in some situations, the total biomass production was higher 

in mixed stands than monospecific eucalypt stands at the same stocking density (Bouillet et al., 

2013; Epron et al., 2013; Santos et al., 2016). While the benefits consequences of a stratified 

canopy in mixed-species plantations are well documented (Bauhus et al., 2004; Binkley et al., 

2013; Le Maire et al., 2013; Williams et al., 2017), soil partitioning between the roots of 

different tree species in a mixed stand has not been studied to the same extent. 

Roots play a key role in forest ecosystems with their mechanical functions of tree anchorage 

and their physiological function of capturing and transporting the amounts of water and 

nutrients needed for plant growth (McCormack & Guo, 2014; Pregitzer et al., 2002). Niche 

complementary among the fine roots of different species is often cited as one of the major 

processes that can contribute to increasing biomass production in multi-species stands 

compared to single-species forests (Lehmann  & Schroth, 2003). Studies dealing with fine-root 

density in mixed-species forests are scarce and mainly limited to the upper soil layers. Deep 
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roots, commonly defined as roots growing below 1 m, can provide access to water and nutrient 

pools that shallow roots cannot reach (Kell, 2012). Even though the density of roots is generally 

low below 1 m depth compared to the topsoil, they are important in reducing nutrient losses by 

deep drainage (Laclau et al., 2010) and improving trees’ drought tolerance to drought (Christina 

et al., 2017a; McDowell et al., 2008). While the effects of environmental changes on the 

phenology of aboveground plant components are well documented, belowground processes 

remain poorly understood (Radville et al., 2016b). The lack of information on the influence of 

interspecific interactions on root exploration at great depth limits our ability to identify the most 

appropriate sites for multi-species plantations in tropical regions. Fine-root biomass in the 0-2 

m soil layers was found to be 30% higher in a mixed-species plantation of E. grandis and A. 

mangium trees than in monospecific stands at age 5 years in Brazil (Laclau et al., 2013c). 

Interaction between the two-species led to a segregation of the root systems. In mixed stands, 

A. mangium fine roots were partially excluded from the topsoil in mixture and over-explored 

the soil layers between the depths of 1 and 2 m relative to monospecific A. mangium stands (da 

Silva et al., 2009; Laclau et al., 2013c). However, as far as we are aware, the effects of the inter-

specific interaction on fine-root densities at depths > 2 m have never been studied. Changes in 

fine-root traits might be a major adaptation of A. mangium and E. grandis trees to cope with 

inter-specific interactions in mixed stands. Strong modifications of fine-root morphology have 

been shown in response to competition through an increase in specific root length (SRL, fine-

root length divided by fine-root dry mass) and specific root area (SRA, fine-root area divided 

by fine-root dry mass) to reduce the cost/benefit ratio of resource capture.  

Root growth is controlled by endogenous constraints on carbon availability and environmental 

factors (Freschet et al., 2017; McCormack et al., 2015). Fine-root production is dependent on 

soil water content (Canham et al., 2015) and the high plasticity of fine roots enables them to 

explore resource-rich soil patches has been demonstrated (Hodge, 2004). The capacity of A. 

mangium and E. grandis roots to explore soil patches might therefore vary depending on the 

season and the depth in the soil. Although ingrowth bags have been commonly used to estimate 

fine-root production in forest ecosystems (Brunner et al., 2013), the root-free soil in the 

ingrowth bags can be richer in nutrients and water than the surrounding soil (without water and 

nutrient uptake in the first weeks after installation), which can lead to overestimates of the fine-

root production and length in these soil patches relative to the surrounding soil (Bauhus & 

Messier, 1999; Jourdan et al., 2008).  
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Our study aimed to assess the consequences of mixing Acacia mangium and Eucalyptus grandis 

trees on fine-root growth down very deep profiles in highly weathered tropical soils. We 

hypothesized that the interaction between Acacia mangium and Eucalyptus grandis trees in 

mixed stands modified root growth relative to monospecific stands, resulting in i) fine-root 

over-yielding in all the soil layers down to the water table at a depth of 17 m, ii) modification 

of common fine-root traits (diameter, SRL, SRA) for the two species making it possible to 

increase the area of soil resource capture per gram of C invested in fine roots, and iii) a higher 

capacity of the tree roots to explore soil patches in the topsoil than in very deep soil layers 

reflecting the decrease in fine-root density with depth. 

IX.2 Materials and methods 

IX.2.1 Study site 

The study was carried out at the Itatinga experimental station of University of São Paulo, Brazil 

(23°02’ S., 48°38’ W., 860 m a.s.l.). This region has a humid subtropical climate (Cfa according 

to the Köppen classification) with an average annual rainfall of 1390 mm (mean from 1990 to 

2010), a mean relative humidity of 77% and a mean annual temperature of 19°C with a cold 

and dry season from June to September. The soils are Ferralsols (FAO classification) developed 

on Cretaceous sandstone with a water table at a depth of 17 m (Pradier et al., 2017). Sand 

content was around 85% in the topsoil and 75-80% between 1 m and 15 m depth (Maquere, 

2008). Soil pHH2O was approximately 5.5 in the upper 3 m, cation exchange capacity decreased 

from 18 mmolc kg-1 in the 0-5 cm soil layer to 2 mmolc kg-1 in the 2-3 m layer, and exchangeable 

cation contents dropped below a depth of 5 cm. Full details were given in a previous study 

(Laclau et al., 2013c).  

IX.2.2 Experimental Layout 

The trial was a complete randomized block design with 7 treatments and 4 blocks set up in May 

2003 in a site which had been a Eucalyptus grandis plantation from 1998 to 2002 and previously 

a Eucalyptus saligna Sm. coppice from 1940 to 1998.  The experimental layout was described 

in detail by Laclau et al. (2008) and Le Maire et al. (2013). There were plots with A. mangium 

monoculture, E. grandis monoculture and mixed plantations of A. mangium and E. grandis 

within each block. Each plot was 30 m x 30 m with two buffer rows. The seedlings were planted 

at a density of 1111 trees ha-1 (3 m x 3 m spacing). The trees were harvested at age 6 years (in 
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May 2009) and only the harvested boles were removed from the plots. Harvest residues were 

spread uniformly over each plot and A. mangium and E. grandis seedlings were re-planted in 

November 2009 in the same planting rows of the same plots, at 50 cm from the stumps of the 

previous rotation.  

Our study was carried out 4 years after replanting in 3 treatments within 3 blocks: A. mangium 

and E. grandis monospecific stands (100A and 100E, respectively) and mixed stands with 50% 

of each species (50A50E). In the mixed stand, the two species were planted alternately in the 

row and offset adjacent rows (555 trees ha-1 per species). The Acacia mangium seedlings were 

inoculated with rhizobia strains selected by EMBRAPA (Agrobiology, Rio de Janeiro) for their 

N2 fixation capacities. The same amounts of P, K, Ca, Mg, and micronutrients were applied the 

first 18 months after planting in all the plots (no N fertilization). Destructive sampling at age 

3.3 years showed that mixing the two species did not lead to higher aboveground biomass in 

50A50E than the average of the two monocultures. Tree height was about 8 m higher for E. 

grandis than for A. mangium (Table IX. 1). 



     248 
 

Table IX. 1: Main characteristics of the stands at 39 months (mean and standard deviation between blocks, n=3). Different uppercase letters indicate 

significant differences between treatments, and different lowercase letters indicate significant differences between the monospecific stands and the 

mixed stands for each species (p < 0.05). The methods used to estimate the aboveground biomass are described in Nouvellon et al. (2012b). 

 100A  100E  50A:50E 

 A. mangium  E. grandis  A. mangium E. grandis Total 

Stocking density (trees ha-1) 988 ± 18  1111 ± 0  535 ± 21 556 ± 0 1091 ± 15 

Stand basal area (m2 ha-1) 15.3 ± 0.4 B a  16.6 ± 0.4 A a  7.1 ± 0.8 b 9.3 ± 0.6 b 16.4 ± 0.2 A 

Tree height (m) 9.3 ± 0.2 C a  17.8 ± 0.2 A a  9.5 ± 0.3 a 16.8 ± 0.1 b 13.1 ± 0.2 B  

Biomass (kg m-2):        

Leaves 0.66 ± 0.02 A a  0.58 ± 0.02 B a  0.22 ± 0.03 b 0.46 ± 0.03 b 0.67 ± 0.01 A 

Branches 0.83 ± 0.02 A a  0.81 ± 0.02 A a  0.31 ± 0.04 b 0.57 ± 0.07 b 0.88 ± 0.03 A 

Bark 0.53 ± 0.01 C a  0.67 ± 0.02 A a  0.18 ± 0.02 b 0.43 ± 0.02 b 0.62 ± 0.00 B 

Wood 1.99 ± 0.05 C a  4.96 ± 0.13 A a  0.80 ± 0.09 b 2.29 ± 0.12 b 3.09 ± 0.03 B 

Aboveground biomass  4.01 ± 0.09 C a  7.03 ± 0.19 A a  1.51 ± 0.17 b 3.75 ± 0.24 b 5.26 ± 0.07 B 
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IX.2.3 Root sampling  

Fine roots (diameter < 2 mm) were sampled down to a depth of 17 m in the three treatments 

(100A, 100E and 50A50E; Figure IX. 1) within the three blocks. Three replicates of soil 

samples were collected at mid distance between 4 adjacent trees (Figure IX. 1) in each plot 

down to a depth of 6 m and one replicate per plot between the depths of 6 m and 17 m (total of 

9 samples per treatment in each soil layer down to 6 m depth and 3 samples between the depths 

of 6 m and 17 m). At each sampling position, soil layers 0-0.5, 0.5-1.0, 1.0-1.5, 1.5-2.0, 2.0-

3.0, 3.0-4.0, 4.0-5.0, 5.0-6.0 m were collected by digging a square hole of approximately 15 cm 

x 15 cm area at the soil surface (an operator used a tool designed to dig very deep holes, called 

‘cavadeira’ in Brazil). Only the soil mass sampled was measured accurately, the volume of the 

soil samples extracted using the ‘cavadeira’ tool could not be measured and was estimated by 

multiplying the soil dry mass of the samples by the bulk density in each layer (see below). 

About 15 kg and 30 kg of soil were collected at each sampling position for layers 50 cm and 

100 cm thick, respectively. Fresh soil mass was measured in the field (±10 g) and all the fine 

roots easily visible were collected. The soil was then homogenized and a sub-sample of 

approximately 0.5 kg in the 0-50 cm soil layer, 1 kg in soil layers 0.5-1.0, 1.0-1.5, 1.5-2.0, 2.0-

3.0, 3.0-4.0 m, and 2 kg in soil layers 4.0-5.0 and 5.0-6.0 m was taken to separate short lengths 

of root and small diameter fine roots in the laboratory. Each sub-sample was weighed in the 

laboratory and the soil water content was measured (by drying 5 g of soil at 105°C for 72 hours).  

Below a depth of 6 m, soil cores were taken every 1 m depth using a cylindrical auger with an 

inner diameter of 9 cm and a length of 30 cm. We used the same methodology as Christina et 

al. (2011a) to avoid contamination of the soil samples collected at depth by roots from the upper 

layers. Only soil blocks from the inner part of the auger were collected and all fragmented soil 

pieces likely to come from upper soil layers were systematically discarded. All the soil collected 

from each layer was put in plastic bag, identified and stored at 4°C until processing (within 2 

months after sampling). 
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Figure IX. 1: Layout of the three treatments studied: Acacia mangium and Eucalyptus grandis 

monospecific stands (100A and 100E, respectively) and a mixed stand with 50% of each species 

(50A50E). A. mangium trees are represented by grey circles and E. grandis trees by black 

triangles. Each inner plot (excluding two buffer rows) is delimited by a grey square. Three 

replicates samples (position indicated by a red cross) of soil cores were collected at mid distance 

between 4 adjacent trees in each plot down to a depth of 6 m and one sample per plot between 

the depths of 6 m and 17 m. Only one block is presented. A complete scheme of the trial is 

presented on Fig. 1 in Le Maire et al. (2013). 

 

All the fine roots in the samples were washed free of soil with tap water using sieves (with mesh 

sizes from 0.50 to 1.19 mm) and all the living roots with a length >1 cm were separated carefully 

by hand. Dead roots separated by sight, touch and flotation, if required were discarded. Living 

roots were selected by various criteria such as living stele, bright color and elasticity. The color 

of the roots and the ramification pattern were good indications of the species to which they 

belonged. Reference roots sampled in monospecific stands were used to facilitate the 

identification of each species for roots collected in the 50A50E treatment. E. grandis fine roots 

were more branched and were darker than A. mangium fine roots. A sub-sample (10% of the 

weight of each soil sample) was used to estimate the mass of extremely fine roots (pieces of 

roots less than 1 cm in length). Extremely fine roots were separated carefully by hand in a white 

bucket filled with tap water. The mass of short root fragments (less than 1 cm in length) 

measured in 10% of the soil sample mass was multiplied by 10 to estimate the mass of those 

root fragments in the whole soil sample. All living fine roots with a length >1 cm separated 

from each soil sample were scanned (400 dpi resolution). Nodules were scanned with the fine 

roots when they were present. Root lengths and areas were estimated in each sample using 

WinRHIZO Version Pro V.2009c software (Regent Instruments, QC, Canada). Fine roots were 

dried for 72 h at 65 °C and weighed (±0.1 mg) to estimate specific root length (SRL, length of 

scanned roots divided by their dry mass mass, expressed in m g-1) and specific root area (SRA, 

surface area of scanned roots divided by their dry mass, expressed in cm2 g-1) in each soil 
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sample. Fine-root mass density in each soil sample was calculated taking account of the soil 

dry mass used for the separation of the fine roots in the field and in the laboratory. Soil bulk 

densities measured in a pit down to a depth of 17 m in each treatment were used to convert fine-

root mass densities expressed in g of root per kg of soil to g of root per dm3 of soil in each layer 

(the same method was used from the soil surface down to a depth of 17 m). Fine-root biomasses 

were computed in each soil layer multiplying the soil layer volume (dm3) by the mean fine-root 

density. Total root length and total root area in each soil sample were calculated by multiplying 

the total root dry mass by SRL and SRA, respectively. Root area index (RAI, surface area of 

fine roots divided by sampled soil area, expressed in m2 m-2) and root length index (RLI, length 

of scanned roots divided by sampled soil area, expressed in km m-2) (Jackson et al., 1997) were 

calculated for each soil layer in each treatment.  

IX.2.4 Root ingrowth bags 

Fine-root production over two periods of 3 months were studied using cylindrical ingrowth bags 

constructed from stainless steel with a mesh size of 2 mm, a diameter of 9 cm and a height of 

35 cm. The 3-month periods of root regrowth were selected for very fast eucalypt fine root 

growth, with maximum ingrowth core colonization after 2 months, following a previous study 

at the same study site (see Figure.5 in Jourdan et al. (2008)). Three replicates of root ingrowth 

bags were installed at 4 depths (soil layers 0.10-0.45 m, 1.00-1.35 m, 3.00-3.35 m and 6.00-

6.35 m) in the same plots used to study the fine-root densities (three treatments in three blocks) 

giving a total of 108 ingrowth bags for each period of 3 months. Holes (diameter 15 cm) were 

made manually (using the ‘cavadeira’ tool) to install the mesh bags at each depth (0.45 m, 1.35 

m, 3.35 m or 6.35 m). The bags were filled with the soil from the corresponding soil layer and 

moistened to field capacity after removing all the roots. The flexibility of the bags allowed a 

good contact with the surrounding soil. PVC pipes (diameter of 0.15 m, length of 0.1 m, 1 m, 3 

m or 6 m depending on the depth of the bag) were placed into the holes above the ingrowth 

bags to make possible to retrieve of each bag from the surface using a nylon cord attached 

(Appendix 

Appendix IX. 1). A plastic bag (with a nylon cord attached) filled with about 2 kg of soil was 

placed between the root ingrowth bag and the bottom of the PVC tube to avoid air diffusion 

from inside the PVC tube to the ingrowth bags that could affect fine-root growth. The top of 

each PVC tube was hermetically sealed. The mesh size of 2 mm allowed fine-root growth. After 

a period of 3 months, the bags were carefully retrieved.  We set up additional ingrowth cores at 
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the depths of 0.1 m and 1 m in the buffer rows of our experiment to check whether fine-roots 

were torn out when we pulled up the ingrowth cores 3 months after their installation. 

Destructive soil sampling close to the ingrowth cores showed that most of the fine roots of the 

two species were sheared by the stainless-steel mesh when the core was retrieved, and the 

biomass of fine roots not recovered inside the soil core was negligible. Two periods were 

studied: from July to September 2013 (winter) and October to December 2013 (spring). Just 

after the bags were retrieve, new bags were inserted at the same place to study the following 3-

month period. All the fine roots in the samples were washed free of soil with tap water using 

sieves and separated carefully by hand. The roots of the two species were distinguished in the 

50A50E treatment as described above. 

IX.2.5 Statistical analyses  

Two-way analyses of variance (ANOVAs) were used to assess the effects of treatments (100A, 

100E and 50A50E) and blocks on fine-root densities (FRD), specific root length (SRL), specific 

root area (SRA), fine-root diameter, root length index (RLI) and root area index (RAI) for 

individual soil layers. Individual root biomass measurements within a given soil layer were 

considered independent since the sampling positions were located near different trees in each 

plot. We used linear mixed-effects models to test the effects of soil depth, treatment, and the 

interaction between depth and treatment (as fixed effect) on FRD, SRL, SRA, fine-root 

diameter, RLI and RAI for the whole soil profile. Blocks were considered as random effects 

and residues were modeled by a first-order autoregressive correlation model to account for the 

correlations between soil depths. A Shapiro-Wilk test was performed on the data before 

modeling and log-transformation was used when the residuals did not follow a normal 

distribution or were not homoscedasticity. In addition, two-way ANOVAs were carried out for 

each soil layer to compare the FRD of each tree species (E. grandis or A. mangium) in the mixed 

stands with 50% of the FRD in the monoculture of the same species in the same block. The 

effects of treatments and depth on FRD in the ingrowth bags were tested using two-way 

ANOVAs for each 3-month period studied. Post-hoc differences were analysed using Tukey’s 

post-hoc Honest Significant Difference (HSD) to determine which means differed significantly 

between treatments. All calculations and analyses were performed using the R software version 

3.2.2 (R development Core Team 2013) and the level of significance was 0.05. Linear mixed-

effects models used the lmerTest package (Kuznetsova et al., 2015). For the graphical 
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representations, the mean values and standard errors were calculated from all the replicates (n 

= 9 down to a depth of 6 m and n =3 below). 

IX.3 Results 

IX.3.1 Fine-root over-yielding  

Auger sampling down to the root front (maximum depth of root observation) showed that trees 

in 50A50E, 100A and 100E exhibited a similar pattern of deep rooting. Fine-roots densities 

dropped sharply from the 0-0.5 m layer to the 0.5-1.0 m layer and decreased gradually down to 

a depth of 12 m in 100A and down to the water table at a depth of 17 m in 100E and 50A50E 

(Figure IX. 2). Mixing E. grandis and A. mangium led to fine-root over-yielding. Fine-root 

biomass in 50A50E (1127 g m-2) was 44% higher than in 100A (780 g m-2) and 58% higher 

than in 100E (714 g m-2) (Table IX. 2). Fine-root densities were 20-100% higher in 50A50E 

than in 100E and 100A in most of the soil layers and were at least twice as high in 50A50E as 

in 100A in soil layers 1.5 - 2 m, 2 - 3 m, 3 - 4 m, and at depths > 8 m. Low fine-root densities 

at depths > 8 m in 100A were consistent with higher soil water contents in 100A than in 100E 

and 50A50E (Figure IX. 2). 

Table IX. 2: Total fine-root biomass down to a depth of 17 m and mean specific root length 

(SRL), mean specific root area (SRA) and mean fine-root diameter down to a depth of 6 m in 

100A, 100E and 50A50E at 4 years of age. Different uppercase letters indicate significant 

differences between treatments, and different lowercase letters indicate significant differences 

between the monospecific stands and the mixed stands for each species (p < 0.05).  
 

100A 100E 50A50E 

 A. mangium E. grandis A. mangium E. grandis Total 

Fine-root biomass (g m-2) 779.68 B 714.19 B 421.94 696.93 1127.01 A 

Specific root length (m g-1) 17.98 b 20.53 b 45.63 a 28.11 a  

Specific root area (cm2 g-1) 268.36 b 253.57 b 584.11 a 338.55 a  

Diameter (mm) 0.53 b 0.47 a 0.48 a 0.47 a  
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Figure IX. 2: Mean fine-root densities (a) and gravimetric water content (b) down to the root 

front in treatments 100E (filled black bars), 100A (open bars) and 50A50E (filled grey bars). 

Standard errors between blocks are given down to a depth of 6 m (n=3). Different letters 

indicate significant differences between treatments within each individual soil layer down to 6 

m depth (p < 0.05, only significant in the upper soil layer). 
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IX.3.2 Fine-root distribution of each species in monospecific stands vs mixed stands 

Intra- and inter-specific interactions strongly influenced the distribution of A. mangium and E. 

grandis fine roots, irrespective of the soil layer (Table IX. 3). The total fine-root biomass of A. 

mangium trees in 50A50E was 54% of the biomass in 100A, whereas the planting density was 

only 50% of that in 100A, with the slightly lower exploration of the 0-2 m soil layer than in 

100A offset by a higher exploration of very deep soil layers (Figure IX. 3). E. grandis fine-root 

biomass was only 2% lower in 50A50E than in 100E, despite the stocking density being 50% 

lower (Figure IX. 3). E. grandis fine-root biomass in 50A50E was significantly higher than 

50% of that in 100E in all layers except 1-2 m and 4–6 m. Even though the fine-root biomass 

was low between the depths of 9 and 12 m in all the treatments (about 6% of the total fine-root 

biomass), A. mangium and E. grandis fine-root biomasses at this depth were 2-3 times higher 

in 50A50E than in the monospecific stands where the stocking density of each species was 

twice as high (Figure IX. 3).  

Figure IX. 3: Percentages of fine-root biomass in each soil layer in 50A50E relative to the fine-

root biomass in the single-species stands. The dotted line indicates the 50% reference for Acacia 

mangium roots (open bars with standard errors) and Eucalyptus grandis roots (solid bars with 

standard errors), if root development was similar to the monoculture, for a 50% tree stocking 

density for each species. Standard error bars are shown. Asterisks * denotes a significant 

difference (p<0.05) between the root biomass of a particular species in 50A50E and 50 % of 

the biomass in the monoculture of the same species. 
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Table IX. 3: P values of linear mixed models for specific root length (SRL), specific root area (SRA) and root diameter applied to the whole soil 

profile between 100A and 50A50E for A. mangium roots and between 100E and 50A50E E. grandis roots as a function of treatment, soil depth and 

the interactions between factors. 

 SRL  SRA  Diameter 

 A. mangium E. grandis  A. mangium E. grandis  A. mangium E. grandis 

Treatment < 0.0001 0.0029  < 0.0001 0.0024  < 0.0001 0.889 

Depth 0.3230 0.3238  0.675 0.6732  0.419 0.7353 

Depth x 

Treatment 
0.3854 0.5431  0.5988 0.8325  0.9029 0.9879 
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Table IX. 4: Fine-root biomass (g m-2) in 100A, 100E and 50A50E. The percentage of root mass in each soil layer relative to the total root mass is 

in parentheses. Different letters indicate significant differences between treatments in each soil layer (p < 0.05). 

 

Soil layer (m) 100A 100E 50A50E   

 A. mangium E. grandis A. mangium E. grandis Total 

0-0.5 321 (41%) A 161 (23%) B 126 (30%)  173 (25%)  302 (27%) A 

0.5-1 82 (11%) AB 54 (8%) B 33 (8%)  75 (11%)  109 (10%) A 

1-1.5 55 (7%) B 67 (9%) B 33 (8%)  60 (9%)  94 (8%) A 

1.5-2 49 (6%) B 68 (10%) B 35 (8%)  68 (10%)  104 (9%) A  

2-3 74 (9%) B 89 (12%) B 58 (14%) 91 (13%)  151 (13%) A 

3-4 38 (5%) C 76 (11%) B 45 (11%)  62 (9%)  108 (10%) A 

4-5 29 (4%) A 41 (6%) A 23 (6%)  34 (5%)  58 (5%) A 

5-6 20 (3%) B 42 (6%) A 16 (4%) 31 (4%) 48 (4%) A 

6-9 90 (12%)  87 (12%)  31 (7%) 49 (7%) 81 (7%)  

9-12 20 (3%) B 20 (3%) B 20 (5%) 25 (4%) 45 (4%) A 

12-17 0 8 (1%) 1 (0.2%) 26 (4%) 27 (2%) 

Total 780 (100%) B 714 (100%) B 422 (100%) 697 (100%) 1127 (100%) A 
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IX.3.3 Fine-root traits of each species in monospecific stands vs mixed stands 

Total fine-root length index (RLI) was 30 km m-2 in 50A50E and was double that in 100A (13 

km m-2) and in 100E (15 km m-2) (Figure IX. 5). The RLIs in soil layers 0-1 m, 2-4 m, 4-6 m 

and 9-17 m were significantly higher in 50A50E than in 100A and 100E. Total fine-root area 

index (RAI) was 28 m2 m-2 in 50A50E and was significantly higher than in 100A (20 m2 m-2) 

and 100E (19 m2 m-2) (Figure IX. 5). While about 50% of the total RAI was found in the top 1 

m soil layer in 50A50E (12.7 m2 m-2) and 100A (8.2 m2 m-2), only 22% of the total RAI was 

found in the top 1 m in 100E (4.2 m2 m-2) and a high proportion of the total RAI was in the 1-

2 m soil layer (5.8 m2 m-2). The RAI at depths > 4 m was about 6 m2 m-2, irrespective of the 

treatment. 

While specific root length (SRL) and specific root area (SRA) were significantly higher in 

50A50E than in the monospecific stands, the mean fine-root diameter was significantly higher 

in 100A than in 100E and 50A50E (Table IX. 2, Table IX. 3). Down to a depth of 6 m, mean 

values of SRL were 18.0, 20.5 and 34.9 m g-1 in 100A, 100E and 50A50E, respectively, and the 

mean values of SRA were 268, 254 and 433 cm2 g-1 (Table IX. 2). Mean fine-root diameter was 

0.53 mm in 100A, and 0.47 mm in 100E and 50A50E. Depth had little effect on SRL, SRA and 

fine-root diameter for either species, irrespective of the treatment (Figure IX. 4). 

Mixing A. mangium and E. grandis trees led to a significant increase in SRL and SRA for the 

roots of both species (Table IX. 2, Table IX. 3) while the mean fine-root diameter was 

significantly lower in mixed stands than in monoculture for A. mangium but not for E. grandis. 

SRL and SRA of A. mangium roots were 2 to 6 times higher in 50A50E than in 100A down to 

a depth of 2 m while the differences between treatments decreased at depths > 2 m (Figure IX. 

4). The highest difference between the A. mangium root traits in 50A50E and in 100A was in 

the topsoil. In the top 0.5 m layer, the mean SRL of A. mangium fine roots was 72 m g-1 in 

50A50E vs 11 m g-1 in 100A and the mean SRA was 848 cm2 g-1 in 50A50E vs 187 cm2 g-1 in 

100A. Even though the mean diameter of A. mangium roots was higher in 100A than in 50A50E 

in all the soil layers down to a depth of 6 m, the differences between treatments were not 

significant in each individual layer (Figure IX. 4).  
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Figure IX. 4:Specific root length (a), specific root area (b) and mean fine-root diameter (c) in 

each soil layer for Acacia mangium (left) and Eucalyptus grandis (right) in monospecific stands 

and in 50A50E. Standard errors between blocks are indicated (n=3). Asterisks * denotes a 

significant difference (p<0.05) between 50A:50E and the monoculture. 
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Figure IX. 5:Root length index (km m-2) a) and root area index (m2 m-2) b) in the 0-1 m, 1-2 m, 

2-4 m, 4-6 m, 6-9 m and 9-17 m soil layers for Acacia mangium monospecific stands (100A), 

Eucalyptus grandis monospecific stands (100E) and the mixed stands (50A50E).  Different 

upper-case letters indicate significant differences between treatments for the cumulative indices 

and different lower-case letters indicate significant differences between treatments within each 

individual soil layer (p < 0.05). 

 

IX.3.4 Capacity to explore soil patches 

Mean fine-root production in the ingrowth bags reached 0.048 ± 0.025 g dm-3 month-1 in 

50A50E across the two trimesters and the four depths studied and was 63% higher than the 

average of 100A and 100E (Figure IX. 6). Surprisingly, the effect of soil depth on fine-root 

production in the ingrowth bags was not significant. Fine-root production in the ingrowth bags 

increased by 268% in 100A, 42% in 100E and 33% in 50A50E from the first 3-month period 

(winter, dry season) to the second (spring). Fine-root production was significantly higher in 

100E and 50A50E than in 100A. In individual soil layers, fine-root production was not 

significantly different between 50A50E and 100E, but significantly higher than in 100A at 

depths 3-3.35 m and 6-6.35 m in winter and at depths 0.1-0.45 m and 1-1.35 m in spring.  
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The fine-root production of each species in 50A50E and 50% of the production in monospecific 

stands showed a strong seasonality (Figure IX. 6). While the production of A. mangium roots 

in winter in the ingrowth bags tended to be higher in 50A50E than 50% of that produced in 

100A, it was lower in spring. The production of E. grandis roots in the ingrowth bags in winter 

was slightly higher in 50A50E than 50% of the root biomass produced in 100E in soil layers 1 

- 1.35 m and 6 - 6.35 m, and 5 times higher in the 3 - 3.35 m soil layer. In spring, the production 

of E. grandis roots in the ingrowth bags was 2-3 times higher in 50A50E than 50% of the 

production in 100E in the upper soil layers (0.1 - 0.45 m and 1 - 1.35 m depths) and close to 

50% of the root production in 100E in deep soil layers (3 - 3.35 m and 6-6.35 m depths).  
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Figure IX. 6: Fine root production (g dm-3 month-1) in ingrowth bags down to a depth of 6.35 

m in 100E (filled black bars), 100A (open bars) and 50A50E (filled grey bars) (a) and 

percentages of fine-root production in 50A50E relative to the production in each soil layer for 

the single-species stands (b) in winter (dry season; Trimester 1, left) and in spring (Trimester 2, 

right). Significant differences between treatments in the same soil layer are indicated by 

different letters (p<0.05). The dotted lines indicate the 50% reference for Acacia mangium roots 

(open bars with standard errors) and Eucalyptus grandis roots (solid bars with standard errors) 

if root development was similar to the monoculture, for a 50% stocking density for each species. 

Standard error bars are shown (n=3). Asterisks * denotes a significant difference (P<0.05) 

between the root biomass of a particular species in 50A50E and 50 % of the biomass at the 

same positions in the pure stands of the same species.  F and P values of linear mixed models 

for fine-root production (g dm-3 month-1) as a function of soil depth and treatment are shown. 
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IX.4 Discussion 

IX.4.1 Fine-root over-yielding in very deep soil layers 

The main purpose of this study was to investigate whether roots explore very deep soil layers 

more intensively in mixed-species stands than in monospecific stands. In agreement with our 

first hypothesis, mixing A. mangium and E. grandis trees led to a strong fine-root over-yielding 

in all soil layers down to the water table at a depth of 17 m. Although fine-root over-yielding 

has already been reported in the upper soil layers for mixed stands compared to monospecific 

stands (Brassard et al., 2013; Laclau et al., 2013c; Lei et al., 2012), the opposite has also been 

reported (Bolte & Villanueva, 2006), and other studies have shown similar fine-root biomasses 

in mixed and monospecific stands (Bauhus et al., 2000; Meinen et al., 2009). A recent global 

meta-analysis across forests, grasslands, croplands and pot systems showed that mixed stands 

had, on average 28% higher fine-root biomass and 45% higher annual production than 

monocultures (Ma & Chen, 2016). The originality of our results come from the strong fine-root 

over-yielding observed in soil layers at depths > 2 m. Competition for water and nutrients with 

the neighboring trees in mixed stands may force the roots to explore and tap deep soil layers 

(Cardinael et al., 2015; Ma & Chen, 2017). While most of the studies dealing with fine-root 

distribution in forests have been limited to the upper 2 m of soil, 35%, 45% and 50% of the 

total fine-root biomass was found below 2 m in 100A, 50A50E and 100E, respectively. The 

difficulty of sampling deep roots can lead to underestimates of root mass and belowground 

productivity in tropical plantations and forests (Maeght et al., 2015b; Pierret et al., 2016b). 

Studies quantifying total fine-root biomass down to the root front are scarce for trees growing 

in very deep tropical soils. Close to our study site (on the same soil type), the proportion of fine 

roots below 2 m depth was 20-30% of the total fine-root biomass down to the root front in a 

sweet orange orchard (Adriano et al., 2017) and 30-60% of the total fine-root length, depending 

on tree age, in eucalypt plantations (Laclau et al., 2013b; Pinheiro et al., 2016a). As commonly 

reported in forest ecosystems, fine-root densities dropped rapidly within the first topsoil layers 

then decreased gradually with soil depth, which corresponds to the distribution of nutrients in 

soil profiles (Weemstra et al., 2017). Interactions between tree species greatly increase the 

exploration of very deep soil layers in our study, which is likely to enhance the uptake of soil 

resources. Establishing a deep root system can also help tropical trees withstand the prolonged 

droughts that are expected to increase in the future (Christina et al., 2017a; Solomon et al., 

2009). A modeling approach in a nearby eucalypt stand of similar productivity showed that 
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very low densities of fine roots at depths > 10 m can withdraw substantial amounts of water 

during dry periods (Christina et al., 2017a). Mixing tree species could therefore enhance the 

resilience of tropical planted forests to climate changes increasing the access to water and 

nutrients stored in very deep soil layers.  

Fine-root over-yielding in 50A50E is also consistent with the higher soil respiration rates 

relative to 100A and 100E at the end of the previous rotation (Nouvellon et al., 2012b). Roots 

are a major contributor to soil respiration (Gill et al., 2002; Marsden et al., 2008) and about 

25% of terrestrial net primary production is due to fine-root production and turnover 

(McCormack et al., 2015). The total belowground C fluxes from 4 to 6 years after planting in 

the previous rotation of our experiment represented 24%, 26% and 32% of the gross primary 

production in 100A, 100E and 50A50E, respectively (Nouvellon et al., 2012b). Large amounts 

of C are stored at great depths in tropical soils (Batjes, 2014) and changes in land use increasing 

the supply of fresh carbon might promote the activity of microbes through a priming effect 

(Derrien et al., 2014b; Fontaine et al., 2007). The increase in fine-root biomass, by replacing 

monospecific stands by mixed-species, may have consequences on soil carbon sequestration in 

deep soil layers that are poorly understood. Further studies are needed to assess whether an 

increase in the release of fresh C in very deep soil layers resulting from the combination of tree 

species could contribute to mitigating climate change through a sequestration of C or, on the 

contrary, would promote the mineralization of ancient C and therefore increase CO2 emissions. 

IX.4.2 Root strategies in response to intra- and inter-specific interactions 

In agreement with our second hypothesis, the interaction mechanisms between E. grandis and 

A. mangium trees led to large changes in A. mangium fine-root morphology. Previous studies 

at the same experimental site showed that E. grandis trees dominate the competition with A. 

mangium trees capturing more light per tree and taking advantage of N fixation (Paula et al., 

2015). The A. mangium leaves are below the canopy of eucalypt trees in mixed stands and fine 

roots are partially excluded from the upper soil layer (Laclau et al., 2013c; Le Maire et al., 

2013). A. mangium trees adopt an intensification strategy (Bonifas & Lindquist, 2009; Lei et 

al., 2012; Ostonen et al., 2007a) in competition with eucalypts, making it possible to increase 

the capacity to take up soil resources for a relatively low investment in belowground biomass. 

SRL and SRA of A. mangium fine roots in mixed stands were 2-3 times higher than in 

monoculture, which, in combination with a large increase in FRD, led to a much higher root 

length index and root area index. While some studies in forest ecosystems also showed higher 
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SRL and SRA in mixed stands than in monospecific stands, making it possible to reduce the 

cost/benefit ratio for resource capture (Beyer et al., 2013; Lei et al., 2012; Sun et al., 2017; 

Weemstra et al., 2016), those root traits were similar in mixed-species plantations and 

monocultures of A. mearnsii and E. globulus in Australia (Bauhus et al., 2000). In our study, A. 

mangium faced competition with E. grandis by altering the root absorption capacity, much more 

through morphological adaptations than changing the fine-root biomass of each A. mangium 

tree.  

C starvation affecting the fine root architecture of A. mangium trees dominated by eucalypts as 

well as changes in mycorrhizal status seem to be potential factors. A recent study carried out in 

the same experiment showed large changes in the microbiological and chemical attributes of 

soil between the 100A and 50A50E treatments (Bini et al., 2013), which suggests that changes 

in mycorrhizal status might be contribute to explaining the effect of eucalypts on the SRL and 

SRA of A. mangium roots. However, the mycorrhizal status was not directly measured, and we 

can only speculate about this effect. Differences in nodulation might contribute to explaining 

this pattern. Indeed, nodule density was much higher in monospecific A. mangium stands than 

in mixed A. mangium and E. grandis stands in the previous rotation at this site (Bouillet et al., 

2008). However, nodules were mainly observed in the 0-50 cm soil layer and their density was 

low in the scanned roots. 

Our results confirm the fine-root segregation between the two species in the mixed stand 

observed for  the previous rotation at this site (da Silva et al., 2009; Laclau et al., 2013c), with 

a partial exclusion of A. mangium roots from the resource-rich upper soil layers in mixed stands 

and a higher exploration of deep soil layers. However, the methodology was less intensive than 

in the previous studies of this effect (only one distance to the trees was sampled here and the 0-

50 cm soil layer was not divided in several layers). 

Eucalyptus grandis trees respond to competition with A. mangium trees through both an 

extensification strategy, leading to a sharp increase in fine-root biomass relative to 

monospecific stands, and an intensification strategy, increasing the volume of capture of soil 

resources relative to the fine-root biomass. However, the changes in SRL, SRA and fine-root 

diameter were non-significant in most of the soil layers, which suggests that the contribution of 

the intensification strategy was low. SRL and SRA values in our study are in the range reported 

down to a depth of 12 m for four Eucalyptus genotypes in nearby plantations (Pinheiro et al., 

2016a). The total biomass of E. grandis fine roots was similar in 50A50E and in 100E despite 
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a stocking density of eucalypt trees twice as high in 100E, which shows a remarkable plasticity 

of eucalypt trees to explore a huge soil volume, as already shown in Laclau et al. (2013c). In 

boreal forests, a comparison of fine-root production in mixed and single-species stands showed 

that fine-root production was correlated with nitrogen concentrations in the soil layers, and 

suggested that an enhancement of N availability in the mixed stands contributed to increasing 

fine-root production (Ma & Chen, 2017). We, therefore, speculate that facilitation mechanisms 

for E. grandis trees planted with A. mangium resulting from an increase in soil N availability 

(Tchichelle et al., 2017; Voigtlaender et al., 2012), could be involved in the extensification 

strategy leading to an increase in soil exploration by E. grandis fine roots. Such pattern might 

be pronounced in the superficial soil layers where eucalypt trees benefit from a rapid 

belowground N transfer from A. mangium trees  (Paula et al., 2015). 

While many studies show that SRL, SRA and fine-root diameter can change depending on soil 

depth (Bakker et al., 2009; Makita et al., 2011; Maurice et al., 2010; Prieto et al., 2015), we did 

not observe clear patterns down the soil profile for either species. The same type of study carried 

out down to the root front in other eucalypt and orange plantations in Brazil also showed a high 

variability of SRL, SRA and fine-root diameter between soil layers but without a clear 

correlation with the depth (Adriano et al., 2017; Pinheiro et al., 2016a). A study carried out in 

20 plant communities sampled in tropical, Mediterranean and montane regions showed that 

some fine-root traits were significantly different between shallow and deep soil layers, but 

absolute differences were small for most of the traits measured (Prieto et al., 2015). Our results 

suggest that E. grandis and A. mangium fine roots in mixed stands reflect an acquisitive 

resource strategy (Freschet et al., 2017; McCormack et al., 2015). Further studies in eucalypt 

and acacia plantations should examine other important root traits (in particular tissue density, 

concentrations of nutrients, cellulose, lignin and carbohydrate) to gain insight into the cost to 

the trees of investing in fine-root production in very deep soil layers. 

IX.4.3 Fine-root production   

Even though the fine-root production of A. mangium and E. grandis trees exhibited a strong 

seasonal variability, the decrease in fine-root density with soil depth did not modify the 

production of fine roots in the ingrowth bags down to a depth of 6 m. This pattern is contrary 

to our third hypothesis and shows a huge capacity of very deep roots to explore resource-rich 

soil patches despite their low density in the soil. The production of fine roots in the ingrowth 

bags was however much higher for E. grandis trees than for A. mangium trees, which is 
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consistent with the faster growth rates of E. grandis trees shown both aboveground and 

belowground (da Silva et al., 2009; Nouvellon et al., 2012b). Fine-root production in the 

ingrowth bags confirmed the strong over-yielding in mixed-species stands relative to the 

monocultures suggested by the fine-root densities. However, fine roots sampled in ingrowth 

bags can be different from fine roots sampled in undisturbed soil and productions estimated 

from ingrowth bags should be interpreted with caution (Bauhus & Messier, 1999; Jourdan et 

al., 2008). Nevertheless, the same ingrowth bags were installed at all the depths in all the 

treatments, making it possible to compare the capacity of fine roots to explore soil patches. 

The production of A. mangium fine roots in the ingrowth bags was much more affected by the 

season (winter vs spring) in the topsoil than in deep soil layers, as reported for phreatophytic 

species (Canham et al., 2012). E. grandis trees are better adapted to the cold climate in winter 

at our study site than A. mangium trees, which could account for the higher fine-root production 

in the topsoil in E. grandis monoculture and mixed-species stands than in A. mangium 

monoculture. A strong influence of exogenous factors such as soil temperature and water 

content (Canham et al., 2015), as well as endogenous factors such as photosynthate availability, 

on fine-root phenology is well documented (McCormack et al., 2015). 

In conclusion, our study shows that mixing species can lead to a strong fine-root over-yielding 

in very deep soil layers. We demonstrate that E. grandis and A. mangium trees growing in mixed 

stands can explore more intensively deep soil layers than their respective monospecific stands. 

Studies dealing with deep rooting are needed for other tree species, soils and climates to assess 

whether increasing the diversity in tropical planted forests could increase their resilience to 

climate change by providing access to more soil resources than monospecific stands. A better 

comprehension of the effects of fine-root growth and turnover in very deep soil layers on soil 

carbon stocks is also needed to better assess the long-term consequences of afforestation with 

fast-growing tree species on the global carbon cycle.  
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Appendix 

Appendix IX. 1: Root ingrowth bags at the four sampled depths 

 

 

 



Consequences of clear-cutting on the production of fine roots, CO2, CH4 and N2O down to the water table in 

Eucalyptus grandis stands conducted in coppice in a throughfall-exclusion experiment. 

Improving our understanding of the spatiotemporal dynamics of fine roots and greenhouse gases in deep soil layers is a key 

component to identify more sustainable silvicultural practices for planted forests in a context of climate change and to improve 

the current biogeochemical models. Our study aimed to assess the effect of clear-cutting and drought on fine-root production, 

soil CO2, CH4 and N2O effluxes and production throughout deep soil profiles down to the water table in Brazilian coppice-

managed Eucalyptus plantations. Fine roots (i.e. diameter < 2 mm) were sampled down to a depth of 17 m in a throughfall 

exclusion experiment comparing stands with 37% of throughfall excluded by plastic sheets (-W) and stands without rain 

exclusion (+W). Root dynamics were studied using minirhizotron in two permanent pits down to a depth of 17 m in treatments 

-W and +W, over 1 year before clear-cutting, then over 2 years in coppice, as well as down to a depth of 4 m in a non-harvested 

plot (NH) serving as a control. CO2, CH4 and N2O surface effluxes were measured over three years using the closed-chamber 

method in treatments -W, +W and NH. CO2, CH4 and N2O concentrations in the soil were measured from the pits down to a 

depth of 15.5 m in treatments -W, +W and NH over 3 months before the clear-cut and 1.5 years after in coppice. After 

harvesting, spectacular fine root growth of trees conducted in coppice occurred in very deep soil layers (> 13 m) and, 

surprisingly, root mortality remained extremely low whatever the depth and the treatment. Total fine-root biomass in coppice 

down to a depth of 17 m was 1266 and 1017 g m-2 in treatments +W and -W, respectively, at 1.5 years after the clear-cut and 

was 1078 g m-2 in NH 7.5 years after planting. Specific root length and specific root area were about 15% higher in -W than in 

+W. CO2, CH4, and N2O effluxes were not significantly different between treatments -W and +W and did not change after 

clear-cutting in the coppice-managed stands compared to non-harvested stand. CO2 and CH4 concentrations greatly increased 

with depth and N2O concentrations remained roughly constant from the soil surface down to a depth of 15.5 m. Mean CO2 and 

N2O concentrations in -W were 20.7% and 7.6% lower than in +W, respectively, and CH4 concentrations in -W were 44.4% 

higher than in +W throughout the soil profiles. A diffusivity model showed that CO2, N2O and CH4 production and consumption 

occurred at great depths and were similar in treatments +W, -W and NH. Clear-cutting did not increase CO2, CH4 and N2O 

effluxes and productions, whatever the water supply regime. Establishing deep root systems in tropical planted forests could 

help trees withstand the long drought periods expected under climate change in many tropical regions. Our study suggested 

that coppice management might be an interesting option in tropical Eucalyptus plantations, both to improve tree tolerance to 

drought and store carbon at great depth in the soil.  

Keywords: Brazil, Eucalyptus grandis, deep root growth, greenhouse gases, throughfall exclusion, very deep tropical soil, 

coppice 

 

 

Conséquence de la coupe rase sur la production de racines fines, CO2, CH4 et N2O jusqu'à la nappe phréatique dans 

une plantation d'Eucalyptus grandis menée en taillis sur un dispositif d'exclusion de pluie. 

 

Améliorer notre compréhension de la dynamique spatio-temporelle des racines fines et des gaz à effet de serre dans les couches 

profondes du sol est un élément clé pour identifier des pratiques sylvicoles plus durables pour les forêts plantées dans un 

contexte de changement climatique et pour améliorer les modèles biogéochimiques actuels. Notre étude visait à évaluer l’effet 

de la coupe des arbres et de la sécheresse sur la production de racines fines et les émissions et production de CO2, N2O et CH4 

sur un profil de sol profond jusqu’à la nappe phréatique, dans des plantations d’Eucalyptus menées en taillis au Brésil. Les 

racines fines, d’un diamètre inférieur à 2 millimètres, ont été échantillonnées jusqu’à une profondeur de 17 m sur un dispositif 

d’exclusion de pluie comparant des peuplements soumis à une exclusion de 37% des pluviolessivats (-W) et des peuplements 

sans exclusion (+ W). La dynamique des racines a été étudiée à l’aide de minirhizotrons installés dans deux fosses permanentes 

d’une profondeur de 17 m dans les traitement -W et + W, pendant un an avant la coupe des arbres, puis pendant deux ans en 

taillis, et jusqu’à 4 m de profondeur dans un peuplement non récolté (NH) servant de témoin. Les flux de CO2, de CH4 et de 

N2O à la surface du sol ont été mesurés durant trois ans en utilisant la méthode des chambres manuelles dans les traitements -

W, + W et NH. Les concentrations de CO2, de CH4 et de N2O dans le sol ont été mesurées à partir des fosses jusqu'à une 

profondeur de 15.5 m dans les traitements -W, + W et NH durant 3 mois avant la coupe des arbres et 1.5 ans après, en taillis. 

Après la coupe, nous avons observé une croissance spectaculaire des racines fines en grande profondeur (> 13 m) chez les 

arbres menés en taillis et, étonnamment, une mortalité extrêmement faible des racines quelle que soit la profondeur et le 

traitement. La biomasse totale des racines fines jusqu’à 17 m de profondeur dans les traitements menés en taillis était de 1266 

et 1017 g m-2 dans + W et -W, respectivement, 1.5 an après la coupe des arbres et de 1078 g m-2 dans le traitement NH, 7.5 ans 

après la plantation. La longueur spécifique et la surface spécifique des racines étaient environ 15% plus élevées dans -W que 

dans + W. Les flux de CO2, de CH4 et de N2O ne différaient pas significativement entre -W et + W et ne changeaient pas après 

la coupe des arbres dans les peuplements menés en taillis par rapport aux peuplements non exploités. Les concentrations de 

CO2 et de CH4 augmentaient fortement avec la profondeur et les concentrations de N2O restaient à peu près constantes de la 

surface du sol jusqu'à une profondeur de 15.5 m. Les concentrations moyennes de CO2 et de N2O dans -W étaient 

respectivement inférieures de 20.7% et 7.6% à celles de + W et celles de CH4 dans -W de 44.4% supérieures à celles de + W 

sur tout le profil de sol. Un modèle de diffusivité a montré que la production et la consommation de CO2, de N2O et de CH4 se 

produisaient à de grandes profondeurs et étaient similaires dans les traitements + W, -W et NH. La coupe des arbres n'a pas 

augmenté les flux et les productions de CO2, de CH4 et de N2O, quel que soit le régime hydrique. La mise en place de systèmes 

racinaires profonds dans les forêts tropicales plantées pourrait permettre aux arbres de résister aux périodes de sécheresse 

attendues dans un contexte de changement climatique. Notre étude réalisée dans des peuplements d'eucalyptus gérés en taillis, 

représentatifs de vastes zones tropicales, suggère que les émissions de gaz à effet de serre pourraient être peu influencées par 

les modifications de régimes de précipitations dus au changement climatique. 

Mots clés : Brésil, Eucalyptus grandis, croissance racinaire en profondeur, gaz à effet de serre, exclusion de pluie, sol tropical 

très profond, taillis 


